From 5ad0b29f44a7aaa3c2edf3e7299c76aa09109e61 Mon Sep 17 00:00:00 2001 From: Packit Service Date: Dec 09 2020 20:55:13 +0000 Subject: libvpx-1.7.0 base --- diff --git a/.clang-format b/.clang-format new file mode 100644 index 0000000..c148319 --- /dev/null +++ b/.clang-format @@ -0,0 +1,97 @@ +--- +Language: Cpp +# BasedOnStyle: Google +# Generated with clang-format 4.0.1 +AccessModifierOffset: -1 +AlignAfterOpenBracket: Align +AlignConsecutiveAssignments: false +AlignConsecutiveDeclarations: false +AlignEscapedNewlinesLeft: true +AlignOperands: true +AlignTrailingComments: true +AllowAllParametersOfDeclarationOnNextLine: true +AllowShortBlocksOnASingleLine: false +AllowShortCaseLabelsOnASingleLine: true +AllowShortFunctionsOnASingleLine: All +AllowShortIfStatementsOnASingleLine: true +AllowShortLoopsOnASingleLine: true +AlwaysBreakAfterDefinitionReturnType: None +AlwaysBreakAfterReturnType: None +AlwaysBreakBeforeMultilineStrings: true +AlwaysBreakTemplateDeclarations: true +BinPackArguments: true +BinPackParameters: true +BraceWrapping: + AfterClass: false + AfterControlStatement: false + AfterEnum: false + AfterFunction: false + AfterNamespace: false + AfterObjCDeclaration: false + AfterStruct: false + AfterUnion: false + BeforeCatch: false + BeforeElse: false + IndentBraces: false +BreakBeforeBinaryOperators: None +BreakBeforeBraces: Attach +BreakBeforeTernaryOperators: true +BreakConstructorInitializersBeforeComma: false +BreakAfterJavaFieldAnnotations: false +BreakStringLiterals: true +ColumnLimit: 80 +CommentPragmas: '^ IWYU pragma:' +ConstructorInitializerAllOnOneLineOrOnePerLine: false +ConstructorInitializerIndentWidth: 4 +ContinuationIndentWidth: 4 +Cpp11BracedListStyle: false +DerivePointerAlignment: false +DisableFormat: false +ExperimentalAutoDetectBinPacking: false +ForEachMacros: [ foreach, Q_FOREACH, BOOST_FOREACH ] +IncludeCategories: + - Regex: '^<.*\.h>' + Priority: 1 + - Regex: '^<.*' + Priority: 2 + - Regex: '.*' + Priority: 3 +IncludeIsMainRegex: '([-_](test|unittest))?$' +IndentCaseLabels: true +IndentWidth: 2 +IndentWrappedFunctionNames: false +JavaScriptQuotes: Leave +JavaScriptWrapImports: true +KeepEmptyLinesAtTheStartOfBlocks: false +MacroBlockBegin: '' +MacroBlockEnd: '' +MaxEmptyLinesToKeep: 1 +NamespaceIndentation: None +ObjCBlockIndentWidth: 2 +ObjCSpaceAfterProperty: false +ObjCSpaceBeforeProtocolList: false +PenaltyBreakBeforeFirstCallParameter: 1 +PenaltyBreakComment: 300 +PenaltyBreakFirstLessLess: 120 +PenaltyBreakString: 1000 +PenaltyExcessCharacter: 1000000 +PenaltyReturnTypeOnItsOwnLine: 200 +PointerAlignment: Right +ReflowComments: true +SortIncludes: false +SpaceAfterCStyleCast: false +SpaceAfterTemplateKeyword: true +SpaceBeforeAssignmentOperators: true +SpaceBeforeParens: ControlStatements +SpaceInEmptyParentheses: false +SpacesBeforeTrailingComments: 2 +SpacesInAngles: false +SpacesInContainerLiterals: true +SpacesInCStyleCastParentheses: false +SpacesInParentheses: false +SpacesInSquareBrackets: false +Standard: Auto +TabWidth: 8 +UseTab: Never +... + diff --git a/.gitattributes b/.gitattributes new file mode 100644 index 0000000..ffc6912 --- /dev/null +++ b/.gitattributes @@ -0,0 +1,18 @@ +*.[chs] filter=fixtabswsp +*.[ch]pp filter=fixtabswsp +*.[ch]xx filter=fixtabswsp +*.asm filter=fixtabswsp +*.php filter=fixtabswsp +*.pl filter=fixtabswsp +*.sh filter=fixtabswsp +*.txt filter=fixwsp +[Mm]akefile filter=fixwsp +*.mk filter=fixwsp +*.rc -crlf +*.ds[pw] -crlf +*.bat -crlf +*.mmp -crlf +*.dpj -crlf +*.pjt -crlf +*.vcp -crlf +*.inf -crlf diff --git a/.gitignore b/.gitignore new file mode 100644 index 0000000..bf5ffc7 --- /dev/null +++ b/.gitignore @@ -0,0 +1,68 @@ +*.S +*.a +*.asm.s +*.d +*.gcda +*.gcno +*.o +*~ +.cproject +.project +.settings +/*-*.mk +/*.asm +/*.doxy +/*.ivf +/*.ivf.md5 +/.bins +/.deps +/.docs +/.install-* +/.libs +/Makefile +/config.log +/config.mk +/docs/ +/doxyfile +/examples/*.dox +/examples/decode_to_md5 +/examples/decode_with_drops +/examples/decode_with_partial_drops +/examples/example_xma +/examples/postproc +/examples/resize_util +/examples/set_maps +/examples/simple_decoder +/examples/simple_encoder +/examples/twopass_encoder +/examples/vp8_multi_resolution_encoder +/examples/vp8cx_set_ref +/examples/vp9cx_set_ref +/examples/vp9_lossless_encoder +/examples/vp9_spatial_svc_encoder +/examples/vpx_temporal_svc_encoder +/ivfdec +/ivfdec.dox +/ivfenc +/ivfenc.dox +/libvpx.so* +/libvpx.ver +/samples.dox +/test_intra_pred_speed +/test_libvpx +/tools.dox +/tools/*.dox +/tools/tiny_ssim +/vp8_api1_migration.dox +/vp[89x]_rtcd.h +/vpx.pc +/vpx_config.c +/vpx_config.h +/vpx_dsp_rtcd.h +/vpx_scale_rtcd.h +/vpx_version.h +/vpxdec +/vpxdec.dox +/vpxenc +/vpxenc.dox +TAGS diff --git a/.mailmap b/.mailmap new file mode 100644 index 0000000..29af510 --- /dev/null +++ b/.mailmap @@ -0,0 +1,42 @@ +Adrian Grange +Aℓex Converse +Aℓex Converse +Alexis Ballier +Alpha Lam +Chris Cunningham +Daniele Castagna +Deb Mukherjee +Erik Niemeyer +Guillaume Martres +Hangyu Kuang +Hui Su +Jacky Chen +Jim Bankoski +Johann Koenig +Johann Koenig +Johann Koenig +Johann Koenig +John Koleszar +Joshua Litt +Marco Paniconi +Marco Paniconi +Pascal Massimino +Paul Wilkins +Peter Boström +Peter de Rivaz +Peter de Rivaz +Ralph Giles +Ralph Giles +Ronald S. Bultje +Sami Pietilä +Shiyou Yin +Tamar Levy +Tamar Levy +Tero Rintaluoma +Timothy B. Terriberry +Tom Finegan +Tom Finegan +Urvang Joshi +Yaowu Xu +Yaowu Xu +Yaowu Xu diff --git a/AUTHORS b/AUTHORS new file mode 100644 index 0000000..04c2872 --- /dev/null +++ b/AUTHORS @@ -0,0 +1,170 @@ +# This file is automatically generated from the git commit history +# by tools/gen_authors.sh. + +Aaron Watry +Abo Talib Mahfoodh +Adrian Grange +Aℓex Converse +Ahmad Sharif +Aleksey Vasenev +Alexander Potapenko +Alexander Voronov +Alexandra Hájková +Alexis Ballier +Alok Ahuja +Alpha Lam +A.Mahfoodh +Ami Fischman +Andoni Morales Alastruey +Andres Mejia +Andrew Lewis +Andrew Russell +Angie Chiang +Aron Rosenberg +Attila Nagy +Brion Vibber +changjun.yang +Charles 'Buck' Krasic +Cheng Chen +chm +Chris Cunningham +Christian Duvivier +Daniele Castagna +Daniel Kang +Deb Mukherjee +Deepa K G +Dim Temp +Dmitry Kovalev +Dragan Mrdjan +Ed Baker +Ehsan Akhgari +Erik Niemeyer +Fabio Pedretti +Frank Galligan +Fredrik Söderquist +Fritz Koenig +Gabriel Marin +Gaute Strokkenes +Geza Lore +Ghislain MARY +Giuseppe Scrivano +Gordana Cmiljanovic +Gregor Jasny +Guillaume Martres +Guillermo Ballester Valor +Hangyu Kuang +Hanno Böck +Han Shen +Henrik Lundin +Hui Su +Ivan Krasin +Ivan Maltz +Jacek Caban +Jacky Chen +James Berry +James Yu +James Zern +Jan Gerber +Jan Kratochvil +Janne Salonen +Jean-Yves Avenard +Jeff Faust +Jeff Muizelaar +Jeff Petkau +Jerome Jiang +Jia Jia +Jian Zhou +Jim Bankoski +Jingning Han +Joey Parrish +Johann Koenig +John Koleszar +Johnny Klonaris +John Stark +Joshua Bleecher Snyder +Joshua Litt +Julia Robson +Justin Clift +Justin Lebar +Kaustubh Raste +KO Myung-Hun +Kyle Siefring +Lawrence Velázquez +Linfeng Zhang +Lou Quillio +Luca Barbato +Makoto Kato +Mans Rullgard +Marco Paniconi +Mark Mentovai +Martin Ettl +Martin Storsjo +Matthew Heaney +Michael Kohler +Mike Frysinger +Mike Hommey +Mikhal Shemer +Min Chen +Minghai Shang +Min Ye +Moriyoshi Koizumi +Morton Jonuschat +Nathan E. Egge +Nico Weber +Parag Salasakar +Pascal Massimino +Patrik Westin +Paul Wilkins +Pavol Rusnak +Paweł Hajdan +Pengchong Jin +Peter Boström +Peter Collingbourne +Peter de Rivaz +Philip Jägenstedt +Priit Laes +Rafael Ávila de Espíndola +Rafaël Carré +Rafael de Lucena Valle +Rahul Chaudhry +Ralph Giles +Ranjit Kumar Tulabandu +Rob Bradford +Ronald S. Bultje +Rui Ueyama +Sami Pietilä +Sarah Parker +Sasi Inguva +Scott Graham +Scott LaVarnway +Sean McGovern +Sergey Kolomenkin +Sergey Ulanov +Shimon Doodkin +Shiyou Yin +Shunyao Li +Stefan Holmer +Suman Sunkara +Sylvestre Ledru +Taekhyun Kim +Takanori MATSUURA +Tamar Levy +Tao Bai +Tero Rintaluoma +Thijs Vermeir +Tim Kopp +Timothy B. Terriberry +Tom Finegan +Tristan Matthews +Urvang Joshi +Vignesh Venkatasubramanian +Vlad Tsyrklevich +Yaowu Xu +Yi Luo +Yongzhe Wang +Yunqing Wang +Yury Gitman +Zoe Liu +Google Inc. +The Mozilla Foundation +The Xiph.Org Foundation diff --git a/CHANGELOG b/CHANGELOG new file mode 100644 index 0000000..2281394 --- /dev/null +++ b/CHANGELOG @@ -0,0 +1,695 @@ +2017-01-04 v1.7.0 "Mandarin Duck" + This release focused on high bit depth performance (10/12 bit) and vp9 + encoding improvements. + + - Upgrading: + This release is ABI incompatible due to new vp9 encoder features. + + Frame parallel decoding for vp9 has been removed. + + - Enhancements: + vp9 encoding supports additional threads with --row-mt. This can be greater + than the number of tiles. + + Two new vp9 encoder options have been added: + --corpus-complexity + --tune-content=film + + Additional tooling for respecting the vp9 "level" profiles has been added. + + - Bug fixes: + A variety of fuzzing issues. + vp8 threading fix for ARM. + Codec control VP9_SET_SKIP_LOOP_FILTER fixed. + Reject invalid multi resolution configurations. + +2017-01-09 v1.6.1 "Long Tailed Duck" + This release improves upon the VP9 encoder and speeds up the encoding and + decoding processes. + + - Upgrading: + This release is ABI compatible with 1.6.0. + + - Enhancements: + Faster VP9 encoding and decoding. + High bit depth builds now provide similar speed for 8 bit encode and decode + for x86 targets. Other platforms and higher bit depth improvements are in + progress. + + - Bug Fixes: + A variety of fuzzing issues. + +2016-07-20 v1.6.0 "Khaki Campbell Duck" + This release improves upon the VP9 encoder and speeds up the encoding and + decoding processes. + + - Upgrading: + This release is ABI incompatible with 1.5.0 due to a new 'color_range' enum + in vpx_image and some minor changes to the VP8_COMP structure. + + The default key frame interval for VP9 has changed from 128 to 9999. + + - Enhancement: + A core focus has been performance for low end Intel processors. SSSE3 + instructions such as 'pshufb' have been avoided and instructions have been + reordered to better accommodate the more constrained pipelines. + + As a result, devices based on Celeron processors have seen substantial + decoding improvements. From Indian Runner Duck to Javan Whistling Duck, + decoding speed improved between 10 and 30%. Between Javan Whistling Duck + and Khaki Campbell Duck, it improved another 10 to 15%. + + While Celeron benefited most, Core-i5 also improved 5% and 10% between the + respective releases. + + Realtime performance for WebRTC for both speed and quality has received a + lot of attention. + + - Bug Fixes: + A number of fuzzing issues, found variously by Mozilla, Chromium and others, + have been fixed and we strongly recommend updating. + +2015-11-09 v1.5.0 "Javan Whistling Duck" + This release improves upon the VP9 encoder and speeds up the encoding and + decoding processes. + + - Upgrading: + This release is ABI incompatible with 1.4.0. It drops deprecated VP8 + controls and adds a variety of VP9 controls for testing. + + The vpxenc utility now prefers VP9 by default. + + - Enhancements: + Faster VP9 encoding and decoding + Smaller library size by combining functions used by VP8 and VP9 + + - Bug Fixes: + A variety of fuzzing issues + +2015-04-03 v1.4.0 "Indian Runner Duck" + This release includes significant improvements to the VP9 codec. + + - Upgrading: + This release is ABI incompatible with 1.3.0. It drops the compatibility + layer, requiring VPX_IMG_FMT_* instead of IMG_FMT_*, and adds several codec + controls for VP9. + + - Enhancements: + Faster VP9 encoding and decoding + Multithreaded VP9 decoding (tile and frame-based) + Multithreaded VP9 encoding - on by default + YUV 4:2:2 and 4:4:4 support in VP9 + 10 and 12bit support in VP9 + 64bit ARM support by replacing ARM assembly with intrinsics + + - Bug Fixes: + Fixes a VP9 bitstream issue in Profile 1. This only affected non-YUV 4:2:0 + files. + + - Known Issues: + Frame Parallel decoding fails for segmented and non-420 files. + +2013-11-15 v1.3.0 "Forest" + This release introduces the VP9 codec in a backward-compatible way. + All existing users of VP8 can continue to use the library without + modification. However, some VP8 options do not map to VP9 in the same manner. + + The VP9 encoder in this release is not feature complete. Users interested in + the encoder are advised to use the git master branch and discuss issues on + libvpx mailing lists. + + - Upgrading: + This release is ABI and API compatible with Duclair (v1.0.0). Users + of older releases should refer to the Upgrading notes in this document + for that release. + + - Enhancements: + Get rid of bashisms in the main build scripts + Added usage info on command line options + Add lossless compression mode + Dll build of libvpx + Add additional Mac OS X targets: 10.7, 10.8 and 10.9 (darwin11-13) + Add option to disable documentation + configure: add --enable-external-build support + make: support V=1 as short form of verbose=yes + configure: support mingw-w64 + configure: support hardfloat armv7 CHOSTS + configure: add support for android x86 + Add estimated completion time to vpxenc + Don't exit on decode errors in vpxenc + vpxenc: support scaling prior to encoding + vpxdec: support scaling output + vpxenc: improve progress indicators with --skip + msvs: Don't link to winmm.lib + Add a new script for producing vcxproj files + Produce Visual Studio 10 and 11 project files + Produce Windows Phone project files + msvs-build: use msbuild for vs >= 2005 + configure: default configure log to config.log + Add encoding option --static-thresh + + - Speed: + Miscellaneous speed optimizations for VP8 and VP9. + + - Quality: + In general, quality is consistent with the Eider release. + + - Bug Fixes: + This release represents approximately a year of engineering effort, + and contains multiple bug fixes. Please refer to git history for details. + + +2012-12-21 v1.2.0 + This release acts as a checkpoint for a large amount of internal refactoring + and testing. It also contains a number of small bugfixes, so all users are + encouraged to upgrade. + + - Upgrading: + This release is ABI and API compatible with Duclair (v1.0.0). Users + of older releases should refer to the Upgrading notes in this + document for that release. + + - Enhancements: + VP8 optimizations for MIPS dspr2 + vpxenc: add -quiet option + + - Speed: + Encoder and decoder speed is consistent with the Eider release. + + - Quality: + In general, quality is consistent with the Eider release. + + Minor tweaks to ARNR filtering + Minor improvements to real time encoding with multiple temporal layers + + - Bug Fixes: + Fixes multithreaded encoder race condition in loopfilter + Fixes multi-resolution threaded encoding + Fix potential encoder dead-lock after picture resize + + +2012-05-09 v1.1.0 "Eider" + This introduces a number of enhancements, mostly focused on real-time + encoding. In addition, it fixes a decoder bug (first introduced in + Duclair) so all users of that release are encouraged to upgrade. + + - Upgrading: + This release is ABI and API compatible with Duclair (v1.0.0). Users + of older releases should refer to the Upgrading notes in this + document for that release. + + This release introduces a new temporal denoiser, controlled by the + VP8E_SET_NOISE_SENSITIVITY control. The temporal denoiser does not + currently take a strength parameter, so the control is effectively + a boolean - zero (off) or non-zero (on). For compatibility with + existing applications, the values accepted are the same as those + for the spatial denoiser (0-6). The temporal denoiser is enabled + by default, and the older spatial denoiser may be restored by + configuring with --disable-temporal-denoising. The temporal denoiser + is more computationally intensive than the spatial one. + + This release removes support for a legacy, decode only API that was + supported, but deprecated, at the initial release of libvpx + (v0.9.0). This is not expected to have any impact. If you are + impacted, you can apply a reversion to commit 2bf8fb58 locally. + Please update to the latest libvpx API if you are affected. + + - Enhancements: + Adds a motion compensated temporal denoiser to the encoder, which + gives higher quality than the older spatial denoiser. (See above + for notes on upgrading). + + In addition, support for new compilers and platforms were added, + including: + improved support for XCode + Android x86 NDK build + OS/2 support + SunCC support + + Changing resolution with vpx_codec_enc_config_set() is now + supported. Previously, reinitializing the codec was required to + change the input resolution. + + The vpxenc application has initial support for producing multiple + encodes from the same input in one call. Resizing is not yet + supported, but varying other codec parameters is. Use -- to + delineate output streams. Options persist from one stream to the + next. + + Also, the vpxenc application will now use a keyframe interval of + 5 seconds by default. Use the --kf-max-dist option to override. + + - Speed: + Decoder performance improved 2.5% versus Duclair. Encoder speed is + consistent with Duclair for most material. Two pass encoding of + slideshow-like material will see significant improvements. + + Large realtime encoding speed gains at a small quality expense are + possible by configuring the on-the-fly bitpacking experiment with + --enable-onthefly-bitpacking. Realtime encoder can be up to 13% + faster (ARM) depending on the number of threads and bitrate + settings. This technique sees constant gain over the 5-16 speed + range. For VC style input the loss seen is up to 0.2dB. See commit + 52cf4dca for further details. + + - Quality: + On the whole, quality is consistent with the Duclair release. Some + tweaks: + + Reduced blockiness in easy sections by applying a penalty to + intra modes. + + Improved quality of static sections (like slideshows) with + two pass encoding. + + Improved keyframe sizing with multiple temporal layers + + - Bug Fixes: + Corrected alt-ref contribution to frame rate for visible updates + to the alt-ref buffer. This affected applications making manual + usage of the frame reference flags, or temporal layers. + + Additional constraints were added to disable multi-frame quality + enhancement (MFQE) in sections of the frame where there is motion. + (#392) + + Fixed corruption issues when vpx_codec_enc_config_set() was called + with spatial resampling enabled. + + Fixed a decoder error introduced in Duclair where the segmentation + map was not being reinitialized on keyframes (#378) + + +2012-01-27 v1.0.0 "Duclair" + Our fourth named release, focused on performance and features related to + real-time encoding. It also fixes a decoder crash bug introduced in + v0.9.7, so all users of that release are encouraged to upgrade. + + - Upgrading: + This release is ABI incompatible with prior releases of libvpx, so the + "major" version number has been bumped to 1. You must recompile your + applications against the latest version of the libvpx headers. The + API remains compatible, and this should not require code changes in most + applications. + + - Enhancements: + This release introduces several substantial new features to the encoder, + of particular interest to real time streaming applications. + + Temporal scalability allows the encoder to produce a stream that can + be decimated to different frame rates, with independent rate targetting + for each substream. + + Multiframe quality enhancement postprocessing can make visual quality + more consistent in the presence of frames that are substantially + different quality than the surrounding frames, as in the temporal + scalability case and in some forced keyframe scenarios. + + Multiple-resolution encoding support allows the encoding of the + same content at different resolutions faster than encoding them + separately. + + - Speed: + Optimization targets for this release included the decoder and the real- + time modes of the encoder. Decoder speed on x86 has improved 10.5% with + this release. Encoder improvements followed a curve where speeds 1-3 + improved 4.0%-1.5%, speeds 4-8 improved <1%, and speeds 9-16 improved + 1.5% to 10.5%, respectively. "Best" mode speed is consistent with the + Cayuga release. + + - Quality: + Encoder quality in the single stream case is consistent with the Cayuga + release. + + - Bug Fixes: + This release fixes an OOB read decoder crash bug present in v0.9.7 + related to the clamping of motion vectors in SPLITMV blocks. This + behavior could be triggered by corrupt input or by starting + decoding from a P-frame. + + +2011-08-15 v0.9.7-p1 "Cayuga" patch 1 + This is an incremental bugfix release against Cayuga. All users of that + release are strongly encouraged to upgrade. + + - Fix potential OOB reads (cdae03a) + + An unbounded out of bounds read was discovered when the + decoder was requested to perform error concealment (new in + Cayuga) given a frame with corrupt partition sizes. + + A bounded out of bounds read was discovered affecting all + versions of libvpx. Given an multipartition input frame that + is truncated between the mode/mv partition and the first + residiual paritition (in the block of partition offsets), up + to 3 extra bytes could have been read from the source buffer. + The code will not take any action regardless of the contents + of these undefined bytes, as the truncated buffer is detected + immediately following the read based on the calculated + starting position of the coefficient partition. + + - Fix potential error concealment crash when the very first frame + is missing or corrupt (a609be5) + + - Fix significant artifacts in error concealment (a4c2211, 99d870a) + + - Revert 1-pass CBR rate control changes (e961317) + Further testing showed this change produced undesirable visual + artifacts, rolling back for now. + + +2011-08-02 v0.9.7 "Cayuga" + Our third named release, focused on a faster, higher quality, encoder. + + - Upgrading: + This release is backwards compatible with Aylesbury (v0.9.5) and + Bali (v0.9.6). Users of older releases should refer to the Upgrading + notes in this document for that release. + + - Enhancements: + Stereo 3D format support for vpxenc + Runtime detection of available processor cores. + Allow specifying --end-usage by enum name + vpxdec: test for frame corruption + vpxenc: add quantizer histogram display + vpxenc: add rate histogram display + Set VPX_FRAME_IS_DROPPABLE + update configure for ios sdk 4.3 + Avoid text relocations in ARM vp8 decoder + Generate a vpx.pc file for pkg-config. + New ways of passing encoded data between encoder and decoder. + + - Speed: + This release includes across-the-board speed improvements to the + encoder. On x86, these measure at approximately 11.5% in Best mode, + 21.5% in Good mode (speed 0), and 22.5% in Realtime mode (speed 6). + On ARM Cortex A9 with Neon extensions, real-time encoding of video + telephony content is 35% faster than Bali on single core and 48% + faster on multi-core. On the NVidia Tegra2 platform, real time + encoding is 40% faster than Bali. + + Decoder speed was not a priority for this release, but improved + approximately 8.4% on x86. + + Reduce motion vector search on alt-ref frame. + Encoder loopfilter running in its own thread + Reworked loopfilter to precalculate more parameters + SSE2/SSSE3 optimizations for build_predictors_mbuv{,_s}(). + Make hor UV predict ~2x faster (73 vs 132 cycles) using SSSE3. + Removed redundant checks + Reduced structure sizes + utilize preload in ARMv6 MC/LPF/Copy routines + ARM optimized quantization, dfct, variance, subtract + Increase chrow row alignment to 16 bytes. + disable trellis optimization for first pass + Write SSSE3 sub-pixel filter function + Improve SSE2 half-pixel filter funtions + Add vp8_sub_pixel_variance16x8_ssse3 function + Reduce unnecessary distortion computation + Use diamond search to replace full search + Preload reference area in sub-pixel motion search (real-time mode) + + - Quality: + This release focused primarily on one-pass use cases, including + video conferencing. Low latency data rate control was significantly + improved, improving streamability over bandwidth constrained links. + Added support for error concealment, allowing frames to maintain + visual quality in the presence of substantial packet loss. + + Add rc_max_intra_bitrate_pct control + Limit size of initial keyframe in one-pass. + Improve framerate adaptation + Improved 1-pass CBR rate control + Improved KF insertion after fades to still. + Improved key frame detection. + Improved activity masking (lower PSNR impact for same SSIM boost) + Improved interaction between GF and ARFs + Adding error-concealment to the decoder. + Adding support for independent partitions + Adjusted rate-distortion constants + + + - Bug Fixes: + Removed firstpass motion map + Fix parallel make install + Fix multithreaded encoding for 1 MB wide frame + Fixed iwalsh_neon build problems with RVDS4.1 + Fix semaphore emulation, spin-wait intrinsics on Windows + Fix build with xcode4 and simplify GLOBAL. + Mark ARM asm objects as allowing a non-executable stack. + Fix vpxenc encoding incorrect webm file header on big endian + + +2011-03-07 v0.9.6 "Bali" + Our second named release, focused on a faster, higher quality, encoder. + + - Upgrading: + This release is backwards compatible with Aylesbury (v0.9.5). Users + of older releases should refer to the Upgrading notes in this + document for that release. + + - Enhancements: + vpxenc --psnr shows a summary when encode completes + --tune=ssim option to enable activity masking + improved postproc visualizations for development + updated support for Apple iOS to SDK 4.2 + query decoder to determine which reference frames were updated + implemented error tracking in the decoder + fix pipe support on windows + + - Speed: + Primary focus was on good quality mode, speed 0. Average improvement + on x86 about 40%, up to 100% on user-generated content at that speed. + Best quality mode speed improved 35%, and realtime speed 10-20%. This + release also saw significant improvement in realtime encoding speed + on ARM platforms. + + Improved encoder threading + Dont pick encoder filter level when loopfilter is disabled. + Avoid double copying of key frames into alt and golden buffer + FDCT optimizations. + x86 sse2 temporal filter + SSSE3 version of fast quantizer + vp8_rd_pick_best_mbsegmentation code restructure + Adjusted breakout RD for SPLITMV + Changed segmentation check order + Improved rd_pick_intra4x4block + Adds armv6 optimized variance calculation + ARMv6 optimized sad16x16 + ARMv6 optimized half pixel variance calculations + Full search SAD function optimization in SSE4.1 + Improve MV prediction accuracy to achieve performance gain + Improve MV prediction in vp8_pick_inter_mode() for speed>3 + + - Quality: + Best quality mode improved PSNR 6.3%, and SSIM 6.1%. This release + also includes support for "activity masking," which greatly improves + SSIM at the expense of PSNR. For now, this feature is available with + the --tune=ssim option. Further experimentation in this area + is ongoing. This release also introduces a new rate control mode + called "CQ," which changes the allocation of bits within a clip to + the sections where they will have the most visual impact. + + Tuning for the more exact quantizer. + Relax rate control for last few frames + CQ Mode + Limit key frame quantizer for forced key frames. + KF/GF Pulsing + Add simple version of activity masking. + make rdmult adaptive for intra in quantizer RDO + cap the best quantizer for 2nd order DC + change the threshold of DC check for encode breakout + + - Bug Fixes: + Fix crash on Sparc Solaris. + Fix counter of fixed keyframe distance + ARNR filter pointer update bug fix + Fixed use of motion percentage in KF/GF group calc + Changed condition for using RD in Intra Mode + Fix encoder real-time only configuration. + Fix ARM encoder crash with multiple token partitions + Fixed bug first cluster timecode of webm file is wrong. + Fixed various encoder bugs with odd-sized images + vp8e_get_preview fixed when spatial resampling enabled + quantizer: fix assertion in fast quantizer path + Allocate source buffers to be multiples of 16 + Fix for manual Golden frame frequency + Fix drastic undershoot in long form content + + +2010-10-28 v0.9.5 "Aylesbury" + Our first named release, focused on a faster decoder, and a better encoder. + + - Upgrading: + This release incorporates backwards-incompatible changes to the + ivfenc and ivfdec tools. These tools are now called vpxenc and vpxdec. + + vpxdec + * the -q (quiet) option has been removed, and replaced with + -v (verbose). the output is quiet by default. Use -v to see + the version number of the binary. + + * The default behavior is now to write output to a single file + instead of individual frames. The -y option has been removed. + Y4M output is the default. + + * For raw I420/YV12 output instead of Y4M, the --i420 or --yv12 + options must be specified. + + $ ivfdec -o OUTPUT INPUT + $ vpxdec --i420 -o OUTPUT INPUT + + * If an output file is not specified, the default is to write + Y4M to stdout. This makes piping more natural. + + $ ivfdec -y -o - INPUT | ... + $ vpxdec INPUT | ... + + * The output file has additional flexibility for formatting the + filename. It supports escape characters for constructing a + filename from the width, height, and sequence number. This + replaces the -p option. To get the equivalent: + + $ ivfdec -p frame INPUT + $ vpxdec --i420 -o frame-%wx%h-%4.i420 INPUT + + vpxenc + * The output file must be specified with -o, rather than as the + last argument. + + $ ivfenc INPUT OUTPUT + $ vpxenc -o OUTPUT INPUT + + * The output defaults to webm. To get IVF output, use the --ivf + option. + + $ ivfenc INPUT OUTPUT.ivf + $ vpxenc -o OUTPUT.ivf --ivf INPUT + + + - Enhancements: + ivfenc and ivfdec have been renamed to vpxenc, vpxdec. + vpxdec supports .webm input + vpxdec writes .y4m by default + vpxenc writes .webm output by default + vpxenc --psnr now shows the average/overall PSNR at the end + ARM platforms now support runtime cpu detection + vpxdec visualizations added for motion vectors, block modes, references + vpxdec now silent by default + vpxdec --progress shows frame-by-frame timing information + vpxenc supports the distinction between --fps and --timebase + NASM is now a supported assembler + configure: enable PIC for shared libs by default + configure: add --enable-small + configure: support for ppc32-linux-gcc + configure: support for sparc-solaris-gcc + + - Bugs: + Improve handling of invalid frames + Fix valgrind errors in the NEON loop filters. + Fix loopfilter delta zero transitions + Fix valgrind errors in vp8_sixtap_predict8x4_armv6(). + Build fixes for darwin-icc + + - Speed: + 20-40% (average 28%) improvement in libvpx decoder speed, + including: + Rewrite vp8_short_walsh4x4_sse2() + Optimizations on the loopfilters. + Miscellaneous improvements for Atom + Add 4-tap version of 2nd-pass ARMv6 MC filter. + Improved multithread utilization + Better instruction choices on x86 + reorder data to use wider instructions + Update NEON wide idcts + Make block access to frame buffer sequential + Improved subset block search + Bilinear subpixel optimizations for ssse3. + Decrease memory footprint + + Encoder speed improvements (percentage gain not measured): + Skip unnecessary search of identical frames + Add SSE2 subtract functions + Improve bounds checking in vp8_diamond_search_sadx4() + Added vp8_fast_quantize_b_sse2 + + - Quality: + Over 7% overall PSNR improvement (6.3% SSIM) in "best" quality + encoding mode, and up to 60% improvement on very noisy, still + or slow moving source video + + Motion compensated temporal filter for Alt-Ref Noise Reduction + Improved use of trellis quantization on 2nd order Y blocks + Tune effect of motion on KF/GF boost in two pass + Allow coefficient optimization for good quality speed 0. + Improved control of active min quantizer for two pass. + Enable ARFs for non-lagged compress + +2010-09-02 v0.9.2 + - Enhancements: + Disable frame dropping by default + Improved multithreaded performance + Improved Force Key Frame Behaviour + Increased rate control buffer level precision + Fix bug in 1st pass motion compensation + ivfenc: correct fixed kf interval, --disable-kf + - Speed: + Changed above and left context data layout + Rework idct calling structure. + Removed unnecessary MB_MODE_INFO copies + x86: SSSE3 sixtap prediction + Reworked IDCT to include reconstruction (add) step + Swap alt/gold/new/last frame buffer ptrs instead of copying. + Improve SSE2 loopfilter functions + Change bitreader to use a larger window. + Avoid loopfilter reinitialization when possible + - Quality: + Normalize quantizer's zero bin and rounding factors + Add trellis quantization. + Make the quantizer exact. + Updates to ARNR filtering algorithm + Fix breakout thresh computation for golden & AltRef frames + Redo the forward 4x4 dct + Improve the accuracy of forward walsh-hadamard transform + Further adjustment of RD behaviour with Q and Zbin. + - Build System: + Allow linking of libs built with MinGW to MSVC + Fix target auto-detection on mingw32 + Allow --cpu= to work for x86. + configure: pass original arguments through to make dist + Fix builds without runtime CPU detection + msvs: fix install of codec sources + msvs: Change devenv.com command line for better msys support + msvs: Add vs9 targets. + Add x86_64-linux-icc target + - Bugs: + Potential crashes on older MinGW builds + Fix two-pass framrate for Y4M input. + Fixed simple loop filter, other crashes on ARM v6 + arm: fix missing dependency with --enable-shared + configure: support directories containing .o + Replace pinsrw (SSE) with MMX instructions + apple: include proper mach primatives + Fixed rate control bug with long key frame interval. + Fix DSO link errors on x86-64 when not using a version script + Fixed buffer selection for UV in AltRef filtering + + +2010-06-17 v0.9.1 + - Enhancements: + * ivfenc/ivfdec now support YUV4MPEG2 input and pipe I/O + * Speed optimizations + - Bugfixes: + * Rate control + * Prevent out-of-bounds accesses on invalid data + - Build system updates: + * Detect toolchain to be used automatically for native builds + * Support building shared libraries + * Better autotools emulation (--prefix, --libdir, DESTDIR) + - Updated LICENSE + * http://webmproject.blogspot.com/2010/06/changes-to-webm-open-source-license.html + + +2010-05-18 v0.9.0 + - Initial open source release. Welcome to WebM and VP8! + diff --git a/LICENSE b/LICENSE new file mode 100644 index 0000000..1ce4434 --- /dev/null +++ b/LICENSE @@ -0,0 +1,31 @@ +Copyright (c) 2010, The WebM Project authors. All rights reserved. + +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions are +met: + + * Redistributions of source code must retain the above copyright + notice, this list of conditions and the following disclaimer. + + * Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in + the documentation and/or other materials provided with the + distribution. + + * Neither the name of Google, nor the WebM Project, nor the names + of its contributors may be used to endorse or promote products + derived from this software without specific prior written + permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + diff --git a/PATENTS b/PATENTS new file mode 100644 index 0000000..caedf60 --- /dev/null +++ b/PATENTS @@ -0,0 +1,23 @@ +Additional IP Rights Grant (Patents) +------------------------------------ + +"These implementations" means the copyrightable works that implement the WebM +codecs distributed by Google as part of the WebM Project. + +Google hereby grants to you a perpetual, worldwide, non-exclusive, no-charge, +royalty-free, irrevocable (except as stated in this section) patent license to +make, have made, use, offer to sell, sell, import, transfer, and otherwise +run, modify and propagate the contents of these implementations of WebM, where +such license applies only to those patent claims, both currently owned by +Google and acquired in the future, licensable by Google that are necessarily +infringed by these implementations of WebM. This grant does not include claims +that would be infringed only as a consequence of further modification of these +implementations. If you or your agent or exclusive licensee institute or order +or agree to the institution of patent litigation or any other patent +enforcement activity against any entity (including a cross-claim or +counterclaim in a lawsuit) alleging that any of these implementations of WebM +or any code incorporated within any of these implementations of WebM +constitute direct or contributory patent infringement, or inducement of +patent infringement, then any patent rights granted to you under this License +for these implementations of WebM shall terminate as of the date such +litigation is filed. diff --git a/README b/README new file mode 100644 index 0000000..73304dd --- /dev/null +++ b/README @@ -0,0 +1,157 @@ +README - 24 January 2018 + +Welcome to the WebM VP8/VP9 Codec SDK! + +COMPILING THE APPLICATIONS/LIBRARIES: + The build system used is similar to autotools. Building generally consists of + "configuring" with your desired build options, then using GNU make to build + the application. + + 1. Prerequisites + + * All x86 targets require the Yasm[1] assembler be installed. + * All Windows builds require that Cygwin[2] be installed. + * Building the documentation requires Doxygen[3]. If you do not + have this package, the install-docs option will be disabled. + * Downloading the data for the unit tests requires curl[4] and sha1sum. + sha1sum is provided via the GNU coreutils, installed by default on + many *nix platforms, as well as MinGW and Cygwin. If coreutils is not + available, a compatible version of sha1sum can be built from + source[5]. These requirements are optional if not running the unit + tests. + + [1]: http://www.tortall.net/projects/yasm + [2]: http://www.cygwin.com + [3]: http://www.doxygen.org + [4]: http://curl.haxx.se + [5]: http://www.microbrew.org/tools/md5sha1sum/ + + 2. Out-of-tree builds + Out of tree builds are a supported method of building the application. For + an out of tree build, the source tree is kept separate from the object + files produced during compilation. For instance: + + $ mkdir build + $ cd build + $ ../libvpx/configure + $ make + + 3. Configuration options + The 'configure' script supports a number of options. The --help option can be + used to get a list of supported options: + $ ../libvpx/configure --help + + 4. Cross development + For cross development, the most notable option is the --target option. The + most up-to-date list of supported targets can be found at the bottom of the + --help output of the configure script. As of this writing, the list of + available targets is: + + arm64-android-gcc + arm64-darwin-gcc + arm64-linux-gcc + armv7-android-gcc + armv7-darwin-gcc + armv7-linux-rvct + armv7-linux-gcc + armv7-none-rvct + armv7-win32-vs11 + armv7-win32-vs12 + armv7-win32-vs14 + armv7-win32-vs15 + armv7s-darwin-gcc + armv8-linux-gcc + mips32-linux-gcc + mips64-linux-gcc + ppc64-linux-gcc + ppc64le-linux-gcc + sparc-solaris-gcc + x86-android-gcc + x86-darwin8-gcc + x86-darwin8-icc + x86-darwin9-gcc + x86-darwin9-icc + x86-darwin10-gcc + x86-darwin11-gcc + x86-darwin12-gcc + x86-darwin13-gcc + x86-darwin14-gcc + x86-darwin15-gcc + x86-darwin16-gcc + x86-iphonesimulator-gcc + x86-linux-gcc + x86-linux-icc + x86-os2-gcc + x86-solaris-gcc + x86-win32-gcc + x86-win32-vs10 + x86-win32-vs11 + x86-win32-vs12 + x86-win32-vs14 + x86-win32-vs15 + x86_64-android-gcc + x86_64-darwin9-gcc + x86_64-darwin10-gcc + x86_64-darwin11-gcc + x86_64-darwin12-gcc + x86_64-darwin13-gcc + x86_64-darwin14-gcc + x86_64-darwin15-gcc + x86_64-darwin16-gcc + x86_64-iphonesimulator-gcc + x86_64-linux-gcc + x86_64-linux-icc + x86_64-solaris-gcc + x86_64-win64-gcc + x86_64-win64-vs10 + x86_64-win64-vs11 + x86_64-win64-vs12 + x86_64-win64-vs14 + x86_64-win64-vs15 + generic-gnu + + The generic-gnu target, in conjunction with the CROSS environment variable, + can be used to cross compile architectures that aren't explicitly listed, if + the toolchain is a cross GNU (gcc/binutils) toolchain. Other POSIX toolchains + will likely work as well. For instance, to build using the mipsel-linux-uclibc + toolchain, the following command could be used (note, POSIX SH syntax, adapt + to your shell as necessary): + + $ CROSS=mipsel-linux-uclibc- ../libvpx/configure + + In addition, the executables to be invoked can be overridden by specifying the + environment variables: CC, AR, LD, AS, STRIP, NM. Additional flags can be + passed to these executables with CFLAGS, LDFLAGS, and ASFLAGS. + + 5. Configuration errors + If the configuration step fails, the first step is to look in the error log. + This defaults to config.log. This should give a good indication of what went + wrong. If not, contact us for support. + +VP8/VP9 TEST VECTORS: + The test vectors can be downloaded and verified using the build system after + running configure. To specify an alternate directory the + LIBVPX_TEST_DATA_PATH environment variable can be used. + + $ ./configure --enable-unit-tests + $ LIBVPX_TEST_DATA_PATH=../libvpx-test-data make testdata + +CODE STYLE: + The coding style used by this project is enforced with clang-format using the + configuration contained in the .clang-format file in the root of the + repository. + + Before pushing changes for review you can format your code with: + # Apply clang-format to modified .c, .h and .cc files + $ clang-format -i --style=file \ + $(git diff --name-only --diff-filter=ACMR '*.[hc]' '*.cc') + + Check the .clang-format file for the version used to generate it if there is + any difference between your local formatting and the review system. + + See also: http://clang.llvm.org/docs/ClangFormat.html + +SUPPORT + This library is an open source project supported by its community. Please + email webm-discuss@webmproject.org for help. + diff --git a/args.c b/args.c new file mode 100644 index 0000000..a87b138 --- /dev/null +++ b/args.c @@ -0,0 +1,215 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include +#include +#include "args.h" + +#include "vpx/vpx_integer.h" +#include "vpx_ports/msvc.h" + +#if defined(__GNUC__) && __GNUC__ +extern void die(const char *fmt, ...) __attribute__((noreturn)); +#else +extern void die(const char *fmt, ...); +#endif + +struct arg arg_init(char **argv) { + struct arg a; + + a.argv = argv; + a.argv_step = 1; + a.name = NULL; + a.val = NULL; + a.def = NULL; + return a; +} + +int arg_match(struct arg *arg_, const struct arg_def *def, char **argv) { + struct arg arg; + + if (!argv[0] || argv[0][0] != '-') return 0; + + arg = arg_init(argv); + + if (def->short_name && strlen(arg.argv[0]) == strlen(def->short_name) + 1 && + !strcmp(arg.argv[0] + 1, def->short_name)) { + arg.name = arg.argv[0] + 1; + arg.val = def->has_val ? arg.argv[1] : NULL; + arg.argv_step = def->has_val ? 2 : 1; + } else if (def->long_name) { + const size_t name_len = strlen(def->long_name); + + if (strlen(arg.argv[0]) >= name_len + 2 && arg.argv[0][1] == '-' && + !strncmp(arg.argv[0] + 2, def->long_name, name_len) && + (arg.argv[0][name_len + 2] == '=' || + arg.argv[0][name_len + 2] == '\0')) { + arg.name = arg.argv[0] + 2; + arg.val = arg.name[name_len] == '=' ? arg.name + name_len + 1 : NULL; + arg.argv_step = 1; + } + } + + if (arg.name && !arg.val && def->has_val) + die("Error: option %s requires argument.\n", arg.name); + + if (arg.name && arg.val && !def->has_val) + die("Error: option %s requires no argument.\n", arg.name); + + if (arg.name && (arg.val || !def->has_val)) { + arg.def = def; + *arg_ = arg; + return 1; + } + + return 0; +} + +const char *arg_next(struct arg *arg) { + if (arg->argv[0]) arg->argv += arg->argv_step; + + return *arg->argv; +} + +char **argv_dup(int argc, const char **argv) { + char **new_argv = malloc((argc + 1) * sizeof(*argv)); + + memcpy(new_argv, argv, argc * sizeof(*argv)); + new_argv[argc] = NULL; + return new_argv; +} + +void arg_show_usage(FILE *fp, const struct arg_def *const *defs) { + char option_text[40] = { 0 }; + + for (; *defs; defs++) { + const struct arg_def *def = *defs; + char *short_val = def->has_val ? " " : ""; + char *long_val = def->has_val ? "=" : ""; + + if (def->short_name && def->long_name) { + char *comma = def->has_val ? "," : ", "; + + snprintf(option_text, 37, "-%s%s%s --%s%6s", def->short_name, short_val, + comma, def->long_name, long_val); + } else if (def->short_name) + snprintf(option_text, 37, "-%s%s", def->short_name, short_val); + else if (def->long_name) + snprintf(option_text, 37, " --%s%s", def->long_name, long_val); + + fprintf(fp, " %-37s\t%s\n", option_text, def->desc); + + if (def->enums) { + const struct arg_enum_list *listptr; + + fprintf(fp, " %-37s\t ", ""); + + for (listptr = def->enums; listptr->name; listptr++) + fprintf(fp, "%s%s", listptr->name, listptr[1].name ? ", " : "\n"); + } + } +} + +unsigned int arg_parse_uint(const struct arg *arg) { + uint32_t rawval; + char *endptr; + + rawval = (uint32_t)strtoul(arg->val, &endptr, 10); + + if (arg->val[0] != '\0' && endptr[0] == '\0') { + if (rawval <= UINT_MAX) return rawval; + + die("Option %s: Value %ld out of range for unsigned int\n", arg->name, + rawval); + } + + die("Option %s: Invalid character '%c'\n", arg->name, *endptr); + return 0; +} + +int arg_parse_int(const struct arg *arg) { + int32_t rawval; + char *endptr; + + rawval = (int32_t)strtol(arg->val, &endptr, 10); + + if (arg->val[0] != '\0' && endptr[0] == '\0') { + if (rawval >= INT_MIN && rawval <= INT_MAX) return (int)rawval; + + die("Option %s: Value %ld out of range for signed int\n", arg->name, + rawval); + } + + die("Option %s: Invalid character '%c'\n", arg->name, *endptr); + return 0; +} + +struct vpx_rational { + int num; /**< fraction numerator */ + int den; /**< fraction denominator */ +}; +struct vpx_rational arg_parse_rational(const struct arg *arg) { + long int rawval; + char *endptr; + struct vpx_rational rat; + + /* parse numerator */ + rawval = strtol(arg->val, &endptr, 10); + + if (arg->val[0] != '\0' && endptr[0] == '/') { + if (rawval >= INT_MIN && rawval <= INT_MAX) + rat.num = (int)rawval; + else + die("Option %s: Value %ld out of range for signed int\n", arg->name, + rawval); + } else + die("Option %s: Expected / at '%c'\n", arg->name, *endptr); + + /* parse denominator */ + rawval = strtol(endptr + 1, &endptr, 10); + + if (arg->val[0] != '\0' && endptr[0] == '\0') { + if (rawval >= INT_MIN && rawval <= INT_MAX) + rat.den = (int)rawval; + else + die("Option %s: Value %ld out of range for signed int\n", arg->name, + rawval); + } else + die("Option %s: Invalid character '%c'\n", arg->name, *endptr); + + return rat; +} + +int arg_parse_enum(const struct arg *arg) { + const struct arg_enum_list *listptr; + long int rawval; + char *endptr; + + /* First see if the value can be parsed as a raw value */ + rawval = strtol(arg->val, &endptr, 10); + if (arg->val[0] != '\0' && endptr[0] == '\0') { + /* Got a raw value, make sure it's valid */ + for (listptr = arg->def->enums; listptr->name; listptr++) + if (listptr->val == rawval) return (int)rawval; + } + + /* Next see if it can be parsed as a string */ + for (listptr = arg->def->enums; listptr->name; listptr++) + if (!strcmp(arg->val, listptr->name)) return listptr->val; + + die("Option %s: Invalid value '%s'\n", arg->name, arg->val); + return 0; +} + +int arg_parse_enum_or_int(const struct arg *arg) { + if (arg->def->enums) return arg_parse_enum(arg); + return arg_parse_int(arg); +} diff --git a/args.h b/args.h new file mode 100644 index 0000000..54abe04 --- /dev/null +++ b/args.h @@ -0,0 +1,63 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef ARGS_H_ +#define ARGS_H_ +#include + +#ifdef __cplusplus +extern "C" { +#endif + +struct arg { + char **argv; + const char *name; + const char *val; + unsigned int argv_step; + const struct arg_def *def; +}; + +struct arg_enum_list { + const char *name; + int val; +}; +#define ARG_ENUM_LIST_END \ + { 0 } + +typedef struct arg_def { + const char *short_name; + const char *long_name; + int has_val; + const char *desc; + const struct arg_enum_list *enums; +} arg_def_t; +#define ARG_DEF(s, l, v, d) \ + { s, l, v, d, NULL } +#define ARG_DEF_ENUM(s, l, v, d, e) \ + { s, l, v, d, e } +#define ARG_DEF_LIST_END \ + { 0 } + +struct arg arg_init(char **argv); +int arg_match(struct arg *arg_, const struct arg_def *def, char **argv); +const char *arg_next(struct arg *arg); +void arg_show_usage(FILE *fp, const struct arg_def *const *defs); +char **argv_dup(int argc, const char **argv); + +unsigned int arg_parse_uint(const struct arg *arg); +int arg_parse_int(const struct arg *arg); +struct vpx_rational arg_parse_rational(const struct arg *arg); +int arg_parse_enum(const struct arg *arg); +int arg_parse_enum_or_int(const struct arg *arg); +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // ARGS_H_ diff --git a/build/.gitattributes b/build/.gitattributes new file mode 100644 index 0000000..03db79b --- /dev/null +++ b/build/.gitattributes @@ -0,0 +1,2 @@ +*-vs8/*.rules -crlf +*-msvs/*.rules -crlf diff --git a/build/.gitignore b/build/.gitignore new file mode 100644 index 0000000..1350fcb --- /dev/null +++ b/build/.gitignore @@ -0,0 +1 @@ +x86*-win32-vs* diff --git a/build/make/Android.mk b/build/make/Android.mk new file mode 100644 index 0000000..a88f900 --- /dev/null +++ b/build/make/Android.mk @@ -0,0 +1,228 @@ +## +## Copyright (c) 2012 The WebM project authors. All Rights Reserved. +## +## Use of this source code is governed by a BSD-style license +## that can be found in the LICENSE file in the root of the source +## tree. An additional intellectual property rights grant can be found +## in the file PATENTS. All contributing project authors may +## be found in the AUTHORS file in the root of the source tree. +## + +# +# This file is to be used for compiling libvpx for Android using the NDK. +# In an Android project place a libvpx checkout in the jni directory. +# Run the configure script from the jni directory. Base libvpx +# encoder/decoder configuration will look similar to: +# ./libvpx/configure --target=armv7-android-gcc --disable-examples \ +# --sdk-path=/opt/android-ndk-r6b/ +# +# When targeting Android, realtime-only is enabled by default. This can +# be overridden by adding the command line flag: +# --disable-realtime-only +# +# This will create .mk files that contain variables that contain the +# source files to compile. +# +# Place an Android.mk file in the jni directory that references the +# Android.mk file in the libvpx directory: +# LOCAL_PATH := $(call my-dir) +# include $(CLEAR_VARS) +# include jni/libvpx/build/make/Android.mk +# +# By default libvpx will detect at runtime the existance of NEON extension. +# For this we import the 'cpufeatures' module from the NDK sources. +# libvpx can also be configured without this runtime detection method. +# Configuring with --disable-runtime-cpu-detect will assume presence of NEON. +# Configuring with --disable-runtime-cpu-detect --disable-neon \ +# --disable-neon-asm +# will remove any NEON dependency. + +# +# Running ndk-build will build libvpx and include it in your project. +# + +# Alternatively, building the examples and unit tests can be accomplished in the +# following way: +# +# Create a standalone toolchain from the NDK: +# https://developer.android.com/ndk/guides/standalone_toolchain.html +# +# For example - to test on arm64 devices with clang: +# $NDK/build/tools/make_standalone_toolchain.py \ +# --arch arm64 --install-dir=/tmp/my-android-toolchain +# export PATH=/tmp/my-android-toolchain/bin:$PATH +# CROSS=aarch64-linux-android- CC=clang CXX=clang++ /path/to/libvpx/configure \ +# --target=arm64-android-gcc +# +# Push the resulting binaries to a device and run them: +# adb push test_libvpx /data/tmp/test_libvpx +# adb shell /data/tmp/test_libvpx --gtest_filter=\*Sixtap\* +# +# Make sure to push the test data as well and set LIBVPX_TEST_DATA + +CONFIG_DIR := $(LOCAL_PATH)/ +LIBVPX_PATH := $(LOCAL_PATH)/libvpx +ASM_CNV_PATH_LOCAL := $(TARGET_ARCH_ABI)/ads2gas +ASM_CNV_PATH := $(LOCAL_PATH)/$(ASM_CNV_PATH_LOCAL) +ifneq ($(V),1) + qexec := @ +endif + +# Use the makefiles generated by upstream configure to determine which files to +# build. Also set any architecture-specific flags. +ifeq ($(TARGET_ARCH_ABI),armeabi-v7a) + include $(CONFIG_DIR)libs-armv7-android-gcc.mk + LOCAL_ARM_MODE := arm +else ifeq ($(TARGET_ARCH_ABI),arm64-v8a) + include $(CONFIG_DIR)libs-arm64-android-gcc.mk + LOCAL_ARM_MODE := arm +else ifeq ($(TARGET_ARCH_ABI),x86) + include $(CONFIG_DIR)libs-x86-android-gcc.mk +else ifeq ($(TARGET_ARCH_ABI),x86_64) + include $(CONFIG_DIR)libs-x86_64-android-gcc.mk +else ifeq ($(TARGET_ARCH_ABI),mips) + include $(CONFIG_DIR)libs-mips-android-gcc.mk +else + $(error Not a supported TARGET_ARCH_ABI: $(TARGET_ARCH_ABI)) +endif + +# Rule that is normally in Makefile created by libvpx +# configure. Used to filter out source files based on configuration. +enabled=$(filter-out $($(1)-no),$($(1)-yes)) + +# Override the relative path that is defined by the libvpx +# configure process +SRC_PATH_BARE := $(LIBVPX_PATH) + +# Include the list of files to be built +include $(LIBVPX_PATH)/libs.mk + +# Optimise the code. May want to revisit this setting in the future. +LOCAL_CFLAGS := -O3 + +# For x86, include the source code in the search path so it will find files +# like x86inc.asm and x86_abi_support.asm +LOCAL_ASMFLAGS := -I$(LIBVPX_PATH) + +.PRECIOUS: %.asm.S +$(ASM_CNV_PATH)/libvpx/%.asm.S: $(LIBVPX_PATH)/%.asm + $(qexec)mkdir -p $(dir $@) + $(qexec)$(CONFIG_DIR)$(ASM_CONVERSION) <$< > $@ + +# For building *_rtcd.h, which have rules in libs.mk +TGT_ISA:=$(word 1, $(subst -, ,$(TOOLCHAIN))) +target := libs + +LOCAL_SRC_FILES += vpx_config.c + +# Remove duplicate entries +CODEC_SRCS_UNIQUE = $(sort $(CODEC_SRCS)) + +# Pull out C files. vpx_config.c is in the immediate directory and +# so it does not need libvpx/ prefixed like the rest of the source files. +# The neon files with intrinsics need to have .neon appended so the proper +# flags are applied. +CODEC_SRCS_C = $(filter %.c, $(CODEC_SRCS_UNIQUE)) +LOCAL_NEON_SRCS_C = $(filter %_neon.c, $(CODEC_SRCS_C)) +LOCAL_CODEC_SRCS_C = $(filter-out vpx_config.c %_neon.c, $(CODEC_SRCS_C)) + +LOCAL_SRC_FILES += $(foreach file, $(LOCAL_CODEC_SRCS_C), libvpx/$(file)) +ifeq ($(TARGET_ARCH_ABI),armeabi-v7a) + LOCAL_SRC_FILES += $(foreach file, $(LOCAL_NEON_SRCS_C), libvpx/$(file).neon) +else # If there are neon sources then we are building for arm64 and do not need to specify .neon + LOCAL_SRC_FILES += $(foreach file, $(LOCAL_NEON_SRCS_C), libvpx/$(file)) +endif + +# Pull out assembly files, splitting NEON from the rest. This is +# done to specify that the NEON assembly files use NEON assembler flags. +# x86 assembly matches %.asm, arm matches %.asm.S + +# x86: + +CODEC_SRCS_ASM_X86 = $(filter %.asm, $(CODEC_SRCS_UNIQUE)) +LOCAL_SRC_FILES += $(foreach file, $(CODEC_SRCS_ASM_X86), libvpx/$(file)) + +# arm: +CODEC_SRCS_ASM_ARM_ALL = $(filter %.asm.S, $(CODEC_SRCS_UNIQUE)) +CODEC_SRCS_ASM_ARM = $(foreach v, \ + $(CODEC_SRCS_ASM_ARM_ALL), \ + $(if $(findstring neon,$(v)),,$(v))) +CODEC_SRCS_ASM_ADS2GAS = $(patsubst %.S, \ + $(ASM_CNV_PATH_LOCAL)/libvpx/%.S, \ + $(CODEC_SRCS_ASM_ARM)) +LOCAL_SRC_FILES += $(CODEC_SRCS_ASM_ADS2GAS) + +ifeq ($(TARGET_ARCH_ABI),armeabi-v7a) + ASM_INCLUDES := vpx_dsp/arm/idct_neon.asm.S + CODEC_SRCS_ASM_NEON = $(foreach v, \ + $(CODEC_SRCS_ASM_ARM_ALL),\ + $(if $(findstring neon,$(v)),$(v),)) + CODEC_SRCS_ASM_NEON := $(filter-out $(addprefix %, $(ASM_INCLUDES)), \ + $(CODEC_SRCS_ASM_NEON)) + CODEC_SRCS_ASM_NEON_ADS2GAS = $(patsubst %.S, \ + $(ASM_CNV_PATH_LOCAL)/libvpx/%.S, \ + $(CODEC_SRCS_ASM_NEON)) + LOCAL_SRC_FILES += $(patsubst %.S, \ + %.S.neon, \ + $(CODEC_SRCS_ASM_NEON_ADS2GAS)) + + NEON_ASM_TARGETS = $(patsubst %.S, \ + $(ASM_CNV_PATH)/libvpx/%.S, \ + $(CODEC_SRCS_ASM_NEON)) +# add a dependency to the full path to the ads2gas output to ensure the +# includes are converted first. +ifneq ($(strip $(NEON_ASM_TARGETS)),) +$(NEON_ASM_TARGETS): $(addprefix $(ASM_CNV_PATH)/libvpx/, $(ASM_INCLUDES)) +endif +endif + +LOCAL_CFLAGS += \ + -DHAVE_CONFIG_H=vpx_config.h \ + -I$(LIBVPX_PATH) \ + -I$(ASM_CNV_PATH) \ + -I$(ASM_CNV_PATH)/libvpx + +LOCAL_MODULE := libvpx + +ifeq ($(CONFIG_RUNTIME_CPU_DETECT),yes) + LOCAL_STATIC_LIBRARIES := cpufeatures +endif + +# Add a dependency to force generation of the RTCD files. +define rtcd_dep_template +rtcd_dep_template_SRCS := $(addprefix $(LOCAL_PATH)/, $(LOCAL_SRC_FILES)) +rtcd_dep_template_SRCS := $$(rtcd_dep_template_SRCS:.neon=) +ifeq ($(CONFIG_VP8), yes) +$$(rtcd_dep_template_SRCS): vp8_rtcd.h +endif +ifeq ($(CONFIG_VP9), yes) +$$(rtcd_dep_template_SRCS): vp9_rtcd.h +endif +$$(rtcd_dep_template_SRCS): vpx_scale_rtcd.h +$$(rtcd_dep_template_SRCS): vpx_dsp_rtcd.h + +rtcd_dep_template_CONFIG_ASM_ABIS := x86 x86_64 armeabi-v7a +ifneq ($$(findstring $(TARGET_ARCH_ABI),$$(rtcd_dep_template_CONFIG_ASM_ABIS)),) +$$(rtcd_dep_template_SRCS): vpx_config.asm +endif +endef + +$(eval $(call rtcd_dep_template)) + +.PHONY: clean +clean: + @echo "Clean: ads2gas files [$(TARGET_ARCH_ABI)]" + $(qexec)$(RM) $(CODEC_SRCS_ASM_ADS2GAS) $(CODEC_SRCS_ASM_NEON_ADS2GAS) + $(qexec)$(RM) -r $(ASM_CNV_PATH) + $(qexec)$(RM) $(CLEAN-OBJS) + +ifeq ($(ENABLE_SHARED),1) + LOCAL_CFLAGS += -fPIC + include $(BUILD_SHARED_LIBRARY) +else + include $(BUILD_STATIC_LIBRARY) +endif + +ifeq ($(CONFIG_RUNTIME_CPU_DETECT),yes) +$(call import-module,android/cpufeatures) +endif diff --git a/build/make/Makefile b/build/make/Makefile new file mode 100644 index 0000000..f6b3f06 --- /dev/null +++ b/build/make/Makefile @@ -0,0 +1,459 @@ +## +## Copyright (c) 2010 The WebM project authors. All Rights Reserved. +## +## Use of this source code is governed by a BSD-style license +## that can be found in the LICENSE file in the root of the source +## tree. An additional intellectual property rights grant can be found +## in the file PATENTS. All contributing project authors may +## be found in the AUTHORS file in the root of the source tree. +## + + +include config.mk +quiet?=true +ifeq ($(target),) +# If a target wasn't specified, invoke for all enabled targets. +.DEFAULT: + @for t in $(ALL_TARGETS); do \ + $(MAKE) --no-print-directory target=$$t $(MAKECMDGOALS) || exit $$?;\ + done +all: .DEFAULT +clean:: .DEFAULT +exampletest: .DEFAULT +install:: .DEFAULT +test:: .DEFAULT +test-no-data-check:: .DEFAULT +testdata:: .DEFAULT +utiltest: .DEFAULT +exampletest-no-data-check utiltest-no-data-check: .DEFAULT +test_%: .DEFAULT ; + +# Note: md5sum is not installed on OS X, but openssl is. Openssl may not be +# installed on cygwin, so we need to autodetect here. +md5sum := $(firstword $(wildcard \ + $(foreach e,md5sum openssl,\ + $(foreach p,$(subst :, ,$(PATH)),$(p)/$(e)*))\ + )) +md5sum := $(if $(filter %openssl,$(md5sum)),$(md5sum) dgst -md5,$(md5sum)) + +TGT_CC:=$(word 3, $(subst -, ,$(TOOLCHAIN))) +dist: + @for t in $(ALL_TARGETS); do \ + $(MAKE) --no-print-directory target=$$t $(MAKECMDGOALS) || exit $$?;\ + done + # Run configure for the user with the current toolchain. + @if [ -d "$(DIST_DIR)/src" ]; then \ + mkdir -p "$(DIST_DIR)/build"; \ + cd "$(DIST_DIR)/build"; \ + echo "Rerunning configure $(CONFIGURE_ARGS)"; \ + ../src/configure $(CONFIGURE_ARGS); \ + $(if $(filter vs%,$(TGT_CC)),make NO_LAUNCH_DEVENV=1;) \ + fi + @if [ -d "$(DIST_DIR)" ]; then \ + echo " [MD5SUM] $(DIST_DIR)"; \ + cd $(DIST_DIR) && \ + $(md5sum) `find . -name md5sums.txt -prune -o -type f -print` \ + | sed -e 's/MD5(\(.*\))= \([0-9a-f]\{32\}\)/\2 \1/' \ + > md5sums.txt;\ + fi +endif + +# Since we invoke make recursively for multiple targets we need to include the +# .mk file for the correct target, but only when $(target) is non-empty. +ifneq ($(target),) +include $(target)-$(TOOLCHAIN).mk +endif +BUILD_ROOT?=. +VPATH=$(SRC_PATH_BARE) +CFLAGS+=-I$(BUILD_PFX)$(BUILD_ROOT) -I$(SRC_PATH) +CXXFLAGS+=-I$(BUILD_PFX)$(BUILD_ROOT) -I$(SRC_PATH) +ASFLAGS+=-I$(BUILD_PFX)$(BUILD_ROOT)/ -I$(SRC_PATH)/ +DIST_DIR?=dist +HOSTCC?=gcc +TGT_ISA:=$(word 1, $(subst -, ,$(TOOLCHAIN))) +TGT_OS:=$(word 2, $(subst -, ,$(TOOLCHAIN))) +TGT_CC:=$(word 3, $(subst -, ,$(TOOLCHAIN))) +quiet:=$(if $(or $(verbose), $(V)),, yes) +qexec=$(if $(quiet),@) + +# Cancel built-in implicit rules +%: %.o +%.asm: +%.a: +%: %.cc + +# +# Common rules" +# +.PHONY: all +all: + +.PHONY: clean +clean:: + rm -f $(OBJS-yes) $(OBJS-yes:.o=.d) $(OBJS-yes:.asm.S.o=.asm.S) + rm -f $(CLEAN-OBJS) + +.PHONY: clean +distclean: clean + if [ -z "$(target)" ]; then \ + rm -f Makefile; \ + rm -f config.log config.mk; \ + rm -f vpx_config.[hc] vpx_config.asm; \ + else \ + rm -f $(target)-$(TOOLCHAIN).mk; \ + fi + +.PHONY: dist +dist: +.PHONY: exampletest +exampletest: +.PHONY: install +install:: +.PHONY: test +test:: +.PHONY: testdata +testdata:: +.PHONY: utiltest +utiltest: +.PHONY: test-no-data-check exampletest-no-data-check utiltest-no-data-check +test-no-data-check:: +exampletest-no-data-check utiltest-no-data-check: + +# Force to realign stack always on OS/2 +ifeq ($(TOOLCHAIN), x86-os2-gcc) +CFLAGS += -mstackrealign +endif + +# x86[_64] +$(BUILD_PFX)%_mmx.c.d: CFLAGS += -mmmx +$(BUILD_PFX)%_mmx.c.o: CFLAGS += -mmmx +$(BUILD_PFX)%_sse2.c.d: CFLAGS += -msse2 +$(BUILD_PFX)%_sse2.c.o: CFLAGS += -msse2 +$(BUILD_PFX)%_sse3.c.d: CFLAGS += -msse3 +$(BUILD_PFX)%_sse3.c.o: CFLAGS += -msse3 +$(BUILD_PFX)%_ssse3.c.d: CFLAGS += -mssse3 +$(BUILD_PFX)%_ssse3.c.o: CFLAGS += -mssse3 +$(BUILD_PFX)%_sse4.c.d: CFLAGS += -msse4.1 +$(BUILD_PFX)%_sse4.c.o: CFLAGS += -msse4.1 +$(BUILD_PFX)%_avx.c.d: CFLAGS += -mavx +$(BUILD_PFX)%_avx.c.o: CFLAGS += -mavx +$(BUILD_PFX)%_avx2.c.d: CFLAGS += -mavx2 +$(BUILD_PFX)%_avx2.c.o: CFLAGS += -mavx2 +$(BUILD_PFX)%_avx512.c.d: CFLAGS += -mavx512f -mavx512cd -mavx512bw -mavx512dq -mavx512vl +$(BUILD_PFX)%_avx512.c.o: CFLAGS += -mavx512f -mavx512cd -mavx512bw -mavx512dq -mavx512vl + +# POWER +$(BUILD_PFX)%_vsx.c.d: CFLAGS += -maltivec -mvsx +$(BUILD_PFX)%_vsx.c.o: CFLAGS += -maltivec -mvsx + +$(BUILD_PFX)%.c.d: %.c + $(if $(quiet),@echo " [DEP] $@") + $(qexec)mkdir -p $(dir $@) + $(qexec)$(CC) $(INTERNAL_CFLAGS) $(CFLAGS) -M $< | $(fmt_deps) > $@ + +$(BUILD_PFX)%.c.o: %.c + $(if $(quiet),@echo " [CC] $@") + $(qexec)$(if $(CONFIG_DEPENDENCY_TRACKING),,mkdir -p $(dir $@)) + $(qexec)$(CC) $(INTERNAL_CFLAGS) $(CFLAGS) -c -o $@ $< + +$(BUILD_PFX)%.cc.d: %.cc + $(if $(quiet),@echo " [DEP] $@") + $(qexec)mkdir -p $(dir $@) + $(qexec)$(CXX) $(INTERNAL_CFLAGS) $(CXXFLAGS) -M $< | $(fmt_deps) > $@ + +$(BUILD_PFX)%.cc.o: %.cc + $(if $(quiet),@echo " [CXX] $@") + $(qexec)$(if $(CONFIG_DEPENDENCY_TRACKING),,mkdir -p $(dir $@)) + $(qexec)$(CXX) $(INTERNAL_CFLAGS) $(CXXFLAGS) -c -o $@ $< + +$(BUILD_PFX)%.cpp.d: %.cpp + $(if $(quiet),@echo " [DEP] $@") + $(qexec)mkdir -p $(dir $@) + $(qexec)$(CXX) $(INTERNAL_CFLAGS) $(CXXFLAGS) -M $< | $(fmt_deps) > $@ + +$(BUILD_PFX)%.cpp.o: %.cpp + $(if $(quiet),@echo " [CXX] $@") + $(qexec)$(if $(CONFIG_DEPENDENCY_TRACKING),,mkdir -p $(dir $@)) + $(qexec)$(CXX) $(INTERNAL_CFLAGS) $(CXXFLAGS) -c -o $@ $< + +$(BUILD_PFX)%.asm.d: %.asm + $(if $(quiet),@echo " [DEP] $@") + $(qexec)mkdir -p $(dir $@) + $(qexec)$(SRC_PATH_BARE)/build/make/gen_asm_deps.sh \ + --build-pfx=$(BUILD_PFX) --depfile=$@ $(ASFLAGS) $< > $@ + +$(BUILD_PFX)%.asm.o: %.asm + $(if $(quiet),@echo " [AS] $@") + $(qexec)$(if $(CONFIG_DEPENDENCY_TRACKING),,mkdir -p $(dir $@)) + $(qexec)$(AS) $(ASFLAGS) -o $@ $< + +$(BUILD_PFX)%.S.d: %.S + $(if $(quiet),@echo " [DEP] $@") + $(qexec)mkdir -p $(dir $@) + $(qexec)$(SRC_PATH_BARE)/build/make/gen_asm_deps.sh \ + --build-pfx=$(BUILD_PFX) --depfile=$@ $(ASFLAGS) $< > $@ + +$(BUILD_PFX)%.S.o: %.S + $(if $(quiet),@echo " [AS] $@") + $(qexec)$(if $(CONFIG_DEPENDENCY_TRACKING),,mkdir -p $(dir $@)) + $(qexec)$(AS) $(ASFLAGS) -o $@ $< + +.PRECIOUS: %.c.S +%.c.S: CFLAGS += -DINLINE_ASM +$(BUILD_PFX)%.c.S: %.c + $(if $(quiet),@echo " [GEN] $@") + $(qexec)$(if $(CONFIG_DEPENDENCY_TRACKING),,mkdir -p $(dir $@)) + $(qexec)$(CC) -S $(CFLAGS) -o $@ $< + +.PRECIOUS: %.asm.S +$(BUILD_PFX)%.asm.S: %.asm + $(if $(quiet),@echo " [ASM CONVERSION] $@") + $(qexec)mkdir -p $(dir $@) + $(qexec)$(ASM_CONVERSION) <$< >$@ + +# If we're in debug mode, pretend we don't have GNU strip, to fall back to +# the copy implementation +HAVE_GNU_STRIP := $(if $(CONFIG_DEBUG),,$(HAVE_GNU_STRIP)) +ifeq ($(HAVE_GNU_STRIP),yes) +# Older binutils strip global symbols not needed for relocation processing +# when given --strip-unneeded. Using nm and awk to identify globals and +# keep them caused command line length issues under mingw and segfaults in +# test_libvpx were observed under OS/2: simply use --strip-debug. +%.a: %_g.a + $(if $(quiet),@echo " [STRIP] $@ < $<") + $(qexec)$(STRIP) --strip-debug \ + -o $@ $< +else +%.a: %_g.a + $(if $(quiet),@echo " [CP] $@ < $<") + $(qexec)cp $< $@ +endif + +# +# Utility functions +# +pairmap=$(if $(strip $(2)),\ + $(call $(1),$(word 1,$(2)),$(word 2,$(2)))\ + $(call pairmap,$(1),$(wordlist 3,$(words $(2)),$(2)))\ +) + +enabled=$(filter-out $($(1)-no),$($(1)-yes)) +cond_enabled=$(if $(filter yes,$($(1))), $(call enabled,$(2))) + +find_file1=$(word 1,$(wildcard $(subst //,/,$(addsuffix /$(1),$(2))))) +find_file=$(foreach f,$(1),$(call find_file1,$(strip $(f)),$(strip $(2))) ) +obj_pats=.c=.c.o $(AS_SFX)=$(AS_SFX).o .cc=.cc.o .cpp=.cpp.o +objs=$(addprefix $(BUILD_PFX),$(foreach p,$(obj_pats),$(filter %.o,$(1:$(p))) )) + +install_map_templates=$(eval $(call install_map_template,$(1),$(2))) + +not=$(subst yes,no,$(1)) + +ifeq ($(CONFIG_MSVS),yes) +lib_file_name=$(1).lib +else +lib_file_name=lib$(1).a +endif +# +# Rule Templates +# +define linker_template +$(1): $(filter-out -%,$(2)) +$(1): + $(if $(quiet),@echo " [LD] $$@") + $(qexec)$$(LD) $$(strip $$(INTERNAL_LDFLAGS) $$(LDFLAGS) -o $$@ $(2) $(3) $$(extralibs)) +endef +define linkerxx_template +$(1): $(filter-out -%,$(2)) +$(1): + $(if $(quiet),@echo " [LD] $$@") + $(qexec)$$(CXX) $$(strip $$(INTERNAL_LDFLAGS) $$(LDFLAGS) -o $$@ $(2) $(3) $$(extralibs)) +endef +# make-3.80 has a bug with expanding large input strings to the eval function, +# which was triggered in some cases by the following component of +# linker_template: +# $(1): $$(call find_file, $(patsubst -l%,lib%.a,$(filter -l%,$(2))),\ +# $$(patsubst -L%,%,$$(filter -L%,$$(LDFLAGS) $(2)))) +# This may be useful to revisit in the future (it tries to locate libraries +# in a search path and add them as prerequisites + +define install_map_template +$(DIST_DIR)/$(1): $(2) + $(if $(quiet),@echo " [INSTALL] $$@") + $(qexec)mkdir -p $$(dir $$@) + $(qexec)cp -p $$< $$@ +endef + +define archive_template +# Not using a pattern rule here because we don't want to generate empty +# archives when they are listed as a dependency in files not responsible +# for creating them. +$(1): + $(if $(quiet),@echo " [AR] $$@") + $(qexec)$$(AR) $$(ARFLAGS) $$@ $$^ +endef + +define so_template +# Not using a pattern rule here because we don't want to generate empty +# archives when they are listed as a dependency in files not responsible +# for creating them. +# +# This needs further abstraction for dealing with non-GNU linkers. +$(1): + $(if $(quiet),@echo " [LD] $$@") + $(qexec)$$(LD) -shared $$(LDFLAGS) \ + -Wl,--no-undefined -Wl,-soname,$$(SONAME) \ + -Wl,--version-script,$$(EXPORTS_FILE) -o $$@ \ + $$(filter %.o,$$^) $$(extralibs) +endef + +define dl_template +# Not using a pattern rule here because we don't want to generate empty +# archives when they are listed as a dependency in files not responsible +# for creating them. +$(1): + $(if $(quiet),@echo " [LD] $$@") + $(qexec)$$(LD) -dynamiclib $$(LDFLAGS) \ + -exported_symbols_list $$(EXPORTS_FILE) \ + -Wl,-headerpad_max_install_names,-compatibility_version,1.0,-current_version,$$(VERSION_MAJOR) \ + -o $$@ \ + $$(filter %.o,$$^) $$(extralibs) +endef + +define dll_template +# Not using a pattern rule here because we don't want to generate empty +# archives when they are listed as a dependency in files not responsible +# for creating them. +$(1): + $(if $(quiet),@echo " [LD] $$@") + $(qexec)$$(LD) -Zdll $$(LDFLAGS) \ + -o $$@ \ + $$(filter %.o,$$^) $$(extralibs) $$(EXPORTS_FILE) +endef + + +# +# Get current configuration +# +ifneq ($(target),) +include $(SRC_PATH_BARE)/$(target:-$(TOOLCHAIN)=).mk +endif + +skip_deps := $(filter %clean,$(MAKECMDGOALS)) +skip_deps += $(findstring testdata,$(MAKECMDGOALS)) +ifeq ($(strip $(skip_deps)),) + ifeq ($(CONFIG_DEPENDENCY_TRACKING),yes) + # Older versions of make don't like -include directives with no arguments + ifneq ($(filter %.d,$(OBJS-yes:.o=.d)),) + -include $(filter %.d,$(OBJS-yes:.o=.d)) + endif + endif +endif + +# +# Configuration dependent rules +# +$(call pairmap,install_map_templates,$(INSTALL_MAPS)) + +DOCS=$(call cond_enabled,CONFIG_INSTALL_DOCS,DOCS) +.docs: $(DOCS) + @touch $@ + +INSTALL-DOCS=$(call cond_enabled,CONFIG_INSTALL_DOCS,INSTALL-DOCS) +ifeq ($(MAKECMDGOALS),dist) +INSTALL-DOCS+=$(call cond_enabled,CONFIG_INSTALL_DOCS,DIST-DOCS) +endif +.install-docs: .docs $(addprefix $(DIST_DIR)/,$(INSTALL-DOCS)) + @touch $@ + +clean:: + rm -f .docs .install-docs $(DOCS) + +BINS=$(call enabled,BINS) +.bins: $(BINS) + @touch $@ + +INSTALL-BINS=$(call cond_enabled,CONFIG_INSTALL_BINS,INSTALL-BINS) +ifeq ($(MAKECMDGOALS),dist) +INSTALL-BINS+=$(call cond_enabled,CONFIG_INSTALL_BINS,DIST-BINS) +endif +.install-bins: .bins $(addprefix $(DIST_DIR)/,$(INSTALL-BINS)) + @touch $@ + +clean:: + rm -f .bins .install-bins $(BINS) + +LIBS=$(call enabled,LIBS) +.libs: $(LIBS) + @touch $@ +$(foreach lib,$(filter %_g.a,$(LIBS)),$(eval $(call archive_template,$(lib)))) +$(foreach lib,$(filter %so.$(SO_VERSION_MAJOR).$(SO_VERSION_MINOR).$(SO_VERSION_PATCH),$(LIBS)),$(eval $(call so_template,$(lib)))) +$(foreach lib,$(filter %$(SO_VERSION_MAJOR).dylib,$(LIBS)),$(eval $(call dl_template,$(lib)))) +$(foreach lib,$(filter %$(SO_VERSION_MAJOR).dll,$(LIBS)),$(eval $(call dll_template,$(lib)))) + +INSTALL-LIBS=$(call cond_enabled,CONFIG_INSTALL_LIBS,INSTALL-LIBS) +ifeq ($(MAKECMDGOALS),dist) +INSTALL-LIBS+=$(call cond_enabled,CONFIG_INSTALL_LIBS,DIST-LIBS) +endif +.install-libs: .libs $(addprefix $(DIST_DIR)/,$(INSTALL-LIBS)) + @touch $@ + +clean:: + rm -f .libs .install-libs $(LIBS) + +ifeq ($(CONFIG_EXTERNAL_BUILD),yes) +PROJECTS=$(call enabled,PROJECTS) +.projects: $(PROJECTS) + @touch $@ + +INSTALL-PROJECTS=$(call cond_enabled,CONFIG_INSTALL_PROJECTS,INSTALL-PROJECTS) +ifeq ($(MAKECMDGOALS),dist) +INSTALL-PROJECTS+=$(call cond_enabled,CONFIG_INSTALL_PROJECTS,DIST-PROJECTS) +endif +.install-projects: .projects $(addprefix $(DIST_DIR)/,$(INSTALL-PROJECTS)) + @touch $@ + +clean:: + rm -f .projects .install-projects $(PROJECTS) +endif + +# If there are any source files to be distributed, then include the build +# system too. +ifneq ($(call enabled,DIST-SRCS),) + DIST-SRCS-yes += configure + DIST-SRCS-yes += build/make/configure.sh + DIST-SRCS-yes += build/make/gen_asm_deps.sh + DIST-SRCS-yes += build/make/Makefile + DIST-SRCS-$(CONFIG_MSVS) += build/make/gen_msvs_def.sh + DIST-SRCS-$(CONFIG_MSVS) += build/make/gen_msvs_sln.sh + DIST-SRCS-$(CONFIG_MSVS) += build/make/gen_msvs_vcxproj.sh + DIST-SRCS-$(CONFIG_MSVS) += build/make/msvs_common.sh + DIST-SRCS-$(CONFIG_RVCT) += build/make/armlink_adapter.sh + DIST-SRCS-$(ARCH_ARM) += build/make/ads2gas.pl + DIST-SRCS-$(ARCH_ARM) += build/make/ads2gas_apple.pl + DIST-SRCS-$(ARCH_ARM) += build/make/ads2armasm_ms.pl + DIST-SRCS-$(ARCH_ARM) += build/make/thumb.pm + DIST-SRCS-yes += $(target:-$(TOOLCHAIN)=).mk +endif +INSTALL-SRCS := $(call cond_enabled,CONFIG_INSTALL_SRCS,INSTALL-SRCS) +ifeq ($(MAKECMDGOALS),dist) +INSTALL-SRCS += $(call cond_enabled,CONFIG_INSTALL_SRCS,DIST-SRCS) +endif +.install-srcs: $(addprefix $(DIST_DIR)/src/,$(INSTALL-SRCS)) + @touch $@ + +clean:: + rm -f .install-srcs + +ifeq ($(CONFIG_EXTERNAL_BUILD),yes) + BUILD_TARGETS += .projects + INSTALL_TARGETS += .install-projects +endif +BUILD_TARGETS += .docs .libs .bins +INSTALL_TARGETS += .install-docs .install-srcs .install-libs .install-bins +all: $(BUILD_TARGETS) +install:: $(INSTALL_TARGETS) +dist: $(INSTALL_TARGETS) +test:: + +.SUFFIXES: # Delete default suffix rules diff --git a/build/make/ads2armasm_ms.pl b/build/make/ads2armasm_ms.pl new file mode 100755 index 0000000..2a2c470 --- /dev/null +++ b/build/make/ads2armasm_ms.pl @@ -0,0 +1,39 @@ +#!/usr/bin/env perl +## +## Copyright (c) 2013 The WebM project authors. All Rights Reserved. +## +## Use of this source code is governed by a BSD-style license +## that can be found in the LICENSE file in the root of the source +## tree. An additional intellectual property rights grant can be found +## in the file PATENTS. All contributing project authors may +## be found in the AUTHORS file in the root of the source tree. +## + +use FindBin; +use lib $FindBin::Bin; +use thumb; + +print "; This file was created from a .asm file\n"; +print "; using the ads2armasm_ms.pl script.\n"; + +while () +{ + undef $comment; + undef $line; + + s/REQUIRE8//; + s/PRESERVE8//; + s/^\s*ARM\s*$//; + s/AREA\s+\|\|(.*)\|\|/AREA |$1|/; + s/qsubaddx/qsax/i; + s/qaddsubx/qasx/i; + + thumb::FixThumbInstructions($_, 1); + + s/ldrneb/ldrbne/i; + s/ldrneh/ldrhne/i; + s/^(\s*)ENDP.*/$&\n$1ALIGN 4/; + + print; +} + diff --git a/build/make/ads2gas.pl b/build/make/ads2gas.pl new file mode 100755 index 0000000..029cc4a --- /dev/null +++ b/build/make/ads2gas.pl @@ -0,0 +1,228 @@ +#!/usr/bin/env perl +## +## Copyright (c) 2010 The WebM project authors. All Rights Reserved. +## +## Use of this source code is governed by a BSD-style license +## that can be found in the LICENSE file in the root of the source +## tree. An additional intellectual property rights grant can be found +## in the file PATENTS. All contributing project authors may +## be found in the AUTHORS file in the root of the source tree. +## + + +# ads2gas.pl +# Author: Eric Fung (efung (at) acm.org) +# +# Convert ARM Developer Suite 1.0.1 syntax assembly source to GNU as format +# +# Usage: cat inputfile | perl ads2gas.pl > outputfile +# + +use FindBin; +use lib $FindBin::Bin; +use thumb; + +my $thumb = 0; + +foreach my $arg (@ARGV) { + $thumb = 1 if ($arg eq "-thumb"); +} + +print "@ This file was created from a .asm file\n"; +print "@ using the ads2gas.pl script.\n"; +print "\t.equ DO1STROUNDING, 0\n"; +if ($thumb) { + print "\t.syntax unified\n"; + print "\t.thumb\n"; +} + +# Stack of procedure names. +@proc_stack = (); + +while () +{ + undef $comment; + undef $line; + $comment_char = ";"; + $comment_sub = "@"; + + # Handle comments. + if (/$comment_char/) + { + $comment = ""; + ($line, $comment) = /(.*?)$comment_char(.*)/; + $_ = $line; + } + + # Load and store alignment + s/@/,:/g; + + # Hexadecimal constants prefaced by 0x + s/#&/#0x/g; + + # Convert :OR: to | + s/:OR:/ | /g; + + # Convert :AND: to & + s/:AND:/ & /g; + + # Convert :NOT: to ~ + s/:NOT:/ ~ /g; + + # Convert :SHL: to << + s/:SHL:/ << /g; + + # Convert :SHR: to >> + s/:SHR:/ >> /g; + + # Convert ELSE to .else + s/\bELSE\b/.else/g; + + # Convert ENDIF to .endif + s/\bENDIF\b/.endif/g; + + # Convert ELSEIF to .elseif + s/\bELSEIF\b/.elseif/g; + + # Convert LTORG to .ltorg + s/\bLTORG\b/.ltorg/g; + + # Convert endfunc to nothing. + s/\bendfunc\b//ig; + + # Convert FUNCTION to nothing. + s/\bFUNCTION\b//g; + s/\bfunction\b//g; + + s/\bENTRY\b//g; + s/\bMSARMASM\b/0/g; + s/^\s+end\s+$//g; + + # Convert IF :DEF:to .if + # gcc doesn't have the ability to do a conditional + # if defined variable that is set by IF :DEF: on + # armasm, so convert it to a normal .if and then + # make sure to define a value elesewhere + if (s/\bIF :DEF:\b/.if /g) + { + s/=/==/g; + } + + # Convert IF to .if + if (s/\bIF\b/.if/g) + { + s/=+/==/g; + } + + # Convert INCLUDE to .INCLUDE "file" + s/INCLUDE(\s*)(.*)$/.include $1\"$2\"/; + + # Code directive (ARM vs Thumb) + s/CODE([0-9][0-9])/.code $1/; + + # No AREA required + # But ALIGNs in AREA must be obeyed + s/^\s*AREA.*ALIGN=([0-9])$/.text\n.p2align $1/; + # If no ALIGN, strip the AREA and align to 4 bytes + s/^\s*AREA.*$/.text\n.p2align 2/; + + # DCD to .word + # This one is for incoming symbols + s/DCD\s+\|(\w*)\|/.long $1/; + + # DCW to .short + s/DCW\s+\|(\w*)\|/.short $1/; + s/DCW(.*)/.short $1/; + + # Constants defined in scope + s/DCD(.*)/.long $1/; + s/DCB(.*)/.byte $1/; + + # Make function visible to linker, and make additional symbol with + # prepended underscore + s/EXPORT\s+\|([\$\w]*)\|/.global $1 \n\t.type $1, function/; + s/IMPORT\s+\|([\$\w]*)\|/.global $1/; + + s/EXPORT\s+([\$\w]*)/.global $1/; + s/export\s+([\$\w]*)/.global $1/; + + # No vertical bars required; make additional symbol with prepended + # underscore + s/^\|(\$?\w+)\|/_$1\n\t$1:/g; + + # Labels need trailing colon +# s/^(\w+)/$1:/ if !/EQU/; + # put the colon at the end of the line in the macro + s/^([a-zA-Z_0-9\$]+)/$1:/ if !/EQU/; + + # ALIGN directive + s/\bALIGN\b/.balign/g; + + if ($thumb) { + # ARM code - we force everything to thumb with the declaration in the header + s/\sARM//g; + } else { + # ARM code + s/\sARM/.arm/g; + } + + # push/pop + s/(push\s+)(r\d+)/stmdb sp\!, \{$2\}/g; + s/(pop\s+)(r\d+)/ldmia sp\!, \{$2\}/g; + + # NEON code + s/(vld1.\d+\s+)(q\d+)/$1\{$2\}/g; + s/(vtbl.\d+\s+[^,]+),([^,]+)/$1,\{$2\}/g; + + if ($thumb) { + thumb::FixThumbInstructions($_, 0); + } + + # eabi_attributes numerical equivalents can be found in the + # "ARM IHI 0045C" document. + + # REQUIRE8 Stack is required to be 8-byte aligned + s/\sREQUIRE8/.eabi_attribute 24, 1 \@Tag_ABI_align_needed/g; + + # PRESERVE8 Stack 8-byte align is preserved + s/\sPRESERVE8/.eabi_attribute 25, 1 \@Tag_ABI_align_preserved/g; + + # Use PROC and ENDP to give the symbols a .size directive. + # This makes them show up properly in debugging tools like gdb and valgrind. + if (/\bPROC\b/) + { + my $proc; + /^_([\.0-9A-Z_a-z]\w+)\b/; + $proc = $1; + push(@proc_stack, $proc) if ($proc); + s/\bPROC\b/@ $&/; + } + if (/\bENDP\b/) + { + my $proc; + s/\bENDP\b/@ $&/; + $proc = pop(@proc_stack); + $_ = "\t.size $proc, .-$proc".$_ if ($proc); + } + + # EQU directive + s/(\S+\s+)EQU(\s+\S+)/.equ $1, $2/; + + # Begin macro definition + if (/\bMACRO\b/) { + $_ = ; + s/^/.macro/; + s/\$//g; # remove formal param reference + s/;/@/g; # change comment characters + } + + # For macros, use \ to reference formal params + s/\$/\\/g; # End macro definition + s/\bMEND\b/.endm/; # No need to tell it where to stop assembling + next if /^\s*END\s*$/; + print; + print "$comment_sub$comment\n" if defined $comment; +} + +# Mark that this object doesn't need an executable stack. +printf ("\t.section\t.note.GNU-stack,\"\",\%\%progbits\n"); diff --git a/build/make/ads2gas_apple.pl b/build/make/ads2gas_apple.pl new file mode 100755 index 0000000..e1ae7b4 --- /dev/null +++ b/build/make/ads2gas_apple.pl @@ -0,0 +1,204 @@ +#!/usr/bin/env perl +## +## Copyright (c) 2010 The WebM project authors. All Rights Reserved. +## +## Use of this source code is governed by a BSD-style license +## that can be found in the LICENSE file in the root of the source +## tree. An additional intellectual property rights grant can be found +## in the file PATENTS. All contributing project authors may +## be found in the AUTHORS file in the root of the source tree. +## + + +# ads2gas_apple.pl +# Author: Eric Fung (efung (at) acm.org) +# +# Convert ARM Developer Suite 1.0.1 syntax assembly source to GNU as format +# +# Usage: cat inputfile | perl ads2gas_apple.pl > outputfile +# + +print "@ This file was created from a .asm file\n"; +print "@ using the ads2gas_apple.pl script.\n\n"; +print "\t.set WIDE_REFERENCE, 0\n"; +print "\t.set ARCHITECTURE, 5\n"; +print "\t.set DO1STROUNDING, 0\n"; + +my %register_aliases; +my %macro_aliases; + +my @mapping_list = ("\$0", "\$1", "\$2", "\$3", "\$4", "\$5", "\$6", "\$7", "\$8", "\$9"); + +my @incoming_array; + +my @imported_functions; + +# Perl trim function to remove whitespace from the start and end of the string +sub trim($) +{ + my $string = shift; + $string =~ s/^\s+//; + $string =~ s/\s+$//; + return $string; +} + +while () +{ + # Load and store alignment + s/@/,:/g; + + # Comment character + s/;/ @/g; + + # Hexadecimal constants prefaced by 0x + s/#&/#0x/g; + + # Convert :OR: to | + s/:OR:/ | /g; + + # Convert :AND: to & + s/:AND:/ & /g; + + # Convert :NOT: to ~ + s/:NOT:/ ~ /g; + + # Convert :SHL: to << + s/:SHL:/ << /g; + + # Convert :SHR: to >> + s/:SHR:/ >> /g; + + # Convert ELSE to .else + s/\bELSE\b/.else/g; + + # Convert ENDIF to .endif + s/\bENDIF\b/.endif/g; + + # Convert ELSEIF to .elseif + s/\bELSEIF\b/.elseif/g; + + # Convert LTORG to .ltorg + s/\bLTORG\b/.ltorg/g; + + # Convert IF :DEF:to .if + # gcc doesn't have the ability to do a conditional + # if defined variable that is set by IF :DEF: on + # armasm, so convert it to a normal .if and then + # make sure to define a value elesewhere + if (s/\bIF :DEF:\b/.if /g) + { + s/=/==/g; + } + + # Convert IF to .if + if (s/\bIF\b/.if/g) + { + s/=/==/g; + } + + # Convert INCLUDE to .INCLUDE "file" + s/INCLUDE(\s*)(.*)$/.include $1\"$2\"/; + + # Code directive (ARM vs Thumb) + s/CODE([0-9][0-9])/.code $1/; + + # No AREA required + # But ALIGNs in AREA must be obeyed + s/^\s*AREA.*ALIGN=([0-9])$/.text\n.p2align $1/; + # If no ALIGN, strip the AREA and align to 4 bytes + s/^\s*AREA.*$/.text\n.p2align 2/; + + # DCD to .word + # This one is for incoming symbols + s/DCD\s+\|(\w*)\|/.long $1/; + + # DCW to .short + s/DCW\s+\|(\w*)\|/.short $1/; + s/DCW(.*)/.short $1/; + + # Constants defined in scope + s/DCD(.*)/.long $1/; + s/DCB(.*)/.byte $1/; + + # Make function visible to linker, and make additional symbol with + # prepended underscore + s/EXPORT\s+\|([\$\w]*)\|/.globl _$1\n\t.globl $1/; + + # Prepend imported functions with _ + if (s/IMPORT\s+\|([\$\w]*)\|/.globl $1/) + { + $function = trim($1); + push(@imported_functions, $function); + } + + foreach $function (@imported_functions) + { + s/$function/_$function/; + } + + # No vertical bars required; make additional symbol with prepended + # underscore + s/^\|(\$?\w+)\|/_$1\n\t$1:/g; + + # Labels need trailing colon +# s/^(\w+)/$1:/ if !/EQU/; + # put the colon at the end of the line in the macro + s/^([a-zA-Z_0-9\$]+)/$1:/ if !/EQU/; + + # ALIGN directive + s/\bALIGN\b/.balign/g; + + # Strip ARM + s/\sARM/@ ARM/g; + + # Strip REQUIRE8 + #s/\sREQUIRE8/@ REQUIRE8/g; + s/\sREQUIRE8/@ /g; + + # Strip PRESERVE8 + s/\sPRESERVE8/@ PRESERVE8/g; + + # Strip PROC and ENDPROC + s/\bPROC\b/@/g; + s/\bENDP\b/@/g; + + # EQU directive + s/(.*)EQU(.*)/.set $1, $2/; + + # Begin macro definition + if (/\bMACRO\b/) + { + # Process next line down, which will be the macro definition + $_ = ; + + $trimmed = trim($_); + + # remove commas that are separating list + $trimmed =~ s/,//g; + + # string to array + @incoming_array = split(/\s+/, $trimmed); + + print ".macro @incoming_array[0]\n"; + + # remove the first element, as that is the name of the macro + shift (@incoming_array); + + @macro_aliases{@incoming_array} = @mapping_list; + + next; + } + + while (($key, $value) = each(%macro_aliases)) + { + $key =~ s/\$/\\\$/; + s/$key\b/$value/g; + } + + # For macros, use \ to reference formal params +# s/\$/\\/g; # End macro definition + s/\bMEND\b/.endm/; # No need to tell it where to stop assembling + next if /^\s*END\s*$/; + + print; +} diff --git a/build/make/armlink_adapter.sh b/build/make/armlink_adapter.sh new file mode 100755 index 0000000..75c342e --- /dev/null +++ b/build/make/armlink_adapter.sh @@ -0,0 +1,54 @@ +#!/bin/sh +## +## Copyright (c) 2010 The WebM project authors. All Rights Reserved. +## +## Use of this source code is governed by a BSD-style license +## that can be found in the LICENSE file in the root of the source +## tree. An additional intellectual property rights grant can be found +## in the file PATENTS. All contributing project authors may +## be found in the AUTHORS file in the root of the source tree. +## + + +verbose=0 +set -- $* +for i; do + if [ "$i" = "-o" ]; then + on_of=1 + elif [ "$i" = "-v" ]; then + verbose=1 + elif [ "$i" = "-g" ]; then + args="${args} --debug" + elif [ "$on_of" = "1" ]; then + outfile=$i + on_of=0 + elif [ -f "$i" ]; then + infiles="$infiles $i" + elif [ "${i#-l}" != "$i" ]; then + libs="$libs ${i#-l}" + elif [ "${i#-L}" != "$i" ]; then + libpaths="${libpaths} ${i#-L}" + else + args="${args} ${i}" + fi + shift +done + +# Absolutize library file names +for f in $libs; do + found=0 + for d in $libpaths; do + [ -f "$d/$f" ] && infiles="$infiles $d/$f" && found=1 && break + [ -f "$d/lib${f}.so" ] && infiles="$infiles $d/lib${f}.so" && found=1 && break + [ -f "$d/lib${f}.a" ] && infiles="$infiles $d/lib${f}.a" && found=1 && break + done + [ $found -eq 0 ] && infiles="$infiles $f" +done +for d in $libpaths; do + [ -n "$libsearchpath" ] && libsearchpath="${libsearchpath}," + libsearchpath="${libsearchpath}$d" +done + +cmd="armlink $args --userlibpath=$libsearchpath --output=$outfile $infiles" +[ $verbose -eq 1 ] && echo $cmd +$cmd diff --git a/build/make/configure.sh b/build/make/configure.sh new file mode 100644 index 0000000..683b430 --- /dev/null +++ b/build/make/configure.sh @@ -0,0 +1,1599 @@ +#!/bin/sh +## +## configure.sh +## +## This script is sourced by the main configure script and contains +## utility functions and other common bits that aren't strictly libvpx +## related. +## +## This build system is based in part on the FFmpeg configure script. +## + + +# +# Logging / Output Functions +# +die_unknown(){ + echo "Unknown option \"$1\"." + echo "See $0 --help for available options." + clean_temp_files + exit 1 +} + +die() { + echo "$@" + echo + echo "Configuration failed. This could reflect a misconfiguration of your" + echo "toolchains, improper options selected, or another problem. If you" + echo "don't see any useful error messages above, the next step is to look" + echo "at the configure error log file ($logfile) to determine what" + echo "configure was trying to do when it died." + clean_temp_files + exit 1 +} + +log(){ + echo "$@" >>$logfile +} + +log_file(){ + log BEGIN $1 + cat -n $1 >>$logfile + log END $1 +} + +log_echo() { + echo "$@" + log "$@" +} + +fwrite () { + outfile=$1 + shift + echo "$@" >> ${outfile} +} + +show_help_pre(){ + for opt in ${CMDLINE_SELECT}; do + opt2=`echo $opt | sed -e 's;_;-;g'` + if enabled $opt; then + eval "toggle_${opt}=\"--disable-${opt2}\"" + else + eval "toggle_${opt}=\"--enable-${opt2} \"" + fi + done + + cat <>${logfile} 2>&1 +} + +check_cc() { + log check_cc "$@" + cat >${TMP_C} + log_file ${TMP_C} + check_cmd ${CC} ${CFLAGS} "$@" -c -o ${TMP_O} ${TMP_C} +} + +check_cxx() { + log check_cxx "$@" + cat >${TMP_CC} + log_file ${TMP_CC} + check_cmd ${CXX} ${CXXFLAGS} "$@" -c -o ${TMP_O} ${TMP_CC} +} + +check_cpp() { + log check_cpp "$@" + cat > ${TMP_C} + log_file ${TMP_C} + check_cmd ${CC} ${CFLAGS} "$@" -E -o ${TMP_O} ${TMP_C} +} + +check_ld() { + log check_ld "$@" + check_cc $@ \ + && check_cmd ${LD} ${LDFLAGS} "$@" -o ${TMP_X} ${TMP_O} ${extralibs} +} + +check_header(){ + log check_header "$@" + header=$1 + shift + var=`echo $header | sed 's/[^A-Za-z0-9_]/_/g'` + disable_feature $var + check_cpp "$@" <${TMP_ASM} <${TMP_X} + log_file ${TMP_X} + if ! grep -q '\.rodata .* 16$' ${TMP_X}; then + die "${AS} ${ASFLAGS} does not support section alignment (nasm <=2.08?)" + fi +} + +# tests for -m$1 toggling the feature given in $2. If $2 is empty $1 is used. +check_gcc_machine_option() { + opt="$1" + feature="$2" + [ -n "$feature" ] || feature="$opt" + + if enabled gcc && ! disabled "$feature" && ! check_cflags "-m$opt"; then + RTCD_OPTIONS="${RTCD_OPTIONS}--disable-$feature " + else + soft_enable "$feature" + fi +} + +# tests for -m$2, -m$3, -m$4... toggling the feature given in $1. +check_gcc_machine_options() { + feature="$1" + shift + flags="-m$1" + shift + for opt in $*; do + flags="$flags -m$opt" + done + + if enabled gcc && ! disabled "$feature" && ! check_cflags $flags; then + RTCD_OPTIONS="${RTCD_OPTIONS}--disable-$feature " + else + soft_enable "$feature" + fi +} + +write_common_config_banner() { + print_webm_license config.mk "##" "" + echo '# This file automatically generated by configure. Do not edit!' >> config.mk + echo "TOOLCHAIN := ${toolchain}" >> config.mk + + case ${toolchain} in + *-linux-rvct) + echo "ALT_LIBC := ${alt_libc}" >> config.mk + ;; + esac +} + +write_common_config_targets() { + for t in ${all_targets}; do + if enabled ${t}; then + if enabled child; then + fwrite config.mk "ALL_TARGETS += ${t}-${toolchain}" + else + fwrite config.mk "ALL_TARGETS += ${t}" + fi + fi + true; + done + true +} + +write_common_target_config_mk() { + saved_CC="${CC}" + saved_CXX="${CXX}" + enabled ccache && CC="ccache ${CC}" + enabled ccache && CXX="ccache ${CXX}" + print_webm_license $1 "##" "" + + cat >> $1 << EOF +# This file automatically generated by configure. Do not edit! +SRC_PATH="$source_path" +SRC_PATH_BARE=$source_path +BUILD_PFX=${BUILD_PFX} +TOOLCHAIN=${toolchain} +ASM_CONVERSION=${asm_conversion_cmd:-${source_path}/build/make/ads2gas.pl} +GEN_VCPROJ=${gen_vcproj_cmd} +MSVS_ARCH_DIR=${msvs_arch_dir} + +CC=${CC} +CXX=${CXX} +AR=${AR} +LD=${LD} +AS=${AS} +STRIP=${STRIP} +NM=${NM} + +CFLAGS = ${CFLAGS} +CXXFLAGS = ${CXXFLAGS} +ARFLAGS = -crs\$(if \$(quiet),,v) +LDFLAGS = ${LDFLAGS} +ASFLAGS = ${ASFLAGS} +extralibs = ${extralibs} +AS_SFX = ${AS_SFX:-.asm} +EXE_SFX = ${EXE_SFX} +VCPROJ_SFX = ${VCPROJ_SFX} +RTCD_OPTIONS = ${RTCD_OPTIONS} +EOF + + if enabled rvct; then cat >> $1 << EOF +fmt_deps = sed -e 's;^__image.axf;\${@:.d=.o} \$@;' #hide +EOF + else cat >> $1 << EOF +fmt_deps = sed -e 's;^\([a-zA-Z0-9_]*\)\.o;\${@:.d=.o} \$@;' +EOF + fi + + print_config_mk ARCH "${1}" ${ARCH_LIST} + print_config_mk HAVE "${1}" ${HAVE_LIST} + print_config_mk CONFIG "${1}" ${CONFIG_LIST} + print_config_mk HAVE "${1}" gnu_strip + + enabled msvs && echo "CONFIG_VS_VERSION=${vs_version}" >> "${1}" + + CC="${saved_CC}" + CXX="${saved_CXX}" +} + +write_common_target_config_h() { + print_webm_license ${TMP_H} "/*" " */" + cat >> ${TMP_H} << EOF +/* This file automatically generated by configure. Do not edit! */ +#ifndef VPX_CONFIG_H +#define VPX_CONFIG_H +#define RESTRICT ${RESTRICT} +#define INLINE ${INLINE} +EOF + print_config_h ARCH "${TMP_H}" ${ARCH_LIST} + print_config_h HAVE "${TMP_H}" ${HAVE_LIST} + print_config_h CONFIG "${TMP_H}" ${CONFIG_LIST} + print_config_vars_h "${TMP_H}" ${VAR_LIST} + echo "#endif /* VPX_CONFIG_H */" >> ${TMP_H} + mkdir -p `dirname "$1"` + cmp "$1" ${TMP_H} >/dev/null 2>&1 || mv ${TMP_H} "$1" +} + +process_common_cmdline() { + for opt in "$@"; do + optval="${opt#*=}" + case "$opt" in + --child) + enable_feature child + ;; + --log*) + logging="$optval" + if ! disabled logging ; then + enabled logging || logfile="$logging" + else + logfile=/dev/null + fi + ;; + --target=*) + toolchain="${toolchain:-${optval}}" + ;; + --force-target=*) + toolchain="${toolchain:-${optval}}" + enable_feature force_toolchain + ;; + --cpu=*) + tune_cpu="$optval" + ;; + --extra-cflags=*) + extra_cflags="${optval}" + ;; + --extra-cxxflags=*) + extra_cxxflags="${optval}" + ;; + --enable-?*|--disable-?*) + eval `echo "$opt" | sed 's/--/action=/;s/-/ option=/;s/-/_/g'` + if is_in ${option} ${ARCH_EXT_LIST}; then + [ $action = "disable" ] && RTCD_OPTIONS="${RTCD_OPTIONS}--disable-${option} " + elif [ $action = "disable" ] && ! disabled $option ; then + is_in ${option} ${CMDLINE_SELECT} || die_unknown $opt + log_echo " disabling $option" + elif [ $action = "enable" ] && ! enabled $option ; then + is_in ${option} ${CMDLINE_SELECT} || die_unknown $opt + log_echo " enabling $option" + fi + ${action}_feature $option + ;; + --require-?*) + eval `echo "$opt" | sed 's/--/action=/;s/-/ option=/;s/-/_/g'` + if is_in ${option} ${ARCH_EXT_LIST}; then + RTCD_OPTIONS="${RTCD_OPTIONS}${opt} " + else + die_unknown $opt + fi + ;; + --force-enable-?*|--force-disable-?*) + eval `echo "$opt" | sed 's/--force-/action=/;s/-/ option=/;s/-/_/g'` + ${action}_feature $option + ;; + --libc=*) + [ -d "${optval}" ] || die "Not a directory: ${optval}" + disable_feature builtin_libc + alt_libc="${optval}" + ;; + --as=*) + [ "${optval}" = yasm ] || [ "${optval}" = nasm ] \ + || [ "${optval}" = auto ] \ + || die "Must be yasm, nasm or auto: ${optval}" + alt_as="${optval}" + ;; + --size-limit=*) + w="${optval%%x*}" + h="${optval##*x}" + VAR_LIST="DECODE_WIDTH_LIMIT ${w} DECODE_HEIGHT_LIMIT ${h}" + [ ${w} -gt 0 ] && [ ${h} -gt 0 ] || die "Invalid size-limit: too small." + [ ${w} -lt 65536 ] && [ ${h} -lt 65536 ] \ + || die "Invalid size-limit: too big." + enable_feature size_limit + ;; + --prefix=*) + prefix="${optval}" + ;; + --libdir=*) + libdir="${optval}" + ;; + --sdk-path=*) + [ -d "${optval}" ] || die "Not a directory: ${optval}" + sdk_path="${optval}" + ;; + --libc|--as|--prefix|--libdir|--sdk-path) + die "Option ${opt} requires argument" + ;; + --help|-h) + show_help + ;; + *) + die_unknown $opt + ;; + esac + done +} + +process_cmdline() { + for opt do + optval="${opt#*=}" + case "$opt" in + *) + process_common_cmdline $opt + ;; + esac + done +} + +post_process_common_cmdline() { + prefix="${prefix:-/usr/local}" + prefix="${prefix%/}" + libdir="${libdir:-${prefix}/lib}" + libdir="${libdir%/}" + if [ "${libdir#${prefix}}" = "${libdir}" ]; then + die "Libdir ${libdir} must be a subdirectory of ${prefix}" + fi +} + +post_process_cmdline() { + true; +} + +setup_gnu_toolchain() { + CC=${CC:-${CROSS}gcc} + CXX=${CXX:-${CROSS}g++} + AR=${AR:-${CROSS}ar} + LD=${LD:-${CROSS}${link_with_cc:-ld}} + AS=${AS:-${CROSS}as} + STRIP=${STRIP:-${CROSS}strip} + NM=${NM:-${CROSS}nm} + AS_SFX=.S + EXE_SFX= +} + +# Reliably find the newest available Darwin SDKs. (Older versions of +# xcrun don't support --show-sdk-path.) +show_darwin_sdk_path() { + xcrun --sdk $1 --show-sdk-path 2>/dev/null || + xcodebuild -sdk $1 -version Path 2>/dev/null +} + +# Print the major version number of the Darwin SDK specified by $1. +show_darwin_sdk_major_version() { + xcrun --sdk $1 --show-sdk-version 2>/dev/null | cut -d. -f1 +} + +# Print the Xcode version. +show_xcode_version() { + xcodebuild -version | head -n1 | cut -d' ' -f2 +} + +# Fails when Xcode version is less than 6.3. +check_xcode_minimum_version() { + xcode_major=$(show_xcode_version | cut -f1 -d.) + xcode_minor=$(show_xcode_version | cut -f2 -d.) + xcode_min_major=6 + xcode_min_minor=3 + if [ ${xcode_major} -lt ${xcode_min_major} ]; then + return 1 + fi + if [ ${xcode_major} -eq ${xcode_min_major} ] \ + && [ ${xcode_minor} -lt ${xcode_min_minor} ]; then + return 1 + fi +} + +process_common_toolchain() { + if [ -z "$toolchain" ]; then + gcctarget="${CHOST:-$(gcc -dumpmachine 2> /dev/null)}" + # detect tgt_isa + case "$gcctarget" in + aarch64*) + tgt_isa=arm64 + ;; + armv7*-hardfloat* | armv7*-gnueabihf | arm-*-gnueabihf) + tgt_isa=armv7 + float_abi=hard + ;; + armv7*) + tgt_isa=armv7 + float_abi=softfp + ;; + *x86_64*|*amd64*) + tgt_isa=x86_64 + ;; + *i[3456]86*) + tgt_isa=x86 + ;; + *sparc*) + tgt_isa=sparc + ;; + power*64*-*) + tgt_isa=ppc64 + ;; + power*) + tgt_isa=ppc + ;; + *mips64el*) + tgt_isa=mips64 + ;; + *mips32el*) + tgt_isa=mips32 + ;; + esac + + # detect tgt_os + case "$gcctarget" in + *darwin10*) + tgt_isa=x86_64 + tgt_os=darwin10 + ;; + *darwin11*) + tgt_isa=x86_64 + tgt_os=darwin11 + ;; + *darwin12*) + tgt_isa=x86_64 + tgt_os=darwin12 + ;; + *darwin13*) + tgt_isa=x86_64 + tgt_os=darwin13 + ;; + *darwin14*) + tgt_isa=x86_64 + tgt_os=darwin14 + ;; + *darwin15*) + tgt_isa=x86_64 + tgt_os=darwin15 + ;; + *darwin16*) + tgt_isa=x86_64 + tgt_os=darwin16 + ;; + x86_64*mingw32*) + tgt_os=win64 + ;; + x86_64*cygwin*) + tgt_os=win64 + ;; + *mingw32*|*cygwin*) + [ -z "$tgt_isa" ] && tgt_isa=x86 + tgt_os=win32 + ;; + *linux*|*bsd*) + tgt_os=linux + ;; + *solaris2.10) + tgt_os=solaris + ;; + *os2*) + tgt_os=os2 + ;; + esac + + if [ -n "$tgt_isa" ] && [ -n "$tgt_os" ]; then + toolchain=${tgt_isa}-${tgt_os}-gcc + fi + fi + + toolchain=${toolchain:-generic-gnu} + + is_in ${toolchain} ${all_platforms} || enabled force_toolchain \ + || die "Unrecognized toolchain '${toolchain}'" + + enabled child || log_echo "Configuring for target '${toolchain}'" + + # + # Set up toolchain variables + # + tgt_isa=$(echo ${toolchain} | awk 'BEGIN{FS="-"}{print $1}') + tgt_os=$(echo ${toolchain} | awk 'BEGIN{FS="-"}{print $2}') + tgt_cc=$(echo ${toolchain} | awk 'BEGIN{FS="-"}{print $3}') + + # Mark the specific ISA requested as enabled + soft_enable ${tgt_isa} + enable_feature ${tgt_os} + enable_feature ${tgt_cc} + + # Enable the architecture family + case ${tgt_isa} in + arm*) + enable_feature arm + ;; + mips*) + enable_feature mips + ;; + ppc*) + enable_feature ppc + ;; + esac + + # PIC is probably what we want when building shared libs + enabled shared && soft_enable pic + + # Minimum iOS version for all target platforms (darwin and iphonesimulator). + # Shared library framework builds are only possible on iOS 8 and later. + if enabled shared; then + IOS_VERSION_OPTIONS="--enable-shared" + IOS_VERSION_MIN="8.0" + else + IOS_VERSION_OPTIONS="" + IOS_VERSION_MIN="6.0" + fi + + # Handle darwin variants. Newer SDKs allow targeting older + # platforms, so use the newest one available. + case ${toolchain} in + arm*-darwin*) + add_cflags "-miphoneos-version-min=${IOS_VERSION_MIN}" + iphoneos_sdk_dir="$(show_darwin_sdk_path iphoneos)" + if [ -d "${iphoneos_sdk_dir}" ]; then + add_cflags "-isysroot ${iphoneos_sdk_dir}" + add_ldflags "-isysroot ${iphoneos_sdk_dir}" + fi + ;; + x86*-darwin*) + osx_sdk_dir="$(show_darwin_sdk_path macosx)" + if [ -d "${osx_sdk_dir}" ]; then + add_cflags "-isysroot ${osx_sdk_dir}" + add_ldflags "-isysroot ${osx_sdk_dir}" + fi + ;; + esac + + case ${toolchain} in + *-darwin8-*) + add_cflags "-mmacosx-version-min=10.4" + add_ldflags "-mmacosx-version-min=10.4" + ;; + *-darwin9-*) + add_cflags "-mmacosx-version-min=10.5" + add_ldflags "-mmacosx-version-min=10.5" + ;; + *-darwin10-*) + add_cflags "-mmacosx-version-min=10.6" + add_ldflags "-mmacosx-version-min=10.6" + ;; + *-darwin11-*) + add_cflags "-mmacosx-version-min=10.7" + add_ldflags "-mmacosx-version-min=10.7" + ;; + *-darwin12-*) + add_cflags "-mmacosx-version-min=10.8" + add_ldflags "-mmacosx-version-min=10.8" + ;; + *-darwin13-*) + add_cflags "-mmacosx-version-min=10.9" + add_ldflags "-mmacosx-version-min=10.9" + ;; + *-darwin14-*) + add_cflags "-mmacosx-version-min=10.10" + add_ldflags "-mmacosx-version-min=10.10" + ;; + *-darwin15-*) + add_cflags "-mmacosx-version-min=10.11" + add_ldflags "-mmacosx-version-min=10.11" + ;; + *-darwin16-*) + add_cflags "-mmacosx-version-min=10.12" + add_ldflags "-mmacosx-version-min=10.12" + ;; + *-iphonesimulator-*) + add_cflags "-miphoneos-version-min=${IOS_VERSION_MIN}" + add_ldflags "-miphoneos-version-min=${IOS_VERSION_MIN}" + iossim_sdk_dir="$(show_darwin_sdk_path iphonesimulator)" + if [ -d "${iossim_sdk_dir}" ]; then + add_cflags "-isysroot ${iossim_sdk_dir}" + add_ldflags "-isysroot ${iossim_sdk_dir}" + fi + ;; + esac + + # Handle Solaris variants. Solaris 10 needs -lposix4 + case ${toolchain} in + sparc-solaris-*) + add_extralibs -lposix4 + ;; + *-solaris-*) + add_extralibs -lposix4 + ;; + esac + + # Process ARM architecture variants + case ${toolchain} in + arm*) + # on arm, isa versions are supersets + case ${tgt_isa} in + arm64|armv8) + soft_enable neon + ;; + armv7|armv7s) + soft_enable neon + # Only enable neon_asm when neon is also enabled. + enabled neon && soft_enable neon_asm + # If someone tries to force it through, die. + if disabled neon && enabled neon_asm; then + die "Disabling neon while keeping neon-asm is not supported" + fi + ;; + esac + + asm_conversion_cmd="cat" + + case ${tgt_cc} in + gcc) + link_with_cc=gcc + setup_gnu_toolchain + arch_int=${tgt_isa##armv} + arch_int=${arch_int%%te} + check_add_asflags --defsym ARCHITECTURE=${arch_int} + tune_cflags="-mtune=" + if [ ${tgt_isa} = "armv7" ] || [ ${tgt_isa} = "armv7s" ]; then + if [ -z "${float_abi}" ]; then + check_cpp <&- || \ + die "Couldn't find CodeSourcery GCC from PATH" + + # Use armcc as a linker to enable translation of + # some gcc specific options such as -lm and -lpthread. + LD="armcc --translate_gcc" + + # create configuration file (uses path to CodeSourcery GCC) + armcc --arm_linux_configure --arm_linux_config_file=arm_linux.cfg + + add_cflags --arm_linux_paths --arm_linux_config_file=arm_linux.cfg + add_asflags --no_hide_all --apcs=/interwork + add_ldflags --arm_linux_paths --arm_linux_config_file=arm_linux.cfg + enabled pic && add_cflags --apcs=/fpic + enabled pic && add_asflags --apcs=/fpic + enabled shared && add_cflags --shared + fi + ;; + esac + ;; + mips*) + link_with_cc=gcc + setup_gnu_toolchain + tune_cflags="-mtune=" + if enabled dspr2; then + check_add_cflags -mips32r2 -mdspr2 + fi + + if enabled runtime_cpu_detect; then + disable_feature runtime_cpu_detect + fi + + if [ -n "${tune_cpu}" ]; then + case ${tune_cpu} in + p5600) + check_add_cflags -mips32r5 -mload-store-pairs + check_add_cflags -msched-weight -mhard-float -mfp64 + check_add_asflags -mips32r5 -mhard-float -mfp64 + check_add_ldflags -mfp64 + ;; + i6400|p6600) + check_add_cflags -mips64r6 -mabi=64 -msched-weight + check_add_cflags -mload-store-pairs -mhard-float -mfp64 + check_add_asflags -mips64r6 -mabi=64 -mhard-float -mfp64 + check_add_ldflags -mips64r6 -mabi=64 -mfp64 + ;; + esac + + if enabled msa; then + add_cflags -mmsa + add_asflags -mmsa + add_ldflags -mmsa + fi + fi + + if enabled mmi; then + tgt_isa=loongson3a + check_add_ldflags -march=loongson3a + fi + + check_add_cflags -march=${tgt_isa} + check_add_asflags -march=${tgt_isa} + check_add_asflags -KPIC + ;; + ppc*) + link_with_cc=gcc + setup_gnu_toolchain + check_gcc_machine_option "vsx" + ;; + x86*) + case ${tgt_os} in + win*) + enabled gcc && add_cflags -fno-common + ;; + solaris*) + CC=${CC:-${CROSS}gcc} + CXX=${CXX:-${CROSS}g++} + LD=${LD:-${CROSS}gcc} + CROSS=${CROSS-g} + ;; + os2) + disable_feature pic + AS=${AS:-nasm} + add_ldflags -Zhigh-mem + ;; + esac + + AS="${alt_as:-${AS:-auto}}" + case ${tgt_cc} in + icc*) + CC=${CC:-icc} + LD=${LD:-icc} + setup_gnu_toolchain + add_cflags -use-msasm # remove -use-msasm too? + # add -no-intel-extensions to suppress warning #10237 + # refer to http://software.intel.com/en-us/forums/topic/280199 + add_ldflags -i-static -no-intel-extensions + enabled x86_64 && add_cflags -ipo -static -O3 -no-prec-div + enabled x86_64 && AR=xiar + case ${tune_cpu} in + atom*) + tune_cflags="-x" + tune_cpu="SSE3_ATOM" + ;; + *) + tune_cflags="-march=" + ;; + esac + ;; + gcc*) + link_with_cc=gcc + tune_cflags="-march=" + setup_gnu_toolchain + #for 32 bit x86 builds, -O3 did not turn on this flag + enabled optimizations && disabled gprof && check_add_cflags -fomit-frame-pointer + ;; + vs*) + # When building with Microsoft Visual Studio the assembler is + # invoked directly. Checking at configure time is unnecessary. + # Skip the check by setting AS arbitrarily + AS=msvs + msvs_arch_dir=x86-msvs + vc_version=${tgt_cc##vs} + case $vc_version in + 7|8|9|10|11|12|13|14) + echo "${tgt_cc} does not support avx512, disabling....." + RTCD_OPTIONS="${RTCD_OPTIONS}--disable-avx512 " + soft_disable avx512 + ;; + esac + case $vc_version in + 7|8|9|10) + echo "${tgt_cc} does not support avx/avx2, disabling....." + RTCD_OPTIONS="${RTCD_OPTIONS}--disable-avx --disable-avx2 " + soft_disable avx + soft_disable avx2 + ;; + esac + case $vc_version in + 7|8|9) + echo "${tgt_cc} omits stdint.h, disabling webm-io..." + soft_disable webm_io + ;; + esac + ;; + esac + + bits=32 + enabled x86_64 && bits=64 + check_cpp < sse4 + check_gcc_machine_option ${ext%_*} $ext + fi + fi + + # https://bugs.chromium.org/p/webm/issues/detail?id=1464 + # The assembly optimizations for vpx_sub_pixel_variance do not link with + # gcc 6. + enabled sse2 && soft_enable pic + done + + if enabled external_build; then + log_echo " skipping assembler detection" + else + case "${AS}" in + auto|"") + which nasm >/dev/null 2>&1 && AS=nasm + which yasm >/dev/null 2>&1 && AS=yasm + if [ "${AS}" = nasm ] ; then + # Apple ships version 0.98 of nasm through at least Xcode 6. Revisit + # this check if they start shipping a compatible version. + apple=`nasm -v | grep "Apple"` + [ -n "${apple}" ] \ + && echo "Unsupported version of nasm: ${apple}" \ + && AS="" + fi + [ "${AS}" = auto ] || [ -z "${AS}" ] \ + && die "Neither yasm nor nasm have been found." \ + "See the prerequisites section in the README for more info." + ;; + esac + log_echo " using $AS" + fi + AS_SFX=.asm + case ${tgt_os} in + win32) + add_asflags -f win32 + enabled debug && add_asflags -g cv8 + EXE_SFX=.exe + ;; + win64) + add_asflags -f win64 + enabled debug && add_asflags -g cv8 + EXE_SFX=.exe + ;; + linux*|solaris*|android*) + add_asflags -f elf${bits} + enabled debug && [ "${AS}" = yasm ] && add_asflags -g dwarf2 + enabled debug && [ "${AS}" = nasm ] && add_asflags -g + [ "${AS##*/}" = nasm ] && check_asm_align + ;; + darwin*) + add_asflags -f macho${bits} + enabled x86 && darwin_arch="-arch i386" || darwin_arch="-arch x86_64" + add_cflags ${darwin_arch} + add_ldflags ${darwin_arch} + # -mdynamic-no-pic is still a bit of voodoo -- it was required at + # one time, but does not seem to be now, and it breaks some of the + # code that still relies on inline assembly. + # enabled icc && ! enabled pic && add_cflags -fno-pic -mdynamic-no-pic + enabled icc && ! enabled pic && add_cflags -fno-pic + ;; + iphonesimulator) + add_asflags -f macho${bits} + enabled x86 && sim_arch="-arch i386" || sim_arch="-arch x86_64" + add_cflags ${sim_arch} + add_ldflags ${sim_arch} + + if [ "$(show_darwin_sdk_major_version iphonesimulator)" -gt 8 ]; then + # yasm v1.3.0 doesn't know what -fembed-bitcode means, so turning it + # on is pointless (unless building a C-only lib). Warn the user, but + # do nothing here. + log "Warning: Bitcode embed disabled for simulator targets." + fi + ;; + os2) + add_asflags -f aout + enabled debug && add_asflags -g + EXE_SFX=.exe + ;; + *) + log "Warning: Unknown os $tgt_os while setting up $AS flags" + ;; + esac + ;; + *-gcc|generic-gnu) + link_with_cc=gcc + enable_feature gcc + setup_gnu_toolchain + ;; + esac + + # Try to enable CPU specific tuning + if [ -n "${tune_cpu}" ]; then + if [ -n "${tune_cflags}" ]; then + check_add_cflags ${tune_cflags}${tune_cpu} || \ + die "Requested CPU '${tune_cpu}' not supported by compiler" + fi + if [ -n "${tune_asflags}" ]; then + check_add_asflags ${tune_asflags}${tune_cpu} || \ + die "Requested CPU '${tune_cpu}' not supported by assembler" + fi + if [ -z "${tune_cflags}${tune_asflags}" ]; then + log_echo "Warning: CPU tuning not supported by this toolchain" + fi + fi + + if enabled debug; then + check_add_cflags -g && check_add_ldflags -g + else + check_add_cflags -DNDEBUG + fi + + enabled gprof && check_add_cflags -pg && check_add_ldflags -pg + enabled gcov && + check_add_cflags -fprofile-arcs -ftest-coverage && + check_add_ldflags -fprofile-arcs -ftest-coverage + + if enabled optimizations; then + if enabled rvct; then + enabled small && check_add_cflags -Ospace || check_add_cflags -Otime + else + enabled small && check_add_cflags -O2 || check_add_cflags -O3 + fi + fi + + # Position Independent Code (PIC) support, for building relocatable + # shared objects + enabled gcc && enabled pic && check_add_cflags -fPIC + + # Work around longjmp interception on glibc >= 2.11, to improve binary + # compatibility. See http://code.google.com/p/webm/issues/detail?id=166 + enabled linux && check_add_cflags -U_FORTIFY_SOURCE -D_FORTIFY_SOURCE=0 + + # Check for strip utility variant + ${STRIP} -V 2>/dev/null | grep GNU >/dev/null && enable_feature gnu_strip + + # Try to determine target endianness + check_cc </dev/null 2>&1 && enable_feature big_endian + + # Try to find which inline keywords are supported + check_cc <> $makefile + fi + done + prefix="${saved_prefix}" +} + +print_config_h() { + saved_prefix="${prefix}" + prefix=$1 + header=$2 + shift 2 + for cfg; do + upname="`toupper $cfg`" + if enabled $cfg; then + echo "#define ${prefix}_${upname} 1" >> $header + else + echo "#define ${prefix}_${upname} 0" >> $header + fi + done + prefix="${saved_prefix}" +} + +print_config_vars_h() { + header=$1 + shift + while [ $# -gt 0 ]; do + upname="`toupper $1`" + echo "#define ${upname} $2" >> $header + shift 2 + done +} + +print_webm_license() { + saved_prefix="${prefix}" + destination=$1 + prefix="$2" + suffix="$3" + shift 3 + cat < ${destination} +${prefix} Copyright (c) 2011 The WebM project authors. All Rights Reserved.${suffix} +${prefix} ${suffix} +${prefix} Use of this source code is governed by a BSD-style license${suffix} +${prefix} that can be found in the LICENSE file in the root of the source${suffix} +${prefix} tree. An additional intellectual property rights grant can be found${suffix} +${prefix} in the file PATENTS. All contributing project authors may${suffix} +${prefix} be found in the AUTHORS file in the root of the source tree.${suffix} +EOF + prefix="${saved_prefix}" +} + +process_targets() { + true; +} + +process_detect() { + true; +} + +enable_feature logging +logfile="config.log" +self=$0 +process() { + cmdline_args="$@" + process_cmdline "$@" + if enabled child; then + echo "# ${self} $@" >> ${logfile} + else + echo "# ${self} $@" > ${logfile} + fi + post_process_common_cmdline + post_process_cmdline + process_toolchain + process_detect + process_targets + + OOT_INSTALLS="${OOT_INSTALLS}" + if enabled source_path_used; then + # Prepare the PWD for building. + for f in ${OOT_INSTALLS}; do + install -D "${source_path}/$f" "$f" + done + fi + cp "${source_path}/build/make/Makefile" . + + clean_temp_files + true +} diff --git a/build/make/gen_asm_deps.sh b/build/make/gen_asm_deps.sh new file mode 100755 index 0000000..6a7bff9 --- /dev/null +++ b/build/make/gen_asm_deps.sh @@ -0,0 +1,64 @@ +#!/bin/sh +## +## Copyright (c) 2010 The WebM project authors. All Rights Reserved. +## +## Use of this source code is governed by a BSD-style license +## that can be found in the LICENSE file in the root of the source +## tree. An additional intellectual property rights grant can be found +## in the file PATENTS. All contributing project authors may +## be found in the AUTHORS file in the root of the source tree. +## + + +self=$0 +show_help() { + echo "usage: $self [options] " + echo + echo "Generate Makefile dependency information from assembly code source" + echo + exit 1 +} +die_unknown(){ + echo "Unknown option \"$1\"." + echo "See $0 --help for available options." + exit 1 +} +for opt do + optval="${opt#*=}" + case "$opt" in + --build-pfx=*) pfx="${optval}" + ;; + --depfile=*) out="${optval}" + ;; + -I*) raw_inc_paths="${raw_inc_paths} ${opt}" + inc_path="${inc_path} ${opt#-I}" + ;; + -h|--help) show_help + ;; + *) [ -f "$opt" ] && srcfile="$opt" + ;; + esac +done + +[ -n "$srcfile" ] || show_help +sfx=${sfx:-asm} +includes=$(LC_ALL=C egrep -i "include +\"?[a-z0-9_/]+\.${sfx}" $srcfile | + perl -p -e "s;.*?([a-z0-9_/]+.${sfx}).*;\1;") +#" restore editor state +for inc in ${includes}; do + found_inc_path= + for idir in ${inc_path}; do + [ -f "${idir}/${inc}" ] && found_inc_path="${idir}" && break + done + if [ -f `dirname $srcfile`/$inc ]; then + # Handle include files in the same directory as the source + $self --build-pfx=$pfx --depfile=$out ${raw_inc_paths} `dirname $srcfile`/$inc + elif [ -n "${found_inc_path}" ]; then + # Handle include files on the include path + $self --build-pfx=$pfx --depfile=$out ${raw_inc_paths} "${found_inc_path}/$inc" + else + # Handle generated includes in the build root (which may not exist yet) + echo ${out} ${out%d}o: "${pfx}${inc}" + fi +done +echo ${out} ${out%d}o: $srcfile diff --git a/build/make/gen_msvs_def.sh b/build/make/gen_msvs_def.sh new file mode 100755 index 0000000..4defcc2 --- /dev/null +++ b/build/make/gen_msvs_def.sh @@ -0,0 +1,83 @@ +#!/bin/bash +## +## Copyright (c) 2010 The WebM project authors. All Rights Reserved. +## +## Use of this source code is governed by a BSD-style license +## that can be found in the LICENSE file in the root of the source +## tree. An additional intellectual property rights grant can be found +## in the file PATENTS. All contributing project authors may +## be found in the AUTHORS file in the root of the source tree. +## + + +self=$0 +self_basename=${self##*/} +EOL=$'\n' + +show_help() { + cat < symbol1 [symbol2, symbol3, ...] + +where is either 'text' or 'data' + + +Options: + --help Print this message + --out=filename Write output to a file [stdout] + --name=project_name Name of the library (required) +EOF + exit 1 +} + +die() { + echo "${self_basename}: $@" + exit 1 +} + +die_unknown(){ + echo "Unknown option \"$1\"." + echo "See ${self_basename} --help for available options." + exit 1 +} + +text() { + for sym in "$@"; do + echo " $sym" >> ${outfile} + done +} + +data() { + for sym in "$@"; do + printf " %-40s DATA\n" "$sym" >> ${outfile} + done +} + +# Process command line +for opt in "$@"; do + optval="${opt#*=}" + case "$opt" in + --help|-h) show_help + ;; + --out=*) outfile="$optval" + ;; + --name=*) name="${optval}" + ;; + -*) die_unknown $opt + ;; + *) file_list[${#file_list[@]}]="$opt" + esac +done +outfile=${outfile:-/dev/stdout} +[ -n "$name" ] || die "Library name (--name) must be specified!" + +echo "LIBRARY ${name}" > ${outfile} +echo "EXPORTS" >> ${outfile} +for f in "${file_list[@]}"; do + . $f +done diff --git a/build/make/gen_msvs_sln.sh b/build/make/gen_msvs_sln.sh new file mode 100755 index 0000000..401223a --- /dev/null +++ b/build/make/gen_msvs_sln.sh @@ -0,0 +1,263 @@ +#!/bin/bash +## +## Copyright (c) 2010 The WebM project authors. All Rights Reserved. +## +## Use of this source code is governed by a BSD-style license +## that can be found in the LICENSE file in the root of the source +## tree. An additional intellectual property rights grant can be found +## in the file PATENTS. All contributing project authors may +## be found in the AUTHORS file in the root of the source tree. +## + + +self=$0 +self_basename=${self##*/} +EOL=$'\n' +EOLDOS=$'\r' + +show_help() { + cat <&2 + [ -f "${outfile}" ] && rm -f ${outfile}{,.mk} + exit 1 +} + +die_unknown(){ + echo "Unknown option \"$1\"." >&2 + echo "See ${self_basename} --help for available options." >&2 + [ -f "${outfile}" ] && rm -f ${outfile}{,.mk} + exit 1 +} + +indent1=$'\t' +indent="" +indent_push() { + indent="${indent}${indent1}" +} +indent_pop() { + indent="${indent%${indent1}}" +} + +parse_project() { + local file=$1 + local name=`grep RootNamespace "$file" | sed 's,.*<.*>\(.*\).*,\1,'` + local guid=`grep ProjectGuid "$file" | sed 's,.*<.*>\(.*\).*,\1,'` + + # save the project GUID to a varaible, normalizing to the basename of the + # vcxproj file without the extension + local var + var=${file##*/} + var=${var%%.${sfx}} + eval "${var}_file=\"$1\"" + eval "${var}_name=$name" + eval "${var}_guid=$guid" + + cur_config_list=`grep -B1 'Label="Configuration"' $file | + grep Condition | cut -d\' -f4` + new_config_list=$(for i in $config_list $cur_config_list; do + echo $i + done | sort | uniq) + if [ "$config_list" != "" ] && [ "$config_list" != "$new_config_list" ]; then + mixed_platforms=1 + fi + config_list="$new_config_list" + eval "${var}_config_list=\"$cur_config_list\"" + proj_list="${proj_list} ${var}" +} + +process_project() { + eval "local file=\${$1_file}" + eval "local name=\${$1_name}" + eval "local guid=\${$1_guid}" + + # save the project GUID to a varaible, normalizing to the basename of the + # vcproj file without the extension + local var + var=${file##*/} + var=${var%%.${sfx}} + eval "${var}_guid=$guid" + + echo "Project(\"{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}\") = \"$name\", \"$file\", \"$guid\"" + echo "EndProject" +} + +process_global() { + echo "Global" + indent_push + + # + # Solution Configuration Platforms + # + echo "${indent}GlobalSection(SolutionConfigurationPlatforms) = preSolution" + indent_push + IFS_bak=${IFS} + IFS=$'\r'$'\n' + if [ "$mixed_platforms" != "" ]; then + config_list=" +Release|Mixed Platforms +Debug|Mixed Platforms" + fi + for config in ${config_list}; do + echo "${indent}$config = $config" + done + IFS=${IFS_bak} + indent_pop + echo "${indent}EndGlobalSection" + + # + # Project Configuration Platforms + # + echo "${indent}GlobalSection(ProjectConfigurationPlatforms) = postSolution" + indent_push + for proj in ${proj_list}; do + eval "local proj_guid=\${${proj}_guid}" + eval "local proj_config_list=\${${proj}_config_list}" + IFS=$'\r'$'\n' + for config in ${proj_config_list}; do + if [ "$mixed_platforms" != "" ]; then + local c=${config%%|*} + echo "${indent}${proj_guid}.${c}|Mixed Platforms.ActiveCfg = ${config}" + echo "${indent}${proj_guid}.${c}|Mixed Platforms.Build.0 = ${config}" + else + echo "${indent}${proj_guid}.${config}.ActiveCfg = ${config}" + echo "${indent}${proj_guid}.${config}.Build.0 = ${config}" + fi + + done + IFS=${IFS_bak} + done + indent_pop + echo "${indent}EndGlobalSection" + + # + # Solution Properties + # + echo "${indent}GlobalSection(SolutionProperties) = preSolution" + indent_push + echo "${indent}HideSolutionNode = FALSE" + indent_pop + echo "${indent}EndGlobalSection" + + indent_pop + echo "EndGlobal" +} + +process_makefile() { + IFS_bak=${IFS} + IFS=$'\r'$'\n' + local TAB=$'\t' + cat </dev/null 2>&1 && echo yes) +.nodevenv.once: +${TAB}@echo " * \$(MSBUILD_TOOL) not found in path." +${TAB}@echo " * " +${TAB}@echo " * You will have to build all configurations manually using the" +${TAB}@echo " * Visual Studio IDE. To allow make to build them automatically," +${TAB}@echo " * add the Common7/IDE directory of your Visual Studio" +${TAB}@echo " * installation to your path, eg:" +${TAB}@echo " * C:\Program Files\Microsoft Visual Studio 10.0\Common7\IDE" +${TAB}@echo " * " +${TAB}@touch \$@ +CLEAN-OBJS += \$(if \$(found_devenv),,.nodevenv.once) + +EOF + + for sln_config in ${config_list}; do + local config=${sln_config%%|*} + local platform=${sln_config##*|} + local nows_sln_config=`echo $sln_config | sed -e 's/[^a-zA-Z0-9]/_/g'` + cat <${outfile} <>${outfile} +done +process_global >>${outfile} +process_makefile >${mkoutfile} diff --git a/build/make/gen_msvs_vcxproj.sh b/build/make/gen_msvs_vcxproj.sh new file mode 100755 index 0000000..171d0b9 --- /dev/null +++ b/build/make/gen_msvs_vcxproj.sh @@ -0,0 +1,493 @@ +#!/bin/bash +## +## Copyright (c) 2013 The WebM project authors. All Rights Reserved. +## +## Use of this source code is governed by a BSD-style license +## that can be found in the LICENSE file in the root of the source +## tree. An additional intellectual property rights grant can be found +## in the file PATENTS. All contributing project authors may +## be found in the AUTHORS file in the root of the source tree. +## + +self=$0 +self_basename=${self##*/} +self_dirname=$(dirname "$0") + +. "$self_dirname/msvs_common.sh"|| exit 127 + +show_help() { + cat <${content}" + indent_pop + else + echo "${indent}<${tag}>${content}" + fi +} + +generate_filter() { + local name=$1 + local pats=$2 + local file_list_sz + local i + local f + local saveIFS="$IFS" + local pack + echo "generating filter '$name' from ${#file_list[@]} files" >&2 + IFS=* + + file_list_sz=${#file_list[@]} + for i in ${!file_list[@]}; do + f=${file_list[i]} + for pat in ${pats//;/$IFS}; do + if [ "${f##*.}" == "$pat" ]; then + unset file_list[i] + + objf=$(echo ${f%.*}.obj \ + | sed -e "s,$src_path_bare,," \ + -e 's/^[\./]\+//g' -e 's,[:/ ],_,g') + + if ([ "$pat" == "asm" ] || [ "$pat" == "s" ] || [ "$pat" == "S" ]) && $asm_use_custom_step; then + # Avoid object file name collisions, i.e. vpx_config.c and + # vpx_config.asm produce the same object file without + # this additional suffix. + objf=${objf%.obj}_asm.obj + open_tag CustomBuild \ + Include="$f" + for plat in "${platforms[@]}"; do + for cfg in Debug Release; do + tag_content Message "Assembling %(Filename)%(Extension)" \ + Condition="'\$(Configuration)|\$(Platform)'=='$cfg|$plat'" + tag_content Command "$(eval echo \$asm_${cfg}_cmdline) -o \$(IntDir)$objf" \ + Condition="'\$(Configuration)|\$(Platform)'=='$cfg|$plat'" + tag_content Outputs "\$(IntDir)$objf" \ + Condition="'\$(Configuration)|\$(Platform)'=='$cfg|$plat'" + done + done + close_tag CustomBuild + elif [ "$pat" == "c" ] || \ + [ "$pat" == "cc" ] || [ "$pat" == "cpp" ]; then + open_tag ClCompile \ + Include="$f" + # Separate file names with Condition? + tag_content ObjectFileName "\$(IntDir)$objf" + # Check for AVX and turn it on to avoid warnings. + if [[ $f =~ avx.?\.c$ ]]; then + tag_content AdditionalOptions "/arch:AVX" + fi + close_tag ClCompile + elif [ "$pat" == "h" ] ; then + tag ClInclude \ + Include="$f" + elif [ "$pat" == "vcxproj" ] ; then + open_tag ProjectReference \ + Include="$f" + depguid=`grep ProjectGuid "$f" | sed 's,.*<.*>\(.*\).*,\1,'` + tag_content Project "$depguid" + tag_content ReferenceOutputAssembly false + close_tag ProjectReference + else + tag None \ + Include="$f" + fi + + break + fi + done + done + + IFS="$saveIFS" +} + +# Process command line +unset target +for opt in "$@"; do + optval="${opt#*=}" + case "$opt" in + --help|-h) show_help + ;; + --target=*) target="${optval}" + ;; + --out=*) outfile="$optval" + ;; + --name=*) name="${optval}" + ;; + --proj-guid=*) guid="${optval}" + ;; + --module-def=*) module_def="${optval}" + ;; + --exe) proj_kind="exe" + ;; + --dll) proj_kind="dll" + ;; + --lib) proj_kind="lib" + ;; + --src-path-bare=*) + src_path_bare=$(fix_path "$optval") + src_path_bare=${src_path_bare%/} + ;; + --static-crt) use_static_runtime=true + ;; + --enable-werror) werror=true + ;; + --ver=*) + vs_ver="$optval" + case "$optval" in + 10|11|12|14|15) + ;; + *) die Unrecognized Visual Studio Version in $opt + ;; + esac + ;; + -I*) + opt=${opt##-I} + opt=$(fix_path "$opt") + opt="${opt%/}" + incs="${incs}${incs:+;}"${opt}"" + yasmincs="${yasmincs} -I"${opt}"" + ;; + -D*) defines="${defines}${defines:+;}${opt##-D}" + ;; + -L*) # fudge . to $(OutDir) + if [ "${opt##-L}" == "." ]; then + libdirs="${libdirs}${libdirs:+;}"\$(OutDir)"" + else + # Also try directories for this platform/configuration + opt=${opt##-L} + opt=$(fix_path "$opt") + libdirs="${libdirs}${libdirs:+;}"${opt}"" + libdirs="${libdirs}${libdirs:+;}"${opt}/\$(PlatformName)/\$(Configuration)"" + libdirs="${libdirs}${libdirs:+;}"${opt}/\$(PlatformName)"" + fi + ;; + -l*) libs="${libs}${libs:+ }${opt##-l}.lib" + ;; + -*) die_unknown $opt + ;; + *) + # The paths in file_list are fixed outside of the loop. + file_list[${#file_list[@]}]="$opt" + case "$opt" in + *.asm|*.[Ss]) uses_asm=true + ;; + esac + ;; + esac +done + +# Make one call to fix_path for file_list to improve performance. +fix_file_list file_list + +outfile=${outfile:-/dev/stdout} +guid=${guid:-`generate_uuid`} +asm_use_custom_step=false +uses_asm=${uses_asm:-false} +case "${vs_ver:-11}" in + 10|11|12|14|15) + asm_use_custom_step=$uses_asm + ;; +esac + +[ -n "$name" ] || die "Project name (--name) must be specified!" +[ -n "$target" ] || die "Target (--target) must be specified!" + +if ${use_static_runtime:-false}; then + release_runtime=MultiThreaded + debug_runtime=MultiThreadedDebug + lib_sfx=mt +else + release_runtime=MultiThreadedDLL + debug_runtime=MultiThreadedDebugDLL + lib_sfx=md +fi + +# Calculate debug lib names: If a lib ends in ${lib_sfx}.lib, then rename +# it to ${lib_sfx}d.lib. This precludes linking to release libs from a +# debug exe, so this may need to be refactored later. +for lib in ${libs}; do + if [ "$lib" != "${lib%${lib_sfx}.lib}" ]; then + lib=${lib%.lib}d.lib + fi + debug_libs="${debug_libs}${debug_libs:+ }${lib}" +done +debug_libs=${debug_libs// /;} +libs=${libs// /;} + + +# List of all platforms supported for this target +case "$target" in + x86_64*) + platforms[0]="x64" + asm_Debug_cmdline="yasm -Xvc -g cv8 -f win64 ${yasmincs} "%(FullPath)"" + asm_Release_cmdline="yasm -Xvc -f win64 ${yasmincs} "%(FullPath)"" + ;; + x86*) + platforms[0]="Win32" + asm_Debug_cmdline="yasm -Xvc -g cv8 -f win32 ${yasmincs} "%(FullPath)"" + asm_Release_cmdline="yasm -Xvc -f win32 ${yasmincs} "%(FullPath)"" + ;; + arm*) + platforms[0]="ARM" + asm_Debug_cmdline="armasm -nologo -oldit "%(FullPath)"" + asm_Release_cmdline="armasm -nologo -oldit "%(FullPath)"" + ;; + *) die "Unsupported target $target!" + ;; +esac + +generate_vcxproj() { + echo "" + open_tag Project \ + DefaultTargets="Build" \ + ToolsVersion="4.0" \ + xmlns="http://schemas.microsoft.com/developer/msbuild/2003" \ + + open_tag ItemGroup \ + Label="ProjectConfigurations" + for plat in "${platforms[@]}"; do + for config in Debug Release; do + open_tag ProjectConfiguration \ + Include="$config|$plat" + tag_content Configuration $config + tag_content Platform $plat + close_tag ProjectConfiguration + done + done + close_tag ItemGroup + + open_tag PropertyGroup \ + Label="Globals" + tag_content ProjectGuid "{${guid}}" + tag_content RootNamespace ${name} + tag_content Keyword ManagedCProj + if [ $vs_ver -ge 12 ] && [ "${platforms[0]}" = "ARM" ]; then + tag_content AppContainerApplication true + # The application type can be one of "Windows Store", + # "Windows Phone" or "Windows Phone Silverlight". The + # actual value doesn't matter from the libvpx point of view, + # since a static library built for one works on the others. + # The PlatformToolset field needs to be set in sync with this; + # for Windows Store and Windows Phone Silverlight it should be + # v120 while it should be v120_wp81 if the type is Windows Phone. + tag_content ApplicationType "Windows Store" + tag_content ApplicationTypeRevision 8.1 + fi + close_tag PropertyGroup + + tag Import \ + Project="\$(VCTargetsPath)\\Microsoft.Cpp.Default.props" + + for plat in "${platforms[@]}"; do + for config in Release Debug; do + open_tag PropertyGroup \ + Condition="'\$(Configuration)|\$(Platform)'=='$config|$plat'" \ + Label="Configuration" + if [ "$proj_kind" = "exe" ]; then + tag_content ConfigurationType Application + elif [ "$proj_kind" = "dll" ]; then + tag_content ConfigurationType DynamicLibrary + else + tag_content ConfigurationType StaticLibrary + fi + if [ "$vs_ver" = "11" ]; then + if [ "$plat" = "ARM" ]; then + # Setting the wp80 toolchain automatically sets the + # WINAPI_FAMILY define, which is required for building + # code for arm with the windows headers. Alternatively, + # one could add AppContainerApplication=true in the Globals + # section and add PrecompiledHeader=NotUsing and + # CompileAsWinRT=false in ClCompile and SubSystem=Console + # in Link. + tag_content PlatformToolset v110_wp80 + else + tag_content PlatformToolset v110 + fi + fi + if [ "$vs_ver" = "12" ]; then + # Setting a PlatformToolset indicating windows phone isn't + # enough to build code for arm with MSVC 2013, one strictly + # has to enable AppContainerApplication as well. + tag_content PlatformToolset v120 + fi + if [ "$vs_ver" = "14" ]; then + tag_content PlatformToolset v140 + fi + if [ "$vs_ver" = "15" ]; then + tag_content PlatformToolset v141 + fi + tag_content CharacterSet Unicode + if [ "$config" = "Release" ]; then + tag_content WholeProgramOptimization true + fi + close_tag PropertyGroup + done + done + + tag Import \ + Project="\$(VCTargetsPath)\\Microsoft.Cpp.props" + + open_tag ImportGroup \ + Label="PropertySheets" + tag Import \ + Project="\$(UserRootDir)\\Microsoft.Cpp.\$(Platform).user.props" \ + Condition="exists('\$(UserRootDir)\\Microsoft.Cpp.\$(Platform).user.props')" \ + Label="LocalAppDataPlatform" + close_tag ImportGroup + + tag PropertyGroup \ + Label="UserMacros" + + for plat in "${platforms[@]}"; do + plat_no_ws=`echo $plat | sed 's/[^A-Za-z0-9_]/_/g'` + for config in Debug Release; do + open_tag PropertyGroup \ + Condition="'\$(Configuration)|\$(Platform)'=='$config|$plat'" + tag_content OutDir "\$(SolutionDir)$plat_no_ws\\\$(Configuration)\\" + tag_content IntDir "$plat_no_ws\\\$(Configuration)\\${name}\\" + if [ "$proj_kind" == "lib" ]; then + if [ "$config" == "Debug" ]; then + config_suffix=d + else + config_suffix="" + fi + tag_content TargetName "${name}${lib_sfx}${config_suffix}" + fi + close_tag PropertyGroup + done + done + + for plat in "${platforms[@]}"; do + for config in Debug Release; do + open_tag ItemDefinitionGroup \ + Condition="'\$(Configuration)|\$(Platform)'=='$config|$plat'" + if [ "$name" == "vpx" ]; then + hostplat=$plat + if [ "$hostplat" == "ARM" ]; then + hostplat=Win32 + fi + fi + open_tag ClCompile + if [ "$config" = "Debug" ]; then + opt=Disabled + runtime=$debug_runtime + curlibs=$debug_libs + debug=_DEBUG + else + opt=MaxSpeed + runtime=$release_runtime + curlibs=$libs + tag_content FavorSizeOrSpeed Speed + debug=NDEBUG + fi + extradefines=";$defines" + tag_content Optimization $opt + tag_content AdditionalIncludeDirectories "$incs;%(AdditionalIncludeDirectories)" + tag_content PreprocessorDefinitions "WIN32;$debug;_CRT_SECURE_NO_WARNINGS;_CRT_SECURE_NO_DEPRECATE$extradefines;%(PreprocessorDefinitions)" + tag_content RuntimeLibrary $runtime + tag_content WarningLevel Level3 + if ${werror:-false}; then + tag_content TreatWarningAsError true + fi + if [ $vs_ver -ge 11 ]; then + # We need to override the defaults for these settings + # if AppContainerApplication is set. + tag_content CompileAsWinRT false + tag_content PrecompiledHeader NotUsing + tag_content SDLCheck false + fi + close_tag ClCompile + case "$proj_kind" in + exe) + open_tag Link + tag_content GenerateDebugInformation true + # Console is the default normally, but if + # AppContainerApplication is set, we need to override it. + tag_content SubSystem Console + close_tag Link + ;; + dll) + open_tag Link + tag_content GenerateDebugInformation true + tag_content ModuleDefinitionFile $module_def + close_tag Link + ;; + lib) + ;; + esac + close_tag ItemDefinitionGroup + done + + done + + open_tag ItemGroup + generate_filter "Source Files" "c;cc;cpp;def;odl;idl;hpj;bat;asm;asmx;s;S" + close_tag ItemGroup + open_tag ItemGroup + generate_filter "Header Files" "h;hm;inl;inc;xsd" + close_tag ItemGroup + open_tag ItemGroup + generate_filter "Build Files" "mk" + close_tag ItemGroup + open_tag ItemGroup + generate_filter "References" "vcxproj" + close_tag ItemGroup + + tag Import \ + Project="\$(VCTargetsPath)\\Microsoft.Cpp.targets" + + open_tag ImportGroup \ + Label="ExtensionTargets" + close_tag ImportGroup + + close_tag Project + + # This must be done from within the {} subshell + echo "Ignored files list (${#file_list[@]} items) is:" >&2 + for f in "${file_list[@]}"; do + echo " $f" >&2 + done +} + +# This regexp doesn't catch most of the strings in the vcxproj format, +# since they're like path instead of +# as previously. It still seems to work ok despite this. +generate_vcxproj | + sed -e '/"/s;\([^ "]\)/;\1\\;g' | + sed -e '/xmlns/s;\\;/;g' > ${outfile} + +exit diff --git a/build/make/ios-Info.plist b/build/make/ios-Info.plist new file mode 100644 index 0000000..d157b11 --- /dev/null +++ b/build/make/ios-Info.plist @@ -0,0 +1,37 @@ + + + + + CFBundleDevelopmentRegion + en + CFBundleExecutable + VPX + CFBundleIdentifier + org.webmproject.VPX + CFBundleInfoDictionaryVersion + 6.0 + CFBundleName + VPX + CFBundlePackageType + FMWK + CFBundleShortVersionString + ${VERSION} + CFBundleSignature + ???? + CFBundleSupportedPlatforms + + iPhoneOS + + CFBundleVersion + ${VERSION} + MinimumOSVersion + ${IOS_VERSION_MIN} + UIDeviceFamily + + 1 + 2 + + VPXFullVersion + ${FULLVERSION} + + diff --git a/build/make/iosbuild.sh b/build/make/iosbuild.sh new file mode 100755 index 0000000..365a8c0 --- /dev/null +++ b/build/make/iosbuild.sh @@ -0,0 +1,383 @@ +#!/bin/sh +## +## Copyright (c) 2014 The WebM project authors. All Rights Reserved. +## +## Use of this source code is governed by a BSD-style license +## that can be found in the LICENSE file in the root of the source +## tree. An additional intellectual property rights grant can be found +## in the file PATENTS. All contributing project authors may +## be found in the AUTHORS file in the root of the source tree. +## +## +## This script generates 'VPX.framework'. An iOS app can encode and decode VPx +## video by including 'VPX.framework'. +## +## Run iosbuild.sh to create 'VPX.framework' in the current directory. +## +set -e +devnull='> /dev/null 2>&1' + +BUILD_ROOT="_iosbuild" +CONFIGURE_ARGS="--disable-docs + --disable-examples + --disable-libyuv + --disable-unit-tests" +DIST_DIR="_dist" +FRAMEWORK_DIR="VPX.framework" +FRAMEWORK_LIB="VPX.framework/VPX" +HEADER_DIR="${FRAMEWORK_DIR}/Headers/vpx" +SCRIPT_DIR=$(dirname "$0") +LIBVPX_SOURCE_DIR=$(cd ${SCRIPT_DIR}/../..; pwd) +LIPO=$(xcrun -sdk iphoneos${SDK} -find lipo) +ORIG_PWD="$(pwd)" +ARM_TARGETS="arm64-darwin-gcc + armv7-darwin-gcc + armv7s-darwin-gcc" +SIM_TARGETS="x86-iphonesimulator-gcc + x86_64-iphonesimulator-gcc" +OSX_TARGETS="x86-darwin16-gcc + x86_64-darwin16-gcc" +TARGETS="${ARM_TARGETS} ${SIM_TARGETS}" + +# Configures for the target specified by $1, and invokes make with the dist +# target using $DIST_DIR as the distribution output directory. +build_target() { + local target="$1" + local old_pwd="$(pwd)" + local target_specific_flags="" + + vlog "***Building target: ${target}***" + + case "${target}" in + x86-*) + target_specific_flags="--enable-pic" + vlog "Enabled PIC for ${target}" + ;; + esac + + mkdir "${target}" + cd "${target}" + eval "${LIBVPX_SOURCE_DIR}/configure" --target="${target}" \ + ${CONFIGURE_ARGS} ${EXTRA_CONFIGURE_ARGS} ${target_specific_flags} \ + ${devnull} + export DIST_DIR + eval make dist ${devnull} + cd "${old_pwd}" + + vlog "***Done building target: ${target}***" +} + +# Returns the preprocessor symbol for the target specified by $1. +target_to_preproc_symbol() { + target="$1" + case "${target}" in + arm64-*) + echo "__aarch64__" + ;; + armv7-*) + echo "__ARM_ARCH_7A__" + ;; + armv7s-*) + echo "__ARM_ARCH_7S__" + ;; + x86-*) + echo "__i386__" + ;; + x86_64-*) + echo "__x86_64__" + ;; + *) + echo "#error ${target} unknown/unsupported" + return 1 + ;; + esac +} + +# Create a vpx_config.h shim that, based on preprocessor settings for the +# current target CPU, includes the real vpx_config.h for the current target. +# $1 is the list of targets. +create_vpx_framework_config_shim() { + local targets="$1" + local config_file="${HEADER_DIR}/vpx_config.h" + local preproc_symbol="" + local target="" + local include_guard="VPX_FRAMEWORK_HEADERS_VPX_VPX_CONFIG_H_" + + local file_header="/* + * Copyright (c) $(date +%Y) The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +/* GENERATED FILE: DO NOT EDIT! */ + +#ifndef ${include_guard} +#define ${include_guard} + +#if defined" + + printf "%s" "${file_header}" > "${config_file}" + for target in ${targets}; do + preproc_symbol=$(target_to_preproc_symbol "${target}") + printf " ${preproc_symbol}\n" >> "${config_file}" + printf "#define VPX_FRAMEWORK_TARGET \"${target}\"\n" >> "${config_file}" + printf "#include \"VPX/vpx/${target}/vpx_config.h\"\n" >> "${config_file}" + printf "#elif defined" >> "${config_file}" + mkdir "${HEADER_DIR}/${target}" + cp -p "${BUILD_ROOT}/${target}/vpx_config.h" "${HEADER_DIR}/${target}" + done + + # Consume the last line of output from the loop: We don't want it. + sed -i '' -e '$d' "${config_file}" + + printf "#endif\n\n" >> "${config_file}" + printf "#endif // ${include_guard}" >> "${config_file}" +} + +# Verifies that $FRAMEWORK_LIB fat library contains requested builds. +verify_framework_targets() { + local requested_cpus="" + local cpu="" + + # Extract CPU from full target name. + for target; do + cpu="${target%%-*}" + if [ "${cpu}" = "x86" ]; then + # lipo -info outputs i386 for libvpx x86 targets. + cpu="i386" + fi + requested_cpus="${requested_cpus}${cpu} " + done + + # Get target CPUs present in framework library. + local targets_built=$(${LIPO} -info ${FRAMEWORK_LIB}) + + # $LIPO -info outputs a string like the following: + # Architectures in the fat file: $FRAMEWORK_LIB + # Capture only the architecture strings. + targets_built=${targets_built##*: } + + # Sort CPU strings to make the next step a simple string compare. + local actual=$(echo ${targets_built} | tr " " "\n" | sort | tr "\n" " ") + local requested=$(echo ${requested_cpus} | tr " " "\n" | sort | tr "\n" " ") + + vlog "Requested ${FRAMEWORK_LIB} CPUs: ${requested}" + vlog "Actual ${FRAMEWORK_LIB} CPUs: ${actual}" + + if [ "${requested}" != "${actual}" ]; then + elog "Actual ${FRAMEWORK_LIB} targets do not match requested target list." + elog " Requested target CPUs: ${requested}" + elog " Actual target CPUs: ${actual}" + return 1 + fi +} + +# Configures and builds each target specified by $1, and then builds +# VPX.framework. +build_framework() { + local lib_list="" + local targets="$1" + local target="" + local target_dist_dir="" + + # Clean up from previous build(s). + rm -rf "${BUILD_ROOT}" "${FRAMEWORK_DIR}" + + # Create output dirs. + mkdir -p "${BUILD_ROOT}" + mkdir -p "${HEADER_DIR}" + + cd "${BUILD_ROOT}" + + for target in ${targets}; do + build_target "${target}" + target_dist_dir="${BUILD_ROOT}/${target}/${DIST_DIR}" + if [ "${ENABLE_SHARED}" = "yes" ]; then + local suffix="dylib" + else + local suffix="a" + fi + lib_list="${lib_list} ${target_dist_dir}/lib/libvpx.${suffix}" + done + + cd "${ORIG_PWD}" + + # The basic libvpx API includes are all the same; just grab the most recent + # set. + cp -p "${target_dist_dir}"/include/vpx/* "${HEADER_DIR}" + + # Build the fat library. + ${LIPO} -create ${lib_list} -output ${FRAMEWORK_DIR}/VPX + + # Create the vpx_config.h shim that allows usage of vpx_config.h from + # within VPX.framework. + create_vpx_framework_config_shim "${targets}" + + # Copy in vpx_version.h. + cp -p "${BUILD_ROOT}/${target}/vpx_version.h" "${HEADER_DIR}" + + if [ "${ENABLE_SHARED}" = "yes" ]; then + # Adjust the dylib's name so dynamic linking in apps works as expected. + install_name_tool -id '@rpath/VPX.framework/VPX' ${FRAMEWORK_DIR}/VPX + + # Copy in Info.plist. + cat "${SCRIPT_DIR}/ios-Info.plist" \ + | sed "s/\${FULLVERSION}/${FULLVERSION}/g" \ + | sed "s/\${VERSION}/${VERSION}/g" \ + | sed "s/\${IOS_VERSION_MIN}/${IOS_VERSION_MIN}/g" \ + > "${FRAMEWORK_DIR}/Info.plist" + fi + + # Confirm VPX.framework/VPX contains the targets requested. + verify_framework_targets ${targets} + + vlog "Created fat library ${FRAMEWORK_LIB} containing:" + for lib in ${lib_list}; do + vlog " $(echo ${lib} | awk -F / '{print $2, $NF}')" + done +} + +# Trap function. Cleans up the subtree used to build all targets contained in +# $TARGETS. +cleanup() { + local readonly res=$? + cd "${ORIG_PWD}" + + if [ $res -ne 0 ]; then + elog "build exited with error ($res)" + fi + + if [ "${PRESERVE_BUILD_OUTPUT}" != "yes" ]; then + rm -rf "${BUILD_ROOT}" + fi +} + +print_list() { + local indent="$1" + shift + local list="$@" + for entry in ${list}; do + echo "${indent}${entry}" + done +} + +iosbuild_usage() { +cat << EOF + Usage: ${0##*/} [arguments] + --help: Display this message and exit. + --enable-shared: Build a dynamic framework for use on iOS 8 or later. + --extra-configure-args : Extra args to pass when configuring libvpx. + --macosx: Uses darwin16 targets instead of iphonesimulator targets for x86 + and x86_64. Allows linking to framework when builds target MacOSX + instead of iOS. + --preserve-build-output: Do not delete the build directory. + --show-build-output: Show output from each library build. + --targets : Override default target list. Defaults: +$(print_list " " ${TARGETS}) + --test-link: Confirms all targets can be linked. Functionally identical to + passing --enable-examples via --extra-configure-args. + --verbose: Output information about the environment and each stage of the + build. +EOF +} + +elog() { + echo "${0##*/} failed because: $@" 1>&2 +} + +vlog() { + if [ "${VERBOSE}" = "yes" ]; then + echo "$@" + fi +} + +trap cleanup EXIT + +# Parse the command line. +while [ -n "$1" ]; do + case "$1" in + --extra-configure-args) + EXTRA_CONFIGURE_ARGS="$2" + shift + ;; + --help) + iosbuild_usage + exit + ;; + --enable-shared) + ENABLE_SHARED=yes + ;; + --preserve-build-output) + PRESERVE_BUILD_OUTPUT=yes + ;; + --show-build-output) + devnull= + ;; + --test-link) + EXTRA_CONFIGURE_ARGS="${EXTRA_CONFIGURE_ARGS} --enable-examples" + ;; + --targets) + TARGETS="$2" + shift + ;; + --macosx) + TARGETS="${ARM_TARGETS} ${OSX_TARGETS}" + ;; + --verbose) + VERBOSE=yes + ;; + *) + iosbuild_usage + exit 1 + ;; + esac + shift +done + +if [ "${ENABLE_SHARED}" = "yes" ]; then + CONFIGURE_ARGS="--enable-shared ${CONFIGURE_ARGS}" +fi + +FULLVERSION=$("${SCRIPT_DIR}"/version.sh --bare "${LIBVPX_SOURCE_DIR}") +VERSION=$(echo "${FULLVERSION}" | sed -E 's/^v([0-9]+\.[0-9]+\.[0-9]+).*$/\1/') + +if [ "$ENABLE_SHARED" = "yes" ]; then + IOS_VERSION_OPTIONS="--enable-shared" + IOS_VERSION_MIN="8.0" +else + IOS_VERSION_OPTIONS="" + IOS_VERSION_MIN="6.0" +fi + +if [ "${VERBOSE}" = "yes" ]; then +cat << EOF + BUILD_ROOT=${BUILD_ROOT} + DIST_DIR=${DIST_DIR} + CONFIGURE_ARGS=${CONFIGURE_ARGS} + EXTRA_CONFIGURE_ARGS=${EXTRA_CONFIGURE_ARGS} + FRAMEWORK_DIR=${FRAMEWORK_DIR} + FRAMEWORK_LIB=${FRAMEWORK_LIB} + HEADER_DIR=${HEADER_DIR} + LIBVPX_SOURCE_DIR=${LIBVPX_SOURCE_DIR} + LIPO=${LIPO} + MAKEFLAGS=${MAKEFLAGS} + ORIG_PWD=${ORIG_PWD} + PRESERVE_BUILD_OUTPUT=${PRESERVE_BUILD_OUTPUT} + TARGETS="$(print_list "" ${TARGETS})" + ENABLE_SHARED=${ENABLE_SHARED} + OSX_TARGETS="${OSX_TARGETS}" + SIM_TARGETS="${SIM_TARGETS}" + SCRIPT_DIR="${SCRIPT_DIR}" + FULLVERSION="${FULLVERSION}" + VERSION="${VERSION}" + IOS_VERSION_MIN="${IOS_VERSION_MIN}" +EOF +fi + +build_framework "${TARGETS}" +echo "Successfully built '${FRAMEWORK_DIR}' for:" +print_list "" ${TARGETS} diff --git a/build/make/msvs_common.sh b/build/make/msvs_common.sh new file mode 100644 index 0000000..88f1cf9 --- /dev/null +++ b/build/make/msvs_common.sh @@ -0,0 +1,114 @@ +#!/bin/bash +## +## Copyright (c) 2014 The WebM project authors. All Rights Reserved. +## +## Use of this source code is governed by a BSD-style license +## that can be found in the LICENSE file in the root of the source +## tree. An additional intellectual property rights grant can be found +## in the file PATENTS. All contributing project authors may +## be found in the AUTHORS file in the root of the source tree. +## + +if [ "$(uname -o 2>/dev/null)" = "Cygwin" ] \ + && cygpath --help >/dev/null 2>&1; then + FIXPATH='cygpath -m' +else + FIXPATH='echo_path' +fi + +die() { + echo "${self_basename}: $@" >&2 + exit 1 +} + +die_unknown(){ + echo "Unknown option \"$1\"." >&2 + echo "See ${self_basename} --help for available options." >&2 + exit 1 +} + +echo_path() { + for path; do + echo "$path" + done +} + +# Output one, possibly changed based on the system, path per line. +fix_path() { + $FIXPATH "$@" +} + +# Corrects the paths in file_list in one pass for efficiency. +# $1 is the name of the array to be modified. +fix_file_list() { + declare -n array_ref=$1 + files=$(fix_path "${array_ref[@]}") + local IFS=$'\n' + array_ref=($files) +} + +generate_uuid() { + local hex="0123456789ABCDEF" + local i + local uuid="" + local j + #93995380-89BD-4b04-88EB-625FBE52EBFB + for ((i=0; i<32; i++)); do + (( j = $RANDOM % 16 )) + uuid="${uuid}${hex:$j:1}" + done + echo "${uuid:0:8}-${uuid:8:4}-${uuid:12:4}-${uuid:16:4}-${uuid:20:12}" +} + +indent1=" " +indent="" +indent_push() { + indent="${indent}${indent1}" +} +indent_pop() { + indent="${indent%${indent1}}" +} + +tag_attributes() { + for opt in "$@"; do + optval="${opt#*=}" + [ -n "${optval}" ] || + die "Missing attribute value in '$opt' while generating $tag tag" + echo "${indent}${opt%%=*}=\"${optval}\"" + done +} + +open_tag() { + local tag=$1 + shift + if [ $# -ne 0 ]; then + echo "${indent}<${tag}" + indent_push + tag_attributes "$@" + echo "${indent}>" + else + echo "${indent}<${tag}>" + indent_push + fi +} + +close_tag() { + local tag=$1 + indent_pop + echo "${indent}" +} + +tag() { + local tag=$1 + shift + if [ $# -ne 0 ]; then + echo "${indent}<${tag}" + indent_push + tag_attributes "$@" + indent_pop + echo "${indent}/>" + else + echo "${indent}<${tag}/>" + fi +} + diff --git a/build/make/rtcd.pl b/build/make/rtcd.pl new file mode 100755 index 0000000..68e92b5 --- /dev/null +++ b/build/make/rtcd.pl @@ -0,0 +1,468 @@ +#!/usr/bin/env perl +## +## Copyright (c) 2017 The WebM project authors. All Rights Reserved. +## +## Use of this source code is governed by a BSD-style license +## that can be found in the LICENSE file in the root of the source +## tree. An additional intellectual property rights grant can be found +## in the file PATENTS. All contributing project authors may +## be found in the AUTHORS file in the root of the source tree. +## + +no strict 'refs'; +use warnings; +use Getopt::Long; +Getopt::Long::Configure("auto_help") if $Getopt::Long::VERSION > 2.32; + +my %ALL_FUNCS = (); +my @ALL_ARCHS; +my @ALL_FORWARD_DECLS; +my @REQUIRES; + +my %opts = (); +my %disabled = (); +my %required = (); + +my @argv; +foreach (@ARGV) { + $disabled{$1} = 1, next if /--disable-(.*)/; + $required{$1} = 1, next if /--require-(.*)/; + push @argv, $_; +} + +# NB: use GetOptions() instead of GetOptionsFromArray() for compatibility. +@ARGV = @argv; +GetOptions( + \%opts, + 'arch=s', + 'sym=s', + 'config=s', +); + +foreach my $opt (qw/arch config/) { + if (!defined($opts{$opt})) { + warn "--$opt is required!\n"; + Getopt::Long::HelpMessage('-exit' => 1); + } +} + +foreach my $defs_file (@ARGV) { + if (!-f $defs_file) { + warn "$defs_file: $!\n"; + Getopt::Long::HelpMessage('-exit' => 1); + } +} + +open CONFIG_FILE, $opts{config} or + die "Error opening config file '$opts{config}': $!\n"; + +my %config = (); +while () { + next if !/^(?:CONFIG_|HAVE_)/; + chomp; + my @pair = split /=/; + $config{$pair[0]} = $pair[1]; +} +close CONFIG_FILE; + +# +# Routines for the RTCD DSL to call +# +sub vpx_config($) { + return (defined $config{$_[0]}) ? $config{$_[0]} : ""; +} + +sub specialize { + my $fn=$_[0]; + shift; + foreach my $opt (@_) { + eval "\$${fn}_${opt}=${fn}_${opt}"; + } +} + +sub add_proto { + my $fn = splice(@_, -2, 1); + $ALL_FUNCS{$fn} = \@_; + specialize $fn, "c"; +} + +sub require { + foreach my $fn (keys %ALL_FUNCS) { + foreach my $opt (@_) { + my $ofn = eval "\$${fn}_${opt}"; + next if !$ofn; + + # if we already have a default, then we can disable it, as we know + # we can do better. + my $best = eval "\$${fn}_default"; + if ($best) { + my $best_ofn = eval "\$${best}"; + if ($best_ofn && "$best_ofn" ne "$ofn") { + eval "\$${best}_link = 'false'"; + } + } + eval "\$${fn}_default=${fn}_${opt}"; + eval "\$${fn}_${opt}_link='true'"; + } + } +} + +sub forward_decls { + push @ALL_FORWARD_DECLS, @_; +} + +# +# Include the user's directives +# +foreach my $f (@ARGV) { + open FILE, "<", $f or die "cannot open $f: $!\n"; + my $contents = join('', ); + close FILE; + eval $contents or warn "eval failed: $@\n"; +} + +# +# Process the directives according to the command line +# +sub process_forward_decls() { + foreach (@ALL_FORWARD_DECLS) { + $_->(); + } +} + +sub determine_indirection { + vpx_config("CONFIG_RUNTIME_CPU_DETECT") eq "yes" or &require(@ALL_ARCHS); + foreach my $fn (keys %ALL_FUNCS) { + my $n = ""; + my @val = @{$ALL_FUNCS{$fn}}; + my $args = pop @val; + my $rtyp = "@val"; + my $dfn = eval "\$${fn}_default"; + $dfn = eval "\$${dfn}"; + foreach my $opt (@_) { + my $ofn = eval "\$${fn}_${opt}"; + next if !$ofn; + my $link = eval "\$${fn}_${opt}_link"; + next if $link && $link eq "false"; + $n .= "x"; + } + if ($n eq "x") { + eval "\$${fn}_indirect = 'false'"; + } else { + eval "\$${fn}_indirect = 'true'"; + } + } +} + +sub declare_function_pointers { + foreach my $fn (sort keys %ALL_FUNCS) { + my @val = @{$ALL_FUNCS{$fn}}; + my $args = pop @val; + my $rtyp = "@val"; + my $dfn = eval "\$${fn}_default"; + $dfn = eval "\$${dfn}"; + foreach my $opt (@_) { + my $ofn = eval "\$${fn}_${opt}"; + next if !$ofn; + print "$rtyp ${ofn}($args);\n"; + } + if (eval "\$${fn}_indirect" eq "false") { + print "#define ${fn} ${dfn}\n"; + } else { + print "RTCD_EXTERN $rtyp (*${fn})($args);\n"; + } + print "\n"; + } +} + +sub set_function_pointers { + foreach my $fn (sort keys %ALL_FUNCS) { + my @val = @{$ALL_FUNCS{$fn}}; + my $args = pop @val; + my $rtyp = "@val"; + my $dfn = eval "\$${fn}_default"; + $dfn = eval "\$${dfn}"; + if (eval "\$${fn}_indirect" eq "true") { + print " $fn = $dfn;\n"; + foreach my $opt (@_) { + my $ofn = eval "\$${fn}_${opt}"; + next if !$ofn; + next if "$ofn" eq "$dfn"; + my $link = eval "\$${fn}_${opt}_link"; + next if $link && $link eq "false"; + my $cond = eval "\$have_${opt}"; + print " if (${cond}) $fn = $ofn;\n" + } + } + } +} + +sub filter { + my @filtered; + foreach (@_) { push @filtered, $_ unless $disabled{$_}; } + return @filtered; +} + +# +# Helper functions for generating the arch specific RTCD files +# +sub common_top() { + my $include_guard = uc($opts{sym})."_H_"; + print <) { + if (/HAVE_DSPR2=yes/) { + @ALL_ARCHS = filter("$opts{arch}", qw/dspr2/); + last; + } + if (/HAVE_MSA=yes/) { + @ALL_ARCHS = filter("$opts{arch}", qw/msa/); + last; + } + if (/HAVE_MMI=yes/) { + @ALL_ARCHS = filter("$opts{arch}", qw/mmi/); + last; + } + } + close CONFIG_FILE; + mips; +} elsif ($opts{arch} =~ /armv7\w?/) { + @ALL_ARCHS = filter(qw/neon_asm neon/); + arm; +} elsif ($opts{arch} eq 'armv8' || $opts{arch} eq 'arm64' ) { + @ALL_ARCHS = filter(qw/neon/); + arm; +} elsif ($opts{arch} =~ /^ppc/ ) { + @ALL_ARCHS = filter(qw/vsx/); + ppc; +} else { + unoptimized; +} + +__END__ + +=head1 NAME + +rtcd - + +=head1 SYNOPSIS + +Usage: rtcd.pl [options] FILE + +See 'perldoc rtcd.pl' for more details. + +=head1 DESCRIPTION + +Reads the Run Time CPU Detections definitions from FILE and generates a +C header file on stdout. + +=head1 OPTIONS + +Options: + --arch=ARCH Architecture to generate defs for (required) + --disable-EXT Disable support for EXT extensions + --require-EXT Require support for EXT extensions + --sym=SYMBOL Unique symbol to use for RTCD initialization function + --config=FILE File with CONFIG_FOO=yes lines to parse diff --git a/build/make/thumb.pm b/build/make/thumb.pm new file mode 100644 index 0000000..483c253 --- /dev/null +++ b/build/make/thumb.pm @@ -0,0 +1,70 @@ +#!/usr/bin/env perl +## +## Copyright (c) 2013 The WebM project authors. All Rights Reserved. +## +## Use of this source code is governed by a BSD-style license +## that can be found in the LICENSE file in the root of the source +## tree. An additional intellectual property rights grant can be found +## in the file PATENTS. All contributing project authors may +## be found in the AUTHORS file in the root of the source tree. +## + +package thumb; + +sub FixThumbInstructions($$) +{ + my $short_branches = $_[1]; + my $branch_shift_offset = $short_branches ? 1 : 0; + + # Write additions with shifts, such as "add r10, r11, lsl #8", + # in three operand form, "add r10, r10, r11, lsl #8". + s/(add\s+)(r\d+),\s*(r\d+),\s*(lsl #\d+)/$1$2, $2, $3, $4/g; + + # Convert additions with a non-constant shift into a sequence + # with left shift, addition and a right shift (to restore the + # register to the original value). Currently the right shift + # isn't necessary in the code base since the values in these + # registers aren't used, but doing the shift for consistency. + # This converts instructions such as "add r12, r12, r5, lsl r4" + # into the sequence "lsl r5, r4", "add r12, r12, r5", "lsr r5, r4". + s/^(\s*)(add)(\s+)(r\d+),\s*(r\d+),\s*(r\d+),\s*lsl (r\d+)/$1lsl$3$6, $7\n$1$2$3$4, $5, $6\n$1lsr$3$6, $7/g; + + # Convert loads with right shifts in the indexing into a + # sequence of an add, load and sub. This converts + # "ldrb r4, [r9, lr, asr #1]" into "add r9, r9, lr, asr #1", + # "ldrb r9, [r9]", "sub r9, r9, lr, asr #1". + s/^(\s*)(ldrb)(\s+)(r\d+),\s*\[(\w+),\s*(\w+),\s*(asr #\d+)\]/$1add $3$5, $5, $6, $7\n$1$2$3$4, [$5]\n$1sub $3$5, $5, $6, $7/g; + + # Convert register indexing with writeback into a separate add + # instruction. This converts "ldrb r12, [r1, r2]!" into + # "ldrb r12, [r1, r2]", "add r1, r1, r2". + s/^(\s*)(ldrb)(\s+)(r\d+),\s*\[(\w+),\s*(\w+)\]!/$1$2$3$4, [$5, $6]\n$1add $3$5, $6/g; + + # Convert negative register indexing into separate sub/add instructions. + # This converts "ldrne r4, [src, -pstep, lsl #1]" into + # "subne src, src, pstep, lsl #1", "ldrne r4, [src]", + # "addne src, src, pstep, lsl #1". In a couple of cases where + # this is used, it's used for two subsequent load instructions, + # where a hand-written version of it could merge two subsequent + # add and sub instructions. + s/^(\s*)((ldr|str|pld)(ne)?)(\s+)(r\d+,\s*)?\[(\w+), -([^\]]+)\]/$1sub$4$5$7, $7, $8\n$1$2$5$6\[$7\]\n$1add$4$5$7, $7, $8/g; + + # Convert register post indexing to a separate add instruction. + # This converts "ldrneb r9, [r0], r2" into "ldrneb r9, [r0]", + # "addne r0, r0, r2". + s/^(\s*)((ldr|str)(ne)?[bhd]?)(\s+)(\w+),(\s*\w+,)?\s*\[(\w+)\],\s*(\w+)/$1$2$5$6,$7 [$8]\n$1add$4$5$8, $8, $9/g; + + # Convert a conditional addition to the pc register into a series of + # instructions. This converts "addlt pc, pc, r3, lsl #2" into + # "itttt lt", "movlt.n r12, pc", "addlt.w r12, #12", + # "addlt.w r12, r12, r3, lsl #2", "movlt.n pc, r12". + # This assumes that r12 is free at this point. + s/^(\s*)addlt(\s+)pc,\s*pc,\s*(\w+),\s*lsl\s*#(\d+)/$1itttt$2lt\n$1movlt.n$2r12, pc\n$1addlt.w$2r12, #12\n$1addlt.w$2r12, r12, $3, lsl #($4-$branch_shift_offset)\n$1movlt.n$2pc, r12/g; + + # Convert "mov pc, lr" into "bx lr", since the former only works + # for switching from arm to thumb (and only in armv7), but not + # from thumb to arm. + s/mov(\s*)pc\s*,\s*lr/bx$1lr/g; +} + +1; diff --git a/build/make/version.sh b/build/make/version.sh new file mode 100755 index 0000000..f36ede1 --- /dev/null +++ b/build/make/version.sh @@ -0,0 +1,78 @@ +#!/bin/sh +## +## Copyright (c) 2010 The WebM project authors. All Rights Reserved. +## +## Use of this source code is governed by a BSD-style license +## that can be found in the LICENSE file in the root of the source +## tree. An additional intellectual property rights grant can be found +## in the file PATENTS. All contributing project authors may +## be found in the AUTHORS file in the root of the source tree. +## + + + +for opt in "$@"; do + optval="${opt#*=}" + case "$opt" in + --bare) bare=true ;; + *) break ;; + esac + shift +done +source_path=${1:-.} +out_file=${2} +id=${3:-VERSION_STRING} + +git_version_id="" +if [ -e "${source_path}/.git" ]; then + # Source Path is a git working copy. Check for local modifications. + # Note that git submodules may have a file as .git, not a directory. + export GIT_DIR="${source_path}/.git" + git_version_id=`git describe --match=v[0-9]* 2>/dev/null` +fi + +changelog_version="" +for p in "${source_path}" "${source_path}/.."; do + if [ -z "$git_version_id" -a -f "${p}/CHANGELOG" ]; then + changelog_version=`head -n1 "${p}/CHANGELOG" | awk '{print $2}'` + changelog_version="${changelog_version}" + break + fi +done +version_str="${changelog_version}${git_version_id}" +bare_version=${version_str#v} +major_version=${bare_version%%.*} +bare_version=${bare_version#*.} +minor_version=${bare_version%%.*} +bare_version=${bare_version#*.} +patch_version=${bare_version%%-*} +bare_version=${bare_version#${patch_version}} +extra_version=${bare_version##-} + +#since they'll be used as integers below make sure they are or force to 0 +for v in major_version minor_version patch_version; do + if eval echo \$$v |grep -E -q '[^[:digit:]]'; then + eval $v=0 + fi +done + +if [ ${bare} ]; then + echo "${changelog_version}${git_version_id}" > $$.tmp +else + cat<$$.tmp +// This file is generated. Do not edit. +#define VERSION_MAJOR $major_version +#define VERSION_MINOR $minor_version +#define VERSION_PATCH $patch_version +#define VERSION_EXTRA "$extra_version" +#define VERSION_PACKED ((VERSION_MAJOR<<16)|(VERSION_MINOR<<8)|(VERSION_PATCH)) +#define ${id}_NOSP "${version_str}" +#define ${id} " ${version_str}" +EOF +fi +if [ -n "$out_file" ]; then +diff $$.tmp ${out_file} >/dev/null 2>&1 || cat $$.tmp > ${out_file} +else +cat $$.tmp +fi +rm $$.tmp diff --git a/codereview.settings b/codereview.settings new file mode 100644 index 0000000..34c6f1d --- /dev/null +++ b/codereview.settings @@ -0,0 +1,5 @@ +# This file is used by gcl to get repository specific information. +GERRIT_HOST: chromium-review.googlesource.com +GERRIT_PORT: 29418 +CODE_REVIEW_SERVER: chromium-review.googlesource.com +GERRIT_SQUASH_UPLOADS: False diff --git a/configure b/configure new file mode 100755 index 0000000..e5a74c6 --- /dev/null +++ b/configure @@ -0,0 +1,750 @@ +#!/bin/sh +## +## configure +## +## This script is the front-end to the build system. It provides a similar +## interface to standard configure scripts with some extra bits for dealing +## with toolchains that differ from the standard POSIX interface and +## for extracting subsets of the source tree. In theory, reusable parts +## of this script were intended to live in build/make/configure.sh, +## but in practice, the line is pretty blurry. +## +## This build system is based in part on the FFmpeg configure script. +## + +#source_path="`dirname \"$0\"`" +source_path=${0%/*} +. "${source_path}/build/make/configure.sh" + +show_help(){ + show_help_pre + cat << EOF +Advanced options: + ${toggle_libs} libraries + ${toggle_examples} examples + ${toggle_tools} tools + ${toggle_docs} documentation + ${toggle_unit_tests} unit tests + ${toggle_decode_perf_tests} build decoder perf tests with unit tests + ${toggle_encode_perf_tests} build encoder perf tests with unit tests + --cpu=CPU tune for the specified CPU (ARM: cortex-a8, X86: sse3) + --libc=PATH path to alternate libc + --size-limit=WxH max size to allow in the decoder + --as={yasm|nasm|auto} use specified assembler [auto, yasm preferred] + --sdk-path=PATH path to root of sdk (android builds only) + ${toggle_codec_srcs} in/exclude codec library source code + ${toggle_debug_libs} in/exclude debug version of libraries + ${toggle_static_msvcrt} use static MSVCRT (VS builds only) + ${toggle_vp9_highbitdepth} use VP9 high bit depth (10/12) profiles + ${toggle_better_hw_compatibility} + enable encoder to produce streams with better + hardware decoder compatibility + ${toggle_vp8} VP8 codec support + ${toggle_vp9} VP9 codec support + ${toggle_internal_stats} output of encoder internal stats for debug, if supported (encoders) + ${toggle_postproc} postprocessing + ${toggle_vp9_postproc} vp9 specific postprocessing + ${toggle_multithread} multithreaded encoding and decoding + ${toggle_spatial_resampling} spatial sampling (scaling) support + ${toggle_realtime_only} enable this option while building for real-time encoding + ${toggle_onthefly_bitpacking} enable on-the-fly bitpacking in real-time encoding + ${toggle_error_concealment} enable this option to get a decoder which is able to conceal losses + ${toggle_coefficient_range_checking} + enable decoder to check if intermediate + transform coefficients are in valid range + ${toggle_runtime_cpu_detect} runtime cpu detection + ${toggle_shared} shared library support + ${toggle_static} static library support + ${toggle_small} favor smaller size over speed + ${toggle_postproc_visualizer} macro block / block level visualizers + ${toggle_multi_res_encoding} enable multiple-resolution encoding + ${toggle_temporal_denoising} enable temporal denoising and disable the spatial denoiser + ${toggle_vp9_temporal_denoising} + enable vp9 temporal denoising + ${toggle_webm_io} enable input from and output to WebM container + ${toggle_libyuv} enable libyuv + +Codecs: + Codecs can be selectively enabled or disabled individually, or by family: + --disable- + is equivalent to: + --disable--encoder + --disable--decoder + + Codecs available in this distribution: +EOF +#restore editor state ' + + family=""; + last_family=""; + c=""; + str=""; + for c in ${CODECS}; do + family=${c%_*} + if [ "${family}" != "${last_family}" ]; then + [ -z "${str}" ] || echo "${str}" + str="$(printf ' %10s:' ${family})" + fi + str="${str} $(printf '%10s' ${c#*_})" + last_family=${family} + done + echo "${str}" + show_help_post +} + +## +## BEGIN APPLICATION SPECIFIC CONFIGURATION +## + +# all_platforms is a list of all supported target platforms. Maintain +# alphabetically by architecture, generic-gnu last. +all_platforms="${all_platforms} arm64-android-gcc" +all_platforms="${all_platforms} arm64-darwin-gcc" +all_platforms="${all_platforms} arm64-linux-gcc" +all_platforms="${all_platforms} armv7-android-gcc" #neon Cortex-A8 +all_platforms="${all_platforms} armv7-darwin-gcc" #neon Cortex-A8 +all_platforms="${all_platforms} armv7-linux-rvct" #neon Cortex-A8 +all_platforms="${all_platforms} armv7-linux-gcc" #neon Cortex-A8 +all_platforms="${all_platforms} armv7-none-rvct" #neon Cortex-A8 +all_platforms="${all_platforms} armv7-win32-vs11" +all_platforms="${all_platforms} armv7-win32-vs12" +all_platforms="${all_platforms} armv7-win32-vs14" +all_platforms="${all_platforms} armv7-win32-vs15" +all_platforms="${all_platforms} armv7s-darwin-gcc" +all_platforms="${all_platforms} armv8-linux-gcc" +all_platforms="${all_platforms} mips32-linux-gcc" +all_platforms="${all_platforms} mips64-linux-gcc" +all_platforms="${all_platforms} ppc64-linux-gcc" +all_platforms="${all_platforms} ppc64le-linux-gcc" +all_platforms="${all_platforms} sparc-solaris-gcc" +all_platforms="${all_platforms} x86-android-gcc" +all_platforms="${all_platforms} x86-darwin8-gcc" +all_platforms="${all_platforms} x86-darwin8-icc" +all_platforms="${all_platforms} x86-darwin9-gcc" +all_platforms="${all_platforms} x86-darwin9-icc" +all_platforms="${all_platforms} x86-darwin10-gcc" +all_platforms="${all_platforms} x86-darwin11-gcc" +all_platforms="${all_platforms} x86-darwin12-gcc" +all_platforms="${all_platforms} x86-darwin13-gcc" +all_platforms="${all_platforms} x86-darwin14-gcc" +all_platforms="${all_platforms} x86-darwin15-gcc" +all_platforms="${all_platforms} x86-darwin16-gcc" +all_platforms="${all_platforms} x86-iphonesimulator-gcc" +all_platforms="${all_platforms} x86-linux-gcc" +all_platforms="${all_platforms} x86-linux-icc" +all_platforms="${all_platforms} x86-os2-gcc" +all_platforms="${all_platforms} x86-solaris-gcc" +all_platforms="${all_platforms} x86-win32-gcc" +all_platforms="${all_platforms} x86-win32-vs10" +all_platforms="${all_platforms} x86-win32-vs11" +all_platforms="${all_platforms} x86-win32-vs12" +all_platforms="${all_platforms} x86-win32-vs14" +all_platforms="${all_platforms} x86-win32-vs15" +all_platforms="${all_platforms} x86_64-android-gcc" +all_platforms="${all_platforms} x86_64-darwin9-gcc" +all_platforms="${all_platforms} x86_64-darwin10-gcc" +all_platforms="${all_platforms} x86_64-darwin11-gcc" +all_platforms="${all_platforms} x86_64-darwin12-gcc" +all_platforms="${all_platforms} x86_64-darwin13-gcc" +all_platforms="${all_platforms} x86_64-darwin14-gcc" +all_platforms="${all_platforms} x86_64-darwin15-gcc" +all_platforms="${all_platforms} x86_64-darwin16-gcc" +all_platforms="${all_platforms} x86_64-iphonesimulator-gcc" +all_platforms="${all_platforms} x86_64-linux-gcc" +all_platforms="${all_platforms} x86_64-linux-icc" +all_platforms="${all_platforms} x86_64-solaris-gcc" +all_platforms="${all_platforms} x86_64-win64-gcc" +all_platforms="${all_platforms} x86_64-win64-vs10" +all_platforms="${all_platforms} x86_64-win64-vs11" +all_platforms="${all_platforms} x86_64-win64-vs12" +all_platforms="${all_platforms} x86_64-win64-vs14" +all_platforms="${all_platforms} x86_64-win64-vs15" +all_platforms="${all_platforms} generic-gnu" + +# all_targets is a list of all targets that can be configured +# note that these should be in dependency order for now. +all_targets="libs examples tools docs" + +# all targets available are enabled, by default. +for t in ${all_targets}; do + [ -f "${source_path}/${t}.mk" ] && enable_feature ${t} +done + +if ! diff --version >/dev/null; then + die "diff missing: Try installing diffutils via your package manager." +fi + +if ! perl --version >/dev/null; then + die "Perl is required to build" +fi + +if [ "`cd \"${source_path}\" && pwd`" != "`pwd`" ]; then + # test to see if source_path already configured + if [ -f "${source_path}/vpx_config.h" ]; then + die "source directory already configured; run 'make distclean' there first" + fi +fi + +# check installed doxygen version +doxy_version=$(doxygen --version 2>/dev/null) +doxy_major=${doxy_version%%.*} +if [ ${doxy_major:-0} -ge 1 ]; then + doxy_version=${doxy_version#*.} + doxy_minor=${doxy_version%%.*} + doxy_patch=${doxy_version##*.} + + [ $doxy_major -gt 1 ] && enable_feature doxygen + [ $doxy_minor -gt 5 ] && enable_feature doxygen + [ $doxy_minor -eq 5 ] && [ $doxy_patch -ge 3 ] && enable_feature doxygen +fi + +# disable codecs when their source directory does not exist +[ -d "${source_path}/vp8" ] || disable_codec vp8 +[ -d "${source_path}/vp9" ] || disable_codec vp9 + +# install everything except the sources, by default. sources will have +# to be enabled when doing dist builds, since that's no longer a common +# case. +enabled doxygen && enable_feature install_docs +enable_feature install_bins +enable_feature install_libs + +enable_feature static +enable_feature optimizations +enable_feature dependency_tracking +enable_feature spatial_resampling +enable_feature multithread +enable_feature os_support +enable_feature temporal_denoising + +CODECS=" + vp8_encoder + vp8_decoder + vp9_encoder + vp9_decoder +" +CODEC_FAMILIES=" + vp8 + vp9 +" + +ARCH_LIST=" + arm + mips + x86 + x86_64 + ppc +" +ARCH_EXT_LIST_X86=" + mmx + sse + sse2 + sse3 + ssse3 + sse4_1 + avx + avx2 + avx512 +" + +ARCH_EXT_LIST_LOONGSON=" + mmi +" + +ARCH_EXT_LIST=" + neon + neon_asm + + mips32 + dspr2 + msa + mips64 + + ${ARCH_EXT_LIST_X86} + + vsx + + ${ARCH_EXT_LIST_LOONGSON} +" +HAVE_LIST=" + ${ARCH_EXT_LIST} + vpx_ports + pthread_h + unistd_h +" +EXPERIMENT_LIST=" + spatial_svc + fp_mb_stats + emulate_hardware +" +CONFIG_LIST=" + dependency_tracking + external_build + install_docs + install_bins + install_libs + install_srcs + debug + gprof + gcov + rvct + gcc + msvs + pic + big_endian + + codec_srcs + debug_libs + + dequant_tokens + dc_recon + runtime_cpu_detect + postproc + vp9_postproc + multithread + internal_stats + ${CODECS} + ${CODEC_FAMILIES} + encoders + decoders + static_msvcrt + spatial_resampling + realtime_only + onthefly_bitpacking + error_concealment + shared + static + small + postproc_visualizer + os_support + unit_tests + webm_io + libyuv + decode_perf_tests + encode_perf_tests + multi_res_encoding + temporal_denoising + vp9_temporal_denoising + coefficient_range_checking + vp9_highbitdepth + better_hw_compatibility + experimental + size_limit + always_adjust_bpm + ${EXPERIMENT_LIST} +" +CMDLINE_SELECT=" + dependency_tracking + external_build + extra_warnings + werror + install_docs + install_bins + install_libs + install_srcs + debug + gprof + gcov + pic + optimizations + ccache + runtime_cpu_detect + thumb + + libs + examples + tools + docs + libc + as + size_limit + codec_srcs + debug_libs + + dequant_tokens + dc_recon + postproc + vp9_postproc + multithread + internal_stats + ${CODECS} + ${CODEC_FAMILIES} + static_msvcrt + spatial_resampling + realtime_only + onthefly_bitpacking + error_concealment + shared + static + small + postproc_visualizer + unit_tests + webm_io + libyuv + decode_perf_tests + encode_perf_tests + multi_res_encoding + temporal_denoising + vp9_temporal_denoising + coefficient_range_checking + better_hw_compatibility + vp9_highbitdepth + experimental + always_adjust_bpm +" + +process_cmdline() { + for opt do + optval="${opt#*=}" + case "$opt" in + --disable-codecs) + for c in ${CODEC_FAMILIES}; do disable_codec $c; done + ;; + --enable-?*|--disable-?*) + eval `echo "$opt" | sed 's/--/action=/;s/-/ option=/;s/-/_/g'` + if is_in ${option} ${EXPERIMENT_LIST}; then + if enabled experimental; then + ${action}_feature $option + else + log_echo "Ignoring $opt -- not in experimental mode." + fi + elif is_in ${option} "${CODECS} ${CODEC_FAMILIES}"; then + ${action}_codec ${option} + else + process_common_cmdline $opt + fi + ;; + *) process_common_cmdline "$opt" + ;; + esac + done +} + +post_process_cmdline() { + c="" + + # Enable all detected codecs, if they haven't been disabled + for c in ${CODECS}; do soft_enable $c; done + + # Enable the codec family if any component of that family is enabled + for c in ${CODECS}; do + enabled $c && enable_feature ${c%_*} + done + + # Set the {en,de}coders variable if any algorithm in that class is enabled + for c in ${CODECS}; do + enabled ${c} && enable_feature ${c##*_}s + done +} + + +process_targets() { + enabled child || write_common_config_banner + write_common_target_config_h ${BUILD_PFX}vpx_config.h + write_common_config_targets + + # Calculate the default distribution name, based on the enabled features + cf="" + DIST_DIR=vpx + for cf in $CODEC_FAMILIES; do + if enabled ${cf}_encoder && enabled ${cf}_decoder; then + DIST_DIR="${DIST_DIR}-${cf}" + elif enabled ${cf}_encoder; then + DIST_DIR="${DIST_DIR}-${cf}cx" + elif enabled ${cf}_decoder; then + DIST_DIR="${DIST_DIR}-${cf}dx" + fi + done + enabled debug_libs && DIST_DIR="${DIST_DIR}-debug" + enabled codec_srcs && DIST_DIR="${DIST_DIR}-src" + ! enabled postproc && ! enabled vp9_postproc && DIST_DIR="${DIST_DIR}-nopost" + ! enabled multithread && DIST_DIR="${DIST_DIR}-nomt" + ! enabled install_docs && DIST_DIR="${DIST_DIR}-nodocs" + DIST_DIR="${DIST_DIR}-${tgt_isa}-${tgt_os}" + case "${tgt_os}" in + win*) enabled static_msvcrt && DIST_DIR="${DIST_DIR}mt" || DIST_DIR="${DIST_DIR}md" + DIST_DIR="${DIST_DIR}-${tgt_cc}" + ;; + esac + if [ -f "${source_path}/build/make/version.sh" ]; then + ver=`"$source_path/build/make/version.sh" --bare "$source_path"` + DIST_DIR="${DIST_DIR}-${ver}" + VERSION_STRING=${ver} + ver=${ver%%-*} + VERSION_PATCH=${ver##*.} + ver=${ver%.*} + VERSION_MINOR=${ver##*.} + ver=${ver#v} + VERSION_MAJOR=${ver%.*} + fi + enabled child || cat <> config.mk + +PREFIX=${prefix} +ifeq (\$(MAKECMDGOALS),dist) +DIST_DIR?=${DIST_DIR} +else +DIST_DIR?=\$(DESTDIR)${prefix} +endif +LIBSUBDIR=${libdir##${prefix}/} + +VERSION_STRING=${VERSION_STRING} + +VERSION_MAJOR=${VERSION_MAJOR} +VERSION_MINOR=${VERSION_MINOR} +VERSION_PATCH=${VERSION_PATCH} + +CONFIGURE_ARGS=${CONFIGURE_ARGS} +EOF + enabled child || echo "CONFIGURE_ARGS?=${CONFIGURE_ARGS}" >> config.mk + + # + # Write makefiles for all enabled targets + # + for tgt in libs examples tools docs solution; do + tgt_fn="$tgt-$toolchain.mk" + + if enabled $tgt; then + echo "Creating makefiles for ${toolchain} ${tgt}" + write_common_target_config_mk $tgt_fn ${BUILD_PFX}vpx_config.h + #write_${tgt}_config + fi + done + +} + +process_detect() { + if enabled shared; then + # Can only build shared libs on a subset of platforms. Doing this check + # here rather than at option parse time because the target auto-detect + # magic happens after the command line has been parsed. + case "${tgt_os}" in + linux|os2|darwin*|iphonesimulator*) + # Supported platforms + ;; + *) + if enabled gnu; then + echo "--enable-shared is only supported on ELF; assuming this is OK" + else + die "--enable-shared only supported on ELF, OS/2, and Darwin for now" + fi + ;; + esac + fi + if [ -z "$CC" ] || enabled external_build; then + echo "Bypassing toolchain for environment detection." + enable_feature external_build + check_header() { + log fake_check_header "$@" + header=$1 + shift + var=`echo $header | sed 's/[^A-Za-z0-9_]/_/g'` + disable_feature $var + # Headers common to all environments + case $header in + stdio.h) + true; + ;; + *) + result=false + for d in "$@"; do + [ -f "${d##-I}/$header" ] && result=true && break + done + ${result:-true} + esac && enable_feature $var + + # Specialize windows and POSIX environments. + case $toolchain in + *-win*-*) + # Don't check for any headers in Windows builds. + false + ;; + *) + case $header in + pthread.h) true;; + unistd.h) true;; + *) false;; + esac && enable_feature $var + esac + enabled $var + } + check_ld() { + true + } + fi + check_header stdio.h || die "Unable to invoke compiler: ${CC} ${CFLAGS}" + check_ld <> ${BUILD_PFX}vpx_config.c +#include "vpx/vpx_codec.h" +static const char* const cfg = "$CONFIGURE_ARGS"; +const char *vpx_codec_build_config(void) {return cfg;} +EOF diff --git a/docs.mk b/docs.mk new file mode 100644 index 0000000..889d182 --- /dev/null +++ b/docs.mk @@ -0,0 +1,48 @@ +## +## Copyright (c) 2010 The WebM project authors. All Rights Reserved. +## +## Use of this source code is governed by a BSD-style license +## that can be found in the LICENSE file in the root of the source +## tree. An additional intellectual property rights grant can be found +## in the file PATENTS. All contributing project authors may +## be found in the AUTHORS file in the root of the source tree. +## + + +INSTALL_MAPS += docs/% docs/% +INSTALL_MAPS += src/% % +INSTALL_MAPS += % % + +# Static documentation authored in doxygen +CODEC_DOX := mainpage.dox \ + keywords.dox \ + usage.dox \ + usage_cx.dox \ + usage_dx.dox \ + +# Other doxy files sourced in Markdown +TXT_DOX = $(call enabled,TXT_DOX) + +EXAMPLE_PATH += $(SRC_PATH_BARE) #for CHANGELOG, README, etc +EXAMPLE_PATH += $(SRC_PATH_BARE)/examples + +doxyfile: $(if $(findstring examples, $(ALL_TARGETS)),examples.doxy) +doxyfile: libs.doxy_template libs.doxy + @echo " [CREATE] $@" + @cat $^ > $@ + @echo "STRIP_FROM_PATH += $(SRC_PATH_BARE) $(BUILD_ROOT)" >> $@ + @echo "INPUT += $(addprefix $(SRC_PATH_BARE)/,$(CODEC_DOX))" >> $@; + @echo "INPUT += $(TXT_DOX)" >> $@; + @echo "EXAMPLE_PATH += $(EXAMPLE_PATH)" >> $@ + +CLEAN-OBJS += doxyfile $(wildcard docs/html/*) +docs/html/index.html: doxyfile $(CODEC_DOX) $(TXT_DOX) + @echo " [DOXYGEN] $<" + @doxygen $< +DOCS-yes += docs/html/index.html + +DIST-DOCS-yes = $(wildcard docs/html/*) +DIST-DOCS-$(CONFIG_CODEC_SRCS) += $(addprefix src/,$(CODEC_DOX)) +DIST-DOCS-$(CONFIG_CODEC_SRCS) += src/libs.doxy_template +DIST-DOCS-yes += CHANGELOG +DIST-DOCS-yes += README diff --git a/examples.mk b/examples.mk new file mode 100644 index 0000000..38c4d75 --- /dev/null +++ b/examples.mk @@ -0,0 +1,405 @@ +## +## Copyright (c) 2010 The WebM project authors. All Rights Reserved. +## +## Use of this source code is governed by a BSD-style license +## that can be found in the LICENSE file in the root of the source +## tree. An additional intellectual property rights grant can be found +## in the file PATENTS. All contributing project authors may +## be found in the AUTHORS file in the root of the source tree. +## + +LIBYUV_SRCS += third_party/libyuv/include/libyuv/basic_types.h \ + third_party/libyuv/include/libyuv/convert.h \ + third_party/libyuv/include/libyuv/convert_argb.h \ + third_party/libyuv/include/libyuv/convert_from.h \ + third_party/libyuv/include/libyuv/cpu_id.h \ + third_party/libyuv/include/libyuv/planar_functions.h \ + third_party/libyuv/include/libyuv/rotate.h \ + third_party/libyuv/include/libyuv/row.h \ + third_party/libyuv/include/libyuv/scale.h \ + third_party/libyuv/include/libyuv/scale_row.h \ + third_party/libyuv/source/cpu_id.cc \ + third_party/libyuv/source/planar_functions.cc \ + third_party/libyuv/source/row_any.cc \ + third_party/libyuv/source/row_common.cc \ + third_party/libyuv/source/row_gcc.cc \ + third_party/libyuv/source/row_mips.cc \ + third_party/libyuv/source/row_neon.cc \ + third_party/libyuv/source/row_neon64.cc \ + third_party/libyuv/source/row_win.cc \ + third_party/libyuv/source/scale.cc \ + third_party/libyuv/source/scale_any.cc \ + third_party/libyuv/source/scale_common.cc \ + third_party/libyuv/source/scale_gcc.cc \ + third_party/libyuv/source/scale_mips.cc \ + third_party/libyuv/source/scale_neon.cc \ + third_party/libyuv/source/scale_neon64.cc \ + third_party/libyuv/source/scale_win.cc \ + +LIBWEBM_COMMON_SRCS += third_party/libwebm/common/hdr_util.cc \ + third_party/libwebm/common/hdr_util.h \ + third_party/libwebm/common/webmids.h + +LIBWEBM_MUXER_SRCS += third_party/libwebm/mkvmuxer/mkvmuxer.cc \ + third_party/libwebm/mkvmuxer/mkvmuxerutil.cc \ + third_party/libwebm/mkvmuxer/mkvwriter.cc \ + third_party/libwebm/mkvmuxer/mkvmuxer.h \ + third_party/libwebm/mkvmuxer/mkvmuxertypes.h \ + third_party/libwebm/mkvmuxer/mkvmuxerutil.h \ + third_party/libwebm/mkvparser/mkvparser.h \ + third_party/libwebm/mkvmuxer/mkvwriter.h + +LIBWEBM_PARSER_SRCS = third_party/libwebm/mkvparser/mkvparser.cc \ + third_party/libwebm/mkvparser/mkvreader.cc \ + third_party/libwebm/mkvparser/mkvparser.h \ + third_party/libwebm/mkvparser/mkvreader.h + +# Add compile flags and include path for libwebm sources. +ifeq ($(CONFIG_WEBM_IO),yes) + CXXFLAGS += -D__STDC_CONSTANT_MACROS -D__STDC_LIMIT_MACROS + INC_PATH-yes += $(SRC_PATH_BARE)/third_party/libwebm +endif + + +# List of examples to build. UTILS are tools meant for distribution +# while EXAMPLES demonstrate specific portions of the API. +UTILS-$(CONFIG_DECODERS) += vpxdec.c +vpxdec.SRCS += md5_utils.c md5_utils.h +vpxdec.SRCS += vpx_ports/mem_ops.h +vpxdec.SRCS += vpx_ports/mem_ops_aligned.h +vpxdec.SRCS += vpx_ports/msvc.h +vpxdec.SRCS += vpx_ports/vpx_timer.h +vpxdec.SRCS += vpx/vpx_integer.h +vpxdec.SRCS += args.c args.h +vpxdec.SRCS += ivfdec.c ivfdec.h +vpxdec.SRCS += tools_common.c tools_common.h +vpxdec.SRCS += y4menc.c y4menc.h +ifeq ($(CONFIG_LIBYUV),yes) + vpxdec.SRCS += $(LIBYUV_SRCS) + $(BUILD_PFX)third_party/libyuv/%.cc.o: CXXFLAGS += -Wno-unused-parameter +endif +ifeq ($(CONFIG_WEBM_IO),yes) + vpxdec.SRCS += $(LIBWEBM_COMMON_SRCS) + vpxdec.SRCS += $(LIBWEBM_MUXER_SRCS) + vpxdec.SRCS += $(LIBWEBM_PARSER_SRCS) + vpxdec.SRCS += webmdec.cc webmdec.h +endif +vpxdec.GUID = BA5FE66F-38DD-E034-F542-B1578C5FB950 +vpxdec.DESCRIPTION = Full featured decoder +UTILS-$(CONFIG_ENCODERS) += vpxenc.c +vpxenc.SRCS += args.c args.h y4minput.c y4minput.h vpxenc.h +vpxenc.SRCS += ivfdec.c ivfdec.h +vpxenc.SRCS += ivfenc.c ivfenc.h +vpxenc.SRCS += rate_hist.c rate_hist.h +vpxenc.SRCS += tools_common.c tools_common.h +vpxenc.SRCS += warnings.c warnings.h +vpxenc.SRCS += vpx_ports/mem_ops.h +vpxenc.SRCS += vpx_ports/mem_ops_aligned.h +vpxenc.SRCS += vpx_ports/msvc.h +vpxenc.SRCS += vpx_ports/vpx_timer.h +vpxenc.SRCS += vpxstats.c vpxstats.h +ifeq ($(CONFIG_LIBYUV),yes) + vpxenc.SRCS += $(LIBYUV_SRCS) +endif +ifeq ($(CONFIG_WEBM_IO),yes) + vpxenc.SRCS += $(LIBWEBM_COMMON_SRCS) + vpxenc.SRCS += $(LIBWEBM_MUXER_SRCS) + vpxenc.SRCS += $(LIBWEBM_PARSER_SRCS) + vpxenc.SRCS += webmenc.cc webmenc.h +endif +vpxenc.GUID = 548DEC74-7A15-4B2B-AFC3-AA102E7C25C1 +vpxenc.DESCRIPTION = Full featured encoder +ifeq ($(CONFIG_SPATIAL_SVC),yes) + EXAMPLES-$(CONFIG_VP9_ENCODER) += vp9_spatial_svc_encoder.c + vp9_spatial_svc_encoder.SRCS += args.c args.h + vp9_spatial_svc_encoder.SRCS += ivfenc.c ivfenc.h + vp9_spatial_svc_encoder.SRCS += tools_common.c tools_common.h + vp9_spatial_svc_encoder.SRCS += video_common.h + vp9_spatial_svc_encoder.SRCS += video_writer.h video_writer.c + vp9_spatial_svc_encoder.SRCS += vpx_ports/msvc.h + vp9_spatial_svc_encoder.SRCS += vpxstats.c vpxstats.h + vp9_spatial_svc_encoder.GUID = 4A38598D-627D-4505-9C7B-D4020C84100D + vp9_spatial_svc_encoder.DESCRIPTION = VP9 Spatial SVC Encoder +endif + +ifneq ($(CONFIG_SHARED),yes) +EXAMPLES-$(CONFIG_VP9_ENCODER) += resize_util.c +endif + +EXAMPLES-$(CONFIG_ENCODERS) += vpx_temporal_svc_encoder.c +vpx_temporal_svc_encoder.SRCS += ivfenc.c ivfenc.h +vpx_temporal_svc_encoder.SRCS += tools_common.c tools_common.h +vpx_temporal_svc_encoder.SRCS += video_common.h +vpx_temporal_svc_encoder.SRCS += video_writer.h video_writer.c +vpx_temporal_svc_encoder.SRCS += vpx_ports/msvc.h +vpx_temporal_svc_encoder.GUID = B18C08F2-A439-4502-A78E-849BE3D60947 +vpx_temporal_svc_encoder.DESCRIPTION = Temporal SVC Encoder +EXAMPLES-$(CONFIG_DECODERS) += simple_decoder.c +simple_decoder.GUID = D3BBF1E9-2427-450D-BBFF-B2843C1D44CC +simple_decoder.SRCS += ivfdec.h ivfdec.c +simple_decoder.SRCS += tools_common.h tools_common.c +simple_decoder.SRCS += video_common.h +simple_decoder.SRCS += video_reader.h video_reader.c +simple_decoder.SRCS += vpx_ports/mem_ops.h +simple_decoder.SRCS += vpx_ports/mem_ops_aligned.h +simple_decoder.SRCS += vpx_ports/msvc.h +simple_decoder.DESCRIPTION = Simplified decoder loop +EXAMPLES-$(CONFIG_DECODERS) += postproc.c +postproc.SRCS += ivfdec.h ivfdec.c +postproc.SRCS += tools_common.h tools_common.c +postproc.SRCS += video_common.h +postproc.SRCS += video_reader.h video_reader.c +postproc.SRCS += vpx_ports/mem_ops.h +postproc.SRCS += vpx_ports/mem_ops_aligned.h +postproc.SRCS += vpx_ports/msvc.h +postproc.GUID = 65E33355-F35E-4088-884D-3FD4905881D7 +postproc.DESCRIPTION = Decoder postprocessor control +EXAMPLES-$(CONFIG_DECODERS) += decode_to_md5.c +decode_to_md5.SRCS += md5_utils.h md5_utils.c +decode_to_md5.SRCS += ivfdec.h ivfdec.c +decode_to_md5.SRCS += tools_common.h tools_common.c +decode_to_md5.SRCS += video_common.h +decode_to_md5.SRCS += video_reader.h video_reader.c +decode_to_md5.SRCS += vpx_ports/mem_ops.h +decode_to_md5.SRCS += vpx_ports/mem_ops_aligned.h +decode_to_md5.SRCS += vpx_ports/msvc.h +decode_to_md5.GUID = 59120B9B-2735-4BFE-B022-146CA340FE42 +decode_to_md5.DESCRIPTION = Frame by frame MD5 checksum +EXAMPLES-$(CONFIG_ENCODERS) += simple_encoder.c +simple_encoder.SRCS += ivfenc.h ivfenc.c +simple_encoder.SRCS += tools_common.h tools_common.c +simple_encoder.SRCS += video_common.h +simple_encoder.SRCS += video_writer.h video_writer.c +simple_encoder.SRCS += vpx_ports/msvc.h +simple_encoder.GUID = 4607D299-8A71-4D2C-9B1D-071899B6FBFD +simple_encoder.DESCRIPTION = Simplified encoder loop +EXAMPLES-$(CONFIG_VP9_ENCODER) += vp9_lossless_encoder.c +vp9_lossless_encoder.SRCS += ivfenc.h ivfenc.c +vp9_lossless_encoder.SRCS += tools_common.h tools_common.c +vp9_lossless_encoder.SRCS += video_common.h +vp9_lossless_encoder.SRCS += video_writer.h video_writer.c +vp9_lossless_encoder.SRCS += vpx_ports/msvc.h +vp9_lossless_encoder.GUID = B63C7C88-5348-46DC-A5A6-CC151EF93366 +vp9_lossless_encoder.DESCRIPTION = Simplified lossless VP9 encoder +EXAMPLES-$(CONFIG_ENCODERS) += twopass_encoder.c +twopass_encoder.SRCS += ivfenc.h ivfenc.c +twopass_encoder.SRCS += tools_common.h tools_common.c +twopass_encoder.SRCS += video_common.h +twopass_encoder.SRCS += video_writer.h video_writer.c +twopass_encoder.SRCS += vpx_ports/msvc.h +twopass_encoder.GUID = 73494FA6-4AF9-4763-8FBB-265C92402FD8 +twopass_encoder.DESCRIPTION = Two-pass encoder loop +EXAMPLES-$(CONFIG_DECODERS) += decode_with_drops.c +decode_with_drops.SRCS += ivfdec.h ivfdec.c +decode_with_drops.SRCS += tools_common.h tools_common.c +decode_with_drops.SRCS += video_common.h +decode_with_drops.SRCS += video_reader.h video_reader.c +decode_with_drops.SRCS += vpx_ports/mem_ops.h +decode_with_drops.SRCS += vpx_ports/mem_ops_aligned.h +decode_with_drops.SRCS += vpx_ports/msvc.h +decode_with_drops.GUID = CE5C53C4-8DDA-438A-86ED-0DDD3CDB8D26 +decode_with_drops.DESCRIPTION = Drops frames while decoding +EXAMPLES-$(CONFIG_ENCODERS) += set_maps.c +set_maps.SRCS += ivfenc.h ivfenc.c +set_maps.SRCS += tools_common.h tools_common.c +set_maps.SRCS += video_common.h +set_maps.SRCS += video_writer.h video_writer.c +set_maps.SRCS += vpx_ports/msvc.h +set_maps.GUID = ECB2D24D-98B8-4015-A465-A4AF3DCC145F +set_maps.DESCRIPTION = Set active and ROI maps +EXAMPLES-$(CONFIG_VP8_ENCODER) += vp8cx_set_ref.c +vp8cx_set_ref.SRCS += ivfenc.h ivfenc.c +vp8cx_set_ref.SRCS += tools_common.h tools_common.c +vp8cx_set_ref.SRCS += video_common.h +vp8cx_set_ref.SRCS += video_writer.h video_writer.c +vp8cx_set_ref.SRCS += vpx_ports/msvc.h +vp8cx_set_ref.GUID = C5E31F7F-96F6-48BD-BD3E-10EBF6E8057A +vp8cx_set_ref.DESCRIPTION = VP8 set encoder reference frame + +ifeq ($(CONFIG_VP9_ENCODER),yes) +ifeq ($(CONFIG_DECODERS),yes) +EXAMPLES-yes += vp9cx_set_ref.c +vp9cx_set_ref.SRCS += ivfenc.h ivfenc.c +vp9cx_set_ref.SRCS += tools_common.h tools_common.c +vp9cx_set_ref.SRCS += video_common.h +vp9cx_set_ref.SRCS += video_writer.h video_writer.c +vp9cx_set_ref.GUID = 65D7F14A-2EE6-4293-B958-AB5107A03B55 +vp9cx_set_ref.DESCRIPTION = VP9 set encoder reference frame +endif +endif + +ifeq ($(CONFIG_MULTI_RES_ENCODING),yes) +ifeq ($(CONFIG_LIBYUV),yes) +EXAMPLES-$(CONFIG_VP8_ENCODER) += vp8_multi_resolution_encoder.c +vp8_multi_resolution_encoder.SRCS += ivfenc.h ivfenc.c +vp8_multi_resolution_encoder.SRCS += tools_common.h tools_common.c +vp8_multi_resolution_encoder.SRCS += video_writer.h video_writer.c +vp8_multi_resolution_encoder.SRCS += vpx_ports/msvc.h +vp8_multi_resolution_encoder.SRCS += $(LIBYUV_SRCS) +vp8_multi_resolution_encoder.GUID = 04f8738e-63c8-423b-90fa-7c2703a374de +vp8_multi_resolution_encoder.DESCRIPTION = VP8 Multiple-resolution Encoding +endif +endif + +# Handle extra library flags depending on codec configuration + +# We should not link to math library (libm) on RVCT +# when building for bare-metal targets +ifeq ($(CONFIG_OS_SUPPORT), yes) +CODEC_EXTRA_LIBS-$(CONFIG_VP8) += m +CODEC_EXTRA_LIBS-$(CONFIG_VP9) += m +else + ifeq ($(CONFIG_GCC), yes) + CODEC_EXTRA_LIBS-$(CONFIG_VP8) += m + CODEC_EXTRA_LIBS-$(CONFIG_VP9) += m + endif +endif +# +# End of specified files. The rest of the build rules should happen +# automagically from here. +# + + +# Examples need different flags based on whether we're building +# from an installed tree or a version controlled tree. Determine +# the proper paths. +ifeq ($(HAVE_ALT_TREE_LAYOUT),yes) + LIB_PATH-yes := $(SRC_PATH_BARE)/../lib + INC_PATH-yes := $(SRC_PATH_BARE)/../include +else + LIB_PATH-yes += $(if $(BUILD_PFX),$(BUILD_PFX),.) + INC_PATH-$(CONFIG_VP8_DECODER) += $(SRC_PATH_BARE)/vp8 + INC_PATH-$(CONFIG_VP8_ENCODER) += $(SRC_PATH_BARE)/vp8 + INC_PATH-$(CONFIG_VP9_DECODER) += $(SRC_PATH_BARE)/vp9 + INC_PATH-$(CONFIG_VP9_ENCODER) += $(SRC_PATH_BARE)/vp9 +endif +INC_PATH-$(CONFIG_LIBYUV) += $(SRC_PATH_BARE)/third_party/libyuv/include +LIB_PATH := $(call enabled,LIB_PATH) +INC_PATH := $(call enabled,INC_PATH) +INTERNAL_CFLAGS = $(addprefix -I,$(INC_PATH)) +INTERNAL_LDFLAGS += $(addprefix -L,$(LIB_PATH)) + + +# Expand list of selected examples to build (as specified above) +UTILS = $(call enabled,UTILS) +EXAMPLES = $(addprefix examples/,$(call enabled,EXAMPLES)) +ALL_EXAMPLES = $(UTILS) $(EXAMPLES) +UTIL_SRCS = $(foreach ex,$(UTILS),$($(ex:.c=).SRCS)) +ALL_SRCS = $(foreach ex,$(ALL_EXAMPLES),$($(notdir $(ex:.c=)).SRCS)) +CODEC_EXTRA_LIBS=$(sort $(call enabled,CODEC_EXTRA_LIBS)) + + +# Expand all example sources into a variable containing all sources +# for that example (not just them main one specified in UTILS/EXAMPLES) +# and add this file to the list (for MSVS workspace generation) +$(foreach ex,$(ALL_EXAMPLES),$(eval $(notdir $(ex:.c=)).SRCS += $(ex) examples.mk)) + + +# Create build/install dependencies for all examples. The common case +# is handled here. The MSVS case is handled below. +NOT_MSVS = $(if $(CONFIG_MSVS),,yes) +DIST-BINS-$(NOT_MSVS) += $(addprefix bin/,$(ALL_EXAMPLES:.c=$(EXE_SFX))) +INSTALL-BINS-$(NOT_MSVS) += $(addprefix bin/,$(UTILS:.c=$(EXE_SFX))) +DIST-SRCS-yes += $(ALL_SRCS) +INSTALL-SRCS-yes += $(UTIL_SRCS) +OBJS-$(NOT_MSVS) += $(call objs,$(ALL_SRCS)) +BINS-$(NOT_MSVS) += $(addprefix $(BUILD_PFX),$(ALL_EXAMPLES:.c=$(EXE_SFX))) + + +# Instantiate linker template for all examples. +CODEC_LIB=$(if $(CONFIG_DEBUG_LIBS),vpx_g,vpx) +ifneq ($(filter darwin%,$(TGT_OS)),) +SHARED_LIB_SUF=.dylib +else +ifneq ($(filter os2%,$(TGT_OS)),) +SHARED_LIB_SUF=_dll.a +else +SHARED_LIB_SUF=.so +endif +endif +CODEC_LIB_SUF=$(if $(CONFIG_SHARED),$(SHARED_LIB_SUF),.a) +$(foreach bin,$(BINS-yes),\ + $(eval $(bin):$(LIB_PATH)/lib$(CODEC_LIB)$(CODEC_LIB_SUF))\ + $(eval $(call linker_template,$(bin),\ + $(call objs,$($(notdir $(bin:$(EXE_SFX)=)).SRCS)) \ + -l$(CODEC_LIB) $(addprefix -l,$(CODEC_EXTRA_LIBS))\ + ))) + +# The following pairs define a mapping of locations in the distribution +# tree to locations in the source/build trees. +INSTALL_MAPS += src/%.c %.c +INSTALL_MAPS += src/% $(SRC_PATH_BARE)/% +INSTALL_MAPS += bin/% % +INSTALL_MAPS += % % + + +# Set up additional MSVS environment +ifeq ($(CONFIG_MSVS),yes) +CODEC_LIB=$(if $(CONFIG_SHARED),vpx,$(if $(CONFIG_STATIC_MSVCRT),vpxmt,vpxmd)) +# This variable uses deferred expansion intentionally, since the results of +# $(wildcard) may change during the course of the Make. +VS_PLATFORMS = $(foreach d,$(wildcard */Release/$(CODEC_LIB).lib),$(word 1,$(subst /, ,$(d)))) +INSTALL_MAPS += $(foreach p,$(VS_PLATFORMS),bin/$(p)/% $(p)/Release/%) +endif + +# Build Visual Studio Projects. We use a template here to instantiate +# explicit rules rather than using an implicit rule because we want to +# leverage make's VPATH searching rather than specifying the paths on +# each file in ALL_EXAMPLES. This has the unfortunate side effect that +# touching the source files trigger a rebuild of the project files +# even though there is no real dependency there (the dependency is on +# the makefiles). We may want to revisit this. +define vcproj_template +$(1): $($(1:.$(VCPROJ_SFX)=).SRCS) vpx.$(VCPROJ_SFX) + $(if $(quiet),@echo " [vcproj] $$@") + $(qexec)$$(GEN_VCPROJ)\ + --exe\ + --target=$$(TOOLCHAIN)\ + --name=$$(@:.$(VCPROJ_SFX)=)\ + --ver=$$(CONFIG_VS_VERSION)\ + --proj-guid=$$($$(@:.$(VCPROJ_SFX)=).GUID)\ + --src-path-bare="$(SRC_PATH_BARE)" \ + $$(if $$(CONFIG_STATIC_MSVCRT),--static-crt) \ + --out=$$@ $$(INTERNAL_CFLAGS) $$(CFLAGS) \ + $$(INTERNAL_LDFLAGS) $$(LDFLAGS) -l$$(CODEC_LIB) $$^ +endef +ALL_EXAMPLES_BASENAME := $(notdir $(ALL_EXAMPLES)) +PROJECTS-$(CONFIG_MSVS) += $(ALL_EXAMPLES_BASENAME:.c=.$(VCPROJ_SFX)) +INSTALL-BINS-$(CONFIG_MSVS) += $(foreach p,$(VS_PLATFORMS),\ + $(addprefix bin/$(p)/,$(ALL_EXAMPLES_BASENAME:.c=.exe))) +$(foreach proj,$(call enabled,PROJECTS),\ + $(eval $(call vcproj_template,$(proj)))) + +# +# Documentation Rules +# +%.dox: %.c + @echo " [DOXY] $@" + @mkdir -p $(dir $@) + @echo "/*!\page example_$(@F:.dox=) $(@F:.dox=)" > $@ + @echo " \includelineno $(> $@ + @echo "*/" >> $@ + +samples.dox: examples.mk + @echo " [DOXY] $@" + @echo "/*!\page samples Sample Code" > $@ + @echo " This SDK includes a number of sample applications."\ + "Each sample documents a feature of the SDK in both prose"\ + "and the associated C code."\ + "The following samples are included: ">>$@ + @$(foreach ex,$(sort $(notdir $(EXAMPLES:.c=))),\ + echo " - \subpage example_$(ex) $($(ex).DESCRIPTION)" >> $@;) + @echo >> $@ + @echo " In addition, the SDK contains a number of utilities."\ + "Since these utilities are built upon the concepts described"\ + "in the sample code listed above, they are not documented in"\ + "pieces like the samples are. Their source is included here"\ + "for reference. The following utilities are included:" >> $@ + @$(foreach ex,$(sort $(UTILS:.c=)),\ + echo " - \subpage example_$(ex) $($(ex).DESCRIPTION)" >> $@;) + @echo "*/" >> $@ + +CLEAN-OBJS += examples.doxy samples.dox $(ALL_EXAMPLES:.c=.dox) +DOCS-yes += examples.doxy samples.dox +examples.doxy: samples.dox $(ALL_EXAMPLES:.c=.dox) + @echo "INPUT += $^" > $@ diff --git a/examples/decode_to_md5.c b/examples/decode_to_md5.c new file mode 100644 index 0000000..51959f3 --- /dev/null +++ b/examples/decode_to_md5.c @@ -0,0 +1,132 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +// Frame-by-frame MD5 Checksum +// =========================== +// +// This example builds upon the simple decoder loop to show how checksums +// of the decoded output can be generated. These are used for validating +// decoder implementations against the reference implementation, for example. +// +// MD5 algorithm +// ------------- +// The Message-Digest 5 (MD5) is a well known hash function. We have provided +// an implementation derived from the RSA Data Security, Inc. MD5 Message-Digest +// Algorithm for your use. Our implmentation only changes the interface of this +// reference code. You must include the `md5_utils.h` header for access to these +// functions. +// +// Processing The Decoded Data +// --------------------------- +// Each row of the image is passed to the MD5 accumulator. First the Y plane +// is processed, then U, then V. It is important to honor the image's `stride` +// values. + +#include +#include +#include + +#include "vpx/vp8dx.h" +#include "vpx/vpx_decoder.h" + +#include "../md5_utils.h" +#include "../tools_common.h" +#include "../video_reader.h" +#include "./vpx_config.h" + +static void get_image_md5(const vpx_image_t *img, unsigned char digest[16]) { + int plane, y; + MD5Context md5; + + MD5Init(&md5); + + for (plane = 0; plane < 3; ++plane) { + const unsigned char *buf = img->planes[plane]; + const int stride = img->stride[plane]; + const int w = plane ? (img->d_w + 1) >> 1 : img->d_w; + const int h = plane ? (img->d_h + 1) >> 1 : img->d_h; + + for (y = 0; y < h; ++y) { + MD5Update(&md5, buf, w); + buf += stride; + } + } + + MD5Final(digest, &md5); +} + +static void print_md5(FILE *stream, unsigned char digest[16]) { + int i; + + for (i = 0; i < 16; ++i) fprintf(stream, "%02x", digest[i]); +} + +static const char *exec_name; + +void usage_exit(void) { + fprintf(stderr, "Usage: %s \n", exec_name); + exit(EXIT_FAILURE); +} + +int main(int argc, char **argv) { + int frame_cnt = 0; + FILE *outfile = NULL; + vpx_codec_ctx_t codec; + VpxVideoReader *reader = NULL; + const VpxVideoInfo *info = NULL; + const VpxInterface *decoder = NULL; + + exec_name = argv[0]; + + if (argc != 3) die("Invalid number of arguments."); + + reader = vpx_video_reader_open(argv[1]); + if (!reader) die("Failed to open %s for reading.", argv[1]); + + if (!(outfile = fopen(argv[2], "wb"))) + die("Failed to open %s for writing.", argv[2]); + + info = vpx_video_reader_get_info(reader); + + decoder = get_vpx_decoder_by_fourcc(info->codec_fourcc); + if (!decoder) die("Unknown input codec."); + + printf("Using %s\n", vpx_codec_iface_name(decoder->codec_interface())); + + if (vpx_codec_dec_init(&codec, decoder->codec_interface(), NULL, 0)) + die_codec(&codec, "Failed to initialize decoder"); + + while (vpx_video_reader_read_frame(reader)) { + vpx_codec_iter_t iter = NULL; + vpx_image_t *img = NULL; + size_t frame_size = 0; + const unsigned char *frame = + vpx_video_reader_get_frame(reader, &frame_size); + if (vpx_codec_decode(&codec, frame, (unsigned int)frame_size, NULL, 0)) + die_codec(&codec, "Failed to decode frame"); + + while ((img = vpx_codec_get_frame(&codec, &iter)) != NULL) { + unsigned char digest[16]; + + get_image_md5(img, digest); + print_md5(outfile, digest); + fprintf(outfile, " img-%dx%d-%04d.i420\n", img->d_w, img->d_h, + ++frame_cnt); + } + } + + printf("Processed %d frames.\n", frame_cnt); + if (vpx_codec_destroy(&codec)) die_codec(&codec, "Failed to destroy codec."); + + vpx_video_reader_close(reader); + + fclose(outfile); + return EXIT_SUCCESS; +} diff --git a/examples/decode_with_drops.c b/examples/decode_with_drops.c new file mode 100644 index 0000000..e69e2a9 --- /dev/null +++ b/examples/decode_with_drops.c @@ -0,0 +1,148 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +// Decode With Drops Example +// ========================= +// +// This is an example utility which drops a series of frames, as specified +// on the command line. This is useful for observing the error recovery +// features of the codec. +// +// Usage +// ----- +// This example adds a single argument to the `simple_decoder` example, +// which specifies the range or pattern of frames to drop. The parameter is +// parsed as follows: +// +// Dropping A Range Of Frames +// -------------------------- +// To drop a range of frames, specify the starting frame and the ending +// frame to drop, separated by a dash. The following command will drop +// frames 5 through 10 (base 1). +// +// $ ./decode_with_drops in.ivf out.i420 5-10 +// +// +// Dropping A Pattern Of Frames +// ---------------------------- +// To drop a pattern of frames, specify the number of frames to drop and +// the number of frames after which to repeat the pattern, separated by +// a forward-slash. The following command will drop 3 of 7 frames. +// Specifically, it will decode 4 frames, then drop 3 frames, and then +// repeat. +// +// $ ./decode_with_drops in.ivf out.i420 3/7 +// +// +// Extra Variables +// --------------- +// This example maintains the pattern passed on the command line in the +// `n`, `m`, and `is_range` variables: +// +// +// Making The Drop Decision +// ------------------------ +// The example decides whether to drop the frame based on the current +// frame number, immediately before decoding the frame. + +#include +#include +#include + +#include "vpx/vp8dx.h" +#include "vpx/vpx_decoder.h" + +#include "../tools_common.h" +#include "../video_reader.h" +#include "./vpx_config.h" + +static const char *exec_name; + +void usage_exit(void) { + fprintf(stderr, "Usage: %s \n", exec_name); + exit(EXIT_FAILURE); +} + +int main(int argc, char **argv) { + int frame_cnt = 0; + FILE *outfile = NULL; + vpx_codec_ctx_t codec; + const VpxInterface *decoder = NULL; + VpxVideoReader *reader = NULL; + const VpxVideoInfo *info = NULL; + int n = 0; + int m = 0; + int is_range = 0; + char *nptr = NULL; + + exec_name = argv[0]; + + if (argc != 4) die("Invalid number of arguments."); + + reader = vpx_video_reader_open(argv[1]); + if (!reader) die("Failed to open %s for reading.", argv[1]); + + if (!(outfile = fopen(argv[2], "wb"))) + die("Failed to open %s for writing.", argv[2]); + + n = (int)strtol(argv[3], &nptr, 0); + m = (int)strtol(nptr + 1, NULL, 0); + is_range = (*nptr == '-'); + if (!n || !m || (*nptr != '-' && *nptr != '/')) + die("Couldn't parse pattern %s.\n", argv[3]); + + info = vpx_video_reader_get_info(reader); + + decoder = get_vpx_decoder_by_fourcc(info->codec_fourcc); + if (!decoder) die("Unknown input codec."); + + printf("Using %s\n", vpx_codec_iface_name(decoder->codec_interface())); + + if (vpx_codec_dec_init(&codec, decoder->codec_interface(), NULL, 0)) + die_codec(&codec, "Failed to initialize decoder."); + + while (vpx_video_reader_read_frame(reader)) { + vpx_codec_iter_t iter = NULL; + vpx_image_t *img = NULL; + size_t frame_size = 0; + int skip; + const unsigned char *frame = + vpx_video_reader_get_frame(reader, &frame_size); + if (vpx_codec_decode(&codec, frame, (unsigned int)frame_size, NULL, 0)) + die_codec(&codec, "Failed to decode frame."); + + ++frame_cnt; + + skip = (is_range && frame_cnt >= n && frame_cnt <= m) || + (!is_range && m - (frame_cnt - 1) % m <= n); + + if (!skip) { + putc('.', stdout); + + while ((img = vpx_codec_get_frame(&codec, &iter)) != NULL) + vpx_img_write(img, outfile); + } else { + putc('X', stdout); + } + + fflush(stdout); + } + + printf("Processed %d frames.\n", frame_cnt); + if (vpx_codec_destroy(&codec)) die_codec(&codec, "Failed to destroy codec."); + + printf("Play: ffplay -f rawvideo -pix_fmt yuv420p -s %dx%d %s\n", + info->frame_width, info->frame_height, argv[2]); + + vpx_video_reader_close(reader); + fclose(outfile); + + return EXIT_SUCCESS; +} diff --git a/examples/postproc.c b/examples/postproc.c new file mode 100644 index 0000000..15713b9 --- /dev/null +++ b/examples/postproc.c @@ -0,0 +1,133 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +// Postprocessing Decoder +// ====================== +// +// This example adds postprocessing to the simple decoder loop. +// +// Initializing Postprocessing +// --------------------------- +// You must inform the codec that you might request postprocessing at +// initialization time. This is done by passing the VPX_CODEC_USE_POSTPROC +// flag to `vpx_codec_dec_init`. If the codec does not support +// postprocessing, this call will return VPX_CODEC_INCAPABLE. For +// demonstration purposes, we also fall back to default initialization if +// the codec does not provide support. +// +// Using Adaptive Postprocessing +// ----------------------------- +// VP6 provides "adaptive postprocessing." It will automatically select the +// best postprocessing filter on a frame by frame basis based on the amount +// of time remaining before the user's specified deadline expires. The +// special value 0 indicates that the codec should take as long as +// necessary to provide the best quality frame. This example gives the +// codec 15ms (15000us) to return a frame. Remember that this is a soft +// deadline, and the codec may exceed it doing its regular processing. In +// these cases, no additional postprocessing will be done. +// +// Codec Specific Postprocessing Controls +// -------------------------------------- +// Some codecs provide fine grained controls over their built-in +// postprocessors. VP8 is one example. The following sample code toggles +// postprocessing on and off every 15 frames. + +#include +#include +#include + +#include "vpx/vp8dx.h" +#include "vpx/vpx_decoder.h" + +#include "../tools_common.h" +#include "../video_reader.h" +#include "./vpx_config.h" + +static const char *exec_name; + +void usage_exit(void) { + fprintf(stderr, "Usage: %s \n", exec_name); + exit(EXIT_FAILURE); +} + +int main(int argc, char **argv) { + int frame_cnt = 0; + FILE *outfile = NULL; + vpx_codec_ctx_t codec; + vpx_codec_err_t res; + VpxVideoReader *reader = NULL; + const VpxInterface *decoder = NULL; + const VpxVideoInfo *info = NULL; + + exec_name = argv[0]; + + if (argc != 3) die("Invalid number of arguments."); + + reader = vpx_video_reader_open(argv[1]); + if (!reader) die("Failed to open %s for reading.", argv[1]); + + if (!(outfile = fopen(argv[2], "wb"))) + die("Failed to open %s for writing", argv[2]); + + info = vpx_video_reader_get_info(reader); + + decoder = get_vpx_decoder_by_fourcc(info->codec_fourcc); + if (!decoder) die("Unknown input codec."); + + printf("Using %s\n", vpx_codec_iface_name(decoder->codec_interface())); + + res = vpx_codec_dec_init(&codec, decoder->codec_interface(), NULL, + VPX_CODEC_USE_POSTPROC); + if (res == VPX_CODEC_INCAPABLE) + die_codec(&codec, "Postproc not supported by this decoder."); + + if (res) die_codec(&codec, "Failed to initialize decoder."); + + while (vpx_video_reader_read_frame(reader)) { + vpx_codec_iter_t iter = NULL; + vpx_image_t *img = NULL; + size_t frame_size = 0; + const unsigned char *frame = + vpx_video_reader_get_frame(reader, &frame_size); + + ++frame_cnt; + + if (frame_cnt % 30 == 1) { + vp8_postproc_cfg_t pp = { 0, 0, 0 }; + + if (vpx_codec_control(&codec, VP8_SET_POSTPROC, &pp)) + die_codec(&codec, "Failed to turn off postproc."); + } else if (frame_cnt % 30 == 16) { + vp8_postproc_cfg_t pp = { VP8_DEBLOCK | VP8_DEMACROBLOCK | VP8_MFQE, 4, + 0 }; + if (vpx_codec_control(&codec, VP8_SET_POSTPROC, &pp)) + die_codec(&codec, "Failed to turn on postproc."); + }; + + // Decode the frame with 15ms deadline + if (vpx_codec_decode(&codec, frame, (unsigned int)frame_size, NULL, 15000)) + die_codec(&codec, "Failed to decode frame"); + + while ((img = vpx_codec_get_frame(&codec, &iter)) != NULL) { + vpx_img_write(img, outfile); + } + } + + printf("Processed %d frames.\n", frame_cnt); + if (vpx_codec_destroy(&codec)) die_codec(&codec, "Failed to destroy codec"); + + printf("Play: ffplay -f rawvideo -pix_fmt yuv420p -s %dx%d %s\n", + info->frame_width, info->frame_height, argv[2]); + + vpx_video_reader_close(reader); + + fclose(outfile); + return EXIT_SUCCESS; +} diff --git a/examples/resize_util.c b/examples/resize_util.c new file mode 100644 index 0000000..7e529b2 --- /dev/null +++ b/examples/resize_util.c @@ -0,0 +1,123 @@ +/* + * Copyright (c) 2014 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include +#include +#include +#include +#include + +#include "../tools_common.h" +#include "../vp9/encoder/vp9_resize.h" + +static const char *exec_name = NULL; + +static void usage() { + printf("Usage:\n"); + printf("%s x x ", + exec_name); + printf(" []\n"); +} + +void usage_exit(void) { + usage(); + exit(EXIT_FAILURE); +} + +static int parse_dim(char *v, int *width, int *height) { + char *x = strchr(v, 'x'); + if (x == NULL) x = strchr(v, 'X'); + if (x == NULL) return 0; + *width = atoi(v); + *height = atoi(&x[1]); + if (*width <= 0 || *height <= 0) + return 0; + else + return 1; +} + +int main(int argc, char *argv[]) { + char *fin, *fout; + FILE *fpin, *fpout; + uint8_t *inbuf, *outbuf; + uint8_t *inbuf_u, *outbuf_u; + uint8_t *inbuf_v, *outbuf_v; + int f, frames; + int width, height, target_width, target_height; + + exec_name = argv[0]; + + if (argc < 5) { + printf("Incorrect parameters:\n"); + usage(); + return 1; + } + + fin = argv[1]; + fout = argv[4]; + if (!parse_dim(argv[2], &width, &height)) { + printf("Incorrect parameters: %s\n", argv[2]); + usage(); + return 1; + } + if (!parse_dim(argv[3], &target_width, &target_height)) { + printf("Incorrect parameters: %s\n", argv[3]); + usage(); + return 1; + } + + fpin = fopen(fin, "rb"); + if (fpin == NULL) { + printf("Can't open file %s to read\n", fin); + usage(); + return 1; + } + fpout = fopen(fout, "wb"); + if (fpout == NULL) { + printf("Can't open file %s to write\n", fout); + usage(); + return 1; + } + if (argc >= 6) + frames = atoi(argv[5]); + else + frames = INT_MAX; + + printf("Input size: %dx%d\n", width, height); + printf("Target size: %dx%d, Frames: ", target_width, target_height); + if (frames == INT_MAX) + printf("All\n"); + else + printf("%d\n", frames); + + inbuf = (uint8_t *)malloc(width * height * 3 / 2); + outbuf = (uint8_t *)malloc(target_width * target_height * 3 / 2); + inbuf_u = inbuf + width * height; + inbuf_v = inbuf_u + width * height / 4; + outbuf_u = outbuf + target_width * target_height; + outbuf_v = outbuf_u + target_width * target_height / 4; + f = 0; + while (f < frames) { + if (fread(inbuf, width * height * 3 / 2, 1, fpin) != 1) break; + vp9_resize_frame420(inbuf, width, inbuf_u, inbuf_v, width / 2, height, + width, outbuf, target_width, outbuf_u, outbuf_v, + target_width / 2, target_height, target_width); + fwrite(outbuf, target_width * target_height * 3 / 2, 1, fpout); + f++; + } + printf("%d frames processed\n", f); + fclose(fpin); + fclose(fpout); + + free(inbuf); + free(outbuf); + return 0; +} diff --git a/examples/set_maps.c b/examples/set_maps.c new file mode 100644 index 0000000..c0c7d10 --- /dev/null +++ b/examples/set_maps.c @@ -0,0 +1,243 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +// VP8 Set Active and ROI Maps +// =========================== +// +// This is an example demonstrating how to control the VP8 encoder's +// ROI and Active maps. +// +// ROI (Reigon of Interest) maps are a way for the application to assign +// each macroblock in the image to a region, and then set quantizer and +// filtering parameters on that image. +// +// Active maps are a way for the application to specify on a +// macroblock-by-macroblock basis whether there is any activity in that +// macroblock. +// +// +// Configuration +// ------------- +// An ROI map is set on frame 22. If the width of the image in macroblocks +// is evenly divisble by 4, then the output will appear to have distinct +// columns, where the quantizer, loopfilter, and static threshold differ +// from column to column. +// +// An active map is set on frame 33. If the width of the image in macroblocks +// is evenly divisble by 4, then the output will appear to have distinct +// columns, where one column will have motion and the next will not. +// +// The active map is cleared on frame 44. +// +// Observing The Effects +// --------------------- +// Use the `simple_decoder` example to decode this sample, and observe +// the change in the image at frames 22, 33, and 44. + +#include +#include +#include +#include + +#include "vpx/vp8cx.h" +#include "vpx/vpx_encoder.h" + +#include "../tools_common.h" +#include "../video_writer.h" + +static const char *exec_name; + +void usage_exit(void) { + fprintf(stderr, "Usage: %s \n", + exec_name); + exit(EXIT_FAILURE); +} + +static void set_roi_map(const vpx_codec_enc_cfg_t *cfg, + vpx_codec_ctx_t *codec) { + unsigned int i; + vpx_roi_map_t roi; + memset(&roi, 0, sizeof(roi)); + + roi.rows = (cfg->g_h + 15) / 16; + roi.cols = (cfg->g_w + 15) / 16; + + roi.delta_q[0] = 0; + roi.delta_q[1] = -2; + roi.delta_q[2] = -4; + roi.delta_q[3] = -6; + + roi.delta_lf[0] = 0; + roi.delta_lf[1] = 1; + roi.delta_lf[2] = 2; + roi.delta_lf[3] = 3; + + roi.static_threshold[0] = 1500; + roi.static_threshold[1] = 1000; + roi.static_threshold[2] = 500; + roi.static_threshold[3] = 0; + + roi.roi_map = (uint8_t *)malloc(roi.rows * roi.cols); + for (i = 0; i < roi.rows * roi.cols; ++i) roi.roi_map[i] = i % 4; + + if (vpx_codec_control(codec, VP8E_SET_ROI_MAP, &roi)) + die_codec(codec, "Failed to set ROI map"); + + free(roi.roi_map); +} + +static void set_active_map(const vpx_codec_enc_cfg_t *cfg, + vpx_codec_ctx_t *codec) { + unsigned int i; + vpx_active_map_t map = { 0, 0, 0 }; + + map.rows = (cfg->g_h + 15) / 16; + map.cols = (cfg->g_w + 15) / 16; + + map.active_map = (uint8_t *)malloc(map.rows * map.cols); + for (i = 0; i < map.rows * map.cols; ++i) map.active_map[i] = i % 2; + + if (vpx_codec_control(codec, VP8E_SET_ACTIVEMAP, &map)) + die_codec(codec, "Failed to set active map"); + + free(map.active_map); +} + +static void unset_active_map(const vpx_codec_enc_cfg_t *cfg, + vpx_codec_ctx_t *codec) { + vpx_active_map_t map = { 0, 0, 0 }; + + map.rows = (cfg->g_h + 15) / 16; + map.cols = (cfg->g_w + 15) / 16; + map.active_map = NULL; + + if (vpx_codec_control(codec, VP8E_SET_ACTIVEMAP, &map)) + die_codec(codec, "Failed to set active map"); +} + +static int encode_frame(vpx_codec_ctx_t *codec, vpx_image_t *img, + int frame_index, VpxVideoWriter *writer) { + int got_pkts = 0; + vpx_codec_iter_t iter = NULL; + const vpx_codec_cx_pkt_t *pkt = NULL; + const vpx_codec_err_t res = + vpx_codec_encode(codec, img, frame_index, 1, 0, VPX_DL_GOOD_QUALITY); + if (res != VPX_CODEC_OK) die_codec(codec, "Failed to encode frame"); + + while ((pkt = vpx_codec_get_cx_data(codec, &iter)) != NULL) { + got_pkts = 1; + + if (pkt->kind == VPX_CODEC_CX_FRAME_PKT) { + const int keyframe = (pkt->data.frame.flags & VPX_FRAME_IS_KEY) != 0; + if (!vpx_video_writer_write_frame(writer, pkt->data.frame.buf, + pkt->data.frame.sz, + pkt->data.frame.pts)) { + die_codec(codec, "Failed to write compressed frame"); + } + + printf(keyframe ? "K" : "."); + fflush(stdout); + } + } + + return got_pkts; +} + +int main(int argc, char **argv) { + FILE *infile = NULL; + vpx_codec_ctx_t codec; + vpx_codec_enc_cfg_t cfg; + int frame_count = 0; + vpx_image_t raw; + vpx_codec_err_t res; + VpxVideoInfo info; + VpxVideoWriter *writer = NULL; + const VpxInterface *encoder = NULL; + const int fps = 2; // TODO(dkovalev) add command line argument + const double bits_per_pixel_per_frame = 0.067; + + exec_name = argv[0]; + if (argc != 6) die("Invalid number of arguments"); + + memset(&info, 0, sizeof(info)); + + encoder = get_vpx_encoder_by_name(argv[1]); + if (encoder == NULL) { + die("Unsupported codec."); + } + assert(encoder != NULL); + info.codec_fourcc = encoder->fourcc; + info.frame_width = (int)strtol(argv[2], NULL, 0); + info.frame_height = (int)strtol(argv[3], NULL, 0); + info.time_base.numerator = 1; + info.time_base.denominator = fps; + + if (info.frame_width <= 0 || info.frame_height <= 0 || + (info.frame_width % 2) != 0 || (info.frame_height % 2) != 0) { + die("Invalid frame size: %dx%d", info.frame_width, info.frame_height); + } + + if (!vpx_img_alloc(&raw, VPX_IMG_FMT_I420, info.frame_width, + info.frame_height, 1)) { + die("Failed to allocate image."); + } + + printf("Using %s\n", vpx_codec_iface_name(encoder->codec_interface())); + + res = vpx_codec_enc_config_default(encoder->codec_interface(), &cfg, 0); + if (res) die_codec(&codec, "Failed to get default codec config."); + + cfg.g_w = info.frame_width; + cfg.g_h = info.frame_height; + cfg.g_timebase.num = info.time_base.numerator; + cfg.g_timebase.den = info.time_base.denominator; + cfg.rc_target_bitrate = + (unsigned int)(bits_per_pixel_per_frame * cfg.g_w * cfg.g_h * fps / 1000); + cfg.g_lag_in_frames = 0; + + writer = vpx_video_writer_open(argv[5], kContainerIVF, &info); + if (!writer) die("Failed to open %s for writing.", argv[5]); + + if (!(infile = fopen(argv[4], "rb"))) + die("Failed to open %s for reading.", argv[4]); + + if (vpx_codec_enc_init(&codec, encoder->codec_interface(), &cfg, 0)) + die_codec(&codec, "Failed to initialize encoder"); + + // Encode frames. + while (vpx_img_read(&raw, infile)) { + ++frame_count; + + if (frame_count == 22 && encoder->fourcc == VP8_FOURCC) { + set_roi_map(&cfg, &codec); + } else if (frame_count == 33) { + set_active_map(&cfg, &codec); + } else if (frame_count == 44) { + unset_active_map(&cfg, &codec); + } + + encode_frame(&codec, &raw, frame_count, writer); + } + + // Flush encoder. + while (encode_frame(&codec, NULL, -1, writer)) { + } + + printf("\n"); + fclose(infile); + printf("Processed %d frames.\n", frame_count); + + vpx_img_free(&raw); + if (vpx_codec_destroy(&codec)) die_codec(&codec, "Failed to destroy codec."); + + vpx_video_writer_close(writer); + + return EXIT_SUCCESS; +} diff --git a/examples/simple_decoder.c b/examples/simple_decoder.c new file mode 100644 index 0000000..2bb1a05 --- /dev/null +++ b/examples/simple_decoder.c @@ -0,0 +1,149 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +// Simple Decoder +// ============== +// +// This is an example of a simple decoder loop. It takes an input file +// containing the compressed data (in IVF format), passes it through the +// decoder, and writes the decompressed frames to disk. Other decoder +// examples build upon this one. +// +// The details of the IVF format have been elided from this example for +// simplicity of presentation, as IVF files will not generally be used by +// your application. In general, an IVF file consists of a file header, +// followed by a variable number of frames. Each frame consists of a frame +// header followed by a variable length payload. The length of the payload +// is specified in the first four bytes of the frame header. The payload is +// the raw compressed data. +// +// Standard Includes +// ----------------- +// For decoders, you only have to include `vpx_decoder.h` and then any +// header files for the specific codecs you use. In this case, we're using +// vp8. +// +// Initializing The Codec +// ---------------------- +// The libvpx decoder is initialized by the call to vpx_codec_dec_init(). +// Determining the codec interface to use is handled by VpxVideoReader and the +// functions prefixed with vpx_video_reader_. Discussion of those functions is +// beyond the scope of this example, but the main gist is to open the input file +// and parse just enough of it to determine if it's a VPx file and which VPx +// codec is contained within the file. +// Note the NULL pointer passed to vpx_codec_dec_init(). We do that in this +// example because we want the algorithm to determine the stream configuration +// (width/height) and allocate memory automatically. +// +// Decoding A Frame +// ---------------- +// Once the frame has been read into memory, it is decoded using the +// `vpx_codec_decode` function. The call takes a pointer to the data +// (`frame`) and the length of the data (`frame_size`). No application data +// is associated with the frame in this example, so the `user_priv` +// parameter is NULL. The `deadline` parameter is left at zero for this +// example. This parameter is generally only used when doing adaptive post +// processing. +// +// Codecs may produce a variable number of output frames for every call to +// `vpx_codec_decode`. These frames are retrieved by the +// `vpx_codec_get_frame` iterator function. The iterator variable `iter` is +// initialized to NULL each time `vpx_codec_decode` is called. +// `vpx_codec_get_frame` is called in a loop, returning a pointer to a +// decoded image or NULL to indicate the end of list. +// +// Processing The Decoded Data +// --------------------------- +// In this example, we simply write the encoded data to disk. It is +// important to honor the image's `stride` values. +// +// Cleanup +// ------- +// The `vpx_codec_destroy` call frees any memory allocated by the codec. +// +// Error Handling +// -------------- +// This example does not special case any error return codes. If there was +// an error, a descriptive message is printed and the program exits. With +// few exceptions, vpx_codec functions return an enumerated error status, +// with the value `0` indicating success. + +#include +#include +#include + +#include "vpx/vpx_decoder.h" + +#include "../tools_common.h" +#include "../video_reader.h" +#include "./vpx_config.h" + +static const char *exec_name; + +void usage_exit(void) { + fprintf(stderr, "Usage: %s \n", exec_name); + exit(EXIT_FAILURE); +} + +int main(int argc, char **argv) { + int frame_cnt = 0; + FILE *outfile = NULL; + vpx_codec_ctx_t codec; + VpxVideoReader *reader = NULL; + const VpxInterface *decoder = NULL; + const VpxVideoInfo *info = NULL; + + exec_name = argv[0]; + + if (argc != 3) die("Invalid number of arguments."); + + reader = vpx_video_reader_open(argv[1]); + if (!reader) die("Failed to open %s for reading.", argv[1]); + + if (!(outfile = fopen(argv[2], "wb"))) + die("Failed to open %s for writing.", argv[2]); + + info = vpx_video_reader_get_info(reader); + + decoder = get_vpx_decoder_by_fourcc(info->codec_fourcc); + if (!decoder) die("Unknown input codec."); + + printf("Using %s\n", vpx_codec_iface_name(decoder->codec_interface())); + + if (vpx_codec_dec_init(&codec, decoder->codec_interface(), NULL, 0)) + die_codec(&codec, "Failed to initialize decoder."); + + while (vpx_video_reader_read_frame(reader)) { + vpx_codec_iter_t iter = NULL; + vpx_image_t *img = NULL; + size_t frame_size = 0; + const unsigned char *frame = + vpx_video_reader_get_frame(reader, &frame_size); + if (vpx_codec_decode(&codec, frame, (unsigned int)frame_size, NULL, 0)) + die_codec(&codec, "Failed to decode frame."); + + while ((img = vpx_codec_get_frame(&codec, &iter)) != NULL) { + vpx_img_write(img, outfile); + ++frame_cnt; + } + } + + printf("Processed %d frames.\n", frame_cnt); + if (vpx_codec_destroy(&codec)) die_codec(&codec, "Failed to destroy codec"); + + printf("Play: ffplay -f rawvideo -pix_fmt yuv420p -s %dx%d %s\n", + info->frame_width, info->frame_height, argv[2]); + + vpx_video_reader_close(reader); + + fclose(outfile); + + return EXIT_SUCCESS; +} diff --git a/examples/simple_encoder.c b/examples/simple_encoder.c new file mode 100644 index 0000000..dde6344 --- /dev/null +++ b/examples/simple_encoder.c @@ -0,0 +1,247 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +// Simple Encoder +// ============== +// +// This is an example of a simple encoder loop. It takes an input file in +// YV12 format, passes it through the encoder, and writes the compressed +// frames to disk in IVF format. Other decoder examples build upon this +// one. +// +// The details of the IVF format have been elided from this example for +// simplicity of presentation, as IVF files will not generally be used by +// your application. In general, an IVF file consists of a file header, +// followed by a variable number of frames. Each frame consists of a frame +// header followed by a variable length payload. The length of the payload +// is specified in the first four bytes of the frame header. The payload is +// the raw compressed data. +// +// Standard Includes +// ----------------- +// For encoders, you only have to include `vpx_encoder.h` and then any +// header files for the specific codecs you use. In this case, we're using +// vp8. +// +// Getting The Default Configuration +// --------------------------------- +// Encoders have the notion of "usage profiles." For example, an encoder +// may want to publish default configurations for both a video +// conferencing application and a best quality offline encoder. These +// obviously have very different default settings. Consult the +// documentation for your codec to see if it provides any default +// configurations. All codecs provide a default configuration, number 0, +// which is valid for material in the vacinity of QCIF/QVGA. +// +// Updating The Configuration +// --------------------------------- +// Almost all applications will want to update the default configuration +// with settings specific to their usage. Here we set the width and height +// of the video file to that specified on the command line. We also scale +// the default bitrate based on the ratio between the default resolution +// and the resolution specified on the command line. +// +// Initializing The Codec +// ---------------------- +// The encoder is initialized by the following code. +// +// Encoding A Frame +// ---------------- +// The frame is read as a continuous block (size width * height * 3 / 2) +// from the input file. If a frame was read (the input file has not hit +// EOF) then the frame is passed to the encoder. Otherwise, a NULL +// is passed, indicating the End-Of-Stream condition to the encoder. The +// `frame_cnt` is reused as the presentation time stamp (PTS) and each +// frame is shown for one frame-time in duration. The flags parameter is +// unused in this example. The deadline is set to VPX_DL_REALTIME to +// make the example run as quickly as possible. + +// Forced Keyframes +// ---------------- +// Keyframes can be forced by setting the VPX_EFLAG_FORCE_KF bit of the +// flags passed to `vpx_codec_control()`. In this example, we force a +// keyframe every frames. Note, the output stream can +// contain additional keyframes beyond those that have been forced using the +// VPX_EFLAG_FORCE_KF flag because of automatic keyframe placement by the +// encoder. +// +// Processing The Encoded Data +// --------------------------- +// Each packet of type `VPX_CODEC_CX_FRAME_PKT` contains the encoded data +// for this frame. We write a IVF frame header, followed by the raw data. +// +// Cleanup +// ------- +// The `vpx_codec_destroy` call frees any memory allocated by the codec. +// +// Error Handling +// -------------- +// This example does not special case any error return codes. If there was +// an error, a descriptive message is printed and the program exits. With +// few exeptions, vpx_codec functions return an enumerated error status, +// with the value `0` indicating success. +// +// Error Resiliency Features +// ------------------------- +// Error resiliency is controlled by the g_error_resilient member of the +// configuration structure. Use the `decode_with_drops` example to decode with +// frames 5-10 dropped. Compare the output for a file encoded with this example +// versus one encoded with the `simple_encoder` example. + +#include +#include +#include + +#include "vpx/vpx_encoder.h" + +#include "../tools_common.h" +#include "../video_writer.h" + +static const char *exec_name; + +void usage_exit(void) { + fprintf(stderr, + "Usage: %s " + " \n" + "See comments in simple_encoder.c for more information.\n", + exec_name); + exit(EXIT_FAILURE); +} + +static int encode_frame(vpx_codec_ctx_t *codec, vpx_image_t *img, + int frame_index, int flags, VpxVideoWriter *writer) { + int got_pkts = 0; + vpx_codec_iter_t iter = NULL; + const vpx_codec_cx_pkt_t *pkt = NULL; + const vpx_codec_err_t res = + vpx_codec_encode(codec, img, frame_index, 1, flags, VPX_DL_GOOD_QUALITY); + if (res != VPX_CODEC_OK) die_codec(codec, "Failed to encode frame"); + + while ((pkt = vpx_codec_get_cx_data(codec, &iter)) != NULL) { + got_pkts = 1; + + if (pkt->kind == VPX_CODEC_CX_FRAME_PKT) { + const int keyframe = (pkt->data.frame.flags & VPX_FRAME_IS_KEY) != 0; + if (!vpx_video_writer_write_frame(writer, pkt->data.frame.buf, + pkt->data.frame.sz, + pkt->data.frame.pts)) { + die_codec(codec, "Failed to write compressed frame"); + } + printf(keyframe ? "K" : "."); + fflush(stdout); + } + } + + return got_pkts; +} + +// TODO(tomfinegan): Improve command line parsing and add args for bitrate/fps. +int main(int argc, char **argv) { + FILE *infile = NULL; + vpx_codec_ctx_t codec; + vpx_codec_enc_cfg_t cfg; + int frame_count = 0; + vpx_image_t raw; + vpx_codec_err_t res; + VpxVideoInfo info = { 0, 0, 0, { 0, 0 } }; + VpxVideoWriter *writer = NULL; + const VpxInterface *encoder = NULL; + const int fps = 30; + const int bitrate = 200; + int keyframe_interval = 0; + int max_frames = 0; + int frames_encoded = 0; + const char *codec_arg = NULL; + const char *width_arg = NULL; + const char *height_arg = NULL; + const char *infile_arg = NULL; + const char *outfile_arg = NULL; + const char *keyframe_interval_arg = NULL; + + exec_name = argv[0]; + + if (argc != 9) die("Invalid number of arguments"); + + codec_arg = argv[1]; + width_arg = argv[2]; + height_arg = argv[3]; + infile_arg = argv[4]; + outfile_arg = argv[5]; + keyframe_interval_arg = argv[6]; + max_frames = (int)strtol(argv[8], NULL, 0); + + encoder = get_vpx_encoder_by_name(codec_arg); + if (!encoder) die("Unsupported codec."); + + info.codec_fourcc = encoder->fourcc; + info.frame_width = (int)strtol(width_arg, NULL, 0); + info.frame_height = (int)strtol(height_arg, NULL, 0); + info.time_base.numerator = 1; + info.time_base.denominator = fps; + + if (info.frame_width <= 0 || info.frame_height <= 0 || + (info.frame_width % 2) != 0 || (info.frame_height % 2) != 0) { + die("Invalid frame size: %dx%d", info.frame_width, info.frame_height); + } + + if (!vpx_img_alloc(&raw, VPX_IMG_FMT_I420, info.frame_width, + info.frame_height, 1)) { + die("Failed to allocate image."); + } + + keyframe_interval = (int)strtol(keyframe_interval_arg, NULL, 0); + if (keyframe_interval < 0) die("Invalid keyframe interval value."); + + printf("Using %s\n", vpx_codec_iface_name(encoder->codec_interface())); + + res = vpx_codec_enc_config_default(encoder->codec_interface(), &cfg, 0); + if (res) die_codec(&codec, "Failed to get default codec config."); + + cfg.g_w = info.frame_width; + cfg.g_h = info.frame_height; + cfg.g_timebase.num = info.time_base.numerator; + cfg.g_timebase.den = info.time_base.denominator; + cfg.rc_target_bitrate = bitrate; + cfg.g_error_resilient = (vpx_codec_er_flags_t)strtoul(argv[7], NULL, 0); + + writer = vpx_video_writer_open(outfile_arg, kContainerIVF, &info); + if (!writer) die("Failed to open %s for writing.", outfile_arg); + + if (!(infile = fopen(infile_arg, "rb"))) + die("Failed to open %s for reading.", infile_arg); + + if (vpx_codec_enc_init(&codec, encoder->codec_interface(), &cfg, 0)) + die_codec(&codec, "Failed to initialize encoder"); + + // Encode frames. + while (vpx_img_read(&raw, infile)) { + int flags = 0; + if (keyframe_interval > 0 && frame_count % keyframe_interval == 0) + flags |= VPX_EFLAG_FORCE_KF; + encode_frame(&codec, &raw, frame_count++, flags, writer); + frames_encoded++; + if (max_frames > 0 && frames_encoded >= max_frames) break; + } + + // Flush encoder. + while (encode_frame(&codec, NULL, -1, 0, writer)) { + } + + printf("\n"); + fclose(infile); + printf("Processed %d frames.\n", frame_count); + + vpx_img_free(&raw); + if (vpx_codec_destroy(&codec)) die_codec(&codec, "Failed to destroy codec."); + + vpx_video_writer_close(writer); + + return EXIT_SUCCESS; +} diff --git a/examples/twopass_encoder.c b/examples/twopass_encoder.c new file mode 100644 index 0000000..4e63a7a --- /dev/null +++ b/examples/twopass_encoder.c @@ -0,0 +1,256 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +// Two Pass Encoder +// ================ +// +// This is an example of a two pass encoder loop. It takes an input file in +// YV12 format, passes it through the encoder twice, and writes the compressed +// frames to disk in IVF format. It builds upon the simple_encoder example. +// +// Twopass Variables +// ----------------- +// Twopass mode needs to track the current pass number and the buffer of +// statistics packets. +// +// Updating The Configuration +// --------------------------------- +// In two pass mode, the configuration has to be updated on each pass. The +// statistics buffer is passed on the last pass. +// +// Encoding A Frame +// ---------------- +// Encoding a frame in two pass mode is identical to the simple encoder +// example. To increase the quality while sacrificing encoding speed, +// VPX_DL_BEST_QUALITY can be used in place of VPX_DL_GOOD_QUALITY. +// +// Processing Statistics Packets +// ----------------------------- +// Each packet of type `VPX_CODEC_CX_FRAME_PKT` contains the encoded data +// for this frame. We write a IVF frame header, followed by the raw data. +// +// +// Pass Progress Reporting +// ----------------------------- +// It's sometimes helpful to see when each pass completes. +// +// +// Clean-up +// ----------------------------- +// Destruction of the encoder instance must be done on each pass. The +// raw image should be destroyed at the end as usual. + +#include +#include +#include + +#include "vpx/vpx_encoder.h" + +#include "../tools_common.h" +#include "../video_writer.h" + +static const char *exec_name; + +void usage_exit(void) { + fprintf(stderr, + "Usage: %s " + "\n", + exec_name); + exit(EXIT_FAILURE); +} + +static int get_frame_stats(vpx_codec_ctx_t *ctx, const vpx_image_t *img, + vpx_codec_pts_t pts, unsigned int duration, + vpx_enc_frame_flags_t flags, unsigned int deadline, + vpx_fixed_buf_t *stats) { + int got_pkts = 0; + vpx_codec_iter_t iter = NULL; + const vpx_codec_cx_pkt_t *pkt = NULL; + const vpx_codec_err_t res = + vpx_codec_encode(ctx, img, pts, duration, flags, deadline); + if (res != VPX_CODEC_OK) die_codec(ctx, "Failed to get frame stats."); + + while ((pkt = vpx_codec_get_cx_data(ctx, &iter)) != NULL) { + got_pkts = 1; + + if (pkt->kind == VPX_CODEC_STATS_PKT) { + const uint8_t *const pkt_buf = pkt->data.twopass_stats.buf; + const size_t pkt_size = pkt->data.twopass_stats.sz; + stats->buf = realloc(stats->buf, stats->sz + pkt_size); + memcpy((uint8_t *)stats->buf + stats->sz, pkt_buf, pkt_size); + stats->sz += pkt_size; + } + } + + return got_pkts; +} + +static int encode_frame(vpx_codec_ctx_t *ctx, const vpx_image_t *img, + vpx_codec_pts_t pts, unsigned int duration, + vpx_enc_frame_flags_t flags, unsigned int deadline, + VpxVideoWriter *writer) { + int got_pkts = 0; + vpx_codec_iter_t iter = NULL; + const vpx_codec_cx_pkt_t *pkt = NULL; + const vpx_codec_err_t res = + vpx_codec_encode(ctx, img, pts, duration, flags, deadline); + if (res != VPX_CODEC_OK) die_codec(ctx, "Failed to encode frame."); + + while ((pkt = vpx_codec_get_cx_data(ctx, &iter)) != NULL) { + got_pkts = 1; + if (pkt->kind == VPX_CODEC_CX_FRAME_PKT) { + const int keyframe = (pkt->data.frame.flags & VPX_FRAME_IS_KEY) != 0; + + if (!vpx_video_writer_write_frame(writer, pkt->data.frame.buf, + pkt->data.frame.sz, + pkt->data.frame.pts)) + die_codec(ctx, "Failed to write compressed frame."); + printf(keyframe ? "K" : "."); + fflush(stdout); + } + } + + return got_pkts; +} + +static vpx_fixed_buf_t pass0(vpx_image_t *raw, FILE *infile, + const VpxInterface *encoder, + const vpx_codec_enc_cfg_t *cfg, int max_frames) { + vpx_codec_ctx_t codec; + int frame_count = 0; + vpx_fixed_buf_t stats = { NULL, 0 }; + + if (vpx_codec_enc_init(&codec, encoder->codec_interface(), cfg, 0)) + die_codec(&codec, "Failed to initialize encoder"); + + // Calculate frame statistics. + while (vpx_img_read(raw, infile)) { + ++frame_count; + get_frame_stats(&codec, raw, frame_count, 1, 0, VPX_DL_GOOD_QUALITY, + &stats); + if (max_frames > 0 && frame_count >= max_frames) break; + } + + // Flush encoder. + while (get_frame_stats(&codec, NULL, frame_count, 1, 0, VPX_DL_GOOD_QUALITY, + &stats)) { + } + + printf("Pass 0 complete. Processed %d frames.\n", frame_count); + if (vpx_codec_destroy(&codec)) die_codec(&codec, "Failed to destroy codec."); + + return stats; +} + +static void pass1(vpx_image_t *raw, FILE *infile, const char *outfile_name, + const VpxInterface *encoder, const vpx_codec_enc_cfg_t *cfg, + int max_frames) { + VpxVideoInfo info = { encoder->fourcc, + cfg->g_w, + cfg->g_h, + { cfg->g_timebase.num, cfg->g_timebase.den } }; + VpxVideoWriter *writer = NULL; + vpx_codec_ctx_t codec; + int frame_count = 0; + + writer = vpx_video_writer_open(outfile_name, kContainerIVF, &info); + if (!writer) die("Failed to open %s for writing", outfile_name); + + if (vpx_codec_enc_init(&codec, encoder->codec_interface(), cfg, 0)) + die_codec(&codec, "Failed to initialize encoder"); + + // Encode frames. + while (vpx_img_read(raw, infile)) { + ++frame_count; + encode_frame(&codec, raw, frame_count, 1, 0, VPX_DL_GOOD_QUALITY, writer); + + if (max_frames > 0 && frame_count >= max_frames) break; + } + + // Flush encoder. + while (encode_frame(&codec, NULL, -1, 1, 0, VPX_DL_GOOD_QUALITY, writer)) { + } + + printf("\n"); + + if (vpx_codec_destroy(&codec)) die_codec(&codec, "Failed to destroy codec."); + + vpx_video_writer_close(writer); + + printf("Pass 1 complete. Processed %d frames.\n", frame_count); +} + +int main(int argc, char **argv) { + FILE *infile = NULL; + int w, h; + vpx_codec_ctx_t codec; + vpx_codec_enc_cfg_t cfg; + vpx_image_t raw; + vpx_codec_err_t res; + vpx_fixed_buf_t stats; + + const VpxInterface *encoder = NULL; + const int fps = 30; // TODO(dkovalev) add command line argument + const int bitrate = 200; // kbit/s TODO(dkovalev) add command line argument + const char *const codec_arg = argv[1]; + const char *const width_arg = argv[2]; + const char *const height_arg = argv[3]; + const char *const infile_arg = argv[4]; + const char *const outfile_arg = argv[5]; + int max_frames = 0; + exec_name = argv[0]; + + if (argc != 7) die("Invalid number of arguments."); + + max_frames = (int)strtol(argv[6], NULL, 0); + + encoder = get_vpx_encoder_by_name(codec_arg); + if (!encoder) die("Unsupported codec."); + + w = (int)strtol(width_arg, NULL, 0); + h = (int)strtol(height_arg, NULL, 0); + + if (w <= 0 || h <= 0 || (w % 2) != 0 || (h % 2) != 0) + die("Invalid frame size: %dx%d", w, h); + + if (!vpx_img_alloc(&raw, VPX_IMG_FMT_I420, w, h, 1)) + die("Failed to allocate image", w, h); + + printf("Using %s\n", vpx_codec_iface_name(encoder->codec_interface())); + + // Configuration + res = vpx_codec_enc_config_default(encoder->codec_interface(), &cfg, 0); + if (res) die_codec(&codec, "Failed to get default codec config."); + + cfg.g_w = w; + cfg.g_h = h; + cfg.g_timebase.num = 1; + cfg.g_timebase.den = fps; + cfg.rc_target_bitrate = bitrate; + + if (!(infile = fopen(infile_arg, "rb"))) + die("Failed to open %s for reading", infile_arg); + + // Pass 0 + cfg.g_pass = VPX_RC_FIRST_PASS; + stats = pass0(&raw, infile, encoder, &cfg, max_frames); + + // Pass 1 + rewind(infile); + cfg.g_pass = VPX_RC_LAST_PASS; + cfg.rc_twopass_stats_in = stats; + pass1(&raw, infile, outfile_arg, encoder, &cfg, max_frames); + free(stats.buf); + + vpx_img_free(&raw); + fclose(infile); + + return EXIT_SUCCESS; +} diff --git a/examples/vp8_multi_resolution_encoder.c b/examples/vp8_multi_resolution_encoder.c new file mode 100644 index 0000000..b14b1ff --- /dev/null +++ b/examples/vp8_multi_resolution_encoder.c @@ -0,0 +1,666 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +/* + * This is an example demonstrating multi-resolution encoding in VP8. + * High-resolution input video is down-sampled to lower-resolutions. The + * encoder then encodes the video and outputs multiple bitstreams with + * different resolutions. + * + * This test also allows for settings temporal layers for each spatial layer. + * Different number of temporal layers per spatial stream may be used. + * Currently up to 3 temporal layers per spatial stream (encoder) are supported + * in this test. + */ + +#include "./vpx_config.h" + +#include +#include +#include +#include +#include +#include +#include +#include "vpx_ports/vpx_timer.h" +#include "vpx/vpx_encoder.h" +#include "vpx/vp8cx.h" +#include "vpx_ports/mem_ops.h" +#include "../tools_common.h" +#define interface (vpx_codec_vp8_cx()) +#define fourcc 0x30385056 + +void usage_exit(void) { exit(EXIT_FAILURE); } + +/* + * The input video frame is downsampled several times to generate a multi-level + * hierarchical structure. NUM_ENCODERS is defined as the number of encoding + * levels required. For example, if the size of input video is 1280x720, + * NUM_ENCODERS is 3, and down-sampling factor is 2, the encoder outputs 3 + * bitstreams with resolution of 1280x720(level 0), 640x360(level 1), and + * 320x180(level 2) respectively. + */ + +/* Number of encoders (spatial resolutions) used in this test. */ +#define NUM_ENCODERS 3 + +/* Maximum number of temporal layers allowed for this test. */ +#define MAX_NUM_TEMPORAL_LAYERS 3 + +/* This example uses the scaler function in libyuv. */ +#include "third_party/libyuv/include/libyuv/basic_types.h" +#include "third_party/libyuv/include/libyuv/scale.h" +#include "third_party/libyuv/include/libyuv/cpu_id.h" + +int (*read_frame_p)(FILE *f, vpx_image_t *img); + +static int read_frame(FILE *f, vpx_image_t *img) { + size_t nbytes, to_read; + int res = 1; + + to_read = img->w * img->h * 3 / 2; + nbytes = fread(img->planes[0], 1, to_read, f); + if (nbytes != to_read) { + res = 0; + if (nbytes > 0) + printf("Warning: Read partial frame. Check your width & height!\n"); + } + return res; +} + +static int read_frame_by_row(FILE *f, vpx_image_t *img) { + size_t nbytes, to_read; + int res = 1; + int plane; + + for (plane = 0; plane < 3; plane++) { + unsigned char *ptr; + int w = (plane ? (1 + img->d_w) / 2 : img->d_w); + int h = (plane ? (1 + img->d_h) / 2 : img->d_h); + int r; + + /* Determine the correct plane based on the image format. The for-loop + * always counts in Y,U,V order, but this may not match the order of + * the data on disk. + */ + switch (plane) { + case 1: + ptr = img->planes[img->fmt == VPX_IMG_FMT_YV12 ? VPX_PLANE_V + : VPX_PLANE_U]; + break; + case 2: + ptr = img->planes[img->fmt == VPX_IMG_FMT_YV12 ? VPX_PLANE_U + : VPX_PLANE_V]; + break; + default: ptr = img->planes[plane]; + } + + for (r = 0; r < h; r++) { + to_read = w; + + nbytes = fread(ptr, 1, to_read, f); + if (nbytes != to_read) { + res = 0; + if (nbytes > 0) + printf("Warning: Read partial frame. Check your width & height!\n"); + break; + } + + ptr += img->stride[plane]; + } + if (!res) break; + } + + return res; +} + +static void write_ivf_file_header(FILE *outfile, const vpx_codec_enc_cfg_t *cfg, + int frame_cnt) { + char header[32]; + + if (cfg->g_pass != VPX_RC_ONE_PASS && cfg->g_pass != VPX_RC_LAST_PASS) return; + header[0] = 'D'; + header[1] = 'K'; + header[2] = 'I'; + header[3] = 'F'; + mem_put_le16(header + 4, 0); /* version */ + mem_put_le16(header + 6, 32); /* headersize */ + mem_put_le32(header + 8, fourcc); /* headersize */ + mem_put_le16(header + 12, cfg->g_w); /* width */ + mem_put_le16(header + 14, cfg->g_h); /* height */ + mem_put_le32(header + 16, cfg->g_timebase.den); /* rate */ + mem_put_le32(header + 20, cfg->g_timebase.num); /* scale */ + mem_put_le32(header + 24, frame_cnt); /* length */ + mem_put_le32(header + 28, 0); /* unused */ + + (void)fwrite(header, 1, 32, outfile); +} + +static void write_ivf_frame_header(FILE *outfile, + const vpx_codec_cx_pkt_t *pkt) { + char header[12]; + vpx_codec_pts_t pts; + + if (pkt->kind != VPX_CODEC_CX_FRAME_PKT) return; + + pts = pkt->data.frame.pts; + mem_put_le32(header, (int)pkt->data.frame.sz); + mem_put_le32(header + 4, pts & 0xFFFFFFFF); + mem_put_le32(header + 8, pts >> 32); + + (void)fwrite(header, 1, 12, outfile); +} + +/* Temporal scaling parameters */ +/* This sets all the temporal layer parameters given |num_temporal_layers|, + * including the target bit allocation across temporal layers. Bit allocation + * parameters will be passed in as user parameters in another version. + */ +static void set_temporal_layer_pattern(int num_temporal_layers, + vpx_codec_enc_cfg_t *cfg, int bitrate, + int *layer_flags) { + assert(num_temporal_layers <= MAX_NUM_TEMPORAL_LAYERS); + switch (num_temporal_layers) { + case 1: { + /* 1-layer */ + cfg->ts_number_layers = 1; + cfg->ts_periodicity = 1; + cfg->ts_rate_decimator[0] = 1; + cfg->ts_layer_id[0] = 0; + cfg->ts_target_bitrate[0] = bitrate; + + // Update L only. + layer_flags[0] = VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF; + break; + } + + case 2: { + /* 2-layers, with sync point at first frame of layer 1. */ + cfg->ts_number_layers = 2; + cfg->ts_periodicity = 2; + cfg->ts_rate_decimator[0] = 2; + cfg->ts_rate_decimator[1] = 1; + cfg->ts_layer_id[0] = 0; + cfg->ts_layer_id[1] = 1; + // Use 60/40 bit allocation as example. + cfg->ts_target_bitrate[0] = (int)(0.6f * bitrate); + cfg->ts_target_bitrate[1] = bitrate; + + /* 0=L, 1=GF */ + // ARF is used as predictor for all frames, and is only updated on + // key frame. Sync point every 8 frames. + + // Layer 0: predict from L and ARF, update L and G. + layer_flags[0] = VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_UPD_ARF; + + // Layer 1: sync point: predict from L and ARF, and update G. + layer_flags[1] = + VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_ARF; + + // Layer 0, predict from L and ARF, update L. + layer_flags[2] = + VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF; + + // Layer 1: predict from L, G and ARF, and update G. + layer_flags[3] = VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_LAST | + VP8_EFLAG_NO_UPD_ENTROPY; + + // Layer 0 + layer_flags[4] = layer_flags[2]; + + // Layer 1 + layer_flags[5] = layer_flags[3]; + + // Layer 0 + layer_flags[6] = layer_flags[4]; + + // Layer 1 + layer_flags[7] = layer_flags[5]; + break; + } + + case 3: + default: { + // 3-layers structure where ARF is used as predictor for all frames, + // and is only updated on key frame. + // Sync points for layer 1 and 2 every 8 frames. + cfg->ts_number_layers = 3; + cfg->ts_periodicity = 4; + cfg->ts_rate_decimator[0] = 4; + cfg->ts_rate_decimator[1] = 2; + cfg->ts_rate_decimator[2] = 1; + cfg->ts_layer_id[0] = 0; + cfg->ts_layer_id[1] = 2; + cfg->ts_layer_id[2] = 1; + cfg->ts_layer_id[3] = 2; + // Use 45/20/35 bit allocation as example. + cfg->ts_target_bitrate[0] = (int)(0.45f * bitrate); + cfg->ts_target_bitrate[1] = (int)(0.65f * bitrate); + cfg->ts_target_bitrate[2] = bitrate; + + /* 0=L, 1=GF, 2=ARF */ + + // Layer 0: predict from L and ARF; update L and G. + layer_flags[0] = VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_REF_GF; + + // Layer 2: sync point: predict from L and ARF; update none. + layer_flags[1] = VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_UPD_GF | + VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_LAST | + VP8_EFLAG_NO_UPD_ENTROPY; + + // Layer 1: sync point: predict from L and ARF; update G. + layer_flags[2] = + VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_LAST; + + // Layer 2: predict from L, G, ARF; update none. + layer_flags[3] = VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF | + VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_ENTROPY; + + // Layer 0: predict from L and ARF; update L. + layer_flags[4] = + VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_REF_GF; + + // Layer 2: predict from L, G, ARF; update none. + layer_flags[5] = layer_flags[3]; + + // Layer 1: predict from L, G, ARF; update G. + layer_flags[6] = VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_LAST; + + // Layer 2: predict from L, G, ARF; update none. + layer_flags[7] = layer_flags[3]; + break; + } + } +} + +/* The periodicity of the pattern given the number of temporal layers. */ +static int periodicity_to_num_layers[MAX_NUM_TEMPORAL_LAYERS] = { 1, 8, 8 }; + +int main(int argc, char **argv) { + FILE *infile, *outfile[NUM_ENCODERS]; + FILE *downsampled_input[NUM_ENCODERS - 1]; + char filename[50]; + vpx_codec_ctx_t codec[NUM_ENCODERS]; + vpx_codec_enc_cfg_t cfg[NUM_ENCODERS]; + int frame_cnt = 0; + vpx_image_t raw[NUM_ENCODERS]; + vpx_codec_err_t res[NUM_ENCODERS]; + + int i; + int width; + int height; + int length_frame; + int frame_avail; + int got_data; + int flags = 0; + int layer_id = 0; + + int layer_flags[VPX_TS_MAX_PERIODICITY * NUM_ENCODERS] = { 0 }; + int flag_periodicity; + + /*Currently, only realtime mode is supported in multi-resolution encoding.*/ + int arg_deadline = VPX_DL_REALTIME; + + /* Set show_psnr to 1/0 to show/not show PSNR. Choose show_psnr=0 if you + don't need to know PSNR, which will skip PSNR calculation and save + encoding time. */ + int show_psnr = 0; + int key_frame_insert = 0; + uint64_t psnr_sse_total[NUM_ENCODERS] = { 0 }; + uint64_t psnr_samples_total[NUM_ENCODERS] = { 0 }; + double psnr_totals[NUM_ENCODERS][4] = { { 0, 0 } }; + int psnr_count[NUM_ENCODERS] = { 0 }; + + int64_t cx_time = 0; + + /* Set the required target bitrates for each resolution level. + * If target bitrate for highest-resolution level is set to 0, + * (i.e. target_bitrate[0]=0), we skip encoding at that level. + */ + unsigned int target_bitrate[NUM_ENCODERS] = { 1000, 500, 100 }; + + /* Enter the frame rate of the input video */ + int framerate = 30; + + /* Set down-sampling factor for each resolution level. + dsf[0] controls down sampling from level 0 to level 1; + dsf[1] controls down sampling from level 1 to level 2; + dsf[2] is not used. */ + vpx_rational_t dsf[NUM_ENCODERS] = { { 2, 1 }, { 2, 1 }, { 1, 1 } }; + + /* Set the number of temporal layers for each encoder/resolution level, + * starting from highest resoln down to lowest resoln. */ + unsigned int num_temporal_layers[NUM_ENCODERS] = { 3, 3, 3 }; + + if (argc != (7 + 3 * NUM_ENCODERS)) + die("Usage: %s " + " \n", + argv[0]); + + printf("Using %s\n", vpx_codec_iface_name(interface)); + + width = (int)strtol(argv[1], NULL, 0); + height = (int)strtol(argv[2], NULL, 0); + framerate = (int)strtol(argv[3], NULL, 0); + + if (width < 16 || width % 2 || height < 16 || height % 2) + die("Invalid resolution: %ldx%ld", width, height); + + /* Open input video file for encoding */ + if (!(infile = fopen(argv[4], "rb"))) + die("Failed to open %s for reading", argv[4]); + + /* Open output file for each encoder to output bitstreams */ + for (i = 0; i < NUM_ENCODERS; i++) { + if (!target_bitrate[i]) { + outfile[i] = NULL; + continue; + } + + if (!(outfile[i] = fopen(argv[i + 5], "wb"))) + die("Failed to open %s for writing", argv[i + 4]); + } + + // Bitrates per spatial layer: overwrite default rates above. + for (i = 0; i < NUM_ENCODERS; i++) { + target_bitrate[i] = (int)strtol(argv[NUM_ENCODERS + 5 + i], NULL, 0); + } + + // Temporal layers per spatial layers: overwrite default settings above. + for (i = 0; i < NUM_ENCODERS; i++) { + num_temporal_layers[i] = + (int)strtol(argv[2 * NUM_ENCODERS + 5 + i], NULL, 0); + if (num_temporal_layers[i] < 1 || num_temporal_layers[i] > 3) + die("Invalid temporal layers: %d, Must be 1, 2, or 3. \n", + num_temporal_layers); + } + + /* Open file to write out each spatially downsampled input stream. */ + for (i = 0; i < NUM_ENCODERS - 1; i++) { + // Highest resoln is encoder 0. + if (sprintf(filename, "ds%d.yuv", NUM_ENCODERS - i) < 0) { + return EXIT_FAILURE; + } + downsampled_input[i] = fopen(filename, "wb"); + } + + key_frame_insert = (int)strtol(argv[3 * NUM_ENCODERS + 5], NULL, 0); + + show_psnr = (int)strtol(argv[3 * NUM_ENCODERS + 6], NULL, 0); + + /* Populate default encoder configuration */ + for (i = 0; i < NUM_ENCODERS; i++) { + res[i] = vpx_codec_enc_config_default(interface, &cfg[i], 0); + if (res[i]) { + printf("Failed to get config: %s\n", vpx_codec_err_to_string(res[i])); + return EXIT_FAILURE; + } + } + + /* + * Update the default configuration according to needs of the application. + */ + /* Highest-resolution encoder settings */ + cfg[0].g_w = width; + cfg[0].g_h = height; + cfg[0].rc_dropframe_thresh = 0; + cfg[0].rc_end_usage = VPX_CBR; + cfg[0].rc_resize_allowed = 0; + cfg[0].rc_min_quantizer = 2; + cfg[0].rc_max_quantizer = 56; + cfg[0].rc_undershoot_pct = 100; + cfg[0].rc_overshoot_pct = 15; + cfg[0].rc_buf_initial_sz = 500; + cfg[0].rc_buf_optimal_sz = 600; + cfg[0].rc_buf_sz = 1000; + cfg[0].g_error_resilient = 1; /* Enable error resilient mode */ + cfg[0].g_lag_in_frames = 0; + + /* Disable automatic keyframe placement */ + /* Note: These 3 settings are copied to all levels. But, except the lowest + * resolution level, all other levels are set to VPX_KF_DISABLED internally. + */ + cfg[0].kf_mode = VPX_KF_AUTO; + cfg[0].kf_min_dist = 3000; + cfg[0].kf_max_dist = 3000; + + cfg[0].rc_target_bitrate = target_bitrate[0]; /* Set target bitrate */ + cfg[0].g_timebase.num = 1; /* Set fps */ + cfg[0].g_timebase.den = framerate; + + /* Other-resolution encoder settings */ + for (i = 1; i < NUM_ENCODERS; i++) { + memcpy(&cfg[i], &cfg[0], sizeof(vpx_codec_enc_cfg_t)); + + cfg[i].rc_target_bitrate = target_bitrate[i]; + + /* Note: Width & height of other-resolution encoders are calculated + * from the highest-resolution encoder's size and the corresponding + * down_sampling_factor. + */ + { + unsigned int iw = cfg[i - 1].g_w * dsf[i - 1].den + dsf[i - 1].num - 1; + unsigned int ih = cfg[i - 1].g_h * dsf[i - 1].den + dsf[i - 1].num - 1; + cfg[i].g_w = iw / dsf[i - 1].num; + cfg[i].g_h = ih / dsf[i - 1].num; + } + + /* Make width & height to be multiplier of 2. */ + // Should support odd size ??? + if ((cfg[i].g_w) % 2) cfg[i].g_w++; + if ((cfg[i].g_h) % 2) cfg[i].g_h++; + } + + // Set the number of threads per encode/spatial layer. + // (1, 1, 1) means no encoder threading. + cfg[0].g_threads = 1; + cfg[1].g_threads = 1; + cfg[2].g_threads = 1; + + /* Allocate image for each encoder */ + for (i = 0; i < NUM_ENCODERS; i++) + if (!vpx_img_alloc(&raw[i], VPX_IMG_FMT_I420, cfg[i].g_w, cfg[i].g_h, 32)) + die("Failed to allocate image", cfg[i].g_w, cfg[i].g_h); + + if (raw[0].stride[VPX_PLANE_Y] == (int)raw[0].d_w) + read_frame_p = read_frame; + else + read_frame_p = read_frame_by_row; + + for (i = 0; i < NUM_ENCODERS; i++) + if (outfile[i]) write_ivf_file_header(outfile[i], &cfg[i], 0); + + /* Temporal layers settings */ + for (i = 0; i < NUM_ENCODERS; i++) { + set_temporal_layer_pattern(num_temporal_layers[i], &cfg[i], + cfg[i].rc_target_bitrate, + &layer_flags[i * VPX_TS_MAX_PERIODICITY]); + } + + /* Initialize multi-encoder */ + if (vpx_codec_enc_init_multi(&codec[0], interface, &cfg[0], NUM_ENCODERS, + (show_psnr ? VPX_CODEC_USE_PSNR : 0), &dsf[0])) + die_codec(&codec[0], "Failed to initialize encoder"); + + /* The extra encoding configuration parameters can be set as follows. */ + /* Set encoding speed */ + for (i = 0; i < NUM_ENCODERS; i++) { + int speed = -6; + /* Lower speed for the lowest resolution. */ + if (i == NUM_ENCODERS - 1) speed = -4; + if (vpx_codec_control(&codec[i], VP8E_SET_CPUUSED, speed)) + die_codec(&codec[i], "Failed to set cpu_used"); + } + + /* Set static threshold = 1 for all encoders */ + for (i = 0; i < NUM_ENCODERS; i++) { + if (vpx_codec_control(&codec[i], VP8E_SET_STATIC_THRESHOLD, 1)) + die_codec(&codec[i], "Failed to set static threshold"); + } + + /* Set NOISE_SENSITIVITY to do TEMPORAL_DENOISING */ + /* Enable denoising for the highest-resolution encoder. */ + if (vpx_codec_control(&codec[0], VP8E_SET_NOISE_SENSITIVITY, 1)) + die_codec(&codec[0], "Failed to set noise_sensitivity"); + if (vpx_codec_control(&codec[1], VP8E_SET_NOISE_SENSITIVITY, 1)) + die_codec(&codec[1], "Failed to set noise_sensitivity"); + for (i = 2; i < NUM_ENCODERS; i++) { + if (vpx_codec_control(&codec[i], VP8E_SET_NOISE_SENSITIVITY, 0)) + die_codec(&codec[i], "Failed to set noise_sensitivity"); + } + + /* Set the number of token partitions */ + for (i = 0; i < NUM_ENCODERS; i++) { + if (vpx_codec_control(&codec[i], VP8E_SET_TOKEN_PARTITIONS, 1)) + die_codec(&codec[i], "Failed to set static threshold"); + } + + /* Set the max intra target bitrate */ + for (i = 0; i < NUM_ENCODERS; i++) { + unsigned int max_intra_size_pct = + (int)(((double)cfg[0].rc_buf_optimal_sz * 0.5) * framerate / 10); + if (vpx_codec_control(&codec[i], VP8E_SET_MAX_INTRA_BITRATE_PCT, + max_intra_size_pct)) + die_codec(&codec[i], "Failed to set static threshold"); + // printf("%d %d \n",i,max_intra_size_pct); + } + + frame_avail = 1; + got_data = 0; + + while (frame_avail || got_data) { + struct vpx_usec_timer timer; + vpx_codec_iter_t iter[NUM_ENCODERS] = { NULL }; + const vpx_codec_cx_pkt_t *pkt[NUM_ENCODERS]; + + flags = 0; + frame_avail = read_frame_p(infile, &raw[0]); + + if (frame_avail) { + for (i = 1; i < NUM_ENCODERS; i++) { + /*Scale the image down a number of times by downsampling factor*/ + /* FilterMode 1 or 2 give better psnr than FilterMode 0. */ + I420Scale( + raw[i - 1].planes[VPX_PLANE_Y], raw[i - 1].stride[VPX_PLANE_Y], + raw[i - 1].planes[VPX_PLANE_U], raw[i - 1].stride[VPX_PLANE_U], + raw[i - 1].planes[VPX_PLANE_V], raw[i - 1].stride[VPX_PLANE_V], + raw[i - 1].d_w, raw[i - 1].d_h, raw[i].planes[VPX_PLANE_Y], + raw[i].stride[VPX_PLANE_Y], raw[i].planes[VPX_PLANE_U], + raw[i].stride[VPX_PLANE_U], raw[i].planes[VPX_PLANE_V], + raw[i].stride[VPX_PLANE_V], raw[i].d_w, raw[i].d_h, 1); + /* Write out down-sampled input. */ + length_frame = cfg[i].g_w * cfg[i].g_h * 3 / 2; + if (fwrite(raw[i].planes[0], 1, length_frame, + downsampled_input[NUM_ENCODERS - i - 1]) != + (unsigned int)length_frame) { + return EXIT_FAILURE; + } + } + } + + /* Set the flags (reference and update) for all the encoders.*/ + for (i = 0; i < NUM_ENCODERS; i++) { + layer_id = cfg[i].ts_layer_id[frame_cnt % cfg[i].ts_periodicity]; + flags = 0; + flag_periodicity = periodicity_to_num_layers[num_temporal_layers[i] - 1]; + flags = layer_flags[i * VPX_TS_MAX_PERIODICITY + + frame_cnt % flag_periodicity]; + // Key frame flag for first frame. + if (frame_cnt == 0) { + flags |= VPX_EFLAG_FORCE_KF; + } + if (frame_cnt > 0 && frame_cnt == key_frame_insert) { + flags = VPX_EFLAG_FORCE_KF; + } + + vpx_codec_control(&codec[i], VP8E_SET_FRAME_FLAGS, flags); + vpx_codec_control(&codec[i], VP8E_SET_TEMPORAL_LAYER_ID, layer_id); + } + + /* Encode each frame at multi-levels */ + /* Note the flags must be set to 0 in the encode call if they are set + for each frame with the vpx_codec_control(), as done above. */ + vpx_usec_timer_start(&timer); + if (vpx_codec_encode(&codec[0], frame_avail ? &raw[0] : NULL, frame_cnt, 1, + 0, arg_deadline)) { + die_codec(&codec[0], "Failed to encode frame"); + } + vpx_usec_timer_mark(&timer); + cx_time += vpx_usec_timer_elapsed(&timer); + + for (i = NUM_ENCODERS - 1; i >= 0; i--) { + got_data = 0; + while ((pkt[i] = vpx_codec_get_cx_data(&codec[i], &iter[i]))) { + got_data = 1; + switch (pkt[i]->kind) { + case VPX_CODEC_CX_FRAME_PKT: + write_ivf_frame_header(outfile[i], pkt[i]); + (void)fwrite(pkt[i]->data.frame.buf, 1, pkt[i]->data.frame.sz, + outfile[i]); + break; + case VPX_CODEC_PSNR_PKT: + if (show_psnr) { + int j; + + psnr_sse_total[i] += pkt[i]->data.psnr.sse[0]; + psnr_samples_total[i] += pkt[i]->data.psnr.samples[0]; + for (j = 0; j < 4; j++) { + psnr_totals[i][j] += pkt[i]->data.psnr.psnr[j]; + } + psnr_count[i]++; + } + + break; + default: break; + } + fflush(stdout); + } + } + frame_cnt++; + } + printf("\n"); + printf("Frame cnt and encoding time/FPS stats for encoding: %d %f %f \n", + frame_cnt, 1000 * (float)cx_time / (double)(frame_cnt * 1000000), + 1000000 * (double)frame_cnt / (double)cx_time); + + fclose(infile); + + printf("Processed %ld frames.\n", (long int)frame_cnt - 1); + for (i = 0; i < NUM_ENCODERS; i++) { + /* Calculate PSNR and print it out */ + if ((show_psnr) && (psnr_count[i] > 0)) { + int j; + double ovpsnr = + sse_to_psnr(psnr_samples_total[i], 255.0, psnr_sse_total[i]); + + fprintf(stderr, "\n ENC%d PSNR (Overall/Avg/Y/U/V)", i); + + fprintf(stderr, " %.3lf", ovpsnr); + for (j = 0; j < 4; j++) { + fprintf(stderr, " %.3lf", psnr_totals[i][j] / psnr_count[i]); + } + } + + if (vpx_codec_destroy(&codec[i])) + die_codec(&codec[i], "Failed to destroy codec"); + + vpx_img_free(&raw[i]); + + if (!outfile[i]) continue; + + /* Try to rewrite the file header with the actual frame count */ + if (!fseek(outfile[i], 0, SEEK_SET)) + write_ivf_file_header(outfile[i], &cfg[i], frame_cnt - 1); + fclose(outfile[i]); + } + + return EXIT_SUCCESS; +} diff --git a/examples/vp8cx_set_ref.c b/examples/vp8cx_set_ref.c new file mode 100644 index 0000000..846477c --- /dev/null +++ b/examples/vp8cx_set_ref.c @@ -0,0 +1,187 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +// VP8 Set Reference Frame +// ======================= +// +// This is an example demonstrating how to overwrite the VP8 encoder's +// internal reference frame. In the sample we set the last frame to the +// current frame. If this is done at a cut scene it will avoid a keyframe. +// This technique could be used to bounce between two cameras. +// +// Note that the decoder would also have to set the reference frame to the +// same value on the same frame, or the video will become corrupt. +// +// Usage +// ----- +// This example adds a single argument to the `simple_encoder` example, +// which specifies the frame number to update the reference frame on. +// The parameter is parsed as follows: +// +// +// Extra Variables +// --------------- +// This example maintains the frame number passed on the command line +// in the `update_frame_num` variable. +// +// +// Configuration +// ------------- +// +// The reference frame is updated on the frame specified on the command +// line. +// +// Observing The Effects +// --------------------- +// Use the `simple_encoder` example to encode a sample with a cut scene. +// Determine the frame number of the cut scene by looking for a generated +// key-frame (indicated by a 'K'). Supply that frame number as an argument +// to this example, and observe that no key-frame is generated. + +#include +#include +#include + +#include "vpx/vp8cx.h" +#include "vpx/vpx_encoder.h" +#include "vp8/common/common.h" + +#include "../tools_common.h" +#include "../video_writer.h" + +static const char *exec_name; + +void usage_exit(void) { + fprintf(stderr, "Usage: %s \n", + exec_name); + exit(EXIT_FAILURE); +} + +static int encode_frame(vpx_codec_ctx_t *codec, vpx_image_t *img, + int frame_index, VpxVideoWriter *writer) { + int got_pkts = 0; + vpx_codec_iter_t iter = NULL; + const vpx_codec_cx_pkt_t *pkt = NULL; + const vpx_codec_err_t res = + vpx_codec_encode(codec, img, frame_index, 1, 0, VPX_DL_GOOD_QUALITY); + if (res != VPX_CODEC_OK) die_codec(codec, "Failed to encode frame"); + + while ((pkt = vpx_codec_get_cx_data(codec, &iter)) != NULL) { + got_pkts = 1; + + if (pkt->kind == VPX_CODEC_CX_FRAME_PKT) { + const int keyframe = (pkt->data.frame.flags & VPX_FRAME_IS_KEY) != 0; + if (!vpx_video_writer_write_frame(writer, pkt->data.frame.buf, + pkt->data.frame.sz, + pkt->data.frame.pts)) { + die_codec(codec, "Failed to write compressed frame"); + } + + printf(keyframe ? "K" : "."); + fflush(stdout); + } + } + + return got_pkts; +} + +int main(int argc, char **argv) { + FILE *infile = NULL; + vpx_codec_ctx_t codec; + vpx_codec_enc_cfg_t cfg; + int frame_count = 0; + vpx_image_t raw; + vpx_codec_err_t res; + VpxVideoInfo info; + VpxVideoWriter *writer = NULL; + const VpxInterface *encoder = NULL; + int update_frame_num = 0; + const int fps = 30; // TODO(dkovalev) add command line argument + const int bitrate = 200; // kbit/s TODO(dkovalev) add command line argument + + vp8_zero(codec); + vp8_zero(cfg); + vp8_zero(info); + + exec_name = argv[0]; + + if (argc != 6) die("Invalid number of arguments"); + + // TODO(dkovalev): add vp9 support and rename the file accordingly + encoder = get_vpx_encoder_by_name("vp8"); + if (!encoder) die("Unsupported codec."); + + update_frame_num = atoi(argv[5]); + if (!update_frame_num) die("Couldn't parse frame number '%s'\n", argv[5]); + + info.codec_fourcc = encoder->fourcc; + info.frame_width = (int)strtol(argv[1], NULL, 0); + info.frame_height = (int)strtol(argv[2], NULL, 0); + info.time_base.numerator = 1; + info.time_base.denominator = fps; + + if (info.frame_width <= 0 || info.frame_height <= 0 || + (info.frame_width % 2) != 0 || (info.frame_height % 2) != 0) { + die("Invalid frame size: %dx%d", info.frame_width, info.frame_height); + } + + if (!vpx_img_alloc(&raw, VPX_IMG_FMT_I420, info.frame_width, + info.frame_height, 1)) { + die("Failed to allocate image."); + } + + printf("Using %s\n", vpx_codec_iface_name(encoder->codec_interface())); + + res = vpx_codec_enc_config_default(encoder->codec_interface(), &cfg, 0); + if (res) die_codec(&codec, "Failed to get default codec config."); + + cfg.g_w = info.frame_width; + cfg.g_h = info.frame_height; + cfg.g_timebase.num = info.time_base.numerator; + cfg.g_timebase.den = info.time_base.denominator; + cfg.rc_target_bitrate = bitrate; + + writer = vpx_video_writer_open(argv[4], kContainerIVF, &info); + if (!writer) die("Failed to open %s for writing.", argv[4]); + + if (!(infile = fopen(argv[3], "rb"))) + die("Failed to open %s for reading.", argv[3]); + + if (vpx_codec_enc_init(&codec, encoder->codec_interface(), &cfg, 0)) + die_codec(&codec, "Failed to initialize encoder"); + + // Encode frames. + while (vpx_img_read(&raw, infile)) { + if (frame_count + 1 == update_frame_num) { + vpx_ref_frame_t ref; + ref.frame_type = VP8_LAST_FRAME; + ref.img = raw; + if (vpx_codec_control(&codec, VP8_SET_REFERENCE, &ref)) + die_codec(&codec, "Failed to set reference frame"); + } + + encode_frame(&codec, &raw, frame_count++, writer); + } + + // Flush encoder. + while (encode_frame(&codec, NULL, -1, writer)) { + } + + printf("\n"); + fclose(infile); + printf("Processed %d frames.\n", frame_count); + + vpx_img_free(&raw); + if (vpx_codec_destroy(&codec)) die_codec(&codec, "Failed to destroy codec."); + + vpx_video_writer_close(writer); + + return EXIT_SUCCESS; +} diff --git a/examples/vp9_lossless_encoder.c b/examples/vp9_lossless_encoder.c new file mode 100644 index 0000000..cb5ca6b --- /dev/null +++ b/examples/vp9_lossless_encoder.c @@ -0,0 +1,137 @@ +/* + * Copyright (c) 2014 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include +#include + +#include "vpx/vpx_encoder.h" +#include "vpx/vp8cx.h" +#include "vp9/common/vp9_common.h" + +#include "../tools_common.h" +#include "../video_writer.h" + +static const char *exec_name; + +void usage_exit(void) { + fprintf(stderr, + "vp9_lossless_encoder: Example demonstrating VP9 lossless " + "encoding feature. Supports raw input only.\n"); + fprintf(stderr, "Usage: %s \n", exec_name); + exit(EXIT_FAILURE); +} + +static int encode_frame(vpx_codec_ctx_t *codec, vpx_image_t *img, + int frame_index, int flags, VpxVideoWriter *writer) { + int got_pkts = 0; + vpx_codec_iter_t iter = NULL; + const vpx_codec_cx_pkt_t *pkt = NULL; + const vpx_codec_err_t res = + vpx_codec_encode(codec, img, frame_index, 1, flags, VPX_DL_GOOD_QUALITY); + if (res != VPX_CODEC_OK) die_codec(codec, "Failed to encode frame"); + + while ((pkt = vpx_codec_get_cx_data(codec, &iter)) != NULL) { + got_pkts = 1; + + if (pkt->kind == VPX_CODEC_CX_FRAME_PKT) { + const int keyframe = (pkt->data.frame.flags & VPX_FRAME_IS_KEY) != 0; + if (!vpx_video_writer_write_frame(writer, pkt->data.frame.buf, + pkt->data.frame.sz, + pkt->data.frame.pts)) { + die_codec(codec, "Failed to write compressed frame"); + } + printf(keyframe ? "K" : "."); + fflush(stdout); + } + } + + return got_pkts; +} + +int main(int argc, char **argv) { + FILE *infile = NULL; + vpx_codec_ctx_t codec; + vpx_codec_enc_cfg_t cfg; + int frame_count = 0; + vpx_image_t raw; + vpx_codec_err_t res; + VpxVideoInfo info; + VpxVideoWriter *writer = NULL; + const VpxInterface *encoder = NULL; + const int fps = 30; + + vp9_zero(info); + + exec_name = argv[0]; + + if (argc < 5) die("Invalid number of arguments"); + + encoder = get_vpx_encoder_by_name("vp9"); + if (!encoder) die("Unsupported codec."); + + info.codec_fourcc = encoder->fourcc; + info.frame_width = (int)strtol(argv[1], NULL, 0); + info.frame_height = (int)strtol(argv[2], NULL, 0); + info.time_base.numerator = 1; + info.time_base.denominator = fps; + + if (info.frame_width <= 0 || info.frame_height <= 0 || + (info.frame_width % 2) != 0 || (info.frame_height % 2) != 0) { + die("Invalid frame size: %dx%d", info.frame_width, info.frame_height); + } + + if (!vpx_img_alloc(&raw, VPX_IMG_FMT_I420, info.frame_width, + info.frame_height, 1)) { + die("Failed to allocate image."); + } + + printf("Using %s\n", vpx_codec_iface_name(encoder->codec_interface())); + + res = vpx_codec_enc_config_default(encoder->codec_interface(), &cfg, 0); + if (res) die_codec(&codec, "Failed to get default codec config."); + + cfg.g_w = info.frame_width; + cfg.g_h = info.frame_height; + cfg.g_timebase.num = info.time_base.numerator; + cfg.g_timebase.den = info.time_base.denominator; + + writer = vpx_video_writer_open(argv[4], kContainerIVF, &info); + if (!writer) die("Failed to open %s for writing.", argv[4]); + + if (!(infile = fopen(argv[3], "rb"))) + die("Failed to open %s for reading.", argv[3]); + + if (vpx_codec_enc_init(&codec, encoder->codec_interface(), &cfg, 0)) + die_codec(&codec, "Failed to initialize encoder"); + + if (vpx_codec_control_(&codec, VP9E_SET_LOSSLESS, 1)) + die_codec(&codec, "Failed to use lossless mode"); + + // Encode frames. + while (vpx_img_read(&raw, infile)) { + encode_frame(&codec, &raw, frame_count++, 0, writer); + } + + // Flush encoder. + while (encode_frame(&codec, NULL, -1, 0, writer)) { + } + + printf("\n"); + fclose(infile); + printf("Processed %d frames.\n", frame_count); + + vpx_img_free(&raw); + if (vpx_codec_destroy(&codec)) die_codec(&codec, "Failed to destroy codec."); + + vpx_video_writer_close(writer); + + return EXIT_SUCCESS; +} diff --git a/examples/vp9_spatial_svc_encoder.c b/examples/vp9_spatial_svc_encoder.c new file mode 100644 index 0000000..0987cbf --- /dev/null +++ b/examples/vp9_spatial_svc_encoder.c @@ -0,0 +1,925 @@ +/* + * Copyright (c) 2012 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +/* + * This is an example demonstrating how to implement a multi-layer + * VP9 encoding scheme based on spatial scalability for video applications + * that benefit from a scalable bitstream. + */ + +#include +#include +#include +#include +#include + +#include "../args.h" +#include "../tools_common.h" +#include "../video_writer.h" + +#include "../vpx_ports/vpx_timer.h" +#include "vpx/svc_context.h" +#include "vpx/vp8cx.h" +#include "vpx/vpx_encoder.h" +#include "../vpxstats.h" +#include "vp9/encoder/vp9_encoder.h" +#define OUTPUT_RC_STATS 1 + +static const arg_def_t skip_frames_arg = + ARG_DEF("s", "skip-frames", 1, "input frames to skip"); +static const arg_def_t frames_arg = + ARG_DEF("f", "frames", 1, "number of frames to encode"); +static const arg_def_t threads_arg = + ARG_DEF("th", "threads", 1, "number of threads to use"); +#if OUTPUT_RC_STATS +static const arg_def_t output_rc_stats_arg = + ARG_DEF("rcstat", "output_rc_stats", 1, "output rc stats"); +#endif +static const arg_def_t width_arg = ARG_DEF("w", "width", 1, "source width"); +static const arg_def_t height_arg = ARG_DEF("h", "height", 1, "source height"); +static const arg_def_t timebase_arg = + ARG_DEF("t", "timebase", 1, "timebase (num/den)"); +static const arg_def_t bitrate_arg = ARG_DEF( + "b", "target-bitrate", 1, "encoding bitrate, in kilobits per second"); +static const arg_def_t spatial_layers_arg = + ARG_DEF("sl", "spatial-layers", 1, "number of spatial SVC layers"); +static const arg_def_t temporal_layers_arg = + ARG_DEF("tl", "temporal-layers", 1, "number of temporal SVC layers"); +static const arg_def_t temporal_layering_mode_arg = + ARG_DEF("tlm", "temporal-layering-mode", 1, + "temporal layering scheme." + "VP9E_TEMPORAL_LAYERING_MODE"); +static const arg_def_t kf_dist_arg = + ARG_DEF("k", "kf-dist", 1, "number of frames between keyframes"); +static const arg_def_t scale_factors_arg = + ARG_DEF("r", "scale-factors", 1, "scale factors (lowest to highest layer)"); +static const arg_def_t passes_arg = + ARG_DEF("p", "passes", 1, "Number of passes (1/2)"); +static const arg_def_t pass_arg = + ARG_DEF(NULL, "pass", 1, "Pass to execute (1/2)"); +static const arg_def_t fpf_name_arg = + ARG_DEF(NULL, "fpf", 1, "First pass statistics file name"); +static const arg_def_t min_q_arg = + ARG_DEF(NULL, "min-q", 1, "Minimum quantizer"); +static const arg_def_t max_q_arg = + ARG_DEF(NULL, "max-q", 1, "Maximum quantizer"); +static const arg_def_t min_bitrate_arg = + ARG_DEF(NULL, "min-bitrate", 1, "Minimum bitrate"); +static const arg_def_t max_bitrate_arg = + ARG_DEF(NULL, "max-bitrate", 1, "Maximum bitrate"); +static const arg_def_t lag_in_frame_arg = + ARG_DEF(NULL, "lag-in-frames", 1, + "Number of frame to input before " + "generating any outputs"); +static const arg_def_t rc_end_usage_arg = + ARG_DEF(NULL, "rc-end-usage", 1, "0 - 3: VBR, CBR, CQ, Q"); +static const arg_def_t speed_arg = + ARG_DEF("sp", "speed", 1, "speed configuration"); +static const arg_def_t aqmode_arg = + ARG_DEF("aq", "aqmode", 1, "aq-mode off/on"); +static const arg_def_t bitrates_arg = + ARG_DEF("bl", "bitrates", 1, "bitrates[sl * num_tl + tl]"); + +#if CONFIG_VP9_HIGHBITDEPTH +static const struct arg_enum_list bitdepth_enum[] = { + { "8", VPX_BITS_8 }, { "10", VPX_BITS_10 }, { "12", VPX_BITS_12 }, { NULL, 0 } +}; + +static const arg_def_t bitdepth_arg = ARG_DEF_ENUM( + "d", "bit-depth", 1, "Bit depth for codec 8, 10 or 12. ", bitdepth_enum); +#endif // CONFIG_VP9_HIGHBITDEPTH + +static const arg_def_t *svc_args[] = { &frames_arg, + &width_arg, + &height_arg, + &timebase_arg, + &bitrate_arg, + &skip_frames_arg, + &spatial_layers_arg, + &kf_dist_arg, + &scale_factors_arg, + &passes_arg, + &pass_arg, + &fpf_name_arg, + &min_q_arg, + &max_q_arg, + &min_bitrate_arg, + &max_bitrate_arg, + &temporal_layers_arg, + &temporal_layering_mode_arg, + &lag_in_frame_arg, + &threads_arg, + &aqmode_arg, +#if OUTPUT_RC_STATS + &output_rc_stats_arg, +#endif + +#if CONFIG_VP9_HIGHBITDEPTH + &bitdepth_arg, +#endif + &speed_arg, + &rc_end_usage_arg, + &bitrates_arg, + NULL }; + +static const uint32_t default_frames_to_skip = 0; +static const uint32_t default_frames_to_code = 60 * 60; +static const uint32_t default_width = 1920; +static const uint32_t default_height = 1080; +static const uint32_t default_timebase_num = 1; +static const uint32_t default_timebase_den = 60; +static const uint32_t default_bitrate = 1000; +static const uint32_t default_spatial_layers = 5; +static const uint32_t default_temporal_layers = 1; +static const uint32_t default_kf_dist = 100; +static const uint32_t default_temporal_layering_mode = 0; +static const uint32_t default_output_rc_stats = 0; +static const int32_t default_speed = -1; // -1 means use library default. +static const uint32_t default_threads = 0; // zero means use library default. + +typedef struct { + const char *input_filename; + const char *output_filename; + uint32_t frames_to_code; + uint32_t frames_to_skip; + struct VpxInputContext input_ctx; + stats_io_t rc_stats; + int passes; + int pass; +} AppInput; + +static const char *exec_name; + +void usage_exit(void) { + fprintf(stderr, "Usage: %s input_filename output_filename\n", + exec_name); + fprintf(stderr, "Options:\n"); + arg_show_usage(stderr, svc_args); + exit(EXIT_FAILURE); +} + +static void parse_command_line(int argc, const char **argv_, + AppInput *app_input, SvcContext *svc_ctx, + vpx_codec_enc_cfg_t *enc_cfg) { + struct arg arg; + char **argv = NULL; + char **argi = NULL; + char **argj = NULL; + vpx_codec_err_t res; + int passes = 0; + int pass = 0; + const char *fpf_file_name = NULL; + unsigned int min_bitrate = 0; + unsigned int max_bitrate = 0; + char string_options[1024] = { 0 }; + + // initialize SvcContext with parameters that will be passed to vpx_svc_init + svc_ctx->log_level = SVC_LOG_DEBUG; + svc_ctx->spatial_layers = default_spatial_layers; + svc_ctx->temporal_layers = default_temporal_layers; + svc_ctx->temporal_layering_mode = default_temporal_layering_mode; +#if OUTPUT_RC_STATS + svc_ctx->output_rc_stat = default_output_rc_stats; +#endif + svc_ctx->speed = default_speed; + svc_ctx->threads = default_threads; + + // start with default encoder configuration + res = vpx_codec_enc_config_default(vpx_codec_vp9_cx(), enc_cfg, 0); + if (res) { + die("Failed to get config: %s\n", vpx_codec_err_to_string(res)); + } + // update enc_cfg with app default values + enc_cfg->g_w = default_width; + enc_cfg->g_h = default_height; + enc_cfg->g_timebase.num = default_timebase_num; + enc_cfg->g_timebase.den = default_timebase_den; + enc_cfg->rc_target_bitrate = default_bitrate; + enc_cfg->kf_min_dist = default_kf_dist; + enc_cfg->kf_max_dist = default_kf_dist; + enc_cfg->rc_end_usage = VPX_CQ; + + // initialize AppInput with default values + app_input->frames_to_code = default_frames_to_code; + app_input->frames_to_skip = default_frames_to_skip; + + // process command line options + argv = argv_dup(argc - 1, argv_ + 1); + for (argi = argj = argv; (*argj = *argi); argi += arg.argv_step) { + arg.argv_step = 1; + + if (arg_match(&arg, &frames_arg, argi)) { + app_input->frames_to_code = arg_parse_uint(&arg); + } else if (arg_match(&arg, &width_arg, argi)) { + enc_cfg->g_w = arg_parse_uint(&arg); + } else if (arg_match(&arg, &height_arg, argi)) { + enc_cfg->g_h = arg_parse_uint(&arg); + } else if (arg_match(&arg, &timebase_arg, argi)) { + enc_cfg->g_timebase = arg_parse_rational(&arg); + } else if (arg_match(&arg, &bitrate_arg, argi)) { + enc_cfg->rc_target_bitrate = arg_parse_uint(&arg); + } else if (arg_match(&arg, &skip_frames_arg, argi)) { + app_input->frames_to_skip = arg_parse_uint(&arg); + } else if (arg_match(&arg, &spatial_layers_arg, argi)) { + svc_ctx->spatial_layers = arg_parse_uint(&arg); + } else if (arg_match(&arg, &temporal_layers_arg, argi)) { + svc_ctx->temporal_layers = arg_parse_uint(&arg); +#if OUTPUT_RC_STATS + } else if (arg_match(&arg, &output_rc_stats_arg, argi)) { + svc_ctx->output_rc_stat = arg_parse_uint(&arg); +#endif + } else if (arg_match(&arg, &speed_arg, argi)) { + svc_ctx->speed = arg_parse_uint(&arg); + } else if (arg_match(&arg, &aqmode_arg, argi)) { + svc_ctx->aqmode = arg_parse_uint(&arg); + } else if (arg_match(&arg, &threads_arg, argi)) { + svc_ctx->threads = arg_parse_uint(&arg); + } else if (arg_match(&arg, &temporal_layering_mode_arg, argi)) { + svc_ctx->temporal_layering_mode = enc_cfg->temporal_layering_mode = + arg_parse_int(&arg); + if (svc_ctx->temporal_layering_mode) { + enc_cfg->g_error_resilient = 1; + } + } else if (arg_match(&arg, &kf_dist_arg, argi)) { + enc_cfg->kf_min_dist = arg_parse_uint(&arg); + enc_cfg->kf_max_dist = enc_cfg->kf_min_dist; + } else if (arg_match(&arg, &scale_factors_arg, argi)) { + snprintf(string_options, sizeof(string_options), "%s scale-factors=%s", + string_options, arg.val); + } else if (arg_match(&arg, &bitrates_arg, argi)) { + snprintf(string_options, sizeof(string_options), "%s bitrates=%s", + string_options, arg.val); + } else if (arg_match(&arg, &passes_arg, argi)) { + passes = arg_parse_uint(&arg); + if (passes < 1 || passes > 2) { + die("Error: Invalid number of passes (%d)\n", passes); + } + } else if (arg_match(&arg, &pass_arg, argi)) { + pass = arg_parse_uint(&arg); + if (pass < 1 || pass > 2) { + die("Error: Invalid pass selected (%d)\n", pass); + } + } else if (arg_match(&arg, &fpf_name_arg, argi)) { + fpf_file_name = arg.val; + } else if (arg_match(&arg, &min_q_arg, argi)) { + snprintf(string_options, sizeof(string_options), "%s min-quantizers=%s", + string_options, arg.val); + } else if (arg_match(&arg, &max_q_arg, argi)) { + snprintf(string_options, sizeof(string_options), "%s max-quantizers=%s", + string_options, arg.val); + } else if (arg_match(&arg, &min_bitrate_arg, argi)) { + min_bitrate = arg_parse_uint(&arg); + } else if (arg_match(&arg, &max_bitrate_arg, argi)) { + max_bitrate = arg_parse_uint(&arg); + } else if (arg_match(&arg, &lag_in_frame_arg, argi)) { + enc_cfg->g_lag_in_frames = arg_parse_uint(&arg); + } else if (arg_match(&arg, &rc_end_usage_arg, argi)) { + enc_cfg->rc_end_usage = arg_parse_uint(&arg); +#if CONFIG_VP9_HIGHBITDEPTH + } else if (arg_match(&arg, &bitdepth_arg, argi)) { + enc_cfg->g_bit_depth = arg_parse_enum_or_int(&arg); + switch (enc_cfg->g_bit_depth) { + case VPX_BITS_8: + enc_cfg->g_input_bit_depth = 8; + enc_cfg->g_profile = 0; + break; + case VPX_BITS_10: + enc_cfg->g_input_bit_depth = 10; + enc_cfg->g_profile = 2; + break; + case VPX_BITS_12: + enc_cfg->g_input_bit_depth = 12; + enc_cfg->g_profile = 2; + break; + default: + die("Error: Invalid bit depth selected (%d)\n", enc_cfg->g_bit_depth); + break; + } +#endif // CONFIG_VP9_HIGHBITDEPTH + } else { + ++argj; + } + } + + // There will be a space in front of the string options + if (strlen(string_options) > 0) + vpx_svc_set_options(svc_ctx, string_options + 1); + + if (passes == 0 || passes == 1) { + if (pass) { + fprintf(stderr, "pass is ignored since there's only one pass\n"); + } + enc_cfg->g_pass = VPX_RC_ONE_PASS; + } else { + if (pass == 0) { + die("pass must be specified when passes is 2\n"); + } + + if (fpf_file_name == NULL) { + die("fpf must be specified when passes is 2\n"); + } + + if (pass == 1) { + enc_cfg->g_pass = VPX_RC_FIRST_PASS; + if (!stats_open_file(&app_input->rc_stats, fpf_file_name, 0)) { + fatal("Failed to open statistics store"); + } + } else { + enc_cfg->g_pass = VPX_RC_LAST_PASS; + if (!stats_open_file(&app_input->rc_stats, fpf_file_name, 1)) { + fatal("Failed to open statistics store"); + } + enc_cfg->rc_twopass_stats_in = stats_get(&app_input->rc_stats); + } + app_input->passes = passes; + app_input->pass = pass; + } + + if (enc_cfg->rc_target_bitrate > 0) { + if (min_bitrate > 0) { + enc_cfg->rc_2pass_vbr_minsection_pct = + min_bitrate * 100 / enc_cfg->rc_target_bitrate; + } + if (max_bitrate > 0) { + enc_cfg->rc_2pass_vbr_maxsection_pct = + max_bitrate * 100 / enc_cfg->rc_target_bitrate; + } + } + + // Check for unrecognized options + for (argi = argv; *argi; ++argi) + if (argi[0][0] == '-' && strlen(argi[0]) > 1) + die("Error: Unrecognized option %s\n", *argi); + + if (argv[0] == NULL || argv[1] == 0) { + usage_exit(); + } + app_input->input_filename = argv[0]; + app_input->output_filename = argv[1]; + free(argv); + + if (enc_cfg->g_w < 16 || enc_cfg->g_w % 2 || enc_cfg->g_h < 16 || + enc_cfg->g_h % 2) + die("Invalid resolution: %d x %d\n", enc_cfg->g_w, enc_cfg->g_h); + + printf( + "Codec %s\nframes: %d, skip: %d\n" + "layers: %d\n" + "width %d, height: %d,\n" + "num: %d, den: %d, bitrate: %d,\n" + "gop size: %d\n", + vpx_codec_iface_name(vpx_codec_vp9_cx()), app_input->frames_to_code, + app_input->frames_to_skip, svc_ctx->spatial_layers, enc_cfg->g_w, + enc_cfg->g_h, enc_cfg->g_timebase.num, enc_cfg->g_timebase.den, + enc_cfg->rc_target_bitrate, enc_cfg->kf_max_dist); +} + +#if OUTPUT_RC_STATS +// For rate control encoding stats. +struct RateControlStats { + // Number of input frames per layer. + int layer_input_frames[VPX_MAX_LAYERS]; + // Total (cumulative) number of encoded frames per layer. + int layer_tot_enc_frames[VPX_MAX_LAYERS]; + // Number of encoded non-key frames per layer. + int layer_enc_frames[VPX_MAX_LAYERS]; + // Framerate per layer (cumulative). + double layer_framerate[VPX_MAX_LAYERS]; + // Target average frame size per layer (per-frame-bandwidth per layer). + double layer_pfb[VPX_MAX_LAYERS]; + // Actual average frame size per layer. + double layer_avg_frame_size[VPX_MAX_LAYERS]; + // Average rate mismatch per layer (|target - actual| / target). + double layer_avg_rate_mismatch[VPX_MAX_LAYERS]; + // Actual encoding bitrate per layer (cumulative). + double layer_encoding_bitrate[VPX_MAX_LAYERS]; + // Average of the short-time encoder actual bitrate. + // TODO(marpan): Should we add these short-time stats for each layer? + double avg_st_encoding_bitrate; + // Variance of the short-time encoder actual bitrate. + double variance_st_encoding_bitrate; + // Window (number of frames) for computing short-time encoding bitrate. + int window_size; + // Number of window measurements. + int window_count; +}; + +// Note: these rate control stats assume only 1 key frame in the +// sequence (i.e., first frame only). +static void set_rate_control_stats(struct RateControlStats *rc, + vpx_codec_enc_cfg_t *cfg) { + unsigned int sl, tl; + // Set the layer (cumulative) framerate and the target layer (non-cumulative) + // per-frame-bandwidth, for the rate control encoding stats below. + const double framerate = cfg->g_timebase.den / cfg->g_timebase.num; + + for (sl = 0; sl < cfg->ss_number_layers; ++sl) { + for (tl = 0; tl < cfg->ts_number_layers; ++tl) { + const int layer = sl * cfg->ts_number_layers + tl; + if (cfg->ts_number_layers == 1) + rc->layer_framerate[layer] = framerate; + else + rc->layer_framerate[layer] = framerate / cfg->ts_rate_decimator[tl]; + if (tl > 0) { + rc->layer_pfb[layer] = + 1000.0 * (cfg->layer_target_bitrate[layer] - + cfg->layer_target_bitrate[layer - 1]) / + (rc->layer_framerate[layer] - rc->layer_framerate[layer - 1]); + } else { + rc->layer_pfb[layer] = 1000.0 * cfg->layer_target_bitrate[layer] / + rc->layer_framerate[layer]; + } + rc->layer_input_frames[layer] = 0; + rc->layer_enc_frames[layer] = 0; + rc->layer_tot_enc_frames[layer] = 0; + rc->layer_encoding_bitrate[layer] = 0.0; + rc->layer_avg_frame_size[layer] = 0.0; + rc->layer_avg_rate_mismatch[layer] = 0.0; + } + } + rc->window_count = 0; + rc->window_size = 15; + rc->avg_st_encoding_bitrate = 0.0; + rc->variance_st_encoding_bitrate = 0.0; +} + +static void printout_rate_control_summary(struct RateControlStats *rc, + vpx_codec_enc_cfg_t *cfg, + int frame_cnt) { + unsigned int sl, tl; + double perc_fluctuation = 0.0; + int tot_num_frames = 0; + printf("Total number of processed frames: %d\n\n", frame_cnt - 1); + printf("Rate control layer stats for sl%d tl%d layer(s):\n\n", + cfg->ss_number_layers, cfg->ts_number_layers); + for (sl = 0; sl < cfg->ss_number_layers; ++sl) { + tot_num_frames = 0; + for (tl = 0; tl < cfg->ts_number_layers; ++tl) { + const int layer = sl * cfg->ts_number_layers + tl; + const int num_dropped = + (tl > 0) + ? (rc->layer_input_frames[layer] - rc->layer_enc_frames[layer]) + : (rc->layer_input_frames[layer] - rc->layer_enc_frames[layer] - + 1); + tot_num_frames += rc->layer_input_frames[layer]; + rc->layer_encoding_bitrate[layer] = 0.001 * rc->layer_framerate[layer] * + rc->layer_encoding_bitrate[layer] / + tot_num_frames; + rc->layer_avg_frame_size[layer] = + rc->layer_avg_frame_size[layer] / rc->layer_enc_frames[layer]; + rc->layer_avg_rate_mismatch[layer] = 100.0 * + rc->layer_avg_rate_mismatch[layer] / + rc->layer_enc_frames[layer]; + printf("For layer#: sl%d tl%d \n", sl, tl); + printf("Bitrate (target vs actual): %d %f.0 kbps\n", + cfg->layer_target_bitrate[layer], + rc->layer_encoding_bitrate[layer]); + printf("Average frame size (target vs actual): %f %f bits\n", + rc->layer_pfb[layer], rc->layer_avg_frame_size[layer]); + printf("Average rate_mismatch: %f\n", rc->layer_avg_rate_mismatch[layer]); + printf( + "Number of input frames, encoded (non-key) frames, " + "and percent dropped frames: %d %d %f.0 \n", + rc->layer_input_frames[layer], rc->layer_enc_frames[layer], + 100.0 * num_dropped / rc->layer_input_frames[layer]); + printf("\n"); + } + } + rc->avg_st_encoding_bitrate = rc->avg_st_encoding_bitrate / rc->window_count; + rc->variance_st_encoding_bitrate = + rc->variance_st_encoding_bitrate / rc->window_count - + (rc->avg_st_encoding_bitrate * rc->avg_st_encoding_bitrate); + perc_fluctuation = 100.0 * sqrt(rc->variance_st_encoding_bitrate) / + rc->avg_st_encoding_bitrate; + printf("Short-time stats, for window of %d frames: \n", rc->window_size); + printf("Average, rms-variance, and percent-fluct: %f %f %f \n", + rc->avg_st_encoding_bitrate, sqrt(rc->variance_st_encoding_bitrate), + perc_fluctuation); + if (frame_cnt != tot_num_frames) + die("Error: Number of input frames not equal to output encoded frames != " + "%d tot_num_frames = %d\n", + frame_cnt, tot_num_frames); +} + +vpx_codec_err_t parse_superframe_index(const uint8_t *data, size_t data_sz, + uint64_t sizes[8], int *count) { + // A chunk ending with a byte matching 0xc0 is an invalid chunk unless + // it is a super frame index. If the last byte of real video compression + // data is 0xc0 the encoder must add a 0 byte. If we have the marker but + // not the associated matching marker byte at the front of the index we have + // an invalid bitstream and need to return an error. + + uint8_t marker; + + marker = *(data + data_sz - 1); + *count = 0; + + if ((marker & 0xe0) == 0xc0) { + const uint32_t frames = (marker & 0x7) + 1; + const uint32_t mag = ((marker >> 3) & 0x3) + 1; + const size_t index_sz = 2 + mag * frames; + + // This chunk is marked as having a superframe index but doesn't have + // enough data for it, thus it's an invalid superframe index. + if (data_sz < index_sz) return VPX_CODEC_CORRUPT_FRAME; + + { + const uint8_t marker2 = *(data + data_sz - index_sz); + + // This chunk is marked as having a superframe index but doesn't have + // the matching marker byte at the front of the index therefore it's an + // invalid chunk. + if (marker != marker2) return VPX_CODEC_CORRUPT_FRAME; + } + + { + // Found a valid superframe index. + uint32_t i, j; + const uint8_t *x = &data[data_sz - index_sz + 1]; + + for (i = 0; i < frames; ++i) { + uint32_t this_sz = 0; + + for (j = 0; j < mag; ++j) this_sz |= (*x++) << (j * 8); + sizes[i] = this_sz; + } + *count = frames; + } + } + return VPX_CODEC_OK; +} +#endif + +// Example pattern for spatial layers and 2 temporal layers used in the +// bypass/flexible mode. The pattern corresponds to the pattern +// VP9E_TEMPORAL_LAYERING_MODE_0101 (temporal_layering_mode == 2) used in +// non-flexible mode. +void set_frame_flags_bypass_mode(int sl, int tl, int num_spatial_layers, + int is_key_frame, + vpx_svc_ref_frame_config_t *ref_frame_config) { + for (sl = 0; sl < num_spatial_layers; ++sl) { + if (!tl) { + if (!sl) { + ref_frame_config->frame_flags[sl] = + VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_GF | + VP8_EFLAG_NO_UPD_ARF; + } else { + if (is_key_frame) { + ref_frame_config->frame_flags[sl] = + VP8_EFLAG_NO_REF_LAST | VP8_EFLAG_NO_REF_ARF | + VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF; + } else { + ref_frame_config->frame_flags[sl] = + VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF; + } + } + } else if (tl == 1) { + if (!sl) { + ref_frame_config->frame_flags[sl] = + VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_LAST | + VP8_EFLAG_NO_UPD_GF; + } else { + ref_frame_config->frame_flags[sl] = + VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_GF; + } + } + if (tl == 0) { + ref_frame_config->lst_fb_idx[sl] = sl; + if (sl) + ref_frame_config->gld_fb_idx[sl] = sl - 1; + else + ref_frame_config->gld_fb_idx[sl] = 0; + ref_frame_config->alt_fb_idx[sl] = 0; + } else if (tl == 1) { + ref_frame_config->lst_fb_idx[sl] = sl; + ref_frame_config->gld_fb_idx[sl] = num_spatial_layers + sl - 1; + ref_frame_config->alt_fb_idx[sl] = num_spatial_layers + sl; + } + } +} + +int main(int argc, const char **argv) { + AppInput app_input; + VpxVideoWriter *writer = NULL; + VpxVideoInfo info; + vpx_codec_ctx_t codec; + vpx_codec_enc_cfg_t enc_cfg; + SvcContext svc_ctx; + uint32_t i; + uint32_t frame_cnt = 0; + vpx_image_t raw; + vpx_codec_err_t res; + int pts = 0; /* PTS starts at 0 */ + int frame_duration = 1; /* 1 timebase tick per frame */ + FILE *infile = NULL; + int end_of_stream = 0; + int frames_received = 0; +#if OUTPUT_RC_STATS + VpxVideoWriter *outfile[VPX_TS_MAX_LAYERS] = { NULL }; + struct RateControlStats rc; + vpx_svc_layer_id_t layer_id; + vpx_svc_ref_frame_config_t ref_frame_config; + unsigned int sl, tl; + double sum_bitrate = 0.0; + double sum_bitrate2 = 0.0; + double framerate = 30.0; +#endif + struct vpx_usec_timer timer; + int64_t cx_time = 0; + memset(&svc_ctx, 0, sizeof(svc_ctx)); + svc_ctx.log_print = 1; + exec_name = argv[0]; + parse_command_line(argc, argv, &app_input, &svc_ctx, &enc_cfg); + +// Allocate image buffer +#if CONFIG_VP9_HIGHBITDEPTH + if (!vpx_img_alloc(&raw, + enc_cfg.g_input_bit_depth == 8 ? VPX_IMG_FMT_I420 + : VPX_IMG_FMT_I42016, + enc_cfg.g_w, enc_cfg.g_h, 32)) { + die("Failed to allocate image %dx%d\n", enc_cfg.g_w, enc_cfg.g_h); + } +#else + if (!vpx_img_alloc(&raw, VPX_IMG_FMT_I420, enc_cfg.g_w, enc_cfg.g_h, 32)) { + die("Failed to allocate image %dx%d\n", enc_cfg.g_w, enc_cfg.g_h); + } +#endif // CONFIG_VP9_HIGHBITDEPTH + + if (!(infile = fopen(app_input.input_filename, "rb"))) + die("Failed to open %s for reading\n", app_input.input_filename); + + // Initialize codec + if (vpx_svc_init(&svc_ctx, &codec, vpx_codec_vp9_cx(), &enc_cfg) != + VPX_CODEC_OK) + die("Failed to initialize encoder\n"); + +#if OUTPUT_RC_STATS + if (svc_ctx.output_rc_stat) { + set_rate_control_stats(&rc, &enc_cfg); + framerate = enc_cfg.g_timebase.den / enc_cfg.g_timebase.num; + } +#endif + + info.codec_fourcc = VP9_FOURCC; + info.time_base.numerator = enc_cfg.g_timebase.num; + info.time_base.denominator = enc_cfg.g_timebase.den; + + if (!(app_input.passes == 2 && app_input.pass == 1)) { + // We don't save the bitstream for the 1st pass on two pass rate control + writer = + vpx_video_writer_open(app_input.output_filename, kContainerIVF, &info); + if (!writer) + die("Failed to open %s for writing\n", app_input.output_filename); + } +#if OUTPUT_RC_STATS + // For now, just write temporal layer streams. + // TODO(marpan): do spatial by re-writing superframe. + if (svc_ctx.output_rc_stat) { + for (tl = 0; tl < enc_cfg.ts_number_layers; ++tl) { + char file_name[PATH_MAX]; + + snprintf(file_name, sizeof(file_name), "%s_t%d.ivf", + app_input.output_filename, tl); + outfile[tl] = vpx_video_writer_open(file_name, kContainerIVF, &info); + if (!outfile[tl]) die("Failed to open %s for writing", file_name); + } + } +#endif + + // skip initial frames + for (i = 0; i < app_input.frames_to_skip; ++i) vpx_img_read(&raw, infile); + + if (svc_ctx.speed != -1) + vpx_codec_control(&codec, VP8E_SET_CPUUSED, svc_ctx.speed); + if (svc_ctx.threads) { + vpx_codec_control(&codec, VP9E_SET_TILE_COLUMNS, (svc_ctx.threads >> 1)); + if (svc_ctx.threads > 1) + vpx_codec_control(&codec, VP9E_SET_ROW_MT, 1); + else + vpx_codec_control(&codec, VP9E_SET_ROW_MT, 0); + } + if (svc_ctx.speed >= 5 && svc_ctx.aqmode == 1) + vpx_codec_control(&codec, VP9E_SET_AQ_MODE, 3); + if (svc_ctx.speed >= 5) + vpx_codec_control(&codec, VP8E_SET_STATIC_THRESHOLD, 1); + vpx_codec_control(&codec, VP8E_SET_MAX_INTRA_BITRATE_PCT, 900); + + // Encode frames + while (!end_of_stream) { + vpx_codec_iter_t iter = NULL; + const vpx_codec_cx_pkt_t *cx_pkt; + if (frame_cnt >= app_input.frames_to_code || !vpx_img_read(&raw, infile)) { + // We need one extra vpx_svc_encode call at end of stream to flush + // encoder and get remaining data + end_of_stream = 1; + } + + // For BYPASS/FLEXIBLE mode, set the frame flags (reference and updates) + // and the buffer indices for each spatial layer of the current + // (super)frame to be encoded. The temporal layer_id for the current frame + // also needs to be set. + // TODO(marpan): Should rename the "VP9E_TEMPORAL_LAYERING_MODE_BYPASS" + // mode to "VP9E_LAYERING_MODE_BYPASS". + if (svc_ctx.temporal_layering_mode == VP9E_TEMPORAL_LAYERING_MODE_BYPASS) { + layer_id.spatial_layer_id = 0; + // Example for 2 temporal layers. + if (frame_cnt % 2 == 0) + layer_id.temporal_layer_id = 0; + else + layer_id.temporal_layer_id = 1; + // Note that we only set the temporal layer_id, since we are calling + // the encode for the whole superframe. The encoder will internally loop + // over all the spatial layers for the current superframe. + vpx_codec_control(&codec, VP9E_SET_SVC_LAYER_ID, &layer_id); + set_frame_flags_bypass_mode(sl, layer_id.temporal_layer_id, + svc_ctx.spatial_layers, frame_cnt == 0, + &ref_frame_config); + vpx_codec_control(&codec, VP9E_SET_SVC_REF_FRAME_CONFIG, + &ref_frame_config); + // Keep track of input frames, to account for frame drops in rate control + // stats/metrics. + for (sl = 0; sl < (unsigned int)enc_cfg.ss_number_layers; ++sl) { + ++rc.layer_input_frames[sl * enc_cfg.ts_number_layers + + layer_id.temporal_layer_id]; + } + } + + vpx_usec_timer_start(&timer); + res = vpx_svc_encode( + &svc_ctx, &codec, (end_of_stream ? NULL : &raw), pts, frame_duration, + svc_ctx.speed >= 5 ? VPX_DL_REALTIME : VPX_DL_GOOD_QUALITY); + vpx_usec_timer_mark(&timer); + cx_time += vpx_usec_timer_elapsed(&timer); + + printf("%s", vpx_svc_get_message(&svc_ctx)); + fflush(stdout); + if (res != VPX_CODEC_OK) { + die_codec(&codec, "Failed to encode frame"); + } + + while ((cx_pkt = vpx_codec_get_cx_data(&codec, &iter)) != NULL) { + switch (cx_pkt->kind) { + case VPX_CODEC_CX_FRAME_PKT: { + SvcInternal_t *const si = (SvcInternal_t *)svc_ctx.internal; + if (cx_pkt->data.frame.sz > 0) { +#if OUTPUT_RC_STATS + uint64_t sizes[8]; + int count = 0; +#endif + vpx_video_writer_write_frame(writer, cx_pkt->data.frame.buf, + cx_pkt->data.frame.sz, + cx_pkt->data.frame.pts); +#if OUTPUT_RC_STATS + // TODO(marpan): Put this (to line728) in separate function. + if (svc_ctx.output_rc_stat) { + vpx_codec_control(&codec, VP9E_GET_SVC_LAYER_ID, &layer_id); + parse_superframe_index(cx_pkt->data.frame.buf, + cx_pkt->data.frame.sz, sizes, &count); + if (enc_cfg.ss_number_layers == 1) + sizes[0] = cx_pkt->data.frame.sz; + // Note computing input_layer_frames here won't account for frame + // drops in rate control stats. + // TODO(marpan): Fix this for non-bypass mode so we can get stats + // for dropped frames. + if (svc_ctx.temporal_layering_mode != + VP9E_TEMPORAL_LAYERING_MODE_BYPASS) { + for (sl = 0; sl < enc_cfg.ss_number_layers; ++sl) { + ++rc.layer_input_frames[sl * enc_cfg.ts_number_layers + + layer_id.temporal_layer_id]; + } + } + for (tl = layer_id.temporal_layer_id; + tl < enc_cfg.ts_number_layers; ++tl) { + vpx_video_writer_write_frame( + outfile[tl], cx_pkt->data.frame.buf, cx_pkt->data.frame.sz, + cx_pkt->data.frame.pts); + } + + for (sl = 0; sl < enc_cfg.ss_number_layers; ++sl) { + for (tl = layer_id.temporal_layer_id; + tl < enc_cfg.ts_number_layers; ++tl) { + const int layer = sl * enc_cfg.ts_number_layers + tl; + ++rc.layer_tot_enc_frames[layer]; + rc.layer_encoding_bitrate[layer] += 8.0 * sizes[sl]; + // Keep count of rate control stats per layer, for non-key + // frames. + if (tl == (unsigned int)layer_id.temporal_layer_id && + !(cx_pkt->data.frame.flags & VPX_FRAME_IS_KEY)) { + rc.layer_avg_frame_size[layer] += 8.0 * sizes[sl]; + rc.layer_avg_rate_mismatch[layer] += + fabs(8.0 * sizes[sl] - rc.layer_pfb[layer]) / + rc.layer_pfb[layer]; + ++rc.layer_enc_frames[layer]; + } + } + } + + // Update for short-time encoding bitrate states, for moving + // window of size rc->window, shifted by rc->window / 2. + // Ignore first window segment, due to key frame. + if (frame_cnt > (unsigned int)rc.window_size) { + tl = layer_id.temporal_layer_id; + for (sl = 0; sl < enc_cfg.ss_number_layers; ++sl) { + sum_bitrate += 0.001 * 8.0 * sizes[sl] * framerate; + } + if (frame_cnt % rc.window_size == 0) { + rc.window_count += 1; + rc.avg_st_encoding_bitrate += sum_bitrate / rc.window_size; + rc.variance_st_encoding_bitrate += + (sum_bitrate / rc.window_size) * + (sum_bitrate / rc.window_size); + sum_bitrate = 0.0; + } + } + + // Second shifted window. + if (frame_cnt > + (unsigned int)(rc.window_size + rc.window_size / 2)) { + tl = layer_id.temporal_layer_id; + for (sl = 0; sl < enc_cfg.ss_number_layers; ++sl) { + sum_bitrate2 += 0.001 * 8.0 * sizes[sl] * framerate; + } + + if (frame_cnt > (unsigned int)(2 * rc.window_size) && + frame_cnt % rc.window_size == 0) { + rc.window_count += 1; + rc.avg_st_encoding_bitrate += sum_bitrate2 / rc.window_size; + rc.variance_st_encoding_bitrate += + (sum_bitrate2 / rc.window_size) * + (sum_bitrate2 / rc.window_size); + sum_bitrate2 = 0.0; + } + } + } +#endif + } + /* + printf("SVC frame: %d, kf: %d, size: %d, pts: %d\n", frames_received, + !!(cx_pkt->data.frame.flags & VPX_FRAME_IS_KEY), + (int)cx_pkt->data.frame.sz, (int)cx_pkt->data.frame.pts); + */ + if (enc_cfg.ss_number_layers == 1 && enc_cfg.ts_number_layers == 1) + si->bytes_sum[0] += (int)cx_pkt->data.frame.sz; + ++frames_received; + break; + } + case VPX_CODEC_STATS_PKT: { + stats_write(&app_input.rc_stats, cx_pkt->data.twopass_stats.buf, + cx_pkt->data.twopass_stats.sz); + break; + } + default: { break; } + } + } + + if (!end_of_stream) { + ++frame_cnt; + pts += frame_duration; + } + } + + // Compensate for the extra frame count for the bypass mode. + if (svc_ctx.temporal_layering_mode == VP9E_TEMPORAL_LAYERING_MODE_BYPASS) { + for (sl = 0; sl < enc_cfg.ss_number_layers; ++sl) { + const int layer = + sl * enc_cfg.ts_number_layers + layer_id.temporal_layer_id; + --rc.layer_input_frames[layer]; + } + } + + printf("Processed %d frames\n", frame_cnt); + fclose(infile); +#if OUTPUT_RC_STATS + if (svc_ctx.output_rc_stat) { + printout_rate_control_summary(&rc, &enc_cfg, frame_cnt); + printf("\n"); + } +#endif + if (vpx_codec_destroy(&codec)) die_codec(&codec, "Failed to destroy codec"); + if (app_input.passes == 2) stats_close(&app_input.rc_stats, 1); + if (writer) { + vpx_video_writer_close(writer); + } +#if OUTPUT_RC_STATS + if (svc_ctx.output_rc_stat) { + for (tl = 0; tl < enc_cfg.ts_number_layers; ++tl) { + vpx_video_writer_close(outfile[tl]); + } + } +#endif + printf("Frame cnt and encoding time/FPS stats for encoding: %d %f %f \n", + frame_cnt, 1000 * (float)cx_time / (double)(frame_cnt * 1000000), + 1000000 * (double)frame_cnt / (double)cx_time); + vpx_img_free(&raw); + // display average size, psnr + printf("%s", vpx_svc_dump_statistics(&svc_ctx)); + vpx_svc_release(&svc_ctx); + return EXIT_SUCCESS; +} diff --git a/examples/vp9cx_set_ref.c b/examples/vp9cx_set_ref.c new file mode 100644 index 0000000..3472689 --- /dev/null +++ b/examples/vp9cx_set_ref.c @@ -0,0 +1,442 @@ +/* + * Copyright (c) 2016 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +// VP9 Set Reference Frame +// ============================ +// +// This is an example demonstrating how to overwrite the VP9 encoder's +// internal reference frame. In the sample we set the last frame to the +// current frame. This technique could be used to bounce between two cameras. +// +// The decoder would also have to set the reference frame to the same value +// on the same frame, or the video will become corrupt. The 'test_decode' +// variable is set to 1 in this example that tests if the encoder and decoder +// results are matching. +// +// Usage +// ----- +// This example encodes a raw video. And the last argument passed in specifies +// the frame number to update the reference frame on. For example, run +// examples/vp9cx_set_ref 352 288 in.yuv out.ivf 4 30 +// The parameter is parsed as follows: +// +// +// Extra Variables +// --------------- +// This example maintains the frame number passed on the command line +// in the `update_frame_num` variable. +// +// +// Configuration +// ------------- +// +// The reference frame is updated on the frame specified on the command +// line. +// +// Observing The Effects +// --------------------- +// The encoder and decoder results should be matching when the same reference +// frame setting operation is done in both encoder and decoder. Otherwise, +// the encoder/decoder mismatch would be seen. + +#include +#include +#include + +#include "vpx/vp8cx.h" +#include "vpx/vpx_decoder.h" +#include "vpx/vpx_encoder.h" +#include "vp9/common/vp9_common.h" + +#include "./tools_common.h" +#include "./video_writer.h" + +static const char *exec_name; + +void usage_exit() { + fprintf(stderr, + "Usage: %s " + " \n", + exec_name); + exit(EXIT_FAILURE); +} + +static int compare_img(const vpx_image_t *const img1, + const vpx_image_t *const img2) { + uint32_t l_w = img1->d_w; + uint32_t c_w = (img1->d_w + img1->x_chroma_shift) >> img1->x_chroma_shift; + const uint32_t c_h = + (img1->d_h + img1->y_chroma_shift) >> img1->y_chroma_shift; + uint32_t i; + int match = 1; + + match &= (img1->fmt == img2->fmt); + match &= (img1->d_w == img2->d_w); + match &= (img1->d_h == img2->d_h); + + for (i = 0; i < img1->d_h; ++i) + match &= (memcmp(img1->planes[VPX_PLANE_Y] + i * img1->stride[VPX_PLANE_Y], + img2->planes[VPX_PLANE_Y] + i * img2->stride[VPX_PLANE_Y], + l_w) == 0); + + for (i = 0; i < c_h; ++i) + match &= (memcmp(img1->planes[VPX_PLANE_U] + i * img1->stride[VPX_PLANE_U], + img2->planes[VPX_PLANE_U] + i * img2->stride[VPX_PLANE_U], + c_w) == 0); + + for (i = 0; i < c_h; ++i) + match &= (memcmp(img1->planes[VPX_PLANE_V] + i * img1->stride[VPX_PLANE_V], + img2->planes[VPX_PLANE_V] + i * img2->stride[VPX_PLANE_V], + c_w) == 0); + + return match; +} + +#define mmin(a, b) ((a) < (b) ? (a) : (b)) +static void find_mismatch(const vpx_image_t *const img1, + const vpx_image_t *const img2, int yloc[4], + int uloc[4], int vloc[4]) { + const uint32_t bsize = 64; + const uint32_t bsizey = bsize >> img1->y_chroma_shift; + const uint32_t bsizex = bsize >> img1->x_chroma_shift; + const uint32_t c_w = + (img1->d_w + img1->x_chroma_shift) >> img1->x_chroma_shift; + const uint32_t c_h = + (img1->d_h + img1->y_chroma_shift) >> img1->y_chroma_shift; + int match = 1; + uint32_t i, j; + yloc[0] = yloc[1] = yloc[2] = yloc[3] = -1; + for (i = 0, match = 1; match && i < img1->d_h; i += bsize) { + for (j = 0; match && j < img1->d_w; j += bsize) { + int k, l; + const int si = mmin(i + bsize, img1->d_h) - i; + const int sj = mmin(j + bsize, img1->d_w) - j; + for (k = 0; match && k < si; ++k) { + for (l = 0; match && l < sj; ++l) { + if (*(img1->planes[VPX_PLANE_Y] + + (i + k) * img1->stride[VPX_PLANE_Y] + j + l) != + *(img2->planes[VPX_PLANE_Y] + + (i + k) * img2->stride[VPX_PLANE_Y] + j + l)) { + yloc[0] = i + k; + yloc[1] = j + l; + yloc[2] = *(img1->planes[VPX_PLANE_Y] + + (i + k) * img1->stride[VPX_PLANE_Y] + j + l); + yloc[3] = *(img2->planes[VPX_PLANE_Y] + + (i + k) * img2->stride[VPX_PLANE_Y] + j + l); + match = 0; + break; + } + } + } + } + } + + uloc[0] = uloc[1] = uloc[2] = uloc[3] = -1; + for (i = 0, match = 1; match && i < c_h; i += bsizey) { + for (j = 0; match && j < c_w; j += bsizex) { + int k, l; + const int si = mmin(i + bsizey, c_h - i); + const int sj = mmin(j + bsizex, c_w - j); + for (k = 0; match && k < si; ++k) { + for (l = 0; match && l < sj; ++l) { + if (*(img1->planes[VPX_PLANE_U] + + (i + k) * img1->stride[VPX_PLANE_U] + j + l) != + *(img2->planes[VPX_PLANE_U] + + (i + k) * img2->stride[VPX_PLANE_U] + j + l)) { + uloc[0] = i + k; + uloc[1] = j + l; + uloc[2] = *(img1->planes[VPX_PLANE_U] + + (i + k) * img1->stride[VPX_PLANE_U] + j + l); + uloc[3] = *(img2->planes[VPX_PLANE_U] + + (i + k) * img2->stride[VPX_PLANE_U] + j + l); + match = 0; + break; + } + } + } + } + } + vloc[0] = vloc[1] = vloc[2] = vloc[3] = -1; + for (i = 0, match = 1; match && i < c_h; i += bsizey) { + for (j = 0; match && j < c_w; j += bsizex) { + int k, l; + const int si = mmin(i + bsizey, c_h - i); + const int sj = mmin(j + bsizex, c_w - j); + for (k = 0; match && k < si; ++k) { + for (l = 0; match && l < sj; ++l) { + if (*(img1->planes[VPX_PLANE_V] + + (i + k) * img1->stride[VPX_PLANE_V] + j + l) != + *(img2->planes[VPX_PLANE_V] + + (i + k) * img2->stride[VPX_PLANE_V] + j + l)) { + vloc[0] = i + k; + vloc[1] = j + l; + vloc[2] = *(img1->planes[VPX_PLANE_V] + + (i + k) * img1->stride[VPX_PLANE_V] + j + l); + vloc[3] = *(img2->planes[VPX_PLANE_V] + + (i + k) * img2->stride[VPX_PLANE_V] + j + l); + match = 0; + break; + } + } + } + } + } +} + +static void testing_decode(vpx_codec_ctx_t *encoder, vpx_codec_ctx_t *decoder, + unsigned int frame_out, int *mismatch_seen) { + vpx_image_t enc_img, dec_img; + struct vp9_ref_frame ref_enc, ref_dec; + + if (*mismatch_seen) return; + + ref_enc.idx = 0; + ref_dec.idx = 0; + if (vpx_codec_control(encoder, VP9_GET_REFERENCE, &ref_enc)) + die_codec(encoder, "Failed to get encoder reference frame"); + enc_img = ref_enc.img; + if (vpx_codec_control(decoder, VP9_GET_REFERENCE, &ref_dec)) + die_codec(decoder, "Failed to get decoder reference frame"); + dec_img = ref_dec.img; + + if (!compare_img(&enc_img, &dec_img)) { + int y[4], u[4], v[4]; + + *mismatch_seen = 1; + + find_mismatch(&enc_img, &dec_img, y, u, v); + printf( + "Encode/decode mismatch on frame %d at" + " Y[%d, %d] {%d/%d}," + " U[%d, %d] {%d/%d}," + " V[%d, %d] {%d/%d}", + frame_out, y[0], y[1], y[2], y[3], u[0], u[1], u[2], u[3], v[0], v[1], + v[2], v[3]); + } + + vpx_img_free(&enc_img); + vpx_img_free(&dec_img); +} + +static int encode_frame(vpx_codec_ctx_t *ecodec, vpx_image_t *img, + unsigned int frame_in, VpxVideoWriter *writer, + int test_decode, vpx_codec_ctx_t *dcodec, + unsigned int *frame_out, int *mismatch_seen) { + int got_pkts = 0; + vpx_codec_iter_t iter = NULL; + const vpx_codec_cx_pkt_t *pkt = NULL; + int got_data; + const vpx_codec_err_t res = + vpx_codec_encode(ecodec, img, frame_in, 1, 0, VPX_DL_GOOD_QUALITY); + if (res != VPX_CODEC_OK) die_codec(ecodec, "Failed to encode frame"); + + got_data = 0; + + while ((pkt = vpx_codec_get_cx_data(ecodec, &iter)) != NULL) { + got_pkts = 1; + + if (pkt->kind == VPX_CODEC_CX_FRAME_PKT) { + const int keyframe = (pkt->data.frame.flags & VPX_FRAME_IS_KEY) != 0; + + if (!(pkt->data.frame.flags & VPX_FRAME_IS_FRAGMENT)) { + *frame_out += 1; + } + + if (!vpx_video_writer_write_frame(writer, pkt->data.frame.buf, + pkt->data.frame.sz, + pkt->data.frame.pts)) { + die_codec(ecodec, "Failed to write compressed frame"); + } + printf(keyframe ? "K" : "."); + fflush(stdout); + got_data = 1; + + // Decode 1 frame. + if (test_decode) { + if (vpx_codec_decode(dcodec, pkt->data.frame.buf, + (unsigned int)pkt->data.frame.sz, NULL, 0)) + die_codec(dcodec, "Failed to decode frame."); + } + } + } + + // Mismatch checking + if (got_data && test_decode) { + testing_decode(ecodec, dcodec, *frame_out, mismatch_seen); + } + + return got_pkts; +} + +int main(int argc, char **argv) { + FILE *infile = NULL; + // Encoder + vpx_codec_ctx_t ecodec; + vpx_codec_enc_cfg_t cfg; + unsigned int frame_in = 0; + vpx_image_t raw; + vpx_codec_err_t res; + VpxVideoInfo info; + VpxVideoWriter *writer = NULL; + const VpxInterface *encoder = NULL; + + // Test encoder/decoder mismatch. + int test_decode = 1; + // Decoder + vpx_codec_ctx_t dcodec; + unsigned int frame_out = 0; + + // The frame number to set reference frame on + unsigned int update_frame_num = 0; + int mismatch_seen = 0; + + const int fps = 30; + const int bitrate = 500; + + const char *width_arg = NULL; + const char *height_arg = NULL; + const char *infile_arg = NULL; + const char *outfile_arg = NULL; + const char *update_frame_num_arg = NULL; + unsigned int limit = 0; + + vp9_zero(ecodec); + vp9_zero(cfg); + vp9_zero(info); + + exec_name = argv[0]; + + if (argc < 6) die("Invalid number of arguments"); + + width_arg = argv[1]; + height_arg = argv[2]; + infile_arg = argv[3]; + outfile_arg = argv[4]; + update_frame_num_arg = argv[5]; + + encoder = get_vpx_encoder_by_name("vp9"); + if (!encoder) die("Unsupported codec."); + + update_frame_num = (unsigned int)strtoul(update_frame_num_arg, NULL, 0); + // In VP9, the reference buffers (cm->buffer_pool->frame_bufs[i].buf) are + // allocated while calling vpx_codec_encode(), thus, setting reference for + // 1st frame isn't supported. + if (update_frame_num <= 1) { + die("Couldn't parse frame number '%s'\n", update_frame_num_arg); + } + + if (argc > 6) { + limit = (unsigned int)strtoul(argv[6], NULL, 0); + if (update_frame_num > limit) + die("Update frame number couldn't larger than limit\n"); + } + + info.codec_fourcc = encoder->fourcc; + info.frame_width = (int)strtol(width_arg, NULL, 0); + info.frame_height = (int)strtol(height_arg, NULL, 0); + info.time_base.numerator = 1; + info.time_base.denominator = fps; + + if (info.frame_width <= 0 || info.frame_height <= 0 || + (info.frame_width % 2) != 0 || (info.frame_height % 2) != 0) { + die("Invalid frame size: %dx%d", info.frame_width, info.frame_height); + } + + if (!vpx_img_alloc(&raw, VPX_IMG_FMT_I420, info.frame_width, + info.frame_height, 1)) { + die("Failed to allocate image."); + } + + printf("Using %s\n", vpx_codec_iface_name(encoder->codec_interface())); + + res = vpx_codec_enc_config_default(encoder->codec_interface(), &cfg, 0); + if (res) die_codec(&ecodec, "Failed to get default codec config."); + + cfg.g_w = info.frame_width; + cfg.g_h = info.frame_height; + cfg.g_timebase.num = info.time_base.numerator; + cfg.g_timebase.den = info.time_base.denominator; + cfg.rc_target_bitrate = bitrate; + cfg.g_lag_in_frames = 3; + + writer = vpx_video_writer_open(outfile_arg, kContainerIVF, &info); + if (!writer) die("Failed to open %s for writing.", outfile_arg); + + if (!(infile = fopen(infile_arg, "rb"))) + die("Failed to open %s for reading.", infile_arg); + + if (vpx_codec_enc_init(&ecodec, encoder->codec_interface(), &cfg, 0)) + die_codec(&ecodec, "Failed to initialize encoder"); + + // Disable alt_ref. + if (vpx_codec_control(&ecodec, VP8E_SET_ENABLEAUTOALTREF, 0)) + die_codec(&ecodec, "Failed to set enable auto alt ref"); + + if (test_decode) { + const VpxInterface *decoder = get_vpx_decoder_by_name("vp9"); + if (vpx_codec_dec_init(&dcodec, decoder->codec_interface(), NULL, 0)) + die_codec(&dcodec, "Failed to initialize decoder."); + } + + // Encode frames. + while (vpx_img_read(&raw, infile)) { + if (limit && frame_in >= limit) break; + if (update_frame_num > 1 && frame_out + 1 == update_frame_num) { + vpx_ref_frame_t ref; + ref.frame_type = VP8_LAST_FRAME; + ref.img = raw; + // Set reference frame in encoder. + if (vpx_codec_control(&ecodec, VP8_SET_REFERENCE, &ref)) + die_codec(&ecodec, "Failed to set reference frame"); + printf(" "); + + // If set_reference in decoder is commented out, the enc/dec mismatch + // would be seen. + if (test_decode) { + if (vpx_codec_control(&dcodec, VP8_SET_REFERENCE, &ref)) + die_codec(&dcodec, "Failed to set reference frame"); + } + } + + encode_frame(&ecodec, &raw, frame_in, writer, test_decode, &dcodec, + &frame_out, &mismatch_seen); + frame_in++; + if (mismatch_seen) break; + } + + // Flush encoder. + if (!mismatch_seen) + while (encode_frame(&ecodec, NULL, frame_in, writer, test_decode, &dcodec, + &frame_out, &mismatch_seen)) { + } + + printf("\n"); + fclose(infile); + printf("Processed %d frames.\n", frame_out); + + if (test_decode) { + if (!mismatch_seen) + printf("Encoder/decoder results are matching.\n"); + else + printf("Encoder/decoder results are NOT matching.\n"); + } + + if (test_decode) + if (vpx_codec_destroy(&dcodec)) + die_codec(&dcodec, "Failed to destroy decoder"); + + vpx_img_free(&raw); + if (vpx_codec_destroy(&ecodec)) + die_codec(&ecodec, "Failed to destroy encoder."); + + vpx_video_writer_close(writer); + + return EXIT_SUCCESS; +} diff --git a/examples/vpx_temporal_svc_encoder.c b/examples/vpx_temporal_svc_encoder.c new file mode 100644 index 0000000..f5736ea --- /dev/null +++ b/examples/vpx_temporal_svc_encoder.c @@ -0,0 +1,915 @@ +/* + * Copyright (c) 2012 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +// This is an example demonstrating how to implement a multi-layer VPx +// encoding scheme based on temporal scalability for video applications +// that benefit from a scalable bitstream. + +#include +#include +#include +#include +#include + +#include "./vpx_config.h" +#include "../vpx_ports/vpx_timer.h" +#include "vpx/vp8cx.h" +#include "vpx/vpx_encoder.h" + +#include "../tools_common.h" +#include "../video_writer.h" + +#define VP8_ROI_MAP 0 + +static const char *exec_name; + +void usage_exit(void) { exit(EXIT_FAILURE); } + +// Denoiser states for vp8, for temporal denoising. +enum denoiserStateVp8 { + kVp8DenoiserOff, + kVp8DenoiserOnYOnly, + kVp8DenoiserOnYUV, + kVp8DenoiserOnYUVAggressive, + kVp8DenoiserOnAdaptive +}; + +// Denoiser states for vp9, for temporal denoising. +enum denoiserStateVp9 { + kVp9DenoiserOff, + kVp9DenoiserOnYOnly, + // For SVC: denoise the top two spatial layers. + kVp9DenoiserOnYTwoSpatialLayers +}; + +static int mode_to_num_layers[13] = { 1, 2, 2, 3, 3, 3, 3, 5, 2, 3, 3, 3, 3 }; + +// For rate control encoding stats. +struct RateControlMetrics { + // Number of input frames per layer. + int layer_input_frames[VPX_TS_MAX_LAYERS]; + // Total (cumulative) number of encoded frames per layer. + int layer_tot_enc_frames[VPX_TS_MAX_LAYERS]; + // Number of encoded non-key frames per layer. + int layer_enc_frames[VPX_TS_MAX_LAYERS]; + // Framerate per layer layer (cumulative). + double layer_framerate[VPX_TS_MAX_LAYERS]; + // Target average frame size per layer (per-frame-bandwidth per layer). + double layer_pfb[VPX_TS_MAX_LAYERS]; + // Actual average frame size per layer. + double layer_avg_frame_size[VPX_TS_MAX_LAYERS]; + // Average rate mismatch per layer (|target - actual| / target). + double layer_avg_rate_mismatch[VPX_TS_MAX_LAYERS]; + // Actual encoding bitrate per layer (cumulative). + double layer_encoding_bitrate[VPX_TS_MAX_LAYERS]; + // Average of the short-time encoder actual bitrate. + // TODO(marpan): Should we add these short-time stats for each layer? + double avg_st_encoding_bitrate; + // Variance of the short-time encoder actual bitrate. + double variance_st_encoding_bitrate; + // Window (number of frames) for computing short-timee encoding bitrate. + int window_size; + // Number of window measurements. + int window_count; + int layer_target_bitrate[VPX_MAX_LAYERS]; +}; + +// Note: these rate control metrics assume only 1 key frame in the +// sequence (i.e., first frame only). So for temporal pattern# 7 +// (which has key frame for every frame on base layer), the metrics +// computation will be off/wrong. +// TODO(marpan): Update these metrics to account for multiple key frames +// in the stream. +static void set_rate_control_metrics(struct RateControlMetrics *rc, + vpx_codec_enc_cfg_t *cfg) { + unsigned int i = 0; + // Set the layer (cumulative) framerate and the target layer (non-cumulative) + // per-frame-bandwidth, for the rate control encoding stats below. + const double framerate = cfg->g_timebase.den / cfg->g_timebase.num; + rc->layer_framerate[0] = framerate / cfg->ts_rate_decimator[0]; + rc->layer_pfb[0] = + 1000.0 * rc->layer_target_bitrate[0] / rc->layer_framerate[0]; + for (i = 0; i < cfg->ts_number_layers; ++i) { + if (i > 0) { + rc->layer_framerate[i] = framerate / cfg->ts_rate_decimator[i]; + rc->layer_pfb[i] = 1000.0 * (rc->layer_target_bitrate[i] - + rc->layer_target_bitrate[i - 1]) / + (rc->layer_framerate[i] - rc->layer_framerate[i - 1]); + } + rc->layer_input_frames[i] = 0; + rc->layer_enc_frames[i] = 0; + rc->layer_tot_enc_frames[i] = 0; + rc->layer_encoding_bitrate[i] = 0.0; + rc->layer_avg_frame_size[i] = 0.0; + rc->layer_avg_rate_mismatch[i] = 0.0; + } + rc->window_count = 0; + rc->window_size = 15; + rc->avg_st_encoding_bitrate = 0.0; + rc->variance_st_encoding_bitrate = 0.0; +} + +static void printout_rate_control_summary(struct RateControlMetrics *rc, + vpx_codec_enc_cfg_t *cfg, + int frame_cnt) { + unsigned int i = 0; + int tot_num_frames = 0; + double perc_fluctuation = 0.0; + printf("Total number of processed frames: %d\n\n", frame_cnt - 1); + printf("Rate control layer stats for %d layer(s):\n\n", + cfg->ts_number_layers); + for (i = 0; i < cfg->ts_number_layers; ++i) { + const int num_dropped = + (i > 0) ? (rc->layer_input_frames[i] - rc->layer_enc_frames[i]) + : (rc->layer_input_frames[i] - rc->layer_enc_frames[i] - 1); + tot_num_frames += rc->layer_input_frames[i]; + rc->layer_encoding_bitrate[i] = 0.001 * rc->layer_framerate[i] * + rc->layer_encoding_bitrate[i] / + tot_num_frames; + rc->layer_avg_frame_size[i] = + rc->layer_avg_frame_size[i] / rc->layer_enc_frames[i]; + rc->layer_avg_rate_mismatch[i] = + 100.0 * rc->layer_avg_rate_mismatch[i] / rc->layer_enc_frames[i]; + printf("For layer#: %d \n", i); + printf("Bitrate (target vs actual): %d %f \n", rc->layer_target_bitrate[i], + rc->layer_encoding_bitrate[i]); + printf("Average frame size (target vs actual): %f %f \n", rc->layer_pfb[i], + rc->layer_avg_frame_size[i]); + printf("Average rate_mismatch: %f \n", rc->layer_avg_rate_mismatch[i]); + printf( + "Number of input frames, encoded (non-key) frames, " + "and perc dropped frames: %d %d %f \n", + rc->layer_input_frames[i], rc->layer_enc_frames[i], + 100.0 * num_dropped / rc->layer_input_frames[i]); + printf("\n"); + } + rc->avg_st_encoding_bitrate = rc->avg_st_encoding_bitrate / rc->window_count; + rc->variance_st_encoding_bitrate = + rc->variance_st_encoding_bitrate / rc->window_count - + (rc->avg_st_encoding_bitrate * rc->avg_st_encoding_bitrate); + perc_fluctuation = 100.0 * sqrt(rc->variance_st_encoding_bitrate) / + rc->avg_st_encoding_bitrate; + printf("Short-time stats, for window of %d frames: \n", rc->window_size); + printf("Average, rms-variance, and percent-fluct: %f %f %f \n", + rc->avg_st_encoding_bitrate, sqrt(rc->variance_st_encoding_bitrate), + perc_fluctuation); + if ((frame_cnt - 1) != tot_num_frames) + die("Error: Number of input frames not equal to output! \n"); +} + +#if VP8_ROI_MAP +static void vp8_set_roi_map(vpx_codec_enc_cfg_t *cfg, vpx_roi_map_t *roi) { + unsigned int i, j; + memset(roi, 0, sizeof(*roi)); + + // ROI is based on the segments (4 for vp8, 8 for vp9), smallest unit for + // segment is 16x16 for vp8, 8x8 for vp9. + roi->rows = (cfg->g_h + 15) / 16; + roi->cols = (cfg->g_w + 15) / 16; + + // Applies delta QP on the segment blocks, varies from -63 to 63. + // Setting to negative means lower QP (better quality). + // Below we set delta_q to the extreme (-63) to show strong effect. + roi->delta_q[0] = 0; + roi->delta_q[1] = -63; + roi->delta_q[2] = 0; + roi->delta_q[3] = 0; + + // Applies delta loopfilter strength on the segment blocks, varies from -63 to + // 63. Setting to positive means stronger loopfilter. + roi->delta_lf[0] = 0; + roi->delta_lf[1] = 0; + roi->delta_lf[2] = 0; + roi->delta_lf[3] = 0; + + // Applies skip encoding threshold on the segment blocks, varies from 0 to + // UINT_MAX. Larger value means more skipping of encoding is possible. + // This skip threshold only applies on delta frames. + roi->static_threshold[0] = 0; + roi->static_threshold[1] = 0; + roi->static_threshold[2] = 0; + roi->static_threshold[3] = 0; + + // Use 2 states: 1 is center square, 0 is the rest. + roi->roi_map = + (uint8_t *)calloc(roi->rows * roi->cols, sizeof(*roi->roi_map)); + for (i = 0; i < roi->rows; ++i) { + for (j = 0; j < roi->cols; ++j) { + if (i > (roi->rows >> 2) && i < ((roi->rows * 3) >> 2) && + j > (roi->cols >> 2) && j < ((roi->cols * 3) >> 2)) { + roi->roi_map[i * roi->cols + j] = 1; + } + } + } +} +#endif + +// Temporal scaling parameters: +// NOTE: The 3 prediction frames cannot be used interchangeably due to +// differences in the way they are handled throughout the code. The +// frames should be allocated to layers in the order LAST, GF, ARF. +// Other combinations work, but may produce slightly inferior results. +static void set_temporal_layer_pattern(int layering_mode, + vpx_codec_enc_cfg_t *cfg, + int *layer_flags, + int *flag_periodicity) { + switch (layering_mode) { + case 0: { + // 1-layer. + int ids[1] = { 0 }; + cfg->ts_periodicity = 1; + *flag_periodicity = 1; + cfg->ts_number_layers = 1; + cfg->ts_rate_decimator[0] = 1; + memcpy(cfg->ts_layer_id, ids, sizeof(ids)); + // Update L only. + layer_flags[0] = + VPX_EFLAG_FORCE_KF | VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF; + break; + } + case 1: { + // 2-layers, 2-frame period. + int ids[2] = { 0, 1 }; + cfg->ts_periodicity = 2; + *flag_periodicity = 2; + cfg->ts_number_layers = 2; + cfg->ts_rate_decimator[0] = 2; + cfg->ts_rate_decimator[1] = 1; + memcpy(cfg->ts_layer_id, ids, sizeof(ids)); +#if 1 + // 0=L, 1=GF, Intra-layer prediction enabled. + layer_flags[0] = VPX_EFLAG_FORCE_KF | VP8_EFLAG_NO_UPD_GF | + VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_REF_GF | + VP8_EFLAG_NO_REF_ARF; + layer_flags[1] = + VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_REF_ARF; +#else + // 0=L, 1=GF, Intra-layer prediction disabled. + layer_flags[0] = VPX_EFLAG_FORCE_KF | VP8_EFLAG_NO_UPD_GF | + VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_REF_GF | + VP8_EFLAG_NO_REF_ARF; + layer_flags[1] = VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_LAST | + VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_REF_LAST; +#endif + break; + } + case 2: { + // 2-layers, 3-frame period. + int ids[3] = { 0, 1, 1 }; + cfg->ts_periodicity = 3; + *flag_periodicity = 3; + cfg->ts_number_layers = 2; + cfg->ts_rate_decimator[0] = 3; + cfg->ts_rate_decimator[1] = 1; + memcpy(cfg->ts_layer_id, ids, sizeof(ids)); + // 0=L, 1=GF, Intra-layer prediction enabled. + layer_flags[0] = VPX_EFLAG_FORCE_KF | VP8_EFLAG_NO_REF_GF | + VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_GF | + VP8_EFLAG_NO_UPD_ARF; + layer_flags[1] = layer_flags[2] = + VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_ARF | + VP8_EFLAG_NO_UPD_LAST; + break; + } + case 3: { + // 3-layers, 6-frame period. + int ids[6] = { 0, 2, 2, 1, 2, 2 }; + cfg->ts_periodicity = 6; + *flag_periodicity = 6; + cfg->ts_number_layers = 3; + cfg->ts_rate_decimator[0] = 6; + cfg->ts_rate_decimator[1] = 3; + cfg->ts_rate_decimator[2] = 1; + memcpy(cfg->ts_layer_id, ids, sizeof(ids)); + // 0=L, 1=GF, 2=ARF, Intra-layer prediction enabled. + layer_flags[0] = VPX_EFLAG_FORCE_KF | VP8_EFLAG_NO_REF_GF | + VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_GF | + VP8_EFLAG_NO_UPD_ARF; + layer_flags[3] = + VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_LAST; + layer_flags[1] = layer_flags[2] = layer_flags[4] = layer_flags[5] = + VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_LAST; + break; + } + case 4: { + // 3-layers, 4-frame period. + int ids[4] = { 0, 2, 1, 2 }; + cfg->ts_periodicity = 4; + *flag_periodicity = 4; + cfg->ts_number_layers = 3; + cfg->ts_rate_decimator[0] = 4; + cfg->ts_rate_decimator[1] = 2; + cfg->ts_rate_decimator[2] = 1; + memcpy(cfg->ts_layer_id, ids, sizeof(ids)); + // 0=L, 1=GF, 2=ARF, Intra-layer prediction disabled. + layer_flags[0] = VPX_EFLAG_FORCE_KF | VP8_EFLAG_NO_REF_GF | + VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_GF | + VP8_EFLAG_NO_UPD_ARF; + layer_flags[2] = VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_REF_ARF | + VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_LAST; + layer_flags[1] = layer_flags[3] = + VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_GF | + VP8_EFLAG_NO_UPD_ARF; + break; + } + case 5: { + // 3-layers, 4-frame period. + int ids[4] = { 0, 2, 1, 2 }; + cfg->ts_periodicity = 4; + *flag_periodicity = 4; + cfg->ts_number_layers = 3; + cfg->ts_rate_decimator[0] = 4; + cfg->ts_rate_decimator[1] = 2; + cfg->ts_rate_decimator[2] = 1; + memcpy(cfg->ts_layer_id, ids, sizeof(ids)); + // 0=L, 1=GF, 2=ARF, Intra-layer prediction enabled in layer 1, disabled + // in layer 2. + layer_flags[0] = VPX_EFLAG_FORCE_KF | VP8_EFLAG_NO_REF_GF | + VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_GF | + VP8_EFLAG_NO_UPD_ARF; + layer_flags[2] = + VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_ARF; + layer_flags[1] = layer_flags[3] = + VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_GF | + VP8_EFLAG_NO_UPD_ARF; + break; + } + case 6: { + // 3-layers, 4-frame period. + int ids[4] = { 0, 2, 1, 2 }; + cfg->ts_periodicity = 4; + *flag_periodicity = 4; + cfg->ts_number_layers = 3; + cfg->ts_rate_decimator[0] = 4; + cfg->ts_rate_decimator[1] = 2; + cfg->ts_rate_decimator[2] = 1; + memcpy(cfg->ts_layer_id, ids, sizeof(ids)); + // 0=L, 1=GF, 2=ARF, Intra-layer prediction enabled. + layer_flags[0] = VPX_EFLAG_FORCE_KF | VP8_EFLAG_NO_REF_GF | + VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_GF | + VP8_EFLAG_NO_UPD_ARF; + layer_flags[2] = + VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_ARF; + layer_flags[1] = layer_flags[3] = + VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_GF; + break; + } + case 7: { + // NOTE: Probably of academic interest only. + // 5-layers, 16-frame period. + int ids[16] = { 0, 4, 3, 4, 2, 4, 3, 4, 1, 4, 3, 4, 2, 4, 3, 4 }; + cfg->ts_periodicity = 16; + *flag_periodicity = 16; + cfg->ts_number_layers = 5; + cfg->ts_rate_decimator[0] = 16; + cfg->ts_rate_decimator[1] = 8; + cfg->ts_rate_decimator[2] = 4; + cfg->ts_rate_decimator[3] = 2; + cfg->ts_rate_decimator[4] = 1; + memcpy(cfg->ts_layer_id, ids, sizeof(ids)); + layer_flags[0] = VPX_EFLAG_FORCE_KF; + layer_flags[1] = layer_flags[3] = layer_flags[5] = layer_flags[7] = + layer_flags[9] = layer_flags[11] = layer_flags[13] = layer_flags[15] = + VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_GF | + VP8_EFLAG_NO_UPD_ARF; + layer_flags[2] = layer_flags[6] = layer_flags[10] = layer_flags[14] = + VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_GF; + layer_flags[4] = layer_flags[12] = + VP8_EFLAG_NO_REF_LAST | VP8_EFLAG_NO_UPD_ARF; + layer_flags[8] = VP8_EFLAG_NO_REF_LAST | VP8_EFLAG_NO_REF_GF; + break; + } + case 8: { + // 2-layers, with sync point at first frame of layer 1. + int ids[2] = { 0, 1 }; + cfg->ts_periodicity = 2; + *flag_periodicity = 8; + cfg->ts_number_layers = 2; + cfg->ts_rate_decimator[0] = 2; + cfg->ts_rate_decimator[1] = 1; + memcpy(cfg->ts_layer_id, ids, sizeof(ids)); + // 0=L, 1=GF. + // ARF is used as predictor for all frames, and is only updated on + // key frame. Sync point every 8 frames. + + // Layer 0: predict from L and ARF, update L and G. + layer_flags[0] = + VPX_EFLAG_FORCE_KF | VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_UPD_ARF; + // Layer 1: sync point: predict from L and ARF, and update G. + layer_flags[1] = + VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_ARF; + // Layer 0, predict from L and ARF, update L. + layer_flags[2] = + VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF; + // Layer 1: predict from L, G and ARF, and update G. + layer_flags[3] = VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_LAST | + VP8_EFLAG_NO_UPD_ENTROPY; + // Layer 0. + layer_flags[4] = layer_flags[2]; + // Layer 1. + layer_flags[5] = layer_flags[3]; + // Layer 0. + layer_flags[6] = layer_flags[4]; + // Layer 1. + layer_flags[7] = layer_flags[5]; + break; + } + case 9: { + // 3-layers: Sync points for layer 1 and 2 every 8 frames. + int ids[4] = { 0, 2, 1, 2 }; + cfg->ts_periodicity = 4; + *flag_periodicity = 8; + cfg->ts_number_layers = 3; + cfg->ts_rate_decimator[0] = 4; + cfg->ts_rate_decimator[1] = 2; + cfg->ts_rate_decimator[2] = 1; + memcpy(cfg->ts_layer_id, ids, sizeof(ids)); + // 0=L, 1=GF, 2=ARF. + layer_flags[0] = VPX_EFLAG_FORCE_KF | VP8_EFLAG_NO_REF_GF | + VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_GF | + VP8_EFLAG_NO_UPD_ARF; + layer_flags[1] = VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_REF_ARF | + VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_GF; + layer_flags[2] = VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_REF_ARF | + VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_ARF; + layer_flags[3] = layer_flags[5] = + VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_GF; + layer_flags[4] = VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_REF_ARF | + VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF; + layer_flags[6] = + VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_ARF; + layer_flags[7] = VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_GF | + VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_ENTROPY; + break; + } + case 10: { + // 3-layers structure where ARF is used as predictor for all frames, + // and is only updated on key frame. + // Sync points for layer 1 and 2 every 8 frames. + + int ids[4] = { 0, 2, 1, 2 }; + cfg->ts_periodicity = 4; + *flag_periodicity = 8; + cfg->ts_number_layers = 3; + cfg->ts_rate_decimator[0] = 4; + cfg->ts_rate_decimator[1] = 2; + cfg->ts_rate_decimator[2] = 1; + memcpy(cfg->ts_layer_id, ids, sizeof(ids)); + // 0=L, 1=GF, 2=ARF. + // Layer 0: predict from L and ARF; update L and G. + layer_flags[0] = + VPX_EFLAG_FORCE_KF | VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_REF_GF; + // Layer 2: sync point: predict from L and ARF; update none. + layer_flags[1] = VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_UPD_GF | + VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_LAST | + VP8_EFLAG_NO_UPD_ENTROPY; + // Layer 1: sync point: predict from L and ARF; update G. + layer_flags[2] = + VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_LAST; + // Layer 2: predict from L, G, ARF; update none. + layer_flags[3] = VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF | + VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_ENTROPY; + // Layer 0: predict from L and ARF; update L. + layer_flags[4] = + VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_REF_GF; + // Layer 2: predict from L, G, ARF; update none. + layer_flags[5] = layer_flags[3]; + // Layer 1: predict from L, G, ARF; update G. + layer_flags[6] = VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_LAST; + // Layer 2: predict from L, G, ARF; update none. + layer_flags[7] = layer_flags[3]; + break; + } + case 11: { + // 3-layers structure with one reference frame. + // This works same as temporal_layering_mode 3. + // This was added to compare with vp9_spatial_svc_encoder. + + // 3-layers, 4-frame period. + int ids[4] = { 0, 2, 1, 2 }; + cfg->ts_periodicity = 4; + *flag_periodicity = 4; + cfg->ts_number_layers = 3; + cfg->ts_rate_decimator[0] = 4; + cfg->ts_rate_decimator[1] = 2; + cfg->ts_rate_decimator[2] = 1; + memcpy(cfg->ts_layer_id, ids, sizeof(ids)); + // 0=L, 1=GF, 2=ARF, Intra-layer prediction disabled. + layer_flags[0] = VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_REF_ARF | + VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF; + layer_flags[2] = VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_REF_ARF | + VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_LAST; + layer_flags[1] = VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_REF_ARF | + VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_GF; + layer_flags[3] = VP8_EFLAG_NO_REF_LAST | VP8_EFLAG_NO_REF_ARF | + VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_GF; + break; + } + case 12: + default: { + // 3-layers structure as in case 10, but no sync/refresh points for + // layer 1 and 2. + int ids[4] = { 0, 2, 1, 2 }; + cfg->ts_periodicity = 4; + *flag_periodicity = 8; + cfg->ts_number_layers = 3; + cfg->ts_rate_decimator[0] = 4; + cfg->ts_rate_decimator[1] = 2; + cfg->ts_rate_decimator[2] = 1; + memcpy(cfg->ts_layer_id, ids, sizeof(ids)); + // 0=L, 1=GF, 2=ARF. + // Layer 0: predict from L and ARF; update L. + layer_flags[0] = + VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_REF_GF; + layer_flags[4] = layer_flags[0]; + // Layer 1: predict from L, G, ARF; update G. + layer_flags[2] = VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_LAST; + layer_flags[6] = layer_flags[2]; + // Layer 2: predict from L, G, ARF; update none. + layer_flags[1] = VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF | + VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_ENTROPY; + layer_flags[3] = layer_flags[1]; + layer_flags[5] = layer_flags[1]; + layer_flags[7] = layer_flags[1]; + break; + } + } +} + +int main(int argc, char **argv) { + VpxVideoWriter *outfile[VPX_TS_MAX_LAYERS] = { NULL }; + vpx_codec_ctx_t codec; + vpx_codec_enc_cfg_t cfg; + int frame_cnt = 0; + vpx_image_t raw; + vpx_codec_err_t res; + unsigned int width; + unsigned int height; + uint32_t error_resilient = 0; + int speed; + int frame_avail; + int got_data; + int flags = 0; + unsigned int i; + int pts = 0; // PTS starts at 0. + int frame_duration = 1; // 1 timebase tick per frame. + int layering_mode = 0; + int layer_flags[VPX_TS_MAX_PERIODICITY] = { 0 }; + int flag_periodicity = 1; +#if VP8_ROI_MAP + vpx_roi_map_t roi; +#endif + vpx_svc_layer_id_t layer_id = { 0, 0 }; + const VpxInterface *encoder = NULL; + FILE *infile = NULL; + struct RateControlMetrics rc; + int64_t cx_time = 0; + const int min_args_base = 13; +#if CONFIG_VP9_HIGHBITDEPTH + vpx_bit_depth_t bit_depth = VPX_BITS_8; + int input_bit_depth = 8; + const int min_args = min_args_base + 1; +#else + const int min_args = min_args_base; +#endif // CONFIG_VP9_HIGHBITDEPTH + double sum_bitrate = 0.0; + double sum_bitrate2 = 0.0; + double framerate = 30.0; + + exec_name = argv[0]; + // Check usage and arguments. + if (argc < min_args) { +#if CONFIG_VP9_HIGHBITDEPTH + die("Usage: %s " + " " + " " + " ... \n", + argv[0]); +#else + die("Usage: %s " + " " + " " + " ... \n", + argv[0]); +#endif // CONFIG_VP9_HIGHBITDEPTH + } + + encoder = get_vpx_encoder_by_name(argv[3]); + if (!encoder) die("Unsupported codec."); + + printf("Using %s\n", vpx_codec_iface_name(encoder->codec_interface())); + + width = (unsigned int)strtoul(argv[4], NULL, 0); + height = (unsigned int)strtoul(argv[5], NULL, 0); + if (width < 16 || width % 2 || height < 16 || height % 2) { + die("Invalid resolution: %d x %d", width, height); + } + + layering_mode = (int)strtol(argv[12], NULL, 0); + if (layering_mode < 0 || layering_mode > 13) { + die("Invalid layering mode (0..12) %s", argv[12]); + } + + if (argc != min_args + mode_to_num_layers[layering_mode]) { + die("Invalid number of arguments"); + } + +#if CONFIG_VP9_HIGHBITDEPTH + switch (strtol(argv[argc - 1], NULL, 0)) { + case 8: + bit_depth = VPX_BITS_8; + input_bit_depth = 8; + break; + case 10: + bit_depth = VPX_BITS_10; + input_bit_depth = 10; + break; + case 12: + bit_depth = VPX_BITS_12; + input_bit_depth = 12; + break; + default: die("Invalid bit depth (8, 10, 12) %s", argv[argc - 1]); + } + if (!vpx_img_alloc( + &raw, bit_depth == VPX_BITS_8 ? VPX_IMG_FMT_I420 : VPX_IMG_FMT_I42016, + width, height, 32)) { + die("Failed to allocate image", width, height); + } +#else + if (!vpx_img_alloc(&raw, VPX_IMG_FMT_I420, width, height, 32)) { + die("Failed to allocate image", width, height); + } +#endif // CONFIG_VP9_HIGHBITDEPTH + + // Populate encoder configuration. + res = vpx_codec_enc_config_default(encoder->codec_interface(), &cfg, 0); + if (res) { + printf("Failed to get config: %s\n", vpx_codec_err_to_string(res)); + return EXIT_FAILURE; + } + + // Update the default configuration with our settings. + cfg.g_w = width; + cfg.g_h = height; + +#if CONFIG_VP9_HIGHBITDEPTH + if (bit_depth != VPX_BITS_8) { + cfg.g_bit_depth = bit_depth; + cfg.g_input_bit_depth = input_bit_depth; + cfg.g_profile = 2; + } +#endif // CONFIG_VP9_HIGHBITDEPTH + + // Timebase format e.g. 30fps: numerator=1, demoninator = 30. + cfg.g_timebase.num = (int)strtol(argv[6], NULL, 0); + cfg.g_timebase.den = (int)strtol(argv[7], NULL, 0); + + speed = (int)strtol(argv[8], NULL, 0); + if (speed < 0) { + die("Invalid speed setting: must be positive"); + } + + for (i = min_args_base; + (int)i < min_args_base + mode_to_num_layers[layering_mode]; ++i) { + rc.layer_target_bitrate[i - 13] = (int)strtol(argv[i], NULL, 0); + if (strncmp(encoder->name, "vp8", 3) == 0) + cfg.ts_target_bitrate[i - 13] = rc.layer_target_bitrate[i - 13]; + else if (strncmp(encoder->name, "vp9", 3) == 0) + cfg.layer_target_bitrate[i - 13] = rc.layer_target_bitrate[i - 13]; + } + + // Real time parameters. + cfg.rc_dropframe_thresh = (unsigned int)strtoul(argv[9], NULL, 0); + cfg.rc_end_usage = VPX_CBR; + cfg.rc_min_quantizer = 2; + cfg.rc_max_quantizer = 56; + if (strncmp(encoder->name, "vp9", 3) == 0) cfg.rc_max_quantizer = 52; + cfg.rc_undershoot_pct = 50; + cfg.rc_overshoot_pct = 50; + cfg.rc_buf_initial_sz = 600; + cfg.rc_buf_optimal_sz = 600; + cfg.rc_buf_sz = 1000; + + // Disable dynamic resizing by default. + cfg.rc_resize_allowed = 0; + + // Use 1 thread as default. + cfg.g_threads = (unsigned int)strtoul(argv[11], NULL, 0); + + error_resilient = (uint32_t)strtoul(argv[10], NULL, 0); + if (error_resilient != 0 && error_resilient != 1) { + die("Invalid value for error resilient (0, 1): %d.", error_resilient); + } + // Enable error resilient mode. + cfg.g_error_resilient = error_resilient; + cfg.g_lag_in_frames = 0; + cfg.kf_mode = VPX_KF_AUTO; + + // Disable automatic keyframe placement. + cfg.kf_min_dist = cfg.kf_max_dist = 3000; + + cfg.temporal_layering_mode = VP9E_TEMPORAL_LAYERING_MODE_BYPASS; + + set_temporal_layer_pattern(layering_mode, &cfg, layer_flags, + &flag_periodicity); + + set_rate_control_metrics(&rc, &cfg); + + // Target bandwidth for the whole stream. + // Set to layer_target_bitrate for highest layer (total bitrate). + cfg.rc_target_bitrate = rc.layer_target_bitrate[cfg.ts_number_layers - 1]; + + // Open input file. + if (!(infile = fopen(argv[1], "rb"))) { + die("Failed to open %s for reading", argv[1]); + } + + framerate = cfg.g_timebase.den / cfg.g_timebase.num; + // Open an output file for each stream. + for (i = 0; i < cfg.ts_number_layers; ++i) { + char file_name[PATH_MAX]; + VpxVideoInfo info; + info.codec_fourcc = encoder->fourcc; + info.frame_width = cfg.g_w; + info.frame_height = cfg.g_h; + info.time_base.numerator = cfg.g_timebase.num; + info.time_base.denominator = cfg.g_timebase.den; + + snprintf(file_name, sizeof(file_name), "%s_%d.ivf", argv[2], i); + outfile[i] = vpx_video_writer_open(file_name, kContainerIVF, &info); + if (!outfile[i]) die("Failed to open %s for writing", file_name); + + assert(outfile[i] != NULL); + } + // No spatial layers in this encoder. + cfg.ss_number_layers = 1; + +// Initialize codec. +#if CONFIG_VP9_HIGHBITDEPTH + if (vpx_codec_enc_init( + &codec, encoder->codec_interface(), &cfg, + bit_depth == VPX_BITS_8 ? 0 : VPX_CODEC_USE_HIGHBITDEPTH)) +#else + if (vpx_codec_enc_init(&codec, encoder->codec_interface(), &cfg, 0)) +#endif // CONFIG_VP9_HIGHBITDEPTH + die_codec(&codec, "Failed to initialize encoder"); + + if (strncmp(encoder->name, "vp8", 3) == 0) { + vpx_codec_control(&codec, VP8E_SET_CPUUSED, -speed); + vpx_codec_control(&codec, VP8E_SET_NOISE_SENSITIVITY, kVp8DenoiserOff); + vpx_codec_control(&codec, VP8E_SET_STATIC_THRESHOLD, 1); + vpx_codec_control(&codec, VP8E_SET_GF_CBR_BOOST_PCT, 0); +#if VP8_ROI_MAP + vp8_set_roi_map(&cfg, &roi); + if (vpx_codec_control(&codec, VP8E_SET_ROI_MAP, &roi)) + die_codec(&codec, "Failed to set ROI map"); +#endif + + } else if (strncmp(encoder->name, "vp9", 3) == 0) { + vpx_svc_extra_cfg_t svc_params; + memset(&svc_params, 0, sizeof(svc_params)); + vpx_codec_control(&codec, VP8E_SET_CPUUSED, speed); + vpx_codec_control(&codec, VP9E_SET_AQ_MODE, 3); + vpx_codec_control(&codec, VP9E_SET_GF_CBR_BOOST_PCT, 0); + vpx_codec_control(&codec, VP9E_SET_FRAME_PARALLEL_DECODING, 0); + vpx_codec_control(&codec, VP9E_SET_FRAME_PERIODIC_BOOST, 0); + vpx_codec_control(&codec, VP9E_SET_NOISE_SENSITIVITY, kVp9DenoiserOff); + vpx_codec_control(&codec, VP8E_SET_STATIC_THRESHOLD, 1); + vpx_codec_control(&codec, VP9E_SET_TUNE_CONTENT, 0); + vpx_codec_control(&codec, VP9E_SET_TILE_COLUMNS, (cfg.g_threads >> 1)); + // TODO(marpan/jianj): There is an issue with row-mt for low resolutons at + // high speed settings, disable its use for those cases for now. + if (cfg.g_threads > 1 && ((cfg.g_w > 320 && cfg.g_h > 240) || speed < 7)) + vpx_codec_control(&codec, VP9E_SET_ROW_MT, 1); + else + vpx_codec_control(&codec, VP9E_SET_ROW_MT, 0); + if (vpx_codec_control(&codec, VP9E_SET_SVC, layering_mode > 0 ? 1 : 0)) + die_codec(&codec, "Failed to set SVC"); + for (i = 0; i < cfg.ts_number_layers; ++i) { + svc_params.max_quantizers[i] = cfg.rc_max_quantizer; + svc_params.min_quantizers[i] = cfg.rc_min_quantizer; + } + svc_params.scaling_factor_num[0] = cfg.g_h; + svc_params.scaling_factor_den[0] = cfg.g_h; + vpx_codec_control(&codec, VP9E_SET_SVC_PARAMETERS, &svc_params); + } + if (strncmp(encoder->name, "vp8", 3) == 0) { + vpx_codec_control(&codec, VP8E_SET_SCREEN_CONTENT_MODE, 0); + } + vpx_codec_control(&codec, VP8E_SET_TOKEN_PARTITIONS, 1); + // This controls the maximum target size of the key frame. + // For generating smaller key frames, use a smaller max_intra_size_pct + // value, like 100 or 200. + { + const int max_intra_size_pct = 1000; + vpx_codec_control(&codec, VP8E_SET_MAX_INTRA_BITRATE_PCT, + max_intra_size_pct); + } + + frame_avail = 1; + while (frame_avail || got_data) { + struct vpx_usec_timer timer; + vpx_codec_iter_t iter = NULL; + const vpx_codec_cx_pkt_t *pkt; + // Update the temporal layer_id. No spatial layers in this test. + layer_id.spatial_layer_id = 0; + layer_id.temporal_layer_id = + cfg.ts_layer_id[frame_cnt % cfg.ts_periodicity]; + if (strncmp(encoder->name, "vp9", 3) == 0) { + vpx_codec_control(&codec, VP9E_SET_SVC_LAYER_ID, &layer_id); + } else if (strncmp(encoder->name, "vp8", 3) == 0) { + vpx_codec_control(&codec, VP8E_SET_TEMPORAL_LAYER_ID, + layer_id.temporal_layer_id); + } + flags = layer_flags[frame_cnt % flag_periodicity]; + if (layering_mode == 0) flags = 0; + frame_avail = vpx_img_read(&raw, infile); + if (frame_avail) ++rc.layer_input_frames[layer_id.temporal_layer_id]; + vpx_usec_timer_start(&timer); + if (vpx_codec_encode(&codec, frame_avail ? &raw : NULL, pts, 1, flags, + VPX_DL_REALTIME)) { + die_codec(&codec, "Failed to encode frame"); + } + vpx_usec_timer_mark(&timer); + cx_time += vpx_usec_timer_elapsed(&timer); + // Reset KF flag. + if (layering_mode != 7) { + layer_flags[0] &= ~VPX_EFLAG_FORCE_KF; + } + got_data = 0; + while ((pkt = vpx_codec_get_cx_data(&codec, &iter))) { + got_data = 1; + switch (pkt->kind) { + case VPX_CODEC_CX_FRAME_PKT: + for (i = cfg.ts_layer_id[frame_cnt % cfg.ts_periodicity]; + i < cfg.ts_number_layers; ++i) { + vpx_video_writer_write_frame(outfile[i], pkt->data.frame.buf, + pkt->data.frame.sz, pts); + ++rc.layer_tot_enc_frames[i]; + rc.layer_encoding_bitrate[i] += 8.0 * pkt->data.frame.sz; + // Keep count of rate control stats per layer (for non-key frames). + if (i == cfg.ts_layer_id[frame_cnt % cfg.ts_periodicity] && + !(pkt->data.frame.flags & VPX_FRAME_IS_KEY)) { + rc.layer_avg_frame_size[i] += 8.0 * pkt->data.frame.sz; + rc.layer_avg_rate_mismatch[i] += + fabs(8.0 * pkt->data.frame.sz - rc.layer_pfb[i]) / + rc.layer_pfb[i]; + ++rc.layer_enc_frames[i]; + } + } + // Update for short-time encoding bitrate states, for moving window + // of size rc->window, shifted by rc->window / 2. + // Ignore first window segment, due to key frame. + if (frame_cnt > rc.window_size) { + sum_bitrate += 0.001 * 8.0 * pkt->data.frame.sz * framerate; + if (frame_cnt % rc.window_size == 0) { + rc.window_count += 1; + rc.avg_st_encoding_bitrate += sum_bitrate / rc.window_size; + rc.variance_st_encoding_bitrate += + (sum_bitrate / rc.window_size) * + (sum_bitrate / rc.window_size); + sum_bitrate = 0.0; + } + } + // Second shifted window. + if (frame_cnt > rc.window_size + rc.window_size / 2) { + sum_bitrate2 += 0.001 * 8.0 * pkt->data.frame.sz * framerate; + if (frame_cnt > 2 * rc.window_size && + frame_cnt % rc.window_size == 0) { + rc.window_count += 1; + rc.avg_st_encoding_bitrate += sum_bitrate2 / rc.window_size; + rc.variance_st_encoding_bitrate += + (sum_bitrate2 / rc.window_size) * + (sum_bitrate2 / rc.window_size); + sum_bitrate2 = 0.0; + } + } + break; + default: break; + } + } + ++frame_cnt; + pts += frame_duration; + } + fclose(infile); + printout_rate_control_summary(&rc, &cfg, frame_cnt); + printf("\n"); + printf("Frame cnt and encoding time/FPS stats for encoding: %d %f %f \n", + frame_cnt, 1000 * (float)cx_time / (double)(frame_cnt * 1000000), + 1000000 * (double)frame_cnt / (double)cx_time); + + if (vpx_codec_destroy(&codec)) die_codec(&codec, "Failed to destroy codec"); + + // Try to rewrite the output file headers with the actual frame count. + for (i = 0; i < cfg.ts_number_layers; ++i) vpx_video_writer_close(outfile[i]); + + vpx_img_free(&raw); + return EXIT_SUCCESS; +} diff --git a/ivfdec.c b/ivfdec.c new file mode 100644 index 0000000..f64e594 --- /dev/null +++ b/ivfdec.c @@ -0,0 +1,112 @@ +/* + * Copyright (c) 2013 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include +#include + +#include "vpx_ports/mem_ops.h" + +#include "./ivfdec.h" + +static const char *IVF_SIGNATURE = "DKIF"; + +static void fix_framerate(int *num, int *den) { + // Some versions of vpxenc used 1/(2*fps) for the timebase, so + // we can guess the framerate using only the timebase in this + // case. Other files would require reading ahead to guess the + // timebase, like we do for webm. + if (*den > 0 && *den < 1000000000 && *num > 0 && *num < 1000) { + // Correct for the factor of 2 applied to the timebase in the encoder. + if (*num & 1) + *den *= 2; + else + *num /= 2; + } else { + // Don't know FPS for sure, and don't have readahead code + // (yet?), so just default to 30fps. + *num = 30; + *den = 1; + } +} + +int file_is_ivf(struct VpxInputContext *input_ctx) { + char raw_hdr[32]; + int is_ivf = 0; + + if (fread(raw_hdr, 1, 32, input_ctx->file) == 32) { + if (memcmp(IVF_SIGNATURE, raw_hdr, 4) == 0) { + is_ivf = 1; + + if (mem_get_le16(raw_hdr + 4) != 0) { + fprintf(stderr, + "Error: Unrecognized IVF version! This file may not" + " decode properly."); + } + + input_ctx->fourcc = mem_get_le32(raw_hdr + 8); + input_ctx->width = mem_get_le16(raw_hdr + 12); + input_ctx->height = mem_get_le16(raw_hdr + 14); + input_ctx->framerate.numerator = mem_get_le32(raw_hdr + 16); + input_ctx->framerate.denominator = mem_get_le32(raw_hdr + 20); + fix_framerate(&input_ctx->framerate.numerator, + &input_ctx->framerate.denominator); + } + } + + if (!is_ivf) { + rewind(input_ctx->file); + input_ctx->detect.buf_read = 0; + } else { + input_ctx->detect.position = 4; + } + return is_ivf; +} + +int ivf_read_frame(FILE *infile, uint8_t **buffer, size_t *bytes_read, + size_t *buffer_size) { + char raw_header[IVF_FRAME_HDR_SZ] = { 0 }; + size_t frame_size = 0; + + if (fread(raw_header, IVF_FRAME_HDR_SZ, 1, infile) != 1) { + if (!feof(infile)) warn("Failed to read frame size\n"); + } else { + frame_size = mem_get_le32(raw_header); + + if (frame_size > 256 * 1024 * 1024) { + warn("Read invalid frame size (%u)\n", (unsigned int)frame_size); + frame_size = 0; + } + + if (frame_size > *buffer_size) { + uint8_t *new_buffer = realloc(*buffer, 2 * frame_size); + + if (new_buffer) { + *buffer = new_buffer; + *buffer_size = 2 * frame_size; + } else { + warn("Failed to allocate compressed data buffer\n"); + frame_size = 0; + } + } + } + + if (!feof(infile)) { + if (fread(*buffer, 1, frame_size, infile) != frame_size) { + warn("Failed to read full frame\n"); + return 1; + } + + *bytes_read = frame_size; + return 0; + } + + return 1; +} diff --git a/ivfdec.h b/ivfdec.h new file mode 100644 index 0000000..af72557 --- /dev/null +++ b/ivfdec.h @@ -0,0 +1,28 @@ +/* + * Copyright (c) 2013 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ +#ifndef IVFDEC_H_ +#define IVFDEC_H_ + +#include "./tools_common.h" + +#ifdef __cplusplus +extern "C" { +#endif + +int file_is_ivf(struct VpxInputContext *input); + +int ivf_read_frame(FILE *infile, uint8_t **buffer, size_t *bytes_read, + size_t *buffer_size); + +#ifdef __cplusplus +} /* extern "C" */ +#endif + +#endif // IVFDEC_H_ diff --git a/ivfenc.c b/ivfenc.c new file mode 100644 index 0000000..a50d318 --- /dev/null +++ b/ivfenc.c @@ -0,0 +1,51 @@ +/* + * Copyright (c) 2013 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "./ivfenc.h" + +#include "vpx/vpx_encoder.h" +#include "vpx_ports/mem_ops.h" + +void ivf_write_file_header(FILE *outfile, const struct vpx_codec_enc_cfg *cfg, + unsigned int fourcc, int frame_cnt) { + char header[32]; + + header[0] = 'D'; + header[1] = 'K'; + header[2] = 'I'; + header[3] = 'F'; + mem_put_le16(header + 4, 0); // version + mem_put_le16(header + 6, 32); // header size + mem_put_le32(header + 8, fourcc); // fourcc + mem_put_le16(header + 12, cfg->g_w); // width + mem_put_le16(header + 14, cfg->g_h); // height + mem_put_le32(header + 16, cfg->g_timebase.den); // rate + mem_put_le32(header + 20, cfg->g_timebase.num); // scale + mem_put_le32(header + 24, frame_cnt); // length + mem_put_le32(header + 28, 0); // unused + + fwrite(header, 1, 32, outfile); +} + +void ivf_write_frame_header(FILE *outfile, int64_t pts, size_t frame_size) { + char header[12]; + + mem_put_le32(header, (int)frame_size); + mem_put_le32(header + 4, (int)(pts & 0xFFFFFFFF)); + mem_put_le32(header + 8, (int)(pts >> 32)); + fwrite(header, 1, 12, outfile); +} + +void ivf_write_frame_size(FILE *outfile, size_t frame_size) { + char header[4]; + + mem_put_le32(header, (int)frame_size); + fwrite(header, 1, 4, outfile); +} diff --git a/ivfenc.h b/ivfenc.h new file mode 100644 index 0000000..ebdce47 --- /dev/null +++ b/ivfenc.h @@ -0,0 +1,33 @@ +/* + * Copyright (c) 2013 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ +#ifndef IVFENC_H_ +#define IVFENC_H_ + +#include "./tools_common.h" + +struct vpx_codec_enc_cfg; +struct vpx_codec_cx_pkt; + +#ifdef __cplusplus +extern "C" { +#endif + +void ivf_write_file_header(FILE *outfile, const struct vpx_codec_enc_cfg *cfg, + uint32_t fourcc, int frame_cnt); + +void ivf_write_frame_header(FILE *outfile, int64_t pts, size_t frame_size); + +void ivf_write_frame_size(FILE *outfile, size_t frame_size); + +#ifdef __cplusplus +} /* extern "C" */ +#endif + +#endif // IVFENC_H_ diff --git a/keywords.dox b/keywords.dox new file mode 100644 index 0000000..56f5368 --- /dev/null +++ b/keywords.dox @@ -0,0 +1,51 @@ +/*!\page rfc2119 RFC2119 Keywords + + The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL + NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and + "OPTIONAL" in this document are to be interpreted as described in + RFC 2119. + +Specifically, the following definitions are used: + +\section MUST +\anchor REQUIRED +\anchor SHALL + This word, or the terms "REQUIRED" or "SHALL", mean that the + definition is an absolute requirement of the specification. + +\section MUSTNOT MUST NOT +\anchor SHALLNOT + This phrase, or the phrase "SHALL NOT", mean that the + definition is an absolute prohibition of the specification. + +\section SHOULD +\anchor RECOMMENDED + This word, or the adjective "RECOMMENDED", mean that there + may exist valid reasons in particular circumstances to ignore a + particular item, but the full implications must be understood and + carefully weighed before choosing a different course. + +\section SHOULDNOT SHOULD NOT +\anchor NOTRECOMMENDED + This phrase, or the phrase "NOT RECOMMENDED" mean that + there may exist valid reasons in particular circumstances when the + particular behavior is acceptable or even useful, but the full + implications should be understood and the case carefully weighed + before implementing any behavior described with this label. + +\section MAY +\anchor OPTIONAL + This word, or the adjective "OPTIONAL", mean that an item is + truly optional. One vendor may choose to include the item because a + particular marketplace requires it or because the vendor feels that + it enhances the product while another vendor may omit the same item. + An implementation which does not include a particular option \ref MUST be + prepared to interoperate with another implementation which does + include the option, though perhaps with reduced functionality. In the + same vein an implementation which does include a particular option + \ref MUST be prepared to interoperate with another implementation which + does not include the option (except, of course, for the feature the + option provides.) + + +*/ diff --git a/libs.doxy_template b/libs.doxy_template new file mode 100644 index 0000000..5a8f847 --- /dev/null +++ b/libs.doxy_template @@ -0,0 +1,1296 @@ +## +## Copyright (c) 2010 The WebM project authors. All Rights Reserved. +## +## Use of this source code is governed by a BSD-style license +## that can be found in the LICENSE file in the root of the source +## tree. An additional intellectual property rights grant can be found +## in the file PATENTS. All contributing project authors may +## be found in the AUTHORS file in the root of the source tree. +## + + +# Doxyfile 1.5.4 + +# This file describes the settings to be used by the documentation system +# doxygen (www.doxygen.org) for a project +# +# All text after a hash (#) is considered a comment and will be ignored +# The format is: +# TAG = value [value, ...] +# For lists items can also be appended using: +# TAG += value [value, ...] +# Values that contain spaces should be placed between quotes (" ") + +#--------------------------------------------------------------------------- +# Project related configuration options +#--------------------------------------------------------------------------- + +# This tag specifies the encoding used for all characters in the config file that +# follow. The default is UTF-8 which is also the encoding used for all text before +# the first occurrence of this tag. Doxygen uses libiconv (or the iconv built into +# libc) for the transcoding. See http://www.gnu.org/software/libiconv for the list of +# possible encodings. + +DOXYFILE_ENCODING = UTF-8 + +# The PROJECT_NAME tag is a single word (or a sequence of words surrounded +# by quotes) that should identify the project. + +PROJECT_NAME = "WebM Codec SDK" + +# The OUTPUT_DIRECTORY tag is used to specify the (relative or absolute) +# base path where the generated documentation will be put. +# If a relative path is entered, it will be relative to the location +# where doxygen was started. If left blank the current directory will be used. + +OUTPUT_DIRECTORY = docs + +# If the CREATE_SUBDIRS tag is set to YES, then doxygen will create +# 4096 sub-directories (in 2 levels) under the output directory of each output +# format and will distribute the generated files over these directories. +# Enabling this option can be useful when feeding doxygen a huge amount of +# source files, where putting all generated files in the same directory would +# otherwise cause performance problems for the file system. + +CREATE_SUBDIRS = NO + +# The OUTPUT_LANGUAGE tag is used to specify the language in which all +# documentation generated by doxygen is written. Doxygen will use this +# information to generate all constant output in the proper language. +# The default language is English, other supported languages are: +# Afrikaans, Arabic, Brazilian, Catalan, Chinese, Chinese-Traditional, +# Croatian, Czech, Danish, Dutch, Finnish, French, German, Greek, Hungarian, +# Italian, Japanese, Japanese-en (Japanese with English messages), Korean, +# Korean-en, Lithuanian, Norwegian, Polish, Portuguese, Romanian, Russian, +# Serbian, Slovak, Slovene, Spanish, Swedish, and Ukrainian. + +OUTPUT_LANGUAGE = English + +# If the BRIEF_MEMBER_DESC tag is set to YES (the default) Doxygen will +# include brief member descriptions after the members that are listed in +# the file and class documentation (similar to java_doc). +# Set to NO to disable this. + +BRIEF_MEMBER_DESC = YES + +# If the REPEAT_BRIEF tag is set to YES (the default) Doxygen will prepend +# the brief description of a member or function before the detailed description. +# Note: if both HIDE_UNDOC_MEMBERS and BRIEF_MEMBER_DESC are set to NO, the +# brief descriptions will be completely suppressed. + +REPEAT_BRIEF = YES + +# This tag implements a quasi-intelligent brief description abbreviator +# that is used to form the text in various listings. Each string +# in this list, if found as the leading text of the brief description, will be +# stripped from the text and the result after processing the whole list, is +# used as the annotated text. Otherwise, the brief description is used as-is. +# If left blank, the following values are used ("$name" is automatically +# replaced with the name of the entity): "The $name class" "The $name widget" +# "The $name file" "is" "provides" "specifies" "contains" +# "represents" "a" "an" "the" + +ABBREVIATE_BRIEF = + +# If the ALWAYS_DETAILED_SEC and REPEAT_BRIEF tags are both set to YES then +# Doxygen will generate a detailed section even if there is only a brief +# description. + +ALWAYS_DETAILED_SEC = NO + +# If the INLINE_INHERITED_MEMB tag is set to YES, doxygen will show all +# inherited members of a class in the documentation of that class as if those +# members were ordinary class members. Constructors, destructors and assignment +# operators of the base classes will not be shown. + +INLINE_INHERITED_MEMB = NO + +# If the FULL_PATH_NAMES tag is set to YES then Doxygen will prepend the full +# path before files name in the file list and in the header files. If set +# to NO the shortest path that makes the file name unique will be used. + +FULL_PATH_NAMES = YES + +# If the FULL_PATH_NAMES tag is set to YES then the STRIP_FROM_PATH tag +# can be used to strip a user-defined part of the path. Stripping is +# only done if one of the specified strings matches the left-hand part of +# the path. The tag can be used to show relative paths in the file list. +# If left blank the directory from which doxygen is run is used as the +# path to strip. + +STRIP_FROM_PATH = + +# The STRIP_FROM_INC_PATH tag can be used to strip a user-defined part of +# the path mentioned in the documentation of a class, which tells +# the reader which header file to include in order to use a class. +# If left blank only the name of the header file containing the class +# definition is used. Otherwise one should specify the include paths that +# are normally passed to the compiler using the -I flag. + +STRIP_FROM_INC_PATH = + +# If the SHORT_NAMES tag is set to YES, doxygen will generate much shorter +# (but less readable) file names. This can be useful is your file systems +# doesn't support long names like on DOS, Mac, or CD-ROM. + +SHORT_NAMES = NO + +# If the JAVADOC_AUTOBRIEF tag is set to YES then Doxygen +# will interpret the first line (until the first dot) of a java_doc-style +# comment as the brief description. If set to NO, the java_doc +# comments will behave just like regular Qt-style comments +# (thus requiring an explicit @brief command for a brief description.) + +JAVADOC_AUTOBRIEF = NO + +# If the QT_AUTOBRIEF tag is set to YES then Doxygen will +# interpret the first line (until the first dot) of a Qt-style +# comment as the brief description. If set to NO, the comments +# will behave just like regular Qt-style comments (thus requiring +# an explicit \brief command for a brief description.) + +QT_AUTOBRIEF = NO + +# The MULTILINE_CPP_IS_BRIEF tag can be set to YES to make Doxygen +# treat a multi-line C++ special comment block (i.e. a block of //! or /// +# comments) as a brief description. This used to be the default behaviour. +# The new default is to treat a multi-line C++ comment block as a detailed +# description. Set this tag to YES if you prefer the old behaviour instead. + +MULTILINE_CPP_IS_BRIEF = NO + +# If the INHERIT_DOCS tag is set to YES (the default) then an undocumented +# member inherits the documentation from any documented member that it +# re-implements. + +INHERIT_DOCS = YES + +# If the SEPARATE_MEMBER_PAGES tag is set to YES, then doxygen will produce +# a new page for each member. If set to NO, the documentation of a member will +# be part of the file/class/namespace that contains it. + +SEPARATE_MEMBER_PAGES = NO + +# The TAB_SIZE tag can be used to set the number of spaces in a tab. +# Doxygen uses this value to replace tabs by spaces in code fragments. + +TAB_SIZE = 4 + +# This tag can be used to specify a number of aliases that acts +# as commands in the documentation. An alias has the form "name=value". +# For example adding "sideeffect=\par Side Effects:\n" will allow you to +# put the command \sideeffect (or @sideeffect) in the documentation, which +# will result in a user-defined paragraph with heading "Side Effects:". +# You can put \n's in the value part of an alias to insert newlines. + +ALIASES = + +# Set the OPTIMIZE_OUTPUT_FOR_C tag to YES if your project consists of C +# sources only. Doxygen will then generate output that is more tailored for C. +# For instance, some of the names that are used will be different. The list +# of all members will be omitted, etc. + +OPTIMIZE_OUTPUT_FOR_C = YES + +# Set the OPTIMIZE_OUTPUT_JAVA tag to YES if your project consists of Java +# sources only. Doxygen will then generate output that is more tailored for Java. +# For instance, namespaces will be presented as packages, qualified scopes +# will look different, etc. + +OPTIMIZE_OUTPUT_JAVA = NO + +# If you use STL classes (i.e. std::string, std::vector, etc.) but do not want to +# include (a tag file for) the STL sources as input, then you should +# set this tag to YES in order to let doxygen match functions declarations and +# definitions whose arguments contain STL classes (e.g. func(std::string); v.s. +# func(std::string) {}). This also make the inheritance and collaboration +# diagrams that involve STL classes more complete and accurate. + +BUILTIN_STL_SUPPORT = NO + +# If you use Microsoft's C++/CLI language, you should set this option to YES to +# enable parsing support. + +CPP_CLI_SUPPORT = NO + +# Set the SIP_SUPPORT tag to YES if your project consists of sip sources only. +# Doxygen will parse them like normal C++ but will assume all classes use public +# instead of private inheritance when no explicit protection keyword is present. + +SIP_SUPPORT = NO + +# If member grouping is used in the documentation and the DISTRIBUTE_GROUP_DOC +# tag is set to YES, then doxygen will reuse the documentation of the first +# member in the group (if any) for the other members of the group. By default +# all members of a group must be documented explicitly. + +DISTRIBUTE_GROUP_DOC = NO + +# Set the SUBGROUPING tag to YES (the defqault) to allow class member groups of +# the same type (for instance a group of public functions) to be put as a +# subgroup of that type (e.g. under the Public Functions section). Set it to +# NO to prevent subgrouping. Alternatively, this can be done per class using +# the \nosubgrouping command. + +SUBGROUPING = YES + +# When TYPEDEF_HIDES_STRUCT is enabled, a typedef of a struct (or union) is +# documented as struct with the name of the typedef. So +# typedef struct type_s {} type_t, will appear in the documentation as a struct +# with name type_t. When disabled the typedef will appear as a member of a file, +# namespace, or class. And the struct will be named type_s. This can typically +# be useful for C code where the coding convention is that all structs are +# typedef'ed and only the typedef is referenced never the struct's name. + +TYPEDEF_HIDES_STRUCT = NO + +#--------------------------------------------------------------------------- +# Build related configuration options +#--------------------------------------------------------------------------- + +# If the EXTRACT_ALL tag is set to YES doxygen will assume all entities in +# documentation are documented, even if no documentation was available. +# Private class members and static file members will be hidden unless +# the EXTRACT_PRIVATE and EXTRACT_STATIC tags are set to YES + +EXTRACT_ALL = NO + +# If the EXTRACT_PRIVATE tag is set to YES all private members of a class +# will be included in the documentation. + +EXTRACT_PRIVATE = NO + +# If the EXTRACT_STATIC tag is set to YES all static members of a file +# will be included in the documentation. + +EXTRACT_STATIC = NO + +# If the EXTRACT_LOCAL_CLASSES tag is set to YES classes (and structs) +# defined locally in source files will be included in the documentation. +# If set to NO only classes defined in header files are included. + +EXTRACT_LOCAL_CLASSES = YES + +# This flag is only useful for Objective-C code. When set to YES local +# methods, which are defined in the implementation section but not in +# the interface are included in the documentation. +# If set to NO (the default) only methods in the interface are included. + +EXTRACT_LOCAL_METHODS = NO + +# If this flag is set to YES, the members of anonymous namespaces will be extracted +# and appear in the documentation as a namespace called 'anonymous_namespace{file}', +# where file will be replaced with the base name of the file that contains the anonymous +# namespace. By default anonymous namespace are hidden. + +EXTRACT_ANON_NSPACES = NO + +# If the HIDE_UNDOC_MEMBERS tag is set to YES, Doxygen will hide all +# undocumented members of documented classes, files or namespaces. +# If set to NO (the default) these members will be included in the +# various overviews, but no documentation section is generated. +# This option has no effect if EXTRACT_ALL is enabled. + +HIDE_UNDOC_MEMBERS = NO + +# If the HIDE_UNDOC_CLASSES tag is set to YES, Doxygen will hide all +# undocumented classes that are normally visible in the class hierarchy. +# If set to NO (the default) these classes will be included in the various +# overviews. This option has no effect if EXTRACT_ALL is enabled. + +HIDE_UNDOC_CLASSES = NO + +# If the HIDE_FRIEND_COMPOUNDS tag is set to YES, Doxygen will hide all +# friend (class|struct|union) declarations. +# If set to NO (the default) these declarations will be included in the +# documentation. + +HIDE_FRIEND_COMPOUNDS = NO + +# If the HIDE_IN_BODY_DOCS tag is set to YES, Doxygen will hide any +# documentation blocks found inside the body of a function. +# If set to NO (the default) these blocks will be appended to the +# function's detailed documentation block. + +HIDE_IN_BODY_DOCS = NO + +# The INTERNAL_DOCS tag determines if documentation +# that is typed after a \internal command is included. If the tag is set +# to NO (the default) then the documentation will be excluded. +# Set it to YES to include the internal documentation. + +INTERNAL_DOCS = NO + +# If the CASE_SENSE_NAMES tag is set to NO then Doxygen will only generate +# file names in lower-case letters. If set to YES upper-case letters are also +# allowed. This is useful if you have classes or files whose names only differ +# in case and if your file system supports case sensitive file names. Windows +# and Mac users are advised to set this option to NO. + +CASE_SENSE_NAMES = YES + +# If the HIDE_SCOPE_NAMES tag is set to NO (the default) then Doxygen +# will show members with their full class and namespace scopes in the +# documentation. If set to YES the scope will be hidden. + +HIDE_SCOPE_NAMES = NO + +# If the SHOW_INCLUDE_FILES tag is set to YES (the default) then Doxygen +# will put a list of the files that are included by a file in the documentation +# of that file. + +SHOW_INCLUDE_FILES = YES + +# If the INLINE_INFO tag is set to YES (the default) then a tag [inline] +# is inserted in the documentation for inline members. + +INLINE_INFO = YES + +# If the SORT_MEMBER_DOCS tag is set to YES (the default) then doxygen +# will sort the (detailed) documentation of file and class members +# alphabetically by member name. If set to NO the members will appear in +# declaration order. + +SORT_MEMBER_DOCS = NO + +# If the SORT_BRIEF_DOCS tag is set to YES then doxygen will sort the +# brief documentation of file, namespace and class members alphabetically +# by member name. If set to NO (the default) the members will appear in +# declaration order. + +SORT_BRIEF_DOCS = NO + +# If the SORT_BY_SCOPE_NAME tag is set to YES, the class list will be +# sorted by fully-qualified names, including namespaces. If set to +# NO (the default), the class list will be sorted only by class name, +# not including the namespace part. +# Note: This option is not very useful if HIDE_SCOPE_NAMES is set to YES. +# Note: This option applies only to the class list, not to the +# alphabetical list. + +SORT_BY_SCOPE_NAME = NO + +# The GENERATE_TODOLIST tag can be used to enable (YES) or +# disable (NO) the todo list. This list is created by putting \todo +# commands in the documentation. + +GENERATE_TODOLIST = YES + +# The GENERATE_TESTLIST tag can be used to enable (YES) or +# disable (NO) the test list. This list is created by putting \test +# commands in the documentation. + +GENERATE_TESTLIST = YES + +# The GENERATE_BUGLIST tag can be used to enable (YES) or +# disable (NO) the bug list. This list is created by putting \bug +# commands in the documentation. + +GENERATE_BUGLIST = YES + +# The GENERATE_DEPRECATEDLIST tag can be used to enable (YES) or +# disable (NO) the deprecated list. This list is created by putting +# \deprecated commands in the documentation. + +GENERATE_DEPRECATEDLIST= YES + +# The ENABLED_SECTIONS tag can be used to enable conditional +# documentation sections, marked by \if sectionname ... \endif. + +ENABLED_SECTIONS = + +# The MAX_INITIALIZER_LINES tag determines the maximum number of lines +# the initial value of a variable or define consists of for it to appear in +# the documentation. If the initializer consists of more lines than specified +# here it will be hidden. Use a value of 0 to hide initializers completely. +# The appearance of the initializer of individual variables and defines in the +# documentation can be controlled using \showinitializer or \hideinitializer +# command in the documentation regardless of this setting. + +MAX_INITIALIZER_LINES = 30 + +# Set the SHOW_USED_FILES tag to NO to disable the list of files generated +# at the bottom of the documentation of classes and structs. If set to YES the +# list will mention the files that were used to generate the documentation. + +SHOW_USED_FILES = YES + +# The FILE_VERSION_FILTER tag can be used to specify a program or script that +# doxygen should invoke to get the current version for each file (typically from the +# version control system). Doxygen will invoke the program by executing (via +# popen()) the command , where is the value of +# the FILE_VERSION_FILTER tag, and is the name of an input file +# provided by doxygen. Whatever the program writes to standard output +# is used as the file version. See the manual for examples. + +FILE_VERSION_FILTER = + +#--------------------------------------------------------------------------- +# configuration options related to warning and progress messages +#--------------------------------------------------------------------------- + +# The QUIET tag can be used to turn on/off the messages that are generated +# by doxygen. Possible values are YES and NO. If left blank NO is used. + +QUIET = YES + +# The WARNINGS tag can be used to turn on/off the warning messages that are +# generated by doxygen. Possible values are YES and NO. If left blank +# NO is used. + +WARNINGS = YES + +# If WARN_IF_UNDOCUMENTED is set to YES, then doxygen will generate warnings +# for undocumented members. If EXTRACT_ALL is set to YES then this flag will +# automatically be disabled. + +WARN_IF_UNDOCUMENTED = YES + +# If WARN_IF_DOC_ERROR is set to YES, doxygen will generate warnings for +# potential errors in the documentation, such as not documenting some +# parameters in a documented function, or documenting parameters that +# don't exist or using markup commands wrongly. + +WARN_IF_DOC_ERROR = YES + +# This WARN_NO_PARAMDOC option can be abled to get warnings for +# functions that are documented, but have no documentation for their parameters +# or return value. If set to NO (the default) doxygen will only warn about +# wrong or incomplete parameter documentation, but not about the absence of +# documentation. + +WARN_NO_PARAMDOC = NO + +# The WARN_FORMAT tag determines the format of the warning messages that +# doxygen can produce. The string should contain the $file, $line, and $text +# tags, which will be replaced by the file and line number from which the +# warning originated and the warning text. Optionally the format may contain +# $version, which will be replaced by the version of the file (if it could +# be obtained via FILE_VERSION_FILTER) + +WARN_FORMAT = "$file:$line: $text" + +# The WARN_LOGFILE tag can be used to specify a file to which warning +# and error messages should be written. If left blank the output is written +# to stderr. + +WARN_LOGFILE = + +#--------------------------------------------------------------------------- +# configuration options related to the input files +#--------------------------------------------------------------------------- + +# The INPUT tag can be used to specify the files and/or directories that contain +# documented source files. You may enter file names like "myfile.cpp" or +# directories like "/usr/src/myproject". Separate the files or directories +# with spaces. + +INPUT = + +# This tag can be used to specify the character encoding of the source files that +# doxygen parses. Internally doxygen uses the UTF-8 encoding, which is also the default +# input encoding. Doxygen uses libiconv (or the iconv built into libc) for the transcoding. +# See http://www.gnu.org/software/libiconv for the list of possible encodings. + +INPUT_ENCODING = UTF-8 + +# If the value of the INPUT tag contains directories, you can use the +# FILE_PATTERNS tag to specify one or more wildcard pattern (like *.cpp +# and *.h) to filter out the source-files in the directories. If left +# blank the following patterns are tested: +# *.c *.cc *.cxx *.cpp *.c++ *.java *.ii *.ixx *.ipp *.i++ *.inl *.h *.hh *.hxx +# *.hpp *.h++ *.idl *.odl *.cs *.php *.php3 *.inc *.m *.mm *.py *.f90 + +FILE_PATTERNS = + +# The RECURSIVE tag can be used to turn specify whether or not subdirectories +# should be searched for input files as well. Possible values are YES and NO. +# If left blank NO is used. + +RECURSIVE = NO + +# The EXCLUDE tag can be used to specify files and/or directories that should +# excluded from the INPUT source files. This way you can easily exclude a +# subdirectory from a directory tree whose root is specified with the INPUT tag. + +EXCLUDE = + +# The EXCLUDE_SYMLINKS tag can be used select whether or not files or +# directories that are symbolic links (a Unix filesystem feature) are excluded +# from the input. + +EXCLUDE_SYMLINKS = NO + +# If the value of the INPUT tag contains directories, you can use the +# EXCLUDE_PATTERNS tag to specify one or more wildcard patterns to exclude +# certain files from those directories. Note that the wildcards are matched +# against the file with absolute path, so to exclude all test directories +# for example use the pattern */test/* + +EXCLUDE_PATTERNS = + +# The EXCLUDE_SYMBOLS tag can be used to specify one or more symbol names +# (namespaces, classes, functions, etc.) that should be excluded from the output. +# The symbol name can be a fully qualified name, a word, or if the wildcard * is used, +# a substring. Examples: ANamespace, AClass, AClass::ANamespace, ANamespace::*Test + +EXCLUDE_SYMBOLS = + +# The EXAMPLE_PATH tag can be used to specify one or more files or +# directories that contain example code fragments that are included (see +# the \include command). + +EXAMPLE_PATH = + +# If the value of the EXAMPLE_PATH tag contains directories, you can use the +# EXAMPLE_PATTERNS tag to specify one or more wildcard pattern (like *.cpp +# and *.h) to filter out the source-files in the directories. If left +# blank all files are included. + +EXAMPLE_PATTERNS = + +# If the EXAMPLE_RECURSIVE tag is set to YES then subdirectories will be +# searched for input files to be used with the \include or \dontinclude +# commands irrespective of the value of the RECURSIVE tag. +# Possible values are YES and NO. If left blank NO is used. + +EXAMPLE_RECURSIVE = NO + +# The IMAGE_PATH tag can be used to specify one or more files or +# directories that contain image that are included in the documentation (see +# the \image command). + +IMAGE_PATH = + +# The INPUT_FILTER tag can be used to specify a program that doxygen should +# invoke to filter for each input file. Doxygen will invoke the filter program +# by executing (via popen()) the command , where +# is the value of the INPUT_FILTER tag, and is the name of an +# input file. Doxygen will then use the output that the filter program writes +# to standard output. If FILTER_PATTERNS is specified, this tag will be +# ignored. + +INPUT_FILTER = + +# The FILTER_PATTERNS tag can be used to specify filters on a per file pattern +# basis. Doxygen will compare the file name with each pattern and apply the +# filter if there is a match. The filters are a list of the form: +# pattern=filter (like *.cpp=my_cpp_filter). See INPUT_FILTER for further +# info on how filters are used. If FILTER_PATTERNS is empty, INPUT_FILTER +# is applied to all files. + +FILTER_PATTERNS = + +# If the FILTER_SOURCE_FILES tag is set to YES, the input filter (if set using +# INPUT_FILTER) will be used to filter the input files when producing source +# files to browse (i.e. when SOURCE_BROWSER is set to YES). + +FILTER_SOURCE_FILES = NO + +#--------------------------------------------------------------------------- +# configuration options related to source browsing +#--------------------------------------------------------------------------- + +# If the SOURCE_BROWSER tag is set to YES then a list of source files will +# be generated. Documented entities will be cross-referenced with these sources. +# Note: To get rid of all source code in the generated output, make sure also +# VERBATIM_HEADERS is set to NO. If you have enabled CALL_GRAPH or CALLER_GRAPH +# then you must also enable this option. If you don't then doxygen will produce +# a warning and turn it on anyway + +SOURCE_BROWSER = NO + +# Setting the INLINE_SOURCES tag to YES will include the body +# of functions and classes directly in the documentation. + +INLINE_SOURCES = NO + +# Setting the STRIP_CODE_COMMENTS tag to YES (the default) will instruct +# doxygen to hide any special comment blocks from generated source code +# fragments. Normal C and C++ comments will always remain visible. + +STRIP_CODE_COMMENTS = YES + +# If the REFERENCED_BY_RELATION tag is set to YES (the default) +# then for each documented function all documented +# functions referencing it will be listed. + +REFERENCED_BY_RELATION = YES + +# If the REFERENCES_RELATION tag is set to YES (the default) +# then for each documented function all documented entities +# called/used by that function will be listed. + +REFERENCES_RELATION = YES + +# If the REFERENCES_LINK_SOURCE tag is set to YES (the default) +# and SOURCE_BROWSER tag is set to YES, then the hyperlinks from +# functions in REFERENCES_RELATION and REFERENCED_BY_RELATION lists will +# link to the source code. Otherwise they will link to the documentstion. + +REFERENCES_LINK_SOURCE = YES + +# If the USE_HTAGS tag is set to YES then the references to source code +# will point to the HTML generated by the htags(1) tool instead of doxygen +# built-in source browser. The htags tool is part of GNU's global source +# tagging system (see http://www.gnu.org/software/global/global.html). You +# will need version 4.8.6 or higher. + +USE_HTAGS = NO + +# If the VERBATIM_HEADERS tag is set to YES (the default) then Doxygen +# will generate a verbatim copy of the header file for each class for +# which an include is specified. Set to NO to disable this. + +VERBATIM_HEADERS = YES + +#--------------------------------------------------------------------------- +# configuration options related to the alphabetical class index +#--------------------------------------------------------------------------- + +# If the ALPHABETICAL_INDEX tag is set to YES, an alphabetical index +# of all compounds will be generated. Enable this if the project +# contains a lot of classes, structs, unions or interfaces. + +ALPHABETICAL_INDEX = NO + +# If the alphabetical index is enabled (see ALPHABETICAL_INDEX) then +# the COLS_IN_ALPHA_INDEX tag can be used to specify the number of columns +# in which this list will be split (can be a number in the range [1..20]) + +COLS_IN_ALPHA_INDEX = 5 + +# In case all classes in a project start with a common prefix, all +# classes will be put under the same header in the alphabetical index. +# The IGNORE_PREFIX tag can be used to specify one or more prefixes that +# should be ignored while generating the index headers. + +IGNORE_PREFIX = + +#--------------------------------------------------------------------------- +# configuration options related to the HTML output +#--------------------------------------------------------------------------- + +# If the GENERATE_HTML tag is set to YES (the default) Doxygen will +# generate HTML output. + +GENERATE_HTML = YES + +# The HTML_OUTPUT tag is used to specify where the HTML docs will be put. +# If a relative path is entered the value of OUTPUT_DIRECTORY will be +# put in front of it. If left blank `html' will be used as the default path. + +HTML_OUTPUT = html + +# The HTML_FILE_EXTENSION tag can be used to specify the file extension for +# each generated HTML page (for example: .htm,.php,.asp). If it is left blank +# doxygen will generate files with .html extension. + +HTML_FILE_EXTENSION = .html + +# The HTML_HEADER tag can be used to specify a personal HTML header for +# each generated HTML page. If it is left blank doxygen will generate a +# standard header. + +HTML_HEADER = + +# The HTML_FOOTER tag can be used to specify a personal HTML footer for +# each generated HTML page. If it is left blank doxygen will generate a +# standard footer. + +HTML_FOOTER = + +# The HTML_STYLESHEET tag can be used to specify a user-defined cascading +# style sheet that is used by each HTML page. It can be used to +# fine-tune the look of the HTML output. If the tag is left blank doxygen +# will generate a default style sheet. Note that doxygen will try to copy +# the style sheet file to the HTML output directory, so don't put your own +# stylesheet in the HTML output directory as well, or it will be erased! + +HTML_STYLESHEET = + +# If the GENERATE_HTMLHELP tag is set to YES, additional index files +# will be generated that can be used as input for tools like the +# Microsoft HTML help workshop to generate a compressed HTML help file (.chm) +# of the generated HTML documentation. + +GENERATE_HTMLHELP = NO + +# If the HTML_DYNAMIC_SECTIONS tag is set to YES then the generated HTML +# documentation will contain sections that can be hidden and shown after the +# page has loaded. For this to work a browser that supports +# java_script and DHTML is required (for instance Mozilla 1.0+, Firefox +# Netscape 6.0+, Internet explorer 5.0+, Konqueror, or Safari). + +HTML_DYNAMIC_SECTIONS = NO + +# If the GENERATE_HTMLHELP tag is set to YES, the CHM_FILE tag can +# be used to specify the file name of the resulting .chm file. You +# can add a path in front of the file if the result should not be +# written to the html output directory. + +CHM_FILE = + +# If the GENERATE_HTMLHELP tag is set to YES, the HHC_LOCATION tag can +# be used to specify the location (absolute path including file name) of +# the HTML help compiler (hhc.exe). If non-empty doxygen will try to run +# the HTML help compiler on the generated index.hhp. + +HHC_LOCATION = + +# If the GENERATE_HTMLHELP tag is set to YES, the GENERATE_CHI flag +# controls if a separate .chi index file is generated (YES) or that +# it should be included in the master .chm file (NO). + +GENERATE_CHI = NO + +# If the GENERATE_HTMLHELP tag is set to YES, the BINARY_TOC flag +# controls whether a binary table of contents is generated (YES) or a +# normal table of contents (NO) in the .chm file. + +BINARY_TOC = NO + +# The TOC_EXPAND flag can be set to YES to add extra items for group members +# to the contents of the HTML help documentation and to the tree view. + +TOC_EXPAND = NO + +# The DISABLE_INDEX tag can be used to turn on/off the condensed index at +# top of each HTML page. The value NO (the default) enables the index and +# the value YES disables it. + +DISABLE_INDEX = NO + +# This tag can be used to set the number of enum values (range [1..20]) +# that doxygen will group on one line in the generated HTML documentation. + +ENUM_VALUES_PER_LINE = 4 + +# If the GENERATE_TREEVIEW tag is set to YES, a side panel will be +# generated containing a tree-like index structure (just like the one that +# is generated for HTML Help). For this to work a browser that supports +# java_script, DHTML, CSS and frames is required (for instance Mozilla 1.0+, +# Netscape 6.0+, Internet explorer 5.0+, or Konqueror). Windows users are +# probably better off using the HTML help feature. + +GENERATE_TREEVIEW = NO + +# If the treeview is enabled (see GENERATE_TREEVIEW) then this tag can be +# used to set the initial width (in pixels) of the frame in which the tree +# is shown. + +TREEVIEW_WIDTH = 250 + +#--------------------------------------------------------------------------- +# configuration options related to the la_te_x output +#--------------------------------------------------------------------------- + +# If the GENERATE_LATEX tag is set to YES (the default) Doxygen will +# generate Latex output. + +GENERATE_LATEX = YES + +# The LATEX_OUTPUT tag is used to specify where the la_te_x docs will be put. +# If a relative path is entered the value of OUTPUT_DIRECTORY will be +# put in front of it. If left blank `latex' will be used as the default path. + +LATEX_OUTPUT = latex + +# The LATEX_CMD_NAME tag can be used to specify the la_te_x command name to be +# invoked. If left blank `latex' will be used as the default command name. + +LATEX_CMD_NAME = latex + +# The MAKEINDEX_CMD_NAME tag can be used to specify the command name to +# generate index for la_te_x. If left blank `makeindex' will be used as the +# default command name. + +MAKEINDEX_CMD_NAME = makeindex + +# If the COMPACT_LATEX tag is set to YES Doxygen generates more compact +# la_te_x documents. This may be useful for small projects and may help to +# save some trees in general. + +COMPACT_LATEX = YES + +# The PAPER_TYPE tag can be used to set the paper type that is used +# by the printer. Possible values are: a4, a4wide, letter, legal and +# executive. If left blank a4wide will be used. + +PAPER_TYPE = letter + +# The EXTRA_PACKAGES tag can be to specify one or more names of la_te_x +# packages that should be included in the la_te_x output. + +EXTRA_PACKAGES = + +# The LATEX_HEADER tag can be used to specify a personal la_te_x header for +# the generated latex document. The header should contain everything until +# the first chapter. If it is left blank doxygen will generate a +# standard header. Notice: only use this tag if you know what you are doing! + +LATEX_HEADER = + +# If the PDF_HYPERLINKS tag is set to YES, the la_te_x that is generated +# is prepared for conversion to pdf (using ps2pdf). The pdf file will +# contain links (just like the HTML output) instead of page references +# This makes the output suitable for online browsing using a pdf viewer. + +PDF_HYPERLINKS = YES + +# If the USE_PDFLATEX tag is set to YES, pdflatex will be used instead of +# plain latex in the generated Makefile. Set this option to YES to get a +# higher quality PDF documentation. + +USE_PDFLATEX = YES + +# If the LATEX_BATCHMODE tag is set to YES, doxygen will add the \\batchmode. +# command to the generated la_te_x files. This will instruct la_te_x to keep +# running if errors occur, instead of asking the user for help. +# This option is also used when generating formulas in HTML. + +LATEX_BATCHMODE = NO + +# If LATEX_HIDE_INDICES is set to YES then doxygen will not +# include the index chapters (such as File Index, Compound Index, etc.) +# in the output. + +LATEX_HIDE_INDICES = NO + +#--------------------------------------------------------------------------- +# configuration options related to the RTF output +#--------------------------------------------------------------------------- + +# If the GENERATE_RTF tag is set to YES Doxygen will generate RTF output +# The RTF output is optimized for Word 97 and may not look very pretty with +# other RTF readers or editors. + +GENERATE_RTF = NO + +# The RTF_OUTPUT tag is used to specify where the RTF docs will be put. +# If a relative path is entered the value of OUTPUT_DIRECTORY will be +# put in front of it. If left blank `rtf' will be used as the default path. + +RTF_OUTPUT = rtf + +# If the COMPACT_RTF tag is set to YES Doxygen generates more compact +# RTF documents. This may be useful for small projects and may help to +# save some trees in general. + +COMPACT_RTF = NO + +# If the RTF_HYPERLINKS tag is set to YES, the RTF that is generated +# will contain hyperlink fields. The RTF file will +# contain links (just like the HTML output) instead of page references. +# This makes the output suitable for online browsing using WORD or other +# programs which support those fields. +# Note: wordpad (write) and others do not support links. + +RTF_HYPERLINKS = NO + +# Load stylesheet definitions from file. Syntax is similar to doxygen's +# config file, i.e. a series of assignments. You only have to provide +# replacements, missing definitions are set to their default value. + +RTF_STYLESHEET_FILE = + +# Set optional variables used in the generation of an rtf document. +# Syntax is similar to doxygen's config file. + +RTF_EXTENSIONS_FILE = + +#--------------------------------------------------------------------------- +# configuration options related to the man page output +#--------------------------------------------------------------------------- + +# If the GENERATE_MAN tag is set to YES (the default) Doxygen will +# generate man pages + +GENERATE_MAN = NO + +# The MAN_OUTPUT tag is used to specify where the man pages will be put. +# If a relative path is entered the value of OUTPUT_DIRECTORY will be +# put in front of it. If left blank `man' will be used as the default path. + +MAN_OUTPUT = man + +# The MAN_EXTENSION tag determines the extension that is added to +# the generated man pages (default is the subroutine's section .3) + +MAN_EXTENSION = .3 + +# If the MAN_LINKS tag is set to YES and Doxygen generates man output, +# then it will generate one additional man file for each entity +# documented in the real man page(s). These additional files +# only source the real man page, but without them the man command +# would be unable to find the correct page. The default is NO. + +MAN_LINKS = YES + +#--------------------------------------------------------------------------- +# configuration options related to the XML output +#--------------------------------------------------------------------------- + +# If the GENERATE_XML tag is set to YES Doxygen will +# generate an XML file that captures the structure of +# the code including all documentation. + +GENERATE_XML = NO + +# The XML_OUTPUT tag is used to specify where the XML pages will be put. +# If a relative path is entered the value of OUTPUT_DIRECTORY will be +# put in front of it. If left blank `xml' will be used as the default path. + +XML_OUTPUT = xml + +# The XML_SCHEMA tag can be used to specify an XML schema, +# which can be used by a validating XML parser to check the +# syntax of the XML files. + +XML_SCHEMA = + +# The XML_DTD tag can be used to specify an XML DTD, +# which can be used by a validating XML parser to check the +# syntax of the XML files. + +XML_DTD = + +# If the XML_PROGRAMLISTING tag is set to YES Doxygen will +# dump the program listings (including syntax highlighting +# and cross-referencing information) to the XML output. Note that +# enabling this will significantly increase the size of the XML output. + +XML_PROGRAMLISTING = YES + +#--------------------------------------------------------------------------- +# configuration options for the auto_gen Definitions output +#--------------------------------------------------------------------------- + +# If the GENERATE_AUTOGEN_DEF tag is set to YES Doxygen will +# generate an auto_gen Definitions (see autogen.sf.net) file +# that captures the structure of the code including all +# documentation. Note that this feature is still experimental +# and incomplete at the moment. + +GENERATE_AUTOGEN_DEF = NO + +#--------------------------------------------------------------------------- +# configuration options related to the Perl module output +#--------------------------------------------------------------------------- + +# If the GENERATE_PERLMOD tag is set to YES Doxygen will +# generate a Perl module file that captures the structure of +# the code including all documentation. Note that this +# feature is still experimental and incomplete at the +# moment. + +GENERATE_PERLMOD = NO + +# If the PERLMOD_LATEX tag is set to YES Doxygen will generate +# the necessary Makefile rules, Perl scripts and la_te_x code to be able +# to generate PDF and DVI output from the Perl module output. + +PERLMOD_LATEX = NO + +# If the PERLMOD_PRETTY tag is set to YES the Perl module output will be +# nicely formatted so it can be parsed by a human reader. This is useful +# if you want to understand what is going on. On the other hand, if this +# tag is set to NO the size of the Perl module output will be much smaller +# and Perl will parse it just the same. + +PERLMOD_PRETTY = YES + +# The names of the make variables in the generated doxyrules.make file +# are prefixed with the string contained in PERLMOD_MAKEVAR_PREFIX. +# This is useful so different doxyrules.make files included by the same +# Makefile don't overwrite each other's variables. + +PERLMOD_MAKEVAR_PREFIX = + +#--------------------------------------------------------------------------- +# Configuration options related to the preprocessor +#--------------------------------------------------------------------------- + +# If the ENABLE_PREPROCESSING tag is set to YES (the default) Doxygen will +# evaluate all C-preprocessor directives found in the sources and include +# files. + +ENABLE_PREPROCESSING = YES + +# If the MACRO_EXPANSION tag is set to YES Doxygen will expand all macro +# names in the source code. If set to NO (the default) only conditional +# compilation will be performed. Macro expansion can be done in a controlled +# way by setting EXPAND_ONLY_PREDEF to YES. + +MACRO_EXPANSION = YES + +# If the EXPAND_ONLY_PREDEF and MACRO_EXPANSION tags are both set to YES +# then the macro expansion is limited to the macros specified with the +# PREDEFINED and EXPAND_AS_DEFINED tags. + +EXPAND_ONLY_PREDEF = NO + +# If the SEARCH_INCLUDES tag is set to YES (the default) the includes files +# in the INCLUDE_PATH (see below) will be search if a #include is found. + +SEARCH_INCLUDES = YES + +# The INCLUDE_PATH tag can be used to specify one or more directories that +# contain include files that are not input files but should be processed by +# the preprocessor. + +INCLUDE_PATH = + +# You can use the INCLUDE_FILE_PATTERNS tag to specify one or more wildcard +# patterns (like *.h and *.hpp) to filter out the header-files in the +# directories. If left blank, the patterns specified with FILE_PATTERNS will +# be used. + +INCLUDE_FILE_PATTERNS = *.h + +# The PREDEFINED tag can be used to specify one or more macro names that +# are defined before the preprocessor is started (similar to the -D option of +# gcc). The argument of the tag is a list of macros of the form: name +# or name=definition (no spaces). If the definition and the = are +# omitted =1 is assumed. To prevent a macro definition from being +# undefined via #undef or recursively expanded use the := operator +# instead of the = operator. + +PREDEFINED = + +# If the MACRO_EXPANSION and EXPAND_ONLY_PREDEF tags are set to YES then +# this tag can be used to specify a list of macro names that should be expanded. +# The macro definition that is found in the sources will be used. +# Use the PREDEFINED tag if you want to use a different macro definition. + +EXPAND_AS_DEFINED = + +# If the SKIP_FUNCTION_MACROS tag is set to YES (the default) then +# doxygen's preprocessor will remove all function-like macros that are alone +# on a line, have an all uppercase name, and do not end with a semicolon. Such +# function macros are typically used for boiler-plate code, and will confuse +# the parser if not removed. + +SKIP_FUNCTION_MACROS = YES + +#--------------------------------------------------------------------------- +# Configuration::additions related to external references +#--------------------------------------------------------------------------- + +# The TAGFILES option can be used to specify one or more tagfiles. +# Optionally an initial location of the external documentation +# can be added for each tagfile. The format of a tag file without +# this location is as follows: +# TAGFILES = file1 file2 ... +# Adding location for the tag files is done as follows: +# TAGFILES = file1=loc1 "file2 = loc2" ... +# where "loc1" and "loc2" can be relative or absolute paths or +# URLs. If a location is present for each tag, the installdox tool +# does not have to be run to correct the links. +# Note that each tag file must have a unique name +# (where the name does NOT include the path) +# If a tag file is not located in the directory in which doxygen +# is run, you must also specify the path to the tagfile here. + +TAGFILES = + +# When a file name is specified after GENERATE_TAGFILE, doxygen will create +# a tag file that is based on the input files it reads. + +GENERATE_TAGFILE = + +# If the ALLEXTERNALS tag is set to YES all external classes will be listed +# in the class index. If set to NO only the inherited external classes +# will be listed. + +ALLEXTERNALS = NO + +# If the EXTERNAL_GROUPS tag is set to YES all external groups will be listed +# in the modules index. If set to NO, only the current project's groups will +# be listed. + +EXTERNAL_GROUPS = YES + +# The PERL_PATH should be the absolute path and name of the perl script +# interpreter (i.e. the result of `which perl'). + +PERL_PATH = /usr/bin/perl + +#--------------------------------------------------------------------------- +# Configuration options related to the dot tool +#--------------------------------------------------------------------------- + +# If the CLASS_DIAGRAMS tag is set to YES (the default) Doxygen will +# generate a inheritance diagram (in HTML, RTF and la_te_x) for classes with base +# or super classes. Setting the tag to NO turns the diagrams off. Note that +# this option is superseded by the HAVE_DOT option below. This is only a +# fallback. It is recommended to install and use dot, since it yields more +# powerful graphs. + +CLASS_DIAGRAMS = YES + +# You can define message sequence charts within doxygen comments using the \msc +# command. Doxygen will then run the mscgen tool (see http://www.mcternan.me.uk/mscgen/) to +# produce the chart and insert it in the documentation. The MSCGEN_PATH tag allows you to +# specify the directory where the mscgen tool resides. If left empty the tool is assumed to +# be found in the default search path. + +MSCGEN_PATH = + +# If set to YES, the inheritance and collaboration graphs will hide +# inheritance and usage relations if the target is undocumented +# or is not a class. + +HIDE_UNDOC_RELATIONS = YES + +# If you set the HAVE_DOT tag to YES then doxygen will assume the dot tool is +# available from the path. This tool is part of Graphviz, a graph visualization +# toolkit from AT&T and Lucent Bell Labs. The other options in this section +# have no effect if this option is set to NO (the default) + +HAVE_DOT = NO + +# If the CLASS_GRAPH and HAVE_DOT tags are set to YES then doxygen +# will generate a graph for each documented class showing the direct and +# indirect inheritance relations. Setting this tag to YES will force the +# the CLASS_DIAGRAMS tag to NO. + +CLASS_GRAPH = YES + +# If the COLLABORATION_GRAPH and HAVE_DOT tags are set to YES then doxygen +# will generate a graph for each documented class showing the direct and +# indirect implementation dependencies (inheritance, containment, and +# class references variables) of the class with other documented classes. + +COLLABORATION_GRAPH = YES + +# If the GROUP_GRAPHS and HAVE_DOT tags are set to YES then doxygen +# will generate a graph for groups, showing the direct groups dependencies + +GROUP_GRAPHS = YES + +# If the UML_LOOK tag is set to YES doxygen will generate inheritance and +# collaboration diagrams in a style similar to the OMG's Unified Modeling +# Language. + +UML_LOOK = NO + +# If set to YES, the inheritance and collaboration graphs will show the +# relations between templates and their instances. + +TEMPLATE_RELATIONS = NO + +# If the ENABLE_PREPROCESSING, SEARCH_INCLUDES, INCLUDE_GRAPH, and HAVE_DOT +# tags are set to YES then doxygen will generate a graph for each documented +# file showing the direct and indirect include dependencies of the file with +# other documented files. + +INCLUDE_GRAPH = YES + +# If the ENABLE_PREPROCESSING, SEARCH_INCLUDES, INCLUDED_BY_GRAPH, and +# HAVE_DOT tags are set to YES then doxygen will generate a graph for each +# documented header file showing the documented files that directly or +# indirectly include this file. + +INCLUDED_BY_GRAPH = YES + +# If the CALL_GRAPH, SOURCE_BROWSER and HAVE_DOT tags are set to YES then doxygen will +# generate a call dependency graph for every global function or class method. +# Note that enabling this option will significantly increase the time of a run. +# So in most cases it will be better to enable call graphs for selected +# functions only using the \callgraph command. + +CALL_GRAPH = NO + +# If the CALLER_GRAPH, SOURCE_BROWSER and HAVE_DOT tags are set to YES then doxygen will +# generate a caller dependency graph for every global function or class method. +# Note that enabling this option will significantly increase the time of a run. +# So in most cases it will be better to enable caller graphs for selected +# functions only using the \callergraph command. + +CALLER_GRAPH = NO + +# If the GRAPHICAL_HIERARCHY and HAVE_DOT tags are set to YES then doxygen +# will graphical hierarchy of all classes instead of a textual one. + +GRAPHICAL_HIERARCHY = YES + +# If the DIRECTORY_GRAPH, SHOW_DIRECTORIES and HAVE_DOT tags are set to YES +# then doxygen will show the dependencies a directory has on other directories +# in a graphical way. The dependency relations are determined by the #include +# relations between the files in the directories. + +DIRECTORY_GRAPH = YES + +# The DOT_IMAGE_FORMAT tag can be used to set the image format of the images +# generated by dot. Possible values are png, jpg, or gif +# If left blank png will be used. + +DOT_IMAGE_FORMAT = png + +# The tag DOT_PATH can be used to specify the path where the dot tool can be +# found. If left blank, it is assumed the dot tool can be found in the path. + +DOT_PATH = + +# The DOTFILE_DIRS tag can be used to specify one or more directories that +# contain dot files that are included in the documentation (see the +# \dotfile command). + +DOTFILE_DIRS = + +# The MAX_DOT_GRAPH_MAX_NODES tag can be used to set the maximum number of +# nodes that will be shown in the graph. If the number of nodes in a graph +# becomes larger than this value, doxygen will truncate the graph, which is +# visualized by representing a node as a red box. Note that doxygen if the number +# of direct children of the root node in a graph is already larger than +# MAX_DOT_GRAPH_NOTES then the graph will not be shown at all. Also note +# that the size of a graph can be further restricted by MAX_DOT_GRAPH_DEPTH. + +DOT_GRAPH_MAX_NODES = 50 + +# The MAX_DOT_GRAPH_DEPTH tag can be used to set the maximum depth of the +# graphs generated by dot. A depth value of 3 means that only nodes reachable +# from the root by following a path via at most 3 edges will be shown. Nodes +# that lay further from the root node will be omitted. Note that setting this +# option to 1 or 2 may greatly reduce the computation time needed for large +# code bases. Also note that the size of a graph can be further restricted by +# DOT_GRAPH_MAX_NODES. Using a depth of 0 means no depth restriction. + +MAX_DOT_GRAPH_DEPTH = 0 + +# Set the DOT_TRANSPARENT tag to YES to generate images with a transparent +# background. This is disabled by default, which results in a white background. +# Warning: Depending on the platform used, enabling this option may lead to +# badly anti-aliased labels on the edges of a graph (i.e. they become hard to +# read). + +DOT_TRANSPARENT = YES + +# Set the DOT_MULTI_TARGETS tag to YES allow dot to generate multiple output +# files in one run (i.e. multiple -o and -T options on the command line). This +# makes dot run faster, but since only newer versions of dot (>1.8.10) +# support this, this feature is disabled by default. + +DOT_MULTI_TARGETS = NO + +# If the GENERATE_LEGEND tag is set to YES (the default) Doxygen will +# generate a legend page explaining the meaning of the various boxes and +# arrows in the dot generated graphs. + +GENERATE_LEGEND = YES + +# If the DOT_CLEANUP tag is set to YES (the default) Doxygen will +# remove the intermediate dot files that are used to generate +# the various graphs. + +DOT_CLEANUP = YES + +#--------------------------------------------------------------------------- +# Configuration::additions related to the search engine +#--------------------------------------------------------------------------- + +# The SEARCHENGINE tag specifies whether or not a search engine should be +# used. If set to NO the values of all tags below this one will be ignored. + +SEARCHENGINE = NO diff --git a/libs.mk b/libs.mk new file mode 100644 index 0000000..a3e2f9d --- /dev/null +++ b/libs.mk @@ -0,0 +1,627 @@ +## +## Copyright (c) 2010 The WebM project authors. All Rights Reserved. +## +## Use of this source code is governed by a BSD-style license +## that can be found in the LICENSE file in the root of the source +## tree. An additional intellectual property rights grant can be found +## in the file PATENTS. All contributing project authors may +## be found in the AUTHORS file in the root of the source tree. +## + + +# ARM assembly files are written in RVCT-style. We use some make magic to +# filter those files to allow GCC compilation +ifeq ($(ARCH_ARM),yes) + ASM:=$(if $(filter yes,$(CONFIG_GCC)$(CONFIG_MSVS)),.asm.S,.asm) +else + ASM:=.asm +endif + +# +# Rule to generate runtime cpu detection files +# +define rtcd_h_template +$$(BUILD_PFX)$(1).h: $$(SRC_PATH_BARE)/$(2) + @echo " [CREATE] $$@" + $$(qexec)$$(SRC_PATH_BARE)/build/make/rtcd.pl --arch=$$(TGT_ISA) \ + --sym=$(1) \ + --config=$$(CONFIG_DIR)$$(target)-$$(TOOLCHAIN).mk \ + $$(RTCD_OPTIONS) $$^ > $$@ +CLEAN-OBJS += $$(BUILD_PFX)$(1).h +RTCD += $$(BUILD_PFX)$(1).h +endef + +CODEC_SRCS-yes += CHANGELOG +CODEC_SRCS-yes += libs.mk + +include $(SRC_PATH_BARE)/vpx/vpx_codec.mk +CODEC_SRCS-yes += $(addprefix vpx/,$(call enabled,API_SRCS)) +CODEC_DOC_SRCS += $(addprefix vpx/,$(call enabled,API_DOC_SRCS)) + +include $(SRC_PATH_BARE)/vpx_mem/vpx_mem.mk +CODEC_SRCS-yes += $(addprefix vpx_mem/,$(call enabled,MEM_SRCS)) + +include $(SRC_PATH_BARE)/vpx_scale/vpx_scale.mk +CODEC_SRCS-yes += $(addprefix vpx_scale/,$(call enabled,SCALE_SRCS)) + +include $(SRC_PATH_BARE)/vpx_ports/vpx_ports.mk +CODEC_SRCS-yes += $(addprefix vpx_ports/,$(call enabled,PORTS_SRCS)) + +include $(SRC_PATH_BARE)/vpx_dsp/vpx_dsp.mk +CODEC_SRCS-yes += $(addprefix vpx_dsp/,$(call enabled,DSP_SRCS)) + +include $(SRC_PATH_BARE)/vpx_util/vpx_util.mk +CODEC_SRCS-yes += $(addprefix vpx_util/,$(call enabled,UTIL_SRCS)) + +ifeq ($(CONFIG_VP8),yes) + VP8_PREFIX=vp8/ + include $(SRC_PATH_BARE)/$(VP8_PREFIX)vp8_common.mk +endif + +ifeq ($(CONFIG_VP8_ENCODER),yes) + include $(SRC_PATH_BARE)/$(VP8_PREFIX)vp8cx.mk + CODEC_SRCS-yes += $(addprefix $(VP8_PREFIX),$(call enabled,VP8_CX_SRCS)) + CODEC_EXPORTS-yes += $(addprefix $(VP8_PREFIX),$(VP8_CX_EXPORTS)) + INSTALL-LIBS-yes += include/vpx/vp8.h include/vpx/vp8cx.h + INSTALL_MAPS += include/vpx/% $(SRC_PATH_BARE)/$(VP8_PREFIX)/% + CODEC_DOC_SECTIONS += vp8 vp8_encoder +endif + +ifeq ($(CONFIG_VP8_DECODER),yes) + include $(SRC_PATH_BARE)/$(VP8_PREFIX)vp8dx.mk + CODEC_SRCS-yes += $(addprefix $(VP8_PREFIX),$(call enabled,VP8_DX_SRCS)) + CODEC_EXPORTS-yes += $(addprefix $(VP8_PREFIX),$(VP8_DX_EXPORTS)) + INSTALL-LIBS-yes += include/vpx/vp8.h include/vpx/vp8dx.h + INSTALL_MAPS += include/vpx/% $(SRC_PATH_BARE)/$(VP8_PREFIX)/% + CODEC_DOC_SECTIONS += vp8 vp8_decoder +endif + +ifeq ($(CONFIG_VP9),yes) + VP9_PREFIX=vp9/ + include $(SRC_PATH_BARE)/$(VP9_PREFIX)vp9_common.mk +endif + +ifeq ($(CONFIG_VP9_ENCODER),yes) + VP9_PREFIX=vp9/ + include $(SRC_PATH_BARE)/$(VP9_PREFIX)vp9cx.mk + CODEC_SRCS-yes += $(addprefix $(VP9_PREFIX),$(call enabled,VP9_CX_SRCS)) + CODEC_EXPORTS-yes += $(addprefix $(VP9_PREFIX),$(VP9_CX_EXPORTS)) + CODEC_SRCS-yes += $(VP9_PREFIX)vp9cx.mk vpx/vp8.h vpx/vp8cx.h + INSTALL-LIBS-yes += include/vpx/vp8.h include/vpx/vp8cx.h + INSTALL-LIBS-$(CONFIG_SPATIAL_SVC) += include/vpx/svc_context.h + INSTALL_MAPS += include/vpx/% $(SRC_PATH_BARE)/$(VP9_PREFIX)/% + CODEC_DOC_SRCS += vpx/vp8.h vpx/vp8cx.h + CODEC_DOC_SECTIONS += vp9 vp9_encoder +endif + +ifeq ($(CONFIG_VP9_DECODER),yes) + VP9_PREFIX=vp9/ + include $(SRC_PATH_BARE)/$(VP9_PREFIX)vp9dx.mk + CODEC_SRCS-yes += $(addprefix $(VP9_PREFIX),$(call enabled,VP9_DX_SRCS)) + CODEC_EXPORTS-yes += $(addprefix $(VP9_PREFIX),$(VP9_DX_EXPORTS)) + CODEC_SRCS-yes += $(VP9_PREFIX)vp9dx.mk vpx/vp8.h vpx/vp8dx.h + INSTALL-LIBS-yes += include/vpx/vp8.h include/vpx/vp8dx.h + INSTALL_MAPS += include/vpx/% $(SRC_PATH_BARE)/$(VP9_PREFIX)/% + CODEC_DOC_SRCS += vpx/vp8.h vpx/vp8dx.h + CODEC_DOC_SECTIONS += vp9 vp9_decoder +endif + +ifeq ($(CONFIG_ENCODERS),yes) + CODEC_DOC_SECTIONS += encoder +endif +ifeq ($(CONFIG_DECODERS),yes) + CODEC_DOC_SECTIONS += decoder +endif + +# Suppress -Wextra warnings in third party code. +$(BUILD_PFX)third_party/googletest/%.cc.o: CXXFLAGS += -Wno-missing-field-initializers +# Suppress -Wextra warnings in first party code pending investigation. +# https://bugs.chromium.org/p/webm/issues/detail?id=1069 +$(BUILD_PFX)vp8/encoder/onyx_if.c.o: CFLAGS += -Wno-unknown-warning-option -Wno-clobbered +$(BUILD_PFX)vp8/decoder/onyxd_if.c.o: CFLAGS += -Wno-unknown-warning-option -Wno-clobbered + +ifeq ($(CONFIG_MSVS),yes) +CODEC_LIB=$(if $(CONFIG_STATIC_MSVCRT),vpxmt,vpxmd) +GTEST_LIB=$(if $(CONFIG_STATIC_MSVCRT),gtestmt,gtestmd) +# This variable uses deferred expansion intentionally, since the results of +# $(wildcard) may change during the course of the Make. +VS_PLATFORMS = $(foreach d,$(wildcard */Release/$(CODEC_LIB).lib),$(word 1,$(subst /, ,$(d)))) +endif + +# The following pairs define a mapping of locations in the distribution +# tree to locations in the source/build trees. +INSTALL_MAPS += include/vpx/% $(SRC_PATH_BARE)/vpx/% +INSTALL_MAPS += include/vpx/% $(SRC_PATH_BARE)/vpx_ports/% +INSTALL_MAPS += $(LIBSUBDIR)/% % +INSTALL_MAPS += src/% $(SRC_PATH_BARE)/% +ifeq ($(CONFIG_MSVS),yes) +INSTALL_MAPS += $(foreach p,$(VS_PLATFORMS),$(LIBSUBDIR)/$(p)/% $(p)/Release/%) +INSTALL_MAPS += $(foreach p,$(VS_PLATFORMS),$(LIBSUBDIR)/$(p)/% $(p)/Debug/%) +endif + +CODEC_SRCS-yes += build/make/version.sh +CODEC_SRCS-yes += build/make/rtcd.pl +CODEC_SRCS-yes += vpx_ports/emmintrin_compat.h +CODEC_SRCS-yes += vpx_ports/mem_ops.h +CODEC_SRCS-yes += vpx_ports/mem_ops_aligned.h +CODEC_SRCS-yes += vpx_ports/vpx_once.h +CODEC_SRCS-yes += $(BUILD_PFX)vpx_config.c +INSTALL-SRCS-no += $(BUILD_PFX)vpx_config.c +ifeq ($(ARCH_X86)$(ARCH_X86_64),yes) +INSTALL-SRCS-$(CONFIG_CODEC_SRCS) += third_party/x86inc/x86inc.asm +INSTALL-SRCS-$(CONFIG_CODEC_SRCS) += vpx_dsp/x86/bitdepth_conversion_sse2.asm +endif +CODEC_EXPORTS-yes += vpx/exports_com +CODEC_EXPORTS-$(CONFIG_ENCODERS) += vpx/exports_enc +ifeq ($(CONFIG_SPATIAL_SVC),yes) +CODEC_EXPORTS-$(CONFIG_ENCODERS) += vpx/exports_spatial_svc +endif +CODEC_EXPORTS-$(CONFIG_DECODERS) += vpx/exports_dec + +INSTALL-LIBS-yes += include/vpx/vpx_codec.h +INSTALL-LIBS-yes += include/vpx/vpx_frame_buffer.h +INSTALL-LIBS-yes += include/vpx/vpx_image.h +INSTALL-LIBS-yes += include/vpx/vpx_integer.h +INSTALL-LIBS-$(CONFIG_DECODERS) += include/vpx/vpx_decoder.h +INSTALL-LIBS-$(CONFIG_ENCODERS) += include/vpx/vpx_encoder.h +ifeq ($(CONFIG_EXTERNAL_BUILD),yes) +ifeq ($(CONFIG_MSVS),yes) +INSTALL-LIBS-yes += $(foreach p,$(VS_PLATFORMS),$(LIBSUBDIR)/$(p)/$(CODEC_LIB).lib) +INSTALL-LIBS-$(CONFIG_DEBUG_LIBS) += $(foreach p,$(VS_PLATFORMS),$(LIBSUBDIR)/$(p)/$(CODEC_LIB)d.lib) +INSTALL-LIBS-$(CONFIG_SHARED) += $(foreach p,$(VS_PLATFORMS),$(LIBSUBDIR)/$(p)/vpx.dll) +INSTALL-LIBS-$(CONFIG_SHARED) += $(foreach p,$(VS_PLATFORMS),$(LIBSUBDIR)/$(p)/vpx.exp) +endif +else +INSTALL-LIBS-$(CONFIG_STATIC) += $(LIBSUBDIR)/libvpx.a +INSTALL-LIBS-$(CONFIG_DEBUG_LIBS) += $(LIBSUBDIR)/libvpx_g.a +endif + +CODEC_SRCS=$(call enabled,CODEC_SRCS) +INSTALL-SRCS-$(CONFIG_CODEC_SRCS) += $(CODEC_SRCS) +INSTALL-SRCS-$(CONFIG_CODEC_SRCS) += $(call enabled,CODEC_EXPORTS) + + +# Generate a list of all enabled sources, in particular for exporting to gyp +# based build systems. +libvpx_srcs.txt: + @echo " [CREATE] $@" + @echo $(CODEC_SRCS) | xargs -n1 echo | LC_ALL=C sort -u > $@ +CLEAN-OBJS += libvpx_srcs.txt + +# Assembly files that are included, but don't define symbols themselves. +# Filtered out to avoid Windows build warnings. +ASM_INCLUDES := \ + third_party/x86inc/x86inc.asm \ + vpx_config.asm \ + vpx_ports/x86_abi_support.asm \ + vpx_dsp/x86/bitdepth_conversion_sse2.asm \ + +ifeq ($(CONFIG_EXTERNAL_BUILD),yes) +ifeq ($(CONFIG_MSVS),yes) + +vpx.def: $(call enabled,CODEC_EXPORTS) + @echo " [CREATE] $@" + $(qexec)$(SRC_PATH_BARE)/build/make/gen_msvs_def.sh\ + --name=vpx\ + --out=$@ $^ +CLEAN-OBJS += vpx.def + +vpx.$(VCPROJ_SFX): $(CODEC_SRCS) vpx.def + @echo " [CREATE] $@" + $(qexec)$(GEN_VCPROJ) \ + $(if $(CONFIG_SHARED),--dll,--lib) \ + --target=$(TOOLCHAIN) \ + $(if $(CONFIG_STATIC_MSVCRT),--static-crt) \ + --name=vpx \ + --proj-guid=DCE19DAF-69AC-46DB-B14A-39F0FAA5DB74 \ + --module-def=vpx.def \ + --ver=$(CONFIG_VS_VERSION) \ + --src-path-bare="$(SRC_PATH_BARE)" \ + --out=$@ $(CFLAGS) \ + $(filter-out $(addprefix %, $(ASM_INCLUDES)), $^) \ + --src-path-bare="$(SRC_PATH_BARE)" \ + +PROJECTS-yes += vpx.$(VCPROJ_SFX) + +vpx.$(VCPROJ_SFX): vpx_config.asm +vpx.$(VCPROJ_SFX): $(RTCD) + +endif +else +LIBVPX_OBJS=$(call objs, $(filter-out $(ASM_INCLUDES), $(CODEC_SRCS))) +OBJS-yes += $(LIBVPX_OBJS) +LIBS-$(if yes,$(CONFIG_STATIC)) += $(BUILD_PFX)libvpx.a $(BUILD_PFX)libvpx_g.a +$(BUILD_PFX)libvpx_g.a: $(LIBVPX_OBJS) + +SO_VERSION_MAJOR := 5 +SO_VERSION_MINOR := 0 +SO_VERSION_PATCH := 0 +ifeq ($(filter darwin%,$(TGT_OS)),$(TGT_OS)) +LIBVPX_SO := libvpx.$(SO_VERSION_MAJOR).dylib +SHARED_LIB_SUF := .dylib +EXPORT_FILE := libvpx.syms +LIBVPX_SO_SYMLINKS := $(addprefix $(LIBSUBDIR)/, \ + libvpx.dylib ) +else +ifeq ($(filter iphonesimulator%,$(TGT_OS)),$(TGT_OS)) +LIBVPX_SO := libvpx.$(SO_VERSION_MAJOR).dylib +SHARED_LIB_SUF := .dylib +EXPORT_FILE := libvpx.syms +LIBVPX_SO_SYMLINKS := $(addprefix $(LIBSUBDIR)/, libvpx.dylib) +else +ifeq ($(filter os2%,$(TGT_OS)),$(TGT_OS)) +LIBVPX_SO := libvpx$(SO_VERSION_MAJOR).dll +SHARED_LIB_SUF := _dll.a +EXPORT_FILE := libvpx.def +LIBVPX_SO_SYMLINKS := +LIBVPX_SO_IMPLIB := libvpx_dll.a +else +LIBVPX_SO := libvpx.so.$(SO_VERSION_MAJOR).$(SO_VERSION_MINOR).$(SO_VERSION_PATCH) +SHARED_LIB_SUF := .so +EXPORT_FILE := libvpx.ver +LIBVPX_SO_SYMLINKS := $(addprefix $(LIBSUBDIR)/, \ + libvpx.so libvpx.so.$(SO_VERSION_MAJOR) \ + libvpx.so.$(SO_VERSION_MAJOR).$(SO_VERSION_MINOR)) +endif +endif +endif + +LIBS-$(CONFIG_SHARED) += $(BUILD_PFX)$(LIBVPX_SO)\ + $(notdir $(LIBVPX_SO_SYMLINKS)) \ + $(if $(LIBVPX_SO_IMPLIB), $(BUILD_PFX)$(LIBVPX_SO_IMPLIB)) +$(BUILD_PFX)$(LIBVPX_SO): $(LIBVPX_OBJS) $(EXPORT_FILE) +$(BUILD_PFX)$(LIBVPX_SO): extralibs += -lm +$(BUILD_PFX)$(LIBVPX_SO): SONAME = libvpx.so.$(SO_VERSION_MAJOR) +$(BUILD_PFX)$(LIBVPX_SO): EXPORTS_FILE = $(EXPORT_FILE) + +libvpx.ver: $(call enabled,CODEC_EXPORTS) + @echo " [CREATE] $@" + $(qexec)echo "{ global:" > $@ + $(qexec)for f in $?; do awk '{print $$2";"}' < $$f >>$@; done + $(qexec)echo "local: *; };" >> $@ +CLEAN-OBJS += libvpx.ver + +libvpx.syms: $(call enabled,CODEC_EXPORTS) + @echo " [CREATE] $@" + $(qexec)awk '{print "_"$$2}' $^ >$@ +CLEAN-OBJS += libvpx.syms + +libvpx.def: $(call enabled,CODEC_EXPORTS) + @echo " [CREATE] $@" + $(qexec)echo LIBRARY $(LIBVPX_SO:.dll=) INITINSTANCE TERMINSTANCE > $@ + $(qexec)echo "DATA MULTIPLE NONSHARED" >> $@ + $(qexec)echo "EXPORTS" >> $@ + $(qexec)awk '!/vpx_svc_*/ {print "_"$$2}' $^ >>$@ +CLEAN-OBJS += libvpx.def + +libvpx_dll.a: $(LIBVPX_SO) + @echo " [IMPLIB] $@" + $(qexec)emximp -o $@ $< +CLEAN-OBJS += libvpx_dll.a + +define libvpx_symlink_template +$(1): $(2) + @echo " [LN] $(2) $$@" + $(qexec)mkdir -p $$(dir $$@) + $(qexec)ln -sf $(2) $$@ +endef + +$(eval $(call libvpx_symlink_template,\ + $(addprefix $(BUILD_PFX),$(notdir $(LIBVPX_SO_SYMLINKS))),\ + $(BUILD_PFX)$(LIBVPX_SO))) +$(eval $(call libvpx_symlink_template,\ + $(addprefix $(DIST_DIR)/,$(LIBVPX_SO_SYMLINKS)),\ + $(LIBVPX_SO))) + + +INSTALL-LIBS-$(CONFIG_SHARED) += $(LIBVPX_SO_SYMLINKS) +INSTALL-LIBS-$(CONFIG_SHARED) += $(LIBSUBDIR)/$(LIBVPX_SO) +INSTALL-LIBS-$(CONFIG_SHARED) += $(if $(LIBVPX_SO_IMPLIB),$(LIBSUBDIR)/$(LIBVPX_SO_IMPLIB)) + + +LIBS-yes += vpx.pc +vpx.pc: config.mk libs.mk + @echo " [CREATE] $@" + $(qexec)echo '# pkg-config file from libvpx $(VERSION_STRING)' > $@ + $(qexec)echo 'prefix=$(PREFIX)' >> $@ + $(qexec)echo 'exec_prefix=$${prefix}' >> $@ + $(qexec)echo 'libdir=$${prefix}/$(LIBSUBDIR)' >> $@ + $(qexec)echo 'includedir=$${prefix}/include' >> $@ + $(qexec)echo '' >> $@ + $(qexec)echo 'Name: vpx' >> $@ + $(qexec)echo 'Description: WebM Project VPx codec implementation' >> $@ + $(qexec)echo 'Version: $(VERSION_MAJOR).$(VERSION_MINOR).$(VERSION_PATCH)' >> $@ + $(qexec)echo 'Requires:' >> $@ + $(qexec)echo 'Conflicts:' >> $@ + $(qexec)echo 'Libs: -L$${libdir} -lvpx -lm' >> $@ +ifeq ($(HAVE_PTHREAD_H),yes) + $(qexec)echo 'Libs.private: -lm -lpthread' >> $@ +else + $(qexec)echo 'Libs.private: -lm' >> $@ +endif + $(qexec)echo 'Cflags: -I$${includedir}' >> $@ +INSTALL-LIBS-yes += $(LIBSUBDIR)/pkgconfig/vpx.pc +INSTALL_MAPS += $(LIBSUBDIR)/pkgconfig/%.pc %.pc +CLEAN-OBJS += vpx.pc +endif + +# +# Rule to make assembler configuration file from C configuration file +# +ifeq ($(ARCH_X86)$(ARCH_X86_64),yes) +# YASM +$(BUILD_PFX)vpx_config.asm: $(BUILD_PFX)vpx_config.h + @echo " [CREATE] $@" + @egrep "#define [A-Z0-9_]+ [01]" $< \ + | awk '{print $$2 " equ " $$3}' > $@ +else +ADS2GAS=$(if $(filter yes,$(CONFIG_GCC)),| $(ASM_CONVERSION)) +$(BUILD_PFX)vpx_config.asm: $(BUILD_PFX)vpx_config.h + @echo " [CREATE] $@" + @egrep "#define [A-Z0-9_]+ [01]" $< \ + | awk '{print $$2 " EQU " $$3}' $(ADS2GAS) > $@ + @echo " END" $(ADS2GAS) >> $@ +CLEAN-OBJS += $(BUILD_PFX)vpx_config.asm +endif + +# +# Add assembler dependencies for configuration. +# +$(filter %.S.o,$(OBJS-yes)): $(BUILD_PFX)vpx_config.asm +$(filter %$(ASM).o,$(OBJS-yes)): $(BUILD_PFX)vpx_config.asm + + +$(shell $(SRC_PATH_BARE)/build/make/version.sh "$(SRC_PATH_BARE)" $(BUILD_PFX)vpx_version.h) +CLEAN-OBJS += $(BUILD_PFX)vpx_version.h + +# +# Add include path for libwebm sources. +# +ifeq ($(CONFIG_WEBM_IO),yes) + CXXFLAGS += -I$(SRC_PATH_BARE)/third_party/libwebm +endif + +## +## libvpx test directives +## +ifeq ($(CONFIG_UNIT_TESTS),yes) +LIBVPX_TEST_DATA_PATH ?= . + +include $(SRC_PATH_BARE)/test/test.mk +LIBVPX_TEST_SRCS=$(addprefix test/,$(call enabled,LIBVPX_TEST_SRCS)) +LIBVPX_TEST_BIN=./test_libvpx$(EXE_SFX) +LIBVPX_TEST_DATA=$(addprefix $(LIBVPX_TEST_DATA_PATH)/,\ + $(call enabled,LIBVPX_TEST_DATA)) +libvpx_test_data_url=https://storage.googleapis.com/downloads.webmproject.org/test_data/libvpx/$(1) + +TEST_INTRA_PRED_SPEED_BIN=./test_intra_pred_speed$(EXE_SFX) +TEST_INTRA_PRED_SPEED_SRCS=$(addprefix test/,$(call enabled,TEST_INTRA_PRED_SPEED_SRCS)) +TEST_INTRA_PRED_SPEED_OBJS := $(sort $(call objs,$(TEST_INTRA_PRED_SPEED_SRCS))) + +libvpx_test_srcs.txt: + @echo " [CREATE] $@" + @echo $(LIBVPX_TEST_SRCS) | xargs -n1 echo | LC_ALL=C sort -u > $@ +CLEAN-OBJS += libvpx_test_srcs.txt + +$(LIBVPX_TEST_DATA): $(SRC_PATH_BARE)/test/test-data.sha1 + @echo " [DOWNLOAD] $@" + # Attempt to download the file using curl, retrying once if it fails for a + # partial file (18). + $(qexec)( \ + trap 'rm -f $@' INT TERM; \ + curl="curl --retry 1 -L -o $@ $(call libvpx_test_data_url,$(@F))"; \ + $$curl; \ + case "$$?" in \ + 18) $$curl -C -;; \ + esac \ + ) + +testdata:: $(LIBVPX_TEST_DATA) + $(qexec)[ -x "$$(which sha1sum)" ] && sha1sum=sha1sum;\ + [ -x "$$(which shasum)" ] && sha1sum=shasum;\ + [ -x "$$(which sha1)" ] && sha1sum=sha1;\ + if [ -n "$${sha1sum}" ]; then\ + set -e;\ + echo "Checking test data:";\ + for f in $(call enabled,LIBVPX_TEST_DATA); do\ + grep $$f $(SRC_PATH_BARE)/test/test-data.sha1 |\ + (cd $(LIBVPX_TEST_DATA_PATH); $${sha1sum} -c);\ + done; \ + else\ + echo "Skipping test data integrity check, sha1sum not found.";\ + fi + +ifeq ($(CONFIG_EXTERNAL_BUILD),yes) +ifeq ($(CONFIG_MSVS),yes) + +gtest.$(VCPROJ_SFX): $(SRC_PATH_BARE)/third_party/googletest/src/src/gtest-all.cc + @echo " [CREATE] $@" + $(qexec)$(GEN_VCPROJ) \ + --lib \ + --target=$(TOOLCHAIN) \ + $(if $(CONFIG_STATIC_MSVCRT),--static-crt) \ + --name=gtest \ + --proj-guid=EC00E1EC-AF68-4D92-A255-181690D1C9B1 \ + --ver=$(CONFIG_VS_VERSION) \ + --src-path-bare="$(SRC_PATH_BARE)" \ + -D_VARIADIC_MAX=10 \ + --out=gtest.$(VCPROJ_SFX) $(SRC_PATH_BARE)/third_party/googletest/src/src/gtest-all.cc \ + -I. -I"$(SRC_PATH_BARE)/third_party/googletest/src/include" -I"$(SRC_PATH_BARE)/third_party/googletest/src" + +PROJECTS-$(CONFIG_MSVS) += gtest.$(VCPROJ_SFX) + +test_libvpx.$(VCPROJ_SFX): $(LIBVPX_TEST_SRCS) vpx.$(VCPROJ_SFX) gtest.$(VCPROJ_SFX) + @echo " [CREATE] $@" + $(qexec)$(GEN_VCPROJ) \ + --exe \ + --target=$(TOOLCHAIN) \ + --name=test_libvpx \ + -D_VARIADIC_MAX=10 \ + --proj-guid=CD837F5F-52D8-4314-A370-895D614166A7 \ + --ver=$(CONFIG_VS_VERSION) \ + --src-path-bare="$(SRC_PATH_BARE)" \ + $(if $(CONFIG_STATIC_MSVCRT),--static-crt) \ + --out=$@ $(INTERNAL_CFLAGS) $(CFLAGS) \ + -I. -I"$(SRC_PATH_BARE)/third_party/googletest/src/include" \ + $(if $(CONFIG_WEBM_IO),-I"$(SRC_PATH_BARE)/third_party/libwebm") \ + -L. -l$(CODEC_LIB) -l$(GTEST_LIB) $^ + +PROJECTS-$(CONFIG_MSVS) += test_libvpx.$(VCPROJ_SFX) + +LIBVPX_TEST_BIN := $(addprefix $(TGT_OS:win64=x64)/Release/,$(notdir $(LIBVPX_TEST_BIN))) + +ifneq ($(strip $(TEST_INTRA_PRED_SPEED_OBJS)),) +PROJECTS-$(CONFIG_MSVS) += test_intra_pred_speed.$(VCPROJ_SFX) +test_intra_pred_speed.$(VCPROJ_SFX): $(TEST_INTRA_PRED_SPEED_SRCS) vpx.$(VCPROJ_SFX) gtest.$(VCPROJ_SFX) + @echo " [CREATE] $@" + $(qexec)$(GEN_VCPROJ) \ + --exe \ + --target=$(TOOLCHAIN) \ + --name=test_intra_pred_speed \ + -D_VARIADIC_MAX=10 \ + --proj-guid=CD837F5F-52D8-4314-A370-895D614166A7 \ + --ver=$(CONFIG_VS_VERSION) \ + --src-path-bare="$(SRC_PATH_BARE)" \ + $(if $(CONFIG_STATIC_MSVCRT),--static-crt) \ + --out=$@ $(INTERNAL_CFLAGS) $(CFLAGS) \ + -I. -I"$(SRC_PATH_BARE)/third_party/googletest/src/include" \ + -L. -l$(CODEC_LIB) -l$(GTEST_LIB) $^ +endif # TEST_INTRA_PRED_SPEED +endif +else + +include $(SRC_PATH_BARE)/third_party/googletest/gtest.mk +GTEST_SRCS := $(addprefix third_party/googletest/src/,$(call enabled,GTEST_SRCS)) +GTEST_OBJS=$(call objs,$(GTEST_SRCS)) +ifeq ($(filter win%,$(TGT_OS)),$(TGT_OS)) +# Disabling pthreads globally will cause issues on darwin and possibly elsewhere +$(GTEST_OBJS) $(GTEST_OBJS:.o=.d): CXXFLAGS += -DGTEST_HAS_PTHREAD=0 +endif +GTEST_INCLUDES := -I$(SRC_PATH_BARE)/third_party/googletest/src +GTEST_INCLUDES += -I$(SRC_PATH_BARE)/third_party/googletest/src/include +$(GTEST_OBJS) $(GTEST_OBJS:.o=.d): CXXFLAGS += $(GTEST_INCLUDES) +OBJS-yes += $(GTEST_OBJS) +LIBS-yes += $(BUILD_PFX)libgtest.a $(BUILD_PFX)libgtest_g.a +$(BUILD_PFX)libgtest_g.a: $(GTEST_OBJS) + +LIBVPX_TEST_OBJS=$(sort $(call objs,$(LIBVPX_TEST_SRCS))) +$(LIBVPX_TEST_OBJS) $(LIBVPX_TEST_OBJS:.o=.d): CXXFLAGS += $(GTEST_INCLUDES) +OBJS-yes += $(LIBVPX_TEST_OBJS) +BINS-yes += $(LIBVPX_TEST_BIN) + +CODEC_LIB=$(if $(CONFIG_DEBUG_LIBS),vpx_g,vpx) +CODEC_LIB_SUF=$(if $(CONFIG_SHARED),$(SHARED_LIB_SUF),.a) +TEST_LIBS := lib$(CODEC_LIB)$(CODEC_LIB_SUF) libgtest.a +$(LIBVPX_TEST_BIN): $(TEST_LIBS) +$(eval $(call linkerxx_template,$(LIBVPX_TEST_BIN), \ + $(LIBVPX_TEST_OBJS) \ + -L. -lvpx -lgtest $(extralibs) -lm)) + +ifneq ($(strip $(TEST_INTRA_PRED_SPEED_OBJS)),) +$(TEST_INTRA_PRED_SPEED_OBJS) $(TEST_INTRA_PRED_SPEED_OBJS:.o=.d): CXXFLAGS += $(GTEST_INCLUDES) +OBJS-yes += $(TEST_INTRA_PRED_SPEED_OBJS) +BINS-yes += $(TEST_INTRA_PRED_SPEED_BIN) + +$(TEST_INTRA_PRED_SPEED_BIN): $(TEST_LIBS) +$(eval $(call linkerxx_template,$(TEST_INTRA_PRED_SPEED_BIN), \ + $(TEST_INTRA_PRED_SPEED_OBJS) \ + -L. -lvpx -lgtest $(extralibs) -lm)) +endif # TEST_INTRA_PRED_SPEED + +endif # CONFIG_UNIT_TESTS + +# Install test sources only if codec source is included +INSTALL-SRCS-$(CONFIG_CODEC_SRCS) += $(patsubst $(SRC_PATH_BARE)/%,%,\ + $(shell find $(SRC_PATH_BARE)/third_party/googletest -type f)) +INSTALL-SRCS-$(CONFIG_CODEC_SRCS) += $(LIBVPX_TEST_SRCS) +INSTALL-SRCS-$(CONFIG_CODEC_SRCS) += $(TEST_INTRA_PRED_SPEED_SRCS) + +define test_shard_template +test:: test_shard.$(1) +test-no-data-check:: test_shard_ndc.$(1) +test_shard.$(1) test_shard_ndc.$(1): $(LIBVPX_TEST_BIN) + @set -e; \ + export GTEST_SHARD_INDEX=$(1); \ + export GTEST_TOTAL_SHARDS=$(2); \ + $(LIBVPX_TEST_BIN) +test_shard.$(1): testdata +.PHONY: test_shard.$(1) +endef + +NUM_SHARDS := 10 +SHARDS := 0 1 2 3 4 5 6 7 8 9 +$(foreach s,$(SHARDS),$(eval $(call test_shard_template,$(s),$(NUM_SHARDS)))) + +endif + +## +## documentation directives +## +CLEAN-OBJS += libs.doxy +DOCS-yes += libs.doxy +libs.doxy: $(CODEC_DOC_SRCS) + @echo " [CREATE] $@" + @rm -f $@ + @echo "INPUT += $^" >> $@ + @echo "INCLUDE_PATH += ." >> $@; + @echo "ENABLED_SECTIONS += $(sort $(CODEC_DOC_SECTIONS))" >> $@ + +## Generate rtcd.h for all objects +ifeq ($(CONFIG_DEPENDENCY_TRACKING),yes) +$(OBJS-yes:.o=.d): $(RTCD) +else +$(OBJS-yes): $(RTCD) +endif + +## Update the global src list +SRCS += $(CODEC_SRCS) $(LIBVPX_TEST_SRCS) $(GTEST_SRCS) + +## +## vpxdec/vpxenc tests. +## +ifeq ($(CONFIG_UNIT_TESTS),yes) +TEST_BIN_PATH = . +ifeq ($(CONFIG_MSVS),yes) +# MSVC will build both Debug and Release configurations of tools in a +# sub directory named for the current target. Assume the user wants to +# run the Release tools, and assign TEST_BIN_PATH accordingly. +# TODO(tomfinegan): Is this adequate for ARM? +# TODO(tomfinegan): Support running the debug versions of tools? +TEST_BIN_PATH := $(addsuffix /$(TGT_OS:win64=x64)/Release, $(TEST_BIN_PATH)) +endif +utiltest utiltest-no-data-check: + $(qexec)$(SRC_PATH_BARE)/test/vpxdec.sh \ + --test-data-path $(LIBVPX_TEST_DATA_PATH) \ + --bin-path $(TEST_BIN_PATH) + $(qexec)$(SRC_PATH_BARE)/test/vpxenc.sh \ + --test-data-path $(LIBVPX_TEST_DATA_PATH) \ + --bin-path $(TEST_BIN_PATH) +utiltest: testdata +else +utiltest utiltest-no-data-check: + @echo Unit tests must be enabled to make the utiltest target. +endif + +## +## Example tests. +## +ifeq ($(CONFIG_UNIT_TESTS),yes) +# All non-MSVC targets output example targets in a sub dir named examples. +EXAMPLES_BIN_PATH = examples +ifeq ($(CONFIG_MSVS),yes) +# MSVC will build both Debug and Release configurations of the examples in a +# sub directory named for the current target. Assume the user wants to +# run the Release tools, and assign EXAMPLES_BIN_PATH accordingly. +# TODO(tomfinegan): Is this adequate for ARM? +# TODO(tomfinegan): Support running the debug versions of tools? +EXAMPLES_BIN_PATH := $(TGT_OS:win64=x64)/Release +endif +exampletest exampletest-no-data-check: examples + $(qexec)$(SRC_PATH_BARE)/test/examples.sh \ + --test-data-path $(LIBVPX_TEST_DATA_PATH) \ + --bin-path $(EXAMPLES_BIN_PATH) +exampletest: testdata +else +exampletest exampletest-no-data-check: + @echo Unit tests must be enabled to make the exampletest target. +endif diff --git a/mainpage.dox b/mainpage.dox new file mode 100644 index 0000000..ec202fa --- /dev/null +++ b/mainpage.dox @@ -0,0 +1,53 @@ +/*!\mainpage WebM Codec SDK + + \section main_contents Page Contents + - \ref main_intro + - \ref main_startpoints + - \ref main_support + + \section main_intro Introduction + Welcome to the WebM Codec SDK. This SDK allows you to integrate your + applications with the VP8 and VP9 video codecs, high quality, royalty free, + open source codecs deployed on billions of computers and devices worldwide. + + This distribution of the WebM Codec SDK includes the following support: + + \if vp8_encoder + - \ref vp8_encoder + \endif + \if vp8_decoder + - \ref vp8_decoder + \endif + + + \section main_startpoints Starting Points + - Consult the \ref changelog for a complete list of improvements in this + release. + - The \ref readme contains instructions on recompiling the sample applications. + - Read the \ref usage "usage" for a narrative on codec usage. + - Read the \ref samples "sample code" for examples of how to interact with the + codec. + - \ref codec reference + \if encoder + - \ref encoder reference + \endif + \if decoder + - \ref decoder reference + \endif + + \section main_support Support Options & FAQ + The WebM project is an open source project supported by its community. For + questions about this SDK, please mail the apps-devel@webmproject.org list. + To contribute, see http://www.webmproject.org/code/contribute and mail + codec-devel@webmproject.org. +*/ + +/*!\page changelog CHANGELOG + \verbinclude CHANGELOG +*/ + +/*!\page readme README + \verbinclude README +*/ + +/*!\defgroup codecs Supported Codecs */ diff --git a/md5_utils.c b/md5_utils.c new file mode 100644 index 0000000..093798b --- /dev/null +++ b/md5_utils.c @@ -0,0 +1,249 @@ +/* + * This code implements the MD5 message-digest algorithm. + * The algorithm is due to Ron Rivest. This code was + * written by Colin Plumb in 1993, no copyright is claimed. + * This code is in the public domain; do with it what you wish. + * + * Equivalent code is available from RSA Data Security, Inc. + * This code has been tested against that, and is equivalent, + * except that you don't need to include two pages of legalese + * with every copy. + * + * To compute the message digest of a chunk of bytes, declare an + * MD5Context structure, pass it to MD5Init, call MD5Update as + * needed on buffers full of bytes, and then call MD5Final, which + * will fill a supplied 16-byte array with the digest. + * + * Changed so as no longer to depend on Colin Plumb's `usual.h' header + * definitions + * - Ian Jackson . + * Still in the public domain. + */ + +#include /* for memcpy() */ + +#include "md5_utils.h" + +static void byteSwap(UWORD32 *buf, unsigned words) { + md5byte *p; + + /* Only swap bytes for big endian machines */ + int i = 1; + + if (*(char *)&i == 1) return; + + p = (md5byte *)buf; + + do { + *buf++ = (UWORD32)((unsigned)p[3] << 8 | p[2]) << 16 | + ((unsigned)p[1] << 8 | p[0]); + p += 4; + } while (--words); +} + +/* + * Start MD5 accumulation. Set bit count to 0 and buffer to mysterious + * initialization constants. + */ +void MD5Init(struct MD5Context *ctx) { + ctx->buf[0] = 0x67452301; + ctx->buf[1] = 0xefcdab89; + ctx->buf[2] = 0x98badcfe; + ctx->buf[3] = 0x10325476; + + ctx->bytes[0] = 0; + ctx->bytes[1] = 0; +} + +/* + * Update context to reflect the concatenation of another buffer full + * of bytes. + */ +void MD5Update(struct MD5Context *ctx, md5byte const *buf, unsigned len) { + UWORD32 t; + + /* Update byte count */ + + t = ctx->bytes[0]; + + if ((ctx->bytes[0] = t + len) < t) + ctx->bytes[1]++; /* Carry from low to high */ + + t = 64 - (t & 0x3f); /* Space available in ctx->in (at least 1) */ + + if (t > len) { + memcpy((md5byte *)ctx->in + 64 - t, buf, len); + return; + } + + /* First chunk is an odd size */ + memcpy((md5byte *)ctx->in + 64 - t, buf, t); + byteSwap(ctx->in, 16); + MD5Transform(ctx->buf, ctx->in); + buf += t; + len -= t; + + /* Process data in 64-byte chunks */ + while (len >= 64) { + memcpy(ctx->in, buf, 64); + byteSwap(ctx->in, 16); + MD5Transform(ctx->buf, ctx->in); + buf += 64; + len -= 64; + } + + /* Handle any remaining bytes of data. */ + memcpy(ctx->in, buf, len); +} + +/* + * Final wrapup - pad to 64-byte boundary with the bit pattern + * 1 0* (64-bit count of bits processed, MSB-first) + */ +void MD5Final(md5byte digest[16], struct MD5Context *ctx) { + int count = ctx->bytes[0] & 0x3f; /* Number of bytes in ctx->in */ + md5byte *p = (md5byte *)ctx->in + count; + + /* Set the first char of padding to 0x80. There is always room. */ + *p++ = 0x80; + + /* Bytes of padding needed to make 56 bytes (-8..55) */ + count = 56 - 1 - count; + + if (count < 0) { /* Padding forces an extra block */ + memset(p, 0, count + 8); + byteSwap(ctx->in, 16); + MD5Transform(ctx->buf, ctx->in); + p = (md5byte *)ctx->in; + count = 56; + } + + memset(p, 0, count); + byteSwap(ctx->in, 14); + + /* Append length in bits and transform */ + ctx->in[14] = ctx->bytes[0] << 3; + ctx->in[15] = ctx->bytes[1] << 3 | ctx->bytes[0] >> 29; + MD5Transform(ctx->buf, ctx->in); + + byteSwap(ctx->buf, 4); + memcpy(digest, ctx->buf, 16); + memset(ctx, 0, sizeof(*ctx)); /* In case it's sensitive */ +} + +#ifndef ASM_MD5 + +/* The four core functions - F1 is optimized somewhat */ + +/* #define F1(x, y, z) (x & y | ~x & z) */ +#define F1(x, y, z) (z ^ (x & (y ^ z))) +#define F2(x, y, z) F1(z, x, y) +#define F3(x, y, z) (x ^ y ^ z) +#define F4(x, y, z) (y ^ (x | ~z)) + +/* This is the central step in the MD5 algorithm. */ +#define MD5STEP(f, w, x, y, z, in, s) \ + (w += f(x, y, z) + in, w = (w << s | w >> (32 - s)) + x) + +#if defined(__clang__) && defined(__has_attribute) +#if __has_attribute(no_sanitize) +#define VPX_NO_UNSIGNED_OVERFLOW_CHECK \ + __attribute__((no_sanitize("unsigned-integer-overflow"))) +#endif +#endif + +#ifndef VPX_NO_UNSIGNED_OVERFLOW_CHECK +#define VPX_NO_UNSIGNED_OVERFLOW_CHECK +#endif + +/* + * The core of the MD5 algorithm, this alters an existing MD5 hash to + * reflect the addition of 16 longwords of new data. MD5Update blocks + * the data and converts bytes into longwords for this routine. + */ +VPX_NO_UNSIGNED_OVERFLOW_CHECK void MD5Transform(UWORD32 buf[4], + UWORD32 const in[16]) { + register UWORD32 a, b, c, d; + + a = buf[0]; + b = buf[1]; + c = buf[2]; + d = buf[3]; + + MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7); + MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12); + MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17); + MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22); + MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7); + MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12); + MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17); + MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22); + MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7); + MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12); + MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17); + MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22); + MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7); + MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12); + MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17); + MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22); + + MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5); + MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9); + MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14); + MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20); + MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5); + MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9); + MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14); + MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20); + MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5); + MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9); + MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14); + MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20); + MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5); + MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9); + MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14); + MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20); + + MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4); + MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11); + MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16); + MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23); + MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4); + MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11); + MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16); + MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23); + MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4); + MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11); + MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16); + MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23); + MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4); + MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11); + MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16); + MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23); + + MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6); + MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10); + MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15); + MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21); + MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6); + MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10); + MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15); + MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21); + MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6); + MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10); + MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15); + MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21); + MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6); + MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10); + MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15); + MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21); + + buf[0] += a; + buf[1] += b; + buf[2] += c; + buf[3] += d; +} + +#undef VPX_NO_UNSIGNED_OVERFLOW_CHECK + +#endif diff --git a/md5_utils.h b/md5_utils.h new file mode 100644 index 0000000..bd4991b --- /dev/null +++ b/md5_utils.h @@ -0,0 +1,49 @@ +/* + * This is the header file for the MD5 message-digest algorithm. + * The algorithm is due to Ron Rivest. This code was + * written by Colin Plumb in 1993, no copyright is claimed. + * This code is in the public domain; do with it what you wish. + * + * Equivalent code is available from RSA Data Security, Inc. + * This code has been tested against that, and is equivalent, + * except that you don't need to include two pages of legalese + * with every copy. + * + * To compute the message digest of a chunk of bytes, declare an + * MD5Context structure, pass it to MD5Init, call MD5Update as + * needed on buffers full of bytes, and then call MD5Final, which + * will fill a supplied 16-byte array with the digest. + * + * Changed so as no longer to depend on Colin Plumb's `usual.h' + * header definitions + * - Ian Jackson . + * Still in the public domain. + */ + +#ifndef MD5_UTILS_H_ +#define MD5_UTILS_H_ + +#ifdef __cplusplus +extern "C" { +#endif + +#define md5byte unsigned char +#define UWORD32 unsigned int + +typedef struct MD5Context MD5Context; +struct MD5Context { + UWORD32 buf[4]; + UWORD32 bytes[2]; + UWORD32 in[16]; +}; + +void MD5Init(struct MD5Context *context); +void MD5Update(struct MD5Context *context, md5byte const *buf, unsigned len); +void MD5Final(unsigned char digest[16], struct MD5Context *context); +void MD5Transform(UWORD32 buf[4], UWORD32 const in[16]); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // MD5_UTILS_H_ diff --git a/rate_hist.c b/rate_hist.c new file mode 100644 index 0000000..6cf8ce7 --- /dev/null +++ b/rate_hist.c @@ -0,0 +1,289 @@ +/* + * Copyright (c) 2014 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include +#include +#include +#include + +#include "./rate_hist.h" + +#define RATE_BINS 100 +#define HIST_BAR_MAX 40 + +struct hist_bucket { + int low; + int high; + int count; +}; + +struct rate_hist { + int64_t *pts; + int *sz; + int samples; + int frames; + struct hist_bucket bucket[RATE_BINS]; + int total; +}; + +struct rate_hist *init_rate_histogram(const vpx_codec_enc_cfg_t *cfg, + const vpx_rational_t *fps) { + int i; + struct rate_hist *hist = calloc(1, sizeof(*hist)); + + if (hist == NULL || cfg == NULL || fps == NULL || fps->num == 0 || + fps->den == 0) { + destroy_rate_histogram(hist); + return NULL; + } + + // Determine the number of samples in the buffer. Use the file's framerate + // to determine the number of frames in rc_buf_sz milliseconds, with an + // adjustment (5/4) to account for alt-refs + hist->samples = cfg->rc_buf_sz * 5 / 4 * fps->num / fps->den / 1000; + + // prevent division by zero + if (hist->samples == 0) hist->samples = 1; + + hist->frames = 0; + hist->total = 0; + + hist->pts = calloc(hist->samples, sizeof(*hist->pts)); + hist->sz = calloc(hist->samples, sizeof(*hist->sz)); + for (i = 0; i < RATE_BINS; i++) { + hist->bucket[i].low = INT_MAX; + hist->bucket[i].high = 0; + hist->bucket[i].count = 0; + } + + return hist; +} + +void destroy_rate_histogram(struct rate_hist *hist) { + if (hist) { + free(hist->pts); + free(hist->sz); + free(hist); + } +} + +void update_rate_histogram(struct rate_hist *hist, + const vpx_codec_enc_cfg_t *cfg, + const vpx_codec_cx_pkt_t *pkt) { + int i; + int64_t then = 0; + int64_t avg_bitrate = 0; + int64_t sum_sz = 0; + const int64_t now = pkt->data.frame.pts * 1000 * + (uint64_t)cfg->g_timebase.num / + (uint64_t)cfg->g_timebase.den; + + int idx; + + if (hist == NULL || cfg == NULL || pkt == NULL) return; + + idx = hist->frames++ % hist->samples; + hist->pts[idx] = now; + hist->sz[idx] = (int)pkt->data.frame.sz; + + if (now < cfg->rc_buf_initial_sz) return; + + if (!cfg->rc_target_bitrate) return; + + then = now; + + /* Sum the size over the past rc_buf_sz ms */ + for (i = hist->frames; i > 0 && hist->frames - i < hist->samples; i--) { + const int i_idx = (i - 1) % hist->samples; + + then = hist->pts[i_idx]; + if (now - then > cfg->rc_buf_sz) break; + sum_sz += hist->sz[i_idx]; + } + + if (now == then) return; + + avg_bitrate = sum_sz * 8 * 1000 / (now - then); + idx = (int)(avg_bitrate * (RATE_BINS / 2) / (cfg->rc_target_bitrate * 1000)); + if (idx < 0) idx = 0; + if (idx > RATE_BINS - 1) idx = RATE_BINS - 1; + if (hist->bucket[idx].low > avg_bitrate) + hist->bucket[idx].low = (int)avg_bitrate; + if (hist->bucket[idx].high < avg_bitrate) + hist->bucket[idx].high = (int)avg_bitrate; + hist->bucket[idx].count++; + hist->total++; +} + +static int merge_hist_buckets(struct hist_bucket *bucket, int max_buckets, + int *num_buckets) { + int small_bucket = 0, merge_bucket = INT_MAX, big_bucket = 0; + int buckets; + int i; + + assert(bucket != NULL); + assert(num_buckets != NULL); + + buckets = *num_buckets; + + /* Find the extrema for this list of buckets */ + big_bucket = small_bucket = 0; + for (i = 0; i < buckets; i++) { + if (bucket[i].count < bucket[small_bucket].count) small_bucket = i; + if (bucket[i].count > bucket[big_bucket].count) big_bucket = i; + } + + /* If we have too many buckets, merge the smallest with an adjacent + * bucket. + */ + while (buckets > max_buckets) { + int last_bucket = buckets - 1; + + /* merge the small bucket with an adjacent one. */ + if (small_bucket == 0) + merge_bucket = 1; + else if (small_bucket == last_bucket) + merge_bucket = last_bucket - 1; + else if (bucket[small_bucket - 1].count < bucket[small_bucket + 1].count) + merge_bucket = small_bucket - 1; + else + merge_bucket = small_bucket + 1; + + assert(abs(merge_bucket - small_bucket) <= 1); + assert(small_bucket < buckets); + assert(big_bucket < buckets); + assert(merge_bucket < buckets); + + if (merge_bucket < small_bucket) { + bucket[merge_bucket].high = bucket[small_bucket].high; + bucket[merge_bucket].count += bucket[small_bucket].count; + } else { + bucket[small_bucket].high = bucket[merge_bucket].high; + bucket[small_bucket].count += bucket[merge_bucket].count; + merge_bucket = small_bucket; + } + + assert(bucket[merge_bucket].low != bucket[merge_bucket].high); + + buckets--; + + /* Remove the merge_bucket from the list, and find the new small + * and big buckets while we're at it + */ + big_bucket = small_bucket = 0; + for (i = 0; i < buckets; i++) { + if (i > merge_bucket) bucket[i] = bucket[i + 1]; + + if (bucket[i].count < bucket[small_bucket].count) small_bucket = i; + if (bucket[i].count > bucket[big_bucket].count) big_bucket = i; + } + } + + *num_buckets = buckets; + return bucket[big_bucket].count; +} + +static void show_histogram(const struct hist_bucket *bucket, int buckets, + int total, int scale) { + const char *pat1, *pat2; + int i; + + assert(bucket != NULL); + + switch ((int)(log(bucket[buckets - 1].high) / log(10)) + 1) { + case 1: + case 2: + pat1 = "%4d %2s: "; + pat2 = "%4d-%2d: "; + break; + case 3: + pat1 = "%5d %3s: "; + pat2 = "%5d-%3d: "; + break; + case 4: + pat1 = "%6d %4s: "; + pat2 = "%6d-%4d: "; + break; + case 5: + pat1 = "%7d %5s: "; + pat2 = "%7d-%5d: "; + break; + case 6: + pat1 = "%8d %6s: "; + pat2 = "%8d-%6d: "; + break; + case 7: + pat1 = "%9d %7s: "; + pat2 = "%9d-%7d: "; + break; + default: + pat1 = "%12d %10s: "; + pat2 = "%12d-%10d: "; + break; + } + + for (i = 0; i < buckets; i++) { + int len; + int j; + float pct; + + pct = (float)(100.0 * bucket[i].count / total); + len = HIST_BAR_MAX * bucket[i].count / scale; + if (len < 1) len = 1; + assert(len <= HIST_BAR_MAX); + + if (bucket[i].low == bucket[i].high) + fprintf(stderr, pat1, bucket[i].low, ""); + else + fprintf(stderr, pat2, bucket[i].low, bucket[i].high); + + for (j = 0; j < HIST_BAR_MAX; j++) fprintf(stderr, j < len ? "=" : " "); + fprintf(stderr, "\t%5d (%6.2f%%)\n", bucket[i].count, pct); + } +} + +void show_q_histogram(const int counts[64], int max_buckets) { + struct hist_bucket bucket[64]; + int buckets = 0; + int total = 0; + int scale; + int i; + + for (i = 0; i < 64; i++) { + if (counts[i]) { + bucket[buckets].low = bucket[buckets].high = i; + bucket[buckets].count = counts[i]; + buckets++; + total += counts[i]; + } + } + + fprintf(stderr, "\nQuantizer Selection:\n"); + scale = merge_hist_buckets(bucket, max_buckets, &buckets); + show_histogram(bucket, buckets, total, scale); +} + +void show_rate_histogram(struct rate_hist *hist, const vpx_codec_enc_cfg_t *cfg, + int max_buckets) { + int i, scale; + int buckets = 0; + + if (hist == NULL || cfg == NULL) return; + + for (i = 0; i < RATE_BINS; i++) { + if (hist->bucket[i].low == INT_MAX) continue; + hist->bucket[buckets++] = hist->bucket[i]; + } + + fprintf(stderr, "\nRate (over %dms window):\n", cfg->rc_buf_sz); + scale = merge_hist_buckets(hist->bucket, max_buckets, &buckets); + show_histogram(hist->bucket, buckets, hist->total, scale); +} diff --git a/rate_hist.h b/rate_hist.h new file mode 100644 index 0000000..00a1676 --- /dev/null +++ b/rate_hist.h @@ -0,0 +1,40 @@ +/* + * Copyright (c) 2014 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef RATE_HIST_H_ +#define RATE_HIST_H_ + +#include "vpx/vpx_encoder.h" + +#ifdef __cplusplus +extern "C" { +#endif + +struct rate_hist; + +struct rate_hist *init_rate_histogram(const vpx_codec_enc_cfg_t *cfg, + const vpx_rational_t *fps); + +void destroy_rate_histogram(struct rate_hist *hist); + +void update_rate_histogram(struct rate_hist *hist, + const vpx_codec_enc_cfg_t *cfg, + const vpx_codec_cx_pkt_t *pkt); + +void show_q_histogram(const int counts[64], int max_buckets); + +void show_rate_histogram(struct rate_hist *hist, const vpx_codec_enc_cfg_t *cfg, + int max_buckets); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // RATE_HIST_H_ diff --git a/solution.mk b/solution.mk new file mode 100644 index 0000000..145adc0 --- /dev/null +++ b/solution.mk @@ -0,0 +1,31 @@ +## +## Copyright (c) 2010 The WebM project authors. All Rights Reserved. +## +## Use of this source code is governed by a BSD-style license +## that can be found in the LICENSE file in the root of the source +## tree. An additional intellectual property rights grant can be found +## in the file PATENTS. All contributing project authors may +## be found in the AUTHORS file in the root of the source tree. +## + +# libvpx reverse dependencies (targets that depend on libvpx) +VPX_NONDEPS=$(addsuffix .$(VCPROJ_SFX),vpx gtest) +VPX_RDEPS=$(foreach vcp,\ + $(filter-out $(VPX_NONDEPS),$^), --dep=$(vcp:.$(VCPROJ_SFX)=):vpx) + +vpx.sln: $(wildcard *.$(VCPROJ_SFX)) + @echo " [CREATE] $@" + $(SRC_PATH_BARE)/build/make/gen_msvs_sln.sh \ + $(if $(filter vpx.$(VCPROJ_SFX),$^),$(VPX_RDEPS)) \ + --dep=test_libvpx:gtest \ + --ver=$(CONFIG_VS_VERSION)\ + --out=$@ $^ +vpx.sln.mk: vpx.sln + @true + +PROJECTS-yes += vpx.sln vpx.sln.mk +-include vpx.sln.mk + +# Always install this file, as it is an unconditional post-build rule. +INSTALL_MAPS += src/% $(SRC_PATH_BARE)/% +INSTALL-SRCS-yes += $(target).mk diff --git a/test/acm_random.h b/test/acm_random.h new file mode 100644 index 0000000..d915cf9 --- /dev/null +++ b/test/acm_random.h @@ -0,0 +1,76 @@ +/* + * Copyright (c) 2012 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef TEST_ACM_RANDOM_H_ +#define TEST_ACM_RANDOM_H_ + +#include + +#include + +#include "third_party/googletest/src/include/gtest/gtest.h" + +#include "vpx/vpx_integer.h" + +namespace libvpx_test { + +class ACMRandom { + public: + ACMRandom() : random_(DeterministicSeed()) {} + + explicit ACMRandom(int seed) : random_(seed) {} + + void Reset(int seed) { random_.Reseed(seed); } + uint16_t Rand16(void) { + const uint32_t value = + random_.Generate(testing::internal::Random::kMaxRange); + return (value >> 15) & 0xffff; + } + + int16_t Rand9Signed(void) { + // Use 9 bits: values between 255 (0x0FF) and -256 (0x100). + const uint32_t value = random_.Generate(512); + return static_cast(value) - 256; + } + + uint8_t Rand8(void) { + const uint32_t value = + random_.Generate(testing::internal::Random::kMaxRange); + // There's a bit more entropy in the upper bits of this implementation. + return (value >> 23) & 0xff; + } + + uint8_t Rand8Extremes(void) { + // Returns a random value near 0 or near 255, to better exercise + // saturation behavior. + const uint8_t r = Rand8(); + return r < 128 ? r << 4 : r >> 4; + } + + uint32_t RandRange(const uint32_t range) { + // testing::internal::Random::Generate provides values in the range + // testing::internal::Random::kMaxRange. + assert(range <= testing::internal::Random::kMaxRange); + return random_.Generate(range); + } + + int PseudoUniform(int range) { return random_.Generate(range); } + + int operator()(int n) { return PseudoUniform(n); } + + static int DeterministicSeed(void) { return 0xbaba; } + + private: + testing::internal::Random random_; +}; + +} // namespace libvpx_test + +#endif // TEST_ACM_RANDOM_H_ diff --git a/test/active_map_refresh_test.cc b/test/active_map_refresh_test.cc new file mode 100644 index 0000000..d893635 --- /dev/null +++ b/test/active_map_refresh_test.cc @@ -0,0 +1,128 @@ +/* + * Copyright (c) 2015 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ +#include +#include "third_party/googletest/src/include/gtest/gtest.h" +#include "test/codec_factory.h" +#include "test/encode_test_driver.h" +#include "test/util.h" +#include "test/y4m_video_source.h" + +namespace { + +// Check if any pixel in a 16x16 macroblock varies between frames. +int CheckMb(const vpx_image_t ¤t, const vpx_image_t &previous, int mb_r, + int mb_c) { + for (int plane = 0; plane < 3; plane++) { + int r = 16 * mb_r; + int c0 = 16 * mb_c; + int r_top = std::min(r + 16, static_cast(current.d_h)); + int c_top = std::min(c0 + 16, static_cast(current.d_w)); + r = std::max(r, 0); + c0 = std::max(c0, 0); + if (plane > 0 && current.x_chroma_shift) { + c_top = (c_top + 1) >> 1; + c0 >>= 1; + } + if (plane > 0 && current.y_chroma_shift) { + r_top = (r_top + 1) >> 1; + r >>= 1; + } + for (; r < r_top; ++r) { + for (int c = c0; c < c_top; ++c) { + if (current.planes[plane][current.stride[plane] * r + c] != + previous.planes[plane][previous.stride[plane] * r + c]) { + return 1; + } + } + } + } + return 0; +} + +void GenerateMap(int mb_rows, int mb_cols, const vpx_image_t ¤t, + const vpx_image_t &previous, uint8_t *map) { + for (int mb_r = 0; mb_r < mb_rows; ++mb_r) { + for (int mb_c = 0; mb_c < mb_cols; ++mb_c) { + map[mb_r * mb_cols + mb_c] = CheckMb(current, previous, mb_r, mb_c); + } + } +} + +const int kAqModeCyclicRefresh = 3; + +class ActiveMapRefreshTest + : public ::libvpx_test::EncoderTest, + public ::libvpx_test::CodecTestWith2Params { + protected: + ActiveMapRefreshTest() : EncoderTest(GET_PARAM(0)) {} + virtual ~ActiveMapRefreshTest() {} + + virtual void SetUp() { + InitializeConfig(); + SetMode(GET_PARAM(1)); + cpu_used_ = GET_PARAM(2); + } + + virtual void PreEncodeFrameHook(::libvpx_test::VideoSource *video, + ::libvpx_test::Encoder *encoder) { + ::libvpx_test::Y4mVideoSource *y4m_video = + static_cast(video); + if (video->frame() == 1) { + encoder->Control(VP8E_SET_CPUUSED, cpu_used_); + encoder->Control(VP9E_SET_AQ_MODE, kAqModeCyclicRefresh); + } else if (video->frame() >= 2 && video->img()) { + vpx_image_t *current = video->img(); + vpx_image_t *previous = y4m_holder_->img(); + ASSERT_TRUE(previous != NULL); + vpx_active_map_t map = vpx_active_map_t(); + const int width = static_cast(current->d_w); + const int height = static_cast(current->d_h); + const int mb_width = (width + 15) / 16; + const int mb_height = (height + 15) / 16; + uint8_t *active_map = new uint8_t[mb_width * mb_height]; + GenerateMap(mb_height, mb_width, *current, *previous, active_map); + map.cols = mb_width; + map.rows = mb_height; + map.active_map = active_map; + encoder->Control(VP8E_SET_ACTIVEMAP, &map); + delete[] active_map; + } + if (video->img()) { + y4m_video->SwapBuffers(y4m_holder_); + } + } + + int cpu_used_; + ::libvpx_test::Y4mVideoSource *y4m_holder_; +}; + +TEST_P(ActiveMapRefreshTest, Test) { + cfg_.g_lag_in_frames = 0; + cfg_.g_profile = 1; + cfg_.rc_target_bitrate = 600; + cfg_.rc_resize_allowed = 0; + cfg_.rc_min_quantizer = 8; + cfg_.rc_max_quantizer = 30; + cfg_.g_pass = VPX_RC_ONE_PASS; + cfg_.rc_end_usage = VPX_CBR; + cfg_.kf_max_dist = 90000; + + ::libvpx_test::Y4mVideoSource video("desktop_credits.y4m", 0, 30); + ::libvpx_test::Y4mVideoSource video_holder("desktop_credits.y4m", 0, 30); + video_holder.Begin(); + y4m_holder_ = &video_holder; + + ASSERT_NO_FATAL_FAILURE(RunLoop(&video)); +} + +VP9_INSTANTIATE_TEST_CASE(ActiveMapRefreshTest, + ::testing::Values(::libvpx_test::kRealTime), + ::testing::Range(5, 6)); +} // namespace diff --git a/test/active_map_test.cc b/test/active_map_test.cc new file mode 100644 index 0000000..1d24f95 --- /dev/null +++ b/test/active_map_test.cc @@ -0,0 +1,91 @@ +/* + * Copyright (c) 2014 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ +#include +#include +#include "third_party/googletest/src/include/gtest/gtest.h" +#include "test/codec_factory.h" +#include "test/encode_test_driver.h" +#include "test/i420_video_source.h" +#include "test/util.h" + +namespace { + +class ActiveMapTest + : public ::libvpx_test::EncoderTest, + public ::libvpx_test::CodecTestWith2Params { + protected: + static const int kWidth = 208; + static const int kHeight = 144; + + ActiveMapTest() : EncoderTest(GET_PARAM(0)) {} + virtual ~ActiveMapTest() {} + + virtual void SetUp() { + InitializeConfig(); + SetMode(GET_PARAM(1)); + cpu_used_ = GET_PARAM(2); + } + + virtual void PreEncodeFrameHook(::libvpx_test::VideoSource *video, + ::libvpx_test::Encoder *encoder) { + if (video->frame() == 1) { + encoder->Control(VP8E_SET_CPUUSED, cpu_used_); + } else if (video->frame() == 3) { + vpx_active_map_t map = vpx_active_map_t(); + /* clang-format off */ + uint8_t active_map[9 * 13] = { + 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, + 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, + 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, + 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, + 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, + 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, + 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, + 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, + 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, + }; + /* clang-format on */ + map.cols = (kWidth + 15) / 16; + map.rows = (kHeight + 15) / 16; + ASSERT_EQ(map.cols, 13u); + ASSERT_EQ(map.rows, 9u); + map.active_map = active_map; + encoder->Control(VP8E_SET_ACTIVEMAP, &map); + } else if (video->frame() == 15) { + vpx_active_map_t map = vpx_active_map_t(); + map.cols = (kWidth + 15) / 16; + map.rows = (kHeight + 15) / 16; + map.active_map = NULL; + encoder->Control(VP8E_SET_ACTIVEMAP, &map); + } + } + + int cpu_used_; +}; + +TEST_P(ActiveMapTest, Test) { + // Validate that this non multiple of 64 wide clip encodes + cfg_.g_lag_in_frames = 0; + cfg_.rc_target_bitrate = 400; + cfg_.rc_resize_allowed = 0; + cfg_.g_pass = VPX_RC_ONE_PASS; + cfg_.rc_end_usage = VPX_CBR; + cfg_.kf_max_dist = 90000; + + ::libvpx_test::I420VideoSource video("hantro_odd.yuv", kWidth, kHeight, 30, 1, + 0, 20); + + ASSERT_NO_FATAL_FAILURE(RunLoop(&video)); +} + +VP9_INSTANTIATE_TEST_CASE(ActiveMapTest, + ::testing::Values(::libvpx_test::kRealTime), + ::testing::Range(0, 9)); +} // namespace diff --git a/test/add_noise_test.cc b/test/add_noise_test.cc new file mode 100644 index 0000000..eae32c3 --- /dev/null +++ b/test/add_noise_test.cc @@ -0,0 +1,136 @@ +/* + * Copyright (c) 2016 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ +#include +#include "test/clear_system_state.h" +#include "test/register_state_check.h" +#include "third_party/googletest/src/include/gtest/gtest.h" +#include "./vpx_dsp_rtcd.h" +#include "vpx/vpx_integer.h" +#include "vpx_dsp/postproc.h" +#include "vpx_mem/vpx_mem.h" + +namespace { + +static const int kNoiseSize = 3072; + +// TODO(jimbankoski): make width and height integers not unsigned. +typedef void (*AddNoiseFunc)(uint8_t *start, const int8_t *noise, + int blackclamp, int whiteclamp, int width, + int height, int pitch); + +class AddNoiseTest : public ::testing::TestWithParam { + public: + virtual void TearDown() { libvpx_test::ClearSystemState(); } + virtual ~AddNoiseTest() {} +}; + +double stddev6(char a, char b, char c, char d, char e, char f) { + const double n = (a + b + c + d + e + f) / 6.0; + const double v = ((a - n) * (a - n) + (b - n) * (b - n) + (c - n) * (c - n) + + (d - n) * (d - n) + (e - n) * (e - n) + (f - n) * (f - n)) / + 6.0; + return sqrt(v); +} + +TEST_P(AddNoiseTest, CheckNoiseAdded) { + const int width = 64; + const int height = 64; + const int image_size = width * height; + int8_t noise[kNoiseSize]; + const int clamp = vpx_setup_noise(4.4, noise, kNoiseSize); + uint8_t *const s = + reinterpret_cast(vpx_calloc(image_size, sizeof(*s))); + ASSERT_TRUE(s != NULL); + memset(s, 99, image_size * sizeof(*s)); + + ASM_REGISTER_STATE_CHECK( + GetParam()(s, noise, clamp, clamp, width, height, width)); + + // Check to make sure we don't end up having either the same or no added + // noise either vertically or horizontally. + for (int i = 0; i < image_size - 6 * width - 6; ++i) { + const double hd = stddev6(s[i] - 99, s[i + 1] - 99, s[i + 2] - 99, + s[i + 3] - 99, s[i + 4] - 99, s[i + 5] - 99); + const double vd = stddev6(s[i] - 99, s[i + width] - 99, + s[i + 2 * width] - 99, s[i + 3 * width] - 99, + s[i + 4 * width] - 99, s[i + 5 * width] - 99); + + EXPECT_NE(hd, 0); + EXPECT_NE(vd, 0); + } + + // Initialize pixels in the image to 255 and check for roll over. + memset(s, 255, image_size); + + ASM_REGISTER_STATE_CHECK( + GetParam()(s, noise, clamp, clamp, width, height, width)); + + // Check to make sure don't roll over. + for (int i = 0; i < image_size; ++i) { + EXPECT_GT(static_cast(s[i]), clamp) << "i = " << i; + } + + // Initialize pixels in the image to 0 and check for roll under. + memset(s, 0, image_size); + + ASM_REGISTER_STATE_CHECK( + GetParam()(s, noise, clamp, clamp, width, height, width)); + + // Check to make sure don't roll under. + for (int i = 0; i < image_size; ++i) { + EXPECT_LT(static_cast(s[i]), 255 - clamp) << "i = " << i; + } + + vpx_free(s); +} + +TEST_P(AddNoiseTest, CheckCvsAssembly) { + const int width = 64; + const int height = 64; + const int image_size = width * height; + int8_t noise[kNoiseSize]; + const int clamp = vpx_setup_noise(4.4, noise, kNoiseSize); + + uint8_t *const s = reinterpret_cast(vpx_calloc(image_size, 1)); + uint8_t *const d = reinterpret_cast(vpx_calloc(image_size, 1)); + ASSERT_TRUE(s != NULL); + ASSERT_TRUE(d != NULL); + + memset(s, 99, image_size); + memset(d, 99, image_size); + + srand(0); + ASM_REGISTER_STATE_CHECK( + GetParam()(s, noise, clamp, clamp, width, height, width)); + srand(0); + ASM_REGISTER_STATE_CHECK( + vpx_plane_add_noise_c(d, noise, clamp, clamp, width, height, width)); + + for (int i = 0; i < image_size; ++i) { + EXPECT_EQ(static_cast(s[i]), static_cast(d[i])) << "i = " << i; + } + + vpx_free(d); + vpx_free(s); +} + +INSTANTIATE_TEST_CASE_P(C, AddNoiseTest, + ::testing::Values(vpx_plane_add_noise_c)); + +#if HAVE_SSE2 +INSTANTIATE_TEST_CASE_P(SSE2, AddNoiseTest, + ::testing::Values(vpx_plane_add_noise_sse2)); +#endif + +#if HAVE_MSA +INSTANTIATE_TEST_CASE_P(MSA, AddNoiseTest, + ::testing::Values(vpx_plane_add_noise_msa)); +#endif +} // namespace diff --git a/test/alt_ref_aq_segment_test.cc b/test/alt_ref_aq_segment_test.cc new file mode 100644 index 0000000..64a3011 --- /dev/null +++ b/test/alt_ref_aq_segment_test.cc @@ -0,0 +1,157 @@ +/* + * Copyright (c) 2012 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ +#include "third_party/googletest/src/include/gtest/gtest.h" +#include "test/codec_factory.h" +#include "test/encode_test_driver.h" +#include "test/i420_video_source.h" +#include "test/util.h" + +namespace { + +class AltRefAqSegmentTest + : public ::libvpx_test::EncoderTest, + public ::libvpx_test::CodecTestWith2Params { + protected: + AltRefAqSegmentTest() : EncoderTest(GET_PARAM(0)) {} + virtual ~AltRefAqSegmentTest() {} + + virtual void SetUp() { + InitializeConfig(); + SetMode(GET_PARAM(1)); + set_cpu_used_ = GET_PARAM(2); + aq_mode_ = 0; + alt_ref_aq_mode_ = 0; + } + + virtual void PreEncodeFrameHook(::libvpx_test::VideoSource *video, + ::libvpx_test::Encoder *encoder) { + if (video->frame() == 1) { + encoder->Control(VP8E_SET_CPUUSED, set_cpu_used_); + encoder->Control(VP9E_SET_ALT_REF_AQ, alt_ref_aq_mode_); + encoder->Control(VP9E_SET_AQ_MODE, aq_mode_); + encoder->Control(VP8E_SET_MAX_INTRA_BITRATE_PCT, 100); + } + } + + int set_cpu_used_; + int aq_mode_; + int alt_ref_aq_mode_; +}; + +// Validate that this ALT_REF_AQ/AQ segmentation mode +// (ALT_REF_AQ=0, AQ=0/no_aq) +// encodes and decodes without a mismatch. +TEST_P(AltRefAqSegmentTest, TestNoMisMatchAltRefAQ0) { + cfg_.rc_min_quantizer = 8; + cfg_.rc_max_quantizer = 56; + cfg_.rc_end_usage = VPX_VBR; + cfg_.rc_buf_initial_sz = 500; + cfg_.rc_buf_optimal_sz = 500; + cfg_.rc_buf_sz = 1000; + cfg_.rc_target_bitrate = 300; + + aq_mode_ = 0; + alt_ref_aq_mode_ = 1; + + ::libvpx_test::I420VideoSource video("hantro_collage_w352h288.yuv", 352, 288, + 30, 1, 0, 100); + + ASSERT_NO_FATAL_FAILURE(RunLoop(&video)); +} + +// Validate that this ALT_REF_AQ/AQ segmentation mode +// (ALT_REF_AQ=0, AQ=1/variance_aq) +// encodes and decodes without a mismatch. +TEST_P(AltRefAqSegmentTest, TestNoMisMatchAltRefAQ1) { + cfg_.rc_min_quantizer = 8; + cfg_.rc_max_quantizer = 56; + cfg_.rc_end_usage = VPX_VBR; + cfg_.rc_buf_initial_sz = 500; + cfg_.rc_buf_optimal_sz = 500; + cfg_.rc_buf_sz = 1000; + cfg_.rc_target_bitrate = 300; + + aq_mode_ = 1; + alt_ref_aq_mode_ = 1; + + ::libvpx_test::I420VideoSource video("hantro_collage_w352h288.yuv", 352, 288, + 30, 1, 0, 100); + + ASSERT_NO_FATAL_FAILURE(RunLoop(&video)); +} + +// Validate that this ALT_REF_AQ/AQ segmentation mode +// (ALT_REF_AQ=0, AQ=2/complexity_aq) +// encodes and decodes without a mismatch. +TEST_P(AltRefAqSegmentTest, TestNoMisMatchAltRefAQ2) { + cfg_.rc_min_quantizer = 8; + cfg_.rc_max_quantizer = 56; + cfg_.rc_end_usage = VPX_VBR; + cfg_.rc_buf_initial_sz = 500; + cfg_.rc_buf_optimal_sz = 500; + cfg_.rc_buf_sz = 1000; + cfg_.rc_target_bitrate = 300; + + aq_mode_ = 2; + alt_ref_aq_mode_ = 1; + + ::libvpx_test::I420VideoSource video("hantro_collage_w352h288.yuv", 352, 288, + 30, 1, 0, 100); + + ASSERT_NO_FATAL_FAILURE(RunLoop(&video)); +} + +// Validate that this ALT_REF_AQ/AQ segmentation mode +// (ALT_REF_AQ=0, AQ=3/cyclicrefresh_aq) +// encodes and decodes without a mismatch. +TEST_P(AltRefAqSegmentTest, TestNoMisMatchAltRefAQ3) { + cfg_.rc_min_quantizer = 8; + cfg_.rc_max_quantizer = 56; + cfg_.rc_end_usage = VPX_VBR; + cfg_.rc_buf_initial_sz = 500; + cfg_.rc_buf_optimal_sz = 500; + cfg_.rc_buf_sz = 1000; + cfg_.rc_target_bitrate = 300; + + aq_mode_ = 3; + alt_ref_aq_mode_ = 1; + + ::libvpx_test::I420VideoSource video("hantro_collage_w352h288.yuv", 352, 288, + 30, 1, 0, 100); + + ASSERT_NO_FATAL_FAILURE(RunLoop(&video)); +} + +// Validate that this ALT_REF_AQ/AQ segmentation mode +// (ALT_REF_AQ=0, AQ=4/equator360_aq) +// encodes and decodes without a mismatch. +TEST_P(AltRefAqSegmentTest, TestNoMisMatchAltRefAQ4) { + cfg_.rc_min_quantizer = 8; + cfg_.rc_max_quantizer = 56; + cfg_.rc_end_usage = VPX_VBR; + cfg_.rc_buf_initial_sz = 500; + cfg_.rc_buf_optimal_sz = 500; + cfg_.rc_buf_sz = 1000; + cfg_.rc_target_bitrate = 300; + + aq_mode_ = 4; + alt_ref_aq_mode_ = 1; + + ::libvpx_test::I420VideoSource video("hantro_collage_w352h288.yuv", 352, 288, + 30, 1, 0, 100); + + ASSERT_NO_FATAL_FAILURE(RunLoop(&video)); +} + +VP9_INSTANTIATE_TEST_CASE(AltRefAqSegmentTest, + ::testing::Values(::libvpx_test::kOnePassGood, + ::libvpx_test::kTwoPassGood), + ::testing::Range(2, 5)); +} // namespace diff --git a/test/altref_test.cc b/test/altref_test.cc new file mode 100644 index 0000000..f9308c2 --- /dev/null +++ b/test/altref_test.cc @@ -0,0 +1,152 @@ +/* + * Copyright (c) 2012 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ +#include "third_party/googletest/src/include/gtest/gtest.h" +#include "test/codec_factory.h" +#include "test/encode_test_driver.h" +#include "test/i420_video_source.h" +#include "test/util.h" +namespace { + +#if CONFIG_VP8_ENCODER + +// lookahead range: [kLookAheadMin, kLookAheadMax). +const int kLookAheadMin = 5; +const int kLookAheadMax = 26; + +class AltRefTest : public ::libvpx_test::EncoderTest, + public ::libvpx_test::CodecTestWithParam { + protected: + AltRefTest() : EncoderTest(GET_PARAM(0)), altref_count_(0) {} + virtual ~AltRefTest() {} + + virtual void SetUp() { + InitializeConfig(); + SetMode(libvpx_test::kTwoPassGood); + } + + virtual void BeginPassHook(unsigned int /*pass*/) { altref_count_ = 0; } + + virtual void PreEncodeFrameHook(libvpx_test::VideoSource *video, + libvpx_test::Encoder *encoder) { + if (video->frame() == 1) { + encoder->Control(VP8E_SET_ENABLEAUTOALTREF, 1); + encoder->Control(VP8E_SET_CPUUSED, 3); + } + } + + virtual void FramePktHook(const vpx_codec_cx_pkt_t *pkt) { + if (pkt->data.frame.flags & VPX_FRAME_IS_INVISIBLE) ++altref_count_; + } + + int altref_count() const { return altref_count_; } + + private: + int altref_count_; +}; + +TEST_P(AltRefTest, MonotonicTimestamps) { + const vpx_rational timebase = { 33333333, 1000000000 }; + cfg_.g_timebase = timebase; + cfg_.rc_target_bitrate = 1000; + cfg_.g_lag_in_frames = GET_PARAM(1); + + libvpx_test::I420VideoSource video("hantro_collage_w352h288.yuv", 352, 288, + timebase.den, timebase.num, 0, 30); + ASSERT_NO_FATAL_FAILURE(RunLoop(&video)); + EXPECT_GE(altref_count(), 1); +} + +VP8_INSTANTIATE_TEST_CASE(AltRefTest, + ::testing::Range(kLookAheadMin, kLookAheadMax)); + +#endif // CONFIG_VP8_ENCODER + +class AltRefForcedKeyTestLarge + : public ::libvpx_test::EncoderTest, + public ::libvpx_test::CodecTestWith2Params { + protected: + AltRefForcedKeyTestLarge() + : EncoderTest(GET_PARAM(0)), encoding_mode_(GET_PARAM(1)), + cpu_used_(GET_PARAM(2)), forced_kf_frame_num_(1), frame_num_(0) {} + virtual ~AltRefForcedKeyTestLarge() {} + + virtual void SetUp() { + InitializeConfig(); + SetMode(encoding_mode_); + cfg_.rc_end_usage = VPX_VBR; + cfg_.g_threads = 0; + } + + virtual void PreEncodeFrameHook(::libvpx_test::VideoSource *video, + ::libvpx_test::Encoder *encoder) { + if (video->frame() == 0) { + encoder->Control(VP8E_SET_CPUUSED, cpu_used_); + encoder->Control(VP8E_SET_ENABLEAUTOALTREF, 1); +#if CONFIG_VP9_ENCODER + // override test default for tile columns if necessary. + if (GET_PARAM(0) == &libvpx_test::kVP9) { + encoder->Control(VP9E_SET_TILE_COLUMNS, 6); + } +#endif + } + frame_flags_ = + (video->frame() == forced_kf_frame_num_) ? VPX_EFLAG_FORCE_KF : 0; + } + + virtual void FramePktHook(const vpx_codec_cx_pkt_t *pkt) { + if (frame_num_ == forced_kf_frame_num_) { + ASSERT_TRUE(!!(pkt->data.frame.flags & VPX_FRAME_IS_KEY)) + << "Frame #" << frame_num_ << " isn't a keyframe!"; + } + ++frame_num_; + } + + ::libvpx_test::TestMode encoding_mode_; + int cpu_used_; + unsigned int forced_kf_frame_num_; + unsigned int frame_num_; +}; + +TEST_P(AltRefForcedKeyTestLarge, Frame1IsKey) { + const vpx_rational timebase = { 1, 30 }; + const int lag_values[] = { 3, 15, 25, -1 }; + + forced_kf_frame_num_ = 1; + for (int i = 0; lag_values[i] != -1; ++i) { + frame_num_ = 0; + cfg_.g_lag_in_frames = lag_values[i]; + libvpx_test::I420VideoSource video("hantro_collage_w352h288.yuv", 352, 288, + timebase.den, timebase.num, 0, 30); + ASSERT_NO_FATAL_FAILURE(RunLoop(&video)); + } +} + +TEST_P(AltRefForcedKeyTestLarge, ForcedFrameIsKey) { + const vpx_rational timebase = { 1, 30 }; + const int lag_values[] = { 3, 15, 25, -1 }; + + for (int i = 0; lag_values[i] != -1; ++i) { + frame_num_ = 0; + forced_kf_frame_num_ = lag_values[i] - 1; + cfg_.g_lag_in_frames = lag_values[i]; + libvpx_test::I420VideoSource video("hantro_collage_w352h288.yuv", 352, 288, + timebase.den, timebase.num, 0, 30); + ASSERT_NO_FATAL_FAILURE(RunLoop(&video)); + } +} + +VP8_INSTANTIATE_TEST_CASE(AltRefForcedKeyTestLarge, + ::testing::Values(::libvpx_test::kOnePassGood), + ::testing::Range(0, 9)); + +VP9_INSTANTIATE_TEST_CASE(AltRefForcedKeyTestLarge, + ::testing::Values(::libvpx_test::kOnePassGood), + ::testing::Range(0, 9)); +} // namespace diff --git a/test/android/Android.mk b/test/android/Android.mk new file mode 100644 index 0000000..7318de2 --- /dev/null +++ b/test/android/Android.mk @@ -0,0 +1,57 @@ +# Copyright (c) 2013 The WebM project authors. All Rights Reserved. +# +# Use of this source code is governed by a BSD-style license +# that can be found in the LICENSE file in the root of the source +# tree. An additional intellectual property rights grant can be found +# in the file PATENTS. All contributing project authors may +# be found in the AUTHORS file in the root of the source tree. +# +# This make file builds vpx_test app for android. +# The test app itself runs on the command line through adb shell +# The paths are really messed up as the libvpx make file +# expects to be made from a parent directory. +CUR_WD := $(call my-dir) +BINDINGS_DIR := $(CUR_WD)/../../.. +LOCAL_PATH := $(CUR_WD)/../../.. + +#libwebm +include $(CLEAR_VARS) +include $(BINDINGS_DIR)/libvpx/third_party/libwebm/Android.mk +LOCAL_PATH := $(CUR_WD)/../../.. + +#libvpx +include $(CLEAR_VARS) +LOCAL_STATIC_LIBRARIES := libwebm +include $(BINDINGS_DIR)/libvpx/build/make/Android.mk +LOCAL_PATH := $(CUR_WD)/../.. + +#libgtest +include $(CLEAR_VARS) +LOCAL_ARM_MODE := arm +LOCAL_CPP_EXTENSION := .cc +LOCAL_MODULE := gtest +LOCAL_C_INCLUDES := $(LOCAL_PATH)/third_party/googletest/src/ +LOCAL_C_INCLUDES += $(LOCAL_PATH)/third_party/googletest/src/include/ +LOCAL_EXPORT_C_INCLUDES := $(LOCAL_PATH)/third_party/googletest/src/include/ +LOCAL_SRC_FILES := ./third_party/googletest/src/src/gtest-all.cc +include $(BUILD_STATIC_LIBRARY) + +#libvpx_test +include $(CLEAR_VARS) +LOCAL_ARM_MODE := arm +LOCAL_MODULE := libvpx_test +LOCAL_STATIC_LIBRARIES := gtest libwebm + +ifeq ($(ENABLE_SHARED),1) + LOCAL_SHARED_LIBRARIES := vpx +else + LOCAL_STATIC_LIBRARIES += vpx +endif + +include $(LOCAL_PATH)/test/test.mk +LOCAL_C_INCLUDES := $(BINDINGS_DIR) +FILTERED_SRC := $(sort $(filter %.cc %.c, $(LIBVPX_TEST_SRCS-yes))) +LOCAL_SRC_FILES := $(addprefix ./test/, $(FILTERED_SRC)) +# some test files depend on *_rtcd.h, ensure they're generated first. +$(eval $(call rtcd_dep_template)) +include $(BUILD_EXECUTABLE) diff --git a/test/android/README b/test/android/README new file mode 100644 index 0000000..4a1adcf --- /dev/null +++ b/test/android/README @@ -0,0 +1,32 @@ +Android.mk will build vpx unittests on android. +1) Configure libvpx from the parent directory: +./libvpx/configure --target=armv7-android-gcc --enable-external-build \ + --enable-postproc --disable-install-srcs --enable-multi-res-encoding \ + --enable-temporal-denoising --disable-unit-tests --disable-install-docs \ + --disable-examples --disable-runtime-cpu-detect --sdk-path=$NDK + +2) From the parent directory, invoke ndk-build: +NDK_PROJECT_PATH=. ndk-build APP_BUILD_SCRIPT=./libvpx/test/android/Android.mk \ + APP_ABI=armeabi-v7a APP_PLATFORM=android-18 APP_OPTIM=release \ + APP_STL=gnustl_static + +Note: Both adb and ndk-build are available prebuilt at: + https://chromium.googlesource.com/android_tools + +3) Run get_files.py to download the test files: +python get_files.py -i /path/to/test-data.sha1 -o /path/to/put/files \ + -u http://downloads.webmproject.org/test_data/libvpx + +4) Transfer files to device using adb. Ensure you have proper permissions for +the target + +adb push /path/to/test_files /data/local/tmp +adb push /path/to/built_libs /data/local/tmp + +NOTE: Built_libs defaults to parent_dir/libs/armeabi-v7a + +5) Run tests: +adb shell +(on device) +cd /data/local/tmp +LD_LIBRARY_PATH=. ./vpx_test diff --git a/test/android/get_files.py b/test/android/get_files.py new file mode 100644 index 0000000..1c69740 --- /dev/null +++ b/test/android/get_files.py @@ -0,0 +1,118 @@ +# Copyright (c) 2013 The WebM project authors. All Rights Reserved. +# +# Use of this source code is governed by a BSD-style license +# that can be found in the LICENSE file in the root of the source +# tree. An additional intellectual property rights grant can be found +# in the file PATENTS. All contributing project authors may +# be found in the AUTHORS file in the root of the source tree. +# +# This simple script pulls test files from the webm homepage +# It is intelligent enough to only pull files if +# 1) File / test_data folder does not exist +# 2) SHA mismatch + +import pycurl +import csv +import hashlib +import re +import os.path +import time +import itertools +import sys +import getopt + +#globals +url = '' +file_list_path = '' +local_resource_path = '' + +# Helper functions: +# A simple function which returns the sha hash of a file in hex +def get_file_sha(filename): + try: + sha_hash = hashlib.sha1() + with open(filename, 'rb') as file: + buf = file.read(HASH_CHUNK) + while len(buf) > 0: + sha_hash.update(buf) + buf = file.read(HASH_CHUNK) + return sha_hash.hexdigest() + except IOError: + print "Error reading " + filename + +# Downloads a file from a url, and then checks the sha against the passed +# in sha +def download_and_check_sha(url, filename, sha): + path = os.path.join(local_resource_path, filename) + fp = open(path, "wb") + curl = pycurl.Curl() + curl.setopt(pycurl.URL, url + "/" + filename) + curl.setopt(pycurl.WRITEDATA, fp) + curl.perform() + curl.close() + fp.close() + return get_file_sha(path) == sha + +#constants +ftp_retries = 3 + +SHA_COL = 0 +NAME_COL = 1 +EXPECTED_COL = 2 +HASH_CHUNK = 65536 + +# Main script +try: + opts, args = \ + getopt.getopt(sys.argv[1:], \ + "u:i:o:", ["url=", "input_csv=", "output_dir="]) +except: + print 'get_files.py -u -i -o ' + sys.exit(2) + +for opt, arg in opts: + if opt == '-u': + url = arg + elif opt in ("-i", "--input_csv"): + file_list_path = os.path.join(arg) + elif opt in ("-o", "--output_dir"): + local_resource_path = os.path.join(arg) + +if len(sys.argv) != 7: + print "Expects two paths and a url!" + exit(1) + +if not os.path.isdir(local_resource_path): + os.makedirs(local_resource_path) + +file_list_csv = open(file_list_path, "rb") + +# Our 'csv' file uses multiple spaces as a delimiter, python's +# csv class only uses single character delimiters, so we convert them below +file_list_reader = csv.reader((re.sub(' +', ' ', line) \ + for line in file_list_csv), delimiter = ' ') + +file_shas = [] +file_names = [] + +for row in file_list_reader: + if len(row) != EXPECTED_COL: + continue + file_shas.append(row[SHA_COL]) + file_names.append(row[NAME_COL]) + +file_list_csv.close() + +# Download files, only if they don't already exist and have correct shas +for filename, sha in itertools.izip(file_names, file_shas): + path = os.path.join(local_resource_path, filename) + if os.path.isfile(path) \ + and get_file_sha(path) == sha: + print path + ' exists, skipping' + continue + for retry in range(0, ftp_retries): + print "Downloading " + path + if not download_and_check_sha(url, filename, sha): + print "Sha does not match, retrying..." + else: + break diff --git a/test/android/scrape_gtest_log.py b/test/android/scrape_gtest_log.py new file mode 100644 index 0000000..487845c --- /dev/null +++ b/test/android/scrape_gtest_log.py @@ -0,0 +1,57 @@ +# Copyright (c) 2014 The WebM project authors. All Rights Reserved. +# +# Use of this source code is governed by a BSD-style license +# that can be found in the LICENSE file in the root of the source +# tree. An additional intellectual property rights grant can be found +# in the file PATENTS. All contributing project authors may +# be found in the AUTHORS file in the root of the source tree. + +"""Standalone script which parses a gtest log for json. + +Json is returned returns as an array. This script is used by the libvpx +waterfall to gather json results mixed in with gtest logs. This is +dubious software engineering. +""" + +import getopt +import json +import os +import re +import sys + + +def main(): + if len(sys.argv) != 3: + print "Expects a file to write json to!" + exit(1) + + try: + opts, _ = \ + getopt.getopt(sys.argv[1:], \ + 'o:', ['output-json=']) + except getopt.GetOptError: + print 'scrape_gtest_log.py -o ' + sys.exit(2) + + output_json = '' + for opt, arg in opts: + if opt in ('-o', '--output-json'): + output_json = os.path.join(arg) + + blob = sys.stdin.read() + json_string = '[' + ','.join('{' + x + '}' for x in + re.findall(r'{([^}]*.?)}', blob)) + ']' + print blob + + output = json.dumps(json.loads(json_string), indent=4, sort_keys=True) + print output + + path = os.path.dirname(output_json) + if path and not os.path.exists(path): + os.makedirs(path) + + outfile = open(output_json, 'w') + outfile.write(output) + +if __name__ == '__main__': + sys.exit(main()) diff --git a/test/aq_segment_test.cc b/test/aq_segment_test.cc new file mode 100644 index 0000000..1c2147f --- /dev/null +++ b/test/aq_segment_test.cc @@ -0,0 +1,109 @@ +/* + * Copyright (c) 2012 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ +#include "third_party/googletest/src/include/gtest/gtest.h" +#include "test/codec_factory.h" +#include "test/encode_test_driver.h" +#include "test/i420_video_source.h" +#include "test/util.h" + +namespace { + +class AqSegmentTest + : public ::libvpx_test::EncoderTest, + public ::libvpx_test::CodecTestWith2Params { + protected: + AqSegmentTest() : EncoderTest(GET_PARAM(0)) {} + virtual ~AqSegmentTest() {} + + virtual void SetUp() { + InitializeConfig(); + SetMode(GET_PARAM(1)); + set_cpu_used_ = GET_PARAM(2); + aq_mode_ = 0; + } + + virtual void PreEncodeFrameHook(::libvpx_test::VideoSource *video, + ::libvpx_test::Encoder *encoder) { + if (video->frame() == 1) { + encoder->Control(VP8E_SET_CPUUSED, set_cpu_used_); + encoder->Control(VP9E_SET_AQ_MODE, aq_mode_); + encoder->Control(VP8E_SET_MAX_INTRA_BITRATE_PCT, 100); + } + } + + int set_cpu_used_; + int aq_mode_; +}; + +// Validate that this AQ segmentation mode (AQ=1, variance_ap) +// encodes and decodes without a mismatch. +TEST_P(AqSegmentTest, TestNoMisMatchAQ1) { + cfg_.rc_min_quantizer = 8; + cfg_.rc_max_quantizer = 56; + cfg_.rc_end_usage = VPX_CBR; + cfg_.g_lag_in_frames = 0; + cfg_.rc_buf_initial_sz = 500; + cfg_.rc_buf_optimal_sz = 500; + cfg_.rc_buf_sz = 1000; + cfg_.rc_target_bitrate = 300; + + aq_mode_ = 1; + + ::libvpx_test::I420VideoSource video("hantro_collage_w352h288.yuv", 352, 288, + 30, 1, 0, 100); + + ASSERT_NO_FATAL_FAILURE(RunLoop(&video)); +} + +// Validate that this AQ segmentation mode (AQ=2, complexity_aq) +// encodes and decodes without a mismatch. +TEST_P(AqSegmentTest, TestNoMisMatchAQ2) { + cfg_.rc_min_quantizer = 8; + cfg_.rc_max_quantizer = 56; + cfg_.rc_end_usage = VPX_CBR; + cfg_.g_lag_in_frames = 0; + cfg_.rc_buf_initial_sz = 500; + cfg_.rc_buf_optimal_sz = 500; + cfg_.rc_buf_sz = 1000; + cfg_.rc_target_bitrate = 300; + + aq_mode_ = 2; + + ::libvpx_test::I420VideoSource video("hantro_collage_w352h288.yuv", 352, 288, + 30, 1, 0, 100); + + ASSERT_NO_FATAL_FAILURE(RunLoop(&video)); +} + +// Validate that this AQ segmentation mode (AQ=3, cyclic_refresh_aq) +// encodes and decodes without a mismatch. +TEST_P(AqSegmentTest, TestNoMisMatchAQ3) { + cfg_.rc_min_quantizer = 8; + cfg_.rc_max_quantizer = 56; + cfg_.rc_end_usage = VPX_CBR; + cfg_.g_lag_in_frames = 0; + cfg_.rc_buf_initial_sz = 500; + cfg_.rc_buf_optimal_sz = 500; + cfg_.rc_buf_sz = 1000; + cfg_.rc_target_bitrate = 300; + + aq_mode_ = 3; + + ::libvpx_test::I420VideoSource video("hantro_collage_w352h288.yuv", 352, 288, + 30, 1, 0, 100); + + ASSERT_NO_FATAL_FAILURE(RunLoop(&video)); +} + +VP9_INSTANTIATE_TEST_CASE(AqSegmentTest, + ::testing::Values(::libvpx_test::kRealTime, + ::libvpx_test::kOnePassGood), + ::testing::Range(3, 9)); +} // namespace diff --git a/test/avg_test.cc b/test/avg_test.cc new file mode 100644 index 0000000..ad21198 --- /dev/null +++ b/test/avg_test.cc @@ -0,0 +1,581 @@ +/* + * Copyright (c) 2012 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include +#include + +#include "third_party/googletest/src/include/gtest/gtest.h" + +#include "./vp9_rtcd.h" +#include "./vpx_config.h" +#include "./vpx_dsp_rtcd.h" + +#include "test/acm_random.h" +#include "test/clear_system_state.h" +#include "test/register_state_check.h" +#include "test/util.h" +#include "vpx_mem/vpx_mem.h" +#include "vpx_ports/vpx_timer.h" + +using libvpx_test::ACMRandom; + +namespace { +class AverageTestBase : public ::testing::Test { + public: + AverageTestBase(int width, int height) : width_(width), height_(height) {} + + static void SetUpTestCase() { + source_data_ = reinterpret_cast( + vpx_memalign(kDataAlignment, kDataBlockSize)); + } + + static void TearDownTestCase() { + vpx_free(source_data_); + source_data_ = NULL; + } + + virtual void TearDown() { libvpx_test::ClearSystemState(); } + + protected: + // Handle blocks up to 4 blocks 64x64 with stride up to 128 + static const int kDataAlignment = 16; + static const int kDataBlockSize = 64 * 128; + + virtual void SetUp() { + source_stride_ = (width_ + 31) & ~31; + rnd_.Reset(ACMRandom::DeterministicSeed()); + } + + // Sum Pixels + static unsigned int ReferenceAverage8x8(const uint8_t *source, int pitch) { + unsigned int average = 0; + for (int h = 0; h < 8; ++h) { + for (int w = 0; w < 8; ++w) average += source[h * pitch + w]; + } + return ((average + 32) >> 6); + } + + static unsigned int ReferenceAverage4x4(const uint8_t *source, int pitch) { + unsigned int average = 0; + for (int h = 0; h < 4; ++h) { + for (int w = 0; w < 4; ++w) average += source[h * pitch + w]; + } + return ((average + 8) >> 4); + } + + void FillConstant(uint8_t fill_constant) { + for (int i = 0; i < width_ * height_; ++i) { + source_data_[i] = fill_constant; + } + } + + void FillRandom() { + for (int i = 0; i < width_ * height_; ++i) { + source_data_[i] = rnd_.Rand8(); + } + } + + int width_, height_; + static uint8_t *source_data_; + int source_stride_; + + ACMRandom rnd_; +}; +typedef unsigned int (*AverageFunction)(const uint8_t *s, int pitch); + +typedef std::tr1::tuple AvgFunc; + +class AverageTest : public AverageTestBase, + public ::testing::WithParamInterface { + public: + AverageTest() : AverageTestBase(GET_PARAM(0), GET_PARAM(1)) {} + + protected: + void CheckAverages() { + const int block_size = GET_PARAM(3); + unsigned int expected = 0; + if (block_size == 8) { + expected = + ReferenceAverage8x8(source_data_ + GET_PARAM(2), source_stride_); + } else if (block_size == 4) { + expected = + ReferenceAverage4x4(source_data_ + GET_PARAM(2), source_stride_); + } + + ASM_REGISTER_STATE_CHECK( + GET_PARAM(4)(source_data_ + GET_PARAM(2), source_stride_)); + unsigned int actual = + GET_PARAM(4)(source_data_ + GET_PARAM(2), source_stride_); + + EXPECT_EQ(expected, actual); + } +}; + +typedef void (*IntProRowFunc)(int16_t hbuf[16], uint8_t const *ref, + const int ref_stride, const int height); + +typedef std::tr1::tuple IntProRowParam; + +class IntProRowTest : public AverageTestBase, + public ::testing::WithParamInterface { + public: + IntProRowTest() + : AverageTestBase(16, GET_PARAM(0)), hbuf_asm_(NULL), hbuf_c_(NULL) { + asm_func_ = GET_PARAM(1); + c_func_ = GET_PARAM(2); + } + + protected: + virtual void SetUp() { + hbuf_asm_ = reinterpret_cast( + vpx_memalign(kDataAlignment, sizeof(*hbuf_asm_) * 16)); + hbuf_c_ = reinterpret_cast( + vpx_memalign(kDataAlignment, sizeof(*hbuf_c_) * 16)); + } + + virtual void TearDown() { + vpx_free(hbuf_c_); + hbuf_c_ = NULL; + vpx_free(hbuf_asm_); + hbuf_asm_ = NULL; + } + + void RunComparison() { + ASM_REGISTER_STATE_CHECK(c_func_(hbuf_c_, source_data_, 0, height_)); + ASM_REGISTER_STATE_CHECK(asm_func_(hbuf_asm_, source_data_, 0, height_)); + EXPECT_EQ(0, memcmp(hbuf_c_, hbuf_asm_, sizeof(*hbuf_c_) * 16)) + << "Output mismatch"; + } + + private: + IntProRowFunc asm_func_; + IntProRowFunc c_func_; + int16_t *hbuf_asm_; + int16_t *hbuf_c_; +}; + +typedef int16_t (*IntProColFunc)(uint8_t const *ref, const int width); + +typedef std::tr1::tuple IntProColParam; + +class IntProColTest : public AverageTestBase, + public ::testing::WithParamInterface { + public: + IntProColTest() : AverageTestBase(GET_PARAM(0), 1), sum_asm_(0), sum_c_(0) { + asm_func_ = GET_PARAM(1); + c_func_ = GET_PARAM(2); + } + + protected: + void RunComparison() { + ASM_REGISTER_STATE_CHECK(sum_c_ = c_func_(source_data_, width_)); + ASM_REGISTER_STATE_CHECK(sum_asm_ = asm_func_(source_data_, width_)); + EXPECT_EQ(sum_c_, sum_asm_) << "Output mismatch"; + } + + private: + IntProColFunc asm_func_; + IntProColFunc c_func_; + int16_t sum_asm_; + int16_t sum_c_; +}; + +typedef int (*SatdFunc)(const tran_low_t *coeffs, int length); +typedef std::tr1::tuple SatdTestParam; + +class SatdTest : public ::testing::Test, + public ::testing::WithParamInterface { + protected: + virtual void SetUp() { + satd_size_ = GET_PARAM(0); + satd_func_ = GET_PARAM(1); + rnd_.Reset(ACMRandom::DeterministicSeed()); + src_ = reinterpret_cast( + vpx_memalign(16, sizeof(*src_) * satd_size_)); + ASSERT_TRUE(src_ != NULL); + } + + virtual void TearDown() { + libvpx_test::ClearSystemState(); + vpx_free(src_); + } + + void FillConstant(const tran_low_t val) { + for (int i = 0; i < satd_size_; ++i) src_[i] = val; + } + + void FillRandom() { + for (int i = 0; i < satd_size_; ++i) { + const int16_t tmp = rnd_.Rand16(); + src_[i] = (tran_low_t)tmp; + } + } + + void Check(const int expected) { + int total; + ASM_REGISTER_STATE_CHECK(total = satd_func_(src_, satd_size_)); + EXPECT_EQ(expected, total); + } + + int satd_size_; + + private: + tran_low_t *src_; + SatdFunc satd_func_; + ACMRandom rnd_; +}; + +typedef int64_t (*BlockErrorFunc)(const tran_low_t *coeff, + const tran_low_t *dqcoeff, int block_size); +typedef std::tr1::tuple BlockErrorTestFPParam; + +class BlockErrorTestFP + : public ::testing::Test, + public ::testing::WithParamInterface { + protected: + virtual void SetUp() { + txfm_size_ = GET_PARAM(0); + block_error_func_ = GET_PARAM(1); + rnd_.Reset(ACMRandom::DeterministicSeed()); + coeff_ = reinterpret_cast( + vpx_memalign(16, sizeof(*coeff_) * txfm_size_)); + dqcoeff_ = reinterpret_cast( + vpx_memalign(16, sizeof(*dqcoeff_) * txfm_size_)); + ASSERT_TRUE(coeff_ != NULL); + ASSERT_TRUE(dqcoeff_ != NULL); + } + + virtual void TearDown() { + libvpx_test::ClearSystemState(); + vpx_free(coeff_); + vpx_free(dqcoeff_); + } + + void FillConstant(const tran_low_t coeff_val, const tran_low_t dqcoeff_val) { + for (int i = 0; i < txfm_size_; ++i) coeff_[i] = coeff_val; + for (int i = 0; i < txfm_size_; ++i) dqcoeff_[i] = dqcoeff_val; + } + + void FillRandom() { + // Just two fixed seeds + rnd_.Reset(0xb0b9); + for (int i = 0; i < txfm_size_; ++i) coeff_[i] = rnd_.Rand16() >> 1; + rnd_.Reset(0xb0c8); + for (int i = 0; i < txfm_size_; ++i) dqcoeff_[i] = rnd_.Rand16() >> 1; + } + + void Check(const int64_t expected) { + int64_t total; + ASM_REGISTER_STATE_CHECK( + total = block_error_func_(coeff_, dqcoeff_, txfm_size_)); + EXPECT_EQ(expected, total); + } + + int txfm_size_; + + private: + tran_low_t *coeff_; + tran_low_t *dqcoeff_; + BlockErrorFunc block_error_func_; + ACMRandom rnd_; +}; + +uint8_t *AverageTestBase::source_data_ = NULL; + +TEST_P(AverageTest, MinValue) { + FillConstant(0); + CheckAverages(); +} + +TEST_P(AverageTest, MaxValue) { + FillConstant(255); + CheckAverages(); +} + +TEST_P(AverageTest, Random) { + // The reference frame, but not the source frame, may be unaligned for + // certain types of searches. + for (int i = 0; i < 1000; i++) { + FillRandom(); + CheckAverages(); + } +} + +TEST_P(IntProRowTest, MinValue) { + FillConstant(0); + RunComparison(); +} + +TEST_P(IntProRowTest, MaxValue) { + FillConstant(255); + RunComparison(); +} + +TEST_P(IntProRowTest, Random) { + FillRandom(); + RunComparison(); +} + +TEST_P(IntProColTest, MinValue) { + FillConstant(0); + RunComparison(); +} + +TEST_P(IntProColTest, MaxValue) { + FillConstant(255); + RunComparison(); +} + +TEST_P(IntProColTest, Random) { + FillRandom(); + RunComparison(); +} + +TEST_P(SatdTest, MinValue) { + const int kMin = -32640; + const int expected = -kMin * satd_size_; + FillConstant(kMin); + Check(expected); +} + +TEST_P(SatdTest, MaxValue) { + const int kMax = 32640; + const int expected = kMax * satd_size_; + FillConstant(kMax); + Check(expected); +} + +TEST_P(SatdTest, Random) { + int expected; + switch (satd_size_) { + case 16: expected = 205298; break; + case 64: expected = 1113950; break; + case 256: expected = 4268415; break; + case 1024: expected = 16954082; break; + default: + FAIL() << "Invalid satd size (" << satd_size_ + << ") valid: 16/64/256/1024"; + } + FillRandom(); + Check(expected); +} + +TEST_P(SatdTest, DISABLED_Speed) { + const int kCountSpeedTestBlock = 20000; + vpx_usec_timer timer; + DECLARE_ALIGNED(16, tran_low_t, coeff[1024]); + const int blocksize = GET_PARAM(0); + + vpx_usec_timer_start(&timer); + for (int i = 0; i < kCountSpeedTestBlock; ++i) { + GET_PARAM(1)(coeff, blocksize); + } + vpx_usec_timer_mark(&timer); + const int elapsed_time = static_cast(vpx_usec_timer_elapsed(&timer)); + printf("blocksize: %4d time: %4d us\n", blocksize, elapsed_time); +} + +TEST_P(BlockErrorTestFP, MinValue) { + const int64_t kMin = -32640; + const int64_t expected = kMin * kMin * txfm_size_; + FillConstant(kMin, 0); + Check(expected); +} + +TEST_P(BlockErrorTestFP, MaxValue) { + const int64_t kMax = 32640; + const int64_t expected = kMax * kMax * txfm_size_; + FillConstant(kMax, 0); + Check(expected); +} + +TEST_P(BlockErrorTestFP, Random) { + int64_t expected; + switch (txfm_size_) { + case 16: expected = 2051681432; break; + case 64: expected = 11075114379; break; + case 256: expected = 44386271116; break; + case 1024: expected = 184774996089; break; + default: + FAIL() << "Invalid satd size (" << txfm_size_ + << ") valid: 16/64/256/1024"; + } + FillRandom(); + Check(expected); +} + +TEST_P(BlockErrorTestFP, DISABLED_Speed) { + const int kCountSpeedTestBlock = 20000; + vpx_usec_timer timer; + DECLARE_ALIGNED(16, tran_low_t, coeff[1024]); + DECLARE_ALIGNED(16, tran_low_t, dqcoeff[1024]); + const int blocksize = GET_PARAM(0); + + vpx_usec_timer_start(&timer); + for (int i = 0; i < kCountSpeedTestBlock; ++i) { + GET_PARAM(1)(coeff, dqcoeff, blocksize); + } + vpx_usec_timer_mark(&timer); + const int elapsed_time = static_cast(vpx_usec_timer_elapsed(&timer)); + printf("blocksize: %4d time: %4d us\n", blocksize, elapsed_time); +} + +using std::tr1::make_tuple; + +INSTANTIATE_TEST_CASE_P( + C, AverageTest, + ::testing::Values(make_tuple(16, 16, 1, 8, &vpx_avg_8x8_c), + make_tuple(16, 16, 1, 4, &vpx_avg_4x4_c))); + +INSTANTIATE_TEST_CASE_P(C, SatdTest, + ::testing::Values(make_tuple(16, &vpx_satd_c), + make_tuple(64, &vpx_satd_c), + make_tuple(256, &vpx_satd_c), + make_tuple(1024, &vpx_satd_c))); + +INSTANTIATE_TEST_CASE_P( + C, BlockErrorTestFP, + ::testing::Values(make_tuple(16, &vp9_block_error_fp_c), + make_tuple(64, &vp9_block_error_fp_c), + make_tuple(256, &vp9_block_error_fp_c), + make_tuple(1024, &vp9_block_error_fp_c))); + +#if HAVE_SSE2 +INSTANTIATE_TEST_CASE_P( + SSE2, AverageTest, + ::testing::Values(make_tuple(16, 16, 0, 8, &vpx_avg_8x8_sse2), + make_tuple(16, 16, 5, 8, &vpx_avg_8x8_sse2), + make_tuple(32, 32, 15, 8, &vpx_avg_8x8_sse2), + make_tuple(16, 16, 0, 4, &vpx_avg_4x4_sse2), + make_tuple(16, 16, 5, 4, &vpx_avg_4x4_sse2), + make_tuple(32, 32, 15, 4, &vpx_avg_4x4_sse2))); + +INSTANTIATE_TEST_CASE_P( + SSE2, IntProRowTest, + ::testing::Values(make_tuple(16, &vpx_int_pro_row_sse2, &vpx_int_pro_row_c), + make_tuple(32, &vpx_int_pro_row_sse2, &vpx_int_pro_row_c), + make_tuple(64, &vpx_int_pro_row_sse2, + &vpx_int_pro_row_c))); + +INSTANTIATE_TEST_CASE_P( + SSE2, IntProColTest, + ::testing::Values(make_tuple(16, &vpx_int_pro_col_sse2, &vpx_int_pro_col_c), + make_tuple(32, &vpx_int_pro_col_sse2, &vpx_int_pro_col_c), + make_tuple(64, &vpx_int_pro_col_sse2, + &vpx_int_pro_col_c))); + +INSTANTIATE_TEST_CASE_P(SSE2, SatdTest, + ::testing::Values(make_tuple(16, &vpx_satd_sse2), + make_tuple(64, &vpx_satd_sse2), + make_tuple(256, &vpx_satd_sse2), + make_tuple(1024, &vpx_satd_sse2))); + +INSTANTIATE_TEST_CASE_P( + SSE2, BlockErrorTestFP, + ::testing::Values(make_tuple(16, &vp9_block_error_fp_sse2), + make_tuple(64, &vp9_block_error_fp_sse2), + make_tuple(256, &vp9_block_error_fp_sse2), + make_tuple(1024, &vp9_block_error_fp_sse2))); +#endif // HAVE_SSE2 + +#if HAVE_AVX2 +INSTANTIATE_TEST_CASE_P(AVX2, SatdTest, + ::testing::Values(make_tuple(16, &vpx_satd_avx2), + make_tuple(64, &vpx_satd_avx2), + make_tuple(256, &vpx_satd_avx2), + make_tuple(1024, &vpx_satd_avx2))); + +INSTANTIATE_TEST_CASE_P( + AVX2, BlockErrorTestFP, + ::testing::Values(make_tuple(16, &vp9_block_error_fp_avx2), + make_tuple(64, &vp9_block_error_fp_avx2), + make_tuple(256, &vp9_block_error_fp_avx2), + make_tuple(1024, &vp9_block_error_fp_avx2))); +#endif + +#if HAVE_NEON +INSTANTIATE_TEST_CASE_P( + NEON, AverageTest, + ::testing::Values(make_tuple(16, 16, 0, 8, &vpx_avg_8x8_neon), + make_tuple(16, 16, 5, 8, &vpx_avg_8x8_neon), + make_tuple(32, 32, 15, 8, &vpx_avg_8x8_neon), + make_tuple(16, 16, 0, 4, &vpx_avg_4x4_neon), + make_tuple(16, 16, 5, 4, &vpx_avg_4x4_neon), + make_tuple(32, 32, 15, 4, &vpx_avg_4x4_neon))); + +INSTANTIATE_TEST_CASE_P( + NEON, IntProRowTest, + ::testing::Values(make_tuple(16, &vpx_int_pro_row_neon, &vpx_int_pro_row_c), + make_tuple(32, &vpx_int_pro_row_neon, &vpx_int_pro_row_c), + make_tuple(64, &vpx_int_pro_row_neon, + &vpx_int_pro_row_c))); + +INSTANTIATE_TEST_CASE_P( + NEON, IntProColTest, + ::testing::Values(make_tuple(16, &vpx_int_pro_col_neon, &vpx_int_pro_col_c), + make_tuple(32, &vpx_int_pro_col_neon, &vpx_int_pro_col_c), + make_tuple(64, &vpx_int_pro_col_neon, + &vpx_int_pro_col_c))); + +INSTANTIATE_TEST_CASE_P(NEON, SatdTest, + ::testing::Values(make_tuple(16, &vpx_satd_neon), + make_tuple(64, &vpx_satd_neon), + make_tuple(256, &vpx_satd_neon), + make_tuple(1024, &vpx_satd_neon))); + +// TODO(jianj): Remove the highbitdepth flag once the SIMD functions are +// in place. +#if !CONFIG_VP9_HIGHBITDEPTH +INSTANTIATE_TEST_CASE_P( + NEON, BlockErrorTestFP, + ::testing::Values(make_tuple(16, &vp9_block_error_fp_neon), + make_tuple(64, &vp9_block_error_fp_neon), + make_tuple(256, &vp9_block_error_fp_neon), + make_tuple(1024, &vp9_block_error_fp_neon))); +#endif // !CONFIG_VP9_HIGHBITDEPTH +#endif // HAVE_NEON + +#if HAVE_MSA +INSTANTIATE_TEST_CASE_P( + MSA, AverageTest, + ::testing::Values(make_tuple(16, 16, 0, 8, &vpx_avg_8x8_msa), + make_tuple(16, 16, 5, 8, &vpx_avg_8x8_msa), + make_tuple(32, 32, 15, 8, &vpx_avg_8x8_msa), + make_tuple(16, 16, 0, 4, &vpx_avg_4x4_msa), + make_tuple(16, 16, 5, 4, &vpx_avg_4x4_msa), + make_tuple(32, 32, 15, 4, &vpx_avg_4x4_msa))); + +INSTANTIATE_TEST_CASE_P( + MSA, IntProRowTest, + ::testing::Values(make_tuple(16, &vpx_int_pro_row_msa, &vpx_int_pro_row_c), + make_tuple(32, &vpx_int_pro_row_msa, &vpx_int_pro_row_c), + make_tuple(64, &vpx_int_pro_row_msa, + &vpx_int_pro_row_c))); + +INSTANTIATE_TEST_CASE_P( + MSA, IntProColTest, + ::testing::Values(make_tuple(16, &vpx_int_pro_col_msa, &vpx_int_pro_col_c), + make_tuple(32, &vpx_int_pro_col_msa, &vpx_int_pro_col_c), + make_tuple(64, &vpx_int_pro_col_msa, + &vpx_int_pro_col_c))); + +// TODO(jingning): Remove the highbitdepth flag once the SIMD functions are +// in place. +#if !CONFIG_VP9_HIGHBITDEPTH +INSTANTIATE_TEST_CASE_P(MSA, SatdTest, + ::testing::Values(make_tuple(16, &vpx_satd_msa), + make_tuple(64, &vpx_satd_msa), + make_tuple(256, &vpx_satd_msa), + make_tuple(1024, &vpx_satd_msa))); +#endif // !CONFIG_VP9_HIGHBITDEPTH +#endif // HAVE_MSA + +} // namespace diff --git a/test/blockiness_test.cc b/test/blockiness_test.cc new file mode 100644 index 0000000..2fa1019 --- /dev/null +++ b/test/blockiness_test.cc @@ -0,0 +1,223 @@ +/* + * Copyright (c) 2012 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include +#include + +#include "third_party/googletest/src/include/gtest/gtest.h" + +#include "./vpx_config.h" +#if CONFIG_VP9_ENCODER +#include "./vp9_rtcd.h" +#endif + +#include "test/acm_random.h" +#include "test/clear_system_state.h" +#include "test/register_state_check.h" +#include "test/util.h" + +#include "vpx_mem/vpx_mem.h" + +extern "C" double vp9_get_blockiness(const unsigned char *img1, int img1_pitch, + const unsigned char *img2, int img2_pitch, + int width, int height); + +using libvpx_test::ACMRandom; + +namespace { +class BlockinessTestBase : public ::testing::Test { + public: + BlockinessTestBase(int width, int height) : width_(width), height_(height) {} + + static void SetUpTestCase() { + source_data_ = reinterpret_cast( + vpx_memalign(kDataAlignment, kDataBufferSize)); + reference_data_ = reinterpret_cast( + vpx_memalign(kDataAlignment, kDataBufferSize)); + } + + static void TearDownTestCase() { + vpx_free(source_data_); + source_data_ = NULL; + vpx_free(reference_data_); + reference_data_ = NULL; + } + + virtual void TearDown() { libvpx_test::ClearSystemState(); } + + protected: + // Handle frames up to 640x480 + static const int kDataAlignment = 16; + static const int kDataBufferSize = 640 * 480; + + virtual void SetUp() { + source_stride_ = (width_ + 31) & ~31; + reference_stride_ = width_ * 2; + rnd_.Reset(ACMRandom::DeterministicSeed()); + } + + void FillConstant(uint8_t *data, int stride, uint8_t fill_constant, int width, + int height) { + for (int h = 0; h < height; ++h) { + for (int w = 0; w < width; ++w) { + data[h * stride + w] = fill_constant; + } + } + } + + void FillConstant(uint8_t *data, int stride, uint8_t fill_constant) { + FillConstant(data, stride, fill_constant, width_, height_); + } + + void FillRandom(uint8_t *data, int stride, int width, int height) { + for (int h = 0; h < height; ++h) { + for (int w = 0; w < width; ++w) { + data[h * stride + w] = rnd_.Rand8(); + } + } + } + + void FillRandom(uint8_t *data, int stride) { + FillRandom(data, stride, width_, height_); + } + + void FillRandomBlocky(uint8_t *data, int stride) { + for (int h = 0; h < height_; h += 4) { + for (int w = 0; w < width_; w += 4) { + FillRandom(data + h * stride + w, stride, 4, 4); + } + } + } + + void FillCheckerboard(uint8_t *data, int stride) { + for (int h = 0; h < height_; h += 4) { + for (int w = 0; w < width_; w += 4) { + if (((h / 4) ^ (w / 4)) & 1) { + FillConstant(data + h * stride + w, stride, 255, 4, 4); + } else { + FillConstant(data + h * stride + w, stride, 0, 4, 4); + } + } + } + } + + void Blur(uint8_t *data, int stride, int taps) { + int sum = 0; + int half_taps = taps / 2; + for (int h = 0; h < height_; ++h) { + for (int w = 0; w < taps; ++w) { + sum += data[w + h * stride]; + } + for (int w = taps; w < width_; ++w) { + sum += data[w + h * stride] - data[w - taps + h * stride]; + data[w - half_taps + h * stride] = (sum + half_taps) / taps; + } + } + for (int w = 0; w < width_; ++w) { + for (int h = 0; h < taps; ++h) { + sum += data[h + w * stride]; + } + for (int h = taps; h < height_; ++h) { + sum += data[w + h * stride] - data[(h - taps) * stride + w]; + data[(h - half_taps) * stride + w] = (sum + half_taps) / taps; + } + } + } + int width_, height_; + static uint8_t *source_data_; + int source_stride_; + static uint8_t *reference_data_; + int reference_stride_; + + ACMRandom rnd_; +}; + +#if CONFIG_VP9_ENCODER +typedef std::tr1::tuple BlockinessParam; +class BlockinessVP9Test + : public BlockinessTestBase, + public ::testing::WithParamInterface { + public: + BlockinessVP9Test() : BlockinessTestBase(GET_PARAM(0), GET_PARAM(1)) {} + + protected: + double GetBlockiness() const { + return vp9_get_blockiness(source_data_, source_stride_, reference_data_, + reference_stride_, width_, height_); + } +}; +#endif // CONFIG_VP9_ENCODER + +uint8_t *BlockinessTestBase::source_data_ = NULL; +uint8_t *BlockinessTestBase::reference_data_ = NULL; + +#if CONFIG_VP9_ENCODER +TEST_P(BlockinessVP9Test, SourceBlockierThanReference) { + // Source is blockier than reference. + FillRandomBlocky(source_data_, source_stride_); + FillConstant(reference_data_, reference_stride_, 128); + const double super_blocky = GetBlockiness(); + + EXPECT_DOUBLE_EQ(0.0, super_blocky) + << "Blocky source should produce 0 blockiness."; +} + +TEST_P(BlockinessVP9Test, ReferenceBlockierThanSource) { + // Source is blockier than reference. + FillConstant(source_data_, source_stride_, 128); + FillRandomBlocky(reference_data_, reference_stride_); + const double super_blocky = GetBlockiness(); + + EXPECT_GT(super_blocky, 0.0) + << "Blocky reference should score high for blockiness."; +} + +TEST_P(BlockinessVP9Test, BlurringDecreasesBlockiness) { + // Source is blockier than reference. + FillConstant(source_data_, source_stride_, 128); + FillRandomBlocky(reference_data_, reference_stride_); + const double super_blocky = GetBlockiness(); + + Blur(reference_data_, reference_stride_, 4); + const double less_blocky = GetBlockiness(); + + EXPECT_GT(super_blocky, less_blocky) + << "A straight blur should decrease blockiness."; +} + +TEST_P(BlockinessVP9Test, WorstCaseBlockiness) { + // Source is blockier than reference. + FillConstant(source_data_, source_stride_, 128); + FillCheckerboard(reference_data_, reference_stride_); + + const double super_blocky = GetBlockiness(); + + Blur(reference_data_, reference_stride_, 4); + const double less_blocky = GetBlockiness(); + + EXPECT_GT(super_blocky, less_blocky) + << "A straight blur should decrease blockiness."; +} +#endif // CONFIG_VP9_ENCODER + +using std::tr1::make_tuple; + +//------------------------------------------------------------------------------ +// C functions + +#if CONFIG_VP9_ENCODER +const BlockinessParam c_vp9_tests[] = { + make_tuple(320, 240), make_tuple(318, 242), make_tuple(318, 238), +}; +INSTANTIATE_TEST_CASE_P(C, BlockinessVP9Test, ::testing::ValuesIn(c_vp9_tests)); +#endif + +} // namespace diff --git a/test/borders_test.cc b/test/borders_test.cc new file mode 100644 index 0000000..e66ff02 --- /dev/null +++ b/test/borders_test.cc @@ -0,0 +1,84 @@ +/* + * Copyright (c) 2012 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ +#include +#include +#include "third_party/googletest/src/include/gtest/gtest.h" +#include "test/codec_factory.h" +#include "test/encode_test_driver.h" +#include "test/i420_video_source.h" +#include "test/util.h" + +namespace { + +class BordersTest + : public ::libvpx_test::EncoderTest, + public ::libvpx_test::CodecTestWithParam { + protected: + BordersTest() : EncoderTest(GET_PARAM(0)) {} + virtual ~BordersTest() {} + + virtual void SetUp() { + InitializeConfig(); + SetMode(GET_PARAM(1)); + } + + virtual void PreEncodeFrameHook(::libvpx_test::VideoSource *video, + ::libvpx_test::Encoder *encoder) { + if (video->frame() == 1) { + encoder->Control(VP8E_SET_CPUUSED, 1); + encoder->Control(VP8E_SET_ENABLEAUTOALTREF, 1); + encoder->Control(VP8E_SET_ARNR_MAXFRAMES, 7); + encoder->Control(VP8E_SET_ARNR_STRENGTH, 5); + encoder->Control(VP8E_SET_ARNR_TYPE, 3); + } + } + + virtual void FramePktHook(const vpx_codec_cx_pkt_t *pkt) { + if (pkt->data.frame.flags & VPX_FRAME_IS_KEY) { + } + } +}; + +TEST_P(BordersTest, TestEncodeHighBitrate) { + // Validate that this non multiple of 64 wide clip encodes and decodes + // without a mismatch when passing in a very low max q. This pushes + // the encoder to producing lots of big partitions which will likely + // extend into the border and test the border condition. + cfg_.g_lag_in_frames = 25; + cfg_.rc_2pass_vbr_minsection_pct = 5; + cfg_.rc_2pass_vbr_maxsection_pct = 2000; + cfg_.rc_target_bitrate = 2000; + cfg_.rc_max_quantizer = 10; + + ::libvpx_test::I420VideoSource video("hantro_odd.yuv", 208, 144, 30, 1, 0, + 40); + + ASSERT_NO_FATAL_FAILURE(RunLoop(&video)); +} +TEST_P(BordersTest, TestLowBitrate) { + // Validate that this clip encodes and decodes without a mismatch + // when passing in a very high min q. This pushes the encoder to producing + // lots of small partitions which might will test the other condition. + + cfg_.g_lag_in_frames = 25; + cfg_.rc_2pass_vbr_minsection_pct = 5; + cfg_.rc_2pass_vbr_maxsection_pct = 2000; + cfg_.rc_target_bitrate = 200; + cfg_.rc_min_quantizer = 40; + + ::libvpx_test::I420VideoSource video("hantro_odd.yuv", 208, 144, 30, 1, 0, + 40); + + ASSERT_NO_FATAL_FAILURE(RunLoop(&video)); +} + +VP9_INSTANTIATE_TEST_CASE(BordersTest, + ::testing::Values(::libvpx_test::kTwoPassGood)); +} // namespace diff --git a/test/buffer.h b/test/buffer.h new file mode 100644 index 0000000..2175dad --- /dev/null +++ b/test/buffer.h @@ -0,0 +1,382 @@ +/* + * Copyright (c) 2016 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef TEST_BUFFER_H_ +#define TEST_BUFFER_H_ + +#include + +#include + +#include "third_party/googletest/src/include/gtest/gtest.h" + +#include "test/acm_random.h" +#include "vpx/vpx_integer.h" +#include "vpx_mem/vpx_mem.h" + +namespace libvpx_test { + +template +class Buffer { + public: + Buffer(int width, int height, int top_padding, int left_padding, + int right_padding, int bottom_padding) + : width_(width), height_(height), top_padding_(top_padding), + left_padding_(left_padding), right_padding_(right_padding), + bottom_padding_(bottom_padding), alignment_(0), padding_value_(0), + stride_(0), raw_size_(0), num_elements_(0), raw_buffer_(NULL) {} + + Buffer(int width, int height, int top_padding, int left_padding, + int right_padding, int bottom_padding, unsigned int alignment) + : width_(width), height_(height), top_padding_(top_padding), + left_padding_(left_padding), right_padding_(right_padding), + bottom_padding_(bottom_padding), alignment_(alignment), + padding_value_(0), stride_(0), raw_size_(0), num_elements_(0), + raw_buffer_(NULL) {} + + Buffer(int width, int height, int padding) + : width_(width), height_(height), top_padding_(padding), + left_padding_(padding), right_padding_(padding), + bottom_padding_(padding), alignment_(0), padding_value_(0), stride_(0), + raw_size_(0), num_elements_(0), raw_buffer_(NULL) {} + + Buffer(int width, int height, int padding, unsigned int alignment) + : width_(width), height_(height), top_padding_(padding), + left_padding_(padding), right_padding_(padding), + bottom_padding_(padding), alignment_(alignment), padding_value_(0), + stride_(0), raw_size_(0), num_elements_(0), raw_buffer_(NULL) {} + + ~Buffer() { + if (alignment_) { + vpx_free(raw_buffer_); + } else { + delete[] raw_buffer_; + } + } + + T *TopLeftPixel() const; + + int stride() const { return stride_; } + + // Set the buffer (excluding padding) to 'value'. + void Set(const T value); + + // Set the buffer (excluding padding) to the output of ACMRandom function + // 'rand_func'. + void Set(ACMRandom *rand_class, T (ACMRandom::*rand_func)()); + + // Set the buffer (excluding padding) to the output of ACMRandom function + // 'RandRange' with range 'low' to 'high' which typically must be within + // testing::internal::Random::kMaxRange (1u << 31). However, because we want + // to allow negative low (and high) values, it is restricted to INT32_MAX + // here. + void Set(ACMRandom *rand_class, const T low, const T high); + + // Copy the contents of Buffer 'a' (excluding padding). + void CopyFrom(const Buffer &a); + + void DumpBuffer() const; + + // Highlight the differences between two buffers if they are the same size. + void PrintDifference(const Buffer &a) const; + + bool HasPadding() const; + + // Sets all the values in the buffer to 'padding_value'. + void SetPadding(const T padding_value); + + // Checks if all the values (excluding padding) are equal to 'value' if the + // Buffers are the same size. + bool CheckValues(const T value) const; + + // Check that padding matches the expected value or there is no padding. + bool CheckPadding() const; + + // Compare the non-padding portion of two buffers if they are the same size. + bool CheckValues(const Buffer &a) const; + + bool Init() { + if (raw_buffer_ != NULL) return false; + EXPECT_GT(width_, 0); + EXPECT_GT(height_, 0); + EXPECT_GE(top_padding_, 0); + EXPECT_GE(left_padding_, 0); + EXPECT_GE(right_padding_, 0); + EXPECT_GE(bottom_padding_, 0); + stride_ = left_padding_ + width_ + right_padding_; + num_elements_ = stride_ * (top_padding_ + height_ + bottom_padding_); + raw_size_ = num_elements_ * sizeof(T); + if (alignment_) { + EXPECT_GE(alignment_, sizeof(T)); + // Ensure alignment of the first value will be preserved. + EXPECT_EQ((left_padding_ * sizeof(T)) % alignment_, 0u); + // Ensure alignment of the subsequent rows will be preserved when there is + // a stride. + if (stride_ != width_) { + EXPECT_EQ((stride_ * sizeof(T)) % alignment_, 0u); + } + raw_buffer_ = reinterpret_cast(vpx_memalign(alignment_, raw_size_)); + } else { + raw_buffer_ = new (std::nothrow) T[num_elements_]; + } + EXPECT_TRUE(raw_buffer_ != NULL); + SetPadding(std::numeric_limits::max()); + return !::testing::Test::HasFailure(); + } + + private: + bool BufferSizesMatch(const Buffer &a) const; + + const int width_; + const int height_; + const int top_padding_; + const int left_padding_; + const int right_padding_; + const int bottom_padding_; + const unsigned int alignment_; + T padding_value_; + int stride_; + int raw_size_; + int num_elements_; + T *raw_buffer_; +}; + +template +T *Buffer::TopLeftPixel() const { + if (!raw_buffer_) return NULL; + return raw_buffer_ + (top_padding_ * stride_) + left_padding_; +} + +template +void Buffer::Set(const T value) { + if (!raw_buffer_) return; + T *src = TopLeftPixel(); + for (int height = 0; height < height_; ++height) { + for (int width = 0; width < width_; ++width) { + src[width] = value; + } + src += stride_; + } +} + +template +void Buffer::Set(ACMRandom *rand_class, T (ACMRandom::*rand_func)()) { + if (!raw_buffer_) return; + T *src = TopLeftPixel(); + for (int height = 0; height < height_; ++height) { + for (int width = 0; width < width_; ++width) { + src[width] = (*rand_class.*rand_func)(); + } + src += stride_; + } +} + +template +void Buffer::Set(ACMRandom *rand_class, const T low, const T high) { + if (!raw_buffer_) return; + + EXPECT_LE(low, high); + EXPECT_LE(static_cast(high) - low, + std::numeric_limits::max()); + + T *src = TopLeftPixel(); + for (int height = 0; height < height_; ++height) { + for (int width = 0; width < width_; ++width) { + // 'low' will be promoted to unsigned given the return type of RandRange. + // Store the value as an int to avoid unsigned overflow warnings when + // 'low' is negative. + const int32_t value = + static_cast((*rand_class).RandRange(high - low)); + src[width] = static_cast(value + low); + } + src += stride_; + } +} + +template +void Buffer::CopyFrom(const Buffer &a) { + if (!raw_buffer_) return; + if (!BufferSizesMatch(a)) return; + + T *a_src = a.TopLeftPixel(); + T *b_src = this->TopLeftPixel(); + for (int height = 0; height < height_; ++height) { + for (int width = 0; width < width_; ++width) { + b_src[width] = a_src[width]; + } + a_src += a.stride(); + b_src += this->stride(); + } +} + +template +void Buffer::DumpBuffer() const { + if (!raw_buffer_) return; + for (int height = 0; height < height_ + top_padding_ + bottom_padding_; + ++height) { + for (int width = 0; width < stride_; ++width) { + printf("%4d", raw_buffer_[height + width * stride_]); + } + printf("\n"); + } +} + +template +bool Buffer::HasPadding() const { + if (!raw_buffer_) return false; + return top_padding_ || left_padding_ || right_padding_ || bottom_padding_; +} + +template +void Buffer::PrintDifference(const Buffer &a) const { + if (!raw_buffer_) return; + if (!BufferSizesMatch(a)) return; + + T *a_src = a.TopLeftPixel(); + T *b_src = TopLeftPixel(); + + printf("This buffer:\n"); + for (int height = 0; height < height_; ++height) { + for (int width = 0; width < width_; ++width) { + if (a_src[width] != b_src[width]) { + printf("*%3d", b_src[width]); + } else { + printf("%4d", b_src[width]); + } + } + printf("\n"); + a_src += a.stride(); + b_src += this->stride(); + } + + a_src = a.TopLeftPixel(); + b_src = TopLeftPixel(); + + printf("Reference buffer:\n"); + for (int height = 0; height < height_; ++height) { + for (int width = 0; width < width_; ++width) { + if (a_src[width] != b_src[width]) { + printf("*%3d", a_src[width]); + } else { + printf("%4d", a_src[width]); + } + } + printf("\n"); + a_src += a.stride(); + b_src += this->stride(); + } +} + +template +void Buffer::SetPadding(const T padding_value) { + if (!raw_buffer_) return; + padding_value_ = padding_value; + + T *src = raw_buffer_; + for (int i = 0; i < num_elements_; ++i) { + src[i] = padding_value; + } +} + +template +bool Buffer::CheckValues(const T value) const { + if (!raw_buffer_) return false; + T *src = TopLeftPixel(); + for (int height = 0; height < height_; ++height) { + for (int width = 0; width < width_; ++width) { + if (value != src[width]) { + return false; + } + } + src += stride_; + } + return true; +} + +template +bool Buffer::CheckPadding() const { + if (!raw_buffer_) return false; + if (!HasPadding()) return true; + + // Top padding. + T const *top = raw_buffer_; + for (int i = 0; i < stride_ * top_padding_; ++i) { + if (padding_value_ != top[i]) { + return false; + } + } + + // Left padding. + T const *left = TopLeftPixel() - left_padding_; + for (int height = 0; height < height_; ++height) { + for (int width = 0; width < left_padding_; ++width) { + if (padding_value_ != left[width]) { + return false; + } + } + left += stride_; + } + + // Right padding. + T const *right = TopLeftPixel() + width_; + for (int height = 0; height < height_; ++height) { + for (int width = 0; width < right_padding_; ++width) { + if (padding_value_ != right[width]) { + return false; + } + } + right += stride_; + } + + // Bottom padding + T const *bottom = raw_buffer_ + (top_padding_ + height_) * stride_; + for (int i = 0; i < stride_ * bottom_padding_; ++i) { + if (padding_value_ != bottom[i]) { + return false; + } + } + + return true; +} + +template +bool Buffer::CheckValues(const Buffer &a) const { + if (!raw_buffer_) return false; + if (!BufferSizesMatch(a)) return false; + + T *a_src = a.TopLeftPixel(); + T *b_src = this->TopLeftPixel(); + for (int height = 0; height < height_; ++height) { + for (int width = 0; width < width_; ++width) { + if (a_src[width] != b_src[width]) { + return false; + } + } + a_src += a.stride(); + b_src += this->stride(); + } + return true; +} + +template +bool Buffer::BufferSizesMatch(const Buffer &a) const { + if (!raw_buffer_) return false; + if (a.width_ != this->width_ || a.height_ != this->height_) { + printf( + "Reference buffer of size %dx%d does not match this buffer which is " + "size %dx%d\n", + a.width_, a.height_, this->width_, this->height_); + return false; + } + + return true; +} +} // namespace libvpx_test +#endif // TEST_BUFFER_H_ diff --git a/test/byte_alignment_test.cc b/test/byte_alignment_test.cc new file mode 100644 index 0000000..5a058b2 --- /dev/null +++ b/test/byte_alignment_test.cc @@ -0,0 +1,183 @@ +/* + * Copyright (c) 2014 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include + +#include "./vpx_config.h" +#include "test/codec_factory.h" +#include "test/decode_test_driver.h" +#include "test/md5_helper.h" +#include "test/util.h" +#if CONFIG_WEBM_IO +#include "test/webm_video_source.h" +#endif + +namespace { + +#if CONFIG_WEBM_IO + +const int kLegacyByteAlignment = 0; +const int kLegacyYPlaneByteAlignment = 32; +const int kNumPlanesToCheck = 3; +const char kVP9TestFile[] = "vp90-2-02-size-lf-1920x1080.webm"; +const char kVP9Md5File[] = "vp90-2-02-size-lf-1920x1080.webm.md5"; + +struct ByteAlignmentTestParam { + int byte_alignment; + vpx_codec_err_t expected_value; + bool decode_remaining; +}; + +const ByteAlignmentTestParam kBaTestParams[] = { + { kLegacyByteAlignment, VPX_CODEC_OK, true }, + { 32, VPX_CODEC_OK, true }, + { 64, VPX_CODEC_OK, true }, + { 128, VPX_CODEC_OK, true }, + { 256, VPX_CODEC_OK, true }, + { 512, VPX_CODEC_OK, true }, + { 1024, VPX_CODEC_OK, true }, + { 1, VPX_CODEC_INVALID_PARAM, false }, + { -2, VPX_CODEC_INVALID_PARAM, false }, + { 4, VPX_CODEC_INVALID_PARAM, false }, + { 16, VPX_CODEC_INVALID_PARAM, false }, + { 255, VPX_CODEC_INVALID_PARAM, false }, + { 2048, VPX_CODEC_INVALID_PARAM, false }, +}; + +// Class for testing byte alignment of reference buffers. +class ByteAlignmentTest + : public ::testing::TestWithParam { + protected: + ByteAlignmentTest() : video_(NULL), decoder_(NULL), md5_file_(NULL) {} + + virtual void SetUp() { + video_ = new libvpx_test::WebMVideoSource(kVP9TestFile); + ASSERT_TRUE(video_ != NULL); + video_->Init(); + video_->Begin(); + + const vpx_codec_dec_cfg_t cfg = vpx_codec_dec_cfg_t(); + decoder_ = new libvpx_test::VP9Decoder(cfg, 0); + ASSERT_TRUE(decoder_ != NULL); + + OpenMd5File(kVP9Md5File); + } + + virtual void TearDown() { + if (md5_file_ != NULL) fclose(md5_file_); + + delete decoder_; + delete video_; + } + + void SetByteAlignment(int byte_alignment, vpx_codec_err_t expected_value) { + decoder_->Control(VP9_SET_BYTE_ALIGNMENT, byte_alignment, expected_value); + } + + vpx_codec_err_t DecodeOneFrame(int byte_alignment_to_check) { + const vpx_codec_err_t res = + decoder_->DecodeFrame(video_->cxdata(), video_->frame_size()); + CheckDecodedFrames(byte_alignment_to_check); + if (res == VPX_CODEC_OK) video_->Next(); + return res; + } + + vpx_codec_err_t DecodeRemainingFrames(int byte_alignment_to_check) { + for (; video_->cxdata() != NULL; video_->Next()) { + const vpx_codec_err_t res = + decoder_->DecodeFrame(video_->cxdata(), video_->frame_size()); + if (res != VPX_CODEC_OK) return res; + CheckDecodedFrames(byte_alignment_to_check); + } + return VPX_CODEC_OK; + } + + private: + // Check if |data| is aligned to |byte_alignment_to_check|. + // |byte_alignment_to_check| must be a power of 2. + void CheckByteAlignment(const uint8_t *data, int byte_alignment_to_check) { + ASSERT_EQ(0u, reinterpret_cast(data) % byte_alignment_to_check); + } + + // Iterate through the planes of the decoded frames and check for + // alignment based off |byte_alignment_to_check|. + void CheckDecodedFrames(int byte_alignment_to_check) { + libvpx_test::DxDataIterator dec_iter = decoder_->GetDxData(); + const vpx_image_t *img; + + // Get decompressed data + while ((img = dec_iter.Next()) != NULL) { + if (byte_alignment_to_check == kLegacyByteAlignment) { + CheckByteAlignment(img->planes[0], kLegacyYPlaneByteAlignment); + } else { + for (int i = 0; i < kNumPlanesToCheck; ++i) { + CheckByteAlignment(img->planes[i], byte_alignment_to_check); + } + } + CheckMd5(*img); + } + } + + // TODO(fgalligan): Move the MD5 testing code into another class. + void OpenMd5File(const std::string &md5_file_name_) { + md5_file_ = libvpx_test::OpenTestDataFile(md5_file_name_); + ASSERT_TRUE(md5_file_ != NULL) + << "MD5 file open failed. Filename: " << md5_file_name_; + } + + void CheckMd5(const vpx_image_t &img) { + ASSERT_TRUE(md5_file_ != NULL); + char expected_md5[33]; + char junk[128]; + + // Read correct md5 checksums. + const int res = fscanf(md5_file_, "%s %s", expected_md5, junk); + ASSERT_NE(EOF, res) << "Read md5 data failed"; + expected_md5[32] = '\0'; + + ::libvpx_test::MD5 md5_res; + md5_res.Add(&img); + const char *const actual_md5 = md5_res.Get(); + + // Check md5 match. + ASSERT_STREQ(expected_md5, actual_md5) << "MD5 checksums don't match"; + } + + libvpx_test::WebMVideoSource *video_; + libvpx_test::VP9Decoder *decoder_; + FILE *md5_file_; +}; + +TEST_F(ByteAlignmentTest, SwitchByteAlignment) { + const int num_elements = 14; + const int byte_alignments[] = { 0, 32, 64, 128, 256, 512, 1024, + 0, 1024, 32, 512, 64, 256, 128 }; + + for (int i = 0; i < num_elements; ++i) { + SetByteAlignment(byte_alignments[i], VPX_CODEC_OK); + ASSERT_EQ(VPX_CODEC_OK, DecodeOneFrame(byte_alignments[i])); + } + SetByteAlignment(byte_alignments[0], VPX_CODEC_OK); + ASSERT_EQ(VPX_CODEC_OK, DecodeRemainingFrames(byte_alignments[0])); +} + +TEST_P(ByteAlignmentTest, TestAlignment) { + const ByteAlignmentTestParam t = GetParam(); + SetByteAlignment(t.byte_alignment, t.expected_value); + if (t.decode_remaining) + ASSERT_EQ(VPX_CODEC_OK, DecodeRemainingFrames(t.byte_alignment)); +} + +INSTANTIATE_TEST_CASE_P(Alignments, ByteAlignmentTest, + ::testing::ValuesIn(kBaTestParams)); + +#endif // CONFIG_WEBM_IO + +} // namespace diff --git a/test/clear_system_state.h b/test/clear_system_state.h new file mode 100644 index 0000000..044a5c7 --- /dev/null +++ b/test/clear_system_state.h @@ -0,0 +1,29 @@ +/* + * Copyright (c) 2013 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ +#ifndef TEST_CLEAR_SYSTEM_STATE_H_ +#define TEST_CLEAR_SYSTEM_STATE_H_ + +#include "./vpx_config.h" +#if ARCH_X86 || ARCH_X86_64 +#include "vpx_ports/x86.h" +#endif + +namespace libvpx_test { + +// Reset system to a known state. This function should be used for all non-API +// test cases. +inline void ClearSystemState() { +#if ARCH_X86 || ARCH_X86_64 + vpx_reset_mmx_state(); +#endif +} + +} // namespace libvpx_test +#endif // TEST_CLEAR_SYSTEM_STATE_H_ diff --git a/test/codec_factory.h b/test/codec_factory.h new file mode 100644 index 0000000..d5882ed --- /dev/null +++ b/test/codec_factory.h @@ -0,0 +1,267 @@ +/* + * Copyright (c) 2013 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ +#ifndef TEST_CODEC_FACTORY_H_ +#define TEST_CODEC_FACTORY_H_ + +#include "./vpx_config.h" +#include "vpx/vpx_decoder.h" +#include "vpx/vpx_encoder.h" +#if CONFIG_VP8_ENCODER || CONFIG_VP9_ENCODER +#include "vpx/vp8cx.h" +#endif +#if CONFIG_VP8_DECODER || CONFIG_VP9_DECODER +#include "vpx/vp8dx.h" +#endif + +#include "test/decode_test_driver.h" +#include "test/encode_test_driver.h" +namespace libvpx_test { + +const int kCodecFactoryParam = 0; + +class CodecFactory { + public: + CodecFactory() {} + + virtual ~CodecFactory() {} + + virtual Decoder *CreateDecoder(vpx_codec_dec_cfg_t cfg) const = 0; + + virtual Decoder *CreateDecoder(vpx_codec_dec_cfg_t cfg, + const vpx_codec_flags_t flags) const = 0; + + virtual Encoder *CreateEncoder(vpx_codec_enc_cfg_t cfg, + unsigned long deadline, + const unsigned long init_flags, + TwopassStatsStore *stats) const = 0; + + virtual vpx_codec_err_t DefaultEncoderConfig(vpx_codec_enc_cfg_t *cfg, + int usage) const = 0; +}; + +/* Provide CodecTestWithParams classes for a variable number of parameters + * to avoid having to include a pointer to the CodecFactory in every test + * definition. + */ +template +class CodecTestWithParam + : public ::testing::TestWithParam< + std::tr1::tuple > {}; + +template +class CodecTestWith2Params + : public ::testing::TestWithParam< + std::tr1::tuple > {}; + +template +class CodecTestWith3Params + : public ::testing::TestWithParam< + std::tr1::tuple > {}; + +template +class CodecTestWith4Params + : public ::testing::TestWithParam< + std::tr1::tuple > { +}; + +/* + * VP8 Codec Definitions + */ +#if CONFIG_VP8 +class VP8Decoder : public Decoder { + public: + explicit VP8Decoder(vpx_codec_dec_cfg_t cfg) : Decoder(cfg) {} + + VP8Decoder(vpx_codec_dec_cfg_t cfg, const vpx_codec_flags_t flag) + : Decoder(cfg, flag) {} + + protected: + virtual vpx_codec_iface_t *CodecInterface() const { +#if CONFIG_VP8_DECODER + return &vpx_codec_vp8_dx_algo; +#else + return NULL; +#endif + } +}; + +class VP8Encoder : public Encoder { + public: + VP8Encoder(vpx_codec_enc_cfg_t cfg, unsigned long deadline, + const unsigned long init_flags, TwopassStatsStore *stats) + : Encoder(cfg, deadline, init_flags, stats) {} + + protected: + virtual vpx_codec_iface_t *CodecInterface() const { +#if CONFIG_VP8_ENCODER + return &vpx_codec_vp8_cx_algo; +#else + return NULL; +#endif + } +}; + +class VP8CodecFactory : public CodecFactory { + public: + VP8CodecFactory() : CodecFactory() {} + + virtual Decoder *CreateDecoder(vpx_codec_dec_cfg_t cfg) const { + return CreateDecoder(cfg, 0); + } + + virtual Decoder *CreateDecoder(vpx_codec_dec_cfg_t cfg, + const vpx_codec_flags_t flags) const { +#if CONFIG_VP8_DECODER + return new VP8Decoder(cfg, flags); +#else + (void)cfg; + (void)flags; + return NULL; +#endif + } + + virtual Encoder *CreateEncoder(vpx_codec_enc_cfg_t cfg, + unsigned long deadline, + const unsigned long init_flags, + TwopassStatsStore *stats) const { +#if CONFIG_VP8_ENCODER + return new VP8Encoder(cfg, deadline, init_flags, stats); +#else + (void)cfg; + (void)deadline; + (void)init_flags; + (void)stats; + return NULL; +#endif + } + + virtual vpx_codec_err_t DefaultEncoderConfig(vpx_codec_enc_cfg_t *cfg, + int usage) const { +#if CONFIG_VP8_ENCODER + return vpx_codec_enc_config_default(&vpx_codec_vp8_cx_algo, cfg, usage); +#else + (void)cfg; + (void)usage; + return VPX_CODEC_INCAPABLE; +#endif + } +}; + +const libvpx_test::VP8CodecFactory kVP8; + +#define VP8_INSTANTIATE_TEST_CASE(test, ...) \ + INSTANTIATE_TEST_CASE_P( \ + VP8, test, \ + ::testing::Combine( \ + ::testing::Values(static_cast( \ + &libvpx_test::kVP8)), \ + __VA_ARGS__)) +#else +#define VP8_INSTANTIATE_TEST_CASE(test, ...) +#endif // CONFIG_VP8 + +/* + * VP9 Codec Definitions + */ +#if CONFIG_VP9 +class VP9Decoder : public Decoder { + public: + explicit VP9Decoder(vpx_codec_dec_cfg_t cfg) : Decoder(cfg) {} + + VP9Decoder(vpx_codec_dec_cfg_t cfg, const vpx_codec_flags_t flag) + : Decoder(cfg, flag) {} + + protected: + virtual vpx_codec_iface_t *CodecInterface() const { +#if CONFIG_VP9_DECODER + return &vpx_codec_vp9_dx_algo; +#else + return NULL; +#endif + } +}; + +class VP9Encoder : public Encoder { + public: + VP9Encoder(vpx_codec_enc_cfg_t cfg, unsigned long deadline, + const unsigned long init_flags, TwopassStatsStore *stats) + : Encoder(cfg, deadline, init_flags, stats) {} + + protected: + virtual vpx_codec_iface_t *CodecInterface() const { +#if CONFIG_VP9_ENCODER + return &vpx_codec_vp9_cx_algo; +#else + return NULL; +#endif + } +}; + +class VP9CodecFactory : public CodecFactory { + public: + VP9CodecFactory() : CodecFactory() {} + + virtual Decoder *CreateDecoder(vpx_codec_dec_cfg_t cfg) const { + return CreateDecoder(cfg, 0); + } + + virtual Decoder *CreateDecoder(vpx_codec_dec_cfg_t cfg, + const vpx_codec_flags_t flags) const { +#if CONFIG_VP9_DECODER + return new VP9Decoder(cfg, flags); +#else + (void)cfg; + (void)flags; + return NULL; +#endif + } + + virtual Encoder *CreateEncoder(vpx_codec_enc_cfg_t cfg, + unsigned long deadline, + const unsigned long init_flags, + TwopassStatsStore *stats) const { +#if CONFIG_VP9_ENCODER + return new VP9Encoder(cfg, deadline, init_flags, stats); +#else + (void)cfg; + (void)deadline; + (void)init_flags; + (void)stats; + return NULL; +#endif + } + + virtual vpx_codec_err_t DefaultEncoderConfig(vpx_codec_enc_cfg_t *cfg, + int usage) const { +#if CONFIG_VP9_ENCODER + return vpx_codec_enc_config_default(&vpx_codec_vp9_cx_algo, cfg, usage); +#else + (void)cfg; + (void)usage; + return VPX_CODEC_INCAPABLE; +#endif + } +}; + +const libvpx_test::VP9CodecFactory kVP9; + +#define VP9_INSTANTIATE_TEST_CASE(test, ...) \ + INSTANTIATE_TEST_CASE_P( \ + VP9, test, \ + ::testing::Combine( \ + ::testing::Values(static_cast( \ + &libvpx_test::kVP9)), \ + __VA_ARGS__)) +#else +#define VP9_INSTANTIATE_TEST_CASE(test, ...) +#endif // CONFIG_VP9 + +} // namespace libvpx_test +#endif // TEST_CODEC_FACTORY_H_ diff --git a/test/comp_avg_pred_test.cc b/test/comp_avg_pred_test.cc new file mode 100644 index 0000000..110e065 --- /dev/null +++ b/test/comp_avg_pred_test.cc @@ -0,0 +1,182 @@ +/* + * Copyright (c) 2017 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "third_party/googletest/src/include/gtest/gtest.h" + +#include "./vpx_dsp_rtcd.h" + +#include "test/acm_random.h" +#include "test/buffer.h" +#include "test/register_state_check.h" +#include "vpx_ports/vpx_timer.h" + +namespace { + +using ::libvpx_test::ACMRandom; +using ::libvpx_test::Buffer; + +typedef void (*AvgPredFunc)(uint8_t *a, const uint8_t *b, int w, int h, + const uint8_t *c, int c_stride); + +uint8_t avg_with_rounding(uint8_t a, uint8_t b) { return (a + b + 1) >> 1; } + +void reference_pred(const Buffer &pred, const Buffer &ref, + int width, int height, Buffer *avg) { + for (int y = 0; y < height; ++y) { + for (int x = 0; x < width; ++x) { + avg->TopLeftPixel()[y * avg->stride() + x] = + avg_with_rounding(pred.TopLeftPixel()[y * pred.stride() + x], + ref.TopLeftPixel()[y * ref.stride() + x]); + } + } +} + +class AvgPredTest : public ::testing::TestWithParam { + public: + virtual void SetUp() { + avg_pred_func_ = GetParam(); + rnd_.Reset(ACMRandom::DeterministicSeed()); + } + + protected: + AvgPredFunc avg_pred_func_; + ACMRandom rnd_; +}; + +TEST_P(AvgPredTest, SizeCombinations) { + // This is called as part of the sub pixel variance. As such it must be one of + // the variance block sizes. + + for (int width_pow = 2; width_pow <= 6; ++width_pow) { + for (int height_pow = width_pow - 1; height_pow <= width_pow + 1; + ++height_pow) { + // Don't test 4x2 or 64x128 + if (height_pow == 1 || height_pow == 7) continue; + + // The sse2 special-cases when ref width == stride, so make sure to test + // it. + for (int ref_padding = 0; ref_padding < 2; ref_padding++) { + const int width = 1 << width_pow; + const int height = 1 << height_pow; + // Only the reference buffer may have a stride not equal to width. + Buffer ref = + Buffer(width, height, ref_padding ? 8 : 0); + ASSERT_TRUE(ref.Init()); + Buffer pred = Buffer(width, height, 0, 16); + ASSERT_TRUE(pred.Init()); + Buffer avg_ref = Buffer(width, height, 0, 16); + ASSERT_TRUE(avg_ref.Init()); + Buffer avg_chk = Buffer(width, height, 0, 16); + ASSERT_TRUE(avg_chk.Init()); + + ref.Set(&rnd_, &ACMRandom::Rand8); + pred.Set(&rnd_, &ACMRandom::Rand8); + + reference_pred(pred, ref, width, height, &avg_ref); + ASM_REGISTER_STATE_CHECK( + avg_pred_func_(avg_chk.TopLeftPixel(), pred.TopLeftPixel(), width, + height, ref.TopLeftPixel(), ref.stride())); + + EXPECT_TRUE(avg_chk.CheckValues(avg_ref)); + if (HasFailure()) { + printf("Width: %d Height: %d\n", width, height); + avg_chk.PrintDifference(avg_ref); + return; + } + } + } + } +} + +TEST_P(AvgPredTest, CompareReferenceRandom) { + const int width = 64; + const int height = 32; + Buffer ref = Buffer(width, height, 8); + ASSERT_TRUE(ref.Init()); + Buffer pred = Buffer(width, height, 0, 16); + ASSERT_TRUE(pred.Init()); + Buffer avg_ref = Buffer(width, height, 0, 16); + ASSERT_TRUE(avg_ref.Init()); + Buffer avg_chk = Buffer(width, height, 0, 16); + ASSERT_TRUE(avg_chk.Init()); + + for (int i = 0; i < 500; ++i) { + ref.Set(&rnd_, &ACMRandom::Rand8); + pred.Set(&rnd_, &ACMRandom::Rand8); + + reference_pred(pred, ref, width, height, &avg_ref); + ASM_REGISTER_STATE_CHECK(avg_pred_func_(avg_chk.TopLeftPixel(), + pred.TopLeftPixel(), width, height, + ref.TopLeftPixel(), ref.stride())); + EXPECT_TRUE(avg_chk.CheckValues(avg_ref)); + if (HasFailure()) { + printf("Width: %d Height: %d\n", width, height); + avg_chk.PrintDifference(avg_ref); + return; + } + } +} + +TEST_P(AvgPredTest, DISABLED_Speed) { + for (int width_pow = 2; width_pow <= 6; ++width_pow) { + for (int height_pow = width_pow - 1; height_pow <= width_pow + 1; + ++height_pow) { + // Don't test 4x2 or 64x128 + if (height_pow == 1 || height_pow == 7) continue; + + for (int ref_padding = 0; ref_padding < 2; ref_padding++) { + const int width = 1 << width_pow; + const int height = 1 << height_pow; + Buffer ref = + Buffer(width, height, ref_padding ? 8 : 0); + ASSERT_TRUE(ref.Init()); + Buffer pred = Buffer(width, height, 0, 16); + ASSERT_TRUE(pred.Init()); + Buffer avg = Buffer(width, height, 0, 16); + ASSERT_TRUE(avg.Init()); + + ref.Set(&rnd_, &ACMRandom::Rand8); + pred.Set(&rnd_, &ACMRandom::Rand8); + + vpx_usec_timer timer; + vpx_usec_timer_start(&timer); + for (int i = 0; i < 10000000 / (width * height); ++i) { + avg_pred_func_(avg.TopLeftPixel(), pred.TopLeftPixel(), width, height, + ref.TopLeftPixel(), ref.stride()); + } + vpx_usec_timer_mark(&timer); + + const int elapsed_time = + static_cast(vpx_usec_timer_elapsed(&timer)); + printf("Average Test (ref_padding: %d) %dx%d time: %5d us\n", + ref_padding, width, height, elapsed_time); + } + } + } +} + +INSTANTIATE_TEST_CASE_P(C, AvgPredTest, + ::testing::Values(&vpx_comp_avg_pred_c)); + +#if HAVE_SSE2 +INSTANTIATE_TEST_CASE_P(SSE2, AvgPredTest, + ::testing::Values(&vpx_comp_avg_pred_sse2)); +#endif // HAVE_SSE2 + +#if HAVE_NEON +INSTANTIATE_TEST_CASE_P(NEON, AvgPredTest, + ::testing::Values(&vpx_comp_avg_pred_neon)); +#endif // HAVE_NEON + +#if HAVE_VSX +INSTANTIATE_TEST_CASE_P(VSX, AvgPredTest, + ::testing::Values(&vpx_comp_avg_pred_vsx)); +#endif // HAVE_VSX +} // namespace diff --git a/test/config_test.cc b/test/config_test.cc new file mode 100644 index 0000000..b2f8ea5 --- /dev/null +++ b/test/config_test.cc @@ -0,0 +1,62 @@ +/* + * Copyright (c) 2012 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ +#include "third_party/googletest/src/include/gtest/gtest.h" +#include "test/codec_factory.h" +#include "test/encode_test_driver.h" +#include "test/util.h" +#include "test/video_source.h" + +namespace { + +class ConfigTest + : public ::libvpx_test::EncoderTest, + public ::libvpx_test::CodecTestWithParam { + protected: + ConfigTest() + : EncoderTest(GET_PARAM(0)), frame_count_in_(0), frame_count_out_(0), + frame_count_max_(0) {} + virtual ~ConfigTest() {} + + virtual void SetUp() { + InitializeConfig(); + SetMode(GET_PARAM(1)); + } + + virtual void BeginPassHook(unsigned int /*pass*/) { + frame_count_in_ = 0; + frame_count_out_ = 0; + } + + virtual void PreEncodeFrameHook(libvpx_test::VideoSource * /*video*/) { + ++frame_count_in_; + abort_ |= (frame_count_in_ >= frame_count_max_); + } + + virtual void FramePktHook(const vpx_codec_cx_pkt_t * /*pkt*/) { + ++frame_count_out_; + } + + unsigned int frame_count_in_; + unsigned int frame_count_out_; + unsigned int frame_count_max_; +}; + +TEST_P(ConfigTest, LagIsDisabled) { + frame_count_max_ = 2; + cfg_.g_lag_in_frames = 15; + + libvpx_test::DummyVideoSource video; + ASSERT_NO_FATAL_FAILURE(RunLoop(&video)); + + EXPECT_EQ(frame_count_in_, frame_count_out_); +} + +VP8_INSTANTIATE_TEST_CASE(ConfigTest, ONE_PASS_TEST_MODES); +} // namespace diff --git a/test/consistency_test.cc b/test/consistency_test.cc new file mode 100644 index 0000000..37b4a45 --- /dev/null +++ b/test/consistency_test.cc @@ -0,0 +1,214 @@ +/* + * Copyright (c) 2012 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include +#include + +#include "third_party/googletest/src/include/gtest/gtest.h" + +#include "./vpx_config.h" +#if CONFIG_VP9_ENCODER +#include "./vp9_rtcd.h" +#endif + +#include "test/acm_random.h" +#include "test/clear_system_state.h" +#include "test/register_state_check.h" +#include "test/util.h" +#include "vpx_dsp/ssim.h" +#include "vpx_mem/vpx_mem.h" + +extern "C" double vpx_get_ssim_metrics(uint8_t *img1, int img1_pitch, + uint8_t *img2, int img2_pitch, int width, + int height, Ssimv *sv2, Metrics *m, + int do_inconsistency); + +using libvpx_test::ACMRandom; + +namespace { +class ConsistencyTestBase : public ::testing::Test { + public: + ConsistencyTestBase(int width, int height) : width_(width), height_(height) {} + + static void SetUpTestCase() { + source_data_[0] = reinterpret_cast( + vpx_memalign(kDataAlignment, kDataBufferSize)); + reference_data_[0] = reinterpret_cast( + vpx_memalign(kDataAlignment, kDataBufferSize)); + source_data_[1] = reinterpret_cast( + vpx_memalign(kDataAlignment, kDataBufferSize)); + reference_data_[1] = reinterpret_cast( + vpx_memalign(kDataAlignment, kDataBufferSize)); + ssim_array_ = new Ssimv[kDataBufferSize / 16]; + } + + static void ClearSsim() { memset(ssim_array_, 0, kDataBufferSize / 16); } + static void TearDownTestCase() { + vpx_free(source_data_[0]); + source_data_[0] = NULL; + vpx_free(reference_data_[0]); + reference_data_[0] = NULL; + vpx_free(source_data_[1]); + source_data_[1] = NULL; + vpx_free(reference_data_[1]); + reference_data_[1] = NULL; + + delete[] ssim_array_; + } + + virtual void TearDown() { libvpx_test::ClearSystemState(); } + + protected: + // Handle frames up to 640x480 + static const int kDataAlignment = 16; + static const int kDataBufferSize = 640 * 480; + + virtual void SetUp() { + source_stride_ = (width_ + 31) & ~31; + reference_stride_ = width_ * 2; + rnd_.Reset(ACMRandom::DeterministicSeed()); + } + + void FillRandom(uint8_t *data, int stride, int width, int height) { + for (int h = 0; h < height; ++h) { + for (int w = 0; w < width; ++w) { + data[h * stride + w] = rnd_.Rand8(); + } + } + } + + void FillRandom(uint8_t *data, int stride) { + FillRandom(data, stride, width_, height_); + } + + void Copy(uint8_t *reference, uint8_t *source) { + memcpy(reference, source, kDataBufferSize); + } + + void Blur(uint8_t *data, int stride, int taps) { + int sum = 0; + int half_taps = taps / 2; + for (int h = 0; h < height_; ++h) { + for (int w = 0; w < taps; ++w) { + sum += data[w + h * stride]; + } + for (int w = taps; w < width_; ++w) { + sum += data[w + h * stride] - data[w - taps + h * stride]; + data[w - half_taps + h * stride] = (sum + half_taps) / taps; + } + } + for (int w = 0; w < width_; ++w) { + for (int h = 0; h < taps; ++h) { + sum += data[h + w * stride]; + } + for (int h = taps; h < height_; ++h) { + sum += data[w + h * stride] - data[(h - taps) * stride + w]; + data[(h - half_taps) * stride + w] = (sum + half_taps) / taps; + } + } + } + int width_, height_; + static uint8_t *source_data_[2]; + int source_stride_; + static uint8_t *reference_data_[2]; + int reference_stride_; + static Ssimv *ssim_array_; + Metrics metrics_; + + ACMRandom rnd_; +}; + +#if CONFIG_VP9_ENCODER +typedef std::tr1::tuple ConsistencyParam; +class ConsistencyVP9Test + : public ConsistencyTestBase, + public ::testing::WithParamInterface { + public: + ConsistencyVP9Test() : ConsistencyTestBase(GET_PARAM(0), GET_PARAM(1)) {} + + protected: + double CheckConsistency(int frame) { + EXPECT_LT(frame, 2) << "Frame to check has to be less than 2."; + return vpx_get_ssim_metrics(source_data_[frame], source_stride_, + reference_data_[frame], reference_stride_, + width_, height_, ssim_array_, &metrics_, 1); + } +}; +#endif // CONFIG_VP9_ENCODER + +uint8_t *ConsistencyTestBase::source_data_[2] = { NULL, NULL }; +uint8_t *ConsistencyTestBase::reference_data_[2] = { NULL, NULL }; +Ssimv *ConsistencyTestBase::ssim_array_ = NULL; + +#if CONFIG_VP9_ENCODER +TEST_P(ConsistencyVP9Test, ConsistencyIsZero) { + FillRandom(source_data_[0], source_stride_); + Copy(source_data_[1], source_data_[0]); + Copy(reference_data_[0], source_data_[0]); + Blur(reference_data_[0], reference_stride_, 3); + Copy(reference_data_[1], source_data_[0]); + Blur(reference_data_[1], reference_stride_, 3); + + double inconsistency = CheckConsistency(1); + inconsistency = CheckConsistency(0); + EXPECT_EQ(inconsistency, 0.0) + << "Should have 0 inconsistency if they are exactly the same."; + + // If sources are not consistent reference frames inconsistency should + // be less than if the source is consistent. + FillRandom(source_data_[0], source_stride_); + FillRandom(source_data_[1], source_stride_); + FillRandom(reference_data_[0], reference_stride_); + FillRandom(reference_data_[1], reference_stride_); + CheckConsistency(0); + inconsistency = CheckConsistency(1); + + Copy(source_data_[1], source_data_[0]); + CheckConsistency(0); + double inconsistency2 = CheckConsistency(1); + EXPECT_LT(inconsistency, inconsistency2) + << "Should have less inconsistency if source itself is inconsistent."; + + // Less of a blur should be less inconsistent than more blur coming off a + // a frame with no blur. + ClearSsim(); + FillRandom(source_data_[0], source_stride_); + Copy(source_data_[1], source_data_[0]); + Copy(reference_data_[0], source_data_[0]); + Copy(reference_data_[1], source_data_[0]); + Blur(reference_data_[1], reference_stride_, 4); + CheckConsistency(0); + inconsistency = CheckConsistency(1); + ClearSsim(); + Copy(reference_data_[1], source_data_[0]); + Blur(reference_data_[1], reference_stride_, 8); + CheckConsistency(0); + inconsistency2 = CheckConsistency(1); + + EXPECT_LT(inconsistency, inconsistency2) + << "Stronger Blur should produce more inconsistency."; +} +#endif // CONFIG_VP9_ENCODER + +using std::tr1::make_tuple; + +//------------------------------------------------------------------------------ +// C functions + +#if CONFIG_VP9_ENCODER +const ConsistencyParam c_vp9_tests[] = { + make_tuple(320, 240), make_tuple(318, 242), make_tuple(318, 238), +}; +INSTANTIATE_TEST_CASE_P(C, ConsistencyVP9Test, + ::testing::ValuesIn(c_vp9_tests)); +#endif + +} // namespace diff --git a/test/convolve_test.cc b/test/convolve_test.cc new file mode 100644 index 0000000..70f0b11 --- /dev/null +++ b/test/convolve_test.cc @@ -0,0 +1,1380 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include + +#include "third_party/googletest/src/include/gtest/gtest.h" + +#include "./vp9_rtcd.h" +#include "./vpx_config.h" +#include "./vpx_dsp_rtcd.h" +#include "test/acm_random.h" +#include "test/clear_system_state.h" +#include "test/register_state_check.h" +#include "test/util.h" +#include "vp9/common/vp9_common.h" +#include "vp9/common/vp9_filter.h" +#include "vpx_dsp/vpx_dsp_common.h" +#include "vpx_dsp/vpx_filter.h" +#include "vpx_mem/vpx_mem.h" +#include "vpx_ports/mem.h" +#include "vpx_ports/vpx_timer.h" + +namespace { + +static const unsigned int kMaxDimension = 64; + +typedef void (*ConvolveFunc)(const uint8_t *src, ptrdiff_t src_stride, + uint8_t *dst, ptrdiff_t dst_stride, + const InterpKernel *filter, int x0_q4, + int x_step_q4, int y0_q4, int y_step_q4, int w, + int h); + +typedef void (*WrapperFilterBlock2d8Func)( + const uint8_t *src_ptr, const unsigned int src_stride, + const int16_t *hfilter, const int16_t *vfilter, uint8_t *dst_ptr, + unsigned int dst_stride, unsigned int output_width, + unsigned int output_height, int use_highbd); + +struct ConvolveFunctions { + ConvolveFunctions(ConvolveFunc copy, ConvolveFunc avg, ConvolveFunc h8, + ConvolveFunc h8_avg, ConvolveFunc v8, ConvolveFunc v8_avg, + ConvolveFunc hv8, ConvolveFunc hv8_avg, ConvolveFunc sh8, + ConvolveFunc sh8_avg, ConvolveFunc sv8, + ConvolveFunc sv8_avg, ConvolveFunc shv8, + ConvolveFunc shv8_avg, int bd) + : use_highbd_(bd) { + copy_[0] = copy; + copy_[1] = avg; + h8_[0] = h8; + h8_[1] = h8_avg; + v8_[0] = v8; + v8_[1] = v8_avg; + hv8_[0] = hv8; + hv8_[1] = hv8_avg; + sh8_[0] = sh8; + sh8_[1] = sh8_avg; + sv8_[0] = sv8; + sv8_[1] = sv8_avg; + shv8_[0] = shv8; + shv8_[1] = shv8_avg; + } + + ConvolveFunc copy_[2]; + ConvolveFunc h8_[2]; + ConvolveFunc v8_[2]; + ConvolveFunc hv8_[2]; + ConvolveFunc sh8_[2]; // scaled horiz + ConvolveFunc sv8_[2]; // scaled vert + ConvolveFunc shv8_[2]; // scaled horiz/vert + int use_highbd_; // 0 if high bitdepth not used, else the actual bit depth. +}; + +typedef std::tr1::tuple ConvolveParam; + +#define ALL_SIZES(convolve_fn) \ + make_tuple(4, 4, &convolve_fn), make_tuple(8, 4, &convolve_fn), \ + make_tuple(4, 8, &convolve_fn), make_tuple(8, 8, &convolve_fn), \ + make_tuple(16, 8, &convolve_fn), make_tuple(8, 16, &convolve_fn), \ + make_tuple(16, 16, &convolve_fn), make_tuple(32, 16, &convolve_fn), \ + make_tuple(16, 32, &convolve_fn), make_tuple(32, 32, &convolve_fn), \ + make_tuple(64, 32, &convolve_fn), make_tuple(32, 64, &convolve_fn), \ + make_tuple(64, 64, &convolve_fn) + +// Reference 8-tap subpixel filter, slightly modified to fit into this test. +#define VP9_FILTER_WEIGHT 128 +#define VP9_FILTER_SHIFT 7 +uint8_t clip_pixel(int x) { return x < 0 ? 0 : x > 255 ? 255 : x; } + +void filter_block2d_8_c(const uint8_t *src_ptr, const unsigned int src_stride, + const int16_t *hfilter, const int16_t *vfilter, + uint8_t *dst_ptr, unsigned int dst_stride, + unsigned int output_width, unsigned int output_height) { + // Between passes, we use an intermediate buffer whose height is extended to + // have enough horizontally filtered values as input for the vertical pass. + // This buffer is allocated to be big enough for the largest block type we + // support. + const int kInterp_Extend = 4; + const unsigned int intermediate_height = + (kInterp_Extend - 1) + output_height + kInterp_Extend; + unsigned int i, j; + + // Size of intermediate_buffer is max_intermediate_height * filter_max_width, + // where max_intermediate_height = (kInterp_Extend - 1) + filter_max_height + // + kInterp_Extend + // = 3 + 16 + 4 + // = 23 + // and filter_max_width = 16 + // + uint8_t intermediate_buffer[71 * kMaxDimension]; + const int intermediate_next_stride = + 1 - static_cast(intermediate_height * output_width); + + // Horizontal pass (src -> transposed intermediate). + uint8_t *output_ptr = intermediate_buffer; + const int src_next_row_stride = src_stride - output_width; + src_ptr -= (kInterp_Extend - 1) * src_stride + (kInterp_Extend - 1); + for (i = 0; i < intermediate_height; ++i) { + for (j = 0; j < output_width; ++j) { + // Apply filter... + const int temp = (src_ptr[0] * hfilter[0]) + (src_ptr[1] * hfilter[1]) + + (src_ptr[2] * hfilter[2]) + (src_ptr[3] * hfilter[3]) + + (src_ptr[4] * hfilter[4]) + (src_ptr[5] * hfilter[5]) + + (src_ptr[6] * hfilter[6]) + (src_ptr[7] * hfilter[7]) + + (VP9_FILTER_WEIGHT >> 1); // Rounding + + // Normalize back to 0-255... + *output_ptr = clip_pixel(temp >> VP9_FILTER_SHIFT); + ++src_ptr; + output_ptr += intermediate_height; + } + src_ptr += src_next_row_stride; + output_ptr += intermediate_next_stride; + } + + // Vertical pass (transposed intermediate -> dst). + src_ptr = intermediate_buffer; + const int dst_next_row_stride = dst_stride - output_width; + for (i = 0; i < output_height; ++i) { + for (j = 0; j < output_width; ++j) { + // Apply filter... + const int temp = (src_ptr[0] * vfilter[0]) + (src_ptr[1] * vfilter[1]) + + (src_ptr[2] * vfilter[2]) + (src_ptr[3] * vfilter[3]) + + (src_ptr[4] * vfilter[4]) + (src_ptr[5] * vfilter[5]) + + (src_ptr[6] * vfilter[6]) + (src_ptr[7] * vfilter[7]) + + (VP9_FILTER_WEIGHT >> 1); // Rounding + + // Normalize back to 0-255... + *dst_ptr++ = clip_pixel(temp >> VP9_FILTER_SHIFT); + src_ptr += intermediate_height; + } + src_ptr += intermediate_next_stride; + dst_ptr += dst_next_row_stride; + } +} + +void block2d_average_c(uint8_t *src, unsigned int src_stride, + uint8_t *output_ptr, unsigned int output_stride, + unsigned int output_width, unsigned int output_height) { + unsigned int i, j; + for (i = 0; i < output_height; ++i) { + for (j = 0; j < output_width; ++j) { + output_ptr[j] = (output_ptr[j] + src[i * src_stride + j] + 1) >> 1; + } + output_ptr += output_stride; + } +} + +void filter_average_block2d_8_c(const uint8_t *src_ptr, + const unsigned int src_stride, + const int16_t *hfilter, const int16_t *vfilter, + uint8_t *dst_ptr, unsigned int dst_stride, + unsigned int output_width, + unsigned int output_height) { + uint8_t tmp[kMaxDimension * kMaxDimension]; + + assert(output_width <= kMaxDimension); + assert(output_height <= kMaxDimension); + filter_block2d_8_c(src_ptr, src_stride, hfilter, vfilter, tmp, 64, + output_width, output_height); + block2d_average_c(tmp, 64, dst_ptr, dst_stride, output_width, output_height); +} + +#if CONFIG_VP9_HIGHBITDEPTH +void highbd_filter_block2d_8_c(const uint16_t *src_ptr, + const unsigned int src_stride, + const int16_t *hfilter, const int16_t *vfilter, + uint16_t *dst_ptr, unsigned int dst_stride, + unsigned int output_width, + unsigned int output_height, int bd) { + // Between passes, we use an intermediate buffer whose height is extended to + // have enough horizontally filtered values as input for the vertical pass. + // This buffer is allocated to be big enough for the largest block type we + // support. + const int kInterp_Extend = 4; + const unsigned int intermediate_height = + (kInterp_Extend - 1) + output_height + kInterp_Extend; + + /* Size of intermediate_buffer is max_intermediate_height * filter_max_width, + * where max_intermediate_height = (kInterp_Extend - 1) + filter_max_height + * + kInterp_Extend + * = 3 + 16 + 4 + * = 23 + * and filter_max_width = 16 + */ + uint16_t intermediate_buffer[71 * kMaxDimension]; + const int intermediate_next_stride = + 1 - static_cast(intermediate_height * output_width); + + // Horizontal pass (src -> transposed intermediate). + { + uint16_t *output_ptr = intermediate_buffer; + const int src_next_row_stride = src_stride - output_width; + unsigned int i, j; + src_ptr -= (kInterp_Extend - 1) * src_stride + (kInterp_Extend - 1); + for (i = 0; i < intermediate_height; ++i) { + for (j = 0; j < output_width; ++j) { + // Apply filter... + const int temp = (src_ptr[0] * hfilter[0]) + (src_ptr[1] * hfilter[1]) + + (src_ptr[2] * hfilter[2]) + (src_ptr[3] * hfilter[3]) + + (src_ptr[4] * hfilter[4]) + (src_ptr[5] * hfilter[5]) + + (src_ptr[6] * hfilter[6]) + (src_ptr[7] * hfilter[7]) + + (VP9_FILTER_WEIGHT >> 1); // Rounding + + // Normalize back to 0-255... + *output_ptr = clip_pixel_highbd(temp >> VP9_FILTER_SHIFT, bd); + ++src_ptr; + output_ptr += intermediate_height; + } + src_ptr += src_next_row_stride; + output_ptr += intermediate_next_stride; + } + } + + // Vertical pass (transposed intermediate -> dst). + { + uint16_t *src_ptr = intermediate_buffer; + const int dst_next_row_stride = dst_stride - output_width; + unsigned int i, j; + for (i = 0; i < output_height; ++i) { + for (j = 0; j < output_width; ++j) { + // Apply filter... + const int temp = (src_ptr[0] * vfilter[0]) + (src_ptr[1] * vfilter[1]) + + (src_ptr[2] * vfilter[2]) + (src_ptr[3] * vfilter[3]) + + (src_ptr[4] * vfilter[4]) + (src_ptr[5] * vfilter[5]) + + (src_ptr[6] * vfilter[6]) + (src_ptr[7] * vfilter[7]) + + (VP9_FILTER_WEIGHT >> 1); // Rounding + + // Normalize back to 0-255... + *dst_ptr++ = clip_pixel_highbd(temp >> VP9_FILTER_SHIFT, bd); + src_ptr += intermediate_height; + } + src_ptr += intermediate_next_stride; + dst_ptr += dst_next_row_stride; + } + } +} + +void highbd_block2d_average_c(uint16_t *src, unsigned int src_stride, + uint16_t *output_ptr, unsigned int output_stride, + unsigned int output_width, + unsigned int output_height) { + unsigned int i, j; + for (i = 0; i < output_height; ++i) { + for (j = 0; j < output_width; ++j) { + output_ptr[j] = (output_ptr[j] + src[i * src_stride + j] + 1) >> 1; + } + output_ptr += output_stride; + } +} + +void highbd_filter_average_block2d_8_c( + const uint16_t *src_ptr, const unsigned int src_stride, + const int16_t *hfilter, const int16_t *vfilter, uint16_t *dst_ptr, + unsigned int dst_stride, unsigned int output_width, + unsigned int output_height, int bd) { + uint16_t tmp[kMaxDimension * kMaxDimension]; + + assert(output_width <= kMaxDimension); + assert(output_height <= kMaxDimension); + highbd_filter_block2d_8_c(src_ptr, src_stride, hfilter, vfilter, tmp, 64, + output_width, output_height, bd); + highbd_block2d_average_c(tmp, 64, dst_ptr, dst_stride, output_width, + output_height); +} +#endif // CONFIG_VP9_HIGHBITDEPTH + +void wrapper_filter_average_block2d_8_c( + const uint8_t *src_ptr, const unsigned int src_stride, + const int16_t *hfilter, const int16_t *vfilter, uint8_t *dst_ptr, + unsigned int dst_stride, unsigned int output_width, + unsigned int output_height, int use_highbd) { +#if CONFIG_VP9_HIGHBITDEPTH + if (use_highbd == 0) { + filter_average_block2d_8_c(src_ptr, src_stride, hfilter, vfilter, dst_ptr, + dst_stride, output_width, output_height); + } else { + highbd_filter_average_block2d_8_c(CAST_TO_SHORTPTR(src_ptr), src_stride, + hfilter, vfilter, + CAST_TO_SHORTPTR(dst_ptr), dst_stride, + output_width, output_height, use_highbd); + } +#else + ASSERT_EQ(0, use_highbd); + filter_average_block2d_8_c(src_ptr, src_stride, hfilter, vfilter, dst_ptr, + dst_stride, output_width, output_height); +#endif +} + +void wrapper_filter_block2d_8_c(const uint8_t *src_ptr, + const unsigned int src_stride, + const int16_t *hfilter, const int16_t *vfilter, + uint8_t *dst_ptr, unsigned int dst_stride, + unsigned int output_width, + unsigned int output_height, int use_highbd) { +#if CONFIG_VP9_HIGHBITDEPTH + if (use_highbd == 0) { + filter_block2d_8_c(src_ptr, src_stride, hfilter, vfilter, dst_ptr, + dst_stride, output_width, output_height); + } else { + highbd_filter_block2d_8_c(CAST_TO_SHORTPTR(src_ptr), src_stride, hfilter, + vfilter, CAST_TO_SHORTPTR(dst_ptr), dst_stride, + output_width, output_height, use_highbd); + } +#else + ASSERT_EQ(0, use_highbd); + filter_block2d_8_c(src_ptr, src_stride, hfilter, vfilter, dst_ptr, dst_stride, + output_width, output_height); +#endif +} + +class ConvolveTest : public ::testing::TestWithParam { + public: + static void SetUpTestCase() { + // Force input_ to be unaligned, output to be 16 byte aligned. + input_ = reinterpret_cast( + vpx_memalign(kDataAlignment, kInputBufferSize + 1)) + + 1; + output_ = reinterpret_cast( + vpx_memalign(kDataAlignment, kOutputBufferSize)); + output_ref_ = reinterpret_cast( + vpx_memalign(kDataAlignment, kOutputBufferSize)); +#if CONFIG_VP9_HIGHBITDEPTH + input16_ = reinterpret_cast(vpx_memalign( + kDataAlignment, (kInputBufferSize + 1) * sizeof(uint16_t))) + + 1; + output16_ = reinterpret_cast( + vpx_memalign(kDataAlignment, (kOutputBufferSize) * sizeof(uint16_t))); + output16_ref_ = reinterpret_cast( + vpx_memalign(kDataAlignment, (kOutputBufferSize) * sizeof(uint16_t))); +#endif + } + + virtual void TearDown() { libvpx_test::ClearSystemState(); } + + static void TearDownTestCase() { + vpx_free(input_ - 1); + input_ = NULL; + vpx_free(output_); + output_ = NULL; + vpx_free(output_ref_); + output_ref_ = NULL; +#if CONFIG_VP9_HIGHBITDEPTH + vpx_free(input16_ - 1); + input16_ = NULL; + vpx_free(output16_); + output16_ = NULL; + vpx_free(output16_ref_); + output16_ref_ = NULL; +#endif + } + + protected: + static const int kDataAlignment = 16; + static const int kOuterBlockSize = 256; + static const int kInputStride = kOuterBlockSize; + static const int kOutputStride = kOuterBlockSize; + static const int kInputBufferSize = kOuterBlockSize * kOuterBlockSize; + static const int kOutputBufferSize = kOuterBlockSize * kOuterBlockSize; + + int Width() const { return GET_PARAM(0); } + int Height() const { return GET_PARAM(1); } + int BorderLeft() const { + const int center = (kOuterBlockSize - Width()) / 2; + return (center + (kDataAlignment - 1)) & ~(kDataAlignment - 1); + } + int BorderTop() const { return (kOuterBlockSize - Height()) / 2; } + + bool IsIndexInBorder(int i) { + return (i < BorderTop() * kOuterBlockSize || + i >= (BorderTop() + Height()) * kOuterBlockSize || + i % kOuterBlockSize < BorderLeft() || + i % kOuterBlockSize >= (BorderLeft() + Width())); + } + + virtual void SetUp() { + UUT_ = GET_PARAM(2); +#if CONFIG_VP9_HIGHBITDEPTH + if (UUT_->use_highbd_ != 0) { + mask_ = (1 << UUT_->use_highbd_) - 1; + } else { + mask_ = 255; + } +#endif + /* Set up guard blocks for an inner block centered in the outer block */ + for (int i = 0; i < kOutputBufferSize; ++i) { + if (IsIndexInBorder(i)) { + output_[i] = 255; + } else { + output_[i] = 0; + } + } + + ::libvpx_test::ACMRandom prng; + for (int i = 0; i < kInputBufferSize; ++i) { + if (i & 1) { + input_[i] = 255; +#if CONFIG_VP9_HIGHBITDEPTH + input16_[i] = mask_; +#endif + } else { + input_[i] = prng.Rand8Extremes(); +#if CONFIG_VP9_HIGHBITDEPTH + input16_[i] = prng.Rand16() & mask_; +#endif + } + } + } + + void SetConstantInput(int value) { + memset(input_, value, kInputBufferSize); +#if CONFIG_VP9_HIGHBITDEPTH + vpx_memset16(input16_, value, kInputBufferSize); +#endif + } + + void CopyOutputToRef() { + memcpy(output_ref_, output_, kOutputBufferSize); +#if CONFIG_VP9_HIGHBITDEPTH + memcpy(output16_ref_, output16_, + kOutputBufferSize * sizeof(output16_ref_[0])); +#endif + } + + void CheckGuardBlocks() { + for (int i = 0; i < kOutputBufferSize; ++i) { + if (IsIndexInBorder(i)) EXPECT_EQ(255, output_[i]); + } + } + + uint8_t *input() const { + const int offset = BorderTop() * kOuterBlockSize + BorderLeft(); +#if CONFIG_VP9_HIGHBITDEPTH + if (UUT_->use_highbd_ == 0) { + return input_ + offset; + } else { + return CAST_TO_BYTEPTR(input16_ + offset); + } +#else + return input_ + offset; +#endif + } + + uint8_t *output() const { + const int offset = BorderTop() * kOuterBlockSize + BorderLeft(); +#if CONFIG_VP9_HIGHBITDEPTH + if (UUT_->use_highbd_ == 0) { + return output_ + offset; + } else { + return CAST_TO_BYTEPTR(output16_ + offset); + } +#else + return output_ + offset; +#endif + } + + uint8_t *output_ref() const { + const int offset = BorderTop() * kOuterBlockSize + BorderLeft(); +#if CONFIG_VP9_HIGHBITDEPTH + if (UUT_->use_highbd_ == 0) { + return output_ref_ + offset; + } else { + return CAST_TO_BYTEPTR(output16_ref_ + offset); + } +#else + return output_ref_ + offset; +#endif + } + + uint16_t lookup(uint8_t *list, int index) const { +#if CONFIG_VP9_HIGHBITDEPTH + if (UUT_->use_highbd_ == 0) { + return list[index]; + } else { + return CAST_TO_SHORTPTR(list)[index]; + } +#else + return list[index]; +#endif + } + + void assign_val(uint8_t *list, int index, uint16_t val) const { +#if CONFIG_VP9_HIGHBITDEPTH + if (UUT_->use_highbd_ == 0) { + list[index] = (uint8_t)val; + } else { + CAST_TO_SHORTPTR(list)[index] = val; + } +#else + list[index] = (uint8_t)val; +#endif + } + + const ConvolveFunctions *UUT_; + static uint8_t *input_; + static uint8_t *output_; + static uint8_t *output_ref_; +#if CONFIG_VP9_HIGHBITDEPTH + static uint16_t *input16_; + static uint16_t *output16_; + static uint16_t *output16_ref_; + int mask_; +#endif +}; + +uint8_t *ConvolveTest::input_ = NULL; +uint8_t *ConvolveTest::output_ = NULL; +uint8_t *ConvolveTest::output_ref_ = NULL; +#if CONFIG_VP9_HIGHBITDEPTH +uint16_t *ConvolveTest::input16_ = NULL; +uint16_t *ConvolveTest::output16_ = NULL; +uint16_t *ConvolveTest::output16_ref_ = NULL; +#endif + +TEST_P(ConvolveTest, GuardBlocks) { CheckGuardBlocks(); } + +TEST_P(ConvolveTest, DISABLED_Copy_Speed) { + const uint8_t *const in = input(); + uint8_t *const out = output(); + const int kNumTests = 5000000; + const int width = Width(); + const int height = Height(); + vpx_usec_timer timer; + + vpx_usec_timer_start(&timer); + for (int n = 0; n < kNumTests; ++n) { + UUT_->copy_[0](in, kInputStride, out, kOutputStride, NULL, 0, 0, 0, 0, + width, height); + } + vpx_usec_timer_mark(&timer); + + const int elapsed_time = static_cast(vpx_usec_timer_elapsed(&timer)); + printf("convolve_copy_%dx%d_%d: %d us\n", width, height, + UUT_->use_highbd_ ? UUT_->use_highbd_ : 8, elapsed_time); +} + +TEST_P(ConvolveTest, DISABLED_Avg_Speed) { + const uint8_t *const in = input(); + uint8_t *const out = output(); + const int kNumTests = 5000000; + const int width = Width(); + const int height = Height(); + vpx_usec_timer timer; + + vpx_usec_timer_start(&timer); + for (int n = 0; n < kNumTests; ++n) { + UUT_->copy_[1](in, kInputStride, out, kOutputStride, NULL, 0, 0, 0, 0, + width, height); + } + vpx_usec_timer_mark(&timer); + + const int elapsed_time = static_cast(vpx_usec_timer_elapsed(&timer)); + printf("convolve_avg_%dx%d_%d: %d us\n", width, height, + UUT_->use_highbd_ ? UUT_->use_highbd_ : 8, elapsed_time); +} + +TEST_P(ConvolveTest, DISABLED_Scale_Speed) { + const uint8_t *const in = input(); + uint8_t *const out = output(); + const InterpKernel *const eighttap = vp9_filter_kernels[EIGHTTAP]; + const int kNumTests = 5000000; + const int width = Width(); + const int height = Height(); + vpx_usec_timer timer; + + SetConstantInput(127); + + vpx_usec_timer_start(&timer); + for (int n = 0; n < kNumTests; ++n) { + UUT_->shv8_[0](in, kInputStride, out, kOutputStride, eighttap, 8, 16, 8, 16, + width, height); + } + vpx_usec_timer_mark(&timer); + + const int elapsed_time = static_cast(vpx_usec_timer_elapsed(&timer)); + printf("convolve_scale_%dx%d_%d: %d us\n", width, height, + UUT_->use_highbd_ ? UUT_->use_highbd_ : 8, elapsed_time); +} + +TEST_P(ConvolveTest, DISABLED_8Tap_Speed) { + const uint8_t *const in = input(); + uint8_t *const out = output(); + const InterpKernel *const eighttap = vp9_filter_kernels[EIGHTTAP_SHARP]; + const int kNumTests = 5000000; + const int width = Width(); + const int height = Height(); + vpx_usec_timer timer; + + SetConstantInput(127); + + vpx_usec_timer_start(&timer); + for (int n = 0; n < kNumTests; ++n) { + UUT_->hv8_[0](in, kInputStride, out, kOutputStride, eighttap, 8, 16, 8, 16, + width, height); + } + vpx_usec_timer_mark(&timer); + + const int elapsed_time = static_cast(vpx_usec_timer_elapsed(&timer)); + printf("convolve8_%dx%d_%d: %d us\n", width, height, + UUT_->use_highbd_ ? UUT_->use_highbd_ : 8, elapsed_time); +} + +TEST_P(ConvolveTest, DISABLED_8Tap_Horiz_Speed) { + const uint8_t *const in = input(); + uint8_t *const out = output(); + const InterpKernel *const eighttap = vp9_filter_kernels[EIGHTTAP_SHARP]; + const int kNumTests = 5000000; + const int width = Width(); + const int height = Height(); + vpx_usec_timer timer; + + SetConstantInput(127); + + vpx_usec_timer_start(&timer); + for (int n = 0; n < kNumTests; ++n) { + UUT_->h8_[0](in, kInputStride, out, kOutputStride, eighttap, 8, 16, 8, 16, + width, height); + } + vpx_usec_timer_mark(&timer); + + const int elapsed_time = static_cast(vpx_usec_timer_elapsed(&timer)); + printf("convolve8_horiz_%dx%d_%d: %d us\n", width, height, + UUT_->use_highbd_ ? UUT_->use_highbd_ : 8, elapsed_time); +} + +TEST_P(ConvolveTest, DISABLED_8Tap_Vert_Speed) { + const uint8_t *const in = input(); + uint8_t *const out = output(); + const InterpKernel *const eighttap = vp9_filter_kernels[EIGHTTAP_SHARP]; + const int kNumTests = 5000000; + const int width = Width(); + const int height = Height(); + vpx_usec_timer timer; + + SetConstantInput(127); + + vpx_usec_timer_start(&timer); + for (int n = 0; n < kNumTests; ++n) { + UUT_->v8_[0](in, kInputStride, out, kOutputStride, eighttap, 8, 16, 8, 16, + width, height); + } + vpx_usec_timer_mark(&timer); + + const int elapsed_time = static_cast(vpx_usec_timer_elapsed(&timer)); + printf("convolve8_vert_%dx%d_%d: %d us\n", width, height, + UUT_->use_highbd_ ? UUT_->use_highbd_ : 8, elapsed_time); +} + +TEST_P(ConvolveTest, DISABLED_8Tap_Avg_Speed) { + const uint8_t *const in = input(); + uint8_t *const out = output(); + const InterpKernel *const eighttap = vp9_filter_kernels[EIGHTTAP_SHARP]; + const int kNumTests = 5000000; + const int width = Width(); + const int height = Height(); + vpx_usec_timer timer; + + SetConstantInput(127); + + vpx_usec_timer_start(&timer); + for (int n = 0; n < kNumTests; ++n) { + UUT_->hv8_[1](in, kInputStride, out, kOutputStride, eighttap, 8, 16, 8, 16, + width, height); + } + vpx_usec_timer_mark(&timer); + + const int elapsed_time = static_cast(vpx_usec_timer_elapsed(&timer)); + printf("convolve8_avg_%dx%d_%d: %d us\n", width, height, + UUT_->use_highbd_ ? UUT_->use_highbd_ : 8, elapsed_time); +} + +TEST_P(ConvolveTest, Copy) { + uint8_t *const in = input(); + uint8_t *const out = output(); + + ASM_REGISTER_STATE_CHECK(UUT_->copy_[0](in, kInputStride, out, kOutputStride, + NULL, 0, 0, 0, 0, Width(), Height())); + + CheckGuardBlocks(); + + for (int y = 0; y < Height(); ++y) { + for (int x = 0; x < Width(); ++x) + ASSERT_EQ(lookup(out, y * kOutputStride + x), + lookup(in, y * kInputStride + x)) + << "(" << x << "," << y << ")"; + } +} + +TEST_P(ConvolveTest, Avg) { + uint8_t *const in = input(); + uint8_t *const out = output(); + uint8_t *const out_ref = output_ref(); + CopyOutputToRef(); + + ASM_REGISTER_STATE_CHECK(UUT_->copy_[1](in, kInputStride, out, kOutputStride, + NULL, 0, 0, 0, 0, Width(), Height())); + + CheckGuardBlocks(); + + for (int y = 0; y < Height(); ++y) { + for (int x = 0; x < Width(); ++x) + ASSERT_EQ(lookup(out, y * kOutputStride + x), + ROUND_POWER_OF_TWO(lookup(in, y * kInputStride + x) + + lookup(out_ref, y * kOutputStride + x), + 1)) + << "(" << x << "," << y << ")"; + } +} + +TEST_P(ConvolveTest, CopyHoriz) { + uint8_t *const in = input(); + uint8_t *const out = output(); + + ASM_REGISTER_STATE_CHECK(UUT_->sh8_[0](in, kInputStride, out, kOutputStride, + vp9_filter_kernels[0], 0, 16, 0, 16, + Width(), Height())); + + CheckGuardBlocks(); + + for (int y = 0; y < Height(); ++y) { + for (int x = 0; x < Width(); ++x) + ASSERT_EQ(lookup(out, y * kOutputStride + x), + lookup(in, y * kInputStride + x)) + << "(" << x << "," << y << ")"; + } +} + +TEST_P(ConvolveTest, CopyVert) { + uint8_t *const in = input(); + uint8_t *const out = output(); + + ASM_REGISTER_STATE_CHECK(UUT_->sv8_[0](in, kInputStride, out, kOutputStride, + vp9_filter_kernels[0], 0, 16, 0, 16, + Width(), Height())); + + CheckGuardBlocks(); + + for (int y = 0; y < Height(); ++y) { + for (int x = 0; x < Width(); ++x) + ASSERT_EQ(lookup(out, y * kOutputStride + x), + lookup(in, y * kInputStride + x)) + << "(" << x << "," << y << ")"; + } +} + +TEST_P(ConvolveTest, Copy2D) { + uint8_t *const in = input(); + uint8_t *const out = output(); + + ASM_REGISTER_STATE_CHECK(UUT_->shv8_[0](in, kInputStride, out, kOutputStride, + vp9_filter_kernels[0], 0, 16, 0, 16, + Width(), Height())); + + CheckGuardBlocks(); + + for (int y = 0; y < Height(); ++y) { + for (int x = 0; x < Width(); ++x) + ASSERT_EQ(lookup(out, y * kOutputStride + x), + lookup(in, y * kInputStride + x)) + << "(" << x << "," << y << ")"; + } +} + +const int kNumFilterBanks = 4; +const int kNumFilters = 16; + +TEST(ConvolveTest, FiltersWontSaturateWhenAddedPairwise) { + for (int filter_bank = 0; filter_bank < kNumFilterBanks; ++filter_bank) { + const InterpKernel *filters = + vp9_filter_kernels[static_cast(filter_bank)]; + for (int i = 0; i < kNumFilters; i++) { + const int p0 = filters[i][0] + filters[i][1]; + const int p1 = filters[i][2] + filters[i][3]; + const int p2 = filters[i][4] + filters[i][5]; + const int p3 = filters[i][6] + filters[i][7]; + EXPECT_LE(p0, 128); + EXPECT_LE(p1, 128); + EXPECT_LE(p2, 128); + EXPECT_LE(p3, 128); + EXPECT_LE(p0 + p3, 128); + EXPECT_LE(p0 + p3 + p1, 128); + EXPECT_LE(p0 + p3 + p1 + p2, 128); + EXPECT_EQ(p0 + p1 + p2 + p3, 128); + } + } +} + +const WrapperFilterBlock2d8Func wrapper_filter_block2d_8[2] = { + wrapper_filter_block2d_8_c, wrapper_filter_average_block2d_8_c +}; + +TEST_P(ConvolveTest, MatchesReferenceSubpixelFilter) { + for (int i = 0; i < 2; ++i) { + uint8_t *const in = input(); + uint8_t *const out = output(); +#if CONFIG_VP9_HIGHBITDEPTH + uint8_t ref8[kOutputStride * kMaxDimension]; + uint16_t ref16[kOutputStride * kMaxDimension]; + uint8_t *ref; + if (UUT_->use_highbd_ == 0) { + ref = ref8; + } else { + ref = CAST_TO_BYTEPTR(ref16); + } +#else + uint8_t ref[kOutputStride * kMaxDimension]; +#endif + + // Populate ref and out with some random data + ::libvpx_test::ACMRandom prng; + for (int y = 0; y < Height(); ++y) { + for (int x = 0; x < Width(); ++x) { + uint16_t r; +#if CONFIG_VP9_HIGHBITDEPTH + if (UUT_->use_highbd_ == 0 || UUT_->use_highbd_ == 8) { + r = prng.Rand8Extremes(); + } else { + r = prng.Rand16() & mask_; + } +#else + r = prng.Rand8Extremes(); +#endif + + assign_val(out, y * kOutputStride + x, r); + assign_val(ref, y * kOutputStride + x, r); + } + } + + for (int filter_bank = 0; filter_bank < kNumFilterBanks; ++filter_bank) { + const InterpKernel *filters = + vp9_filter_kernels[static_cast(filter_bank)]; + + for (int filter_x = 0; filter_x < kNumFilters; ++filter_x) { + for (int filter_y = 0; filter_y < kNumFilters; ++filter_y) { + wrapper_filter_block2d_8[i](in, kInputStride, filters[filter_x], + filters[filter_y], ref, kOutputStride, + Width(), Height(), UUT_->use_highbd_); + + if (filter_x && filter_y) + ASM_REGISTER_STATE_CHECK( + UUT_->hv8_[i](in, kInputStride, out, kOutputStride, filters, + filter_x, 16, filter_y, 16, Width(), Height())); + else if (filter_y) + ASM_REGISTER_STATE_CHECK( + UUT_->v8_[i](in, kInputStride, out, kOutputStride, filters, 0, + 16, filter_y, 16, Width(), Height())); + else if (filter_x) + ASM_REGISTER_STATE_CHECK( + UUT_->h8_[i](in, kInputStride, out, kOutputStride, filters, + filter_x, 16, 0, 16, Width(), Height())); + else + ASM_REGISTER_STATE_CHECK(UUT_->copy_[i](in, kInputStride, out, + kOutputStride, NULL, 0, 0, + 0, 0, Width(), Height())); + + CheckGuardBlocks(); + + for (int y = 0; y < Height(); ++y) { + for (int x = 0; x < Width(); ++x) + ASSERT_EQ(lookup(ref, y * kOutputStride + x), + lookup(out, y * kOutputStride + x)) + << "mismatch at (" << x << "," << y << "), " + << "filters (" << filter_bank << "," << filter_x << "," + << filter_y << ")"; + } + } + } + } + } +} + +TEST_P(ConvolveTest, FilterExtremes) { + uint8_t *const in = input(); + uint8_t *const out = output(); +#if CONFIG_VP9_HIGHBITDEPTH + uint8_t ref8[kOutputStride * kMaxDimension]; + uint16_t ref16[kOutputStride * kMaxDimension]; + uint8_t *ref; + if (UUT_->use_highbd_ == 0) { + ref = ref8; + } else { + ref = CAST_TO_BYTEPTR(ref16); + } +#else + uint8_t ref[kOutputStride * kMaxDimension]; +#endif + + // Populate ref and out with some random data + ::libvpx_test::ACMRandom prng; + for (int y = 0; y < Height(); ++y) { + for (int x = 0; x < Width(); ++x) { + uint16_t r; +#if CONFIG_VP9_HIGHBITDEPTH + if (UUT_->use_highbd_ == 0 || UUT_->use_highbd_ == 8) { + r = prng.Rand8Extremes(); + } else { + r = prng.Rand16() & mask_; + } +#else + r = prng.Rand8Extremes(); +#endif + assign_val(out, y * kOutputStride + x, r); + assign_val(ref, y * kOutputStride + x, r); + } + } + + for (int axis = 0; axis < 2; axis++) { + int seed_val = 0; + while (seed_val < 256) { + for (int y = 0; y < 8; ++y) { + for (int x = 0; x < 8; ++x) { +#if CONFIG_VP9_HIGHBITDEPTH + assign_val(in, y * kOutputStride + x - SUBPEL_TAPS / 2 + 1, + ((seed_val >> (axis ? y : x)) & 1) * mask_); +#else + assign_val(in, y * kOutputStride + x - SUBPEL_TAPS / 2 + 1, + ((seed_val >> (axis ? y : x)) & 1) * 255); +#endif + if (axis) seed_val++; + } + if (axis) { + seed_val -= 8; + } else { + seed_val++; + } + } + if (axis) seed_val += 8; + + for (int filter_bank = 0; filter_bank < kNumFilterBanks; ++filter_bank) { + const InterpKernel *filters = + vp9_filter_kernels[static_cast(filter_bank)]; + for (int filter_x = 0; filter_x < kNumFilters; ++filter_x) { + for (int filter_y = 0; filter_y < kNumFilters; ++filter_y) { + wrapper_filter_block2d_8_c(in, kInputStride, filters[filter_x], + filters[filter_y], ref, kOutputStride, + Width(), Height(), UUT_->use_highbd_); + if (filter_x && filter_y) + ASM_REGISTER_STATE_CHECK( + UUT_->hv8_[0](in, kInputStride, out, kOutputStride, filters, + filter_x, 16, filter_y, 16, Width(), Height())); + else if (filter_y) + ASM_REGISTER_STATE_CHECK( + UUT_->v8_[0](in, kInputStride, out, kOutputStride, filters, 0, + 16, filter_y, 16, Width(), Height())); + else if (filter_x) + ASM_REGISTER_STATE_CHECK( + UUT_->h8_[0](in, kInputStride, out, kOutputStride, filters, + filter_x, 16, 0, 16, Width(), Height())); + else + ASM_REGISTER_STATE_CHECK(UUT_->copy_[0](in, kInputStride, out, + kOutputStride, NULL, 0, 0, + 0, 0, Width(), Height())); + + for (int y = 0; y < Height(); ++y) { + for (int x = 0; x < Width(); ++x) + ASSERT_EQ(lookup(ref, y * kOutputStride + x), + lookup(out, y * kOutputStride + x)) + << "mismatch at (" << x << "," << y << "), " + << "filters (" << filter_bank << "," << filter_x << "," + << filter_y << ")"; + } + } + } + } + } + } +} + +/* This test exercises that enough rows and columns are filtered with every + possible initial fractional positions and scaling steps. */ +#if !CONFIG_VP9_HIGHBITDEPTH +static const ConvolveFunc scaled_2d_c_funcs[2] = { vpx_scaled_2d_c, + vpx_scaled_avg_2d_c }; + +TEST_P(ConvolveTest, CheckScalingFiltering) { + uint8_t *const in = input(); + uint8_t *const out = output(); + uint8_t ref[kOutputStride * kMaxDimension]; + + ::libvpx_test::ACMRandom prng; + for (int y = 0; y < Height(); ++y) { + for (int x = 0; x < Width(); ++x) { + const uint16_t r = prng.Rand8Extremes(); + assign_val(in, y * kInputStride + x, r); + } + } + + for (int i = 0; i < 2; ++i) { + for (INTERP_FILTER filter_type = 0; filter_type < 4; ++filter_type) { + const InterpKernel *const eighttap = vp9_filter_kernels[filter_type]; + for (int frac = 0; frac < 16; ++frac) { + for (int step = 1; step <= 32; ++step) { + /* Test the horizontal and vertical filters in combination. */ + scaled_2d_c_funcs[i](in, kInputStride, ref, kOutputStride, eighttap, + frac, step, frac, step, Width(), Height()); + ASM_REGISTER_STATE_CHECK( + UUT_->shv8_[i](in, kInputStride, out, kOutputStride, eighttap, + frac, step, frac, step, Width(), Height())); + + CheckGuardBlocks(); + + for (int y = 0; y < Height(); ++y) { + for (int x = 0; x < Width(); ++x) { + ASSERT_EQ(lookup(ref, y * kOutputStride + x), + lookup(out, y * kOutputStride + x)) + << "x == " << x << ", y == " << y << ", frac == " << frac + << ", step == " << step; + } + } + } + } + } + } +} +#endif + +using std::tr1::make_tuple; + +#if CONFIG_VP9_HIGHBITDEPTH +#define WRAP(func, bd) \ + void wrap_##func##_##bd( \ + const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst, \ + ptrdiff_t dst_stride, const InterpKernel *filter, int x0_q4, \ + int x_step_q4, int y0_q4, int y_step_q4, int w, int h) { \ + vpx_highbd_##func(reinterpret_cast(src), src_stride, \ + reinterpret_cast(dst), dst_stride, filter, \ + x0_q4, x_step_q4, y0_q4, y_step_q4, w, h, bd); \ + } + +#if HAVE_SSE2 && ARCH_X86_64 +WRAP(convolve_copy_sse2, 8) +WRAP(convolve_avg_sse2, 8) +WRAP(convolve_copy_sse2, 10) +WRAP(convolve_avg_sse2, 10) +WRAP(convolve_copy_sse2, 12) +WRAP(convolve_avg_sse2, 12) +WRAP(convolve8_horiz_sse2, 8) +WRAP(convolve8_avg_horiz_sse2, 8) +WRAP(convolve8_vert_sse2, 8) +WRAP(convolve8_avg_vert_sse2, 8) +WRAP(convolve8_sse2, 8) +WRAP(convolve8_avg_sse2, 8) +WRAP(convolve8_horiz_sse2, 10) +WRAP(convolve8_avg_horiz_sse2, 10) +WRAP(convolve8_vert_sse2, 10) +WRAP(convolve8_avg_vert_sse2, 10) +WRAP(convolve8_sse2, 10) +WRAP(convolve8_avg_sse2, 10) +WRAP(convolve8_horiz_sse2, 12) +WRAP(convolve8_avg_horiz_sse2, 12) +WRAP(convolve8_vert_sse2, 12) +WRAP(convolve8_avg_vert_sse2, 12) +WRAP(convolve8_sse2, 12) +WRAP(convolve8_avg_sse2, 12) +#endif // HAVE_SSE2 && ARCH_X86_64 + +#if HAVE_AVX2 +WRAP(convolve_copy_avx2, 8) +WRAP(convolve_avg_avx2, 8) +WRAP(convolve8_horiz_avx2, 8) +WRAP(convolve8_avg_horiz_avx2, 8) +WRAP(convolve8_vert_avx2, 8) +WRAP(convolve8_avg_vert_avx2, 8) +WRAP(convolve8_avx2, 8) +WRAP(convolve8_avg_avx2, 8) + +WRAP(convolve_copy_avx2, 10) +WRAP(convolve_avg_avx2, 10) +WRAP(convolve8_avx2, 10) +WRAP(convolve8_horiz_avx2, 10) +WRAP(convolve8_vert_avx2, 10) +WRAP(convolve8_avg_avx2, 10) +WRAP(convolve8_avg_horiz_avx2, 10) +WRAP(convolve8_avg_vert_avx2, 10) + +WRAP(convolve_copy_avx2, 12) +WRAP(convolve_avg_avx2, 12) +WRAP(convolve8_avx2, 12) +WRAP(convolve8_horiz_avx2, 12) +WRAP(convolve8_vert_avx2, 12) +WRAP(convolve8_avg_avx2, 12) +WRAP(convolve8_avg_horiz_avx2, 12) +WRAP(convolve8_avg_vert_avx2, 12) +#endif // HAVE_AVX2 + +#if HAVE_NEON +WRAP(convolve_copy_neon, 8) +WRAP(convolve_avg_neon, 8) +WRAP(convolve_copy_neon, 10) +WRAP(convolve_avg_neon, 10) +WRAP(convolve_copy_neon, 12) +WRAP(convolve_avg_neon, 12) +WRAP(convolve8_horiz_neon, 8) +WRAP(convolve8_avg_horiz_neon, 8) +WRAP(convolve8_vert_neon, 8) +WRAP(convolve8_avg_vert_neon, 8) +WRAP(convolve8_neon, 8) +WRAP(convolve8_avg_neon, 8) +WRAP(convolve8_horiz_neon, 10) +WRAP(convolve8_avg_horiz_neon, 10) +WRAP(convolve8_vert_neon, 10) +WRAP(convolve8_avg_vert_neon, 10) +WRAP(convolve8_neon, 10) +WRAP(convolve8_avg_neon, 10) +WRAP(convolve8_horiz_neon, 12) +WRAP(convolve8_avg_horiz_neon, 12) +WRAP(convolve8_vert_neon, 12) +WRAP(convolve8_avg_vert_neon, 12) +WRAP(convolve8_neon, 12) +WRAP(convolve8_avg_neon, 12) +#endif // HAVE_NEON + +WRAP(convolve_copy_c, 8) +WRAP(convolve_avg_c, 8) +WRAP(convolve8_horiz_c, 8) +WRAP(convolve8_avg_horiz_c, 8) +WRAP(convolve8_vert_c, 8) +WRAP(convolve8_avg_vert_c, 8) +WRAP(convolve8_c, 8) +WRAP(convolve8_avg_c, 8) +WRAP(convolve_copy_c, 10) +WRAP(convolve_avg_c, 10) +WRAP(convolve8_horiz_c, 10) +WRAP(convolve8_avg_horiz_c, 10) +WRAP(convolve8_vert_c, 10) +WRAP(convolve8_avg_vert_c, 10) +WRAP(convolve8_c, 10) +WRAP(convolve8_avg_c, 10) +WRAP(convolve_copy_c, 12) +WRAP(convolve_avg_c, 12) +WRAP(convolve8_horiz_c, 12) +WRAP(convolve8_avg_horiz_c, 12) +WRAP(convolve8_vert_c, 12) +WRAP(convolve8_avg_vert_c, 12) +WRAP(convolve8_c, 12) +WRAP(convolve8_avg_c, 12) +#undef WRAP + +const ConvolveFunctions convolve8_c( + wrap_convolve_copy_c_8, wrap_convolve_avg_c_8, wrap_convolve8_horiz_c_8, + wrap_convolve8_avg_horiz_c_8, wrap_convolve8_vert_c_8, + wrap_convolve8_avg_vert_c_8, wrap_convolve8_c_8, wrap_convolve8_avg_c_8, + wrap_convolve8_horiz_c_8, wrap_convolve8_avg_horiz_c_8, + wrap_convolve8_vert_c_8, wrap_convolve8_avg_vert_c_8, wrap_convolve8_c_8, + wrap_convolve8_avg_c_8, 8); +const ConvolveFunctions convolve10_c( + wrap_convolve_copy_c_10, wrap_convolve_avg_c_10, wrap_convolve8_horiz_c_10, + wrap_convolve8_avg_horiz_c_10, wrap_convolve8_vert_c_10, + wrap_convolve8_avg_vert_c_10, wrap_convolve8_c_10, wrap_convolve8_avg_c_10, + wrap_convolve8_horiz_c_10, wrap_convolve8_avg_horiz_c_10, + wrap_convolve8_vert_c_10, wrap_convolve8_avg_vert_c_10, wrap_convolve8_c_10, + wrap_convolve8_avg_c_10, 10); +const ConvolveFunctions convolve12_c( + wrap_convolve_copy_c_12, wrap_convolve_avg_c_12, wrap_convolve8_horiz_c_12, + wrap_convolve8_avg_horiz_c_12, wrap_convolve8_vert_c_12, + wrap_convolve8_avg_vert_c_12, wrap_convolve8_c_12, wrap_convolve8_avg_c_12, + wrap_convolve8_horiz_c_12, wrap_convolve8_avg_horiz_c_12, + wrap_convolve8_vert_c_12, wrap_convolve8_avg_vert_c_12, wrap_convolve8_c_12, + wrap_convolve8_avg_c_12, 12); +const ConvolveParam kArrayConvolve_c[] = { + ALL_SIZES(convolve8_c), ALL_SIZES(convolve10_c), ALL_SIZES(convolve12_c) +}; + +#else +const ConvolveFunctions convolve8_c( + vpx_convolve_copy_c, vpx_convolve_avg_c, vpx_convolve8_horiz_c, + vpx_convolve8_avg_horiz_c, vpx_convolve8_vert_c, vpx_convolve8_avg_vert_c, + vpx_convolve8_c, vpx_convolve8_avg_c, vpx_scaled_horiz_c, + vpx_scaled_avg_horiz_c, vpx_scaled_vert_c, vpx_scaled_avg_vert_c, + vpx_scaled_2d_c, vpx_scaled_avg_2d_c, 0); +const ConvolveParam kArrayConvolve_c[] = { ALL_SIZES(convolve8_c) }; +#endif +INSTANTIATE_TEST_CASE_P(C, ConvolveTest, ::testing::ValuesIn(kArrayConvolve_c)); + +#if HAVE_SSE2 && ARCH_X86_64 +#if CONFIG_VP9_HIGHBITDEPTH +const ConvolveFunctions convolve8_sse2( + wrap_convolve_copy_sse2_8, wrap_convolve_avg_sse2_8, + wrap_convolve8_horiz_sse2_8, wrap_convolve8_avg_horiz_sse2_8, + wrap_convolve8_vert_sse2_8, wrap_convolve8_avg_vert_sse2_8, + wrap_convolve8_sse2_8, wrap_convolve8_avg_sse2_8, + wrap_convolve8_horiz_sse2_8, wrap_convolve8_avg_horiz_sse2_8, + wrap_convolve8_vert_sse2_8, wrap_convolve8_avg_vert_sse2_8, + wrap_convolve8_sse2_8, wrap_convolve8_avg_sse2_8, 8); +const ConvolveFunctions convolve10_sse2( + wrap_convolve_copy_sse2_10, wrap_convolve_avg_sse2_10, + wrap_convolve8_horiz_sse2_10, wrap_convolve8_avg_horiz_sse2_10, + wrap_convolve8_vert_sse2_10, wrap_convolve8_avg_vert_sse2_10, + wrap_convolve8_sse2_10, wrap_convolve8_avg_sse2_10, + wrap_convolve8_horiz_sse2_10, wrap_convolve8_avg_horiz_sse2_10, + wrap_convolve8_vert_sse2_10, wrap_convolve8_avg_vert_sse2_10, + wrap_convolve8_sse2_10, wrap_convolve8_avg_sse2_10, 10); +const ConvolveFunctions convolve12_sse2( + wrap_convolve_copy_sse2_12, wrap_convolve_avg_sse2_12, + wrap_convolve8_horiz_sse2_12, wrap_convolve8_avg_horiz_sse2_12, + wrap_convolve8_vert_sse2_12, wrap_convolve8_avg_vert_sse2_12, + wrap_convolve8_sse2_12, wrap_convolve8_avg_sse2_12, + wrap_convolve8_horiz_sse2_12, wrap_convolve8_avg_horiz_sse2_12, + wrap_convolve8_vert_sse2_12, wrap_convolve8_avg_vert_sse2_12, + wrap_convolve8_sse2_12, wrap_convolve8_avg_sse2_12, 12); +const ConvolveParam kArrayConvolve_sse2[] = { ALL_SIZES(convolve8_sse2), + ALL_SIZES(convolve10_sse2), + ALL_SIZES(convolve12_sse2) }; +#else +const ConvolveFunctions convolve8_sse2( + vpx_convolve_copy_sse2, vpx_convolve_avg_sse2, vpx_convolve8_horiz_sse2, + vpx_convolve8_avg_horiz_sse2, vpx_convolve8_vert_sse2, + vpx_convolve8_avg_vert_sse2, vpx_convolve8_sse2, vpx_convolve8_avg_sse2, + vpx_scaled_horiz_c, vpx_scaled_avg_horiz_c, vpx_scaled_vert_c, + vpx_scaled_avg_vert_c, vpx_scaled_2d_c, vpx_scaled_avg_2d_c, 0); + +const ConvolveParam kArrayConvolve_sse2[] = { ALL_SIZES(convolve8_sse2) }; +#endif // CONFIG_VP9_HIGHBITDEPTH +INSTANTIATE_TEST_CASE_P(SSE2, ConvolveTest, + ::testing::ValuesIn(kArrayConvolve_sse2)); +#endif + +#if HAVE_SSSE3 +const ConvolveFunctions convolve8_ssse3( + vpx_convolve_copy_c, vpx_convolve_avg_c, vpx_convolve8_horiz_ssse3, + vpx_convolve8_avg_horiz_ssse3, vpx_convolve8_vert_ssse3, + vpx_convolve8_avg_vert_ssse3, vpx_convolve8_ssse3, vpx_convolve8_avg_ssse3, + vpx_scaled_horiz_c, vpx_scaled_avg_horiz_c, vpx_scaled_vert_c, + vpx_scaled_avg_vert_c, vpx_scaled_2d_ssse3, vpx_scaled_avg_2d_c, 0); + +const ConvolveParam kArrayConvolve8_ssse3[] = { ALL_SIZES(convolve8_ssse3) }; +INSTANTIATE_TEST_CASE_P(SSSE3, ConvolveTest, + ::testing::ValuesIn(kArrayConvolve8_ssse3)); +#endif + +#if HAVE_AVX2 +#if CONFIG_VP9_HIGHBITDEPTH +const ConvolveFunctions convolve8_avx2( + wrap_convolve_copy_avx2_8, wrap_convolve_avg_avx2_8, + wrap_convolve8_horiz_avx2_8, wrap_convolve8_avg_horiz_avx2_8, + wrap_convolve8_vert_avx2_8, wrap_convolve8_avg_vert_avx2_8, + wrap_convolve8_avx2_8, wrap_convolve8_avg_avx2_8, wrap_convolve8_horiz_c_8, + wrap_convolve8_avg_horiz_c_8, wrap_convolve8_vert_c_8, + wrap_convolve8_avg_vert_c_8, wrap_convolve8_c_8, wrap_convolve8_avg_c_8, 8); +const ConvolveFunctions convolve10_avx2( + wrap_convolve_copy_avx2_10, wrap_convolve_avg_avx2_10, + wrap_convolve8_horiz_avx2_10, wrap_convolve8_avg_horiz_avx2_10, + wrap_convolve8_vert_avx2_10, wrap_convolve8_avg_vert_avx2_10, + wrap_convolve8_avx2_10, wrap_convolve8_avg_avx2_10, + wrap_convolve8_horiz_c_10, wrap_convolve8_avg_horiz_c_10, + wrap_convolve8_vert_c_10, wrap_convolve8_avg_vert_c_10, wrap_convolve8_c_10, + wrap_convolve8_avg_c_10, 10); +const ConvolveFunctions convolve12_avx2( + wrap_convolve_copy_avx2_12, wrap_convolve_avg_avx2_12, + wrap_convolve8_horiz_avx2_12, wrap_convolve8_avg_horiz_avx2_12, + wrap_convolve8_vert_avx2_12, wrap_convolve8_avg_vert_avx2_12, + wrap_convolve8_avx2_12, wrap_convolve8_avg_avx2_12, + wrap_convolve8_horiz_c_12, wrap_convolve8_avg_horiz_c_12, + wrap_convolve8_vert_c_12, wrap_convolve8_avg_vert_c_12, wrap_convolve8_c_12, + wrap_convolve8_avg_c_12, 12); +const ConvolveParam kArrayConvolve8_avx2[] = { ALL_SIZES(convolve8_avx2), + ALL_SIZES(convolve10_avx2), + ALL_SIZES(convolve12_avx2) }; +INSTANTIATE_TEST_CASE_P(AVX2, ConvolveTest, + ::testing::ValuesIn(kArrayConvolve8_avx2)); +#else // !CONFIG_VP9_HIGHBITDEPTH +const ConvolveFunctions convolve8_avx2( + vpx_convolve_copy_c, vpx_convolve_avg_c, vpx_convolve8_horiz_avx2, + vpx_convolve8_avg_horiz_avx2, vpx_convolve8_vert_avx2, + vpx_convolve8_avg_vert_avx2, vpx_convolve8_avx2, vpx_convolve8_avg_avx2, + vpx_scaled_horiz_c, vpx_scaled_avg_horiz_c, vpx_scaled_vert_c, + vpx_scaled_avg_vert_c, vpx_scaled_2d_c, vpx_scaled_avg_2d_c, 0); +const ConvolveParam kArrayConvolve8_avx2[] = { ALL_SIZES(convolve8_avx2) }; +INSTANTIATE_TEST_CASE_P(AVX2, ConvolveTest, + ::testing::ValuesIn(kArrayConvolve8_avx2)); +#endif // CONFIG_VP9_HIGHBITDEPTH +#endif // HAVE_AVX2 + +#if HAVE_NEON +#if CONFIG_VP9_HIGHBITDEPTH +const ConvolveFunctions convolve8_neon( + wrap_convolve_copy_neon_8, wrap_convolve_avg_neon_8, + wrap_convolve8_horiz_neon_8, wrap_convolve8_avg_horiz_neon_8, + wrap_convolve8_vert_neon_8, wrap_convolve8_avg_vert_neon_8, + wrap_convolve8_neon_8, wrap_convolve8_avg_neon_8, + wrap_convolve8_horiz_neon_8, wrap_convolve8_avg_horiz_neon_8, + wrap_convolve8_vert_neon_8, wrap_convolve8_avg_vert_neon_8, + wrap_convolve8_neon_8, wrap_convolve8_avg_neon_8, 8); +const ConvolveFunctions convolve10_neon( + wrap_convolve_copy_neon_10, wrap_convolve_avg_neon_10, + wrap_convolve8_horiz_neon_10, wrap_convolve8_avg_horiz_neon_10, + wrap_convolve8_vert_neon_10, wrap_convolve8_avg_vert_neon_10, + wrap_convolve8_neon_10, wrap_convolve8_avg_neon_10, + wrap_convolve8_horiz_neon_10, wrap_convolve8_avg_horiz_neon_10, + wrap_convolve8_vert_neon_10, wrap_convolve8_avg_vert_neon_10, + wrap_convolve8_neon_10, wrap_convolve8_avg_neon_10, 10); +const ConvolveFunctions convolve12_neon( + wrap_convolve_copy_neon_12, wrap_convolve_avg_neon_12, + wrap_convolve8_horiz_neon_12, wrap_convolve8_avg_horiz_neon_12, + wrap_convolve8_vert_neon_12, wrap_convolve8_avg_vert_neon_12, + wrap_convolve8_neon_12, wrap_convolve8_avg_neon_12, + wrap_convolve8_horiz_neon_12, wrap_convolve8_avg_horiz_neon_12, + wrap_convolve8_vert_neon_12, wrap_convolve8_avg_vert_neon_12, + wrap_convolve8_neon_12, wrap_convolve8_avg_neon_12, 12); +const ConvolveParam kArrayConvolve_neon[] = { ALL_SIZES(convolve8_neon), + ALL_SIZES(convolve10_neon), + ALL_SIZES(convolve12_neon) }; +#else +const ConvolveFunctions convolve8_neon( + vpx_convolve_copy_neon, vpx_convolve_avg_neon, vpx_convolve8_horiz_neon, + vpx_convolve8_avg_horiz_neon, vpx_convolve8_vert_neon, + vpx_convolve8_avg_vert_neon, vpx_convolve8_neon, vpx_convolve8_avg_neon, + vpx_scaled_horiz_c, vpx_scaled_avg_horiz_c, vpx_scaled_vert_c, + vpx_scaled_avg_vert_c, vpx_scaled_2d_neon, vpx_scaled_avg_2d_c, 0); + +const ConvolveParam kArrayConvolve_neon[] = { ALL_SIZES(convolve8_neon) }; +#endif // CONFIG_VP9_HIGHBITDEPTH +INSTANTIATE_TEST_CASE_P(NEON, ConvolveTest, + ::testing::ValuesIn(kArrayConvolve_neon)); +#endif // HAVE_NEON + +#if HAVE_DSPR2 +const ConvolveFunctions convolve8_dspr2( + vpx_convolve_copy_dspr2, vpx_convolve_avg_dspr2, vpx_convolve8_horiz_dspr2, + vpx_convolve8_avg_horiz_dspr2, vpx_convolve8_vert_dspr2, + vpx_convolve8_avg_vert_dspr2, vpx_convolve8_dspr2, vpx_convolve8_avg_dspr2, + vpx_scaled_horiz_c, vpx_scaled_avg_horiz_c, vpx_scaled_vert_c, + vpx_scaled_avg_vert_c, vpx_scaled_2d_c, vpx_scaled_avg_2d_c, 0); + +const ConvolveParam kArrayConvolve8_dspr2[] = { ALL_SIZES(convolve8_dspr2) }; +INSTANTIATE_TEST_CASE_P(DSPR2, ConvolveTest, + ::testing::ValuesIn(kArrayConvolve8_dspr2)); +#endif // HAVE_DSPR2 + +#if HAVE_MSA +const ConvolveFunctions convolve8_msa( + vpx_convolve_copy_msa, vpx_convolve_avg_msa, vpx_convolve8_horiz_msa, + vpx_convolve8_avg_horiz_msa, vpx_convolve8_vert_msa, + vpx_convolve8_avg_vert_msa, vpx_convolve8_msa, vpx_convolve8_avg_msa, + vpx_scaled_horiz_c, vpx_scaled_avg_horiz_c, vpx_scaled_vert_c, + vpx_scaled_avg_vert_c, vpx_scaled_2d_msa, vpx_scaled_avg_2d_c, 0); + +const ConvolveParam kArrayConvolve8_msa[] = { ALL_SIZES(convolve8_msa) }; +INSTANTIATE_TEST_CASE_P(MSA, ConvolveTest, + ::testing::ValuesIn(kArrayConvolve8_msa)); +#endif // HAVE_MSA + +#if HAVE_VSX +const ConvolveFunctions convolve8_vsx( + vpx_convolve_copy_vsx, vpx_convolve_avg_vsx, vpx_convolve8_horiz_vsx, + vpx_convolve8_avg_horiz_vsx, vpx_convolve8_vert_vsx, + vpx_convolve8_avg_vert_vsx, vpx_convolve8_vsx, vpx_convolve8_avg_vsx, + vpx_scaled_horiz_c, vpx_scaled_avg_horiz_c, vpx_scaled_vert_c, + vpx_scaled_avg_vert_c, vpx_scaled_2d_c, vpx_scaled_avg_2d_c, 0); +const ConvolveParam kArrayConvolve_vsx[] = { ALL_SIZES(convolve8_vsx) }; +INSTANTIATE_TEST_CASE_P(VSX, ConvolveTest, + ::testing::ValuesIn(kArrayConvolve_vsx)); +#endif // HAVE_VSX +} // namespace diff --git a/test/cpu_speed_test.cc b/test/cpu_speed_test.cc new file mode 100644 index 0000000..404b5b4 --- /dev/null +++ b/test/cpu_speed_test.cc @@ -0,0 +1,156 @@ +/* + * Copyright (c) 2012 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ +#include "third_party/googletest/src/include/gtest/gtest.h" +#include "test/codec_factory.h" +#include "test/encode_test_driver.h" +#include "test/i420_video_source.h" +#include "test/util.h" +#include "test/y4m_video_source.h" + +namespace { + +const int kMaxPSNR = 100; + +class CpuSpeedTest + : public ::libvpx_test::EncoderTest, + public ::libvpx_test::CodecTestWith2Params { + protected: + CpuSpeedTest() + : EncoderTest(GET_PARAM(0)), encoding_mode_(GET_PARAM(1)), + set_cpu_used_(GET_PARAM(2)), min_psnr_(kMaxPSNR), + tune_content_(VP9E_CONTENT_DEFAULT) {} + virtual ~CpuSpeedTest() {} + + virtual void SetUp() { + InitializeConfig(); + SetMode(encoding_mode_); + if (encoding_mode_ != ::libvpx_test::kRealTime) { + cfg_.g_lag_in_frames = 25; + cfg_.rc_end_usage = VPX_VBR; + } else { + cfg_.g_lag_in_frames = 0; + cfg_.rc_end_usage = VPX_CBR; + } + } + + virtual void BeginPassHook(unsigned int /*pass*/) { min_psnr_ = kMaxPSNR; } + + virtual void PreEncodeFrameHook(::libvpx_test::VideoSource *video, + ::libvpx_test::Encoder *encoder) { + if (video->frame() == 1) { + encoder->Control(VP8E_SET_CPUUSED, set_cpu_used_); + encoder->Control(VP9E_SET_TUNE_CONTENT, tune_content_); + if (encoding_mode_ != ::libvpx_test::kRealTime) { + encoder->Control(VP8E_SET_ENABLEAUTOALTREF, 1); + encoder->Control(VP8E_SET_ARNR_MAXFRAMES, 7); + encoder->Control(VP8E_SET_ARNR_STRENGTH, 5); + encoder->Control(VP8E_SET_ARNR_TYPE, 3); + } + } + } + + virtual void PSNRPktHook(const vpx_codec_cx_pkt_t *pkt) { + if (pkt->data.psnr.psnr[0] < min_psnr_) min_psnr_ = pkt->data.psnr.psnr[0]; + } + + ::libvpx_test::TestMode encoding_mode_; + int set_cpu_used_; + double min_psnr_; + int tune_content_; +}; + +TEST_P(CpuSpeedTest, TestQ0) { + // Validate that this non multiple of 64 wide clip encodes and decodes + // without a mismatch when passing in a very low max q. This pushes + // the encoder to producing lots of big partitions which will likely + // extend into the border and test the border condition. + cfg_.rc_2pass_vbr_minsection_pct = 5; + cfg_.rc_2pass_vbr_maxsection_pct = 2000; + cfg_.rc_target_bitrate = 400; + cfg_.rc_max_quantizer = 0; + cfg_.rc_min_quantizer = 0; + + ::libvpx_test::I420VideoSource video("hantro_odd.yuv", 208, 144, 30, 1, 0, + 20); + + init_flags_ = VPX_CODEC_USE_PSNR; + + ASSERT_NO_FATAL_FAILURE(RunLoop(&video)); + EXPECT_GE(min_psnr_, kMaxPSNR); +} + +TEST_P(CpuSpeedTest, TestScreencastQ0) { + ::libvpx_test::Y4mVideoSource video("screendata.y4m", 0, 25); + cfg_.g_timebase = video.timebase(); + cfg_.rc_2pass_vbr_minsection_pct = 5; + cfg_.rc_2pass_vbr_maxsection_pct = 2000; + cfg_.rc_target_bitrate = 400; + cfg_.rc_max_quantizer = 0; + cfg_.rc_min_quantizer = 0; + + init_flags_ = VPX_CODEC_USE_PSNR; + + ASSERT_NO_FATAL_FAILURE(RunLoop(&video)); + EXPECT_GE(min_psnr_, kMaxPSNR); +} + +TEST_P(CpuSpeedTest, TestTuneScreen) { + ::libvpx_test::Y4mVideoSource video("screendata.y4m", 0, 25); + cfg_.g_timebase = video.timebase(); + cfg_.rc_2pass_vbr_minsection_pct = 5; + cfg_.rc_2pass_vbr_minsection_pct = 2000; + cfg_.rc_target_bitrate = 2000; + cfg_.rc_max_quantizer = 63; + cfg_.rc_min_quantizer = 0; + tune_content_ = VP9E_CONTENT_SCREEN; + + init_flags_ = VPX_CODEC_USE_PSNR; + + ASSERT_NO_FATAL_FAILURE(RunLoop(&video)); +} + +TEST_P(CpuSpeedTest, TestEncodeHighBitrate) { + // Validate that this non multiple of 64 wide clip encodes and decodes + // without a mismatch when passing in a very low max q. This pushes + // the encoder to producing lots of big partitions which will likely + // extend into the border and test the border condition. + cfg_.rc_2pass_vbr_minsection_pct = 5; + cfg_.rc_2pass_vbr_maxsection_pct = 2000; + cfg_.rc_target_bitrate = 12000; + cfg_.rc_max_quantizer = 10; + cfg_.rc_min_quantizer = 0; + + ::libvpx_test::I420VideoSource video("hantro_odd.yuv", 208, 144, 30, 1, 0, + 20); + + ASSERT_NO_FATAL_FAILURE(RunLoop(&video)); +} + +TEST_P(CpuSpeedTest, TestLowBitrate) { + // Validate that this clip encodes and decodes without a mismatch + // when passing in a very high min q. This pushes the encoder to producing + // lots of small partitions which might will test the other condition. + cfg_.rc_2pass_vbr_minsection_pct = 5; + cfg_.rc_2pass_vbr_maxsection_pct = 2000; + cfg_.rc_target_bitrate = 200; + cfg_.rc_min_quantizer = 40; + + ::libvpx_test::I420VideoSource video("hantro_odd.yuv", 208, 144, 30, 1, 0, + 20); + + ASSERT_NO_FATAL_FAILURE(RunLoop(&video)); +} + +VP9_INSTANTIATE_TEST_CASE(CpuSpeedTest, + ::testing::Values(::libvpx_test::kTwoPassGood, + ::libvpx_test::kOnePassGood, + ::libvpx_test::kRealTime), + ::testing::Range(0, 9)); +} // namespace diff --git a/test/cq_test.cc b/test/cq_test.cc new file mode 100644 index 0000000..20e1f0f --- /dev/null +++ b/test/cq_test.cc @@ -0,0 +1,131 @@ +/* + * Copyright (c) 2012 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ +#include +#include +#include "third_party/googletest/src/include/gtest/gtest.h" +#include "test/codec_factory.h" +#include "test/encode_test_driver.h" +#include "test/i420_video_source.h" +#include "test/util.h" + +namespace { + +// CQ level range: [kCQLevelMin, kCQLevelMax). +const int kCQLevelMin = 4; +const int kCQLevelMax = 63; +const int kCQLevelStep = 8; +const unsigned int kCQTargetBitrate = 2000; + +class CQTest : public ::libvpx_test::EncoderTest, + public ::libvpx_test::CodecTestWithParam { + public: + // maps the cqlevel to the bitrate produced. + typedef std::map BitrateMap; + + static void SetUpTestCase() { bitrates_.clear(); } + + static void TearDownTestCase() { + ASSERT_TRUE(!HasFailure()) + << "skipping bitrate validation due to earlier failure."; + uint32_t prev_actual_bitrate = kCQTargetBitrate; + for (BitrateMap::const_iterator iter = bitrates_.begin(); + iter != bitrates_.end(); ++iter) { + const uint32_t cq_actual_bitrate = iter->second; + EXPECT_LE(cq_actual_bitrate, prev_actual_bitrate) + << "cq_level: " << iter->first + << ", bitrate should decrease with increase in CQ level."; + prev_actual_bitrate = cq_actual_bitrate; + } + } + + protected: + CQTest() : EncoderTest(GET_PARAM(0)), cq_level_(GET_PARAM(1)) { + init_flags_ = VPX_CODEC_USE_PSNR; + } + + virtual ~CQTest() {} + + virtual void SetUp() { + InitializeConfig(); + SetMode(libvpx_test::kTwoPassGood); + } + + virtual void BeginPassHook(unsigned int /*pass*/) { + file_size_ = 0; + psnr_ = 0.0; + n_frames_ = 0; + } + + virtual void PreEncodeFrameHook(libvpx_test::VideoSource *video, + libvpx_test::Encoder *encoder) { + if (video->frame() == 1) { + if (cfg_.rc_end_usage == VPX_CQ) { + encoder->Control(VP8E_SET_CQ_LEVEL, cq_level_); + } + encoder->Control(VP8E_SET_CPUUSED, 3); + } + } + + virtual void PSNRPktHook(const vpx_codec_cx_pkt_t *pkt) { + psnr_ += pow(10.0, pkt->data.psnr.psnr[0] / 10.0); + n_frames_++; + } + + virtual void FramePktHook(const vpx_codec_cx_pkt_t *pkt) { + file_size_ += pkt->data.frame.sz; + } + + double GetLinearPSNROverBitrate() const { + double avg_psnr = log10(psnr_ / n_frames_) * 10.0; + return pow(10.0, avg_psnr / 10.0) / file_size_; + } + + int cq_level() const { return cq_level_; } + size_t file_size() const { return file_size_; } + int n_frames() const { return n_frames_; } + + static BitrateMap bitrates_; + + private: + int cq_level_; + size_t file_size_; + double psnr_; + int n_frames_; +}; + +CQTest::BitrateMap CQTest::bitrates_; + +TEST_P(CQTest, LinearPSNRIsHigherForCQLevel) { + const vpx_rational timebase = { 33333333, 1000000000 }; + cfg_.g_timebase = timebase; + cfg_.rc_target_bitrate = kCQTargetBitrate; + cfg_.g_lag_in_frames = 25; + + cfg_.rc_end_usage = VPX_CQ; + libvpx_test::I420VideoSource video("hantro_collage_w352h288.yuv", 352, 288, + timebase.den, timebase.num, 0, 30); + ASSERT_NO_FATAL_FAILURE(RunLoop(&video)); + const double cq_psnr_lin = GetLinearPSNROverBitrate(); + const unsigned int cq_actual_bitrate = + static_cast(file_size()) * 8 * 30 / (n_frames() * 1000); + EXPECT_LE(cq_actual_bitrate, kCQTargetBitrate); + bitrates_[cq_level()] = cq_actual_bitrate; + + // try targeting the approximate same bitrate with VBR mode + cfg_.rc_end_usage = VPX_VBR; + cfg_.rc_target_bitrate = cq_actual_bitrate; + ASSERT_NO_FATAL_FAILURE(RunLoop(&video)); + const double vbr_psnr_lin = GetLinearPSNROverBitrate(); + EXPECT_GE(cq_psnr_lin, vbr_psnr_lin); +} + +VP8_INSTANTIATE_TEST_CASE(CQTest, ::testing::Range(kCQLevelMin, kCQLevelMax, + kCQLevelStep)); +} // namespace diff --git a/test/cx_set_ref.sh b/test/cx_set_ref.sh new file mode 100755 index 0000000..0a58dc1 --- /dev/null +++ b/test/cx_set_ref.sh @@ -0,0 +1,60 @@ +#!/bin/sh +## +## Copyright (c) 2016 The WebM project authors. All Rights Reserved. +## +## Use of this source code is governed by a BSD-style license +## that can be found in the LICENSE file in the root of the source +## tree. An additional intellectual property rights grant can be found +## in the file PATENTS. All contributing project authors may +## be found in the AUTHORS file in the root of the source tree. +## +## This file tests the libvpx cx_set_ref example. To add new tests to this +## file, do the following: +## 1. Write a shell function (this is your test). +## 2. Add the function to cx_set_ref_tests (on a new line). +## +. $(dirname $0)/tools_common.sh + +# Environment check: $YUV_RAW_INPUT is required. +cx_set_ref_verify_environment() { + if [ ! -e "${YUV_RAW_INPUT}" ]; then + echo "Libvpx test data must exist in LIBVPX_TEST_DATA_PATH." + return 1 + fi +} + +# Runs cx_set_ref and updates the reference frame before encoding frame 90. +# $1 is the codec name. +vpx_set_ref() { + local codec="$1" + local encoder="${LIBVPX_BIN_PATH}/${codec}cx_set_ref${VPX_TEST_EXE_SUFFIX}" + local output_file="${VPX_TEST_OUTPUT_DIR}/${codec}cx_set_ref_${codec}.ivf" + local ref_frame_num=90 + + if [ ! -x "${encoder}" ]; then + elog "${encoder} does not exist or is not executable." + return 1 + fi + + eval "${VPX_TEST_PREFIX}" "${encoder}" "${YUV_RAW_INPUT_WIDTH}" \ + "${YUV_RAW_INPUT_HEIGHT}" "${YUV_RAW_INPUT}" "${output_file}" \ + "${ref_frame_num}" ${devnull} + + [ -e "${output_file}" ] || return 1 +} + +cx_set_ref_vp8() { + if [ "$(vp8_encode_available)" = "yes" ]; then + vpx_set_ref vp8 || return 1 + fi +} + +cx_set_ref_vp9() { + if [ "$(vp9_encode_available)" = "yes" ]; then + vpx_set_ref vp9 || return 1 + fi +} + +cx_set_ref_tests="cx_set_ref_vp8 cx_set_ref_vp9" + +run_tests cx_set_ref_verify_environment "${cx_set_ref_tests}" diff --git a/test/datarate_test.cc b/test/datarate_test.cc new file mode 100644 index 0000000..31a8523 --- /dev/null +++ b/test/datarate_test.cc @@ -0,0 +1,1876 @@ +/* + * Copyright (c) 2012 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ +#include "./vpx_config.h" +#include "third_party/googletest/src/include/gtest/gtest.h" +#include "test/codec_factory.h" +#include "test/encode_test_driver.h" +#include "test/i420_video_source.h" +#include "test/util.h" +#include "test/y4m_video_source.h" +#include "vpx/vpx_codec.h" + +namespace { + +class DatarateTestLarge + : public ::libvpx_test::EncoderTest, + public ::libvpx_test::CodecTestWith2Params { + public: + DatarateTestLarge() : EncoderTest(GET_PARAM(0)) {} + + virtual ~DatarateTestLarge() {} + + protected: + virtual void SetUp() { + InitializeConfig(); + SetMode(GET_PARAM(1)); + set_cpu_used_ = GET_PARAM(2); + ResetModel(); + } + + virtual void ResetModel() { + last_pts_ = 0; + bits_in_buffer_model_ = cfg_.rc_target_bitrate * cfg_.rc_buf_initial_sz; + frame_number_ = 0; + first_drop_ = 0; + bits_total_ = 0; + duration_ = 0.0; + denoiser_offon_test_ = 0; + denoiser_offon_period_ = -1; + gf_boost_ = 0; + use_roi_ = 0; + } + + virtual void PreEncodeFrameHook(::libvpx_test::VideoSource *video, + ::libvpx_test::Encoder *encoder) { + if (video->frame() == 0) { + encoder->Control(VP8E_SET_NOISE_SENSITIVITY, denoiser_on_); + encoder->Control(VP8E_SET_CPUUSED, set_cpu_used_); + encoder->Control(VP8E_SET_GF_CBR_BOOST_PCT, gf_boost_); + } + +#if CONFIG_VP8_ENCODER + if (use_roi_ == 1) { + encoder->Control(VP8E_SET_ROI_MAP, &roi_); + } +#endif + + if (denoiser_offon_test_) { + ASSERT_GT(denoiser_offon_period_, 0) + << "denoiser_offon_period_ is not positive."; + if ((video->frame() + 1) % denoiser_offon_period_ == 0) { + // Flip denoiser_on_ periodically + denoiser_on_ ^= 1; + } + encoder->Control(VP8E_SET_NOISE_SENSITIVITY, denoiser_on_); + } + + const vpx_rational_t tb = video->timebase(); + timebase_ = static_cast(tb.num) / tb.den; + duration_ = 0; + } + + virtual void FramePktHook(const vpx_codec_cx_pkt_t *pkt) { + // Time since last timestamp = duration. + vpx_codec_pts_t duration = pkt->data.frame.pts - last_pts_; + + // TODO(jimbankoski): Remove these lines when the issue: + // http://code.google.com/p/webm/issues/detail?id=496 is fixed. + // For now the codec assumes buffer starts at starting buffer rate + // plus one frame's time. + if (last_pts_ == 0) duration = 1; + + // Add to the buffer the bits we'd expect from a constant bitrate server. + bits_in_buffer_model_ += static_cast( + duration * timebase_ * cfg_.rc_target_bitrate * 1000); + + /* Test the buffer model here before subtracting the frame. Do so because + * the way the leaky bucket model works in libvpx is to allow the buffer to + * empty - and then stop showing frames until we've got enough bits to + * show one. As noted in comment below (issue 495), this does not currently + * apply to key frames. For now exclude key frames in condition below. */ + const bool key_frame = + (pkt->data.frame.flags & VPX_FRAME_IS_KEY) ? true : false; + if (!key_frame) { + ASSERT_GE(bits_in_buffer_model_, 0) + << "Buffer Underrun at frame " << pkt->data.frame.pts; + } + + const int64_t frame_size_in_bits = pkt->data.frame.sz * 8; + + // Subtract from the buffer the bits associated with a played back frame. + bits_in_buffer_model_ -= frame_size_in_bits; + + // Update the running total of bits for end of test datarate checks. + bits_total_ += frame_size_in_bits; + + // If first drop not set and we have a drop set it to this time. + if (!first_drop_ && duration > 1) first_drop_ = last_pts_ + 1; + + // Update the most recent pts. + last_pts_ = pkt->data.frame.pts; + + // We update this so that we can calculate the datarate minus the last + // frame encoded in the file. + bits_in_last_frame_ = frame_size_in_bits; + + ++frame_number_; + } + + virtual void EndPassHook(void) { + if (bits_total_) { + const double file_size_in_kb = bits_total_ / 1000.; // bits per kilobit + + duration_ = (last_pts_ + 1) * timebase_; + + // Effective file datarate includes the time spent prebuffering. + effective_datarate_ = (bits_total_ - bits_in_last_frame_) / 1000.0 / + (cfg_.rc_buf_initial_sz / 1000.0 + duration_); + + file_datarate_ = file_size_in_kb / duration_; + } + } + + vpx_codec_pts_t last_pts_; + int64_t bits_in_buffer_model_; + double timebase_; + int frame_number_; + vpx_codec_pts_t first_drop_; + int64_t bits_total_; + double duration_; + double file_datarate_; + double effective_datarate_; + int64_t bits_in_last_frame_; + int denoiser_on_; + int denoiser_offon_test_; + int denoiser_offon_period_; + int set_cpu_used_; + int gf_boost_; + int use_roi_; + vpx_roi_map_t roi_; +}; + +#if CONFIG_TEMPORAL_DENOISING +// Check basic datarate targeting, for a single bitrate, but loop over the +// various denoiser settings. +TEST_P(DatarateTestLarge, DenoiserLevels) { + cfg_.rc_buf_initial_sz = 500; + cfg_.rc_dropframe_thresh = 1; + cfg_.rc_max_quantizer = 56; + cfg_.rc_end_usage = VPX_CBR; + ::libvpx_test::I420VideoSource video("hantro_collage_w352h288.yuv", 352, 288, + 30, 1, 0, 140); + for (int j = 1; j < 5; ++j) { + // Run over the denoiser levels. + // For the temporal denoiser (#if CONFIG_TEMPORAL_DENOISING) the level j + // refers to the 4 denoiser modes: denoiserYonly, denoiserOnYUV, + // denoiserOnAggressive, and denoiserOnAdaptive. + denoiser_on_ = j; + cfg_.rc_target_bitrate = 300; + ResetModel(); + ASSERT_NO_FATAL_FAILURE(RunLoop(&video)); + ASSERT_GE(cfg_.rc_target_bitrate, effective_datarate_ * 0.95) + << " The datarate for the file exceeds the target!"; + + ASSERT_LE(cfg_.rc_target_bitrate, file_datarate_ * 1.4) + << " The datarate for the file missed the target!"; + } +} + +// Check basic datarate targeting, for a single bitrate, when denoiser is off +// and on. +TEST_P(DatarateTestLarge, DenoiserOffOn) { + cfg_.rc_buf_initial_sz = 500; + cfg_.rc_dropframe_thresh = 1; + cfg_.rc_max_quantizer = 56; + cfg_.rc_end_usage = VPX_CBR; + ::libvpx_test::I420VideoSource video("hantro_collage_w352h288.yuv", 352, 288, + 30, 1, 0, 299); + cfg_.rc_target_bitrate = 300; + ResetModel(); + // The denoiser is off by default. + denoiser_on_ = 0; + // Set the offon test flag. + denoiser_offon_test_ = 1; + denoiser_offon_period_ = 100; + ASSERT_NO_FATAL_FAILURE(RunLoop(&video)); + ASSERT_GE(cfg_.rc_target_bitrate, effective_datarate_ * 0.95) + << " The datarate for the file exceeds the target!"; + ASSERT_LE(cfg_.rc_target_bitrate, file_datarate_ * 1.4) + << " The datarate for the file missed the target!"; +} +#endif // CONFIG_TEMPORAL_DENOISING + +TEST_P(DatarateTestLarge, BasicBufferModel) { + denoiser_on_ = 0; + cfg_.rc_buf_initial_sz = 500; + cfg_.rc_dropframe_thresh = 1; + cfg_.rc_max_quantizer = 56; + cfg_.rc_end_usage = VPX_CBR; + // 2 pass cbr datarate control has a bug hidden by the small # of + // frames selected in this encode. The problem is that even if the buffer is + // negative we produce a keyframe on a cutscene. Ignoring datarate + // constraints + // TODO(jimbankoski): ( Fix when issue + // http://code.google.com/p/webm/issues/detail?id=495 is addressed. ) + ::libvpx_test::I420VideoSource video("hantro_collage_w352h288.yuv", 352, 288, + 30, 1, 0, 140); + + // There is an issue for low bitrates in real-time mode, where the + // effective_datarate slightly overshoots the target bitrate. + // This is same the issue as noted about (#495). + // TODO(jimbankoski/marpan): Update test to run for lower bitrates (< 100), + // when the issue is resolved. + for (int i = 100; i < 800; i += 200) { + cfg_.rc_target_bitrate = i; + ResetModel(); + ASSERT_NO_FATAL_FAILURE(RunLoop(&video)); + ASSERT_GE(cfg_.rc_target_bitrate, effective_datarate_ * 0.95) + << " The datarate for the file exceeds the target!"; + ASSERT_LE(cfg_.rc_target_bitrate, file_datarate_ * 1.4) + << " The datarate for the file missed the target!"; + } +} + +TEST_P(DatarateTestLarge, ChangingDropFrameThresh) { + denoiser_on_ = 0; + cfg_.rc_buf_initial_sz = 500; + cfg_.rc_max_quantizer = 36; + cfg_.rc_end_usage = VPX_CBR; + cfg_.rc_target_bitrate = 200; + cfg_.kf_mode = VPX_KF_DISABLED; + + const int frame_count = 40; + ::libvpx_test::I420VideoSource video("hantro_collage_w352h288.yuv", 352, 288, + 30, 1, 0, frame_count); + + // Here we check that the first dropped frame gets earlier and earlier + // as the drop frame threshold is increased. + + const int kDropFrameThreshTestStep = 30; + vpx_codec_pts_t last_drop = frame_count; + for (int i = 1; i < 91; i += kDropFrameThreshTestStep) { + cfg_.rc_dropframe_thresh = i; + ResetModel(); + ASSERT_NO_FATAL_FAILURE(RunLoop(&video)); + ASSERT_LE(first_drop_, last_drop) + << " The first dropped frame for drop_thresh " << i + << " > first dropped frame for drop_thresh " + << i - kDropFrameThreshTestStep; + last_drop = first_drop_; + } +} + +TEST_P(DatarateTestLarge, DropFramesMultiThreads) { + denoiser_on_ = 0; + cfg_.rc_buf_initial_sz = 500; + cfg_.rc_dropframe_thresh = 30; + cfg_.rc_max_quantizer = 56; + cfg_.rc_end_usage = VPX_CBR; + cfg_.g_threads = 2; + + ::libvpx_test::I420VideoSource video("hantro_collage_w352h288.yuv", 352, 288, + 30, 1, 0, 140); + cfg_.rc_target_bitrate = 200; + ResetModel(); + ASSERT_NO_FATAL_FAILURE(RunLoop(&video)); + ASSERT_GE(cfg_.rc_target_bitrate, effective_datarate_ * 0.95) + << " The datarate for the file exceeds the target!"; + + ASSERT_LE(cfg_.rc_target_bitrate, file_datarate_ * 1.4) + << " The datarate for the file missed the target!"; +} + +class DatarateTestRealTime : public DatarateTestLarge { + public: + virtual ~DatarateTestRealTime() {} +}; + +#if CONFIG_TEMPORAL_DENOISING +// Check basic datarate targeting, for a single bitrate, but loop over the +// various denoiser settings. +TEST_P(DatarateTestRealTime, DenoiserLevels) { + cfg_.rc_buf_initial_sz = 500; + cfg_.rc_dropframe_thresh = 1; + cfg_.rc_max_quantizer = 56; + cfg_.rc_end_usage = VPX_CBR; + ::libvpx_test::I420VideoSource video("hantro_collage_w352h288.yuv", 352, 288, + 30, 1, 0, 140); + for (int j = 1; j < 5; ++j) { + // Run over the denoiser levels. + // For the temporal denoiser (#if CONFIG_TEMPORAL_DENOISING) the level j + // refers to the 4 denoiser modes: denoiserYonly, denoiserOnYUV, + // denoiserOnAggressive, and denoiserOnAdaptive. + denoiser_on_ = j; + cfg_.rc_target_bitrate = 300; + ResetModel(); + ASSERT_NO_FATAL_FAILURE(RunLoop(&video)); + ASSERT_GE(cfg_.rc_target_bitrate, effective_datarate_ * 0.95) + << " The datarate for the file exceeds the target!"; + ASSERT_LE(cfg_.rc_target_bitrate, file_datarate_ * 1.4) + << " The datarate for the file missed the target!"; + } +} + +// Check basic datarate targeting, for a single bitrate, when denoiser is off +// and on. +TEST_P(DatarateTestRealTime, DenoiserOffOn) { + cfg_.rc_buf_initial_sz = 500; + cfg_.rc_dropframe_thresh = 1; + cfg_.rc_max_quantizer = 56; + cfg_.rc_end_usage = VPX_CBR; + ::libvpx_test::I420VideoSource video("hantro_collage_w352h288.yuv", 352, 288, + 30, 1, 0, 299); + cfg_.rc_target_bitrate = 300; + ResetModel(); + // The denoiser is off by default. + denoiser_on_ = 0; + // Set the offon test flag. + denoiser_offon_test_ = 1; + denoiser_offon_period_ = 100; + ASSERT_NO_FATAL_FAILURE(RunLoop(&video)); + ASSERT_GE(cfg_.rc_target_bitrate, effective_datarate_ * 0.95) + << " The datarate for the file exceeds the target!"; + ASSERT_LE(cfg_.rc_target_bitrate, file_datarate_ * 1.4) + << " The datarate for the file missed the target!"; +} +#endif // CONFIG_TEMPORAL_DENOISING + +TEST_P(DatarateTestRealTime, BasicBufferModel) { + denoiser_on_ = 0; + cfg_.rc_buf_initial_sz = 500; + cfg_.rc_dropframe_thresh = 1; + cfg_.rc_max_quantizer = 56; + cfg_.rc_end_usage = VPX_CBR; + // 2 pass cbr datarate control has a bug hidden by the small # of + // frames selected in this encode. The problem is that even if the buffer is + // negative we produce a keyframe on a cutscene, ignoring datarate + // constraints + // TODO(jimbankoski): Fix when issue + // http://bugs.chromium.org/p/webm/issues/detail?id=495 is addressed. + ::libvpx_test::I420VideoSource video("hantro_collage_w352h288.yuv", 352, 288, + 30, 1, 0, 140); + + // There is an issue for low bitrates in real-time mode, where the + // effective_datarate slightly overshoots the target bitrate. + // This is same the issue as noted above (#495). + // TODO(jimbankoski/marpan): Update test to run for lower bitrates (< 100), + // when the issue is resolved. + for (int i = 100; i <= 700; i += 200) { + cfg_.rc_target_bitrate = i; + ResetModel(); + ASSERT_NO_FATAL_FAILURE(RunLoop(&video)); + ASSERT_GE(cfg_.rc_target_bitrate, effective_datarate_ * 0.95) + << " The datarate for the file exceeds the target!"; + ASSERT_LE(cfg_.rc_target_bitrate, file_datarate_ * 1.4) + << " The datarate for the file missed the target!"; + } +} + +TEST_P(DatarateTestRealTime, ChangingDropFrameThresh) { + denoiser_on_ = 0; + cfg_.rc_buf_initial_sz = 500; + cfg_.rc_max_quantizer = 36; + cfg_.rc_end_usage = VPX_CBR; + cfg_.rc_target_bitrate = 200; + cfg_.kf_mode = VPX_KF_DISABLED; + + const int frame_count = 40; + ::libvpx_test::I420VideoSource video("hantro_collage_w352h288.yuv", 352, 288, + 30, 1, 0, frame_count); + + // Check that the first dropped frame gets earlier and earlier + // as the drop frame threshold is increased. + + const int kDropFrameThreshTestStep = 30; + vpx_codec_pts_t last_drop = frame_count; + for (int i = 1; i < 91; i += kDropFrameThreshTestStep) { + cfg_.rc_dropframe_thresh = i; + ResetModel(); + ASSERT_NO_FATAL_FAILURE(RunLoop(&video)); + ASSERT_LE(first_drop_, last_drop) + << " The first dropped frame for drop_thresh " << i + << " > first dropped frame for drop_thresh " + << i - kDropFrameThreshTestStep; + last_drop = first_drop_; + } +} + +TEST_P(DatarateTestRealTime, DropFramesMultiThreads) { + denoiser_on_ = 0; + cfg_.rc_buf_initial_sz = 500; + cfg_.rc_dropframe_thresh = 30; + cfg_.rc_max_quantizer = 56; + cfg_.rc_end_usage = VPX_CBR; + // Encode using multiple threads. + cfg_.g_threads = 2; + + ::libvpx_test::I420VideoSource video("hantro_collage_w352h288.yuv", 352, 288, + 30, 1, 0, 140); + cfg_.rc_target_bitrate = 200; + ResetModel(); + ASSERT_NO_FATAL_FAILURE(RunLoop(&video)); + ASSERT_GE(cfg_.rc_target_bitrate, effective_datarate_ * 0.95) + << " The datarate for the file exceeds the target!"; + + ASSERT_LE(cfg_.rc_target_bitrate, file_datarate_ * 1.4) + << " The datarate for the file missed the target!"; +} + +TEST_P(DatarateTestRealTime, RegionOfInterest) { + denoiser_on_ = 0; + cfg_.rc_buf_initial_sz = 500; + cfg_.rc_dropframe_thresh = 0; + cfg_.rc_max_quantizer = 56; + cfg_.rc_end_usage = VPX_CBR; + // Encode using multiple threads. + cfg_.g_threads = 2; + + ::libvpx_test::I420VideoSource video("hantro_collage_w352h288.yuv", 352, 288, + 30, 1, 0, 300); + cfg_.rc_target_bitrate = 450; + cfg_.g_w = 352; + cfg_.g_h = 288; + + ResetModel(); + + // Set ROI parameters + use_roi_ = 1; + memset(&roi_, 0, sizeof(roi_)); + + roi_.rows = (cfg_.g_h + 15) / 16; + roi_.cols = (cfg_.g_w + 15) / 16; + + roi_.delta_q[0] = 0; + roi_.delta_q[1] = -20; + roi_.delta_q[2] = 0; + roi_.delta_q[3] = 0; + + roi_.delta_lf[0] = 0; + roi_.delta_lf[1] = -20; + roi_.delta_lf[2] = 0; + roi_.delta_lf[3] = 0; + + roi_.static_threshold[0] = 0; + roi_.static_threshold[1] = 1000; + roi_.static_threshold[2] = 0; + roi_.static_threshold[3] = 0; + + // Use 2 states: 1 is center square, 0 is the rest. + roi_.roi_map = + (uint8_t *)calloc(roi_.rows * roi_.cols, sizeof(*roi_.roi_map)); + for (unsigned int i = 0; i < roi_.rows; ++i) { + for (unsigned int j = 0; j < roi_.cols; ++j) { + if (i > (roi_.rows >> 2) && i < ((roi_.rows * 3) >> 2) && + j > (roi_.cols >> 2) && j < ((roi_.cols * 3) >> 2)) { + roi_.roi_map[i * roi_.cols + j] = 1; + } + } + } + + ASSERT_NO_FATAL_FAILURE(RunLoop(&video)); + ASSERT_GE(cfg_.rc_target_bitrate, effective_datarate_ * 0.95) + << " The datarate for the file exceeds the target!"; + + ASSERT_LE(cfg_.rc_target_bitrate, file_datarate_ * 1.4) + << " The datarate for the file missed the target!"; + + free(roi_.roi_map); +} + +TEST_P(DatarateTestRealTime, GFBoost) { + denoiser_on_ = 0; + cfg_.rc_buf_initial_sz = 500; + cfg_.rc_dropframe_thresh = 0; + cfg_.rc_max_quantizer = 56; + cfg_.rc_end_usage = VPX_CBR; + cfg_.g_error_resilient = 0; + + ::libvpx_test::I420VideoSource video("hantro_collage_w352h288.yuv", 352, 288, + 30, 1, 0, 300); + cfg_.rc_target_bitrate = 300; + ResetModel(); + // Apply a gf boost. + gf_boost_ = 50; + + ASSERT_NO_FATAL_FAILURE(RunLoop(&video)); + ASSERT_GE(cfg_.rc_target_bitrate, effective_datarate_ * 0.95) + << " The datarate for the file exceeds the target!"; + + ASSERT_LE(cfg_.rc_target_bitrate, file_datarate_ * 1.4) + << " The datarate for the file missed the target!"; +} + +class DatarateTestVP9Large + : public ::libvpx_test::EncoderTest, + public ::libvpx_test::CodecTestWith2Params { + public: + DatarateTestVP9Large() : EncoderTest(GET_PARAM(0)) {} + + protected: + virtual ~DatarateTestVP9Large() {} + + virtual void SetUp() { + InitializeConfig(); + SetMode(GET_PARAM(1)); + set_cpu_used_ = GET_PARAM(2); + ResetModel(); + } + + virtual void ResetModel() { + last_pts_ = 0; + bits_in_buffer_model_ = cfg_.rc_target_bitrate * cfg_.rc_buf_initial_sz; + frame_number_ = 0; + tot_frame_number_ = 0; + first_drop_ = 0; + num_drops_ = 0; + // Denoiser is off by default. + denoiser_on_ = 0; + // For testing up to 3 layers. + for (int i = 0; i < 3; ++i) { + bits_total_[i] = 0; + } + denoiser_offon_test_ = 0; + denoiser_offon_period_ = -1; + frame_parallel_decoding_mode_ = 1; + } + + // + // Frame flags and layer id for temporal layers. + // + + // For two layers, test pattern is: + // 1 3 + // 0 2 ..... + // For three layers, test pattern is: + // 1 3 5 7 + // 2 6 + // 0 4 .... + // LAST is always update on base/layer 0, GOLDEN is updated on layer 1. + // For this 3 layer example, the 2nd enhancement layer (layer 2) updates + // the altref frame. + int SetFrameFlags(int frame_num, int num_temp_layers) { + int frame_flags = 0; + if (num_temp_layers == 2) { + if (frame_num % 2 == 0) { + // Layer 0: predict from L and ARF, update L. + frame_flags = + VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF; + } else { + // Layer 1: predict from L, G and ARF, and update G. + frame_flags = VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_LAST | + VP8_EFLAG_NO_UPD_ENTROPY; + } + } else if (num_temp_layers == 3) { + if (frame_num % 4 == 0) { + // Layer 0: predict from L and ARF; update L. + frame_flags = + VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_REF_GF; + } else if ((frame_num - 2) % 4 == 0) { + // Layer 1: predict from L, G, ARF; update G. + frame_flags = VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_LAST; + } else if ((frame_num - 1) % 2 == 0) { + // Layer 2: predict from L, G, ARF; update ARF. + frame_flags = VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_LAST; + } + } + return frame_flags; + } + + int SetLayerId(int frame_num, int num_temp_layers) { + int layer_id = 0; + if (num_temp_layers == 2) { + if (frame_num % 2 == 0) { + layer_id = 0; + } else { + layer_id = 1; + } + } else if (num_temp_layers == 3) { + if (frame_num % 4 == 0) { + layer_id = 0; + } else if ((frame_num - 2) % 4 == 0) { + layer_id = 1; + } else if ((frame_num - 1) % 2 == 0) { + layer_id = 2; + } + } + return layer_id; + } + + virtual void PreEncodeFrameHook(::libvpx_test::VideoSource *video, + ::libvpx_test::Encoder *encoder) { + if (video->frame() == 0) encoder->Control(VP8E_SET_CPUUSED, set_cpu_used_); + + if (denoiser_offon_test_) { + ASSERT_GT(denoiser_offon_period_, 0) + << "denoiser_offon_period_ is not positive."; + if ((video->frame() + 1) % denoiser_offon_period_ == 0) { + // Flip denoiser_on_ periodically + denoiser_on_ ^= 1; + } + } + + encoder->Control(VP9E_SET_NOISE_SENSITIVITY, denoiser_on_); + encoder->Control(VP9E_SET_TILE_COLUMNS, (cfg_.g_threads >> 1)); + encoder->Control(VP9E_SET_FRAME_PARALLEL_DECODING, + frame_parallel_decoding_mode_); + + if (cfg_.ts_number_layers > 1) { + if (video->frame() == 0) { + encoder->Control(VP9E_SET_SVC, 1); + } + vpx_svc_layer_id_t layer_id; + layer_id.spatial_layer_id = 0; + frame_flags_ = SetFrameFlags(video->frame(), cfg_.ts_number_layers); + layer_id.temporal_layer_id = + SetLayerId(video->frame(), cfg_.ts_number_layers); + encoder->Control(VP9E_SET_SVC_LAYER_ID, &layer_id); + } + const vpx_rational_t tb = video->timebase(); + timebase_ = static_cast(tb.num) / tb.den; + duration_ = 0; + } + + virtual void FramePktHook(const vpx_codec_cx_pkt_t *pkt) { + // Time since last timestamp = duration. + vpx_codec_pts_t duration = pkt->data.frame.pts - last_pts_; + + if (duration > 1) { + // If first drop not set and we have a drop set it to this time. + if (!first_drop_) first_drop_ = last_pts_ + 1; + // Update the number of frame drops. + num_drops_ += static_cast(duration - 1); + // Update counter for total number of frames (#frames input to encoder). + // Needed for setting the proper layer_id below. + tot_frame_number_ += static_cast(duration - 1); + } + + int layer = SetLayerId(tot_frame_number_, cfg_.ts_number_layers); + + // Add to the buffer the bits we'd expect from a constant bitrate server. + bits_in_buffer_model_ += static_cast( + duration * timebase_ * cfg_.rc_target_bitrate * 1000); + + // Buffer should not go negative. + ASSERT_GE(bits_in_buffer_model_, 0) + << "Buffer Underrun at frame " << pkt->data.frame.pts; + + const size_t frame_size_in_bits = pkt->data.frame.sz * 8; + + // Update the total encoded bits. For temporal layers, update the cumulative + // encoded bits per layer. + for (int i = layer; i < static_cast(cfg_.ts_number_layers); ++i) { + bits_total_[i] += frame_size_in_bits; + } + + // Update the most recent pts. + last_pts_ = pkt->data.frame.pts; + ++frame_number_; + ++tot_frame_number_; + } + + virtual void EndPassHook(void) { + for (int layer = 0; layer < static_cast(cfg_.ts_number_layers); + ++layer) { + duration_ = (last_pts_ + 1) * timebase_; + if (bits_total_[layer]) { + // Effective file datarate: + effective_datarate_[layer] = (bits_total_[layer] / 1000.0) / duration_; + } + } + } + + vpx_codec_pts_t last_pts_; + double timebase_; + int frame_number_; // Counter for number of non-dropped/encoded frames. + int tot_frame_number_; // Counter for total number of input frames. + int64_t bits_total_[3]; + double duration_; + double effective_datarate_[3]; + int set_cpu_used_; + int64_t bits_in_buffer_model_; + vpx_codec_pts_t first_drop_; + int num_drops_; + int denoiser_on_; + int denoiser_offon_test_; + int denoiser_offon_period_; + int frame_parallel_decoding_mode_; +}; + +// Check basic rate targeting for VBR mode with 0 lag. +TEST_P(DatarateTestVP9Large, BasicRateTargetingVBRLagZero) { + cfg_.rc_min_quantizer = 0; + cfg_.rc_max_quantizer = 63; + cfg_.g_error_resilient = 0; + cfg_.rc_end_usage = VPX_VBR; + cfg_.g_lag_in_frames = 0; + + ::libvpx_test::I420VideoSource video("hantro_collage_w352h288.yuv", 352, 288, + 30, 1, 0, 300); + for (int i = 400; i <= 800; i += 400) { + cfg_.rc_target_bitrate = i; + ResetModel(); + ASSERT_NO_FATAL_FAILURE(RunLoop(&video)); + ASSERT_GE(effective_datarate_[0], cfg_.rc_target_bitrate * 0.75) + << " The datarate for the file is lower than target by too much!"; + ASSERT_LE(effective_datarate_[0], cfg_.rc_target_bitrate * 1.30) + << " The datarate for the file is greater than target by too much!"; + } +} + +// Check basic rate targeting for VBR mode with non-zero lag. +TEST_P(DatarateTestVP9Large, BasicRateTargetingVBRLagNonZero) { + cfg_.rc_min_quantizer = 0; + cfg_.rc_max_quantizer = 63; + cfg_.g_error_resilient = 0; + cfg_.rc_end_usage = VPX_VBR; + // For non-zero lag, rate control will work (be within bounds) for + // real-time mode. + if (deadline_ == VPX_DL_REALTIME) { + cfg_.g_lag_in_frames = 15; + } else { + cfg_.g_lag_in_frames = 0; + } + + ::libvpx_test::I420VideoSource video("hantro_collage_w352h288.yuv", 352, 288, + 30, 1, 0, 300); + for (int i = 400; i <= 800; i += 400) { + cfg_.rc_target_bitrate = i; + ResetModel(); + ASSERT_NO_FATAL_FAILURE(RunLoop(&video)); + ASSERT_GE(effective_datarate_[0], cfg_.rc_target_bitrate * 0.75) + << " The datarate for the file is lower than target by too much!"; + ASSERT_LE(effective_datarate_[0], cfg_.rc_target_bitrate * 1.30) + << " The datarate for the file is greater than target by too much!"; + } +} + +// Check basic rate targeting for VBR mode with non-zero lag, with +// frame_parallel_decoding_mode off. This enables the adapt_coeff/mode/mv probs +// since error_resilience is off. +TEST_P(DatarateTestVP9Large, BasicRateTargetingVBRLagNonZeroFrameParDecOff) { + cfg_.rc_min_quantizer = 0; + cfg_.rc_max_quantizer = 63; + cfg_.g_error_resilient = 0; + cfg_.rc_end_usage = VPX_VBR; + // For non-zero lag, rate control will work (be within bounds) for + // real-time mode. + if (deadline_ == VPX_DL_REALTIME) { + cfg_.g_lag_in_frames = 15; + } else { + cfg_.g_lag_in_frames = 0; + } + + ::libvpx_test::I420VideoSource video("hantro_collage_w352h288.yuv", 352, 288, + 30, 1, 0, 300); + for (int i = 400; i <= 800; i += 400) { + cfg_.rc_target_bitrate = i; + ResetModel(); + frame_parallel_decoding_mode_ = 0; + ASSERT_NO_FATAL_FAILURE(RunLoop(&video)); + ASSERT_GE(effective_datarate_[0], cfg_.rc_target_bitrate * 0.75) + << " The datarate for the file is lower than target by too much!"; + ASSERT_LE(effective_datarate_[0], cfg_.rc_target_bitrate * 1.30) + << " The datarate for the file is greater than target by too much!"; + } +} + +// Check basic rate targeting for CBR mode. +TEST_P(DatarateTestVP9Large, BasicRateTargeting) { + cfg_.rc_buf_initial_sz = 500; + cfg_.rc_buf_optimal_sz = 500; + cfg_.rc_buf_sz = 1000; + cfg_.rc_dropframe_thresh = 1; + cfg_.rc_min_quantizer = 0; + cfg_.rc_max_quantizer = 63; + cfg_.rc_end_usage = VPX_CBR; + cfg_.g_lag_in_frames = 0; + + ::libvpx_test::I420VideoSource video("hantro_collage_w352h288.yuv", 352, 288, + 30, 1, 0, 140); + for (int i = 150; i < 800; i += 200) { + cfg_.rc_target_bitrate = i; + ResetModel(); + ASSERT_NO_FATAL_FAILURE(RunLoop(&video)); + ASSERT_GE(effective_datarate_[0], cfg_.rc_target_bitrate * 0.85) + << " The datarate for the file is lower than target by too much!"; + ASSERT_LE(effective_datarate_[0], cfg_.rc_target_bitrate * 1.15) + << " The datarate for the file is greater than target by too much!"; + } +} + +// Check basic rate targeting for CBR mode, with frame_parallel_decoding_mode +// off( and error_resilience off). +TEST_P(DatarateTestVP9Large, BasicRateTargetingFrameParDecOff) { + cfg_.rc_buf_initial_sz = 500; + cfg_.rc_buf_optimal_sz = 500; + cfg_.rc_buf_sz = 1000; + cfg_.rc_dropframe_thresh = 1; + cfg_.rc_min_quantizer = 0; + cfg_.rc_max_quantizer = 63; + cfg_.rc_end_usage = VPX_CBR; + cfg_.g_lag_in_frames = 0; + cfg_.g_error_resilient = 0; + + ::libvpx_test::I420VideoSource video("hantro_collage_w352h288.yuv", 352, 288, + 30, 1, 0, 140); + for (int i = 150; i < 800; i += 200) { + cfg_.rc_target_bitrate = i; + ResetModel(); + frame_parallel_decoding_mode_ = 0; + ASSERT_NO_FATAL_FAILURE(RunLoop(&video)); + ASSERT_GE(effective_datarate_[0], cfg_.rc_target_bitrate * 0.85) + << " The datarate for the file is lower than target by too much!"; + ASSERT_LE(effective_datarate_[0], cfg_.rc_target_bitrate * 1.15) + << " The datarate for the file is greater than target by too much!"; + } +} + +// Check basic rate targeting for CBR mode, with 2 threads and dropped frames. +TEST_P(DatarateTestVP9Large, BasicRateTargetingDropFramesMultiThreads) { + cfg_.rc_buf_initial_sz = 500; + cfg_.rc_buf_optimal_sz = 500; + cfg_.rc_buf_sz = 1000; + cfg_.rc_dropframe_thresh = 30; + cfg_.rc_min_quantizer = 0; + cfg_.rc_max_quantizer = 63; + cfg_.rc_end_usage = VPX_CBR; + cfg_.g_lag_in_frames = 0; + // Encode using multiple threads. + cfg_.g_threads = 2; + + ::libvpx_test::I420VideoSource video("hantro_collage_w352h288.yuv", 352, 288, + 30, 1, 0, 140); + cfg_.rc_target_bitrate = 200; + ResetModel(); + ASSERT_NO_FATAL_FAILURE(RunLoop(&video)); + ASSERT_GE(effective_datarate_[0], cfg_.rc_target_bitrate * 0.85) + << " The datarate for the file is lower than target by too much!"; + ASSERT_LE(effective_datarate_[0], cfg_.rc_target_bitrate * 1.15) + << " The datarate for the file is greater than target by too much!"; +} + +// Check basic rate targeting for CBR. +TEST_P(DatarateTestVP9Large, BasicRateTargeting444) { + ::libvpx_test::Y4mVideoSource video("rush_hour_444.y4m", 0, 140); + + cfg_.g_profile = 1; + cfg_.g_timebase = video.timebase(); + + cfg_.rc_buf_initial_sz = 500; + cfg_.rc_buf_optimal_sz = 500; + cfg_.rc_buf_sz = 1000; + cfg_.rc_dropframe_thresh = 1; + cfg_.rc_min_quantizer = 0; + cfg_.rc_max_quantizer = 63; + cfg_.rc_end_usage = VPX_CBR; + + for (int i = 250; i < 900; i += 200) { + cfg_.rc_target_bitrate = i; + ResetModel(); + ASSERT_NO_FATAL_FAILURE(RunLoop(&video)); + ASSERT_GE(static_cast(cfg_.rc_target_bitrate), + effective_datarate_[0] * 0.80) + << " The datarate for the file exceeds the target by too much!"; + ASSERT_LE(static_cast(cfg_.rc_target_bitrate), + effective_datarate_[0] * 1.15) + << " The datarate for the file missed the target!" + << cfg_.rc_target_bitrate << " " << effective_datarate_; + } +} + +// Check that (1) the first dropped frame gets earlier and earlier +// as the drop frame threshold is increased, and (2) that the total number of +// frame drops does not decrease as we increase frame drop threshold. +// Use a lower qp-max to force some frame drops. +TEST_P(DatarateTestVP9Large, ChangingDropFrameThresh) { + cfg_.rc_buf_initial_sz = 500; + cfg_.rc_buf_optimal_sz = 500; + cfg_.rc_buf_sz = 1000; + cfg_.rc_undershoot_pct = 20; + cfg_.rc_undershoot_pct = 20; + cfg_.rc_dropframe_thresh = 10; + cfg_.rc_min_quantizer = 0; + cfg_.rc_max_quantizer = 50; + cfg_.rc_end_usage = VPX_CBR; + cfg_.rc_target_bitrate = 200; + cfg_.g_lag_in_frames = 0; + // TODO(marpan): Investigate datarate target failures with a smaller keyframe + // interval (128). + cfg_.kf_max_dist = 9999; + + ::libvpx_test::I420VideoSource video("hantro_collage_w352h288.yuv", 352, 288, + 30, 1, 0, 140); + + const int kDropFrameThreshTestStep = 30; + for (int j = 50; j <= 150; j += 100) { + cfg_.rc_target_bitrate = j; + vpx_codec_pts_t last_drop = 140; + int last_num_drops = 0; + for (int i = 10; i < 100; i += kDropFrameThreshTestStep) { + cfg_.rc_dropframe_thresh = i; + ResetModel(); + ASSERT_NO_FATAL_FAILURE(RunLoop(&video)); + ASSERT_GE(effective_datarate_[0], cfg_.rc_target_bitrate * 0.85) + << " The datarate for the file is lower than target by too much!"; + ASSERT_LE(effective_datarate_[0], cfg_.rc_target_bitrate * 1.25) + << " The datarate for the file is greater than target by too much!"; + ASSERT_LE(first_drop_, last_drop) + << " The first dropped frame for drop_thresh " << i + << " > first dropped frame for drop_thresh " + << i - kDropFrameThreshTestStep; + ASSERT_GE(num_drops_, last_num_drops * 0.85) + << " The number of dropped frames for drop_thresh " << i + << " < number of dropped frames for drop_thresh " + << i - kDropFrameThreshTestStep; + last_drop = first_drop_; + last_num_drops = num_drops_; + } + } +} + +// Check basic rate targeting for 2 temporal layers. +TEST_P(DatarateTestVP9Large, BasicRateTargeting2TemporalLayers) { + cfg_.rc_buf_initial_sz = 500; + cfg_.rc_buf_optimal_sz = 500; + cfg_.rc_buf_sz = 1000; + cfg_.rc_dropframe_thresh = 1; + cfg_.rc_min_quantizer = 0; + cfg_.rc_max_quantizer = 63; + cfg_.rc_end_usage = VPX_CBR; + cfg_.g_lag_in_frames = 0; + + // 2 Temporal layers, no spatial layers: Framerate decimation (2, 1). + cfg_.ss_number_layers = 1; + cfg_.ts_number_layers = 2; + cfg_.ts_rate_decimator[0] = 2; + cfg_.ts_rate_decimator[1] = 1; + + cfg_.temporal_layering_mode = VP9E_TEMPORAL_LAYERING_MODE_BYPASS; + + if (deadline_ == VPX_DL_REALTIME) cfg_.g_error_resilient = 1; + + ::libvpx_test::I420VideoSource video("hantro_collage_w352h288.yuv", 352, 288, + 30, 1, 0, 200); + for (int i = 200; i <= 800; i += 200) { + cfg_.rc_target_bitrate = i; + ResetModel(); + // 60-40 bitrate allocation for 2 temporal layers. + cfg_.layer_target_bitrate[0] = 60 * cfg_.rc_target_bitrate / 100; + cfg_.layer_target_bitrate[1] = cfg_.rc_target_bitrate; + ASSERT_NO_FATAL_FAILURE(RunLoop(&video)); + for (int j = 0; j < static_cast(cfg_.ts_number_layers); ++j) { + ASSERT_GE(effective_datarate_[j], cfg_.layer_target_bitrate[j] * 0.85) + << " The datarate for the file is lower than target by too much, " + "for layer: " + << j; + ASSERT_LE(effective_datarate_[j], cfg_.layer_target_bitrate[j] * 1.15) + << " The datarate for the file is greater than target by too much, " + "for layer: " + << j; + } + } +} + +// Check basic rate targeting for 3 temporal layers. +TEST_P(DatarateTestVP9Large, BasicRateTargeting3TemporalLayers) { + cfg_.rc_buf_initial_sz = 500; + cfg_.rc_buf_optimal_sz = 500; + cfg_.rc_buf_sz = 1000; + cfg_.rc_dropframe_thresh = 1; + cfg_.rc_min_quantizer = 0; + cfg_.rc_max_quantizer = 63; + cfg_.rc_end_usage = VPX_CBR; + cfg_.g_lag_in_frames = 0; + + // 3 Temporal layers, no spatial layers: Framerate decimation (4, 2, 1). + cfg_.ss_number_layers = 1; + cfg_.ts_number_layers = 3; + cfg_.ts_rate_decimator[0] = 4; + cfg_.ts_rate_decimator[1] = 2; + cfg_.ts_rate_decimator[2] = 1; + + cfg_.temporal_layering_mode = VP9E_TEMPORAL_LAYERING_MODE_BYPASS; + + ::libvpx_test::I420VideoSource video("hantro_collage_w352h288.yuv", 352, 288, + 30, 1, 0, 200); + for (int i = 200; i <= 800; i += 200) { + cfg_.rc_target_bitrate = i; + ResetModel(); + // 40-20-40 bitrate allocation for 3 temporal layers. + cfg_.layer_target_bitrate[0] = 40 * cfg_.rc_target_bitrate / 100; + cfg_.layer_target_bitrate[1] = 60 * cfg_.rc_target_bitrate / 100; + cfg_.layer_target_bitrate[2] = cfg_.rc_target_bitrate; + ASSERT_NO_FATAL_FAILURE(RunLoop(&video)); + for (int j = 0; j < static_cast(cfg_.ts_number_layers); ++j) { + // TODO(yaowu): Work out more stable rc control strategy and + // Adjust the thresholds to be tighter than .75. + ASSERT_GE(effective_datarate_[j], cfg_.layer_target_bitrate[j] * 0.75) + << " The datarate for the file is lower than target by too much, " + "for layer: " + << j; + // TODO(yaowu): Work out more stable rc control strategy and + // Adjust the thresholds to be tighter than 1.25. + ASSERT_LE(effective_datarate_[j], cfg_.layer_target_bitrate[j] * 1.25) + << " The datarate for the file is greater than target by too much, " + "for layer: " + << j; + } + } +} + +// Check basic rate targeting for 3 temporal layers, with frame dropping. +// Only for one (low) bitrate with lower max_quantizer, and somewhat higher +// frame drop threshold, to force frame dropping. +TEST_P(DatarateTestVP9Large, BasicRateTargeting3TemporalLayersFrameDropping) { + cfg_.rc_buf_initial_sz = 500; + cfg_.rc_buf_optimal_sz = 500; + cfg_.rc_buf_sz = 1000; + // Set frame drop threshold and rc_max_quantizer to force some frame drops. + cfg_.rc_dropframe_thresh = 20; + cfg_.rc_max_quantizer = 45; + cfg_.rc_min_quantizer = 0; + cfg_.rc_end_usage = VPX_CBR; + cfg_.g_lag_in_frames = 0; + + // 3 Temporal layers, no spatial layers: Framerate decimation (4, 2, 1). + cfg_.ss_number_layers = 1; + cfg_.ts_number_layers = 3; + cfg_.ts_rate_decimator[0] = 4; + cfg_.ts_rate_decimator[1] = 2; + cfg_.ts_rate_decimator[2] = 1; + + cfg_.temporal_layering_mode = VP9E_TEMPORAL_LAYERING_MODE_BYPASS; + + ::libvpx_test::I420VideoSource video("hantro_collage_w352h288.yuv", 352, 288, + 30, 1, 0, 200); + cfg_.rc_target_bitrate = 200; + ResetModel(); + // 40-20-40 bitrate allocation for 3 temporal layers. + cfg_.layer_target_bitrate[0] = 40 * cfg_.rc_target_bitrate / 100; + cfg_.layer_target_bitrate[1] = 60 * cfg_.rc_target_bitrate / 100; + cfg_.layer_target_bitrate[2] = cfg_.rc_target_bitrate; + ASSERT_NO_FATAL_FAILURE(RunLoop(&video)); + for (int j = 0; j < static_cast(cfg_.ts_number_layers); ++j) { + ASSERT_GE(effective_datarate_[j], cfg_.layer_target_bitrate[j] * 0.85) + << " The datarate for the file is lower than target by too much, " + "for layer: " + << j; + ASSERT_LE(effective_datarate_[j], cfg_.layer_target_bitrate[j] * 1.15) + << " The datarate for the file is greater than target by too much, " + "for layer: " + << j; + // Expect some frame drops in this test: for this 200 frames test, + // expect at least 10% and not more than 60% drops. + ASSERT_GE(num_drops_, 20); + ASSERT_LE(num_drops_, 130); + } +} + +#if CONFIG_VP9_TEMPORAL_DENOISING +class DatarateTestVP9LargeDenoiser : public DatarateTestVP9Large { + public: + virtual ~DatarateTestVP9LargeDenoiser() {} +}; + +// Check basic datarate targeting, for a single bitrate, when denoiser is on. +TEST_P(DatarateTestVP9LargeDenoiser, LowNoise) { + cfg_.rc_buf_initial_sz = 500; + cfg_.rc_buf_optimal_sz = 500; + cfg_.rc_buf_sz = 1000; + cfg_.rc_dropframe_thresh = 1; + cfg_.rc_min_quantizer = 2; + cfg_.rc_max_quantizer = 56; + cfg_.rc_end_usage = VPX_CBR; + cfg_.g_lag_in_frames = 0; + + ::libvpx_test::I420VideoSource video("hantro_collage_w352h288.yuv", 352, 288, + 30, 1, 0, 140); + + // For the temporal denoiser (#if CONFIG_VP9_TEMPORAL_DENOISING), + // there is only one denoiser mode: denoiserYonly(which is 1), + // but may add more modes in the future. + cfg_.rc_target_bitrate = 300; + ResetModel(); + // Turn on the denoiser. + denoiser_on_ = 1; + ASSERT_NO_FATAL_FAILURE(RunLoop(&video)); + ASSERT_GE(effective_datarate_[0], cfg_.rc_target_bitrate * 0.85) + << " The datarate for the file is lower than target by too much!"; + ASSERT_LE(effective_datarate_[0], cfg_.rc_target_bitrate * 1.15) + << " The datarate for the file is greater than target by too much!"; +} + +// Check basic datarate targeting, for a single bitrate, when denoiser is on, +// for clip with high noise level. Use 2 threads. +TEST_P(DatarateTestVP9LargeDenoiser, HighNoise) { + cfg_.rc_buf_initial_sz = 500; + cfg_.rc_buf_optimal_sz = 500; + cfg_.rc_buf_sz = 1000; + cfg_.rc_dropframe_thresh = 1; + cfg_.rc_min_quantizer = 2; + cfg_.rc_max_quantizer = 56; + cfg_.rc_end_usage = VPX_CBR; + cfg_.g_lag_in_frames = 0; + cfg_.g_threads = 2; + + ::libvpx_test::Y4mVideoSource video("noisy_clip_640_360.y4m", 0, 200); + + // For the temporal denoiser (#if CONFIG_VP9_TEMPORAL_DENOISING), + // there is only one denoiser mode: kDenoiserOnYOnly(which is 1), + // but may add more modes in the future. + cfg_.rc_target_bitrate = 1000; + ResetModel(); + // Turn on the denoiser. + denoiser_on_ = 1; + ASSERT_NO_FATAL_FAILURE(RunLoop(&video)); + ASSERT_GE(effective_datarate_[0], cfg_.rc_target_bitrate * 0.85) + << " The datarate for the file is lower than target by too much!"; + ASSERT_LE(effective_datarate_[0], cfg_.rc_target_bitrate * 1.15) + << " The datarate for the file is greater than target by too much!"; +} + +// Check basic datarate targeting, for a single bitrate, when denoiser is on, +// for 1280x720 clip with 4 threads. +TEST_P(DatarateTestVP9LargeDenoiser, 4threads) { + cfg_.rc_buf_initial_sz = 500; + cfg_.rc_buf_optimal_sz = 500; + cfg_.rc_buf_sz = 1000; + cfg_.rc_dropframe_thresh = 1; + cfg_.rc_min_quantizer = 2; + cfg_.rc_max_quantizer = 56; + cfg_.rc_end_usage = VPX_CBR; + cfg_.g_lag_in_frames = 0; + cfg_.g_threads = 4; + + ::libvpx_test::Y4mVideoSource video("niklas_1280_720_30.y4m", 0, 300); + + // For the temporal denoiser (#if CONFIG_VP9_TEMPORAL_DENOISING), + // there is only one denoiser mode: denoiserYonly(which is 1), + // but may add more modes in the future. + cfg_.rc_target_bitrate = 1000; + ResetModel(); + // Turn on the denoiser. + denoiser_on_ = 1; + ASSERT_NO_FATAL_FAILURE(RunLoop(&video)); + ASSERT_GE(effective_datarate_[0], cfg_.rc_target_bitrate * 0.85) + << " The datarate for the file is lower than target by too much!"; + ASSERT_LE(effective_datarate_[0], cfg_.rc_target_bitrate * 1.29) + << " The datarate for the file is greater than target by too much!"; +} + +// Check basic datarate targeting, for a single bitrate, when denoiser is off +// and on. +TEST_P(DatarateTestVP9LargeDenoiser, DenoiserOffOn) { + cfg_.rc_buf_initial_sz = 500; + cfg_.rc_buf_optimal_sz = 500; + cfg_.rc_buf_sz = 1000; + cfg_.rc_dropframe_thresh = 1; + cfg_.rc_min_quantizer = 2; + cfg_.rc_max_quantizer = 56; + cfg_.rc_end_usage = VPX_CBR; + cfg_.g_lag_in_frames = 0; + + ::libvpx_test::I420VideoSource video("hantro_collage_w352h288.yuv", 352, 288, + 30, 1, 0, 299); + + // For the temporal denoiser (#if CONFIG_VP9_TEMPORAL_DENOISING), + // there is only one denoiser mode: denoiserYonly(which is 1), + // but may add more modes in the future. + cfg_.rc_target_bitrate = 300; + ResetModel(); + // The denoiser is off by default. + denoiser_on_ = 0; + // Set the offon test flag. + denoiser_offon_test_ = 1; + denoiser_offon_period_ = 100; + ASSERT_NO_FATAL_FAILURE(RunLoop(&video)); + ASSERT_GE(effective_datarate_[0], cfg_.rc_target_bitrate * 0.85) + << " The datarate for the file is lower than target by too much!"; + ASSERT_LE(effective_datarate_[0], cfg_.rc_target_bitrate * 1.15) + << " The datarate for the file is greater than target by too much!"; +} +#endif // CONFIG_VP9_TEMPORAL_DENOISING + +class DatarateOnePassCbrSvc + : public ::libvpx_test::EncoderTest, + public ::libvpx_test::CodecTestWith2Params { + public: + DatarateOnePassCbrSvc() : EncoderTest(GET_PARAM(0)) { + memset(&svc_params_, 0, sizeof(svc_params_)); + } + virtual ~DatarateOnePassCbrSvc() {} + + protected: + virtual void SetUp() { + InitializeConfig(); + SetMode(GET_PARAM(1)); + speed_setting_ = GET_PARAM(2); + ResetModel(); + } + virtual void ResetModel() { + last_pts_ = 0; + duration_ = 0.0; + mismatch_psnr_ = 0.0; + mismatch_nframes_ = 0; + denoiser_on_ = 0; + tune_content_ = 0; + base_speed_setting_ = 5; + spatial_layer_id_ = 0; + temporal_layer_id_ = 0; + memset(bits_in_buffer_model_, 0, sizeof(bits_in_buffer_model_)); + memset(bits_total_, 0, sizeof(bits_total_)); + memset(layer_target_avg_bandwidth_, 0, sizeof(layer_target_avg_bandwidth_)); + } + virtual void BeginPassHook(unsigned int /*pass*/) {} + virtual void PreEncodeFrameHook(::libvpx_test::VideoSource *video, + ::libvpx_test::Encoder *encoder) { + if (video->frame() == 0) { + int i; + for (i = 0; i < VPX_MAX_LAYERS; ++i) { + svc_params_.max_quantizers[i] = 63; + svc_params_.min_quantizers[i] = 0; + } + svc_params_.speed_per_layer[0] = base_speed_setting_; + for (i = 1; i < VPX_SS_MAX_LAYERS; ++i) { + svc_params_.speed_per_layer[i] = speed_setting_; + } + + encoder->Control(VP9E_SET_NOISE_SENSITIVITY, denoiser_on_); + encoder->Control(VP9E_SET_SVC, 1); + encoder->Control(VP9E_SET_SVC_PARAMETERS, &svc_params_); + encoder->Control(VP8E_SET_CPUUSED, speed_setting_); + encoder->Control(VP9E_SET_TILE_COLUMNS, 0); + encoder->Control(VP8E_SET_MAX_INTRA_BITRATE_PCT, 300); + encoder->Control(VP9E_SET_TILE_COLUMNS, (cfg_.g_threads >> 1)); + encoder->Control(VP9E_SET_ROW_MT, 1); + encoder->Control(VP8E_SET_STATIC_THRESHOLD, 1); + encoder->Control(VP9E_SET_TUNE_CONTENT, tune_content_); + } + const vpx_rational_t tb = video->timebase(); + timebase_ = static_cast(tb.num) / tb.den; + duration_ = 0; + } + + virtual void PostEncodeFrameHook(::libvpx_test::Encoder *encoder) { + vpx_svc_layer_id_t layer_id; + encoder->Control(VP9E_GET_SVC_LAYER_ID, &layer_id); + spatial_layer_id_ = layer_id.spatial_layer_id; + temporal_layer_id_ = layer_id.temporal_layer_id; + // Update buffer with per-layer target frame bandwidth, this is done + // for every frame passed to the encoder (encoded or dropped). + // For temporal layers, update the cumulative buffer level. + for (int sl = 0; sl < number_spatial_layers_; ++sl) { + for (int tl = temporal_layer_id_; tl < number_temporal_layers_; ++tl) { + const int layer = sl * number_temporal_layers_ + tl; + bits_in_buffer_model_[layer] += + static_cast(layer_target_avg_bandwidth_[layer]); + } + } + } + + vpx_codec_err_t parse_superframe_index(const uint8_t *data, size_t data_sz, + uint32_t sizes[8], int *count) { + uint8_t marker; + marker = *(data + data_sz - 1); + *count = 0; + if ((marker & 0xe0) == 0xc0) { + const uint32_t frames = (marker & 0x7) + 1; + const uint32_t mag = ((marker >> 3) & 0x3) + 1; + const size_t index_sz = 2 + mag * frames; + // This chunk is marked as having a superframe index but doesn't have + // enough data for it, thus it's an invalid superframe index. + if (data_sz < index_sz) return VPX_CODEC_CORRUPT_FRAME; + { + const uint8_t marker2 = *(data + data_sz - index_sz); + // This chunk is marked as having a superframe index but doesn't have + // the matching marker byte at the front of the index therefore it's an + // invalid chunk. + if (marker != marker2) return VPX_CODEC_CORRUPT_FRAME; + } + { + uint32_t i, j; + const uint8_t *x = &data[data_sz - index_sz + 1]; + for (i = 0; i < frames; ++i) { + uint32_t this_sz = 0; + + for (j = 0; j < mag; ++j) this_sz |= (*x++) << (j * 8); + sizes[i] = this_sz; + } + *count = frames; + } + } + return VPX_CODEC_OK; + } + + virtual void FramePktHook(const vpx_codec_cx_pkt_t *pkt) { + uint32_t sizes[8] = { 0 }; + int count = 0; + last_pts_ = pkt->data.frame.pts; + const bool key_frame = + (pkt->data.frame.flags & VPX_FRAME_IS_KEY) ? true : false; + parse_superframe_index(static_cast(pkt->data.frame.buf), + pkt->data.frame.sz, sizes, &count); + ASSERT_EQ(count, number_spatial_layers_); + for (int sl = 0; sl < number_spatial_layers_; ++sl) { + sizes[sl] = sizes[sl] << 3; + // Update the total encoded bits per layer. + // For temporal layers, update the cumulative encoded bits per layer. + for (int tl = temporal_layer_id_; tl < number_temporal_layers_; ++tl) { + const int layer = sl * number_temporal_layers_ + tl; + bits_total_[layer] += static_cast(sizes[sl]); + // Update the per-layer buffer level with the encoded frame size. + bits_in_buffer_model_[layer] -= static_cast(sizes[sl]); + // There should be no buffer underrun, except on the base + // temporal layer, since there may be key frames there. + if (!key_frame && tl > 0) { + ASSERT_GE(bits_in_buffer_model_[layer], 0) + << "Buffer Underrun at frame " << pkt->data.frame.pts; + } + } + } + } + + virtual void EndPassHook(void) { + for (int sl = 0; sl < number_spatial_layers_; ++sl) { + for (int tl = 0; tl < number_temporal_layers_; ++tl) { + const int layer = sl * number_temporal_layers_ + tl; + const double file_size_in_kb = bits_total_[layer] / 1000.; + duration_ = (last_pts_ + 1) * timebase_; + file_datarate_[layer] = file_size_in_kb / duration_; + } + } + } + + virtual void MismatchHook(const vpx_image_t *img1, const vpx_image_t *img2) { + double mismatch_psnr = compute_psnr(img1, img2); + mismatch_psnr_ += mismatch_psnr; + ++mismatch_nframes_; + } + + unsigned int GetMismatchFrames() { return mismatch_nframes_; } + + vpx_codec_pts_t last_pts_; + int64_t bits_in_buffer_model_[VPX_MAX_LAYERS]; + double timebase_; + int64_t bits_total_[VPX_MAX_LAYERS]; + double duration_; + double file_datarate_[VPX_MAX_LAYERS]; + size_t bits_in_last_frame_; + vpx_svc_extra_cfg_t svc_params_; + int speed_setting_; + double mismatch_psnr_; + int mismatch_nframes_; + int denoiser_on_; + int tune_content_; + int base_speed_setting_; + int spatial_layer_id_; + int temporal_layer_id_; + int number_spatial_layers_; + int number_temporal_layers_; + int layer_target_avg_bandwidth_[VPX_MAX_LAYERS]; +}; +static void assign_layer_bitrates(vpx_codec_enc_cfg_t *const enc_cfg, + const vpx_svc_extra_cfg_t *svc_params, + int spatial_layers, int temporal_layers, + int temporal_layering_mode, + int *layer_target_avg_bandwidth, + int64_t *bits_in_buffer_model) { + int sl, spatial_layer_target; + float total = 0; + float alloc_ratio[VPX_MAX_LAYERS] = { 0 }; + float framerate = 30.0; + for (sl = 0; sl < spatial_layers; ++sl) { + if (svc_params->scaling_factor_den[sl] > 0) { + alloc_ratio[sl] = (float)(svc_params->scaling_factor_num[sl] * 1.0 / + svc_params->scaling_factor_den[sl]); + total += alloc_ratio[sl]; + } + } + for (sl = 0; sl < spatial_layers; ++sl) { + enc_cfg->ss_target_bitrate[sl] = spatial_layer_target = + (unsigned int)(enc_cfg->rc_target_bitrate * alloc_ratio[sl] / total); + const int index = sl * temporal_layers; + if (temporal_layering_mode == 3) { + enc_cfg->layer_target_bitrate[index] = spatial_layer_target >> 1; + enc_cfg->layer_target_bitrate[index + 1] = + (spatial_layer_target >> 1) + (spatial_layer_target >> 2); + enc_cfg->layer_target_bitrate[index + 2] = spatial_layer_target; + } else if (temporal_layering_mode == 2) { + enc_cfg->layer_target_bitrate[index] = spatial_layer_target * 2 / 3; + enc_cfg->layer_target_bitrate[index + 1] = spatial_layer_target; + } else if (temporal_layering_mode <= 1) { + enc_cfg->layer_target_bitrate[index] = spatial_layer_target; + } + } + for (sl = 0; sl < spatial_layers; ++sl) { + for (int tl = 0; tl < temporal_layers; ++tl) { + const int layer = sl * temporal_layers + tl; + float layer_framerate = framerate; + if (temporal_layers == 2 && tl == 0) layer_framerate = framerate / 2; + if (temporal_layers == 3 && tl == 0) layer_framerate = framerate / 4; + if (temporal_layers == 3 && tl == 1) layer_framerate = framerate / 2; + layer_target_avg_bandwidth[layer] = static_cast( + enc_cfg->layer_target_bitrate[layer] * 1000.0 / layer_framerate); + bits_in_buffer_model[layer] = + enc_cfg->layer_target_bitrate[layer] * enc_cfg->rc_buf_initial_sz; + } + } +} + +static void CheckLayerRateTargeting(vpx_codec_enc_cfg_t *const cfg, + int number_spatial_layers, + int number_temporal_layers, + double *file_datarate, + double thresh_overshoot, + double thresh_undershoot) { + for (int sl = 0; sl < number_spatial_layers; ++sl) + for (int tl = 0; tl < number_temporal_layers; ++tl) { + const int layer = sl * number_temporal_layers + tl; + ASSERT_GE(cfg->layer_target_bitrate[layer], + file_datarate[layer] * thresh_overshoot) + << " The datarate for the file exceeds the target by too much!"; + ASSERT_LE(cfg->layer_target_bitrate[layer], + file_datarate[layer] * thresh_undershoot) + << " The datarate for the file is lower than the target by too much!"; + } +} + +// Check basic rate targeting for 1 pass CBR SVC: 2 spatial layers and 1 +// temporal layer, with screen content mode on and same speed setting for all +// layers. +TEST_P(DatarateOnePassCbrSvc, OnePassCbrSvc2SL1TLScreenContent1) { + cfg_.rc_buf_initial_sz = 500; + cfg_.rc_buf_optimal_sz = 500; + cfg_.rc_buf_sz = 1000; + cfg_.rc_min_quantizer = 0; + cfg_.rc_max_quantizer = 63; + cfg_.rc_end_usage = VPX_CBR; + cfg_.g_lag_in_frames = 0; + cfg_.ss_number_layers = 2; + cfg_.ts_number_layers = 1; + cfg_.ts_rate_decimator[0] = 1; + cfg_.g_error_resilient = 1; + cfg_.g_threads = 1; + cfg_.temporal_layering_mode = 0; + svc_params_.scaling_factor_num[0] = 144; + svc_params_.scaling_factor_den[0] = 288; + svc_params_.scaling_factor_num[1] = 288; + svc_params_.scaling_factor_den[1] = 288; + cfg_.rc_dropframe_thresh = 10; + cfg_.kf_max_dist = 9999; + number_spatial_layers_ = cfg_.ss_number_layers; + number_temporal_layers_ = cfg_.ts_number_layers; + ::libvpx_test::Y4mVideoSource video("niklas_1280_720_30.y4m", 0, 60); + cfg_.rc_target_bitrate = 500; + ResetModel(); + tune_content_ = 1; + base_speed_setting_ = speed_setting_; + assign_layer_bitrates(&cfg_, &svc_params_, cfg_.ss_number_layers, + cfg_.ts_number_layers, cfg_.temporal_layering_mode, + layer_target_avg_bandwidth_, bits_in_buffer_model_); + ASSERT_NO_FATAL_FAILURE(RunLoop(&video)); + CheckLayerRateTargeting(&cfg_, number_spatial_layers_, + number_temporal_layers_, file_datarate_, 0.78, 1.15); + EXPECT_EQ(static_cast(0), GetMismatchFrames()); +} + +// Check basic rate targeting for 1 pass CBR SVC: 2 spatial layers and +// 3 temporal layers. Run CIF clip with 1 thread. +TEST_P(DatarateOnePassCbrSvc, OnePassCbrSvc2SL3TL) { + cfg_.rc_buf_initial_sz = 500; + cfg_.rc_buf_optimal_sz = 500; + cfg_.rc_buf_sz = 1000; + cfg_.rc_min_quantizer = 0; + cfg_.rc_max_quantizer = 63; + cfg_.rc_end_usage = VPX_CBR; + cfg_.g_lag_in_frames = 0; + cfg_.ss_number_layers = 2; + cfg_.ts_number_layers = 3; + cfg_.ts_rate_decimator[0] = 4; + cfg_.ts_rate_decimator[1] = 2; + cfg_.ts_rate_decimator[2] = 1; + cfg_.g_error_resilient = 1; + cfg_.g_threads = 1; + cfg_.temporal_layering_mode = 3; + svc_params_.scaling_factor_num[0] = 144; + svc_params_.scaling_factor_den[0] = 288; + svc_params_.scaling_factor_num[1] = 288; + svc_params_.scaling_factor_den[1] = 288; + cfg_.rc_dropframe_thresh = 0; + cfg_.kf_max_dist = 9999; + number_spatial_layers_ = cfg_.ss_number_layers; + number_temporal_layers_ = cfg_.ts_number_layers; + ::libvpx_test::I420VideoSource video("niklas_640_480_30.yuv", 640, 480, 30, 1, + 0, 400); + // TODO(marpan): Check that effective_datarate for each layer hits the + // layer target_bitrate. + for (int i = 200; i <= 800; i += 200) { + cfg_.rc_target_bitrate = i; + ResetModel(); + assign_layer_bitrates(&cfg_, &svc_params_, cfg_.ss_number_layers, + cfg_.ts_number_layers, cfg_.temporal_layering_mode, + layer_target_avg_bandwidth_, bits_in_buffer_model_); + ASSERT_NO_FATAL_FAILURE(RunLoop(&video)); + CheckLayerRateTargeting(&cfg_, number_spatial_layers_, + number_temporal_layers_, file_datarate_, 0.78, + 1.15); +#if CONFIG_VP9_DECODER + // Number of temporal layers > 1, so half of the frames in this SVC pattern + // will be non-reference frame and hence encoder will avoid loopfilter. + // Since frame dropper is off, we can expect 200 (half of the sequence) + // mismatched frames. + EXPECT_EQ(static_cast(200), GetMismatchFrames()); +#endif + } +} + +// Check basic rate targeting for 1 pass CBR SVC with denoising. +// 2 spatial layers and 3 temporal layer. Run HD clip with 2 threads. +TEST_P(DatarateOnePassCbrSvc, OnePassCbrSvc2SL3TLDenoiserOn) { + cfg_.rc_buf_initial_sz = 500; + cfg_.rc_buf_optimal_sz = 500; + cfg_.rc_buf_sz = 1000; + cfg_.rc_min_quantizer = 0; + cfg_.rc_max_quantizer = 63; + cfg_.rc_end_usage = VPX_CBR; + cfg_.g_lag_in_frames = 0; + cfg_.ss_number_layers = 2; + cfg_.ts_number_layers = 3; + cfg_.ts_rate_decimator[0] = 4; + cfg_.ts_rate_decimator[1] = 2; + cfg_.ts_rate_decimator[2] = 1; + cfg_.g_error_resilient = 1; + cfg_.g_threads = 2; + cfg_.temporal_layering_mode = 3; + svc_params_.scaling_factor_num[0] = 144; + svc_params_.scaling_factor_den[0] = 288; + svc_params_.scaling_factor_num[1] = 288; + svc_params_.scaling_factor_den[1] = 288; + cfg_.rc_dropframe_thresh = 0; + cfg_.kf_max_dist = 9999; + number_spatial_layers_ = cfg_.ss_number_layers; + number_temporal_layers_ = cfg_.ts_number_layers; + ::libvpx_test::I420VideoSource video("niklas_640_480_30.yuv", 640, 480, 30, 1, + 0, 400); + // TODO(marpan): Check that effective_datarate for each layer hits the + // layer target_bitrate. + // For SVC, noise_sen = 1 means denoising only the top spatial layer + // noise_sen = 2 means denoising the two top spatial layers. + for (int noise_sen = 1; noise_sen <= 2; noise_sen++) { + for (int i = 600; i <= 1000; i += 200) { + cfg_.rc_target_bitrate = i; + ResetModel(); + denoiser_on_ = noise_sen; + assign_layer_bitrates(&cfg_, &svc_params_, cfg_.ss_number_layers, + cfg_.ts_number_layers, cfg_.temporal_layering_mode, + layer_target_avg_bandwidth_, bits_in_buffer_model_); + ASSERT_NO_FATAL_FAILURE(RunLoop(&video)); + CheckLayerRateTargeting(&cfg_, number_spatial_layers_, + number_temporal_layers_, file_datarate_, 0.78, + 1.15); +#if CONFIG_VP9_DECODER + // Number of temporal layers > 1, so half of the frames in this SVC + // pattern + // will be non-reference frame and hence encoder will avoid loopfilter. + // Since frame dropper is off, we can expect 200 (half of the sequence) + // mismatched frames. + EXPECT_EQ(static_cast(200), GetMismatchFrames()); +#endif + } + } +} + +// Check basic rate targeting for 1 pass CBR SVC: 2 spatial layers and 3 +// temporal layers. Run CIF clip with 1 thread, and few short key frame periods. +TEST_P(DatarateOnePassCbrSvc, OnePassCbrSvc2SL3TLSmallKf) { + cfg_.rc_buf_initial_sz = 500; + cfg_.rc_buf_optimal_sz = 500; + cfg_.rc_buf_sz = 1000; + cfg_.rc_min_quantizer = 0; + cfg_.rc_max_quantizer = 63; + cfg_.rc_end_usage = VPX_CBR; + cfg_.g_lag_in_frames = 0; + cfg_.ss_number_layers = 2; + cfg_.ts_number_layers = 3; + cfg_.ts_rate_decimator[0] = 4; + cfg_.ts_rate_decimator[1] = 2; + cfg_.ts_rate_decimator[2] = 1; + cfg_.g_error_resilient = 1; + cfg_.g_threads = 1; + cfg_.temporal_layering_mode = 3; + svc_params_.scaling_factor_num[0] = 144; + svc_params_.scaling_factor_den[0] = 288; + svc_params_.scaling_factor_num[1] = 288; + svc_params_.scaling_factor_den[1] = 288; + cfg_.rc_dropframe_thresh = 10; + cfg_.rc_target_bitrate = 400; + number_spatial_layers_ = cfg_.ss_number_layers; + number_temporal_layers_ = cfg_.ts_number_layers; + ::libvpx_test::I420VideoSource video("niklas_640_480_30.yuv", 640, 480, 30, 1, + 0, 400); + // For this 3 temporal layer case, pattern repeats every 4 frames, so choose + // 4 key neighboring key frame periods (so key frame will land on 0-2-1-2). + for (int j = 64; j <= 67; j++) { + cfg_.kf_max_dist = j; + ResetModel(); + assign_layer_bitrates(&cfg_, &svc_params_, cfg_.ss_number_layers, + cfg_.ts_number_layers, cfg_.temporal_layering_mode, + layer_target_avg_bandwidth_, bits_in_buffer_model_); + ASSERT_NO_FATAL_FAILURE(RunLoop(&video)); + CheckLayerRateTargeting(&cfg_, number_spatial_layers_, + number_temporal_layers_, file_datarate_, 0.78, + 1.15); + } +} + +// Check basic rate targeting for 1 pass CBR SVC: 2 spatial layers and +// 3 temporal layers. Run HD clip with 4 threads. +TEST_P(DatarateOnePassCbrSvc, OnePassCbrSvc2SL3TL4Threads) { + cfg_.rc_buf_initial_sz = 500; + cfg_.rc_buf_optimal_sz = 500; + cfg_.rc_buf_sz = 1000; + cfg_.rc_min_quantizer = 0; + cfg_.rc_max_quantizer = 63; + cfg_.rc_end_usage = VPX_CBR; + cfg_.g_lag_in_frames = 0; + cfg_.ss_number_layers = 2; + cfg_.ts_number_layers = 3; + cfg_.ts_rate_decimator[0] = 4; + cfg_.ts_rate_decimator[1] = 2; + cfg_.ts_rate_decimator[2] = 1; + cfg_.g_error_resilient = 1; + cfg_.g_threads = 4; + cfg_.temporal_layering_mode = 3; + svc_params_.scaling_factor_num[0] = 144; + svc_params_.scaling_factor_den[0] = 288; + svc_params_.scaling_factor_num[1] = 288; + svc_params_.scaling_factor_den[1] = 288; + cfg_.rc_dropframe_thresh = 0; + cfg_.kf_max_dist = 9999; + number_spatial_layers_ = cfg_.ss_number_layers; + number_temporal_layers_ = cfg_.ts_number_layers; + ::libvpx_test::Y4mVideoSource video("niklas_1280_720_30.y4m", 0, 60); + cfg_.rc_target_bitrate = 800; + ResetModel(); + assign_layer_bitrates(&cfg_, &svc_params_, cfg_.ss_number_layers, + cfg_.ts_number_layers, cfg_.temporal_layering_mode, + layer_target_avg_bandwidth_, bits_in_buffer_model_); + ASSERT_NO_FATAL_FAILURE(RunLoop(&video)); + CheckLayerRateTargeting(&cfg_, number_spatial_layers_, + number_temporal_layers_, file_datarate_, 0.78, 1.15); +#if CONFIG_VP9_DECODER + // Number of temporal layers > 1, so half of the frames in this SVC pattern + // will be non-reference frame and hence encoder will avoid loopfilter. + // Since frame dropper is off, we can expect 30 (half of the sequence) + // mismatched frames. + EXPECT_EQ(static_cast(30), GetMismatchFrames()); +#endif +} + +// Check basic rate targeting for 1 pass CBR SVC: 3 spatial layers and +// 3 temporal layers. Run CIF clip with 1 thread. +TEST_P(DatarateOnePassCbrSvc, OnePassCbrSvc3SL3TL) { + cfg_.rc_buf_initial_sz = 500; + cfg_.rc_buf_optimal_sz = 500; + cfg_.rc_buf_sz = 1000; + cfg_.rc_min_quantizer = 0; + cfg_.rc_max_quantizer = 63; + cfg_.rc_end_usage = VPX_CBR; + cfg_.g_lag_in_frames = 0; + cfg_.ss_number_layers = 3; + cfg_.ts_number_layers = 3; + cfg_.ts_rate_decimator[0] = 4; + cfg_.ts_rate_decimator[1] = 2; + cfg_.ts_rate_decimator[2] = 1; + cfg_.g_error_resilient = 1; + cfg_.g_threads = 1; + cfg_.temporal_layering_mode = 3; + svc_params_.scaling_factor_num[0] = 72; + svc_params_.scaling_factor_den[0] = 288; + svc_params_.scaling_factor_num[1] = 144; + svc_params_.scaling_factor_den[1] = 288; + svc_params_.scaling_factor_num[2] = 288; + svc_params_.scaling_factor_den[2] = 288; + cfg_.rc_dropframe_thresh = 0; + cfg_.kf_max_dist = 9999; + number_spatial_layers_ = cfg_.ss_number_layers; + number_temporal_layers_ = cfg_.ts_number_layers; + ::libvpx_test::I420VideoSource video("niklas_640_480_30.yuv", 640, 480, 30, 1, + 0, 400); + cfg_.rc_target_bitrate = 800; + ResetModel(); + assign_layer_bitrates(&cfg_, &svc_params_, cfg_.ss_number_layers, + cfg_.ts_number_layers, cfg_.temporal_layering_mode, + layer_target_avg_bandwidth_, bits_in_buffer_model_); + ASSERT_NO_FATAL_FAILURE(RunLoop(&video)); + CheckLayerRateTargeting(&cfg_, number_spatial_layers_, + number_temporal_layers_, file_datarate_, 0.78, 1.15); +#if CONFIG_VP9_DECODER + // Number of temporal layers > 1, so half of the frames in this SVC pattern + // will be non-reference frame and hence encoder will avoid loopfilter. + // Since frame dropper is off, we can expect 200 (half of the sequence) + // mismatched frames. + EXPECT_EQ(static_cast(200), GetMismatchFrames()); +#endif +} + +// Check basic rate targeting for 1 pass CBR SVC: 3 spatial layers and 3 +// temporal layers. Run CIF clip with 1 thread, and few short key frame periods. +TEST_P(DatarateOnePassCbrSvc, OnePassCbrSvc3SL3TLSmallKf) { + cfg_.rc_buf_initial_sz = 500; + cfg_.rc_buf_optimal_sz = 500; + cfg_.rc_buf_sz = 1000; + cfg_.rc_min_quantizer = 0; + cfg_.rc_max_quantizer = 63; + cfg_.rc_end_usage = VPX_CBR; + cfg_.g_lag_in_frames = 0; + cfg_.ss_number_layers = 3; + cfg_.ts_number_layers = 3; + cfg_.ts_rate_decimator[0] = 4; + cfg_.ts_rate_decimator[1] = 2; + cfg_.ts_rate_decimator[2] = 1; + cfg_.g_error_resilient = 1; + cfg_.g_threads = 1; + cfg_.temporal_layering_mode = 3; + svc_params_.scaling_factor_num[0] = 72; + svc_params_.scaling_factor_den[0] = 288; + svc_params_.scaling_factor_num[1] = 144; + svc_params_.scaling_factor_den[1] = 288; + svc_params_.scaling_factor_num[2] = 288; + svc_params_.scaling_factor_den[2] = 288; + cfg_.rc_dropframe_thresh = 10; + cfg_.rc_target_bitrate = 800; + number_spatial_layers_ = cfg_.ss_number_layers; + number_temporal_layers_ = cfg_.ts_number_layers; + ::libvpx_test::I420VideoSource video("niklas_640_480_30.yuv", 640, 480, 30, 1, + 0, 400); + // For this 3 temporal layer case, pattern repeats every 4 frames, so choose + // 4 key neighboring key frame periods (so key frame will land on 0-2-1-2). + for (int j = 32; j <= 35; j++) { + cfg_.kf_max_dist = j; + ResetModel(); + assign_layer_bitrates(&cfg_, &svc_params_, cfg_.ss_number_layers, + cfg_.ts_number_layers, cfg_.temporal_layering_mode, + layer_target_avg_bandwidth_, bits_in_buffer_model_); + ASSERT_NO_FATAL_FAILURE(RunLoop(&video)); + CheckLayerRateTargeting(&cfg_, number_spatial_layers_, + number_temporal_layers_, file_datarate_, 0.78, + 1.15); + } +} + +// Check basic rate targeting for 1 pass CBR SVC: 3 spatial layers and +// 3 temporal layers. Run HD clip with 4 threads. +TEST_P(DatarateOnePassCbrSvc, OnePassCbrSvc3SL3TL4threads) { + cfg_.rc_buf_initial_sz = 500; + cfg_.rc_buf_optimal_sz = 500; + cfg_.rc_buf_sz = 1000; + cfg_.rc_min_quantizer = 0; + cfg_.rc_max_quantizer = 63; + cfg_.rc_end_usage = VPX_CBR; + cfg_.g_lag_in_frames = 0; + cfg_.ss_number_layers = 3; + cfg_.ts_number_layers = 3; + cfg_.ts_rate_decimator[0] = 4; + cfg_.ts_rate_decimator[1] = 2; + cfg_.ts_rate_decimator[2] = 1; + cfg_.g_error_resilient = 1; + cfg_.g_threads = 4; + cfg_.temporal_layering_mode = 3; + svc_params_.scaling_factor_num[0] = 72; + svc_params_.scaling_factor_den[0] = 288; + svc_params_.scaling_factor_num[1] = 144; + svc_params_.scaling_factor_den[1] = 288; + svc_params_.scaling_factor_num[2] = 288; + svc_params_.scaling_factor_den[2] = 288; + cfg_.rc_dropframe_thresh = 0; + cfg_.kf_max_dist = 9999; + number_spatial_layers_ = cfg_.ss_number_layers; + number_temporal_layers_ = cfg_.ts_number_layers; + ::libvpx_test::Y4mVideoSource video("niklas_1280_720_30.y4m", 0, 60); + cfg_.rc_target_bitrate = 800; + ResetModel(); + assign_layer_bitrates(&cfg_, &svc_params_, cfg_.ss_number_layers, + cfg_.ts_number_layers, cfg_.temporal_layering_mode, + layer_target_avg_bandwidth_, bits_in_buffer_model_); + ASSERT_NO_FATAL_FAILURE(RunLoop(&video)); + CheckLayerRateTargeting(&cfg_, number_spatial_layers_, + number_temporal_layers_, file_datarate_, 0.78, 1.15); +#if CONFIG_VP9_DECODER + // Number of temporal layers > 1, so half of the frames in this SVC pattern + // will be non-reference frame and hence encoder will avoid loopfilter. + // Since frame dropper is off, we can expect 30 (half of the sequence) + // mismatched frames. + EXPECT_EQ(static_cast(30), GetMismatchFrames()); +#endif +} + +// Run SVC encoder for 1 temporal layer, 2 spatial layers, with spatial +// downscale 5x5. +TEST_P(DatarateOnePassCbrSvc, OnePassCbrSvc2SL1TL5x5MultipleRuns) { + cfg_.rc_buf_initial_sz = 500; + cfg_.rc_buf_optimal_sz = 500; + cfg_.rc_buf_sz = 1000; + cfg_.rc_min_quantizer = 0; + cfg_.rc_max_quantizer = 63; + cfg_.rc_end_usage = VPX_CBR; + cfg_.g_lag_in_frames = 0; + cfg_.ss_number_layers = 2; + cfg_.ts_number_layers = 1; + cfg_.ts_rate_decimator[0] = 1; + cfg_.g_error_resilient = 1; + cfg_.g_threads = 3; + cfg_.temporal_layering_mode = 0; + svc_params_.scaling_factor_num[0] = 256; + svc_params_.scaling_factor_den[0] = 1280; + svc_params_.scaling_factor_num[1] = 1280; + svc_params_.scaling_factor_den[1] = 1280; + cfg_.rc_dropframe_thresh = 10; + cfg_.kf_max_dist = 999999; + cfg_.kf_min_dist = 0; + cfg_.ss_target_bitrate[0] = 300; + cfg_.ss_target_bitrate[1] = 1400; + cfg_.layer_target_bitrate[0] = 300; + cfg_.layer_target_bitrate[1] = 1400; + cfg_.rc_target_bitrate = 1700; + number_spatial_layers_ = cfg_.ss_number_layers; + number_temporal_layers_ = cfg_.ts_number_layers; + ResetModel(); + layer_target_avg_bandwidth_[0] = cfg_.layer_target_bitrate[0] * 1000 / 30; + bits_in_buffer_model_[0] = + cfg_.layer_target_bitrate[0] * cfg_.rc_buf_initial_sz; + layer_target_avg_bandwidth_[1] = cfg_.layer_target_bitrate[1] * 1000 / 30; + bits_in_buffer_model_[1] = + cfg_.layer_target_bitrate[1] * cfg_.rc_buf_initial_sz; + ::libvpx_test::Y4mVideoSource video("niklas_1280_720_30.y4m", 0, 60); + ASSERT_NO_FATAL_FAILURE(RunLoop(&video)); + CheckLayerRateTargeting(&cfg_, number_spatial_layers_, + number_temporal_layers_, file_datarate_, 0.78, 1.15); + EXPECT_EQ(static_cast(0), GetMismatchFrames()); +} + +VP8_INSTANTIATE_TEST_CASE(DatarateTestLarge, ALL_TEST_MODES, + ::testing::Values(0)); +VP8_INSTANTIATE_TEST_CASE(DatarateTestRealTime, + ::testing::Values(::libvpx_test::kRealTime), + ::testing::Values(-6, -12)); +VP9_INSTANTIATE_TEST_CASE(DatarateTestVP9Large, + ::testing::Values(::libvpx_test::kOnePassGood, + ::libvpx_test::kRealTime), + ::testing::Range(2, 9)); +#if CONFIG_VP9_TEMPORAL_DENOISING +VP9_INSTANTIATE_TEST_CASE(DatarateTestVP9LargeDenoiser, + ::testing::Values(::libvpx_test::kRealTime), + ::testing::Range(5, 9)); +#endif +VP9_INSTANTIATE_TEST_CASE(DatarateOnePassCbrSvc, + ::testing::Values(::libvpx_test::kRealTime), + ::testing::Range(5, 9)); +} // namespace diff --git a/test/dct16x16_test.cc b/test/dct16x16_test.cc new file mode 100644 index 0000000..ce0bd37 --- /dev/null +++ b/test/dct16x16_test.cc @@ -0,0 +1,868 @@ +/* + * Copyright (c) 2012 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include +#include + +#include "third_party/googletest/src/include/gtest/gtest.h" + +#include "./vp9_rtcd.h" +#include "./vpx_dsp_rtcd.h" +#include "test/acm_random.h" +#include "test/clear_system_state.h" +#include "test/register_state_check.h" +#include "test/util.h" +#include "vp9/common/vp9_entropy.h" +#include "vp9/common/vp9_scan.h" +#include "vpx/vpx_codec.h" +#include "vpx/vpx_integer.h" +#include "vpx_ports/mem.h" +#include "vpx_ports/msvc.h" // for round() + +using libvpx_test::ACMRandom; + +namespace { + +const int kNumCoeffs = 256; +const double C1 = 0.995184726672197; +const double C2 = 0.98078528040323; +const double C3 = 0.956940335732209; +const double C4 = 0.923879532511287; +const double C5 = 0.881921264348355; +const double C6 = 0.831469612302545; +const double C7 = 0.773010453362737; +const double C8 = 0.707106781186548; +const double C9 = 0.634393284163646; +const double C10 = 0.555570233019602; +const double C11 = 0.471396736825998; +const double C12 = 0.38268343236509; +const double C13 = 0.290284677254462; +const double C14 = 0.195090322016128; +const double C15 = 0.098017140329561; + +void butterfly_16x16_dct_1d(double input[16], double output[16]) { + double step[16]; + double intermediate[16]; + double temp1, temp2; + + // step 1 + step[0] = input[0] + input[15]; + step[1] = input[1] + input[14]; + step[2] = input[2] + input[13]; + step[3] = input[3] + input[12]; + step[4] = input[4] + input[11]; + step[5] = input[5] + input[10]; + step[6] = input[6] + input[9]; + step[7] = input[7] + input[8]; + step[8] = input[7] - input[8]; + step[9] = input[6] - input[9]; + step[10] = input[5] - input[10]; + step[11] = input[4] - input[11]; + step[12] = input[3] - input[12]; + step[13] = input[2] - input[13]; + step[14] = input[1] - input[14]; + step[15] = input[0] - input[15]; + + // step 2 + output[0] = step[0] + step[7]; + output[1] = step[1] + step[6]; + output[2] = step[2] + step[5]; + output[3] = step[3] + step[4]; + output[4] = step[3] - step[4]; + output[5] = step[2] - step[5]; + output[6] = step[1] - step[6]; + output[7] = step[0] - step[7]; + + temp1 = step[8] * C7; + temp2 = step[15] * C9; + output[8] = temp1 + temp2; + + temp1 = step[9] * C11; + temp2 = step[14] * C5; + output[9] = temp1 - temp2; + + temp1 = step[10] * C3; + temp2 = step[13] * C13; + output[10] = temp1 + temp2; + + temp1 = step[11] * C15; + temp2 = step[12] * C1; + output[11] = temp1 - temp2; + + temp1 = step[11] * C1; + temp2 = step[12] * C15; + output[12] = temp2 + temp1; + + temp1 = step[10] * C13; + temp2 = step[13] * C3; + output[13] = temp2 - temp1; + + temp1 = step[9] * C5; + temp2 = step[14] * C11; + output[14] = temp2 + temp1; + + temp1 = step[8] * C9; + temp2 = step[15] * C7; + output[15] = temp2 - temp1; + + // step 3 + step[0] = output[0] + output[3]; + step[1] = output[1] + output[2]; + step[2] = output[1] - output[2]; + step[3] = output[0] - output[3]; + + temp1 = output[4] * C14; + temp2 = output[7] * C2; + step[4] = temp1 + temp2; + + temp1 = output[5] * C10; + temp2 = output[6] * C6; + step[5] = temp1 + temp2; + + temp1 = output[5] * C6; + temp2 = output[6] * C10; + step[6] = temp2 - temp1; + + temp1 = output[4] * C2; + temp2 = output[7] * C14; + step[7] = temp2 - temp1; + + step[8] = output[8] + output[11]; + step[9] = output[9] + output[10]; + step[10] = output[9] - output[10]; + step[11] = output[8] - output[11]; + + step[12] = output[12] + output[15]; + step[13] = output[13] + output[14]; + step[14] = output[13] - output[14]; + step[15] = output[12] - output[15]; + + // step 4 + output[0] = (step[0] + step[1]); + output[8] = (step[0] - step[1]); + + temp1 = step[2] * C12; + temp2 = step[3] * C4; + temp1 = temp1 + temp2; + output[4] = 2 * (temp1 * C8); + + temp1 = step[2] * C4; + temp2 = step[3] * C12; + temp1 = temp2 - temp1; + output[12] = 2 * (temp1 * C8); + + output[2] = 2 * ((step[4] + step[5]) * C8); + output[14] = 2 * ((step[7] - step[6]) * C8); + + temp1 = step[4] - step[5]; + temp2 = step[6] + step[7]; + output[6] = (temp1 + temp2); + output[10] = (temp1 - temp2); + + intermediate[8] = step[8] + step[14]; + intermediate[9] = step[9] + step[15]; + + temp1 = intermediate[8] * C12; + temp2 = intermediate[9] * C4; + temp1 = temp1 - temp2; + output[3] = 2 * (temp1 * C8); + + temp1 = intermediate[8] * C4; + temp2 = intermediate[9] * C12; + temp1 = temp2 + temp1; + output[13] = 2 * (temp1 * C8); + + output[9] = 2 * ((step[10] + step[11]) * C8); + + intermediate[11] = step[10] - step[11]; + intermediate[12] = step[12] + step[13]; + intermediate[13] = step[12] - step[13]; + intermediate[14] = step[8] - step[14]; + intermediate[15] = step[9] - step[15]; + + output[15] = (intermediate[11] + intermediate[12]); + output[1] = -(intermediate[11] - intermediate[12]); + + output[7] = 2 * (intermediate[13] * C8); + + temp1 = intermediate[14] * C12; + temp2 = intermediate[15] * C4; + temp1 = temp1 - temp2; + output[11] = -2 * (temp1 * C8); + + temp1 = intermediate[14] * C4; + temp2 = intermediate[15] * C12; + temp1 = temp2 + temp1; + output[5] = 2 * (temp1 * C8); +} + +void reference_16x16_dct_2d(int16_t input[256], double output[256]) { + // First transform columns + for (int i = 0; i < 16; ++i) { + double temp_in[16], temp_out[16]; + for (int j = 0; j < 16; ++j) temp_in[j] = input[j * 16 + i]; + butterfly_16x16_dct_1d(temp_in, temp_out); + for (int j = 0; j < 16; ++j) output[j * 16 + i] = temp_out[j]; + } + // Then transform rows + for (int i = 0; i < 16; ++i) { + double temp_in[16], temp_out[16]; + for (int j = 0; j < 16; ++j) temp_in[j] = output[j + i * 16]; + butterfly_16x16_dct_1d(temp_in, temp_out); + // Scale by some magic number + for (int j = 0; j < 16; ++j) output[j + i * 16] = temp_out[j] / 2; + } +} + +typedef void (*FdctFunc)(const int16_t *in, tran_low_t *out, int stride); +typedef void (*IdctFunc)(const tran_low_t *in, uint8_t *out, int stride); +typedef void (*FhtFunc)(const int16_t *in, tran_low_t *out, int stride, + int tx_type); +typedef void (*IhtFunc)(const tran_low_t *in, uint8_t *out, int stride, + int tx_type); + +typedef std::tr1::tuple Dct16x16Param; +typedef std::tr1::tuple Ht16x16Param; +typedef std::tr1::tuple + Idct16x16Param; + +void fdct16x16_ref(const int16_t *in, tran_low_t *out, int stride, + int /*tx_type*/) { + vpx_fdct16x16_c(in, out, stride); +} + +void idct16x16_ref(const tran_low_t *in, uint8_t *dest, int stride, + int /*tx_type*/) { + vpx_idct16x16_256_add_c(in, dest, stride); +} + +void fht16x16_ref(const int16_t *in, tran_low_t *out, int stride, int tx_type) { + vp9_fht16x16_c(in, out, stride, tx_type); +} + +void iht16x16_ref(const tran_low_t *in, uint8_t *dest, int stride, + int tx_type) { + vp9_iht16x16_256_add_c(in, dest, stride, tx_type); +} + +#if CONFIG_VP9_HIGHBITDEPTH +void idct16x16_10(const tran_low_t *in, uint8_t *out, int stride) { + vpx_highbd_idct16x16_256_add_c(in, CAST_TO_SHORTPTR(out), stride, 10); +} + +void idct16x16_12(const tran_low_t *in, uint8_t *out, int stride) { + vpx_highbd_idct16x16_256_add_c(in, CAST_TO_SHORTPTR(out), stride, 12); +} + +void idct16x16_10_ref(const tran_low_t *in, uint8_t *out, int stride, + int /*tx_type*/) { + idct16x16_10(in, out, stride); +} + +void idct16x16_12_ref(const tran_low_t *in, uint8_t *out, int stride, + int /*tx_type*/) { + idct16x16_12(in, out, stride); +} + +void iht16x16_10(const tran_low_t *in, uint8_t *out, int stride, int tx_type) { + vp9_highbd_iht16x16_256_add_c(in, CAST_TO_SHORTPTR(out), stride, tx_type, 10); +} + +void iht16x16_12(const tran_low_t *in, uint8_t *out, int stride, int tx_type) { + vp9_highbd_iht16x16_256_add_c(in, CAST_TO_SHORTPTR(out), stride, tx_type, 12); +} + +#if HAVE_SSE2 +void idct16x16_10_add_10_c(const tran_low_t *in, uint8_t *out, int stride) { + vpx_highbd_idct16x16_10_add_c(in, CAST_TO_SHORTPTR(out), stride, 10); +} + +void idct16x16_10_add_12_c(const tran_low_t *in, uint8_t *out, int stride) { + vpx_highbd_idct16x16_10_add_c(in, CAST_TO_SHORTPTR(out), stride, 12); +} + +void idct16x16_256_add_10_sse2(const tran_low_t *in, uint8_t *out, int stride) { + vpx_highbd_idct16x16_256_add_sse2(in, CAST_TO_SHORTPTR(out), stride, 10); +} + +void idct16x16_256_add_12_sse2(const tran_low_t *in, uint8_t *out, int stride) { + vpx_highbd_idct16x16_256_add_sse2(in, CAST_TO_SHORTPTR(out), stride, 12); +} + +void idct16x16_10_add_10_sse2(const tran_low_t *in, uint8_t *out, int stride) { + vpx_highbd_idct16x16_10_add_sse2(in, CAST_TO_SHORTPTR(out), stride, 10); +} + +void idct16x16_10_add_12_sse2(const tran_low_t *in, uint8_t *out, int stride) { + vpx_highbd_idct16x16_10_add_sse2(in, CAST_TO_SHORTPTR(out), stride, 12); +} +#endif // HAVE_SSE2 +#endif // CONFIG_VP9_HIGHBITDEPTH + +class Trans16x16TestBase { + public: + virtual ~Trans16x16TestBase() {} + + protected: + virtual void RunFwdTxfm(int16_t *in, tran_low_t *out, int stride) = 0; + + virtual void RunInvTxfm(tran_low_t *out, uint8_t *dst, int stride) = 0; + + void RunAccuracyCheck() { + ACMRandom rnd(ACMRandom::DeterministicSeed()); + uint32_t max_error = 0; + int64_t total_error = 0; + const int count_test_block = 10000; + for (int i = 0; i < count_test_block; ++i) { + DECLARE_ALIGNED(16, int16_t, test_input_block[kNumCoeffs]); + DECLARE_ALIGNED(16, tran_low_t, test_temp_block[kNumCoeffs]); + DECLARE_ALIGNED(16, uint8_t, dst[kNumCoeffs]); + DECLARE_ALIGNED(16, uint8_t, src[kNumCoeffs]); +#if CONFIG_VP9_HIGHBITDEPTH + DECLARE_ALIGNED(16, uint16_t, dst16[kNumCoeffs]); + DECLARE_ALIGNED(16, uint16_t, src16[kNumCoeffs]); +#endif + + // Initialize a test block with input range [-mask_, mask_]. + for (int j = 0; j < kNumCoeffs; ++j) { + if (bit_depth_ == VPX_BITS_8) { + src[j] = rnd.Rand8(); + dst[j] = rnd.Rand8(); + test_input_block[j] = src[j] - dst[j]; +#if CONFIG_VP9_HIGHBITDEPTH + } else { + src16[j] = rnd.Rand16() & mask_; + dst16[j] = rnd.Rand16() & mask_; + test_input_block[j] = src16[j] - dst16[j]; +#endif + } + } + + ASM_REGISTER_STATE_CHECK( + RunFwdTxfm(test_input_block, test_temp_block, pitch_)); + if (bit_depth_ == VPX_BITS_8) { + ASM_REGISTER_STATE_CHECK(RunInvTxfm(test_temp_block, dst, pitch_)); +#if CONFIG_VP9_HIGHBITDEPTH + } else { + ASM_REGISTER_STATE_CHECK( + RunInvTxfm(test_temp_block, CAST_TO_BYTEPTR(dst16), pitch_)); +#endif + } + + for (int j = 0; j < kNumCoeffs; ++j) { +#if CONFIG_VP9_HIGHBITDEPTH + const int32_t diff = + bit_depth_ == VPX_BITS_8 ? dst[j] - src[j] : dst16[j] - src16[j]; +#else + const int32_t diff = dst[j] - src[j]; +#endif + const uint32_t error = diff * diff; + if (max_error < error) max_error = error; + total_error += error; + } + } + + EXPECT_GE(1u << 2 * (bit_depth_ - 8), max_error) + << "Error: 16x16 FHT/IHT has an individual round trip error > 1"; + + EXPECT_GE(count_test_block << 2 * (bit_depth_ - 8), total_error) + << "Error: 16x16 FHT/IHT has average round trip error > 1 per block"; + } + + void RunCoeffCheck() { + ACMRandom rnd(ACMRandom::DeterministicSeed()); + const int count_test_block = 1000; + DECLARE_ALIGNED(16, int16_t, input_block[kNumCoeffs]); + DECLARE_ALIGNED(16, tran_low_t, output_ref_block[kNumCoeffs]); + DECLARE_ALIGNED(16, tran_low_t, output_block[kNumCoeffs]); + + for (int i = 0; i < count_test_block; ++i) { + // Initialize a test block with input range [-mask_, mask_]. + for (int j = 0; j < kNumCoeffs; ++j) { + input_block[j] = (rnd.Rand16() & mask_) - (rnd.Rand16() & mask_); + } + + fwd_txfm_ref(input_block, output_ref_block, pitch_, tx_type_); + ASM_REGISTER_STATE_CHECK(RunFwdTxfm(input_block, output_block, pitch_)); + + // The minimum quant value is 4. + for (int j = 0; j < kNumCoeffs; ++j) + EXPECT_EQ(output_block[j], output_ref_block[j]); + } + } + + void RunMemCheck() { + ACMRandom rnd(ACMRandom::DeterministicSeed()); + const int count_test_block = 1000; + DECLARE_ALIGNED(16, int16_t, input_extreme_block[kNumCoeffs]); + DECLARE_ALIGNED(16, tran_low_t, output_ref_block[kNumCoeffs]); + DECLARE_ALIGNED(16, tran_low_t, output_block[kNumCoeffs]); + + for (int i = 0; i < count_test_block; ++i) { + // Initialize a test block with input range [-mask_, mask_]. + for (int j = 0; j < kNumCoeffs; ++j) { + input_extreme_block[j] = rnd.Rand8() % 2 ? mask_ : -mask_; + } + if (i == 0) { + for (int j = 0; j < kNumCoeffs; ++j) input_extreme_block[j] = mask_; + } else if (i == 1) { + for (int j = 0; j < kNumCoeffs; ++j) input_extreme_block[j] = -mask_; + } + + fwd_txfm_ref(input_extreme_block, output_ref_block, pitch_, tx_type_); + ASM_REGISTER_STATE_CHECK( + RunFwdTxfm(input_extreme_block, output_block, pitch_)); + + // The minimum quant value is 4. + for (int j = 0; j < kNumCoeffs; ++j) { + EXPECT_EQ(output_block[j], output_ref_block[j]); + EXPECT_GE(4 * DCT_MAX_VALUE << (bit_depth_ - 8), abs(output_block[j])) + << "Error: 16x16 FDCT has coefficient larger than 4*DCT_MAX_VALUE"; + } + } + } + + void RunQuantCheck(int dc_thred, int ac_thred) { + ACMRandom rnd(ACMRandom::DeterministicSeed()); + const int count_test_block = 100000; + DECLARE_ALIGNED(16, int16_t, input_extreme_block[kNumCoeffs]); + DECLARE_ALIGNED(16, tran_low_t, output_ref_block[kNumCoeffs]); + + DECLARE_ALIGNED(16, uint8_t, dst[kNumCoeffs]); + DECLARE_ALIGNED(16, uint8_t, ref[kNumCoeffs]); +#if CONFIG_VP9_HIGHBITDEPTH + DECLARE_ALIGNED(16, uint16_t, dst16[kNumCoeffs]); + DECLARE_ALIGNED(16, uint16_t, ref16[kNumCoeffs]); +#endif + + for (int i = 0; i < count_test_block; ++i) { + // Initialize a test block with input range [-mask_, mask_]. + for (int j = 0; j < kNumCoeffs; ++j) { + input_extreme_block[j] = rnd.Rand8() % 2 ? mask_ : -mask_; + } + if (i == 0) { + for (int j = 0; j < kNumCoeffs; ++j) input_extreme_block[j] = mask_; + } + if (i == 1) { + for (int j = 0; j < kNumCoeffs; ++j) input_extreme_block[j] = -mask_; + } + + fwd_txfm_ref(input_extreme_block, output_ref_block, pitch_, tx_type_); + + // clear reconstructed pixel buffers + memset(dst, 0, kNumCoeffs * sizeof(uint8_t)); + memset(ref, 0, kNumCoeffs * sizeof(uint8_t)); +#if CONFIG_VP9_HIGHBITDEPTH + memset(dst16, 0, kNumCoeffs * sizeof(uint16_t)); + memset(ref16, 0, kNumCoeffs * sizeof(uint16_t)); +#endif + + // quantization with maximum allowed step sizes + output_ref_block[0] = (output_ref_block[0] / dc_thred) * dc_thred; + for (int j = 1; j < kNumCoeffs; ++j) { + output_ref_block[j] = (output_ref_block[j] / ac_thred) * ac_thred; + } + if (bit_depth_ == VPX_BITS_8) { + inv_txfm_ref(output_ref_block, ref, pitch_, tx_type_); + ASM_REGISTER_STATE_CHECK(RunInvTxfm(output_ref_block, dst, pitch_)); +#if CONFIG_VP9_HIGHBITDEPTH + } else { + inv_txfm_ref(output_ref_block, CAST_TO_BYTEPTR(ref16), pitch_, + tx_type_); + ASM_REGISTER_STATE_CHECK( + RunInvTxfm(output_ref_block, CAST_TO_BYTEPTR(dst16), pitch_)); +#endif + } + if (bit_depth_ == VPX_BITS_8) { + for (int j = 0; j < kNumCoeffs; ++j) EXPECT_EQ(ref[j], dst[j]); +#if CONFIG_VP9_HIGHBITDEPTH + } else { + for (int j = 0; j < kNumCoeffs; ++j) EXPECT_EQ(ref16[j], dst16[j]); +#endif + } + } + } + + void RunInvAccuracyCheck() { + ACMRandom rnd(ACMRandom::DeterministicSeed()); + const int count_test_block = 1000; + DECLARE_ALIGNED(16, int16_t, in[kNumCoeffs]); + DECLARE_ALIGNED(16, tran_low_t, coeff[kNumCoeffs]); + DECLARE_ALIGNED(16, uint8_t, dst[kNumCoeffs]); + DECLARE_ALIGNED(16, uint8_t, src[kNumCoeffs]); +#if CONFIG_VP9_HIGHBITDEPTH + DECLARE_ALIGNED(16, uint16_t, dst16[kNumCoeffs]); + DECLARE_ALIGNED(16, uint16_t, src16[kNumCoeffs]); +#endif // CONFIG_VP9_HIGHBITDEPTH + + for (int i = 0; i < count_test_block; ++i) { + double out_r[kNumCoeffs]; + + // Initialize a test block with input range [-255, 255]. + for (int j = 0; j < kNumCoeffs; ++j) { + if (bit_depth_ == VPX_BITS_8) { + src[j] = rnd.Rand8(); + dst[j] = rnd.Rand8(); + in[j] = src[j] - dst[j]; +#if CONFIG_VP9_HIGHBITDEPTH + } else { + src16[j] = rnd.Rand16() & mask_; + dst16[j] = rnd.Rand16() & mask_; + in[j] = src16[j] - dst16[j]; +#endif // CONFIG_VP9_HIGHBITDEPTH + } + } + + reference_16x16_dct_2d(in, out_r); + for (int j = 0; j < kNumCoeffs; ++j) { + coeff[j] = static_cast(round(out_r[j])); + } + + if (bit_depth_ == VPX_BITS_8) { + ASM_REGISTER_STATE_CHECK(RunInvTxfm(coeff, dst, 16)); +#if CONFIG_VP9_HIGHBITDEPTH + } else { + ASM_REGISTER_STATE_CHECK(RunInvTxfm(coeff, CAST_TO_BYTEPTR(dst16), 16)); +#endif // CONFIG_VP9_HIGHBITDEPTH + } + + for (int j = 0; j < kNumCoeffs; ++j) { +#if CONFIG_VP9_HIGHBITDEPTH + const uint32_t diff = + bit_depth_ == VPX_BITS_8 ? dst[j] - src[j] : dst16[j] - src16[j]; +#else + const uint32_t diff = dst[j] - src[j]; +#endif // CONFIG_VP9_HIGHBITDEPTH + const uint32_t error = diff * diff; + EXPECT_GE(1u, error) + << "Error: 16x16 IDCT has error " << error << " at index " << j; + } + } + } + + void CompareInvReference(IdctFunc ref_txfm, int thresh) { + ACMRandom rnd(ACMRandom::DeterministicSeed()); + const int count_test_block = 10000; + const int eob = 10; + const int16_t *scan = vp9_default_scan_orders[TX_16X16].scan; + DECLARE_ALIGNED(16, tran_low_t, coeff[kNumCoeffs]); + DECLARE_ALIGNED(16, uint8_t, dst[kNumCoeffs]); + DECLARE_ALIGNED(16, uint8_t, ref[kNumCoeffs]); +#if CONFIG_VP9_HIGHBITDEPTH + DECLARE_ALIGNED(16, uint16_t, dst16[kNumCoeffs]); + DECLARE_ALIGNED(16, uint16_t, ref16[kNumCoeffs]); +#endif // CONFIG_VP9_HIGHBITDEPTH + + for (int i = 0; i < count_test_block; ++i) { + for (int j = 0; j < kNumCoeffs; ++j) { + if (j < eob) { + // Random values less than the threshold, either positive or negative + coeff[scan[j]] = rnd(thresh) * (1 - 2 * (i % 2)); + } else { + coeff[scan[j]] = 0; + } + if (bit_depth_ == VPX_BITS_8) { + dst[j] = 0; + ref[j] = 0; +#if CONFIG_VP9_HIGHBITDEPTH + } else { + dst16[j] = 0; + ref16[j] = 0; +#endif // CONFIG_VP9_HIGHBITDEPTH + } + } + if (bit_depth_ == VPX_BITS_8) { + ref_txfm(coeff, ref, pitch_); + ASM_REGISTER_STATE_CHECK(RunInvTxfm(coeff, dst, pitch_)); + } else { +#if CONFIG_VP9_HIGHBITDEPTH + ref_txfm(coeff, CAST_TO_BYTEPTR(ref16), pitch_); + ASM_REGISTER_STATE_CHECK( + RunInvTxfm(coeff, CAST_TO_BYTEPTR(dst16), pitch_)); +#endif // CONFIG_VP9_HIGHBITDEPTH + } + + for (int j = 0; j < kNumCoeffs; ++j) { +#if CONFIG_VP9_HIGHBITDEPTH + const uint32_t diff = + bit_depth_ == VPX_BITS_8 ? dst[j] - ref[j] : dst16[j] - ref16[j]; +#else + const uint32_t diff = dst[j] - ref[j]; +#endif // CONFIG_VP9_HIGHBITDEPTH + const uint32_t error = diff * diff; + EXPECT_EQ(0u, error) << "Error: 16x16 IDCT Comparison has error " + << error << " at index " << j; + } + } + } + + int pitch_; + int tx_type_; + vpx_bit_depth_t bit_depth_; + int mask_; + FhtFunc fwd_txfm_ref; + IhtFunc inv_txfm_ref; +}; + +class Trans16x16DCT : public Trans16x16TestBase, + public ::testing::TestWithParam { + public: + virtual ~Trans16x16DCT() {} + + virtual void SetUp() { + fwd_txfm_ = GET_PARAM(0); + inv_txfm_ = GET_PARAM(1); + tx_type_ = GET_PARAM(2); + bit_depth_ = GET_PARAM(3); + pitch_ = 16; + fwd_txfm_ref = fdct16x16_ref; + inv_txfm_ref = idct16x16_ref; + mask_ = (1 << bit_depth_) - 1; +#if CONFIG_VP9_HIGHBITDEPTH + switch (bit_depth_) { + case VPX_BITS_10: inv_txfm_ref = idct16x16_10_ref; break; + case VPX_BITS_12: inv_txfm_ref = idct16x16_12_ref; break; + default: inv_txfm_ref = idct16x16_ref; break; + } +#else + inv_txfm_ref = idct16x16_ref; +#endif + } + virtual void TearDown() { libvpx_test::ClearSystemState(); } + + protected: + void RunFwdTxfm(int16_t *in, tran_low_t *out, int stride) { + fwd_txfm_(in, out, stride); + } + void RunInvTxfm(tran_low_t *out, uint8_t *dst, int stride) { + inv_txfm_(out, dst, stride); + } + + FdctFunc fwd_txfm_; + IdctFunc inv_txfm_; +}; + +TEST_P(Trans16x16DCT, AccuracyCheck) { RunAccuracyCheck(); } + +TEST_P(Trans16x16DCT, CoeffCheck) { RunCoeffCheck(); } + +TEST_P(Trans16x16DCT, MemCheck) { RunMemCheck(); } + +TEST_P(Trans16x16DCT, QuantCheck) { + // Use maximally allowed quantization step sizes for DC and AC + // coefficients respectively. + RunQuantCheck(1336, 1828); +} + +TEST_P(Trans16x16DCT, InvAccuracyCheck) { RunInvAccuracyCheck(); } + +class Trans16x16HT : public Trans16x16TestBase, + public ::testing::TestWithParam { + public: + virtual ~Trans16x16HT() {} + + virtual void SetUp() { + fwd_txfm_ = GET_PARAM(0); + inv_txfm_ = GET_PARAM(1); + tx_type_ = GET_PARAM(2); + bit_depth_ = GET_PARAM(3); + pitch_ = 16; + fwd_txfm_ref = fht16x16_ref; + inv_txfm_ref = iht16x16_ref; + mask_ = (1 << bit_depth_) - 1; +#if CONFIG_VP9_HIGHBITDEPTH + switch (bit_depth_) { + case VPX_BITS_10: inv_txfm_ref = iht16x16_10; break; + case VPX_BITS_12: inv_txfm_ref = iht16x16_12; break; + default: inv_txfm_ref = iht16x16_ref; break; + } +#else + inv_txfm_ref = iht16x16_ref; +#endif + } + virtual void TearDown() { libvpx_test::ClearSystemState(); } + + protected: + void RunFwdTxfm(int16_t *in, tran_low_t *out, int stride) { + fwd_txfm_(in, out, stride, tx_type_); + } + void RunInvTxfm(tran_low_t *out, uint8_t *dst, int stride) { + inv_txfm_(out, dst, stride, tx_type_); + } + + FhtFunc fwd_txfm_; + IhtFunc inv_txfm_; +}; + +TEST_P(Trans16x16HT, AccuracyCheck) { RunAccuracyCheck(); } + +TEST_P(Trans16x16HT, CoeffCheck) { RunCoeffCheck(); } + +TEST_P(Trans16x16HT, MemCheck) { RunMemCheck(); } + +TEST_P(Trans16x16HT, QuantCheck) { + // The encoder skips any non-DC intra prediction modes, + // when the quantization step size goes beyond 988. + RunQuantCheck(429, 729); +} + +class InvTrans16x16DCT : public Trans16x16TestBase, + public ::testing::TestWithParam { + public: + virtual ~InvTrans16x16DCT() {} + + virtual void SetUp() { + ref_txfm_ = GET_PARAM(0); + inv_txfm_ = GET_PARAM(1); + thresh_ = GET_PARAM(2); + bit_depth_ = GET_PARAM(3); + pitch_ = 16; + mask_ = (1 << bit_depth_) - 1; + } + virtual void TearDown() { libvpx_test::ClearSystemState(); } + + protected: + void RunFwdTxfm(int16_t * /*in*/, tran_low_t * /*out*/, int /*stride*/) {} + void RunInvTxfm(tran_low_t *out, uint8_t *dst, int stride) { + inv_txfm_(out, dst, stride); + } + + IdctFunc ref_txfm_; + IdctFunc inv_txfm_; + int thresh_; +}; + +TEST_P(InvTrans16x16DCT, CompareReference) { + CompareInvReference(ref_txfm_, thresh_); +} + +using std::tr1::make_tuple; + +#if CONFIG_VP9_HIGHBITDEPTH +INSTANTIATE_TEST_CASE_P( + C, Trans16x16DCT, + ::testing::Values( + make_tuple(&vpx_highbd_fdct16x16_c, &idct16x16_10, 0, VPX_BITS_10), + make_tuple(&vpx_highbd_fdct16x16_c, &idct16x16_12, 0, VPX_BITS_12), + make_tuple(&vpx_fdct16x16_c, &vpx_idct16x16_256_add_c, 0, VPX_BITS_8))); +#else +INSTANTIATE_TEST_CASE_P(C, Trans16x16DCT, + ::testing::Values(make_tuple(&vpx_fdct16x16_c, + &vpx_idct16x16_256_add_c, + 0, VPX_BITS_8))); +#endif // CONFIG_VP9_HIGHBITDEPTH + +#if CONFIG_VP9_HIGHBITDEPTH +INSTANTIATE_TEST_CASE_P( + C, Trans16x16HT, + ::testing::Values( + make_tuple(&vp9_highbd_fht16x16_c, &iht16x16_10, 0, VPX_BITS_10), + make_tuple(&vp9_highbd_fht16x16_c, &iht16x16_10, 1, VPX_BITS_10), + make_tuple(&vp9_highbd_fht16x16_c, &iht16x16_10, 2, VPX_BITS_10), + make_tuple(&vp9_highbd_fht16x16_c, &iht16x16_10, 3, VPX_BITS_10), + make_tuple(&vp9_highbd_fht16x16_c, &iht16x16_12, 0, VPX_BITS_12), + make_tuple(&vp9_highbd_fht16x16_c, &iht16x16_12, 1, VPX_BITS_12), + make_tuple(&vp9_highbd_fht16x16_c, &iht16x16_12, 2, VPX_BITS_12), + make_tuple(&vp9_highbd_fht16x16_c, &iht16x16_12, 3, VPX_BITS_12), + make_tuple(&vp9_fht16x16_c, &vp9_iht16x16_256_add_c, 0, VPX_BITS_8), + make_tuple(&vp9_fht16x16_c, &vp9_iht16x16_256_add_c, 1, VPX_BITS_8), + make_tuple(&vp9_fht16x16_c, &vp9_iht16x16_256_add_c, 2, VPX_BITS_8), + make_tuple(&vp9_fht16x16_c, &vp9_iht16x16_256_add_c, 3, VPX_BITS_8))); +#else +INSTANTIATE_TEST_CASE_P( + C, Trans16x16HT, + ::testing::Values( + make_tuple(&vp9_fht16x16_c, &vp9_iht16x16_256_add_c, 0, VPX_BITS_8), + make_tuple(&vp9_fht16x16_c, &vp9_iht16x16_256_add_c, 1, VPX_BITS_8), + make_tuple(&vp9_fht16x16_c, &vp9_iht16x16_256_add_c, 2, VPX_BITS_8), + make_tuple(&vp9_fht16x16_c, &vp9_iht16x16_256_add_c, 3, VPX_BITS_8))); +#endif // CONFIG_VP9_HIGHBITDEPTH + +#if HAVE_NEON && !CONFIG_EMULATE_HARDWARE +INSTANTIATE_TEST_CASE_P( + NEON, Trans16x16DCT, + ::testing::Values(make_tuple(&vpx_fdct16x16_neon, + &vpx_idct16x16_256_add_neon, 0, VPX_BITS_8))); +#endif // HAVE_NEON && !CONFIG_EMULATE_HARDWARE + +#if HAVE_SSE2 && !CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE +INSTANTIATE_TEST_CASE_P( + SSE2, Trans16x16DCT, + ::testing::Values(make_tuple(&vpx_fdct16x16_sse2, + &vpx_idct16x16_256_add_sse2, 0, VPX_BITS_8))); +INSTANTIATE_TEST_CASE_P( + SSE2, Trans16x16HT, + ::testing::Values(make_tuple(&vp9_fht16x16_sse2, &vp9_iht16x16_256_add_sse2, + 0, VPX_BITS_8), + make_tuple(&vp9_fht16x16_sse2, &vp9_iht16x16_256_add_sse2, + 1, VPX_BITS_8), + make_tuple(&vp9_fht16x16_sse2, &vp9_iht16x16_256_add_sse2, + 2, VPX_BITS_8), + make_tuple(&vp9_fht16x16_sse2, &vp9_iht16x16_256_add_sse2, + 3, VPX_BITS_8))); +#endif // HAVE_SSE2 && !CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE + +#if HAVE_SSE2 && CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE +INSTANTIATE_TEST_CASE_P( + SSE2, Trans16x16DCT, + ::testing::Values( + make_tuple(&vpx_highbd_fdct16x16_sse2, &idct16x16_10, 0, VPX_BITS_10), + make_tuple(&vpx_highbd_fdct16x16_c, &idct16x16_256_add_10_sse2, 0, + VPX_BITS_10), + make_tuple(&vpx_highbd_fdct16x16_sse2, &idct16x16_12, 0, VPX_BITS_12), + make_tuple(&vpx_highbd_fdct16x16_c, &idct16x16_256_add_12_sse2, 0, + VPX_BITS_12), + make_tuple(&vpx_fdct16x16_sse2, &vpx_idct16x16_256_add_c, 0, + VPX_BITS_8))); +INSTANTIATE_TEST_CASE_P( + SSE2, Trans16x16HT, + ::testing::Values( + make_tuple(&vp9_fht16x16_sse2, &vp9_iht16x16_256_add_c, 0, VPX_BITS_8), + make_tuple(&vp9_fht16x16_sse2, &vp9_iht16x16_256_add_c, 1, VPX_BITS_8), + make_tuple(&vp9_fht16x16_sse2, &vp9_iht16x16_256_add_c, 2, VPX_BITS_8), + make_tuple(&vp9_fht16x16_sse2, &vp9_iht16x16_256_add_c, 3, + VPX_BITS_8))); +// Optimizations take effect at a threshold of 3155, so we use a value close to +// that to test both branches. +INSTANTIATE_TEST_CASE_P( + SSE2, InvTrans16x16DCT, + ::testing::Values(make_tuple(&idct16x16_10_add_10_c, + &idct16x16_10_add_10_sse2, 3167, VPX_BITS_10), + make_tuple(&idct16x16_10, &idct16x16_256_add_10_sse2, + 3167, VPX_BITS_10), + make_tuple(&idct16x16_10_add_12_c, + &idct16x16_10_add_12_sse2, 3167, VPX_BITS_12), + make_tuple(&idct16x16_12, &idct16x16_256_add_12_sse2, + 3167, VPX_BITS_12))); +#endif // HAVE_SSE2 && CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE + +#if HAVE_MSA && !CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE +INSTANTIATE_TEST_CASE_P(MSA, Trans16x16DCT, + ::testing::Values(make_tuple(&vpx_fdct16x16_msa, + &vpx_idct16x16_256_add_msa, + 0, VPX_BITS_8))); +INSTANTIATE_TEST_CASE_P( + MSA, Trans16x16HT, + ::testing::Values( + make_tuple(&vp9_fht16x16_msa, &vp9_iht16x16_256_add_msa, 0, VPX_BITS_8), + make_tuple(&vp9_fht16x16_msa, &vp9_iht16x16_256_add_msa, 1, VPX_BITS_8), + make_tuple(&vp9_fht16x16_msa, &vp9_iht16x16_256_add_msa, 2, VPX_BITS_8), + make_tuple(&vp9_fht16x16_msa, &vp9_iht16x16_256_add_msa, 3, + VPX_BITS_8))); +#endif // HAVE_MSA && !CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE + +#if HAVE_VSX && !CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE +INSTANTIATE_TEST_CASE_P(VSX, Trans16x16DCT, + ::testing::Values(make_tuple(&vpx_fdct16x16_c, + &vpx_idct16x16_256_add_vsx, + 0, VPX_BITS_8))); +#endif // HAVE_VSX && !CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE +} // namespace diff --git a/test/dct32x32_test.cc b/test/dct32x32_test.cc new file mode 100644 index 0000000..a95ff97 --- /dev/null +++ b/test/dct32x32_test.cc @@ -0,0 +1,377 @@ +/* + * Copyright (c) 2012 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include +#include + +#include "third_party/googletest/src/include/gtest/gtest.h" + +#include "./vp9_rtcd.h" +#include "./vpx_config.h" +#include "./vpx_dsp_rtcd.h" +#include "test/acm_random.h" +#include "test/clear_system_state.h" +#include "test/register_state_check.h" +#include "test/util.h" +#include "vp9/common/vp9_entropy.h" +#include "vpx/vpx_codec.h" +#include "vpx/vpx_integer.h" +#include "vpx_ports/mem.h" +#include "vpx_ports/msvc.h" // for round() + +using libvpx_test::ACMRandom; + +namespace { + +const int kNumCoeffs = 1024; +const double kPi = 3.141592653589793238462643383279502884; +void reference_32x32_dct_1d(const double in[32], double out[32]) { + const double kInvSqrt2 = 0.707106781186547524400844362104; + for (int k = 0; k < 32; k++) { + out[k] = 0.0; + for (int n = 0; n < 32; n++) { + out[k] += in[n] * cos(kPi * (2 * n + 1) * k / 64.0); + } + if (k == 0) out[k] = out[k] * kInvSqrt2; + } +} + +void reference_32x32_dct_2d(const int16_t input[kNumCoeffs], + double output[kNumCoeffs]) { + // First transform columns + for (int i = 0; i < 32; ++i) { + double temp_in[32], temp_out[32]; + for (int j = 0; j < 32; ++j) temp_in[j] = input[j * 32 + i]; + reference_32x32_dct_1d(temp_in, temp_out); + for (int j = 0; j < 32; ++j) output[j * 32 + i] = temp_out[j]; + } + // Then transform rows + for (int i = 0; i < 32; ++i) { + double temp_in[32], temp_out[32]; + for (int j = 0; j < 32; ++j) temp_in[j] = output[j + i * 32]; + reference_32x32_dct_1d(temp_in, temp_out); + // Scale by some magic number + for (int j = 0; j < 32; ++j) output[j + i * 32] = temp_out[j] / 4; + } +} + +typedef void (*FwdTxfmFunc)(const int16_t *in, tran_low_t *out, int stride); +typedef void (*InvTxfmFunc)(const tran_low_t *in, uint8_t *out, int stride); + +typedef std::tr1::tuple + Trans32x32Param; + +#if CONFIG_VP9_HIGHBITDEPTH +void idct32x32_10(const tran_low_t *in, uint8_t *out, int stride) { + vpx_highbd_idct32x32_1024_add_c(in, CAST_TO_SHORTPTR(out), stride, 10); +} + +void idct32x32_12(const tran_low_t *in, uint8_t *out, int stride) { + vpx_highbd_idct32x32_1024_add_c(in, CAST_TO_SHORTPTR(out), stride, 12); +} +#endif // CONFIG_VP9_HIGHBITDEPTH + +class Trans32x32Test : public ::testing::TestWithParam { + public: + virtual ~Trans32x32Test() {} + virtual void SetUp() { + fwd_txfm_ = GET_PARAM(0); + inv_txfm_ = GET_PARAM(1); + version_ = GET_PARAM(2); // 0: high precision forward transform + // 1: low precision version for rd loop + bit_depth_ = GET_PARAM(3); + mask_ = (1 << bit_depth_) - 1; + } + + virtual void TearDown() { libvpx_test::ClearSystemState(); } + + protected: + int version_; + vpx_bit_depth_t bit_depth_; + int mask_; + FwdTxfmFunc fwd_txfm_; + InvTxfmFunc inv_txfm_; +}; + +TEST_P(Trans32x32Test, AccuracyCheck) { + ACMRandom rnd(ACMRandom::DeterministicSeed()); + uint32_t max_error = 0; + int64_t total_error = 0; + const int count_test_block = 10000; + DECLARE_ALIGNED(16, int16_t, test_input_block[kNumCoeffs]); + DECLARE_ALIGNED(16, tran_low_t, test_temp_block[kNumCoeffs]); + DECLARE_ALIGNED(16, uint8_t, dst[kNumCoeffs]); + DECLARE_ALIGNED(16, uint8_t, src[kNumCoeffs]); +#if CONFIG_VP9_HIGHBITDEPTH + DECLARE_ALIGNED(16, uint16_t, dst16[kNumCoeffs]); + DECLARE_ALIGNED(16, uint16_t, src16[kNumCoeffs]); +#endif + + for (int i = 0; i < count_test_block; ++i) { + // Initialize a test block with input range [-mask_, mask_]. + for (int j = 0; j < kNumCoeffs; ++j) { + if (bit_depth_ == VPX_BITS_8) { + src[j] = rnd.Rand8(); + dst[j] = rnd.Rand8(); + test_input_block[j] = src[j] - dst[j]; +#if CONFIG_VP9_HIGHBITDEPTH + } else { + src16[j] = rnd.Rand16() & mask_; + dst16[j] = rnd.Rand16() & mask_; + test_input_block[j] = src16[j] - dst16[j]; +#endif + } + } + + ASM_REGISTER_STATE_CHECK(fwd_txfm_(test_input_block, test_temp_block, 32)); + if (bit_depth_ == VPX_BITS_8) { + ASM_REGISTER_STATE_CHECK(inv_txfm_(test_temp_block, dst, 32)); +#if CONFIG_VP9_HIGHBITDEPTH + } else { + ASM_REGISTER_STATE_CHECK( + inv_txfm_(test_temp_block, CAST_TO_BYTEPTR(dst16), 32)); +#endif + } + + for (int j = 0; j < kNumCoeffs; ++j) { +#if CONFIG_VP9_HIGHBITDEPTH + const int32_t diff = + bit_depth_ == VPX_BITS_8 ? dst[j] - src[j] : dst16[j] - src16[j]; +#else + const int32_t diff = dst[j] - src[j]; +#endif + const uint32_t error = diff * diff; + if (max_error < error) max_error = error; + total_error += error; + } + } + + if (version_ == 1) { + max_error /= 2; + total_error /= 45; + } + + EXPECT_GE(1u << 2 * (bit_depth_ - 8), max_error) + << "Error: 32x32 FDCT/IDCT has an individual round-trip error > 1"; + + EXPECT_GE(count_test_block << 2 * (bit_depth_ - 8), total_error) + << "Error: 32x32 FDCT/IDCT has average round-trip error > 1 per block"; +} + +TEST_P(Trans32x32Test, CoeffCheck) { + ACMRandom rnd(ACMRandom::DeterministicSeed()); + const int count_test_block = 1000; + + DECLARE_ALIGNED(16, int16_t, input_block[kNumCoeffs]); + DECLARE_ALIGNED(16, tran_low_t, output_ref_block[kNumCoeffs]); + DECLARE_ALIGNED(16, tran_low_t, output_block[kNumCoeffs]); + + for (int i = 0; i < count_test_block; ++i) { + for (int j = 0; j < kNumCoeffs; ++j) { + input_block[j] = (rnd.Rand16() & mask_) - (rnd.Rand16() & mask_); + } + + const int stride = 32; + vpx_fdct32x32_c(input_block, output_ref_block, stride); + ASM_REGISTER_STATE_CHECK(fwd_txfm_(input_block, output_block, stride)); + + if (version_ == 0) { + for (int j = 0; j < kNumCoeffs; ++j) + EXPECT_EQ(output_block[j], output_ref_block[j]) + << "Error: 32x32 FDCT versions have mismatched coefficients"; + } else { + for (int j = 0; j < kNumCoeffs; ++j) + EXPECT_GE(6, abs(output_block[j] - output_ref_block[j])) + << "Error: 32x32 FDCT rd has mismatched coefficients"; + } + } +} + +TEST_P(Trans32x32Test, MemCheck) { + ACMRandom rnd(ACMRandom::DeterministicSeed()); + const int count_test_block = 2000; + + DECLARE_ALIGNED(16, int16_t, input_extreme_block[kNumCoeffs]); + DECLARE_ALIGNED(16, tran_low_t, output_ref_block[kNumCoeffs]); + DECLARE_ALIGNED(16, tran_low_t, output_block[kNumCoeffs]); + + for (int i = 0; i < count_test_block; ++i) { + // Initialize a test block with input range [-mask_, mask_]. + for (int j = 0; j < kNumCoeffs; ++j) { + input_extreme_block[j] = rnd.Rand8() & 1 ? mask_ : -mask_; + } + if (i == 0) { + for (int j = 0; j < kNumCoeffs; ++j) input_extreme_block[j] = mask_; + } else if (i == 1) { + for (int j = 0; j < kNumCoeffs; ++j) input_extreme_block[j] = -mask_; + } + + const int stride = 32; + vpx_fdct32x32_c(input_extreme_block, output_ref_block, stride); + ASM_REGISTER_STATE_CHECK( + fwd_txfm_(input_extreme_block, output_block, stride)); + + // The minimum quant value is 4. + for (int j = 0; j < kNumCoeffs; ++j) { + if (version_ == 0) { + EXPECT_EQ(output_block[j], output_ref_block[j]) + << "Error: 32x32 FDCT versions have mismatched coefficients"; + } else { + EXPECT_GE(6, abs(output_block[j] - output_ref_block[j])) + << "Error: 32x32 FDCT rd has mismatched coefficients"; + } + EXPECT_GE(4 * DCT_MAX_VALUE << (bit_depth_ - 8), abs(output_ref_block[j])) + << "Error: 32x32 FDCT C has coefficient larger than 4*DCT_MAX_VALUE"; + EXPECT_GE(4 * DCT_MAX_VALUE << (bit_depth_ - 8), abs(output_block[j])) + << "Error: 32x32 FDCT has coefficient larger than " + << "4*DCT_MAX_VALUE"; + } + } +} + +TEST_P(Trans32x32Test, InverseAccuracy) { + ACMRandom rnd(ACMRandom::DeterministicSeed()); + const int count_test_block = 1000; + DECLARE_ALIGNED(16, int16_t, in[kNumCoeffs]); + DECLARE_ALIGNED(16, tran_low_t, coeff[kNumCoeffs]); + DECLARE_ALIGNED(16, uint8_t, dst[kNumCoeffs]); + DECLARE_ALIGNED(16, uint8_t, src[kNumCoeffs]); +#if CONFIG_VP9_HIGHBITDEPTH + DECLARE_ALIGNED(16, uint16_t, dst16[kNumCoeffs]); + DECLARE_ALIGNED(16, uint16_t, src16[kNumCoeffs]); +#endif + + for (int i = 0; i < count_test_block; ++i) { + double out_r[kNumCoeffs]; + + // Initialize a test block with input range [-255, 255] + for (int j = 0; j < kNumCoeffs; ++j) { + if (bit_depth_ == VPX_BITS_8) { + src[j] = rnd.Rand8(); + dst[j] = rnd.Rand8(); + in[j] = src[j] - dst[j]; +#if CONFIG_VP9_HIGHBITDEPTH + } else { + src16[j] = rnd.Rand16() & mask_; + dst16[j] = rnd.Rand16() & mask_; + in[j] = src16[j] - dst16[j]; +#endif + } + } + + reference_32x32_dct_2d(in, out_r); + for (int j = 0; j < kNumCoeffs; ++j) { + coeff[j] = static_cast(round(out_r[j])); + } + if (bit_depth_ == VPX_BITS_8) { + ASM_REGISTER_STATE_CHECK(inv_txfm_(coeff, dst, 32)); +#if CONFIG_VP9_HIGHBITDEPTH + } else { + ASM_REGISTER_STATE_CHECK(inv_txfm_(coeff, CAST_TO_BYTEPTR(dst16), 32)); +#endif + } + for (int j = 0; j < kNumCoeffs; ++j) { +#if CONFIG_VP9_HIGHBITDEPTH + const int diff = + bit_depth_ == VPX_BITS_8 ? dst[j] - src[j] : dst16[j] - src16[j]; +#else + const int diff = dst[j] - src[j]; +#endif + const int error = diff * diff; + EXPECT_GE(1, error) << "Error: 32x32 IDCT has error " << error + << " at index " << j; + } + } +} + +using std::tr1::make_tuple; + +#if CONFIG_VP9_HIGHBITDEPTH +INSTANTIATE_TEST_CASE_P( + C, Trans32x32Test, + ::testing::Values( + make_tuple(&vpx_highbd_fdct32x32_c, &idct32x32_10, 0, VPX_BITS_10), + make_tuple(&vpx_highbd_fdct32x32_rd_c, &idct32x32_10, 1, VPX_BITS_10), + make_tuple(&vpx_highbd_fdct32x32_c, &idct32x32_12, 0, VPX_BITS_12), + make_tuple(&vpx_highbd_fdct32x32_rd_c, &idct32x32_12, 1, VPX_BITS_12), + make_tuple(&vpx_fdct32x32_c, &vpx_idct32x32_1024_add_c, 0, VPX_BITS_8), + make_tuple(&vpx_fdct32x32_rd_c, &vpx_idct32x32_1024_add_c, 1, + VPX_BITS_8))); +#else +INSTANTIATE_TEST_CASE_P( + C, Trans32x32Test, + ::testing::Values(make_tuple(&vpx_fdct32x32_c, &vpx_idct32x32_1024_add_c, 0, + VPX_BITS_8), + make_tuple(&vpx_fdct32x32_rd_c, &vpx_idct32x32_1024_add_c, + 1, VPX_BITS_8))); +#endif // CONFIG_VP9_HIGHBITDEPTH + +#if HAVE_NEON && !CONFIG_EMULATE_HARDWARE +INSTANTIATE_TEST_CASE_P( + NEON, Trans32x32Test, + ::testing::Values(make_tuple(&vpx_fdct32x32_neon, + &vpx_idct32x32_1024_add_neon, 0, VPX_BITS_8), + make_tuple(&vpx_fdct32x32_rd_neon, + &vpx_idct32x32_1024_add_neon, 1, VPX_BITS_8))); +#endif // HAVE_NEON && !CONFIG_EMULATE_HARDWARE + +#if HAVE_SSE2 && !CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE +INSTANTIATE_TEST_CASE_P( + SSE2, Trans32x32Test, + ::testing::Values(make_tuple(&vpx_fdct32x32_sse2, + &vpx_idct32x32_1024_add_sse2, 0, VPX_BITS_8), + make_tuple(&vpx_fdct32x32_rd_sse2, + &vpx_idct32x32_1024_add_sse2, 1, VPX_BITS_8))); +#endif // HAVE_SSE2 && !CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE + +#if HAVE_SSE2 && CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE +INSTANTIATE_TEST_CASE_P( + SSE2, Trans32x32Test, + ::testing::Values( + make_tuple(&vpx_highbd_fdct32x32_sse2, &idct32x32_10, 0, VPX_BITS_10), + make_tuple(&vpx_highbd_fdct32x32_rd_sse2, &idct32x32_10, 1, + VPX_BITS_10), + make_tuple(&vpx_highbd_fdct32x32_sse2, &idct32x32_12, 0, VPX_BITS_12), + make_tuple(&vpx_highbd_fdct32x32_rd_sse2, &idct32x32_12, 1, + VPX_BITS_12), + make_tuple(&vpx_fdct32x32_sse2, &vpx_idct32x32_1024_add_c, 0, + VPX_BITS_8), + make_tuple(&vpx_fdct32x32_rd_sse2, &vpx_idct32x32_1024_add_c, 1, + VPX_BITS_8))); +#endif // HAVE_SSE2 && CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE + +#if HAVE_AVX2 && !CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE +INSTANTIATE_TEST_CASE_P( + AVX2, Trans32x32Test, + ::testing::Values(make_tuple(&vpx_fdct32x32_avx2, + &vpx_idct32x32_1024_add_sse2, 0, VPX_BITS_8), + make_tuple(&vpx_fdct32x32_rd_avx2, + &vpx_idct32x32_1024_add_sse2, 1, VPX_BITS_8))); +#endif // HAVE_AVX2 && !CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE + +#if HAVE_MSA && !CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE +INSTANTIATE_TEST_CASE_P( + MSA, Trans32x32Test, + ::testing::Values(make_tuple(&vpx_fdct32x32_msa, + &vpx_idct32x32_1024_add_msa, 0, VPX_BITS_8), + make_tuple(&vpx_fdct32x32_rd_msa, + &vpx_idct32x32_1024_add_msa, 1, VPX_BITS_8))); +#endif // HAVE_MSA && !CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE + +#if HAVE_VSX && !CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE +INSTANTIATE_TEST_CASE_P( + VSX, Trans32x32Test, + ::testing::Values(make_tuple(&vpx_fdct32x32_c, &vpx_idct32x32_1024_add_vsx, + 0, VPX_BITS_8), + make_tuple(&vpx_fdct32x32_rd_c, + &vpx_idct32x32_1024_add_vsx, 1, VPX_BITS_8))); +#endif // HAVE_VSX && !CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE +} // namespace diff --git a/test/dct_partial_test.cc b/test/dct_partial_test.cc new file mode 100644 index 0000000..4d145f5 --- /dev/null +++ b/test/dct_partial_test.cc @@ -0,0 +1,169 @@ +/* + * Copyright (c) 2017 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include +#include + +#include + +#include "third_party/googletest/src/include/gtest/gtest.h" + +#include "./vpx_dsp_rtcd.h" +#include "test/acm_random.h" +#include "test/buffer.h" +#include "test/clear_system_state.h" +#include "test/register_state_check.h" +#include "test/util.h" +#include "vpx/vpx_codec.h" +#include "vpx/vpx_integer.h" +#include "vpx_dsp/vpx_dsp_common.h" + +using libvpx_test::ACMRandom; +using libvpx_test::Buffer; +using std::tr1::tuple; +using std::tr1::make_tuple; + +namespace { +typedef void (*PartialFdctFunc)(const int16_t *in, tran_low_t *out, int stride); + +typedef tuple + PartialFdctParam; + +tran_low_t partial_fdct_ref(const Buffer &in, int size) { + int64_t sum = 0; + for (int y = 0; y < size; ++y) { + for (int x = 0; x < size; ++x) { + sum += in.TopLeftPixel()[y * in.stride() + x]; + } + } + + switch (size) { + case 4: sum *= 2; break; + case 8: /*sum = sum;*/ break; + case 16: sum >>= 1; break; + case 32: sum >>= 3; break; + } + + return static_cast(sum); +} + +class PartialFdctTest : public ::testing::TestWithParam { + public: + PartialFdctTest() { + fwd_txfm_ = GET_PARAM(0); + size_ = GET_PARAM(1); + bit_depth_ = GET_PARAM(2); + } + + virtual void TearDown() { libvpx_test::ClearSystemState(); } + + protected: + void RunTest() { + ACMRandom rnd(ACMRandom::DeterministicSeed()); + const int16_t maxvalue = + clip_pixel_highbd(std::numeric_limits::max(), bit_depth_); + const int16_t minvalue = -maxvalue; + Buffer input_block = + Buffer(size_, size_, 8, size_ == 4 ? 0 : 16); + ASSERT_TRUE(input_block.Init()); + Buffer output_block = Buffer(size_, size_, 0, 16); + ASSERT_TRUE(output_block.Init()); + + for (int i = 0; i < 100; ++i) { + if (i == 0) { + input_block.Set(maxvalue); + } else if (i == 1) { + input_block.Set(minvalue); + } else { + input_block.Set(&rnd, minvalue, maxvalue); + } + + ASM_REGISTER_STATE_CHECK(fwd_txfm_(input_block.TopLeftPixel(), + output_block.TopLeftPixel(), + input_block.stride())); + + EXPECT_EQ(partial_fdct_ref(input_block, size_), + output_block.TopLeftPixel()[0]); + } + } + + PartialFdctFunc fwd_txfm_; + vpx_bit_depth_t bit_depth_; + int size_; +}; + +TEST_P(PartialFdctTest, PartialFdctTest) { RunTest(); } + +#if CONFIG_VP9_HIGHBITDEPTH +INSTANTIATE_TEST_CASE_P( + C, PartialFdctTest, + ::testing::Values(make_tuple(&vpx_highbd_fdct32x32_1_c, 32, VPX_BITS_12), + make_tuple(&vpx_highbd_fdct32x32_1_c, 32, VPX_BITS_10), + make_tuple(&vpx_fdct32x32_1_c, 32, VPX_BITS_8), + make_tuple(&vpx_highbd_fdct16x16_1_c, 16, VPX_BITS_12), + make_tuple(&vpx_highbd_fdct16x16_1_c, 16, VPX_BITS_10), + make_tuple(&vpx_fdct16x16_1_c, 16, VPX_BITS_8), + make_tuple(&vpx_highbd_fdct8x8_1_c, 8, VPX_BITS_12), + make_tuple(&vpx_highbd_fdct8x8_1_c, 8, VPX_BITS_10), + make_tuple(&vpx_fdct8x8_1_c, 8, VPX_BITS_8), + make_tuple(&vpx_fdct4x4_1_c, 4, VPX_BITS_8))); +#else +INSTANTIATE_TEST_CASE_P( + C, PartialFdctTest, + ::testing::Values(make_tuple(&vpx_fdct32x32_1_c, 32, VPX_BITS_8), + make_tuple(&vpx_fdct16x16_1_c, 16, VPX_BITS_8), + make_tuple(&vpx_fdct8x8_1_c, 8, VPX_BITS_8), + make_tuple(&vpx_fdct4x4_1_c, 4, VPX_BITS_8))); +#endif // CONFIG_VP9_HIGHBITDEPTH + +#if HAVE_SSE2 +INSTANTIATE_TEST_CASE_P( + SSE2, PartialFdctTest, + ::testing::Values(make_tuple(&vpx_fdct32x32_1_sse2, 32, VPX_BITS_8), + make_tuple(&vpx_fdct16x16_1_sse2, 16, VPX_BITS_8), + make_tuple(&vpx_fdct8x8_1_sse2, 8, VPX_BITS_8), + make_tuple(&vpx_fdct4x4_1_sse2, 4, VPX_BITS_8))); +#endif // HAVE_SSE2 + +#if HAVE_NEON +#if CONFIG_VP9_HIGHBITDEPTH +INSTANTIATE_TEST_CASE_P( + NEON, PartialFdctTest, + ::testing::Values(make_tuple(&vpx_fdct32x32_1_neon, 32, VPX_BITS_8), + make_tuple(&vpx_fdct16x16_1_neon, 16, VPX_BITS_8), + make_tuple(&vpx_fdct8x8_1_neon, 8, VPX_BITS_12), + make_tuple(&vpx_fdct8x8_1_neon, 8, VPX_BITS_10), + make_tuple(&vpx_fdct8x8_1_neon, 8, VPX_BITS_8), + make_tuple(&vpx_fdct4x4_1_neon, 4, VPX_BITS_8))); +#else +INSTANTIATE_TEST_CASE_P( + NEON, PartialFdctTest, + ::testing::Values(make_tuple(&vpx_fdct32x32_1_neon, 32, VPX_BITS_8), + make_tuple(&vpx_fdct16x16_1_neon, 16, VPX_BITS_8), + make_tuple(&vpx_fdct8x8_1_neon, 8, VPX_BITS_8), + make_tuple(&vpx_fdct4x4_1_neon, 4, VPX_BITS_8))); +#endif // CONFIG_VP9_HIGHBITDEPTH +#endif // HAVE_NEON + +#if HAVE_MSA +#if CONFIG_VP9_HIGHBITDEPTH +INSTANTIATE_TEST_CASE_P(MSA, PartialFdctTest, + ::testing::Values(make_tuple(&vpx_fdct8x8_1_msa, 8, + VPX_BITS_8))); +#else // !CONFIG_VP9_HIGHBITDEPTH +INSTANTIATE_TEST_CASE_P( + MSA, PartialFdctTest, + ::testing::Values(make_tuple(&vpx_fdct32x32_1_msa, 32, VPX_BITS_8), + make_tuple(&vpx_fdct16x16_1_msa, 16, VPX_BITS_8), + make_tuple(&vpx_fdct8x8_1_msa, 8, VPX_BITS_8))); +#endif // CONFIG_VP9_HIGHBITDEPTH +#endif // HAVE_MSA +} // namespace diff --git a/test/dct_test.cc b/test/dct_test.cc new file mode 100644 index 0000000..addbdfb --- /dev/null +++ b/test/dct_test.cc @@ -0,0 +1,737 @@ +/* + * Copyright (c) 2017 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include +#include + +#include "third_party/googletest/src/include/gtest/gtest.h" + +#include "./vp9_rtcd.h" +#include "./vpx_dsp_rtcd.h" +#include "test/acm_random.h" +#include "test/buffer.h" +#include "test/clear_system_state.h" +#include "test/register_state_check.h" +#include "test/util.h" +#include "vp9/common/vp9_entropy.h" +#include "vpx/vpx_codec.h" +#include "vpx/vpx_integer.h" +#include "vpx_ports/mem.h" + +using libvpx_test::ACMRandom; +using libvpx_test::Buffer; +using std::tr1::tuple; +using std::tr1::make_tuple; + +namespace { +typedef void (*FdctFunc)(const int16_t *in, tran_low_t *out, int stride); +typedef void (*IdctFunc)(const tran_low_t *in, uint8_t *out, int stride); +typedef void (*FhtFunc)(const int16_t *in, tran_low_t *out, int stride, + int tx_type); +typedef void (*FhtFuncRef)(const Buffer &in, Buffer *out, + int size, int tx_type); +typedef void (*IhtFunc)(const tran_low_t *in, uint8_t *out, int stride, + int tx_type); + +/* forward transform, inverse transform, size, transform type, bit depth */ +typedef tuple DctParam; +typedef tuple HtParam; + +void fdct_ref(const Buffer &in, Buffer *out, int size, + int /*tx_type*/) { + const int16_t *i = in.TopLeftPixel(); + const int i_stride = in.stride(); + tran_low_t *o = out->TopLeftPixel(); + if (size == 4) { + vpx_fdct4x4_c(i, o, i_stride); + } else if (size == 8) { + vpx_fdct8x8_c(i, o, i_stride); + } else if (size == 16) { + vpx_fdct16x16_c(i, o, i_stride); + } else if (size == 32) { + vpx_fdct32x32_c(i, o, i_stride); + } +} + +void fht_ref(const Buffer &in, Buffer *out, int size, + int tx_type) { + const int16_t *i = in.TopLeftPixel(); + const int i_stride = in.stride(); + tran_low_t *o = out->TopLeftPixel(); + if (size == 4) { + vp9_fht4x4_c(i, o, i_stride, tx_type); + } else if (size == 8) { + vp9_fht8x8_c(i, o, i_stride, tx_type); + } else if (size == 16) { + vp9_fht16x16_c(i, o, i_stride, tx_type); + } +} + +void fwht_ref(const Buffer &in, Buffer *out, int size, + int /*tx_type*/) { + ASSERT_EQ(size, 4); + vp9_fwht4x4_c(in.TopLeftPixel(), out->TopLeftPixel(), in.stride()); +} + +#if CONFIG_VP9_HIGHBITDEPTH +#define idctNxN(n, coeffs, bitdepth) \ + void idct##n##x##n##_##bitdepth(const tran_low_t *in, uint8_t *out, \ + int stride) { \ + vpx_highbd_idct##n##x##n##_##coeffs##_add_c(in, CAST_TO_SHORTPTR(out), \ + stride, bitdepth); \ + } + +idctNxN(4, 16, 10); +idctNxN(4, 16, 12); +idctNxN(8, 64, 10); +idctNxN(8, 64, 12); +idctNxN(16, 256, 10); +idctNxN(16, 256, 12); +idctNxN(32, 1024, 10); +idctNxN(32, 1024, 12); + +#define ihtNxN(n, coeffs, bitdepth) \ + void iht##n##x##n##_##bitdepth(const tran_low_t *in, uint8_t *out, \ + int stride, int tx_type) { \ + vp9_highbd_iht##n##x##n##_##coeffs##_add_c(in, CAST_TO_SHORTPTR(out), \ + stride, tx_type, bitdepth); \ + } + +ihtNxN(4, 16, 10); +ihtNxN(4, 16, 12); +ihtNxN(8, 64, 10); +ihtNxN(8, 64, 12); +ihtNxN(16, 256, 10); +// ihtNxN(16, 256, 12); + +void iwht4x4_10(const tran_low_t *in, uint8_t *out, int stride) { + vpx_highbd_iwht4x4_16_add_c(in, CAST_TO_SHORTPTR(out), stride, 10); +} + +void iwht4x4_12(const tran_low_t *in, uint8_t *out, int stride) { + vpx_highbd_iwht4x4_16_add_c(in, CAST_TO_SHORTPTR(out), stride, 12); +} +#endif // CONFIG_VP9_HIGHBITDEPTH + +class TransTestBase { + public: + virtual void TearDown() { libvpx_test::ClearSystemState(); } + + protected: + virtual void RunFwdTxfm(const Buffer &in, + Buffer *out) = 0; + + virtual void RunInvTxfm(const Buffer &in, uint8_t *out) = 0; + + void RunAccuracyCheck(int limit) { + ACMRandom rnd(ACMRandom::DeterministicSeed()); + Buffer test_input_block = + Buffer(size_, size_, 8, size_ == 4 ? 0 : 16); + ASSERT_TRUE(test_input_block.Init()); + Buffer test_temp_block = + Buffer(size_, size_, 0, 16); + ASSERT_TRUE(test_temp_block.Init()); + Buffer dst = Buffer(size_, size_, 0, 16); + ASSERT_TRUE(dst.Init()); + Buffer src = Buffer(size_, size_, 0, 16); + ASSERT_TRUE(src.Init()); +#if CONFIG_VP9_HIGHBITDEPTH + Buffer dst16 = Buffer(size_, size_, 0, 16); + ASSERT_TRUE(dst16.Init()); + Buffer src16 = Buffer(size_, size_, 0, 16); + ASSERT_TRUE(src16.Init()); +#endif // CONFIG_VP9_HIGHBITDEPTH + uint32_t max_error = 0; + int64_t total_error = 0; + const int count_test_block = 10000; + for (int i = 0; i < count_test_block; ++i) { + if (bit_depth_ == 8) { + src.Set(&rnd, &ACMRandom::Rand8); + dst.Set(&rnd, &ACMRandom::Rand8); + // Initialize a test block with input range [-255, 255]. + for (int h = 0; h < size_; ++h) { + for (int w = 0; w < size_; ++w) { + test_input_block.TopLeftPixel()[h * test_input_block.stride() + w] = + src.TopLeftPixel()[h * src.stride() + w] - + dst.TopLeftPixel()[h * dst.stride() + w]; + } + } +#if CONFIG_VP9_HIGHBITDEPTH + } else { + src16.Set(&rnd, 0, max_pixel_value_); + dst16.Set(&rnd, 0, max_pixel_value_); + for (int h = 0; h < size_; ++h) { + for (int w = 0; w < size_; ++w) { + test_input_block.TopLeftPixel()[h * test_input_block.stride() + w] = + src16.TopLeftPixel()[h * src16.stride() + w] - + dst16.TopLeftPixel()[h * dst16.stride() + w]; + } + } +#endif // CONFIG_VP9_HIGHBITDEPTH + } + + ASM_REGISTER_STATE_CHECK(RunFwdTxfm(test_input_block, &test_temp_block)); + if (bit_depth_ == VPX_BITS_8) { + ASM_REGISTER_STATE_CHECK( + RunInvTxfm(test_temp_block, dst.TopLeftPixel())); +#if CONFIG_VP9_HIGHBITDEPTH + } else { + ASM_REGISTER_STATE_CHECK( + RunInvTxfm(test_temp_block, CAST_TO_BYTEPTR(dst16.TopLeftPixel()))); +#endif // CONFIG_VP9_HIGHBITDEPTH + } + + for (int h = 0; h < size_; ++h) { + for (int w = 0; w < size_; ++w) { + int diff; +#if CONFIG_VP9_HIGHBITDEPTH + if (bit_depth_ != 8) { + diff = dst16.TopLeftPixel()[h * dst16.stride() + w] - + src16.TopLeftPixel()[h * src16.stride() + w]; + } else { +#endif // CONFIG_VP9_HIGHBITDEPTH + diff = dst.TopLeftPixel()[h * dst.stride() + w] - + src.TopLeftPixel()[h * src.stride() + w]; +#if CONFIG_VP9_HIGHBITDEPTH + } +#endif // CONFIG_VP9_HIGHBITDEPTH + const uint32_t error = diff * diff; + if (max_error < error) max_error = error; + total_error += error; + } + } + } + + EXPECT_GE(static_cast(limit), max_error) + << "Error: 4x4 FHT/IHT has an individual round trip error > " << limit; + + EXPECT_GE(count_test_block * limit, total_error) + << "Error: 4x4 FHT/IHT has average round trip error > " << limit + << " per block"; + } + + void RunCoeffCheck() { + ACMRandom rnd(ACMRandom::DeterministicSeed()); + const int count_test_block = 5000; + Buffer input_block = + Buffer(size_, size_, 8, size_ == 4 ? 0 : 16); + ASSERT_TRUE(input_block.Init()); + Buffer output_ref_block = Buffer(size_, size_, 0); + ASSERT_TRUE(output_ref_block.Init()); + Buffer output_block = Buffer(size_, size_, 0, 16); + ASSERT_TRUE(output_block.Init()); + + for (int i = 0; i < count_test_block; ++i) { + // Initialize a test block with input range [-max_pixel_value_, + // max_pixel_value_]. + input_block.Set(&rnd, -max_pixel_value_, max_pixel_value_); + + fwd_txfm_ref(input_block, &output_ref_block, size_, tx_type_); + ASM_REGISTER_STATE_CHECK(RunFwdTxfm(input_block, &output_block)); + + // The minimum quant value is 4. + EXPECT_TRUE(output_block.CheckValues(output_ref_block)); + if (::testing::Test::HasFailure()) { + printf("Size: %d Transform type: %d\n", size_, tx_type_); + output_block.PrintDifference(output_ref_block); + return; + } + } + } + + void RunMemCheck() { + ACMRandom rnd(ACMRandom::DeterministicSeed()); + const int count_test_block = 5000; + Buffer input_extreme_block = + Buffer(size_, size_, 8, size_ == 4 ? 0 : 16); + ASSERT_TRUE(input_extreme_block.Init()); + Buffer output_ref_block = Buffer(size_, size_, 0); + ASSERT_TRUE(output_ref_block.Init()); + Buffer output_block = Buffer(size_, size_, 0, 16); + ASSERT_TRUE(output_block.Init()); + + for (int i = 0; i < count_test_block; ++i) { + // Initialize a test block with -max_pixel_value_ or max_pixel_value_. + if (i == 0) { + input_extreme_block.Set(max_pixel_value_); + } else if (i == 1) { + input_extreme_block.Set(-max_pixel_value_); + } else { + for (int h = 0; h < size_; ++h) { + for (int w = 0; w < size_; ++w) { + input_extreme_block + .TopLeftPixel()[h * input_extreme_block.stride() + w] = + rnd.Rand8() % 2 ? max_pixel_value_ : -max_pixel_value_; + } + } + } + + fwd_txfm_ref(input_extreme_block, &output_ref_block, size_, tx_type_); + ASM_REGISTER_STATE_CHECK(RunFwdTxfm(input_extreme_block, &output_block)); + + // The minimum quant value is 4. + EXPECT_TRUE(output_block.CheckValues(output_ref_block)); + for (int h = 0; h < size_; ++h) { + for (int w = 0; w < size_; ++w) { + EXPECT_GE( + 4 * DCT_MAX_VALUE << (bit_depth_ - 8), + abs(output_block.TopLeftPixel()[h * output_block.stride() + w])) + << "Error: 4x4 FDCT has coefficient larger than " + "4*DCT_MAX_VALUE" + << " at " << w << "," << h; + if (::testing::Test::HasFailure()) { + printf("Size: %d Transform type: %d\n", size_, tx_type_); + output_block.DumpBuffer(); + return; + } + } + } + } + } + + void RunInvAccuracyCheck(int limit) { + ACMRandom rnd(ACMRandom::DeterministicSeed()); + const int count_test_block = 1000; + Buffer in = Buffer(size_, size_, 4); + ASSERT_TRUE(in.Init()); + Buffer coeff = Buffer(size_, size_, 0, 16); + ASSERT_TRUE(coeff.Init()); + Buffer dst = Buffer(size_, size_, 0, 16); + ASSERT_TRUE(dst.Init()); + Buffer src = Buffer(size_, size_, 0); + ASSERT_TRUE(src.Init()); + Buffer dst16 = Buffer(size_, size_, 0, 16); + ASSERT_TRUE(dst16.Init()); + Buffer src16 = Buffer(size_, size_, 0); + ASSERT_TRUE(src16.Init()); + + for (int i = 0; i < count_test_block; ++i) { + // Initialize a test block with input range [-max_pixel_value_, + // max_pixel_value_]. + if (bit_depth_ == VPX_BITS_8) { + src.Set(&rnd, &ACMRandom::Rand8); + dst.Set(&rnd, &ACMRandom::Rand8); + for (int h = 0; h < size_; ++h) { + for (int w = 0; w < size_; ++w) { + in.TopLeftPixel()[h * in.stride() + w] = + src.TopLeftPixel()[h * src.stride() + w] - + dst.TopLeftPixel()[h * dst.stride() + w]; + } + } +#if CONFIG_VP9_HIGHBITDEPTH + } else { + src16.Set(&rnd, 0, max_pixel_value_); + dst16.Set(&rnd, 0, max_pixel_value_); + for (int h = 0; h < size_; ++h) { + for (int w = 0; w < size_; ++w) { + in.TopLeftPixel()[h * in.stride() + w] = + src16.TopLeftPixel()[h * src16.stride() + w] - + dst16.TopLeftPixel()[h * dst16.stride() + w]; + } + } +#endif // CONFIG_VP9_HIGHBITDEPTH + } + + fwd_txfm_ref(in, &coeff, size_, tx_type_); + + if (bit_depth_ == VPX_BITS_8) { + ASM_REGISTER_STATE_CHECK(RunInvTxfm(coeff, dst.TopLeftPixel())); +#if CONFIG_VP9_HIGHBITDEPTH + } else { + ASM_REGISTER_STATE_CHECK( + RunInvTxfm(coeff, CAST_TO_BYTEPTR(dst16.TopLeftPixel()))); +#endif // CONFIG_VP9_HIGHBITDEPTH + } + + for (int h = 0; h < size_; ++h) { + for (int w = 0; w < size_; ++w) { + int diff; +#if CONFIG_VP9_HIGHBITDEPTH + if (bit_depth_ != 8) { + diff = dst16.TopLeftPixel()[h * dst16.stride() + w] - + src16.TopLeftPixel()[h * src16.stride() + w]; + } else { +#endif // CONFIG_VP9_HIGHBITDEPTH + diff = dst.TopLeftPixel()[h * dst.stride() + w] - + src.TopLeftPixel()[h * src.stride() + w]; +#if CONFIG_VP9_HIGHBITDEPTH + } +#endif // CONFIG_VP9_HIGHBITDEPTH + const uint32_t error = diff * diff; + EXPECT_GE(static_cast(limit), error) + << "Error: " << size_ << "x" << size_ << " IDCT has error " + << error << " at " << w << "," << h; + } + } + } + } + + FhtFuncRef fwd_txfm_ref; + vpx_bit_depth_t bit_depth_; + int tx_type_; + int max_pixel_value_; + int size_; +}; + +class TransDCT : public TransTestBase, + public ::testing::TestWithParam { + public: + TransDCT() { + fwd_txfm_ref = fdct_ref; + fwd_txfm_ = GET_PARAM(0); + inv_txfm_ = GET_PARAM(1); + size_ = GET_PARAM(2); + tx_type_ = GET_PARAM(3); + bit_depth_ = GET_PARAM(4); + max_pixel_value_ = (1 << bit_depth_) - 1; + } + + protected: + void RunFwdTxfm(const Buffer &in, Buffer *out) { + fwd_txfm_(in.TopLeftPixel(), out->TopLeftPixel(), in.stride()); + } + + void RunInvTxfm(const Buffer &in, uint8_t *out) { + inv_txfm_(in.TopLeftPixel(), out, in.stride()); + } + + FdctFunc fwd_txfm_; + IdctFunc inv_txfm_; +}; + +TEST_P(TransDCT, AccuracyCheck) { RunAccuracyCheck(1); } + +TEST_P(TransDCT, CoeffCheck) { RunCoeffCheck(); } + +TEST_P(TransDCT, MemCheck) { RunMemCheck(); } + +TEST_P(TransDCT, InvAccuracyCheck) { RunInvAccuracyCheck(1); } + +#if CONFIG_VP9_HIGHBITDEPTH +INSTANTIATE_TEST_CASE_P( + C, TransDCT, + ::testing::Values( + make_tuple(&vpx_highbd_fdct32x32_c, &idct32x32_10, 32, 0, VPX_BITS_10), + make_tuple(&vpx_highbd_fdct32x32_c, &idct32x32_12, 32, 0, VPX_BITS_10), + make_tuple(&vpx_fdct32x32_c, &vpx_idct32x32_1024_add_c, 32, 0, + VPX_BITS_8), + make_tuple(&vpx_highbd_fdct16x16_c, &idct16x16_10, 16, 0, VPX_BITS_10), + make_tuple(&vpx_highbd_fdct16x16_c, &idct16x16_12, 16, 0, VPX_BITS_10), + make_tuple(&vpx_fdct16x16_c, &vpx_idct16x16_256_add_c, 16, 0, + VPX_BITS_8), + make_tuple(&vpx_highbd_fdct8x8_c, &idct8x8_10, 8, 0, VPX_BITS_10), + make_tuple(&vpx_highbd_fdct8x8_c, &idct8x8_12, 8, 0, VPX_BITS_10), + make_tuple(&vpx_fdct8x8_c, &vpx_idct8x8_64_add_c, 8, 0, VPX_BITS_8), + make_tuple(&vpx_highbd_fdct4x4_c, &idct4x4_10, 4, 0, VPX_BITS_10), + make_tuple(&vpx_highbd_fdct4x4_c, &idct4x4_12, 4, 0, VPX_BITS_12), + make_tuple(&vpx_fdct4x4_c, &vpx_idct4x4_16_add_c, 4, 0, VPX_BITS_8))); +#else +INSTANTIATE_TEST_CASE_P( + C, TransDCT, + ::testing::Values( + make_tuple(&vpx_fdct32x32_c, &vpx_idct32x32_1024_add_c, 32, 0, + VPX_BITS_8), + make_tuple(&vpx_fdct16x16_c, &vpx_idct16x16_256_add_c, 16, 0, + VPX_BITS_8), + make_tuple(&vpx_fdct8x8_c, &vpx_idct8x8_64_add_c, 8, 0, VPX_BITS_8), + make_tuple(&vpx_fdct4x4_c, &vpx_idct4x4_16_add_c, 4, 0, VPX_BITS_8))); +#endif // CONFIG_VP9_HIGHBITDEPTH + +#if HAVE_SSE2 +#if !CONFIG_EMULATE_HARDWARE +#if CONFIG_VP9_HIGHBITDEPTH +/* TODO:(johannkoenig) Determine why these fail AccuracyCheck + make_tuple(&vpx_highbd_fdct32x32_sse2, &idct32x32_12, 32, 0, VPX_BITS_12), + make_tuple(&vpx_highbd_fdct16x16_sse2, &idct16x16_12, 16, 0, VPX_BITS_12), +*/ +INSTANTIATE_TEST_CASE_P( + SSE2, TransDCT, + ::testing::Values( + make_tuple(&vpx_highbd_fdct32x32_sse2, &idct32x32_10, 32, 0, + VPX_BITS_10), + make_tuple(&vpx_fdct32x32_sse2, &vpx_idct32x32_1024_add_sse2, 32, 0, + VPX_BITS_8), + make_tuple(&vpx_highbd_fdct16x16_sse2, &idct16x16_10, 16, 0, + VPX_BITS_10), + make_tuple(&vpx_fdct16x16_sse2, &vpx_idct16x16_256_add_sse2, 16, 0, + VPX_BITS_8), + make_tuple(&vpx_highbd_fdct8x8_sse2, &idct8x8_10, 8, 0, VPX_BITS_10), + make_tuple(&vpx_highbd_fdct8x8_sse2, &idct8x8_12, 8, 0, VPX_BITS_12), + make_tuple(&vpx_fdct8x8_sse2, &vpx_idct8x8_64_add_sse2, 8, 0, + VPX_BITS_8), + make_tuple(&vpx_highbd_fdct4x4_sse2, &idct4x4_10, 4, 0, VPX_BITS_10), + make_tuple(&vpx_highbd_fdct4x4_sse2, &idct4x4_12, 4, 0, VPX_BITS_12), + make_tuple(&vpx_fdct4x4_sse2, &vpx_idct4x4_16_add_sse2, 4, 0, + VPX_BITS_8))); +#else +INSTANTIATE_TEST_CASE_P( + SSE2, TransDCT, + ::testing::Values(make_tuple(&vpx_fdct32x32_sse2, + &vpx_idct32x32_1024_add_sse2, 32, 0, + VPX_BITS_8), + make_tuple(&vpx_fdct16x16_sse2, + &vpx_idct16x16_256_add_sse2, 16, 0, + VPX_BITS_8), + make_tuple(&vpx_fdct8x8_sse2, &vpx_idct8x8_64_add_sse2, 8, + 0, VPX_BITS_8), + make_tuple(&vpx_fdct4x4_sse2, &vpx_idct4x4_16_add_sse2, 4, + 0, VPX_BITS_8))); +#endif // CONFIG_VP9_HIGHBITDEPTH +#endif // !CONFIG_EMULATE_HARDWARE +#endif // HAVE_SSE2 + +#if !CONFIG_VP9_HIGHBITDEPTH +#if HAVE_SSSE3 && !CONFIG_EMULATE_HARDWARE +#if !ARCH_X86_64 +// TODO(johannkoenig): high bit depth fdct8x8. +INSTANTIATE_TEST_CASE_P( + SSSE3, TransDCT, + ::testing::Values(make_tuple(&vpx_fdct32x32_c, &vpx_idct32x32_1024_add_sse2, + 32, 0, VPX_BITS_8), + make_tuple(&vpx_fdct8x8_c, &vpx_idct8x8_64_add_sse2, 8, 0, + VPX_BITS_8))); +#else +// vpx_fdct8x8_ssse3 is only available in 64 bit builds. +INSTANTIATE_TEST_CASE_P( + SSSE3, TransDCT, + ::testing::Values(make_tuple(&vpx_fdct32x32_c, &vpx_idct32x32_1024_add_sse2, + 32, 0, VPX_BITS_8), + make_tuple(&vpx_fdct8x8_ssse3, &vpx_idct8x8_64_add_sse2, + 8, 0, VPX_BITS_8))); +#endif // !ARCH_X86_64 +#endif // HAVE_SSSE3 && !CONFIG_EMULATE_HARDWARE +#endif // !CONFIG_VP9_HIGHBITDEPTH + +#if !CONFIG_VP9_HIGHBITDEPTH && HAVE_AVX2 && !CONFIG_EMULATE_HARDWARE +// TODO(johannkoenig): high bit depth fdct32x32. +INSTANTIATE_TEST_CASE_P( + AVX2, TransDCT, ::testing::Values(make_tuple(&vpx_fdct32x32_avx2, + &vpx_idct32x32_1024_add_sse2, + 32, 0, VPX_BITS_8))); + +#endif // !CONFIG_VP9_HIGHBITDEPTH && HAVE_AVX2 && !CONFIG_EMULATE_HARDWARE + +#if HAVE_NEON +#if !CONFIG_EMULATE_HARDWARE +INSTANTIATE_TEST_CASE_P( + NEON, TransDCT, + ::testing::Values(make_tuple(&vpx_fdct32x32_neon, + &vpx_idct32x32_1024_add_neon, 32, 0, + VPX_BITS_8), + make_tuple(&vpx_fdct16x16_neon, + &vpx_idct16x16_256_add_neon, 16, 0, + VPX_BITS_8), + make_tuple(&vpx_fdct8x8_neon, &vpx_idct8x8_64_add_neon, 8, + 0, VPX_BITS_8), + make_tuple(&vpx_fdct4x4_neon, &vpx_idct4x4_16_add_neon, 4, + 0, VPX_BITS_8))); +#endif // !CONFIG_EMULATE_HARDWARE +#endif // HAVE_NEON + +#if HAVE_MSA +#if !CONFIG_VP9_HIGHBITDEPTH +#if !CONFIG_EMULATE_HARDWARE +INSTANTIATE_TEST_CASE_P( + MSA, TransDCT, + ::testing::Values( + make_tuple(&vpx_fdct32x32_msa, &vpx_idct32x32_1024_add_msa, 32, 0, + VPX_BITS_8), + make_tuple(&vpx_fdct16x16_msa, &vpx_idct16x16_256_add_msa, 16, 0, + VPX_BITS_8), + make_tuple(&vpx_fdct8x8_msa, &vpx_idct8x8_64_add_msa, 8, 0, VPX_BITS_8), + make_tuple(&vpx_fdct4x4_msa, &vpx_idct4x4_16_add_msa, 4, 0, + VPX_BITS_8))); +#endif // !CONFIG_EMULATE_HARDWARE +#endif // !CONFIG_VP9_HIGHBITDEPTH +#endif // HAVE_MSA + +#if HAVE_VSX && !CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE +INSTANTIATE_TEST_CASE_P(VSX, TransDCT, + ::testing::Values(make_tuple(&vpx_fdct4x4_c, + &vpx_idct4x4_16_add_vsx, 4, + 0, VPX_BITS_8))); +#endif // HAVE_VSX && !CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE + +class TransHT : public TransTestBase, public ::testing::TestWithParam { + public: + TransHT() { + fwd_txfm_ref = fht_ref; + fwd_txfm_ = GET_PARAM(0); + inv_txfm_ = GET_PARAM(1); + size_ = GET_PARAM(2); + tx_type_ = GET_PARAM(3); + bit_depth_ = GET_PARAM(4); + max_pixel_value_ = (1 << bit_depth_) - 1; + } + + protected: + void RunFwdTxfm(const Buffer &in, Buffer *out) { + fwd_txfm_(in.TopLeftPixel(), out->TopLeftPixel(), in.stride(), tx_type_); + } + + void RunInvTxfm(const Buffer &in, uint8_t *out) { + inv_txfm_(in.TopLeftPixel(), out, in.stride(), tx_type_); + } + + FhtFunc fwd_txfm_; + IhtFunc inv_txfm_; +}; + +TEST_P(TransHT, AccuracyCheck) { RunAccuracyCheck(1); } + +TEST_P(TransHT, CoeffCheck) { RunCoeffCheck(); } + +TEST_P(TransHT, MemCheck) { RunMemCheck(); } + +TEST_P(TransHT, InvAccuracyCheck) { RunInvAccuracyCheck(1); } + +/* TODO:(johannkoenig) Determine why these fail AccuracyCheck + make_tuple(&vp9_highbd_fht16x16_c, &iht16x16_12, 16, 0, VPX_BITS_12), + make_tuple(&vp9_highbd_fht16x16_c, &iht16x16_12, 16, 1, VPX_BITS_12), + make_tuple(&vp9_highbd_fht16x16_c, &iht16x16_12, 16, 2, VPX_BITS_12), + make_tuple(&vp9_highbd_fht16x16_c, &iht16x16_12, 16, 3, VPX_BITS_12), + */ +#if CONFIG_VP9_HIGHBITDEPTH +INSTANTIATE_TEST_CASE_P( + C, TransHT, + ::testing::Values( + make_tuple(&vp9_highbd_fht16x16_c, &iht16x16_10, 16, 0, VPX_BITS_10), + make_tuple(&vp9_highbd_fht16x16_c, &iht16x16_10, 16, 1, VPX_BITS_10), + make_tuple(&vp9_highbd_fht16x16_c, &iht16x16_10, 16, 2, VPX_BITS_10), + make_tuple(&vp9_highbd_fht16x16_c, &iht16x16_10, 16, 3, VPX_BITS_10), + make_tuple(&vp9_fht16x16_c, &vp9_iht16x16_256_add_c, 16, 0, VPX_BITS_8), + make_tuple(&vp9_fht16x16_c, &vp9_iht16x16_256_add_c, 16, 1, VPX_BITS_8), + make_tuple(&vp9_fht16x16_c, &vp9_iht16x16_256_add_c, 16, 2, VPX_BITS_8), + make_tuple(&vp9_fht16x16_c, &vp9_iht16x16_256_add_c, 16, 3, VPX_BITS_8), + make_tuple(&vp9_highbd_fht8x8_c, &iht8x8_10, 8, 0, VPX_BITS_10), + make_tuple(&vp9_highbd_fht8x8_c, &iht8x8_10, 8, 1, VPX_BITS_10), + make_tuple(&vp9_highbd_fht8x8_c, &iht8x8_10, 8, 2, VPX_BITS_10), + make_tuple(&vp9_highbd_fht8x8_c, &iht8x8_10, 8, 3, VPX_BITS_10), + make_tuple(&vp9_highbd_fht8x8_c, &iht8x8_12, 8, 0, VPX_BITS_12), + make_tuple(&vp9_highbd_fht8x8_c, &iht8x8_12, 8, 1, VPX_BITS_12), + make_tuple(&vp9_highbd_fht8x8_c, &iht8x8_12, 8, 2, VPX_BITS_12), + make_tuple(&vp9_highbd_fht8x8_c, &iht8x8_12, 8, 3, VPX_BITS_12), + make_tuple(&vp9_fht8x8_c, &vp9_iht8x8_64_add_c, 8, 0, VPX_BITS_8), + make_tuple(&vp9_fht8x8_c, &vp9_iht8x8_64_add_c, 8, 1, VPX_BITS_8), + make_tuple(&vp9_fht8x8_c, &vp9_iht8x8_64_add_c, 8, 2, VPX_BITS_8), + make_tuple(&vp9_fht8x8_c, &vp9_iht8x8_64_add_c, 8, 3, VPX_BITS_8), + make_tuple(&vp9_highbd_fht4x4_c, &iht4x4_10, 4, 0, VPX_BITS_10), + make_tuple(&vp9_highbd_fht4x4_c, &iht4x4_10, 4, 1, VPX_BITS_10), + make_tuple(&vp9_highbd_fht4x4_c, &iht4x4_10, 4, 2, VPX_BITS_10), + make_tuple(&vp9_highbd_fht4x4_c, &iht4x4_10, 4, 3, VPX_BITS_10), + make_tuple(&vp9_highbd_fht4x4_c, &iht4x4_12, 4, 0, VPX_BITS_12), + make_tuple(&vp9_highbd_fht4x4_c, &iht4x4_12, 4, 1, VPX_BITS_12), + make_tuple(&vp9_highbd_fht4x4_c, &iht4x4_12, 4, 2, VPX_BITS_12), + make_tuple(&vp9_highbd_fht4x4_c, &iht4x4_12, 4, 3, VPX_BITS_12), + make_tuple(&vp9_fht4x4_c, &vp9_iht4x4_16_add_c, 4, 0, VPX_BITS_8), + make_tuple(&vp9_fht4x4_c, &vp9_iht4x4_16_add_c, 4, 1, VPX_BITS_8), + make_tuple(&vp9_fht4x4_c, &vp9_iht4x4_16_add_c, 4, 2, VPX_BITS_8), + make_tuple(&vp9_fht4x4_c, &vp9_iht4x4_16_add_c, 4, 3, VPX_BITS_8))); +#else +INSTANTIATE_TEST_CASE_P( + C, TransHT, + ::testing::Values( + make_tuple(&vp9_fht16x16_c, &vp9_iht16x16_256_add_c, 16, 0, VPX_BITS_8), + make_tuple(&vp9_fht16x16_c, &vp9_iht16x16_256_add_c, 16, 1, VPX_BITS_8), + make_tuple(&vp9_fht16x16_c, &vp9_iht16x16_256_add_c, 16, 2, VPX_BITS_8), + make_tuple(&vp9_fht16x16_c, &vp9_iht16x16_256_add_c, 16, 3, VPX_BITS_8), + + make_tuple(&vp9_fht8x8_c, &vp9_iht8x8_64_add_c, 8, 0, VPX_BITS_8), + make_tuple(&vp9_fht8x8_c, &vp9_iht8x8_64_add_c, 8, 1, VPX_BITS_8), + make_tuple(&vp9_fht8x8_c, &vp9_iht8x8_64_add_c, 8, 2, VPX_BITS_8), + make_tuple(&vp9_fht8x8_c, &vp9_iht8x8_64_add_c, 8, 3, VPX_BITS_8), + + make_tuple(&vp9_fht4x4_c, &vp9_iht4x4_16_add_c, 4, 0, VPX_BITS_8), + make_tuple(&vp9_fht4x4_c, &vp9_iht4x4_16_add_c, 4, 1, VPX_BITS_8), + make_tuple(&vp9_fht4x4_c, &vp9_iht4x4_16_add_c, 4, 2, VPX_BITS_8), + make_tuple(&vp9_fht4x4_c, &vp9_iht4x4_16_add_c, 4, 3, VPX_BITS_8))); +#endif // CONFIG_VP9_HIGHBITDEPTH + +#if HAVE_SSE2 +INSTANTIATE_TEST_CASE_P( + SSE2, TransHT, + ::testing::Values( + make_tuple(&vp9_fht16x16_sse2, &vp9_iht16x16_256_add_sse2, 16, 0, + VPX_BITS_8), + make_tuple(&vp9_fht16x16_sse2, &vp9_iht16x16_256_add_sse2, 16, 1, + VPX_BITS_8), + make_tuple(&vp9_fht16x16_sse2, &vp9_iht16x16_256_add_sse2, 16, 2, + VPX_BITS_8), + make_tuple(&vp9_fht16x16_sse2, &vp9_iht16x16_256_add_sse2, 16, 3, + VPX_BITS_8), + + make_tuple(&vp9_fht8x8_sse2, &vp9_iht8x8_64_add_sse2, 8, 0, VPX_BITS_8), + make_tuple(&vp9_fht8x8_sse2, &vp9_iht8x8_64_add_sse2, 8, 1, VPX_BITS_8), + make_tuple(&vp9_fht8x8_sse2, &vp9_iht8x8_64_add_sse2, 8, 2, VPX_BITS_8), + make_tuple(&vp9_fht8x8_sse2, &vp9_iht8x8_64_add_sse2, 8, 3, VPX_BITS_8), + + make_tuple(&vp9_fht4x4_sse2, &vp9_iht4x4_16_add_sse2, 4, 0, VPX_BITS_8), + make_tuple(&vp9_fht4x4_sse2, &vp9_iht4x4_16_add_sse2, 4, 1, VPX_BITS_8), + make_tuple(&vp9_fht4x4_sse2, &vp9_iht4x4_16_add_sse2, 4, 2, VPX_BITS_8), + make_tuple(&vp9_fht4x4_sse2, &vp9_iht4x4_16_add_sse2, 4, 3, + VPX_BITS_8))); +#endif // HAVE_SSE2 + +class TransWHT : public TransTestBase, + public ::testing::TestWithParam { + public: + TransWHT() { + fwd_txfm_ref = fwht_ref; + fwd_txfm_ = GET_PARAM(0); + inv_txfm_ = GET_PARAM(1); + size_ = GET_PARAM(2); + tx_type_ = GET_PARAM(3); + bit_depth_ = GET_PARAM(4); + max_pixel_value_ = (1 << bit_depth_) - 1; + } + + protected: + void RunFwdTxfm(const Buffer &in, Buffer *out) { + fwd_txfm_(in.TopLeftPixel(), out->TopLeftPixel(), in.stride()); + } + + void RunInvTxfm(const Buffer &in, uint8_t *out) { + inv_txfm_(in.TopLeftPixel(), out, in.stride()); + } + + FdctFunc fwd_txfm_; + IdctFunc inv_txfm_; +}; + +TEST_P(TransWHT, AccuracyCheck) { RunAccuracyCheck(0); } + +TEST_P(TransWHT, CoeffCheck) { RunCoeffCheck(); } + +TEST_P(TransWHT, MemCheck) { RunMemCheck(); } + +TEST_P(TransWHT, InvAccuracyCheck) { RunInvAccuracyCheck(0); } + +#if CONFIG_VP9_HIGHBITDEPTH +INSTANTIATE_TEST_CASE_P( + C, TransWHT, + ::testing::Values( + make_tuple(&vp9_highbd_fwht4x4_c, &iwht4x4_10, 4, 0, VPX_BITS_10), + make_tuple(&vp9_highbd_fwht4x4_c, &iwht4x4_12, 4, 0, VPX_BITS_12), + make_tuple(&vp9_fwht4x4_c, &vpx_iwht4x4_16_add_c, 4, 0, VPX_BITS_8))); +#else +INSTANTIATE_TEST_CASE_P(C, TransWHT, + ::testing::Values(make_tuple(&vp9_fwht4x4_c, + &vpx_iwht4x4_16_add_c, 4, + 0, VPX_BITS_8))); +#endif // CONFIG_VP9_HIGHBITDEPTH + +#if HAVE_SSE2 +INSTANTIATE_TEST_CASE_P(SSE2, TransWHT, + ::testing::Values(make_tuple(&vp9_fwht4x4_sse2, + &vpx_iwht4x4_16_add_sse2, + 4, 0, VPX_BITS_8))); +#endif // HAVE_SSE2 +} // namespace diff --git a/test/decode_api_test.cc b/test/decode_api_test.cc new file mode 100644 index 0000000..4167cf3 --- /dev/null +++ b/test/decode_api_test.cc @@ -0,0 +1,192 @@ +/* + * Copyright (c) 2014 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "third_party/googletest/src/include/gtest/gtest.h" + +#include "./vpx_config.h" +#include "test/ivf_video_source.h" +#include "vpx/vp8dx.h" +#include "vpx/vpx_decoder.h" + +namespace { + +#define NELEMENTS(x) static_cast(sizeof(x) / sizeof(x[0])) + +TEST(DecodeAPI, InvalidParams) { + static const vpx_codec_iface_t *kCodecs[] = { +#if CONFIG_VP8_DECODER + &vpx_codec_vp8_dx_algo, +#endif +#if CONFIG_VP9_DECODER + &vpx_codec_vp9_dx_algo, +#endif + }; + uint8_t buf[1] = { 0 }; + vpx_codec_ctx_t dec; + + EXPECT_EQ(VPX_CODEC_INVALID_PARAM, vpx_codec_dec_init(NULL, NULL, NULL, 0)); + EXPECT_EQ(VPX_CODEC_INVALID_PARAM, vpx_codec_dec_init(&dec, NULL, NULL, 0)); + EXPECT_EQ(VPX_CODEC_INVALID_PARAM, vpx_codec_decode(NULL, NULL, 0, NULL, 0)); + EXPECT_EQ(VPX_CODEC_INVALID_PARAM, vpx_codec_decode(NULL, buf, 0, NULL, 0)); + EXPECT_EQ(VPX_CODEC_INVALID_PARAM, + vpx_codec_decode(NULL, buf, NELEMENTS(buf), NULL, 0)); + EXPECT_EQ(VPX_CODEC_INVALID_PARAM, + vpx_codec_decode(NULL, NULL, NELEMENTS(buf), NULL, 0)); + EXPECT_EQ(VPX_CODEC_INVALID_PARAM, vpx_codec_destroy(NULL)); + EXPECT_TRUE(vpx_codec_error(NULL) != NULL); + + for (int i = 0; i < NELEMENTS(kCodecs); ++i) { + EXPECT_EQ(VPX_CODEC_INVALID_PARAM, + vpx_codec_dec_init(NULL, kCodecs[i], NULL, 0)); + + EXPECT_EQ(VPX_CODEC_OK, vpx_codec_dec_init(&dec, kCodecs[i], NULL, 0)); + EXPECT_EQ(VPX_CODEC_UNSUP_BITSTREAM, + vpx_codec_decode(&dec, buf, NELEMENTS(buf), NULL, 0)); + EXPECT_EQ(VPX_CODEC_INVALID_PARAM, + vpx_codec_decode(&dec, NULL, NELEMENTS(buf), NULL, 0)); + EXPECT_EQ(VPX_CODEC_INVALID_PARAM, vpx_codec_decode(&dec, buf, 0, NULL, 0)); + + EXPECT_EQ(VPX_CODEC_OK, vpx_codec_destroy(&dec)); + } +} + +#if CONFIG_VP8_DECODER +TEST(DecodeAPI, OptionalParams) { + vpx_codec_ctx_t dec; + +#if CONFIG_ERROR_CONCEALMENT + EXPECT_EQ(VPX_CODEC_OK, vpx_codec_dec_init(&dec, &vpx_codec_vp8_dx_algo, NULL, + VPX_CODEC_USE_ERROR_CONCEALMENT)); +#else + EXPECT_EQ(VPX_CODEC_INCAPABLE, + vpx_codec_dec_init(&dec, &vpx_codec_vp8_dx_algo, NULL, + VPX_CODEC_USE_ERROR_CONCEALMENT)); +#endif // CONFIG_ERROR_CONCEALMENT +} +#endif // CONFIG_VP8_DECODER + +#if CONFIG_VP9_DECODER +// Test VP9 codec controls after a decode error to ensure the code doesn't +// misbehave. +void TestVp9Controls(vpx_codec_ctx_t *dec) { + static const int kControls[] = { VP8D_GET_LAST_REF_UPDATES, + VP8D_GET_FRAME_CORRUPTED, + VP9D_GET_DISPLAY_SIZE, VP9D_GET_FRAME_SIZE }; + int val[2]; + + for (int i = 0; i < NELEMENTS(kControls); ++i) { + const vpx_codec_err_t res = vpx_codec_control_(dec, kControls[i], val); + switch (kControls[i]) { + case VP8D_GET_FRAME_CORRUPTED: + EXPECT_EQ(VPX_CODEC_ERROR, res) << kControls[i]; + break; + default: EXPECT_EQ(VPX_CODEC_OK, res) << kControls[i]; break; + } + EXPECT_EQ(VPX_CODEC_INVALID_PARAM, + vpx_codec_control_(dec, kControls[i], NULL)); + } + + vp9_ref_frame_t ref; + ref.idx = 0; + EXPECT_EQ(VPX_CODEC_ERROR, vpx_codec_control(dec, VP9_GET_REFERENCE, &ref)); + EXPECT_EQ(VPX_CODEC_INVALID_PARAM, + vpx_codec_control(dec, VP9_GET_REFERENCE, NULL)); + + vpx_ref_frame_t ref_copy; + const int width = 352; + const int height = 288; + ASSERT_TRUE( + vpx_img_alloc(&ref_copy.img, VPX_IMG_FMT_I420, width, height, 1) != NULL); + ref_copy.frame_type = VP8_LAST_FRAME; + EXPECT_EQ(VPX_CODEC_ERROR, + vpx_codec_control(dec, VP8_COPY_REFERENCE, &ref_copy)); + EXPECT_EQ(VPX_CODEC_INVALID_PARAM, + vpx_codec_control(dec, VP8_COPY_REFERENCE, NULL)); + vpx_img_free(&ref_copy.img); +} + +TEST(DecodeAPI, Vp9InvalidDecode) { + const vpx_codec_iface_t *const codec = &vpx_codec_vp9_dx_algo; + const char filename[] = + "invalid-vp90-2-00-quantizer-00.webm.ivf.s5861_r01-05_b6-.v2.ivf"; + libvpx_test::IVFVideoSource video(filename); + video.Init(); + video.Begin(); + ASSERT_TRUE(!HasFailure()); + + vpx_codec_ctx_t dec; + EXPECT_EQ(VPX_CODEC_OK, vpx_codec_dec_init(&dec, codec, NULL, 0)); + const uint32_t frame_size = static_cast(video.frame_size()); +#if CONFIG_VP9_HIGHBITDEPTH + EXPECT_EQ(VPX_CODEC_MEM_ERROR, + vpx_codec_decode(&dec, video.cxdata(), frame_size, NULL, 0)); +#else + EXPECT_EQ(VPX_CODEC_UNSUP_BITSTREAM, + vpx_codec_decode(&dec, video.cxdata(), frame_size, NULL, 0)); +#endif + vpx_codec_iter_t iter = NULL; + EXPECT_EQ(NULL, vpx_codec_get_frame(&dec, &iter)); + + TestVp9Controls(&dec); + EXPECT_EQ(VPX_CODEC_OK, vpx_codec_destroy(&dec)); +} + +TEST(DecodeAPI, Vp9PeekSI) { + const vpx_codec_iface_t *const codec = &vpx_codec_vp9_dx_algo; + // The first 9 bytes are valid and the rest of the bytes are made up. Until + // size 10, this should return VPX_CODEC_UNSUP_BITSTREAM and after that it + // should return VPX_CODEC_CORRUPT_FRAME. + const uint8_t data[32] = { + 0x85, 0xa4, 0xc1, 0xa1, 0x38, 0x81, 0xa3, 0x49, 0x83, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + }; + + for (uint32_t data_sz = 1; data_sz <= 32; ++data_sz) { + // Verify behavior of vpx_codec_decode. vpx_codec_decode doesn't even get + // to decoder_peek_si_internal on frames of size < 8. + if (data_sz >= 8) { + vpx_codec_ctx_t dec; + EXPECT_EQ(VPX_CODEC_OK, vpx_codec_dec_init(&dec, codec, NULL, 0)); + EXPECT_EQ( + (data_sz < 10) ? VPX_CODEC_UNSUP_BITSTREAM : VPX_CODEC_CORRUPT_FRAME, + vpx_codec_decode(&dec, data, data_sz, NULL, 0)); + vpx_codec_iter_t iter = NULL; + EXPECT_EQ(NULL, vpx_codec_get_frame(&dec, &iter)); + EXPECT_EQ(VPX_CODEC_OK, vpx_codec_destroy(&dec)); + } + + // Verify behavior of vpx_codec_peek_stream_info. + vpx_codec_stream_info_t si; + si.sz = sizeof(si); + EXPECT_EQ((data_sz < 10) ? VPX_CODEC_UNSUP_BITSTREAM : VPX_CODEC_OK, + vpx_codec_peek_stream_info(codec, data, data_sz, &si)); + } +} +#endif // CONFIG_VP9_DECODER + +TEST(DecodeAPI, HighBitDepthCapability) { +// VP8 should not claim VP9 HBD as a capability. +#if CONFIG_VP8_DECODER + const vpx_codec_caps_t vp8_caps = vpx_codec_get_caps(&vpx_codec_vp8_dx_algo); + EXPECT_EQ(vp8_caps & VPX_CODEC_CAP_HIGHBITDEPTH, 0); +#endif + +#if CONFIG_VP9_DECODER + const vpx_codec_caps_t vp9_caps = vpx_codec_get_caps(&vpx_codec_vp9_dx_algo); +#if CONFIG_VP9_HIGHBITDEPTH + EXPECT_EQ(vp9_caps & VPX_CODEC_CAP_HIGHBITDEPTH, VPX_CODEC_CAP_HIGHBITDEPTH); +#else + EXPECT_EQ(vp9_caps & VPX_CODEC_CAP_HIGHBITDEPTH, 0); +#endif +#endif +} + +} // namespace diff --git a/test/decode_perf_test.cc b/test/decode_perf_test.cc new file mode 100644 index 0000000..ee26c3c --- /dev/null +++ b/test/decode_perf_test.cc @@ -0,0 +1,261 @@ +/* + * Copyright (c) 2013 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include "test/codec_factory.h" +#include "test/decode_test_driver.h" +#include "test/encode_test_driver.h" +#include "test/i420_video_source.h" +#include "test/ivf_video_source.h" +#include "test/md5_helper.h" +#include "test/util.h" +#include "test/webm_video_source.h" +#include "vpx_ports/vpx_timer.h" +#include "./ivfenc.h" +#include "./vpx_version.h" + +using std::tr1::make_tuple; + +namespace { + +#define VIDEO_NAME 0 +#define THREADS 1 + +const double kUsecsInSec = 1000000.0; +const char kNewEncodeOutputFile[] = "new_encode.ivf"; + +/* + DecodePerfTest takes a tuple of filename + number of threads to decode with + */ +typedef std::tr1::tuple DecodePerfParam; + +const DecodePerfParam kVP9DecodePerfVectors[] = { + make_tuple("vp90-2-bbb_426x240_tile_1x1_180kbps.webm", 1), + make_tuple("vp90-2-bbb_640x360_tile_1x2_337kbps.webm", 2), + make_tuple("vp90-2-bbb_854x480_tile_1x2_651kbps.webm", 2), + make_tuple("vp90-2-bbb_1280x720_tile_1x4_1310kbps.webm", 4), + make_tuple("vp90-2-bbb_1920x1080_tile_1x1_2581kbps.webm", 1), + make_tuple("vp90-2-bbb_1920x1080_tile_1x4_2586kbps.webm", 4), + make_tuple("vp90-2-bbb_1920x1080_tile_1x4_fpm_2304kbps.webm", 4), + make_tuple("vp90-2-sintel_426x182_tile_1x1_171kbps.webm", 1), + make_tuple("vp90-2-sintel_640x272_tile_1x2_318kbps.webm", 2), + make_tuple("vp90-2-sintel_854x364_tile_1x2_621kbps.webm", 2), + make_tuple("vp90-2-sintel_1280x546_tile_1x4_1257kbps.webm", 4), + make_tuple("vp90-2-sintel_1920x818_tile_1x4_fpm_2279kbps.webm", 4), + make_tuple("vp90-2-tos_426x178_tile_1x1_181kbps.webm", 1), + make_tuple("vp90-2-tos_640x266_tile_1x2_336kbps.webm", 2), + make_tuple("vp90-2-tos_854x356_tile_1x2_656kbps.webm", 2), + make_tuple("vp90-2-tos_854x356_tile_1x2_fpm_546kbps.webm", 2), + make_tuple("vp90-2-tos_1280x534_tile_1x4_1306kbps.webm", 4), + make_tuple("vp90-2-tos_1280x534_tile_1x4_fpm_952kbps.webm", 4), + make_tuple("vp90-2-tos_1920x800_tile_1x4_fpm_2335kbps.webm", 4), +}; + +/* + In order to reflect real world performance as much as possible, Perf tests + *DO NOT* do any correctness checks. Please run them alongside correctness + tests to ensure proper codec integrity. Furthermore, in this test we + deliberately limit the amount of system calls we make to avoid OS + preemption. + + TODO(joshualitt) create a more detailed perf measurement test to collect + power/temp/min max frame decode times/etc + */ + +class DecodePerfTest : public ::testing::TestWithParam {}; + +TEST_P(DecodePerfTest, PerfTest) { + const char *const video_name = GET_PARAM(VIDEO_NAME); + const unsigned threads = GET_PARAM(THREADS); + + libvpx_test::WebMVideoSource video(video_name); + video.Init(); + + vpx_codec_dec_cfg_t cfg = vpx_codec_dec_cfg_t(); + cfg.threads = threads; + libvpx_test::VP9Decoder decoder(cfg, 0); + + vpx_usec_timer t; + vpx_usec_timer_start(&t); + + for (video.Begin(); video.cxdata() != NULL; video.Next()) { + decoder.DecodeFrame(video.cxdata(), video.frame_size()); + } + + vpx_usec_timer_mark(&t); + const double elapsed_secs = double(vpx_usec_timer_elapsed(&t)) / kUsecsInSec; + const unsigned frames = video.frame_number(); + const double fps = double(frames) / elapsed_secs; + + printf("{\n"); + printf("\t\"type\" : \"decode_perf_test\",\n"); + printf("\t\"version\" : \"%s\",\n", VERSION_STRING_NOSP); + printf("\t\"videoName\" : \"%s\",\n", video_name); + printf("\t\"threadCount\" : %u,\n", threads); + printf("\t\"decodeTimeSecs\" : %f,\n", elapsed_secs); + printf("\t\"totalFrames\" : %u,\n", frames); + printf("\t\"framesPerSecond\" : %f\n", fps); + printf("}\n"); +} + +INSTANTIATE_TEST_CASE_P(VP9, DecodePerfTest, + ::testing::ValuesIn(kVP9DecodePerfVectors)); + +class VP9NewEncodeDecodePerfTest + : public ::libvpx_test::EncoderTest, + public ::libvpx_test::CodecTestWithParam { + protected: + VP9NewEncodeDecodePerfTest() + : EncoderTest(GET_PARAM(0)), encoding_mode_(GET_PARAM(1)), speed_(0), + outfile_(0), out_frames_(0) {} + + virtual ~VP9NewEncodeDecodePerfTest() {} + + virtual void SetUp() { + InitializeConfig(); + SetMode(encoding_mode_); + + cfg_.g_lag_in_frames = 25; + cfg_.rc_min_quantizer = 2; + cfg_.rc_max_quantizer = 56; + cfg_.rc_dropframe_thresh = 0; + cfg_.rc_undershoot_pct = 50; + cfg_.rc_overshoot_pct = 50; + cfg_.rc_buf_sz = 1000; + cfg_.rc_buf_initial_sz = 500; + cfg_.rc_buf_optimal_sz = 600; + cfg_.rc_resize_allowed = 0; + cfg_.rc_end_usage = VPX_VBR; + } + + virtual void PreEncodeFrameHook(::libvpx_test::VideoSource *video, + ::libvpx_test::Encoder *encoder) { + if (video->frame() == 1) { + encoder->Control(VP8E_SET_CPUUSED, speed_); + encoder->Control(VP9E_SET_FRAME_PARALLEL_DECODING, 1); + encoder->Control(VP9E_SET_TILE_COLUMNS, 2); + } + } + + virtual void BeginPassHook(unsigned int /*pass*/) { + const std::string data_path = getenv("LIBVPX_TEST_DATA_PATH"); + const std::string path_to_source = data_path + "/" + kNewEncodeOutputFile; + outfile_ = fopen(path_to_source.c_str(), "wb"); + ASSERT_TRUE(outfile_ != NULL); + } + + virtual void EndPassHook() { + if (outfile_ != NULL) { + if (!fseek(outfile_, 0, SEEK_SET)) { + ivf_write_file_header(outfile_, &cfg_, VP9_FOURCC, out_frames_); + } + fclose(outfile_); + outfile_ = NULL; + } + } + + virtual void FramePktHook(const vpx_codec_cx_pkt_t *pkt) { + ++out_frames_; + + // Write initial file header if first frame. + if (pkt->data.frame.pts == 0) { + ivf_write_file_header(outfile_, &cfg_, VP9_FOURCC, out_frames_); + } + + // Write frame header and data. + ivf_write_frame_header(outfile_, out_frames_, pkt->data.frame.sz); + ASSERT_EQ(fwrite(pkt->data.frame.buf, 1, pkt->data.frame.sz, outfile_), + pkt->data.frame.sz); + } + + virtual bool DoDecode() const { return false; } + + void set_speed(unsigned int speed) { speed_ = speed; } + + private: + libvpx_test::TestMode encoding_mode_; + uint32_t speed_; + FILE *outfile_; + uint32_t out_frames_; +}; + +struct EncodePerfTestVideo { + EncodePerfTestVideo(const char *name_, uint32_t width_, uint32_t height_, + uint32_t bitrate_, int frames_) + : name(name_), width(width_), height(height_), bitrate(bitrate_), + frames(frames_) {} + const char *name; + uint32_t width; + uint32_t height; + uint32_t bitrate; + int frames; +}; + +const EncodePerfTestVideo kVP9EncodePerfTestVectors[] = { + EncodePerfTestVideo("niklas_1280_720_30.yuv", 1280, 720, 600, 470), +}; + +TEST_P(VP9NewEncodeDecodePerfTest, PerfTest) { + SetUp(); + + // TODO(JBB): Make this work by going through the set of given files. + const int i = 0; + const vpx_rational timebase = { 33333333, 1000000000 }; + cfg_.g_timebase = timebase; + cfg_.rc_target_bitrate = kVP9EncodePerfTestVectors[i].bitrate; + + init_flags_ = VPX_CODEC_USE_PSNR; + + const char *video_name = kVP9EncodePerfTestVectors[i].name; + libvpx_test::I420VideoSource video( + video_name, kVP9EncodePerfTestVectors[i].width, + kVP9EncodePerfTestVectors[i].height, timebase.den, timebase.num, 0, + kVP9EncodePerfTestVectors[i].frames); + set_speed(2); + + ASSERT_NO_FATAL_FAILURE(RunLoop(&video)); + + const uint32_t threads = 4; + + libvpx_test::IVFVideoSource decode_video(kNewEncodeOutputFile); + decode_video.Init(); + + vpx_codec_dec_cfg_t cfg = vpx_codec_dec_cfg_t(); + cfg.threads = threads; + libvpx_test::VP9Decoder decoder(cfg, 0); + + vpx_usec_timer t; + vpx_usec_timer_start(&t); + + for (decode_video.Begin(); decode_video.cxdata() != NULL; + decode_video.Next()) { + decoder.DecodeFrame(decode_video.cxdata(), decode_video.frame_size()); + } + + vpx_usec_timer_mark(&t); + const double elapsed_secs = + static_cast(vpx_usec_timer_elapsed(&t)) / kUsecsInSec; + const unsigned decode_frames = decode_video.frame_number(); + const double fps = static_cast(decode_frames) / elapsed_secs; + + printf("{\n"); + printf("\t\"type\" : \"decode_perf_test\",\n"); + printf("\t\"version\" : \"%s\",\n", VERSION_STRING_NOSP); + printf("\t\"videoName\" : \"%s\",\n", kNewEncodeOutputFile); + printf("\t\"threadCount\" : %u,\n", threads); + printf("\t\"decodeTimeSecs\" : %f,\n", elapsed_secs); + printf("\t\"totalFrames\" : %u,\n", decode_frames); + printf("\t\"framesPerSecond\" : %f\n", fps); + printf("}\n"); +} + +VP9_INSTANTIATE_TEST_CASE(VP9NewEncodeDecodePerfTest, + ::testing::Values(::libvpx_test::kTwoPassGood)); +} // namespace diff --git a/test/decode_svc_test.cc b/test/decode_svc_test.cc new file mode 100644 index 0000000..69f62f1 --- /dev/null +++ b/test/decode_svc_test.cc @@ -0,0 +1,124 @@ +/* + * Copyright (c) 2016 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include + +#include "test/codec_factory.h" +#include "test/decode_test_driver.h" +#include "test/ivf_video_source.h" +#include "test/test_vectors.h" +#include "test/util.h" + +namespace { + +const unsigned int kNumFrames = 19; + +class DecodeSvcTest : public ::libvpx_test::DecoderTest, + public ::libvpx_test::CodecTestWithParam { + protected: + DecodeSvcTest() : DecoderTest(GET_PARAM(::libvpx_test::kCodecFactoryParam)) {} + virtual ~DecodeSvcTest() {} + + virtual void PreDecodeFrameHook( + const libvpx_test::CompressedVideoSource &video, + libvpx_test::Decoder *decoder) { + if (video.frame_number() == 0) + decoder->Control(VP9_DECODE_SVC_SPATIAL_LAYER, spatial_layer_); + } + + virtual void DecompressedFrameHook(const vpx_image_t &img, + const unsigned int frame_number) { + ASSERT_EQ(img.d_w, width_); + ASSERT_EQ(img.d_h, height_); + total_frames_ = frame_number; + } + + int spatial_layer_; + unsigned int width_; + unsigned int height_; + unsigned int total_frames_; +}; + +// SVC test vector is 1280x720, with 3 spatial layers, and 20 frames. + +// Decode the SVC test vector, which has 3 spatial layers, and decode up to +// spatial layer 0. Verify the resolution of each decoded frame and the total +// number of frames decoded. This results in 1/4x1/4 resolution (320x180). +TEST_P(DecodeSvcTest, DecodeSvcTestUpToSpatialLayer0) { + const std::string filename = GET_PARAM(1); + testing::internal::scoped_ptr video; + video.reset(new libvpx_test::IVFVideoSource(filename)); + ASSERT_TRUE(video.get() != NULL); + video->Init(); + total_frames_ = 0; + spatial_layer_ = 0; + width_ = 320; + height_ = 180; + ASSERT_NO_FATAL_FAILURE(RunLoop(video.get())); + ASSERT_EQ(total_frames_, kNumFrames); +} + +// Decode the SVC test vector, which has 3 spatial layers, and decode up to +// spatial layer 1. Verify the resolution of each decoded frame and the total +// number of frames decoded. This results in 1/2x1/2 resolution (640x360). +TEST_P(DecodeSvcTest, DecodeSvcTestUpToSpatialLayer1) { + const std::string filename = GET_PARAM(1); + testing::internal::scoped_ptr video; + video.reset(new libvpx_test::IVFVideoSource(filename)); + ASSERT_TRUE(video.get() != NULL); + video->Init(); + total_frames_ = 0; + spatial_layer_ = 1; + width_ = 640; + height_ = 360; + ASSERT_NO_FATAL_FAILURE(RunLoop(video.get())); + ASSERT_EQ(total_frames_, kNumFrames); +} + +// Decode the SVC test vector, which has 3 spatial layers, and decode up to +// spatial layer 2. Verify the resolution of each decoded frame and the total +// number of frames decoded. This results in the full resolution (1280x720). +TEST_P(DecodeSvcTest, DecodeSvcTestUpToSpatialLayer2) { + const std::string filename = GET_PARAM(1); + testing::internal::scoped_ptr video; + video.reset(new libvpx_test::IVFVideoSource(filename)); + ASSERT_TRUE(video.get() != NULL); + video->Init(); + total_frames_ = 0; + spatial_layer_ = 2; + width_ = 1280; + height_ = 720; + ASSERT_NO_FATAL_FAILURE(RunLoop(video.get())); + ASSERT_EQ(total_frames_, kNumFrames); +} + +// Decode the SVC test vector, which has 3 spatial layers, and decode up to +// spatial layer 10. Verify the resolution of each decoded frame and the total +// number of frames decoded. This is beyond the number of spatial layers, so +// the decoding should result in the full resolution (1280x720). +TEST_P(DecodeSvcTest, DecodeSvcTestUpToSpatialLayer10) { + const std::string filename = GET_PARAM(1); + testing::internal::scoped_ptr video; + video.reset(new libvpx_test::IVFVideoSource(filename)); + ASSERT_TRUE(video.get() != NULL); + video->Init(); + total_frames_ = 0; + spatial_layer_ = 10; + width_ = 1280; + height_ = 720; + ASSERT_NO_FATAL_FAILURE(RunLoop(video.get())); + ASSERT_EQ(total_frames_, kNumFrames); +} + +VP9_INSTANTIATE_TEST_CASE( + DecodeSvcTest, ::testing::ValuesIn(libvpx_test::kVP9TestVectorsSvc, + libvpx_test::kVP9TestVectorsSvc + + libvpx_test::kNumVP9TestVectorsSvc)); +} // namespace diff --git a/test/decode_test_driver.cc b/test/decode_test_driver.cc new file mode 100644 index 0000000..48680eb --- /dev/null +++ b/test/decode_test_driver.cc @@ -0,0 +1,118 @@ +/* + * Copyright (c) 2012 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "third_party/googletest/src/include/gtest/gtest.h" + +#include "test/codec_factory.h" +#include "test/decode_test_driver.h" +#include "test/register_state_check.h" +#include "test/video_source.h" + +namespace libvpx_test { + +const char kVP8Name[] = "WebM Project VP8"; + +vpx_codec_err_t Decoder::PeekStream(const uint8_t *cxdata, size_t size, + vpx_codec_stream_info_t *stream_info) { + return vpx_codec_peek_stream_info( + CodecInterface(), cxdata, static_cast(size), stream_info); +} + +vpx_codec_err_t Decoder::DecodeFrame(const uint8_t *cxdata, size_t size) { + return DecodeFrame(cxdata, size, NULL); +} + +vpx_codec_err_t Decoder::DecodeFrame(const uint8_t *cxdata, size_t size, + void *user_priv) { + vpx_codec_err_t res_dec; + InitOnce(); + API_REGISTER_STATE_CHECK( + res_dec = vpx_codec_decode( + &decoder_, cxdata, static_cast(size), user_priv, 0)); + return res_dec; +} + +bool Decoder::IsVP8() const { + const char *codec_name = GetDecoderName(); + return strncmp(kVP8Name, codec_name, sizeof(kVP8Name) - 1) == 0; +} + +void DecoderTest::HandlePeekResult(Decoder *const decoder, + CompressedVideoSource *video, + const vpx_codec_err_t res_peek) { + const bool is_vp8 = decoder->IsVP8(); + if (is_vp8) { + /* Vp8's implementation of PeekStream returns an error if the frame you + * pass it is not a keyframe, so we only expect VPX_CODEC_OK on the first + * frame, which must be a keyframe. */ + if (video->frame_number() == 0) + ASSERT_EQ(VPX_CODEC_OK, res_peek) + << "Peek return failed: " << vpx_codec_err_to_string(res_peek); + } else { + /* The Vp9 implementation of PeekStream returns an error only if the + * data passed to it isn't a valid Vp9 chunk. */ + ASSERT_EQ(VPX_CODEC_OK, res_peek) + << "Peek return failed: " << vpx_codec_err_to_string(res_peek); + } +} + +void DecoderTest::RunLoop(CompressedVideoSource *video, + const vpx_codec_dec_cfg_t &dec_cfg) { + Decoder *const decoder = codec_->CreateDecoder(dec_cfg, flags_); + ASSERT_TRUE(decoder != NULL); + bool end_of_file = false; + + // Decode frames. + for (video->Begin(); !::testing::Test::HasFailure() && !end_of_file; + video->Next()) { + PreDecodeFrameHook(*video, decoder); + + vpx_codec_stream_info_t stream_info; + stream_info.sz = sizeof(stream_info); + + if (video->cxdata() != NULL) { + const vpx_codec_err_t res_peek = decoder->PeekStream( + video->cxdata(), video->frame_size(), &stream_info); + HandlePeekResult(decoder, video, res_peek); + ASSERT_FALSE(::testing::Test::HasFailure()); + + vpx_codec_err_t res_dec = + decoder->DecodeFrame(video->cxdata(), video->frame_size()); + if (!HandleDecodeResult(res_dec, *video, decoder)) break; + } else { + // Signal end of the file to the decoder. + const vpx_codec_err_t res_dec = decoder->DecodeFrame(NULL, 0); + ASSERT_EQ(VPX_CODEC_OK, res_dec) << decoder->DecodeError(); + end_of_file = true; + } + + DxDataIterator dec_iter = decoder->GetDxData(); + const vpx_image_t *img = NULL; + + // Get decompressed data + while ((img = dec_iter.Next())) { + DecompressedFrameHook(*img, video->frame_number()); + } + } + delete decoder; +} + +void DecoderTest::RunLoop(CompressedVideoSource *video) { + vpx_codec_dec_cfg_t dec_cfg = vpx_codec_dec_cfg_t(); + RunLoop(video, dec_cfg); +} + +void DecoderTest::set_cfg(const vpx_codec_dec_cfg_t &dec_cfg) { + memcpy(&cfg_, &dec_cfg, sizeof(cfg_)); +} + +void DecoderTest::set_flags(const vpx_codec_flags_t flags) { flags_ = flags; } + +} // namespace libvpx_test diff --git a/test/decode_test_driver.h b/test/decode_test_driver.h new file mode 100644 index 0000000..644fc9e --- /dev/null +++ b/test/decode_test_driver.h @@ -0,0 +1,162 @@ +/* + * Copyright (c) 2012 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef TEST_DECODE_TEST_DRIVER_H_ +#define TEST_DECODE_TEST_DRIVER_H_ +#include +#include "third_party/googletest/src/include/gtest/gtest.h" +#include "./vpx_config.h" +#include "vpx/vpx_decoder.h" + +namespace libvpx_test { + +class CodecFactory; +class CompressedVideoSource; + +// Provides an object to handle decoding output +class DxDataIterator { + public: + explicit DxDataIterator(vpx_codec_ctx_t *decoder) + : decoder_(decoder), iter_(NULL) {} + + const vpx_image_t *Next() { return vpx_codec_get_frame(decoder_, &iter_); } + + private: + vpx_codec_ctx_t *decoder_; + vpx_codec_iter_t iter_; +}; + +// Provides a simplified interface to manage one video decoding. +// Similar to Encoder class, the exact services should be added +// as more tests are added. +class Decoder { + public: + explicit Decoder(vpx_codec_dec_cfg_t cfg) + : cfg_(cfg), flags_(0), init_done_(false) { + memset(&decoder_, 0, sizeof(decoder_)); + } + + Decoder(vpx_codec_dec_cfg_t cfg, const vpx_codec_flags_t flag) + : cfg_(cfg), flags_(flag), init_done_(false) { + memset(&decoder_, 0, sizeof(decoder_)); + } + + virtual ~Decoder() { vpx_codec_destroy(&decoder_); } + + vpx_codec_err_t PeekStream(const uint8_t *cxdata, size_t size, + vpx_codec_stream_info_t *stream_info); + + vpx_codec_err_t DecodeFrame(const uint8_t *cxdata, size_t size); + + vpx_codec_err_t DecodeFrame(const uint8_t *cxdata, size_t size, + void *user_priv); + + DxDataIterator GetDxData() { return DxDataIterator(&decoder_); } + + void Control(int ctrl_id, int arg) { Control(ctrl_id, arg, VPX_CODEC_OK); } + + void Control(int ctrl_id, const void *arg) { + InitOnce(); + const vpx_codec_err_t res = vpx_codec_control_(&decoder_, ctrl_id, arg); + ASSERT_EQ(VPX_CODEC_OK, res) << DecodeError(); + } + + void Control(int ctrl_id, int arg, vpx_codec_err_t expected_value) { + InitOnce(); + const vpx_codec_err_t res = vpx_codec_control_(&decoder_, ctrl_id, arg); + ASSERT_EQ(expected_value, res) << DecodeError(); + } + + const char *DecodeError() { + const char *detail = vpx_codec_error_detail(&decoder_); + return detail ? detail : vpx_codec_error(&decoder_); + } + + // Passes the external frame buffer information to libvpx. + vpx_codec_err_t SetFrameBufferFunctions( + vpx_get_frame_buffer_cb_fn_t cb_get, + vpx_release_frame_buffer_cb_fn_t cb_release, void *user_priv) { + InitOnce(); + return vpx_codec_set_frame_buffer_functions(&decoder_, cb_get, cb_release, + user_priv); + } + + const char *GetDecoderName() const { + return vpx_codec_iface_name(CodecInterface()); + } + + bool IsVP8() const; + + vpx_codec_ctx_t *GetDecoder() { return &decoder_; } + + protected: + virtual vpx_codec_iface_t *CodecInterface() const = 0; + + void InitOnce() { + if (!init_done_) { + const vpx_codec_err_t res = + vpx_codec_dec_init(&decoder_, CodecInterface(), &cfg_, flags_); + ASSERT_EQ(VPX_CODEC_OK, res) << DecodeError(); + init_done_ = true; + } + } + + vpx_codec_ctx_t decoder_; + vpx_codec_dec_cfg_t cfg_; + vpx_codec_flags_t flags_; + bool init_done_; +}; + +// Common test functionality for all Decoder tests. +class DecoderTest { + public: + // Main decoding loop + virtual void RunLoop(CompressedVideoSource *video); + virtual void RunLoop(CompressedVideoSource *video, + const vpx_codec_dec_cfg_t &dec_cfg); + + virtual void set_cfg(const vpx_codec_dec_cfg_t &dec_cfg); + virtual void set_flags(const vpx_codec_flags_t flags); + + // Hook to be called before decompressing every frame. + virtual void PreDecodeFrameHook(const CompressedVideoSource & /*video*/, + Decoder * /*decoder*/) {} + + // Hook to be called to handle decode result. Return true to continue. + virtual bool HandleDecodeResult(const vpx_codec_err_t res_dec, + const CompressedVideoSource & /*video*/, + Decoder *decoder) { + EXPECT_EQ(VPX_CODEC_OK, res_dec) << decoder->DecodeError(); + return VPX_CODEC_OK == res_dec; + } + + // Hook to be called on every decompressed frame. + virtual void DecompressedFrameHook(const vpx_image_t & /*img*/, + const unsigned int /*frame_number*/) {} + + // Hook to be called on peek result + virtual void HandlePeekResult(Decoder *const decoder, + CompressedVideoSource *video, + const vpx_codec_err_t res_peek); + + protected: + explicit DecoderTest(const CodecFactory *codec) + : codec_(codec), cfg_(), flags_(0) {} + + virtual ~DecoderTest() {} + + const CodecFactory *codec_; + vpx_codec_dec_cfg_t cfg_; + vpx_codec_flags_t flags_; +}; + +} // namespace libvpx_test + +#endif // TEST_DECODE_TEST_DRIVER_H_ diff --git a/test/decode_to_md5.sh b/test/decode_to_md5.sh new file mode 100755 index 0000000..854b74f --- /dev/null +++ b/test/decode_to_md5.sh @@ -0,0 +1,73 @@ +#!/bin/sh +## +## Copyright (c) 2014 The WebM project authors. All Rights Reserved. +## +## Use of this source code is governed by a BSD-style license +## that can be found in the LICENSE file in the root of the source +## tree. An additional intellectual property rights grant can be found +## in the file PATENTS. All contributing project authors may +## be found in the AUTHORS file in the root of the source tree. +## +## This file tests the libvpx decode_to_md5 example. To add new tests to this +## file, do the following: +## 1. Write a shell function (this is your test). +## 2. Add the function to decode_to_md5_tests (on a new line). +## +. $(dirname $0)/tools_common.sh + +# Environment check: Make sure input is available: +# $VP8_IVF_FILE and $VP9_IVF_FILE are required. +decode_to_md5_verify_environment() { + if [ ! -e "${VP8_IVF_FILE}" ] || [ ! -e "${VP9_IVF_FILE}" ]; then + echo "Libvpx test data must exist in LIBVPX_TEST_DATA_PATH." + return 1 + fi +} + +# Runs decode_to_md5 on $1 and captures the md5 sum for the final frame. $2 is +# interpreted as codec name and used solely to name the output file. $3 is the +# expected md5 sum: It must match that of the final frame. +decode_to_md5() { + local decoder="${LIBVPX_BIN_PATH}/decode_to_md5${VPX_TEST_EXE_SUFFIX}" + local input_file="$1" + local codec="$2" + local expected_md5="$3" + local output_file="${VPX_TEST_OUTPUT_DIR}/decode_to_md5_${codec}" + + if [ ! -x "${decoder}" ]; then + elog "${decoder} does not exist or is not executable." + return 1 + fi + + eval "${VPX_TEST_PREFIX}" "${decoder}" "${input_file}" "${output_file}" \ + ${devnull} + + [ -e "${output_file}" ] || return 1 + + local md5_last_frame="$(tail -n1 "${output_file}" | awk '{print $1}')" + local actual_md5="$(echo "${md5_last_frame}" | awk '{print $1}')" + [ "${actual_md5}" = "${expected_md5}" ] || return 1 +} + +decode_to_md5_vp8() { + # expected MD5 sum for the last frame. + local expected_md5="56794d911b02190212bca92f88ad60c6" + + if [ "$(vp8_decode_available)" = "yes" ]; then + decode_to_md5 "${VP8_IVF_FILE}" "vp8" "${expected_md5}" + fi +} + +decode_to_md5_vp9() { + # expected MD5 sum for the last frame. + local expected_md5="2952c0eae93f3dadd1aa84c50d3fd6d2" + + if [ "$(vp9_decode_available)" = "yes" ]; then + decode_to_md5 "${VP9_IVF_FILE}" "vp9" "${expected_md5}" + fi +} + +decode_to_md5_tests="decode_to_md5_vp8 + decode_to_md5_vp9" + +run_tests decode_to_md5_verify_environment "${decode_to_md5_tests}" diff --git a/test/decode_with_drops.sh b/test/decode_with_drops.sh new file mode 100755 index 0000000..9b2edb6 --- /dev/null +++ b/test/decode_with_drops.sh @@ -0,0 +1,79 @@ +#!/bin/sh +## +## Copyright (c) 2014 The WebM project authors. All Rights Reserved. +## +## Use of this source code is governed by a BSD-style license +## that can be found in the LICENSE file in the root of the source +## tree. An additional intellectual property rights grant can be found +## in the file PATENTS. All contributing project authors may +## be found in the AUTHORS file in the root of the source tree. +## +## This file tests the libvpx decode_with_drops example. To add new tests to +## this file, do the following: +## 1. Write a shell function (this is your test). +## 2. Add the function to decode_with_drops_tests (on a new line). +## +. $(dirname $0)/tools_common.sh + +# Environment check: Make sure input is available: +# $VP8_IVF_FILE and $VP9_IVF_FILE are required. +decode_with_drops_verify_environment() { + if [ ! -e "${VP8_IVF_FILE}" ] || [ ! -e "${VP9_IVF_FILE}" ]; then + echo "Libvpx test data must exist in LIBVPX_TEST_DATA_PATH." + return 1 + fi +} + +# Runs decode_with_drops on $1, $2 is interpreted as codec name and used solely +# to name the output file. $3 is the drop mode, and is passed directly to +# decode_with_drops. +decode_with_drops() { + local decoder="${LIBVPX_BIN_PATH}/decode_with_drops${VPX_TEST_EXE_SUFFIX}" + local input_file="$1" + local codec="$2" + local output_file="${VPX_TEST_OUTPUT_DIR}/decode_with_drops_${codec}" + local drop_mode="$3" + + if [ ! -x "${decoder}" ]; then + elog "${decoder} does not exist or is not executable." + return 1 + fi + + eval "${VPX_TEST_PREFIX}" "${decoder}" "${input_file}" "${output_file}" \ + "${drop_mode}" ${devnull} + + [ -e "${output_file}" ] || return 1 +} + +# Decodes $VP8_IVF_FILE while dropping frames, twice: once in sequence mode, +# and once in pattern mode. +# Note: This test assumes that $VP8_IVF_FILE has exactly 29 frames, and could +# break if the file is modified. +decode_with_drops_vp8() { + if [ "$(vp8_decode_available)" = "yes" ]; then + # Test sequence mode: Drop frames 2-28. + decode_with_drops "${VP8_IVF_FILE}" "vp8" "2-28" + + # Test pattern mode: Drop 3 of every 4 frames. + decode_with_drops "${VP8_IVF_FILE}" "vp8" "3/4" + fi +} + +# Decodes $VP9_IVF_FILE while dropping frames, twice: once in sequence mode, +# and once in pattern mode. +# Note: This test assumes that $VP9_IVF_FILE has exactly 20 frames, and could +# break if the file is modified. +decode_with_drops_vp9() { + if [ "$(vp9_decode_available)" = "yes" ]; then + # Test sequence mode: Drop frames 2-28. + decode_with_drops "${VP9_IVF_FILE}" "vp9" "2-19" + + # Test pattern mode: Drop 3 of every 4 frames. + decode_with_drops "${VP9_IVF_FILE}" "vp9" "3/4" + fi +} + +decode_with_drops_tests="decode_with_drops_vp8 + decode_with_drops_vp9" + +run_tests decode_with_drops_verify_environment "${decode_with_drops_tests}" diff --git a/test/encode_api_test.cc b/test/encode_api_test.cc new file mode 100644 index 0000000..87e29b6 --- /dev/null +++ b/test/encode_api_test.cc @@ -0,0 +1,195 @@ +/* + * Copyright (c) 2016 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "third_party/googletest/src/include/gtest/gtest.h" + +#include "./vpx_config.h" +#include "vpx/vp8cx.h" +#include "vpx/vpx_encoder.h" + +namespace { + +#define NELEMENTS(x) static_cast(sizeof(x) / sizeof(x[0])) + +TEST(EncodeAPI, InvalidParams) { + static const vpx_codec_iface_t *kCodecs[] = { +#if CONFIG_VP8_ENCODER + &vpx_codec_vp8_cx_algo, +#endif +#if CONFIG_VP9_ENCODER + &vpx_codec_vp9_cx_algo, +#endif + }; + uint8_t buf[1] = { 0 }; + vpx_image_t img; + vpx_codec_ctx_t enc; + vpx_codec_enc_cfg_t cfg; + + EXPECT_EQ(&img, vpx_img_wrap(&img, VPX_IMG_FMT_I420, 1, 1, 1, buf)); + + EXPECT_EQ(VPX_CODEC_INVALID_PARAM, vpx_codec_enc_init(NULL, NULL, NULL, 0)); + EXPECT_EQ(VPX_CODEC_INVALID_PARAM, vpx_codec_enc_init(&enc, NULL, NULL, 0)); + EXPECT_EQ(VPX_CODEC_INVALID_PARAM, vpx_codec_encode(NULL, NULL, 0, 0, 0, 0)); + EXPECT_EQ(VPX_CODEC_INVALID_PARAM, vpx_codec_encode(NULL, &img, 0, 0, 0, 0)); + EXPECT_EQ(VPX_CODEC_INVALID_PARAM, vpx_codec_destroy(NULL)); + EXPECT_EQ(VPX_CODEC_INVALID_PARAM, + vpx_codec_enc_config_default(NULL, NULL, 0)); + EXPECT_EQ(VPX_CODEC_INVALID_PARAM, + vpx_codec_enc_config_default(NULL, &cfg, 0)); + EXPECT_TRUE(vpx_codec_error(NULL) != NULL); + + for (int i = 0; i < NELEMENTS(kCodecs); ++i) { + SCOPED_TRACE(vpx_codec_iface_name(kCodecs[i])); + EXPECT_EQ(VPX_CODEC_INVALID_PARAM, + vpx_codec_enc_init(NULL, kCodecs[i], NULL, 0)); + EXPECT_EQ(VPX_CODEC_INVALID_PARAM, + vpx_codec_enc_init(&enc, kCodecs[i], NULL, 0)); + EXPECT_EQ(VPX_CODEC_INVALID_PARAM, + vpx_codec_enc_config_default(kCodecs[i], &cfg, 1)); + + EXPECT_EQ(VPX_CODEC_OK, vpx_codec_enc_config_default(kCodecs[i], &cfg, 0)); + EXPECT_EQ(VPX_CODEC_OK, vpx_codec_enc_init(&enc, kCodecs[i], &cfg, 0)); + EXPECT_EQ(VPX_CODEC_OK, vpx_codec_encode(&enc, NULL, 0, 0, 0, 0)); + + EXPECT_EQ(VPX_CODEC_OK, vpx_codec_destroy(&enc)); + } +} + +TEST(EncodeAPI, HighBitDepthCapability) { +// VP8 should not claim VP9 HBD as a capability. +#if CONFIG_VP8_ENCODER + const vpx_codec_caps_t vp8_caps = vpx_codec_get_caps(&vpx_codec_vp8_cx_algo); + EXPECT_EQ(vp8_caps & VPX_CODEC_CAP_HIGHBITDEPTH, 0); +#endif + +#if CONFIG_VP9_ENCODER + const vpx_codec_caps_t vp9_caps = vpx_codec_get_caps(&vpx_codec_vp9_cx_algo); +#if CONFIG_VP9_HIGHBITDEPTH + EXPECT_EQ(vp9_caps & VPX_CODEC_CAP_HIGHBITDEPTH, VPX_CODEC_CAP_HIGHBITDEPTH); +#else + EXPECT_EQ(vp9_caps & VPX_CODEC_CAP_HIGHBITDEPTH, 0); +#endif +#endif +} + +#if CONFIG_VP8_ENCODER +TEST(EncodeAPI, ImageSizeSetting) { + const int width = 711; + const int height = 360; + const int bps = 12; + vpx_image_t img; + vpx_codec_ctx_t enc; + vpx_codec_enc_cfg_t cfg; + uint8_t *img_buf = reinterpret_cast( + calloc(width * height * bps / 8, sizeof(*img_buf))); + vpx_codec_enc_config_default(vpx_codec_vp8_cx(), &cfg, 0); + + cfg.g_w = width; + cfg.g_h = height; + + vpx_img_wrap(&img, VPX_IMG_FMT_I420, width, height, 1, img_buf); + + vpx_codec_enc_init(&enc, vpx_codec_vp8_cx(), &cfg, 0); + + EXPECT_EQ(VPX_CODEC_OK, vpx_codec_encode(&enc, &img, 0, 1, 0, 0)); + + free(img_buf); + + vpx_codec_destroy(&enc); +} +#endif + +// Set up 2 spatial streams with 2 temporal layers per stream, and generate +// invalid configuration by setting the temporal layer rate allocation +// (ts_target_bitrate[]) to 0 for both layers. This should fail independent of +// CONFIG_MULTI_RES_ENCODING. +TEST(EncodeAPI, MultiResEncode) { + static const vpx_codec_iface_t *kCodecs[] = { +#if CONFIG_VP8_ENCODER + &vpx_codec_vp8_cx_algo, +#endif +#if CONFIG_VP9_ENCODER + &vpx_codec_vp9_cx_algo, +#endif + }; + const int width = 1280; + const int height = 720; + const int width_down = width / 2; + const int height_down = height / 2; + const int target_bitrate = 1000; + const int framerate = 30; + + for (int c = 0; c < NELEMENTS(kCodecs); ++c) { + const vpx_codec_iface_t *const iface = kCodecs[c]; + vpx_codec_ctx_t enc[2]; + vpx_codec_enc_cfg_t cfg[2]; + vpx_rational_t dsf[2] = { { 2, 1 }, { 2, 1 } }; + + memset(enc, 0, sizeof(enc)); + + for (int i = 0; i < 2; i++) { + vpx_codec_enc_config_default(iface, &cfg[i], 0); + } + + /* Highest-resolution encoder settings */ + cfg[0].g_w = width; + cfg[0].g_h = height; + cfg[0].rc_dropframe_thresh = 0; + cfg[0].rc_end_usage = VPX_CBR; + cfg[0].rc_resize_allowed = 0; + cfg[0].rc_min_quantizer = 2; + cfg[0].rc_max_quantizer = 56; + cfg[0].rc_undershoot_pct = 100; + cfg[0].rc_overshoot_pct = 15; + cfg[0].rc_buf_initial_sz = 500; + cfg[0].rc_buf_optimal_sz = 600; + cfg[0].rc_buf_sz = 1000; + cfg[0].g_error_resilient = 1; /* Enable error resilient mode */ + cfg[0].g_lag_in_frames = 0; + + cfg[0].kf_mode = VPX_KF_AUTO; + cfg[0].kf_min_dist = 3000; + cfg[0].kf_max_dist = 3000; + + cfg[0].rc_target_bitrate = target_bitrate; /* Set target bitrate */ + cfg[0].g_timebase.num = 1; /* Set fps */ + cfg[0].g_timebase.den = framerate; + + memcpy(&cfg[1], &cfg[0], sizeof(cfg[0])); + cfg[1].rc_target_bitrate = 500; + cfg[1].g_w = width_down; + cfg[1].g_h = height_down; + + for (int i = 0; i < 2; i++) { + cfg[i].ts_number_layers = 2; + cfg[i].ts_periodicity = 2; + cfg[i].ts_rate_decimator[0] = 2; + cfg[i].ts_rate_decimator[1] = 1; + cfg[i].ts_layer_id[0] = 0; + cfg[i].ts_layer_id[1] = 1; + // Invalid parameters. + cfg[i].ts_target_bitrate[0] = 0; + cfg[i].ts_target_bitrate[1] = 0; + } + + // VP9 should report incapable, VP8 invalid for all configurations. + const char kVP9Name[] = "WebM Project VP9"; + const bool is_vp9 = strncmp(kVP9Name, vpx_codec_iface_name(iface), + sizeof(kVP9Name) - 1) == 0; + EXPECT_EQ(is_vp9 ? VPX_CODEC_INCAPABLE : VPX_CODEC_INVALID_PARAM, + vpx_codec_enc_init_multi(&enc[0], iface, &cfg[0], 2, 0, &dsf[0])); + + for (int i = 0; i < 2; i++) { + vpx_codec_destroy(&enc[i]); + } + } +} + +} // namespace diff --git a/test/encode_perf_test.cc b/test/encode_perf_test.cc new file mode 100644 index 0000000..0bb4355 --- /dev/null +++ b/test/encode_perf_test.cc @@ -0,0 +1,188 @@ +/* + * Copyright (c) 2014 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ +#include +#include "third_party/googletest/src/include/gtest/gtest.h" +#include "./vpx_config.h" +#include "./vpx_version.h" +#include "test/codec_factory.h" +#include "test/encode_test_driver.h" +#include "test/i420_video_source.h" +#include "test/util.h" +#include "test/y4m_video_source.h" +#include "vpx_ports/vpx_timer.h" + +namespace { + +const int kMaxPsnr = 100; +const double kUsecsInSec = 1000000.0; + +struct EncodePerfTestVideo { + EncodePerfTestVideo(const char *name_, uint32_t width_, uint32_t height_, + uint32_t bitrate_, int frames_) + : name(name_), width(width_), height(height_), bitrate(bitrate_), + frames(frames_) {} + const char *name; + uint32_t width; + uint32_t height; + uint32_t bitrate; + int frames; +}; + +const EncodePerfTestVideo kVP9EncodePerfTestVectors[] = { + EncodePerfTestVideo("desktop_640_360_30.yuv", 640, 360, 200, 2484), + EncodePerfTestVideo("kirland_640_480_30.yuv", 640, 480, 200, 300), + EncodePerfTestVideo("macmarcomoving_640_480_30.yuv", 640, 480, 200, 987), + EncodePerfTestVideo("macmarcostationary_640_480_30.yuv", 640, 480, 200, 718), + EncodePerfTestVideo("niklas_640_480_30.yuv", 640, 480, 200, 471), + EncodePerfTestVideo("tacomanarrows_640_480_30.yuv", 640, 480, 200, 300), + EncodePerfTestVideo("tacomasmallcameramovement_640_480_30.yuv", 640, 480, 200, + 300), + EncodePerfTestVideo("thaloundeskmtg_640_480_30.yuv", 640, 480, 200, 300), + EncodePerfTestVideo("niklas_1280_720_30.yuv", 1280, 720, 600, 470), +}; + +const int kEncodePerfTestSpeeds[] = { 5, 6, 7, 8 }; +const int kEncodePerfTestThreads[] = { 1, 2, 4 }; + +#define NELEMENTS(x) (sizeof((x)) / sizeof((x)[0])) + +class VP9EncodePerfTest + : public ::libvpx_test::EncoderTest, + public ::libvpx_test::CodecTestWithParam { + protected: + VP9EncodePerfTest() + : EncoderTest(GET_PARAM(0)), min_psnr_(kMaxPsnr), nframes_(0), + encoding_mode_(GET_PARAM(1)), speed_(0), threads_(1) {} + + virtual ~VP9EncodePerfTest() {} + + virtual void SetUp() { + InitializeConfig(); + SetMode(encoding_mode_); + + cfg_.g_lag_in_frames = 0; + cfg_.rc_min_quantizer = 2; + cfg_.rc_max_quantizer = 56; + cfg_.rc_dropframe_thresh = 0; + cfg_.rc_undershoot_pct = 50; + cfg_.rc_overshoot_pct = 50; + cfg_.rc_buf_sz = 1000; + cfg_.rc_buf_initial_sz = 500; + cfg_.rc_buf_optimal_sz = 600; + cfg_.rc_resize_allowed = 0; + cfg_.rc_end_usage = VPX_CBR; + cfg_.g_error_resilient = 1; + cfg_.g_threads = threads_; + } + + virtual void PreEncodeFrameHook(::libvpx_test::VideoSource *video, + ::libvpx_test::Encoder *encoder) { + if (video->frame() == 0) { + const int log2_tile_columns = 3; + encoder->Control(VP8E_SET_CPUUSED, speed_); + encoder->Control(VP9E_SET_TILE_COLUMNS, log2_tile_columns); + encoder->Control(VP9E_SET_FRAME_PARALLEL_DECODING, 1); + encoder->Control(VP8E_SET_ENABLEAUTOALTREF, 0); + } + } + + virtual void BeginPassHook(unsigned int /*pass*/) { + min_psnr_ = kMaxPsnr; + nframes_ = 0; + } + + virtual void PSNRPktHook(const vpx_codec_cx_pkt_t *pkt) { + if (pkt->data.psnr.psnr[0] < min_psnr_) { + min_psnr_ = pkt->data.psnr.psnr[0]; + } + } + + // for performance reasons don't decode + virtual bool DoDecode() const { return false; } + + double min_psnr() const { return min_psnr_; } + + void set_speed(unsigned int speed) { speed_ = speed; } + + void set_threads(unsigned int threads) { threads_ = threads; } + + private: + double min_psnr_; + unsigned int nframes_; + libvpx_test::TestMode encoding_mode_; + unsigned speed_; + unsigned int threads_; +}; + +TEST_P(VP9EncodePerfTest, PerfTest) { + for (size_t i = 0; i < NELEMENTS(kVP9EncodePerfTestVectors); ++i) { + for (size_t j = 0; j < NELEMENTS(kEncodePerfTestSpeeds); ++j) { + for (size_t k = 0; k < NELEMENTS(kEncodePerfTestThreads); ++k) { + if (kVP9EncodePerfTestVectors[i].width < 512 && + kEncodePerfTestThreads[k] > 1) { + continue; + } else if (kVP9EncodePerfTestVectors[i].width < 1024 && + kEncodePerfTestThreads[k] > 2) { + continue; + } + + set_threads(kEncodePerfTestThreads[k]); + SetUp(); + + const vpx_rational timebase = { 33333333, 1000000000 }; + cfg_.g_timebase = timebase; + cfg_.rc_target_bitrate = kVP9EncodePerfTestVectors[i].bitrate; + + init_flags_ = VPX_CODEC_USE_PSNR; + + const unsigned frames = kVP9EncodePerfTestVectors[i].frames; + const char *video_name = kVP9EncodePerfTestVectors[i].name; + libvpx_test::I420VideoSource video( + video_name, kVP9EncodePerfTestVectors[i].width, + kVP9EncodePerfTestVectors[i].height, timebase.den, timebase.num, 0, + kVP9EncodePerfTestVectors[i].frames); + set_speed(kEncodePerfTestSpeeds[j]); + + vpx_usec_timer t; + vpx_usec_timer_start(&t); + + ASSERT_NO_FATAL_FAILURE(RunLoop(&video)); + + vpx_usec_timer_mark(&t); + const double elapsed_secs = vpx_usec_timer_elapsed(&t) / kUsecsInSec; + const double fps = frames / elapsed_secs; + const double minimum_psnr = min_psnr(); + std::string display_name(video_name); + if (kEncodePerfTestThreads[k] > 1) { + char thread_count[32]; + snprintf(thread_count, sizeof(thread_count), "_t-%d", + kEncodePerfTestThreads[k]); + display_name += thread_count; + } + + printf("{\n"); + printf("\t\"type\" : \"encode_perf_test\",\n"); + printf("\t\"version\" : \"%s\",\n", VERSION_STRING_NOSP); + printf("\t\"videoName\" : \"%s\",\n", display_name.c_str()); + printf("\t\"encodeTimeSecs\" : %f,\n", elapsed_secs); + printf("\t\"totalFrames\" : %u,\n", frames); + printf("\t\"framesPerSecond\" : %f,\n", fps); + printf("\t\"minPsnr\" : %f,\n", minimum_psnr); + printf("\t\"speed\" : %d,\n", kEncodePerfTestSpeeds[j]); + printf("\t\"threads\" : %d\n", kEncodePerfTestThreads[k]); + printf("}\n"); + } + } + } +} + +VP9_INSTANTIATE_TEST_CASE(VP9EncodePerfTest, + ::testing::Values(::libvpx_test::kRealTime)); +} // namespace diff --git a/test/encode_test_driver.cc b/test/encode_test_driver.cc new file mode 100644 index 0000000..b2cbc3f --- /dev/null +++ b/test/encode_test_driver.cc @@ -0,0 +1,264 @@ +/* + * Copyright (c) 2012 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include + +#include "third_party/googletest/src/include/gtest/gtest.h" + +#include "./vpx_config.h" +#include "test/codec_factory.h" +#include "test/decode_test_driver.h" +#include "test/encode_test_driver.h" +#include "test/register_state_check.h" +#include "test/video_source.h" + +namespace libvpx_test { +void Encoder::InitEncoder(VideoSource *video) { + vpx_codec_err_t res; + const vpx_image_t *img = video->img(); + + if (video->img() && !encoder_.priv) { + cfg_.g_w = img->d_w; + cfg_.g_h = img->d_h; + cfg_.g_timebase = video->timebase(); + cfg_.rc_twopass_stats_in = stats_->buf(); + + res = vpx_codec_enc_init(&encoder_, CodecInterface(), &cfg_, init_flags_); + ASSERT_EQ(VPX_CODEC_OK, res) << EncoderError(); + +#if CONFIG_VP9_ENCODER + if (CodecInterface() == &vpx_codec_vp9_cx_algo) { + // Default to 1 tile column for VP9. + const int log2_tile_columns = 0; + res = vpx_codec_control_(&encoder_, VP9E_SET_TILE_COLUMNS, + log2_tile_columns); + ASSERT_EQ(VPX_CODEC_OK, res) << EncoderError(); + } else +#endif + { +#if CONFIG_VP8_ENCODER + ASSERT_EQ(&vpx_codec_vp8_cx_algo, CodecInterface()) + << "Unknown Codec Interface"; +#endif + } + } +} + +void Encoder::EncodeFrame(VideoSource *video, const unsigned long frame_flags) { + if (video->img()) { + EncodeFrameInternal(*video, frame_flags); + } else { + Flush(); + } + + // Handle twopass stats + CxDataIterator iter = GetCxData(); + + while (const vpx_codec_cx_pkt_t *pkt = iter.Next()) { + if (pkt->kind != VPX_CODEC_STATS_PKT) continue; + + stats_->Append(*pkt); + } +} + +void Encoder::EncodeFrameInternal(const VideoSource &video, + const unsigned long frame_flags) { + vpx_codec_err_t res; + const vpx_image_t *img = video.img(); + + // Handle frame resizing + if (cfg_.g_w != img->d_w || cfg_.g_h != img->d_h) { + cfg_.g_w = img->d_w; + cfg_.g_h = img->d_h; + res = vpx_codec_enc_config_set(&encoder_, &cfg_); + ASSERT_EQ(VPX_CODEC_OK, res) << EncoderError(); + } + + // Encode the frame + API_REGISTER_STATE_CHECK(res = vpx_codec_encode(&encoder_, img, video.pts(), + video.duration(), frame_flags, + deadline_)); + ASSERT_EQ(VPX_CODEC_OK, res) << EncoderError(); +} + +void Encoder::Flush() { + const vpx_codec_err_t res = + vpx_codec_encode(&encoder_, NULL, 0, 0, 0, deadline_); + if (!encoder_.priv) + ASSERT_EQ(VPX_CODEC_ERROR, res) << EncoderError(); + else + ASSERT_EQ(VPX_CODEC_OK, res) << EncoderError(); +} + +void EncoderTest::InitializeConfig() { + const vpx_codec_err_t res = codec_->DefaultEncoderConfig(&cfg_, 0); + dec_cfg_ = vpx_codec_dec_cfg_t(); + ASSERT_EQ(VPX_CODEC_OK, res); +} + +void EncoderTest::SetMode(TestMode mode) { + switch (mode) { + case kRealTime: deadline_ = VPX_DL_REALTIME; break; + + case kOnePassGood: + case kTwoPassGood: deadline_ = VPX_DL_GOOD_QUALITY; break; + + case kOnePassBest: + case kTwoPassBest: deadline_ = VPX_DL_BEST_QUALITY; break; + + default: ASSERT_TRUE(false) << "Unexpected mode " << mode; + } + + if (mode == kTwoPassGood || mode == kTwoPassBest) { + passes_ = 2; + } else { + passes_ = 1; + } +} +// The function should return "true" most of the time, therefore no early +// break-out is implemented within the match checking process. +static bool compare_img(const vpx_image_t *img1, const vpx_image_t *img2) { + bool match = (img1->fmt == img2->fmt) && (img1->cs == img2->cs) && + (img1->d_w == img2->d_w) && (img1->d_h == img2->d_h); + + const unsigned int width_y = img1->d_w; + const unsigned int height_y = img1->d_h; + unsigned int i; + for (i = 0; i < height_y; ++i) { + match = (memcmp(img1->planes[VPX_PLANE_Y] + i * img1->stride[VPX_PLANE_Y], + img2->planes[VPX_PLANE_Y] + i * img2->stride[VPX_PLANE_Y], + width_y) == 0) && + match; + } + const unsigned int width_uv = (img1->d_w + 1) >> 1; + const unsigned int height_uv = (img1->d_h + 1) >> 1; + for (i = 0; i < height_uv; ++i) { + match = (memcmp(img1->planes[VPX_PLANE_U] + i * img1->stride[VPX_PLANE_U], + img2->planes[VPX_PLANE_U] + i * img2->stride[VPX_PLANE_U], + width_uv) == 0) && + match; + } + for (i = 0; i < height_uv; ++i) { + match = (memcmp(img1->planes[VPX_PLANE_V] + i * img1->stride[VPX_PLANE_V], + img2->planes[VPX_PLANE_V] + i * img2->stride[VPX_PLANE_V], + width_uv) == 0) && + match; + } + return match; +} + +void EncoderTest::MismatchHook(const vpx_image_t * /*img1*/, + const vpx_image_t * /*img2*/) { + ASSERT_TRUE(0) << "Encode/Decode mismatch found"; +} + +void EncoderTest::RunLoop(VideoSource *video) { + vpx_codec_dec_cfg_t dec_cfg = vpx_codec_dec_cfg_t(); + + stats_.Reset(); + + ASSERT_TRUE(passes_ == 1 || passes_ == 2); + for (unsigned int pass = 0; pass < passes_; pass++) { + last_pts_ = 0; + + if (passes_ == 1) { + cfg_.g_pass = VPX_RC_ONE_PASS; + } else if (pass == 0) { + cfg_.g_pass = VPX_RC_FIRST_PASS; + } else { + cfg_.g_pass = VPX_RC_LAST_PASS; + } + + BeginPassHook(pass); + testing::internal::scoped_ptr encoder( + codec_->CreateEncoder(cfg_, deadline_, init_flags_, &stats_)); + ASSERT_TRUE(encoder.get() != NULL); + + ASSERT_NO_FATAL_FAILURE(video->Begin()); + encoder->InitEncoder(video); + ASSERT_FALSE(::testing::Test::HasFatalFailure()); + + unsigned long dec_init_flags = 0; // NOLINT + // Use fragment decoder if encoder outputs partitions. + // NOTE: fragment decoder and partition encoder are only supported by VP8. + if (init_flags_ & VPX_CODEC_USE_OUTPUT_PARTITION) { + dec_init_flags |= VPX_CODEC_USE_INPUT_FRAGMENTS; + } + testing::internal::scoped_ptr decoder( + codec_->CreateDecoder(dec_cfg, dec_init_flags)); + bool again; + for (again = true; again; video->Next()) { + again = (video->img() != NULL); + + PreEncodeFrameHook(video); + PreEncodeFrameHook(video, encoder.get()); + encoder->EncodeFrame(video, frame_flags_); + + PostEncodeFrameHook(encoder.get()); + + CxDataIterator iter = encoder->GetCxData(); + + bool has_cxdata = false; + bool has_dxdata = false; + while (const vpx_codec_cx_pkt_t *pkt = iter.Next()) { + pkt = MutateEncoderOutputHook(pkt); + again = true; + switch (pkt->kind) { + case VPX_CODEC_CX_FRAME_PKT: + has_cxdata = true; + if (decoder.get() != NULL && DoDecode()) { + vpx_codec_err_t res_dec = decoder->DecodeFrame( + (const uint8_t *)pkt->data.frame.buf, pkt->data.frame.sz); + + if (!HandleDecodeResult(res_dec, *video, decoder.get())) break; + + has_dxdata = true; + } + ASSERT_GE(pkt->data.frame.pts, last_pts_); + last_pts_ = pkt->data.frame.pts; + FramePktHook(pkt); + break; + + case VPX_CODEC_PSNR_PKT: PSNRPktHook(pkt); break; + + case VPX_CODEC_STATS_PKT: StatsPktHook(pkt); break; + + default: break; + } + } + + // Flush the decoder when there are no more fragments. + if ((init_flags_ & VPX_CODEC_USE_OUTPUT_PARTITION) && has_dxdata) { + const vpx_codec_err_t res_dec = decoder->DecodeFrame(NULL, 0); + if (!HandleDecodeResult(res_dec, *video, decoder.get())) break; + } + + if (has_dxdata && has_cxdata) { + const vpx_image_t *img_enc = encoder->GetPreviewFrame(); + DxDataIterator dec_iter = decoder->GetDxData(); + const vpx_image_t *img_dec = dec_iter.Next(); + if (img_enc && img_dec) { + const bool res = compare_img(img_enc, img_dec); + if (!res) { // Mismatch + MismatchHook(img_enc, img_dec); + } + } + if (img_dec) DecompressedFrameHook(*img_dec, video->pts()); + } + if (!Continue()) break; + } + + EndPassHook(); + + if (!Continue()) break; + } +} + +} // namespace libvpx_test diff --git a/test/encode_test_driver.h b/test/encode_test_driver.h new file mode 100644 index 0000000..89a3b17 --- /dev/null +++ b/test/encode_test_driver.h @@ -0,0 +1,276 @@ +/* + * Copyright (c) 2012 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ +#ifndef TEST_ENCODE_TEST_DRIVER_H_ +#define TEST_ENCODE_TEST_DRIVER_H_ + +#include +#include + +#include "third_party/googletest/src/include/gtest/gtest.h" + +#include "./vpx_config.h" +#if CONFIG_VP8_ENCODER || CONFIG_VP9_ENCODER +#include "vpx/vp8cx.h" +#endif +#include "vpx/vpx_encoder.h" + +namespace libvpx_test { + +class CodecFactory; +class VideoSource; + +enum TestMode { + kRealTime, + kOnePassGood, + kOnePassBest, + kTwoPassGood, + kTwoPassBest +}; +#define ALL_TEST_MODES \ + ::testing::Values(::libvpx_test::kRealTime, ::libvpx_test::kOnePassGood, \ + ::libvpx_test::kOnePassBest, ::libvpx_test::kTwoPassGood, \ + ::libvpx_test::kTwoPassBest) + +#define ONE_PASS_TEST_MODES \ + ::testing::Values(::libvpx_test::kRealTime, ::libvpx_test::kOnePassGood, \ + ::libvpx_test::kOnePassBest) + +#define TWO_PASS_TEST_MODES \ + ::testing::Values(::libvpx_test::kTwoPassGood, ::libvpx_test::kTwoPassBest) + +// Provides an object to handle the libvpx get_cx_data() iteration pattern +class CxDataIterator { + public: + explicit CxDataIterator(vpx_codec_ctx_t *encoder) + : encoder_(encoder), iter_(NULL) {} + + const vpx_codec_cx_pkt_t *Next() { + return vpx_codec_get_cx_data(encoder_, &iter_); + } + + private: + vpx_codec_ctx_t *encoder_; + vpx_codec_iter_t iter_; +}; + +// Implements an in-memory store for libvpx twopass statistics +class TwopassStatsStore { + public: + void Append(const vpx_codec_cx_pkt_t &pkt) { + buffer_.append(reinterpret_cast(pkt.data.twopass_stats.buf), + pkt.data.twopass_stats.sz); + } + + vpx_fixed_buf_t buf() { + const vpx_fixed_buf_t buf = { &buffer_[0], buffer_.size() }; + return buf; + } + + void Reset() { buffer_.clear(); } + + protected: + std::string buffer_; +}; + +// Provides a simplified interface to manage one video encoding pass, given +// a configuration and video source. +// +// TODO(jkoleszar): The exact services it provides and the appropriate +// level of abstraction will be fleshed out as more tests are written. +class Encoder { + public: + Encoder(vpx_codec_enc_cfg_t cfg, unsigned long deadline, + const unsigned long init_flags, TwopassStatsStore *stats) + : cfg_(cfg), deadline_(deadline), init_flags_(init_flags), stats_(stats) { + memset(&encoder_, 0, sizeof(encoder_)); + } + + virtual ~Encoder() { vpx_codec_destroy(&encoder_); } + + CxDataIterator GetCxData() { return CxDataIterator(&encoder_); } + + void InitEncoder(VideoSource *video); + + const vpx_image_t *GetPreviewFrame() { + return vpx_codec_get_preview_frame(&encoder_); + } + // This is a thin wrapper around vpx_codec_encode(), so refer to + // vpx_encoder.h for its semantics. + void EncodeFrame(VideoSource *video, const unsigned long frame_flags); + + // Convenience wrapper for EncodeFrame() + void EncodeFrame(VideoSource *video) { EncodeFrame(video, 0); } + + void Control(int ctrl_id, int arg) { + const vpx_codec_err_t res = vpx_codec_control_(&encoder_, ctrl_id, arg); + ASSERT_EQ(VPX_CODEC_OK, res) << EncoderError(); + } + + void Control(int ctrl_id, int *arg) { + const vpx_codec_err_t res = vpx_codec_control_(&encoder_, ctrl_id, arg); + ASSERT_EQ(VPX_CODEC_OK, res) << EncoderError(); + } + + void Control(int ctrl_id, struct vpx_scaling_mode *arg) { + const vpx_codec_err_t res = vpx_codec_control_(&encoder_, ctrl_id, arg); + ASSERT_EQ(VPX_CODEC_OK, res) << EncoderError(); + } + + void Control(int ctrl_id, struct vpx_svc_layer_id *arg) { + const vpx_codec_err_t res = vpx_codec_control_(&encoder_, ctrl_id, arg); + ASSERT_EQ(VPX_CODEC_OK, res) << EncoderError(); + } + + void Control(int ctrl_id, struct vpx_svc_parameters *arg) { + const vpx_codec_err_t res = vpx_codec_control_(&encoder_, ctrl_id, arg); + ASSERT_EQ(VPX_CODEC_OK, res) << EncoderError(); + } +#if CONFIG_VP8_ENCODER || CONFIG_VP9_ENCODER + void Control(int ctrl_id, vpx_active_map_t *arg) { + const vpx_codec_err_t res = vpx_codec_control_(&encoder_, ctrl_id, arg); + ASSERT_EQ(VPX_CODEC_OK, res) << EncoderError(); + } +#endif + +#if CONFIG_VP8_ENCODER + void Control(int ctrl_id, vpx_roi_map_t *arg) { + const vpx_codec_err_t res = vpx_codec_control_(&encoder_, ctrl_id, arg); + ASSERT_EQ(VPX_CODEC_OK, res) << EncoderError(); + } +#endif + + void Config(const vpx_codec_enc_cfg_t *cfg) { + const vpx_codec_err_t res = vpx_codec_enc_config_set(&encoder_, cfg); + ASSERT_EQ(VPX_CODEC_OK, res) << EncoderError(); + cfg_ = *cfg; + } + + void set_deadline(unsigned long deadline) { deadline_ = deadline; } + + protected: + virtual vpx_codec_iface_t *CodecInterface() const = 0; + + const char *EncoderError() { + const char *detail = vpx_codec_error_detail(&encoder_); + return detail ? detail : vpx_codec_error(&encoder_); + } + + // Encode an image + void EncodeFrameInternal(const VideoSource &video, + const unsigned long frame_flags); + + // Flush the encoder on EOS + void Flush(); + + vpx_codec_ctx_t encoder_; + vpx_codec_enc_cfg_t cfg_; + unsigned long deadline_; + unsigned long init_flags_; + TwopassStatsStore *stats_; +}; + +// Common test functionality for all Encoder tests. +// +// This class is a mixin which provides the main loop common to all +// encoder tests. It provides hooks which can be overridden by subclasses +// to implement each test's specific behavior, while centralizing the bulk +// of the boilerplate. Note that it doesn't inherit the gtest testing +// classes directly, so that tests can be parameterized differently. +class EncoderTest { + protected: + explicit EncoderTest(const CodecFactory *codec) + : codec_(codec), abort_(false), init_flags_(0), frame_flags_(0), + last_pts_(0) { + // Default to 1 thread. + cfg_.g_threads = 1; + } + + virtual ~EncoderTest() {} + + // Initialize the cfg_ member with the default configuration. + void InitializeConfig(); + + // Map the TestMode enum to the deadline_ and passes_ variables. + void SetMode(TestMode mode); + + // Set encoder flag. + void set_init_flags(unsigned long flag) { // NOLINT(runtime/int) + init_flags_ = flag; + } + + // Main loop + virtual void RunLoop(VideoSource *video); + + // Hook to be called at the beginning of a pass. + virtual void BeginPassHook(unsigned int /*pass*/) {} + + // Hook to be called at the end of a pass. + virtual void EndPassHook() {} + + // Hook to be called before encoding a frame. + virtual void PreEncodeFrameHook(VideoSource * /*video*/) {} + virtual void PreEncodeFrameHook(VideoSource * /*video*/, + Encoder * /*encoder*/) {} + + virtual void PostEncodeFrameHook(Encoder * /*encoder*/) {} + + // Hook to be called on every compressed data packet. + virtual void FramePktHook(const vpx_codec_cx_pkt_t * /*pkt*/) {} + + // Hook to be called on every PSNR packet. + virtual void PSNRPktHook(const vpx_codec_cx_pkt_t * /*pkt*/) {} + + // Hook to be called on every first pass stats packet. + virtual void StatsPktHook(const vpx_codec_cx_pkt_t * /*pkt*/) {} + + // Hook to determine whether the encode loop should continue. + virtual bool Continue() const { + return !(::testing::Test::HasFatalFailure() || abort_); + } + + const CodecFactory *codec_; + // Hook to determine whether to decode frame after encoding + virtual bool DoDecode() const { return 1; } + + // Hook to handle encode/decode mismatch + virtual void MismatchHook(const vpx_image_t *img1, const vpx_image_t *img2); + + // Hook to be called on every decompressed frame. + virtual void DecompressedFrameHook(const vpx_image_t & /*img*/, + vpx_codec_pts_t /*pts*/) {} + + // Hook to be called to handle decode result. Return true to continue. + virtual bool HandleDecodeResult(const vpx_codec_err_t res_dec, + const VideoSource & /*video*/, + Decoder *decoder) { + EXPECT_EQ(VPX_CODEC_OK, res_dec) << decoder->DecodeError(); + return VPX_CODEC_OK == res_dec; + } + + // Hook that can modify the encoder's output data + virtual const vpx_codec_cx_pkt_t *MutateEncoderOutputHook( + const vpx_codec_cx_pkt_t *pkt) { + return pkt; + } + + bool abort_; + vpx_codec_enc_cfg_t cfg_; + vpx_codec_dec_cfg_t dec_cfg_; + unsigned int passes_; + unsigned long deadline_; + TwopassStatsStore stats_; + unsigned long init_flags_; + unsigned long frame_flags_; + vpx_codec_pts_t last_pts_; +}; + +} // namespace libvpx_test + +#endif // TEST_ENCODE_TEST_DRIVER_H_ diff --git a/test/error_resilience_test.cc b/test/error_resilience_test.cc new file mode 100644 index 0000000..030b67c --- /dev/null +++ b/test/error_resilience_test.cc @@ -0,0 +1,582 @@ +/* + * Copyright (c) 2013 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "third_party/googletest/src/include/gtest/gtest.h" +#include "test/codec_factory.h" +#include "test/encode_test_driver.h" +#include "test/i420_video_source.h" +#include "test/util.h" + +namespace { + +const int kMaxErrorFrames = 12; +const int kMaxDroppableFrames = 12; + +class ErrorResilienceTestLarge + : public ::libvpx_test::EncoderTest, + public ::libvpx_test::CodecTestWith2Params { + protected: + ErrorResilienceTestLarge() + : EncoderTest(GET_PARAM(0)), svc_support_(GET_PARAM(2)), psnr_(0.0), + nframes_(0), mismatch_psnr_(0.0), mismatch_nframes_(0), + encoding_mode_(GET_PARAM(1)) { + Reset(); + } + + virtual ~ErrorResilienceTestLarge() {} + + void Reset() { + error_nframes_ = 0; + droppable_nframes_ = 0; + pattern_switch_ = 0; + } + + virtual void SetUp() { + InitializeConfig(); + SetMode(encoding_mode_); + } + + virtual void BeginPassHook(unsigned int /*pass*/) { + psnr_ = 0.0; + nframes_ = 0; + mismatch_psnr_ = 0.0; + mismatch_nframes_ = 0; + } + + virtual void PSNRPktHook(const vpx_codec_cx_pkt_t *pkt) { + psnr_ += pkt->data.psnr.psnr[0]; + nframes_++; + } + + // + // Frame flags and layer id for temporal layers. + // For two layers, test pattern is: + // 1 3 + // 0 2 ..... + // LAST is updated on base/layer 0, GOLDEN updated on layer 1. + // Non-zero pattern_switch parameter means pattern will switch to + // not using LAST for frame_num >= pattern_switch. + int SetFrameFlags(int frame_num, int num_temp_layers, int pattern_switch) { + int frame_flags = 0; + if (num_temp_layers == 2) { + if (frame_num % 2 == 0) { + if (frame_num < pattern_switch || pattern_switch == 0) { + // Layer 0: predict from LAST and ARF, update LAST. + frame_flags = + VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF; + } else { + // Layer 0: predict from GF and ARF, update GF. + frame_flags = VP8_EFLAG_NO_REF_LAST | VP8_EFLAG_NO_UPD_LAST | + VP8_EFLAG_NO_UPD_ARF; + } + } else { + if (frame_num < pattern_switch || pattern_switch == 0) { + // Layer 1: predict from L, GF, and ARF, update GF. + frame_flags = VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_LAST; + } else { + // Layer 1: predict from GF and ARF, update GF. + frame_flags = VP8_EFLAG_NO_REF_LAST | VP8_EFLAG_NO_UPD_LAST | + VP8_EFLAG_NO_UPD_ARF; + } + } + } + return frame_flags; + } + + virtual void PreEncodeFrameHook(libvpx_test::VideoSource *video) { + frame_flags_ &= + ~(VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF); + // For temporal layer case. + if (cfg_.ts_number_layers > 1) { + frame_flags_ = + SetFrameFlags(video->frame(), cfg_.ts_number_layers, pattern_switch_); + for (unsigned int i = 0; i < droppable_nframes_; ++i) { + if (droppable_frames_[i] == video->frame()) { + std::cout << "Encoding droppable frame: " << droppable_frames_[i] + << "\n"; + } + } + } else { + if (droppable_nframes_ > 0 && + (cfg_.g_pass == VPX_RC_LAST_PASS || cfg_.g_pass == VPX_RC_ONE_PASS)) { + for (unsigned int i = 0; i < droppable_nframes_; ++i) { + if (droppable_frames_[i] == video->frame()) { + std::cout << "Encoding droppable frame: " << droppable_frames_[i] + << "\n"; + frame_flags_ |= (VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_GF | + VP8_EFLAG_NO_UPD_ARF); + return; + } + } + } + } + } + + double GetAveragePsnr() const { + if (nframes_) return psnr_ / nframes_; + return 0.0; + } + + double GetAverageMismatchPsnr() const { + if (mismatch_nframes_) return mismatch_psnr_ / mismatch_nframes_; + return 0.0; + } + + virtual bool DoDecode() const { + if (error_nframes_ > 0 && + (cfg_.g_pass == VPX_RC_LAST_PASS || cfg_.g_pass == VPX_RC_ONE_PASS)) { + for (unsigned int i = 0; i < error_nframes_; ++i) { + if (error_frames_[i] == nframes_ - 1) { + std::cout << " Skipping decoding frame: " + << error_frames_[i] << "\n"; + return 0; + } + } + } + return 1; + } + + virtual void MismatchHook(const vpx_image_t *img1, const vpx_image_t *img2) { + double mismatch_psnr = compute_psnr(img1, img2); + mismatch_psnr_ += mismatch_psnr; + ++mismatch_nframes_; + // std::cout << "Mismatch frame psnr: " << mismatch_psnr << "\n"; + } + + void SetErrorFrames(int num, unsigned int *list) { + if (num > kMaxErrorFrames) { + num = kMaxErrorFrames; + } else if (num < 0) { + num = 0; + } + error_nframes_ = num; + for (unsigned int i = 0; i < error_nframes_; ++i) { + error_frames_[i] = list[i]; + } + } + + void SetDroppableFrames(int num, unsigned int *list) { + if (num > kMaxDroppableFrames) { + num = kMaxDroppableFrames; + } else if (num < 0) { + num = 0; + } + droppable_nframes_ = num; + for (unsigned int i = 0; i < droppable_nframes_; ++i) { + droppable_frames_[i] = list[i]; + } + } + + unsigned int GetMismatchFrames() { return mismatch_nframes_; } + + void SetPatternSwitch(int frame_switch) { pattern_switch_ = frame_switch; } + + bool svc_support_; + + private: + double psnr_; + unsigned int nframes_; + unsigned int error_nframes_; + unsigned int droppable_nframes_; + unsigned int pattern_switch_; + double mismatch_psnr_; + unsigned int mismatch_nframes_; + unsigned int error_frames_[kMaxErrorFrames]; + unsigned int droppable_frames_[kMaxDroppableFrames]; + libvpx_test::TestMode encoding_mode_; +}; + +TEST_P(ErrorResilienceTestLarge, OnVersusOff) { + const vpx_rational timebase = { 33333333, 1000000000 }; + cfg_.g_timebase = timebase; + cfg_.rc_target_bitrate = 2000; + cfg_.g_lag_in_frames = 10; + + init_flags_ = VPX_CODEC_USE_PSNR; + + libvpx_test::I420VideoSource video("hantro_collage_w352h288.yuv", 352, 288, + timebase.den, timebase.num, 0, 30); + + // Error resilient mode OFF. + cfg_.g_error_resilient = 0; + ASSERT_NO_FATAL_FAILURE(RunLoop(&video)); + const double psnr_resilience_off = GetAveragePsnr(); + EXPECT_GT(psnr_resilience_off, 25.0); + + // Error resilient mode ON. + cfg_.g_error_resilient = 1; + ASSERT_NO_FATAL_FAILURE(RunLoop(&video)); + const double psnr_resilience_on = GetAveragePsnr(); + EXPECT_GT(psnr_resilience_on, 25.0); + + // Test that turning on error resilient mode hurts by 10% at most. + if (psnr_resilience_off > 0.0) { + const double psnr_ratio = psnr_resilience_on / psnr_resilience_off; + EXPECT_GE(psnr_ratio, 0.9); + EXPECT_LE(psnr_ratio, 1.1); + } +} + +// Check for successful decoding and no encoder/decoder mismatch +// if we lose (i.e., drop before decoding) a set of droppable +// frames (i.e., frames that don't update any reference buffers). +// Check both isolated and consecutive loss. +TEST_P(ErrorResilienceTestLarge, DropFramesWithoutRecovery) { + const vpx_rational timebase = { 33333333, 1000000000 }; + cfg_.g_timebase = timebase; + cfg_.rc_target_bitrate = 500; + // FIXME(debargha): Fix this to work for any lag. + // Currently this test only works for lag = 0 + cfg_.g_lag_in_frames = 0; + + init_flags_ = VPX_CODEC_USE_PSNR; + + libvpx_test::I420VideoSource video("hantro_collage_w352h288.yuv", 352, 288, + timebase.den, timebase.num, 0, 40); + + // Error resilient mode ON. + cfg_.g_error_resilient = 1; + cfg_.kf_mode = VPX_KF_DISABLED; + + // Set an arbitrary set of error frames same as droppable frames. + // In addition to isolated loss/drop, add a long consecutive series + // (of size 9) of dropped frames. + unsigned int num_droppable_frames = 11; + unsigned int droppable_frame_list[] = { 5, 16, 22, 23, 24, 25, + 26, 27, 28, 29, 30 }; + SetDroppableFrames(num_droppable_frames, droppable_frame_list); + SetErrorFrames(num_droppable_frames, droppable_frame_list); + ASSERT_NO_FATAL_FAILURE(RunLoop(&video)); + // Test that no mismatches have been found + std::cout << " Mismatch frames: " << GetMismatchFrames() << "\n"; + EXPECT_EQ(GetMismatchFrames(), (unsigned int)0); + + // Reset previously set of error/droppable frames. + Reset(); + +#if 0 + // TODO(jkoleszar): This test is disabled for the time being as too + // sensitive. It's not clear how to set a reasonable threshold for + // this behavior. + + // Now set an arbitrary set of error frames that are non-droppable + unsigned int num_error_frames = 3; + unsigned int error_frame_list[] = {3, 10, 20}; + SetErrorFrames(num_error_frames, error_frame_list); + ASSERT_NO_FATAL_FAILURE(RunLoop(&video)); + + // Test that dropping an arbitrary set of inter frames does not hurt too much + // Note the Average Mismatch PSNR is the average of the PSNR between + // decoded frame and encoder's version of the same frame for all frames + // with mismatch. + const double psnr_resilience_mismatch = GetAverageMismatchPsnr(); + std::cout << " Mismatch PSNR: " + << psnr_resilience_mismatch << "\n"; + EXPECT_GT(psnr_resilience_mismatch, 20.0); +#endif +} + +// Check for successful decoding and no encoder/decoder mismatch +// if we lose (i.e., drop before decoding) the enhancement layer frames for a +// two layer temporal pattern. The base layer does not predict from the top +// layer, so successful decoding is expected. +TEST_P(ErrorResilienceTestLarge, 2LayersDropEnhancement) { + // This test doesn't run if SVC is not supported. + if (!svc_support_) return; + + const vpx_rational timebase = { 33333333, 1000000000 }; + cfg_.g_timebase = timebase; + cfg_.rc_target_bitrate = 500; + cfg_.g_lag_in_frames = 0; + + cfg_.rc_end_usage = VPX_CBR; + // 2 Temporal layers, no spatial layers, CBR mode. + cfg_.ss_number_layers = 1; + cfg_.ts_number_layers = 2; + cfg_.ts_rate_decimator[0] = 2; + cfg_.ts_rate_decimator[1] = 1; + cfg_.ts_periodicity = 2; + cfg_.ts_target_bitrate[0] = 60 * cfg_.rc_target_bitrate / 100; + cfg_.ts_target_bitrate[1] = cfg_.rc_target_bitrate; + + init_flags_ = VPX_CODEC_USE_PSNR; + + libvpx_test::I420VideoSource video("hantro_collage_w352h288.yuv", 352, 288, + timebase.den, timebase.num, 0, 40); + + // Error resilient mode ON. + cfg_.g_error_resilient = 1; + cfg_.kf_mode = VPX_KF_DISABLED; + SetPatternSwitch(0); + + // The odd frames are the enhancement layer for 2 layer pattern, so set + // those frames as droppable. Drop the last 7 frames. + unsigned int num_droppable_frames = 7; + unsigned int droppable_frame_list[] = { 27, 29, 31, 33, 35, 37, 39 }; + SetDroppableFrames(num_droppable_frames, droppable_frame_list); + SetErrorFrames(num_droppable_frames, droppable_frame_list); + ASSERT_NO_FATAL_FAILURE(RunLoop(&video)); + // Test that no mismatches have been found + std::cout << " Mismatch frames: " << GetMismatchFrames() << "\n"; + EXPECT_EQ(GetMismatchFrames(), (unsigned int)0); + + // Reset previously set of error/droppable frames. + Reset(); +} + +// Check for successful decoding and no encoder/decoder mismatch +// for a two layer temporal pattern, where at some point in the +// sequence, the LAST ref is not used anymore. +TEST_P(ErrorResilienceTestLarge, 2LayersNoRefLast) { + // This test doesn't run if SVC is not supported. + if (!svc_support_) return; + + const vpx_rational timebase = { 33333333, 1000000000 }; + cfg_.g_timebase = timebase; + cfg_.rc_target_bitrate = 500; + cfg_.g_lag_in_frames = 0; + + cfg_.rc_end_usage = VPX_CBR; + // 2 Temporal layers, no spatial layers, CBR mode. + cfg_.ss_number_layers = 1; + cfg_.ts_number_layers = 2; + cfg_.ts_rate_decimator[0] = 2; + cfg_.ts_rate_decimator[1] = 1; + cfg_.ts_periodicity = 2; + cfg_.ts_target_bitrate[0] = 60 * cfg_.rc_target_bitrate / 100; + cfg_.ts_target_bitrate[1] = cfg_.rc_target_bitrate; + + init_flags_ = VPX_CODEC_USE_PSNR; + + libvpx_test::I420VideoSource video("hantro_collage_w352h288.yuv", 352, 288, + timebase.den, timebase.num, 0, 100); + + // Error resilient mode ON. + cfg_.g_error_resilient = 1; + cfg_.kf_mode = VPX_KF_DISABLED; + SetPatternSwitch(60); + + ASSERT_NO_FATAL_FAILURE(RunLoop(&video)); + // Test that no mismatches have been found + std::cout << " Mismatch frames: " << GetMismatchFrames() << "\n"; + EXPECT_EQ(GetMismatchFrames(), (unsigned int)0); + + // Reset previously set of error/droppable frames. + Reset(); +} + +class ErrorResilienceTestLargeCodecControls + : public ::libvpx_test::EncoderTest, + public ::libvpx_test::CodecTestWithParam { + protected: + ErrorResilienceTestLargeCodecControls() + : EncoderTest(GET_PARAM(0)), encoding_mode_(GET_PARAM(1)) { + Reset(); + } + + virtual ~ErrorResilienceTestLargeCodecControls() {} + + void Reset() { + last_pts_ = 0; + tot_frame_number_ = 0; + // For testing up to 3 layers. + for (int i = 0; i < 3; ++i) { + bits_total_[i] = 0; + } + duration_ = 0.0; + } + + virtual void SetUp() { + InitializeConfig(); + SetMode(encoding_mode_); + } + + // + // Frame flags and layer id for temporal layers. + // + + // For two layers, test pattern is: + // 1 3 + // 0 2 ..... + // For three layers, test pattern is: + // 1 3 5 7 + // 2 6 + // 0 4 .... + // LAST is always update on base/layer 0, GOLDEN is updated on layer 1, + // and ALTREF is updated on top layer for 3 layer pattern. + int SetFrameFlags(int frame_num, int num_temp_layers) { + int frame_flags = 0; + if (num_temp_layers == 2) { + if (frame_num % 2 == 0) { + // Layer 0: predict from L and ARF, update L. + frame_flags = + VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF; + } else { + // Layer 1: predict from L, G and ARF, and update G. + frame_flags = VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_LAST | + VP8_EFLAG_NO_UPD_ENTROPY; + } + } else if (num_temp_layers == 3) { + if (frame_num % 4 == 0) { + // Layer 0: predict from L, update L. + frame_flags = VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF | + VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_REF_ARF; + } else if ((frame_num - 2) % 4 == 0) { + // Layer 1: predict from L, G, update G. + frame_flags = + VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_REF_ARF; + } else if ((frame_num - 1) % 2 == 0) { + // Layer 2: predict from L, G, ARF; update ARG. + frame_flags = VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_LAST; + } + } + return frame_flags; + } + + int SetLayerId(int frame_num, int num_temp_layers) { + int layer_id = 0; + if (num_temp_layers == 2) { + if (frame_num % 2 == 0) { + layer_id = 0; + } else { + layer_id = 1; + } + } else if (num_temp_layers == 3) { + if (frame_num % 4 == 0) { + layer_id = 0; + } else if ((frame_num - 2) % 4 == 0) { + layer_id = 1; + } else if ((frame_num - 1) % 2 == 0) { + layer_id = 2; + } + } + return layer_id; + } + + virtual void PreEncodeFrameHook(libvpx_test::VideoSource *video, + libvpx_test::Encoder *encoder) { + if (cfg_.ts_number_layers > 1) { + int layer_id = SetLayerId(video->frame(), cfg_.ts_number_layers); + int frame_flags = SetFrameFlags(video->frame(), cfg_.ts_number_layers); + if (video->frame() > 0) { + encoder->Control(VP8E_SET_TEMPORAL_LAYER_ID, layer_id); + encoder->Control(VP8E_SET_FRAME_FLAGS, frame_flags); + } + const vpx_rational_t tb = video->timebase(); + timebase_ = static_cast(tb.num) / tb.den; + duration_ = 0; + return; + } + } + + virtual void FramePktHook(const vpx_codec_cx_pkt_t *pkt) { + // Time since last timestamp = duration. + vpx_codec_pts_t duration = pkt->data.frame.pts - last_pts_; + if (duration > 1) { + // Update counter for total number of frames (#frames input to encoder). + // Needed for setting the proper layer_id below. + tot_frame_number_ += static_cast(duration - 1); + } + int layer = SetLayerId(tot_frame_number_, cfg_.ts_number_layers); + const size_t frame_size_in_bits = pkt->data.frame.sz * 8; + // Update the total encoded bits. For temporal layers, update the cumulative + // encoded bits per layer. + for (int i = layer; i < static_cast(cfg_.ts_number_layers); ++i) { + bits_total_[i] += frame_size_in_bits; + } + // Update the most recent pts. + last_pts_ = pkt->data.frame.pts; + ++tot_frame_number_; + } + + virtual void EndPassHook(void) { + duration_ = (last_pts_ + 1) * timebase_; + if (cfg_.ts_number_layers > 1) { + for (int layer = 0; layer < static_cast(cfg_.ts_number_layers); + ++layer) { + if (bits_total_[layer]) { + // Effective file datarate: + effective_datarate_[layer] = + (bits_total_[layer] / 1000.0) / duration_; + } + } + } + } + + double effective_datarate_[3]; + + private: + libvpx_test::TestMode encoding_mode_; + vpx_codec_pts_t last_pts_; + double timebase_; + int64_t bits_total_[3]; + double duration_; + int tot_frame_number_; +}; + +// Check two codec controls used for: +// (1) for setting temporal layer id, and (2) for settings encoder flags. +// This test invokes those controls for each frame, and verifies encoder/decoder +// mismatch and basic rate control response. +// TODO(marpan): Maybe move this test to datarate_test.cc. +TEST_P(ErrorResilienceTestLargeCodecControls, CodecControl3TemporalLayers) { + cfg_.rc_buf_initial_sz = 500; + cfg_.rc_buf_optimal_sz = 500; + cfg_.rc_buf_sz = 1000; + cfg_.rc_dropframe_thresh = 1; + cfg_.rc_min_quantizer = 2; + cfg_.rc_max_quantizer = 56; + cfg_.rc_end_usage = VPX_CBR; + cfg_.rc_dropframe_thresh = 1; + cfg_.g_lag_in_frames = 0; + cfg_.kf_mode = VPX_KF_DISABLED; + cfg_.g_error_resilient = 1; + + // 3 Temporal layers. Framerate decimation (4, 2, 1). + cfg_.ts_number_layers = 3; + cfg_.ts_rate_decimator[0] = 4; + cfg_.ts_rate_decimator[1] = 2; + cfg_.ts_rate_decimator[2] = 1; + cfg_.ts_periodicity = 4; + cfg_.ts_layer_id[0] = 0; + cfg_.ts_layer_id[1] = 2; + cfg_.ts_layer_id[2] = 1; + cfg_.ts_layer_id[3] = 2; + + ::libvpx_test::I420VideoSource video("hantro_collage_w352h288.yuv", 352, 288, + 30, 1, 0, 200); + for (int i = 200; i <= 800; i += 200) { + cfg_.rc_target_bitrate = i; + Reset(); + // 40-20-40 bitrate allocation for 3 temporal layers. + cfg_.ts_target_bitrate[0] = 40 * cfg_.rc_target_bitrate / 100; + cfg_.ts_target_bitrate[1] = 60 * cfg_.rc_target_bitrate / 100; + cfg_.ts_target_bitrate[2] = cfg_.rc_target_bitrate; + ASSERT_NO_FATAL_FAILURE(RunLoop(&video)); + for (int j = 0; j < static_cast(cfg_.ts_number_layers); ++j) { + ASSERT_GE(effective_datarate_[j], cfg_.ts_target_bitrate[j] * 0.75) + << " The datarate for the file is lower than target by too much, " + "for layer: " + << j; + ASSERT_LE(effective_datarate_[j], cfg_.ts_target_bitrate[j] * 1.25) + << " The datarate for the file is greater than target by too much, " + "for layer: " + << j; + } + } +} + +VP8_INSTANTIATE_TEST_CASE(ErrorResilienceTestLarge, ONE_PASS_TEST_MODES, + ::testing::Values(true)); +VP8_INSTANTIATE_TEST_CASE(ErrorResilienceTestLargeCodecControls, + ONE_PASS_TEST_MODES); +VP9_INSTANTIATE_TEST_CASE(ErrorResilienceTestLarge, ONE_PASS_TEST_MODES, + ::testing::Values(true)); +} // namespace diff --git a/test/examples.sh b/test/examples.sh new file mode 100755 index 0000000..629f042 --- /dev/null +++ b/test/examples.sh @@ -0,0 +1,29 @@ +#!/bin/sh +## +## Copyright (c) 2014 The WebM project authors. All Rights Reserved. +## +## Use of this source code is governed by a BSD-style license +## that can be found in the LICENSE file in the root of the source +## tree. An additional intellectual property rights grant can be found +## in the file PATENTS. All contributing project authors may +## be found in the AUTHORS file in the root of the source tree. +## +## This file runs all of the tests for the libvpx examples. +## +. $(dirname $0)/tools_common.sh + +example_tests=$(ls $(dirname $0)/*.sh) + +# List of script names to exclude. +exclude_list="examples stress tools_common" + +# Filter out the scripts in $exclude_list. +for word in ${exclude_list}; do + example_tests=$(filter_strings "${example_tests}" "${word}" exclude) +done + +for test in ${example_tests}; do + # Source each test script so that exporting variables can be avoided. + VPX_TEST_NAME="$(basename ${test%.*})" + . "${test}" +done diff --git a/test/external_frame_buffer_test.cc b/test/external_frame_buffer_test.cc new file mode 100644 index 0000000..dbf2971 --- /dev/null +++ b/test/external_frame_buffer_test.cc @@ -0,0 +1,517 @@ +/* + * Copyright (c) 2014 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include + +#include "./vpx_config.h" +#include "test/codec_factory.h" +#include "test/decode_test_driver.h" +#include "test/ivf_video_source.h" +#include "test/md5_helper.h" +#include "test/test_vectors.h" +#include "test/util.h" +#if CONFIG_WEBM_IO +#include "test/webm_video_source.h" +#endif + +namespace { + +const int kVideoNameParam = 1; + +struct ExternalFrameBuffer { + uint8_t *data; + size_t size; + int in_use; +}; + +// Class to manipulate a list of external frame buffers. +class ExternalFrameBufferList { + public: + ExternalFrameBufferList() + : num_buffers_(0), num_used_buffers_(0), ext_fb_list_(NULL) {} + + virtual ~ExternalFrameBufferList() { + for (int i = 0; i < num_buffers_; ++i) { + delete[] ext_fb_list_[i].data; + } + delete[] ext_fb_list_; + } + + // Creates the list to hold the external buffers. Returns true on success. + bool CreateBufferList(int num_buffers) { + if (num_buffers < 0) return false; + + num_buffers_ = num_buffers; + ext_fb_list_ = new ExternalFrameBuffer[num_buffers_]; + EXPECT_TRUE(ext_fb_list_ != NULL); + memset(ext_fb_list_, 0, sizeof(ext_fb_list_[0]) * num_buffers_); + return true; + } + + // Searches the frame buffer list for a free frame buffer. Makes sure + // that the frame buffer is at least |min_size| in bytes. Marks that the + // frame buffer is in use by libvpx. Finally sets |fb| to point to the + // external frame buffer. Returns < 0 on an error. + int GetFreeFrameBuffer(size_t min_size, vpx_codec_frame_buffer_t *fb) { + EXPECT_TRUE(fb != NULL); + const int idx = FindFreeBufferIndex(); + if (idx == num_buffers_) return -1; + + if (ext_fb_list_[idx].size < min_size) { + delete[] ext_fb_list_[idx].data; + ext_fb_list_[idx].data = new uint8_t[min_size]; + memset(ext_fb_list_[idx].data, 0, min_size); + ext_fb_list_[idx].size = min_size; + } + + SetFrameBuffer(idx, fb); + + num_used_buffers_++; + return 0; + } + + // Test function that will not allocate any data for the frame buffer. + // Returns < 0 on an error. + int GetZeroFrameBuffer(size_t min_size, vpx_codec_frame_buffer_t *fb) { + EXPECT_TRUE(fb != NULL); + const int idx = FindFreeBufferIndex(); + if (idx == num_buffers_) return -1; + + if (ext_fb_list_[idx].size < min_size) { + delete[] ext_fb_list_[idx].data; + ext_fb_list_[idx].data = NULL; + ext_fb_list_[idx].size = min_size; + } + + SetFrameBuffer(idx, fb); + return 0; + } + + // Marks the external frame buffer that |fb| is pointing to as free. + // Returns < 0 on an error. + int ReturnFrameBuffer(vpx_codec_frame_buffer_t *fb) { + if (fb == NULL) { + EXPECT_TRUE(fb != NULL); + return -1; + } + ExternalFrameBuffer *const ext_fb = + reinterpret_cast(fb->priv); + if (ext_fb == NULL) { + EXPECT_TRUE(ext_fb != NULL); + return -1; + } + EXPECT_EQ(1, ext_fb->in_use); + ext_fb->in_use = 0; + num_used_buffers_--; + return 0; + } + + // Checks that the ximage data is contained within the external frame buffer + // private data passed back in the ximage. + void CheckXImageFrameBuffer(const vpx_image_t *img) { + if (img->fb_priv != NULL) { + const struct ExternalFrameBuffer *const ext_fb = + reinterpret_cast(img->fb_priv); + + ASSERT_TRUE(img->planes[0] >= ext_fb->data && + img->planes[0] < (ext_fb->data + ext_fb->size)); + } + } + + int num_used_buffers() const { return num_used_buffers_; } + + private: + // Returns the index of the first free frame buffer. Returns |num_buffers_| + // if there are no free frame buffers. + int FindFreeBufferIndex() { + int i; + // Find a free frame buffer. + for (i = 0; i < num_buffers_; ++i) { + if (!ext_fb_list_[i].in_use) break; + } + return i; + } + + // Sets |fb| to an external frame buffer. idx is the index into the frame + // buffer list. + void SetFrameBuffer(int idx, vpx_codec_frame_buffer_t *fb) { + ASSERT_TRUE(fb != NULL); + fb->data = ext_fb_list_[idx].data; + fb->size = ext_fb_list_[idx].size; + ASSERT_EQ(0, ext_fb_list_[idx].in_use); + ext_fb_list_[idx].in_use = 1; + fb->priv = &ext_fb_list_[idx]; + } + + int num_buffers_; + int num_used_buffers_; + ExternalFrameBuffer *ext_fb_list_; +}; + +#if CONFIG_WEBM_IO + +// Callback used by libvpx to request the application to return a frame +// buffer of at least |min_size| in bytes. +int get_vp9_frame_buffer(void *user_priv, size_t min_size, + vpx_codec_frame_buffer_t *fb) { + ExternalFrameBufferList *const fb_list = + reinterpret_cast(user_priv); + return fb_list->GetFreeFrameBuffer(min_size, fb); +} + +// Callback used by libvpx to tell the application that |fb| is not needed +// anymore. +int release_vp9_frame_buffer(void *user_priv, vpx_codec_frame_buffer_t *fb) { + ExternalFrameBufferList *const fb_list = + reinterpret_cast(user_priv); + return fb_list->ReturnFrameBuffer(fb); +} + +// Callback will not allocate data for frame buffer. +int get_vp9_zero_frame_buffer(void *user_priv, size_t min_size, + vpx_codec_frame_buffer_t *fb) { + ExternalFrameBufferList *const fb_list = + reinterpret_cast(user_priv); + return fb_list->GetZeroFrameBuffer(min_size, fb); +} + +// Callback will allocate one less byte than |min_size|. +int get_vp9_one_less_byte_frame_buffer(void *user_priv, size_t min_size, + vpx_codec_frame_buffer_t *fb) { + ExternalFrameBufferList *const fb_list = + reinterpret_cast(user_priv); + return fb_list->GetFreeFrameBuffer(min_size - 1, fb); +} + +// Callback will not release the external frame buffer. +int do_not_release_vp9_frame_buffer(void *user_priv, + vpx_codec_frame_buffer_t *fb) { + (void)user_priv; + (void)fb; + return 0; +} + +#endif // CONFIG_WEBM_IO + +// Class for testing passing in external frame buffers to libvpx. +class ExternalFrameBufferMD5Test + : public ::libvpx_test::DecoderTest, + public ::libvpx_test::CodecTestWithParam { + protected: + ExternalFrameBufferMD5Test() + : DecoderTest(GET_PARAM(::libvpx_test::kCodecFactoryParam)), + md5_file_(NULL), num_buffers_(0) {} + + virtual ~ExternalFrameBufferMD5Test() { + if (md5_file_ != NULL) fclose(md5_file_); + } + + virtual void PreDecodeFrameHook( + const libvpx_test::CompressedVideoSource &video, + libvpx_test::Decoder *decoder) { + if (num_buffers_ > 0 && video.frame_number() == 0) { + // Have libvpx use frame buffers we create. + ASSERT_TRUE(fb_list_.CreateBufferList(num_buffers_)); + ASSERT_EQ(VPX_CODEC_OK, + decoder->SetFrameBufferFunctions(GetVP9FrameBuffer, + ReleaseVP9FrameBuffer, this)); + } + } + + void OpenMD5File(const std::string &md5_file_name_) { + md5_file_ = libvpx_test::OpenTestDataFile(md5_file_name_); + ASSERT_TRUE(md5_file_ != NULL) + << "Md5 file open failed. Filename: " << md5_file_name_; + } + + virtual void DecompressedFrameHook(const vpx_image_t &img, + const unsigned int frame_number) { + ASSERT_TRUE(md5_file_ != NULL); + char expected_md5[33]; + char junk[128]; + + // Read correct md5 checksums. + const int res = fscanf(md5_file_, "%s %s", expected_md5, junk); + ASSERT_NE(EOF, res) << "Read md5 data failed"; + expected_md5[32] = '\0'; + + ::libvpx_test::MD5 md5_res; + md5_res.Add(&img); + const char *const actual_md5 = md5_res.Get(); + + // Check md5 match. + ASSERT_STREQ(expected_md5, actual_md5) + << "Md5 checksums don't match: frame number = " << frame_number; + } + + // Callback to get a free external frame buffer. Return value < 0 is an + // error. + static int GetVP9FrameBuffer(void *user_priv, size_t min_size, + vpx_codec_frame_buffer_t *fb) { + ExternalFrameBufferMD5Test *const md5Test = + reinterpret_cast(user_priv); + return md5Test->fb_list_.GetFreeFrameBuffer(min_size, fb); + } + + // Callback to release an external frame buffer. Return value < 0 is an + // error. + static int ReleaseVP9FrameBuffer(void *user_priv, + vpx_codec_frame_buffer_t *fb) { + ExternalFrameBufferMD5Test *const md5Test = + reinterpret_cast(user_priv); + return md5Test->fb_list_.ReturnFrameBuffer(fb); + } + + void set_num_buffers(int num_buffers) { num_buffers_ = num_buffers; } + int num_buffers() const { return num_buffers_; } + + private: + FILE *md5_file_; + int num_buffers_; + ExternalFrameBufferList fb_list_; +}; + +#if CONFIG_WEBM_IO +const char kVP9TestFile[] = "vp90-2-02-size-lf-1920x1080.webm"; +const char kVP9NonRefTestFile[] = "vp90-2-22-svc_1280x720_1.webm"; + +// Class for testing passing in external frame buffers to libvpx. +class ExternalFrameBufferTest : public ::testing::Test { + protected: + ExternalFrameBufferTest() : video_(NULL), decoder_(NULL), num_buffers_(0) {} + + virtual void SetUp() { + video_ = new libvpx_test::WebMVideoSource(kVP9TestFile); + ASSERT_TRUE(video_ != NULL); + video_->Init(); + video_->Begin(); + + vpx_codec_dec_cfg_t cfg = vpx_codec_dec_cfg_t(); + decoder_ = new libvpx_test::VP9Decoder(cfg, 0); + ASSERT_TRUE(decoder_ != NULL); + } + + virtual void TearDown() { + delete decoder_; + decoder_ = NULL; + delete video_; + video_ = NULL; + } + + // Passes the external frame buffer information to libvpx. + vpx_codec_err_t SetFrameBufferFunctions( + int num_buffers, vpx_get_frame_buffer_cb_fn_t cb_get, + vpx_release_frame_buffer_cb_fn_t cb_release) { + if (num_buffers > 0) { + num_buffers_ = num_buffers; + EXPECT_TRUE(fb_list_.CreateBufferList(num_buffers_)); + } + + return decoder_->SetFrameBufferFunctions(cb_get, cb_release, &fb_list_); + } + + vpx_codec_err_t DecodeOneFrame() { + const vpx_codec_err_t res = + decoder_->DecodeFrame(video_->cxdata(), video_->frame_size()); + CheckDecodedFrames(); + if (res == VPX_CODEC_OK) video_->Next(); + return res; + } + + vpx_codec_err_t DecodeRemainingFrames() { + for (; video_->cxdata() != NULL; video_->Next()) { + const vpx_codec_err_t res = + decoder_->DecodeFrame(video_->cxdata(), video_->frame_size()); + if (res != VPX_CODEC_OK) return res; + CheckDecodedFrames(); + } + return VPX_CODEC_OK; + } + + protected: + void CheckDecodedFrames() { + libvpx_test::DxDataIterator dec_iter = decoder_->GetDxData(); + const vpx_image_t *img = NULL; + + // Get decompressed data + while ((img = dec_iter.Next()) != NULL) { + fb_list_.CheckXImageFrameBuffer(img); + } + } + + libvpx_test::WebMVideoSource *video_; + libvpx_test::VP9Decoder *decoder_; + int num_buffers_; + ExternalFrameBufferList fb_list_; +}; + +class ExternalFrameBufferNonRefTest : public ExternalFrameBufferTest { + protected: + virtual void SetUp() { + video_ = new libvpx_test::WebMVideoSource(kVP9NonRefTestFile); + ASSERT_TRUE(video_ != NULL); + video_->Init(); + video_->Begin(); + + vpx_codec_dec_cfg_t cfg = vpx_codec_dec_cfg_t(); + decoder_ = new libvpx_test::VP9Decoder(cfg, 0); + ASSERT_TRUE(decoder_ != NULL); + } + + virtual void CheckFrameBufferRelease() { + TearDown(); + ASSERT_EQ(0, fb_list_.num_used_buffers()); + } +}; +#endif // CONFIG_WEBM_IO + +// This test runs through the set of test vectors, and decodes them. +// Libvpx will call into the application to allocate a frame buffer when +// needed. The md5 checksums are computed for each frame in the video file. +// If md5 checksums match the correct md5 data, then the test is passed. +// Otherwise, the test failed. +TEST_P(ExternalFrameBufferMD5Test, ExtFBMD5Match) { + const std::string filename = GET_PARAM(kVideoNameParam); + + // Number of buffers equals #VP9_MAXIMUM_REF_BUFFERS + + // #VPX_MAXIMUM_WORK_BUFFERS + four jitter buffers. + const int jitter_buffers = 4; + const int num_buffers = + VP9_MAXIMUM_REF_BUFFERS + VPX_MAXIMUM_WORK_BUFFERS + jitter_buffers; + set_num_buffers(num_buffers); + +#if CONFIG_VP8_DECODER + // Tell compiler we are not using kVP8TestVectors. + (void)libvpx_test::kVP8TestVectors; +#endif + + // Open compressed video file. + testing::internal::scoped_ptr video; + if (filename.substr(filename.length() - 3, 3) == "ivf") { + video.reset(new libvpx_test::IVFVideoSource(filename)); + } else { +#if CONFIG_WEBM_IO + video.reset(new libvpx_test::WebMVideoSource(filename)); +#else + fprintf(stderr, "WebM IO is disabled, skipping test vector %s\n", + filename.c_str()); + return; +#endif + } + ASSERT_TRUE(video.get() != NULL); + video->Init(); + + // Construct md5 file name. + const std::string md5_filename = filename + ".md5"; + OpenMD5File(md5_filename); + + // Decode frame, and check the md5 matching. + ASSERT_NO_FATAL_FAILURE(RunLoop(video.get())); +} + +#if CONFIG_WEBM_IO +TEST_F(ExternalFrameBufferTest, MinFrameBuffers) { + // Minimum number of external frame buffers for VP9 is + // #VP9_MAXIMUM_REF_BUFFERS + #VPX_MAXIMUM_WORK_BUFFERS. + const int num_buffers = VP9_MAXIMUM_REF_BUFFERS + VPX_MAXIMUM_WORK_BUFFERS; + ASSERT_EQ(VPX_CODEC_OK, + SetFrameBufferFunctions(num_buffers, get_vp9_frame_buffer, + release_vp9_frame_buffer)); + ASSERT_EQ(VPX_CODEC_OK, DecodeRemainingFrames()); +} + +TEST_F(ExternalFrameBufferTest, EightJitterBuffers) { + // Number of buffers equals #VP9_MAXIMUM_REF_BUFFERS + + // #VPX_MAXIMUM_WORK_BUFFERS + eight jitter buffers. + const int jitter_buffers = 8; + const int num_buffers = + VP9_MAXIMUM_REF_BUFFERS + VPX_MAXIMUM_WORK_BUFFERS + jitter_buffers; + ASSERT_EQ(VPX_CODEC_OK, + SetFrameBufferFunctions(num_buffers, get_vp9_frame_buffer, + release_vp9_frame_buffer)); + ASSERT_EQ(VPX_CODEC_OK, DecodeRemainingFrames()); +} + +TEST_F(ExternalFrameBufferTest, NotEnoughBuffers) { + // Minimum number of external frame buffers for VP9 is + // #VP9_MAXIMUM_REF_BUFFERS + #VPX_MAXIMUM_WORK_BUFFERS. Most files will + // only use 5 frame buffers at one time. + const int num_buffers = 2; + ASSERT_EQ(VPX_CODEC_OK, + SetFrameBufferFunctions(num_buffers, get_vp9_frame_buffer, + release_vp9_frame_buffer)); + ASSERT_EQ(VPX_CODEC_OK, DecodeOneFrame()); + // Only run this on long clips. Decoding a very short clip will return + // VPX_CODEC_OK even with only 2 buffers. + ASSERT_EQ(VPX_CODEC_MEM_ERROR, DecodeRemainingFrames()); +} + +TEST_F(ExternalFrameBufferTest, NoRelease) { + const int num_buffers = VP9_MAXIMUM_REF_BUFFERS + VPX_MAXIMUM_WORK_BUFFERS; + ASSERT_EQ(VPX_CODEC_OK, + SetFrameBufferFunctions(num_buffers, get_vp9_frame_buffer, + do_not_release_vp9_frame_buffer)); + ASSERT_EQ(VPX_CODEC_OK, DecodeOneFrame()); + ASSERT_EQ(VPX_CODEC_MEM_ERROR, DecodeRemainingFrames()); +} + +TEST_F(ExternalFrameBufferTest, NullRealloc) { + const int num_buffers = VP9_MAXIMUM_REF_BUFFERS + VPX_MAXIMUM_WORK_BUFFERS; + ASSERT_EQ(VPX_CODEC_OK, + SetFrameBufferFunctions(num_buffers, get_vp9_zero_frame_buffer, + release_vp9_frame_buffer)); + ASSERT_EQ(VPX_CODEC_MEM_ERROR, DecodeOneFrame()); +} + +TEST_F(ExternalFrameBufferTest, ReallocOneLessByte) { + const int num_buffers = VP9_MAXIMUM_REF_BUFFERS + VPX_MAXIMUM_WORK_BUFFERS; + ASSERT_EQ(VPX_CODEC_OK, SetFrameBufferFunctions( + num_buffers, get_vp9_one_less_byte_frame_buffer, + release_vp9_frame_buffer)); + ASSERT_EQ(VPX_CODEC_MEM_ERROR, DecodeOneFrame()); +} + +TEST_F(ExternalFrameBufferTest, NullGetFunction) { + const int num_buffers = VP9_MAXIMUM_REF_BUFFERS + VPX_MAXIMUM_WORK_BUFFERS; + ASSERT_EQ( + VPX_CODEC_INVALID_PARAM, + SetFrameBufferFunctions(num_buffers, NULL, release_vp9_frame_buffer)); +} + +TEST_F(ExternalFrameBufferTest, NullReleaseFunction) { + const int num_buffers = VP9_MAXIMUM_REF_BUFFERS + VPX_MAXIMUM_WORK_BUFFERS; + ASSERT_EQ(VPX_CODEC_INVALID_PARAM, + SetFrameBufferFunctions(num_buffers, get_vp9_frame_buffer, NULL)); +} + +TEST_F(ExternalFrameBufferTest, SetAfterDecode) { + const int num_buffers = VP9_MAXIMUM_REF_BUFFERS + VPX_MAXIMUM_WORK_BUFFERS; + ASSERT_EQ(VPX_CODEC_OK, DecodeOneFrame()); + ASSERT_EQ(VPX_CODEC_ERROR, + SetFrameBufferFunctions(num_buffers, get_vp9_frame_buffer, + release_vp9_frame_buffer)); +} + +TEST_F(ExternalFrameBufferNonRefTest, ReleaseNonRefFrameBuffer) { + const int num_buffers = VP9_MAXIMUM_REF_BUFFERS + VPX_MAXIMUM_WORK_BUFFERS; + ASSERT_EQ(VPX_CODEC_OK, + SetFrameBufferFunctions(num_buffers, get_vp9_frame_buffer, + release_vp9_frame_buffer)); + ASSERT_EQ(VPX_CODEC_OK, DecodeRemainingFrames()); + CheckFrameBufferRelease(); +} +#endif // CONFIG_WEBM_IO + +VP9_INSTANTIATE_TEST_CASE( + ExternalFrameBufferMD5Test, + ::testing::ValuesIn(libvpx_test::kVP9TestVectors, + libvpx_test::kVP9TestVectors + + libvpx_test::kNumVP9TestVectors)); +} // namespace diff --git a/test/fdct8x8_test.cc b/test/fdct8x8_test.cc new file mode 100644 index 0000000..5021dda --- /dev/null +++ b/test/fdct8x8_test.cc @@ -0,0 +1,766 @@ +/* + * Copyright (c) 2012 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include +#include + +#include "third_party/googletest/src/include/gtest/gtest.h" + +#include "./vp9_rtcd.h" +#include "./vpx_dsp_rtcd.h" +#include "test/acm_random.h" +#include "test/clear_system_state.h" +#include "test/register_state_check.h" +#include "test/util.h" +#include "vp9/common/vp9_entropy.h" +#include "vp9/common/vp9_scan.h" +#include "vpx/vpx_codec.h" +#include "vpx/vpx_integer.h" +#include "vpx_ports/mem.h" + +using libvpx_test::ACMRandom; + +namespace { + +const int kNumCoeffs = 64; +const double kPi = 3.141592653589793238462643383279502884; + +const int kSignBiasMaxDiff255 = 1500; +const int kSignBiasMaxDiff15 = 10000; + +typedef void (*FdctFunc)(const int16_t *in, tran_low_t *out, int stride); +typedef void (*IdctFunc)(const tran_low_t *in, uint8_t *out, int stride); +typedef void (*FhtFunc)(const int16_t *in, tran_low_t *out, int stride, + int tx_type); +typedef void (*IhtFunc)(const tran_low_t *in, uint8_t *out, int stride, + int tx_type); + +typedef std::tr1::tuple Dct8x8Param; +typedef std::tr1::tuple Ht8x8Param; +typedef std::tr1::tuple Idct8x8Param; + +void reference_8x8_dct_1d(const double in[8], double out[8]) { + const double kInvSqrt2 = 0.707106781186547524400844362104; + for (int k = 0; k < 8; k++) { + out[k] = 0.0; + for (int n = 0; n < 8; n++) { + out[k] += in[n] * cos(kPi * (2 * n + 1) * k / 16.0); + } + if (k == 0) out[k] = out[k] * kInvSqrt2; + } +} + +void reference_8x8_dct_2d(const int16_t input[kNumCoeffs], + double output[kNumCoeffs]) { + // First transform columns + for (int i = 0; i < 8; ++i) { + double temp_in[8], temp_out[8]; + for (int j = 0; j < 8; ++j) temp_in[j] = input[j * 8 + i]; + reference_8x8_dct_1d(temp_in, temp_out); + for (int j = 0; j < 8; ++j) output[j * 8 + i] = temp_out[j]; + } + // Then transform rows + for (int i = 0; i < 8; ++i) { + double temp_in[8], temp_out[8]; + for (int j = 0; j < 8; ++j) temp_in[j] = output[j + i * 8]; + reference_8x8_dct_1d(temp_in, temp_out); + // Scale by some magic number + for (int j = 0; j < 8; ++j) output[j + i * 8] = temp_out[j] * 2; + } +} + +void fdct8x8_ref(const int16_t *in, tran_low_t *out, int stride, + int /*tx_type*/) { + vpx_fdct8x8_c(in, out, stride); +} + +void fht8x8_ref(const int16_t *in, tran_low_t *out, int stride, int tx_type) { + vp9_fht8x8_c(in, out, stride, tx_type); +} + +#if CONFIG_VP9_HIGHBITDEPTH +void idct8x8_10(const tran_low_t *in, uint8_t *out, int stride) { + vpx_highbd_idct8x8_64_add_c(in, CAST_TO_SHORTPTR(out), stride, 10); +} + +void idct8x8_12(const tran_low_t *in, uint8_t *out, int stride) { + vpx_highbd_idct8x8_64_add_c(in, CAST_TO_SHORTPTR(out), stride, 12); +} + +void iht8x8_10(const tran_low_t *in, uint8_t *out, int stride, int tx_type) { + vp9_highbd_iht8x8_64_add_c(in, CAST_TO_SHORTPTR(out), stride, tx_type, 10); +} + +void iht8x8_12(const tran_low_t *in, uint8_t *out, int stride, int tx_type) { + vp9_highbd_iht8x8_64_add_c(in, CAST_TO_SHORTPTR(out), stride, tx_type, 12); +} + +#if HAVE_SSE2 + +void idct8x8_12_add_10_c(const tran_low_t *in, uint8_t *out, int stride) { + vpx_highbd_idct8x8_12_add_c(in, CAST_TO_SHORTPTR(out), stride, 10); +} + +void idct8x8_12_add_12_c(const tran_low_t *in, uint8_t *out, int stride) { + vpx_highbd_idct8x8_12_add_c(in, CAST_TO_SHORTPTR(out), stride, 12); +} + +void idct8x8_12_add_10_sse2(const tran_low_t *in, uint8_t *out, int stride) { + vpx_highbd_idct8x8_12_add_sse2(in, CAST_TO_SHORTPTR(out), stride, 10); +} + +void idct8x8_12_add_12_sse2(const tran_low_t *in, uint8_t *out, int stride) { + vpx_highbd_idct8x8_12_add_sse2(in, CAST_TO_SHORTPTR(out), stride, 12); +} + +void idct8x8_64_add_10_sse2(const tran_low_t *in, uint8_t *out, int stride) { + vpx_highbd_idct8x8_64_add_sse2(in, CAST_TO_SHORTPTR(out), stride, 10); +} + +void idct8x8_64_add_12_sse2(const tran_low_t *in, uint8_t *out, int stride) { + vpx_highbd_idct8x8_64_add_sse2(in, CAST_TO_SHORTPTR(out), stride, 12); +} +#endif // HAVE_SSE2 +#endif // CONFIG_VP9_HIGHBITDEPTH + +class FwdTrans8x8TestBase { + public: + virtual ~FwdTrans8x8TestBase() {} + + protected: + virtual void RunFwdTxfm(int16_t *in, tran_low_t *out, int stride) = 0; + virtual void RunInvTxfm(tran_low_t *out, uint8_t *dst, int stride) = 0; + + void RunSignBiasCheck() { + ACMRandom rnd(ACMRandom::DeterministicSeed()); + DECLARE_ALIGNED(16, int16_t, test_input_block[64]); + DECLARE_ALIGNED(16, tran_low_t, test_output_block[64]); + int count_sign_block[64][2]; + const int count_test_block = 100000; + + memset(count_sign_block, 0, sizeof(count_sign_block)); + + for (int i = 0; i < count_test_block; ++i) { + // Initialize a test block with input range [-255, 255]. + for (int j = 0; j < 64; ++j) { + test_input_block[j] = ((rnd.Rand16() >> (16 - bit_depth_)) & mask_) - + ((rnd.Rand16() >> (16 - bit_depth_)) & mask_); + } + ASM_REGISTER_STATE_CHECK( + RunFwdTxfm(test_input_block, test_output_block, pitch_)); + + for (int j = 0; j < 64; ++j) { + if (test_output_block[j] < 0) { + ++count_sign_block[j][0]; + } else if (test_output_block[j] > 0) { + ++count_sign_block[j][1]; + } + } + } + + for (int j = 0; j < 64; ++j) { + const int diff = abs(count_sign_block[j][0] - count_sign_block[j][1]); + const int max_diff = kSignBiasMaxDiff255; + EXPECT_LT(diff, max_diff << (bit_depth_ - 8)) + << "Error: 8x8 FDCT/FHT has a sign bias > " + << 1. * max_diff / count_test_block * 100 << "%" + << " for input range [-255, 255] at index " << j + << " count0: " << count_sign_block[j][0] + << " count1: " << count_sign_block[j][1] << " diff: " << diff; + } + + memset(count_sign_block, 0, sizeof(count_sign_block)); + + for (int i = 0; i < count_test_block; ++i) { + // Initialize a test block with input range [-mask_ / 16, mask_ / 16]. + for (int j = 0; j < 64; ++j) { + test_input_block[j] = + ((rnd.Rand16() & mask_) >> 4) - ((rnd.Rand16() & mask_) >> 4); + } + ASM_REGISTER_STATE_CHECK( + RunFwdTxfm(test_input_block, test_output_block, pitch_)); + + for (int j = 0; j < 64; ++j) { + if (test_output_block[j] < 0) { + ++count_sign_block[j][0]; + } else if (test_output_block[j] > 0) { + ++count_sign_block[j][1]; + } + } + } + + for (int j = 0; j < 64; ++j) { + const int diff = abs(count_sign_block[j][0] - count_sign_block[j][1]); + const int max_diff = kSignBiasMaxDiff15; + EXPECT_LT(diff, max_diff << (bit_depth_ - 8)) + << "Error: 8x8 FDCT/FHT has a sign bias > " + << 1. * max_diff / count_test_block * 100 << "%" + << " for input range [-15, 15] at index " << j + << " count0: " << count_sign_block[j][0] + << " count1: " << count_sign_block[j][1] << " diff: " << diff; + } + } + + void RunRoundTripErrorCheck() { + ACMRandom rnd(ACMRandom::DeterministicSeed()); + int max_error = 0; + int total_error = 0; + const int count_test_block = 100000; + DECLARE_ALIGNED(16, int16_t, test_input_block[64]); + DECLARE_ALIGNED(16, tran_low_t, test_temp_block[64]); + DECLARE_ALIGNED(16, uint8_t, dst[64]); + DECLARE_ALIGNED(16, uint8_t, src[64]); +#if CONFIG_VP9_HIGHBITDEPTH + DECLARE_ALIGNED(16, uint16_t, dst16[64]); + DECLARE_ALIGNED(16, uint16_t, src16[64]); +#endif + + for (int i = 0; i < count_test_block; ++i) { + // Initialize a test block with input range [-mask_, mask_]. + for (int j = 0; j < 64; ++j) { + if (bit_depth_ == VPX_BITS_8) { + src[j] = rnd.Rand8(); + dst[j] = rnd.Rand8(); + test_input_block[j] = src[j] - dst[j]; +#if CONFIG_VP9_HIGHBITDEPTH + } else { + src16[j] = rnd.Rand16() & mask_; + dst16[j] = rnd.Rand16() & mask_; + test_input_block[j] = src16[j] - dst16[j]; +#endif + } + } + + ASM_REGISTER_STATE_CHECK( + RunFwdTxfm(test_input_block, test_temp_block, pitch_)); + for (int j = 0; j < 64; ++j) { + if (test_temp_block[j] > 0) { + test_temp_block[j] += 2; + test_temp_block[j] /= 4; + test_temp_block[j] *= 4; + } else { + test_temp_block[j] -= 2; + test_temp_block[j] /= 4; + test_temp_block[j] *= 4; + } + } + if (bit_depth_ == VPX_BITS_8) { + ASM_REGISTER_STATE_CHECK(RunInvTxfm(test_temp_block, dst, pitch_)); +#if CONFIG_VP9_HIGHBITDEPTH + } else { + ASM_REGISTER_STATE_CHECK( + RunInvTxfm(test_temp_block, CAST_TO_BYTEPTR(dst16), pitch_)); +#endif + } + + for (int j = 0; j < 64; ++j) { +#if CONFIG_VP9_HIGHBITDEPTH + const int diff = + bit_depth_ == VPX_BITS_8 ? dst[j] - src[j] : dst16[j] - src16[j]; +#else + const int diff = dst[j] - src[j]; +#endif + const int error = diff * diff; + if (max_error < error) max_error = error; + total_error += error; + } + } + + EXPECT_GE(1 << 2 * (bit_depth_ - 8), max_error) + << "Error: 8x8 FDCT/IDCT or FHT/IHT has an individual" + << " roundtrip error > 1"; + + EXPECT_GE((count_test_block << 2 * (bit_depth_ - 8)) / 5, total_error) + << "Error: 8x8 FDCT/IDCT or FHT/IHT has average roundtrip " + << "error > 1/5 per block"; + } + + void RunExtremalCheck() { + ACMRandom rnd(ACMRandom::DeterministicSeed()); + int max_error = 0; + int total_error = 0; + int total_coeff_error = 0; + const int count_test_block = 100000; + DECLARE_ALIGNED(16, int16_t, test_input_block[64]); + DECLARE_ALIGNED(16, tran_low_t, test_temp_block[64]); + DECLARE_ALIGNED(16, tran_low_t, ref_temp_block[64]); + DECLARE_ALIGNED(16, uint8_t, dst[64]); + DECLARE_ALIGNED(16, uint8_t, src[64]); +#if CONFIG_VP9_HIGHBITDEPTH + DECLARE_ALIGNED(16, uint16_t, dst16[64]); + DECLARE_ALIGNED(16, uint16_t, src16[64]); +#endif + + for (int i = 0; i < count_test_block; ++i) { + // Initialize a test block with input range [-mask_, mask_]. + for (int j = 0; j < 64; ++j) { + if (bit_depth_ == VPX_BITS_8) { + if (i == 0) { + src[j] = 255; + dst[j] = 0; + } else if (i == 1) { + src[j] = 0; + dst[j] = 255; + } else { + src[j] = rnd.Rand8() % 2 ? 255 : 0; + dst[j] = rnd.Rand8() % 2 ? 255 : 0; + } + test_input_block[j] = src[j] - dst[j]; +#if CONFIG_VP9_HIGHBITDEPTH + } else { + if (i == 0) { + src16[j] = mask_; + dst16[j] = 0; + } else if (i == 1) { + src16[j] = 0; + dst16[j] = mask_; + } else { + src16[j] = rnd.Rand8() % 2 ? mask_ : 0; + dst16[j] = rnd.Rand8() % 2 ? mask_ : 0; + } + test_input_block[j] = src16[j] - dst16[j]; +#endif + } + } + + ASM_REGISTER_STATE_CHECK( + RunFwdTxfm(test_input_block, test_temp_block, pitch_)); + ASM_REGISTER_STATE_CHECK( + fwd_txfm_ref(test_input_block, ref_temp_block, pitch_, tx_type_)); + if (bit_depth_ == VPX_BITS_8) { + ASM_REGISTER_STATE_CHECK(RunInvTxfm(test_temp_block, dst, pitch_)); +#if CONFIG_VP9_HIGHBITDEPTH + } else { + ASM_REGISTER_STATE_CHECK( + RunInvTxfm(test_temp_block, CAST_TO_BYTEPTR(dst16), pitch_)); +#endif + } + + for (int j = 0; j < 64; ++j) { +#if CONFIG_VP9_HIGHBITDEPTH + const int diff = + bit_depth_ == VPX_BITS_8 ? dst[j] - src[j] : dst16[j] - src16[j]; +#else + const int diff = dst[j] - src[j]; +#endif + const int error = diff * diff; + if (max_error < error) max_error = error; + total_error += error; + + const int coeff_diff = test_temp_block[j] - ref_temp_block[j]; + total_coeff_error += abs(coeff_diff); + } + + EXPECT_GE(1 << 2 * (bit_depth_ - 8), max_error) + << "Error: Extremal 8x8 FDCT/IDCT or FHT/IHT has" + << "an individual roundtrip error > 1"; + + EXPECT_GE((count_test_block << 2 * (bit_depth_ - 8)) / 5, total_error) + << "Error: Extremal 8x8 FDCT/IDCT or FHT/IHT has average" + << " roundtrip error > 1/5 per block"; + + EXPECT_EQ(0, total_coeff_error) + << "Error: Extremal 8x8 FDCT/FHT has" + << "overflow issues in the intermediate steps > 1"; + } + } + + void RunInvAccuracyCheck() { + ACMRandom rnd(ACMRandom::DeterministicSeed()); + const int count_test_block = 1000; + DECLARE_ALIGNED(16, int16_t, in[kNumCoeffs]); + DECLARE_ALIGNED(16, tran_low_t, coeff[kNumCoeffs]); + DECLARE_ALIGNED(16, uint8_t, dst[kNumCoeffs]); + DECLARE_ALIGNED(16, uint8_t, src[kNumCoeffs]); +#if CONFIG_VP9_HIGHBITDEPTH + DECLARE_ALIGNED(16, uint16_t, src16[kNumCoeffs]); + DECLARE_ALIGNED(16, uint16_t, dst16[kNumCoeffs]); +#endif + + for (int i = 0; i < count_test_block; ++i) { + double out_r[kNumCoeffs]; + + // Initialize a test block with input range [-255, 255]. + for (int j = 0; j < kNumCoeffs; ++j) { + if (bit_depth_ == VPX_BITS_8) { + src[j] = rnd.Rand8() % 2 ? 255 : 0; + dst[j] = src[j] > 0 ? 0 : 255; + in[j] = src[j] - dst[j]; +#if CONFIG_VP9_HIGHBITDEPTH + } else { + src16[j] = rnd.Rand8() % 2 ? mask_ : 0; + dst16[j] = src16[j] > 0 ? 0 : mask_; + in[j] = src16[j] - dst16[j]; +#endif + } + } + + reference_8x8_dct_2d(in, out_r); + for (int j = 0; j < kNumCoeffs; ++j) { + coeff[j] = static_cast(round(out_r[j])); + } + + if (bit_depth_ == VPX_BITS_8) { + ASM_REGISTER_STATE_CHECK(RunInvTxfm(coeff, dst, pitch_)); +#if CONFIG_VP9_HIGHBITDEPTH + } else { + ASM_REGISTER_STATE_CHECK( + RunInvTxfm(coeff, CAST_TO_BYTEPTR(dst16), pitch_)); +#endif + } + + for (int j = 0; j < kNumCoeffs; ++j) { +#if CONFIG_VP9_HIGHBITDEPTH + const int diff = + bit_depth_ == VPX_BITS_8 ? dst[j] - src[j] : dst16[j] - src16[j]; +#else + const int diff = dst[j] - src[j]; +#endif + const uint32_t error = diff * diff; + EXPECT_GE(1u << 2 * (bit_depth_ - 8), error) + << "Error: 8x8 IDCT has error " << error << " at index " << j; + } + } + } + + void RunFwdAccuracyCheck() { + ACMRandom rnd(ACMRandom::DeterministicSeed()); + const int count_test_block = 1000; + DECLARE_ALIGNED(16, int16_t, in[kNumCoeffs]); + DECLARE_ALIGNED(16, tran_low_t, coeff_r[kNumCoeffs]); + DECLARE_ALIGNED(16, tran_low_t, coeff[kNumCoeffs]); + + for (int i = 0; i < count_test_block; ++i) { + double out_r[kNumCoeffs]; + + // Initialize a test block with input range [-mask_, mask_]. + for (int j = 0; j < kNumCoeffs; ++j) { + in[j] = rnd.Rand8() % 2 == 0 ? mask_ : -mask_; + } + + RunFwdTxfm(in, coeff, pitch_); + reference_8x8_dct_2d(in, out_r); + for (int j = 0; j < kNumCoeffs; ++j) { + coeff_r[j] = static_cast(round(out_r[j])); + } + + for (int j = 0; j < kNumCoeffs; ++j) { + const int32_t diff = coeff[j] - coeff_r[j]; + const uint32_t error = diff * diff; + EXPECT_GE(9u << 2 * (bit_depth_ - 8), error) + << "Error: 8x8 DCT has error " << error << " at index " << j; + } + } + } + + void CompareInvReference(IdctFunc ref_txfm, int thresh) { + ACMRandom rnd(ACMRandom::DeterministicSeed()); + const int count_test_block = 10000; + const int eob = 12; + DECLARE_ALIGNED(16, tran_low_t, coeff[kNumCoeffs]); + DECLARE_ALIGNED(16, uint8_t, dst[kNumCoeffs]); + DECLARE_ALIGNED(16, uint8_t, ref[kNumCoeffs]); +#if CONFIG_VP9_HIGHBITDEPTH + DECLARE_ALIGNED(16, uint16_t, dst16[kNumCoeffs]); + DECLARE_ALIGNED(16, uint16_t, ref16[kNumCoeffs]); +#endif + const int16_t *scan = vp9_default_scan_orders[TX_8X8].scan; + + for (int i = 0; i < count_test_block; ++i) { + for (int j = 0; j < kNumCoeffs; ++j) { + if (j < eob) { + // Random values less than the threshold, either positive or negative + coeff[scan[j]] = rnd(thresh) * (1 - 2 * (i % 2)); + } else { + coeff[scan[j]] = 0; + } + if (bit_depth_ == VPX_BITS_8) { + dst[j] = 0; + ref[j] = 0; +#if CONFIG_VP9_HIGHBITDEPTH + } else { + dst16[j] = 0; + ref16[j] = 0; +#endif + } + } + if (bit_depth_ == VPX_BITS_8) { + ref_txfm(coeff, ref, pitch_); + ASM_REGISTER_STATE_CHECK(RunInvTxfm(coeff, dst, pitch_)); +#if CONFIG_VP9_HIGHBITDEPTH + } else { + ref_txfm(coeff, CAST_TO_BYTEPTR(ref16), pitch_); + ASM_REGISTER_STATE_CHECK( + RunInvTxfm(coeff, CAST_TO_BYTEPTR(dst16), pitch_)); +#endif + } + + for (int j = 0; j < kNumCoeffs; ++j) { +#if CONFIG_VP9_HIGHBITDEPTH + const int diff = + bit_depth_ == VPX_BITS_8 ? dst[j] - ref[j] : dst16[j] - ref16[j]; +#else + const int diff = dst[j] - ref[j]; +#endif + const uint32_t error = diff * diff; + EXPECT_EQ(0u, error) + << "Error: 8x8 IDCT has error " << error << " at index " << j; + } + } + } + int pitch_; + int tx_type_; + FhtFunc fwd_txfm_ref; + vpx_bit_depth_t bit_depth_; + int mask_; +}; + +class FwdTrans8x8DCT : public FwdTrans8x8TestBase, + public ::testing::TestWithParam { + public: + virtual ~FwdTrans8x8DCT() {} + + virtual void SetUp() { + fwd_txfm_ = GET_PARAM(0); + inv_txfm_ = GET_PARAM(1); + tx_type_ = GET_PARAM(2); + pitch_ = 8; + fwd_txfm_ref = fdct8x8_ref; + bit_depth_ = GET_PARAM(3); + mask_ = (1 << bit_depth_) - 1; + } + + virtual void TearDown() { libvpx_test::ClearSystemState(); } + + protected: + void RunFwdTxfm(int16_t *in, tran_low_t *out, int stride) { + fwd_txfm_(in, out, stride); + } + void RunInvTxfm(tran_low_t *out, uint8_t *dst, int stride) { + inv_txfm_(out, dst, stride); + } + + FdctFunc fwd_txfm_; + IdctFunc inv_txfm_; +}; + +TEST_P(FwdTrans8x8DCT, SignBiasCheck) { RunSignBiasCheck(); } + +TEST_P(FwdTrans8x8DCT, RoundTripErrorCheck) { RunRoundTripErrorCheck(); } + +TEST_P(FwdTrans8x8DCT, ExtremalCheck) { RunExtremalCheck(); } + +TEST_P(FwdTrans8x8DCT, FwdAccuracyCheck) { RunFwdAccuracyCheck(); } + +TEST_P(FwdTrans8x8DCT, InvAccuracyCheck) { RunInvAccuracyCheck(); } + +class FwdTrans8x8HT : public FwdTrans8x8TestBase, + public ::testing::TestWithParam { + public: + virtual ~FwdTrans8x8HT() {} + + virtual void SetUp() { + fwd_txfm_ = GET_PARAM(0); + inv_txfm_ = GET_PARAM(1); + tx_type_ = GET_PARAM(2); + pitch_ = 8; + fwd_txfm_ref = fht8x8_ref; + bit_depth_ = GET_PARAM(3); + mask_ = (1 << bit_depth_) - 1; + } + + virtual void TearDown() { libvpx_test::ClearSystemState(); } + + protected: + void RunFwdTxfm(int16_t *in, tran_low_t *out, int stride) { + fwd_txfm_(in, out, stride, tx_type_); + } + void RunInvTxfm(tran_low_t *out, uint8_t *dst, int stride) { + inv_txfm_(out, dst, stride, tx_type_); + } + + FhtFunc fwd_txfm_; + IhtFunc inv_txfm_; +}; + +TEST_P(FwdTrans8x8HT, SignBiasCheck) { RunSignBiasCheck(); } + +TEST_P(FwdTrans8x8HT, RoundTripErrorCheck) { RunRoundTripErrorCheck(); } + +TEST_P(FwdTrans8x8HT, ExtremalCheck) { RunExtremalCheck(); } + +class InvTrans8x8DCT : public FwdTrans8x8TestBase, + public ::testing::TestWithParam { + public: + virtual ~InvTrans8x8DCT() {} + + virtual void SetUp() { + ref_txfm_ = GET_PARAM(0); + inv_txfm_ = GET_PARAM(1); + thresh_ = GET_PARAM(2); + pitch_ = 8; + bit_depth_ = GET_PARAM(3); + mask_ = (1 << bit_depth_) - 1; + } + + virtual void TearDown() { libvpx_test::ClearSystemState(); } + + protected: + void RunInvTxfm(tran_low_t *out, uint8_t *dst, int stride) { + inv_txfm_(out, dst, stride); + } + void RunFwdTxfm(int16_t * /*out*/, tran_low_t * /*dst*/, int /*stride*/) {} + + IdctFunc ref_txfm_; + IdctFunc inv_txfm_; + int thresh_; +}; + +TEST_P(InvTrans8x8DCT, CompareReference) { + CompareInvReference(ref_txfm_, thresh_); +} + +using std::tr1::make_tuple; + +#if CONFIG_VP9_HIGHBITDEPTH +INSTANTIATE_TEST_CASE_P( + C, FwdTrans8x8DCT, + ::testing::Values( + make_tuple(&vpx_fdct8x8_c, &vpx_idct8x8_64_add_c, 0, VPX_BITS_8), + make_tuple(&vpx_highbd_fdct8x8_c, &idct8x8_10, 0, VPX_BITS_10), + make_tuple(&vpx_highbd_fdct8x8_c, &idct8x8_12, 0, VPX_BITS_12))); +#else +INSTANTIATE_TEST_CASE_P(C, FwdTrans8x8DCT, + ::testing::Values(make_tuple(&vpx_fdct8x8_c, + &vpx_idct8x8_64_add_c, 0, + VPX_BITS_8))); +#endif // CONFIG_VP9_HIGHBITDEPTH + +#if CONFIG_VP9_HIGHBITDEPTH +INSTANTIATE_TEST_CASE_P( + C, FwdTrans8x8HT, + ::testing::Values( + make_tuple(&vp9_fht8x8_c, &vp9_iht8x8_64_add_c, 0, VPX_BITS_8), + make_tuple(&vp9_highbd_fht8x8_c, &iht8x8_10, 0, VPX_BITS_10), + make_tuple(&vp9_highbd_fht8x8_c, &iht8x8_10, 1, VPX_BITS_10), + make_tuple(&vp9_highbd_fht8x8_c, &iht8x8_10, 2, VPX_BITS_10), + make_tuple(&vp9_highbd_fht8x8_c, &iht8x8_10, 3, VPX_BITS_10), + make_tuple(&vp9_highbd_fht8x8_c, &iht8x8_12, 0, VPX_BITS_12), + make_tuple(&vp9_highbd_fht8x8_c, &iht8x8_12, 1, VPX_BITS_12), + make_tuple(&vp9_highbd_fht8x8_c, &iht8x8_12, 2, VPX_BITS_12), + make_tuple(&vp9_highbd_fht8x8_c, &iht8x8_12, 3, VPX_BITS_12), + make_tuple(&vp9_fht8x8_c, &vp9_iht8x8_64_add_c, 1, VPX_BITS_8), + make_tuple(&vp9_fht8x8_c, &vp9_iht8x8_64_add_c, 2, VPX_BITS_8), + make_tuple(&vp9_fht8x8_c, &vp9_iht8x8_64_add_c, 3, VPX_BITS_8))); +#else +INSTANTIATE_TEST_CASE_P( + C, FwdTrans8x8HT, + ::testing::Values( + make_tuple(&vp9_fht8x8_c, &vp9_iht8x8_64_add_c, 0, VPX_BITS_8), + make_tuple(&vp9_fht8x8_c, &vp9_iht8x8_64_add_c, 1, VPX_BITS_8), + make_tuple(&vp9_fht8x8_c, &vp9_iht8x8_64_add_c, 2, VPX_BITS_8), + make_tuple(&vp9_fht8x8_c, &vp9_iht8x8_64_add_c, 3, VPX_BITS_8))); +#endif // CONFIG_VP9_HIGHBITDEPTH + +#if HAVE_NEON && !CONFIG_EMULATE_HARDWARE +INSTANTIATE_TEST_CASE_P(NEON, FwdTrans8x8DCT, + ::testing::Values(make_tuple(&vpx_fdct8x8_neon, + &vpx_idct8x8_64_add_neon, + 0, VPX_BITS_8))); +#if !CONFIG_VP9_HIGHBITDEPTH +INSTANTIATE_TEST_CASE_P( + NEON, FwdTrans8x8HT, + ::testing::Values( + make_tuple(&vp9_fht8x8_c, &vp9_iht8x8_64_add_neon, 0, VPX_BITS_8), + make_tuple(&vp9_fht8x8_c, &vp9_iht8x8_64_add_neon, 1, VPX_BITS_8), + make_tuple(&vp9_fht8x8_c, &vp9_iht8x8_64_add_neon, 2, VPX_BITS_8), + make_tuple(&vp9_fht8x8_c, &vp9_iht8x8_64_add_neon, 3, VPX_BITS_8))); +#endif // !CONFIG_VP9_HIGHBITDEPTH +#endif // HAVE_NEON && !CONFIG_EMULATE_HARDWARE + +#if HAVE_SSE2 && !CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE +INSTANTIATE_TEST_CASE_P(SSE2, FwdTrans8x8DCT, + ::testing::Values(make_tuple(&vpx_fdct8x8_sse2, + &vpx_idct8x8_64_add_sse2, + 0, VPX_BITS_8))); +INSTANTIATE_TEST_CASE_P( + SSE2, FwdTrans8x8HT, + ::testing::Values( + make_tuple(&vp9_fht8x8_sse2, &vp9_iht8x8_64_add_sse2, 0, VPX_BITS_8), + make_tuple(&vp9_fht8x8_sse2, &vp9_iht8x8_64_add_sse2, 1, VPX_BITS_8), + make_tuple(&vp9_fht8x8_sse2, &vp9_iht8x8_64_add_sse2, 2, VPX_BITS_8), + make_tuple(&vp9_fht8x8_sse2, &vp9_iht8x8_64_add_sse2, 3, VPX_BITS_8))); +#endif // HAVE_SSE2 && !CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE + +#if HAVE_SSE2 && CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE +INSTANTIATE_TEST_CASE_P( + SSE2, FwdTrans8x8DCT, + ::testing::Values(make_tuple(&vpx_fdct8x8_sse2, &vpx_idct8x8_64_add_c, 0, + VPX_BITS_8), + make_tuple(&vpx_highbd_fdct8x8_c, &idct8x8_64_add_10_sse2, + 12, VPX_BITS_10), + make_tuple(&vpx_highbd_fdct8x8_sse2, + &idct8x8_64_add_10_sse2, 12, VPX_BITS_10), + make_tuple(&vpx_highbd_fdct8x8_c, &idct8x8_64_add_12_sse2, + 12, VPX_BITS_12), + make_tuple(&vpx_highbd_fdct8x8_sse2, + &idct8x8_64_add_12_sse2, 12, VPX_BITS_12))); + +INSTANTIATE_TEST_CASE_P( + SSE2, FwdTrans8x8HT, + ::testing::Values( + make_tuple(&vp9_fht8x8_sse2, &vp9_iht8x8_64_add_c, 0, VPX_BITS_8), + make_tuple(&vp9_fht8x8_sse2, &vp9_iht8x8_64_add_c, 1, VPX_BITS_8), + make_tuple(&vp9_fht8x8_sse2, &vp9_iht8x8_64_add_c, 2, VPX_BITS_8), + make_tuple(&vp9_fht8x8_sse2, &vp9_iht8x8_64_add_c, 3, VPX_BITS_8))); + +// Optimizations take effect at a threshold of 6201, so we use a value close to +// that to test both branches. +INSTANTIATE_TEST_CASE_P( + SSE2, InvTrans8x8DCT, + ::testing::Values( + make_tuple(&idct8x8_12_add_10_c, &idct8x8_12_add_10_sse2, 6225, + VPX_BITS_10), + make_tuple(&idct8x8_10, &idct8x8_64_add_10_sse2, 6225, VPX_BITS_10), + make_tuple(&idct8x8_12_add_12_c, &idct8x8_12_add_12_sse2, 6225, + VPX_BITS_12), + make_tuple(&idct8x8_12, &idct8x8_64_add_12_sse2, 6225, VPX_BITS_12))); +#endif // HAVE_SSE2 && CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE + +#if HAVE_SSSE3 && ARCH_X86_64 && !CONFIG_VP9_HIGHBITDEPTH && \ + !CONFIG_EMULATE_HARDWARE +INSTANTIATE_TEST_CASE_P(SSSE3, FwdTrans8x8DCT, + ::testing::Values(make_tuple(&vpx_fdct8x8_ssse3, + &vpx_idct8x8_64_add_sse2, + 0, VPX_BITS_8))); +#endif + +#if HAVE_MSA && !CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE +INSTANTIATE_TEST_CASE_P(MSA, FwdTrans8x8DCT, + ::testing::Values(make_tuple(&vpx_fdct8x8_msa, + &vpx_idct8x8_64_add_msa, 0, + VPX_BITS_8))); +INSTANTIATE_TEST_CASE_P( + MSA, FwdTrans8x8HT, + ::testing::Values( + make_tuple(&vp9_fht8x8_msa, &vp9_iht8x8_64_add_msa, 0, VPX_BITS_8), + make_tuple(&vp9_fht8x8_msa, &vp9_iht8x8_64_add_msa, 1, VPX_BITS_8), + make_tuple(&vp9_fht8x8_msa, &vp9_iht8x8_64_add_msa, 2, VPX_BITS_8), + make_tuple(&vp9_fht8x8_msa, &vp9_iht8x8_64_add_msa, 3, VPX_BITS_8))); +#endif // HAVE_MSA && !CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE + +#if HAVE_VSX && !CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE +INSTANTIATE_TEST_CASE_P(VSX, FwdTrans8x8DCT, + ::testing::Values(make_tuple(&vpx_fdct8x8_c, + &vpx_idct8x8_64_add_vsx, 0, + VPX_BITS_8))); +#endif // HAVE_VSX && !CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE +} // namespace diff --git a/test/frame_size_tests.cc b/test/frame_size_tests.cc new file mode 100644 index 0000000..5a9b166 --- /dev/null +++ b/test/frame_size_tests.cc @@ -0,0 +1,95 @@ +/* + * Copyright (c) 2014 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ +#include "third_party/googletest/src/include/gtest/gtest.h" +#include "test/codec_factory.h" +#include "test/video_source.h" + +namespace { + +class VP9FrameSizeTestsLarge : public ::libvpx_test::EncoderTest, + public ::testing::Test { + protected: + VP9FrameSizeTestsLarge() + : EncoderTest(&::libvpx_test::kVP9), expected_res_(VPX_CODEC_OK) {} + virtual ~VP9FrameSizeTestsLarge() {} + + virtual void SetUp() { + InitializeConfig(); + SetMode(::libvpx_test::kRealTime); + } + + virtual bool HandleDecodeResult(const vpx_codec_err_t res_dec, + const libvpx_test::VideoSource & /*video*/, + libvpx_test::Decoder *decoder) { + EXPECT_EQ(expected_res_, res_dec) << decoder->DecodeError(); + return !::testing::Test::HasFailure(); + } + + virtual void PreEncodeFrameHook(::libvpx_test::VideoSource *video, + ::libvpx_test::Encoder *encoder) { + if (video->frame() == 1) { + encoder->Control(VP8E_SET_CPUUSED, 7); + encoder->Control(VP8E_SET_ENABLEAUTOALTREF, 1); + encoder->Control(VP8E_SET_ARNR_MAXFRAMES, 7); + encoder->Control(VP8E_SET_ARNR_STRENGTH, 5); + encoder->Control(VP8E_SET_ARNR_TYPE, 3); + } + } + + int expected_res_; +}; + +TEST_F(VP9FrameSizeTestsLarge, TestInvalidSizes) { + ::libvpx_test::RandomVideoSource video; + +#if CONFIG_SIZE_LIMIT + video.SetSize(DECODE_WIDTH_LIMIT + 16, DECODE_HEIGHT_LIMIT + 16); + video.set_limit(2); + expected_res_ = VPX_CODEC_CORRUPT_FRAME; + ASSERT_NO_FATAL_FAILURE(RunLoop(&video)); +#endif +} + +TEST_F(VP9FrameSizeTestsLarge, ValidSizes) { + ::libvpx_test::RandomVideoSource video; + +#if CONFIG_SIZE_LIMIT + video.SetSize(DECODE_WIDTH_LIMIT, DECODE_HEIGHT_LIMIT); + video.set_limit(2); + expected_res_ = VPX_CODEC_OK; + ASSERT_NO_FATAL_FAILURE(RunLoop(&video)); +#else +// This test produces a pretty large single frame allocation, (roughly +// 25 megabits). The encoder allocates a good number of these frames +// one for each lag in frames (for 2 pass), and then one for each possible +// reference buffer (8) - we can end up with up to 30 buffers of roughly this +// size or almost 1 gig of memory. +// In total the allocations will exceed 2GiB which may cause a failure with +// mingw + wine, use a smaller size in that case. +#if defined(_WIN32) && !defined(_WIN64) || defined(__OS2__) + video.SetSize(4096, 3072); +#else + video.SetSize(4096, 4096); +#endif + video.set_limit(2); + expected_res_ = VPX_CODEC_OK; + ASSERT_NO_FATAL_FAILURE(RunLoop(&video)); +#endif +} + +TEST_F(VP9FrameSizeTestsLarge, OneByOneVideo) { + ::libvpx_test::RandomVideoSource video; + + video.SetSize(1, 1); + video.set_limit(2); + expected_res_ = VPX_CODEC_OK; + ASSERT_NO_FATAL_FAILURE(RunLoop(&video)); +} +} // namespace diff --git a/test/hadamard_test.cc b/test/hadamard_test.cc new file mode 100644 index 0000000..3b7cfed --- /dev/null +++ b/test/hadamard_test.cc @@ -0,0 +1,293 @@ +/* + * Copyright (c) 2016 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include + +#include "third_party/googletest/src/include/gtest/gtest.h" + +#include "./vpx_dsp_rtcd.h" +#include "vpx_ports/vpx_timer.h" + +#include "test/acm_random.h" +#include "test/register_state_check.h" + +namespace { + +using ::libvpx_test::ACMRandom; + +typedef void (*HadamardFunc)(const int16_t *a, ptrdiff_t a_stride, + tran_low_t *b); + +void hadamard_loop(const int16_t *a, int a_stride, int16_t *out) { + int16_t b[8]; + for (int i = 0; i < 8; i += 2) { + b[i + 0] = a[i * a_stride] + a[(i + 1) * a_stride]; + b[i + 1] = a[i * a_stride] - a[(i + 1) * a_stride]; + } + int16_t c[8]; + for (int i = 0; i < 8; i += 4) { + c[i + 0] = b[i + 0] + b[i + 2]; + c[i + 1] = b[i + 1] + b[i + 3]; + c[i + 2] = b[i + 0] - b[i + 2]; + c[i + 3] = b[i + 1] - b[i + 3]; + } + out[0] = c[0] + c[4]; + out[7] = c[1] + c[5]; + out[3] = c[2] + c[6]; + out[4] = c[3] + c[7]; + out[2] = c[0] - c[4]; + out[6] = c[1] - c[5]; + out[1] = c[2] - c[6]; + out[5] = c[3] - c[7]; +} + +void reference_hadamard8x8(const int16_t *a, int a_stride, tran_low_t *b) { + int16_t buf[64]; + int16_t buf2[64]; + for (int i = 0; i < 8; ++i) hadamard_loop(a + i, a_stride, buf + i * 8); + for (int i = 0; i < 8; ++i) hadamard_loop(buf + i, 8, buf2 + i * 8); + + for (int i = 0; i < 64; ++i) b[i] = (tran_low_t)buf2[i]; +} + +void reference_hadamard16x16(const int16_t *a, int a_stride, tran_low_t *b) { + /* The source is a 16x16 block. The destination is rearranged to 8x32. + * Input is 9 bit. */ + reference_hadamard8x8(a + 0 + 0 * a_stride, a_stride, b + 0); + reference_hadamard8x8(a + 8 + 0 * a_stride, a_stride, b + 64); + reference_hadamard8x8(a + 0 + 8 * a_stride, a_stride, b + 128); + reference_hadamard8x8(a + 8 + 8 * a_stride, a_stride, b + 192); + + /* Overlay the 8x8 blocks and combine. */ + for (int i = 0; i < 64; ++i) { + /* 8x8 steps the range up to 15 bits. */ + const tran_low_t a0 = b[0]; + const tran_low_t a1 = b[64]; + const tran_low_t a2 = b[128]; + const tran_low_t a3 = b[192]; + + /* Prevent the result from escaping int16_t. */ + const tran_low_t b0 = (a0 + a1) >> 1; + const tran_low_t b1 = (a0 - a1) >> 1; + const tran_low_t b2 = (a2 + a3) >> 1; + const tran_low_t b3 = (a2 - a3) >> 1; + + /* Store a 16 bit value. */ + b[0] = b0 + b2; + b[64] = b1 + b3; + b[128] = b0 - b2; + b[192] = b1 - b3; + + ++b; + } +} + +class HadamardTestBase : public ::testing::TestWithParam { + public: + virtual void SetUp() { + h_func_ = GetParam(); + rnd_.Reset(ACMRandom::DeterministicSeed()); + } + + protected: + HadamardFunc h_func_; + ACMRandom rnd_; +}; + +void HadamardSpeedTest(const char *name, HadamardFunc const func, + const int16_t *input, int stride, tran_low_t *output, + int times) { + int i; + vpx_usec_timer timer; + + vpx_usec_timer_start(&timer); + for (i = 0; i < times; ++i) { + func(input, stride, output); + } + vpx_usec_timer_mark(&timer); + + const int elapsed_time = static_cast(vpx_usec_timer_elapsed(&timer)); + printf("%s[%12d runs]: %d us\n", name, times, elapsed_time); +} + +class Hadamard8x8Test : public HadamardTestBase {}; + +void HadamardSpeedTest8x8(HadamardFunc const func, int times) { + DECLARE_ALIGNED(16, int16_t, input[64]); + DECLARE_ALIGNED(16, tran_low_t, output[64]); + memset(input, 1, sizeof(input)); + HadamardSpeedTest("Hadamard8x8", func, input, 8, output, times); +} + +TEST_P(Hadamard8x8Test, CompareReferenceRandom) { + DECLARE_ALIGNED(16, int16_t, a[64]); + DECLARE_ALIGNED(16, tran_low_t, b[64]); + tran_low_t b_ref[64]; + for (int i = 0; i < 64; ++i) { + a[i] = rnd_.Rand9Signed(); + } + memset(b, 0, sizeof(b)); + memset(b_ref, 0, sizeof(b_ref)); + + reference_hadamard8x8(a, 8, b_ref); + ASM_REGISTER_STATE_CHECK(h_func_(a, 8, b)); + + // The order of the output is not important. Sort before checking. + std::sort(b, b + 64); + std::sort(b_ref, b_ref + 64); + EXPECT_EQ(0, memcmp(b, b_ref, sizeof(b))); +} + +TEST_P(Hadamard8x8Test, VaryStride) { + DECLARE_ALIGNED(16, int16_t, a[64 * 8]); + DECLARE_ALIGNED(16, tran_low_t, b[64]); + tran_low_t b_ref[64]; + for (int i = 0; i < 64 * 8; ++i) { + a[i] = rnd_.Rand9Signed(); + } + + for (int i = 8; i < 64; i += 8) { + memset(b, 0, sizeof(b)); + memset(b_ref, 0, sizeof(b_ref)); + + reference_hadamard8x8(a, i, b_ref); + ASM_REGISTER_STATE_CHECK(h_func_(a, i, b)); + + // The order of the output is not important. Sort before checking. + std::sort(b, b + 64); + std::sort(b_ref, b_ref + 64); + EXPECT_EQ(0, memcmp(b, b_ref, sizeof(b))); + } +} + +TEST_P(Hadamard8x8Test, DISABLED_Speed) { + HadamardSpeedTest8x8(h_func_, 10); + HadamardSpeedTest8x8(h_func_, 10000); + HadamardSpeedTest8x8(h_func_, 10000000); +} + +INSTANTIATE_TEST_CASE_P(C, Hadamard8x8Test, + ::testing::Values(&vpx_hadamard_8x8_c)); + +#if HAVE_SSE2 +INSTANTIATE_TEST_CASE_P(SSE2, Hadamard8x8Test, + ::testing::Values(&vpx_hadamard_8x8_sse2)); +#endif // HAVE_SSE2 + +#if HAVE_SSSE3 && ARCH_X86_64 +INSTANTIATE_TEST_CASE_P(SSSE3, Hadamard8x8Test, + ::testing::Values(&vpx_hadamard_8x8_ssse3)); +#endif // HAVE_SSSE3 && ARCH_X86_64 + +#if HAVE_NEON +INSTANTIATE_TEST_CASE_P(NEON, Hadamard8x8Test, + ::testing::Values(&vpx_hadamard_8x8_neon)); +#endif // HAVE_NEON + +// TODO(jingning): Remove highbitdepth flag when the SIMD functions are +// in place and turn on the unit test. +#if !CONFIG_VP9_HIGHBITDEPTH +#if HAVE_MSA +INSTANTIATE_TEST_CASE_P(MSA, Hadamard8x8Test, + ::testing::Values(&vpx_hadamard_8x8_msa)); +#endif // HAVE_MSA +#endif // !CONFIG_VP9_HIGHBITDEPTH + +#if HAVE_VSX +INSTANTIATE_TEST_CASE_P(VSX, Hadamard8x8Test, + ::testing::Values(&vpx_hadamard_8x8_vsx)); +#endif // HAVE_VSX + +class Hadamard16x16Test : public HadamardTestBase {}; + +void HadamardSpeedTest16x16(HadamardFunc const func, int times) { + DECLARE_ALIGNED(16, int16_t, input[256]); + DECLARE_ALIGNED(16, tran_low_t, output[256]); + memset(input, 1, sizeof(input)); + HadamardSpeedTest("Hadamard16x16", func, input, 16, output, times); +} + +TEST_P(Hadamard16x16Test, CompareReferenceRandom) { + DECLARE_ALIGNED(16, int16_t, a[16 * 16]); + DECLARE_ALIGNED(16, tran_low_t, b[16 * 16]); + tran_low_t b_ref[16 * 16]; + for (int i = 0; i < 16 * 16; ++i) { + a[i] = rnd_.Rand9Signed(); + } + memset(b, 0, sizeof(b)); + memset(b_ref, 0, sizeof(b_ref)); + + reference_hadamard16x16(a, 16, b_ref); + ASM_REGISTER_STATE_CHECK(h_func_(a, 16, b)); + + // The order of the output is not important. Sort before checking. + std::sort(b, b + 16 * 16); + std::sort(b_ref, b_ref + 16 * 16); + EXPECT_EQ(0, memcmp(b, b_ref, sizeof(b))); +} + +TEST_P(Hadamard16x16Test, VaryStride) { + DECLARE_ALIGNED(16, int16_t, a[16 * 16 * 8]); + DECLARE_ALIGNED(16, tran_low_t, b[16 * 16]); + tran_low_t b_ref[16 * 16]; + for (int i = 0; i < 16 * 16 * 8; ++i) { + a[i] = rnd_.Rand9Signed(); + } + + for (int i = 8; i < 64; i += 8) { + memset(b, 0, sizeof(b)); + memset(b_ref, 0, sizeof(b_ref)); + + reference_hadamard16x16(a, i, b_ref); + ASM_REGISTER_STATE_CHECK(h_func_(a, i, b)); + + // The order of the output is not important. Sort before checking. + std::sort(b, b + 16 * 16); + std::sort(b_ref, b_ref + 16 * 16); + EXPECT_EQ(0, memcmp(b, b_ref, sizeof(b))); + } +} + +TEST_P(Hadamard16x16Test, DISABLED_Speed) { + HadamardSpeedTest16x16(h_func_, 10); + HadamardSpeedTest16x16(h_func_, 10000); + HadamardSpeedTest16x16(h_func_, 10000000); +} + +INSTANTIATE_TEST_CASE_P(C, Hadamard16x16Test, + ::testing::Values(&vpx_hadamard_16x16_c)); + +#if HAVE_SSE2 +INSTANTIATE_TEST_CASE_P(SSE2, Hadamard16x16Test, + ::testing::Values(&vpx_hadamard_16x16_sse2)); +#endif // HAVE_SSE2 + +#if HAVE_AVX2 +INSTANTIATE_TEST_CASE_P(AVX2, Hadamard16x16Test, + ::testing::Values(&vpx_hadamard_16x16_avx2)); +#endif // HAVE_AVX2 + +#if HAVE_VSX +INSTANTIATE_TEST_CASE_P(VSX, Hadamard16x16Test, + ::testing::Values(&vpx_hadamard_16x16_vsx)); +#endif // HAVE_VSX + +#if HAVE_NEON +INSTANTIATE_TEST_CASE_P(NEON, Hadamard16x16Test, + ::testing::Values(&vpx_hadamard_16x16_neon)); +#endif // HAVE_NEON + +#if !CONFIG_VP9_HIGHBITDEPTH +#if HAVE_MSA +INSTANTIATE_TEST_CASE_P(MSA, Hadamard16x16Test, + ::testing::Values(&vpx_hadamard_16x16_msa)); +#endif // HAVE_MSA +#endif // !CONFIG_VP9_HIGHBITDEPTH +} // namespace diff --git a/test/i420_video_source.h b/test/i420_video_source.h new file mode 100644 index 0000000..4957382 --- /dev/null +++ b/test/i420_video_source.h @@ -0,0 +1,33 @@ +/* + * Copyright (c) 2012 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ +#ifndef TEST_I420_VIDEO_SOURCE_H_ +#define TEST_I420_VIDEO_SOURCE_H_ +#include +#include +#include + +#include "test/yuv_video_source.h" + +namespace libvpx_test { + +// This class extends VideoSource to allow parsing of raw yv12 +// so that we can do actual file encodes. +class I420VideoSource : public YUVVideoSource { + public: + I420VideoSource(const std::string &file_name, unsigned int width, + unsigned int height, int rate_numerator, int rate_denominator, + unsigned int start, int limit) + : YUVVideoSource(file_name, VPX_IMG_FMT_I420, width, height, + rate_numerator, rate_denominator, start, limit) {} +}; + +} // namespace libvpx_test + +#endif // TEST_I420_VIDEO_SOURCE_H_ diff --git a/test/idct8x8_test.cc b/test/idct8x8_test.cc new file mode 100644 index 0000000..7951bb9 --- /dev/null +++ b/test/idct8x8_test.cc @@ -0,0 +1,87 @@ +/* + * Copyright (c) 2012 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include +#include + +#include "third_party/googletest/src/include/gtest/gtest.h" + +#include "./vpx_dsp_rtcd.h" +#include "test/acm_random.h" +#include "vpx/vpx_integer.h" +#include "vpx_ports/msvc.h" // for round() + +using libvpx_test::ACMRandom; + +namespace { + +void reference_dct_1d(double input[8], double output[8]) { + const double kPi = 3.141592653589793238462643383279502884; + const double kInvSqrt2 = 0.707106781186547524400844362104; + for (int k = 0; k < 8; k++) { + output[k] = 0.0; + for (int n = 0; n < 8; n++) { + output[k] += input[n] * cos(kPi * (2 * n + 1) * k / 16.0); + } + if (k == 0) output[k] = output[k] * kInvSqrt2; + } +} + +void reference_dct_2d(int16_t input[64], double output[64]) { + // First transform columns + for (int i = 0; i < 8; ++i) { + double temp_in[8], temp_out[8]; + for (int j = 0; j < 8; ++j) temp_in[j] = input[j * 8 + i]; + reference_dct_1d(temp_in, temp_out); + for (int j = 0; j < 8; ++j) output[j * 8 + i] = temp_out[j]; + } + // Then transform rows + for (int i = 0; i < 8; ++i) { + double temp_in[8], temp_out[8]; + for (int j = 0; j < 8; ++j) temp_in[j] = output[j + i * 8]; + reference_dct_1d(temp_in, temp_out); + for (int j = 0; j < 8; ++j) output[j + i * 8] = temp_out[j]; + } + // Scale by some magic number + for (int i = 0; i < 64; ++i) output[i] *= 2; +} + +TEST(VP9Idct8x8Test, AccuracyCheck) { + ACMRandom rnd(ACMRandom::DeterministicSeed()); + const int count_test_block = 10000; + for (int i = 0; i < count_test_block; ++i) { + int16_t input[64]; + tran_low_t coeff[64]; + double output_r[64]; + uint8_t dst[64], src[64]; + + for (int j = 0; j < 64; ++j) { + src[j] = rnd.Rand8(); + dst[j] = rnd.Rand8(); + } + // Initialize a test block with input range [-255, 255]. + for (int j = 0; j < 64; ++j) input[j] = src[j] - dst[j]; + + reference_dct_2d(input, output_r); + for (int j = 0; j < 64; ++j) { + coeff[j] = static_cast(round(output_r[j])); + } + vpx_idct8x8_64_add_c(coeff, dst, 8); + for (int j = 0; j < 64; ++j) { + const int diff = dst[j] - src[j]; + const int error = diff * diff; + EXPECT_GE(1, error) << "Error: 8x8 FDCT/IDCT has error " << error + << " at index " << j; + } + } +} + +} // namespace diff --git a/test/idct_test.cc b/test/idct_test.cc new file mode 100644 index 0000000..3700374 --- /dev/null +++ b/test/idct_test.cc @@ -0,0 +1,177 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "./vpx_config.h" +#include "./vp8_rtcd.h" + +#include "third_party/googletest/src/include/gtest/gtest.h" + +#include "test/buffer.h" +#include "test/clear_system_state.h" +#include "test/register_state_check.h" +#include "vpx/vpx_integer.h" + +typedef void (*IdctFunc)(int16_t *input, unsigned char *pred_ptr, + int pred_stride, unsigned char *dst_ptr, + int dst_stride); +namespace { + +using libvpx_test::Buffer; + +class IDCTTest : public ::testing::TestWithParam { + protected: + virtual void SetUp() { + UUT = GetParam(); + + input = new Buffer(4, 4, 0); + ASSERT_TRUE(input != NULL); + ASSERT_TRUE(input->Init()); + predict = new Buffer(4, 4, 3); + ASSERT_TRUE(predict != NULL); + ASSERT_TRUE(predict->Init()); + output = new Buffer(4, 4, 3); + ASSERT_TRUE(output != NULL); + ASSERT_TRUE(output->Init()); + } + + virtual void TearDown() { + delete input; + delete predict; + delete output; + libvpx_test::ClearSystemState(); + } + + IdctFunc UUT; + Buffer *input; + Buffer *predict; + Buffer *output; +}; + +TEST_P(IDCTTest, TestAllZeros) { + // When the input is '0' the output will be '0'. + input->Set(0); + predict->Set(0); + output->Set(0); + + ASM_REGISTER_STATE_CHECK(UUT(input->TopLeftPixel(), predict->TopLeftPixel(), + predict->stride(), output->TopLeftPixel(), + output->stride())); + + ASSERT_TRUE(input->CheckValues(0)); + ASSERT_TRUE(input->CheckPadding()); + ASSERT_TRUE(output->CheckValues(0)); + ASSERT_TRUE(output->CheckPadding()); +} + +TEST_P(IDCTTest, TestAllOnes) { + input->Set(0); + // When the first element is '4' it will fill the output buffer with '1'. + input->TopLeftPixel()[0] = 4; + predict->Set(0); + output->Set(0); + + ASM_REGISTER_STATE_CHECK(UUT(input->TopLeftPixel(), predict->TopLeftPixel(), + predict->stride(), output->TopLeftPixel(), + output->stride())); + + ASSERT_TRUE(output->CheckValues(1)); + ASSERT_TRUE(output->CheckPadding()); +} + +TEST_P(IDCTTest, TestAddOne) { + // Set the transform output to '1' and make sure it gets added to the + // prediction buffer. + input->Set(0); + input->TopLeftPixel()[0] = 4; + output->Set(0); + + uint8_t *pred = predict->TopLeftPixel(); + for (int y = 0; y < 4; ++y) { + for (int x = 0; x < 4; ++x) { + pred[y * predict->stride() + x] = y * 4 + x; + } + } + + ASM_REGISTER_STATE_CHECK(UUT(input->TopLeftPixel(), predict->TopLeftPixel(), + predict->stride(), output->TopLeftPixel(), + output->stride())); + + uint8_t const *out = output->TopLeftPixel(); + for (int y = 0; y < 4; ++y) { + for (int x = 0; x < 4; ++x) { + EXPECT_EQ(1 + y * 4 + x, out[y * output->stride() + x]); + } + } + + if (HasFailure()) { + output->DumpBuffer(); + } + + ASSERT_TRUE(output->CheckPadding()); +} + +TEST_P(IDCTTest, TestWithData) { + // Test a single known input. + predict->Set(0); + + int16_t *in = input->TopLeftPixel(); + for (int y = 0; y < 4; ++y) { + for (int x = 0; x < 4; ++x) { + in[y * input->stride() + x] = y * 4 + x; + } + } + + ASM_REGISTER_STATE_CHECK(UUT(input->TopLeftPixel(), predict->TopLeftPixel(), + predict->stride(), output->TopLeftPixel(), + output->stride())); + + uint8_t *out = output->TopLeftPixel(); + for (int y = 0; y < 4; ++y) { + for (int x = 0; x < 4; ++x) { + switch (y * 4 + x) { + case 0: EXPECT_EQ(11, out[y * output->stride() + x]); break; + case 2: + case 5: + case 8: EXPECT_EQ(3, out[y * output->stride() + x]); break; + case 10: EXPECT_EQ(1, out[y * output->stride() + x]); break; + default: EXPECT_EQ(0, out[y * output->stride() + x]); + } + } + } + + if (HasFailure()) { + output->DumpBuffer(); + } + + ASSERT_TRUE(output->CheckPadding()); +} + +INSTANTIATE_TEST_CASE_P(C, IDCTTest, ::testing::Values(vp8_short_idct4x4llm_c)); + +#if HAVE_NEON +INSTANTIATE_TEST_CASE_P(NEON, IDCTTest, + ::testing::Values(vp8_short_idct4x4llm_neon)); +#endif // HAVE_NEON + +#if HAVE_MMX +INSTANTIATE_TEST_CASE_P(MMX, IDCTTest, + ::testing::Values(vp8_short_idct4x4llm_mmx)); +#endif // HAVE_MMX + +#if HAVE_MSA +INSTANTIATE_TEST_CASE_P(MSA, IDCTTest, + ::testing::Values(vp8_short_idct4x4llm_msa)); +#endif // HAVE_MSA + +#if HAVE_MMI +INSTANTIATE_TEST_CASE_P(MMI, IDCTTest, + ::testing::Values(vp8_short_idct4x4llm_mmi)); +#endif // HAVE_MMI +} diff --git a/test/invalid_file_test.cc b/test/invalid_file_test.cc new file mode 100644 index 0000000..79220b0 --- /dev/null +++ b/test/invalid_file_test.cc @@ -0,0 +1,214 @@ +/* + * Copyright (c) 2014 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include +#include +#include +#include "third_party/googletest/src/include/gtest/gtest.h" +#include "./vpx_config.h" +#include "test/codec_factory.h" +#include "test/decode_test_driver.h" +#include "test/ivf_video_source.h" +#include "test/util.h" +#if CONFIG_WEBM_IO +#include "test/webm_video_source.h" +#endif +#include "vpx_mem/vpx_mem.h" + +namespace { + +struct DecodeParam { + int threads; + const char *filename; +}; + +std::ostream &operator<<(std::ostream &os, const DecodeParam &dp) { + return os << "threads: " << dp.threads << " file: " << dp.filename; +} + +class InvalidFileTest : public ::libvpx_test::DecoderTest, + public ::libvpx_test::CodecTestWithParam { + protected: + InvalidFileTest() : DecoderTest(GET_PARAM(0)), res_file_(NULL) {} + + virtual ~InvalidFileTest() { + if (res_file_ != NULL) fclose(res_file_); + } + + void OpenResFile(const std::string &res_file_name_) { + res_file_ = libvpx_test::OpenTestDataFile(res_file_name_); + ASSERT_TRUE(res_file_ != NULL) + << "Result file open failed. Filename: " << res_file_name_; + } + + virtual bool HandleDecodeResult( + const vpx_codec_err_t res_dec, + const libvpx_test::CompressedVideoSource &video, + libvpx_test::Decoder *decoder) { + EXPECT_TRUE(res_file_ != NULL); + int expected_res_dec; + + // Read integer result. + const int res = fscanf(res_file_, "%d", &expected_res_dec); + EXPECT_NE(res, EOF) << "Read result data failed"; + + // Check results match. + const DecodeParam input = GET_PARAM(1); + if (input.threads > 1) { + // The serial decode check is too strict for tile-threaded decoding as + // there is no guarantee on the decode order nor which specific error + // will take precedence. Currently a tile-level error is not forwarded so + // the frame will simply be marked corrupt. + EXPECT_TRUE(res_dec == expected_res_dec || + res_dec == VPX_CODEC_CORRUPT_FRAME) + << "Results don't match: frame number = " << video.frame_number() + << ". (" << decoder->DecodeError() + << "). Expected: " << expected_res_dec << " or " + << VPX_CODEC_CORRUPT_FRAME; + } else { + EXPECT_EQ(expected_res_dec, res_dec) + << "Results don't match: frame number = " << video.frame_number() + << ". (" << decoder->DecodeError() << ")"; + } + + return !HasFailure(); + } + + void RunTest() { + const DecodeParam input = GET_PARAM(1); + vpx_codec_dec_cfg_t cfg = vpx_codec_dec_cfg_t(); + cfg.threads = input.threads; + const std::string filename = input.filename; + + // Open compressed video file. + testing::internal::scoped_ptr video; + if (filename.substr(filename.length() - 3, 3) == "ivf") { + video.reset(new libvpx_test::IVFVideoSource(filename)); + } else if (filename.substr(filename.length() - 4, 4) == "webm") { +#if CONFIG_WEBM_IO + video.reset(new libvpx_test::WebMVideoSource(filename)); +#else + fprintf(stderr, "WebM IO is disabled, skipping test vector %s\n", + filename.c_str()); + return; +#endif + } + ASSERT_TRUE(video.get() != NULL); + video->Init(); + + // Construct result file name. The file holds a list of expected integer + // results, one for each decoded frame. Any result that doesn't match + // the files list will cause a test failure. + const std::string res_filename = filename + ".res"; + OpenResFile(res_filename); + + // Decode frame, and check the md5 matching. + ASSERT_NO_FATAL_FAILURE(RunLoop(video.get(), cfg)); + } + + private: + FILE *res_file_; +}; + +TEST_P(InvalidFileTest, ReturnCode) { RunTest(); } + +#if CONFIG_VP8_DECODER +const DecodeParam kVP8InvalidFileTests[] = { + { 1, "invalid-bug-1443.ivf" }, +}; + +VP8_INSTANTIATE_TEST_CASE(InvalidFileTest, + ::testing::ValuesIn(kVP8InvalidFileTests)); +#endif // CONFIG_VP8_DECODER + +#if CONFIG_VP9_DECODER +const DecodeParam kVP9InvalidFileTests[] = { + { 1, "invalid-vp90-02-v2.webm" }, +#if CONFIG_VP9_HIGHBITDEPTH + { 1, "invalid-vp90-2-00-quantizer-00.webm.ivf.s5861_r01-05_b6-.v2.ivf" }, + { 1, + "invalid-vp90-2-21-resize_inter_320x180_5_3-4.webm.ivf.s45551_r01-05_b6-." + "ivf" }, +#endif + { 1, "invalid-vp90-03-v3.webm" }, + { 1, "invalid-vp90-2-00-quantizer-11.webm.ivf.s52984_r01-05_b6-.ivf" }, + { 1, "invalid-vp90-2-00-quantizer-11.webm.ivf.s52984_r01-05_b6-z.ivf" }, +// This file will cause a large allocation which is expected to fail in 32-bit +// environments. Test x86 for coverage purposes as the allocation failure will +// be in platform agnostic code. +#if ARCH_X86 + { 1, "invalid-vp90-2-00-quantizer-63.ivf.kf_65527x61446.ivf" }, +#endif + { 1, "invalid-vp90-2-12-droppable_1.ivf.s3676_r01-05_b6-.ivf" }, + { 1, "invalid-vp90-2-05-resize.ivf.s59293_r01-05_b6-.ivf" }, + { 1, "invalid-vp90-2-09-subpixel-00.ivf.s20492_r01-05_b6-.v2.ivf" }, + { 1, "invalid-vp91-2-mixedrefcsp-444to420.ivf" }, + { 1, "invalid-vp90-2-12-droppable_1.ivf.s73804_r01-05_b6-.ivf" }, + { 1, "invalid-vp90-2-03-size-224x196.webm.ivf.s44156_r01-05_b6-.ivf" }, + { 1, "invalid-vp90-2-03-size-202x210.webm.ivf.s113306_r01-05_b6-.ivf" }, + { 1, + "invalid-vp90-2-10-show-existing-frame.webm.ivf.s180315_r01-05_b6-.ivf" }, + { 1, "invalid-crbug-667044.webm" }, +}; + +VP9_INSTANTIATE_TEST_CASE(InvalidFileTest, + ::testing::ValuesIn(kVP9InvalidFileTests)); +#endif // CONFIG_VP9_DECODER + +// This class will include test vectors that are expected to fail +// peek. However they are still expected to have no fatal failures. +class InvalidFileInvalidPeekTest : public InvalidFileTest { + protected: + InvalidFileInvalidPeekTest() : InvalidFileTest() {} + virtual void HandlePeekResult(libvpx_test::Decoder *const /*decoder*/, + libvpx_test::CompressedVideoSource * /*video*/, + const vpx_codec_err_t /*res_peek*/) {} +}; + +TEST_P(InvalidFileInvalidPeekTest, ReturnCode) { RunTest(); } + +#if CONFIG_VP8_DECODER +const DecodeParam kVP8InvalidPeekTests[] = { + { 1, "invalid-vp80-00-comprehensive-018.ivf.2kf_0x6.ivf" }, +}; + +VP8_INSTANTIATE_TEST_CASE(InvalidFileInvalidPeekTest, + ::testing::ValuesIn(kVP8InvalidPeekTests)); +#endif // CONFIG_VP8_DECODER + +#if CONFIG_VP9_DECODER +const DecodeParam kVP9InvalidFileInvalidPeekTests[] = { + { 1, "invalid-vp90-01-v3.webm" }, +}; + +VP9_INSTANTIATE_TEST_CASE(InvalidFileInvalidPeekTest, + ::testing::ValuesIn(kVP9InvalidFileInvalidPeekTests)); + +const DecodeParam kMultiThreadedVP9InvalidFileTests[] = { + { 4, "invalid-vp90-2-08-tile_1x4_frame_parallel_all_key.webm" }, + { 4, + "invalid-" + "vp90-2-08-tile_1x2_frame_parallel.webm.ivf.s47039_r01-05_b6-.ivf" }, + { 4, + "invalid-vp90-2-08-tile_1x8_frame_parallel.webm.ivf.s288_r01-05_b6-.ivf" }, + { 2, "invalid-vp90-2-09-aq2.webm.ivf.s3984_r01-05_b6-.v2.ivf" }, + { 4, "invalid-vp90-2-09-subpixel-00.ivf.s19552_r01-05_b6-.v2.ivf" }, + { 2, "invalid-crbug-629481.webm" }, +}; + +INSTANTIATE_TEST_CASE_P( + VP9MultiThreaded, InvalidFileTest, + ::testing::Combine( + ::testing::Values( + static_cast(&libvpx_test::kVP9)), + ::testing::ValuesIn(kMultiThreadedVP9InvalidFileTests))); +#endif // CONFIG_VP9_DECODER +} // namespace diff --git a/test/ivf_video_source.h b/test/ivf_video_source.h new file mode 100644 index 0000000..5862d26 --- /dev/null +++ b/test/ivf_video_source.h @@ -0,0 +1,106 @@ +/* + * Copyright (c) 2012 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ +#ifndef TEST_IVF_VIDEO_SOURCE_H_ +#define TEST_IVF_VIDEO_SOURCE_H_ +#include +#include +#include +#include +#include "test/video_source.h" + +namespace libvpx_test { +const unsigned int kCodeBufferSize = 256 * 1024; +const unsigned int kIvfFileHdrSize = 32; +const unsigned int kIvfFrameHdrSize = 12; + +static unsigned int MemGetLe32(const uint8_t *mem) { + return (mem[3] << 24) | (mem[2] << 16) | (mem[1] << 8) | (mem[0]); +} + +// This class extends VideoSource to allow parsing of ivf files, +// so that we can do actual file decodes. +class IVFVideoSource : public CompressedVideoSource { + public: + explicit IVFVideoSource(const std::string &file_name) + : file_name_(file_name), input_file_(NULL), compressed_frame_buf_(NULL), + frame_sz_(0), frame_(0), end_of_file_(false) {} + + virtual ~IVFVideoSource() { + delete[] compressed_frame_buf_; + + if (input_file_) fclose(input_file_); + } + + virtual void Init() { + // Allocate a buffer for read in the compressed video frame. + compressed_frame_buf_ = new uint8_t[libvpx_test::kCodeBufferSize]; + ASSERT_TRUE(compressed_frame_buf_ != NULL) + << "Allocate frame buffer failed"; + } + + virtual void Begin() { + input_file_ = OpenTestDataFile(file_name_); + ASSERT_TRUE(input_file_ != NULL) + << "Input file open failed. Filename: " << file_name_; + + // Read file header + uint8_t file_hdr[kIvfFileHdrSize]; + ASSERT_EQ(kIvfFileHdrSize, fread(file_hdr, 1, kIvfFileHdrSize, input_file_)) + << "File header read failed."; + // Check file header + ASSERT_TRUE(file_hdr[0] == 'D' && file_hdr[1] == 'K' && + file_hdr[2] == 'I' && file_hdr[3] == 'F') + << "Input is not an IVF file."; + + FillFrame(); + } + + virtual void Next() { + ++frame_; + FillFrame(); + } + + void FillFrame() { + ASSERT_TRUE(input_file_ != NULL); + uint8_t frame_hdr[kIvfFrameHdrSize]; + // Check frame header and read a frame from input_file. + if (fread(frame_hdr, 1, kIvfFrameHdrSize, input_file_) != + kIvfFrameHdrSize) { + end_of_file_ = true; + } else { + end_of_file_ = false; + + frame_sz_ = MemGetLe32(frame_hdr); + ASSERT_LE(frame_sz_, kCodeBufferSize) + << "Frame is too big for allocated code buffer"; + ASSERT_EQ(frame_sz_, + fread(compressed_frame_buf_, 1, frame_sz_, input_file_)) + << "Failed to read complete frame"; + } + } + + virtual const uint8_t *cxdata() const { + return end_of_file_ ? NULL : compressed_frame_buf_; + } + virtual size_t frame_size() const { return frame_sz_; } + virtual unsigned int frame_number() const { return frame_; } + + protected: + std::string file_name_; + FILE *input_file_; + uint8_t *compressed_frame_buf_; + size_t frame_sz_; + unsigned int frame_; + bool end_of_file_; +}; + +} // namespace libvpx_test + +#endif // TEST_IVF_VIDEO_SOURCE_H_ diff --git a/test/keyframe_test.cc b/test/keyframe_test.cc new file mode 100644 index 0000000..ee75f40 --- /dev/null +++ b/test/keyframe_test.cc @@ -0,0 +1,146 @@ +/* + * Copyright (c) 2012 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ +#include +#include +#include "third_party/googletest/src/include/gtest/gtest.h" +#include "test/codec_factory.h" +#include "test/encode_test_driver.h" +#include "test/i420_video_source.h" +#include "test/util.h" + +namespace { + +class KeyframeTest + : public ::libvpx_test::EncoderTest, + public ::libvpx_test::CodecTestWithParam { + protected: + KeyframeTest() : EncoderTest(GET_PARAM(0)) {} + virtual ~KeyframeTest() {} + + virtual void SetUp() { + InitializeConfig(); + SetMode(GET_PARAM(1)); + kf_count_ = 0; + kf_count_max_ = INT_MAX; + kf_do_force_kf_ = false; + set_cpu_used_ = 0; + } + + virtual void PreEncodeFrameHook(::libvpx_test::VideoSource *video, + ::libvpx_test::Encoder *encoder) { + if (kf_do_force_kf_) { + frame_flags_ = (video->frame() % 3) ? 0 : VPX_EFLAG_FORCE_KF; + } + if (set_cpu_used_ && video->frame() == 1) { + encoder->Control(VP8E_SET_CPUUSED, set_cpu_used_); + } + } + + virtual void FramePktHook(const vpx_codec_cx_pkt_t *pkt) { + if (pkt->data.frame.flags & VPX_FRAME_IS_KEY) { + kf_pts_list_.push_back(pkt->data.frame.pts); + kf_count_++; + abort_ |= kf_count_ > kf_count_max_; + } + } + + bool kf_do_force_kf_; + int kf_count_; + int kf_count_max_; + std::vector kf_pts_list_; + int set_cpu_used_; +}; + +TEST_P(KeyframeTest, TestRandomVideoSource) { + // Validate that encoding the RandomVideoSource produces multiple keyframes. + // This validates the results of the TestDisableKeyframes test. + kf_count_max_ = 2; // early exit successful tests. + + ::libvpx_test::RandomVideoSource video; + ASSERT_NO_FATAL_FAILURE(RunLoop(&video)); + + // In realtime mode - auto placed keyframes are exceedingly rare, don't + // bother with this check if(GetParam() > 0) + if (GET_PARAM(1) > 0) EXPECT_GT(kf_count_, 1); +} + +TEST_P(KeyframeTest, TestDisableKeyframes) { + cfg_.kf_mode = VPX_KF_DISABLED; + kf_count_max_ = 1; // early exit failed tests. + + ::libvpx_test::RandomVideoSource video; + ASSERT_NO_FATAL_FAILURE(RunLoop(&video)); + + EXPECT_EQ(1, kf_count_); +} + +TEST_P(KeyframeTest, TestForceKeyframe) { + cfg_.kf_mode = VPX_KF_DISABLED; + kf_do_force_kf_ = true; + + ::libvpx_test::DummyVideoSource video; + ASSERT_NO_FATAL_FAILURE(RunLoop(&video)); + + // verify that every third frame is a keyframe. + for (std::vector::const_iterator iter = kf_pts_list_.begin(); + iter != kf_pts_list_.end(); ++iter) { + ASSERT_EQ(0, *iter % 3) << "Unexpected keyframe at frame " << *iter; + } +} + +TEST_P(KeyframeTest, TestKeyframeMaxDistance) { + cfg_.kf_max_dist = 25; + + ::libvpx_test::DummyVideoSource video; + ASSERT_NO_FATAL_FAILURE(RunLoop(&video)); + + // verify that keyframe interval matches kf_max_dist + for (std::vector::const_iterator iter = kf_pts_list_.begin(); + iter != kf_pts_list_.end(); ++iter) { + ASSERT_EQ(0, *iter % 25) << "Unexpected keyframe at frame " << *iter; + } +} + +TEST_P(KeyframeTest, TestAutoKeyframe) { + cfg_.kf_mode = VPX_KF_AUTO; + kf_do_force_kf_ = false; + + // Force a deterministic speed step in Real Time mode, as the faster modes + // may not produce a keyframe like we expect. This is necessary when running + // on very slow environments (like Valgrind). The step -11 was determined + // experimentally as the fastest mode that still throws the keyframe. + if (deadline_ == VPX_DL_REALTIME) set_cpu_used_ = -11; + + // This clip has a cut scene every 30 frames -> Frame 0, 30, 60, 90, 120. + // I check only the first 40 frames to make sure there's a keyframe at frame + // 0 and 30. + ::libvpx_test::I420VideoSource video("hantro_collage_w352h288.yuv", 352, 288, + 30, 1, 0, 40); + + ASSERT_NO_FATAL_FAILURE(RunLoop(&video)); + + // In realtime mode - auto placed keyframes are exceedingly rare, don't + // bother with this check + if (GET_PARAM(1) > 0) + EXPECT_EQ(2u, kf_pts_list_.size()) << " Not the right number of keyframes "; + + // Verify that keyframes match the file keyframes in the file. + for (std::vector::const_iterator iter = kf_pts_list_.begin(); + iter != kf_pts_list_.end(); ++iter) { + if (deadline_ == VPX_DL_REALTIME && *iter > 0) + EXPECT_EQ(0, (*iter - 1) % 30) + << "Unexpected keyframe at frame " << *iter; + else + EXPECT_EQ(0, *iter % 30) << "Unexpected keyframe at frame " << *iter; + } +} + +VP8_INSTANTIATE_TEST_CASE(KeyframeTest, ALL_TEST_MODES); +} // namespace diff --git a/test/level_test.cc b/test/level_test.cc new file mode 100644 index 0000000..26935a8 --- /dev/null +++ b/test/level_test.cc @@ -0,0 +1,147 @@ +/* + * Copyright (c) 2016 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ +#include "third_party/googletest/src/include/gtest/gtest.h" +#include "test/codec_factory.h" +#include "test/encode_test_driver.h" +#include "test/i420_video_source.h" +#include "test/util.h" + +namespace { +class LevelTest + : public ::libvpx_test::EncoderTest, + public ::libvpx_test::CodecTestWith2Params { + protected: + LevelTest() + : EncoderTest(GET_PARAM(0)), encoding_mode_(GET_PARAM(1)), + cpu_used_(GET_PARAM(2)), min_gf_internal_(24), target_level_(0), + level_(0) {} + virtual ~LevelTest() {} + + virtual void SetUp() { + InitializeConfig(); + SetMode(encoding_mode_); + if (encoding_mode_ != ::libvpx_test::kRealTime) { + cfg_.g_lag_in_frames = 25; + cfg_.rc_end_usage = VPX_VBR; + } else { + cfg_.g_lag_in_frames = 0; + cfg_.rc_end_usage = VPX_CBR; + } + cfg_.rc_2pass_vbr_minsection_pct = 5; + cfg_.rc_2pass_vbr_maxsection_pct = 2000; + cfg_.rc_target_bitrate = 400; + cfg_.rc_max_quantizer = 63; + cfg_.rc_min_quantizer = 0; + } + + virtual void PreEncodeFrameHook(::libvpx_test::VideoSource *video, + ::libvpx_test::Encoder *encoder) { + if (video->frame() == 0) { + encoder->Control(VP8E_SET_CPUUSED, cpu_used_); + encoder->Control(VP9E_SET_TARGET_LEVEL, target_level_); + encoder->Control(VP9E_SET_MIN_GF_INTERVAL, min_gf_internal_); + if (encoding_mode_ != ::libvpx_test::kRealTime) { + encoder->Control(VP8E_SET_ENABLEAUTOALTREF, 1); + encoder->Control(VP8E_SET_ARNR_MAXFRAMES, 7); + encoder->Control(VP8E_SET_ARNR_STRENGTH, 5); + encoder->Control(VP8E_SET_ARNR_TYPE, 3); + } + } + encoder->Control(VP9E_GET_LEVEL, &level_); + ASSERT_LE(level_, 51); + ASSERT_GE(level_, 0); + } + + ::libvpx_test::TestMode encoding_mode_; + int cpu_used_; + int min_gf_internal_; + int target_level_; + int level_; +}; + +TEST_P(LevelTest, TestTargetLevel11Large) { + ASSERT_NE(encoding_mode_, ::libvpx_test::kRealTime); + ::libvpx_test::I420VideoSource video("hantro_odd.yuv", 208, 144, 30, 1, 0, + 60); + target_level_ = 11; + cfg_.rc_target_bitrate = 150; + ASSERT_NO_FATAL_FAILURE(RunLoop(&video)); + ASSERT_GE(target_level_, level_); +} + +TEST_P(LevelTest, TestTargetLevel20Large) { + ASSERT_NE(encoding_mode_, ::libvpx_test::kRealTime); + ::libvpx_test::I420VideoSource video("hantro_collage_w352h288.yuv", 352, 288, + 30, 1, 0, 60); + target_level_ = 20; + cfg_.rc_target_bitrate = 1200; + ASSERT_NO_FATAL_FAILURE(RunLoop(&video)); + ASSERT_GE(target_level_, level_); +} + +TEST_P(LevelTest, TestTargetLevel31Large) { + ASSERT_NE(encoding_mode_, ::libvpx_test::kRealTime); + ::libvpx_test::I420VideoSource video("niklas_1280_720_30.y4m", 1280, 720, 30, + 1, 0, 60); + target_level_ = 31; + cfg_.rc_target_bitrate = 8000; + ASSERT_NO_FATAL_FAILURE(RunLoop(&video)); + ASSERT_GE(target_level_, level_); +} + +// Test for keeping level stats only +TEST_P(LevelTest, TestTargetLevel0) { + ::libvpx_test::I420VideoSource video("hantro_odd.yuv", 208, 144, 30, 1, 0, + 40); + target_level_ = 0; + min_gf_internal_ = 4; + ASSERT_NO_FATAL_FAILURE(RunLoop(&video)); + ASSERT_GE(11, level_); + + cfg_.rc_target_bitrate = 1600; + ASSERT_NO_FATAL_FAILURE(RunLoop(&video)); + ASSERT_GE(20, level_); +} + +// Test for level control being turned off +TEST_P(LevelTest, TestTargetLevel255) { + ::libvpx_test::I420VideoSource video("hantro_odd.yuv", 208, 144, 30, 1, 0, + 30); + target_level_ = 255; + ASSERT_NO_FATAL_FAILURE(RunLoop(&video)); +} + +TEST_P(LevelTest, TestTargetLevelApi) { + ::libvpx_test::I420VideoSource video("hantro_odd.yuv", 208, 144, 30, 1, 0, 1); + static const vpx_codec_iface_t *codec = &vpx_codec_vp9_cx_algo; + vpx_codec_ctx_t enc; + vpx_codec_enc_cfg_t cfg; + EXPECT_EQ(VPX_CODEC_OK, vpx_codec_enc_config_default(codec, &cfg, 0)); + cfg.rc_target_bitrate = 100; + EXPECT_EQ(VPX_CODEC_OK, vpx_codec_enc_init(&enc, codec, &cfg, 0)); + for (int level = 0; level <= 256; ++level) { + if (level == 10 || level == 11 || level == 20 || level == 21 || + level == 30 || level == 31 || level == 40 || level == 41 || + level == 50 || level == 51 || level == 52 || level == 60 || + level == 61 || level == 62 || level == 0 || level == 1 || level == 255) + EXPECT_EQ(VPX_CODEC_OK, + vpx_codec_control(&enc, VP9E_SET_TARGET_LEVEL, level)); + else + EXPECT_EQ(VPX_CODEC_INVALID_PARAM, + vpx_codec_control(&enc, VP9E_SET_TARGET_LEVEL, level)); + } + EXPECT_EQ(VPX_CODEC_OK, vpx_codec_destroy(&enc)); +} + +VP9_INSTANTIATE_TEST_CASE(LevelTest, + ::testing::Values(::libvpx_test::kTwoPassGood, + ::libvpx_test::kOnePassGood), + ::testing::Range(0, 9)); +} // namespace diff --git a/test/lpf_test.cc b/test/lpf_test.cc new file mode 100644 index 0000000..e04b996 --- /dev/null +++ b/test/lpf_test.cc @@ -0,0 +1,684 @@ +/* + * Copyright (c) 2014 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include +#include + +#include "third_party/googletest/src/include/gtest/gtest.h" + +#include "./vpx_config.h" +#include "./vpx_dsp_rtcd.h" +#include "test/acm_random.h" +#include "test/clear_system_state.h" +#include "test/register_state_check.h" +#include "test/util.h" +#include "vp9/common/vp9_entropy.h" +#include "vp9/common/vp9_loopfilter.h" +#include "vpx/vpx_integer.h" + +using libvpx_test::ACMRandom; + +namespace { +// Horizontally and Vertically need 32x32: 8 Coeffs preceeding filtered section +// 16 Coefs within filtered section +// 8 Coeffs following filtered section +const int kNumCoeffs = 1024; + +const int number_of_iterations = 10000; + +#if CONFIG_VP9_HIGHBITDEPTH +typedef uint16_t Pixel; +#define PIXEL_WIDTH 16 + +typedef void (*loop_op_t)(Pixel *s, int p, const uint8_t *blimit, + const uint8_t *limit, const uint8_t *thresh, int bd); +typedef void (*dual_loop_op_t)(Pixel *s, int p, const uint8_t *blimit0, + const uint8_t *limit0, const uint8_t *thresh0, + const uint8_t *blimit1, const uint8_t *limit1, + const uint8_t *thresh1, int bd); +#else +typedef uint8_t Pixel; +#define PIXEL_WIDTH 8 + +typedef void (*loop_op_t)(Pixel *s, int p, const uint8_t *blimit, + const uint8_t *limit, const uint8_t *thresh); +typedef void (*dual_loop_op_t)(Pixel *s, int p, const uint8_t *blimit0, + const uint8_t *limit0, const uint8_t *thresh0, + const uint8_t *blimit1, const uint8_t *limit1, + const uint8_t *thresh1); +#endif // CONFIG_VP9_HIGHBITDEPTH + +typedef std::tr1::tuple loop8_param_t; +typedef std::tr1::tuple dualloop8_param_t; + +void InitInput(Pixel *s, Pixel *ref_s, ACMRandom *rnd, const uint8_t limit, + const int mask, const int32_t p, const int i) { + uint16_t tmp_s[kNumCoeffs]; + + for (int j = 0; j < kNumCoeffs;) { + const uint8_t val = rnd->Rand8(); + if (val & 0x80) { // 50% chance to choose a new value. + tmp_s[j] = rnd->Rand16(); + j++; + } else { // 50% chance to repeat previous value in row X times. + int k = 0; + while (k++ < ((val & 0x1f) + 1) && j < kNumCoeffs) { + if (j < 1) { + tmp_s[j] = rnd->Rand16(); + } else if (val & 0x20) { // Increment by a value within the limit. + tmp_s[j] = tmp_s[j - 1] + (limit - 1); + } else { // Decrement by a value within the limit. + tmp_s[j] = tmp_s[j - 1] - (limit - 1); + } + j++; + } + } + } + + for (int j = 0; j < kNumCoeffs;) { + const uint8_t val = rnd->Rand8(); + if (val & 0x80) { + j++; + } else { // 50% chance to repeat previous value in column X times. + int k = 0; + while (k++ < ((val & 0x1f) + 1) && j < kNumCoeffs) { + if (j < 1) { + tmp_s[j] = rnd->Rand16(); + } else if (val & 0x20) { // Increment by a value within the limit. + tmp_s[(j % 32) * 32 + j / 32] = + tmp_s[((j - 1) % 32) * 32 + (j - 1) / 32] + (limit - 1); + } else { // Decrement by a value within the limit. + tmp_s[(j % 32) * 32 + j / 32] = + tmp_s[((j - 1) % 32) * 32 + (j - 1) / 32] - (limit - 1); + } + j++; + } + } + } + + for (int j = 0; j < kNumCoeffs; j++) { + if (i % 2) { + s[j] = tmp_s[j] & mask; + } else { + s[j] = tmp_s[p * (j % p) + j / p] & mask; + } + ref_s[j] = s[j]; + } +} + +uint8_t GetOuterThresh(ACMRandom *rnd) { + return static_cast(rnd->RandRange(3 * MAX_LOOP_FILTER + 5)); +} + +uint8_t GetInnerThresh(ACMRandom *rnd) { + return static_cast(rnd->RandRange(MAX_LOOP_FILTER + 1)); +} + +uint8_t GetHevThresh(ACMRandom *rnd) { + return static_cast(rnd->RandRange(MAX_LOOP_FILTER + 1) >> 4); +} + +class Loop8Test6Param : public ::testing::TestWithParam { + public: + virtual ~Loop8Test6Param() {} + virtual void SetUp() { + loopfilter_op_ = GET_PARAM(0); + ref_loopfilter_op_ = GET_PARAM(1); + bit_depth_ = GET_PARAM(2); + mask_ = (1 << bit_depth_) - 1; + } + + virtual void TearDown() { libvpx_test::ClearSystemState(); } + + protected: + int bit_depth_; + int mask_; + loop_op_t loopfilter_op_; + loop_op_t ref_loopfilter_op_; +}; + +class Loop8Test9Param : public ::testing::TestWithParam { + public: + virtual ~Loop8Test9Param() {} + virtual void SetUp() { + loopfilter_op_ = GET_PARAM(0); + ref_loopfilter_op_ = GET_PARAM(1); + bit_depth_ = GET_PARAM(2); + mask_ = (1 << bit_depth_) - 1; + } + + virtual void TearDown() { libvpx_test::ClearSystemState(); } + + protected: + int bit_depth_; + int mask_; + dual_loop_op_t loopfilter_op_; + dual_loop_op_t ref_loopfilter_op_; +}; + +TEST_P(Loop8Test6Param, OperationCheck) { + ACMRandom rnd(ACMRandom::DeterministicSeed()); + const int count_test_block = number_of_iterations; + const int32_t p = kNumCoeffs / 32; + DECLARE_ALIGNED(PIXEL_WIDTH, Pixel, s[kNumCoeffs]); + DECLARE_ALIGNED(PIXEL_WIDTH, Pixel, ref_s[kNumCoeffs]); + int err_count_total = 0; + int first_failure = -1; + for (int i = 0; i < count_test_block; ++i) { + int err_count = 0; + uint8_t tmp = GetOuterThresh(&rnd); + DECLARE_ALIGNED(16, const uint8_t, + blimit[16]) = { tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, + tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp }; + tmp = GetInnerThresh(&rnd); + DECLARE_ALIGNED(16, const uint8_t, + limit[16]) = { tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, + tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp }; + tmp = GetHevThresh(&rnd); + DECLARE_ALIGNED(16, const uint8_t, + thresh[16]) = { tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, + tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp }; + InitInput(s, ref_s, &rnd, *limit, mask_, p, i); +#if CONFIG_VP9_HIGHBITDEPTH + ref_loopfilter_op_(ref_s + 8 + p * 8, p, blimit, limit, thresh, bit_depth_); + ASM_REGISTER_STATE_CHECK( + loopfilter_op_(s + 8 + p * 8, p, blimit, limit, thresh, bit_depth_)); +#else + ref_loopfilter_op_(ref_s + 8 + p * 8, p, blimit, limit, thresh); + ASM_REGISTER_STATE_CHECK( + loopfilter_op_(s + 8 + p * 8, p, blimit, limit, thresh)); +#endif // CONFIG_VP9_HIGHBITDEPTH + + for (int j = 0; j < kNumCoeffs; ++j) { + err_count += ref_s[j] != s[j]; + } + if (err_count && !err_count_total) { + first_failure = i; + } + err_count_total += err_count; + } + EXPECT_EQ(0, err_count_total) + << "Error: Loop8Test6Param, C output doesn't match SSE2 " + "loopfilter output. " + << "First failed at test case " << first_failure; +} + +TEST_P(Loop8Test6Param, ValueCheck) { + ACMRandom rnd(ACMRandom::DeterministicSeed()); + const int count_test_block = number_of_iterations; + DECLARE_ALIGNED(PIXEL_WIDTH, Pixel, s[kNumCoeffs]); + DECLARE_ALIGNED(PIXEL_WIDTH, Pixel, ref_s[kNumCoeffs]); + int err_count_total = 0; + int first_failure = -1; + + // NOTE: The code in vp9_loopfilter.c:update_sharpness computes mblim as a + // function of sharpness_lvl and the loopfilter lvl as: + // block_inside_limit = lvl >> ((sharpness_lvl > 0) + (sharpness_lvl > 4)); + // ... + // memset(lfi->lfthr[lvl].mblim, (2 * (lvl + 2) + block_inside_limit), + // SIMD_WIDTH); + // This means that the largest value for mblim will occur when sharpness_lvl + // is equal to 0, and lvl is equal to its greatest value (MAX_LOOP_FILTER). + // In this case block_inside_limit will be equal to MAX_LOOP_FILTER and + // therefore mblim will be equal to (2 * (lvl + 2) + block_inside_limit) = + // 2 * (MAX_LOOP_FILTER + 2) + MAX_LOOP_FILTER = 3 * MAX_LOOP_FILTER + 4 + + for (int i = 0; i < count_test_block; ++i) { + int err_count = 0; + uint8_t tmp = GetOuterThresh(&rnd); + DECLARE_ALIGNED(16, const uint8_t, + blimit[16]) = { tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, + tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp }; + tmp = GetInnerThresh(&rnd); + DECLARE_ALIGNED(16, const uint8_t, + limit[16]) = { tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, + tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp }; + tmp = GetHevThresh(&rnd); + DECLARE_ALIGNED(16, const uint8_t, + thresh[16]) = { tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, + tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp }; + int32_t p = kNumCoeffs / 32; + for (int j = 0; j < kNumCoeffs; ++j) { + s[j] = rnd.Rand16() & mask_; + ref_s[j] = s[j]; + } +#if CONFIG_VP9_HIGHBITDEPTH + ref_loopfilter_op_(ref_s + 8 + p * 8, p, blimit, limit, thresh, bit_depth_); + ASM_REGISTER_STATE_CHECK( + loopfilter_op_(s + 8 + p * 8, p, blimit, limit, thresh, bit_depth_)); +#else + ref_loopfilter_op_(ref_s + 8 + p * 8, p, blimit, limit, thresh); + ASM_REGISTER_STATE_CHECK( + loopfilter_op_(s + 8 + p * 8, p, blimit, limit, thresh)); +#endif // CONFIG_VP9_HIGHBITDEPTH + + for (int j = 0; j < kNumCoeffs; ++j) { + err_count += ref_s[j] != s[j]; + } + if (err_count && !err_count_total) { + first_failure = i; + } + err_count_total += err_count; + } + EXPECT_EQ(0, err_count_total) + << "Error: Loop8Test6Param, C output doesn't match SSE2 " + "loopfilter output. " + << "First failed at test case " << first_failure; +} + +TEST_P(Loop8Test9Param, OperationCheck) { + ACMRandom rnd(ACMRandom::DeterministicSeed()); + const int count_test_block = number_of_iterations; + DECLARE_ALIGNED(PIXEL_WIDTH, Pixel, s[kNumCoeffs]); + DECLARE_ALIGNED(PIXEL_WIDTH, Pixel, ref_s[kNumCoeffs]); + int err_count_total = 0; + int first_failure = -1; + for (int i = 0; i < count_test_block; ++i) { + int err_count = 0; + uint8_t tmp = GetOuterThresh(&rnd); + DECLARE_ALIGNED(16, const uint8_t, + blimit0[16]) = { tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, + tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp }; + tmp = GetInnerThresh(&rnd); + DECLARE_ALIGNED(16, const uint8_t, + limit0[16]) = { tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, + tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp }; + tmp = GetHevThresh(&rnd); + DECLARE_ALIGNED(16, const uint8_t, + thresh0[16]) = { tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, + tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp }; + tmp = GetOuterThresh(&rnd); + DECLARE_ALIGNED(16, const uint8_t, + blimit1[16]) = { tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, + tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp }; + tmp = GetInnerThresh(&rnd); + DECLARE_ALIGNED(16, const uint8_t, + limit1[16]) = { tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, + tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp }; + tmp = GetHevThresh(&rnd); + DECLARE_ALIGNED(16, const uint8_t, + thresh1[16]) = { tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, + tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp }; + int32_t p = kNumCoeffs / 32; + const uint8_t limit = *limit0 < *limit1 ? *limit0 : *limit1; + InitInput(s, ref_s, &rnd, limit, mask_, p, i); +#if CONFIG_VP9_HIGHBITDEPTH + ref_loopfilter_op_(ref_s + 8 + p * 8, p, blimit0, limit0, thresh0, blimit1, + limit1, thresh1, bit_depth_); + ASM_REGISTER_STATE_CHECK(loopfilter_op_(s + 8 + p * 8, p, blimit0, limit0, + thresh0, blimit1, limit1, thresh1, + bit_depth_)); +#else + ref_loopfilter_op_(ref_s + 8 + p * 8, p, blimit0, limit0, thresh0, blimit1, + limit1, thresh1); + ASM_REGISTER_STATE_CHECK(loopfilter_op_(s + 8 + p * 8, p, blimit0, limit0, + thresh0, blimit1, limit1, thresh1)); +#endif // CONFIG_VP9_HIGHBITDEPTH + + for (int j = 0; j < kNumCoeffs; ++j) { + err_count += ref_s[j] != s[j]; + } + if (err_count && !err_count_total) { + first_failure = i; + } + err_count_total += err_count; + } + EXPECT_EQ(0, err_count_total) + << "Error: Loop8Test9Param, C output doesn't match SSE2 " + "loopfilter output. " + << "First failed at test case " << first_failure; +} + +TEST_P(Loop8Test9Param, ValueCheck) { + ACMRandom rnd(ACMRandom::DeterministicSeed()); + const int count_test_block = number_of_iterations; + DECLARE_ALIGNED(PIXEL_WIDTH, Pixel, s[kNumCoeffs]); + DECLARE_ALIGNED(PIXEL_WIDTH, Pixel, ref_s[kNumCoeffs]); + int err_count_total = 0; + int first_failure = -1; + for (int i = 0; i < count_test_block; ++i) { + int err_count = 0; + uint8_t tmp = GetOuterThresh(&rnd); + DECLARE_ALIGNED(16, const uint8_t, + blimit0[16]) = { tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, + tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp }; + tmp = GetInnerThresh(&rnd); + DECLARE_ALIGNED(16, const uint8_t, + limit0[16]) = { tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, + tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp }; + tmp = GetHevThresh(&rnd); + DECLARE_ALIGNED(16, const uint8_t, + thresh0[16]) = { tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, + tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp }; + tmp = GetOuterThresh(&rnd); + DECLARE_ALIGNED(16, const uint8_t, + blimit1[16]) = { tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, + tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp }; + tmp = GetInnerThresh(&rnd); + DECLARE_ALIGNED(16, const uint8_t, + limit1[16]) = { tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, + tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp }; + tmp = GetHevThresh(&rnd); + DECLARE_ALIGNED(16, const uint8_t, + thresh1[16]) = { tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, + tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp }; + int32_t p = kNumCoeffs / 32; // TODO(pdlf) can we have non-square here? + for (int j = 0; j < kNumCoeffs; ++j) { + s[j] = rnd.Rand16() & mask_; + ref_s[j] = s[j]; + } +#if CONFIG_VP9_HIGHBITDEPTH + ref_loopfilter_op_(ref_s + 8 + p * 8, p, blimit0, limit0, thresh0, blimit1, + limit1, thresh1, bit_depth_); + ASM_REGISTER_STATE_CHECK(loopfilter_op_(s + 8 + p * 8, p, blimit0, limit0, + thresh0, blimit1, limit1, thresh1, + bit_depth_)); +#else + ref_loopfilter_op_(ref_s + 8 + p * 8, p, blimit0, limit0, thresh0, blimit1, + limit1, thresh1); + ASM_REGISTER_STATE_CHECK(loopfilter_op_(s + 8 + p * 8, p, blimit0, limit0, + thresh0, blimit1, limit1, thresh1)); +#endif // CONFIG_VP9_HIGHBITDEPTH + + for (int j = 0; j < kNumCoeffs; ++j) { + err_count += ref_s[j] != s[j]; + } + if (err_count && !err_count_total) { + first_failure = i; + } + err_count_total += err_count; + } + EXPECT_EQ(0, err_count_total) + << "Error: Loop8Test9Param, C output doesn't match SSE2" + "loopfilter output. " + << "First failed at test case " << first_failure; +} + +using std::tr1::make_tuple; + +#if HAVE_SSE2 +#if CONFIG_VP9_HIGHBITDEPTH +INSTANTIATE_TEST_CASE_P( + SSE2, Loop8Test6Param, + ::testing::Values(make_tuple(&vpx_highbd_lpf_horizontal_4_sse2, + &vpx_highbd_lpf_horizontal_4_c, 8), + make_tuple(&vpx_highbd_lpf_vertical_4_sse2, + &vpx_highbd_lpf_vertical_4_c, 8), + make_tuple(&vpx_highbd_lpf_horizontal_8_sse2, + &vpx_highbd_lpf_horizontal_8_c, 8), + make_tuple(&vpx_highbd_lpf_horizontal_16_sse2, + &vpx_highbd_lpf_horizontal_16_c, 8), + make_tuple(&vpx_highbd_lpf_horizontal_16_dual_sse2, + &vpx_highbd_lpf_horizontal_16_dual_c, 8), + make_tuple(&vpx_highbd_lpf_vertical_8_sse2, + &vpx_highbd_lpf_vertical_8_c, 8), + make_tuple(&vpx_highbd_lpf_vertical_16_sse2, + &vpx_highbd_lpf_vertical_16_c, 8), + make_tuple(&vpx_highbd_lpf_horizontal_4_sse2, + &vpx_highbd_lpf_horizontal_4_c, 10), + make_tuple(&vpx_highbd_lpf_vertical_4_sse2, + &vpx_highbd_lpf_vertical_4_c, 10), + make_tuple(&vpx_highbd_lpf_horizontal_8_sse2, + &vpx_highbd_lpf_horizontal_8_c, 10), + make_tuple(&vpx_highbd_lpf_horizontal_16_sse2, + &vpx_highbd_lpf_horizontal_16_c, 10), + make_tuple(&vpx_highbd_lpf_horizontal_16_dual_sse2, + &vpx_highbd_lpf_horizontal_16_dual_c, 10), + make_tuple(&vpx_highbd_lpf_vertical_8_sse2, + &vpx_highbd_lpf_vertical_8_c, 10), + make_tuple(&vpx_highbd_lpf_vertical_16_sse2, + &vpx_highbd_lpf_vertical_16_c, 10), + make_tuple(&vpx_highbd_lpf_horizontal_4_sse2, + &vpx_highbd_lpf_horizontal_4_c, 12), + make_tuple(&vpx_highbd_lpf_vertical_4_sse2, + &vpx_highbd_lpf_vertical_4_c, 12), + make_tuple(&vpx_highbd_lpf_horizontal_8_sse2, + &vpx_highbd_lpf_horizontal_8_c, 12), + make_tuple(&vpx_highbd_lpf_horizontal_16_sse2, + &vpx_highbd_lpf_horizontal_16_c, 12), + make_tuple(&vpx_highbd_lpf_horizontal_16_dual_sse2, + &vpx_highbd_lpf_horizontal_16_dual_c, 12), + make_tuple(&vpx_highbd_lpf_vertical_8_sse2, + &vpx_highbd_lpf_vertical_8_c, 12), + make_tuple(&vpx_highbd_lpf_vertical_16_sse2, + &vpx_highbd_lpf_vertical_16_c, 12), + make_tuple(&vpx_highbd_lpf_vertical_16_dual_sse2, + &vpx_highbd_lpf_vertical_16_dual_c, 8), + make_tuple(&vpx_highbd_lpf_vertical_16_dual_sse2, + &vpx_highbd_lpf_vertical_16_dual_c, 10), + make_tuple(&vpx_highbd_lpf_vertical_16_dual_sse2, + &vpx_highbd_lpf_vertical_16_dual_c, 12))); +#else +INSTANTIATE_TEST_CASE_P( + SSE2, Loop8Test6Param, + ::testing::Values( + make_tuple(&vpx_lpf_horizontal_4_sse2, &vpx_lpf_horizontal_4_c, 8), + make_tuple(&vpx_lpf_horizontal_8_sse2, &vpx_lpf_horizontal_8_c, 8), + make_tuple(&vpx_lpf_horizontal_16_sse2, &vpx_lpf_horizontal_16_c, 8), + make_tuple(&vpx_lpf_horizontal_16_dual_sse2, + &vpx_lpf_horizontal_16_dual_c, 8), + make_tuple(&vpx_lpf_vertical_4_sse2, &vpx_lpf_vertical_4_c, 8), + make_tuple(&vpx_lpf_vertical_8_sse2, &vpx_lpf_vertical_8_c, 8), + make_tuple(&vpx_lpf_vertical_16_sse2, &vpx_lpf_vertical_16_c, 8), + make_tuple(&vpx_lpf_vertical_16_dual_sse2, &vpx_lpf_vertical_16_dual_c, + 8))); +#endif // CONFIG_VP9_HIGHBITDEPTH +#endif + +#if HAVE_AVX2 && (!CONFIG_VP9_HIGHBITDEPTH) +INSTANTIATE_TEST_CASE_P( + AVX2, Loop8Test6Param, + ::testing::Values(make_tuple(&vpx_lpf_horizontal_16_avx2, + &vpx_lpf_horizontal_16_c, 8), + make_tuple(&vpx_lpf_horizontal_16_dual_avx2, + &vpx_lpf_horizontal_16_dual_c, 8))); +#endif + +#if HAVE_SSE2 +#if CONFIG_VP9_HIGHBITDEPTH +INSTANTIATE_TEST_CASE_P( + SSE2, Loop8Test9Param, + ::testing::Values(make_tuple(&vpx_highbd_lpf_horizontal_4_dual_sse2, + &vpx_highbd_lpf_horizontal_4_dual_c, 8), + make_tuple(&vpx_highbd_lpf_horizontal_8_dual_sse2, + &vpx_highbd_lpf_horizontal_8_dual_c, 8), + make_tuple(&vpx_highbd_lpf_vertical_4_dual_sse2, + &vpx_highbd_lpf_vertical_4_dual_c, 8), + make_tuple(&vpx_highbd_lpf_vertical_8_dual_sse2, + &vpx_highbd_lpf_vertical_8_dual_c, 8), + make_tuple(&vpx_highbd_lpf_horizontal_4_dual_sse2, + &vpx_highbd_lpf_horizontal_4_dual_c, 10), + make_tuple(&vpx_highbd_lpf_horizontal_8_dual_sse2, + &vpx_highbd_lpf_horizontal_8_dual_c, 10), + make_tuple(&vpx_highbd_lpf_vertical_4_dual_sse2, + &vpx_highbd_lpf_vertical_4_dual_c, 10), + make_tuple(&vpx_highbd_lpf_vertical_8_dual_sse2, + &vpx_highbd_lpf_vertical_8_dual_c, 10), + make_tuple(&vpx_highbd_lpf_horizontal_4_dual_sse2, + &vpx_highbd_lpf_horizontal_4_dual_c, 12), + make_tuple(&vpx_highbd_lpf_horizontal_8_dual_sse2, + &vpx_highbd_lpf_horizontal_8_dual_c, 12), + make_tuple(&vpx_highbd_lpf_vertical_4_dual_sse2, + &vpx_highbd_lpf_vertical_4_dual_c, 12), + make_tuple(&vpx_highbd_lpf_vertical_8_dual_sse2, + &vpx_highbd_lpf_vertical_8_dual_c, 12))); +#else +INSTANTIATE_TEST_CASE_P( + SSE2, Loop8Test9Param, + ::testing::Values(make_tuple(&vpx_lpf_horizontal_4_dual_sse2, + &vpx_lpf_horizontal_4_dual_c, 8), + make_tuple(&vpx_lpf_horizontal_8_dual_sse2, + &vpx_lpf_horizontal_8_dual_c, 8), + make_tuple(&vpx_lpf_vertical_4_dual_sse2, + &vpx_lpf_vertical_4_dual_c, 8), + make_tuple(&vpx_lpf_vertical_8_dual_sse2, + &vpx_lpf_vertical_8_dual_c, 8))); +#endif // CONFIG_VP9_HIGHBITDEPTH +#endif + +#if HAVE_NEON +#if CONFIG_VP9_HIGHBITDEPTH +INSTANTIATE_TEST_CASE_P( + NEON, Loop8Test6Param, + ::testing::Values(make_tuple(&vpx_highbd_lpf_horizontal_4_neon, + &vpx_highbd_lpf_horizontal_4_c, 8), + make_tuple(&vpx_highbd_lpf_horizontal_4_neon, + &vpx_highbd_lpf_horizontal_4_c, 10), + make_tuple(&vpx_highbd_lpf_horizontal_4_neon, + &vpx_highbd_lpf_horizontal_4_c, 12), + make_tuple(&vpx_highbd_lpf_horizontal_8_neon, + &vpx_highbd_lpf_horizontal_8_c, 8), + make_tuple(&vpx_highbd_lpf_horizontal_8_neon, + &vpx_highbd_lpf_horizontal_8_c, 10), + make_tuple(&vpx_highbd_lpf_horizontal_8_neon, + &vpx_highbd_lpf_horizontal_8_c, 12), + make_tuple(&vpx_highbd_lpf_horizontal_16_neon, + &vpx_highbd_lpf_horizontal_16_c, 8), + make_tuple(&vpx_highbd_lpf_horizontal_16_neon, + &vpx_highbd_lpf_horizontal_16_c, 10), + make_tuple(&vpx_highbd_lpf_horizontal_16_neon, + &vpx_highbd_lpf_horizontal_16_c, 12), + make_tuple(&vpx_highbd_lpf_horizontal_16_dual_neon, + &vpx_highbd_lpf_horizontal_16_dual_c, 8), + make_tuple(&vpx_highbd_lpf_horizontal_16_dual_neon, + &vpx_highbd_lpf_horizontal_16_dual_c, 10), + make_tuple(&vpx_highbd_lpf_horizontal_16_dual_neon, + &vpx_highbd_lpf_horizontal_16_dual_c, 12), + make_tuple(&vpx_highbd_lpf_vertical_4_neon, + &vpx_highbd_lpf_vertical_4_c, 8), + make_tuple(&vpx_highbd_lpf_vertical_4_neon, + &vpx_highbd_lpf_vertical_4_c, 10), + make_tuple(&vpx_highbd_lpf_vertical_4_neon, + &vpx_highbd_lpf_vertical_4_c, 12), + make_tuple(&vpx_highbd_lpf_vertical_8_neon, + &vpx_highbd_lpf_vertical_8_c, 8), + make_tuple(&vpx_highbd_lpf_vertical_8_neon, + &vpx_highbd_lpf_vertical_8_c, 10), + make_tuple(&vpx_highbd_lpf_vertical_8_neon, + &vpx_highbd_lpf_vertical_8_c, 12), + make_tuple(&vpx_highbd_lpf_vertical_16_neon, + &vpx_highbd_lpf_vertical_16_c, 8), + make_tuple(&vpx_highbd_lpf_vertical_16_neon, + &vpx_highbd_lpf_vertical_16_c, 10), + make_tuple(&vpx_highbd_lpf_vertical_16_neon, + &vpx_highbd_lpf_vertical_16_c, 12), + make_tuple(&vpx_highbd_lpf_vertical_16_dual_neon, + &vpx_highbd_lpf_vertical_16_dual_c, 8), + make_tuple(&vpx_highbd_lpf_vertical_16_dual_neon, + &vpx_highbd_lpf_vertical_16_dual_c, 10), + make_tuple(&vpx_highbd_lpf_vertical_16_dual_neon, + &vpx_highbd_lpf_vertical_16_dual_c, 12))); +INSTANTIATE_TEST_CASE_P( + NEON, Loop8Test9Param, + ::testing::Values(make_tuple(&vpx_highbd_lpf_horizontal_4_dual_neon, + &vpx_highbd_lpf_horizontal_4_dual_c, 8), + make_tuple(&vpx_highbd_lpf_horizontal_4_dual_neon, + &vpx_highbd_lpf_horizontal_4_dual_c, 10), + make_tuple(&vpx_highbd_lpf_horizontal_4_dual_neon, + &vpx_highbd_lpf_horizontal_4_dual_c, 12), + make_tuple(&vpx_highbd_lpf_horizontal_8_dual_neon, + &vpx_highbd_lpf_horizontal_8_dual_c, 8), + make_tuple(&vpx_highbd_lpf_horizontal_8_dual_neon, + &vpx_highbd_lpf_horizontal_8_dual_c, 10), + make_tuple(&vpx_highbd_lpf_horizontal_8_dual_neon, + &vpx_highbd_lpf_horizontal_8_dual_c, 12), + make_tuple(&vpx_highbd_lpf_vertical_4_dual_neon, + &vpx_highbd_lpf_vertical_4_dual_c, 8), + make_tuple(&vpx_highbd_lpf_vertical_4_dual_neon, + &vpx_highbd_lpf_vertical_4_dual_c, 10), + make_tuple(&vpx_highbd_lpf_vertical_4_dual_neon, + &vpx_highbd_lpf_vertical_4_dual_c, 12), + make_tuple(&vpx_highbd_lpf_vertical_8_dual_neon, + &vpx_highbd_lpf_vertical_8_dual_c, 8), + make_tuple(&vpx_highbd_lpf_vertical_8_dual_neon, + &vpx_highbd_lpf_vertical_8_dual_c, 10), + make_tuple(&vpx_highbd_lpf_vertical_8_dual_neon, + &vpx_highbd_lpf_vertical_8_dual_c, 12))); +#else +INSTANTIATE_TEST_CASE_P( + NEON, Loop8Test6Param, + ::testing::Values( + make_tuple(&vpx_lpf_horizontal_16_neon, &vpx_lpf_horizontal_16_c, 8), + make_tuple(&vpx_lpf_horizontal_16_dual_neon, + &vpx_lpf_horizontal_16_dual_c, 8), + make_tuple(&vpx_lpf_vertical_16_neon, &vpx_lpf_vertical_16_c, 8), + make_tuple(&vpx_lpf_vertical_16_dual_neon, &vpx_lpf_vertical_16_dual_c, + 8), + make_tuple(&vpx_lpf_horizontal_8_neon, &vpx_lpf_horizontal_8_c, 8), + make_tuple(&vpx_lpf_vertical_8_neon, &vpx_lpf_vertical_8_c, 8), + make_tuple(&vpx_lpf_horizontal_4_neon, &vpx_lpf_horizontal_4_c, 8), + make_tuple(&vpx_lpf_vertical_4_neon, &vpx_lpf_vertical_4_c, 8))); +INSTANTIATE_TEST_CASE_P( + NEON, Loop8Test9Param, + ::testing::Values(make_tuple(&vpx_lpf_horizontal_8_dual_neon, + &vpx_lpf_horizontal_8_dual_c, 8), + make_tuple(&vpx_lpf_vertical_8_dual_neon, + &vpx_lpf_vertical_8_dual_c, 8), + make_tuple(&vpx_lpf_horizontal_4_dual_neon, + &vpx_lpf_horizontal_4_dual_c, 8), + make_tuple(&vpx_lpf_vertical_4_dual_neon, + &vpx_lpf_vertical_4_dual_c, 8))); +#endif // CONFIG_VP9_HIGHBITDEPTH +#endif // HAVE_NEON + +#if HAVE_DSPR2 && !CONFIG_VP9_HIGHBITDEPTH +INSTANTIATE_TEST_CASE_P( + DSPR2, Loop8Test6Param, + ::testing::Values( + make_tuple(&vpx_lpf_horizontal_4_dspr2, &vpx_lpf_horizontal_4_c, 8), + make_tuple(&vpx_lpf_horizontal_8_dspr2, &vpx_lpf_horizontal_8_c, 8), + make_tuple(&vpx_lpf_horizontal_16_dspr2, &vpx_lpf_horizontal_16_c, 8), + make_tuple(&vpx_lpf_horizontal_16_dual_dspr2, + &vpx_lpf_horizontal_16_dual_c, 8), + make_tuple(&vpx_lpf_vertical_4_dspr2, &vpx_lpf_vertical_4_c, 8), + make_tuple(&vpx_lpf_vertical_8_dspr2, &vpx_lpf_vertical_8_c, 8), + make_tuple(&vpx_lpf_vertical_16_dspr2, &vpx_lpf_vertical_16_c, 8), + make_tuple(&vpx_lpf_vertical_16_dual_dspr2, &vpx_lpf_vertical_16_dual_c, + 8))); + +INSTANTIATE_TEST_CASE_P( + DSPR2, Loop8Test9Param, + ::testing::Values(make_tuple(&vpx_lpf_horizontal_4_dual_dspr2, + &vpx_lpf_horizontal_4_dual_c, 8), + make_tuple(&vpx_lpf_horizontal_8_dual_dspr2, + &vpx_lpf_horizontal_8_dual_c, 8), + make_tuple(&vpx_lpf_vertical_4_dual_dspr2, + &vpx_lpf_vertical_4_dual_c, 8), + make_tuple(&vpx_lpf_vertical_8_dual_dspr2, + &vpx_lpf_vertical_8_dual_c, 8))); +#endif // HAVE_DSPR2 && !CONFIG_VP9_HIGHBITDEPTH + +#if HAVE_MSA && (!CONFIG_VP9_HIGHBITDEPTH) +INSTANTIATE_TEST_CASE_P( + MSA, Loop8Test6Param, + ::testing::Values( + make_tuple(&vpx_lpf_horizontal_4_msa, &vpx_lpf_horizontal_4_c, 8), + make_tuple(&vpx_lpf_horizontal_8_msa, &vpx_lpf_horizontal_8_c, 8), + make_tuple(&vpx_lpf_horizontal_16_msa, &vpx_lpf_horizontal_16_c, 8), + make_tuple(&vpx_lpf_horizontal_16_dual_msa, + &vpx_lpf_horizontal_16_dual_c, 8), + make_tuple(&vpx_lpf_vertical_4_msa, &vpx_lpf_vertical_4_c, 8), + make_tuple(&vpx_lpf_vertical_8_msa, &vpx_lpf_vertical_8_c, 8), + make_tuple(&vpx_lpf_vertical_16_msa, &vpx_lpf_vertical_16_c, 8))); + +INSTANTIATE_TEST_CASE_P( + MSA, Loop8Test9Param, + ::testing::Values(make_tuple(&vpx_lpf_horizontal_4_dual_msa, + &vpx_lpf_horizontal_4_dual_c, 8), + make_tuple(&vpx_lpf_horizontal_8_dual_msa, + &vpx_lpf_horizontal_8_dual_c, 8), + make_tuple(&vpx_lpf_vertical_4_dual_msa, + &vpx_lpf_vertical_4_dual_c, 8), + make_tuple(&vpx_lpf_vertical_8_dual_msa, + &vpx_lpf_vertical_8_dual_c, 8))); +#endif // HAVE_MSA && (!CONFIG_VP9_HIGHBITDEPTH) + +} // namespace diff --git a/test/md5_helper.h b/test/md5_helper.h new file mode 100644 index 0000000..ef310a2 --- /dev/null +++ b/test/md5_helper.h @@ -0,0 +1,75 @@ +/* + * Copyright (c) 2012 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef TEST_MD5_HELPER_H_ +#define TEST_MD5_HELPER_H_ + +#include "./md5_utils.h" +#include "vpx/vpx_decoder.h" + +namespace libvpx_test { +class MD5 { + public: + MD5() { MD5Init(&md5_); } + + void Add(const vpx_image_t *img) { + for (int plane = 0; plane < 3; ++plane) { + const uint8_t *buf = img->planes[plane]; + // Calculate the width and height to do the md5 check. For the chroma + // plane, we never want to round down and thus skip a pixel so if + // we are shifting by 1 (chroma_shift) we add 1 before doing the shift. + // This works only for chroma_shift of 0 and 1. + const int bytes_per_sample = + (img->fmt & VPX_IMG_FMT_HIGHBITDEPTH) ? 2 : 1; + const int h = + plane ? (img->d_h + img->y_chroma_shift) >> img->y_chroma_shift + : img->d_h; + const int w = + (plane ? (img->d_w + img->x_chroma_shift) >> img->x_chroma_shift + : img->d_w) * + bytes_per_sample; + + for (int y = 0; y < h; ++y) { + MD5Update(&md5_, buf, w); + buf += img->stride[plane]; + } + } + } + + void Add(const uint8_t *data, size_t size) { + MD5Update(&md5_, data, static_cast(size)); + } + + const char *Get(void) { + static const char hex[16] = { + '0', '1', '2', '3', '4', '5', '6', '7', + '8', '9', 'a', 'b', 'c', 'd', 'e', 'f', + }; + uint8_t tmp[16]; + MD5Context ctx_tmp = md5_; + + MD5Final(tmp, &ctx_tmp); + for (int i = 0; i < 16; i++) { + res_[i * 2 + 0] = hex[tmp[i] >> 4]; + res_[i * 2 + 1] = hex[tmp[i] & 0xf]; + } + res_[32] = 0; + + return res_; + } + + protected: + char res_[33]; + MD5Context md5_; +}; + +} // namespace libvpx_test + +#endif // TEST_MD5_HELPER_H_ diff --git a/test/minmax_test.cc b/test/minmax_test.cc new file mode 100644 index 0000000..9c11911 --- /dev/null +++ b/test/minmax_test.cc @@ -0,0 +1,135 @@ +/* + * Copyright (c) 2016 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include + +#include "third_party/googletest/src/include/gtest/gtest.h" + +#include "./vpx_dsp_rtcd.h" +#include "vpx/vpx_integer.h" + +#include "test/acm_random.h" +#include "test/register_state_check.h" + +namespace { + +using ::libvpx_test::ACMRandom; + +typedef void (*MinMaxFunc)(const uint8_t *a, int a_stride, const uint8_t *b, + int b_stride, int *min, int *max); + +class MinMaxTest : public ::testing::TestWithParam { + public: + virtual void SetUp() { + mm_func_ = GetParam(); + rnd_.Reset(ACMRandom::DeterministicSeed()); + } + + protected: + MinMaxFunc mm_func_; + ACMRandom rnd_; +}; + +void reference_minmax(const uint8_t *a, int a_stride, const uint8_t *b, + int b_stride, int *min_ret, int *max_ret) { + int min = 255; + int max = 0; + for (int i = 0; i < 8; i++) { + for (int j = 0; j < 8; j++) { + const int diff = abs(a[i * a_stride + j] - b[i * b_stride + j]); + if (min > diff) min = diff; + if (max < diff) max = diff; + } + } + + *min_ret = min; + *max_ret = max; +} + +TEST_P(MinMaxTest, MinValue) { + for (int i = 0; i < 64; i++) { + uint8_t a[64], b[64]; + memset(a, 0, sizeof(a)); + memset(b, 255, sizeof(b)); + b[i] = i; // Set a minimum difference of i. + + int min, max; + ASM_REGISTER_STATE_CHECK(mm_func_(a, 8, b, 8, &min, &max)); + EXPECT_EQ(255, max); + EXPECT_EQ(i, min); + } +} + +TEST_P(MinMaxTest, MaxValue) { + for (int i = 0; i < 64; i++) { + uint8_t a[64], b[64]; + memset(a, 0, sizeof(a)); + memset(b, 0, sizeof(b)); + b[i] = i; // Set a maximum difference of i. + + int min, max; + ASM_REGISTER_STATE_CHECK(mm_func_(a, 8, b, 8, &min, &max)); + EXPECT_EQ(i, max); + EXPECT_EQ(0, min); + } +} + +TEST_P(MinMaxTest, CompareReference) { + uint8_t a[64], b[64]; + for (int j = 0; j < 64; j++) { + a[j] = rnd_.Rand8(); + b[j] = rnd_.Rand8(); + } + + int min_ref, max_ref, min, max; + reference_minmax(a, 8, b, 8, &min_ref, &max_ref); + ASM_REGISTER_STATE_CHECK(mm_func_(a, 8, b, 8, &min, &max)); + EXPECT_EQ(max_ref, max); + EXPECT_EQ(min_ref, min); +} + +TEST_P(MinMaxTest, CompareReferenceAndVaryStride) { + uint8_t a[8 * 64], b[8 * 64]; + for (int i = 0; i < 8 * 64; i++) { + a[i] = rnd_.Rand8(); + b[i] = rnd_.Rand8(); + } + for (int a_stride = 8; a_stride <= 64; a_stride += 8) { + for (int b_stride = 8; b_stride <= 64; b_stride += 8) { + int min_ref, max_ref, min, max; + reference_minmax(a, a_stride, b, b_stride, &min_ref, &max_ref); + ASM_REGISTER_STATE_CHECK(mm_func_(a, a_stride, b, b_stride, &min, &max)); + EXPECT_EQ(max_ref, max) + << "when a_stride = " << a_stride << " and b_stride = " << b_stride; + EXPECT_EQ(min_ref, min) + << "when a_stride = " << a_stride << " and b_stride = " << b_stride; + } + } +} + +INSTANTIATE_TEST_CASE_P(C, MinMaxTest, ::testing::Values(&vpx_minmax_8x8_c)); + +#if HAVE_SSE2 +INSTANTIATE_TEST_CASE_P(SSE2, MinMaxTest, + ::testing::Values(&vpx_minmax_8x8_sse2)); +#endif + +#if HAVE_NEON +INSTANTIATE_TEST_CASE_P(NEON, MinMaxTest, + ::testing::Values(&vpx_minmax_8x8_neon)); +#endif + +#if HAVE_MSA +INSTANTIATE_TEST_CASE_P(MSA, MinMaxTest, + ::testing::Values(&vpx_minmax_8x8_msa)); +#endif + +} // namespace diff --git a/test/partial_idct_test.cc b/test/partial_idct_test.cc new file mode 100644 index 0000000..f7b50f5 --- /dev/null +++ b/test/partial_idct_test.cc @@ -0,0 +1,959 @@ +/* + * Copyright (c) 2013 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include +#include + +#include + +#include "third_party/googletest/src/include/gtest/gtest.h" + +#include "./vp9_rtcd.h" +#include "./vpx_dsp_rtcd.h" +#include "test/acm_random.h" +#include "test/clear_system_state.h" +#include "test/register_state_check.h" +#include "test/util.h" +#include "vp9/common/vp9_blockd.h" +#include "vp9/common/vp9_scan.h" +#include "vpx/vpx_integer.h" +#include "vpx_ports/vpx_timer.h" + +using libvpx_test::ACMRandom; + +namespace { + +typedef void (*FwdTxfmFunc)(const int16_t *in, tran_low_t *out, int stride); +typedef void (*InvTxfmFunc)(const tran_low_t *in, uint8_t *out, int stride); +typedef void (*InvTxfmWithBdFunc)(const tran_low_t *in, uint8_t *out, + int stride, int bd); + +template +void wrapper(const tran_low_t *in, uint8_t *out, int stride, int bd) { + (void)bd; + fn(in, out, stride); +} + +#if CONFIG_VP9_HIGHBITDEPTH +typedef void (*InvTxfmHighbdFunc)(const tran_low_t *in, uint16_t *out, + int stride, int bd); +template +void highbd_wrapper(const tran_low_t *in, uint8_t *out, int stride, int bd) { + fn(in, CAST_TO_SHORTPTR(out), stride, bd); +} +#endif + +typedef std::tr1::tuple + PartialInvTxfmParam; +const int kMaxNumCoeffs = 1024; +const int kCountTestBlock = 1000; + +class PartialIDctTest : public ::testing::TestWithParam { + public: + virtual ~PartialIDctTest() {} + virtual void SetUp() { + rnd_.Reset(ACMRandom::DeterministicSeed()); + fwd_txfm_ = GET_PARAM(0); + full_inv_txfm_ = GET_PARAM(1); + partial_inv_txfm_ = GET_PARAM(2); + tx_size_ = GET_PARAM(3); + last_nonzero_ = GET_PARAM(4); + bit_depth_ = GET_PARAM(5); + pixel_size_ = GET_PARAM(6); + mask_ = (1 << bit_depth_) - 1; + + switch (tx_size_) { + case TX_4X4: size_ = 4; break; + case TX_8X8: size_ = 8; break; + case TX_16X16: size_ = 16; break; + case TX_32X32: size_ = 32; break; + default: FAIL() << "Wrong Size!"; break; + } + + // Randomize stride_ to a value less than or equal to 1024 + stride_ = rnd_(1024) + 1; + if (stride_ < size_) { + stride_ = size_; + } + // Align stride_ to 16 if it's bigger than 16. + if (stride_ > 16) { + stride_ &= ~15; + } + + input_block_size_ = size_ * size_; + output_block_size_ = size_ * stride_; + + input_block_ = reinterpret_cast( + vpx_memalign(16, sizeof(*input_block_) * input_block_size_)); + output_block_ = reinterpret_cast( + vpx_memalign(16, pixel_size_ * output_block_size_)); + output_block_ref_ = reinterpret_cast( + vpx_memalign(16, pixel_size_ * output_block_size_)); + } + + virtual void TearDown() { + vpx_free(input_block_); + input_block_ = NULL; + vpx_free(output_block_); + output_block_ = NULL; + vpx_free(output_block_ref_); + output_block_ref_ = NULL; + libvpx_test::ClearSystemState(); + } + + void InitMem() { + memset(input_block_, 0, sizeof(*input_block_) * input_block_size_); + if (pixel_size_ == 1) { + for (int j = 0; j < output_block_size_; ++j) { + output_block_[j] = output_block_ref_[j] = rnd_.Rand16() & mask_; + } + } else { + ASSERT_EQ(2, pixel_size_); + uint16_t *const output = reinterpret_cast(output_block_); + uint16_t *const output_ref = + reinterpret_cast(output_block_ref_); + for (int j = 0; j < output_block_size_; ++j) { + output[j] = output_ref[j] = rnd_.Rand16() & mask_; + } + } + } + + void InitInput() { + const int64_t max_coeff = (32766 << (bit_depth_ - 8)) / 4; + int64_t max_energy_leftover = max_coeff * max_coeff; + for (int j = 0; j < last_nonzero_; ++j) { + tran_low_t coeff = static_cast( + sqrt(1.0 * max_energy_leftover) * (rnd_.Rand16() - 32768) / 65536); + max_energy_leftover -= static_cast(coeff) * coeff; + if (max_energy_leftover < 0) { + max_energy_leftover = 0; + coeff = 0; + } + input_block_[vp9_default_scan_orders[tx_size_].scan[j]] = coeff; + } + } + + void PrintDiff() { + if (memcmp(output_block_ref_, output_block_, + pixel_size_ * output_block_size_)) { + uint16_t ref, opt; + for (int y = 0; y < size_; y++) { + for (int x = 0; x < size_; x++) { + if (pixel_size_ == 1) { + ref = output_block_ref_[y * stride_ + x]; + opt = output_block_[y * stride_ + x]; + } else { + ref = reinterpret_cast( + output_block_ref_)[y * stride_ + x]; + opt = reinterpret_cast(output_block_)[y * stride_ + x]; + } + if (ref != opt) { + printf("dest[%d][%d] diff:%6d (ref),%6d (opt)\n", y, x, ref, opt); + } + } + } + + printf("\ninput_block_:\n"); + for (int y = 0; y < size_; y++) { + for (int x = 0; x < size_; x++) { + printf("%6d,", input_block_[y * size_ + x]); + } + printf("\n"); + } + } + } + + protected: + int last_nonzero_; + TX_SIZE tx_size_; + tran_low_t *input_block_; + uint8_t *output_block_; + uint8_t *output_block_ref_; + int size_; + int stride_; + int pixel_size_; + int input_block_size_; + int output_block_size_; + int bit_depth_; + int mask_; + FwdTxfmFunc fwd_txfm_; + InvTxfmWithBdFunc full_inv_txfm_; + InvTxfmWithBdFunc partial_inv_txfm_; + ACMRandom rnd_; +}; + +TEST_P(PartialIDctTest, RunQuantCheck) { + const int count_test_block = (size_ != 4) ? kCountTestBlock : 65536; + DECLARE_ALIGNED(16, int16_t, input_extreme_block[kMaxNumCoeffs]); + DECLARE_ALIGNED(16, tran_low_t, output_ref_block[kMaxNumCoeffs]); + + InitMem(); + + for (int i = 0; i < count_test_block; ++i) { + // Initialize a test block with input range [-mask_, mask_]. + if (size_ != 4) { + if (i == 0) { + for (int k = 0; k < input_block_size_; ++k) { + input_extreme_block[k] = mask_; + } + } else if (i == 1) { + for (int k = 0; k < input_block_size_; ++k) { + input_extreme_block[k] = -mask_; + } + } else { + for (int k = 0; k < input_block_size_; ++k) { + input_extreme_block[k] = rnd_.Rand8() % 2 ? mask_ : -mask_; + } + } + } else { + // Try all possible combinations. + for (int k = 0; k < input_block_size_; ++k) { + input_extreme_block[k] = (i & (1 << k)) ? mask_ : -mask_; + } + } + + fwd_txfm_(input_extreme_block, output_ref_block, size_); + + // quantization with minimum allowed step sizes + input_block_[0] = (output_ref_block[0] / 4) * 4; + for (int k = 1; k < last_nonzero_; ++k) { + const int pos = vp9_default_scan_orders[tx_size_].scan[k]; + input_block_[pos] = (output_ref_block[pos] / 4) * 4; + } + + ASM_REGISTER_STATE_CHECK( + full_inv_txfm_(input_block_, output_block_ref_, stride_, bit_depth_)); + ASM_REGISTER_STATE_CHECK( + partial_inv_txfm_(input_block_, output_block_, stride_, bit_depth_)); + ASSERT_EQ(0, memcmp(output_block_ref_, output_block_, + pixel_size_ * output_block_size_)) + << "Error: partial inverse transform produces different results"; + } +} + +TEST_P(PartialIDctTest, ResultsMatch) { + for (int i = 0; i < kCountTestBlock; ++i) { + InitMem(); + InitInput(); + + ASM_REGISTER_STATE_CHECK( + full_inv_txfm_(input_block_, output_block_ref_, stride_, bit_depth_)); + ASM_REGISTER_STATE_CHECK( + partial_inv_txfm_(input_block_, output_block_, stride_, bit_depth_)); + ASSERT_EQ(0, memcmp(output_block_ref_, output_block_, + pixel_size_ * output_block_size_)) + << "Error: partial inverse transform produces different results"; + } +} + +TEST_P(PartialIDctTest, AddOutputBlock) { + for (int i = 0; i < kCountTestBlock; ++i) { + InitMem(); + for (int j = 0; j < last_nonzero_; ++j) { + input_block_[vp9_default_scan_orders[tx_size_].scan[j]] = 10; + } + + ASM_REGISTER_STATE_CHECK( + full_inv_txfm_(input_block_, output_block_ref_, stride_, bit_depth_)); + ASM_REGISTER_STATE_CHECK( + partial_inv_txfm_(input_block_, output_block_, stride_, bit_depth_)); + ASSERT_EQ(0, memcmp(output_block_ref_, output_block_, + pixel_size_ * output_block_size_)) + << "Error: Transform results are not correctly added to output."; + } +} + +TEST_P(PartialIDctTest, SingleExtremeCoeff) { + const int16_t max_coeff = std::numeric_limits::max(); + const int16_t min_coeff = std::numeric_limits::min(); + for (int i = 0; i < last_nonzero_; ++i) { + memset(input_block_, 0, sizeof(*input_block_) * input_block_size_); + // Run once for min and once for max. + for (int j = 0; j < 2; ++j) { + const int coeff = j ? min_coeff : max_coeff; + + memset(output_block_, 0, pixel_size_ * output_block_size_); + memset(output_block_ref_, 0, pixel_size_ * output_block_size_); + input_block_[vp9_default_scan_orders[tx_size_].scan[i]] = coeff; + + ASM_REGISTER_STATE_CHECK( + full_inv_txfm_(input_block_, output_block_ref_, stride_, bit_depth_)); + ASM_REGISTER_STATE_CHECK( + partial_inv_txfm_(input_block_, output_block_, stride_, bit_depth_)); + ASSERT_EQ(0, memcmp(output_block_ref_, output_block_, + pixel_size_ * output_block_size_)) + << "Error: Fails with single coeff of " << coeff << " at " << i + << "."; + } + } +} + +TEST_P(PartialIDctTest, DISABLED_Speed) { + // Keep runtime stable with transform size. + const int kCountSpeedTestBlock = 500000000 / input_block_size_; + InitMem(); + InitInput(); + + for (int i = 0; i < kCountSpeedTestBlock; ++i) { + ASM_REGISTER_STATE_CHECK( + full_inv_txfm_(input_block_, output_block_ref_, stride_, bit_depth_)); + } + vpx_usec_timer timer; + vpx_usec_timer_start(&timer); + for (int i = 0; i < kCountSpeedTestBlock; ++i) { + partial_inv_txfm_(input_block_, output_block_, stride_, bit_depth_); + } + libvpx_test::ClearSystemState(); + vpx_usec_timer_mark(&timer); + const int elapsed_time = + static_cast(vpx_usec_timer_elapsed(&timer) / 1000); + printf("idct%dx%d_%d (%s %d) time: %5d ms\n", size_, size_, last_nonzero_, + (pixel_size_ == 1) ? "bitdepth" : "high bitdepth", bit_depth_, + elapsed_time); + ASSERT_EQ(0, memcmp(output_block_ref_, output_block_, + pixel_size_ * output_block_size_)) + << "Error: partial inverse transform produces different results"; +} + +using std::tr1::make_tuple; + +const PartialInvTxfmParam c_partial_idct_tests[] = { +#if CONFIG_VP9_HIGHBITDEPTH + make_tuple( + &vpx_highbd_fdct32x32_c, &highbd_wrapper, + &highbd_wrapper, TX_32X32, 1024, 8, 2), + make_tuple( + &vpx_highbd_fdct32x32_c, &highbd_wrapper, + &highbd_wrapper, TX_32X32, 1024, 10, 2), + make_tuple( + &vpx_highbd_fdct32x32_c, &highbd_wrapper, + &highbd_wrapper, TX_32X32, 1024, 12, 2), + make_tuple( + &vpx_highbd_fdct32x32_c, &highbd_wrapper, + &highbd_wrapper, TX_32X32, 135, 8, 2), + make_tuple( + &vpx_highbd_fdct32x32_c, &highbd_wrapper, + &highbd_wrapper, TX_32X32, 135, 10, 2), + make_tuple( + &vpx_highbd_fdct32x32_c, &highbd_wrapper, + &highbd_wrapper, TX_32X32, 135, 12, 2), + make_tuple( + &vpx_highbd_fdct32x32_c, &highbd_wrapper, + &highbd_wrapper, TX_32X32, 34, 8, 2), + make_tuple( + &vpx_highbd_fdct32x32_c, &highbd_wrapper, + &highbd_wrapper, TX_32X32, 34, 10, 2), + make_tuple( + &vpx_highbd_fdct32x32_c, &highbd_wrapper, + &highbd_wrapper, TX_32X32, 34, 12, 2), + make_tuple(&vpx_highbd_fdct32x32_c, + &highbd_wrapper, + &highbd_wrapper, TX_32X32, 1, 8, 2), + make_tuple(&vpx_highbd_fdct32x32_c, + &highbd_wrapper, + &highbd_wrapper, TX_32X32, 1, 10, 2), + make_tuple(&vpx_highbd_fdct32x32_c, + &highbd_wrapper, + &highbd_wrapper, TX_32X32, 1, 12, 2), + make_tuple( + &vpx_highbd_fdct16x16_c, &highbd_wrapper, + &highbd_wrapper, TX_16X16, 256, 8, 2), + make_tuple( + &vpx_highbd_fdct16x16_c, &highbd_wrapper, + &highbd_wrapper, TX_16X16, 256, 10, 2), + make_tuple( + &vpx_highbd_fdct16x16_c, &highbd_wrapper, + &highbd_wrapper, TX_16X16, 256, 12, 2), + make_tuple( + &vpx_highbd_fdct16x16_c, &highbd_wrapper, + &highbd_wrapper, TX_16X16, 38, 8, 2), + make_tuple( + &vpx_highbd_fdct16x16_c, &highbd_wrapper, + &highbd_wrapper, TX_16X16, 38, 10, 2), + make_tuple( + &vpx_highbd_fdct16x16_c, &highbd_wrapper, + &highbd_wrapper, TX_16X16, 38, 12, 2), + make_tuple( + &vpx_highbd_fdct16x16_c, &highbd_wrapper, + &highbd_wrapper, TX_16X16, 10, 8, 2), + make_tuple( + &vpx_highbd_fdct16x16_c, &highbd_wrapper, + &highbd_wrapper, TX_16X16, 10, 10, 2), + make_tuple( + &vpx_highbd_fdct16x16_c, &highbd_wrapper, + &highbd_wrapper, TX_16X16, 10, 12, 2), + make_tuple(&vpx_highbd_fdct16x16_c, + &highbd_wrapper, + &highbd_wrapper, TX_16X16, 1, 8, 2), + make_tuple(&vpx_highbd_fdct16x16_c, + &highbd_wrapper, + &highbd_wrapper, TX_16X16, 1, 10, 2), + make_tuple(&vpx_highbd_fdct16x16_c, + &highbd_wrapper, + &highbd_wrapper, TX_16X16, 1, 12, 2), + make_tuple(&vpx_highbd_fdct8x8_c, + &highbd_wrapper, + &highbd_wrapper, TX_8X8, 64, 8, 2), + make_tuple(&vpx_highbd_fdct8x8_c, + &highbd_wrapper, + &highbd_wrapper, TX_8X8, 64, 10, 2), + make_tuple(&vpx_highbd_fdct8x8_c, + &highbd_wrapper, + &highbd_wrapper, TX_8X8, 64, 12, 2), + make_tuple(&vpx_highbd_fdct8x8_c, + &highbd_wrapper, + &highbd_wrapper, TX_8X8, 12, 8, 2), + make_tuple(&vpx_highbd_fdct8x8_c, + &highbd_wrapper, + &highbd_wrapper, TX_8X8, 12, 10, 2), + make_tuple(&vpx_highbd_fdct8x8_c, + &highbd_wrapper, + &highbd_wrapper, TX_8X8, 12, 12, 2), + make_tuple(&vpx_highbd_fdct8x8_c, + &highbd_wrapper, + &highbd_wrapper, TX_8X8, 1, 8, 2), + make_tuple(&vpx_highbd_fdct8x8_c, + &highbd_wrapper, + &highbd_wrapper, TX_8X8, 1, 10, 2), + make_tuple(&vpx_highbd_fdct8x8_c, + &highbd_wrapper, + &highbd_wrapper, TX_8X8, 1, 12, 2), + make_tuple(&vpx_highbd_fdct4x4_c, + &highbd_wrapper, + &highbd_wrapper, TX_4X4, 16, 8, 2), + make_tuple(&vpx_highbd_fdct4x4_c, + &highbd_wrapper, + &highbd_wrapper, TX_4X4, 16, 10, 2), + make_tuple(&vpx_highbd_fdct4x4_c, + &highbd_wrapper, + &highbd_wrapper, TX_4X4, 16, 12, 2), + make_tuple(&vpx_highbd_fdct4x4_c, + &highbd_wrapper, + &highbd_wrapper, TX_4X4, 1, 8, 2), + make_tuple(&vpx_highbd_fdct4x4_c, + &highbd_wrapper, + &highbd_wrapper, TX_4X4, 1, 10, 2), + make_tuple(&vpx_highbd_fdct4x4_c, + &highbd_wrapper, + &highbd_wrapper, TX_4X4, 1, 12, 2), +#endif // CONFIG_VP9_HIGHBITDEPTH + make_tuple(&vpx_fdct32x32_c, &wrapper, + &wrapper, TX_32X32, 1024, 8, 1), + make_tuple(&vpx_fdct32x32_c, &wrapper, + &wrapper, TX_32X32, 135, 8, 1), + make_tuple(&vpx_fdct32x32_c, &wrapper, + &wrapper, TX_32X32, 34, 8, 1), + make_tuple(&vpx_fdct32x32_c, &wrapper, + &wrapper, TX_32X32, 1, 8, 1), + make_tuple(&vpx_fdct16x16_c, &wrapper, + &wrapper, TX_16X16, 256, 8, 1), + make_tuple(&vpx_fdct16x16_c, &wrapper, + &wrapper, TX_16X16, 38, 8, 1), + make_tuple(&vpx_fdct16x16_c, &wrapper, + &wrapper, TX_16X16, 10, 8, 1), + make_tuple(&vpx_fdct16x16_c, &wrapper, + &wrapper, TX_16X16, 1, 8, 1), + make_tuple(&vpx_fdct8x8_c, &wrapper, + &wrapper, TX_8X8, 64, 8, 1), + make_tuple(&vpx_fdct8x8_c, &wrapper, + &wrapper, TX_8X8, 12, 8, 1), + make_tuple(&vpx_fdct8x8_c, &wrapper, + &wrapper, TX_8X8, 1, 8, 1), + make_tuple(&vpx_fdct4x4_c, &wrapper, + &wrapper, TX_4X4, 16, 8, 1), + make_tuple(&vpx_fdct4x4_c, &wrapper, + &wrapper, TX_4X4, 1, 8, 1) +}; + +INSTANTIATE_TEST_CASE_P(C, PartialIDctTest, + ::testing::ValuesIn(c_partial_idct_tests)); + +#if !CONFIG_EMULATE_HARDWARE + +#if HAVE_NEON +const PartialInvTxfmParam neon_partial_idct_tests[] = { +#if CONFIG_VP9_HIGHBITDEPTH + make_tuple(&vpx_highbd_fdct32x32_c, + &highbd_wrapper, + &highbd_wrapper, TX_32X32, + 1024, 8, 2), + make_tuple(&vpx_highbd_fdct32x32_c, + &highbd_wrapper, + &highbd_wrapper, TX_32X32, + 1024, 10, 2), + make_tuple(&vpx_highbd_fdct32x32_c, + &highbd_wrapper, + &highbd_wrapper, TX_32X32, + 1024, 12, 2), + make_tuple( + &vpx_highbd_fdct32x32_c, &highbd_wrapper, + &highbd_wrapper, TX_32X32, 135, 8, 2), + make_tuple( + &vpx_highbd_fdct32x32_c, &highbd_wrapper, + &highbd_wrapper, TX_32X32, 135, 10, 2), + make_tuple( + &vpx_highbd_fdct32x32_c, &highbd_wrapper, + &highbd_wrapper, TX_32X32, 135, 12, 2), + make_tuple( + &vpx_highbd_fdct32x32_c, &highbd_wrapper, + &highbd_wrapper, TX_32X32, 34, 8, 2), + make_tuple( + &vpx_highbd_fdct32x32_c, &highbd_wrapper, + &highbd_wrapper, TX_32X32, 34, 10, 2), + make_tuple( + &vpx_highbd_fdct32x32_c, &highbd_wrapper, + &highbd_wrapper, TX_32X32, 34, 12, 2), + make_tuple( + &vpx_highbd_fdct32x32_c, &highbd_wrapper, + &highbd_wrapper, TX_32X32, 1, 8, 2), + make_tuple( + &vpx_highbd_fdct32x32_c, &highbd_wrapper, + &highbd_wrapper, TX_32X32, 1, 10, 2), + make_tuple( + &vpx_highbd_fdct32x32_c, &highbd_wrapper, + &highbd_wrapper, TX_32X32, 1, 12, 2), + make_tuple( + &vpx_highbd_fdct16x16_c, &highbd_wrapper, + &highbd_wrapper, TX_16X16, 256, 8, 2), + make_tuple( + &vpx_highbd_fdct16x16_c, &highbd_wrapper, + &highbd_wrapper, TX_16X16, 256, 10, 2), + make_tuple( + &vpx_highbd_fdct16x16_c, &highbd_wrapper, + &highbd_wrapper, TX_16X16, 256, 12, 2), + make_tuple( + &vpx_highbd_fdct16x16_c, &highbd_wrapper, + &highbd_wrapper, TX_16X16, 38, 8, 2), + make_tuple( + &vpx_highbd_fdct16x16_c, &highbd_wrapper, + &highbd_wrapper, TX_16X16, 38, 10, 2), + make_tuple( + &vpx_highbd_fdct16x16_c, &highbd_wrapper, + &highbd_wrapper, TX_16X16, 38, 12, 2), + make_tuple( + &vpx_highbd_fdct16x16_c, &highbd_wrapper, + &highbd_wrapper, TX_16X16, 10, 8, 2), + make_tuple( + &vpx_highbd_fdct16x16_c, &highbd_wrapper, + &highbd_wrapper, TX_16X16, 10, 10, 2), + make_tuple( + &vpx_highbd_fdct16x16_c, &highbd_wrapper, + &highbd_wrapper, TX_16X16, 10, 12, 2), + make_tuple( + &vpx_highbd_fdct16x16_c, &highbd_wrapper, + &highbd_wrapper, TX_16X16, 1, 8, 2), + make_tuple( + &vpx_highbd_fdct16x16_c, &highbd_wrapper, + &highbd_wrapper, TX_16X16, 1, 10, 2), + make_tuple( + &vpx_highbd_fdct16x16_c, &highbd_wrapper, + &highbd_wrapper, TX_16X16, 1, 12, 2), + make_tuple(&vpx_highbd_fdct8x8_c, + &highbd_wrapper, + &highbd_wrapper, TX_8X8, 64, 8, 2), + make_tuple( + &vpx_highbd_fdct8x8_c, &highbd_wrapper, + &highbd_wrapper, TX_8X8, 64, 10, 2), + make_tuple( + &vpx_highbd_fdct8x8_c, &highbd_wrapper, + &highbd_wrapper, TX_8X8, 64, 12, 2), + make_tuple(&vpx_highbd_fdct8x8_c, + &highbd_wrapper, + &highbd_wrapper, TX_8X8, 12, 8, 2), + make_tuple( + &vpx_highbd_fdct8x8_c, &highbd_wrapper, + &highbd_wrapper, TX_8X8, 12, 10, 2), + make_tuple( + &vpx_highbd_fdct8x8_c, &highbd_wrapper, + &highbd_wrapper, TX_8X8, 12, 12, 2), + make_tuple(&vpx_highbd_fdct8x8_c, &highbd_wrapper, + &highbd_wrapper, TX_8X8, 1, 8, 2), + make_tuple(&vpx_highbd_fdct8x8_c, &highbd_wrapper, + &highbd_wrapper, TX_8X8, 1, 10, 2), + make_tuple(&vpx_highbd_fdct8x8_c, &highbd_wrapper, + &highbd_wrapper, TX_8X8, 1, 12, 2), + make_tuple(&vpx_highbd_fdct4x4_c, + &highbd_wrapper, + &highbd_wrapper, TX_4X4, 16, 8, 2), + make_tuple( + &vpx_highbd_fdct4x4_c, &highbd_wrapper, + &highbd_wrapper, TX_4X4, 16, 10, 2), + make_tuple( + &vpx_highbd_fdct4x4_c, &highbd_wrapper, + &highbd_wrapper, TX_4X4, 16, 12, 2), + make_tuple(&vpx_highbd_fdct4x4_c, &highbd_wrapper, + &highbd_wrapper, TX_4X4, 1, 8, 2), + make_tuple(&vpx_highbd_fdct4x4_c, &highbd_wrapper, + &highbd_wrapper, TX_4X4, 1, 10, 2), + make_tuple(&vpx_highbd_fdct4x4_c, &highbd_wrapper, + &highbd_wrapper, TX_4X4, 1, 12, 2), +#endif // CONFIG_VP9_HIGHBITDEPTH + make_tuple(&vpx_fdct32x32_c, &wrapper, + &wrapper, TX_32X32, 1024, 8, 1), + make_tuple(&vpx_fdct32x32_c, &wrapper, + &wrapper, TX_32X32, 135, 8, 1), + make_tuple(&vpx_fdct32x32_c, &wrapper, + &wrapper, TX_32X32, 34, 8, 1), + make_tuple(&vpx_fdct32x32_c, &wrapper, + &wrapper, TX_32X32, 1, 8, 1), + make_tuple(&vpx_fdct16x16_c, &wrapper, + &wrapper, TX_16X16, 256, 8, 1), + make_tuple(&vpx_fdct16x16_c, &wrapper, + &wrapper, TX_16X16, 38, 8, 1), + make_tuple(&vpx_fdct16x16_c, &wrapper, + &wrapper, TX_16X16, 10, 8, 1), + make_tuple(&vpx_fdct16x16_c, &wrapper, + &wrapper, TX_16X16, 1, 8, 1), + make_tuple(&vpx_fdct8x8_c, &wrapper, + &wrapper, TX_8X8, 64, 8, 1), + make_tuple(&vpx_fdct8x8_c, &wrapper, + &wrapper, TX_8X8, 12, 8, 1), + make_tuple(&vpx_fdct8x8_c, &wrapper, + &wrapper, TX_8X8, 1, 8, 1), + make_tuple(&vpx_fdct4x4_c, &wrapper, + &wrapper, TX_4X4, 16, 8, 1), + make_tuple(&vpx_fdct4x4_c, &wrapper, + &wrapper, TX_4X4, 1, 8, 1) +}; + +INSTANTIATE_TEST_CASE_P(NEON, PartialIDctTest, + ::testing::ValuesIn(neon_partial_idct_tests)); +#endif // HAVE_NEON + +#if HAVE_SSE2 +// 32x32_135_ is implemented using the 1024 version. +const PartialInvTxfmParam sse2_partial_idct_tests[] = { +#if CONFIG_VP9_HIGHBITDEPTH + make_tuple(&vpx_highbd_fdct32x32_c, + &highbd_wrapper, + &highbd_wrapper, TX_32X32, + 1024, 8, 2), + make_tuple(&vpx_highbd_fdct32x32_c, + &highbd_wrapper, + &highbd_wrapper, TX_32X32, + 1024, 10, 2), + make_tuple(&vpx_highbd_fdct32x32_c, + &highbd_wrapper, + &highbd_wrapper, TX_32X32, + 1024, 12, 2), + make_tuple( + &vpx_highbd_fdct32x32_c, &highbd_wrapper, + &highbd_wrapper, TX_32X32, 135, 8, 2), + make_tuple( + &vpx_highbd_fdct32x32_c, &highbd_wrapper, + &highbd_wrapper, TX_32X32, 135, 10, 2), + make_tuple( + &vpx_highbd_fdct32x32_c, &highbd_wrapper, + &highbd_wrapper, TX_32X32, 135, 12, 2), + make_tuple( + &vpx_highbd_fdct32x32_c, &highbd_wrapper, + &highbd_wrapper, TX_32X32, 34, 8, 2), + make_tuple( + &vpx_highbd_fdct32x32_c, &highbd_wrapper, + &highbd_wrapper, TX_32X32, 34, 10, 2), + make_tuple( + &vpx_highbd_fdct32x32_c, &highbd_wrapper, + &highbd_wrapper, TX_32X32, 34, 12, 2), + make_tuple( + &vpx_highbd_fdct32x32_c, &highbd_wrapper, + &highbd_wrapper, TX_32X32, 1, 8, 2), + make_tuple( + &vpx_highbd_fdct32x32_c, &highbd_wrapper, + &highbd_wrapper, TX_32X32, 1, 10, 2), + make_tuple( + &vpx_highbd_fdct32x32_c, &highbd_wrapper, + &highbd_wrapper, TX_32X32, 1, 12, 2), + make_tuple( + &vpx_highbd_fdct16x16_c, &highbd_wrapper, + &highbd_wrapper, TX_16X16, 256, 8, 2), + make_tuple( + &vpx_highbd_fdct16x16_c, &highbd_wrapper, + &highbd_wrapper, TX_16X16, 256, 10, 2), + make_tuple( + &vpx_highbd_fdct16x16_c, &highbd_wrapper, + &highbd_wrapper, TX_16X16, 256, 12, 2), + make_tuple( + &vpx_highbd_fdct16x16_c, &highbd_wrapper, + &highbd_wrapper, TX_16X16, 38, 8, 2), + make_tuple( + &vpx_highbd_fdct16x16_c, &highbd_wrapper, + &highbd_wrapper, TX_16X16, 38, 10, 2), + make_tuple( + &vpx_highbd_fdct16x16_c, &highbd_wrapper, + &highbd_wrapper, TX_16X16, 38, 12, 2), + make_tuple( + &vpx_highbd_fdct16x16_c, &highbd_wrapper, + &highbd_wrapper, TX_16X16, 10, 8, 2), + make_tuple( + &vpx_highbd_fdct16x16_c, &highbd_wrapper, + &highbd_wrapper, TX_16X16, 10, 10, 2), + make_tuple( + &vpx_highbd_fdct16x16_c, &highbd_wrapper, + &highbd_wrapper, TX_16X16, 10, 12, 2), + make_tuple( + &vpx_highbd_fdct16x16_c, &highbd_wrapper, + &highbd_wrapper, TX_16X16, 1, 8, 2), + make_tuple( + &vpx_highbd_fdct16x16_c, &highbd_wrapper, + &highbd_wrapper, TX_16X16, 1, 10, 2), + make_tuple( + &vpx_highbd_fdct16x16_c, &highbd_wrapper, + &highbd_wrapper, TX_16X16, 1, 12, 2), + make_tuple(&vpx_highbd_fdct8x8_c, + &highbd_wrapper, + &highbd_wrapper, TX_8X8, 64, 8, 2), + make_tuple( + &vpx_highbd_fdct8x8_c, &highbd_wrapper, + &highbd_wrapper, TX_8X8, 64, 10, 2), + make_tuple( + &vpx_highbd_fdct8x8_c, &highbd_wrapper, + &highbd_wrapper, TX_8X8, 64, 12, 2), + make_tuple(&vpx_highbd_fdct8x8_c, + &highbd_wrapper, + &highbd_wrapper, TX_8X8, 12, 8, 2), + make_tuple( + &vpx_highbd_fdct8x8_c, &highbd_wrapper, + &highbd_wrapper, TX_8X8, 12, 10, 2), + make_tuple( + &vpx_highbd_fdct8x8_c, &highbd_wrapper, + &highbd_wrapper, TX_8X8, 12, 12, 2), + make_tuple(&vpx_highbd_fdct8x8_c, &highbd_wrapper, + &highbd_wrapper, TX_8X8, 1, 8, 2), + make_tuple(&vpx_highbd_fdct8x8_c, &highbd_wrapper, + &highbd_wrapper, TX_8X8, 1, 10, 2), + make_tuple(&vpx_highbd_fdct8x8_c, &highbd_wrapper, + &highbd_wrapper, TX_8X8, 1, 12, 2), + make_tuple(&vpx_highbd_fdct4x4_c, + &highbd_wrapper, + &highbd_wrapper, TX_4X4, 16, 8, 2), + make_tuple( + &vpx_highbd_fdct4x4_c, &highbd_wrapper, + &highbd_wrapper, TX_4X4, 16, 10, 2), + make_tuple( + &vpx_highbd_fdct4x4_c, &highbd_wrapper, + &highbd_wrapper, TX_4X4, 16, 12, 2), + make_tuple(&vpx_highbd_fdct4x4_c, &highbd_wrapper, + &highbd_wrapper, TX_4X4, 1, 8, 2), + make_tuple(&vpx_highbd_fdct4x4_c, &highbd_wrapper, + &highbd_wrapper, TX_4X4, 1, 10, 2), + make_tuple(&vpx_highbd_fdct4x4_c, &highbd_wrapper, + &highbd_wrapper, TX_4X4, 1, 12, 2), +#endif // CONFIG_VP9_HIGHBITDEPTH + make_tuple(&vpx_fdct32x32_c, &wrapper, + &wrapper, TX_32X32, 1024, 8, 1), + make_tuple(&vpx_fdct32x32_c, &wrapper, + &wrapper, TX_32X32, 135, 8, 1), + make_tuple(&vpx_fdct32x32_c, &wrapper, + &wrapper, TX_32X32, 34, 8, 1), + make_tuple(&vpx_fdct32x32_c, &wrapper, + &wrapper, TX_32X32, 1, 8, 1), + make_tuple(&vpx_fdct16x16_c, &wrapper, + &wrapper, TX_16X16, 256, 8, 1), + make_tuple(&vpx_fdct16x16_c, &wrapper, + &wrapper, TX_16X16, 38, 8, 1), + make_tuple(&vpx_fdct16x16_c, &wrapper, + &wrapper, TX_16X16, 10, 8, 1), + make_tuple(&vpx_fdct16x16_c, &wrapper, + &wrapper, TX_16X16, 1, 8, 1), + make_tuple(&vpx_fdct8x8_c, &wrapper, + &wrapper, TX_8X8, 64, 8, 1), + make_tuple(&vpx_fdct8x8_c, &wrapper, + &wrapper, TX_8X8, 12, 8, 1), + make_tuple(&vpx_fdct8x8_c, &wrapper, + &wrapper, TX_8X8, 1, 8, 1), + make_tuple(&vpx_fdct4x4_c, &wrapper, + &wrapper, TX_4X4, 16, 8, 1), + make_tuple(&vpx_fdct4x4_c, &wrapper, + &wrapper, TX_4X4, 1, 8, 1) +}; + +INSTANTIATE_TEST_CASE_P(SSE2, PartialIDctTest, + ::testing::ValuesIn(sse2_partial_idct_tests)); + +#endif // HAVE_SSE2 + +#if HAVE_SSSE3 +const PartialInvTxfmParam ssse3_partial_idct_tests[] = { + make_tuple(&vpx_fdct32x32_c, &wrapper, + &wrapper, TX_32X32, 135, 8, 1), + make_tuple(&vpx_fdct32x32_c, &wrapper, + &wrapper, TX_32X32, 34, 8, 1), + make_tuple(&vpx_fdct8x8_c, &wrapper, + &wrapper, TX_8X8, 12, 8, 1) +}; + +INSTANTIATE_TEST_CASE_P(SSSE3, PartialIDctTest, + ::testing::ValuesIn(ssse3_partial_idct_tests)); +#endif // HAVE_SSSE3 + +#if HAVE_SSE4_1 && CONFIG_VP9_HIGHBITDEPTH +const PartialInvTxfmParam sse4_1_partial_idct_tests[] = { + make_tuple(&vpx_highbd_fdct32x32_c, + &highbd_wrapper, + &highbd_wrapper, TX_32X32, + 1024, 8, 2), + make_tuple(&vpx_highbd_fdct32x32_c, + &highbd_wrapper, + &highbd_wrapper, TX_32X32, + 1024, 10, 2), + make_tuple(&vpx_highbd_fdct32x32_c, + &highbd_wrapper, + &highbd_wrapper, TX_32X32, + 1024, 12, 2), + make_tuple(&vpx_highbd_fdct32x32_c, + &highbd_wrapper, + &highbd_wrapper, TX_32X32, + 135, 8, 2), + make_tuple(&vpx_highbd_fdct32x32_c, + &highbd_wrapper, + &highbd_wrapper, TX_32X32, + 135, 10, 2), + make_tuple(&vpx_highbd_fdct32x32_c, + &highbd_wrapper, + &highbd_wrapper, TX_32X32, + 135, 12, 2), + make_tuple( + &vpx_highbd_fdct32x32_c, &highbd_wrapper, + &highbd_wrapper, TX_32X32, 34, 8, 2), + make_tuple( + &vpx_highbd_fdct32x32_c, &highbd_wrapper, + &highbd_wrapper, TX_32X32, 34, 10, 2), + make_tuple( + &vpx_highbd_fdct32x32_c, &highbd_wrapper, + &highbd_wrapper, TX_32X32, 34, 12, 2), + make_tuple(&vpx_highbd_fdct16x16_c, + &highbd_wrapper, + &highbd_wrapper, TX_16X16, + 256, 8, 2), + make_tuple(&vpx_highbd_fdct16x16_c, + &highbd_wrapper, + &highbd_wrapper, TX_16X16, + 256, 10, 2), + make_tuple(&vpx_highbd_fdct16x16_c, + &highbd_wrapper, + &highbd_wrapper, TX_16X16, + 256, 12, 2), + make_tuple( + &vpx_highbd_fdct16x16_c, &highbd_wrapper, + &highbd_wrapper, TX_16X16, 38, 8, 2), + make_tuple( + &vpx_highbd_fdct16x16_c, &highbd_wrapper, + &highbd_wrapper, TX_16X16, 38, 10, 2), + make_tuple( + &vpx_highbd_fdct16x16_c, &highbd_wrapper, + &highbd_wrapper, TX_16X16, 38, 12, 2), + make_tuple( + &vpx_highbd_fdct16x16_c, &highbd_wrapper, + &highbd_wrapper, TX_16X16, 10, 8, 2), + make_tuple( + &vpx_highbd_fdct16x16_c, &highbd_wrapper, + &highbd_wrapper, TX_16X16, 10, 10, 2), + make_tuple( + &vpx_highbd_fdct16x16_c, &highbd_wrapper, + &highbd_wrapper, TX_16X16, 10, 12, 2), + make_tuple( + &vpx_highbd_fdct8x8_c, &highbd_wrapper, + &highbd_wrapper, TX_8X8, 64, 8, 2), + make_tuple( + &vpx_highbd_fdct8x8_c, &highbd_wrapper, + &highbd_wrapper, TX_8X8, 64, 10, 2), + make_tuple( + &vpx_highbd_fdct8x8_c, &highbd_wrapper, + &highbd_wrapper, TX_8X8, 64, 12, 2), + make_tuple( + &vpx_highbd_fdct8x8_c, &highbd_wrapper, + &highbd_wrapper, TX_8X8, 12, 8, 2), + make_tuple( + &vpx_highbd_fdct8x8_c, &highbd_wrapper, + &highbd_wrapper, TX_8X8, 12, 10, 2), + make_tuple( + &vpx_highbd_fdct8x8_c, &highbd_wrapper, + &highbd_wrapper, TX_8X8, 12, 12, 2), + make_tuple( + &vpx_highbd_fdct4x4_c, &highbd_wrapper, + &highbd_wrapper, TX_4X4, 16, 8, 2), + make_tuple( + &vpx_highbd_fdct4x4_c, &highbd_wrapper, + &highbd_wrapper, TX_4X4, 16, 10, 2), + make_tuple( + &vpx_highbd_fdct4x4_c, &highbd_wrapper, + &highbd_wrapper, TX_4X4, 16, 12, 2) +}; + +INSTANTIATE_TEST_CASE_P(SSE4_1, PartialIDctTest, + ::testing::ValuesIn(sse4_1_partial_idct_tests)); +#endif // HAVE_SSE4_1 && CONFIG_VP9_HIGHBITDEPTH + +#if HAVE_DSPR2 && !CONFIG_VP9_HIGHBITDEPTH +const PartialInvTxfmParam dspr2_partial_idct_tests[] = { + make_tuple(&vpx_fdct32x32_c, &wrapper, + &wrapper, TX_32X32, 1024, 8, 1), + make_tuple(&vpx_fdct32x32_c, &wrapper, + &wrapper, TX_32X32, 34, 8, 1), + make_tuple(&vpx_fdct32x32_c, &wrapper, + &wrapper, TX_32X32, 1, 8, 1), + make_tuple(&vpx_fdct16x16_c, &wrapper, + &wrapper, TX_16X16, 256, 8, 1), + make_tuple(&vpx_fdct16x16_c, &wrapper, + &wrapper, TX_16X16, 10, 8, 1), + make_tuple(&vpx_fdct16x16_c, &wrapper, + &wrapper, TX_16X16, 1, 8, 1), + make_tuple(&vpx_fdct8x8_c, &wrapper, + &wrapper, TX_8X8, 64, 8, 1), + make_tuple(&vpx_fdct8x8_c, &wrapper, + &wrapper, TX_8X8, 12, 8, 1), + make_tuple(&vpx_fdct8x8_c, &wrapper, + &wrapper, TX_8X8, 1, 8, 1), + make_tuple(&vpx_fdct4x4_c, &wrapper, + &wrapper, TX_4X4, 16, 8, 1), + make_tuple(&vpx_fdct4x4_c, &wrapper, + &wrapper, TX_4X4, 1, 8, 1) +}; + +INSTANTIATE_TEST_CASE_P(DSPR2, PartialIDctTest, + ::testing::ValuesIn(dspr2_partial_idct_tests)); +#endif // HAVE_DSPR2 && !CONFIG_VP9_HIGHBITDEPTH + +#if HAVE_MSA && !CONFIG_VP9_HIGHBITDEPTH +// 32x32_135_ is implemented using the 1024 version. +const PartialInvTxfmParam msa_partial_idct_tests[] = { + make_tuple(&vpx_fdct32x32_c, &wrapper, + &wrapper, TX_32X32, 1024, 8, 1), + make_tuple(&vpx_fdct32x32_c, &wrapper, + &wrapper, TX_32X32, 34, 8, 1), + make_tuple(&vpx_fdct32x32_c, &wrapper, + &wrapper, TX_32X32, 1, 8, 1), + make_tuple(&vpx_fdct16x16_c, &wrapper, + &wrapper, TX_16X16, 256, 8, 1), + make_tuple(&vpx_fdct16x16_c, &wrapper, + &wrapper, TX_16X16, 10, 8, 1), + make_tuple(&vpx_fdct16x16_c, &wrapper, + &wrapper, TX_16X16, 1, 8, 1), + make_tuple(&vpx_fdct8x8_c, &wrapper, + &wrapper, TX_8X8, 64, 8, 1), + make_tuple(&vpx_fdct8x8_c, &wrapper, + &wrapper, TX_8X8, 12, 8, 1), + make_tuple(&vpx_fdct8x8_c, &wrapper, + &wrapper, TX_8X8, 1, 8, 1), + make_tuple(&vpx_fdct4x4_c, &wrapper, + &wrapper, TX_4X4, 16, 8, 1), + make_tuple(&vpx_fdct4x4_c, &wrapper, + &wrapper, TX_4X4, 1, 8, 1) +}; + +INSTANTIATE_TEST_CASE_P(MSA, PartialIDctTest, + ::testing::ValuesIn(msa_partial_idct_tests)); +#endif // HAVE_MSA && !CONFIG_VP9_HIGHBITDEPTH + +#endif // !CONFIG_EMULATE_HARDWARE + +} // namespace diff --git a/test/postproc.sh b/test/postproc.sh new file mode 100755 index 0000000..939a3e7 --- /dev/null +++ b/test/postproc.sh @@ -0,0 +1,63 @@ +#!/bin/sh +## +## Copyright (c) 2014 The WebM project authors. All Rights Reserved. +## +## Use of this source code is governed by a BSD-style license +## that can be found in the LICENSE file in the root of the source +## tree. An additional intellectual property rights grant can be found +## in the file PATENTS. All contributing project authors may +## be found in the AUTHORS file in the root of the source tree. +## +## This file tests the libvpx postproc example code. To add new tests to this +## file, do the following: +## 1. Write a shell function (this is your test). +## 2. Add the function to postproc_tests (on a new line). +## +. $(dirname $0)/tools_common.sh + +# Environment check: Make sure input is available: +# $VP8_IVF_FILE and $VP9_IVF_FILE are required. +postproc_verify_environment() { + if [ ! -e "${VP8_IVF_FILE}" ] || [ ! -e "${VP9_IVF_FILE}" ]; then + echo "Libvpx test data must exist in LIBVPX_TEST_DATA_PATH." + return 1 + fi +} + +# Runs postproc using $1 as input file. $2 is the codec name, and is used +# solely to name the output file. +postproc() { + local decoder="${LIBVPX_BIN_PATH}/postproc${VPX_TEST_EXE_SUFFIX}" + local input_file="$1" + local codec="$2" + local output_file="${VPX_TEST_OUTPUT_DIR}/postproc_${codec}.raw" + + if [ ! -x "${decoder}" ]; then + elog "${decoder} does not exist or is not executable." + return 1 + fi + + eval "${VPX_TEST_PREFIX}" "${decoder}" "${input_file}" "${output_file}" \ + ${devnull} + + [ -e "${output_file}" ] || return 1 +} + +postproc_vp8() { + if [ "$(vp8_decode_available)" = "yes" ]; then + postproc "${VP8_IVF_FILE}" vp8 || return 1 + fi +} + +postproc_vp9() { + if [ "$(vpx_config_option_enabled CONFIG_VP9_POSTPROC)" = "yes" ]; then + if [ "$(vp9_decode_available)" = "yes" ]; then + postproc "${VP9_IVF_FILE}" vp9 || return 1 + fi + fi +} + +postproc_tests="postproc_vp8 + postproc_vp9" + +run_tests postproc_verify_environment "${postproc_tests}" diff --git a/test/pp_filter_test.cc b/test/pp_filter_test.cc new file mode 100644 index 0000000..5a2ade1 --- /dev/null +++ b/test/pp_filter_test.cc @@ -0,0 +1,484 @@ +/* + * Copyright (c) 2012 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ +#include +#include "./vpx_config.h" +#include "./vpx_dsp_rtcd.h" +#include "test/acm_random.h" +#include "test/buffer.h" +#include "test/clear_system_state.h" +#include "test/register_state_check.h" +#include "third_party/googletest/src/include/gtest/gtest.h" +#include "vpx/vpx_integer.h" +#include "vpx_mem/vpx_mem.h" + +using libvpx_test::ACMRandom; +using libvpx_test::Buffer; + +typedef void (*VpxPostProcDownAndAcrossMbRowFunc)( + unsigned char *src_ptr, unsigned char *dst_ptr, int src_pixels_per_line, + int dst_pixels_per_line, int cols, unsigned char *flimit, int size); + +typedef void (*VpxMbPostProcAcrossIpFunc)(unsigned char *src, int pitch, + int rows, int cols, int flimit); + +typedef void (*VpxMbPostProcDownFunc)(unsigned char *dst, int pitch, int rows, + int cols, int flimit); + +namespace { + +// Compute the filter level used in post proc from the loop filter strength +int q2mbl(int x) { + if (x < 20) x = 20; + + x = 50 + (x - 50) * 10 / 8; + return x * x / 3; +} + +class VpxPostProcDownAndAcrossMbRowTest + : public ::testing::TestWithParam { + public: + virtual void TearDown() { libvpx_test::ClearSystemState(); } +}; + +// Test routine for the VPx post-processing function +// vpx_post_proc_down_and_across_mb_row_c. + +TEST_P(VpxPostProcDownAndAcrossMbRowTest, CheckFilterOutput) { + // Size of the underlying data block that will be filtered. + const int block_width = 16; + const int block_height = 16; + + // 5-tap filter needs 2 padding rows above and below the block in the input. + Buffer src_image = Buffer(block_width, block_height, 2); + ASSERT_TRUE(src_image.Init()); + + // Filter extends output block by 8 samples at left and right edges. + // Though the left padding is only 8 bytes, the assembly code tries to + // read 16 bytes before the pointer. + Buffer dst_image = + Buffer(block_width, block_height, 8, 16, 8, 8); + ASSERT_TRUE(dst_image.Init()); + + uint8_t *const flimits = + reinterpret_cast(vpx_memalign(16, block_width)); + (void)memset(flimits, 255, block_width); + + // Initialize pixels in the input: + // block pixels to value 1, + // border pixels to value 10. + src_image.SetPadding(10); + src_image.Set(1); + + // Initialize pixels in the output to 99. + dst_image.Set(99); + + ASM_REGISTER_STATE_CHECK(GetParam()( + src_image.TopLeftPixel(), dst_image.TopLeftPixel(), src_image.stride(), + dst_image.stride(), block_width, flimits, 16)); + + static const uint8_t kExpectedOutput[block_height] = { + 4, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 4 + }; + + uint8_t *pixel_ptr = dst_image.TopLeftPixel(); + for (int i = 0; i < block_height; ++i) { + for (int j = 0; j < block_width; ++j) { + ASSERT_EQ(kExpectedOutput[i], pixel_ptr[j]) + << "at (" << i << ", " << j << ")"; + } + pixel_ptr += dst_image.stride(); + } + + vpx_free(flimits); +}; + +TEST_P(VpxPostProcDownAndAcrossMbRowTest, CheckCvsAssembly) { + // Size of the underlying data block that will be filtered. + // Y blocks are always a multiple of 16 wide and exactly 16 high. U and V + // blocks are always a multiple of 8 wide and exactly 8 high. + const int block_width = 136; + const int block_height = 16; + + // 5-tap filter needs 2 padding rows above and below the block in the input. + // SSE2 reads in blocks of 16. Pad an extra 8 in case the width is not %16. + Buffer src_image = + Buffer(block_width, block_height, 2, 2, 10, 2); + ASSERT_TRUE(src_image.Init()); + + // Filter extends output block by 8 samples at left and right edges. + // Though the left padding is only 8 bytes, there is 'above' padding as well + // so when the assembly code tries to read 16 bytes before the pointer it is + // not a problem. + // SSE2 reads in blocks of 16. Pad an extra 8 in case the width is not %16. + Buffer dst_image = + Buffer(block_width, block_height, 8, 8, 16, 8); + ASSERT_TRUE(dst_image.Init()); + Buffer dst_image_ref = Buffer(block_width, block_height, 8); + ASSERT_TRUE(dst_image_ref.Init()); + + // Filter values are set in blocks of 16 for Y and 8 for U/V. Each macroblock + // can have a different filter. SSE2 assembly reads flimits in blocks of 16 so + // it must be padded out. + const int flimits_width = block_width % 16 ? block_width + 8 : block_width; + uint8_t *const flimits = + reinterpret_cast(vpx_memalign(16, flimits_width)); + + ACMRandom rnd; + rnd.Reset(ACMRandom::DeterministicSeed()); + // Initialize pixels in the input: + // block pixels to random values. + // border pixels to value 10. + src_image.SetPadding(10); + src_image.Set(&rnd, &ACMRandom::Rand8); + + for (int blocks = 0; blocks < block_width; blocks += 8) { + (void)memset(flimits, 0, sizeof(*flimits) * flimits_width); + + for (int f = 0; f < 255; f++) { + (void)memset(flimits + blocks, f, sizeof(*flimits) * 8); + + dst_image.Set(0); + dst_image_ref.Set(0); + + vpx_post_proc_down_and_across_mb_row_c( + src_image.TopLeftPixel(), dst_image_ref.TopLeftPixel(), + src_image.stride(), dst_image_ref.stride(), block_width, flimits, + block_height); + ASM_REGISTER_STATE_CHECK( + GetParam()(src_image.TopLeftPixel(), dst_image.TopLeftPixel(), + src_image.stride(), dst_image.stride(), block_width, + flimits, block_height)); + + ASSERT_TRUE(dst_image.CheckValues(dst_image_ref)); + } + } + + vpx_free(flimits); +} + +class VpxMbPostProcAcrossIpTest + : public ::testing::TestWithParam { + public: + virtual void TearDown() { libvpx_test::ClearSystemState(); } + + protected: + void SetCols(unsigned char *s, int rows, int cols, int src_width) { + for (int r = 0; r < rows; r++) { + for (int c = 0; c < cols; c++) { + s[c] = c; + } + s += src_width; + } + } + + void RunComparison(const unsigned char *expected_output, unsigned char *src_c, + int rows, int cols, int src_pitch) { + for (int r = 0; r < rows; r++) { + for (int c = 0; c < cols; c++) { + ASSERT_EQ(expected_output[c], src_c[c]) + << "at (" << r << ", " << c << ")"; + } + src_c += src_pitch; + } + } + + void RunFilterLevel(unsigned char *s, int rows, int cols, int src_width, + int filter_level, const unsigned char *expected_output) { + ASM_REGISTER_STATE_CHECK( + GetParam()(s, src_width, rows, cols, filter_level)); + RunComparison(expected_output, s, rows, cols, src_width); + } +}; + +TEST_P(VpxMbPostProcAcrossIpTest, CheckLowFilterOutput) { + const int rows = 16; + const int cols = 16; + + Buffer src = Buffer(cols, rows, 8, 8, 17, 8); + ASSERT_TRUE(src.Init()); + src.SetPadding(10); + SetCols(src.TopLeftPixel(), rows, cols, src.stride()); + + Buffer expected_output = Buffer(cols, rows, 0); + ASSERT_TRUE(expected_output.Init()); + SetCols(expected_output.TopLeftPixel(), rows, cols, expected_output.stride()); + + RunFilterLevel(src.TopLeftPixel(), rows, cols, src.stride(), q2mbl(0), + expected_output.TopLeftPixel()); +} + +TEST_P(VpxMbPostProcAcrossIpTest, CheckMediumFilterOutput) { + const int rows = 16; + const int cols = 16; + + Buffer src = Buffer(cols, rows, 8, 8, 17, 8); + ASSERT_TRUE(src.Init()); + src.SetPadding(10); + SetCols(src.TopLeftPixel(), rows, cols, src.stride()); + + static const unsigned char kExpectedOutput[cols] = { + 2, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 13 + }; + + RunFilterLevel(src.TopLeftPixel(), rows, cols, src.stride(), q2mbl(70), + kExpectedOutput); +} + +TEST_P(VpxMbPostProcAcrossIpTest, CheckHighFilterOutput) { + const int rows = 16; + const int cols = 16; + + Buffer src = Buffer(cols, rows, 8, 8, 17, 8); + ASSERT_TRUE(src.Init()); + src.SetPadding(10); + SetCols(src.TopLeftPixel(), rows, cols, src.stride()); + + static const unsigned char kExpectedOutput[cols] = { + 2, 2, 3, 4, 4, 5, 6, 7, 8, 9, 10, 11, 11, 12, 13, 13 + }; + + RunFilterLevel(src.TopLeftPixel(), rows, cols, src.stride(), INT_MAX, + kExpectedOutput); + + SetCols(src.TopLeftPixel(), rows, cols, src.stride()); + + RunFilterLevel(src.TopLeftPixel(), rows, cols, src.stride(), q2mbl(100), + kExpectedOutput); +} + +TEST_P(VpxMbPostProcAcrossIpTest, CheckCvsAssembly) { + const int rows = 16; + const int cols = 16; + + Buffer c_mem = Buffer(cols, rows, 8, 8, 17, 8); + ASSERT_TRUE(c_mem.Init()); + Buffer asm_mem = Buffer(cols, rows, 8, 8, 17, 8); + ASSERT_TRUE(asm_mem.Init()); + + // When level >= 100, the filter behaves the same as the level = INT_MAX + // When level < 20, it behaves the same as the level = 0 + for (int level = 0; level < 100; level++) { + c_mem.SetPadding(10); + asm_mem.SetPadding(10); + SetCols(c_mem.TopLeftPixel(), rows, cols, c_mem.stride()); + SetCols(asm_mem.TopLeftPixel(), rows, cols, asm_mem.stride()); + + vpx_mbpost_proc_across_ip_c(c_mem.TopLeftPixel(), c_mem.stride(), rows, + cols, q2mbl(level)); + ASM_REGISTER_STATE_CHECK(GetParam()( + asm_mem.TopLeftPixel(), asm_mem.stride(), rows, cols, q2mbl(level))); + + ASSERT_TRUE(asm_mem.CheckValues(c_mem)); + } +} + +class VpxMbPostProcDownTest + : public ::testing::TestWithParam { + public: + virtual void TearDown() { libvpx_test::ClearSystemState(); } + + protected: + void SetRows(unsigned char *src_c, int rows, int cols, int src_width) { + for (int r = 0; r < rows; r++) { + memset(src_c, r, cols); + src_c += src_width; + } + } + + void RunComparison(const unsigned char *expected_output, unsigned char *src_c, + int rows, int cols, int src_pitch) { + for (int r = 0; r < rows; r++) { + for (int c = 0; c < cols; c++) { + ASSERT_EQ(expected_output[r * rows + c], src_c[c]) + << "at (" << r << ", " << c << ")"; + } + src_c += src_pitch; + } + } + + void RunFilterLevel(unsigned char *s, int rows, int cols, int src_width, + int filter_level, const unsigned char *expected_output) { + ASM_REGISTER_STATE_CHECK( + GetParam()(s, src_width, rows, cols, filter_level)); + RunComparison(expected_output, s, rows, cols, src_width); + } +}; + +TEST_P(VpxMbPostProcDownTest, CheckHighFilterOutput) { + const int rows = 16; + const int cols = 16; + + Buffer src_c = Buffer(cols, rows, 8, 8, 8, 17); + ASSERT_TRUE(src_c.Init()); + src_c.SetPadding(10); + + SetRows(src_c.TopLeftPixel(), rows, cols, src_c.stride()); + + static const unsigned char kExpectedOutput[rows * cols] = { + 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, + 2, 3, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 3, 3, 3, 3, 3, + 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 3, 4, 4, 3, 3, 3, + 4, 4, 3, 4, 4, 3, 3, 4, 5, 4, 4, 4, 4, 4, 4, 4, 5, 4, 4, + 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, + 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, + 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, + 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 8, 9, 9, 8, 8, 8, 9, + 9, 8, 9, 9, 8, 8, 8, 9, 9, 10, 10, 9, 9, 9, 10, 10, 9, 10, 10, + 9, 9, 9, 10, 10, 10, 11, 10, 10, 10, 11, 10, 11, 10, 11, 10, 10, 10, 11, + 10, 11, 11, 11, 11, 11, 11, 11, 12, 11, 11, 11, 11, 11, 11, 11, 12, 11, 12, + 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 12, + 13, 12, 13, 12, 12, 12, 13, 12, 13, 12, 13, 12, 13, 13, 13, 14, 13, 13, 13, + 13, 13, 13, 13, 14, 13, 13, 13, 13 + }; + + RunFilterLevel(src_c.TopLeftPixel(), rows, cols, src_c.stride(), INT_MAX, + kExpectedOutput); + + src_c.SetPadding(10); + SetRows(src_c.TopLeftPixel(), rows, cols, src_c.stride()); + RunFilterLevel(src_c.TopLeftPixel(), rows, cols, src_c.stride(), q2mbl(100), + kExpectedOutput); +} + +TEST_P(VpxMbPostProcDownTest, CheckMediumFilterOutput) { + const int rows = 16; + const int cols = 16; + + Buffer src_c = Buffer(cols, rows, 8, 8, 8, 17); + ASSERT_TRUE(src_c.Init()); + src_c.SetPadding(10); + + SetRows(src_c.TopLeftPixel(), rows, cols, src_c.stride()); + + static const unsigned char kExpectedOutput[rows * cols] = { + 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, + 2, 3, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, + 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, + 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, + 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, + 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, + 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, + 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, + 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, + 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, + 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 12, 12, 13, 12, + 13, 12, 13, 12, 12, 12, 13, 12, 13, 12, 13, 12, 13, 13, 13, 14, 13, 13, 13, + 13, 13, 13, 13, 14, 13, 13, 13, 13 + }; + + RunFilterLevel(src_c.TopLeftPixel(), rows, cols, src_c.stride(), q2mbl(70), + kExpectedOutput); +} + +TEST_P(VpxMbPostProcDownTest, CheckLowFilterOutput) { + const int rows = 16; + const int cols = 16; + + Buffer src_c = Buffer(cols, rows, 8, 8, 8, 17); + ASSERT_TRUE(src_c.Init()); + src_c.SetPadding(10); + + SetRows(src_c.TopLeftPixel(), rows, cols, src_c.stride()); + + unsigned char *expected_output = new unsigned char[rows * cols]; + ASSERT_TRUE(expected_output != NULL); + SetRows(expected_output, rows, cols, cols); + + RunFilterLevel(src_c.TopLeftPixel(), rows, cols, src_c.stride(), q2mbl(0), + expected_output); + + delete[] expected_output; +} + +TEST_P(VpxMbPostProcDownTest, CheckCvsAssembly) { + const int rows = 16; + const int cols = 16; + + ACMRandom rnd; + rnd.Reset(ACMRandom::DeterministicSeed()); + + Buffer src_c = Buffer(cols, rows, 8, 8, 8, 17); + ASSERT_TRUE(src_c.Init()); + Buffer src_asm = Buffer(cols, rows, 8, 8, 8, 17); + ASSERT_TRUE(src_asm.Init()); + + for (int level = 0; level < 100; level++) { + src_c.SetPadding(10); + src_asm.SetPadding(10); + src_c.Set(&rnd, &ACMRandom::Rand8); + src_asm.CopyFrom(src_c); + + vpx_mbpost_proc_down_c(src_c.TopLeftPixel(), src_c.stride(), rows, cols, + q2mbl(level)); + ASM_REGISTER_STATE_CHECK(GetParam()( + src_asm.TopLeftPixel(), src_asm.stride(), rows, cols, q2mbl(level))); + ASSERT_TRUE(src_asm.CheckValues(src_c)); + + src_c.SetPadding(10); + src_asm.SetPadding(10); + src_c.Set(&rnd, &ACMRandom::Rand8Extremes); + src_asm.CopyFrom(src_c); + + vpx_mbpost_proc_down_c(src_c.TopLeftPixel(), src_c.stride(), rows, cols, + q2mbl(level)); + ASM_REGISTER_STATE_CHECK(GetParam()( + src_asm.TopLeftPixel(), src_asm.stride(), rows, cols, q2mbl(level))); + ASSERT_TRUE(src_asm.CheckValues(src_c)); + } +} + +INSTANTIATE_TEST_CASE_P( + C, VpxPostProcDownAndAcrossMbRowTest, + ::testing::Values(vpx_post_proc_down_and_across_mb_row_c)); + +INSTANTIATE_TEST_CASE_P(C, VpxMbPostProcAcrossIpTest, + ::testing::Values(vpx_mbpost_proc_across_ip_c)); + +INSTANTIATE_TEST_CASE_P(C, VpxMbPostProcDownTest, + ::testing::Values(vpx_mbpost_proc_down_c)); + +#if HAVE_SSE2 +INSTANTIATE_TEST_CASE_P( + SSE2, VpxPostProcDownAndAcrossMbRowTest, + ::testing::Values(vpx_post_proc_down_and_across_mb_row_sse2)); + +INSTANTIATE_TEST_CASE_P(SSE2, VpxMbPostProcAcrossIpTest, + ::testing::Values(vpx_mbpost_proc_across_ip_sse2)); + +INSTANTIATE_TEST_CASE_P(SSE2, VpxMbPostProcDownTest, + ::testing::Values(vpx_mbpost_proc_down_sse2)); +#endif // HAVE_SSE2 + +#if HAVE_NEON +INSTANTIATE_TEST_CASE_P( + NEON, VpxPostProcDownAndAcrossMbRowTest, + ::testing::Values(vpx_post_proc_down_and_across_mb_row_neon)); + +INSTANTIATE_TEST_CASE_P(NEON, VpxMbPostProcAcrossIpTest, + ::testing::Values(vpx_mbpost_proc_across_ip_neon)); + +INSTANTIATE_TEST_CASE_P(NEON, VpxMbPostProcDownTest, + ::testing::Values(vpx_mbpost_proc_down_neon)); +#endif // HAVE_NEON + +#if HAVE_MSA +INSTANTIATE_TEST_CASE_P( + MSA, VpxPostProcDownAndAcrossMbRowTest, + ::testing::Values(vpx_post_proc_down_and_across_mb_row_msa)); + +INSTANTIATE_TEST_CASE_P(MSA, VpxMbPostProcAcrossIpTest, + ::testing::Values(vpx_mbpost_proc_across_ip_msa)); + +INSTANTIATE_TEST_CASE_P(MSA, VpxMbPostProcDownTest, + ::testing::Values(vpx_mbpost_proc_down_msa)); +#endif // HAVE_MSA + +} // namespace diff --git a/test/predict_test.cc b/test/predict_test.cc new file mode 100644 index 0000000..9f366ae --- /dev/null +++ b/test/predict_test.cc @@ -0,0 +1,385 @@ +/* + * Copyright (c) 2013 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include + +#include "third_party/googletest/src/include/gtest/gtest.h" + +#include "./vp8_rtcd.h" +#include "./vpx_config.h" +#include "test/acm_random.h" +#include "test/clear_system_state.h" +#include "test/register_state_check.h" +#include "test/util.h" +#include "vpx/vpx_integer.h" +#include "vpx_mem/vpx_mem.h" + +namespace { + +using libvpx_test::ACMRandom; +using std::tr1::make_tuple; + +typedef void (*PredictFunc)(uint8_t *src_ptr, int src_pixels_per_line, + int xoffset, int yoffset, uint8_t *dst_ptr, + int dst_pitch); + +typedef std::tr1::tuple PredictParam; + +class PredictTestBase : public ::testing::TestWithParam { + public: + PredictTestBase() + : width_(GET_PARAM(0)), height_(GET_PARAM(1)), predict_(GET_PARAM(2)), + src_(NULL), padded_dst_(NULL), dst_(NULL), dst_c_(NULL) {} + + virtual void SetUp() { + src_ = new uint8_t[kSrcSize]; + ASSERT_TRUE(src_ != NULL); + + // padded_dst_ provides a buffer of kBorderSize around the destination + // memory to facilitate detecting out of bounds writes. + dst_stride_ = kBorderSize + width_ + kBorderSize; + padded_dst_size_ = dst_stride_ * (kBorderSize + height_ + kBorderSize); + padded_dst_ = + reinterpret_cast(vpx_memalign(16, padded_dst_size_)); + ASSERT_TRUE(padded_dst_ != NULL); + dst_ = padded_dst_ + (kBorderSize * dst_stride_) + kBorderSize; + + dst_c_ = new uint8_t[16 * 16]; + ASSERT_TRUE(dst_c_ != NULL); + + memset(src_, 0, kSrcSize); + memset(padded_dst_, 128, padded_dst_size_); + memset(dst_c_, 0, 16 * 16); + } + + virtual void TearDown() { + delete[] src_; + src_ = NULL; + vpx_free(padded_dst_); + padded_dst_ = NULL; + dst_ = NULL; + delete[] dst_c_; + dst_c_ = NULL; + libvpx_test::ClearSystemState(); + } + + protected: + // Make reference arrays big enough for 16x16 functions. Six-tap filters need + // 5 extra pixels outside of the macroblock. + static const int kSrcStride = 21; + static const int kSrcSize = kSrcStride * kSrcStride; + static const int kBorderSize = 16; + + int width_; + int height_; + PredictFunc predict_; + uint8_t *src_; + uint8_t *padded_dst_; + uint8_t *dst_; + int padded_dst_size_; + uint8_t *dst_c_; + int dst_stride_; + + bool CompareBuffers(const uint8_t *a, int a_stride, const uint8_t *b, + int b_stride) const { + for (int height = 0; height < height_; ++height) { + EXPECT_EQ(0, memcmp(a + height * a_stride, b + height * b_stride, + sizeof(*a) * width_)) + << "Row " << height << " does not match."; + } + + return !HasFailure(); + } + + // Given a block of memory 'a' with size 'a_size', determine if all regions + // excepting block 'b' described by 'b_stride', 'b_height', and 'b_width' + // match pixel value 'c'. + bool CheckBorder(const uint8_t *a, int a_size, const uint8_t *b, int b_width, + int b_height, int b_stride, uint8_t c) const { + const uint8_t *a_end = a + a_size; + const int b_size = (b_stride * b_height) + b_width; + const uint8_t *b_end = b + b_size; + const int left_border = (b_stride - b_width) / 2; + const int right_border = left_border + ((b_stride - b_width) % 2); + + EXPECT_GE(b - left_border, a) << "'b' does not start within 'a'"; + EXPECT_LE(b_end + right_border, a_end) << "'b' does not end within 'a'"; + + // Top border. + for (int pixel = 0; pixel < b - a - left_border; ++pixel) { + EXPECT_EQ(c, a[pixel]) << "Mismatch at " << pixel << " in top border."; + } + + // Left border. + for (int height = 0; height < b_height; ++height) { + for (int width = left_border; width > 0; --width) { + EXPECT_EQ(c, b[height * b_stride - width]) + << "Mismatch at row " << height << " column " << left_border - width + << " in left border."; + } + } + + // Right border. + for (int height = 0; height < b_height; ++height) { + for (int width = b_width; width < b_width + right_border; ++width) { + EXPECT_EQ(c, b[height * b_stride + width]) + << "Mismatch at row " << height << " column " << width - b_width + << " in right border."; + } + } + + // Bottom border. + for (int pixel = static_cast(b - a + b_size); pixel < a_size; + ++pixel) { + EXPECT_EQ(c, a[pixel]) << "Mismatch at " << pixel << " in bottom border."; + } + + return !HasFailure(); + } + + void TestWithRandomData(PredictFunc reference) { + ACMRandom rnd(ACMRandom::DeterministicSeed()); + + // Run tests for almost all possible offsets. + for (int xoffset = 0; xoffset < 8; ++xoffset) { + for (int yoffset = 0; yoffset < 8; ++yoffset) { + if (xoffset == 0 && yoffset == 0) { + // This represents a copy which is not required to be handled by this + // module. + continue; + } + + for (int i = 0; i < kSrcSize; ++i) { + src_[i] = rnd.Rand8(); + } + reference(&src_[kSrcStride * 2 + 2], kSrcStride, xoffset, yoffset, + dst_c_, 16); + + ASM_REGISTER_STATE_CHECK(predict_(&src_[kSrcStride * 2 + 2], kSrcStride, + xoffset, yoffset, dst_, dst_stride_)); + + ASSERT_TRUE(CompareBuffers(dst_c_, 16, dst_, dst_stride_)); + ASSERT_TRUE(CheckBorder(padded_dst_, padded_dst_size_, dst_, width_, + height_, dst_stride_, 128)); + } + } + } + + void TestWithUnalignedDst(PredictFunc reference) { + ACMRandom rnd(ACMRandom::DeterministicSeed()); + + // Only the 4x4 need to be able to handle unaligned writes. + if (width_ == 4 && height_ == 4) { + for (int xoffset = 0; xoffset < 8; ++xoffset) { + for (int yoffset = 0; yoffset < 8; ++yoffset) { + if (xoffset == 0 && yoffset == 0) { + continue; + } + for (int i = 0; i < kSrcSize; ++i) { + src_[i] = rnd.Rand8(); + } + reference(&src_[kSrcStride * 2 + 2], kSrcStride, xoffset, yoffset, + dst_c_, 16); + + for (int i = 1; i < 4; ++i) { + memset(padded_dst_, 128, padded_dst_size_); + + ASM_REGISTER_STATE_CHECK(predict_(&src_[kSrcStride * 2 + 2], + kSrcStride, xoffset, yoffset, + dst_ + i, dst_stride_ + i)); + + ASSERT_TRUE(CompareBuffers(dst_c_, 16, dst_ + i, dst_stride_ + i)); + ASSERT_TRUE(CheckBorder(padded_dst_, padded_dst_size_, dst_ + i, + width_, height_, dst_stride_ + i, 128)); + } + } + } + } + } +}; + +class SixtapPredictTest : public PredictTestBase {}; + +TEST_P(SixtapPredictTest, TestWithRandomData) { + TestWithRandomData(vp8_sixtap_predict16x16_c); +} +TEST_P(SixtapPredictTest, TestWithUnalignedDst) { + TestWithUnalignedDst(vp8_sixtap_predict16x16_c); +} + +TEST_P(SixtapPredictTest, TestWithPresetData) { + // Test input + static const uint8_t kTestData[kSrcSize] = { + 184, 4, 191, 82, 92, 41, 0, 1, 226, 236, 172, 20, 182, 42, 226, + 177, 79, 94, 77, 179, 203, 206, 198, 22, 192, 19, 75, 17, 192, 44, + 233, 120, 48, 168, 203, 141, 210, 203, 143, 180, 184, 59, 201, 110, 102, + 171, 32, 182, 10, 109, 105, 213, 60, 47, 236, 253, 67, 55, 14, 3, + 99, 247, 124, 148, 159, 71, 34, 114, 19, 177, 38, 203, 237, 239, 58, + 83, 155, 91, 10, 166, 201, 115, 124, 5, 163, 104, 2, 231, 160, 16, + 234, 4, 8, 103, 153, 167, 174, 187, 26, 193, 109, 64, 141, 90, 48, + 200, 174, 204, 36, 184, 114, 237, 43, 238, 242, 207, 86, 245, 182, 247, + 6, 161, 251, 14, 8, 148, 182, 182, 79, 208, 120, 188, 17, 6, 23, + 65, 206, 197, 13, 242, 126, 128, 224, 170, 110, 211, 121, 197, 200, 47, + 188, 207, 208, 184, 221, 216, 76, 148, 143, 156, 100, 8, 89, 117, 14, + 112, 183, 221, 54, 197, 208, 180, 69, 176, 94, 180, 131, 215, 121, 76, + 7, 54, 28, 216, 238, 249, 176, 58, 142, 64, 215, 242, 72, 49, 104, + 87, 161, 32, 52, 216, 230, 4, 141, 44, 181, 235, 224, 57, 195, 89, + 134, 203, 144, 162, 163, 126, 156, 84, 185, 42, 148, 145, 29, 221, 194, + 134, 52, 100, 166, 105, 60, 140, 110, 201, 184, 35, 181, 153, 93, 121, + 243, 227, 68, 131, 134, 232, 2, 35, 60, 187, 77, 209, 76, 106, 174, + 15, 241, 227, 115, 151, 77, 175, 36, 187, 121, 221, 223, 47, 118, 61, + 168, 105, 32, 237, 236, 167, 213, 238, 202, 17, 170, 24, 226, 247, 131, + 145, 6, 116, 117, 121, 11, 194, 41, 48, 126, 162, 13, 93, 209, 131, + 154, 122, 237, 187, 103, 217, 99, 60, 200, 45, 78, 115, 69, 49, 106, + 200, 194, 112, 60, 56, 234, 72, 251, 19, 120, 121, 182, 134, 215, 135, + 10, 114, 2, 247, 46, 105, 209, 145, 165, 153, 191, 243, 12, 5, 36, + 119, 206, 231, 231, 11, 32, 209, 83, 27, 229, 204, 149, 155, 83, 109, + 35, 93, 223, 37, 84, 14, 142, 37, 160, 52, 191, 96, 40, 204, 101, + 77, 67, 52, 53, 43, 63, 85, 253, 147, 113, 226, 96, 6, 125, 179, + 115, 161, 17, 83, 198, 101, 98, 85, 139, 3, 137, 75, 99, 178, 23, + 201, 255, 91, 253, 52, 134, 60, 138, 131, 208, 251, 101, 48, 2, 227, + 228, 118, 132, 245, 202, 75, 91, 44, 160, 231, 47, 41, 50, 147, 220, + 74, 92, 219, 165, 89, 16 + }; + + // Expected results for xoffset = 2 and yoffset = 2. + static const int kExpectedDstStride = 16; + static const uint8_t kExpectedDst[256] = { + 117, 102, 74, 135, 42, 98, 175, 206, 70, 73, 222, 197, 50, 24, 39, + 49, 38, 105, 90, 47, 169, 40, 171, 215, 200, 73, 109, 141, 53, 85, + 177, 164, 79, 208, 124, 89, 212, 18, 81, 145, 151, 164, 217, 153, 91, + 154, 102, 102, 159, 75, 164, 152, 136, 51, 213, 219, 186, 116, 193, 224, + 186, 36, 231, 208, 84, 211, 155, 167, 35, 59, 42, 76, 216, 149, 73, + 201, 78, 149, 184, 100, 96, 196, 189, 198, 188, 235, 195, 117, 129, 120, + 129, 49, 25, 133, 113, 69, 221, 114, 70, 143, 99, 157, 108, 189, 140, + 78, 6, 55, 65, 240, 255, 245, 184, 72, 90, 100, 116, 131, 39, 60, + 234, 167, 33, 160, 88, 185, 200, 157, 159, 176, 127, 151, 138, 102, 168, + 106, 170, 86, 82, 219, 189, 76, 33, 115, 197, 106, 96, 198, 136, 97, + 141, 237, 151, 98, 137, 191, 185, 2, 57, 95, 142, 91, 255, 185, 97, + 137, 76, 162, 94, 173, 131, 193, 161, 81, 106, 72, 135, 222, 234, 137, + 66, 137, 106, 243, 210, 147, 95, 15, 137, 110, 85, 66, 16, 96, 167, + 147, 150, 173, 203, 140, 118, 196, 84, 147, 160, 19, 95, 101, 123, 74, + 132, 202, 82, 166, 12, 131, 166, 189, 170, 159, 85, 79, 66, 57, 152, + 132, 203, 194, 0, 1, 56, 146, 180, 224, 156, 28, 83, 181, 79, 76, + 80, 46, 160, 175, 59, 106, 43, 87, 75, 136, 85, 189, 46, 71, 200, + 90 + }; + + ASM_REGISTER_STATE_CHECK( + predict_(const_cast(kTestData) + kSrcStride * 2 + 2, + kSrcStride, 2, 2, dst_, dst_stride_)); + + ASSERT_TRUE( + CompareBuffers(kExpectedDst, kExpectedDstStride, dst_, dst_stride_)); +} + +INSTANTIATE_TEST_CASE_P( + C, SixtapPredictTest, + ::testing::Values(make_tuple(16, 16, &vp8_sixtap_predict16x16_c), + make_tuple(8, 8, &vp8_sixtap_predict8x8_c), + make_tuple(8, 4, &vp8_sixtap_predict8x4_c), + make_tuple(4, 4, &vp8_sixtap_predict4x4_c))); +#if HAVE_NEON +INSTANTIATE_TEST_CASE_P( + NEON, SixtapPredictTest, + ::testing::Values(make_tuple(16, 16, &vp8_sixtap_predict16x16_neon), + make_tuple(8, 8, &vp8_sixtap_predict8x8_neon), + make_tuple(8, 4, &vp8_sixtap_predict8x4_neon), + make_tuple(4, 4, &vp8_sixtap_predict4x4_neon))); +#endif +#if HAVE_MMX +INSTANTIATE_TEST_CASE_P( + MMX, SixtapPredictTest, + ::testing::Values(make_tuple(4, 4, &vp8_sixtap_predict4x4_mmx))); +#endif +#if HAVE_SSE2 +INSTANTIATE_TEST_CASE_P( + SSE2, SixtapPredictTest, + ::testing::Values(make_tuple(16, 16, &vp8_sixtap_predict16x16_sse2), + make_tuple(8, 8, &vp8_sixtap_predict8x8_sse2), + make_tuple(8, 4, &vp8_sixtap_predict8x4_sse2))); +#endif +#if HAVE_SSSE3 +INSTANTIATE_TEST_CASE_P( + SSSE3, SixtapPredictTest, + ::testing::Values(make_tuple(16, 16, &vp8_sixtap_predict16x16_ssse3), + make_tuple(8, 8, &vp8_sixtap_predict8x8_ssse3), + make_tuple(8, 4, &vp8_sixtap_predict8x4_ssse3), + make_tuple(4, 4, &vp8_sixtap_predict4x4_ssse3))); +#endif +#if HAVE_MSA +INSTANTIATE_TEST_CASE_P( + MSA, SixtapPredictTest, + ::testing::Values(make_tuple(16, 16, &vp8_sixtap_predict16x16_msa), + make_tuple(8, 8, &vp8_sixtap_predict8x8_msa), + make_tuple(8, 4, &vp8_sixtap_predict8x4_msa), + make_tuple(4, 4, &vp8_sixtap_predict4x4_msa))); +#endif + +#if HAVE_MMI +INSTANTIATE_TEST_CASE_P( + MMI, SixtapPredictTest, + ::testing::Values(make_tuple(16, 16, &vp8_sixtap_predict16x16_mmi), + make_tuple(8, 8, &vp8_sixtap_predict8x8_mmi), + make_tuple(8, 4, &vp8_sixtap_predict8x4_mmi), + make_tuple(4, 4, &vp8_sixtap_predict4x4_mmi))); +#endif + +class BilinearPredictTest : public PredictTestBase {}; + +TEST_P(BilinearPredictTest, TestWithRandomData) { + TestWithRandomData(vp8_bilinear_predict16x16_c); +} +TEST_P(BilinearPredictTest, TestWithUnalignedDst) { + TestWithUnalignedDst(vp8_bilinear_predict16x16_c); +} + +INSTANTIATE_TEST_CASE_P( + C, BilinearPredictTest, + ::testing::Values(make_tuple(16, 16, &vp8_bilinear_predict16x16_c), + make_tuple(8, 8, &vp8_bilinear_predict8x8_c), + make_tuple(8, 4, &vp8_bilinear_predict8x4_c), + make_tuple(4, 4, &vp8_bilinear_predict4x4_c))); +#if HAVE_NEON +INSTANTIATE_TEST_CASE_P( + NEON, BilinearPredictTest, + ::testing::Values(make_tuple(16, 16, &vp8_bilinear_predict16x16_neon), + make_tuple(8, 8, &vp8_bilinear_predict8x8_neon), + make_tuple(8, 4, &vp8_bilinear_predict8x4_neon), + make_tuple(4, 4, &vp8_bilinear_predict4x4_neon))); +#endif +#if HAVE_MMX +INSTANTIATE_TEST_CASE_P( + MMX, BilinearPredictTest, + ::testing::Values(make_tuple(8, 4, &vp8_bilinear_predict8x4_mmx), + make_tuple(4, 4, &vp8_bilinear_predict4x4_mmx))); +#endif +#if HAVE_SSE2 +INSTANTIATE_TEST_CASE_P( + SSE2, BilinearPredictTest, + ::testing::Values(make_tuple(16, 16, &vp8_bilinear_predict16x16_sse2), + make_tuple(8, 8, &vp8_bilinear_predict8x8_sse2))); +#endif +#if HAVE_SSSE3 +INSTANTIATE_TEST_CASE_P( + SSSE3, BilinearPredictTest, + ::testing::Values(make_tuple(16, 16, &vp8_bilinear_predict16x16_ssse3), + make_tuple(8, 8, &vp8_bilinear_predict8x8_ssse3))); +#endif +#if HAVE_MSA +INSTANTIATE_TEST_CASE_P( + MSA, BilinearPredictTest, + ::testing::Values(make_tuple(16, 16, &vp8_bilinear_predict16x16_msa), + make_tuple(8, 8, &vp8_bilinear_predict8x8_msa), + make_tuple(8, 4, &vp8_bilinear_predict8x4_msa), + make_tuple(4, 4, &vp8_bilinear_predict4x4_msa))); +#endif +} // namespace diff --git a/test/quantize_test.cc b/test/quantize_test.cc new file mode 100644 index 0000000..40bb264 --- /dev/null +++ b/test/quantize_test.cc @@ -0,0 +1,211 @@ +/* + * Copyright (c) 2014 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include + +#include "third_party/googletest/src/include/gtest/gtest.h" + +#include "./vpx_config.h" +#include "./vp8_rtcd.h" +#include "test/acm_random.h" +#include "test/clear_system_state.h" +#include "test/register_state_check.h" +#include "test/util.h" +#include "vp8/common/blockd.h" +#include "vp8/common/onyx.h" +#include "vp8/encoder/block.h" +#include "vp8/encoder/onyx_int.h" +#include "vp8/encoder/quantize.h" +#include "vpx/vpx_integer.h" +#include "vpx_mem/vpx_mem.h" + +namespace { + +const int kNumBlocks = 25; +const int kNumBlockEntries = 16; + +typedef void (*VP8Quantize)(BLOCK *b, BLOCKD *d); + +typedef std::tr1::tuple VP8QuantizeParam; + +using libvpx_test::ACMRandom; +using std::tr1::make_tuple; + +// Create and populate a VP8_COMP instance which has a complete set of +// quantization inputs as well as a second MACROBLOCKD for output. +class QuantizeTestBase { + public: + virtual ~QuantizeTestBase() { + vp8_remove_compressor(&vp8_comp_); + vp8_comp_ = NULL; + vpx_free(macroblockd_dst_); + macroblockd_dst_ = NULL; + libvpx_test::ClearSystemState(); + } + + protected: + void SetupCompressor() { + rnd_.Reset(ACMRandom::DeterministicSeed()); + + // The full configuration is necessary to generate the quantization tables. + VP8_CONFIG vp8_config; + memset(&vp8_config, 0, sizeof(vp8_config)); + + vp8_comp_ = vp8_create_compressor(&vp8_config); + + // Set the tables based on a quantizer of 0. + vp8_set_quantizer(vp8_comp_, 0); + + // Set up all the block/blockd pointers for the mb in vp8_comp_. + vp8cx_frame_init_quantizer(vp8_comp_); + + // Copy macroblockd from the reference to get pre-set-up dequant values. + macroblockd_dst_ = reinterpret_cast( + vpx_memalign(32, sizeof(*macroblockd_dst_))); + memcpy(macroblockd_dst_, &vp8_comp_->mb.e_mbd, sizeof(*macroblockd_dst_)); + // Fix block pointers - currently they point to the blocks in the reference + // structure. + vp8_setup_block_dptrs(macroblockd_dst_); + } + + void UpdateQuantizer(int q) { + vp8_set_quantizer(vp8_comp_, q); + + memcpy(macroblockd_dst_, &vp8_comp_->mb.e_mbd, sizeof(*macroblockd_dst_)); + vp8_setup_block_dptrs(macroblockd_dst_); + } + + void FillCoeffConstant(int16_t c) { + for (int i = 0; i < kNumBlocks * kNumBlockEntries; ++i) { + vp8_comp_->mb.coeff[i] = c; + } + } + + void FillCoeffRandom() { + for (int i = 0; i < kNumBlocks * kNumBlockEntries; ++i) { + vp8_comp_->mb.coeff[i] = rnd_.Rand8(); + } + } + + void CheckOutput() { + EXPECT_EQ(0, memcmp(vp8_comp_->mb.e_mbd.qcoeff, macroblockd_dst_->qcoeff, + sizeof(*macroblockd_dst_->qcoeff) * kNumBlocks * + kNumBlockEntries)) + << "qcoeff mismatch"; + EXPECT_EQ(0, memcmp(vp8_comp_->mb.e_mbd.dqcoeff, macroblockd_dst_->dqcoeff, + sizeof(*macroblockd_dst_->dqcoeff) * kNumBlocks * + kNumBlockEntries)) + << "dqcoeff mismatch"; + EXPECT_EQ(0, memcmp(vp8_comp_->mb.e_mbd.eobs, macroblockd_dst_->eobs, + sizeof(*macroblockd_dst_->eobs) * kNumBlocks)) + << "eobs mismatch"; + } + + VP8_COMP *vp8_comp_; + MACROBLOCKD *macroblockd_dst_; + + private: + ACMRandom rnd_; +}; + +class QuantizeTest : public QuantizeTestBase, + public ::testing::TestWithParam { + protected: + virtual void SetUp() { + SetupCompressor(); + asm_quant_ = GET_PARAM(0); + c_quant_ = GET_PARAM(1); + } + + void RunComparison() { + for (int i = 0; i < kNumBlocks; ++i) { + ASM_REGISTER_STATE_CHECK( + c_quant_(&vp8_comp_->mb.block[i], &vp8_comp_->mb.e_mbd.block[i])); + ASM_REGISTER_STATE_CHECK( + asm_quant_(&vp8_comp_->mb.block[i], ¯oblockd_dst_->block[i])); + } + + CheckOutput(); + } + + private: + VP8Quantize asm_quant_; + VP8Quantize c_quant_; +}; + +TEST_P(QuantizeTest, TestZeroInput) { + FillCoeffConstant(0); + RunComparison(); +} + +TEST_P(QuantizeTest, TestLargeNegativeInput) { + FillCoeffConstant(0); + // Generate a qcoeff which contains 512/-512 (0x0100/0xFE00) to catch issues + // like BUG=883 where the constant being compared was incorrectly initialized. + vp8_comp_->mb.coeff[0] = -8191; + RunComparison(); +} + +TEST_P(QuantizeTest, TestRandomInput) { + FillCoeffRandom(); + RunComparison(); +} + +TEST_P(QuantizeTest, TestMultipleQ) { + for (int q = 0; q < QINDEX_RANGE; ++q) { + UpdateQuantizer(q); + FillCoeffRandom(); + RunComparison(); + } +} + +#if HAVE_SSE2 +INSTANTIATE_TEST_CASE_P( + SSE2, QuantizeTest, + ::testing::Values( + make_tuple(&vp8_fast_quantize_b_sse2, &vp8_fast_quantize_b_c), + make_tuple(&vp8_regular_quantize_b_sse2, &vp8_regular_quantize_b_c))); +#endif // HAVE_SSE2 + +#if HAVE_SSSE3 +INSTANTIATE_TEST_CASE_P(SSSE3, QuantizeTest, + ::testing::Values(make_tuple(&vp8_fast_quantize_b_ssse3, + &vp8_fast_quantize_b_c))); +#endif // HAVE_SSSE3 + +#if HAVE_SSE4_1 +INSTANTIATE_TEST_CASE_P( + SSE4_1, QuantizeTest, + ::testing::Values(make_tuple(&vp8_regular_quantize_b_sse4_1, + &vp8_regular_quantize_b_c))); +#endif // HAVE_SSE4_1 + +#if HAVE_NEON +INSTANTIATE_TEST_CASE_P(NEON, QuantizeTest, + ::testing::Values(make_tuple(&vp8_fast_quantize_b_neon, + &vp8_fast_quantize_b_c))); +#endif // HAVE_NEON + +#if HAVE_MSA +INSTANTIATE_TEST_CASE_P( + MSA, QuantizeTest, + ::testing::Values( + make_tuple(&vp8_fast_quantize_b_msa, &vp8_fast_quantize_b_c), + make_tuple(&vp8_regular_quantize_b_msa, &vp8_regular_quantize_b_c))); +#endif // HAVE_MSA + +#if HAVE_MMI +INSTANTIATE_TEST_CASE_P( + MMI, QuantizeTest, + ::testing::Values( + make_tuple(&vp8_fast_quantize_b_mmi, &vp8_fast_quantize_b_c), + make_tuple(&vp8_regular_quantize_b_mmi, &vp8_regular_quantize_b_c))); +#endif // HAVE_MMI +} // namespace diff --git a/test/realtime_test.cc b/test/realtime_test.cc new file mode 100644 index 0000000..63f1ac3 --- /dev/null +++ b/test/realtime_test.cc @@ -0,0 +1,63 @@ +/* + * Copyright (c) 2016 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ +#include "test/codec_factory.h" +#include "test/encode_test_driver.h" +#include "test/util.h" +#include "test/video_source.h" +#include "third_party/googletest/src/include/gtest/gtest.h" + +namespace { + +const int kVideoSourceWidth = 320; +const int kVideoSourceHeight = 240; +const int kFramesToEncode = 2; + +class RealtimeTest + : public ::libvpx_test::EncoderTest, + public ::libvpx_test::CodecTestWithParam { + protected: + RealtimeTest() : EncoderTest(GET_PARAM(0)), frame_packets_(0) {} + virtual ~RealtimeTest() {} + + virtual void SetUp() { + InitializeConfig(); + cfg_.g_lag_in_frames = 0; + SetMode(::libvpx_test::kRealTime); + } + + virtual void BeginPassHook(unsigned int /*pass*/) { + // TODO(tomfinegan): We're changing the pass value here to make sure + // we get frames when real time mode is combined with |g_pass| set to + // VPX_RC_FIRST_PASS. This is necessary because EncoderTest::RunLoop() sets + // the pass value based on the mode passed into EncoderTest::SetMode(), + // which overrides the one specified in SetUp() above. + cfg_.g_pass = VPX_RC_FIRST_PASS; + } + virtual void FramePktHook(const vpx_codec_cx_pkt_t * /*pkt*/) { + frame_packets_++; + } + + int frame_packets_; +}; + +TEST_P(RealtimeTest, RealtimeFirstPassProducesFrames) { + ::libvpx_test::RandomVideoSource video; + video.SetSize(kVideoSourceWidth, kVideoSourceHeight); + video.set_limit(kFramesToEncode); + ASSERT_NO_FATAL_FAILURE(RunLoop(&video)); + EXPECT_EQ(kFramesToEncode, frame_packets_); +} + +VP8_INSTANTIATE_TEST_CASE(RealtimeTest, + ::testing::Values(::libvpx_test::kRealTime)); +VP9_INSTANTIATE_TEST_CASE(RealtimeTest, + ::testing::Values(::libvpx_test::kRealTime)); + +} // namespace diff --git a/test/register_state_check.h b/test/register_state_check.h new file mode 100644 index 0000000..a779e5c --- /dev/null +++ b/test/register_state_check.h @@ -0,0 +1,187 @@ +/* + * Copyright (c) 2012 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef TEST_REGISTER_STATE_CHECK_H_ +#define TEST_REGISTER_STATE_CHECK_H_ + +#include "third_party/googletest/src/include/gtest/gtest.h" +#include "./vpx_config.h" +#include "vpx/vpx_integer.h" + +// ASM_REGISTER_STATE_CHECK(asm_function) +// Minimally validates the environment pre & post function execution. This +// variant should be used with assembly functions which are not expected to +// fully restore the system state. See platform implementations of +// RegisterStateCheck for details. +// +// API_REGISTER_STATE_CHECK(api_function) +// Performs all the checks done by ASM_REGISTER_STATE_CHECK() and any +// additional checks to ensure the environment is in a consistent state pre & +// post function execution. This variant should be used with API functions. +// See platform implementations of RegisterStateCheckXXX for details. +// + +#if defined(_WIN64) + +#undef NOMINMAX +#define NOMINMAX +#ifndef WIN32_LEAN_AND_MEAN +#define WIN32_LEAN_AND_MEAN +#endif +#include +#include + +inline bool operator==(const M128A &lhs, const M128A &rhs) { + return (lhs.Low == rhs.Low && lhs.High == rhs.High); +} + +namespace libvpx_test { + +// Compares the state of xmm[6-15] at construction with their state at +// destruction. These registers should be preserved by the callee on +// Windows x64. +class RegisterStateCheck { + public: + RegisterStateCheck() { initialized_ = StoreRegisters(&pre_context_); } + ~RegisterStateCheck() { Check(); } + + private: + static bool StoreRegisters(CONTEXT *const context) { + const HANDLE this_thread = GetCurrentThread(); + EXPECT_TRUE(this_thread != NULL); + context->ContextFlags = CONTEXT_FLOATING_POINT; + const bool context_saved = GetThreadContext(this_thread, context) == TRUE; + EXPECT_TRUE(context_saved) << "GetLastError: " << GetLastError(); + return context_saved; + } + + // Compares the register state. Returns true if the states match. + void Check() const { + ASSERT_TRUE(initialized_); + CONTEXT post_context; + ASSERT_TRUE(StoreRegisters(&post_context)); + + const M128A *xmm_pre = &pre_context_.Xmm6; + const M128A *xmm_post = &post_context.Xmm6; + for (int i = 6; i <= 15; ++i) { + EXPECT_EQ(*xmm_pre, *xmm_post) << "xmm" << i << " has been modified!"; + ++xmm_pre; + ++xmm_post; + } + } + + bool initialized_; + CONTEXT pre_context_; +}; + +#define ASM_REGISTER_STATE_CHECK(statement) \ + do { \ + libvpx_test::RegisterStateCheck reg_check; \ + statement; \ + } while (false) + +} // namespace libvpx_test + +#elif defined(CONFIG_SHARED) && defined(HAVE_NEON_ASM) && \ + defined(CONFIG_VP9) && !CONFIG_SHARED && HAVE_NEON_ASM && CONFIG_VP9 + +extern "C" { +// Save the d8-d15 registers into store. +void vpx_push_neon(int64_t *store); +} + +namespace libvpx_test { + +// Compares the state of d8-d15 at construction with their state at +// destruction. These registers should be preserved by the callee on +// arm platform. +class RegisterStateCheck { + public: + RegisterStateCheck() { vpx_push_neon(pre_store_); } + ~RegisterStateCheck() { Check(); } + + private: + // Compares the register state. Returns true if the states match. + void Check() const { + int64_t post_store[8]; + vpx_push_neon(post_store); + for (int i = 0; i < 8; ++i) { + EXPECT_EQ(pre_store_[i], post_store[i]) + << "d" << i + 8 << " has been modified"; + } + } + + int64_t pre_store_[8]; +}; + +#define ASM_REGISTER_STATE_CHECK(statement) \ + do { \ + libvpx_test::RegisterStateCheck reg_check; \ + statement; \ + } while (false) + +} // namespace libvpx_test + +#else + +namespace libvpx_test { + +class RegisterStateCheck {}; +#define ASM_REGISTER_STATE_CHECK(statement) statement + +} // namespace libvpx_test + +#endif // _WIN64 + +#if ARCH_X86 || ARCH_X86_64 +#if defined(__GNUC__) + +namespace libvpx_test { + +// Checks the FPU tag word pre/post execution to ensure emms has been called. +class RegisterStateCheckMMX { + public: + RegisterStateCheckMMX() { + __asm__ volatile("fstenv %0" : "=rm"(pre_fpu_env_)); + } + ~RegisterStateCheckMMX() { Check(); } + + private: + // Checks the FPU tag word pre/post execution, returning false if not cleared + // to 0xffff. + void Check() const { + EXPECT_EQ(0xffff, pre_fpu_env_[4]) + << "FPU was in an inconsistent state prior to call"; + + uint16_t post_fpu_env[14]; + __asm__ volatile("fstenv %0" : "=rm"(post_fpu_env)); + EXPECT_EQ(0xffff, post_fpu_env[4]) + << "FPU was left in an inconsistent state after call"; + } + + uint16_t pre_fpu_env_[14]; +}; + +#define API_REGISTER_STATE_CHECK(statement) \ + do { \ + libvpx_test::RegisterStateCheckMMX reg_check; \ + ASM_REGISTER_STATE_CHECK(statement); \ + } while (false) + +} // namespace libvpx_test + +#endif // __GNUC__ +#endif // ARCH_X86 || ARCH_X86_64 + +#ifndef API_REGISTER_STATE_CHECK +#define API_REGISTER_STATE_CHECK ASM_REGISTER_STATE_CHECK +#endif + +#endif // TEST_REGISTER_STATE_CHECK_H_ diff --git a/test/resize_test.cc b/test/resize_test.cc new file mode 100644 index 0000000..e95dc66 --- /dev/null +++ b/test/resize_test.cc @@ -0,0 +1,718 @@ +/* + * Copyright (c) 2012 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ +#include + +#include +#include +#include "third_party/googletest/src/include/gtest/gtest.h" +#include "test/codec_factory.h" +#include "test/encode_test_driver.h" +#include "test/i420_video_source.h" +#include "test/video_source.h" +#include "test/util.h" + +// Enable(1) or Disable(0) writing of the compressed bitstream. +#define WRITE_COMPRESSED_STREAM 0 + +namespace { + +#if WRITE_COMPRESSED_STREAM +static void mem_put_le16(char *const mem, const unsigned int val) { + mem[0] = val; + mem[1] = val >> 8; +} + +static void mem_put_le32(char *const mem, const unsigned int val) { + mem[0] = val; + mem[1] = val >> 8; + mem[2] = val >> 16; + mem[3] = val >> 24; +} + +static void write_ivf_file_header(const vpx_codec_enc_cfg_t *const cfg, + int frame_cnt, FILE *const outfile) { + char header[32]; + + header[0] = 'D'; + header[1] = 'K'; + header[2] = 'I'; + header[3] = 'F'; + mem_put_le16(header + 4, 0); /* version */ + mem_put_le16(header + 6, 32); /* headersize */ + mem_put_le32(header + 8, 0x30395056); /* fourcc (vp9) */ + mem_put_le16(header + 12, cfg->g_w); /* width */ + mem_put_le16(header + 14, cfg->g_h); /* height */ + mem_put_le32(header + 16, cfg->g_timebase.den); /* rate */ + mem_put_le32(header + 20, cfg->g_timebase.num); /* scale */ + mem_put_le32(header + 24, frame_cnt); /* length */ + mem_put_le32(header + 28, 0); /* unused */ + + (void)fwrite(header, 1, 32, outfile); +} + +static void write_ivf_frame_size(FILE *const outfile, const size_t size) { + char header[4]; + mem_put_le32(header, static_cast(size)); + (void)fwrite(header, 1, 4, outfile); +} + +static void write_ivf_frame_header(const vpx_codec_cx_pkt_t *const pkt, + FILE *const outfile) { + char header[12]; + vpx_codec_pts_t pts; + + if (pkt->kind != VPX_CODEC_CX_FRAME_PKT) return; + + pts = pkt->data.frame.pts; + mem_put_le32(header, static_cast(pkt->data.frame.sz)); + mem_put_le32(header + 4, pts & 0xFFFFFFFF); + mem_put_le32(header + 8, pts >> 32); + + (void)fwrite(header, 1, 12, outfile); +} +#endif // WRITE_COMPRESSED_STREAM + +const unsigned int kInitialWidth = 320; +const unsigned int kInitialHeight = 240; + +struct FrameInfo { + FrameInfo(vpx_codec_pts_t _pts, unsigned int _w, unsigned int _h) + : pts(_pts), w(_w), h(_h) {} + + vpx_codec_pts_t pts; + unsigned int w; + unsigned int h; +}; + +void ScaleForFrameNumber(unsigned int frame, unsigned int initial_w, + unsigned int initial_h, unsigned int *w, + unsigned int *h, int flag_codec) { + if (frame < 10) { + *w = initial_w; + *h = initial_h; + return; + } + if (frame < 20) { + *w = initial_w * 3 / 4; + *h = initial_h * 3 / 4; + return; + } + if (frame < 30) { + *w = initial_w / 2; + *h = initial_h / 2; + return; + } + if (frame < 40) { + *w = initial_w; + *h = initial_h; + return; + } + if (frame < 50) { + *w = initial_w * 3 / 4; + *h = initial_h * 3 / 4; + return; + } + if (frame < 60) { + *w = initial_w / 2; + *h = initial_h / 2; + return; + } + if (frame < 70) { + *w = initial_w; + *h = initial_h; + return; + } + if (frame < 80) { + *w = initial_w * 3 / 4; + *h = initial_h * 3 / 4; + return; + } + if (frame < 90) { + *w = initial_w / 2; + *h = initial_h / 2; + return; + } + if (frame < 100) { + *w = initial_w * 3 / 4; + *h = initial_h * 3 / 4; + return; + } + if (frame < 110) { + *w = initial_w; + *h = initial_h; + return; + } + if (frame < 120) { + *w = initial_w * 3 / 4; + *h = initial_h * 3 / 4; + return; + } + if (frame < 130) { + *w = initial_w / 2; + *h = initial_h / 2; + return; + } + if (frame < 140) { + *w = initial_w * 3 / 4; + *h = initial_h * 3 / 4; + return; + } + if (frame < 150) { + *w = initial_w; + *h = initial_h; + return; + } + if (frame < 160) { + *w = initial_w * 3 / 4; + *h = initial_h * 3 / 4; + return; + } + if (frame < 170) { + *w = initial_w / 2; + *h = initial_h / 2; + return; + } + if (frame < 180) { + *w = initial_w * 3 / 4; + *h = initial_h * 3 / 4; + return; + } + if (frame < 190) { + *w = initial_w; + *h = initial_h; + return; + } + if (frame < 200) { + *w = initial_w * 3 / 4; + *h = initial_h * 3 / 4; + return; + } + if (frame < 210) { + *w = initial_w / 2; + *h = initial_h / 2; + return; + } + if (frame < 220) { + *w = initial_w * 3 / 4; + *h = initial_h * 3 / 4; + return; + } + if (frame < 230) { + *w = initial_w; + *h = initial_h; + return; + } + if (frame < 240) { + *w = initial_w * 3 / 4; + *h = initial_h * 3 / 4; + return; + } + if (frame < 250) { + *w = initial_w / 2; + *h = initial_h / 2; + return; + } + if (frame < 260) { + *w = initial_w; + *h = initial_h; + return; + } + // Go down very low. + if (frame < 270) { + *w = initial_w / 4; + *h = initial_h / 4; + return; + } + if (flag_codec == 1) { + // Cases that only works for VP9. + // For VP9: Swap width and height of original. + if (frame < 320) { + *w = initial_h; + *h = initial_w; + return; + } + } + *w = initial_w; + *h = initial_h; +} + +class ResizingVideoSource : public ::libvpx_test::DummyVideoSource { + public: + ResizingVideoSource() { + SetSize(kInitialWidth, kInitialHeight); + limit_ = 350; + } + int flag_codec_; + virtual ~ResizingVideoSource() {} + + protected: + virtual void Next() { + ++frame_; + unsigned int width; + unsigned int height; + ScaleForFrameNumber(frame_, kInitialWidth, kInitialHeight, &width, &height, + flag_codec_); + SetSize(width, height); + FillFrame(); + } +}; + +class ResizeTest + : public ::libvpx_test::EncoderTest, + public ::libvpx_test::CodecTestWithParam { + protected: + ResizeTest() : EncoderTest(GET_PARAM(0)) {} + + virtual ~ResizeTest() {} + + virtual void SetUp() { + InitializeConfig(); + SetMode(GET_PARAM(1)); + } + + virtual void DecompressedFrameHook(const vpx_image_t &img, + vpx_codec_pts_t pts) { + frame_info_list_.push_back(FrameInfo(pts, img.d_w, img.d_h)); + } + + std::vector frame_info_list_; +}; + +TEST_P(ResizeTest, TestExternalResizeWorks) { + ResizingVideoSource video; + video.flag_codec_ = 0; + cfg_.g_lag_in_frames = 0; + ASSERT_NO_FATAL_FAILURE(RunLoop(&video)); + + for (std::vector::const_iterator info = frame_info_list_.begin(); + info != frame_info_list_.end(); ++info) { + const unsigned int frame = static_cast(info->pts); + unsigned int expected_w; + unsigned int expected_h; + ScaleForFrameNumber(frame, kInitialWidth, kInitialHeight, &expected_w, + &expected_h, 0); + EXPECT_EQ(expected_w, info->w) + << "Frame " << frame << " had unexpected width"; + EXPECT_EQ(expected_h, info->h) + << "Frame " << frame << " had unexpected height"; + } +} + +const unsigned int kStepDownFrame = 3; +const unsigned int kStepUpFrame = 6; + +class ResizeInternalTest : public ResizeTest { + protected: +#if WRITE_COMPRESSED_STREAM + ResizeInternalTest() + : ResizeTest(), frame0_psnr_(0.0), outfile_(NULL), out_frames_(0) {} +#else + ResizeInternalTest() : ResizeTest(), frame0_psnr_(0.0) {} +#endif + + virtual ~ResizeInternalTest() {} + + virtual void BeginPassHook(unsigned int /*pass*/) { +#if WRITE_COMPRESSED_STREAM + outfile_ = fopen("vp90-2-05-resize.ivf", "wb"); +#endif + } + + virtual void EndPassHook() { +#if WRITE_COMPRESSED_STREAM + if (outfile_) { + if (!fseek(outfile_, 0, SEEK_SET)) + write_ivf_file_header(&cfg_, out_frames_, outfile_); + fclose(outfile_); + outfile_ = NULL; + } +#endif + } + + virtual void PreEncodeFrameHook(libvpx_test::VideoSource *video, + libvpx_test::Encoder *encoder) { + if (change_config_) { + int new_q = 60; + if (video->frame() == 0) { + struct vpx_scaling_mode mode = { VP8E_ONETWO, VP8E_ONETWO }; + encoder->Control(VP8E_SET_SCALEMODE, &mode); + } + if (video->frame() == 1) { + struct vpx_scaling_mode mode = { VP8E_NORMAL, VP8E_NORMAL }; + encoder->Control(VP8E_SET_SCALEMODE, &mode); + cfg_.rc_min_quantizer = cfg_.rc_max_quantizer = new_q; + encoder->Config(&cfg_); + } + } else { + if (video->frame() == kStepDownFrame) { + struct vpx_scaling_mode mode = { VP8E_FOURFIVE, VP8E_THREEFIVE }; + encoder->Control(VP8E_SET_SCALEMODE, &mode); + } + if (video->frame() == kStepUpFrame) { + struct vpx_scaling_mode mode = { VP8E_NORMAL, VP8E_NORMAL }; + encoder->Control(VP8E_SET_SCALEMODE, &mode); + } + } + } + + virtual void PSNRPktHook(const vpx_codec_cx_pkt_t *pkt) { + if (frame0_psnr_ == 0.) frame0_psnr_ = pkt->data.psnr.psnr[0]; + EXPECT_NEAR(pkt->data.psnr.psnr[0], frame0_psnr_, 2.0); + } + +#if WRITE_COMPRESSED_STREAM + virtual void FramePktHook(const vpx_codec_cx_pkt_t *pkt) { + ++out_frames_; + + // Write initial file header if first frame. + if (pkt->data.frame.pts == 0) write_ivf_file_header(&cfg_, 0, outfile_); + + // Write frame header and data. + write_ivf_frame_header(pkt, outfile_); + (void)fwrite(pkt->data.frame.buf, 1, pkt->data.frame.sz, outfile_); + } +#endif + + double frame0_psnr_; + bool change_config_; +#if WRITE_COMPRESSED_STREAM + FILE *outfile_; + unsigned int out_frames_; +#endif +}; + +TEST_P(ResizeInternalTest, TestInternalResizeWorks) { + ::libvpx_test::I420VideoSource video("hantro_collage_w352h288.yuv", 352, 288, + 30, 1, 0, 10); + init_flags_ = VPX_CODEC_USE_PSNR; + change_config_ = false; + + // q picked such that initial keyframe on this clip is ~30dB PSNR + cfg_.rc_min_quantizer = cfg_.rc_max_quantizer = 48; + + // If the number of frames being encoded is smaller than g_lag_in_frames + // the encoded frame is unavailable using the current API. Comparing + // frames to detect mismatch would then not be possible. Set + // g_lag_in_frames = 0 to get around this. + cfg_.g_lag_in_frames = 0; + ASSERT_NO_FATAL_FAILURE(RunLoop(&video)); + + for (std::vector::const_iterator info = frame_info_list_.begin(); + info != frame_info_list_.end(); ++info) { + const vpx_codec_pts_t pts = info->pts; + if (pts >= kStepDownFrame && pts < kStepUpFrame) { + ASSERT_EQ(282U, info->w) << "Frame " << pts << " had unexpected width"; + ASSERT_EQ(173U, info->h) << "Frame " << pts << " had unexpected height"; + } else { + EXPECT_EQ(352U, info->w) << "Frame " << pts << " had unexpected width"; + EXPECT_EQ(288U, info->h) << "Frame " << pts << " had unexpected height"; + } + } +} + +TEST_P(ResizeInternalTest, TestInternalResizeChangeConfig) { + ::libvpx_test::I420VideoSource video("hantro_collage_w352h288.yuv", 352, 288, + 30, 1, 0, 10); + cfg_.g_w = 352; + cfg_.g_h = 288; + change_config_ = true; + ASSERT_NO_FATAL_FAILURE(RunLoop(&video)); +} + +class ResizeRealtimeTest + : public ::libvpx_test::EncoderTest, + public ::libvpx_test::CodecTestWith2Params { + protected: + ResizeRealtimeTest() : EncoderTest(GET_PARAM(0)) {} + virtual ~ResizeRealtimeTest() {} + + virtual void PreEncodeFrameHook(libvpx_test::VideoSource *video, + libvpx_test::Encoder *encoder) { + if (video->frame() == 0) { + encoder->Control(VP9E_SET_AQ_MODE, 3); + encoder->Control(VP8E_SET_CPUUSED, set_cpu_used_); + } + + if (change_bitrate_ && video->frame() == 120) { + change_bitrate_ = false; + cfg_.rc_target_bitrate = 500; + encoder->Config(&cfg_); + } + } + + virtual void SetUp() { + InitializeConfig(); + SetMode(GET_PARAM(1)); + set_cpu_used_ = GET_PARAM(2); + } + + virtual void DecompressedFrameHook(const vpx_image_t &img, + vpx_codec_pts_t pts) { + frame_info_list_.push_back(FrameInfo(pts, img.d_w, img.d_h)); + } + + virtual void MismatchHook(const vpx_image_t *img1, const vpx_image_t *img2) { + double mismatch_psnr = compute_psnr(img1, img2); + mismatch_psnr_ += mismatch_psnr; + ++mismatch_nframes_; + } + + unsigned int GetMismatchFrames() { return mismatch_nframes_; } + + void DefaultConfig() { + cfg_.rc_buf_initial_sz = 500; + cfg_.rc_buf_optimal_sz = 600; + cfg_.rc_buf_sz = 1000; + cfg_.rc_min_quantizer = 2; + cfg_.rc_max_quantizer = 56; + cfg_.rc_undershoot_pct = 50; + cfg_.rc_overshoot_pct = 50; + cfg_.rc_end_usage = VPX_CBR; + cfg_.kf_mode = VPX_KF_AUTO; + cfg_.g_lag_in_frames = 0; + cfg_.kf_min_dist = cfg_.kf_max_dist = 3000; + // Enable dropped frames. + cfg_.rc_dropframe_thresh = 1; + // Enable error_resilience mode. + cfg_.g_error_resilient = 1; + // Enable dynamic resizing. + cfg_.rc_resize_allowed = 1; + // Run at low bitrate. + cfg_.rc_target_bitrate = 200; + } + + std::vector frame_info_list_; + int set_cpu_used_; + bool change_bitrate_; + double mismatch_psnr_; + int mismatch_nframes_; +}; + +TEST_P(ResizeRealtimeTest, TestExternalResizeWorks) { + ResizingVideoSource video; + video.flag_codec_ = 1; + DefaultConfig(); + // Disable internal resize for this test. + cfg_.rc_resize_allowed = 0; + change_bitrate_ = false; + mismatch_psnr_ = 0.0; + mismatch_nframes_ = 0; + ASSERT_NO_FATAL_FAILURE(RunLoop(&video)); + + for (std::vector::const_iterator info = frame_info_list_.begin(); + info != frame_info_list_.end(); ++info) { + const unsigned int frame = static_cast(info->pts); + unsigned int expected_w; + unsigned int expected_h; + ScaleForFrameNumber(frame, kInitialWidth, kInitialHeight, &expected_w, + &expected_h, 1); + EXPECT_EQ(expected_w, info->w) + << "Frame " << frame << " had unexpected width"; + EXPECT_EQ(expected_h, info->h) + << "Frame " << frame << " had unexpected height"; + EXPECT_EQ(static_cast(0), GetMismatchFrames()); + } +} + +// Verify the dynamic resizer behavior for real time, 1 pass CBR mode. +// Run at low bitrate, with resize_allowed = 1, and verify that we get +// one resize down event. +TEST_P(ResizeRealtimeTest, TestInternalResizeDown) { + ::libvpx_test::I420VideoSource video("hantro_collage_w352h288.yuv", 352, 288, + 30, 1, 0, 299); + DefaultConfig(); + cfg_.g_w = 352; + cfg_.g_h = 288; + change_bitrate_ = false; + mismatch_psnr_ = 0.0; + mismatch_nframes_ = 0; + ASSERT_NO_FATAL_FAILURE(RunLoop(&video)); + + unsigned int last_w = cfg_.g_w; + unsigned int last_h = cfg_.g_h; + int resize_count = 0; + for (std::vector::const_iterator info = frame_info_list_.begin(); + info != frame_info_list_.end(); ++info) { + if (info->w != last_w || info->h != last_h) { + // Verify that resize down occurs. + ASSERT_LT(info->w, last_w); + ASSERT_LT(info->h, last_h); + last_w = info->w; + last_h = info->h; + resize_count++; + } + } + +#if CONFIG_VP9_DECODER + // Verify that we get 1 resize down event in this test. + ASSERT_EQ(1, resize_count) << "Resizing should occur."; + EXPECT_EQ(static_cast(0), GetMismatchFrames()); +#else + printf("Warning: VP9 decoder unavailable, unable to check resize count!\n"); +#endif +} + +// Verify the dynamic resizer behavior for real time, 1 pass CBR mode. +// Start at low target bitrate, raise the bitrate in the middle of the clip, +// scaling-up should occur after bitrate changed. +TEST_P(ResizeRealtimeTest, TestInternalResizeDownUpChangeBitRate) { + ::libvpx_test::I420VideoSource video("hantro_collage_w352h288.yuv", 352, 288, + 30, 1, 0, 359); + DefaultConfig(); + cfg_.g_w = 352; + cfg_.g_h = 288; + change_bitrate_ = true; + mismatch_psnr_ = 0.0; + mismatch_nframes_ = 0; + // Disable dropped frames. + cfg_.rc_dropframe_thresh = 0; + // Starting bitrate low. + cfg_.rc_target_bitrate = 80; + ASSERT_NO_FATAL_FAILURE(RunLoop(&video)); + + unsigned int last_w = cfg_.g_w; + unsigned int last_h = cfg_.g_h; + int resize_count = 0; + for (std::vector::const_iterator info = frame_info_list_.begin(); + info != frame_info_list_.end(); ++info) { + if (info->w != last_w || info->h != last_h) { + resize_count++; + if (resize_count == 1) { + // Verify that resize down occurs. + ASSERT_LT(info->w, last_w); + ASSERT_LT(info->h, last_h); + } else if (resize_count == 2) { + // Verify that resize up occurs. + ASSERT_GT(info->w, last_w); + ASSERT_GT(info->h, last_h); + } + last_w = info->w; + last_h = info->h; + } + } + +#if CONFIG_VP9_DECODER + // Verify that we get 2 resize events in this test. + ASSERT_EQ(resize_count, 2) << "Resizing should occur twice."; + EXPECT_EQ(static_cast(0), GetMismatchFrames()); +#else + printf("Warning: VP9 decoder unavailable, unable to check resize count!\n"); +#endif +} + +vpx_img_fmt_t CspForFrameNumber(int frame) { + if (frame < 10) return VPX_IMG_FMT_I420; + if (frame < 20) return VPX_IMG_FMT_I444; + return VPX_IMG_FMT_I420; +} + +class ResizeCspTest : public ResizeTest { + protected: +#if WRITE_COMPRESSED_STREAM + ResizeCspTest() + : ResizeTest(), frame0_psnr_(0.0), outfile_(NULL), out_frames_(0) {} +#else + ResizeCspTest() : ResizeTest(), frame0_psnr_(0.0) {} +#endif + + virtual ~ResizeCspTest() {} + + virtual void BeginPassHook(unsigned int /*pass*/) { +#if WRITE_COMPRESSED_STREAM + outfile_ = fopen("vp91-2-05-cspchape.ivf", "wb"); +#endif + } + + virtual void EndPassHook() { +#if WRITE_COMPRESSED_STREAM + if (outfile_) { + if (!fseek(outfile_, 0, SEEK_SET)) + write_ivf_file_header(&cfg_, out_frames_, outfile_); + fclose(outfile_); + outfile_ = NULL; + } +#endif + } + + virtual void PreEncodeFrameHook(libvpx_test::VideoSource *video, + libvpx_test::Encoder *encoder) { + if (CspForFrameNumber(video->frame()) != VPX_IMG_FMT_I420 && + cfg_.g_profile != 1) { + cfg_.g_profile = 1; + encoder->Config(&cfg_); + } + if (CspForFrameNumber(video->frame()) == VPX_IMG_FMT_I420 && + cfg_.g_profile != 0) { + cfg_.g_profile = 0; + encoder->Config(&cfg_); + } + } + + virtual void PSNRPktHook(const vpx_codec_cx_pkt_t *pkt) { + if (frame0_psnr_ == 0.) frame0_psnr_ = pkt->data.psnr.psnr[0]; + EXPECT_NEAR(pkt->data.psnr.psnr[0], frame0_psnr_, 2.0); + } + +#if WRITE_COMPRESSED_STREAM + virtual void FramePktHook(const vpx_codec_cx_pkt_t *pkt) { + ++out_frames_; + + // Write initial file header if first frame. + if (pkt->data.frame.pts == 0) write_ivf_file_header(&cfg_, 0, outfile_); + + // Write frame header and data. + write_ivf_frame_header(pkt, outfile_); + (void)fwrite(pkt->data.frame.buf, 1, pkt->data.frame.sz, outfile_); + } +#endif + + double frame0_psnr_; +#if WRITE_COMPRESSED_STREAM + FILE *outfile_; + unsigned int out_frames_; +#endif +}; + +class ResizingCspVideoSource : public ::libvpx_test::DummyVideoSource { + public: + ResizingCspVideoSource() { + SetSize(kInitialWidth, kInitialHeight); + limit_ = 30; + } + + virtual ~ResizingCspVideoSource() {} + + protected: + virtual void Next() { + ++frame_; + SetImageFormat(CspForFrameNumber(frame_)); + FillFrame(); + } +}; + +TEST_P(ResizeCspTest, TestResizeCspWorks) { + ResizingCspVideoSource video; + init_flags_ = VPX_CODEC_USE_PSNR; + cfg_.rc_min_quantizer = cfg_.rc_max_quantizer = 48; + cfg_.g_lag_in_frames = 0; + ASSERT_NO_FATAL_FAILURE(RunLoop(&video)); +} + +VP8_INSTANTIATE_TEST_CASE(ResizeTest, ONE_PASS_TEST_MODES); +VP9_INSTANTIATE_TEST_CASE(ResizeTest, + ::testing::Values(::libvpx_test::kRealTime)); +VP9_INSTANTIATE_TEST_CASE(ResizeInternalTest, + ::testing::Values(::libvpx_test::kOnePassBest)); +VP9_INSTANTIATE_TEST_CASE(ResizeRealtimeTest, + ::testing::Values(::libvpx_test::kRealTime), + ::testing::Range(5, 9)); +VP9_INSTANTIATE_TEST_CASE(ResizeCspTest, + ::testing::Values(::libvpx_test::kRealTime)); +} // namespace diff --git a/test/resize_util.sh b/test/resize_util.sh new file mode 100755 index 0000000..5e47271 --- /dev/null +++ b/test/resize_util.sh @@ -0,0 +1,69 @@ +#!/bin/sh +## +## Copyright (c) 2014 The WebM project authors. All Rights Reserved. +## +## Use of this source code is governed by a BSD-style license +## that can be found in the LICENSE file in the root of the source +## tree. An additional intellectual property rights grant can be found +## in the file PATENTS. All contributing project authors may +## be found in the AUTHORS file in the root of the source tree. +## +## This file tests the libvpx resize_util example code. To add new tests to +## this file, do the following: +## 1. Write a shell function (this is your test). +## 2. Add the function to resize_util_tests (on a new line). +## +. $(dirname $0)/tools_common.sh + +# Environment check: $YUV_RAW_INPUT is required. +resize_util_verify_environment() { + if [ ! -e "${YUV_RAW_INPUT}" ]; then + echo "Libvpx test data must exist in LIBVPX_TEST_DATA_PATH." + return 1 + fi +} + +# Resizes $YUV_RAW_INPUT using the resize_util example. $1 is the output +# dimensions that will be passed to resize_util. +resize_util() { + local resizer="${LIBVPX_BIN_PATH}/resize_util${VPX_TEST_EXE_SUFFIX}" + local output_file="${VPX_TEST_OUTPUT_DIR}/resize_util.raw" + local frames_to_resize="10" + local target_dimensions="$1" + + # resize_util is available only when CONFIG_SHARED is disabled. + if [ -z "$(vpx_config_option_enabled CONFIG_SHARED)" ]; then + if [ ! -x "${resizer}" ]; then + elog "${resizer} does not exist or is not executable." + return 1 + fi + + eval "${VPX_TEST_PREFIX}" "${resizer}" "${YUV_RAW_INPUT}" \ + "${YUV_RAW_INPUT_WIDTH}x${YUV_RAW_INPUT_HEIGHT}" \ + "${target_dimensions}" "${output_file}" ${frames_to_resize} \ + ${devnull} + + [ -e "${output_file}" ] || return 1 + fi +} + +# Halves each dimension of $YUV_RAW_INPUT using resize_util(). +resize_down() { + local target_width=$((${YUV_RAW_INPUT_WIDTH} / 2)) + local target_height=$((${YUV_RAW_INPUT_HEIGHT} / 2)) + + resize_util "${target_width}x${target_height}" +} + +# Doubles each dimension of $YUV_RAW_INPUT using resize_util(). +resize_up() { + local target_width=$((${YUV_RAW_INPUT_WIDTH} * 2)) + local target_height=$((${YUV_RAW_INPUT_HEIGHT} * 2)) + + resize_util "${target_width}x${target_height}" +} + +resize_util_tests="resize_down + resize_up" + +run_tests resize_util_verify_environment "${resize_util_tests}" diff --git a/test/sad_test.cc b/test/sad_test.cc new file mode 100644 index 0000000..67c3c53 --- /dev/null +++ b/test/sad_test.cc @@ -0,0 +1,1056 @@ +/* + * Copyright (c) 2012 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include +#include + +#include "third_party/googletest/src/include/gtest/gtest.h" + +#include "./vpx_config.h" +#include "./vpx_dsp_rtcd.h" +#include "test/acm_random.h" +#include "test/clear_system_state.h" +#include "test/register_state_check.h" +#include "test/util.h" +#include "vpx/vpx_codec.h" +#include "vpx_mem/vpx_mem.h" +#include "vpx_ports/mem.h" + +template +struct TestParams { + TestParams(int w, int h, Function f, int bd = -1) + : width(w), height(h), bit_depth(bd), func(f) {} + int width, height, bit_depth; + Function func; +}; + +typedef unsigned int (*SadMxNFunc)(const uint8_t *src_ptr, int src_stride, + const uint8_t *ref_ptr, int ref_stride); +typedef TestParams SadMxNParam; + +typedef unsigned int (*SadMxNAvgFunc)(const uint8_t *src_ptr, int src_stride, + const uint8_t *ref_ptr, int ref_stride, + const uint8_t *second_pred); +typedef TestParams SadMxNAvgParam; + +typedef void (*SadMxNx4Func)(const uint8_t *src_ptr, int src_stride, + const uint8_t *const ref_ptr[], int ref_stride, + unsigned int *sad_array); +typedef TestParams SadMxNx4Param; + +using libvpx_test::ACMRandom; + +namespace { +template +class SADTestBase : public ::testing::TestWithParam { + public: + explicit SADTestBase(const ParamType ¶ms) : params_(params) {} + + virtual void SetUp() { + source_data8_ = reinterpret_cast( + vpx_memalign(kDataAlignment, kDataBlockSize)); + reference_data8_ = reinterpret_cast( + vpx_memalign(kDataAlignment, kDataBufferSize)); + second_pred8_ = + reinterpret_cast(vpx_memalign(kDataAlignment, 64 * 64)); + source_data16_ = reinterpret_cast( + vpx_memalign(kDataAlignment, kDataBlockSize * sizeof(uint16_t))); + reference_data16_ = reinterpret_cast( + vpx_memalign(kDataAlignment, kDataBufferSize * sizeof(uint16_t))); + second_pred16_ = reinterpret_cast( + vpx_memalign(kDataAlignment, 64 * 64 * sizeof(uint16_t))); + + if (params_.bit_depth == -1) { + use_high_bit_depth_ = false; + bit_depth_ = VPX_BITS_8; + source_data_ = source_data8_; + reference_data_ = reference_data8_; + second_pred_ = second_pred8_; +#if CONFIG_VP9_HIGHBITDEPTH + } else { + use_high_bit_depth_ = true; + bit_depth_ = static_cast(params_.bit_depth); + source_data_ = CONVERT_TO_BYTEPTR(source_data16_); + reference_data_ = CONVERT_TO_BYTEPTR(reference_data16_); + second_pred_ = CONVERT_TO_BYTEPTR(second_pred16_); +#endif // CONFIG_VP9_HIGHBITDEPTH + } + mask_ = (1 << bit_depth_) - 1; + source_stride_ = (params_.width + 31) & ~31; + reference_stride_ = params_.width * 2; + rnd_.Reset(ACMRandom::DeterministicSeed()); + } + + virtual void TearDown() { + vpx_free(source_data8_); + source_data8_ = NULL; + vpx_free(reference_data8_); + reference_data8_ = NULL; + vpx_free(second_pred8_); + second_pred8_ = NULL; + vpx_free(source_data16_); + source_data16_ = NULL; + vpx_free(reference_data16_); + reference_data16_ = NULL; + vpx_free(second_pred16_); + second_pred16_ = NULL; + + libvpx_test::ClearSystemState(); + } + + protected: + // Handle blocks up to 4 blocks 64x64 with stride up to 128 + static const int kDataAlignment = 16; + static const int kDataBlockSize = 64 * 128; + static const int kDataBufferSize = 4 * kDataBlockSize; + + uint8_t *GetReference(int block_idx) const { +#if CONFIG_VP9_HIGHBITDEPTH + if (use_high_bit_depth_) { + return CONVERT_TO_BYTEPTR(CONVERT_TO_SHORTPTR(reference_data_) + + block_idx * kDataBlockSize); + } +#endif // CONFIG_VP9_HIGHBITDEPTH + return reference_data_ + block_idx * kDataBlockSize; + } + + // Sum of Absolute Differences. Given two blocks, calculate the absolute + // difference between two pixels in the same relative location; accumulate. + uint32_t ReferenceSAD(int block_idx) const { + uint32_t sad = 0; + const uint8_t *const reference8 = GetReference(block_idx); + const uint8_t *const source8 = source_data_; +#if CONFIG_VP9_HIGHBITDEPTH + const uint16_t *const reference16 = + CONVERT_TO_SHORTPTR(GetReference(block_idx)); + const uint16_t *const source16 = CONVERT_TO_SHORTPTR(source_data_); +#endif // CONFIG_VP9_HIGHBITDEPTH + for (int h = 0; h < params_.height; ++h) { + for (int w = 0; w < params_.width; ++w) { + if (!use_high_bit_depth_) { + sad += abs(source8[h * source_stride_ + w] - + reference8[h * reference_stride_ + w]); +#if CONFIG_VP9_HIGHBITDEPTH + } else { + sad += abs(source16[h * source_stride_ + w] - + reference16[h * reference_stride_ + w]); +#endif // CONFIG_VP9_HIGHBITDEPTH + } + } + } + return sad; + } + + // Sum of Absolute Differences Average. Given two blocks, and a prediction + // calculate the absolute difference between one pixel and average of the + // corresponding and predicted pixels; accumulate. + unsigned int ReferenceSADavg(int block_idx) const { + unsigned int sad = 0; + const uint8_t *const reference8 = GetReference(block_idx); + const uint8_t *const source8 = source_data_; + const uint8_t *const second_pred8 = second_pred_; +#if CONFIG_VP9_HIGHBITDEPTH + const uint16_t *const reference16 = + CONVERT_TO_SHORTPTR(GetReference(block_idx)); + const uint16_t *const source16 = CONVERT_TO_SHORTPTR(source_data_); + const uint16_t *const second_pred16 = CONVERT_TO_SHORTPTR(second_pred_); +#endif // CONFIG_VP9_HIGHBITDEPTH + for (int h = 0; h < params_.height; ++h) { + for (int w = 0; w < params_.width; ++w) { + if (!use_high_bit_depth_) { + const int tmp = second_pred8[h * params_.width + w] + + reference8[h * reference_stride_ + w]; + const uint8_t comp_pred = ROUND_POWER_OF_TWO(tmp, 1); + sad += abs(source8[h * source_stride_ + w] - comp_pred); +#if CONFIG_VP9_HIGHBITDEPTH + } else { + const int tmp = second_pred16[h * params_.width + w] + + reference16[h * reference_stride_ + w]; + const uint16_t comp_pred = ROUND_POWER_OF_TWO(tmp, 1); + sad += abs(source16[h * source_stride_ + w] - comp_pred); +#endif // CONFIG_VP9_HIGHBITDEPTH + } + } + } + return sad; + } + + void FillConstant(uint8_t *data, int stride, uint16_t fill_constant) const { + uint8_t *data8 = data; +#if CONFIG_VP9_HIGHBITDEPTH + uint16_t *data16 = CONVERT_TO_SHORTPTR(data); +#endif // CONFIG_VP9_HIGHBITDEPTH + for (int h = 0; h < params_.height; ++h) { + for (int w = 0; w < params_.width; ++w) { + if (!use_high_bit_depth_) { + data8[h * stride + w] = static_cast(fill_constant); +#if CONFIG_VP9_HIGHBITDEPTH + } else { + data16[h * stride + w] = fill_constant; +#endif // CONFIG_VP9_HIGHBITDEPTH + } + } + } + } + + void FillRandom(uint8_t *data, int stride) { + uint8_t *data8 = data; +#if CONFIG_VP9_HIGHBITDEPTH + uint16_t *data16 = CONVERT_TO_SHORTPTR(data); +#endif // CONFIG_VP9_HIGHBITDEPTH + for (int h = 0; h < params_.height; ++h) { + for (int w = 0; w < params_.width; ++w) { + if (!use_high_bit_depth_) { + data8[h * stride + w] = rnd_.Rand8(); +#if CONFIG_VP9_HIGHBITDEPTH + } else { + data16[h * stride + w] = rnd_.Rand16() & mask_; +#endif // CONFIG_VP9_HIGHBITDEPTH + } + } + } + } + + uint32_t mask_; + vpx_bit_depth_t bit_depth_; + int source_stride_; + int reference_stride_; + bool use_high_bit_depth_; + + uint8_t *source_data_; + uint8_t *reference_data_; + uint8_t *second_pred_; + uint8_t *source_data8_; + uint8_t *reference_data8_; + uint8_t *second_pred8_; + uint16_t *source_data16_; + uint16_t *reference_data16_; + uint16_t *second_pred16_; + + ACMRandom rnd_; + ParamType params_; +}; + +class SADx4Test : public SADTestBase { + public: + SADx4Test() : SADTestBase(GetParam()) {} + + protected: + void SADs(unsigned int *results) const { + const uint8_t *references[] = { GetReference(0), GetReference(1), + GetReference(2), GetReference(3) }; + + ASM_REGISTER_STATE_CHECK(params_.func( + source_data_, source_stride_, references, reference_stride_, results)); + } + + void CheckSADs() const { + uint32_t reference_sad, exp_sad[4]; + + SADs(exp_sad); + for (int block = 0; block < 4; ++block) { + reference_sad = ReferenceSAD(block); + + EXPECT_EQ(reference_sad, exp_sad[block]) << "block " << block; + } + } +}; + +class SADTest : public SADTestBase { + public: + SADTest() : SADTestBase(GetParam()) {} + + protected: + unsigned int SAD(int block_idx) const { + unsigned int ret; + const uint8_t *const reference = GetReference(block_idx); + + ASM_REGISTER_STATE_CHECK(ret = params_.func(source_data_, source_stride_, + reference, reference_stride_)); + return ret; + } + + void CheckSAD() const { + const unsigned int reference_sad = ReferenceSAD(0); + const unsigned int exp_sad = SAD(0); + + ASSERT_EQ(reference_sad, exp_sad); + } +}; + +class SADavgTest : public SADTestBase { + public: + SADavgTest() : SADTestBase(GetParam()) {} + + protected: + unsigned int SAD_avg(int block_idx) const { + unsigned int ret; + const uint8_t *const reference = GetReference(block_idx); + + ASM_REGISTER_STATE_CHECK(ret = params_.func(source_data_, source_stride_, + reference, reference_stride_, + second_pred_)); + return ret; + } + + void CheckSAD() const { + const unsigned int reference_sad = ReferenceSADavg(0); + const unsigned int exp_sad = SAD_avg(0); + + ASSERT_EQ(reference_sad, exp_sad); + } +}; + +TEST_P(SADTest, MaxRef) { + FillConstant(source_data_, source_stride_, 0); + FillConstant(reference_data_, reference_stride_, mask_); + CheckSAD(); +} + +TEST_P(SADTest, MaxSrc) { + FillConstant(source_data_, source_stride_, mask_); + FillConstant(reference_data_, reference_stride_, 0); + CheckSAD(); +} + +TEST_P(SADTest, ShortRef) { + const int tmp_stride = reference_stride_; + reference_stride_ >>= 1; + FillRandom(source_data_, source_stride_); + FillRandom(reference_data_, reference_stride_); + CheckSAD(); + reference_stride_ = tmp_stride; +} + +TEST_P(SADTest, UnalignedRef) { + // The reference frame, but not the source frame, may be unaligned for + // certain types of searches. + const int tmp_stride = reference_stride_; + reference_stride_ -= 1; + FillRandom(source_data_, source_stride_); + FillRandom(reference_data_, reference_stride_); + CheckSAD(); + reference_stride_ = tmp_stride; +} + +TEST_P(SADTest, ShortSrc) { + const int tmp_stride = source_stride_; + source_stride_ >>= 1; + FillRandom(source_data_, source_stride_); + FillRandom(reference_data_, reference_stride_); + CheckSAD(); + source_stride_ = tmp_stride; +} + +TEST_P(SADavgTest, MaxRef) { + FillConstant(source_data_, source_stride_, 0); + FillConstant(reference_data_, reference_stride_, mask_); + FillConstant(second_pred_, params_.width, 0); + CheckSAD(); +} +TEST_P(SADavgTest, MaxSrc) { + FillConstant(source_data_, source_stride_, mask_); + FillConstant(reference_data_, reference_stride_, 0); + FillConstant(second_pred_, params_.width, 0); + CheckSAD(); +} + +TEST_P(SADavgTest, ShortRef) { + const int tmp_stride = reference_stride_; + reference_stride_ >>= 1; + FillRandom(source_data_, source_stride_); + FillRandom(reference_data_, reference_stride_); + FillRandom(second_pred_, params_.width); + CheckSAD(); + reference_stride_ = tmp_stride; +} + +TEST_P(SADavgTest, UnalignedRef) { + // The reference frame, but not the source frame, may be unaligned for + // certain types of searches. + const int tmp_stride = reference_stride_; + reference_stride_ -= 1; + FillRandom(source_data_, source_stride_); + FillRandom(reference_data_, reference_stride_); + FillRandom(second_pred_, params_.width); + CheckSAD(); + reference_stride_ = tmp_stride; +} + +TEST_P(SADavgTest, ShortSrc) { + const int tmp_stride = source_stride_; + source_stride_ >>= 1; + FillRandom(source_data_, source_stride_); + FillRandom(reference_data_, reference_stride_); + FillRandom(second_pred_, params_.width); + CheckSAD(); + source_stride_ = tmp_stride; +} + +TEST_P(SADx4Test, MaxRef) { + FillConstant(source_data_, source_stride_, 0); + FillConstant(GetReference(0), reference_stride_, mask_); + FillConstant(GetReference(1), reference_stride_, mask_); + FillConstant(GetReference(2), reference_stride_, mask_); + FillConstant(GetReference(3), reference_stride_, mask_); + CheckSADs(); +} + +TEST_P(SADx4Test, MaxSrc) { + FillConstant(source_data_, source_stride_, mask_); + FillConstant(GetReference(0), reference_stride_, 0); + FillConstant(GetReference(1), reference_stride_, 0); + FillConstant(GetReference(2), reference_stride_, 0); + FillConstant(GetReference(3), reference_stride_, 0); + CheckSADs(); +} + +TEST_P(SADx4Test, ShortRef) { + int tmp_stride = reference_stride_; + reference_stride_ >>= 1; + FillRandom(source_data_, source_stride_); + FillRandom(GetReference(0), reference_stride_); + FillRandom(GetReference(1), reference_stride_); + FillRandom(GetReference(2), reference_stride_); + FillRandom(GetReference(3), reference_stride_); + CheckSADs(); + reference_stride_ = tmp_stride; +} + +TEST_P(SADx4Test, UnalignedRef) { + // The reference frame, but not the source frame, may be unaligned for + // certain types of searches. + int tmp_stride = reference_stride_; + reference_stride_ -= 1; + FillRandom(source_data_, source_stride_); + FillRandom(GetReference(0), reference_stride_); + FillRandom(GetReference(1), reference_stride_); + FillRandom(GetReference(2), reference_stride_); + FillRandom(GetReference(3), reference_stride_); + CheckSADs(); + reference_stride_ = tmp_stride; +} + +TEST_P(SADx4Test, ShortSrc) { + int tmp_stride = source_stride_; + source_stride_ >>= 1; + FillRandom(source_data_, source_stride_); + FillRandom(GetReference(0), reference_stride_); + FillRandom(GetReference(1), reference_stride_); + FillRandom(GetReference(2), reference_stride_); + FillRandom(GetReference(3), reference_stride_); + CheckSADs(); + source_stride_ = tmp_stride; +} + +TEST_P(SADx4Test, SrcAlignedByWidth) { + uint8_t *tmp_source_data = source_data_; + source_data_ += params_.width; + FillRandom(source_data_, source_stride_); + FillRandom(GetReference(0), reference_stride_); + FillRandom(GetReference(1), reference_stride_); + FillRandom(GetReference(2), reference_stride_); + FillRandom(GetReference(3), reference_stride_); + CheckSADs(); + source_data_ = tmp_source_data; +} + +//------------------------------------------------------------------------------ +// C functions +const SadMxNParam c_tests[] = { + SadMxNParam(64, 64, &vpx_sad64x64_c), + SadMxNParam(64, 32, &vpx_sad64x32_c), + SadMxNParam(32, 64, &vpx_sad32x64_c), + SadMxNParam(32, 32, &vpx_sad32x32_c), + SadMxNParam(32, 16, &vpx_sad32x16_c), + SadMxNParam(16, 32, &vpx_sad16x32_c), + SadMxNParam(16, 16, &vpx_sad16x16_c), + SadMxNParam(16, 8, &vpx_sad16x8_c), + SadMxNParam(8, 16, &vpx_sad8x16_c), + SadMxNParam(8, 8, &vpx_sad8x8_c), + SadMxNParam(8, 4, &vpx_sad8x4_c), + SadMxNParam(4, 8, &vpx_sad4x8_c), + SadMxNParam(4, 4, &vpx_sad4x4_c), +#if CONFIG_VP9_HIGHBITDEPTH + SadMxNParam(64, 64, &vpx_highbd_sad64x64_c, 8), + SadMxNParam(64, 32, &vpx_highbd_sad64x32_c, 8), + SadMxNParam(32, 64, &vpx_highbd_sad32x64_c, 8), + SadMxNParam(32, 32, &vpx_highbd_sad32x32_c, 8), + SadMxNParam(32, 16, &vpx_highbd_sad32x16_c, 8), + SadMxNParam(16, 32, &vpx_highbd_sad16x32_c, 8), + SadMxNParam(16, 16, &vpx_highbd_sad16x16_c, 8), + SadMxNParam(16, 8, &vpx_highbd_sad16x8_c, 8), + SadMxNParam(8, 16, &vpx_highbd_sad8x16_c, 8), + SadMxNParam(8, 8, &vpx_highbd_sad8x8_c, 8), + SadMxNParam(8, 4, &vpx_highbd_sad8x4_c, 8), + SadMxNParam(4, 8, &vpx_highbd_sad4x8_c, 8), + SadMxNParam(4, 4, &vpx_highbd_sad4x4_c, 8), + SadMxNParam(64, 64, &vpx_highbd_sad64x64_c, 10), + SadMxNParam(64, 32, &vpx_highbd_sad64x32_c, 10), + SadMxNParam(32, 64, &vpx_highbd_sad32x64_c, 10), + SadMxNParam(32, 32, &vpx_highbd_sad32x32_c, 10), + SadMxNParam(32, 16, &vpx_highbd_sad32x16_c, 10), + SadMxNParam(16, 32, &vpx_highbd_sad16x32_c, 10), + SadMxNParam(16, 16, &vpx_highbd_sad16x16_c, 10), + SadMxNParam(16, 8, &vpx_highbd_sad16x8_c, 10), + SadMxNParam(8, 16, &vpx_highbd_sad8x16_c, 10), + SadMxNParam(8, 8, &vpx_highbd_sad8x8_c, 10), + SadMxNParam(8, 4, &vpx_highbd_sad8x4_c, 10), + SadMxNParam(4, 8, &vpx_highbd_sad4x8_c, 10), + SadMxNParam(4, 4, &vpx_highbd_sad4x4_c, 10), + SadMxNParam(64, 64, &vpx_highbd_sad64x64_c, 12), + SadMxNParam(64, 32, &vpx_highbd_sad64x32_c, 12), + SadMxNParam(32, 64, &vpx_highbd_sad32x64_c, 12), + SadMxNParam(32, 32, &vpx_highbd_sad32x32_c, 12), + SadMxNParam(32, 16, &vpx_highbd_sad32x16_c, 12), + SadMxNParam(16, 32, &vpx_highbd_sad16x32_c, 12), + SadMxNParam(16, 16, &vpx_highbd_sad16x16_c, 12), + SadMxNParam(16, 8, &vpx_highbd_sad16x8_c, 12), + SadMxNParam(8, 16, &vpx_highbd_sad8x16_c, 12), + SadMxNParam(8, 8, &vpx_highbd_sad8x8_c, 12), + SadMxNParam(8, 4, &vpx_highbd_sad8x4_c, 12), + SadMxNParam(4, 8, &vpx_highbd_sad4x8_c, 12), + SadMxNParam(4, 4, &vpx_highbd_sad4x4_c, 12), +#endif // CONFIG_VP9_HIGHBITDEPTH +}; +INSTANTIATE_TEST_CASE_P(C, SADTest, ::testing::ValuesIn(c_tests)); + +const SadMxNAvgParam avg_c_tests[] = { + SadMxNAvgParam(64, 64, &vpx_sad64x64_avg_c), + SadMxNAvgParam(64, 32, &vpx_sad64x32_avg_c), + SadMxNAvgParam(32, 64, &vpx_sad32x64_avg_c), + SadMxNAvgParam(32, 32, &vpx_sad32x32_avg_c), + SadMxNAvgParam(32, 16, &vpx_sad32x16_avg_c), + SadMxNAvgParam(16, 32, &vpx_sad16x32_avg_c), + SadMxNAvgParam(16, 16, &vpx_sad16x16_avg_c), + SadMxNAvgParam(16, 8, &vpx_sad16x8_avg_c), + SadMxNAvgParam(8, 16, &vpx_sad8x16_avg_c), + SadMxNAvgParam(8, 8, &vpx_sad8x8_avg_c), + SadMxNAvgParam(8, 4, &vpx_sad8x4_avg_c), + SadMxNAvgParam(4, 8, &vpx_sad4x8_avg_c), + SadMxNAvgParam(4, 4, &vpx_sad4x4_avg_c), +#if CONFIG_VP9_HIGHBITDEPTH + SadMxNAvgParam(64, 64, &vpx_highbd_sad64x64_avg_c, 8), + SadMxNAvgParam(64, 32, &vpx_highbd_sad64x32_avg_c, 8), + SadMxNAvgParam(32, 64, &vpx_highbd_sad32x64_avg_c, 8), + SadMxNAvgParam(32, 32, &vpx_highbd_sad32x32_avg_c, 8), + SadMxNAvgParam(32, 16, &vpx_highbd_sad32x16_avg_c, 8), + SadMxNAvgParam(16, 32, &vpx_highbd_sad16x32_avg_c, 8), + SadMxNAvgParam(16, 16, &vpx_highbd_sad16x16_avg_c, 8), + SadMxNAvgParam(16, 8, &vpx_highbd_sad16x8_avg_c, 8), + SadMxNAvgParam(8, 16, &vpx_highbd_sad8x16_avg_c, 8), + SadMxNAvgParam(8, 8, &vpx_highbd_sad8x8_avg_c, 8), + SadMxNAvgParam(8, 4, &vpx_highbd_sad8x4_avg_c, 8), + SadMxNAvgParam(4, 8, &vpx_highbd_sad4x8_avg_c, 8), + SadMxNAvgParam(4, 4, &vpx_highbd_sad4x4_avg_c, 8), + SadMxNAvgParam(64, 64, &vpx_highbd_sad64x64_avg_c, 10), + SadMxNAvgParam(64, 32, &vpx_highbd_sad64x32_avg_c, 10), + SadMxNAvgParam(32, 64, &vpx_highbd_sad32x64_avg_c, 10), + SadMxNAvgParam(32, 32, &vpx_highbd_sad32x32_avg_c, 10), + SadMxNAvgParam(32, 16, &vpx_highbd_sad32x16_avg_c, 10), + SadMxNAvgParam(16, 32, &vpx_highbd_sad16x32_avg_c, 10), + SadMxNAvgParam(16, 16, &vpx_highbd_sad16x16_avg_c, 10), + SadMxNAvgParam(16, 8, &vpx_highbd_sad16x8_avg_c, 10), + SadMxNAvgParam(8, 16, &vpx_highbd_sad8x16_avg_c, 10), + SadMxNAvgParam(8, 8, &vpx_highbd_sad8x8_avg_c, 10), + SadMxNAvgParam(8, 4, &vpx_highbd_sad8x4_avg_c, 10), + SadMxNAvgParam(4, 8, &vpx_highbd_sad4x8_avg_c, 10), + SadMxNAvgParam(4, 4, &vpx_highbd_sad4x4_avg_c, 10), + SadMxNAvgParam(64, 64, &vpx_highbd_sad64x64_avg_c, 12), + SadMxNAvgParam(64, 32, &vpx_highbd_sad64x32_avg_c, 12), + SadMxNAvgParam(32, 64, &vpx_highbd_sad32x64_avg_c, 12), + SadMxNAvgParam(32, 32, &vpx_highbd_sad32x32_avg_c, 12), + SadMxNAvgParam(32, 16, &vpx_highbd_sad32x16_avg_c, 12), + SadMxNAvgParam(16, 32, &vpx_highbd_sad16x32_avg_c, 12), + SadMxNAvgParam(16, 16, &vpx_highbd_sad16x16_avg_c, 12), + SadMxNAvgParam(16, 8, &vpx_highbd_sad16x8_avg_c, 12), + SadMxNAvgParam(8, 16, &vpx_highbd_sad8x16_avg_c, 12), + SadMxNAvgParam(8, 8, &vpx_highbd_sad8x8_avg_c, 12), + SadMxNAvgParam(8, 4, &vpx_highbd_sad8x4_avg_c, 12), + SadMxNAvgParam(4, 8, &vpx_highbd_sad4x8_avg_c, 12), + SadMxNAvgParam(4, 4, &vpx_highbd_sad4x4_avg_c, 12), +#endif // CONFIG_VP9_HIGHBITDEPTH +}; +INSTANTIATE_TEST_CASE_P(C, SADavgTest, ::testing::ValuesIn(avg_c_tests)); + +const SadMxNx4Param x4d_c_tests[] = { + SadMxNx4Param(64, 64, &vpx_sad64x64x4d_c), + SadMxNx4Param(64, 32, &vpx_sad64x32x4d_c), + SadMxNx4Param(32, 64, &vpx_sad32x64x4d_c), + SadMxNx4Param(32, 32, &vpx_sad32x32x4d_c), + SadMxNx4Param(32, 16, &vpx_sad32x16x4d_c), + SadMxNx4Param(16, 32, &vpx_sad16x32x4d_c), + SadMxNx4Param(16, 16, &vpx_sad16x16x4d_c), + SadMxNx4Param(16, 8, &vpx_sad16x8x4d_c), + SadMxNx4Param(8, 16, &vpx_sad8x16x4d_c), + SadMxNx4Param(8, 8, &vpx_sad8x8x4d_c), + SadMxNx4Param(8, 4, &vpx_sad8x4x4d_c), + SadMxNx4Param(4, 8, &vpx_sad4x8x4d_c), + SadMxNx4Param(4, 4, &vpx_sad4x4x4d_c), +#if CONFIG_VP9_HIGHBITDEPTH + SadMxNx4Param(64, 64, &vpx_highbd_sad64x64x4d_c, 8), + SadMxNx4Param(64, 32, &vpx_highbd_sad64x32x4d_c, 8), + SadMxNx4Param(32, 64, &vpx_highbd_sad32x64x4d_c, 8), + SadMxNx4Param(32, 32, &vpx_highbd_sad32x32x4d_c, 8), + SadMxNx4Param(32, 16, &vpx_highbd_sad32x16x4d_c, 8), + SadMxNx4Param(16, 32, &vpx_highbd_sad16x32x4d_c, 8), + SadMxNx4Param(16, 16, &vpx_highbd_sad16x16x4d_c, 8), + SadMxNx4Param(16, 8, &vpx_highbd_sad16x8x4d_c, 8), + SadMxNx4Param(8, 16, &vpx_highbd_sad8x16x4d_c, 8), + SadMxNx4Param(8, 8, &vpx_highbd_sad8x8x4d_c, 8), + SadMxNx4Param(8, 4, &vpx_highbd_sad8x4x4d_c, 8), + SadMxNx4Param(4, 8, &vpx_highbd_sad4x8x4d_c, 8), + SadMxNx4Param(4, 4, &vpx_highbd_sad4x4x4d_c, 8), + SadMxNx4Param(64, 64, &vpx_highbd_sad64x64x4d_c, 10), + SadMxNx4Param(64, 32, &vpx_highbd_sad64x32x4d_c, 10), + SadMxNx4Param(32, 64, &vpx_highbd_sad32x64x4d_c, 10), + SadMxNx4Param(32, 32, &vpx_highbd_sad32x32x4d_c, 10), + SadMxNx4Param(32, 16, &vpx_highbd_sad32x16x4d_c, 10), + SadMxNx4Param(16, 32, &vpx_highbd_sad16x32x4d_c, 10), + SadMxNx4Param(16, 16, &vpx_highbd_sad16x16x4d_c, 10), + SadMxNx4Param(16, 8, &vpx_highbd_sad16x8x4d_c, 10), + SadMxNx4Param(8, 16, &vpx_highbd_sad8x16x4d_c, 10), + SadMxNx4Param(8, 8, &vpx_highbd_sad8x8x4d_c, 10), + SadMxNx4Param(8, 4, &vpx_highbd_sad8x4x4d_c, 10), + SadMxNx4Param(4, 8, &vpx_highbd_sad4x8x4d_c, 10), + SadMxNx4Param(4, 4, &vpx_highbd_sad4x4x4d_c, 10), + SadMxNx4Param(64, 64, &vpx_highbd_sad64x64x4d_c, 12), + SadMxNx4Param(64, 32, &vpx_highbd_sad64x32x4d_c, 12), + SadMxNx4Param(32, 64, &vpx_highbd_sad32x64x4d_c, 12), + SadMxNx4Param(32, 32, &vpx_highbd_sad32x32x4d_c, 12), + SadMxNx4Param(32, 16, &vpx_highbd_sad32x16x4d_c, 12), + SadMxNx4Param(16, 32, &vpx_highbd_sad16x32x4d_c, 12), + SadMxNx4Param(16, 16, &vpx_highbd_sad16x16x4d_c, 12), + SadMxNx4Param(16, 8, &vpx_highbd_sad16x8x4d_c, 12), + SadMxNx4Param(8, 16, &vpx_highbd_sad8x16x4d_c, 12), + SadMxNx4Param(8, 8, &vpx_highbd_sad8x8x4d_c, 12), + SadMxNx4Param(8, 4, &vpx_highbd_sad8x4x4d_c, 12), + SadMxNx4Param(4, 8, &vpx_highbd_sad4x8x4d_c, 12), + SadMxNx4Param(4, 4, &vpx_highbd_sad4x4x4d_c, 12), +#endif // CONFIG_VP9_HIGHBITDEPTH +}; +INSTANTIATE_TEST_CASE_P(C, SADx4Test, ::testing::ValuesIn(x4d_c_tests)); + +//------------------------------------------------------------------------------ +// ARM functions +#if HAVE_NEON +const SadMxNParam neon_tests[] = { + SadMxNParam(64, 64, &vpx_sad64x64_neon), + SadMxNParam(64, 32, &vpx_sad64x32_neon), + SadMxNParam(32, 32, &vpx_sad32x32_neon), + SadMxNParam(16, 32, &vpx_sad16x32_neon), + SadMxNParam(16, 16, &vpx_sad16x16_neon), + SadMxNParam(16, 8, &vpx_sad16x8_neon), + SadMxNParam(8, 16, &vpx_sad8x16_neon), + SadMxNParam(8, 8, &vpx_sad8x8_neon), + SadMxNParam(8, 4, &vpx_sad8x4_neon), + SadMxNParam(4, 8, &vpx_sad4x8_neon), + SadMxNParam(4, 4, &vpx_sad4x4_neon), +}; +INSTANTIATE_TEST_CASE_P(NEON, SADTest, ::testing::ValuesIn(neon_tests)); + +const SadMxNAvgParam avg_neon_tests[] = { + SadMxNAvgParam(64, 64, &vpx_sad64x64_avg_neon), + SadMxNAvgParam(64, 32, &vpx_sad64x32_avg_neon), + SadMxNAvgParam(32, 64, &vpx_sad32x64_avg_neon), + SadMxNAvgParam(32, 32, &vpx_sad32x32_avg_neon), + SadMxNAvgParam(32, 16, &vpx_sad32x16_avg_neon), + SadMxNAvgParam(16, 32, &vpx_sad16x32_avg_neon), + SadMxNAvgParam(16, 16, &vpx_sad16x16_avg_neon), + SadMxNAvgParam(16, 8, &vpx_sad16x8_avg_neon), + SadMxNAvgParam(8, 16, &vpx_sad8x16_avg_neon), + SadMxNAvgParam(8, 8, &vpx_sad8x8_avg_neon), + SadMxNAvgParam(8, 4, &vpx_sad8x4_avg_neon), + SadMxNAvgParam(4, 8, &vpx_sad4x8_avg_neon), + SadMxNAvgParam(4, 4, &vpx_sad4x4_avg_neon), +}; +INSTANTIATE_TEST_CASE_P(NEON, SADavgTest, ::testing::ValuesIn(avg_neon_tests)); + +const SadMxNx4Param x4d_neon_tests[] = { + SadMxNx4Param(64, 64, &vpx_sad64x64x4d_neon), + SadMxNx4Param(64, 32, &vpx_sad64x32x4d_neon), + SadMxNx4Param(32, 64, &vpx_sad32x64x4d_neon), + SadMxNx4Param(32, 32, &vpx_sad32x32x4d_neon), + SadMxNx4Param(32, 16, &vpx_sad32x16x4d_neon), + SadMxNx4Param(16, 32, &vpx_sad16x32x4d_neon), + SadMxNx4Param(16, 16, &vpx_sad16x16x4d_neon), + SadMxNx4Param(16, 8, &vpx_sad16x8x4d_neon), + SadMxNx4Param(8, 16, &vpx_sad8x16x4d_neon), + SadMxNx4Param(8, 8, &vpx_sad8x8x4d_neon), + SadMxNx4Param(8, 4, &vpx_sad8x4x4d_neon), + SadMxNx4Param(4, 8, &vpx_sad4x8x4d_neon), + SadMxNx4Param(4, 4, &vpx_sad4x4x4d_neon), +}; +INSTANTIATE_TEST_CASE_P(NEON, SADx4Test, ::testing::ValuesIn(x4d_neon_tests)); +#endif // HAVE_NEON + +//------------------------------------------------------------------------------ +// x86 functions +#if HAVE_SSE2 +const SadMxNParam sse2_tests[] = { + SadMxNParam(64, 64, &vpx_sad64x64_sse2), + SadMxNParam(64, 32, &vpx_sad64x32_sse2), + SadMxNParam(32, 64, &vpx_sad32x64_sse2), + SadMxNParam(32, 32, &vpx_sad32x32_sse2), + SadMxNParam(32, 16, &vpx_sad32x16_sse2), + SadMxNParam(16, 32, &vpx_sad16x32_sse2), + SadMxNParam(16, 16, &vpx_sad16x16_sse2), + SadMxNParam(16, 8, &vpx_sad16x8_sse2), + SadMxNParam(8, 16, &vpx_sad8x16_sse2), + SadMxNParam(8, 8, &vpx_sad8x8_sse2), + SadMxNParam(8, 4, &vpx_sad8x4_sse2), + SadMxNParam(4, 8, &vpx_sad4x8_sse2), + SadMxNParam(4, 4, &vpx_sad4x4_sse2), +#if CONFIG_VP9_HIGHBITDEPTH + SadMxNParam(64, 64, &vpx_highbd_sad64x64_sse2, 8), + SadMxNParam(64, 32, &vpx_highbd_sad64x32_sse2, 8), + SadMxNParam(32, 64, &vpx_highbd_sad32x64_sse2, 8), + SadMxNParam(32, 32, &vpx_highbd_sad32x32_sse2, 8), + SadMxNParam(32, 16, &vpx_highbd_sad32x16_sse2, 8), + SadMxNParam(16, 32, &vpx_highbd_sad16x32_sse2, 8), + SadMxNParam(16, 16, &vpx_highbd_sad16x16_sse2, 8), + SadMxNParam(16, 8, &vpx_highbd_sad16x8_sse2, 8), + SadMxNParam(8, 16, &vpx_highbd_sad8x16_sse2, 8), + SadMxNParam(8, 8, &vpx_highbd_sad8x8_sse2, 8), + SadMxNParam(8, 4, &vpx_highbd_sad8x4_sse2, 8), + SadMxNParam(64, 64, &vpx_highbd_sad64x64_sse2, 10), + SadMxNParam(64, 32, &vpx_highbd_sad64x32_sse2, 10), + SadMxNParam(32, 64, &vpx_highbd_sad32x64_sse2, 10), + SadMxNParam(32, 32, &vpx_highbd_sad32x32_sse2, 10), + SadMxNParam(32, 16, &vpx_highbd_sad32x16_sse2, 10), + SadMxNParam(16, 32, &vpx_highbd_sad16x32_sse2, 10), + SadMxNParam(16, 16, &vpx_highbd_sad16x16_sse2, 10), + SadMxNParam(16, 8, &vpx_highbd_sad16x8_sse2, 10), + SadMxNParam(8, 16, &vpx_highbd_sad8x16_sse2, 10), + SadMxNParam(8, 8, &vpx_highbd_sad8x8_sse2, 10), + SadMxNParam(8, 4, &vpx_highbd_sad8x4_sse2, 10), + SadMxNParam(64, 64, &vpx_highbd_sad64x64_sse2, 12), + SadMxNParam(64, 32, &vpx_highbd_sad64x32_sse2, 12), + SadMxNParam(32, 64, &vpx_highbd_sad32x64_sse2, 12), + SadMxNParam(32, 32, &vpx_highbd_sad32x32_sse2, 12), + SadMxNParam(32, 16, &vpx_highbd_sad32x16_sse2, 12), + SadMxNParam(16, 32, &vpx_highbd_sad16x32_sse2, 12), + SadMxNParam(16, 16, &vpx_highbd_sad16x16_sse2, 12), + SadMxNParam(16, 8, &vpx_highbd_sad16x8_sse2, 12), + SadMxNParam(8, 16, &vpx_highbd_sad8x16_sse2, 12), + SadMxNParam(8, 8, &vpx_highbd_sad8x8_sse2, 12), + SadMxNParam(8, 4, &vpx_highbd_sad8x4_sse2, 12), +#endif // CONFIG_VP9_HIGHBITDEPTH +}; +INSTANTIATE_TEST_CASE_P(SSE2, SADTest, ::testing::ValuesIn(sse2_tests)); + +const SadMxNAvgParam avg_sse2_tests[] = { + SadMxNAvgParam(64, 64, &vpx_sad64x64_avg_sse2), + SadMxNAvgParam(64, 32, &vpx_sad64x32_avg_sse2), + SadMxNAvgParam(32, 64, &vpx_sad32x64_avg_sse2), + SadMxNAvgParam(32, 32, &vpx_sad32x32_avg_sse2), + SadMxNAvgParam(32, 16, &vpx_sad32x16_avg_sse2), + SadMxNAvgParam(16, 32, &vpx_sad16x32_avg_sse2), + SadMxNAvgParam(16, 16, &vpx_sad16x16_avg_sse2), + SadMxNAvgParam(16, 8, &vpx_sad16x8_avg_sse2), + SadMxNAvgParam(8, 16, &vpx_sad8x16_avg_sse2), + SadMxNAvgParam(8, 8, &vpx_sad8x8_avg_sse2), + SadMxNAvgParam(8, 4, &vpx_sad8x4_avg_sse2), + SadMxNAvgParam(4, 8, &vpx_sad4x8_avg_sse2), + SadMxNAvgParam(4, 4, &vpx_sad4x4_avg_sse2), +#if CONFIG_VP9_HIGHBITDEPTH + SadMxNAvgParam(64, 64, &vpx_highbd_sad64x64_avg_sse2, 8), + SadMxNAvgParam(64, 32, &vpx_highbd_sad64x32_avg_sse2, 8), + SadMxNAvgParam(32, 64, &vpx_highbd_sad32x64_avg_sse2, 8), + SadMxNAvgParam(32, 32, &vpx_highbd_sad32x32_avg_sse2, 8), + SadMxNAvgParam(32, 16, &vpx_highbd_sad32x16_avg_sse2, 8), + SadMxNAvgParam(16, 32, &vpx_highbd_sad16x32_avg_sse2, 8), + SadMxNAvgParam(16, 16, &vpx_highbd_sad16x16_avg_sse2, 8), + SadMxNAvgParam(16, 8, &vpx_highbd_sad16x8_avg_sse2, 8), + SadMxNAvgParam(8, 16, &vpx_highbd_sad8x16_avg_sse2, 8), + SadMxNAvgParam(8, 8, &vpx_highbd_sad8x8_avg_sse2, 8), + SadMxNAvgParam(8, 4, &vpx_highbd_sad8x4_avg_sse2, 8), + SadMxNAvgParam(64, 64, &vpx_highbd_sad64x64_avg_sse2, 10), + SadMxNAvgParam(64, 32, &vpx_highbd_sad64x32_avg_sse2, 10), + SadMxNAvgParam(32, 64, &vpx_highbd_sad32x64_avg_sse2, 10), + SadMxNAvgParam(32, 32, &vpx_highbd_sad32x32_avg_sse2, 10), + SadMxNAvgParam(32, 16, &vpx_highbd_sad32x16_avg_sse2, 10), + SadMxNAvgParam(16, 32, &vpx_highbd_sad16x32_avg_sse2, 10), + SadMxNAvgParam(16, 16, &vpx_highbd_sad16x16_avg_sse2, 10), + SadMxNAvgParam(16, 8, &vpx_highbd_sad16x8_avg_sse2, 10), + SadMxNAvgParam(8, 16, &vpx_highbd_sad8x16_avg_sse2, 10), + SadMxNAvgParam(8, 8, &vpx_highbd_sad8x8_avg_sse2, 10), + SadMxNAvgParam(8, 4, &vpx_highbd_sad8x4_avg_sse2, 10), + SadMxNAvgParam(64, 64, &vpx_highbd_sad64x64_avg_sse2, 12), + SadMxNAvgParam(64, 32, &vpx_highbd_sad64x32_avg_sse2, 12), + SadMxNAvgParam(32, 64, &vpx_highbd_sad32x64_avg_sse2, 12), + SadMxNAvgParam(32, 32, &vpx_highbd_sad32x32_avg_sse2, 12), + SadMxNAvgParam(32, 16, &vpx_highbd_sad32x16_avg_sse2, 12), + SadMxNAvgParam(16, 32, &vpx_highbd_sad16x32_avg_sse2, 12), + SadMxNAvgParam(16, 16, &vpx_highbd_sad16x16_avg_sse2, 12), + SadMxNAvgParam(16, 8, &vpx_highbd_sad16x8_avg_sse2, 12), + SadMxNAvgParam(8, 16, &vpx_highbd_sad8x16_avg_sse2, 12), + SadMxNAvgParam(8, 8, &vpx_highbd_sad8x8_avg_sse2, 12), + SadMxNAvgParam(8, 4, &vpx_highbd_sad8x4_avg_sse2, 12), +#endif // CONFIG_VP9_HIGHBITDEPTH +}; +INSTANTIATE_TEST_CASE_P(SSE2, SADavgTest, ::testing::ValuesIn(avg_sse2_tests)); + +const SadMxNx4Param x4d_sse2_tests[] = { + SadMxNx4Param(64, 64, &vpx_sad64x64x4d_sse2), + SadMxNx4Param(64, 32, &vpx_sad64x32x4d_sse2), + SadMxNx4Param(32, 64, &vpx_sad32x64x4d_sse2), + SadMxNx4Param(32, 32, &vpx_sad32x32x4d_sse2), + SadMxNx4Param(32, 16, &vpx_sad32x16x4d_sse2), + SadMxNx4Param(16, 32, &vpx_sad16x32x4d_sse2), + SadMxNx4Param(16, 16, &vpx_sad16x16x4d_sse2), + SadMxNx4Param(16, 8, &vpx_sad16x8x4d_sse2), + SadMxNx4Param(8, 16, &vpx_sad8x16x4d_sse2), + SadMxNx4Param(8, 8, &vpx_sad8x8x4d_sse2), + SadMxNx4Param(8, 4, &vpx_sad8x4x4d_sse2), + SadMxNx4Param(4, 8, &vpx_sad4x8x4d_sse2), + SadMxNx4Param(4, 4, &vpx_sad4x4x4d_sse2), +#if CONFIG_VP9_HIGHBITDEPTH + SadMxNx4Param(64, 64, &vpx_highbd_sad64x64x4d_sse2, 8), + SadMxNx4Param(64, 32, &vpx_highbd_sad64x32x4d_sse2, 8), + SadMxNx4Param(32, 64, &vpx_highbd_sad32x64x4d_sse2, 8), + SadMxNx4Param(32, 32, &vpx_highbd_sad32x32x4d_sse2, 8), + SadMxNx4Param(32, 16, &vpx_highbd_sad32x16x4d_sse2, 8), + SadMxNx4Param(16, 32, &vpx_highbd_sad16x32x4d_sse2, 8), + SadMxNx4Param(16, 16, &vpx_highbd_sad16x16x4d_sse2, 8), + SadMxNx4Param(16, 8, &vpx_highbd_sad16x8x4d_sse2, 8), + SadMxNx4Param(8, 16, &vpx_highbd_sad8x16x4d_sse2, 8), + SadMxNx4Param(8, 8, &vpx_highbd_sad8x8x4d_sse2, 8), + SadMxNx4Param(8, 4, &vpx_highbd_sad8x4x4d_sse2, 8), + SadMxNx4Param(4, 8, &vpx_highbd_sad4x8x4d_sse2, 8), + SadMxNx4Param(4, 4, &vpx_highbd_sad4x4x4d_sse2, 8), + SadMxNx4Param(64, 64, &vpx_highbd_sad64x64x4d_sse2, 10), + SadMxNx4Param(64, 32, &vpx_highbd_sad64x32x4d_sse2, 10), + SadMxNx4Param(32, 64, &vpx_highbd_sad32x64x4d_sse2, 10), + SadMxNx4Param(32, 32, &vpx_highbd_sad32x32x4d_sse2, 10), + SadMxNx4Param(32, 16, &vpx_highbd_sad32x16x4d_sse2, 10), + SadMxNx4Param(16, 32, &vpx_highbd_sad16x32x4d_sse2, 10), + SadMxNx4Param(16, 16, &vpx_highbd_sad16x16x4d_sse2, 10), + SadMxNx4Param(16, 8, &vpx_highbd_sad16x8x4d_sse2, 10), + SadMxNx4Param(8, 16, &vpx_highbd_sad8x16x4d_sse2, 10), + SadMxNx4Param(8, 8, &vpx_highbd_sad8x8x4d_sse2, 10), + SadMxNx4Param(8, 4, &vpx_highbd_sad8x4x4d_sse2, 10), + SadMxNx4Param(4, 8, &vpx_highbd_sad4x8x4d_sse2, 10), + SadMxNx4Param(4, 4, &vpx_highbd_sad4x4x4d_sse2, 10), + SadMxNx4Param(64, 64, &vpx_highbd_sad64x64x4d_sse2, 12), + SadMxNx4Param(64, 32, &vpx_highbd_sad64x32x4d_sse2, 12), + SadMxNx4Param(32, 64, &vpx_highbd_sad32x64x4d_sse2, 12), + SadMxNx4Param(32, 32, &vpx_highbd_sad32x32x4d_sse2, 12), + SadMxNx4Param(32, 16, &vpx_highbd_sad32x16x4d_sse2, 12), + SadMxNx4Param(16, 32, &vpx_highbd_sad16x32x4d_sse2, 12), + SadMxNx4Param(16, 16, &vpx_highbd_sad16x16x4d_sse2, 12), + SadMxNx4Param(16, 8, &vpx_highbd_sad16x8x4d_sse2, 12), + SadMxNx4Param(8, 16, &vpx_highbd_sad8x16x4d_sse2, 12), + SadMxNx4Param(8, 8, &vpx_highbd_sad8x8x4d_sse2, 12), + SadMxNx4Param(8, 4, &vpx_highbd_sad8x4x4d_sse2, 12), + SadMxNx4Param(4, 8, &vpx_highbd_sad4x8x4d_sse2, 12), + SadMxNx4Param(4, 4, &vpx_highbd_sad4x4x4d_sse2, 12), +#endif // CONFIG_VP9_HIGHBITDEPTH +}; +INSTANTIATE_TEST_CASE_P(SSE2, SADx4Test, ::testing::ValuesIn(x4d_sse2_tests)); +#endif // HAVE_SSE2 + +#if HAVE_SSE3 +// Only functions are x3, which do not have tests. +#endif // HAVE_SSE3 + +#if HAVE_SSSE3 +// Only functions are x3, which do not have tests. +#endif // HAVE_SSSE3 + +#if HAVE_SSE4_1 +// Only functions are x8, which do not have tests. +#endif // HAVE_SSE4_1 + +#if HAVE_AVX2 +const SadMxNParam avx2_tests[] = { + SadMxNParam(64, 64, &vpx_sad64x64_avx2), + SadMxNParam(64, 32, &vpx_sad64x32_avx2), + SadMxNParam(32, 64, &vpx_sad32x64_avx2), + SadMxNParam(32, 32, &vpx_sad32x32_avx2), + SadMxNParam(32, 16, &vpx_sad32x16_avx2), +}; +INSTANTIATE_TEST_CASE_P(AVX2, SADTest, ::testing::ValuesIn(avx2_tests)); + +const SadMxNAvgParam avg_avx2_tests[] = { + SadMxNAvgParam(64, 64, &vpx_sad64x64_avg_avx2), + SadMxNAvgParam(64, 32, &vpx_sad64x32_avg_avx2), + SadMxNAvgParam(32, 64, &vpx_sad32x64_avg_avx2), + SadMxNAvgParam(32, 32, &vpx_sad32x32_avg_avx2), + SadMxNAvgParam(32, 16, &vpx_sad32x16_avg_avx2), +}; +INSTANTIATE_TEST_CASE_P(AVX2, SADavgTest, ::testing::ValuesIn(avg_avx2_tests)); + +const SadMxNx4Param x4d_avx2_tests[] = { + SadMxNx4Param(64, 64, &vpx_sad64x64x4d_avx2), + SadMxNx4Param(32, 32, &vpx_sad32x32x4d_avx2), +}; +INSTANTIATE_TEST_CASE_P(AVX2, SADx4Test, ::testing::ValuesIn(x4d_avx2_tests)); +#endif // HAVE_AVX2 + +#if HAVE_AVX512 +const SadMxNx4Param x4d_avx512_tests[] = { + SadMxNx4Param(64, 64, &vpx_sad64x64x4d_avx512), +}; +INSTANTIATE_TEST_CASE_P(AVX512, SADx4Test, + ::testing::ValuesIn(x4d_avx512_tests)); +#endif // HAVE_AVX512 + +//------------------------------------------------------------------------------ +// MIPS functions +#if HAVE_MSA +const SadMxNParam msa_tests[] = { + SadMxNParam(64, 64, &vpx_sad64x64_msa), + SadMxNParam(64, 32, &vpx_sad64x32_msa), + SadMxNParam(32, 64, &vpx_sad32x64_msa), + SadMxNParam(32, 32, &vpx_sad32x32_msa), + SadMxNParam(32, 16, &vpx_sad32x16_msa), + SadMxNParam(16, 32, &vpx_sad16x32_msa), + SadMxNParam(16, 16, &vpx_sad16x16_msa), + SadMxNParam(16, 8, &vpx_sad16x8_msa), + SadMxNParam(8, 16, &vpx_sad8x16_msa), + SadMxNParam(8, 8, &vpx_sad8x8_msa), + SadMxNParam(8, 4, &vpx_sad8x4_msa), + SadMxNParam(4, 8, &vpx_sad4x8_msa), + SadMxNParam(4, 4, &vpx_sad4x4_msa), +}; +INSTANTIATE_TEST_CASE_P(MSA, SADTest, ::testing::ValuesIn(msa_tests)); + +const SadMxNAvgParam avg_msa_tests[] = { + SadMxNAvgParam(64, 64, &vpx_sad64x64_avg_msa), + SadMxNAvgParam(64, 32, &vpx_sad64x32_avg_msa), + SadMxNAvgParam(32, 64, &vpx_sad32x64_avg_msa), + SadMxNAvgParam(32, 32, &vpx_sad32x32_avg_msa), + SadMxNAvgParam(32, 16, &vpx_sad32x16_avg_msa), + SadMxNAvgParam(16, 32, &vpx_sad16x32_avg_msa), + SadMxNAvgParam(16, 16, &vpx_sad16x16_avg_msa), + SadMxNAvgParam(16, 8, &vpx_sad16x8_avg_msa), + SadMxNAvgParam(8, 16, &vpx_sad8x16_avg_msa), + SadMxNAvgParam(8, 8, &vpx_sad8x8_avg_msa), + SadMxNAvgParam(8, 4, &vpx_sad8x4_avg_msa), + SadMxNAvgParam(4, 8, &vpx_sad4x8_avg_msa), + SadMxNAvgParam(4, 4, &vpx_sad4x4_avg_msa), +}; +INSTANTIATE_TEST_CASE_P(MSA, SADavgTest, ::testing::ValuesIn(avg_msa_tests)); + +const SadMxNx4Param x4d_msa_tests[] = { + SadMxNx4Param(64, 64, &vpx_sad64x64x4d_msa), + SadMxNx4Param(64, 32, &vpx_sad64x32x4d_msa), + SadMxNx4Param(32, 64, &vpx_sad32x64x4d_msa), + SadMxNx4Param(32, 32, &vpx_sad32x32x4d_msa), + SadMxNx4Param(32, 16, &vpx_sad32x16x4d_msa), + SadMxNx4Param(16, 32, &vpx_sad16x32x4d_msa), + SadMxNx4Param(16, 16, &vpx_sad16x16x4d_msa), + SadMxNx4Param(16, 8, &vpx_sad16x8x4d_msa), + SadMxNx4Param(8, 16, &vpx_sad8x16x4d_msa), + SadMxNx4Param(8, 8, &vpx_sad8x8x4d_msa), + SadMxNx4Param(8, 4, &vpx_sad8x4x4d_msa), + SadMxNx4Param(4, 8, &vpx_sad4x8x4d_msa), + SadMxNx4Param(4, 4, &vpx_sad4x4x4d_msa), +}; +INSTANTIATE_TEST_CASE_P(MSA, SADx4Test, ::testing::ValuesIn(x4d_msa_tests)); +#endif // HAVE_MSA + +//------------------------------------------------------------------------------ +// VSX functions +#if HAVE_VSX +const SadMxNParam vsx_tests[] = { + SadMxNParam(64, 64, &vpx_sad64x64_vsx), + SadMxNParam(64, 32, &vpx_sad64x32_vsx), + SadMxNParam(32, 64, &vpx_sad32x64_vsx), + SadMxNParam(32, 32, &vpx_sad32x32_vsx), + SadMxNParam(32, 16, &vpx_sad32x16_vsx), + SadMxNParam(16, 32, &vpx_sad16x32_vsx), + SadMxNParam(16, 16, &vpx_sad16x16_vsx), + SadMxNParam(16, 8, &vpx_sad16x8_vsx), +}; +INSTANTIATE_TEST_CASE_P(VSX, SADTest, ::testing::ValuesIn(vsx_tests)); + +const SadMxNAvgParam avg_vsx_tests[] = { + SadMxNAvgParam(64, 64, &vpx_sad64x64_avg_vsx), + SadMxNAvgParam(64, 32, &vpx_sad64x32_avg_vsx), + SadMxNAvgParam(32, 64, &vpx_sad32x64_avg_vsx), + SadMxNAvgParam(32, 32, &vpx_sad32x32_avg_vsx), + SadMxNAvgParam(32, 16, &vpx_sad32x16_avg_vsx), + SadMxNAvgParam(16, 32, &vpx_sad16x32_avg_vsx), + SadMxNAvgParam(16, 16, &vpx_sad16x16_avg_vsx), + SadMxNAvgParam(16, 8, &vpx_sad16x8_avg_vsx), +}; +INSTANTIATE_TEST_CASE_P(VSX, SADavgTest, ::testing::ValuesIn(avg_vsx_tests)); + +const SadMxNx4Param x4d_vsx_tests[] = { + SadMxNx4Param(64, 64, &vpx_sad64x64x4d_vsx), + SadMxNx4Param(64, 32, &vpx_sad64x32x4d_vsx), + SadMxNx4Param(32, 64, &vpx_sad32x64x4d_vsx), + SadMxNx4Param(32, 32, &vpx_sad32x32x4d_vsx), + SadMxNx4Param(32, 16, &vpx_sad32x16x4d_vsx), + SadMxNx4Param(16, 32, &vpx_sad16x32x4d_vsx), + SadMxNx4Param(16, 16, &vpx_sad16x16x4d_vsx), + SadMxNx4Param(16, 8, &vpx_sad16x8x4d_vsx), +}; +INSTANTIATE_TEST_CASE_P(VSX, SADx4Test, ::testing::ValuesIn(x4d_vsx_tests)); +#endif // HAVE_VSX + +//------------------------------------------------------------------------------ +// Loongson functions +#if HAVE_MMI +const SadMxNParam mmi_tests[] = { + SadMxNParam(64, 64, &vpx_sad64x64_mmi), + SadMxNParam(64, 32, &vpx_sad64x32_mmi), + SadMxNParam(32, 64, &vpx_sad32x64_mmi), + SadMxNParam(32, 32, &vpx_sad32x32_mmi), + SadMxNParam(32, 16, &vpx_sad32x16_mmi), + SadMxNParam(16, 32, &vpx_sad16x32_mmi), + SadMxNParam(16, 16, &vpx_sad16x16_mmi), + SadMxNParam(16, 8, &vpx_sad16x8_mmi), + SadMxNParam(8, 16, &vpx_sad8x16_mmi), + SadMxNParam(8, 8, &vpx_sad8x8_mmi), + SadMxNParam(8, 4, &vpx_sad8x4_mmi), + SadMxNParam(4, 8, &vpx_sad4x8_mmi), + SadMxNParam(4, 4, &vpx_sad4x4_mmi), +}; +INSTANTIATE_TEST_CASE_P(MMI, SADTest, ::testing::ValuesIn(mmi_tests)); + +const SadMxNAvgParam avg_mmi_tests[] = { + SadMxNAvgParam(64, 64, &vpx_sad64x64_avg_mmi), + SadMxNAvgParam(64, 32, &vpx_sad64x32_avg_mmi), + SadMxNAvgParam(32, 64, &vpx_sad32x64_avg_mmi), + SadMxNAvgParam(32, 32, &vpx_sad32x32_avg_mmi), + SadMxNAvgParam(32, 16, &vpx_sad32x16_avg_mmi), + SadMxNAvgParam(16, 32, &vpx_sad16x32_avg_mmi), + SadMxNAvgParam(16, 16, &vpx_sad16x16_avg_mmi), + SadMxNAvgParam(16, 8, &vpx_sad16x8_avg_mmi), + SadMxNAvgParam(8, 16, &vpx_sad8x16_avg_mmi), + SadMxNAvgParam(8, 8, &vpx_sad8x8_avg_mmi), + SadMxNAvgParam(8, 4, &vpx_sad8x4_avg_mmi), + SadMxNAvgParam(4, 8, &vpx_sad4x8_avg_mmi), + SadMxNAvgParam(4, 4, &vpx_sad4x4_avg_mmi), +}; +INSTANTIATE_TEST_CASE_P(MMI, SADavgTest, ::testing::ValuesIn(avg_mmi_tests)); + +const SadMxNx4Param x4d_mmi_tests[] = { + SadMxNx4Param(64, 64, &vpx_sad64x64x4d_mmi), + SadMxNx4Param(64, 32, &vpx_sad64x32x4d_mmi), + SadMxNx4Param(32, 64, &vpx_sad32x64x4d_mmi), + SadMxNx4Param(32, 32, &vpx_sad32x32x4d_mmi), + SadMxNx4Param(32, 16, &vpx_sad32x16x4d_mmi), + SadMxNx4Param(16, 32, &vpx_sad16x32x4d_mmi), + SadMxNx4Param(16, 16, &vpx_sad16x16x4d_mmi), + SadMxNx4Param(16, 8, &vpx_sad16x8x4d_mmi), + SadMxNx4Param(8, 16, &vpx_sad8x16x4d_mmi), + SadMxNx4Param(8, 8, &vpx_sad8x8x4d_mmi), + SadMxNx4Param(8, 4, &vpx_sad8x4x4d_mmi), + SadMxNx4Param(4, 8, &vpx_sad4x8x4d_mmi), + SadMxNx4Param(4, 4, &vpx_sad4x4x4d_mmi), +}; +INSTANTIATE_TEST_CASE_P(MMI, SADx4Test, ::testing::ValuesIn(x4d_mmi_tests)); +#endif // HAVE_MMI +} // namespace diff --git a/test/set_maps.sh b/test/set_maps.sh new file mode 100755 index 0000000..e7c8d43 --- /dev/null +++ b/test/set_maps.sh @@ -0,0 +1,59 @@ +#!/bin/sh +## +## Copyright (c) 2014 The WebM project authors. All Rights Reserved. +## +## Use of this source code is governed by a BSD-style license +## that can be found in the LICENSE file in the root of the source +## tree. An additional intellectual property rights grant can be found +## in the file PATENTS. All contributing project authors may +## be found in the AUTHORS file in the root of the source tree. +## +## This file tests the libvpx set_maps example. To add new tests to this file, +## do the following: +## 1. Write a shell function (this is your test). +## 2. Add the function to set_maps_tests (on a new line). +## +. $(dirname $0)/tools_common.sh + +# Environment check: $YUV_RAW_INPUT is required, and set_maps must exist in +# $LIBVPX_BIN_PATH. +set_maps_verify_environment() { + if [ ! -e "${YUV_RAW_INPUT}" ]; then + echo "Libvpx test data must exist in LIBVPX_TEST_DATA_PATH." + return 1 + fi + if [ -z "$(vpx_tool_path set_maps)" ]; then + elog "set_maps not found. It must exist in LIBVPX_BIN_PATH or its parent." + return 1 + fi +} + +# Runs set_maps using the codec specified by $1. +set_maps() { + local encoder="$(vpx_tool_path set_maps)" + local codec="$1" + local output_file="${VPX_TEST_OUTPUT_DIR}/set_maps_${codec}.ivf" + + eval "${VPX_TEST_PREFIX}" "${encoder}" "${codec}" "${YUV_RAW_INPUT_WIDTH}" \ + "${YUV_RAW_INPUT_HEIGHT}" "${YUV_RAW_INPUT}" "${output_file}" \ + ${devnull} + + [ -e "${output_file}" ] || return 1 +} + +set_maps_vp8() { + if [ "$(vp8_encode_available)" = "yes" ]; then + set_maps vp8 || return 1 + fi +} + +set_maps_vp9() { + if [ "$(vp9_encode_available)" = "yes" ]; then + set_maps vp9 || return 1 + fi +} + +set_maps_tests="set_maps_vp8 + set_maps_vp9" + +run_tests set_maps_verify_environment "${set_maps_tests}" diff --git a/test/set_roi.cc b/test/set_roi.cc new file mode 100644 index 0000000..f639547 --- /dev/null +++ b/test/set_roi.cc @@ -0,0 +1,166 @@ +/* + * Copyright (c) 2012 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include +#include +#include +#include +#include + +#include "third_party/googletest/src/include/gtest/gtest.h" +#include "test/acm_random.h" +#include "vp8/encoder/onyx_int.h" +#include "vpx/vpx_integer.h" +#include "vpx_mem/vpx_mem.h" + +using libvpx_test::ACMRandom; + +namespace { + +TEST(VP8RoiMapTest, ParameterCheck) { + ACMRandom rnd(ACMRandom::DeterministicSeed()); + int delta_q[MAX_MB_SEGMENTS] = { -2, -25, 0, 31 }; + int delta_lf[MAX_MB_SEGMENTS] = { -2, -25, 0, 31 }; + unsigned int threshold[MAX_MB_SEGMENTS] = { 0, 100, 200, 300 }; + + const int internalq_trans[] = { + 0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 15, 17, 18, 19, + 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 35, 37, 39, 41, + 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 64, 67, 70, 73, 76, 79, + 82, 85, 88, 91, 94, 97, 100, 103, 106, 109, 112, 115, 118, 121, 124, 127, + }; + + // Initialize elements of cpi with valid defaults. + VP8_COMP cpi; + cpi.mb.e_mbd.mb_segement_abs_delta = SEGMENT_DELTADATA; + cpi.cyclic_refresh_mode_enabled = 0; + cpi.mb.e_mbd.segmentation_enabled = 0; + cpi.mb.e_mbd.update_mb_segmentation_map = 0; + cpi.mb.e_mbd.update_mb_segmentation_data = 0; + cpi.common.mb_rows = 240 >> 4; + cpi.common.mb_cols = 320 >> 4; + const int mbs = (cpi.common.mb_rows * cpi.common.mb_cols); + memset(cpi.segment_feature_data, 0, sizeof(cpi.segment_feature_data)); + + // Segment map + cpi.segmentation_map = reinterpret_cast(vpx_calloc(mbs, 1)); + + // Allocate memory for the source memory map. + unsigned char *roi_map = + reinterpret_cast(vpx_calloc(mbs, 1)); + memset(&roi_map[mbs >> 2], 1, (mbs >> 2)); + memset(&roi_map[mbs >> 1], 2, (mbs >> 2)); + memset(&roi_map[mbs - (mbs >> 2)], 3, (mbs >> 2)); + + // Do a test call with valid parameters. + int roi_retval = + vp8_set_roimap(&cpi, roi_map, cpi.common.mb_rows, cpi.common.mb_cols, + delta_q, delta_lf, threshold); + EXPECT_EQ(0, roi_retval) + << "vp8_set_roimap roi failed with default test parameters"; + + // Check that the values in the cpi structure get set as expected. + if (roi_retval == 0) { + // Check that the segment map got set. + const int mapcompare = memcmp(roi_map, cpi.segmentation_map, mbs); + EXPECT_EQ(0, mapcompare) << "segment map error"; + + // Check the q deltas (note the need to translate into + // the interanl range of 0-127. + for (int i = 0; i < MAX_MB_SEGMENTS; ++i) { + const int transq = internalq_trans[abs(delta_q[i])]; + if (abs(cpi.segment_feature_data[MB_LVL_ALT_Q][i]) != transq) { + EXPECT_EQ(transq, cpi.segment_feature_data[MB_LVL_ALT_Q][i]) + << "segment delta_q error"; + break; + } + } + + // Check the loop filter deltas + for (int i = 0; i < MAX_MB_SEGMENTS; ++i) { + if (cpi.segment_feature_data[MB_LVL_ALT_LF][i] != delta_lf[i]) { + EXPECT_EQ(delta_lf[i], cpi.segment_feature_data[MB_LVL_ALT_LF][i]) + << "segment delta_lf error"; + break; + } + } + + // Check the breakout thresholds + for (int i = 0; i < MAX_MB_SEGMENTS; ++i) { + unsigned int breakout = + static_cast(cpi.segment_encode_breakout[i]); + + if (threshold[i] != breakout) { + EXPECT_EQ(threshold[i], breakout) << "breakout threshold error"; + break; + } + } + + // Segmentation, and segmentation update flages should be set. + EXPECT_EQ(1, cpi.mb.e_mbd.segmentation_enabled) + << "segmentation_enabled error"; + EXPECT_EQ(1, cpi.mb.e_mbd.update_mb_segmentation_map) + << "update_mb_segmentation_map error"; + EXPECT_EQ(1, cpi.mb.e_mbd.update_mb_segmentation_data) + << "update_mb_segmentation_data error"; + + // Try a range of delta q and lf parameters (some legal, some not) + for (int i = 0; i < 1000; ++i) { + int rand_deltas[4]; + int deltas_valid; + rand_deltas[0] = rnd(160) - 80; + rand_deltas[1] = rnd(160) - 80; + rand_deltas[2] = rnd(160) - 80; + rand_deltas[3] = rnd(160) - 80; + + deltas_valid = + ((abs(rand_deltas[0]) <= 63) && (abs(rand_deltas[1]) <= 63) && + (abs(rand_deltas[2]) <= 63) && (abs(rand_deltas[3]) <= 63)) + ? 0 + : -1; + + // Test with random delta q values. + roi_retval = + vp8_set_roimap(&cpi, roi_map, cpi.common.mb_rows, cpi.common.mb_cols, + rand_deltas, delta_lf, threshold); + EXPECT_EQ(deltas_valid, roi_retval) << "dq range check error"; + + // One delta_q error shown at a time + if (deltas_valid != roi_retval) break; + + // Test with random loop filter values. + roi_retval = + vp8_set_roimap(&cpi, roi_map, cpi.common.mb_rows, cpi.common.mb_cols, + delta_q, rand_deltas, threshold); + EXPECT_EQ(deltas_valid, roi_retval) << "dlf range check error"; + + // One delta loop filter error shown at a time + if (deltas_valid != roi_retval) break; + } + + // Test invalid number of rows or colums. + roi_retval = + vp8_set_roimap(&cpi, roi_map, cpi.common.mb_rows + 1, + cpi.common.mb_cols, delta_q, delta_lf, threshold); + EXPECT_EQ(-1, roi_retval) << "MB rows bounds check error"; + + roi_retval = + vp8_set_roimap(&cpi, roi_map, cpi.common.mb_rows, + cpi.common.mb_cols - 1, delta_q, delta_lf, threshold); + EXPECT_EQ(-1, roi_retval) << "MB cols bounds check error"; + } + + // Free allocated memory + if (cpi.segmentation_map) vpx_free(cpi.segmentation_map); + if (roi_map) vpx_free(roi_map); +}; + +} // namespace diff --git a/test/simple_decoder.sh b/test/simple_decoder.sh new file mode 100755 index 0000000..7eeaf71 --- /dev/null +++ b/test/simple_decoder.sh @@ -0,0 +1,61 @@ +#!/bin/sh +## +## Copyright (c) 2014 The WebM project authors. All Rights Reserved. +## +## Use of this source code is governed by a BSD-style license +## that can be found in the LICENSE file in the root of the source +## tree. An additional intellectual property rights grant can be found +## in the file PATENTS. All contributing project authors may +## be found in the AUTHORS file in the root of the source tree. +## +## This file tests the libvpx simple_decoder example code. To add new tests to +## this file, do the following: +## 1. Write a shell function (this is your test). +## 2. Add the function to simple_decoder_tests (on a new line). +## +. $(dirname $0)/tools_common.sh + +# Environment check: Make sure input is available: +# $VP8_IVF_FILE and $VP9_IVF_FILE are required. +simple_decoder_verify_environment() { + if [ ! -e "${VP8_IVF_FILE}" ] || [ ! -e "${VP9_IVF_FILE}" ]; then + echo "Libvpx test data must exist in LIBVPX_TEST_DATA_PATH." + return 1 + fi +} + +# Runs simple_decoder using $1 as input file. $2 is the codec name, and is used +# solely to name the output file. +simple_decoder() { + local decoder="${LIBVPX_BIN_PATH}/simple_decoder${VPX_TEST_EXE_SUFFIX}" + local input_file="$1" + local codec="$2" + local output_file="${VPX_TEST_OUTPUT_DIR}/simple_decoder_${codec}.raw" + + if [ ! -x "${decoder}" ]; then + elog "${decoder} does not exist or is not executable." + return 1 + fi + + eval "${VPX_TEST_PREFIX}" "${decoder}" "${input_file}" "${output_file}" \ + ${devnull} + + [ -e "${output_file}" ] || return 1 +} + +simple_decoder_vp8() { + if [ "$(vp8_decode_available)" = "yes" ]; then + simple_decoder "${VP8_IVF_FILE}" vp8 || return 1 + fi +} + +simple_decoder_vp9() { + if [ "$(vp9_decode_available)" = "yes" ]; then + simple_decoder "${VP9_IVF_FILE}" vp9 || return 1 + fi +} + +simple_decoder_tests="simple_decoder_vp8 + simple_decoder_vp9" + +run_tests simple_decoder_verify_environment "${simple_decoder_tests}" diff --git a/test/simple_encoder.sh b/test/simple_encoder.sh new file mode 100755 index 0000000..ee633ae --- /dev/null +++ b/test/simple_encoder.sh @@ -0,0 +1,59 @@ +#!/bin/sh +## +## Copyright (c) 2014 The WebM project authors. All Rights Reserved. +## +## Use of this source code is governed by a BSD-style license +## that can be found in the LICENSE file in the root of the source +## tree. An additional intellectual property rights grant can be found +## in the file PATENTS. All contributing project authors may +## be found in the AUTHORS file in the root of the source tree. +## +## This file tests the libvpx simple_encoder example. To add new tests to this +## file, do the following: +## 1. Write a shell function (this is your test). +## 2. Add the function to simple_encoder_tests (on a new line). +## +. $(dirname $0)/tools_common.sh + +# Environment check: $YUV_RAW_INPUT is required. +simple_encoder_verify_environment() { + if [ ! -e "${YUV_RAW_INPUT}" ]; then + echo "Libvpx test data must exist in LIBVPX_TEST_DATA_PATH." + return 1 + fi +} + +# Runs simple_encoder using the codec specified by $1 with a frame limit of 100. +simple_encoder() { + local encoder="${LIBVPX_BIN_PATH}/simple_encoder${VPX_TEST_EXE_SUFFIX}" + local codec="$1" + local output_file="${VPX_TEST_OUTPUT_DIR}/simple_encoder_${codec}.ivf" + + if [ ! -x "${encoder}" ]; then + elog "${encoder} does not exist or is not executable." + return 1 + fi + + eval "${VPX_TEST_PREFIX}" "${encoder}" "${codec}" "${YUV_RAW_INPUT_WIDTH}" \ + "${YUV_RAW_INPUT_HEIGHT}" "${YUV_RAW_INPUT}" "${output_file}" 9999 0 100 \ + ${devnull} + + [ -e "${output_file}" ] || return 1 +} + +simple_encoder_vp8() { + if [ "$(vp8_encode_available)" = "yes" ]; then + simple_encoder vp8 || return 1 + fi +} + +simple_encoder_vp9() { + if [ "$(vp9_encode_available)" = "yes" ]; then + simple_encoder vp9 || return 1 + fi +} + +simple_encoder_tests="simple_encoder_vp8 + simple_encoder_vp9" + +run_tests simple_encoder_verify_environment "${simple_encoder_tests}" diff --git a/test/stress.sh b/test/stress.sh new file mode 100755 index 0000000..a899c80 --- /dev/null +++ b/test/stress.sh @@ -0,0 +1,169 @@ +#!/bin/sh +## +## Copyright (c) 2016 The WebM project authors. All Rights Reserved. +## +## Use of this source code is governed by a BSD-style license +## that can be found in the LICENSE file in the root of the source +## tree. An additional intellectual property rights grant can be found +## in the file PATENTS. All contributing project authors may +## be found in the AUTHORS file in the root of the source tree. +## +## This file performs a stress test. It runs (STRESS_ONEPASS_MAX_JOBS, +## default=5) one, (STRESS_TWOPASS_MAX_JOBS, default=5) two pass & +## (STRESS_RT_MAX_JOBS, default=5) encodes and (STRESS__DECODE_MAX_JOBS, +## default=30) decodes in parallel. + +. $(dirname $0)/tools_common.sh + +YUV="${LIBVPX_TEST_DATA_PATH}/niklas_1280_720_30.yuv" +VP8="${LIBVPX_TEST_DATA_PATH}/tos_vp8.webm" +VP9="${LIBVPX_TEST_DATA_PATH}/vp90-2-sintel_1920x818_tile_1x4_fpm_2279kbps.webm" +DATA_URL="http://downloads.webmproject.org/test_data/libvpx/" +SHA1_FILE="$(dirname $0)/test-data.sha1" + +# Set sha1sum to proper sha program (sha1sum, shasum, sha1). This code is +# cribbed from libs.mk. +[ -x "$(which sha1sum)" ] && sha1sum=sha1sum +[ -x "$(which shasum)" ] && sha1sum=shasum +[ -x "$(which sha1)" ] && sha1sum=sha1 + +# Download a file from the url and check its sha1sum. +download_and_check_file() { + # Get the file from the file path. + local readonly root="${1#${LIBVPX_TEST_DATA_PATH}/}" + + # Download the file using curl. Trap to insure non partial file. + (trap "rm -f $1" INT TERM \ + && eval "curl --retry 1 -L -o $1 ${DATA_URL}${root} ${devnull}") + + # Check the sha1 sum of the file. + if [ -n "${sha1sum}" ]; then + set -e + grep ${root} ${SHA1_FILE} \ + | (cd ${LIBVPX_TEST_DATA_PATH}; ${sha1sum} -c); + fi +} + +# Environment check: Make sure input is available. +stress_verify_environment() { + if [ ! -e "${SHA1_FILE}" ] ; then + echo "Missing ${SHA1_FILE}" + return 1 + fi + for file in "${YUV}" "${VP8}" "${VP9}"; do + if [ ! -e "${file}" ] ; then + download_and_check_file "${file}" + fi + done + if [ ! -e "${YUV}" ] || [ ! -e "${VP8}" ] || [ ! -e "${VP9}" ] ; then + elog "Libvpx test data must exist in LIBVPX_TEST_DATA_PATH." + return 1 + fi + if [ -z "$(vpx_tool_path vpxenc)" ]; then + elog "vpxenc not found. It must exist in LIBVPX_BIN_PATH or its parent." + return 1 + fi + if [ -z "$(vpx_tool_path vpxdec)" ]; then + elog "vpxdec not found. It must exist in LIBVPX_BIN_PATH or its parent." + return 1 + fi +} + +# This function runs tests on libvpx that run multiple encodes and decodes +# in parallel in hopes of catching synchronization and/or threading issues. +stress() { + local readonly decoder="$(vpx_tool_path vpxdec)" + local readonly encoder="$(vpx_tool_path vpxenc)" + local readonly codec="$1" + local readonly webm="$2" + local readonly decode_count="$3" + local readonly threads="$4" + local readonly enc_args="$5" + local pids="" + local rt_max_jobs=${STRESS_RT_MAX_JOBS:-5} + local onepass_max_jobs=${STRESS_ONEPASS_MAX_JOBS:-5} + local twopass_max_jobs=${STRESS_TWOPASS_MAX_JOBS:-5} + + # Enable job control, so we can run multiple processes. + set -m + + # Start $onepass_max_jobs encode jobs in parallel. + for i in $(seq ${onepass_max_jobs}); do + bitrate=$(($i * 20 + 300)) + eval "${VPX_TEST_PREFIX}" "${encoder}" "--codec=${codec} -w 1280 -h 720" \ + "${YUV}" "-t ${threads} --limit=150 --test-decode=fatal --passes=1" \ + "--target-bitrate=${bitrate} -o ${VPX_TEST_OUTPUT_DIR}/${i}.1pass.webm" \ + "${enc_args}" ${devnull} & + pids="${pids} $!" + done + + # Start $twopass_max_jobs encode jobs in parallel. + for i in $(seq ${twopass_max_jobs}); do + bitrate=$(($i * 20 + 300)) + eval "${VPX_TEST_PREFIX}" "${encoder}" "--codec=${codec} -w 1280 -h 720" \ + "${YUV}" "-t ${threads} --limit=150 --test-decode=fatal --passes=2" \ + "--target-bitrate=${bitrate} -o ${VPX_TEST_OUTPUT_DIR}/${i}.2pass.webm" \ + "${enc_args}" ${devnull} & + pids="${pids} $!" + done + + # Start $rt_max_jobs rt encode jobs in parallel. + for i in $(seq ${rt_max_jobs}); do + bitrate=$(($i * 20 + 300)) + eval "${VPX_TEST_PREFIX}" "${encoder}" "--codec=${codec} -w 1280 -h 720" \ + "${YUV}" "-t ${threads} --limit=150 --test-decode=fatal " \ + "--target-bitrate=${bitrate} --lag-in-frames=0 --error-resilient=1" \ + "--kf-min-dist=3000 --kf-max-dist=3000 --cpu-used=-6 --static-thresh=1" \ + "--end-usage=cbr --min-q=2 --max-q=56 --undershoot-pct=100" \ + "--overshoot-pct=15 --buf-sz=1000 --buf-initial-sz=500" \ + "--buf-optimal-sz=600 --max-intra-rate=900 --resize-allowed=0" \ + "--drop-frame=0 --passes=1 --rt --noise-sensitivity=4" \ + "-o ${VPX_TEST_OUTPUT_DIR}/${i}.rt.webm" ${devnull} & + pids="${pids} $!" + done + + # Start $decode_count decode jobs in parallel. + for i in $(seq "${decode_count}"); do + eval "${decoder}" "-t ${threads}" "${webm}" "--noblit" ${devnull} & + pids="${pids} $!" + done + + # Wait for all parallel jobs to finish. + fail=0 + for job in "${pids}"; do + wait $job || fail=$(($fail + 1)) + done + return $fail +} + +vp8_stress_test() { + local vp8_max_jobs=${STRESS_VP8_DECODE_MAX_JOBS:-40} + if [ "$(vp8_decode_available)" = "yes" -a \ + "$(vp8_encode_available)" = "yes" ]; then + stress vp8 "${VP8}" "${vp8_max_jobs}" 4 + fi +} + +vp9_stress() { + local vp9_max_jobs=${STRESS_VP9_DECODE_MAX_JOBS:-25} + + if [ "$(vp9_decode_available)" = "yes" -a \ + "$(vp9_encode_available)" = "yes" ]; then + stress vp9 "${VP9}" "${vp9_max_jobs}" "$@" + fi +} + +vp9_stress_test() { + for threads in 4 8 100; do + vp9_stress "$threads" "--row-mt=0" + done +} + +vp9_stress_test_row_mt() { + for threads in 4 8 100; do + vp9_stress "$threads" "--row-mt=1" + done +} + +run_tests stress_verify_environment \ + "vp8_stress_test vp9_stress_test vp9_stress_test_row_mt" diff --git a/test/sum_squares_test.cc b/test/sum_squares_test.cc new file mode 100644 index 0000000..9c407c6 --- /dev/null +++ b/test/sum_squares_test.cc @@ -0,0 +1,119 @@ +/* + * Copyright (c) 2016 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include +#include + +#include "third_party/googletest/src/include/gtest/gtest.h" + +#include "./vpx_config.h" +#include "./vpx_dsp_rtcd.h" +#include "test/acm_random.h" +#include "test/clear_system_state.h" +#include "test/register_state_check.h" +#include "test/util.h" +#include "vpx_ports/mem.h" + +using libvpx_test::ACMRandom; + +namespace { +const int kNumIterations = 10000; + +typedef uint64_t (*SSI16Func)(const int16_t *src, int stride, int size); +typedef std::tr1::tuple SumSquaresParam; + +class SumSquaresTest : public ::testing::TestWithParam { + public: + virtual ~SumSquaresTest() {} + virtual void SetUp() { + ref_func_ = GET_PARAM(0); + tst_func_ = GET_PARAM(1); + } + + virtual void TearDown() { libvpx_test::ClearSystemState(); } + + protected: + SSI16Func ref_func_; + SSI16Func tst_func_; +}; + +TEST_P(SumSquaresTest, OperationCheck) { + ACMRandom rnd(ACMRandom::DeterministicSeed()); + DECLARE_ALIGNED(16, int16_t, src[256 * 256]); + const int msb = 11; // Up to 12 bit input + const int limit = 1 << (msb + 1); + + for (int k = 0; k < kNumIterations; k++) { + const int size = 4 << rnd(6); // Up to 128x128 + int stride = 4 << rnd(7); // Up to 256 stride + while (stride < size) { // Make sure it's valid + stride = 4 << rnd(7); + } + + for (int i = 0; i < size; ++i) { + for (int j = 0; j < size; ++j) { + src[i * stride + j] = rnd(2) ? rnd(limit) : -rnd(limit); + } + } + + const uint64_t res_ref = ref_func_(src, stride, size); + uint64_t res_tst; + ASM_REGISTER_STATE_CHECK(res_tst = tst_func_(src, stride, size)); + + ASSERT_EQ(res_ref, res_tst) << "Error: Sum Squares Test" + << " C output does not match optimized output."; + } +} + +TEST_P(SumSquaresTest, ExtremeValues) { + ACMRandom rnd(ACMRandom::DeterministicSeed()); + DECLARE_ALIGNED(16, int16_t, src[256 * 256]); + const int msb = 11; // Up to 12 bit input + const int limit = 1 << (msb + 1); + + for (int k = 0; k < kNumIterations; k++) { + const int size = 4 << rnd(6); // Up to 128x128 + int stride = 4 << rnd(7); // Up to 256 stride + while (stride < size) { // Make sure it's valid + stride = 4 << rnd(7); + } + + const int val = rnd(2) ? limit - 1 : -(limit - 1); + for (int i = 0; i < size; ++i) { + for (int j = 0; j < size; ++j) { + src[i * stride + j] = val; + } + } + + const uint64_t res_ref = ref_func_(src, stride, size); + uint64_t res_tst; + ASM_REGISTER_STATE_CHECK(res_tst = tst_func_(src, stride, size)); + + ASSERT_EQ(res_ref, res_tst) << "Error: Sum Squares Test" + << " C output does not match optimized output."; + } +} + +using std::tr1::make_tuple; + +#if HAVE_SSE2 +INSTANTIATE_TEST_CASE_P( + SSE2, SumSquaresTest, + ::testing::Values(make_tuple(&vpx_sum_squares_2d_i16_c, + &vpx_sum_squares_2d_i16_sse2))); +#endif // HAVE_SSE2 + +#if HAVE_MSA +INSTANTIATE_TEST_CASE_P(MSA, SumSquaresTest, ::testing::Values(make_tuple( + &vpx_sum_squares_2d_i16_c, + &vpx_sum_squares_2d_i16_msa))); +#endif // HAVE_MSA +} // namespace diff --git a/test/superframe_test.cc b/test/superframe_test.cc new file mode 100644 index 0000000..421dfcc --- /dev/null +++ b/test/superframe_test.cc @@ -0,0 +1,100 @@ +/* + * Copyright (c) 2012 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ +#include +#include "third_party/googletest/src/include/gtest/gtest.h" +#include "test/codec_factory.h" +#include "test/encode_test_driver.h" +#include "test/i420_video_source.h" +#include "test/util.h" + +namespace { + +const int kTestMode = 0; + +typedef std::tr1::tuple SuperframeTestParam; + +class SuperframeTest + : public ::libvpx_test::EncoderTest, + public ::libvpx_test::CodecTestWithParam { + protected: + SuperframeTest() + : EncoderTest(GET_PARAM(0)), modified_buf_(NULL), last_sf_pts_(0) {} + virtual ~SuperframeTest() {} + + virtual void SetUp() { + InitializeConfig(); + const SuperframeTestParam input = GET_PARAM(1); + const libvpx_test::TestMode mode = std::tr1::get(input); + SetMode(mode); + sf_count_ = 0; + sf_count_max_ = INT_MAX; + } + + virtual void TearDown() { delete[] modified_buf_; } + + virtual void PreEncodeFrameHook(libvpx_test::VideoSource *video, + libvpx_test::Encoder *encoder) { + if (video->frame() == 1) { + encoder->Control(VP8E_SET_ENABLEAUTOALTREF, 1); + } + } + + virtual const vpx_codec_cx_pkt_t *MutateEncoderOutputHook( + const vpx_codec_cx_pkt_t *pkt) { + if (pkt->kind != VPX_CODEC_CX_FRAME_PKT) return pkt; + + const uint8_t *buffer = reinterpret_cast(pkt->data.frame.buf); + const uint8_t marker = buffer[pkt->data.frame.sz - 1]; + const int frames = (marker & 0x7) + 1; + const int mag = ((marker >> 3) & 3) + 1; + const unsigned int index_sz = 2 + mag * frames; + if ((marker & 0xe0) == 0xc0 && pkt->data.frame.sz >= index_sz && + buffer[pkt->data.frame.sz - index_sz] == marker) { + // frame is a superframe. strip off the index. + if (modified_buf_) delete[] modified_buf_; + modified_buf_ = new uint8_t[pkt->data.frame.sz - index_sz]; + memcpy(modified_buf_, pkt->data.frame.buf, pkt->data.frame.sz - index_sz); + modified_pkt_ = *pkt; + modified_pkt_.data.frame.buf = modified_buf_; + modified_pkt_.data.frame.sz -= index_sz; + + sf_count_++; + last_sf_pts_ = pkt->data.frame.pts; + return &modified_pkt_; + } + + // Make sure we do a few frames after the last SF + abort_ |= + sf_count_ > sf_count_max_ && pkt->data.frame.pts - last_sf_pts_ >= 5; + return pkt; + } + + int sf_count_; + int sf_count_max_; + vpx_codec_cx_pkt_t modified_pkt_; + uint8_t *modified_buf_; + vpx_codec_pts_t last_sf_pts_; +}; + +TEST_P(SuperframeTest, TestSuperframeIndexIsOptional) { + sf_count_max_ = 0; // early exit on successful test. + cfg_.g_lag_in_frames = 25; + + ::libvpx_test::I420VideoSource video("hantro_collage_w352h288.yuv", 352, 288, + 30, 1, 0, 40); + ASSERT_NO_FATAL_FAILURE(RunLoop(&video)); + EXPECT_EQ(sf_count_, 1); +} + +VP9_INSTANTIATE_TEST_CASE( + SuperframeTest, + ::testing::Combine(::testing::Values(::libvpx_test::kTwoPassGood), + ::testing::Values(0))); +} // namespace diff --git a/test/svc_test.cc b/test/svc_test.cc new file mode 100644 index 0000000..482d9ff --- /dev/null +++ b/test/svc_test.cc @@ -0,0 +1,789 @@ +/* + * Copyright (c) 2013 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include "third_party/googletest/src/include/gtest/gtest.h" +#include "test/codec_factory.h" +#include "test/decode_test_driver.h" +#include "test/i420_video_source.h" + +#include "vp9/decoder/vp9_decoder.h" + +#include "vpx/svc_context.h" +#include "vpx/vp8cx.h" +#include "vpx/vpx_encoder.h" + +namespace { + +using libvpx_test::CodecFactory; +using libvpx_test::Decoder; +using libvpx_test::DxDataIterator; +using libvpx_test::VP9CodecFactory; + +class SvcTest : public ::testing::Test { + protected: + static const uint32_t kWidth = 352; + static const uint32_t kHeight = 288; + + SvcTest() + : codec_iface_(0), test_file_name_("hantro_collage_w352h288.yuv"), + codec_initialized_(false), decoder_(0) { + memset(&svc_, 0, sizeof(svc_)); + memset(&codec_, 0, sizeof(codec_)); + memset(&codec_enc_, 0, sizeof(codec_enc_)); + } + + virtual ~SvcTest() {} + + virtual void SetUp() { + svc_.log_level = SVC_LOG_DEBUG; + svc_.log_print = 0; + + codec_iface_ = vpx_codec_vp9_cx(); + const vpx_codec_err_t res = + vpx_codec_enc_config_default(codec_iface_, &codec_enc_, 0); + EXPECT_EQ(VPX_CODEC_OK, res); + + codec_enc_.g_w = kWidth; + codec_enc_.g_h = kHeight; + codec_enc_.g_timebase.num = 1; + codec_enc_.g_timebase.den = 60; + codec_enc_.kf_min_dist = 100; + codec_enc_.kf_max_dist = 100; + + vpx_codec_dec_cfg_t dec_cfg = vpx_codec_dec_cfg_t(); + VP9CodecFactory codec_factory; + decoder_ = codec_factory.CreateDecoder(dec_cfg, 0); + + tile_columns_ = 0; + tile_rows_ = 0; + } + + virtual void TearDown() { + ReleaseEncoder(); + delete (decoder_); + } + + void InitializeEncoder() { + const vpx_codec_err_t res = + vpx_svc_init(&svc_, &codec_, vpx_codec_vp9_cx(), &codec_enc_); + EXPECT_EQ(VPX_CODEC_OK, res); + vpx_codec_control(&codec_, VP8E_SET_CPUUSED, 4); // Make the test faster + vpx_codec_control(&codec_, VP9E_SET_TILE_COLUMNS, tile_columns_); + vpx_codec_control(&codec_, VP9E_SET_TILE_ROWS, tile_rows_); + codec_initialized_ = true; + } + + void ReleaseEncoder() { + vpx_svc_release(&svc_); + if (codec_initialized_) vpx_codec_destroy(&codec_); + codec_initialized_ = false; + } + + void GetStatsData(std::string *const stats_buf) { + vpx_codec_iter_t iter = NULL; + const vpx_codec_cx_pkt_t *cx_pkt; + + while ((cx_pkt = vpx_codec_get_cx_data(&codec_, &iter)) != NULL) { + if (cx_pkt->kind == VPX_CODEC_STATS_PKT) { + EXPECT_GT(cx_pkt->data.twopass_stats.sz, 0U); + ASSERT_TRUE(cx_pkt->data.twopass_stats.buf != NULL); + stats_buf->append(static_cast(cx_pkt->data.twopass_stats.buf), + cx_pkt->data.twopass_stats.sz); + } + } + } + + void Pass1EncodeNFrames(const int n, const int layers, + std::string *const stats_buf) { + vpx_codec_err_t res; + + ASSERT_GT(n, 0); + ASSERT_GT(layers, 0); + svc_.spatial_layers = layers; + codec_enc_.g_pass = VPX_RC_FIRST_PASS; + InitializeEncoder(); + + libvpx_test::I420VideoSource video( + test_file_name_, codec_enc_.g_w, codec_enc_.g_h, + codec_enc_.g_timebase.den, codec_enc_.g_timebase.num, 0, 30); + video.Begin(); + + for (int i = 0; i < n; ++i) { + res = vpx_svc_encode(&svc_, &codec_, video.img(), video.pts(), + video.duration(), VPX_DL_GOOD_QUALITY); + ASSERT_EQ(VPX_CODEC_OK, res); + GetStatsData(stats_buf); + video.Next(); + } + + // Flush encoder and test EOS packet. + res = vpx_svc_encode(&svc_, &codec_, NULL, video.pts(), video.duration(), + VPX_DL_GOOD_QUALITY); + ASSERT_EQ(VPX_CODEC_OK, res); + GetStatsData(stats_buf); + + ReleaseEncoder(); + } + + void StoreFrames(const size_t max_frame_received, + struct vpx_fixed_buf *const outputs, + size_t *const frame_received) { + vpx_codec_iter_t iter = NULL; + const vpx_codec_cx_pkt_t *cx_pkt; + + while ((cx_pkt = vpx_codec_get_cx_data(&codec_, &iter)) != NULL) { + if (cx_pkt->kind == VPX_CODEC_CX_FRAME_PKT) { + const size_t frame_size = cx_pkt->data.frame.sz; + + EXPECT_GT(frame_size, 0U); + ASSERT_TRUE(cx_pkt->data.frame.buf != NULL); + ASSERT_LT(*frame_received, max_frame_received); + + if (*frame_received == 0) + EXPECT_EQ(1, !!(cx_pkt->data.frame.flags & VPX_FRAME_IS_KEY)); + + outputs[*frame_received].buf = malloc(frame_size + 16); + ASSERT_TRUE(outputs[*frame_received].buf != NULL); + memcpy(outputs[*frame_received].buf, cx_pkt->data.frame.buf, + frame_size); + outputs[*frame_received].sz = frame_size; + ++(*frame_received); + } + } + } + + void Pass2EncodeNFrames(std::string *const stats_buf, const int n, + const int layers, + struct vpx_fixed_buf *const outputs) { + vpx_codec_err_t res; + size_t frame_received = 0; + + ASSERT_TRUE(outputs != NULL); + ASSERT_GT(n, 0); + ASSERT_GT(layers, 0); + svc_.spatial_layers = layers; + codec_enc_.rc_target_bitrate = 500; + if (codec_enc_.g_pass == VPX_RC_LAST_PASS) { + ASSERT_TRUE(stats_buf != NULL); + ASSERT_GT(stats_buf->size(), 0U); + codec_enc_.rc_twopass_stats_in.buf = &(*stats_buf)[0]; + codec_enc_.rc_twopass_stats_in.sz = stats_buf->size(); + } + InitializeEncoder(); + + libvpx_test::I420VideoSource video( + test_file_name_, codec_enc_.g_w, codec_enc_.g_h, + codec_enc_.g_timebase.den, codec_enc_.g_timebase.num, 0, 30); + video.Begin(); + + for (int i = 0; i < n; ++i) { + res = vpx_svc_encode(&svc_, &codec_, video.img(), video.pts(), + video.duration(), VPX_DL_GOOD_QUALITY); + ASSERT_EQ(VPX_CODEC_OK, res); + StoreFrames(n, outputs, &frame_received); + video.Next(); + } + + // Flush encoder. + res = vpx_svc_encode(&svc_, &codec_, NULL, 0, video.duration(), + VPX_DL_GOOD_QUALITY); + EXPECT_EQ(VPX_CODEC_OK, res); + StoreFrames(n, outputs, &frame_received); + + EXPECT_EQ(frame_received, static_cast(n)); + + ReleaseEncoder(); + } + + void DecodeNFrames(const struct vpx_fixed_buf *const inputs, const int n) { + int decoded_frames = 0; + int received_frames = 0; + + ASSERT_TRUE(inputs != NULL); + ASSERT_GT(n, 0); + + for (int i = 0; i < n; ++i) { + ASSERT_TRUE(inputs[i].buf != NULL); + ASSERT_GT(inputs[i].sz, 0U); + const vpx_codec_err_t res_dec = decoder_->DecodeFrame( + static_cast(inputs[i].buf), inputs[i].sz); + ASSERT_EQ(VPX_CODEC_OK, res_dec) << decoder_->DecodeError(); + ++decoded_frames; + + DxDataIterator dec_iter = decoder_->GetDxData(); + while (dec_iter.Next() != NULL) { + ++received_frames; + } + } + EXPECT_EQ(decoded_frames, n); + EXPECT_EQ(received_frames, n); + } + + void DropEnhancementLayers(struct vpx_fixed_buf *const inputs, + const int num_super_frames, + const int remained_spatial_layers) { + ASSERT_TRUE(inputs != NULL); + ASSERT_GT(num_super_frames, 0); + ASSERT_GT(remained_spatial_layers, 0); + + for (int i = 0; i < num_super_frames; ++i) { + uint32_t frame_sizes[8] = { 0 }; + int frame_count = 0; + int frames_found = 0; + int frame; + ASSERT_TRUE(inputs[i].buf != NULL); + ASSERT_GT(inputs[i].sz, 0U); + + vpx_codec_err_t res = vp9_parse_superframe_index( + static_cast(inputs[i].buf), inputs[i].sz, + frame_sizes, &frame_count, NULL, NULL); + ASSERT_EQ(VPX_CODEC_OK, res); + + if (frame_count == 0) { + // There's no super frame but only a single frame. + ASSERT_EQ(1, remained_spatial_layers); + } else { + // Found a super frame. + uint8_t *frame_data = static_cast(inputs[i].buf); + uint8_t *frame_start = frame_data; + for (frame = 0; frame < frame_count; ++frame) { + // Looking for a visible frame. + if (frame_data[0] & 0x02) { + ++frames_found; + if (frames_found == remained_spatial_layers) break; + } + frame_data += frame_sizes[frame]; + } + ASSERT_LT(frame, frame_count) + << "Couldn't find a visible frame. " + << "remained_spatial_layers: " << remained_spatial_layers + << " super_frame: " << i; + if (frame == frame_count - 1) continue; + + frame_data += frame_sizes[frame]; + + // We need to add one more frame for multiple frame contexts. + uint8_t marker = + static_cast(inputs[i].buf)[inputs[i].sz - 1]; + const uint32_t mag = ((marker >> 3) & 0x3) + 1; + const size_t index_sz = 2 + mag * frame_count; + const size_t new_index_sz = 2 + mag * (frame + 1); + marker &= 0x0f8; + marker |= frame; + + // Copy existing frame sizes. + memmove(frame_data + 1, frame_start + inputs[i].sz - index_sz + 1, + new_index_sz - 2); + // New marker. + frame_data[0] = marker; + frame_data += (mag * (frame + 1) + 1); + + *frame_data++ = marker; + inputs[i].sz = frame_data - frame_start; + } + } + } + + void FreeBitstreamBuffers(struct vpx_fixed_buf *const inputs, const int n) { + ASSERT_TRUE(inputs != NULL); + ASSERT_GT(n, 0); + + for (int i = 0; i < n; ++i) { + free(inputs[i].buf); + inputs[i].buf = NULL; + inputs[i].sz = 0; + } + } + + SvcContext svc_; + vpx_codec_ctx_t codec_; + struct vpx_codec_enc_cfg codec_enc_; + vpx_codec_iface_t *codec_iface_; + std::string test_file_name_; + bool codec_initialized_; + Decoder *decoder_; + int tile_columns_; + int tile_rows_; +}; + +TEST_F(SvcTest, SvcInit) { + // test missing parameters + vpx_codec_err_t res = vpx_svc_init(NULL, &codec_, codec_iface_, &codec_enc_); + EXPECT_EQ(VPX_CODEC_INVALID_PARAM, res); + res = vpx_svc_init(&svc_, NULL, codec_iface_, &codec_enc_); + EXPECT_EQ(VPX_CODEC_INVALID_PARAM, res); + res = vpx_svc_init(&svc_, &codec_, NULL, &codec_enc_); + EXPECT_EQ(VPX_CODEC_INVALID_PARAM, res); + + res = vpx_svc_init(&svc_, &codec_, codec_iface_, NULL); + EXPECT_EQ(VPX_CODEC_INVALID_PARAM, res); + + svc_.spatial_layers = 6; // too many layers + res = vpx_svc_init(&svc_, &codec_, codec_iface_, &codec_enc_); + EXPECT_EQ(VPX_CODEC_INVALID_PARAM, res); + + svc_.spatial_layers = 0; // use default layers + InitializeEncoder(); + EXPECT_EQ(VPX_SS_DEFAULT_LAYERS, svc_.spatial_layers); +} + +TEST_F(SvcTest, InitTwoLayers) { + svc_.spatial_layers = 2; + InitializeEncoder(); +} + +TEST_F(SvcTest, InvalidOptions) { + vpx_codec_err_t res = vpx_svc_set_options(&svc_, NULL); + EXPECT_EQ(VPX_CODEC_INVALID_PARAM, res); + + res = vpx_svc_set_options(&svc_, "not-an-option=1"); + EXPECT_EQ(VPX_CODEC_OK, res); + res = vpx_svc_init(&svc_, &codec_, vpx_codec_vp9_cx(), &codec_enc_); + EXPECT_EQ(VPX_CODEC_INVALID_PARAM, res); +} + +TEST_F(SvcTest, SetLayersOption) { + vpx_codec_err_t res = vpx_svc_set_options(&svc_, "spatial-layers=3"); + EXPECT_EQ(VPX_CODEC_OK, res); + InitializeEncoder(); + EXPECT_EQ(3, svc_.spatial_layers); +} + +TEST_F(SvcTest, SetMultipleOptions) { + vpx_codec_err_t res = + vpx_svc_set_options(&svc_, "spatial-layers=2 scale-factors=1/3,2/3"); + EXPECT_EQ(VPX_CODEC_OK, res); + InitializeEncoder(); + EXPECT_EQ(2, svc_.spatial_layers); +} + +TEST_F(SvcTest, SetScaleFactorsOption) { + svc_.spatial_layers = 2; + vpx_codec_err_t res = + vpx_svc_set_options(&svc_, "scale-factors=not-scale-factors"); + EXPECT_EQ(VPX_CODEC_OK, res); + res = vpx_svc_init(&svc_, &codec_, vpx_codec_vp9_cx(), &codec_enc_); + EXPECT_EQ(VPX_CODEC_INVALID_PARAM, res); + + res = vpx_svc_set_options(&svc_, "scale-factors=1/3, 3*3"); + EXPECT_EQ(VPX_CODEC_OK, res); + res = vpx_svc_init(&svc_, &codec_, vpx_codec_vp9_cx(), &codec_enc_); + EXPECT_EQ(VPX_CODEC_INVALID_PARAM, res); + + res = vpx_svc_set_options(&svc_, "scale-factors=1/3"); + EXPECT_EQ(VPX_CODEC_OK, res); + res = vpx_svc_init(&svc_, &codec_, vpx_codec_vp9_cx(), &codec_enc_); + EXPECT_EQ(VPX_CODEC_INVALID_PARAM, res); + + res = vpx_svc_set_options(&svc_, "scale-factors=1/3,2/3"); + EXPECT_EQ(VPX_CODEC_OK, res); + InitializeEncoder(); +} + +TEST_F(SvcTest, SetQuantizersOption) { + svc_.spatial_layers = 2; + vpx_codec_err_t res = vpx_svc_set_options(&svc_, "max-quantizers=nothing"); + EXPECT_EQ(VPX_CODEC_OK, res); + res = vpx_svc_init(&svc_, &codec_, vpx_codec_vp9_cx(), &codec_enc_); + EXPECT_EQ(VPX_CODEC_INVALID_PARAM, res); + + res = vpx_svc_set_options(&svc_, "min-quantizers=nothing"); + EXPECT_EQ(VPX_CODEC_OK, res); + res = vpx_svc_init(&svc_, &codec_, vpx_codec_vp9_cx(), &codec_enc_); + EXPECT_EQ(VPX_CODEC_INVALID_PARAM, res); + + res = vpx_svc_set_options(&svc_, "max-quantizers=40"); + EXPECT_EQ(VPX_CODEC_OK, res); + res = vpx_svc_init(&svc_, &codec_, vpx_codec_vp9_cx(), &codec_enc_); + EXPECT_EQ(VPX_CODEC_INVALID_PARAM, res); + + res = vpx_svc_set_options(&svc_, "min-quantizers=40"); + EXPECT_EQ(VPX_CODEC_OK, res); + res = vpx_svc_init(&svc_, &codec_, vpx_codec_vp9_cx(), &codec_enc_); + EXPECT_EQ(VPX_CODEC_INVALID_PARAM, res); + + res = vpx_svc_set_options(&svc_, "max-quantizers=30,30 min-quantizers=40,40"); + EXPECT_EQ(VPX_CODEC_OK, res); + res = vpx_svc_init(&svc_, &codec_, vpx_codec_vp9_cx(), &codec_enc_); + EXPECT_EQ(VPX_CODEC_INVALID_PARAM, res); + + res = vpx_svc_set_options(&svc_, "max-quantizers=40,40 min-quantizers=30,30"); + InitializeEncoder(); +} + +TEST_F(SvcTest, SetAutoAltRefOption) { + svc_.spatial_layers = 5; + vpx_codec_err_t res = vpx_svc_set_options(&svc_, "auto-alt-refs=none"); + EXPECT_EQ(VPX_CODEC_OK, res); + res = vpx_svc_init(&svc_, &codec_, vpx_codec_vp9_cx(), &codec_enc_); + EXPECT_EQ(VPX_CODEC_INVALID_PARAM, res); + + res = vpx_svc_set_options(&svc_, "auto-alt-refs=1,1,1,1,0"); + EXPECT_EQ(VPX_CODEC_OK, res); + res = vpx_svc_init(&svc_, &codec_, vpx_codec_vp9_cx(), &codec_enc_); + EXPECT_EQ(VPX_CODEC_INVALID_PARAM, res); + + vpx_svc_set_options(&svc_, "auto-alt-refs=0,1,1,1,0"); + InitializeEncoder(); +} + +// Test that decoder can handle an SVC frame as the first frame in a sequence. +TEST_F(SvcTest, OnePassEncodeOneFrame) { + codec_enc_.g_pass = VPX_RC_ONE_PASS; + vpx_fixed_buf output = vpx_fixed_buf(); + Pass2EncodeNFrames(NULL, 1, 2, &output); + DecodeNFrames(&output, 1); + FreeBitstreamBuffers(&output, 1); +} + +TEST_F(SvcTest, OnePassEncodeThreeFrames) { + codec_enc_.g_pass = VPX_RC_ONE_PASS; + codec_enc_.g_lag_in_frames = 0; + vpx_fixed_buf outputs[3]; + memset(&outputs[0], 0, sizeof(outputs)); + Pass2EncodeNFrames(NULL, 3, 2, &outputs[0]); + DecodeNFrames(&outputs[0], 3); + FreeBitstreamBuffers(&outputs[0], 3); +} + +TEST_F(SvcTest, TwoPassEncode10Frames) { + // First pass encode + std::string stats_buf; + Pass1EncodeNFrames(10, 2, &stats_buf); + + // Second pass encode + codec_enc_.g_pass = VPX_RC_LAST_PASS; + vpx_fixed_buf outputs[10]; + memset(&outputs[0], 0, sizeof(outputs)); + Pass2EncodeNFrames(&stats_buf, 10, 2, &outputs[0]); + DecodeNFrames(&outputs[0], 10); + FreeBitstreamBuffers(&outputs[0], 10); +} + +TEST_F(SvcTest, TwoPassEncode20FramesWithAltRef) { + // First pass encode + std::string stats_buf; + Pass1EncodeNFrames(20, 2, &stats_buf); + + // Second pass encode + codec_enc_.g_pass = VPX_RC_LAST_PASS; + vpx_svc_set_options(&svc_, "auto-alt-refs=1,1"); + vpx_fixed_buf outputs[20]; + memset(&outputs[0], 0, sizeof(outputs)); + Pass2EncodeNFrames(&stats_buf, 20, 2, &outputs[0]); + DecodeNFrames(&outputs[0], 20); + FreeBitstreamBuffers(&outputs[0], 20); +} + +TEST_F(SvcTest, TwoPassEncode2SpatialLayersDecodeBaseLayerOnly) { + // First pass encode + std::string stats_buf; + Pass1EncodeNFrames(10, 2, &stats_buf); + + // Second pass encode + codec_enc_.g_pass = VPX_RC_LAST_PASS; + vpx_svc_set_options(&svc_, "auto-alt-refs=1,1"); + vpx_fixed_buf outputs[10]; + memset(&outputs[0], 0, sizeof(outputs)); + Pass2EncodeNFrames(&stats_buf, 10, 2, &outputs[0]); + DropEnhancementLayers(&outputs[0], 10, 1); + DecodeNFrames(&outputs[0], 10); + FreeBitstreamBuffers(&outputs[0], 10); +} + +TEST_F(SvcTest, TwoPassEncode5SpatialLayersDecode54321Layers) { + // First pass encode + std::string stats_buf; + Pass1EncodeNFrames(10, 5, &stats_buf); + + // Second pass encode + codec_enc_.g_pass = VPX_RC_LAST_PASS; + vpx_svc_set_options(&svc_, "auto-alt-refs=0,1,1,1,0"); + vpx_fixed_buf outputs[10]; + memset(&outputs[0], 0, sizeof(outputs)); + Pass2EncodeNFrames(&stats_buf, 10, 5, &outputs[0]); + + DecodeNFrames(&outputs[0], 10); + DropEnhancementLayers(&outputs[0], 10, 4); + DecodeNFrames(&outputs[0], 10); + DropEnhancementLayers(&outputs[0], 10, 3); + DecodeNFrames(&outputs[0], 10); + DropEnhancementLayers(&outputs[0], 10, 2); + DecodeNFrames(&outputs[0], 10); + DropEnhancementLayers(&outputs[0], 10, 1); + DecodeNFrames(&outputs[0], 10); + + FreeBitstreamBuffers(&outputs[0], 10); +} + +TEST_F(SvcTest, TwoPassEncode2SNRLayers) { + // First pass encode + std::string stats_buf; + vpx_svc_set_options(&svc_, "scale-factors=1/1,1/1"); + Pass1EncodeNFrames(20, 2, &stats_buf); + + // Second pass encode + codec_enc_.g_pass = VPX_RC_LAST_PASS; + vpx_svc_set_options(&svc_, "auto-alt-refs=1,1 scale-factors=1/1,1/1"); + vpx_fixed_buf outputs[20]; + memset(&outputs[0], 0, sizeof(outputs)); + Pass2EncodeNFrames(&stats_buf, 20, 2, &outputs[0]); + DecodeNFrames(&outputs[0], 20); + FreeBitstreamBuffers(&outputs[0], 20); +} + +TEST_F(SvcTest, TwoPassEncode3SNRLayersDecode321Layers) { + // First pass encode + std::string stats_buf; + vpx_svc_set_options(&svc_, "scale-factors=1/1,1/1,1/1"); + Pass1EncodeNFrames(20, 3, &stats_buf); + + // Second pass encode + codec_enc_.g_pass = VPX_RC_LAST_PASS; + vpx_svc_set_options(&svc_, "auto-alt-refs=1,1,1 scale-factors=1/1,1/1,1/1"); + vpx_fixed_buf outputs[20]; + memset(&outputs[0], 0, sizeof(outputs)); + Pass2EncodeNFrames(&stats_buf, 20, 3, &outputs[0]); + DecodeNFrames(&outputs[0], 20); + DropEnhancementLayers(&outputs[0], 20, 2); + DecodeNFrames(&outputs[0], 20); + DropEnhancementLayers(&outputs[0], 20, 1); + DecodeNFrames(&outputs[0], 20); + + FreeBitstreamBuffers(&outputs[0], 20); +} + +TEST_F(SvcTest, SetMultipleFrameContextsOption) { + svc_.spatial_layers = 5; + vpx_codec_err_t res = vpx_svc_set_options(&svc_, "multi-frame-contexts=1"); + EXPECT_EQ(VPX_CODEC_OK, res); + res = vpx_svc_init(&svc_, &codec_, vpx_codec_vp9_cx(), &codec_enc_); + EXPECT_EQ(VPX_CODEC_INVALID_PARAM, res); + + svc_.spatial_layers = 2; + res = vpx_svc_set_options(&svc_, "multi-frame-contexts=1"); + InitializeEncoder(); +} + +TEST_F(SvcTest, TwoPassEncode2SpatialLayersWithMultipleFrameContexts) { + // First pass encode + std::string stats_buf; + Pass1EncodeNFrames(10, 2, &stats_buf); + + // Second pass encode + codec_enc_.g_pass = VPX_RC_LAST_PASS; + codec_enc_.g_error_resilient = 0; + vpx_svc_set_options(&svc_, "auto-alt-refs=1,1 multi-frame-contexts=1"); + vpx_fixed_buf outputs[10]; + memset(&outputs[0], 0, sizeof(outputs)); + Pass2EncodeNFrames(&stats_buf, 10, 2, &outputs[0]); + DecodeNFrames(&outputs[0], 10); + FreeBitstreamBuffers(&outputs[0], 10); +} + +TEST_F(SvcTest, + TwoPassEncode2SpatialLayersWithMultipleFrameContextsDecodeBaselayer) { + // First pass encode + std::string stats_buf; + Pass1EncodeNFrames(10, 2, &stats_buf); + + // Second pass encode + codec_enc_.g_pass = VPX_RC_LAST_PASS; + codec_enc_.g_error_resilient = 0; + vpx_svc_set_options(&svc_, "auto-alt-refs=1,1 multi-frame-contexts=1"); + vpx_fixed_buf outputs[10]; + memset(&outputs[0], 0, sizeof(outputs)); + Pass2EncodeNFrames(&stats_buf, 10, 2, &outputs[0]); + DropEnhancementLayers(&outputs[0], 10, 1); + DecodeNFrames(&outputs[0], 10); + FreeBitstreamBuffers(&outputs[0], 10); +} + +TEST_F(SvcTest, TwoPassEncode2SNRLayersWithMultipleFrameContexts) { + // First pass encode + std::string stats_buf; + vpx_svc_set_options(&svc_, "scale-factors=1/1,1/1"); + Pass1EncodeNFrames(10, 2, &stats_buf); + + // Second pass encode + codec_enc_.g_pass = VPX_RC_LAST_PASS; + codec_enc_.g_error_resilient = 0; + vpx_svc_set_options(&svc_, + "auto-alt-refs=1,1 scale-factors=1/1,1/1 " + "multi-frame-contexts=1"); + vpx_fixed_buf outputs[10]; + memset(&outputs[0], 0, sizeof(outputs)); + Pass2EncodeNFrames(&stats_buf, 10, 2, &outputs[0]); + DecodeNFrames(&outputs[0], 10); + FreeBitstreamBuffers(&outputs[0], 10); +} + +TEST_F(SvcTest, + TwoPassEncode3SNRLayersWithMultipleFrameContextsDecode321Layer) { + // First pass encode + std::string stats_buf; + vpx_svc_set_options(&svc_, "scale-factors=1/1,1/1,1/1"); + Pass1EncodeNFrames(10, 3, &stats_buf); + + // Second pass encode + codec_enc_.g_pass = VPX_RC_LAST_PASS; + codec_enc_.g_error_resilient = 0; + vpx_svc_set_options(&svc_, + "auto-alt-refs=1,1,1 scale-factors=1/1,1/1,1/1 " + "multi-frame-contexts=1"); + vpx_fixed_buf outputs[10]; + memset(&outputs[0], 0, sizeof(outputs)); + Pass2EncodeNFrames(&stats_buf, 10, 3, &outputs[0]); + + DecodeNFrames(&outputs[0], 10); + DropEnhancementLayers(&outputs[0], 10, 2); + DecodeNFrames(&outputs[0], 10); + DropEnhancementLayers(&outputs[0], 10, 1); + DecodeNFrames(&outputs[0], 10); + + FreeBitstreamBuffers(&outputs[0], 10); +} + +TEST_F(SvcTest, TwoPassEncode2TemporalLayers) { + // First pass encode + std::string stats_buf; + vpx_svc_set_options(&svc_, "scale-factors=1/1"); + svc_.temporal_layers = 2; + Pass1EncodeNFrames(10, 1, &stats_buf); + + // Second pass encode + codec_enc_.g_pass = VPX_RC_LAST_PASS; + svc_.temporal_layers = 2; + vpx_svc_set_options(&svc_, "auto-alt-refs=1 scale-factors=1/1"); + vpx_fixed_buf outputs[10]; + memset(&outputs[0], 0, sizeof(outputs)); + Pass2EncodeNFrames(&stats_buf, 10, 1, &outputs[0]); + DecodeNFrames(&outputs[0], 10); + FreeBitstreamBuffers(&outputs[0], 10); +} + +TEST_F(SvcTest, TwoPassEncode2TemporalLayersWithMultipleFrameContexts) { + // First pass encode + std::string stats_buf; + vpx_svc_set_options(&svc_, "scale-factors=1/1"); + svc_.temporal_layers = 2; + Pass1EncodeNFrames(10, 1, &stats_buf); + + // Second pass encode + codec_enc_.g_pass = VPX_RC_LAST_PASS; + svc_.temporal_layers = 2; + codec_enc_.g_error_resilient = 0; + vpx_svc_set_options(&svc_, + "auto-alt-refs=1 scale-factors=1/1 " + "multi-frame-contexts=1"); + vpx_fixed_buf outputs[10]; + memset(&outputs[0], 0, sizeof(outputs)); + Pass2EncodeNFrames(&stats_buf, 10, 1, &outputs[0]); + DecodeNFrames(&outputs[0], 10); + FreeBitstreamBuffers(&outputs[0], 10); +} + +TEST_F(SvcTest, TwoPassEncode2TemporalLayersDecodeBaseLayer) { + // First pass encode + std::string stats_buf; + vpx_svc_set_options(&svc_, "scale-factors=1/1"); + svc_.temporal_layers = 2; + Pass1EncodeNFrames(10, 1, &stats_buf); + + // Second pass encode + codec_enc_.g_pass = VPX_RC_LAST_PASS; + svc_.temporal_layers = 2; + vpx_svc_set_options(&svc_, "auto-alt-refs=1 scale-factors=1/1"); + vpx_fixed_buf outputs[10]; + memset(&outputs[0], 0, sizeof(outputs)); + Pass2EncodeNFrames(&stats_buf, 10, 1, &outputs[0]); + + vpx_fixed_buf base_layer[5]; + for (int i = 0; i < 5; ++i) base_layer[i] = outputs[i * 2]; + + DecodeNFrames(&base_layer[0], 5); + FreeBitstreamBuffers(&outputs[0], 10); +} + +TEST_F(SvcTest, + TwoPassEncode2TemporalLayersWithMultipleFrameContextsDecodeBaseLayer) { + // First pass encode + std::string stats_buf; + vpx_svc_set_options(&svc_, "scale-factors=1/1"); + svc_.temporal_layers = 2; + Pass1EncodeNFrames(10, 1, &stats_buf); + + // Second pass encode + codec_enc_.g_pass = VPX_RC_LAST_PASS; + svc_.temporal_layers = 2; + codec_enc_.g_error_resilient = 0; + vpx_svc_set_options(&svc_, + "auto-alt-refs=1 scale-factors=1/1 " + "multi-frame-contexts=1"); + vpx_fixed_buf outputs[10]; + memset(&outputs[0], 0, sizeof(outputs)); + Pass2EncodeNFrames(&stats_buf, 10, 1, &outputs[0]); + + vpx_fixed_buf base_layer[5]; + for (int i = 0; i < 5; ++i) base_layer[i] = outputs[i * 2]; + + DecodeNFrames(&base_layer[0], 5); + FreeBitstreamBuffers(&outputs[0], 10); +} + +TEST_F(SvcTest, TwoPassEncode2TemporalLayersWithTiles) { + // First pass encode + std::string stats_buf; + vpx_svc_set_options(&svc_, "scale-factors=1/1"); + svc_.temporal_layers = 2; + Pass1EncodeNFrames(10, 1, &stats_buf); + + // Second pass encode + codec_enc_.g_pass = VPX_RC_LAST_PASS; + svc_.temporal_layers = 2; + vpx_svc_set_options(&svc_, "auto-alt-refs=1 scale-factors=1/1"); + codec_enc_.g_w = 704; + codec_enc_.g_h = 144; + tile_columns_ = 1; + tile_rows_ = 1; + vpx_fixed_buf outputs[10]; + memset(&outputs[0], 0, sizeof(outputs)); + Pass2EncodeNFrames(&stats_buf, 10, 1, &outputs[0]); + DecodeNFrames(&outputs[0], 10); + FreeBitstreamBuffers(&outputs[0], 10); +} + +TEST_F(SvcTest, TwoPassEncode2TemporalLayersWithMultipleFrameContextsAndTiles) { + // First pass encode + std::string stats_buf; + vpx_svc_set_options(&svc_, "scale-factors=1/1"); + svc_.temporal_layers = 2; + Pass1EncodeNFrames(10, 1, &stats_buf); + + // Second pass encode + codec_enc_.g_pass = VPX_RC_LAST_PASS; + svc_.temporal_layers = 2; + codec_enc_.g_error_resilient = 0; + codec_enc_.g_w = 704; + codec_enc_.g_h = 144; + tile_columns_ = 1; + tile_rows_ = 1; + vpx_svc_set_options(&svc_, + "auto-alt-refs=1 scale-factors=1/1 " + "multi-frame-contexts=1"); + vpx_fixed_buf outputs[10]; + memset(&outputs[0], 0, sizeof(outputs)); + Pass2EncodeNFrames(&stats_buf, 10, 1, &outputs[0]); + DecodeNFrames(&outputs[0], 10); + FreeBitstreamBuffers(&outputs[0], 10); +} + +} // namespace diff --git a/test/temporal_filter_test.cc b/test/temporal_filter_test.cc new file mode 100644 index 0000000..655a36b --- /dev/null +++ b/test/temporal_filter_test.cc @@ -0,0 +1,277 @@ +/* + * Copyright (c) 2016 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include + +#include "third_party/googletest/src/include/gtest/gtest.h" + +#include "./vp9_rtcd.h" +#include "test/acm_random.h" +#include "test/buffer.h" +#include "test/register_state_check.h" +#include "vpx_ports/vpx_timer.h" + +namespace { + +using ::libvpx_test::ACMRandom; +using ::libvpx_test::Buffer; + +typedef void (*TemporalFilterFunc)(const uint8_t *a, unsigned int stride, + const uint8_t *b, unsigned int w, + unsigned int h, int filter_strength, + int filter_weight, unsigned int *accumulator, + uint16_t *count); + +// Calculate the difference between 'a' and 'b', sum in blocks of 9, and apply +// filter based on strength and weight. Store the resulting filter amount in +// 'count' and apply it to 'b' and store it in 'accumulator'. +void reference_filter(const Buffer &a, const Buffer &b, int w, + int h, int filter_strength, int filter_weight, + Buffer *accumulator, + Buffer *count) { + Buffer diff_sq = Buffer(w, h, 0); + ASSERT_TRUE(diff_sq.Init()); + diff_sq.Set(0); + + int rounding = 0; + if (filter_strength > 0) { + rounding = 1 << (filter_strength - 1); + } + + // Calculate all the differences. Avoids re-calculating a bunch of extra + // values. + for (int height = 0; height < h; ++height) { + for (int width = 0; width < w; ++width) { + int diff = a.TopLeftPixel()[height * a.stride() + width] - + b.TopLeftPixel()[height * b.stride() + width]; + diff_sq.TopLeftPixel()[height * diff_sq.stride() + width] = diff * diff; + } + } + + // For any given point, sum the neighboring values and calculate the + // modifier. + for (int height = 0; height < h; ++height) { + for (int width = 0; width < w; ++width) { + // Determine how many values are being summed. + int summed_values = 9; + + if (height == 0 || height == (h - 1)) { + summed_values -= 3; + } + + if (width == 0 || width == (w - 1)) { + if (summed_values == 6) { // corner + summed_values -= 2; + } else { + summed_values -= 3; + } + } + + // Sum the diff_sq of the surrounding values. + int sum = 0; + for (int idy = -1; idy <= 1; ++idy) { + for (int idx = -1; idx <= 1; ++idx) { + const int y = height + idy; + const int x = width + idx; + + // If inside the border. + if (y >= 0 && y < h && x >= 0 && x < w) { + sum += diff_sq.TopLeftPixel()[y * diff_sq.stride() + x]; + } + } + } + + sum *= 3; + sum /= summed_values; + sum += rounding; + sum >>= filter_strength; + + // Clamp the value and invert it. + if (sum > 16) sum = 16; + sum = 16 - sum; + + sum *= filter_weight; + + count->TopLeftPixel()[height * count->stride() + width] += sum; + accumulator->TopLeftPixel()[height * accumulator->stride() + width] += + sum * b.TopLeftPixel()[height * b.stride() + width]; + } + } +} + +class TemporalFilterTest : public ::testing::TestWithParam { + public: + virtual void SetUp() { + filter_func_ = GetParam(); + rnd_.Reset(ACMRandom::DeterministicSeed()); + } + + protected: + TemporalFilterFunc filter_func_; + ACMRandom rnd_; +}; + +TEST_P(TemporalFilterTest, SizeCombinations) { + // Depending on subsampling this function may be called with values of 8 or 16 + // for width and height, in any combination. + Buffer a = Buffer(16, 16, 8); + ASSERT_TRUE(a.Init()); + + const int filter_weight = 2; + const int filter_strength = 6; + + for (int width = 8; width <= 16; width += 8) { + for (int height = 8; height <= 16; height += 8) { + // The second buffer must not have any border. + Buffer b = Buffer(width, height, 0); + ASSERT_TRUE(b.Init()); + Buffer accum_ref = Buffer(width, height, 0); + ASSERT_TRUE(accum_ref.Init()); + Buffer accum_chk = Buffer(width, height, 0); + ASSERT_TRUE(accum_chk.Init()); + Buffer count_ref = Buffer(width, height, 0); + ASSERT_TRUE(count_ref.Init()); + Buffer count_chk = Buffer(width, height, 0); + ASSERT_TRUE(count_chk.Init()); + + // The difference between the buffers must be small to pass the threshold + // to apply the filter. + a.Set(&rnd_, 0, 7); + b.Set(&rnd_, 0, 7); + + accum_ref.Set(rnd_.Rand8()); + accum_chk.CopyFrom(accum_ref); + count_ref.Set(rnd_.Rand8()); + count_chk.CopyFrom(count_ref); + reference_filter(a, b, width, height, filter_strength, filter_weight, + &accum_ref, &count_ref); + ASM_REGISTER_STATE_CHECK( + filter_func_(a.TopLeftPixel(), a.stride(), b.TopLeftPixel(), width, + height, filter_strength, filter_weight, + accum_chk.TopLeftPixel(), count_chk.TopLeftPixel())); + EXPECT_TRUE(accum_chk.CheckValues(accum_ref)); + EXPECT_TRUE(count_chk.CheckValues(count_ref)); + if (HasFailure()) { + printf("Width: %d Height: %d\n", width, height); + count_chk.PrintDifference(count_ref); + accum_chk.PrintDifference(accum_ref); + return; + } + } + } +} + +TEST_P(TemporalFilterTest, CompareReferenceRandom) { + for (int width = 8; width <= 16; width += 8) { + for (int height = 8; height <= 16; height += 8) { + Buffer a = Buffer(width, height, 8); + ASSERT_TRUE(a.Init()); + // The second buffer must not have any border. + Buffer b = Buffer(width, height, 0); + ASSERT_TRUE(b.Init()); + Buffer accum_ref = Buffer(width, height, 0); + ASSERT_TRUE(accum_ref.Init()); + Buffer accum_chk = Buffer(width, height, 0); + ASSERT_TRUE(accum_chk.Init()); + Buffer count_ref = Buffer(width, height, 0); + ASSERT_TRUE(count_ref.Init()); + Buffer count_chk = Buffer(width, height, 0); + ASSERT_TRUE(count_chk.Init()); + + for (int filter_strength = 0; filter_strength <= 6; ++filter_strength) { + for (int filter_weight = 0; filter_weight <= 2; ++filter_weight) { + for (int repeat = 0; repeat < 100; ++repeat) { + if (repeat < 50) { + a.Set(&rnd_, 0, 7); + b.Set(&rnd_, 0, 7); + } else { + // Check large (but close) values as well. + a.Set(&rnd_, std::numeric_limits::max() - 7, + std::numeric_limits::max()); + b.Set(&rnd_, std::numeric_limits::max() - 7, + std::numeric_limits::max()); + } + + accum_ref.Set(rnd_.Rand8()); + accum_chk.CopyFrom(accum_ref); + count_ref.Set(rnd_.Rand8()); + count_chk.CopyFrom(count_ref); + reference_filter(a, b, width, height, filter_strength, + filter_weight, &accum_ref, &count_ref); + ASM_REGISTER_STATE_CHECK(filter_func_( + a.TopLeftPixel(), a.stride(), b.TopLeftPixel(), width, height, + filter_strength, filter_weight, accum_chk.TopLeftPixel(), + count_chk.TopLeftPixel())); + EXPECT_TRUE(accum_chk.CheckValues(accum_ref)); + EXPECT_TRUE(count_chk.CheckValues(count_ref)); + if (HasFailure()) { + printf("Weight: %d Strength: %d\n", filter_weight, + filter_strength); + count_chk.PrintDifference(count_ref); + accum_chk.PrintDifference(accum_ref); + return; + } + } + } + } + } + } +} + +TEST_P(TemporalFilterTest, DISABLED_Speed) { + Buffer a = Buffer(16, 16, 8); + ASSERT_TRUE(a.Init()); + + const int filter_weight = 2; + const int filter_strength = 6; + + for (int width = 8; width <= 16; width += 8) { + for (int height = 8; height <= 16; height += 8) { + // The second buffer must not have any border. + Buffer b = Buffer(width, height, 0); + ASSERT_TRUE(b.Init()); + Buffer accum_ref = Buffer(width, height, 0); + ASSERT_TRUE(accum_ref.Init()); + Buffer accum_chk = Buffer(width, height, 0); + ASSERT_TRUE(accum_chk.Init()); + Buffer count_ref = Buffer(width, height, 0); + ASSERT_TRUE(count_ref.Init()); + Buffer count_chk = Buffer(width, height, 0); + ASSERT_TRUE(count_chk.Init()); + + a.Set(&rnd_, 0, 7); + b.Set(&rnd_, 0, 7); + + accum_chk.Set(0); + count_chk.Set(0); + + vpx_usec_timer timer; + vpx_usec_timer_start(&timer); + for (int i = 0; i < 10000; ++i) { + filter_func_(a.TopLeftPixel(), a.stride(), b.TopLeftPixel(), width, + height, filter_strength, filter_weight, + accum_chk.TopLeftPixel(), count_chk.TopLeftPixel()); + } + vpx_usec_timer_mark(&timer); + const int elapsed_time = static_cast(vpx_usec_timer_elapsed(&timer)); + printf("Temporal filter %dx%d time: %5d us\n", width, height, + elapsed_time); + } + } +} + +INSTANTIATE_TEST_CASE_P(C, TemporalFilterTest, + ::testing::Values(&vp9_temporal_filter_apply_c)); + +#if HAVE_SSE4_1 +INSTANTIATE_TEST_CASE_P(SSE4_1, TemporalFilterTest, + ::testing::Values(&vp9_temporal_filter_apply_sse4_1)); +#endif // HAVE_SSE4_1 +} // namespace diff --git a/test/test-data.mk b/test/test-data.mk new file mode 100644 index 0000000..f405e4e --- /dev/null +++ b/test/test-data.mk @@ -0,0 +1,882 @@ +LIBVPX_TEST_SRCS-yes += test-data.mk + +# Encoder test source +LIBVPX_TEST_DATA-$(CONFIG_ENCODERS) += hantro_collage_w352h288.yuv +LIBVPX_TEST_DATA-$(CONFIG_ENCODERS) += hantro_odd.yuv + +LIBVPX_TEST_DATA-$(CONFIG_ENCODERS) += park_joy_90p_10_420.y4m +LIBVPX_TEST_DATA-$(CONFIG_ENCODERS) += park_joy_90p_10_422.y4m +LIBVPX_TEST_DATA-$(CONFIG_ENCODERS) += park_joy_90p_10_444.y4m +LIBVPX_TEST_DATA-$(CONFIG_ENCODERS) += park_joy_90p_10_440.yuv +LIBVPX_TEST_DATA-$(CONFIG_ENCODERS) += park_joy_90p_12_420.y4m +LIBVPX_TEST_DATA-$(CONFIG_ENCODERS) += park_joy_90p_12_422.y4m +LIBVPX_TEST_DATA-$(CONFIG_ENCODERS) += park_joy_90p_12_444.y4m +LIBVPX_TEST_DATA-$(CONFIG_ENCODERS) += park_joy_90p_12_440.yuv +LIBVPX_TEST_DATA-$(CONFIG_ENCODERS) += park_joy_90p_8_420_a10-1.y4m +LIBVPX_TEST_DATA-$(CONFIG_ENCODERS) += park_joy_90p_8_420.y4m +LIBVPX_TEST_DATA-$(CONFIG_ENCODERS) += park_joy_90p_8_422.y4m +LIBVPX_TEST_DATA-$(CONFIG_ENCODERS) += park_joy_90p_8_444.y4m +LIBVPX_TEST_DATA-$(CONFIG_ENCODERS) += park_joy_90p_8_440.yuv + +LIBVPX_TEST_DATA-$(CONFIG_VP9_ENCODER) += desktop_credits.y4m +LIBVPX_TEST_DATA-$(CONFIG_VP9_ENCODER) += niklas_1280_720_30.y4m +LIBVPX_TEST_DATA-$(CONFIG_VP9_ENCODER) += noisy_clip_640_360.y4m +LIBVPX_TEST_DATA-$(CONFIG_VP9_ENCODER) += rush_hour_444.y4m +LIBVPX_TEST_DATA-$(CONFIG_VP9_ENCODER) += screendata.y4m +LIBVPX_TEST_DATA-$(CONFIG_VP9_ENCODER) += niklas_640_480_30.yuv + +# Test vectors +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-00-comprehensive-001.ivf +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-00-comprehensive-001.ivf.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-00-comprehensive-002.ivf +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-00-comprehensive-002.ivf.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-00-comprehensive-003.ivf +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-00-comprehensive-003.ivf.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-00-comprehensive-004.ivf +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-00-comprehensive-004.ivf.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-00-comprehensive-005.ivf +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-00-comprehensive-005.ivf.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-00-comprehensive-006.ivf +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-00-comprehensive-006.ivf.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-00-comprehensive-007.ivf +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-00-comprehensive-007.ivf.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-00-comprehensive-008.ivf +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-00-comprehensive-008.ivf.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-00-comprehensive-009.ivf +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-00-comprehensive-009.ivf.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-00-comprehensive-010.ivf +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-00-comprehensive-010.ivf.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-00-comprehensive-011.ivf +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-00-comprehensive-011.ivf.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-00-comprehensive-012.ivf +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-00-comprehensive-012.ivf.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-00-comprehensive-013.ivf +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-00-comprehensive-013.ivf.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-00-comprehensive-014.ivf +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-00-comprehensive-014.ivf.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-00-comprehensive-015.ivf +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-00-comprehensive-015.ivf.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-00-comprehensive-016.ivf +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-00-comprehensive-016.ivf.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-00-comprehensive-017.ivf +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-00-comprehensive-017.ivf.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-00-comprehensive-018.ivf +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-00-comprehensive-018.ivf.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-01-intra-1400.ivf +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-01-intra-1400.ivf.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-01-intra-1411.ivf +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-01-intra-1411.ivf.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-01-intra-1416.ivf +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-01-intra-1416.ivf.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-01-intra-1417.ivf +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-01-intra-1417.ivf.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-02-inter-1402.ivf +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-02-inter-1402.ivf.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-02-inter-1412.ivf +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-02-inter-1412.ivf.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-02-inter-1418.ivf +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-02-inter-1418.ivf.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-02-inter-1424.ivf +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-02-inter-1424.ivf.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-03-segmentation-01.ivf +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-03-segmentation-01.ivf.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-03-segmentation-02.ivf +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-03-segmentation-02.ivf.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-03-segmentation-03.ivf +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-03-segmentation-03.ivf.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-03-segmentation-04.ivf +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-03-segmentation-04.ivf.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-03-segmentation-1401.ivf +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-03-segmentation-1401.ivf.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-03-segmentation-1403.ivf +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-03-segmentation-1403.ivf.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-03-segmentation-1407.ivf +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-03-segmentation-1407.ivf.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-03-segmentation-1408.ivf +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-03-segmentation-1408.ivf.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-03-segmentation-1409.ivf +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-03-segmentation-1409.ivf.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-03-segmentation-1410.ivf +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-03-segmentation-1410.ivf.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-03-segmentation-1413.ivf +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-03-segmentation-1413.ivf.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-03-segmentation-1414.ivf +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-03-segmentation-1414.ivf.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-03-segmentation-1415.ivf +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-03-segmentation-1415.ivf.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-03-segmentation-1425.ivf +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-03-segmentation-1425.ivf.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-03-segmentation-1426.ivf +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-03-segmentation-1426.ivf.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-03-segmentation-1427.ivf +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-03-segmentation-1427.ivf.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-03-segmentation-1432.ivf +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-03-segmentation-1432.ivf.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-03-segmentation-1435.ivf +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-03-segmentation-1435.ivf.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-03-segmentation-1436.ivf +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-03-segmentation-1436.ivf.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-03-segmentation-1437.ivf +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-03-segmentation-1437.ivf.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-03-segmentation-1441.ivf +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-03-segmentation-1441.ivf.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-03-segmentation-1442.ivf +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-03-segmentation-1442.ivf.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-04-partitions-1404.ivf +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-04-partitions-1404.ivf.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-04-partitions-1405.ivf +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-04-partitions-1405.ivf.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-04-partitions-1406.ivf +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-04-partitions-1406.ivf.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-05-sharpness-1428.ivf +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-05-sharpness-1428.ivf.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-05-sharpness-1429.ivf +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-05-sharpness-1429.ivf.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-05-sharpness-1430.ivf +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-05-sharpness-1430.ivf.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-05-sharpness-1431.ivf +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-05-sharpness-1431.ivf.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-05-sharpness-1433.ivf +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-05-sharpness-1433.ivf.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-05-sharpness-1434.ivf +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-05-sharpness-1434.ivf.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-05-sharpness-1438.ivf +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-05-sharpness-1438.ivf.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-05-sharpness-1439.ivf +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-05-sharpness-1439.ivf.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-05-sharpness-1440.ivf +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-05-sharpness-1440.ivf.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-05-sharpness-1443.ivf +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-05-sharpness-1443.ivf.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-06-smallsize.ivf +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += vp80-06-smallsize.ivf.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-00.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-00.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-01.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-01.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-02.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-02.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-03.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-03.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-04.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-04.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-05.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-05.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-06.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-06.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-07.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-07.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-08.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-08.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-09.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-09.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-10.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-10.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-11.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-11.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-12.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-12.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-13.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-13.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-14.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-14.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-15.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-15.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-16.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-16.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-17.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-17.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-18.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-18.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-19.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-19.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-20.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-20.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-21.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-21.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-22.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-22.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-23.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-23.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-24.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-24.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-25.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-25.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-26.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-26.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-27.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-27.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-28.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-28.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-29.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-29.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-30.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-30.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-31.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-31.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-32.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-32.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-33.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-33.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-34.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-34.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-35.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-35.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-36.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-36.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-37.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-37.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-38.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-38.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-39.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-39.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-40.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-40.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-41.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-41.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-42.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-42.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-43.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-43.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-44.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-44.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-45.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-45.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-46.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-46.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-47.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-47.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-48.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-48.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-49.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-49.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-50.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-50.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-51.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-51.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-52.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-52.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-53.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-53.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-54.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-54.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-55.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-55.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-56.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-56.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-57.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-57.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-58.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-58.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-59.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-59.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-60.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-60.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-61.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-61.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-62.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-62.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-63.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-00-quantizer-63.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-01-sharpness-1.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-01-sharpness-1.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-01-sharpness-2.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-01-sharpness-2.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-01-sharpness-3.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-01-sharpness-3.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-01-sharpness-4.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-01-sharpness-4.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-01-sharpness-5.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-01-sharpness-5.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-01-sharpness-6.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-01-sharpness-6.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-01-sharpness-7.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-01-sharpness-7.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-08x08.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-08x08.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-08x10.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-08x10.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-08x16.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-08x16.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-08x18.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-08x18.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-08x32.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-08x32.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-08x34.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-08x34.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-08x64.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-08x64.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-08x66.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-08x66.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-10x08.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-10x08.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-10x10.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-10x10.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-10x16.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-10x16.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-10x18.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-10x18.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-10x32.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-10x32.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-10x34.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-10x34.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-10x64.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-10x64.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-10x66.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-10x66.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-16x08.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-16x08.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-16x10.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-16x10.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-16x16.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-16x16.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-16x18.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-16x18.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-16x32.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-16x32.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-16x34.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-16x34.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-16x64.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-16x64.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-16x66.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-16x66.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-18x08.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-18x08.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-18x10.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-18x10.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-18x16.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-18x16.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-18x18.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-18x18.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-18x32.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-18x32.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-18x34.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-18x34.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-18x64.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-18x64.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-18x66.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-18x66.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-32x08.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-32x08.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-32x10.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-32x10.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-32x16.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-32x16.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-32x18.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-32x18.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-32x32.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-32x32.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-32x34.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-32x34.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-32x64.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-32x64.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-32x66.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-32x66.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-34x08.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-34x08.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-34x10.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-34x10.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-34x16.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-34x16.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-34x18.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-34x18.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-34x32.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-34x32.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-34x34.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-34x34.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-34x64.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-34x64.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-34x66.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-34x66.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-64x08.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-64x08.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-64x10.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-64x10.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-64x16.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-64x16.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-64x18.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-64x18.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-64x32.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-64x32.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-64x34.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-64x34.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-64x64.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-64x64.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-64x66.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-64x66.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-66x08.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-66x08.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-66x10.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-66x10.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-66x16.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-66x16.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-66x18.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-66x18.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-66x32.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-66x32.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-66x34.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-66x34.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-66x64.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-66x64.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-66x66.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-66x66.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-130x132.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-130x132.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-132x130.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-132x130.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-132x132.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-132x132.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-178x180.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-178x180.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-180x178.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-180x178.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-180x180.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-180x180.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-lf-1920x1080.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-02-size-lf-1920x1080.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-deltaq.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-deltaq.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-196x196.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-196x196.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-196x198.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-196x198.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-196x200.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-196x200.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-196x202.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-196x202.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-196x208.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-196x208.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-196x210.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-196x210.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-196x224.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-196x224.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-196x226.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-196x226.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-198x196.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-198x196.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-198x198.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-198x198.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-198x200.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-198x200.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-198x202.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-198x202.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-198x208.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-198x208.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-198x210.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-198x210.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-198x224.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-198x224.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-198x226.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-198x226.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-200x196.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-200x196.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-200x198.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-200x198.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-200x200.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-200x200.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-200x202.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-200x202.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-200x208.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-200x208.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-200x210.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-200x210.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-200x224.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-200x224.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-200x226.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-200x226.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-202x196.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-202x196.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-202x198.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-202x198.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-202x200.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-202x200.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-202x202.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-202x202.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-202x208.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-202x208.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-202x210.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-202x210.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-202x224.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-202x224.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-202x226.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-202x226.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-208x196.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-208x196.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-208x198.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-208x198.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-208x200.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-208x200.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-208x202.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-208x202.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-208x208.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-208x208.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-208x210.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-208x210.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-208x224.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-208x224.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-208x226.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-208x226.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-210x196.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-210x196.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-210x198.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-210x198.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-210x200.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-210x200.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-210x202.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-210x202.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-210x208.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-210x208.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-210x210.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-210x210.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-210x224.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-210x224.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-210x226.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-210x226.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-224x196.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-224x196.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-224x198.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-224x198.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-224x200.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-224x200.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-224x202.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-224x202.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-224x208.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-224x208.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-224x210.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-224x210.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-224x224.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-224x224.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-224x226.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-224x226.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-226x196.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-226x196.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-226x198.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-226x198.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-226x200.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-226x200.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-226x202.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-226x202.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-226x208.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-226x208.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-226x210.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-226x210.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-226x224.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-226x224.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-226x226.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-226x226.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-352x288.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-03-size-352x288.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-05-resize.ivf +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-05-resize.ivf.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-06-bilinear.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-06-bilinear.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-07-frame_parallel.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-07-frame_parallel.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-07-frame_parallel-1.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-07-frame_parallel-1.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-08-tile-4x1.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-08-tile-4x1.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-08-tile-4x4.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-08-tile-4x4.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-08-tile_1x2.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-08-tile_1x2.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-08-tile_1x2_frame_parallel.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-08-tile_1x2_frame_parallel.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-08-tile_1x4.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-08-tile_1x4.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-08-tile_1x4_frame_parallel.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-08-tile_1x4_frame_parallel.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-08-tile_1x8.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-08-tile_1x8.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-08-tile_1x8_frame_parallel.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-08-tile_1x8_frame_parallel.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-09-aq2.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-09-aq2.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-09-lf_deltas.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-09-lf_deltas.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-09-subpixel-00.ivf +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-09-subpixel-00.ivf.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-10-show-existing-frame.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-10-show-existing-frame.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-10-show-existing-frame2.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-10-show-existing-frame2.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-11-size-351x287.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-11-size-351x287.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-11-size-351x288.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-11-size-351x288.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-11-size-352x287.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-11-size-352x287.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-12-droppable_1.ivf +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-12-droppable_1.ivf.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-12-droppable_2.ivf +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-12-droppable_2.ivf.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-12-droppable_3.ivf +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-12-droppable_3.ivf.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-13-largescaling.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-13-largescaling.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-14-resize-fp-tiles-1-16.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-14-resize-fp-tiles-1-16.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-14-resize-fp-tiles-1-2-4-8-16.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-14-resize-fp-tiles-1-2-4-8-16.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-14-resize-fp-tiles-1-2.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-14-resize-fp-tiles-1-2.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-14-resize-fp-tiles-1-4.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-14-resize-fp-tiles-1-4.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-14-resize-fp-tiles-1-8.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-14-resize-fp-tiles-1-8.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-14-resize-fp-tiles-16-1.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-14-resize-fp-tiles-16-1.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-14-resize-fp-tiles-16-2.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-14-resize-fp-tiles-16-2.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-14-resize-fp-tiles-16-4.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-14-resize-fp-tiles-16-4.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-14-resize-fp-tiles-16-8-4-2-1.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-14-resize-fp-tiles-16-8-4-2-1.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-14-resize-fp-tiles-16-8.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-14-resize-fp-tiles-16-8.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-14-resize-fp-tiles-2-1.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-14-resize-fp-tiles-2-1.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-14-resize-fp-tiles-2-16.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-14-resize-fp-tiles-2-16.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-14-resize-fp-tiles-2-4.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-14-resize-fp-tiles-2-4.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-14-resize-fp-tiles-2-8.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-14-resize-fp-tiles-2-8.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-14-resize-fp-tiles-4-1.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-14-resize-fp-tiles-4-1.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-14-resize-fp-tiles-4-16.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-14-resize-fp-tiles-4-16.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-14-resize-fp-tiles-4-2.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-14-resize-fp-tiles-4-2.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-14-resize-fp-tiles-4-8.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-14-resize-fp-tiles-4-8.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-14-resize-fp-tiles-8-1.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-14-resize-fp-tiles-8-1.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-14-resize-fp-tiles-8-16.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-14-resize-fp-tiles-8-16.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-14-resize-fp-tiles-8-2.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-14-resize-fp-tiles-8-2.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-14-resize-fp-tiles-8-4.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-14-resize-fp-tiles-8-4.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-14-resize-10frames-fp-tiles-1-2-4-8.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-14-resize-10frames-fp-tiles-1-2-4-8.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-14-resize-10frames-fp-tiles-1-2.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-14-resize-10frames-fp-tiles-1-2.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-14-resize-10frames-fp-tiles-1-4.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-14-resize-10frames-fp-tiles-1-4.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-14-resize-10frames-fp-tiles-1-8.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-14-resize-10frames-fp-tiles-1-8.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-14-resize-10frames-fp-tiles-2-1.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-14-resize-10frames-fp-tiles-2-1.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-14-resize-10frames-fp-tiles-2-4.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-14-resize-10frames-fp-tiles-2-4.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-14-resize-10frames-fp-tiles-2-8.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-14-resize-10frames-fp-tiles-2-8.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-14-resize-10frames-fp-tiles-4-1.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-14-resize-10frames-fp-tiles-4-1.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-14-resize-10frames-fp-tiles-4-2.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-14-resize-10frames-fp-tiles-4-2.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-14-resize-10frames-fp-tiles-4-8.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-14-resize-10frames-fp-tiles-4-8.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-14-resize-10frames-fp-tiles-8-1.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-14-resize-10frames-fp-tiles-8-1.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-14-resize-10frames-fp-tiles-8-2.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-14-resize-10frames-fp-tiles-8-2.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-14-resize-10frames-fp-tiles-8-4-2-1.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-14-resize-10frames-fp-tiles-8-4-2-1.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-14-resize-10frames-fp-tiles-8-4.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-14-resize-10frames-fp-tiles-8-4.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-15-segkey.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-15-segkey.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-15-segkey_adpq.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-15-segkey_adpq.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-16-intra-only.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-16-intra-only.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-17-show-existing-frame.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-17-show-existing-frame.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-18-resize.ivf +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-18-resize.ivf.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-19-skip.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-19-skip.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-19-skip-01.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-19-skip-01.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-19-skip-02.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-19-skip-02.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp91-2-04-yuv422.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp91-2-04-yuv422.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp91-2-04-yuv440.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp91-2-04-yuv440.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp91-2-04-yuv444.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp91-2-04-yuv444.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-20-big_superframe-01.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-20-big_superframe-01.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-20-big_superframe-02.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-20-big_superframe-02.webm.md5 +ifeq ($(CONFIG_VP9_HIGHBITDEPTH),yes) +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp92-2-20-10bit-yuv420.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp92-2-20-10bit-yuv420.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp92-2-20-12bit-yuv420.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp92-2-20-12bit-yuv420.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp93-2-20-10bit-yuv422.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp93-2-20-10bit-yuv422.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp93-2-20-12bit-yuv422.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp93-2-20-12bit-yuv422.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp93-2-20-10bit-yuv440.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp93-2-20-10bit-yuv440.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp93-2-20-12bit-yuv440.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp93-2-20-12bit-yuv440.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp93-2-20-10bit-yuv444.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp93-2-20-10bit-yuv444.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp93-2-20-12bit-yuv444.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp93-2-20-12bit-yuv444.webm.md5 +endif # CONFIG_VP9_HIGHBITDEPTH + +# Invalid files for testing libvpx error checking. +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += invalid-bug-1443.ivf +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += invalid-bug-1443.ivf.res +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += invalid-vp80-00-comprehensive-018.ivf.2kf_0x6.ivf +LIBVPX_TEST_DATA-$(CONFIG_VP8_DECODER) += invalid-vp80-00-comprehensive-018.ivf.2kf_0x6.ivf.res +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += invalid-vp90-01-v3.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += invalid-vp90-01-v3.webm.res +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += invalid-vp90-02-v2.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += invalid-vp90-02-v2.webm.res +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += invalid-vp90-03-v3.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += invalid-vp90-03-v3.webm.res +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += invalid-vp90-2-00-quantizer-00.webm.ivf.s5861_r01-05_b6-.v2.ivf +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += invalid-vp90-2-00-quantizer-00.webm.ivf.s5861_r01-05_b6-.v2.ivf.res +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += invalid-vp90-2-00-quantizer-11.webm.ivf.s52984_r01-05_b6-.ivf +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += invalid-vp90-2-00-quantizer-11.webm.ivf.s52984_r01-05_b6-.ivf.res +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += invalid-vp90-2-00-quantizer-11.webm.ivf.s52984_r01-05_b6-z.ivf +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += invalid-vp90-2-00-quantizer-11.webm.ivf.s52984_r01-05_b6-z.ivf.res +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += invalid-vp90-2-00-quantizer-63.ivf.kf_65527x61446.ivf +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += invalid-vp90-2-00-quantizer-63.ivf.kf_65527x61446.ivf.res +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += invalid-vp90-2-03-size-202x210.webm.ivf.s113306_r01-05_b6-.ivf +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += invalid-vp90-2-03-size-202x210.webm.ivf.s113306_r01-05_b6-.ivf.res +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += invalid-vp90-2-03-size-224x196.webm.ivf.s44156_r01-05_b6-.ivf +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += invalid-vp90-2-03-size-224x196.webm.ivf.s44156_r01-05_b6-.ivf.res +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += invalid-vp90-2-05-resize.ivf.s59293_r01-05_b6-.ivf +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += invalid-vp90-2-05-resize.ivf.s59293_r01-05_b6-.ivf.res +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += invalid-vp90-2-08-tile_1x2_frame_parallel.webm.ivf.s47039_r01-05_b6-.ivf +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += invalid-vp90-2-08-tile_1x2_frame_parallel.webm.ivf.s47039_r01-05_b6-.ivf.res +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += invalid-vp90-2-08-tile_1x8_frame_parallel.webm.ivf.s288_r01-05_b6-.ivf +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += invalid-vp90-2-08-tile_1x8_frame_parallel.webm.ivf.s288_r01-05_b6-.ivf.res +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += invalid-vp90-2-08-tile_1x4_frame_parallel_all_key.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += invalid-vp90-2-08-tile_1x4_frame_parallel_all_key.webm.res +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += invalid-vp90-2-09-aq2.webm.ivf.s3984_r01-05_b6-.v2.ivf +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += invalid-vp90-2-09-aq2.webm.ivf.s3984_r01-05_b6-.v2.ivf.res +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += invalid-vp90-2-09-subpixel-00.ivf.s19552_r01-05_b6-.v2.ivf +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += invalid-vp90-2-09-subpixel-00.ivf.s19552_r01-05_b6-.v2.ivf.res +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += invalid-vp90-2-09-subpixel-00.ivf.s20492_r01-05_b6-.v2.ivf +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += invalid-vp90-2-09-subpixel-00.ivf.s20492_r01-05_b6-.v2.ivf.res +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += invalid-vp90-2-10-show-existing-frame.webm.ivf.s180315_r01-05_b6-.ivf +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += invalid-vp90-2-10-show-existing-frame.webm.ivf.s180315_r01-05_b6-.ivf.res +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += invalid-vp90-2-12-droppable_1.ivf.s3676_r01-05_b6-.ivf +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += invalid-vp90-2-12-droppable_1.ivf.s3676_r01-05_b6-.ivf.res +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += invalid-vp90-2-12-droppable_1.ivf.s73804_r01-05_b6-.ivf +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += invalid-vp90-2-12-droppable_1.ivf.s73804_r01-05_b6-.ivf.res +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += invalid-vp90-2-21-resize_inter_320x180_5_3-4.webm.ivf.s45551_r01-05_b6-.ivf +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += invalid-vp90-2-21-resize_inter_320x180_5_3-4.webm.ivf.s45551_r01-05_b6-.ivf.res +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += invalid-vp91-2-mixedrefcsp-444to420.ivf +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += invalid-vp91-2-mixedrefcsp-444to420.ivf.res +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += invalid-vp90-2-07-frame_parallel-1.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += invalid-vp90-2-07-frame_parallel-2.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += invalid-vp90-2-07-frame_parallel-3.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += invalid-crbug-629481.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += invalid-crbug-629481.webm.res +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += invalid-crbug-667044.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += invalid-crbug-667044.webm.res + +ifeq ($(CONFIG_DECODE_PERF_TESTS),yes) +# Encode / Decode test +LIBVPX_TEST_DATA-$(CONFIG_VP9_ENCODER) += niklas_1280_720_30.yuv +# BBB VP9 streams +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-bbb_426x240_tile_1x1_180kbps.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-bbb_640x360_tile_1x2_337kbps.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-bbb_854x480_tile_1x2_651kbps.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-bbb_1280x720_tile_1x4_1310kbps.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-bbb_1920x1080_tile_1x1_2581kbps.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-bbb_1920x1080_tile_1x4_2586kbps.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-bbb_1920x1080_tile_1x4_fpm_2304kbps.webm +# Sintel VP9 streams +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-sintel_426x182_tile_1x1_171kbps.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-sintel_640x272_tile_1x2_318kbps.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-sintel_854x364_tile_1x2_621kbps.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-sintel_1280x546_tile_1x4_1257kbps.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-sintel_1920x818_tile_1x4_fpm_2279kbps.webm +# TOS VP9 streams +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-tos_426x178_tile_1x1_181kbps.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-tos_640x266_tile_1x2_336kbps.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-tos_854x356_tile_1x2_656kbps.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-tos_854x356_tile_1x2_fpm_546kbps.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-tos_1280x534_tile_1x4_1306kbps.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-tos_1280x534_tile_1x4_fpm_952kbps.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-tos_1920x800_tile_1x4_fpm_2335kbps.webm +endif # CONFIG_DECODE_PERF_TESTS + +ifeq ($(CONFIG_ENCODE_PERF_TESTS),yes) +LIBVPX_TEST_DATA-$(CONFIG_VP9_ENCODER) += desktop_640_360_30.yuv +LIBVPX_TEST_DATA-$(CONFIG_VP9_ENCODER) += kirland_640_480_30.yuv +LIBVPX_TEST_DATA-$(CONFIG_VP9_ENCODER) += macmarcomoving_640_480_30.yuv +LIBVPX_TEST_DATA-$(CONFIG_VP9_ENCODER) += macmarcostationary_640_480_30.yuv +LIBVPX_TEST_DATA-$(CONFIG_VP9_ENCODER) += niklas_1280_720_30.yuv +LIBVPX_TEST_DATA-$(CONFIG_VP9_ENCODER) += tacomanarrows_640_480_30.yuv +LIBVPX_TEST_DATA-$(CONFIG_VP9_ENCODER) += tacomasmallcameramovement_640_480_30.yuv +LIBVPX_TEST_DATA-$(CONFIG_VP9_ENCODER) += thaloundeskmtg_640_480_30.yuv +endif # CONFIG_ENCODE_PERF_TESTS + +# sort and remove duplicates +LIBVPX_TEST_DATA-yes := $(sort $(LIBVPX_TEST_DATA-yes)) + +# VP9 dynamic resizing test (decoder) +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-21-resize_inter_320x180_5_1-2.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-21-resize_inter_320x180_5_1-2.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-21-resize_inter_320x180_5_3-4.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-21-resize_inter_320x180_5_3-4.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-21-resize_inter_320x180_7_1-2.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-21-resize_inter_320x180_7_1-2.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-21-resize_inter_320x180_7_3-4.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-21-resize_inter_320x180_7_3-4.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-21-resize_inter_320x240_5_1-2.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-21-resize_inter_320x240_5_1-2.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-21-resize_inter_320x240_5_3-4.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-21-resize_inter_320x240_5_3-4.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-21-resize_inter_320x240_7_1-2.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-21-resize_inter_320x240_7_1-2.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-21-resize_inter_320x240_7_3-4.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-21-resize_inter_320x240_7_3-4.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-21-resize_inter_640x360_5_1-2.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-21-resize_inter_640x360_5_1-2.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-21-resize_inter_640x360_5_3-4.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-21-resize_inter_640x360_5_3-4.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-21-resize_inter_640x360_7_1-2.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-21-resize_inter_640x360_7_1-2.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-21-resize_inter_640x360_7_3-4.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-21-resize_inter_640x360_7_3-4.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-21-resize_inter_640x480_5_1-2.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-21-resize_inter_640x480_5_1-2.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-21-resize_inter_640x480_5_3-4.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-21-resize_inter_640x480_5_3-4.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-21-resize_inter_640x480_7_1-2.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-21-resize_inter_640x480_7_1-2.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-21-resize_inter_640x480_7_3-4.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-21-resize_inter_640x480_7_3-4.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-21-resize_inter_1280x720_5_1-2.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-21-resize_inter_1280x720_5_1-2.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-21-resize_inter_1280x720_5_3-4.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-21-resize_inter_1280x720_5_3-4.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-21-resize_inter_1280x720_7_1-2.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-21-resize_inter_1280x720_7_1-2.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-21-resize_inter_1280x720_7_3-4.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-21-resize_inter_1280x720_7_3-4.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-21-resize_inter_1920x1080_5_1-2.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-21-resize_inter_1920x1080_5_1-2.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-21-resize_inter_1920x1080_5_3-4.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-21-resize_inter_1920x1080_5_3-4.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-21-resize_inter_1920x1080_7_1-2.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-21-resize_inter_1920x1080_7_1-2.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-21-resize_inter_1920x1080_7_3-4.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-21-resize_inter_1920x1080_7_3-4.webm.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-22-svc_1280x720_3.ivf +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-22-svc_1280x720_3.ivf.md5 +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-22-svc_1280x720_1.webm +LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-22-svc_1280x720_1.webm.md5 diff --git a/test/test-data.sha1 b/test/test-data.sha1 new file mode 100644 index 0000000..99b4e1e --- /dev/null +++ b/test/test-data.sha1 @@ -0,0 +1,856 @@ +d5dfb0151c9051f8c85999255645d7a23916d3c0 *hantro_collage_w352h288.yuv +b87815bf86020c592ccc7a846ba2e28ec8043902 *hantro_odd.yuv +76024eb753cdac6a5e5703aaea189d35c3c30ac7 *invalid-vp90-2-00-quantizer-00.webm.ivf.s5861_r01-05_b6-.v2.ivf +7448d8798a4380162d4b56f9b452e2f6f9e24e7a *invalid-vp90-2-00-quantizer-00.webm.ivf.s5861_r01-05_b6-.v2.ivf.res +83f50908c8dc0ef8760595447a2ff7727489542e *invalid-vp90-2-00-quantizer-11.webm.ivf.s52984_r01-05_b6-.ivf +456d1493e52d32a5c30edf44a27debc1fa6b253a *invalid-vp90-2-00-quantizer-11.webm.ivf.s52984_r01-05_b6-.ivf.res +c123d1f9f02fb4143abb5e271916e3a3080de8f6 *invalid-vp90-2-00-quantizer-11.webm.ivf.s52984_r01-05_b6-z.ivf +456d1493e52d32a5c30edf44a27debc1fa6b253a *invalid-vp90-2-00-quantizer-11.webm.ivf.s52984_r01-05_b6-z.ivf.res +efafb92b7567bc04c3f1432ea6c268c1c31affd5 *invalid-vp90-2-21-resize_inter_320x180_5_3-4.webm.ivf.s45551_r01-05_b6-.ivf +5d9474c0309b7ca09a182d888f73b37a8fe1362c *invalid-vp90-2-21-resize_inter_320x180_5_3-4.webm.ivf.s45551_r01-05_b6-.ivf.res +fe346136b9b8c1e6f6084cc106485706915795e4 *invalid-vp90-01-v3.webm +5d9474c0309b7ca09a182d888f73b37a8fe1362c *invalid-vp90-01-v3.webm.res +d78e2fceba5ac942246503ec8366f879c4775ca5 *invalid-vp90-02-v2.webm +8e2eff4af87d2b561cce2365713269e301457ef3 *invalid-vp90-02-v2.webm.res +df1a1453feb3c00d7d89746c7003b4163523bff3 *invalid-vp90-03-v3.webm +4935c62becc68c13642a03db1e6d3e2331c1c612 *invalid-vp90-03-v3.webm.res +d637297561dd904eb2c97a9015deeb31c4a1e8d2 *invalid-vp90-2-08-tile_1x4_frame_parallel_all_key.webm +3a204bdbeaa3c6458b77bcebb8366d107267f55d *invalid-vp90-2-08-tile_1x4_frame_parallel_all_key.webm.res +9aa21d8b2cb9d39abe8a7bb6032dc66955fb4342 *noisy_clip_640_360.y4m +a432f96ff0a787268e2f94a8092ab161a18d1b06 *park_joy_90p_10_420.y4m +0b194cc312c3a2e84d156a221b0a5eb615dfddc5 *park_joy_90p_10_422.y4m +ff0e0a21dc2adc95b8c1b37902713700655ced17 *park_joy_90p_10_444.y4m +c934da6fb8cc54ee2a8c17c54cf6076dac37ead0 *park_joy_90p_10_440.yuv +614c32ae1eca391e867c70d19974f0d62664dd99 *park_joy_90p_12_420.y4m +c92825f1ea25c5c37855083a69faac6ac4641a9e *park_joy_90p_12_422.y4m +b592189b885b6cc85db55cc98512a197d73d3b34 *park_joy_90p_12_444.y4m +82c1bfcca368c2f22bad7d693d690d5499ecdd11 *park_joy_90p_12_440.yuv +b9e1e90aece2be6e2c90d89e6ab2372d5f8c792d *park_joy_90p_8_420_a10-1.y4m +4e0eb61e76f0684188d9bc9f3ce61f6b6b77bb2c *park_joy_90p_8_420.y4m +7a193ff7dfeb96ba5f82b2afd7afa9e1fe83d947 *park_joy_90p_8_422.y4m +bdb7856e6bc93599bdda05c2e773a9f22b6c6d03 *park_joy_90p_8_444.y4m +81e1f3843748438b8f2e71db484eb22daf72e939 *park_joy_90p_8_440.yuv +b1f1c3ec79114b9a0651af24ce634afb44a9a419 *rush_hour_444.y4m +5184c46ddca8b1fadd16742e8500115bc8f749da *vp80-00-comprehensive-001.ivf +65bf1bbbced81b97bd030f376d1b7f61a224793f *vp80-00-comprehensive-002.ivf +906b4c1e99eb734504c504b3f1ad8052137ce672 *vp80-00-comprehensive-003.ivf +ec144b1af53af895db78355785650b96dd3f0ade *vp80-00-comprehensive-004.ivf +afc7091785c62f1c121c4554a2830c30704587d9 *vp80-00-comprehensive-005.ivf +42ea9d55c818145d06a9b633b8e85c6a6164fd3e *vp80-00-comprehensive-006.ivf +e5b3a73ab79fe024c14309d653d6bed92902ee3b *vp80-00-comprehensive-007.ivf +f3c50a58875930adfb84525c0ef59d7e4c08540c *vp80-00-comprehensive-008.ivf +4b2841fdb83db51ae322096ae468bbb9dc2c8362 *vp80-00-comprehensive-009.ivf +efbff736e3a91ab6a98c5bc2dce65d645944c7b1 *vp80-00-comprehensive-010.ivf +6b315102cae008d22a3d2c231be92cb704a222f8 *vp80-00-comprehensive-011.ivf +f3214a4fea14c2d5ec689936c1613f274c859ee8 *vp80-00-comprehensive-012.ivf +e4094e96d308c8a35b74c480a43d853c5294cd34 *vp80-00-comprehensive-013.ivf +5b0adfaf60a69e0aaf3ec021a39d0a68fc0e1b5a *vp80-00-comprehensive-014.ivf +e8467688ddf26b5000664f904faf0d70506aa653 *vp80-00-comprehensive-015.ivf +aab55582337dfd2a39ff54fb2576a91910d49337 *vp80-00-comprehensive-016.ivf +1ba24724f80203c9bae4f1d0f99d534721980016 *vp80-00-comprehensive-017.ivf +143a15512b46f436280ddb4d0e6411eb4af434f2 *vp80-00-comprehensive-018.ivf +c5baeaf5714fdfb3a8bc960a8e33ac438e83b16b *vp80-01-intra-1400.ivf +f383955229afe3408453e316d11553d923ca60d5 *vp80-01-intra-1411.ivf +84e1f4343f174c9f3c83f834bac3196fb325bf2c *vp80-01-intra-1416.ivf +fb6e712a47dd57a28a3727d2ae2c97a8b7c7ca51 *vp80-01-intra-1417.ivf +71ea772d3e9d315b8cbecf41207b8a237c34853b *vp80-02-inter-1402.ivf +d85dbc4271525dcd128c503f936fe69091d1f8d0 *vp80-02-inter-1412.ivf +d4e5d3ad56511867d025f93724d090f92ba6ec3d *vp80-02-inter-1418.ivf +91791cbcc37c60f35dbd8090bacb54e5ec6dd4fa *vp80-02-inter-1424.ivf +17fbfe2fea70f6e2f3fa6ca4efaae6c0b03b5f02 *vp80-03-segmentation-01.ivf +3c3600dbbcde08e20d54c66fe3b7eadd4f09bdbb *vp80-03-segmentation-02.ivf +c156778d5340967d4b369c490848076e92f1f875 *vp80-03-segmentation-03.ivf +d25dcff6c60e87a1af70945b8911b6b4998533b0 *vp80-03-segmentation-04.ivf +362baba2ce454c9db21218f35e81c27a5ed0b730 *vp80-03-segmentation-1401.ivf +d223ae7ee748ce07e74c4679bfd219e84aa9f4b0 *vp80-03-segmentation-1403.ivf +033adf7f3a13836a3f1cffcb87c1972900f2b5c6 *vp80-03-segmentation-1407.ivf +4d51dfbf9f3e2c590ec99d1d6f59dd731d04375f *vp80-03-segmentation-1408.ivf +f37a62b197c2600d75e0ccfbb31b60efdedac251 *vp80-03-segmentation-1409.ivf +eb25bd7bfba5b2f6935018a930f42d123b1e7fcd *vp80-03-segmentation-1410.ivf +b9d5c436663a30c27cfff84b53a002e501258843 *vp80-03-segmentation-1413.ivf +6da92b9d1a180cc3a8afe348ab12258f5a37be1a *vp80-03-segmentation-1414.ivf +a4f5842602886bd669f115f93d8a35c035cb0948 *vp80-03-segmentation-1415.ivf +f295dceb8ef278b77251b3f9df8aee22e161d547 *vp80-03-segmentation-1425.ivf +198dbf9f36f733200e432664cc8c5752d59779de *vp80-03-segmentation-1426.ivf +7704804e32f5de976803929934a7fafe101ac7b0 *vp80-03-segmentation-1427.ivf +831ccd862ea95ca025d2f3bd8b88678752f5416d *vp80-03-segmentation-1432.ivf +b3c11978529289f9109f2766fcaba3ebc40e11ef *vp80-03-segmentation-1435.ivf +a835a731f5520ebfc1002c40121264d0020559ac *vp80-03-segmentation-1436.ivf +1d1732942f773bb2a5775fcb9689b1579ce28eab *vp80-03-segmentation-1437.ivf +db04799adfe089dfdf74dbd43cc05ede7161f99e *vp80-03-segmentation-1441.ivf +7caf39b3f20cfd52b998210878062e52a5edf1e6 *vp80-03-segmentation-1442.ivf +3607f6bb4ee106c38fa1ea370dc4ff8b8cde2261 *vp80-04-partitions-1404.ivf +93cc323b6b6867f1b12dd48773424549c6960a6b *vp80-04-partitions-1405.ivf +047eedb14b865bdac8a3538e63801054e0295e9c *vp80-04-partitions-1406.ivf +0f1233bd2bc33f56ce5e495dbd455d122339f384 *vp80-05-sharpness-1428.ivf +51767fc136488a9535c2a4c38067c542ee2048df *vp80-05-sharpness-1429.ivf +9805aa107672de25d6fb8c35e20d06deca5efe18 *vp80-05-sharpness-1430.ivf +61db6b965f9c27aebe71b85bf2d5877e58e4bbdf *vp80-05-sharpness-1431.ivf +10420d266290d2923555f84af38eeb96edbd3ae8 *vp80-05-sharpness-1433.ivf +3ed24f9a80cddfdf75824ba95cdb4ff9286cb443 *vp80-05-sharpness-1434.ivf +c87599cbecd72d4cd4f7ace3313b7a6bc6eb8163 *vp80-05-sharpness-1438.ivf +aff51d865c2621b60510459244ea83e958e4baed *vp80-05-sharpness-1439.ivf +da386e72b19b5485a6af199c5eb60ef25e510dd1 *vp80-05-sharpness-1440.ivf +6759a095203d96ccd267ce09b1b050b8cc4c2f1f *vp80-05-sharpness-1443.ivf +b95d3cc1d0df991e63e150a801710a72f20d9ba0 *vp80-06-smallsize.ivf +db55ec7fd02c864ba996ff060b25b1e08611330b *vp80-00-comprehensive-001.ivf.md5 +29db0ad011cba1e45f856d5623cd38dac3e3bf19 *vp80-00-comprehensive-002.ivf.md5 +e84f258f69e173e7d68f8f8c037a0a3766902182 *vp80-00-comprehensive-003.ivf.md5 +eb7912eaf69559a16fd82bc3f5fb1524cf4a4466 *vp80-00-comprehensive-004.ivf.md5 +4206f71c94894bd5b5b376f6c09b3817dbc65206 *vp80-00-comprehensive-005.ivf.md5 +4f89b356f6f2fecb928f330a10f804f00f5325f5 *vp80-00-comprehensive-006.ivf.md5 +2813236a32964dd8007e17648bcf035a20fcda6c *vp80-00-comprehensive-007.ivf.md5 +10746c72098f872803c900e17c5680e451f5f498 *vp80-00-comprehensive-008.ivf.md5 +39a23d0692ce64421a7bb7cdf6ccec5928d37fff *vp80-00-comprehensive-009.ivf.md5 +f6e3de8931a0cc659bda8fbc14050346955e72d4 *vp80-00-comprehensive-010.ivf.md5 +101683ec195b6e944f7cd1e468fc8921439363e6 *vp80-00-comprehensive-011.ivf.md5 +1f592751ce46d8688998fa0fa4fbdcda0fd4058c *vp80-00-comprehensive-012.ivf.md5 +6066176f90ca790251e795fca1a5797d59999841 *vp80-00-comprehensive-013.ivf.md5 +2656da94ba93691f23edc4d60b3a09e2be46c217 *vp80-00-comprehensive-014.ivf.md5 +c6e0d5f5d61460c8ac8edfa4e701f10312c03133 *vp80-00-comprehensive-015.ivf.md5 +ee60fee501d8493e34e8d6a1fe315b51ed09b24a *vp80-00-comprehensive-016.ivf.md5 +9f1914ceffcad4546c0a29de3ef591d8bea304dc *vp80-00-comprehensive-017.ivf.md5 +e0305178fe288a9fd8082b39e2d03181edb19054 *vp80-00-comprehensive-018.ivf.md5 +612494da2fa799cc9d76dcdd835ae6c7cb2e5c05 *vp80-01-intra-1400.ivf.md5 +48ea06097ac8269c5e8c2131d3d0639f431fcf0e *vp80-01-intra-1411.ivf.md5 +6e2ab4e7677ad0ba868083ca6bc387ee922b400c *vp80-01-intra-1416.ivf.md5 +eca0a90348959ce3854142f8d8641b13050e8349 *vp80-01-intra-1417.ivf.md5 +920feea203145d5c2258a91c4e6991934a79a99e *vp80-02-inter-1402.ivf.md5 +f71d97909fe2b3dd65be7e1f56c72237f0cef200 *vp80-02-inter-1412.ivf.md5 +e911254569a30bbb2a237ff8b79f69ed9da0672d *vp80-02-inter-1418.ivf.md5 +58c789c50c9bb9cc90580bed291164a0939d28ba *vp80-02-inter-1424.ivf.md5 +ff3e2f441327b9c20a0b37c524e0f5a48a36de7b *vp80-03-segmentation-01.ivf.md5 +0791f417f076a542ae66fbc3426ab4d94cbd6c75 *vp80-03-segmentation-02.ivf.md5 +722e50f1a6a91c34302d68681faffc1c26d1cc57 *vp80-03-segmentation-03.ivf.md5 +c701f1885bcfb27fb8e70cc65606b289172ef889 *vp80-03-segmentation-04.ivf.md5 +f79bc9ec189a2b4807632a3d0c5bf04a178b5300 *vp80-03-segmentation-1401.ivf.md5 +b9aa4c74c0219b639811c44760d0b24cd8bb436a *vp80-03-segmentation-1403.ivf.md5 +70d5a2207ca1891bcaebd5cf6dd88ce8d57b4334 *vp80-03-segmentation-1407.ivf.md5 +265f962ee781531f9a93b9309461316fd32b2a1d *vp80-03-segmentation-1408.ivf.md5 +0c4ecbbd6dc042d30e626d951b65f460dd6cd563 *vp80-03-segmentation-1409.ivf.md5 +cf779af36a937f06570a0fca9db64ba133451dee *vp80-03-segmentation-1410.ivf.md5 +0e6c5036d51ab078842f133934926c598a9cff02 *vp80-03-segmentation-1413.ivf.md5 +eb3930aaf229116c80d507516c34759c3f6cdf69 *vp80-03-segmentation-1414.ivf.md5 +123d6c0f72ee87911c4ae7538e87b7d163b22d6c *vp80-03-segmentation-1415.ivf.md5 +e70551d1a38920e097a5d8782390b79ecaeb7505 *vp80-03-segmentation-1425.ivf.md5 +44e8f4117e46dbb302b2cfd81171cc1a1846e431 *vp80-03-segmentation-1426.ivf.md5 +52636e54aee5f95bbace37021bd67de5db767e9a *vp80-03-segmentation-1427.ivf.md5 +b1ad3eff20215c28e295b15ef3636ed926d59cba *vp80-03-segmentation-1432.ivf.md5 +24c22a552fa28a90e5978f67f57181cc2d7546d7 *vp80-03-segmentation-1435.ivf.md5 +96c49c390abfced18a7a8c9b9ea10af778e10edb *vp80-03-segmentation-1436.ivf.md5 +f95eb6214571434f1f73ab7833b9ccdf47588020 *vp80-03-segmentation-1437.ivf.md5 +1c0700ca27c9b0090a7747a4b0b4dc21d1843181 *vp80-03-segmentation-1441.ivf.md5 +81d4f23ca32667ee958bae579c8f5e97ba72eb97 *vp80-03-segmentation-1442.ivf.md5 +272efcef07a3a30fbca51bfd566063d8258ec0be *vp80-04-partitions-1404.ivf.md5 +66ed219ab812ac801b256d35cf495d193d4cf478 *vp80-04-partitions-1405.ivf.md5 +36083f37f56f502bd60ec5e07502ee9e6b8699b0 *vp80-04-partitions-1406.ivf.md5 +6ca909bf168a64c09415626294665dc1be3d1973 *vp80-05-sharpness-1428.ivf.md5 +1667d2ee2334e5fdea8a8a866f4ccf3cf76f033a *vp80-05-sharpness-1429.ivf.md5 +71bcbe5357d36a19df5b07fbe3e27bffa8893f0a *vp80-05-sharpness-1430.ivf.md5 +89a09b1dffce2d55770a89e58d9925c70ef79bf8 *vp80-05-sharpness-1431.ivf.md5 +08444a18b4e6ba3450c0796dd728d48c399a2dc9 *vp80-05-sharpness-1433.ivf.md5 +6d6223719a90c13e848aa2a8a6642098cdb5977a *vp80-05-sharpness-1434.ivf.md5 +41d70bb5fa45bc88da1604a0af466930b8dd77b5 *vp80-05-sharpness-1438.ivf.md5 +086c56378df81b6cee264d7540a7b8f2b405c7a4 *vp80-05-sharpness-1439.ivf.md5 +d32dc2c4165eb266ea4c23c14a45459b363def32 *vp80-05-sharpness-1440.ivf.md5 +8c69dc3d8e563f56ffab5ad1e400d9e689dd23df *vp80-05-sharpness-1443.ivf.md5 +d6f246df012c241b5fa6c1345019a3703d85c419 *vp80-06-smallsize.ivf.md5 +ce881e567fe1d0fbcb2d3e9e6281a1a8d74d82e0 *vp90-2-00-quantizer-00.webm +ac5eda33407d0521c7afca43a63fd305c0cd9d13 *vp90-2-00-quantizer-00.webm.md5 +2ca0463f2cfb93d25d7dded174db70b7cb87cb48 *vp90-2-00-quantizer-01.webm +10d98884fc6d9a5f47a2057922b8e25dd48d7786 *vp90-2-00-quantizer-01.webm.md5 +d80a2920a5e0819d69dcba8fe260c01f820f8982 *vp90-2-00-quantizer-02.webm +c964c8e5e04165fabbf1c6ee8ee5121d35921965 *vp90-2-00-quantizer-02.webm.md5 +fdef046777b5b75c962b715d809dbe2ea331afb9 *vp90-2-00-quantizer-03.webm +f270bee0b0c7aa2bf4c5afe098556b4f3f890faf *vp90-2-00-quantizer-03.webm.md5 +66d98609e809394a6ac730787e6724e3badc075a *vp90-2-00-quantizer-04.webm +427433bfe121c4aea1095ec3124fdc174d200e3a *vp90-2-00-quantizer-04.webm.md5 +e6e42626d8cadf0b5be16313f69212981b96fee5 *vp90-2-00-quantizer-05.webm +c98f6a9a1af4cfd71416792827304266aad4bd46 *vp90-2-00-quantizer-05.webm.md5 +413ef09b721f5dcec1a96e937a97e5873c2e6db6 *vp90-2-00-quantizer-06.webm +5080e940a23805c82e578e21b57fc2c511e76376 *vp90-2-00-quantizer-06.webm.md5 +4a50a5f4ac717c30dfaae8bb46702e3542e867de *vp90-2-00-quantizer-07.webm +76c429a02b56762e10ee4db88729d8834b3a70f4 *vp90-2-00-quantizer-07.webm.md5 +d2f4e464780bf8b7e647efa18ac777a930e62bc0 *vp90-2-00-quantizer-08.webm +ab94aabf9316111b52d7c531962ed4123313b6ba *vp90-2-00-quantizer-08.webm.md5 +174bc58433936dd79550398d744f1072ce7f5693 *vp90-2-00-quantizer-09.webm +e1f7690cd83ccc56d045e17cce552544a5f03810 *vp90-2-00-quantizer-09.webm.md5 +52bc1dfd3a97b24d922eb8a31d07527891561f2a *vp90-2-00-quantizer-10.webm +9b37bed893b5f6a4e12f2aa40f02dd40f944d0f8 *vp90-2-00-quantizer-10.webm.md5 +10031eecafde1e1d8e6323fe2b2a1d7e77a66869 *vp90-2-00-quantizer-11.webm +fe4620a4bb0e4f5cb9bbfedc4039a22b81b0f5c0 *vp90-2-00-quantizer-11.webm.md5 +78e9f7bb77e8e348155bbdfa12790789d1d50c34 *vp90-2-00-quantizer-12.webm +0961d060cc8dd469c6dac8d7d75f927c0bb971b8 *vp90-2-00-quantizer-12.webm.md5 +133b77a3bbcef652552d74ffc46afbfe3b8a1cba *vp90-2-00-quantizer-13.webm +df29e5e0f95772af482f540d776f6b9dea4bfa29 *vp90-2-00-quantizer-13.webm.md5 +27323afdaf8987e025c27129c74c86502315a206 *vp90-2-00-quantizer-14.webm +ce96a2cc312942f0427a463f15a392870dd69764 *vp90-2-00-quantizer-14.webm.md5 +ab58d0b41037829f6bc993910999f4af0212aafd *vp90-2-00-quantizer-15.webm +40f700db606501aa7cb49049624cbdde6409b122 *vp90-2-00-quantizer-15.webm.md5 +cd948e66448aafb65998815ce37241f95d7c9ee7 *vp90-2-00-quantizer-16.webm +039b742d149c945ed79c7b9a6384352852a1c116 *vp90-2-00-quantizer-16.webm.md5 +62f56e663e13c576764e491cf08f19bd46a71999 *vp90-2-00-quantizer-17.webm +90c5a39bf76e6b3e0a1c0d3e9b68a9fd78be963e *vp90-2-00-quantizer-17.webm.md5 +f26ecad7263cd66a614e53ba5d7c00df181affeb *vp90-2-00-quantizer-18.webm +cda0a1c0fca2ec2976ae55124a8a67305508bae6 *vp90-2-00-quantizer-18.webm.md5 +94bfc4c04fcfe139a63b98c569e8c14ba98c401f *vp90-2-00-quantizer-19.webm +5b8ec169ccf67d8a0a8e46a62eb173f5a1dbaf4f *vp90-2-00-quantizer-19.webm.md5 +0ee88e9318985e1e245de78c2c4a665885ab76a7 *vp90-2-00-quantizer-20.webm +4b26f7edb4fcd3a1b4cce9ba3cb8650e3ee6e063 *vp90-2-00-quantizer-20.webm.md5 +6a995cb2b1db33da8087321df1e646f95c3e32d1 *vp90-2-00-quantizer-21.webm +e216b4a1eceac03efcc433759be54ab8ea87b24b *vp90-2-00-quantizer-21.webm.md5 +aa7722fc427e7180115f3c9cd96bb6b2768e7296 *vp90-2-00-quantizer-22.webm +1aa813bd45ae831bf5e79ace4d73dfd25989a07d *vp90-2-00-quantizer-22.webm.md5 +7677e5b929ed6d142041f19b8a9cd5822ee1504a *vp90-2-00-quantizer-23.webm +0de0af34abd843d5b37e58baf3ed96a6104b64c3 *vp90-2-00-quantizer-23.webm.md5 +b2995cbe1128b2d4926f1b28d01c501ecb6be8c8 *vp90-2-00-quantizer-24.webm +db6033af2ba2f2bca62468fb4b8808e474f93923 *vp90-2-00-quantizer-24.webm.md5 +8135ba35587fd92cd4667be7896323d9b634401c *vp90-2-00-quantizer-25.webm +3499e00c2cc15876f61f07e3d3cfca54ebcd98fd *vp90-2-00-quantizer-25.webm.md5 +af0fa2907746db82d345f6d831fcc1b2862a29fb *vp90-2-00-quantizer-26.webm +cd6fe3d14dab48886ebf65be00e6ed9616ebe5a7 *vp90-2-00-quantizer-26.webm.md5 +bd0002e91323776beb5ff11e06edcf19fc08e9b9 *vp90-2-00-quantizer-27.webm +fe72154ef196067d6c272521012dd79706496cac *vp90-2-00-quantizer-27.webm.md5 +fc15eb606f81455ff03df16bf3432296b002c43c *vp90-2-00-quantizer-28.webm +40b2e24b542206a6bfd746ef199e49ccea07678a *vp90-2-00-quantizer-28.webm.md5 +3090bbf913cad0b2eddca7228f5ed51a58378b8d *vp90-2-00-quantizer-29.webm +eb59745e0912d8ed6c928268bcf265237c9ba93f *vp90-2-00-quantizer-29.webm.md5 +c615abdca9c25e1cb110d908edbedfb3b7c92b91 *vp90-2-00-quantizer-30.webm +ad0f4fe6733e4e7cdfe8ef8722bb341dcc7538c0 *vp90-2-00-quantizer-30.webm.md5 +037d9f242086cfb085518f6416259defa82d5fc2 *vp90-2-00-quantizer-31.webm +4654b40792572f0a790874c6347ef9196d86c1a7 *vp90-2-00-quantizer-31.webm.md5 +505899f3f3515044c5c8b3213d9b9d16f614619d *vp90-2-00-quantizer-32.webm +659a2e6dd02df323f62600626859006640b445df *vp90-2-00-quantizer-32.webm.md5 +8b32ec9c3b7e5ca8ddc6b8aea1c1cb7ca996bccc *vp90-2-00-quantizer-33.webm +5b175ef1120ddeba4feae1247bf381bbc4e816ce *vp90-2-00-quantizer-33.webm.md5 +4d283755d17e287b1d099a80604398f60d7fb6ea *vp90-2-00-quantizer-34.webm +22a739de95acfeb27524e3700b8f678a9ad744d8 *vp90-2-00-quantizer-34.webm.md5 +4296f56a892a412d3d4f64824718dd566c4e6459 *vp90-2-00-quantizer-35.webm +c532c9c8dc7b3506fc6a51e5c20c17ef0ac039e7 *vp90-2-00-quantizer-35.webm.md5 +6f54e11da461e4410dd9075b015e2d9bc1d07dfb *vp90-2-00-quantizer-36.webm +0b3573f5addea4e3eb11a0b85f068299d5bdad78 *vp90-2-00-quantizer-36.webm.md5 +210581682a26c2c4375efc785c36e07539888bc2 *vp90-2-00-quantizer-37.webm +2b4fb6f8ba975237858e61cc8f560bcfc87cb38e *vp90-2-00-quantizer-37.webm.md5 +a15ef31283dfc4860f837fe200eb32a445f59629 *vp90-2-00-quantizer-38.webm +fb76771f3a795054b9936f70da7505c3ac585284 *vp90-2-00-quantizer-38.webm.md5 +1df8433a441412831daae6726df89fa70d21b14d *vp90-2-00-quantizer-39.webm +39e162c09a20e7e684868097766347014371fee6 *vp90-2-00-quantizer-39.webm.md5 +5330e4788ab9129dbb25a7a7d5411104521248b6 *vp90-2-00-quantizer-40.webm +872cc0f2cc9dbf000f89eadb4d8f9940e48e00b1 *vp90-2-00-quantizer-40.webm.md5 +d88d03b982889e399a78d7a06eeb1cf30e6c2da2 *vp90-2-00-quantizer-41.webm +5b4f7217e57fa2a221011d0b32f8d0409496b7b6 *vp90-2-00-quantizer-41.webm.md5 +9e16406e3e26955a6e17d455ef1ef64bbfa26e53 *vp90-2-00-quantizer-42.webm +0219d090cf37daabe19256ba8e932ba4874b92e4 *vp90-2-00-quantizer-42.webm.md5 +a9b15843486fb05f8cd15437ef279782a42b75db *vp90-2-00-quantizer-43.webm +3c9b0b4c607f9579a31726bfcf56729334ddc686 *vp90-2-00-quantizer-43.webm.md5 +1dbc931ac446c91eabe7213efff55b596cccf07c *vp90-2-00-quantizer-44.webm +73bc8f675103abaef3d9f73a2742b3bffd726d23 *vp90-2-00-quantizer-44.webm.md5 +7c6c1be15beb9d6201204b018966c8c4f9777efc *vp90-2-00-quantizer-45.webm +c907b29da821f790c6748de61f592689312e4e36 *vp90-2-00-quantizer-45.webm.md5 +07b434da1a467580f73b32177ee11b3e00f65a0d *vp90-2-00-quantizer-46.webm +7b2b7ce60c50bc970bc0ada46d7a7ce440148da3 *vp90-2-00-quantizer-46.webm.md5 +233d0465fb1a6fa36e9f89bd2193ac79bd4d2809 *vp90-2-00-quantizer-47.webm +527e0a9fb932efe915027ffe077f9e8d3a4fb139 *vp90-2-00-quantizer-47.webm.md5 +719613df7307e205c3fdb6acfb373849c5ab23c7 *vp90-2-00-quantizer-48.webm +65ab6c9d1b682c183b201c7ff42b90343ce3e304 *vp90-2-00-quantizer-48.webm.md5 +3bf04a598325ed0eabae1598ec7f718f715ec672 *vp90-2-00-quantizer-49.webm +ac68c4387ce11fcc998d8ba455ab9b2bb361d240 *vp90-2-00-quantizer-49.webm.md5 +d59238fb3a654931c9b65a11e7321b40d1f702e9 *vp90-2-00-quantizer-50.webm +d0576bfede46fd55659f028f2fd28554ceb3e6cc *vp90-2-00-quantizer-50.webm.md5 +3f579785101d4209360dd96f8c2ffe9beddf3bee *vp90-2-00-quantizer-51.webm +89fcfe04f4457a7f02ab4a2f94aacbb88aee5789 *vp90-2-00-quantizer-51.webm.md5 +28be5836e2fedefe4babf12fc9b79e460ab0a0f4 *vp90-2-00-quantizer-52.webm +f3dd52b70c18345fee740220f35da9c4def2017a *vp90-2-00-quantizer-52.webm.md5 +488ad4058c17170665b6acd1021fade9a02771e4 *vp90-2-00-quantizer-53.webm +1cdcb1d4f3a37cf83ad235eb27ec62ed2a01afc7 *vp90-2-00-quantizer-53.webm.md5 +682978289cb28cc8c9d39bc797300e45d6039de7 *vp90-2-00-quantizer-54.webm +36c35353f2c03cb099bd710d9994de7d9ed88834 *vp90-2-00-quantizer-54.webm.md5 +c398ce49af762a48f10cc4da9fae0769aae5f226 *vp90-2-00-quantizer-55.webm +2cf3570542d984f167ab087f59493c7fb47e0ed2 *vp90-2-00-quantizer-55.webm.md5 +3071f18b2fce261aa82d61f81a7ae4ca9a75d0e3 *vp90-2-00-quantizer-56.webm +d3f93f8272b6de31cffb011a26f11abb514efb12 *vp90-2-00-quantizer-56.webm.md5 +f4e8e14b1f278801a7eb6f11734780a01b1668e9 *vp90-2-00-quantizer-57.webm +6478fdf1d7faf6db5f19dffc5e1363af358699ee *vp90-2-00-quantizer-57.webm.md5 +307dc264f57cc618fff211fa44d7f52767ed9660 *vp90-2-00-quantizer-58.webm +cf231d4a52d492fa692ea4194ec5eb7511fec54e *vp90-2-00-quantizer-58.webm.md5 +1fd7cd596170afce2de0b1441b7674bda5723440 *vp90-2-00-quantizer-59.webm +4681f7ef96f63e085c41bb1a964b0df7e67e0b38 *vp90-2-00-quantizer-59.webm.md5 +34cdcc81c0ba7085aefbb22d7b4aa9bca3dd7c62 *vp90-2-00-quantizer-60.webm +58691ef53b6b623810e2c57ded374c77535df935 *vp90-2-00-quantizer-60.webm.md5 +e6e812406aab81021bb16e772c1db03f75906cb6 *vp90-2-00-quantizer-61.webm +76436eace62f08ff92b61a0845e66667a027db1b *vp90-2-00-quantizer-61.webm.md5 +84d811bceed70c950a6a08e572a6e274866e72b1 *vp90-2-00-quantizer-62.webm +2d937cc011eeddd95222b960982da5cd18db580f *vp90-2-00-quantizer-62.webm.md5 +0912b295ba0ea09359315315ffd67d22d046f883 *vp90-2-00-quantizer-63.webm +5a829031055d70565f57dbcd47a6ac33619952b3 *vp90-2-00-quantizer-63.webm.md5 +0cf9e5ebe0112bdb47b5887ee5d58eb9d4727c00 *vp90-2-01-sharpness-1.webm +5a0476be4448bae8f8ca17ea236c98793a755948 *vp90-2-01-sharpness-1.webm.md5 +51e02d7911810cdf5be8b68ac40aedab479a3179 *vp90-2-01-sharpness-2.webm +a0ca5bc87a5ed7c7051f59078daa0d03be1b45b6 *vp90-2-01-sharpness-2.webm.md5 +0603f8ad239c07a531d948187f4dafcaf51eda8d *vp90-2-01-sharpness-3.webm +3af8000a69c72fe77881e3176f026c2affb78cc7 *vp90-2-01-sharpness-3.webm.md5 +4ca4839f48146252fb261ed88838d80211804841 *vp90-2-01-sharpness-4.webm +08832a1494f84fa9edd40e080bcf2c0e80100c76 *vp90-2-01-sharpness-4.webm.md5 +95099dc8f9cbaf9b9a7dd65311923e441ff70731 *vp90-2-01-sharpness-5.webm +93ceee30c140f0b406726c0d896b9db6031c4c7f *vp90-2-01-sharpness-5.webm.md5 +ceb4116fb7b078d266d153233b6d62a255a34e4c *vp90-2-01-sharpness-6.webm +da83efe59e537ce538e8b03a6eac63cf25849c9a *vp90-2-01-sharpness-6.webm.md5 +b5f7cd19aece3880f9d616a778e5cc24c6b9b505 *vp90-2-01-sharpness-7.webm +2957408d20deac8633941a2169f801bae6f086e1 *vp90-2-01-sharpness-7.webm.md5 +ffc096c2ce1050450ad462b5fabd2a5220846319 *vp90-2-02-size-08x08.webm +e36d2ed6fa2746347710b750586aafa6a01ff3ae *vp90-2-02-size-08x08.webm.md5 +895b986f9fd55cd879472b31c6a06b82094418c8 *vp90-2-02-size-08x10.webm +079157a19137ccaebba606f2871f45a397347150 *vp90-2-02-size-08x10.webm.md5 +1c5992203e62a2b83040ccbecd748b604e19f4c0 *vp90-2-02-size-08x16.webm +9aa45ffdf2078f883bbed01450031b691819c144 *vp90-2-02-size-08x16.webm.md5 +d0a8953da1f85f484487408fee5da9e2a8391901 *vp90-2-02-size-08x18.webm +59a5cc17d354c6a23e5e959d666b1456a5d49c56 *vp90-2-02-size-08x18.webm.md5 +1b13461a9fc65cb041bacfe4ea6f02d363397d61 *vp90-2-02-size-08x32.webm +2bdddd6878f05d37d84cde056a3f5e7f926ba3d6 *vp90-2-02-size-08x32.webm.md5 +2861f0a0daadb62295b0504a1fbe5b50c79a8f59 *vp90-2-02-size-08x34.webm +6b5812cfb8a82d378ea2913bf009e93668020147 *vp90-2-02-size-08x34.webm.md5 +02f948216d4246579dc53c47fe55d8fb264ba251 *vp90-2-02-size-08x64.webm +84b55fdee6d9aa820c7a8c62822446184b191767 *vp90-2-02-size-08x64.webm.md5 +4b011242cbf42516efd2b197baebb61dd34562c9 *vp90-2-02-size-08x66.webm +6b1fa0a885947b3cc0fe58f75f838e662bd9bb8b *vp90-2-02-size-08x66.webm.md5 +4057796be9dd12df48ab607f502ae6aa70eeeab6 *vp90-2-02-size-10x08.webm +71c752c51aec9f48de286b93f4c20e9c11cad7d0 *vp90-2-02-size-10x08.webm.md5 +6583c853fa43fc53d51743eac5f3a43a359d45d0 *vp90-2-02-size-10x10.webm +1da524d24af1944b671d4d3f2b398d6e336584c3 *vp90-2-02-size-10x10.webm.md5 +ba442fc03ccd3a705c64c83b36f5ada67d198874 *vp90-2-02-size-10x16.webm +7cfd960f232c34c641a4a2a9411b6fd0efb2fc50 *vp90-2-02-size-10x16.webm.md5 +cc92ed40eef14f52e4d080cb2c57939dd8326374 *vp90-2-02-size-10x18.webm +db5626275cc55ce970b91c995e74f6838d943aca *vp90-2-02-size-10x18.webm.md5 +3a93d501d22325e9fd4c9d8b82e2a432de33c351 *vp90-2-02-size-10x32.webm +5cae51b0c71cfc131651f345f87583eb2903afaf *vp90-2-02-size-10x32.webm.md5 +50d2f2b15a9a5178153db44a9e03aaf32b227f67 *vp90-2-02-size-10x34.webm +bb0efe058122641e7f73e94497dda2b9e6c21efd *vp90-2-02-size-10x34.webm.md5 +01624ec173e533e0b33fd9bdb91eb7360c7c9175 *vp90-2-02-size-10x64.webm +b9c0e3b054463546356acf5157f9be92fd34732f *vp90-2-02-size-10x64.webm.md5 +2942879baf1c09e96b14d0fc84806abfe129c706 *vp90-2-02-size-10x66.webm +bab5f539c2f91952e187456b4beafbb4c01e25ee *vp90-2-02-size-10x66.webm.md5 +88d2b63ca5e9ee163d8f20e8886f3df3ff301a66 *vp90-2-02-size-16x08.webm +7f48a0fcf8c25963f3057d7f6669c5f2415834b8 *vp90-2-02-size-16x08.webm.md5 +59261eb34c15ea9b5ddd2d416215c1a8b9e6dc1f *vp90-2-02-size-16x10.webm +73a7c209a46dd051c9f7339b6e02ccd5b3b9fc81 *vp90-2-02-size-16x10.webm.md5 +066834fef9cf5b9a72932cf4dea5f253e14a976d *vp90-2-02-size-16x16.webm +faec542f52f37601cb9c480d887ae9355be99372 *vp90-2-02-size-16x16.webm.md5 +195307b4eb3192271ee4a935b0e48deef0c54cc2 *vp90-2-02-size-16x18.webm +5a92e19e624c0376321d4d0e22c0c91995bc23e1 *vp90-2-02-size-16x18.webm.md5 +14f3f884216d7ae16ec521f024a2f2d31bbf9c1a *vp90-2-02-size-16x32.webm +ea622d1c817dd174556f7ee7ccfe4942b34d4845 *vp90-2-02-size-16x32.webm.md5 +2e0501100578a5da9dd47e4beea160f945bdd1ba *vp90-2-02-size-16x34.webm +1b8645ef64239334921c5f56b24ce815e6070b05 *vp90-2-02-size-16x34.webm.md5 +89a6797fbebebe93215f367229a9152277f5dcfe *vp90-2-02-size-16x64.webm +a03d8c1179ca626a8856fb416d635dbf377979cd *vp90-2-02-size-16x64.webm.md5 +0f3a182e0750fcbae0b9eae80c7a53aabafdd18d *vp90-2-02-size-16x66.webm +8cb6736dc2d897c1283919a32068af377d66c59c *vp90-2-02-size-16x66.webm.md5 +68fe70dc7914cc1d8d6dcd97388b79196ba3e7f1 *vp90-2-02-size-18x08.webm +874c7fb505be9db3160c57cb405c4dbd5b990dc2 *vp90-2-02-size-18x08.webm.md5 +0546352dd78496d4dd86c3727ac2ff36c9e72032 *vp90-2-02-size-18x10.webm +1d80eb36557ea5f25a386495a36f93da0f25316b *vp90-2-02-size-18x10.webm.md5 +60fe99e5f5cc99706efa3e0b894e45cbcf0d6330 *vp90-2-02-size-18x16.webm +1ab6cdd89a53662995d103546e6611c84f9292ab *vp90-2-02-size-18x16.webm.md5 +f9a8f5fb749d69fd555db6ca093b7f77800c7b4f *vp90-2-02-size-18x18.webm +ace8a66328f7802b15f9989c2720c029c6abd279 *vp90-2-02-size-18x18.webm.md5 +a197123a527ec25913a9bf52dc8c347749e00045 *vp90-2-02-size-18x32.webm +34fbd7036752232d1663e70d7f7cdc93f7129202 *vp90-2-02-size-18x32.webm.md5 +f219655a639a774a2c9c0a9f45c28dc0b5e75e24 *vp90-2-02-size-18x34.webm +2c4d622a9ea548791c1a07903d3702e9774388bb *vp90-2-02-size-18x34.webm.md5 +5308578da48c677d477a5404e19391d1303033c9 *vp90-2-02-size-18x64.webm +e7fd4462527bac38559518ba80e41847db880f15 *vp90-2-02-size-18x64.webm.md5 +e109a7e013bd179f97e378542e1e81689ed06802 *vp90-2-02-size-18x66.webm +45c04e422fb383c1f3be04beefaa4490e83bdb1a *vp90-2-02-size-18x66.webm.md5 +38844cae5d99caf445f7de33c3ae78494ce36c01 *vp90-2-02-size-32x08.webm +ad018be39e493ca2405225034b1a5b7a42af6f3a *vp90-2-02-size-32x08.webm.md5 +7b57eaad55906f9de9903c8657a3fcb2aaf792ea *vp90-2-02-size-32x10.webm +2294425d4e55d275af5e25a0beac9738a1b4ee73 *vp90-2-02-size-32x10.webm.md5 +f47ca2ced0d47f761bb0a5fdcd911d3f450fdcc1 *vp90-2-02-size-32x16.webm +ae10981d93913f0ab1f28c1146255e01769aa8c0 *vp90-2-02-size-32x16.webm.md5 +08b23ad838b6cf1fbfe3ad7e7775d95573e815fc *vp90-2-02-size-32x18.webm +1ba76f4c4a4ac7aabfa3ce195c1b473535eb7cc8 *vp90-2-02-size-32x18.webm.md5 +d5b88ae6c8c25c53dee74d9f1e6ca64244349a57 *vp90-2-02-size-32x32.webm +e39c067a8ee2da52a51641eb1cb7f8eba935eb6b *vp90-2-02-size-32x32.webm.md5 +529429920dc36bd899059fa75a767f02c8c60874 *vp90-2-02-size-32x34.webm +56888e7834f52b106e8911e3a7fc0f473b609995 *vp90-2-02-size-32x34.webm.md5 +38e848e160391c2b1a55040aadde613b9f4bf15e *vp90-2-02-size-32x64.webm +8950485fb3f68b0e8be234db860e4ec5f5490fd0 *vp90-2-02-size-32x64.webm.md5 +5e8670f0b8ec9cefa8795b8959ffbe1a8e1aea94 *vp90-2-02-size-32x66.webm +225df9d7d72ec711b0b60f4aeb65311c97db054a *vp90-2-02-size-32x66.webm.md5 +695f929e2ce6fb11a1f180322d46c5cb1c97fa61 *vp90-2-02-size-34x08.webm +5bb4262030018dd01883965c6aa6070185924ef6 *vp90-2-02-size-34x08.webm.md5 +5adf74ec906d2ad3f7526e06bd29f5ad7d966a90 *vp90-2-02-size-34x10.webm +71c100b437d3e8701632ae8d65c3555339b1c68f *vp90-2-02-size-34x10.webm.md5 +d0918923c987fba2d00193d83797b21289fe54aa *vp90-2-02-size-34x16.webm +5d5a52f3535b4d2698dd3d87f4a13fdc9b57163d *vp90-2-02-size-34x16.webm.md5 +553ab0042cf87f5e668ec31b2e4b2a4b6ec196fd *vp90-2-02-size-34x18.webm +a164c7f3c424987df2340496e6a8cf76e973f0f1 *vp90-2-02-size-34x18.webm.md5 +baf3e233634f150de81c18ba5d8848068e1c3c54 *vp90-2-02-size-34x32.webm +22a79d3bd1c9b85dfe8c70bb2e19f08a92a8be03 *vp90-2-02-size-34x32.webm.md5 +6d50a533774a7167350e4a7ef43c94a5622179a2 *vp90-2-02-size-34x34.webm +0c099638e79c273546523e06704553e42eb00b00 *vp90-2-02-size-34x34.webm.md5 +698cdd0a5e895cc202c488675e682a8c537ede4f *vp90-2-02-size-34x64.webm +9317b63987cddab8389510a27b86f9f3d46e3fa5 *vp90-2-02-size-34x64.webm.md5 +4b5335ca06f082b6b69f584eb8e7886bdcafefd3 *vp90-2-02-size-34x66.webm +e18d68b35428f46a84a947c646804a51ef1d7cec *vp90-2-02-size-34x66.webm.md5 +a54ae7b494906ec928a876e8290e5574f2f9f6a2 *vp90-2-02-size-64x08.webm +87f9f7087b6489d45e9e4b38ede2c5aef4a4928f *vp90-2-02-size-64x08.webm.md5 +24522c70804a3c23d937df2d829ae63965b23f38 *vp90-2-02-size-64x10.webm +447ce03938ab53bffcb4a841ee0bfaa90462dcb9 *vp90-2-02-size-64x10.webm.md5 +2a5035d035d214ae614af8051930690ef623989b *vp90-2-02-size-64x16.webm +84e355761dd2e0361b904c84c52a0dd0384d89cf *vp90-2-02-size-64x16.webm.md5 +3a293ef4e270a19438e59b817fbe5f43eed4d36b *vp90-2-02-size-64x18.webm +666824e5ba746779eb46079e0631853dcc86d48b *vp90-2-02-size-64x18.webm.md5 +ed32fae837095c9e8fc95d223ec68101812932c2 *vp90-2-02-size-64x32.webm +97086eadedce1d0d9c072b585ba7b49aec69b1e7 *vp90-2-02-size-64x32.webm.md5 +696c7a7250bdfff594f4dfd88af34239092ecd00 *vp90-2-02-size-64x34.webm +253a1d38d452e7826b086846c6f872f829c276bb *vp90-2-02-size-64x34.webm.md5 +fc508e0e3c2e6872c60919a60b812c5232e9c2b0 *vp90-2-02-size-64x64.webm +2cd6ebeca0f82e9f505616825c07950371b905ab *vp90-2-02-size-64x64.webm.md5 +0f8a4fc1d6521187660425c283f08dff8c66e476 *vp90-2-02-size-64x66.webm +5806be11a1d346be235f88d3683e69f73746166c *vp90-2-02-size-64x66.webm.md5 +273b0c36e3658685cde250408a478116d7ae92f1 *vp90-2-02-size-66x08.webm +23c3cd0dca20a2f71f036e77ea92025ff4e7a298 *vp90-2-02-size-66x08.webm.md5 +4844c59c3306d1e671bb0568f00e344bf797e66e *vp90-2-02-size-66x10.webm +e041eaf6841d775f8fde8bbb4949d2733fdaab7f *vp90-2-02-size-66x10.webm.md5 +bdf3f1582b234fcd2805ffec59f9d716a2345302 *vp90-2-02-size-66x16.webm +2ec85ee18119e6798968571ea6e1b93ca386e3af *vp90-2-02-size-66x16.webm.md5 +0acce9af12b13b025d5274013da7ef6f568f075f *vp90-2-02-size-66x18.webm +77c4d53e2a5c96b70af9d575fe6811e0f5ee627b *vp90-2-02-size-66x18.webm.md5 +682b36a25774bbdedcd603f504d18eb63f0167d4 *vp90-2-02-size-66x32.webm +53728fae2a428f16d376a29f341a64ddca97996a *vp90-2-02-size-66x32.webm.md5 +e71b70e901e29eaa6672a6aa4f37f6f5faa02bd6 *vp90-2-02-size-66x34.webm +f69a6a555e3f614b0a35f9bfc313d8ebb35bc725 *vp90-2-02-size-66x34.webm.md5 +4151b8c29452d5c2266397a7b9bf688899a2937b *vp90-2-02-size-66x64.webm +69486e7fd9e380b6c97a03d3e167affc79f73840 *vp90-2-02-size-66x64.webm.md5 +68784a1ecac776fe2a3f230345af32f06f123536 *vp90-2-02-size-66x66.webm +7f008c7f48d55e652fbd6bac405b51e0015c94f2 *vp90-2-02-size-66x66.webm.md5 +7e1bc449231ac1c5c2a11c9a6333b3e828763798 *vp90-2-03-size-196x196.webm +6788a561466dace32d500194bf042e19cccc35e1 *vp90-2-03-size-196x196.webm.md5 +a170c9a88ec1dd854c7a471ff55fb2a97ac31870 *vp90-2-03-size-196x198.webm +6bf9d6a8e2bdc5bf4f8a78071a3fed5ca02ad6f2 *vp90-2-03-size-196x198.webm.md5 +68f861d21c4c8b03d572c3d3fcd9f4fbf1f4503f *vp90-2-03-size-196x200.webm +bbfc260b2bfd872cc6054272bb6b7f959a9e1c6e *vp90-2-03-size-196x200.webm.md5 +fc34889feeca2b7e5b27b4f1ce22d2e2b8e3e4b1 *vp90-2-03-size-196x202.webm +158ee72af578f39aad0c3b8f4cbed2fc78b57e0f *vp90-2-03-size-196x202.webm.md5 +dd28fb7247af534bdf5e6795a3ac429610489a0b *vp90-2-03-size-196x208.webm +7546be847efce2d1c0a23f807bfb03f91b764e1e *vp90-2-03-size-196x208.webm.md5 +41d5cf5ed65b722a1b6dc035e67f978ea8ffecf8 *vp90-2-03-size-196x210.webm +9444fdf632d6a1b6143f4cb10fed8f63c1d67ec1 *vp90-2-03-size-196x210.webm.md5 +5007bc618143437c009d6dde5fc2e86f72d37dc2 *vp90-2-03-size-196x224.webm +858361d8f79b44df5545feabbc9754ec9ede632f *vp90-2-03-size-196x224.webm.md5 +0bcbe357fbc776c3fa68e7117179574ed7564a44 *vp90-2-03-size-196x226.webm +72006a5f42031a43d70a2cd9fc1958962a86628f *vp90-2-03-size-196x226.webm.md5 +000239f048cceaac055558e97ef07078ebf65502 *vp90-2-03-size-198x196.webm +2d6841901b72000c5340f30be602853438c1b787 *vp90-2-03-size-198x196.webm.md5 +ae75b766306a6404c3b3b35a6b6d53633c14fbdb *vp90-2-03-size-198x198.webm +3f2544b4f3b4b643a98f2c3b15ea5826fc702fa1 *vp90-2-03-size-198x198.webm.md5 +95ffd573fa84ccef1cd59e1583e6054f56a5c83d *vp90-2-03-size-198x200.webm +5d537e3c9b9c54418c79677543454c4cda3de1af *vp90-2-03-size-198x200.webm.md5 +ecc845bf574375f469bc91bf5c75c79dc00073d6 *vp90-2-03-size-198x202.webm +1b59f5e111265615a7a459eeda8cc9045178d228 *vp90-2-03-size-198x202.webm.md5 +432fb27144fe421b9f51cf44d2750a26133ed585 *vp90-2-03-size-198x208.webm +a58a67f4fb357c73ca078aeecbc0f782975630b1 *vp90-2-03-size-198x208.webm.md5 +ff5058e7e6a47435046612afc8536f2040989e6f *vp90-2-03-size-198x210.webm +18d3be7935e52217e2e9400b6f2c681a9e45dc89 *vp90-2-03-size-198x210.webm.md5 +a0d55263c1ed2c03817454dd4ec4090d36dbc864 *vp90-2-03-size-198x224.webm +efa366a299817e2da51c00623b165aab9fbb8d91 *vp90-2-03-size-198x224.webm.md5 +ccd142fa2920fc85bb753f049160c1c353ad1574 *vp90-2-03-size-198x226.webm +534524a0b2dbff852e0b92ef09939db072f83243 *vp90-2-03-size-198x226.webm.md5 +0d483b94ed40abc8ab6e49f960432ee54ad9c7f1 *vp90-2-03-size-200x196.webm +41795f548181717906e7a504ba551f06c32102ae *vp90-2-03-size-200x196.webm.md5 +f6c2dc54e0989d50f01333fe40c91661fcbf849a *vp90-2-03-size-200x198.webm +43df5d8c46a40089441392e6d096c588c1079a68 *vp90-2-03-size-200x198.webm.md5 +2f6e9df82e44fc145f0d9212dcccbed3de605e23 *vp90-2-03-size-200x200.webm +757b2ef96b82093255725bab9690bbafe27f3caf *vp90-2-03-size-200x200.webm.md5 +40c5ea60415642a4a2e75c0d127b06309baadfab *vp90-2-03-size-200x202.webm +3022c4a1c625b5dc04fdb1052d17d45b4171cfba *vp90-2-03-size-200x202.webm.md5 +6942ed5b27476bb8506d10e600d6ff60887780ca *vp90-2-03-size-200x208.webm +c4ab8c66f3cf2dc8e8dd7abae9ac21f4d32cd6be *vp90-2-03-size-200x208.webm.md5 +71dbc99b83c49d1da45589b91eabb98e2f4a7b1e *vp90-2-03-size-200x210.webm +3f0b40da7eef7974b9bc326562f251feb67d9c7c *vp90-2-03-size-200x210.webm.md5 +6b6b8489081cfefb377cc5f18eb754ec2383f655 *vp90-2-03-size-200x224.webm +a259df2ac0e294492e3f9d4315baa34cab044f04 *vp90-2-03-size-200x224.webm.md5 +c9adc1c9bb07559349a0b054df4af56f7a6edbb9 *vp90-2-03-size-200x226.webm +714cec61e3575581e4f1a0e3921f4dfdbbd316c5 *vp90-2-03-size-200x226.webm.md5 +f9bdc936bdf53f8be9ce78fecd41a21d31ff3943 *vp90-2-03-size-202x196.webm +5b8e2e50fcea2c43b12fc067b8a9cc117af77bda *vp90-2-03-size-202x196.webm.md5 +c7b66ea3da87613deb47ff24a111247d3c384fec *vp90-2-03-size-202x198.webm +517e91204b25586da943556f4adc5951c9be8bee *vp90-2-03-size-202x198.webm.md5 +935ef56b01cfdb4265a7e24696645209ccb20970 *vp90-2-03-size-202x200.webm +55b8ec4a2513183144a8e27564596c06c7576fce *vp90-2-03-size-202x200.webm.md5 +849acf75e4f1d8d90046704e1103a18c64f30e35 *vp90-2-03-size-202x202.webm +c79afc6660df2824e7df314e5bfd71f0d8acf76b *vp90-2-03-size-202x202.webm.md5 +17b3a4d55576b770626ccb856b9f1a6c8f6ae476 *vp90-2-03-size-202x208.webm +0b887ff30409c58f2ccdc3bfacd6be7c69f8997a *vp90-2-03-size-202x208.webm.md5 +032d0ade4230fb2eef6d19915a7a1c9aa4a52617 *vp90-2-03-size-202x210.webm +f78f8e79533c0c88dd2bfdcec9b1c07848568ece *vp90-2-03-size-202x210.webm.md5 +915a38c31fe425d5b93c837121cfa8082f5ea5bc *vp90-2-03-size-202x224.webm +bf52a104074d0c5942aa7a5b31e11db47e43d48e *vp90-2-03-size-202x224.webm.md5 +be5cfde35666fa435e47d544d9258215beb1cf29 *vp90-2-03-size-202x226.webm +2fa2f87502fda756b319389c8975204e130a2e3f *vp90-2-03-size-202x226.webm.md5 +15d908e97862b5b4bf295610df011fb9aa09909b *vp90-2-03-size-208x196.webm +50c60792305d6a99be376dd596a6ff979325e6cc *vp90-2-03-size-208x196.webm.md5 +a367c7bc9fde56d6f4848cc573c7d4c1ce75e348 *vp90-2-03-size-208x198.webm +be85fb2c8d435a75484231356f07d06ebddd13cd *vp90-2-03-size-208x198.webm.md5 +05fd46deb7288e7253742091f56e54a9a441a187 *vp90-2-03-size-208x200.webm +74f8ec3b3a2fe81767ed1ab36a47bc0062d6223c *vp90-2-03-size-208x200.webm.md5 +d8985c4b386513a7385a4b3639bf91e469f1378b *vp90-2-03-size-208x202.webm +0614a1e8d92048852adcf605a51333f5fabc7f03 *vp90-2-03-size-208x202.webm.md5 +28b002242238479165ba4fb87ee6b442c64b32e4 *vp90-2-03-size-208x208.webm +37de5aca59bb900228400b0e115d3229edb9dcc0 *vp90-2-03-size-208x208.webm.md5 +c545be0050c2fad7c68427dbf86c62a739e94ab3 *vp90-2-03-size-208x210.webm +d646eccb3cd578f94b54777e32b88898bef6e17a *vp90-2-03-size-208x210.webm.md5 +63a0cfe295b661026dd7b1bebb67acace1db766f *vp90-2-03-size-208x224.webm +85c0361d93bf85a335248fef2767ff43eeef23db *vp90-2-03-size-208x224.webm.md5 +f911cc718d66e4fe8a865226088939c9eb1b7825 *vp90-2-03-size-208x226.webm +a6d583a57876e7b7ec48625b2b2cdbcf70cab837 *vp90-2-03-size-208x226.webm.md5 +5bbb0f36da9a4683cf04e724124d8696332911bf *vp90-2-03-size-210x196.webm +a3580fc7816d7fbcfb54fdba501cabbd06ba2f1d *vp90-2-03-size-210x196.webm.md5 +8db64d6f9ce36dd382013b42ae4e292deba697bc *vp90-2-03-size-210x198.webm +eda20f8268c7f4147bead4059e9c4897e09140a9 *vp90-2-03-size-210x198.webm.md5 +ce391505eeaf1d12406563101cd6b2dbbbb44bfc *vp90-2-03-size-210x200.webm +79d73b7f623082d2a00aa33e95c79d11c7d9c3a8 *vp90-2-03-size-210x200.webm.md5 +852db6fdc206e72391fc69b807f1954934679949 *vp90-2-03-size-210x202.webm +f69414c5677ed2f2b8b37ae76429e509a92276a5 *vp90-2-03-size-210x202.webm.md5 +c424cc3edd2308da7d33f27acb36b54db5bf2595 *vp90-2-03-size-210x208.webm +27b18562faa1b3184256f4eae8114b539b3e9d3e *vp90-2-03-size-210x208.webm.md5 +dd029eba719d50a2851592fa8b9b2efe88904930 *vp90-2-03-size-210x210.webm +c853a1670465eaa04ca31b3511995f1b6ed4f58f *vp90-2-03-size-210x210.webm.md5 +d962e8ae676c54d0c3ea04ec7c04b37ae6a786e3 *vp90-2-03-size-210x224.webm +93b793e79d987065b39ad8e2e71244368435fc25 *vp90-2-03-size-210x224.webm.md5 +3d0825fe83bcc125be1f78145ff43ca6d7588784 *vp90-2-03-size-210x226.webm +5230f31a57ca3b5311698a12035d2644533b3ec4 *vp90-2-03-size-210x226.webm.md5 +6622f8bd9279e1ce45509a58a31a990052d45e14 *vp90-2-03-size-224x196.webm +65411da07f60113f2be05c807879072b161d561e *vp90-2-03-size-224x196.webm.md5 +6744ff2ee2c41eb08c62ff30880833b6d77b585b *vp90-2-03-size-224x198.webm +46ea3641d41acd4bff347b224646c060d5620385 *vp90-2-03-size-224x198.webm.md5 +8eb91f3416a1404705f370caecd74b2b458351b1 *vp90-2-03-size-224x200.webm +196aefb854c8b95b9330263d6690b7ee15693ecf *vp90-2-03-size-224x200.webm.md5 +256a5a23ef4e6d5ef2871af5afb8cd13d28cec00 *vp90-2-03-size-224x202.webm +840ad8455dcf2be378c14b007e66fa642fc8196d *vp90-2-03-size-224x202.webm.md5 +db4606480ab48b96c9a6ff5e639f1f1aea2a12e4 *vp90-2-03-size-224x208.webm +40b9801d5620467499ac70fa6b7c40aaa5e1c331 *vp90-2-03-size-224x208.webm.md5 +e37159e687fe1cb24cffddfae059301adbaf4212 *vp90-2-03-size-224x210.webm +1e4acd4b6334ae260c3eed08652d0ba8122073f2 *vp90-2-03-size-224x210.webm.md5 +0de1eb4bb6285ae621e4f2b613d2aa4a8c95a130 *vp90-2-03-size-224x224.webm +37db449ad86fb286c2c02d94aa8fe0379c05044a *vp90-2-03-size-224x224.webm.md5 +32ebbf903a7d7881bcfe59639f1d472371f3bf27 *vp90-2-03-size-224x226.webm +5cc3ac5dc9f6912491aa2ddac863f8187f34c569 *vp90-2-03-size-224x226.webm.md5 +9480ff5c2c32b1870ac760c87514912616e6cf01 *vp90-2-03-size-226x196.webm +fe83655c0f1888f0af7b047785f01ba7ca9f1324 *vp90-2-03-size-226x196.webm.md5 +09cad4221996315cdddad4e502dbfabf53ca1d6a *vp90-2-03-size-226x198.webm +e3ddfdc650acb95adb45abd9b634e1f09ea8ac96 *vp90-2-03-size-226x198.webm.md5 +c34f49d55fe39e3f0b607e3cc95e30244225cecb *vp90-2-03-size-226x200.webm +abb83edc868a3523ccd4e5523fac2efbe7c3df1f *vp90-2-03-size-226x200.webm.md5 +d17bc08eedfc60c4c23d576a6c964a21bf854d1f *vp90-2-03-size-226x202.webm +1d22d2d0f375251c2d5a1acb4714bc35d963865b *vp90-2-03-size-226x202.webm.md5 +9bd537c4f92a25596ccd29fedfe181feac948b92 *vp90-2-03-size-226x208.webm +6feb0e7325386275719f3511ada9e248a2ae7df4 *vp90-2-03-size-226x208.webm.md5 +4487067f6cedd495b93696b44b37fe0a3e7eda14 *vp90-2-03-size-226x210.webm +49a8fa87945f47208168d541c068e78d878075d5 *vp90-2-03-size-226x210.webm.md5 +559fea2f8da42b33c1aa1dbc34d1d6781009847a *vp90-2-03-size-226x224.webm +83c6d8f2969b759e10e5c6542baca1265c874c29 *vp90-2-03-size-226x224.webm.md5 +fe0af2ee47b1e5f6a66db369e2d7e9d870b38dce *vp90-2-03-size-226x226.webm +94ad19b8b699cea105e2ff18f0df2afd7242bcf7 *vp90-2-03-size-226x226.webm.md5 +52bc1dfd3a97b24d922eb8a31d07527891561f2a *vp90-2-03-size-352x288.webm +3084d6d0a1eec22e85a394422fbc8faae58930a5 *vp90-2-03-size-352x288.webm.md5 +b6524e4084d15b5d0caaa3d3d1368db30cbee69c *vp90-2-03-deltaq.webm +65f45ec9a55537aac76104818278e0978f94a678 *vp90-2-03-deltaq.webm.md5 +4dbb87494c7f565ffc266c98d17d0d8c7a5c5aba *vp90-2-05-resize.ivf +7f6d8879336239a43dbb6c9f13178cb11cf7ed09 *vp90-2-05-resize.ivf.md5 +bf61ddc1f716eba58d4c9837d4e91031d9ce4ffe *vp90-2-06-bilinear.webm +f6235f937552e11d8eb331ec55da6b3aa596b9ac *vp90-2-06-bilinear.webm.md5 +0c83a1e414fde3bccd6dc451bbaee68e59974c76 *vp90-2-07-frame_parallel.webm +e5c2c9fb383e5bf3b563480adaeba5b7e3475ecd *vp90-2-07-frame_parallel.webm.md5 +086c7edcffd699ae7d99d710fd7e53b18910ca5b *vp90-2-08-tile_1x2_frame_parallel.webm +e981ecaabb29a80e0cbc1f4002384965ce8e95bb *vp90-2-08-tile_1x2_frame_parallel.webm.md5 +ed79be026a6f28646c5825da1c12d1fbc70f96a4 *vp90-2-08-tile_1x2.webm +45b404e025841c9750895fc1a9f6bd384fe6a315 *vp90-2-08-tile_1x2.webm.md5 +cf8ea970c776797aae71dac8317ea926d9431cab *vp90-2-08-tile_1x4_frame_parallel.webm +a481fbea465010b57af5a19ebf6d4a5cfe5b9278 *vp90-2-08-tile_1x4_frame_parallel.webm.md5 +0203ec456277a01aec401e7fb6c72c9a7e5e3f9d *vp90-2-08-tile_1x4.webm +c9b237dfcc01c1b414fbcaa481d014a906ef7998 *vp90-2-08-tile_1x4.webm.md5 +20c75157e91ab41f82f70ffa73d5d01df8469287 *vp90-2-08-tile-4x4.webm +ae7451810247fd13975cc257aa0301ff17102255 *vp90-2-08-tile-4x4.webm.md5 +2ec6e15422ac7a61af072dc5f27fcaf1942ce116 *vp90-2-08-tile-4x1.webm +0094f5ee5e46345017c30e0aa4835b550212d853 *vp90-2-08-tile-4x1.webm.md5 +edea45dac4a3c2e5372339f8851d24c9bef803d6 *vp90-2-09-subpixel-00.ivf +5428efc4bf92191faedf4a727fcd1d94966a7abc *vp90-2-09-subpixel-00.ivf.md5 +8cdd435d89029987ee196896e21520e5f879f04d *vp90-2-bbb_1280x720_tile_1x4_1310kbps.webm +091b373aa2ecb59aa5c647affd5bcafcc7547364 *vp90-2-bbb_1920x1080_tile_1x1_2581kbps.webm +87ee28032b0963a44b73a850fcc816a6dc83efbb *vp90-2-bbb_1920x1080_tile_1x4_2586kbps.webm +c6ce25c4bfd4bdfc2932b70428e3dfe11210ec4f *vp90-2-bbb_1920x1080_tile_1x4_fpm_2304kbps.webm +2064bdb22aa71c2691e0469fb62e8087a43f08f8 *vp90-2-bbb_426x240_tile_1x1_180kbps.webm +8080eda22694910162f0996e8a962612f381a57f *vp90-2-bbb_640x360_tile_1x2_337kbps.webm +a484b335c27ea189c0f0d77babea4a510ce12d50 *vp90-2-bbb_854x480_tile_1x2_651kbps.webm +3eacf1f006250be4cc5c92a7ef146e385ee62653 *vp90-2-sintel_1280x546_tile_1x4_1257kbps.webm +217f089a16447490823127b36ce0d945522accfd *vp90-2-sintel_1920x818_tile_1x4_fpm_2279kbps.webm +eedb3c641e60dacbe082491a16df529a5c9187df *vp90-2-sintel_426x182_tile_1x1_171kbps.webm +cb7e4955af183dff33bcba0c837f0922ab066400 *vp90-2-sintel_640x272_tile_1x2_318kbps.webm +48613f9380e2580002f8a09d6e412ea4e89a52b9 *vp90-2-sintel_854x364_tile_1x2_621kbps.webm +990a91f24dd284562d21d714ae773dff5452cad8 *vp90-2-tos_1280x534_tile_1x4_1306kbps.webm +aa402217577a659cfc670157735b4b8e9aa670fe *vp90-2-tos_1280x534_tile_1x4_fpm_952kbps.webm +b6dd558c90bca466b4bcbd03b3371648186465a7 *vp90-2-tos_1920x800_tile_1x4_fpm_2335kbps.webm +1a9c2914ba932a38f0a143efc1ad0e318e78888b *vp90-2-tos_426x178_tile_1x1_181kbps.webm +a3d2b09f24debad4747a1b3066f572be4273bced *vp90-2-tos_640x266_tile_1x2_336kbps.webm +c64b03b5c090e6888cb39685c31f00a6b79fa45c *vp90-2-tos_854x356_tile_1x2_656kbps.webm +94b533dbcf94292001e27cc51fec87f9e8c90c0b *vp90-2-tos_854x356_tile_1x2_fpm_546kbps.webm +0e7cd4135b231c9cea8d76c19f9e84b6fd77acec *vp90-2-08-tile_1x8_frame_parallel.webm +c9b6850af28579b031791066457f4cb40df6e1c7 *vp90-2-08-tile_1x8_frame_parallel.webm.md5 +e448b6e83490bca0f8d58b4f4b1126a17baf4b0c *vp90-2-08-tile_1x8.webm +5e524165f0397e6141d914f4f0a66267d7658376 *vp90-2-08-tile_1x8.webm.md5 +a34e14923d6d17b1144254d8187d7f85b700a63c *vp90-2-02-size-lf-1920x1080.webm +e3b28ddcfaeb37fb4d132b93f92642a9ad17c22d *vp90-2-02-size-lf-1920x1080.webm.md5 +d48c5db1b0f8e60521a7c749696b8067886033a3 *vp90-2-09-aq2.webm +84c1599298aac78f2fc05ae2274575d10569dfa0 *vp90-2-09-aq2.webm.md5 +55fc55ed73d578ed60fad05692579873f8bad758 *vp90-2-09-lf_deltas.webm +54638c38009198c38c8f3b25c182b709b6c1fd2e *vp90-2-09-lf_deltas.webm.md5 +510d95f3beb3b51c572611fdaeeece12277dac30 *vp90-2-10-show-existing-frame.webm +14d631096f4bfa2d71f7f739aec1448fb3c33bad *vp90-2-10-show-existing-frame.webm.md5 +d2feea7728e8d2c615981d0f47427a4a5a45d881 *vp90-2-10-show-existing-frame2.webm +5f7c7811baa3e4f03be1dd78c33971b727846821 *vp90-2-10-show-existing-frame2.webm.md5 +b4318e75f73a6a08992c7326de2fb589c2a794c7 *vp90-2-11-size-351x287.webm +b3c48382cf7d0454e83a02497c229d27720f9e20 *vp90-2-11-size-351x287.webm.md5 +8e0096475ea2535bac71d3e2fc09e0c451c444df *vp90-2-11-size-351x288.webm +19e003804ec1dfc5464813b32339a15d5ba7b42f *vp90-2-11-size-351x288.webm.md5 +40cd1d6a188d7a88b21ebac1e573d3f270ab261e *vp90-2-11-size-352x287.webm +68f515abe3858fc1eded46c8e6b2f727d43b5331 *vp90-2-11-size-352x287.webm.md5 +9a510769ff23db410880ec3029d433e87d17f7fc *vp90-2-12-droppable_1.ivf +952eaac6eefa6f62179ed1db3e922fd42fecc624 *vp90-2-12-droppable_1.ivf.md5 +9a510769ff23db410880ec3029d433e87d17f7fc *vp90-2-12-droppable_2.ivf +92a756469fa438220524e7fa6ac1d38c89514d17 *vp90-2-12-droppable_2.ivf.md5 +c21e97e4ba486520118d78b01a5cb6e6dc33e190 *vp90-2-12-droppable_3.ivf +601abc9e4176c70f82ac0381365e9b151fdd24cd *vp90-2-12-droppable_3.ivf.md5 +61c640dad23cd4f7ad811b867e7b7e3521f4e3ba *vp90-2-13-largescaling.webm +bca1b02eebdb088fa3f389fe0e7571e75a71f523 *vp90-2-13-largescaling.webm.md5 +c740708fa390806eebaf669909c1285ab464f886 *vp90-2-14-resize-fp-tiles-1-2.webm +c7b85ffd8e11500f73f52e7dc5a47f57c393d47f *vp90-2-14-resize-fp-tiles-1-2.webm.md5 +ec8faa352a08f7033c60f29f80d505e2d7daa103 *vp90-2-14-resize-fp-tiles-1-4.webm +6852c783fb421bda5ded3d4c5a3ffc46de03fbc1 *vp90-2-14-resize-fp-tiles-1-4.webm.md5 +8af61853ac0d07c4cb5bf7c2016661ba350b3497 *vp90-2-14-resize-fp-tiles-1-8.webm +571353bac89fea60b5706073409aa3c0d42aefe9 *vp90-2-14-resize-fp-tiles-1-8.webm.md5 +b1c187ed69931496b82ec194017a79831bafceef *vp90-2-14-resize-fp-tiles-1-16.webm +1c199a41afe42ce303944d70089eaaa2263b4a09 *vp90-2-14-resize-fp-tiles-1-16.webm.md5 +8eaae5a6f2dff934610b0c7a917d7f583ba74aa5 *vp90-2-14-resize-fp-tiles-2-1.webm +db18fcf915f7ffaea6c39feab8bda6c1688af011 *vp90-2-14-resize-fp-tiles-2-1.webm.md5 +bc3046d138941e2a20e9ceec0ff6d25c25d12af3 *vp90-2-14-resize-fp-tiles-4-1.webm +393211b808030d09a79927b17a4374b2f68a60ae *vp90-2-14-resize-fp-tiles-4-1.webm.md5 +6e8f8e31721a0f7f68a2964e36e0e698c2e276b1 *vp90-2-14-resize-fp-tiles-8-1.webm +491fd3cd78fb0577bfe905bb64bbf64bd7d29140 *vp90-2-14-resize-fp-tiles-8-1.webm.md5 +cc5958da2a7edf739cd2cfeb18bd05e77903087e *vp90-2-14-resize-fp-tiles-16-1.webm +0b58daf55aaf9063bf5b4fb33393d18b417dc428 *vp90-2-14-resize-fp-tiles-16-1.webm.md5 +821eeecc9d8c6a316134dd42d1ff057787d8047b *vp90-2-14-resize-fp-tiles-2-4.webm +374c549f2839a3d0b732c4e3650700144037e76c *vp90-2-14-resize-fp-tiles-2-4.webm.md5 +dff8c8e49aacea9f4c7f22cb882da984e2a1b405 *vp90-2-14-resize-fp-tiles-2-8.webm +e5b8820a7c823b21297d6e889e57ec401882c210 *vp90-2-14-resize-fp-tiles-2-8.webm.md5 +77629e4b23e32896aadf6e994c78bd4ffa1c7797 *vp90-2-14-resize-fp-tiles-2-16.webm +1937f5df032664ac345d4613ad4417b4967b1230 *vp90-2-14-resize-fp-tiles-2-16.webm.md5 +380ba5702bb1ec7947697314ab0300b5c56a1665 *vp90-2-14-resize-fp-tiles-4-2.webm +fde7b30d2aa64c1e851a4852f655d79fc542cf66 *vp90-2-14-resize-fp-tiles-4-2.webm.md5 +dc784b258ffa2abc2ae693d11792acf0bb9cb74f *vp90-2-14-resize-fp-tiles-8-2.webm +edf26f0130aeee8342d49c2c8f0793ad008782d9 *vp90-2-14-resize-fp-tiles-8-2.webm.md5 +8e575789fd63ebf69e8eff1b9a4351a249a73bee *vp90-2-14-resize-fp-tiles-16-2.webm +b6415318c1c589a1f64b9d569ce3cabbec2e0d52 *vp90-2-14-resize-fp-tiles-16-2.webm.md5 +e3adc944a11c4c5517e63664c84ebb0847b64d81 *vp90-2-14-resize-fp-tiles-4-8.webm +03cba0532bc90a05b1990db830bf5701e24e7982 *vp90-2-14-resize-fp-tiles-4-8.webm.md5 +3b27a991eb6d78dce38efab35b7db682e8cbbee3 *vp90-2-14-resize-fp-tiles-4-16.webm +5d16b7f82bf59f802724ddfd97abb487150b1c9d *vp90-2-14-resize-fp-tiles-4-16.webm.md5 +d5fed8c28c1d4c7e232ebbd25cf758757313ed96 *vp90-2-14-resize-fp-tiles-8-4.webm +5a8ff8a52cbbde7bfab569beb6d971c5f8b904f7 *vp90-2-14-resize-fp-tiles-8-4.webm.md5 +17a5faa023d77ee9dad423a4e0d3145796bbc500 *vp90-2-14-resize-fp-tiles-16-4.webm +2ef8daa3c3e750fd745130d0a76a39fe86f0448f *vp90-2-14-resize-fp-tiles-16-4.webm.md5 +9361e031f5cc990d8740863e310abb5167ae351e *vp90-2-14-resize-fp-tiles-8-16.webm +57f13a2197486584f4e1a4f82ad969f3abc5a1a2 *vp90-2-14-resize-fp-tiles-8-16.webm.md5 +5803fc6fcbfb47b7661f3fcc6499158a32b56675 *vp90-2-14-resize-fp-tiles-16-8.webm +be0fe64a1a4933696ff92d93f9bdecdbd886dc13 *vp90-2-14-resize-fp-tiles-16-8.webm.md5 +0ac0f6d20a0afed77f742a3b9acb59fd7b9cb093 *vp90-2-14-resize-fp-tiles-1-2-4-8-16.webm +1765315acccfe6cd12230e731369fcb15325ebfa *vp90-2-14-resize-fp-tiles-1-2-4-8-16.webm.md5 +4a2b7a683576fe8e330c7d1c4f098ff4e70a43a8 *vp90-2-14-resize-fp-tiles-16-8-4-2-1.webm +1ef480392112b3509cb190afbb96f9a38dd9fbac *vp90-2-14-resize-fp-tiles-16-8-4-2-1.webm.md5 +e615575ded499ea1d992f3b38e3baa434509cdcd *vp90-2-15-segkey.webm +e3ab35d4316c5e81325c50f5236ceca4bc0d35df *vp90-2-15-segkey.webm.md5 +9b7ca2cac09d34c4a5d296c1900f93b1e2f69d0d *vp90-2-15-segkey_adpq.webm +8f46ba5f785d0c2170591a153e0d0d146a7c8090 *vp90-2-15-segkey_adpq.webm.md5 +698a6910a97486b833073ef0c0b18d75dce57ee8 *vp90-2-16-intra-only.webm +5661b0168752969f055eec37b05fa9fa947dc7eb *vp90-2-16-intra-only.webm.md5 +c01bb7938f9a9f25e0c37afdec2f2fb73b6cc7fa *vp90-2-17-show-existing-frame.webm +cc75f351818b9a619818f5cc77b9bc013d0c1e11 *vp90-2-17-show-existing-frame.webm.md5 +013708bd043f0821a3e56fb8404d82e7a0c7af6c *vp91-2-04-yuv422.webm +1e58a7d23adad830a672f1733c9d2ae17890d59c *vp91-2-04-yuv422.webm.md5 +25d78f28948789d159a9453ebc13048b818251b1 *vp91-2-04-yuv440.webm +81b3870b27a7f695ef6a43e87ab04bbdb5aee2f5 *vp91-2-04-yuv440.webm.md5 +0321d507ce62dedc8a51b4e9011f7a19aed9c3dc *vp91-2-04-yuv444.webm +367e423dd41fdb49aa028574a2cfec5c2f325c5c *vp91-2-04-yuv444.webm.md5 +f77673b566f686853adefe0c578ad251b7241281 *vp92-2-20-10bit-yuv420.webm +abdedfaddacbbe1a15ac7a54e86360f03629fb7a *vp92-2-20-10bit-yuv420.webm.md5 +0c2c355a1b17b28537c5a3b19997c8783b69f1af *vp92-2-20-12bit-yuv420.webm +afb2c2798703e039189b0a15c8ac5685aa51d33f *vp92-2-20-12bit-yuv420.webm.md5 +0d661bc6e83da33238981481efd1b1802d323d88 *vp93-2-20-10bit-yuv422.webm +10318907063db22eb02fad332556edbbecd443cc *vp93-2-20-10bit-yuv422.webm.md5 +ebc6be2f7511a0bdeac0b18c67f84ba7168839c7 *vp93-2-20-12bit-yuv422.webm +235232267c6a1dc8a11e45d600f1c99d2f8b42d4 *vp93-2-20-12bit-yuv422.webm.md5 +f76b11b26d4beaceac7a7e7729dd5054d095164f *vp93-2-20-10bit-yuv440.webm +757b33b5ac969c5999999488a731a3d1e6d9fb88 *vp93-2-20-10bit-yuv440.webm.md5 +df8807dbd29bec795c2db9c3c18e511fbb988101 *vp93-2-20-12bit-yuv440.webm +ea4100930c3f59a1c23fbb33ab0ea01151cae159 *vp93-2-20-12bit-yuv440.webm.md5 +189c1b5f404ff41a50a7fc96341085ad541314a9 *vp93-2-20-10bit-yuv444.webm +2dd0177c2f9d970b6e698892634c653630f91f40 *vp93-2-20-10bit-yuv444.webm.md5 +bd44cf6e1c27343e3639df9ac21346aedd5d6973 *vp93-2-20-12bit-yuv444.webm +f36e5bdf5ec3213f32c0ddc82f95d82c5133bf27 *vp93-2-20-12bit-yuv444.webm.md5 +eb438c6540eb429f74404eedfa3228d409c57874 *desktop_640_360_30.yuv +89e70ebd22c27d275fe14dc2f1a41841a6d8b9ab *kirland_640_480_30.yuv +33c533192759e5bb4f07abfbac389dc259db4686 *macmarcomoving_640_480_30.yuv +8bfaab121080821b8f03b23467911e59ec59b8fe *macmarcostationary_640_480_30.yuv +70894878d916a599842d9ad0dcd24e10c13e5467 *niklas_640_480_30.yuv +8784b6df2d8cc946195a90ac00540500d2e522e4 *tacomanarrows_640_480_30.yuv +edd86a1f5e62fd9da9a9d46078247759c2638009 *tacomasmallcameramovement_640_480_30.yuv +9a70e8b7d14fba9234d0e51dce876635413ce444 *thaloundeskmtg_640_480_30.yuv +e7d315dbf4f3928779e0dc624311196d44491d32 *niklas_1280_720_30.yuv +c77e4a26616add298a05dd5d12397be22c0e40c5 *vp90-2-18-resize.ivf +c12918cf0a716417fba2de35c3fc5ab90e52dfce *vp90-2-18-resize.ivf.md5 +717da707afcaa1f692ff1946f291054eb75a4f06 *screendata.y4m +b7c1296630cdf1a7ef493d15ff4f9eb2999202f6 *invalid-vp90-2-08-tile_1x2_frame_parallel.webm.ivf.s47039_r01-05_b6-.ivf +0a3884edb3fd8f9d9b500223e650f7de257b67d8 *invalid-vp90-2-08-tile_1x2_frame_parallel.webm.ivf.s47039_r01-05_b6-.ivf.res +359e138dfb66863828397b77000ea7a83c844d02 *invalid-vp90-2-08-tile_1x8_frame_parallel.webm.ivf.s288_r01-05_b6-.ivf +bbd33de01c17b165b4ce00308e8a19a942023ab8 *invalid-vp90-2-08-tile_1x8_frame_parallel.webm.ivf.s288_r01-05_b6-.ivf.res +fac89b5735be8a86b0dc05159f996a5c3208ae32 *invalid-vp90-2-09-aq2.webm.ivf.s3984_r01-05_b6-.v2.ivf +0a3884edb3fd8f9d9b500223e650f7de257b67d8 *invalid-vp90-2-09-aq2.webm.ivf.s3984_r01-05_b6-.v2.ivf.res +4506dfdcdf8ee4250924b075a0dcf1f070f72e5a *invalid-vp90-2-09-subpixel-00.ivf.s19552_r01-05_b6-.v2.ivf +bcdedaf168ac225575468fda77502d2dc9fd5baa *invalid-vp90-2-09-subpixel-00.ivf.s19552_r01-05_b6-.v2.ivf.res +65e93f9653bcf65b022f7d225268d1a90a76e7bb *vp90-2-19-skip.webm +368dccdde5288c13c25695d2eacdc7402cadf613 *vp90-2-19-skip.webm.md5 +ffe460282df2b0e7d4603c2158653ad96f574b02 *vp90-2-19-skip-01.webm +bd21bc9eda4a4a36b221d71ede3a139fc3c7bd85 *vp90-2-19-skip-01.webm.md5 +178f5bd239e38cc1cc2657a7a5e1a9f52ad2d3fe *vp90-2-19-skip-02.webm +9020d5e260bd7df08e2b3d4b86f8623cee3daea2 *vp90-2-19-skip-02.webm.md5 +b03c408cf23158638da18dbc3323b99a1635c68a *invalid-vp90-2-12-droppable_1.ivf.s3676_r01-05_b6-.ivf +0a3884edb3fd8f9d9b500223e650f7de257b67d8 *invalid-vp90-2-12-droppable_1.ivf.s3676_r01-05_b6-.ivf.res +5e67e24e7f53fd189e565513cef8519b1bd6c712 *invalid-vp90-2-05-resize.ivf.s59293_r01-05_b6-.ivf +741158f67c0d9d23726624d06bdc482ad368afc9 *invalid-vp90-2-05-resize.ivf.s59293_r01-05_b6-.ivf.res +8b1f7bf7e86c0976d277f60e8fcd9539e75a079a *invalid-vp90-2-09-subpixel-00.ivf.s20492_r01-05_b6-.v2.ivf +9c6bdf048fb2e66f07d4b4db5b32e6f303bd6109 *invalid-vp90-2-09-subpixel-00.ivf.s20492_r01-05_b6-.v2.ivf.res +552e372e9b78127389fb06b34545df2cec15ba6d *invalid-vp91-2-mixedrefcsp-444to420.ivf +a61774cf03fc584bd9f0904fc145253bb8ea6c4c *invalid-vp91-2-mixedrefcsp-444to420.ivf.res +812d05a64a0d83c1b504d0519927ddc5a2cdb273 *invalid-vp90-2-12-droppable_1.ivf.s73804_r01-05_b6-.ivf +1e472baaf5f6113459f0399a38a5a5e68d17799d *invalid-vp90-2-12-droppable_1.ivf.s73804_r01-05_b6-.ivf.res +f97088c7359fc8d3d5aa5eafe57bc7308b3ee124 *vp90-2-20-big_superframe-01.webm +47d7d409785afa33b123376de0c907336e6c7bd7 *vp90-2-20-big_superframe-01.webm.md5 +65ade6d2786209582c50d34cfe22b3cdb033abaf *vp90-2-20-big_superframe-02.webm +7c0ed8d04c4d06c5411dd2e5de2411d37f092db5 *vp90-2-20-big_superframe-02.webm.md5 +667ec8718c982aef6be07eb94f083c2efb9d2d16 *vp90-2-07-frame_parallel-1.webm +bfc82bf848e9c05020d61e3ffc1e62f25df81d19 *vp90-2-07-frame_parallel-1.webm.md5 +efd5a51d175cfdacd169ed23477729dc558030dc *invalid-vp90-2-07-frame_parallel-1.webm +9f912712ec418be69adb910e2ca886a63c4cec08 *invalid-vp90-2-07-frame_parallel-2.webm +445f5a53ca9555341852997ccdd480a51540bd14 *invalid-vp90-2-07-frame_parallel-3.webm +d18c90709a0d03c82beadf10898b27d88fff719c *invalid-vp90-2-03-size-224x196.webm.ivf.s44156_r01-05_b6-.ivf +d06285d109ecbaef63b0cbcc44d70a129186f51c *invalid-vp90-2-03-size-224x196.webm.ivf.s44156_r01-05_b6-.ivf.res +e60d859b0ef2b331b21740cf6cb83fabe469b079 *invalid-vp90-2-03-size-202x210.webm.ivf.s113306_r01-05_b6-.ivf +0ae808dca4d3c1152a9576e14830b6faa39f1b4a *invalid-vp90-2-03-size-202x210.webm.ivf.s113306_r01-05_b6-.ivf.res +9cfc855459e7549fd015c79e8eca512b2f2cb7e3 *niklas_1280_720_30.y4m +5b5763b388b1b52a81bb82b39f7ec25c4bd3d0e1 *desktop_credits.y4m +85771f6ab44e4a0226e206c0cde8351dd5918953 *vp90-2-02-size-130x132.webm +512dad5eabbed37b4bbbc64ce153f1a5484427b8 *vp90-2-02-size-130x132.webm.md5 +01f7127d40360289db63b27f61cb9afcda350e95 *vp90-2-02-size-132x130.webm +4a94275328ae076cf60f966c097a8721010fbf5a *vp90-2-02-size-132x130.webm.md5 +f41c0400b5716b4b70552c40dd03d44be131e1cc *vp90-2-02-size-132x132.webm +1a69e989f697e424bfe3e3e8a77bb0c0992c8e47 *vp90-2-02-size-132x132.webm.md5 +94a5cbfacacba100e0c5f7861c72a1b417feca0f *vp90-2-02-size-178x180.webm +dedfecf1d784bcf70629592fa5e6f01d5441ccc9 *vp90-2-02-size-178x180.webm.md5 +4828b62478c04014bba3095a83106911a71cf387 *vp90-2-02-size-180x178.webm +423da2b861050c969d78ed8e8f8f14045d1d8199 *vp90-2-02-size-180x178.webm.md5 +338f7c9282f43e29940f5391118aadd17e4f9234 *vp90-2-02-size-180x180.webm +6c2ef013392310778dca5dd5351160eca66b0a60 *vp90-2-02-size-180x180.webm.md5 +679fa7d6807e936ff937d7b282e7dbd8ac76447e *vp90-2-14-resize-10frames-fp-tiles-1-2-4-8.webm +fc7267ab8fc2bf5d6c234e34ee6c078a967b4888 *vp90-2-14-resize-10frames-fp-tiles-1-2-4-8.webm.md5 +9d33a137c819792209c5ce4e4e1ee5da73d574fe *vp90-2-14-resize-10frames-fp-tiles-1-2.webm +0c78a154956a8605d050bdd75e0dcc4d39c040a6 *vp90-2-14-resize-10frames-fp-tiles-1-2.webm.md5 +d6a8d8c57f66a91d23e8e7df480f9ae841e56c37 *vp90-2-14-resize-10frames-fp-tiles-1-4.webm +e9b4e8c7b33b5fda745d340c3f47e6623ae40cf2 *vp90-2-14-resize-10frames-fp-tiles-1-4.webm.md5 +aa6fe043a0c4a42b49c87ebbe812d4afd9945bec *vp90-2-14-resize-10frames-fp-tiles-1-8.webm +028520578994c2d013d4c0129033d4f2ff31bbe0 *vp90-2-14-resize-10frames-fp-tiles-1-8.webm.md5 +d1d5463c9ea7b5cc5f609ddedccddf656f348d1a *vp90-2-14-resize-10frames-fp-tiles-2-1.webm +92d5872f5bdffbed721703b7e959b4f885e3d77a *vp90-2-14-resize-10frames-fp-tiles-2-1.webm.md5 +677cb29de1215d97346015af5807a9b1faad54cf *vp90-2-14-resize-10frames-fp-tiles-2-4.webm +a5db19f977094ec3fd60b4f7671b3e6740225e12 *vp90-2-14-resize-10frames-fp-tiles-2-4.webm.md5 +cdd3c52ba21067efdbb2de917fe2a965bf27332e *vp90-2-14-resize-10frames-fp-tiles-2-8.webm +db17ec5d894ea8b8d0b7f32206d0dd3d46dcfa6d *vp90-2-14-resize-10frames-fp-tiles-2-8.webm.md5 +0f6093c472125d05b764d7d1965c1d56771c0ea2 *vp90-2-14-resize-10frames-fp-tiles-4-1.webm +bc7c79e1bee07926dd970462ce6f64fc30eec3e1 *vp90-2-14-resize-10frames-fp-tiles-4-1.webm.md5 +c5142e2bff4091338196c8ea8bc9266e64f548bc *vp90-2-14-resize-10frames-fp-tiles-4-2.webm +22aa3dd430b69fd3d92f6561bac86deeed90486d *vp90-2-14-resize-10frames-fp-tiles-4-2.webm.md5 +ede8b1466d2f26e1b1bd9602addb9cd1017e1d8c *vp90-2-14-resize-10frames-fp-tiles-4-8.webm +508d5ebb9c0eac2a4100281a3ee052ec2fc19217 *vp90-2-14-resize-10frames-fp-tiles-4-8.webm.md5 +2b292e3392854cd1d76ae597a6f53656cf741cfa *vp90-2-14-resize-10frames-fp-tiles-8-1.webm +1c24e54fa19e94e1722f24676404444e941c3d31 *vp90-2-14-resize-10frames-fp-tiles-8-1.webm.md5 +61beda21064e09634564caa6697ab90bd53c9af7 *vp90-2-14-resize-10frames-fp-tiles-8-2.webm +9c0657b4d9e1d0e4c9d28a90e5a8630a65519124 *vp90-2-14-resize-10frames-fp-tiles-8-2.webm.md5 +1758c50a11a7c92522749b4a251664705f1f0d4b *vp90-2-14-resize-10frames-fp-tiles-8-4-2-1.webm +4f454a06750614314ae15a44087b79016fe2db97 *vp90-2-14-resize-10frames-fp-tiles-8-4-2-1.webm.md5 +3920c95ba94f1f048a731d9d9b416043b44aa4bd *vp90-2-14-resize-10frames-fp-tiles-8-4.webm +4eb347a0456d2c49a1e1d8de5aa1c51acc39887e *vp90-2-14-resize-10frames-fp-tiles-8-4.webm.md5 +4b95a74c032a473b6683d7ad5754db1b0ec378e9 *vp90-2-21-resize_inter_1280x720_5_1-2.webm +a7826dd386bedfe69d02736969bfb47fb6a40a5e *vp90-2-21-resize_inter_1280x720_5_1-2.webm.md5 +5cfff79e82c4d69964ccb8e75b4f0c53b9295167 *vp90-2-21-resize_inter_1280x720_5_3-4.webm +a18f57db4a25e1f543a99f2ceb182e00db0ee22f *vp90-2-21-resize_inter_1280x720_5_3-4.webm.md5 +d26db0811bf30eb4131d928669713e2485f8e833 *vp90-2-21-resize_inter_1280x720_7_1-2.webm +fd6f9f332cd5bea4c0f0d57be4297bea493cc5a1 *vp90-2-21-resize_inter_1280x720_7_1-2.webm.md5 +5c7d73d4d268e2ba9593b31cb091fd339505c7fd *vp90-2-21-resize_inter_1280x720_7_3-4.webm +7bbb949cabc1e70dadcc74582739f63b833034e0 *vp90-2-21-resize_inter_1280x720_7_3-4.webm.md5 +f2d2a41a60eb894aff0c5854afca15931f1445a8 *vp90-2-21-resize_inter_1920x1080_5_1-2.webm +66d7789992613ac9d678ff905ff1059daa1b89e4 *vp90-2-21-resize_inter_1920x1080_5_1-2.webm.md5 +764edb75fe7dd64e73a1b4f3b4b2b1bf237a4dea *vp90-2-21-resize_inter_1920x1080_5_3-4.webm +f78bea1075983fd990e7f25d4f31438f9b5efa34 *vp90-2-21-resize_inter_1920x1080_5_3-4.webm.md5 +96496f2ade764a5de9f0c27917c7df1f120fb2ef *vp90-2-21-resize_inter_1920x1080_7_1-2.webm +2632b635135ed5ecd67fd22dec7990d29c4f4cb5 *vp90-2-21-resize_inter_1920x1080_7_1-2.webm.md5 +74889ea42001bf41428cb742ca74e65129c886dc *vp90-2-21-resize_inter_1920x1080_7_3-4.webm +d2cf3b25956415bb579d368e7098097e482dd73a *vp90-2-21-resize_inter_1920x1080_7_3-4.webm.md5 +4658986a8ce36ebfcc80a1903e446eaab3985336 *vp90-2-21-resize_inter_320x180_5_1-2.webm +8a3d8cf325109ffa913cc9426c32eea8c202a09a *vp90-2-21-resize_inter_320x180_5_1-2.webm.md5 +16303aa45176520ee42c2c425247aadc1506b881 *vp90-2-21-resize_inter_320x180_5_3-4.webm +41cab1ddf7715b680a4dbce42faa9bcd72af4e5c *vp90-2-21-resize_inter_320x180_5_3-4.webm.md5 +56648adcee66dd0e5cb6ac947f5ee1b9cc8ba129 *vp90-2-21-resize_inter_320x180_7_1-2.webm +70047377787003cc03dda7b2394e6d7eaa666d9e *vp90-2-21-resize_inter_320x180_7_1-2.webm.md5 +d2ff99165488499cc55f75929f1ce5ca9c9e359b *vp90-2-21-resize_inter_320x180_7_3-4.webm +e69019e378114a4643db283b66d1a7e304761a56 *vp90-2-21-resize_inter_320x180_7_3-4.webm.md5 +4834d129bed0f4289d3a88f2ae3a1736f77621b0 *vp90-2-21-resize_inter_320x240_5_1-2.webm +a75653c53d22b623c1927fc0088da21dafef21f4 *vp90-2-21-resize_inter_320x240_5_1-2.webm.md5 +19818e1b7fd1c1e63d8873c31b0babe29dd33ba6 *vp90-2-21-resize_inter_320x240_5_3-4.webm +8d89814ff469a186312111651b16601dfbce4336 *vp90-2-21-resize_inter_320x240_5_3-4.webm.md5 +ac8057bae52498f324ce92a074d5f8207cc4a4a7 *vp90-2-21-resize_inter_320x240_7_1-2.webm +2643440898c83c08cc47bc744245af696b877c24 *vp90-2-21-resize_inter_320x240_7_1-2.webm.md5 +cf4a4cd38ac8b18c42d8c25a3daafdb39132256b *vp90-2-21-resize_inter_320x240_7_3-4.webm +70ba8ec9120b26e9b0ffa2c79b432f16cbcb50ec *vp90-2-21-resize_inter_320x240_7_3-4.webm.md5 +669f10409fe1c4a054010162ca47773ea1fdbead *vp90-2-21-resize_inter_640x360_5_1-2.webm +6355a04249004a35fb386dd1024214234f044383 *vp90-2-21-resize_inter_640x360_5_1-2.webm.md5 +c23763b950b8247c1775d1f8158d93716197676c *vp90-2-21-resize_inter_640x360_5_3-4.webm +59e6fc381e3ec3b7bdaac586334e0bc944d18fb6 *vp90-2-21-resize_inter_640x360_5_3-4.webm.md5 +71b45cbfdd068baa1f679a69e5e6f421d256a85f *vp90-2-21-resize_inter_640x360_7_1-2.webm +1416fc761b690c54a955c4cf017fa078520e8c18 *vp90-2-21-resize_inter_640x360_7_1-2.webm.md5 +6c409903279448a697e4db63bab1061784bcd8d2 *vp90-2-21-resize_inter_640x360_7_3-4.webm +60de1299793433a630b71130cf76c9f5965758e2 *vp90-2-21-resize_inter_640x360_7_3-4.webm.md5 +852b597b8af096d90c80bf0ed6ed3b336b851f19 *vp90-2-21-resize_inter_640x480_5_1-2.webm +f6856f19236ee46ed462bd0a2e7e72b9c3b9cea6 *vp90-2-21-resize_inter_640x480_5_1-2.webm.md5 +792a16c6f60043bd8dceb515f0b95b8891647858 *vp90-2-21-resize_inter_640x480_5_3-4.webm +68ffe59877e9a7863805e1c0a3ce18ce037d7c9d *vp90-2-21-resize_inter_640x480_5_3-4.webm.md5 +61e044c4759972a35ea3db8c1478a988910a4ef4 *vp90-2-21-resize_inter_640x480_7_1-2.webm +7739bfca167b1b43fea72f807f01e097b7cb98d8 *vp90-2-21-resize_inter_640x480_7_1-2.webm.md5 +7291af354b4418917eee00e3a7e366086a0b7a10 *vp90-2-21-resize_inter_640x480_7_3-4.webm +4a18b09ccb36564193f0215f599d745d95bb558c *vp90-2-21-resize_inter_640x480_7_3-4.webm.md5 +a000d568431d07379dd5a8ec066061c07e560b47 *invalid-vp90-2-00-quantizer-63.ivf.kf_65527x61446.ivf +1e75aad3433c5c21c194a7b53fc393970f0a8d7f *invalid-vp90-2-00-quantizer-63.ivf.kf_65527x61446.ivf.res +235182f9a1c5c8841552510dd4288487447bfc40 *invalid-vp80-00-comprehensive-018.ivf.2kf_0x6.ivf +787f04f0483320d536894282f3358a4f8cac1cf9 *invalid-vp80-00-comprehensive-018.ivf.2kf_0x6.ivf.res +91d3cefd0deb98f3b0caf3a2d900ec7a7605e53a *invalid-vp90-2-10-show-existing-frame.webm.ivf.s180315_r01-05_b6-.ivf +1e472baaf5f6113459f0399a38a5a5e68d17799d *invalid-vp90-2-10-show-existing-frame.webm.ivf.s180315_r01-05_b6-.ivf.res +70057835bf29d14e66699ce5f022df2551fb6b37 *invalid-crbug-629481.webm +5d9474c0309b7ca09a182d888f73b37a8fe1362c *invalid-crbug-629481.webm.res +7602e00378161ca36ae93cc6ee12dd30b5ba1e1d *vp90-2-22-svc_1280x720_3.ivf +02e53e3eefbf25ec0929047fe50876acdeb040bd *vp90-2-22-svc_1280x720_3.ivf.md5 +6fa3d3ac306a3d9ce1d610b78441dc00d2c2d4b9 *tos_vp8.webm +e402cbbf9e550ae017a1e9f1f73931c1d18474e8 *invalid-crbug-667044.webm +d3964f9dad9f60363c81b688324d95b4ec7c8038 *invalid-crbug-667044.webm.res +fd9df7f3f6992af1d7a9dde975c9a0d6f28c053d *invalid-bug-1443.ivf +fd3020fa6e9ca5966206738654c97dec313b0a95 *invalid-bug-1443.ivf.res +17696cd21e875f1d6e5d418cbf89feab02c8850a *vp90-2-22-svc_1280x720_1.webm +e2f9e1e47a791b4e939a9bdc50bf7a25b3761f77 *vp90-2-22-svc_1280x720_1.webm.md5 diff --git a/test/test.mk b/test/test.mk new file mode 100644 index 0000000..a3716be --- /dev/null +++ b/test/test.mk @@ -0,0 +1,194 @@ +LIBVPX_TEST_SRCS-yes += acm_random.h +LIBVPX_TEST_SRCS-yes += buffer.h +LIBVPX_TEST_SRCS-yes += clear_system_state.h +LIBVPX_TEST_SRCS-yes += codec_factory.h +LIBVPX_TEST_SRCS-yes += md5_helper.h +LIBVPX_TEST_SRCS-yes += register_state_check.h +LIBVPX_TEST_SRCS-yes += test.mk +LIBVPX_TEST_SRCS-yes += test_libvpx.cc +LIBVPX_TEST_SRCS-yes += test_vectors.cc +LIBVPX_TEST_SRCS-yes += test_vectors.h +LIBVPX_TEST_SRCS-yes += util.h +LIBVPX_TEST_SRCS-yes += video_source.h + +## +## BLACK BOX TESTS +## +## Black box tests only use the public API. +## +LIBVPX_TEST_SRCS-yes += ../md5_utils.h ../md5_utils.c +LIBVPX_TEST_SRCS-$(CONFIG_DECODERS) += ivf_video_source.h +LIBVPX_TEST_SRCS-$(CONFIG_ENCODERS) += ../y4minput.h ../y4minput.c +LIBVPX_TEST_SRCS-$(CONFIG_ENCODERS) += altref_test.cc +LIBVPX_TEST_SRCS-$(CONFIG_ENCODERS) += aq_segment_test.cc +LIBVPX_TEST_SRCS-$(CONFIG_ENCODERS) += alt_ref_aq_segment_test.cc +LIBVPX_TEST_SRCS-$(CONFIG_ENCODERS) += datarate_test.cc +LIBVPX_TEST_SRCS-$(CONFIG_ENCODERS) += encode_api_test.cc +LIBVPX_TEST_SRCS-$(CONFIG_ENCODERS) += error_resilience_test.cc +LIBVPX_TEST_SRCS-$(CONFIG_ENCODERS) += i420_video_source.h +LIBVPX_TEST_SRCS-$(CONFIG_ENCODERS) += realtime_test.cc +LIBVPX_TEST_SRCS-$(CONFIG_ENCODERS) += resize_test.cc +LIBVPX_TEST_SRCS-$(CONFIG_ENCODERS) += y4m_video_source.h +LIBVPX_TEST_SRCS-$(CONFIG_ENCODERS) += yuv_video_source.h + +LIBVPX_TEST_SRCS-$(CONFIG_VP8_ENCODER) += config_test.cc +LIBVPX_TEST_SRCS-$(CONFIG_VP8_ENCODER) += cq_test.cc +LIBVPX_TEST_SRCS-$(CONFIG_VP8_ENCODER) += keyframe_test.cc + +LIBVPX_TEST_SRCS-$(CONFIG_VP9_DECODER) += byte_alignment_test.cc +LIBVPX_TEST_SRCS-$(CONFIG_VP9_DECODER) += decode_svc_test.cc +LIBVPX_TEST_SRCS-$(CONFIG_VP9_DECODER) += external_frame_buffer_test.cc +LIBVPX_TEST_SRCS-$(CONFIG_VP9_DECODER) += user_priv_test.cc +LIBVPX_TEST_SRCS-$(CONFIG_VP9_ENCODER) += active_map_refresh_test.cc +LIBVPX_TEST_SRCS-$(CONFIG_VP9_ENCODER) += active_map_test.cc +LIBVPX_TEST_SRCS-$(CONFIG_VP9_ENCODER) += borders_test.cc +LIBVPX_TEST_SRCS-$(CONFIG_VP9_ENCODER) += cpu_speed_test.cc +LIBVPX_TEST_SRCS-$(CONFIG_VP9_ENCODER) += frame_size_tests.cc +LIBVPX_TEST_SRCS-$(CONFIG_VP9_ENCODER) += vp9_lossless_test.cc +LIBVPX_TEST_SRCS-$(CONFIG_VP9_ENCODER) += vp9_end_to_end_test.cc +LIBVPX_TEST_SRCS-$(CONFIG_VP9_ENCODER) += vp9_ethread_test.cc +LIBVPX_TEST_SRCS-$(CONFIG_VP9_ENCODER) += vp9_motion_vector_test.cc +LIBVPX_TEST_SRCS-$(CONFIG_VP9_ENCODER) += level_test.cc + +LIBVPX_TEST_SRCS-yes += decode_test_driver.cc +LIBVPX_TEST_SRCS-yes += decode_test_driver.h +LIBVPX_TEST_SRCS-$(CONFIG_ENCODERS) += encode_test_driver.cc +LIBVPX_TEST_SRCS-yes += encode_test_driver.h + +## IVF writing. +LIBVPX_TEST_SRCS-$(CONFIG_ENCODERS) += ../ivfenc.c ../ivfenc.h + +## Y4m parsing. +LIBVPX_TEST_SRCS-$(CONFIG_ENCODERS) += y4m_test.cc ../y4menc.c ../y4menc.h + +## WebM Parsing +ifeq ($(CONFIG_WEBM_IO), yes) +LIBWEBM_PARSER_SRCS += ../third_party/libwebm/mkvparser/mkvparser.cc +LIBWEBM_PARSER_SRCS += ../third_party/libwebm/mkvparser/mkvreader.cc +LIBWEBM_PARSER_SRCS += ../third_party/libwebm/mkvparser/mkvparser.h +LIBWEBM_PARSER_SRCS += ../third_party/libwebm/mkvparser/mkvreader.h +LIBVPX_TEST_SRCS-$(CONFIG_DECODERS) += $(LIBWEBM_PARSER_SRCS) +LIBVPX_TEST_SRCS-$(CONFIG_DECODERS) += ../tools_common.h +LIBVPX_TEST_SRCS-$(CONFIG_DECODERS) += ../webmdec.cc +LIBVPX_TEST_SRCS-$(CONFIG_DECODERS) += ../webmdec.h +LIBVPX_TEST_SRCS-$(CONFIG_DECODERS) += webm_video_source.h +LIBVPX_TEST_SRCS-$(CONFIG_VP9_DECODER) += vp9_skip_loopfilter_test.cc +endif + +LIBVPX_TEST_SRCS-$(CONFIG_DECODERS) += decode_api_test.cc +LIBVPX_TEST_SRCS-$(CONFIG_DECODERS) += test_vector_test.cc + +# Currently we only support decoder perf tests for vp9. Also they read from WebM +# files, so WebM IO is required. +ifeq ($(CONFIG_DECODE_PERF_TESTS)$(CONFIG_VP9_DECODER)$(CONFIG_WEBM_IO), \ + yesyesyes) +LIBVPX_TEST_SRCS-yes += decode_perf_test.cc +endif + +# encode perf tests are vp9 only +ifeq ($(CONFIG_ENCODE_PERF_TESTS)$(CONFIG_VP9_ENCODER), yesyes) +LIBVPX_TEST_SRCS-yes += encode_perf_test.cc +endif + +## Multi-codec blackbox tests. +ifeq ($(findstring yes,$(CONFIG_VP8_DECODER)$(CONFIG_VP9_DECODER)), yes) +LIBVPX_TEST_SRCS-yes += invalid_file_test.cc +endif + +## +## WHITE BOX TESTS +## +## Whitebox tests invoke functions not exposed via the public API. Certain +## shared library builds don't make these functions accessible. +## +ifeq ($(CONFIG_SHARED),) + +## VP8 +ifeq ($(CONFIG_VP8),yes) + +# These tests require both the encoder and decoder to be built. +ifeq ($(CONFIG_VP8_ENCODER)$(CONFIG_VP8_DECODER),yesyes) +LIBVPX_TEST_SRCS-yes += vp8_boolcoder_test.cc +LIBVPX_TEST_SRCS-yes += vp8_fragments_test.cc +endif + +LIBVPX_TEST_SRCS-$(CONFIG_POSTPROC) += add_noise_test.cc +LIBVPX_TEST_SRCS-$(CONFIG_POSTPROC) += pp_filter_test.cc +LIBVPX_TEST_SRCS-$(CONFIG_VP8_DECODER) += vp8_decrypt_test.cc +LIBVPX_TEST_SRCS-$(CONFIG_VP8_ENCODER) += quantize_test.cc +LIBVPX_TEST_SRCS-$(CONFIG_VP8_ENCODER) += set_roi.cc +LIBVPX_TEST_SRCS-$(CONFIG_VP8_ENCODER) += variance_test.cc +LIBVPX_TEST_SRCS-$(CONFIG_VP8_ENCODER) += vp8_fdct4x4_test.cc + +LIBVPX_TEST_SRCS-yes += idct_test.cc +LIBVPX_TEST_SRCS-yes += predict_test.cc +LIBVPX_TEST_SRCS-yes += vpx_scale_test.cc +LIBVPX_TEST_SRCS-yes += vpx_scale_test.h + +ifeq ($(CONFIG_VP8_ENCODER)$(CONFIG_TEMPORAL_DENOISING),yesyes) +LIBVPX_TEST_SRCS-$(HAVE_SSE2) += vp8_denoiser_sse2_test.cc +endif + +endif # VP8 + +## VP9 +ifeq ($(CONFIG_VP9),yes) + +# These tests require both the encoder and decoder to be built. +ifeq ($(CONFIG_VP9_ENCODER)$(CONFIG_VP9_DECODER),yesyes) +# IDCT test currently depends on FDCT function +LIBVPX_TEST_SRCS-yes += idct8x8_test.cc +LIBVPX_TEST_SRCS-yes += partial_idct_test.cc +LIBVPX_TEST_SRCS-yes += superframe_test.cc +LIBVPX_TEST_SRCS-yes += tile_independence_test.cc +LIBVPX_TEST_SRCS-yes += vp9_boolcoder_test.cc +LIBVPX_TEST_SRCS-yes += vp9_encoder_parms_get_to_decoder.cc +endif + +LIBVPX_TEST_SRCS-yes += convolve_test.cc +LIBVPX_TEST_SRCS-yes += lpf_test.cc +LIBVPX_TEST_SRCS-yes += vp9_intrapred_test.cc +LIBVPX_TEST_SRCS-$(CONFIG_VP9_DECODER) += vp9_decrypt_test.cc +LIBVPX_TEST_SRCS-$(CONFIG_VP9_DECODER) += vp9_thread_test.cc +LIBVPX_TEST_SRCS-$(CONFIG_VP9_ENCODER) += avg_test.cc +LIBVPX_TEST_SRCS-$(CONFIG_VP9_ENCODER) += comp_avg_pred_test.cc +LIBVPX_TEST_SRCS-$(CONFIG_VP9_ENCODER) += dct16x16_test.cc +LIBVPX_TEST_SRCS-$(CONFIG_VP9_ENCODER) += dct32x32_test.cc +LIBVPX_TEST_SRCS-$(CONFIG_VP9_ENCODER) += dct_partial_test.cc +LIBVPX_TEST_SRCS-$(CONFIG_VP9_ENCODER) += dct_test.cc +LIBVPX_TEST_SRCS-$(CONFIG_VP9_ENCODER) += fdct8x8_test.cc +LIBVPX_TEST_SRCS-$(CONFIG_VP9_ENCODER) += hadamard_test.cc +LIBVPX_TEST_SRCS-$(CONFIG_VP9_ENCODER) += minmax_test.cc +LIBVPX_TEST_SRCS-$(CONFIG_VP9_ENCODER) += vp9_scale_test.cc +ifneq ($(CONFIG_REALTIME_ONLY),yes) +LIBVPX_TEST_SRCS-$(CONFIG_VP9_ENCODER) += temporal_filter_test.cc +endif +LIBVPX_TEST_SRCS-$(CONFIG_VP9_ENCODER) += variance_test.cc +LIBVPX_TEST_SRCS-$(CONFIG_VP9_ENCODER) += vp9_block_error_test.cc +LIBVPX_TEST_SRCS-$(CONFIG_VP9_ENCODER) += vp9_quantize_test.cc +LIBVPX_TEST_SRCS-$(CONFIG_VP9_ENCODER) += vp9_subtract_test.cc + +ifeq ($(CONFIG_VP9_ENCODER),yes) +LIBVPX_TEST_SRCS-$(CONFIG_SPATIAL_SVC) += svc_test.cc +LIBVPX_TEST_SRCS-$(CONFIG_INTERNAL_STATS) += blockiness_test.cc +LIBVPX_TEST_SRCS-$(CONFIG_INTERNAL_STATS) += consistency_test.cc +endif + +ifeq ($(CONFIG_VP9_ENCODER)$(CONFIG_VP9_TEMPORAL_DENOISING),yesyes) +LIBVPX_TEST_SRCS-yes += vp9_denoiser_test.cc +endif +LIBVPX_TEST_SRCS-$(CONFIG_VP9_ENCODER) += vp9_arf_freq_test.cc + +endif # VP9 + +## Multi-codec / unconditional whitebox tests. + +LIBVPX_TEST_SRCS-$(CONFIG_ENCODERS) += sad_test.cc +LIBVPX_TEST_SRCS-$(CONFIG_ENCODERS) += sum_squares_test.cc + +TEST_INTRA_PRED_SPEED_SRCS-yes := test_intra_pred_speed.cc +TEST_INTRA_PRED_SPEED_SRCS-yes += ../md5_utils.h ../md5_utils.c + +endif # CONFIG_SHARED + +include $(SRC_PATH_BARE)/test/test-data.mk diff --git a/test/test_intra_pred_speed.cc b/test/test_intra_pred_speed.cc new file mode 100644 index 0000000..1cdeda4 --- /dev/null +++ b/test/test_intra_pred_speed.cc @@ -0,0 +1,586 @@ +/* + * Copyright (c) 2015 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ +// Test and time VPX intra-predictor functions + +#include +#include + +#include "third_party/googletest/src/include/gtest/gtest.h" + +#include "./vpx_dsp_rtcd.h" +#include "test/acm_random.h" +#include "test/clear_system_state.h" +#include "test/md5_helper.h" +#include "vpx/vpx_integer.h" +#include "vpx_ports/mem.h" +#include "vpx_ports/vpx_timer.h" + +// ----------------------------------------------------------------------------- + +namespace { + +typedef void (*VpxPredFunc)(uint8_t *dst, ptrdiff_t y_stride, + const uint8_t *above, const uint8_t *left); + +const int kBPS = 32; +const int kTotalPixels = 32 * kBPS; +const int kNumVp9IntraPredFuncs = 13; +const char *kVp9IntraPredNames[kNumVp9IntraPredFuncs] = { + "DC_PRED", "DC_LEFT_PRED", "DC_TOP_PRED", "DC_128_PRED", "V_PRED", + "H_PRED", "D45_PRED", "D135_PRED", "D117_PRED", "D153_PRED", + "D207_PRED", "D63_PRED", "TM_PRED" +}; + +template +struct IntraPredTestMem { + void Init(int block_size, int bd) { + libvpx_test::ACMRandom rnd(libvpx_test::ACMRandom::DeterministicSeed()); + Pixel *const above = above_mem + 16; + const int mask = (1 << bd) - 1; + for (int i = 0; i < kTotalPixels; ++i) ref_src[i] = rnd.Rand16() & mask; + for (int i = 0; i < kBPS; ++i) left[i] = rnd.Rand16() & mask; + for (int i = -1; i < kBPS; ++i) above[i] = rnd.Rand16() & mask; + + // some code assumes the top row has been extended: + // d45/d63 C-code, for instance, but not the assembly. + // TODO(jzern): this style of extension isn't strictly necessary. + ASSERT_LE(block_size, kBPS); + for (int i = block_size; i < 2 * kBPS; ++i) { + above[i] = above[block_size - 1]; + } + } + + DECLARE_ALIGNED(16, Pixel, src[kTotalPixels]); + DECLARE_ALIGNED(16, Pixel, ref_src[kTotalPixels]); + DECLARE_ALIGNED(16, Pixel, left[kBPS]); + DECLARE_ALIGNED(16, Pixel, above_mem[2 * kBPS + 16]); +}; + +typedef IntraPredTestMem Vp9IntraPredTestMem; + +void CheckMd5Signature(const char name[], const char *const signatures[], + const void *data, size_t data_size, int elapsed_time, + int idx) { + libvpx_test::MD5 md5; + md5.Add(reinterpret_cast(data), data_size); + printf("Mode %s[%12s]: %5d ms MD5: %s\n", name, kVp9IntraPredNames[idx], + elapsed_time, md5.Get()); + EXPECT_STREQ(signatures[idx], md5.Get()); +} + +void TestIntraPred(const char name[], VpxPredFunc const *pred_funcs, + const char *const signatures[], int block_size) { + const int kNumTests = static_cast( + 2.e10 / (block_size * block_size * kNumVp9IntraPredFuncs)); + Vp9IntraPredTestMem intra_pred_test_mem; + const uint8_t *const above = intra_pred_test_mem.above_mem + 16; + + intra_pred_test_mem.Init(block_size, 8); + + for (int k = 0; k < kNumVp9IntraPredFuncs; ++k) { + if (pred_funcs[k] == NULL) continue; + memcpy(intra_pred_test_mem.src, intra_pred_test_mem.ref_src, + sizeof(intra_pred_test_mem.src)); + vpx_usec_timer timer; + vpx_usec_timer_start(&timer); + for (int num_tests = 0; num_tests < kNumTests; ++num_tests) { + pred_funcs[k](intra_pred_test_mem.src, kBPS, above, + intra_pred_test_mem.left); + } + libvpx_test::ClearSystemState(); + vpx_usec_timer_mark(&timer); + const int elapsed_time = + static_cast(vpx_usec_timer_elapsed(&timer) / 1000); + CheckMd5Signature(name, signatures, intra_pred_test_mem.src, + sizeof(intra_pred_test_mem.src), elapsed_time, k); + } +} + +void TestIntraPred4(VpxPredFunc const *pred_funcs) { + static const char *const kSignatures[kNumVp9IntraPredFuncs] = { + "e7ed7353c3383fff942e500e9bfe82fe", "2a4a26fcc6ce005eadc08354d196c8a9", + "269d92eff86f315d9c38fe7640d85b15", "ae2960eea9f71ee3dabe08b282ec1773", + "6c1abcc44e90148998b51acd11144e9c", "f7bb3186e1ef8a2b326037ff898cad8e", + "364c1f3fb2f445f935aec2a70a67eaa4", "141624072a4a56773f68fadbdd07c4a7", + "7be49b08687a5f24df3a2c612fca3876", "459bb5d9fd5b238348179c9a22108cd6", + "73edb8831bf1bdfce21ae8eaa43b1234", "2e2457f2009c701a355a8b25eb74fcda", + "52ae4e8bdbe41494c1f43051d4dd7f0b" + }; + TestIntraPred("Intra4", pred_funcs, kSignatures, 4); +} + +void TestIntraPred8(VpxPredFunc const *pred_funcs) { + static const char *const kSignatures[kNumVp9IntraPredFuncs] = { + "d8bbae5d6547cfc17e4f5f44c8730e88", "373bab6d931868d41a601d9d88ce9ac3", + "6fdd5ff4ff79656c14747598ca9e3706", "d9661c2811d6a73674f40ffb2b841847", + "7c722d10b19ccff0b8c171868e747385", "f81dd986eb2b50f750d3a7da716b7e27", + "d500f2c8fc78f46a4c74e4dcf51f14fb", "0e3523f9cab2142dd37fd07ec0760bce", + "79ac4efe907f0a0f1885d43066cfedee", "19ecf2432ac305057de3b6578474eec6", + "4f985b61acc6dd5d2d2585fa89ea2e2d", "f1bb25a9060dd262f405f15a38f5f674", + "209ea00801584829e9a0f7be7d4a74ba" + }; + TestIntraPred("Intra8", pred_funcs, kSignatures, 8); +} + +void TestIntraPred16(VpxPredFunc const *pred_funcs) { + static const char *const kSignatures[kNumVp9IntraPredFuncs] = { + "50971c07ce26977d30298538fffec619", "527a6b9e0dc5b21b98cf276305432bef", + "7eff2868f80ebc2c43a4f367281d80f7", "67cd60512b54964ef6aff1bd4816d922", + "48371c87dc95c08a33b2048f89cf6468", "b0acf2872ee411d7530af6d2625a7084", + "f32aafed4d8d3776ed58bcb6188756d5", "dae208f3dca583529cff49b73f7c4183", + "7af66a2f4c8e0b4908e40f047e60c47c", "125e3ab6ab9bc961f183ec366a7afa88", + "6b90f25b23983c35386b9fd704427622", "f8d6b11d710edc136a7c62c917435f93", + "ed308f18614a362917f411c218aee532" + }; + TestIntraPred("Intra16", pred_funcs, kSignatures, 16); +} + +void TestIntraPred32(VpxPredFunc const *pred_funcs) { + static const char *const kSignatures[kNumVp9IntraPredFuncs] = { + "a0a618c900e65ae521ccc8af789729f2", "985aaa7c72b4a6c2fb431d32100cf13a", + "10662d09febc3ca13ee4e700120daeb5", "b3b01379ba08916ef6b1b35f7d9ad51c", + "9f4261755795af97e34679c333ec7004", "bc2c9da91ad97ef0d1610fb0a9041657", + "75c79b1362ad18abfcdb1aa0aacfc21d", "4039bb7da0f6860090d3c57b5c85468f", + "b29fff7b61804e68383e3a609b33da58", "e1aa5e49067fd8dba66c2eb8d07b7a89", + "4e042822909c1c06d3b10a88281df1eb", "72eb9d9e0e67c93f4c66b70348e9fef7", + "a22d102bcb51ca798aac12ca4ae8f2e8" + }; + TestIntraPred("Intra32", pred_funcs, kSignatures, 32); +} + +} // namespace + +// Defines a test case for |arch| (e.g., C, SSE2, ...) passing the predictors +// to |test_func|. The test name is 'arch.test_func', e.g., C.TestIntraPred4. +#define INTRA_PRED_TEST(arch, test_func, dc, dc_left, dc_top, dc_128, v, h, \ + d45, d135, d117, d153, d207, d63, tm) \ + TEST(arch, test_func) { \ + static const VpxPredFunc vpx_intra_pred[] = { \ + dc, dc_left, dc_top, dc_128, v, h, d45, d135, d117, d153, d207, d63, tm \ + }; \ + test_func(vpx_intra_pred); \ + } + +// ----------------------------------------------------------------------------- + +INTRA_PRED_TEST(C, TestIntraPred4, vpx_dc_predictor_4x4_c, + vpx_dc_left_predictor_4x4_c, vpx_dc_top_predictor_4x4_c, + vpx_dc_128_predictor_4x4_c, vpx_v_predictor_4x4_c, + vpx_h_predictor_4x4_c, vpx_d45_predictor_4x4_c, + vpx_d135_predictor_4x4_c, vpx_d117_predictor_4x4_c, + vpx_d153_predictor_4x4_c, vpx_d207_predictor_4x4_c, + vpx_d63_predictor_4x4_c, vpx_tm_predictor_4x4_c) + +INTRA_PRED_TEST(C, TestIntraPred8, vpx_dc_predictor_8x8_c, + vpx_dc_left_predictor_8x8_c, vpx_dc_top_predictor_8x8_c, + vpx_dc_128_predictor_8x8_c, vpx_v_predictor_8x8_c, + vpx_h_predictor_8x8_c, vpx_d45_predictor_8x8_c, + vpx_d135_predictor_8x8_c, vpx_d117_predictor_8x8_c, + vpx_d153_predictor_8x8_c, vpx_d207_predictor_8x8_c, + vpx_d63_predictor_8x8_c, vpx_tm_predictor_8x8_c) + +INTRA_PRED_TEST(C, TestIntraPred16, vpx_dc_predictor_16x16_c, + vpx_dc_left_predictor_16x16_c, vpx_dc_top_predictor_16x16_c, + vpx_dc_128_predictor_16x16_c, vpx_v_predictor_16x16_c, + vpx_h_predictor_16x16_c, vpx_d45_predictor_16x16_c, + vpx_d135_predictor_16x16_c, vpx_d117_predictor_16x16_c, + vpx_d153_predictor_16x16_c, vpx_d207_predictor_16x16_c, + vpx_d63_predictor_16x16_c, vpx_tm_predictor_16x16_c) + +INTRA_PRED_TEST(C, TestIntraPred32, vpx_dc_predictor_32x32_c, + vpx_dc_left_predictor_32x32_c, vpx_dc_top_predictor_32x32_c, + vpx_dc_128_predictor_32x32_c, vpx_v_predictor_32x32_c, + vpx_h_predictor_32x32_c, vpx_d45_predictor_32x32_c, + vpx_d135_predictor_32x32_c, vpx_d117_predictor_32x32_c, + vpx_d153_predictor_32x32_c, vpx_d207_predictor_32x32_c, + vpx_d63_predictor_32x32_c, vpx_tm_predictor_32x32_c) + +#if HAVE_SSE2 +INTRA_PRED_TEST(SSE2, TestIntraPred4, vpx_dc_predictor_4x4_sse2, + vpx_dc_left_predictor_4x4_sse2, vpx_dc_top_predictor_4x4_sse2, + vpx_dc_128_predictor_4x4_sse2, vpx_v_predictor_4x4_sse2, + vpx_h_predictor_4x4_sse2, vpx_d45_predictor_4x4_sse2, NULL, + NULL, NULL, vpx_d207_predictor_4x4_sse2, NULL, + vpx_tm_predictor_4x4_sse2) + +INTRA_PRED_TEST(SSE2, TestIntraPred8, vpx_dc_predictor_8x8_sse2, + vpx_dc_left_predictor_8x8_sse2, vpx_dc_top_predictor_8x8_sse2, + vpx_dc_128_predictor_8x8_sse2, vpx_v_predictor_8x8_sse2, + vpx_h_predictor_8x8_sse2, vpx_d45_predictor_8x8_sse2, NULL, + NULL, NULL, NULL, NULL, vpx_tm_predictor_8x8_sse2) + +INTRA_PRED_TEST(SSE2, TestIntraPred16, vpx_dc_predictor_16x16_sse2, + vpx_dc_left_predictor_16x16_sse2, + vpx_dc_top_predictor_16x16_sse2, + vpx_dc_128_predictor_16x16_sse2, vpx_v_predictor_16x16_sse2, + vpx_h_predictor_16x16_sse2, NULL, NULL, NULL, NULL, NULL, NULL, + vpx_tm_predictor_16x16_sse2) + +INTRA_PRED_TEST(SSE2, TestIntraPred32, vpx_dc_predictor_32x32_sse2, + vpx_dc_left_predictor_32x32_sse2, + vpx_dc_top_predictor_32x32_sse2, + vpx_dc_128_predictor_32x32_sse2, vpx_v_predictor_32x32_sse2, + vpx_h_predictor_32x32_sse2, NULL, NULL, NULL, NULL, NULL, NULL, + vpx_tm_predictor_32x32_sse2) +#endif // HAVE_SSE2 + +#if HAVE_SSSE3 +INTRA_PRED_TEST(SSSE3, TestIntraPred4, NULL, NULL, NULL, NULL, NULL, NULL, NULL, + NULL, NULL, vpx_d153_predictor_4x4_ssse3, NULL, + vpx_d63_predictor_4x4_ssse3, NULL) +INTRA_PRED_TEST(SSSE3, TestIntraPred8, NULL, NULL, NULL, NULL, NULL, NULL, NULL, + NULL, NULL, vpx_d153_predictor_8x8_ssse3, + vpx_d207_predictor_8x8_ssse3, vpx_d63_predictor_8x8_ssse3, NULL) +INTRA_PRED_TEST(SSSE3, TestIntraPred16, NULL, NULL, NULL, NULL, NULL, NULL, + vpx_d45_predictor_16x16_ssse3, NULL, NULL, + vpx_d153_predictor_16x16_ssse3, vpx_d207_predictor_16x16_ssse3, + vpx_d63_predictor_16x16_ssse3, NULL) +INTRA_PRED_TEST(SSSE3, TestIntraPred32, NULL, NULL, NULL, NULL, NULL, NULL, + vpx_d45_predictor_32x32_ssse3, NULL, NULL, + vpx_d153_predictor_32x32_ssse3, vpx_d207_predictor_32x32_ssse3, + vpx_d63_predictor_32x32_ssse3, NULL) +#endif // HAVE_SSSE3 + +#if HAVE_DSPR2 +INTRA_PRED_TEST(DSPR2, TestIntraPred4, vpx_dc_predictor_4x4_dspr2, NULL, NULL, + NULL, NULL, vpx_h_predictor_4x4_dspr2, NULL, NULL, NULL, NULL, + NULL, NULL, vpx_tm_predictor_4x4_dspr2) +INTRA_PRED_TEST(DSPR2, TestIntraPred8, vpx_dc_predictor_8x8_dspr2, NULL, NULL, + NULL, NULL, vpx_h_predictor_8x8_dspr2, NULL, NULL, NULL, NULL, + NULL, NULL, vpx_tm_predictor_8x8_c) +INTRA_PRED_TEST(DSPR2, TestIntraPred16, vpx_dc_predictor_16x16_dspr2, NULL, + NULL, NULL, NULL, vpx_h_predictor_16x16_dspr2, NULL, NULL, NULL, + NULL, NULL, NULL, NULL) +#endif // HAVE_DSPR2 + +#if HAVE_NEON +INTRA_PRED_TEST(NEON, TestIntraPred4, vpx_dc_predictor_4x4_neon, + vpx_dc_left_predictor_4x4_neon, vpx_dc_top_predictor_4x4_neon, + vpx_dc_128_predictor_4x4_neon, vpx_v_predictor_4x4_neon, + vpx_h_predictor_4x4_neon, vpx_d45_predictor_4x4_neon, + vpx_d135_predictor_4x4_neon, NULL, NULL, NULL, NULL, + vpx_tm_predictor_4x4_neon) +INTRA_PRED_TEST(NEON, TestIntraPred8, vpx_dc_predictor_8x8_neon, + vpx_dc_left_predictor_8x8_neon, vpx_dc_top_predictor_8x8_neon, + vpx_dc_128_predictor_8x8_neon, vpx_v_predictor_8x8_neon, + vpx_h_predictor_8x8_neon, vpx_d45_predictor_8x8_neon, + vpx_d135_predictor_8x8_neon, NULL, NULL, NULL, NULL, + vpx_tm_predictor_8x8_neon) +INTRA_PRED_TEST(NEON, TestIntraPred16, vpx_dc_predictor_16x16_neon, + vpx_dc_left_predictor_16x16_neon, + vpx_dc_top_predictor_16x16_neon, + vpx_dc_128_predictor_16x16_neon, vpx_v_predictor_16x16_neon, + vpx_h_predictor_16x16_neon, vpx_d45_predictor_16x16_neon, + vpx_d135_predictor_16x16_neon, NULL, NULL, NULL, NULL, + vpx_tm_predictor_16x16_neon) +INTRA_PRED_TEST(NEON, TestIntraPred32, vpx_dc_predictor_32x32_neon, + vpx_dc_left_predictor_32x32_neon, + vpx_dc_top_predictor_32x32_neon, + vpx_dc_128_predictor_32x32_neon, vpx_v_predictor_32x32_neon, + vpx_h_predictor_32x32_neon, vpx_d45_predictor_32x32_neon, + vpx_d135_predictor_32x32_neon, NULL, NULL, NULL, NULL, + vpx_tm_predictor_32x32_neon) +#endif // HAVE_NEON + +#if HAVE_MSA +INTRA_PRED_TEST(MSA, TestIntraPred4, vpx_dc_predictor_4x4_msa, + vpx_dc_left_predictor_4x4_msa, vpx_dc_top_predictor_4x4_msa, + vpx_dc_128_predictor_4x4_msa, vpx_v_predictor_4x4_msa, + vpx_h_predictor_4x4_msa, NULL, NULL, NULL, NULL, NULL, NULL, + vpx_tm_predictor_4x4_msa) +INTRA_PRED_TEST(MSA, TestIntraPred8, vpx_dc_predictor_8x8_msa, + vpx_dc_left_predictor_8x8_msa, vpx_dc_top_predictor_8x8_msa, + vpx_dc_128_predictor_8x8_msa, vpx_v_predictor_8x8_msa, + vpx_h_predictor_8x8_msa, NULL, NULL, NULL, NULL, NULL, NULL, + vpx_tm_predictor_8x8_msa) +INTRA_PRED_TEST(MSA, TestIntraPred16, vpx_dc_predictor_16x16_msa, + vpx_dc_left_predictor_16x16_msa, vpx_dc_top_predictor_16x16_msa, + vpx_dc_128_predictor_16x16_msa, vpx_v_predictor_16x16_msa, + vpx_h_predictor_16x16_msa, NULL, NULL, NULL, NULL, NULL, NULL, + vpx_tm_predictor_16x16_msa) +INTRA_PRED_TEST(MSA, TestIntraPred32, vpx_dc_predictor_32x32_msa, + vpx_dc_left_predictor_32x32_msa, vpx_dc_top_predictor_32x32_msa, + vpx_dc_128_predictor_32x32_msa, vpx_v_predictor_32x32_msa, + vpx_h_predictor_32x32_msa, NULL, NULL, NULL, NULL, NULL, NULL, + vpx_tm_predictor_32x32_msa) +#endif // HAVE_MSA + +#if HAVE_VSX +INTRA_PRED_TEST(VSX, TestIntraPred4, NULL, NULL, NULL, NULL, NULL, + vpx_h_predictor_4x4_vsx, NULL, NULL, NULL, NULL, NULL, NULL, + vpx_tm_predictor_4x4_vsx) + +INTRA_PRED_TEST(VSX, TestIntraPred8, vpx_dc_predictor_8x8_vsx, NULL, NULL, NULL, + NULL, vpx_h_predictor_8x8_vsx, vpx_d45_predictor_8x8_vsx, NULL, + NULL, NULL, NULL, vpx_d63_predictor_8x8_vsx, + vpx_tm_predictor_8x8_vsx) + +INTRA_PRED_TEST(VSX, TestIntraPred16, vpx_dc_predictor_16x16_vsx, + vpx_dc_left_predictor_16x16_vsx, vpx_dc_top_predictor_16x16_vsx, + vpx_dc_128_predictor_16x16_vsx, vpx_v_predictor_16x16_vsx, + vpx_h_predictor_16x16_vsx, vpx_d45_predictor_16x16_vsx, NULL, + NULL, NULL, NULL, vpx_d63_predictor_16x16_vsx, + vpx_tm_predictor_16x16_vsx) + +INTRA_PRED_TEST(VSX, TestIntraPred32, vpx_dc_predictor_32x32_vsx, + vpx_dc_left_predictor_32x32_vsx, vpx_dc_top_predictor_32x32_vsx, + vpx_dc_128_predictor_32x32_vsx, vpx_v_predictor_32x32_vsx, + vpx_h_predictor_32x32_vsx, vpx_d45_predictor_32x32_vsx, NULL, + NULL, NULL, NULL, vpx_d63_predictor_32x32_vsx, + vpx_tm_predictor_32x32_vsx) +#endif // HAVE_VSX + +// ----------------------------------------------------------------------------- + +#if CONFIG_VP9_HIGHBITDEPTH +namespace { + +typedef void (*VpxHighbdPredFunc)(uint16_t *dst, ptrdiff_t y_stride, + const uint16_t *above, const uint16_t *left, + int bd); + +typedef IntraPredTestMem Vp9HighbdIntraPredTestMem; + +void TestHighbdIntraPred(const char name[], VpxHighbdPredFunc const *pred_funcs, + const char *const signatures[], int block_size) { + const int kNumTests = static_cast( + 2.e10 / (block_size * block_size * kNumVp9IntraPredFuncs)); + Vp9HighbdIntraPredTestMem intra_pred_test_mem; + const uint16_t *const above = intra_pred_test_mem.above_mem + 16; + + intra_pred_test_mem.Init(block_size, 12); + + for (int k = 0; k < kNumVp9IntraPredFuncs; ++k) { + if (pred_funcs[k] == NULL) continue; + memcpy(intra_pred_test_mem.src, intra_pred_test_mem.ref_src, + sizeof(intra_pred_test_mem.src)); + vpx_usec_timer timer; + vpx_usec_timer_start(&timer); + for (int num_tests = 0; num_tests < kNumTests; ++num_tests) { + pred_funcs[k](intra_pred_test_mem.src, kBPS, above, + intra_pred_test_mem.left, 12); + } + libvpx_test::ClearSystemState(); + vpx_usec_timer_mark(&timer); + const int elapsed_time = + static_cast(vpx_usec_timer_elapsed(&timer) / 1000); + CheckMd5Signature(name, signatures, intra_pred_test_mem.src, + sizeof(intra_pred_test_mem.src), elapsed_time, k); + } +} + +void TestHighbdIntraPred4(VpxHighbdPredFunc const *pred_funcs) { + static const char *const kSignatures[kNumVp9IntraPredFuncs] = { + "11f74af6c5737df472f3275cbde062fa", "51bea056b6447c93f6eb8f6b7e8f6f71", + "27e97f946766331795886f4de04c5594", "53ab15974b049111fb596c5168ec7e3f", + "f0b640bb176fbe4584cf3d32a9b0320a", "729783ca909e03afd4b47111c80d967b", + "fbf1c30793d9f32812e4d9f905d53530", "293fc903254a33754133314c6cdba81f", + "f8074d704233e73dfd35b458c6092374", "aa6363d08544a1ec4da33d7a0be5640d", + "462abcfdfa3d087bb33c9a88f2aec491", "863eab65d22550dd44a2397277c1ec71", + "23d61df1574d0fa308f9731811047c4b" + }; + TestHighbdIntraPred("Intra4", pred_funcs, kSignatures, 4); +} + +void TestHighbdIntraPred8(VpxHighbdPredFunc const *pred_funcs) { + static const char *const kSignatures[kNumVp9IntraPredFuncs] = { + "03da8829fe94663047fd108c5fcaa71d", "ecdb37b8120a2d3a4c706b016bd1bfd7", + "1d4543ed8d2b9368cb96898095fe8a75", "f791c9a67b913cbd82d9da8ecede30e2", + "065c70646f4dbaff913282f55a45a441", "51f87123616662ef7c35691497dfd0ba", + "2a5b0131ef4716f098ee65e6df01e3dd", "9ffe186a6bc7db95275f1bbddd6f7aba", + "a3258a2eae2e2bd55cb8f71351b22998", "8d909f0a2066e39b3216092c6289ece4", + "d183abb30b9f24c886a0517e991b22c7", "702a42fe4c7d665dc561b2aeeb60f311", + "7b5dbbbe7ae3a4ac2948731600bde5d6" + }; + TestHighbdIntraPred("Intra8", pred_funcs, kSignatures, 8); +} + +void TestHighbdIntraPred16(VpxHighbdPredFunc const *pred_funcs) { + static const char *const kSignatures[kNumVp9IntraPredFuncs] = { + "e33cb3f56a878e2fddb1b2fc51cdd275", "c7bff6f04b6052c8ab335d726dbbd52d", + "d0b0b47b654a9bcc5c6008110a44589b", "78f5da7b10b2b9ab39f114a33b6254e9", + "c78e31d23831abb40d6271a318fdd6f3", "90d1347f4ec9198a0320daecb6ff90b8", + "d2c623746cbb64a0c9e29c10f2c57041", "cf28bd387b81ad3e5f1a1c779a4b70a0", + "24c304330431ddeaf630f6ce94af2eac", "91a329798036bf64e8e00a87b131b8b1", + "d39111f22885307f920796a42084c872", "e2e702f7250ece98dd8f3f2854c31eeb", + "e2fb05b01eb8b88549e85641d8ce5b59" + }; + TestHighbdIntraPred("Intra16", pred_funcs, kSignatures, 16); +} + +void TestHighbdIntraPred32(VpxHighbdPredFunc const *pred_funcs) { + static const char *const kSignatures[kNumVp9IntraPredFuncs] = { + "a3e8056ba7e36628cce4917cd956fedd", "cc7d3024fe8748b512407edee045377e", + "2aab0a0f330a1d3e19b8ecb8f06387a3", "a547bc3fb7b06910bf3973122a426661", + "26f712514da95042f93d6e8dc8e431dc", "bb08c6e16177081daa3d936538dbc2e3", + "8f031af3e2650e89620d8d2c3a843d8b", "42867c8553285e94ee8e4df7abafbda8", + "6496bdee96100667833f546e1be3d640", "2ebfa25bf981377e682e580208504300", + "3e8ae52fd1f607f348aa4cb436c71ab7", "3d4efe797ca82193613696753ea624c4", + "cb8aab6d372278f3131e8d99efde02d9" + }; + TestHighbdIntraPred("Intra32", pred_funcs, kSignatures, 32); +} + +} // namespace + +// Defines a test case for |arch| (e.g., C, SSE2, ...) passing the predictors +// to |test_func|. The test name is 'arch.test_func', e.g., C.TestIntraPred4. +#define HIGHBD_INTRA_PRED_TEST(arch, test_func, dc, dc_left, dc_top, dc_128, \ + v, h, d45, d135, d117, d153, d207, d63, tm) \ + TEST(arch, test_func) { \ + static const VpxHighbdPredFunc vpx_intra_pred[] = { \ + dc, dc_left, dc_top, dc_128, v, h, d45, d135, d117, d153, d207, d63, tm \ + }; \ + test_func(vpx_intra_pred); \ + } + +// ----------------------------------------------------------------------------- + +HIGHBD_INTRA_PRED_TEST( + C, TestHighbdIntraPred4, vpx_highbd_dc_predictor_4x4_c, + vpx_highbd_dc_left_predictor_4x4_c, vpx_highbd_dc_top_predictor_4x4_c, + vpx_highbd_dc_128_predictor_4x4_c, vpx_highbd_v_predictor_4x4_c, + vpx_highbd_h_predictor_4x4_c, vpx_highbd_d45_predictor_4x4_c, + vpx_highbd_d135_predictor_4x4_c, vpx_highbd_d117_predictor_4x4_c, + vpx_highbd_d153_predictor_4x4_c, vpx_highbd_d207_predictor_4x4_c, + vpx_highbd_d63_predictor_4x4_c, vpx_highbd_tm_predictor_4x4_c) + +HIGHBD_INTRA_PRED_TEST( + C, TestHighbdIntraPred8, vpx_highbd_dc_predictor_8x8_c, + vpx_highbd_dc_left_predictor_8x8_c, vpx_highbd_dc_top_predictor_8x8_c, + vpx_highbd_dc_128_predictor_8x8_c, vpx_highbd_v_predictor_8x8_c, + vpx_highbd_h_predictor_8x8_c, vpx_highbd_d45_predictor_8x8_c, + vpx_highbd_d135_predictor_8x8_c, vpx_highbd_d117_predictor_8x8_c, + vpx_highbd_d153_predictor_8x8_c, vpx_highbd_d207_predictor_8x8_c, + vpx_highbd_d63_predictor_8x8_c, vpx_highbd_tm_predictor_8x8_c) + +HIGHBD_INTRA_PRED_TEST( + C, TestHighbdIntraPred16, vpx_highbd_dc_predictor_16x16_c, + vpx_highbd_dc_left_predictor_16x16_c, vpx_highbd_dc_top_predictor_16x16_c, + vpx_highbd_dc_128_predictor_16x16_c, vpx_highbd_v_predictor_16x16_c, + vpx_highbd_h_predictor_16x16_c, vpx_highbd_d45_predictor_16x16_c, + vpx_highbd_d135_predictor_16x16_c, vpx_highbd_d117_predictor_16x16_c, + vpx_highbd_d153_predictor_16x16_c, vpx_highbd_d207_predictor_16x16_c, + vpx_highbd_d63_predictor_16x16_c, vpx_highbd_tm_predictor_16x16_c) + +HIGHBD_INTRA_PRED_TEST( + C, TestHighbdIntraPred32, vpx_highbd_dc_predictor_32x32_c, + vpx_highbd_dc_left_predictor_32x32_c, vpx_highbd_dc_top_predictor_32x32_c, + vpx_highbd_dc_128_predictor_32x32_c, vpx_highbd_v_predictor_32x32_c, + vpx_highbd_h_predictor_32x32_c, vpx_highbd_d45_predictor_32x32_c, + vpx_highbd_d135_predictor_32x32_c, vpx_highbd_d117_predictor_32x32_c, + vpx_highbd_d153_predictor_32x32_c, vpx_highbd_d207_predictor_32x32_c, + vpx_highbd_d63_predictor_32x32_c, vpx_highbd_tm_predictor_32x32_c) + +#if HAVE_SSE2 +HIGHBD_INTRA_PRED_TEST( + SSE2, TestHighbdIntraPred4, vpx_highbd_dc_predictor_4x4_sse2, + vpx_highbd_dc_left_predictor_4x4_sse2, vpx_highbd_dc_top_predictor_4x4_sse2, + vpx_highbd_dc_128_predictor_4x4_sse2, vpx_highbd_v_predictor_4x4_sse2, + vpx_highbd_h_predictor_4x4_sse2, NULL, vpx_highbd_d135_predictor_4x4_sse2, + vpx_highbd_d117_predictor_4x4_sse2, vpx_highbd_d153_predictor_4x4_sse2, + vpx_highbd_d207_predictor_4x4_sse2, vpx_highbd_d63_predictor_4x4_sse2, + vpx_highbd_tm_predictor_4x4_c) + +HIGHBD_INTRA_PRED_TEST(SSE2, TestHighbdIntraPred8, + vpx_highbd_dc_predictor_8x8_sse2, + vpx_highbd_dc_left_predictor_8x8_sse2, + vpx_highbd_dc_top_predictor_8x8_sse2, + vpx_highbd_dc_128_predictor_8x8_sse2, + vpx_highbd_v_predictor_8x8_sse2, + vpx_highbd_h_predictor_8x8_sse2, NULL, NULL, NULL, NULL, + NULL, NULL, vpx_highbd_tm_predictor_8x8_sse2) + +HIGHBD_INTRA_PRED_TEST(SSE2, TestHighbdIntraPred16, + vpx_highbd_dc_predictor_16x16_sse2, + vpx_highbd_dc_left_predictor_16x16_sse2, + vpx_highbd_dc_top_predictor_16x16_sse2, + vpx_highbd_dc_128_predictor_16x16_sse2, + vpx_highbd_v_predictor_16x16_sse2, + vpx_highbd_h_predictor_16x16_sse2, NULL, NULL, NULL, + NULL, NULL, NULL, vpx_highbd_tm_predictor_16x16_sse2) + +HIGHBD_INTRA_PRED_TEST(SSE2, TestHighbdIntraPred32, + vpx_highbd_dc_predictor_32x32_sse2, + vpx_highbd_dc_left_predictor_32x32_sse2, + vpx_highbd_dc_top_predictor_32x32_sse2, + vpx_highbd_dc_128_predictor_32x32_sse2, + vpx_highbd_v_predictor_32x32_sse2, + vpx_highbd_h_predictor_32x32_sse2, NULL, NULL, NULL, + NULL, NULL, NULL, vpx_highbd_tm_predictor_32x32_sse2) +#endif // HAVE_SSE2 + +#if HAVE_SSSE3 +HIGHBD_INTRA_PRED_TEST(SSSE3, TestHighbdIntraPred4, NULL, NULL, NULL, NULL, + NULL, NULL, vpx_highbd_d45_predictor_4x4_ssse3, NULL, + NULL, NULL, NULL, NULL, NULL) +HIGHBD_INTRA_PRED_TEST(SSSE3, TestHighbdIntraPred8, NULL, NULL, NULL, NULL, + NULL, NULL, vpx_highbd_d45_predictor_8x8_ssse3, + vpx_highbd_d135_predictor_8x8_ssse3, + vpx_highbd_d117_predictor_8x8_ssse3, + vpx_highbd_d153_predictor_8x8_ssse3, + vpx_highbd_d207_predictor_8x8_ssse3, + vpx_highbd_d63_predictor_8x8_ssse3, NULL) +HIGHBD_INTRA_PRED_TEST(SSSE3, TestHighbdIntraPred16, NULL, NULL, NULL, NULL, + NULL, NULL, vpx_highbd_d45_predictor_16x16_ssse3, + vpx_highbd_d135_predictor_16x16_ssse3, + vpx_highbd_d117_predictor_16x16_ssse3, + vpx_highbd_d153_predictor_16x16_ssse3, + vpx_highbd_d207_predictor_16x16_ssse3, + vpx_highbd_d63_predictor_16x16_ssse3, NULL) +HIGHBD_INTRA_PRED_TEST(SSSE3, TestHighbdIntraPred32, NULL, NULL, NULL, NULL, + NULL, NULL, vpx_highbd_d45_predictor_32x32_ssse3, + vpx_highbd_d135_predictor_32x32_ssse3, + vpx_highbd_d117_predictor_32x32_ssse3, + vpx_highbd_d153_predictor_32x32_ssse3, + vpx_highbd_d207_predictor_32x32_ssse3, + vpx_highbd_d63_predictor_32x32_ssse3, NULL) +#endif // HAVE_SSSE3 + +#if HAVE_NEON +HIGHBD_INTRA_PRED_TEST( + NEON, TestHighbdIntraPred4, vpx_highbd_dc_predictor_4x4_neon, + vpx_highbd_dc_left_predictor_4x4_neon, vpx_highbd_dc_top_predictor_4x4_neon, + vpx_highbd_dc_128_predictor_4x4_neon, vpx_highbd_v_predictor_4x4_neon, + vpx_highbd_h_predictor_4x4_neon, vpx_highbd_d45_predictor_4x4_neon, + vpx_highbd_d135_predictor_4x4_neon, NULL, NULL, NULL, NULL, + vpx_highbd_tm_predictor_4x4_neon) +HIGHBD_INTRA_PRED_TEST( + NEON, TestHighbdIntraPred8, vpx_highbd_dc_predictor_8x8_neon, + vpx_highbd_dc_left_predictor_8x8_neon, vpx_highbd_dc_top_predictor_8x8_neon, + vpx_highbd_dc_128_predictor_8x8_neon, vpx_highbd_v_predictor_8x8_neon, + vpx_highbd_h_predictor_8x8_neon, vpx_highbd_d45_predictor_8x8_neon, + vpx_highbd_d135_predictor_8x8_neon, NULL, NULL, NULL, NULL, + vpx_highbd_tm_predictor_8x8_neon) +HIGHBD_INTRA_PRED_TEST(NEON, TestHighbdIntraPred16, + vpx_highbd_dc_predictor_16x16_neon, + vpx_highbd_dc_left_predictor_16x16_neon, + vpx_highbd_dc_top_predictor_16x16_neon, + vpx_highbd_dc_128_predictor_16x16_neon, + vpx_highbd_v_predictor_16x16_neon, + vpx_highbd_h_predictor_16x16_neon, + vpx_highbd_d45_predictor_16x16_neon, + vpx_highbd_d135_predictor_16x16_neon, NULL, NULL, NULL, + NULL, vpx_highbd_tm_predictor_16x16_neon) +HIGHBD_INTRA_PRED_TEST(NEON, TestHighbdIntraPred32, + vpx_highbd_dc_predictor_32x32_neon, + vpx_highbd_dc_left_predictor_32x32_neon, + vpx_highbd_dc_top_predictor_32x32_neon, + vpx_highbd_dc_128_predictor_32x32_neon, + vpx_highbd_v_predictor_32x32_neon, + vpx_highbd_h_predictor_32x32_neon, + vpx_highbd_d45_predictor_32x32_neon, + vpx_highbd_d135_predictor_32x32_neon, NULL, NULL, NULL, + NULL, vpx_highbd_tm_predictor_32x32_neon) +#endif // HAVE_NEON + +#endif // CONFIG_VP9_HIGHBITDEPTH + +#include "test/test_libvpx.cc" diff --git a/test/test_libvpx.cc b/test/test_libvpx.cc new file mode 100644 index 0000000..30641ae --- /dev/null +++ b/test/test_libvpx.cc @@ -0,0 +1,76 @@ +/* + * Copyright (c) 2012 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ +#include + +#include "third_party/googletest/src/include/gtest/gtest.h" + +#include "./vpx_config.h" +#if ARCH_X86 || ARCH_X86_64 +#include "vpx_ports/x86.h" +#endif +extern "C" { +#if CONFIG_VP8 +extern void vp8_rtcd(); +#endif // CONFIG_VP8 +#if CONFIG_VP9 +extern void vp9_rtcd(); +#endif // CONFIG_VP9 +extern void vpx_dsp_rtcd(); +extern void vpx_scale_rtcd(); +} + +#if ARCH_X86 || ARCH_X86_64 +static void append_negative_gtest_filter(const char *str) { + std::string filter = ::testing::FLAGS_gtest_filter; + // Negative patterns begin with one '-' followed by a ':' separated list. + if (filter.find('-') == std::string::npos) filter += '-'; + filter += str; + ::testing::FLAGS_gtest_filter = filter; +} +#endif // ARCH_X86 || ARCH_X86_64 + +int main(int argc, char **argv) { + ::testing::InitGoogleTest(&argc, argv); + +#if ARCH_X86 || ARCH_X86_64 + const int simd_caps = x86_simd_caps(); + if (!(simd_caps & HAS_MMX)) append_negative_gtest_filter(":MMX.*:MMX/*"); + if (!(simd_caps & HAS_SSE)) append_negative_gtest_filter(":SSE.*:SSE/*"); + if (!(simd_caps & HAS_SSE2)) append_negative_gtest_filter(":SSE2.*:SSE2/*"); + if (!(simd_caps & HAS_SSE3)) append_negative_gtest_filter(":SSE3.*:SSE3/*"); + if (!(simd_caps & HAS_SSSE3)) { + append_negative_gtest_filter(":SSSE3.*:SSSE3/*"); + } + if (!(simd_caps & HAS_SSE4_1)) { + append_negative_gtest_filter(":SSE4_1.*:SSE4_1/*"); + } + if (!(simd_caps & HAS_AVX)) append_negative_gtest_filter(":AVX.*:AVX/*"); + if (!(simd_caps & HAS_AVX2)) append_negative_gtest_filter(":AVX2.*:AVX2/*"); + if (!(simd_caps & HAS_AVX512)) { + append_negative_gtest_filter(":AVX512.*:AVX512/*"); + } +#endif // ARCH_X86 || ARCH_X86_64 + +#if !CONFIG_SHARED +// Shared library builds don't support whitebox tests +// that exercise internal symbols. + +#if CONFIG_VP8 + vp8_rtcd(); +#endif // CONFIG_VP8 +#if CONFIG_VP9 + vp9_rtcd(); +#endif // CONFIG_VP9 + vpx_dsp_rtcd(); + vpx_scale_rtcd(); +#endif // !CONFIG_SHARED + + return RUN_ALL_TESTS(); +} diff --git a/test/test_vector_test.cc b/test/test_vector_test.cc new file mode 100644 index 0000000..1879b3d --- /dev/null +++ b/test/test_vector_test.cc @@ -0,0 +1,173 @@ +/* + * Copyright (c) 2013 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include +#include +#include +#include "third_party/googletest/src/include/gtest/gtest.h" +#include "../tools_common.h" +#include "./vpx_config.h" +#include "test/codec_factory.h" +#include "test/decode_test_driver.h" +#include "test/ivf_video_source.h" +#include "test/md5_helper.h" +#include "test/test_vectors.h" +#include "test/util.h" +#if CONFIG_WEBM_IO +#include "test/webm_video_source.h" +#endif +#include "vpx_mem/vpx_mem.h" + +namespace { + +const int kThreads = 0; +const int kFileName = 1; + +typedef std::tr1::tuple DecodeParam; + +class TestVectorTest : public ::libvpx_test::DecoderTest, + public ::libvpx_test::CodecTestWithParam { + protected: + TestVectorTest() : DecoderTest(GET_PARAM(0)), md5_file_(NULL) { +#if CONFIG_VP9_DECODER + resize_clips_.insert(::libvpx_test::kVP9TestVectorsResize, + ::libvpx_test::kVP9TestVectorsResize + + ::libvpx_test::kNumVP9TestVectorsResize); +#endif + } + + virtual ~TestVectorTest() { + if (md5_file_) fclose(md5_file_); + } + + void OpenMD5File(const std::string &md5_file_name_) { + md5_file_ = libvpx_test::OpenTestDataFile(md5_file_name_); + ASSERT_TRUE(md5_file_ != NULL) + << "Md5 file open failed. Filename: " << md5_file_name_; + } + + virtual void DecompressedFrameHook(const vpx_image_t &img, + const unsigned int frame_number) { + ASSERT_TRUE(md5_file_ != NULL); + char expected_md5[33]; + char junk[128]; + + // Read correct md5 checksums. + const int res = fscanf(md5_file_, "%s %s", expected_md5, junk); + ASSERT_NE(res, EOF) << "Read md5 data failed"; + expected_md5[32] = '\0'; + + ::libvpx_test::MD5 md5_res; + md5_res.Add(&img); + const char *actual_md5 = md5_res.Get(); + + // Check md5 match. + ASSERT_STREQ(expected_md5, actual_md5) + << "Md5 checksums don't match: frame number = " << frame_number; + } + +#if CONFIG_VP9_DECODER + std::set resize_clips_; +#endif + + private: + FILE *md5_file_; +}; + +// This test runs through the whole set of test vectors, and decodes them. +// The md5 checksums are computed for each frame in the video file. If md5 +// checksums match the correct md5 data, then the test is passed. Otherwise, +// the test failed. +TEST_P(TestVectorTest, MD5Match) { + const DecodeParam input = GET_PARAM(1); + const std::string filename = std::tr1::get(input); + vpx_codec_flags_t flags = 0; + vpx_codec_dec_cfg_t cfg = vpx_codec_dec_cfg_t(); + char str[256]; + + cfg.threads = std::tr1::get(input); + + snprintf(str, sizeof(str) / sizeof(str[0]) - 1, "file: %s threads: %d", + filename.c_str(), cfg.threads); + SCOPED_TRACE(str); + + // Open compressed video file. + testing::internal::scoped_ptr video; + if (filename.substr(filename.length() - 3, 3) == "ivf") { + video.reset(new libvpx_test::IVFVideoSource(filename)); + } else if (filename.substr(filename.length() - 4, 4) == "webm") { +#if CONFIG_WEBM_IO + video.reset(new libvpx_test::WebMVideoSource(filename)); +#else + fprintf(stderr, "WebM IO is disabled, skipping test vector %s\n", + filename.c_str()); + return; +#endif + } + ASSERT_TRUE(video.get() != NULL); + video->Init(); + + // Construct md5 file name. + const std::string md5_filename = filename + ".md5"; + OpenMD5File(md5_filename); + + // Set decode config and flags. + set_cfg(cfg); + set_flags(flags); + + // Decode frame, and check the md5 matching. + ASSERT_NO_FATAL_FAILURE(RunLoop(video.get(), cfg)); +} + +#if CONFIG_VP8_DECODER +VP8_INSTANTIATE_TEST_CASE( + TestVectorTest, + ::testing::Combine( + ::testing::Values(1), // Single thread. + ::testing::ValuesIn(libvpx_test::kVP8TestVectors, + libvpx_test::kVP8TestVectors + + libvpx_test::kNumVP8TestVectors))); + +// Test VP8 decode in with different numbers of threads. +INSTANTIATE_TEST_CASE_P( + VP8MultiThreaded, TestVectorTest, + ::testing::Combine( + ::testing::Values( + static_cast(&libvpx_test::kVP8)), + ::testing::Combine( + ::testing::Range(2, 9), // With 2 ~ 8 threads. + ::testing::ValuesIn(libvpx_test::kVP8TestVectors, + libvpx_test::kVP8TestVectors + + libvpx_test::kNumVP8TestVectors)))); + +#endif // CONFIG_VP8_DECODER + +#if CONFIG_VP9_DECODER +VP9_INSTANTIATE_TEST_CASE( + TestVectorTest, + ::testing::Combine( + ::testing::Values(1), // Single thread. + ::testing::ValuesIn(libvpx_test::kVP9TestVectors, + libvpx_test::kVP9TestVectors + + libvpx_test::kNumVP9TestVectors))); + +INSTANTIATE_TEST_CASE_P( + VP9MultiThreaded, TestVectorTest, + ::testing::Combine( + ::testing::Values( + static_cast(&libvpx_test::kVP9)), + ::testing::Combine( + ::testing::Range(2, 9), // With 2 ~ 8 threads. + ::testing::ValuesIn(libvpx_test::kVP9TestVectors, + libvpx_test::kVP9TestVectors + + libvpx_test::kNumVP9TestVectors)))); +#endif +} // namespace diff --git a/test/test_vectors.cc b/test/test_vectors.cc new file mode 100644 index 0000000..3ffc3ef --- /dev/null +++ b/test/test_vectors.cc @@ -0,0 +1,385 @@ +/* + * Copyright (c) 2013 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "test/test_vectors.h" + +namespace libvpx_test { + +#define NELEMENTS(x) static_cast(sizeof(x) / sizeof(x[0])) + +#if CONFIG_VP8_DECODER +const char *const kVP8TestVectors[] = { + "vp80-00-comprehensive-001.ivf", "vp80-00-comprehensive-002.ivf", + "vp80-00-comprehensive-003.ivf", "vp80-00-comprehensive-004.ivf", + "vp80-00-comprehensive-005.ivf", "vp80-00-comprehensive-006.ivf", + "vp80-00-comprehensive-007.ivf", "vp80-00-comprehensive-008.ivf", + "vp80-00-comprehensive-009.ivf", "vp80-00-comprehensive-010.ivf", + "vp80-00-comprehensive-011.ivf", "vp80-00-comprehensive-012.ivf", + "vp80-00-comprehensive-013.ivf", "vp80-00-comprehensive-014.ivf", + "vp80-00-comprehensive-015.ivf", "vp80-00-comprehensive-016.ivf", + "vp80-00-comprehensive-017.ivf", "vp80-00-comprehensive-018.ivf", + "vp80-01-intra-1400.ivf", "vp80-01-intra-1411.ivf", + "vp80-01-intra-1416.ivf", "vp80-01-intra-1417.ivf", + "vp80-02-inter-1402.ivf", "vp80-02-inter-1412.ivf", + "vp80-02-inter-1418.ivf", "vp80-02-inter-1424.ivf", + "vp80-03-segmentation-01.ivf", "vp80-03-segmentation-02.ivf", + "vp80-03-segmentation-03.ivf", "vp80-03-segmentation-04.ivf", + "vp80-03-segmentation-1401.ivf", "vp80-03-segmentation-1403.ivf", + "vp80-03-segmentation-1407.ivf", "vp80-03-segmentation-1408.ivf", + "vp80-03-segmentation-1409.ivf", "vp80-03-segmentation-1410.ivf", + "vp80-03-segmentation-1413.ivf", "vp80-03-segmentation-1414.ivf", + "vp80-03-segmentation-1415.ivf", "vp80-03-segmentation-1425.ivf", + "vp80-03-segmentation-1426.ivf", "vp80-03-segmentation-1427.ivf", + "vp80-03-segmentation-1432.ivf", "vp80-03-segmentation-1435.ivf", + "vp80-03-segmentation-1436.ivf", "vp80-03-segmentation-1437.ivf", + "vp80-03-segmentation-1441.ivf", "vp80-03-segmentation-1442.ivf", + "vp80-04-partitions-1404.ivf", "vp80-04-partitions-1405.ivf", + "vp80-04-partitions-1406.ivf", "vp80-05-sharpness-1428.ivf", + "vp80-05-sharpness-1429.ivf", "vp80-05-sharpness-1430.ivf", + "vp80-05-sharpness-1431.ivf", "vp80-05-sharpness-1433.ivf", + "vp80-05-sharpness-1434.ivf", "vp80-05-sharpness-1438.ivf", + "vp80-05-sharpness-1439.ivf", "vp80-05-sharpness-1440.ivf", + "vp80-05-sharpness-1443.ivf", "vp80-06-smallsize.ivf" +}; +const int kNumVP8TestVectors = NELEMENTS(kVP8TestVectors); +#endif // CONFIG_VP8_DECODER +#if CONFIG_VP9_DECODER +#define RESIZE_TEST_VECTORS \ + "vp90-2-21-resize_inter_320x180_5_1-2.webm", \ + "vp90-2-21-resize_inter_320x180_5_3-4.webm", \ + "vp90-2-21-resize_inter_320x180_7_1-2.webm", \ + "vp90-2-21-resize_inter_320x180_7_3-4.webm", \ + "vp90-2-21-resize_inter_320x240_5_1-2.webm", \ + "vp90-2-21-resize_inter_320x240_5_3-4.webm", \ + "vp90-2-21-resize_inter_320x240_7_1-2.webm", \ + "vp90-2-21-resize_inter_320x240_7_3-4.webm", \ + "vp90-2-21-resize_inter_640x360_5_1-2.webm", \ + "vp90-2-21-resize_inter_640x360_5_3-4.webm", \ + "vp90-2-21-resize_inter_640x360_7_1-2.webm", \ + "vp90-2-21-resize_inter_640x360_7_3-4.webm", \ + "vp90-2-21-resize_inter_640x480_5_1-2.webm", \ + "vp90-2-21-resize_inter_640x480_5_3-4.webm", \ + "vp90-2-21-resize_inter_640x480_7_1-2.webm", \ + "vp90-2-21-resize_inter_640x480_7_3-4.webm", \ + "vp90-2-21-resize_inter_1280x720_5_1-2.webm", \ + "vp90-2-21-resize_inter_1280x720_5_3-4.webm", \ + "vp90-2-21-resize_inter_1280x720_7_1-2.webm", \ + "vp90-2-21-resize_inter_1280x720_7_3-4.webm", \ + "vp90-2-21-resize_inter_1920x1080_5_1-2.webm", \ + "vp90-2-21-resize_inter_1920x1080_5_3-4.webm", \ + "vp90-2-21-resize_inter_1920x1080_7_1-2.webm", \ + "vp90-2-21-resize_inter_1920x1080_7_3-4.webm", + +const char *const kVP9TestVectors[] = { + "vp90-2-00-quantizer-00.webm", + "vp90-2-00-quantizer-01.webm", + "vp90-2-00-quantizer-02.webm", + "vp90-2-00-quantizer-03.webm", + "vp90-2-00-quantizer-04.webm", + "vp90-2-00-quantizer-05.webm", + "vp90-2-00-quantizer-06.webm", + "vp90-2-00-quantizer-07.webm", + "vp90-2-00-quantizer-08.webm", + "vp90-2-00-quantizer-09.webm", + "vp90-2-00-quantizer-10.webm", + "vp90-2-00-quantizer-11.webm", + "vp90-2-00-quantizer-12.webm", + "vp90-2-00-quantizer-13.webm", + "vp90-2-00-quantizer-14.webm", + "vp90-2-00-quantizer-15.webm", + "vp90-2-00-quantizer-16.webm", + "vp90-2-00-quantizer-17.webm", + "vp90-2-00-quantizer-18.webm", + "vp90-2-00-quantizer-19.webm", + "vp90-2-00-quantizer-20.webm", + "vp90-2-00-quantizer-21.webm", + "vp90-2-00-quantizer-22.webm", + "vp90-2-00-quantizer-23.webm", + "vp90-2-00-quantizer-24.webm", + "vp90-2-00-quantizer-25.webm", + "vp90-2-00-quantizer-26.webm", + "vp90-2-00-quantizer-27.webm", + "vp90-2-00-quantizer-28.webm", + "vp90-2-00-quantizer-29.webm", + "vp90-2-00-quantizer-30.webm", + "vp90-2-00-quantizer-31.webm", + "vp90-2-00-quantizer-32.webm", + "vp90-2-00-quantizer-33.webm", + "vp90-2-00-quantizer-34.webm", + "vp90-2-00-quantizer-35.webm", + "vp90-2-00-quantizer-36.webm", + "vp90-2-00-quantizer-37.webm", + "vp90-2-00-quantizer-38.webm", + "vp90-2-00-quantizer-39.webm", + "vp90-2-00-quantizer-40.webm", + "vp90-2-00-quantizer-41.webm", + "vp90-2-00-quantizer-42.webm", + "vp90-2-00-quantizer-43.webm", + "vp90-2-00-quantizer-44.webm", + "vp90-2-00-quantizer-45.webm", + "vp90-2-00-quantizer-46.webm", + "vp90-2-00-quantizer-47.webm", + "vp90-2-00-quantizer-48.webm", + "vp90-2-00-quantizer-49.webm", + "vp90-2-00-quantizer-50.webm", + "vp90-2-00-quantizer-51.webm", + "vp90-2-00-quantizer-52.webm", + "vp90-2-00-quantizer-53.webm", + "vp90-2-00-quantizer-54.webm", + "vp90-2-00-quantizer-55.webm", + "vp90-2-00-quantizer-56.webm", + "vp90-2-00-quantizer-57.webm", + "vp90-2-00-quantizer-58.webm", + "vp90-2-00-quantizer-59.webm", + "vp90-2-00-quantizer-60.webm", + "vp90-2-00-quantizer-61.webm", + "vp90-2-00-quantizer-62.webm", + "vp90-2-00-quantizer-63.webm", + "vp90-2-01-sharpness-1.webm", + "vp90-2-01-sharpness-2.webm", + "vp90-2-01-sharpness-3.webm", + "vp90-2-01-sharpness-4.webm", + "vp90-2-01-sharpness-5.webm", + "vp90-2-01-sharpness-6.webm", + "vp90-2-01-sharpness-7.webm", + "vp90-2-02-size-08x08.webm", + "vp90-2-02-size-08x10.webm", + "vp90-2-02-size-08x16.webm", + "vp90-2-02-size-08x18.webm", + "vp90-2-02-size-08x32.webm", + "vp90-2-02-size-08x34.webm", + "vp90-2-02-size-08x64.webm", + "vp90-2-02-size-08x66.webm", + "vp90-2-02-size-10x08.webm", + "vp90-2-02-size-10x10.webm", + "vp90-2-02-size-10x16.webm", + "vp90-2-02-size-10x18.webm", + "vp90-2-02-size-10x32.webm", + "vp90-2-02-size-10x34.webm", + "vp90-2-02-size-10x64.webm", + "vp90-2-02-size-10x66.webm", + "vp90-2-02-size-16x08.webm", + "vp90-2-02-size-16x10.webm", + "vp90-2-02-size-16x16.webm", + "vp90-2-02-size-16x18.webm", + "vp90-2-02-size-16x32.webm", + "vp90-2-02-size-16x34.webm", + "vp90-2-02-size-16x64.webm", + "vp90-2-02-size-16x66.webm", + "vp90-2-02-size-18x08.webm", + "vp90-2-02-size-18x10.webm", + "vp90-2-02-size-18x16.webm", + "vp90-2-02-size-18x18.webm", + "vp90-2-02-size-18x32.webm", + "vp90-2-02-size-18x34.webm", + "vp90-2-02-size-18x64.webm", + "vp90-2-02-size-18x66.webm", + "vp90-2-02-size-32x08.webm", + "vp90-2-02-size-32x10.webm", + "vp90-2-02-size-32x16.webm", + "vp90-2-02-size-32x18.webm", + "vp90-2-02-size-32x32.webm", + "vp90-2-02-size-32x34.webm", + "vp90-2-02-size-32x64.webm", + "vp90-2-02-size-32x66.webm", + "vp90-2-02-size-34x08.webm", + "vp90-2-02-size-34x10.webm", + "vp90-2-02-size-34x16.webm", + "vp90-2-02-size-34x18.webm", + "vp90-2-02-size-34x32.webm", + "vp90-2-02-size-34x34.webm", + "vp90-2-02-size-34x64.webm", + "vp90-2-02-size-34x66.webm", + "vp90-2-02-size-64x08.webm", + "vp90-2-02-size-64x10.webm", + "vp90-2-02-size-64x16.webm", + "vp90-2-02-size-64x18.webm", + "vp90-2-02-size-64x32.webm", + "vp90-2-02-size-64x34.webm", + "vp90-2-02-size-64x64.webm", + "vp90-2-02-size-64x66.webm", + "vp90-2-02-size-66x08.webm", + "vp90-2-02-size-66x10.webm", + "vp90-2-02-size-66x16.webm", + "vp90-2-02-size-66x18.webm", + "vp90-2-02-size-66x32.webm", + "vp90-2-02-size-66x34.webm", + "vp90-2-02-size-66x64.webm", + "vp90-2-02-size-66x66.webm", + "vp90-2-02-size-130x132.webm", + "vp90-2-02-size-132x130.webm", + "vp90-2-02-size-132x132.webm", + "vp90-2-02-size-178x180.webm", + "vp90-2-02-size-180x178.webm", + "vp90-2-02-size-180x180.webm", + "vp90-2-03-size-196x196.webm", + "vp90-2-03-size-196x198.webm", + "vp90-2-03-size-196x200.webm", + "vp90-2-03-size-196x202.webm", + "vp90-2-03-size-196x208.webm", + "vp90-2-03-size-196x210.webm", + "vp90-2-03-size-196x224.webm", + "vp90-2-03-size-196x226.webm", + "vp90-2-03-size-198x196.webm", + "vp90-2-03-size-198x198.webm", + "vp90-2-03-size-198x200.webm", + "vp90-2-03-size-198x202.webm", + "vp90-2-03-size-198x208.webm", + "vp90-2-03-size-198x210.webm", + "vp90-2-03-size-198x224.webm", + "vp90-2-03-size-198x226.webm", + "vp90-2-03-size-200x196.webm", + "vp90-2-03-size-200x198.webm", + "vp90-2-03-size-200x200.webm", + "vp90-2-03-size-200x202.webm", + "vp90-2-03-size-200x208.webm", + "vp90-2-03-size-200x210.webm", + "vp90-2-03-size-200x224.webm", + "vp90-2-03-size-200x226.webm", + "vp90-2-03-size-202x196.webm", + "vp90-2-03-size-202x198.webm", + "vp90-2-03-size-202x200.webm", + "vp90-2-03-size-202x202.webm", + "vp90-2-03-size-202x208.webm", + "vp90-2-03-size-202x210.webm", + "vp90-2-03-size-202x224.webm", + "vp90-2-03-size-202x226.webm", + "vp90-2-03-size-208x196.webm", + "vp90-2-03-size-208x198.webm", + "vp90-2-03-size-208x200.webm", + "vp90-2-03-size-208x202.webm", + "vp90-2-03-size-208x208.webm", + "vp90-2-03-size-208x210.webm", + "vp90-2-03-size-208x224.webm", + "vp90-2-03-size-208x226.webm", + "vp90-2-03-size-210x196.webm", + "vp90-2-03-size-210x198.webm", + "vp90-2-03-size-210x200.webm", + "vp90-2-03-size-210x202.webm", + "vp90-2-03-size-210x208.webm", + "vp90-2-03-size-210x210.webm", + "vp90-2-03-size-210x224.webm", + "vp90-2-03-size-210x226.webm", + "vp90-2-03-size-224x196.webm", + "vp90-2-03-size-224x198.webm", + "vp90-2-03-size-224x200.webm", + "vp90-2-03-size-224x202.webm", + "vp90-2-03-size-224x208.webm", + "vp90-2-03-size-224x210.webm", + "vp90-2-03-size-224x224.webm", + "vp90-2-03-size-224x226.webm", + "vp90-2-03-size-226x196.webm", + "vp90-2-03-size-226x198.webm", + "vp90-2-03-size-226x200.webm", + "vp90-2-03-size-226x202.webm", + "vp90-2-03-size-226x208.webm", + "vp90-2-03-size-226x210.webm", + "vp90-2-03-size-226x224.webm", + "vp90-2-03-size-226x226.webm", + "vp90-2-03-size-352x288.webm", + "vp90-2-03-deltaq.webm", + "vp90-2-05-resize.ivf", + "vp90-2-06-bilinear.webm", + "vp90-2-07-frame_parallel.webm", + "vp90-2-08-tile_1x2_frame_parallel.webm", + "vp90-2-08-tile_1x2.webm", + "vp90-2-08-tile_1x4_frame_parallel.webm", + "vp90-2-08-tile_1x4.webm", + "vp90-2-08-tile_1x8_frame_parallel.webm", + "vp90-2-08-tile_1x8.webm", + "vp90-2-08-tile-4x4.webm", + "vp90-2-08-tile-4x1.webm", + "vp90-2-09-subpixel-00.ivf", + "vp90-2-02-size-lf-1920x1080.webm", + "vp90-2-09-aq2.webm", + "vp90-2-09-lf_deltas.webm", + "vp90-2-10-show-existing-frame.webm", + "vp90-2-10-show-existing-frame2.webm", + "vp90-2-11-size-351x287.webm", + "vp90-2-11-size-351x288.webm", + "vp90-2-11-size-352x287.webm", + "vp90-2-12-droppable_1.ivf", + "vp90-2-12-droppable_2.ivf", + "vp90-2-12-droppable_3.ivf", +#if !CONFIG_SIZE_LIMIT || \ + (DECODE_WIDTH_LIMIT >= 20400 && DECODE_HEIGHT_LIMIT >= 120) + "vp90-2-13-largescaling.webm", +#endif + "vp90-2-14-resize-fp-tiles-1-16.webm", + "vp90-2-14-resize-fp-tiles-1-2-4-8-16.webm", + "vp90-2-14-resize-fp-tiles-1-2.webm", + "vp90-2-14-resize-fp-tiles-1-4.webm", + "vp90-2-14-resize-fp-tiles-16-1.webm", + "vp90-2-14-resize-fp-tiles-16-2.webm", + "vp90-2-14-resize-fp-tiles-16-4.webm", + "vp90-2-14-resize-fp-tiles-16-8-4-2-1.webm", + "vp90-2-14-resize-fp-tiles-16-8.webm", + "vp90-2-14-resize-fp-tiles-1-8.webm", + "vp90-2-14-resize-fp-tiles-2-16.webm", + "vp90-2-14-resize-fp-tiles-2-1.webm", + "vp90-2-14-resize-fp-tiles-2-4.webm", + "vp90-2-14-resize-fp-tiles-2-8.webm", + "vp90-2-14-resize-fp-tiles-4-16.webm", + "vp90-2-14-resize-fp-tiles-4-1.webm", + "vp90-2-14-resize-fp-tiles-4-2.webm", + "vp90-2-14-resize-fp-tiles-4-8.webm", + "vp90-2-14-resize-fp-tiles-8-16.webm", + "vp90-2-14-resize-fp-tiles-8-1.webm", + "vp90-2-14-resize-fp-tiles-8-2.webm", + "vp90-2-14-resize-fp-tiles-8-4.webm", + "vp90-2-14-resize-10frames-fp-tiles-1-2-4-8.webm", + "vp90-2-14-resize-10frames-fp-tiles-1-2.webm", + "vp90-2-14-resize-10frames-fp-tiles-1-4.webm", + "vp90-2-14-resize-10frames-fp-tiles-1-8.webm", + "vp90-2-14-resize-10frames-fp-tiles-2-1.webm", + "vp90-2-14-resize-10frames-fp-tiles-2-4.webm", + "vp90-2-14-resize-10frames-fp-tiles-2-8.webm", + "vp90-2-14-resize-10frames-fp-tiles-4-1.webm", + "vp90-2-14-resize-10frames-fp-tiles-4-2.webm", + "vp90-2-14-resize-10frames-fp-tiles-4-8.webm", + "vp90-2-14-resize-10frames-fp-tiles-8-1.webm", + "vp90-2-14-resize-10frames-fp-tiles-8-2.webm", + "vp90-2-14-resize-10frames-fp-tiles-8-4-2-1.webm", + "vp90-2-14-resize-10frames-fp-tiles-8-4.webm", + "vp90-2-15-segkey.webm", + "vp90-2-15-segkey_adpq.webm", + "vp90-2-16-intra-only.webm", + "vp90-2-17-show-existing-frame.webm", + "vp90-2-18-resize.ivf", + "vp90-2-19-skip.webm", + "vp90-2-19-skip-01.webm", + "vp90-2-19-skip-02.webm", + "vp91-2-04-yuv444.webm", + "vp91-2-04-yuv422.webm", + "vp91-2-04-yuv440.webm", +#if CONFIG_VP9_HIGHBITDEPTH + "vp92-2-20-10bit-yuv420.webm", + "vp92-2-20-12bit-yuv420.webm", + "vp93-2-20-10bit-yuv422.webm", + "vp93-2-20-12bit-yuv422.webm", + "vp93-2-20-10bit-yuv440.webm", + "vp93-2-20-12bit-yuv440.webm", + "vp93-2-20-10bit-yuv444.webm", + "vp93-2-20-12bit-yuv444.webm", +#endif // CONFIG_VP9_HIGHBITDEPTH + "vp90-2-20-big_superframe-01.webm", + "vp90-2-20-big_superframe-02.webm", + "vp90-2-22-svc_1280x720_1.webm", + RESIZE_TEST_VECTORS +}; +const char *const kVP9TestVectorsSvc[] = { "vp90-2-22-svc_1280x720_3.ivf" }; +const int kNumVP9TestVectors = NELEMENTS(kVP9TestVectors); +const int kNumVP9TestVectorsSvc = NELEMENTS(kVP9TestVectorsSvc); +const char *const kVP9TestVectorsResize[] = { RESIZE_TEST_VECTORS }; +const int kNumVP9TestVectorsResize = NELEMENTS(kVP9TestVectorsResize); +#undef RESIZE_TEST_VECTORS +#endif // CONFIG_VP9_DECODER + +} // namespace libvpx_test diff --git a/test/test_vectors.h b/test/test_vectors.h new file mode 100644 index 0000000..3df3e81 --- /dev/null +++ b/test/test_vectors.h @@ -0,0 +1,34 @@ +/* + * Copyright (c) 2013 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef TEST_TEST_VECTORS_H_ +#define TEST_TEST_VECTORS_H_ + +#include "./vpx_config.h" + +namespace libvpx_test { + +#if CONFIG_VP8_DECODER +extern const int kNumVP8TestVectors; +extern const char *const kVP8TestVectors[]; +#endif + +#if CONFIG_VP9_DECODER +extern const int kNumVP9TestVectors; +extern const char *const kVP9TestVectors[]; +extern const int kNumVP9TestVectorsSvc; +extern const char *const kVP9TestVectorsSvc[]; +extern const int kNumVP9TestVectorsResize; +extern const char *const kVP9TestVectorsResize[]; +#endif // CONFIG_VP9_DECODER + +} // namespace libvpx_test + +#endif // TEST_TEST_VECTORS_H_ diff --git a/test/tile_independence_test.cc b/test/tile_independence_test.cc new file mode 100644 index 0000000..e24981c --- /dev/null +++ b/test/tile_independence_test.cc @@ -0,0 +1,104 @@ +/* + * Copyright (c) 2013 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include +#include +#include "third_party/googletest/src/include/gtest/gtest.h" +#include "test/codec_factory.h" +#include "test/encode_test_driver.h" +#include "test/i420_video_source.h" +#include "test/util.h" +#include "test/md5_helper.h" +#include "vpx_mem/vpx_mem.h" + +namespace { +class TileIndependenceTest : public ::libvpx_test::EncoderTest, + public ::libvpx_test::CodecTestWithParam { + protected: + TileIndependenceTest() + : EncoderTest(GET_PARAM(0)), md5_fw_order_(), md5_inv_order_(), + n_tiles_(GET_PARAM(1)) { + init_flags_ = VPX_CODEC_USE_PSNR; + vpx_codec_dec_cfg_t cfg = vpx_codec_dec_cfg_t(); + cfg.w = 704; + cfg.h = 144; + cfg.threads = 1; + fw_dec_ = codec_->CreateDecoder(cfg, 0); + inv_dec_ = codec_->CreateDecoder(cfg, 0); + inv_dec_->Control(VP9_INVERT_TILE_DECODE_ORDER, 1); + } + + virtual ~TileIndependenceTest() { + delete fw_dec_; + delete inv_dec_; + } + + virtual void SetUp() { + InitializeConfig(); + SetMode(libvpx_test::kTwoPassGood); + } + + virtual void PreEncodeFrameHook(libvpx_test::VideoSource *video, + libvpx_test::Encoder *encoder) { + if (video->frame() == 1) { + encoder->Control(VP9E_SET_TILE_COLUMNS, n_tiles_); + } + } + + void UpdateMD5(::libvpx_test::Decoder *dec, const vpx_codec_cx_pkt_t *pkt, + ::libvpx_test::MD5 *md5) { + const vpx_codec_err_t res = dec->DecodeFrame( + reinterpret_cast(pkt->data.frame.buf), pkt->data.frame.sz); + if (res != VPX_CODEC_OK) { + abort_ = true; + ASSERT_EQ(VPX_CODEC_OK, res); + } + const vpx_image_t *img = dec->GetDxData().Next(); + md5->Add(img); + } + + virtual void FramePktHook(const vpx_codec_cx_pkt_t *pkt) { + UpdateMD5(fw_dec_, pkt, &md5_fw_order_); + UpdateMD5(inv_dec_, pkt, &md5_inv_order_); + } + + ::libvpx_test::MD5 md5_fw_order_, md5_inv_order_; + ::libvpx_test::Decoder *fw_dec_, *inv_dec_; + + private: + int n_tiles_; +}; + +// run an encode with 2 or 4 tiles, and do the decode both in normal and +// inverted tile ordering. Ensure that the MD5 of the output in both cases +// is identical. If so, tiles are considered independent and the test passes. +TEST_P(TileIndependenceTest, MD5Match) { + const vpx_rational timebase = { 33333333, 1000000000 }; + cfg_.g_timebase = timebase; + cfg_.rc_target_bitrate = 500; + cfg_.g_lag_in_frames = 25; + cfg_.rc_end_usage = VPX_VBR; + + libvpx_test::I420VideoSource video("hantro_collage_w352h288.yuv", 704, 144, + timebase.den, timebase.num, 0, 30); + ASSERT_NO_FATAL_FAILURE(RunLoop(&video)); + + const char *md5_fw_str = md5_fw_order_.Get(); + const char *md5_inv_str = md5_inv_order_.Get(); + + // could use ASSERT_EQ(!memcmp(.., .., 16) here, but this gives nicer + // output if it fails. Not sure if it's helpful since it's really just + // a MD5... + ASSERT_STREQ(md5_fw_str, md5_inv_str); +} + +VP9_INSTANTIATE_TEST_CASE(TileIndependenceTest, ::testing::Range(0, 2, 1)); +} // namespace diff --git a/test/tools_common.sh b/test/tools_common.sh new file mode 100755 index 0000000..0bdcc08 --- /dev/null +++ b/test/tools_common.sh @@ -0,0 +1,438 @@ +#!/bin/sh +## +## Copyright (c) 2014 The WebM project authors. All Rights Reserved. +## +## Use of this source code is governed by a BSD-style license +## that can be found in the LICENSE file in the root of the source +## tree. An additional intellectual property rights grant can be found +## in the file PATENTS. All contributing project authors may +## be found in the AUTHORS file in the root of the source tree. +## +## This file contains shell code shared by test scripts for libvpx tools. + +# Use $VPX_TEST_TOOLS_COMMON_SH as a pseudo include guard. +if [ -z "${VPX_TEST_TOOLS_COMMON_SH}" ]; then +VPX_TEST_TOOLS_COMMON_SH=included + +set -e +devnull='> /dev/null 2>&1' +VPX_TEST_PREFIX="" + +elog() { + echo "$@" 1>&2 +} + +vlog() { + if [ "${VPX_TEST_VERBOSE_OUTPUT}" = "yes" ]; then + echo "$@" + fi +} + +# Sets $VPX_TOOL_TEST to the name specified by positional parameter one. +test_begin() { + VPX_TOOL_TEST="${1}" +} + +# Clears the VPX_TOOL_TEST variable after confirming that $VPX_TOOL_TEST matches +# positional parameter one. +test_end() { + if [ "$1" != "${VPX_TOOL_TEST}" ]; then + echo "FAIL completed test mismatch!." + echo " completed test: ${1}" + echo " active test: ${VPX_TOOL_TEST}." + return 1 + fi + VPX_TOOL_TEST='' +} + +# Echoes the target configuration being tested. +test_configuration_target() { + vpx_config_mk="${LIBVPX_CONFIG_PATH}/config.mk" + # Find the TOOLCHAIN line, split it using ':=' as the field separator, and + # print the last field to get the value. Then pipe the value to tr to consume + # any leading/trailing spaces while allowing tr to echo the output to stdout. + awk -F ':=' '/TOOLCHAIN/ { print $NF }' "${vpx_config_mk}" | tr -d ' ' +} + +# Trap function used for failure reports and tool output directory removal. +# When the contents of $VPX_TOOL_TEST do not match the string '', reports +# failure of test stored in $VPX_TOOL_TEST. +cleanup() { + if [ -n "${VPX_TOOL_TEST}" ] && [ "${VPX_TOOL_TEST}" != '' ]; then + echo "FAIL: $VPX_TOOL_TEST" + fi + if [ -n "${VPX_TEST_OUTPUT_DIR}" ] && [ -d "${VPX_TEST_OUTPUT_DIR}" ]; then + rm -rf "${VPX_TEST_OUTPUT_DIR}" + fi +} + +# Echoes the git hash portion of the VERSION_STRING variable defined in +# $LIBVPX_CONFIG_PATH/config.mk to stdout, or the version number string when +# no git hash is contained in VERSION_STRING. +config_hash() { + vpx_config_mk="${LIBVPX_CONFIG_PATH}/config.mk" + # Find VERSION_STRING line, split it with "-g" and print the last field to + # output the git hash to stdout. + vpx_version=$(awk -F -g '/VERSION_STRING/ {print $NF}' "${vpx_config_mk}") + # Handle two situations here: + # 1. The default case: $vpx_version is a git hash, so echo it unchanged. + # 2. When being run a non-dev tree, the -g portion is not present in the + # version string: It's only the version number. + # In this case $vpx_version is something like 'VERSION_STRING=v1.3.0', so + # we echo only what is after the '='. + echo "${vpx_version##*=}" +} + +# Echoes the short form of the current git hash. +current_hash() { + if git --version > /dev/null 2>&1; then + (cd "$(dirname "${0}")" + git rev-parse --short HEAD) + else + # Return the config hash if git is unavailable: Fail silently, git hashes + # are used only for warnings. + config_hash + fi +} + +# Echoes warnings to stdout when git hash in vpx_config.h does not match the +# current git hash. +check_git_hashes() { + hash_at_configure_time=$(config_hash) + hash_now=$(current_hash) + + if [ "${hash_at_configure_time}" != "${hash_now}" ]; then + echo "Warning: git hash has changed since last configure." + fi +} + +# $1 is the name of an environment variable containing a directory name to +# test. +test_env_var_dir() { + local dir=$(eval echo "\${$1}") + if [ ! -d "${dir}" ]; then + elog "'${dir}': No such directory" + elog "The $1 environment variable must be set to a valid directory." + return 1 + fi +} + +# This script requires that the LIBVPX_BIN_PATH, LIBVPX_CONFIG_PATH, and +# LIBVPX_TEST_DATA_PATH variables are in the environment: Confirm that +# the variables are set and that they all evaluate to directory paths. +verify_vpx_test_environment() { + test_env_var_dir "LIBVPX_BIN_PATH" \ + && test_env_var_dir "LIBVPX_CONFIG_PATH" \ + && test_env_var_dir "LIBVPX_TEST_DATA_PATH" +} + +# Greps vpx_config.h in LIBVPX_CONFIG_PATH for positional parameter one, which +# should be a LIBVPX preprocessor flag. Echoes yes to stdout when the feature +# is available. +vpx_config_option_enabled() { + vpx_config_option="${1}" + vpx_config_file="${LIBVPX_CONFIG_PATH}/vpx_config.h" + config_line=$(grep "${vpx_config_option}" "${vpx_config_file}") + if echo "${config_line}" | egrep -q '1$'; then + echo yes + fi +} + +# Echoes yes when output of test_configuration_target() contains win32 or win64. +is_windows_target() { + if test_configuration_target \ + | grep -q -e win32 -e win64 > /dev/null 2>&1; then + echo yes + fi +} + +# Echoes path to $1 when it's executable and exists in ${LIBVPX_BIN_PATH}, or an +# empty string. Caller is responsible for testing the string once the function +# returns. +vpx_tool_path() { + local readonly tool_name="$1" + local tool_path="${LIBVPX_BIN_PATH}/${tool_name}${VPX_TEST_EXE_SUFFIX}" + if [ ! -x "${tool_path}" ]; then + # Try one directory up: when running via examples.sh the tool could be in + # the parent directory of $LIBVPX_BIN_PATH. + tool_path="${LIBVPX_BIN_PATH}/../${tool_name}${VPX_TEST_EXE_SUFFIX}" + fi + + if [ ! -x "${tool_path}" ]; then + tool_path="" + fi + echo "${tool_path}" +} + +# Echoes yes to stdout when the file named by positional parameter one exists +# in LIBVPX_BIN_PATH, and is executable. +vpx_tool_available() { + local tool_name="$1" + local tool="${LIBVPX_BIN_PATH}/${tool_name}${VPX_TEST_EXE_SUFFIX}" + [ -x "${tool}" ] && echo yes +} + +# Echoes yes to stdout when vpx_config_option_enabled() reports yes for +# CONFIG_VP8_DECODER. +vp8_decode_available() { + [ "$(vpx_config_option_enabled CONFIG_VP8_DECODER)" = "yes" ] && echo yes +} + +# Echoes yes to stdout when vpx_config_option_enabled() reports yes for +# CONFIG_VP8_ENCODER. +vp8_encode_available() { + [ "$(vpx_config_option_enabled CONFIG_VP8_ENCODER)" = "yes" ] && echo yes +} + +# Echoes yes to stdout when vpx_config_option_enabled() reports yes for +# CONFIG_VP9_DECODER. +vp9_decode_available() { + [ "$(vpx_config_option_enabled CONFIG_VP9_DECODER)" = "yes" ] && echo yes +} + +# Echoes yes to stdout when vpx_config_option_enabled() reports yes for +# CONFIG_VP9_ENCODER. +vp9_encode_available() { + [ "$(vpx_config_option_enabled CONFIG_VP9_ENCODER)" = "yes" ] && echo yes +} + +# Echoes yes to stdout when vpx_config_option_enabled() reports yes for +# CONFIG_WEBM_IO. +webm_io_available() { + [ "$(vpx_config_option_enabled CONFIG_WEBM_IO)" = "yes" ] && echo yes +} + +# Filters strings from $1 using the filter specified by $2. Filter behavior +# depends on the presence of $3. When $3 is present, strings that match the +# filter are excluded. When $3 is omitted, strings matching the filter are +# included. +# The filtered result is echoed to stdout. +filter_strings() { + strings=${1} + filter=${2} + exclude=${3} + + if [ -n "${exclude}" ]; then + # When positional parameter three exists the caller wants to remove strings. + # Tell grep to invert matches using the -v argument. + exclude='-v' + else + unset exclude + fi + + if [ -n "${filter}" ]; then + for s in ${strings}; do + if echo "${s}" | egrep -q ${exclude} "${filter}" > /dev/null 2>&1; then + filtered_strings="${filtered_strings} ${s}" + fi + done + else + filtered_strings="${strings}" + fi + echo "${filtered_strings}" +} + +# Runs user test functions passed via positional parameters one and two. +# Functions in positional parameter one are treated as environment verification +# functions and are run unconditionally. Functions in positional parameter two +# are run according to the rules specified in vpx_test_usage(). +run_tests() { + local env_tests="verify_vpx_test_environment $1" + local tests_to_filter="$2" + local test_name="${VPX_TEST_NAME}" + + if [ -z "${test_name}" ]; then + test_name="$(basename "${0%.*}")" + fi + + if [ "${VPX_TEST_RUN_DISABLED_TESTS}" != "yes" ]; then + # Filter out DISABLED tests. + tests_to_filter=$(filter_strings "${tests_to_filter}" ^DISABLED exclude) + fi + + if [ -n "${VPX_TEST_FILTER}" ]; then + # Remove tests not matching the user's filter. + tests_to_filter=$(filter_strings "${tests_to_filter}" ${VPX_TEST_FILTER}) + fi + + # User requested test listing: Dump test names and return. + if [ "${VPX_TEST_LIST_TESTS}" = "yes" ]; then + for test_name in $tests_to_filter; do + echo ${test_name} + done + return + fi + + # Don't bother with the environment tests if everything else was disabled. + [ -z "${tests_to_filter}" ] && return + + # Combine environment and actual tests. + local tests_to_run="${env_tests} ${tests_to_filter}" + + check_git_hashes + + # Run tests. + for test in ${tests_to_run}; do + test_begin "${test}" + vlog " RUN ${test}" + "${test}" + vlog " PASS ${test}" + test_end "${test}" + done + + local tested_config="$(test_configuration_target) @ $(current_hash)" + echo "${test_name}: Done, all tests pass for ${tested_config}." +} + +vpx_test_usage() { +cat << EOF + Usage: ${0##*/} [arguments] + --bin-path + --config-path + --filter : User test filter. Only tests matching filter are run. + --run-disabled-tests: Run disabled tests. + --help: Display this message and exit. + --test-data-path + --show-program-output: Shows output from all programs being tested. + --prefix: Allows for a user specified prefix to be inserted before all test + programs. Grants the ability, for example, to run test programs + within valgrind. + --list-tests: List all test names and exit without actually running tests. + --verbose: Verbose output. + + When the --bin-path option is not specified the script attempts to use + \$LIBVPX_BIN_PATH and then the current directory. + + When the --config-path option is not specified the script attempts to use + \$LIBVPX_CONFIG_PATH and then the current directory. + + When the -test-data-path option is not specified the script attempts to use + \$LIBVPX_TEST_DATA_PATH and then the current directory. +EOF +} + +# Returns non-zero (failure) when required environment variables are empty +# strings. +vpx_test_check_environment() { + if [ -z "${LIBVPX_BIN_PATH}" ] || \ + [ -z "${LIBVPX_CONFIG_PATH}" ] || \ + [ -z "${LIBVPX_TEST_DATA_PATH}" ]; then + return 1 + fi +} + +# Parse the command line. +while [ -n "$1" ]; do + case "$1" in + --bin-path) + LIBVPX_BIN_PATH="$2" + shift + ;; + --config-path) + LIBVPX_CONFIG_PATH="$2" + shift + ;; + --filter) + VPX_TEST_FILTER="$2" + shift + ;; + --run-disabled-tests) + VPX_TEST_RUN_DISABLED_TESTS=yes + ;; + --help) + vpx_test_usage + exit + ;; + --test-data-path) + LIBVPX_TEST_DATA_PATH="$2" + shift + ;; + --prefix) + VPX_TEST_PREFIX="$2" + shift + ;; + --verbose) + VPX_TEST_VERBOSE_OUTPUT=yes + ;; + --show-program-output) + devnull= + ;; + --list-tests) + VPX_TEST_LIST_TESTS=yes + ;; + *) + vpx_test_usage + exit 1 + ;; + esac + shift +done + +# Handle running the tests from a build directory without arguments when running +# the tests on *nix/macosx. +LIBVPX_BIN_PATH="${LIBVPX_BIN_PATH:-.}" +LIBVPX_CONFIG_PATH="${LIBVPX_CONFIG_PATH:-.}" +LIBVPX_TEST_DATA_PATH="${LIBVPX_TEST_DATA_PATH:-.}" + +# Create a temporary directory for output files, and a trap to clean it up. +if [ -n "${TMPDIR}" ]; then + VPX_TEST_TEMP_ROOT="${TMPDIR}" +elif [ -n "${TEMPDIR}" ]; then + VPX_TEST_TEMP_ROOT="${TEMPDIR}" +else + VPX_TEST_TEMP_ROOT=/tmp +fi + +VPX_TEST_OUTPUT_DIR="${VPX_TEST_TEMP_ROOT}/vpx_test_$$" + +if ! mkdir -p "${VPX_TEST_OUTPUT_DIR}" || \ + [ ! -d "${VPX_TEST_OUTPUT_DIR}" ]; then + echo "${0##*/}: Cannot create output directory, giving up." + echo "${0##*/}: VPX_TEST_OUTPUT_DIR=${VPX_TEST_OUTPUT_DIR}" + exit 1 +fi + +if [ "$(is_windows_target)" = "yes" ]; then + VPX_TEST_EXE_SUFFIX=".exe" +fi + +# Variables shared by tests. +VP8_IVF_FILE="${LIBVPX_TEST_DATA_PATH}/vp80-00-comprehensive-001.ivf" +VP9_IVF_FILE="${LIBVPX_TEST_DATA_PATH}/vp90-2-09-subpixel-00.ivf" + +VP9_WEBM_FILE="${LIBVPX_TEST_DATA_PATH}/vp90-2-00-quantizer-00.webm" +VP9_FPM_WEBM_FILE="${LIBVPX_TEST_DATA_PATH}/vp90-2-07-frame_parallel-1.webm" +VP9_LT_50_FRAMES_WEBM_FILE="${LIBVPX_TEST_DATA_PATH}/vp90-2-02-size-32x08.webm" + +YUV_RAW_INPUT="${LIBVPX_TEST_DATA_PATH}/hantro_collage_w352h288.yuv" +YUV_RAW_INPUT_WIDTH=352 +YUV_RAW_INPUT_HEIGHT=288 + +Y4M_NOSQ_PAR_INPUT="${LIBVPX_TEST_DATA_PATH}/park_joy_90p_8_420_a10-1.y4m" +Y4M_720P_INPUT="${LIBVPX_TEST_DATA_PATH}/niklas_1280_720_30.y4m" + +# Setup a trap function to clean up after tests complete. +trap cleanup EXIT + +vlog "$(basename "${0%.*}") test configuration: + LIBVPX_BIN_PATH=${LIBVPX_BIN_PATH} + LIBVPX_CONFIG_PATH=${LIBVPX_CONFIG_PATH} + LIBVPX_TEST_DATA_PATH=${LIBVPX_TEST_DATA_PATH} + VP8_IVF_FILE=${VP8_IVF_FILE} + VP9_IVF_FILE=${VP9_IVF_FILE} + VP9_WEBM_FILE=${VP9_WEBM_FILE} + VPX_TEST_EXE_SUFFIX=${VPX_TEST_EXE_SUFFIX} + VPX_TEST_FILTER=${VPX_TEST_FILTER} + VPX_TEST_LIST_TESTS=${VPX_TEST_LIST_TESTS} + VPX_TEST_OUTPUT_DIR=${VPX_TEST_OUTPUT_DIR} + VPX_TEST_PREFIX=${VPX_TEST_PREFIX} + VPX_TEST_RUN_DISABLED_TESTS=${VPX_TEST_RUN_DISABLED_TESTS} + VPX_TEST_SHOW_PROGRAM_OUTPUT=${VPX_TEST_SHOW_PROGRAM_OUTPUT} + VPX_TEST_TEMP_ROOT=${VPX_TEST_TEMP_ROOT} + VPX_TEST_VERBOSE_OUTPUT=${VPX_TEST_VERBOSE_OUTPUT} + YUV_RAW_INPUT=${YUV_RAW_INPUT} + YUV_RAW_INPUT_WIDTH=${YUV_RAW_INPUT_WIDTH} + YUV_RAW_INPUT_HEIGHT=${YUV_RAW_INPUT_HEIGHT} + Y4M_NOSQ_PAR_INPUT=${Y4M_NOSQ_PAR_INPUT}" + +fi # End $VPX_TEST_TOOLS_COMMON_SH pseudo include guard. diff --git a/test/twopass_encoder.sh b/test/twopass_encoder.sh new file mode 100755 index 0000000..eaeaabd --- /dev/null +++ b/test/twopass_encoder.sh @@ -0,0 +1,63 @@ +#!/bin/sh +## +## Copyright (c) 2014 The WebM project authors. All Rights Reserved. +## +## Use of this source code is governed by a BSD-style license +## that can be found in the LICENSE file in the root of the source +## tree. An additional intellectual property rights grant can be found +## in the file PATENTS. All contributing project authors may +## be found in the AUTHORS file in the root of the source tree. +## +## This file tests the libvpx twopass_encoder example. To add new tests to this +## file, do the following: +## 1. Write a shell function (this is your test). +## 2. Add the function to twopass_encoder_tests (on a new line). +## +. $(dirname $0)/tools_common.sh + +# Environment check: $YUV_RAW_INPUT is required. +twopass_encoder_verify_environment() { + if [ ! -e "${YUV_RAW_INPUT}" ]; then + echo "Libvpx test data must exist in LIBVPX_TEST_DATA_PATH." + return 1 + fi +} + +# Runs twopass_encoder using the codec specified by $1 with a frame limit of +# 100. +twopass_encoder() { + local encoder="${LIBVPX_BIN_PATH}/twopass_encoder${VPX_TEST_EXE_SUFFIX}" + local codec="$1" + local output_file="${VPX_TEST_OUTPUT_DIR}/twopass_encoder_${codec}.ivf" + + if [ ! -x "${encoder}" ]; then + elog "${encoder} does not exist or is not executable." + return 1 + fi + + eval "${VPX_TEST_PREFIX}" "${encoder}" "${codec}" "${YUV_RAW_INPUT_WIDTH}" \ + "${YUV_RAW_INPUT_HEIGHT}" "${YUV_RAW_INPUT}" "${output_file}" 100 \ + ${devnull} + + [ -e "${output_file}" ] || return 1 +} + +twopass_encoder_vp8() { + if [ "$(vp8_encode_available)" = "yes" ]; then + twopass_encoder vp8 || return 1 + fi +} + +twopass_encoder_vp9() { + if [ "$(vp9_encode_available)" = "yes" ]; then + twopass_encoder vp9 || return 1 + fi +} + + +if [ "$(vpx_config_option_enabled CONFIG_REALTIME_ONLY)" != "yes" ]; then + twopass_encoder_tests="twopass_encoder_vp8 + twopass_encoder_vp9" + + run_tests twopass_encoder_verify_environment "${twopass_encoder_tests}" +fi diff --git a/test/user_priv_test.cc b/test/user_priv_test.cc new file mode 100644 index 0000000..4b5de09 --- /dev/null +++ b/test/user_priv_test.cc @@ -0,0 +1,100 @@ +/* + * Copyright (c) 2013 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include +#include +#include "third_party/googletest/src/include/gtest/gtest.h" +#include "./vpx_config.h" +#include "test/acm_random.h" +#include "test/codec_factory.h" +#include "test/decode_test_driver.h" +#include "test/ivf_video_source.h" +#include "test/md5_helper.h" +#include "test/util.h" +#if CONFIG_WEBM_IO +#include "test/webm_video_source.h" +#endif +#include "vpx_mem/vpx_mem.h" +#include "vpx/vp8.h" + +namespace { + +using std::string; +using libvpx_test::ACMRandom; + +#if CONFIG_WEBM_IO + +void CheckUserPrivateData(void *user_priv, int *target) { + // actual pointer value should be the same as expected. + EXPECT_EQ(reinterpret_cast(target), user_priv) + << "user_priv pointer value does not match."; +} + +// Decodes |filename|. Passes in user_priv data when calling DecodeFrame and +// compares the user_priv from return img with the original user_priv to see if +// they match. Both the pointer values and the values inside the addresses +// should match. +string DecodeFile(const string &filename) { + ACMRandom rnd(ACMRandom::DeterministicSeed()); + libvpx_test::WebMVideoSource video(filename); + video.Init(); + + vpx_codec_dec_cfg_t cfg = vpx_codec_dec_cfg_t(); + libvpx_test::VP9Decoder decoder(cfg, 0); + + libvpx_test::MD5 md5; + int frame_num = 0; + for (video.Begin(); !::testing::Test::HasFailure() && video.cxdata(); + video.Next()) { + void *user_priv = reinterpret_cast(&frame_num); + const vpx_codec_err_t res = + decoder.DecodeFrame(video.cxdata(), video.frame_size(), + (frame_num == 0) ? NULL : user_priv); + if (res != VPX_CODEC_OK) { + EXPECT_EQ(VPX_CODEC_OK, res) << decoder.DecodeError(); + break; + } + libvpx_test::DxDataIterator dec_iter = decoder.GetDxData(); + const vpx_image_t *img = NULL; + + // Get decompressed data. + while ((img = dec_iter.Next())) { + if (frame_num == 0) { + CheckUserPrivateData(img->user_priv, NULL); + } else { + CheckUserPrivateData(img->user_priv, &frame_num); + + // Also test ctrl_get_reference api. + struct vp9_ref_frame ref; + // Randomly fetch a reference frame. + ref.idx = rnd.Rand8() % 3; + decoder.Control(VP9_GET_REFERENCE, &ref); + + CheckUserPrivateData(ref.img.user_priv, NULL); + } + md5.Add(img); + } + + frame_num++; + } + return string(md5.Get()); +} + +TEST(UserPrivTest, VideoDecode) { + // no tiles or frame parallel; this exercises the decoding to test the + // user_priv. + EXPECT_STREQ("b35a1b707b28e82be025d960aba039bc", + DecodeFile("vp90-2-03-size-226x226.webm").c_str()); +} + +#endif // CONFIG_WEBM_IO + +} // namespace diff --git a/test/util.h b/test/util.h new file mode 100644 index 0000000..1f2540e --- /dev/null +++ b/test/util.h @@ -0,0 +1,46 @@ +/* + * Copyright (c) 2012 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef TEST_UTIL_H_ +#define TEST_UTIL_H_ + +#include +#include +#include "third_party/googletest/src/include/gtest/gtest.h" +#include "vpx/vpx_image.h" + +// Macros +#define GET_PARAM(k) std::tr1::get(GetParam()) + +inline double compute_psnr(const vpx_image_t *img1, const vpx_image_t *img2) { + assert((img1->fmt == img2->fmt) && (img1->d_w == img2->d_w) && + (img1->d_h == img2->d_h)); + + const unsigned int width_y = img1->d_w; + const unsigned int height_y = img1->d_h; + unsigned int i, j; + + int64_t sqrerr = 0; + for (i = 0; i < height_y; ++i) { + for (j = 0; j < width_y; ++j) { + int64_t d = img1->planes[VPX_PLANE_Y][i * img1->stride[VPX_PLANE_Y] + j] - + img2->planes[VPX_PLANE_Y][i * img2->stride[VPX_PLANE_Y] + j]; + sqrerr += d * d; + } + } + double mse = static_cast(sqrerr) / (width_y * height_y); + double psnr = 100.0; + if (mse > 0.0) { + psnr = 10 * log10(255.0 * 255.0 / mse); + } + return psnr; +} + +#endif // TEST_UTIL_H_ diff --git a/test/variance_test.cc b/test/variance_test.cc new file mode 100644 index 0000000..421024a --- /dev/null +++ b/test/variance_test.cc @@ -0,0 +1,1601 @@ +/* + * Copyright (c) 2012 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include + +#include "third_party/googletest/src/include/gtest/gtest.h" + +#include "./vpx_config.h" +#include "./vpx_dsp_rtcd.h" +#include "test/acm_random.h" +#include "test/clear_system_state.h" +#include "test/register_state_check.h" +#include "vpx/vpx_codec.h" +#include "vpx/vpx_integer.h" +#include "vpx_mem/vpx_mem.h" +#include "vpx_ports/mem.h" +#include "vpx_ports/vpx_timer.h" + +namespace { + +typedef unsigned int (*VarianceMxNFunc)(const uint8_t *a, int a_stride, + const uint8_t *b, int b_stride, + unsigned int *sse); +typedef unsigned int (*SubpixVarMxNFunc)(const uint8_t *a, int a_stride, + int xoffset, int yoffset, + const uint8_t *b, int b_stride, + unsigned int *sse); +typedef unsigned int (*SubpixAvgVarMxNFunc)(const uint8_t *a, int a_stride, + int xoffset, int yoffset, + const uint8_t *b, int b_stride, + uint32_t *sse, + const uint8_t *second_pred); +typedef unsigned int (*Get4x4SseFunc)(const uint8_t *a, int a_stride, + const uint8_t *b, int b_stride); +typedef unsigned int (*SumOfSquaresFunction)(const int16_t *src); + +using libvpx_test::ACMRandom; + +// Truncate high bit depth results by downshifting (with rounding) by: +// 2 * (bit_depth - 8) for sse +// (bit_depth - 8) for se +static void RoundHighBitDepth(int bit_depth, int64_t *se, uint64_t *sse) { + switch (bit_depth) { + case VPX_BITS_12: + *sse = (*sse + 128) >> 8; + *se = (*se + 8) >> 4; + break; + case VPX_BITS_10: + *sse = (*sse + 8) >> 4; + *se = (*se + 2) >> 2; + break; + case VPX_BITS_8: + default: break; + } +} + +static unsigned int mb_ss_ref(const int16_t *src) { + unsigned int res = 0; + for (int i = 0; i < 256; ++i) { + res += src[i] * src[i]; + } + return res; +} + +/* Note: + * Our codebase calculates the "diff" value in the variance algorithm by + * (src - ref). + */ +static uint32_t variance_ref(const uint8_t *src, const uint8_t *ref, int l2w, + int l2h, int src_stride, int ref_stride, + uint32_t *sse_ptr, bool use_high_bit_depth_, + vpx_bit_depth_t bit_depth) { + int64_t se = 0; + uint64_t sse = 0; + const int w = 1 << l2w; + const int h = 1 << l2h; + for (int y = 0; y < h; y++) { + for (int x = 0; x < w; x++) { + int diff; + if (!use_high_bit_depth_) { + diff = src[y * src_stride + x] - ref[y * ref_stride + x]; + se += diff; + sse += diff * diff; +#if CONFIG_VP9_HIGHBITDEPTH + } else { + diff = CONVERT_TO_SHORTPTR(src)[y * src_stride + x] - + CONVERT_TO_SHORTPTR(ref)[y * ref_stride + x]; + se += diff; + sse += diff * diff; +#endif // CONFIG_VP9_HIGHBITDEPTH + } + } + } + RoundHighBitDepth(bit_depth, &se, &sse); + *sse_ptr = static_cast(sse); + return static_cast( + sse - ((static_cast(se) * se) >> (l2w + l2h))); +} + +/* The subpel reference functions differ from the codec version in one aspect: + * they calculate the bilinear factors directly instead of using a lookup table + * and therefore upshift xoff and yoff by 1. Only every other calculated value + * is used so the codec version shrinks the table to save space and maintain + * compatibility with vp8. + */ +static uint32_t subpel_variance_ref(const uint8_t *ref, const uint8_t *src, + int l2w, int l2h, int xoff, int yoff, + uint32_t *sse_ptr, bool use_high_bit_depth_, + vpx_bit_depth_t bit_depth) { + int64_t se = 0; + uint64_t sse = 0; + const int w = 1 << l2w; + const int h = 1 << l2h; + + xoff <<= 1; + yoff <<= 1; + + for (int y = 0; y < h; y++) { + for (int x = 0; x < w; x++) { + // Bilinear interpolation at a 16th pel step. + if (!use_high_bit_depth_) { + const int a1 = ref[(w + 1) * (y + 0) + x + 0]; + const int a2 = ref[(w + 1) * (y + 0) + x + 1]; + const int b1 = ref[(w + 1) * (y + 1) + x + 0]; + const int b2 = ref[(w + 1) * (y + 1) + x + 1]; + const int a = a1 + (((a2 - a1) * xoff + 8) >> 4); + const int b = b1 + (((b2 - b1) * xoff + 8) >> 4); + const int r = a + (((b - a) * yoff + 8) >> 4); + const int diff = r - src[w * y + x]; + se += diff; + sse += diff * diff; +#if CONFIG_VP9_HIGHBITDEPTH + } else { + uint16_t *ref16 = CONVERT_TO_SHORTPTR(ref); + uint16_t *src16 = CONVERT_TO_SHORTPTR(src); + const int a1 = ref16[(w + 1) * (y + 0) + x + 0]; + const int a2 = ref16[(w + 1) * (y + 0) + x + 1]; + const int b1 = ref16[(w + 1) * (y + 1) + x + 0]; + const int b2 = ref16[(w + 1) * (y + 1) + x + 1]; + const int a = a1 + (((a2 - a1) * xoff + 8) >> 4); + const int b = b1 + (((b2 - b1) * xoff + 8) >> 4); + const int r = a + (((b - a) * yoff + 8) >> 4); + const int diff = r - src16[w * y + x]; + se += diff; + sse += diff * diff; +#endif // CONFIG_VP9_HIGHBITDEPTH + } + } + } + RoundHighBitDepth(bit_depth, &se, &sse); + *sse_ptr = static_cast(sse); + return static_cast( + sse - ((static_cast(se) * se) >> (l2w + l2h))); +} + +static uint32_t subpel_avg_variance_ref(const uint8_t *ref, const uint8_t *src, + const uint8_t *second_pred, int l2w, + int l2h, int xoff, int yoff, + uint32_t *sse_ptr, + bool use_high_bit_depth, + vpx_bit_depth_t bit_depth) { + int64_t se = 0; + uint64_t sse = 0; + const int w = 1 << l2w; + const int h = 1 << l2h; + + xoff <<= 1; + yoff <<= 1; + + for (int y = 0; y < h; y++) { + for (int x = 0; x < w; x++) { + // bilinear interpolation at a 16th pel step + if (!use_high_bit_depth) { + const int a1 = ref[(w + 1) * (y + 0) + x + 0]; + const int a2 = ref[(w + 1) * (y + 0) + x + 1]; + const int b1 = ref[(w + 1) * (y + 1) + x + 0]; + const int b2 = ref[(w + 1) * (y + 1) + x + 1]; + const int a = a1 + (((a2 - a1) * xoff + 8) >> 4); + const int b = b1 + (((b2 - b1) * xoff + 8) >> 4); + const int r = a + (((b - a) * yoff + 8) >> 4); + const int diff = + ((r + second_pred[w * y + x] + 1) >> 1) - src[w * y + x]; + se += diff; + sse += diff * diff; +#if CONFIG_VP9_HIGHBITDEPTH + } else { + const uint16_t *ref16 = CONVERT_TO_SHORTPTR(ref); + const uint16_t *src16 = CONVERT_TO_SHORTPTR(src); + const uint16_t *sec16 = CONVERT_TO_SHORTPTR(second_pred); + const int a1 = ref16[(w + 1) * (y + 0) + x + 0]; + const int a2 = ref16[(w + 1) * (y + 0) + x + 1]; + const int b1 = ref16[(w + 1) * (y + 1) + x + 0]; + const int b2 = ref16[(w + 1) * (y + 1) + x + 1]; + const int a = a1 + (((a2 - a1) * xoff + 8) >> 4); + const int b = b1 + (((b2 - b1) * xoff + 8) >> 4); + const int r = a + (((b - a) * yoff + 8) >> 4); + const int diff = ((r + sec16[w * y + x] + 1) >> 1) - src16[w * y + x]; + se += diff; + sse += diff * diff; +#endif // CONFIG_VP9_HIGHBITDEPTH + } + } + } + RoundHighBitDepth(bit_depth, &se, &sse); + *sse_ptr = static_cast(sse); + return static_cast( + sse - ((static_cast(se) * se) >> (l2w + l2h))); +} + +//////////////////////////////////////////////////////////////////////////////// + +class SumOfSquaresTest : public ::testing::TestWithParam { + public: + SumOfSquaresTest() : func_(GetParam()) {} + + virtual ~SumOfSquaresTest() { libvpx_test::ClearSystemState(); } + + protected: + void ConstTest(); + void RefTest(); + + SumOfSquaresFunction func_; + ACMRandom rnd_; +}; + +void SumOfSquaresTest::ConstTest() { + int16_t mem[256]; + unsigned int res; + for (int v = 0; v < 256; ++v) { + for (int i = 0; i < 256; ++i) { + mem[i] = v; + } + ASM_REGISTER_STATE_CHECK(res = func_(mem)); + EXPECT_EQ(256u * (v * v), res); + } +} + +void SumOfSquaresTest::RefTest() { + int16_t mem[256]; + for (int i = 0; i < 100; ++i) { + for (int j = 0; j < 256; ++j) { + mem[j] = rnd_.Rand8() - rnd_.Rand8(); + } + + const unsigned int expected = mb_ss_ref(mem); + unsigned int res; + ASM_REGISTER_STATE_CHECK(res = func_(mem)); + EXPECT_EQ(expected, res); + } +} + +//////////////////////////////////////////////////////////////////////////////// +// Encapsulating struct to store the function to test along with +// some testing context. +// Can be used for MSE, SSE, Variance, etc. + +template +struct TestParams { + TestParams(int log2w = 0, int log2h = 0, Func function = NULL, + int bit_depth_value = 0) + : log2width(log2w), log2height(log2h), func(function) { + use_high_bit_depth = (bit_depth_value > 0); + if (use_high_bit_depth) { + bit_depth = static_cast(bit_depth_value); + } else { + bit_depth = VPX_BITS_8; + } + width = 1 << log2width; + height = 1 << log2height; + block_size = width * height; + mask = (1u << bit_depth) - 1; + } + + int log2width, log2height; + int width, height; + int block_size; + Func func; + vpx_bit_depth_t bit_depth; + bool use_high_bit_depth; + uint32_t mask; +}; + +template +std::ostream &operator<<(std::ostream &os, const TestParams &p) { + return os << "log2width/height:" << p.log2width << "/" << p.log2height + << " function:" << reinterpret_cast(p.func) + << " bit-depth:" << p.bit_depth; +} + +// Main class for testing a function type +template +class MainTestClass + : public ::testing::TestWithParam > { + public: + virtual void SetUp() { + params_ = this->GetParam(); + + rnd_.Reset(ACMRandom::DeterministicSeed()); + const size_t unit = + use_high_bit_depth() ? sizeof(uint16_t) : sizeof(uint8_t); + src_ = reinterpret_cast(vpx_memalign(16, block_size() * unit)); + ref_ = new uint8_t[block_size() * unit]; + ASSERT_TRUE(src_ != NULL); + ASSERT_TRUE(ref_ != NULL); +#if CONFIG_VP9_HIGHBITDEPTH + if (use_high_bit_depth()) { + // TODO(skal): remove! + src_ = CONVERT_TO_BYTEPTR(src_); + ref_ = CONVERT_TO_BYTEPTR(ref_); + } +#endif + } + + virtual void TearDown() { +#if CONFIG_VP9_HIGHBITDEPTH + if (use_high_bit_depth()) { + // TODO(skal): remove! + src_ = reinterpret_cast(CONVERT_TO_SHORTPTR(src_)); + ref_ = reinterpret_cast(CONVERT_TO_SHORTPTR(ref_)); + } +#endif + + vpx_free(src_); + delete[] ref_; + src_ = NULL; + ref_ = NULL; + libvpx_test::ClearSystemState(); + } + + protected: + // We could sub-class MainTestClass into dedicated class for Variance + // and MSE/SSE, but it involves a lot of 'this->xxx' dereferencing + // to access top class fields xxx. That's cumbersome, so for now we'll just + // implement the testing methods here: + + // Variance tests + void ZeroTest(); + void RefTest(); + void RefStrideTest(); + void OneQuarterTest(); + void SpeedTest(); + + // MSE/SSE tests + void RefTestMse(); + void RefTestSse(); + void MaxTestMse(); + void MaxTestSse(); + + protected: + ACMRandom rnd_; + uint8_t *src_; + uint8_t *ref_; + TestParams params_; + + // some relay helpers + bool use_high_bit_depth() const { return params_.use_high_bit_depth; } + int byte_shift() const { return params_.bit_depth - 8; } + int block_size() const { return params_.block_size; } + int width() const { return params_.width; } + int height() const { return params_.height; } + uint32_t mask() const { return params_.mask; } +}; + +//////////////////////////////////////////////////////////////////////////////// +// Tests related to variance. + +template +void MainTestClass::ZeroTest() { + for (int i = 0; i <= 255; ++i) { + if (!use_high_bit_depth()) { + memset(src_, i, block_size()); + } else { + uint16_t *const src16 = CONVERT_TO_SHORTPTR(src_); + for (int k = 0; k < block_size(); ++k) src16[k] = i << byte_shift(); + } + for (int j = 0; j <= 255; ++j) { + if (!use_high_bit_depth()) { + memset(ref_, j, block_size()); + } else { + uint16_t *const ref16 = CONVERT_TO_SHORTPTR(ref_); + for (int k = 0; k < block_size(); ++k) ref16[k] = j << byte_shift(); + } + unsigned int sse, var; + ASM_REGISTER_STATE_CHECK( + var = params_.func(src_, width(), ref_, width(), &sse)); + EXPECT_EQ(0u, var) << "src values: " << i << " ref values: " << j; + } + } +} + +template +void MainTestClass::RefTest() { + for (int i = 0; i < 10; ++i) { + for (int j = 0; j < block_size(); j++) { + if (!use_high_bit_depth()) { + src_[j] = rnd_.Rand8(); + ref_[j] = rnd_.Rand8(); +#if CONFIG_VP9_HIGHBITDEPTH + } else { + CONVERT_TO_SHORTPTR(src_)[j] = rnd_.Rand16() & mask(); + CONVERT_TO_SHORTPTR(ref_)[j] = rnd_.Rand16() & mask(); +#endif // CONFIG_VP9_HIGHBITDEPTH + } + } + unsigned int sse1, sse2, var1, var2; + const int stride = width(); + ASM_REGISTER_STATE_CHECK( + var1 = params_.func(src_, stride, ref_, stride, &sse1)); + var2 = + variance_ref(src_, ref_, params_.log2width, params_.log2height, stride, + stride, &sse2, use_high_bit_depth(), params_.bit_depth); + EXPECT_EQ(sse1, sse2) << "Error at test index: " << i; + EXPECT_EQ(var1, var2) << "Error at test index: " << i; + } +} + +template +void MainTestClass::RefStrideTest() { + for (int i = 0; i < 10; ++i) { + const int ref_stride = (i & 1) * width(); + const int src_stride = ((i >> 1) & 1) * width(); + for (int j = 0; j < block_size(); j++) { + const int ref_ind = (j / width()) * ref_stride + j % width(); + const int src_ind = (j / width()) * src_stride + j % width(); + if (!use_high_bit_depth()) { + src_[src_ind] = rnd_.Rand8(); + ref_[ref_ind] = rnd_.Rand8(); +#if CONFIG_VP9_HIGHBITDEPTH + } else { + CONVERT_TO_SHORTPTR(src_)[src_ind] = rnd_.Rand16() & mask(); + CONVERT_TO_SHORTPTR(ref_)[ref_ind] = rnd_.Rand16() & mask(); +#endif // CONFIG_VP9_HIGHBITDEPTH + } + } + unsigned int sse1, sse2; + unsigned int var1, var2; + + ASM_REGISTER_STATE_CHECK( + var1 = params_.func(src_, src_stride, ref_, ref_stride, &sse1)); + var2 = variance_ref(src_, ref_, params_.log2width, params_.log2height, + src_stride, ref_stride, &sse2, use_high_bit_depth(), + params_.bit_depth); + EXPECT_EQ(sse1, sse2) << "Error at test index: " << i; + EXPECT_EQ(var1, var2) << "Error at test index: " << i; + } +} + +template +void MainTestClass::OneQuarterTest() { + const int half = block_size() / 2; + if (!use_high_bit_depth()) { + memset(src_, 255, block_size()); + memset(ref_, 255, half); + memset(ref_ + half, 0, half); +#if CONFIG_VP9_HIGHBITDEPTH + } else { + vpx_memset16(CONVERT_TO_SHORTPTR(src_), 255 << byte_shift(), block_size()); + vpx_memset16(CONVERT_TO_SHORTPTR(ref_), 255 << byte_shift(), half); + vpx_memset16(CONVERT_TO_SHORTPTR(ref_) + half, 0, half); +#endif // CONFIG_VP9_HIGHBITDEPTH + } + unsigned int sse, var, expected; + ASM_REGISTER_STATE_CHECK( + var = params_.func(src_, width(), ref_, width(), &sse)); + expected = block_size() * 255 * 255 / 4; + EXPECT_EQ(expected, var); +} + +template +void MainTestClass::SpeedTest() { + const int half = block_size() / 2; + if (!use_high_bit_depth()) { + memset(src_, 255, block_size()); + memset(ref_, 255, half); + memset(ref_ + half, 0, half); +#if CONFIG_VP9_HIGHBITDEPTH + } else { + vpx_memset16(CONVERT_TO_SHORTPTR(src_), 255 << byte_shift(), block_size()); + vpx_memset16(CONVERT_TO_SHORTPTR(ref_), 255 << byte_shift(), half); + vpx_memset16(CONVERT_TO_SHORTPTR(ref_) + half, 0, half); +#endif // CONFIG_VP9_HIGHBITDEPTH + } + unsigned int sse; + + vpx_usec_timer timer; + vpx_usec_timer_start(&timer); + for (int i = 0; i < (1 << 30) / block_size(); ++i) { + const uint32_t variance = params_.func(src_, width(), ref_, width(), &sse); + // Ignore return value. + (void)variance; + } + vpx_usec_timer_mark(&timer); + const int elapsed_time = static_cast(vpx_usec_timer_elapsed(&timer)); + printf("Variance %dx%d time: %5d ms\n", width(), height(), + elapsed_time / 1000); +} + +//////////////////////////////////////////////////////////////////////////////// +// Tests related to MSE / SSE. + +template +void MainTestClass::RefTestMse() { + for (int i = 0; i < 10; ++i) { + for (int j = 0; j < block_size(); ++j) { + src_[j] = rnd_.Rand8(); + ref_[j] = rnd_.Rand8(); + } + unsigned int sse1, sse2; + const int stride = width(); + ASM_REGISTER_STATE_CHECK(params_.func(src_, stride, ref_, stride, &sse1)); + variance_ref(src_, ref_, params_.log2width, params_.log2height, stride, + stride, &sse2, false, VPX_BITS_8); + EXPECT_EQ(sse1, sse2); + } +} + +template +void MainTestClass::RefTestSse() { + for (int i = 0; i < 10; ++i) { + for (int j = 0; j < block_size(); ++j) { + src_[j] = rnd_.Rand8(); + ref_[j] = rnd_.Rand8(); + } + unsigned int sse2; + unsigned int var1; + const int stride = width(); + ASM_REGISTER_STATE_CHECK(var1 = params_.func(src_, stride, ref_, stride)); + variance_ref(src_, ref_, params_.log2width, params_.log2height, stride, + stride, &sse2, false, VPX_BITS_8); + EXPECT_EQ(var1, sse2); + } +} + +template +void MainTestClass::MaxTestMse() { + memset(src_, 255, block_size()); + memset(ref_, 0, block_size()); + unsigned int sse; + ASM_REGISTER_STATE_CHECK(params_.func(src_, width(), ref_, width(), &sse)); + const unsigned int expected = block_size() * 255 * 255; + EXPECT_EQ(expected, sse); +} + +template +void MainTestClass::MaxTestSse() { + memset(src_, 255, block_size()); + memset(ref_, 0, block_size()); + unsigned int var; + ASM_REGISTER_STATE_CHECK(var = params_.func(src_, width(), ref_, width())); + const unsigned int expected = block_size() * 255 * 255; + EXPECT_EQ(expected, var); +} + +//////////////////////////////////////////////////////////////////////////////// + +template +class SubpelVarianceTest + : public ::testing::TestWithParam > { + public: + virtual void SetUp() { + params_ = this->GetParam(); + + rnd_.Reset(ACMRandom::DeterministicSeed()); + if (!use_high_bit_depth()) { + src_ = reinterpret_cast(vpx_memalign(16, block_size())); + sec_ = reinterpret_cast(vpx_memalign(16, block_size())); + ref_ = new uint8_t[block_size() + width() + height() + 1]; +#if CONFIG_VP9_HIGHBITDEPTH + } else { + src_ = CONVERT_TO_BYTEPTR(reinterpret_cast( + vpx_memalign(16, block_size() * sizeof(uint16_t)))); + sec_ = CONVERT_TO_BYTEPTR(reinterpret_cast( + vpx_memalign(16, block_size() * sizeof(uint16_t)))); + ref_ = CONVERT_TO_BYTEPTR( + new uint16_t[block_size() + width() + height() + 1]); +#endif // CONFIG_VP9_HIGHBITDEPTH + } + ASSERT_TRUE(src_ != NULL); + ASSERT_TRUE(sec_ != NULL); + ASSERT_TRUE(ref_ != NULL); + } + + virtual void TearDown() { + if (!use_high_bit_depth()) { + vpx_free(src_); + delete[] ref_; + vpx_free(sec_); +#if CONFIG_VP9_HIGHBITDEPTH + } else { + vpx_free(CONVERT_TO_SHORTPTR(src_)); + delete[] CONVERT_TO_SHORTPTR(ref_); + vpx_free(CONVERT_TO_SHORTPTR(sec_)); +#endif // CONFIG_VP9_HIGHBITDEPTH + } + libvpx_test::ClearSystemState(); + } + + protected: + void RefTest(); + void ExtremeRefTest(); + + ACMRandom rnd_; + uint8_t *src_; + uint8_t *ref_; + uint8_t *sec_; + TestParams params_; + + // some relay helpers + bool use_high_bit_depth() const { return params_.use_high_bit_depth; } + int byte_shift() const { return params_.bit_depth - 8; } + int block_size() const { return params_.block_size; } + int width() const { return params_.width; } + int height() const { return params_.height; } + uint32_t mask() const { return params_.mask; } +}; + +template +void SubpelVarianceTest::RefTest() { + for (int x = 0; x < 8; ++x) { + for (int y = 0; y < 8; ++y) { + if (!use_high_bit_depth()) { + for (int j = 0; j < block_size(); j++) { + src_[j] = rnd_.Rand8(); + } + for (int j = 0; j < block_size() + width() + height() + 1; j++) { + ref_[j] = rnd_.Rand8(); + } +#if CONFIG_VP9_HIGHBITDEPTH + } else { + for (int j = 0; j < block_size(); j++) { + CONVERT_TO_SHORTPTR(src_)[j] = rnd_.Rand16() & mask(); + } + for (int j = 0; j < block_size() + width() + height() + 1; j++) { + CONVERT_TO_SHORTPTR(ref_)[j] = rnd_.Rand16() & mask(); + } +#endif // CONFIG_VP9_HIGHBITDEPTH + } + unsigned int sse1, sse2; + unsigned int var1; + ASM_REGISTER_STATE_CHECK( + var1 = params_.func(ref_, width() + 1, x, y, src_, width(), &sse1)); + const unsigned int var2 = subpel_variance_ref( + ref_, src_, params_.log2width, params_.log2height, x, y, &sse2, + use_high_bit_depth(), params_.bit_depth); + EXPECT_EQ(sse1, sse2) << "at position " << x << ", " << y; + EXPECT_EQ(var1, var2) << "at position " << x << ", " << y; + } + } +} + +template +void SubpelVarianceTest::ExtremeRefTest() { + // Compare against reference. + // Src: Set the first half of values to 0, the second half to the maximum. + // Ref: Set the first half of values to the maximum, the second half to 0. + for (int x = 0; x < 8; ++x) { + for (int y = 0; y < 8; ++y) { + const int half = block_size() / 2; + if (!use_high_bit_depth()) { + memset(src_, 0, half); + memset(src_ + half, 255, half); + memset(ref_, 255, half); + memset(ref_ + half, 0, half + width() + height() + 1); +#if CONFIG_VP9_HIGHBITDEPTH + } else { + vpx_memset16(CONVERT_TO_SHORTPTR(src_), mask(), half); + vpx_memset16(CONVERT_TO_SHORTPTR(src_) + half, 0, half); + vpx_memset16(CONVERT_TO_SHORTPTR(ref_), 0, half); + vpx_memset16(CONVERT_TO_SHORTPTR(ref_) + half, mask(), + half + width() + height() + 1); +#endif // CONFIG_VP9_HIGHBITDEPTH + } + unsigned int sse1, sse2; + unsigned int var1; + ASM_REGISTER_STATE_CHECK( + var1 = params_.func(ref_, width() + 1, x, y, src_, width(), &sse1)); + const unsigned int var2 = subpel_variance_ref( + ref_, src_, params_.log2width, params_.log2height, x, y, &sse2, + use_high_bit_depth(), params_.bit_depth); + EXPECT_EQ(sse1, sse2) << "for xoffset " << x << " and yoffset " << y; + EXPECT_EQ(var1, var2) << "for xoffset " << x << " and yoffset " << y; + } + } +} + +template <> +void SubpelVarianceTest::RefTest() { + for (int x = 0; x < 8; ++x) { + for (int y = 0; y < 8; ++y) { + if (!use_high_bit_depth()) { + for (int j = 0; j < block_size(); j++) { + src_[j] = rnd_.Rand8(); + sec_[j] = rnd_.Rand8(); + } + for (int j = 0; j < block_size() + width() + height() + 1; j++) { + ref_[j] = rnd_.Rand8(); + } +#if CONFIG_VP9_HIGHBITDEPTH + } else { + for (int j = 0; j < block_size(); j++) { + CONVERT_TO_SHORTPTR(src_)[j] = rnd_.Rand16() & mask(); + CONVERT_TO_SHORTPTR(sec_)[j] = rnd_.Rand16() & mask(); + } + for (int j = 0; j < block_size() + width() + height() + 1; j++) { + CONVERT_TO_SHORTPTR(ref_)[j] = rnd_.Rand16() & mask(); + } +#endif // CONFIG_VP9_HIGHBITDEPTH + } + uint32_t sse1, sse2; + uint32_t var1, var2; + ASM_REGISTER_STATE_CHECK(var1 = params_.func(ref_, width() + 1, x, y, + src_, width(), &sse1, sec_)); + var2 = subpel_avg_variance_ref(ref_, src_, sec_, params_.log2width, + params_.log2height, x, y, &sse2, + use_high_bit_depth(), params_.bit_depth); + EXPECT_EQ(sse1, sse2) << "at position " << x << ", " << y; + EXPECT_EQ(var1, var2) << "at position " << x << ", " << y; + } + } +} + +typedef MainTestClass VpxSseTest; +typedef MainTestClass VpxMseTest; +typedef MainTestClass VpxVarianceTest; +typedef SubpelVarianceTest VpxSubpelVarianceTest; +typedef SubpelVarianceTest VpxSubpelAvgVarianceTest; + +TEST_P(VpxSseTest, RefSse) { RefTestSse(); } +TEST_P(VpxSseTest, MaxSse) { MaxTestSse(); } +TEST_P(VpxMseTest, RefMse) { RefTestMse(); } +TEST_P(VpxMseTest, MaxMse) { MaxTestMse(); } +TEST_P(VpxVarianceTest, Zero) { ZeroTest(); } +TEST_P(VpxVarianceTest, Ref) { RefTest(); } +TEST_P(VpxVarianceTest, RefStride) { RefStrideTest(); } +TEST_P(VpxVarianceTest, OneQuarter) { OneQuarterTest(); } +TEST_P(VpxVarianceTest, DISABLED_Speed) { SpeedTest(); } +TEST_P(SumOfSquaresTest, Const) { ConstTest(); } +TEST_P(SumOfSquaresTest, Ref) { RefTest(); } +TEST_P(VpxSubpelVarianceTest, Ref) { RefTest(); } +TEST_P(VpxSubpelVarianceTest, ExtremeRef) { ExtremeRefTest(); } +TEST_P(VpxSubpelAvgVarianceTest, Ref) { RefTest(); } + +INSTANTIATE_TEST_CASE_P(C, SumOfSquaresTest, + ::testing::Values(vpx_get_mb_ss_c)); + +typedef TestParams SseParams; +INSTANTIATE_TEST_CASE_P(C, VpxSseTest, + ::testing::Values(SseParams(2, 2, + &vpx_get4x4sse_cs_c))); + +typedef TestParams MseParams; +INSTANTIATE_TEST_CASE_P(C, VpxMseTest, + ::testing::Values(MseParams(4, 4, &vpx_mse16x16_c), + MseParams(4, 3, &vpx_mse16x8_c), + MseParams(3, 4, &vpx_mse8x16_c), + MseParams(3, 3, &vpx_mse8x8_c))); + +typedef TestParams VarianceParams; +INSTANTIATE_TEST_CASE_P( + C, VpxVarianceTest, + ::testing::Values(VarianceParams(6, 6, &vpx_variance64x64_c), + VarianceParams(6, 5, &vpx_variance64x32_c), + VarianceParams(5, 6, &vpx_variance32x64_c), + VarianceParams(5, 5, &vpx_variance32x32_c), + VarianceParams(5, 4, &vpx_variance32x16_c), + VarianceParams(4, 5, &vpx_variance16x32_c), + VarianceParams(4, 4, &vpx_variance16x16_c), + VarianceParams(4, 3, &vpx_variance16x8_c), + VarianceParams(3, 4, &vpx_variance8x16_c), + VarianceParams(3, 3, &vpx_variance8x8_c), + VarianceParams(3, 2, &vpx_variance8x4_c), + VarianceParams(2, 3, &vpx_variance4x8_c), + VarianceParams(2, 2, &vpx_variance4x4_c))); + +typedef TestParams SubpelVarianceParams; +INSTANTIATE_TEST_CASE_P( + C, VpxSubpelVarianceTest, + ::testing::Values( + SubpelVarianceParams(6, 6, &vpx_sub_pixel_variance64x64_c, 0), + SubpelVarianceParams(6, 5, &vpx_sub_pixel_variance64x32_c, 0), + SubpelVarianceParams(5, 6, &vpx_sub_pixel_variance32x64_c, 0), + SubpelVarianceParams(5, 5, &vpx_sub_pixel_variance32x32_c, 0), + SubpelVarianceParams(5, 4, &vpx_sub_pixel_variance32x16_c, 0), + SubpelVarianceParams(4, 5, &vpx_sub_pixel_variance16x32_c, 0), + SubpelVarianceParams(4, 4, &vpx_sub_pixel_variance16x16_c, 0), + SubpelVarianceParams(4, 3, &vpx_sub_pixel_variance16x8_c, 0), + SubpelVarianceParams(3, 4, &vpx_sub_pixel_variance8x16_c, 0), + SubpelVarianceParams(3, 3, &vpx_sub_pixel_variance8x8_c, 0), + SubpelVarianceParams(3, 2, &vpx_sub_pixel_variance8x4_c, 0), + SubpelVarianceParams(2, 3, &vpx_sub_pixel_variance4x8_c, 0), + SubpelVarianceParams(2, 2, &vpx_sub_pixel_variance4x4_c, 0))); + +typedef TestParams SubpelAvgVarianceParams; +INSTANTIATE_TEST_CASE_P( + C, VpxSubpelAvgVarianceTest, + ::testing::Values( + SubpelAvgVarianceParams(6, 6, &vpx_sub_pixel_avg_variance64x64_c, 0), + SubpelAvgVarianceParams(6, 5, &vpx_sub_pixel_avg_variance64x32_c, 0), + SubpelAvgVarianceParams(5, 6, &vpx_sub_pixel_avg_variance32x64_c, 0), + SubpelAvgVarianceParams(5, 5, &vpx_sub_pixel_avg_variance32x32_c, 0), + SubpelAvgVarianceParams(5, 4, &vpx_sub_pixel_avg_variance32x16_c, 0), + SubpelAvgVarianceParams(4, 5, &vpx_sub_pixel_avg_variance16x32_c, 0), + SubpelAvgVarianceParams(4, 4, &vpx_sub_pixel_avg_variance16x16_c, 0), + SubpelAvgVarianceParams(4, 3, &vpx_sub_pixel_avg_variance16x8_c, 0), + SubpelAvgVarianceParams(3, 4, &vpx_sub_pixel_avg_variance8x16_c, 0), + SubpelAvgVarianceParams(3, 3, &vpx_sub_pixel_avg_variance8x8_c, 0), + SubpelAvgVarianceParams(3, 2, &vpx_sub_pixel_avg_variance8x4_c, 0), + SubpelAvgVarianceParams(2, 3, &vpx_sub_pixel_avg_variance4x8_c, 0), + SubpelAvgVarianceParams(2, 2, &vpx_sub_pixel_avg_variance4x4_c, 0))); + +#if CONFIG_VP9_HIGHBITDEPTH +typedef MainTestClass VpxHBDMseTest; +typedef MainTestClass VpxHBDVarianceTest; +typedef SubpelVarianceTest VpxHBDSubpelVarianceTest; +typedef SubpelVarianceTest VpxHBDSubpelAvgVarianceTest; + +TEST_P(VpxHBDMseTest, RefMse) { RefTestMse(); } +TEST_P(VpxHBDMseTest, MaxMse) { MaxTestMse(); } +TEST_P(VpxHBDVarianceTest, Zero) { ZeroTest(); } +TEST_P(VpxHBDVarianceTest, Ref) { RefTest(); } +TEST_P(VpxHBDVarianceTest, RefStride) { RefStrideTest(); } +TEST_P(VpxHBDVarianceTest, OneQuarter) { OneQuarterTest(); } +TEST_P(VpxHBDVarianceTest, DISABLED_Speed) { SpeedTest(); } +TEST_P(VpxHBDSubpelVarianceTest, Ref) { RefTest(); } +TEST_P(VpxHBDSubpelVarianceTest, ExtremeRef) { ExtremeRefTest(); } +TEST_P(VpxHBDSubpelAvgVarianceTest, Ref) { RefTest(); } + +/* TODO(debargha): This test does not support the highbd version +INSTANTIATE_TEST_CASE_P( + C, VpxHBDMseTest, + ::testing::Values(MseParams(4, 4, &vpx_highbd_12_mse16x16_c), + MseParams(4, 4, &vpx_highbd_12_mse16x8_c), + MseParams(4, 4, &vpx_highbd_12_mse8x16_c), + MseParams(4, 4, &vpx_highbd_12_mse8x8_c), + MseParams(4, 4, &vpx_highbd_10_mse16x16_c), + MseParams(4, 4, &vpx_highbd_10_mse16x8_c), + MseParams(4, 4, &vpx_highbd_10_mse8x16_c), + MseParams(4, 4, &vpx_highbd_10_mse8x8_c), + MseParams(4, 4, &vpx_highbd_8_mse16x16_c), + MseParams(4, 4, &vpx_highbd_8_mse16x8_c), + MseParams(4, 4, &vpx_highbd_8_mse8x16_c), + MseParams(4, 4, &vpx_highbd_8_mse8x8_c))); +*/ + +INSTANTIATE_TEST_CASE_P( + C, VpxHBDVarianceTest, + ::testing::Values(VarianceParams(6, 6, &vpx_highbd_12_variance64x64_c, 12), + VarianceParams(6, 5, &vpx_highbd_12_variance64x32_c, 12), + VarianceParams(5, 6, &vpx_highbd_12_variance32x64_c, 12), + VarianceParams(5, 5, &vpx_highbd_12_variance32x32_c, 12), + VarianceParams(5, 4, &vpx_highbd_12_variance32x16_c, 12), + VarianceParams(4, 5, &vpx_highbd_12_variance16x32_c, 12), + VarianceParams(4, 4, &vpx_highbd_12_variance16x16_c, 12), + VarianceParams(4, 3, &vpx_highbd_12_variance16x8_c, 12), + VarianceParams(3, 4, &vpx_highbd_12_variance8x16_c, 12), + VarianceParams(3, 3, &vpx_highbd_12_variance8x8_c, 12), + VarianceParams(3, 2, &vpx_highbd_12_variance8x4_c, 12), + VarianceParams(2, 3, &vpx_highbd_12_variance4x8_c, 12), + VarianceParams(2, 2, &vpx_highbd_12_variance4x4_c, 12), + VarianceParams(6, 6, &vpx_highbd_10_variance64x64_c, 10), + VarianceParams(6, 5, &vpx_highbd_10_variance64x32_c, 10), + VarianceParams(5, 6, &vpx_highbd_10_variance32x64_c, 10), + VarianceParams(5, 5, &vpx_highbd_10_variance32x32_c, 10), + VarianceParams(5, 4, &vpx_highbd_10_variance32x16_c, 10), + VarianceParams(4, 5, &vpx_highbd_10_variance16x32_c, 10), + VarianceParams(4, 4, &vpx_highbd_10_variance16x16_c, 10), + VarianceParams(4, 3, &vpx_highbd_10_variance16x8_c, 10), + VarianceParams(3, 4, &vpx_highbd_10_variance8x16_c, 10), + VarianceParams(3, 3, &vpx_highbd_10_variance8x8_c, 10), + VarianceParams(3, 2, &vpx_highbd_10_variance8x4_c, 10), + VarianceParams(2, 3, &vpx_highbd_10_variance4x8_c, 10), + VarianceParams(2, 2, &vpx_highbd_10_variance4x4_c, 10), + VarianceParams(6, 6, &vpx_highbd_8_variance64x64_c, 8), + VarianceParams(6, 5, &vpx_highbd_8_variance64x32_c, 8), + VarianceParams(5, 6, &vpx_highbd_8_variance32x64_c, 8), + VarianceParams(5, 5, &vpx_highbd_8_variance32x32_c, 8), + VarianceParams(5, 4, &vpx_highbd_8_variance32x16_c, 8), + VarianceParams(4, 5, &vpx_highbd_8_variance16x32_c, 8), + VarianceParams(4, 4, &vpx_highbd_8_variance16x16_c, 8), + VarianceParams(4, 3, &vpx_highbd_8_variance16x8_c, 8), + VarianceParams(3, 4, &vpx_highbd_8_variance8x16_c, 8), + VarianceParams(3, 3, &vpx_highbd_8_variance8x8_c, 8), + VarianceParams(3, 2, &vpx_highbd_8_variance8x4_c, 8), + VarianceParams(2, 3, &vpx_highbd_8_variance4x8_c, 8), + VarianceParams(2, 2, &vpx_highbd_8_variance4x4_c, 8))); + +INSTANTIATE_TEST_CASE_P( + C, VpxHBDSubpelVarianceTest, + ::testing::Values( + SubpelVarianceParams(6, 6, &vpx_highbd_8_sub_pixel_variance64x64_c, 8), + SubpelVarianceParams(6, 5, &vpx_highbd_8_sub_pixel_variance64x32_c, 8), + SubpelVarianceParams(5, 6, &vpx_highbd_8_sub_pixel_variance32x64_c, 8), + SubpelVarianceParams(5, 5, &vpx_highbd_8_sub_pixel_variance32x32_c, 8), + SubpelVarianceParams(5, 4, &vpx_highbd_8_sub_pixel_variance32x16_c, 8), + SubpelVarianceParams(4, 5, &vpx_highbd_8_sub_pixel_variance16x32_c, 8), + SubpelVarianceParams(4, 4, &vpx_highbd_8_sub_pixel_variance16x16_c, 8), + SubpelVarianceParams(4, 3, &vpx_highbd_8_sub_pixel_variance16x8_c, 8), + SubpelVarianceParams(3, 4, &vpx_highbd_8_sub_pixel_variance8x16_c, 8), + SubpelVarianceParams(3, 3, &vpx_highbd_8_sub_pixel_variance8x8_c, 8), + SubpelVarianceParams(3, 2, &vpx_highbd_8_sub_pixel_variance8x4_c, 8), + SubpelVarianceParams(2, 3, &vpx_highbd_8_sub_pixel_variance4x8_c, 8), + SubpelVarianceParams(2, 2, &vpx_highbd_8_sub_pixel_variance4x4_c, 8), + SubpelVarianceParams(6, 6, &vpx_highbd_10_sub_pixel_variance64x64_c, + 10), + SubpelVarianceParams(6, 5, &vpx_highbd_10_sub_pixel_variance64x32_c, + 10), + SubpelVarianceParams(5, 6, &vpx_highbd_10_sub_pixel_variance32x64_c, + 10), + SubpelVarianceParams(5, 5, &vpx_highbd_10_sub_pixel_variance32x32_c, + 10), + SubpelVarianceParams(5, 4, &vpx_highbd_10_sub_pixel_variance32x16_c, + 10), + SubpelVarianceParams(4, 5, &vpx_highbd_10_sub_pixel_variance16x32_c, + 10), + SubpelVarianceParams(4, 4, &vpx_highbd_10_sub_pixel_variance16x16_c, + 10), + SubpelVarianceParams(4, 3, &vpx_highbd_10_sub_pixel_variance16x8_c, 10), + SubpelVarianceParams(3, 4, &vpx_highbd_10_sub_pixel_variance8x16_c, 10), + SubpelVarianceParams(3, 3, &vpx_highbd_10_sub_pixel_variance8x8_c, 10), + SubpelVarianceParams(3, 2, &vpx_highbd_10_sub_pixel_variance8x4_c, 10), + SubpelVarianceParams(2, 3, &vpx_highbd_10_sub_pixel_variance4x8_c, 10), + SubpelVarianceParams(2, 2, &vpx_highbd_10_sub_pixel_variance4x4_c, 10), + SubpelVarianceParams(6, 6, &vpx_highbd_12_sub_pixel_variance64x64_c, + 12), + SubpelVarianceParams(6, 5, &vpx_highbd_12_sub_pixel_variance64x32_c, + 12), + SubpelVarianceParams(5, 6, &vpx_highbd_12_sub_pixel_variance32x64_c, + 12), + SubpelVarianceParams(5, 5, &vpx_highbd_12_sub_pixel_variance32x32_c, + 12), + SubpelVarianceParams(5, 4, &vpx_highbd_12_sub_pixel_variance32x16_c, + 12), + SubpelVarianceParams(4, 5, &vpx_highbd_12_sub_pixel_variance16x32_c, + 12), + SubpelVarianceParams(4, 4, &vpx_highbd_12_sub_pixel_variance16x16_c, + 12), + SubpelVarianceParams(4, 3, &vpx_highbd_12_sub_pixel_variance16x8_c, 12), + SubpelVarianceParams(3, 4, &vpx_highbd_12_sub_pixel_variance8x16_c, 12), + SubpelVarianceParams(3, 3, &vpx_highbd_12_sub_pixel_variance8x8_c, 12), + SubpelVarianceParams(3, 2, &vpx_highbd_12_sub_pixel_variance8x4_c, 12), + SubpelVarianceParams(2, 3, &vpx_highbd_12_sub_pixel_variance4x8_c, 12), + SubpelVarianceParams(2, 2, &vpx_highbd_12_sub_pixel_variance4x4_c, + 12))); + +INSTANTIATE_TEST_CASE_P( + C, VpxHBDSubpelAvgVarianceTest, + ::testing::Values( + SubpelAvgVarianceParams(6, 6, + &vpx_highbd_8_sub_pixel_avg_variance64x64_c, 8), + SubpelAvgVarianceParams(6, 5, + &vpx_highbd_8_sub_pixel_avg_variance64x32_c, 8), + SubpelAvgVarianceParams(5, 6, + &vpx_highbd_8_sub_pixel_avg_variance32x64_c, 8), + SubpelAvgVarianceParams(5, 5, + &vpx_highbd_8_sub_pixel_avg_variance32x32_c, 8), + SubpelAvgVarianceParams(5, 4, + &vpx_highbd_8_sub_pixel_avg_variance32x16_c, 8), + SubpelAvgVarianceParams(4, 5, + &vpx_highbd_8_sub_pixel_avg_variance16x32_c, 8), + SubpelAvgVarianceParams(4, 4, + &vpx_highbd_8_sub_pixel_avg_variance16x16_c, 8), + SubpelAvgVarianceParams(4, 3, + &vpx_highbd_8_sub_pixel_avg_variance16x8_c, 8), + SubpelAvgVarianceParams(3, 4, + &vpx_highbd_8_sub_pixel_avg_variance8x16_c, 8), + SubpelAvgVarianceParams(3, 3, &vpx_highbd_8_sub_pixel_avg_variance8x8_c, + 8), + SubpelAvgVarianceParams(3, 2, &vpx_highbd_8_sub_pixel_avg_variance8x4_c, + 8), + SubpelAvgVarianceParams(2, 3, &vpx_highbd_8_sub_pixel_avg_variance4x8_c, + 8), + SubpelAvgVarianceParams(2, 2, &vpx_highbd_8_sub_pixel_avg_variance4x4_c, + 8), + SubpelAvgVarianceParams(6, 6, + &vpx_highbd_10_sub_pixel_avg_variance64x64_c, + 10), + SubpelAvgVarianceParams(6, 5, + &vpx_highbd_10_sub_pixel_avg_variance64x32_c, + 10), + SubpelAvgVarianceParams(5, 6, + &vpx_highbd_10_sub_pixel_avg_variance32x64_c, + 10), + SubpelAvgVarianceParams(5, 5, + &vpx_highbd_10_sub_pixel_avg_variance32x32_c, + 10), + SubpelAvgVarianceParams(5, 4, + &vpx_highbd_10_sub_pixel_avg_variance32x16_c, + 10), + SubpelAvgVarianceParams(4, 5, + &vpx_highbd_10_sub_pixel_avg_variance16x32_c, + 10), + SubpelAvgVarianceParams(4, 4, + &vpx_highbd_10_sub_pixel_avg_variance16x16_c, + 10), + SubpelAvgVarianceParams(4, 3, + &vpx_highbd_10_sub_pixel_avg_variance16x8_c, + 10), + SubpelAvgVarianceParams(3, 4, + &vpx_highbd_10_sub_pixel_avg_variance8x16_c, + 10), + SubpelAvgVarianceParams(3, 3, + &vpx_highbd_10_sub_pixel_avg_variance8x8_c, 10), + SubpelAvgVarianceParams(3, 2, + &vpx_highbd_10_sub_pixel_avg_variance8x4_c, 10), + SubpelAvgVarianceParams(2, 3, + &vpx_highbd_10_sub_pixel_avg_variance4x8_c, 10), + SubpelAvgVarianceParams(2, 2, + &vpx_highbd_10_sub_pixel_avg_variance4x4_c, 10), + SubpelAvgVarianceParams(6, 6, + &vpx_highbd_12_sub_pixel_avg_variance64x64_c, + 12), + SubpelAvgVarianceParams(6, 5, + &vpx_highbd_12_sub_pixel_avg_variance64x32_c, + 12), + SubpelAvgVarianceParams(5, 6, + &vpx_highbd_12_sub_pixel_avg_variance32x64_c, + 12), + SubpelAvgVarianceParams(5, 5, + &vpx_highbd_12_sub_pixel_avg_variance32x32_c, + 12), + SubpelAvgVarianceParams(5, 4, + &vpx_highbd_12_sub_pixel_avg_variance32x16_c, + 12), + SubpelAvgVarianceParams(4, 5, + &vpx_highbd_12_sub_pixel_avg_variance16x32_c, + 12), + SubpelAvgVarianceParams(4, 4, + &vpx_highbd_12_sub_pixel_avg_variance16x16_c, + 12), + SubpelAvgVarianceParams(4, 3, + &vpx_highbd_12_sub_pixel_avg_variance16x8_c, + 12), + SubpelAvgVarianceParams(3, 4, + &vpx_highbd_12_sub_pixel_avg_variance8x16_c, + 12), + SubpelAvgVarianceParams(3, 3, + &vpx_highbd_12_sub_pixel_avg_variance8x8_c, 12), + SubpelAvgVarianceParams(3, 2, + &vpx_highbd_12_sub_pixel_avg_variance8x4_c, 12), + SubpelAvgVarianceParams(2, 3, + &vpx_highbd_12_sub_pixel_avg_variance4x8_c, 12), + SubpelAvgVarianceParams(2, 2, + &vpx_highbd_12_sub_pixel_avg_variance4x4_c, + 12))); +#endif // CONFIG_VP9_HIGHBITDEPTH + +#if HAVE_SSE2 +INSTANTIATE_TEST_CASE_P(SSE2, SumOfSquaresTest, + ::testing::Values(vpx_get_mb_ss_sse2)); + +INSTANTIATE_TEST_CASE_P(SSE2, VpxMseTest, + ::testing::Values(MseParams(4, 4, &vpx_mse16x16_sse2), + MseParams(4, 3, &vpx_mse16x8_sse2), + MseParams(3, 4, &vpx_mse8x16_sse2), + MseParams(3, 3, &vpx_mse8x8_sse2))); + +INSTANTIATE_TEST_CASE_P( + SSE2, VpxVarianceTest, + ::testing::Values(VarianceParams(6, 6, &vpx_variance64x64_sse2), + VarianceParams(6, 5, &vpx_variance64x32_sse2), + VarianceParams(5, 6, &vpx_variance32x64_sse2), + VarianceParams(5, 5, &vpx_variance32x32_sse2), + VarianceParams(5, 4, &vpx_variance32x16_sse2), + VarianceParams(4, 5, &vpx_variance16x32_sse2), + VarianceParams(4, 4, &vpx_variance16x16_sse2), + VarianceParams(4, 3, &vpx_variance16x8_sse2), + VarianceParams(3, 4, &vpx_variance8x16_sse2), + VarianceParams(3, 3, &vpx_variance8x8_sse2), + VarianceParams(3, 2, &vpx_variance8x4_sse2), + VarianceParams(2, 3, &vpx_variance4x8_sse2), + VarianceParams(2, 2, &vpx_variance4x4_sse2))); + +INSTANTIATE_TEST_CASE_P( + SSE2, VpxSubpelVarianceTest, + ::testing::Values( + SubpelVarianceParams(6, 6, &vpx_sub_pixel_variance64x64_sse2, 0), + SubpelVarianceParams(6, 5, &vpx_sub_pixel_variance64x32_sse2, 0), + SubpelVarianceParams(5, 6, &vpx_sub_pixel_variance32x64_sse2, 0), + SubpelVarianceParams(5, 5, &vpx_sub_pixel_variance32x32_sse2, 0), + SubpelVarianceParams(5, 4, &vpx_sub_pixel_variance32x16_sse2, 0), + SubpelVarianceParams(4, 5, &vpx_sub_pixel_variance16x32_sse2, 0), + SubpelVarianceParams(4, 4, &vpx_sub_pixel_variance16x16_sse2, 0), + SubpelVarianceParams(4, 3, &vpx_sub_pixel_variance16x8_sse2, 0), + SubpelVarianceParams(3, 4, &vpx_sub_pixel_variance8x16_sse2, 0), + SubpelVarianceParams(3, 3, &vpx_sub_pixel_variance8x8_sse2, 0), + SubpelVarianceParams(3, 2, &vpx_sub_pixel_variance8x4_sse2, 0), + SubpelVarianceParams(2, 3, &vpx_sub_pixel_variance4x8_sse2, 0), + SubpelVarianceParams(2, 2, &vpx_sub_pixel_variance4x4_sse2, 0))); + +INSTANTIATE_TEST_CASE_P( + SSE2, VpxSubpelAvgVarianceTest, + ::testing::Values( + SubpelAvgVarianceParams(6, 6, &vpx_sub_pixel_avg_variance64x64_sse2, 0), + SubpelAvgVarianceParams(6, 5, &vpx_sub_pixel_avg_variance64x32_sse2, 0), + SubpelAvgVarianceParams(5, 6, &vpx_sub_pixel_avg_variance32x64_sse2, 0), + SubpelAvgVarianceParams(5, 5, &vpx_sub_pixel_avg_variance32x32_sse2, 0), + SubpelAvgVarianceParams(5, 4, &vpx_sub_pixel_avg_variance32x16_sse2, 0), + SubpelAvgVarianceParams(4, 5, &vpx_sub_pixel_avg_variance16x32_sse2, 0), + SubpelAvgVarianceParams(4, 4, &vpx_sub_pixel_avg_variance16x16_sse2, 0), + SubpelAvgVarianceParams(4, 3, &vpx_sub_pixel_avg_variance16x8_sse2, 0), + SubpelAvgVarianceParams(3, 4, &vpx_sub_pixel_avg_variance8x16_sse2, 0), + SubpelAvgVarianceParams(3, 3, &vpx_sub_pixel_avg_variance8x8_sse2, 0), + SubpelAvgVarianceParams(3, 2, &vpx_sub_pixel_avg_variance8x4_sse2, 0), + SubpelAvgVarianceParams(2, 3, &vpx_sub_pixel_avg_variance4x8_sse2, 0), + SubpelAvgVarianceParams(2, 2, &vpx_sub_pixel_avg_variance4x4_sse2, 0))); + +#if CONFIG_VP9_HIGHBITDEPTH +/* TODO(debargha): This test does not support the highbd version +INSTANTIATE_TEST_CASE_P( + SSE2, VpxHBDMseTest, + ::testing::Values(MseParams(4, 4, &vpx_highbd_12_mse16x16_sse2), + MseParams(4, 3, &vpx_highbd_12_mse16x8_sse2), + MseParams(3, 4, &vpx_highbd_12_mse8x16_sse2), + MseParams(3, 3, &vpx_highbd_12_mse8x8_sse2), + MseParams(4, 4, &vpx_highbd_10_mse16x16_sse2), + MseParams(4, 3, &vpx_highbd_10_mse16x8_sse2), + MseParams(3, 4, &vpx_highbd_10_mse8x16_sse2), + MseParams(3, 3, &vpx_highbd_10_mse8x8_sse2), + MseParams(4, 4, &vpx_highbd_8_mse16x16_sse2), + MseParams(4, 3, &vpx_highbd_8_mse16x8_sse2), + MseParams(3, 4, &vpx_highbd_8_mse8x16_sse2), + MseParams(3, 3, &vpx_highbd_8_mse8x8_sse2))); +*/ + +INSTANTIATE_TEST_CASE_P( + SSE2, VpxHBDVarianceTest, + ::testing::Values( + VarianceParams(6, 6, &vpx_highbd_12_variance64x64_sse2, 12), + VarianceParams(6, 5, &vpx_highbd_12_variance64x32_sse2, 12), + VarianceParams(5, 6, &vpx_highbd_12_variance32x64_sse2, 12), + VarianceParams(5, 5, &vpx_highbd_12_variance32x32_sse2, 12), + VarianceParams(5, 4, &vpx_highbd_12_variance32x16_sse2, 12), + VarianceParams(4, 5, &vpx_highbd_12_variance16x32_sse2, 12), + VarianceParams(4, 4, &vpx_highbd_12_variance16x16_sse2, 12), + VarianceParams(4, 3, &vpx_highbd_12_variance16x8_sse2, 12), + VarianceParams(3, 4, &vpx_highbd_12_variance8x16_sse2, 12), + VarianceParams(3, 3, &vpx_highbd_12_variance8x8_sse2, 12), + VarianceParams(6, 6, &vpx_highbd_10_variance64x64_sse2, 10), + VarianceParams(6, 5, &vpx_highbd_10_variance64x32_sse2, 10), + VarianceParams(5, 6, &vpx_highbd_10_variance32x64_sse2, 10), + VarianceParams(5, 5, &vpx_highbd_10_variance32x32_sse2, 10), + VarianceParams(5, 4, &vpx_highbd_10_variance32x16_sse2, 10), + VarianceParams(4, 5, &vpx_highbd_10_variance16x32_sse2, 10), + VarianceParams(4, 4, &vpx_highbd_10_variance16x16_sse2, 10), + VarianceParams(4, 3, &vpx_highbd_10_variance16x8_sse2, 10), + VarianceParams(3, 4, &vpx_highbd_10_variance8x16_sse2, 10), + VarianceParams(3, 3, &vpx_highbd_10_variance8x8_sse2, 10), + VarianceParams(6, 6, &vpx_highbd_8_variance64x64_sse2, 8), + VarianceParams(6, 5, &vpx_highbd_8_variance64x32_sse2, 8), + VarianceParams(5, 6, &vpx_highbd_8_variance32x64_sse2, 8), + VarianceParams(5, 5, &vpx_highbd_8_variance32x32_sse2, 8), + VarianceParams(5, 4, &vpx_highbd_8_variance32x16_sse2, 8), + VarianceParams(4, 5, &vpx_highbd_8_variance16x32_sse2, 8), + VarianceParams(4, 4, &vpx_highbd_8_variance16x16_sse2, 8), + VarianceParams(4, 3, &vpx_highbd_8_variance16x8_sse2, 8), + VarianceParams(3, 4, &vpx_highbd_8_variance8x16_sse2, 8), + VarianceParams(3, 3, &vpx_highbd_8_variance8x8_sse2, 8))); + +INSTANTIATE_TEST_CASE_P( + SSE2, VpxHBDSubpelVarianceTest, + ::testing::Values( + SubpelVarianceParams(6, 6, &vpx_highbd_12_sub_pixel_variance64x64_sse2, + 12), + SubpelVarianceParams(6, 5, &vpx_highbd_12_sub_pixel_variance64x32_sse2, + 12), + SubpelVarianceParams(5, 6, &vpx_highbd_12_sub_pixel_variance32x64_sse2, + 12), + SubpelVarianceParams(5, 5, &vpx_highbd_12_sub_pixel_variance32x32_sse2, + 12), + SubpelVarianceParams(5, 4, &vpx_highbd_12_sub_pixel_variance32x16_sse2, + 12), + SubpelVarianceParams(4, 5, &vpx_highbd_12_sub_pixel_variance16x32_sse2, + 12), + SubpelVarianceParams(4, 4, &vpx_highbd_12_sub_pixel_variance16x16_sse2, + 12), + SubpelVarianceParams(4, 3, &vpx_highbd_12_sub_pixel_variance16x8_sse2, + 12), + SubpelVarianceParams(3, 4, &vpx_highbd_12_sub_pixel_variance8x16_sse2, + 12), + SubpelVarianceParams(3, 3, &vpx_highbd_12_sub_pixel_variance8x8_sse2, + 12), + SubpelVarianceParams(3, 2, &vpx_highbd_12_sub_pixel_variance8x4_sse2, + 12), + SubpelVarianceParams(6, 6, &vpx_highbd_10_sub_pixel_variance64x64_sse2, + 10), + SubpelVarianceParams(6, 5, &vpx_highbd_10_sub_pixel_variance64x32_sse2, + 10), + SubpelVarianceParams(5, 6, &vpx_highbd_10_sub_pixel_variance32x64_sse2, + 10), + SubpelVarianceParams(5, 5, &vpx_highbd_10_sub_pixel_variance32x32_sse2, + 10), + SubpelVarianceParams(5, 4, &vpx_highbd_10_sub_pixel_variance32x16_sse2, + 10), + SubpelVarianceParams(4, 5, &vpx_highbd_10_sub_pixel_variance16x32_sse2, + 10), + SubpelVarianceParams(4, 4, &vpx_highbd_10_sub_pixel_variance16x16_sse2, + 10), + SubpelVarianceParams(4, 3, &vpx_highbd_10_sub_pixel_variance16x8_sse2, + 10), + SubpelVarianceParams(3, 4, &vpx_highbd_10_sub_pixel_variance8x16_sse2, + 10), + SubpelVarianceParams(3, 3, &vpx_highbd_10_sub_pixel_variance8x8_sse2, + 10), + SubpelVarianceParams(3, 2, &vpx_highbd_10_sub_pixel_variance8x4_sse2, + 10), + SubpelVarianceParams(6, 6, &vpx_highbd_8_sub_pixel_variance64x64_sse2, + 8), + SubpelVarianceParams(6, 5, &vpx_highbd_8_sub_pixel_variance64x32_sse2, + 8), + SubpelVarianceParams(5, 6, &vpx_highbd_8_sub_pixel_variance32x64_sse2, + 8), + SubpelVarianceParams(5, 5, &vpx_highbd_8_sub_pixel_variance32x32_sse2, + 8), + SubpelVarianceParams(5, 4, &vpx_highbd_8_sub_pixel_variance32x16_sse2, + 8), + SubpelVarianceParams(4, 5, &vpx_highbd_8_sub_pixel_variance16x32_sse2, + 8), + SubpelVarianceParams(4, 4, &vpx_highbd_8_sub_pixel_variance16x16_sse2, + 8), + SubpelVarianceParams(4, 3, &vpx_highbd_8_sub_pixel_variance16x8_sse2, + 8), + SubpelVarianceParams(3, 4, &vpx_highbd_8_sub_pixel_variance8x16_sse2, + 8), + SubpelVarianceParams(3, 3, &vpx_highbd_8_sub_pixel_variance8x8_sse2, 8), + SubpelVarianceParams(3, 2, &vpx_highbd_8_sub_pixel_variance8x4_sse2, + 8))); + +INSTANTIATE_TEST_CASE_P( + SSE2, VpxHBDSubpelAvgVarianceTest, + ::testing::Values( + SubpelAvgVarianceParams(6, 6, + &vpx_highbd_12_sub_pixel_avg_variance64x64_sse2, + 12), + SubpelAvgVarianceParams(6, 5, + &vpx_highbd_12_sub_pixel_avg_variance64x32_sse2, + 12), + SubpelAvgVarianceParams(5, 6, + &vpx_highbd_12_sub_pixel_avg_variance32x64_sse2, + 12), + SubpelAvgVarianceParams(5, 5, + &vpx_highbd_12_sub_pixel_avg_variance32x32_sse2, + 12), + SubpelAvgVarianceParams(5, 4, + &vpx_highbd_12_sub_pixel_avg_variance32x16_sse2, + 12), + SubpelAvgVarianceParams(4, 5, + &vpx_highbd_12_sub_pixel_avg_variance16x32_sse2, + 12), + SubpelAvgVarianceParams(4, 4, + &vpx_highbd_12_sub_pixel_avg_variance16x16_sse2, + 12), + SubpelAvgVarianceParams(4, 3, + &vpx_highbd_12_sub_pixel_avg_variance16x8_sse2, + 12), + SubpelAvgVarianceParams(3, 4, + &vpx_highbd_12_sub_pixel_avg_variance8x16_sse2, + 12), + SubpelAvgVarianceParams(3, 3, + &vpx_highbd_12_sub_pixel_avg_variance8x8_sse2, + 12), + SubpelAvgVarianceParams(3, 2, + &vpx_highbd_12_sub_pixel_avg_variance8x4_sse2, + 12), + SubpelAvgVarianceParams(6, 6, + &vpx_highbd_10_sub_pixel_avg_variance64x64_sse2, + 10), + SubpelAvgVarianceParams(6, 5, + &vpx_highbd_10_sub_pixel_avg_variance64x32_sse2, + 10), + SubpelAvgVarianceParams(5, 6, + &vpx_highbd_10_sub_pixel_avg_variance32x64_sse2, + 10), + SubpelAvgVarianceParams(5, 5, + &vpx_highbd_10_sub_pixel_avg_variance32x32_sse2, + 10), + SubpelAvgVarianceParams(5, 4, + &vpx_highbd_10_sub_pixel_avg_variance32x16_sse2, + 10), + SubpelAvgVarianceParams(4, 5, + &vpx_highbd_10_sub_pixel_avg_variance16x32_sse2, + 10), + SubpelAvgVarianceParams(4, 4, + &vpx_highbd_10_sub_pixel_avg_variance16x16_sse2, + 10), + SubpelAvgVarianceParams(4, 3, + &vpx_highbd_10_sub_pixel_avg_variance16x8_sse2, + 10), + SubpelAvgVarianceParams(3, 4, + &vpx_highbd_10_sub_pixel_avg_variance8x16_sse2, + 10), + SubpelAvgVarianceParams(3, 3, + &vpx_highbd_10_sub_pixel_avg_variance8x8_sse2, + 10), + SubpelAvgVarianceParams(3, 2, + &vpx_highbd_10_sub_pixel_avg_variance8x4_sse2, + 10), + SubpelAvgVarianceParams(6, 6, + &vpx_highbd_8_sub_pixel_avg_variance64x64_sse2, + 8), + SubpelAvgVarianceParams(6, 5, + &vpx_highbd_8_sub_pixel_avg_variance64x32_sse2, + 8), + SubpelAvgVarianceParams(5, 6, + &vpx_highbd_8_sub_pixel_avg_variance32x64_sse2, + 8), + SubpelAvgVarianceParams(5, 5, + &vpx_highbd_8_sub_pixel_avg_variance32x32_sse2, + 8), + SubpelAvgVarianceParams(5, 4, + &vpx_highbd_8_sub_pixel_avg_variance32x16_sse2, + 8), + SubpelAvgVarianceParams(4, 5, + &vpx_highbd_8_sub_pixel_avg_variance16x32_sse2, + 8), + SubpelAvgVarianceParams(4, 4, + &vpx_highbd_8_sub_pixel_avg_variance16x16_sse2, + 8), + SubpelAvgVarianceParams(4, 3, + &vpx_highbd_8_sub_pixel_avg_variance16x8_sse2, + 8), + SubpelAvgVarianceParams(3, 4, + &vpx_highbd_8_sub_pixel_avg_variance8x16_sse2, + 8), + SubpelAvgVarianceParams(3, 3, + &vpx_highbd_8_sub_pixel_avg_variance8x8_sse2, + 8), + SubpelAvgVarianceParams(3, 2, + &vpx_highbd_8_sub_pixel_avg_variance8x4_sse2, + 8))); +#endif // CONFIG_VP9_HIGHBITDEPTH +#endif // HAVE_SSE2 + +#if HAVE_SSSE3 +INSTANTIATE_TEST_CASE_P( + SSSE3, VpxSubpelVarianceTest, + ::testing::Values( + SubpelVarianceParams(6, 6, &vpx_sub_pixel_variance64x64_ssse3, 0), + SubpelVarianceParams(6, 5, &vpx_sub_pixel_variance64x32_ssse3, 0), + SubpelVarianceParams(5, 6, &vpx_sub_pixel_variance32x64_ssse3, 0), + SubpelVarianceParams(5, 5, &vpx_sub_pixel_variance32x32_ssse3, 0), + SubpelVarianceParams(5, 4, &vpx_sub_pixel_variance32x16_ssse3, 0), + SubpelVarianceParams(4, 5, &vpx_sub_pixel_variance16x32_ssse3, 0), + SubpelVarianceParams(4, 4, &vpx_sub_pixel_variance16x16_ssse3, 0), + SubpelVarianceParams(4, 3, &vpx_sub_pixel_variance16x8_ssse3, 0), + SubpelVarianceParams(3, 4, &vpx_sub_pixel_variance8x16_ssse3, 0), + SubpelVarianceParams(3, 3, &vpx_sub_pixel_variance8x8_ssse3, 0), + SubpelVarianceParams(3, 2, &vpx_sub_pixel_variance8x4_ssse3, 0), + SubpelVarianceParams(2, 3, &vpx_sub_pixel_variance4x8_ssse3, 0), + SubpelVarianceParams(2, 2, &vpx_sub_pixel_variance4x4_ssse3, 0))); + +INSTANTIATE_TEST_CASE_P( + SSSE3, VpxSubpelAvgVarianceTest, + ::testing::Values( + SubpelAvgVarianceParams(6, 6, &vpx_sub_pixel_avg_variance64x64_ssse3, + 0), + SubpelAvgVarianceParams(6, 5, &vpx_sub_pixel_avg_variance64x32_ssse3, + 0), + SubpelAvgVarianceParams(5, 6, &vpx_sub_pixel_avg_variance32x64_ssse3, + 0), + SubpelAvgVarianceParams(5, 5, &vpx_sub_pixel_avg_variance32x32_ssse3, + 0), + SubpelAvgVarianceParams(5, 4, &vpx_sub_pixel_avg_variance32x16_ssse3, + 0), + SubpelAvgVarianceParams(4, 5, &vpx_sub_pixel_avg_variance16x32_ssse3, + 0), + SubpelAvgVarianceParams(4, 4, &vpx_sub_pixel_avg_variance16x16_ssse3, + 0), + SubpelAvgVarianceParams(4, 3, &vpx_sub_pixel_avg_variance16x8_ssse3, 0), + SubpelAvgVarianceParams(3, 4, &vpx_sub_pixel_avg_variance8x16_ssse3, 0), + SubpelAvgVarianceParams(3, 3, &vpx_sub_pixel_avg_variance8x8_ssse3, 0), + SubpelAvgVarianceParams(3, 2, &vpx_sub_pixel_avg_variance8x4_ssse3, 0), + SubpelAvgVarianceParams(2, 3, &vpx_sub_pixel_avg_variance4x8_ssse3, 0), + SubpelAvgVarianceParams(2, 2, &vpx_sub_pixel_avg_variance4x4_ssse3, + 0))); +#endif // HAVE_SSSE3 + +#if HAVE_AVX2 +INSTANTIATE_TEST_CASE_P(AVX2, VpxMseTest, + ::testing::Values(MseParams(4, 4, &vpx_mse16x16_avx2))); + +INSTANTIATE_TEST_CASE_P( + AVX2, VpxVarianceTest, + ::testing::Values(VarianceParams(6, 6, &vpx_variance64x64_avx2), + VarianceParams(6, 5, &vpx_variance64x32_avx2), + VarianceParams(5, 5, &vpx_variance32x32_avx2), + VarianceParams(5, 4, &vpx_variance32x16_avx2), + VarianceParams(4, 4, &vpx_variance16x16_avx2))); + +INSTANTIATE_TEST_CASE_P( + AVX2, VpxSubpelVarianceTest, + ::testing::Values( + SubpelVarianceParams(6, 6, &vpx_sub_pixel_variance64x64_avx2, 0), + SubpelVarianceParams(5, 5, &vpx_sub_pixel_variance32x32_avx2, 0))); + +INSTANTIATE_TEST_CASE_P( + AVX2, VpxSubpelAvgVarianceTest, + ::testing::Values( + SubpelAvgVarianceParams(6, 6, &vpx_sub_pixel_avg_variance64x64_avx2, 0), + SubpelAvgVarianceParams(5, 5, &vpx_sub_pixel_avg_variance32x32_avx2, + 0))); +#endif // HAVE_AVX2 + +#if HAVE_NEON +INSTANTIATE_TEST_CASE_P(NEON, VpxSseTest, + ::testing::Values(SseParams(2, 2, + &vpx_get4x4sse_cs_neon))); + +INSTANTIATE_TEST_CASE_P(NEON, VpxMseTest, + ::testing::Values(MseParams(4, 4, &vpx_mse16x16_neon))); + +INSTANTIATE_TEST_CASE_P( + NEON, VpxVarianceTest, + ::testing::Values(VarianceParams(6, 6, &vpx_variance64x64_neon), + VarianceParams(6, 5, &vpx_variance64x32_neon), + VarianceParams(5, 6, &vpx_variance32x64_neon), + VarianceParams(5, 5, &vpx_variance32x32_neon), + VarianceParams(5, 4, &vpx_variance32x16_neon), + VarianceParams(4, 5, &vpx_variance16x32_neon), + VarianceParams(4, 4, &vpx_variance16x16_neon), + VarianceParams(4, 3, &vpx_variance16x8_neon), + VarianceParams(3, 4, &vpx_variance8x16_neon), + VarianceParams(3, 3, &vpx_variance8x8_neon), + VarianceParams(3, 2, &vpx_variance8x4_neon), + VarianceParams(2, 3, &vpx_variance4x8_neon), + VarianceParams(2, 2, &vpx_variance4x4_neon))); + +INSTANTIATE_TEST_CASE_P( + NEON, VpxSubpelVarianceTest, + ::testing::Values( + SubpelVarianceParams(6, 6, &vpx_sub_pixel_variance64x64_neon, 0), + SubpelVarianceParams(6, 5, &vpx_sub_pixel_variance64x32_neon, 0), + SubpelVarianceParams(5, 6, &vpx_sub_pixel_variance32x64_neon, 0), + SubpelVarianceParams(5, 5, &vpx_sub_pixel_variance32x32_neon, 0), + SubpelVarianceParams(5, 4, &vpx_sub_pixel_variance32x16_neon, 0), + SubpelVarianceParams(4, 5, &vpx_sub_pixel_variance16x32_neon, 0), + SubpelVarianceParams(4, 4, &vpx_sub_pixel_variance16x16_neon, 0), + SubpelVarianceParams(4, 3, &vpx_sub_pixel_variance16x8_neon, 0), + SubpelVarianceParams(3, 4, &vpx_sub_pixel_variance8x16_neon, 0), + SubpelVarianceParams(3, 3, &vpx_sub_pixel_variance8x8_neon, 0), + SubpelVarianceParams(3, 2, &vpx_sub_pixel_variance8x4_neon, 0), + SubpelVarianceParams(2, 3, &vpx_sub_pixel_variance4x8_neon, 0), + SubpelVarianceParams(2, 2, &vpx_sub_pixel_variance4x4_neon, 0))); + +INSTANTIATE_TEST_CASE_P( + NEON, VpxSubpelAvgVarianceTest, + ::testing::Values( + SubpelAvgVarianceParams(6, 6, &vpx_sub_pixel_avg_variance64x64_neon, 0), + SubpelAvgVarianceParams(6, 5, &vpx_sub_pixel_avg_variance64x32_neon, 0), + SubpelAvgVarianceParams(5, 6, &vpx_sub_pixel_avg_variance32x64_neon, 0), + SubpelAvgVarianceParams(5, 5, &vpx_sub_pixel_avg_variance32x32_neon, 0), + SubpelAvgVarianceParams(5, 4, &vpx_sub_pixel_avg_variance32x16_neon, 0), + SubpelAvgVarianceParams(4, 5, &vpx_sub_pixel_avg_variance16x32_neon, 0), + SubpelAvgVarianceParams(4, 4, &vpx_sub_pixel_avg_variance16x16_neon, 0), + SubpelAvgVarianceParams(4, 3, &vpx_sub_pixel_avg_variance16x8_neon, 0), + SubpelAvgVarianceParams(3, 4, &vpx_sub_pixel_avg_variance8x16_neon, 0), + SubpelAvgVarianceParams(3, 3, &vpx_sub_pixel_avg_variance8x8_neon, 0), + SubpelAvgVarianceParams(3, 2, &vpx_sub_pixel_avg_variance8x4_neon, 0), + SubpelAvgVarianceParams(2, 3, &vpx_sub_pixel_avg_variance4x8_neon, 0), + SubpelAvgVarianceParams(2, 2, &vpx_sub_pixel_avg_variance4x4_neon, 0))); +#endif // HAVE_NEON + +#if HAVE_MSA +INSTANTIATE_TEST_CASE_P(MSA, SumOfSquaresTest, + ::testing::Values(vpx_get_mb_ss_msa)); + +INSTANTIATE_TEST_CASE_P(MSA, VpxSseTest, + ::testing::Values(SseParams(2, 2, + &vpx_get4x4sse_cs_msa))); + +INSTANTIATE_TEST_CASE_P(MSA, VpxMseTest, + ::testing::Values(MseParams(4, 4, &vpx_mse16x16_msa), + MseParams(4, 3, &vpx_mse16x8_msa), + MseParams(3, 4, &vpx_mse8x16_msa), + MseParams(3, 3, &vpx_mse8x8_msa))); + +INSTANTIATE_TEST_CASE_P( + MSA, VpxVarianceTest, + ::testing::Values(VarianceParams(6, 6, &vpx_variance64x64_msa), + VarianceParams(6, 5, &vpx_variance64x32_msa), + VarianceParams(5, 6, &vpx_variance32x64_msa), + VarianceParams(5, 5, &vpx_variance32x32_msa), + VarianceParams(5, 4, &vpx_variance32x16_msa), + VarianceParams(4, 5, &vpx_variance16x32_msa), + VarianceParams(4, 4, &vpx_variance16x16_msa), + VarianceParams(4, 3, &vpx_variance16x8_msa), + VarianceParams(3, 4, &vpx_variance8x16_msa), + VarianceParams(3, 3, &vpx_variance8x8_msa), + VarianceParams(3, 2, &vpx_variance8x4_msa), + VarianceParams(2, 3, &vpx_variance4x8_msa), + VarianceParams(2, 2, &vpx_variance4x4_msa))); + +INSTANTIATE_TEST_CASE_P( + MSA, VpxSubpelVarianceTest, + ::testing::Values( + SubpelVarianceParams(2, 2, &vpx_sub_pixel_variance4x4_msa, 0), + SubpelVarianceParams(2, 3, &vpx_sub_pixel_variance4x8_msa, 0), + SubpelVarianceParams(3, 2, &vpx_sub_pixel_variance8x4_msa, 0), + SubpelVarianceParams(3, 3, &vpx_sub_pixel_variance8x8_msa, 0), + SubpelVarianceParams(3, 4, &vpx_sub_pixel_variance8x16_msa, 0), + SubpelVarianceParams(4, 3, &vpx_sub_pixel_variance16x8_msa, 0), + SubpelVarianceParams(4, 4, &vpx_sub_pixel_variance16x16_msa, 0), + SubpelVarianceParams(4, 5, &vpx_sub_pixel_variance16x32_msa, 0), + SubpelVarianceParams(5, 4, &vpx_sub_pixel_variance32x16_msa, 0), + SubpelVarianceParams(5, 5, &vpx_sub_pixel_variance32x32_msa, 0), + SubpelVarianceParams(5, 6, &vpx_sub_pixel_variance32x64_msa, 0), + SubpelVarianceParams(6, 5, &vpx_sub_pixel_variance64x32_msa, 0), + SubpelVarianceParams(6, 6, &vpx_sub_pixel_variance64x64_msa, 0))); + +INSTANTIATE_TEST_CASE_P( + MSA, VpxSubpelAvgVarianceTest, + ::testing::Values( + SubpelAvgVarianceParams(6, 6, &vpx_sub_pixel_avg_variance64x64_msa, 0), + SubpelAvgVarianceParams(6, 5, &vpx_sub_pixel_avg_variance64x32_msa, 0), + SubpelAvgVarianceParams(5, 6, &vpx_sub_pixel_avg_variance32x64_msa, 0), + SubpelAvgVarianceParams(5, 5, &vpx_sub_pixel_avg_variance32x32_msa, 0), + SubpelAvgVarianceParams(5, 4, &vpx_sub_pixel_avg_variance32x16_msa, 0), + SubpelAvgVarianceParams(4, 5, &vpx_sub_pixel_avg_variance16x32_msa, 0), + SubpelAvgVarianceParams(4, 4, &vpx_sub_pixel_avg_variance16x16_msa, 0), + SubpelAvgVarianceParams(4, 3, &vpx_sub_pixel_avg_variance16x8_msa, 0), + SubpelAvgVarianceParams(3, 4, &vpx_sub_pixel_avg_variance8x16_msa, 0), + SubpelAvgVarianceParams(3, 3, &vpx_sub_pixel_avg_variance8x8_msa, 0), + SubpelAvgVarianceParams(3, 2, &vpx_sub_pixel_avg_variance8x4_msa, 0), + SubpelAvgVarianceParams(2, 3, &vpx_sub_pixel_avg_variance4x8_msa, 0), + SubpelAvgVarianceParams(2, 2, &vpx_sub_pixel_avg_variance4x4_msa, 0))); +#endif // HAVE_MSA + +#if HAVE_VSX +INSTANTIATE_TEST_CASE_P(VSX, SumOfSquaresTest, + ::testing::Values(vpx_get_mb_ss_vsx)); + +INSTANTIATE_TEST_CASE_P(VSX, VpxSseTest, + ::testing::Values(SseParams(2, 2, + &vpx_get4x4sse_cs_vsx))); +#endif // HAVE_VSX + +#if HAVE_MMI +INSTANTIATE_TEST_CASE_P(MMI, VpxMseTest, + ::testing::Values(MseParams(4, 4, &vpx_mse16x16_mmi), + MseParams(4, 3, &vpx_mse16x8_mmi), + MseParams(3, 4, &vpx_mse8x16_mmi), + MseParams(3, 3, &vpx_mse8x8_mmi))); + +INSTANTIATE_TEST_CASE_P( + MMI, VpxVarianceTest, + ::testing::Values(VarianceParams(6, 6, &vpx_variance64x64_mmi), + VarianceParams(6, 5, &vpx_variance64x32_mmi), + VarianceParams(5, 6, &vpx_variance32x64_mmi), + VarianceParams(5, 5, &vpx_variance32x32_mmi), + VarianceParams(5, 4, &vpx_variance32x16_mmi), + VarianceParams(4, 5, &vpx_variance16x32_mmi), + VarianceParams(4, 4, &vpx_variance16x16_mmi), + VarianceParams(4, 3, &vpx_variance16x8_mmi), + VarianceParams(3, 4, &vpx_variance8x16_mmi), + VarianceParams(3, 3, &vpx_variance8x8_mmi), + VarianceParams(3, 2, &vpx_variance8x4_mmi), + VarianceParams(2, 3, &vpx_variance4x8_mmi), + VarianceParams(2, 2, &vpx_variance4x4_mmi))); + +INSTANTIATE_TEST_CASE_P( + MMI, VpxSubpelVarianceTest, + ::testing::Values( + SubpelVarianceParams(6, 6, &vpx_sub_pixel_variance64x64_mmi, 0), + SubpelVarianceParams(6, 5, &vpx_sub_pixel_variance64x32_mmi, 0), + SubpelVarianceParams(5, 6, &vpx_sub_pixel_variance32x64_mmi, 0), + SubpelVarianceParams(5, 5, &vpx_sub_pixel_variance32x32_mmi, 0), + SubpelVarianceParams(5, 4, &vpx_sub_pixel_variance32x16_mmi, 0), + SubpelVarianceParams(4, 5, &vpx_sub_pixel_variance16x32_mmi, 0), + SubpelVarianceParams(4, 4, &vpx_sub_pixel_variance16x16_mmi, 0), + SubpelVarianceParams(4, 3, &vpx_sub_pixel_variance16x8_mmi, 0), + SubpelVarianceParams(3, 4, &vpx_sub_pixel_variance8x16_mmi, 0), + SubpelVarianceParams(3, 3, &vpx_sub_pixel_variance8x8_mmi, 0), + SubpelVarianceParams(3, 2, &vpx_sub_pixel_variance8x4_mmi, 0), + SubpelVarianceParams(2, 3, &vpx_sub_pixel_variance4x8_mmi, 0), + SubpelVarianceParams(2, 2, &vpx_sub_pixel_variance4x4_mmi, 0))); + +INSTANTIATE_TEST_CASE_P( + MMI, VpxSubpelAvgVarianceTest, + ::testing::Values( + SubpelAvgVarianceParams(6, 6, &vpx_sub_pixel_avg_variance64x64_mmi, 0), + SubpelAvgVarianceParams(6, 5, &vpx_sub_pixel_avg_variance64x32_mmi, 0), + SubpelAvgVarianceParams(5, 6, &vpx_sub_pixel_avg_variance32x64_mmi, 0), + SubpelAvgVarianceParams(5, 5, &vpx_sub_pixel_avg_variance32x32_mmi, 0), + SubpelAvgVarianceParams(5, 4, &vpx_sub_pixel_avg_variance32x16_mmi, 0), + SubpelAvgVarianceParams(4, 5, &vpx_sub_pixel_avg_variance16x32_mmi, 0), + SubpelAvgVarianceParams(4, 4, &vpx_sub_pixel_avg_variance16x16_mmi, 0), + SubpelAvgVarianceParams(4, 3, &vpx_sub_pixel_avg_variance16x8_mmi, 0), + SubpelAvgVarianceParams(3, 4, &vpx_sub_pixel_avg_variance8x16_mmi, 0), + SubpelAvgVarianceParams(3, 3, &vpx_sub_pixel_avg_variance8x8_mmi, 0), + SubpelAvgVarianceParams(3, 2, &vpx_sub_pixel_avg_variance8x4_mmi, 0), + SubpelAvgVarianceParams(2, 3, &vpx_sub_pixel_avg_variance4x8_mmi, 0), + SubpelAvgVarianceParams(2, 2, &vpx_sub_pixel_avg_variance4x4_mmi, 0))); +#endif // HAVE_MMI +} // namespace diff --git a/test/video_source.h b/test/video_source.h new file mode 100644 index 0000000..54f6928 --- /dev/null +++ b/test/video_source.h @@ -0,0 +1,258 @@ +/* + * Copyright (c) 2012 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ +#ifndef TEST_VIDEO_SOURCE_H_ +#define TEST_VIDEO_SOURCE_H_ + +#if defined(_WIN32) +#undef NOMINMAX +#define NOMINMAX +#ifndef WIN32_LEAN_AND_MEAN +#define WIN32_LEAN_AND_MEAN +#endif +#include +#endif +#include +#include +#include +#include "test/acm_random.h" +#include "vpx/vpx_encoder.h" + +namespace libvpx_test { + +// Helper macros to ensure LIBVPX_TEST_DATA_PATH is a quoted string. +// These are undefined right below GetDataPath +// NOTE: LIBVPX_TEST_DATA_PATH MUST NOT be a quoted string before +// Stringification or the GetDataPath will fail at runtime +#define TO_STRING(S) #S +#define STRINGIFY(S) TO_STRING(S) + +// A simple function to encapsulate cross platform retrieval of test data path +static std::string GetDataPath() { + const char *const data_path = getenv("LIBVPX_TEST_DATA_PATH"); + if (data_path == NULL) { +#ifdef LIBVPX_TEST_DATA_PATH + // In some environments, we cannot set environment variables + // Instead, we set the data path by using a preprocessor symbol + // which can be set from make files + return STRINGIFY(LIBVPX_TEST_DATA_PATH); +#else + return "."; +#endif + } + return data_path; +} + +// Undefining stringification macros because they are not used elsewhere +#undef TO_STRING +#undef STRINGIFY + +inline FILE *OpenTestDataFile(const std::string &file_name) { + const std::string path_to_source = GetDataPath() + "/" + file_name; + return fopen(path_to_source.c_str(), "rb"); +} + +static FILE *GetTempOutFile(std::string *file_name) { + file_name->clear(); +#if defined(_WIN32) + char fname[MAX_PATH]; + char tmppath[MAX_PATH]; + if (GetTempPathA(MAX_PATH, tmppath)) { + // Assume for now that the filename generated is unique per process + if (GetTempFileNameA(tmppath, "lvx", 0, fname)) { + file_name->assign(fname); + return fopen(fname, "wb+"); + } + } + return NULL; +#else + return tmpfile(); +#endif +} + +class TempOutFile { + public: + TempOutFile() { file_ = GetTempOutFile(&file_name_); } + ~TempOutFile() { + CloseFile(); + if (!file_name_.empty()) { + EXPECT_EQ(0, remove(file_name_.c_str())); + } + } + FILE *file() { return file_; } + const std::string &file_name() { return file_name_; } + + protected: + void CloseFile() { + if (file_) { + fclose(file_); + file_ = NULL; + } + } + FILE *file_; + std::string file_name_; +}; + +// Abstract base class for test video sources, which provide a stream of +// vpx_image_t images with associated timestamps and duration. +class VideoSource { + public: + virtual ~VideoSource() {} + + // Prepare the stream for reading, rewind/open as necessary. + virtual void Begin() = 0; + + // Advance the cursor to the next frame + virtual void Next() = 0; + + // Get the current video frame, or NULL on End-Of-Stream. + virtual vpx_image_t *img() const = 0; + + // Get the presentation timestamp of the current frame. + virtual vpx_codec_pts_t pts() const = 0; + + // Get the current frame's duration + virtual unsigned long duration() const = 0; + + // Get the timebase for the stream + virtual vpx_rational_t timebase() const = 0; + + // Get the current frame counter, starting at 0. + virtual unsigned int frame() const = 0; + + // Get the current file limit. + virtual unsigned int limit() const = 0; +}; + +class DummyVideoSource : public VideoSource { + public: + DummyVideoSource() + : img_(NULL), limit_(100), width_(80), height_(64), + format_(VPX_IMG_FMT_I420) { + ReallocImage(); + } + + virtual ~DummyVideoSource() { vpx_img_free(img_); } + + virtual void Begin() { + frame_ = 0; + FillFrame(); + } + + virtual void Next() { + ++frame_; + FillFrame(); + } + + virtual vpx_image_t *img() const { return (frame_ < limit_) ? img_ : NULL; } + + // Models a stream where Timebase = 1/FPS, so pts == frame. + virtual vpx_codec_pts_t pts() const { return frame_; } + + virtual unsigned long duration() const { return 1; } + + virtual vpx_rational_t timebase() const { + const vpx_rational_t t = { 1, 30 }; + return t; + } + + virtual unsigned int frame() const { return frame_; } + + virtual unsigned int limit() const { return limit_; } + + void set_limit(unsigned int limit) { limit_ = limit; } + + void SetSize(unsigned int width, unsigned int height) { + if (width != width_ || height != height_) { + width_ = width; + height_ = height; + ReallocImage(); + } + } + + void SetImageFormat(vpx_img_fmt_t format) { + if (format_ != format) { + format_ = format; + ReallocImage(); + } + } + + protected: + virtual void FillFrame() { + if (img_) memset(img_->img_data, 0, raw_sz_); + } + + void ReallocImage() { + vpx_img_free(img_); + img_ = vpx_img_alloc(NULL, format_, width_, height_, 32); + raw_sz_ = ((img_->w + 31) & ~31) * img_->h * img_->bps / 8; + } + + vpx_image_t *img_; + size_t raw_sz_; + unsigned int limit_; + unsigned int frame_; + unsigned int width_; + unsigned int height_; + vpx_img_fmt_t format_; +}; + +class RandomVideoSource : public DummyVideoSource { + public: + RandomVideoSource(int seed = ACMRandom::DeterministicSeed()) + : rnd_(seed), seed_(seed) {} + + protected: + // Reset the RNG to get a matching stream for the second pass + virtual void Begin() { + frame_ = 0; + rnd_.Reset(seed_); + FillFrame(); + } + + // 15 frames of noise, followed by 15 static frames. Reset to 0 rather + // than holding previous frames to encourage keyframes to be thrown. + virtual void FillFrame() { + if (img_) { + if (frame_ % 30 < 15) { + for (size_t i = 0; i < raw_sz_; ++i) img_->img_data[i] = rnd_.Rand8(); + } else { + memset(img_->img_data, 0, raw_sz_); + } + } + } + + ACMRandom rnd_; + int seed_; +}; + +// Abstract base class for test video sources, which provide a stream of +// decompressed images to the decoder. +class CompressedVideoSource { + public: + virtual ~CompressedVideoSource() {} + + virtual void Init() = 0; + + // Prepare the stream for reading, rewind/open as necessary. + virtual void Begin() = 0; + + // Advance the cursor to the next frame + virtual void Next() = 0; + + virtual const uint8_t *cxdata() const = 0; + + virtual size_t frame_size() const = 0; + + virtual unsigned int frame_number() const = 0; +}; + +} // namespace libvpx_test + +#endif // TEST_VIDEO_SOURCE_H_ diff --git a/test/vp8_boolcoder_test.cc b/test/vp8_boolcoder_test.cc new file mode 100644 index 0000000..9d81f93 --- /dev/null +++ b/test/vp8_boolcoder_test.cc @@ -0,0 +1,115 @@ +/* + * Copyright (c) 2012 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include +#include +#include +#include +#include + +#include "third_party/googletest/src/include/gtest/gtest.h" + +#include "test/acm_random.h" +#include "vp8/decoder/dboolhuff.h" +#include "vp8/encoder/boolhuff.h" +#include "vpx/vpx_integer.h" + +namespace { +const int num_tests = 10; + +// In a real use the 'decrypt_state' parameter will be a pointer to a struct +// with whatever internal state the decryptor uses. For testing we'll just +// xor with a constant key, and decrypt_state will point to the start of +// the original buffer. +const uint8_t secret_key[16] = { + 0x01, 0x12, 0x23, 0x34, 0x45, 0x56, 0x67, 0x78, + 0x89, 0x9a, 0xab, 0xbc, 0xcd, 0xde, 0xef, 0xf0 +}; + +void encrypt_buffer(uint8_t *buffer, size_t size) { + for (size_t i = 0; i < size; ++i) { + buffer[i] ^= secret_key[i & 15]; + } +} + +void test_decrypt_cb(void *decrypt_state, const uint8_t *input, uint8_t *output, + int count) { + const size_t offset = input - reinterpret_cast(decrypt_state); + for (int i = 0; i < count; i++) { + output[i] = input[i] ^ secret_key[(offset + i) & 15]; + } +} + +} // namespace + +using libvpx_test::ACMRandom; + +TEST(VP8, TestBitIO) { + ACMRandom rnd(ACMRandom::DeterministicSeed()); + for (int n = 0; n < num_tests; ++n) { + for (int method = 0; method <= 7; ++method) { // we generate various proba + const int kBitsToTest = 1000; + uint8_t probas[kBitsToTest]; + + for (int i = 0; i < kBitsToTest; ++i) { + const int parity = i & 1; + /* clang-format off */ + probas[i] = + (method == 0) ? 0 : (method == 1) ? 255 : + (method == 2) ? 128 : + (method == 3) ? rnd.Rand8() : + (method == 4) ? (parity ? 0 : 255) : + // alternate between low and high proba: + (method == 5) ? (parity ? rnd(128) : 255 - rnd(128)) : + (method == 6) ? + (parity ? rnd(64) : 255 - rnd(64)) : + (parity ? rnd(32) : 255 - rnd(32)); + /* clang-format on */ + } + for (int bit_method = 0; bit_method <= 3; ++bit_method) { + const int random_seed = 6432; + const int kBufferSize = 10000; + ACMRandom bit_rnd(random_seed); + BOOL_CODER bw; + uint8_t bw_buffer[kBufferSize]; + vp8_start_encode(&bw, bw_buffer, bw_buffer + kBufferSize); + + int bit = (bit_method == 0) ? 0 : (bit_method == 1) ? 1 : 0; + for (int i = 0; i < kBitsToTest; ++i) { + if (bit_method == 2) { + bit = (i & 1); + } else if (bit_method == 3) { + bit = bit_rnd(2); + } + vp8_encode_bool(&bw, bit, static_cast(probas[i])); + } + + vp8_stop_encode(&bw); + + BOOL_DECODER br; + encrypt_buffer(bw_buffer, kBufferSize); + vp8dx_start_decode(&br, bw_buffer, kBufferSize, test_decrypt_cb, + reinterpret_cast(bw_buffer)); + bit_rnd.Reset(random_seed); + for (int i = 0; i < kBitsToTest; ++i) { + if (bit_method == 2) { + bit = (i & 1); + } else if (bit_method == 3) { + bit = bit_rnd(2); + } + GTEST_ASSERT_EQ(vp8dx_decode_bool(&br, probas[i]), bit) + << "pos: " << i << " / " << kBitsToTest + << " bit_method: " << bit_method << " method: " << method; + } + } + } + } +} diff --git a/test/vp8_decrypt_test.cc b/test/vp8_decrypt_test.cc new file mode 100644 index 0000000..bcac9d1 --- /dev/null +++ b/test/vp8_decrypt_test.cc @@ -0,0 +1,69 @@ +/* + * Copyright (c) 2013 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include +#include +#include +#include "third_party/googletest/src/include/gtest/gtest.h" +#include "test/codec_factory.h" +#include "test/ivf_video_source.h" + +namespace { +// In a real use the 'decrypt_state' parameter will be a pointer to a struct +// with whatever internal state the decryptor uses. For testing we'll just +// xor with a constant key, and decrypt_state will point to the start of +// the original buffer. +const uint8_t test_key[16] = { 0x01, 0x12, 0x23, 0x34, 0x45, 0x56, 0x67, 0x78, + 0x89, 0x9a, 0xab, 0xbc, 0xcd, 0xde, 0xef, 0xf0 }; + +void encrypt_buffer(const uint8_t *src, uint8_t *dst, size_t size, + ptrdiff_t offset) { + for (size_t i = 0; i < size; ++i) { + dst[i] = src[i] ^ test_key[(offset + i) & 15]; + } +} + +void test_decrypt_cb(void *decrypt_state, const uint8_t *input, uint8_t *output, + int count) { + encrypt_buffer(input, output, count, + input - reinterpret_cast(decrypt_state)); +} + +} // namespace + +namespace libvpx_test { + +TEST(TestDecrypt, DecryptWorksVp8) { + libvpx_test::IVFVideoSource video("vp80-00-comprehensive-001.ivf"); + video.Init(); + + vpx_codec_dec_cfg_t dec_cfg = vpx_codec_dec_cfg_t(); + VP8Decoder decoder(dec_cfg, 0); + + video.Begin(); + + // no decryption + vpx_codec_err_t res = decoder.DecodeFrame(video.cxdata(), video.frame_size()); + ASSERT_EQ(VPX_CODEC_OK, res) << decoder.DecodeError(); + + // decrypt frame + video.Next(); + + std::vector encrypted(video.frame_size()); + encrypt_buffer(video.cxdata(), &encrypted[0], video.frame_size(), 0); + vpx_decrypt_init di = { test_decrypt_cb, &encrypted[0] }; + decoder.Control(VPXD_SET_DECRYPTOR, &di); + + res = decoder.DecodeFrame(&encrypted[0], encrypted.size()); + ASSERT_EQ(VPX_CODEC_OK, res) << decoder.DecodeError(); +} + +} // namespace libvpx_test diff --git a/test/vp8_denoiser_sse2_test.cc b/test/vp8_denoiser_sse2_test.cc new file mode 100644 index 0000000..2cbcf04 --- /dev/null +++ b/test/vp8_denoiser_sse2_test.cc @@ -0,0 +1,114 @@ +/* + * Copyright (c) 2014 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include +#include + +#include "third_party/googletest/src/include/gtest/gtest.h" +#include "test/acm_random.h" +#include "test/clear_system_state.h" +#include "test/register_state_check.h" +#include "test/util.h" + +#include "vp8/encoder/denoising.h" +#include "vp8/common/reconinter.h" +#include "vpx/vpx_integer.h" +#include "vpx_mem/vpx_mem.h" + +using libvpx_test::ACMRandom; + +namespace { + +const int kNumPixels = 16 * 16; +class VP8DenoiserTest : public ::testing::TestWithParam { + public: + virtual ~VP8DenoiserTest() {} + + virtual void SetUp() { increase_denoising_ = GetParam(); } + + virtual void TearDown() { libvpx_test::ClearSystemState(); } + + protected: + int increase_denoising_; +}; + +TEST_P(VP8DenoiserTest, BitexactCheck) { + ACMRandom rnd(ACMRandom::DeterministicSeed()); + const int count_test_block = 4000; + const int stride = 16; + + // Allocate the space for input and output, + // where sig_block_c/_sse2 is the block to be denoised, + // mc_avg_block is the denoised reference block, + // avg_block_c is the denoised result from C code, + // avg_block_sse2 is the denoised result from SSE2 code. + DECLARE_ALIGNED(16, uint8_t, sig_block_c[kNumPixels]); + // Since in VP8 denoiser, the source signal will be changed, + // we need another copy of the source signal as the input of sse2 code. + DECLARE_ALIGNED(16, uint8_t, sig_block_sse2[kNumPixels]); + DECLARE_ALIGNED(16, uint8_t, mc_avg_block[kNumPixels]); + DECLARE_ALIGNED(16, uint8_t, avg_block_c[kNumPixels]); + DECLARE_ALIGNED(16, uint8_t, avg_block_sse2[kNumPixels]); + + for (int i = 0; i < count_test_block; ++i) { + // Generate random motion magnitude, 20% of which exceed the threshold. + const int motion_magnitude_ran = + rnd.Rand8() % static_cast(MOTION_MAGNITUDE_THRESHOLD * 1.2); + + // Initialize a test block with random number in range [0, 255]. + for (int j = 0; j < kNumPixels; ++j) { + int temp = 0; + sig_block_sse2[j] = sig_block_c[j] = rnd.Rand8(); + // The pixels in mc_avg_block are generated by adding a random + // number in range [-19, 19] to corresponding pixels in sig_block. + temp = + sig_block_c[j] + (rnd.Rand8() % 2 == 0 ? -1 : 1) * (rnd.Rand8() % 20); + // Clip. + mc_avg_block[j] = (temp < 0) ? 0 : ((temp > 255) ? 255 : temp); + } + + // Test denosiser on Y component. + ASM_REGISTER_STATE_CHECK(vp8_denoiser_filter_c( + mc_avg_block, stride, avg_block_c, stride, sig_block_c, stride, + motion_magnitude_ran, increase_denoising_)); + + ASM_REGISTER_STATE_CHECK(vp8_denoiser_filter_sse2( + mc_avg_block, stride, avg_block_sse2, stride, sig_block_sse2, stride, + motion_magnitude_ran, increase_denoising_)); + + // Check bitexactness. + for (int h = 0; h < 16; ++h) { + for (int w = 0; w < 16; ++w) { + EXPECT_EQ(avg_block_c[h * stride + w], avg_block_sse2[h * stride + w]); + } + } + + // Test denoiser on UV component. + ASM_REGISTER_STATE_CHECK(vp8_denoiser_filter_uv_c( + mc_avg_block, stride, avg_block_c, stride, sig_block_c, stride, + motion_magnitude_ran, increase_denoising_)); + + ASM_REGISTER_STATE_CHECK(vp8_denoiser_filter_uv_sse2( + mc_avg_block, stride, avg_block_sse2, stride, sig_block_sse2, stride, + motion_magnitude_ran, increase_denoising_)); + + // Check bitexactness. + for (int h = 0; h < 16; ++h) { + for (int w = 0; w < 16; ++w) { + EXPECT_EQ(avg_block_c[h * stride + w], avg_block_sse2[h * stride + w]); + } + } + } +} + +// Test for all block size. +INSTANTIATE_TEST_CASE_P(SSE2, VP8DenoiserTest, ::testing::Values(0, 1)); +} // namespace diff --git a/test/vp8_fdct4x4_test.cc b/test/vp8_fdct4x4_test.cc new file mode 100644 index 0000000..b7697d8 --- /dev/null +++ b/test/vp8_fdct4x4_test.cc @@ -0,0 +1,206 @@ +/* + * Copyright (c) 2013 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include +#include +#include +#include +#include + +#include "third_party/googletest/src/include/gtest/gtest.h" + +#include "./vpx_config.h" +#include "./vp8_rtcd.h" +#include "test/acm_random.h" +#include "vpx/vpx_integer.h" +#include "vpx_ports/mem.h" + +namespace { + +typedef void (*FdctFunc)(int16_t *a, int16_t *b, int a_stride); + +const int cospi8sqrt2minus1 = 20091; +const int sinpi8sqrt2 = 35468; + +void reference_idct4x4(const int16_t *input, int16_t *output) { + const int16_t *ip = input; + int16_t *op = output; + + for (int i = 0; i < 4; ++i) { + const int a1 = ip[0] + ip[8]; + const int b1 = ip[0] - ip[8]; + const int temp1 = (ip[4] * sinpi8sqrt2) >> 16; + const int temp2 = ip[12] + ((ip[12] * cospi8sqrt2minus1) >> 16); + const int c1 = temp1 - temp2; + const int temp3 = ip[4] + ((ip[4] * cospi8sqrt2minus1) >> 16); + const int temp4 = (ip[12] * sinpi8sqrt2) >> 16; + const int d1 = temp3 + temp4; + op[0] = a1 + d1; + op[12] = a1 - d1; + op[4] = b1 + c1; + op[8] = b1 - c1; + ++ip; + ++op; + } + ip = output; + op = output; + for (int i = 0; i < 4; ++i) { + const int a1 = ip[0] + ip[2]; + const int b1 = ip[0] - ip[2]; + const int temp1 = (ip[1] * sinpi8sqrt2) >> 16; + const int temp2 = ip[3] + ((ip[3] * cospi8sqrt2minus1) >> 16); + const int c1 = temp1 - temp2; + const int temp3 = ip[1] + ((ip[1] * cospi8sqrt2minus1) >> 16); + const int temp4 = (ip[3] * sinpi8sqrt2) >> 16; + const int d1 = temp3 + temp4; + op[0] = (a1 + d1 + 4) >> 3; + op[3] = (a1 - d1 + 4) >> 3; + op[1] = (b1 + c1 + 4) >> 3; + op[2] = (b1 - c1 + 4) >> 3; + ip += 4; + op += 4; + } +} + +using libvpx_test::ACMRandom; + +class FdctTest : public ::testing::TestWithParam { + public: + virtual void SetUp() { + fdct_func_ = GetParam(); + rnd_.Reset(ACMRandom::DeterministicSeed()); + } + + protected: + FdctFunc fdct_func_; + ACMRandom rnd_; +}; + +TEST_P(FdctTest, SignBiasCheck) { + int16_t test_input_block[16]; + DECLARE_ALIGNED(16, int16_t, test_output_block[16]); + const int pitch = 8; + int count_sign_block[16][2]; + const int count_test_block = 1000000; + + memset(count_sign_block, 0, sizeof(count_sign_block)); + + for (int i = 0; i < count_test_block; ++i) { + // Initialize a test block with input range [-255, 255]. + for (int j = 0; j < 16; ++j) { + test_input_block[j] = rnd_.Rand8() - rnd_.Rand8(); + } + + fdct_func_(test_input_block, test_output_block, pitch); + + for (int j = 0; j < 16; ++j) { + if (test_output_block[j] < 0) { + ++count_sign_block[j][0]; + } else if (test_output_block[j] > 0) { + ++count_sign_block[j][1]; + } + } + } + + bool bias_acceptable = true; + for (int j = 0; j < 16; ++j) { + bias_acceptable = + bias_acceptable && + (abs(count_sign_block[j][0] - count_sign_block[j][1]) < 10000); + } + + EXPECT_EQ(true, bias_acceptable) + << "Error: 4x4 FDCT has a sign bias > 1% for input range [-255, 255]"; + + memset(count_sign_block, 0, sizeof(count_sign_block)); + + for (int i = 0; i < count_test_block; ++i) { + // Initialize a test block with input range [-15, 15]. + for (int j = 0; j < 16; ++j) { + test_input_block[j] = (rnd_.Rand8() >> 4) - (rnd_.Rand8() >> 4); + } + + fdct_func_(test_input_block, test_output_block, pitch); + + for (int j = 0; j < 16; ++j) { + if (test_output_block[j] < 0) { + ++count_sign_block[j][0]; + } else if (test_output_block[j] > 0) { + ++count_sign_block[j][1]; + } + } + } + + bias_acceptable = true; + for (int j = 0; j < 16; ++j) { + bias_acceptable = + bias_acceptable && + (abs(count_sign_block[j][0] - count_sign_block[j][1]) < 100000); + } + + EXPECT_EQ(true, bias_acceptable) + << "Error: 4x4 FDCT has a sign bias > 10% for input range [-15, 15]"; +}; + +TEST_P(FdctTest, RoundTripErrorCheck) { + int max_error = 0; + double total_error = 0; + const int count_test_block = 1000000; + for (int i = 0; i < count_test_block; ++i) { + int16_t test_input_block[16]; + int16_t test_output_block[16]; + DECLARE_ALIGNED(16, int16_t, test_temp_block[16]); + + // Initialize a test block with input range [-255, 255]. + for (int j = 0; j < 16; ++j) { + test_input_block[j] = rnd_.Rand8() - rnd_.Rand8(); + } + + const int pitch = 8; + fdct_func_(test_input_block, test_temp_block, pitch); + reference_idct4x4(test_temp_block, test_output_block); + + for (int j = 0; j < 16; ++j) { + const int diff = test_input_block[j] - test_output_block[j]; + const int error = diff * diff; + if (max_error < error) max_error = error; + total_error += error; + } + } + + EXPECT_GE(1, max_error) + << "Error: FDCT/IDCT has an individual roundtrip error > 1"; + + EXPECT_GE(count_test_block, total_error) + << "Error: FDCT/IDCT has average roundtrip error > 1 per block"; +}; + +INSTANTIATE_TEST_CASE_P(C, FdctTest, ::testing::Values(vp8_short_fdct4x4_c)); + +#if HAVE_NEON +INSTANTIATE_TEST_CASE_P(NEON, FdctTest, + ::testing::Values(vp8_short_fdct4x4_neon)); +#endif // HAVE_NEON + +#if HAVE_SSE2 +INSTANTIATE_TEST_CASE_P(SSE2, FdctTest, + ::testing::Values(vp8_short_fdct4x4_sse2)); +#endif // HAVE_SSE2 + +#if HAVE_MSA +INSTANTIATE_TEST_CASE_P(MSA, FdctTest, + ::testing::Values(vp8_short_fdct4x4_msa)); +#endif // HAVE_MSA +#if HAVE_MMI +INSTANTIATE_TEST_CASE_P(MMI, FdctTest, + ::testing::Values(vp8_short_fdct4x4_mmi)); +#endif // HAVE_MMI +} // namespace diff --git a/test/vp8_fragments_test.cc b/test/vp8_fragments_test.cc new file mode 100644 index 0000000..ac967d1 --- /dev/null +++ b/test/vp8_fragments_test.cc @@ -0,0 +1,36 @@ +/* + * Copyright (c) 2014 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ +#include "third_party/googletest/src/include/gtest/gtest.h" +#include "test/codec_factory.h" +#include "test/video_source.h" + +namespace { + +class VP8FramgmentsTest : public ::libvpx_test::EncoderTest, + public ::testing::Test { + protected: + VP8FramgmentsTest() : EncoderTest(&::libvpx_test::kVP8) {} + virtual ~VP8FramgmentsTest() {} + + virtual void SetUp() { + const unsigned long init_flags = // NOLINT(runtime/int) + VPX_CODEC_USE_OUTPUT_PARTITION; + InitializeConfig(); + SetMode(::libvpx_test::kRealTime); + set_init_flags(init_flags); + } +}; + +TEST_F(VP8FramgmentsTest, TestFragmentsEncodeDecode) { + ::libvpx_test::RandomVideoSource video; + ASSERT_NO_FATAL_FAILURE(RunLoop(&video)); +} + +} // namespace diff --git a/test/vp8_multi_resolution_encoder.sh b/test/vp8_multi_resolution_encoder.sh new file mode 100755 index 0000000..a8b7fe7 --- /dev/null +++ b/test/vp8_multi_resolution_encoder.sh @@ -0,0 +1,75 @@ +#!/bin/sh +## +## Copyright (c) 2014 The WebM project authors. All Rights Reserved. +## +## Use of this source code is governed by a BSD-style license +## that can be found in the LICENSE file in the root of the source +## tree. An additional intellectual property rights grant can be found +## in the file PATENTS. All contributing project authors may +## be found in the AUTHORS file in the root of the source tree. +## +## This file tests the libvpx vp8_multi_resolution_encoder example. To add new +## tests to this file, do the following: +## 1. Write a shell function (this is your test). +## 2. Add the function to vp8_mre_tests (on a new line). +## +. $(dirname $0)/tools_common.sh + +# Environment check: $YUV_RAW_INPUT is required. +vp8_multi_resolution_encoder_verify_environment() { + if [ "$(vpx_config_option_enabled CONFIG_MULTI_RES_ENCODING)" = "yes" ]; then + if [ ! -e "${YUV_RAW_INPUT}" ]; then + elog "Libvpx test data must exist in LIBVPX_TEST_DATA_PATH." + return 1 + fi + local readonly app="vp8_multi_resolution_encoder" + if [ -z "$(vpx_tool_path "${app}")" ]; then + elog "${app} not found. It must exist in LIBVPX_BIN_PATH or its parent." + return 1 + fi + fi +} + +# Runs vp8_multi_resolution_encoder. Simply forwards all arguments to +# vp8_multi_resolution_encoder after building path to the executable. +vp8_mre() { + local readonly encoder="$(vpx_tool_path vp8_multi_resolution_encoder)" + if [ ! -x "${encoder}" ]; then + elog "${encoder} does not exist or is not executable." + return 1 + fi + + eval "${VPX_TEST_PREFIX}" "${encoder}" "$@" ${devnull} +} + +vp8_multi_resolution_encoder_three_formats() { + local readonly output_files="${VPX_TEST_OUTPUT_DIR}/vp8_mre_0.ivf + ${VPX_TEST_OUTPUT_DIR}/vp8_mre_1.ivf + ${VPX_TEST_OUTPUT_DIR}/vp8_mre_2.ivf" + + if [ "$(vpx_config_option_enabled CONFIG_MULTI_RES_ENCODING)" = "yes" ]; then + if [ "$(vp8_encode_available)" = "yes" ]; then + # Param order: + # Input width + # Input height + # Input file path + # Output file names + # Output PSNR + vp8_mre "${YUV_RAW_INPUT_WIDTH}" \ + "${YUV_RAW_INPUT_HEIGHT}" \ + "${YUV_RAW_INPUT}" \ + ${output_files} \ + 0 + + for output_file in ${output_files}; do + if [ ! -e "${output_file}" ]; then + elog "Missing output file: ${output_file}" + return 1 + fi + done + fi + fi +} + +vp8_mre_tests="vp8_multi_resolution_encoder_three_formats" +run_tests vp8_multi_resolution_encoder_verify_environment "${vp8_mre_tests}" diff --git a/test/vp9_arf_freq_test.cc b/test/vp9_arf_freq_test.cc new file mode 100644 index 0000000..48a4ca7 --- /dev/null +++ b/test/vp9_arf_freq_test.cc @@ -0,0 +1,217 @@ +/* + * Copyright (c) 2015 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "third_party/googletest/src/include/gtest/gtest.h" + +#include "test/codec_factory.h" +#include "test/encode_test_driver.h" +#include "test/util.h" +#include "test/y4m_video_source.h" +#include "test/yuv_video_source.h" +#include "vp9/encoder/vp9_ratectrl.h" + +namespace { + +const unsigned int kFrames = 100; +const int kBitrate = 500; + +#define ARF_NOT_SEEN 1000001 +#define ARF_SEEN_ONCE 1000000 + +typedef struct { + const char *filename; + unsigned int width; + unsigned int height; + unsigned int framerate_num; + unsigned int framerate_den; + unsigned int input_bit_depth; + vpx_img_fmt fmt; + vpx_bit_depth_t bit_depth; + unsigned int profile; +} TestVideoParam; + +typedef struct { + libvpx_test::TestMode mode; + int cpu_used; +} TestEncodeParam; + +const TestVideoParam kTestVectors[] = { + // artificially increase framerate to trigger default check + { "hantro_collage_w352h288.yuv", 352, 288, 5000, 1, 8, VPX_IMG_FMT_I420, + VPX_BITS_8, 0 }, + { "hantro_collage_w352h288.yuv", 352, 288, 30, 1, 8, VPX_IMG_FMT_I420, + VPX_BITS_8, 0 }, + { "rush_hour_444.y4m", 352, 288, 30, 1, 8, VPX_IMG_FMT_I444, VPX_BITS_8, 1 }, +#if CONFIG_VP9_HIGHBITDEPTH +// Add list of profile 2/3 test videos here ... +#endif // CONFIG_VP9_HIGHBITDEPTH +}; + +const TestEncodeParam kEncodeVectors[] = { + { ::libvpx_test::kOnePassGood, 2 }, { ::libvpx_test::kOnePassGood, 5 }, + { ::libvpx_test::kTwoPassGood, 1 }, { ::libvpx_test::kTwoPassGood, 2 }, + { ::libvpx_test::kTwoPassGood, 5 }, { ::libvpx_test::kRealTime, 5 }, +}; + +const int kMinArfVectors[] = { + // NOTE: 0 refers to the default built-in logic in: + // vp9_rc_get_default_min_gf_interval(...) + 0, 4, 8, 12, 15 +}; + +int is_extension_y4m(const char *filename) { + const char *dot = strrchr(filename, '.'); + if (!dot || dot == filename) { + return 0; + } else { + return !strcmp(dot, ".y4m"); + } +} + +class ArfFreqTest + : public ::libvpx_test::EncoderTest, + public ::libvpx_test::CodecTestWith3Params { + protected: + ArfFreqTest() + : EncoderTest(GET_PARAM(0)), test_video_param_(GET_PARAM(1)), + test_encode_param_(GET_PARAM(2)), min_arf_requested_(GET_PARAM(3)) {} + + virtual ~ArfFreqTest() {} + + virtual void SetUp() { + InitializeConfig(); + SetMode(test_encode_param_.mode); + if (test_encode_param_.mode != ::libvpx_test::kRealTime) { + cfg_.g_lag_in_frames = 25; + cfg_.rc_end_usage = VPX_VBR; + } else { + cfg_.g_lag_in_frames = 0; + cfg_.rc_end_usage = VPX_CBR; + cfg_.rc_buf_sz = 1000; + cfg_.rc_buf_initial_sz = 500; + cfg_.rc_buf_optimal_sz = 600; + } + dec_cfg_.threads = 4; + } + + virtual void BeginPassHook(unsigned int) { + min_run_ = ARF_NOT_SEEN; + run_of_visible_frames_ = 0; + } + + int GetNumFramesInPkt(const vpx_codec_cx_pkt_t *pkt) { + const uint8_t *buffer = reinterpret_cast(pkt->data.frame.buf); + const uint8_t marker = buffer[pkt->data.frame.sz - 1]; + const int mag = ((marker >> 3) & 3) + 1; + int frames = (marker & 0x7) + 1; + const unsigned int index_sz = 2 + mag * frames; + // Check for superframe or not. + // Assume superframe has only one visible frame, the rest being + // invisible. If superframe index is not found, then there is only + // one frame. + if (!((marker & 0xe0) == 0xc0 && pkt->data.frame.sz >= index_sz && + buffer[pkt->data.frame.sz - index_sz] == marker)) { + frames = 1; + } + return frames; + } + + virtual void FramePktHook(const vpx_codec_cx_pkt_t *pkt) { + if (pkt->kind != VPX_CODEC_CX_FRAME_PKT) return; + const int frames = GetNumFramesInPkt(pkt); + if (frames == 1) { + run_of_visible_frames_++; + } else if (frames == 2) { + if (min_run_ == ARF_NOT_SEEN) { + min_run_ = ARF_SEEN_ONCE; + } else if (min_run_ == ARF_SEEN_ONCE || + run_of_visible_frames_ < min_run_) { + min_run_ = run_of_visible_frames_; + } + run_of_visible_frames_ = 1; + } else { + min_run_ = 0; + run_of_visible_frames_ = 1; + } + } + + virtual void PreEncodeFrameHook(::libvpx_test::VideoSource *video, + ::libvpx_test::Encoder *encoder) { + if (video->frame() == 0) { + encoder->Control(VP9E_SET_FRAME_PARALLEL_DECODING, 1); + encoder->Control(VP9E_SET_TILE_COLUMNS, 4); + encoder->Control(VP8E_SET_CPUUSED, test_encode_param_.cpu_used); + encoder->Control(VP9E_SET_MIN_GF_INTERVAL, min_arf_requested_); + if (test_encode_param_.mode != ::libvpx_test::kRealTime) { + encoder->Control(VP8E_SET_ENABLEAUTOALTREF, 1); + encoder->Control(VP8E_SET_ARNR_MAXFRAMES, 7); + encoder->Control(VP8E_SET_ARNR_STRENGTH, 5); + encoder->Control(VP8E_SET_ARNR_TYPE, 3); + } + } + } + + int GetMinVisibleRun() const { return min_run_; } + + int GetMinArfDistanceRequested() const { + if (min_arf_requested_) { + return min_arf_requested_; + } else { + return vp9_rc_get_default_min_gf_interval( + test_video_param_.width, test_video_param_.height, + (double)test_video_param_.framerate_num / + test_video_param_.framerate_den); + } + } + + TestVideoParam test_video_param_; + TestEncodeParam test_encode_param_; + + private: + int min_arf_requested_; + int min_run_; + int run_of_visible_frames_; +}; + +TEST_P(ArfFreqTest, MinArfFreqTest) { + cfg_.rc_target_bitrate = kBitrate; + cfg_.g_error_resilient = 0; + cfg_.g_profile = test_video_param_.profile; + cfg_.g_input_bit_depth = test_video_param_.input_bit_depth; + cfg_.g_bit_depth = test_video_param_.bit_depth; + init_flags_ = VPX_CODEC_USE_PSNR; + if (cfg_.g_bit_depth > 8) init_flags_ |= VPX_CODEC_USE_HIGHBITDEPTH; + + testing::internal::scoped_ptr video; + if (is_extension_y4m(test_video_param_.filename)) { + video.reset(new libvpx_test::Y4mVideoSource(test_video_param_.filename, 0, + kFrames)); + } else { + video.reset(new libvpx_test::YUVVideoSource( + test_video_param_.filename, test_video_param_.fmt, + test_video_param_.width, test_video_param_.height, + test_video_param_.framerate_num, test_video_param_.framerate_den, 0, + kFrames)); + } + + ASSERT_NO_FATAL_FAILURE(RunLoop(video.get())); + const int min_run = GetMinVisibleRun(); + const int min_arf_dist_requested = GetMinArfDistanceRequested(); + if (min_run != ARF_NOT_SEEN && min_run != ARF_SEEN_ONCE) { + const int min_arf_dist = min_run + 1; + EXPECT_GE(min_arf_dist, min_arf_dist_requested); + } +} + +VP9_INSTANTIATE_TEST_CASE(ArfFreqTest, ::testing::ValuesIn(kTestVectors), + ::testing::ValuesIn(kEncodeVectors), + ::testing::ValuesIn(kMinArfVectors)); +} // namespace diff --git a/test/vp9_block_error_test.cc b/test/vp9_block_error_test.cc new file mode 100644 index 0000000..0b4d1df --- /dev/null +++ b/test/vp9_block_error_test.cc @@ -0,0 +1,198 @@ +/* + * Copyright (c) 2014 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include +#include + +#include "third_party/googletest/src/include/gtest/gtest.h" + +#include "./vpx_config.h" +#include "./vp9_rtcd.h" +#include "test/acm_random.h" +#include "test/clear_system_state.h" +#include "test/register_state_check.h" +#include "test/util.h" +#include "vp9/common/vp9_entropy.h" +#include "vpx/vpx_codec.h" +#include "vpx/vpx_integer.h" +#include "vpx_dsp/vpx_dsp_common.h" + +using libvpx_test::ACMRandom; + +namespace { +const int kNumIterations = 1000; + +typedef int64_t (*HBDBlockErrorFunc)(const tran_low_t *coeff, + const tran_low_t *dqcoeff, + intptr_t block_size, int64_t *ssz, + int bps); + +typedef std::tr1::tuple + BlockErrorParam; + +typedef int64_t (*BlockErrorFunc)(const tran_low_t *coeff, + const tran_low_t *dqcoeff, + intptr_t block_size, int64_t *ssz); + +template +int64_t BlockError8BitWrapper(const tran_low_t *coeff, + const tran_low_t *dqcoeff, intptr_t block_size, + int64_t *ssz, int bps) { + EXPECT_EQ(bps, 8); + return fn(coeff, dqcoeff, block_size, ssz); +} + +class BlockErrorTest : public ::testing::TestWithParam { + public: + virtual ~BlockErrorTest() {} + virtual void SetUp() { + error_block_op_ = GET_PARAM(0); + ref_error_block_op_ = GET_PARAM(1); + bit_depth_ = GET_PARAM(2); + } + + virtual void TearDown() { libvpx_test::ClearSystemState(); } + + protected: + vpx_bit_depth_t bit_depth_; + HBDBlockErrorFunc error_block_op_; + HBDBlockErrorFunc ref_error_block_op_; +}; + +TEST_P(BlockErrorTest, OperationCheck) { + ACMRandom rnd(ACMRandom::DeterministicSeed()); + DECLARE_ALIGNED(16, tran_low_t, coeff[4096]); + DECLARE_ALIGNED(16, tran_low_t, dqcoeff[4096]); + int err_count_total = 0; + int first_failure = -1; + intptr_t block_size; + int64_t ssz; + int64_t ret; + int64_t ref_ssz; + int64_t ref_ret; + const int msb = bit_depth_ + 8 - 1; + for (int i = 0; i < kNumIterations; ++i) { + int err_count = 0; + block_size = 16 << (i % 9); // All block sizes from 4x4, 8x4 ..64x64 + for (int j = 0; j < block_size; j++) { + // coeff and dqcoeff will always have at least the same sign, and this + // can be used for optimization, so generate test input precisely. + if (rnd(2)) { + // Positive number + coeff[j] = rnd(1 << msb); + dqcoeff[j] = rnd(1 << msb); + } else { + // Negative number + coeff[j] = -rnd(1 << msb); + dqcoeff[j] = -rnd(1 << msb); + } + } + ref_ret = + ref_error_block_op_(coeff, dqcoeff, block_size, &ref_ssz, bit_depth_); + ASM_REGISTER_STATE_CHECK( + ret = error_block_op_(coeff, dqcoeff, block_size, &ssz, bit_depth_)); + err_count += (ref_ret != ret) | (ref_ssz != ssz); + if (err_count && !err_count_total) { + first_failure = i; + } + err_count_total += err_count; + } + EXPECT_EQ(0, err_count_total) + << "Error: Error Block Test, C output doesn't match optimized output. " + << "First failed at test case " << first_failure; +} + +TEST_P(BlockErrorTest, ExtremeValues) { + ACMRandom rnd(ACMRandom::DeterministicSeed()); + DECLARE_ALIGNED(16, tran_low_t, coeff[4096]); + DECLARE_ALIGNED(16, tran_low_t, dqcoeff[4096]); + int err_count_total = 0; + int first_failure = -1; + intptr_t block_size; + int64_t ssz; + int64_t ret; + int64_t ref_ssz; + int64_t ref_ret; + const int msb = bit_depth_ + 8 - 1; + int max_val = ((1 << msb) - 1); + for (int i = 0; i < kNumIterations; ++i) { + int err_count = 0; + int k = (i / 9) % 9; + + // Change the maximum coeff value, to test different bit boundaries + if (k == 8 && (i % 9) == 0) { + max_val >>= 1; + } + block_size = 16 << (i % 9); // All block sizes from 4x4, 8x4 ..64x64 + for (int j = 0; j < block_size; j++) { + if (k < 4) { + // Test at positive maximum values + coeff[j] = k % 2 ? max_val : 0; + dqcoeff[j] = (k >> 1) % 2 ? max_val : 0; + } else if (k < 8) { + // Test at negative maximum values + coeff[j] = k % 2 ? -max_val : 0; + dqcoeff[j] = (k >> 1) % 2 ? -max_val : 0; + } else { + if (rnd(2)) { + // Positive number + coeff[j] = rnd(1 << 14); + dqcoeff[j] = rnd(1 << 14); + } else { + // Negative number + coeff[j] = -rnd(1 << 14); + dqcoeff[j] = -rnd(1 << 14); + } + } + } + ref_ret = + ref_error_block_op_(coeff, dqcoeff, block_size, &ref_ssz, bit_depth_); + ASM_REGISTER_STATE_CHECK( + ret = error_block_op_(coeff, dqcoeff, block_size, &ssz, bit_depth_)); + err_count += (ref_ret != ret) | (ref_ssz != ssz); + if (err_count && !err_count_total) { + first_failure = i; + } + err_count_total += err_count; + } + EXPECT_EQ(0, err_count_total) + << "Error: Error Block Test, C output doesn't match optimized output. " + << "First failed at test case " << first_failure; +} + +using std::tr1::make_tuple; + +#if HAVE_SSE2 +const BlockErrorParam sse2_block_error_tests[] = { +#if CONFIG_VP9_HIGHBITDEPTH + make_tuple(&vp9_highbd_block_error_sse2, &vp9_highbd_block_error_c, + VPX_BITS_10), + make_tuple(&vp9_highbd_block_error_sse2, &vp9_highbd_block_error_c, + VPX_BITS_12), + make_tuple(&vp9_highbd_block_error_sse2, &vp9_highbd_block_error_c, + VPX_BITS_8), +#endif // CONFIG_VP9_HIGHBITDEPTH + make_tuple(&BlockError8BitWrapper, + &BlockError8BitWrapper, VPX_BITS_8) +}; + +INSTANTIATE_TEST_CASE_P(SSE2, BlockErrorTest, + ::testing::ValuesIn(sse2_block_error_tests)); +#endif // HAVE_SSE2 + +#if HAVE_AVX2 +INSTANTIATE_TEST_CASE_P( + AVX2, BlockErrorTest, + ::testing::Values(make_tuple(&BlockError8BitWrapper, + &BlockError8BitWrapper, + VPX_BITS_8))); +#endif // HAVE_AVX2 +} // namespace diff --git a/test/vp9_boolcoder_test.cc b/test/vp9_boolcoder_test.cc new file mode 100644 index 0000000..5dbfd5c --- /dev/null +++ b/test/vp9_boolcoder_test.cc @@ -0,0 +1,89 @@ +/* + * Copyright (c) 2012 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include +#include + +#include "third_party/googletest/src/include/gtest/gtest.h" + +#include "test/acm_random.h" +#include "vpx/vpx_integer.h" +#include "vpx_dsp/bitreader.h" +#include "vpx_dsp/bitwriter.h" + +using libvpx_test::ACMRandom; + +namespace { +const int num_tests = 10; +} // namespace + +TEST(VP9, TestBitIO) { + ACMRandom rnd(ACMRandom::DeterministicSeed()); + for (int n = 0; n < num_tests; ++n) { + for (int method = 0; method <= 7; ++method) { // we generate various proba + const int kBitsToTest = 1000; + uint8_t probas[kBitsToTest]; + + for (int i = 0; i < kBitsToTest; ++i) { + const int parity = i & 1; + /* clang-format off */ + probas[i] = + (method == 0) ? 0 : (method == 1) ? 255 : + (method == 2) ? 128 : + (method == 3) ? rnd.Rand8() : + (method == 4) ? (parity ? 0 : 255) : + // alternate between low and high proba: + (method == 5) ? (parity ? rnd(128) : 255 - rnd(128)) : + (method == 6) ? + (parity ? rnd(64) : 255 - rnd(64)) : + (parity ? rnd(32) : 255 - rnd(32)); + /* clang-format on */ + } + for (int bit_method = 0; bit_method <= 3; ++bit_method) { + const int random_seed = 6432; + const int kBufferSize = 10000; + ACMRandom bit_rnd(random_seed); + vpx_writer bw; + uint8_t bw_buffer[kBufferSize]; + vpx_start_encode(&bw, bw_buffer); + + int bit = (bit_method == 0) ? 0 : (bit_method == 1) ? 1 : 0; + for (int i = 0; i < kBitsToTest; ++i) { + if (bit_method == 2) { + bit = (i & 1); + } else if (bit_method == 3) { + bit = bit_rnd(2); + } + vpx_write(&bw, bit, static_cast(probas[i])); + } + + vpx_stop_encode(&bw); + + // First bit should be zero + GTEST_ASSERT_EQ(bw_buffer[0] & 0x80, 0); + + vpx_reader br; + vpx_reader_init(&br, bw_buffer, kBufferSize, NULL, NULL); + bit_rnd.Reset(random_seed); + for (int i = 0; i < kBitsToTest; ++i) { + if (bit_method == 2) { + bit = (i & 1); + } else if (bit_method == 3) { + bit = bit_rnd(2); + } + GTEST_ASSERT_EQ(vpx_read(&br, probas[i]), bit) + << "pos: " << i << " / " << kBitsToTest + << " bit_method: " << bit_method << " method: " << method; + } + } + } + } +} diff --git a/test/vp9_decrypt_test.cc b/test/vp9_decrypt_test.cc new file mode 100644 index 0000000..1874d23 --- /dev/null +++ b/test/vp9_decrypt_test.cc @@ -0,0 +1,69 @@ +/* + * Copyright (c) 2013 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include +#include +#include +#include "third_party/googletest/src/include/gtest/gtest.h" +#include "test/codec_factory.h" +#include "test/ivf_video_source.h" + +namespace { +// In a real use the 'decrypt_state' parameter will be a pointer to a struct +// with whatever internal state the decryptor uses. For testing we'll just +// xor with a constant key, and decrypt_state will point to the start of +// the original buffer. +const uint8_t test_key[16] = { 0x01, 0x12, 0x23, 0x34, 0x45, 0x56, 0x67, 0x78, + 0x89, 0x9a, 0xab, 0xbc, 0xcd, 0xde, 0xef, 0xf0 }; + +void encrypt_buffer(const uint8_t *src, uint8_t *dst, size_t size, + ptrdiff_t offset) { + for (size_t i = 0; i < size; ++i) { + dst[i] = src[i] ^ test_key[(offset + i) & 15]; + } +} + +void test_decrypt_cb(void *decrypt_state, const uint8_t *input, uint8_t *output, + int count) { + encrypt_buffer(input, output, count, + input - reinterpret_cast(decrypt_state)); +} + +} // namespace + +namespace libvpx_test { + +TEST(TestDecrypt, DecryptWorksVp9) { + libvpx_test::IVFVideoSource video("vp90-2-05-resize.ivf"); + video.Init(); + + vpx_codec_dec_cfg_t dec_cfg = vpx_codec_dec_cfg_t(); + VP9Decoder decoder(dec_cfg, 0); + + video.Begin(); + + // no decryption + vpx_codec_err_t res = decoder.DecodeFrame(video.cxdata(), video.frame_size()); + ASSERT_EQ(VPX_CODEC_OK, res) << decoder.DecodeError(); + + // decrypt frame + video.Next(); + + std::vector encrypted(video.frame_size()); + encrypt_buffer(video.cxdata(), &encrypted[0], video.frame_size(), 0); + vpx_decrypt_init di = { test_decrypt_cb, &encrypted[0] }; + decoder.Control(VPXD_SET_DECRYPTOR, &di); + + res = decoder.DecodeFrame(&encrypted[0], encrypted.size()); + ASSERT_EQ(VPX_CODEC_OK, res) << decoder.DecodeError(); +} + +} // namespace libvpx_test diff --git a/test/vp9_denoiser_test.cc b/test/vp9_denoiser_test.cc new file mode 100644 index 0000000..56ca257 --- /dev/null +++ b/test/vp9_denoiser_test.cc @@ -0,0 +1,134 @@ +/* + * Copyright (c) 2014 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include +#include + +#include "third_party/googletest/src/include/gtest/gtest.h" +#include "test/acm_random.h" +#include "test/clear_system_state.h" +#include "test/register_state_check.h" +#include "test/util.h" + +#include "vpx_scale/yv12config.h" +#include "vpx/vpx_integer.h" +#include "vp9/common/vp9_reconinter.h" +#include "vp9/encoder/vp9_context_tree.h" +#include "vp9/encoder/vp9_denoiser.h" + +using libvpx_test::ACMRandom; + +namespace { + +const int kNumPixels = 64 * 64; + +typedef int (*Vp9DenoiserFilterFunc)(const uint8_t *sig, int sig_stride, + const uint8_t *mc_avg, int mc_avg_stride, + uint8_t *avg, int avg_stride, + int increase_denoising, BLOCK_SIZE bs, + int motion_magnitude); +typedef std::tr1::tuple VP9DenoiserTestParam; + +class VP9DenoiserTest + : public ::testing::Test, + public ::testing::WithParamInterface { + public: + virtual ~VP9DenoiserTest() {} + + virtual void SetUp() { bs_ = GET_PARAM(1); } + + virtual void TearDown() { libvpx_test::ClearSystemState(); } + + protected: + BLOCK_SIZE bs_; +}; + +TEST_P(VP9DenoiserTest, BitexactCheck) { + ACMRandom rnd(ACMRandom::DeterministicSeed()); + const int count_test_block = 4000; + + // Allocate the space for input and output, + // where sig_block is the block to be denoised, + // mc_avg_block is the denoised reference block, + // avg_block_c is the denoised result from C code, + // avg_block_sse2 is the denoised result from SSE2 code. + DECLARE_ALIGNED(16, uint8_t, sig_block[kNumPixels]); + DECLARE_ALIGNED(16, uint8_t, mc_avg_block[kNumPixels]); + DECLARE_ALIGNED(16, uint8_t, avg_block_c[kNumPixels]); + DECLARE_ALIGNED(16, uint8_t, avg_block_sse2[kNumPixels]); + + for (int i = 0; i < count_test_block; ++i) { + // Generate random motion magnitude, 20% of which exceed the threshold. + const int motion_magnitude_random = + rnd.Rand8() % static_cast(MOTION_MAGNITUDE_THRESHOLD * 1.2); + + // Initialize a test block with random number in range [0, 255]. + for (int j = 0; j < kNumPixels; ++j) { + int temp = 0; + sig_block[j] = rnd.Rand8(); + // The pixels in mc_avg_block are generated by adding a random + // number in range [-19, 19] to corresponding pixels in sig_block. + temp = + sig_block[j] + ((rnd.Rand8() % 2 == 0) ? -1 : 1) * (rnd.Rand8() % 20); + // Clip. + mc_avg_block[j] = (temp < 0) ? 0 : ((temp > 255) ? 255 : temp); + } + + ASM_REGISTER_STATE_CHECK(vp9_denoiser_filter_c(sig_block, 64, mc_avg_block, + 64, avg_block_c, 64, 0, bs_, + motion_magnitude_random)); + + ASM_REGISTER_STATE_CHECK(GET_PARAM(0)(sig_block, 64, mc_avg_block, 64, + avg_block_sse2, 64, 0, bs_, + motion_magnitude_random)); + + // Test bitexactness. + for (int h = 0; h < (4 << b_height_log2_lookup[bs_]); ++h) { + for (int w = 0; w < (4 << b_width_log2_lookup[bs_]); ++w) { + EXPECT_EQ(avg_block_c[h * 64 + w], avg_block_sse2[h * 64 + w]); + } + } + } +} + +using std::tr1::make_tuple; + +// Test for all block size. +#if HAVE_SSE2 +INSTANTIATE_TEST_CASE_P( + SSE2, VP9DenoiserTest, + ::testing::Values(make_tuple(&vp9_denoiser_filter_sse2, BLOCK_8X8), + make_tuple(&vp9_denoiser_filter_sse2, BLOCK_8X16), + make_tuple(&vp9_denoiser_filter_sse2, BLOCK_16X8), + make_tuple(&vp9_denoiser_filter_sse2, BLOCK_16X16), + make_tuple(&vp9_denoiser_filter_sse2, BLOCK_16X32), + make_tuple(&vp9_denoiser_filter_sse2, BLOCK_32X16), + make_tuple(&vp9_denoiser_filter_sse2, BLOCK_32X32), + make_tuple(&vp9_denoiser_filter_sse2, BLOCK_32X64), + make_tuple(&vp9_denoiser_filter_sse2, BLOCK_64X32), + make_tuple(&vp9_denoiser_filter_sse2, BLOCK_64X64))); +#endif // HAVE_SSE2 + +#if HAVE_NEON +INSTANTIATE_TEST_CASE_P( + NEON, VP9DenoiserTest, + ::testing::Values(make_tuple(&vp9_denoiser_filter_neon, BLOCK_8X8), + make_tuple(&vp9_denoiser_filter_neon, BLOCK_8X16), + make_tuple(&vp9_denoiser_filter_neon, BLOCK_16X8), + make_tuple(&vp9_denoiser_filter_neon, BLOCK_16X16), + make_tuple(&vp9_denoiser_filter_neon, BLOCK_16X32), + make_tuple(&vp9_denoiser_filter_neon, BLOCK_32X16), + make_tuple(&vp9_denoiser_filter_neon, BLOCK_32X32), + make_tuple(&vp9_denoiser_filter_neon, BLOCK_32X64), + make_tuple(&vp9_denoiser_filter_neon, BLOCK_64X32), + make_tuple(&vp9_denoiser_filter_neon, BLOCK_64X64))); +#endif +} // namespace diff --git a/test/vp9_encoder_parms_get_to_decoder.cc b/test/vp9_encoder_parms_get_to_decoder.cc new file mode 100644 index 0000000..62e8dcb --- /dev/null +++ b/test/vp9_encoder_parms_get_to_decoder.cc @@ -0,0 +1,151 @@ +/* + * Copyright (c) 2014 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "third_party/googletest/src/include/gtest/gtest.h" + +#include "test/codec_factory.h" +#include "test/encode_test_driver.h" +#include "test/util.h" +#include "test/y4m_video_source.h" +#include "vp9/vp9_dx_iface.h" + +namespace { + +const int kCpuUsed = 2; + +struct EncodePerfTestVideo { + const char *name; + uint32_t width; + uint32_t height; + uint32_t bitrate; + int frames; +}; + +const EncodePerfTestVideo kVP9EncodePerfTestVectors[] = { + { "niklas_1280_720_30.y4m", 1280, 720, 600, 10 }, +}; + +struct EncodeParameters { + int32_t tile_rows; + int32_t tile_cols; + int32_t lossless; + int32_t error_resilient; + int32_t frame_parallel; + vpx_color_range_t color_range; + vpx_color_space_t cs; + int render_size[2]; + // TODO(JBB): quantizers / bitrate +}; + +const EncodeParameters kVP9EncodeParameterSet[] = { + { 0, 0, 0, 1, 0, VPX_CR_STUDIO_RANGE, VPX_CS_BT_601, { 0, 0 } }, + { 0, 0, 0, 0, 0, VPX_CR_FULL_RANGE, VPX_CS_BT_709, { 0, 0 } }, + { 0, 0, 1, 0, 0, VPX_CR_FULL_RANGE, VPX_CS_BT_2020, { 0, 0 } }, + { 0, 2, 0, 0, 1, VPX_CR_STUDIO_RANGE, VPX_CS_UNKNOWN, { 640, 480 } }, + // TODO(JBB): Test profiles (requires more work). +}; + +class VpxEncoderParmsGetToDecoder + : public ::libvpx_test::EncoderTest, + public ::libvpx_test::CodecTestWith2Params { + protected: + VpxEncoderParmsGetToDecoder() + : EncoderTest(GET_PARAM(0)), encode_parms(GET_PARAM(1)) {} + + virtual ~VpxEncoderParmsGetToDecoder() {} + + virtual void SetUp() { + InitializeConfig(); + SetMode(::libvpx_test::kTwoPassGood); + cfg_.g_lag_in_frames = 25; + cfg_.g_error_resilient = encode_parms.error_resilient; + dec_cfg_.threads = 4; + test_video_ = GET_PARAM(2); + cfg_.rc_target_bitrate = test_video_.bitrate; + } + + virtual void PreEncodeFrameHook(::libvpx_test::VideoSource *video, + ::libvpx_test::Encoder *encoder) { + if (video->frame() == 1) { + encoder->Control(VP9E_SET_COLOR_SPACE, encode_parms.cs); + encoder->Control(VP9E_SET_COLOR_RANGE, encode_parms.color_range); + encoder->Control(VP9E_SET_LOSSLESS, encode_parms.lossless); + encoder->Control(VP9E_SET_FRAME_PARALLEL_DECODING, + encode_parms.frame_parallel); + encoder->Control(VP9E_SET_TILE_ROWS, encode_parms.tile_rows); + encoder->Control(VP9E_SET_TILE_COLUMNS, encode_parms.tile_cols); + encoder->Control(VP8E_SET_CPUUSED, kCpuUsed); + encoder->Control(VP8E_SET_ENABLEAUTOALTREF, 1); + encoder->Control(VP8E_SET_ARNR_MAXFRAMES, 7); + encoder->Control(VP8E_SET_ARNR_STRENGTH, 5); + encoder->Control(VP8E_SET_ARNR_TYPE, 3); + if (encode_parms.render_size[0] > 0 && encode_parms.render_size[1] > 0) { + encoder->Control(VP9E_SET_RENDER_SIZE, encode_parms.render_size); + } + } + } + + virtual bool HandleDecodeResult(const vpx_codec_err_t res_dec, + const libvpx_test::VideoSource & /*video*/, + libvpx_test::Decoder *decoder) { + vpx_codec_ctx_t *const vp9_decoder = decoder->GetDecoder(); + vpx_codec_alg_priv_t *const priv = + reinterpret_cast(vp9_decoder->priv); + VP9_COMMON *const common = &priv->pbi->common; + + if (encode_parms.lossless) { + EXPECT_EQ(0, common->base_qindex); + EXPECT_EQ(0, common->y_dc_delta_q); + EXPECT_EQ(0, common->uv_dc_delta_q); + EXPECT_EQ(0, common->uv_ac_delta_q); + EXPECT_EQ(ONLY_4X4, common->tx_mode); + } + EXPECT_EQ(encode_parms.error_resilient, common->error_resilient_mode); + if (encode_parms.error_resilient) { + EXPECT_EQ(1, common->frame_parallel_decoding_mode); + EXPECT_EQ(0, common->use_prev_frame_mvs); + } else { + EXPECT_EQ(encode_parms.frame_parallel, + common->frame_parallel_decoding_mode); + } + EXPECT_EQ(encode_parms.color_range, common->color_range); + EXPECT_EQ(encode_parms.cs, common->color_space); + if (encode_parms.render_size[0] > 0 && encode_parms.render_size[1] > 0) { + EXPECT_EQ(encode_parms.render_size[0], common->render_width); + EXPECT_EQ(encode_parms.render_size[1], common->render_height); + } + EXPECT_EQ(encode_parms.tile_cols, common->log2_tile_cols); + EXPECT_EQ(encode_parms.tile_rows, common->log2_tile_rows); + + EXPECT_EQ(VPX_CODEC_OK, res_dec) << decoder->DecodeError(); + return VPX_CODEC_OK == res_dec; + } + + EncodePerfTestVideo test_video_; + + private: + EncodeParameters encode_parms; +}; + +TEST_P(VpxEncoderParmsGetToDecoder, BitstreamParms) { + init_flags_ = VPX_CODEC_USE_PSNR; + + testing::internal::scoped_ptr video( + new libvpx_test::Y4mVideoSource(test_video_.name, 0, test_video_.frames)); + ASSERT_TRUE(video.get() != NULL); + + ASSERT_NO_FATAL_FAILURE(RunLoop(video.get())); +} + +VP9_INSTANTIATE_TEST_CASE(VpxEncoderParmsGetToDecoder, + ::testing::ValuesIn(kVP9EncodeParameterSet), + ::testing::ValuesIn(kVP9EncodePerfTestVectors)); +} // namespace diff --git a/test/vp9_end_to_end_test.cc b/test/vp9_end_to_end_test.cc new file mode 100644 index 0000000..955f567 --- /dev/null +++ b/test/vp9_end_to_end_test.cc @@ -0,0 +1,177 @@ +/* + * Copyright (c) 2014 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "third_party/googletest/src/include/gtest/gtest.h" + +#include "test/codec_factory.h" +#include "test/encode_test_driver.h" +#include "test/util.h" +#include "test/y4m_video_source.h" +#include "test/yuv_video_source.h" + +namespace { + +const unsigned int kWidth = 160; +const unsigned int kHeight = 90; +const unsigned int kFramerate = 50; +const unsigned int kFrames = 10; +const int kBitrate = 500; +// List of psnr thresholds for speed settings 0-7 and 5 encoding modes +const double kPsnrThreshold[][5] = { + { 36.0, 37.0, 37.0, 37.0, 37.0 }, { 35.0, 36.0, 36.0, 36.0, 36.0 }, + { 34.0, 35.0, 35.0, 35.0, 35.0 }, { 33.0, 34.0, 34.0, 34.0, 34.0 }, + { 32.0, 33.0, 33.0, 33.0, 33.0 }, { 31.0, 32.0, 32.0, 32.0, 32.0 }, + { 30.0, 31.0, 31.0, 31.0, 31.0 }, { 29.0, 30.0, 30.0, 30.0, 30.0 }, +}; + +typedef struct { + const char *filename; + unsigned int input_bit_depth; + vpx_img_fmt fmt; + vpx_bit_depth_t bit_depth; + unsigned int profile; +} TestVideoParam; + +const TestVideoParam kTestVectors[] = { + { "park_joy_90p_8_420.y4m", 8, VPX_IMG_FMT_I420, VPX_BITS_8, 0 }, + { "park_joy_90p_8_422.y4m", 8, VPX_IMG_FMT_I422, VPX_BITS_8, 1 }, + { "park_joy_90p_8_444.y4m", 8, VPX_IMG_FMT_I444, VPX_BITS_8, 1 }, + { "park_joy_90p_8_440.yuv", 8, VPX_IMG_FMT_I440, VPX_BITS_8, 1 }, +#if CONFIG_VP9_HIGHBITDEPTH + { "park_joy_90p_10_420.y4m", 10, VPX_IMG_FMT_I42016, VPX_BITS_10, 2 }, + { "park_joy_90p_10_422.y4m", 10, VPX_IMG_FMT_I42216, VPX_BITS_10, 3 }, + { "park_joy_90p_10_444.y4m", 10, VPX_IMG_FMT_I44416, VPX_BITS_10, 3 }, + { "park_joy_90p_10_440.yuv", 10, VPX_IMG_FMT_I44016, VPX_BITS_10, 3 }, + { "park_joy_90p_12_420.y4m", 12, VPX_IMG_FMT_I42016, VPX_BITS_12, 2 }, + { "park_joy_90p_12_422.y4m", 12, VPX_IMG_FMT_I42216, VPX_BITS_12, 3 }, + { "park_joy_90p_12_444.y4m", 12, VPX_IMG_FMT_I44416, VPX_BITS_12, 3 }, + { "park_joy_90p_12_440.yuv", 12, VPX_IMG_FMT_I44016, VPX_BITS_12, 3 }, +#endif // CONFIG_VP9_HIGHBITDEPTH +}; + +// Encoding modes tested +const libvpx_test::TestMode kEncodingModeVectors[] = { + ::libvpx_test::kTwoPassGood, ::libvpx_test::kOnePassGood, + ::libvpx_test::kRealTime, +}; + +// Speed settings tested +const int kCpuUsedVectors[] = { 1, 2, 3, 5, 6 }; + +int is_extension_y4m(const char *filename) { + const char *dot = strrchr(filename, '.'); + if (!dot || dot == filename) { + return 0; + } else { + return !strcmp(dot, ".y4m"); + } +} + +class EndToEndTestLarge + : public ::libvpx_test::EncoderTest, + public ::libvpx_test::CodecTestWith3Params { + protected: + EndToEndTestLarge() + : EncoderTest(GET_PARAM(0)), test_video_param_(GET_PARAM(2)), + cpu_used_(GET_PARAM(3)), psnr_(0.0), nframes_(0), + encoding_mode_(GET_PARAM(1)) {} + + virtual ~EndToEndTestLarge() {} + + virtual void SetUp() { + InitializeConfig(); + SetMode(encoding_mode_); + if (encoding_mode_ != ::libvpx_test::kRealTime) { + cfg_.g_lag_in_frames = 5; + cfg_.rc_end_usage = VPX_VBR; + } else { + cfg_.g_lag_in_frames = 0; + cfg_.rc_end_usage = VPX_CBR; + cfg_.rc_buf_sz = 1000; + cfg_.rc_buf_initial_sz = 500; + cfg_.rc_buf_optimal_sz = 600; + } + dec_cfg_.threads = 4; + } + + virtual void BeginPassHook(unsigned int) { + psnr_ = 0.0; + nframes_ = 0; + } + + virtual void PSNRPktHook(const vpx_codec_cx_pkt_t *pkt) { + psnr_ += pkt->data.psnr.psnr[0]; + nframes_++; + } + + virtual void PreEncodeFrameHook(::libvpx_test::VideoSource *video, + ::libvpx_test::Encoder *encoder) { + if (video->frame() == 1) { + encoder->Control(VP9E_SET_FRAME_PARALLEL_DECODING, 1); + encoder->Control(VP9E_SET_TILE_COLUMNS, 4); + encoder->Control(VP8E_SET_CPUUSED, cpu_used_); + if (encoding_mode_ != ::libvpx_test::kRealTime) { + encoder->Control(VP8E_SET_ENABLEAUTOALTREF, 1); + encoder->Control(VP8E_SET_ARNR_MAXFRAMES, 7); + encoder->Control(VP8E_SET_ARNR_STRENGTH, 5); + encoder->Control(VP8E_SET_ARNR_TYPE, 3); + } + } + } + + double GetAveragePsnr() const { + if (nframes_) return psnr_ / nframes_; + return 0.0; + } + + double GetPsnrThreshold() { + return kPsnrThreshold[cpu_used_][encoding_mode_]; + } + + TestVideoParam test_video_param_; + int cpu_used_; + + private: + double psnr_; + unsigned int nframes_; + libvpx_test::TestMode encoding_mode_; +}; + +TEST_P(EndToEndTestLarge, EndtoEndPSNRTest) { + cfg_.rc_target_bitrate = kBitrate; + cfg_.g_error_resilient = 0; + cfg_.g_profile = test_video_param_.profile; + cfg_.g_input_bit_depth = test_video_param_.input_bit_depth; + cfg_.g_bit_depth = test_video_param_.bit_depth; + init_flags_ = VPX_CODEC_USE_PSNR; + if (cfg_.g_bit_depth > 8) init_flags_ |= VPX_CODEC_USE_HIGHBITDEPTH; + + testing::internal::scoped_ptr video; + if (is_extension_y4m(test_video_param_.filename)) { + video.reset(new libvpx_test::Y4mVideoSource(test_video_param_.filename, 0, + kFrames)); + } else { + video.reset(new libvpx_test::YUVVideoSource( + test_video_param_.filename, test_video_param_.fmt, kWidth, kHeight, + kFramerate, 1, 0, kFrames)); + } + ASSERT_TRUE(video.get() != NULL); + + ASSERT_NO_FATAL_FAILURE(RunLoop(video.get())); + const double psnr = GetAveragePsnr(); + EXPECT_GT(psnr, GetPsnrThreshold()); +} + +VP9_INSTANTIATE_TEST_CASE(EndToEndTestLarge, + ::testing::ValuesIn(kEncodingModeVectors), + ::testing::ValuesIn(kTestVectors), + ::testing::ValuesIn(kCpuUsedVectors)); +} // namespace diff --git a/test/vp9_ethread_test.cc b/test/vp9_ethread_test.cc new file mode 100644 index 0000000..6b7e512 --- /dev/null +++ b/test/vp9_ethread_test.cc @@ -0,0 +1,428 @@ +/* + * Copyright (c) 2014 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include +#include "third_party/googletest/src/include/gtest/gtest.h" +#include "test/codec_factory.h" +#include "test/encode_test_driver.h" +#include "test/md5_helper.h" +#include "test/util.h" +#include "test/y4m_video_source.h" +#include "vp9/encoder/vp9_firstpass.h" + +namespace { +// FIRSTPASS_STATS struct: +// { +// 25 double members; +// 1 int64_t member; +// } +// Whenever FIRSTPASS_STATS struct is modified, the following constants need to +// be revisited. +const int kDbl = 25; +const int kInt = 1; +const size_t kFirstPassStatsSz = kDbl * sizeof(double) + kInt * sizeof(int64_t); + +class VPxFirstPassEncoderThreadTest + : public ::libvpx_test::EncoderTest, + public ::libvpx_test::CodecTestWith2Params { + protected: + VPxFirstPassEncoderThreadTest() + : EncoderTest(GET_PARAM(0)), encoder_initialized_(false), tiles_(0), + encoding_mode_(GET_PARAM(1)), set_cpu_used_(GET_PARAM(2)) { + init_flags_ = VPX_CODEC_USE_PSNR; + + row_mt_mode_ = 1; + first_pass_only_ = true; + firstpass_stats_.buf = NULL; + firstpass_stats_.sz = 0; + } + virtual ~VPxFirstPassEncoderThreadTest() { free(firstpass_stats_.buf); } + + virtual void SetUp() { + InitializeConfig(); + SetMode(encoding_mode_); + + cfg_.rc_end_usage = VPX_VBR; + cfg_.rc_2pass_vbr_minsection_pct = 5; + cfg_.rc_2pass_vbr_maxsection_pct = 2000; + cfg_.rc_max_quantizer = 56; + cfg_.rc_min_quantizer = 0; + } + + virtual void BeginPassHook(unsigned int /*pass*/) { + encoder_initialized_ = false; + abort_ = false; + } + + virtual void EndPassHook() { + // For first pass stats test, only run first pass encoder. + if (first_pass_only_ && cfg_.g_pass == VPX_RC_FIRST_PASS) + abort_ |= first_pass_only_; + } + + virtual void PreEncodeFrameHook(::libvpx_test::VideoSource * /*video*/, + ::libvpx_test::Encoder *encoder) { + if (!encoder_initialized_) { + // Encode in 2-pass mode. + encoder->Control(VP9E_SET_TILE_COLUMNS, tiles_); + encoder->Control(VP8E_SET_CPUUSED, set_cpu_used_); + encoder->Control(VP8E_SET_ENABLEAUTOALTREF, 1); + encoder->Control(VP8E_SET_ARNR_MAXFRAMES, 7); + encoder->Control(VP8E_SET_ARNR_STRENGTH, 5); + encoder->Control(VP8E_SET_ARNR_TYPE, 3); + encoder->Control(VP9E_SET_FRAME_PARALLEL_DECODING, 0); + + if (encoding_mode_ == ::libvpx_test::kTwoPassGood) + encoder->Control(VP9E_SET_ROW_MT, row_mt_mode_); + + encoder_initialized_ = true; + } + } + + virtual void StatsPktHook(const vpx_codec_cx_pkt_t *pkt) { + const uint8_t *const pkt_buf = + reinterpret_cast(pkt->data.twopass_stats.buf); + const size_t pkt_size = pkt->data.twopass_stats.sz; + + // First pass stats size equals sizeof(FIRSTPASS_STATS) + EXPECT_EQ(pkt_size, kFirstPassStatsSz) + << "Error: First pass stats size doesn't equal kFirstPassStatsSz"; + + firstpass_stats_.buf = + realloc(firstpass_stats_.buf, firstpass_stats_.sz + pkt_size); + memcpy((uint8_t *)firstpass_stats_.buf + firstpass_stats_.sz, pkt_buf, + pkt_size); + firstpass_stats_.sz += pkt_size; + } + + bool encoder_initialized_; + int tiles_; + ::libvpx_test::TestMode encoding_mode_; + int set_cpu_used_; + int row_mt_mode_; + bool first_pass_only_; + vpx_fixed_buf_t firstpass_stats_; +}; + +static void compare_fp_stats(vpx_fixed_buf_t *fp_stats, double factor) { + // fp_stats consists of 2 set of first pass encoding stats. These 2 set of + // stats are compared to check if the stats match or at least are very close. + FIRSTPASS_STATS *stats1 = reinterpret_cast(fp_stats->buf); + int nframes_ = (int)(fp_stats->sz / sizeof(FIRSTPASS_STATS)); + FIRSTPASS_STATS *stats2 = stats1 + nframes_ / 2; + int i, j; + + // The total stats are also output and included in the first pass stats. Here + // ignore that in the comparison. + for (i = 0; i < (nframes_ / 2 - 1); ++i) { + const double *frame_stats1 = reinterpret_cast(stats1); + const double *frame_stats2 = reinterpret_cast(stats2); + + for (j = 0; j < kDbl; ++j) { + ASSERT_LE(fabs(*frame_stats1 - *frame_stats2), + fabs(*frame_stats1) / factor) + << "First failure @ frame #" << i << " stat #" << j << " (" + << *frame_stats1 << " vs. " << *frame_stats2 << ")"; + frame_stats1++; + frame_stats2++; + } + + stats1++; + stats2++; + } + + // Reset firstpass_stats_ to 0. + memset((uint8_t *)fp_stats->buf, 0, fp_stats->sz); + fp_stats->sz = 0; +} + +static void compare_fp_stats_md5(vpx_fixed_buf_t *fp_stats) { + // fp_stats consists of 2 set of first pass encoding stats. These 2 set of + // stats are compared to check if the stats match. + uint8_t *stats1 = reinterpret_cast(fp_stats->buf); + uint8_t *stats2 = stats1 + fp_stats->sz / 2; + ::libvpx_test::MD5 md5_row_mt_0, md5_row_mt_1; + + md5_row_mt_0.Add(stats1, fp_stats->sz / 2); + const char *md5_row_mt_0_str = md5_row_mt_0.Get(); + + md5_row_mt_1.Add(stats2, fp_stats->sz / 2); + const char *md5_row_mt_1_str = md5_row_mt_1.Get(); + + // Check md5 match. + ASSERT_STREQ(md5_row_mt_0_str, md5_row_mt_1_str) + << "MD5 checksums don't match"; + + // Reset firstpass_stats_ to 0. + memset((uint8_t *)fp_stats->buf, 0, fp_stats->sz); + fp_stats->sz = 0; +} + +TEST_P(VPxFirstPassEncoderThreadTest, FirstPassStatsTest) { + ::libvpx_test::Y4mVideoSource video("niklas_1280_720_30.y4m", 0, 60); + + first_pass_only_ = true; + cfg_.rc_target_bitrate = 1000; + + // Test row_mt_mode: 0 vs 1 at single thread case(threads = 1, tiles_ = 0) + tiles_ = 0; + cfg_.g_threads = 1; + + row_mt_mode_ = 0; + init_flags_ = VPX_CODEC_USE_PSNR; + ASSERT_NO_FATAL_FAILURE(RunLoop(&video)); + + row_mt_mode_ = 1; + ASSERT_NO_FATAL_FAILURE(RunLoop(&video)); + + // Compare to check if using or not using row-mt generates close stats. + ASSERT_NO_FATAL_FAILURE(compare_fp_stats(&firstpass_stats_, 1000.0)); + + // Test single thread vs multiple threads + row_mt_mode_ = 1; + tiles_ = 0; + + cfg_.g_threads = 1; + init_flags_ = VPX_CODEC_USE_PSNR; + ASSERT_NO_FATAL_FAILURE(RunLoop(&video)); + + cfg_.g_threads = 4; + ASSERT_NO_FATAL_FAILURE(RunLoop(&video)); + + // Compare to check if single-thread and multi-thread stats are close enough. + ASSERT_NO_FATAL_FAILURE(compare_fp_stats(&firstpass_stats_, 1000.0)); + + // Bit exact test in row_mt mode. + // When row_mt_mode_=1 and using >1 threads, the encoder generates bit exact + // result. + row_mt_mode_ = 1; + tiles_ = 2; + + cfg_.g_threads = 2; + init_flags_ = VPX_CODEC_USE_PSNR; + ASSERT_NO_FATAL_FAILURE(RunLoop(&video)); + + cfg_.g_threads = 8; + ASSERT_NO_FATAL_FAILURE(RunLoop(&video)); + + // Compare to check if stats match with row-mt=0/1. + compare_fp_stats_md5(&firstpass_stats_); +} + +class VPxEncoderThreadTest + : public ::libvpx_test::EncoderTest, + public ::libvpx_test::CodecTestWith4Params { + protected: + VPxEncoderThreadTest() + : EncoderTest(GET_PARAM(0)), encoder_initialized_(false), + tiles_(GET_PARAM(3)), threads_(GET_PARAM(4)), + encoding_mode_(GET_PARAM(1)), set_cpu_used_(GET_PARAM(2)) { + init_flags_ = VPX_CODEC_USE_PSNR; + md5_.clear(); + row_mt_mode_ = 1; + psnr_ = 0.0; + nframes_ = 0; + } + virtual ~VPxEncoderThreadTest() {} + + virtual void SetUp() { + InitializeConfig(); + SetMode(encoding_mode_); + + if (encoding_mode_ != ::libvpx_test::kRealTime) { + cfg_.rc_end_usage = VPX_VBR; + cfg_.rc_2pass_vbr_minsection_pct = 5; + cfg_.rc_2pass_vbr_maxsection_pct = 2000; + } else { + cfg_.g_lag_in_frames = 0; + cfg_.rc_end_usage = VPX_CBR; + cfg_.g_error_resilient = 1; + } + cfg_.rc_max_quantizer = 56; + cfg_.rc_min_quantizer = 0; + } + + virtual void BeginPassHook(unsigned int /*pass*/) { + encoder_initialized_ = false; + psnr_ = 0.0; + nframes_ = 0; + } + + virtual void PreEncodeFrameHook(::libvpx_test::VideoSource * /*video*/, + ::libvpx_test::Encoder *encoder) { + if (!encoder_initialized_) { + // Encode 4 column tiles. + encoder->Control(VP9E_SET_TILE_COLUMNS, tiles_); + encoder->Control(VP8E_SET_CPUUSED, set_cpu_used_); + if (encoding_mode_ != ::libvpx_test::kRealTime) { + encoder->Control(VP8E_SET_ENABLEAUTOALTREF, 1); + encoder->Control(VP8E_SET_ARNR_MAXFRAMES, 7); + encoder->Control(VP8E_SET_ARNR_STRENGTH, 5); + encoder->Control(VP8E_SET_ARNR_TYPE, 3); + encoder->Control(VP9E_SET_FRAME_PARALLEL_DECODING, 0); + } else { + encoder->Control(VP8E_SET_ENABLEAUTOALTREF, 0); + encoder->Control(VP9E_SET_AQ_MODE, 3); + } + encoder->Control(VP9E_SET_ROW_MT, row_mt_mode_); + + encoder_initialized_ = true; + } + } + + virtual void PSNRPktHook(const vpx_codec_cx_pkt_t *pkt) { + psnr_ += pkt->data.psnr.psnr[0]; + nframes_++; + } + + virtual void DecompressedFrameHook(const vpx_image_t &img, + vpx_codec_pts_t /*pts*/) { + ::libvpx_test::MD5 md5_res; + md5_res.Add(&img); + md5_.push_back(md5_res.Get()); + } + + virtual bool HandleDecodeResult(const vpx_codec_err_t res, + const libvpx_test::VideoSource & /*video*/, + libvpx_test::Decoder * /*decoder*/) { + if (res != VPX_CODEC_OK) { + EXPECT_EQ(VPX_CODEC_OK, res); + return false; + } + + return true; + } + + double GetAveragePsnr() const { return nframes_ ? (psnr_ / nframes_) : 0.0; } + + bool encoder_initialized_; + int tiles_; + int threads_; + ::libvpx_test::TestMode encoding_mode_; + int set_cpu_used_; + int row_mt_mode_; + double psnr_; + unsigned int nframes_; + std::vector md5_; +}; + +TEST_P(VPxEncoderThreadTest, EncoderResultTest) { + ::libvpx_test::Y4mVideoSource video("niklas_1280_720_30.y4m", 15, 20); + cfg_.rc_target_bitrate = 1000; + + // Part 1: Bit exact test for row_mt_mode_ = 0. + // This part keeps original unit tests done before row-mt code is checked in. + row_mt_mode_ = 0; + + // Encode using single thread. + cfg_.g_threads = 1; + init_flags_ = VPX_CODEC_USE_PSNR; + ASSERT_NO_FATAL_FAILURE(RunLoop(&video)); + const std::vector single_thr_md5 = md5_; + md5_.clear(); + + // Encode using multiple threads. + cfg_.g_threads = threads_; + ASSERT_NO_FATAL_FAILURE(RunLoop(&video)); + const std::vector multi_thr_md5 = md5_; + md5_.clear(); + + // Compare to check if two vectors are equal. + ASSERT_EQ(single_thr_md5, multi_thr_md5); + + // Part 2: row_mt_mode_ = 0 vs row_mt_mode_ = 1 single thread bit exact test. + row_mt_mode_ = 1; + + // Encode using single thread + cfg_.g_threads = 1; + init_flags_ = VPX_CODEC_USE_PSNR; + ASSERT_NO_FATAL_FAILURE(RunLoop(&video)); + std::vector row_mt_single_thr_md5 = md5_; + md5_.clear(); + + ASSERT_EQ(single_thr_md5, row_mt_single_thr_md5); + + // Part 3: Bit exact test with row-mt on + // When row_mt_mode_=1 and using >1 threads, the encoder generates bit exact + // result. + row_mt_mode_ = 1; + row_mt_single_thr_md5.clear(); + + // Encode using 2 threads. + cfg_.g_threads = 2; + init_flags_ = VPX_CODEC_USE_PSNR; + ASSERT_NO_FATAL_FAILURE(RunLoop(&video)); + row_mt_single_thr_md5 = md5_; + md5_.clear(); + + // Encode using multiple threads. + cfg_.g_threads = threads_; + ASSERT_NO_FATAL_FAILURE(RunLoop(&video)); + const std::vector row_mt_multi_thr_md5 = md5_; + md5_.clear(); + + // Compare to check if two vectors are equal. + ASSERT_EQ(row_mt_single_thr_md5, row_mt_multi_thr_md5); + + // Part 4: PSNR test with bit_match_mode_ = 0 + row_mt_mode_ = 1; + + // Encode using single thread. + cfg_.g_threads = 1; + init_flags_ = VPX_CODEC_USE_PSNR; + ASSERT_NO_FATAL_FAILURE(RunLoop(&video)); + const double single_thr_psnr = GetAveragePsnr(); + + // Encode using multiple threads. + cfg_.g_threads = threads_; + ASSERT_NO_FATAL_FAILURE(RunLoop(&video)); + const double multi_thr_psnr = GetAveragePsnr(); + + EXPECT_NEAR(single_thr_psnr, multi_thr_psnr, 0.1); +} + +INSTANTIATE_TEST_CASE_P( + VP9, VPxFirstPassEncoderThreadTest, + ::testing::Combine( + ::testing::Values( + static_cast(&libvpx_test::kVP9)), + ::testing::Values(::libvpx_test::kTwoPassGood), + ::testing::Range(0, 4))); // cpu_used + +// Split this into two instantiations so that we can distinguish +// between very slow runs ( ie cpu_speed 0 ) vs ones that can be +// run nightly by adding Large to the title. +INSTANTIATE_TEST_CASE_P( + VP9, VPxEncoderThreadTest, + ::testing::Combine( + ::testing::Values( + static_cast(&libvpx_test::kVP9)), + ::testing::Values(::libvpx_test::kTwoPassGood, + ::libvpx_test::kOnePassGood, + ::libvpx_test::kRealTime), + ::testing::Range(3, 9), // cpu_used + ::testing::Range(0, 3), // tile_columns + ::testing::Range(2, 5))); // threads + +INSTANTIATE_TEST_CASE_P( + VP9Large, VPxEncoderThreadTest, + ::testing::Combine( + ::testing::Values( + static_cast(&libvpx_test::kVP9)), + ::testing::Values(::libvpx_test::kTwoPassGood, + ::libvpx_test::kOnePassGood, + ::libvpx_test::kRealTime), + ::testing::Range(0, 3), // cpu_used + ::testing::Range(0, 3), // tile_columns + ::testing::Range(2, 5))); // threads + +} // namespace diff --git a/test/vp9_intrapred_test.cc b/test/vp9_intrapred_test.cc new file mode 100644 index 0000000..39c5e79 --- /dev/null +++ b/test/vp9_intrapred_test.cc @@ -0,0 +1,1041 @@ +/* + * Copyright (c) 2014 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include + +#include "third_party/googletest/src/include/gtest/gtest.h" + +#include "./vpx_config.h" +#include "./vpx_dsp_rtcd.h" +#include "test/acm_random.h" +#include "test/clear_system_state.h" +#include "test/register_state_check.h" +#include "test/util.h" +#include "vp9/common/vp9_blockd.h" +#include "vp9/common/vp9_pred_common.h" +#include "vpx_mem/vpx_mem.h" + +namespace { + +using libvpx_test::ACMRandom; + +const int count_test_block = 100000; + +typedef void (*IntraPredFunc)(uint8_t *dst, ptrdiff_t stride, + const uint8_t *above, const uint8_t *left); + +struct IntraPredParam { + IntraPredParam(IntraPredFunc pred = NULL, IntraPredFunc ref = NULL, + int block_size_value = 0, int bit_depth_value = 0) + : pred_fn(pred), ref_fn(ref), block_size(block_size_value), + bit_depth(bit_depth_value) {} + + IntraPredFunc pred_fn; + IntraPredFunc ref_fn; + int block_size; + int bit_depth; +}; + +template +class IntraPredTest : public ::testing::TestWithParam { + public: + void RunTest(Pixel *left_col, Pixel *above_data, Pixel *dst, Pixel *ref_dst) { + ACMRandom rnd(ACMRandom::DeterministicSeed()); + const int block_size = params_.block_size; + above_row_ = above_data + 16; + left_col_ = left_col; + dst_ = dst; + ref_dst_ = ref_dst; + int error_count = 0; + for (int i = 0; i < count_test_block; ++i) { + // Fill edges with random data, try first with saturated values. + for (int x = -1; x < block_size; x++) { + if (i == 0) { + above_row_[x] = mask_; + } else { + above_row_[x] = rnd.Rand16() & mask_; + } + } + for (int x = block_size; x < 2 * block_size; x++) { + above_row_[x] = above_row_[block_size - 1]; + } + for (int y = 0; y < block_size; y++) { + if (i == 0) { + left_col_[y] = mask_; + } else { + left_col_[y] = rnd.Rand16() & mask_; + } + } + Predict(); + CheckPrediction(i, &error_count); + } + ASSERT_EQ(0, error_count); + } + + protected: + virtual void SetUp() { + params_ = this->GetParam(); + stride_ = params_.block_size * 3; + mask_ = (1 << params_.bit_depth) - 1; + } + + void Predict(); + + void CheckPrediction(int test_case_number, int *error_count) const { + // For each pixel ensure that the calculated value is the same as reference. + const int block_size = params_.block_size; + for (int y = 0; y < block_size; y++) { + for (int x = 0; x < block_size; x++) { + *error_count += ref_dst_[x + y * stride_] != dst_[x + y * stride_]; + if (*error_count == 1) { + ASSERT_EQ(ref_dst_[x + y * stride_], dst_[x + y * stride_]) + << " Failed on Test Case Number " << test_case_number; + } + } + } + } + + Pixel *above_row_; + Pixel *left_col_; + Pixel *dst_; + Pixel *ref_dst_; + ptrdiff_t stride_; + int mask_; + + PredParam params_; +}; + +template <> +void IntraPredTest::Predict() { + params_.ref_fn(ref_dst_, stride_, above_row_, left_col_); + ASM_REGISTER_STATE_CHECK( + params_.pred_fn(dst_, stride_, above_row_, left_col_)); +} + +typedef IntraPredTest VP9IntraPredTest; + +TEST_P(VP9IntraPredTest, IntraPredTests) { + // max block size is 32 + DECLARE_ALIGNED(16, uint8_t, left_col[2 * 32]); + DECLARE_ALIGNED(16, uint8_t, above_data[2 * 32 + 32]); + DECLARE_ALIGNED(16, uint8_t, dst[3 * 32 * 32]); + DECLARE_ALIGNED(16, uint8_t, ref_dst[3 * 32 * 32]); + RunTest(left_col, above_data, dst, ref_dst); +} + +#if HAVE_SSE2 +INSTANTIATE_TEST_CASE_P( + SSE2, VP9IntraPredTest, + ::testing::Values( + IntraPredParam(&vpx_d45_predictor_4x4_sse2, &vpx_d45_predictor_4x4_c, 4, + 8), + IntraPredParam(&vpx_d45_predictor_8x8_sse2, &vpx_d45_predictor_8x8_c, 8, + 8), + IntraPredParam(&vpx_d207_predictor_4x4_sse2, &vpx_d207_predictor_4x4_c, + 4, 8), + IntraPredParam(&vpx_dc_128_predictor_4x4_sse2, + &vpx_dc_128_predictor_4x4_c, 4, 8), + IntraPredParam(&vpx_dc_128_predictor_8x8_sse2, + &vpx_dc_128_predictor_8x8_c, 8, 8), + IntraPredParam(&vpx_dc_128_predictor_16x16_sse2, + &vpx_dc_128_predictor_16x16_c, 16, 8), + IntraPredParam(&vpx_dc_128_predictor_32x32_sse2, + &vpx_dc_128_predictor_32x32_c, 32, 8), + IntraPredParam(&vpx_dc_left_predictor_4x4_sse2, + &vpx_dc_left_predictor_4x4_c, 4, 8), + IntraPredParam(&vpx_dc_left_predictor_8x8_sse2, + &vpx_dc_left_predictor_8x8_c, 8, 8), + IntraPredParam(&vpx_dc_left_predictor_16x16_sse2, + &vpx_dc_left_predictor_16x16_c, 16, 8), + IntraPredParam(&vpx_dc_left_predictor_32x32_sse2, + &vpx_dc_left_predictor_32x32_c, 32, 8), + IntraPredParam(&vpx_dc_predictor_4x4_sse2, &vpx_dc_predictor_4x4_c, 4, + 8), + IntraPredParam(&vpx_dc_predictor_8x8_sse2, &vpx_dc_predictor_8x8_c, 8, + 8), + IntraPredParam(&vpx_dc_predictor_16x16_sse2, &vpx_dc_predictor_16x16_c, + 16, 8), + IntraPredParam(&vpx_dc_predictor_32x32_sse2, &vpx_dc_predictor_32x32_c, + 32, 8), + IntraPredParam(&vpx_dc_top_predictor_4x4_sse2, + &vpx_dc_top_predictor_4x4_c, 4, 8), + IntraPredParam(&vpx_dc_top_predictor_8x8_sse2, + &vpx_dc_top_predictor_8x8_c, 8, 8), + IntraPredParam(&vpx_dc_top_predictor_16x16_sse2, + &vpx_dc_top_predictor_16x16_c, 16, 8), + IntraPredParam(&vpx_dc_top_predictor_32x32_sse2, + &vpx_dc_top_predictor_32x32_c, 32, 8), + IntraPredParam(&vpx_h_predictor_4x4_sse2, &vpx_h_predictor_4x4_c, 4, 8), + IntraPredParam(&vpx_h_predictor_8x8_sse2, &vpx_h_predictor_8x8_c, 8, 8), + IntraPredParam(&vpx_h_predictor_16x16_sse2, &vpx_h_predictor_16x16_c, + 16, 8), + IntraPredParam(&vpx_h_predictor_32x32_sse2, &vpx_h_predictor_32x32_c, + 32, 8), + IntraPredParam(&vpx_tm_predictor_4x4_sse2, &vpx_tm_predictor_4x4_c, 4, + 8), + IntraPredParam(&vpx_tm_predictor_8x8_sse2, &vpx_tm_predictor_8x8_c, 8, + 8), + IntraPredParam(&vpx_tm_predictor_16x16_sse2, &vpx_tm_predictor_16x16_c, + 16, 8), + IntraPredParam(&vpx_tm_predictor_32x32_sse2, &vpx_tm_predictor_32x32_c, + 32, 8), + IntraPredParam(&vpx_v_predictor_4x4_sse2, &vpx_v_predictor_4x4_c, 4, 8), + IntraPredParam(&vpx_v_predictor_8x8_sse2, &vpx_v_predictor_8x8_c, 8, 8), + IntraPredParam(&vpx_v_predictor_16x16_sse2, &vpx_v_predictor_16x16_c, + 16, 8), + IntraPredParam(&vpx_v_predictor_32x32_sse2, &vpx_v_predictor_32x32_c, + 32, 8))); +#endif // HAVE_SSE2 + +#if HAVE_SSSE3 +INSTANTIATE_TEST_CASE_P( + SSSE3, VP9IntraPredTest, + ::testing::Values(IntraPredParam(&vpx_d45_predictor_16x16_ssse3, + &vpx_d45_predictor_16x16_c, 16, 8), + IntraPredParam(&vpx_d45_predictor_32x32_ssse3, + &vpx_d45_predictor_32x32_c, 32, 8), + IntraPredParam(&vpx_d63_predictor_4x4_ssse3, + &vpx_d63_predictor_4x4_c, 4, 8), + IntraPredParam(&vpx_d63_predictor_8x8_ssse3, + &vpx_d63_predictor_8x8_c, 8, 8), + IntraPredParam(&vpx_d63_predictor_16x16_ssse3, + &vpx_d63_predictor_16x16_c, 16, 8), + IntraPredParam(&vpx_d63_predictor_32x32_ssse3, + &vpx_d63_predictor_32x32_c, 32, 8), + IntraPredParam(&vpx_d153_predictor_4x4_ssse3, + &vpx_d153_predictor_4x4_c, 4, 8), + IntraPredParam(&vpx_d153_predictor_8x8_ssse3, + &vpx_d153_predictor_8x8_c, 8, 8), + IntraPredParam(&vpx_d153_predictor_16x16_ssse3, + &vpx_d153_predictor_16x16_c, 16, 8), + IntraPredParam(&vpx_d153_predictor_32x32_ssse3, + &vpx_d153_predictor_32x32_c, 32, 8), + IntraPredParam(&vpx_d207_predictor_8x8_ssse3, + &vpx_d207_predictor_8x8_c, 8, 8), + IntraPredParam(&vpx_d207_predictor_16x16_ssse3, + &vpx_d207_predictor_16x16_c, 16, 8), + IntraPredParam(&vpx_d207_predictor_32x32_ssse3, + &vpx_d207_predictor_32x32_c, 32, 8))); +#endif // HAVE_SSSE3 + +#if HAVE_NEON +INSTANTIATE_TEST_CASE_P( + NEON, VP9IntraPredTest, + ::testing::Values( + IntraPredParam(&vpx_d45_predictor_4x4_neon, &vpx_d45_predictor_4x4_c, 4, + 8), + IntraPredParam(&vpx_d45_predictor_8x8_neon, &vpx_d45_predictor_8x8_c, 8, + 8), + IntraPredParam(&vpx_d45_predictor_16x16_neon, + &vpx_d45_predictor_16x16_c, 16, 8), + IntraPredParam(&vpx_d45_predictor_32x32_neon, + &vpx_d45_predictor_32x32_c, 32, 8), + IntraPredParam(&vpx_d135_predictor_4x4_neon, &vpx_d135_predictor_4x4_c, + 4, 8), + IntraPredParam(&vpx_d135_predictor_8x8_neon, &vpx_d135_predictor_8x8_c, + 8, 8), + IntraPredParam(&vpx_d135_predictor_16x16_neon, + &vpx_d135_predictor_16x16_c, 16, 8), + IntraPredParam(&vpx_d135_predictor_32x32_neon, + &vpx_d135_predictor_32x32_c, 32, 8), + IntraPredParam(&vpx_dc_128_predictor_4x4_neon, + &vpx_dc_128_predictor_4x4_c, 4, 8), + IntraPredParam(&vpx_dc_128_predictor_8x8_neon, + &vpx_dc_128_predictor_8x8_c, 8, 8), + IntraPredParam(&vpx_dc_128_predictor_16x16_neon, + &vpx_dc_128_predictor_16x16_c, 16, 8), + IntraPredParam(&vpx_dc_128_predictor_32x32_neon, + &vpx_dc_128_predictor_32x32_c, 32, 8), + IntraPredParam(&vpx_dc_left_predictor_4x4_neon, + &vpx_dc_left_predictor_4x4_c, 4, 8), + IntraPredParam(&vpx_dc_left_predictor_8x8_neon, + &vpx_dc_left_predictor_8x8_c, 8, 8), + IntraPredParam(&vpx_dc_left_predictor_16x16_neon, + &vpx_dc_left_predictor_16x16_c, 16, 8), + IntraPredParam(&vpx_dc_left_predictor_32x32_neon, + &vpx_dc_left_predictor_32x32_c, 32, 8), + IntraPredParam(&vpx_dc_predictor_4x4_neon, &vpx_dc_predictor_4x4_c, 4, + 8), + IntraPredParam(&vpx_dc_predictor_8x8_neon, &vpx_dc_predictor_8x8_c, 8, + 8), + IntraPredParam(&vpx_dc_predictor_16x16_neon, &vpx_dc_predictor_16x16_c, + 16, 8), + IntraPredParam(&vpx_dc_predictor_32x32_neon, &vpx_dc_predictor_32x32_c, + 32, 8), + IntraPredParam(&vpx_dc_top_predictor_4x4_neon, + &vpx_dc_top_predictor_4x4_c, 4, 8), + IntraPredParam(&vpx_dc_top_predictor_8x8_neon, + &vpx_dc_top_predictor_8x8_c, 8, 8), + IntraPredParam(&vpx_dc_top_predictor_16x16_neon, + &vpx_dc_top_predictor_16x16_c, 16, 8), + IntraPredParam(&vpx_dc_top_predictor_32x32_neon, + &vpx_dc_top_predictor_32x32_c, 32, 8), + IntraPredParam(&vpx_h_predictor_4x4_neon, &vpx_h_predictor_4x4_c, 4, 8), + IntraPredParam(&vpx_h_predictor_8x8_neon, &vpx_h_predictor_8x8_c, 8, 8), + IntraPredParam(&vpx_h_predictor_16x16_neon, &vpx_h_predictor_16x16_c, + 16, 8), + IntraPredParam(&vpx_h_predictor_32x32_neon, &vpx_h_predictor_32x32_c, + 32, 8), + IntraPredParam(&vpx_tm_predictor_4x4_neon, &vpx_tm_predictor_4x4_c, 4, + 8), + IntraPredParam(&vpx_tm_predictor_8x8_neon, &vpx_tm_predictor_8x8_c, 8, + 8), + IntraPredParam(&vpx_tm_predictor_16x16_neon, &vpx_tm_predictor_16x16_c, + 16, 8), + IntraPredParam(&vpx_tm_predictor_32x32_neon, &vpx_tm_predictor_32x32_c, + 32, 8), + IntraPredParam(&vpx_v_predictor_4x4_neon, &vpx_v_predictor_4x4_c, 4, 8), + IntraPredParam(&vpx_v_predictor_8x8_neon, &vpx_v_predictor_8x8_c, 8, 8), + IntraPredParam(&vpx_v_predictor_16x16_neon, &vpx_v_predictor_16x16_c, + 16, 8), + IntraPredParam(&vpx_v_predictor_32x32_neon, &vpx_v_predictor_32x32_c, + 32, 8))); +#endif // HAVE_NEON + +#if HAVE_DSPR2 +INSTANTIATE_TEST_CASE_P( + DSPR2, VP9IntraPredTest, + ::testing::Values(IntraPredParam(&vpx_dc_predictor_4x4_dspr2, + &vpx_dc_predictor_4x4_c, 4, 8), + IntraPredParam(&vpx_dc_predictor_8x8_dspr2, + &vpx_dc_predictor_8x8_c, 8, 8), + IntraPredParam(&vpx_dc_predictor_16x16_dspr2, + &vpx_dc_predictor_16x16_c, 16, 8), + IntraPredParam(&vpx_h_predictor_4x4_dspr2, + &vpx_h_predictor_4x4_c, 4, 8), + IntraPredParam(&vpx_h_predictor_8x8_dspr2, + &vpx_h_predictor_8x8_c, 8, 8), + IntraPredParam(&vpx_h_predictor_16x16_dspr2, + &vpx_h_predictor_16x16_c, 16, 8), + IntraPredParam(&vpx_tm_predictor_4x4_dspr2, + &vpx_tm_predictor_4x4_c, 4, 8), + IntraPredParam(&vpx_tm_predictor_8x8_dspr2, + &vpx_tm_predictor_8x8_c, 8, 8))); +#endif // HAVE_DSPR2 + +#if HAVE_MSA +INSTANTIATE_TEST_CASE_P( + MSA, VP9IntraPredTest, + ::testing::Values( + IntraPredParam(&vpx_dc_128_predictor_4x4_msa, + &vpx_dc_128_predictor_4x4_c, 4, 8), + IntraPredParam(&vpx_dc_128_predictor_8x8_msa, + &vpx_dc_128_predictor_8x8_c, 8, 8), + IntraPredParam(&vpx_dc_128_predictor_16x16_msa, + &vpx_dc_128_predictor_16x16_c, 16, 8), + IntraPredParam(&vpx_dc_128_predictor_32x32_msa, + &vpx_dc_128_predictor_32x32_c, 32, 8), + IntraPredParam(&vpx_dc_left_predictor_4x4_msa, + &vpx_dc_left_predictor_4x4_c, 4, 8), + IntraPredParam(&vpx_dc_left_predictor_8x8_msa, + &vpx_dc_left_predictor_8x8_c, 8, 8), + IntraPredParam(&vpx_dc_left_predictor_16x16_msa, + &vpx_dc_left_predictor_16x16_c, 16, 8), + IntraPredParam(&vpx_dc_left_predictor_32x32_msa, + &vpx_dc_left_predictor_32x32_c, 32, 8), + IntraPredParam(&vpx_dc_predictor_4x4_msa, &vpx_dc_predictor_4x4_c, 4, + 8), + IntraPredParam(&vpx_dc_predictor_8x8_msa, &vpx_dc_predictor_8x8_c, 8, + 8), + IntraPredParam(&vpx_dc_predictor_16x16_msa, &vpx_dc_predictor_16x16_c, + 16, 8), + IntraPredParam(&vpx_dc_predictor_32x32_msa, &vpx_dc_predictor_32x32_c, + 32, 8), + IntraPredParam(&vpx_dc_top_predictor_4x4_msa, + &vpx_dc_top_predictor_4x4_c, 4, 8), + IntraPredParam(&vpx_dc_top_predictor_8x8_msa, + &vpx_dc_top_predictor_8x8_c, 8, 8), + IntraPredParam(&vpx_dc_top_predictor_16x16_msa, + &vpx_dc_top_predictor_16x16_c, 16, 8), + IntraPredParam(&vpx_dc_top_predictor_32x32_msa, + &vpx_dc_top_predictor_32x32_c, 32, 8), + IntraPredParam(&vpx_h_predictor_4x4_msa, &vpx_h_predictor_4x4_c, 4, 8), + IntraPredParam(&vpx_h_predictor_8x8_msa, &vpx_h_predictor_8x8_c, 8, 8), + IntraPredParam(&vpx_h_predictor_16x16_msa, &vpx_h_predictor_16x16_c, 16, + 8), + IntraPredParam(&vpx_h_predictor_32x32_msa, &vpx_h_predictor_32x32_c, 32, + 8), + IntraPredParam(&vpx_tm_predictor_4x4_msa, &vpx_tm_predictor_4x4_c, 4, + 8), + IntraPredParam(&vpx_tm_predictor_8x8_msa, &vpx_tm_predictor_8x8_c, 8, + 8), + IntraPredParam(&vpx_tm_predictor_16x16_msa, &vpx_tm_predictor_16x16_c, + 16, 8), + IntraPredParam(&vpx_tm_predictor_32x32_msa, &vpx_tm_predictor_32x32_c, + 32, 8), + IntraPredParam(&vpx_v_predictor_4x4_msa, &vpx_v_predictor_4x4_c, 4, 8), + IntraPredParam(&vpx_v_predictor_8x8_msa, &vpx_v_predictor_8x8_c, 8, 8), + IntraPredParam(&vpx_v_predictor_16x16_msa, &vpx_v_predictor_16x16_c, 16, + 8), + IntraPredParam(&vpx_v_predictor_32x32_msa, &vpx_v_predictor_32x32_c, 32, + 8))); +#endif // HAVE_MSA + +#if HAVE_VSX +INSTANTIATE_TEST_CASE_P( + VSX, VP9IntraPredTest, + ::testing::Values( + IntraPredParam(&vpx_d45_predictor_8x8_vsx, &vpx_d45_predictor_8x8_c, 8, + 8), + IntraPredParam(&vpx_d45_predictor_16x16_vsx, &vpx_d45_predictor_16x16_c, + 16, 8), + IntraPredParam(&vpx_d45_predictor_32x32_vsx, &vpx_d45_predictor_32x32_c, + 32, 8), + IntraPredParam(&vpx_d63_predictor_8x8_vsx, &vpx_d63_predictor_8x8_c, 8, + 8), + IntraPredParam(&vpx_d63_predictor_16x16_vsx, &vpx_d63_predictor_16x16_c, + 16, 8), + IntraPredParam(&vpx_d63_predictor_32x32_vsx, &vpx_d63_predictor_32x32_c, + 32, 8), + IntraPredParam(&vpx_dc_128_predictor_16x16_vsx, + &vpx_dc_128_predictor_16x16_c, 16, 8), + IntraPredParam(&vpx_dc_128_predictor_32x32_vsx, + &vpx_dc_128_predictor_32x32_c, 32, 8), + IntraPredParam(&vpx_dc_left_predictor_16x16_vsx, + &vpx_dc_left_predictor_16x16_c, 16, 8), + IntraPredParam(&vpx_dc_left_predictor_32x32_vsx, + &vpx_dc_left_predictor_32x32_c, 32, 8), + IntraPredParam(&vpx_dc_predictor_8x8_vsx, &vpx_dc_predictor_8x8_c, 8, + 8), + IntraPredParam(&vpx_dc_predictor_16x16_vsx, &vpx_dc_predictor_16x16_c, + 16, 8), + IntraPredParam(&vpx_dc_predictor_32x32_vsx, &vpx_dc_predictor_32x32_c, + 32, 8), + IntraPredParam(&vpx_dc_top_predictor_16x16_vsx, + &vpx_dc_top_predictor_16x16_c, 16, 8), + IntraPredParam(&vpx_dc_top_predictor_32x32_vsx, + &vpx_dc_top_predictor_32x32_c, 32, 8), + IntraPredParam(&vpx_h_predictor_4x4_vsx, &vpx_h_predictor_4x4_c, 4, 8), + IntraPredParam(&vpx_h_predictor_8x8_vsx, &vpx_h_predictor_8x8_c, 8, 8), + IntraPredParam(&vpx_h_predictor_16x16_vsx, &vpx_h_predictor_16x16_c, 16, + 8), + IntraPredParam(&vpx_h_predictor_32x32_vsx, &vpx_h_predictor_32x32_c, 32, + 8), + IntraPredParam(&vpx_tm_predictor_4x4_vsx, &vpx_tm_predictor_4x4_c, 4, + 8), + IntraPredParam(&vpx_tm_predictor_8x8_vsx, &vpx_tm_predictor_8x8_c, 8, + 8), + IntraPredParam(&vpx_tm_predictor_16x16_vsx, &vpx_tm_predictor_16x16_c, + 16, 8), + IntraPredParam(&vpx_tm_predictor_32x32_vsx, &vpx_tm_predictor_32x32_c, + 32, 8), + IntraPredParam(&vpx_v_predictor_16x16_vsx, &vpx_v_predictor_16x16_c, 16, + 8), + IntraPredParam(&vpx_v_predictor_32x32_vsx, &vpx_v_predictor_32x32_c, 32, + 8))); +#endif // HAVE_VSX + +#if CONFIG_VP9_HIGHBITDEPTH +typedef void (*HighbdIntraPred)(uint16_t *dst, ptrdiff_t stride, + const uint16_t *above, const uint16_t *left, + int bps); +struct HighbdIntraPredParam { + HighbdIntraPredParam(HighbdIntraPred pred = NULL, HighbdIntraPred ref = NULL, + int block_size_value = 0, int bit_depth_value = 0) + : pred_fn(pred), ref_fn(ref), block_size(block_size_value), + bit_depth(bit_depth_value) {} + + HighbdIntraPred pred_fn; + HighbdIntraPred ref_fn; + int block_size; + int bit_depth; +}; + +template <> +void IntraPredTest::Predict() { + const int bit_depth = params_.bit_depth; + params_.ref_fn(ref_dst_, stride_, above_row_, left_col_, bit_depth); + ASM_REGISTER_STATE_CHECK( + params_.pred_fn(dst_, stride_, above_row_, left_col_, bit_depth)); +} + +typedef IntraPredTest VP9HighbdIntraPredTest; + +TEST_P(VP9HighbdIntraPredTest, HighbdIntraPredTests) { + // max block size is 32 + DECLARE_ALIGNED(16, uint16_t, left_col[2 * 32]); + DECLARE_ALIGNED(16, uint16_t, above_data[2 * 32 + 32]); + DECLARE_ALIGNED(16, uint16_t, dst[3 * 32 * 32]); + DECLARE_ALIGNED(16, uint16_t, ref_dst[3 * 32 * 32]); + RunTest(left_col, above_data, dst, ref_dst); +} + +#if HAVE_SSSE3 +INSTANTIATE_TEST_CASE_P( + SSSE3_TO_C_8, VP9HighbdIntraPredTest, + ::testing::Values( + HighbdIntraPredParam(&vpx_highbd_d45_predictor_4x4_ssse3, + &vpx_highbd_d45_predictor_4x4_c, 4, 8), + HighbdIntraPredParam(&vpx_highbd_d45_predictor_8x8_ssse3, + &vpx_highbd_d45_predictor_8x8_c, 8, 8), + HighbdIntraPredParam(&vpx_highbd_d45_predictor_16x16_ssse3, + &vpx_highbd_d45_predictor_16x16_c, 16, 8), + HighbdIntraPredParam(&vpx_highbd_d45_predictor_32x32_ssse3, + &vpx_highbd_d45_predictor_32x32_c, 32, 8), + HighbdIntraPredParam(&vpx_highbd_d63_predictor_8x8_ssse3, + &vpx_highbd_d63_predictor_8x8_c, 8, 8), + HighbdIntraPredParam(&vpx_highbd_d63_predictor_16x16_ssse3, + &vpx_highbd_d63_predictor_16x16_c, 16, 8), + HighbdIntraPredParam(&vpx_highbd_d63_predictor_32x32_c, + &vpx_highbd_d63_predictor_32x32_ssse3, 32, 8), + HighbdIntraPredParam(&vpx_highbd_d117_predictor_8x8_ssse3, + &vpx_highbd_d117_predictor_8x8_c, 8, 8), + HighbdIntraPredParam(&vpx_highbd_d117_predictor_16x16_ssse3, + &vpx_highbd_d117_predictor_16x16_c, 16, 8), + HighbdIntraPredParam(&vpx_highbd_d117_predictor_32x32_c, + &vpx_highbd_d117_predictor_32x32_ssse3, 32, 8), + HighbdIntraPredParam(&vpx_highbd_d135_predictor_8x8_ssse3, + &vpx_highbd_d135_predictor_8x8_c, 8, 8), + HighbdIntraPredParam(&vpx_highbd_d135_predictor_16x16_ssse3, + &vpx_highbd_d135_predictor_16x16_c, 16, 8), + HighbdIntraPredParam(&vpx_highbd_d135_predictor_32x32_ssse3, + &vpx_highbd_d135_predictor_32x32_c, 32, 8), + HighbdIntraPredParam(&vpx_highbd_d153_predictor_8x8_ssse3, + &vpx_highbd_d153_predictor_8x8_c, 8, 8), + HighbdIntraPredParam(&vpx_highbd_d153_predictor_16x16_ssse3, + &vpx_highbd_d153_predictor_16x16_c, 16, 8), + HighbdIntraPredParam(&vpx_highbd_d153_predictor_32x32_ssse3, + &vpx_highbd_d153_predictor_32x32_c, 32, 8), + HighbdIntraPredParam(&vpx_highbd_d207_predictor_8x8_ssse3, + &vpx_highbd_d207_predictor_8x8_c, 8, 8), + HighbdIntraPredParam(&vpx_highbd_d207_predictor_16x16_ssse3, + &vpx_highbd_d207_predictor_16x16_c, 16, 8), + HighbdIntraPredParam(&vpx_highbd_d207_predictor_32x32_ssse3, + &vpx_highbd_d207_predictor_32x32_c, 32, 8))); + +INSTANTIATE_TEST_CASE_P( + SSSE3_TO_C_10, VP9HighbdIntraPredTest, + ::testing::Values( + HighbdIntraPredParam(&vpx_highbd_d45_predictor_4x4_ssse3, + &vpx_highbd_d45_predictor_4x4_c, 4, 10), + HighbdIntraPredParam(&vpx_highbd_d45_predictor_8x8_ssse3, + &vpx_highbd_d45_predictor_8x8_c, 8, 10), + HighbdIntraPredParam(&vpx_highbd_d45_predictor_16x16_ssse3, + &vpx_highbd_d45_predictor_16x16_c, 16, 10), + HighbdIntraPredParam(&vpx_highbd_d45_predictor_32x32_ssse3, + &vpx_highbd_d45_predictor_32x32_c, 32, 10), + HighbdIntraPredParam(&vpx_highbd_d63_predictor_8x8_ssse3, + &vpx_highbd_d63_predictor_8x8_c, 8, 10), + HighbdIntraPredParam(&vpx_highbd_d63_predictor_16x16_ssse3, + &vpx_highbd_d63_predictor_16x16_c, 16, 10), + HighbdIntraPredParam(&vpx_highbd_d63_predictor_32x32_c, + &vpx_highbd_d63_predictor_32x32_ssse3, 32, 10), + HighbdIntraPredParam(&vpx_highbd_d117_predictor_8x8_ssse3, + &vpx_highbd_d117_predictor_8x8_c, 8, 10), + HighbdIntraPredParam(&vpx_highbd_d117_predictor_16x16_ssse3, + &vpx_highbd_d117_predictor_16x16_c, 16, 10), + HighbdIntraPredParam(&vpx_highbd_d117_predictor_32x32_c, + &vpx_highbd_d117_predictor_32x32_ssse3, 32, 10), + HighbdIntraPredParam(&vpx_highbd_d135_predictor_8x8_ssse3, + &vpx_highbd_d135_predictor_8x8_c, 8, 10), + HighbdIntraPredParam(&vpx_highbd_d135_predictor_16x16_ssse3, + &vpx_highbd_d135_predictor_16x16_c, 16, 10), + HighbdIntraPredParam(&vpx_highbd_d135_predictor_32x32_ssse3, + &vpx_highbd_d135_predictor_32x32_c, 32, 10), + HighbdIntraPredParam(&vpx_highbd_d153_predictor_8x8_ssse3, + &vpx_highbd_d153_predictor_8x8_c, 8, 10), + HighbdIntraPredParam(&vpx_highbd_d153_predictor_16x16_ssse3, + &vpx_highbd_d153_predictor_16x16_c, 16, 10), + HighbdIntraPredParam(&vpx_highbd_d153_predictor_32x32_ssse3, + &vpx_highbd_d153_predictor_32x32_c, 32, 10), + HighbdIntraPredParam(&vpx_highbd_d207_predictor_8x8_ssse3, + &vpx_highbd_d207_predictor_8x8_c, 8, 10), + HighbdIntraPredParam(&vpx_highbd_d207_predictor_16x16_ssse3, + &vpx_highbd_d207_predictor_16x16_c, 16, 10), + HighbdIntraPredParam(&vpx_highbd_d207_predictor_32x32_ssse3, + &vpx_highbd_d207_predictor_32x32_c, 32, 10))); + +INSTANTIATE_TEST_CASE_P( + SSSE3_TO_C_12, VP9HighbdIntraPredTest, + ::testing::Values( + HighbdIntraPredParam(&vpx_highbd_d45_predictor_4x4_ssse3, + &vpx_highbd_d45_predictor_4x4_c, 4, 12), + HighbdIntraPredParam(&vpx_highbd_d45_predictor_8x8_ssse3, + &vpx_highbd_d45_predictor_8x8_c, 8, 12), + HighbdIntraPredParam(&vpx_highbd_d45_predictor_16x16_ssse3, + &vpx_highbd_d45_predictor_16x16_c, 16, 12), + HighbdIntraPredParam(&vpx_highbd_d45_predictor_32x32_ssse3, + &vpx_highbd_d45_predictor_32x32_c, 32, 12), + HighbdIntraPredParam(&vpx_highbd_d63_predictor_8x8_ssse3, + &vpx_highbd_d63_predictor_8x8_c, 8, 12), + HighbdIntraPredParam(&vpx_highbd_d63_predictor_16x16_ssse3, + &vpx_highbd_d63_predictor_16x16_c, 16, 12), + HighbdIntraPredParam(&vpx_highbd_d63_predictor_32x32_c, + &vpx_highbd_d63_predictor_32x32_ssse3, 32, 12), + HighbdIntraPredParam(&vpx_highbd_d117_predictor_8x8_ssse3, + &vpx_highbd_d117_predictor_8x8_c, 8, 12), + HighbdIntraPredParam(&vpx_highbd_d117_predictor_16x16_ssse3, + &vpx_highbd_d117_predictor_16x16_c, 16, 12), + HighbdIntraPredParam(&vpx_highbd_d117_predictor_32x32_c, + &vpx_highbd_d117_predictor_32x32_ssse3, 32, 12), + HighbdIntraPredParam(&vpx_highbd_d135_predictor_8x8_ssse3, + &vpx_highbd_d135_predictor_8x8_c, 8, 12), + HighbdIntraPredParam(&vpx_highbd_d135_predictor_16x16_ssse3, + &vpx_highbd_d135_predictor_16x16_c, 16, 12), + HighbdIntraPredParam(&vpx_highbd_d135_predictor_32x32_ssse3, + &vpx_highbd_d135_predictor_32x32_c, 32, 12), + HighbdIntraPredParam(&vpx_highbd_d153_predictor_8x8_ssse3, + &vpx_highbd_d153_predictor_8x8_c, 8, 12), + HighbdIntraPredParam(&vpx_highbd_d153_predictor_16x16_ssse3, + &vpx_highbd_d153_predictor_16x16_c, 16, 12), + HighbdIntraPredParam(&vpx_highbd_d153_predictor_32x32_ssse3, + &vpx_highbd_d153_predictor_32x32_c, 32, 12), + HighbdIntraPredParam(&vpx_highbd_d207_predictor_8x8_ssse3, + &vpx_highbd_d207_predictor_8x8_c, 8, 12), + HighbdIntraPredParam(&vpx_highbd_d207_predictor_16x16_ssse3, + &vpx_highbd_d207_predictor_16x16_c, 16, 12), + HighbdIntraPredParam(&vpx_highbd_d207_predictor_32x32_ssse3, + &vpx_highbd_d207_predictor_32x32_c, 32, 12))); +#endif // HAVE_SSSE3 + +#if HAVE_SSE2 +INSTANTIATE_TEST_CASE_P( + SSE2_TO_C_8, VP9HighbdIntraPredTest, + ::testing::Values( + HighbdIntraPredParam(&vpx_highbd_dc_128_predictor_4x4_sse2, + &vpx_highbd_dc_128_predictor_4x4_c, 4, 8), + HighbdIntraPredParam(&vpx_highbd_dc_128_predictor_8x8_sse2, + &vpx_highbd_dc_128_predictor_8x8_c, 8, 8), + HighbdIntraPredParam(&vpx_highbd_dc_128_predictor_16x16_sse2, + &vpx_highbd_dc_128_predictor_16x16_c, 16, 8), + HighbdIntraPredParam(&vpx_highbd_dc_128_predictor_32x32_sse2, + &vpx_highbd_dc_128_predictor_32x32_c, 32, 8), + HighbdIntraPredParam(&vpx_highbd_d63_predictor_4x4_sse2, + &vpx_highbd_d63_predictor_4x4_c, 4, 8), + HighbdIntraPredParam(&vpx_highbd_d117_predictor_4x4_sse2, + &vpx_highbd_d117_predictor_4x4_c, 4, 8), + HighbdIntraPredParam(&vpx_highbd_d135_predictor_4x4_sse2, + &vpx_highbd_d135_predictor_4x4_c, 4, 8), + HighbdIntraPredParam(&vpx_highbd_d153_predictor_4x4_sse2, + &vpx_highbd_d153_predictor_4x4_c, 4, 8), + HighbdIntraPredParam(&vpx_highbd_d207_predictor_4x4_sse2, + &vpx_highbd_d207_predictor_4x4_c, 4, 8), + HighbdIntraPredParam(&vpx_highbd_dc_left_predictor_4x4_sse2, + &vpx_highbd_dc_left_predictor_4x4_c, 4, 8), + HighbdIntraPredParam(&vpx_highbd_dc_left_predictor_8x8_sse2, + &vpx_highbd_dc_left_predictor_8x8_c, 8, 8), + HighbdIntraPredParam(&vpx_highbd_dc_left_predictor_16x16_sse2, + &vpx_highbd_dc_left_predictor_16x16_c, 16, 8), + HighbdIntraPredParam(&vpx_highbd_dc_left_predictor_32x32_sse2, + &vpx_highbd_dc_left_predictor_32x32_c, 32, 8), + HighbdIntraPredParam(&vpx_highbd_dc_predictor_4x4_sse2, + &vpx_highbd_dc_predictor_4x4_c, 4, 8), + HighbdIntraPredParam(&vpx_highbd_dc_predictor_8x8_sse2, + &vpx_highbd_dc_predictor_8x8_c, 8, 8), + HighbdIntraPredParam(&vpx_highbd_dc_predictor_16x16_sse2, + &vpx_highbd_dc_predictor_16x16_c, 16, 8), + HighbdIntraPredParam(&vpx_highbd_dc_predictor_32x32_sse2, + &vpx_highbd_dc_predictor_32x32_c, 32, 8), + HighbdIntraPredParam(&vpx_highbd_dc_top_predictor_4x4_sse2, + &vpx_highbd_dc_top_predictor_4x4_c, 4, 8), + HighbdIntraPredParam(&vpx_highbd_dc_top_predictor_8x8_sse2, + &vpx_highbd_dc_top_predictor_8x8_c, 8, 8), + HighbdIntraPredParam(&vpx_highbd_dc_top_predictor_16x16_sse2, + &vpx_highbd_dc_top_predictor_16x16_c, 16, 8), + HighbdIntraPredParam(&vpx_highbd_dc_top_predictor_32x32_sse2, + &vpx_highbd_dc_top_predictor_32x32_c, 32, 8), + HighbdIntraPredParam(&vpx_highbd_tm_predictor_4x4_sse2, + &vpx_highbd_tm_predictor_4x4_c, 4, 8), + HighbdIntraPredParam(&vpx_highbd_tm_predictor_8x8_sse2, + &vpx_highbd_tm_predictor_8x8_c, 8, 8), + HighbdIntraPredParam(&vpx_highbd_tm_predictor_16x16_sse2, + &vpx_highbd_tm_predictor_16x16_c, 16, 8), + HighbdIntraPredParam(&vpx_highbd_tm_predictor_32x32_sse2, + &vpx_highbd_tm_predictor_32x32_c, 32, 8), + HighbdIntraPredParam(&vpx_highbd_h_predictor_4x4_sse2, + &vpx_highbd_h_predictor_4x4_c, 4, 8), + HighbdIntraPredParam(&vpx_highbd_h_predictor_8x8_sse2, + &vpx_highbd_h_predictor_8x8_c, 8, 8), + HighbdIntraPredParam(&vpx_highbd_h_predictor_16x16_sse2, + &vpx_highbd_h_predictor_16x16_c, 16, 8), + HighbdIntraPredParam(&vpx_highbd_h_predictor_32x32_sse2, + &vpx_highbd_h_predictor_32x32_c, 32, 8), + HighbdIntraPredParam(&vpx_highbd_v_predictor_4x4_sse2, + &vpx_highbd_v_predictor_4x4_c, 4, 8), + HighbdIntraPredParam(&vpx_highbd_v_predictor_8x8_sse2, + &vpx_highbd_v_predictor_8x8_c, 8, 8), + HighbdIntraPredParam(&vpx_highbd_v_predictor_16x16_sse2, + &vpx_highbd_v_predictor_16x16_c, 16, 8), + HighbdIntraPredParam(&vpx_highbd_v_predictor_32x32_sse2, + &vpx_highbd_v_predictor_32x32_c, 32, 8))); + +INSTANTIATE_TEST_CASE_P( + SSE2_TO_C_10, VP9HighbdIntraPredTest, + ::testing::Values( + HighbdIntraPredParam(&vpx_highbd_dc_128_predictor_4x4_sse2, + &vpx_highbd_dc_128_predictor_4x4_c, 4, 10), + HighbdIntraPredParam(&vpx_highbd_dc_128_predictor_8x8_sse2, + &vpx_highbd_dc_128_predictor_8x8_c, 8, 10), + HighbdIntraPredParam(&vpx_highbd_dc_128_predictor_16x16_sse2, + &vpx_highbd_dc_128_predictor_16x16_c, 16, 10), + HighbdIntraPredParam(&vpx_highbd_dc_128_predictor_32x32_sse2, + &vpx_highbd_dc_128_predictor_32x32_c, 32, 10), + HighbdIntraPredParam(&vpx_highbd_d63_predictor_4x4_sse2, + &vpx_highbd_d63_predictor_4x4_c, 4, 10), + HighbdIntraPredParam(&vpx_highbd_d117_predictor_4x4_sse2, + &vpx_highbd_d117_predictor_4x4_c, 4, 10), + HighbdIntraPredParam(&vpx_highbd_d135_predictor_4x4_sse2, + &vpx_highbd_d135_predictor_4x4_c, 4, 10), + HighbdIntraPredParam(&vpx_highbd_d153_predictor_4x4_sse2, + &vpx_highbd_d153_predictor_4x4_c, 4, 10), + HighbdIntraPredParam(&vpx_highbd_d207_predictor_4x4_sse2, + &vpx_highbd_d207_predictor_4x4_c, 4, 10), + HighbdIntraPredParam(&vpx_highbd_dc_left_predictor_4x4_sse2, + &vpx_highbd_dc_left_predictor_4x4_c, 4, 10), + HighbdIntraPredParam(&vpx_highbd_dc_left_predictor_8x8_sse2, + &vpx_highbd_dc_left_predictor_8x8_c, 8, 10), + HighbdIntraPredParam(&vpx_highbd_dc_left_predictor_16x16_sse2, + &vpx_highbd_dc_left_predictor_16x16_c, 16, 10), + HighbdIntraPredParam(&vpx_highbd_dc_left_predictor_32x32_sse2, + &vpx_highbd_dc_left_predictor_32x32_c, 32, 10), + HighbdIntraPredParam(&vpx_highbd_dc_predictor_4x4_sse2, + &vpx_highbd_dc_predictor_4x4_c, 4, 10), + HighbdIntraPredParam(&vpx_highbd_dc_predictor_8x8_sse2, + &vpx_highbd_dc_predictor_8x8_c, 8, 10), + HighbdIntraPredParam(&vpx_highbd_dc_predictor_16x16_sse2, + &vpx_highbd_dc_predictor_16x16_c, 16, 10), + HighbdIntraPredParam(&vpx_highbd_dc_predictor_32x32_sse2, + &vpx_highbd_dc_predictor_32x32_c, 32, 10), + HighbdIntraPredParam(&vpx_highbd_dc_top_predictor_4x4_sse2, + &vpx_highbd_dc_top_predictor_4x4_c, 4, 10), + HighbdIntraPredParam(&vpx_highbd_dc_top_predictor_8x8_sse2, + &vpx_highbd_dc_top_predictor_8x8_c, 8, 10), + HighbdIntraPredParam(&vpx_highbd_dc_top_predictor_16x16_sse2, + &vpx_highbd_dc_top_predictor_16x16_c, 16, 10), + HighbdIntraPredParam(&vpx_highbd_dc_top_predictor_32x32_sse2, + &vpx_highbd_dc_top_predictor_32x32_c, 32, 10), + HighbdIntraPredParam(&vpx_highbd_tm_predictor_4x4_sse2, + &vpx_highbd_tm_predictor_4x4_c, 4, 10), + HighbdIntraPredParam(&vpx_highbd_tm_predictor_8x8_sse2, + &vpx_highbd_tm_predictor_8x8_c, 8, 10), + HighbdIntraPredParam(&vpx_highbd_tm_predictor_16x16_sse2, + &vpx_highbd_tm_predictor_16x16_c, 16, 10), + HighbdIntraPredParam(&vpx_highbd_tm_predictor_32x32_sse2, + &vpx_highbd_tm_predictor_32x32_c, 32, 10), + HighbdIntraPredParam(&vpx_highbd_h_predictor_4x4_sse2, + &vpx_highbd_h_predictor_4x4_c, 4, 10), + HighbdIntraPredParam(&vpx_highbd_h_predictor_8x8_sse2, + &vpx_highbd_h_predictor_8x8_c, 8, 10), + HighbdIntraPredParam(&vpx_highbd_h_predictor_16x16_sse2, + &vpx_highbd_h_predictor_16x16_c, 16, 10), + HighbdIntraPredParam(&vpx_highbd_h_predictor_32x32_sse2, + &vpx_highbd_h_predictor_32x32_c, 32, 10), + HighbdIntraPredParam(&vpx_highbd_v_predictor_4x4_sse2, + &vpx_highbd_v_predictor_4x4_c, 4, 10), + HighbdIntraPredParam(&vpx_highbd_v_predictor_8x8_sse2, + &vpx_highbd_v_predictor_8x8_c, 8, 10), + HighbdIntraPredParam(&vpx_highbd_v_predictor_16x16_sse2, + &vpx_highbd_v_predictor_16x16_c, 16, 10), + HighbdIntraPredParam(&vpx_highbd_v_predictor_32x32_sse2, + &vpx_highbd_v_predictor_32x32_c, 32, 10))); + +INSTANTIATE_TEST_CASE_P( + SSE2_TO_C_12, VP9HighbdIntraPredTest, + ::testing::Values( + HighbdIntraPredParam(&vpx_highbd_dc_128_predictor_4x4_sse2, + &vpx_highbd_dc_128_predictor_4x4_c, 4, 12), + HighbdIntraPredParam(&vpx_highbd_dc_128_predictor_8x8_sse2, + &vpx_highbd_dc_128_predictor_8x8_c, 8, 12), + HighbdIntraPredParam(&vpx_highbd_dc_128_predictor_16x16_sse2, + &vpx_highbd_dc_128_predictor_16x16_c, 16, 12), + HighbdIntraPredParam(&vpx_highbd_dc_128_predictor_32x32_sse2, + &vpx_highbd_dc_128_predictor_32x32_c, 32, 12), + HighbdIntraPredParam(&vpx_highbd_d63_predictor_4x4_sse2, + &vpx_highbd_d63_predictor_4x4_c, 4, 12), + HighbdIntraPredParam(&vpx_highbd_d117_predictor_4x4_sse2, + &vpx_highbd_d117_predictor_4x4_c, 4, 12), + HighbdIntraPredParam(&vpx_highbd_d135_predictor_4x4_sse2, + &vpx_highbd_d135_predictor_4x4_c, 4, 12), + HighbdIntraPredParam(&vpx_highbd_d153_predictor_4x4_sse2, + &vpx_highbd_d153_predictor_4x4_c, 4, 12), + HighbdIntraPredParam(&vpx_highbd_d207_predictor_4x4_sse2, + &vpx_highbd_d207_predictor_4x4_c, 4, 12), + HighbdIntraPredParam(&vpx_highbd_dc_left_predictor_4x4_sse2, + &vpx_highbd_dc_left_predictor_4x4_c, 4, 12), + HighbdIntraPredParam(&vpx_highbd_dc_left_predictor_8x8_sse2, + &vpx_highbd_dc_left_predictor_8x8_c, 8, 12), + HighbdIntraPredParam(&vpx_highbd_dc_left_predictor_16x16_sse2, + &vpx_highbd_dc_left_predictor_16x16_c, 16, 12), + HighbdIntraPredParam(&vpx_highbd_dc_left_predictor_32x32_sse2, + &vpx_highbd_dc_left_predictor_32x32_c, 32, 12), + HighbdIntraPredParam(&vpx_highbd_dc_predictor_4x4_sse2, + &vpx_highbd_dc_predictor_4x4_c, 4, 12), + HighbdIntraPredParam(&vpx_highbd_dc_predictor_8x8_sse2, + &vpx_highbd_dc_predictor_8x8_c, 8, 12), + HighbdIntraPredParam(&vpx_highbd_dc_predictor_16x16_sse2, + &vpx_highbd_dc_predictor_16x16_c, 16, 12), + HighbdIntraPredParam(&vpx_highbd_dc_predictor_32x32_sse2, + &vpx_highbd_dc_predictor_32x32_c, 32, 12), + HighbdIntraPredParam(&vpx_highbd_dc_top_predictor_4x4_sse2, + &vpx_highbd_dc_top_predictor_4x4_c, 4, 12), + HighbdIntraPredParam(&vpx_highbd_dc_top_predictor_8x8_sse2, + &vpx_highbd_dc_top_predictor_8x8_c, 8, 12), + HighbdIntraPredParam(&vpx_highbd_dc_top_predictor_16x16_sse2, + &vpx_highbd_dc_top_predictor_16x16_c, 16, 12), + HighbdIntraPredParam(&vpx_highbd_dc_top_predictor_32x32_sse2, + &vpx_highbd_dc_top_predictor_32x32_c, 32, 12), + HighbdIntraPredParam(&vpx_highbd_tm_predictor_4x4_sse2, + &vpx_highbd_tm_predictor_4x4_c, 4, 12), + HighbdIntraPredParam(&vpx_highbd_tm_predictor_8x8_sse2, + &vpx_highbd_tm_predictor_8x8_c, 8, 12), + HighbdIntraPredParam(&vpx_highbd_tm_predictor_16x16_sse2, + &vpx_highbd_tm_predictor_16x16_c, 16, 12), + HighbdIntraPredParam(&vpx_highbd_tm_predictor_32x32_sse2, + &vpx_highbd_tm_predictor_32x32_c, 32, 12), + HighbdIntraPredParam(&vpx_highbd_h_predictor_4x4_sse2, + &vpx_highbd_h_predictor_4x4_c, 4, 12), + HighbdIntraPredParam(&vpx_highbd_h_predictor_8x8_sse2, + &vpx_highbd_h_predictor_8x8_c, 8, 12), + HighbdIntraPredParam(&vpx_highbd_h_predictor_16x16_sse2, + &vpx_highbd_h_predictor_16x16_c, 16, 12), + HighbdIntraPredParam(&vpx_highbd_h_predictor_32x32_sse2, + &vpx_highbd_h_predictor_32x32_c, 32, 12), + HighbdIntraPredParam(&vpx_highbd_v_predictor_4x4_sse2, + &vpx_highbd_v_predictor_4x4_c, 4, 12), + HighbdIntraPredParam(&vpx_highbd_v_predictor_8x8_sse2, + &vpx_highbd_v_predictor_8x8_c, 8, 12), + HighbdIntraPredParam(&vpx_highbd_v_predictor_16x16_sse2, + &vpx_highbd_v_predictor_16x16_c, 16, 12), + HighbdIntraPredParam(&vpx_highbd_v_predictor_32x32_sse2, + &vpx_highbd_v_predictor_32x32_c, 32, 12))); +#endif // HAVE_SSE2 + +#if HAVE_NEON +INSTANTIATE_TEST_CASE_P( + NEON_TO_C_8, VP9HighbdIntraPredTest, + ::testing::Values( + HighbdIntraPredParam(&vpx_highbd_d45_predictor_4x4_neon, + &vpx_highbd_d45_predictor_4x4_c, 4, 8), + HighbdIntraPredParam(&vpx_highbd_d45_predictor_8x8_neon, + &vpx_highbd_d45_predictor_8x8_c, 8, 8), + HighbdIntraPredParam(&vpx_highbd_d45_predictor_16x16_neon, + &vpx_highbd_d45_predictor_16x16_c, 16, 8), + HighbdIntraPredParam(&vpx_highbd_d45_predictor_32x32_neon, + &vpx_highbd_d45_predictor_32x32_c, 32, 8), + HighbdIntraPredParam(&vpx_highbd_d135_predictor_4x4_neon, + &vpx_highbd_d135_predictor_4x4_c, 4, 8), + HighbdIntraPredParam(&vpx_highbd_d135_predictor_8x8_neon, + &vpx_highbd_d135_predictor_8x8_c, 8, 8), + HighbdIntraPredParam(&vpx_highbd_d135_predictor_16x16_neon, + &vpx_highbd_d135_predictor_16x16_c, 16, 8), + HighbdIntraPredParam(&vpx_highbd_d135_predictor_32x32_neon, + &vpx_highbd_d135_predictor_32x32_c, 32, 8), + HighbdIntraPredParam(&vpx_highbd_dc_128_predictor_4x4_neon, + &vpx_highbd_dc_128_predictor_4x4_c, 4, 8), + HighbdIntraPredParam(&vpx_highbd_dc_128_predictor_8x8_neon, + &vpx_highbd_dc_128_predictor_8x8_c, 8, 8), + HighbdIntraPredParam(&vpx_highbd_dc_128_predictor_16x16_neon, + &vpx_highbd_dc_128_predictor_16x16_c, 16, 8), + HighbdIntraPredParam(&vpx_highbd_dc_128_predictor_32x32_neon, + &vpx_highbd_dc_128_predictor_32x32_c, 32, 8), + HighbdIntraPredParam(&vpx_highbd_dc_left_predictor_4x4_neon, + &vpx_highbd_dc_left_predictor_4x4_c, 4, 8), + HighbdIntraPredParam(&vpx_highbd_dc_left_predictor_8x8_neon, + &vpx_highbd_dc_left_predictor_8x8_c, 8, 8), + HighbdIntraPredParam(&vpx_highbd_dc_left_predictor_16x16_neon, + &vpx_highbd_dc_left_predictor_16x16_c, 16, 8), + HighbdIntraPredParam(&vpx_highbd_dc_left_predictor_32x32_neon, + &vpx_highbd_dc_left_predictor_32x32_c, 32, 8), + HighbdIntraPredParam(&vpx_highbd_dc_predictor_4x4_neon, + &vpx_highbd_dc_predictor_4x4_c, 4, 8), + HighbdIntraPredParam(&vpx_highbd_dc_predictor_8x8_neon, + &vpx_highbd_dc_predictor_8x8_c, 8, 8), + HighbdIntraPredParam(&vpx_highbd_dc_predictor_16x16_neon, + &vpx_highbd_dc_predictor_16x16_c, 16, 8), + HighbdIntraPredParam(&vpx_highbd_dc_predictor_32x32_neon, + &vpx_highbd_dc_predictor_32x32_c, 32, 8), + HighbdIntraPredParam(&vpx_highbd_dc_top_predictor_4x4_neon, + &vpx_highbd_dc_top_predictor_4x4_c, 4, 8), + HighbdIntraPredParam(&vpx_highbd_dc_top_predictor_8x8_neon, + &vpx_highbd_dc_top_predictor_8x8_c, 8, 8), + HighbdIntraPredParam(&vpx_highbd_dc_top_predictor_16x16_neon, + &vpx_highbd_dc_top_predictor_16x16_c, 16, 8), + HighbdIntraPredParam(&vpx_highbd_dc_top_predictor_32x32_neon, + &vpx_highbd_dc_top_predictor_32x32_c, 32, 8), + HighbdIntraPredParam(&vpx_highbd_h_predictor_4x4_neon, + &vpx_highbd_h_predictor_4x4_c, 4, 8), + HighbdIntraPredParam(&vpx_highbd_h_predictor_8x8_neon, + &vpx_highbd_h_predictor_8x8_c, 8, 8), + HighbdIntraPredParam(&vpx_highbd_h_predictor_16x16_neon, + &vpx_highbd_h_predictor_16x16_c, 16, 8), + HighbdIntraPredParam(&vpx_highbd_h_predictor_32x32_neon, + &vpx_highbd_h_predictor_32x32_c, 32, 8), + HighbdIntraPredParam(&vpx_highbd_tm_predictor_4x4_neon, + &vpx_highbd_tm_predictor_4x4_c, 4, 8), + HighbdIntraPredParam(&vpx_highbd_tm_predictor_8x8_neon, + &vpx_highbd_tm_predictor_8x8_c, 8, 8), + HighbdIntraPredParam(&vpx_highbd_tm_predictor_16x16_neon, + &vpx_highbd_tm_predictor_16x16_c, 16, 8), + HighbdIntraPredParam(&vpx_highbd_tm_predictor_32x32_neon, + &vpx_highbd_tm_predictor_32x32_c, 32, 8), + HighbdIntraPredParam(&vpx_highbd_v_predictor_4x4_neon, + &vpx_highbd_v_predictor_4x4_c, 4, 8), + HighbdIntraPredParam(&vpx_highbd_v_predictor_8x8_neon, + &vpx_highbd_v_predictor_8x8_c, 8, 8), + HighbdIntraPredParam(&vpx_highbd_v_predictor_16x16_neon, + &vpx_highbd_v_predictor_16x16_c, 16, 8), + HighbdIntraPredParam(&vpx_highbd_v_predictor_32x32_neon, + &vpx_highbd_v_predictor_32x32_c, 32, 8))); + +INSTANTIATE_TEST_CASE_P( + NEON_TO_C_10, VP9HighbdIntraPredTest, + ::testing::Values( + HighbdIntraPredParam(&vpx_highbd_d45_predictor_4x4_neon, + &vpx_highbd_d45_predictor_4x4_c, 4, 10), + HighbdIntraPredParam(&vpx_highbd_d45_predictor_8x8_neon, + &vpx_highbd_d45_predictor_8x8_c, 8, 10), + HighbdIntraPredParam(&vpx_highbd_d45_predictor_16x16_neon, + &vpx_highbd_d45_predictor_16x16_c, 16, 10), + HighbdIntraPredParam(&vpx_highbd_d45_predictor_32x32_neon, + &vpx_highbd_d45_predictor_32x32_c, 32, 10), + HighbdIntraPredParam(&vpx_highbd_d135_predictor_4x4_neon, + &vpx_highbd_d135_predictor_4x4_c, 4, 10), + HighbdIntraPredParam(&vpx_highbd_d135_predictor_8x8_neon, + &vpx_highbd_d135_predictor_8x8_c, 8, 10), + HighbdIntraPredParam(&vpx_highbd_d135_predictor_16x16_neon, + &vpx_highbd_d135_predictor_16x16_c, 16, 10), + HighbdIntraPredParam(&vpx_highbd_d135_predictor_32x32_neon, + &vpx_highbd_d135_predictor_32x32_c, 32, 10), + HighbdIntraPredParam(&vpx_highbd_dc_128_predictor_4x4_neon, + &vpx_highbd_dc_128_predictor_4x4_c, 4, 10), + HighbdIntraPredParam(&vpx_highbd_dc_128_predictor_8x8_neon, + &vpx_highbd_dc_128_predictor_8x8_c, 8, 10), + HighbdIntraPredParam(&vpx_highbd_dc_128_predictor_16x16_neon, + &vpx_highbd_dc_128_predictor_16x16_c, 16, 10), + HighbdIntraPredParam(&vpx_highbd_dc_128_predictor_32x32_neon, + &vpx_highbd_dc_128_predictor_32x32_c, 32, 10), + HighbdIntraPredParam(&vpx_highbd_dc_left_predictor_4x4_neon, + &vpx_highbd_dc_left_predictor_4x4_c, 4, 10), + HighbdIntraPredParam(&vpx_highbd_dc_left_predictor_8x8_neon, + &vpx_highbd_dc_left_predictor_8x8_c, 8, 10), + HighbdIntraPredParam(&vpx_highbd_dc_left_predictor_16x16_neon, + &vpx_highbd_dc_left_predictor_16x16_c, 16, 10), + HighbdIntraPredParam(&vpx_highbd_dc_left_predictor_32x32_neon, + &vpx_highbd_dc_left_predictor_32x32_c, 32, 10), + HighbdIntraPredParam(&vpx_highbd_dc_predictor_4x4_neon, + &vpx_highbd_dc_predictor_4x4_c, 4, 10), + HighbdIntraPredParam(&vpx_highbd_dc_predictor_8x8_neon, + &vpx_highbd_dc_predictor_8x8_c, 8, 10), + HighbdIntraPredParam(&vpx_highbd_dc_predictor_16x16_neon, + &vpx_highbd_dc_predictor_16x16_c, 16, 10), + HighbdIntraPredParam(&vpx_highbd_dc_predictor_32x32_neon, + &vpx_highbd_dc_predictor_32x32_c, 32, 10), + HighbdIntraPredParam(&vpx_highbd_dc_top_predictor_4x4_neon, + &vpx_highbd_dc_top_predictor_4x4_c, 4, 10), + HighbdIntraPredParam(&vpx_highbd_dc_top_predictor_8x8_neon, + &vpx_highbd_dc_top_predictor_8x8_c, 8, 10), + HighbdIntraPredParam(&vpx_highbd_dc_top_predictor_16x16_neon, + &vpx_highbd_dc_top_predictor_16x16_c, 16, 10), + HighbdIntraPredParam(&vpx_highbd_dc_top_predictor_32x32_neon, + &vpx_highbd_dc_top_predictor_32x32_c, 32, 10), + HighbdIntraPredParam(&vpx_highbd_h_predictor_4x4_neon, + &vpx_highbd_h_predictor_4x4_c, 4, 10), + HighbdIntraPredParam(&vpx_highbd_h_predictor_8x8_neon, + &vpx_highbd_h_predictor_8x8_c, 8, 10), + HighbdIntraPredParam(&vpx_highbd_h_predictor_16x16_neon, + &vpx_highbd_h_predictor_16x16_c, 16, 10), + HighbdIntraPredParam(&vpx_highbd_h_predictor_32x32_neon, + &vpx_highbd_h_predictor_32x32_c, 32, 10), + HighbdIntraPredParam(&vpx_highbd_tm_predictor_4x4_neon, + &vpx_highbd_tm_predictor_4x4_c, 4, 10), + HighbdIntraPredParam(&vpx_highbd_tm_predictor_8x8_neon, + &vpx_highbd_tm_predictor_8x8_c, 8, 10), + HighbdIntraPredParam(&vpx_highbd_tm_predictor_16x16_neon, + &vpx_highbd_tm_predictor_16x16_c, 16, 10), + HighbdIntraPredParam(&vpx_highbd_tm_predictor_32x32_neon, + &vpx_highbd_tm_predictor_32x32_c, 32, 10), + HighbdIntraPredParam(&vpx_highbd_v_predictor_4x4_neon, + &vpx_highbd_v_predictor_4x4_c, 4, 10), + HighbdIntraPredParam(&vpx_highbd_v_predictor_8x8_neon, + &vpx_highbd_v_predictor_8x8_c, 8, 10), + HighbdIntraPredParam(&vpx_highbd_v_predictor_16x16_neon, + &vpx_highbd_v_predictor_16x16_c, 16, 10), + HighbdIntraPredParam(&vpx_highbd_v_predictor_32x32_neon, + &vpx_highbd_v_predictor_32x32_c, 32, 10))); + +INSTANTIATE_TEST_CASE_P( + NEON_TO_C_12, VP9HighbdIntraPredTest, + ::testing::Values( + HighbdIntraPredParam(&vpx_highbd_d45_predictor_4x4_neon, + &vpx_highbd_d45_predictor_4x4_c, 4, 12), + HighbdIntraPredParam(&vpx_highbd_d45_predictor_8x8_neon, + &vpx_highbd_d45_predictor_8x8_c, 8, 12), + HighbdIntraPredParam(&vpx_highbd_d45_predictor_16x16_neon, + &vpx_highbd_d45_predictor_16x16_c, 16, 12), + HighbdIntraPredParam(&vpx_highbd_d45_predictor_32x32_neon, + &vpx_highbd_d45_predictor_32x32_c, 32, 12), + HighbdIntraPredParam(&vpx_highbd_d135_predictor_4x4_neon, + &vpx_highbd_d135_predictor_4x4_c, 4, 12), + HighbdIntraPredParam(&vpx_highbd_d135_predictor_8x8_neon, + &vpx_highbd_d135_predictor_8x8_c, 8, 12), + HighbdIntraPredParam(&vpx_highbd_d135_predictor_16x16_neon, + &vpx_highbd_d135_predictor_16x16_c, 16, 12), + HighbdIntraPredParam(&vpx_highbd_d135_predictor_32x32_neon, + &vpx_highbd_d135_predictor_32x32_c, 32, 12), + HighbdIntraPredParam(&vpx_highbd_dc_128_predictor_4x4_neon, + &vpx_highbd_dc_128_predictor_4x4_c, 4, 12), + HighbdIntraPredParam(&vpx_highbd_dc_128_predictor_8x8_neon, + &vpx_highbd_dc_128_predictor_8x8_c, 8, 12), + HighbdIntraPredParam(&vpx_highbd_dc_128_predictor_16x16_neon, + &vpx_highbd_dc_128_predictor_16x16_c, 16, 12), + HighbdIntraPredParam(&vpx_highbd_dc_128_predictor_32x32_neon, + &vpx_highbd_dc_128_predictor_32x32_c, 32, 12), + HighbdIntraPredParam(&vpx_highbd_dc_left_predictor_4x4_neon, + &vpx_highbd_dc_left_predictor_4x4_c, 4, 12), + HighbdIntraPredParam(&vpx_highbd_dc_left_predictor_8x8_neon, + &vpx_highbd_dc_left_predictor_8x8_c, 8, 12), + HighbdIntraPredParam(&vpx_highbd_dc_left_predictor_16x16_neon, + &vpx_highbd_dc_left_predictor_16x16_c, 16, 12), + HighbdIntraPredParam(&vpx_highbd_dc_left_predictor_32x32_neon, + &vpx_highbd_dc_left_predictor_32x32_c, 32, 12), + HighbdIntraPredParam(&vpx_highbd_dc_predictor_4x4_neon, + &vpx_highbd_dc_predictor_4x4_c, 4, 12), + HighbdIntraPredParam(&vpx_highbd_dc_predictor_8x8_neon, + &vpx_highbd_dc_predictor_8x8_c, 8, 12), + HighbdIntraPredParam(&vpx_highbd_dc_predictor_16x16_neon, + &vpx_highbd_dc_predictor_16x16_c, 16, 12), + HighbdIntraPredParam(&vpx_highbd_dc_predictor_32x32_neon, + &vpx_highbd_dc_predictor_32x32_c, 32, 12), + HighbdIntraPredParam(&vpx_highbd_dc_top_predictor_4x4_neon, + &vpx_highbd_dc_top_predictor_4x4_c, 4, 12), + HighbdIntraPredParam(&vpx_highbd_dc_top_predictor_8x8_neon, + &vpx_highbd_dc_top_predictor_8x8_c, 8, 12), + HighbdIntraPredParam(&vpx_highbd_dc_top_predictor_16x16_neon, + &vpx_highbd_dc_top_predictor_16x16_c, 16, 12), + HighbdIntraPredParam(&vpx_highbd_dc_top_predictor_32x32_neon, + &vpx_highbd_dc_top_predictor_32x32_c, 32, 12), + HighbdIntraPredParam(&vpx_highbd_h_predictor_4x4_neon, + &vpx_highbd_h_predictor_4x4_c, 4, 12), + HighbdIntraPredParam(&vpx_highbd_h_predictor_8x8_neon, + &vpx_highbd_h_predictor_8x8_c, 8, 12), + HighbdIntraPredParam(&vpx_highbd_h_predictor_16x16_neon, + &vpx_highbd_h_predictor_16x16_c, 16, 12), + HighbdIntraPredParam(&vpx_highbd_h_predictor_32x32_neon, + &vpx_highbd_h_predictor_32x32_c, 32, 12), + HighbdIntraPredParam(&vpx_highbd_tm_predictor_4x4_neon, + &vpx_highbd_tm_predictor_4x4_c, 4, 12), + HighbdIntraPredParam(&vpx_highbd_tm_predictor_8x8_neon, + &vpx_highbd_tm_predictor_8x8_c, 8, 12), + HighbdIntraPredParam(&vpx_highbd_tm_predictor_16x16_neon, + &vpx_highbd_tm_predictor_16x16_c, 16, 12), + HighbdIntraPredParam(&vpx_highbd_tm_predictor_32x32_neon, + &vpx_highbd_tm_predictor_32x32_c, 32, 12), + HighbdIntraPredParam(&vpx_highbd_v_predictor_4x4_neon, + &vpx_highbd_v_predictor_4x4_c, 4, 12), + HighbdIntraPredParam(&vpx_highbd_v_predictor_8x8_neon, + &vpx_highbd_v_predictor_8x8_c, 8, 12), + HighbdIntraPredParam(&vpx_highbd_v_predictor_16x16_neon, + &vpx_highbd_v_predictor_16x16_c, 16, 12), + HighbdIntraPredParam(&vpx_highbd_v_predictor_32x32_neon, + &vpx_highbd_v_predictor_32x32_c, 32, 12))); +#endif // HAVE_NEON + +#endif // CONFIG_VP9_HIGHBITDEPTH +} // namespace diff --git a/test/vp9_lossless_test.cc b/test/vp9_lossless_test.cc new file mode 100644 index 0000000..703b55e --- /dev/null +++ b/test/vp9_lossless_test.cc @@ -0,0 +1,125 @@ +/* + * Copyright (c) 2013 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "third_party/googletest/src/include/gtest/gtest.h" + +#include "./vpx_config.h" +#include "test/codec_factory.h" +#include "test/encode_test_driver.h" +#include "test/i420_video_source.h" +#include "test/util.h" +#include "test/y4m_video_source.h" + +namespace { + +const int kMaxPsnr = 100; + +class LosslessTest + : public ::libvpx_test::EncoderTest, + public ::libvpx_test::CodecTestWithParam { + protected: + LosslessTest() + : EncoderTest(GET_PARAM(0)), psnr_(kMaxPsnr), nframes_(0), + encoding_mode_(GET_PARAM(1)) {} + + virtual ~LosslessTest() {} + + virtual void SetUp() { + InitializeConfig(); + SetMode(encoding_mode_); + } + + virtual void PreEncodeFrameHook(::libvpx_test::VideoSource *video, + ::libvpx_test::Encoder *encoder) { + if (video->frame() == 1) { + // Only call Control if quantizer > 0 to verify that using quantizer + // alone will activate lossless + if (cfg_.rc_max_quantizer > 0 || cfg_.rc_min_quantizer > 0) { + encoder->Control(VP9E_SET_LOSSLESS, 1); + } + } + } + + virtual void BeginPassHook(unsigned int /*pass*/) { + psnr_ = kMaxPsnr; + nframes_ = 0; + } + + virtual void PSNRPktHook(const vpx_codec_cx_pkt_t *pkt) { + if (pkt->data.psnr.psnr[0] < psnr_) psnr_ = pkt->data.psnr.psnr[0]; + } + + double GetMinPsnr() const { return psnr_; } + + private: + double psnr_; + unsigned int nframes_; + libvpx_test::TestMode encoding_mode_; +}; + +TEST_P(LosslessTest, TestLossLessEncoding) { + const vpx_rational timebase = { 33333333, 1000000000 }; + cfg_.g_timebase = timebase; + cfg_.rc_target_bitrate = 2000; + cfg_.g_lag_in_frames = 25; + cfg_.rc_min_quantizer = 0; + cfg_.rc_max_quantizer = 0; + + init_flags_ = VPX_CODEC_USE_PSNR; + + // intentionally changed the dimension for better testing coverage + libvpx_test::I420VideoSource video("hantro_collage_w352h288.yuv", 352, 288, + timebase.den, timebase.num, 0, 10); + ASSERT_NO_FATAL_FAILURE(RunLoop(&video)); + const double psnr_lossless = GetMinPsnr(); + EXPECT_GE(psnr_lossless, kMaxPsnr); +} + +TEST_P(LosslessTest, TestLossLessEncoding444) { + libvpx_test::Y4mVideoSource video("rush_hour_444.y4m", 0, 10); + + cfg_.g_profile = 1; + cfg_.g_timebase = video.timebase(); + cfg_.rc_target_bitrate = 2000; + cfg_.g_lag_in_frames = 25; + cfg_.rc_min_quantizer = 0; + cfg_.rc_max_quantizer = 0; + + init_flags_ = VPX_CODEC_USE_PSNR; + + ASSERT_NO_FATAL_FAILURE(RunLoop(&video)); + const double psnr_lossless = GetMinPsnr(); + EXPECT_GE(psnr_lossless, kMaxPsnr); +} + +TEST_P(LosslessTest, TestLossLessEncodingCtrl) { + const vpx_rational timebase = { 33333333, 1000000000 }; + cfg_.g_timebase = timebase; + cfg_.rc_target_bitrate = 2000; + cfg_.g_lag_in_frames = 25; + // Intentionally set Q > 0, to make sure control can be used to activate + // lossless + cfg_.rc_min_quantizer = 10; + cfg_.rc_max_quantizer = 20; + + init_flags_ = VPX_CODEC_USE_PSNR; + + libvpx_test::I420VideoSource video("hantro_collage_w352h288.yuv", 352, 288, + timebase.den, timebase.num, 0, 10); + ASSERT_NO_FATAL_FAILURE(RunLoop(&video)); + const double psnr_lossless = GetMinPsnr(); + EXPECT_GE(psnr_lossless, kMaxPsnr); +} + +VP9_INSTANTIATE_TEST_CASE(LosslessTest, + ::testing::Values(::libvpx_test::kRealTime, + ::libvpx_test::kOnePassGood, + ::libvpx_test::kTwoPassGood)); +} // namespace diff --git a/test/vp9_motion_vector_test.cc b/test/vp9_motion_vector_test.cc new file mode 100644 index 0000000..1030204 --- /dev/null +++ b/test/vp9_motion_vector_test.cc @@ -0,0 +1,97 @@ +/* + * Copyright (c) 2017 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "third_party/googletest/src/include/gtest/gtest.h" + +#include "test/codec_factory.h" +#include "test/encode_test_driver.h" +#include "test/util.h" +#include "test/yuv_video_source.h" + +namespace { +#define MAX_EXTREME_MV 1 +#define MIN_EXTREME_MV 2 + +// Encoding modes +const libvpx_test::TestMode kEncodingModeVectors[] = { + ::libvpx_test::kTwoPassGood, ::libvpx_test::kOnePassGood, + ::libvpx_test::kRealTime, +}; + +// Encoding speeds +const int kCpuUsedVectors[] = { 0, 1, 2, 3, 4, 5, 6 }; + +// MV test modes: 1 - always use maximum MV; 2 - always use minimum MV. +const int kMVTestModes[] = { MAX_EXTREME_MV, MIN_EXTREME_MV }; + +class MotionVectorTestLarge + : public ::libvpx_test::EncoderTest, + public ::libvpx_test::CodecTestWith3Params { + protected: + MotionVectorTestLarge() + : EncoderTest(GET_PARAM(0)), encoding_mode_(GET_PARAM(1)), + cpu_used_(GET_PARAM(2)), mv_test_mode_(GET_PARAM(3)) {} + + virtual ~MotionVectorTestLarge() {} + + virtual void SetUp() { + InitializeConfig(); + SetMode(encoding_mode_); + if (encoding_mode_ != ::libvpx_test::kRealTime) { + cfg_.g_lag_in_frames = 3; + cfg_.rc_end_usage = VPX_VBR; + } else { + cfg_.g_lag_in_frames = 0; + cfg_.rc_end_usage = VPX_CBR; + cfg_.rc_buf_sz = 1000; + cfg_.rc_buf_initial_sz = 500; + cfg_.rc_buf_optimal_sz = 600; + } + } + + virtual void PreEncodeFrameHook(::libvpx_test::VideoSource *video, + ::libvpx_test::Encoder *encoder) { + if (video->frame() == 1) { + encoder->Control(VP8E_SET_CPUUSED, cpu_used_); + encoder->Control(VP9E_ENABLE_MOTION_VECTOR_UNIT_TEST, mv_test_mode_); + if (encoding_mode_ != ::libvpx_test::kRealTime) { + encoder->Control(VP8E_SET_ENABLEAUTOALTREF, 1); + encoder->Control(VP8E_SET_ARNR_MAXFRAMES, 7); + encoder->Control(VP8E_SET_ARNR_STRENGTH, 5); + encoder->Control(VP8E_SET_ARNR_TYPE, 3); + } + } + } + + libvpx_test::TestMode encoding_mode_; + int cpu_used_; + int mv_test_mode_; +}; + +TEST_P(MotionVectorTestLarge, OverallTest) { + cfg_.rc_target_bitrate = 24000; + cfg_.g_profile = 0; + init_flags_ = VPX_CODEC_USE_PSNR; + + testing::internal::scoped_ptr video; + video.reset(new libvpx_test::YUVVideoSource( + "niklas_640_480_30.yuv", VPX_IMG_FMT_I420, 3840, 2160, // 2048, 1080, + 30, 1, 0, 5)); + + ASSERT_TRUE(video.get() != NULL); + ASSERT_NO_FATAL_FAILURE(RunLoop(video.get())); +} + +VP9_INSTANTIATE_TEST_CASE(MotionVectorTestLarge, + ::testing::ValuesIn(kEncodingModeVectors), + ::testing::ValuesIn(kCpuUsedVectors), + ::testing::ValuesIn(kMVTestModes)); +} // namespace diff --git a/test/vp9_quantize_test.cc b/test/vp9_quantize_test.cc new file mode 100644 index 0000000..b18d452 --- /dev/null +++ b/test/vp9_quantize_test.cc @@ -0,0 +1,534 @@ +/* + * Copyright (c) 2014 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include +#include + +#include "third_party/googletest/src/include/gtest/gtest.h" + +#include "./vp9_rtcd.h" +#include "./vpx_config.h" +#include "./vpx_dsp_rtcd.h" +#include "test/acm_random.h" +#include "test/buffer.h" +#include "test/clear_system_state.h" +#include "test/register_state_check.h" +#include "test/util.h" +#include "vp9/common/vp9_entropy.h" +#include "vp9/common/vp9_scan.h" +#include "vpx/vpx_codec.h" +#include "vpx/vpx_integer.h" +#include "vpx_ports/vpx_timer.h" + +using libvpx_test::ACMRandom; +using libvpx_test::Buffer; + +namespace { +const int number_of_iterations = 100; + +typedef void (*QuantizeFunc)(const tran_low_t *coeff, intptr_t count, + int skip_block, const int16_t *zbin, + const int16_t *round, const int16_t *quant, + const int16_t *quant_shift, tran_low_t *qcoeff, + tran_low_t *dqcoeff, const int16_t *dequant, + uint16_t *eob, const int16_t *scan, + const int16_t *iscan); +typedef std::tr1::tuple + QuantizeParam; + +// Wrapper for FP version which does not use zbin or quant_shift. +typedef void (*QuantizeFPFunc)(const tran_low_t *coeff, intptr_t count, + int skip_block, const int16_t *round, + const int16_t *quant, tran_low_t *qcoeff, + tran_low_t *dqcoeff, const int16_t *dequant, + uint16_t *eob, const int16_t *scan, + const int16_t *iscan); + +template +void QuantFPWrapper(const tran_low_t *coeff, intptr_t count, int skip_block, + const int16_t *zbin, const int16_t *round, + const int16_t *quant, const int16_t *quant_shift, + tran_low_t *qcoeff, tran_low_t *dqcoeff, + const int16_t *dequant, uint16_t *eob, const int16_t *scan, + const int16_t *iscan) { + (void)zbin; + (void)quant_shift; + + fn(coeff, count, skip_block, round, quant, qcoeff, dqcoeff, dequant, eob, + scan, iscan); +} + +class VP9QuantizeBase { + public: + VP9QuantizeBase(vpx_bit_depth_t bit_depth, int max_size, bool is_fp) + : bit_depth_(bit_depth), max_size_(max_size), is_fp_(is_fp) { + max_value_ = (1 << bit_depth_) - 1; + zbin_ptr_ = + reinterpret_cast(vpx_memalign(16, 8 * sizeof(*zbin_ptr_))); + round_fp_ptr_ = reinterpret_cast( + vpx_memalign(16, 8 * sizeof(*round_fp_ptr_))); + quant_fp_ptr_ = reinterpret_cast( + vpx_memalign(16, 8 * sizeof(*quant_fp_ptr_))); + round_ptr_ = + reinterpret_cast(vpx_memalign(16, 8 * sizeof(*round_ptr_))); + quant_ptr_ = + reinterpret_cast(vpx_memalign(16, 8 * sizeof(*quant_ptr_))); + quant_shift_ptr_ = reinterpret_cast( + vpx_memalign(16, 8 * sizeof(*quant_shift_ptr_))); + dequant_ptr_ = reinterpret_cast( + vpx_memalign(16, 8 * sizeof(*dequant_ptr_))); + } + + ~VP9QuantizeBase() { + vpx_free(zbin_ptr_); + vpx_free(round_fp_ptr_); + vpx_free(quant_fp_ptr_); + vpx_free(round_ptr_); + vpx_free(quant_ptr_); + vpx_free(quant_shift_ptr_); + vpx_free(dequant_ptr_); + zbin_ptr_ = NULL; + round_fp_ptr_ = NULL; + quant_fp_ptr_ = NULL; + round_ptr_ = NULL; + quant_ptr_ = NULL; + quant_shift_ptr_ = NULL; + dequant_ptr_ = NULL; + libvpx_test::ClearSystemState(); + } + + protected: + int16_t *zbin_ptr_; + int16_t *round_fp_ptr_; + int16_t *quant_fp_ptr_; + int16_t *round_ptr_; + int16_t *quant_ptr_; + int16_t *quant_shift_ptr_; + int16_t *dequant_ptr_; + const vpx_bit_depth_t bit_depth_; + int max_value_; + const int max_size_; + const bool is_fp_; +}; + +class VP9QuantizeTest : public VP9QuantizeBase, + public ::testing::TestWithParam { + public: + VP9QuantizeTest() + : VP9QuantizeBase(GET_PARAM(2), GET_PARAM(3), GET_PARAM(4)), + quantize_op_(GET_PARAM(0)), ref_quantize_op_(GET_PARAM(1)) {} + + protected: + const QuantizeFunc quantize_op_; + const QuantizeFunc ref_quantize_op_; +}; + +// This quantizer compares the AC coefficients to the quantization step size to +// determine if further multiplication operations are needed. +// Based on vp9_quantize_fp_sse2(). +void quantize_fp_nz_c(const tran_low_t *coeff_ptr, intptr_t n_coeffs, + int skip_block, const int16_t *round_ptr, + const int16_t *quant_ptr, tran_low_t *qcoeff_ptr, + tran_low_t *dqcoeff_ptr, const int16_t *dequant_ptr, + uint16_t *eob_ptr, const int16_t *scan, + const int16_t *iscan) { + int i, eob = -1; + const int thr = dequant_ptr[1] >> 1; + (void)iscan; + (void)skip_block; + assert(!skip_block); + + // Quantization pass: All coefficients with index >= zero_flag are + // skippable. Note: zero_flag can be zero. + for (i = 0; i < n_coeffs; i += 16) { + int y; + int nzflag_cnt = 0; + int abs_coeff[16]; + int coeff_sign[16]; + + // count nzflag for each row (16 tran_low_t) + for (y = 0; y < 16; ++y) { + const int rc = i + y; + const int coeff = coeff_ptr[rc]; + coeff_sign[y] = (coeff >> 31); + abs_coeff[y] = (coeff ^ coeff_sign[y]) - coeff_sign[y]; + // The first 16 are skipped in the sse2 code. Do the same here to match. + if (i >= 16 && (abs_coeff[y] <= thr)) { + nzflag_cnt++; + } + } + + for (y = 0; y < 16; ++y) { + const int rc = i + y; + // If all of the AC coeffs in a row has magnitude less than the + // quantization step_size/2, quantize to zero. + if (nzflag_cnt < 16) { + int tmp = + clamp(abs_coeff[y] + round_ptr[rc != 0], INT16_MIN, INT16_MAX); + tmp = (tmp * quant_ptr[rc != 0]) >> 16; + qcoeff_ptr[rc] = (tmp ^ coeff_sign[y]) - coeff_sign[y]; + dqcoeff_ptr[rc] = qcoeff_ptr[rc] * dequant_ptr[rc != 0]; + } else { + qcoeff_ptr[rc] = 0; + dqcoeff_ptr[rc] = 0; + } + } + } + + // Scan for eob. + for (i = 0; i < n_coeffs; i++) { + // Use the scan order to find the correct eob. + const int rc = scan[i]; + if (qcoeff_ptr[rc]) { + eob = i; + } + } + *eob_ptr = eob + 1; +} + +void GenerateHelperArrays(ACMRandom *rnd, int16_t *zbin, int16_t *round, + int16_t *quant, int16_t *quant_shift, + int16_t *dequant, int16_t *round_fp, + int16_t *quant_fp) { + // Max when q == 0. Otherwise, it is 48 for Y and 42 for U/V. + const int max_qrounding_factor_fp = 64; + + for (int j = 0; j < 2; j++) { + // The range is 4 to 1828 in the VP9 tables. + const int qlookup = rnd->RandRange(1825) + 4; + round_fp[j] = (max_qrounding_factor_fp * qlookup) >> 7; + quant_fp[j] = (1 << 16) / qlookup; + + // Values determined by deconstructing vp9_init_quantizer(). + // zbin may be up to 1143 for 8 and 10 bit Y values, or 1200 for 12 bit Y + // values or U/V values of any bit depth. This is because y_delta is not + // factored into the vp9_ac_quant() call. + zbin[j] = rnd->RandRange(1200); + + // round may be up to 685 for Y values or 914 for U/V. + round[j] = rnd->RandRange(914); + // quant ranges from 1 to -32703 + quant[j] = static_cast(rnd->RandRange(32704)) - 32703; + // quant_shift goes up to 1 << 16. + quant_shift[j] = rnd->RandRange(16384); + // dequant maxes out at 1828 for all cases. + dequant[j] = rnd->RandRange(1828); + } + for (int j = 2; j < 8; j++) { + zbin[j] = zbin[1]; + round_fp[j] = round_fp[1]; + quant_fp[j] = quant_fp[1]; + round[j] = round[1]; + quant[j] = quant[1]; + quant_shift[j] = quant_shift[1]; + dequant[j] = dequant[1]; + } +} + +TEST_P(VP9QuantizeTest, OperationCheck) { + ACMRandom rnd(ACMRandom::DeterministicSeed()); + Buffer coeff = Buffer(max_size_, max_size_, 0, 16); + ASSERT_TRUE(coeff.Init()); + Buffer qcoeff = Buffer(max_size_, max_size_, 0, 32); + ASSERT_TRUE(qcoeff.Init()); + Buffer dqcoeff = Buffer(max_size_, max_size_, 0, 32); + ASSERT_TRUE(dqcoeff.Init()); + Buffer ref_qcoeff = + Buffer(max_size_, max_size_, 0, 32); + ASSERT_TRUE(ref_qcoeff.Init()); + Buffer ref_dqcoeff = + Buffer(max_size_, max_size_, 0, 32); + ASSERT_TRUE(ref_dqcoeff.Init()); + uint16_t eob, ref_eob; + + for (int i = 0; i < number_of_iterations; ++i) { + // Test skip block for the first three iterations to catch all the different + // sizes. + const int skip_block = 0; + TX_SIZE sz; + if (max_size_ == 16) { + sz = static_cast(i % 3); // TX_4X4, TX_8X8 TX_16X16 + } else { + sz = TX_32X32; + } + const TX_TYPE tx_type = static_cast((i >> 2) % 3); + const scan_order *scan_order = &vp9_scan_orders[sz][tx_type]; + const int count = (4 << sz) * (4 << sz); + coeff.Set(&rnd, -max_value_, max_value_); + GenerateHelperArrays(&rnd, zbin_ptr_, round_ptr_, quant_ptr_, + quant_shift_ptr_, dequant_ptr_, round_fp_ptr_, + quant_fp_ptr_); + int16_t *r_ptr = (is_fp_) ? round_fp_ptr_ : round_ptr_; + int16_t *q_ptr = (is_fp_) ? quant_fp_ptr_ : quant_ptr_; + ref_quantize_op_(coeff.TopLeftPixel(), count, skip_block, zbin_ptr_, r_ptr, + q_ptr, quant_shift_ptr_, ref_qcoeff.TopLeftPixel(), + ref_dqcoeff.TopLeftPixel(), dequant_ptr_, &ref_eob, + scan_order->scan, scan_order->iscan); + + ASM_REGISTER_STATE_CHECK(quantize_op_( + coeff.TopLeftPixel(), count, skip_block, zbin_ptr_, r_ptr, q_ptr, + quant_shift_ptr_, qcoeff.TopLeftPixel(), dqcoeff.TopLeftPixel(), + dequant_ptr_, &eob, scan_order->scan, scan_order->iscan)); + + EXPECT_TRUE(qcoeff.CheckValues(ref_qcoeff)); + EXPECT_TRUE(dqcoeff.CheckValues(ref_dqcoeff)); + + EXPECT_EQ(eob, ref_eob); + + if (HasFailure()) { + printf("Failure on iteration %d.\n", i); + qcoeff.PrintDifference(ref_qcoeff); + dqcoeff.PrintDifference(ref_dqcoeff); + return; + } + } +} + +TEST_P(VP9QuantizeTest, EOBCheck) { + ACMRandom rnd(ACMRandom::DeterministicSeed()); + Buffer coeff = Buffer(max_size_, max_size_, 0, 16); + ASSERT_TRUE(coeff.Init()); + Buffer qcoeff = Buffer(max_size_, max_size_, 0, 32); + ASSERT_TRUE(qcoeff.Init()); + Buffer dqcoeff = Buffer(max_size_, max_size_, 0, 32); + ASSERT_TRUE(dqcoeff.Init()); + Buffer ref_qcoeff = + Buffer(max_size_, max_size_, 0, 32); + ASSERT_TRUE(ref_qcoeff.Init()); + Buffer ref_dqcoeff = + Buffer(max_size_, max_size_, 0, 32); + ASSERT_TRUE(ref_dqcoeff.Init()); + uint16_t eob, ref_eob; + + for (int i = 0; i < number_of_iterations; ++i) { + const int skip_block = 0; + TX_SIZE sz; + if (max_size_ == 16) { + sz = static_cast(i % 3); // TX_4X4, TX_8X8 TX_16X16 + } else { + sz = TX_32X32; + } + const TX_TYPE tx_type = static_cast((i >> 2) % 3); + const scan_order *scan_order = &vp9_scan_orders[sz][tx_type]; + int count = (4 << sz) * (4 << sz); + // Two random entries + coeff.Set(0); + coeff.TopLeftPixel()[rnd(count)] = + static_cast(rnd.RandRange(max_value_ * 2)) - max_value_; + coeff.TopLeftPixel()[rnd(count)] = + static_cast(rnd.RandRange(max_value_ * 2)) - max_value_; + GenerateHelperArrays(&rnd, zbin_ptr_, round_ptr_, quant_ptr_, + quant_shift_ptr_, dequant_ptr_, round_fp_ptr_, + quant_fp_ptr_); + int16_t *r_ptr = (is_fp_) ? round_fp_ptr_ : round_ptr_; + int16_t *q_ptr = (is_fp_) ? quant_fp_ptr_ : quant_ptr_; + ref_quantize_op_(coeff.TopLeftPixel(), count, skip_block, zbin_ptr_, r_ptr, + q_ptr, quant_shift_ptr_, ref_qcoeff.TopLeftPixel(), + ref_dqcoeff.TopLeftPixel(), dequant_ptr_, &ref_eob, + scan_order->scan, scan_order->iscan); + + ASM_REGISTER_STATE_CHECK(quantize_op_( + coeff.TopLeftPixel(), count, skip_block, zbin_ptr_, r_ptr, q_ptr, + quant_shift_ptr_, qcoeff.TopLeftPixel(), dqcoeff.TopLeftPixel(), + dequant_ptr_, &eob, scan_order->scan, scan_order->iscan)); + + EXPECT_TRUE(qcoeff.CheckValues(ref_qcoeff)); + EXPECT_TRUE(dqcoeff.CheckValues(ref_dqcoeff)); + + EXPECT_EQ(eob, ref_eob); + + if (HasFailure()) { + printf("Failure on iteration %d.\n", i); + qcoeff.PrintDifference(ref_qcoeff); + dqcoeff.PrintDifference(ref_dqcoeff); + return; + } + } +} + +TEST_P(VP9QuantizeTest, DISABLED_Speed) { + ACMRandom rnd(ACMRandom::DeterministicSeed()); + Buffer coeff = Buffer(max_size_, max_size_, 0, 16); + ASSERT_TRUE(coeff.Init()); + Buffer qcoeff = Buffer(max_size_, max_size_, 0, 32); + ASSERT_TRUE(qcoeff.Init()); + Buffer dqcoeff = Buffer(max_size_, max_size_, 0, 32); + ASSERT_TRUE(dqcoeff.Init()); + uint16_t eob; + TX_SIZE starting_sz, ending_sz; + + if (max_size_ == 16) { + starting_sz = TX_4X4; + ending_sz = TX_16X16; + } else { + starting_sz = TX_32X32; + ending_sz = TX_32X32; + } + + for (TX_SIZE sz = starting_sz; sz <= ending_sz; ++sz) { + // zbin > coeff, zbin < coeff. + for (int i = 0; i < 2; ++i) { + const int skip_block = 0; + // TX_TYPE defines the scan order. That is not relevant to the speed test. + // Pick the first one. + const TX_TYPE tx_type = DCT_DCT; + const scan_order *scan_order = &vp9_scan_orders[sz][tx_type]; + const int count = (4 << sz) * (4 << sz); + + GenerateHelperArrays(&rnd, zbin_ptr_, round_ptr_, quant_ptr_, + quant_shift_ptr_, dequant_ptr_, round_fp_ptr_, + quant_fp_ptr_); + int16_t *r_ptr = (is_fp_) ? round_fp_ptr_ : round_ptr_; + int16_t *q_ptr = (is_fp_) ? quant_fp_ptr_ : quant_ptr_; + + if (i == 0) { + // When |coeff values| are less than zbin the results are 0. + int threshold = 100; + if (max_size_ == 32) { + // For 32x32, the threshold is halved. Double it to keep the values + // from clearing it. + threshold = 200; + } + for (int j = 0; j < 8; ++j) zbin_ptr_[j] = threshold; + coeff.Set(&rnd, -99, 99); + } else if (i == 1) { + for (int j = 0; j < 8; ++j) zbin_ptr_[j] = 50; + coeff.Set(&rnd, -500, 500); + } + + vpx_usec_timer timer; + vpx_usec_timer_start(&timer); + for (int j = 0; j < 100000000 / count; ++j) { + quantize_op_(coeff.TopLeftPixel(), count, skip_block, zbin_ptr_, r_ptr, + q_ptr, quant_shift_ptr_, qcoeff.TopLeftPixel(), + dqcoeff.TopLeftPixel(), dequant_ptr_, &eob, + scan_order->scan, scan_order->iscan); + } + vpx_usec_timer_mark(&timer); + const int elapsed_time = static_cast(vpx_usec_timer_elapsed(&timer)); + if (i == 0) printf("Bypass calculations.\n"); + if (i == 1) printf("Full calculations.\n"); + printf("Quantize %dx%d time: %5d ms\n", 4 << sz, 4 << sz, + elapsed_time / 1000); + } + printf("\n"); + } +} + +using std::tr1::make_tuple; + +#if HAVE_SSE2 +#if CONFIG_VP9_HIGHBITDEPTH +// TODO(johannkoenig): Fix vpx_quantize_b_sse2 in highbitdepth builds. +// make_tuple(&vpx_quantize_b_sse2, &vpx_highbd_quantize_b_c, VPX_BITS_8), +INSTANTIATE_TEST_CASE_P( + SSE2, VP9QuantizeTest, + ::testing::Values( + make_tuple(&vpx_highbd_quantize_b_sse2, &vpx_highbd_quantize_b_c, + VPX_BITS_8, 16, false), + make_tuple(&vpx_highbd_quantize_b_sse2, &vpx_highbd_quantize_b_c, + VPX_BITS_10, 16, false), + make_tuple(&vpx_highbd_quantize_b_sse2, &vpx_highbd_quantize_b_c, + VPX_BITS_12, 16, false), + make_tuple(&vpx_highbd_quantize_b_32x32_sse2, + &vpx_highbd_quantize_b_32x32_c, VPX_BITS_8, 32, false), + make_tuple(&vpx_highbd_quantize_b_32x32_sse2, + &vpx_highbd_quantize_b_32x32_c, VPX_BITS_10, 32, false), + make_tuple(&vpx_highbd_quantize_b_32x32_sse2, + &vpx_highbd_quantize_b_32x32_c, VPX_BITS_12, 32, false))); + +#else +INSTANTIATE_TEST_CASE_P( + SSE2, VP9QuantizeTest, + ::testing::Values(make_tuple(&vpx_quantize_b_sse2, &vpx_quantize_b_c, + VPX_BITS_8, 16, false), + make_tuple(&QuantFPWrapper, + &QuantFPWrapper, VPX_BITS_8, + 16, true))); +#endif // CONFIG_VP9_HIGHBITDEPTH +#endif // HAVE_SSE2 + +#if HAVE_SSSE3 && !CONFIG_VP9_HIGHBITDEPTH +#if ARCH_X86_64 +INSTANTIATE_TEST_CASE_P( + SSSE3, VP9QuantizeTest, + ::testing::Values(make_tuple(&vpx_quantize_b_ssse3, &vpx_quantize_b_c, + VPX_BITS_8, 16, false), + make_tuple(&QuantFPWrapper, + &QuantFPWrapper, VPX_BITS_8, + 16, true))); +#else +INSTANTIATE_TEST_CASE_P(SSSE3, VP9QuantizeTest, + ::testing::Values(make_tuple(&vpx_quantize_b_ssse3, + &vpx_quantize_b_c, + VPX_BITS_8, 16, false))); +#endif + +#if ARCH_X86_64 +// TODO(johannkoenig): SSSE3 optimizations do not yet pass this test. +INSTANTIATE_TEST_CASE_P( + DISABLED_SSSE3, VP9QuantizeTest, + ::testing::Values(make_tuple(&vpx_quantize_b_32x32_ssse3, + &vpx_quantize_b_32x32_c, VPX_BITS_8, 32, + false), + make_tuple(&QuantFPWrapper, + &QuantFPWrapper, + VPX_BITS_8, 32, true))); +#endif // ARCH_X86_64 +#endif // HAVE_SSSE3 && !CONFIG_VP9_HIGHBITDEPTH + +// TODO(johannkoenig): AVX optimizations do not yet pass the 32x32 test or +// highbitdepth configurations. +#if HAVE_AVX && !CONFIG_VP9_HIGHBITDEPTH +INSTANTIATE_TEST_CASE_P( + AVX, VP9QuantizeTest, + ::testing::Values(make_tuple(&vpx_quantize_b_avx, &vpx_quantize_b_c, + VPX_BITS_8, 16, false), + // Even though SSSE3 and AVX do not match the reference + // code, we can keep them in sync with each other. + make_tuple(&vpx_quantize_b_32x32_avx, + &vpx_quantize_b_32x32_ssse3, VPX_BITS_8, 32, + false))); +#endif // HAVE_AVX && !CONFIG_VP9_HIGHBITDEPTH + +// TODO(webm:1448): dqcoeff is not handled correctly in HBD builds. +#if HAVE_NEON && !CONFIG_VP9_HIGHBITDEPTH +INSTANTIATE_TEST_CASE_P( + NEON, VP9QuantizeTest, + ::testing::Values(make_tuple(&vpx_quantize_b_neon, &vpx_quantize_b_c, + VPX_BITS_8, 16, false), + make_tuple(&vpx_quantize_b_32x32_neon, + &vpx_quantize_b_32x32_c, VPX_BITS_8, 32, + false), + make_tuple(&QuantFPWrapper, + &QuantFPWrapper, VPX_BITS_8, + 16, true), + make_tuple(&QuantFPWrapper, + &QuantFPWrapper, + VPX_BITS_8, 32, true))); +#endif // HAVE_NEON && !CONFIG_VP9_HIGHBITDEPTH + +// Only useful to compare "Speed" test results. +INSTANTIATE_TEST_CASE_P( + DISABLED_C, VP9QuantizeTest, + ::testing::Values( + make_tuple(&vpx_quantize_b_c, &vpx_quantize_b_c, VPX_BITS_8, 16, false), + make_tuple(&vpx_quantize_b_32x32_c, &vpx_quantize_b_32x32_c, VPX_BITS_8, + 32, false), + make_tuple(&QuantFPWrapper, + &QuantFPWrapper, VPX_BITS_8, 16, true), + make_tuple(&QuantFPWrapper, + &QuantFPWrapper, VPX_BITS_8, 16, true), + make_tuple(&QuantFPWrapper, + &QuantFPWrapper, VPX_BITS_8, 32, + true))); +} // namespace diff --git a/test/vp9_scale_test.cc b/test/vp9_scale_test.cc new file mode 100644 index 0000000..5d7d38e --- /dev/null +++ b/test/vp9_scale_test.cc @@ -0,0 +1,214 @@ +/* + * Copyright (c) 2017 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include +#include + +#include "third_party/googletest/src/include/gtest/gtest.h" + +#include "./vp9_rtcd.h" +#include "./vpx_config.h" +#include "./vpx_scale_rtcd.h" +#include "test/clear_system_state.h" +#include "test/register_state_check.h" +#include "test/vpx_scale_test.h" +#include "vpx_mem/vpx_mem.h" +#include "vpx_ports/vpx_timer.h" +#include "vpx_scale/yv12config.h" + +namespace libvpx_test { + +typedef void (*ScaleFrameFunc)(const YV12_BUFFER_CONFIG *src, + YV12_BUFFER_CONFIG *dst, + INTERP_FILTER filter_type, int phase_scaler); + +class ScaleTest : public VpxScaleBase, + public ::testing::TestWithParam { + public: + virtual ~ScaleTest() {} + + protected: + virtual void SetUp() { scale_fn_ = GetParam(); } + + void ReferenceScaleFrame(INTERP_FILTER filter_type, int phase_scaler) { + vp9_scale_and_extend_frame_c(&img_, &ref_img_, filter_type, phase_scaler); + } + + void ScaleFrame(INTERP_FILTER filter_type, int phase_scaler) { + ASM_REGISTER_STATE_CHECK( + scale_fn_(&img_, &dst_img_, filter_type, phase_scaler)); + } + + void RunTest() { + static const int kNumSizesToTest = 20; + static const int kNumScaleFactorsToTest = 4; + static const int kSizesToTest[] = { + 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, + 22, 24, 26, 28, 30, 32, 34, 68, 128, 134 + }; + static const int kScaleFactors[] = { 1, 2, 3, 4 }; + for (INTERP_FILTER filter_type = 0; filter_type < 4; ++filter_type) { + for (int phase_scaler = 0; phase_scaler < 16; ++phase_scaler) { + for (int h = 0; h < kNumSizesToTest; ++h) { + const int src_height = kSizesToTest[h]; + for (int w = 0; w < kNumSizesToTest; ++w) { + const int src_width = kSizesToTest[w]; + for (int sf_up_idx = 0; sf_up_idx < kNumScaleFactorsToTest; + ++sf_up_idx) { + const int sf_up = kScaleFactors[sf_up_idx]; + for (int sf_down_idx = 0; sf_down_idx < kNumScaleFactorsToTest; + ++sf_down_idx) { + const int sf_down = kScaleFactors[sf_down_idx]; + const int dst_width = src_width * sf_up / sf_down; + const int dst_height = src_height * sf_up / sf_down; + if (sf_up == sf_down && sf_up != 1) { + continue; + } + // I420 frame width and height must be even. + if (!dst_width || !dst_height || dst_width & 1 || + dst_height & 1) { + continue; + } + // vpx_convolve8_c() has restriction on the step which cannot + // exceed 64 (ratio 1 to 4). + if (src_width > 4 * dst_width || src_height > 4 * dst_height) { + continue; + } + ASSERT_NO_FATAL_FAILURE(ResetScaleImages( + src_width, src_height, dst_width, dst_height)); + ReferenceScaleFrame(filter_type, phase_scaler); + ScaleFrame(filter_type, phase_scaler); + if (memcmp(dst_img_.buffer_alloc, ref_img_.buffer_alloc, + ref_img_.frame_size)) { + printf( + "filter_type = %d, phase_scaler = %d, src_width = %4d, " + "src_height = %4d, dst_width = %4d, dst_height = %4d, " + "scale factor = %d:%d\n", + filter_type, phase_scaler, src_width, src_height, + dst_width, dst_height, sf_down, sf_up); + PrintDiff(); + } + CompareImages(dst_img_); + DeallocScaleImages(); + } + } + } + } + } + } + } + + void PrintDiffComponent(const uint8_t *const ref, const uint8_t *const opt, + const int stride, const int width, const int height, + const int plane_idx) const { + for (int y = 0; y < height; y++) { + for (int x = 0; x < width; x++) { + if (ref[y * stride + x] != opt[y * stride + x]) { + printf("Plane %d pixel[%d][%d] diff:%6d (ref),%6d (opt)\n", plane_idx, + y, x, ref[y * stride + x], opt[y * stride + x]); + break; + } + } + } + } + + void PrintDiff() const { + assert(ref_img_.y_stride == dst_img_.y_stride); + assert(ref_img_.y_width == dst_img_.y_width); + assert(ref_img_.y_height == dst_img_.y_height); + assert(ref_img_.uv_stride == dst_img_.uv_stride); + assert(ref_img_.uv_width == dst_img_.uv_width); + assert(ref_img_.uv_height == dst_img_.uv_height); + + if (memcmp(dst_img_.buffer_alloc, ref_img_.buffer_alloc, + ref_img_.frame_size)) { + PrintDiffComponent(ref_img_.y_buffer, dst_img_.y_buffer, + ref_img_.y_stride, ref_img_.y_width, ref_img_.y_height, + 0); + PrintDiffComponent(ref_img_.u_buffer, dst_img_.u_buffer, + ref_img_.uv_stride, ref_img_.uv_width, + ref_img_.uv_height, 1); + PrintDiffComponent(ref_img_.v_buffer, dst_img_.v_buffer, + ref_img_.uv_stride, ref_img_.uv_width, + ref_img_.uv_height, 2); + } + } + + ScaleFrameFunc scale_fn_; +}; + +TEST_P(ScaleTest, ScaleFrame) { ASSERT_NO_FATAL_FAILURE(RunTest()); } + +TEST_P(ScaleTest, DISABLED_Speed) { + static const int kCountSpeedTestBlock = 100; + static const int kNumScaleFactorsToTest = 4; + static const int kScaleFactors[] = { 1, 2, 3, 4 }; + const int src_width = 1280; + const int src_height = 720; + for (INTERP_FILTER filter_type = 2; filter_type < 4; ++filter_type) { + for (int phase_scaler = 0; phase_scaler < 2; ++phase_scaler) { + for (int sf_up_idx = 0; sf_up_idx < kNumScaleFactorsToTest; ++sf_up_idx) { + const int sf_up = kScaleFactors[sf_up_idx]; + for (int sf_down_idx = 0; sf_down_idx < kNumScaleFactorsToTest; + ++sf_down_idx) { + const int sf_down = kScaleFactors[sf_down_idx]; + const int dst_width = src_width * sf_up / sf_down; + const int dst_height = src_height * sf_up / sf_down; + if (sf_up == sf_down && sf_up != 1) { + continue; + } + // I420 frame width and height must be even. + if (dst_width & 1 || dst_height & 1) { + continue; + } + ASSERT_NO_FATAL_FAILURE( + ResetScaleImages(src_width, src_height, dst_width, dst_height)); + ASM_REGISTER_STATE_CHECK( + ReferenceScaleFrame(filter_type, phase_scaler)); + + vpx_usec_timer timer; + vpx_usec_timer_start(&timer); + for (int i = 0; i < kCountSpeedTestBlock; ++i) { + ScaleFrame(filter_type, phase_scaler); + } + libvpx_test::ClearSystemState(); + vpx_usec_timer_mark(&timer); + const int elapsed_time = + static_cast(vpx_usec_timer_elapsed(&timer) / 1000); + CompareImages(dst_img_); + DeallocScaleImages(); + + printf( + "filter_type = %d, phase_scaler = %d, src_width = %4d, " + "src_height = %4d, dst_width = %4d, dst_height = %4d, " + "scale factor = %d:%d, scale time: %5d ms\n", + filter_type, phase_scaler, src_width, src_height, dst_width, + dst_height, sf_down, sf_up, elapsed_time); + } + } + } + } +} + +INSTANTIATE_TEST_CASE_P(C, ScaleTest, + ::testing::Values(vp9_scale_and_extend_frame_c)); + +#if HAVE_SSSE3 +INSTANTIATE_TEST_CASE_P(SSSE3, ScaleTest, + ::testing::Values(vp9_scale_and_extend_frame_ssse3)); +#endif // HAVE_SSSE3 + +#if HAVE_NEON +INSTANTIATE_TEST_CASE_P(NEON, ScaleTest, + ::testing::Values(vp9_scale_and_extend_frame_neon)); +#endif // HAVE_NEON + +} // namespace libvpx_test diff --git a/test/vp9_skip_loopfilter_test.cc b/test/vp9_skip_loopfilter_test.cc new file mode 100644 index 0000000..d41a784 --- /dev/null +++ b/test/vp9_skip_loopfilter_test.cc @@ -0,0 +1,174 @@ +/* + * Copyright (c) 2015 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include + +#include "test/codec_factory.h" +#include "test/decode_test_driver.h" +#include "test/md5_helper.h" +#include "test/util.h" +#include "test/webm_video_source.h" + +namespace { + +const char kVp9TestFile[] = "vp90-2-08-tile_1x8_frame_parallel.webm"; +const char kVp9Md5File[] = "vp90-2-08-tile_1x8_frame_parallel.webm.md5"; + +// Class for testing shutting off the loop filter. +class SkipLoopFilterTest { + public: + SkipLoopFilterTest() : video_(NULL), decoder_(NULL), md5_file_(NULL) {} + + ~SkipLoopFilterTest() { + if (md5_file_ != NULL) fclose(md5_file_); + delete decoder_; + delete video_; + } + + // If |threads| > 0 then set the decoder with that number of threads. + void Init(int num_threads) { + expected_md5_[0] = '\0'; + junk_[0] = '\0'; + video_ = new libvpx_test::WebMVideoSource(kVp9TestFile); + ASSERT_TRUE(video_ != NULL); + video_->Init(); + video_->Begin(); + + vpx_codec_dec_cfg_t cfg = vpx_codec_dec_cfg_t(); + if (num_threads > 0) cfg.threads = num_threads; + decoder_ = new libvpx_test::VP9Decoder(cfg, 0); + ASSERT_TRUE(decoder_ != NULL); + + OpenMd5File(kVp9Md5File); + } + + // Set the VP9 skipLoopFilter control value. + void SetSkipLoopFilter(int value, vpx_codec_err_t expected_value) { + decoder_->Control(VP9_SET_SKIP_LOOP_FILTER, value, expected_value); + } + + vpx_codec_err_t DecodeOneFrame() { + const vpx_codec_err_t res = + decoder_->DecodeFrame(video_->cxdata(), video_->frame_size()); + if (res == VPX_CODEC_OK) { + ReadMd5(); + video_->Next(); + } + return res; + } + + vpx_codec_err_t DecodeRemainingFrames() { + for (; video_->cxdata() != NULL; video_->Next()) { + const vpx_codec_err_t res = + decoder_->DecodeFrame(video_->cxdata(), video_->frame_size()); + if (res != VPX_CODEC_OK) return res; + ReadMd5(); + } + return VPX_CODEC_OK; + } + + // Checks if MD5 matches or doesn't. + void CheckMd5(bool matches) { + libvpx_test::DxDataIterator dec_iter = decoder_->GetDxData(); + const vpx_image_t *img = dec_iter.Next(); + CheckMd5Vpx(*img, matches); + } + + private: + // TODO(fgalligan): Move the MD5 testing code into another class. + void OpenMd5File(const std::string &md5_file_name) { + md5_file_ = libvpx_test::OpenTestDataFile(md5_file_name); + ASSERT_TRUE(md5_file_ != NULL) + << "MD5 file open failed. Filename: " << md5_file_name; + } + + // Reads the next line of the MD5 file. + void ReadMd5() { + ASSERT_TRUE(md5_file_ != NULL); + const int res = fscanf(md5_file_, "%s %s", expected_md5_, junk_); + ASSERT_NE(EOF, res) << "Read md5 data failed"; + expected_md5_[32] = '\0'; + } + + // Checks if the last read MD5 matches |img| or doesn't. + void CheckMd5Vpx(const vpx_image_t &img, bool matches) { + ::libvpx_test::MD5 md5_res; + md5_res.Add(&img); + const char *const actual_md5 = md5_res.Get(); + + // Check MD5. + if (matches) + ASSERT_STREQ(expected_md5_, actual_md5) << "MD5 checksums don't match"; + else + ASSERT_STRNE(expected_md5_, actual_md5) << "MD5 checksums match"; + } + + libvpx_test::WebMVideoSource *video_; + libvpx_test::VP9Decoder *decoder_; + FILE *md5_file_; + char expected_md5_[33]; + char junk_[128]; +}; + +TEST(SkipLoopFilterTest, ShutOffLoopFilter) { + const int non_zero_value = 1; + const int num_threads = 0; + SkipLoopFilterTest skip_loop_filter; + skip_loop_filter.Init(num_threads); + skip_loop_filter.SetSkipLoopFilter(non_zero_value, VPX_CODEC_OK); + ASSERT_EQ(VPX_CODEC_OK, skip_loop_filter.DecodeRemainingFrames()); + skip_loop_filter.CheckMd5(false); +} + +TEST(SkipLoopFilterTest, ShutOffLoopFilterSingleThread) { + const int non_zero_value = 1; + const int num_threads = 1; + SkipLoopFilterTest skip_loop_filter; + skip_loop_filter.Init(num_threads); + skip_loop_filter.SetSkipLoopFilter(non_zero_value, VPX_CODEC_OK); + ASSERT_EQ(VPX_CODEC_OK, skip_loop_filter.DecodeRemainingFrames()); + skip_loop_filter.CheckMd5(false); +} + +TEST(SkipLoopFilterTest, ShutOffLoopFilter8Threads) { + const int non_zero_value = 1; + const int num_threads = 8; + SkipLoopFilterTest skip_loop_filter; + skip_loop_filter.Init(num_threads); + skip_loop_filter.SetSkipLoopFilter(non_zero_value, VPX_CODEC_OK); + ASSERT_EQ(VPX_CODEC_OK, skip_loop_filter.DecodeRemainingFrames()); + skip_loop_filter.CheckMd5(false); +} + +TEST(SkipLoopFilterTest, WithLoopFilter) { + const int non_zero_value = 1; + const int num_threads = 0; + SkipLoopFilterTest skip_loop_filter; + skip_loop_filter.Init(num_threads); + skip_loop_filter.SetSkipLoopFilter(non_zero_value, VPX_CODEC_OK); + skip_loop_filter.SetSkipLoopFilter(0, VPX_CODEC_OK); + ASSERT_EQ(VPX_CODEC_OK, skip_loop_filter.DecodeRemainingFrames()); + skip_loop_filter.CheckMd5(true); +} + +TEST(SkipLoopFilterTest, ToggleLoopFilter) { + const int num_threads = 0; + SkipLoopFilterTest skip_loop_filter; + skip_loop_filter.Init(num_threads); + + for (int i = 0; i < 10; ++i) { + skip_loop_filter.SetSkipLoopFilter(i % 2, VPX_CODEC_OK); + ASSERT_EQ(VPX_CODEC_OK, skip_loop_filter.DecodeOneFrame()); + } + ASSERT_EQ(VPX_CODEC_OK, skip_loop_filter.DecodeRemainingFrames()); + skip_loop_filter.CheckMd5(false); +} + +} // namespace diff --git a/test/vp9_spatial_svc_encoder.sh b/test/vp9_spatial_svc_encoder.sh new file mode 100755 index 0000000..6503107 --- /dev/null +++ b/test/vp9_spatial_svc_encoder.sh @@ -0,0 +1,72 @@ +#!/bin/sh +## +## Copyright (c) 2014 The WebM project authors. All Rights Reserved. +## +## Use of this source code is governed by a BSD-style license +## that can be found in the LICENSE file in the root of the source +## tree. An additional intellectual property rights grant can be found +## in the file PATENTS. All contributing project authors may +## be found in the AUTHORS file in the root of the source tree. +## +## This file tests the libvpx vp9_spatial_svc_encoder example. To add new +## tests to to this file, do the following: +## 1. Write a shell function (this is your test). +## 2. Add the function to vp9_spatial_svc_tests (on a new line). +## +. $(dirname $0)/tools_common.sh + +# Environment check: $YUV_RAW_INPUT is required. +vp9_spatial_svc_encoder_verify_environment() { + if [ ! -e "${YUV_RAW_INPUT}" ]; then + echo "Libvpx test data must exist in LIBVPX_TEST_DATA_PATH." + return 1 + fi +} + +# Runs vp9_spatial_svc_encoder. $1 is the test name. +vp9_spatial_svc_encoder() { + local readonly \ + encoder="${LIBVPX_BIN_PATH}/vp9_spatial_svc_encoder${VPX_TEST_EXE_SUFFIX}" + local readonly test_name="$1" + local readonly \ + output_file="${VPX_TEST_OUTPUT_DIR}/vp9_ssvc_encoder${test_name}.ivf" + local readonly frames_to_encode=10 + local readonly max_kf=9999 + + shift + + if [ ! -x "${encoder}" ]; then + elog "${encoder} does not exist or is not executable." + return 1 + fi + + eval "${VPX_TEST_PREFIX}" "${encoder}" -w "${YUV_RAW_INPUT_WIDTH}" \ + -h "${YUV_RAW_INPUT_HEIGHT}" -k "${max_kf}" -f "${frames_to_encode}" \ + "$@" "${YUV_RAW_INPUT}" "${output_file}" ${devnull} + + [ -e "${output_file}" ] || return 1 +} + +# Each test is run with layer count 1-$vp9_ssvc_test_layers. +vp9_ssvc_test_layers=5 + +vp9_spatial_svc() { + if [ "$(vp9_encode_available)" = "yes" ]; then + local readonly test_name="vp9_spatial_svc" + for layers in $(seq 1 ${vp9_ssvc_test_layers}); do + vp9_spatial_svc_encoder "${test_name}" -sl ${layers} + done + fi +} + +readonly vp9_spatial_svc_tests="DISABLED_vp9_spatial_svc_mode_i + DISABLED_vp9_spatial_svc_mode_altip + DISABLED_vp9_spatial_svc_mode_ip + DISABLED_vp9_spatial_svc_mode_gf + vp9_spatial_svc" + +if [ "$(vpx_config_option_enabled CONFIG_SPATIAL_SVC)" = "yes" ]; then + run_tests \ + vp9_spatial_svc_encoder_verify_environment \ + "${vp9_spatial_svc_tests}" +fi diff --git a/test/vp9_subtract_test.cc b/test/vp9_subtract_test.cc new file mode 100644 index 0000000..62845ad --- /dev/null +++ b/test/vp9_subtract_test.cc @@ -0,0 +1,109 @@ +/* + * Copyright (c) 2012 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "third_party/googletest/src/include/gtest/gtest.h" + +#include "./vp9_rtcd.h" +#include "./vpx_config.h" +#include "./vpx_dsp_rtcd.h" +#include "test/acm_random.h" +#include "test/clear_system_state.h" +#include "test/register_state_check.h" +#include "vp9/common/vp9_blockd.h" +#include "vpx_mem/vpx_mem.h" + +typedef void (*SubtractFunc)(int rows, int cols, int16_t *diff_ptr, + ptrdiff_t diff_stride, const uint8_t *src_ptr, + ptrdiff_t src_stride, const uint8_t *pred_ptr, + ptrdiff_t pred_stride); + +namespace vp9 { + +class VP9SubtractBlockTest : public ::testing::TestWithParam { + public: + virtual void TearDown() { libvpx_test::ClearSystemState(); } +}; + +using libvpx_test::ACMRandom; + +TEST_P(VP9SubtractBlockTest, SimpleSubtract) { + ACMRandom rnd(ACMRandom::DeterministicSeed()); + + // FIXME(rbultje) split in its own file + for (BLOCK_SIZE bsize = BLOCK_4X4; bsize < BLOCK_SIZES; + bsize = static_cast(static_cast(bsize) + 1)) { + const int block_width = 4 * num_4x4_blocks_wide_lookup[bsize]; + const int block_height = 4 * num_4x4_blocks_high_lookup[bsize]; + int16_t *diff = reinterpret_cast( + vpx_memalign(16, sizeof(*diff) * block_width * block_height * 2)); + uint8_t *pred = reinterpret_cast( + vpx_memalign(16, block_width * block_height * 2)); + uint8_t *src = reinterpret_cast( + vpx_memalign(16, block_width * block_height * 2)); + + for (int n = 0; n < 100; n++) { + for (int r = 0; r < block_height; ++r) { + for (int c = 0; c < block_width * 2; ++c) { + src[r * block_width * 2 + c] = rnd.Rand8(); + pred[r * block_width * 2 + c] = rnd.Rand8(); + } + } + + GetParam()(block_height, block_width, diff, block_width, src, block_width, + pred, block_width); + + for (int r = 0; r < block_height; ++r) { + for (int c = 0; c < block_width; ++c) { + EXPECT_EQ(diff[r * block_width + c], + (src[r * block_width + c] - pred[r * block_width + c])) + << "r = " << r << ", c = " << c << ", bs = " << bsize; + } + } + + GetParam()(block_height, block_width, diff, block_width * 2, src, + block_width * 2, pred, block_width * 2); + + for (int r = 0; r < block_height; ++r) { + for (int c = 0; c < block_width; ++c) { + EXPECT_EQ( + diff[r * block_width * 2 + c], + (src[r * block_width * 2 + c] - pred[r * block_width * 2 + c])) + << "r = " << r << ", c = " << c << ", bs = " << bsize; + } + } + } + vpx_free(diff); + vpx_free(pred); + vpx_free(src); + } +} + +INSTANTIATE_TEST_CASE_P(C, VP9SubtractBlockTest, + ::testing::Values(vpx_subtract_block_c)); + +#if HAVE_SSE2 +INSTANTIATE_TEST_CASE_P(SSE2, VP9SubtractBlockTest, + ::testing::Values(vpx_subtract_block_sse2)); +#endif +#if HAVE_NEON +INSTANTIATE_TEST_CASE_P(NEON, VP9SubtractBlockTest, + ::testing::Values(vpx_subtract_block_neon)); +#endif +#if HAVE_MSA +INSTANTIATE_TEST_CASE_P(MSA, VP9SubtractBlockTest, + ::testing::Values(vpx_subtract_block_msa)); +#endif + +#if HAVE_MMI +INSTANTIATE_TEST_CASE_P(MMI, VP9SubtractBlockTest, + ::testing::Values(vpx_subtract_block_mmi)); +#endif + +} // namespace vp9 diff --git a/test/vp9_thread_test.cc b/test/vp9_thread_test.cc new file mode 100644 index 0000000..576f5e9 --- /dev/null +++ b/test/vp9_thread_test.cc @@ -0,0 +1,320 @@ +/* + * Copyright (c) 2013 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include + +#include "third_party/googletest/src/include/gtest/gtest.h" +#include "./vpx_config.h" +#include "test/codec_factory.h" +#include "test/decode_test_driver.h" +#include "test/md5_helper.h" +#if CONFIG_WEBM_IO +#include "test/webm_video_source.h" +#endif +#include "vpx_util/vpx_thread.h" + +namespace { + +using std::string; + +class VPxWorkerThreadTest : public ::testing::TestWithParam { + protected: + virtual ~VPxWorkerThreadTest() {} + virtual void SetUp() { vpx_get_worker_interface()->init(&worker_); } + + virtual void TearDown() { vpx_get_worker_interface()->end(&worker_); } + + void Run(VPxWorker *worker) { + const bool synchronous = GetParam(); + if (synchronous) { + vpx_get_worker_interface()->execute(worker); + } else { + vpx_get_worker_interface()->launch(worker); + } + } + + VPxWorker worker_; +}; + +int ThreadHook(void *data, void *return_value) { + int *const hook_data = reinterpret_cast(data); + *hook_data = 5; + return *reinterpret_cast(return_value); +} + +TEST_P(VPxWorkerThreadTest, HookSuccess) { + // should be a no-op. + EXPECT_NE(vpx_get_worker_interface()->sync(&worker_), 0); + + for (int i = 0; i < 2; ++i) { + EXPECT_NE(vpx_get_worker_interface()->reset(&worker_), 0); + + int hook_data = 0; + int return_value = 1; // return successfully from the hook + worker_.hook = ThreadHook; + worker_.data1 = &hook_data; + worker_.data2 = &return_value; + + Run(&worker_); + EXPECT_NE(vpx_get_worker_interface()->sync(&worker_), 0); + EXPECT_FALSE(worker_.had_error); + EXPECT_EQ(5, hook_data); + + // should be a no-op. + EXPECT_NE(vpx_get_worker_interface()->sync(&worker_), 0); + } +} + +TEST_P(VPxWorkerThreadTest, HookFailure) { + EXPECT_NE(vpx_get_worker_interface()->reset(&worker_), 0); + + int hook_data = 0; + int return_value = 0; // return failure from the hook + worker_.hook = ThreadHook; + worker_.data1 = &hook_data; + worker_.data2 = &return_value; + + Run(&worker_); + EXPECT_FALSE(vpx_get_worker_interface()->sync(&worker_)); + EXPECT_EQ(1, worker_.had_error); + + // Ensure _reset() clears the error and _launch() can be called again. + return_value = 1; + EXPECT_NE(vpx_get_worker_interface()->reset(&worker_), 0); + EXPECT_FALSE(worker_.had_error); + vpx_get_worker_interface()->launch(&worker_); + EXPECT_NE(vpx_get_worker_interface()->sync(&worker_), 0); + EXPECT_FALSE(worker_.had_error); +} + +TEST_P(VPxWorkerThreadTest, EndWithoutSync) { + // Create a large number of threads to increase the chances of detecting a + // race. Doing more work in the hook is no guarantee as any race would occur + // post hook execution in the main thread loop driver. + static const int kNumWorkers = 64; + VPxWorker workers[kNumWorkers]; + int hook_data[kNumWorkers]; + int return_value[kNumWorkers]; + + for (int n = 0; n < kNumWorkers; ++n) { + vpx_get_worker_interface()->init(&workers[n]); + return_value[n] = 1; // return successfully from the hook + workers[n].hook = ThreadHook; + workers[n].data1 = &hook_data[n]; + workers[n].data2 = &return_value[n]; + } + + for (int i = 0; i < 2; ++i) { + for (int n = 0; n < kNumWorkers; ++n) { + EXPECT_NE(vpx_get_worker_interface()->reset(&workers[n]), 0); + hook_data[n] = 0; + } + + for (int n = 0; n < kNumWorkers; ++n) { + Run(&workers[n]); + } + + for (int n = kNumWorkers - 1; n >= 0; --n) { + vpx_get_worker_interface()->end(&workers[n]); + } + } +} + +TEST(VPxWorkerThreadTest, TestInterfaceAPI) { + EXPECT_EQ(0, vpx_set_worker_interface(NULL)); + EXPECT_TRUE(vpx_get_worker_interface() != NULL); + for (int i = 0; i < 6; ++i) { + VPxWorkerInterface winterface = *vpx_get_worker_interface(); + switch (i) { + default: + case 0: winterface.init = NULL; break; + case 1: winterface.reset = NULL; break; + case 2: winterface.sync = NULL; break; + case 3: winterface.launch = NULL; break; + case 4: winterface.execute = NULL; break; + case 5: winterface.end = NULL; break; + } + EXPECT_EQ(0, vpx_set_worker_interface(&winterface)); + } +} + +// ----------------------------------------------------------------------------- +// Multi-threaded decode tests + +#if CONFIG_WEBM_IO +struct FileList { + const char *name; + const char *expected_md5; +}; + +// Decodes |filename| with |num_threads|. Returns the md5 of the decoded frames. +string DecodeFile(const string &filename, int num_threads) { + libvpx_test::WebMVideoSource video(filename); + video.Init(); + + vpx_codec_dec_cfg_t cfg = vpx_codec_dec_cfg_t(); + cfg.threads = num_threads; + libvpx_test::VP9Decoder decoder(cfg, 0); + + libvpx_test::MD5 md5; + for (video.Begin(); video.cxdata(); video.Next()) { + const vpx_codec_err_t res = + decoder.DecodeFrame(video.cxdata(), video.frame_size()); + if (res != VPX_CODEC_OK) { + EXPECT_EQ(VPX_CODEC_OK, res) << decoder.DecodeError(); + break; + } + + libvpx_test::DxDataIterator dec_iter = decoder.GetDxData(); + const vpx_image_t *img = NULL; + + // Get decompressed data + while ((img = dec_iter.Next())) { + md5.Add(img); + } + } + return string(md5.Get()); +} + +void DecodeFiles(const FileList files[]) { + for (const FileList *iter = files; iter->name != NULL; ++iter) { + SCOPED_TRACE(iter->name); + for (int t = 1; t <= 8; ++t) { + EXPECT_EQ(iter->expected_md5, DecodeFile(iter->name, t)) + << "threads = " << t; + } + } +} + +// Trivial serialized thread worker interface implementation. +// Note any worker that requires synchronization between other workers will +// hang. +namespace impl { + +void Init(VPxWorker *const worker) { memset(worker, 0, sizeof(*worker)); } +int Reset(VPxWorker *const /*worker*/) { return 1; } +int Sync(VPxWorker *const worker) { return !worker->had_error; } + +void Execute(VPxWorker *const worker) { + worker->had_error |= !worker->hook(worker->data1, worker->data2); +} + +void Launch(VPxWorker *const worker) { Execute(worker); } +void End(VPxWorker *const /*worker*/) {} + +} // namespace impl + +TEST(VPxWorkerThreadTest, TestSerialInterface) { + static const VPxWorkerInterface serial_interface = { + impl::Init, impl::Reset, impl::Sync, impl::Launch, impl::Execute, impl::End + }; + // TODO(jzern): Avoid using a file that will use the row-based thread + // loopfilter, with the simple serialized implementation it will hang. This is + // due to its expectation that rows will be run in parallel as they wait on + // progress in the row above before proceeding. + static const char expected_md5[] = "b35a1b707b28e82be025d960aba039bc"; + static const char filename[] = "vp90-2-03-size-226x226.webm"; + VPxWorkerInterface default_interface = *vpx_get_worker_interface(); + + EXPECT_NE(vpx_set_worker_interface(&serial_interface), 0); + EXPECT_EQ(expected_md5, DecodeFile(filename, 2)); + + // Reset the interface. + EXPECT_NE(vpx_set_worker_interface(&default_interface), 0); + EXPECT_EQ(expected_md5, DecodeFile(filename, 2)); +} + +TEST(VP9DecodeMultiThreadedTest, NoTilesNonFrameParallel) { + // no tiles or frame parallel; this exercises loop filter threading. + EXPECT_EQ("b35a1b707b28e82be025d960aba039bc", + DecodeFile("vp90-2-03-size-226x226.webm", 2)); +} + +TEST(VP9DecodeMultiThreadedTest, FrameParallel) { + static const FileList files[] = { { "vp90-2-08-tile_1x2_frame_parallel.webm", + "68ede6abd66bae0a2edf2eb9232241b6" }, + { "vp90-2-08-tile_1x4_frame_parallel.webm", + "368ebc6ebf3a5e478d85b2c3149b2848" }, + { "vp90-2-08-tile_1x8_frame_parallel.webm", + "17e439da2388aff3a0f69cb22579c6c1" }, + { NULL, NULL } }; + + DecodeFiles(files); +} + +TEST(VP9DecodeMultiThreadedTest, FrameParallelResize) { + static const FileList files[] = { + { "vp90-2-14-resize-fp-tiles-1-16.webm", + "0cd5e632c326297e975f38949c31ea94" }, + { "vp90-2-14-resize-fp-tiles-1-2-4-8-16.webm", + "5c78a96a42e7f4a4f6b2edcdb791e44c" }, + { "vp90-2-14-resize-fp-tiles-1-2.webm", + "e030450ae85c3277be2a418769df98e2" }, + { "vp90-2-14-resize-fp-tiles-1-4.webm", + "312eed4e2b64eb7a4e7f18916606a430" }, + { "vp90-2-14-resize-fp-tiles-16-1.webm", + "1755c16d8af16a9cb3fe7338d90abe52" }, + { "vp90-2-14-resize-fp-tiles-16-2.webm", + "500300592d3fcb6f12fab25e48aaf4df" }, + { "vp90-2-14-resize-fp-tiles-16-4.webm", + "47c48379fa6331215d91c67648e1af6e" }, + { "vp90-2-14-resize-fp-tiles-16-8-4-2-1.webm", + "eecf17290739bc708506fa4827665989" }, + { "vp90-2-14-resize-fp-tiles-16-8.webm", + "29b6bb54e4c26b5ca85d5de5fed94e76" }, + { "vp90-2-14-resize-fp-tiles-1-8.webm", + "1b6f175e08cd82cf84bb800ac6d1caa3" }, + { "vp90-2-14-resize-fp-tiles-2-16.webm", + "ca3b03e4197995d8d5444ede7a6c0804" }, + { "vp90-2-14-resize-fp-tiles-2-1.webm", + "99aec065369d70bbb78ccdff65afed3f" }, + { "vp90-2-14-resize-fp-tiles-2-4.webm", + "22d0ebdb49b87d2920a85aea32e1afd5" }, + { "vp90-2-14-resize-fp-tiles-2-8.webm", + "c2115cf051c62e0f7db1d4a783831541" }, + { "vp90-2-14-resize-fp-tiles-4-16.webm", + "c690d7e1719b31367564cac0af0939cb" }, + { "vp90-2-14-resize-fp-tiles-4-1.webm", + "a926020b2cc3e15ad4cc271853a0ff26" }, + { "vp90-2-14-resize-fp-tiles-4-2.webm", + "42699063d9e581f1993d0cf890c2be78" }, + { "vp90-2-14-resize-fp-tiles-4-8.webm", + "7f76d96036382f45121e3d5aa6f8ec52" }, + { "vp90-2-14-resize-fp-tiles-8-16.webm", + "76a43fcdd7e658542913ea43216ec55d" }, + { "vp90-2-14-resize-fp-tiles-8-1.webm", + "8e3fbe89486ca60a59299dea9da91378" }, + { "vp90-2-14-resize-fp-tiles-8-2.webm", + "ae96f21f21b6370cc0125621b441fc52" }, + { "vp90-2-14-resize-fp-tiles-8-4.webm", + "3eb4f24f10640d42218f7fd7b9fd30d4" }, + { NULL, NULL } + }; + + DecodeFiles(files); +} + +TEST(VP9DecodeMultiThreadedTest, NonFrameParallel) { + static const FileList files[] = { + { "vp90-2-08-tile_1x2.webm", "570b4a5d5a70d58b5359671668328a16" }, + { "vp90-2-08-tile_1x4.webm", "988d86049e884c66909d2d163a09841a" }, + { "vp90-2-08-tile_1x8.webm", "0941902a52e9092cb010905eab16364c" }, + { "vp90-2-08-tile-4x1.webm", "06505aade6647c583c8e00a2f582266f" }, + { "vp90-2-08-tile-4x4.webm", "85c2299892460d76e2c600502d52bfe2" }, + { NULL, NULL } + }; + + DecodeFiles(files); +} +#endif // CONFIG_WEBM_IO + +INSTANTIATE_TEST_CASE_P(Synchronous, VPxWorkerThreadTest, ::testing::Bool()); + +} // namespace diff --git a/test/vpx_scale_test.cc b/test/vpx_scale_test.cc new file mode 100644 index 0000000..ac75dce --- /dev/null +++ b/test/vpx_scale_test.cc @@ -0,0 +1,105 @@ +/* + * Copyright (c) 2014 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "third_party/googletest/src/include/gtest/gtest.h" + +#include "./vpx_config.h" +#include "./vpx_scale_rtcd.h" +#include "test/clear_system_state.h" +#include "test/register_state_check.h" +#include "test/vpx_scale_test.h" +#include "vpx_mem/vpx_mem.h" +#include "vpx_ports/vpx_timer.h" +#include "vpx_scale/yv12config.h" + +namespace libvpx_test { + +typedef void (*ExtendFrameBorderFunc)(YV12_BUFFER_CONFIG *ybf); +typedef void (*CopyFrameFunc)(const YV12_BUFFER_CONFIG *src_ybf, + YV12_BUFFER_CONFIG *dst_ybf); + +class ExtendBorderTest + : public VpxScaleBase, + public ::testing::TestWithParam { + public: + virtual ~ExtendBorderTest() {} + + protected: + virtual void SetUp() { extend_fn_ = GetParam(); } + + void ExtendBorder() { ASM_REGISTER_STATE_CHECK(extend_fn_(&img_)); } + + void RunTest() { +#if ARCH_ARM + // Some arm devices OOM when trying to allocate the largest buffers. + static const int kNumSizesToTest = 6; +#else + static const int kNumSizesToTest = 7; +#endif + static const int kSizesToTest[] = { 1, 15, 33, 145, 512, 1025, 16383 }; + for (int h = 0; h < kNumSizesToTest; ++h) { + for (int w = 0; w < kNumSizesToTest; ++w) { + ASSERT_NO_FATAL_FAILURE(ResetImages(kSizesToTest[w], kSizesToTest[h])); + ReferenceCopyFrame(); + ExtendBorder(); + CompareImages(img_); + DeallocImages(); + } + } + } + + ExtendFrameBorderFunc extend_fn_; +}; + +TEST_P(ExtendBorderTest, ExtendBorder) { ASSERT_NO_FATAL_FAILURE(RunTest()); } + +INSTANTIATE_TEST_CASE_P(C, ExtendBorderTest, + ::testing::Values(vp8_yv12_extend_frame_borders_c)); + +class CopyFrameTest : public VpxScaleBase, + public ::testing::TestWithParam { + public: + virtual ~CopyFrameTest() {} + + protected: + virtual void SetUp() { copy_frame_fn_ = GetParam(); } + + void CopyFrame() { + ASM_REGISTER_STATE_CHECK(copy_frame_fn_(&img_, &dst_img_)); + } + + void RunTest() { +#if ARCH_ARM + // Some arm devices OOM when trying to allocate the largest buffers. + static const int kNumSizesToTest = 6; +#else + static const int kNumSizesToTest = 7; +#endif + static const int kSizesToTest[] = { 1, 15, 33, 145, 512, 1025, 16383 }; + for (int h = 0; h < kNumSizesToTest; ++h) { + for (int w = 0; w < kNumSizesToTest; ++w) { + ASSERT_NO_FATAL_FAILURE(ResetImages(kSizesToTest[w], kSizesToTest[h])); + ReferenceCopyFrame(); + CopyFrame(); + CompareImages(dst_img_); + DeallocImages(); + } + } + } + + CopyFrameFunc copy_frame_fn_; +}; + +TEST_P(CopyFrameTest, CopyFrame) { ASSERT_NO_FATAL_FAILURE(RunTest()); } + +INSTANTIATE_TEST_CASE_P(C, CopyFrameTest, + ::testing::Values(vp8_yv12_copy_frame_c)); + +} // namespace libvpx_test diff --git a/test/vpx_scale_test.h b/test/vpx_scale_test.h new file mode 100644 index 0000000..dcbd02b --- /dev/null +++ b/test/vpx_scale_test.h @@ -0,0 +1,200 @@ +/* + * Copyright (c) 2014 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef TEST_VPX_SCALE_TEST_H_ +#define TEST_VPX_SCALE_TEST_H_ + +#include "third_party/googletest/src/include/gtest/gtest.h" + +#include "./vpx_config.h" +#include "./vpx_scale_rtcd.h" +#include "test/acm_random.h" +#include "test/clear_system_state.h" +#include "test/register_state_check.h" +#include "vpx_mem/vpx_mem.h" +#include "vpx_scale/yv12config.h" + +using libvpx_test::ACMRandom; + +namespace libvpx_test { + +class VpxScaleBase { + public: + virtual ~VpxScaleBase() { libvpx_test::ClearSystemState(); } + + void ResetImage(YV12_BUFFER_CONFIG *const img, const int width, + const int height) { + memset(img, 0, sizeof(*img)); + ASSERT_EQ( + 0, vp8_yv12_alloc_frame_buffer(img, width, height, VP8BORDERINPIXELS)); + memset(img->buffer_alloc, kBufFiller, img->frame_size); + } + + void ResetImages(const int width, const int height) { + ResetImage(&img_, width, height); + ResetImage(&ref_img_, width, height); + ResetImage(&dst_img_, width, height); + + FillPlane(img_.y_buffer, img_.y_crop_width, img_.y_crop_height, + img_.y_stride); + FillPlane(img_.u_buffer, img_.uv_crop_width, img_.uv_crop_height, + img_.uv_stride); + FillPlane(img_.v_buffer, img_.uv_crop_width, img_.uv_crop_height, + img_.uv_stride); + } + + void ResetScaleImage(YV12_BUFFER_CONFIG *const img, const int width, + const int height) { + memset(img, 0, sizeof(*img)); +#if CONFIG_VP9_HIGHBITDEPTH + ASSERT_EQ(0, vpx_alloc_frame_buffer(img, width, height, 1, 1, 0, + VP9_ENC_BORDER_IN_PIXELS, 0)); +#else + ASSERT_EQ(0, vpx_alloc_frame_buffer(img, width, height, 1, 1, + VP9_ENC_BORDER_IN_PIXELS, 0)); +#endif + memset(img->buffer_alloc, kBufFiller, img->frame_size); + } + + void ResetScaleImages(const int src_width, const int src_height, + const int dst_width, const int dst_height) { + ResetScaleImage(&img_, src_width, src_height); + ResetScaleImage(&ref_img_, dst_width, dst_height); + ResetScaleImage(&dst_img_, dst_width, dst_height); + FillPlaneExtreme(img_.y_buffer, img_.y_crop_width, img_.y_crop_height, + img_.y_stride); + FillPlaneExtreme(img_.u_buffer, img_.uv_crop_width, img_.uv_crop_height, + img_.uv_stride); + FillPlaneExtreme(img_.v_buffer, img_.uv_crop_width, img_.uv_crop_height, + img_.uv_stride); + } + + void DeallocImages() { + vp8_yv12_de_alloc_frame_buffer(&img_); + vp8_yv12_de_alloc_frame_buffer(&ref_img_); + vp8_yv12_de_alloc_frame_buffer(&dst_img_); + } + + void DeallocScaleImages() { + vpx_free_frame_buffer(&img_); + vpx_free_frame_buffer(&ref_img_); + vpx_free_frame_buffer(&dst_img_); + } + + protected: + static const int kBufFiller = 123; + static const int kBufMax = kBufFiller - 1; + + static void FillPlane(uint8_t *const buf, const int width, const int height, + const int stride) { + for (int y = 0; y < height; ++y) { + for (int x = 0; x < width; ++x) { + buf[x + (y * stride)] = (x + (width * y)) % kBufMax; + } + } + } + + static void FillPlaneExtreme(uint8_t *const buf, const int width, + const int height, const int stride) { + ACMRandom rnd; + for (int y = 0; y < height; ++y) { + for (int x = 0; x < width; ++x) { + buf[x + (y * stride)] = rnd.Rand8() % 2 ? 255 : 0; + } + } + } + + static void ExtendPlane(uint8_t *buf, int crop_width, int crop_height, + int width, int height, int stride, int padding) { + // Copy the outermost visible pixel to a distance of at least 'padding.' + // The buffers are allocated such that there may be excess space outside the + // padding. As long as the minimum amount of padding is achieved it is not + // necessary to fill this space as well. + uint8_t *left = buf - padding; + uint8_t *right = buf + crop_width; + const int right_extend = padding + (width - crop_width); + const int bottom_extend = padding + (height - crop_height); + + // Fill the border pixels from the nearest image pixel. + for (int y = 0; y < crop_height; ++y) { + memset(left, left[padding], padding); + memset(right, right[-1], right_extend); + left += stride; + right += stride; + } + + left = buf - padding; + uint8_t *top = left - (stride * padding); + // The buffer does not always extend as far as the stride. + // Equivalent to padding + width + padding. + const int extend_width = padding + crop_width + right_extend; + + // The first row was already extended to the left and right. Copy it up. + for (int y = 0; y < padding; ++y) { + memcpy(top, left, extend_width); + top += stride; + } + + uint8_t *bottom = left + (crop_height * stride); + for (int y = 0; y < bottom_extend; ++y) { + memcpy(bottom, left + (crop_height - 1) * stride, extend_width); + bottom += stride; + } + } + + void ReferenceExtendBorder() { + ExtendPlane(ref_img_.y_buffer, ref_img_.y_crop_width, + ref_img_.y_crop_height, ref_img_.y_width, ref_img_.y_height, + ref_img_.y_stride, ref_img_.border); + ExtendPlane(ref_img_.u_buffer, ref_img_.uv_crop_width, + ref_img_.uv_crop_height, ref_img_.uv_width, ref_img_.uv_height, + ref_img_.uv_stride, ref_img_.border / 2); + ExtendPlane(ref_img_.v_buffer, ref_img_.uv_crop_width, + ref_img_.uv_crop_height, ref_img_.uv_width, ref_img_.uv_height, + ref_img_.uv_stride, ref_img_.border / 2); + } + + void ReferenceCopyFrame() { + // Copy img_ to ref_img_ and extend frame borders. This will be used for + // verifying extend_fn_ as well as copy_frame_fn_. + EXPECT_EQ(ref_img_.frame_size, img_.frame_size); + for (int y = 0; y < img_.y_crop_height; ++y) { + for (int x = 0; x < img_.y_crop_width; ++x) { + ref_img_.y_buffer[x + y * ref_img_.y_stride] = + img_.y_buffer[x + y * img_.y_stride]; + } + } + + for (int y = 0; y < img_.uv_crop_height; ++y) { + for (int x = 0; x < img_.uv_crop_width; ++x) { + ref_img_.u_buffer[x + y * ref_img_.uv_stride] = + img_.u_buffer[x + y * img_.uv_stride]; + ref_img_.v_buffer[x + y * ref_img_.uv_stride] = + img_.v_buffer[x + y * img_.uv_stride]; + } + } + + ReferenceExtendBorder(); + } + + void CompareImages(const YV12_BUFFER_CONFIG actual) { + EXPECT_EQ(ref_img_.frame_size, actual.frame_size); + EXPECT_EQ(0, memcmp(ref_img_.buffer_alloc, actual.buffer_alloc, + ref_img_.frame_size)); + } + + YV12_BUFFER_CONFIG img_; + YV12_BUFFER_CONFIG ref_img_; + YV12_BUFFER_CONFIG dst_img_; +}; + +} // namespace libvpx_test + +#endif // TEST_VPX_SCALE_TEST_H_ diff --git a/test/vpx_temporal_svc_encoder.sh b/test/vpx_temporal_svc_encoder.sh new file mode 100755 index 0000000..56a7902 --- /dev/null +++ b/test/vpx_temporal_svc_encoder.sh @@ -0,0 +1,327 @@ +#!/bin/sh +## +## Copyright (c) 2014 The WebM project authors. All Rights Reserved. +## +## Use of this source code is governed by a BSD-style license +## that can be found in the LICENSE file in the root of the source +## tree. An additional intellectual property rights grant can be found +## in the file PATENTS. All contributing project authors may +## be found in the AUTHORS file in the root of the source tree. +## +## This file tests the libvpx vpx_temporal_svc_encoder example. To add new +## tests to this file, do the following: +## 1. Write a shell function (this is your test). +## 2. Add the function to vpx_tsvc_encoder_tests (on a new line). +## +. $(dirname $0)/tools_common.sh + +# Environment check: $YUV_RAW_INPUT is required. +vpx_tsvc_encoder_verify_environment() { + if [ ! -e "${YUV_RAW_INPUT}" ]; then + echo "Libvpx test data must exist in LIBVPX_TEST_DATA_PATH." + return 1 + fi + if [ "$(vpx_config_option_enabled CONFIG_TEMPORAL_DENOISING)" != "yes" ]; then + elog "Warning: Temporal denoising is disabled! Spatial denoising will be " \ + "used instead, which is probably not what you want for this test." + fi +} + +# Runs vpx_temporal_svc_encoder using the codec specified by $1 and output file +# name by $2. Additional positional parameters are passed directly to +# vpx_temporal_svc_encoder. +vpx_tsvc_encoder() { + local encoder="${LIBVPX_BIN_PATH}/vpx_temporal_svc_encoder" + encoder="${encoder}${VPX_TEST_EXE_SUFFIX}" + local codec="$1" + local output_file_base="$2" + local output_file="${VPX_TEST_OUTPUT_DIR}/${output_file_base}" + local timebase_num="1" + local timebase_den="1000" + local speed="6" + local frame_drop_thresh="30" + local max_threads="4" + local error_resilient="1" + + shift 2 + + if [ ! -x "${encoder}" ]; then + elog "${encoder} does not exist or is not executable." + return 1 + fi + + # TODO(tomfinegan): Verify file output for all thread runs. + for threads in $(seq $max_threads); do + if [ "$(vpx_config_option_enabled CONFIG_VP9_HIGHBITDEPTH)" != "yes" ]; then + eval "${VPX_TEST_PREFIX}" "${encoder}" "${YUV_RAW_INPUT}" \ + "${output_file}" "${codec}" "${YUV_RAW_INPUT_WIDTH}" \ + "${YUV_RAW_INPUT_HEIGHT}" "${timebase_num}" "${timebase_den}" \ + "${speed}" "${frame_drop_thresh}" "${error_resilient}" "${threads}" \ + "$@" ${devnull} + else + eval "${VPX_TEST_PREFIX}" "${encoder}" "${YUV_RAW_INPUT}" \ + "${output_file}" "${codec}" "${YUV_RAW_INPUT_WIDTH}" \ + "${YUV_RAW_INPUT_HEIGHT}" "${timebase_num}" "${timebase_den}" \ + "${speed}" "${frame_drop_thresh}" "${error_resilient}" "${threads}" \ + "$@" "8" ${devnull} + fi + done +} + +# Confirms that all expected output files exist given the output file name +# passed to vpx_temporal_svc_encoder. +# The file name passed to vpx_temporal_svc_encoder is joined with the stream +# number and the extension .ivf to produce per stream output files. Here $1 is +# file name, and $2 is expected number of files. +files_exist() { + local file_name="${VPX_TEST_OUTPUT_DIR}/$1" + local num_files="$(($2 - 1))" + for stream_num in $(seq 0 ${num_files}); do + [ -e "${file_name}_${stream_num}.ivf" ] || return 1 + done +} + +# Run vpx_temporal_svc_encoder in all supported modes for vp8 and vp9. + +vpx_tsvc_encoder_vp8_mode_0() { + if [ "$(vp8_encode_available)" = "yes" ]; then + local readonly output_basename="vpx_tsvc_encoder_vp8_mode_0" + vpx_tsvc_encoder vp8 "${output_basename}" 0 200 || return 1 + # Mode 0 produces 1 stream + files_exist "${output_basename}" 1 || return 1 + fi +} + +vpx_tsvc_encoder_vp8_mode_1() { + if [ "$(vp8_encode_available)" = "yes" ]; then + local readonly output_basename="vpx_tsvc_encoder_vp8_mode_1" + vpx_tsvc_encoder vp8 "${output_basename}" 1 200 400 || return 1 + # Mode 1 produces 2 streams + files_exist "${output_basename}" 2 || return 1 + fi +} + +vpx_tsvc_encoder_vp8_mode_2() { + if [ "$(vp8_encode_available)" = "yes" ]; then + local readonly output_basename="vpx_tsvc_encoder_vp8_mode_2" + vpx_tsvc_encoder vp8 "${output_basename}" 2 200 400 || return 1 + # Mode 2 produces 2 streams + files_exist "${output_basename}" 2 || return 1 + fi +} + +vpx_tsvc_encoder_vp8_mode_3() { + if [ "$(vp8_encode_available)" = "yes" ]; then + local readonly output_basename="vpx_tsvc_encoder_vp8_mode_3" + vpx_tsvc_encoder vp8 "${output_basename}" 3 200 400 600 || return 1 + # Mode 3 produces 3 streams + files_exist "${output_basename}" 3 || return 1 + fi +} + +vpx_tsvc_encoder_vp8_mode_4() { + if [ "$(vp8_encode_available)" = "yes" ]; then + local readonly output_basename="vpx_tsvc_encoder_vp8_mode_4" + vpx_tsvc_encoder vp8 "${output_basename}" 4 200 400 600 || return 1 + # Mode 4 produces 3 streams + files_exist "${output_basename}" 3 || return 1 + fi +} + +vpx_tsvc_encoder_vp8_mode_5() { + if [ "$(vp8_encode_available)" = "yes" ]; then + local readonly output_basename="vpx_tsvc_encoder_vp8_mode_5" + vpx_tsvc_encoder vp8 "${output_basename}" 5 200 400 600 || return 1 + # Mode 5 produces 3 streams + files_exist "${output_basename}" 3 || return 1 + fi +} + +vpx_tsvc_encoder_vp8_mode_6() { + if [ "$(vp8_encode_available)" = "yes" ]; then + local readonly output_basename="vpx_tsvc_encoder_vp8_mode_6" + vpx_tsvc_encoder vp8 "${output_basename}" 6 200 400 600 || return 1 + # Mode 6 produces 3 streams + files_exist "${output_basename}" 3 || return 1 + fi +} + +vpx_tsvc_encoder_vp8_mode_7() { + if [ "$(vp8_encode_available)" = "yes" ]; then + local readonly output_basename="vpx_tsvc_encoder_vp8_mode_7" + vpx_tsvc_encoder vp8 "${output_basename}" 7 200 400 600 800 1000 || return 1 + # Mode 7 produces 5 streams + files_exist "${output_basename}" 5 || return 1 + fi +} + +vpx_tsvc_encoder_vp8_mode_8() { + if [ "$(vp8_encode_available)" = "yes" ]; then + local readonly output_basename="vpx_tsvc_encoder_vp8_mode_8" + vpx_tsvc_encoder vp8 "${output_basename}" 8 200 400 || return 1 + # Mode 8 produces 2 streams + files_exist "${output_basename}" 2 || return 1 + fi +} + +vpx_tsvc_encoder_vp8_mode_9() { + if [ "$(vp8_encode_available)" = "yes" ]; then + local readonly output_basename="vpx_tsvc_encoder_vp8_mode_9" + vpx_tsvc_encoder vp8 "${output_basename}" 9 200 400 600 || return 1 + # Mode 9 produces 3 streams + files_exist "${output_basename}" 3 || return 1 + fi +} + +vpx_tsvc_encoder_vp8_mode_10() { + if [ "$(vp8_encode_available)" = "yes" ]; then + local readonly output_basename="vpx_tsvc_encoder_vp8_mode_10" + vpx_tsvc_encoder vp8 "${output_basename}" 10 200 400 600 || return 1 + # Mode 10 produces 3 streams + files_exist "${output_basename}" 3 || return 1 + fi +} + +vpx_tsvc_encoder_vp8_mode_11() { + if [ "$(vp8_encode_available)" = "yes" ]; then + local readonly output_basename="vpx_tsvc_encoder_vp8_mode_11" + vpx_tsvc_encoder vp8 "${output_basename}" 11 200 400 600 || return 1 + # Mode 11 produces 3 streams + files_exist "${output_basename}" 3 || return 1 + fi +} + +vpx_tsvc_encoder_vp9_mode_0() { + if [ "$(vp9_encode_available)" = "yes" ]; then + local readonly output_basename="vpx_tsvc_encoder_vp9_mode_0" + vpx_tsvc_encoder vp9 "${output_basename}" 0 200 || return 1 + # Mode 0 produces 1 stream + files_exist "${output_basename}" 1 || return 1 + fi +} + +vpx_tsvc_encoder_vp9_mode_1() { + if [ "$(vp9_encode_available)" = "yes" ]; then + local readonly output_basename="vpx_tsvc_encoder_vp9_mode_1" + vpx_tsvc_encoder vp9 "${output_basename}" 1 200 400 || return 1 + # Mode 1 produces 2 streams + files_exist "${output_basename}" 2 || return 1 + fi +} + +vpx_tsvc_encoder_vp9_mode_2() { + if [ "$(vp9_encode_available)" = "yes" ]; then + local readonly output_basename="vpx_tsvc_encoder_vp9_mode_2" + vpx_tsvc_encoder vp9 "${output_basename}" 2 200 400 || return 1 + # Mode 2 produces 2 streams + files_exist "${output_basename}" 2 || return 1 + fi +} + +vpx_tsvc_encoder_vp9_mode_3() { + if [ "$(vp9_encode_available)" = "yes" ]; then + local readonly output_basename="vpx_tsvc_encoder_vp9_mode_3" + vpx_tsvc_encoder vp9 "${output_basename}" 3 200 400 600 || return 1 + # Mode 3 produces 3 streams + files_exist "${output_basename}" 3 || return 1 + fi +} + +vpx_tsvc_encoder_vp9_mode_4() { + if [ "$(vp9_encode_available)" = "yes" ]; then + local readonly output_basename="vpx_tsvc_encoder_vp9_mode_4" + vpx_tsvc_encoder vp9 "${output_basename}" 4 200 400 600 || return 1 + # Mode 4 produces 3 streams + files_exist "${output_basename}" 3 || return 1 + fi +} + +vpx_tsvc_encoder_vp9_mode_5() { + if [ "$(vp9_encode_available)" = "yes" ]; then + local readonly output_basename="vpx_tsvc_encoder_vp9_mode_5" + vpx_tsvc_encoder vp9 "${output_basename}" 5 200 400 600 || return 1 + # Mode 5 produces 3 streams + files_exist "${output_basename}" 3 || return 1 + fi +} + +vpx_tsvc_encoder_vp9_mode_6() { + if [ "$(vp9_encode_available)" = "yes" ]; then + local readonly output_basename="vpx_tsvc_encoder_vp9_mode_6" + vpx_tsvc_encoder vp9 "${output_basename}" 6 200 400 600 || return 1 + # Mode 6 produces 3 streams + files_exist "${output_basename}" 3 || return 1 + fi +} + +vpx_tsvc_encoder_vp9_mode_7() { + if [ "$(vp9_encode_available)" = "yes" ]; then + local readonly output_basename="vpx_tsvc_encoder_vp9_mode_7" + vpx_tsvc_encoder vp9 "${output_basename}" 7 200 400 600 800 1000 || return 1 + # Mode 7 produces 5 streams + files_exist "${output_basename}" 5 || return 1 + fi +} + +vpx_tsvc_encoder_vp9_mode_8() { + if [ "$(vp9_encode_available)" = "yes" ]; then + local readonly output_basename="vpx_tsvc_encoder_vp9_mode_8" + vpx_tsvc_encoder vp9 "${output_basename}" 8 200 400 || return 1 + # Mode 8 produces 2 streams + files_exist "${output_basename}" 2 || return 1 + fi +} + +vpx_tsvc_encoder_vp9_mode_9() { + if [ "$(vp9_encode_available)" = "yes" ]; then + local readonly output_basename="vpx_tsvc_encoder_vp9_mode_9" + vpx_tsvc_encoder vp9 "${output_basename}" 9 200 400 600 || return 1 + # Mode 9 produces 3 streams + files_exist "${output_basename}" 3 || return 1 + fi +} + +vpx_tsvc_encoder_vp9_mode_10() { + if [ "$(vp9_encode_available)" = "yes" ]; then + local readonly output_basename="vpx_tsvc_encoder_vp9_mode_10" + vpx_tsvc_encoder vp9 "${output_basename}" 10 200 400 600 || return 1 + # Mode 10 produces 3 streams + files_exist "${output_basename}" 3 || return 1 + fi +} + +vpx_tsvc_encoder_vp9_mode_11() { + if [ "$(vp9_encode_available)" = "yes" ]; then + local readonly output_basename="vpx_tsvc_encoder_vp9_mode_11" + vpx_tsvc_encoder vp9 "${output_basename}" 11 200 400 600 || return 1 + # Mode 11 produces 3 streams + files_exist "${output_basename}" 3 || return 1 + fi +} + +vpx_tsvc_encoder_tests="vpx_tsvc_encoder_vp8_mode_0 + vpx_tsvc_encoder_vp8_mode_1 + vpx_tsvc_encoder_vp8_mode_2 + vpx_tsvc_encoder_vp8_mode_3 + vpx_tsvc_encoder_vp8_mode_4 + vpx_tsvc_encoder_vp8_mode_5 + vpx_tsvc_encoder_vp8_mode_6 + vpx_tsvc_encoder_vp8_mode_7 + vpx_tsvc_encoder_vp8_mode_8 + vpx_tsvc_encoder_vp8_mode_9 + vpx_tsvc_encoder_vp8_mode_10 + vpx_tsvc_encoder_vp8_mode_11 + vpx_tsvc_encoder_vp9_mode_0 + vpx_tsvc_encoder_vp9_mode_1 + vpx_tsvc_encoder_vp9_mode_2 + vpx_tsvc_encoder_vp9_mode_3 + vpx_tsvc_encoder_vp9_mode_4 + vpx_tsvc_encoder_vp9_mode_5 + vpx_tsvc_encoder_vp9_mode_6 + vpx_tsvc_encoder_vp9_mode_7 + vpx_tsvc_encoder_vp9_mode_8 + vpx_tsvc_encoder_vp9_mode_9 + vpx_tsvc_encoder_vp9_mode_10 + vpx_tsvc_encoder_vp9_mode_11" + +run_tests vpx_tsvc_encoder_verify_environment "${vpx_tsvc_encoder_tests}" diff --git a/test/vpxdec.sh b/test/vpxdec.sh new file mode 100755 index 0000000..de51c80 --- /dev/null +++ b/test/vpxdec.sh @@ -0,0 +1,116 @@ +#!/bin/sh +## +## Copyright (c) 2014 The WebM project authors. All Rights Reserved. +## +## Use of this source code is governed by a BSD-style license +## that can be found in the LICENSE file in the root of the source +## tree. An additional intellectual property rights grant can be found +## in the file PATENTS. All contributing project authors may +## be found in the AUTHORS file in the root of the source tree. +## +## This file tests vpxdec. To add new tests to this file, do the following: +## 1. Write a shell function (this is your test). +## 2. Add the function to vpxdec_tests (on a new line). +## +. $(dirname $0)/tools_common.sh + +# Environment check: Make sure input is available. +vpxdec_verify_environment() { + if [ ! -e "${VP8_IVF_FILE}" ] || [ ! -e "${VP9_WEBM_FILE}" ] || \ + [ ! -e "${VP9_FPM_WEBM_FILE}" ] || \ + [ ! -e "${VP9_LT_50_FRAMES_WEBM_FILE}" ] ; then + elog "Libvpx test data must exist in LIBVPX_TEST_DATA_PATH." + return 1 + fi + if [ -z "$(vpx_tool_path vpxdec)" ]; then + elog "vpxdec not found. It must exist in LIBVPX_BIN_PATH or its parent." + return 1 + fi +} + +# Wrapper function for running vpxdec with pipe input. Requires that +# LIBVPX_BIN_PATH points to the directory containing vpxdec. $1 is used as the +# input file path and shifted away. All remaining parameters are passed through +# to vpxdec. +vpxdec_pipe() { + local readonly decoder="$(vpx_tool_path vpxdec)" + local readonly input="$1" + shift + cat "${input}" | eval "${VPX_TEST_PREFIX}" "${decoder}" - "$@" ${devnull} +} + +# Wrapper function for running vpxdec. Requires that LIBVPX_BIN_PATH points to +# the directory containing vpxdec. $1 one is used as the input file path and +# shifted away. All remaining parameters are passed through to vpxdec. +vpxdec() { + local readonly decoder="$(vpx_tool_path vpxdec)" + local readonly input="$1" + shift + eval "${VPX_TEST_PREFIX}" "${decoder}" "$input" "$@" ${devnull} +} + +vpxdec_can_decode_vp8() { + if [ "$(vp8_decode_available)" = "yes" ]; then + echo yes + fi +} + +vpxdec_can_decode_vp9() { + if [ "$(vp9_decode_available)" = "yes" ]; then + echo yes + fi +} + +vpxdec_vp8_ivf() { + if [ "$(vpxdec_can_decode_vp8)" = "yes" ]; then + vpxdec "${VP8_IVF_FILE}" --summary --noblit + fi +} + +vpxdec_vp8_ivf_pipe_input() { + if [ "$(vpxdec_can_decode_vp8)" = "yes" ]; then + vpxdec_pipe "${VP8_IVF_FILE}" --summary --noblit + fi +} + +vpxdec_vp9_webm() { + if [ "$(vpxdec_can_decode_vp9)" = "yes" ] && \ + [ "$(webm_io_available)" = "yes" ]; then + vpxdec "${VP9_WEBM_FILE}" --summary --noblit + fi +} + +vpxdec_vp9_webm_frame_parallel() { + if [ "$(vpxdec_can_decode_vp9)" = "yes" ] && \ + [ "$(webm_io_available)" = "yes" ]; then + for threads in 2 3 4 5 6 7 8; do + vpxdec "${VP9_FPM_WEBM_FILE}" --summary --noblit --threads=$threads \ + --frame-parallel + done + fi +} + +vpxdec_vp9_webm_less_than_50_frames() { + # ensure that reaching eof in webm_guess_framerate doesn't result in invalid + # frames in actual webm_read_frame calls. + if [ "$(vpxdec_can_decode_vp9)" = "yes" ] && \ + [ "$(webm_io_available)" = "yes" ]; then + local readonly decoder="$(vpx_tool_path vpxdec)" + local readonly expected=10 + local readonly num_frames=$(${VPX_TEST_PREFIX} "${decoder}" \ + "${VP9_LT_50_FRAMES_WEBM_FILE}" --summary --noblit 2>&1 \ + | awk '/^[0-9]+ decoded frames/ { print $1 }') + if [ "$num_frames" -ne "$expected" ]; then + elog "Output frames ($num_frames) != expected ($expected)" + return 1 + fi + fi +} + +vpxdec_tests="vpxdec_vp8_ivf + vpxdec_vp8_ivf_pipe_input + vpxdec_vp9_webm + vpxdec_vp9_webm_frame_parallel + vpxdec_vp9_webm_less_than_50_frames" + +run_tests vpxdec_verify_environment "${vpxdec_tests}" diff --git a/test/vpxenc.sh b/test/vpxenc.sh new file mode 100755 index 0000000..0c160da --- /dev/null +++ b/test/vpxenc.sh @@ -0,0 +1,452 @@ +#!/bin/sh +## +## Copyright (c) 2014 The WebM project authors. All Rights Reserved. +## +## Use of this source code is governed by a BSD-style license +## that can be found in the LICENSE file in the root of the source +## tree. An additional intellectual property rights grant can be found +## in the file PATENTS. All contributing project authors may +## be found in the AUTHORS file in the root of the source tree. +## +## This file tests vpxenc using hantro_collage_w352h288.yuv as input. To add +## new tests to this file, do the following: +## 1. Write a shell function (this is your test). +## 2. Add the function to vpxenc_tests (on a new line). +## +. $(dirname $0)/tools_common.sh + +readonly TEST_FRAMES=10 + +# Environment check: Make sure input is available. +vpxenc_verify_environment() { + if [ ! -e "${YUV_RAW_INPUT}" ]; then + elog "The file ${YUV_RAW_INPUT##*/} must exist in LIBVPX_TEST_DATA_PATH." + return 1 + fi + if [ "$(vpxenc_can_encode_vp9)" = "yes" ]; then + if [ ! -e "${Y4M_NOSQ_PAR_INPUT}" ]; then + elog "The file ${Y4M_NOSQ_PAR_INPUT##*/} must exist in" + elog "LIBVPX_TEST_DATA_PATH." + return 1 + fi + fi + if [ -z "$(vpx_tool_path vpxenc)" ]; then + elog "vpxenc not found. It must exist in LIBVPX_BIN_PATH or its parent." + return 1 + fi +} + +vpxenc_can_encode_vp8() { + if [ "$(vp8_encode_available)" = "yes" ]; then + echo yes + fi +} + +vpxenc_can_encode_vp9() { + if [ "$(vp9_encode_available)" = "yes" ]; then + echo yes + fi +} + +# Echo vpxenc command line parameters allowing use of +# hantro_collage_w352h288.yuv as input. +yuv_input_hantro_collage() { + echo ""${YUV_RAW_INPUT}" + --width="${YUV_RAW_INPUT_WIDTH}" + --height="${YUV_RAW_INPUT_HEIGHT}"" +} + +y4m_input_non_square_par() { + echo ""${Y4M_NOSQ_PAR_INPUT}"" +} + +y4m_input_720p() { + echo ""${Y4M_720P_INPUT}"" +} + +# Echo default vpxenc real time encoding params. $1 is the codec, which defaults +# to vp8 if unspecified. +vpxenc_rt_params() { + local readonly codec="${1:-vp8}" + echo "--codec=${codec} + --buf-initial-sz=500 + --buf-optimal-sz=600 + --buf-sz=1000 + --cpu-used=-6 + --end-usage=cbr + --error-resilient=1 + --kf-max-dist=90000 + --lag-in-frames=0 + --max-intra-rate=300 + --max-q=56 + --min-q=2 + --noise-sensitivity=0 + --overshoot-pct=50 + --passes=1 + --profile=0 + --resize-allowed=0 + --rt + --static-thresh=0 + --undershoot-pct=50" +} + +# Forces --passes to 1 with CONFIG_REALTIME_ONLY. +vpxenc_passes_param() { + if [ "$(vpx_config_option_enabled CONFIG_REALTIME_ONLY)" = "yes" ]; then + echo "--passes=1" + else + echo "--passes=2" + fi +} + +# Wrapper function for running vpxenc with pipe input. Requires that +# LIBVPX_BIN_PATH points to the directory containing vpxenc. $1 is used as the +# input file path and shifted away. All remaining parameters are passed through +# to vpxenc. +vpxenc_pipe() { + local readonly encoder="$(vpx_tool_path vpxenc)" + local readonly input="$1" + shift + cat "${input}" | eval "${VPX_TEST_PREFIX}" "${encoder}" - \ + --test-decode=fatal \ + "$@" ${devnull} +} + +# Wrapper function for running vpxenc. Requires that LIBVPX_BIN_PATH points to +# the directory containing vpxenc. $1 one is used as the input file path and +# shifted away. All remaining parameters are passed through to vpxenc. +vpxenc() { + local readonly encoder="$(vpx_tool_path vpxenc)" + local readonly input="$1" + shift + eval "${VPX_TEST_PREFIX}" "${encoder}" "${input}" \ + --test-decode=fatal \ + "$@" ${devnull} +} + +vpxenc_vp8_ivf() { + if [ "$(vpxenc_can_encode_vp8)" = "yes" ]; then + local readonly output="${VPX_TEST_OUTPUT_DIR}/vp8.ivf" + vpxenc $(yuv_input_hantro_collage) \ + --codec=vp8 \ + --limit="${TEST_FRAMES}" \ + --ivf \ + --output="${output}" + + if [ ! -e "${output}" ]; then + elog "Output file does not exist." + return 1 + fi + fi +} + +vpxenc_vp8_webm() { + if [ "$(vpxenc_can_encode_vp8)" = "yes" ] && \ + [ "$(webm_io_available)" = "yes" ]; then + local readonly output="${VPX_TEST_OUTPUT_DIR}/vp8.webm" + vpxenc $(yuv_input_hantro_collage) \ + --codec=vp8 \ + --limit="${TEST_FRAMES}" \ + --output="${output}" + + if [ ! -e "${output}" ]; then + elog "Output file does not exist." + return 1 + fi + fi +} + +vpxenc_vp8_webm_rt() { + if [ "$(vpxenc_can_encode_vp8)" = "yes" ] && \ + [ "$(webm_io_available)" = "yes" ]; then + local readonly output="${VPX_TEST_OUTPUT_DIR}/vp8_rt.webm" + vpxenc $(yuv_input_hantro_collage) \ + $(vpxenc_rt_params vp8) \ + --output="${output}" + if [ ! -e "${output}" ]; then + elog "Output file does not exist." + return 1 + fi + fi +} + +vpxenc_vp8_webm_2pass() { + if [ "$(vpxenc_can_encode_vp8)" = "yes" ] && \ + [ "$(webm_io_available)" = "yes" ]; then + local readonly output="${VPX_TEST_OUTPUT_DIR}/vp8.webm" + vpxenc $(yuv_input_hantro_collage) \ + --codec=vp8 \ + --limit="${TEST_FRAMES}" \ + --output="${output}" \ + --passes=2 + + if [ ! -e "${output}" ]; then + elog "Output file does not exist." + return 1 + fi + fi +} + +vpxenc_vp8_webm_lag10_frames20() { + if [ "$(vpxenc_can_encode_vp8)" = "yes" ] && \ + [ "$(webm_io_available)" = "yes" ]; then + local readonly lag_total_frames=20 + local readonly lag_frames=10 + local readonly output="${VPX_TEST_OUTPUT_DIR}/vp8_lag10_frames20.webm" + vpxenc $(yuv_input_hantro_collage) \ + --codec=vp8 \ + --limit="${lag_total_frames}" \ + --lag-in-frames="${lag_frames}" \ + --output="${output}" \ + --auto-alt-ref=1 \ + --passes=2 + + if [ ! -e "${output}" ]; then + elog "Output file does not exist." + return 1 + fi + fi +} + +vpxenc_vp8_ivf_piped_input() { + if [ "$(vpxenc_can_encode_vp8)" = "yes" ]; then + local readonly output="${VPX_TEST_OUTPUT_DIR}/vp8_piped_input.ivf" + vpxenc_pipe $(yuv_input_hantro_collage) \ + --codec=vp8 \ + --limit="${TEST_FRAMES}" \ + --ivf \ + --output="${output}" + + if [ ! -e "${output}" ]; then + elog "Output file does not exist." + return 1 + fi + fi +} + +vpxenc_vp9_ivf() { + if [ "$(vpxenc_can_encode_vp9)" = "yes" ]; then + local readonly output="${VPX_TEST_OUTPUT_DIR}/vp9.ivf" + local readonly passes=$(vpxenc_passes_param) + vpxenc $(yuv_input_hantro_collage) \ + --codec=vp9 \ + --limit="${TEST_FRAMES}" \ + "${passes}" \ + --ivf \ + --output="${output}" + + if [ ! -e "${output}" ]; then + elog "Output file does not exist." + return 1 + fi + fi +} + +vpxenc_vp9_webm() { + if [ "$(vpxenc_can_encode_vp9)" = "yes" ] && \ + [ "$(webm_io_available)" = "yes" ]; then + local readonly output="${VPX_TEST_OUTPUT_DIR}/vp9.webm" + local readonly passes=$(vpxenc_passes_param) + vpxenc $(yuv_input_hantro_collage) \ + --codec=vp9 \ + --limit="${TEST_FRAMES}" \ + "${passes}" \ + --output="${output}" + + if [ ! -e "${output}" ]; then + elog "Output file does not exist." + return 1 + fi + fi +} + +vpxenc_vp9_webm_rt() { + if [ "$(vpxenc_can_encode_vp9)" = "yes" ] && \ + [ "$(webm_io_available)" = "yes" ]; then + local readonly output="${VPX_TEST_OUTPUT_DIR}/vp9_rt.webm" + vpxenc $(yuv_input_hantro_collage) \ + $(vpxenc_rt_params vp9) \ + --output="${output}" + + if [ ! -e "${output}" ]; then + elog "Output file does not exist." + return 1 + fi + fi +} + +vpxenc_vp9_webm_rt_multithread_tiled() { + if [ "$(vpxenc_can_encode_vp9)" = "yes" ] && \ + [ "$(webm_io_available)" = "yes" ]; then + local readonly output="${VPX_TEST_OUTPUT_DIR}/vp9_rt_multithread_tiled.webm" + local readonly tilethread_min=2 + local readonly tilethread_max=4 + local readonly num_threads="$(seq ${tilethread_min} ${tilethread_max})" + local readonly num_tile_cols="$(seq ${tilethread_min} ${tilethread_max})" + + for threads in ${num_threads}; do + for tile_cols in ${num_tile_cols}; do + vpxenc $(y4m_input_720p) \ + $(vpxenc_rt_params vp9) \ + --threads=${threads} \ + --tile-columns=${tile_cols} \ + --output="${output}" + done + done + + if [ ! -e "${output}" ]; then + elog "Output file does not exist." + return 1 + fi + + rm "${output}" + fi +} + +vpxenc_vp9_webm_rt_multithread_tiled_frameparallel() { + if [ "$(vpxenc_can_encode_vp9)" = "yes" ] && \ + [ "$(webm_io_available)" = "yes" ]; then + local readonly output="${VPX_TEST_OUTPUT_DIR}/vp9_rt_mt_t_fp.webm" + local readonly tilethread_min=2 + local readonly tilethread_max=4 + local readonly num_threads="$(seq ${tilethread_min} ${tilethread_max})" + local readonly num_tile_cols="$(seq ${tilethread_min} ${tilethread_max})" + + for threads in ${num_threads}; do + for tile_cols in ${num_tile_cols}; do + vpxenc $(y4m_input_720p) \ + $(vpxenc_rt_params vp9) \ + --threads=${threads} \ + --tile-columns=${tile_cols} \ + --frame-parallel=1 \ + --output="${output}" + done + done + + if [ ! -e "${output}" ]; then + elog "Output file does not exist." + return 1 + fi + + rm "${output}" + fi +} + +vpxenc_vp9_webm_2pass() { + if [ "$(vpxenc_can_encode_vp9)" = "yes" ] && \ + [ "$(webm_io_available)" = "yes" ]; then + local readonly output="${VPX_TEST_OUTPUT_DIR}/vp9.webm" + vpxenc $(yuv_input_hantro_collage) \ + --codec=vp9 \ + --limit="${TEST_FRAMES}" \ + --output="${output}" \ + --passes=2 + + if [ ! -e "${output}" ]; then + elog "Output file does not exist." + return 1 + fi + fi +} + +vpxenc_vp9_ivf_lossless() { + if [ "$(vpxenc_can_encode_vp9)" = "yes" ]; then + local readonly output="${VPX_TEST_OUTPUT_DIR}/vp9_lossless.ivf" + local readonly passes=$(vpxenc_passes_param) + vpxenc $(yuv_input_hantro_collage) \ + --codec=vp9 \ + --limit="${TEST_FRAMES}" \ + --ivf \ + --output="${output}" \ + "${passes}" \ + --lossless=1 + + if [ ! -e "${output}" ]; then + elog "Output file does not exist." + return 1 + fi + fi +} + +vpxenc_vp9_ivf_minq0_maxq0() { + if [ "$(vpxenc_can_encode_vp9)" = "yes" ]; then + local readonly output="${VPX_TEST_OUTPUT_DIR}/vp9_lossless_minq0_maxq0.ivf" + local readonly passes=$(vpxenc_passes_param) + vpxenc $(yuv_input_hantro_collage) \ + --codec=vp9 \ + --limit="${TEST_FRAMES}" \ + --ivf \ + --output="${output}" \ + "${passes}" \ + --min-q=0 \ + --max-q=0 + + if [ ! -e "${output}" ]; then + elog "Output file does not exist." + return 1 + fi + fi +} + +vpxenc_vp9_webm_lag10_frames20() { + if [ "$(vpxenc_can_encode_vp9)" = "yes" ] && \ + [ "$(webm_io_available)" = "yes" ]; then + local readonly lag_total_frames=20 + local readonly lag_frames=10 + local readonly output="${VPX_TEST_OUTPUT_DIR}/vp9_lag10_frames20.webm" + local readonly passes=$(vpxenc_passes_param) + vpxenc $(yuv_input_hantro_collage) \ + --codec=vp9 \ + --limit="${lag_total_frames}" \ + --lag-in-frames="${lag_frames}" \ + --output="${output}" \ + "${passes}" \ + --auto-alt-ref=1 + + if [ ! -e "${output}" ]; then + elog "Output file does not exist." + return 1 + fi + fi +} + +# TODO(fgalligan): Test that DisplayWidth is different than video width. +vpxenc_vp9_webm_non_square_par() { + if [ "$(vpxenc_can_encode_vp9)" = "yes" ] && \ + [ "$(webm_io_available)" = "yes" ]; then + local readonly output="${VPX_TEST_OUTPUT_DIR}/vp9_non_square_par.webm" + local readonly passes=$(vpxenc_passes_param) + vpxenc $(y4m_input_non_square_par) \ + --codec=vp9 \ + --limit="${TEST_FRAMES}" \ + "${passes}" \ + --output="${output}" + + if [ ! -e "${output}" ]; then + elog "Output file does not exist." + return 1 + fi + fi +} + +vpxenc_tests="vpxenc_vp8_ivf + vpxenc_vp8_webm + vpxenc_vp8_webm_rt + vpxenc_vp8_ivf_piped_input + vpxenc_vp9_ivf + vpxenc_vp9_webm + vpxenc_vp9_webm_rt + vpxenc_vp9_webm_rt_multithread_tiled + vpxenc_vp9_webm_rt_multithread_tiled_frameparallel + vpxenc_vp9_ivf_lossless + vpxenc_vp9_ivf_minq0_maxq0 + vpxenc_vp9_webm_lag10_frames20 + vpxenc_vp9_webm_non_square_par" +if [ "$(vpx_config_option_enabled CONFIG_REALTIME_ONLY)" != "yes" ]; then + vpxenc_tests="$vpxenc_tests + vpxenc_vp8_webm_2pass + vpxenc_vp8_webm_lag10_frames20 + vpxenc_vp9_webm_2pass" +fi + +run_tests vpxenc_verify_environment "${vpxenc_tests}" diff --git a/test/webm_video_source.h b/test/webm_video_source.h new file mode 100644 index 0000000..09c007a --- /dev/null +++ b/test/webm_video_source.h @@ -0,0 +1,93 @@ +/* + * Copyright (c) 2012 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ +#ifndef TEST_WEBM_VIDEO_SOURCE_H_ +#define TEST_WEBM_VIDEO_SOURCE_H_ +#include +#include +#include +#include +#include +#include "../tools_common.h" +#include "../webmdec.h" +#include "test/video_source.h" + +namespace libvpx_test { + +// This class extends VideoSource to allow parsing of WebM files, +// so that we can do actual file decodes. +class WebMVideoSource : public CompressedVideoSource { + public: + explicit WebMVideoSource(const std::string &file_name) + : file_name_(file_name), vpx_ctx_(new VpxInputContext()), + webm_ctx_(new WebmInputContext()), buf_(NULL), buf_sz_(0), frame_(0), + end_of_file_(false) {} + + virtual ~WebMVideoSource() { + if (vpx_ctx_->file != NULL) fclose(vpx_ctx_->file); + webm_free(webm_ctx_); + delete vpx_ctx_; + delete webm_ctx_; + } + + virtual void Init() {} + + virtual void Begin() { + vpx_ctx_->file = OpenTestDataFile(file_name_); + ASSERT_TRUE(vpx_ctx_->file != NULL) + << "Input file open failed. Filename: " << file_name_; + + ASSERT_EQ(file_is_webm(webm_ctx_, vpx_ctx_), 1) << "file is not WebM"; + + FillFrame(); + } + + virtual void Next() { + ++frame_; + FillFrame(); + } + + void FillFrame() { + ASSERT_TRUE(vpx_ctx_->file != NULL); + const int status = webm_read_frame(webm_ctx_, &buf_, &buf_sz_); + ASSERT_GE(status, 0) << "webm_read_frame failed"; + if (status == 1) { + end_of_file_ = true; + } + } + + void SeekToNextKeyFrame() { + ASSERT_TRUE(vpx_ctx_->file != NULL); + do { + const int status = webm_read_frame(webm_ctx_, &buf_, &buf_sz_); + ASSERT_GE(status, 0) << "webm_read_frame failed"; + ++frame_; + if (status == 1) { + end_of_file_ = true; + } + } while (!webm_ctx_->is_key_frame && !end_of_file_); + } + + virtual const uint8_t *cxdata() const { return end_of_file_ ? NULL : buf_; } + virtual size_t frame_size() const { return buf_sz_; } + virtual unsigned int frame_number() const { return frame_; } + + protected: + std::string file_name_; + VpxInputContext *vpx_ctx_; + WebmInputContext *webm_ctx_; + uint8_t *buf_; + size_t buf_sz_; + unsigned int frame_; + bool end_of_file_; +}; + +} // namespace libvpx_test + +#endif // TEST_WEBM_VIDEO_SOURCE_H_ diff --git a/test/y4m_test.cc b/test/y4m_test.cc new file mode 100644 index 0000000..ced717a --- /dev/null +++ b/test/y4m_test.cc @@ -0,0 +1,191 @@ +/* + * Copyright (c) 2012 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include + +#include "third_party/googletest/src/include/gtest/gtest.h" + +#include "./vpx_config.h" +#include "./y4menc.h" +#include "test/md5_helper.h" +#include "test/util.h" +#include "test/y4m_video_source.h" + +namespace { + +using std::string; + +static const unsigned int kWidth = 160; +static const unsigned int kHeight = 90; +static const unsigned int kFrames = 10; + +struct Y4mTestParam { + const char *filename; + unsigned int bit_depth; + vpx_img_fmt format; + const char *md5raw; +}; + +const Y4mTestParam kY4mTestVectors[] = { + { "park_joy_90p_8_420.y4m", 8, VPX_IMG_FMT_I420, + "e5406275b9fc6bb3436c31d4a05c1cab" }, + { "park_joy_90p_8_422.y4m", 8, VPX_IMG_FMT_I422, + "284a47a47133b12884ec3a14e959a0b6" }, + { "park_joy_90p_8_444.y4m", 8, VPX_IMG_FMT_I444, + "90517ff33843d85de712fd4fe60dbed0" }, + { "park_joy_90p_10_420.y4m", 10, VPX_IMG_FMT_I42016, + "63f21f9f717d8b8631bd2288ee87137b" }, + { "park_joy_90p_10_422.y4m", 10, VPX_IMG_FMT_I42216, + "48ab51fb540aed07f7ff5af130c9b605" }, + { "park_joy_90p_10_444.y4m", 10, VPX_IMG_FMT_I44416, + "067bfd75aa85ff9bae91fa3e0edd1e3e" }, + { "park_joy_90p_12_420.y4m", 12, VPX_IMG_FMT_I42016, + "9e6d8f6508c6e55625f6b697bc461cef" }, + { "park_joy_90p_12_422.y4m", 12, VPX_IMG_FMT_I42216, + "b239c6b301c0b835485be349ca83a7e3" }, + { "park_joy_90p_12_444.y4m", 12, VPX_IMG_FMT_I44416, + "5a6481a550821dab6d0192f5c63845e9" }, +}; + +static void write_image_file(const vpx_image_t *img, FILE *file) { + int plane, y; + for (plane = 0; plane < 3; ++plane) { + const unsigned char *buf = img->planes[plane]; + const int stride = img->stride[plane]; + const int bytes_per_sample = (img->fmt & VPX_IMG_FMT_HIGHBITDEPTH) ? 2 : 1; + const int h = + (plane ? (img->d_h + img->y_chroma_shift) >> img->y_chroma_shift + : img->d_h); + const int w = + (plane ? (img->d_w + img->x_chroma_shift) >> img->x_chroma_shift + : img->d_w); + for (y = 0; y < h; ++y) { + fwrite(buf, bytes_per_sample, w, file); + buf += stride; + } + } +} + +class Y4mVideoSourceTest : public ::testing::TestWithParam, + public ::libvpx_test::Y4mVideoSource { + protected: + Y4mVideoSourceTest() : Y4mVideoSource("", 0, 0) {} + + virtual ~Y4mVideoSourceTest() { CloseSource(); } + + virtual void Init(const std::string &file_name, int limit) { + file_name_ = file_name; + start_ = 0; + limit_ = limit; + frame_ = 0; + Begin(); + } + + // Checks y4m header information + void HeaderChecks(unsigned int bit_depth, vpx_img_fmt_t fmt) { + ASSERT_TRUE(input_file_ != NULL); + ASSERT_EQ(y4m_.pic_w, (int)kWidth); + ASSERT_EQ(y4m_.pic_h, (int)kHeight); + ASSERT_EQ(img()->d_w, kWidth); + ASSERT_EQ(img()->d_h, kHeight); + ASSERT_EQ(y4m_.bit_depth, bit_depth); + ASSERT_EQ(y4m_.vpx_fmt, fmt); + if (fmt == VPX_IMG_FMT_I420 || fmt == VPX_IMG_FMT_I42016) { + ASSERT_EQ(y4m_.bps, (int)y4m_.bit_depth * 3 / 2); + ASSERT_EQ(img()->x_chroma_shift, 1U); + ASSERT_EQ(img()->y_chroma_shift, 1U); + } + if (fmt == VPX_IMG_FMT_I422 || fmt == VPX_IMG_FMT_I42216) { + ASSERT_EQ(y4m_.bps, (int)y4m_.bit_depth * 2); + ASSERT_EQ(img()->x_chroma_shift, 1U); + ASSERT_EQ(img()->y_chroma_shift, 0U); + } + if (fmt == VPX_IMG_FMT_I444 || fmt == VPX_IMG_FMT_I44416) { + ASSERT_EQ(y4m_.bps, (int)y4m_.bit_depth * 3); + ASSERT_EQ(img()->x_chroma_shift, 0U); + ASSERT_EQ(img()->y_chroma_shift, 0U); + } + } + + // Checks MD5 of the raw frame data + void Md5Check(const string &expected_md5) { + ASSERT_TRUE(input_file_ != NULL); + libvpx_test::MD5 md5; + for (unsigned int i = start_; i < limit_; i++) { + md5.Add(img()); + Next(); + } + ASSERT_EQ(string(md5.Get()), expected_md5); + } +}; + +TEST_P(Y4mVideoSourceTest, SourceTest) { + const Y4mTestParam t = GetParam(); + Init(t.filename, kFrames); + HeaderChecks(t.bit_depth, t.format); + Md5Check(t.md5raw); +} + +INSTANTIATE_TEST_CASE_P(C, Y4mVideoSourceTest, + ::testing::ValuesIn(kY4mTestVectors)); + +class Y4mVideoWriteTest : public Y4mVideoSourceTest { + protected: + Y4mVideoWriteTest() : tmpfile_(NULL) {} + + virtual ~Y4mVideoWriteTest() { + delete tmpfile_; + input_file_ = NULL; + } + + void ReplaceInputFile(FILE *input_file) { + CloseSource(); + frame_ = 0; + input_file_ = input_file; + rewind(input_file_); + ReadSourceToStart(); + } + + // Writes out a y4m file and then reads it back + void WriteY4mAndReadBack() { + ASSERT_TRUE(input_file_ != NULL); + char buf[Y4M_BUFFER_SIZE] = { 0 }; + const struct VpxRational framerate = { y4m_.fps_n, y4m_.fps_d }; + tmpfile_ = new libvpx_test::TempOutFile; + ASSERT_TRUE(tmpfile_->file() != NULL); + y4m_write_file_header(buf, sizeof(buf), kWidth, kHeight, &framerate, + y4m_.vpx_fmt, y4m_.bit_depth); + fputs(buf, tmpfile_->file()); + for (unsigned int i = start_; i < limit_; i++) { + y4m_write_frame_header(buf, sizeof(buf)); + fputs(buf, tmpfile_->file()); + write_image_file(img(), tmpfile_->file()); + Next(); + } + ReplaceInputFile(tmpfile_->file()); + } + + virtual void Init(const std::string &file_name, int limit) { + Y4mVideoSourceTest::Init(file_name, limit); + WriteY4mAndReadBack(); + } + libvpx_test::TempOutFile *tmpfile_; +}; + +TEST_P(Y4mVideoWriteTest, WriteTest) { + const Y4mTestParam t = GetParam(); + Init(t.filename, kFrames); + HeaderChecks(t.bit_depth, t.format); + Md5Check(t.md5raw); +} + +INSTANTIATE_TEST_CASE_P(C, Y4mVideoWriteTest, + ::testing::ValuesIn(kY4mTestVectors)); +} // namespace diff --git a/test/y4m_video_source.h b/test/y4m_video_source.h new file mode 100644 index 0000000..1301f69 --- /dev/null +++ b/test/y4m_video_source.h @@ -0,0 +1,122 @@ +/* + * Copyright (c) 2012 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ +#ifndef TEST_Y4M_VIDEO_SOURCE_H_ +#define TEST_Y4M_VIDEO_SOURCE_H_ +#include +#include + +#include "test/video_source.h" +#include "./y4minput.h" + +namespace libvpx_test { + +// This class extends VideoSource to allow parsing of raw yv12 +// so that we can do actual file encodes. +class Y4mVideoSource : public VideoSource { + public: + Y4mVideoSource(const std::string &file_name, unsigned int start, int limit) + : file_name_(file_name), input_file_(NULL), img_(new vpx_image_t()), + start_(start), limit_(limit), frame_(0), framerate_numerator_(0), + framerate_denominator_(0), y4m_() {} + + virtual ~Y4mVideoSource() { + vpx_img_free(img_.get()); + CloseSource(); + } + + virtual void OpenSource() { + CloseSource(); + input_file_ = OpenTestDataFile(file_name_); + ASSERT_TRUE(input_file_ != NULL) + << "Input file open failed. Filename: " << file_name_; + } + + virtual void ReadSourceToStart() { + ASSERT_TRUE(input_file_ != NULL); + ASSERT_FALSE(y4m_input_open(&y4m_, input_file_, NULL, 0, 0)); + framerate_numerator_ = y4m_.fps_n; + framerate_denominator_ = y4m_.fps_d; + frame_ = 0; + for (unsigned int i = 0; i < start_; i++) { + Next(); + } + FillFrame(); + } + + virtual void Begin() { + OpenSource(); + ReadSourceToStart(); + } + + virtual void Next() { + ++frame_; + FillFrame(); + } + + virtual vpx_image_t *img() const { + return (frame_ < limit_) ? img_.get() : NULL; + } + + // Models a stream where Timebase = 1/FPS, so pts == frame. + virtual vpx_codec_pts_t pts() const { return frame_; } + + virtual unsigned long duration() const { return 1; } + + virtual vpx_rational_t timebase() const { + const vpx_rational_t t = { framerate_denominator_, framerate_numerator_ }; + return t; + } + + virtual unsigned int frame() const { return frame_; } + + virtual unsigned int limit() const { return limit_; } + + virtual void FillFrame() { + ASSERT_TRUE(input_file_ != NULL); + // Read a frame from input_file. + y4m_input_fetch_frame(&y4m_, input_file_, img_.get()); + } + + // Swap buffers with another y4m source. This allows reading a new frame + // while keeping the old frame around. A whole Y4mSource is required and + // not just a vpx_image_t because of how the y4m reader manipulates + // vpx_image_t internals, + void SwapBuffers(Y4mVideoSource *other) { + std::swap(other->y4m_.dst_buf, y4m_.dst_buf); + vpx_image_t *tmp; + tmp = other->img_.release(); + other->img_.reset(img_.release()); + img_.reset(tmp); + } + + protected: + void CloseSource() { + y4m_input_close(&y4m_); + y4m_ = y4m_input(); + if (input_file_ != NULL) { + fclose(input_file_); + input_file_ = NULL; + } + } + + std::string file_name_; + FILE *input_file_; + testing::internal::scoped_ptr img_; + unsigned int start_; + unsigned int limit_; + unsigned int frame_; + int framerate_numerator_; + int framerate_denominator_; + y4m_input y4m_; +}; + +} // namespace libvpx_test + +#endif // TEST_Y4M_VIDEO_SOURCE_H_ diff --git a/test/yuv_video_source.h b/test/yuv_video_source.h new file mode 100644 index 0000000..aee6b2f --- /dev/null +++ b/test/yuv_video_source.h @@ -0,0 +1,125 @@ +/* + * Copyright (c) 2014 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ +#ifndef TEST_YUV_VIDEO_SOURCE_H_ +#define TEST_YUV_VIDEO_SOURCE_H_ + +#include +#include +#include + +#include "test/video_source.h" +#include "vpx/vpx_image.h" + +namespace libvpx_test { + +// This class extends VideoSource to allow parsing of raw YUV +// formats of various color sampling and bit-depths so that we can +// do actual file encodes. +class YUVVideoSource : public VideoSource { + public: + YUVVideoSource(const std::string &file_name, vpx_img_fmt format, + unsigned int width, unsigned int height, int rate_numerator, + int rate_denominator, unsigned int start, int limit) + : file_name_(file_name), input_file_(NULL), img_(NULL), start_(start), + limit_(limit), frame_(0), width_(0), height_(0), + format_(VPX_IMG_FMT_NONE), framerate_numerator_(rate_numerator), + framerate_denominator_(rate_denominator) { + // This initializes format_, raw_size_, width_, height_ and allocates img. + SetSize(width, height, format); + } + + virtual ~YUVVideoSource() { + vpx_img_free(img_); + if (input_file_) fclose(input_file_); + } + + virtual void Begin() { + if (input_file_) fclose(input_file_); + input_file_ = OpenTestDataFile(file_name_); + ASSERT_TRUE(input_file_ != NULL) + << "Input file open failed. Filename: " << file_name_; + if (start_) { + fseek(input_file_, static_cast(raw_size_) * start_, SEEK_SET); + } + + frame_ = start_; + FillFrame(); + } + + virtual void Next() { + ++frame_; + FillFrame(); + } + + virtual vpx_image_t *img() const { return (frame_ < limit_) ? img_ : NULL; } + + // Models a stream where Timebase = 1/FPS, so pts == frame. + virtual vpx_codec_pts_t pts() const { return frame_; } + + virtual unsigned long duration() const { return 1; } + + virtual vpx_rational_t timebase() const { + const vpx_rational_t t = { framerate_denominator_, framerate_numerator_ }; + return t; + } + + virtual unsigned int frame() const { return frame_; } + + virtual unsigned int limit() const { return limit_; } + + virtual void SetSize(unsigned int width, unsigned int height, + vpx_img_fmt format) { + if (width != width_ || height != height_ || format != format_) { + vpx_img_free(img_); + img_ = vpx_img_alloc(NULL, format, width, height, 1); + ASSERT_TRUE(img_ != NULL); + width_ = width; + height_ = height; + format_ = format; + switch (format) { + case VPX_IMG_FMT_I420: raw_size_ = width * height * 3 / 2; break; + case VPX_IMG_FMT_I422: raw_size_ = width * height * 2; break; + case VPX_IMG_FMT_I440: raw_size_ = width * height * 2; break; + case VPX_IMG_FMT_I444: raw_size_ = width * height * 3; break; + case VPX_IMG_FMT_I42016: raw_size_ = width * height * 3; break; + case VPX_IMG_FMT_I42216: raw_size_ = width * height * 4; break; + case VPX_IMG_FMT_I44016: raw_size_ = width * height * 4; break; + case VPX_IMG_FMT_I44416: raw_size_ = width * height * 6; break; + default: ASSERT_TRUE(0); + } + } + } + + virtual void FillFrame() { + ASSERT_TRUE(input_file_ != NULL); + // Read a frame from input_file. + if (fread(img_->img_data, raw_size_, 1, input_file_) == 0) { + limit_ = frame_; + } + } + + protected: + std::string file_name_; + FILE *input_file_; + vpx_image_t *img_; + size_t raw_size_; + unsigned int start_; + unsigned int limit_; + unsigned int frame_; + unsigned int width_; + unsigned int height_; + vpx_img_fmt format_; + int framerate_numerator_; + int framerate_denominator_; +}; + +} // namespace libvpx_test + +#endif // TEST_YUV_VIDEO_SOURCE_H_ diff --git a/third_party/googletest/README.libvpx b/third_party/googletest/README.libvpx new file mode 100644 index 0000000..2cd6910 --- /dev/null +++ b/third_party/googletest/README.libvpx @@ -0,0 +1,24 @@ +URL: https://github.com/google/googletest +Version: 1.8.0 +License: BSD +License File: LICENSE + +Description: +Google's framework for writing C++ tests on a variety of platforms +(Linux, Mac OS X, Windows, Windows CE, Symbian, etc). Based on the +xUnit architecture. Supports automatic test discovery, a rich set of +assertions, user-defined assertions, death tests, fatal and non-fatal +failures, various options for running the tests, and XML test report +generation. + +Local Modifications: +- Remove everything but: + googletest-release-1.8.0/googletest/ + CHANGES + CONTRIBUTORS + include + LICENSE + README.md + src +- Suppress unsigned overflow instrumentation in the LCG + https://github.com/google/googletest/pull/1066 diff --git a/third_party/googletest/gtest.mk b/third_party/googletest/gtest.mk new file mode 100644 index 0000000..0de3113 --- /dev/null +++ b/third_party/googletest/gtest.mk @@ -0,0 +1 @@ +GTEST_SRCS-yes += src/gtest-all.cc diff --git a/third_party/googletest/src/CHANGES b/third_party/googletest/src/CHANGES new file mode 100644 index 0000000..0552132 --- /dev/null +++ b/third_party/googletest/src/CHANGES @@ -0,0 +1,157 @@ +Changes for 1.7.0: + +* New feature: death tests are supported on OpenBSD and in iOS + simulator now. +* New feature: Google Test now implements a protocol to allow + a test runner to detect that a test program has exited + prematurely and report it as a failure (before it would be + falsely reported as a success if the exit code is 0). +* New feature: Test::RecordProperty() can now be used outside of the + lifespan of a test method, in which case it will be attributed to + the current test case or the test program in the XML report. +* New feature (potentially breaking): --gtest_list_tests now prints + the type parameters and value parameters for each test. +* Improvement: char pointers and char arrays are now escaped properly + in failure messages. +* Improvement: failure summary in XML reports now includes file and + line information. +* Improvement: the XML element now has a timestamp attribute. +* Improvement: When --gtest_filter is specified, XML report now doesn't + contain information about tests that are filtered out. +* Fixed the bug where long --gtest_filter flag values are truncated in + death tests. +* Potentially breaking change: RUN_ALL_TESTS() is now implemented as a + function instead of a macro in order to work better with Clang. +* Compatibility fixes with C++ 11 and various platforms. +* Bug/warning fixes. + +Changes for 1.6.0: + +* New feature: ADD_FAILURE_AT() for reporting a test failure at the + given source location -- useful for writing testing utilities. +* New feature: the universal value printer is moved from Google Mock + to Google Test. +* New feature: type parameters and value parameters are reported in + the XML report now. +* A gtest_disable_pthreads CMake option. +* Colored output works in GNU Screen sessions now. +* Parameters of value-parameterized tests are now printed in the + textual output. +* Failures from ad hoc test assertions run before RUN_ALL_TESTS() are + now correctly reported. +* Arguments of ASSERT_XY and EXPECT_XY no longer need to support << to + ostream. +* More complete handling of exceptions. +* GTEST_ASSERT_XY can be used instead of ASSERT_XY in case the latter + name is already used by another library. +* --gtest_catch_exceptions is now true by default, allowing a test + program to continue after an exception is thrown. +* Value-parameterized test fixtures can now derive from Test and + WithParamInterface separately, easing conversion of legacy tests. +* Death test messages are clearly marked to make them more + distinguishable from other messages. +* Compatibility fixes for Android, Google Native Client, MinGW, HP UX, + PowerPC, Lucid autotools, libCStd, Sun C++, Borland C++ Builder (Code Gear), + IBM XL C++ (Visual Age C++), and C++0x. +* Bug fixes and implementation clean-ups. +* Potentially incompatible changes: disables the harmful 'make install' + command in autotools. + +Changes for 1.5.0: + + * New feature: assertions can be safely called in multiple threads + where the pthreads library is available. + * New feature: predicates used inside EXPECT_TRUE() and friends + can now generate custom failure messages. + * New feature: Google Test can now be compiled as a DLL. + * New feature: fused source files are included. + * New feature: prints help when encountering unrecognized Google Test flags. + * Experimental feature: CMake build script (requires CMake 2.6.4+). + * Experimental feature: the Pump script for meta programming. + * double values streamed to an assertion are printed with enough precision + to differentiate any two different values. + * Google Test now works on Solaris and AIX. + * Build and test script improvements. + * Bug fixes and implementation clean-ups. + + Potentially breaking changes: + + * Stopped supporting VC++ 7.1 with exceptions disabled. + * Dropped support for 'make install'. + +Changes for 1.4.0: + + * New feature: the event listener API + * New feature: test shuffling + * New feature: the XML report format is closer to junitreport and can + be parsed by Hudson now. + * New feature: when a test runs under Visual Studio, its failures are + integrated in the IDE. + * New feature: /MD(d) versions of VC++ projects. + * New feature: elapsed time for the tests is printed by default. + * New feature: comes with a TR1 tuple implementation such that Boost + is no longer needed for Combine(). + * New feature: EXPECT_DEATH_IF_SUPPORTED macro and friends. + * New feature: the Xcode project can now produce static gtest + libraries in addition to a framework. + * Compatibility fixes for Solaris, Cygwin, minGW, Windows Mobile, + Symbian, gcc, and C++Builder. + * Bug fixes and implementation clean-ups. + +Changes for 1.3.0: + + * New feature: death tests on Windows, Cygwin, and Mac. + * New feature: ability to use Google Test assertions in other testing + frameworks. + * New feature: ability to run disabled test via + --gtest_also_run_disabled_tests. + * New feature: the --help flag for printing the usage. + * New feature: access to Google Test flag values in user code. + * New feature: a script that packs Google Test into one .h and one + .cc file for easy deployment. + * New feature: support for distributing test functions to multiple + machines (requires support from the test runner). + * Bug fixes and implementation clean-ups. + +Changes for 1.2.1: + + * Compatibility fixes for Linux IA-64 and IBM z/OS. + * Added support for using Boost and other TR1 implementations. + * Changes to the build scripts to support upcoming release of Google C++ + Mocking Framework. + * Added Makefile to the distribution package. + * Improved build instructions in README. + +Changes for 1.2.0: + + * New feature: value-parameterized tests. + * New feature: the ASSERT/EXPECT_(NON)FATAL_FAILURE(_ON_ALL_THREADS) + macros. + * Changed the XML report format to match JUnit/Ant's. + * Added tests to the Xcode project. + * Added scons/SConscript for building with SCons. + * Added src/gtest-all.cc for building Google Test from a single file. + * Fixed compatibility with Solaris and z/OS. + * Enabled running Python tests on systems with python 2.3 installed, + e.g. Mac OS X 10.4. + * Bug fixes. + +Changes for 1.1.0: + + * New feature: type-parameterized tests. + * New feature: exception assertions. + * New feature: printing elapsed time of tests. + * Improved the robustness of death tests. + * Added an Xcode project and samples. + * Adjusted the output format on Windows to be understandable by Visual Studio. + * Minor bug fixes. + +Changes for 1.0.1: + + * Added project files for Visual Studio 7.1. + * Fixed issues with compiling on Mac OS X. + * Fixed issues with compiling on Cygwin. + +Changes for 1.0.0: + + * Initial Open Source release of Google Test diff --git a/third_party/googletest/src/CONTRIBUTORS b/third_party/googletest/src/CONTRIBUTORS new file mode 100644 index 0000000..feae2fc --- /dev/null +++ b/third_party/googletest/src/CONTRIBUTORS @@ -0,0 +1,37 @@ +# This file contains a list of people who've made non-trivial +# contribution to the Google C++ Testing Framework project. People +# who commit code to the project are encouraged to add their names +# here. Please keep the list sorted by first names. + +Ajay Joshi +Balázs Dán +Bharat Mediratta +Chandler Carruth +Chris Prince +Chris Taylor +Dan Egnor +Eric Roman +Hady Zalek +Jeffrey Yasskin +Jói Sigurðsson +Keir Mierle +Keith Ray +Kenton Varda +Manuel Klimek +Markus Heule +Mika Raento +Miklós Fazekas +Pasi Valminen +Patrick Hanna +Patrick Riley +Peter Kaminski +Preston Jackson +Rainer Klaffenboeck +Russ Cox +Russ Rufer +Sean Mcafee +Sigurður Ásgeirsson +Tracy Bialik +Vadim Berman +Vlad Losev +Zhanyong Wan diff --git a/third_party/googletest/src/LICENSE b/third_party/googletest/src/LICENSE new file mode 100644 index 0000000..1941a11 --- /dev/null +++ b/third_party/googletest/src/LICENSE @@ -0,0 +1,28 @@ +Copyright 2008, Google Inc. +All rights reserved. + +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions are +met: + + * Redistributions of source code must retain the above copyright +notice, this list of conditions and the following disclaimer. + * Redistributions in binary form must reproduce the above +copyright notice, this list of conditions and the following disclaimer +in the documentation and/or other materials provided with the +distribution. + * Neither the name of Google Inc. nor the names of its +contributors may be used to endorse or promote products derived from +this software without specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. diff --git a/third_party/googletest/src/README.md b/third_party/googletest/src/README.md new file mode 100644 index 0000000..edd4408 --- /dev/null +++ b/third_party/googletest/src/README.md @@ -0,0 +1,280 @@ + +### Generic Build Instructions ### + +#### Setup #### + +To build Google Test and your tests that use it, you need to tell your +build system where to find its headers and source files. The exact +way to do it depends on which build system you use, and is usually +straightforward. + +#### Build #### + +Suppose you put Google Test in directory `${GTEST_DIR}`. To build it, +create a library build target (or a project as called by Visual Studio +and Xcode) to compile + + ${GTEST_DIR}/src/gtest-all.cc + +with `${GTEST_DIR}/include` in the system header search path and `${GTEST_DIR}` +in the normal header search path. Assuming a Linux-like system and gcc, +something like the following will do: + + g++ -isystem ${GTEST_DIR}/include -I${GTEST_DIR} \ + -pthread -c ${GTEST_DIR}/src/gtest-all.cc + ar -rv libgtest.a gtest-all.o + +(We need `-pthread` as Google Test uses threads.) + +Next, you should compile your test source file with +`${GTEST_DIR}/include` in the system header search path, and link it +with gtest and any other necessary libraries: + + g++ -isystem ${GTEST_DIR}/include -pthread path/to/your_test.cc libgtest.a \ + -o your_test + +As an example, the make/ directory contains a Makefile that you can +use to build Google Test on systems where GNU make is available +(e.g. Linux, Mac OS X, and Cygwin). It doesn't try to build Google +Test's own tests. Instead, it just builds the Google Test library and +a sample test. You can use it as a starting point for your own build +script. + +If the default settings are correct for your environment, the +following commands should succeed: + + cd ${GTEST_DIR}/make + make + ./sample1_unittest + +If you see errors, try to tweak the contents of `make/Makefile` to make +them go away. There are instructions in `make/Makefile` on how to do +it. + +### Using CMake ### + +Google Test comes with a CMake build script ( +[CMakeLists.txt](CMakeLists.txt)) that can be used on a wide range of platforms ("C" stands for +cross-platform.). If you don't have CMake installed already, you can +download it for free from . + +CMake works by generating native makefiles or build projects that can +be used in the compiler environment of your choice. The typical +workflow starts with: + + mkdir mybuild # Create a directory to hold the build output. + cd mybuild + cmake ${GTEST_DIR} # Generate native build scripts. + +If you want to build Google Test's samples, you should replace the +last command with + + cmake -Dgtest_build_samples=ON ${GTEST_DIR} + +If you are on a \*nix system, you should now see a Makefile in the +current directory. Just type 'make' to build gtest. + +If you use Windows and have Visual Studio installed, a `gtest.sln` file +and several `.vcproj` files will be created. You can then build them +using Visual Studio. + +On Mac OS X with Xcode installed, a `.xcodeproj` file will be generated. + +### Legacy Build Scripts ### + +Before settling on CMake, we have been providing hand-maintained build +projects/scripts for Visual Studio, Xcode, and Autotools. While we +continue to provide them for convenience, they are not actively +maintained any more. We highly recommend that you follow the +instructions in the previous two sections to integrate Google Test +with your existing build system. + +If you still need to use the legacy build scripts, here's how: + +The msvc\ folder contains two solutions with Visual C++ projects. +Open the `gtest.sln` or `gtest-md.sln` file using Visual Studio, and you +are ready to build Google Test the same way you build any Visual +Studio project. Files that have names ending with -md use DLL +versions of Microsoft runtime libraries (the /MD or the /MDd compiler +option). Files without that suffix use static versions of the runtime +libraries (the /MT or the /MTd option). Please note that one must use +the same option to compile both gtest and the test code. If you use +Visual Studio 2005 or above, we recommend the -md version as /MD is +the default for new projects in these versions of Visual Studio. + +On Mac OS X, open the `gtest.xcodeproj` in the `xcode/` folder using +Xcode. Build the "gtest" target. The universal binary framework will +end up in your selected build directory (selected in the Xcode +"Preferences..." -> "Building" pane and defaults to xcode/build). +Alternatively, at the command line, enter: + + xcodebuild + +This will build the "Release" configuration of gtest.framework in your +default build location. See the "xcodebuild" man page for more +information about building different configurations and building in +different locations. + +If you wish to use the Google Test Xcode project with Xcode 4.x and +above, you need to either: + + * update the SDK configuration options in xcode/Config/General.xconfig. + Comment options `SDKROOT`, `MACOS_DEPLOYMENT_TARGET`, and `GCC_VERSION`. If + you choose this route you lose the ability to target earlier versions + of MacOS X. + * Install an SDK for an earlier version. This doesn't appear to be + supported by Apple, but has been reported to work + (http://stackoverflow.com/questions/5378518). + +### Tweaking Google Test ### + +Google Test can be used in diverse environments. The default +configuration may not work (or may not work well) out of the box in +some environments. However, you can easily tweak Google Test by +defining control macros on the compiler command line. Generally, +these macros are named like `GTEST_XYZ` and you define them to either 1 +or 0 to enable or disable a certain feature. + +We list the most frequently used macros below. For a complete list, +see file [include/gtest/internal/gtest-port.h](include/gtest/internal/gtest-port.h). + +### Choosing a TR1 Tuple Library ### + +Some Google Test features require the C++ Technical Report 1 (TR1) +tuple library, which is not yet available with all compilers. The +good news is that Google Test implements a subset of TR1 tuple that's +enough for its own need, and will automatically use this when the +compiler doesn't provide TR1 tuple. + +Usually you don't need to care about which tuple library Google Test +uses. However, if your project already uses TR1 tuple, you need to +tell Google Test to use the same TR1 tuple library the rest of your +project uses, or the two tuple implementations will clash. To do +that, add + + -DGTEST_USE_OWN_TR1_TUPLE=0 + +to the compiler flags while compiling Google Test and your tests. If +you want to force Google Test to use its own tuple library, just add + + -DGTEST_USE_OWN_TR1_TUPLE=1 + +to the compiler flags instead. + +If you don't want Google Test to use tuple at all, add + + -DGTEST_HAS_TR1_TUPLE=0 + +and all features using tuple will be disabled. + +### Multi-threaded Tests ### + +Google Test is thread-safe where the pthread library is available. +After `#include "gtest/gtest.h"`, you can check the `GTEST_IS_THREADSAFE` +macro to see whether this is the case (yes if the macro is `#defined` to +1, no if it's undefined.). + +If Google Test doesn't correctly detect whether pthread is available +in your environment, you can force it with + + -DGTEST_HAS_PTHREAD=1 + +or + + -DGTEST_HAS_PTHREAD=0 + +When Google Test uses pthread, you may need to add flags to your +compiler and/or linker to select the pthread library, or you'll get +link errors. If you use the CMake script or the deprecated Autotools +script, this is taken care of for you. If you use your own build +script, you'll need to read your compiler and linker's manual to +figure out what flags to add. + +### As a Shared Library (DLL) ### + +Google Test is compact, so most users can build and link it as a +static library for the simplicity. You can choose to use Google Test +as a shared library (known as a DLL on Windows) if you prefer. + +To compile *gtest* as a shared library, add + + -DGTEST_CREATE_SHARED_LIBRARY=1 + +to the compiler flags. You'll also need to tell the linker to produce +a shared library instead - consult your linker's manual for how to do +it. + +To compile your *tests* that use the gtest shared library, add + + -DGTEST_LINKED_AS_SHARED_LIBRARY=1 + +to the compiler flags. + +Note: while the above steps aren't technically necessary today when +using some compilers (e.g. GCC), they may become necessary in the +future, if we decide to improve the speed of loading the library (see + for details). Therefore you are +recommended to always add the above flags when using Google Test as a +shared library. Otherwise a future release of Google Test may break +your build script. + +### Avoiding Macro Name Clashes ### + +In C++, macros don't obey namespaces. Therefore two libraries that +both define a macro of the same name will clash if you `#include` both +definitions. In case a Google Test macro clashes with another +library, you can force Google Test to rename its macro to avoid the +conflict. + +Specifically, if both Google Test and some other code define macro +FOO, you can add + + -DGTEST_DONT_DEFINE_FOO=1 + +to the compiler flags to tell Google Test to change the macro's name +from `FOO` to `GTEST_FOO`. Currently `FOO` can be `FAIL`, `SUCCEED`, +or `TEST`. For example, with `-DGTEST_DONT_DEFINE_TEST=1`, you'll +need to write + + GTEST_TEST(SomeTest, DoesThis) { ... } + +instead of + + TEST(SomeTest, DoesThis) { ... } + +in order to define a test. + +## Developing Google Test ## + +This section discusses how to make your own changes to Google Test. + +### Testing Google Test Itself ### + +To make sure your changes work as intended and don't break existing +functionality, you'll want to compile and run Google Test's own tests. +For that you can use CMake: + + mkdir mybuild + cd mybuild + cmake -Dgtest_build_tests=ON ${GTEST_DIR} + +Make sure you have Python installed, as some of Google Test's tests +are written in Python. If the cmake command complains about not being +able to find Python (`Could NOT find PythonInterp (missing: +PYTHON_EXECUTABLE)`), try telling it explicitly where your Python +executable can be found: + + cmake -DPYTHON_EXECUTABLE=path/to/python -Dgtest_build_tests=ON ${GTEST_DIR} + +Next, you can build Google Test and all of its own tests. On \*nix, +this is usually done by 'make'. To run the tests, do + + make test + +All tests should pass. + +Normally you don't need to worry about regenerating the source files, +unless you need to modify them. In that case, you should modify the +corresponding .pump files instead and run the pump.py Python script to +regenerate them. You can find pump.py in the [scripts/](scripts/) directory. +Read the [Pump manual](docs/PumpManual.md) for how to use it. diff --git a/third_party/googletest/src/include/gtest/gtest-death-test.h b/third_party/googletest/src/include/gtest/gtest-death-test.h new file mode 100644 index 0000000..957a69c --- /dev/null +++ b/third_party/googletest/src/include/gtest/gtest-death-test.h @@ -0,0 +1,294 @@ +// Copyright 2005, Google Inc. +// All rights reserved. +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: +// +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above +// copyright notice, this list of conditions and the following disclaimer +// in the documentation and/or other materials provided with the +// distribution. +// * Neither the name of Google Inc. nor the names of its +// contributors may be used to endorse or promote products derived from +// this software without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +// +// Author: wan@google.com (Zhanyong Wan) +// +// The Google C++ Testing Framework (Google Test) +// +// This header file defines the public API for death tests. It is +// #included by gtest.h so a user doesn't need to include this +// directly. + +#ifndef GTEST_INCLUDE_GTEST_GTEST_DEATH_TEST_H_ +#define GTEST_INCLUDE_GTEST_GTEST_DEATH_TEST_H_ + +#include "gtest/internal/gtest-death-test-internal.h" + +namespace testing { + +// This flag controls the style of death tests. Valid values are "threadsafe", +// meaning that the death test child process will re-execute the test binary +// from the start, running only a single death test, or "fast", +// meaning that the child process will execute the test logic immediately +// after forking. +GTEST_DECLARE_string_(death_test_style); + +#if GTEST_HAS_DEATH_TEST + +namespace internal { + +// Returns a Boolean value indicating whether the caller is currently +// executing in the context of the death test child process. Tools such as +// Valgrind heap checkers may need this to modify their behavior in death +// tests. IMPORTANT: This is an internal utility. Using it may break the +// implementation of death tests. User code MUST NOT use it. +GTEST_API_ bool InDeathTestChild(); + +} // namespace internal + +// The following macros are useful for writing death tests. + +// Here's what happens when an ASSERT_DEATH* or EXPECT_DEATH* is +// executed: +// +// 1. It generates a warning if there is more than one active +// thread. This is because it's safe to fork() or clone() only +// when there is a single thread. +// +// 2. The parent process clone()s a sub-process and runs the death +// test in it; the sub-process exits with code 0 at the end of the +// death test, if it hasn't exited already. +// +// 3. The parent process waits for the sub-process to terminate. +// +// 4. The parent process checks the exit code and error message of +// the sub-process. +// +// Examples: +// +// ASSERT_DEATH(server.SendMessage(56, "Hello"), "Invalid port number"); +// for (int i = 0; i < 5; i++) { +// EXPECT_DEATH(server.ProcessRequest(i), +// "Invalid request .* in ProcessRequest()") +// << "Failed to die on request " << i; +// } +// +// ASSERT_EXIT(server.ExitNow(), ::testing::ExitedWithCode(0), "Exiting"); +// +// bool KilledBySIGHUP(int exit_code) { +// return WIFSIGNALED(exit_code) && WTERMSIG(exit_code) == SIGHUP; +// } +// +// ASSERT_EXIT(client.HangUpServer(), KilledBySIGHUP, "Hanging up!"); +// +// On the regular expressions used in death tests: +// +// On POSIX-compliant systems (*nix), we use the library, +// which uses the POSIX extended regex syntax. +// +// On other platforms (e.g. Windows), we only support a simple regex +// syntax implemented as part of Google Test. This limited +// implementation should be enough most of the time when writing +// death tests; though it lacks many features you can find in PCRE +// or POSIX extended regex syntax. For example, we don't support +// union ("x|y"), grouping ("(xy)"), brackets ("[xy]"), and +// repetition count ("x{5,7}"), among others. +// +// Below is the syntax that we do support. We chose it to be a +// subset of both PCRE and POSIX extended regex, so it's easy to +// learn wherever you come from. In the following: 'A' denotes a +// literal character, period (.), or a single \\ escape sequence; +// 'x' and 'y' denote regular expressions; 'm' and 'n' are for +// natural numbers. +// +// c matches any literal character c +// \\d matches any decimal digit +// \\D matches any character that's not a decimal digit +// \\f matches \f +// \\n matches \n +// \\r matches \r +// \\s matches any ASCII whitespace, including \n +// \\S matches any character that's not a whitespace +// \\t matches \t +// \\v matches \v +// \\w matches any letter, _, or decimal digit +// \\W matches any character that \\w doesn't match +// \\c matches any literal character c, which must be a punctuation +// . matches any single character except \n +// A? matches 0 or 1 occurrences of A +// A* matches 0 or many occurrences of A +// A+ matches 1 or many occurrences of A +// ^ matches the beginning of a string (not that of each line) +// $ matches the end of a string (not that of each line) +// xy matches x followed by y +// +// If you accidentally use PCRE or POSIX extended regex features +// not implemented by us, you will get a run-time failure. In that +// case, please try to rewrite your regular expression within the +// above syntax. +// +// This implementation is *not* meant to be as highly tuned or robust +// as a compiled regex library, but should perform well enough for a +// death test, which already incurs significant overhead by launching +// a child process. +// +// Known caveats: +// +// A "threadsafe" style death test obtains the path to the test +// program from argv[0] and re-executes it in the sub-process. For +// simplicity, the current implementation doesn't search the PATH +// when launching the sub-process. This means that the user must +// invoke the test program via a path that contains at least one +// path separator (e.g. path/to/foo_test and +// /absolute/path/to/bar_test are fine, but foo_test is not). This +// is rarely a problem as people usually don't put the test binary +// directory in PATH. +// +// TODO(wan@google.com): make thread-safe death tests search the PATH. + +// Asserts that a given statement causes the program to exit, with an +// integer exit status that satisfies predicate, and emitting error output +// that matches regex. +# define ASSERT_EXIT(statement, predicate, regex) \ + GTEST_DEATH_TEST_(statement, predicate, regex, GTEST_FATAL_FAILURE_) + +// Like ASSERT_EXIT, but continues on to successive tests in the +// test case, if any: +# define EXPECT_EXIT(statement, predicate, regex) \ + GTEST_DEATH_TEST_(statement, predicate, regex, GTEST_NONFATAL_FAILURE_) + +// Asserts that a given statement causes the program to exit, either by +// explicitly exiting with a nonzero exit code or being killed by a +// signal, and emitting error output that matches regex. +# define ASSERT_DEATH(statement, regex) \ + ASSERT_EXIT(statement, ::testing::internal::ExitedUnsuccessfully, regex) + +// Like ASSERT_DEATH, but continues on to successive tests in the +// test case, if any: +# define EXPECT_DEATH(statement, regex) \ + EXPECT_EXIT(statement, ::testing::internal::ExitedUnsuccessfully, regex) + +// Two predicate classes that can be used in {ASSERT,EXPECT}_EXIT*: + +// Tests that an exit code describes a normal exit with a given exit code. +class GTEST_API_ ExitedWithCode { + public: + explicit ExitedWithCode(int exit_code); + bool operator()(int exit_status) const; + private: + // No implementation - assignment is unsupported. + void operator=(const ExitedWithCode& other); + + const int exit_code_; +}; + +# if !GTEST_OS_WINDOWS +// Tests that an exit code describes an exit due to termination by a +// given signal. +class GTEST_API_ KilledBySignal { + public: + explicit KilledBySignal(int signum); + bool operator()(int exit_status) const; + private: + const int signum_; +}; +# endif // !GTEST_OS_WINDOWS + +// EXPECT_DEBUG_DEATH asserts that the given statements die in debug mode. +// The death testing framework causes this to have interesting semantics, +// since the sideeffects of the call are only visible in opt mode, and not +// in debug mode. +// +// In practice, this can be used to test functions that utilize the +// LOG(DFATAL) macro using the following style: +// +// int DieInDebugOr12(int* sideeffect) { +// if (sideeffect) { +// *sideeffect = 12; +// } +// LOG(DFATAL) << "death"; +// return 12; +// } +// +// TEST(TestCase, TestDieOr12WorksInDgbAndOpt) { +// int sideeffect = 0; +// // Only asserts in dbg. +// EXPECT_DEBUG_DEATH(DieInDebugOr12(&sideeffect), "death"); +// +// #ifdef NDEBUG +// // opt-mode has sideeffect visible. +// EXPECT_EQ(12, sideeffect); +// #else +// // dbg-mode no visible sideeffect. +// EXPECT_EQ(0, sideeffect); +// #endif +// } +// +// This will assert that DieInDebugReturn12InOpt() crashes in debug +// mode, usually due to a DCHECK or LOG(DFATAL), but returns the +// appropriate fallback value (12 in this case) in opt mode. If you +// need to test that a function has appropriate side-effects in opt +// mode, include assertions against the side-effects. A general +// pattern for this is: +// +// EXPECT_DEBUG_DEATH({ +// // Side-effects here will have an effect after this statement in +// // opt mode, but none in debug mode. +// EXPECT_EQ(12, DieInDebugOr12(&sideeffect)); +// }, "death"); +// +# ifdef NDEBUG + +# define EXPECT_DEBUG_DEATH(statement, regex) \ + GTEST_EXECUTE_STATEMENT_(statement, regex) + +# define ASSERT_DEBUG_DEATH(statement, regex) \ + GTEST_EXECUTE_STATEMENT_(statement, regex) + +# else + +# define EXPECT_DEBUG_DEATH(statement, regex) \ + EXPECT_DEATH(statement, regex) + +# define ASSERT_DEBUG_DEATH(statement, regex) \ + ASSERT_DEATH(statement, regex) + +# endif // NDEBUG for EXPECT_DEBUG_DEATH +#endif // GTEST_HAS_DEATH_TEST + +// EXPECT_DEATH_IF_SUPPORTED(statement, regex) and +// ASSERT_DEATH_IF_SUPPORTED(statement, regex) expand to real death tests if +// death tests are supported; otherwise they just issue a warning. This is +// useful when you are combining death test assertions with normal test +// assertions in one test. +#if GTEST_HAS_DEATH_TEST +# define EXPECT_DEATH_IF_SUPPORTED(statement, regex) \ + EXPECT_DEATH(statement, regex) +# define ASSERT_DEATH_IF_SUPPORTED(statement, regex) \ + ASSERT_DEATH(statement, regex) +#else +# define EXPECT_DEATH_IF_SUPPORTED(statement, regex) \ + GTEST_UNSUPPORTED_DEATH_TEST_(statement, regex, ) +# define ASSERT_DEATH_IF_SUPPORTED(statement, regex) \ + GTEST_UNSUPPORTED_DEATH_TEST_(statement, regex, return) +#endif + +} // namespace testing + +#endif // GTEST_INCLUDE_GTEST_GTEST_DEATH_TEST_H_ diff --git a/third_party/googletest/src/include/gtest/gtest-message.h b/third_party/googletest/src/include/gtest/gtest-message.h new file mode 100644 index 0000000..fe879bc --- /dev/null +++ b/third_party/googletest/src/include/gtest/gtest-message.h @@ -0,0 +1,250 @@ +// Copyright 2005, Google Inc. +// All rights reserved. +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: +// +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above +// copyright notice, this list of conditions and the following disclaimer +// in the documentation and/or other materials provided with the +// distribution. +// * Neither the name of Google Inc. nor the names of its +// contributors may be used to endorse or promote products derived from +// this software without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +// +// Author: wan@google.com (Zhanyong Wan) +// +// The Google C++ Testing Framework (Google Test) +// +// This header file defines the Message class. +// +// IMPORTANT NOTE: Due to limitation of the C++ language, we have to +// leave some internal implementation details in this header file. +// They are clearly marked by comments like this: +// +// // INTERNAL IMPLEMENTATION - DO NOT USE IN A USER PROGRAM. +// +// Such code is NOT meant to be used by a user directly, and is subject +// to CHANGE WITHOUT NOTICE. Therefore DO NOT DEPEND ON IT in a user +// program! + +#ifndef GTEST_INCLUDE_GTEST_GTEST_MESSAGE_H_ +#define GTEST_INCLUDE_GTEST_GTEST_MESSAGE_H_ + +#include + +#include "gtest/internal/gtest-port.h" + +// Ensures that there is at least one operator<< in the global namespace. +// See Message& operator<<(...) below for why. +void operator<<(const testing::internal::Secret&, int); + +namespace testing { + +// The Message class works like an ostream repeater. +// +// Typical usage: +// +// 1. You stream a bunch of values to a Message object. +// It will remember the text in a stringstream. +// 2. Then you stream the Message object to an ostream. +// This causes the text in the Message to be streamed +// to the ostream. +// +// For example; +// +// testing::Message foo; +// foo << 1 << " != " << 2; +// std::cout << foo; +// +// will print "1 != 2". +// +// Message is not intended to be inherited from. In particular, its +// destructor is not virtual. +// +// Note that stringstream behaves differently in gcc and in MSVC. You +// can stream a NULL char pointer to it in the former, but not in the +// latter (it causes an access violation if you do). The Message +// class hides this difference by treating a NULL char pointer as +// "(null)". +class GTEST_API_ Message { + private: + // The type of basic IO manipulators (endl, ends, and flush) for + // narrow streams. + typedef std::ostream& (*BasicNarrowIoManip)(std::ostream&); + + public: + // Constructs an empty Message. + Message(); + + // Copy constructor. + Message(const Message& msg) : ss_(new ::std::stringstream) { // NOLINT + *ss_ << msg.GetString(); + } + + // Constructs a Message from a C-string. + explicit Message(const char* str) : ss_(new ::std::stringstream) { + *ss_ << str; + } + +#if GTEST_OS_SYMBIAN + // Streams a value (either a pointer or not) to this object. + template + inline Message& operator <<(const T& value) { + StreamHelper(typename internal::is_pointer::type(), value); + return *this; + } +#else + // Streams a non-pointer value to this object. + template + inline Message& operator <<(const T& val) { + // Some libraries overload << for STL containers. These + // overloads are defined in the global namespace instead of ::std. + // + // C++'s symbol lookup rule (i.e. Koenig lookup) says that these + // overloads are visible in either the std namespace or the global + // namespace, but not other namespaces, including the testing + // namespace which Google Test's Message class is in. + // + // To allow STL containers (and other types that has a << operator + // defined in the global namespace) to be used in Google Test + // assertions, testing::Message must access the custom << operator + // from the global namespace. With this using declaration, + // overloads of << defined in the global namespace and those + // visible via Koenig lookup are both exposed in this function. + using ::operator <<; + *ss_ << val; + return *this; + } + + // Streams a pointer value to this object. + // + // This function is an overload of the previous one. When you + // stream a pointer to a Message, this definition will be used as it + // is more specialized. (The C++ Standard, section + // [temp.func.order].) If you stream a non-pointer, then the + // previous definition will be used. + // + // The reason for this overload is that streaming a NULL pointer to + // ostream is undefined behavior. Depending on the compiler, you + // may get "0", "(nil)", "(null)", or an access violation. To + // ensure consistent result across compilers, we always treat NULL + // as "(null)". + template + inline Message& operator <<(T* const& pointer) { // NOLINT + if (pointer == NULL) { + *ss_ << "(null)"; + } else { + *ss_ << pointer; + } + return *this; + } +#endif // GTEST_OS_SYMBIAN + + // Since the basic IO manipulators are overloaded for both narrow + // and wide streams, we have to provide this specialized definition + // of operator <<, even though its body is the same as the + // templatized version above. Without this definition, streaming + // endl or other basic IO manipulators to Message will confuse the + // compiler. + Message& operator <<(BasicNarrowIoManip val) { + *ss_ << val; + return *this; + } + + // Instead of 1/0, we want to see true/false for bool values. + Message& operator <<(bool b) { + return *this << (b ? "true" : "false"); + } + + // These two overloads allow streaming a wide C string to a Message + // using the UTF-8 encoding. + Message& operator <<(const wchar_t* wide_c_str); + Message& operator <<(wchar_t* wide_c_str); + +#if GTEST_HAS_STD_WSTRING + // Converts the given wide string to a narrow string using the UTF-8 + // encoding, and streams the result to this Message object. + Message& operator <<(const ::std::wstring& wstr); +#endif // GTEST_HAS_STD_WSTRING + +#if GTEST_HAS_GLOBAL_WSTRING + // Converts the given wide string to a narrow string using the UTF-8 + // encoding, and streams the result to this Message object. + Message& operator <<(const ::wstring& wstr); +#endif // GTEST_HAS_GLOBAL_WSTRING + + // Gets the text streamed to this object so far as an std::string. + // Each '\0' character in the buffer is replaced with "\\0". + // + // INTERNAL IMPLEMENTATION - DO NOT USE IN A USER PROGRAM. + std::string GetString() const; + + private: + +#if GTEST_OS_SYMBIAN + // These are needed as the Nokia Symbian Compiler cannot decide between + // const T& and const T* in a function template. The Nokia compiler _can_ + // decide between class template specializations for T and T*, so a + // tr1::type_traits-like is_pointer works, and we can overload on that. + template + inline void StreamHelper(internal::true_type /*is_pointer*/, T* pointer) { + if (pointer == NULL) { + *ss_ << "(null)"; + } else { + *ss_ << pointer; + } + } + template + inline void StreamHelper(internal::false_type /*is_pointer*/, + const T& value) { + // See the comments in Message& operator <<(const T&) above for why + // we need this using statement. + using ::operator <<; + *ss_ << value; + } +#endif // GTEST_OS_SYMBIAN + + // We'll hold the text streamed to this object here. + const internal::scoped_ptr< ::std::stringstream> ss_; + + // We declare (but don't implement) this to prevent the compiler + // from implementing the assignment operator. + void operator=(const Message&); +}; + +// Streams a Message to an ostream. +inline std::ostream& operator <<(std::ostream& os, const Message& sb) { + return os << sb.GetString(); +} + +namespace internal { + +// Converts a streamable value to an std::string. A NULL pointer is +// converted to "(null)". When the input value is a ::string, +// ::std::string, ::wstring, or ::std::wstring object, each NUL +// character in it is replaced with "\\0". +template +std::string StreamableToString(const T& streamable) { + return (Message() << streamable).GetString(); +} + +} // namespace internal +} // namespace testing + +#endif // GTEST_INCLUDE_GTEST_GTEST_MESSAGE_H_ diff --git a/third_party/googletest/src/include/gtest/gtest-param-test.h b/third_party/googletest/src/include/gtest/gtest-param-test.h new file mode 100644 index 0000000..038f9ba --- /dev/null +++ b/third_party/googletest/src/include/gtest/gtest-param-test.h @@ -0,0 +1,1444 @@ +// This file was GENERATED by command: +// pump.py gtest-param-test.h.pump +// DO NOT EDIT BY HAND!!! + +// Copyright 2008, Google Inc. +// All rights reserved. +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: +// +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above +// copyright notice, this list of conditions and the following disclaimer +// in the documentation and/or other materials provided with the +// distribution. +// * Neither the name of Google Inc. nor the names of its +// contributors may be used to endorse or promote products derived from +// this software without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +// +// Authors: vladl@google.com (Vlad Losev) +// +// Macros and functions for implementing parameterized tests +// in Google C++ Testing Framework (Google Test) +// +// This file is generated by a SCRIPT. DO NOT EDIT BY HAND! +// +#ifndef GTEST_INCLUDE_GTEST_GTEST_PARAM_TEST_H_ +#define GTEST_INCLUDE_GTEST_GTEST_PARAM_TEST_H_ + + +// Value-parameterized tests allow you to test your code with different +// parameters without writing multiple copies of the same test. +// +// Here is how you use value-parameterized tests: + +#if 0 + +// To write value-parameterized tests, first you should define a fixture +// class. It is usually derived from testing::TestWithParam (see below for +// another inheritance scheme that's sometimes useful in more complicated +// class hierarchies), where the type of your parameter values. +// TestWithParam is itself derived from testing::Test. T can be any +// copyable type. If it's a raw pointer, you are responsible for managing the +// lifespan of the pointed values. + +class FooTest : public ::testing::TestWithParam { + // You can implement all the usual class fixture members here. +}; + +// Then, use the TEST_P macro to define as many parameterized tests +// for this fixture as you want. The _P suffix is for "parameterized" +// or "pattern", whichever you prefer to think. + +TEST_P(FooTest, DoesBlah) { + // Inside a test, access the test parameter with the GetParam() method + // of the TestWithParam class: + EXPECT_TRUE(foo.Blah(GetParam())); + ... +} + +TEST_P(FooTest, HasBlahBlah) { + ... +} + +// Finally, you can use INSTANTIATE_TEST_CASE_P to instantiate the test +// case with any set of parameters you want. Google Test defines a number +// of functions for generating test parameters. They return what we call +// (surprise!) parameter generators. Here is a summary of them, which +// are all in the testing namespace: +// +// +// Range(begin, end [, step]) - Yields values {begin, begin+step, +// begin+step+step, ...}. The values do not +// include end. step defaults to 1. +// Values(v1, v2, ..., vN) - Yields values {v1, v2, ..., vN}. +// ValuesIn(container) - Yields values from a C-style array, an STL +// ValuesIn(begin,end) container, or an iterator range [begin, end). +// Bool() - Yields sequence {false, true}. +// Combine(g1, g2, ..., gN) - Yields all combinations (the Cartesian product +// for the math savvy) of the values generated +// by the N generators. +// +// For more details, see comments at the definitions of these functions below +// in this file. +// +// The following statement will instantiate tests from the FooTest test case +// each with parameter values "meeny", "miny", and "moe". + +INSTANTIATE_TEST_CASE_P(InstantiationName, + FooTest, + Values("meeny", "miny", "moe")); + +// To distinguish different instances of the pattern, (yes, you +// can instantiate it more then once) the first argument to the +// INSTANTIATE_TEST_CASE_P macro is a prefix that will be added to the +// actual test case name. Remember to pick unique prefixes for different +// instantiations. The tests from the instantiation above will have +// these names: +// +// * InstantiationName/FooTest.DoesBlah/0 for "meeny" +// * InstantiationName/FooTest.DoesBlah/1 for "miny" +// * InstantiationName/FooTest.DoesBlah/2 for "moe" +// * InstantiationName/FooTest.HasBlahBlah/0 for "meeny" +// * InstantiationName/FooTest.HasBlahBlah/1 for "miny" +// * InstantiationName/FooTest.HasBlahBlah/2 for "moe" +// +// You can use these names in --gtest_filter. +// +// This statement will instantiate all tests from FooTest again, each +// with parameter values "cat" and "dog": + +const char* pets[] = {"cat", "dog"}; +INSTANTIATE_TEST_CASE_P(AnotherInstantiationName, FooTest, ValuesIn(pets)); + +// The tests from the instantiation above will have these names: +// +// * AnotherInstantiationName/FooTest.DoesBlah/0 for "cat" +// * AnotherInstantiationName/FooTest.DoesBlah/1 for "dog" +// * AnotherInstantiationName/FooTest.HasBlahBlah/0 for "cat" +// * AnotherInstantiationName/FooTest.HasBlahBlah/1 for "dog" +// +// Please note that INSTANTIATE_TEST_CASE_P will instantiate all tests +// in the given test case, whether their definitions come before or +// AFTER the INSTANTIATE_TEST_CASE_P statement. +// +// Please also note that generator expressions (including parameters to the +// generators) are evaluated in InitGoogleTest(), after main() has started. +// This allows the user on one hand, to adjust generator parameters in order +// to dynamically determine a set of tests to run and on the other hand, +// give the user a chance to inspect the generated tests with Google Test +// reflection API before RUN_ALL_TESTS() is executed. +// +// You can see samples/sample7_unittest.cc and samples/sample8_unittest.cc +// for more examples. +// +// In the future, we plan to publish the API for defining new parameter +// generators. But for now this interface remains part of the internal +// implementation and is subject to change. +// +// +// A parameterized test fixture must be derived from testing::Test and from +// testing::WithParamInterface, where T is the type of the parameter +// values. Inheriting from TestWithParam satisfies that requirement because +// TestWithParam inherits from both Test and WithParamInterface. In more +// complicated hierarchies, however, it is occasionally useful to inherit +// separately from Test and WithParamInterface. For example: + +class BaseTest : public ::testing::Test { + // You can inherit all the usual members for a non-parameterized test + // fixture here. +}; + +class DerivedTest : public BaseTest, public ::testing::WithParamInterface { + // The usual test fixture members go here too. +}; + +TEST_F(BaseTest, HasFoo) { + // This is an ordinary non-parameterized test. +} + +TEST_P(DerivedTest, DoesBlah) { + // GetParam works just the same here as if you inherit from TestWithParam. + EXPECT_TRUE(foo.Blah(GetParam())); +} + +#endif // 0 + +#include "gtest/internal/gtest-port.h" + +#if !GTEST_OS_SYMBIAN +# include +#endif + +// scripts/fuse_gtest.py depends on gtest's own header being #included +// *unconditionally*. Therefore these #includes cannot be moved +// inside #if GTEST_HAS_PARAM_TEST. +#include "gtest/internal/gtest-internal.h" +#include "gtest/internal/gtest-param-util.h" +#include "gtest/internal/gtest-param-util-generated.h" + +#if GTEST_HAS_PARAM_TEST + +namespace testing { + +// Functions producing parameter generators. +// +// Google Test uses these generators to produce parameters for value- +// parameterized tests. When a parameterized test case is instantiated +// with a particular generator, Google Test creates and runs tests +// for each element in the sequence produced by the generator. +// +// In the following sample, tests from test case FooTest are instantiated +// each three times with parameter values 3, 5, and 8: +// +// class FooTest : public TestWithParam { ... }; +// +// TEST_P(FooTest, TestThis) { +// } +// TEST_P(FooTest, TestThat) { +// } +// INSTANTIATE_TEST_CASE_P(TestSequence, FooTest, Values(3, 5, 8)); +// + +// Range() returns generators providing sequences of values in a range. +// +// Synopsis: +// Range(start, end) +// - returns a generator producing a sequence of values {start, start+1, +// start+2, ..., }. +// Range(start, end, step) +// - returns a generator producing a sequence of values {start, start+step, +// start+step+step, ..., }. +// Notes: +// * The generated sequences never include end. For example, Range(1, 5) +// returns a generator producing a sequence {1, 2, 3, 4}. Range(1, 9, 2) +// returns a generator producing {1, 3, 5, 7}. +// * start and end must have the same type. That type may be any integral or +// floating-point type or a user defined type satisfying these conditions: +// * It must be assignable (have operator=() defined). +// * It must have operator+() (operator+(int-compatible type) for +// two-operand version). +// * It must have operator<() defined. +// Elements in the resulting sequences will also have that type. +// * Condition start < end must be satisfied in order for resulting sequences +// to contain any elements. +// +template +internal::ParamGenerator Range(T start, T end, IncrementT step) { + return internal::ParamGenerator( + new internal::RangeGenerator(start, end, step)); +} + +template +internal::ParamGenerator Range(T start, T end) { + return Range(start, end, 1); +} + +// ValuesIn() function allows generation of tests with parameters coming from +// a container. +// +// Synopsis: +// ValuesIn(const T (&array)[N]) +// - returns a generator producing sequences with elements from +// a C-style array. +// ValuesIn(const Container& container) +// - returns a generator producing sequences with elements from +// an STL-style container. +// ValuesIn(Iterator begin, Iterator end) +// - returns a generator producing sequences with elements from +// a range [begin, end) defined by a pair of STL-style iterators. These +// iterators can also be plain C pointers. +// +// Please note that ValuesIn copies the values from the containers +// passed in and keeps them to generate tests in RUN_ALL_TESTS(). +// +// Examples: +// +// This instantiates tests from test case StringTest +// each with C-string values of "foo", "bar", and "baz": +// +// const char* strings[] = {"foo", "bar", "baz"}; +// INSTANTIATE_TEST_CASE_P(StringSequence, SrtingTest, ValuesIn(strings)); +// +// This instantiates tests from test case StlStringTest +// each with STL strings with values "a" and "b": +// +// ::std::vector< ::std::string> GetParameterStrings() { +// ::std::vector< ::std::string> v; +// v.push_back("a"); +// v.push_back("b"); +// return v; +// } +// +// INSTANTIATE_TEST_CASE_P(CharSequence, +// StlStringTest, +// ValuesIn(GetParameterStrings())); +// +// +// This will also instantiate tests from CharTest +// each with parameter values 'a' and 'b': +// +// ::std::list GetParameterChars() { +// ::std::list list; +// list.push_back('a'); +// list.push_back('b'); +// return list; +// } +// ::std::list l = GetParameterChars(); +// INSTANTIATE_TEST_CASE_P(CharSequence2, +// CharTest, +// ValuesIn(l.begin(), l.end())); +// +template +internal::ParamGenerator< + typename ::testing::internal::IteratorTraits::value_type> +ValuesIn(ForwardIterator begin, ForwardIterator end) { + typedef typename ::testing::internal::IteratorTraits + ::value_type ParamType; + return internal::ParamGenerator( + new internal::ValuesInIteratorRangeGenerator(begin, end)); +} + +template +internal::ParamGenerator ValuesIn(const T (&array)[N]) { + return ValuesIn(array, array + N); +} + +template +internal::ParamGenerator ValuesIn( + const Container& container) { + return ValuesIn(container.begin(), container.end()); +} + +// Values() allows generating tests from explicitly specified list of +// parameters. +// +// Synopsis: +// Values(T v1, T v2, ..., T vN) +// - returns a generator producing sequences with elements v1, v2, ..., vN. +// +// For example, this instantiates tests from test case BarTest each +// with values "one", "two", and "three": +// +// INSTANTIATE_TEST_CASE_P(NumSequence, BarTest, Values("one", "two", "three")); +// +// This instantiates tests from test case BazTest each with values 1, 2, 3.5. +// The exact type of values will depend on the type of parameter in BazTest. +// +// INSTANTIATE_TEST_CASE_P(FloatingNumbers, BazTest, Values(1, 2, 3.5)); +// +// Currently, Values() supports from 1 to 50 parameters. +// +template +internal::ValueArray1 Values(T1 v1) { + return internal::ValueArray1(v1); +} + +template +internal::ValueArray2 Values(T1 v1, T2 v2) { + return internal::ValueArray2(v1, v2); +} + +template +internal::ValueArray3 Values(T1 v1, T2 v2, T3 v3) { + return internal::ValueArray3(v1, v2, v3); +} + +template +internal::ValueArray4 Values(T1 v1, T2 v2, T3 v3, T4 v4) { + return internal::ValueArray4(v1, v2, v3, v4); +} + +template +internal::ValueArray5 Values(T1 v1, T2 v2, T3 v3, T4 v4, + T5 v5) { + return internal::ValueArray5(v1, v2, v3, v4, v5); +} + +template +internal::ValueArray6 Values(T1 v1, T2 v2, T3 v3, + T4 v4, T5 v5, T6 v6) { + return internal::ValueArray6(v1, v2, v3, v4, v5, v6); +} + +template +internal::ValueArray7 Values(T1 v1, T2 v2, T3 v3, + T4 v4, T5 v5, T6 v6, T7 v7) { + return internal::ValueArray7(v1, v2, v3, v4, v5, + v6, v7); +} + +template +internal::ValueArray8 Values(T1 v1, T2 v2, + T3 v3, T4 v4, T5 v5, T6 v6, T7 v7, T8 v8) { + return internal::ValueArray8(v1, v2, v3, v4, + v5, v6, v7, v8); +} + +template +internal::ValueArray9 Values(T1 v1, T2 v2, + T3 v3, T4 v4, T5 v5, T6 v6, T7 v7, T8 v8, T9 v9) { + return internal::ValueArray9(v1, v2, v3, + v4, v5, v6, v7, v8, v9); +} + +template +internal::ValueArray10 Values(T1 v1, + T2 v2, T3 v3, T4 v4, T5 v5, T6 v6, T7 v7, T8 v8, T9 v9, T10 v10) { + return internal::ValueArray10(v1, + v2, v3, v4, v5, v6, v7, v8, v9, v10); +} + +template +internal::ValueArray11 Values(T1 v1, T2 v2, T3 v3, T4 v4, T5 v5, T6 v6, T7 v7, T8 v8, T9 v9, + T10 v10, T11 v11) { + return internal::ValueArray11(v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11); +} + +template +internal::ValueArray12 Values(T1 v1, T2 v2, T3 v3, T4 v4, T5 v5, T6 v6, T7 v7, T8 v8, T9 v9, + T10 v10, T11 v11, T12 v12) { + return internal::ValueArray12(v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12); +} + +template +internal::ValueArray13 Values(T1 v1, T2 v2, T3 v3, T4 v4, T5 v5, T6 v6, T7 v7, T8 v8, T9 v9, + T10 v10, T11 v11, T12 v12, T13 v13) { + return internal::ValueArray13(v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13); +} + +template +internal::ValueArray14 Values(T1 v1, T2 v2, T3 v3, T4 v4, T5 v5, T6 v6, T7 v7, T8 v8, T9 v9, + T10 v10, T11 v11, T12 v12, T13 v13, T14 v14) { + return internal::ValueArray14(v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, + v14); +} + +template +internal::ValueArray15 Values(T1 v1, T2 v2, T3 v3, T4 v4, T5 v5, T6 v6, T7 v7, T8 v8, + T9 v9, T10 v10, T11 v11, T12 v12, T13 v13, T14 v14, T15 v15) { + return internal::ValueArray15(v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, + v13, v14, v15); +} + +template +internal::ValueArray16 Values(T1 v1, T2 v2, T3 v3, T4 v4, T5 v5, T6 v6, T7 v7, + T8 v8, T9 v9, T10 v10, T11 v11, T12 v12, T13 v13, T14 v14, T15 v15, + T16 v16) { + return internal::ValueArray16(v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, + v12, v13, v14, v15, v16); +} + +template +internal::ValueArray17 Values(T1 v1, T2 v2, T3 v3, T4 v4, T5 v5, T6 v6, T7 v7, + T8 v8, T9 v9, T10 v10, T11 v11, T12 v12, T13 v13, T14 v14, T15 v15, + T16 v16, T17 v17) { + return internal::ValueArray17(v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, + v11, v12, v13, v14, v15, v16, v17); +} + +template +internal::ValueArray18 Values(T1 v1, T2 v2, T3 v3, T4 v4, T5 v5, T6 v6, + T7 v7, T8 v8, T9 v9, T10 v10, T11 v11, T12 v12, T13 v13, T14 v14, T15 v15, + T16 v16, T17 v17, T18 v18) { + return internal::ValueArray18(v1, v2, v3, v4, v5, v6, v7, v8, v9, + v10, v11, v12, v13, v14, v15, v16, v17, v18); +} + +template +internal::ValueArray19 Values(T1 v1, T2 v2, T3 v3, T4 v4, T5 v5, + T6 v6, T7 v7, T8 v8, T9 v9, T10 v10, T11 v11, T12 v12, T13 v13, T14 v14, + T15 v15, T16 v16, T17 v17, T18 v18, T19 v19) { + return internal::ValueArray19(v1, v2, v3, v4, v5, v6, v7, v8, + v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19); +} + +template +internal::ValueArray20 Values(T1 v1, T2 v2, T3 v3, T4 v4, + T5 v5, T6 v6, T7 v7, T8 v8, T9 v9, T10 v10, T11 v11, T12 v12, T13 v13, + T14 v14, T15 v15, T16 v16, T17 v17, T18 v18, T19 v19, T20 v20) { + return internal::ValueArray20(v1, v2, v3, v4, v5, v6, v7, + v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20); +} + +template +internal::ValueArray21 Values(T1 v1, T2 v2, T3 v3, T4 v4, + T5 v5, T6 v6, T7 v7, T8 v8, T9 v9, T10 v10, T11 v11, T12 v12, T13 v13, + T14 v14, T15 v15, T16 v16, T17 v17, T18 v18, T19 v19, T20 v20, T21 v21) { + return internal::ValueArray21(v1, v2, v3, v4, v5, v6, + v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21); +} + +template +internal::ValueArray22 Values(T1 v1, T2 v2, T3 v3, + T4 v4, T5 v5, T6 v6, T7 v7, T8 v8, T9 v9, T10 v10, T11 v11, T12 v12, + T13 v13, T14 v14, T15 v15, T16 v16, T17 v17, T18 v18, T19 v19, T20 v20, + T21 v21, T22 v22) { + return internal::ValueArray22(v1, v2, v3, v4, + v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, + v20, v21, v22); +} + +template +internal::ValueArray23 Values(T1 v1, T2 v2, + T3 v3, T4 v4, T5 v5, T6 v6, T7 v7, T8 v8, T9 v9, T10 v10, T11 v11, T12 v12, + T13 v13, T14 v14, T15 v15, T16 v16, T17 v17, T18 v18, T19 v19, T20 v20, + T21 v21, T22 v22, T23 v23) { + return internal::ValueArray23(v1, v2, v3, + v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, + v20, v21, v22, v23); +} + +template +internal::ValueArray24 Values(T1 v1, T2 v2, + T3 v3, T4 v4, T5 v5, T6 v6, T7 v7, T8 v8, T9 v9, T10 v10, T11 v11, T12 v12, + T13 v13, T14 v14, T15 v15, T16 v16, T17 v17, T18 v18, T19 v19, T20 v20, + T21 v21, T22 v22, T23 v23, T24 v24) { + return internal::ValueArray24(v1, v2, + v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, + v19, v20, v21, v22, v23, v24); +} + +template +internal::ValueArray25 Values(T1 v1, + T2 v2, T3 v3, T4 v4, T5 v5, T6 v6, T7 v7, T8 v8, T9 v9, T10 v10, T11 v11, + T12 v12, T13 v13, T14 v14, T15 v15, T16 v16, T17 v17, T18 v18, T19 v19, + T20 v20, T21 v21, T22 v22, T23 v23, T24 v24, T25 v25) { + return internal::ValueArray25(v1, + v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, + v18, v19, v20, v21, v22, v23, v24, v25); +} + +template +internal::ValueArray26 Values(T1 v1, T2 v2, T3 v3, T4 v4, T5 v5, T6 v6, T7 v7, T8 v8, T9 v9, + T10 v10, T11 v11, T12 v12, T13 v13, T14 v14, T15 v15, T16 v16, T17 v17, + T18 v18, T19 v19, T20 v20, T21 v21, T22 v22, T23 v23, T24 v24, T25 v25, + T26 v26) { + return internal::ValueArray26(v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, + v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26); +} + +template +internal::ValueArray27 Values(T1 v1, T2 v2, T3 v3, T4 v4, T5 v5, T6 v6, T7 v7, T8 v8, T9 v9, + T10 v10, T11 v11, T12 v12, T13 v13, T14 v14, T15 v15, T16 v16, T17 v17, + T18 v18, T19 v19, T20 v20, T21 v21, T22 v22, T23 v23, T24 v24, T25 v25, + T26 v26, T27 v27) { + return internal::ValueArray27(v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, + v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27); +} + +template +internal::ValueArray28 Values(T1 v1, T2 v2, T3 v3, T4 v4, T5 v5, T6 v6, T7 v7, T8 v8, T9 v9, + T10 v10, T11 v11, T12 v12, T13 v13, T14 v14, T15 v15, T16 v16, T17 v17, + T18 v18, T19 v19, T20 v20, T21 v21, T22 v22, T23 v23, T24 v24, T25 v25, + T26 v26, T27 v27, T28 v28) { + return internal::ValueArray28(v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, + v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, + v28); +} + +template +internal::ValueArray29 Values(T1 v1, T2 v2, T3 v3, T4 v4, T5 v5, T6 v6, T7 v7, T8 v8, T9 v9, + T10 v10, T11 v11, T12 v12, T13 v13, T14 v14, T15 v15, T16 v16, T17 v17, + T18 v18, T19 v19, T20 v20, T21 v21, T22 v22, T23 v23, T24 v24, T25 v25, + T26 v26, T27 v27, T28 v28, T29 v29) { + return internal::ValueArray29(v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, + v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, + v27, v28, v29); +} + +template +internal::ValueArray30 Values(T1 v1, T2 v2, T3 v3, T4 v4, T5 v5, T6 v6, T7 v7, T8 v8, + T9 v9, T10 v10, T11 v11, T12 v12, T13 v13, T14 v14, T15 v15, T16 v16, + T17 v17, T18 v18, T19 v19, T20 v20, T21 v21, T22 v22, T23 v23, T24 v24, + T25 v25, T26 v26, T27 v27, T28 v28, T29 v29, T30 v30) { + return internal::ValueArray30(v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, + v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, + v26, v27, v28, v29, v30); +} + +template +internal::ValueArray31 Values(T1 v1, T2 v2, T3 v3, T4 v4, T5 v5, T6 v6, T7 v7, + T8 v8, T9 v9, T10 v10, T11 v11, T12 v12, T13 v13, T14 v14, T15 v15, + T16 v16, T17 v17, T18 v18, T19 v19, T20 v20, T21 v21, T22 v22, T23 v23, + T24 v24, T25 v25, T26 v26, T27 v27, T28 v28, T29 v29, T30 v30, T31 v31) { + return internal::ValueArray31(v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, + v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, + v25, v26, v27, v28, v29, v30, v31); +} + +template +internal::ValueArray32 Values(T1 v1, T2 v2, T3 v3, T4 v4, T5 v5, T6 v6, T7 v7, + T8 v8, T9 v9, T10 v10, T11 v11, T12 v12, T13 v13, T14 v14, T15 v15, + T16 v16, T17 v17, T18 v18, T19 v19, T20 v20, T21 v21, T22 v22, T23 v23, + T24 v24, T25 v25, T26 v26, T27 v27, T28 v28, T29 v29, T30 v30, T31 v31, + T32 v32) { + return internal::ValueArray32(v1, v2, v3, v4, v5, v6, v7, v8, v9, + v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, + v24, v25, v26, v27, v28, v29, v30, v31, v32); +} + +template +internal::ValueArray33 Values(T1 v1, T2 v2, T3 v3, T4 v4, T5 v5, T6 v6, + T7 v7, T8 v8, T9 v9, T10 v10, T11 v11, T12 v12, T13 v13, T14 v14, T15 v15, + T16 v16, T17 v17, T18 v18, T19 v19, T20 v20, T21 v21, T22 v22, T23 v23, + T24 v24, T25 v25, T26 v26, T27 v27, T28 v28, T29 v29, T30 v30, T31 v31, + T32 v32, T33 v33) { + return internal::ValueArray33(v1, v2, v3, v4, v5, v6, v7, v8, + v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, + v24, v25, v26, v27, v28, v29, v30, v31, v32, v33); +} + +template +internal::ValueArray34 Values(T1 v1, T2 v2, T3 v3, T4 v4, T5 v5, + T6 v6, T7 v7, T8 v8, T9 v9, T10 v10, T11 v11, T12 v12, T13 v13, T14 v14, + T15 v15, T16 v16, T17 v17, T18 v18, T19 v19, T20 v20, T21 v21, T22 v22, + T23 v23, T24 v24, T25 v25, T26 v26, T27 v27, T28 v28, T29 v29, T30 v30, + T31 v31, T32 v32, T33 v33, T34 v34) { + return internal::ValueArray34(v1, v2, v3, v4, v5, v6, v7, + v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, + v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34); +} + +template +internal::ValueArray35 Values(T1 v1, T2 v2, T3 v3, T4 v4, + T5 v5, T6 v6, T7 v7, T8 v8, T9 v9, T10 v10, T11 v11, T12 v12, T13 v13, + T14 v14, T15 v15, T16 v16, T17 v17, T18 v18, T19 v19, T20 v20, T21 v21, + T22 v22, T23 v23, T24 v24, T25 v25, T26 v26, T27 v27, T28 v28, T29 v29, + T30 v30, T31 v31, T32 v32, T33 v33, T34 v34, T35 v35) { + return internal::ValueArray35(v1, v2, v3, v4, v5, v6, + v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, + v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35); +} + +template +internal::ValueArray36 Values(T1 v1, T2 v2, T3 v3, T4 v4, + T5 v5, T6 v6, T7 v7, T8 v8, T9 v9, T10 v10, T11 v11, T12 v12, T13 v13, + T14 v14, T15 v15, T16 v16, T17 v17, T18 v18, T19 v19, T20 v20, T21 v21, + T22 v22, T23 v23, T24 v24, T25 v25, T26 v26, T27 v27, T28 v28, T29 v29, + T30 v30, T31 v31, T32 v32, T33 v33, T34 v34, T35 v35, T36 v36) { + return internal::ValueArray36(v1, v2, v3, v4, + v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, + v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, + v34, v35, v36); +} + +template +internal::ValueArray37 Values(T1 v1, T2 v2, T3 v3, + T4 v4, T5 v5, T6 v6, T7 v7, T8 v8, T9 v9, T10 v10, T11 v11, T12 v12, + T13 v13, T14 v14, T15 v15, T16 v16, T17 v17, T18 v18, T19 v19, T20 v20, + T21 v21, T22 v22, T23 v23, T24 v24, T25 v25, T26 v26, T27 v27, T28 v28, + T29 v29, T30 v30, T31 v31, T32 v32, T33 v33, T34 v34, T35 v35, T36 v36, + T37 v37) { + return internal::ValueArray37(v1, v2, v3, + v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, + v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, + v34, v35, v36, v37); +} + +template +internal::ValueArray38 Values(T1 v1, T2 v2, + T3 v3, T4 v4, T5 v5, T6 v6, T7 v7, T8 v8, T9 v9, T10 v10, T11 v11, T12 v12, + T13 v13, T14 v14, T15 v15, T16 v16, T17 v17, T18 v18, T19 v19, T20 v20, + T21 v21, T22 v22, T23 v23, T24 v24, T25 v25, T26 v26, T27 v27, T28 v28, + T29 v29, T30 v30, T31 v31, T32 v32, T33 v33, T34 v34, T35 v35, T36 v36, + T37 v37, T38 v38) { + return internal::ValueArray38(v1, v2, + v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, + v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, + v33, v34, v35, v36, v37, v38); +} + +template +internal::ValueArray39 Values(T1 v1, T2 v2, + T3 v3, T4 v4, T5 v5, T6 v6, T7 v7, T8 v8, T9 v9, T10 v10, T11 v11, T12 v12, + T13 v13, T14 v14, T15 v15, T16 v16, T17 v17, T18 v18, T19 v19, T20 v20, + T21 v21, T22 v22, T23 v23, T24 v24, T25 v25, T26 v26, T27 v27, T28 v28, + T29 v29, T30 v30, T31 v31, T32 v32, T33 v33, T34 v34, T35 v35, T36 v36, + T37 v37, T38 v38, T39 v39) { + return internal::ValueArray39(v1, + v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, + v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, + v32, v33, v34, v35, v36, v37, v38, v39); +} + +template +internal::ValueArray40 Values(T1 v1, + T2 v2, T3 v3, T4 v4, T5 v5, T6 v6, T7 v7, T8 v8, T9 v9, T10 v10, T11 v11, + T12 v12, T13 v13, T14 v14, T15 v15, T16 v16, T17 v17, T18 v18, T19 v19, + T20 v20, T21 v21, T22 v22, T23 v23, T24 v24, T25 v25, T26 v26, T27 v27, + T28 v28, T29 v29, T30 v30, T31 v31, T32 v32, T33 v33, T34 v34, T35 v35, + T36 v36, T37 v37, T38 v38, T39 v39, T40 v40) { + return internal::ValueArray40(v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, + v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, + v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40); +} + +template +internal::ValueArray41 Values(T1 v1, T2 v2, T3 v3, T4 v4, T5 v5, T6 v6, T7 v7, T8 v8, T9 v9, + T10 v10, T11 v11, T12 v12, T13 v13, T14 v14, T15 v15, T16 v16, T17 v17, + T18 v18, T19 v19, T20 v20, T21 v21, T22 v22, T23 v23, T24 v24, T25 v25, + T26 v26, T27 v27, T28 v28, T29 v29, T30 v30, T31 v31, T32 v32, T33 v33, + T34 v34, T35 v35, T36 v36, T37 v37, T38 v38, T39 v39, T40 v40, T41 v41) { + return internal::ValueArray41(v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, + v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, + v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41); +} + +template +internal::ValueArray42 Values(T1 v1, T2 v2, T3 v3, T4 v4, T5 v5, T6 v6, T7 v7, T8 v8, T9 v9, + T10 v10, T11 v11, T12 v12, T13 v13, T14 v14, T15 v15, T16 v16, T17 v17, + T18 v18, T19 v19, T20 v20, T21 v21, T22 v22, T23 v23, T24 v24, T25 v25, + T26 v26, T27 v27, T28 v28, T29 v29, T30 v30, T31 v31, T32 v32, T33 v33, + T34 v34, T35 v35, T36 v36, T37 v37, T38 v38, T39 v39, T40 v40, T41 v41, + T42 v42) { + return internal::ValueArray42(v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, + v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, + v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, + v42); +} + +template +internal::ValueArray43 Values(T1 v1, T2 v2, T3 v3, T4 v4, T5 v5, T6 v6, T7 v7, T8 v8, T9 v9, + T10 v10, T11 v11, T12 v12, T13 v13, T14 v14, T15 v15, T16 v16, T17 v17, + T18 v18, T19 v19, T20 v20, T21 v21, T22 v22, T23 v23, T24 v24, T25 v25, + T26 v26, T27 v27, T28 v28, T29 v29, T30 v30, T31 v31, T32 v32, T33 v33, + T34 v34, T35 v35, T36 v36, T37 v37, T38 v38, T39 v39, T40 v40, T41 v41, + T42 v42, T43 v43) { + return internal::ValueArray43(v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, + v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, + v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, + v41, v42, v43); +} + +template +internal::ValueArray44 Values(T1 v1, T2 v2, T3 v3, T4 v4, T5 v5, T6 v6, T7 v7, T8 v8, T9 v9, + T10 v10, T11 v11, T12 v12, T13 v13, T14 v14, T15 v15, T16 v16, T17 v17, + T18 v18, T19 v19, T20 v20, T21 v21, T22 v22, T23 v23, T24 v24, T25 v25, + T26 v26, T27 v27, T28 v28, T29 v29, T30 v30, T31 v31, T32 v32, T33 v33, + T34 v34, T35 v35, T36 v36, T37 v37, T38 v38, T39 v39, T40 v40, T41 v41, + T42 v42, T43 v43, T44 v44) { + return internal::ValueArray44(v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, + v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, + v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, + v40, v41, v42, v43, v44); +} + +template +internal::ValueArray45 Values(T1 v1, T2 v2, T3 v3, T4 v4, T5 v5, T6 v6, T7 v7, T8 v8, + T9 v9, T10 v10, T11 v11, T12 v12, T13 v13, T14 v14, T15 v15, T16 v16, + T17 v17, T18 v18, T19 v19, T20 v20, T21 v21, T22 v22, T23 v23, T24 v24, + T25 v25, T26 v26, T27 v27, T28 v28, T29 v29, T30 v30, T31 v31, T32 v32, + T33 v33, T34 v34, T35 v35, T36 v36, T37 v37, T38 v38, T39 v39, T40 v40, + T41 v41, T42 v42, T43 v43, T44 v44, T45 v45) { + return internal::ValueArray45(v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, + v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, + v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, + v39, v40, v41, v42, v43, v44, v45); +} + +template +internal::ValueArray46 Values(T1 v1, T2 v2, T3 v3, T4 v4, T5 v5, T6 v6, T7 v7, + T8 v8, T9 v9, T10 v10, T11 v11, T12 v12, T13 v13, T14 v14, T15 v15, + T16 v16, T17 v17, T18 v18, T19 v19, T20 v20, T21 v21, T22 v22, T23 v23, + T24 v24, T25 v25, T26 v26, T27 v27, T28 v28, T29 v29, T30 v30, T31 v31, + T32 v32, T33 v33, T34 v34, T35 v35, T36 v36, T37 v37, T38 v38, T39 v39, + T40 v40, T41 v41, T42 v42, T43 v43, T44 v44, T45 v45, T46 v46) { + return internal::ValueArray46(v1, v2, v3, v4, v5, v6, v7, v8, v9, + v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, + v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, + v38, v39, v40, v41, v42, v43, v44, v45, v46); +} + +template +internal::ValueArray47 Values(T1 v1, T2 v2, T3 v3, T4 v4, T5 v5, T6 v6, T7 v7, + T8 v8, T9 v9, T10 v10, T11 v11, T12 v12, T13 v13, T14 v14, T15 v15, + T16 v16, T17 v17, T18 v18, T19 v19, T20 v20, T21 v21, T22 v22, T23 v23, + T24 v24, T25 v25, T26 v26, T27 v27, T28 v28, T29 v29, T30 v30, T31 v31, + T32 v32, T33 v33, T34 v34, T35 v35, T36 v36, T37 v37, T38 v38, T39 v39, + T40 v40, T41 v41, T42 v42, T43 v43, T44 v44, T45 v45, T46 v46, T47 v47) { + return internal::ValueArray47(v1, v2, v3, v4, v5, v6, v7, v8, + v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, + v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, + v38, v39, v40, v41, v42, v43, v44, v45, v46, v47); +} + +template +internal::ValueArray48 Values(T1 v1, T2 v2, T3 v3, T4 v4, T5 v5, T6 v6, + T7 v7, T8 v8, T9 v9, T10 v10, T11 v11, T12 v12, T13 v13, T14 v14, T15 v15, + T16 v16, T17 v17, T18 v18, T19 v19, T20 v20, T21 v21, T22 v22, T23 v23, + T24 v24, T25 v25, T26 v26, T27 v27, T28 v28, T29 v29, T30 v30, T31 v31, + T32 v32, T33 v33, T34 v34, T35 v35, T36 v36, T37 v37, T38 v38, T39 v39, + T40 v40, T41 v41, T42 v42, T43 v43, T44 v44, T45 v45, T46 v46, T47 v47, + T48 v48) { + return internal::ValueArray48(v1, v2, v3, v4, v5, v6, v7, + v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, + v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, + v37, v38, v39, v40, v41, v42, v43, v44, v45, v46, v47, v48); +} + +template +internal::ValueArray49 Values(T1 v1, T2 v2, T3 v3, T4 v4, T5 v5, + T6 v6, T7 v7, T8 v8, T9 v9, T10 v10, T11 v11, T12 v12, T13 v13, T14 v14, + T15 v15, T16 v16, T17 v17, T18 v18, T19 v19, T20 v20, T21 v21, T22 v22, + T23 v23, T24 v24, T25 v25, T26 v26, T27 v27, T28 v28, T29 v29, T30 v30, + T31 v31, T32 v32, T33 v33, T34 v34, T35 v35, T36 v36, T37 v37, T38 v38, + T39 v39, T40 v40, T41 v41, T42 v42, T43 v43, T44 v44, T45 v45, T46 v46, + T47 v47, T48 v48, T49 v49) { + return internal::ValueArray49(v1, v2, v3, v4, v5, v6, + v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, + v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, + v36, v37, v38, v39, v40, v41, v42, v43, v44, v45, v46, v47, v48, v49); +} + +template +internal::ValueArray50 Values(T1 v1, T2 v2, T3 v3, T4 v4, + T5 v5, T6 v6, T7 v7, T8 v8, T9 v9, T10 v10, T11 v11, T12 v12, T13 v13, + T14 v14, T15 v15, T16 v16, T17 v17, T18 v18, T19 v19, T20 v20, T21 v21, + T22 v22, T23 v23, T24 v24, T25 v25, T26 v26, T27 v27, T28 v28, T29 v29, + T30 v30, T31 v31, T32 v32, T33 v33, T34 v34, T35 v35, T36 v36, T37 v37, + T38 v38, T39 v39, T40 v40, T41 v41, T42 v42, T43 v43, T44 v44, T45 v45, + T46 v46, T47 v47, T48 v48, T49 v49, T50 v50) { + return internal::ValueArray50(v1, v2, v3, v4, + v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, + v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, + v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44, v45, v46, v47, + v48, v49, v50); +} + +// Bool() allows generating tests with parameters in a set of (false, true). +// +// Synopsis: +// Bool() +// - returns a generator producing sequences with elements {false, true}. +// +// It is useful when testing code that depends on Boolean flags. Combinations +// of multiple flags can be tested when several Bool()'s are combined using +// Combine() function. +// +// In the following example all tests in the test case FlagDependentTest +// will be instantiated twice with parameters false and true. +// +// class FlagDependentTest : public testing::TestWithParam { +// virtual void SetUp() { +// external_flag = GetParam(); +// } +// } +// INSTANTIATE_TEST_CASE_P(BoolSequence, FlagDependentTest, Bool()); +// +inline internal::ParamGenerator Bool() { + return Values(false, true); +} + +# if GTEST_HAS_COMBINE +// Combine() allows the user to combine two or more sequences to produce +// values of a Cartesian product of those sequences' elements. +// +// Synopsis: +// Combine(gen1, gen2, ..., genN) +// - returns a generator producing sequences with elements coming from +// the Cartesian product of elements from the sequences generated by +// gen1, gen2, ..., genN. The sequence elements will have a type of +// tuple where T1, T2, ..., TN are the types +// of elements from sequences produces by gen1, gen2, ..., genN. +// +// Combine can have up to 10 arguments. This number is currently limited +// by the maximum number of elements in the tuple implementation used by Google +// Test. +// +// Example: +// +// This will instantiate tests in test case AnimalTest each one with +// the parameter values tuple("cat", BLACK), tuple("cat", WHITE), +// tuple("dog", BLACK), and tuple("dog", WHITE): +// +// enum Color { BLACK, GRAY, WHITE }; +// class AnimalTest +// : public testing::TestWithParam > {...}; +// +// TEST_P(AnimalTest, AnimalLooksNice) {...} +// +// INSTANTIATE_TEST_CASE_P(AnimalVariations, AnimalTest, +// Combine(Values("cat", "dog"), +// Values(BLACK, WHITE))); +// +// This will instantiate tests in FlagDependentTest with all variations of two +// Boolean flags: +// +// class FlagDependentTest +// : public testing::TestWithParam > { +// virtual void SetUp() { +// // Assigns external_flag_1 and external_flag_2 values from the tuple. +// tie(external_flag_1, external_flag_2) = GetParam(); +// } +// }; +// +// TEST_P(FlagDependentTest, TestFeature1) { +// // Test your code using external_flag_1 and external_flag_2 here. +// } +// INSTANTIATE_TEST_CASE_P(TwoBoolSequence, FlagDependentTest, +// Combine(Bool(), Bool())); +// +template +internal::CartesianProductHolder2 Combine( + const Generator1& g1, const Generator2& g2) { + return internal::CartesianProductHolder2( + g1, g2); +} + +template +internal::CartesianProductHolder3 Combine( + const Generator1& g1, const Generator2& g2, const Generator3& g3) { + return internal::CartesianProductHolder3( + g1, g2, g3); +} + +template +internal::CartesianProductHolder4 Combine( + const Generator1& g1, const Generator2& g2, const Generator3& g3, + const Generator4& g4) { + return internal::CartesianProductHolder4( + g1, g2, g3, g4); +} + +template +internal::CartesianProductHolder5 Combine( + const Generator1& g1, const Generator2& g2, const Generator3& g3, + const Generator4& g4, const Generator5& g5) { + return internal::CartesianProductHolder5( + g1, g2, g3, g4, g5); +} + +template +internal::CartesianProductHolder6 Combine( + const Generator1& g1, const Generator2& g2, const Generator3& g3, + const Generator4& g4, const Generator5& g5, const Generator6& g6) { + return internal::CartesianProductHolder6( + g1, g2, g3, g4, g5, g6); +} + +template +internal::CartesianProductHolder7 Combine( + const Generator1& g1, const Generator2& g2, const Generator3& g3, + const Generator4& g4, const Generator5& g5, const Generator6& g6, + const Generator7& g7) { + return internal::CartesianProductHolder7( + g1, g2, g3, g4, g5, g6, g7); +} + +template +internal::CartesianProductHolder8 Combine( + const Generator1& g1, const Generator2& g2, const Generator3& g3, + const Generator4& g4, const Generator5& g5, const Generator6& g6, + const Generator7& g7, const Generator8& g8) { + return internal::CartesianProductHolder8( + g1, g2, g3, g4, g5, g6, g7, g8); +} + +template +internal::CartesianProductHolder9 Combine( + const Generator1& g1, const Generator2& g2, const Generator3& g3, + const Generator4& g4, const Generator5& g5, const Generator6& g6, + const Generator7& g7, const Generator8& g8, const Generator9& g9) { + return internal::CartesianProductHolder9( + g1, g2, g3, g4, g5, g6, g7, g8, g9); +} + +template +internal::CartesianProductHolder10 Combine( + const Generator1& g1, const Generator2& g2, const Generator3& g3, + const Generator4& g4, const Generator5& g5, const Generator6& g6, + const Generator7& g7, const Generator8& g8, const Generator9& g9, + const Generator10& g10) { + return internal::CartesianProductHolder10( + g1, g2, g3, g4, g5, g6, g7, g8, g9, g10); +} +# endif // GTEST_HAS_COMBINE + + + +# define TEST_P(test_case_name, test_name) \ + class GTEST_TEST_CLASS_NAME_(test_case_name, test_name) \ + : public test_case_name { \ + public: \ + GTEST_TEST_CLASS_NAME_(test_case_name, test_name)() {} \ + virtual void TestBody(); \ + private: \ + static int AddToRegistry() { \ + ::testing::UnitTest::GetInstance()->parameterized_test_registry(). \ + GetTestCasePatternHolder(\ + #test_case_name, \ + ::testing::internal::CodeLocation(\ + __FILE__, __LINE__))->AddTestPattern(\ + #test_case_name, \ + #test_name, \ + new ::testing::internal::TestMetaFactory< \ + GTEST_TEST_CLASS_NAME_(\ + test_case_name, test_name)>()); \ + return 0; \ + } \ + static int gtest_registering_dummy_ GTEST_ATTRIBUTE_UNUSED_; \ + GTEST_DISALLOW_COPY_AND_ASSIGN_(\ + GTEST_TEST_CLASS_NAME_(test_case_name, test_name)); \ + }; \ + int GTEST_TEST_CLASS_NAME_(test_case_name, \ + test_name)::gtest_registering_dummy_ = \ + GTEST_TEST_CLASS_NAME_(test_case_name, test_name)::AddToRegistry(); \ + void GTEST_TEST_CLASS_NAME_(test_case_name, test_name)::TestBody() + +// The optional last argument to INSTANTIATE_TEST_CASE_P allows the user +// to specify a function or functor that generates custom test name suffixes +// based on the test parameters. The function should accept one argument of +// type testing::TestParamInfo, and return std::string. +// +// testing::PrintToStringParamName is a builtin test suffix generator that +// returns the value of testing::PrintToString(GetParam()). It does not work +// for std::string or C strings. +// +// Note: test names must be non-empty, unique, and may only contain ASCII +// alphanumeric characters or underscore. + +# define INSTANTIATE_TEST_CASE_P(prefix, test_case_name, generator, ...) \ + ::testing::internal::ParamGenerator \ + gtest_##prefix##test_case_name##_EvalGenerator_() { return generator; } \ + ::std::string gtest_##prefix##test_case_name##_EvalGenerateName_( \ + const ::testing::TestParamInfo& info) { \ + return ::testing::internal::GetParamNameGen \ + (__VA_ARGS__)(info); \ + } \ + int gtest_##prefix##test_case_name##_dummy_ GTEST_ATTRIBUTE_UNUSED_ = \ + ::testing::UnitTest::GetInstance()->parameterized_test_registry(). \ + GetTestCasePatternHolder(\ + #test_case_name, \ + ::testing::internal::CodeLocation(\ + __FILE__, __LINE__))->AddTestCaseInstantiation(\ + #prefix, \ + >est_##prefix##test_case_name##_EvalGenerator_, \ + >est_##prefix##test_case_name##_EvalGenerateName_, \ + __FILE__, __LINE__) + +} // namespace testing + +#endif // GTEST_HAS_PARAM_TEST + +#endif // GTEST_INCLUDE_GTEST_GTEST_PARAM_TEST_H_ diff --git a/third_party/googletest/src/include/gtest/gtest-param-test.h.pump b/third_party/googletest/src/include/gtest/gtest-param-test.h.pump new file mode 100644 index 0000000..3078d6d --- /dev/null +++ b/third_party/googletest/src/include/gtest/gtest-param-test.h.pump @@ -0,0 +1,510 @@ +$$ -*- mode: c++; -*- +$var n = 50 $$ Maximum length of Values arguments we want to support. +$var maxtuple = 10 $$ Maximum number of Combine arguments we want to support. +// Copyright 2008, Google Inc. +// All rights reserved. +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: +// +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above +// copyright notice, this list of conditions and the following disclaimer +// in the documentation and/or other materials provided with the +// distribution. +// * Neither the name of Google Inc. nor the names of its +// contributors may be used to endorse or promote products derived from +// this software without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +// +// Authors: vladl@google.com (Vlad Losev) +// +// Macros and functions for implementing parameterized tests +// in Google C++ Testing Framework (Google Test) +// +// This file is generated by a SCRIPT. DO NOT EDIT BY HAND! +// +#ifndef GTEST_INCLUDE_GTEST_GTEST_PARAM_TEST_H_ +#define GTEST_INCLUDE_GTEST_GTEST_PARAM_TEST_H_ + + +// Value-parameterized tests allow you to test your code with different +// parameters without writing multiple copies of the same test. +// +// Here is how you use value-parameterized tests: + +#if 0 + +// To write value-parameterized tests, first you should define a fixture +// class. It is usually derived from testing::TestWithParam (see below for +// another inheritance scheme that's sometimes useful in more complicated +// class hierarchies), where the type of your parameter values. +// TestWithParam is itself derived from testing::Test. T can be any +// copyable type. If it's a raw pointer, you are responsible for managing the +// lifespan of the pointed values. + +class FooTest : public ::testing::TestWithParam { + // You can implement all the usual class fixture members here. +}; + +// Then, use the TEST_P macro to define as many parameterized tests +// for this fixture as you want. The _P suffix is for "parameterized" +// or "pattern", whichever you prefer to think. + +TEST_P(FooTest, DoesBlah) { + // Inside a test, access the test parameter with the GetParam() method + // of the TestWithParam class: + EXPECT_TRUE(foo.Blah(GetParam())); + ... +} + +TEST_P(FooTest, HasBlahBlah) { + ... +} + +// Finally, you can use INSTANTIATE_TEST_CASE_P to instantiate the test +// case with any set of parameters you want. Google Test defines a number +// of functions for generating test parameters. They return what we call +// (surprise!) parameter generators. Here is a summary of them, which +// are all in the testing namespace: +// +// +// Range(begin, end [, step]) - Yields values {begin, begin+step, +// begin+step+step, ...}. The values do not +// include end. step defaults to 1. +// Values(v1, v2, ..., vN) - Yields values {v1, v2, ..., vN}. +// ValuesIn(container) - Yields values from a C-style array, an STL +// ValuesIn(begin,end) container, or an iterator range [begin, end). +// Bool() - Yields sequence {false, true}. +// Combine(g1, g2, ..., gN) - Yields all combinations (the Cartesian product +// for the math savvy) of the values generated +// by the N generators. +// +// For more details, see comments at the definitions of these functions below +// in this file. +// +// The following statement will instantiate tests from the FooTest test case +// each with parameter values "meeny", "miny", and "moe". + +INSTANTIATE_TEST_CASE_P(InstantiationName, + FooTest, + Values("meeny", "miny", "moe")); + +// To distinguish different instances of the pattern, (yes, you +// can instantiate it more then once) the first argument to the +// INSTANTIATE_TEST_CASE_P macro is a prefix that will be added to the +// actual test case name. Remember to pick unique prefixes for different +// instantiations. The tests from the instantiation above will have +// these names: +// +// * InstantiationName/FooTest.DoesBlah/0 for "meeny" +// * InstantiationName/FooTest.DoesBlah/1 for "miny" +// * InstantiationName/FooTest.DoesBlah/2 for "moe" +// * InstantiationName/FooTest.HasBlahBlah/0 for "meeny" +// * InstantiationName/FooTest.HasBlahBlah/1 for "miny" +// * InstantiationName/FooTest.HasBlahBlah/2 for "moe" +// +// You can use these names in --gtest_filter. +// +// This statement will instantiate all tests from FooTest again, each +// with parameter values "cat" and "dog": + +const char* pets[] = {"cat", "dog"}; +INSTANTIATE_TEST_CASE_P(AnotherInstantiationName, FooTest, ValuesIn(pets)); + +// The tests from the instantiation above will have these names: +// +// * AnotherInstantiationName/FooTest.DoesBlah/0 for "cat" +// * AnotherInstantiationName/FooTest.DoesBlah/1 for "dog" +// * AnotherInstantiationName/FooTest.HasBlahBlah/0 for "cat" +// * AnotherInstantiationName/FooTest.HasBlahBlah/1 for "dog" +// +// Please note that INSTANTIATE_TEST_CASE_P will instantiate all tests +// in the given test case, whether their definitions come before or +// AFTER the INSTANTIATE_TEST_CASE_P statement. +// +// Please also note that generator expressions (including parameters to the +// generators) are evaluated in InitGoogleTest(), after main() has started. +// This allows the user on one hand, to adjust generator parameters in order +// to dynamically determine a set of tests to run and on the other hand, +// give the user a chance to inspect the generated tests with Google Test +// reflection API before RUN_ALL_TESTS() is executed. +// +// You can see samples/sample7_unittest.cc and samples/sample8_unittest.cc +// for more examples. +// +// In the future, we plan to publish the API for defining new parameter +// generators. But for now this interface remains part of the internal +// implementation and is subject to change. +// +// +// A parameterized test fixture must be derived from testing::Test and from +// testing::WithParamInterface, where T is the type of the parameter +// values. Inheriting from TestWithParam satisfies that requirement because +// TestWithParam inherits from both Test and WithParamInterface. In more +// complicated hierarchies, however, it is occasionally useful to inherit +// separately from Test and WithParamInterface. For example: + +class BaseTest : public ::testing::Test { + // You can inherit all the usual members for a non-parameterized test + // fixture here. +}; + +class DerivedTest : public BaseTest, public ::testing::WithParamInterface { + // The usual test fixture members go here too. +}; + +TEST_F(BaseTest, HasFoo) { + // This is an ordinary non-parameterized test. +} + +TEST_P(DerivedTest, DoesBlah) { + // GetParam works just the same here as if you inherit from TestWithParam. + EXPECT_TRUE(foo.Blah(GetParam())); +} + +#endif // 0 + +#include "gtest/internal/gtest-port.h" + +#if !GTEST_OS_SYMBIAN +# include +#endif + +// scripts/fuse_gtest.py depends on gtest's own header being #included +// *unconditionally*. Therefore these #includes cannot be moved +// inside #if GTEST_HAS_PARAM_TEST. +#include "gtest/internal/gtest-internal.h" +#include "gtest/internal/gtest-param-util.h" +#include "gtest/internal/gtest-param-util-generated.h" + +#if GTEST_HAS_PARAM_TEST + +namespace testing { + +// Functions producing parameter generators. +// +// Google Test uses these generators to produce parameters for value- +// parameterized tests. When a parameterized test case is instantiated +// with a particular generator, Google Test creates and runs tests +// for each element in the sequence produced by the generator. +// +// In the following sample, tests from test case FooTest are instantiated +// each three times with parameter values 3, 5, and 8: +// +// class FooTest : public TestWithParam { ... }; +// +// TEST_P(FooTest, TestThis) { +// } +// TEST_P(FooTest, TestThat) { +// } +// INSTANTIATE_TEST_CASE_P(TestSequence, FooTest, Values(3, 5, 8)); +// + +// Range() returns generators providing sequences of values in a range. +// +// Synopsis: +// Range(start, end) +// - returns a generator producing a sequence of values {start, start+1, +// start+2, ..., }. +// Range(start, end, step) +// - returns a generator producing a sequence of values {start, start+step, +// start+step+step, ..., }. +// Notes: +// * The generated sequences never include end. For example, Range(1, 5) +// returns a generator producing a sequence {1, 2, 3, 4}. Range(1, 9, 2) +// returns a generator producing {1, 3, 5, 7}. +// * start and end must have the same type. That type may be any integral or +// floating-point type or a user defined type satisfying these conditions: +// * It must be assignable (have operator=() defined). +// * It must have operator+() (operator+(int-compatible type) for +// two-operand version). +// * It must have operator<() defined. +// Elements in the resulting sequences will also have that type. +// * Condition start < end must be satisfied in order for resulting sequences +// to contain any elements. +// +template +internal::ParamGenerator Range(T start, T end, IncrementT step) { + return internal::ParamGenerator( + new internal::RangeGenerator(start, end, step)); +} + +template +internal::ParamGenerator Range(T start, T end) { + return Range(start, end, 1); +} + +// ValuesIn() function allows generation of tests with parameters coming from +// a container. +// +// Synopsis: +// ValuesIn(const T (&array)[N]) +// - returns a generator producing sequences with elements from +// a C-style array. +// ValuesIn(const Container& container) +// - returns a generator producing sequences with elements from +// an STL-style container. +// ValuesIn(Iterator begin, Iterator end) +// - returns a generator producing sequences with elements from +// a range [begin, end) defined by a pair of STL-style iterators. These +// iterators can also be plain C pointers. +// +// Please note that ValuesIn copies the values from the containers +// passed in and keeps them to generate tests in RUN_ALL_TESTS(). +// +// Examples: +// +// This instantiates tests from test case StringTest +// each with C-string values of "foo", "bar", and "baz": +// +// const char* strings[] = {"foo", "bar", "baz"}; +// INSTANTIATE_TEST_CASE_P(StringSequence, SrtingTest, ValuesIn(strings)); +// +// This instantiates tests from test case StlStringTest +// each with STL strings with values "a" and "b": +// +// ::std::vector< ::std::string> GetParameterStrings() { +// ::std::vector< ::std::string> v; +// v.push_back("a"); +// v.push_back("b"); +// return v; +// } +// +// INSTANTIATE_TEST_CASE_P(CharSequence, +// StlStringTest, +// ValuesIn(GetParameterStrings())); +// +// +// This will also instantiate tests from CharTest +// each with parameter values 'a' and 'b': +// +// ::std::list GetParameterChars() { +// ::std::list list; +// list.push_back('a'); +// list.push_back('b'); +// return list; +// } +// ::std::list l = GetParameterChars(); +// INSTANTIATE_TEST_CASE_P(CharSequence2, +// CharTest, +// ValuesIn(l.begin(), l.end())); +// +template +internal::ParamGenerator< + typename ::testing::internal::IteratorTraits::value_type> +ValuesIn(ForwardIterator begin, ForwardIterator end) { + typedef typename ::testing::internal::IteratorTraits + ::value_type ParamType; + return internal::ParamGenerator( + new internal::ValuesInIteratorRangeGenerator(begin, end)); +} + +template +internal::ParamGenerator ValuesIn(const T (&array)[N]) { + return ValuesIn(array, array + N); +} + +template +internal::ParamGenerator ValuesIn( + const Container& container) { + return ValuesIn(container.begin(), container.end()); +} + +// Values() allows generating tests from explicitly specified list of +// parameters. +// +// Synopsis: +// Values(T v1, T v2, ..., T vN) +// - returns a generator producing sequences with elements v1, v2, ..., vN. +// +// For example, this instantiates tests from test case BarTest each +// with values "one", "two", and "three": +// +// INSTANTIATE_TEST_CASE_P(NumSequence, BarTest, Values("one", "two", "three")); +// +// This instantiates tests from test case BazTest each with values 1, 2, 3.5. +// The exact type of values will depend on the type of parameter in BazTest. +// +// INSTANTIATE_TEST_CASE_P(FloatingNumbers, BazTest, Values(1, 2, 3.5)); +// +// Currently, Values() supports from 1 to $n parameters. +// +$range i 1..n +$for i [[ +$range j 1..i + +template <$for j, [[typename T$j]]> +internal::ValueArray$i<$for j, [[T$j]]> Values($for j, [[T$j v$j]]) { + return internal::ValueArray$i<$for j, [[T$j]]>($for j, [[v$j]]); +} + +]] + +// Bool() allows generating tests with parameters in a set of (false, true). +// +// Synopsis: +// Bool() +// - returns a generator producing sequences with elements {false, true}. +// +// It is useful when testing code that depends on Boolean flags. Combinations +// of multiple flags can be tested when several Bool()'s are combined using +// Combine() function. +// +// In the following example all tests in the test case FlagDependentTest +// will be instantiated twice with parameters false and true. +// +// class FlagDependentTest : public testing::TestWithParam { +// virtual void SetUp() { +// external_flag = GetParam(); +// } +// } +// INSTANTIATE_TEST_CASE_P(BoolSequence, FlagDependentTest, Bool()); +// +inline internal::ParamGenerator Bool() { + return Values(false, true); +} + +# if GTEST_HAS_COMBINE +// Combine() allows the user to combine two or more sequences to produce +// values of a Cartesian product of those sequences' elements. +// +// Synopsis: +// Combine(gen1, gen2, ..., genN) +// - returns a generator producing sequences with elements coming from +// the Cartesian product of elements from the sequences generated by +// gen1, gen2, ..., genN. The sequence elements will have a type of +// tuple where T1, T2, ..., TN are the types +// of elements from sequences produces by gen1, gen2, ..., genN. +// +// Combine can have up to $maxtuple arguments. This number is currently limited +// by the maximum number of elements in the tuple implementation used by Google +// Test. +// +// Example: +// +// This will instantiate tests in test case AnimalTest each one with +// the parameter values tuple("cat", BLACK), tuple("cat", WHITE), +// tuple("dog", BLACK), and tuple("dog", WHITE): +// +// enum Color { BLACK, GRAY, WHITE }; +// class AnimalTest +// : public testing::TestWithParam > {...}; +// +// TEST_P(AnimalTest, AnimalLooksNice) {...} +// +// INSTANTIATE_TEST_CASE_P(AnimalVariations, AnimalTest, +// Combine(Values("cat", "dog"), +// Values(BLACK, WHITE))); +// +// This will instantiate tests in FlagDependentTest with all variations of two +// Boolean flags: +// +// class FlagDependentTest +// : public testing::TestWithParam > { +// virtual void SetUp() { +// // Assigns external_flag_1 and external_flag_2 values from the tuple. +// tie(external_flag_1, external_flag_2) = GetParam(); +// } +// }; +// +// TEST_P(FlagDependentTest, TestFeature1) { +// // Test your code using external_flag_1 and external_flag_2 here. +// } +// INSTANTIATE_TEST_CASE_P(TwoBoolSequence, FlagDependentTest, +// Combine(Bool(), Bool())); +// +$range i 2..maxtuple +$for i [[ +$range j 1..i + +template <$for j, [[typename Generator$j]]> +internal::CartesianProductHolder$i<$for j, [[Generator$j]]> Combine( + $for j, [[const Generator$j& g$j]]) { + return internal::CartesianProductHolder$i<$for j, [[Generator$j]]>( + $for j, [[g$j]]); +} + +]] +# endif // GTEST_HAS_COMBINE + + + +# define TEST_P(test_case_name, test_name) \ + class GTEST_TEST_CLASS_NAME_(test_case_name, test_name) \ + : public test_case_name { \ + public: \ + GTEST_TEST_CLASS_NAME_(test_case_name, test_name)() {} \ + virtual void TestBody(); \ + private: \ + static int AddToRegistry() { \ + ::testing::UnitTest::GetInstance()->parameterized_test_registry(). \ + GetTestCasePatternHolder(\ + #test_case_name, \ + ::testing::internal::CodeLocation(\ + __FILE__, __LINE__))->AddTestPattern(\ + #test_case_name, \ + #test_name, \ + new ::testing::internal::TestMetaFactory< \ + GTEST_TEST_CLASS_NAME_(\ + test_case_name, test_name)>()); \ + return 0; \ + } \ + static int gtest_registering_dummy_ GTEST_ATTRIBUTE_UNUSED_; \ + GTEST_DISALLOW_COPY_AND_ASSIGN_(\ + GTEST_TEST_CLASS_NAME_(test_case_name, test_name)); \ + }; \ + int GTEST_TEST_CLASS_NAME_(test_case_name, \ + test_name)::gtest_registering_dummy_ = \ + GTEST_TEST_CLASS_NAME_(test_case_name, test_name)::AddToRegistry(); \ + void GTEST_TEST_CLASS_NAME_(test_case_name, test_name)::TestBody() + +// The optional last argument to INSTANTIATE_TEST_CASE_P allows the user +// to specify a function or functor that generates custom test name suffixes +// based on the test parameters. The function should accept one argument of +// type testing::TestParamInfo, and return std::string. +// +// testing::PrintToStringParamName is a builtin test suffix generator that +// returns the value of testing::PrintToString(GetParam()). +// +// Note: test names must be non-empty, unique, and may only contain ASCII +// alphanumeric characters or underscore. Because PrintToString adds quotes +// to std::string and C strings, it won't work for these types. + +# define INSTANTIATE_TEST_CASE_P(prefix, test_case_name, generator, ...) \ + ::testing::internal::ParamGenerator \ + gtest_##prefix##test_case_name##_EvalGenerator_() { return generator; } \ + ::std::string gtest_##prefix##test_case_name##_EvalGenerateName_( \ + const ::testing::TestParamInfo& info) { \ + return ::testing::internal::GetParamNameGen \ + (__VA_ARGS__)(info); \ + } \ + int gtest_##prefix##test_case_name##_dummy_ GTEST_ATTRIBUTE_UNUSED_ = \ + ::testing::UnitTest::GetInstance()->parameterized_test_registry(). \ + GetTestCasePatternHolder(\ + #test_case_name, \ + ::testing::internal::CodeLocation(\ + __FILE__, __LINE__))->AddTestCaseInstantiation(\ + #prefix, \ + >est_##prefix##test_case_name##_EvalGenerator_, \ + >est_##prefix##test_case_name##_EvalGenerateName_, \ + __FILE__, __LINE__) + +} // namespace testing + +#endif // GTEST_HAS_PARAM_TEST + +#endif // GTEST_INCLUDE_GTEST_GTEST_PARAM_TEST_H_ diff --git a/third_party/googletest/src/include/gtest/gtest-printers.h b/third_party/googletest/src/include/gtest/gtest-printers.h new file mode 100644 index 0000000..8a33164 --- /dev/null +++ b/third_party/googletest/src/include/gtest/gtest-printers.h @@ -0,0 +1,993 @@ +// Copyright 2007, Google Inc. +// All rights reserved. +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: +// +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above +// copyright notice, this list of conditions and the following disclaimer +// in the documentation and/or other materials provided with the +// distribution. +// * Neither the name of Google Inc. nor the names of its +// contributors may be used to endorse or promote products derived from +// this software without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +// +// Author: wan@google.com (Zhanyong Wan) + +// Google Test - The Google C++ Testing Framework +// +// This file implements a universal value printer that can print a +// value of any type T: +// +// void ::testing::internal::UniversalPrinter::Print(value, ostream_ptr); +// +// A user can teach this function how to print a class type T by +// defining either operator<<() or PrintTo() in the namespace that +// defines T. More specifically, the FIRST defined function in the +// following list will be used (assuming T is defined in namespace +// foo): +// +// 1. foo::PrintTo(const T&, ostream*) +// 2. operator<<(ostream&, const T&) defined in either foo or the +// global namespace. +// +// If none of the above is defined, it will print the debug string of +// the value if it is a protocol buffer, or print the raw bytes in the +// value otherwise. +// +// To aid debugging: when T is a reference type, the address of the +// value is also printed; when T is a (const) char pointer, both the +// pointer value and the NUL-terminated string it points to are +// printed. +// +// We also provide some convenient wrappers: +// +// // Prints a value to a string. For a (const or not) char +// // pointer, the NUL-terminated string (but not the pointer) is +// // printed. +// std::string ::testing::PrintToString(const T& value); +// +// // Prints a value tersely: for a reference type, the referenced +// // value (but not the address) is printed; for a (const or not) char +// // pointer, the NUL-terminated string (but not the pointer) is +// // printed. +// void ::testing::internal::UniversalTersePrint(const T& value, ostream*); +// +// // Prints value using the type inferred by the compiler. The difference +// // from UniversalTersePrint() is that this function prints both the +// // pointer and the NUL-terminated string for a (const or not) char pointer. +// void ::testing::internal::UniversalPrint(const T& value, ostream*); +// +// // Prints the fields of a tuple tersely to a string vector, one +// // element for each field. Tuple support must be enabled in +// // gtest-port.h. +// std::vector UniversalTersePrintTupleFieldsToStrings( +// const Tuple& value); +// +// Known limitation: +// +// The print primitives print the elements of an STL-style container +// using the compiler-inferred type of *iter where iter is a +// const_iterator of the container. When const_iterator is an input +// iterator but not a forward iterator, this inferred type may not +// match value_type, and the print output may be incorrect. In +// practice, this is rarely a problem as for most containers +// const_iterator is a forward iterator. We'll fix this if there's an +// actual need for it. Note that this fix cannot rely on value_type +// being defined as many user-defined container types don't have +// value_type. + +#ifndef GTEST_INCLUDE_GTEST_GTEST_PRINTERS_H_ +#define GTEST_INCLUDE_GTEST_GTEST_PRINTERS_H_ + +#include // NOLINT +#include +#include +#include +#include +#include "gtest/internal/gtest-port.h" +#include "gtest/internal/gtest-internal.h" + +#if GTEST_HAS_STD_TUPLE_ +# include +#endif + +namespace testing { + +// Definitions in the 'internal' and 'internal2' name spaces are +// subject to change without notice. DO NOT USE THEM IN USER CODE! +namespace internal2 { + +// Prints the given number of bytes in the given object to the given +// ostream. +GTEST_API_ void PrintBytesInObjectTo(const unsigned char* obj_bytes, + size_t count, + ::std::ostream* os); + +// For selecting which printer to use when a given type has neither << +// nor PrintTo(). +enum TypeKind { + kProtobuf, // a protobuf type + kConvertibleToInteger, // a type implicitly convertible to BiggestInt + // (e.g. a named or unnamed enum type) + kOtherType // anything else +}; + +// TypeWithoutFormatter::PrintValue(value, os) is called +// by the universal printer to print a value of type T when neither +// operator<< nor PrintTo() is defined for T, where kTypeKind is the +// "kind" of T as defined by enum TypeKind. +template +class TypeWithoutFormatter { + public: + // This default version is called when kTypeKind is kOtherType. + static void PrintValue(const T& value, ::std::ostream* os) { + PrintBytesInObjectTo(reinterpret_cast(&value), + sizeof(value), os); + } +}; + +// We print a protobuf using its ShortDebugString() when the string +// doesn't exceed this many characters; otherwise we print it using +// DebugString() for better readability. +const size_t kProtobufOneLinerMaxLength = 50; + +template +class TypeWithoutFormatter { + public: + static void PrintValue(const T& value, ::std::ostream* os) { + const ::testing::internal::string short_str = value.ShortDebugString(); + const ::testing::internal::string pretty_str = + short_str.length() <= kProtobufOneLinerMaxLength ? + short_str : ("\n" + value.DebugString()); + *os << ("<" + pretty_str + ">"); + } +}; + +template +class TypeWithoutFormatter { + public: + // Since T has no << operator or PrintTo() but can be implicitly + // converted to BiggestInt, we print it as a BiggestInt. + // + // Most likely T is an enum type (either named or unnamed), in which + // case printing it as an integer is the desired behavior. In case + // T is not an enum, printing it as an integer is the best we can do + // given that it has no user-defined printer. + static void PrintValue(const T& value, ::std::ostream* os) { + const internal::BiggestInt kBigInt = value; + *os << kBigInt; + } +}; + +// Prints the given value to the given ostream. If the value is a +// protocol message, its debug string is printed; if it's an enum or +// of a type implicitly convertible to BiggestInt, it's printed as an +// integer; otherwise the bytes in the value are printed. This is +// what UniversalPrinter::Print() does when it knows nothing about +// type T and T has neither << operator nor PrintTo(). +// +// A user can override this behavior for a class type Foo by defining +// a << operator in the namespace where Foo is defined. +// +// We put this operator in namespace 'internal2' instead of 'internal' +// to simplify the implementation, as much code in 'internal' needs to +// use << in STL, which would conflict with our own << were it defined +// in 'internal'. +// +// Note that this operator<< takes a generic std::basic_ostream type instead of the more restricted std::ostream. If +// we define it to take an std::ostream instead, we'll get an +// "ambiguous overloads" compiler error when trying to print a type +// Foo that supports streaming to std::basic_ostream, as the compiler cannot tell whether +// operator<<(std::ostream&, const T&) or +// operator<<(std::basic_stream, const Foo&) is more +// specific. +template +::std::basic_ostream& operator<<( + ::std::basic_ostream& os, const T& x) { + TypeWithoutFormatter::value ? kProtobuf : + internal::ImplicitlyConvertible::value ? + kConvertibleToInteger : kOtherType)>::PrintValue(x, &os); + return os; +} + +} // namespace internal2 +} // namespace testing + +// This namespace MUST NOT BE NESTED IN ::testing, or the name look-up +// magic needed for implementing UniversalPrinter won't work. +namespace testing_internal { + +// Used to print a value that is not an STL-style container when the +// user doesn't define PrintTo() for it. +template +void DefaultPrintNonContainerTo(const T& value, ::std::ostream* os) { + // With the following statement, during unqualified name lookup, + // testing::internal2::operator<< appears as if it was declared in + // the nearest enclosing namespace that contains both + // ::testing_internal and ::testing::internal2, i.e. the global + // namespace. For more details, refer to the C++ Standard section + // 7.3.4-1 [namespace.udir]. This allows us to fall back onto + // testing::internal2::operator<< in case T doesn't come with a << + // operator. + // + // We cannot write 'using ::testing::internal2::operator<<;', which + // gcc 3.3 fails to compile due to a compiler bug. + using namespace ::testing::internal2; // NOLINT + + // Assuming T is defined in namespace foo, in the next statement, + // the compiler will consider all of: + // + // 1. foo::operator<< (thanks to Koenig look-up), + // 2. ::operator<< (as the current namespace is enclosed in ::), + // 3. testing::internal2::operator<< (thanks to the using statement above). + // + // The operator<< whose type matches T best will be picked. + // + // We deliberately allow #2 to be a candidate, as sometimes it's + // impossible to define #1 (e.g. when foo is ::std, defining + // anything in it is undefined behavior unless you are a compiler + // vendor.). + *os << value; +} + +} // namespace testing_internal + +namespace testing { +namespace internal { + +// FormatForComparison::Format(value) formats a +// value of type ToPrint that is an operand of a comparison assertion +// (e.g. ASSERT_EQ). OtherOperand is the type of the other operand in +// the comparison, and is used to help determine the best way to +// format the value. In particular, when the value is a C string +// (char pointer) and the other operand is an STL string object, we +// want to format the C string as a string, since we know it is +// compared by value with the string object. If the value is a char +// pointer but the other operand is not an STL string object, we don't +// know whether the pointer is supposed to point to a NUL-terminated +// string, and thus want to print it as a pointer to be safe. +// +// INTERNAL IMPLEMENTATION - DO NOT USE IN A USER PROGRAM. + +// The default case. +template +class FormatForComparison { + public: + static ::std::string Format(const ToPrint& value) { + return ::testing::PrintToString(value); + } +}; + +// Array. +template +class FormatForComparison { + public: + static ::std::string Format(const ToPrint* value) { + return FormatForComparison::Format(value); + } +}; + +// By default, print C string as pointers to be safe, as we don't know +// whether they actually point to a NUL-terminated string. + +#define GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_(CharType) \ + template \ + class FormatForComparison { \ + public: \ + static ::std::string Format(CharType* value) { \ + return ::testing::PrintToString(static_cast(value)); \ + } \ + } + +GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_(char); +GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_(const char); +GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_(wchar_t); +GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_(const wchar_t); + +#undef GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_ + +// If a C string is compared with an STL string object, we know it's meant +// to point to a NUL-terminated string, and thus can print it as a string. + +#define GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(CharType, OtherStringType) \ + template <> \ + class FormatForComparison { \ + public: \ + static ::std::string Format(CharType* value) { \ + return ::testing::PrintToString(value); \ + } \ + } + +GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(char, ::std::string); +GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(const char, ::std::string); + +#if GTEST_HAS_GLOBAL_STRING +GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(char, ::string); +GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(const char, ::string); +#endif + +#if GTEST_HAS_GLOBAL_WSTRING +GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(wchar_t, ::wstring); +GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(const wchar_t, ::wstring); +#endif + +#if GTEST_HAS_STD_WSTRING +GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(wchar_t, ::std::wstring); +GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(const wchar_t, ::std::wstring); +#endif + +#undef GTEST_IMPL_FORMAT_C_STRING_AS_STRING_ + +// Formats a comparison assertion (e.g. ASSERT_EQ, EXPECT_LT, and etc) +// operand to be used in a failure message. The type (but not value) +// of the other operand may affect the format. This allows us to +// print a char* as a raw pointer when it is compared against another +// char* or void*, and print it as a C string when it is compared +// against an std::string object, for example. +// +// INTERNAL IMPLEMENTATION - DO NOT USE IN A USER PROGRAM. +template +std::string FormatForComparisonFailureMessage( + const T1& value, const T2& /* other_operand */) { + return FormatForComparison::Format(value); +} + +// UniversalPrinter::Print(value, ostream_ptr) prints the given +// value to the given ostream. The caller must ensure that +// 'ostream_ptr' is not NULL, or the behavior is undefined. +// +// We define UniversalPrinter as a class template (as opposed to a +// function template), as we need to partially specialize it for +// reference types, which cannot be done with function templates. +template +class UniversalPrinter; + +template +void UniversalPrint(const T& value, ::std::ostream* os); + +// Used to print an STL-style container when the user doesn't define +// a PrintTo() for it. +template +void DefaultPrintTo(IsContainer /* dummy */, + false_type /* is not a pointer */, + const C& container, ::std::ostream* os) { + const size_t kMaxCount = 32; // The maximum number of elements to print. + *os << '{'; + size_t count = 0; + for (typename C::const_iterator it = container.begin(); + it != container.end(); ++it, ++count) { + if (count > 0) { + *os << ','; + if (count == kMaxCount) { // Enough has been printed. + *os << " ..."; + break; + } + } + *os << ' '; + // We cannot call PrintTo(*it, os) here as PrintTo() doesn't + // handle *it being a native array. + internal::UniversalPrint(*it, os); + } + + if (count > 0) { + *os << ' '; + } + *os << '}'; +} + +// Used to print a pointer that is neither a char pointer nor a member +// pointer, when the user doesn't define PrintTo() for it. (A member +// variable pointer or member function pointer doesn't really point to +// a location in the address space. Their representation is +// implementation-defined. Therefore they will be printed as raw +// bytes.) +template +void DefaultPrintTo(IsNotContainer /* dummy */, + true_type /* is a pointer */, + T* p, ::std::ostream* os) { + if (p == NULL) { + *os << "NULL"; + } else { + // C++ doesn't allow casting from a function pointer to any object + // pointer. + // + // IsTrue() silences warnings: "Condition is always true", + // "unreachable code". + if (IsTrue(ImplicitlyConvertible::value)) { + // T is not a function type. We just call << to print p, + // relying on ADL to pick up user-defined << for their pointer + // types, if any. + *os << p; + } else { + // T is a function type, so '*os << p' doesn't do what we want + // (it just prints p as bool). We want to print p as a const + // void*. However, we cannot cast it to const void* directly, + // even using reinterpret_cast, as earlier versions of gcc + // (e.g. 3.4.5) cannot compile the cast when p is a function + // pointer. Casting to UInt64 first solves the problem. + *os << reinterpret_cast( + reinterpret_cast(p)); + } + } +} + +// Used to print a non-container, non-pointer value when the user +// doesn't define PrintTo() for it. +template +void DefaultPrintTo(IsNotContainer /* dummy */, + false_type /* is not a pointer */, + const T& value, ::std::ostream* os) { + ::testing_internal::DefaultPrintNonContainerTo(value, os); +} + +// Prints the given value using the << operator if it has one; +// otherwise prints the bytes in it. This is what +// UniversalPrinter::Print() does when PrintTo() is not specialized +// or overloaded for type T. +// +// A user can override this behavior for a class type Foo by defining +// an overload of PrintTo() in the namespace where Foo is defined. We +// give the user this option as sometimes defining a << operator for +// Foo is not desirable (e.g. the coding style may prevent doing it, +// or there is already a << operator but it doesn't do what the user +// wants). +template +void PrintTo(const T& value, ::std::ostream* os) { + // DefaultPrintTo() is overloaded. The type of its first two + // arguments determine which version will be picked. If T is an + // STL-style container, the version for container will be called; if + // T is a pointer, the pointer version will be called; otherwise the + // generic version will be called. + // + // Note that we check for container types here, prior to we check + // for protocol message types in our operator<<. The rationale is: + // + // For protocol messages, we want to give people a chance to + // override Google Mock's format by defining a PrintTo() or + // operator<<. For STL containers, other formats can be + // incompatible with Google Mock's format for the container + // elements; therefore we check for container types here to ensure + // that our format is used. + // + // The second argument of DefaultPrintTo() is needed to bypass a bug + // in Symbian's C++ compiler that prevents it from picking the right + // overload between: + // + // PrintTo(const T& x, ...); + // PrintTo(T* x, ...); + DefaultPrintTo(IsContainerTest(0), is_pointer(), value, os); +} + +// The following list of PrintTo() overloads tells +// UniversalPrinter::Print() how to print standard types (built-in +// types, strings, plain arrays, and pointers). + +// Overloads for various char types. +GTEST_API_ void PrintTo(unsigned char c, ::std::ostream* os); +GTEST_API_ void PrintTo(signed char c, ::std::ostream* os); +inline void PrintTo(char c, ::std::ostream* os) { + // When printing a plain char, we always treat it as unsigned. This + // way, the output won't be affected by whether the compiler thinks + // char is signed or not. + PrintTo(static_cast(c), os); +} + +// Overloads for other simple built-in types. +inline void PrintTo(bool x, ::std::ostream* os) { + *os << (x ? "true" : "false"); +} + +// Overload for wchar_t type. +// Prints a wchar_t as a symbol if it is printable or as its internal +// code otherwise and also as its decimal code (except for L'\0'). +// The L'\0' char is printed as "L'\\0'". The decimal code is printed +// as signed integer when wchar_t is implemented by the compiler +// as a signed type and is printed as an unsigned integer when wchar_t +// is implemented as an unsigned type. +GTEST_API_ void PrintTo(wchar_t wc, ::std::ostream* os); + +// Overloads for C strings. +GTEST_API_ void PrintTo(const char* s, ::std::ostream* os); +inline void PrintTo(char* s, ::std::ostream* os) { + PrintTo(ImplicitCast_(s), os); +} + +// signed/unsigned char is often used for representing binary data, so +// we print pointers to it as void* to be safe. +inline void PrintTo(const signed char* s, ::std::ostream* os) { + PrintTo(ImplicitCast_(s), os); +} +inline void PrintTo(signed char* s, ::std::ostream* os) { + PrintTo(ImplicitCast_(s), os); +} +inline void PrintTo(const unsigned char* s, ::std::ostream* os) { + PrintTo(ImplicitCast_(s), os); +} +inline void PrintTo(unsigned char* s, ::std::ostream* os) { + PrintTo(ImplicitCast_(s), os); +} + +// MSVC can be configured to define wchar_t as a typedef of unsigned +// short. It defines _NATIVE_WCHAR_T_DEFINED when wchar_t is a native +// type. When wchar_t is a typedef, defining an overload for const +// wchar_t* would cause unsigned short* be printed as a wide string, +// possibly causing invalid memory accesses. +#if !defined(_MSC_VER) || defined(_NATIVE_WCHAR_T_DEFINED) +// Overloads for wide C strings +GTEST_API_ void PrintTo(const wchar_t* s, ::std::ostream* os); +inline void PrintTo(wchar_t* s, ::std::ostream* os) { + PrintTo(ImplicitCast_(s), os); +} +#endif + +// Overload for C arrays. Multi-dimensional arrays are printed +// properly. + +// Prints the given number of elements in an array, without printing +// the curly braces. +template +void PrintRawArrayTo(const T a[], size_t count, ::std::ostream* os) { + UniversalPrint(a[0], os); + for (size_t i = 1; i != count; i++) { + *os << ", "; + UniversalPrint(a[i], os); + } +} + +// Overloads for ::string and ::std::string. +#if GTEST_HAS_GLOBAL_STRING +GTEST_API_ void PrintStringTo(const ::string&s, ::std::ostream* os); +inline void PrintTo(const ::string& s, ::std::ostream* os) { + PrintStringTo(s, os); +} +#endif // GTEST_HAS_GLOBAL_STRING + +GTEST_API_ void PrintStringTo(const ::std::string&s, ::std::ostream* os); +inline void PrintTo(const ::std::string& s, ::std::ostream* os) { + PrintStringTo(s, os); +} + +// Overloads for ::wstring and ::std::wstring. +#if GTEST_HAS_GLOBAL_WSTRING +GTEST_API_ void PrintWideStringTo(const ::wstring&s, ::std::ostream* os); +inline void PrintTo(const ::wstring& s, ::std::ostream* os) { + PrintWideStringTo(s, os); +} +#endif // GTEST_HAS_GLOBAL_WSTRING + +#if GTEST_HAS_STD_WSTRING +GTEST_API_ void PrintWideStringTo(const ::std::wstring&s, ::std::ostream* os); +inline void PrintTo(const ::std::wstring& s, ::std::ostream* os) { + PrintWideStringTo(s, os); +} +#endif // GTEST_HAS_STD_WSTRING + +#if GTEST_HAS_TR1_TUPLE || GTEST_HAS_STD_TUPLE_ +// Helper function for printing a tuple. T must be instantiated with +// a tuple type. +template +void PrintTupleTo(const T& t, ::std::ostream* os); +#endif // GTEST_HAS_TR1_TUPLE || GTEST_HAS_STD_TUPLE_ + +#if GTEST_HAS_TR1_TUPLE +// Overload for ::std::tr1::tuple. Needed for printing function arguments, +// which are packed as tuples. + +// Overloaded PrintTo() for tuples of various arities. We support +// tuples of up-to 10 fields. The following implementation works +// regardless of whether tr1::tuple is implemented using the +// non-standard variadic template feature or not. + +inline void PrintTo(const ::std::tr1::tuple<>& t, ::std::ostream* os) { + PrintTupleTo(t, os); +} + +template +void PrintTo(const ::std::tr1::tuple& t, ::std::ostream* os) { + PrintTupleTo(t, os); +} + +template +void PrintTo(const ::std::tr1::tuple& t, ::std::ostream* os) { + PrintTupleTo(t, os); +} + +template +void PrintTo(const ::std::tr1::tuple& t, ::std::ostream* os) { + PrintTupleTo(t, os); +} + +template +void PrintTo(const ::std::tr1::tuple& t, ::std::ostream* os) { + PrintTupleTo(t, os); +} + +template +void PrintTo(const ::std::tr1::tuple& t, + ::std::ostream* os) { + PrintTupleTo(t, os); +} + +template +void PrintTo(const ::std::tr1::tuple& t, + ::std::ostream* os) { + PrintTupleTo(t, os); +} + +template +void PrintTo(const ::std::tr1::tuple& t, + ::std::ostream* os) { + PrintTupleTo(t, os); +} + +template +void PrintTo(const ::std::tr1::tuple& t, + ::std::ostream* os) { + PrintTupleTo(t, os); +} + +template +void PrintTo(const ::std::tr1::tuple& t, + ::std::ostream* os) { + PrintTupleTo(t, os); +} + +template +void PrintTo( + const ::std::tr1::tuple& t, + ::std::ostream* os) { + PrintTupleTo(t, os); +} +#endif // GTEST_HAS_TR1_TUPLE + +#if GTEST_HAS_STD_TUPLE_ +template +void PrintTo(const ::std::tuple& t, ::std::ostream* os) { + PrintTupleTo(t, os); +} +#endif // GTEST_HAS_STD_TUPLE_ + +// Overload for std::pair. +template +void PrintTo(const ::std::pair& value, ::std::ostream* os) { + *os << '('; + // We cannot use UniversalPrint(value.first, os) here, as T1 may be + // a reference type. The same for printing value.second. + UniversalPrinter::Print(value.first, os); + *os << ", "; + UniversalPrinter::Print(value.second, os); + *os << ')'; +} + +// Implements printing a non-reference type T by letting the compiler +// pick the right overload of PrintTo() for T. +template +class UniversalPrinter { + public: + // MSVC warns about adding const to a function type, so we want to + // disable the warning. + GTEST_DISABLE_MSC_WARNINGS_PUSH_(4180) + + // Note: we deliberately don't call this PrintTo(), as that name + // conflicts with ::testing::internal::PrintTo in the body of the + // function. + static void Print(const T& value, ::std::ostream* os) { + // By default, ::testing::internal::PrintTo() is used for printing + // the value. + // + // Thanks to Koenig look-up, if T is a class and has its own + // PrintTo() function defined in its namespace, that function will + // be visible here. Since it is more specific than the generic ones + // in ::testing::internal, it will be picked by the compiler in the + // following statement - exactly what we want. + PrintTo(value, os); + } + + GTEST_DISABLE_MSC_WARNINGS_POP_() +}; + +// UniversalPrintArray(begin, len, os) prints an array of 'len' +// elements, starting at address 'begin'. +template +void UniversalPrintArray(const T* begin, size_t len, ::std::ostream* os) { + if (len == 0) { + *os << "{}"; + } else { + *os << "{ "; + const size_t kThreshold = 18; + const size_t kChunkSize = 8; + // If the array has more than kThreshold elements, we'll have to + // omit some details by printing only the first and the last + // kChunkSize elements. + // TODO(wan@google.com): let the user control the threshold using a flag. + if (len <= kThreshold) { + PrintRawArrayTo(begin, len, os); + } else { + PrintRawArrayTo(begin, kChunkSize, os); + *os << ", ..., "; + PrintRawArrayTo(begin + len - kChunkSize, kChunkSize, os); + } + *os << " }"; + } +} +// This overload prints a (const) char array compactly. +GTEST_API_ void UniversalPrintArray( + const char* begin, size_t len, ::std::ostream* os); + +// This overload prints a (const) wchar_t array compactly. +GTEST_API_ void UniversalPrintArray( + const wchar_t* begin, size_t len, ::std::ostream* os); + +// Implements printing an array type T[N]. +template +class UniversalPrinter { + public: + // Prints the given array, omitting some elements when there are too + // many. + static void Print(const T (&a)[N], ::std::ostream* os) { + UniversalPrintArray(a, N, os); + } +}; + +// Implements printing a reference type T&. +template +class UniversalPrinter { + public: + // MSVC warns about adding const to a function type, so we want to + // disable the warning. + GTEST_DISABLE_MSC_WARNINGS_PUSH_(4180) + + static void Print(const T& value, ::std::ostream* os) { + // Prints the address of the value. We use reinterpret_cast here + // as static_cast doesn't compile when T is a function type. + *os << "@" << reinterpret_cast(&value) << " "; + + // Then prints the value itself. + UniversalPrint(value, os); + } + + GTEST_DISABLE_MSC_WARNINGS_POP_() +}; + +// Prints a value tersely: for a reference type, the referenced value +// (but not the address) is printed; for a (const) char pointer, the +// NUL-terminated string (but not the pointer) is printed. + +template +class UniversalTersePrinter { + public: + static void Print(const T& value, ::std::ostream* os) { + UniversalPrint(value, os); + } +}; +template +class UniversalTersePrinter { + public: + static void Print(const T& value, ::std::ostream* os) { + UniversalPrint(value, os); + } +}; +template +class UniversalTersePrinter { + public: + static void Print(const T (&value)[N], ::std::ostream* os) { + UniversalPrinter::Print(value, os); + } +}; +template <> +class UniversalTersePrinter { + public: + static void Print(const char* str, ::std::ostream* os) { + if (str == NULL) { + *os << "NULL"; + } else { + UniversalPrint(string(str), os); + } + } +}; +template <> +class UniversalTersePrinter { + public: + static void Print(char* str, ::std::ostream* os) { + UniversalTersePrinter::Print(str, os); + } +}; + +#if GTEST_HAS_STD_WSTRING +template <> +class UniversalTersePrinter { + public: + static void Print(const wchar_t* str, ::std::ostream* os) { + if (str == NULL) { + *os << "NULL"; + } else { + UniversalPrint(::std::wstring(str), os); + } + } +}; +#endif + +template <> +class UniversalTersePrinter { + public: + static void Print(wchar_t* str, ::std::ostream* os) { + UniversalTersePrinter::Print(str, os); + } +}; + +template +void UniversalTersePrint(const T& value, ::std::ostream* os) { + UniversalTersePrinter::Print(value, os); +} + +// Prints a value using the type inferred by the compiler. The +// difference between this and UniversalTersePrint() is that for a +// (const) char pointer, this prints both the pointer and the +// NUL-terminated string. +template +void UniversalPrint(const T& value, ::std::ostream* os) { + // A workarond for the bug in VC++ 7.1 that prevents us from instantiating + // UniversalPrinter with T directly. + typedef T T1; + UniversalPrinter::Print(value, os); +} + +typedef ::std::vector Strings; + +// TuplePolicy must provide: +// - tuple_size +// size of tuple TupleT. +// - get(const TupleT& t) +// static function extracting element I of tuple TupleT. +// - tuple_element::type +// type of element I of tuple TupleT. +template +struct TuplePolicy; + +#if GTEST_HAS_TR1_TUPLE +template +struct TuplePolicy { + typedef TupleT Tuple; + static const size_t tuple_size = ::std::tr1::tuple_size::value; + + template + struct tuple_element : ::std::tr1::tuple_element {}; + + template + static typename AddReference< + const typename ::std::tr1::tuple_element::type>::type get( + const Tuple& tuple) { + return ::std::tr1::get(tuple); + } +}; +template +const size_t TuplePolicy::tuple_size; +#endif // GTEST_HAS_TR1_TUPLE + +#if GTEST_HAS_STD_TUPLE_ +template +struct TuplePolicy< ::std::tuple > { + typedef ::std::tuple Tuple; + static const size_t tuple_size = ::std::tuple_size::value; + + template + struct tuple_element : ::std::tuple_element {}; + + template + static const typename ::std::tuple_element::type& get( + const Tuple& tuple) { + return ::std::get(tuple); + } +}; +template +const size_t TuplePolicy< ::std::tuple >::tuple_size; +#endif // GTEST_HAS_STD_TUPLE_ + +#if GTEST_HAS_TR1_TUPLE || GTEST_HAS_STD_TUPLE_ +// This helper template allows PrintTo() for tuples and +// UniversalTersePrintTupleFieldsToStrings() to be defined by +// induction on the number of tuple fields. The idea is that +// TuplePrefixPrinter::PrintPrefixTo(t, os) prints the first N +// fields in tuple t, and can be defined in terms of +// TuplePrefixPrinter. +// +// The inductive case. +template +struct TuplePrefixPrinter { + // Prints the first N fields of a tuple. + template + static void PrintPrefixTo(const Tuple& t, ::std::ostream* os) { + TuplePrefixPrinter::PrintPrefixTo(t, os); + GTEST_INTENTIONAL_CONST_COND_PUSH_() + if (N > 1) { + GTEST_INTENTIONAL_CONST_COND_POP_() + *os << ", "; + } + UniversalPrinter< + typename TuplePolicy::template tuple_element::type> + ::Print(TuplePolicy::template get(t), os); + } + + // Tersely prints the first N fields of a tuple to a string vector, + // one element for each field. + template + static void TersePrintPrefixToStrings(const Tuple& t, Strings* strings) { + TuplePrefixPrinter::TersePrintPrefixToStrings(t, strings); + ::std::stringstream ss; + UniversalTersePrint(TuplePolicy::template get(t), &ss); + strings->push_back(ss.str()); + } +}; + +// Base case. +template <> +struct TuplePrefixPrinter<0> { + template + static void PrintPrefixTo(const Tuple&, ::std::ostream*) {} + + template + static void TersePrintPrefixToStrings(const Tuple&, Strings*) {} +}; + +// Helper function for printing a tuple. +// Tuple must be either std::tr1::tuple or std::tuple type. +template +void PrintTupleTo(const Tuple& t, ::std::ostream* os) { + *os << "("; + TuplePrefixPrinter::tuple_size>::PrintPrefixTo(t, os); + *os << ")"; +} + +// Prints the fields of a tuple tersely to a string vector, one +// element for each field. See the comment before +// UniversalTersePrint() for how we define "tersely". +template +Strings UniversalTersePrintTupleFieldsToStrings(const Tuple& value) { + Strings result; + TuplePrefixPrinter::tuple_size>:: + TersePrintPrefixToStrings(value, &result); + return result; +} +#endif // GTEST_HAS_TR1_TUPLE || GTEST_HAS_STD_TUPLE_ + +} // namespace internal + +template +::std::string PrintToString(const T& value) { + ::std::stringstream ss; + internal::UniversalTersePrinter::Print(value, &ss); + return ss.str(); +} + +} // namespace testing + +// Include any custom printer added by the local installation. +// We must include this header at the end to make sure it can use the +// declarations from this file. +#include "gtest/internal/custom/gtest-printers.h" + +#endif // GTEST_INCLUDE_GTEST_GTEST_PRINTERS_H_ diff --git a/third_party/googletest/src/include/gtest/gtest-spi.h b/third_party/googletest/src/include/gtest/gtest-spi.h new file mode 100644 index 0000000..f63fa9a --- /dev/null +++ b/third_party/googletest/src/include/gtest/gtest-spi.h @@ -0,0 +1,232 @@ +// Copyright 2007, Google Inc. +// All rights reserved. +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: +// +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above +// copyright notice, this list of conditions and the following disclaimer +// in the documentation and/or other materials provided with the +// distribution. +// * Neither the name of Google Inc. nor the names of its +// contributors may be used to endorse or promote products derived from +// this software without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +// +// Author: wan@google.com (Zhanyong Wan) +// +// Utilities for testing Google Test itself and code that uses Google Test +// (e.g. frameworks built on top of Google Test). + +#ifndef GTEST_INCLUDE_GTEST_GTEST_SPI_H_ +#define GTEST_INCLUDE_GTEST_GTEST_SPI_H_ + +#include "gtest/gtest.h" + +namespace testing { + +// This helper class can be used to mock out Google Test failure reporting +// so that we can test Google Test or code that builds on Google Test. +// +// An object of this class appends a TestPartResult object to the +// TestPartResultArray object given in the constructor whenever a Google Test +// failure is reported. It can either intercept only failures that are +// generated in the same thread that created this object or it can intercept +// all generated failures. The scope of this mock object can be controlled with +// the second argument to the two arguments constructor. +class GTEST_API_ ScopedFakeTestPartResultReporter + : public TestPartResultReporterInterface { + public: + // The two possible mocking modes of this object. + enum InterceptMode { + INTERCEPT_ONLY_CURRENT_THREAD, // Intercepts only thread local failures. + INTERCEPT_ALL_THREADS // Intercepts all failures. + }; + + // The c'tor sets this object as the test part result reporter used + // by Google Test. The 'result' parameter specifies where to report the + // results. This reporter will only catch failures generated in the current + // thread. DEPRECATED + explicit ScopedFakeTestPartResultReporter(TestPartResultArray* result); + + // Same as above, but you can choose the interception scope of this object. + ScopedFakeTestPartResultReporter(InterceptMode intercept_mode, + TestPartResultArray* result); + + // The d'tor restores the previous test part result reporter. + virtual ~ScopedFakeTestPartResultReporter(); + + // Appends the TestPartResult object to the TestPartResultArray + // received in the constructor. + // + // This method is from the TestPartResultReporterInterface + // interface. + virtual void ReportTestPartResult(const TestPartResult& result); + private: + void Init(); + + const InterceptMode intercept_mode_; + TestPartResultReporterInterface* old_reporter_; + TestPartResultArray* const result_; + + GTEST_DISALLOW_COPY_AND_ASSIGN_(ScopedFakeTestPartResultReporter); +}; + +namespace internal { + +// A helper class for implementing EXPECT_FATAL_FAILURE() and +// EXPECT_NONFATAL_FAILURE(). Its destructor verifies that the given +// TestPartResultArray contains exactly one failure that has the given +// type and contains the given substring. If that's not the case, a +// non-fatal failure will be generated. +class GTEST_API_ SingleFailureChecker { + public: + // The constructor remembers the arguments. + SingleFailureChecker(const TestPartResultArray* results, + TestPartResult::Type type, + const string& substr); + ~SingleFailureChecker(); + private: + const TestPartResultArray* const results_; + const TestPartResult::Type type_; + const string substr_; + + GTEST_DISALLOW_COPY_AND_ASSIGN_(SingleFailureChecker); +}; + +} // namespace internal + +} // namespace testing + +// A set of macros for testing Google Test assertions or code that's expected +// to generate Google Test fatal failures. It verifies that the given +// statement will cause exactly one fatal Google Test failure with 'substr' +// being part of the failure message. +// +// There are two different versions of this macro. EXPECT_FATAL_FAILURE only +// affects and considers failures generated in the current thread and +// EXPECT_FATAL_FAILURE_ON_ALL_THREADS does the same but for all threads. +// +// The verification of the assertion is done correctly even when the statement +// throws an exception or aborts the current function. +// +// Known restrictions: +// - 'statement' cannot reference local non-static variables or +// non-static members of the current object. +// - 'statement' cannot return a value. +// - You cannot stream a failure message to this macro. +// +// Note that even though the implementations of the following two +// macros are much alike, we cannot refactor them to use a common +// helper macro, due to some peculiarity in how the preprocessor +// works. The AcceptsMacroThatExpandsToUnprotectedComma test in +// gtest_unittest.cc will fail to compile if we do that. +#define EXPECT_FATAL_FAILURE(statement, substr) \ + do { \ + class GTestExpectFatalFailureHelper {\ + public:\ + static void Execute() { statement; }\ + };\ + ::testing::TestPartResultArray gtest_failures;\ + ::testing::internal::SingleFailureChecker gtest_checker(\ + >est_failures, ::testing::TestPartResult::kFatalFailure, (substr));\ + {\ + ::testing::ScopedFakeTestPartResultReporter gtest_reporter(\ + ::testing::ScopedFakeTestPartResultReporter:: \ + INTERCEPT_ONLY_CURRENT_THREAD, >est_failures);\ + GTestExpectFatalFailureHelper::Execute();\ + }\ + } while (::testing::internal::AlwaysFalse()) + +#define EXPECT_FATAL_FAILURE_ON_ALL_THREADS(statement, substr) \ + do { \ + class GTestExpectFatalFailureHelper {\ + public:\ + static void Execute() { statement; }\ + };\ + ::testing::TestPartResultArray gtest_failures;\ + ::testing::internal::SingleFailureChecker gtest_checker(\ + >est_failures, ::testing::TestPartResult::kFatalFailure, (substr));\ + {\ + ::testing::ScopedFakeTestPartResultReporter gtest_reporter(\ + ::testing::ScopedFakeTestPartResultReporter:: \ + INTERCEPT_ALL_THREADS, >est_failures);\ + GTestExpectFatalFailureHelper::Execute();\ + }\ + } while (::testing::internal::AlwaysFalse()) + +// A macro for testing Google Test assertions or code that's expected to +// generate Google Test non-fatal failures. It asserts that the given +// statement will cause exactly one non-fatal Google Test failure with 'substr' +// being part of the failure message. +// +// There are two different versions of this macro. EXPECT_NONFATAL_FAILURE only +// affects and considers failures generated in the current thread and +// EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS does the same but for all threads. +// +// 'statement' is allowed to reference local variables and members of +// the current object. +// +// The verification of the assertion is done correctly even when the statement +// throws an exception or aborts the current function. +// +// Known restrictions: +// - You cannot stream a failure message to this macro. +// +// Note that even though the implementations of the following two +// macros are much alike, we cannot refactor them to use a common +// helper macro, due to some peculiarity in how the preprocessor +// works. If we do that, the code won't compile when the user gives +// EXPECT_NONFATAL_FAILURE() a statement that contains a macro that +// expands to code containing an unprotected comma. The +// AcceptsMacroThatExpandsToUnprotectedComma test in gtest_unittest.cc +// catches that. +// +// For the same reason, we have to write +// if (::testing::internal::AlwaysTrue()) { statement; } +// instead of +// GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement) +// to avoid an MSVC warning on unreachable code. +#define EXPECT_NONFATAL_FAILURE(statement, substr) \ + do {\ + ::testing::TestPartResultArray gtest_failures;\ + ::testing::internal::SingleFailureChecker gtest_checker(\ + >est_failures, ::testing::TestPartResult::kNonFatalFailure, \ + (substr));\ + {\ + ::testing::ScopedFakeTestPartResultReporter gtest_reporter(\ + ::testing::ScopedFakeTestPartResultReporter:: \ + INTERCEPT_ONLY_CURRENT_THREAD, >est_failures);\ + if (::testing::internal::AlwaysTrue()) { statement; }\ + }\ + } while (::testing::internal::AlwaysFalse()) + +#define EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS(statement, substr) \ + do {\ + ::testing::TestPartResultArray gtest_failures;\ + ::testing::internal::SingleFailureChecker gtest_checker(\ + >est_failures, ::testing::TestPartResult::kNonFatalFailure, \ + (substr));\ + {\ + ::testing::ScopedFakeTestPartResultReporter gtest_reporter(\ + ::testing::ScopedFakeTestPartResultReporter::INTERCEPT_ALL_THREADS, \ + >est_failures);\ + if (::testing::internal::AlwaysTrue()) { statement; }\ + }\ + } while (::testing::internal::AlwaysFalse()) + +#endif // GTEST_INCLUDE_GTEST_GTEST_SPI_H_ diff --git a/third_party/googletest/src/include/gtest/gtest-test-part.h b/third_party/googletest/src/include/gtest/gtest-test-part.h new file mode 100644 index 0000000..77eb844 --- /dev/null +++ b/third_party/googletest/src/include/gtest/gtest-test-part.h @@ -0,0 +1,179 @@ +// Copyright 2008, Google Inc. +// All rights reserved. +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: +// +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above +// copyright notice, this list of conditions and the following disclaimer +// in the documentation and/or other materials provided with the +// distribution. +// * Neither the name of Google Inc. nor the names of its +// contributors may be used to endorse or promote products derived from +// this software without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +// +// Author: mheule@google.com (Markus Heule) +// + +#ifndef GTEST_INCLUDE_GTEST_GTEST_TEST_PART_H_ +#define GTEST_INCLUDE_GTEST_GTEST_TEST_PART_H_ + +#include +#include +#include "gtest/internal/gtest-internal.h" +#include "gtest/internal/gtest-string.h" + +namespace testing { + +// A copyable object representing the result of a test part (i.e. an +// assertion or an explicit FAIL(), ADD_FAILURE(), or SUCCESS()). +// +// Don't inherit from TestPartResult as its destructor is not virtual. +class GTEST_API_ TestPartResult { + public: + // The possible outcomes of a test part (i.e. an assertion or an + // explicit SUCCEED(), FAIL(), or ADD_FAILURE()). + enum Type { + kSuccess, // Succeeded. + kNonFatalFailure, // Failed but the test can continue. + kFatalFailure // Failed and the test should be terminated. + }; + + // C'tor. TestPartResult does NOT have a default constructor. + // Always use this constructor (with parameters) to create a + // TestPartResult object. + TestPartResult(Type a_type, + const char* a_file_name, + int a_line_number, + const char* a_message) + : type_(a_type), + file_name_(a_file_name == NULL ? "" : a_file_name), + line_number_(a_line_number), + summary_(ExtractSummary(a_message)), + message_(a_message) { + } + + // Gets the outcome of the test part. + Type type() const { return type_; } + + // Gets the name of the source file where the test part took place, or + // NULL if it's unknown. + const char* file_name() const { + return file_name_.empty() ? NULL : file_name_.c_str(); + } + + // Gets the line in the source file where the test part took place, + // or -1 if it's unknown. + int line_number() const { return line_number_; } + + // Gets the summary of the failure message. + const char* summary() const { return summary_.c_str(); } + + // Gets the message associated with the test part. + const char* message() const { return message_.c_str(); } + + // Returns true iff the test part passed. + bool passed() const { return type_ == kSuccess; } + + // Returns true iff the test part failed. + bool failed() const { return type_ != kSuccess; } + + // Returns true iff the test part non-fatally failed. + bool nonfatally_failed() const { return type_ == kNonFatalFailure; } + + // Returns true iff the test part fatally failed. + bool fatally_failed() const { return type_ == kFatalFailure; } + + private: + Type type_; + + // Gets the summary of the failure message by omitting the stack + // trace in it. + static std::string ExtractSummary(const char* message); + + // The name of the source file where the test part took place, or + // "" if the source file is unknown. + std::string file_name_; + // The line in the source file where the test part took place, or -1 + // if the line number is unknown. + int line_number_; + std::string summary_; // The test failure summary. + std::string message_; // The test failure message. +}; + +// Prints a TestPartResult object. +std::ostream& operator<<(std::ostream& os, const TestPartResult& result); + +// An array of TestPartResult objects. +// +// Don't inherit from TestPartResultArray as its destructor is not +// virtual. +class GTEST_API_ TestPartResultArray { + public: + TestPartResultArray() {} + + // Appends the given TestPartResult to the array. + void Append(const TestPartResult& result); + + // Returns the TestPartResult at the given index (0-based). + const TestPartResult& GetTestPartResult(int index) const; + + // Returns the number of TestPartResult objects in the array. + int size() const; + + private: + std::vector array_; + + GTEST_DISALLOW_COPY_AND_ASSIGN_(TestPartResultArray); +}; + +// This interface knows how to report a test part result. +class TestPartResultReporterInterface { + public: + virtual ~TestPartResultReporterInterface() {} + + virtual void ReportTestPartResult(const TestPartResult& result) = 0; +}; + +namespace internal { + +// This helper class is used by {ASSERT|EXPECT}_NO_FATAL_FAILURE to check if a +// statement generates new fatal failures. To do so it registers itself as the +// current test part result reporter. Besides checking if fatal failures were +// reported, it only delegates the reporting to the former result reporter. +// The original result reporter is restored in the destructor. +// INTERNAL IMPLEMENTATION - DO NOT USE IN A USER PROGRAM. +class GTEST_API_ HasNewFatalFailureHelper + : public TestPartResultReporterInterface { + public: + HasNewFatalFailureHelper(); + virtual ~HasNewFatalFailureHelper(); + virtual void ReportTestPartResult(const TestPartResult& result); + bool has_new_fatal_failure() const { return has_new_fatal_failure_; } + private: + bool has_new_fatal_failure_; + TestPartResultReporterInterface* original_reporter_; + + GTEST_DISALLOW_COPY_AND_ASSIGN_(HasNewFatalFailureHelper); +}; + +} // namespace internal + +} // namespace testing + +#endif // GTEST_INCLUDE_GTEST_GTEST_TEST_PART_H_ diff --git a/third_party/googletest/src/include/gtest/gtest-typed-test.h b/third_party/googletest/src/include/gtest/gtest-typed-test.h new file mode 100644 index 0000000..5f69d56 --- /dev/null +++ b/third_party/googletest/src/include/gtest/gtest-typed-test.h @@ -0,0 +1,263 @@ +// Copyright 2008 Google Inc. +// All Rights Reserved. +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: +// +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above +// copyright notice, this list of conditions and the following disclaimer +// in the documentation and/or other materials provided with the +// distribution. +// * Neither the name of Google Inc. nor the names of its +// contributors may be used to endorse or promote products derived from +// this software without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +// +// Author: wan@google.com (Zhanyong Wan) + +#ifndef GTEST_INCLUDE_GTEST_GTEST_TYPED_TEST_H_ +#define GTEST_INCLUDE_GTEST_GTEST_TYPED_TEST_H_ + +// This header implements typed tests and type-parameterized tests. + +// Typed (aka type-driven) tests repeat the same test for types in a +// list. You must know which types you want to test with when writing +// typed tests. Here's how you do it: + +#if 0 + +// First, define a fixture class template. It should be parameterized +// by a type. Remember to derive it from testing::Test. +template +class FooTest : public testing::Test { + public: + ... + typedef std::list List; + static T shared_; + T value_; +}; + +// Next, associate a list of types with the test case, which will be +// repeated for each type in the list. The typedef is necessary for +// the macro to parse correctly. +typedef testing::Types MyTypes; +TYPED_TEST_CASE(FooTest, MyTypes); + +// If the type list contains only one type, you can write that type +// directly without Types<...>: +// TYPED_TEST_CASE(FooTest, int); + +// Then, use TYPED_TEST() instead of TEST_F() to define as many typed +// tests for this test case as you want. +TYPED_TEST(FooTest, DoesBlah) { + // Inside a test, refer to TypeParam to get the type parameter. + // Since we are inside a derived class template, C++ requires use to + // visit the members of FooTest via 'this'. + TypeParam n = this->value_; + + // To visit static members of the fixture, add the TestFixture:: + // prefix. + n += TestFixture::shared_; + + // To refer to typedefs in the fixture, add the "typename + // TestFixture::" prefix. + typename TestFixture::List values; + values.push_back(n); + ... +} + +TYPED_TEST(FooTest, HasPropertyA) { ... } + +#endif // 0 + +// Type-parameterized tests are abstract test patterns parameterized +// by a type. Compared with typed tests, type-parameterized tests +// allow you to define the test pattern without knowing what the type +// parameters are. The defined pattern can be instantiated with +// different types any number of times, in any number of translation +// units. +// +// If you are designing an interface or concept, you can define a +// suite of type-parameterized tests to verify properties that any +// valid implementation of the interface/concept should have. Then, +// each implementation can easily instantiate the test suite to verify +// that it conforms to the requirements, without having to write +// similar tests repeatedly. Here's an example: + +#if 0 + +// First, define a fixture class template. It should be parameterized +// by a type. Remember to derive it from testing::Test. +template +class FooTest : public testing::Test { + ... +}; + +// Next, declare that you will define a type-parameterized test case +// (the _P suffix is for "parameterized" or "pattern", whichever you +// prefer): +TYPED_TEST_CASE_P(FooTest); + +// Then, use TYPED_TEST_P() to define as many type-parameterized tests +// for this type-parameterized test case as you want. +TYPED_TEST_P(FooTest, DoesBlah) { + // Inside a test, refer to TypeParam to get the type parameter. + TypeParam n = 0; + ... +} + +TYPED_TEST_P(FooTest, HasPropertyA) { ... } + +// Now the tricky part: you need to register all test patterns before +// you can instantiate them. The first argument of the macro is the +// test case name; the rest are the names of the tests in this test +// case. +REGISTER_TYPED_TEST_CASE_P(FooTest, + DoesBlah, HasPropertyA); + +// Finally, you are free to instantiate the pattern with the types you +// want. If you put the above code in a header file, you can #include +// it in multiple C++ source files and instantiate it multiple times. +// +// To distinguish different instances of the pattern, the first +// argument to the INSTANTIATE_* macro is a prefix that will be added +// to the actual test case name. Remember to pick unique prefixes for +// different instances. +typedef testing::Types MyTypes; +INSTANTIATE_TYPED_TEST_CASE_P(My, FooTest, MyTypes); + +// If the type list contains only one type, you can write that type +// directly without Types<...>: +// INSTANTIATE_TYPED_TEST_CASE_P(My, FooTest, int); + +#endif // 0 + +#include "gtest/internal/gtest-port.h" +#include "gtest/internal/gtest-type-util.h" + +// Implements typed tests. + +#if GTEST_HAS_TYPED_TEST + +// INTERNAL IMPLEMENTATION - DO NOT USE IN USER CODE. +// +// Expands to the name of the typedef for the type parameters of the +// given test case. +# define GTEST_TYPE_PARAMS_(TestCaseName) gtest_type_params_##TestCaseName##_ + +// The 'Types' template argument below must have spaces around it +// since some compilers may choke on '>>' when passing a template +// instance (e.g. Types) +# define TYPED_TEST_CASE(CaseName, Types) \ + typedef ::testing::internal::TypeList< Types >::type \ + GTEST_TYPE_PARAMS_(CaseName) + +# define TYPED_TEST(CaseName, TestName) \ + template \ + class GTEST_TEST_CLASS_NAME_(CaseName, TestName) \ + : public CaseName { \ + private: \ + typedef CaseName TestFixture; \ + typedef gtest_TypeParam_ TypeParam; \ + virtual void TestBody(); \ + }; \ + bool gtest_##CaseName##_##TestName##_registered_ GTEST_ATTRIBUTE_UNUSED_ = \ + ::testing::internal::TypeParameterizedTest< \ + CaseName, \ + ::testing::internal::TemplateSel< \ + GTEST_TEST_CLASS_NAME_(CaseName, TestName)>, \ + GTEST_TYPE_PARAMS_(CaseName)>::Register(\ + "", ::testing::internal::CodeLocation(__FILE__, __LINE__), \ + #CaseName, #TestName, 0); \ + template \ + void GTEST_TEST_CLASS_NAME_(CaseName, TestName)::TestBody() + +#endif // GTEST_HAS_TYPED_TEST + +// Implements type-parameterized tests. + +#if GTEST_HAS_TYPED_TEST_P + +// INTERNAL IMPLEMENTATION - DO NOT USE IN USER CODE. +// +// Expands to the namespace name that the type-parameterized tests for +// the given type-parameterized test case are defined in. The exact +// name of the namespace is subject to change without notice. +# define GTEST_CASE_NAMESPACE_(TestCaseName) \ + gtest_case_##TestCaseName##_ + +// INTERNAL IMPLEMENTATION - DO NOT USE IN USER CODE. +// +// Expands to the name of the variable used to remember the names of +// the defined tests in the given test case. +# define GTEST_TYPED_TEST_CASE_P_STATE_(TestCaseName) \ + gtest_typed_test_case_p_state_##TestCaseName##_ + +// INTERNAL IMPLEMENTATION - DO NOT USE IN USER CODE DIRECTLY. +// +// Expands to the name of the variable used to remember the names of +// the registered tests in the given test case. +# define GTEST_REGISTERED_TEST_NAMES_(TestCaseName) \ + gtest_registered_test_names_##TestCaseName##_ + +// The variables defined in the type-parameterized test macros are +// static as typically these macros are used in a .h file that can be +// #included in multiple translation units linked together. +# define TYPED_TEST_CASE_P(CaseName) \ + static ::testing::internal::TypedTestCasePState \ + GTEST_TYPED_TEST_CASE_P_STATE_(CaseName) + +# define TYPED_TEST_P(CaseName, TestName) \ + namespace GTEST_CASE_NAMESPACE_(CaseName) { \ + template \ + class TestName : public CaseName { \ + private: \ + typedef CaseName TestFixture; \ + typedef gtest_TypeParam_ TypeParam; \ + virtual void TestBody(); \ + }; \ + static bool gtest_##TestName##_defined_ GTEST_ATTRIBUTE_UNUSED_ = \ + GTEST_TYPED_TEST_CASE_P_STATE_(CaseName).AddTestName(\ + __FILE__, __LINE__, #CaseName, #TestName); \ + } \ + template \ + void GTEST_CASE_NAMESPACE_(CaseName)::TestName::TestBody() + +# define REGISTER_TYPED_TEST_CASE_P(CaseName, ...) \ + namespace GTEST_CASE_NAMESPACE_(CaseName) { \ + typedef ::testing::internal::Templates<__VA_ARGS__>::type gtest_AllTests_; \ + } \ + static const char* const GTEST_REGISTERED_TEST_NAMES_(CaseName) = \ + GTEST_TYPED_TEST_CASE_P_STATE_(CaseName).VerifyRegisteredTestNames(\ + __FILE__, __LINE__, #__VA_ARGS__) + +// The 'Types' template argument below must have spaces around it +// since some compilers may choke on '>>' when passing a template +// instance (e.g. Types) +# define INSTANTIATE_TYPED_TEST_CASE_P(Prefix, CaseName, Types) \ + bool gtest_##Prefix##_##CaseName GTEST_ATTRIBUTE_UNUSED_ = \ + ::testing::internal::TypeParameterizedTestCase::type>::Register(\ + #Prefix, \ + ::testing::internal::CodeLocation(__FILE__, __LINE__), \ + >EST_TYPED_TEST_CASE_P_STATE_(CaseName), \ + #CaseName, GTEST_REGISTERED_TEST_NAMES_(CaseName)) + +#endif // GTEST_HAS_TYPED_TEST_P + +#endif // GTEST_INCLUDE_GTEST_GTEST_TYPED_TEST_H_ diff --git a/third_party/googletest/src/include/gtest/gtest.h b/third_party/googletest/src/include/gtest/gtest.h new file mode 100644 index 0000000..f846c5b --- /dev/null +++ b/third_party/googletest/src/include/gtest/gtest.h @@ -0,0 +1,2236 @@ +// Copyright 2005, Google Inc. +// All rights reserved. +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: +// +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above +// copyright notice, this list of conditions and the following disclaimer +// in the documentation and/or other materials provided with the +// distribution. +// * Neither the name of Google Inc. nor the names of its +// contributors may be used to endorse or promote products derived from +// this software without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +// +// Author: wan@google.com (Zhanyong Wan) +// +// The Google C++ Testing Framework (Google Test) +// +// This header file defines the public API for Google Test. It should be +// included by any test program that uses Google Test. +// +// IMPORTANT NOTE: Due to limitation of the C++ language, we have to +// leave some internal implementation details in this header file. +// They are clearly marked by comments like this: +// +// // INTERNAL IMPLEMENTATION - DO NOT USE IN A USER PROGRAM. +// +// Such code is NOT meant to be used by a user directly, and is subject +// to CHANGE WITHOUT NOTICE. Therefore DO NOT DEPEND ON IT in a user +// program! +// +// Acknowledgment: Google Test borrowed the idea of automatic test +// registration from Barthelemy Dagenais' (barthelemy@prologique.com) +// easyUnit framework. + +#ifndef GTEST_INCLUDE_GTEST_GTEST_H_ +#define GTEST_INCLUDE_GTEST_GTEST_H_ + +#include +#include +#include + +#include "gtest/internal/gtest-internal.h" +#include "gtest/internal/gtest-string.h" +#include "gtest/gtest-death-test.h" +#include "gtest/gtest-message.h" +#include "gtest/gtest-param-test.h" +#include "gtest/gtest-printers.h" +#include "gtest/gtest_prod.h" +#include "gtest/gtest-test-part.h" +#include "gtest/gtest-typed-test.h" + +// Depending on the platform, different string classes are available. +// On Linux, in addition to ::std::string, Google also makes use of +// class ::string, which has the same interface as ::std::string, but +// has a different implementation. +// +// You can define GTEST_HAS_GLOBAL_STRING to 1 to indicate that +// ::string is available AND is a distinct type to ::std::string, or +// define it to 0 to indicate otherwise. +// +// If ::std::string and ::string are the same class on your platform +// due to aliasing, you should define GTEST_HAS_GLOBAL_STRING to 0. +// +// If you do not define GTEST_HAS_GLOBAL_STRING, it is defined +// heuristically. + +namespace testing { + +// Declares the flags. + +// This flag temporary enables the disabled tests. +GTEST_DECLARE_bool_(also_run_disabled_tests); + +// This flag brings the debugger on an assertion failure. +GTEST_DECLARE_bool_(break_on_failure); + +// This flag controls whether Google Test catches all test-thrown exceptions +// and logs them as failures. +GTEST_DECLARE_bool_(catch_exceptions); + +// This flag enables using colors in terminal output. Available values are +// "yes" to enable colors, "no" (disable colors), or "auto" (the default) +// to let Google Test decide. +GTEST_DECLARE_string_(color); + +// This flag sets up the filter to select by name using a glob pattern +// the tests to run. If the filter is not given all tests are executed. +GTEST_DECLARE_string_(filter); + +// This flag causes the Google Test to list tests. None of the tests listed +// are actually run if the flag is provided. +GTEST_DECLARE_bool_(list_tests); + +// This flag controls whether Google Test emits a detailed XML report to a file +// in addition to its normal textual output. +GTEST_DECLARE_string_(output); + +// This flags control whether Google Test prints the elapsed time for each +// test. +GTEST_DECLARE_bool_(print_time); + +// This flag specifies the random number seed. +GTEST_DECLARE_int32_(random_seed); + +// This flag sets how many times the tests are repeated. The default value +// is 1. If the value is -1 the tests are repeating forever. +GTEST_DECLARE_int32_(repeat); + +// This flag controls whether Google Test includes Google Test internal +// stack frames in failure stack traces. +GTEST_DECLARE_bool_(show_internal_stack_frames); + +// When this flag is specified, tests' order is randomized on every iteration. +GTEST_DECLARE_bool_(shuffle); + +// This flag specifies the maximum number of stack frames to be +// printed in a failure message. +GTEST_DECLARE_int32_(stack_trace_depth); + +// When this flag is specified, a failed assertion will throw an +// exception if exceptions are enabled, or exit the program with a +// non-zero code otherwise. +GTEST_DECLARE_bool_(throw_on_failure); + +// When this flag is set with a "host:port" string, on supported +// platforms test results are streamed to the specified port on +// the specified host machine. +GTEST_DECLARE_string_(stream_result_to); + +// The upper limit for valid stack trace depths. +const int kMaxStackTraceDepth = 100; + +namespace internal { + +class AssertHelper; +class DefaultGlobalTestPartResultReporter; +class ExecDeathTest; +class NoExecDeathTest; +class FinalSuccessChecker; +class GTestFlagSaver; +class StreamingListenerTest; +class TestResultAccessor; +class TestEventListenersAccessor; +class TestEventRepeater; +class UnitTestRecordPropertyTestHelper; +class WindowsDeathTest; +class UnitTestImpl* GetUnitTestImpl(); +void ReportFailureInUnknownLocation(TestPartResult::Type result_type, + const std::string& message); + +} // namespace internal + +// The friend relationship of some of these classes is cyclic. +// If we don't forward declare them the compiler might confuse the classes +// in friendship clauses with same named classes on the scope. +class Test; +class TestCase; +class TestInfo; +class UnitTest; + +// A class for indicating whether an assertion was successful. When +// the assertion wasn't successful, the AssertionResult object +// remembers a non-empty message that describes how it failed. +// +// To create an instance of this class, use one of the factory functions +// (AssertionSuccess() and AssertionFailure()). +// +// This class is useful for two purposes: +// 1. Defining predicate functions to be used with Boolean test assertions +// EXPECT_TRUE/EXPECT_FALSE and their ASSERT_ counterparts +// 2. Defining predicate-format functions to be +// used with predicate assertions (ASSERT_PRED_FORMAT*, etc). +// +// For example, if you define IsEven predicate: +// +// testing::AssertionResult IsEven(int n) { +// if ((n % 2) == 0) +// return testing::AssertionSuccess(); +// else +// return testing::AssertionFailure() << n << " is odd"; +// } +// +// Then the failed expectation EXPECT_TRUE(IsEven(Fib(5))) +// will print the message +// +// Value of: IsEven(Fib(5)) +// Actual: false (5 is odd) +// Expected: true +// +// instead of a more opaque +// +// Value of: IsEven(Fib(5)) +// Actual: false +// Expected: true +// +// in case IsEven is a simple Boolean predicate. +// +// If you expect your predicate to be reused and want to support informative +// messages in EXPECT_FALSE and ASSERT_FALSE (negative assertions show up +// about half as often as positive ones in our tests), supply messages for +// both success and failure cases: +// +// testing::AssertionResult IsEven(int n) { +// if ((n % 2) == 0) +// return testing::AssertionSuccess() << n << " is even"; +// else +// return testing::AssertionFailure() << n << " is odd"; +// } +// +// Then a statement EXPECT_FALSE(IsEven(Fib(6))) will print +// +// Value of: IsEven(Fib(6)) +// Actual: true (8 is even) +// Expected: false +// +// NB: Predicates that support negative Boolean assertions have reduced +// performance in positive ones so be careful not to use them in tests +// that have lots (tens of thousands) of positive Boolean assertions. +// +// To use this class with EXPECT_PRED_FORMAT assertions such as: +// +// // Verifies that Foo() returns an even number. +// EXPECT_PRED_FORMAT1(IsEven, Foo()); +// +// you need to define: +// +// testing::AssertionResult IsEven(const char* expr, int n) { +// if ((n % 2) == 0) +// return testing::AssertionSuccess(); +// else +// return testing::AssertionFailure() +// << "Expected: " << expr << " is even\n Actual: it's " << n; +// } +// +// If Foo() returns 5, you will see the following message: +// +// Expected: Foo() is even +// Actual: it's 5 +// +class GTEST_API_ AssertionResult { + public: + // Copy constructor. + // Used in EXPECT_TRUE/FALSE(assertion_result). + AssertionResult(const AssertionResult& other); + + GTEST_DISABLE_MSC_WARNINGS_PUSH_(4800 /* forcing value to bool */) + + // Used in the EXPECT_TRUE/FALSE(bool_expression). + // + // T must be contextually convertible to bool. + // + // The second parameter prevents this overload from being considered if + // the argument is implicitly convertible to AssertionResult. In that case + // we want AssertionResult's copy constructor to be used. + template + explicit AssertionResult( + const T& success, + typename internal::EnableIf< + !internal::ImplicitlyConvertible::value>::type* + /*enabler*/ = NULL) + : success_(success) {} + + GTEST_DISABLE_MSC_WARNINGS_POP_() + + // Assignment operator. + AssertionResult& operator=(AssertionResult other) { + swap(other); + return *this; + } + + // Returns true iff the assertion succeeded. + operator bool() const { return success_; } // NOLINT + + // Returns the assertion's negation. Used with EXPECT/ASSERT_FALSE. + AssertionResult operator!() const; + + // Returns the text streamed into this AssertionResult. Test assertions + // use it when they fail (i.e., the predicate's outcome doesn't match the + // assertion's expectation). When nothing has been streamed into the + // object, returns an empty string. + const char* message() const { + return message_.get() != NULL ? message_->c_str() : ""; + } + // TODO(vladl@google.com): Remove this after making sure no clients use it. + // Deprecated; please use message() instead. + const char* failure_message() const { return message(); } + + // Streams a custom failure message into this object. + template AssertionResult& operator<<(const T& value) { + AppendMessage(Message() << value); + return *this; + } + + // Allows streaming basic output manipulators such as endl or flush into + // this object. + AssertionResult& operator<<( + ::std::ostream& (*basic_manipulator)(::std::ostream& stream)) { + AppendMessage(Message() << basic_manipulator); + return *this; + } + + private: + // Appends the contents of message to message_. + void AppendMessage(const Message& a_message) { + if (message_.get() == NULL) + message_.reset(new ::std::string); + message_->append(a_message.GetString().c_str()); + } + + // Swap the contents of this AssertionResult with other. + void swap(AssertionResult& other); + + // Stores result of the assertion predicate. + bool success_; + // Stores the message describing the condition in case the expectation + // construct is not satisfied with the predicate's outcome. + // Referenced via a pointer to avoid taking too much stack frame space + // with test assertions. + internal::scoped_ptr< ::std::string> message_; +}; + +// Makes a successful assertion result. +GTEST_API_ AssertionResult AssertionSuccess(); + +// Makes a failed assertion result. +GTEST_API_ AssertionResult AssertionFailure(); + +// Makes a failed assertion result with the given failure message. +// Deprecated; use AssertionFailure() << msg. +GTEST_API_ AssertionResult AssertionFailure(const Message& msg); + +// The abstract class that all tests inherit from. +// +// In Google Test, a unit test program contains one or many TestCases, and +// each TestCase contains one or many Tests. +// +// When you define a test using the TEST macro, you don't need to +// explicitly derive from Test - the TEST macro automatically does +// this for you. +// +// The only time you derive from Test is when defining a test fixture +// to be used a TEST_F. For example: +// +// class FooTest : public testing::Test { +// protected: +// void SetUp() override { ... } +// void TearDown() override { ... } +// ... +// }; +// +// TEST_F(FooTest, Bar) { ... } +// TEST_F(FooTest, Baz) { ... } +// +// Test is not copyable. +class GTEST_API_ Test { + public: + friend class TestInfo; + + // Defines types for pointers to functions that set up and tear down + // a test case. + typedef internal::SetUpTestCaseFunc SetUpTestCaseFunc; + typedef internal::TearDownTestCaseFunc TearDownTestCaseFunc; + + // The d'tor is virtual as we intend to inherit from Test. + virtual ~Test(); + + // Sets up the stuff shared by all tests in this test case. + // + // Google Test will call Foo::SetUpTestCase() before running the first + // test in test case Foo. Hence a sub-class can define its own + // SetUpTestCase() method to shadow the one defined in the super + // class. + static void SetUpTestCase() {} + + // Tears down the stuff shared by all tests in this test case. + // + // Google Test will call Foo::TearDownTestCase() after running the last + // test in test case Foo. Hence a sub-class can define its own + // TearDownTestCase() method to shadow the one defined in the super + // class. + static void TearDownTestCase() {} + + // Returns true iff the current test has a fatal failure. + static bool HasFatalFailure(); + + // Returns true iff the current test has a non-fatal failure. + static bool HasNonfatalFailure(); + + // Returns true iff the current test has a (either fatal or + // non-fatal) failure. + static bool HasFailure() { return HasFatalFailure() || HasNonfatalFailure(); } + + // Logs a property for the current test, test case, or for the entire + // invocation of the test program when used outside of the context of a + // test case. Only the last value for a given key is remembered. These + // are public static so they can be called from utility functions that are + // not members of the test fixture. Calls to RecordProperty made during + // lifespan of the test (from the moment its constructor starts to the + // moment its destructor finishes) will be output in XML as attributes of + // the element. Properties recorded from fixture's + // SetUpTestCase or TearDownTestCase are logged as attributes of the + // corresponding element. Calls to RecordProperty made in the + // global context (before or after invocation of RUN_ALL_TESTS and from + // SetUp/TearDown method of Environment objects registered with Google + // Test) will be output as attributes of the element. + static void RecordProperty(const std::string& key, const std::string& value); + static void RecordProperty(const std::string& key, int value); + + protected: + // Creates a Test object. + Test(); + + // Sets up the test fixture. + virtual void SetUp(); + + // Tears down the test fixture. + virtual void TearDown(); + + private: + // Returns true iff the current test has the same fixture class as + // the first test in the current test case. + static bool HasSameFixtureClass(); + + // Runs the test after the test fixture has been set up. + // + // A sub-class must implement this to define the test logic. + // + // DO NOT OVERRIDE THIS FUNCTION DIRECTLY IN A USER PROGRAM. + // Instead, use the TEST or TEST_F macro. + virtual void TestBody() = 0; + + // Sets up, executes, and tears down the test. + void Run(); + + // Deletes self. We deliberately pick an unusual name for this + // internal method to avoid clashing with names used in user TESTs. + void DeleteSelf_() { delete this; } + + const internal::scoped_ptr< GTEST_FLAG_SAVER_ > gtest_flag_saver_; + + // Often a user misspells SetUp() as Setup() and spends a long time + // wondering why it is never called by Google Test. The declaration of + // the following method is solely for catching such an error at + // compile time: + // + // - The return type is deliberately chosen to be not void, so it + // will be a conflict if void Setup() is declared in the user's + // test fixture. + // + // - This method is private, so it will be another compiler error + // if the method is called from the user's test fixture. + // + // DO NOT OVERRIDE THIS FUNCTION. + // + // If you see an error about overriding the following function or + // about it being private, you have mis-spelled SetUp() as Setup(). + struct Setup_should_be_spelled_SetUp {}; + virtual Setup_should_be_spelled_SetUp* Setup() { return NULL; } + + // We disallow copying Tests. + GTEST_DISALLOW_COPY_AND_ASSIGN_(Test); +}; + +typedef internal::TimeInMillis TimeInMillis; + +// A copyable object representing a user specified test property which can be +// output as a key/value string pair. +// +// Don't inherit from TestProperty as its destructor is not virtual. +class TestProperty { + public: + // C'tor. TestProperty does NOT have a default constructor. + // Always use this constructor (with parameters) to create a + // TestProperty object. + TestProperty(const std::string& a_key, const std::string& a_value) : + key_(a_key), value_(a_value) { + } + + // Gets the user supplied key. + const char* key() const { + return key_.c_str(); + } + + // Gets the user supplied value. + const char* value() const { + return value_.c_str(); + } + + // Sets a new value, overriding the one supplied in the constructor. + void SetValue(const std::string& new_value) { + value_ = new_value; + } + + private: + // The key supplied by the user. + std::string key_; + // The value supplied by the user. + std::string value_; +}; + +// The result of a single Test. This includes a list of +// TestPartResults, a list of TestProperties, a count of how many +// death tests there are in the Test, and how much time it took to run +// the Test. +// +// TestResult is not copyable. +class GTEST_API_ TestResult { + public: + // Creates an empty TestResult. + TestResult(); + + // D'tor. Do not inherit from TestResult. + ~TestResult(); + + // Gets the number of all test parts. This is the sum of the number + // of successful test parts and the number of failed test parts. + int total_part_count() const; + + // Returns the number of the test properties. + int test_property_count() const; + + // Returns true iff the test passed (i.e. no test part failed). + bool Passed() const { return !Failed(); } + + // Returns true iff the test failed. + bool Failed() const; + + // Returns true iff the test fatally failed. + bool HasFatalFailure() const; + + // Returns true iff the test has a non-fatal failure. + bool HasNonfatalFailure() const; + + // Returns the elapsed time, in milliseconds. + TimeInMillis elapsed_time() const { return elapsed_time_; } + + // Returns the i-th test part result among all the results. i can range + // from 0 to test_property_count() - 1. If i is not in that range, aborts + // the program. + const TestPartResult& GetTestPartResult(int i) const; + + // Returns the i-th test property. i can range from 0 to + // test_property_count() - 1. If i is not in that range, aborts the + // program. + const TestProperty& GetTestProperty(int i) const; + + private: + friend class TestInfo; + friend class TestCase; + friend class UnitTest; + friend class internal::DefaultGlobalTestPartResultReporter; + friend class internal::ExecDeathTest; + friend class internal::TestResultAccessor; + friend class internal::UnitTestImpl; + friend class internal::WindowsDeathTest; + + // Gets the vector of TestPartResults. + const std::vector& test_part_results() const { + return test_part_results_; + } + + // Gets the vector of TestProperties. + const std::vector& test_properties() const { + return test_properties_; + } + + // Sets the elapsed time. + void set_elapsed_time(TimeInMillis elapsed) { elapsed_time_ = elapsed; } + + // Adds a test property to the list. The property is validated and may add + // a non-fatal failure if invalid (e.g., if it conflicts with reserved + // key names). If a property is already recorded for the same key, the + // value will be updated, rather than storing multiple values for the same + // key. xml_element specifies the element for which the property is being + // recorded and is used for validation. + void RecordProperty(const std::string& xml_element, + const TestProperty& test_property); + + // Adds a failure if the key is a reserved attribute of Google Test + // testcase tags. Returns true if the property is valid. + // TODO(russr): Validate attribute names are legal and human readable. + static bool ValidateTestProperty(const std::string& xml_element, + const TestProperty& test_property); + + // Adds a test part result to the list. + void AddTestPartResult(const TestPartResult& test_part_result); + + // Returns the death test count. + int death_test_count() const { return death_test_count_; } + + // Increments the death test count, returning the new count. + int increment_death_test_count() { return ++death_test_count_; } + + // Clears the test part results. + void ClearTestPartResults(); + + // Clears the object. + void Clear(); + + // Protects mutable state of the property vector and of owned + // properties, whose values may be updated. + internal::Mutex test_properites_mutex_; + + // The vector of TestPartResults + std::vector test_part_results_; + // The vector of TestProperties + std::vector test_properties_; + // Running count of death tests. + int death_test_count_; + // The elapsed time, in milliseconds. + TimeInMillis elapsed_time_; + + // We disallow copying TestResult. + GTEST_DISALLOW_COPY_AND_ASSIGN_(TestResult); +}; // class TestResult + +// A TestInfo object stores the following information about a test: +// +// Test case name +// Test name +// Whether the test should be run +// A function pointer that creates the test object when invoked +// Test result +// +// The constructor of TestInfo registers itself with the UnitTest +// singleton such that the RUN_ALL_TESTS() macro knows which tests to +// run. +class GTEST_API_ TestInfo { + public: + // Destructs a TestInfo object. This function is not virtual, so + // don't inherit from TestInfo. + ~TestInfo(); + + // Returns the test case name. + const char* test_case_name() const { return test_case_name_.c_str(); } + + // Returns the test name. + const char* name() const { return name_.c_str(); } + + // Returns the name of the parameter type, or NULL if this is not a typed + // or a type-parameterized test. + const char* type_param() const { + if (type_param_.get() != NULL) + return type_param_->c_str(); + return NULL; + } + + // Returns the text representation of the value parameter, or NULL if this + // is not a value-parameterized test. + const char* value_param() const { + if (value_param_.get() != NULL) + return value_param_->c_str(); + return NULL; + } + + // Returns the file name where this test is defined. + const char* file() const { return location_.file.c_str(); } + + // Returns the line where this test is defined. + int line() const { return location_.line; } + + // Returns true if this test should run, that is if the test is not + // disabled (or it is disabled but the also_run_disabled_tests flag has + // been specified) and its full name matches the user-specified filter. + // + // Google Test allows the user to filter the tests by their full names. + // The full name of a test Bar in test case Foo is defined as + // "Foo.Bar". Only the tests that match the filter will run. + // + // A filter is a colon-separated list of glob (not regex) patterns, + // optionally followed by a '-' and a colon-separated list of + // negative patterns (tests to exclude). A test is run if it + // matches one of the positive patterns and does not match any of + // the negative patterns. + // + // For example, *A*:Foo.* is a filter that matches any string that + // contains the character 'A' or starts with "Foo.". + bool should_run() const { return should_run_; } + + // Returns true iff this test will appear in the XML report. + bool is_reportable() const { + // For now, the XML report includes all tests matching the filter. + // In the future, we may trim tests that are excluded because of + // sharding. + return matches_filter_; + } + + // Returns the result of the test. + const TestResult* result() const { return &result_; } + + private: +#if GTEST_HAS_DEATH_TEST + friend class internal::DefaultDeathTestFactory; +#endif // GTEST_HAS_DEATH_TEST + friend class Test; + friend class TestCase; + friend class internal::UnitTestImpl; + friend class internal::StreamingListenerTest; + friend TestInfo* internal::MakeAndRegisterTestInfo( + const char* test_case_name, + const char* name, + const char* type_param, + const char* value_param, + internal::CodeLocation code_location, + internal::TypeId fixture_class_id, + Test::SetUpTestCaseFunc set_up_tc, + Test::TearDownTestCaseFunc tear_down_tc, + internal::TestFactoryBase* factory); + + // Constructs a TestInfo object. The newly constructed instance assumes + // ownership of the factory object. + TestInfo(const std::string& test_case_name, + const std::string& name, + const char* a_type_param, // NULL if not a type-parameterized test + const char* a_value_param, // NULL if not a value-parameterized test + internal::CodeLocation a_code_location, + internal::TypeId fixture_class_id, + internal::TestFactoryBase* factory); + + // Increments the number of death tests encountered in this test so + // far. + int increment_death_test_count() { + return result_.increment_death_test_count(); + } + + // Creates the test object, runs it, records its result, and then + // deletes it. + void Run(); + + static void ClearTestResult(TestInfo* test_info) { + test_info->result_.Clear(); + } + + // These fields are immutable properties of the test. + const std::string test_case_name_; // Test case name + const std::string name_; // Test name + // Name of the parameter type, or NULL if this is not a typed or a + // type-parameterized test. + const internal::scoped_ptr type_param_; + // Text representation of the value parameter, or NULL if this is not a + // value-parameterized test. + const internal::scoped_ptr value_param_; + internal::CodeLocation location_; + const internal::TypeId fixture_class_id_; // ID of the test fixture class + bool should_run_; // True iff this test should run + bool is_disabled_; // True iff this test is disabled + bool matches_filter_; // True if this test matches the + // user-specified filter. + internal::TestFactoryBase* const factory_; // The factory that creates + // the test object + + // This field is mutable and needs to be reset before running the + // test for the second time. + TestResult result_; + + GTEST_DISALLOW_COPY_AND_ASSIGN_(TestInfo); +}; + +// A test case, which consists of a vector of TestInfos. +// +// TestCase is not copyable. +class GTEST_API_ TestCase { + public: + // Creates a TestCase with the given name. + // + // TestCase does NOT have a default constructor. Always use this + // constructor to create a TestCase object. + // + // Arguments: + // + // name: name of the test case + // a_type_param: the name of the test's type parameter, or NULL if + // this is not a type-parameterized test. + // set_up_tc: pointer to the function that sets up the test case + // tear_down_tc: pointer to the function that tears down the test case + TestCase(const char* name, const char* a_type_param, + Test::SetUpTestCaseFunc set_up_tc, + Test::TearDownTestCaseFunc tear_down_tc); + + // Destructor of TestCase. + virtual ~TestCase(); + + // Gets the name of the TestCase. + const char* name() const { return name_.c_str(); } + + // Returns the name of the parameter type, or NULL if this is not a + // type-parameterized test case. + const char* type_param() const { + if (type_param_.get() != NULL) + return type_param_->c_str(); + return NULL; + } + + // Returns true if any test in this test case should run. + bool should_run() const { return should_run_; } + + // Gets the number of successful tests in this test case. + int successful_test_count() const; + + // Gets the number of failed tests in this test case. + int failed_test_count() const; + + // Gets the number of disabled tests that will be reported in the XML report. + int reportable_disabled_test_count() const; + + // Gets the number of disabled tests in this test case. + int disabled_test_count() const; + + // Gets the number of tests to be printed in the XML report. + int reportable_test_count() const; + + // Get the number of tests in this test case that should run. + int test_to_run_count() const; + + // Gets the number of all tests in this test case. + int total_test_count() const; + + // Returns true iff the test case passed. + bool Passed() const { return !Failed(); } + + // Returns true iff the test case failed. + bool Failed() const { return failed_test_count() > 0; } + + // Returns the elapsed time, in milliseconds. + TimeInMillis elapsed_time() const { return elapsed_time_; } + + // Returns the i-th test among all the tests. i can range from 0 to + // total_test_count() - 1. If i is not in that range, returns NULL. + const TestInfo* GetTestInfo(int i) const; + + // Returns the TestResult that holds test properties recorded during + // execution of SetUpTestCase and TearDownTestCase. + const TestResult& ad_hoc_test_result() const { return ad_hoc_test_result_; } + + private: + friend class Test; + friend class internal::UnitTestImpl; + + // Gets the (mutable) vector of TestInfos in this TestCase. + std::vector& test_info_list() { return test_info_list_; } + + // Gets the (immutable) vector of TestInfos in this TestCase. + const std::vector& test_info_list() const { + return test_info_list_; + } + + // Returns the i-th test among all the tests. i can range from 0 to + // total_test_count() - 1. If i is not in that range, returns NULL. + TestInfo* GetMutableTestInfo(int i); + + // Sets the should_run member. + void set_should_run(bool should) { should_run_ = should; } + + // Adds a TestInfo to this test case. Will delete the TestInfo upon + // destruction of the TestCase object. + void AddTestInfo(TestInfo * test_info); + + // Clears the results of all tests in this test case. + void ClearResult(); + + // Clears the results of all tests in the given test case. + static void ClearTestCaseResult(TestCase* test_case) { + test_case->ClearResult(); + } + + // Runs every test in this TestCase. + void Run(); + + // Runs SetUpTestCase() for this TestCase. This wrapper is needed + // for catching exceptions thrown from SetUpTestCase(). + void RunSetUpTestCase() { (*set_up_tc_)(); } + + // Runs TearDownTestCase() for this TestCase. This wrapper is + // needed for catching exceptions thrown from TearDownTestCase(). + void RunTearDownTestCase() { (*tear_down_tc_)(); } + + // Returns true iff test passed. + static bool TestPassed(const TestInfo* test_info) { + return test_info->should_run() && test_info->result()->Passed(); + } + + // Returns true iff test failed. + static bool TestFailed(const TestInfo* test_info) { + return test_info->should_run() && test_info->result()->Failed(); + } + + // Returns true iff the test is disabled and will be reported in the XML + // report. + static bool TestReportableDisabled(const TestInfo* test_info) { + return test_info->is_reportable() && test_info->is_disabled_; + } + + // Returns true iff test is disabled. + static bool TestDisabled(const TestInfo* test_info) { + return test_info->is_disabled_; + } + + // Returns true iff this test will appear in the XML report. + static bool TestReportable(const TestInfo* test_info) { + return test_info->is_reportable(); + } + + // Returns true if the given test should run. + static bool ShouldRunTest(const TestInfo* test_info) { + return test_info->should_run(); + } + + // Shuffles the tests in this test case. + void ShuffleTests(internal::Random* random); + + // Restores the test order to before the first shuffle. + void UnshuffleTests(); + + // Name of the test case. + std::string name_; + // Name of the parameter type, or NULL if this is not a typed or a + // type-parameterized test. + const internal::scoped_ptr type_param_; + // The vector of TestInfos in their original order. It owns the + // elements in the vector. + std::vector test_info_list_; + // Provides a level of indirection for the test list to allow easy + // shuffling and restoring the test order. The i-th element in this + // vector is the index of the i-th test in the shuffled test list. + std::vector test_indices_; + // Pointer to the function that sets up the test case. + Test::SetUpTestCaseFunc set_up_tc_; + // Pointer to the function that tears down the test case. + Test::TearDownTestCaseFunc tear_down_tc_; + // True iff any test in this test case should run. + bool should_run_; + // Elapsed time, in milliseconds. + TimeInMillis elapsed_time_; + // Holds test properties recorded during execution of SetUpTestCase and + // TearDownTestCase. + TestResult ad_hoc_test_result_; + + // We disallow copying TestCases. + GTEST_DISALLOW_COPY_AND_ASSIGN_(TestCase); +}; + +// An Environment object is capable of setting up and tearing down an +// environment. You should subclass this to define your own +// environment(s). +// +// An Environment object does the set-up and tear-down in virtual +// methods SetUp() and TearDown() instead of the constructor and the +// destructor, as: +// +// 1. You cannot safely throw from a destructor. This is a problem +// as in some cases Google Test is used where exceptions are enabled, and +// we may want to implement ASSERT_* using exceptions where they are +// available. +// 2. You cannot use ASSERT_* directly in a constructor or +// destructor. +class Environment { + public: + // The d'tor is virtual as we need to subclass Environment. + virtual ~Environment() {} + + // Override this to define how to set up the environment. + virtual void SetUp() {} + + // Override this to define how to tear down the environment. + virtual void TearDown() {} + private: + // If you see an error about overriding the following function or + // about it being private, you have mis-spelled SetUp() as Setup(). + struct Setup_should_be_spelled_SetUp {}; + virtual Setup_should_be_spelled_SetUp* Setup() { return NULL; } +}; + +// The interface for tracing execution of tests. The methods are organized in +// the order the corresponding events are fired. +class TestEventListener { + public: + virtual ~TestEventListener() {} + + // Fired before any test activity starts. + virtual void OnTestProgramStart(const UnitTest& unit_test) = 0; + + // Fired before each iteration of tests starts. There may be more than + // one iteration if GTEST_FLAG(repeat) is set. iteration is the iteration + // index, starting from 0. + virtual void OnTestIterationStart(const UnitTest& unit_test, + int iteration) = 0; + + // Fired before environment set-up for each iteration of tests starts. + virtual void OnEnvironmentsSetUpStart(const UnitTest& unit_test) = 0; + + // Fired after environment set-up for each iteration of tests ends. + virtual void OnEnvironmentsSetUpEnd(const UnitTest& unit_test) = 0; + + // Fired before the test case starts. + virtual void OnTestCaseStart(const TestCase& test_case) = 0; + + // Fired before the test starts. + virtual void OnTestStart(const TestInfo& test_info) = 0; + + // Fired after a failed assertion or a SUCCEED() invocation. + virtual void OnTestPartResult(const TestPartResult& test_part_result) = 0; + + // Fired after the test ends. + virtual void OnTestEnd(const TestInfo& test_info) = 0; + + // Fired after the test case ends. + virtual void OnTestCaseEnd(const TestCase& test_case) = 0; + + // Fired before environment tear-down for each iteration of tests starts. + virtual void OnEnvironmentsTearDownStart(const UnitTest& unit_test) = 0; + + // Fired after environment tear-down for each iteration of tests ends. + virtual void OnEnvironmentsTearDownEnd(const UnitTest& unit_test) = 0; + + // Fired after each iteration of tests finishes. + virtual void OnTestIterationEnd(const UnitTest& unit_test, + int iteration) = 0; + + // Fired after all test activities have ended. + virtual void OnTestProgramEnd(const UnitTest& unit_test) = 0; +}; + +// The convenience class for users who need to override just one or two +// methods and are not concerned that a possible change to a signature of +// the methods they override will not be caught during the build. For +// comments about each method please see the definition of TestEventListener +// above. +class EmptyTestEventListener : public TestEventListener { + public: + virtual void OnTestProgramStart(const UnitTest& /*unit_test*/) {} + virtual void OnTestIterationStart(const UnitTest& /*unit_test*/, + int /*iteration*/) {} + virtual void OnEnvironmentsSetUpStart(const UnitTest& /*unit_test*/) {} + virtual void OnEnvironmentsSetUpEnd(const UnitTest& /*unit_test*/) {} + virtual void OnTestCaseStart(const TestCase& /*test_case*/) {} + virtual void OnTestStart(const TestInfo& /*test_info*/) {} + virtual void OnTestPartResult(const TestPartResult& /*test_part_result*/) {} + virtual void OnTestEnd(const TestInfo& /*test_info*/) {} + virtual void OnTestCaseEnd(const TestCase& /*test_case*/) {} + virtual void OnEnvironmentsTearDownStart(const UnitTest& /*unit_test*/) {} + virtual void OnEnvironmentsTearDownEnd(const UnitTest& /*unit_test*/) {} + virtual void OnTestIterationEnd(const UnitTest& /*unit_test*/, + int /*iteration*/) {} + virtual void OnTestProgramEnd(const UnitTest& /*unit_test*/) {} +}; + +// TestEventListeners lets users add listeners to track events in Google Test. +class GTEST_API_ TestEventListeners { + public: + TestEventListeners(); + ~TestEventListeners(); + + // Appends an event listener to the end of the list. Google Test assumes + // the ownership of the listener (i.e. it will delete the listener when + // the test program finishes). + void Append(TestEventListener* listener); + + // Removes the given event listener from the list and returns it. It then + // becomes the caller's responsibility to delete the listener. Returns + // NULL if the listener is not found in the list. + TestEventListener* Release(TestEventListener* listener); + + // Returns the standard listener responsible for the default console + // output. Can be removed from the listeners list to shut down default + // console output. Note that removing this object from the listener list + // with Release transfers its ownership to the caller and makes this + // function return NULL the next time. + TestEventListener* default_result_printer() const { + return default_result_printer_; + } + + // Returns the standard listener responsible for the default XML output + // controlled by the --gtest_output=xml flag. Can be removed from the + // listeners list by users who want to shut down the default XML output + // controlled by this flag and substitute it with custom one. Note that + // removing this object from the listener list with Release transfers its + // ownership to the caller and makes this function return NULL the next + // time. + TestEventListener* default_xml_generator() const { + return default_xml_generator_; + } + + private: + friend class TestCase; + friend class TestInfo; + friend class internal::DefaultGlobalTestPartResultReporter; + friend class internal::NoExecDeathTest; + friend class internal::TestEventListenersAccessor; + friend class internal::UnitTestImpl; + + // Returns repeater that broadcasts the TestEventListener events to all + // subscribers. + TestEventListener* repeater(); + + // Sets the default_result_printer attribute to the provided listener. + // The listener is also added to the listener list and previous + // default_result_printer is removed from it and deleted. The listener can + // also be NULL in which case it will not be added to the list. Does + // nothing if the previous and the current listener objects are the same. + void SetDefaultResultPrinter(TestEventListener* listener); + + // Sets the default_xml_generator attribute to the provided listener. The + // listener is also added to the listener list and previous + // default_xml_generator is removed from it and deleted. The listener can + // also be NULL in which case it will not be added to the list. Does + // nothing if the previous and the current listener objects are the same. + void SetDefaultXmlGenerator(TestEventListener* listener); + + // Controls whether events will be forwarded by the repeater to the + // listeners in the list. + bool EventForwardingEnabled() const; + void SuppressEventForwarding(); + + // The actual list of listeners. + internal::TestEventRepeater* repeater_; + // Listener responsible for the standard result output. + TestEventListener* default_result_printer_; + // Listener responsible for the creation of the XML output file. + TestEventListener* default_xml_generator_; + + // We disallow copying TestEventListeners. + GTEST_DISALLOW_COPY_AND_ASSIGN_(TestEventListeners); +}; + +// A UnitTest consists of a vector of TestCases. +// +// This is a singleton class. The only instance of UnitTest is +// created when UnitTest::GetInstance() is first called. This +// instance is never deleted. +// +// UnitTest is not copyable. +// +// This class is thread-safe as long as the methods are called +// according to their specification. +class GTEST_API_ UnitTest { + public: + // Gets the singleton UnitTest object. The first time this method + // is called, a UnitTest object is constructed and returned. + // Consecutive calls will return the same object. + static UnitTest* GetInstance(); + + // Runs all tests in this UnitTest object and prints the result. + // Returns 0 if successful, or 1 otherwise. + // + // This method can only be called from the main thread. + // + // INTERNAL IMPLEMENTATION - DO NOT USE IN A USER PROGRAM. + int Run() GTEST_MUST_USE_RESULT_; + + // Returns the working directory when the first TEST() or TEST_F() + // was executed. The UnitTest object owns the string. + const char* original_working_dir() const; + + // Returns the TestCase object for the test that's currently running, + // or NULL if no test is running. + const TestCase* current_test_case() const + GTEST_LOCK_EXCLUDED_(mutex_); + + // Returns the TestInfo object for the test that's currently running, + // or NULL if no test is running. + const TestInfo* current_test_info() const + GTEST_LOCK_EXCLUDED_(mutex_); + + // Returns the random seed used at the start of the current test run. + int random_seed() const; + +#if GTEST_HAS_PARAM_TEST + // Returns the ParameterizedTestCaseRegistry object used to keep track of + // value-parameterized tests and instantiate and register them. + // + // INTERNAL IMPLEMENTATION - DO NOT USE IN A USER PROGRAM. + internal::ParameterizedTestCaseRegistry& parameterized_test_registry() + GTEST_LOCK_EXCLUDED_(mutex_); +#endif // GTEST_HAS_PARAM_TEST + + // Gets the number of successful test cases. + int successful_test_case_count() const; + + // Gets the number of failed test cases. + int failed_test_case_count() const; + + // Gets the number of all test cases. + int total_test_case_count() const; + + // Gets the number of all test cases that contain at least one test + // that should run. + int test_case_to_run_count() const; + + // Gets the number of successful tests. + int successful_test_count() const; + + // Gets the number of failed tests. + int failed_test_count() const; + + // Gets the number of disabled tests that will be reported in the XML report. + int reportable_disabled_test_count() const; + + // Gets the number of disabled tests. + int disabled_test_count() const; + + // Gets the number of tests to be printed in the XML report. + int reportable_test_count() const; + + // Gets the number of all tests. + int total_test_count() const; + + // Gets the number of tests that should run. + int test_to_run_count() const; + + // Gets the time of the test program start, in ms from the start of the + // UNIX epoch. + TimeInMillis start_timestamp() const; + + // Gets the elapsed time, in milliseconds. + TimeInMillis elapsed_time() const; + + // Returns true iff the unit test passed (i.e. all test cases passed). + bool Passed() const; + + // Returns true iff the unit test failed (i.e. some test case failed + // or something outside of all tests failed). + bool Failed() const; + + // Gets the i-th test case among all the test cases. i can range from 0 to + // total_test_case_count() - 1. If i is not in that range, returns NULL. + const TestCase* GetTestCase(int i) const; + + // Returns the TestResult containing information on test failures and + // properties logged outside of individual test cases. + const TestResult& ad_hoc_test_result() const; + + // Returns the list of event listeners that can be used to track events + // inside Google Test. + TestEventListeners& listeners(); + + private: + // Registers and returns a global test environment. When a test + // program is run, all global test environments will be set-up in + // the order they were registered. After all tests in the program + // have finished, all global test environments will be torn-down in + // the *reverse* order they were registered. + // + // The UnitTest object takes ownership of the given environment. + // + // This method can only be called from the main thread. + Environment* AddEnvironment(Environment* env); + + // Adds a TestPartResult to the current TestResult object. All + // Google Test assertion macros (e.g. ASSERT_TRUE, EXPECT_EQ, etc) + // eventually call this to report their results. The user code + // should use the assertion macros instead of calling this directly. + void AddTestPartResult(TestPartResult::Type result_type, + const char* file_name, + int line_number, + const std::string& message, + const std::string& os_stack_trace) + GTEST_LOCK_EXCLUDED_(mutex_); + + // Adds a TestProperty to the current TestResult object when invoked from + // inside a test, to current TestCase's ad_hoc_test_result_ when invoked + // from SetUpTestCase or TearDownTestCase, or to the global property set + // when invoked elsewhere. If the result already contains a property with + // the same key, the value will be updated. + void RecordProperty(const std::string& key, const std::string& value); + + // Gets the i-th test case among all the test cases. i can range from 0 to + // total_test_case_count() - 1. If i is not in that range, returns NULL. + TestCase* GetMutableTestCase(int i); + + // Accessors for the implementation object. + internal::UnitTestImpl* impl() { return impl_; } + const internal::UnitTestImpl* impl() const { return impl_; } + + // These classes and funcions are friends as they need to access private + // members of UnitTest. + friend class Test; + friend class internal::AssertHelper; + friend class internal::ScopedTrace; + friend class internal::StreamingListenerTest; + friend class internal::UnitTestRecordPropertyTestHelper; + friend Environment* AddGlobalTestEnvironment(Environment* env); + friend internal::UnitTestImpl* internal::GetUnitTestImpl(); + friend void internal::ReportFailureInUnknownLocation( + TestPartResult::Type result_type, + const std::string& message); + + // Creates an empty UnitTest. + UnitTest(); + + // D'tor + virtual ~UnitTest(); + + // Pushes a trace defined by SCOPED_TRACE() on to the per-thread + // Google Test trace stack. + void PushGTestTrace(const internal::TraceInfo& trace) + GTEST_LOCK_EXCLUDED_(mutex_); + + // Pops a trace from the per-thread Google Test trace stack. + void PopGTestTrace() + GTEST_LOCK_EXCLUDED_(mutex_); + + // Protects mutable state in *impl_. This is mutable as some const + // methods need to lock it too. + mutable internal::Mutex mutex_; + + // Opaque implementation object. This field is never changed once + // the object is constructed. We don't mark it as const here, as + // doing so will cause a warning in the constructor of UnitTest. + // Mutable state in *impl_ is protected by mutex_. + internal::UnitTestImpl* impl_; + + // We disallow copying UnitTest. + GTEST_DISALLOW_COPY_AND_ASSIGN_(UnitTest); +}; + +// A convenient wrapper for adding an environment for the test +// program. +// +// You should call this before RUN_ALL_TESTS() is called, probably in +// main(). If you use gtest_main, you need to call this before main() +// starts for it to take effect. For example, you can define a global +// variable like this: +// +// testing::Environment* const foo_env = +// testing::AddGlobalTestEnvironment(new FooEnvironment); +// +// However, we strongly recommend you to write your own main() and +// call AddGlobalTestEnvironment() there, as relying on initialization +// of global variables makes the code harder to read and may cause +// problems when you register multiple environments from different +// translation units and the environments have dependencies among them +// (remember that the compiler doesn't guarantee the order in which +// global variables from different translation units are initialized). +inline Environment* AddGlobalTestEnvironment(Environment* env) { + return UnitTest::GetInstance()->AddEnvironment(env); +} + +// Initializes Google Test. This must be called before calling +// RUN_ALL_TESTS(). In particular, it parses a command line for the +// flags that Google Test recognizes. Whenever a Google Test flag is +// seen, it is removed from argv, and *argc is decremented. +// +// No value is returned. Instead, the Google Test flag variables are +// updated. +// +// Calling the function for the second time has no user-visible effect. +GTEST_API_ void InitGoogleTest(int* argc, char** argv); + +// This overloaded version can be used in Windows programs compiled in +// UNICODE mode. +GTEST_API_ void InitGoogleTest(int* argc, wchar_t** argv); + +namespace internal { + +// Separate the error generating code from the code path to reduce the stack +// frame size of CmpHelperEQ. This helps reduce the overhead of some sanitizers +// when calling EXPECT_* in a tight loop. +template +AssertionResult CmpHelperEQFailure(const char* lhs_expression, + const char* rhs_expression, + const T1& lhs, const T2& rhs) { + return EqFailure(lhs_expression, + rhs_expression, + FormatForComparisonFailureMessage(lhs, rhs), + FormatForComparisonFailureMessage(rhs, lhs), + false); +} + +// The helper function for {ASSERT|EXPECT}_EQ. +template +AssertionResult CmpHelperEQ(const char* lhs_expression, + const char* rhs_expression, + const T1& lhs, + const T2& rhs) { +GTEST_DISABLE_MSC_WARNINGS_PUSH_(4389 /* signed/unsigned mismatch */) + if (lhs == rhs) { + return AssertionSuccess(); + } +GTEST_DISABLE_MSC_WARNINGS_POP_() + + return CmpHelperEQFailure(lhs_expression, rhs_expression, lhs, rhs); +} + +// With this overloaded version, we allow anonymous enums to be used +// in {ASSERT|EXPECT}_EQ when compiled with gcc 4, as anonymous enums +// can be implicitly cast to BiggestInt. +GTEST_API_ AssertionResult CmpHelperEQ(const char* lhs_expression, + const char* rhs_expression, + BiggestInt lhs, + BiggestInt rhs); + +// The helper class for {ASSERT|EXPECT}_EQ. The template argument +// lhs_is_null_literal is true iff the first argument to ASSERT_EQ() +// is a null pointer literal. The following default implementation is +// for lhs_is_null_literal being false. +template +class EqHelper { + public: + // This templatized version is for the general case. + template + static AssertionResult Compare(const char* lhs_expression, + const char* rhs_expression, + const T1& lhs, + const T2& rhs) { + return CmpHelperEQ(lhs_expression, rhs_expression, lhs, rhs); + } + + // With this overloaded version, we allow anonymous enums to be used + // in {ASSERT|EXPECT}_EQ when compiled with gcc 4, as anonymous + // enums can be implicitly cast to BiggestInt. + // + // Even though its body looks the same as the above version, we + // cannot merge the two, as it will make anonymous enums unhappy. + static AssertionResult Compare(const char* lhs_expression, + const char* rhs_expression, + BiggestInt lhs, + BiggestInt rhs) { + return CmpHelperEQ(lhs_expression, rhs_expression, lhs, rhs); + } +}; + +// This specialization is used when the first argument to ASSERT_EQ() +// is a null pointer literal, like NULL, false, or 0. +template <> +class EqHelper { + public: + // We define two overloaded versions of Compare(). The first + // version will be picked when the second argument to ASSERT_EQ() is + // NOT a pointer, e.g. ASSERT_EQ(0, AnIntFunction()) or + // EXPECT_EQ(false, a_bool). + template + static AssertionResult Compare( + const char* lhs_expression, + const char* rhs_expression, + const T1& lhs, + const T2& rhs, + // The following line prevents this overload from being considered if T2 + // is not a pointer type. We need this because ASSERT_EQ(NULL, my_ptr) + // expands to Compare("", "", NULL, my_ptr), which requires a conversion + // to match the Secret* in the other overload, which would otherwise make + // this template match better. + typename EnableIf::value>::type* = 0) { + return CmpHelperEQ(lhs_expression, rhs_expression, lhs, rhs); + } + + // This version will be picked when the second argument to ASSERT_EQ() is a + // pointer, e.g. ASSERT_EQ(NULL, a_pointer). + template + static AssertionResult Compare( + const char* lhs_expression, + const char* rhs_expression, + // We used to have a second template parameter instead of Secret*. That + // template parameter would deduce to 'long', making this a better match + // than the first overload even without the first overload's EnableIf. + // Unfortunately, gcc with -Wconversion-null warns when "passing NULL to + // non-pointer argument" (even a deduced integral argument), so the old + // implementation caused warnings in user code. + Secret* /* lhs (NULL) */, + T* rhs) { + // We already know that 'lhs' is a null pointer. + return CmpHelperEQ(lhs_expression, rhs_expression, + static_cast(NULL), rhs); + } +}; + +// Separate the error generating code from the code path to reduce the stack +// frame size of CmpHelperOP. This helps reduce the overhead of some sanitizers +// when calling EXPECT_OP in a tight loop. +template +AssertionResult CmpHelperOpFailure(const char* expr1, const char* expr2, + const T1& val1, const T2& val2, + const char* op) { + return AssertionFailure() + << "Expected: (" << expr1 << ") " << op << " (" << expr2 + << "), actual: " << FormatForComparisonFailureMessage(val1, val2) + << " vs " << FormatForComparisonFailureMessage(val2, val1); +} + +// A macro for implementing the helper functions needed to implement +// ASSERT_?? and EXPECT_??. It is here just to avoid copy-and-paste +// of similar code. +// +// For each templatized helper function, we also define an overloaded +// version for BiggestInt in order to reduce code bloat and allow +// anonymous enums to be used with {ASSERT|EXPECT}_?? when compiled +// with gcc 4. +// +// INTERNAL IMPLEMENTATION - DO NOT USE IN A USER PROGRAM. + +#define GTEST_IMPL_CMP_HELPER_(op_name, op)\ +template \ +AssertionResult CmpHelper##op_name(const char* expr1, const char* expr2, \ + const T1& val1, const T2& val2) {\ + if (val1 op val2) {\ + return AssertionSuccess();\ + } else {\ + return CmpHelperOpFailure(expr1, expr2, val1, val2, #op);\ + }\ +}\ +GTEST_API_ AssertionResult CmpHelper##op_name(\ + const char* expr1, const char* expr2, BiggestInt val1, BiggestInt val2) + +// INTERNAL IMPLEMENTATION - DO NOT USE IN A USER PROGRAM. + +// Implements the helper function for {ASSERT|EXPECT}_NE +GTEST_IMPL_CMP_HELPER_(NE, !=); +// Implements the helper function for {ASSERT|EXPECT}_LE +GTEST_IMPL_CMP_HELPER_(LE, <=); +// Implements the helper function for {ASSERT|EXPECT}_LT +GTEST_IMPL_CMP_HELPER_(LT, <); +// Implements the helper function for {ASSERT|EXPECT}_GE +GTEST_IMPL_CMP_HELPER_(GE, >=); +// Implements the helper function for {ASSERT|EXPECT}_GT +GTEST_IMPL_CMP_HELPER_(GT, >); + +#undef GTEST_IMPL_CMP_HELPER_ + +// The helper function for {ASSERT|EXPECT}_STREQ. +// +// INTERNAL IMPLEMENTATION - DO NOT USE IN A USER PROGRAM. +GTEST_API_ AssertionResult CmpHelperSTREQ(const char* s1_expression, + const char* s2_expression, + const char* s1, + const char* s2); + +// The helper function for {ASSERT|EXPECT}_STRCASEEQ. +// +// INTERNAL IMPLEMENTATION - DO NOT USE IN A USER PROGRAM. +GTEST_API_ AssertionResult CmpHelperSTRCASEEQ(const char* s1_expression, + const char* s2_expression, + const char* s1, + const char* s2); + +// The helper function for {ASSERT|EXPECT}_STRNE. +// +// INTERNAL IMPLEMENTATION - DO NOT USE IN A USER PROGRAM. +GTEST_API_ AssertionResult CmpHelperSTRNE(const char* s1_expression, + const char* s2_expression, + const char* s1, + const char* s2); + +// The helper function for {ASSERT|EXPECT}_STRCASENE. +// +// INTERNAL IMPLEMENTATION - DO NOT USE IN A USER PROGRAM. +GTEST_API_ AssertionResult CmpHelperSTRCASENE(const char* s1_expression, + const char* s2_expression, + const char* s1, + const char* s2); + + +// Helper function for *_STREQ on wide strings. +// +// INTERNAL IMPLEMENTATION - DO NOT USE IN A USER PROGRAM. +GTEST_API_ AssertionResult CmpHelperSTREQ(const char* s1_expression, + const char* s2_expression, + const wchar_t* s1, + const wchar_t* s2); + +// Helper function for *_STRNE on wide strings. +// +// INTERNAL IMPLEMENTATION - DO NOT USE IN A USER PROGRAM. +GTEST_API_ AssertionResult CmpHelperSTRNE(const char* s1_expression, + const char* s2_expression, + const wchar_t* s1, + const wchar_t* s2); + +} // namespace internal + +// IsSubstring() and IsNotSubstring() are intended to be used as the +// first argument to {EXPECT,ASSERT}_PRED_FORMAT2(), not by +// themselves. They check whether needle is a substring of haystack +// (NULL is considered a substring of itself only), and return an +// appropriate error message when they fail. +// +// The {needle,haystack}_expr arguments are the stringified +// expressions that generated the two real arguments. +GTEST_API_ AssertionResult IsSubstring( + const char* needle_expr, const char* haystack_expr, + const char* needle, const char* haystack); +GTEST_API_ AssertionResult IsSubstring( + const char* needle_expr, const char* haystack_expr, + const wchar_t* needle, const wchar_t* haystack); +GTEST_API_ AssertionResult IsNotSubstring( + const char* needle_expr, const char* haystack_expr, + const char* needle, const char* haystack); +GTEST_API_ AssertionResult IsNotSubstring( + const char* needle_expr, const char* haystack_expr, + const wchar_t* needle, const wchar_t* haystack); +GTEST_API_ AssertionResult IsSubstring( + const char* needle_expr, const char* haystack_expr, + const ::std::string& needle, const ::std::string& haystack); +GTEST_API_ AssertionResult IsNotSubstring( + const char* needle_expr, const char* haystack_expr, + const ::std::string& needle, const ::std::string& haystack); + +#if GTEST_HAS_STD_WSTRING +GTEST_API_ AssertionResult IsSubstring( + const char* needle_expr, const char* haystack_expr, + const ::std::wstring& needle, const ::std::wstring& haystack); +GTEST_API_ AssertionResult IsNotSubstring( + const char* needle_expr, const char* haystack_expr, + const ::std::wstring& needle, const ::std::wstring& haystack); +#endif // GTEST_HAS_STD_WSTRING + +namespace internal { + +// Helper template function for comparing floating-points. +// +// Template parameter: +// +// RawType: the raw floating-point type (either float or double) +// +// INTERNAL IMPLEMENTATION - DO NOT USE IN A USER PROGRAM. +template +AssertionResult CmpHelperFloatingPointEQ(const char* lhs_expression, + const char* rhs_expression, + RawType lhs_value, + RawType rhs_value) { + const FloatingPoint lhs(lhs_value), rhs(rhs_value); + + if (lhs.AlmostEquals(rhs)) { + return AssertionSuccess(); + } + + ::std::stringstream lhs_ss; + lhs_ss << std::setprecision(std::numeric_limits::digits10 + 2) + << lhs_value; + + ::std::stringstream rhs_ss; + rhs_ss << std::setprecision(std::numeric_limits::digits10 + 2) + << rhs_value; + + return EqFailure(lhs_expression, + rhs_expression, + StringStreamToString(&lhs_ss), + StringStreamToString(&rhs_ss), + false); +} + +// Helper function for implementing ASSERT_NEAR. +// +// INTERNAL IMPLEMENTATION - DO NOT USE IN A USER PROGRAM. +GTEST_API_ AssertionResult DoubleNearPredFormat(const char* expr1, + const char* expr2, + const char* abs_error_expr, + double val1, + double val2, + double abs_error); + +// INTERNAL IMPLEMENTATION - DO NOT USE IN USER CODE. +// A class that enables one to stream messages to assertion macros +class GTEST_API_ AssertHelper { + public: + // Constructor. + AssertHelper(TestPartResult::Type type, + const char* file, + int line, + const char* message); + ~AssertHelper(); + + // Message assignment is a semantic trick to enable assertion + // streaming; see the GTEST_MESSAGE_ macro below. + void operator=(const Message& message) const; + + private: + // We put our data in a struct so that the size of the AssertHelper class can + // be as small as possible. This is important because gcc is incapable of + // re-using stack space even for temporary variables, so every EXPECT_EQ + // reserves stack space for another AssertHelper. + struct AssertHelperData { + AssertHelperData(TestPartResult::Type t, + const char* srcfile, + int line_num, + const char* msg) + : type(t), file(srcfile), line(line_num), message(msg) { } + + TestPartResult::Type const type; + const char* const file; + int const line; + std::string const message; + + private: + GTEST_DISALLOW_COPY_AND_ASSIGN_(AssertHelperData); + }; + + AssertHelperData* const data_; + + GTEST_DISALLOW_COPY_AND_ASSIGN_(AssertHelper); +}; + +} // namespace internal + +#if GTEST_HAS_PARAM_TEST +// The pure interface class that all value-parameterized tests inherit from. +// A value-parameterized class must inherit from both ::testing::Test and +// ::testing::WithParamInterface. In most cases that just means inheriting +// from ::testing::TestWithParam, but more complicated test hierarchies +// may need to inherit from Test and WithParamInterface at different levels. +// +// This interface has support for accessing the test parameter value via +// the GetParam() method. +// +// Use it with one of the parameter generator defining functions, like Range(), +// Values(), ValuesIn(), Bool(), and Combine(). +// +// class FooTest : public ::testing::TestWithParam { +// protected: +// FooTest() { +// // Can use GetParam() here. +// } +// virtual ~FooTest() { +// // Can use GetParam() here. +// } +// virtual void SetUp() { +// // Can use GetParam() here. +// } +// virtual void TearDown { +// // Can use GetParam() here. +// } +// }; +// TEST_P(FooTest, DoesBar) { +// // Can use GetParam() method here. +// Foo foo; +// ASSERT_TRUE(foo.DoesBar(GetParam())); +// } +// INSTANTIATE_TEST_CASE_P(OneToTenRange, FooTest, ::testing::Range(1, 10)); + +template +class WithParamInterface { + public: + typedef T ParamType; + virtual ~WithParamInterface() {} + + // The current parameter value. Is also available in the test fixture's + // constructor. This member function is non-static, even though it only + // references static data, to reduce the opportunity for incorrect uses + // like writing 'WithParamInterface::GetParam()' for a test that + // uses a fixture whose parameter type is int. + const ParamType& GetParam() const { + GTEST_CHECK_(parameter_ != NULL) + << "GetParam() can only be called inside a value-parameterized test " + << "-- did you intend to write TEST_P instead of TEST_F?"; + return *parameter_; + } + + private: + // Sets parameter value. The caller is responsible for making sure the value + // remains alive and unchanged throughout the current test. + static void SetParam(const ParamType* parameter) { + parameter_ = parameter; + } + + // Static value used for accessing parameter during a test lifetime. + static const ParamType* parameter_; + + // TestClass must be a subclass of WithParamInterface and Test. + template friend class internal::ParameterizedTestFactory; +}; + +template +const T* WithParamInterface::parameter_ = NULL; + +// Most value-parameterized classes can ignore the existence of +// WithParamInterface, and can just inherit from ::testing::TestWithParam. + +template +class TestWithParam : public Test, public WithParamInterface { +}; + +#endif // GTEST_HAS_PARAM_TEST + +// Macros for indicating success/failure in test code. + +// ADD_FAILURE unconditionally adds a failure to the current test. +// SUCCEED generates a success - it doesn't automatically make the +// current test successful, as a test is only successful when it has +// no failure. +// +// EXPECT_* verifies that a certain condition is satisfied. If not, +// it behaves like ADD_FAILURE. In particular: +// +// EXPECT_TRUE verifies that a Boolean condition is true. +// EXPECT_FALSE verifies that a Boolean condition is false. +// +// FAIL and ASSERT_* are similar to ADD_FAILURE and EXPECT_*, except +// that they will also abort the current function on failure. People +// usually want the fail-fast behavior of FAIL and ASSERT_*, but those +// writing data-driven tests often find themselves using ADD_FAILURE +// and EXPECT_* more. + +// Generates a nonfatal failure with a generic message. +#define ADD_FAILURE() GTEST_NONFATAL_FAILURE_("Failed") + +// Generates a nonfatal failure at the given source file location with +// a generic message. +#define ADD_FAILURE_AT(file, line) \ + GTEST_MESSAGE_AT_(file, line, "Failed", \ + ::testing::TestPartResult::kNonFatalFailure) + +// Generates a fatal failure with a generic message. +#define GTEST_FAIL() GTEST_FATAL_FAILURE_("Failed") + +// Define this macro to 1 to omit the definition of FAIL(), which is a +// generic name and clashes with some other libraries. +#if !GTEST_DONT_DEFINE_FAIL +# define FAIL() GTEST_FAIL() +#endif + +// Generates a success with a generic message. +#define GTEST_SUCCEED() GTEST_SUCCESS_("Succeeded") + +// Define this macro to 1 to omit the definition of SUCCEED(), which +// is a generic name and clashes with some other libraries. +#if !GTEST_DONT_DEFINE_SUCCEED +# define SUCCEED() GTEST_SUCCEED() +#endif + +// Macros for testing exceptions. +// +// * {ASSERT|EXPECT}_THROW(statement, expected_exception): +// Tests that the statement throws the expected exception. +// * {ASSERT|EXPECT}_NO_THROW(statement): +// Tests that the statement doesn't throw any exception. +// * {ASSERT|EXPECT}_ANY_THROW(statement): +// Tests that the statement throws an exception. + +#define EXPECT_THROW(statement, expected_exception) \ + GTEST_TEST_THROW_(statement, expected_exception, GTEST_NONFATAL_FAILURE_) +#define EXPECT_NO_THROW(statement) \ + GTEST_TEST_NO_THROW_(statement, GTEST_NONFATAL_FAILURE_) +#define EXPECT_ANY_THROW(statement) \ + GTEST_TEST_ANY_THROW_(statement, GTEST_NONFATAL_FAILURE_) +#define ASSERT_THROW(statement, expected_exception) \ + GTEST_TEST_THROW_(statement, expected_exception, GTEST_FATAL_FAILURE_) +#define ASSERT_NO_THROW(statement) \ + GTEST_TEST_NO_THROW_(statement, GTEST_FATAL_FAILURE_) +#define ASSERT_ANY_THROW(statement) \ + GTEST_TEST_ANY_THROW_(statement, GTEST_FATAL_FAILURE_) + +// Boolean assertions. Condition can be either a Boolean expression or an +// AssertionResult. For more information on how to use AssertionResult with +// these macros see comments on that class. +#define EXPECT_TRUE(condition) \ + GTEST_TEST_BOOLEAN_((condition), #condition, false, true, \ + GTEST_NONFATAL_FAILURE_) +#define EXPECT_FALSE(condition) \ + GTEST_TEST_BOOLEAN_(!(condition), #condition, true, false, \ + GTEST_NONFATAL_FAILURE_) +#define ASSERT_TRUE(condition) \ + GTEST_TEST_BOOLEAN_((condition), #condition, false, true, \ + GTEST_FATAL_FAILURE_) +#define ASSERT_FALSE(condition) \ + GTEST_TEST_BOOLEAN_(!(condition), #condition, true, false, \ + GTEST_FATAL_FAILURE_) + +// Includes the auto-generated header that implements a family of +// generic predicate assertion macros. +#include "gtest/gtest_pred_impl.h" + +// Macros for testing equalities and inequalities. +// +// * {ASSERT|EXPECT}_EQ(v1, v2): Tests that v1 == v2 +// * {ASSERT|EXPECT}_NE(v1, v2): Tests that v1 != v2 +// * {ASSERT|EXPECT}_LT(v1, v2): Tests that v1 < v2 +// * {ASSERT|EXPECT}_LE(v1, v2): Tests that v1 <= v2 +// * {ASSERT|EXPECT}_GT(v1, v2): Tests that v1 > v2 +// * {ASSERT|EXPECT}_GE(v1, v2): Tests that v1 >= v2 +// +// When they are not, Google Test prints both the tested expressions and +// their actual values. The values must be compatible built-in types, +// or you will get a compiler error. By "compatible" we mean that the +// values can be compared by the respective operator. +// +// Note: +// +// 1. It is possible to make a user-defined type work with +// {ASSERT|EXPECT}_??(), but that requires overloading the +// comparison operators and is thus discouraged by the Google C++ +// Usage Guide. Therefore, you are advised to use the +// {ASSERT|EXPECT}_TRUE() macro to assert that two objects are +// equal. +// +// 2. The {ASSERT|EXPECT}_??() macros do pointer comparisons on +// pointers (in particular, C strings). Therefore, if you use it +// with two C strings, you are testing how their locations in memory +// are related, not how their content is related. To compare two C +// strings by content, use {ASSERT|EXPECT}_STR*(). +// +// 3. {ASSERT|EXPECT}_EQ(v1, v2) is preferred to +// {ASSERT|EXPECT}_TRUE(v1 == v2), as the former tells you +// what the actual value is when it fails, and similarly for the +// other comparisons. +// +// 4. Do not depend on the order in which {ASSERT|EXPECT}_??() +// evaluate their arguments, which is undefined. +// +// 5. These macros evaluate their arguments exactly once. +// +// Examples: +// +// EXPECT_NE(5, Foo()); +// EXPECT_EQ(NULL, a_pointer); +// ASSERT_LT(i, array_size); +// ASSERT_GT(records.size(), 0) << "There is no record left."; + +#define EXPECT_EQ(val1, val2) \ + EXPECT_PRED_FORMAT2(::testing::internal:: \ + EqHelper::Compare, \ + val1, val2) +#define EXPECT_NE(val1, val2) \ + EXPECT_PRED_FORMAT2(::testing::internal::CmpHelperNE, val1, val2) +#define EXPECT_LE(val1, val2) \ + EXPECT_PRED_FORMAT2(::testing::internal::CmpHelperLE, val1, val2) +#define EXPECT_LT(val1, val2) \ + EXPECT_PRED_FORMAT2(::testing::internal::CmpHelperLT, val1, val2) +#define EXPECT_GE(val1, val2) \ + EXPECT_PRED_FORMAT2(::testing::internal::CmpHelperGE, val1, val2) +#define EXPECT_GT(val1, val2) \ + EXPECT_PRED_FORMAT2(::testing::internal::CmpHelperGT, val1, val2) + +#define GTEST_ASSERT_EQ(val1, val2) \ + ASSERT_PRED_FORMAT2(::testing::internal:: \ + EqHelper::Compare, \ + val1, val2) +#define GTEST_ASSERT_NE(val1, val2) \ + ASSERT_PRED_FORMAT2(::testing::internal::CmpHelperNE, val1, val2) +#define GTEST_ASSERT_LE(val1, val2) \ + ASSERT_PRED_FORMAT2(::testing::internal::CmpHelperLE, val1, val2) +#define GTEST_ASSERT_LT(val1, val2) \ + ASSERT_PRED_FORMAT2(::testing::internal::CmpHelperLT, val1, val2) +#define GTEST_ASSERT_GE(val1, val2) \ + ASSERT_PRED_FORMAT2(::testing::internal::CmpHelperGE, val1, val2) +#define GTEST_ASSERT_GT(val1, val2) \ + ASSERT_PRED_FORMAT2(::testing::internal::CmpHelperGT, val1, val2) + +// Define macro GTEST_DONT_DEFINE_ASSERT_XY to 1 to omit the definition of +// ASSERT_XY(), which clashes with some users' own code. + +#if !GTEST_DONT_DEFINE_ASSERT_EQ +# define ASSERT_EQ(val1, val2) GTEST_ASSERT_EQ(val1, val2) +#endif + +#if !GTEST_DONT_DEFINE_ASSERT_NE +# define ASSERT_NE(val1, val2) GTEST_ASSERT_NE(val1, val2) +#endif + +#if !GTEST_DONT_DEFINE_ASSERT_LE +# define ASSERT_LE(val1, val2) GTEST_ASSERT_LE(val1, val2) +#endif + +#if !GTEST_DONT_DEFINE_ASSERT_LT +# define ASSERT_LT(val1, val2) GTEST_ASSERT_LT(val1, val2) +#endif + +#if !GTEST_DONT_DEFINE_ASSERT_GE +# define ASSERT_GE(val1, val2) GTEST_ASSERT_GE(val1, val2) +#endif + +#if !GTEST_DONT_DEFINE_ASSERT_GT +# define ASSERT_GT(val1, val2) GTEST_ASSERT_GT(val1, val2) +#endif + +// C-string Comparisons. All tests treat NULL and any non-NULL string +// as different. Two NULLs are equal. +// +// * {ASSERT|EXPECT}_STREQ(s1, s2): Tests that s1 == s2 +// * {ASSERT|EXPECT}_STRNE(s1, s2): Tests that s1 != s2 +// * {ASSERT|EXPECT}_STRCASEEQ(s1, s2): Tests that s1 == s2, ignoring case +// * {ASSERT|EXPECT}_STRCASENE(s1, s2): Tests that s1 != s2, ignoring case +// +// For wide or narrow string objects, you can use the +// {ASSERT|EXPECT}_??() macros. +// +// Don't depend on the order in which the arguments are evaluated, +// which is undefined. +// +// These macros evaluate their arguments exactly once. + +#define EXPECT_STREQ(s1, s2) \ + EXPECT_PRED_FORMAT2(::testing::internal::CmpHelperSTREQ, s1, s2) +#define EXPECT_STRNE(s1, s2) \ + EXPECT_PRED_FORMAT2(::testing::internal::CmpHelperSTRNE, s1, s2) +#define EXPECT_STRCASEEQ(s1, s2) \ + EXPECT_PRED_FORMAT2(::testing::internal::CmpHelperSTRCASEEQ, s1, s2) +#define EXPECT_STRCASENE(s1, s2)\ + EXPECT_PRED_FORMAT2(::testing::internal::CmpHelperSTRCASENE, s1, s2) + +#define ASSERT_STREQ(s1, s2) \ + ASSERT_PRED_FORMAT2(::testing::internal::CmpHelperSTREQ, s1, s2) +#define ASSERT_STRNE(s1, s2) \ + ASSERT_PRED_FORMAT2(::testing::internal::CmpHelperSTRNE, s1, s2) +#define ASSERT_STRCASEEQ(s1, s2) \ + ASSERT_PRED_FORMAT2(::testing::internal::CmpHelperSTRCASEEQ, s1, s2) +#define ASSERT_STRCASENE(s1, s2)\ + ASSERT_PRED_FORMAT2(::testing::internal::CmpHelperSTRCASENE, s1, s2) + +// Macros for comparing floating-point numbers. +// +// * {ASSERT|EXPECT}_FLOAT_EQ(val1, val2): +// Tests that two float values are almost equal. +// * {ASSERT|EXPECT}_DOUBLE_EQ(val1, val2): +// Tests that two double values are almost equal. +// * {ASSERT|EXPECT}_NEAR(v1, v2, abs_error): +// Tests that v1 and v2 are within the given distance to each other. +// +// Google Test uses ULP-based comparison to automatically pick a default +// error bound that is appropriate for the operands. See the +// FloatingPoint template class in gtest-internal.h if you are +// interested in the implementation details. + +#define EXPECT_FLOAT_EQ(val1, val2)\ + EXPECT_PRED_FORMAT2(::testing::internal::CmpHelperFloatingPointEQ, \ + val1, val2) + +#define EXPECT_DOUBLE_EQ(val1, val2)\ + EXPECT_PRED_FORMAT2(::testing::internal::CmpHelperFloatingPointEQ, \ + val1, val2) + +#define ASSERT_FLOAT_EQ(val1, val2)\ + ASSERT_PRED_FORMAT2(::testing::internal::CmpHelperFloatingPointEQ, \ + val1, val2) + +#define ASSERT_DOUBLE_EQ(val1, val2)\ + ASSERT_PRED_FORMAT2(::testing::internal::CmpHelperFloatingPointEQ, \ + val1, val2) + +#define EXPECT_NEAR(val1, val2, abs_error)\ + EXPECT_PRED_FORMAT3(::testing::internal::DoubleNearPredFormat, \ + val1, val2, abs_error) + +#define ASSERT_NEAR(val1, val2, abs_error)\ + ASSERT_PRED_FORMAT3(::testing::internal::DoubleNearPredFormat, \ + val1, val2, abs_error) + +// These predicate format functions work on floating-point values, and +// can be used in {ASSERT|EXPECT}_PRED_FORMAT2*(), e.g. +// +// EXPECT_PRED_FORMAT2(testing::DoubleLE, Foo(), 5.0); + +// Asserts that val1 is less than, or almost equal to, val2. Fails +// otherwise. In particular, it fails if either val1 or val2 is NaN. +GTEST_API_ AssertionResult FloatLE(const char* expr1, const char* expr2, + float val1, float val2); +GTEST_API_ AssertionResult DoubleLE(const char* expr1, const char* expr2, + double val1, double val2); + + +#if GTEST_OS_WINDOWS + +// Macros that test for HRESULT failure and success, these are only useful +// on Windows, and rely on Windows SDK macros and APIs to compile. +// +// * {ASSERT|EXPECT}_HRESULT_{SUCCEEDED|FAILED}(expr) +// +// When expr unexpectedly fails or succeeds, Google Test prints the +// expected result and the actual result with both a human-readable +// string representation of the error, if available, as well as the +// hex result code. +# define EXPECT_HRESULT_SUCCEEDED(expr) \ + EXPECT_PRED_FORMAT1(::testing::internal::IsHRESULTSuccess, (expr)) + +# define ASSERT_HRESULT_SUCCEEDED(expr) \ + ASSERT_PRED_FORMAT1(::testing::internal::IsHRESULTSuccess, (expr)) + +# define EXPECT_HRESULT_FAILED(expr) \ + EXPECT_PRED_FORMAT1(::testing::internal::IsHRESULTFailure, (expr)) + +# define ASSERT_HRESULT_FAILED(expr) \ + ASSERT_PRED_FORMAT1(::testing::internal::IsHRESULTFailure, (expr)) + +#endif // GTEST_OS_WINDOWS + +// Macros that execute statement and check that it doesn't generate new fatal +// failures in the current thread. +// +// * {ASSERT|EXPECT}_NO_FATAL_FAILURE(statement); +// +// Examples: +// +// EXPECT_NO_FATAL_FAILURE(Process()); +// ASSERT_NO_FATAL_FAILURE(Process()) << "Process() failed"; +// +#define ASSERT_NO_FATAL_FAILURE(statement) \ + GTEST_TEST_NO_FATAL_FAILURE_(statement, GTEST_FATAL_FAILURE_) +#define EXPECT_NO_FATAL_FAILURE(statement) \ + GTEST_TEST_NO_FATAL_FAILURE_(statement, GTEST_NONFATAL_FAILURE_) + +// Causes a trace (including the source file path, the current line +// number, and the given message) to be included in every test failure +// message generated by code in the current scope. The effect is +// undone when the control leaves the current scope. +// +// The message argument can be anything streamable to std::ostream. +// +// In the implementation, we include the current line number as part +// of the dummy variable name, thus allowing multiple SCOPED_TRACE()s +// to appear in the same block - as long as they are on different +// lines. +#define SCOPED_TRACE(message) \ + ::testing::internal::ScopedTrace GTEST_CONCAT_TOKEN_(gtest_trace_, __LINE__)(\ + __FILE__, __LINE__, ::testing::Message() << (message)) + +// Compile-time assertion for type equality. +// StaticAssertTypeEq() compiles iff type1 and type2 are +// the same type. The value it returns is not interesting. +// +// Instead of making StaticAssertTypeEq a class template, we make it a +// function template that invokes a helper class template. This +// prevents a user from misusing StaticAssertTypeEq by +// defining objects of that type. +// +// CAVEAT: +// +// When used inside a method of a class template, +// StaticAssertTypeEq() is effective ONLY IF the method is +// instantiated. For example, given: +// +// template class Foo { +// public: +// void Bar() { testing::StaticAssertTypeEq(); } +// }; +// +// the code: +// +// void Test1() { Foo foo; } +// +// will NOT generate a compiler error, as Foo::Bar() is never +// actually instantiated. Instead, you need: +// +// void Test2() { Foo foo; foo.Bar(); } +// +// to cause a compiler error. +template +bool StaticAssertTypeEq() { + (void)internal::StaticAssertTypeEqHelper(); + return true; +} + +// Defines a test. +// +// The first parameter is the name of the test case, and the second +// parameter is the name of the test within the test case. +// +// The convention is to end the test case name with "Test". For +// example, a test case for the Foo class can be named FooTest. +// +// Test code should appear between braces after an invocation of +// this macro. Example: +// +// TEST(FooTest, InitializesCorrectly) { +// Foo foo; +// EXPECT_TRUE(foo.StatusIsOK()); +// } + +// Note that we call GetTestTypeId() instead of GetTypeId< +// ::testing::Test>() here to get the type ID of testing::Test. This +// is to work around a suspected linker bug when using Google Test as +// a framework on Mac OS X. The bug causes GetTypeId< +// ::testing::Test>() to return different values depending on whether +// the call is from the Google Test framework itself or from user test +// code. GetTestTypeId() is guaranteed to always return the same +// value, as it always calls GetTypeId<>() from the Google Test +// framework. +#define GTEST_TEST(test_case_name, test_name)\ + GTEST_TEST_(test_case_name, test_name, \ + ::testing::Test, ::testing::internal::GetTestTypeId()) + +// Define this macro to 1 to omit the definition of TEST(), which +// is a generic name and clashes with some other libraries. +#if !GTEST_DONT_DEFINE_TEST +# define TEST(test_case_name, test_name) GTEST_TEST(test_case_name, test_name) +#endif + +// Defines a test that uses a test fixture. +// +// The first parameter is the name of the test fixture class, which +// also doubles as the test case name. The second parameter is the +// name of the test within the test case. +// +// A test fixture class must be declared earlier. The user should put +// his test code between braces after using this macro. Example: +// +// class FooTest : public testing::Test { +// protected: +// virtual void SetUp() { b_.AddElement(3); } +// +// Foo a_; +// Foo b_; +// }; +// +// TEST_F(FooTest, InitializesCorrectly) { +// EXPECT_TRUE(a_.StatusIsOK()); +// } +// +// TEST_F(FooTest, ReturnsElementCountCorrectly) { +// EXPECT_EQ(0, a_.size()); +// EXPECT_EQ(1, b_.size()); +// } + +#define TEST_F(test_fixture, test_name)\ + GTEST_TEST_(test_fixture, test_name, test_fixture, \ + ::testing::internal::GetTypeId()) + +} // namespace testing + +// Use this function in main() to run all tests. It returns 0 if all +// tests are successful, or 1 otherwise. +// +// RUN_ALL_TESTS() should be invoked after the command line has been +// parsed by InitGoogleTest(). +// +// This function was formerly a macro; thus, it is in the global +// namespace and has an all-caps name. +int RUN_ALL_TESTS() GTEST_MUST_USE_RESULT_; + +inline int RUN_ALL_TESTS() { + return ::testing::UnitTest::GetInstance()->Run(); +} + +#endif // GTEST_INCLUDE_GTEST_GTEST_H_ diff --git a/third_party/googletest/src/include/gtest/gtest_pred_impl.h b/third_party/googletest/src/include/gtest/gtest_pred_impl.h new file mode 100644 index 0000000..30ae712 --- /dev/null +++ b/third_party/googletest/src/include/gtest/gtest_pred_impl.h @@ -0,0 +1,358 @@ +// Copyright 2006, Google Inc. +// All rights reserved. +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: +// +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above +// copyright notice, this list of conditions and the following disclaimer +// in the documentation and/or other materials provided with the +// distribution. +// * Neither the name of Google Inc. nor the names of its +// contributors may be used to endorse or promote products derived from +// this software without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +// This file is AUTOMATICALLY GENERATED on 10/31/2011 by command +// 'gen_gtest_pred_impl.py 5'. DO NOT EDIT BY HAND! +// +// Implements a family of generic predicate assertion macros. + +#ifndef GTEST_INCLUDE_GTEST_GTEST_PRED_IMPL_H_ +#define GTEST_INCLUDE_GTEST_GTEST_PRED_IMPL_H_ + +// Makes sure this header is not included before gtest.h. +#ifndef GTEST_INCLUDE_GTEST_GTEST_H_ +# error Do not include gtest_pred_impl.h directly. Include gtest.h instead. +#endif // GTEST_INCLUDE_GTEST_GTEST_H_ + +// This header implements a family of generic predicate assertion +// macros: +// +// ASSERT_PRED_FORMAT1(pred_format, v1) +// ASSERT_PRED_FORMAT2(pred_format, v1, v2) +// ... +// +// where pred_format is a function or functor that takes n (in the +// case of ASSERT_PRED_FORMATn) values and their source expression +// text, and returns a testing::AssertionResult. See the definition +// of ASSERT_EQ in gtest.h for an example. +// +// If you don't care about formatting, you can use the more +// restrictive version: +// +// ASSERT_PRED1(pred, v1) +// ASSERT_PRED2(pred, v1, v2) +// ... +// +// where pred is an n-ary function or functor that returns bool, +// and the values v1, v2, ..., must support the << operator for +// streaming to std::ostream. +// +// We also define the EXPECT_* variations. +// +// For now we only support predicates whose arity is at most 5. +// Please email googletestframework@googlegroups.com if you need +// support for higher arities. + +// GTEST_ASSERT_ is the basic statement to which all of the assertions +// in this file reduce. Don't use this in your code. + +#define GTEST_ASSERT_(expression, on_failure) \ + GTEST_AMBIGUOUS_ELSE_BLOCKER_ \ + if (const ::testing::AssertionResult gtest_ar = (expression)) \ + ; \ + else \ + on_failure(gtest_ar.failure_message()) + + +// Helper function for implementing {EXPECT|ASSERT}_PRED1. Don't use +// this in your code. +template +AssertionResult AssertPred1Helper(const char* pred_text, + const char* e1, + Pred pred, + const T1& v1) { + if (pred(v1)) return AssertionSuccess(); + + return AssertionFailure() << pred_text << "(" + << e1 << ") evaluates to false, where" + << "\n" << e1 << " evaluates to " << v1; +} + +// Internal macro for implementing {EXPECT|ASSERT}_PRED_FORMAT1. +// Don't use this in your code. +#define GTEST_PRED_FORMAT1_(pred_format, v1, on_failure)\ + GTEST_ASSERT_(pred_format(#v1, v1), \ + on_failure) + +// Internal macro for implementing {EXPECT|ASSERT}_PRED1. Don't use +// this in your code. +#define GTEST_PRED1_(pred, v1, on_failure)\ + GTEST_ASSERT_(::testing::AssertPred1Helper(#pred, \ + #v1, \ + pred, \ + v1), on_failure) + +// Unary predicate assertion macros. +#define EXPECT_PRED_FORMAT1(pred_format, v1) \ + GTEST_PRED_FORMAT1_(pred_format, v1, GTEST_NONFATAL_FAILURE_) +#define EXPECT_PRED1(pred, v1) \ + GTEST_PRED1_(pred, v1, GTEST_NONFATAL_FAILURE_) +#define ASSERT_PRED_FORMAT1(pred_format, v1) \ + GTEST_PRED_FORMAT1_(pred_format, v1, GTEST_FATAL_FAILURE_) +#define ASSERT_PRED1(pred, v1) \ + GTEST_PRED1_(pred, v1, GTEST_FATAL_FAILURE_) + + + +// Helper function for implementing {EXPECT|ASSERT}_PRED2. Don't use +// this in your code. +template +AssertionResult AssertPred2Helper(const char* pred_text, + const char* e1, + const char* e2, + Pred pred, + const T1& v1, + const T2& v2) { + if (pred(v1, v2)) return AssertionSuccess(); + + return AssertionFailure() << pred_text << "(" + << e1 << ", " + << e2 << ") evaluates to false, where" + << "\n" << e1 << " evaluates to " << v1 + << "\n" << e2 << " evaluates to " << v2; +} + +// Internal macro for implementing {EXPECT|ASSERT}_PRED_FORMAT2. +// Don't use this in your code. +#define GTEST_PRED_FORMAT2_(pred_format, v1, v2, on_failure)\ + GTEST_ASSERT_(pred_format(#v1, #v2, v1, v2), \ + on_failure) + +// Internal macro for implementing {EXPECT|ASSERT}_PRED2. Don't use +// this in your code. +#define GTEST_PRED2_(pred, v1, v2, on_failure)\ + GTEST_ASSERT_(::testing::AssertPred2Helper(#pred, \ + #v1, \ + #v2, \ + pred, \ + v1, \ + v2), on_failure) + +// Binary predicate assertion macros. +#define EXPECT_PRED_FORMAT2(pred_format, v1, v2) \ + GTEST_PRED_FORMAT2_(pred_format, v1, v2, GTEST_NONFATAL_FAILURE_) +#define EXPECT_PRED2(pred, v1, v2) \ + GTEST_PRED2_(pred, v1, v2, GTEST_NONFATAL_FAILURE_) +#define ASSERT_PRED_FORMAT2(pred_format, v1, v2) \ + GTEST_PRED_FORMAT2_(pred_format, v1, v2, GTEST_FATAL_FAILURE_) +#define ASSERT_PRED2(pred, v1, v2) \ + GTEST_PRED2_(pred, v1, v2, GTEST_FATAL_FAILURE_) + + + +// Helper function for implementing {EXPECT|ASSERT}_PRED3. Don't use +// this in your code. +template +AssertionResult AssertPred3Helper(const char* pred_text, + const char* e1, + const char* e2, + const char* e3, + Pred pred, + const T1& v1, + const T2& v2, + const T3& v3) { + if (pred(v1, v2, v3)) return AssertionSuccess(); + + return AssertionFailure() << pred_text << "(" + << e1 << ", " + << e2 << ", " + << e3 << ") evaluates to false, where" + << "\n" << e1 << " evaluates to " << v1 + << "\n" << e2 << " evaluates to " << v2 + << "\n" << e3 << " evaluates to " << v3; +} + +// Internal macro for implementing {EXPECT|ASSERT}_PRED_FORMAT3. +// Don't use this in your code. +#define GTEST_PRED_FORMAT3_(pred_format, v1, v2, v3, on_failure)\ + GTEST_ASSERT_(pred_format(#v1, #v2, #v3, v1, v2, v3), \ + on_failure) + +// Internal macro for implementing {EXPECT|ASSERT}_PRED3. Don't use +// this in your code. +#define GTEST_PRED3_(pred, v1, v2, v3, on_failure)\ + GTEST_ASSERT_(::testing::AssertPred3Helper(#pred, \ + #v1, \ + #v2, \ + #v3, \ + pred, \ + v1, \ + v2, \ + v3), on_failure) + +// Ternary predicate assertion macros. +#define EXPECT_PRED_FORMAT3(pred_format, v1, v2, v3) \ + GTEST_PRED_FORMAT3_(pred_format, v1, v2, v3, GTEST_NONFATAL_FAILURE_) +#define EXPECT_PRED3(pred, v1, v2, v3) \ + GTEST_PRED3_(pred, v1, v2, v3, GTEST_NONFATAL_FAILURE_) +#define ASSERT_PRED_FORMAT3(pred_format, v1, v2, v3) \ + GTEST_PRED_FORMAT3_(pred_format, v1, v2, v3, GTEST_FATAL_FAILURE_) +#define ASSERT_PRED3(pred, v1, v2, v3) \ + GTEST_PRED3_(pred, v1, v2, v3, GTEST_FATAL_FAILURE_) + + + +// Helper function for implementing {EXPECT|ASSERT}_PRED4. Don't use +// this in your code. +template +AssertionResult AssertPred4Helper(const char* pred_text, + const char* e1, + const char* e2, + const char* e3, + const char* e4, + Pred pred, + const T1& v1, + const T2& v2, + const T3& v3, + const T4& v4) { + if (pred(v1, v2, v3, v4)) return AssertionSuccess(); + + return AssertionFailure() << pred_text << "(" + << e1 << ", " + << e2 << ", " + << e3 << ", " + << e4 << ") evaluates to false, where" + << "\n" << e1 << " evaluates to " << v1 + << "\n" << e2 << " evaluates to " << v2 + << "\n" << e3 << " evaluates to " << v3 + << "\n" << e4 << " evaluates to " << v4; +} + +// Internal macro for implementing {EXPECT|ASSERT}_PRED_FORMAT4. +// Don't use this in your code. +#define GTEST_PRED_FORMAT4_(pred_format, v1, v2, v3, v4, on_failure)\ + GTEST_ASSERT_(pred_format(#v1, #v2, #v3, #v4, v1, v2, v3, v4), \ + on_failure) + +// Internal macro for implementing {EXPECT|ASSERT}_PRED4. Don't use +// this in your code. +#define GTEST_PRED4_(pred, v1, v2, v3, v4, on_failure)\ + GTEST_ASSERT_(::testing::AssertPred4Helper(#pred, \ + #v1, \ + #v2, \ + #v3, \ + #v4, \ + pred, \ + v1, \ + v2, \ + v3, \ + v4), on_failure) + +// 4-ary predicate assertion macros. +#define EXPECT_PRED_FORMAT4(pred_format, v1, v2, v3, v4) \ + GTEST_PRED_FORMAT4_(pred_format, v1, v2, v3, v4, GTEST_NONFATAL_FAILURE_) +#define EXPECT_PRED4(pred, v1, v2, v3, v4) \ + GTEST_PRED4_(pred, v1, v2, v3, v4, GTEST_NONFATAL_FAILURE_) +#define ASSERT_PRED_FORMAT4(pred_format, v1, v2, v3, v4) \ + GTEST_PRED_FORMAT4_(pred_format, v1, v2, v3, v4, GTEST_FATAL_FAILURE_) +#define ASSERT_PRED4(pred, v1, v2, v3, v4) \ + GTEST_PRED4_(pred, v1, v2, v3, v4, GTEST_FATAL_FAILURE_) + + + +// Helper function for implementing {EXPECT|ASSERT}_PRED5. Don't use +// this in your code. +template +AssertionResult AssertPred5Helper(const char* pred_text, + const char* e1, + const char* e2, + const char* e3, + const char* e4, + const char* e5, + Pred pred, + const T1& v1, + const T2& v2, + const T3& v3, + const T4& v4, + const T5& v5) { + if (pred(v1, v2, v3, v4, v5)) return AssertionSuccess(); + + return AssertionFailure() << pred_text << "(" + << e1 << ", " + << e2 << ", " + << e3 << ", " + << e4 << ", " + << e5 << ") evaluates to false, where" + << "\n" << e1 << " evaluates to " << v1 + << "\n" << e2 << " evaluates to " << v2 + << "\n" << e3 << " evaluates to " << v3 + << "\n" << e4 << " evaluates to " << v4 + << "\n" << e5 << " evaluates to " << v5; +} + +// Internal macro for implementing {EXPECT|ASSERT}_PRED_FORMAT5. +// Don't use this in your code. +#define GTEST_PRED_FORMAT5_(pred_format, v1, v2, v3, v4, v5, on_failure)\ + GTEST_ASSERT_(pred_format(#v1, #v2, #v3, #v4, #v5, v1, v2, v3, v4, v5), \ + on_failure) + +// Internal macro for implementing {EXPECT|ASSERT}_PRED5. Don't use +// this in your code. +#define GTEST_PRED5_(pred, v1, v2, v3, v4, v5, on_failure)\ + GTEST_ASSERT_(::testing::AssertPred5Helper(#pred, \ + #v1, \ + #v2, \ + #v3, \ + #v4, \ + #v5, \ + pred, \ + v1, \ + v2, \ + v3, \ + v4, \ + v5), on_failure) + +// 5-ary predicate assertion macros. +#define EXPECT_PRED_FORMAT5(pred_format, v1, v2, v3, v4, v5) \ + GTEST_PRED_FORMAT5_(pred_format, v1, v2, v3, v4, v5, GTEST_NONFATAL_FAILURE_) +#define EXPECT_PRED5(pred, v1, v2, v3, v4, v5) \ + GTEST_PRED5_(pred, v1, v2, v3, v4, v5, GTEST_NONFATAL_FAILURE_) +#define ASSERT_PRED_FORMAT5(pred_format, v1, v2, v3, v4, v5) \ + GTEST_PRED_FORMAT5_(pred_format, v1, v2, v3, v4, v5, GTEST_FATAL_FAILURE_) +#define ASSERT_PRED5(pred, v1, v2, v3, v4, v5) \ + GTEST_PRED5_(pred, v1, v2, v3, v4, v5, GTEST_FATAL_FAILURE_) + + + +#endif // GTEST_INCLUDE_GTEST_GTEST_PRED_IMPL_H_ diff --git a/third_party/googletest/src/include/gtest/gtest_prod.h b/third_party/googletest/src/include/gtest/gtest_prod.h new file mode 100644 index 0000000..da80ddc --- /dev/null +++ b/third_party/googletest/src/include/gtest/gtest_prod.h @@ -0,0 +1,58 @@ +// Copyright 2006, Google Inc. +// All rights reserved. +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: +// +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above +// copyright notice, this list of conditions and the following disclaimer +// in the documentation and/or other materials provided with the +// distribution. +// * Neither the name of Google Inc. nor the names of its +// contributors may be used to endorse or promote products derived from +// this software without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +// +// Author: wan@google.com (Zhanyong Wan) +// +// Google C++ Testing Framework definitions useful in production code. + +#ifndef GTEST_INCLUDE_GTEST_GTEST_PROD_H_ +#define GTEST_INCLUDE_GTEST_GTEST_PROD_H_ + +// When you need to test the private or protected members of a class, +// use the FRIEND_TEST macro to declare your tests as friends of the +// class. For example: +// +// class MyClass { +// private: +// void MyMethod(); +// FRIEND_TEST(MyClassTest, MyMethod); +// }; +// +// class MyClassTest : public testing::Test { +// // ... +// }; +// +// TEST_F(MyClassTest, MyMethod) { +// // Can call MyClass::MyMethod() here. +// } + +#define FRIEND_TEST(test_case_name, test_name)\ +friend class test_case_name##_##test_name##_Test + +#endif // GTEST_INCLUDE_GTEST_GTEST_PROD_H_ diff --git a/third_party/googletest/src/include/gtest/internal/custom/gtest-port.h b/third_party/googletest/src/include/gtest/internal/custom/gtest-port.h new file mode 100644 index 0000000..7e744bd --- /dev/null +++ b/third_party/googletest/src/include/gtest/internal/custom/gtest-port.h @@ -0,0 +1,69 @@ +// Copyright 2015, Google Inc. +// All rights reserved. +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: +// +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above +// copyright notice, this list of conditions and the following disclaimer +// in the documentation and/or other materials provided with the +// distribution. +// * Neither the name of Google Inc. nor the names of its +// contributors may be used to endorse or promote products derived from +// this software without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +// +// Injection point for custom user configurations. +// The following macros can be defined: +// +// Flag related macros: +// GTEST_FLAG(flag_name) +// GTEST_USE_OWN_FLAGFILE_FLAG_ - Define to 0 when the system provides its +// own flagfile flag parsing. +// GTEST_DECLARE_bool_(name) +// GTEST_DECLARE_int32_(name) +// GTEST_DECLARE_string_(name) +// GTEST_DEFINE_bool_(name, default_val, doc) +// GTEST_DEFINE_int32_(name, default_val, doc) +// GTEST_DEFINE_string_(name, default_val, doc) +// +// Test filtering: +// GTEST_TEST_FILTER_ENV_VAR_ - The name of an environment variable that +// will be used if --GTEST_FLAG(test_filter) +// is not provided. +// +// Logging: +// GTEST_LOG_(severity) +// GTEST_CHECK_(condition) +// Functions LogToStderr() and FlushInfoLog() have to be provided too. +// +// Threading: +// GTEST_HAS_NOTIFICATION_ - Enabled if Notification is already provided. +// GTEST_HAS_MUTEX_AND_THREAD_LOCAL_ - Enabled if Mutex and ThreadLocal are +// already provided. +// Must also provide GTEST_DECLARE_STATIC_MUTEX_(mutex) and +// GTEST_DEFINE_STATIC_MUTEX_(mutex) +// +// GTEST_EXCLUSIVE_LOCK_REQUIRED_(locks) +// GTEST_LOCK_EXCLUDED_(locks) +// +// ** Custom implementation starts here ** + +#ifndef GTEST_INCLUDE_GTEST_INTERNAL_CUSTOM_GTEST_PORT_H_ +#define GTEST_INCLUDE_GTEST_INTERNAL_CUSTOM_GTEST_PORT_H_ + +#endif // GTEST_INCLUDE_GTEST_INTERNAL_CUSTOM_GTEST_PORT_H_ diff --git a/third_party/googletest/src/include/gtest/internal/custom/gtest-printers.h b/third_party/googletest/src/include/gtest/internal/custom/gtest-printers.h new file mode 100644 index 0000000..60c1ea0 --- /dev/null +++ b/third_party/googletest/src/include/gtest/internal/custom/gtest-printers.h @@ -0,0 +1,42 @@ +// Copyright 2015, Google Inc. +// All rights reserved. +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: +// +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above +// copyright notice, this list of conditions and the following disclaimer +// in the documentation and/or other materials provided with the +// distribution. +// * Neither the name of Google Inc. nor the names of its +// contributors may be used to endorse or promote products derived from +// this software without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +// +// This file provides an injection point for custom printers in a local +// installation of gTest. +// It will be included from gtest-printers.h and the overrides in this file +// will be visible to everyone. +// See documentation at gtest/gtest-printers.h for details on how to define a +// custom printer. +// +// ** Custom implementation starts here ** + +#ifndef GTEST_INCLUDE_GTEST_INTERNAL_CUSTOM_GTEST_PRINTERS_H_ +#define GTEST_INCLUDE_GTEST_INTERNAL_CUSTOM_GTEST_PRINTERS_H_ + +#endif // GTEST_INCLUDE_GTEST_INTERNAL_CUSTOM_GTEST_PRINTERS_H_ diff --git a/third_party/googletest/src/include/gtest/internal/custom/gtest.h b/third_party/googletest/src/include/gtest/internal/custom/gtest.h new file mode 100644 index 0000000..c27412a --- /dev/null +++ b/third_party/googletest/src/include/gtest/internal/custom/gtest.h @@ -0,0 +1,41 @@ +// Copyright 2015, Google Inc. +// All rights reserved. +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: +// +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above +// copyright notice, this list of conditions and the following disclaimer +// in the documentation and/or other materials provided with the +// distribution. +// * Neither the name of Google Inc. nor the names of its +// contributors may be used to endorse or promote products derived from +// this software without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +// +// Injection point for custom user configurations. +// The following macros can be defined: +// +// GTEST_OS_STACK_TRACE_GETTER_ - The name of an implementation of +// OsStackTraceGetterInterface. +// +// ** Custom implementation starts here ** + +#ifndef GTEST_INCLUDE_GTEST_INTERNAL_CUSTOM_GTEST_H_ +#define GTEST_INCLUDE_GTEST_INTERNAL_CUSTOM_GTEST_H_ + +#endif // GTEST_INCLUDE_GTEST_INTERNAL_CUSTOM_GTEST_H_ diff --git a/third_party/googletest/src/include/gtest/internal/gtest-death-test-internal.h b/third_party/googletest/src/include/gtest/internal/gtest-death-test-internal.h new file mode 100644 index 0000000..2b3a78f --- /dev/null +++ b/third_party/googletest/src/include/gtest/internal/gtest-death-test-internal.h @@ -0,0 +1,319 @@ +// Copyright 2005, Google Inc. +// All rights reserved. +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: +// +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above +// copyright notice, this list of conditions and the following disclaimer +// in the documentation and/or other materials provided with the +// distribution. +// * Neither the name of Google Inc. nor the names of its +// contributors may be used to endorse or promote products derived from +// this software without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +// +// Authors: wan@google.com (Zhanyong Wan), eefacm@gmail.com (Sean Mcafee) +// +// The Google C++ Testing Framework (Google Test) +// +// This header file defines internal utilities needed for implementing +// death tests. They are subject to change without notice. + +#ifndef GTEST_INCLUDE_GTEST_INTERNAL_GTEST_DEATH_TEST_INTERNAL_H_ +#define GTEST_INCLUDE_GTEST_INTERNAL_GTEST_DEATH_TEST_INTERNAL_H_ + +#include "gtest/internal/gtest-internal.h" + +#include + +namespace testing { +namespace internal { + +GTEST_DECLARE_string_(internal_run_death_test); + +// Names of the flags (needed for parsing Google Test flags). +const char kDeathTestStyleFlag[] = "death_test_style"; +const char kDeathTestUseFork[] = "death_test_use_fork"; +const char kInternalRunDeathTestFlag[] = "internal_run_death_test"; + +#if GTEST_HAS_DEATH_TEST + +// DeathTest is a class that hides much of the complexity of the +// GTEST_DEATH_TEST_ macro. It is abstract; its static Create method +// returns a concrete class that depends on the prevailing death test +// style, as defined by the --gtest_death_test_style and/or +// --gtest_internal_run_death_test flags. + +// In describing the results of death tests, these terms are used with +// the corresponding definitions: +// +// exit status: The integer exit information in the format specified +// by wait(2) +// exit code: The integer code passed to exit(3), _exit(2), or +// returned from main() +class GTEST_API_ DeathTest { + public: + // Create returns false if there was an error determining the + // appropriate action to take for the current death test; for example, + // if the gtest_death_test_style flag is set to an invalid value. + // The LastMessage method will return a more detailed message in that + // case. Otherwise, the DeathTest pointer pointed to by the "test" + // argument is set. If the death test should be skipped, the pointer + // is set to NULL; otherwise, it is set to the address of a new concrete + // DeathTest object that controls the execution of the current test. + static bool Create(const char* statement, const RE* regex, + const char* file, int line, DeathTest** test); + DeathTest(); + virtual ~DeathTest() { } + + // A helper class that aborts a death test when it's deleted. + class ReturnSentinel { + public: + explicit ReturnSentinel(DeathTest* test) : test_(test) { } + ~ReturnSentinel() { test_->Abort(TEST_ENCOUNTERED_RETURN_STATEMENT); } + private: + DeathTest* const test_; + GTEST_DISALLOW_COPY_AND_ASSIGN_(ReturnSentinel); + } GTEST_ATTRIBUTE_UNUSED_; + + // An enumeration of possible roles that may be taken when a death + // test is encountered. EXECUTE means that the death test logic should + // be executed immediately. OVERSEE means that the program should prepare + // the appropriate environment for a child process to execute the death + // test, then wait for it to complete. + enum TestRole { OVERSEE_TEST, EXECUTE_TEST }; + + // An enumeration of the three reasons that a test might be aborted. + enum AbortReason { + TEST_ENCOUNTERED_RETURN_STATEMENT, + TEST_THREW_EXCEPTION, + TEST_DID_NOT_DIE + }; + + // Assumes one of the above roles. + virtual TestRole AssumeRole() = 0; + + // Waits for the death test to finish and returns its status. + virtual int Wait() = 0; + + // Returns true if the death test passed; that is, the test process + // exited during the test, its exit status matches a user-supplied + // predicate, and its stderr output matches a user-supplied regular + // expression. + // The user-supplied predicate may be a macro expression rather + // than a function pointer or functor, or else Wait and Passed could + // be combined. + virtual bool Passed(bool exit_status_ok) = 0; + + // Signals that the death test did not die as expected. + virtual void Abort(AbortReason reason) = 0; + + // Returns a human-readable outcome message regarding the outcome of + // the last death test. + static const char* LastMessage(); + + static void set_last_death_test_message(const std::string& message); + + private: + // A string containing a description of the outcome of the last death test. + static std::string last_death_test_message_; + + GTEST_DISALLOW_COPY_AND_ASSIGN_(DeathTest); +}; + +// Factory interface for death tests. May be mocked out for testing. +class DeathTestFactory { + public: + virtual ~DeathTestFactory() { } + virtual bool Create(const char* statement, const RE* regex, + const char* file, int line, DeathTest** test) = 0; +}; + +// A concrete DeathTestFactory implementation for normal use. +class DefaultDeathTestFactory : public DeathTestFactory { + public: + virtual bool Create(const char* statement, const RE* regex, + const char* file, int line, DeathTest** test); +}; + +// Returns true if exit_status describes a process that was terminated +// by a signal, or exited normally with a nonzero exit code. +GTEST_API_ bool ExitedUnsuccessfully(int exit_status); + +// Traps C++ exceptions escaping statement and reports them as test +// failures. Note that trapping SEH exceptions is not implemented here. +# if GTEST_HAS_EXCEPTIONS +# define GTEST_EXECUTE_DEATH_TEST_STATEMENT_(statement, death_test) \ + try { \ + GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \ + } catch (const ::std::exception& gtest_exception) { \ + fprintf(\ + stderr, \ + "\n%s: Caught std::exception-derived exception escaping the " \ + "death test statement. Exception message: %s\n", \ + ::testing::internal::FormatFileLocation(__FILE__, __LINE__).c_str(), \ + gtest_exception.what()); \ + fflush(stderr); \ + death_test->Abort(::testing::internal::DeathTest::TEST_THREW_EXCEPTION); \ + } catch (...) { \ + death_test->Abort(::testing::internal::DeathTest::TEST_THREW_EXCEPTION); \ + } + +# else +# define GTEST_EXECUTE_DEATH_TEST_STATEMENT_(statement, death_test) \ + GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement) + +# endif + +// This macro is for implementing ASSERT_DEATH*, EXPECT_DEATH*, +// ASSERT_EXIT*, and EXPECT_EXIT*. +# define GTEST_DEATH_TEST_(statement, predicate, regex, fail) \ + GTEST_AMBIGUOUS_ELSE_BLOCKER_ \ + if (::testing::internal::AlwaysTrue()) { \ + const ::testing::internal::RE& gtest_regex = (regex); \ + ::testing::internal::DeathTest* gtest_dt; \ + if (!::testing::internal::DeathTest::Create(#statement, >est_regex, \ + __FILE__, __LINE__, >est_dt)) { \ + goto GTEST_CONCAT_TOKEN_(gtest_label_, __LINE__); \ + } \ + if (gtest_dt != NULL) { \ + ::testing::internal::scoped_ptr< ::testing::internal::DeathTest> \ + gtest_dt_ptr(gtest_dt); \ + switch (gtest_dt->AssumeRole()) { \ + case ::testing::internal::DeathTest::OVERSEE_TEST: \ + if (!gtest_dt->Passed(predicate(gtest_dt->Wait()))) { \ + goto GTEST_CONCAT_TOKEN_(gtest_label_, __LINE__); \ + } \ + break; \ + case ::testing::internal::DeathTest::EXECUTE_TEST: { \ + ::testing::internal::DeathTest::ReturnSentinel \ + gtest_sentinel(gtest_dt); \ + GTEST_EXECUTE_DEATH_TEST_STATEMENT_(statement, gtest_dt); \ + gtest_dt->Abort(::testing::internal::DeathTest::TEST_DID_NOT_DIE); \ + break; \ + } \ + default: \ + break; \ + } \ + } \ + } else \ + GTEST_CONCAT_TOKEN_(gtest_label_, __LINE__): \ + fail(::testing::internal::DeathTest::LastMessage()) +// The symbol "fail" here expands to something into which a message +// can be streamed. + +// This macro is for implementing ASSERT/EXPECT_DEBUG_DEATH when compiled in +// NDEBUG mode. In this case we need the statements to be executed, the regex is +// ignored, and the macro must accept a streamed message even though the message +// is never printed. +# define GTEST_EXECUTE_STATEMENT_(statement, regex) \ + GTEST_AMBIGUOUS_ELSE_BLOCKER_ \ + if (::testing::internal::AlwaysTrue()) { \ + GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \ + } else \ + ::testing::Message() + +// A class representing the parsed contents of the +// --gtest_internal_run_death_test flag, as it existed when +// RUN_ALL_TESTS was called. +class InternalRunDeathTestFlag { + public: + InternalRunDeathTestFlag(const std::string& a_file, + int a_line, + int an_index, + int a_write_fd) + : file_(a_file), line_(a_line), index_(an_index), + write_fd_(a_write_fd) {} + + ~InternalRunDeathTestFlag() { + if (write_fd_ >= 0) + posix::Close(write_fd_); + } + + const std::string& file() const { return file_; } + int line() const { return line_; } + int index() const { return index_; } + int write_fd() const { return write_fd_; } + + private: + std::string file_; + int line_; + int index_; + int write_fd_; + + GTEST_DISALLOW_COPY_AND_ASSIGN_(InternalRunDeathTestFlag); +}; + +// Returns a newly created InternalRunDeathTestFlag object with fields +// initialized from the GTEST_FLAG(internal_run_death_test) flag if +// the flag is specified; otherwise returns NULL. +InternalRunDeathTestFlag* ParseInternalRunDeathTestFlag(); + +#else // GTEST_HAS_DEATH_TEST + +// This macro is used for implementing macros such as +// EXPECT_DEATH_IF_SUPPORTED and ASSERT_DEATH_IF_SUPPORTED on systems where +// death tests are not supported. Those macros must compile on such systems +// iff EXPECT_DEATH and ASSERT_DEATH compile with the same parameters on +// systems that support death tests. This allows one to write such a macro +// on a system that does not support death tests and be sure that it will +// compile on a death-test supporting system. +// +// Parameters: +// statement - A statement that a macro such as EXPECT_DEATH would test +// for program termination. This macro has to make sure this +// statement is compiled but not executed, to ensure that +// EXPECT_DEATH_IF_SUPPORTED compiles with a certain +// parameter iff EXPECT_DEATH compiles with it. +// regex - A regex that a macro such as EXPECT_DEATH would use to test +// the output of statement. This parameter has to be +// compiled but not evaluated by this macro, to ensure that +// this macro only accepts expressions that a macro such as +// EXPECT_DEATH would accept. +// terminator - Must be an empty statement for EXPECT_DEATH_IF_SUPPORTED +// and a return statement for ASSERT_DEATH_IF_SUPPORTED. +// This ensures that ASSERT_DEATH_IF_SUPPORTED will not +// compile inside functions where ASSERT_DEATH doesn't +// compile. +// +// The branch that has an always false condition is used to ensure that +// statement and regex are compiled (and thus syntactically correct) but +// never executed. The unreachable code macro protects the terminator +// statement from generating an 'unreachable code' warning in case +// statement unconditionally returns or throws. The Message constructor at +// the end allows the syntax of streaming additional messages into the +// macro, for compilational compatibility with EXPECT_DEATH/ASSERT_DEATH. +# define GTEST_UNSUPPORTED_DEATH_TEST_(statement, regex, terminator) \ + GTEST_AMBIGUOUS_ELSE_BLOCKER_ \ + if (::testing::internal::AlwaysTrue()) { \ + GTEST_LOG_(WARNING) \ + << "Death tests are not supported on this platform.\n" \ + << "Statement '" #statement "' cannot be verified."; \ + } else if (::testing::internal::AlwaysFalse()) { \ + ::testing::internal::RE::PartialMatch(".*", (regex)); \ + GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \ + terminator; \ + } else \ + ::testing::Message() + +#endif // GTEST_HAS_DEATH_TEST + +} // namespace internal +} // namespace testing + +#endif // GTEST_INCLUDE_GTEST_INTERNAL_GTEST_DEATH_TEST_INTERNAL_H_ diff --git a/third_party/googletest/src/include/gtest/internal/gtest-filepath.h b/third_party/googletest/src/include/gtest/internal/gtest-filepath.h new file mode 100644 index 0000000..7a13b4b --- /dev/null +++ b/third_party/googletest/src/include/gtest/internal/gtest-filepath.h @@ -0,0 +1,206 @@ +// Copyright 2008, Google Inc. +// All rights reserved. +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: +// +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above +// copyright notice, this list of conditions and the following disclaimer +// in the documentation and/or other materials provided with the +// distribution. +// * Neither the name of Google Inc. nor the names of its +// contributors may be used to endorse or promote products derived from +// this software without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +// +// Author: keith.ray@gmail.com (Keith Ray) +// +// Google Test filepath utilities +// +// This header file declares classes and functions used internally by +// Google Test. They are subject to change without notice. +// +// This file is #included in . +// Do not include this header file separately! + +#ifndef GTEST_INCLUDE_GTEST_INTERNAL_GTEST_FILEPATH_H_ +#define GTEST_INCLUDE_GTEST_INTERNAL_GTEST_FILEPATH_H_ + +#include "gtest/internal/gtest-string.h" + +namespace testing { +namespace internal { + +// FilePath - a class for file and directory pathname manipulation which +// handles platform-specific conventions (like the pathname separator). +// Used for helper functions for naming files in a directory for xml output. +// Except for Set methods, all methods are const or static, which provides an +// "immutable value object" -- useful for peace of mind. +// A FilePath with a value ending in a path separator ("like/this/") represents +// a directory, otherwise it is assumed to represent a file. In either case, +// it may or may not represent an actual file or directory in the file system. +// Names are NOT checked for syntax correctness -- no checking for illegal +// characters, malformed paths, etc. + +class GTEST_API_ FilePath { + public: + FilePath() : pathname_("") { } + FilePath(const FilePath& rhs) : pathname_(rhs.pathname_) { } + + explicit FilePath(const std::string& pathname) : pathname_(pathname) { + Normalize(); + } + + FilePath& operator=(const FilePath& rhs) { + Set(rhs); + return *this; + } + + void Set(const FilePath& rhs) { + pathname_ = rhs.pathname_; + } + + const std::string& string() const { return pathname_; } + const char* c_str() const { return pathname_.c_str(); } + + // Returns the current working directory, or "" if unsuccessful. + static FilePath GetCurrentDir(); + + // Given directory = "dir", base_name = "test", number = 0, + // extension = "xml", returns "dir/test.xml". If number is greater + // than zero (e.g., 12), returns "dir/test_12.xml". + // On Windows platform, uses \ as the separator rather than /. + static FilePath MakeFileName(const FilePath& directory, + const FilePath& base_name, + int number, + const char* extension); + + // Given directory = "dir", relative_path = "test.xml", + // returns "dir/test.xml". + // On Windows, uses \ as the separator rather than /. + static FilePath ConcatPaths(const FilePath& directory, + const FilePath& relative_path); + + // Returns a pathname for a file that does not currently exist. The pathname + // will be directory/base_name.extension or + // directory/base_name_.extension if directory/base_name.extension + // already exists. The number will be incremented until a pathname is found + // that does not already exist. + // Examples: 'dir/foo_test.xml' or 'dir/foo_test_1.xml'. + // There could be a race condition if two or more processes are calling this + // function at the same time -- they could both pick the same filename. + static FilePath GenerateUniqueFileName(const FilePath& directory, + const FilePath& base_name, + const char* extension); + + // Returns true iff the path is "". + bool IsEmpty() const { return pathname_.empty(); } + + // If input name has a trailing separator character, removes it and returns + // the name, otherwise return the name string unmodified. + // On Windows platform, uses \ as the separator, other platforms use /. + FilePath RemoveTrailingPathSeparator() const; + + // Returns a copy of the FilePath with the directory part removed. + // Example: FilePath("path/to/file").RemoveDirectoryName() returns + // FilePath("file"). If there is no directory part ("just_a_file"), it returns + // the FilePath unmodified. If there is no file part ("just_a_dir/") it + // returns an empty FilePath (""). + // On Windows platform, '\' is the path separator, otherwise it is '/'. + FilePath RemoveDirectoryName() const; + + // RemoveFileName returns the directory path with the filename removed. + // Example: FilePath("path/to/file").RemoveFileName() returns "path/to/". + // If the FilePath is "a_file" or "/a_file", RemoveFileName returns + // FilePath("./") or, on Windows, FilePath(".\\"). If the filepath does + // not have a file, like "just/a/dir/", it returns the FilePath unmodified. + // On Windows platform, '\' is the path separator, otherwise it is '/'. + FilePath RemoveFileName() const; + + // Returns a copy of the FilePath with the case-insensitive extension removed. + // Example: FilePath("dir/file.exe").RemoveExtension("EXE") returns + // FilePath("dir/file"). If a case-insensitive extension is not + // found, returns a copy of the original FilePath. + FilePath RemoveExtension(const char* extension) const; + + // Creates directories so that path exists. Returns true if successful or if + // the directories already exist; returns false if unable to create + // directories for any reason. Will also return false if the FilePath does + // not represent a directory (that is, it doesn't end with a path separator). + bool CreateDirectoriesRecursively() const; + + // Create the directory so that path exists. Returns true if successful or + // if the directory already exists; returns false if unable to create the + // directory for any reason, including if the parent directory does not + // exist. Not named "CreateDirectory" because that's a macro on Windows. + bool CreateFolder() const; + + // Returns true if FilePath describes something in the file-system, + // either a file, directory, or whatever, and that something exists. + bool FileOrDirectoryExists() const; + + // Returns true if pathname describes a directory in the file-system + // that exists. + bool DirectoryExists() const; + + // Returns true if FilePath ends with a path separator, which indicates that + // it is intended to represent a directory. Returns false otherwise. + // This does NOT check that a directory (or file) actually exists. + bool IsDirectory() const; + + // Returns true if pathname describes a root directory. (Windows has one + // root directory per disk drive.) + bool IsRootDirectory() const; + + // Returns true if pathname describes an absolute path. + bool IsAbsolutePath() const; + + private: + // Replaces multiple consecutive separators with a single separator. + // For example, "bar///foo" becomes "bar/foo". Does not eliminate other + // redundancies that might be in a pathname involving "." or "..". + // + // A pathname with multiple consecutive separators may occur either through + // user error or as a result of some scripts or APIs that generate a pathname + // with a trailing separator. On other platforms the same API or script + // may NOT generate a pathname with a trailing "/". Then elsewhere that + // pathname may have another "/" and pathname components added to it, + // without checking for the separator already being there. + // The script language and operating system may allow paths like "foo//bar" + // but some of the functions in FilePath will not handle that correctly. In + // particular, RemoveTrailingPathSeparator() only removes one separator, and + // it is called in CreateDirectoriesRecursively() assuming that it will change + // a pathname from directory syntax (trailing separator) to filename syntax. + // + // On Windows this method also replaces the alternate path separator '/' with + // the primary path separator '\\', so that for example "bar\\/\\foo" becomes + // "bar\\foo". + + void Normalize(); + + // Returns a pointer to the last occurence of a valid path separator in + // the FilePath. On Windows, for example, both '/' and '\' are valid path + // separators. Returns NULL if no path separator was found. + const char* FindLastPathSeparator() const; + + std::string pathname_; +}; // class FilePath + +} // namespace internal +} // namespace testing + +#endif // GTEST_INCLUDE_GTEST_INTERNAL_GTEST_FILEPATH_H_ diff --git a/third_party/googletest/src/include/gtest/internal/gtest-internal.h b/third_party/googletest/src/include/gtest/internal/gtest-internal.h new file mode 100644 index 0000000..ebd1cf6 --- /dev/null +++ b/third_party/googletest/src/include/gtest/internal/gtest-internal.h @@ -0,0 +1,1238 @@ +// Copyright 2005, Google Inc. +// All rights reserved. +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: +// +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above +// copyright notice, this list of conditions and the following disclaimer +// in the documentation and/or other materials provided with the +// distribution. +// * Neither the name of Google Inc. nor the names of its +// contributors may be used to endorse or promote products derived from +// this software without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +// +// Authors: wan@google.com (Zhanyong Wan), eefacm@gmail.com (Sean Mcafee) +// +// The Google C++ Testing Framework (Google Test) +// +// This header file declares functions and macros used internally by +// Google Test. They are subject to change without notice. + +#ifndef GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_ +#define GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_ + +#include "gtest/internal/gtest-port.h" + +#if GTEST_OS_LINUX +# include +# include +# include +# include +#endif // GTEST_OS_LINUX + +#if GTEST_HAS_EXCEPTIONS +# include +#endif + +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#include "gtest/gtest-message.h" +#include "gtest/internal/gtest-string.h" +#include "gtest/internal/gtest-filepath.h" +#include "gtest/internal/gtest-type-util.h" + +// Due to C++ preprocessor weirdness, we need double indirection to +// concatenate two tokens when one of them is __LINE__. Writing +// +// foo ## __LINE__ +// +// will result in the token foo__LINE__, instead of foo followed by +// the current line number. For more details, see +// http://www.parashift.com/c++-faq-lite/misc-technical-issues.html#faq-39.6 +#define GTEST_CONCAT_TOKEN_(foo, bar) GTEST_CONCAT_TOKEN_IMPL_(foo, bar) +#define GTEST_CONCAT_TOKEN_IMPL_(foo, bar) foo ## bar + +class ProtocolMessage; +namespace proto2 { class Message; } + +namespace testing { + +// Forward declarations. + +class AssertionResult; // Result of an assertion. +class Message; // Represents a failure message. +class Test; // Represents a test. +class TestInfo; // Information about a test. +class TestPartResult; // Result of a test part. +class UnitTest; // A collection of test cases. + +template +::std::string PrintToString(const T& value); + +namespace internal { + +struct TraceInfo; // Information about a trace point. +class ScopedTrace; // Implements scoped trace. +class TestInfoImpl; // Opaque implementation of TestInfo +class UnitTestImpl; // Opaque implementation of UnitTest + +// The text used in failure messages to indicate the start of the +// stack trace. +GTEST_API_ extern const char kStackTraceMarker[]; + +// Two overloaded helpers for checking at compile time whether an +// expression is a null pointer literal (i.e. NULL or any 0-valued +// compile-time integral constant). Their return values have +// different sizes, so we can use sizeof() to test which version is +// picked by the compiler. These helpers have no implementations, as +// we only need their signatures. +// +// Given IsNullLiteralHelper(x), the compiler will pick the first +// version if x can be implicitly converted to Secret*, and pick the +// second version otherwise. Since Secret is a secret and incomplete +// type, the only expression a user can write that has type Secret* is +// a null pointer literal. Therefore, we know that x is a null +// pointer literal if and only if the first version is picked by the +// compiler. +char IsNullLiteralHelper(Secret* p); +char (&IsNullLiteralHelper(...))[2]; // NOLINT + +// A compile-time bool constant that is true if and only if x is a +// null pointer literal (i.e. NULL or any 0-valued compile-time +// integral constant). +#ifdef GTEST_ELLIPSIS_NEEDS_POD_ +// We lose support for NULL detection where the compiler doesn't like +// passing non-POD classes through ellipsis (...). +# define GTEST_IS_NULL_LITERAL_(x) false +#else +# define GTEST_IS_NULL_LITERAL_(x) \ + (sizeof(::testing::internal::IsNullLiteralHelper(x)) == 1) +#endif // GTEST_ELLIPSIS_NEEDS_POD_ + +// Appends the user-supplied message to the Google-Test-generated message. +GTEST_API_ std::string AppendUserMessage( + const std::string& gtest_msg, const Message& user_msg); + +#if GTEST_HAS_EXCEPTIONS + +// This exception is thrown by (and only by) a failed Google Test +// assertion when GTEST_FLAG(throw_on_failure) is true (if exceptions +// are enabled). We derive it from std::runtime_error, which is for +// errors presumably detectable only at run time. Since +// std::runtime_error inherits from std::exception, many testing +// frameworks know how to extract and print the message inside it. +class GTEST_API_ GoogleTestFailureException : public ::std::runtime_error { + public: + explicit GoogleTestFailureException(const TestPartResult& failure); +}; + +#endif // GTEST_HAS_EXCEPTIONS + +// A helper class for creating scoped traces in user programs. +class GTEST_API_ ScopedTrace { + public: + // The c'tor pushes the given source file location and message onto + // a trace stack maintained by Google Test. + ScopedTrace(const char* file, int line, const Message& message); + + // The d'tor pops the info pushed by the c'tor. + // + // Note that the d'tor is not virtual in order to be efficient. + // Don't inherit from ScopedTrace! + ~ScopedTrace(); + + private: + GTEST_DISALLOW_COPY_AND_ASSIGN_(ScopedTrace); +} GTEST_ATTRIBUTE_UNUSED_; // A ScopedTrace object does its job in its + // c'tor and d'tor. Therefore it doesn't + // need to be used otherwise. + +namespace edit_distance { +// Returns the optimal edits to go from 'left' to 'right'. +// All edits cost the same, with replace having lower priority than +// add/remove. +// Simple implementation of the Wagner–Fischer algorithm. +// See http://en.wikipedia.org/wiki/Wagner-Fischer_algorithm +enum EditType { kMatch, kAdd, kRemove, kReplace }; +GTEST_API_ std::vector CalculateOptimalEdits( + const std::vector& left, const std::vector& right); + +// Same as above, but the input is represented as strings. +GTEST_API_ std::vector CalculateOptimalEdits( + const std::vector& left, + const std::vector& right); + +// Create a diff of the input strings in Unified diff format. +GTEST_API_ std::string CreateUnifiedDiff(const std::vector& left, + const std::vector& right, + size_t context = 2); + +} // namespace edit_distance + +// Calculate the diff between 'left' and 'right' and return it in unified diff +// format. +// If not null, stores in 'total_line_count' the total number of lines found +// in left + right. +GTEST_API_ std::string DiffStrings(const std::string& left, + const std::string& right, + size_t* total_line_count); + +// Constructs and returns the message for an equality assertion +// (e.g. ASSERT_EQ, EXPECT_STREQ, etc) failure. +// +// The first four parameters are the expressions used in the assertion +// and their values, as strings. For example, for ASSERT_EQ(foo, bar) +// where foo is 5 and bar is 6, we have: +// +// expected_expression: "foo" +// actual_expression: "bar" +// expected_value: "5" +// actual_value: "6" +// +// The ignoring_case parameter is true iff the assertion is a +// *_STRCASEEQ*. When it's true, the string " (ignoring case)" will +// be inserted into the message. +GTEST_API_ AssertionResult EqFailure(const char* expected_expression, + const char* actual_expression, + const std::string& expected_value, + const std::string& actual_value, + bool ignoring_case); + +// Constructs a failure message for Boolean assertions such as EXPECT_TRUE. +GTEST_API_ std::string GetBoolAssertionFailureMessage( + const AssertionResult& assertion_result, + const char* expression_text, + const char* actual_predicate_value, + const char* expected_predicate_value); + +// This template class represents an IEEE floating-point number +// (either single-precision or double-precision, depending on the +// template parameters). +// +// The purpose of this class is to do more sophisticated number +// comparison. (Due to round-off error, etc, it's very unlikely that +// two floating-points will be equal exactly. Hence a naive +// comparison by the == operation often doesn't work.) +// +// Format of IEEE floating-point: +// +// The most-significant bit being the leftmost, an IEEE +// floating-point looks like +// +// sign_bit exponent_bits fraction_bits +// +// Here, sign_bit is a single bit that designates the sign of the +// number. +// +// For float, there are 8 exponent bits and 23 fraction bits. +// +// For double, there are 11 exponent bits and 52 fraction bits. +// +// More details can be found at +// http://en.wikipedia.org/wiki/IEEE_floating-point_standard. +// +// Template parameter: +// +// RawType: the raw floating-point type (either float or double) +template +class FloatingPoint { + public: + // Defines the unsigned integer type that has the same size as the + // floating point number. + typedef typename TypeWithSize::UInt Bits; + + // Constants. + + // # of bits in a number. + static const size_t kBitCount = 8*sizeof(RawType); + + // # of fraction bits in a number. + static const size_t kFractionBitCount = + std::numeric_limits::digits - 1; + + // # of exponent bits in a number. + static const size_t kExponentBitCount = kBitCount - 1 - kFractionBitCount; + + // The mask for the sign bit. + static const Bits kSignBitMask = static_cast(1) << (kBitCount - 1); + + // The mask for the fraction bits. + static const Bits kFractionBitMask = + ~static_cast(0) >> (kExponentBitCount + 1); + + // The mask for the exponent bits. + static const Bits kExponentBitMask = ~(kSignBitMask | kFractionBitMask); + + // How many ULP's (Units in the Last Place) we want to tolerate when + // comparing two numbers. The larger the value, the more error we + // allow. A 0 value means that two numbers must be exactly the same + // to be considered equal. + // + // The maximum error of a single floating-point operation is 0.5 + // units in the last place. On Intel CPU's, all floating-point + // calculations are done with 80-bit precision, while double has 64 + // bits. Therefore, 4 should be enough for ordinary use. + // + // See the following article for more details on ULP: + // http://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/ + static const size_t kMaxUlps = 4; + + // Constructs a FloatingPoint from a raw floating-point number. + // + // On an Intel CPU, passing a non-normalized NAN (Not a Number) + // around may change its bits, although the new value is guaranteed + // to be also a NAN. Therefore, don't expect this constructor to + // preserve the bits in x when x is a NAN. + explicit FloatingPoint(const RawType& x) { u_.value_ = x; } + + // Static methods + + // Reinterprets a bit pattern as a floating-point number. + // + // This function is needed to test the AlmostEquals() method. + static RawType ReinterpretBits(const Bits bits) { + FloatingPoint fp(0); + fp.u_.bits_ = bits; + return fp.u_.value_; + } + + // Returns the floating-point number that represent positive infinity. + static RawType Infinity() { + return ReinterpretBits(kExponentBitMask); + } + + // Returns the maximum representable finite floating-point number. + static RawType Max(); + + // Non-static methods + + // Returns the bits that represents this number. + const Bits &bits() const { return u_.bits_; } + + // Returns the exponent bits of this number. + Bits exponent_bits() const { return kExponentBitMask & u_.bits_; } + + // Returns the fraction bits of this number. + Bits fraction_bits() const { return kFractionBitMask & u_.bits_; } + + // Returns the sign bit of this number. + Bits sign_bit() const { return kSignBitMask & u_.bits_; } + + // Returns true iff this is NAN (not a number). + bool is_nan() const { + // It's a NAN if the exponent bits are all ones and the fraction + // bits are not entirely zeros. + return (exponent_bits() == kExponentBitMask) && (fraction_bits() != 0); + } + + // Returns true iff this number is at most kMaxUlps ULP's away from + // rhs. In particular, this function: + // + // - returns false if either number is (or both are) NAN. + // - treats really large numbers as almost equal to infinity. + // - thinks +0.0 and -0.0 are 0 DLP's apart. + bool AlmostEquals(const FloatingPoint& rhs) const { + // The IEEE standard says that any comparison operation involving + // a NAN must return false. + if (is_nan() || rhs.is_nan()) return false; + + return DistanceBetweenSignAndMagnitudeNumbers(u_.bits_, rhs.u_.bits_) + <= kMaxUlps; + } + + private: + // The data type used to store the actual floating-point number. + union FloatingPointUnion { + RawType value_; // The raw floating-point number. + Bits bits_; // The bits that represent the number. + }; + + // Converts an integer from the sign-and-magnitude representation to + // the biased representation. More precisely, let N be 2 to the + // power of (kBitCount - 1), an integer x is represented by the + // unsigned number x + N. + // + // For instance, + // + // -N + 1 (the most negative number representable using + // sign-and-magnitude) is represented by 1; + // 0 is represented by N; and + // N - 1 (the biggest number representable using + // sign-and-magnitude) is represented by 2N - 1. + // + // Read http://en.wikipedia.org/wiki/Signed_number_representations + // for more details on signed number representations. + static Bits SignAndMagnitudeToBiased(const Bits &sam) { + if (kSignBitMask & sam) { + // sam represents a negative number. + return ~sam + 1; + } else { + // sam represents a positive number. + return kSignBitMask | sam; + } + } + + // Given two numbers in the sign-and-magnitude representation, + // returns the distance between them as an unsigned number. + static Bits DistanceBetweenSignAndMagnitudeNumbers(const Bits &sam1, + const Bits &sam2) { + const Bits biased1 = SignAndMagnitudeToBiased(sam1); + const Bits biased2 = SignAndMagnitudeToBiased(sam2); + return (biased1 >= biased2) ? (biased1 - biased2) : (biased2 - biased1); + } + + FloatingPointUnion u_; +}; + +// We cannot use std::numeric_limits::max() as it clashes with the max() +// macro defined by . +template <> +inline float FloatingPoint::Max() { return FLT_MAX; } +template <> +inline double FloatingPoint::Max() { return DBL_MAX; } + +// Typedefs the instances of the FloatingPoint template class that we +// care to use. +typedef FloatingPoint Float; +typedef FloatingPoint Double; + +// In order to catch the mistake of putting tests that use different +// test fixture classes in the same test case, we need to assign +// unique IDs to fixture classes and compare them. The TypeId type is +// used to hold such IDs. The user should treat TypeId as an opaque +// type: the only operation allowed on TypeId values is to compare +// them for equality using the == operator. +typedef const void* TypeId; + +template +class TypeIdHelper { + public: + // dummy_ must not have a const type. Otherwise an overly eager + // compiler (e.g. MSVC 7.1 & 8.0) may try to merge + // TypeIdHelper::dummy_ for different Ts as an "optimization". + static bool dummy_; +}; + +template +bool TypeIdHelper::dummy_ = false; + +// GetTypeId() returns the ID of type T. Different values will be +// returned for different types. Calling the function twice with the +// same type argument is guaranteed to return the same ID. +template +TypeId GetTypeId() { + // The compiler is required to allocate a different + // TypeIdHelper::dummy_ variable for each T used to instantiate + // the template. Therefore, the address of dummy_ is guaranteed to + // be unique. + return &(TypeIdHelper::dummy_); +} + +// Returns the type ID of ::testing::Test. Always call this instead +// of GetTypeId< ::testing::Test>() to get the type ID of +// ::testing::Test, as the latter may give the wrong result due to a +// suspected linker bug when compiling Google Test as a Mac OS X +// framework. +GTEST_API_ TypeId GetTestTypeId(); + +// Defines the abstract factory interface that creates instances +// of a Test object. +class TestFactoryBase { + public: + virtual ~TestFactoryBase() {} + + // Creates a test instance to run. The instance is both created and destroyed + // within TestInfoImpl::Run() + virtual Test* CreateTest() = 0; + + protected: + TestFactoryBase() {} + + private: + GTEST_DISALLOW_COPY_AND_ASSIGN_(TestFactoryBase); +}; + +// This class provides implementation of TeastFactoryBase interface. +// It is used in TEST and TEST_F macros. +template +class TestFactoryImpl : public TestFactoryBase { + public: + virtual Test* CreateTest() { return new TestClass; } +}; + +#if GTEST_OS_WINDOWS + +// Predicate-formatters for implementing the HRESULT checking macros +// {ASSERT|EXPECT}_HRESULT_{SUCCEEDED|FAILED} +// We pass a long instead of HRESULT to avoid causing an +// include dependency for the HRESULT type. +GTEST_API_ AssertionResult IsHRESULTSuccess(const char* expr, + long hr); // NOLINT +GTEST_API_ AssertionResult IsHRESULTFailure(const char* expr, + long hr); // NOLINT + +#endif // GTEST_OS_WINDOWS + +// Types of SetUpTestCase() and TearDownTestCase() functions. +typedef void (*SetUpTestCaseFunc)(); +typedef void (*TearDownTestCaseFunc)(); + +struct CodeLocation { + CodeLocation(const string& a_file, int a_line) : file(a_file), line(a_line) {} + + string file; + int line; +}; + +// Creates a new TestInfo object and registers it with Google Test; +// returns the created object. +// +// Arguments: +// +// test_case_name: name of the test case +// name: name of the test +// type_param the name of the test's type parameter, or NULL if +// this is not a typed or a type-parameterized test. +// value_param text representation of the test's value parameter, +// or NULL if this is not a type-parameterized test. +// code_location: code location where the test is defined +// fixture_class_id: ID of the test fixture class +// set_up_tc: pointer to the function that sets up the test case +// tear_down_tc: pointer to the function that tears down the test case +// factory: pointer to the factory that creates a test object. +// The newly created TestInfo instance will assume +// ownership of the factory object. +GTEST_API_ TestInfo* MakeAndRegisterTestInfo( + const char* test_case_name, + const char* name, + const char* type_param, + const char* value_param, + CodeLocation code_location, + TypeId fixture_class_id, + SetUpTestCaseFunc set_up_tc, + TearDownTestCaseFunc tear_down_tc, + TestFactoryBase* factory); + +// If *pstr starts with the given prefix, modifies *pstr to be right +// past the prefix and returns true; otherwise leaves *pstr unchanged +// and returns false. None of pstr, *pstr, and prefix can be NULL. +GTEST_API_ bool SkipPrefix(const char* prefix, const char** pstr); + +#if GTEST_HAS_TYPED_TEST || GTEST_HAS_TYPED_TEST_P + +// State of the definition of a type-parameterized test case. +class GTEST_API_ TypedTestCasePState { + public: + TypedTestCasePState() : registered_(false) {} + + // Adds the given test name to defined_test_names_ and return true + // if the test case hasn't been registered; otherwise aborts the + // program. + bool AddTestName(const char* file, int line, const char* case_name, + const char* test_name) { + if (registered_) { + fprintf(stderr, "%s Test %s must be defined before " + "REGISTER_TYPED_TEST_CASE_P(%s, ...).\n", + FormatFileLocation(file, line).c_str(), test_name, case_name); + fflush(stderr); + posix::Abort(); + } + registered_tests_.insert( + ::std::make_pair(test_name, CodeLocation(file, line))); + return true; + } + + bool TestExists(const std::string& test_name) const { + return registered_tests_.count(test_name) > 0; + } + + const CodeLocation& GetCodeLocation(const std::string& test_name) const { + RegisteredTestsMap::const_iterator it = registered_tests_.find(test_name); + GTEST_CHECK_(it != registered_tests_.end()); + return it->second; + } + + // Verifies that registered_tests match the test names in + // defined_test_names_; returns registered_tests if successful, or + // aborts the program otherwise. + const char* VerifyRegisteredTestNames( + const char* file, int line, const char* registered_tests); + + private: + typedef ::std::map RegisteredTestsMap; + + bool registered_; + RegisteredTestsMap registered_tests_; +}; + +// Skips to the first non-space char after the first comma in 'str'; +// returns NULL if no comma is found in 'str'. +inline const char* SkipComma(const char* str) { + const char* comma = strchr(str, ','); + if (comma == NULL) { + return NULL; + } + while (IsSpace(*(++comma))) {} + return comma; +} + +// Returns the prefix of 'str' before the first comma in it; returns +// the entire string if it contains no comma. +inline std::string GetPrefixUntilComma(const char* str) { + const char* comma = strchr(str, ','); + return comma == NULL ? str : std::string(str, comma); +} + +// Splits a given string on a given delimiter, populating a given +// vector with the fields. +void SplitString(const ::std::string& str, char delimiter, + ::std::vector< ::std::string>* dest); + +// TypeParameterizedTest::Register() +// registers a list of type-parameterized tests with Google Test. The +// return value is insignificant - we just need to return something +// such that we can call this function in a namespace scope. +// +// Implementation note: The GTEST_TEMPLATE_ macro declares a template +// template parameter. It's defined in gtest-type-util.h. +template +class TypeParameterizedTest { + public: + // 'index' is the index of the test in the type list 'Types' + // specified in INSTANTIATE_TYPED_TEST_CASE_P(Prefix, TestCase, + // Types). Valid values for 'index' are [0, N - 1] where N is the + // length of Types. + static bool Register(const char* prefix, + CodeLocation code_location, + const char* case_name, const char* test_names, + int index) { + typedef typename Types::Head Type; + typedef Fixture FixtureClass; + typedef typename GTEST_BIND_(TestSel, Type) TestClass; + + // First, registers the first type-parameterized test in the type + // list. + MakeAndRegisterTestInfo( + (std::string(prefix) + (prefix[0] == '\0' ? "" : "/") + case_name + "/" + + StreamableToString(index)).c_str(), + StripTrailingSpaces(GetPrefixUntilComma(test_names)).c_str(), + GetTypeName().c_str(), + NULL, // No value parameter. + code_location, + GetTypeId(), + TestClass::SetUpTestCase, + TestClass::TearDownTestCase, + new TestFactoryImpl); + + // Next, recurses (at compile time) with the tail of the type list. + return TypeParameterizedTest + ::Register(prefix, code_location, case_name, test_names, index + 1); + } +}; + +// The base case for the compile time recursion. +template +class TypeParameterizedTest { + public: + static bool Register(const char* /*prefix*/, CodeLocation, + const char* /*case_name*/, const char* /*test_names*/, + int /*index*/) { + return true; + } +}; + +// TypeParameterizedTestCase::Register() +// registers *all combinations* of 'Tests' and 'Types' with Google +// Test. The return value is insignificant - we just need to return +// something such that we can call this function in a namespace scope. +template +class TypeParameterizedTestCase { + public: + static bool Register(const char* prefix, CodeLocation code_location, + const TypedTestCasePState* state, + const char* case_name, const char* test_names) { + std::string test_name = StripTrailingSpaces( + GetPrefixUntilComma(test_names)); + if (!state->TestExists(test_name)) { + fprintf(stderr, "Failed to get code location for test %s.%s at %s.", + case_name, test_name.c_str(), + FormatFileLocation(code_location.file.c_str(), + code_location.line).c_str()); + fflush(stderr); + posix::Abort(); + } + const CodeLocation& test_location = state->GetCodeLocation(test_name); + + typedef typename Tests::Head Head; + + // First, register the first test in 'Test' for each type in 'Types'. + TypeParameterizedTest::Register( + prefix, test_location, case_name, test_names, 0); + + // Next, recurses (at compile time) with the tail of the test list. + return TypeParameterizedTestCase + ::Register(prefix, code_location, state, + case_name, SkipComma(test_names)); + } +}; + +// The base case for the compile time recursion. +template +class TypeParameterizedTestCase { + public: + static bool Register(const char* /*prefix*/, CodeLocation, + const TypedTestCasePState* /*state*/, + const char* /*case_name*/, const char* /*test_names*/) { + return true; + } +}; + +#endif // GTEST_HAS_TYPED_TEST || GTEST_HAS_TYPED_TEST_P + +// Returns the current OS stack trace as an std::string. +// +// The maximum number of stack frames to be included is specified by +// the gtest_stack_trace_depth flag. The skip_count parameter +// specifies the number of top frames to be skipped, which doesn't +// count against the number of frames to be included. +// +// For example, if Foo() calls Bar(), which in turn calls +// GetCurrentOsStackTraceExceptTop(..., 1), Foo() will be included in +// the trace but Bar() and GetCurrentOsStackTraceExceptTop() won't. +GTEST_API_ std::string GetCurrentOsStackTraceExceptTop( + UnitTest* unit_test, int skip_count); + +// Helpers for suppressing warnings on unreachable code or constant +// condition. + +// Always returns true. +GTEST_API_ bool AlwaysTrue(); + +// Always returns false. +inline bool AlwaysFalse() { return !AlwaysTrue(); } + +// Helper for suppressing false warning from Clang on a const char* +// variable declared in a conditional expression always being NULL in +// the else branch. +struct GTEST_API_ ConstCharPtr { + ConstCharPtr(const char* str) : value(str) {} + operator bool() const { return true; } + const char* value; +}; + +// A simple Linear Congruential Generator for generating random +// numbers with a uniform distribution. Unlike rand() and srand(), it +// doesn't use global state (and therefore can't interfere with user +// code). Unlike rand_r(), it's portable. An LCG isn't very random, +// but it's good enough for our purposes. +class GTEST_API_ Random { + public: + static const UInt32 kMaxRange = 1u << 31; + + explicit Random(UInt32 seed) : state_(seed) {} + + void Reseed(UInt32 seed) { state_ = seed; } + + // Generates a random number from [0, range). Crashes if 'range' is + // 0 or greater than kMaxRange. + UInt32 Generate(UInt32 range); + + private: + UInt32 state_; + GTEST_DISALLOW_COPY_AND_ASSIGN_(Random); +}; + +// Defining a variable of type CompileAssertTypesEqual will cause a +// compiler error iff T1 and T2 are different types. +template +struct CompileAssertTypesEqual; + +template +struct CompileAssertTypesEqual { +}; + +// Removes the reference from a type if it is a reference type, +// otherwise leaves it unchanged. This is the same as +// tr1::remove_reference, which is not widely available yet. +template +struct RemoveReference { typedef T type; }; // NOLINT +template +struct RemoveReference { typedef T type; }; // NOLINT + +// A handy wrapper around RemoveReference that works when the argument +// T depends on template parameters. +#define GTEST_REMOVE_REFERENCE_(T) \ + typename ::testing::internal::RemoveReference::type + +// Removes const from a type if it is a const type, otherwise leaves +// it unchanged. This is the same as tr1::remove_const, which is not +// widely available yet. +template +struct RemoveConst { typedef T type; }; // NOLINT +template +struct RemoveConst { typedef T type; }; // NOLINT + +// MSVC 8.0, Sun C++, and IBM XL C++ have a bug which causes the above +// definition to fail to remove the const in 'const int[3]' and 'const +// char[3][4]'. The following specialization works around the bug. +template +struct RemoveConst { + typedef typename RemoveConst::type type[N]; +}; + +#if defined(_MSC_VER) && _MSC_VER < 1400 +// This is the only specialization that allows VC++ 7.1 to remove const in +// 'const int[3] and 'const int[3][4]'. However, it causes trouble with GCC +// and thus needs to be conditionally compiled. +template +struct RemoveConst { + typedef typename RemoveConst::type type[N]; +}; +#endif + +// A handy wrapper around RemoveConst that works when the argument +// T depends on template parameters. +#define GTEST_REMOVE_CONST_(T) \ + typename ::testing::internal::RemoveConst::type + +// Turns const U&, U&, const U, and U all into U. +#define GTEST_REMOVE_REFERENCE_AND_CONST_(T) \ + GTEST_REMOVE_CONST_(GTEST_REMOVE_REFERENCE_(T)) + +// Adds reference to a type if it is not a reference type, +// otherwise leaves it unchanged. This is the same as +// tr1::add_reference, which is not widely available yet. +template +struct AddReference { typedef T& type; }; // NOLINT +template +struct AddReference { typedef T& type; }; // NOLINT + +// A handy wrapper around AddReference that works when the argument T +// depends on template parameters. +#define GTEST_ADD_REFERENCE_(T) \ + typename ::testing::internal::AddReference::type + +// Adds a reference to const on top of T as necessary. For example, +// it transforms +// +// char ==> const char& +// const char ==> const char& +// char& ==> const char& +// const char& ==> const char& +// +// The argument T must depend on some template parameters. +#define GTEST_REFERENCE_TO_CONST_(T) \ + GTEST_ADD_REFERENCE_(const GTEST_REMOVE_REFERENCE_(T)) + +// ImplicitlyConvertible::value is a compile-time bool +// constant that's true iff type From can be implicitly converted to +// type To. +template +class ImplicitlyConvertible { + private: + // We need the following helper functions only for their types. + // They have no implementations. + + // MakeFrom() is an expression whose type is From. We cannot simply + // use From(), as the type From may not have a public default + // constructor. + static typename AddReference::type MakeFrom(); + + // These two functions are overloaded. Given an expression + // Helper(x), the compiler will pick the first version if x can be + // implicitly converted to type To; otherwise it will pick the + // second version. + // + // The first version returns a value of size 1, and the second + // version returns a value of size 2. Therefore, by checking the + // size of Helper(x), which can be done at compile time, we can tell + // which version of Helper() is used, and hence whether x can be + // implicitly converted to type To. + static char Helper(To); + static char (&Helper(...))[2]; // NOLINT + + // We have to put the 'public' section after the 'private' section, + // or MSVC refuses to compile the code. + public: +#if defined(__BORLANDC__) + // C++Builder cannot use member overload resolution during template + // instantiation. The simplest workaround is to use its C++0x type traits + // functions (C++Builder 2009 and above only). + static const bool value = __is_convertible(From, To); +#else + // MSVC warns about implicitly converting from double to int for + // possible loss of data, so we need to temporarily disable the + // warning. + GTEST_DISABLE_MSC_WARNINGS_PUSH_(4244) + static const bool value = + sizeof(Helper(ImplicitlyConvertible::MakeFrom())) == 1; + GTEST_DISABLE_MSC_WARNINGS_POP_() +#endif // __BORLANDC__ +}; +template +const bool ImplicitlyConvertible::value; + +// IsAProtocolMessage::value is a compile-time bool constant that's +// true iff T is type ProtocolMessage, proto2::Message, or a subclass +// of those. +template +struct IsAProtocolMessage + : public bool_constant< + ImplicitlyConvertible::value || + ImplicitlyConvertible::value> { +}; + +// When the compiler sees expression IsContainerTest(0), if C is an +// STL-style container class, the first overload of IsContainerTest +// will be viable (since both C::iterator* and C::const_iterator* are +// valid types and NULL can be implicitly converted to them). It will +// be picked over the second overload as 'int' is a perfect match for +// the type of argument 0. If C::iterator or C::const_iterator is not +// a valid type, the first overload is not viable, and the second +// overload will be picked. Therefore, we can determine whether C is +// a container class by checking the type of IsContainerTest(0). +// The value of the expression is insignificant. +// +// Note that we look for both C::iterator and C::const_iterator. The +// reason is that C++ injects the name of a class as a member of the +// class itself (e.g. you can refer to class iterator as either +// 'iterator' or 'iterator::iterator'). If we look for C::iterator +// only, for example, we would mistakenly think that a class named +// iterator is an STL container. +// +// Also note that the simpler approach of overloading +// IsContainerTest(typename C::const_iterator*) and +// IsContainerTest(...) doesn't work with Visual Age C++ and Sun C++. +typedef int IsContainer; +template +IsContainer IsContainerTest(int /* dummy */, + typename C::iterator* /* it */ = NULL, + typename C::const_iterator* /* const_it */ = NULL) { + return 0; +} + +typedef char IsNotContainer; +template +IsNotContainer IsContainerTest(long /* dummy */) { return '\0'; } + +// EnableIf::type is void when 'Cond' is true, and +// undefined when 'Cond' is false. To use SFINAE to make a function +// overload only apply when a particular expression is true, add +// "typename EnableIf::type* = 0" as the last parameter. +template struct EnableIf; +template<> struct EnableIf { typedef void type; }; // NOLINT + +// Utilities for native arrays. + +// ArrayEq() compares two k-dimensional native arrays using the +// elements' operator==, where k can be any integer >= 0. When k is +// 0, ArrayEq() degenerates into comparing a single pair of values. + +template +bool ArrayEq(const T* lhs, size_t size, const U* rhs); + +// This generic version is used when k is 0. +template +inline bool ArrayEq(const T& lhs, const U& rhs) { return lhs == rhs; } + +// This overload is used when k >= 1. +template +inline bool ArrayEq(const T(&lhs)[N], const U(&rhs)[N]) { + return internal::ArrayEq(lhs, N, rhs); +} + +// This helper reduces code bloat. If we instead put its logic inside +// the previous ArrayEq() function, arrays with different sizes would +// lead to different copies of the template code. +template +bool ArrayEq(const T* lhs, size_t size, const U* rhs) { + for (size_t i = 0; i != size; i++) { + if (!internal::ArrayEq(lhs[i], rhs[i])) + return false; + } + return true; +} + +// Finds the first element in the iterator range [begin, end) that +// equals elem. Element may be a native array type itself. +template +Iter ArrayAwareFind(Iter begin, Iter end, const Element& elem) { + for (Iter it = begin; it != end; ++it) { + if (internal::ArrayEq(*it, elem)) + return it; + } + return end; +} + +// CopyArray() copies a k-dimensional native array using the elements' +// operator=, where k can be any integer >= 0. When k is 0, +// CopyArray() degenerates into copying a single value. + +template +void CopyArray(const T* from, size_t size, U* to); + +// This generic version is used when k is 0. +template +inline void CopyArray(const T& from, U* to) { *to = from; } + +// This overload is used when k >= 1. +template +inline void CopyArray(const T(&from)[N], U(*to)[N]) { + internal::CopyArray(from, N, *to); +} + +// This helper reduces code bloat. If we instead put its logic inside +// the previous CopyArray() function, arrays with different sizes +// would lead to different copies of the template code. +template +void CopyArray(const T* from, size_t size, U* to) { + for (size_t i = 0; i != size; i++) { + internal::CopyArray(from[i], to + i); + } +} + +// The relation between an NativeArray object (see below) and the +// native array it represents. +// We use 2 different structs to allow non-copyable types to be used, as long +// as RelationToSourceReference() is passed. +struct RelationToSourceReference {}; +struct RelationToSourceCopy {}; + +// Adapts a native array to a read-only STL-style container. Instead +// of the complete STL container concept, this adaptor only implements +// members useful for Google Mock's container matchers. New members +// should be added as needed. To simplify the implementation, we only +// support Element being a raw type (i.e. having no top-level const or +// reference modifier). It's the client's responsibility to satisfy +// this requirement. Element can be an array type itself (hence +// multi-dimensional arrays are supported). +template +class NativeArray { + public: + // STL-style container typedefs. + typedef Element value_type; + typedef Element* iterator; + typedef const Element* const_iterator; + + // Constructs from a native array. References the source. + NativeArray(const Element* array, size_t count, RelationToSourceReference) { + InitRef(array, count); + } + + // Constructs from a native array. Copies the source. + NativeArray(const Element* array, size_t count, RelationToSourceCopy) { + InitCopy(array, count); + } + + // Copy constructor. + NativeArray(const NativeArray& rhs) { + (this->*rhs.clone_)(rhs.array_, rhs.size_); + } + + ~NativeArray() { + if (clone_ != &NativeArray::InitRef) + delete[] array_; + } + + // STL-style container methods. + size_t size() const { return size_; } + const_iterator begin() const { return array_; } + const_iterator end() const { return array_ + size_; } + bool operator==(const NativeArray& rhs) const { + return size() == rhs.size() && + ArrayEq(begin(), size(), rhs.begin()); + } + + private: + enum { + kCheckTypeIsNotConstOrAReference = StaticAssertTypeEqHelper< + Element, GTEST_REMOVE_REFERENCE_AND_CONST_(Element)>::value, + }; + + // Initializes this object with a copy of the input. + void InitCopy(const Element* array, size_t a_size) { + Element* const copy = new Element[a_size]; + CopyArray(array, a_size, copy); + array_ = copy; + size_ = a_size; + clone_ = &NativeArray::InitCopy; + } + + // Initializes this object with a reference of the input. + void InitRef(const Element* array, size_t a_size) { + array_ = array; + size_ = a_size; + clone_ = &NativeArray::InitRef; + } + + const Element* array_; + size_t size_; + void (NativeArray::*clone_)(const Element*, size_t); + + GTEST_DISALLOW_ASSIGN_(NativeArray); +}; + +} // namespace internal +} // namespace testing + +#define GTEST_MESSAGE_AT_(file, line, message, result_type) \ + ::testing::internal::AssertHelper(result_type, file, line, message) \ + = ::testing::Message() + +#define GTEST_MESSAGE_(message, result_type) \ + GTEST_MESSAGE_AT_(__FILE__, __LINE__, message, result_type) + +#define GTEST_FATAL_FAILURE_(message) \ + return GTEST_MESSAGE_(message, ::testing::TestPartResult::kFatalFailure) + +#define GTEST_NONFATAL_FAILURE_(message) \ + GTEST_MESSAGE_(message, ::testing::TestPartResult::kNonFatalFailure) + +#define GTEST_SUCCESS_(message) \ + GTEST_MESSAGE_(message, ::testing::TestPartResult::kSuccess) + +// Suppresses MSVC warnings 4072 (unreachable code) for the code following +// statement if it returns or throws (or doesn't return or throw in some +// situations). +#define GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement) \ + if (::testing::internal::AlwaysTrue()) { statement; } + +#define GTEST_TEST_THROW_(statement, expected_exception, fail) \ + GTEST_AMBIGUOUS_ELSE_BLOCKER_ \ + if (::testing::internal::ConstCharPtr gtest_msg = "") { \ + bool gtest_caught_expected = false; \ + try { \ + GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \ + } \ + catch (expected_exception const&) { \ + gtest_caught_expected = true; \ + } \ + catch (...) { \ + gtest_msg.value = \ + "Expected: " #statement " throws an exception of type " \ + #expected_exception ".\n Actual: it throws a different type."; \ + goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \ + } \ + if (!gtest_caught_expected) { \ + gtest_msg.value = \ + "Expected: " #statement " throws an exception of type " \ + #expected_exception ".\n Actual: it throws nothing."; \ + goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \ + } \ + } else \ + GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__): \ + fail(gtest_msg.value) + +#define GTEST_TEST_NO_THROW_(statement, fail) \ + GTEST_AMBIGUOUS_ELSE_BLOCKER_ \ + if (::testing::internal::AlwaysTrue()) { \ + try { \ + GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \ + } \ + catch (...) { \ + goto GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__); \ + } \ + } else \ + GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__): \ + fail("Expected: " #statement " doesn't throw an exception.\n" \ + " Actual: it throws.") + +#define GTEST_TEST_ANY_THROW_(statement, fail) \ + GTEST_AMBIGUOUS_ELSE_BLOCKER_ \ + if (::testing::internal::AlwaysTrue()) { \ + bool gtest_caught_any = false; \ + try { \ + GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \ + } \ + catch (...) { \ + gtest_caught_any = true; \ + } \ + if (!gtest_caught_any) { \ + goto GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__); \ + } \ + } else \ + GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__): \ + fail("Expected: " #statement " throws an exception.\n" \ + " Actual: it doesn't.") + + +// Implements Boolean test assertions such as EXPECT_TRUE. expression can be +// either a boolean expression or an AssertionResult. text is a textual +// represenation of expression as it was passed into the EXPECT_TRUE. +#define GTEST_TEST_BOOLEAN_(expression, text, actual, expected, fail) \ + GTEST_AMBIGUOUS_ELSE_BLOCKER_ \ + if (const ::testing::AssertionResult gtest_ar_ = \ + ::testing::AssertionResult(expression)) \ + ; \ + else \ + fail(::testing::internal::GetBoolAssertionFailureMessage(\ + gtest_ar_, text, #actual, #expected).c_str()) + +#define GTEST_TEST_NO_FATAL_FAILURE_(statement, fail) \ + GTEST_AMBIGUOUS_ELSE_BLOCKER_ \ + if (::testing::internal::AlwaysTrue()) { \ + ::testing::internal::HasNewFatalFailureHelper gtest_fatal_failure_checker; \ + GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \ + if (gtest_fatal_failure_checker.has_new_fatal_failure()) { \ + goto GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__); \ + } \ + } else \ + GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__): \ + fail("Expected: " #statement " doesn't generate new fatal " \ + "failures in the current thread.\n" \ + " Actual: it does.") + +// Expands to the name of the class that implements the given test. +#define GTEST_TEST_CLASS_NAME_(test_case_name, test_name) \ + test_case_name##_##test_name##_Test + +// Helper macro for defining tests. +#define GTEST_TEST_(test_case_name, test_name, parent_class, parent_id)\ +class GTEST_TEST_CLASS_NAME_(test_case_name, test_name) : public parent_class {\ + public:\ + GTEST_TEST_CLASS_NAME_(test_case_name, test_name)() {}\ + private:\ + virtual void TestBody();\ + static ::testing::TestInfo* const test_info_ GTEST_ATTRIBUTE_UNUSED_;\ + GTEST_DISALLOW_COPY_AND_ASSIGN_(\ + GTEST_TEST_CLASS_NAME_(test_case_name, test_name));\ +};\ +\ +::testing::TestInfo* const GTEST_TEST_CLASS_NAME_(test_case_name, test_name)\ + ::test_info_ =\ + ::testing::internal::MakeAndRegisterTestInfo(\ + #test_case_name, #test_name, NULL, NULL, \ + ::testing::internal::CodeLocation(__FILE__, __LINE__), \ + (parent_id), \ + parent_class::SetUpTestCase, \ + parent_class::TearDownTestCase, \ + new ::testing::internal::TestFactoryImpl<\ + GTEST_TEST_CLASS_NAME_(test_case_name, test_name)>);\ +void GTEST_TEST_CLASS_NAME_(test_case_name, test_name)::TestBody() + +#endif // GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_ + diff --git a/third_party/googletest/src/include/gtest/internal/gtest-linked_ptr.h b/third_party/googletest/src/include/gtest/internal/gtest-linked_ptr.h new file mode 100644 index 0000000..3602942 --- /dev/null +++ b/third_party/googletest/src/include/gtest/internal/gtest-linked_ptr.h @@ -0,0 +1,243 @@ +// Copyright 2003 Google Inc. +// All rights reserved. +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: +// +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above +// copyright notice, this list of conditions and the following disclaimer +// in the documentation and/or other materials provided with the +// distribution. +// * Neither the name of Google Inc. nor the names of its +// contributors may be used to endorse or promote products derived from +// this software without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +// +// Authors: Dan Egnor (egnor@google.com) +// +// A "smart" pointer type with reference tracking. Every pointer to a +// particular object is kept on a circular linked list. When the last pointer +// to an object is destroyed or reassigned, the object is deleted. +// +// Used properly, this deletes the object when the last reference goes away. +// There are several caveats: +// - Like all reference counting schemes, cycles lead to leaks. +// - Each smart pointer is actually two pointers (8 bytes instead of 4). +// - Every time a pointer is assigned, the entire list of pointers to that +// object is traversed. This class is therefore NOT SUITABLE when there +// will often be more than two or three pointers to a particular object. +// - References are only tracked as long as linked_ptr<> objects are copied. +// If a linked_ptr<> is converted to a raw pointer and back, BAD THINGS +// will happen (double deletion). +// +// A good use of this class is storing object references in STL containers. +// You can safely put linked_ptr<> in a vector<>. +// Other uses may not be as good. +// +// Note: If you use an incomplete type with linked_ptr<>, the class +// *containing* linked_ptr<> must have a constructor and destructor (even +// if they do nothing!). +// +// Bill Gibbons suggested we use something like this. +// +// Thread Safety: +// Unlike other linked_ptr implementations, in this implementation +// a linked_ptr object is thread-safe in the sense that: +// - it's safe to copy linked_ptr objects concurrently, +// - it's safe to copy *from* a linked_ptr and read its underlying +// raw pointer (e.g. via get()) concurrently, and +// - it's safe to write to two linked_ptrs that point to the same +// shared object concurrently. +// TODO(wan@google.com): rename this to safe_linked_ptr to avoid +// confusion with normal linked_ptr. + +#ifndef GTEST_INCLUDE_GTEST_INTERNAL_GTEST_LINKED_PTR_H_ +#define GTEST_INCLUDE_GTEST_INTERNAL_GTEST_LINKED_PTR_H_ + +#include +#include + +#include "gtest/internal/gtest-port.h" + +namespace testing { +namespace internal { + +// Protects copying of all linked_ptr objects. +GTEST_API_ GTEST_DECLARE_STATIC_MUTEX_(g_linked_ptr_mutex); + +// This is used internally by all instances of linked_ptr<>. It needs to be +// a non-template class because different types of linked_ptr<> can refer to +// the same object (linked_ptr(obj) vs linked_ptr(obj)). +// So, it needs to be possible for different types of linked_ptr to participate +// in the same circular linked list, so we need a single class type here. +// +// DO NOT USE THIS CLASS DIRECTLY YOURSELF. Use linked_ptr. +class linked_ptr_internal { + public: + // Create a new circle that includes only this instance. + void join_new() { + next_ = this; + } + + // Many linked_ptr operations may change p.link_ for some linked_ptr + // variable p in the same circle as this object. Therefore we need + // to prevent two such operations from occurring concurrently. + // + // Note that different types of linked_ptr objects can coexist in a + // circle (e.g. linked_ptr, linked_ptr, and + // linked_ptr). Therefore we must use a single mutex to + // protect all linked_ptr objects. This can create serious + // contention in production code, but is acceptable in a testing + // framework. + + // Join an existing circle. + void join(linked_ptr_internal const* ptr) + GTEST_LOCK_EXCLUDED_(g_linked_ptr_mutex) { + MutexLock lock(&g_linked_ptr_mutex); + + linked_ptr_internal const* p = ptr; + while (p->next_ != ptr) { + assert(p->next_ != this && + "Trying to join() a linked ring we are already in. " + "Is GMock thread safety enabled?"); + p = p->next_; + } + p->next_ = this; + next_ = ptr; + } + + // Leave whatever circle we're part of. Returns true if we were the + // last member of the circle. Once this is done, you can join() another. + bool depart() + GTEST_LOCK_EXCLUDED_(g_linked_ptr_mutex) { + MutexLock lock(&g_linked_ptr_mutex); + + if (next_ == this) return true; + linked_ptr_internal const* p = next_; + while (p->next_ != this) { + assert(p->next_ != next_ && + "Trying to depart() a linked ring we are not in. " + "Is GMock thread safety enabled?"); + p = p->next_; + } + p->next_ = next_; + return false; + } + + private: + mutable linked_ptr_internal const* next_; +}; + +template +class linked_ptr { + public: + typedef T element_type; + + // Take over ownership of a raw pointer. This should happen as soon as + // possible after the object is created. + explicit linked_ptr(T* ptr = NULL) { capture(ptr); } + ~linked_ptr() { depart(); } + + // Copy an existing linked_ptr<>, adding ourselves to the list of references. + template linked_ptr(linked_ptr const& ptr) { copy(&ptr); } + linked_ptr(linked_ptr const& ptr) { // NOLINT + assert(&ptr != this); + copy(&ptr); + } + + // Assignment releases the old value and acquires the new. + template linked_ptr& operator=(linked_ptr const& ptr) { + depart(); + copy(&ptr); + return *this; + } + + linked_ptr& operator=(linked_ptr const& ptr) { + if (&ptr != this) { + depart(); + copy(&ptr); + } + return *this; + } + + // Smart pointer members. + void reset(T* ptr = NULL) { + depart(); + capture(ptr); + } + T* get() const { return value_; } + T* operator->() const { return value_; } + T& operator*() const { return *value_; } + + bool operator==(T* p) const { return value_ == p; } + bool operator!=(T* p) const { return value_ != p; } + template + bool operator==(linked_ptr const& ptr) const { + return value_ == ptr.get(); + } + template + bool operator!=(linked_ptr const& ptr) const { + return value_ != ptr.get(); + } + + private: + template + friend class linked_ptr; + + T* value_; + linked_ptr_internal link_; + + void depart() { + if (link_.depart()) delete value_; + } + + void capture(T* ptr) { + value_ = ptr; + link_.join_new(); + } + + template void copy(linked_ptr const* ptr) { + value_ = ptr->get(); + if (value_) + link_.join(&ptr->link_); + else + link_.join_new(); + } +}; + +template inline +bool operator==(T* ptr, const linked_ptr& x) { + return ptr == x.get(); +} + +template inline +bool operator!=(T* ptr, const linked_ptr& x) { + return ptr != x.get(); +} + +// A function to convert T* into linked_ptr +// Doing e.g. make_linked_ptr(new FooBarBaz(arg)) is a shorter notation +// for linked_ptr >(new FooBarBaz(arg)) +template +linked_ptr make_linked_ptr(T* ptr) { + return linked_ptr(ptr); +} + +} // namespace internal +} // namespace testing + +#endif // GTEST_INCLUDE_GTEST_INTERNAL_GTEST_LINKED_PTR_H_ diff --git a/third_party/googletest/src/include/gtest/internal/gtest-param-util-generated.h b/third_party/googletest/src/include/gtest/internal/gtest-param-util-generated.h new file mode 100644 index 0000000..4d1d81d --- /dev/null +++ b/third_party/googletest/src/include/gtest/internal/gtest-param-util-generated.h @@ -0,0 +1,5146 @@ +// This file was GENERATED by command: +// pump.py gtest-param-util-generated.h.pump +// DO NOT EDIT BY HAND!!! + +// Copyright 2008 Google Inc. +// All Rights Reserved. +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: +// +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above +// copyright notice, this list of conditions and the following disclaimer +// in the documentation and/or other materials provided with the +// distribution. +// * Neither the name of Google Inc. nor the names of its +// contributors may be used to endorse or promote products derived from +// this software without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +// +// Author: vladl@google.com (Vlad Losev) + +// Type and function utilities for implementing parameterized tests. +// This file is generated by a SCRIPT. DO NOT EDIT BY HAND! +// +// Currently Google Test supports at most 50 arguments in Values, +// and at most 10 arguments in Combine. Please contact +// googletestframework@googlegroups.com if you need more. +// Please note that the number of arguments to Combine is limited +// by the maximum arity of the implementation of tuple which is +// currently set at 10. + +#ifndef GTEST_INCLUDE_GTEST_INTERNAL_GTEST_PARAM_UTIL_GENERATED_H_ +#define GTEST_INCLUDE_GTEST_INTERNAL_GTEST_PARAM_UTIL_GENERATED_H_ + +// scripts/fuse_gtest.py depends on gtest's own header being #included +// *unconditionally*. Therefore these #includes cannot be moved +// inside #if GTEST_HAS_PARAM_TEST. +#include "gtest/internal/gtest-param-util.h" +#include "gtest/internal/gtest-port.h" + +#if GTEST_HAS_PARAM_TEST + +namespace testing { + +// Forward declarations of ValuesIn(), which is implemented in +// include/gtest/gtest-param-test.h. +template +internal::ParamGenerator< + typename ::testing::internal::IteratorTraits::value_type> +ValuesIn(ForwardIterator begin, ForwardIterator end); + +template +internal::ParamGenerator ValuesIn(const T (&array)[N]); + +template +internal::ParamGenerator ValuesIn( + const Container& container); + +namespace internal { + +// Used in the Values() function to provide polymorphic capabilities. +template +class ValueArray1 { + public: + explicit ValueArray1(T1 v1) : v1_(v1) {} + + template + operator ParamGenerator() const { + const T array[] = {static_cast(v1_)}; + return ValuesIn(array); + } + + private: + // No implementation - assignment is unsupported. + void operator=(const ValueArray1& other); + + const T1 v1_; +}; + +template +class ValueArray2 { + public: + ValueArray2(T1 v1, T2 v2) : v1_(v1), v2_(v2) {} + + template + operator ParamGenerator() const { + const T array[] = {static_cast(v1_), static_cast(v2_)}; + return ValuesIn(array); + } + + private: + // No implementation - assignment is unsupported. + void operator=(const ValueArray2& other); + + const T1 v1_; + const T2 v2_; +}; + +template +class ValueArray3 { + public: + ValueArray3(T1 v1, T2 v2, T3 v3) : v1_(v1), v2_(v2), v3_(v3) {} + + template + operator ParamGenerator() const { + const T array[] = {static_cast(v1_), static_cast(v2_), + static_cast(v3_)}; + return ValuesIn(array); + } + + private: + // No implementation - assignment is unsupported. + void operator=(const ValueArray3& other); + + const T1 v1_; + const T2 v2_; + const T3 v3_; +}; + +template +class ValueArray4 { + public: + ValueArray4(T1 v1, T2 v2, T3 v3, T4 v4) : v1_(v1), v2_(v2), v3_(v3), + v4_(v4) {} + + template + operator ParamGenerator() const { + const T array[] = {static_cast(v1_), static_cast(v2_), + static_cast(v3_), static_cast(v4_)}; + return ValuesIn(array); + } + + private: + // No implementation - assignment is unsupported. + void operator=(const ValueArray4& other); + + const T1 v1_; + const T2 v2_; + const T3 v3_; + const T4 v4_; +}; + +template +class ValueArray5 { + public: + ValueArray5(T1 v1, T2 v2, T3 v3, T4 v4, T5 v5) : v1_(v1), v2_(v2), v3_(v3), + v4_(v4), v5_(v5) {} + + template + operator ParamGenerator() const { + const T array[] = {static_cast(v1_), static_cast(v2_), + static_cast(v3_), static_cast(v4_), static_cast(v5_)}; + return ValuesIn(array); + } + + private: + // No implementation - assignment is unsupported. + void operator=(const ValueArray5& other); + + const T1 v1_; + const T2 v2_; + const T3 v3_; + const T4 v4_; + const T5 v5_; +}; + +template +class ValueArray6 { + public: + ValueArray6(T1 v1, T2 v2, T3 v3, T4 v4, T5 v5, T6 v6) : v1_(v1), v2_(v2), + v3_(v3), v4_(v4), v5_(v5), v6_(v6) {} + + template + operator ParamGenerator() const { + const T array[] = {static_cast(v1_), static_cast(v2_), + static_cast(v3_), static_cast(v4_), static_cast(v5_), + static_cast(v6_)}; + return ValuesIn(array); + } + + private: + // No implementation - assignment is unsupported. + void operator=(const ValueArray6& other); + + const T1 v1_; + const T2 v2_; + const T3 v3_; + const T4 v4_; + const T5 v5_; + const T6 v6_; +}; + +template +class ValueArray7 { + public: + ValueArray7(T1 v1, T2 v2, T3 v3, T4 v4, T5 v5, T6 v6, T7 v7) : v1_(v1), + v2_(v2), v3_(v3), v4_(v4), v5_(v5), v6_(v6), v7_(v7) {} + + template + operator ParamGenerator() const { + const T array[] = {static_cast(v1_), static_cast(v2_), + static_cast(v3_), static_cast(v4_), static_cast(v5_), + static_cast(v6_), static_cast(v7_)}; + return ValuesIn(array); + } + + private: + // No implementation - assignment is unsupported. + void operator=(const ValueArray7& other); + + const T1 v1_; + const T2 v2_; + const T3 v3_; + const T4 v4_; + const T5 v5_; + const T6 v6_; + const T7 v7_; +}; + +template +class ValueArray8 { + public: + ValueArray8(T1 v1, T2 v2, T3 v3, T4 v4, T5 v5, T6 v6, T7 v7, + T8 v8) : v1_(v1), v2_(v2), v3_(v3), v4_(v4), v5_(v5), v6_(v6), v7_(v7), + v8_(v8) {} + + template + operator ParamGenerator() const { + const T array[] = {static_cast(v1_), static_cast(v2_), + static_cast(v3_), static_cast(v4_), static_cast(v5_), + static_cast(v6_), static_cast(v7_), static_cast(v8_)}; + return ValuesIn(array); + } + + private: + // No implementation - assignment is unsupported. + void operator=(const ValueArray8& other); + + const T1 v1_; + const T2 v2_; + const T3 v3_; + const T4 v4_; + const T5 v5_; + const T6 v6_; + const T7 v7_; + const T8 v8_; +}; + +template +class ValueArray9 { + public: + ValueArray9(T1 v1, T2 v2, T3 v3, T4 v4, T5 v5, T6 v6, T7 v7, T8 v8, + T9 v9) : v1_(v1), v2_(v2), v3_(v3), v4_(v4), v5_(v5), v6_(v6), v7_(v7), + v8_(v8), v9_(v9) {} + + template + operator ParamGenerator() const { + const T array[] = {static_cast(v1_), static_cast(v2_), + static_cast(v3_), static_cast(v4_), static_cast(v5_), + static_cast(v6_), static_cast(v7_), static_cast(v8_), + static_cast(v9_)}; + return ValuesIn(array); + } + + private: + // No implementation - assignment is unsupported. + void operator=(const ValueArray9& other); + + const T1 v1_; + const T2 v2_; + const T3 v3_; + const T4 v4_; + const T5 v5_; + const T6 v6_; + const T7 v7_; + const T8 v8_; + const T9 v9_; +}; + +template +class ValueArray10 { + public: + ValueArray10(T1 v1, T2 v2, T3 v3, T4 v4, T5 v5, T6 v6, T7 v7, T8 v8, T9 v9, + T10 v10) : v1_(v1), v2_(v2), v3_(v3), v4_(v4), v5_(v5), v6_(v6), v7_(v7), + v8_(v8), v9_(v9), v10_(v10) {} + + template + operator ParamGenerator() const { + const T array[] = {static_cast(v1_), static_cast(v2_), + static_cast(v3_), static_cast(v4_), static_cast(v5_), + static_cast(v6_), static_cast(v7_), static_cast(v8_), + static_cast(v9_), static_cast(v10_)}; + return ValuesIn(array); + } + + private: + // No implementation - assignment is unsupported. + void operator=(const ValueArray10& other); + + const T1 v1_; + const T2 v2_; + const T3 v3_; + const T4 v4_; + const T5 v5_; + const T6 v6_; + const T7 v7_; + const T8 v8_; + const T9 v9_; + const T10 v10_; +}; + +template +class ValueArray11 { + public: + ValueArray11(T1 v1, T2 v2, T3 v3, T4 v4, T5 v5, T6 v6, T7 v7, T8 v8, T9 v9, + T10 v10, T11 v11) : v1_(v1), v2_(v2), v3_(v3), v4_(v4), v5_(v5), v6_(v6), + v7_(v7), v8_(v8), v9_(v9), v10_(v10), v11_(v11) {} + + template + operator ParamGenerator() const { + const T array[] = {static_cast(v1_), static_cast(v2_), + static_cast(v3_), static_cast(v4_), static_cast(v5_), + static_cast(v6_), static_cast(v7_), static_cast(v8_), + static_cast(v9_), static_cast(v10_), static_cast(v11_)}; + return ValuesIn(array); + } + + private: + // No implementation - assignment is unsupported. + void operator=(const ValueArray11& other); + + const T1 v1_; + const T2 v2_; + const T3 v3_; + const T4 v4_; + const T5 v5_; + const T6 v6_; + const T7 v7_; + const T8 v8_; + const T9 v9_; + const T10 v10_; + const T11 v11_; +}; + +template +class ValueArray12 { + public: + ValueArray12(T1 v1, T2 v2, T3 v3, T4 v4, T5 v5, T6 v6, T7 v7, T8 v8, T9 v9, + T10 v10, T11 v11, T12 v12) : v1_(v1), v2_(v2), v3_(v3), v4_(v4), v5_(v5), + v6_(v6), v7_(v7), v8_(v8), v9_(v9), v10_(v10), v11_(v11), v12_(v12) {} + + template + operator ParamGenerator() const { + const T array[] = {static_cast(v1_), static_cast(v2_), + static_cast(v3_), static_cast(v4_), static_cast(v5_), + static_cast(v6_), static_cast(v7_), static_cast(v8_), + static_cast(v9_), static_cast(v10_), static_cast(v11_), + static_cast(v12_)}; + return ValuesIn(array); + } + + private: + // No implementation - assignment is unsupported. + void operator=(const ValueArray12& other); + + const T1 v1_; + const T2 v2_; + const T3 v3_; + const T4 v4_; + const T5 v5_; + const T6 v6_; + const T7 v7_; + const T8 v8_; + const T9 v9_; + const T10 v10_; + const T11 v11_; + const T12 v12_; +}; + +template +class ValueArray13 { + public: + ValueArray13(T1 v1, T2 v2, T3 v3, T4 v4, T5 v5, T6 v6, T7 v7, T8 v8, T9 v9, + T10 v10, T11 v11, T12 v12, T13 v13) : v1_(v1), v2_(v2), v3_(v3), v4_(v4), + v5_(v5), v6_(v6), v7_(v7), v8_(v8), v9_(v9), v10_(v10), v11_(v11), + v12_(v12), v13_(v13) {} + + template + operator ParamGenerator() const { + const T array[] = {static_cast(v1_), static_cast(v2_), + static_cast(v3_), static_cast(v4_), static_cast(v5_), + static_cast(v6_), static_cast(v7_), static_cast(v8_), + static_cast(v9_), static_cast(v10_), static_cast(v11_), + static_cast(v12_), static_cast(v13_)}; + return ValuesIn(array); + } + + private: + // No implementation - assignment is unsupported. + void operator=(const ValueArray13& other); + + const T1 v1_; + const T2 v2_; + const T3 v3_; + const T4 v4_; + const T5 v5_; + const T6 v6_; + const T7 v7_; + const T8 v8_; + const T9 v9_; + const T10 v10_; + const T11 v11_; + const T12 v12_; + const T13 v13_; +}; + +template +class ValueArray14 { + public: + ValueArray14(T1 v1, T2 v2, T3 v3, T4 v4, T5 v5, T6 v6, T7 v7, T8 v8, T9 v9, + T10 v10, T11 v11, T12 v12, T13 v13, T14 v14) : v1_(v1), v2_(v2), v3_(v3), + v4_(v4), v5_(v5), v6_(v6), v7_(v7), v8_(v8), v9_(v9), v10_(v10), + v11_(v11), v12_(v12), v13_(v13), v14_(v14) {} + + template + operator ParamGenerator() const { + const T array[] = {static_cast(v1_), static_cast(v2_), + static_cast(v3_), static_cast(v4_), static_cast(v5_), + static_cast(v6_), static_cast(v7_), static_cast(v8_), + static_cast(v9_), static_cast(v10_), static_cast(v11_), + static_cast(v12_), static_cast(v13_), static_cast(v14_)}; + return ValuesIn(array); + } + + private: + // No implementation - assignment is unsupported. + void operator=(const ValueArray14& other); + + const T1 v1_; + const T2 v2_; + const T3 v3_; + const T4 v4_; + const T5 v5_; + const T6 v6_; + const T7 v7_; + const T8 v8_; + const T9 v9_; + const T10 v10_; + const T11 v11_; + const T12 v12_; + const T13 v13_; + const T14 v14_; +}; + +template +class ValueArray15 { + public: + ValueArray15(T1 v1, T2 v2, T3 v3, T4 v4, T5 v5, T6 v6, T7 v7, T8 v8, T9 v9, + T10 v10, T11 v11, T12 v12, T13 v13, T14 v14, T15 v15) : v1_(v1), v2_(v2), + v3_(v3), v4_(v4), v5_(v5), v6_(v6), v7_(v7), v8_(v8), v9_(v9), v10_(v10), + v11_(v11), v12_(v12), v13_(v13), v14_(v14), v15_(v15) {} + + template + operator ParamGenerator() const { + const T array[] = {static_cast(v1_), static_cast(v2_), + static_cast(v3_), static_cast(v4_), static_cast(v5_), + static_cast(v6_), static_cast(v7_), static_cast(v8_), + static_cast(v9_), static_cast(v10_), static_cast(v11_), + static_cast(v12_), static_cast(v13_), static_cast(v14_), + static_cast(v15_)}; + return ValuesIn(array); + } + + private: + // No implementation - assignment is unsupported. + void operator=(const ValueArray15& other); + + const T1 v1_; + const T2 v2_; + const T3 v3_; + const T4 v4_; + const T5 v5_; + const T6 v6_; + const T7 v7_; + const T8 v8_; + const T9 v9_; + const T10 v10_; + const T11 v11_; + const T12 v12_; + const T13 v13_; + const T14 v14_; + const T15 v15_; +}; + +template +class ValueArray16 { + public: + ValueArray16(T1 v1, T2 v2, T3 v3, T4 v4, T5 v5, T6 v6, T7 v7, T8 v8, T9 v9, + T10 v10, T11 v11, T12 v12, T13 v13, T14 v14, T15 v15, T16 v16) : v1_(v1), + v2_(v2), v3_(v3), v4_(v4), v5_(v5), v6_(v6), v7_(v7), v8_(v8), v9_(v9), + v10_(v10), v11_(v11), v12_(v12), v13_(v13), v14_(v14), v15_(v15), + v16_(v16) {} + + template + operator ParamGenerator() const { + const T array[] = {static_cast(v1_), static_cast(v2_), + static_cast(v3_), static_cast(v4_), static_cast(v5_), + static_cast(v6_), static_cast(v7_), static_cast(v8_), + static_cast(v9_), static_cast(v10_), static_cast(v11_), + static_cast(v12_), static_cast(v13_), static_cast(v14_), + static_cast(v15_), static_cast(v16_)}; + return ValuesIn(array); + } + + private: + // No implementation - assignment is unsupported. + void operator=(const ValueArray16& other); + + const T1 v1_; + const T2 v2_; + const T3 v3_; + const T4 v4_; + const T5 v5_; + const T6 v6_; + const T7 v7_; + const T8 v8_; + const T9 v9_; + const T10 v10_; + const T11 v11_; + const T12 v12_; + const T13 v13_; + const T14 v14_; + const T15 v15_; + const T16 v16_; +}; + +template +class ValueArray17 { + public: + ValueArray17(T1 v1, T2 v2, T3 v3, T4 v4, T5 v5, T6 v6, T7 v7, T8 v8, T9 v9, + T10 v10, T11 v11, T12 v12, T13 v13, T14 v14, T15 v15, T16 v16, + T17 v17) : v1_(v1), v2_(v2), v3_(v3), v4_(v4), v5_(v5), v6_(v6), v7_(v7), + v8_(v8), v9_(v9), v10_(v10), v11_(v11), v12_(v12), v13_(v13), v14_(v14), + v15_(v15), v16_(v16), v17_(v17) {} + + template + operator ParamGenerator() const { + const T array[] = {static_cast(v1_), static_cast(v2_), + static_cast(v3_), static_cast(v4_), static_cast(v5_), + static_cast(v6_), static_cast(v7_), static_cast(v8_), + static_cast(v9_), static_cast(v10_), static_cast(v11_), + static_cast(v12_), static_cast(v13_), static_cast(v14_), + static_cast(v15_), static_cast(v16_), static_cast(v17_)}; + return ValuesIn(array); + } + + private: + // No implementation - assignment is unsupported. + void operator=(const ValueArray17& other); + + const T1 v1_; + const T2 v2_; + const T3 v3_; + const T4 v4_; + const T5 v5_; + const T6 v6_; + const T7 v7_; + const T8 v8_; + const T9 v9_; + const T10 v10_; + const T11 v11_; + const T12 v12_; + const T13 v13_; + const T14 v14_; + const T15 v15_; + const T16 v16_; + const T17 v17_; +}; + +template +class ValueArray18 { + public: + ValueArray18(T1 v1, T2 v2, T3 v3, T4 v4, T5 v5, T6 v6, T7 v7, T8 v8, T9 v9, + T10 v10, T11 v11, T12 v12, T13 v13, T14 v14, T15 v15, T16 v16, T17 v17, + T18 v18) : v1_(v1), v2_(v2), v3_(v3), v4_(v4), v5_(v5), v6_(v6), v7_(v7), + v8_(v8), v9_(v9), v10_(v10), v11_(v11), v12_(v12), v13_(v13), v14_(v14), + v15_(v15), v16_(v16), v17_(v17), v18_(v18) {} + + template + operator ParamGenerator() const { + const T array[] = {static_cast(v1_), static_cast(v2_), + static_cast(v3_), static_cast(v4_), static_cast(v5_), + static_cast(v6_), static_cast(v7_), static_cast(v8_), + static_cast(v9_), static_cast(v10_), static_cast(v11_), + static_cast(v12_), static_cast(v13_), static_cast(v14_), + static_cast(v15_), static_cast(v16_), static_cast(v17_), + static_cast(v18_)}; + return ValuesIn(array); + } + + private: + // No implementation - assignment is unsupported. + void operator=(const ValueArray18& other); + + const T1 v1_; + const T2 v2_; + const T3 v3_; + const T4 v4_; + const T5 v5_; + const T6 v6_; + const T7 v7_; + const T8 v8_; + const T9 v9_; + const T10 v10_; + const T11 v11_; + const T12 v12_; + const T13 v13_; + const T14 v14_; + const T15 v15_; + const T16 v16_; + const T17 v17_; + const T18 v18_; +}; + +template +class ValueArray19 { + public: + ValueArray19(T1 v1, T2 v2, T3 v3, T4 v4, T5 v5, T6 v6, T7 v7, T8 v8, T9 v9, + T10 v10, T11 v11, T12 v12, T13 v13, T14 v14, T15 v15, T16 v16, T17 v17, + T18 v18, T19 v19) : v1_(v1), v2_(v2), v3_(v3), v4_(v4), v5_(v5), v6_(v6), + v7_(v7), v8_(v8), v9_(v9), v10_(v10), v11_(v11), v12_(v12), v13_(v13), + v14_(v14), v15_(v15), v16_(v16), v17_(v17), v18_(v18), v19_(v19) {} + + template + operator ParamGenerator() const { + const T array[] = {static_cast(v1_), static_cast(v2_), + static_cast(v3_), static_cast(v4_), static_cast(v5_), + static_cast(v6_), static_cast(v7_), static_cast(v8_), + static_cast(v9_), static_cast(v10_), static_cast(v11_), + static_cast(v12_), static_cast(v13_), static_cast(v14_), + static_cast(v15_), static_cast(v16_), static_cast(v17_), + static_cast(v18_), static_cast(v19_)}; + return ValuesIn(array); + } + + private: + // No implementation - assignment is unsupported. + void operator=(const ValueArray19& other); + + const T1 v1_; + const T2 v2_; + const T3 v3_; + const T4 v4_; + const T5 v5_; + const T6 v6_; + const T7 v7_; + const T8 v8_; + const T9 v9_; + const T10 v10_; + const T11 v11_; + const T12 v12_; + const T13 v13_; + const T14 v14_; + const T15 v15_; + const T16 v16_; + const T17 v17_; + const T18 v18_; + const T19 v19_; +}; + +template +class ValueArray20 { + public: + ValueArray20(T1 v1, T2 v2, T3 v3, T4 v4, T5 v5, T6 v6, T7 v7, T8 v8, T9 v9, + T10 v10, T11 v11, T12 v12, T13 v13, T14 v14, T15 v15, T16 v16, T17 v17, + T18 v18, T19 v19, T20 v20) : v1_(v1), v2_(v2), v3_(v3), v4_(v4), v5_(v5), + v6_(v6), v7_(v7), v8_(v8), v9_(v9), v10_(v10), v11_(v11), v12_(v12), + v13_(v13), v14_(v14), v15_(v15), v16_(v16), v17_(v17), v18_(v18), + v19_(v19), v20_(v20) {} + + template + operator ParamGenerator() const { + const T array[] = {static_cast(v1_), static_cast(v2_), + static_cast(v3_), static_cast(v4_), static_cast(v5_), + static_cast(v6_), static_cast(v7_), static_cast(v8_), + static_cast(v9_), static_cast(v10_), static_cast(v11_), + static_cast(v12_), static_cast(v13_), static_cast(v14_), + static_cast(v15_), static_cast(v16_), static_cast(v17_), + static_cast(v18_), static_cast(v19_), static_cast(v20_)}; + return ValuesIn(array); + } + + private: + // No implementation - assignment is unsupported. + void operator=(const ValueArray20& other); + + const T1 v1_; + const T2 v2_; + const T3 v3_; + const T4 v4_; + const T5 v5_; + const T6 v6_; + const T7 v7_; + const T8 v8_; + const T9 v9_; + const T10 v10_; + const T11 v11_; + const T12 v12_; + const T13 v13_; + const T14 v14_; + const T15 v15_; + const T16 v16_; + const T17 v17_; + const T18 v18_; + const T19 v19_; + const T20 v20_; +}; + +template +class ValueArray21 { + public: + ValueArray21(T1 v1, T2 v2, T3 v3, T4 v4, T5 v5, T6 v6, T7 v7, T8 v8, T9 v9, + T10 v10, T11 v11, T12 v12, T13 v13, T14 v14, T15 v15, T16 v16, T17 v17, + T18 v18, T19 v19, T20 v20, T21 v21) : v1_(v1), v2_(v2), v3_(v3), v4_(v4), + v5_(v5), v6_(v6), v7_(v7), v8_(v8), v9_(v9), v10_(v10), v11_(v11), + v12_(v12), v13_(v13), v14_(v14), v15_(v15), v16_(v16), v17_(v17), + v18_(v18), v19_(v19), v20_(v20), v21_(v21) {} + + template + operator ParamGenerator() const { + const T array[] = {static_cast(v1_), static_cast(v2_), + static_cast(v3_), static_cast(v4_), static_cast(v5_), + static_cast(v6_), static_cast(v7_), static_cast(v8_), + static_cast(v9_), static_cast(v10_), static_cast(v11_), + static_cast(v12_), static_cast(v13_), static_cast(v14_), + static_cast(v15_), static_cast(v16_), static_cast(v17_), + static_cast(v18_), static_cast(v19_), static_cast(v20_), + static_cast(v21_)}; + return ValuesIn(array); + } + + private: + // No implementation - assignment is unsupported. + void operator=(const ValueArray21& other); + + const T1 v1_; + const T2 v2_; + const T3 v3_; + const T4 v4_; + const T5 v5_; + const T6 v6_; + const T7 v7_; + const T8 v8_; + const T9 v9_; + const T10 v10_; + const T11 v11_; + const T12 v12_; + const T13 v13_; + const T14 v14_; + const T15 v15_; + const T16 v16_; + const T17 v17_; + const T18 v18_; + const T19 v19_; + const T20 v20_; + const T21 v21_; +}; + +template +class ValueArray22 { + public: + ValueArray22(T1 v1, T2 v2, T3 v3, T4 v4, T5 v5, T6 v6, T7 v7, T8 v8, T9 v9, + T10 v10, T11 v11, T12 v12, T13 v13, T14 v14, T15 v15, T16 v16, T17 v17, + T18 v18, T19 v19, T20 v20, T21 v21, T22 v22) : v1_(v1), v2_(v2), v3_(v3), + v4_(v4), v5_(v5), v6_(v6), v7_(v7), v8_(v8), v9_(v9), v10_(v10), + v11_(v11), v12_(v12), v13_(v13), v14_(v14), v15_(v15), v16_(v16), + v17_(v17), v18_(v18), v19_(v19), v20_(v20), v21_(v21), v22_(v22) {} + + template + operator ParamGenerator() const { + const T array[] = {static_cast(v1_), static_cast(v2_), + static_cast(v3_), static_cast(v4_), static_cast(v5_), + static_cast(v6_), static_cast(v7_), static_cast(v8_), + static_cast(v9_), static_cast(v10_), static_cast(v11_), + static_cast(v12_), static_cast(v13_), static_cast(v14_), + static_cast(v15_), static_cast(v16_), static_cast(v17_), + static_cast(v18_), static_cast(v19_), static_cast(v20_), + static_cast(v21_), static_cast(v22_)}; + return ValuesIn(array); + } + + private: + // No implementation - assignment is unsupported. + void operator=(const ValueArray22& other); + + const T1 v1_; + const T2 v2_; + const T3 v3_; + const T4 v4_; + const T5 v5_; + const T6 v6_; + const T7 v7_; + const T8 v8_; + const T9 v9_; + const T10 v10_; + const T11 v11_; + const T12 v12_; + const T13 v13_; + const T14 v14_; + const T15 v15_; + const T16 v16_; + const T17 v17_; + const T18 v18_; + const T19 v19_; + const T20 v20_; + const T21 v21_; + const T22 v22_; +}; + +template +class ValueArray23 { + public: + ValueArray23(T1 v1, T2 v2, T3 v3, T4 v4, T5 v5, T6 v6, T7 v7, T8 v8, T9 v9, + T10 v10, T11 v11, T12 v12, T13 v13, T14 v14, T15 v15, T16 v16, T17 v17, + T18 v18, T19 v19, T20 v20, T21 v21, T22 v22, T23 v23) : v1_(v1), v2_(v2), + v3_(v3), v4_(v4), v5_(v5), v6_(v6), v7_(v7), v8_(v8), v9_(v9), v10_(v10), + v11_(v11), v12_(v12), v13_(v13), v14_(v14), v15_(v15), v16_(v16), + v17_(v17), v18_(v18), v19_(v19), v20_(v20), v21_(v21), v22_(v22), + v23_(v23) {} + + template + operator ParamGenerator() const { + const T array[] = {static_cast(v1_), static_cast(v2_), + static_cast(v3_), static_cast(v4_), static_cast(v5_), + static_cast(v6_), static_cast(v7_), static_cast(v8_), + static_cast(v9_), static_cast(v10_), static_cast(v11_), + static_cast(v12_), static_cast(v13_), static_cast(v14_), + static_cast(v15_), static_cast(v16_), static_cast(v17_), + static_cast(v18_), static_cast(v19_), static_cast(v20_), + static_cast(v21_), static_cast(v22_), static_cast(v23_)}; + return ValuesIn(array); + } + + private: + // No implementation - assignment is unsupported. + void operator=(const ValueArray23& other); + + const T1 v1_; + const T2 v2_; + const T3 v3_; + const T4 v4_; + const T5 v5_; + const T6 v6_; + const T7 v7_; + const T8 v8_; + const T9 v9_; + const T10 v10_; + const T11 v11_; + const T12 v12_; + const T13 v13_; + const T14 v14_; + const T15 v15_; + const T16 v16_; + const T17 v17_; + const T18 v18_; + const T19 v19_; + const T20 v20_; + const T21 v21_; + const T22 v22_; + const T23 v23_; +}; + +template +class ValueArray24 { + public: + ValueArray24(T1 v1, T2 v2, T3 v3, T4 v4, T5 v5, T6 v6, T7 v7, T8 v8, T9 v9, + T10 v10, T11 v11, T12 v12, T13 v13, T14 v14, T15 v15, T16 v16, T17 v17, + T18 v18, T19 v19, T20 v20, T21 v21, T22 v22, T23 v23, T24 v24) : v1_(v1), + v2_(v2), v3_(v3), v4_(v4), v5_(v5), v6_(v6), v7_(v7), v8_(v8), v9_(v9), + v10_(v10), v11_(v11), v12_(v12), v13_(v13), v14_(v14), v15_(v15), + v16_(v16), v17_(v17), v18_(v18), v19_(v19), v20_(v20), v21_(v21), + v22_(v22), v23_(v23), v24_(v24) {} + + template + operator ParamGenerator() const { + const T array[] = {static_cast(v1_), static_cast(v2_), + static_cast(v3_), static_cast(v4_), static_cast(v5_), + static_cast(v6_), static_cast(v7_), static_cast(v8_), + static_cast(v9_), static_cast(v10_), static_cast(v11_), + static_cast(v12_), static_cast(v13_), static_cast(v14_), + static_cast(v15_), static_cast(v16_), static_cast(v17_), + static_cast(v18_), static_cast(v19_), static_cast(v20_), + static_cast(v21_), static_cast(v22_), static_cast(v23_), + static_cast(v24_)}; + return ValuesIn(array); + } + + private: + // No implementation - assignment is unsupported. + void operator=(const ValueArray24& other); + + const T1 v1_; + const T2 v2_; + const T3 v3_; + const T4 v4_; + const T5 v5_; + const T6 v6_; + const T7 v7_; + const T8 v8_; + const T9 v9_; + const T10 v10_; + const T11 v11_; + const T12 v12_; + const T13 v13_; + const T14 v14_; + const T15 v15_; + const T16 v16_; + const T17 v17_; + const T18 v18_; + const T19 v19_; + const T20 v20_; + const T21 v21_; + const T22 v22_; + const T23 v23_; + const T24 v24_; +}; + +template +class ValueArray25 { + public: + ValueArray25(T1 v1, T2 v2, T3 v3, T4 v4, T5 v5, T6 v6, T7 v7, T8 v8, T9 v9, + T10 v10, T11 v11, T12 v12, T13 v13, T14 v14, T15 v15, T16 v16, T17 v17, + T18 v18, T19 v19, T20 v20, T21 v21, T22 v22, T23 v23, T24 v24, + T25 v25) : v1_(v1), v2_(v2), v3_(v3), v4_(v4), v5_(v5), v6_(v6), v7_(v7), + v8_(v8), v9_(v9), v10_(v10), v11_(v11), v12_(v12), v13_(v13), v14_(v14), + v15_(v15), v16_(v16), v17_(v17), v18_(v18), v19_(v19), v20_(v20), + v21_(v21), v22_(v22), v23_(v23), v24_(v24), v25_(v25) {} + + template + operator ParamGenerator() const { + const T array[] = {static_cast(v1_), static_cast(v2_), + static_cast(v3_), static_cast(v4_), static_cast(v5_), + static_cast(v6_), static_cast(v7_), static_cast(v8_), + static_cast(v9_), static_cast(v10_), static_cast(v11_), + static_cast(v12_), static_cast(v13_), static_cast(v14_), + static_cast(v15_), static_cast(v16_), static_cast(v17_), + static_cast(v18_), static_cast(v19_), static_cast(v20_), + static_cast(v21_), static_cast(v22_), static_cast(v23_), + static_cast(v24_), static_cast(v25_)}; + return ValuesIn(array); + } + + private: + // No implementation - assignment is unsupported. + void operator=(const ValueArray25& other); + + const T1 v1_; + const T2 v2_; + const T3 v3_; + const T4 v4_; + const T5 v5_; + const T6 v6_; + const T7 v7_; + const T8 v8_; + const T9 v9_; + const T10 v10_; + const T11 v11_; + const T12 v12_; + const T13 v13_; + const T14 v14_; + const T15 v15_; + const T16 v16_; + const T17 v17_; + const T18 v18_; + const T19 v19_; + const T20 v20_; + const T21 v21_; + const T22 v22_; + const T23 v23_; + const T24 v24_; + const T25 v25_; +}; + +template +class ValueArray26 { + public: + ValueArray26(T1 v1, T2 v2, T3 v3, T4 v4, T5 v5, T6 v6, T7 v7, T8 v8, T9 v9, + T10 v10, T11 v11, T12 v12, T13 v13, T14 v14, T15 v15, T16 v16, T17 v17, + T18 v18, T19 v19, T20 v20, T21 v21, T22 v22, T23 v23, T24 v24, T25 v25, + T26 v26) : v1_(v1), v2_(v2), v3_(v3), v4_(v4), v5_(v5), v6_(v6), v7_(v7), + v8_(v8), v9_(v9), v10_(v10), v11_(v11), v12_(v12), v13_(v13), v14_(v14), + v15_(v15), v16_(v16), v17_(v17), v18_(v18), v19_(v19), v20_(v20), + v21_(v21), v22_(v22), v23_(v23), v24_(v24), v25_(v25), v26_(v26) {} + + template + operator ParamGenerator() const { + const T array[] = {static_cast(v1_), static_cast(v2_), + static_cast(v3_), static_cast(v4_), static_cast(v5_), + static_cast(v6_), static_cast(v7_), static_cast(v8_), + static_cast(v9_), static_cast(v10_), static_cast(v11_), + static_cast(v12_), static_cast(v13_), static_cast(v14_), + static_cast(v15_), static_cast(v16_), static_cast(v17_), + static_cast(v18_), static_cast(v19_), static_cast(v20_), + static_cast(v21_), static_cast(v22_), static_cast(v23_), + static_cast(v24_), static_cast(v25_), static_cast(v26_)}; + return ValuesIn(array); + } + + private: + // No implementation - assignment is unsupported. + void operator=(const ValueArray26& other); + + const T1 v1_; + const T2 v2_; + const T3 v3_; + const T4 v4_; + const T5 v5_; + const T6 v6_; + const T7 v7_; + const T8 v8_; + const T9 v9_; + const T10 v10_; + const T11 v11_; + const T12 v12_; + const T13 v13_; + const T14 v14_; + const T15 v15_; + const T16 v16_; + const T17 v17_; + const T18 v18_; + const T19 v19_; + const T20 v20_; + const T21 v21_; + const T22 v22_; + const T23 v23_; + const T24 v24_; + const T25 v25_; + const T26 v26_; +}; + +template +class ValueArray27 { + public: + ValueArray27(T1 v1, T2 v2, T3 v3, T4 v4, T5 v5, T6 v6, T7 v7, T8 v8, T9 v9, + T10 v10, T11 v11, T12 v12, T13 v13, T14 v14, T15 v15, T16 v16, T17 v17, + T18 v18, T19 v19, T20 v20, T21 v21, T22 v22, T23 v23, T24 v24, T25 v25, + T26 v26, T27 v27) : v1_(v1), v2_(v2), v3_(v3), v4_(v4), v5_(v5), v6_(v6), + v7_(v7), v8_(v8), v9_(v9), v10_(v10), v11_(v11), v12_(v12), v13_(v13), + v14_(v14), v15_(v15), v16_(v16), v17_(v17), v18_(v18), v19_(v19), + v20_(v20), v21_(v21), v22_(v22), v23_(v23), v24_(v24), v25_(v25), + v26_(v26), v27_(v27) {} + + template + operator ParamGenerator() const { + const T array[] = {static_cast(v1_), static_cast(v2_), + static_cast(v3_), static_cast(v4_), static_cast(v5_), + static_cast(v6_), static_cast(v7_), static_cast(v8_), + static_cast(v9_), static_cast(v10_), static_cast(v11_), + static_cast(v12_), static_cast(v13_), static_cast(v14_), + static_cast(v15_), static_cast(v16_), static_cast(v17_), + static_cast(v18_), static_cast(v19_), static_cast(v20_), + static_cast(v21_), static_cast(v22_), static_cast(v23_), + static_cast(v24_), static_cast(v25_), static_cast(v26_), + static_cast(v27_)}; + return ValuesIn(array); + } + + private: + // No implementation - assignment is unsupported. + void operator=(const ValueArray27& other); + + const T1 v1_; + const T2 v2_; + const T3 v3_; + const T4 v4_; + const T5 v5_; + const T6 v6_; + const T7 v7_; + const T8 v8_; + const T9 v9_; + const T10 v10_; + const T11 v11_; + const T12 v12_; + const T13 v13_; + const T14 v14_; + const T15 v15_; + const T16 v16_; + const T17 v17_; + const T18 v18_; + const T19 v19_; + const T20 v20_; + const T21 v21_; + const T22 v22_; + const T23 v23_; + const T24 v24_; + const T25 v25_; + const T26 v26_; + const T27 v27_; +}; + +template +class ValueArray28 { + public: + ValueArray28(T1 v1, T2 v2, T3 v3, T4 v4, T5 v5, T6 v6, T7 v7, T8 v8, T9 v9, + T10 v10, T11 v11, T12 v12, T13 v13, T14 v14, T15 v15, T16 v16, T17 v17, + T18 v18, T19 v19, T20 v20, T21 v21, T22 v22, T23 v23, T24 v24, T25 v25, + T26 v26, T27 v27, T28 v28) : v1_(v1), v2_(v2), v3_(v3), v4_(v4), v5_(v5), + v6_(v6), v7_(v7), v8_(v8), v9_(v9), v10_(v10), v11_(v11), v12_(v12), + v13_(v13), v14_(v14), v15_(v15), v16_(v16), v17_(v17), v18_(v18), + v19_(v19), v20_(v20), v21_(v21), v22_(v22), v23_(v23), v24_(v24), + v25_(v25), v26_(v26), v27_(v27), v28_(v28) {} + + template + operator ParamGenerator() const { + const T array[] = {static_cast(v1_), static_cast(v2_), + static_cast(v3_), static_cast(v4_), static_cast(v5_), + static_cast(v6_), static_cast(v7_), static_cast(v8_), + static_cast(v9_), static_cast(v10_), static_cast(v11_), + static_cast(v12_), static_cast(v13_), static_cast(v14_), + static_cast(v15_), static_cast(v16_), static_cast(v17_), + static_cast(v18_), static_cast(v19_), static_cast(v20_), + static_cast(v21_), static_cast(v22_), static_cast(v23_), + static_cast(v24_), static_cast(v25_), static_cast(v26_), + static_cast(v27_), static_cast(v28_)}; + return ValuesIn(array); + } + + private: + // No implementation - assignment is unsupported. + void operator=(const ValueArray28& other); + + const T1 v1_; + const T2 v2_; + const T3 v3_; + const T4 v4_; + const T5 v5_; + const T6 v6_; + const T7 v7_; + const T8 v8_; + const T9 v9_; + const T10 v10_; + const T11 v11_; + const T12 v12_; + const T13 v13_; + const T14 v14_; + const T15 v15_; + const T16 v16_; + const T17 v17_; + const T18 v18_; + const T19 v19_; + const T20 v20_; + const T21 v21_; + const T22 v22_; + const T23 v23_; + const T24 v24_; + const T25 v25_; + const T26 v26_; + const T27 v27_; + const T28 v28_; +}; + +template +class ValueArray29 { + public: + ValueArray29(T1 v1, T2 v2, T3 v3, T4 v4, T5 v5, T6 v6, T7 v7, T8 v8, T9 v9, + T10 v10, T11 v11, T12 v12, T13 v13, T14 v14, T15 v15, T16 v16, T17 v17, + T18 v18, T19 v19, T20 v20, T21 v21, T22 v22, T23 v23, T24 v24, T25 v25, + T26 v26, T27 v27, T28 v28, T29 v29) : v1_(v1), v2_(v2), v3_(v3), v4_(v4), + v5_(v5), v6_(v6), v7_(v7), v8_(v8), v9_(v9), v10_(v10), v11_(v11), + v12_(v12), v13_(v13), v14_(v14), v15_(v15), v16_(v16), v17_(v17), + v18_(v18), v19_(v19), v20_(v20), v21_(v21), v22_(v22), v23_(v23), + v24_(v24), v25_(v25), v26_(v26), v27_(v27), v28_(v28), v29_(v29) {} + + template + operator ParamGenerator() const { + const T array[] = {static_cast(v1_), static_cast(v2_), + static_cast(v3_), static_cast(v4_), static_cast(v5_), + static_cast(v6_), static_cast(v7_), static_cast(v8_), + static_cast(v9_), static_cast(v10_), static_cast(v11_), + static_cast(v12_), static_cast(v13_), static_cast(v14_), + static_cast(v15_), static_cast(v16_), static_cast(v17_), + static_cast(v18_), static_cast(v19_), static_cast(v20_), + static_cast(v21_), static_cast(v22_), static_cast(v23_), + static_cast(v24_), static_cast(v25_), static_cast(v26_), + static_cast(v27_), static_cast(v28_), static_cast(v29_)}; + return ValuesIn(array); + } + + private: + // No implementation - assignment is unsupported. + void operator=(const ValueArray29& other); + + const T1 v1_; + const T2 v2_; + const T3 v3_; + const T4 v4_; + const T5 v5_; + const T6 v6_; + const T7 v7_; + const T8 v8_; + const T9 v9_; + const T10 v10_; + const T11 v11_; + const T12 v12_; + const T13 v13_; + const T14 v14_; + const T15 v15_; + const T16 v16_; + const T17 v17_; + const T18 v18_; + const T19 v19_; + const T20 v20_; + const T21 v21_; + const T22 v22_; + const T23 v23_; + const T24 v24_; + const T25 v25_; + const T26 v26_; + const T27 v27_; + const T28 v28_; + const T29 v29_; +}; + +template +class ValueArray30 { + public: + ValueArray30(T1 v1, T2 v2, T3 v3, T4 v4, T5 v5, T6 v6, T7 v7, T8 v8, T9 v9, + T10 v10, T11 v11, T12 v12, T13 v13, T14 v14, T15 v15, T16 v16, T17 v17, + T18 v18, T19 v19, T20 v20, T21 v21, T22 v22, T23 v23, T24 v24, T25 v25, + T26 v26, T27 v27, T28 v28, T29 v29, T30 v30) : v1_(v1), v2_(v2), v3_(v3), + v4_(v4), v5_(v5), v6_(v6), v7_(v7), v8_(v8), v9_(v9), v10_(v10), + v11_(v11), v12_(v12), v13_(v13), v14_(v14), v15_(v15), v16_(v16), + v17_(v17), v18_(v18), v19_(v19), v20_(v20), v21_(v21), v22_(v22), + v23_(v23), v24_(v24), v25_(v25), v26_(v26), v27_(v27), v28_(v28), + v29_(v29), v30_(v30) {} + + template + operator ParamGenerator() const { + const T array[] = {static_cast(v1_), static_cast(v2_), + static_cast(v3_), static_cast(v4_), static_cast(v5_), + static_cast(v6_), static_cast(v7_), static_cast(v8_), + static_cast(v9_), static_cast(v10_), static_cast(v11_), + static_cast(v12_), static_cast(v13_), static_cast(v14_), + static_cast(v15_), static_cast(v16_), static_cast(v17_), + static_cast(v18_), static_cast(v19_), static_cast(v20_), + static_cast(v21_), static_cast(v22_), static_cast(v23_), + static_cast(v24_), static_cast(v25_), static_cast(v26_), + static_cast(v27_), static_cast(v28_), static_cast(v29_), + static_cast(v30_)}; + return ValuesIn(array); + } + + private: + // No implementation - assignment is unsupported. + void operator=(const ValueArray30& other); + + const T1 v1_; + const T2 v2_; + const T3 v3_; + const T4 v4_; + const T5 v5_; + const T6 v6_; + const T7 v7_; + const T8 v8_; + const T9 v9_; + const T10 v10_; + const T11 v11_; + const T12 v12_; + const T13 v13_; + const T14 v14_; + const T15 v15_; + const T16 v16_; + const T17 v17_; + const T18 v18_; + const T19 v19_; + const T20 v20_; + const T21 v21_; + const T22 v22_; + const T23 v23_; + const T24 v24_; + const T25 v25_; + const T26 v26_; + const T27 v27_; + const T28 v28_; + const T29 v29_; + const T30 v30_; +}; + +template +class ValueArray31 { + public: + ValueArray31(T1 v1, T2 v2, T3 v3, T4 v4, T5 v5, T6 v6, T7 v7, T8 v8, T9 v9, + T10 v10, T11 v11, T12 v12, T13 v13, T14 v14, T15 v15, T16 v16, T17 v17, + T18 v18, T19 v19, T20 v20, T21 v21, T22 v22, T23 v23, T24 v24, T25 v25, + T26 v26, T27 v27, T28 v28, T29 v29, T30 v30, T31 v31) : v1_(v1), v2_(v2), + v3_(v3), v4_(v4), v5_(v5), v6_(v6), v7_(v7), v8_(v8), v9_(v9), v10_(v10), + v11_(v11), v12_(v12), v13_(v13), v14_(v14), v15_(v15), v16_(v16), + v17_(v17), v18_(v18), v19_(v19), v20_(v20), v21_(v21), v22_(v22), + v23_(v23), v24_(v24), v25_(v25), v26_(v26), v27_(v27), v28_(v28), + v29_(v29), v30_(v30), v31_(v31) {} + + template + operator ParamGenerator() const { + const T array[] = {static_cast(v1_), static_cast(v2_), + static_cast(v3_), static_cast(v4_), static_cast(v5_), + static_cast(v6_), static_cast(v7_), static_cast(v8_), + static_cast(v9_), static_cast(v10_), static_cast(v11_), + static_cast(v12_), static_cast(v13_), static_cast(v14_), + static_cast(v15_), static_cast(v16_), static_cast(v17_), + static_cast(v18_), static_cast(v19_), static_cast(v20_), + static_cast(v21_), static_cast(v22_), static_cast(v23_), + static_cast(v24_), static_cast(v25_), static_cast(v26_), + static_cast(v27_), static_cast(v28_), static_cast(v29_), + static_cast(v30_), static_cast(v31_)}; + return ValuesIn(array); + } + + private: + // No implementation - assignment is unsupported. + void operator=(const ValueArray31& other); + + const T1 v1_; + const T2 v2_; + const T3 v3_; + const T4 v4_; + const T5 v5_; + const T6 v6_; + const T7 v7_; + const T8 v8_; + const T9 v9_; + const T10 v10_; + const T11 v11_; + const T12 v12_; + const T13 v13_; + const T14 v14_; + const T15 v15_; + const T16 v16_; + const T17 v17_; + const T18 v18_; + const T19 v19_; + const T20 v20_; + const T21 v21_; + const T22 v22_; + const T23 v23_; + const T24 v24_; + const T25 v25_; + const T26 v26_; + const T27 v27_; + const T28 v28_; + const T29 v29_; + const T30 v30_; + const T31 v31_; +}; + +template +class ValueArray32 { + public: + ValueArray32(T1 v1, T2 v2, T3 v3, T4 v4, T5 v5, T6 v6, T7 v7, T8 v8, T9 v9, + T10 v10, T11 v11, T12 v12, T13 v13, T14 v14, T15 v15, T16 v16, T17 v17, + T18 v18, T19 v19, T20 v20, T21 v21, T22 v22, T23 v23, T24 v24, T25 v25, + T26 v26, T27 v27, T28 v28, T29 v29, T30 v30, T31 v31, T32 v32) : v1_(v1), + v2_(v2), v3_(v3), v4_(v4), v5_(v5), v6_(v6), v7_(v7), v8_(v8), v9_(v9), + v10_(v10), v11_(v11), v12_(v12), v13_(v13), v14_(v14), v15_(v15), + v16_(v16), v17_(v17), v18_(v18), v19_(v19), v20_(v20), v21_(v21), + v22_(v22), v23_(v23), v24_(v24), v25_(v25), v26_(v26), v27_(v27), + v28_(v28), v29_(v29), v30_(v30), v31_(v31), v32_(v32) {} + + template + operator ParamGenerator() const { + const T array[] = {static_cast(v1_), static_cast(v2_), + static_cast(v3_), static_cast(v4_), static_cast(v5_), + static_cast(v6_), static_cast(v7_), static_cast(v8_), + static_cast(v9_), static_cast(v10_), static_cast(v11_), + static_cast(v12_), static_cast(v13_), static_cast(v14_), + static_cast(v15_), static_cast(v16_), static_cast(v17_), + static_cast(v18_), static_cast(v19_), static_cast(v20_), + static_cast(v21_), static_cast(v22_), static_cast(v23_), + static_cast(v24_), static_cast(v25_), static_cast(v26_), + static_cast(v27_), static_cast(v28_), static_cast(v29_), + static_cast(v30_), static_cast(v31_), static_cast(v32_)}; + return ValuesIn(array); + } + + private: + // No implementation - assignment is unsupported. + void operator=(const ValueArray32& other); + + const T1 v1_; + const T2 v2_; + const T3 v3_; + const T4 v4_; + const T5 v5_; + const T6 v6_; + const T7 v7_; + const T8 v8_; + const T9 v9_; + const T10 v10_; + const T11 v11_; + const T12 v12_; + const T13 v13_; + const T14 v14_; + const T15 v15_; + const T16 v16_; + const T17 v17_; + const T18 v18_; + const T19 v19_; + const T20 v20_; + const T21 v21_; + const T22 v22_; + const T23 v23_; + const T24 v24_; + const T25 v25_; + const T26 v26_; + const T27 v27_; + const T28 v28_; + const T29 v29_; + const T30 v30_; + const T31 v31_; + const T32 v32_; +}; + +template +class ValueArray33 { + public: + ValueArray33(T1 v1, T2 v2, T3 v3, T4 v4, T5 v5, T6 v6, T7 v7, T8 v8, T9 v9, + T10 v10, T11 v11, T12 v12, T13 v13, T14 v14, T15 v15, T16 v16, T17 v17, + T18 v18, T19 v19, T20 v20, T21 v21, T22 v22, T23 v23, T24 v24, T25 v25, + T26 v26, T27 v27, T28 v28, T29 v29, T30 v30, T31 v31, T32 v32, + T33 v33) : v1_(v1), v2_(v2), v3_(v3), v4_(v4), v5_(v5), v6_(v6), v7_(v7), + v8_(v8), v9_(v9), v10_(v10), v11_(v11), v12_(v12), v13_(v13), v14_(v14), + v15_(v15), v16_(v16), v17_(v17), v18_(v18), v19_(v19), v20_(v20), + v21_(v21), v22_(v22), v23_(v23), v24_(v24), v25_(v25), v26_(v26), + v27_(v27), v28_(v28), v29_(v29), v30_(v30), v31_(v31), v32_(v32), + v33_(v33) {} + + template + operator ParamGenerator() const { + const T array[] = {static_cast(v1_), static_cast(v2_), + static_cast(v3_), static_cast(v4_), static_cast(v5_), + static_cast(v6_), static_cast(v7_), static_cast(v8_), + static_cast(v9_), static_cast(v10_), static_cast(v11_), + static_cast(v12_), static_cast(v13_), static_cast(v14_), + static_cast(v15_), static_cast(v16_), static_cast(v17_), + static_cast(v18_), static_cast(v19_), static_cast(v20_), + static_cast(v21_), static_cast(v22_), static_cast(v23_), + static_cast(v24_), static_cast(v25_), static_cast(v26_), + static_cast(v27_), static_cast(v28_), static_cast(v29_), + static_cast(v30_), static_cast(v31_), static_cast(v32_), + static_cast(v33_)}; + return ValuesIn(array); + } + + private: + // No implementation - assignment is unsupported. + void operator=(const ValueArray33& other); + + const T1 v1_; + const T2 v2_; + const T3 v3_; + const T4 v4_; + const T5 v5_; + const T6 v6_; + const T7 v7_; + const T8 v8_; + const T9 v9_; + const T10 v10_; + const T11 v11_; + const T12 v12_; + const T13 v13_; + const T14 v14_; + const T15 v15_; + const T16 v16_; + const T17 v17_; + const T18 v18_; + const T19 v19_; + const T20 v20_; + const T21 v21_; + const T22 v22_; + const T23 v23_; + const T24 v24_; + const T25 v25_; + const T26 v26_; + const T27 v27_; + const T28 v28_; + const T29 v29_; + const T30 v30_; + const T31 v31_; + const T32 v32_; + const T33 v33_; +}; + +template +class ValueArray34 { + public: + ValueArray34(T1 v1, T2 v2, T3 v3, T4 v4, T5 v5, T6 v6, T7 v7, T8 v8, T9 v9, + T10 v10, T11 v11, T12 v12, T13 v13, T14 v14, T15 v15, T16 v16, T17 v17, + T18 v18, T19 v19, T20 v20, T21 v21, T22 v22, T23 v23, T24 v24, T25 v25, + T26 v26, T27 v27, T28 v28, T29 v29, T30 v30, T31 v31, T32 v32, T33 v33, + T34 v34) : v1_(v1), v2_(v2), v3_(v3), v4_(v4), v5_(v5), v6_(v6), v7_(v7), + v8_(v8), v9_(v9), v10_(v10), v11_(v11), v12_(v12), v13_(v13), v14_(v14), + v15_(v15), v16_(v16), v17_(v17), v18_(v18), v19_(v19), v20_(v20), + v21_(v21), v22_(v22), v23_(v23), v24_(v24), v25_(v25), v26_(v26), + v27_(v27), v28_(v28), v29_(v29), v30_(v30), v31_(v31), v32_(v32), + v33_(v33), v34_(v34) {} + + template + operator ParamGenerator() const { + const T array[] = {static_cast(v1_), static_cast(v2_), + static_cast(v3_), static_cast(v4_), static_cast(v5_), + static_cast(v6_), static_cast(v7_), static_cast(v8_), + static_cast(v9_), static_cast(v10_), static_cast(v11_), + static_cast(v12_), static_cast(v13_), static_cast(v14_), + static_cast(v15_), static_cast(v16_), static_cast(v17_), + static_cast(v18_), static_cast(v19_), static_cast(v20_), + static_cast(v21_), static_cast(v22_), static_cast(v23_), + static_cast(v24_), static_cast(v25_), static_cast(v26_), + static_cast(v27_), static_cast(v28_), static_cast(v29_), + static_cast(v30_), static_cast(v31_), static_cast(v32_), + static_cast(v33_), static_cast(v34_)}; + return ValuesIn(array); + } + + private: + // No implementation - assignment is unsupported. + void operator=(const ValueArray34& other); + + const T1 v1_; + const T2 v2_; + const T3 v3_; + const T4 v4_; + const T5 v5_; + const T6 v6_; + const T7 v7_; + const T8 v8_; + const T9 v9_; + const T10 v10_; + const T11 v11_; + const T12 v12_; + const T13 v13_; + const T14 v14_; + const T15 v15_; + const T16 v16_; + const T17 v17_; + const T18 v18_; + const T19 v19_; + const T20 v20_; + const T21 v21_; + const T22 v22_; + const T23 v23_; + const T24 v24_; + const T25 v25_; + const T26 v26_; + const T27 v27_; + const T28 v28_; + const T29 v29_; + const T30 v30_; + const T31 v31_; + const T32 v32_; + const T33 v33_; + const T34 v34_; +}; + +template +class ValueArray35 { + public: + ValueArray35(T1 v1, T2 v2, T3 v3, T4 v4, T5 v5, T6 v6, T7 v7, T8 v8, T9 v9, + T10 v10, T11 v11, T12 v12, T13 v13, T14 v14, T15 v15, T16 v16, T17 v17, + T18 v18, T19 v19, T20 v20, T21 v21, T22 v22, T23 v23, T24 v24, T25 v25, + T26 v26, T27 v27, T28 v28, T29 v29, T30 v30, T31 v31, T32 v32, T33 v33, + T34 v34, T35 v35) : v1_(v1), v2_(v2), v3_(v3), v4_(v4), v5_(v5), v6_(v6), + v7_(v7), v8_(v8), v9_(v9), v10_(v10), v11_(v11), v12_(v12), v13_(v13), + v14_(v14), v15_(v15), v16_(v16), v17_(v17), v18_(v18), v19_(v19), + v20_(v20), v21_(v21), v22_(v22), v23_(v23), v24_(v24), v25_(v25), + v26_(v26), v27_(v27), v28_(v28), v29_(v29), v30_(v30), v31_(v31), + v32_(v32), v33_(v33), v34_(v34), v35_(v35) {} + + template + operator ParamGenerator() const { + const T array[] = {static_cast(v1_), static_cast(v2_), + static_cast(v3_), static_cast(v4_), static_cast(v5_), + static_cast(v6_), static_cast(v7_), static_cast(v8_), + static_cast(v9_), static_cast(v10_), static_cast(v11_), + static_cast(v12_), static_cast(v13_), static_cast(v14_), + static_cast(v15_), static_cast(v16_), static_cast(v17_), + static_cast(v18_), static_cast(v19_), static_cast(v20_), + static_cast(v21_), static_cast(v22_), static_cast(v23_), + static_cast(v24_), static_cast(v25_), static_cast(v26_), + static_cast(v27_), static_cast(v28_), static_cast(v29_), + static_cast(v30_), static_cast(v31_), static_cast(v32_), + static_cast(v33_), static_cast(v34_), static_cast(v35_)}; + return ValuesIn(array); + } + + private: + // No implementation - assignment is unsupported. + void operator=(const ValueArray35& other); + + const T1 v1_; + const T2 v2_; + const T3 v3_; + const T4 v4_; + const T5 v5_; + const T6 v6_; + const T7 v7_; + const T8 v8_; + const T9 v9_; + const T10 v10_; + const T11 v11_; + const T12 v12_; + const T13 v13_; + const T14 v14_; + const T15 v15_; + const T16 v16_; + const T17 v17_; + const T18 v18_; + const T19 v19_; + const T20 v20_; + const T21 v21_; + const T22 v22_; + const T23 v23_; + const T24 v24_; + const T25 v25_; + const T26 v26_; + const T27 v27_; + const T28 v28_; + const T29 v29_; + const T30 v30_; + const T31 v31_; + const T32 v32_; + const T33 v33_; + const T34 v34_; + const T35 v35_; +}; + +template +class ValueArray36 { + public: + ValueArray36(T1 v1, T2 v2, T3 v3, T4 v4, T5 v5, T6 v6, T7 v7, T8 v8, T9 v9, + T10 v10, T11 v11, T12 v12, T13 v13, T14 v14, T15 v15, T16 v16, T17 v17, + T18 v18, T19 v19, T20 v20, T21 v21, T22 v22, T23 v23, T24 v24, T25 v25, + T26 v26, T27 v27, T28 v28, T29 v29, T30 v30, T31 v31, T32 v32, T33 v33, + T34 v34, T35 v35, T36 v36) : v1_(v1), v2_(v2), v3_(v3), v4_(v4), v5_(v5), + v6_(v6), v7_(v7), v8_(v8), v9_(v9), v10_(v10), v11_(v11), v12_(v12), + v13_(v13), v14_(v14), v15_(v15), v16_(v16), v17_(v17), v18_(v18), + v19_(v19), v20_(v20), v21_(v21), v22_(v22), v23_(v23), v24_(v24), + v25_(v25), v26_(v26), v27_(v27), v28_(v28), v29_(v29), v30_(v30), + v31_(v31), v32_(v32), v33_(v33), v34_(v34), v35_(v35), v36_(v36) {} + + template + operator ParamGenerator() const { + const T array[] = {static_cast(v1_), static_cast(v2_), + static_cast(v3_), static_cast(v4_), static_cast(v5_), + static_cast(v6_), static_cast(v7_), static_cast(v8_), + static_cast(v9_), static_cast(v10_), static_cast(v11_), + static_cast(v12_), static_cast(v13_), static_cast(v14_), + static_cast(v15_), static_cast(v16_), static_cast(v17_), + static_cast(v18_), static_cast(v19_), static_cast(v20_), + static_cast(v21_), static_cast(v22_), static_cast(v23_), + static_cast(v24_), static_cast(v25_), static_cast(v26_), + static_cast(v27_), static_cast(v28_), static_cast(v29_), + static_cast(v30_), static_cast(v31_), static_cast(v32_), + static_cast(v33_), static_cast(v34_), static_cast(v35_), + static_cast(v36_)}; + return ValuesIn(array); + } + + private: + // No implementation - assignment is unsupported. + void operator=(const ValueArray36& other); + + const T1 v1_; + const T2 v2_; + const T3 v3_; + const T4 v4_; + const T5 v5_; + const T6 v6_; + const T7 v7_; + const T8 v8_; + const T9 v9_; + const T10 v10_; + const T11 v11_; + const T12 v12_; + const T13 v13_; + const T14 v14_; + const T15 v15_; + const T16 v16_; + const T17 v17_; + const T18 v18_; + const T19 v19_; + const T20 v20_; + const T21 v21_; + const T22 v22_; + const T23 v23_; + const T24 v24_; + const T25 v25_; + const T26 v26_; + const T27 v27_; + const T28 v28_; + const T29 v29_; + const T30 v30_; + const T31 v31_; + const T32 v32_; + const T33 v33_; + const T34 v34_; + const T35 v35_; + const T36 v36_; +}; + +template +class ValueArray37 { + public: + ValueArray37(T1 v1, T2 v2, T3 v3, T4 v4, T5 v5, T6 v6, T7 v7, T8 v8, T9 v9, + T10 v10, T11 v11, T12 v12, T13 v13, T14 v14, T15 v15, T16 v16, T17 v17, + T18 v18, T19 v19, T20 v20, T21 v21, T22 v22, T23 v23, T24 v24, T25 v25, + T26 v26, T27 v27, T28 v28, T29 v29, T30 v30, T31 v31, T32 v32, T33 v33, + T34 v34, T35 v35, T36 v36, T37 v37) : v1_(v1), v2_(v2), v3_(v3), v4_(v4), + v5_(v5), v6_(v6), v7_(v7), v8_(v8), v9_(v9), v10_(v10), v11_(v11), + v12_(v12), v13_(v13), v14_(v14), v15_(v15), v16_(v16), v17_(v17), + v18_(v18), v19_(v19), v20_(v20), v21_(v21), v22_(v22), v23_(v23), + v24_(v24), v25_(v25), v26_(v26), v27_(v27), v28_(v28), v29_(v29), + v30_(v30), v31_(v31), v32_(v32), v33_(v33), v34_(v34), v35_(v35), + v36_(v36), v37_(v37) {} + + template + operator ParamGenerator() const { + const T array[] = {static_cast(v1_), static_cast(v2_), + static_cast(v3_), static_cast(v4_), static_cast(v5_), + static_cast(v6_), static_cast(v7_), static_cast(v8_), + static_cast(v9_), static_cast(v10_), static_cast(v11_), + static_cast(v12_), static_cast(v13_), static_cast(v14_), + static_cast(v15_), static_cast(v16_), static_cast(v17_), + static_cast(v18_), static_cast(v19_), static_cast(v20_), + static_cast(v21_), static_cast(v22_), static_cast(v23_), + static_cast(v24_), static_cast(v25_), static_cast(v26_), + static_cast(v27_), static_cast(v28_), static_cast(v29_), + static_cast(v30_), static_cast(v31_), static_cast(v32_), + static_cast(v33_), static_cast(v34_), static_cast(v35_), + static_cast(v36_), static_cast(v37_)}; + return ValuesIn(array); + } + + private: + // No implementation - assignment is unsupported. + void operator=(const ValueArray37& other); + + const T1 v1_; + const T2 v2_; + const T3 v3_; + const T4 v4_; + const T5 v5_; + const T6 v6_; + const T7 v7_; + const T8 v8_; + const T9 v9_; + const T10 v10_; + const T11 v11_; + const T12 v12_; + const T13 v13_; + const T14 v14_; + const T15 v15_; + const T16 v16_; + const T17 v17_; + const T18 v18_; + const T19 v19_; + const T20 v20_; + const T21 v21_; + const T22 v22_; + const T23 v23_; + const T24 v24_; + const T25 v25_; + const T26 v26_; + const T27 v27_; + const T28 v28_; + const T29 v29_; + const T30 v30_; + const T31 v31_; + const T32 v32_; + const T33 v33_; + const T34 v34_; + const T35 v35_; + const T36 v36_; + const T37 v37_; +}; + +template +class ValueArray38 { + public: + ValueArray38(T1 v1, T2 v2, T3 v3, T4 v4, T5 v5, T6 v6, T7 v7, T8 v8, T9 v9, + T10 v10, T11 v11, T12 v12, T13 v13, T14 v14, T15 v15, T16 v16, T17 v17, + T18 v18, T19 v19, T20 v20, T21 v21, T22 v22, T23 v23, T24 v24, T25 v25, + T26 v26, T27 v27, T28 v28, T29 v29, T30 v30, T31 v31, T32 v32, T33 v33, + T34 v34, T35 v35, T36 v36, T37 v37, T38 v38) : v1_(v1), v2_(v2), v3_(v3), + v4_(v4), v5_(v5), v6_(v6), v7_(v7), v8_(v8), v9_(v9), v10_(v10), + v11_(v11), v12_(v12), v13_(v13), v14_(v14), v15_(v15), v16_(v16), + v17_(v17), v18_(v18), v19_(v19), v20_(v20), v21_(v21), v22_(v22), + v23_(v23), v24_(v24), v25_(v25), v26_(v26), v27_(v27), v28_(v28), + v29_(v29), v30_(v30), v31_(v31), v32_(v32), v33_(v33), v34_(v34), + v35_(v35), v36_(v36), v37_(v37), v38_(v38) {} + + template + operator ParamGenerator() const { + const T array[] = {static_cast(v1_), static_cast(v2_), + static_cast(v3_), static_cast(v4_), static_cast(v5_), + static_cast(v6_), static_cast(v7_), static_cast(v8_), + static_cast(v9_), static_cast(v10_), static_cast(v11_), + static_cast(v12_), static_cast(v13_), static_cast(v14_), + static_cast(v15_), static_cast(v16_), static_cast(v17_), + static_cast(v18_), static_cast(v19_), static_cast(v20_), + static_cast(v21_), static_cast(v22_), static_cast(v23_), + static_cast(v24_), static_cast(v25_), static_cast(v26_), + static_cast(v27_), static_cast(v28_), static_cast(v29_), + static_cast(v30_), static_cast(v31_), static_cast(v32_), + static_cast(v33_), static_cast(v34_), static_cast(v35_), + static_cast(v36_), static_cast(v37_), static_cast(v38_)}; + return ValuesIn(array); + } + + private: + // No implementation - assignment is unsupported. + void operator=(const ValueArray38& other); + + const T1 v1_; + const T2 v2_; + const T3 v3_; + const T4 v4_; + const T5 v5_; + const T6 v6_; + const T7 v7_; + const T8 v8_; + const T9 v9_; + const T10 v10_; + const T11 v11_; + const T12 v12_; + const T13 v13_; + const T14 v14_; + const T15 v15_; + const T16 v16_; + const T17 v17_; + const T18 v18_; + const T19 v19_; + const T20 v20_; + const T21 v21_; + const T22 v22_; + const T23 v23_; + const T24 v24_; + const T25 v25_; + const T26 v26_; + const T27 v27_; + const T28 v28_; + const T29 v29_; + const T30 v30_; + const T31 v31_; + const T32 v32_; + const T33 v33_; + const T34 v34_; + const T35 v35_; + const T36 v36_; + const T37 v37_; + const T38 v38_; +}; + +template +class ValueArray39 { + public: + ValueArray39(T1 v1, T2 v2, T3 v3, T4 v4, T5 v5, T6 v6, T7 v7, T8 v8, T9 v9, + T10 v10, T11 v11, T12 v12, T13 v13, T14 v14, T15 v15, T16 v16, T17 v17, + T18 v18, T19 v19, T20 v20, T21 v21, T22 v22, T23 v23, T24 v24, T25 v25, + T26 v26, T27 v27, T28 v28, T29 v29, T30 v30, T31 v31, T32 v32, T33 v33, + T34 v34, T35 v35, T36 v36, T37 v37, T38 v38, T39 v39) : v1_(v1), v2_(v2), + v3_(v3), v4_(v4), v5_(v5), v6_(v6), v7_(v7), v8_(v8), v9_(v9), v10_(v10), + v11_(v11), v12_(v12), v13_(v13), v14_(v14), v15_(v15), v16_(v16), + v17_(v17), v18_(v18), v19_(v19), v20_(v20), v21_(v21), v22_(v22), + v23_(v23), v24_(v24), v25_(v25), v26_(v26), v27_(v27), v28_(v28), + v29_(v29), v30_(v30), v31_(v31), v32_(v32), v33_(v33), v34_(v34), + v35_(v35), v36_(v36), v37_(v37), v38_(v38), v39_(v39) {} + + template + operator ParamGenerator() const { + const T array[] = {static_cast(v1_), static_cast(v2_), + static_cast(v3_), static_cast(v4_), static_cast(v5_), + static_cast(v6_), static_cast(v7_), static_cast(v8_), + static_cast(v9_), static_cast(v10_), static_cast(v11_), + static_cast(v12_), static_cast(v13_), static_cast(v14_), + static_cast(v15_), static_cast(v16_), static_cast(v17_), + static_cast(v18_), static_cast(v19_), static_cast(v20_), + static_cast(v21_), static_cast(v22_), static_cast(v23_), + static_cast(v24_), static_cast(v25_), static_cast(v26_), + static_cast(v27_), static_cast(v28_), static_cast(v29_), + static_cast(v30_), static_cast(v31_), static_cast(v32_), + static_cast(v33_), static_cast(v34_), static_cast(v35_), + static_cast(v36_), static_cast(v37_), static_cast(v38_), + static_cast(v39_)}; + return ValuesIn(array); + } + + private: + // No implementation - assignment is unsupported. + void operator=(const ValueArray39& other); + + const T1 v1_; + const T2 v2_; + const T3 v3_; + const T4 v4_; + const T5 v5_; + const T6 v6_; + const T7 v7_; + const T8 v8_; + const T9 v9_; + const T10 v10_; + const T11 v11_; + const T12 v12_; + const T13 v13_; + const T14 v14_; + const T15 v15_; + const T16 v16_; + const T17 v17_; + const T18 v18_; + const T19 v19_; + const T20 v20_; + const T21 v21_; + const T22 v22_; + const T23 v23_; + const T24 v24_; + const T25 v25_; + const T26 v26_; + const T27 v27_; + const T28 v28_; + const T29 v29_; + const T30 v30_; + const T31 v31_; + const T32 v32_; + const T33 v33_; + const T34 v34_; + const T35 v35_; + const T36 v36_; + const T37 v37_; + const T38 v38_; + const T39 v39_; +}; + +template +class ValueArray40 { + public: + ValueArray40(T1 v1, T2 v2, T3 v3, T4 v4, T5 v5, T6 v6, T7 v7, T8 v8, T9 v9, + T10 v10, T11 v11, T12 v12, T13 v13, T14 v14, T15 v15, T16 v16, T17 v17, + T18 v18, T19 v19, T20 v20, T21 v21, T22 v22, T23 v23, T24 v24, T25 v25, + T26 v26, T27 v27, T28 v28, T29 v29, T30 v30, T31 v31, T32 v32, T33 v33, + T34 v34, T35 v35, T36 v36, T37 v37, T38 v38, T39 v39, T40 v40) : v1_(v1), + v2_(v2), v3_(v3), v4_(v4), v5_(v5), v6_(v6), v7_(v7), v8_(v8), v9_(v9), + v10_(v10), v11_(v11), v12_(v12), v13_(v13), v14_(v14), v15_(v15), + v16_(v16), v17_(v17), v18_(v18), v19_(v19), v20_(v20), v21_(v21), + v22_(v22), v23_(v23), v24_(v24), v25_(v25), v26_(v26), v27_(v27), + v28_(v28), v29_(v29), v30_(v30), v31_(v31), v32_(v32), v33_(v33), + v34_(v34), v35_(v35), v36_(v36), v37_(v37), v38_(v38), v39_(v39), + v40_(v40) {} + + template + operator ParamGenerator() const { + const T array[] = {static_cast(v1_), static_cast(v2_), + static_cast(v3_), static_cast(v4_), static_cast(v5_), + static_cast(v6_), static_cast(v7_), static_cast(v8_), + static_cast(v9_), static_cast(v10_), static_cast(v11_), + static_cast(v12_), static_cast(v13_), static_cast(v14_), + static_cast(v15_), static_cast(v16_), static_cast(v17_), + static_cast(v18_), static_cast(v19_), static_cast(v20_), + static_cast(v21_), static_cast(v22_), static_cast(v23_), + static_cast(v24_), static_cast(v25_), static_cast(v26_), + static_cast(v27_), static_cast(v28_), static_cast(v29_), + static_cast(v30_), static_cast(v31_), static_cast(v32_), + static_cast(v33_), static_cast(v34_), static_cast(v35_), + static_cast(v36_), static_cast(v37_), static_cast(v38_), + static_cast(v39_), static_cast(v40_)}; + return ValuesIn(array); + } + + private: + // No implementation - assignment is unsupported. + void operator=(const ValueArray40& other); + + const T1 v1_; + const T2 v2_; + const T3 v3_; + const T4 v4_; + const T5 v5_; + const T6 v6_; + const T7 v7_; + const T8 v8_; + const T9 v9_; + const T10 v10_; + const T11 v11_; + const T12 v12_; + const T13 v13_; + const T14 v14_; + const T15 v15_; + const T16 v16_; + const T17 v17_; + const T18 v18_; + const T19 v19_; + const T20 v20_; + const T21 v21_; + const T22 v22_; + const T23 v23_; + const T24 v24_; + const T25 v25_; + const T26 v26_; + const T27 v27_; + const T28 v28_; + const T29 v29_; + const T30 v30_; + const T31 v31_; + const T32 v32_; + const T33 v33_; + const T34 v34_; + const T35 v35_; + const T36 v36_; + const T37 v37_; + const T38 v38_; + const T39 v39_; + const T40 v40_; +}; + +template +class ValueArray41 { + public: + ValueArray41(T1 v1, T2 v2, T3 v3, T4 v4, T5 v5, T6 v6, T7 v7, T8 v8, T9 v9, + T10 v10, T11 v11, T12 v12, T13 v13, T14 v14, T15 v15, T16 v16, T17 v17, + T18 v18, T19 v19, T20 v20, T21 v21, T22 v22, T23 v23, T24 v24, T25 v25, + T26 v26, T27 v27, T28 v28, T29 v29, T30 v30, T31 v31, T32 v32, T33 v33, + T34 v34, T35 v35, T36 v36, T37 v37, T38 v38, T39 v39, T40 v40, + T41 v41) : v1_(v1), v2_(v2), v3_(v3), v4_(v4), v5_(v5), v6_(v6), v7_(v7), + v8_(v8), v9_(v9), v10_(v10), v11_(v11), v12_(v12), v13_(v13), v14_(v14), + v15_(v15), v16_(v16), v17_(v17), v18_(v18), v19_(v19), v20_(v20), + v21_(v21), v22_(v22), v23_(v23), v24_(v24), v25_(v25), v26_(v26), + v27_(v27), v28_(v28), v29_(v29), v30_(v30), v31_(v31), v32_(v32), + v33_(v33), v34_(v34), v35_(v35), v36_(v36), v37_(v37), v38_(v38), + v39_(v39), v40_(v40), v41_(v41) {} + + template + operator ParamGenerator() const { + const T array[] = {static_cast(v1_), static_cast(v2_), + static_cast(v3_), static_cast(v4_), static_cast(v5_), + static_cast(v6_), static_cast(v7_), static_cast(v8_), + static_cast(v9_), static_cast(v10_), static_cast(v11_), + static_cast(v12_), static_cast(v13_), static_cast(v14_), + static_cast(v15_), static_cast(v16_), static_cast(v17_), + static_cast(v18_), static_cast(v19_), static_cast(v20_), + static_cast(v21_), static_cast(v22_), static_cast(v23_), + static_cast(v24_), static_cast(v25_), static_cast(v26_), + static_cast(v27_), static_cast(v28_), static_cast(v29_), + static_cast(v30_), static_cast(v31_), static_cast(v32_), + static_cast(v33_), static_cast(v34_), static_cast(v35_), + static_cast(v36_), static_cast(v37_), static_cast(v38_), + static_cast(v39_), static_cast(v40_), static_cast(v41_)}; + return ValuesIn(array); + } + + private: + // No implementation - assignment is unsupported. + void operator=(const ValueArray41& other); + + const T1 v1_; + const T2 v2_; + const T3 v3_; + const T4 v4_; + const T5 v5_; + const T6 v6_; + const T7 v7_; + const T8 v8_; + const T9 v9_; + const T10 v10_; + const T11 v11_; + const T12 v12_; + const T13 v13_; + const T14 v14_; + const T15 v15_; + const T16 v16_; + const T17 v17_; + const T18 v18_; + const T19 v19_; + const T20 v20_; + const T21 v21_; + const T22 v22_; + const T23 v23_; + const T24 v24_; + const T25 v25_; + const T26 v26_; + const T27 v27_; + const T28 v28_; + const T29 v29_; + const T30 v30_; + const T31 v31_; + const T32 v32_; + const T33 v33_; + const T34 v34_; + const T35 v35_; + const T36 v36_; + const T37 v37_; + const T38 v38_; + const T39 v39_; + const T40 v40_; + const T41 v41_; +}; + +template +class ValueArray42 { + public: + ValueArray42(T1 v1, T2 v2, T3 v3, T4 v4, T5 v5, T6 v6, T7 v7, T8 v8, T9 v9, + T10 v10, T11 v11, T12 v12, T13 v13, T14 v14, T15 v15, T16 v16, T17 v17, + T18 v18, T19 v19, T20 v20, T21 v21, T22 v22, T23 v23, T24 v24, T25 v25, + T26 v26, T27 v27, T28 v28, T29 v29, T30 v30, T31 v31, T32 v32, T33 v33, + T34 v34, T35 v35, T36 v36, T37 v37, T38 v38, T39 v39, T40 v40, T41 v41, + T42 v42) : v1_(v1), v2_(v2), v3_(v3), v4_(v4), v5_(v5), v6_(v6), v7_(v7), + v8_(v8), v9_(v9), v10_(v10), v11_(v11), v12_(v12), v13_(v13), v14_(v14), + v15_(v15), v16_(v16), v17_(v17), v18_(v18), v19_(v19), v20_(v20), + v21_(v21), v22_(v22), v23_(v23), v24_(v24), v25_(v25), v26_(v26), + v27_(v27), v28_(v28), v29_(v29), v30_(v30), v31_(v31), v32_(v32), + v33_(v33), v34_(v34), v35_(v35), v36_(v36), v37_(v37), v38_(v38), + v39_(v39), v40_(v40), v41_(v41), v42_(v42) {} + + template + operator ParamGenerator() const { + const T array[] = {static_cast(v1_), static_cast(v2_), + static_cast(v3_), static_cast(v4_), static_cast(v5_), + static_cast(v6_), static_cast(v7_), static_cast(v8_), + static_cast(v9_), static_cast(v10_), static_cast(v11_), + static_cast(v12_), static_cast(v13_), static_cast(v14_), + static_cast(v15_), static_cast(v16_), static_cast(v17_), + static_cast(v18_), static_cast(v19_), static_cast(v20_), + static_cast(v21_), static_cast(v22_), static_cast(v23_), + static_cast(v24_), static_cast(v25_), static_cast(v26_), + static_cast(v27_), static_cast(v28_), static_cast(v29_), + static_cast(v30_), static_cast(v31_), static_cast(v32_), + static_cast(v33_), static_cast(v34_), static_cast(v35_), + static_cast(v36_), static_cast(v37_), static_cast(v38_), + static_cast(v39_), static_cast(v40_), static_cast(v41_), + static_cast(v42_)}; + return ValuesIn(array); + } + + private: + // No implementation - assignment is unsupported. + void operator=(const ValueArray42& other); + + const T1 v1_; + const T2 v2_; + const T3 v3_; + const T4 v4_; + const T5 v5_; + const T6 v6_; + const T7 v7_; + const T8 v8_; + const T9 v9_; + const T10 v10_; + const T11 v11_; + const T12 v12_; + const T13 v13_; + const T14 v14_; + const T15 v15_; + const T16 v16_; + const T17 v17_; + const T18 v18_; + const T19 v19_; + const T20 v20_; + const T21 v21_; + const T22 v22_; + const T23 v23_; + const T24 v24_; + const T25 v25_; + const T26 v26_; + const T27 v27_; + const T28 v28_; + const T29 v29_; + const T30 v30_; + const T31 v31_; + const T32 v32_; + const T33 v33_; + const T34 v34_; + const T35 v35_; + const T36 v36_; + const T37 v37_; + const T38 v38_; + const T39 v39_; + const T40 v40_; + const T41 v41_; + const T42 v42_; +}; + +template +class ValueArray43 { + public: + ValueArray43(T1 v1, T2 v2, T3 v3, T4 v4, T5 v5, T6 v6, T7 v7, T8 v8, T9 v9, + T10 v10, T11 v11, T12 v12, T13 v13, T14 v14, T15 v15, T16 v16, T17 v17, + T18 v18, T19 v19, T20 v20, T21 v21, T22 v22, T23 v23, T24 v24, T25 v25, + T26 v26, T27 v27, T28 v28, T29 v29, T30 v30, T31 v31, T32 v32, T33 v33, + T34 v34, T35 v35, T36 v36, T37 v37, T38 v38, T39 v39, T40 v40, T41 v41, + T42 v42, T43 v43) : v1_(v1), v2_(v2), v3_(v3), v4_(v4), v5_(v5), v6_(v6), + v7_(v7), v8_(v8), v9_(v9), v10_(v10), v11_(v11), v12_(v12), v13_(v13), + v14_(v14), v15_(v15), v16_(v16), v17_(v17), v18_(v18), v19_(v19), + v20_(v20), v21_(v21), v22_(v22), v23_(v23), v24_(v24), v25_(v25), + v26_(v26), v27_(v27), v28_(v28), v29_(v29), v30_(v30), v31_(v31), + v32_(v32), v33_(v33), v34_(v34), v35_(v35), v36_(v36), v37_(v37), + v38_(v38), v39_(v39), v40_(v40), v41_(v41), v42_(v42), v43_(v43) {} + + template + operator ParamGenerator() const { + const T array[] = {static_cast(v1_), static_cast(v2_), + static_cast(v3_), static_cast(v4_), static_cast(v5_), + static_cast(v6_), static_cast(v7_), static_cast(v8_), + static_cast(v9_), static_cast(v10_), static_cast(v11_), + static_cast(v12_), static_cast(v13_), static_cast(v14_), + static_cast(v15_), static_cast(v16_), static_cast(v17_), + static_cast(v18_), static_cast(v19_), static_cast(v20_), + static_cast(v21_), static_cast(v22_), static_cast(v23_), + static_cast(v24_), static_cast(v25_), static_cast(v26_), + static_cast(v27_), static_cast(v28_), static_cast(v29_), + static_cast(v30_), static_cast(v31_), static_cast(v32_), + static_cast(v33_), static_cast(v34_), static_cast(v35_), + static_cast(v36_), static_cast(v37_), static_cast(v38_), + static_cast(v39_), static_cast(v40_), static_cast(v41_), + static_cast(v42_), static_cast(v43_)}; + return ValuesIn(array); + } + + private: + // No implementation - assignment is unsupported. + void operator=(const ValueArray43& other); + + const T1 v1_; + const T2 v2_; + const T3 v3_; + const T4 v4_; + const T5 v5_; + const T6 v6_; + const T7 v7_; + const T8 v8_; + const T9 v9_; + const T10 v10_; + const T11 v11_; + const T12 v12_; + const T13 v13_; + const T14 v14_; + const T15 v15_; + const T16 v16_; + const T17 v17_; + const T18 v18_; + const T19 v19_; + const T20 v20_; + const T21 v21_; + const T22 v22_; + const T23 v23_; + const T24 v24_; + const T25 v25_; + const T26 v26_; + const T27 v27_; + const T28 v28_; + const T29 v29_; + const T30 v30_; + const T31 v31_; + const T32 v32_; + const T33 v33_; + const T34 v34_; + const T35 v35_; + const T36 v36_; + const T37 v37_; + const T38 v38_; + const T39 v39_; + const T40 v40_; + const T41 v41_; + const T42 v42_; + const T43 v43_; +}; + +template +class ValueArray44 { + public: + ValueArray44(T1 v1, T2 v2, T3 v3, T4 v4, T5 v5, T6 v6, T7 v7, T8 v8, T9 v9, + T10 v10, T11 v11, T12 v12, T13 v13, T14 v14, T15 v15, T16 v16, T17 v17, + T18 v18, T19 v19, T20 v20, T21 v21, T22 v22, T23 v23, T24 v24, T25 v25, + T26 v26, T27 v27, T28 v28, T29 v29, T30 v30, T31 v31, T32 v32, T33 v33, + T34 v34, T35 v35, T36 v36, T37 v37, T38 v38, T39 v39, T40 v40, T41 v41, + T42 v42, T43 v43, T44 v44) : v1_(v1), v2_(v2), v3_(v3), v4_(v4), v5_(v5), + v6_(v6), v7_(v7), v8_(v8), v9_(v9), v10_(v10), v11_(v11), v12_(v12), + v13_(v13), v14_(v14), v15_(v15), v16_(v16), v17_(v17), v18_(v18), + v19_(v19), v20_(v20), v21_(v21), v22_(v22), v23_(v23), v24_(v24), + v25_(v25), v26_(v26), v27_(v27), v28_(v28), v29_(v29), v30_(v30), + v31_(v31), v32_(v32), v33_(v33), v34_(v34), v35_(v35), v36_(v36), + v37_(v37), v38_(v38), v39_(v39), v40_(v40), v41_(v41), v42_(v42), + v43_(v43), v44_(v44) {} + + template + operator ParamGenerator() const { + const T array[] = {static_cast(v1_), static_cast(v2_), + static_cast(v3_), static_cast(v4_), static_cast(v5_), + static_cast(v6_), static_cast(v7_), static_cast(v8_), + static_cast(v9_), static_cast(v10_), static_cast(v11_), + static_cast(v12_), static_cast(v13_), static_cast(v14_), + static_cast(v15_), static_cast(v16_), static_cast(v17_), + static_cast(v18_), static_cast(v19_), static_cast(v20_), + static_cast(v21_), static_cast(v22_), static_cast(v23_), + static_cast(v24_), static_cast(v25_), static_cast(v26_), + static_cast(v27_), static_cast(v28_), static_cast(v29_), + static_cast(v30_), static_cast(v31_), static_cast(v32_), + static_cast(v33_), static_cast(v34_), static_cast(v35_), + static_cast(v36_), static_cast(v37_), static_cast(v38_), + static_cast(v39_), static_cast(v40_), static_cast(v41_), + static_cast(v42_), static_cast(v43_), static_cast(v44_)}; + return ValuesIn(array); + } + + private: + // No implementation - assignment is unsupported. + void operator=(const ValueArray44& other); + + const T1 v1_; + const T2 v2_; + const T3 v3_; + const T4 v4_; + const T5 v5_; + const T6 v6_; + const T7 v7_; + const T8 v8_; + const T9 v9_; + const T10 v10_; + const T11 v11_; + const T12 v12_; + const T13 v13_; + const T14 v14_; + const T15 v15_; + const T16 v16_; + const T17 v17_; + const T18 v18_; + const T19 v19_; + const T20 v20_; + const T21 v21_; + const T22 v22_; + const T23 v23_; + const T24 v24_; + const T25 v25_; + const T26 v26_; + const T27 v27_; + const T28 v28_; + const T29 v29_; + const T30 v30_; + const T31 v31_; + const T32 v32_; + const T33 v33_; + const T34 v34_; + const T35 v35_; + const T36 v36_; + const T37 v37_; + const T38 v38_; + const T39 v39_; + const T40 v40_; + const T41 v41_; + const T42 v42_; + const T43 v43_; + const T44 v44_; +}; + +template +class ValueArray45 { + public: + ValueArray45(T1 v1, T2 v2, T3 v3, T4 v4, T5 v5, T6 v6, T7 v7, T8 v8, T9 v9, + T10 v10, T11 v11, T12 v12, T13 v13, T14 v14, T15 v15, T16 v16, T17 v17, + T18 v18, T19 v19, T20 v20, T21 v21, T22 v22, T23 v23, T24 v24, T25 v25, + T26 v26, T27 v27, T28 v28, T29 v29, T30 v30, T31 v31, T32 v32, T33 v33, + T34 v34, T35 v35, T36 v36, T37 v37, T38 v38, T39 v39, T40 v40, T41 v41, + T42 v42, T43 v43, T44 v44, T45 v45) : v1_(v1), v2_(v2), v3_(v3), v4_(v4), + v5_(v5), v6_(v6), v7_(v7), v8_(v8), v9_(v9), v10_(v10), v11_(v11), + v12_(v12), v13_(v13), v14_(v14), v15_(v15), v16_(v16), v17_(v17), + v18_(v18), v19_(v19), v20_(v20), v21_(v21), v22_(v22), v23_(v23), + v24_(v24), v25_(v25), v26_(v26), v27_(v27), v28_(v28), v29_(v29), + v30_(v30), v31_(v31), v32_(v32), v33_(v33), v34_(v34), v35_(v35), + v36_(v36), v37_(v37), v38_(v38), v39_(v39), v40_(v40), v41_(v41), + v42_(v42), v43_(v43), v44_(v44), v45_(v45) {} + + template + operator ParamGenerator() const { + const T array[] = {static_cast(v1_), static_cast(v2_), + static_cast(v3_), static_cast(v4_), static_cast(v5_), + static_cast(v6_), static_cast(v7_), static_cast(v8_), + static_cast(v9_), static_cast(v10_), static_cast(v11_), + static_cast(v12_), static_cast(v13_), static_cast(v14_), + static_cast(v15_), static_cast(v16_), static_cast(v17_), + static_cast(v18_), static_cast(v19_), static_cast(v20_), + static_cast(v21_), static_cast(v22_), static_cast(v23_), + static_cast(v24_), static_cast(v25_), static_cast(v26_), + static_cast(v27_), static_cast(v28_), static_cast(v29_), + static_cast(v30_), static_cast(v31_), static_cast(v32_), + static_cast(v33_), static_cast(v34_), static_cast(v35_), + static_cast(v36_), static_cast(v37_), static_cast(v38_), + static_cast(v39_), static_cast(v40_), static_cast(v41_), + static_cast(v42_), static_cast(v43_), static_cast(v44_), + static_cast(v45_)}; + return ValuesIn(array); + } + + private: + // No implementation - assignment is unsupported. + void operator=(const ValueArray45& other); + + const T1 v1_; + const T2 v2_; + const T3 v3_; + const T4 v4_; + const T5 v5_; + const T6 v6_; + const T7 v7_; + const T8 v8_; + const T9 v9_; + const T10 v10_; + const T11 v11_; + const T12 v12_; + const T13 v13_; + const T14 v14_; + const T15 v15_; + const T16 v16_; + const T17 v17_; + const T18 v18_; + const T19 v19_; + const T20 v20_; + const T21 v21_; + const T22 v22_; + const T23 v23_; + const T24 v24_; + const T25 v25_; + const T26 v26_; + const T27 v27_; + const T28 v28_; + const T29 v29_; + const T30 v30_; + const T31 v31_; + const T32 v32_; + const T33 v33_; + const T34 v34_; + const T35 v35_; + const T36 v36_; + const T37 v37_; + const T38 v38_; + const T39 v39_; + const T40 v40_; + const T41 v41_; + const T42 v42_; + const T43 v43_; + const T44 v44_; + const T45 v45_; +}; + +template +class ValueArray46 { + public: + ValueArray46(T1 v1, T2 v2, T3 v3, T4 v4, T5 v5, T6 v6, T7 v7, T8 v8, T9 v9, + T10 v10, T11 v11, T12 v12, T13 v13, T14 v14, T15 v15, T16 v16, T17 v17, + T18 v18, T19 v19, T20 v20, T21 v21, T22 v22, T23 v23, T24 v24, T25 v25, + T26 v26, T27 v27, T28 v28, T29 v29, T30 v30, T31 v31, T32 v32, T33 v33, + T34 v34, T35 v35, T36 v36, T37 v37, T38 v38, T39 v39, T40 v40, T41 v41, + T42 v42, T43 v43, T44 v44, T45 v45, T46 v46) : v1_(v1), v2_(v2), v3_(v3), + v4_(v4), v5_(v5), v6_(v6), v7_(v7), v8_(v8), v9_(v9), v10_(v10), + v11_(v11), v12_(v12), v13_(v13), v14_(v14), v15_(v15), v16_(v16), + v17_(v17), v18_(v18), v19_(v19), v20_(v20), v21_(v21), v22_(v22), + v23_(v23), v24_(v24), v25_(v25), v26_(v26), v27_(v27), v28_(v28), + v29_(v29), v30_(v30), v31_(v31), v32_(v32), v33_(v33), v34_(v34), + v35_(v35), v36_(v36), v37_(v37), v38_(v38), v39_(v39), v40_(v40), + v41_(v41), v42_(v42), v43_(v43), v44_(v44), v45_(v45), v46_(v46) {} + + template + operator ParamGenerator() const { + const T array[] = {static_cast(v1_), static_cast(v2_), + static_cast(v3_), static_cast(v4_), static_cast(v5_), + static_cast(v6_), static_cast(v7_), static_cast(v8_), + static_cast(v9_), static_cast(v10_), static_cast(v11_), + static_cast(v12_), static_cast(v13_), static_cast(v14_), + static_cast(v15_), static_cast(v16_), static_cast(v17_), + static_cast(v18_), static_cast(v19_), static_cast(v20_), + static_cast(v21_), static_cast(v22_), static_cast(v23_), + static_cast(v24_), static_cast(v25_), static_cast(v26_), + static_cast(v27_), static_cast(v28_), static_cast(v29_), + static_cast(v30_), static_cast(v31_), static_cast(v32_), + static_cast(v33_), static_cast(v34_), static_cast(v35_), + static_cast(v36_), static_cast(v37_), static_cast(v38_), + static_cast(v39_), static_cast(v40_), static_cast(v41_), + static_cast(v42_), static_cast(v43_), static_cast(v44_), + static_cast(v45_), static_cast(v46_)}; + return ValuesIn(array); + } + + private: + // No implementation - assignment is unsupported. + void operator=(const ValueArray46& other); + + const T1 v1_; + const T2 v2_; + const T3 v3_; + const T4 v4_; + const T5 v5_; + const T6 v6_; + const T7 v7_; + const T8 v8_; + const T9 v9_; + const T10 v10_; + const T11 v11_; + const T12 v12_; + const T13 v13_; + const T14 v14_; + const T15 v15_; + const T16 v16_; + const T17 v17_; + const T18 v18_; + const T19 v19_; + const T20 v20_; + const T21 v21_; + const T22 v22_; + const T23 v23_; + const T24 v24_; + const T25 v25_; + const T26 v26_; + const T27 v27_; + const T28 v28_; + const T29 v29_; + const T30 v30_; + const T31 v31_; + const T32 v32_; + const T33 v33_; + const T34 v34_; + const T35 v35_; + const T36 v36_; + const T37 v37_; + const T38 v38_; + const T39 v39_; + const T40 v40_; + const T41 v41_; + const T42 v42_; + const T43 v43_; + const T44 v44_; + const T45 v45_; + const T46 v46_; +}; + +template +class ValueArray47 { + public: + ValueArray47(T1 v1, T2 v2, T3 v3, T4 v4, T5 v5, T6 v6, T7 v7, T8 v8, T9 v9, + T10 v10, T11 v11, T12 v12, T13 v13, T14 v14, T15 v15, T16 v16, T17 v17, + T18 v18, T19 v19, T20 v20, T21 v21, T22 v22, T23 v23, T24 v24, T25 v25, + T26 v26, T27 v27, T28 v28, T29 v29, T30 v30, T31 v31, T32 v32, T33 v33, + T34 v34, T35 v35, T36 v36, T37 v37, T38 v38, T39 v39, T40 v40, T41 v41, + T42 v42, T43 v43, T44 v44, T45 v45, T46 v46, T47 v47) : v1_(v1), v2_(v2), + v3_(v3), v4_(v4), v5_(v5), v6_(v6), v7_(v7), v8_(v8), v9_(v9), v10_(v10), + v11_(v11), v12_(v12), v13_(v13), v14_(v14), v15_(v15), v16_(v16), + v17_(v17), v18_(v18), v19_(v19), v20_(v20), v21_(v21), v22_(v22), + v23_(v23), v24_(v24), v25_(v25), v26_(v26), v27_(v27), v28_(v28), + v29_(v29), v30_(v30), v31_(v31), v32_(v32), v33_(v33), v34_(v34), + v35_(v35), v36_(v36), v37_(v37), v38_(v38), v39_(v39), v40_(v40), + v41_(v41), v42_(v42), v43_(v43), v44_(v44), v45_(v45), v46_(v46), + v47_(v47) {} + + template + operator ParamGenerator() const { + const T array[] = {static_cast(v1_), static_cast(v2_), + static_cast(v3_), static_cast(v4_), static_cast(v5_), + static_cast(v6_), static_cast(v7_), static_cast(v8_), + static_cast(v9_), static_cast(v10_), static_cast(v11_), + static_cast(v12_), static_cast(v13_), static_cast(v14_), + static_cast(v15_), static_cast(v16_), static_cast(v17_), + static_cast(v18_), static_cast(v19_), static_cast(v20_), + static_cast(v21_), static_cast(v22_), static_cast(v23_), + static_cast(v24_), static_cast(v25_), static_cast(v26_), + static_cast(v27_), static_cast(v28_), static_cast(v29_), + static_cast(v30_), static_cast(v31_), static_cast(v32_), + static_cast(v33_), static_cast(v34_), static_cast(v35_), + static_cast(v36_), static_cast(v37_), static_cast(v38_), + static_cast(v39_), static_cast(v40_), static_cast(v41_), + static_cast(v42_), static_cast(v43_), static_cast(v44_), + static_cast(v45_), static_cast(v46_), static_cast(v47_)}; + return ValuesIn(array); + } + + private: + // No implementation - assignment is unsupported. + void operator=(const ValueArray47& other); + + const T1 v1_; + const T2 v2_; + const T3 v3_; + const T4 v4_; + const T5 v5_; + const T6 v6_; + const T7 v7_; + const T8 v8_; + const T9 v9_; + const T10 v10_; + const T11 v11_; + const T12 v12_; + const T13 v13_; + const T14 v14_; + const T15 v15_; + const T16 v16_; + const T17 v17_; + const T18 v18_; + const T19 v19_; + const T20 v20_; + const T21 v21_; + const T22 v22_; + const T23 v23_; + const T24 v24_; + const T25 v25_; + const T26 v26_; + const T27 v27_; + const T28 v28_; + const T29 v29_; + const T30 v30_; + const T31 v31_; + const T32 v32_; + const T33 v33_; + const T34 v34_; + const T35 v35_; + const T36 v36_; + const T37 v37_; + const T38 v38_; + const T39 v39_; + const T40 v40_; + const T41 v41_; + const T42 v42_; + const T43 v43_; + const T44 v44_; + const T45 v45_; + const T46 v46_; + const T47 v47_; +}; + +template +class ValueArray48 { + public: + ValueArray48(T1 v1, T2 v2, T3 v3, T4 v4, T5 v5, T6 v6, T7 v7, T8 v8, T9 v9, + T10 v10, T11 v11, T12 v12, T13 v13, T14 v14, T15 v15, T16 v16, T17 v17, + T18 v18, T19 v19, T20 v20, T21 v21, T22 v22, T23 v23, T24 v24, T25 v25, + T26 v26, T27 v27, T28 v28, T29 v29, T30 v30, T31 v31, T32 v32, T33 v33, + T34 v34, T35 v35, T36 v36, T37 v37, T38 v38, T39 v39, T40 v40, T41 v41, + T42 v42, T43 v43, T44 v44, T45 v45, T46 v46, T47 v47, T48 v48) : v1_(v1), + v2_(v2), v3_(v3), v4_(v4), v5_(v5), v6_(v6), v7_(v7), v8_(v8), v9_(v9), + v10_(v10), v11_(v11), v12_(v12), v13_(v13), v14_(v14), v15_(v15), + v16_(v16), v17_(v17), v18_(v18), v19_(v19), v20_(v20), v21_(v21), + v22_(v22), v23_(v23), v24_(v24), v25_(v25), v26_(v26), v27_(v27), + v28_(v28), v29_(v29), v30_(v30), v31_(v31), v32_(v32), v33_(v33), + v34_(v34), v35_(v35), v36_(v36), v37_(v37), v38_(v38), v39_(v39), + v40_(v40), v41_(v41), v42_(v42), v43_(v43), v44_(v44), v45_(v45), + v46_(v46), v47_(v47), v48_(v48) {} + + template + operator ParamGenerator() const { + const T array[] = {static_cast(v1_), static_cast(v2_), + static_cast(v3_), static_cast(v4_), static_cast(v5_), + static_cast(v6_), static_cast(v7_), static_cast(v8_), + static_cast(v9_), static_cast(v10_), static_cast(v11_), + static_cast(v12_), static_cast(v13_), static_cast(v14_), + static_cast(v15_), static_cast(v16_), static_cast(v17_), + static_cast(v18_), static_cast(v19_), static_cast(v20_), + static_cast(v21_), static_cast(v22_), static_cast(v23_), + static_cast(v24_), static_cast(v25_), static_cast(v26_), + static_cast(v27_), static_cast(v28_), static_cast(v29_), + static_cast(v30_), static_cast(v31_), static_cast(v32_), + static_cast(v33_), static_cast(v34_), static_cast(v35_), + static_cast(v36_), static_cast(v37_), static_cast(v38_), + static_cast(v39_), static_cast(v40_), static_cast(v41_), + static_cast(v42_), static_cast(v43_), static_cast(v44_), + static_cast(v45_), static_cast(v46_), static_cast(v47_), + static_cast(v48_)}; + return ValuesIn(array); + } + + private: + // No implementation - assignment is unsupported. + void operator=(const ValueArray48& other); + + const T1 v1_; + const T2 v2_; + const T3 v3_; + const T4 v4_; + const T5 v5_; + const T6 v6_; + const T7 v7_; + const T8 v8_; + const T9 v9_; + const T10 v10_; + const T11 v11_; + const T12 v12_; + const T13 v13_; + const T14 v14_; + const T15 v15_; + const T16 v16_; + const T17 v17_; + const T18 v18_; + const T19 v19_; + const T20 v20_; + const T21 v21_; + const T22 v22_; + const T23 v23_; + const T24 v24_; + const T25 v25_; + const T26 v26_; + const T27 v27_; + const T28 v28_; + const T29 v29_; + const T30 v30_; + const T31 v31_; + const T32 v32_; + const T33 v33_; + const T34 v34_; + const T35 v35_; + const T36 v36_; + const T37 v37_; + const T38 v38_; + const T39 v39_; + const T40 v40_; + const T41 v41_; + const T42 v42_; + const T43 v43_; + const T44 v44_; + const T45 v45_; + const T46 v46_; + const T47 v47_; + const T48 v48_; +}; + +template +class ValueArray49 { + public: + ValueArray49(T1 v1, T2 v2, T3 v3, T4 v4, T5 v5, T6 v6, T7 v7, T8 v8, T9 v9, + T10 v10, T11 v11, T12 v12, T13 v13, T14 v14, T15 v15, T16 v16, T17 v17, + T18 v18, T19 v19, T20 v20, T21 v21, T22 v22, T23 v23, T24 v24, T25 v25, + T26 v26, T27 v27, T28 v28, T29 v29, T30 v30, T31 v31, T32 v32, T33 v33, + T34 v34, T35 v35, T36 v36, T37 v37, T38 v38, T39 v39, T40 v40, T41 v41, + T42 v42, T43 v43, T44 v44, T45 v45, T46 v46, T47 v47, T48 v48, + T49 v49) : v1_(v1), v2_(v2), v3_(v3), v4_(v4), v5_(v5), v6_(v6), v7_(v7), + v8_(v8), v9_(v9), v10_(v10), v11_(v11), v12_(v12), v13_(v13), v14_(v14), + v15_(v15), v16_(v16), v17_(v17), v18_(v18), v19_(v19), v20_(v20), + v21_(v21), v22_(v22), v23_(v23), v24_(v24), v25_(v25), v26_(v26), + v27_(v27), v28_(v28), v29_(v29), v30_(v30), v31_(v31), v32_(v32), + v33_(v33), v34_(v34), v35_(v35), v36_(v36), v37_(v37), v38_(v38), + v39_(v39), v40_(v40), v41_(v41), v42_(v42), v43_(v43), v44_(v44), + v45_(v45), v46_(v46), v47_(v47), v48_(v48), v49_(v49) {} + + template + operator ParamGenerator() const { + const T array[] = {static_cast(v1_), static_cast(v2_), + static_cast(v3_), static_cast(v4_), static_cast(v5_), + static_cast(v6_), static_cast(v7_), static_cast(v8_), + static_cast(v9_), static_cast(v10_), static_cast(v11_), + static_cast(v12_), static_cast(v13_), static_cast(v14_), + static_cast(v15_), static_cast(v16_), static_cast(v17_), + static_cast(v18_), static_cast(v19_), static_cast(v20_), + static_cast(v21_), static_cast(v22_), static_cast(v23_), + static_cast(v24_), static_cast(v25_), static_cast(v26_), + static_cast(v27_), static_cast(v28_), static_cast(v29_), + static_cast(v30_), static_cast(v31_), static_cast(v32_), + static_cast(v33_), static_cast(v34_), static_cast(v35_), + static_cast(v36_), static_cast(v37_), static_cast(v38_), + static_cast(v39_), static_cast(v40_), static_cast(v41_), + static_cast(v42_), static_cast(v43_), static_cast(v44_), + static_cast(v45_), static_cast(v46_), static_cast(v47_), + static_cast(v48_), static_cast(v49_)}; + return ValuesIn(array); + } + + private: + // No implementation - assignment is unsupported. + void operator=(const ValueArray49& other); + + const T1 v1_; + const T2 v2_; + const T3 v3_; + const T4 v4_; + const T5 v5_; + const T6 v6_; + const T7 v7_; + const T8 v8_; + const T9 v9_; + const T10 v10_; + const T11 v11_; + const T12 v12_; + const T13 v13_; + const T14 v14_; + const T15 v15_; + const T16 v16_; + const T17 v17_; + const T18 v18_; + const T19 v19_; + const T20 v20_; + const T21 v21_; + const T22 v22_; + const T23 v23_; + const T24 v24_; + const T25 v25_; + const T26 v26_; + const T27 v27_; + const T28 v28_; + const T29 v29_; + const T30 v30_; + const T31 v31_; + const T32 v32_; + const T33 v33_; + const T34 v34_; + const T35 v35_; + const T36 v36_; + const T37 v37_; + const T38 v38_; + const T39 v39_; + const T40 v40_; + const T41 v41_; + const T42 v42_; + const T43 v43_; + const T44 v44_; + const T45 v45_; + const T46 v46_; + const T47 v47_; + const T48 v48_; + const T49 v49_; +}; + +template +class ValueArray50 { + public: + ValueArray50(T1 v1, T2 v2, T3 v3, T4 v4, T5 v5, T6 v6, T7 v7, T8 v8, T9 v9, + T10 v10, T11 v11, T12 v12, T13 v13, T14 v14, T15 v15, T16 v16, T17 v17, + T18 v18, T19 v19, T20 v20, T21 v21, T22 v22, T23 v23, T24 v24, T25 v25, + T26 v26, T27 v27, T28 v28, T29 v29, T30 v30, T31 v31, T32 v32, T33 v33, + T34 v34, T35 v35, T36 v36, T37 v37, T38 v38, T39 v39, T40 v40, T41 v41, + T42 v42, T43 v43, T44 v44, T45 v45, T46 v46, T47 v47, T48 v48, T49 v49, + T50 v50) : v1_(v1), v2_(v2), v3_(v3), v4_(v4), v5_(v5), v6_(v6), v7_(v7), + v8_(v8), v9_(v9), v10_(v10), v11_(v11), v12_(v12), v13_(v13), v14_(v14), + v15_(v15), v16_(v16), v17_(v17), v18_(v18), v19_(v19), v20_(v20), + v21_(v21), v22_(v22), v23_(v23), v24_(v24), v25_(v25), v26_(v26), + v27_(v27), v28_(v28), v29_(v29), v30_(v30), v31_(v31), v32_(v32), + v33_(v33), v34_(v34), v35_(v35), v36_(v36), v37_(v37), v38_(v38), + v39_(v39), v40_(v40), v41_(v41), v42_(v42), v43_(v43), v44_(v44), + v45_(v45), v46_(v46), v47_(v47), v48_(v48), v49_(v49), v50_(v50) {} + + template + operator ParamGenerator() const { + const T array[] = {static_cast(v1_), static_cast(v2_), + static_cast(v3_), static_cast(v4_), static_cast(v5_), + static_cast(v6_), static_cast(v7_), static_cast(v8_), + static_cast(v9_), static_cast(v10_), static_cast(v11_), + static_cast(v12_), static_cast(v13_), static_cast(v14_), + static_cast(v15_), static_cast(v16_), static_cast(v17_), + static_cast(v18_), static_cast(v19_), static_cast(v20_), + static_cast(v21_), static_cast(v22_), static_cast(v23_), + static_cast(v24_), static_cast(v25_), static_cast(v26_), + static_cast(v27_), static_cast(v28_), static_cast(v29_), + static_cast(v30_), static_cast(v31_), static_cast(v32_), + static_cast(v33_), static_cast(v34_), static_cast(v35_), + static_cast(v36_), static_cast(v37_), static_cast(v38_), + static_cast(v39_), static_cast(v40_), static_cast(v41_), + static_cast(v42_), static_cast(v43_), static_cast(v44_), + static_cast(v45_), static_cast(v46_), static_cast(v47_), + static_cast(v48_), static_cast(v49_), static_cast(v50_)}; + return ValuesIn(array); + } + + private: + // No implementation - assignment is unsupported. + void operator=(const ValueArray50& other); + + const T1 v1_; + const T2 v2_; + const T3 v3_; + const T4 v4_; + const T5 v5_; + const T6 v6_; + const T7 v7_; + const T8 v8_; + const T9 v9_; + const T10 v10_; + const T11 v11_; + const T12 v12_; + const T13 v13_; + const T14 v14_; + const T15 v15_; + const T16 v16_; + const T17 v17_; + const T18 v18_; + const T19 v19_; + const T20 v20_; + const T21 v21_; + const T22 v22_; + const T23 v23_; + const T24 v24_; + const T25 v25_; + const T26 v26_; + const T27 v27_; + const T28 v28_; + const T29 v29_; + const T30 v30_; + const T31 v31_; + const T32 v32_; + const T33 v33_; + const T34 v34_; + const T35 v35_; + const T36 v36_; + const T37 v37_; + const T38 v38_; + const T39 v39_; + const T40 v40_; + const T41 v41_; + const T42 v42_; + const T43 v43_; + const T44 v44_; + const T45 v45_; + const T46 v46_; + const T47 v47_; + const T48 v48_; + const T49 v49_; + const T50 v50_; +}; + +# if GTEST_HAS_COMBINE +// INTERNAL IMPLEMENTATION - DO NOT USE IN USER CODE. +// +// Generates values from the Cartesian product of values produced +// by the argument generators. +// +template +class CartesianProductGenerator2 + : public ParamGeneratorInterface< ::testing::tuple > { + public: + typedef ::testing::tuple ParamType; + + CartesianProductGenerator2(const ParamGenerator& g1, + const ParamGenerator& g2) + : g1_(g1), g2_(g2) {} + virtual ~CartesianProductGenerator2() {} + + virtual ParamIteratorInterface* Begin() const { + return new Iterator(this, g1_, g1_.begin(), g2_, g2_.begin()); + } + virtual ParamIteratorInterface* End() const { + return new Iterator(this, g1_, g1_.end(), g2_, g2_.end()); + } + + private: + class Iterator : public ParamIteratorInterface { + public: + Iterator(const ParamGeneratorInterface* base, + const ParamGenerator& g1, + const typename ParamGenerator::iterator& current1, + const ParamGenerator& g2, + const typename ParamGenerator::iterator& current2) + : base_(base), + begin1_(g1.begin()), end1_(g1.end()), current1_(current1), + begin2_(g2.begin()), end2_(g2.end()), current2_(current2) { + ComputeCurrentValue(); + } + virtual ~Iterator() {} + + virtual const ParamGeneratorInterface* BaseGenerator() const { + return base_; + } + // Advance should not be called on beyond-of-range iterators + // so no component iterators must be beyond end of range, either. + virtual void Advance() { + assert(!AtEnd()); + ++current2_; + if (current2_ == end2_) { + current2_ = begin2_; + ++current1_; + } + ComputeCurrentValue(); + } + virtual ParamIteratorInterface* Clone() const { + return new Iterator(*this); + } + virtual const ParamType* Current() const { return ¤t_value_; } + virtual bool Equals(const ParamIteratorInterface& other) const { + // Having the same base generator guarantees that the other + // iterator is of the same type and we can downcast. + GTEST_CHECK_(BaseGenerator() == other.BaseGenerator()) + << "The program attempted to compare iterators " + << "from different generators." << std::endl; + const Iterator* typed_other = + CheckedDowncastToActualType(&other); + // We must report iterators equal if they both point beyond their + // respective ranges. That can happen in a variety of fashions, + // so we have to consult AtEnd(). + return (AtEnd() && typed_other->AtEnd()) || + ( + current1_ == typed_other->current1_ && + current2_ == typed_other->current2_); + } + + private: + Iterator(const Iterator& other) + : base_(other.base_), + begin1_(other.begin1_), + end1_(other.end1_), + current1_(other.current1_), + begin2_(other.begin2_), + end2_(other.end2_), + current2_(other.current2_) { + ComputeCurrentValue(); + } + + void ComputeCurrentValue() { + if (!AtEnd()) + current_value_ = ParamType(*current1_, *current2_); + } + bool AtEnd() const { + // We must report iterator past the end of the range when either of the + // component iterators has reached the end of its range. + return + current1_ == end1_ || + current2_ == end2_; + } + + // No implementation - assignment is unsupported. + void operator=(const Iterator& other); + + const ParamGeneratorInterface* const base_; + // begin[i]_ and end[i]_ define the i-th range that Iterator traverses. + // current[i]_ is the actual traversing iterator. + const typename ParamGenerator::iterator begin1_; + const typename ParamGenerator::iterator end1_; + typename ParamGenerator::iterator current1_; + const typename ParamGenerator::iterator begin2_; + const typename ParamGenerator::iterator end2_; + typename ParamGenerator::iterator current2_; + ParamType current_value_; + }; // class CartesianProductGenerator2::Iterator + + // No implementation - assignment is unsupported. + void operator=(const CartesianProductGenerator2& other); + + const ParamGenerator g1_; + const ParamGenerator g2_; +}; // class CartesianProductGenerator2 + + +template +class CartesianProductGenerator3 + : public ParamGeneratorInterface< ::testing::tuple > { + public: + typedef ::testing::tuple ParamType; + + CartesianProductGenerator3(const ParamGenerator& g1, + const ParamGenerator& g2, const ParamGenerator& g3) + : g1_(g1), g2_(g2), g3_(g3) {} + virtual ~CartesianProductGenerator3() {} + + virtual ParamIteratorInterface* Begin() const { + return new Iterator(this, g1_, g1_.begin(), g2_, g2_.begin(), g3_, + g3_.begin()); + } + virtual ParamIteratorInterface* End() const { + return new Iterator(this, g1_, g1_.end(), g2_, g2_.end(), g3_, g3_.end()); + } + + private: + class Iterator : public ParamIteratorInterface { + public: + Iterator(const ParamGeneratorInterface* base, + const ParamGenerator& g1, + const typename ParamGenerator::iterator& current1, + const ParamGenerator& g2, + const typename ParamGenerator::iterator& current2, + const ParamGenerator& g3, + const typename ParamGenerator::iterator& current3) + : base_(base), + begin1_(g1.begin()), end1_(g1.end()), current1_(current1), + begin2_(g2.begin()), end2_(g2.end()), current2_(current2), + begin3_(g3.begin()), end3_(g3.end()), current3_(current3) { + ComputeCurrentValue(); + } + virtual ~Iterator() {} + + virtual const ParamGeneratorInterface* BaseGenerator() const { + return base_; + } + // Advance should not be called on beyond-of-range iterators + // so no component iterators must be beyond end of range, either. + virtual void Advance() { + assert(!AtEnd()); + ++current3_; + if (current3_ == end3_) { + current3_ = begin3_; + ++current2_; + } + if (current2_ == end2_) { + current2_ = begin2_; + ++current1_; + } + ComputeCurrentValue(); + } + virtual ParamIteratorInterface* Clone() const { + return new Iterator(*this); + } + virtual const ParamType* Current() const { return ¤t_value_; } + virtual bool Equals(const ParamIteratorInterface& other) const { + // Having the same base generator guarantees that the other + // iterator is of the same type and we can downcast. + GTEST_CHECK_(BaseGenerator() == other.BaseGenerator()) + << "The program attempted to compare iterators " + << "from different generators." << std::endl; + const Iterator* typed_other = + CheckedDowncastToActualType(&other); + // We must report iterators equal if they both point beyond their + // respective ranges. That can happen in a variety of fashions, + // so we have to consult AtEnd(). + return (AtEnd() && typed_other->AtEnd()) || + ( + current1_ == typed_other->current1_ && + current2_ == typed_other->current2_ && + current3_ == typed_other->current3_); + } + + private: + Iterator(const Iterator& other) + : base_(other.base_), + begin1_(other.begin1_), + end1_(other.end1_), + current1_(other.current1_), + begin2_(other.begin2_), + end2_(other.end2_), + current2_(other.current2_), + begin3_(other.begin3_), + end3_(other.end3_), + current3_(other.current3_) { + ComputeCurrentValue(); + } + + void ComputeCurrentValue() { + if (!AtEnd()) + current_value_ = ParamType(*current1_, *current2_, *current3_); + } + bool AtEnd() const { + // We must report iterator past the end of the range when either of the + // component iterators has reached the end of its range. + return + current1_ == end1_ || + current2_ == end2_ || + current3_ == end3_; + } + + // No implementation - assignment is unsupported. + void operator=(const Iterator& other); + + const ParamGeneratorInterface* const base_; + // begin[i]_ and end[i]_ define the i-th range that Iterator traverses. + // current[i]_ is the actual traversing iterator. + const typename ParamGenerator::iterator begin1_; + const typename ParamGenerator::iterator end1_; + typename ParamGenerator::iterator current1_; + const typename ParamGenerator::iterator begin2_; + const typename ParamGenerator::iterator end2_; + typename ParamGenerator::iterator current2_; + const typename ParamGenerator::iterator begin3_; + const typename ParamGenerator::iterator end3_; + typename ParamGenerator::iterator current3_; + ParamType current_value_; + }; // class CartesianProductGenerator3::Iterator + + // No implementation - assignment is unsupported. + void operator=(const CartesianProductGenerator3& other); + + const ParamGenerator g1_; + const ParamGenerator g2_; + const ParamGenerator g3_; +}; // class CartesianProductGenerator3 + + +template +class CartesianProductGenerator4 + : public ParamGeneratorInterface< ::testing::tuple > { + public: + typedef ::testing::tuple ParamType; + + CartesianProductGenerator4(const ParamGenerator& g1, + const ParamGenerator& g2, const ParamGenerator& g3, + const ParamGenerator& g4) + : g1_(g1), g2_(g2), g3_(g3), g4_(g4) {} + virtual ~CartesianProductGenerator4() {} + + virtual ParamIteratorInterface* Begin() const { + return new Iterator(this, g1_, g1_.begin(), g2_, g2_.begin(), g3_, + g3_.begin(), g4_, g4_.begin()); + } + virtual ParamIteratorInterface* End() const { + return new Iterator(this, g1_, g1_.end(), g2_, g2_.end(), g3_, g3_.end(), + g4_, g4_.end()); + } + + private: + class Iterator : public ParamIteratorInterface { + public: + Iterator(const ParamGeneratorInterface* base, + const ParamGenerator& g1, + const typename ParamGenerator::iterator& current1, + const ParamGenerator& g2, + const typename ParamGenerator::iterator& current2, + const ParamGenerator& g3, + const typename ParamGenerator::iterator& current3, + const ParamGenerator& g4, + const typename ParamGenerator::iterator& current4) + : base_(base), + begin1_(g1.begin()), end1_(g1.end()), current1_(current1), + begin2_(g2.begin()), end2_(g2.end()), current2_(current2), + begin3_(g3.begin()), end3_(g3.end()), current3_(current3), + begin4_(g4.begin()), end4_(g4.end()), current4_(current4) { + ComputeCurrentValue(); + } + virtual ~Iterator() {} + + virtual const ParamGeneratorInterface* BaseGenerator() const { + return base_; + } + // Advance should not be called on beyond-of-range iterators + // so no component iterators must be beyond end of range, either. + virtual void Advance() { + assert(!AtEnd()); + ++current4_; + if (current4_ == end4_) { + current4_ = begin4_; + ++current3_; + } + if (current3_ == end3_) { + current3_ = begin3_; + ++current2_; + } + if (current2_ == end2_) { + current2_ = begin2_; + ++current1_; + } + ComputeCurrentValue(); + } + virtual ParamIteratorInterface* Clone() const { + return new Iterator(*this); + } + virtual const ParamType* Current() const { return ¤t_value_; } + virtual bool Equals(const ParamIteratorInterface& other) const { + // Having the same base generator guarantees that the other + // iterator is of the same type and we can downcast. + GTEST_CHECK_(BaseGenerator() == other.BaseGenerator()) + << "The program attempted to compare iterators " + << "from different generators." << std::endl; + const Iterator* typed_other = + CheckedDowncastToActualType(&other); + // We must report iterators equal if they both point beyond their + // respective ranges. That can happen in a variety of fashions, + // so we have to consult AtEnd(). + return (AtEnd() && typed_other->AtEnd()) || + ( + current1_ == typed_other->current1_ && + current2_ == typed_other->current2_ && + current3_ == typed_other->current3_ && + current4_ == typed_other->current4_); + } + + private: + Iterator(const Iterator& other) + : base_(other.base_), + begin1_(other.begin1_), + end1_(other.end1_), + current1_(other.current1_), + begin2_(other.begin2_), + end2_(other.end2_), + current2_(other.current2_), + begin3_(other.begin3_), + end3_(other.end3_), + current3_(other.current3_), + begin4_(other.begin4_), + end4_(other.end4_), + current4_(other.current4_) { + ComputeCurrentValue(); + } + + void ComputeCurrentValue() { + if (!AtEnd()) + current_value_ = ParamType(*current1_, *current2_, *current3_, + *current4_); + } + bool AtEnd() const { + // We must report iterator past the end of the range when either of the + // component iterators has reached the end of its range. + return + current1_ == end1_ || + current2_ == end2_ || + current3_ == end3_ || + current4_ == end4_; + } + + // No implementation - assignment is unsupported. + void operator=(const Iterator& other); + + const ParamGeneratorInterface* const base_; + // begin[i]_ and end[i]_ define the i-th range that Iterator traverses. + // current[i]_ is the actual traversing iterator. + const typename ParamGenerator::iterator begin1_; + const typename ParamGenerator::iterator end1_; + typename ParamGenerator::iterator current1_; + const typename ParamGenerator::iterator begin2_; + const typename ParamGenerator::iterator end2_; + typename ParamGenerator::iterator current2_; + const typename ParamGenerator::iterator begin3_; + const typename ParamGenerator::iterator end3_; + typename ParamGenerator::iterator current3_; + const typename ParamGenerator::iterator begin4_; + const typename ParamGenerator::iterator end4_; + typename ParamGenerator::iterator current4_; + ParamType current_value_; + }; // class CartesianProductGenerator4::Iterator + + // No implementation - assignment is unsupported. + void operator=(const CartesianProductGenerator4& other); + + const ParamGenerator g1_; + const ParamGenerator g2_; + const ParamGenerator g3_; + const ParamGenerator g4_; +}; // class CartesianProductGenerator4 + + +template +class CartesianProductGenerator5 + : public ParamGeneratorInterface< ::testing::tuple > { + public: + typedef ::testing::tuple ParamType; + + CartesianProductGenerator5(const ParamGenerator& g1, + const ParamGenerator& g2, const ParamGenerator& g3, + const ParamGenerator& g4, const ParamGenerator& g5) + : g1_(g1), g2_(g2), g3_(g3), g4_(g4), g5_(g5) {} + virtual ~CartesianProductGenerator5() {} + + virtual ParamIteratorInterface* Begin() const { + return new Iterator(this, g1_, g1_.begin(), g2_, g2_.begin(), g3_, + g3_.begin(), g4_, g4_.begin(), g5_, g5_.begin()); + } + virtual ParamIteratorInterface* End() const { + return new Iterator(this, g1_, g1_.end(), g2_, g2_.end(), g3_, g3_.end(), + g4_, g4_.end(), g5_, g5_.end()); + } + + private: + class Iterator : public ParamIteratorInterface { + public: + Iterator(const ParamGeneratorInterface* base, + const ParamGenerator& g1, + const typename ParamGenerator::iterator& current1, + const ParamGenerator& g2, + const typename ParamGenerator::iterator& current2, + const ParamGenerator& g3, + const typename ParamGenerator::iterator& current3, + const ParamGenerator& g4, + const typename ParamGenerator::iterator& current4, + const ParamGenerator& g5, + const typename ParamGenerator::iterator& current5) + : base_(base), + begin1_(g1.begin()), end1_(g1.end()), current1_(current1), + begin2_(g2.begin()), end2_(g2.end()), current2_(current2), + begin3_(g3.begin()), end3_(g3.end()), current3_(current3), + begin4_(g4.begin()), end4_(g4.end()), current4_(current4), + begin5_(g5.begin()), end5_(g5.end()), current5_(current5) { + ComputeCurrentValue(); + } + virtual ~Iterator() {} + + virtual const ParamGeneratorInterface* BaseGenerator() const { + return base_; + } + // Advance should not be called on beyond-of-range iterators + // so no component iterators must be beyond end of range, either. + virtual void Advance() { + assert(!AtEnd()); + ++current5_; + if (current5_ == end5_) { + current5_ = begin5_; + ++current4_; + } + if (current4_ == end4_) { + current4_ = begin4_; + ++current3_; + } + if (current3_ == end3_) { + current3_ = begin3_; + ++current2_; + } + if (current2_ == end2_) { + current2_ = begin2_; + ++current1_; + } + ComputeCurrentValue(); + } + virtual ParamIteratorInterface* Clone() const { + return new Iterator(*this); + } + virtual const ParamType* Current() const { return ¤t_value_; } + virtual bool Equals(const ParamIteratorInterface& other) const { + // Having the same base generator guarantees that the other + // iterator is of the same type and we can downcast. + GTEST_CHECK_(BaseGenerator() == other.BaseGenerator()) + << "The program attempted to compare iterators " + << "from different generators." << std::endl; + const Iterator* typed_other = + CheckedDowncastToActualType(&other); + // We must report iterators equal if they both point beyond their + // respective ranges. That can happen in a variety of fashions, + // so we have to consult AtEnd(). + return (AtEnd() && typed_other->AtEnd()) || + ( + current1_ == typed_other->current1_ && + current2_ == typed_other->current2_ && + current3_ == typed_other->current3_ && + current4_ == typed_other->current4_ && + current5_ == typed_other->current5_); + } + + private: + Iterator(const Iterator& other) + : base_(other.base_), + begin1_(other.begin1_), + end1_(other.end1_), + current1_(other.current1_), + begin2_(other.begin2_), + end2_(other.end2_), + current2_(other.current2_), + begin3_(other.begin3_), + end3_(other.end3_), + current3_(other.current3_), + begin4_(other.begin4_), + end4_(other.end4_), + current4_(other.current4_), + begin5_(other.begin5_), + end5_(other.end5_), + current5_(other.current5_) { + ComputeCurrentValue(); + } + + void ComputeCurrentValue() { + if (!AtEnd()) + current_value_ = ParamType(*current1_, *current2_, *current3_, + *current4_, *current5_); + } + bool AtEnd() const { + // We must report iterator past the end of the range when either of the + // component iterators has reached the end of its range. + return + current1_ == end1_ || + current2_ == end2_ || + current3_ == end3_ || + current4_ == end4_ || + current5_ == end5_; + } + + // No implementation - assignment is unsupported. + void operator=(const Iterator& other); + + const ParamGeneratorInterface* const base_; + // begin[i]_ and end[i]_ define the i-th range that Iterator traverses. + // current[i]_ is the actual traversing iterator. + const typename ParamGenerator::iterator begin1_; + const typename ParamGenerator::iterator end1_; + typename ParamGenerator::iterator current1_; + const typename ParamGenerator::iterator begin2_; + const typename ParamGenerator::iterator end2_; + typename ParamGenerator::iterator current2_; + const typename ParamGenerator::iterator begin3_; + const typename ParamGenerator::iterator end3_; + typename ParamGenerator::iterator current3_; + const typename ParamGenerator::iterator begin4_; + const typename ParamGenerator::iterator end4_; + typename ParamGenerator::iterator current4_; + const typename ParamGenerator::iterator begin5_; + const typename ParamGenerator::iterator end5_; + typename ParamGenerator::iterator current5_; + ParamType current_value_; + }; // class CartesianProductGenerator5::Iterator + + // No implementation - assignment is unsupported. + void operator=(const CartesianProductGenerator5& other); + + const ParamGenerator g1_; + const ParamGenerator g2_; + const ParamGenerator g3_; + const ParamGenerator g4_; + const ParamGenerator g5_; +}; // class CartesianProductGenerator5 + + +template +class CartesianProductGenerator6 + : public ParamGeneratorInterface< ::testing::tuple > { + public: + typedef ::testing::tuple ParamType; + + CartesianProductGenerator6(const ParamGenerator& g1, + const ParamGenerator& g2, const ParamGenerator& g3, + const ParamGenerator& g4, const ParamGenerator& g5, + const ParamGenerator& g6) + : g1_(g1), g2_(g2), g3_(g3), g4_(g4), g5_(g5), g6_(g6) {} + virtual ~CartesianProductGenerator6() {} + + virtual ParamIteratorInterface* Begin() const { + return new Iterator(this, g1_, g1_.begin(), g2_, g2_.begin(), g3_, + g3_.begin(), g4_, g4_.begin(), g5_, g5_.begin(), g6_, g6_.begin()); + } + virtual ParamIteratorInterface* End() const { + return new Iterator(this, g1_, g1_.end(), g2_, g2_.end(), g3_, g3_.end(), + g4_, g4_.end(), g5_, g5_.end(), g6_, g6_.end()); + } + + private: + class Iterator : public ParamIteratorInterface { + public: + Iterator(const ParamGeneratorInterface* base, + const ParamGenerator& g1, + const typename ParamGenerator::iterator& current1, + const ParamGenerator& g2, + const typename ParamGenerator::iterator& current2, + const ParamGenerator& g3, + const typename ParamGenerator::iterator& current3, + const ParamGenerator& g4, + const typename ParamGenerator::iterator& current4, + const ParamGenerator& g5, + const typename ParamGenerator::iterator& current5, + const ParamGenerator& g6, + const typename ParamGenerator::iterator& current6) + : base_(base), + begin1_(g1.begin()), end1_(g1.end()), current1_(current1), + begin2_(g2.begin()), end2_(g2.end()), current2_(current2), + begin3_(g3.begin()), end3_(g3.end()), current3_(current3), + begin4_(g4.begin()), end4_(g4.end()), current4_(current4), + begin5_(g5.begin()), end5_(g5.end()), current5_(current5), + begin6_(g6.begin()), end6_(g6.end()), current6_(current6) { + ComputeCurrentValue(); + } + virtual ~Iterator() {} + + virtual const ParamGeneratorInterface* BaseGenerator() const { + return base_; + } + // Advance should not be called on beyond-of-range iterators + // so no component iterators must be beyond end of range, either. + virtual void Advance() { + assert(!AtEnd()); + ++current6_; + if (current6_ == end6_) { + current6_ = begin6_; + ++current5_; + } + if (current5_ == end5_) { + current5_ = begin5_; + ++current4_; + } + if (current4_ == end4_) { + current4_ = begin4_; + ++current3_; + } + if (current3_ == end3_) { + current3_ = begin3_; + ++current2_; + } + if (current2_ == end2_) { + current2_ = begin2_; + ++current1_; + } + ComputeCurrentValue(); + } + virtual ParamIteratorInterface* Clone() const { + return new Iterator(*this); + } + virtual const ParamType* Current() const { return ¤t_value_; } + virtual bool Equals(const ParamIteratorInterface& other) const { + // Having the same base generator guarantees that the other + // iterator is of the same type and we can downcast. + GTEST_CHECK_(BaseGenerator() == other.BaseGenerator()) + << "The program attempted to compare iterators " + << "from different generators." << std::endl; + const Iterator* typed_other = + CheckedDowncastToActualType(&other); + // We must report iterators equal if they both point beyond their + // respective ranges. That can happen in a variety of fashions, + // so we have to consult AtEnd(). + return (AtEnd() && typed_other->AtEnd()) || + ( + current1_ == typed_other->current1_ && + current2_ == typed_other->current2_ && + current3_ == typed_other->current3_ && + current4_ == typed_other->current4_ && + current5_ == typed_other->current5_ && + current6_ == typed_other->current6_); + } + + private: + Iterator(const Iterator& other) + : base_(other.base_), + begin1_(other.begin1_), + end1_(other.end1_), + current1_(other.current1_), + begin2_(other.begin2_), + end2_(other.end2_), + current2_(other.current2_), + begin3_(other.begin3_), + end3_(other.end3_), + current3_(other.current3_), + begin4_(other.begin4_), + end4_(other.end4_), + current4_(other.current4_), + begin5_(other.begin5_), + end5_(other.end5_), + current5_(other.current5_), + begin6_(other.begin6_), + end6_(other.end6_), + current6_(other.current6_) { + ComputeCurrentValue(); + } + + void ComputeCurrentValue() { + if (!AtEnd()) + current_value_ = ParamType(*current1_, *current2_, *current3_, + *current4_, *current5_, *current6_); + } + bool AtEnd() const { + // We must report iterator past the end of the range when either of the + // component iterators has reached the end of its range. + return + current1_ == end1_ || + current2_ == end2_ || + current3_ == end3_ || + current4_ == end4_ || + current5_ == end5_ || + current6_ == end6_; + } + + // No implementation - assignment is unsupported. + void operator=(const Iterator& other); + + const ParamGeneratorInterface* const base_; + // begin[i]_ and end[i]_ define the i-th range that Iterator traverses. + // current[i]_ is the actual traversing iterator. + const typename ParamGenerator::iterator begin1_; + const typename ParamGenerator::iterator end1_; + typename ParamGenerator::iterator current1_; + const typename ParamGenerator::iterator begin2_; + const typename ParamGenerator::iterator end2_; + typename ParamGenerator::iterator current2_; + const typename ParamGenerator::iterator begin3_; + const typename ParamGenerator::iterator end3_; + typename ParamGenerator::iterator current3_; + const typename ParamGenerator::iterator begin4_; + const typename ParamGenerator::iterator end4_; + typename ParamGenerator::iterator current4_; + const typename ParamGenerator::iterator begin5_; + const typename ParamGenerator::iterator end5_; + typename ParamGenerator::iterator current5_; + const typename ParamGenerator::iterator begin6_; + const typename ParamGenerator::iterator end6_; + typename ParamGenerator::iterator current6_; + ParamType current_value_; + }; // class CartesianProductGenerator6::Iterator + + // No implementation - assignment is unsupported. + void operator=(const CartesianProductGenerator6& other); + + const ParamGenerator g1_; + const ParamGenerator g2_; + const ParamGenerator g3_; + const ParamGenerator g4_; + const ParamGenerator g5_; + const ParamGenerator g6_; +}; // class CartesianProductGenerator6 + + +template +class CartesianProductGenerator7 + : public ParamGeneratorInterface< ::testing::tuple > { + public: + typedef ::testing::tuple ParamType; + + CartesianProductGenerator7(const ParamGenerator& g1, + const ParamGenerator& g2, const ParamGenerator& g3, + const ParamGenerator& g4, const ParamGenerator& g5, + const ParamGenerator& g6, const ParamGenerator& g7) + : g1_(g1), g2_(g2), g3_(g3), g4_(g4), g5_(g5), g6_(g6), g7_(g7) {} + virtual ~CartesianProductGenerator7() {} + + virtual ParamIteratorInterface* Begin() const { + return new Iterator(this, g1_, g1_.begin(), g2_, g2_.begin(), g3_, + g3_.begin(), g4_, g4_.begin(), g5_, g5_.begin(), g6_, g6_.begin(), g7_, + g7_.begin()); + } + virtual ParamIteratorInterface* End() const { + return new Iterator(this, g1_, g1_.end(), g2_, g2_.end(), g3_, g3_.end(), + g4_, g4_.end(), g5_, g5_.end(), g6_, g6_.end(), g7_, g7_.end()); + } + + private: + class Iterator : public ParamIteratorInterface { + public: + Iterator(const ParamGeneratorInterface* base, + const ParamGenerator& g1, + const typename ParamGenerator::iterator& current1, + const ParamGenerator& g2, + const typename ParamGenerator::iterator& current2, + const ParamGenerator& g3, + const typename ParamGenerator::iterator& current3, + const ParamGenerator& g4, + const typename ParamGenerator::iterator& current4, + const ParamGenerator& g5, + const typename ParamGenerator::iterator& current5, + const ParamGenerator& g6, + const typename ParamGenerator::iterator& current6, + const ParamGenerator& g7, + const typename ParamGenerator::iterator& current7) + : base_(base), + begin1_(g1.begin()), end1_(g1.end()), current1_(current1), + begin2_(g2.begin()), end2_(g2.end()), current2_(current2), + begin3_(g3.begin()), end3_(g3.end()), current3_(current3), + begin4_(g4.begin()), end4_(g4.end()), current4_(current4), + begin5_(g5.begin()), end5_(g5.end()), current5_(current5), + begin6_(g6.begin()), end6_(g6.end()), current6_(current6), + begin7_(g7.begin()), end7_(g7.end()), current7_(current7) { + ComputeCurrentValue(); + } + virtual ~Iterator() {} + + virtual const ParamGeneratorInterface* BaseGenerator() const { + return base_; + } + // Advance should not be called on beyond-of-range iterators + // so no component iterators must be beyond end of range, either. + virtual void Advance() { + assert(!AtEnd()); + ++current7_; + if (current7_ == end7_) { + current7_ = begin7_; + ++current6_; + } + if (current6_ == end6_) { + current6_ = begin6_; + ++current5_; + } + if (current5_ == end5_) { + current5_ = begin5_; + ++current4_; + } + if (current4_ == end4_) { + current4_ = begin4_; + ++current3_; + } + if (current3_ == end3_) { + current3_ = begin3_; + ++current2_; + } + if (current2_ == end2_) { + current2_ = begin2_; + ++current1_; + } + ComputeCurrentValue(); + } + virtual ParamIteratorInterface* Clone() const { + return new Iterator(*this); + } + virtual const ParamType* Current() const { return ¤t_value_; } + virtual bool Equals(const ParamIteratorInterface& other) const { + // Having the same base generator guarantees that the other + // iterator is of the same type and we can downcast. + GTEST_CHECK_(BaseGenerator() == other.BaseGenerator()) + << "The program attempted to compare iterators " + << "from different generators." << std::endl; + const Iterator* typed_other = + CheckedDowncastToActualType(&other); + // We must report iterators equal if they both point beyond their + // respective ranges. That can happen in a variety of fashions, + // so we have to consult AtEnd(). + return (AtEnd() && typed_other->AtEnd()) || + ( + current1_ == typed_other->current1_ && + current2_ == typed_other->current2_ && + current3_ == typed_other->current3_ && + current4_ == typed_other->current4_ && + current5_ == typed_other->current5_ && + current6_ == typed_other->current6_ && + current7_ == typed_other->current7_); + } + + private: + Iterator(const Iterator& other) + : base_(other.base_), + begin1_(other.begin1_), + end1_(other.end1_), + current1_(other.current1_), + begin2_(other.begin2_), + end2_(other.end2_), + current2_(other.current2_), + begin3_(other.begin3_), + end3_(other.end3_), + current3_(other.current3_), + begin4_(other.begin4_), + end4_(other.end4_), + current4_(other.current4_), + begin5_(other.begin5_), + end5_(other.end5_), + current5_(other.current5_), + begin6_(other.begin6_), + end6_(other.end6_), + current6_(other.current6_), + begin7_(other.begin7_), + end7_(other.end7_), + current7_(other.current7_) { + ComputeCurrentValue(); + } + + void ComputeCurrentValue() { + if (!AtEnd()) + current_value_ = ParamType(*current1_, *current2_, *current3_, + *current4_, *current5_, *current6_, *current7_); + } + bool AtEnd() const { + // We must report iterator past the end of the range when either of the + // component iterators has reached the end of its range. + return + current1_ == end1_ || + current2_ == end2_ || + current3_ == end3_ || + current4_ == end4_ || + current5_ == end5_ || + current6_ == end6_ || + current7_ == end7_; + } + + // No implementation - assignment is unsupported. + void operator=(const Iterator& other); + + const ParamGeneratorInterface* const base_; + // begin[i]_ and end[i]_ define the i-th range that Iterator traverses. + // current[i]_ is the actual traversing iterator. + const typename ParamGenerator::iterator begin1_; + const typename ParamGenerator::iterator end1_; + typename ParamGenerator::iterator current1_; + const typename ParamGenerator::iterator begin2_; + const typename ParamGenerator::iterator end2_; + typename ParamGenerator::iterator current2_; + const typename ParamGenerator::iterator begin3_; + const typename ParamGenerator::iterator end3_; + typename ParamGenerator::iterator current3_; + const typename ParamGenerator::iterator begin4_; + const typename ParamGenerator::iterator end4_; + typename ParamGenerator::iterator current4_; + const typename ParamGenerator::iterator begin5_; + const typename ParamGenerator::iterator end5_; + typename ParamGenerator::iterator current5_; + const typename ParamGenerator::iterator begin6_; + const typename ParamGenerator::iterator end6_; + typename ParamGenerator::iterator current6_; + const typename ParamGenerator::iterator begin7_; + const typename ParamGenerator::iterator end7_; + typename ParamGenerator::iterator current7_; + ParamType current_value_; + }; // class CartesianProductGenerator7::Iterator + + // No implementation - assignment is unsupported. + void operator=(const CartesianProductGenerator7& other); + + const ParamGenerator g1_; + const ParamGenerator g2_; + const ParamGenerator g3_; + const ParamGenerator g4_; + const ParamGenerator g5_; + const ParamGenerator g6_; + const ParamGenerator g7_; +}; // class CartesianProductGenerator7 + + +template +class CartesianProductGenerator8 + : public ParamGeneratorInterface< ::testing::tuple > { + public: + typedef ::testing::tuple ParamType; + + CartesianProductGenerator8(const ParamGenerator& g1, + const ParamGenerator& g2, const ParamGenerator& g3, + const ParamGenerator& g4, const ParamGenerator& g5, + const ParamGenerator& g6, const ParamGenerator& g7, + const ParamGenerator& g8) + : g1_(g1), g2_(g2), g3_(g3), g4_(g4), g5_(g5), g6_(g6), g7_(g7), + g8_(g8) {} + virtual ~CartesianProductGenerator8() {} + + virtual ParamIteratorInterface* Begin() const { + return new Iterator(this, g1_, g1_.begin(), g2_, g2_.begin(), g3_, + g3_.begin(), g4_, g4_.begin(), g5_, g5_.begin(), g6_, g6_.begin(), g7_, + g7_.begin(), g8_, g8_.begin()); + } + virtual ParamIteratorInterface* End() const { + return new Iterator(this, g1_, g1_.end(), g2_, g2_.end(), g3_, g3_.end(), + g4_, g4_.end(), g5_, g5_.end(), g6_, g6_.end(), g7_, g7_.end(), g8_, + g8_.end()); + } + + private: + class Iterator : public ParamIteratorInterface { + public: + Iterator(const ParamGeneratorInterface* base, + const ParamGenerator& g1, + const typename ParamGenerator::iterator& current1, + const ParamGenerator& g2, + const typename ParamGenerator::iterator& current2, + const ParamGenerator& g3, + const typename ParamGenerator::iterator& current3, + const ParamGenerator& g4, + const typename ParamGenerator::iterator& current4, + const ParamGenerator& g5, + const typename ParamGenerator::iterator& current5, + const ParamGenerator& g6, + const typename ParamGenerator::iterator& current6, + const ParamGenerator& g7, + const typename ParamGenerator::iterator& current7, + const ParamGenerator& g8, + const typename ParamGenerator::iterator& current8) + : base_(base), + begin1_(g1.begin()), end1_(g1.end()), current1_(current1), + begin2_(g2.begin()), end2_(g2.end()), current2_(current2), + begin3_(g3.begin()), end3_(g3.end()), current3_(current3), + begin4_(g4.begin()), end4_(g4.end()), current4_(current4), + begin5_(g5.begin()), end5_(g5.end()), current5_(current5), + begin6_(g6.begin()), end6_(g6.end()), current6_(current6), + begin7_(g7.begin()), end7_(g7.end()), current7_(current7), + begin8_(g8.begin()), end8_(g8.end()), current8_(current8) { + ComputeCurrentValue(); + } + virtual ~Iterator() {} + + virtual const ParamGeneratorInterface* BaseGenerator() const { + return base_; + } + // Advance should not be called on beyond-of-range iterators + // so no component iterators must be beyond end of range, either. + virtual void Advance() { + assert(!AtEnd()); + ++current8_; + if (current8_ == end8_) { + current8_ = begin8_; + ++current7_; + } + if (current7_ == end7_) { + current7_ = begin7_; + ++current6_; + } + if (current6_ == end6_) { + current6_ = begin6_; + ++current5_; + } + if (current5_ == end5_) { + current5_ = begin5_; + ++current4_; + } + if (current4_ == end4_) { + current4_ = begin4_; + ++current3_; + } + if (current3_ == end3_) { + current3_ = begin3_; + ++current2_; + } + if (current2_ == end2_) { + current2_ = begin2_; + ++current1_; + } + ComputeCurrentValue(); + } + virtual ParamIteratorInterface* Clone() const { + return new Iterator(*this); + } + virtual const ParamType* Current() const { return ¤t_value_; } + virtual bool Equals(const ParamIteratorInterface& other) const { + // Having the same base generator guarantees that the other + // iterator is of the same type and we can downcast. + GTEST_CHECK_(BaseGenerator() == other.BaseGenerator()) + << "The program attempted to compare iterators " + << "from different generators." << std::endl; + const Iterator* typed_other = + CheckedDowncastToActualType(&other); + // We must report iterators equal if they both point beyond their + // respective ranges. That can happen in a variety of fashions, + // so we have to consult AtEnd(). + return (AtEnd() && typed_other->AtEnd()) || + ( + current1_ == typed_other->current1_ && + current2_ == typed_other->current2_ && + current3_ == typed_other->current3_ && + current4_ == typed_other->current4_ && + current5_ == typed_other->current5_ && + current6_ == typed_other->current6_ && + current7_ == typed_other->current7_ && + current8_ == typed_other->current8_); + } + + private: + Iterator(const Iterator& other) + : base_(other.base_), + begin1_(other.begin1_), + end1_(other.end1_), + current1_(other.current1_), + begin2_(other.begin2_), + end2_(other.end2_), + current2_(other.current2_), + begin3_(other.begin3_), + end3_(other.end3_), + current3_(other.current3_), + begin4_(other.begin4_), + end4_(other.end4_), + current4_(other.current4_), + begin5_(other.begin5_), + end5_(other.end5_), + current5_(other.current5_), + begin6_(other.begin6_), + end6_(other.end6_), + current6_(other.current6_), + begin7_(other.begin7_), + end7_(other.end7_), + current7_(other.current7_), + begin8_(other.begin8_), + end8_(other.end8_), + current8_(other.current8_) { + ComputeCurrentValue(); + } + + void ComputeCurrentValue() { + if (!AtEnd()) + current_value_ = ParamType(*current1_, *current2_, *current3_, + *current4_, *current5_, *current6_, *current7_, *current8_); + } + bool AtEnd() const { + // We must report iterator past the end of the range when either of the + // component iterators has reached the end of its range. + return + current1_ == end1_ || + current2_ == end2_ || + current3_ == end3_ || + current4_ == end4_ || + current5_ == end5_ || + current6_ == end6_ || + current7_ == end7_ || + current8_ == end8_; + } + + // No implementation - assignment is unsupported. + void operator=(const Iterator& other); + + const ParamGeneratorInterface* const base_; + // begin[i]_ and end[i]_ define the i-th range that Iterator traverses. + // current[i]_ is the actual traversing iterator. + const typename ParamGenerator::iterator begin1_; + const typename ParamGenerator::iterator end1_; + typename ParamGenerator::iterator current1_; + const typename ParamGenerator::iterator begin2_; + const typename ParamGenerator::iterator end2_; + typename ParamGenerator::iterator current2_; + const typename ParamGenerator::iterator begin3_; + const typename ParamGenerator::iterator end3_; + typename ParamGenerator::iterator current3_; + const typename ParamGenerator::iterator begin4_; + const typename ParamGenerator::iterator end4_; + typename ParamGenerator::iterator current4_; + const typename ParamGenerator::iterator begin5_; + const typename ParamGenerator::iterator end5_; + typename ParamGenerator::iterator current5_; + const typename ParamGenerator::iterator begin6_; + const typename ParamGenerator::iterator end6_; + typename ParamGenerator::iterator current6_; + const typename ParamGenerator::iterator begin7_; + const typename ParamGenerator::iterator end7_; + typename ParamGenerator::iterator current7_; + const typename ParamGenerator::iterator begin8_; + const typename ParamGenerator::iterator end8_; + typename ParamGenerator::iterator current8_; + ParamType current_value_; + }; // class CartesianProductGenerator8::Iterator + + // No implementation - assignment is unsupported. + void operator=(const CartesianProductGenerator8& other); + + const ParamGenerator g1_; + const ParamGenerator g2_; + const ParamGenerator g3_; + const ParamGenerator g4_; + const ParamGenerator g5_; + const ParamGenerator g6_; + const ParamGenerator g7_; + const ParamGenerator g8_; +}; // class CartesianProductGenerator8 + + +template +class CartesianProductGenerator9 + : public ParamGeneratorInterface< ::testing::tuple > { + public: + typedef ::testing::tuple ParamType; + + CartesianProductGenerator9(const ParamGenerator& g1, + const ParamGenerator& g2, const ParamGenerator& g3, + const ParamGenerator& g4, const ParamGenerator& g5, + const ParamGenerator& g6, const ParamGenerator& g7, + const ParamGenerator& g8, const ParamGenerator& g9) + : g1_(g1), g2_(g2), g3_(g3), g4_(g4), g5_(g5), g6_(g6), g7_(g7), g8_(g8), + g9_(g9) {} + virtual ~CartesianProductGenerator9() {} + + virtual ParamIteratorInterface* Begin() const { + return new Iterator(this, g1_, g1_.begin(), g2_, g2_.begin(), g3_, + g3_.begin(), g4_, g4_.begin(), g5_, g5_.begin(), g6_, g6_.begin(), g7_, + g7_.begin(), g8_, g8_.begin(), g9_, g9_.begin()); + } + virtual ParamIteratorInterface* End() const { + return new Iterator(this, g1_, g1_.end(), g2_, g2_.end(), g3_, g3_.end(), + g4_, g4_.end(), g5_, g5_.end(), g6_, g6_.end(), g7_, g7_.end(), g8_, + g8_.end(), g9_, g9_.end()); + } + + private: + class Iterator : public ParamIteratorInterface { + public: + Iterator(const ParamGeneratorInterface* base, + const ParamGenerator& g1, + const typename ParamGenerator::iterator& current1, + const ParamGenerator& g2, + const typename ParamGenerator::iterator& current2, + const ParamGenerator& g3, + const typename ParamGenerator::iterator& current3, + const ParamGenerator& g4, + const typename ParamGenerator::iterator& current4, + const ParamGenerator& g5, + const typename ParamGenerator::iterator& current5, + const ParamGenerator& g6, + const typename ParamGenerator::iterator& current6, + const ParamGenerator& g7, + const typename ParamGenerator::iterator& current7, + const ParamGenerator& g8, + const typename ParamGenerator::iterator& current8, + const ParamGenerator& g9, + const typename ParamGenerator::iterator& current9) + : base_(base), + begin1_(g1.begin()), end1_(g1.end()), current1_(current1), + begin2_(g2.begin()), end2_(g2.end()), current2_(current2), + begin3_(g3.begin()), end3_(g3.end()), current3_(current3), + begin4_(g4.begin()), end4_(g4.end()), current4_(current4), + begin5_(g5.begin()), end5_(g5.end()), current5_(current5), + begin6_(g6.begin()), end6_(g6.end()), current6_(current6), + begin7_(g7.begin()), end7_(g7.end()), current7_(current7), + begin8_(g8.begin()), end8_(g8.end()), current8_(current8), + begin9_(g9.begin()), end9_(g9.end()), current9_(current9) { + ComputeCurrentValue(); + } + virtual ~Iterator() {} + + virtual const ParamGeneratorInterface* BaseGenerator() const { + return base_; + } + // Advance should not be called on beyond-of-range iterators + // so no component iterators must be beyond end of range, either. + virtual void Advance() { + assert(!AtEnd()); + ++current9_; + if (current9_ == end9_) { + current9_ = begin9_; + ++current8_; + } + if (current8_ == end8_) { + current8_ = begin8_; + ++current7_; + } + if (current7_ == end7_) { + current7_ = begin7_; + ++current6_; + } + if (current6_ == end6_) { + current6_ = begin6_; + ++current5_; + } + if (current5_ == end5_) { + current5_ = begin5_; + ++current4_; + } + if (current4_ == end4_) { + current4_ = begin4_; + ++current3_; + } + if (current3_ == end3_) { + current3_ = begin3_; + ++current2_; + } + if (current2_ == end2_) { + current2_ = begin2_; + ++current1_; + } + ComputeCurrentValue(); + } + virtual ParamIteratorInterface* Clone() const { + return new Iterator(*this); + } + virtual const ParamType* Current() const { return ¤t_value_; } + virtual bool Equals(const ParamIteratorInterface& other) const { + // Having the same base generator guarantees that the other + // iterator is of the same type and we can downcast. + GTEST_CHECK_(BaseGenerator() == other.BaseGenerator()) + << "The program attempted to compare iterators " + << "from different generators." << std::endl; + const Iterator* typed_other = + CheckedDowncastToActualType(&other); + // We must report iterators equal if they both point beyond their + // respective ranges. That can happen in a variety of fashions, + // so we have to consult AtEnd(). + return (AtEnd() && typed_other->AtEnd()) || + ( + current1_ == typed_other->current1_ && + current2_ == typed_other->current2_ && + current3_ == typed_other->current3_ && + current4_ == typed_other->current4_ && + current5_ == typed_other->current5_ && + current6_ == typed_other->current6_ && + current7_ == typed_other->current7_ && + current8_ == typed_other->current8_ && + current9_ == typed_other->current9_); + } + + private: + Iterator(const Iterator& other) + : base_(other.base_), + begin1_(other.begin1_), + end1_(other.end1_), + current1_(other.current1_), + begin2_(other.begin2_), + end2_(other.end2_), + current2_(other.current2_), + begin3_(other.begin3_), + end3_(other.end3_), + current3_(other.current3_), + begin4_(other.begin4_), + end4_(other.end4_), + current4_(other.current4_), + begin5_(other.begin5_), + end5_(other.end5_), + current5_(other.current5_), + begin6_(other.begin6_), + end6_(other.end6_), + current6_(other.current6_), + begin7_(other.begin7_), + end7_(other.end7_), + current7_(other.current7_), + begin8_(other.begin8_), + end8_(other.end8_), + current8_(other.current8_), + begin9_(other.begin9_), + end9_(other.end9_), + current9_(other.current9_) { + ComputeCurrentValue(); + } + + void ComputeCurrentValue() { + if (!AtEnd()) + current_value_ = ParamType(*current1_, *current2_, *current3_, + *current4_, *current5_, *current6_, *current7_, *current8_, + *current9_); + } + bool AtEnd() const { + // We must report iterator past the end of the range when either of the + // component iterators has reached the end of its range. + return + current1_ == end1_ || + current2_ == end2_ || + current3_ == end3_ || + current4_ == end4_ || + current5_ == end5_ || + current6_ == end6_ || + current7_ == end7_ || + current8_ == end8_ || + current9_ == end9_; + } + + // No implementation - assignment is unsupported. + void operator=(const Iterator& other); + + const ParamGeneratorInterface* const base_; + // begin[i]_ and end[i]_ define the i-th range that Iterator traverses. + // current[i]_ is the actual traversing iterator. + const typename ParamGenerator::iterator begin1_; + const typename ParamGenerator::iterator end1_; + typename ParamGenerator::iterator current1_; + const typename ParamGenerator::iterator begin2_; + const typename ParamGenerator::iterator end2_; + typename ParamGenerator::iterator current2_; + const typename ParamGenerator::iterator begin3_; + const typename ParamGenerator::iterator end3_; + typename ParamGenerator::iterator current3_; + const typename ParamGenerator::iterator begin4_; + const typename ParamGenerator::iterator end4_; + typename ParamGenerator::iterator current4_; + const typename ParamGenerator::iterator begin5_; + const typename ParamGenerator::iterator end5_; + typename ParamGenerator::iterator current5_; + const typename ParamGenerator::iterator begin6_; + const typename ParamGenerator::iterator end6_; + typename ParamGenerator::iterator current6_; + const typename ParamGenerator::iterator begin7_; + const typename ParamGenerator::iterator end7_; + typename ParamGenerator::iterator current7_; + const typename ParamGenerator::iterator begin8_; + const typename ParamGenerator::iterator end8_; + typename ParamGenerator::iterator current8_; + const typename ParamGenerator::iterator begin9_; + const typename ParamGenerator::iterator end9_; + typename ParamGenerator::iterator current9_; + ParamType current_value_; + }; // class CartesianProductGenerator9::Iterator + + // No implementation - assignment is unsupported. + void operator=(const CartesianProductGenerator9& other); + + const ParamGenerator g1_; + const ParamGenerator g2_; + const ParamGenerator g3_; + const ParamGenerator g4_; + const ParamGenerator g5_; + const ParamGenerator g6_; + const ParamGenerator g7_; + const ParamGenerator g8_; + const ParamGenerator g9_; +}; // class CartesianProductGenerator9 + + +template +class CartesianProductGenerator10 + : public ParamGeneratorInterface< ::testing::tuple > { + public: + typedef ::testing::tuple ParamType; + + CartesianProductGenerator10(const ParamGenerator& g1, + const ParamGenerator& g2, const ParamGenerator& g3, + const ParamGenerator& g4, const ParamGenerator& g5, + const ParamGenerator& g6, const ParamGenerator& g7, + const ParamGenerator& g8, const ParamGenerator& g9, + const ParamGenerator& g10) + : g1_(g1), g2_(g2), g3_(g3), g4_(g4), g5_(g5), g6_(g6), g7_(g7), g8_(g8), + g9_(g9), g10_(g10) {} + virtual ~CartesianProductGenerator10() {} + + virtual ParamIteratorInterface* Begin() const { + return new Iterator(this, g1_, g1_.begin(), g2_, g2_.begin(), g3_, + g3_.begin(), g4_, g4_.begin(), g5_, g5_.begin(), g6_, g6_.begin(), g7_, + g7_.begin(), g8_, g8_.begin(), g9_, g9_.begin(), g10_, g10_.begin()); + } + virtual ParamIteratorInterface* End() const { + return new Iterator(this, g1_, g1_.end(), g2_, g2_.end(), g3_, g3_.end(), + g4_, g4_.end(), g5_, g5_.end(), g6_, g6_.end(), g7_, g7_.end(), g8_, + g8_.end(), g9_, g9_.end(), g10_, g10_.end()); + } + + private: + class Iterator : public ParamIteratorInterface { + public: + Iterator(const ParamGeneratorInterface* base, + const ParamGenerator& g1, + const typename ParamGenerator::iterator& current1, + const ParamGenerator& g2, + const typename ParamGenerator::iterator& current2, + const ParamGenerator& g3, + const typename ParamGenerator::iterator& current3, + const ParamGenerator& g4, + const typename ParamGenerator::iterator& current4, + const ParamGenerator& g5, + const typename ParamGenerator::iterator& current5, + const ParamGenerator& g6, + const typename ParamGenerator::iterator& current6, + const ParamGenerator& g7, + const typename ParamGenerator::iterator& current7, + const ParamGenerator& g8, + const typename ParamGenerator::iterator& current8, + const ParamGenerator& g9, + const typename ParamGenerator::iterator& current9, + const ParamGenerator& g10, + const typename ParamGenerator::iterator& current10) + : base_(base), + begin1_(g1.begin()), end1_(g1.end()), current1_(current1), + begin2_(g2.begin()), end2_(g2.end()), current2_(current2), + begin3_(g3.begin()), end3_(g3.end()), current3_(current3), + begin4_(g4.begin()), end4_(g4.end()), current4_(current4), + begin5_(g5.begin()), end5_(g5.end()), current5_(current5), + begin6_(g6.begin()), end6_(g6.end()), current6_(current6), + begin7_(g7.begin()), end7_(g7.end()), current7_(current7), + begin8_(g8.begin()), end8_(g8.end()), current8_(current8), + begin9_(g9.begin()), end9_(g9.end()), current9_(current9), + begin10_(g10.begin()), end10_(g10.end()), current10_(current10) { + ComputeCurrentValue(); + } + virtual ~Iterator() {} + + virtual const ParamGeneratorInterface* BaseGenerator() const { + return base_; + } + // Advance should not be called on beyond-of-range iterators + // so no component iterators must be beyond end of range, either. + virtual void Advance() { + assert(!AtEnd()); + ++current10_; + if (current10_ == end10_) { + current10_ = begin10_; + ++current9_; + } + if (current9_ == end9_) { + current9_ = begin9_; + ++current8_; + } + if (current8_ == end8_) { + current8_ = begin8_; + ++current7_; + } + if (current7_ == end7_) { + current7_ = begin7_; + ++current6_; + } + if (current6_ == end6_) { + current6_ = begin6_; + ++current5_; + } + if (current5_ == end5_) { + current5_ = begin5_; + ++current4_; + } + if (current4_ == end4_) { + current4_ = begin4_; + ++current3_; + } + if (current3_ == end3_) { + current3_ = begin3_; + ++current2_; + } + if (current2_ == end2_) { + current2_ = begin2_; + ++current1_; + } + ComputeCurrentValue(); + } + virtual ParamIteratorInterface* Clone() const { + return new Iterator(*this); + } + virtual const ParamType* Current() const { return ¤t_value_; } + virtual bool Equals(const ParamIteratorInterface& other) const { + // Having the same base generator guarantees that the other + // iterator is of the same type and we can downcast. + GTEST_CHECK_(BaseGenerator() == other.BaseGenerator()) + << "The program attempted to compare iterators " + << "from different generators." << std::endl; + const Iterator* typed_other = + CheckedDowncastToActualType(&other); + // We must report iterators equal if they both point beyond their + // respective ranges. That can happen in a variety of fashions, + // so we have to consult AtEnd(). + return (AtEnd() && typed_other->AtEnd()) || + ( + current1_ == typed_other->current1_ && + current2_ == typed_other->current2_ && + current3_ == typed_other->current3_ && + current4_ == typed_other->current4_ && + current5_ == typed_other->current5_ && + current6_ == typed_other->current6_ && + current7_ == typed_other->current7_ && + current8_ == typed_other->current8_ && + current9_ == typed_other->current9_ && + current10_ == typed_other->current10_); + } + + private: + Iterator(const Iterator& other) + : base_(other.base_), + begin1_(other.begin1_), + end1_(other.end1_), + current1_(other.current1_), + begin2_(other.begin2_), + end2_(other.end2_), + current2_(other.current2_), + begin3_(other.begin3_), + end3_(other.end3_), + current3_(other.current3_), + begin4_(other.begin4_), + end4_(other.end4_), + current4_(other.current4_), + begin5_(other.begin5_), + end5_(other.end5_), + current5_(other.current5_), + begin6_(other.begin6_), + end6_(other.end6_), + current6_(other.current6_), + begin7_(other.begin7_), + end7_(other.end7_), + current7_(other.current7_), + begin8_(other.begin8_), + end8_(other.end8_), + current8_(other.current8_), + begin9_(other.begin9_), + end9_(other.end9_), + current9_(other.current9_), + begin10_(other.begin10_), + end10_(other.end10_), + current10_(other.current10_) { + ComputeCurrentValue(); + } + + void ComputeCurrentValue() { + if (!AtEnd()) + current_value_ = ParamType(*current1_, *current2_, *current3_, + *current4_, *current5_, *current6_, *current7_, *current8_, + *current9_, *current10_); + } + bool AtEnd() const { + // We must report iterator past the end of the range when either of the + // component iterators has reached the end of its range. + return + current1_ == end1_ || + current2_ == end2_ || + current3_ == end3_ || + current4_ == end4_ || + current5_ == end5_ || + current6_ == end6_ || + current7_ == end7_ || + current8_ == end8_ || + current9_ == end9_ || + current10_ == end10_; + } + + // No implementation - assignment is unsupported. + void operator=(const Iterator& other); + + const ParamGeneratorInterface* const base_; + // begin[i]_ and end[i]_ define the i-th range that Iterator traverses. + // current[i]_ is the actual traversing iterator. + const typename ParamGenerator::iterator begin1_; + const typename ParamGenerator::iterator end1_; + typename ParamGenerator::iterator current1_; + const typename ParamGenerator::iterator begin2_; + const typename ParamGenerator::iterator end2_; + typename ParamGenerator::iterator current2_; + const typename ParamGenerator::iterator begin3_; + const typename ParamGenerator::iterator end3_; + typename ParamGenerator::iterator current3_; + const typename ParamGenerator::iterator begin4_; + const typename ParamGenerator::iterator end4_; + typename ParamGenerator::iterator current4_; + const typename ParamGenerator::iterator begin5_; + const typename ParamGenerator::iterator end5_; + typename ParamGenerator::iterator current5_; + const typename ParamGenerator::iterator begin6_; + const typename ParamGenerator::iterator end6_; + typename ParamGenerator::iterator current6_; + const typename ParamGenerator::iterator begin7_; + const typename ParamGenerator::iterator end7_; + typename ParamGenerator::iterator current7_; + const typename ParamGenerator::iterator begin8_; + const typename ParamGenerator::iterator end8_; + typename ParamGenerator::iterator current8_; + const typename ParamGenerator::iterator begin9_; + const typename ParamGenerator::iterator end9_; + typename ParamGenerator::iterator current9_; + const typename ParamGenerator::iterator begin10_; + const typename ParamGenerator::iterator end10_; + typename ParamGenerator::iterator current10_; + ParamType current_value_; + }; // class CartesianProductGenerator10::Iterator + + // No implementation - assignment is unsupported. + void operator=(const CartesianProductGenerator10& other); + + const ParamGenerator g1_; + const ParamGenerator g2_; + const ParamGenerator g3_; + const ParamGenerator g4_; + const ParamGenerator g5_; + const ParamGenerator g6_; + const ParamGenerator g7_; + const ParamGenerator g8_; + const ParamGenerator g9_; + const ParamGenerator g10_; +}; // class CartesianProductGenerator10 + + +// INTERNAL IMPLEMENTATION - DO NOT USE IN USER CODE. +// +// Helper classes providing Combine() with polymorphic features. They allow +// casting CartesianProductGeneratorN to ParamGenerator if T is +// convertible to U. +// +template +class CartesianProductHolder2 { + public: +CartesianProductHolder2(const Generator1& g1, const Generator2& g2) + : g1_(g1), g2_(g2) {} + template + operator ParamGenerator< ::testing::tuple >() const { + return ParamGenerator< ::testing::tuple >( + new CartesianProductGenerator2( + static_cast >(g1_), + static_cast >(g2_))); + } + + private: + // No implementation - assignment is unsupported. + void operator=(const CartesianProductHolder2& other); + + const Generator1 g1_; + const Generator2 g2_; +}; // class CartesianProductHolder2 + +template +class CartesianProductHolder3 { + public: +CartesianProductHolder3(const Generator1& g1, const Generator2& g2, + const Generator3& g3) + : g1_(g1), g2_(g2), g3_(g3) {} + template + operator ParamGenerator< ::testing::tuple >() const { + return ParamGenerator< ::testing::tuple >( + new CartesianProductGenerator3( + static_cast >(g1_), + static_cast >(g2_), + static_cast >(g3_))); + } + + private: + // No implementation - assignment is unsupported. + void operator=(const CartesianProductHolder3& other); + + const Generator1 g1_; + const Generator2 g2_; + const Generator3 g3_; +}; // class CartesianProductHolder3 + +template +class CartesianProductHolder4 { + public: +CartesianProductHolder4(const Generator1& g1, const Generator2& g2, + const Generator3& g3, const Generator4& g4) + : g1_(g1), g2_(g2), g3_(g3), g4_(g4) {} + template + operator ParamGenerator< ::testing::tuple >() const { + return ParamGenerator< ::testing::tuple >( + new CartesianProductGenerator4( + static_cast >(g1_), + static_cast >(g2_), + static_cast >(g3_), + static_cast >(g4_))); + } + + private: + // No implementation - assignment is unsupported. + void operator=(const CartesianProductHolder4& other); + + const Generator1 g1_; + const Generator2 g2_; + const Generator3 g3_; + const Generator4 g4_; +}; // class CartesianProductHolder4 + +template +class CartesianProductHolder5 { + public: +CartesianProductHolder5(const Generator1& g1, const Generator2& g2, + const Generator3& g3, const Generator4& g4, const Generator5& g5) + : g1_(g1), g2_(g2), g3_(g3), g4_(g4), g5_(g5) {} + template + operator ParamGenerator< ::testing::tuple >() const { + return ParamGenerator< ::testing::tuple >( + new CartesianProductGenerator5( + static_cast >(g1_), + static_cast >(g2_), + static_cast >(g3_), + static_cast >(g4_), + static_cast >(g5_))); + } + + private: + // No implementation - assignment is unsupported. + void operator=(const CartesianProductHolder5& other); + + const Generator1 g1_; + const Generator2 g2_; + const Generator3 g3_; + const Generator4 g4_; + const Generator5 g5_; +}; // class CartesianProductHolder5 + +template +class CartesianProductHolder6 { + public: +CartesianProductHolder6(const Generator1& g1, const Generator2& g2, + const Generator3& g3, const Generator4& g4, const Generator5& g5, + const Generator6& g6) + : g1_(g1), g2_(g2), g3_(g3), g4_(g4), g5_(g5), g6_(g6) {} + template + operator ParamGenerator< ::testing::tuple >() const { + return ParamGenerator< ::testing::tuple >( + new CartesianProductGenerator6( + static_cast >(g1_), + static_cast >(g2_), + static_cast >(g3_), + static_cast >(g4_), + static_cast >(g5_), + static_cast >(g6_))); + } + + private: + // No implementation - assignment is unsupported. + void operator=(const CartesianProductHolder6& other); + + const Generator1 g1_; + const Generator2 g2_; + const Generator3 g3_; + const Generator4 g4_; + const Generator5 g5_; + const Generator6 g6_; +}; // class CartesianProductHolder6 + +template +class CartesianProductHolder7 { + public: +CartesianProductHolder7(const Generator1& g1, const Generator2& g2, + const Generator3& g3, const Generator4& g4, const Generator5& g5, + const Generator6& g6, const Generator7& g7) + : g1_(g1), g2_(g2), g3_(g3), g4_(g4), g5_(g5), g6_(g6), g7_(g7) {} + template + operator ParamGenerator< ::testing::tuple >() const { + return ParamGenerator< ::testing::tuple >( + new CartesianProductGenerator7( + static_cast >(g1_), + static_cast >(g2_), + static_cast >(g3_), + static_cast >(g4_), + static_cast >(g5_), + static_cast >(g6_), + static_cast >(g7_))); + } + + private: + // No implementation - assignment is unsupported. + void operator=(const CartesianProductHolder7& other); + + const Generator1 g1_; + const Generator2 g2_; + const Generator3 g3_; + const Generator4 g4_; + const Generator5 g5_; + const Generator6 g6_; + const Generator7 g7_; +}; // class CartesianProductHolder7 + +template +class CartesianProductHolder8 { + public: +CartesianProductHolder8(const Generator1& g1, const Generator2& g2, + const Generator3& g3, const Generator4& g4, const Generator5& g5, + const Generator6& g6, const Generator7& g7, const Generator8& g8) + : g1_(g1), g2_(g2), g3_(g3), g4_(g4), g5_(g5), g6_(g6), g7_(g7), + g8_(g8) {} + template + operator ParamGenerator< ::testing::tuple >() const { + return ParamGenerator< ::testing::tuple >( + new CartesianProductGenerator8( + static_cast >(g1_), + static_cast >(g2_), + static_cast >(g3_), + static_cast >(g4_), + static_cast >(g5_), + static_cast >(g6_), + static_cast >(g7_), + static_cast >(g8_))); + } + + private: + // No implementation - assignment is unsupported. + void operator=(const CartesianProductHolder8& other); + + const Generator1 g1_; + const Generator2 g2_; + const Generator3 g3_; + const Generator4 g4_; + const Generator5 g5_; + const Generator6 g6_; + const Generator7 g7_; + const Generator8 g8_; +}; // class CartesianProductHolder8 + +template +class CartesianProductHolder9 { + public: +CartesianProductHolder9(const Generator1& g1, const Generator2& g2, + const Generator3& g3, const Generator4& g4, const Generator5& g5, + const Generator6& g6, const Generator7& g7, const Generator8& g8, + const Generator9& g9) + : g1_(g1), g2_(g2), g3_(g3), g4_(g4), g5_(g5), g6_(g6), g7_(g7), g8_(g8), + g9_(g9) {} + template + operator ParamGenerator< ::testing::tuple >() const { + return ParamGenerator< ::testing::tuple >( + new CartesianProductGenerator9( + static_cast >(g1_), + static_cast >(g2_), + static_cast >(g3_), + static_cast >(g4_), + static_cast >(g5_), + static_cast >(g6_), + static_cast >(g7_), + static_cast >(g8_), + static_cast >(g9_))); + } + + private: + // No implementation - assignment is unsupported. + void operator=(const CartesianProductHolder9& other); + + const Generator1 g1_; + const Generator2 g2_; + const Generator3 g3_; + const Generator4 g4_; + const Generator5 g5_; + const Generator6 g6_; + const Generator7 g7_; + const Generator8 g8_; + const Generator9 g9_; +}; // class CartesianProductHolder9 + +template +class CartesianProductHolder10 { + public: +CartesianProductHolder10(const Generator1& g1, const Generator2& g2, + const Generator3& g3, const Generator4& g4, const Generator5& g5, + const Generator6& g6, const Generator7& g7, const Generator8& g8, + const Generator9& g9, const Generator10& g10) + : g1_(g1), g2_(g2), g3_(g3), g4_(g4), g5_(g5), g6_(g6), g7_(g7), g8_(g8), + g9_(g9), g10_(g10) {} + template + operator ParamGenerator< ::testing::tuple >() const { + return ParamGenerator< ::testing::tuple >( + new CartesianProductGenerator10( + static_cast >(g1_), + static_cast >(g2_), + static_cast >(g3_), + static_cast >(g4_), + static_cast >(g5_), + static_cast >(g6_), + static_cast >(g7_), + static_cast >(g8_), + static_cast >(g9_), + static_cast >(g10_))); + } + + private: + // No implementation - assignment is unsupported. + void operator=(const CartesianProductHolder10& other); + + const Generator1 g1_; + const Generator2 g2_; + const Generator3 g3_; + const Generator4 g4_; + const Generator5 g5_; + const Generator6 g6_; + const Generator7 g7_; + const Generator8 g8_; + const Generator9 g9_; + const Generator10 g10_; +}; // class CartesianProductHolder10 + +# endif // GTEST_HAS_COMBINE + +} // namespace internal +} // namespace testing + +#endif // GTEST_HAS_PARAM_TEST + +#endif // GTEST_INCLUDE_GTEST_INTERNAL_GTEST_PARAM_UTIL_GENERATED_H_ diff --git a/third_party/googletest/src/include/gtest/internal/gtest-param-util-generated.h.pump b/third_party/googletest/src/include/gtest/internal/gtest-param-util-generated.h.pump new file mode 100644 index 0000000..5c7c47a --- /dev/null +++ b/third_party/googletest/src/include/gtest/internal/gtest-param-util-generated.h.pump @@ -0,0 +1,286 @@ +$$ -*- mode: c++; -*- +$var n = 50 $$ Maximum length of Values arguments we want to support. +$var maxtuple = 10 $$ Maximum number of Combine arguments we want to support. +// Copyright 2008 Google Inc. +// All Rights Reserved. +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: +// +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above +// copyright notice, this list of conditions and the following disclaimer +// in the documentation and/or other materials provided with the +// distribution. +// * Neither the name of Google Inc. nor the names of its +// contributors may be used to endorse or promote products derived from +// this software without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +// +// Author: vladl@google.com (Vlad Losev) + +// Type and function utilities for implementing parameterized tests. +// This file is generated by a SCRIPT. DO NOT EDIT BY HAND! +// +// Currently Google Test supports at most $n arguments in Values, +// and at most $maxtuple arguments in Combine. Please contact +// googletestframework@googlegroups.com if you need more. +// Please note that the number of arguments to Combine is limited +// by the maximum arity of the implementation of tuple which is +// currently set at $maxtuple. + +#ifndef GTEST_INCLUDE_GTEST_INTERNAL_GTEST_PARAM_UTIL_GENERATED_H_ +#define GTEST_INCLUDE_GTEST_INTERNAL_GTEST_PARAM_UTIL_GENERATED_H_ + +// scripts/fuse_gtest.py depends on gtest's own header being #included +// *unconditionally*. Therefore these #includes cannot be moved +// inside #if GTEST_HAS_PARAM_TEST. +#include "gtest/internal/gtest-param-util.h" +#include "gtest/internal/gtest-port.h" + +#if GTEST_HAS_PARAM_TEST + +namespace testing { + +// Forward declarations of ValuesIn(), which is implemented in +// include/gtest/gtest-param-test.h. +template +internal::ParamGenerator< + typename ::testing::internal::IteratorTraits::value_type> +ValuesIn(ForwardIterator begin, ForwardIterator end); + +template +internal::ParamGenerator ValuesIn(const T (&array)[N]); + +template +internal::ParamGenerator ValuesIn( + const Container& container); + +namespace internal { + +// Used in the Values() function to provide polymorphic capabilities. +$range i 1..n +$for i [[ +$range j 1..i + +template <$for j, [[typename T$j]]> +class ValueArray$i { + public: + $if i==1 [[explicit ]]ValueArray$i($for j, [[T$j v$j]]) : $for j, [[v$(j)_(v$j)]] {} + + template + operator ParamGenerator() const { + const T array[] = {$for j, [[static_cast(v$(j)_)]]}; + return ValuesIn(array); + } + + private: + // No implementation - assignment is unsupported. + void operator=(const ValueArray$i& other); + +$for j [[ + + const T$j v$(j)_; +]] + +}; + +]] + +# if GTEST_HAS_COMBINE +// INTERNAL IMPLEMENTATION - DO NOT USE IN USER CODE. +// +// Generates values from the Cartesian product of values produced +// by the argument generators. +// +$range i 2..maxtuple +$for i [[ +$range j 1..i +$range k 2..i + +template <$for j, [[typename T$j]]> +class CartesianProductGenerator$i + : public ParamGeneratorInterface< ::testing::tuple<$for j, [[T$j]]> > { + public: + typedef ::testing::tuple<$for j, [[T$j]]> ParamType; + + CartesianProductGenerator$i($for j, [[const ParamGenerator& g$j]]) + : $for j, [[g$(j)_(g$j)]] {} + virtual ~CartesianProductGenerator$i() {} + + virtual ParamIteratorInterface* Begin() const { + return new Iterator(this, $for j, [[g$(j)_, g$(j)_.begin()]]); + } + virtual ParamIteratorInterface* End() const { + return new Iterator(this, $for j, [[g$(j)_, g$(j)_.end()]]); + } + + private: + class Iterator : public ParamIteratorInterface { + public: + Iterator(const ParamGeneratorInterface* base, $for j, [[ + + const ParamGenerator& g$j, + const typename ParamGenerator::iterator& current$(j)]]) + : base_(base), +$for j, [[ + + begin$(j)_(g$j.begin()), end$(j)_(g$j.end()), current$(j)_(current$j) +]] { + ComputeCurrentValue(); + } + virtual ~Iterator() {} + + virtual const ParamGeneratorInterface* BaseGenerator() const { + return base_; + } + // Advance should not be called on beyond-of-range iterators + // so no component iterators must be beyond end of range, either. + virtual void Advance() { + assert(!AtEnd()); + ++current$(i)_; + +$for k [[ + if (current$(i+2-k)_ == end$(i+2-k)_) { + current$(i+2-k)_ = begin$(i+2-k)_; + ++current$(i+2-k-1)_; + } + +]] + ComputeCurrentValue(); + } + virtual ParamIteratorInterface* Clone() const { + return new Iterator(*this); + } + virtual const ParamType* Current() const { return ¤t_value_; } + virtual bool Equals(const ParamIteratorInterface& other) const { + // Having the same base generator guarantees that the other + // iterator is of the same type and we can downcast. + GTEST_CHECK_(BaseGenerator() == other.BaseGenerator()) + << "The program attempted to compare iterators " + << "from different generators." << std::endl; + const Iterator* typed_other = + CheckedDowncastToActualType(&other); + // We must report iterators equal if they both point beyond their + // respective ranges. That can happen in a variety of fashions, + // so we have to consult AtEnd(). + return (AtEnd() && typed_other->AtEnd()) || + ($for j && [[ + + current$(j)_ == typed_other->current$(j)_ +]]); + } + + private: + Iterator(const Iterator& other) + : base_(other.base_), $for j, [[ + + begin$(j)_(other.begin$(j)_), + end$(j)_(other.end$(j)_), + current$(j)_(other.current$(j)_) +]] { + ComputeCurrentValue(); + } + + void ComputeCurrentValue() { + if (!AtEnd()) + current_value_ = ParamType($for j, [[*current$(j)_]]); + } + bool AtEnd() const { + // We must report iterator past the end of the range when either of the + // component iterators has reached the end of its range. + return +$for j || [[ + + current$(j)_ == end$(j)_ +]]; + } + + // No implementation - assignment is unsupported. + void operator=(const Iterator& other); + + const ParamGeneratorInterface* const base_; + // begin[i]_ and end[i]_ define the i-th range that Iterator traverses. + // current[i]_ is the actual traversing iterator. +$for j [[ + + const typename ParamGenerator::iterator begin$(j)_; + const typename ParamGenerator::iterator end$(j)_; + typename ParamGenerator::iterator current$(j)_; +]] + + ParamType current_value_; + }; // class CartesianProductGenerator$i::Iterator + + // No implementation - assignment is unsupported. + void operator=(const CartesianProductGenerator$i& other); + + +$for j [[ + const ParamGenerator g$(j)_; + +]] +}; // class CartesianProductGenerator$i + + +]] + +// INTERNAL IMPLEMENTATION - DO NOT USE IN USER CODE. +// +// Helper classes providing Combine() with polymorphic features. They allow +// casting CartesianProductGeneratorN to ParamGenerator if T is +// convertible to U. +// +$range i 2..maxtuple +$for i [[ +$range j 1..i + +template <$for j, [[class Generator$j]]> +class CartesianProductHolder$i { + public: +CartesianProductHolder$i($for j, [[const Generator$j& g$j]]) + : $for j, [[g$(j)_(g$j)]] {} + template <$for j, [[typename T$j]]> + operator ParamGenerator< ::testing::tuple<$for j, [[T$j]]> >() const { + return ParamGenerator< ::testing::tuple<$for j, [[T$j]]> >( + new CartesianProductGenerator$i<$for j, [[T$j]]>( +$for j,[[ + + static_cast >(g$(j)_) +]])); + } + + private: + // No implementation - assignment is unsupported. + void operator=(const CartesianProductHolder$i& other); + + +$for j [[ + const Generator$j g$(j)_; + +]] +}; // class CartesianProductHolder$i + +]] + +# endif // GTEST_HAS_COMBINE + +} // namespace internal +} // namespace testing + +#endif // GTEST_HAS_PARAM_TEST + +#endif // GTEST_INCLUDE_GTEST_INTERNAL_GTEST_PARAM_UTIL_GENERATED_H_ diff --git a/third_party/googletest/src/include/gtest/internal/gtest-param-util.h b/third_party/googletest/src/include/gtest/internal/gtest-param-util.h new file mode 100644 index 0000000..82cab9b --- /dev/null +++ b/third_party/googletest/src/include/gtest/internal/gtest-param-util.h @@ -0,0 +1,731 @@ +// Copyright 2008 Google Inc. +// All Rights Reserved. +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: +// +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above +// copyright notice, this list of conditions and the following disclaimer +// in the documentation and/or other materials provided with the +// distribution. +// * Neither the name of Google Inc. nor the names of its +// contributors may be used to endorse or promote products derived from +// this software without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +// +// Author: vladl@google.com (Vlad Losev) + +// Type and function utilities for implementing parameterized tests. + +#ifndef GTEST_INCLUDE_GTEST_INTERNAL_GTEST_PARAM_UTIL_H_ +#define GTEST_INCLUDE_GTEST_INTERNAL_GTEST_PARAM_UTIL_H_ + +#include + +#include +#include +#include +#include + +// scripts/fuse_gtest.py depends on gtest's own header being #included +// *unconditionally*. Therefore these #includes cannot be moved +// inside #if GTEST_HAS_PARAM_TEST. +#include "gtest/internal/gtest-internal.h" +#include "gtest/internal/gtest-linked_ptr.h" +#include "gtest/internal/gtest-port.h" +#include "gtest/gtest-printers.h" + +#if GTEST_HAS_PARAM_TEST + +namespace testing { + +// Input to a parameterized test name generator, describing a test parameter. +// Consists of the parameter value and the integer parameter index. +template +struct TestParamInfo { + TestParamInfo(const ParamType& a_param, size_t an_index) : + param(a_param), + index(an_index) {} + ParamType param; + size_t index; +}; + +// A builtin parameterized test name generator which returns the result of +// testing::PrintToString. +struct PrintToStringParamName { + template + std::string operator()(const TestParamInfo& info) const { + return PrintToString(info.param); + } +}; + +namespace internal { + +// INTERNAL IMPLEMENTATION - DO NOT USE IN USER CODE. +// +// Outputs a message explaining invalid registration of different +// fixture class for the same test case. This may happen when +// TEST_P macro is used to define two tests with the same name +// but in different namespaces. +GTEST_API_ void ReportInvalidTestCaseType(const char* test_case_name, + CodeLocation code_location); + +template class ParamGeneratorInterface; +template class ParamGenerator; + +// Interface for iterating over elements provided by an implementation +// of ParamGeneratorInterface. +template +class ParamIteratorInterface { + public: + virtual ~ParamIteratorInterface() {} + // A pointer to the base generator instance. + // Used only for the purposes of iterator comparison + // to make sure that two iterators belong to the same generator. + virtual const ParamGeneratorInterface* BaseGenerator() const = 0; + // Advances iterator to point to the next element + // provided by the generator. The caller is responsible + // for not calling Advance() on an iterator equal to + // BaseGenerator()->End(). + virtual void Advance() = 0; + // Clones the iterator object. Used for implementing copy semantics + // of ParamIterator. + virtual ParamIteratorInterface* Clone() const = 0; + // Dereferences the current iterator and provides (read-only) access + // to the pointed value. It is the caller's responsibility not to call + // Current() on an iterator equal to BaseGenerator()->End(). + // Used for implementing ParamGenerator::operator*(). + virtual const T* Current() const = 0; + // Determines whether the given iterator and other point to the same + // element in the sequence generated by the generator. + // Used for implementing ParamGenerator::operator==(). + virtual bool Equals(const ParamIteratorInterface& other) const = 0; +}; + +// Class iterating over elements provided by an implementation of +// ParamGeneratorInterface. It wraps ParamIteratorInterface +// and implements the const forward iterator concept. +template +class ParamIterator { + public: + typedef T value_type; + typedef const T& reference; + typedef ptrdiff_t difference_type; + + // ParamIterator assumes ownership of the impl_ pointer. + ParamIterator(const ParamIterator& other) : impl_(other.impl_->Clone()) {} + ParamIterator& operator=(const ParamIterator& other) { + if (this != &other) + impl_.reset(other.impl_->Clone()); + return *this; + } + + const T& operator*() const { return *impl_->Current(); } + const T* operator->() const { return impl_->Current(); } + // Prefix version of operator++. + ParamIterator& operator++() { + impl_->Advance(); + return *this; + } + // Postfix version of operator++. + ParamIterator operator++(int /*unused*/) { + ParamIteratorInterface* clone = impl_->Clone(); + impl_->Advance(); + return ParamIterator(clone); + } + bool operator==(const ParamIterator& other) const { + return impl_.get() == other.impl_.get() || impl_->Equals(*other.impl_); + } + bool operator!=(const ParamIterator& other) const { + return !(*this == other); + } + + private: + friend class ParamGenerator; + explicit ParamIterator(ParamIteratorInterface* impl) : impl_(impl) {} + scoped_ptr > impl_; +}; + +// ParamGeneratorInterface is the binary interface to access generators +// defined in other translation units. +template +class ParamGeneratorInterface { + public: + typedef T ParamType; + + virtual ~ParamGeneratorInterface() {} + + // Generator interface definition + virtual ParamIteratorInterface* Begin() const = 0; + virtual ParamIteratorInterface* End() const = 0; +}; + +// Wraps ParamGeneratorInterface and provides general generator syntax +// compatible with the STL Container concept. +// This class implements copy initialization semantics and the contained +// ParamGeneratorInterface instance is shared among all copies +// of the original object. This is possible because that instance is immutable. +template +class ParamGenerator { + public: + typedef ParamIterator iterator; + + explicit ParamGenerator(ParamGeneratorInterface* impl) : impl_(impl) {} + ParamGenerator(const ParamGenerator& other) : impl_(other.impl_) {} + + ParamGenerator& operator=(const ParamGenerator& other) { + impl_ = other.impl_; + return *this; + } + + iterator begin() const { return iterator(impl_->Begin()); } + iterator end() const { return iterator(impl_->End()); } + + private: + linked_ptr > impl_; +}; + +// Generates values from a range of two comparable values. Can be used to +// generate sequences of user-defined types that implement operator+() and +// operator<(). +// This class is used in the Range() function. +template +class RangeGenerator : public ParamGeneratorInterface { + public: + RangeGenerator(T begin, T end, IncrementT step) + : begin_(begin), end_(end), + step_(step), end_index_(CalculateEndIndex(begin, end, step)) {} + virtual ~RangeGenerator() {} + + virtual ParamIteratorInterface* Begin() const { + return new Iterator(this, begin_, 0, step_); + } + virtual ParamIteratorInterface* End() const { + return new Iterator(this, end_, end_index_, step_); + } + + private: + class Iterator : public ParamIteratorInterface { + public: + Iterator(const ParamGeneratorInterface* base, T value, int index, + IncrementT step) + : base_(base), value_(value), index_(index), step_(step) {} + virtual ~Iterator() {} + + virtual const ParamGeneratorInterface* BaseGenerator() const { + return base_; + } + virtual void Advance() { + value_ = static_cast(value_ + step_); + index_++; + } + virtual ParamIteratorInterface* Clone() const { + return new Iterator(*this); + } + virtual const T* Current() const { return &value_; } + virtual bool Equals(const ParamIteratorInterface& other) const { + // Having the same base generator guarantees that the other + // iterator is of the same type and we can downcast. + GTEST_CHECK_(BaseGenerator() == other.BaseGenerator()) + << "The program attempted to compare iterators " + << "from different generators." << std::endl; + const int other_index = + CheckedDowncastToActualType(&other)->index_; + return index_ == other_index; + } + + private: + Iterator(const Iterator& other) + : ParamIteratorInterface(), + base_(other.base_), value_(other.value_), index_(other.index_), + step_(other.step_) {} + + // No implementation - assignment is unsupported. + void operator=(const Iterator& other); + + const ParamGeneratorInterface* const base_; + T value_; + int index_; + const IncrementT step_; + }; // class RangeGenerator::Iterator + + static int CalculateEndIndex(const T& begin, + const T& end, + const IncrementT& step) { + int end_index = 0; + for (T i = begin; i < end; i = static_cast(i + step)) + end_index++; + return end_index; + } + + // No implementation - assignment is unsupported. + void operator=(const RangeGenerator& other); + + const T begin_; + const T end_; + const IncrementT step_; + // The index for the end() iterator. All the elements in the generated + // sequence are indexed (0-based) to aid iterator comparison. + const int end_index_; +}; // class RangeGenerator + + +// Generates values from a pair of STL-style iterators. Used in the +// ValuesIn() function. The elements are copied from the source range +// since the source can be located on the stack, and the generator +// is likely to persist beyond that stack frame. +template +class ValuesInIteratorRangeGenerator : public ParamGeneratorInterface { + public: + template + ValuesInIteratorRangeGenerator(ForwardIterator begin, ForwardIterator end) + : container_(begin, end) {} + virtual ~ValuesInIteratorRangeGenerator() {} + + virtual ParamIteratorInterface* Begin() const { + return new Iterator(this, container_.begin()); + } + virtual ParamIteratorInterface* End() const { + return new Iterator(this, container_.end()); + } + + private: + typedef typename ::std::vector ContainerType; + + class Iterator : public ParamIteratorInterface { + public: + Iterator(const ParamGeneratorInterface* base, + typename ContainerType::const_iterator iterator) + : base_(base), iterator_(iterator) {} + virtual ~Iterator() {} + + virtual const ParamGeneratorInterface* BaseGenerator() const { + return base_; + } + virtual void Advance() { + ++iterator_; + value_.reset(); + } + virtual ParamIteratorInterface* Clone() const { + return new Iterator(*this); + } + // We need to use cached value referenced by iterator_ because *iterator_ + // can return a temporary object (and of type other then T), so just + // having "return &*iterator_;" doesn't work. + // value_ is updated here and not in Advance() because Advance() + // can advance iterator_ beyond the end of the range, and we cannot + // detect that fact. The client code, on the other hand, is + // responsible for not calling Current() on an out-of-range iterator. + virtual const T* Current() const { + if (value_.get() == NULL) + value_.reset(new T(*iterator_)); + return value_.get(); + } + virtual bool Equals(const ParamIteratorInterface& other) const { + // Having the same base generator guarantees that the other + // iterator is of the same type and we can downcast. + GTEST_CHECK_(BaseGenerator() == other.BaseGenerator()) + << "The program attempted to compare iterators " + << "from different generators." << std::endl; + return iterator_ == + CheckedDowncastToActualType(&other)->iterator_; + } + + private: + Iterator(const Iterator& other) + // The explicit constructor call suppresses a false warning + // emitted by gcc when supplied with the -Wextra option. + : ParamIteratorInterface(), + base_(other.base_), + iterator_(other.iterator_) {} + + const ParamGeneratorInterface* const base_; + typename ContainerType::const_iterator iterator_; + // A cached value of *iterator_. We keep it here to allow access by + // pointer in the wrapping iterator's operator->(). + // value_ needs to be mutable to be accessed in Current(). + // Use of scoped_ptr helps manage cached value's lifetime, + // which is bound by the lifespan of the iterator itself. + mutable scoped_ptr value_; + }; // class ValuesInIteratorRangeGenerator::Iterator + + // No implementation - assignment is unsupported. + void operator=(const ValuesInIteratorRangeGenerator& other); + + const ContainerType container_; +}; // class ValuesInIteratorRangeGenerator + +// INTERNAL IMPLEMENTATION - DO NOT USE IN USER CODE. +// +// Default parameterized test name generator, returns a string containing the +// integer test parameter index. +template +std::string DefaultParamName(const TestParamInfo& info) { + Message name_stream; + name_stream << info.index; + return name_stream.GetString(); +} + +// INTERNAL IMPLEMENTATION - DO NOT USE IN USER CODE. +// +// Parameterized test name overload helpers, which help the +// INSTANTIATE_TEST_CASE_P macro choose between the default parameterized +// test name generator and user param name generator. +template +ParamNameGenFunctor GetParamNameGen(ParamNameGenFunctor func) { + return func; +} + +template +struct ParamNameGenFunc { + typedef std::string Type(const TestParamInfo&); +}; + +template +typename ParamNameGenFunc::Type *GetParamNameGen() { + return DefaultParamName; +} + +// INTERNAL IMPLEMENTATION - DO NOT USE IN USER CODE. +// +// Stores a parameter value and later creates tests parameterized with that +// value. +template +class ParameterizedTestFactory : public TestFactoryBase { + public: + typedef typename TestClass::ParamType ParamType; + explicit ParameterizedTestFactory(ParamType parameter) : + parameter_(parameter) {} + virtual Test* CreateTest() { + TestClass::SetParam(¶meter_); + return new TestClass(); + } + + private: + const ParamType parameter_; + + GTEST_DISALLOW_COPY_AND_ASSIGN_(ParameterizedTestFactory); +}; + +// INTERNAL IMPLEMENTATION - DO NOT USE IN USER CODE. +// +// TestMetaFactoryBase is a base class for meta-factories that create +// test factories for passing into MakeAndRegisterTestInfo function. +template +class TestMetaFactoryBase { + public: + virtual ~TestMetaFactoryBase() {} + + virtual TestFactoryBase* CreateTestFactory(ParamType parameter) = 0; +}; + +// INTERNAL IMPLEMENTATION - DO NOT USE IN USER CODE. +// +// TestMetaFactory creates test factories for passing into +// MakeAndRegisterTestInfo function. Since MakeAndRegisterTestInfo receives +// ownership of test factory pointer, same factory object cannot be passed +// into that method twice. But ParameterizedTestCaseInfo is going to call +// it for each Test/Parameter value combination. Thus it needs meta factory +// creator class. +template +class TestMetaFactory + : public TestMetaFactoryBase { + public: + typedef typename TestCase::ParamType ParamType; + + TestMetaFactory() {} + + virtual TestFactoryBase* CreateTestFactory(ParamType parameter) { + return new ParameterizedTestFactory(parameter); + } + + private: + GTEST_DISALLOW_COPY_AND_ASSIGN_(TestMetaFactory); +}; + +// INTERNAL IMPLEMENTATION - DO NOT USE IN USER CODE. +// +// ParameterizedTestCaseInfoBase is a generic interface +// to ParameterizedTestCaseInfo classes. ParameterizedTestCaseInfoBase +// accumulates test information provided by TEST_P macro invocations +// and generators provided by INSTANTIATE_TEST_CASE_P macro invocations +// and uses that information to register all resulting test instances +// in RegisterTests method. The ParameterizeTestCaseRegistry class holds +// a collection of pointers to the ParameterizedTestCaseInfo objects +// and calls RegisterTests() on each of them when asked. +class ParameterizedTestCaseInfoBase { + public: + virtual ~ParameterizedTestCaseInfoBase() {} + + // Base part of test case name for display purposes. + virtual const string& GetTestCaseName() const = 0; + // Test case id to verify identity. + virtual TypeId GetTestCaseTypeId() const = 0; + // UnitTest class invokes this method to register tests in this + // test case right before running them in RUN_ALL_TESTS macro. + // This method should not be called more then once on any single + // instance of a ParameterizedTestCaseInfoBase derived class. + virtual void RegisterTests() = 0; + + protected: + ParameterizedTestCaseInfoBase() {} + + private: + GTEST_DISALLOW_COPY_AND_ASSIGN_(ParameterizedTestCaseInfoBase); +}; + +// INTERNAL IMPLEMENTATION - DO NOT USE IN USER CODE. +// +// ParameterizedTestCaseInfo accumulates tests obtained from TEST_P +// macro invocations for a particular test case and generators +// obtained from INSTANTIATE_TEST_CASE_P macro invocations for that +// test case. It registers tests with all values generated by all +// generators when asked. +template +class ParameterizedTestCaseInfo : public ParameterizedTestCaseInfoBase { + public: + // ParamType and GeneratorCreationFunc are private types but are required + // for declarations of public methods AddTestPattern() and + // AddTestCaseInstantiation(). + typedef typename TestCase::ParamType ParamType; + // A function that returns an instance of appropriate generator type. + typedef ParamGenerator(GeneratorCreationFunc)(); + typedef typename ParamNameGenFunc::Type ParamNameGeneratorFunc; + + explicit ParameterizedTestCaseInfo( + const char* name, CodeLocation code_location) + : test_case_name_(name), code_location_(code_location) {} + + // Test case base name for display purposes. + virtual const string& GetTestCaseName() const { return test_case_name_; } + // Test case id to verify identity. + virtual TypeId GetTestCaseTypeId() const { return GetTypeId(); } + // TEST_P macro uses AddTestPattern() to record information + // about a single test in a LocalTestInfo structure. + // test_case_name is the base name of the test case (without invocation + // prefix). test_base_name is the name of an individual test without + // parameter index. For the test SequenceA/FooTest.DoBar/1 FooTest is + // test case base name and DoBar is test base name. + void AddTestPattern(const char* test_case_name, + const char* test_base_name, + TestMetaFactoryBase* meta_factory) { + tests_.push_back(linked_ptr(new TestInfo(test_case_name, + test_base_name, + meta_factory))); + } + // INSTANTIATE_TEST_CASE_P macro uses AddGenerator() to record information + // about a generator. + int AddTestCaseInstantiation(const string& instantiation_name, + GeneratorCreationFunc* func, + ParamNameGeneratorFunc* name_func, + const char* file, + int line) { + instantiations_.push_back( + InstantiationInfo(instantiation_name, func, name_func, file, line)); + return 0; // Return value used only to run this method in namespace scope. + } + // UnitTest class invokes this method to register tests in this test case + // test cases right before running tests in RUN_ALL_TESTS macro. + // This method should not be called more then once on any single + // instance of a ParameterizedTestCaseInfoBase derived class. + // UnitTest has a guard to prevent from calling this method more then once. + virtual void RegisterTests() { + for (typename TestInfoContainer::iterator test_it = tests_.begin(); + test_it != tests_.end(); ++test_it) { + linked_ptr test_info = *test_it; + for (typename InstantiationContainer::iterator gen_it = + instantiations_.begin(); gen_it != instantiations_.end(); + ++gen_it) { + const string& instantiation_name = gen_it->name; + ParamGenerator generator((*gen_it->generator)()); + ParamNameGeneratorFunc* name_func = gen_it->name_func; + const char* file = gen_it->file; + int line = gen_it->line; + + string test_case_name; + if ( !instantiation_name.empty() ) + test_case_name = instantiation_name + "/"; + test_case_name += test_info->test_case_base_name; + + size_t i = 0; + std::set test_param_names; + for (typename ParamGenerator::iterator param_it = + generator.begin(); + param_it != generator.end(); ++param_it, ++i) { + Message test_name_stream; + + std::string param_name = name_func( + TestParamInfo(*param_it, i)); + + GTEST_CHECK_(IsValidParamName(param_name)) + << "Parameterized test name '" << param_name + << "' is invalid, in " << file + << " line " << line << std::endl; + + GTEST_CHECK_(test_param_names.count(param_name) == 0) + << "Duplicate parameterized test name '" << param_name + << "', in " << file << " line " << line << std::endl; + + test_param_names.insert(param_name); + + test_name_stream << test_info->test_base_name << "/" << param_name; + MakeAndRegisterTestInfo( + test_case_name.c_str(), + test_name_stream.GetString().c_str(), + NULL, // No type parameter. + PrintToString(*param_it).c_str(), + code_location_, + GetTestCaseTypeId(), + TestCase::SetUpTestCase, + TestCase::TearDownTestCase, + test_info->test_meta_factory->CreateTestFactory(*param_it)); + } // for param_it + } // for gen_it + } // for test_it + } // RegisterTests + + private: + // LocalTestInfo structure keeps information about a single test registered + // with TEST_P macro. + struct TestInfo { + TestInfo(const char* a_test_case_base_name, + const char* a_test_base_name, + TestMetaFactoryBase* a_test_meta_factory) : + test_case_base_name(a_test_case_base_name), + test_base_name(a_test_base_name), + test_meta_factory(a_test_meta_factory) {} + + const string test_case_base_name; + const string test_base_name; + const scoped_ptr > test_meta_factory; + }; + typedef ::std::vector > TestInfoContainer; + // Records data received from INSTANTIATE_TEST_CASE_P macros: + // + struct InstantiationInfo { + InstantiationInfo(const std::string &name_in, + GeneratorCreationFunc* generator_in, + ParamNameGeneratorFunc* name_func_in, + const char* file_in, + int line_in) + : name(name_in), + generator(generator_in), + name_func(name_func_in), + file(file_in), + line(line_in) {} + + std::string name; + GeneratorCreationFunc* generator; + ParamNameGeneratorFunc* name_func; + const char* file; + int line; + }; + typedef ::std::vector InstantiationContainer; + + static bool IsValidParamName(const std::string& name) { + // Check for empty string + if (name.empty()) + return false; + + // Check for invalid characters + for (std::string::size_type index = 0; index < name.size(); ++index) { + if (!isalnum(name[index]) && name[index] != '_') + return false; + } + + return true; + } + + const string test_case_name_; + CodeLocation code_location_; + TestInfoContainer tests_; + InstantiationContainer instantiations_; + + GTEST_DISALLOW_COPY_AND_ASSIGN_(ParameterizedTestCaseInfo); +}; // class ParameterizedTestCaseInfo + +// INTERNAL IMPLEMENTATION - DO NOT USE IN USER CODE. +// +// ParameterizedTestCaseRegistry contains a map of ParameterizedTestCaseInfoBase +// classes accessed by test case names. TEST_P and INSTANTIATE_TEST_CASE_P +// macros use it to locate their corresponding ParameterizedTestCaseInfo +// descriptors. +class ParameterizedTestCaseRegistry { + public: + ParameterizedTestCaseRegistry() {} + ~ParameterizedTestCaseRegistry() { + for (TestCaseInfoContainer::iterator it = test_case_infos_.begin(); + it != test_case_infos_.end(); ++it) { + delete *it; + } + } + + // Looks up or creates and returns a structure containing information about + // tests and instantiations of a particular test case. + template + ParameterizedTestCaseInfo* GetTestCasePatternHolder( + const char* test_case_name, + CodeLocation code_location) { + ParameterizedTestCaseInfo* typed_test_info = NULL; + for (TestCaseInfoContainer::iterator it = test_case_infos_.begin(); + it != test_case_infos_.end(); ++it) { + if ((*it)->GetTestCaseName() == test_case_name) { + if ((*it)->GetTestCaseTypeId() != GetTypeId()) { + // Complain about incorrect usage of Google Test facilities + // and terminate the program since we cannot guaranty correct + // test case setup and tear-down in this case. + ReportInvalidTestCaseType(test_case_name, code_location); + posix::Abort(); + } else { + // At this point we are sure that the object we found is of the same + // type we are looking for, so we downcast it to that type + // without further checks. + typed_test_info = CheckedDowncastToActualType< + ParameterizedTestCaseInfo >(*it); + } + break; + } + } + if (typed_test_info == NULL) { + typed_test_info = new ParameterizedTestCaseInfo( + test_case_name, code_location); + test_case_infos_.push_back(typed_test_info); + } + return typed_test_info; + } + void RegisterTests() { + for (TestCaseInfoContainer::iterator it = test_case_infos_.begin(); + it != test_case_infos_.end(); ++it) { + (*it)->RegisterTests(); + } + } + + private: + typedef ::std::vector TestCaseInfoContainer; + + TestCaseInfoContainer test_case_infos_; + + GTEST_DISALLOW_COPY_AND_ASSIGN_(ParameterizedTestCaseRegistry); +}; + +} // namespace internal +} // namespace testing + +#endif // GTEST_HAS_PARAM_TEST + +#endif // GTEST_INCLUDE_GTEST_INTERNAL_GTEST_PARAM_UTIL_H_ diff --git a/third_party/googletest/src/include/gtest/internal/gtest-port-arch.h b/third_party/googletest/src/include/gtest/internal/gtest-port-arch.h new file mode 100644 index 0000000..74ab949 --- /dev/null +++ b/third_party/googletest/src/include/gtest/internal/gtest-port-arch.h @@ -0,0 +1,93 @@ +// Copyright 2015, Google Inc. +// All rights reserved. +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: +// +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above +// copyright notice, this list of conditions and the following disclaimer +// in the documentation and/or other materials provided with the +// distribution. +// * Neither the name of Google Inc. nor the names of its +// contributors may be used to endorse or promote products derived from +// this software without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +// +// The Google C++ Testing Framework (Google Test) +// +// This header file defines the GTEST_OS_* macro. +// It is separate from gtest-port.h so that custom/gtest-port.h can include it. + +#ifndef GTEST_INCLUDE_GTEST_INTERNAL_GTEST_PORT_ARCH_H_ +#define GTEST_INCLUDE_GTEST_INTERNAL_GTEST_PORT_ARCH_H_ + +// Determines the platform on which Google Test is compiled. +#ifdef __CYGWIN__ +# define GTEST_OS_CYGWIN 1 +#elif defined __SYMBIAN32__ +# define GTEST_OS_SYMBIAN 1 +#elif defined _WIN32 +# define GTEST_OS_WINDOWS 1 +# ifdef _WIN32_WCE +# define GTEST_OS_WINDOWS_MOBILE 1 +# elif defined(__MINGW__) || defined(__MINGW32__) +# define GTEST_OS_WINDOWS_MINGW 1 +# elif defined(WINAPI_FAMILY) +# include +# if WINAPI_FAMILY_PARTITION(WINAPI_PARTITION_DESKTOP) +# define GTEST_OS_WINDOWS_DESKTOP 1 +# elif WINAPI_FAMILY_PARTITION(WINAPI_PARTITION_PHONE_APP) +# define GTEST_OS_WINDOWS_PHONE 1 +# elif WINAPI_FAMILY_PARTITION(WINAPI_PARTITION_APP) +# define GTEST_OS_WINDOWS_RT 1 +# else + // WINAPI_FAMILY defined but no known partition matched. + // Default to desktop. +# define GTEST_OS_WINDOWS_DESKTOP 1 +# endif +# else +# define GTEST_OS_WINDOWS_DESKTOP 1 +# endif // _WIN32_WCE +#elif defined __APPLE__ +# define GTEST_OS_MAC 1 +# if TARGET_OS_IPHONE +# define GTEST_OS_IOS 1 +# endif +#elif defined __FreeBSD__ +# define GTEST_OS_FREEBSD 1 +#elif defined __linux__ +# define GTEST_OS_LINUX 1 +# if defined __ANDROID__ +# define GTEST_OS_LINUX_ANDROID 1 +# endif +#elif defined __MVS__ +# define GTEST_OS_ZOS 1 +#elif defined(__sun) && defined(__SVR4) +# define GTEST_OS_SOLARIS 1 +#elif defined(_AIX) +# define GTEST_OS_AIX 1 +#elif defined(__hpux) +# define GTEST_OS_HPUX 1 +#elif defined __native_client__ +# define GTEST_OS_NACL 1 +#elif defined __OpenBSD__ +# define GTEST_OS_OPENBSD 1 +#elif defined __QNX__ +# define GTEST_OS_QNX 1 +#endif // __CYGWIN__ + +#endif // GTEST_INCLUDE_GTEST_INTERNAL_GTEST_PORT_ARCH_H_ diff --git a/third_party/googletest/src/include/gtest/internal/gtest-port.h b/third_party/googletest/src/include/gtest/internal/gtest-port.h new file mode 100644 index 0000000..da57e65 --- /dev/null +++ b/third_party/googletest/src/include/gtest/internal/gtest-port.h @@ -0,0 +1,2567 @@ +// Copyright 2005, Google Inc. +// All rights reserved. +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: +// +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above +// copyright notice, this list of conditions and the following disclaimer +// in the documentation and/or other materials provided with the +// distribution. +// * Neither the name of Google Inc. nor the names of its +// contributors may be used to endorse or promote products derived from +// this software without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +// +// Authors: wan@google.com (Zhanyong Wan) +// +// Low-level types and utilities for porting Google Test to various +// platforms. All macros ending with _ and symbols defined in an +// internal namespace are subject to change without notice. Code +// outside Google Test MUST NOT USE THEM DIRECTLY. Macros that don't +// end with _ are part of Google Test's public API and can be used by +// code outside Google Test. +// +// This file is fundamental to Google Test. All other Google Test source +// files are expected to #include this. Therefore, it cannot #include +// any other Google Test header. + +#ifndef GTEST_INCLUDE_GTEST_INTERNAL_GTEST_PORT_H_ +#define GTEST_INCLUDE_GTEST_INTERNAL_GTEST_PORT_H_ + +// Environment-describing macros +// ----------------------------- +// +// Google Test can be used in many different environments. Macros in +// this section tell Google Test what kind of environment it is being +// used in, such that Google Test can provide environment-specific +// features and implementations. +// +// Google Test tries to automatically detect the properties of its +// environment, so users usually don't need to worry about these +// macros. However, the automatic detection is not perfect. +// Sometimes it's necessary for a user to define some of the following +// macros in the build script to override Google Test's decisions. +// +// If the user doesn't define a macro in the list, Google Test will +// provide a default definition. After this header is #included, all +// macros in this list will be defined to either 1 or 0. +// +// Notes to maintainers: +// - Each macro here is a user-tweakable knob; do not grow the list +// lightly. +// - Use #if to key off these macros. Don't use #ifdef or "#if +// defined(...)", which will not work as these macros are ALWAYS +// defined. +// +// GTEST_HAS_CLONE - Define it to 1/0 to indicate that clone(2) +// is/isn't available. +// GTEST_HAS_EXCEPTIONS - Define it to 1/0 to indicate that exceptions +// are enabled. +// GTEST_HAS_GLOBAL_STRING - Define it to 1/0 to indicate that ::string +// is/isn't available (some systems define +// ::string, which is different to std::string). +// GTEST_HAS_GLOBAL_WSTRING - Define it to 1/0 to indicate that ::string +// is/isn't available (some systems define +// ::wstring, which is different to std::wstring). +// GTEST_HAS_POSIX_RE - Define it to 1/0 to indicate that POSIX regular +// expressions are/aren't available. +// GTEST_HAS_PTHREAD - Define it to 1/0 to indicate that +// is/isn't available. +// GTEST_HAS_RTTI - Define it to 1/0 to indicate that RTTI is/isn't +// enabled. +// GTEST_HAS_STD_WSTRING - Define it to 1/0 to indicate that +// std::wstring does/doesn't work (Google Test can +// be used where std::wstring is unavailable). +// GTEST_HAS_TR1_TUPLE - Define it to 1/0 to indicate tr1::tuple +// is/isn't available. +// GTEST_HAS_SEH - Define it to 1/0 to indicate whether the +// compiler supports Microsoft's "Structured +// Exception Handling". +// GTEST_HAS_STREAM_REDIRECTION +// - Define it to 1/0 to indicate whether the +// platform supports I/O stream redirection using +// dup() and dup2(). +// GTEST_USE_OWN_TR1_TUPLE - Define it to 1/0 to indicate whether Google +// Test's own tr1 tuple implementation should be +// used. Unused when the user sets +// GTEST_HAS_TR1_TUPLE to 0. +// GTEST_LANG_CXX11 - Define it to 1/0 to indicate that Google Test +// is building in C++11/C++98 mode. +// GTEST_LINKED_AS_SHARED_LIBRARY +// - Define to 1 when compiling tests that use +// Google Test as a shared library (known as +// DLL on Windows). +// GTEST_CREATE_SHARED_LIBRARY +// - Define to 1 when compiling Google Test itself +// as a shared library. + +// Platform-indicating macros +// -------------------------- +// +// Macros indicating the platform on which Google Test is being used +// (a macro is defined to 1 if compiled on the given platform; +// otherwise UNDEFINED -- it's never defined to 0.). Google Test +// defines these macros automatically. Code outside Google Test MUST +// NOT define them. +// +// GTEST_OS_AIX - IBM AIX +// GTEST_OS_CYGWIN - Cygwin +// GTEST_OS_FREEBSD - FreeBSD +// GTEST_OS_HPUX - HP-UX +// GTEST_OS_LINUX - Linux +// GTEST_OS_LINUX_ANDROID - Google Android +// GTEST_OS_MAC - Mac OS X +// GTEST_OS_IOS - iOS +// GTEST_OS_NACL - Google Native Client (NaCl) +// GTEST_OS_OPENBSD - OpenBSD +// GTEST_OS_QNX - QNX +// GTEST_OS_SOLARIS - Sun Solaris +// GTEST_OS_SYMBIAN - Symbian +// GTEST_OS_WINDOWS - Windows (Desktop, MinGW, or Mobile) +// GTEST_OS_WINDOWS_DESKTOP - Windows Desktop +// GTEST_OS_WINDOWS_MINGW - MinGW +// GTEST_OS_WINDOWS_MOBILE - Windows Mobile +// GTEST_OS_WINDOWS_PHONE - Windows Phone +// GTEST_OS_WINDOWS_RT - Windows Store App/WinRT +// GTEST_OS_ZOS - z/OS +// +// Among the platforms, Cygwin, Linux, Max OS X, and Windows have the +// most stable support. Since core members of the Google Test project +// don't have access to other platforms, support for them may be less +// stable. If you notice any problems on your platform, please notify +// googletestframework@googlegroups.com (patches for fixing them are +// even more welcome!). +// +// It is possible that none of the GTEST_OS_* macros are defined. + +// Feature-indicating macros +// ------------------------- +// +// Macros indicating which Google Test features are available (a macro +// is defined to 1 if the corresponding feature is supported; +// otherwise UNDEFINED -- it's never defined to 0.). Google Test +// defines these macros automatically. Code outside Google Test MUST +// NOT define them. +// +// These macros are public so that portable tests can be written. +// Such tests typically surround code using a feature with an #if +// which controls that code. For example: +// +// #if GTEST_HAS_DEATH_TEST +// EXPECT_DEATH(DoSomethingDeadly()); +// #endif +// +// GTEST_HAS_COMBINE - the Combine() function (for value-parameterized +// tests) +// GTEST_HAS_DEATH_TEST - death tests +// GTEST_HAS_PARAM_TEST - value-parameterized tests +// GTEST_HAS_TYPED_TEST - typed tests +// GTEST_HAS_TYPED_TEST_P - type-parameterized tests +// GTEST_IS_THREADSAFE - Google Test is thread-safe. +// GTEST_USES_POSIX_RE - enhanced POSIX regex is used. Do not confuse with +// GTEST_HAS_POSIX_RE (see above) which users can +// define themselves. +// GTEST_USES_SIMPLE_RE - our own simple regex is used; +// the above two are mutually exclusive. +// GTEST_CAN_COMPARE_NULL - accepts untyped NULL in EXPECT_EQ(). + +// Misc public macros +// ------------------ +// +// GTEST_FLAG(flag_name) - references the variable corresponding to +// the given Google Test flag. + +// Internal utilities +// ------------------ +// +// The following macros and utilities are for Google Test's INTERNAL +// use only. Code outside Google Test MUST NOT USE THEM DIRECTLY. +// +// Macros for basic C++ coding: +// GTEST_AMBIGUOUS_ELSE_BLOCKER_ - for disabling a gcc warning. +// GTEST_ATTRIBUTE_UNUSED_ - declares that a class' instances or a +// variable don't have to be used. +// GTEST_DISALLOW_ASSIGN_ - disables operator=. +// GTEST_DISALLOW_COPY_AND_ASSIGN_ - disables copy ctor and operator=. +// GTEST_MUST_USE_RESULT_ - declares that a function's result must be used. +// GTEST_INTENTIONAL_CONST_COND_PUSH_ - start code section where MSVC C4127 is +// suppressed (constant conditional). +// GTEST_INTENTIONAL_CONST_COND_POP_ - finish code section where MSVC C4127 +// is suppressed. +// +// C++11 feature wrappers: +// +// testing::internal::move - portability wrapper for std::move. +// +// Synchronization: +// Mutex, MutexLock, ThreadLocal, GetThreadCount() +// - synchronization primitives. +// +// Template meta programming: +// is_pointer - as in TR1; needed on Symbian and IBM XL C/C++ only. +// IteratorTraits - partial implementation of std::iterator_traits, which +// is not available in libCstd when compiled with Sun C++. +// +// Smart pointers: +// scoped_ptr - as in TR2. +// +// Regular expressions: +// RE - a simple regular expression class using the POSIX +// Extended Regular Expression syntax on UNIX-like +// platforms, or a reduced regular exception syntax on +// other platforms, including Windows. +// +// Logging: +// GTEST_LOG_() - logs messages at the specified severity level. +// LogToStderr() - directs all log messages to stderr. +// FlushInfoLog() - flushes informational log messages. +// +// Stdout and stderr capturing: +// CaptureStdout() - starts capturing stdout. +// GetCapturedStdout() - stops capturing stdout and returns the captured +// string. +// CaptureStderr() - starts capturing stderr. +// GetCapturedStderr() - stops capturing stderr and returns the captured +// string. +// +// Integer types: +// TypeWithSize - maps an integer to a int type. +// Int32, UInt32, Int64, UInt64, TimeInMillis +// - integers of known sizes. +// BiggestInt - the biggest signed integer type. +// +// Command-line utilities: +// GTEST_DECLARE_*() - declares a flag. +// GTEST_DEFINE_*() - defines a flag. +// GetInjectableArgvs() - returns the command line as a vector of strings. +// +// Environment variable utilities: +// GetEnv() - gets the value of an environment variable. +// BoolFromGTestEnv() - parses a bool environment variable. +// Int32FromGTestEnv() - parses an Int32 environment variable. +// StringFromGTestEnv() - parses a string environment variable. + +#include // for isspace, etc +#include // for ptrdiff_t +#include +#include +#include +#ifndef _WIN32_WCE +# include +# include +#endif // !_WIN32_WCE + +#if defined __APPLE__ +# include +# include +#endif + +#include // NOLINT +#include // NOLINT +#include // NOLINT +#include // NOLINT +#include +#include // NOLINT + +#include "gtest/internal/gtest-port-arch.h" +#include "gtest/internal/custom/gtest-port.h" + +#if !defined(GTEST_DEV_EMAIL_) +# define GTEST_DEV_EMAIL_ "googletestframework@@googlegroups.com" +# define GTEST_FLAG_PREFIX_ "gtest_" +# define GTEST_FLAG_PREFIX_DASH_ "gtest-" +# define GTEST_FLAG_PREFIX_UPPER_ "GTEST_" +# define GTEST_NAME_ "Google Test" +# define GTEST_PROJECT_URL_ "https://github.com/google/googletest/" +#endif // !defined(GTEST_DEV_EMAIL_) + +#if !defined(GTEST_INIT_GOOGLE_TEST_NAME_) +# define GTEST_INIT_GOOGLE_TEST_NAME_ "testing::InitGoogleTest" +#endif // !defined(GTEST_INIT_GOOGLE_TEST_NAME_) + +// Determines the version of gcc that is used to compile this. +#ifdef __GNUC__ +// 40302 means version 4.3.2. +# define GTEST_GCC_VER_ \ + (__GNUC__*10000 + __GNUC_MINOR__*100 + __GNUC_PATCHLEVEL__) +#endif // __GNUC__ + +// Macros for disabling Microsoft Visual C++ warnings. +// +// GTEST_DISABLE_MSC_WARNINGS_PUSH_(4800 4385) +// /* code that triggers warnings C4800 and C4385 */ +// GTEST_DISABLE_MSC_WARNINGS_POP_() +#if _MSC_VER >= 1500 +# define GTEST_DISABLE_MSC_WARNINGS_PUSH_(warnings) \ + __pragma(warning(push)) \ + __pragma(warning(disable: warnings)) +# define GTEST_DISABLE_MSC_WARNINGS_POP_() \ + __pragma(warning(pop)) +#else +// Older versions of MSVC don't have __pragma. +# define GTEST_DISABLE_MSC_WARNINGS_PUSH_(warnings) +# define GTEST_DISABLE_MSC_WARNINGS_POP_() +#endif + +#ifndef GTEST_LANG_CXX11 +// gcc and clang define __GXX_EXPERIMENTAL_CXX0X__ when +// -std={c,gnu}++{0x,11} is passed. The C++11 standard specifies a +// value for __cplusplus, and recent versions of clang, gcc, and +// probably other compilers set that too in C++11 mode. +# if __GXX_EXPERIMENTAL_CXX0X__ || __cplusplus >= 201103L +// Compiling in at least C++11 mode. +# define GTEST_LANG_CXX11 1 +# else +# define GTEST_LANG_CXX11 0 +# endif +#endif + +// Distinct from C++11 language support, some environments don't provide +// proper C++11 library support. Notably, it's possible to build in +// C++11 mode when targeting Mac OS X 10.6, which has an old libstdc++ +// with no C++11 support. +// +// libstdc++ has sufficient C++11 support as of GCC 4.6.0, __GLIBCXX__ +// 20110325, but maintenance releases in the 4.4 and 4.5 series followed +// this date, so check for those versions by their date stamps. +// https://gcc.gnu.org/onlinedocs/libstdc++/manual/abi.html#abi.versioning +#if GTEST_LANG_CXX11 && \ + (!defined(__GLIBCXX__) || ( \ + __GLIBCXX__ >= 20110325ul && /* GCC >= 4.6.0 */ \ + /* Blacklist of patch releases of older branches: */ \ + __GLIBCXX__ != 20110416ul && /* GCC 4.4.6 */ \ + __GLIBCXX__ != 20120313ul && /* GCC 4.4.7 */ \ + __GLIBCXX__ != 20110428ul && /* GCC 4.5.3 */ \ + __GLIBCXX__ != 20120702ul)) /* GCC 4.5.4 */ +# define GTEST_STDLIB_CXX11 1 +#endif + +// Only use C++11 library features if the library provides them. +#if GTEST_STDLIB_CXX11 +# define GTEST_HAS_STD_BEGIN_AND_END_ 1 +# define GTEST_HAS_STD_FORWARD_LIST_ 1 +# define GTEST_HAS_STD_FUNCTION_ 1 +# define GTEST_HAS_STD_INITIALIZER_LIST_ 1 +# define GTEST_HAS_STD_MOVE_ 1 +# define GTEST_HAS_STD_SHARED_PTR_ 1 +# define GTEST_HAS_STD_TYPE_TRAITS_ 1 +# define GTEST_HAS_STD_UNIQUE_PTR_ 1 +#endif + +// C++11 specifies that provides std::tuple. +// Some platforms still might not have it, however. +#if GTEST_LANG_CXX11 +# define GTEST_HAS_STD_TUPLE_ 1 +# if defined(__clang__) +// Inspired by http://clang.llvm.org/docs/LanguageExtensions.html#__has_include +# if defined(__has_include) && !__has_include() +# undef GTEST_HAS_STD_TUPLE_ +# endif +# elif defined(_MSC_VER) +// Inspired by boost/config/stdlib/dinkumware.hpp +# if defined(_CPPLIB_VER) && _CPPLIB_VER < 520 +# undef GTEST_HAS_STD_TUPLE_ +# endif +# elif defined(__GLIBCXX__) +// Inspired by boost/config/stdlib/libstdcpp3.hpp, +// http://gcc.gnu.org/gcc-4.2/changes.html and +// http://gcc.gnu.org/onlinedocs/libstdc++/manual/bk01pt01ch01.html#manual.intro.status.standard.200x +# if __GNUC__ < 4 || (__GNUC__ == 4 && __GNUC_MINOR__ < 2) +# undef GTEST_HAS_STD_TUPLE_ +# endif +# endif +#endif + +// Brings in definitions for functions used in the testing::internal::posix +// namespace (read, write, close, chdir, isatty, stat). We do not currently +// use them on Windows Mobile. +#if GTEST_OS_WINDOWS +# if !GTEST_OS_WINDOWS_MOBILE +# include +# include +# endif +// In order to avoid having to include , use forward declaration +// assuming CRITICAL_SECTION is a typedef of _RTL_CRITICAL_SECTION. +// This assumption is verified by +// WindowsTypesTest.CRITICAL_SECTIONIs_RTL_CRITICAL_SECTION. +struct _RTL_CRITICAL_SECTION; +#else +// This assumes that non-Windows OSes provide unistd.h. For OSes where this +// is not the case, we need to include headers that provide the functions +// mentioned above. +# include +# include +#endif // GTEST_OS_WINDOWS + +#if GTEST_OS_LINUX_ANDROID +// Used to define __ANDROID_API__ matching the target NDK API level. +# include // NOLINT +#endif + +// Defines this to true iff Google Test can use POSIX regular expressions. +#ifndef GTEST_HAS_POSIX_RE +# if GTEST_OS_LINUX_ANDROID +// On Android, is only available starting with Gingerbread. +# define GTEST_HAS_POSIX_RE (__ANDROID_API__ >= 9) +# else +# define GTEST_HAS_POSIX_RE (!GTEST_OS_WINDOWS) +# endif +#endif + +#if GTEST_USES_PCRE +// The appropriate headers have already been included. + +#elif GTEST_HAS_POSIX_RE + +// On some platforms, needs someone to define size_t, and +// won't compile otherwise. We can #include it here as we already +// included , which is guaranteed to define size_t through +// . +# include // NOLINT + +# define GTEST_USES_POSIX_RE 1 + +#elif GTEST_OS_WINDOWS + +// is not available on Windows. Use our own simple regex +// implementation instead. +# define GTEST_USES_SIMPLE_RE 1 + +#else + +// may not be available on this platform. Use our own +// simple regex implementation instead. +# define GTEST_USES_SIMPLE_RE 1 + +#endif // GTEST_USES_PCRE + +#ifndef GTEST_HAS_EXCEPTIONS +// The user didn't tell us whether exceptions are enabled, so we need +// to figure it out. +# if defined(_MSC_VER) || defined(__BORLANDC__) +// MSVC's and C++Builder's implementations of the STL use the _HAS_EXCEPTIONS +// macro to enable exceptions, so we'll do the same. +// Assumes that exceptions are enabled by default. +# ifndef _HAS_EXCEPTIONS +# define _HAS_EXCEPTIONS 1 +# endif // _HAS_EXCEPTIONS +# define GTEST_HAS_EXCEPTIONS _HAS_EXCEPTIONS +# elif defined(__clang__) +// clang defines __EXCEPTIONS iff exceptions are enabled before clang 220714, +// but iff cleanups are enabled after that. In Obj-C++ files, there can be +// cleanups for ObjC exceptions which also need cleanups, even if C++ exceptions +// are disabled. clang has __has_feature(cxx_exceptions) which checks for C++ +// exceptions starting at clang r206352, but which checked for cleanups prior to +// that. To reliably check for C++ exception availability with clang, check for +// __EXCEPTIONS && __has_feature(cxx_exceptions). +# define GTEST_HAS_EXCEPTIONS (__EXCEPTIONS && __has_feature(cxx_exceptions)) +# elif defined(__GNUC__) && __EXCEPTIONS +// gcc defines __EXCEPTIONS to 1 iff exceptions are enabled. +# define GTEST_HAS_EXCEPTIONS 1 +# elif defined(__SUNPRO_CC) +// Sun Pro CC supports exceptions. However, there is no compile-time way of +// detecting whether they are enabled or not. Therefore, we assume that +// they are enabled unless the user tells us otherwise. +# define GTEST_HAS_EXCEPTIONS 1 +# elif defined(__IBMCPP__) && __EXCEPTIONS +// xlC defines __EXCEPTIONS to 1 iff exceptions are enabled. +# define GTEST_HAS_EXCEPTIONS 1 +# elif defined(__HP_aCC) +// Exception handling is in effect by default in HP aCC compiler. It has to +// be turned of by +noeh compiler option if desired. +# define GTEST_HAS_EXCEPTIONS 1 +# else +// For other compilers, we assume exceptions are disabled to be +// conservative. +# define GTEST_HAS_EXCEPTIONS 0 +# endif // defined(_MSC_VER) || defined(__BORLANDC__) +#endif // GTEST_HAS_EXCEPTIONS + +#if !defined(GTEST_HAS_STD_STRING) +// Even though we don't use this macro any longer, we keep it in case +// some clients still depend on it. +# define GTEST_HAS_STD_STRING 1 +#elif !GTEST_HAS_STD_STRING +// The user told us that ::std::string isn't available. +# error "Google Test cannot be used where ::std::string isn't available." +#endif // !defined(GTEST_HAS_STD_STRING) + +#ifndef GTEST_HAS_GLOBAL_STRING +// The user didn't tell us whether ::string is available, so we need +// to figure it out. + +# define GTEST_HAS_GLOBAL_STRING 0 + +#endif // GTEST_HAS_GLOBAL_STRING + +#ifndef GTEST_HAS_STD_WSTRING +// The user didn't tell us whether ::std::wstring is available, so we need +// to figure it out. +// TODO(wan@google.com): uses autoconf to detect whether ::std::wstring +// is available. + +// Cygwin 1.7 and below doesn't support ::std::wstring. +// Solaris' libc++ doesn't support it either. Android has +// no support for it at least as recent as Froyo (2.2). +# define GTEST_HAS_STD_WSTRING \ + (!(GTEST_OS_LINUX_ANDROID || GTEST_OS_CYGWIN || GTEST_OS_SOLARIS)) + +#endif // GTEST_HAS_STD_WSTRING + +#ifndef GTEST_HAS_GLOBAL_WSTRING +// The user didn't tell us whether ::wstring is available, so we need +// to figure it out. +# define GTEST_HAS_GLOBAL_WSTRING \ + (GTEST_HAS_STD_WSTRING && GTEST_HAS_GLOBAL_STRING) +#endif // GTEST_HAS_GLOBAL_WSTRING + +// Determines whether RTTI is available. +#ifndef GTEST_HAS_RTTI +// The user didn't tell us whether RTTI is enabled, so we need to +// figure it out. + +# ifdef _MSC_VER + +# ifdef _CPPRTTI // MSVC defines this macro iff RTTI is enabled. +# define GTEST_HAS_RTTI 1 +# else +# define GTEST_HAS_RTTI 0 +# endif + +// Starting with version 4.3.2, gcc defines __GXX_RTTI iff RTTI is enabled. +# elif defined(__GNUC__) && (GTEST_GCC_VER_ >= 40302) + +# ifdef __GXX_RTTI +// When building against STLport with the Android NDK and with +// -frtti -fno-exceptions, the build fails at link time with undefined +// references to __cxa_bad_typeid. Note sure if STL or toolchain bug, +// so disable RTTI when detected. +# if GTEST_OS_LINUX_ANDROID && defined(_STLPORT_MAJOR) && \ + !defined(__EXCEPTIONS) +# define GTEST_HAS_RTTI 0 +# else +# define GTEST_HAS_RTTI 1 +# endif // GTEST_OS_LINUX_ANDROID && __STLPORT_MAJOR && !__EXCEPTIONS +# else +# define GTEST_HAS_RTTI 0 +# endif // __GXX_RTTI + +// Clang defines __GXX_RTTI starting with version 3.0, but its manual recommends +// using has_feature instead. has_feature(cxx_rtti) is supported since 2.7, the +// first version with C++ support. +# elif defined(__clang__) + +# define GTEST_HAS_RTTI __has_feature(cxx_rtti) + +// Starting with version 9.0 IBM Visual Age defines __RTTI_ALL__ to 1 if +// both the typeid and dynamic_cast features are present. +# elif defined(__IBMCPP__) && (__IBMCPP__ >= 900) + +# ifdef __RTTI_ALL__ +# define GTEST_HAS_RTTI 1 +# else +# define GTEST_HAS_RTTI 0 +# endif + +# else + +// For all other compilers, we assume RTTI is enabled. +# define GTEST_HAS_RTTI 1 + +# endif // _MSC_VER + +#endif // GTEST_HAS_RTTI + +// It's this header's responsibility to #include when RTTI +// is enabled. +#if GTEST_HAS_RTTI +# include +#endif + +// Determines whether Google Test can use the pthreads library. +#ifndef GTEST_HAS_PTHREAD +// The user didn't tell us explicitly, so we make reasonable assumptions about +// which platforms have pthreads support. +// +// To disable threading support in Google Test, add -DGTEST_HAS_PTHREAD=0 +// to your compiler flags. +# define GTEST_HAS_PTHREAD (GTEST_OS_LINUX || GTEST_OS_MAC || GTEST_OS_HPUX \ + || GTEST_OS_QNX || GTEST_OS_FREEBSD || GTEST_OS_NACL) +#endif // GTEST_HAS_PTHREAD + +#if GTEST_HAS_PTHREAD +// gtest-port.h guarantees to #include when GTEST_HAS_PTHREAD is +// true. +# include // NOLINT + +// For timespec and nanosleep, used below. +# include // NOLINT +#endif + +// Determines if hash_map/hash_set are available. +// Only used for testing against those containers. +#if !defined(GTEST_HAS_HASH_MAP_) +# if _MSC_VER +# define GTEST_HAS_HASH_MAP_ 1 // Indicates that hash_map is available. +# define GTEST_HAS_HASH_SET_ 1 // Indicates that hash_set is available. +# endif // _MSC_VER +#endif // !defined(GTEST_HAS_HASH_MAP_) + +// Determines whether Google Test can use tr1/tuple. You can define +// this macro to 0 to prevent Google Test from using tuple (any +// feature depending on tuple with be disabled in this mode). +#ifndef GTEST_HAS_TR1_TUPLE +# if GTEST_OS_LINUX_ANDROID && defined(_STLPORT_MAJOR) +// STLport, provided with the Android NDK, has neither or . +# define GTEST_HAS_TR1_TUPLE 0 +# else +// The user didn't tell us not to do it, so we assume it's OK. +# define GTEST_HAS_TR1_TUPLE 1 +# endif +#endif // GTEST_HAS_TR1_TUPLE + +// Determines whether Google Test's own tr1 tuple implementation +// should be used. +#ifndef GTEST_USE_OWN_TR1_TUPLE +// The user didn't tell us, so we need to figure it out. + +// We use our own TR1 tuple if we aren't sure the user has an +// implementation of it already. At this time, libstdc++ 4.0.0+ and +// MSVC 2010 are the only mainstream standard libraries that come +// with a TR1 tuple implementation. NVIDIA's CUDA NVCC compiler +// pretends to be GCC by defining __GNUC__ and friends, but cannot +// compile GCC's tuple implementation. MSVC 2008 (9.0) provides TR1 +// tuple in a 323 MB Feature Pack download, which we cannot assume the +// user has. QNX's QCC compiler is a modified GCC but it doesn't +// support TR1 tuple. libc++ only provides std::tuple, in C++11 mode, +// and it can be used with some compilers that define __GNUC__. +# if (defined(__GNUC__) && !defined(__CUDACC__) && (GTEST_GCC_VER_ >= 40000) \ + && !GTEST_OS_QNX && !defined(_LIBCPP_VERSION)) || _MSC_VER >= 1600 +# define GTEST_ENV_HAS_TR1_TUPLE_ 1 +# endif + +// C++11 specifies that provides std::tuple. Use that if gtest is used +// in C++11 mode and libstdc++ isn't very old (binaries targeting OS X 10.6 +// can build with clang but need to use gcc4.2's libstdc++). +# if GTEST_LANG_CXX11 && (!defined(__GLIBCXX__) || __GLIBCXX__ > 20110325) +# define GTEST_ENV_HAS_STD_TUPLE_ 1 +# endif + +# if GTEST_ENV_HAS_TR1_TUPLE_ || GTEST_ENV_HAS_STD_TUPLE_ +# define GTEST_USE_OWN_TR1_TUPLE 0 +# else +# define GTEST_USE_OWN_TR1_TUPLE 1 +# endif + +#endif // GTEST_USE_OWN_TR1_TUPLE + +// To avoid conditional compilation everywhere, we make it +// gtest-port.h's responsibility to #include the header implementing +// tuple. +#if GTEST_HAS_STD_TUPLE_ +# include // IWYU pragma: export +# define GTEST_TUPLE_NAMESPACE_ ::std +#endif // GTEST_HAS_STD_TUPLE_ + +// We include tr1::tuple even if std::tuple is available to define printers for +// them. +#if GTEST_HAS_TR1_TUPLE +# ifndef GTEST_TUPLE_NAMESPACE_ +# define GTEST_TUPLE_NAMESPACE_ ::std::tr1 +# endif // GTEST_TUPLE_NAMESPACE_ + +# if GTEST_USE_OWN_TR1_TUPLE +# include "gtest/internal/gtest-tuple.h" // IWYU pragma: export // NOLINT +# elif GTEST_ENV_HAS_STD_TUPLE_ +# include +// C++11 puts its tuple into the ::std namespace rather than +// ::std::tr1. gtest expects tuple to live in ::std::tr1, so put it there. +// This causes undefined behavior, but supported compilers react in +// the way we intend. +namespace std { +namespace tr1 { +using ::std::get; +using ::std::make_tuple; +using ::std::tuple; +using ::std::tuple_element; +using ::std::tuple_size; +} +} + +# elif GTEST_OS_SYMBIAN + +// On Symbian, BOOST_HAS_TR1_TUPLE causes Boost's TR1 tuple library to +// use STLport's tuple implementation, which unfortunately doesn't +// work as the copy of STLport distributed with Symbian is incomplete. +// By making sure BOOST_HAS_TR1_TUPLE is undefined, we force Boost to +// use its own tuple implementation. +# ifdef BOOST_HAS_TR1_TUPLE +# undef BOOST_HAS_TR1_TUPLE +# endif // BOOST_HAS_TR1_TUPLE + +// This prevents , which defines +// BOOST_HAS_TR1_TUPLE, from being #included by Boost's . +# define BOOST_TR1_DETAIL_CONFIG_HPP_INCLUDED +# include // IWYU pragma: export // NOLINT + +# elif defined(__GNUC__) && (GTEST_GCC_VER_ >= 40000) +// GCC 4.0+ implements tr1/tuple in the header. This does +// not conform to the TR1 spec, which requires the header to be . + +# if !GTEST_HAS_RTTI && GTEST_GCC_VER_ < 40302 +// Until version 4.3.2, gcc has a bug that causes , +// which is #included by , to not compile when RTTI is +// disabled. _TR1_FUNCTIONAL is the header guard for +// . Hence the following #define is a hack to prevent +// from being included. +# define _TR1_FUNCTIONAL 1 +# include +# undef _TR1_FUNCTIONAL // Allows the user to #include + // if he chooses to. +# else +# include // NOLINT +# endif // !GTEST_HAS_RTTI && GTEST_GCC_VER_ < 40302 + +# else +// If the compiler is not GCC 4.0+, we assume the user is using a +// spec-conforming TR1 implementation. +# include // IWYU pragma: export // NOLINT +# endif // GTEST_USE_OWN_TR1_TUPLE + +#endif // GTEST_HAS_TR1_TUPLE + +// Determines whether clone(2) is supported. +// Usually it will only be available on Linux, excluding +// Linux on the Itanium architecture. +// Also see http://linux.die.net/man/2/clone. +#ifndef GTEST_HAS_CLONE +// The user didn't tell us, so we need to figure it out. + +# if GTEST_OS_LINUX && !defined(__ia64__) +# if GTEST_OS_LINUX_ANDROID +// On Android, clone() is only available on ARM starting with Gingerbread. +# if defined(__arm__) && __ANDROID_API__ >= 9 +# define GTEST_HAS_CLONE 1 +# else +# define GTEST_HAS_CLONE 0 +# endif +# else +# define GTEST_HAS_CLONE 1 +# endif +# else +# define GTEST_HAS_CLONE 0 +# endif // GTEST_OS_LINUX && !defined(__ia64__) + +#endif // GTEST_HAS_CLONE + +// Determines whether to support stream redirection. This is used to test +// output correctness and to implement death tests. +#ifndef GTEST_HAS_STREAM_REDIRECTION +// By default, we assume that stream redirection is supported on all +// platforms except known mobile ones. +# if GTEST_OS_WINDOWS_MOBILE || GTEST_OS_SYMBIAN || \ + GTEST_OS_WINDOWS_PHONE || GTEST_OS_WINDOWS_RT +# define GTEST_HAS_STREAM_REDIRECTION 0 +# else +# define GTEST_HAS_STREAM_REDIRECTION 1 +# endif // !GTEST_OS_WINDOWS_MOBILE && !GTEST_OS_SYMBIAN +#endif // GTEST_HAS_STREAM_REDIRECTION + +// Determines whether to support death tests. +// Google Test does not support death tests for VC 7.1 and earlier as +// abort() in a VC 7.1 application compiled as GUI in debug config +// pops up a dialog window that cannot be suppressed programmatically. +#if (GTEST_OS_LINUX || GTEST_OS_CYGWIN || GTEST_OS_SOLARIS || \ + (GTEST_OS_MAC && !GTEST_OS_IOS) || \ + (GTEST_OS_WINDOWS_DESKTOP && _MSC_VER >= 1400) || \ + GTEST_OS_WINDOWS_MINGW || GTEST_OS_AIX || GTEST_OS_HPUX || \ + GTEST_OS_OPENBSD || GTEST_OS_QNX || GTEST_OS_FREEBSD) +# define GTEST_HAS_DEATH_TEST 1 +#endif + +// We don't support MSVC 7.1 with exceptions disabled now. Therefore +// all the compilers we care about are adequate for supporting +// value-parameterized tests. +#define GTEST_HAS_PARAM_TEST 1 + +// Determines whether to support type-driven tests. + +// Typed tests need and variadic macros, which GCC, VC++ 8.0, +// Sun Pro CC, IBM Visual Age, and HP aCC support. +#if defined(__GNUC__) || (_MSC_VER >= 1400) || defined(__SUNPRO_CC) || \ + defined(__IBMCPP__) || defined(__HP_aCC) +# define GTEST_HAS_TYPED_TEST 1 +# define GTEST_HAS_TYPED_TEST_P 1 +#endif + +// Determines whether to support Combine(). This only makes sense when +// value-parameterized tests are enabled. The implementation doesn't +// work on Sun Studio since it doesn't understand templated conversion +// operators. +#if GTEST_HAS_PARAM_TEST && GTEST_HAS_TR1_TUPLE && !defined(__SUNPRO_CC) +# define GTEST_HAS_COMBINE 1 +#endif + +// Determines whether the system compiler uses UTF-16 for encoding wide strings. +#define GTEST_WIDE_STRING_USES_UTF16_ \ + (GTEST_OS_WINDOWS || GTEST_OS_CYGWIN || GTEST_OS_SYMBIAN || GTEST_OS_AIX) + +// Determines whether test results can be streamed to a socket. +#if GTEST_OS_LINUX +# define GTEST_CAN_STREAM_RESULTS_ 1 +#endif + +// Defines some utility macros. + +// The GNU compiler emits a warning if nested "if" statements are followed by +// an "else" statement and braces are not used to explicitly disambiguate the +// "else" binding. This leads to problems with code like: +// +// if (gate) +// ASSERT_*(condition) << "Some message"; +// +// The "switch (0) case 0:" idiom is used to suppress this. +#ifdef __INTEL_COMPILER +# define GTEST_AMBIGUOUS_ELSE_BLOCKER_ +#else +# define GTEST_AMBIGUOUS_ELSE_BLOCKER_ switch (0) case 0: default: // NOLINT +#endif + +// Use this annotation at the end of a struct/class definition to +// prevent the compiler from optimizing away instances that are never +// used. This is useful when all interesting logic happens inside the +// c'tor and / or d'tor. Example: +// +// struct Foo { +// Foo() { ... } +// } GTEST_ATTRIBUTE_UNUSED_; +// +// Also use it after a variable or parameter declaration to tell the +// compiler the variable/parameter does not have to be used. +#if defined(__GNUC__) && !defined(COMPILER_ICC) +# define GTEST_ATTRIBUTE_UNUSED_ __attribute__ ((unused)) +#elif defined(__clang__) +# if __has_attribute(unused) +# define GTEST_ATTRIBUTE_UNUSED_ __attribute__ ((unused)) +# endif +#endif +#ifndef GTEST_ATTRIBUTE_UNUSED_ +# define GTEST_ATTRIBUTE_UNUSED_ +#endif + +// A macro to disallow operator= +// This should be used in the private: declarations for a class. +#define GTEST_DISALLOW_ASSIGN_(type)\ + void operator=(type const &) + +// A macro to disallow copy constructor and operator= +// This should be used in the private: declarations for a class. +#define GTEST_DISALLOW_COPY_AND_ASSIGN_(type)\ + type(type const &);\ + GTEST_DISALLOW_ASSIGN_(type) + +// Tell the compiler to warn about unused return values for functions declared +// with this macro. The macro should be used on function declarations +// following the argument list: +// +// Sprocket* AllocateSprocket() GTEST_MUST_USE_RESULT_; +#if defined(__GNUC__) && (GTEST_GCC_VER_ >= 30400) && !defined(COMPILER_ICC) +# define GTEST_MUST_USE_RESULT_ __attribute__ ((warn_unused_result)) +#else +# define GTEST_MUST_USE_RESULT_ +#endif // __GNUC__ && (GTEST_GCC_VER_ >= 30400) && !COMPILER_ICC + +// MS C++ compiler emits warning when a conditional expression is compile time +// constant. In some contexts this warning is false positive and needs to be +// suppressed. Use the following two macros in such cases: +// +// GTEST_INTENTIONAL_CONST_COND_PUSH_() +// while (true) { +// GTEST_INTENTIONAL_CONST_COND_POP_() +// } +# define GTEST_INTENTIONAL_CONST_COND_PUSH_() \ + GTEST_DISABLE_MSC_WARNINGS_PUSH_(4127) +# define GTEST_INTENTIONAL_CONST_COND_POP_() \ + GTEST_DISABLE_MSC_WARNINGS_POP_() + +// Determine whether the compiler supports Microsoft's Structured Exception +// Handling. This is supported by several Windows compilers but generally +// does not exist on any other system. +#ifndef GTEST_HAS_SEH +// The user didn't tell us, so we need to figure it out. + +# if defined(_MSC_VER) || defined(__BORLANDC__) +// These two compilers are known to support SEH. +# define GTEST_HAS_SEH 1 +# else +// Assume no SEH. +# define GTEST_HAS_SEH 0 +# endif + +#define GTEST_IS_THREADSAFE \ + (GTEST_HAS_MUTEX_AND_THREAD_LOCAL_ \ + || (GTEST_OS_WINDOWS && !GTEST_OS_WINDOWS_PHONE && !GTEST_OS_WINDOWS_RT) \ + || GTEST_HAS_PTHREAD) + +#endif // GTEST_HAS_SEH + +#ifdef _MSC_VER +# if GTEST_LINKED_AS_SHARED_LIBRARY +# define GTEST_API_ __declspec(dllimport) +# elif GTEST_CREATE_SHARED_LIBRARY +# define GTEST_API_ __declspec(dllexport) +# endif +#elif __GNUC__ >= 4 || defined(__clang__) +# define GTEST_API_ __attribute__((visibility ("default"))) +#endif // _MSC_VER + +#ifndef GTEST_API_ +# define GTEST_API_ +#endif + +#ifdef __GNUC__ +// Ask the compiler to never inline a given function. +# define GTEST_NO_INLINE_ __attribute__((noinline)) +#else +# define GTEST_NO_INLINE_ +#endif + +// _LIBCPP_VERSION is defined by the libc++ library from the LLVM project. +#if defined(__GLIBCXX__) || defined(_LIBCPP_VERSION) +# define GTEST_HAS_CXXABI_H_ 1 +#else +# define GTEST_HAS_CXXABI_H_ 0 +#endif + +// A function level attribute to disable checking for use of uninitialized +// memory when built with MemorySanitizer. +#if defined(__clang__) +# if __has_feature(memory_sanitizer) +# define GTEST_ATTRIBUTE_NO_SANITIZE_MEMORY_ \ + __attribute__((no_sanitize_memory)) +# else +# define GTEST_ATTRIBUTE_NO_SANITIZE_MEMORY_ +# endif // __has_feature(memory_sanitizer) +#else +# define GTEST_ATTRIBUTE_NO_SANITIZE_MEMORY_ +#endif // __clang__ + +// A function level attribute to disable AddressSanitizer instrumentation. +#if defined(__clang__) +# if __has_feature(address_sanitizer) +# define GTEST_ATTRIBUTE_NO_SANITIZE_ADDRESS_ \ + __attribute__((no_sanitize_address)) +# else +# define GTEST_ATTRIBUTE_NO_SANITIZE_ADDRESS_ +# endif // __has_feature(address_sanitizer) +#else +# define GTEST_ATTRIBUTE_NO_SANITIZE_ADDRESS_ +#endif // __clang__ + +// A function level attribute to disable ThreadSanitizer instrumentation. +#if defined(__clang__) +# if __has_feature(thread_sanitizer) +# define GTEST_ATTRIBUTE_NO_SANITIZE_THREAD_ \ + __attribute__((no_sanitize_thread)) +# else +# define GTEST_ATTRIBUTE_NO_SANITIZE_THREAD_ +# endif // __has_feature(thread_sanitizer) +#else +# define GTEST_ATTRIBUTE_NO_SANITIZE_THREAD_ +#endif // __clang__ + +// A function level attribute to disable UndefinedBehaviorSanitizer's (defined) +// unsigned integer overflow instrumentation. +#if defined(__clang__) +# if defined(__has_attribute) && __has_attribute(no_sanitize) +# define GTEST_ATTRIBUTE_NO_SANITIZE_UNSIGNED_OVERFLOW_ \ + __attribute__((no_sanitize("unsigned-integer-overflow"))) +# else +# define GTEST_ATTRIBUTE_NO_SANITIZE_UNSIGNED_OVERFLOW_ +# endif // defined(__has_attribute) && __has_attribute(no_sanitize) +#else +# define GTEST_ATTRIBUTE_NO_SANITIZE_UNSIGNED_OVERFLOW_ +#endif // __clang__ + +namespace testing { + +class Message; + +#if defined(GTEST_TUPLE_NAMESPACE_) +// Import tuple and friends into the ::testing namespace. +// It is part of our interface, having them in ::testing allows us to change +// their types as needed. +using GTEST_TUPLE_NAMESPACE_::get; +using GTEST_TUPLE_NAMESPACE_::make_tuple; +using GTEST_TUPLE_NAMESPACE_::tuple; +using GTEST_TUPLE_NAMESPACE_::tuple_size; +using GTEST_TUPLE_NAMESPACE_::tuple_element; +#endif // defined(GTEST_TUPLE_NAMESPACE_) + +namespace internal { + +// A secret type that Google Test users don't know about. It has no +// definition on purpose. Therefore it's impossible to create a +// Secret object, which is what we want. +class Secret; + +// The GTEST_COMPILE_ASSERT_ macro can be used to verify that a compile time +// expression is true. For example, you could use it to verify the +// size of a static array: +// +// GTEST_COMPILE_ASSERT_(GTEST_ARRAY_SIZE_(names) == NUM_NAMES, +// names_incorrect_size); +// +// or to make sure a struct is smaller than a certain size: +// +// GTEST_COMPILE_ASSERT_(sizeof(foo) < 128, foo_too_large); +// +// The second argument to the macro is the name of the variable. If +// the expression is false, most compilers will issue a warning/error +// containing the name of the variable. + +#if GTEST_LANG_CXX11 +# define GTEST_COMPILE_ASSERT_(expr, msg) static_assert(expr, #msg) +#else // !GTEST_LANG_CXX11 +template + struct CompileAssert { +}; + +# define GTEST_COMPILE_ASSERT_(expr, msg) \ + typedef ::testing::internal::CompileAssert<(static_cast(expr))> \ + msg[static_cast(expr) ? 1 : -1] GTEST_ATTRIBUTE_UNUSED_ +#endif // !GTEST_LANG_CXX11 + +// Implementation details of GTEST_COMPILE_ASSERT_: +// +// (In C++11, we simply use static_assert instead of the following) +// +// - GTEST_COMPILE_ASSERT_ works by defining an array type that has -1 +// elements (and thus is invalid) when the expression is false. +// +// - The simpler definition +// +// #define GTEST_COMPILE_ASSERT_(expr, msg) typedef char msg[(expr) ? 1 : -1] +// +// does not work, as gcc supports variable-length arrays whose sizes +// are determined at run-time (this is gcc's extension and not part +// of the C++ standard). As a result, gcc fails to reject the +// following code with the simple definition: +// +// int foo; +// GTEST_COMPILE_ASSERT_(foo, msg); // not supposed to compile as foo is +// // not a compile-time constant. +// +// - By using the type CompileAssert<(bool(expr))>, we ensures that +// expr is a compile-time constant. (Template arguments must be +// determined at compile-time.) +// +// - The outter parentheses in CompileAssert<(bool(expr))> are necessary +// to work around a bug in gcc 3.4.4 and 4.0.1. If we had written +// +// CompileAssert +// +// instead, these compilers will refuse to compile +// +// GTEST_COMPILE_ASSERT_(5 > 0, some_message); +// +// (They seem to think the ">" in "5 > 0" marks the end of the +// template argument list.) +// +// - The array size is (bool(expr) ? 1 : -1), instead of simply +// +// ((expr) ? 1 : -1). +// +// This is to avoid running into a bug in MS VC 7.1, which +// causes ((0.0) ? 1 : -1) to incorrectly evaluate to 1. + +// StaticAssertTypeEqHelper is used by StaticAssertTypeEq defined in gtest.h. +// +// This template is declared, but intentionally undefined. +template +struct StaticAssertTypeEqHelper; + +template +struct StaticAssertTypeEqHelper { + enum { value = true }; +}; + +// Evaluates to the number of elements in 'array'. +#define GTEST_ARRAY_SIZE_(array) (sizeof(array) / sizeof(array[0])) + +#if GTEST_HAS_GLOBAL_STRING +typedef ::string string; +#else +typedef ::std::string string; +#endif // GTEST_HAS_GLOBAL_STRING + +#if GTEST_HAS_GLOBAL_WSTRING +typedef ::wstring wstring; +#elif GTEST_HAS_STD_WSTRING +typedef ::std::wstring wstring; +#endif // GTEST_HAS_GLOBAL_WSTRING + +// A helper for suppressing warnings on constant condition. It just +// returns 'condition'. +GTEST_API_ bool IsTrue(bool condition); + +// Defines scoped_ptr. + +// This implementation of scoped_ptr is PARTIAL - it only contains +// enough stuff to satisfy Google Test's need. +template +class scoped_ptr { + public: + typedef T element_type; + + explicit scoped_ptr(T* p = NULL) : ptr_(p) {} + ~scoped_ptr() { reset(); } + + T& operator*() const { return *ptr_; } + T* operator->() const { return ptr_; } + T* get() const { return ptr_; } + + T* release() { + T* const ptr = ptr_; + ptr_ = NULL; + return ptr; + } + + void reset(T* p = NULL) { + if (p != ptr_) { + if (IsTrue(sizeof(T) > 0)) { // Makes sure T is a complete type. + delete ptr_; + } + ptr_ = p; + } + } + + friend void swap(scoped_ptr& a, scoped_ptr& b) { + using std::swap; + swap(a.ptr_, b.ptr_); + } + + private: + T* ptr_; + + GTEST_DISALLOW_COPY_AND_ASSIGN_(scoped_ptr); +}; + +// Defines RE. + +// A simple C++ wrapper for . It uses the POSIX Extended +// Regular Expression syntax. +class GTEST_API_ RE { + public: + // A copy constructor is required by the Standard to initialize object + // references from r-values. + RE(const RE& other) { Init(other.pattern()); } + + // Constructs an RE from a string. + RE(const ::std::string& regex) { Init(regex.c_str()); } // NOLINT + +#if GTEST_HAS_GLOBAL_STRING + + RE(const ::string& regex) { Init(regex.c_str()); } // NOLINT + +#endif // GTEST_HAS_GLOBAL_STRING + + RE(const char* regex) { Init(regex); } // NOLINT + ~RE(); + + // Returns the string representation of the regex. + const char* pattern() const { return pattern_; } + + // FullMatch(str, re) returns true iff regular expression re matches + // the entire str. + // PartialMatch(str, re) returns true iff regular expression re + // matches a substring of str (including str itself). + // + // TODO(wan@google.com): make FullMatch() and PartialMatch() work + // when str contains NUL characters. + static bool FullMatch(const ::std::string& str, const RE& re) { + return FullMatch(str.c_str(), re); + } + static bool PartialMatch(const ::std::string& str, const RE& re) { + return PartialMatch(str.c_str(), re); + } + +#if GTEST_HAS_GLOBAL_STRING + + static bool FullMatch(const ::string& str, const RE& re) { + return FullMatch(str.c_str(), re); + } + static bool PartialMatch(const ::string& str, const RE& re) { + return PartialMatch(str.c_str(), re); + } + +#endif // GTEST_HAS_GLOBAL_STRING + + static bool FullMatch(const char* str, const RE& re); + static bool PartialMatch(const char* str, const RE& re); + + private: + void Init(const char* regex); + + // We use a const char* instead of an std::string, as Google Test used to be + // used where std::string is not available. TODO(wan@google.com): change to + // std::string. + const char* pattern_; + bool is_valid_; + +#if GTEST_USES_POSIX_RE + + regex_t full_regex_; // For FullMatch(). + regex_t partial_regex_; // For PartialMatch(). + +#else // GTEST_USES_SIMPLE_RE + + const char* full_pattern_; // For FullMatch(); + +#endif + + GTEST_DISALLOW_ASSIGN_(RE); +}; + +// Formats a source file path and a line number as they would appear +// in an error message from the compiler used to compile this code. +GTEST_API_ ::std::string FormatFileLocation(const char* file, int line); + +// Formats a file location for compiler-independent XML output. +// Although this function is not platform dependent, we put it next to +// FormatFileLocation in order to contrast the two functions. +GTEST_API_ ::std::string FormatCompilerIndependentFileLocation(const char* file, + int line); + +// Defines logging utilities: +// GTEST_LOG_(severity) - logs messages at the specified severity level. The +// message itself is streamed into the macro. +// LogToStderr() - directs all log messages to stderr. +// FlushInfoLog() - flushes informational log messages. + +enum GTestLogSeverity { + GTEST_INFO, + GTEST_WARNING, + GTEST_ERROR, + GTEST_FATAL +}; + +// Formats log entry severity, provides a stream object for streaming the +// log message, and terminates the message with a newline when going out of +// scope. +class GTEST_API_ GTestLog { + public: + GTestLog(GTestLogSeverity severity, const char* file, int line); + + // Flushes the buffers and, if severity is GTEST_FATAL, aborts the program. + ~GTestLog(); + + ::std::ostream& GetStream() { return ::std::cerr; } + + private: + const GTestLogSeverity severity_; + + GTEST_DISALLOW_COPY_AND_ASSIGN_(GTestLog); +}; + +#if !defined(GTEST_LOG_) + +# define GTEST_LOG_(severity) \ + ::testing::internal::GTestLog(::testing::internal::GTEST_##severity, \ + __FILE__, __LINE__).GetStream() + +inline void LogToStderr() {} +inline void FlushInfoLog() { fflush(NULL); } + +#endif // !defined(GTEST_LOG_) + +#if !defined(GTEST_CHECK_) +// INTERNAL IMPLEMENTATION - DO NOT USE. +// +// GTEST_CHECK_ is an all-mode assert. It aborts the program if the condition +// is not satisfied. +// Synopsys: +// GTEST_CHECK_(boolean_condition); +// or +// GTEST_CHECK_(boolean_condition) << "Additional message"; +// +// This checks the condition and if the condition is not satisfied +// it prints message about the condition violation, including the +// condition itself, plus additional message streamed into it, if any, +// and then it aborts the program. It aborts the program irrespective of +// whether it is built in the debug mode or not. +# define GTEST_CHECK_(condition) \ + GTEST_AMBIGUOUS_ELSE_BLOCKER_ \ + if (::testing::internal::IsTrue(condition)) \ + ; \ + else \ + GTEST_LOG_(FATAL) << "Condition " #condition " failed. " +#endif // !defined(GTEST_CHECK_) + +// An all-mode assert to verify that the given POSIX-style function +// call returns 0 (indicating success). Known limitation: this +// doesn't expand to a balanced 'if' statement, so enclose the macro +// in {} if you need to use it as the only statement in an 'if' +// branch. +#define GTEST_CHECK_POSIX_SUCCESS_(posix_call) \ + if (const int gtest_error = (posix_call)) \ + GTEST_LOG_(FATAL) << #posix_call << "failed with error " \ + << gtest_error + +#if GTEST_HAS_STD_MOVE_ +using std::move; +#else // GTEST_HAS_STD_MOVE_ +template +const T& move(const T& t) { + return t; +} +#endif // GTEST_HAS_STD_MOVE_ + +// INTERNAL IMPLEMENTATION - DO NOT USE IN USER CODE. +// +// Use ImplicitCast_ as a safe version of static_cast for upcasting in +// the type hierarchy (e.g. casting a Foo* to a SuperclassOfFoo* or a +// const Foo*). When you use ImplicitCast_, the compiler checks that +// the cast is safe. Such explicit ImplicitCast_s are necessary in +// surprisingly many situations where C++ demands an exact type match +// instead of an argument type convertable to a target type. +// +// The syntax for using ImplicitCast_ is the same as for static_cast: +// +// ImplicitCast_(expr) +// +// ImplicitCast_ would have been part of the C++ standard library, +// but the proposal was submitted too late. It will probably make +// its way into the language in the future. +// +// This relatively ugly name is intentional. It prevents clashes with +// similar functions users may have (e.g., implicit_cast). The internal +// namespace alone is not enough because the function can be found by ADL. +template +inline To ImplicitCast_(To x) { return x; } + +// When you upcast (that is, cast a pointer from type Foo to type +// SuperclassOfFoo), it's fine to use ImplicitCast_<>, since upcasts +// always succeed. When you downcast (that is, cast a pointer from +// type Foo to type SubclassOfFoo), static_cast<> isn't safe, because +// how do you know the pointer is really of type SubclassOfFoo? It +// could be a bare Foo, or of type DifferentSubclassOfFoo. Thus, +// when you downcast, you should use this macro. In debug mode, we +// use dynamic_cast<> to double-check the downcast is legal (we die +// if it's not). In normal mode, we do the efficient static_cast<> +// instead. Thus, it's important to test in debug mode to make sure +// the cast is legal! +// This is the only place in the code we should use dynamic_cast<>. +// In particular, you SHOULDN'T be using dynamic_cast<> in order to +// do RTTI (eg code like this: +// if (dynamic_cast(foo)) HandleASubclass1Object(foo); +// if (dynamic_cast(foo)) HandleASubclass2Object(foo); +// You should design the code some other way not to need this. +// +// This relatively ugly name is intentional. It prevents clashes with +// similar functions users may have (e.g., down_cast). The internal +// namespace alone is not enough because the function can be found by ADL. +template // use like this: DownCast_(foo); +inline To DownCast_(From* f) { // so we only accept pointers + // Ensures that To is a sub-type of From *. This test is here only + // for compile-time type checking, and has no overhead in an + // optimized build at run-time, as it will be optimized away + // completely. + GTEST_INTENTIONAL_CONST_COND_PUSH_() + if (false) { + GTEST_INTENTIONAL_CONST_COND_POP_() + const To to = NULL; + ::testing::internal::ImplicitCast_(to); + } + +#if GTEST_HAS_RTTI + // RTTI: debug mode only! + GTEST_CHECK_(f == NULL || dynamic_cast(f) != NULL); +#endif + return static_cast(f); +} + +// Downcasts the pointer of type Base to Derived. +// Derived must be a subclass of Base. The parameter MUST +// point to a class of type Derived, not any subclass of it. +// When RTTI is available, the function performs a runtime +// check to enforce this. +template +Derived* CheckedDowncastToActualType(Base* base) { +#if GTEST_HAS_RTTI + GTEST_CHECK_(typeid(*base) == typeid(Derived)); +#endif + +#if GTEST_HAS_DOWNCAST_ + return ::down_cast(base); +#elif GTEST_HAS_RTTI + return dynamic_cast(base); // NOLINT +#else + return static_cast(base); // Poor man's downcast. +#endif +} + +#if GTEST_HAS_STREAM_REDIRECTION + +// Defines the stderr capturer: +// CaptureStdout - starts capturing stdout. +// GetCapturedStdout - stops capturing stdout and returns the captured string. +// CaptureStderr - starts capturing stderr. +// GetCapturedStderr - stops capturing stderr and returns the captured string. +// +GTEST_API_ void CaptureStdout(); +GTEST_API_ std::string GetCapturedStdout(); +GTEST_API_ void CaptureStderr(); +GTEST_API_ std::string GetCapturedStderr(); + +#endif // GTEST_HAS_STREAM_REDIRECTION + +// Returns a path to temporary directory. +GTEST_API_ std::string TempDir(); + +// Returns the size (in bytes) of a file. +GTEST_API_ size_t GetFileSize(FILE* file); + +// Reads the entire content of a file as a string. +GTEST_API_ std::string ReadEntireFile(FILE* file); + +// All command line arguments. +GTEST_API_ const ::std::vector& GetArgvs(); + +#if GTEST_HAS_DEATH_TEST + +const ::std::vector& GetInjectableArgvs(); +void SetInjectableArgvs(const ::std::vector* + new_argvs); + + +#endif // GTEST_HAS_DEATH_TEST + +// Defines synchronization primitives. +#if GTEST_IS_THREADSAFE +# if GTEST_HAS_PTHREAD +// Sleeps for (roughly) n milliseconds. This function is only for testing +// Google Test's own constructs. Don't use it in user tests, either +// directly or indirectly. +inline void SleepMilliseconds(int n) { + const timespec time = { + 0, // 0 seconds. + n * 1000L * 1000L, // And n ms. + }; + nanosleep(&time, NULL); +} +# endif // GTEST_HAS_PTHREAD + +# if GTEST_HAS_NOTIFICATION_ +// Notification has already been imported into the namespace. +// Nothing to do here. + +# elif GTEST_HAS_PTHREAD +// Allows a controller thread to pause execution of newly created +// threads until notified. Instances of this class must be created +// and destroyed in the controller thread. +// +// This class is only for testing Google Test's own constructs. Do not +// use it in user tests, either directly or indirectly. +class Notification { + public: + Notification() : notified_(false) { + GTEST_CHECK_POSIX_SUCCESS_(pthread_mutex_init(&mutex_, NULL)); + } + ~Notification() { + pthread_mutex_destroy(&mutex_); + } + + // Notifies all threads created with this notification to start. Must + // be called from the controller thread. + void Notify() { + pthread_mutex_lock(&mutex_); + notified_ = true; + pthread_mutex_unlock(&mutex_); + } + + // Blocks until the controller thread notifies. Must be called from a test + // thread. + void WaitForNotification() { + for (;;) { + pthread_mutex_lock(&mutex_); + const bool notified = notified_; + pthread_mutex_unlock(&mutex_); + if (notified) + break; + SleepMilliseconds(10); + } + } + + private: + pthread_mutex_t mutex_; + bool notified_; + + GTEST_DISALLOW_COPY_AND_ASSIGN_(Notification); +}; + +# elif GTEST_OS_WINDOWS && !GTEST_OS_WINDOWS_PHONE && !GTEST_OS_WINDOWS_RT + +GTEST_API_ void SleepMilliseconds(int n); + +// Provides leak-safe Windows kernel handle ownership. +// Used in death tests and in threading support. +class GTEST_API_ AutoHandle { + public: + // Assume that Win32 HANDLE type is equivalent to void*. Doing so allows us to + // avoid including in this header file. Including is + // undesirable because it defines a lot of symbols and macros that tend to + // conflict with client code. This assumption is verified by + // WindowsTypesTest.HANDLEIsVoidStar. + typedef void* Handle; + AutoHandle(); + explicit AutoHandle(Handle handle); + + ~AutoHandle(); + + Handle Get() const; + void Reset(); + void Reset(Handle handle); + + private: + // Returns true iff the handle is a valid handle object that can be closed. + bool IsCloseable() const; + + Handle handle_; + + GTEST_DISALLOW_COPY_AND_ASSIGN_(AutoHandle); +}; + +// Allows a controller thread to pause execution of newly created +// threads until notified. Instances of this class must be created +// and destroyed in the controller thread. +// +// This class is only for testing Google Test's own constructs. Do not +// use it in user tests, either directly or indirectly. +class GTEST_API_ Notification { + public: + Notification(); + void Notify(); + void WaitForNotification(); + + private: + AutoHandle event_; + + GTEST_DISALLOW_COPY_AND_ASSIGN_(Notification); +}; +# endif // GTEST_HAS_NOTIFICATION_ + +// On MinGW, we can have both GTEST_OS_WINDOWS and GTEST_HAS_PTHREAD +// defined, but we don't want to use MinGW's pthreads implementation, which +// has conformance problems with some versions of the POSIX standard. +# if GTEST_HAS_PTHREAD && !GTEST_OS_WINDOWS_MINGW + +// As a C-function, ThreadFuncWithCLinkage cannot be templated itself. +// Consequently, it cannot select a correct instantiation of ThreadWithParam +// in order to call its Run(). Introducing ThreadWithParamBase as a +// non-templated base class for ThreadWithParam allows us to bypass this +// problem. +class ThreadWithParamBase { + public: + virtual ~ThreadWithParamBase() {} + virtual void Run() = 0; +}; + +// pthread_create() accepts a pointer to a function type with the C linkage. +// According to the Standard (7.5/1), function types with different linkages +// are different even if they are otherwise identical. Some compilers (for +// example, SunStudio) treat them as different types. Since class methods +// cannot be defined with C-linkage we need to define a free C-function to +// pass into pthread_create(). +extern "C" inline void* ThreadFuncWithCLinkage(void* thread) { + static_cast(thread)->Run(); + return NULL; +} + +// Helper class for testing Google Test's multi-threading constructs. +// To use it, write: +// +// void ThreadFunc(int param) { /* Do things with param */ } +// Notification thread_can_start; +// ... +// // The thread_can_start parameter is optional; you can supply NULL. +// ThreadWithParam thread(&ThreadFunc, 5, &thread_can_start); +// thread_can_start.Notify(); +// +// These classes are only for testing Google Test's own constructs. Do +// not use them in user tests, either directly or indirectly. +template +class ThreadWithParam : public ThreadWithParamBase { + public: + typedef void UserThreadFunc(T); + + ThreadWithParam(UserThreadFunc* func, T param, Notification* thread_can_start) + : func_(func), + param_(param), + thread_can_start_(thread_can_start), + finished_(false) { + ThreadWithParamBase* const base = this; + // The thread can be created only after all fields except thread_ + // have been initialized. + GTEST_CHECK_POSIX_SUCCESS_( + pthread_create(&thread_, 0, &ThreadFuncWithCLinkage, base)); + } + ~ThreadWithParam() { Join(); } + + void Join() { + if (!finished_) { + GTEST_CHECK_POSIX_SUCCESS_(pthread_join(thread_, 0)); + finished_ = true; + } + } + + virtual void Run() { + if (thread_can_start_ != NULL) + thread_can_start_->WaitForNotification(); + func_(param_); + } + + private: + UserThreadFunc* const func_; // User-supplied thread function. + const T param_; // User-supplied parameter to the thread function. + // When non-NULL, used to block execution until the controller thread + // notifies. + Notification* const thread_can_start_; + bool finished_; // true iff we know that the thread function has finished. + pthread_t thread_; // The native thread object. + + GTEST_DISALLOW_COPY_AND_ASSIGN_(ThreadWithParam); +}; +# endif // !GTEST_OS_WINDOWS && GTEST_HAS_PTHREAD || + // GTEST_HAS_MUTEX_AND_THREAD_LOCAL_ + +# if GTEST_HAS_MUTEX_AND_THREAD_LOCAL_ +// Mutex and ThreadLocal have already been imported into the namespace. +// Nothing to do here. + +# elif GTEST_OS_WINDOWS && !GTEST_OS_WINDOWS_PHONE && !GTEST_OS_WINDOWS_RT + +// Mutex implements mutex on Windows platforms. It is used in conjunction +// with class MutexLock: +// +// Mutex mutex; +// ... +// MutexLock lock(&mutex); // Acquires the mutex and releases it at the +// // end of the current scope. +// +// A static Mutex *must* be defined or declared using one of the following +// macros: +// GTEST_DEFINE_STATIC_MUTEX_(g_some_mutex); +// GTEST_DECLARE_STATIC_MUTEX_(g_some_mutex); +// +// (A non-static Mutex is defined/declared in the usual way). +class GTEST_API_ Mutex { + public: + enum MutexType { kStatic = 0, kDynamic = 1 }; + // We rely on kStaticMutex being 0 as it is to what the linker initializes + // type_ in static mutexes. critical_section_ will be initialized lazily + // in ThreadSafeLazyInit(). + enum StaticConstructorSelector { kStaticMutex = 0 }; + + // This constructor intentionally does nothing. It relies on type_ being + // statically initialized to 0 (effectively setting it to kStatic) and on + // ThreadSafeLazyInit() to lazily initialize the rest of the members. + explicit Mutex(StaticConstructorSelector /*dummy*/) {} + + Mutex(); + ~Mutex(); + + void Lock(); + + void Unlock(); + + // Does nothing if the current thread holds the mutex. Otherwise, crashes + // with high probability. + void AssertHeld(); + + private: + // Initializes owner_thread_id_ and critical_section_ in static mutexes. + void ThreadSafeLazyInit(); + + // Per http://blogs.msdn.com/b/oldnewthing/archive/2004/02/23/78395.aspx, + // we assume that 0 is an invalid value for thread IDs. + unsigned int owner_thread_id_; + + // For static mutexes, we rely on these members being initialized to zeros + // by the linker. + MutexType type_; + long critical_section_init_phase_; // NOLINT + _RTL_CRITICAL_SECTION* critical_section_; + + GTEST_DISALLOW_COPY_AND_ASSIGN_(Mutex); +}; + +# define GTEST_DECLARE_STATIC_MUTEX_(mutex) \ + extern ::testing::internal::Mutex mutex + +# define GTEST_DEFINE_STATIC_MUTEX_(mutex) \ + ::testing::internal::Mutex mutex(::testing::internal::Mutex::kStaticMutex) + +// We cannot name this class MutexLock because the ctor declaration would +// conflict with a macro named MutexLock, which is defined on some +// platforms. That macro is used as a defensive measure to prevent against +// inadvertent misuses of MutexLock like "MutexLock(&mu)" rather than +// "MutexLock l(&mu)". Hence the typedef trick below. +class GTestMutexLock { + public: + explicit GTestMutexLock(Mutex* mutex) + : mutex_(mutex) { mutex_->Lock(); } + + ~GTestMutexLock() { mutex_->Unlock(); } + + private: + Mutex* const mutex_; + + GTEST_DISALLOW_COPY_AND_ASSIGN_(GTestMutexLock); +}; + +typedef GTestMutexLock MutexLock; + +// Base class for ValueHolder. Allows a caller to hold and delete a value +// without knowing its type. +class ThreadLocalValueHolderBase { + public: + virtual ~ThreadLocalValueHolderBase() {} +}; + +// Provides a way for a thread to send notifications to a ThreadLocal +// regardless of its parameter type. +class ThreadLocalBase { + public: + // Creates a new ValueHolder object holding a default value passed to + // this ThreadLocal's constructor and returns it. It is the caller's + // responsibility not to call this when the ThreadLocal instance already + // has a value on the current thread. + virtual ThreadLocalValueHolderBase* NewValueForCurrentThread() const = 0; + + protected: + ThreadLocalBase() {} + virtual ~ThreadLocalBase() {} + + private: + GTEST_DISALLOW_COPY_AND_ASSIGN_(ThreadLocalBase); +}; + +// Maps a thread to a set of ThreadLocals that have values instantiated on that +// thread and notifies them when the thread exits. A ThreadLocal instance is +// expected to persist until all threads it has values on have terminated. +class GTEST_API_ ThreadLocalRegistry { + public: + // Registers thread_local_instance as having value on the current thread. + // Returns a value that can be used to identify the thread from other threads. + static ThreadLocalValueHolderBase* GetValueOnCurrentThread( + const ThreadLocalBase* thread_local_instance); + + // Invoked when a ThreadLocal instance is destroyed. + static void OnThreadLocalDestroyed( + const ThreadLocalBase* thread_local_instance); +}; + +class GTEST_API_ ThreadWithParamBase { + public: + void Join(); + + protected: + class Runnable { + public: + virtual ~Runnable() {} + virtual void Run() = 0; + }; + + ThreadWithParamBase(Runnable *runnable, Notification* thread_can_start); + virtual ~ThreadWithParamBase(); + + private: + AutoHandle thread_; +}; + +// Helper class for testing Google Test's multi-threading constructs. +template +class ThreadWithParam : public ThreadWithParamBase { + public: + typedef void UserThreadFunc(T); + + ThreadWithParam(UserThreadFunc* func, T param, Notification* thread_can_start) + : ThreadWithParamBase(new RunnableImpl(func, param), thread_can_start) { + } + virtual ~ThreadWithParam() {} + + private: + class RunnableImpl : public Runnable { + public: + RunnableImpl(UserThreadFunc* func, T param) + : func_(func), + param_(param) { + } + virtual ~RunnableImpl() {} + virtual void Run() { + func_(param_); + } + + private: + UserThreadFunc* const func_; + const T param_; + + GTEST_DISALLOW_COPY_AND_ASSIGN_(RunnableImpl); + }; + + GTEST_DISALLOW_COPY_AND_ASSIGN_(ThreadWithParam); +}; + +// Implements thread-local storage on Windows systems. +// +// // Thread 1 +// ThreadLocal tl(100); // 100 is the default value for each thread. +// +// // Thread 2 +// tl.set(150); // Changes the value for thread 2 only. +// EXPECT_EQ(150, tl.get()); +// +// // Thread 1 +// EXPECT_EQ(100, tl.get()); // In thread 1, tl has the original value. +// tl.set(200); +// EXPECT_EQ(200, tl.get()); +// +// The template type argument T must have a public copy constructor. +// In addition, the default ThreadLocal constructor requires T to have +// a public default constructor. +// +// The users of a TheadLocal instance have to make sure that all but one +// threads (including the main one) using that instance have exited before +// destroying it. Otherwise, the per-thread objects managed for them by the +// ThreadLocal instance are not guaranteed to be destroyed on all platforms. +// +// Google Test only uses global ThreadLocal objects. That means they +// will die after main() has returned. Therefore, no per-thread +// object managed by Google Test will be leaked as long as all threads +// using Google Test have exited when main() returns. +template +class ThreadLocal : public ThreadLocalBase { + public: + ThreadLocal() : default_factory_(new DefaultValueHolderFactory()) {} + explicit ThreadLocal(const T& value) + : default_factory_(new InstanceValueHolderFactory(value)) {} + + ~ThreadLocal() { ThreadLocalRegistry::OnThreadLocalDestroyed(this); } + + T* pointer() { return GetOrCreateValue(); } + const T* pointer() const { return GetOrCreateValue(); } + const T& get() const { return *pointer(); } + void set(const T& value) { *pointer() = value; } + + private: + // Holds a value of T. Can be deleted via its base class without the caller + // knowing the type of T. + class ValueHolder : public ThreadLocalValueHolderBase { + public: + ValueHolder() : value_() {} + explicit ValueHolder(const T& value) : value_(value) {} + + T* pointer() { return &value_; } + + private: + T value_; + GTEST_DISALLOW_COPY_AND_ASSIGN_(ValueHolder); + }; + + + T* GetOrCreateValue() const { + return static_cast( + ThreadLocalRegistry::GetValueOnCurrentThread(this))->pointer(); + } + + virtual ThreadLocalValueHolderBase* NewValueForCurrentThread() const { + return default_factory_->MakeNewHolder(); + } + + class ValueHolderFactory { + public: + ValueHolderFactory() {} + virtual ~ValueHolderFactory() {} + virtual ValueHolder* MakeNewHolder() const = 0; + + private: + GTEST_DISALLOW_COPY_AND_ASSIGN_(ValueHolderFactory); + }; + + class DefaultValueHolderFactory : public ValueHolderFactory { + public: + DefaultValueHolderFactory() {} + virtual ValueHolder* MakeNewHolder() const { return new ValueHolder(); } + + private: + GTEST_DISALLOW_COPY_AND_ASSIGN_(DefaultValueHolderFactory); + }; + + class InstanceValueHolderFactory : public ValueHolderFactory { + public: + explicit InstanceValueHolderFactory(const T& value) : value_(value) {} + virtual ValueHolder* MakeNewHolder() const { + return new ValueHolder(value_); + } + + private: + const T value_; // The value for each thread. + + GTEST_DISALLOW_COPY_AND_ASSIGN_(InstanceValueHolderFactory); + }; + + scoped_ptr default_factory_; + + GTEST_DISALLOW_COPY_AND_ASSIGN_(ThreadLocal); +}; + +# elif GTEST_HAS_PTHREAD + +// MutexBase and Mutex implement mutex on pthreads-based platforms. +class MutexBase { + public: + // Acquires this mutex. + void Lock() { + GTEST_CHECK_POSIX_SUCCESS_(pthread_mutex_lock(&mutex_)); + owner_ = pthread_self(); + has_owner_ = true; + } + + // Releases this mutex. + void Unlock() { + // Since the lock is being released the owner_ field should no longer be + // considered valid. We don't protect writing to has_owner_ here, as it's + // the caller's responsibility to ensure that the current thread holds the + // mutex when this is called. + has_owner_ = false; + GTEST_CHECK_POSIX_SUCCESS_(pthread_mutex_unlock(&mutex_)); + } + + // Does nothing if the current thread holds the mutex. Otherwise, crashes + // with high probability. + void AssertHeld() const { + GTEST_CHECK_(has_owner_ && pthread_equal(owner_, pthread_self())) + << "The current thread is not holding the mutex @" << this; + } + + // A static mutex may be used before main() is entered. It may even + // be used before the dynamic initialization stage. Therefore we + // must be able to initialize a static mutex object at link time. + // This means MutexBase has to be a POD and its member variables + // have to be public. + public: + pthread_mutex_t mutex_; // The underlying pthread mutex. + // has_owner_ indicates whether the owner_ field below contains a valid thread + // ID and is therefore safe to inspect (e.g., to use in pthread_equal()). All + // accesses to the owner_ field should be protected by a check of this field. + // An alternative might be to memset() owner_ to all zeros, but there's no + // guarantee that a zero'd pthread_t is necessarily invalid or even different + // from pthread_self(). + bool has_owner_; + pthread_t owner_; // The thread holding the mutex. +}; + +// Forward-declares a static mutex. +# define GTEST_DECLARE_STATIC_MUTEX_(mutex) \ + extern ::testing::internal::MutexBase mutex + +// Defines and statically (i.e. at link time) initializes a static mutex. +# define GTEST_DEFINE_STATIC_MUTEX_(mutex) \ + ::testing::internal::MutexBase mutex = { PTHREAD_MUTEX_INITIALIZER, false, pthread_t() } + +// The Mutex class can only be used for mutexes created at runtime. It +// shares its API with MutexBase otherwise. +class Mutex : public MutexBase { + public: + Mutex() { + GTEST_CHECK_POSIX_SUCCESS_(pthread_mutex_init(&mutex_, NULL)); + has_owner_ = false; + } + ~Mutex() { + GTEST_CHECK_POSIX_SUCCESS_(pthread_mutex_destroy(&mutex_)); + } + + private: + GTEST_DISALLOW_COPY_AND_ASSIGN_(Mutex); +}; + +// We cannot name this class MutexLock because the ctor declaration would +// conflict with a macro named MutexLock, which is defined on some +// platforms. That macro is used as a defensive measure to prevent against +// inadvertent misuses of MutexLock like "MutexLock(&mu)" rather than +// "MutexLock l(&mu)". Hence the typedef trick below. +class GTestMutexLock { + public: + explicit GTestMutexLock(MutexBase* mutex) + : mutex_(mutex) { mutex_->Lock(); } + + ~GTestMutexLock() { mutex_->Unlock(); } + + private: + MutexBase* const mutex_; + + GTEST_DISALLOW_COPY_AND_ASSIGN_(GTestMutexLock); +}; + +typedef GTestMutexLock MutexLock; + +// Helpers for ThreadLocal. + +// pthread_key_create() requires DeleteThreadLocalValue() to have +// C-linkage. Therefore it cannot be templatized to access +// ThreadLocal. Hence the need for class +// ThreadLocalValueHolderBase. +class ThreadLocalValueHolderBase { + public: + virtual ~ThreadLocalValueHolderBase() {} +}; + +// Called by pthread to delete thread-local data stored by +// pthread_setspecific(). +extern "C" inline void DeleteThreadLocalValue(void* value_holder) { + delete static_cast(value_holder); +} + +// Implements thread-local storage on pthreads-based systems. +template +class ThreadLocal { + public: + ThreadLocal() + : key_(CreateKey()), default_factory_(new DefaultValueHolderFactory()) {} + explicit ThreadLocal(const T& value) + : key_(CreateKey()), + default_factory_(new InstanceValueHolderFactory(value)) {} + + ~ThreadLocal() { + // Destroys the managed object for the current thread, if any. + DeleteThreadLocalValue(pthread_getspecific(key_)); + + // Releases resources associated with the key. This will *not* + // delete managed objects for other threads. + GTEST_CHECK_POSIX_SUCCESS_(pthread_key_delete(key_)); + } + + T* pointer() { return GetOrCreateValue(); } + const T* pointer() const { return GetOrCreateValue(); } + const T& get() const { return *pointer(); } + void set(const T& value) { *pointer() = value; } + + private: + // Holds a value of type T. + class ValueHolder : public ThreadLocalValueHolderBase { + public: + ValueHolder() : value_() {} + explicit ValueHolder(const T& value) : value_(value) {} + + T* pointer() { return &value_; } + + private: + T value_; + GTEST_DISALLOW_COPY_AND_ASSIGN_(ValueHolder); + }; + + static pthread_key_t CreateKey() { + pthread_key_t key; + // When a thread exits, DeleteThreadLocalValue() will be called on + // the object managed for that thread. + GTEST_CHECK_POSIX_SUCCESS_( + pthread_key_create(&key, &DeleteThreadLocalValue)); + return key; + } + + T* GetOrCreateValue() const { + ThreadLocalValueHolderBase* const holder = + static_cast(pthread_getspecific(key_)); + if (holder != NULL) { + return CheckedDowncastToActualType(holder)->pointer(); + } + + ValueHolder* const new_holder = default_factory_->MakeNewHolder(); + ThreadLocalValueHolderBase* const holder_base = new_holder; + GTEST_CHECK_POSIX_SUCCESS_(pthread_setspecific(key_, holder_base)); + return new_holder->pointer(); + } + + class ValueHolderFactory { + public: + ValueHolderFactory() {} + virtual ~ValueHolderFactory() {} + virtual ValueHolder* MakeNewHolder() const = 0; + + private: + GTEST_DISALLOW_COPY_AND_ASSIGN_(ValueHolderFactory); + }; + + class DefaultValueHolderFactory : public ValueHolderFactory { + public: + DefaultValueHolderFactory() {} + virtual ValueHolder* MakeNewHolder() const { return new ValueHolder(); } + + private: + GTEST_DISALLOW_COPY_AND_ASSIGN_(DefaultValueHolderFactory); + }; + + class InstanceValueHolderFactory : public ValueHolderFactory { + public: + explicit InstanceValueHolderFactory(const T& value) : value_(value) {} + virtual ValueHolder* MakeNewHolder() const { + return new ValueHolder(value_); + } + + private: + const T value_; // The value for each thread. + + GTEST_DISALLOW_COPY_AND_ASSIGN_(InstanceValueHolderFactory); + }; + + // A key pthreads uses for looking up per-thread values. + const pthread_key_t key_; + scoped_ptr default_factory_; + + GTEST_DISALLOW_COPY_AND_ASSIGN_(ThreadLocal); +}; + +# endif // GTEST_HAS_MUTEX_AND_THREAD_LOCAL_ + +#else // GTEST_IS_THREADSAFE + +// A dummy implementation of synchronization primitives (mutex, lock, +// and thread-local variable). Necessary for compiling Google Test where +// mutex is not supported - using Google Test in multiple threads is not +// supported on such platforms. + +class Mutex { + public: + Mutex() {} + void Lock() {} + void Unlock() {} + void AssertHeld() const {} +}; + +# define GTEST_DECLARE_STATIC_MUTEX_(mutex) \ + extern ::testing::internal::Mutex mutex + +# define GTEST_DEFINE_STATIC_MUTEX_(mutex) ::testing::internal::Mutex mutex + +// We cannot name this class MutexLock because the ctor declaration would +// conflict with a macro named MutexLock, which is defined on some +// platforms. That macro is used as a defensive measure to prevent against +// inadvertent misuses of MutexLock like "MutexLock(&mu)" rather than +// "MutexLock l(&mu)". Hence the typedef trick below. +class GTestMutexLock { + public: + explicit GTestMutexLock(Mutex*) {} // NOLINT +}; + +typedef GTestMutexLock MutexLock; + +template +class ThreadLocal { + public: + ThreadLocal() : value_() {} + explicit ThreadLocal(const T& value) : value_(value) {} + T* pointer() { return &value_; } + const T* pointer() const { return &value_; } + const T& get() const { return value_; } + void set(const T& value) { value_ = value; } + private: + T value_; +}; + +#endif // GTEST_IS_THREADSAFE + +// Returns the number of threads running in the process, or 0 to indicate that +// we cannot detect it. +GTEST_API_ size_t GetThreadCount(); + +// Passing non-POD classes through ellipsis (...) crashes the ARM +// compiler and generates a warning in Sun Studio. The Nokia Symbian +// and the IBM XL C/C++ compiler try to instantiate a copy constructor +// for objects passed through ellipsis (...), failing for uncopyable +// objects. We define this to ensure that only POD is passed through +// ellipsis on these systems. +#if defined(__SYMBIAN32__) || defined(__IBMCPP__) || defined(__SUNPRO_CC) +// We lose support for NULL detection where the compiler doesn't like +// passing non-POD classes through ellipsis (...). +# define GTEST_ELLIPSIS_NEEDS_POD_ 1 +#else +# define GTEST_CAN_COMPARE_NULL 1 +#endif + +// The Nokia Symbian and IBM XL C/C++ compilers cannot decide between +// const T& and const T* in a function template. These compilers +// _can_ decide between class template specializations for T and T*, +// so a tr1::type_traits-like is_pointer works. +#if defined(__SYMBIAN32__) || defined(__IBMCPP__) +# define GTEST_NEEDS_IS_POINTER_ 1 +#endif + +template +struct bool_constant { + typedef bool_constant type; + static const bool value = bool_value; +}; +template const bool bool_constant::value; + +typedef bool_constant false_type; +typedef bool_constant true_type; + +template +struct is_pointer : public false_type {}; + +template +struct is_pointer : public true_type {}; + +template +struct IteratorTraits { + typedef typename Iterator::value_type value_type; +}; + +template +struct IteratorTraits { + typedef T value_type; +}; + +template +struct IteratorTraits { + typedef T value_type; +}; + +#if GTEST_OS_WINDOWS +# define GTEST_PATH_SEP_ "\\" +# define GTEST_HAS_ALT_PATH_SEP_ 1 +// The biggest signed integer type the compiler supports. +typedef __int64 BiggestInt; +#else +# define GTEST_PATH_SEP_ "/" +# define GTEST_HAS_ALT_PATH_SEP_ 0 +typedef long long BiggestInt; // NOLINT +#endif // GTEST_OS_WINDOWS + +// Utilities for char. + +// isspace(int ch) and friends accept an unsigned char or EOF. char +// may be signed, depending on the compiler (or compiler flags). +// Therefore we need to cast a char to unsigned char before calling +// isspace(), etc. + +inline bool IsAlpha(char ch) { + return isalpha(static_cast(ch)) != 0; +} +inline bool IsAlNum(char ch) { + return isalnum(static_cast(ch)) != 0; +} +inline bool IsDigit(char ch) { + return isdigit(static_cast(ch)) != 0; +} +inline bool IsLower(char ch) { + return islower(static_cast(ch)) != 0; +} +inline bool IsSpace(char ch) { + return isspace(static_cast(ch)) != 0; +} +inline bool IsUpper(char ch) { + return isupper(static_cast(ch)) != 0; +} +inline bool IsXDigit(char ch) { + return isxdigit(static_cast(ch)) != 0; +} +inline bool IsXDigit(wchar_t ch) { + const unsigned char low_byte = static_cast(ch); + return ch == low_byte && isxdigit(low_byte) != 0; +} + +inline char ToLower(char ch) { + return static_cast(tolower(static_cast(ch))); +} +inline char ToUpper(char ch) { + return static_cast(toupper(static_cast(ch))); +} + +inline std::string StripTrailingSpaces(std::string str) { + std::string::iterator it = str.end(); + while (it != str.begin() && IsSpace(*--it)) + it = str.erase(it); + return str; +} + +// The testing::internal::posix namespace holds wrappers for common +// POSIX functions. These wrappers hide the differences between +// Windows/MSVC and POSIX systems. Since some compilers define these +// standard functions as macros, the wrapper cannot have the same name +// as the wrapped function. + +namespace posix { + +// Functions with a different name on Windows. + +#if GTEST_OS_WINDOWS + +typedef struct _stat StatStruct; + +# ifdef __BORLANDC__ +inline int IsATTY(int fd) { return isatty(fd); } +inline int StrCaseCmp(const char* s1, const char* s2) { + return stricmp(s1, s2); +} +inline char* StrDup(const char* src) { return strdup(src); } +# else // !__BORLANDC__ +# if GTEST_OS_WINDOWS_MOBILE +inline int IsATTY(int /* fd */) { return 0; } +# else +inline int IsATTY(int fd) { return _isatty(fd); } +# endif // GTEST_OS_WINDOWS_MOBILE +inline int StrCaseCmp(const char* s1, const char* s2) { + return _stricmp(s1, s2); +} +inline char* StrDup(const char* src) { return _strdup(src); } +# endif // __BORLANDC__ + +# if GTEST_OS_WINDOWS_MOBILE +inline int FileNo(FILE* file) { return reinterpret_cast(_fileno(file)); } +// Stat(), RmDir(), and IsDir() are not needed on Windows CE at this +// time and thus not defined there. +# else +inline int FileNo(FILE* file) { return _fileno(file); } +inline int Stat(const char* path, StatStruct* buf) { return _stat(path, buf); } +inline int RmDir(const char* dir) { return _rmdir(dir); } +inline bool IsDir(const StatStruct& st) { + return (_S_IFDIR & st.st_mode) != 0; +} +# endif // GTEST_OS_WINDOWS_MOBILE + +#else + +typedef struct stat StatStruct; + +inline int FileNo(FILE* file) { return fileno(file); } +inline int IsATTY(int fd) { return isatty(fd); } +inline int Stat(const char* path, StatStruct* buf) { return stat(path, buf); } +inline int StrCaseCmp(const char* s1, const char* s2) { + return strcasecmp(s1, s2); +} +inline char* StrDup(const char* src) { return strdup(src); } +inline int RmDir(const char* dir) { return rmdir(dir); } +inline bool IsDir(const StatStruct& st) { return S_ISDIR(st.st_mode); } + +#endif // GTEST_OS_WINDOWS + +// Functions deprecated by MSVC 8.0. + +GTEST_DISABLE_MSC_WARNINGS_PUSH_(4996 /* deprecated function */) + +inline const char* StrNCpy(char* dest, const char* src, size_t n) { + return strncpy(dest, src, n); +} + +// ChDir(), FReopen(), FDOpen(), Read(), Write(), Close(), and +// StrError() aren't needed on Windows CE at this time and thus not +// defined there. + +#if !GTEST_OS_WINDOWS_MOBILE && !GTEST_OS_WINDOWS_PHONE && !GTEST_OS_WINDOWS_RT +inline int ChDir(const char* dir) { return chdir(dir); } +#endif +inline FILE* FOpen(const char* path, const char* mode) { + return fopen(path, mode); +} +#if !GTEST_OS_WINDOWS_MOBILE +inline FILE *FReopen(const char* path, const char* mode, FILE* stream) { + return freopen(path, mode, stream); +} +inline FILE* FDOpen(int fd, const char* mode) { return fdopen(fd, mode); } +#endif +inline int FClose(FILE* fp) { return fclose(fp); } +#if !GTEST_OS_WINDOWS_MOBILE +inline int Read(int fd, void* buf, unsigned int count) { + return static_cast(read(fd, buf, count)); +} +inline int Write(int fd, const void* buf, unsigned int count) { + return static_cast(write(fd, buf, count)); +} +inline int Close(int fd) { return close(fd); } +inline const char* StrError(int errnum) { return strerror(errnum); } +#endif +inline const char* GetEnv(const char* name) { +#if GTEST_OS_WINDOWS_MOBILE || GTEST_OS_WINDOWS_PHONE | GTEST_OS_WINDOWS_RT + // We are on Windows CE, which has no environment variables. + static_cast(name); // To prevent 'unused argument' warning. + return NULL; +#elif defined(__BORLANDC__) || defined(__SunOS_5_8) || defined(__SunOS_5_9) + // Environment variables which we programmatically clear will be set to the + // empty string rather than unset (NULL). Handle that case. + const char* const env = getenv(name); + return (env != NULL && env[0] != '\0') ? env : NULL; +#else + return getenv(name); +#endif +} + +GTEST_DISABLE_MSC_WARNINGS_POP_() + +#if GTEST_OS_WINDOWS_MOBILE +// Windows CE has no C library. The abort() function is used in +// several places in Google Test. This implementation provides a reasonable +// imitation of standard behaviour. +void Abort(); +#else +inline void Abort() { abort(); } +#endif // GTEST_OS_WINDOWS_MOBILE + +} // namespace posix + +// MSVC "deprecates" snprintf and issues warnings wherever it is used. In +// order to avoid these warnings, we need to use _snprintf or _snprintf_s on +// MSVC-based platforms. We map the GTEST_SNPRINTF_ macro to the appropriate +// function in order to achieve that. We use macro definition here because +// snprintf is a variadic function. +#if _MSC_VER >= 1400 && !GTEST_OS_WINDOWS_MOBILE +// MSVC 2005 and above support variadic macros. +# define GTEST_SNPRINTF_(buffer, size, format, ...) \ + _snprintf_s(buffer, size, size, format, __VA_ARGS__) +#elif defined(_MSC_VER) +// Windows CE does not define _snprintf_s and MSVC prior to 2005 doesn't +// complain about _snprintf. +# define GTEST_SNPRINTF_ _snprintf +#else +# define GTEST_SNPRINTF_ snprintf +#endif + +// The maximum number a BiggestInt can represent. This definition +// works no matter BiggestInt is represented in one's complement or +// two's complement. +// +// We cannot rely on numeric_limits in STL, as __int64 and long long +// are not part of standard C++ and numeric_limits doesn't need to be +// defined for them. +const BiggestInt kMaxBiggestInt = + ~(static_cast(1) << (8*sizeof(BiggestInt) - 1)); + +// This template class serves as a compile-time function from size to +// type. It maps a size in bytes to a primitive type with that +// size. e.g. +// +// TypeWithSize<4>::UInt +// +// is typedef-ed to be unsigned int (unsigned integer made up of 4 +// bytes). +// +// Such functionality should belong to STL, but I cannot find it +// there. +// +// Google Test uses this class in the implementation of floating-point +// comparison. +// +// For now it only handles UInt (unsigned int) as that's all Google Test +// needs. Other types can be easily added in the future if need +// arises. +template +class TypeWithSize { + public: + // This prevents the user from using TypeWithSize with incorrect + // values of N. + typedef void UInt; +}; + +// The specialization for size 4. +template <> +class TypeWithSize<4> { + public: + // unsigned int has size 4 in both gcc and MSVC. + // + // As base/basictypes.h doesn't compile on Windows, we cannot use + // uint32, uint64, and etc here. + typedef int Int; + typedef unsigned int UInt; +}; + +// The specialization for size 8. +template <> +class TypeWithSize<8> { + public: +#if GTEST_OS_WINDOWS + typedef __int64 Int; + typedef unsigned __int64 UInt; +#else + typedef long long Int; // NOLINT + typedef unsigned long long UInt; // NOLINT +#endif // GTEST_OS_WINDOWS +}; + +// Integer types of known sizes. +typedef TypeWithSize<4>::Int Int32; +typedef TypeWithSize<4>::UInt UInt32; +typedef TypeWithSize<8>::Int Int64; +typedef TypeWithSize<8>::UInt UInt64; +typedef TypeWithSize<8>::Int TimeInMillis; // Represents time in milliseconds. + +// Utilities for command line flags and environment variables. + +// Macro for referencing flags. +#if !defined(GTEST_FLAG) +# define GTEST_FLAG(name) FLAGS_gtest_##name +#endif // !defined(GTEST_FLAG) + +#if !defined(GTEST_USE_OWN_FLAGFILE_FLAG_) +# define GTEST_USE_OWN_FLAGFILE_FLAG_ 1 +#endif // !defined(GTEST_USE_OWN_FLAGFILE_FLAG_) + +#if !defined(GTEST_DECLARE_bool_) +# define GTEST_FLAG_SAVER_ ::testing::internal::GTestFlagSaver + +// Macros for declaring flags. +# define GTEST_DECLARE_bool_(name) GTEST_API_ extern bool GTEST_FLAG(name) +# define GTEST_DECLARE_int32_(name) \ + GTEST_API_ extern ::testing::internal::Int32 GTEST_FLAG(name) +#define GTEST_DECLARE_string_(name) \ + GTEST_API_ extern ::std::string GTEST_FLAG(name) + +// Macros for defining flags. +#define GTEST_DEFINE_bool_(name, default_val, doc) \ + GTEST_API_ bool GTEST_FLAG(name) = (default_val) +#define GTEST_DEFINE_int32_(name, default_val, doc) \ + GTEST_API_ ::testing::internal::Int32 GTEST_FLAG(name) = (default_val) +#define GTEST_DEFINE_string_(name, default_val, doc) \ + GTEST_API_ ::std::string GTEST_FLAG(name) = (default_val) + +#endif // !defined(GTEST_DECLARE_bool_) + +// Thread annotations +#if !defined(GTEST_EXCLUSIVE_LOCK_REQUIRED_) +# define GTEST_EXCLUSIVE_LOCK_REQUIRED_(locks) +# define GTEST_LOCK_EXCLUDED_(locks) +#endif // !defined(GTEST_EXCLUSIVE_LOCK_REQUIRED_) + +// Parses 'str' for a 32-bit signed integer. If successful, writes the result +// to *value and returns true; otherwise leaves *value unchanged and returns +// false. +// TODO(chandlerc): Find a better way to refactor flag and environment parsing +// out of both gtest-port.cc and gtest.cc to avoid exporting this utility +// function. +bool ParseInt32(const Message& src_text, const char* str, Int32* value); + +// Parses a bool/Int32/string from the environment variable +// corresponding to the given Google Test flag. +bool BoolFromGTestEnv(const char* flag, bool default_val); +GTEST_API_ Int32 Int32FromGTestEnv(const char* flag, Int32 default_val); +std::string StringFromGTestEnv(const char* flag, const char* default_val); + +} // namespace internal +} // namespace testing + +#endif // GTEST_INCLUDE_GTEST_INTERNAL_GTEST_PORT_H_ diff --git a/third_party/googletest/src/include/gtest/internal/gtest-string.h b/third_party/googletest/src/include/gtest/internal/gtest-string.h new file mode 100644 index 0000000..97f1a7f --- /dev/null +++ b/third_party/googletest/src/include/gtest/internal/gtest-string.h @@ -0,0 +1,167 @@ +// Copyright 2005, Google Inc. +// All rights reserved. +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: +// +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above +// copyright notice, this list of conditions and the following disclaimer +// in the documentation and/or other materials provided with the +// distribution. +// * Neither the name of Google Inc. nor the names of its +// contributors may be used to endorse or promote products derived from +// this software without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +// +// Authors: wan@google.com (Zhanyong Wan), eefacm@gmail.com (Sean Mcafee) +// +// The Google C++ Testing Framework (Google Test) +// +// This header file declares the String class and functions used internally by +// Google Test. They are subject to change without notice. They should not used +// by code external to Google Test. +// +// This header file is #included by . +// It should not be #included by other files. + +#ifndef GTEST_INCLUDE_GTEST_INTERNAL_GTEST_STRING_H_ +#define GTEST_INCLUDE_GTEST_INTERNAL_GTEST_STRING_H_ + +#ifdef __BORLANDC__ +// string.h is not guaranteed to provide strcpy on C++ Builder. +# include +#endif + +#include +#include + +#include "gtest/internal/gtest-port.h" + +namespace testing { +namespace internal { + +// String - an abstract class holding static string utilities. +class GTEST_API_ String { + public: + // Static utility methods + + // Clones a 0-terminated C string, allocating memory using new. The + // caller is responsible for deleting the return value using + // delete[]. Returns the cloned string, or NULL if the input is + // NULL. + // + // This is different from strdup() in string.h, which allocates + // memory using malloc(). + static const char* CloneCString(const char* c_str); + +#if GTEST_OS_WINDOWS_MOBILE + // Windows CE does not have the 'ANSI' versions of Win32 APIs. To be + // able to pass strings to Win32 APIs on CE we need to convert them + // to 'Unicode', UTF-16. + + // Creates a UTF-16 wide string from the given ANSI string, allocating + // memory using new. The caller is responsible for deleting the return + // value using delete[]. Returns the wide string, or NULL if the + // input is NULL. + // + // The wide string is created using the ANSI codepage (CP_ACP) to + // match the behaviour of the ANSI versions of Win32 calls and the + // C runtime. + static LPCWSTR AnsiToUtf16(const char* c_str); + + // Creates an ANSI string from the given wide string, allocating + // memory using new. The caller is responsible for deleting the return + // value using delete[]. Returns the ANSI string, or NULL if the + // input is NULL. + // + // The returned string is created using the ANSI codepage (CP_ACP) to + // match the behaviour of the ANSI versions of Win32 calls and the + // C runtime. + static const char* Utf16ToAnsi(LPCWSTR utf16_str); +#endif + + // Compares two C strings. Returns true iff they have the same content. + // + // Unlike strcmp(), this function can handle NULL argument(s). A + // NULL C string is considered different to any non-NULL C string, + // including the empty string. + static bool CStringEquals(const char* lhs, const char* rhs); + + // Converts a wide C string to a String using the UTF-8 encoding. + // NULL will be converted to "(null)". If an error occurred during + // the conversion, "(failed to convert from wide string)" is + // returned. + static std::string ShowWideCString(const wchar_t* wide_c_str); + + // Compares two wide C strings. Returns true iff they have the same + // content. + // + // Unlike wcscmp(), this function can handle NULL argument(s). A + // NULL C string is considered different to any non-NULL C string, + // including the empty string. + static bool WideCStringEquals(const wchar_t* lhs, const wchar_t* rhs); + + // Compares two C strings, ignoring case. Returns true iff they + // have the same content. + // + // Unlike strcasecmp(), this function can handle NULL argument(s). + // A NULL C string is considered different to any non-NULL C string, + // including the empty string. + static bool CaseInsensitiveCStringEquals(const char* lhs, + const char* rhs); + + // Compares two wide C strings, ignoring case. Returns true iff they + // have the same content. + // + // Unlike wcscasecmp(), this function can handle NULL argument(s). + // A NULL C string is considered different to any non-NULL wide C string, + // including the empty string. + // NB: The implementations on different platforms slightly differ. + // On windows, this method uses _wcsicmp which compares according to LC_CTYPE + // environment variable. On GNU platform this method uses wcscasecmp + // which compares according to LC_CTYPE category of the current locale. + // On MacOS X, it uses towlower, which also uses LC_CTYPE category of the + // current locale. + static bool CaseInsensitiveWideCStringEquals(const wchar_t* lhs, + const wchar_t* rhs); + + // Returns true iff the given string ends with the given suffix, ignoring + // case. Any string is considered to end with an empty suffix. + static bool EndsWithCaseInsensitive( + const std::string& str, const std::string& suffix); + + // Formats an int value as "%02d". + static std::string FormatIntWidth2(int value); // "%02d" for width == 2 + + // Formats an int value as "%X". + static std::string FormatHexInt(int value); + + // Formats a byte as "%02X". + static std::string FormatByte(unsigned char value); + + private: + String(); // Not meant to be instantiated. +}; // class String + +// Gets the content of the stringstream's buffer as an std::string. Each '\0' +// character in the buffer is replaced with "\\0". +GTEST_API_ std::string StringStreamToString(::std::stringstream* stream); + +} // namespace internal +} // namespace testing + +#endif // GTEST_INCLUDE_GTEST_INTERNAL_GTEST_STRING_H_ diff --git a/third_party/googletest/src/include/gtest/internal/gtest-tuple.h b/third_party/googletest/src/include/gtest/internal/gtest-tuple.h new file mode 100644 index 0000000..e9b4053 --- /dev/null +++ b/third_party/googletest/src/include/gtest/internal/gtest-tuple.h @@ -0,0 +1,1020 @@ +// This file was GENERATED by command: +// pump.py gtest-tuple.h.pump +// DO NOT EDIT BY HAND!!! + +// Copyright 2009 Google Inc. +// All Rights Reserved. +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: +// +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above +// copyright notice, this list of conditions and the following disclaimer +// in the documentation and/or other materials provided with the +// distribution. +// * Neither the name of Google Inc. nor the names of its +// contributors may be used to endorse or promote products derived from +// this software without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +// +// Author: wan@google.com (Zhanyong Wan) + +// Implements a subset of TR1 tuple needed by Google Test and Google Mock. + +#ifndef GTEST_INCLUDE_GTEST_INTERNAL_GTEST_TUPLE_H_ +#define GTEST_INCLUDE_GTEST_INTERNAL_GTEST_TUPLE_H_ + +#include // For ::std::pair. + +// The compiler used in Symbian has a bug that prevents us from declaring the +// tuple template as a friend (it complains that tuple is redefined). This +// hack bypasses the bug by declaring the members that should otherwise be +// private as public. +// Sun Studio versions < 12 also have the above bug. +#if defined(__SYMBIAN32__) || (defined(__SUNPRO_CC) && __SUNPRO_CC < 0x590) +# define GTEST_DECLARE_TUPLE_AS_FRIEND_ public: +#else +# define GTEST_DECLARE_TUPLE_AS_FRIEND_ \ + template friend class tuple; \ + private: +#endif + +// Visual Studio 2010, 2012, and 2013 define symbols in std::tr1 that conflict +// with our own definitions. Therefore using our own tuple does not work on +// those compilers. +#if defined(_MSC_VER) && _MSC_VER >= 1600 /* 1600 is Visual Studio 2010 */ +# error "gtest's tuple doesn't compile on Visual Studio 2010 or later. \ +GTEST_USE_OWN_TR1_TUPLE must be set to 0 on those compilers." +#endif + +// GTEST_n_TUPLE_(T) is the type of an n-tuple. +#define GTEST_0_TUPLE_(T) tuple<> +#define GTEST_1_TUPLE_(T) tuple +#define GTEST_2_TUPLE_(T) tuple +#define GTEST_3_TUPLE_(T) tuple +#define GTEST_4_TUPLE_(T) tuple +#define GTEST_5_TUPLE_(T) tuple +#define GTEST_6_TUPLE_(T) tuple +#define GTEST_7_TUPLE_(T) tuple +#define GTEST_8_TUPLE_(T) tuple +#define GTEST_9_TUPLE_(T) tuple +#define GTEST_10_TUPLE_(T) tuple + +// GTEST_n_TYPENAMES_(T) declares a list of n typenames. +#define GTEST_0_TYPENAMES_(T) +#define GTEST_1_TYPENAMES_(T) typename T##0 +#define GTEST_2_TYPENAMES_(T) typename T##0, typename T##1 +#define GTEST_3_TYPENAMES_(T) typename T##0, typename T##1, typename T##2 +#define GTEST_4_TYPENAMES_(T) typename T##0, typename T##1, typename T##2, \ + typename T##3 +#define GTEST_5_TYPENAMES_(T) typename T##0, typename T##1, typename T##2, \ + typename T##3, typename T##4 +#define GTEST_6_TYPENAMES_(T) typename T##0, typename T##1, typename T##2, \ + typename T##3, typename T##4, typename T##5 +#define GTEST_7_TYPENAMES_(T) typename T##0, typename T##1, typename T##2, \ + typename T##3, typename T##4, typename T##5, typename T##6 +#define GTEST_8_TYPENAMES_(T) typename T##0, typename T##1, typename T##2, \ + typename T##3, typename T##4, typename T##5, typename T##6, typename T##7 +#define GTEST_9_TYPENAMES_(T) typename T##0, typename T##1, typename T##2, \ + typename T##3, typename T##4, typename T##5, typename T##6, \ + typename T##7, typename T##8 +#define GTEST_10_TYPENAMES_(T) typename T##0, typename T##1, typename T##2, \ + typename T##3, typename T##4, typename T##5, typename T##6, \ + typename T##7, typename T##8, typename T##9 + +// In theory, defining stuff in the ::std namespace is undefined +// behavior. We can do this as we are playing the role of a standard +// library vendor. +namespace std { +namespace tr1 { + +template +class tuple; + +// Anything in namespace gtest_internal is Google Test's INTERNAL +// IMPLEMENTATION DETAIL and MUST NOT BE USED DIRECTLY in user code. +namespace gtest_internal { + +// ByRef::type is T if T is a reference; otherwise it's const T&. +template +struct ByRef { typedef const T& type; }; // NOLINT +template +struct ByRef { typedef T& type; }; // NOLINT + +// A handy wrapper for ByRef. +#define GTEST_BY_REF_(T) typename ::std::tr1::gtest_internal::ByRef::type + +// AddRef::type is T if T is a reference; otherwise it's T&. This +// is the same as tr1::add_reference::type. +template +struct AddRef { typedef T& type; }; // NOLINT +template +struct AddRef { typedef T& type; }; // NOLINT + +// A handy wrapper for AddRef. +#define GTEST_ADD_REF_(T) typename ::std::tr1::gtest_internal::AddRef::type + +// A helper for implementing get(). +template class Get; + +// A helper for implementing tuple_element. kIndexValid is true +// iff k < the number of fields in tuple type T. +template +struct TupleElement; + +template +struct TupleElement { + typedef T0 type; +}; + +template +struct TupleElement { + typedef T1 type; +}; + +template +struct TupleElement { + typedef T2 type; +}; + +template +struct TupleElement { + typedef T3 type; +}; + +template +struct TupleElement { + typedef T4 type; +}; + +template +struct TupleElement { + typedef T5 type; +}; + +template +struct TupleElement { + typedef T6 type; +}; + +template +struct TupleElement { + typedef T7 type; +}; + +template +struct TupleElement { + typedef T8 type; +}; + +template +struct TupleElement { + typedef T9 type; +}; + +} // namespace gtest_internal + +template <> +class tuple<> { + public: + tuple() {} + tuple(const tuple& /* t */) {} + tuple& operator=(const tuple& /* t */) { return *this; } +}; + +template +class GTEST_1_TUPLE_(T) { + public: + template friend class gtest_internal::Get; + + tuple() : f0_() {} + + explicit tuple(GTEST_BY_REF_(T0) f0) : f0_(f0) {} + + tuple(const tuple& t) : f0_(t.f0_) {} + + template + tuple(const GTEST_1_TUPLE_(U)& t) : f0_(t.f0_) {} + + tuple& operator=(const tuple& t) { return CopyFrom(t); } + + template + tuple& operator=(const GTEST_1_TUPLE_(U)& t) { + return CopyFrom(t); + } + + GTEST_DECLARE_TUPLE_AS_FRIEND_ + + template + tuple& CopyFrom(const GTEST_1_TUPLE_(U)& t) { + f0_ = t.f0_; + return *this; + } + + T0 f0_; +}; + +template +class GTEST_2_TUPLE_(T) { + public: + template friend class gtest_internal::Get; + + tuple() : f0_(), f1_() {} + + explicit tuple(GTEST_BY_REF_(T0) f0, GTEST_BY_REF_(T1) f1) : f0_(f0), + f1_(f1) {} + + tuple(const tuple& t) : f0_(t.f0_), f1_(t.f1_) {} + + template + tuple(const GTEST_2_TUPLE_(U)& t) : f0_(t.f0_), f1_(t.f1_) {} + template + tuple(const ::std::pair& p) : f0_(p.first), f1_(p.second) {} + + tuple& operator=(const tuple& t) { return CopyFrom(t); } + + template + tuple& operator=(const GTEST_2_TUPLE_(U)& t) { + return CopyFrom(t); + } + template + tuple& operator=(const ::std::pair& p) { + f0_ = p.first; + f1_ = p.second; + return *this; + } + + GTEST_DECLARE_TUPLE_AS_FRIEND_ + + template + tuple& CopyFrom(const GTEST_2_TUPLE_(U)& t) { + f0_ = t.f0_; + f1_ = t.f1_; + return *this; + } + + T0 f0_; + T1 f1_; +}; + +template +class GTEST_3_TUPLE_(T) { + public: + template friend class gtest_internal::Get; + + tuple() : f0_(), f1_(), f2_() {} + + explicit tuple(GTEST_BY_REF_(T0) f0, GTEST_BY_REF_(T1) f1, + GTEST_BY_REF_(T2) f2) : f0_(f0), f1_(f1), f2_(f2) {} + + tuple(const tuple& t) : f0_(t.f0_), f1_(t.f1_), f2_(t.f2_) {} + + template + tuple(const GTEST_3_TUPLE_(U)& t) : f0_(t.f0_), f1_(t.f1_), f2_(t.f2_) {} + + tuple& operator=(const tuple& t) { return CopyFrom(t); } + + template + tuple& operator=(const GTEST_3_TUPLE_(U)& t) { + return CopyFrom(t); + } + + GTEST_DECLARE_TUPLE_AS_FRIEND_ + + template + tuple& CopyFrom(const GTEST_3_TUPLE_(U)& t) { + f0_ = t.f0_; + f1_ = t.f1_; + f2_ = t.f2_; + return *this; + } + + T0 f0_; + T1 f1_; + T2 f2_; +}; + +template +class GTEST_4_TUPLE_(T) { + public: + template friend class gtest_internal::Get; + + tuple() : f0_(), f1_(), f2_(), f3_() {} + + explicit tuple(GTEST_BY_REF_(T0) f0, GTEST_BY_REF_(T1) f1, + GTEST_BY_REF_(T2) f2, GTEST_BY_REF_(T3) f3) : f0_(f0), f1_(f1), f2_(f2), + f3_(f3) {} + + tuple(const tuple& t) : f0_(t.f0_), f1_(t.f1_), f2_(t.f2_), f3_(t.f3_) {} + + template + tuple(const GTEST_4_TUPLE_(U)& t) : f0_(t.f0_), f1_(t.f1_), f2_(t.f2_), + f3_(t.f3_) {} + + tuple& operator=(const tuple& t) { return CopyFrom(t); } + + template + tuple& operator=(const GTEST_4_TUPLE_(U)& t) { + return CopyFrom(t); + } + + GTEST_DECLARE_TUPLE_AS_FRIEND_ + + template + tuple& CopyFrom(const GTEST_4_TUPLE_(U)& t) { + f0_ = t.f0_; + f1_ = t.f1_; + f2_ = t.f2_; + f3_ = t.f3_; + return *this; + } + + T0 f0_; + T1 f1_; + T2 f2_; + T3 f3_; +}; + +template +class GTEST_5_TUPLE_(T) { + public: + template friend class gtest_internal::Get; + + tuple() : f0_(), f1_(), f2_(), f3_(), f4_() {} + + explicit tuple(GTEST_BY_REF_(T0) f0, GTEST_BY_REF_(T1) f1, + GTEST_BY_REF_(T2) f2, GTEST_BY_REF_(T3) f3, + GTEST_BY_REF_(T4) f4) : f0_(f0), f1_(f1), f2_(f2), f3_(f3), f4_(f4) {} + + tuple(const tuple& t) : f0_(t.f0_), f1_(t.f1_), f2_(t.f2_), f3_(t.f3_), + f4_(t.f4_) {} + + template + tuple(const GTEST_5_TUPLE_(U)& t) : f0_(t.f0_), f1_(t.f1_), f2_(t.f2_), + f3_(t.f3_), f4_(t.f4_) {} + + tuple& operator=(const tuple& t) { return CopyFrom(t); } + + template + tuple& operator=(const GTEST_5_TUPLE_(U)& t) { + return CopyFrom(t); + } + + GTEST_DECLARE_TUPLE_AS_FRIEND_ + + template + tuple& CopyFrom(const GTEST_5_TUPLE_(U)& t) { + f0_ = t.f0_; + f1_ = t.f1_; + f2_ = t.f2_; + f3_ = t.f3_; + f4_ = t.f4_; + return *this; + } + + T0 f0_; + T1 f1_; + T2 f2_; + T3 f3_; + T4 f4_; +}; + +template +class GTEST_6_TUPLE_(T) { + public: + template friend class gtest_internal::Get; + + tuple() : f0_(), f1_(), f2_(), f3_(), f4_(), f5_() {} + + explicit tuple(GTEST_BY_REF_(T0) f0, GTEST_BY_REF_(T1) f1, + GTEST_BY_REF_(T2) f2, GTEST_BY_REF_(T3) f3, GTEST_BY_REF_(T4) f4, + GTEST_BY_REF_(T5) f5) : f0_(f0), f1_(f1), f2_(f2), f3_(f3), f4_(f4), + f5_(f5) {} + + tuple(const tuple& t) : f0_(t.f0_), f1_(t.f1_), f2_(t.f2_), f3_(t.f3_), + f4_(t.f4_), f5_(t.f5_) {} + + template + tuple(const GTEST_6_TUPLE_(U)& t) : f0_(t.f0_), f1_(t.f1_), f2_(t.f2_), + f3_(t.f3_), f4_(t.f4_), f5_(t.f5_) {} + + tuple& operator=(const tuple& t) { return CopyFrom(t); } + + template + tuple& operator=(const GTEST_6_TUPLE_(U)& t) { + return CopyFrom(t); + } + + GTEST_DECLARE_TUPLE_AS_FRIEND_ + + template + tuple& CopyFrom(const GTEST_6_TUPLE_(U)& t) { + f0_ = t.f0_; + f1_ = t.f1_; + f2_ = t.f2_; + f3_ = t.f3_; + f4_ = t.f4_; + f5_ = t.f5_; + return *this; + } + + T0 f0_; + T1 f1_; + T2 f2_; + T3 f3_; + T4 f4_; + T5 f5_; +}; + +template +class GTEST_7_TUPLE_(T) { + public: + template friend class gtest_internal::Get; + + tuple() : f0_(), f1_(), f2_(), f3_(), f4_(), f5_(), f6_() {} + + explicit tuple(GTEST_BY_REF_(T0) f0, GTEST_BY_REF_(T1) f1, + GTEST_BY_REF_(T2) f2, GTEST_BY_REF_(T3) f3, GTEST_BY_REF_(T4) f4, + GTEST_BY_REF_(T5) f5, GTEST_BY_REF_(T6) f6) : f0_(f0), f1_(f1), f2_(f2), + f3_(f3), f4_(f4), f5_(f5), f6_(f6) {} + + tuple(const tuple& t) : f0_(t.f0_), f1_(t.f1_), f2_(t.f2_), f3_(t.f3_), + f4_(t.f4_), f5_(t.f5_), f6_(t.f6_) {} + + template + tuple(const GTEST_7_TUPLE_(U)& t) : f0_(t.f0_), f1_(t.f1_), f2_(t.f2_), + f3_(t.f3_), f4_(t.f4_), f5_(t.f5_), f6_(t.f6_) {} + + tuple& operator=(const tuple& t) { return CopyFrom(t); } + + template + tuple& operator=(const GTEST_7_TUPLE_(U)& t) { + return CopyFrom(t); + } + + GTEST_DECLARE_TUPLE_AS_FRIEND_ + + template + tuple& CopyFrom(const GTEST_7_TUPLE_(U)& t) { + f0_ = t.f0_; + f1_ = t.f1_; + f2_ = t.f2_; + f3_ = t.f3_; + f4_ = t.f4_; + f5_ = t.f5_; + f6_ = t.f6_; + return *this; + } + + T0 f0_; + T1 f1_; + T2 f2_; + T3 f3_; + T4 f4_; + T5 f5_; + T6 f6_; +}; + +template +class GTEST_8_TUPLE_(T) { + public: + template friend class gtest_internal::Get; + + tuple() : f0_(), f1_(), f2_(), f3_(), f4_(), f5_(), f6_(), f7_() {} + + explicit tuple(GTEST_BY_REF_(T0) f0, GTEST_BY_REF_(T1) f1, + GTEST_BY_REF_(T2) f2, GTEST_BY_REF_(T3) f3, GTEST_BY_REF_(T4) f4, + GTEST_BY_REF_(T5) f5, GTEST_BY_REF_(T6) f6, + GTEST_BY_REF_(T7) f7) : f0_(f0), f1_(f1), f2_(f2), f3_(f3), f4_(f4), + f5_(f5), f6_(f6), f7_(f7) {} + + tuple(const tuple& t) : f0_(t.f0_), f1_(t.f1_), f2_(t.f2_), f3_(t.f3_), + f4_(t.f4_), f5_(t.f5_), f6_(t.f6_), f7_(t.f7_) {} + + template + tuple(const GTEST_8_TUPLE_(U)& t) : f0_(t.f0_), f1_(t.f1_), f2_(t.f2_), + f3_(t.f3_), f4_(t.f4_), f5_(t.f5_), f6_(t.f6_), f7_(t.f7_) {} + + tuple& operator=(const tuple& t) { return CopyFrom(t); } + + template + tuple& operator=(const GTEST_8_TUPLE_(U)& t) { + return CopyFrom(t); + } + + GTEST_DECLARE_TUPLE_AS_FRIEND_ + + template + tuple& CopyFrom(const GTEST_8_TUPLE_(U)& t) { + f0_ = t.f0_; + f1_ = t.f1_; + f2_ = t.f2_; + f3_ = t.f3_; + f4_ = t.f4_; + f5_ = t.f5_; + f6_ = t.f6_; + f7_ = t.f7_; + return *this; + } + + T0 f0_; + T1 f1_; + T2 f2_; + T3 f3_; + T4 f4_; + T5 f5_; + T6 f6_; + T7 f7_; +}; + +template +class GTEST_9_TUPLE_(T) { + public: + template friend class gtest_internal::Get; + + tuple() : f0_(), f1_(), f2_(), f3_(), f4_(), f5_(), f6_(), f7_(), f8_() {} + + explicit tuple(GTEST_BY_REF_(T0) f0, GTEST_BY_REF_(T1) f1, + GTEST_BY_REF_(T2) f2, GTEST_BY_REF_(T3) f3, GTEST_BY_REF_(T4) f4, + GTEST_BY_REF_(T5) f5, GTEST_BY_REF_(T6) f6, GTEST_BY_REF_(T7) f7, + GTEST_BY_REF_(T8) f8) : f0_(f0), f1_(f1), f2_(f2), f3_(f3), f4_(f4), + f5_(f5), f6_(f6), f7_(f7), f8_(f8) {} + + tuple(const tuple& t) : f0_(t.f0_), f1_(t.f1_), f2_(t.f2_), f3_(t.f3_), + f4_(t.f4_), f5_(t.f5_), f6_(t.f6_), f7_(t.f7_), f8_(t.f8_) {} + + template + tuple(const GTEST_9_TUPLE_(U)& t) : f0_(t.f0_), f1_(t.f1_), f2_(t.f2_), + f3_(t.f3_), f4_(t.f4_), f5_(t.f5_), f6_(t.f6_), f7_(t.f7_), f8_(t.f8_) {} + + tuple& operator=(const tuple& t) { return CopyFrom(t); } + + template + tuple& operator=(const GTEST_9_TUPLE_(U)& t) { + return CopyFrom(t); + } + + GTEST_DECLARE_TUPLE_AS_FRIEND_ + + template + tuple& CopyFrom(const GTEST_9_TUPLE_(U)& t) { + f0_ = t.f0_; + f1_ = t.f1_; + f2_ = t.f2_; + f3_ = t.f3_; + f4_ = t.f4_; + f5_ = t.f5_; + f6_ = t.f6_; + f7_ = t.f7_; + f8_ = t.f8_; + return *this; + } + + T0 f0_; + T1 f1_; + T2 f2_; + T3 f3_; + T4 f4_; + T5 f5_; + T6 f6_; + T7 f7_; + T8 f8_; +}; + +template +class tuple { + public: + template friend class gtest_internal::Get; + + tuple() : f0_(), f1_(), f2_(), f3_(), f4_(), f5_(), f6_(), f7_(), f8_(), + f9_() {} + + explicit tuple(GTEST_BY_REF_(T0) f0, GTEST_BY_REF_(T1) f1, + GTEST_BY_REF_(T2) f2, GTEST_BY_REF_(T3) f3, GTEST_BY_REF_(T4) f4, + GTEST_BY_REF_(T5) f5, GTEST_BY_REF_(T6) f6, GTEST_BY_REF_(T7) f7, + GTEST_BY_REF_(T8) f8, GTEST_BY_REF_(T9) f9) : f0_(f0), f1_(f1), f2_(f2), + f3_(f3), f4_(f4), f5_(f5), f6_(f6), f7_(f7), f8_(f8), f9_(f9) {} + + tuple(const tuple& t) : f0_(t.f0_), f1_(t.f1_), f2_(t.f2_), f3_(t.f3_), + f4_(t.f4_), f5_(t.f5_), f6_(t.f6_), f7_(t.f7_), f8_(t.f8_), f9_(t.f9_) {} + + template + tuple(const GTEST_10_TUPLE_(U)& t) : f0_(t.f0_), f1_(t.f1_), f2_(t.f2_), + f3_(t.f3_), f4_(t.f4_), f5_(t.f5_), f6_(t.f6_), f7_(t.f7_), f8_(t.f8_), + f9_(t.f9_) {} + + tuple& operator=(const tuple& t) { return CopyFrom(t); } + + template + tuple& operator=(const GTEST_10_TUPLE_(U)& t) { + return CopyFrom(t); + } + + GTEST_DECLARE_TUPLE_AS_FRIEND_ + + template + tuple& CopyFrom(const GTEST_10_TUPLE_(U)& t) { + f0_ = t.f0_; + f1_ = t.f1_; + f2_ = t.f2_; + f3_ = t.f3_; + f4_ = t.f4_; + f5_ = t.f5_; + f6_ = t.f6_; + f7_ = t.f7_; + f8_ = t.f8_; + f9_ = t.f9_; + return *this; + } + + T0 f0_; + T1 f1_; + T2 f2_; + T3 f3_; + T4 f4_; + T5 f5_; + T6 f6_; + T7 f7_; + T8 f8_; + T9 f9_; +}; + +// 6.1.3.2 Tuple creation functions. + +// Known limitations: we don't support passing an +// std::tr1::reference_wrapper to make_tuple(). And we don't +// implement tie(). + +inline tuple<> make_tuple() { return tuple<>(); } + +template +inline GTEST_1_TUPLE_(T) make_tuple(const T0& f0) { + return GTEST_1_TUPLE_(T)(f0); +} + +template +inline GTEST_2_TUPLE_(T) make_tuple(const T0& f0, const T1& f1) { + return GTEST_2_TUPLE_(T)(f0, f1); +} + +template +inline GTEST_3_TUPLE_(T) make_tuple(const T0& f0, const T1& f1, const T2& f2) { + return GTEST_3_TUPLE_(T)(f0, f1, f2); +} + +template +inline GTEST_4_TUPLE_(T) make_tuple(const T0& f0, const T1& f1, const T2& f2, + const T3& f3) { + return GTEST_4_TUPLE_(T)(f0, f1, f2, f3); +} + +template +inline GTEST_5_TUPLE_(T) make_tuple(const T0& f0, const T1& f1, const T2& f2, + const T3& f3, const T4& f4) { + return GTEST_5_TUPLE_(T)(f0, f1, f2, f3, f4); +} + +template +inline GTEST_6_TUPLE_(T) make_tuple(const T0& f0, const T1& f1, const T2& f2, + const T3& f3, const T4& f4, const T5& f5) { + return GTEST_6_TUPLE_(T)(f0, f1, f2, f3, f4, f5); +} + +template +inline GTEST_7_TUPLE_(T) make_tuple(const T0& f0, const T1& f1, const T2& f2, + const T3& f3, const T4& f4, const T5& f5, const T6& f6) { + return GTEST_7_TUPLE_(T)(f0, f1, f2, f3, f4, f5, f6); +} + +template +inline GTEST_8_TUPLE_(T) make_tuple(const T0& f0, const T1& f1, const T2& f2, + const T3& f3, const T4& f4, const T5& f5, const T6& f6, const T7& f7) { + return GTEST_8_TUPLE_(T)(f0, f1, f2, f3, f4, f5, f6, f7); +} + +template +inline GTEST_9_TUPLE_(T) make_tuple(const T0& f0, const T1& f1, const T2& f2, + const T3& f3, const T4& f4, const T5& f5, const T6& f6, const T7& f7, + const T8& f8) { + return GTEST_9_TUPLE_(T)(f0, f1, f2, f3, f4, f5, f6, f7, f8); +} + +template +inline GTEST_10_TUPLE_(T) make_tuple(const T0& f0, const T1& f1, const T2& f2, + const T3& f3, const T4& f4, const T5& f5, const T6& f6, const T7& f7, + const T8& f8, const T9& f9) { + return GTEST_10_TUPLE_(T)(f0, f1, f2, f3, f4, f5, f6, f7, f8, f9); +} + +// 6.1.3.3 Tuple helper classes. + +template struct tuple_size; + +template +struct tuple_size { + static const int value = 0; +}; + +template +struct tuple_size { + static const int value = 1; +}; + +template +struct tuple_size { + static const int value = 2; +}; + +template +struct tuple_size { + static const int value = 3; +}; + +template +struct tuple_size { + static const int value = 4; +}; + +template +struct tuple_size { + static const int value = 5; +}; + +template +struct tuple_size { + static const int value = 6; +}; + +template +struct tuple_size { + static const int value = 7; +}; + +template +struct tuple_size { + static const int value = 8; +}; + +template +struct tuple_size { + static const int value = 9; +}; + +template +struct tuple_size { + static const int value = 10; +}; + +template +struct tuple_element { + typedef typename gtest_internal::TupleElement< + k < (tuple_size::value), k, Tuple>::type type; +}; + +#define GTEST_TUPLE_ELEMENT_(k, Tuple) typename tuple_element::type + +// 6.1.3.4 Element access. + +namespace gtest_internal { + +template <> +class Get<0> { + public: + template + static GTEST_ADD_REF_(GTEST_TUPLE_ELEMENT_(0, Tuple)) + Field(Tuple& t) { return t.f0_; } // NOLINT + + template + static GTEST_BY_REF_(GTEST_TUPLE_ELEMENT_(0, Tuple)) + ConstField(const Tuple& t) { return t.f0_; } +}; + +template <> +class Get<1> { + public: + template + static GTEST_ADD_REF_(GTEST_TUPLE_ELEMENT_(1, Tuple)) + Field(Tuple& t) { return t.f1_; } // NOLINT + + template + static GTEST_BY_REF_(GTEST_TUPLE_ELEMENT_(1, Tuple)) + ConstField(const Tuple& t) { return t.f1_; } +}; + +template <> +class Get<2> { + public: + template + static GTEST_ADD_REF_(GTEST_TUPLE_ELEMENT_(2, Tuple)) + Field(Tuple& t) { return t.f2_; } // NOLINT + + template + static GTEST_BY_REF_(GTEST_TUPLE_ELEMENT_(2, Tuple)) + ConstField(const Tuple& t) { return t.f2_; } +}; + +template <> +class Get<3> { + public: + template + static GTEST_ADD_REF_(GTEST_TUPLE_ELEMENT_(3, Tuple)) + Field(Tuple& t) { return t.f3_; } // NOLINT + + template + static GTEST_BY_REF_(GTEST_TUPLE_ELEMENT_(3, Tuple)) + ConstField(const Tuple& t) { return t.f3_; } +}; + +template <> +class Get<4> { + public: + template + static GTEST_ADD_REF_(GTEST_TUPLE_ELEMENT_(4, Tuple)) + Field(Tuple& t) { return t.f4_; } // NOLINT + + template + static GTEST_BY_REF_(GTEST_TUPLE_ELEMENT_(4, Tuple)) + ConstField(const Tuple& t) { return t.f4_; } +}; + +template <> +class Get<5> { + public: + template + static GTEST_ADD_REF_(GTEST_TUPLE_ELEMENT_(5, Tuple)) + Field(Tuple& t) { return t.f5_; } // NOLINT + + template + static GTEST_BY_REF_(GTEST_TUPLE_ELEMENT_(5, Tuple)) + ConstField(const Tuple& t) { return t.f5_; } +}; + +template <> +class Get<6> { + public: + template + static GTEST_ADD_REF_(GTEST_TUPLE_ELEMENT_(6, Tuple)) + Field(Tuple& t) { return t.f6_; } // NOLINT + + template + static GTEST_BY_REF_(GTEST_TUPLE_ELEMENT_(6, Tuple)) + ConstField(const Tuple& t) { return t.f6_; } +}; + +template <> +class Get<7> { + public: + template + static GTEST_ADD_REF_(GTEST_TUPLE_ELEMENT_(7, Tuple)) + Field(Tuple& t) { return t.f7_; } // NOLINT + + template + static GTEST_BY_REF_(GTEST_TUPLE_ELEMENT_(7, Tuple)) + ConstField(const Tuple& t) { return t.f7_; } +}; + +template <> +class Get<8> { + public: + template + static GTEST_ADD_REF_(GTEST_TUPLE_ELEMENT_(8, Tuple)) + Field(Tuple& t) { return t.f8_; } // NOLINT + + template + static GTEST_BY_REF_(GTEST_TUPLE_ELEMENT_(8, Tuple)) + ConstField(const Tuple& t) { return t.f8_; } +}; + +template <> +class Get<9> { + public: + template + static GTEST_ADD_REF_(GTEST_TUPLE_ELEMENT_(9, Tuple)) + Field(Tuple& t) { return t.f9_; } // NOLINT + + template + static GTEST_BY_REF_(GTEST_TUPLE_ELEMENT_(9, Tuple)) + ConstField(const Tuple& t) { return t.f9_; } +}; + +} // namespace gtest_internal + +template +GTEST_ADD_REF_(GTEST_TUPLE_ELEMENT_(k, GTEST_10_TUPLE_(T))) +get(GTEST_10_TUPLE_(T)& t) { + return gtest_internal::Get::Field(t); +} + +template +GTEST_BY_REF_(GTEST_TUPLE_ELEMENT_(k, GTEST_10_TUPLE_(T))) +get(const GTEST_10_TUPLE_(T)& t) { + return gtest_internal::Get::ConstField(t); +} + +// 6.1.3.5 Relational operators + +// We only implement == and !=, as we don't have a need for the rest yet. + +namespace gtest_internal { + +// SameSizeTuplePrefixComparator::Eq(t1, t2) returns true if the +// first k fields of t1 equals the first k fields of t2. +// SameSizeTuplePrefixComparator(k1, k2) would be a compiler error if +// k1 != k2. +template +struct SameSizeTuplePrefixComparator; + +template <> +struct SameSizeTuplePrefixComparator<0, 0> { + template + static bool Eq(const Tuple1& /* t1 */, const Tuple2& /* t2 */) { + return true; + } +}; + +template +struct SameSizeTuplePrefixComparator { + template + static bool Eq(const Tuple1& t1, const Tuple2& t2) { + return SameSizeTuplePrefixComparator::Eq(t1, t2) && + ::std::tr1::get(t1) == ::std::tr1::get(t2); + } +}; + +} // namespace gtest_internal + +template +inline bool operator==(const GTEST_10_TUPLE_(T)& t, + const GTEST_10_TUPLE_(U)& u) { + return gtest_internal::SameSizeTuplePrefixComparator< + tuple_size::value, + tuple_size::value>::Eq(t, u); +} + +template +inline bool operator!=(const GTEST_10_TUPLE_(T)& t, + const GTEST_10_TUPLE_(U)& u) { return !(t == u); } + +// 6.1.4 Pairs. +// Unimplemented. + +} // namespace tr1 +} // namespace std + +#undef GTEST_0_TUPLE_ +#undef GTEST_1_TUPLE_ +#undef GTEST_2_TUPLE_ +#undef GTEST_3_TUPLE_ +#undef GTEST_4_TUPLE_ +#undef GTEST_5_TUPLE_ +#undef GTEST_6_TUPLE_ +#undef GTEST_7_TUPLE_ +#undef GTEST_8_TUPLE_ +#undef GTEST_9_TUPLE_ +#undef GTEST_10_TUPLE_ + +#undef GTEST_0_TYPENAMES_ +#undef GTEST_1_TYPENAMES_ +#undef GTEST_2_TYPENAMES_ +#undef GTEST_3_TYPENAMES_ +#undef GTEST_4_TYPENAMES_ +#undef GTEST_5_TYPENAMES_ +#undef GTEST_6_TYPENAMES_ +#undef GTEST_7_TYPENAMES_ +#undef GTEST_8_TYPENAMES_ +#undef GTEST_9_TYPENAMES_ +#undef GTEST_10_TYPENAMES_ + +#undef GTEST_DECLARE_TUPLE_AS_FRIEND_ +#undef GTEST_BY_REF_ +#undef GTEST_ADD_REF_ +#undef GTEST_TUPLE_ELEMENT_ + +#endif // GTEST_INCLUDE_GTEST_INTERNAL_GTEST_TUPLE_H_ diff --git a/third_party/googletest/src/include/gtest/internal/gtest-tuple.h.pump b/third_party/googletest/src/include/gtest/internal/gtest-tuple.h.pump new file mode 100644 index 0000000..429ddfe --- /dev/null +++ b/third_party/googletest/src/include/gtest/internal/gtest-tuple.h.pump @@ -0,0 +1,347 @@ +$$ -*- mode: c++; -*- +$var n = 10 $$ Maximum number of tuple fields we want to support. +$$ This meta comment fixes auto-indentation in Emacs. }} +// Copyright 2009 Google Inc. +// All Rights Reserved. +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: +// +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above +// copyright notice, this list of conditions and the following disclaimer +// in the documentation and/or other materials provided with the +// distribution. +// * Neither the name of Google Inc. nor the names of its +// contributors may be used to endorse or promote products derived from +// this software without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +// +// Author: wan@google.com (Zhanyong Wan) + +// Implements a subset of TR1 tuple needed by Google Test and Google Mock. + +#ifndef GTEST_INCLUDE_GTEST_INTERNAL_GTEST_TUPLE_H_ +#define GTEST_INCLUDE_GTEST_INTERNAL_GTEST_TUPLE_H_ + +#include // For ::std::pair. + +// The compiler used in Symbian has a bug that prevents us from declaring the +// tuple template as a friend (it complains that tuple is redefined). This +// hack bypasses the bug by declaring the members that should otherwise be +// private as public. +// Sun Studio versions < 12 also have the above bug. +#if defined(__SYMBIAN32__) || (defined(__SUNPRO_CC) && __SUNPRO_CC < 0x590) +# define GTEST_DECLARE_TUPLE_AS_FRIEND_ public: +#else +# define GTEST_DECLARE_TUPLE_AS_FRIEND_ \ + template friend class tuple; \ + private: +#endif + +// Visual Studio 2010, 2012, and 2013 define symbols in std::tr1 that conflict +// with our own definitions. Therefore using our own tuple does not work on +// those compilers. +#if defined(_MSC_VER) && _MSC_VER >= 1600 /* 1600 is Visual Studio 2010 */ +# error "gtest's tuple doesn't compile on Visual Studio 2010 or later. \ +GTEST_USE_OWN_TR1_TUPLE must be set to 0 on those compilers." +#endif + + +$range i 0..n-1 +$range j 0..n +$range k 1..n +// GTEST_n_TUPLE_(T) is the type of an n-tuple. +#define GTEST_0_TUPLE_(T) tuple<> + +$for k [[ +$range m 0..k-1 +$range m2 k..n-1 +#define GTEST_$(k)_TUPLE_(T) tuple<$for m, [[T##$m]]$for m2 [[, void]]> + +]] + +// GTEST_n_TYPENAMES_(T) declares a list of n typenames. + +$for j [[ +$range m 0..j-1 +#define GTEST_$(j)_TYPENAMES_(T) $for m, [[typename T##$m]] + + +]] + +// In theory, defining stuff in the ::std namespace is undefined +// behavior. We can do this as we are playing the role of a standard +// library vendor. +namespace std { +namespace tr1 { + +template <$for i, [[typename T$i = void]]> +class tuple; + +// Anything in namespace gtest_internal is Google Test's INTERNAL +// IMPLEMENTATION DETAIL and MUST NOT BE USED DIRECTLY in user code. +namespace gtest_internal { + +// ByRef::type is T if T is a reference; otherwise it's const T&. +template +struct ByRef { typedef const T& type; }; // NOLINT +template +struct ByRef { typedef T& type; }; // NOLINT + +// A handy wrapper for ByRef. +#define GTEST_BY_REF_(T) typename ::std::tr1::gtest_internal::ByRef::type + +// AddRef::type is T if T is a reference; otherwise it's T&. This +// is the same as tr1::add_reference::type. +template +struct AddRef { typedef T& type; }; // NOLINT +template +struct AddRef { typedef T& type; }; // NOLINT + +// A handy wrapper for AddRef. +#define GTEST_ADD_REF_(T) typename ::std::tr1::gtest_internal::AddRef::type + +// A helper for implementing get(). +template class Get; + +// A helper for implementing tuple_element. kIndexValid is true +// iff k < the number of fields in tuple type T. +template +struct TupleElement; + + +$for i [[ +template +struct TupleElement { + typedef T$i type; +}; + + +]] +} // namespace gtest_internal + +template <> +class tuple<> { + public: + tuple() {} + tuple(const tuple& /* t */) {} + tuple& operator=(const tuple& /* t */) { return *this; } +}; + + +$for k [[ +$range m 0..k-1 +template +class $if k < n [[GTEST_$(k)_TUPLE_(T)]] $else [[tuple]] { + public: + template friend class gtest_internal::Get; + + tuple() : $for m, [[f$(m)_()]] {} + + explicit tuple($for m, [[GTEST_BY_REF_(T$m) f$m]]) : [[]] +$for m, [[f$(m)_(f$m)]] {} + + tuple(const tuple& t) : $for m, [[f$(m)_(t.f$(m)_)]] {} + + template + tuple(const GTEST_$(k)_TUPLE_(U)& t) : $for m, [[f$(m)_(t.f$(m)_)]] {} + +$if k == 2 [[ + template + tuple(const ::std::pair& p) : f0_(p.first), f1_(p.second) {} + +]] + + tuple& operator=(const tuple& t) { return CopyFrom(t); } + + template + tuple& operator=(const GTEST_$(k)_TUPLE_(U)& t) { + return CopyFrom(t); + } + +$if k == 2 [[ + template + tuple& operator=(const ::std::pair& p) { + f0_ = p.first; + f1_ = p.second; + return *this; + } + +]] + + GTEST_DECLARE_TUPLE_AS_FRIEND_ + + template + tuple& CopyFrom(const GTEST_$(k)_TUPLE_(U)& t) { + +$for m [[ + f$(m)_ = t.f$(m)_; + +]] + return *this; + } + + +$for m [[ + T$m f$(m)_; + +]] +}; + + +]] +// 6.1.3.2 Tuple creation functions. + +// Known limitations: we don't support passing an +// std::tr1::reference_wrapper to make_tuple(). And we don't +// implement tie(). + +inline tuple<> make_tuple() { return tuple<>(); } + +$for k [[ +$range m 0..k-1 + +template +inline GTEST_$(k)_TUPLE_(T) make_tuple($for m, [[const T$m& f$m]]) { + return GTEST_$(k)_TUPLE_(T)($for m, [[f$m]]); +} + +]] + +// 6.1.3.3 Tuple helper classes. + +template struct tuple_size; + + +$for j [[ +template +struct tuple_size { + static const int value = $j; +}; + + +]] +template +struct tuple_element { + typedef typename gtest_internal::TupleElement< + k < (tuple_size::value), k, Tuple>::type type; +}; + +#define GTEST_TUPLE_ELEMENT_(k, Tuple) typename tuple_element::type + +// 6.1.3.4 Element access. + +namespace gtest_internal { + + +$for i [[ +template <> +class Get<$i> { + public: + template + static GTEST_ADD_REF_(GTEST_TUPLE_ELEMENT_($i, Tuple)) + Field(Tuple& t) { return t.f$(i)_; } // NOLINT + + template + static GTEST_BY_REF_(GTEST_TUPLE_ELEMENT_($i, Tuple)) + ConstField(const Tuple& t) { return t.f$(i)_; } +}; + + +]] +} // namespace gtest_internal + +template +GTEST_ADD_REF_(GTEST_TUPLE_ELEMENT_(k, GTEST_$(n)_TUPLE_(T))) +get(GTEST_$(n)_TUPLE_(T)& t) { + return gtest_internal::Get::Field(t); +} + +template +GTEST_BY_REF_(GTEST_TUPLE_ELEMENT_(k, GTEST_$(n)_TUPLE_(T))) +get(const GTEST_$(n)_TUPLE_(T)& t) { + return gtest_internal::Get::ConstField(t); +} + +// 6.1.3.5 Relational operators + +// We only implement == and !=, as we don't have a need for the rest yet. + +namespace gtest_internal { + +// SameSizeTuplePrefixComparator::Eq(t1, t2) returns true if the +// first k fields of t1 equals the first k fields of t2. +// SameSizeTuplePrefixComparator(k1, k2) would be a compiler error if +// k1 != k2. +template +struct SameSizeTuplePrefixComparator; + +template <> +struct SameSizeTuplePrefixComparator<0, 0> { + template + static bool Eq(const Tuple1& /* t1 */, const Tuple2& /* t2 */) { + return true; + } +}; + +template +struct SameSizeTuplePrefixComparator { + template + static bool Eq(const Tuple1& t1, const Tuple2& t2) { + return SameSizeTuplePrefixComparator::Eq(t1, t2) && + ::std::tr1::get(t1) == ::std::tr1::get(t2); + } +}; + +} // namespace gtest_internal + +template +inline bool operator==(const GTEST_$(n)_TUPLE_(T)& t, + const GTEST_$(n)_TUPLE_(U)& u) { + return gtest_internal::SameSizeTuplePrefixComparator< + tuple_size::value, + tuple_size::value>::Eq(t, u); +} + +template +inline bool operator!=(const GTEST_$(n)_TUPLE_(T)& t, + const GTEST_$(n)_TUPLE_(U)& u) { return !(t == u); } + +// 6.1.4 Pairs. +// Unimplemented. + +} // namespace tr1 +} // namespace std + + +$for j [[ +#undef GTEST_$(j)_TUPLE_ + +]] + + +$for j [[ +#undef GTEST_$(j)_TYPENAMES_ + +]] + +#undef GTEST_DECLARE_TUPLE_AS_FRIEND_ +#undef GTEST_BY_REF_ +#undef GTEST_ADD_REF_ +#undef GTEST_TUPLE_ELEMENT_ + +#endif // GTEST_INCLUDE_GTEST_INTERNAL_GTEST_TUPLE_H_ diff --git a/third_party/googletest/src/include/gtest/internal/gtest-type-util.h b/third_party/googletest/src/include/gtest/internal/gtest-type-util.h new file mode 100644 index 0000000..e46f7cf --- /dev/null +++ b/third_party/googletest/src/include/gtest/internal/gtest-type-util.h @@ -0,0 +1,3331 @@ +// This file was GENERATED by command: +// pump.py gtest-type-util.h.pump +// DO NOT EDIT BY HAND!!! + +// Copyright 2008 Google Inc. +// All Rights Reserved. +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: +// +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above +// copyright notice, this list of conditions and the following disclaimer +// in the documentation and/or other materials provided with the +// distribution. +// * Neither the name of Google Inc. nor the names of its +// contributors may be used to endorse or promote products derived from +// this software without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +// +// Author: wan@google.com (Zhanyong Wan) + +// Type utilities needed for implementing typed and type-parameterized +// tests. This file is generated by a SCRIPT. DO NOT EDIT BY HAND! +// +// Currently we support at most 50 types in a list, and at most 50 +// type-parameterized tests in one type-parameterized test case. +// Please contact googletestframework@googlegroups.com if you need +// more. + +#ifndef GTEST_INCLUDE_GTEST_INTERNAL_GTEST_TYPE_UTIL_H_ +#define GTEST_INCLUDE_GTEST_INTERNAL_GTEST_TYPE_UTIL_H_ + +#include "gtest/internal/gtest-port.h" + +// #ifdef __GNUC__ is too general here. It is possible to use gcc without using +// libstdc++ (which is where cxxabi.h comes from). +# if GTEST_HAS_CXXABI_H_ +# include +# elif defined(__HP_aCC) +# include +# endif // GTEST_HASH_CXXABI_H_ + +namespace testing { +namespace internal { + +// GetTypeName() returns a human-readable name of type T. +// NB: This function is also used in Google Mock, so don't move it inside of +// the typed-test-only section below. +template +std::string GetTypeName() { +# if GTEST_HAS_RTTI + + const char* const name = typeid(T).name(); +# if GTEST_HAS_CXXABI_H_ || defined(__HP_aCC) + int status = 0; + // gcc's implementation of typeid(T).name() mangles the type name, + // so we have to demangle it. +# if GTEST_HAS_CXXABI_H_ + using abi::__cxa_demangle; +# endif // GTEST_HAS_CXXABI_H_ + char* const readable_name = __cxa_demangle(name, 0, 0, &status); + const std::string name_str(status == 0 ? readable_name : name); + free(readable_name); + return name_str; +# else + return name; +# endif // GTEST_HAS_CXXABI_H_ || __HP_aCC + +# else + + return ""; + +# endif // GTEST_HAS_RTTI +} + +#if GTEST_HAS_TYPED_TEST || GTEST_HAS_TYPED_TEST_P + +// AssertyTypeEq::type is defined iff T1 and T2 are the same +// type. This can be used as a compile-time assertion to ensure that +// two types are equal. + +template +struct AssertTypeEq; + +template +struct AssertTypeEq { + typedef bool type; +}; + +// A unique type used as the default value for the arguments of class +// template Types. This allows us to simulate variadic templates +// (e.g. Types, Type, and etc), which C++ doesn't +// support directly. +struct None {}; + +// The following family of struct and struct templates are used to +// represent type lists. In particular, TypesN +// represents a type list with N types (T1, T2, ..., and TN) in it. +// Except for Types0, every struct in the family has two member types: +// Head for the first type in the list, and Tail for the rest of the +// list. + +// The empty type list. +struct Types0 {}; + +// Type lists of length 1, 2, 3, and so on. + +template +struct Types1 { + typedef T1 Head; + typedef Types0 Tail; +}; +template +struct Types2 { + typedef T1 Head; + typedef Types1 Tail; +}; + +template +struct Types3 { + typedef T1 Head; + typedef Types2 Tail; +}; + +template +struct Types4 { + typedef T1 Head; + typedef Types3 Tail; +}; + +template +struct Types5 { + typedef T1 Head; + typedef Types4 Tail; +}; + +template +struct Types6 { + typedef T1 Head; + typedef Types5 Tail; +}; + +template +struct Types7 { + typedef T1 Head; + typedef Types6 Tail; +}; + +template +struct Types8 { + typedef T1 Head; + typedef Types7 Tail; +}; + +template +struct Types9 { + typedef T1 Head; + typedef Types8 Tail; +}; + +template +struct Types10 { + typedef T1 Head; + typedef Types9 Tail; +}; + +template +struct Types11 { + typedef T1 Head; + typedef Types10 Tail; +}; + +template +struct Types12 { + typedef T1 Head; + typedef Types11 Tail; +}; + +template +struct Types13 { + typedef T1 Head; + typedef Types12 Tail; +}; + +template +struct Types14 { + typedef T1 Head; + typedef Types13 Tail; +}; + +template +struct Types15 { + typedef T1 Head; + typedef Types14 Tail; +}; + +template +struct Types16 { + typedef T1 Head; + typedef Types15 Tail; +}; + +template +struct Types17 { + typedef T1 Head; + typedef Types16 Tail; +}; + +template +struct Types18 { + typedef T1 Head; + typedef Types17 Tail; +}; + +template +struct Types19 { + typedef T1 Head; + typedef Types18 Tail; +}; + +template +struct Types20 { + typedef T1 Head; + typedef Types19 Tail; +}; + +template +struct Types21 { + typedef T1 Head; + typedef Types20 Tail; +}; + +template +struct Types22 { + typedef T1 Head; + typedef Types21 Tail; +}; + +template +struct Types23 { + typedef T1 Head; + typedef Types22 Tail; +}; + +template +struct Types24 { + typedef T1 Head; + typedef Types23 Tail; +}; + +template +struct Types25 { + typedef T1 Head; + typedef Types24 Tail; +}; + +template +struct Types26 { + typedef T1 Head; + typedef Types25 Tail; +}; + +template +struct Types27 { + typedef T1 Head; + typedef Types26 Tail; +}; + +template +struct Types28 { + typedef T1 Head; + typedef Types27 Tail; +}; + +template +struct Types29 { + typedef T1 Head; + typedef Types28 Tail; +}; + +template +struct Types30 { + typedef T1 Head; + typedef Types29 Tail; +}; + +template +struct Types31 { + typedef T1 Head; + typedef Types30 Tail; +}; + +template +struct Types32 { + typedef T1 Head; + typedef Types31 Tail; +}; + +template +struct Types33 { + typedef T1 Head; + typedef Types32 Tail; +}; + +template +struct Types34 { + typedef T1 Head; + typedef Types33 Tail; +}; + +template +struct Types35 { + typedef T1 Head; + typedef Types34 Tail; +}; + +template +struct Types36 { + typedef T1 Head; + typedef Types35 Tail; +}; + +template +struct Types37 { + typedef T1 Head; + typedef Types36 Tail; +}; + +template +struct Types38 { + typedef T1 Head; + typedef Types37 Tail; +}; + +template +struct Types39 { + typedef T1 Head; + typedef Types38 Tail; +}; + +template +struct Types40 { + typedef T1 Head; + typedef Types39 Tail; +}; + +template +struct Types41 { + typedef T1 Head; + typedef Types40 Tail; +}; + +template +struct Types42 { + typedef T1 Head; + typedef Types41 Tail; +}; + +template +struct Types43 { + typedef T1 Head; + typedef Types42 Tail; +}; + +template +struct Types44 { + typedef T1 Head; + typedef Types43 Tail; +}; + +template +struct Types45 { + typedef T1 Head; + typedef Types44 Tail; +}; + +template +struct Types46 { + typedef T1 Head; + typedef Types45 Tail; +}; + +template +struct Types47 { + typedef T1 Head; + typedef Types46 Tail; +}; + +template +struct Types48 { + typedef T1 Head; + typedef Types47 Tail; +}; + +template +struct Types49 { + typedef T1 Head; + typedef Types48 Tail; +}; + +template +struct Types50 { + typedef T1 Head; + typedef Types49 Tail; +}; + + +} // namespace internal + +// We don't want to require the users to write TypesN<...> directly, +// as that would require them to count the length. Types<...> is much +// easier to write, but generates horrible messages when there is a +// compiler error, as gcc insists on printing out each template +// argument, even if it has the default value (this means Types +// will appear as Types in the compiler +// errors). +// +// Our solution is to combine the best part of the two approaches: a +// user would write Types, and Google Test will translate +// that to TypesN internally to make error messages +// readable. The translation is done by the 'type' member of the +// Types template. +template +struct Types { + typedef internal::Types50 type; +}; + +template <> +struct Types { + typedef internal::Types0 type; +}; +template +struct Types { + typedef internal::Types1 type; +}; +template +struct Types { + typedef internal::Types2 type; +}; +template +struct Types { + typedef internal::Types3 type; +}; +template +struct Types { + typedef internal::Types4 type; +}; +template +struct Types { + typedef internal::Types5 type; +}; +template +struct Types { + typedef internal::Types6 type; +}; +template +struct Types { + typedef internal::Types7 type; +}; +template +struct Types { + typedef internal::Types8 type; +}; +template +struct Types { + typedef internal::Types9 type; +}; +template +struct Types { + typedef internal::Types10 type; +}; +template +struct Types { + typedef internal::Types11 type; +}; +template +struct Types { + typedef internal::Types12 type; +}; +template +struct Types { + typedef internal::Types13 type; +}; +template +struct Types { + typedef internal::Types14 type; +}; +template +struct Types { + typedef internal::Types15 type; +}; +template +struct Types { + typedef internal::Types16 type; +}; +template +struct Types { + typedef internal::Types17 type; +}; +template +struct Types { + typedef internal::Types18 type; +}; +template +struct Types { + typedef internal::Types19 type; +}; +template +struct Types { + typedef internal::Types20 type; +}; +template +struct Types { + typedef internal::Types21 type; +}; +template +struct Types { + typedef internal::Types22 type; +}; +template +struct Types { + typedef internal::Types23 type; +}; +template +struct Types { + typedef internal::Types24 type; +}; +template +struct Types { + typedef internal::Types25 type; +}; +template +struct Types { + typedef internal::Types26 type; +}; +template +struct Types { + typedef internal::Types27 type; +}; +template +struct Types { + typedef internal::Types28 type; +}; +template +struct Types { + typedef internal::Types29 type; +}; +template +struct Types { + typedef internal::Types30 type; +}; +template +struct Types { + typedef internal::Types31 type; +}; +template +struct Types { + typedef internal::Types32 type; +}; +template +struct Types { + typedef internal::Types33 type; +}; +template +struct Types { + typedef internal::Types34 type; +}; +template +struct Types { + typedef internal::Types35 type; +}; +template +struct Types { + typedef internal::Types36 type; +}; +template +struct Types { + typedef internal::Types37 type; +}; +template +struct Types { + typedef internal::Types38 type; +}; +template +struct Types { + typedef internal::Types39 type; +}; +template +struct Types { + typedef internal::Types40 type; +}; +template +struct Types { + typedef internal::Types41 type; +}; +template +struct Types { + typedef internal::Types42 type; +}; +template +struct Types { + typedef internal::Types43 type; +}; +template +struct Types { + typedef internal::Types44 type; +}; +template +struct Types { + typedef internal::Types45 type; +}; +template +struct Types { + typedef internal::Types46 type; +}; +template +struct Types { + typedef internal::Types47 type; +}; +template +struct Types { + typedef internal::Types48 type; +}; +template +struct Types { + typedef internal::Types49 type; +}; + +namespace internal { + +# define GTEST_TEMPLATE_ template class + +// The template "selector" struct TemplateSel is used to +// represent Tmpl, which must be a class template with one type +// parameter, as a type. TemplateSel::Bind::type is defined +// as the type Tmpl. This allows us to actually instantiate the +// template "selected" by TemplateSel. +// +// This trick is necessary for simulating typedef for class templates, +// which C++ doesn't support directly. +template +struct TemplateSel { + template + struct Bind { + typedef Tmpl type; + }; +}; + +# define GTEST_BIND_(TmplSel, T) \ + TmplSel::template Bind::type + +// A unique struct template used as the default value for the +// arguments of class template Templates. This allows us to simulate +// variadic templates (e.g. Templates, Templates, +// and etc), which C++ doesn't support directly. +template +struct NoneT {}; + +// The following family of struct and struct templates are used to +// represent template lists. In particular, TemplatesN represents a list of N templates (T1, T2, ..., and TN). Except +// for Templates0, every struct in the family has two member types: +// Head for the selector of the first template in the list, and Tail +// for the rest of the list. + +// The empty template list. +struct Templates0 {}; + +// Template lists of length 1, 2, 3, and so on. + +template +struct Templates1 { + typedef TemplateSel Head; + typedef Templates0 Tail; +}; +template +struct Templates2 { + typedef TemplateSel Head; + typedef Templates1 Tail; +}; + +template +struct Templates3 { + typedef TemplateSel Head; + typedef Templates2 Tail; +}; + +template +struct Templates4 { + typedef TemplateSel Head; + typedef Templates3 Tail; +}; + +template +struct Templates5 { + typedef TemplateSel Head; + typedef Templates4 Tail; +}; + +template +struct Templates6 { + typedef TemplateSel Head; + typedef Templates5 Tail; +}; + +template +struct Templates7 { + typedef TemplateSel Head; + typedef Templates6 Tail; +}; + +template +struct Templates8 { + typedef TemplateSel Head; + typedef Templates7 Tail; +}; + +template +struct Templates9 { + typedef TemplateSel Head; + typedef Templates8 Tail; +}; + +template +struct Templates10 { + typedef TemplateSel Head; + typedef Templates9 Tail; +}; + +template +struct Templates11 { + typedef TemplateSel Head; + typedef Templates10 Tail; +}; + +template +struct Templates12 { + typedef TemplateSel Head; + typedef Templates11 Tail; +}; + +template +struct Templates13 { + typedef TemplateSel Head; + typedef Templates12 Tail; +}; + +template +struct Templates14 { + typedef TemplateSel Head; + typedef Templates13 Tail; +}; + +template +struct Templates15 { + typedef TemplateSel Head; + typedef Templates14 Tail; +}; + +template +struct Templates16 { + typedef TemplateSel Head; + typedef Templates15 Tail; +}; + +template +struct Templates17 { + typedef TemplateSel Head; + typedef Templates16 Tail; +}; + +template +struct Templates18 { + typedef TemplateSel Head; + typedef Templates17 Tail; +}; + +template +struct Templates19 { + typedef TemplateSel Head; + typedef Templates18 Tail; +}; + +template +struct Templates20 { + typedef TemplateSel Head; + typedef Templates19 Tail; +}; + +template +struct Templates21 { + typedef TemplateSel Head; + typedef Templates20 Tail; +}; + +template +struct Templates22 { + typedef TemplateSel Head; + typedef Templates21 Tail; +}; + +template +struct Templates23 { + typedef TemplateSel Head; + typedef Templates22 Tail; +}; + +template +struct Templates24 { + typedef TemplateSel Head; + typedef Templates23 Tail; +}; + +template +struct Templates25 { + typedef TemplateSel Head; + typedef Templates24 Tail; +}; + +template +struct Templates26 { + typedef TemplateSel Head; + typedef Templates25 Tail; +}; + +template +struct Templates27 { + typedef TemplateSel Head; + typedef Templates26 Tail; +}; + +template +struct Templates28 { + typedef TemplateSel Head; + typedef Templates27 Tail; +}; + +template +struct Templates29 { + typedef TemplateSel Head; + typedef Templates28 Tail; +}; + +template +struct Templates30 { + typedef TemplateSel Head; + typedef Templates29 Tail; +}; + +template +struct Templates31 { + typedef TemplateSel Head; + typedef Templates30 Tail; +}; + +template +struct Templates32 { + typedef TemplateSel Head; + typedef Templates31 Tail; +}; + +template +struct Templates33 { + typedef TemplateSel Head; + typedef Templates32 Tail; +}; + +template +struct Templates34 { + typedef TemplateSel Head; + typedef Templates33 Tail; +}; + +template +struct Templates35 { + typedef TemplateSel Head; + typedef Templates34 Tail; +}; + +template +struct Templates36 { + typedef TemplateSel Head; + typedef Templates35 Tail; +}; + +template +struct Templates37 { + typedef TemplateSel Head; + typedef Templates36 Tail; +}; + +template +struct Templates38 { + typedef TemplateSel Head; + typedef Templates37 Tail; +}; + +template +struct Templates39 { + typedef TemplateSel Head; + typedef Templates38 Tail; +}; + +template +struct Templates40 { + typedef TemplateSel Head; + typedef Templates39 Tail; +}; + +template +struct Templates41 { + typedef TemplateSel Head; + typedef Templates40 Tail; +}; + +template +struct Templates42 { + typedef TemplateSel Head; + typedef Templates41 Tail; +}; + +template +struct Templates43 { + typedef TemplateSel Head; + typedef Templates42 Tail; +}; + +template +struct Templates44 { + typedef TemplateSel Head; + typedef Templates43 Tail; +}; + +template +struct Templates45 { + typedef TemplateSel Head; + typedef Templates44 Tail; +}; + +template +struct Templates46 { + typedef TemplateSel Head; + typedef Templates45 Tail; +}; + +template +struct Templates47 { + typedef TemplateSel Head; + typedef Templates46 Tail; +}; + +template +struct Templates48 { + typedef TemplateSel Head; + typedef Templates47 Tail; +}; + +template +struct Templates49 { + typedef TemplateSel Head; + typedef Templates48 Tail; +}; + +template +struct Templates50 { + typedef TemplateSel Head; + typedef Templates49 Tail; +}; + + +// We don't want to require the users to write TemplatesN<...> directly, +// as that would require them to count the length. Templates<...> is much +// easier to write, but generates horrible messages when there is a +// compiler error, as gcc insists on printing out each template +// argument, even if it has the default value (this means Templates +// will appear as Templates in the compiler +// errors). +// +// Our solution is to combine the best part of the two approaches: a +// user would write Templates, and Google Test will translate +// that to TemplatesN internally to make error messages +// readable. The translation is done by the 'type' member of the +// Templates template. +template +struct Templates { + typedef Templates50 type; +}; + +template <> +struct Templates { + typedef Templates0 type; +}; +template +struct Templates { + typedef Templates1 type; +}; +template +struct Templates { + typedef Templates2 type; +}; +template +struct Templates { + typedef Templates3 type; +}; +template +struct Templates { + typedef Templates4 type; +}; +template +struct Templates { + typedef Templates5 type; +}; +template +struct Templates { + typedef Templates6 type; +}; +template +struct Templates { + typedef Templates7 type; +}; +template +struct Templates { + typedef Templates8 type; +}; +template +struct Templates { + typedef Templates9 type; +}; +template +struct Templates { + typedef Templates10 type; +}; +template +struct Templates { + typedef Templates11 type; +}; +template +struct Templates { + typedef Templates12 type; +}; +template +struct Templates { + typedef Templates13 type; +}; +template +struct Templates { + typedef Templates14 type; +}; +template +struct Templates { + typedef Templates15 type; +}; +template +struct Templates { + typedef Templates16 type; +}; +template +struct Templates { + typedef Templates17 type; +}; +template +struct Templates { + typedef Templates18 type; +}; +template +struct Templates { + typedef Templates19 type; +}; +template +struct Templates { + typedef Templates20 type; +}; +template +struct Templates { + typedef Templates21 type; +}; +template +struct Templates { + typedef Templates22 type; +}; +template +struct Templates { + typedef Templates23 type; +}; +template +struct Templates { + typedef Templates24 type; +}; +template +struct Templates { + typedef Templates25 type; +}; +template +struct Templates { + typedef Templates26 type; +}; +template +struct Templates { + typedef Templates27 type; +}; +template +struct Templates { + typedef Templates28 type; +}; +template +struct Templates { + typedef Templates29 type; +}; +template +struct Templates { + typedef Templates30 type; +}; +template +struct Templates { + typedef Templates31 type; +}; +template +struct Templates { + typedef Templates32 type; +}; +template +struct Templates { + typedef Templates33 type; +}; +template +struct Templates { + typedef Templates34 type; +}; +template +struct Templates { + typedef Templates35 type; +}; +template +struct Templates { + typedef Templates36 type; +}; +template +struct Templates { + typedef Templates37 type; +}; +template +struct Templates { + typedef Templates38 type; +}; +template +struct Templates { + typedef Templates39 type; +}; +template +struct Templates { + typedef Templates40 type; +}; +template +struct Templates { + typedef Templates41 type; +}; +template +struct Templates { + typedef Templates42 type; +}; +template +struct Templates { + typedef Templates43 type; +}; +template +struct Templates { + typedef Templates44 type; +}; +template +struct Templates { + typedef Templates45 type; +}; +template +struct Templates { + typedef Templates46 type; +}; +template +struct Templates { + typedef Templates47 type; +}; +template +struct Templates { + typedef Templates48 type; +}; +template +struct Templates { + typedef Templates49 type; +}; + +// The TypeList template makes it possible to use either a single type +// or a Types<...> list in TYPED_TEST_CASE() and +// INSTANTIATE_TYPED_TEST_CASE_P(). + +template +struct TypeList { + typedef Types1 type; +}; + +template +struct TypeList > { + typedef typename Types::type type; +}; + +#endif // GTEST_HAS_TYPED_TEST || GTEST_HAS_TYPED_TEST_P + +} // namespace internal +} // namespace testing + +#endif // GTEST_INCLUDE_GTEST_INTERNAL_GTEST_TYPE_UTIL_H_ diff --git a/third_party/googletest/src/include/gtest/internal/gtest-type-util.h.pump b/third_party/googletest/src/include/gtest/internal/gtest-type-util.h.pump new file mode 100644 index 0000000..251fdf0 --- /dev/null +++ b/third_party/googletest/src/include/gtest/internal/gtest-type-util.h.pump @@ -0,0 +1,297 @@ +$$ -*- mode: c++; -*- +$var n = 50 $$ Maximum length of type lists we want to support. +// Copyright 2008 Google Inc. +// All Rights Reserved. +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: +// +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above +// copyright notice, this list of conditions and the following disclaimer +// in the documentation and/or other materials provided with the +// distribution. +// * Neither the name of Google Inc. nor the names of its +// contributors may be used to endorse or promote products derived from +// this software without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +// +// Author: wan@google.com (Zhanyong Wan) + +// Type utilities needed for implementing typed and type-parameterized +// tests. This file is generated by a SCRIPT. DO NOT EDIT BY HAND! +// +// Currently we support at most $n types in a list, and at most $n +// type-parameterized tests in one type-parameterized test case. +// Please contact googletestframework@googlegroups.com if you need +// more. + +#ifndef GTEST_INCLUDE_GTEST_INTERNAL_GTEST_TYPE_UTIL_H_ +#define GTEST_INCLUDE_GTEST_INTERNAL_GTEST_TYPE_UTIL_H_ + +#include "gtest/internal/gtest-port.h" + +// #ifdef __GNUC__ is too general here. It is possible to use gcc without using +// libstdc++ (which is where cxxabi.h comes from). +# if GTEST_HAS_CXXABI_H_ +# include +# elif defined(__HP_aCC) +# include +# endif // GTEST_HASH_CXXABI_H_ + +namespace testing { +namespace internal { + +// GetTypeName() returns a human-readable name of type T. +// NB: This function is also used in Google Mock, so don't move it inside of +// the typed-test-only section below. +template +std::string GetTypeName() { +# if GTEST_HAS_RTTI + + const char* const name = typeid(T).name(); +# if GTEST_HAS_CXXABI_H_ || defined(__HP_aCC) + int status = 0; + // gcc's implementation of typeid(T).name() mangles the type name, + // so we have to demangle it. +# if GTEST_HAS_CXXABI_H_ + using abi::__cxa_demangle; +# endif // GTEST_HAS_CXXABI_H_ + char* const readable_name = __cxa_demangle(name, 0, 0, &status); + const std::string name_str(status == 0 ? readable_name : name); + free(readable_name); + return name_str; +# else + return name; +# endif // GTEST_HAS_CXXABI_H_ || __HP_aCC + +# else + + return ""; + +# endif // GTEST_HAS_RTTI +} + +#if GTEST_HAS_TYPED_TEST || GTEST_HAS_TYPED_TEST_P + +// AssertyTypeEq::type is defined iff T1 and T2 are the same +// type. This can be used as a compile-time assertion to ensure that +// two types are equal. + +template +struct AssertTypeEq; + +template +struct AssertTypeEq { + typedef bool type; +}; + +// A unique type used as the default value for the arguments of class +// template Types. This allows us to simulate variadic templates +// (e.g. Types, Type, and etc), which C++ doesn't +// support directly. +struct None {}; + +// The following family of struct and struct templates are used to +// represent type lists. In particular, TypesN +// represents a type list with N types (T1, T2, ..., and TN) in it. +// Except for Types0, every struct in the family has two member types: +// Head for the first type in the list, and Tail for the rest of the +// list. + +// The empty type list. +struct Types0 {}; + +// Type lists of length 1, 2, 3, and so on. + +template +struct Types1 { + typedef T1 Head; + typedef Types0 Tail; +}; + +$range i 2..n + +$for i [[ +$range j 1..i +$range k 2..i +template <$for j, [[typename T$j]]> +struct Types$i { + typedef T1 Head; + typedef Types$(i-1)<$for k, [[T$k]]> Tail; +}; + + +]] + +} // namespace internal + +// We don't want to require the users to write TypesN<...> directly, +// as that would require them to count the length. Types<...> is much +// easier to write, but generates horrible messages when there is a +// compiler error, as gcc insists on printing out each template +// argument, even if it has the default value (this means Types +// will appear as Types in the compiler +// errors). +// +// Our solution is to combine the best part of the two approaches: a +// user would write Types, and Google Test will translate +// that to TypesN internally to make error messages +// readable. The translation is done by the 'type' member of the +// Types template. + +$range i 1..n +template <$for i, [[typename T$i = internal::None]]> +struct Types { + typedef internal::Types$n<$for i, [[T$i]]> type; +}; + +template <> +struct Types<$for i, [[internal::None]]> { + typedef internal::Types0 type; +}; + +$range i 1..n-1 +$for i [[ +$range j 1..i +$range k i+1..n +template <$for j, [[typename T$j]]> +struct Types<$for j, [[T$j]]$for k[[, internal::None]]> { + typedef internal::Types$i<$for j, [[T$j]]> type; +}; + +]] + +namespace internal { + +# define GTEST_TEMPLATE_ template class + +// The template "selector" struct TemplateSel is used to +// represent Tmpl, which must be a class template with one type +// parameter, as a type. TemplateSel::Bind::type is defined +// as the type Tmpl. This allows us to actually instantiate the +// template "selected" by TemplateSel. +// +// This trick is necessary for simulating typedef for class templates, +// which C++ doesn't support directly. +template +struct TemplateSel { + template + struct Bind { + typedef Tmpl type; + }; +}; + +# define GTEST_BIND_(TmplSel, T) \ + TmplSel::template Bind::type + +// A unique struct template used as the default value for the +// arguments of class template Templates. This allows us to simulate +// variadic templates (e.g. Templates, Templates, +// and etc), which C++ doesn't support directly. +template +struct NoneT {}; + +// The following family of struct and struct templates are used to +// represent template lists. In particular, TemplatesN represents a list of N templates (T1, T2, ..., and TN). Except +// for Templates0, every struct in the family has two member types: +// Head for the selector of the first template in the list, and Tail +// for the rest of the list. + +// The empty template list. +struct Templates0 {}; + +// Template lists of length 1, 2, 3, and so on. + +template +struct Templates1 { + typedef TemplateSel Head; + typedef Templates0 Tail; +}; + +$range i 2..n + +$for i [[ +$range j 1..i +$range k 2..i +template <$for j, [[GTEST_TEMPLATE_ T$j]]> +struct Templates$i { + typedef TemplateSel Head; + typedef Templates$(i-1)<$for k, [[T$k]]> Tail; +}; + + +]] + +// We don't want to require the users to write TemplatesN<...> directly, +// as that would require them to count the length. Templates<...> is much +// easier to write, but generates horrible messages when there is a +// compiler error, as gcc insists on printing out each template +// argument, even if it has the default value (this means Templates +// will appear as Templates in the compiler +// errors). +// +// Our solution is to combine the best part of the two approaches: a +// user would write Templates, and Google Test will translate +// that to TemplatesN internally to make error messages +// readable. The translation is done by the 'type' member of the +// Templates template. + +$range i 1..n +template <$for i, [[GTEST_TEMPLATE_ T$i = NoneT]]> +struct Templates { + typedef Templates$n<$for i, [[T$i]]> type; +}; + +template <> +struct Templates<$for i, [[NoneT]]> { + typedef Templates0 type; +}; + +$range i 1..n-1 +$for i [[ +$range j 1..i +$range k i+1..n +template <$for j, [[GTEST_TEMPLATE_ T$j]]> +struct Templates<$for j, [[T$j]]$for k[[, NoneT]]> { + typedef Templates$i<$for j, [[T$j]]> type; +}; + +]] + +// The TypeList template makes it possible to use either a single type +// or a Types<...> list in TYPED_TEST_CASE() and +// INSTANTIATE_TYPED_TEST_CASE_P(). + +template +struct TypeList { + typedef Types1 type; +}; + + +$range i 1..n +template <$for i, [[typename T$i]]> +struct TypeList > { + typedef typename Types<$for i, [[T$i]]>::type type; +}; + +#endif // GTEST_HAS_TYPED_TEST || GTEST_HAS_TYPED_TEST_P + +} // namespace internal +} // namespace testing + +#endif // GTEST_INCLUDE_GTEST_INTERNAL_GTEST_TYPE_UTIL_H_ diff --git a/third_party/googletest/src/src/gtest-all.cc b/third_party/googletest/src/src/gtest-all.cc new file mode 100644 index 0000000..0a9cee5 --- /dev/null +++ b/third_party/googletest/src/src/gtest-all.cc @@ -0,0 +1,48 @@ +// Copyright 2008, Google Inc. +// All rights reserved. +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: +// +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above +// copyright notice, this list of conditions and the following disclaimer +// in the documentation and/or other materials provided with the +// distribution. +// * Neither the name of Google Inc. nor the names of its +// contributors may be used to endorse or promote products derived from +// this software without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +// +// Author: mheule@google.com (Markus Heule) +// +// Google C++ Testing Framework (Google Test) +// +// Sometimes it's desirable to build Google Test by compiling a single file. +// This file serves this purpose. + +// This line ensures that gtest.h can be compiled on its own, even +// when it's fused. +#include "gtest/gtest.h" + +// The following lines pull in the real gtest *.cc files. +#include "src/gtest.cc" +#include "src/gtest-death-test.cc" +#include "src/gtest-filepath.cc" +#include "src/gtest-port.cc" +#include "src/gtest-printers.cc" +#include "src/gtest-test-part.cc" +#include "src/gtest-typed-test.cc" diff --git a/third_party/googletest/src/src/gtest-death-test.cc b/third_party/googletest/src/src/gtest-death-test.cc new file mode 100644 index 0000000..a01a369 --- /dev/null +++ b/third_party/googletest/src/src/gtest-death-test.cc @@ -0,0 +1,1342 @@ +// Copyright 2005, Google Inc. +// All rights reserved. +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: +// +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above +// copyright notice, this list of conditions and the following disclaimer +// in the documentation and/or other materials provided with the +// distribution. +// * Neither the name of Google Inc. nor the names of its +// contributors may be used to endorse or promote products derived from +// this software without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +// +// Author: wan@google.com (Zhanyong Wan), vladl@google.com (Vlad Losev) +// +// This file implements death tests. + +#include "gtest/gtest-death-test.h" +#include "gtest/internal/gtest-port.h" +#include "gtest/internal/custom/gtest.h" + +#if GTEST_HAS_DEATH_TEST + +# if GTEST_OS_MAC +# include +# endif // GTEST_OS_MAC + +# include +# include +# include + +# if GTEST_OS_LINUX +# include +# endif // GTEST_OS_LINUX + +# include + +# if GTEST_OS_WINDOWS +# include +# else +# include +# include +# endif // GTEST_OS_WINDOWS + +# if GTEST_OS_QNX +# include +# endif // GTEST_OS_QNX + +#endif // GTEST_HAS_DEATH_TEST + +#include "gtest/gtest-message.h" +#include "gtest/internal/gtest-string.h" + +// Indicates that this translation unit is part of Google Test's +// implementation. It must come before gtest-internal-inl.h is +// included, or there will be a compiler error. This trick exists to +// prevent the accidental inclusion of gtest-internal-inl.h in the +// user's code. +#define GTEST_IMPLEMENTATION_ 1 +#include "src/gtest-internal-inl.h" +#undef GTEST_IMPLEMENTATION_ + +namespace testing { + +// Constants. + +// The default death test style. +static const char kDefaultDeathTestStyle[] = "fast"; + +GTEST_DEFINE_string_( + death_test_style, + internal::StringFromGTestEnv("death_test_style", kDefaultDeathTestStyle), + "Indicates how to run a death test in a forked child process: " + "\"threadsafe\" (child process re-executes the test binary " + "from the beginning, running only the specific death test) or " + "\"fast\" (child process runs the death test immediately " + "after forking)."); + +GTEST_DEFINE_bool_( + death_test_use_fork, + internal::BoolFromGTestEnv("death_test_use_fork", false), + "Instructs to use fork()/_exit() instead of clone() in death tests. " + "Ignored and always uses fork() on POSIX systems where clone() is not " + "implemented. Useful when running under valgrind or similar tools if " + "those do not support clone(). Valgrind 3.3.1 will just fail if " + "it sees an unsupported combination of clone() flags. " + "It is not recommended to use this flag w/o valgrind though it will " + "work in 99% of the cases. Once valgrind is fixed, this flag will " + "most likely be removed."); + +namespace internal { +GTEST_DEFINE_string_( + internal_run_death_test, "", + "Indicates the file, line number, temporal index of " + "the single death test to run, and a file descriptor to " + "which a success code may be sent, all separated by " + "the '|' characters. This flag is specified if and only if the current " + "process is a sub-process launched for running a thread-safe " + "death test. FOR INTERNAL USE ONLY."); +} // namespace internal + +#if GTEST_HAS_DEATH_TEST + +namespace internal { + +// Valid only for fast death tests. Indicates the code is running in the +// child process of a fast style death test. +# if !GTEST_OS_WINDOWS +static bool g_in_fast_death_test_child = false; +# endif + +// Returns a Boolean value indicating whether the caller is currently +// executing in the context of the death test child process. Tools such as +// Valgrind heap checkers may need this to modify their behavior in death +// tests. IMPORTANT: This is an internal utility. Using it may break the +// implementation of death tests. User code MUST NOT use it. +bool InDeathTestChild() { +# if GTEST_OS_WINDOWS + + // On Windows, death tests are thread-safe regardless of the value of the + // death_test_style flag. + return !GTEST_FLAG(internal_run_death_test).empty(); + +# else + + if (GTEST_FLAG(death_test_style) == "threadsafe") + return !GTEST_FLAG(internal_run_death_test).empty(); + else + return g_in_fast_death_test_child; +#endif +} + +} // namespace internal + +// ExitedWithCode constructor. +ExitedWithCode::ExitedWithCode(int exit_code) : exit_code_(exit_code) { +} + +// ExitedWithCode function-call operator. +bool ExitedWithCode::operator()(int exit_status) const { +# if GTEST_OS_WINDOWS + + return exit_status == exit_code_; + +# else + + return WIFEXITED(exit_status) && WEXITSTATUS(exit_status) == exit_code_; + +# endif // GTEST_OS_WINDOWS +} + +# if !GTEST_OS_WINDOWS +// KilledBySignal constructor. +KilledBySignal::KilledBySignal(int signum) : signum_(signum) { +} + +// KilledBySignal function-call operator. +bool KilledBySignal::operator()(int exit_status) const { +# if defined(GTEST_KILLED_BY_SIGNAL_OVERRIDE_) + { + bool result; + if (GTEST_KILLED_BY_SIGNAL_OVERRIDE_(signum_, exit_status, &result)) { + return result; + } + } +# endif // defined(GTEST_KILLED_BY_SIGNAL_OVERRIDE_) + return WIFSIGNALED(exit_status) && WTERMSIG(exit_status) == signum_; +} +# endif // !GTEST_OS_WINDOWS + +namespace internal { + +// Utilities needed for death tests. + +// Generates a textual description of a given exit code, in the format +// specified by wait(2). +static std::string ExitSummary(int exit_code) { + Message m; + +# if GTEST_OS_WINDOWS + + m << "Exited with exit status " << exit_code; + +# else + + if (WIFEXITED(exit_code)) { + m << "Exited with exit status " << WEXITSTATUS(exit_code); + } else if (WIFSIGNALED(exit_code)) { + m << "Terminated by signal " << WTERMSIG(exit_code); + } +# ifdef WCOREDUMP + if (WCOREDUMP(exit_code)) { + m << " (core dumped)"; + } +# endif +# endif // GTEST_OS_WINDOWS + + return m.GetString(); +} + +// Returns true if exit_status describes a process that was terminated +// by a signal, or exited normally with a nonzero exit code. +bool ExitedUnsuccessfully(int exit_status) { + return !ExitedWithCode(0)(exit_status); +} + +# if !GTEST_OS_WINDOWS +// Generates a textual failure message when a death test finds more than +// one thread running, or cannot determine the number of threads, prior +// to executing the given statement. It is the responsibility of the +// caller not to pass a thread_count of 1. +static std::string DeathTestThreadWarning(size_t thread_count) { + Message msg; + msg << "Death tests use fork(), which is unsafe particularly" + << " in a threaded context. For this test, " << GTEST_NAME_ << " "; + if (thread_count == 0) + msg << "couldn't detect the number of threads."; + else + msg << "detected " << thread_count << " threads."; + return msg.GetString(); +} +# endif // !GTEST_OS_WINDOWS + +// Flag characters for reporting a death test that did not die. +static const char kDeathTestLived = 'L'; +static const char kDeathTestReturned = 'R'; +static const char kDeathTestThrew = 'T'; +static const char kDeathTestInternalError = 'I'; + +// An enumeration describing all of the possible ways that a death test can +// conclude. DIED means that the process died while executing the test +// code; LIVED means that process lived beyond the end of the test code; +// RETURNED means that the test statement attempted to execute a return +// statement, which is not allowed; THREW means that the test statement +// returned control by throwing an exception. IN_PROGRESS means the test +// has not yet concluded. +// TODO(vladl@google.com): Unify names and possibly values for +// AbortReason, DeathTestOutcome, and flag characters above. +enum DeathTestOutcome { IN_PROGRESS, DIED, LIVED, RETURNED, THREW }; + +// Routine for aborting the program which is safe to call from an +// exec-style death test child process, in which case the error +// message is propagated back to the parent process. Otherwise, the +// message is simply printed to stderr. In either case, the program +// then exits with status 1. +void DeathTestAbort(const std::string& message) { + // On a POSIX system, this function may be called from a threadsafe-style + // death test child process, which operates on a very small stack. Use + // the heap for any additional non-minuscule memory requirements. + const InternalRunDeathTestFlag* const flag = + GetUnitTestImpl()->internal_run_death_test_flag(); + if (flag != NULL) { + FILE* parent = posix::FDOpen(flag->write_fd(), "w"); + fputc(kDeathTestInternalError, parent); + fprintf(parent, "%s", message.c_str()); + fflush(parent); + _exit(1); + } else { + fprintf(stderr, "%s", message.c_str()); + fflush(stderr); + posix::Abort(); + } +} + +// A replacement for CHECK that calls DeathTestAbort if the assertion +// fails. +# define GTEST_DEATH_TEST_CHECK_(expression) \ + do { \ + if (!::testing::internal::IsTrue(expression)) { \ + DeathTestAbort( \ + ::std::string("CHECK failed: File ") + __FILE__ + ", line " \ + + ::testing::internal::StreamableToString(__LINE__) + ": " \ + + #expression); \ + } \ + } while (::testing::internal::AlwaysFalse()) + +// This macro is similar to GTEST_DEATH_TEST_CHECK_, but it is meant for +// evaluating any system call that fulfills two conditions: it must return +// -1 on failure, and set errno to EINTR when it is interrupted and +// should be tried again. The macro expands to a loop that repeatedly +// evaluates the expression as long as it evaluates to -1 and sets +// errno to EINTR. If the expression evaluates to -1 but errno is +// something other than EINTR, DeathTestAbort is called. +# define GTEST_DEATH_TEST_CHECK_SYSCALL_(expression) \ + do { \ + int gtest_retval; \ + do { \ + gtest_retval = (expression); \ + } while (gtest_retval == -1 && errno == EINTR); \ + if (gtest_retval == -1) { \ + DeathTestAbort( \ + ::std::string("CHECK failed: File ") + __FILE__ + ", line " \ + + ::testing::internal::StreamableToString(__LINE__) + ": " \ + + #expression + " != -1"); \ + } \ + } while (::testing::internal::AlwaysFalse()) + +// Returns the message describing the last system error in errno. +std::string GetLastErrnoDescription() { + return errno == 0 ? "" : posix::StrError(errno); +} + +// This is called from a death test parent process to read a failure +// message from the death test child process and log it with the FATAL +// severity. On Windows, the message is read from a pipe handle. On other +// platforms, it is read from a file descriptor. +static void FailFromInternalError(int fd) { + Message error; + char buffer[256]; + int num_read; + + do { + while ((num_read = posix::Read(fd, buffer, 255)) > 0) { + buffer[num_read] = '\0'; + error << buffer; + } + } while (num_read == -1 && errno == EINTR); + + if (num_read == 0) { + GTEST_LOG_(FATAL) << error.GetString(); + } else { + const int last_error = errno; + GTEST_LOG_(FATAL) << "Error while reading death test internal: " + << GetLastErrnoDescription() << " [" << last_error << "]"; + } +} + +// Death test constructor. Increments the running death test count +// for the current test. +DeathTest::DeathTest() { + TestInfo* const info = GetUnitTestImpl()->current_test_info(); + if (info == NULL) { + DeathTestAbort("Cannot run a death test outside of a TEST or " + "TEST_F construct"); + } +} + +// Creates and returns a death test by dispatching to the current +// death test factory. +bool DeathTest::Create(const char* statement, const RE* regex, + const char* file, int line, DeathTest** test) { + return GetUnitTestImpl()->death_test_factory()->Create( + statement, regex, file, line, test); +} + +const char* DeathTest::LastMessage() { + return last_death_test_message_.c_str(); +} + +void DeathTest::set_last_death_test_message(const std::string& message) { + last_death_test_message_ = message; +} + +std::string DeathTest::last_death_test_message_; + +// Provides cross platform implementation for some death functionality. +class DeathTestImpl : public DeathTest { + protected: + DeathTestImpl(const char* a_statement, const RE* a_regex) + : statement_(a_statement), + regex_(a_regex), + spawned_(false), + status_(-1), + outcome_(IN_PROGRESS), + read_fd_(-1), + write_fd_(-1) {} + + // read_fd_ is expected to be closed and cleared by a derived class. + ~DeathTestImpl() { GTEST_DEATH_TEST_CHECK_(read_fd_ == -1); } + + void Abort(AbortReason reason); + virtual bool Passed(bool status_ok); + + const char* statement() const { return statement_; } + const RE* regex() const { return regex_; } + bool spawned() const { return spawned_; } + void set_spawned(bool is_spawned) { spawned_ = is_spawned; } + int status() const { return status_; } + void set_status(int a_status) { status_ = a_status; } + DeathTestOutcome outcome() const { return outcome_; } + void set_outcome(DeathTestOutcome an_outcome) { outcome_ = an_outcome; } + int read_fd() const { return read_fd_; } + void set_read_fd(int fd) { read_fd_ = fd; } + int write_fd() const { return write_fd_; } + void set_write_fd(int fd) { write_fd_ = fd; } + + // Called in the parent process only. Reads the result code of the death + // test child process via a pipe, interprets it to set the outcome_ + // member, and closes read_fd_. Outputs diagnostics and terminates in + // case of unexpected codes. + void ReadAndInterpretStatusByte(); + + private: + // The textual content of the code this object is testing. This class + // doesn't own this string and should not attempt to delete it. + const char* const statement_; + // The regular expression which test output must match. DeathTestImpl + // doesn't own this object and should not attempt to delete it. + const RE* const regex_; + // True if the death test child process has been successfully spawned. + bool spawned_; + // The exit status of the child process. + int status_; + // How the death test concluded. + DeathTestOutcome outcome_; + // Descriptor to the read end of the pipe to the child process. It is + // always -1 in the child process. The child keeps its write end of the + // pipe in write_fd_. + int read_fd_; + // Descriptor to the child's write end of the pipe to the parent process. + // It is always -1 in the parent process. The parent keeps its end of the + // pipe in read_fd_. + int write_fd_; +}; + +// Called in the parent process only. Reads the result code of the death +// test child process via a pipe, interprets it to set the outcome_ +// member, and closes read_fd_. Outputs diagnostics and terminates in +// case of unexpected codes. +void DeathTestImpl::ReadAndInterpretStatusByte() { + char flag; + int bytes_read; + + // The read() here blocks until data is available (signifying the + // failure of the death test) or until the pipe is closed (signifying + // its success), so it's okay to call this in the parent before + // the child process has exited. + do { + bytes_read = posix::Read(read_fd(), &flag, 1); + } while (bytes_read == -1 && errno == EINTR); + + if (bytes_read == 0) { + set_outcome(DIED); + } else if (bytes_read == 1) { + switch (flag) { + case kDeathTestReturned: + set_outcome(RETURNED); + break; + case kDeathTestThrew: + set_outcome(THREW); + break; + case kDeathTestLived: + set_outcome(LIVED); + break; + case kDeathTestInternalError: + FailFromInternalError(read_fd()); // Does not return. + break; + default: + GTEST_LOG_(FATAL) << "Death test child process reported " + << "unexpected status byte (" + << static_cast(flag) << ")"; + } + } else { + GTEST_LOG_(FATAL) << "Read from death test child process failed: " + << GetLastErrnoDescription(); + } + GTEST_DEATH_TEST_CHECK_SYSCALL_(posix::Close(read_fd())); + set_read_fd(-1); +} + +// Signals that the death test code which should have exited, didn't. +// Should be called only in a death test child process. +// Writes a status byte to the child's status file descriptor, then +// calls _exit(1). +void DeathTestImpl::Abort(AbortReason reason) { + // The parent process considers the death test to be a failure if + // it finds any data in our pipe. So, here we write a single flag byte + // to the pipe, then exit. + const char status_ch = + reason == TEST_DID_NOT_DIE ? kDeathTestLived : + reason == TEST_THREW_EXCEPTION ? kDeathTestThrew : kDeathTestReturned; + + GTEST_DEATH_TEST_CHECK_SYSCALL_(posix::Write(write_fd(), &status_ch, 1)); + // We are leaking the descriptor here because on some platforms (i.e., + // when built as Windows DLL), destructors of global objects will still + // run after calling _exit(). On such systems, write_fd_ will be + // indirectly closed from the destructor of UnitTestImpl, causing double + // close if it is also closed here. On debug configurations, double close + // may assert. As there are no in-process buffers to flush here, we are + // relying on the OS to close the descriptor after the process terminates + // when the destructors are not run. + _exit(1); // Exits w/o any normal exit hooks (we were supposed to crash) +} + +// Returns an indented copy of stderr output for a death test. +// This makes distinguishing death test output lines from regular log lines +// much easier. +static ::std::string FormatDeathTestOutput(const ::std::string& output) { + ::std::string ret; + for (size_t at = 0; ; ) { + const size_t line_end = output.find('\n', at); + ret += "[ DEATH ] "; + if (line_end == ::std::string::npos) { + ret += output.substr(at); + break; + } + ret += output.substr(at, line_end + 1 - at); + at = line_end + 1; + } + return ret; +} + +// Assesses the success or failure of a death test, using both private +// members which have previously been set, and one argument: +// +// Private data members: +// outcome: An enumeration describing how the death test +// concluded: DIED, LIVED, THREW, or RETURNED. The death test +// fails in the latter three cases. +// status: The exit status of the child process. On *nix, it is in the +// in the format specified by wait(2). On Windows, this is the +// value supplied to the ExitProcess() API or a numeric code +// of the exception that terminated the program. +// regex: A regular expression object to be applied to +// the test's captured standard error output; the death test +// fails if it does not match. +// +// Argument: +// status_ok: true if exit_status is acceptable in the context of +// this particular death test, which fails if it is false +// +// Returns true iff all of the above conditions are met. Otherwise, the +// first failing condition, in the order given above, is the one that is +// reported. Also sets the last death test message string. +bool DeathTestImpl::Passed(bool status_ok) { + if (!spawned()) + return false; + + const std::string error_message = GetCapturedStderr(); + + bool success = false; + Message buffer; + + buffer << "Death test: " << statement() << "\n"; + switch (outcome()) { + case LIVED: + buffer << " Result: failed to die.\n" + << " Error msg:\n" << FormatDeathTestOutput(error_message); + break; + case THREW: + buffer << " Result: threw an exception.\n" + << " Error msg:\n" << FormatDeathTestOutput(error_message); + break; + case RETURNED: + buffer << " Result: illegal return in test statement.\n" + << " Error msg:\n" << FormatDeathTestOutput(error_message); + break; + case DIED: + if (status_ok) { + const bool matched = RE::PartialMatch(error_message.c_str(), *regex()); + if (matched) { + success = true; + } else { + buffer << " Result: died but not with expected error.\n" + << " Expected: " << regex()->pattern() << "\n" + << "Actual msg:\n" << FormatDeathTestOutput(error_message); + } + } else { + buffer << " Result: died but not with expected exit code:\n" + << " " << ExitSummary(status()) << "\n" + << "Actual msg:\n" << FormatDeathTestOutput(error_message); + } + break; + case IN_PROGRESS: + default: + GTEST_LOG_(FATAL) + << "DeathTest::Passed somehow called before conclusion of test"; + } + + DeathTest::set_last_death_test_message(buffer.GetString()); + return success; +} + +# if GTEST_OS_WINDOWS +// WindowsDeathTest implements death tests on Windows. Due to the +// specifics of starting new processes on Windows, death tests there are +// always threadsafe, and Google Test considers the +// --gtest_death_test_style=fast setting to be equivalent to +// --gtest_death_test_style=threadsafe there. +// +// A few implementation notes: Like the Linux version, the Windows +// implementation uses pipes for child-to-parent communication. But due to +// the specifics of pipes on Windows, some extra steps are required: +// +// 1. The parent creates a communication pipe and stores handles to both +// ends of it. +// 2. The parent starts the child and provides it with the information +// necessary to acquire the handle to the write end of the pipe. +// 3. The child acquires the write end of the pipe and signals the parent +// using a Windows event. +// 4. Now the parent can release the write end of the pipe on its side. If +// this is done before step 3, the object's reference count goes down to +// 0 and it is destroyed, preventing the child from acquiring it. The +// parent now has to release it, or read operations on the read end of +// the pipe will not return when the child terminates. +// 5. The parent reads child's output through the pipe (outcome code and +// any possible error messages) from the pipe, and its stderr and then +// determines whether to fail the test. +// +// Note: to distinguish Win32 API calls from the local method and function +// calls, the former are explicitly resolved in the global namespace. +// +class WindowsDeathTest : public DeathTestImpl { + public: + WindowsDeathTest(const char* a_statement, + const RE* a_regex, + const char* file, + int line) + : DeathTestImpl(a_statement, a_regex), file_(file), line_(line) {} + + // All of these virtual functions are inherited from DeathTest. + virtual int Wait(); + virtual TestRole AssumeRole(); + + private: + // The name of the file in which the death test is located. + const char* const file_; + // The line number on which the death test is located. + const int line_; + // Handle to the write end of the pipe to the child process. + AutoHandle write_handle_; + // Child process handle. + AutoHandle child_handle_; + // Event the child process uses to signal the parent that it has + // acquired the handle to the write end of the pipe. After seeing this + // event the parent can release its own handles to make sure its + // ReadFile() calls return when the child terminates. + AutoHandle event_handle_; +}; + +// Waits for the child in a death test to exit, returning its exit +// status, or 0 if no child process exists. As a side effect, sets the +// outcome data member. +int WindowsDeathTest::Wait() { + if (!spawned()) + return 0; + + // Wait until the child either signals that it has acquired the write end + // of the pipe or it dies. + const HANDLE wait_handles[2] = { child_handle_.Get(), event_handle_.Get() }; + switch (::WaitForMultipleObjects(2, + wait_handles, + FALSE, // Waits for any of the handles. + INFINITE)) { + case WAIT_OBJECT_0: + case WAIT_OBJECT_0 + 1: + break; + default: + GTEST_DEATH_TEST_CHECK_(false); // Should not get here. + } + + // The child has acquired the write end of the pipe or exited. + // We release the handle on our side and continue. + write_handle_.Reset(); + event_handle_.Reset(); + + ReadAndInterpretStatusByte(); + + // Waits for the child process to exit if it haven't already. This + // returns immediately if the child has already exited, regardless of + // whether previous calls to WaitForMultipleObjects synchronized on this + // handle or not. + GTEST_DEATH_TEST_CHECK_( + WAIT_OBJECT_0 == ::WaitForSingleObject(child_handle_.Get(), + INFINITE)); + DWORD status_code; + GTEST_DEATH_TEST_CHECK_( + ::GetExitCodeProcess(child_handle_.Get(), &status_code) != FALSE); + child_handle_.Reset(); + set_status(static_cast(status_code)); + return status(); +} + +// The AssumeRole process for a Windows death test. It creates a child +// process with the same executable as the current process to run the +// death test. The child process is given the --gtest_filter and +// --gtest_internal_run_death_test flags such that it knows to run the +// current death test only. +DeathTest::TestRole WindowsDeathTest::AssumeRole() { + const UnitTestImpl* const impl = GetUnitTestImpl(); + const InternalRunDeathTestFlag* const flag = + impl->internal_run_death_test_flag(); + const TestInfo* const info = impl->current_test_info(); + const int death_test_index = info->result()->death_test_count(); + + if (flag != NULL) { + // ParseInternalRunDeathTestFlag() has performed all the necessary + // processing. + set_write_fd(flag->write_fd()); + return EXECUTE_TEST; + } + + // WindowsDeathTest uses an anonymous pipe to communicate results of + // a death test. + SECURITY_ATTRIBUTES handles_are_inheritable = { + sizeof(SECURITY_ATTRIBUTES), NULL, TRUE }; + HANDLE read_handle, write_handle; + GTEST_DEATH_TEST_CHECK_( + ::CreatePipe(&read_handle, &write_handle, &handles_are_inheritable, + 0) // Default buffer size. + != FALSE); + set_read_fd(::_open_osfhandle(reinterpret_cast(read_handle), + O_RDONLY)); + write_handle_.Reset(write_handle); + event_handle_.Reset(::CreateEvent( + &handles_are_inheritable, + TRUE, // The event will automatically reset to non-signaled state. + FALSE, // The initial state is non-signalled. + NULL)); // The even is unnamed. + GTEST_DEATH_TEST_CHECK_(event_handle_.Get() != NULL); + const std::string filter_flag = + std::string("--") + GTEST_FLAG_PREFIX_ + kFilterFlag + "=" + + info->test_case_name() + "." + info->name(); + const std::string internal_flag = + std::string("--") + GTEST_FLAG_PREFIX_ + kInternalRunDeathTestFlag + + "=" + file_ + "|" + StreamableToString(line_) + "|" + + StreamableToString(death_test_index) + "|" + + StreamableToString(static_cast(::GetCurrentProcessId())) + + // size_t has the same width as pointers on both 32-bit and 64-bit + // Windows platforms. + // See http://msdn.microsoft.com/en-us/library/tcxf1dw6.aspx. + "|" + StreamableToString(reinterpret_cast(write_handle)) + + "|" + StreamableToString(reinterpret_cast(event_handle_.Get())); + + char executable_path[_MAX_PATH + 1]; // NOLINT + GTEST_DEATH_TEST_CHECK_( + _MAX_PATH + 1 != ::GetModuleFileNameA(NULL, + executable_path, + _MAX_PATH)); + + std::string command_line = + std::string(::GetCommandLineA()) + " " + filter_flag + " \"" + + internal_flag + "\""; + + DeathTest::set_last_death_test_message(""); + + CaptureStderr(); + // Flush the log buffers since the log streams are shared with the child. + FlushInfoLog(); + + // The child process will share the standard handles with the parent. + STARTUPINFOA startup_info; + memset(&startup_info, 0, sizeof(STARTUPINFO)); + startup_info.dwFlags = STARTF_USESTDHANDLES; + startup_info.hStdInput = ::GetStdHandle(STD_INPUT_HANDLE); + startup_info.hStdOutput = ::GetStdHandle(STD_OUTPUT_HANDLE); + startup_info.hStdError = ::GetStdHandle(STD_ERROR_HANDLE); + + PROCESS_INFORMATION process_info; + GTEST_DEATH_TEST_CHECK_(::CreateProcessA( + executable_path, + const_cast(command_line.c_str()), + NULL, // Retuned process handle is not inheritable. + NULL, // Retuned thread handle is not inheritable. + TRUE, // Child inherits all inheritable handles (for write_handle_). + 0x0, // Default creation flags. + NULL, // Inherit the parent's environment. + UnitTest::GetInstance()->original_working_dir(), + &startup_info, + &process_info) != FALSE); + child_handle_.Reset(process_info.hProcess); + ::CloseHandle(process_info.hThread); + set_spawned(true); + return OVERSEE_TEST; +} +# else // We are not on Windows. + +// ForkingDeathTest provides implementations for most of the abstract +// methods of the DeathTest interface. Only the AssumeRole method is +// left undefined. +class ForkingDeathTest : public DeathTestImpl { + public: + ForkingDeathTest(const char* statement, const RE* regex); + + // All of these virtual functions are inherited from DeathTest. + virtual int Wait(); + + protected: + void set_child_pid(pid_t child_pid) { child_pid_ = child_pid; } + + private: + // PID of child process during death test; 0 in the child process itself. + pid_t child_pid_; +}; + +// Constructs a ForkingDeathTest. +ForkingDeathTest::ForkingDeathTest(const char* a_statement, const RE* a_regex) + : DeathTestImpl(a_statement, a_regex), + child_pid_(-1) {} + +// Waits for the child in a death test to exit, returning its exit +// status, or 0 if no child process exists. As a side effect, sets the +// outcome data member. +int ForkingDeathTest::Wait() { + if (!spawned()) + return 0; + + ReadAndInterpretStatusByte(); + + int status_value; + GTEST_DEATH_TEST_CHECK_SYSCALL_(waitpid(child_pid_, &status_value, 0)); + set_status(status_value); + return status_value; +} + +// A concrete death test class that forks, then immediately runs the test +// in the child process. +class NoExecDeathTest : public ForkingDeathTest { + public: + NoExecDeathTest(const char* a_statement, const RE* a_regex) : + ForkingDeathTest(a_statement, a_regex) { } + virtual TestRole AssumeRole(); +}; + +// The AssumeRole process for a fork-and-run death test. It implements a +// straightforward fork, with a simple pipe to transmit the status byte. +DeathTest::TestRole NoExecDeathTest::AssumeRole() { + const size_t thread_count = GetThreadCount(); + if (thread_count != 1) { + GTEST_LOG_(WARNING) << DeathTestThreadWarning(thread_count); + } + + int pipe_fd[2]; + GTEST_DEATH_TEST_CHECK_(pipe(pipe_fd) != -1); + + DeathTest::set_last_death_test_message(""); + CaptureStderr(); + // When we fork the process below, the log file buffers are copied, but the + // file descriptors are shared. We flush all log files here so that closing + // the file descriptors in the child process doesn't throw off the + // synchronization between descriptors and buffers in the parent process. + // This is as close to the fork as possible to avoid a race condition in case + // there are multiple threads running before the death test, and another + // thread writes to the log file. + FlushInfoLog(); + + const pid_t child_pid = fork(); + GTEST_DEATH_TEST_CHECK_(child_pid != -1); + set_child_pid(child_pid); + if (child_pid == 0) { + GTEST_DEATH_TEST_CHECK_SYSCALL_(close(pipe_fd[0])); + set_write_fd(pipe_fd[1]); + // Redirects all logging to stderr in the child process to prevent + // concurrent writes to the log files. We capture stderr in the parent + // process and append the child process' output to a log. + LogToStderr(); + // Event forwarding to the listeners of event listener API mush be shut + // down in death test subprocesses. + GetUnitTestImpl()->listeners()->SuppressEventForwarding(); + g_in_fast_death_test_child = true; + return EXECUTE_TEST; + } else { + GTEST_DEATH_TEST_CHECK_SYSCALL_(close(pipe_fd[1])); + set_read_fd(pipe_fd[0]); + set_spawned(true); + return OVERSEE_TEST; + } +} + +// A concrete death test class that forks and re-executes the main +// program from the beginning, with command-line flags set that cause +// only this specific death test to be run. +class ExecDeathTest : public ForkingDeathTest { + public: + ExecDeathTest(const char* a_statement, const RE* a_regex, + const char* file, int line) : + ForkingDeathTest(a_statement, a_regex), file_(file), line_(line) { } + virtual TestRole AssumeRole(); + private: + static ::std::vector + GetArgvsForDeathTestChildProcess() { + ::std::vector args = GetInjectableArgvs(); +# if defined(GTEST_EXTRA_DEATH_TEST_COMMAND_LINE_ARGS_) + ::std::vector extra_args = + GTEST_EXTRA_DEATH_TEST_COMMAND_LINE_ARGS_(); + args.insert(args.end(), extra_args.begin(), extra_args.end()); +# endif // defined(GTEST_EXTRA_DEATH_TEST_COMMAND_LINE_ARGS_) + return args; + } + // The name of the file in which the death test is located. + const char* const file_; + // The line number on which the death test is located. + const int line_; +}; + +// Utility class for accumulating command-line arguments. +class Arguments { + public: + Arguments() { + args_.push_back(NULL); + } + + ~Arguments() { + for (std::vector::iterator i = args_.begin(); i != args_.end(); + ++i) { + free(*i); + } + } + void AddArgument(const char* argument) { + args_.insert(args_.end() - 1, posix::StrDup(argument)); + } + + template + void AddArguments(const ::std::vector& arguments) { + for (typename ::std::vector::const_iterator i = arguments.begin(); + i != arguments.end(); + ++i) { + args_.insert(args_.end() - 1, posix::StrDup(i->c_str())); + } + } + char* const* Argv() { + return &args_[0]; + } + + private: + std::vector args_; +}; + +// A struct that encompasses the arguments to the child process of a +// threadsafe-style death test process. +struct ExecDeathTestArgs { + char* const* argv; // Command-line arguments for the child's call to exec + int close_fd; // File descriptor to close; the read end of a pipe +}; + +# if GTEST_OS_MAC +inline char** GetEnviron() { + // When Google Test is built as a framework on MacOS X, the environ variable + // is unavailable. Apple's documentation (man environ) recommends using + // _NSGetEnviron() instead. + return *_NSGetEnviron(); +} +# else +// Some POSIX platforms expect you to declare environ. extern "C" makes +// it reside in the global namespace. +extern "C" char** environ; +inline char** GetEnviron() { return environ; } +# endif // GTEST_OS_MAC + +# if !GTEST_OS_QNX +// The main function for a threadsafe-style death test child process. +// This function is called in a clone()-ed process and thus must avoid +// any potentially unsafe operations like malloc or libc functions. +static int ExecDeathTestChildMain(void* child_arg) { + ExecDeathTestArgs* const args = static_cast(child_arg); + GTEST_DEATH_TEST_CHECK_SYSCALL_(close(args->close_fd)); + + // We need to execute the test program in the same environment where + // it was originally invoked. Therefore we change to the original + // working directory first. + const char* const original_dir = + UnitTest::GetInstance()->original_working_dir(); + // We can safely call chdir() as it's a direct system call. + if (chdir(original_dir) != 0) { + DeathTestAbort(std::string("chdir(\"") + original_dir + "\") failed: " + + GetLastErrnoDescription()); + return EXIT_FAILURE; + } + + // We can safely call execve() as it's a direct system call. We + // cannot use execvp() as it's a libc function and thus potentially + // unsafe. Since execve() doesn't search the PATH, the user must + // invoke the test program via a valid path that contains at least + // one path separator. + execve(args->argv[0], args->argv, GetEnviron()); + DeathTestAbort(std::string("execve(") + args->argv[0] + ", ...) in " + + original_dir + " failed: " + + GetLastErrnoDescription()); + return EXIT_FAILURE; +} +# endif // !GTEST_OS_QNX + +// Two utility routines that together determine the direction the stack +// grows. +// This could be accomplished more elegantly by a single recursive +// function, but we want to guard against the unlikely possibility of +// a smart compiler optimizing the recursion away. +// +// GTEST_NO_INLINE_ is required to prevent GCC 4.6 from inlining +// StackLowerThanAddress into StackGrowsDown, which then doesn't give +// correct answer. +void StackLowerThanAddress(const void* ptr, bool* result) GTEST_NO_INLINE_; +void StackLowerThanAddress(const void* ptr, bool* result) { + int dummy; + *result = (&dummy < ptr); +} + +// Make sure AddressSanitizer does not tamper with the stack here. +GTEST_ATTRIBUTE_NO_SANITIZE_ADDRESS_ +bool StackGrowsDown() { + int dummy; + bool result; + StackLowerThanAddress(&dummy, &result); + return result; +} + +// Spawns a child process with the same executable as the current process in +// a thread-safe manner and instructs it to run the death test. The +// implementation uses fork(2) + exec. On systems where clone(2) is +// available, it is used instead, being slightly more thread-safe. On QNX, +// fork supports only single-threaded environments, so this function uses +// spawn(2) there instead. The function dies with an error message if +// anything goes wrong. +static pid_t ExecDeathTestSpawnChild(char* const* argv, int close_fd) { + ExecDeathTestArgs args = { argv, close_fd }; + pid_t child_pid = -1; + +# if GTEST_OS_QNX + // Obtains the current directory and sets it to be closed in the child + // process. + const int cwd_fd = open(".", O_RDONLY); + GTEST_DEATH_TEST_CHECK_(cwd_fd != -1); + GTEST_DEATH_TEST_CHECK_SYSCALL_(fcntl(cwd_fd, F_SETFD, FD_CLOEXEC)); + // We need to execute the test program in the same environment where + // it was originally invoked. Therefore we change to the original + // working directory first. + const char* const original_dir = + UnitTest::GetInstance()->original_working_dir(); + // We can safely call chdir() as it's a direct system call. + if (chdir(original_dir) != 0) { + DeathTestAbort(std::string("chdir(\"") + original_dir + "\") failed: " + + GetLastErrnoDescription()); + return EXIT_FAILURE; + } + + int fd_flags; + // Set close_fd to be closed after spawn. + GTEST_DEATH_TEST_CHECK_SYSCALL_(fd_flags = fcntl(close_fd, F_GETFD)); + GTEST_DEATH_TEST_CHECK_SYSCALL_(fcntl(close_fd, F_SETFD, + fd_flags | FD_CLOEXEC)); + struct inheritance inherit = {0}; + // spawn is a system call. + child_pid = spawn(args.argv[0], 0, NULL, &inherit, args.argv, GetEnviron()); + // Restores the current working directory. + GTEST_DEATH_TEST_CHECK_(fchdir(cwd_fd) != -1); + GTEST_DEATH_TEST_CHECK_SYSCALL_(close(cwd_fd)); + +# else // GTEST_OS_QNX +# if GTEST_OS_LINUX + // When a SIGPROF signal is received while fork() or clone() are executing, + // the process may hang. To avoid this, we ignore SIGPROF here and re-enable + // it after the call to fork()/clone() is complete. + struct sigaction saved_sigprof_action; + struct sigaction ignore_sigprof_action; + memset(&ignore_sigprof_action, 0, sizeof(ignore_sigprof_action)); + sigemptyset(&ignore_sigprof_action.sa_mask); + ignore_sigprof_action.sa_handler = SIG_IGN; + GTEST_DEATH_TEST_CHECK_SYSCALL_(sigaction( + SIGPROF, &ignore_sigprof_action, &saved_sigprof_action)); +# endif // GTEST_OS_LINUX + +# if GTEST_HAS_CLONE + const bool use_fork = GTEST_FLAG(death_test_use_fork); + + if (!use_fork) { + static const bool stack_grows_down = StackGrowsDown(); + const size_t stack_size = getpagesize(); + // MMAP_ANONYMOUS is not defined on Mac, so we use MAP_ANON instead. + void* const stack = mmap(NULL, stack_size, PROT_READ | PROT_WRITE, + MAP_ANON | MAP_PRIVATE, -1, 0); + GTEST_DEATH_TEST_CHECK_(stack != MAP_FAILED); + + // Maximum stack alignment in bytes: For a downward-growing stack, this + // amount is subtracted from size of the stack space to get an address + // that is within the stack space and is aligned on all systems we care + // about. As far as I know there is no ABI with stack alignment greater + // than 64. We assume stack and stack_size already have alignment of + // kMaxStackAlignment. + const size_t kMaxStackAlignment = 64; + void* const stack_top = + static_cast(stack) + + (stack_grows_down ? stack_size - kMaxStackAlignment : 0); + GTEST_DEATH_TEST_CHECK_(stack_size > kMaxStackAlignment && + reinterpret_cast(stack_top) % kMaxStackAlignment == 0); + + child_pid = clone(&ExecDeathTestChildMain, stack_top, SIGCHLD, &args); + + GTEST_DEATH_TEST_CHECK_(munmap(stack, stack_size) != -1); + } +# else + const bool use_fork = true; +# endif // GTEST_HAS_CLONE + + if (use_fork && (child_pid = fork()) == 0) { + ExecDeathTestChildMain(&args); + _exit(0); + } +# endif // GTEST_OS_QNX +# if GTEST_OS_LINUX + GTEST_DEATH_TEST_CHECK_SYSCALL_( + sigaction(SIGPROF, &saved_sigprof_action, NULL)); +# endif // GTEST_OS_LINUX + + GTEST_DEATH_TEST_CHECK_(child_pid != -1); + return child_pid; +} + +// The AssumeRole process for a fork-and-exec death test. It re-executes the +// main program from the beginning, setting the --gtest_filter +// and --gtest_internal_run_death_test flags to cause only the current +// death test to be re-run. +DeathTest::TestRole ExecDeathTest::AssumeRole() { + const UnitTestImpl* const impl = GetUnitTestImpl(); + const InternalRunDeathTestFlag* const flag = + impl->internal_run_death_test_flag(); + const TestInfo* const info = impl->current_test_info(); + const int death_test_index = info->result()->death_test_count(); + + if (flag != NULL) { + set_write_fd(flag->write_fd()); + return EXECUTE_TEST; + } + + int pipe_fd[2]; + GTEST_DEATH_TEST_CHECK_(pipe(pipe_fd) != -1); + // Clear the close-on-exec flag on the write end of the pipe, lest + // it be closed when the child process does an exec: + GTEST_DEATH_TEST_CHECK_(fcntl(pipe_fd[1], F_SETFD, 0) != -1); + + const std::string filter_flag = + std::string("--") + GTEST_FLAG_PREFIX_ + kFilterFlag + "=" + + info->test_case_name() + "." + info->name(); + const std::string internal_flag = + std::string("--") + GTEST_FLAG_PREFIX_ + kInternalRunDeathTestFlag + "=" + + file_ + "|" + StreamableToString(line_) + "|" + + StreamableToString(death_test_index) + "|" + + StreamableToString(pipe_fd[1]); + Arguments args; + args.AddArguments(GetArgvsForDeathTestChildProcess()); + args.AddArgument(filter_flag.c_str()); + args.AddArgument(internal_flag.c_str()); + + DeathTest::set_last_death_test_message(""); + + CaptureStderr(); + // See the comment in NoExecDeathTest::AssumeRole for why the next line + // is necessary. + FlushInfoLog(); + + const pid_t child_pid = ExecDeathTestSpawnChild(args.Argv(), pipe_fd[0]); + GTEST_DEATH_TEST_CHECK_SYSCALL_(close(pipe_fd[1])); + set_child_pid(child_pid); + set_read_fd(pipe_fd[0]); + set_spawned(true); + return OVERSEE_TEST; +} + +# endif // !GTEST_OS_WINDOWS + +// Creates a concrete DeathTest-derived class that depends on the +// --gtest_death_test_style flag, and sets the pointer pointed to +// by the "test" argument to its address. If the test should be +// skipped, sets that pointer to NULL. Returns true, unless the +// flag is set to an invalid value. +bool DefaultDeathTestFactory::Create(const char* statement, const RE* regex, + const char* file, int line, + DeathTest** test) { + UnitTestImpl* const impl = GetUnitTestImpl(); + const InternalRunDeathTestFlag* const flag = + impl->internal_run_death_test_flag(); + const int death_test_index = impl->current_test_info() + ->increment_death_test_count(); + + if (flag != NULL) { + if (death_test_index > flag->index()) { + DeathTest::set_last_death_test_message( + "Death test count (" + StreamableToString(death_test_index) + + ") somehow exceeded expected maximum (" + + StreamableToString(flag->index()) + ")"); + return false; + } + + if (!(flag->file() == file && flag->line() == line && + flag->index() == death_test_index)) { + *test = NULL; + return true; + } + } + +# if GTEST_OS_WINDOWS + + if (GTEST_FLAG(death_test_style) == "threadsafe" || + GTEST_FLAG(death_test_style) == "fast") { + *test = new WindowsDeathTest(statement, regex, file, line); + } + +# else + + if (GTEST_FLAG(death_test_style) == "threadsafe") { + *test = new ExecDeathTest(statement, regex, file, line); + } else if (GTEST_FLAG(death_test_style) == "fast") { + *test = new NoExecDeathTest(statement, regex); + } + +# endif // GTEST_OS_WINDOWS + + else { // NOLINT - this is more readable than unbalanced brackets inside #if. + DeathTest::set_last_death_test_message( + "Unknown death test style \"" + GTEST_FLAG(death_test_style) + + "\" encountered"); + return false; + } + + return true; +} + +# if GTEST_OS_WINDOWS +// Recreates the pipe and event handles from the provided parameters, +// signals the event, and returns a file descriptor wrapped around the pipe +// handle. This function is called in the child process only. +int GetStatusFileDescriptor(unsigned int parent_process_id, + size_t write_handle_as_size_t, + size_t event_handle_as_size_t) { + AutoHandle parent_process_handle(::OpenProcess(PROCESS_DUP_HANDLE, + FALSE, // Non-inheritable. + parent_process_id)); + if (parent_process_handle.Get() == INVALID_HANDLE_VALUE) { + DeathTestAbort("Unable to open parent process " + + StreamableToString(parent_process_id)); + } + + // TODO(vladl@google.com): Replace the following check with a + // compile-time assertion when available. + GTEST_CHECK_(sizeof(HANDLE) <= sizeof(size_t)); + + const HANDLE write_handle = + reinterpret_cast(write_handle_as_size_t); + HANDLE dup_write_handle; + + // The newly initialized handle is accessible only in in the parent + // process. To obtain one accessible within the child, we need to use + // DuplicateHandle. + if (!::DuplicateHandle(parent_process_handle.Get(), write_handle, + ::GetCurrentProcess(), &dup_write_handle, + 0x0, // Requested privileges ignored since + // DUPLICATE_SAME_ACCESS is used. + FALSE, // Request non-inheritable handler. + DUPLICATE_SAME_ACCESS)) { + DeathTestAbort("Unable to duplicate the pipe handle " + + StreamableToString(write_handle_as_size_t) + + " from the parent process " + + StreamableToString(parent_process_id)); + } + + const HANDLE event_handle = reinterpret_cast(event_handle_as_size_t); + HANDLE dup_event_handle; + + if (!::DuplicateHandle(parent_process_handle.Get(), event_handle, + ::GetCurrentProcess(), &dup_event_handle, + 0x0, + FALSE, + DUPLICATE_SAME_ACCESS)) { + DeathTestAbort("Unable to duplicate the event handle " + + StreamableToString(event_handle_as_size_t) + + " from the parent process " + + StreamableToString(parent_process_id)); + } + + const int write_fd = + ::_open_osfhandle(reinterpret_cast(dup_write_handle), O_APPEND); + if (write_fd == -1) { + DeathTestAbort("Unable to convert pipe handle " + + StreamableToString(write_handle_as_size_t) + + " to a file descriptor"); + } + + // Signals the parent that the write end of the pipe has been acquired + // so the parent can release its own write end. + ::SetEvent(dup_event_handle); + + return write_fd; +} +# endif // GTEST_OS_WINDOWS + +// Returns a newly created InternalRunDeathTestFlag object with fields +// initialized from the GTEST_FLAG(internal_run_death_test) flag if +// the flag is specified; otherwise returns NULL. +InternalRunDeathTestFlag* ParseInternalRunDeathTestFlag() { + if (GTEST_FLAG(internal_run_death_test) == "") return NULL; + + // GTEST_HAS_DEATH_TEST implies that we have ::std::string, so we + // can use it here. + int line = -1; + int index = -1; + ::std::vector< ::std::string> fields; + SplitString(GTEST_FLAG(internal_run_death_test).c_str(), '|', &fields); + int write_fd = -1; + +# if GTEST_OS_WINDOWS + + unsigned int parent_process_id = 0; + size_t write_handle_as_size_t = 0; + size_t event_handle_as_size_t = 0; + + if (fields.size() != 6 + || !ParseNaturalNumber(fields[1], &line) + || !ParseNaturalNumber(fields[2], &index) + || !ParseNaturalNumber(fields[3], &parent_process_id) + || !ParseNaturalNumber(fields[4], &write_handle_as_size_t) + || !ParseNaturalNumber(fields[5], &event_handle_as_size_t)) { + DeathTestAbort("Bad --gtest_internal_run_death_test flag: " + + GTEST_FLAG(internal_run_death_test)); + } + write_fd = GetStatusFileDescriptor(parent_process_id, + write_handle_as_size_t, + event_handle_as_size_t); +# else + + if (fields.size() != 4 + || !ParseNaturalNumber(fields[1], &line) + || !ParseNaturalNumber(fields[2], &index) + || !ParseNaturalNumber(fields[3], &write_fd)) { + DeathTestAbort("Bad --gtest_internal_run_death_test flag: " + + GTEST_FLAG(internal_run_death_test)); + } + +# endif // GTEST_OS_WINDOWS + + return new InternalRunDeathTestFlag(fields[0], line, index, write_fd); +} + +} // namespace internal + +#endif // GTEST_HAS_DEATH_TEST + +} // namespace testing diff --git a/third_party/googletest/src/src/gtest-filepath.cc b/third_party/googletest/src/src/gtest-filepath.cc new file mode 100644 index 0000000..0292dc1 --- /dev/null +++ b/third_party/googletest/src/src/gtest-filepath.cc @@ -0,0 +1,387 @@ +// Copyright 2008, Google Inc. +// All rights reserved. +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: +// +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above +// copyright notice, this list of conditions and the following disclaimer +// in the documentation and/or other materials provided with the +// distribution. +// * Neither the name of Google Inc. nor the names of its +// contributors may be used to endorse or promote products derived from +// this software without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +// +// Authors: keith.ray@gmail.com (Keith Ray) + +#include "gtest/gtest-message.h" +#include "gtest/internal/gtest-filepath.h" +#include "gtest/internal/gtest-port.h" + +#include + +#if GTEST_OS_WINDOWS_MOBILE +# include +#elif GTEST_OS_WINDOWS +# include +# include +#elif GTEST_OS_SYMBIAN +// Symbian OpenC has PATH_MAX in sys/syslimits.h +# include +#else +# include +# include // Some Linux distributions define PATH_MAX here. +#endif // GTEST_OS_WINDOWS_MOBILE + +#if GTEST_OS_WINDOWS +# define GTEST_PATH_MAX_ _MAX_PATH +#elif defined(PATH_MAX) +# define GTEST_PATH_MAX_ PATH_MAX +#elif defined(_XOPEN_PATH_MAX) +# define GTEST_PATH_MAX_ _XOPEN_PATH_MAX +#else +# define GTEST_PATH_MAX_ _POSIX_PATH_MAX +#endif // GTEST_OS_WINDOWS + +#include "gtest/internal/gtest-string.h" + +namespace testing { +namespace internal { + +#if GTEST_OS_WINDOWS +// On Windows, '\\' is the standard path separator, but many tools and the +// Windows API also accept '/' as an alternate path separator. Unless otherwise +// noted, a file path can contain either kind of path separators, or a mixture +// of them. +const char kPathSeparator = '\\'; +const char kAlternatePathSeparator = '/'; +const char kAlternatePathSeparatorString[] = "/"; +# if GTEST_OS_WINDOWS_MOBILE +// Windows CE doesn't have a current directory. You should not use +// the current directory in tests on Windows CE, but this at least +// provides a reasonable fallback. +const char kCurrentDirectoryString[] = "\\"; +// Windows CE doesn't define INVALID_FILE_ATTRIBUTES +const DWORD kInvalidFileAttributes = 0xffffffff; +# else +const char kCurrentDirectoryString[] = ".\\"; +# endif // GTEST_OS_WINDOWS_MOBILE +#else +const char kPathSeparator = '/'; +const char kCurrentDirectoryString[] = "./"; +#endif // GTEST_OS_WINDOWS + +// Returns whether the given character is a valid path separator. +static bool IsPathSeparator(char c) { +#if GTEST_HAS_ALT_PATH_SEP_ + return (c == kPathSeparator) || (c == kAlternatePathSeparator); +#else + return c == kPathSeparator; +#endif +} + +// Returns the current working directory, or "" if unsuccessful. +FilePath FilePath::GetCurrentDir() { +#if GTEST_OS_WINDOWS_MOBILE || GTEST_OS_WINDOWS_PHONE || GTEST_OS_WINDOWS_RT + // Windows CE doesn't have a current directory, so we just return + // something reasonable. + return FilePath(kCurrentDirectoryString); +#elif GTEST_OS_WINDOWS + char cwd[GTEST_PATH_MAX_ + 1] = { '\0' }; + return FilePath(_getcwd(cwd, sizeof(cwd)) == NULL ? "" : cwd); +#else + char cwd[GTEST_PATH_MAX_ + 1] = { '\0' }; + char* result = getcwd(cwd, sizeof(cwd)); +# if GTEST_OS_NACL + // getcwd will likely fail in NaCl due to the sandbox, so return something + // reasonable. The user may have provided a shim implementation for getcwd, + // however, so fallback only when failure is detected. + return FilePath(result == NULL ? kCurrentDirectoryString : cwd); +# endif // GTEST_OS_NACL + return FilePath(result == NULL ? "" : cwd); +#endif // GTEST_OS_WINDOWS_MOBILE +} + +// Returns a copy of the FilePath with the case-insensitive extension removed. +// Example: FilePath("dir/file.exe").RemoveExtension("EXE") returns +// FilePath("dir/file"). If a case-insensitive extension is not +// found, returns a copy of the original FilePath. +FilePath FilePath::RemoveExtension(const char* extension) const { + const std::string dot_extension = std::string(".") + extension; + if (String::EndsWithCaseInsensitive(pathname_, dot_extension)) { + return FilePath(pathname_.substr( + 0, pathname_.length() - dot_extension.length())); + } + return *this; +} + +// Returns a pointer to the last occurence of a valid path separator in +// the FilePath. On Windows, for example, both '/' and '\' are valid path +// separators. Returns NULL if no path separator was found. +const char* FilePath::FindLastPathSeparator() const { + const char* const last_sep = strrchr(c_str(), kPathSeparator); +#if GTEST_HAS_ALT_PATH_SEP_ + const char* const last_alt_sep = strrchr(c_str(), kAlternatePathSeparator); + // Comparing two pointers of which only one is NULL is undefined. + if (last_alt_sep != NULL && + (last_sep == NULL || last_alt_sep > last_sep)) { + return last_alt_sep; + } +#endif + return last_sep; +} + +// Returns a copy of the FilePath with the directory part removed. +// Example: FilePath("path/to/file").RemoveDirectoryName() returns +// FilePath("file"). If there is no directory part ("just_a_file"), it returns +// the FilePath unmodified. If there is no file part ("just_a_dir/") it +// returns an empty FilePath (""). +// On Windows platform, '\' is the path separator, otherwise it is '/'. +FilePath FilePath::RemoveDirectoryName() const { + const char* const last_sep = FindLastPathSeparator(); + return last_sep ? FilePath(last_sep + 1) : *this; +} + +// RemoveFileName returns the directory path with the filename removed. +// Example: FilePath("path/to/file").RemoveFileName() returns "path/to/". +// If the FilePath is "a_file" or "/a_file", RemoveFileName returns +// FilePath("./") or, on Windows, FilePath(".\\"). If the filepath does +// not have a file, like "just/a/dir/", it returns the FilePath unmodified. +// On Windows platform, '\' is the path separator, otherwise it is '/'. +FilePath FilePath::RemoveFileName() const { + const char* const last_sep = FindLastPathSeparator(); + std::string dir; + if (last_sep) { + dir = std::string(c_str(), last_sep + 1 - c_str()); + } else { + dir = kCurrentDirectoryString; + } + return FilePath(dir); +} + +// Helper functions for naming files in a directory for xml output. + +// Given directory = "dir", base_name = "test", number = 0, +// extension = "xml", returns "dir/test.xml". If number is greater +// than zero (e.g., 12), returns "dir/test_12.xml". +// On Windows platform, uses \ as the separator rather than /. +FilePath FilePath::MakeFileName(const FilePath& directory, + const FilePath& base_name, + int number, + const char* extension) { + std::string file; + if (number == 0) { + file = base_name.string() + "." + extension; + } else { + file = base_name.string() + "_" + StreamableToString(number) + + "." + extension; + } + return ConcatPaths(directory, FilePath(file)); +} + +// Given directory = "dir", relative_path = "test.xml", returns "dir/test.xml". +// On Windows, uses \ as the separator rather than /. +FilePath FilePath::ConcatPaths(const FilePath& directory, + const FilePath& relative_path) { + if (directory.IsEmpty()) + return relative_path; + const FilePath dir(directory.RemoveTrailingPathSeparator()); + return FilePath(dir.string() + kPathSeparator + relative_path.string()); +} + +// Returns true if pathname describes something findable in the file-system, +// either a file, directory, or whatever. +bool FilePath::FileOrDirectoryExists() const { +#if GTEST_OS_WINDOWS_MOBILE + LPCWSTR unicode = String::AnsiToUtf16(pathname_.c_str()); + const DWORD attributes = GetFileAttributes(unicode); + delete [] unicode; + return attributes != kInvalidFileAttributes; +#else + posix::StatStruct file_stat; + return posix::Stat(pathname_.c_str(), &file_stat) == 0; +#endif // GTEST_OS_WINDOWS_MOBILE +} + +// Returns true if pathname describes a directory in the file-system +// that exists. +bool FilePath::DirectoryExists() const { + bool result = false; +#if GTEST_OS_WINDOWS + // Don't strip off trailing separator if path is a root directory on + // Windows (like "C:\\"). + const FilePath& path(IsRootDirectory() ? *this : + RemoveTrailingPathSeparator()); +#else + const FilePath& path(*this); +#endif + +#if GTEST_OS_WINDOWS_MOBILE + LPCWSTR unicode = String::AnsiToUtf16(path.c_str()); + const DWORD attributes = GetFileAttributes(unicode); + delete [] unicode; + if ((attributes != kInvalidFileAttributes) && + (attributes & FILE_ATTRIBUTE_DIRECTORY)) { + result = true; + } +#else + posix::StatStruct file_stat; + result = posix::Stat(path.c_str(), &file_stat) == 0 && + posix::IsDir(file_stat); +#endif // GTEST_OS_WINDOWS_MOBILE + + return result; +} + +// Returns true if pathname describes a root directory. (Windows has one +// root directory per disk drive.) +bool FilePath::IsRootDirectory() const { +#if GTEST_OS_WINDOWS + // TODO(wan@google.com): on Windows a network share like + // \\server\share can be a root directory, although it cannot be the + // current directory. Handle this properly. + return pathname_.length() == 3 && IsAbsolutePath(); +#else + return pathname_.length() == 1 && IsPathSeparator(pathname_.c_str()[0]); +#endif +} + +// Returns true if pathname describes an absolute path. +bool FilePath::IsAbsolutePath() const { + const char* const name = pathname_.c_str(); +#if GTEST_OS_WINDOWS + return pathname_.length() >= 3 && + ((name[0] >= 'a' && name[0] <= 'z') || + (name[0] >= 'A' && name[0] <= 'Z')) && + name[1] == ':' && + IsPathSeparator(name[2]); +#else + return IsPathSeparator(name[0]); +#endif +} + +// Returns a pathname for a file that does not currently exist. The pathname +// will be directory/base_name.extension or +// directory/base_name_.extension if directory/base_name.extension +// already exists. The number will be incremented until a pathname is found +// that does not already exist. +// Examples: 'dir/foo_test.xml' or 'dir/foo_test_1.xml'. +// There could be a race condition if two or more processes are calling this +// function at the same time -- they could both pick the same filename. +FilePath FilePath::GenerateUniqueFileName(const FilePath& directory, + const FilePath& base_name, + const char* extension) { + FilePath full_pathname; + int number = 0; + do { + full_pathname.Set(MakeFileName(directory, base_name, number++, extension)); + } while (full_pathname.FileOrDirectoryExists()); + return full_pathname; +} + +// Returns true if FilePath ends with a path separator, which indicates that +// it is intended to represent a directory. Returns false otherwise. +// This does NOT check that a directory (or file) actually exists. +bool FilePath::IsDirectory() const { + return !pathname_.empty() && + IsPathSeparator(pathname_.c_str()[pathname_.length() - 1]); +} + +// Create directories so that path exists. Returns true if successful or if +// the directories already exist; returns false if unable to create directories +// for any reason. +bool FilePath::CreateDirectoriesRecursively() const { + if (!this->IsDirectory()) { + return false; + } + + if (pathname_.length() == 0 || this->DirectoryExists()) { + return true; + } + + const FilePath parent(this->RemoveTrailingPathSeparator().RemoveFileName()); + return parent.CreateDirectoriesRecursively() && this->CreateFolder(); +} + +// Create the directory so that path exists. Returns true if successful or +// if the directory already exists; returns false if unable to create the +// directory for any reason, including if the parent directory does not +// exist. Not named "CreateDirectory" because that's a macro on Windows. +bool FilePath::CreateFolder() const { +#if GTEST_OS_WINDOWS_MOBILE + FilePath removed_sep(this->RemoveTrailingPathSeparator()); + LPCWSTR unicode = String::AnsiToUtf16(removed_sep.c_str()); + int result = CreateDirectory(unicode, NULL) ? 0 : -1; + delete [] unicode; +#elif GTEST_OS_WINDOWS + int result = _mkdir(pathname_.c_str()); +#else + int result = mkdir(pathname_.c_str(), 0777); +#endif // GTEST_OS_WINDOWS_MOBILE + + if (result == -1) { + return this->DirectoryExists(); // An error is OK if the directory exists. + } + return true; // No error. +} + +// If input name has a trailing separator character, remove it and return the +// name, otherwise return the name string unmodified. +// On Windows platform, uses \ as the separator, other platforms use /. +FilePath FilePath::RemoveTrailingPathSeparator() const { + return IsDirectory() + ? FilePath(pathname_.substr(0, pathname_.length() - 1)) + : *this; +} + +// Removes any redundant separators that might be in the pathname. +// For example, "bar///foo" becomes "bar/foo". Does not eliminate other +// redundancies that might be in a pathname involving "." or "..". +// TODO(wan@google.com): handle Windows network shares (e.g. \\server\share). +void FilePath::Normalize() { + if (pathname_.c_str() == NULL) { + pathname_ = ""; + return; + } + const char* src = pathname_.c_str(); + char* const dest = new char[pathname_.length() + 1]; + char* dest_ptr = dest; + memset(dest_ptr, 0, pathname_.length() + 1); + + while (*src != '\0') { + *dest_ptr = *src; + if (!IsPathSeparator(*src)) { + src++; + } else { +#if GTEST_HAS_ALT_PATH_SEP_ + if (*dest_ptr == kAlternatePathSeparator) { + *dest_ptr = kPathSeparator; + } +#endif + while (IsPathSeparator(*src)) + src++; + } + dest_ptr++; + } + *dest_ptr = '\0'; + pathname_ = dest; + delete[] dest; +} + +} // namespace internal +} // namespace testing diff --git a/third_party/googletest/src/src/gtest-internal-inl.h b/third_party/googletest/src/src/gtest-internal-inl.h new file mode 100644 index 0000000..ed8a682 --- /dev/null +++ b/third_party/googletest/src/src/gtest-internal-inl.h @@ -0,0 +1,1183 @@ +// Copyright 2005, Google Inc. +// All rights reserved. +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: +// +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above +// copyright notice, this list of conditions and the following disclaimer +// in the documentation and/or other materials provided with the +// distribution. +// * Neither the name of Google Inc. nor the names of its +// contributors may be used to endorse or promote products derived from +// this software without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +// Utility functions and classes used by the Google C++ testing framework. +// +// Author: wan@google.com (Zhanyong Wan) +// +// This file contains purely Google Test's internal implementation. Please +// DO NOT #INCLUDE IT IN A USER PROGRAM. + +#ifndef GTEST_SRC_GTEST_INTERNAL_INL_H_ +#define GTEST_SRC_GTEST_INTERNAL_INL_H_ + +// GTEST_IMPLEMENTATION_ is defined to 1 iff the current translation unit is +// part of Google Test's implementation; otherwise it's undefined. +#if !GTEST_IMPLEMENTATION_ +// If this file is included from the user's code, just say no. +# error "gtest-internal-inl.h is part of Google Test's internal implementation." +# error "It must not be included except by Google Test itself." +#endif // GTEST_IMPLEMENTATION_ + +#ifndef _WIN32_WCE +# include +#endif // !_WIN32_WCE +#include +#include // For strtoll/_strtoul64/malloc/free. +#include // For memmove. + +#include +#include +#include + +#include "gtest/internal/gtest-port.h" + +#if GTEST_CAN_STREAM_RESULTS_ +# include // NOLINT +# include // NOLINT +#endif + +#if GTEST_OS_WINDOWS +# include // NOLINT +#endif // GTEST_OS_WINDOWS + +#include "gtest/gtest.h" // NOLINT +#include "gtest/gtest-spi.h" + +namespace testing { + +// Declares the flags. +// +// We don't want the users to modify this flag in the code, but want +// Google Test's own unit tests to be able to access it. Therefore we +// declare it here as opposed to in gtest.h. +GTEST_DECLARE_bool_(death_test_use_fork); + +namespace internal { + +// The value of GetTestTypeId() as seen from within the Google Test +// library. This is solely for testing GetTestTypeId(). +GTEST_API_ extern const TypeId kTestTypeIdInGoogleTest; + +// Names of the flags (needed for parsing Google Test flags). +const char kAlsoRunDisabledTestsFlag[] = "also_run_disabled_tests"; +const char kBreakOnFailureFlag[] = "break_on_failure"; +const char kCatchExceptionsFlag[] = "catch_exceptions"; +const char kColorFlag[] = "color"; +const char kFilterFlag[] = "filter"; +const char kListTestsFlag[] = "list_tests"; +const char kOutputFlag[] = "output"; +const char kPrintTimeFlag[] = "print_time"; +const char kRandomSeedFlag[] = "random_seed"; +const char kRepeatFlag[] = "repeat"; +const char kShuffleFlag[] = "shuffle"; +const char kStackTraceDepthFlag[] = "stack_trace_depth"; +const char kStreamResultToFlag[] = "stream_result_to"; +const char kThrowOnFailureFlag[] = "throw_on_failure"; +const char kFlagfileFlag[] = "flagfile"; + +// A valid random seed must be in [1, kMaxRandomSeed]. +const int kMaxRandomSeed = 99999; + +// g_help_flag is true iff the --help flag or an equivalent form is +// specified on the command line. +GTEST_API_ extern bool g_help_flag; + +// Returns the current time in milliseconds. +GTEST_API_ TimeInMillis GetTimeInMillis(); + +// Returns true iff Google Test should use colors in the output. +GTEST_API_ bool ShouldUseColor(bool stdout_is_tty); + +// Formats the given time in milliseconds as seconds. +GTEST_API_ std::string FormatTimeInMillisAsSeconds(TimeInMillis ms); + +// Converts the given time in milliseconds to a date string in the ISO 8601 +// format, without the timezone information. N.B.: due to the use the +// non-reentrant localtime() function, this function is not thread safe. Do +// not use it in any code that can be called from multiple threads. +GTEST_API_ std::string FormatEpochTimeInMillisAsIso8601(TimeInMillis ms); + +// Parses a string for an Int32 flag, in the form of "--flag=value". +// +// On success, stores the value of the flag in *value, and returns +// true. On failure, returns false without changing *value. +GTEST_API_ bool ParseInt32Flag( + const char* str, const char* flag, Int32* value); + +// Returns a random seed in range [1, kMaxRandomSeed] based on the +// given --gtest_random_seed flag value. +inline int GetRandomSeedFromFlag(Int32 random_seed_flag) { + const unsigned int raw_seed = (random_seed_flag == 0) ? + static_cast(GetTimeInMillis()) : + static_cast(random_seed_flag); + + // Normalizes the actual seed to range [1, kMaxRandomSeed] such that + // it's easy to type. + const int normalized_seed = + static_cast((raw_seed - 1U) % + static_cast(kMaxRandomSeed)) + 1; + return normalized_seed; +} + +// Returns the first valid random seed after 'seed'. The behavior is +// undefined if 'seed' is invalid. The seed after kMaxRandomSeed is +// considered to be 1. +inline int GetNextRandomSeed(int seed) { + GTEST_CHECK_(1 <= seed && seed <= kMaxRandomSeed) + << "Invalid random seed " << seed << " - must be in [1, " + << kMaxRandomSeed << "]."; + const int next_seed = seed + 1; + return (next_seed > kMaxRandomSeed) ? 1 : next_seed; +} + +// This class saves the values of all Google Test flags in its c'tor, and +// restores them in its d'tor. +class GTestFlagSaver { + public: + // The c'tor. + GTestFlagSaver() { + also_run_disabled_tests_ = GTEST_FLAG(also_run_disabled_tests); + break_on_failure_ = GTEST_FLAG(break_on_failure); + catch_exceptions_ = GTEST_FLAG(catch_exceptions); + color_ = GTEST_FLAG(color); + death_test_style_ = GTEST_FLAG(death_test_style); + death_test_use_fork_ = GTEST_FLAG(death_test_use_fork); + filter_ = GTEST_FLAG(filter); + internal_run_death_test_ = GTEST_FLAG(internal_run_death_test); + list_tests_ = GTEST_FLAG(list_tests); + output_ = GTEST_FLAG(output); + print_time_ = GTEST_FLAG(print_time); + random_seed_ = GTEST_FLAG(random_seed); + repeat_ = GTEST_FLAG(repeat); + shuffle_ = GTEST_FLAG(shuffle); + stack_trace_depth_ = GTEST_FLAG(stack_trace_depth); + stream_result_to_ = GTEST_FLAG(stream_result_to); + throw_on_failure_ = GTEST_FLAG(throw_on_failure); + } + + // The d'tor is not virtual. DO NOT INHERIT FROM THIS CLASS. + ~GTestFlagSaver() { + GTEST_FLAG(also_run_disabled_tests) = also_run_disabled_tests_; + GTEST_FLAG(break_on_failure) = break_on_failure_; + GTEST_FLAG(catch_exceptions) = catch_exceptions_; + GTEST_FLAG(color) = color_; + GTEST_FLAG(death_test_style) = death_test_style_; + GTEST_FLAG(death_test_use_fork) = death_test_use_fork_; + GTEST_FLAG(filter) = filter_; + GTEST_FLAG(internal_run_death_test) = internal_run_death_test_; + GTEST_FLAG(list_tests) = list_tests_; + GTEST_FLAG(output) = output_; + GTEST_FLAG(print_time) = print_time_; + GTEST_FLAG(random_seed) = random_seed_; + GTEST_FLAG(repeat) = repeat_; + GTEST_FLAG(shuffle) = shuffle_; + GTEST_FLAG(stack_trace_depth) = stack_trace_depth_; + GTEST_FLAG(stream_result_to) = stream_result_to_; + GTEST_FLAG(throw_on_failure) = throw_on_failure_; + } + + private: + // Fields for saving the original values of flags. + bool also_run_disabled_tests_; + bool break_on_failure_; + bool catch_exceptions_; + std::string color_; + std::string death_test_style_; + bool death_test_use_fork_; + std::string filter_; + std::string internal_run_death_test_; + bool list_tests_; + std::string output_; + bool print_time_; + internal::Int32 random_seed_; + internal::Int32 repeat_; + bool shuffle_; + internal::Int32 stack_trace_depth_; + std::string stream_result_to_; + bool throw_on_failure_; +} GTEST_ATTRIBUTE_UNUSED_; + +// Converts a Unicode code point to a narrow string in UTF-8 encoding. +// code_point parameter is of type UInt32 because wchar_t may not be +// wide enough to contain a code point. +// If the code_point is not a valid Unicode code point +// (i.e. outside of Unicode range U+0 to U+10FFFF) it will be converted +// to "(Invalid Unicode 0xXXXXXXXX)". +GTEST_API_ std::string CodePointToUtf8(UInt32 code_point); + +// Converts a wide string to a narrow string in UTF-8 encoding. +// The wide string is assumed to have the following encoding: +// UTF-16 if sizeof(wchar_t) == 2 (on Windows, Cygwin, Symbian OS) +// UTF-32 if sizeof(wchar_t) == 4 (on Linux) +// Parameter str points to a null-terminated wide string. +// Parameter num_chars may additionally limit the number +// of wchar_t characters processed. -1 is used when the entire string +// should be processed. +// If the string contains code points that are not valid Unicode code points +// (i.e. outside of Unicode range U+0 to U+10FFFF) they will be output +// as '(Invalid Unicode 0xXXXXXXXX)'. If the string is in UTF16 encoding +// and contains invalid UTF-16 surrogate pairs, values in those pairs +// will be encoded as individual Unicode characters from Basic Normal Plane. +GTEST_API_ std::string WideStringToUtf8(const wchar_t* str, int num_chars); + +// Reads the GTEST_SHARD_STATUS_FILE environment variable, and creates the file +// if the variable is present. If a file already exists at this location, this +// function will write over it. If the variable is present, but the file cannot +// be created, prints an error and exits. +void WriteToShardStatusFileIfNeeded(); + +// Checks whether sharding is enabled by examining the relevant +// environment variable values. If the variables are present, +// but inconsistent (e.g., shard_index >= total_shards), prints +// an error and exits. If in_subprocess_for_death_test, sharding is +// disabled because it must only be applied to the original test +// process. Otherwise, we could filter out death tests we intended to execute. +GTEST_API_ bool ShouldShard(const char* total_shards_str, + const char* shard_index_str, + bool in_subprocess_for_death_test); + +// Parses the environment variable var as an Int32. If it is unset, +// returns default_val. If it is not an Int32, prints an error and +// and aborts. +GTEST_API_ Int32 Int32FromEnvOrDie(const char* env_var, Int32 default_val); + +// Given the total number of shards, the shard index, and the test id, +// returns true iff the test should be run on this shard. The test id is +// some arbitrary but unique non-negative integer assigned to each test +// method. Assumes that 0 <= shard_index < total_shards. +GTEST_API_ bool ShouldRunTestOnShard( + int total_shards, int shard_index, int test_id); + +// STL container utilities. + +// Returns the number of elements in the given container that satisfy +// the given predicate. +template +inline int CountIf(const Container& c, Predicate predicate) { + // Implemented as an explicit loop since std::count_if() in libCstd on + // Solaris has a non-standard signature. + int count = 0; + for (typename Container::const_iterator it = c.begin(); it != c.end(); ++it) { + if (predicate(*it)) + ++count; + } + return count; +} + +// Applies a function/functor to each element in the container. +template +void ForEach(const Container& c, Functor functor) { + std::for_each(c.begin(), c.end(), functor); +} + +// Returns the i-th element of the vector, or default_value if i is not +// in range [0, v.size()). +template +inline E GetElementOr(const std::vector& v, int i, E default_value) { + return (i < 0 || i >= static_cast(v.size())) ? default_value : v[i]; +} + +// Performs an in-place shuffle of a range of the vector's elements. +// 'begin' and 'end' are element indices as an STL-style range; +// i.e. [begin, end) are shuffled, where 'end' == size() means to +// shuffle to the end of the vector. +template +void ShuffleRange(internal::Random* random, int begin, int end, + std::vector* v) { + const int size = static_cast(v->size()); + GTEST_CHECK_(0 <= begin && begin <= size) + << "Invalid shuffle range start " << begin << ": must be in range [0, " + << size << "]."; + GTEST_CHECK_(begin <= end && end <= size) + << "Invalid shuffle range finish " << end << ": must be in range [" + << begin << ", " << size << "]."; + + // Fisher-Yates shuffle, from + // http://en.wikipedia.org/wiki/Fisher-Yates_shuffle + for (int range_width = end - begin; range_width >= 2; range_width--) { + const int last_in_range = begin + range_width - 1; + const int selected = begin + random->Generate(range_width); + std::swap((*v)[selected], (*v)[last_in_range]); + } +} + +// Performs an in-place shuffle of the vector's elements. +template +inline void Shuffle(internal::Random* random, std::vector* v) { + ShuffleRange(random, 0, static_cast(v->size()), v); +} + +// A function for deleting an object. Handy for being used as a +// functor. +template +static void Delete(T* x) { + delete x; +} + +// A predicate that checks the key of a TestProperty against a known key. +// +// TestPropertyKeyIs is copyable. +class TestPropertyKeyIs { + public: + // Constructor. + // + // TestPropertyKeyIs has NO default constructor. + explicit TestPropertyKeyIs(const std::string& key) : key_(key) {} + + // Returns true iff the test name of test property matches on key_. + bool operator()(const TestProperty& test_property) const { + return test_property.key() == key_; + } + + private: + std::string key_; +}; + +// Class UnitTestOptions. +// +// This class contains functions for processing options the user +// specifies when running the tests. It has only static members. +// +// In most cases, the user can specify an option using either an +// environment variable or a command line flag. E.g. you can set the +// test filter using either GTEST_FILTER or --gtest_filter. If both +// the variable and the flag are present, the latter overrides the +// former. +class GTEST_API_ UnitTestOptions { + public: + // Functions for processing the gtest_output flag. + + // Returns the output format, or "" for normal printed output. + static std::string GetOutputFormat(); + + // Returns the absolute path of the requested output file, or the + // default (test_detail.xml in the original working directory) if + // none was explicitly specified. + static std::string GetAbsolutePathToOutputFile(); + + // Functions for processing the gtest_filter flag. + + // Returns true iff the wildcard pattern matches the string. The + // first ':' or '\0' character in pattern marks the end of it. + // + // This recursive algorithm isn't very efficient, but is clear and + // works well enough for matching test names, which are short. + static bool PatternMatchesString(const char *pattern, const char *str); + + // Returns true iff the user-specified filter matches the test case + // name and the test name. + static bool FilterMatchesTest(const std::string &test_case_name, + const std::string &test_name); + +#if GTEST_OS_WINDOWS + // Function for supporting the gtest_catch_exception flag. + + // Returns EXCEPTION_EXECUTE_HANDLER if Google Test should handle the + // given SEH exception, or EXCEPTION_CONTINUE_SEARCH otherwise. + // This function is useful as an __except condition. + static int GTestShouldProcessSEH(DWORD exception_code); +#endif // GTEST_OS_WINDOWS + + // Returns true if "name" matches the ':' separated list of glob-style + // filters in "filter". + static bool MatchesFilter(const std::string& name, const char* filter); +}; + +// Returns the current application's name, removing directory path if that +// is present. Used by UnitTestOptions::GetOutputFile. +GTEST_API_ FilePath GetCurrentExecutableName(); + +// The role interface for getting the OS stack trace as a string. +class OsStackTraceGetterInterface { + public: + OsStackTraceGetterInterface() {} + virtual ~OsStackTraceGetterInterface() {} + + // Returns the current OS stack trace as an std::string. Parameters: + // + // max_depth - the maximum number of stack frames to be included + // in the trace. + // skip_count - the number of top frames to be skipped; doesn't count + // against max_depth. + virtual string CurrentStackTrace(int max_depth, int skip_count) = 0; + + // UponLeavingGTest() should be called immediately before Google Test calls + // user code. It saves some information about the current stack that + // CurrentStackTrace() will use to find and hide Google Test stack frames. + virtual void UponLeavingGTest() = 0; + + // This string is inserted in place of stack frames that are part of + // Google Test's implementation. + static const char* const kElidedFramesMarker; + + private: + GTEST_DISALLOW_COPY_AND_ASSIGN_(OsStackTraceGetterInterface); +}; + +// A working implementation of the OsStackTraceGetterInterface interface. +class OsStackTraceGetter : public OsStackTraceGetterInterface { + public: + OsStackTraceGetter() {} + + virtual string CurrentStackTrace(int max_depth, int skip_count); + virtual void UponLeavingGTest(); + + private: + GTEST_DISALLOW_COPY_AND_ASSIGN_(OsStackTraceGetter); +}; + +// Information about a Google Test trace point. +struct TraceInfo { + const char* file; + int line; + std::string message; +}; + +// This is the default global test part result reporter used in UnitTestImpl. +// This class should only be used by UnitTestImpl. +class DefaultGlobalTestPartResultReporter + : public TestPartResultReporterInterface { + public: + explicit DefaultGlobalTestPartResultReporter(UnitTestImpl* unit_test); + // Implements the TestPartResultReporterInterface. Reports the test part + // result in the current test. + virtual void ReportTestPartResult(const TestPartResult& result); + + private: + UnitTestImpl* const unit_test_; + + GTEST_DISALLOW_COPY_AND_ASSIGN_(DefaultGlobalTestPartResultReporter); +}; + +// This is the default per thread test part result reporter used in +// UnitTestImpl. This class should only be used by UnitTestImpl. +class DefaultPerThreadTestPartResultReporter + : public TestPartResultReporterInterface { + public: + explicit DefaultPerThreadTestPartResultReporter(UnitTestImpl* unit_test); + // Implements the TestPartResultReporterInterface. The implementation just + // delegates to the current global test part result reporter of *unit_test_. + virtual void ReportTestPartResult(const TestPartResult& result); + + private: + UnitTestImpl* const unit_test_; + + GTEST_DISALLOW_COPY_AND_ASSIGN_(DefaultPerThreadTestPartResultReporter); +}; + +// The private implementation of the UnitTest class. We don't protect +// the methods under a mutex, as this class is not accessible by a +// user and the UnitTest class that delegates work to this class does +// proper locking. +class GTEST_API_ UnitTestImpl { + public: + explicit UnitTestImpl(UnitTest* parent); + virtual ~UnitTestImpl(); + + // There are two different ways to register your own TestPartResultReporter. + // You can register your own repoter to listen either only for test results + // from the current thread or for results from all threads. + // By default, each per-thread test result repoter just passes a new + // TestPartResult to the global test result reporter, which registers the + // test part result for the currently running test. + + // Returns the global test part result reporter. + TestPartResultReporterInterface* GetGlobalTestPartResultReporter(); + + // Sets the global test part result reporter. + void SetGlobalTestPartResultReporter( + TestPartResultReporterInterface* reporter); + + // Returns the test part result reporter for the current thread. + TestPartResultReporterInterface* GetTestPartResultReporterForCurrentThread(); + + // Sets the test part result reporter for the current thread. + void SetTestPartResultReporterForCurrentThread( + TestPartResultReporterInterface* reporter); + + // Gets the number of successful test cases. + int successful_test_case_count() const; + + // Gets the number of failed test cases. + int failed_test_case_count() const; + + // Gets the number of all test cases. + int total_test_case_count() const; + + // Gets the number of all test cases that contain at least one test + // that should run. + int test_case_to_run_count() const; + + // Gets the number of successful tests. + int successful_test_count() const; + + // Gets the number of failed tests. + int failed_test_count() const; + + // Gets the number of disabled tests that will be reported in the XML report. + int reportable_disabled_test_count() const; + + // Gets the number of disabled tests. + int disabled_test_count() const; + + // Gets the number of tests to be printed in the XML report. + int reportable_test_count() const; + + // Gets the number of all tests. + int total_test_count() const; + + // Gets the number of tests that should run. + int test_to_run_count() const; + + // Gets the time of the test program start, in ms from the start of the + // UNIX epoch. + TimeInMillis start_timestamp() const { return start_timestamp_; } + + // Gets the elapsed time, in milliseconds. + TimeInMillis elapsed_time() const { return elapsed_time_; } + + // Returns true iff the unit test passed (i.e. all test cases passed). + bool Passed() const { return !Failed(); } + + // Returns true iff the unit test failed (i.e. some test case failed + // or something outside of all tests failed). + bool Failed() const { + return failed_test_case_count() > 0 || ad_hoc_test_result()->Failed(); + } + + // Gets the i-th test case among all the test cases. i can range from 0 to + // total_test_case_count() - 1. If i is not in that range, returns NULL. + const TestCase* GetTestCase(int i) const { + const int index = GetElementOr(test_case_indices_, i, -1); + return index < 0 ? NULL : test_cases_[i]; + } + + // Gets the i-th test case among all the test cases. i can range from 0 to + // total_test_case_count() - 1. If i is not in that range, returns NULL. + TestCase* GetMutableTestCase(int i) { + const int index = GetElementOr(test_case_indices_, i, -1); + return index < 0 ? NULL : test_cases_[index]; + } + + // Provides access to the event listener list. + TestEventListeners* listeners() { return &listeners_; } + + // Returns the TestResult for the test that's currently running, or + // the TestResult for the ad hoc test if no test is running. + TestResult* current_test_result(); + + // Returns the TestResult for the ad hoc test. + const TestResult* ad_hoc_test_result() const { return &ad_hoc_test_result_; } + + // Sets the OS stack trace getter. + // + // Does nothing if the input and the current OS stack trace getter + // are the same; otherwise, deletes the old getter and makes the + // input the current getter. + void set_os_stack_trace_getter(OsStackTraceGetterInterface* getter); + + // Returns the current OS stack trace getter if it is not NULL; + // otherwise, creates an OsStackTraceGetter, makes it the current + // getter, and returns it. + OsStackTraceGetterInterface* os_stack_trace_getter(); + + // Returns the current OS stack trace as an std::string. + // + // The maximum number of stack frames to be included is specified by + // the gtest_stack_trace_depth flag. The skip_count parameter + // specifies the number of top frames to be skipped, which doesn't + // count against the number of frames to be included. + // + // For example, if Foo() calls Bar(), which in turn calls + // CurrentOsStackTraceExceptTop(1), Foo() will be included in the + // trace but Bar() and CurrentOsStackTraceExceptTop() won't. + std::string CurrentOsStackTraceExceptTop(int skip_count) GTEST_NO_INLINE_; + + // Finds and returns a TestCase with the given name. If one doesn't + // exist, creates one and returns it. + // + // Arguments: + // + // test_case_name: name of the test case + // type_param: the name of the test's type parameter, or NULL if + // this is not a typed or a type-parameterized test. + // set_up_tc: pointer to the function that sets up the test case + // tear_down_tc: pointer to the function that tears down the test case + TestCase* GetTestCase(const char* test_case_name, + const char* type_param, + Test::SetUpTestCaseFunc set_up_tc, + Test::TearDownTestCaseFunc tear_down_tc); + + // Adds a TestInfo to the unit test. + // + // Arguments: + // + // set_up_tc: pointer to the function that sets up the test case + // tear_down_tc: pointer to the function that tears down the test case + // test_info: the TestInfo object + void AddTestInfo(Test::SetUpTestCaseFunc set_up_tc, + Test::TearDownTestCaseFunc tear_down_tc, + TestInfo* test_info) { + // In order to support thread-safe death tests, we need to + // remember the original working directory when the test program + // was first invoked. We cannot do this in RUN_ALL_TESTS(), as + // the user may have changed the current directory before calling + // RUN_ALL_TESTS(). Therefore we capture the current directory in + // AddTestInfo(), which is called to register a TEST or TEST_F + // before main() is reached. + if (original_working_dir_.IsEmpty()) { + original_working_dir_.Set(FilePath::GetCurrentDir()); + GTEST_CHECK_(!original_working_dir_.IsEmpty()) + << "Failed to get the current working directory."; + } + + GetTestCase(test_info->test_case_name(), + test_info->type_param(), + set_up_tc, + tear_down_tc)->AddTestInfo(test_info); + } + +#if GTEST_HAS_PARAM_TEST + // Returns ParameterizedTestCaseRegistry object used to keep track of + // value-parameterized tests and instantiate and register them. + internal::ParameterizedTestCaseRegistry& parameterized_test_registry() { + return parameterized_test_registry_; + } +#endif // GTEST_HAS_PARAM_TEST + + // Sets the TestCase object for the test that's currently running. + void set_current_test_case(TestCase* a_current_test_case) { + current_test_case_ = a_current_test_case; + } + + // Sets the TestInfo object for the test that's currently running. If + // current_test_info is NULL, the assertion results will be stored in + // ad_hoc_test_result_. + void set_current_test_info(TestInfo* a_current_test_info) { + current_test_info_ = a_current_test_info; + } + + // Registers all parameterized tests defined using TEST_P and + // INSTANTIATE_TEST_CASE_P, creating regular tests for each test/parameter + // combination. This method can be called more then once; it has guards + // protecting from registering the tests more then once. If + // value-parameterized tests are disabled, RegisterParameterizedTests is + // present but does nothing. + void RegisterParameterizedTests(); + + // Runs all tests in this UnitTest object, prints the result, and + // returns true if all tests are successful. If any exception is + // thrown during a test, this test is considered to be failed, but + // the rest of the tests will still be run. + bool RunAllTests(); + + // Clears the results of all tests, except the ad hoc tests. + void ClearNonAdHocTestResult() { + ForEach(test_cases_, TestCase::ClearTestCaseResult); + } + + // Clears the results of ad-hoc test assertions. + void ClearAdHocTestResult() { + ad_hoc_test_result_.Clear(); + } + + // Adds a TestProperty to the current TestResult object when invoked in a + // context of a test or a test case, or to the global property set. If the + // result already contains a property with the same key, the value will be + // updated. + void RecordProperty(const TestProperty& test_property); + + enum ReactionToSharding { + HONOR_SHARDING_PROTOCOL, + IGNORE_SHARDING_PROTOCOL + }; + + // Matches the full name of each test against the user-specified + // filter to decide whether the test should run, then records the + // result in each TestCase and TestInfo object. + // If shard_tests == HONOR_SHARDING_PROTOCOL, further filters tests + // based on sharding variables in the environment. + // Returns the number of tests that should run. + int FilterTests(ReactionToSharding shard_tests); + + // Prints the names of the tests matching the user-specified filter flag. + void ListTestsMatchingFilter(); + + const TestCase* current_test_case() const { return current_test_case_; } + TestInfo* current_test_info() { return current_test_info_; } + const TestInfo* current_test_info() const { return current_test_info_; } + + // Returns the vector of environments that need to be set-up/torn-down + // before/after the tests are run. + std::vector& environments() { return environments_; } + + // Getters for the per-thread Google Test trace stack. + std::vector& gtest_trace_stack() { + return *(gtest_trace_stack_.pointer()); + } + const std::vector& gtest_trace_stack() const { + return gtest_trace_stack_.get(); + } + +#if GTEST_HAS_DEATH_TEST + void InitDeathTestSubprocessControlInfo() { + internal_run_death_test_flag_.reset(ParseInternalRunDeathTestFlag()); + } + // Returns a pointer to the parsed --gtest_internal_run_death_test + // flag, or NULL if that flag was not specified. + // This information is useful only in a death test child process. + // Must not be called before a call to InitGoogleTest. + const InternalRunDeathTestFlag* internal_run_death_test_flag() const { + return internal_run_death_test_flag_.get(); + } + + // Returns a pointer to the current death test factory. + internal::DeathTestFactory* death_test_factory() { + return death_test_factory_.get(); + } + + void SuppressTestEventsIfInSubprocess(); + + friend class ReplaceDeathTestFactory; +#endif // GTEST_HAS_DEATH_TEST + + // Initializes the event listener performing XML output as specified by + // UnitTestOptions. Must not be called before InitGoogleTest. + void ConfigureXmlOutput(); + +#if GTEST_CAN_STREAM_RESULTS_ + // Initializes the event listener for streaming test results to a socket. + // Must not be called before InitGoogleTest. + void ConfigureStreamingOutput(); +#endif + + // Performs initialization dependent upon flag values obtained in + // ParseGoogleTestFlagsOnly. Is called from InitGoogleTest after the call to + // ParseGoogleTestFlagsOnly. In case a user neglects to call InitGoogleTest + // this function is also called from RunAllTests. Since this function can be + // called more than once, it has to be idempotent. + void PostFlagParsingInit(); + + // Gets the random seed used at the start of the current test iteration. + int random_seed() const { return random_seed_; } + + // Gets the random number generator. + internal::Random* random() { return &random_; } + + // Shuffles all test cases, and the tests within each test case, + // making sure that death tests are still run first. + void ShuffleTests(); + + // Restores the test cases and tests to their order before the first shuffle. + void UnshuffleTests(); + + // Returns the value of GTEST_FLAG(catch_exceptions) at the moment + // UnitTest::Run() starts. + bool catch_exceptions() const { return catch_exceptions_; } + + private: + friend class ::testing::UnitTest; + + // Used by UnitTest::Run() to capture the state of + // GTEST_FLAG(catch_exceptions) at the moment it starts. + void set_catch_exceptions(bool value) { catch_exceptions_ = value; } + + // The UnitTest object that owns this implementation object. + UnitTest* const parent_; + + // The working directory when the first TEST() or TEST_F() was + // executed. + internal::FilePath original_working_dir_; + + // The default test part result reporters. + DefaultGlobalTestPartResultReporter default_global_test_part_result_reporter_; + DefaultPerThreadTestPartResultReporter + default_per_thread_test_part_result_reporter_; + + // Points to (but doesn't own) the global test part result reporter. + TestPartResultReporterInterface* global_test_part_result_repoter_; + + // Protects read and write access to global_test_part_result_reporter_. + internal::Mutex global_test_part_result_reporter_mutex_; + + // Points to (but doesn't own) the per-thread test part result reporter. + internal::ThreadLocal + per_thread_test_part_result_reporter_; + + // The vector of environments that need to be set-up/torn-down + // before/after the tests are run. + std::vector environments_; + + // The vector of TestCases in their original order. It owns the + // elements in the vector. + std::vector test_cases_; + + // Provides a level of indirection for the test case list to allow + // easy shuffling and restoring the test case order. The i-th + // element of this vector is the index of the i-th test case in the + // shuffled order. + std::vector test_case_indices_; + +#if GTEST_HAS_PARAM_TEST + // ParameterizedTestRegistry object used to register value-parameterized + // tests. + internal::ParameterizedTestCaseRegistry parameterized_test_registry_; + + // Indicates whether RegisterParameterizedTests() has been called already. + bool parameterized_tests_registered_; +#endif // GTEST_HAS_PARAM_TEST + + // Index of the last death test case registered. Initially -1. + int last_death_test_case_; + + // This points to the TestCase for the currently running test. It + // changes as Google Test goes through one test case after another. + // When no test is running, this is set to NULL and Google Test + // stores assertion results in ad_hoc_test_result_. Initially NULL. + TestCase* current_test_case_; + + // This points to the TestInfo for the currently running test. It + // changes as Google Test goes through one test after another. When + // no test is running, this is set to NULL and Google Test stores + // assertion results in ad_hoc_test_result_. Initially NULL. + TestInfo* current_test_info_; + + // Normally, a user only writes assertions inside a TEST or TEST_F, + // or inside a function called by a TEST or TEST_F. Since Google + // Test keeps track of which test is current running, it can + // associate such an assertion with the test it belongs to. + // + // If an assertion is encountered when no TEST or TEST_F is running, + // Google Test attributes the assertion result to an imaginary "ad hoc" + // test, and records the result in ad_hoc_test_result_. + TestResult ad_hoc_test_result_; + + // The list of event listeners that can be used to track events inside + // Google Test. + TestEventListeners listeners_; + + // The OS stack trace getter. Will be deleted when the UnitTest + // object is destructed. By default, an OsStackTraceGetter is used, + // but the user can set this field to use a custom getter if that is + // desired. + OsStackTraceGetterInterface* os_stack_trace_getter_; + + // True iff PostFlagParsingInit() has been called. + bool post_flag_parse_init_performed_; + + // The random number seed used at the beginning of the test run. + int random_seed_; + + // Our random number generator. + internal::Random random_; + + // The time of the test program start, in ms from the start of the + // UNIX epoch. + TimeInMillis start_timestamp_; + + // How long the test took to run, in milliseconds. + TimeInMillis elapsed_time_; + +#if GTEST_HAS_DEATH_TEST + // The decomposed components of the gtest_internal_run_death_test flag, + // parsed when RUN_ALL_TESTS is called. + internal::scoped_ptr internal_run_death_test_flag_; + internal::scoped_ptr death_test_factory_; +#endif // GTEST_HAS_DEATH_TEST + + // A per-thread stack of traces created by the SCOPED_TRACE() macro. + internal::ThreadLocal > gtest_trace_stack_; + + // The value of GTEST_FLAG(catch_exceptions) at the moment RunAllTests() + // starts. + bool catch_exceptions_; + + GTEST_DISALLOW_COPY_AND_ASSIGN_(UnitTestImpl); +}; // class UnitTestImpl + +// Convenience function for accessing the global UnitTest +// implementation object. +inline UnitTestImpl* GetUnitTestImpl() { + return UnitTest::GetInstance()->impl(); +} + +#if GTEST_USES_SIMPLE_RE + +// Internal helper functions for implementing the simple regular +// expression matcher. +GTEST_API_ bool IsInSet(char ch, const char* str); +GTEST_API_ bool IsAsciiDigit(char ch); +GTEST_API_ bool IsAsciiPunct(char ch); +GTEST_API_ bool IsRepeat(char ch); +GTEST_API_ bool IsAsciiWhiteSpace(char ch); +GTEST_API_ bool IsAsciiWordChar(char ch); +GTEST_API_ bool IsValidEscape(char ch); +GTEST_API_ bool AtomMatchesChar(bool escaped, char pattern, char ch); +GTEST_API_ bool ValidateRegex(const char* regex); +GTEST_API_ bool MatchRegexAtHead(const char* regex, const char* str); +GTEST_API_ bool MatchRepetitionAndRegexAtHead( + bool escaped, char ch, char repeat, const char* regex, const char* str); +GTEST_API_ bool MatchRegexAnywhere(const char* regex, const char* str); + +#endif // GTEST_USES_SIMPLE_RE + +// Parses the command line for Google Test flags, without initializing +// other parts of Google Test. +GTEST_API_ void ParseGoogleTestFlagsOnly(int* argc, char** argv); +GTEST_API_ void ParseGoogleTestFlagsOnly(int* argc, wchar_t** argv); + +#if GTEST_HAS_DEATH_TEST + +// Returns the message describing the last system error, regardless of the +// platform. +GTEST_API_ std::string GetLastErrnoDescription(); + +// Attempts to parse a string into a positive integer pointed to by the +// number parameter. Returns true if that is possible. +// GTEST_HAS_DEATH_TEST implies that we have ::std::string, so we can use +// it here. +template +bool ParseNaturalNumber(const ::std::string& str, Integer* number) { + // Fail fast if the given string does not begin with a digit; + // this bypasses strtoXXX's "optional leading whitespace and plus + // or minus sign" semantics, which are undesirable here. + if (str.empty() || !IsDigit(str[0])) { + return false; + } + errno = 0; + + char* end; + // BiggestConvertible is the largest integer type that system-provided + // string-to-number conversion routines can return. + +# if GTEST_OS_WINDOWS && !defined(__GNUC__) + + // MSVC and C++ Builder define __int64 instead of the standard long long. + typedef unsigned __int64 BiggestConvertible; + const BiggestConvertible parsed = _strtoui64(str.c_str(), &end, 10); + +# else + + typedef unsigned long long BiggestConvertible; // NOLINT + const BiggestConvertible parsed = strtoull(str.c_str(), &end, 10); + +# endif // GTEST_OS_WINDOWS && !defined(__GNUC__) + + const bool parse_success = *end == '\0' && errno == 0; + + // TODO(vladl@google.com): Convert this to compile time assertion when it is + // available. + GTEST_CHECK_(sizeof(Integer) <= sizeof(parsed)); + + const Integer result = static_cast(parsed); + if (parse_success && static_cast(result) == parsed) { + *number = result; + return true; + } + return false; +} +#endif // GTEST_HAS_DEATH_TEST + +// TestResult contains some private methods that should be hidden from +// Google Test user but are required for testing. This class allow our tests +// to access them. +// +// This class is supplied only for the purpose of testing Google Test's own +// constructs. Do not use it in user tests, either directly or indirectly. +class TestResultAccessor { + public: + static void RecordProperty(TestResult* test_result, + const std::string& xml_element, + const TestProperty& property) { + test_result->RecordProperty(xml_element, property); + } + + static void ClearTestPartResults(TestResult* test_result) { + test_result->ClearTestPartResults(); + } + + static const std::vector& test_part_results( + const TestResult& test_result) { + return test_result.test_part_results(); + } +}; + +#if GTEST_CAN_STREAM_RESULTS_ + +// Streams test results to the given port on the given host machine. +class GTEST_API_ StreamingListener : public EmptyTestEventListener { + public: + // Abstract base class for writing strings to a socket. + class AbstractSocketWriter { + public: + virtual ~AbstractSocketWriter() {} + + // Sends a string to the socket. + virtual void Send(const string& message) = 0; + + // Closes the socket. + virtual void CloseConnection() {} + + // Sends a string and a newline to the socket. + void SendLn(const string& message) { + Send(message + "\n"); + } + }; + + // Concrete class for actually writing strings to a socket. + class SocketWriter : public AbstractSocketWriter { + public: + SocketWriter(const string& host, const string& port) + : sockfd_(-1), host_name_(host), port_num_(port) { + MakeConnection(); + } + + virtual ~SocketWriter() { + if (sockfd_ != -1) + CloseConnection(); + } + + // Sends a string to the socket. + virtual void Send(const string& message) { + GTEST_CHECK_(sockfd_ != -1) + << "Send() can be called only when there is a connection."; + + const int len = static_cast(message.length()); + if (write(sockfd_, message.c_str(), len) != len) { + GTEST_LOG_(WARNING) + << "stream_result_to: failed to stream to " + << host_name_ << ":" << port_num_; + } + } + + private: + // Creates a client socket and connects to the server. + void MakeConnection(); + + // Closes the socket. + void CloseConnection() { + GTEST_CHECK_(sockfd_ != -1) + << "CloseConnection() can be called only when there is a connection."; + + close(sockfd_); + sockfd_ = -1; + } + + int sockfd_; // socket file descriptor + const string host_name_; + const string port_num_; + + GTEST_DISALLOW_COPY_AND_ASSIGN_(SocketWriter); + }; // class SocketWriter + + // Escapes '=', '&', '%', and '\n' characters in str as "%xx". + static string UrlEncode(const char* str); + + StreamingListener(const string& host, const string& port) + : socket_writer_(new SocketWriter(host, port)) { Start(); } + + explicit StreamingListener(AbstractSocketWriter* socket_writer) + : socket_writer_(socket_writer) { Start(); } + + void OnTestProgramStart(const UnitTest& /* unit_test */) { + SendLn("event=TestProgramStart"); + } + + void OnTestProgramEnd(const UnitTest& unit_test) { + // Note that Google Test current only report elapsed time for each + // test iteration, not for the entire test program. + SendLn("event=TestProgramEnd&passed=" + FormatBool(unit_test.Passed())); + + // Notify the streaming server to stop. + socket_writer_->CloseConnection(); + } + + void OnTestIterationStart(const UnitTest& /* unit_test */, int iteration) { + SendLn("event=TestIterationStart&iteration=" + + StreamableToString(iteration)); + } + + void OnTestIterationEnd(const UnitTest& unit_test, int /* iteration */) { + SendLn("event=TestIterationEnd&passed=" + + FormatBool(unit_test.Passed()) + "&elapsed_time=" + + StreamableToString(unit_test.elapsed_time()) + "ms"); + } + + void OnTestCaseStart(const TestCase& test_case) { + SendLn(std::string("event=TestCaseStart&name=") + test_case.name()); + } + + void OnTestCaseEnd(const TestCase& test_case) { + SendLn("event=TestCaseEnd&passed=" + FormatBool(test_case.Passed()) + + "&elapsed_time=" + StreamableToString(test_case.elapsed_time()) + + "ms"); + } + + void OnTestStart(const TestInfo& test_info) { + SendLn(std::string("event=TestStart&name=") + test_info.name()); + } + + void OnTestEnd(const TestInfo& test_info) { + SendLn("event=TestEnd&passed=" + + FormatBool((test_info.result())->Passed()) + + "&elapsed_time=" + + StreamableToString((test_info.result())->elapsed_time()) + "ms"); + } + + void OnTestPartResult(const TestPartResult& test_part_result) { + const char* file_name = test_part_result.file_name(); + if (file_name == NULL) + file_name = ""; + SendLn("event=TestPartResult&file=" + UrlEncode(file_name) + + "&line=" + StreamableToString(test_part_result.line_number()) + + "&message=" + UrlEncode(test_part_result.message())); + } + + private: + // Sends the given message and a newline to the socket. + void SendLn(const string& message) { socket_writer_->SendLn(message); } + + // Called at the start of streaming to notify the receiver what + // protocol we are using. + void Start() { SendLn("gtest_streaming_protocol_version=1.0"); } + + string FormatBool(bool value) { return value ? "1" : "0"; } + + const scoped_ptr socket_writer_; + + GTEST_DISALLOW_COPY_AND_ASSIGN_(StreamingListener); +}; // class StreamingListener + +#endif // GTEST_CAN_STREAM_RESULTS_ + +} // namespace internal +} // namespace testing + +#endif // GTEST_SRC_GTEST_INTERNAL_INL_H_ diff --git a/third_party/googletest/src/src/gtest-port.cc b/third_party/googletest/src/src/gtest-port.cc new file mode 100644 index 0000000..e5bf3dd --- /dev/null +++ b/third_party/googletest/src/src/gtest-port.cc @@ -0,0 +1,1259 @@ +// Copyright 2008, Google Inc. +// All rights reserved. +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: +// +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above +// copyright notice, this list of conditions and the following disclaimer +// in the documentation and/or other materials provided with the +// distribution. +// * Neither the name of Google Inc. nor the names of its +// contributors may be used to endorse or promote products derived from +// this software without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +// +// Author: wan@google.com (Zhanyong Wan) + +#include "gtest/internal/gtest-port.h" + +#include +#include +#include +#include +#include + +#if GTEST_OS_WINDOWS +# include +# include +# include +# include // Used in ThreadLocal. +#else +# include +#endif // GTEST_OS_WINDOWS + +#if GTEST_OS_MAC +# include +# include +# include +#endif // GTEST_OS_MAC + +#if GTEST_OS_QNX +# include +# include +# include +#endif // GTEST_OS_QNX + +#if GTEST_OS_AIX +# include +# include +#endif // GTEST_OS_AIX + +#include "gtest/gtest-spi.h" +#include "gtest/gtest-message.h" +#include "gtest/internal/gtest-internal.h" +#include "gtest/internal/gtest-string.h" + +// Indicates that this translation unit is part of Google Test's +// implementation. It must come before gtest-internal-inl.h is +// included, or there will be a compiler error. This trick exists to +// prevent the accidental inclusion of gtest-internal-inl.h in the +// user's code. +#define GTEST_IMPLEMENTATION_ 1 +#include "src/gtest-internal-inl.h" +#undef GTEST_IMPLEMENTATION_ + +namespace testing { +namespace internal { + +#if defined(_MSC_VER) || defined(__BORLANDC__) +// MSVC and C++Builder do not provide a definition of STDERR_FILENO. +const int kStdOutFileno = 1; +const int kStdErrFileno = 2; +#else +const int kStdOutFileno = STDOUT_FILENO; +const int kStdErrFileno = STDERR_FILENO; +#endif // _MSC_VER + +#if GTEST_OS_LINUX + +namespace { +template +T ReadProcFileField(const string& filename, int field) { + std::string dummy; + std::ifstream file(filename.c_str()); + while (field-- > 0) { + file >> dummy; + } + T output = 0; + file >> output; + return output; +} +} // namespace + +// Returns the number of active threads, or 0 when there is an error. +size_t GetThreadCount() { + const string filename = + (Message() << "/proc/" << getpid() << "/stat").GetString(); + return ReadProcFileField(filename, 19); +} + +#elif GTEST_OS_MAC + +size_t GetThreadCount() { + const task_t task = mach_task_self(); + mach_msg_type_number_t thread_count; + thread_act_array_t thread_list; + const kern_return_t status = task_threads(task, &thread_list, &thread_count); + if (status == KERN_SUCCESS) { + // task_threads allocates resources in thread_list and we need to free them + // to avoid leaks. + vm_deallocate(task, + reinterpret_cast(thread_list), + sizeof(thread_t) * thread_count); + return static_cast(thread_count); + } else { + return 0; + } +} + +#elif GTEST_OS_QNX + +// Returns the number of threads running in the process, or 0 to indicate that +// we cannot detect it. +size_t GetThreadCount() { + const int fd = open("/proc/self/as", O_RDONLY); + if (fd < 0) { + return 0; + } + procfs_info process_info; + const int status = + devctl(fd, DCMD_PROC_INFO, &process_info, sizeof(process_info), NULL); + close(fd); + if (status == EOK) { + return static_cast(process_info.num_threads); + } else { + return 0; + } +} + +#elif GTEST_OS_AIX + +size_t GetThreadCount() { + struct procentry64 entry; + pid_t pid = getpid(); + int status = getprocs64(&entry, sizeof(entry), NULL, 0, &pid, 1); + if (status == 1) { + return entry.pi_thcount; + } else { + return 0; + } +} + +#else + +size_t GetThreadCount() { + // There's no portable way to detect the number of threads, so we just + // return 0 to indicate that we cannot detect it. + return 0; +} + +#endif // GTEST_OS_LINUX + +#if GTEST_IS_THREADSAFE && GTEST_OS_WINDOWS + +void SleepMilliseconds(int n) { + ::Sleep(n); +} + +AutoHandle::AutoHandle() + : handle_(INVALID_HANDLE_VALUE) {} + +AutoHandle::AutoHandle(Handle handle) + : handle_(handle) {} + +AutoHandle::~AutoHandle() { + Reset(); +} + +AutoHandle::Handle AutoHandle::Get() const { + return handle_; +} + +void AutoHandle::Reset() { + Reset(INVALID_HANDLE_VALUE); +} + +void AutoHandle::Reset(HANDLE handle) { + // Resetting with the same handle we already own is invalid. + if (handle_ != handle) { + if (IsCloseable()) { + ::CloseHandle(handle_); + } + handle_ = handle; + } else { + GTEST_CHECK_(!IsCloseable()) + << "Resetting a valid handle to itself is likely a programmer error " + "and thus not allowed."; + } +} + +bool AutoHandle::IsCloseable() const { + // Different Windows APIs may use either of these values to represent an + // invalid handle. + return handle_ != NULL && handle_ != INVALID_HANDLE_VALUE; +} + +Notification::Notification() + : event_(::CreateEvent(NULL, // Default security attributes. + TRUE, // Do not reset automatically. + FALSE, // Initially unset. + NULL)) { // Anonymous event. + GTEST_CHECK_(event_.Get() != NULL); +} + +void Notification::Notify() { + GTEST_CHECK_(::SetEvent(event_.Get()) != FALSE); +} + +void Notification::WaitForNotification() { + GTEST_CHECK_( + ::WaitForSingleObject(event_.Get(), INFINITE) == WAIT_OBJECT_0); +} + +Mutex::Mutex() + : owner_thread_id_(0), + type_(kDynamic), + critical_section_init_phase_(0), + critical_section_(new CRITICAL_SECTION) { + ::InitializeCriticalSection(critical_section_); +} + +Mutex::~Mutex() { + // Static mutexes are leaked intentionally. It is not thread-safe to try + // to clean them up. + // TODO(yukawa): Switch to Slim Reader/Writer (SRW) Locks, which requires + // nothing to clean it up but is available only on Vista and later. + // http://msdn.microsoft.com/en-us/library/windows/desktop/aa904937.aspx + if (type_ == kDynamic) { + ::DeleteCriticalSection(critical_section_); + delete critical_section_; + critical_section_ = NULL; + } +} + +void Mutex::Lock() { + ThreadSafeLazyInit(); + ::EnterCriticalSection(critical_section_); + owner_thread_id_ = ::GetCurrentThreadId(); +} + +void Mutex::Unlock() { + ThreadSafeLazyInit(); + // We don't protect writing to owner_thread_id_ here, as it's the + // caller's responsibility to ensure that the current thread holds the + // mutex when this is called. + owner_thread_id_ = 0; + ::LeaveCriticalSection(critical_section_); +} + +// Does nothing if the current thread holds the mutex. Otherwise, crashes +// with high probability. +void Mutex::AssertHeld() { + ThreadSafeLazyInit(); + GTEST_CHECK_(owner_thread_id_ == ::GetCurrentThreadId()) + << "The current thread is not holding the mutex @" << this; +} + +// Initializes owner_thread_id_ and critical_section_ in static mutexes. +void Mutex::ThreadSafeLazyInit() { + // Dynamic mutexes are initialized in the constructor. + if (type_ == kStatic) { + switch ( + ::InterlockedCompareExchange(&critical_section_init_phase_, 1L, 0L)) { + case 0: + // If critical_section_init_phase_ was 0 before the exchange, we + // are the first to test it and need to perform the initialization. + owner_thread_id_ = 0; + critical_section_ = new CRITICAL_SECTION; + ::InitializeCriticalSection(critical_section_); + // Updates the critical_section_init_phase_ to 2 to signal + // initialization complete. + GTEST_CHECK_(::InterlockedCompareExchange( + &critical_section_init_phase_, 2L, 1L) == + 1L); + break; + case 1: + // Somebody else is already initializing the mutex; spin until they + // are done. + while (::InterlockedCompareExchange(&critical_section_init_phase_, + 2L, + 2L) != 2L) { + // Possibly yields the rest of the thread's time slice to other + // threads. + ::Sleep(0); + } + break; + + case 2: + break; // The mutex is already initialized and ready for use. + + default: + GTEST_CHECK_(false) + << "Unexpected value of critical_section_init_phase_ " + << "while initializing a static mutex."; + } + } +} + +namespace { + +class ThreadWithParamSupport : public ThreadWithParamBase { + public: + static HANDLE CreateThread(Runnable* runnable, + Notification* thread_can_start) { + ThreadMainParam* param = new ThreadMainParam(runnable, thread_can_start); + DWORD thread_id; + // TODO(yukawa): Consider to use _beginthreadex instead. + HANDLE thread_handle = ::CreateThread( + NULL, // Default security. + 0, // Default stack size. + &ThreadWithParamSupport::ThreadMain, + param, // Parameter to ThreadMainStatic + 0x0, // Default creation flags. + &thread_id); // Need a valid pointer for the call to work under Win98. + GTEST_CHECK_(thread_handle != NULL) << "CreateThread failed with error " + << ::GetLastError() << "."; + if (thread_handle == NULL) { + delete param; + } + return thread_handle; + } + + private: + struct ThreadMainParam { + ThreadMainParam(Runnable* runnable, Notification* thread_can_start) + : runnable_(runnable), + thread_can_start_(thread_can_start) { + } + scoped_ptr runnable_; + // Does not own. + Notification* thread_can_start_; + }; + + static DWORD WINAPI ThreadMain(void* ptr) { + // Transfers ownership. + scoped_ptr param(static_cast(ptr)); + if (param->thread_can_start_ != NULL) + param->thread_can_start_->WaitForNotification(); + param->runnable_->Run(); + return 0; + } + + // Prohibit instantiation. + ThreadWithParamSupport(); + + GTEST_DISALLOW_COPY_AND_ASSIGN_(ThreadWithParamSupport); +}; + +} // namespace + +ThreadWithParamBase::ThreadWithParamBase(Runnable *runnable, + Notification* thread_can_start) + : thread_(ThreadWithParamSupport::CreateThread(runnable, + thread_can_start)) { +} + +ThreadWithParamBase::~ThreadWithParamBase() { + Join(); +} + +void ThreadWithParamBase::Join() { + GTEST_CHECK_(::WaitForSingleObject(thread_.Get(), INFINITE) == WAIT_OBJECT_0) + << "Failed to join the thread with error " << ::GetLastError() << "."; +} + +// Maps a thread to a set of ThreadIdToThreadLocals that have values +// instantiated on that thread and notifies them when the thread exits. A +// ThreadLocal instance is expected to persist until all threads it has +// values on have terminated. +class ThreadLocalRegistryImpl { + public: + // Registers thread_local_instance as having value on the current thread. + // Returns a value that can be used to identify the thread from other threads. + static ThreadLocalValueHolderBase* GetValueOnCurrentThread( + const ThreadLocalBase* thread_local_instance) { + DWORD current_thread = ::GetCurrentThreadId(); + MutexLock lock(&mutex_); + ThreadIdToThreadLocals* const thread_to_thread_locals = + GetThreadLocalsMapLocked(); + ThreadIdToThreadLocals::iterator thread_local_pos = + thread_to_thread_locals->find(current_thread); + if (thread_local_pos == thread_to_thread_locals->end()) { + thread_local_pos = thread_to_thread_locals->insert( + std::make_pair(current_thread, ThreadLocalValues())).first; + StartWatcherThreadFor(current_thread); + } + ThreadLocalValues& thread_local_values = thread_local_pos->second; + ThreadLocalValues::iterator value_pos = + thread_local_values.find(thread_local_instance); + if (value_pos == thread_local_values.end()) { + value_pos = + thread_local_values + .insert(std::make_pair( + thread_local_instance, + linked_ptr( + thread_local_instance->NewValueForCurrentThread()))) + .first; + } + return value_pos->second.get(); + } + + static void OnThreadLocalDestroyed( + const ThreadLocalBase* thread_local_instance) { + std::vector > value_holders; + // Clean up the ThreadLocalValues data structure while holding the lock, but + // defer the destruction of the ThreadLocalValueHolderBases. + { + MutexLock lock(&mutex_); + ThreadIdToThreadLocals* const thread_to_thread_locals = + GetThreadLocalsMapLocked(); + for (ThreadIdToThreadLocals::iterator it = + thread_to_thread_locals->begin(); + it != thread_to_thread_locals->end(); + ++it) { + ThreadLocalValues& thread_local_values = it->second; + ThreadLocalValues::iterator value_pos = + thread_local_values.find(thread_local_instance); + if (value_pos != thread_local_values.end()) { + value_holders.push_back(value_pos->second); + thread_local_values.erase(value_pos); + // This 'if' can only be successful at most once, so theoretically we + // could break out of the loop here, but we don't bother doing so. + } + } + } + // Outside the lock, let the destructor for 'value_holders' deallocate the + // ThreadLocalValueHolderBases. + } + + static void OnThreadExit(DWORD thread_id) { + GTEST_CHECK_(thread_id != 0) << ::GetLastError(); + std::vector > value_holders; + // Clean up the ThreadIdToThreadLocals data structure while holding the + // lock, but defer the destruction of the ThreadLocalValueHolderBases. + { + MutexLock lock(&mutex_); + ThreadIdToThreadLocals* const thread_to_thread_locals = + GetThreadLocalsMapLocked(); + ThreadIdToThreadLocals::iterator thread_local_pos = + thread_to_thread_locals->find(thread_id); + if (thread_local_pos != thread_to_thread_locals->end()) { + ThreadLocalValues& thread_local_values = thread_local_pos->second; + for (ThreadLocalValues::iterator value_pos = + thread_local_values.begin(); + value_pos != thread_local_values.end(); + ++value_pos) { + value_holders.push_back(value_pos->second); + } + thread_to_thread_locals->erase(thread_local_pos); + } + } + // Outside the lock, let the destructor for 'value_holders' deallocate the + // ThreadLocalValueHolderBases. + } + + private: + // In a particular thread, maps a ThreadLocal object to its value. + typedef std::map > ThreadLocalValues; + // Stores all ThreadIdToThreadLocals having values in a thread, indexed by + // thread's ID. + typedef std::map ThreadIdToThreadLocals; + + // Holds the thread id and thread handle that we pass from + // StartWatcherThreadFor to WatcherThreadFunc. + typedef std::pair ThreadIdAndHandle; + + static void StartWatcherThreadFor(DWORD thread_id) { + // The returned handle will be kept in thread_map and closed by + // watcher_thread in WatcherThreadFunc. + HANDLE thread = ::OpenThread(SYNCHRONIZE | THREAD_QUERY_INFORMATION, + FALSE, + thread_id); + GTEST_CHECK_(thread != NULL); + // We need to to pass a valid thread ID pointer into CreateThread for it + // to work correctly under Win98. + DWORD watcher_thread_id; + HANDLE watcher_thread = ::CreateThread( + NULL, // Default security. + 0, // Default stack size + &ThreadLocalRegistryImpl::WatcherThreadFunc, + reinterpret_cast(new ThreadIdAndHandle(thread_id, thread)), + CREATE_SUSPENDED, + &watcher_thread_id); + GTEST_CHECK_(watcher_thread != NULL); + // Give the watcher thread the same priority as ours to avoid being + // blocked by it. + ::SetThreadPriority(watcher_thread, + ::GetThreadPriority(::GetCurrentThread())); + ::ResumeThread(watcher_thread); + ::CloseHandle(watcher_thread); + } + + // Monitors exit from a given thread and notifies those + // ThreadIdToThreadLocals about thread termination. + static DWORD WINAPI WatcherThreadFunc(LPVOID param) { + const ThreadIdAndHandle* tah = + reinterpret_cast(param); + GTEST_CHECK_( + ::WaitForSingleObject(tah->second, INFINITE) == WAIT_OBJECT_0); + OnThreadExit(tah->first); + ::CloseHandle(tah->second); + delete tah; + return 0; + } + + // Returns map of thread local instances. + static ThreadIdToThreadLocals* GetThreadLocalsMapLocked() { + mutex_.AssertHeld(); + static ThreadIdToThreadLocals* map = new ThreadIdToThreadLocals; + return map; + } + + // Protects access to GetThreadLocalsMapLocked() and its return value. + static Mutex mutex_; + // Protects access to GetThreadMapLocked() and its return value. + static Mutex thread_map_mutex_; +}; + +Mutex ThreadLocalRegistryImpl::mutex_(Mutex::kStaticMutex); +Mutex ThreadLocalRegistryImpl::thread_map_mutex_(Mutex::kStaticMutex); + +ThreadLocalValueHolderBase* ThreadLocalRegistry::GetValueOnCurrentThread( + const ThreadLocalBase* thread_local_instance) { + return ThreadLocalRegistryImpl::GetValueOnCurrentThread( + thread_local_instance); +} + +void ThreadLocalRegistry::OnThreadLocalDestroyed( + const ThreadLocalBase* thread_local_instance) { + ThreadLocalRegistryImpl::OnThreadLocalDestroyed(thread_local_instance); +} + +#endif // GTEST_IS_THREADSAFE && GTEST_OS_WINDOWS + +#if GTEST_USES_POSIX_RE + +// Implements RE. Currently only needed for death tests. + +RE::~RE() { + if (is_valid_) { + // regfree'ing an invalid regex might crash because the content + // of the regex is undefined. Since the regex's are essentially + // the same, one cannot be valid (or invalid) without the other + // being so too. + regfree(&partial_regex_); + regfree(&full_regex_); + } + free(const_cast(pattern_)); +} + +// Returns true iff regular expression re matches the entire str. +bool RE::FullMatch(const char* str, const RE& re) { + if (!re.is_valid_) return false; + + regmatch_t match; + return regexec(&re.full_regex_, str, 1, &match, 0) == 0; +} + +// Returns true iff regular expression re matches a substring of str +// (including str itself). +bool RE::PartialMatch(const char* str, const RE& re) { + if (!re.is_valid_) return false; + + regmatch_t match; + return regexec(&re.partial_regex_, str, 1, &match, 0) == 0; +} + +// Initializes an RE from its string representation. +void RE::Init(const char* regex) { + pattern_ = posix::StrDup(regex); + + // Reserves enough bytes to hold the regular expression used for a + // full match. + const size_t full_regex_len = strlen(regex) + 10; + char* const full_pattern = new char[full_regex_len]; + + snprintf(full_pattern, full_regex_len, "^(%s)$", regex); + is_valid_ = regcomp(&full_regex_, full_pattern, REG_EXTENDED) == 0; + // We want to call regcomp(&partial_regex_, ...) even if the + // previous expression returns false. Otherwise partial_regex_ may + // not be properly initialized can may cause trouble when it's + // freed. + // + // Some implementation of POSIX regex (e.g. on at least some + // versions of Cygwin) doesn't accept the empty string as a valid + // regex. We change it to an equivalent form "()" to be safe. + if (is_valid_) { + const char* const partial_regex = (*regex == '\0') ? "()" : regex; + is_valid_ = regcomp(&partial_regex_, partial_regex, REG_EXTENDED) == 0; + } + EXPECT_TRUE(is_valid_) + << "Regular expression \"" << regex + << "\" is not a valid POSIX Extended regular expression."; + + delete[] full_pattern; +} + +#elif GTEST_USES_SIMPLE_RE + +// Returns true iff ch appears anywhere in str (excluding the +// terminating '\0' character). +bool IsInSet(char ch, const char* str) { + return ch != '\0' && strchr(str, ch) != NULL; +} + +// Returns true iff ch belongs to the given classification. Unlike +// similar functions in , these aren't affected by the +// current locale. +bool IsAsciiDigit(char ch) { return '0' <= ch && ch <= '9'; } +bool IsAsciiPunct(char ch) { + return IsInSet(ch, "^-!\"#$%&'()*+,./:;<=>?@[\\]_`{|}~"); +} +bool IsRepeat(char ch) { return IsInSet(ch, "?*+"); } +bool IsAsciiWhiteSpace(char ch) { return IsInSet(ch, " \f\n\r\t\v"); } +bool IsAsciiWordChar(char ch) { + return ('a' <= ch && ch <= 'z') || ('A' <= ch && ch <= 'Z') || + ('0' <= ch && ch <= '9') || ch == '_'; +} + +// Returns true iff "\\c" is a supported escape sequence. +bool IsValidEscape(char c) { + return (IsAsciiPunct(c) || IsInSet(c, "dDfnrsStvwW")); +} + +// Returns true iff the given atom (specified by escaped and pattern) +// matches ch. The result is undefined if the atom is invalid. +bool AtomMatchesChar(bool escaped, char pattern_char, char ch) { + if (escaped) { // "\\p" where p is pattern_char. + switch (pattern_char) { + case 'd': return IsAsciiDigit(ch); + case 'D': return !IsAsciiDigit(ch); + case 'f': return ch == '\f'; + case 'n': return ch == '\n'; + case 'r': return ch == '\r'; + case 's': return IsAsciiWhiteSpace(ch); + case 'S': return !IsAsciiWhiteSpace(ch); + case 't': return ch == '\t'; + case 'v': return ch == '\v'; + case 'w': return IsAsciiWordChar(ch); + case 'W': return !IsAsciiWordChar(ch); + } + return IsAsciiPunct(pattern_char) && pattern_char == ch; + } + + return (pattern_char == '.' && ch != '\n') || pattern_char == ch; +} + +// Helper function used by ValidateRegex() to format error messages. +std::string FormatRegexSyntaxError(const char* regex, int index) { + return (Message() << "Syntax error at index " << index + << " in simple regular expression \"" << regex << "\": ").GetString(); +} + +// Generates non-fatal failures and returns false if regex is invalid; +// otherwise returns true. +bool ValidateRegex(const char* regex) { + if (regex == NULL) { + // TODO(wan@google.com): fix the source file location in the + // assertion failures to match where the regex is used in user + // code. + ADD_FAILURE() << "NULL is not a valid simple regular expression."; + return false; + } + + bool is_valid = true; + + // True iff ?, *, or + can follow the previous atom. + bool prev_repeatable = false; + for (int i = 0; regex[i]; i++) { + if (regex[i] == '\\') { // An escape sequence + i++; + if (regex[i] == '\0') { + ADD_FAILURE() << FormatRegexSyntaxError(regex, i - 1) + << "'\\' cannot appear at the end."; + return false; + } + + if (!IsValidEscape(regex[i])) { + ADD_FAILURE() << FormatRegexSyntaxError(regex, i - 1) + << "invalid escape sequence \"\\" << regex[i] << "\"."; + is_valid = false; + } + prev_repeatable = true; + } else { // Not an escape sequence. + const char ch = regex[i]; + + if (ch == '^' && i > 0) { + ADD_FAILURE() << FormatRegexSyntaxError(regex, i) + << "'^' can only appear at the beginning."; + is_valid = false; + } else if (ch == '$' && regex[i + 1] != '\0') { + ADD_FAILURE() << FormatRegexSyntaxError(regex, i) + << "'$' can only appear at the end."; + is_valid = false; + } else if (IsInSet(ch, "()[]{}|")) { + ADD_FAILURE() << FormatRegexSyntaxError(regex, i) + << "'" << ch << "' is unsupported."; + is_valid = false; + } else if (IsRepeat(ch) && !prev_repeatable) { + ADD_FAILURE() << FormatRegexSyntaxError(regex, i) + << "'" << ch << "' can only follow a repeatable token."; + is_valid = false; + } + + prev_repeatable = !IsInSet(ch, "^$?*+"); + } + } + + return is_valid; +} + +// Matches a repeated regex atom followed by a valid simple regular +// expression. The regex atom is defined as c if escaped is false, +// or \c otherwise. repeat is the repetition meta character (?, *, +// or +). The behavior is undefined if str contains too many +// characters to be indexable by size_t, in which case the test will +// probably time out anyway. We are fine with this limitation as +// std::string has it too. +bool MatchRepetitionAndRegexAtHead( + bool escaped, char c, char repeat, const char* regex, + const char* str) { + const size_t min_count = (repeat == '+') ? 1 : 0; + const size_t max_count = (repeat == '?') ? 1 : + static_cast(-1) - 1; + // We cannot call numeric_limits::max() as it conflicts with the + // max() macro on Windows. + + for (size_t i = 0; i <= max_count; ++i) { + // We know that the atom matches each of the first i characters in str. + if (i >= min_count && MatchRegexAtHead(regex, str + i)) { + // We have enough matches at the head, and the tail matches too. + // Since we only care about *whether* the pattern matches str + // (as opposed to *how* it matches), there is no need to find a + // greedy match. + return true; + } + if (str[i] == '\0' || !AtomMatchesChar(escaped, c, str[i])) + return false; + } + return false; +} + +// Returns true iff regex matches a prefix of str. regex must be a +// valid simple regular expression and not start with "^", or the +// result is undefined. +bool MatchRegexAtHead(const char* regex, const char* str) { + if (*regex == '\0') // An empty regex matches a prefix of anything. + return true; + + // "$" only matches the end of a string. Note that regex being + // valid guarantees that there's nothing after "$" in it. + if (*regex == '$') + return *str == '\0'; + + // Is the first thing in regex an escape sequence? + const bool escaped = *regex == '\\'; + if (escaped) + ++regex; + if (IsRepeat(regex[1])) { + // MatchRepetitionAndRegexAtHead() calls MatchRegexAtHead(), so + // here's an indirect recursion. It terminates as the regex gets + // shorter in each recursion. + return MatchRepetitionAndRegexAtHead( + escaped, regex[0], regex[1], regex + 2, str); + } else { + // regex isn't empty, isn't "$", and doesn't start with a + // repetition. We match the first atom of regex with the first + // character of str and recurse. + return (*str != '\0') && AtomMatchesChar(escaped, *regex, *str) && + MatchRegexAtHead(regex + 1, str + 1); + } +} + +// Returns true iff regex matches any substring of str. regex must be +// a valid simple regular expression, or the result is undefined. +// +// The algorithm is recursive, but the recursion depth doesn't exceed +// the regex length, so we won't need to worry about running out of +// stack space normally. In rare cases the time complexity can be +// exponential with respect to the regex length + the string length, +// but usually it's must faster (often close to linear). +bool MatchRegexAnywhere(const char* regex, const char* str) { + if (regex == NULL || str == NULL) + return false; + + if (*regex == '^') + return MatchRegexAtHead(regex + 1, str); + + // A successful match can be anywhere in str. + do { + if (MatchRegexAtHead(regex, str)) + return true; + } while (*str++ != '\0'); + return false; +} + +// Implements the RE class. + +RE::~RE() { + free(const_cast(pattern_)); + free(const_cast(full_pattern_)); +} + +// Returns true iff regular expression re matches the entire str. +bool RE::FullMatch(const char* str, const RE& re) { + return re.is_valid_ && MatchRegexAnywhere(re.full_pattern_, str); +} + +// Returns true iff regular expression re matches a substring of str +// (including str itself). +bool RE::PartialMatch(const char* str, const RE& re) { + return re.is_valid_ && MatchRegexAnywhere(re.pattern_, str); +} + +// Initializes an RE from its string representation. +void RE::Init(const char* regex) { + pattern_ = full_pattern_ = NULL; + if (regex != NULL) { + pattern_ = posix::StrDup(regex); + } + + is_valid_ = ValidateRegex(regex); + if (!is_valid_) { + // No need to calculate the full pattern when the regex is invalid. + return; + } + + const size_t len = strlen(regex); + // Reserves enough bytes to hold the regular expression used for a + // full match: we need space to prepend a '^', append a '$', and + // terminate the string with '\0'. + char* buffer = static_cast(malloc(len + 3)); + full_pattern_ = buffer; + + if (*regex != '^') + *buffer++ = '^'; // Makes sure full_pattern_ starts with '^'. + + // We don't use snprintf or strncpy, as they trigger a warning when + // compiled with VC++ 8.0. + memcpy(buffer, regex, len); + buffer += len; + + if (len == 0 || regex[len - 1] != '$') + *buffer++ = '$'; // Makes sure full_pattern_ ends with '$'. + + *buffer = '\0'; +} + +#endif // GTEST_USES_POSIX_RE + +const char kUnknownFile[] = "unknown file"; + +// Formats a source file path and a line number as they would appear +// in an error message from the compiler used to compile this code. +GTEST_API_ ::std::string FormatFileLocation(const char* file, int line) { + const std::string file_name(file == NULL ? kUnknownFile : file); + + if (line < 0) { + return file_name + ":"; + } +#ifdef _MSC_VER + return file_name + "(" + StreamableToString(line) + "):"; +#else + return file_name + ":" + StreamableToString(line) + ":"; +#endif // _MSC_VER +} + +// Formats a file location for compiler-independent XML output. +// Although this function is not platform dependent, we put it next to +// FormatFileLocation in order to contrast the two functions. +// Note that FormatCompilerIndependentFileLocation() does NOT append colon +// to the file location it produces, unlike FormatFileLocation(). +GTEST_API_ ::std::string FormatCompilerIndependentFileLocation( + const char* file, int line) { + const std::string file_name(file == NULL ? kUnknownFile : file); + + if (line < 0) + return file_name; + else + return file_name + ":" + StreamableToString(line); +} + +GTestLog::GTestLog(GTestLogSeverity severity, const char* file, int line) + : severity_(severity) { + const char* const marker = + severity == GTEST_INFO ? "[ INFO ]" : + severity == GTEST_WARNING ? "[WARNING]" : + severity == GTEST_ERROR ? "[ ERROR ]" : "[ FATAL ]"; + GetStream() << ::std::endl << marker << " " + << FormatFileLocation(file, line).c_str() << ": "; +} + +// Flushes the buffers and, if severity is GTEST_FATAL, aborts the program. +GTestLog::~GTestLog() { + GetStream() << ::std::endl; + if (severity_ == GTEST_FATAL) { + fflush(stderr); + posix::Abort(); + } +} +// Disable Microsoft deprecation warnings for POSIX functions called from +// this class (creat, dup, dup2, and close) +GTEST_DISABLE_MSC_WARNINGS_PUSH_(4996) + +#if GTEST_HAS_STREAM_REDIRECTION + +// Object that captures an output stream (stdout/stderr). +class CapturedStream { + public: + // The ctor redirects the stream to a temporary file. + explicit CapturedStream(int fd) : fd_(fd), uncaptured_fd_(dup(fd)) { +# if GTEST_OS_WINDOWS + char temp_dir_path[MAX_PATH + 1] = { '\0' }; // NOLINT + char temp_file_path[MAX_PATH + 1] = { '\0' }; // NOLINT + + ::GetTempPathA(sizeof(temp_dir_path), temp_dir_path); + const UINT success = ::GetTempFileNameA(temp_dir_path, + "gtest_redir", + 0, // Generate unique file name. + temp_file_path); + GTEST_CHECK_(success != 0) + << "Unable to create a temporary file in " << temp_dir_path; + const int captured_fd = creat(temp_file_path, _S_IREAD | _S_IWRITE); + GTEST_CHECK_(captured_fd != -1) << "Unable to open temporary file " + << temp_file_path; + filename_ = temp_file_path; +# else + // There's no guarantee that a test has write access to the current + // directory, so we create the temporary file in the /tmp directory + // instead. We use /tmp on most systems, and /sdcard on Android. + // That's because Android doesn't have /tmp. +# if GTEST_OS_LINUX_ANDROID + // Note: Android applications are expected to call the framework's + // Context.getExternalStorageDirectory() method through JNI to get + // the location of the world-writable SD Card directory. However, + // this requires a Context handle, which cannot be retrieved + // globally from native code. Doing so also precludes running the + // code as part of a regular standalone executable, which doesn't + // run in a Dalvik process (e.g. when running it through 'adb shell'). + // + // The location /sdcard is directly accessible from native code + // and is the only location (unofficially) supported by the Android + // team. It's generally a symlink to the real SD Card mount point + // which can be /mnt/sdcard, /mnt/sdcard0, /system/media/sdcard, or + // other OEM-customized locations. Never rely on these, and always + // use /sdcard. + char name_template[] = "/sdcard/gtest_captured_stream.XXXXXX"; +# else + char name_template[] = "/tmp/captured_stream.XXXXXX"; +# endif // GTEST_OS_LINUX_ANDROID + const int captured_fd = mkstemp(name_template); + filename_ = name_template; +# endif // GTEST_OS_WINDOWS + fflush(NULL); + dup2(captured_fd, fd_); + close(captured_fd); + } + + ~CapturedStream() { + remove(filename_.c_str()); + } + + std::string GetCapturedString() { + if (uncaptured_fd_ != -1) { + // Restores the original stream. + fflush(NULL); + dup2(uncaptured_fd_, fd_); + close(uncaptured_fd_); + uncaptured_fd_ = -1; + } + + FILE* const file = posix::FOpen(filename_.c_str(), "r"); + const std::string content = ReadEntireFile(file); + posix::FClose(file); + return content; + } + + private: + const int fd_; // A stream to capture. + int uncaptured_fd_; + // Name of the temporary file holding the stderr output. + ::std::string filename_; + + GTEST_DISALLOW_COPY_AND_ASSIGN_(CapturedStream); +}; + +GTEST_DISABLE_MSC_WARNINGS_POP_() + +static CapturedStream* g_captured_stderr = NULL; +static CapturedStream* g_captured_stdout = NULL; + +// Starts capturing an output stream (stdout/stderr). +void CaptureStream(int fd, const char* stream_name, CapturedStream** stream) { + if (*stream != NULL) { + GTEST_LOG_(FATAL) << "Only one " << stream_name + << " capturer can exist at a time."; + } + *stream = new CapturedStream(fd); +} + +// Stops capturing the output stream and returns the captured string. +std::string GetCapturedStream(CapturedStream** captured_stream) { + const std::string content = (*captured_stream)->GetCapturedString(); + + delete *captured_stream; + *captured_stream = NULL; + + return content; +} + +// Starts capturing stdout. +void CaptureStdout() { + CaptureStream(kStdOutFileno, "stdout", &g_captured_stdout); +} + +// Starts capturing stderr. +void CaptureStderr() { + CaptureStream(kStdErrFileno, "stderr", &g_captured_stderr); +} + +// Stops capturing stdout and returns the captured string. +std::string GetCapturedStdout() { + return GetCapturedStream(&g_captured_stdout); +} + +// Stops capturing stderr and returns the captured string. +std::string GetCapturedStderr() { + return GetCapturedStream(&g_captured_stderr); +} + +#endif // GTEST_HAS_STREAM_REDIRECTION + +std::string TempDir() { +#if GTEST_OS_WINDOWS_MOBILE + return "\\temp\\"; +#elif GTEST_OS_WINDOWS + const char* temp_dir = posix::GetEnv("TEMP"); + if (temp_dir == NULL || temp_dir[0] == '\0') + return "\\temp\\"; + else if (temp_dir[strlen(temp_dir) - 1] == '\\') + return temp_dir; + else + return std::string(temp_dir) + "\\"; +#elif GTEST_OS_LINUX_ANDROID + return "/sdcard/"; +#else + return "/tmp/"; +#endif // GTEST_OS_WINDOWS_MOBILE +} + +size_t GetFileSize(FILE* file) { + fseek(file, 0, SEEK_END); + return static_cast(ftell(file)); +} + +std::string ReadEntireFile(FILE* file) { + const size_t file_size = GetFileSize(file); + char* const buffer = new char[file_size]; + + size_t bytes_last_read = 0; // # of bytes read in the last fread() + size_t bytes_read = 0; // # of bytes read so far + + fseek(file, 0, SEEK_SET); + + // Keeps reading the file until we cannot read further or the + // pre-determined file size is reached. + do { + bytes_last_read = fread(buffer+bytes_read, 1, file_size-bytes_read, file); + bytes_read += bytes_last_read; + } while (bytes_last_read > 0 && bytes_read < file_size); + + const std::string content(buffer, bytes_read); + delete[] buffer; + + return content; +} + +#if GTEST_HAS_DEATH_TEST + +static const ::std::vector* g_injected_test_argvs = + NULL; // Owned. + +void SetInjectableArgvs(const ::std::vector* argvs) { + if (g_injected_test_argvs != argvs) + delete g_injected_test_argvs; + g_injected_test_argvs = argvs; +} + +const ::std::vector& GetInjectableArgvs() { + if (g_injected_test_argvs != NULL) { + return *g_injected_test_argvs; + } + return GetArgvs(); +} +#endif // GTEST_HAS_DEATH_TEST + +#if GTEST_OS_WINDOWS_MOBILE +namespace posix { +void Abort() { + DebugBreak(); + TerminateProcess(GetCurrentProcess(), 1); +} +} // namespace posix +#endif // GTEST_OS_WINDOWS_MOBILE + +// Returns the name of the environment variable corresponding to the +// given flag. For example, FlagToEnvVar("foo") will return +// "GTEST_FOO" in the open-source version. +static std::string FlagToEnvVar(const char* flag) { + const std::string full_flag = + (Message() << GTEST_FLAG_PREFIX_ << flag).GetString(); + + Message env_var; + for (size_t i = 0; i != full_flag.length(); i++) { + env_var << ToUpper(full_flag.c_str()[i]); + } + + return env_var.GetString(); +} + +// Parses 'str' for a 32-bit signed integer. If successful, writes +// the result to *value and returns true; otherwise leaves *value +// unchanged and returns false. +bool ParseInt32(const Message& src_text, const char* str, Int32* value) { + // Parses the environment variable as a decimal integer. + char* end = NULL; + const long long_value = strtol(str, &end, 10); // NOLINT + + // Has strtol() consumed all characters in the string? + if (*end != '\0') { + // No - an invalid character was encountered. + Message msg; + msg << "WARNING: " << src_text + << " is expected to be a 32-bit integer, but actually" + << " has value \"" << str << "\".\n"; + printf("%s", msg.GetString().c_str()); + fflush(stdout); + return false; + } + + // Is the parsed value in the range of an Int32? + const Int32 result = static_cast(long_value); + if (long_value == LONG_MAX || long_value == LONG_MIN || + // The parsed value overflows as a long. (strtol() returns + // LONG_MAX or LONG_MIN when the input overflows.) + result != long_value + // The parsed value overflows as an Int32. + ) { + Message msg; + msg << "WARNING: " << src_text + << " is expected to be a 32-bit integer, but actually" + << " has value " << str << ", which overflows.\n"; + printf("%s", msg.GetString().c_str()); + fflush(stdout); + return false; + } + + *value = result; + return true; +} + +// Reads and returns the Boolean environment variable corresponding to +// the given flag; if it's not set, returns default_value. +// +// The value is considered true iff it's not "0". +bool BoolFromGTestEnv(const char* flag, bool default_value) { +#if defined(GTEST_GET_BOOL_FROM_ENV_) + return GTEST_GET_BOOL_FROM_ENV_(flag, default_value); +#endif // defined(GTEST_GET_BOOL_FROM_ENV_) + const std::string env_var = FlagToEnvVar(flag); + const char* const string_value = posix::GetEnv(env_var.c_str()); + return string_value == NULL ? + default_value : strcmp(string_value, "0") != 0; +} + +// Reads and returns a 32-bit integer stored in the environment +// variable corresponding to the given flag; if it isn't set or +// doesn't represent a valid 32-bit integer, returns default_value. +Int32 Int32FromGTestEnv(const char* flag, Int32 default_value) { +#if defined(GTEST_GET_INT32_FROM_ENV_) + return GTEST_GET_INT32_FROM_ENV_(flag, default_value); +#endif // defined(GTEST_GET_INT32_FROM_ENV_) + const std::string env_var = FlagToEnvVar(flag); + const char* const string_value = posix::GetEnv(env_var.c_str()); + if (string_value == NULL) { + // The environment variable is not set. + return default_value; + } + + Int32 result = default_value; + if (!ParseInt32(Message() << "Environment variable " << env_var, + string_value, &result)) { + printf("The default value %s is used.\n", + (Message() << default_value).GetString().c_str()); + fflush(stdout); + return default_value; + } + + return result; +} + +// Reads and returns the string environment variable corresponding to +// the given flag; if it's not set, returns default_value. +std::string StringFromGTestEnv(const char* flag, const char* default_value) { +#if defined(GTEST_GET_STRING_FROM_ENV_) + return GTEST_GET_STRING_FROM_ENV_(flag, default_value); +#endif // defined(GTEST_GET_STRING_FROM_ENV_) + const std::string env_var = FlagToEnvVar(flag); + const char* value = posix::GetEnv(env_var.c_str()); + if (value != NULL) { + return value; + } + + // As a special case for the 'output' flag, if GTEST_OUTPUT is not + // set, we look for XML_OUTPUT_FILE, which is set by the Bazel build + // system. The value of XML_OUTPUT_FILE is a filename without the + // "xml:" prefix of GTEST_OUTPUT. + // + // The net priority order after flag processing is thus: + // --gtest_output command line flag + // GTEST_OUTPUT environment variable + // XML_OUTPUT_FILE environment variable + // 'default_value' + if (strcmp(flag, "output") == 0) { + value = posix::GetEnv("XML_OUTPUT_FILE"); + if (value != NULL) { + return std::string("xml:") + value; + } + } + return default_value; +} + +} // namespace internal +} // namespace testing diff --git a/third_party/googletest/src/src/gtest-printers.cc b/third_party/googletest/src/src/gtest-printers.cc new file mode 100644 index 0000000..a2df412 --- /dev/null +++ b/third_party/googletest/src/src/gtest-printers.cc @@ -0,0 +1,373 @@ +// Copyright 2007, Google Inc. +// All rights reserved. +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: +// +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above +// copyright notice, this list of conditions and the following disclaimer +// in the documentation and/or other materials provided with the +// distribution. +// * Neither the name of Google Inc. nor the names of its +// contributors may be used to endorse or promote products derived from +// this software without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +// +// Author: wan@google.com (Zhanyong Wan) + +// Google Test - The Google C++ Testing Framework +// +// This file implements a universal value printer that can print a +// value of any type T: +// +// void ::testing::internal::UniversalPrinter::Print(value, ostream_ptr); +// +// It uses the << operator when possible, and prints the bytes in the +// object otherwise. A user can override its behavior for a class +// type Foo by defining either operator<<(::std::ostream&, const Foo&) +// or void PrintTo(const Foo&, ::std::ostream*) in the namespace that +// defines Foo. + +#include "gtest/gtest-printers.h" +#include +#include +#include +#include // NOLINT +#include +#include "gtest/internal/gtest-port.h" + +namespace testing { + +namespace { + +using ::std::ostream; + +// Prints a segment of bytes in the given object. +GTEST_ATTRIBUTE_NO_SANITIZE_MEMORY_ +GTEST_ATTRIBUTE_NO_SANITIZE_ADDRESS_ +GTEST_ATTRIBUTE_NO_SANITIZE_THREAD_ +void PrintByteSegmentInObjectTo(const unsigned char* obj_bytes, size_t start, + size_t count, ostream* os) { + char text[5] = ""; + for (size_t i = 0; i != count; i++) { + const size_t j = start + i; + if (i != 0) { + // Organizes the bytes into groups of 2 for easy parsing by + // human. + if ((j % 2) == 0) + *os << ' '; + else + *os << '-'; + } + GTEST_SNPRINTF_(text, sizeof(text), "%02X", obj_bytes[j]); + *os << text; + } +} + +// Prints the bytes in the given value to the given ostream. +void PrintBytesInObjectToImpl(const unsigned char* obj_bytes, size_t count, + ostream* os) { + // Tells the user how big the object is. + *os << count << "-byte object <"; + + const size_t kThreshold = 132; + const size_t kChunkSize = 64; + // If the object size is bigger than kThreshold, we'll have to omit + // some details by printing only the first and the last kChunkSize + // bytes. + // TODO(wan): let the user control the threshold using a flag. + if (count < kThreshold) { + PrintByteSegmentInObjectTo(obj_bytes, 0, count, os); + } else { + PrintByteSegmentInObjectTo(obj_bytes, 0, kChunkSize, os); + *os << " ... "; + // Rounds up to 2-byte boundary. + const size_t resume_pos = (count - kChunkSize + 1)/2*2; + PrintByteSegmentInObjectTo(obj_bytes, resume_pos, count - resume_pos, os); + } + *os << ">"; +} + +} // namespace + +namespace internal2 { + +// Delegates to PrintBytesInObjectToImpl() to print the bytes in the +// given object. The delegation simplifies the implementation, which +// uses the << operator and thus is easier done outside of the +// ::testing::internal namespace, which contains a << operator that +// sometimes conflicts with the one in STL. +void PrintBytesInObjectTo(const unsigned char* obj_bytes, size_t count, + ostream* os) { + PrintBytesInObjectToImpl(obj_bytes, count, os); +} + +} // namespace internal2 + +namespace internal { + +// Depending on the value of a char (or wchar_t), we print it in one +// of three formats: +// - as is if it's a printable ASCII (e.g. 'a', '2', ' '), +// - as a hexidecimal escape sequence (e.g. '\x7F'), or +// - as a special escape sequence (e.g. '\r', '\n'). +enum CharFormat { + kAsIs, + kHexEscape, + kSpecialEscape +}; + +// Returns true if c is a printable ASCII character. We test the +// value of c directly instead of calling isprint(), which is buggy on +// Windows Mobile. +inline bool IsPrintableAscii(wchar_t c) { + return 0x20 <= c && c <= 0x7E; +} + +// Prints a wide or narrow char c as a character literal without the +// quotes, escaping it when necessary; returns how c was formatted. +// The template argument UnsignedChar is the unsigned version of Char, +// which is the type of c. +template +static CharFormat PrintAsCharLiteralTo(Char c, ostream* os) { + switch (static_cast(c)) { + case L'\0': + *os << "\\0"; + break; + case L'\'': + *os << "\\'"; + break; + case L'\\': + *os << "\\\\"; + break; + case L'\a': + *os << "\\a"; + break; + case L'\b': + *os << "\\b"; + break; + case L'\f': + *os << "\\f"; + break; + case L'\n': + *os << "\\n"; + break; + case L'\r': + *os << "\\r"; + break; + case L'\t': + *os << "\\t"; + break; + case L'\v': + *os << "\\v"; + break; + default: + if (IsPrintableAscii(c)) { + *os << static_cast(c); + return kAsIs; + } else { + *os << "\\x" + String::FormatHexInt(static_cast(c)); + return kHexEscape; + } + } + return kSpecialEscape; +} + +// Prints a wchar_t c as if it's part of a string literal, escaping it when +// necessary; returns how c was formatted. +static CharFormat PrintAsStringLiteralTo(wchar_t c, ostream* os) { + switch (c) { + case L'\'': + *os << "'"; + return kAsIs; + case L'"': + *os << "\\\""; + return kSpecialEscape; + default: + return PrintAsCharLiteralTo(c, os); + } +} + +// Prints a char c as if it's part of a string literal, escaping it when +// necessary; returns how c was formatted. +static CharFormat PrintAsStringLiteralTo(char c, ostream* os) { + return PrintAsStringLiteralTo( + static_cast(static_cast(c)), os); +} + +// Prints a wide or narrow character c and its code. '\0' is printed +// as "'\\0'", other unprintable characters are also properly escaped +// using the standard C++ escape sequence. The template argument +// UnsignedChar is the unsigned version of Char, which is the type of c. +template +void PrintCharAndCodeTo(Char c, ostream* os) { + // First, print c as a literal in the most readable form we can find. + *os << ((sizeof(c) > 1) ? "L'" : "'"); + const CharFormat format = PrintAsCharLiteralTo(c, os); + *os << "'"; + + // To aid user debugging, we also print c's code in decimal, unless + // it's 0 (in which case c was printed as '\\0', making the code + // obvious). + if (c == 0) + return; + *os << " (" << static_cast(c); + + // For more convenience, we print c's code again in hexidecimal, + // unless c was already printed in the form '\x##' or the code is in + // [1, 9]. + if (format == kHexEscape || (1 <= c && c <= 9)) { + // Do nothing. + } else { + *os << ", 0x" << String::FormatHexInt(static_cast(c)); + } + *os << ")"; +} + +void PrintTo(unsigned char c, ::std::ostream* os) { + PrintCharAndCodeTo(c, os); +} +void PrintTo(signed char c, ::std::ostream* os) { + PrintCharAndCodeTo(c, os); +} + +// Prints a wchar_t as a symbol if it is printable or as its internal +// code otherwise and also as its code. L'\0' is printed as "L'\\0'". +void PrintTo(wchar_t wc, ostream* os) { + PrintCharAndCodeTo(wc, os); +} + +// Prints the given array of characters to the ostream. CharType must be either +// char or wchar_t. +// The array starts at begin, the length is len, it may include '\0' characters +// and may not be NUL-terminated. +template +GTEST_ATTRIBUTE_NO_SANITIZE_MEMORY_ +GTEST_ATTRIBUTE_NO_SANITIZE_ADDRESS_ +GTEST_ATTRIBUTE_NO_SANITIZE_THREAD_ +static void PrintCharsAsStringTo( + const CharType* begin, size_t len, ostream* os) { + const char* const kQuoteBegin = sizeof(CharType) == 1 ? "\"" : "L\""; + *os << kQuoteBegin; + bool is_previous_hex = false; + for (size_t index = 0; index < len; ++index) { + const CharType cur = begin[index]; + if (is_previous_hex && IsXDigit(cur)) { + // Previous character is of '\x..' form and this character can be + // interpreted as another hexadecimal digit in its number. Break string to + // disambiguate. + *os << "\" " << kQuoteBegin; + } + is_previous_hex = PrintAsStringLiteralTo(cur, os) == kHexEscape; + } + *os << "\""; +} + +// Prints a (const) char/wchar_t array of 'len' elements, starting at address +// 'begin'. CharType must be either char or wchar_t. +template +GTEST_ATTRIBUTE_NO_SANITIZE_MEMORY_ +GTEST_ATTRIBUTE_NO_SANITIZE_ADDRESS_ +GTEST_ATTRIBUTE_NO_SANITIZE_THREAD_ +static void UniversalPrintCharArray( + const CharType* begin, size_t len, ostream* os) { + // The code + // const char kFoo[] = "foo"; + // generates an array of 4, not 3, elements, with the last one being '\0'. + // + // Therefore when printing a char array, we don't print the last element if + // it's '\0', such that the output matches the string literal as it's + // written in the source code. + if (len > 0 && begin[len - 1] == '\0') { + PrintCharsAsStringTo(begin, len - 1, os); + return; + } + + // If, however, the last element in the array is not '\0', e.g. + // const char kFoo[] = { 'f', 'o', 'o' }; + // we must print the entire array. We also print a message to indicate + // that the array is not NUL-terminated. + PrintCharsAsStringTo(begin, len, os); + *os << " (no terminating NUL)"; +} + +// Prints a (const) char array of 'len' elements, starting at address 'begin'. +void UniversalPrintArray(const char* begin, size_t len, ostream* os) { + UniversalPrintCharArray(begin, len, os); +} + +// Prints a (const) wchar_t array of 'len' elements, starting at address +// 'begin'. +void UniversalPrintArray(const wchar_t* begin, size_t len, ostream* os) { + UniversalPrintCharArray(begin, len, os); +} + +// Prints the given C string to the ostream. +void PrintTo(const char* s, ostream* os) { + if (s == NULL) { + *os << "NULL"; + } else { + *os << ImplicitCast_(s) << " pointing to "; + PrintCharsAsStringTo(s, strlen(s), os); + } +} + +// MSVC compiler can be configured to define whar_t as a typedef +// of unsigned short. Defining an overload for const wchar_t* in that case +// would cause pointers to unsigned shorts be printed as wide strings, +// possibly accessing more memory than intended and causing invalid +// memory accesses. MSVC defines _NATIVE_WCHAR_T_DEFINED symbol when +// wchar_t is implemented as a native type. +#if !defined(_MSC_VER) || defined(_NATIVE_WCHAR_T_DEFINED) +// Prints the given wide C string to the ostream. +void PrintTo(const wchar_t* s, ostream* os) { + if (s == NULL) { + *os << "NULL"; + } else { + *os << ImplicitCast_(s) << " pointing to "; + PrintCharsAsStringTo(s, std::wcslen(s), os); + } +} +#endif // wchar_t is native + +// Prints a ::string object. +#if GTEST_HAS_GLOBAL_STRING +void PrintStringTo(const ::string& s, ostream* os) { + PrintCharsAsStringTo(s.data(), s.size(), os); +} +#endif // GTEST_HAS_GLOBAL_STRING + +void PrintStringTo(const ::std::string& s, ostream* os) { + PrintCharsAsStringTo(s.data(), s.size(), os); +} + +// Prints a ::wstring object. +#if GTEST_HAS_GLOBAL_WSTRING +void PrintWideStringTo(const ::wstring& s, ostream* os) { + PrintCharsAsStringTo(s.data(), s.size(), os); +} +#endif // GTEST_HAS_GLOBAL_WSTRING + +#if GTEST_HAS_STD_WSTRING +void PrintWideStringTo(const ::std::wstring& s, ostream* os) { + PrintCharsAsStringTo(s.data(), s.size(), os); +} +#endif // GTEST_HAS_STD_WSTRING + +} // namespace internal + +} // namespace testing diff --git a/third_party/googletest/src/src/gtest-test-part.cc b/third_party/googletest/src/src/gtest-test-part.cc new file mode 100644 index 0000000..fb0e354 --- /dev/null +++ b/third_party/googletest/src/src/gtest-test-part.cc @@ -0,0 +1,110 @@ +// Copyright 2008, Google Inc. +// All rights reserved. +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: +// +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above +// copyright notice, this list of conditions and the following disclaimer +// in the documentation and/or other materials provided with the +// distribution. +// * Neither the name of Google Inc. nor the names of its +// contributors may be used to endorse or promote products derived from +// this software without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +// +// Author: mheule@google.com (Markus Heule) +// +// The Google C++ Testing Framework (Google Test) + +#include "gtest/gtest-test-part.h" + +// Indicates that this translation unit is part of Google Test's +// implementation. It must come before gtest-internal-inl.h is +// included, or there will be a compiler error. This trick exists to +// prevent the accidental inclusion of gtest-internal-inl.h in the +// user's code. +#define GTEST_IMPLEMENTATION_ 1 +#include "src/gtest-internal-inl.h" +#undef GTEST_IMPLEMENTATION_ + +namespace testing { + +using internal::GetUnitTestImpl; + +// Gets the summary of the failure message by omitting the stack trace +// in it. +std::string TestPartResult::ExtractSummary(const char* message) { + const char* const stack_trace = strstr(message, internal::kStackTraceMarker); + return stack_trace == NULL ? message : + std::string(message, stack_trace); +} + +// Prints a TestPartResult object. +std::ostream& operator<<(std::ostream& os, const TestPartResult& result) { + return os + << result.file_name() << ":" << result.line_number() << ": " + << (result.type() == TestPartResult::kSuccess ? "Success" : + result.type() == TestPartResult::kFatalFailure ? "Fatal failure" : + "Non-fatal failure") << ":\n" + << result.message() << std::endl; +} + +// Appends a TestPartResult to the array. +void TestPartResultArray::Append(const TestPartResult& result) { + array_.push_back(result); +} + +// Returns the TestPartResult at the given index (0-based). +const TestPartResult& TestPartResultArray::GetTestPartResult(int index) const { + if (index < 0 || index >= size()) { + printf("\nInvalid index (%d) into TestPartResultArray.\n", index); + internal::posix::Abort(); + } + + return array_[index]; +} + +// Returns the number of TestPartResult objects in the array. +int TestPartResultArray::size() const { + return static_cast(array_.size()); +} + +namespace internal { + +HasNewFatalFailureHelper::HasNewFatalFailureHelper() + : has_new_fatal_failure_(false), + original_reporter_(GetUnitTestImpl()-> + GetTestPartResultReporterForCurrentThread()) { + GetUnitTestImpl()->SetTestPartResultReporterForCurrentThread(this); +} + +HasNewFatalFailureHelper::~HasNewFatalFailureHelper() { + GetUnitTestImpl()->SetTestPartResultReporterForCurrentThread( + original_reporter_); +} + +void HasNewFatalFailureHelper::ReportTestPartResult( + const TestPartResult& result) { + if (result.fatally_failed()) + has_new_fatal_failure_ = true; + original_reporter_->ReportTestPartResult(result); +} + +} // namespace internal + +} // namespace testing diff --git a/third_party/googletest/src/src/gtest-typed-test.cc b/third_party/googletest/src/src/gtest-typed-test.cc new file mode 100644 index 0000000..df1eef4 --- /dev/null +++ b/third_party/googletest/src/src/gtest-typed-test.cc @@ -0,0 +1,118 @@ +// Copyright 2008 Google Inc. +// All Rights Reserved. +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: +// +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above +// copyright notice, this list of conditions and the following disclaimer +// in the documentation and/or other materials provided with the +// distribution. +// * Neither the name of Google Inc. nor the names of its +// contributors may be used to endorse or promote products derived from +// this software without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +// +// Author: wan@google.com (Zhanyong Wan) + +#include "gtest/gtest-typed-test.h" +#include "gtest/gtest.h" + +namespace testing { +namespace internal { + +#if GTEST_HAS_TYPED_TEST_P + +// Skips to the first non-space char in str. Returns an empty string if str +// contains only whitespace characters. +static const char* SkipSpaces(const char* str) { + while (IsSpace(*str)) + str++; + return str; +} + +static std::vector SplitIntoTestNames(const char* src) { + std::vector name_vec; + src = SkipSpaces(src); + for (; src != NULL; src = SkipComma(src)) { + name_vec.push_back(StripTrailingSpaces(GetPrefixUntilComma(src))); + } + return name_vec; +} + +// Verifies that registered_tests match the test names in +// registered_tests_; returns registered_tests if successful, or +// aborts the program otherwise. +const char* TypedTestCasePState::VerifyRegisteredTestNames( + const char* file, int line, const char* registered_tests) { + typedef RegisteredTestsMap::const_iterator RegisteredTestIter; + registered_ = true; + + std::vector name_vec = SplitIntoTestNames(registered_tests); + + Message errors; + + std::set tests; + for (std::vector::const_iterator name_it = name_vec.begin(); + name_it != name_vec.end(); ++name_it) { + const std::string& name = *name_it; + if (tests.count(name) != 0) { + errors << "Test " << name << " is listed more than once.\n"; + continue; + } + + bool found = false; + for (RegisteredTestIter it = registered_tests_.begin(); + it != registered_tests_.end(); + ++it) { + if (name == it->first) { + found = true; + break; + } + } + + if (found) { + tests.insert(name); + } else { + errors << "No test named " << name + << " can be found in this test case.\n"; + } + } + + for (RegisteredTestIter it = registered_tests_.begin(); + it != registered_tests_.end(); + ++it) { + if (tests.count(it->first) == 0) { + errors << "You forgot to list test " << it->first << ".\n"; + } + } + + const std::string& errors_str = errors.GetString(); + if (errors_str != "") { + fprintf(stderr, "%s %s", FormatFileLocation(file, line).c_str(), + errors_str.c_str()); + fflush(stderr); + posix::Abort(); + } + + return registered_tests; +} + +#endif // GTEST_HAS_TYPED_TEST_P + +} // namespace internal +} // namespace testing diff --git a/third_party/googletest/src/src/gtest.cc b/third_party/googletest/src/src/gtest.cc new file mode 100644 index 0000000..5a8932c --- /dev/null +++ b/third_party/googletest/src/src/gtest.cc @@ -0,0 +1,5389 @@ +// Copyright 2005, Google Inc. +// All rights reserved. +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: +// +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above +// copyright notice, this list of conditions and the following disclaimer +// in the documentation and/or other materials provided with the +// distribution. +// * Neither the name of Google Inc. nor the names of its +// contributors may be used to endorse or promote products derived from +// this software without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +// +// Author: wan@google.com (Zhanyong Wan) +// +// The Google C++ Testing Framework (Google Test) + +#include "gtest/gtest.h" +#include "gtest/internal/custom/gtest.h" +#include "gtest/gtest-spi.h" + +#include +#include +#include +#include +#include +#include +#include +#include + +#include +#include +#include +#include +#include +#include // NOLINT +#include +#include + +#if GTEST_OS_LINUX + +// TODO(kenton@google.com): Use autoconf to detect availability of +// gettimeofday(). +# define GTEST_HAS_GETTIMEOFDAY_ 1 + +# include // NOLINT +# include // NOLINT +# include // NOLINT +// Declares vsnprintf(). This header is not available on Windows. +# include // NOLINT +# include // NOLINT +# include // NOLINT +# include // NOLINT +# include + +#elif GTEST_OS_SYMBIAN +# define GTEST_HAS_GETTIMEOFDAY_ 1 +# include // NOLINT + +#elif GTEST_OS_ZOS +# define GTEST_HAS_GETTIMEOFDAY_ 1 +# include // NOLINT + +// On z/OS we additionally need strings.h for strcasecmp. +# include // NOLINT + +#elif GTEST_OS_WINDOWS_MOBILE // We are on Windows CE. + +# include // NOLINT +# undef min + +#elif GTEST_OS_WINDOWS // We are on Windows proper. + +# include // NOLINT +# include // NOLINT +# include // NOLINT +# include // NOLINT + +# if GTEST_OS_WINDOWS_MINGW +// MinGW has gettimeofday() but not _ftime64(). +// TODO(kenton@google.com): Use autoconf to detect availability of +// gettimeofday(). +// TODO(kenton@google.com): There are other ways to get the time on +// Windows, like GetTickCount() or GetSystemTimeAsFileTime(). MinGW +// supports these. consider using them instead. +# define GTEST_HAS_GETTIMEOFDAY_ 1 +# include // NOLINT +# endif // GTEST_OS_WINDOWS_MINGW + +// cpplint thinks that the header is already included, so we want to +// silence it. +# include // NOLINT +# undef min + +#else + +// Assume other platforms have gettimeofday(). +// TODO(kenton@google.com): Use autoconf to detect availability of +// gettimeofday(). +# define GTEST_HAS_GETTIMEOFDAY_ 1 + +// cpplint thinks that the header is already included, so we want to +// silence it. +# include // NOLINT +# include // NOLINT + +#endif // GTEST_OS_LINUX + +#if GTEST_HAS_EXCEPTIONS +# include +#endif + +#if GTEST_CAN_STREAM_RESULTS_ +# include // NOLINT +# include // NOLINT +# include // NOLINT +# include // NOLINT +#endif + +// Indicates that this translation unit is part of Google Test's +// implementation. It must come before gtest-internal-inl.h is +// included, or there will be a compiler error. This trick is to +// prevent a user from accidentally including gtest-internal-inl.h in +// his code. +#define GTEST_IMPLEMENTATION_ 1 +#include "src/gtest-internal-inl.h" +#undef GTEST_IMPLEMENTATION_ + +#if GTEST_OS_WINDOWS +# define vsnprintf _vsnprintf +#endif // GTEST_OS_WINDOWS + +namespace testing { + +using internal::CountIf; +using internal::ForEach; +using internal::GetElementOr; +using internal::Shuffle; + +// Constants. + +// A test whose test case name or test name matches this filter is +// disabled and not run. +static const char kDisableTestFilter[] = "DISABLED_*:*/DISABLED_*"; + +// A test case whose name matches this filter is considered a death +// test case and will be run before test cases whose name doesn't +// match this filter. +static const char kDeathTestCaseFilter[] = "*DeathTest:*DeathTest/*"; + +// A test filter that matches everything. +static const char kUniversalFilter[] = "*"; + +// The default output file for XML output. +static const char kDefaultOutputFile[] = "test_detail.xml"; + +// The environment variable name for the test shard index. +static const char kTestShardIndex[] = "GTEST_SHARD_INDEX"; +// The environment variable name for the total number of test shards. +static const char kTestTotalShards[] = "GTEST_TOTAL_SHARDS"; +// The environment variable name for the test shard status file. +static const char kTestShardStatusFile[] = "GTEST_SHARD_STATUS_FILE"; + +namespace internal { + +// The text used in failure messages to indicate the start of the +// stack trace. +const char kStackTraceMarker[] = "\nStack trace:\n"; + +// g_help_flag is true iff the --help flag or an equivalent form is +// specified on the command line. +bool g_help_flag = false; + +} // namespace internal + +static const char* GetDefaultFilter() { +#ifdef GTEST_TEST_FILTER_ENV_VAR_ + const char* const testbridge_test_only = getenv(GTEST_TEST_FILTER_ENV_VAR_); + if (testbridge_test_only != NULL) { + return testbridge_test_only; + } +#endif // GTEST_TEST_FILTER_ENV_VAR_ + return kUniversalFilter; +} + +GTEST_DEFINE_bool_( + also_run_disabled_tests, + internal::BoolFromGTestEnv("also_run_disabled_tests", false), + "Run disabled tests too, in addition to the tests normally being run."); + +GTEST_DEFINE_bool_( + break_on_failure, + internal::BoolFromGTestEnv("break_on_failure", false), + "True iff a failed assertion should be a debugger break-point."); + +GTEST_DEFINE_bool_( + catch_exceptions, + internal::BoolFromGTestEnv("catch_exceptions", true), + "True iff " GTEST_NAME_ + " should catch exceptions and treat them as test failures."); + +GTEST_DEFINE_string_( + color, + internal::StringFromGTestEnv("color", "auto"), + "Whether to use colors in the output. Valid values: yes, no, " + "and auto. 'auto' means to use colors if the output is " + "being sent to a terminal and the TERM environment variable " + "is set to a terminal type that supports colors."); + +GTEST_DEFINE_string_( + filter, + internal::StringFromGTestEnv("filter", GetDefaultFilter()), + "A colon-separated list of glob (not regex) patterns " + "for filtering the tests to run, optionally followed by a " + "'-' and a : separated list of negative patterns (tests to " + "exclude). A test is run if it matches one of the positive " + "patterns and does not match any of the negative patterns."); + +GTEST_DEFINE_bool_(list_tests, false, + "List all tests without running them."); + +GTEST_DEFINE_string_( + output, + internal::StringFromGTestEnv("output", ""), + "A format (currently must be \"xml\"), optionally followed " + "by a colon and an output file name or directory. A directory " + "is indicated by a trailing pathname separator. " + "Examples: \"xml:filename.xml\", \"xml::directoryname/\". " + "If a directory is specified, output files will be created " + "within that directory, with file-names based on the test " + "executable's name and, if necessary, made unique by adding " + "digits."); + +GTEST_DEFINE_bool_( + print_time, + internal::BoolFromGTestEnv("print_time", true), + "True iff " GTEST_NAME_ + " should display elapsed time in text output."); + +GTEST_DEFINE_int32_( + random_seed, + internal::Int32FromGTestEnv("random_seed", 0), + "Random number seed to use when shuffling test orders. Must be in range " + "[1, 99999], or 0 to use a seed based on the current time."); + +GTEST_DEFINE_int32_( + repeat, + internal::Int32FromGTestEnv("repeat", 1), + "How many times to repeat each test. Specify a negative number " + "for repeating forever. Useful for shaking out flaky tests."); + +GTEST_DEFINE_bool_( + show_internal_stack_frames, false, + "True iff " GTEST_NAME_ " should include internal stack frames when " + "printing test failure stack traces."); + +GTEST_DEFINE_bool_( + shuffle, + internal::BoolFromGTestEnv("shuffle", false), + "True iff " GTEST_NAME_ + " should randomize tests' order on every run."); + +GTEST_DEFINE_int32_( + stack_trace_depth, + internal::Int32FromGTestEnv("stack_trace_depth", kMaxStackTraceDepth), + "The maximum number of stack frames to print when an " + "assertion fails. The valid range is 0 through 100, inclusive."); + +GTEST_DEFINE_string_( + stream_result_to, + internal::StringFromGTestEnv("stream_result_to", ""), + "This flag specifies the host name and the port number on which to stream " + "test results. Example: \"localhost:555\". The flag is effective only on " + "Linux."); + +GTEST_DEFINE_bool_( + throw_on_failure, + internal::BoolFromGTestEnv("throw_on_failure", false), + "When this flag is specified, a failed assertion will throw an exception " + "if exceptions are enabled or exit the program with a non-zero code " + "otherwise."); + +#if GTEST_USE_OWN_FLAGFILE_FLAG_ +GTEST_DEFINE_string_( + flagfile, + internal::StringFromGTestEnv("flagfile", ""), + "This flag specifies the flagfile to read command-line flags from."); +#endif // GTEST_USE_OWN_FLAGFILE_FLAG_ + +namespace internal { + +// Generates a random number from [0, range), using a Linear +// Congruential Generator (LCG). Crashes if 'range' is 0 or greater +// than kMaxRange. +GTEST_ATTRIBUTE_NO_SANITIZE_UNSIGNED_OVERFLOW_ +UInt32 Random::Generate(UInt32 range) { + // These constants are the same as are used in glibc's rand(3). + state_ = (1103515245U*state_ + 12345U) % kMaxRange; + + GTEST_CHECK_(range > 0) + << "Cannot generate a number in the range [0, 0)."; + GTEST_CHECK_(range <= kMaxRange) + << "Generation of a number in [0, " << range << ") was requested, " + << "but this can only generate numbers in [0, " << kMaxRange << ")."; + + // Converting via modulus introduces a bit of downward bias, but + // it's simple, and a linear congruential generator isn't too good + // to begin with. + return state_ % range; +} + +// GTestIsInitialized() returns true iff the user has initialized +// Google Test. Useful for catching the user mistake of not initializing +// Google Test before calling RUN_ALL_TESTS(). +static bool GTestIsInitialized() { return GetArgvs().size() > 0; } + +// Iterates over a vector of TestCases, keeping a running sum of the +// results of calling a given int-returning method on each. +// Returns the sum. +static int SumOverTestCaseList(const std::vector& case_list, + int (TestCase::*method)() const) { + int sum = 0; + for (size_t i = 0; i < case_list.size(); i++) { + sum += (case_list[i]->*method)(); + } + return sum; +} + +// Returns true iff the test case passed. +static bool TestCasePassed(const TestCase* test_case) { + return test_case->should_run() && test_case->Passed(); +} + +// Returns true iff the test case failed. +static bool TestCaseFailed(const TestCase* test_case) { + return test_case->should_run() && test_case->Failed(); +} + +// Returns true iff test_case contains at least one test that should +// run. +static bool ShouldRunTestCase(const TestCase* test_case) { + return test_case->should_run(); +} + +// AssertHelper constructor. +AssertHelper::AssertHelper(TestPartResult::Type type, + const char* file, + int line, + const char* message) + : data_(new AssertHelperData(type, file, line, message)) { +} + +AssertHelper::~AssertHelper() { + delete data_; +} + +// Message assignment, for assertion streaming support. +void AssertHelper::operator=(const Message& message) const { + UnitTest::GetInstance()-> + AddTestPartResult(data_->type, data_->file, data_->line, + AppendUserMessage(data_->message, message), + UnitTest::GetInstance()->impl() + ->CurrentOsStackTraceExceptTop(1) + // Skips the stack frame for this function itself. + ); // NOLINT +} + +// Mutex for linked pointers. +GTEST_API_ GTEST_DEFINE_STATIC_MUTEX_(g_linked_ptr_mutex); + +// A copy of all command line arguments. Set by InitGoogleTest(). +::std::vector g_argvs; + +const ::std::vector& GetArgvs() { +#if defined(GTEST_CUSTOM_GET_ARGVS_) + return GTEST_CUSTOM_GET_ARGVS_(); +#else // defined(GTEST_CUSTOM_GET_ARGVS_) + return g_argvs; +#endif // defined(GTEST_CUSTOM_GET_ARGVS_) +} + +// Returns the current application's name, removing directory path if that +// is present. +FilePath GetCurrentExecutableName() { + FilePath result; + +#if GTEST_OS_WINDOWS + result.Set(FilePath(GetArgvs()[0]).RemoveExtension("exe")); +#else + result.Set(FilePath(GetArgvs()[0])); +#endif // GTEST_OS_WINDOWS + + return result.RemoveDirectoryName(); +} + +// Functions for processing the gtest_output flag. + +// Returns the output format, or "" for normal printed output. +std::string UnitTestOptions::GetOutputFormat() { + const char* const gtest_output_flag = GTEST_FLAG(output).c_str(); + if (gtest_output_flag == NULL) return std::string(""); + + const char* const colon = strchr(gtest_output_flag, ':'); + return (colon == NULL) ? + std::string(gtest_output_flag) : + std::string(gtest_output_flag, colon - gtest_output_flag); +} + +// Returns the name of the requested output file, or the default if none +// was explicitly specified. +std::string UnitTestOptions::GetAbsolutePathToOutputFile() { + const char* const gtest_output_flag = GTEST_FLAG(output).c_str(); + if (gtest_output_flag == NULL) + return ""; + + const char* const colon = strchr(gtest_output_flag, ':'); + if (colon == NULL) + return internal::FilePath::ConcatPaths( + internal::FilePath( + UnitTest::GetInstance()->original_working_dir()), + internal::FilePath(kDefaultOutputFile)).string(); + + internal::FilePath output_name(colon + 1); + if (!output_name.IsAbsolutePath()) + // TODO(wan@google.com): on Windows \some\path is not an absolute + // path (as its meaning depends on the current drive), yet the + // following logic for turning it into an absolute path is wrong. + // Fix it. + output_name = internal::FilePath::ConcatPaths( + internal::FilePath(UnitTest::GetInstance()->original_working_dir()), + internal::FilePath(colon + 1)); + + if (!output_name.IsDirectory()) + return output_name.string(); + + internal::FilePath result(internal::FilePath::GenerateUniqueFileName( + output_name, internal::GetCurrentExecutableName(), + GetOutputFormat().c_str())); + return result.string(); +} + +// Returns true iff the wildcard pattern matches the string. The +// first ':' or '\0' character in pattern marks the end of it. +// +// This recursive algorithm isn't very efficient, but is clear and +// works well enough for matching test names, which are short. +bool UnitTestOptions::PatternMatchesString(const char *pattern, + const char *str) { + switch (*pattern) { + case '\0': + case ':': // Either ':' or '\0' marks the end of the pattern. + return *str == '\0'; + case '?': // Matches any single character. + return *str != '\0' && PatternMatchesString(pattern + 1, str + 1); + case '*': // Matches any string (possibly empty) of characters. + return (*str != '\0' && PatternMatchesString(pattern, str + 1)) || + PatternMatchesString(pattern + 1, str); + default: // Non-special character. Matches itself. + return *pattern == *str && + PatternMatchesString(pattern + 1, str + 1); + } +} + +bool UnitTestOptions::MatchesFilter( + const std::string& name, const char* filter) { + const char *cur_pattern = filter; + for (;;) { + if (PatternMatchesString(cur_pattern, name.c_str())) { + return true; + } + + // Finds the next pattern in the filter. + cur_pattern = strchr(cur_pattern, ':'); + + // Returns if no more pattern can be found. + if (cur_pattern == NULL) { + return false; + } + + // Skips the pattern separater (the ':' character). + cur_pattern++; + } +} + +// Returns true iff the user-specified filter matches the test case +// name and the test name. +bool UnitTestOptions::FilterMatchesTest(const std::string &test_case_name, + const std::string &test_name) { + const std::string& full_name = test_case_name + "." + test_name.c_str(); + + // Split --gtest_filter at '-', if there is one, to separate into + // positive filter and negative filter portions + const char* const p = GTEST_FLAG(filter).c_str(); + const char* const dash = strchr(p, '-'); + std::string positive; + std::string negative; + if (dash == NULL) { + positive = GTEST_FLAG(filter).c_str(); // Whole string is a positive filter + negative = ""; + } else { + positive = std::string(p, dash); // Everything up to the dash + negative = std::string(dash + 1); // Everything after the dash + if (positive.empty()) { + // Treat '-test1' as the same as '*-test1' + positive = kUniversalFilter; + } + } + + // A filter is a colon-separated list of patterns. It matches a + // test if any pattern in it matches the test. + return (MatchesFilter(full_name, positive.c_str()) && + !MatchesFilter(full_name, negative.c_str())); +} + +#if GTEST_HAS_SEH +// Returns EXCEPTION_EXECUTE_HANDLER if Google Test should handle the +// given SEH exception, or EXCEPTION_CONTINUE_SEARCH otherwise. +// This function is useful as an __except condition. +int UnitTestOptions::GTestShouldProcessSEH(DWORD exception_code) { + // Google Test should handle a SEH exception if: + // 1. the user wants it to, AND + // 2. this is not a breakpoint exception, AND + // 3. this is not a C++ exception (VC++ implements them via SEH, + // apparently). + // + // SEH exception code for C++ exceptions. + // (see http://support.microsoft.com/kb/185294 for more information). + const DWORD kCxxExceptionCode = 0xe06d7363; + + bool should_handle = true; + + if (!GTEST_FLAG(catch_exceptions)) + should_handle = false; + else if (exception_code == EXCEPTION_BREAKPOINT) + should_handle = false; + else if (exception_code == kCxxExceptionCode) + should_handle = false; + + return should_handle ? EXCEPTION_EXECUTE_HANDLER : EXCEPTION_CONTINUE_SEARCH; +} +#endif // GTEST_HAS_SEH + +} // namespace internal + +// The c'tor sets this object as the test part result reporter used by +// Google Test. The 'result' parameter specifies where to report the +// results. Intercepts only failures from the current thread. +ScopedFakeTestPartResultReporter::ScopedFakeTestPartResultReporter( + TestPartResultArray* result) + : intercept_mode_(INTERCEPT_ONLY_CURRENT_THREAD), + result_(result) { + Init(); +} + +// The c'tor sets this object as the test part result reporter used by +// Google Test. The 'result' parameter specifies where to report the +// results. +ScopedFakeTestPartResultReporter::ScopedFakeTestPartResultReporter( + InterceptMode intercept_mode, TestPartResultArray* result) + : intercept_mode_(intercept_mode), + result_(result) { + Init(); +} + +void ScopedFakeTestPartResultReporter::Init() { + internal::UnitTestImpl* const impl = internal::GetUnitTestImpl(); + if (intercept_mode_ == INTERCEPT_ALL_THREADS) { + old_reporter_ = impl->GetGlobalTestPartResultReporter(); + impl->SetGlobalTestPartResultReporter(this); + } else { + old_reporter_ = impl->GetTestPartResultReporterForCurrentThread(); + impl->SetTestPartResultReporterForCurrentThread(this); + } +} + +// The d'tor restores the test part result reporter used by Google Test +// before. +ScopedFakeTestPartResultReporter::~ScopedFakeTestPartResultReporter() { + internal::UnitTestImpl* const impl = internal::GetUnitTestImpl(); + if (intercept_mode_ == INTERCEPT_ALL_THREADS) { + impl->SetGlobalTestPartResultReporter(old_reporter_); + } else { + impl->SetTestPartResultReporterForCurrentThread(old_reporter_); + } +} + +// Increments the test part result count and remembers the result. +// This method is from the TestPartResultReporterInterface interface. +void ScopedFakeTestPartResultReporter::ReportTestPartResult( + const TestPartResult& result) { + result_->Append(result); +} + +namespace internal { + +// Returns the type ID of ::testing::Test. We should always call this +// instead of GetTypeId< ::testing::Test>() to get the type ID of +// testing::Test. This is to work around a suspected linker bug when +// using Google Test as a framework on Mac OS X. The bug causes +// GetTypeId< ::testing::Test>() to return different values depending +// on whether the call is from the Google Test framework itself or +// from user test code. GetTestTypeId() is guaranteed to always +// return the same value, as it always calls GetTypeId<>() from the +// gtest.cc, which is within the Google Test framework. +TypeId GetTestTypeId() { + return GetTypeId(); +} + +// The value of GetTestTypeId() as seen from within the Google Test +// library. This is solely for testing GetTestTypeId(). +extern const TypeId kTestTypeIdInGoogleTest = GetTestTypeId(); + +// This predicate-formatter checks that 'results' contains a test part +// failure of the given type and that the failure message contains the +// given substring. +AssertionResult HasOneFailure(const char* /* results_expr */, + const char* /* type_expr */, + const char* /* substr_expr */, + const TestPartResultArray& results, + TestPartResult::Type type, + const string& substr) { + const std::string expected(type == TestPartResult::kFatalFailure ? + "1 fatal failure" : + "1 non-fatal failure"); + Message msg; + if (results.size() != 1) { + msg << "Expected: " << expected << "\n" + << " Actual: " << results.size() << " failures"; + for (int i = 0; i < results.size(); i++) { + msg << "\n" << results.GetTestPartResult(i); + } + return AssertionFailure() << msg; + } + + const TestPartResult& r = results.GetTestPartResult(0); + if (r.type() != type) { + return AssertionFailure() << "Expected: " << expected << "\n" + << " Actual:\n" + << r; + } + + if (strstr(r.message(), substr.c_str()) == NULL) { + return AssertionFailure() << "Expected: " << expected << " containing \"" + << substr << "\"\n" + << " Actual:\n" + << r; + } + + return AssertionSuccess(); +} + +// The constructor of SingleFailureChecker remembers where to look up +// test part results, what type of failure we expect, and what +// substring the failure message should contain. +SingleFailureChecker:: SingleFailureChecker( + const TestPartResultArray* results, + TestPartResult::Type type, + const string& substr) + : results_(results), + type_(type), + substr_(substr) {} + +// The destructor of SingleFailureChecker verifies that the given +// TestPartResultArray contains exactly one failure that has the given +// type and contains the given substring. If that's not the case, a +// non-fatal failure will be generated. +SingleFailureChecker::~SingleFailureChecker() { + EXPECT_PRED_FORMAT3(HasOneFailure, *results_, type_, substr_); +} + +DefaultGlobalTestPartResultReporter::DefaultGlobalTestPartResultReporter( + UnitTestImpl* unit_test) : unit_test_(unit_test) {} + +void DefaultGlobalTestPartResultReporter::ReportTestPartResult( + const TestPartResult& result) { + unit_test_->current_test_result()->AddTestPartResult(result); + unit_test_->listeners()->repeater()->OnTestPartResult(result); +} + +DefaultPerThreadTestPartResultReporter::DefaultPerThreadTestPartResultReporter( + UnitTestImpl* unit_test) : unit_test_(unit_test) {} + +void DefaultPerThreadTestPartResultReporter::ReportTestPartResult( + const TestPartResult& result) { + unit_test_->GetGlobalTestPartResultReporter()->ReportTestPartResult(result); +} + +// Returns the global test part result reporter. +TestPartResultReporterInterface* +UnitTestImpl::GetGlobalTestPartResultReporter() { + internal::MutexLock lock(&global_test_part_result_reporter_mutex_); + return global_test_part_result_repoter_; +} + +// Sets the global test part result reporter. +void UnitTestImpl::SetGlobalTestPartResultReporter( + TestPartResultReporterInterface* reporter) { + internal::MutexLock lock(&global_test_part_result_reporter_mutex_); + global_test_part_result_repoter_ = reporter; +} + +// Returns the test part result reporter for the current thread. +TestPartResultReporterInterface* +UnitTestImpl::GetTestPartResultReporterForCurrentThread() { + return per_thread_test_part_result_reporter_.get(); +} + +// Sets the test part result reporter for the current thread. +void UnitTestImpl::SetTestPartResultReporterForCurrentThread( + TestPartResultReporterInterface* reporter) { + per_thread_test_part_result_reporter_.set(reporter); +} + +// Gets the number of successful test cases. +int UnitTestImpl::successful_test_case_count() const { + return CountIf(test_cases_, TestCasePassed); +} + +// Gets the number of failed test cases. +int UnitTestImpl::failed_test_case_count() const { + return CountIf(test_cases_, TestCaseFailed); +} + +// Gets the number of all test cases. +int UnitTestImpl::total_test_case_count() const { + return static_cast(test_cases_.size()); +} + +// Gets the number of all test cases that contain at least one test +// that should run. +int UnitTestImpl::test_case_to_run_count() const { + return CountIf(test_cases_, ShouldRunTestCase); +} + +// Gets the number of successful tests. +int UnitTestImpl::successful_test_count() const { + return SumOverTestCaseList(test_cases_, &TestCase::successful_test_count); +} + +// Gets the number of failed tests. +int UnitTestImpl::failed_test_count() const { + return SumOverTestCaseList(test_cases_, &TestCase::failed_test_count); +} + +// Gets the number of disabled tests that will be reported in the XML report. +int UnitTestImpl::reportable_disabled_test_count() const { + return SumOverTestCaseList(test_cases_, + &TestCase::reportable_disabled_test_count); +} + +// Gets the number of disabled tests. +int UnitTestImpl::disabled_test_count() const { + return SumOverTestCaseList(test_cases_, &TestCase::disabled_test_count); +} + +// Gets the number of tests to be printed in the XML report. +int UnitTestImpl::reportable_test_count() const { + return SumOverTestCaseList(test_cases_, &TestCase::reportable_test_count); +} + +// Gets the number of all tests. +int UnitTestImpl::total_test_count() const { + return SumOverTestCaseList(test_cases_, &TestCase::total_test_count); +} + +// Gets the number of tests that should run. +int UnitTestImpl::test_to_run_count() const { + return SumOverTestCaseList(test_cases_, &TestCase::test_to_run_count); +} + +// Returns the current OS stack trace as an std::string. +// +// The maximum number of stack frames to be included is specified by +// the gtest_stack_trace_depth flag. The skip_count parameter +// specifies the number of top frames to be skipped, which doesn't +// count against the number of frames to be included. +// +// For example, if Foo() calls Bar(), which in turn calls +// CurrentOsStackTraceExceptTop(1), Foo() will be included in the +// trace but Bar() and CurrentOsStackTraceExceptTop() won't. +std::string UnitTestImpl::CurrentOsStackTraceExceptTop(int skip_count) { + return os_stack_trace_getter()->CurrentStackTrace( + static_cast(GTEST_FLAG(stack_trace_depth)), + skip_count + 1 + // Skips the user-specified number of frames plus this function + // itself. + ); // NOLINT +} + +// Returns the current time in milliseconds. +TimeInMillis GetTimeInMillis() { +#if GTEST_OS_WINDOWS_MOBILE || defined(__BORLANDC__) + // Difference between 1970-01-01 and 1601-01-01 in milliseconds. + // http://analogous.blogspot.com/2005/04/epoch.html + const TimeInMillis kJavaEpochToWinFileTimeDelta = + static_cast(116444736UL) * 100000UL; + const DWORD kTenthMicrosInMilliSecond = 10000; + + SYSTEMTIME now_systime; + FILETIME now_filetime; + ULARGE_INTEGER now_int64; + // TODO(kenton@google.com): Shouldn't this just use + // GetSystemTimeAsFileTime()? + GetSystemTime(&now_systime); + if (SystemTimeToFileTime(&now_systime, &now_filetime)) { + now_int64.LowPart = now_filetime.dwLowDateTime; + now_int64.HighPart = now_filetime.dwHighDateTime; + now_int64.QuadPart = (now_int64.QuadPart / kTenthMicrosInMilliSecond) - + kJavaEpochToWinFileTimeDelta; + return now_int64.QuadPart; + } + return 0; +#elif GTEST_OS_WINDOWS && !GTEST_HAS_GETTIMEOFDAY_ + __timeb64 now; + + // MSVC 8 deprecates _ftime64(), so we want to suppress warning 4996 + // (deprecated function) there. + // TODO(kenton@google.com): Use GetTickCount()? Or use + // SystemTimeToFileTime() + GTEST_DISABLE_MSC_WARNINGS_PUSH_(4996) + _ftime64(&now); + GTEST_DISABLE_MSC_WARNINGS_POP_() + + return static_cast(now.time) * 1000 + now.millitm; +#elif GTEST_HAS_GETTIMEOFDAY_ + struct timeval now; + gettimeofday(&now, NULL); + return static_cast(now.tv_sec) * 1000 + now.tv_usec / 1000; +#else +# error "Don't know how to get the current time on your system." +#endif +} + +// Utilities + +// class String. + +#if GTEST_OS_WINDOWS_MOBILE +// Creates a UTF-16 wide string from the given ANSI string, allocating +// memory using new. The caller is responsible for deleting the return +// value using delete[]. Returns the wide string, or NULL if the +// input is NULL. +LPCWSTR String::AnsiToUtf16(const char* ansi) { + if (!ansi) return NULL; + const int length = strlen(ansi); + const int unicode_length = + MultiByteToWideChar(CP_ACP, 0, ansi, length, + NULL, 0); + WCHAR* unicode = new WCHAR[unicode_length + 1]; + MultiByteToWideChar(CP_ACP, 0, ansi, length, + unicode, unicode_length); + unicode[unicode_length] = 0; + return unicode; +} + +// Creates an ANSI string from the given wide string, allocating +// memory using new. The caller is responsible for deleting the return +// value using delete[]. Returns the ANSI string, or NULL if the +// input is NULL. +const char* String::Utf16ToAnsi(LPCWSTR utf16_str) { + if (!utf16_str) return NULL; + const int ansi_length = + WideCharToMultiByte(CP_ACP, 0, utf16_str, -1, + NULL, 0, NULL, NULL); + char* ansi = new char[ansi_length + 1]; + WideCharToMultiByte(CP_ACP, 0, utf16_str, -1, + ansi, ansi_length, NULL, NULL); + ansi[ansi_length] = 0; + return ansi; +} + +#endif // GTEST_OS_WINDOWS_MOBILE + +// Compares two C strings. Returns true iff they have the same content. +// +// Unlike strcmp(), this function can handle NULL argument(s). A NULL +// C string is considered different to any non-NULL C string, +// including the empty string. +bool String::CStringEquals(const char * lhs, const char * rhs) { + if ( lhs == NULL ) return rhs == NULL; + + if ( rhs == NULL ) return false; + + return strcmp(lhs, rhs) == 0; +} + +#if GTEST_HAS_STD_WSTRING || GTEST_HAS_GLOBAL_WSTRING + +// Converts an array of wide chars to a narrow string using the UTF-8 +// encoding, and streams the result to the given Message object. +static void StreamWideCharsToMessage(const wchar_t* wstr, size_t length, + Message* msg) { + for (size_t i = 0; i != length; ) { // NOLINT + if (wstr[i] != L'\0') { + *msg << WideStringToUtf8(wstr + i, static_cast(length - i)); + while (i != length && wstr[i] != L'\0') + i++; + } else { + *msg << '\0'; + i++; + } + } +} + +#endif // GTEST_HAS_STD_WSTRING || GTEST_HAS_GLOBAL_WSTRING + +void SplitString(const ::std::string& str, char delimiter, + ::std::vector< ::std::string>* dest) { + ::std::vector< ::std::string> parsed; + ::std::string::size_type pos = 0; + while (::testing::internal::AlwaysTrue()) { + const ::std::string::size_type colon = str.find(delimiter, pos); + if (colon == ::std::string::npos) { + parsed.push_back(str.substr(pos)); + break; + } else { + parsed.push_back(str.substr(pos, colon - pos)); + pos = colon + 1; + } + } + dest->swap(parsed); +} + +} // namespace internal + +// Constructs an empty Message. +// We allocate the stringstream separately because otherwise each use of +// ASSERT/EXPECT in a procedure adds over 200 bytes to the procedure's +// stack frame leading to huge stack frames in some cases; gcc does not reuse +// the stack space. +Message::Message() : ss_(new ::std::stringstream) { + // By default, we want there to be enough precision when printing + // a double to a Message. + *ss_ << std::setprecision(std::numeric_limits::digits10 + 2); +} + +// These two overloads allow streaming a wide C string to a Message +// using the UTF-8 encoding. +Message& Message::operator <<(const wchar_t* wide_c_str) { + return *this << internal::String::ShowWideCString(wide_c_str); +} +Message& Message::operator <<(wchar_t* wide_c_str) { + return *this << internal::String::ShowWideCString(wide_c_str); +} + +#if GTEST_HAS_STD_WSTRING +// Converts the given wide string to a narrow string using the UTF-8 +// encoding, and streams the result to this Message object. +Message& Message::operator <<(const ::std::wstring& wstr) { + internal::StreamWideCharsToMessage(wstr.c_str(), wstr.length(), this); + return *this; +} +#endif // GTEST_HAS_STD_WSTRING + +#if GTEST_HAS_GLOBAL_WSTRING +// Converts the given wide string to a narrow string using the UTF-8 +// encoding, and streams the result to this Message object. +Message& Message::operator <<(const ::wstring& wstr) { + internal::StreamWideCharsToMessage(wstr.c_str(), wstr.length(), this); + return *this; +} +#endif // GTEST_HAS_GLOBAL_WSTRING + +// Gets the text streamed to this object so far as an std::string. +// Each '\0' character in the buffer is replaced with "\\0". +std::string Message::GetString() const { + return internal::StringStreamToString(ss_.get()); +} + +// AssertionResult constructors. +// Used in EXPECT_TRUE/FALSE(assertion_result). +AssertionResult::AssertionResult(const AssertionResult& other) + : success_(other.success_), + message_(other.message_.get() != NULL ? + new ::std::string(*other.message_) : + static_cast< ::std::string*>(NULL)) { +} + +// Swaps two AssertionResults. +void AssertionResult::swap(AssertionResult& other) { + using std::swap; + swap(success_, other.success_); + swap(message_, other.message_); +} + +// Returns the assertion's negation. Used with EXPECT/ASSERT_FALSE. +AssertionResult AssertionResult::operator!() const { + AssertionResult negation(!success_); + if (message_.get() != NULL) + negation << *message_; + return negation; +} + +// Makes a successful assertion result. +AssertionResult AssertionSuccess() { + return AssertionResult(true); +} + +// Makes a failed assertion result. +AssertionResult AssertionFailure() { + return AssertionResult(false); +} + +// Makes a failed assertion result with the given failure message. +// Deprecated; use AssertionFailure() << message. +AssertionResult AssertionFailure(const Message& message) { + return AssertionFailure() << message; +} + +namespace internal { + +namespace edit_distance { +std::vector CalculateOptimalEdits(const std::vector& left, + const std::vector& right) { + std::vector > costs( + left.size() + 1, std::vector(right.size() + 1)); + std::vector > best_move( + left.size() + 1, std::vector(right.size() + 1)); + + // Populate for empty right. + for (size_t l_i = 0; l_i < costs.size(); ++l_i) { + costs[l_i][0] = static_cast(l_i); + best_move[l_i][0] = kRemove; + } + // Populate for empty left. + for (size_t r_i = 1; r_i < costs[0].size(); ++r_i) { + costs[0][r_i] = static_cast(r_i); + best_move[0][r_i] = kAdd; + } + + for (size_t l_i = 0; l_i < left.size(); ++l_i) { + for (size_t r_i = 0; r_i < right.size(); ++r_i) { + if (left[l_i] == right[r_i]) { + // Found a match. Consume it. + costs[l_i + 1][r_i + 1] = costs[l_i][r_i]; + best_move[l_i + 1][r_i + 1] = kMatch; + continue; + } + + const double add = costs[l_i + 1][r_i]; + const double remove = costs[l_i][r_i + 1]; + const double replace = costs[l_i][r_i]; + if (add < remove && add < replace) { + costs[l_i + 1][r_i + 1] = add + 1; + best_move[l_i + 1][r_i + 1] = kAdd; + } else if (remove < add && remove < replace) { + costs[l_i + 1][r_i + 1] = remove + 1; + best_move[l_i + 1][r_i + 1] = kRemove; + } else { + // We make replace a little more expensive than add/remove to lower + // their priority. + costs[l_i + 1][r_i + 1] = replace + 1.00001; + best_move[l_i + 1][r_i + 1] = kReplace; + } + } + } + + // Reconstruct the best path. We do it in reverse order. + std::vector best_path; + for (size_t l_i = left.size(), r_i = right.size(); l_i > 0 || r_i > 0;) { + EditType move = best_move[l_i][r_i]; + best_path.push_back(move); + l_i -= move != kAdd; + r_i -= move != kRemove; + } + std::reverse(best_path.begin(), best_path.end()); + return best_path; +} + +namespace { + +// Helper class to convert string into ids with deduplication. +class InternalStrings { + public: + size_t GetId(const std::string& str) { + IdMap::iterator it = ids_.find(str); + if (it != ids_.end()) return it->second; + size_t id = ids_.size(); + return ids_[str] = id; + } + + private: + typedef std::map IdMap; + IdMap ids_; +}; + +} // namespace + +std::vector CalculateOptimalEdits( + const std::vector& left, + const std::vector& right) { + std::vector left_ids, right_ids; + { + InternalStrings intern_table; + for (size_t i = 0; i < left.size(); ++i) { + left_ids.push_back(intern_table.GetId(left[i])); + } + for (size_t i = 0; i < right.size(); ++i) { + right_ids.push_back(intern_table.GetId(right[i])); + } + } + return CalculateOptimalEdits(left_ids, right_ids); +} + +namespace { + +// Helper class that holds the state for one hunk and prints it out to the +// stream. +// It reorders adds/removes when possible to group all removes before all +// adds. It also adds the hunk header before printint into the stream. +class Hunk { + public: + Hunk(size_t left_start, size_t right_start) + : left_start_(left_start), + right_start_(right_start), + adds_(), + removes_(), + common_() {} + + void PushLine(char edit, const char* line) { + switch (edit) { + case ' ': + ++common_; + FlushEdits(); + hunk_.push_back(std::make_pair(' ', line)); + break; + case '-': + ++removes_; + hunk_removes_.push_back(std::make_pair('-', line)); + break; + case '+': + ++adds_; + hunk_adds_.push_back(std::make_pair('+', line)); + break; + } + } + + void PrintTo(std::ostream* os) { + PrintHeader(os); + FlushEdits(); + for (std::list >::const_iterator it = + hunk_.begin(); + it != hunk_.end(); ++it) { + *os << it->first << it->second << "\n"; + } + } + + bool has_edits() const { return adds_ || removes_; } + + private: + void FlushEdits() { + hunk_.splice(hunk_.end(), hunk_removes_); + hunk_.splice(hunk_.end(), hunk_adds_); + } + + // Print a unified diff header for one hunk. + // The format is + // "@@ -, +, @@" + // where the left/right parts are ommitted if unnecessary. + void PrintHeader(std::ostream* ss) const { + *ss << "@@ "; + if (removes_) { + *ss << "-" << left_start_ << "," << (removes_ + common_); + } + if (removes_ && adds_) { + *ss << " "; + } + if (adds_) { + *ss << "+" << right_start_ << "," << (adds_ + common_); + } + *ss << " @@\n"; + } + + size_t left_start_, right_start_; + size_t adds_, removes_, common_; + std::list > hunk_, hunk_adds_, hunk_removes_; +}; + +} // namespace + +// Create a list of diff hunks in Unified diff format. +// Each hunk has a header generated by PrintHeader above plus a body with +// lines prefixed with ' ' for no change, '-' for deletion and '+' for +// addition. +// 'context' represents the desired unchanged prefix/suffix around the diff. +// If two hunks are close enough that their contexts overlap, then they are +// joined into one hunk. +std::string CreateUnifiedDiff(const std::vector& left, + const std::vector& right, + size_t context) { + const std::vector edits = CalculateOptimalEdits(left, right); + + size_t l_i = 0, r_i = 0, edit_i = 0; + std::stringstream ss; + while (edit_i < edits.size()) { + // Find first edit. + while (edit_i < edits.size() && edits[edit_i] == kMatch) { + ++l_i; + ++r_i; + ++edit_i; + } + + // Find the first line to include in the hunk. + const size_t prefix_context = std::min(l_i, context); + Hunk hunk(l_i - prefix_context + 1, r_i - prefix_context + 1); + for (size_t i = prefix_context; i > 0; --i) { + hunk.PushLine(' ', left[l_i - i].c_str()); + } + + // Iterate the edits until we found enough suffix for the hunk or the input + // is over. + size_t n_suffix = 0; + for (; edit_i < edits.size(); ++edit_i) { + if (n_suffix >= context) { + // Continue only if the next hunk is very close. + std::vector::const_iterator it = edits.begin() + edit_i; + while (it != edits.end() && *it == kMatch) ++it; + if (it == edits.end() || (it - edits.begin()) - edit_i >= context) { + // There is no next edit or it is too far away. + break; + } + } + + EditType edit = edits[edit_i]; + // Reset count when a non match is found. + n_suffix = edit == kMatch ? n_suffix + 1 : 0; + + if (edit == kMatch || edit == kRemove || edit == kReplace) { + hunk.PushLine(edit == kMatch ? ' ' : '-', left[l_i].c_str()); + } + if (edit == kAdd || edit == kReplace) { + hunk.PushLine('+', right[r_i].c_str()); + } + + // Advance indices, depending on edit type. + l_i += edit != kAdd; + r_i += edit != kRemove; + } + + if (!hunk.has_edits()) { + // We are done. We don't want this hunk. + break; + } + + hunk.PrintTo(&ss); + } + return ss.str(); +} + +} // namespace edit_distance + +namespace { + +// The string representation of the values received in EqFailure() are already +// escaped. Split them on escaped '\n' boundaries. Leave all other escaped +// characters the same. +std::vector SplitEscapedString(const std::string& str) { + std::vector lines; + size_t start = 0, end = str.size(); + if (end > 2 && str[0] == '"' && str[end - 1] == '"') { + ++start; + --end; + } + bool escaped = false; + for (size_t i = start; i + 1 < end; ++i) { + if (escaped) { + escaped = false; + if (str[i] == 'n') { + lines.push_back(str.substr(start, i - start - 1)); + start = i + 1; + } + } else { + escaped = str[i] == '\\'; + } + } + lines.push_back(str.substr(start, end - start)); + return lines; +} + +} // namespace + +// Constructs and returns the message for an equality assertion +// (e.g. ASSERT_EQ, EXPECT_STREQ, etc) failure. +// +// The first four parameters are the expressions used in the assertion +// and their values, as strings. For example, for ASSERT_EQ(foo, bar) +// where foo is 5 and bar is 6, we have: +// +// lhs_expression: "foo" +// rhs_expression: "bar" +// lhs_value: "5" +// rhs_value: "6" +// +// The ignoring_case parameter is true iff the assertion is a +// *_STRCASEEQ*. When it's true, the string "Ignoring case" will +// be inserted into the message. +AssertionResult EqFailure(const char* lhs_expression, + const char* rhs_expression, + const std::string& lhs_value, + const std::string& rhs_value, + bool ignoring_case) { + Message msg; + msg << " Expected: " << lhs_expression; + if (lhs_value != lhs_expression) { + msg << "\n Which is: " << lhs_value; + } + msg << "\nTo be equal to: " << rhs_expression; + if (rhs_value != rhs_expression) { + msg << "\n Which is: " << rhs_value; + } + + if (ignoring_case) { + msg << "\nIgnoring case"; + } + + if (!lhs_value.empty() && !rhs_value.empty()) { + const std::vector lhs_lines = + SplitEscapedString(lhs_value); + const std::vector rhs_lines = + SplitEscapedString(rhs_value); + if (lhs_lines.size() > 1 || rhs_lines.size() > 1) { + msg << "\nWith diff:\n" + << edit_distance::CreateUnifiedDiff(lhs_lines, rhs_lines); + } + } + + return AssertionFailure() << msg; +} + +// Constructs a failure message for Boolean assertions such as EXPECT_TRUE. +std::string GetBoolAssertionFailureMessage( + const AssertionResult& assertion_result, + const char* expression_text, + const char* actual_predicate_value, + const char* expected_predicate_value) { + const char* actual_message = assertion_result.message(); + Message msg; + msg << "Value of: " << expression_text + << "\n Actual: " << actual_predicate_value; + if (actual_message[0] != '\0') + msg << " (" << actual_message << ")"; + msg << "\nExpected: " << expected_predicate_value; + return msg.GetString(); +} + +// Helper function for implementing ASSERT_NEAR. +AssertionResult DoubleNearPredFormat(const char* expr1, + const char* expr2, + const char* abs_error_expr, + double val1, + double val2, + double abs_error) { + const double diff = fabs(val1 - val2); + if (diff <= abs_error) return AssertionSuccess(); + + // TODO(wan): do not print the value of an expression if it's + // already a literal. + return AssertionFailure() + << "The difference between " << expr1 << " and " << expr2 + << " is " << diff << ", which exceeds " << abs_error_expr << ", where\n" + << expr1 << " evaluates to " << val1 << ",\n" + << expr2 << " evaluates to " << val2 << ", and\n" + << abs_error_expr << " evaluates to " << abs_error << "."; +} + + +// Helper template for implementing FloatLE() and DoubleLE(). +template +AssertionResult FloatingPointLE(const char* expr1, + const char* expr2, + RawType val1, + RawType val2) { + // Returns success if val1 is less than val2, + if (val1 < val2) { + return AssertionSuccess(); + } + + // or if val1 is almost equal to val2. + const FloatingPoint lhs(val1), rhs(val2); + if (lhs.AlmostEquals(rhs)) { + return AssertionSuccess(); + } + + // Note that the above two checks will both fail if either val1 or + // val2 is NaN, as the IEEE floating-point standard requires that + // any predicate involving a NaN must return false. + + ::std::stringstream val1_ss; + val1_ss << std::setprecision(std::numeric_limits::digits10 + 2) + << val1; + + ::std::stringstream val2_ss; + val2_ss << std::setprecision(std::numeric_limits::digits10 + 2) + << val2; + + return AssertionFailure() + << "Expected: (" << expr1 << ") <= (" << expr2 << ")\n" + << " Actual: " << StringStreamToString(&val1_ss) << " vs " + << StringStreamToString(&val2_ss); +} + +} // namespace internal + +// Asserts that val1 is less than, or almost equal to, val2. Fails +// otherwise. In particular, it fails if either val1 or val2 is NaN. +AssertionResult FloatLE(const char* expr1, const char* expr2, + float val1, float val2) { + return internal::FloatingPointLE(expr1, expr2, val1, val2); +} + +// Asserts that val1 is less than, or almost equal to, val2. Fails +// otherwise. In particular, it fails if either val1 or val2 is NaN. +AssertionResult DoubleLE(const char* expr1, const char* expr2, + double val1, double val2) { + return internal::FloatingPointLE(expr1, expr2, val1, val2); +} + +namespace internal { + +// The helper function for {ASSERT|EXPECT}_EQ with int or enum +// arguments. +AssertionResult CmpHelperEQ(const char* lhs_expression, + const char* rhs_expression, + BiggestInt lhs, + BiggestInt rhs) { + if (lhs == rhs) { + return AssertionSuccess(); + } + + return EqFailure(lhs_expression, + rhs_expression, + FormatForComparisonFailureMessage(lhs, rhs), + FormatForComparisonFailureMessage(rhs, lhs), + false); +} + +// A macro for implementing the helper functions needed to implement +// ASSERT_?? and EXPECT_?? with integer or enum arguments. It is here +// just to avoid copy-and-paste of similar code. +#define GTEST_IMPL_CMP_HELPER_(op_name, op)\ +AssertionResult CmpHelper##op_name(const char* expr1, const char* expr2, \ + BiggestInt val1, BiggestInt val2) {\ + if (val1 op val2) {\ + return AssertionSuccess();\ + } else {\ + return AssertionFailure() \ + << "Expected: (" << expr1 << ") " #op " (" << expr2\ + << "), actual: " << FormatForComparisonFailureMessage(val1, val2)\ + << " vs " << FormatForComparisonFailureMessage(val2, val1);\ + }\ +} + +// Implements the helper function for {ASSERT|EXPECT}_NE with int or +// enum arguments. +GTEST_IMPL_CMP_HELPER_(NE, !=) +// Implements the helper function for {ASSERT|EXPECT}_LE with int or +// enum arguments. +GTEST_IMPL_CMP_HELPER_(LE, <=) +// Implements the helper function for {ASSERT|EXPECT}_LT with int or +// enum arguments. +GTEST_IMPL_CMP_HELPER_(LT, < ) +// Implements the helper function for {ASSERT|EXPECT}_GE with int or +// enum arguments. +GTEST_IMPL_CMP_HELPER_(GE, >=) +// Implements the helper function for {ASSERT|EXPECT}_GT with int or +// enum arguments. +GTEST_IMPL_CMP_HELPER_(GT, > ) + +#undef GTEST_IMPL_CMP_HELPER_ + +// The helper function for {ASSERT|EXPECT}_STREQ. +AssertionResult CmpHelperSTREQ(const char* lhs_expression, + const char* rhs_expression, + const char* lhs, + const char* rhs) { + if (String::CStringEquals(lhs, rhs)) { + return AssertionSuccess(); + } + + return EqFailure(lhs_expression, + rhs_expression, + PrintToString(lhs), + PrintToString(rhs), + false); +} + +// The helper function for {ASSERT|EXPECT}_STRCASEEQ. +AssertionResult CmpHelperSTRCASEEQ(const char* lhs_expression, + const char* rhs_expression, + const char* lhs, + const char* rhs) { + if (String::CaseInsensitiveCStringEquals(lhs, rhs)) { + return AssertionSuccess(); + } + + return EqFailure(lhs_expression, + rhs_expression, + PrintToString(lhs), + PrintToString(rhs), + true); +} + +// The helper function for {ASSERT|EXPECT}_STRNE. +AssertionResult CmpHelperSTRNE(const char* s1_expression, + const char* s2_expression, + const char* s1, + const char* s2) { + if (!String::CStringEquals(s1, s2)) { + return AssertionSuccess(); + } else { + return AssertionFailure() << "Expected: (" << s1_expression << ") != (" + << s2_expression << "), actual: \"" + << s1 << "\" vs \"" << s2 << "\""; + } +} + +// The helper function for {ASSERT|EXPECT}_STRCASENE. +AssertionResult CmpHelperSTRCASENE(const char* s1_expression, + const char* s2_expression, + const char* s1, + const char* s2) { + if (!String::CaseInsensitiveCStringEquals(s1, s2)) { + return AssertionSuccess(); + } else { + return AssertionFailure() + << "Expected: (" << s1_expression << ") != (" + << s2_expression << ") (ignoring case), actual: \"" + << s1 << "\" vs \"" << s2 << "\""; + } +} + +} // namespace internal + +namespace { + +// Helper functions for implementing IsSubString() and IsNotSubstring(). + +// This group of overloaded functions return true iff needle is a +// substring of haystack. NULL is considered a substring of itself +// only. + +bool IsSubstringPred(const char* needle, const char* haystack) { + if (needle == NULL || haystack == NULL) + return needle == haystack; + + return strstr(haystack, needle) != NULL; +} + +bool IsSubstringPred(const wchar_t* needle, const wchar_t* haystack) { + if (needle == NULL || haystack == NULL) + return needle == haystack; + + return wcsstr(haystack, needle) != NULL; +} + +// StringType here can be either ::std::string or ::std::wstring. +template +bool IsSubstringPred(const StringType& needle, + const StringType& haystack) { + return haystack.find(needle) != StringType::npos; +} + +// This function implements either IsSubstring() or IsNotSubstring(), +// depending on the value of the expected_to_be_substring parameter. +// StringType here can be const char*, const wchar_t*, ::std::string, +// or ::std::wstring. +template +AssertionResult IsSubstringImpl( + bool expected_to_be_substring, + const char* needle_expr, const char* haystack_expr, + const StringType& needle, const StringType& haystack) { + if (IsSubstringPred(needle, haystack) == expected_to_be_substring) + return AssertionSuccess(); + + const bool is_wide_string = sizeof(needle[0]) > 1; + const char* const begin_string_quote = is_wide_string ? "L\"" : "\""; + return AssertionFailure() + << "Value of: " << needle_expr << "\n" + << " Actual: " << begin_string_quote << needle << "\"\n" + << "Expected: " << (expected_to_be_substring ? "" : "not ") + << "a substring of " << haystack_expr << "\n" + << "Which is: " << begin_string_quote << haystack << "\""; +} + +} // namespace + +// IsSubstring() and IsNotSubstring() check whether needle is a +// substring of haystack (NULL is considered a substring of itself +// only), and return an appropriate error message when they fail. + +AssertionResult IsSubstring( + const char* needle_expr, const char* haystack_expr, + const char* needle, const char* haystack) { + return IsSubstringImpl(true, needle_expr, haystack_expr, needle, haystack); +} + +AssertionResult IsSubstring( + const char* needle_expr, const char* haystack_expr, + const wchar_t* needle, const wchar_t* haystack) { + return IsSubstringImpl(true, needle_expr, haystack_expr, needle, haystack); +} + +AssertionResult IsNotSubstring( + const char* needle_expr, const char* haystack_expr, + const char* needle, const char* haystack) { + return IsSubstringImpl(false, needle_expr, haystack_expr, needle, haystack); +} + +AssertionResult IsNotSubstring( + const char* needle_expr, const char* haystack_expr, + const wchar_t* needle, const wchar_t* haystack) { + return IsSubstringImpl(false, needle_expr, haystack_expr, needle, haystack); +} + +AssertionResult IsSubstring( + const char* needle_expr, const char* haystack_expr, + const ::std::string& needle, const ::std::string& haystack) { + return IsSubstringImpl(true, needle_expr, haystack_expr, needle, haystack); +} + +AssertionResult IsNotSubstring( + const char* needle_expr, const char* haystack_expr, + const ::std::string& needle, const ::std::string& haystack) { + return IsSubstringImpl(false, needle_expr, haystack_expr, needle, haystack); +} + +#if GTEST_HAS_STD_WSTRING +AssertionResult IsSubstring( + const char* needle_expr, const char* haystack_expr, + const ::std::wstring& needle, const ::std::wstring& haystack) { + return IsSubstringImpl(true, needle_expr, haystack_expr, needle, haystack); +} + +AssertionResult IsNotSubstring( + const char* needle_expr, const char* haystack_expr, + const ::std::wstring& needle, const ::std::wstring& haystack) { + return IsSubstringImpl(false, needle_expr, haystack_expr, needle, haystack); +} +#endif // GTEST_HAS_STD_WSTRING + +namespace internal { + +#if GTEST_OS_WINDOWS + +namespace { + +// Helper function for IsHRESULT{SuccessFailure} predicates +AssertionResult HRESULTFailureHelper(const char* expr, + const char* expected, + long hr) { // NOLINT +# if GTEST_OS_WINDOWS_MOBILE + + // Windows CE doesn't support FormatMessage. + const char error_text[] = ""; + +# else + + // Looks up the human-readable system message for the HRESULT code + // and since we're not passing any params to FormatMessage, we don't + // want inserts expanded. + const DWORD kFlags = FORMAT_MESSAGE_FROM_SYSTEM | + FORMAT_MESSAGE_IGNORE_INSERTS; + const DWORD kBufSize = 4096; + // Gets the system's human readable message string for this HRESULT. + char error_text[kBufSize] = { '\0' }; + DWORD message_length = ::FormatMessageA(kFlags, + 0, // no source, we're asking system + hr, // the error + 0, // no line width restrictions + error_text, // output buffer + kBufSize, // buf size + NULL); // no arguments for inserts + // Trims tailing white space (FormatMessage leaves a trailing CR-LF) + for (; message_length && IsSpace(error_text[message_length - 1]); + --message_length) { + error_text[message_length - 1] = '\0'; + } + +# endif // GTEST_OS_WINDOWS_MOBILE + + const std::string error_hex("0x" + String::FormatHexInt(hr)); + return ::testing::AssertionFailure() + << "Expected: " << expr << " " << expected << ".\n" + << " Actual: " << error_hex << " " << error_text << "\n"; +} + +} // namespace + +AssertionResult IsHRESULTSuccess(const char* expr, long hr) { // NOLINT + if (SUCCEEDED(hr)) { + return AssertionSuccess(); + } + return HRESULTFailureHelper(expr, "succeeds", hr); +} + +AssertionResult IsHRESULTFailure(const char* expr, long hr) { // NOLINT + if (FAILED(hr)) { + return AssertionSuccess(); + } + return HRESULTFailureHelper(expr, "fails", hr); +} + +#endif // GTEST_OS_WINDOWS + +// Utility functions for encoding Unicode text (wide strings) in +// UTF-8. + +// A Unicode code-point can have upto 21 bits, and is encoded in UTF-8 +// like this: +// +// Code-point length Encoding +// 0 - 7 bits 0xxxxxxx +// 8 - 11 bits 110xxxxx 10xxxxxx +// 12 - 16 bits 1110xxxx 10xxxxxx 10xxxxxx +// 17 - 21 bits 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx + +// The maximum code-point a one-byte UTF-8 sequence can represent. +const UInt32 kMaxCodePoint1 = (static_cast(1) << 7) - 1; + +// The maximum code-point a two-byte UTF-8 sequence can represent. +const UInt32 kMaxCodePoint2 = (static_cast(1) << (5 + 6)) - 1; + +// The maximum code-point a three-byte UTF-8 sequence can represent. +const UInt32 kMaxCodePoint3 = (static_cast(1) << (4 + 2*6)) - 1; + +// The maximum code-point a four-byte UTF-8 sequence can represent. +const UInt32 kMaxCodePoint4 = (static_cast(1) << (3 + 3*6)) - 1; + +// Chops off the n lowest bits from a bit pattern. Returns the n +// lowest bits. As a side effect, the original bit pattern will be +// shifted to the right by n bits. +inline UInt32 ChopLowBits(UInt32* bits, int n) { + const UInt32 low_bits = *bits & ((static_cast(1) << n) - 1); + *bits >>= n; + return low_bits; +} + +// Converts a Unicode code point to a narrow string in UTF-8 encoding. +// code_point parameter is of type UInt32 because wchar_t may not be +// wide enough to contain a code point. +// If the code_point is not a valid Unicode code point +// (i.e. outside of Unicode range U+0 to U+10FFFF) it will be converted +// to "(Invalid Unicode 0xXXXXXXXX)". +std::string CodePointToUtf8(UInt32 code_point) { + if (code_point > kMaxCodePoint4) { + return "(Invalid Unicode 0x" + String::FormatHexInt(code_point) + ")"; + } + + char str[5]; // Big enough for the largest valid code point. + if (code_point <= kMaxCodePoint1) { + str[1] = '\0'; + str[0] = static_cast(code_point); // 0xxxxxxx + } else if (code_point <= kMaxCodePoint2) { + str[2] = '\0'; + str[1] = static_cast(0x80 | ChopLowBits(&code_point, 6)); // 10xxxxxx + str[0] = static_cast(0xC0 | code_point); // 110xxxxx + } else if (code_point <= kMaxCodePoint3) { + str[3] = '\0'; + str[2] = static_cast(0x80 | ChopLowBits(&code_point, 6)); // 10xxxxxx + str[1] = static_cast(0x80 | ChopLowBits(&code_point, 6)); // 10xxxxxx + str[0] = static_cast(0xE0 | code_point); // 1110xxxx + } else { // code_point <= kMaxCodePoint4 + str[4] = '\0'; + str[3] = static_cast(0x80 | ChopLowBits(&code_point, 6)); // 10xxxxxx + str[2] = static_cast(0x80 | ChopLowBits(&code_point, 6)); // 10xxxxxx + str[1] = static_cast(0x80 | ChopLowBits(&code_point, 6)); // 10xxxxxx + str[0] = static_cast(0xF0 | code_point); // 11110xxx + } + return str; +} + +// The following two functions only make sense if the the system +// uses UTF-16 for wide string encoding. All supported systems +// with 16 bit wchar_t (Windows, Cygwin, Symbian OS) do use UTF-16. + +// Determines if the arguments constitute UTF-16 surrogate pair +// and thus should be combined into a single Unicode code point +// using CreateCodePointFromUtf16SurrogatePair. +inline bool IsUtf16SurrogatePair(wchar_t first, wchar_t second) { + return sizeof(wchar_t) == 2 && + (first & 0xFC00) == 0xD800 && (second & 0xFC00) == 0xDC00; +} + +// Creates a Unicode code point from UTF16 surrogate pair. +inline UInt32 CreateCodePointFromUtf16SurrogatePair(wchar_t first, + wchar_t second) { + const UInt32 mask = (1 << 10) - 1; + return (sizeof(wchar_t) == 2) ? + (((first & mask) << 10) | (second & mask)) + 0x10000 : + // This function should not be called when the condition is + // false, but we provide a sensible default in case it is. + static_cast(first); +} + +// Converts a wide string to a narrow string in UTF-8 encoding. +// The wide string is assumed to have the following encoding: +// UTF-16 if sizeof(wchar_t) == 2 (on Windows, Cygwin, Symbian OS) +// UTF-32 if sizeof(wchar_t) == 4 (on Linux) +// Parameter str points to a null-terminated wide string. +// Parameter num_chars may additionally limit the number +// of wchar_t characters processed. -1 is used when the entire string +// should be processed. +// If the string contains code points that are not valid Unicode code points +// (i.e. outside of Unicode range U+0 to U+10FFFF) they will be output +// as '(Invalid Unicode 0xXXXXXXXX)'. If the string is in UTF16 encoding +// and contains invalid UTF-16 surrogate pairs, values in those pairs +// will be encoded as individual Unicode characters from Basic Normal Plane. +std::string WideStringToUtf8(const wchar_t* str, int num_chars) { + if (num_chars == -1) + num_chars = static_cast(wcslen(str)); + + ::std::stringstream stream; + for (int i = 0; i < num_chars; ++i) { + UInt32 unicode_code_point; + + if (str[i] == L'\0') { + break; + } else if (i + 1 < num_chars && IsUtf16SurrogatePair(str[i], str[i + 1])) { + unicode_code_point = CreateCodePointFromUtf16SurrogatePair(str[i], + str[i + 1]); + i++; + } else { + unicode_code_point = static_cast(str[i]); + } + + stream << CodePointToUtf8(unicode_code_point); + } + return StringStreamToString(&stream); +} + +// Converts a wide C string to an std::string using the UTF-8 encoding. +// NULL will be converted to "(null)". +std::string String::ShowWideCString(const wchar_t * wide_c_str) { + if (wide_c_str == NULL) return "(null)"; + + return internal::WideStringToUtf8(wide_c_str, -1); +} + +// Compares two wide C strings. Returns true iff they have the same +// content. +// +// Unlike wcscmp(), this function can handle NULL argument(s). A NULL +// C string is considered different to any non-NULL C string, +// including the empty string. +bool String::WideCStringEquals(const wchar_t * lhs, const wchar_t * rhs) { + if (lhs == NULL) return rhs == NULL; + + if (rhs == NULL) return false; + + return wcscmp(lhs, rhs) == 0; +} + +// Helper function for *_STREQ on wide strings. +AssertionResult CmpHelperSTREQ(const char* lhs_expression, + const char* rhs_expression, + const wchar_t* lhs, + const wchar_t* rhs) { + if (String::WideCStringEquals(lhs, rhs)) { + return AssertionSuccess(); + } + + return EqFailure(lhs_expression, + rhs_expression, + PrintToString(lhs), + PrintToString(rhs), + false); +} + +// Helper function for *_STRNE on wide strings. +AssertionResult CmpHelperSTRNE(const char* s1_expression, + const char* s2_expression, + const wchar_t* s1, + const wchar_t* s2) { + if (!String::WideCStringEquals(s1, s2)) { + return AssertionSuccess(); + } + + return AssertionFailure() << "Expected: (" << s1_expression << ") != (" + << s2_expression << "), actual: " + << PrintToString(s1) + << " vs " << PrintToString(s2); +} + +// Compares two C strings, ignoring case. Returns true iff they have +// the same content. +// +// Unlike strcasecmp(), this function can handle NULL argument(s). A +// NULL C string is considered different to any non-NULL C string, +// including the empty string. +bool String::CaseInsensitiveCStringEquals(const char * lhs, const char * rhs) { + if (lhs == NULL) + return rhs == NULL; + if (rhs == NULL) + return false; + return posix::StrCaseCmp(lhs, rhs) == 0; +} + + // Compares two wide C strings, ignoring case. Returns true iff they + // have the same content. + // + // Unlike wcscasecmp(), this function can handle NULL argument(s). + // A NULL C string is considered different to any non-NULL wide C string, + // including the empty string. + // NB: The implementations on different platforms slightly differ. + // On windows, this method uses _wcsicmp which compares according to LC_CTYPE + // environment variable. On GNU platform this method uses wcscasecmp + // which compares according to LC_CTYPE category of the current locale. + // On MacOS X, it uses towlower, which also uses LC_CTYPE category of the + // current locale. +bool String::CaseInsensitiveWideCStringEquals(const wchar_t* lhs, + const wchar_t* rhs) { + if (lhs == NULL) return rhs == NULL; + + if (rhs == NULL) return false; + +#if GTEST_OS_WINDOWS + return _wcsicmp(lhs, rhs) == 0; +#elif GTEST_OS_LINUX && !GTEST_OS_LINUX_ANDROID + return wcscasecmp(lhs, rhs) == 0; +#else + // Android, Mac OS X and Cygwin don't define wcscasecmp. + // Other unknown OSes may not define it either. + wint_t left, right; + do { + left = towlower(*lhs++); + right = towlower(*rhs++); + } while (left && left == right); + return left == right; +#endif // OS selector +} + +// Returns true iff str ends with the given suffix, ignoring case. +// Any string is considered to end with an empty suffix. +bool String::EndsWithCaseInsensitive( + const std::string& str, const std::string& suffix) { + const size_t str_len = str.length(); + const size_t suffix_len = suffix.length(); + return (str_len >= suffix_len) && + CaseInsensitiveCStringEquals(str.c_str() + str_len - suffix_len, + suffix.c_str()); +} + +// Formats an int value as "%02d". +std::string String::FormatIntWidth2(int value) { + std::stringstream ss; + ss << std::setfill('0') << std::setw(2) << value; + return ss.str(); +} + +// Formats an int value as "%X". +std::string String::FormatHexInt(int value) { + std::stringstream ss; + ss << std::hex << std::uppercase << value; + return ss.str(); +} + +// Formats a byte as "%02X". +std::string String::FormatByte(unsigned char value) { + std::stringstream ss; + ss << std::setfill('0') << std::setw(2) << std::hex << std::uppercase + << static_cast(value); + return ss.str(); +} + +// Converts the buffer in a stringstream to an std::string, converting NUL +// bytes to "\\0" along the way. +std::string StringStreamToString(::std::stringstream* ss) { + const ::std::string& str = ss->str(); + const char* const start = str.c_str(); + const char* const end = start + str.length(); + + std::string result; + result.reserve(2 * (end - start)); + for (const char* ch = start; ch != end; ++ch) { + if (*ch == '\0') { + result += "\\0"; // Replaces NUL with "\\0"; + } else { + result += *ch; + } + } + + return result; +} + +// Appends the user-supplied message to the Google-Test-generated message. +std::string AppendUserMessage(const std::string& gtest_msg, + const Message& user_msg) { + // Appends the user message if it's non-empty. + const std::string user_msg_string = user_msg.GetString(); + if (user_msg_string.empty()) { + return gtest_msg; + } + + return gtest_msg + "\n" + user_msg_string; +} + +} // namespace internal + +// class TestResult + +// Creates an empty TestResult. +TestResult::TestResult() + : death_test_count_(0), + elapsed_time_(0) { +} + +// D'tor. +TestResult::~TestResult() { +} + +// Returns the i-th test part result among all the results. i can +// range from 0 to total_part_count() - 1. If i is not in that range, +// aborts the program. +const TestPartResult& TestResult::GetTestPartResult(int i) const { + if (i < 0 || i >= total_part_count()) + internal::posix::Abort(); + return test_part_results_.at(i); +} + +// Returns the i-th test property. i can range from 0 to +// test_property_count() - 1. If i is not in that range, aborts the +// program. +const TestProperty& TestResult::GetTestProperty(int i) const { + if (i < 0 || i >= test_property_count()) + internal::posix::Abort(); + return test_properties_.at(i); +} + +// Clears the test part results. +void TestResult::ClearTestPartResults() { + test_part_results_.clear(); +} + +// Adds a test part result to the list. +void TestResult::AddTestPartResult(const TestPartResult& test_part_result) { + test_part_results_.push_back(test_part_result); +} + +// Adds a test property to the list. If a property with the same key as the +// supplied property is already represented, the value of this test_property +// replaces the old value for that key. +void TestResult::RecordProperty(const std::string& xml_element, + const TestProperty& test_property) { + if (!ValidateTestProperty(xml_element, test_property)) { + return; + } + internal::MutexLock lock(&test_properites_mutex_); + const std::vector::iterator property_with_matching_key = + std::find_if(test_properties_.begin(), test_properties_.end(), + internal::TestPropertyKeyIs(test_property.key())); + if (property_with_matching_key == test_properties_.end()) { + test_properties_.push_back(test_property); + return; + } + property_with_matching_key->SetValue(test_property.value()); +} + +// The list of reserved attributes used in the element of XML +// output. +static const char* const kReservedTestSuitesAttributes[] = { + "disabled", + "errors", + "failures", + "name", + "random_seed", + "tests", + "time", + "timestamp" +}; + +// The list of reserved attributes used in the element of XML +// output. +static const char* const kReservedTestSuiteAttributes[] = { + "disabled", + "errors", + "failures", + "name", + "tests", + "time" +}; + +// The list of reserved attributes used in the element of XML output. +static const char* const kReservedTestCaseAttributes[] = { + "classname", + "name", + "status", + "time", + "type_param", + "value_param" +}; + +template +std::vector ArrayAsVector(const char* const (&array)[kSize]) { + return std::vector(array, array + kSize); +} + +static std::vector GetReservedAttributesForElement( + const std::string& xml_element) { + if (xml_element == "testsuites") { + return ArrayAsVector(kReservedTestSuitesAttributes); + } else if (xml_element == "testsuite") { + return ArrayAsVector(kReservedTestSuiteAttributes); + } else if (xml_element == "testcase") { + return ArrayAsVector(kReservedTestCaseAttributes); + } else { + GTEST_CHECK_(false) << "Unrecognized xml_element provided: " << xml_element; + } + // This code is unreachable but some compilers may not realizes that. + return std::vector(); +} + +static std::string FormatWordList(const std::vector& words) { + Message word_list; + for (size_t i = 0; i < words.size(); ++i) { + if (i > 0 && words.size() > 2) { + word_list << ", "; + } + if (i == words.size() - 1) { + word_list << "and "; + } + word_list << "'" << words[i] << "'"; + } + return word_list.GetString(); +} + +bool ValidateTestPropertyName(const std::string& property_name, + const std::vector& reserved_names) { + if (std::find(reserved_names.begin(), reserved_names.end(), property_name) != + reserved_names.end()) { + ADD_FAILURE() << "Reserved key used in RecordProperty(): " << property_name + << " (" << FormatWordList(reserved_names) + << " are reserved by " << GTEST_NAME_ << ")"; + return false; + } + return true; +} + +// Adds a failure if the key is a reserved attribute of the element named +// xml_element. Returns true if the property is valid. +bool TestResult::ValidateTestProperty(const std::string& xml_element, + const TestProperty& test_property) { + return ValidateTestPropertyName(test_property.key(), + GetReservedAttributesForElement(xml_element)); +} + +// Clears the object. +void TestResult::Clear() { + test_part_results_.clear(); + test_properties_.clear(); + death_test_count_ = 0; + elapsed_time_ = 0; +} + +// Returns true iff the test failed. +bool TestResult::Failed() const { + for (int i = 0; i < total_part_count(); ++i) { + if (GetTestPartResult(i).failed()) + return true; + } + return false; +} + +// Returns true iff the test part fatally failed. +static bool TestPartFatallyFailed(const TestPartResult& result) { + return result.fatally_failed(); +} + +// Returns true iff the test fatally failed. +bool TestResult::HasFatalFailure() const { + return CountIf(test_part_results_, TestPartFatallyFailed) > 0; +} + +// Returns true iff the test part non-fatally failed. +static bool TestPartNonfatallyFailed(const TestPartResult& result) { + return result.nonfatally_failed(); +} + +// Returns true iff the test has a non-fatal failure. +bool TestResult::HasNonfatalFailure() const { + return CountIf(test_part_results_, TestPartNonfatallyFailed) > 0; +} + +// Gets the number of all test parts. This is the sum of the number +// of successful test parts and the number of failed test parts. +int TestResult::total_part_count() const { + return static_cast(test_part_results_.size()); +} + +// Returns the number of the test properties. +int TestResult::test_property_count() const { + return static_cast(test_properties_.size()); +} + +// class Test + +// Creates a Test object. + +// The c'tor saves the states of all flags. +Test::Test() + : gtest_flag_saver_(new GTEST_FLAG_SAVER_) { +} + +// The d'tor restores the states of all flags. The actual work is +// done by the d'tor of the gtest_flag_saver_ field, and thus not +// visible here. +Test::~Test() { +} + +// Sets up the test fixture. +// +// A sub-class may override this. +void Test::SetUp() { +} + +// Tears down the test fixture. +// +// A sub-class may override this. +void Test::TearDown() { +} + +// Allows user supplied key value pairs to be recorded for later output. +void Test::RecordProperty(const std::string& key, const std::string& value) { + UnitTest::GetInstance()->RecordProperty(key, value); +} + +// Allows user supplied key value pairs to be recorded for later output. +void Test::RecordProperty(const std::string& key, int value) { + Message value_message; + value_message << value; + RecordProperty(key, value_message.GetString().c_str()); +} + +namespace internal { + +void ReportFailureInUnknownLocation(TestPartResult::Type result_type, + const std::string& message) { + // This function is a friend of UnitTest and as such has access to + // AddTestPartResult. + UnitTest::GetInstance()->AddTestPartResult( + result_type, + NULL, // No info about the source file where the exception occurred. + -1, // We have no info on which line caused the exception. + message, + ""); // No stack trace, either. +} + +} // namespace internal + +// Google Test requires all tests in the same test case to use the same test +// fixture class. This function checks if the current test has the +// same fixture class as the first test in the current test case. If +// yes, it returns true; otherwise it generates a Google Test failure and +// returns false. +bool Test::HasSameFixtureClass() { + internal::UnitTestImpl* const impl = internal::GetUnitTestImpl(); + const TestCase* const test_case = impl->current_test_case(); + + // Info about the first test in the current test case. + const TestInfo* const first_test_info = test_case->test_info_list()[0]; + const internal::TypeId first_fixture_id = first_test_info->fixture_class_id_; + const char* const first_test_name = first_test_info->name(); + + // Info about the current test. + const TestInfo* const this_test_info = impl->current_test_info(); + const internal::TypeId this_fixture_id = this_test_info->fixture_class_id_; + const char* const this_test_name = this_test_info->name(); + + if (this_fixture_id != first_fixture_id) { + // Is the first test defined using TEST? + const bool first_is_TEST = first_fixture_id == internal::GetTestTypeId(); + // Is this test defined using TEST? + const bool this_is_TEST = this_fixture_id == internal::GetTestTypeId(); + + if (first_is_TEST || this_is_TEST) { + // Both TEST and TEST_F appear in same test case, which is incorrect. + // Tell the user how to fix this. + + // Gets the name of the TEST and the name of the TEST_F. Note + // that first_is_TEST and this_is_TEST cannot both be true, as + // the fixture IDs are different for the two tests. + const char* const TEST_name = + first_is_TEST ? first_test_name : this_test_name; + const char* const TEST_F_name = + first_is_TEST ? this_test_name : first_test_name; + + ADD_FAILURE() + << "All tests in the same test case must use the same test fixture\n" + << "class, so mixing TEST_F and TEST in the same test case is\n" + << "illegal. In test case " << this_test_info->test_case_name() + << ",\n" + << "test " << TEST_F_name << " is defined using TEST_F but\n" + << "test " << TEST_name << " is defined using TEST. You probably\n" + << "want to change the TEST to TEST_F or move it to another test\n" + << "case."; + } else { + // Two fixture classes with the same name appear in two different + // namespaces, which is not allowed. Tell the user how to fix this. + ADD_FAILURE() + << "All tests in the same test case must use the same test fixture\n" + << "class. However, in test case " + << this_test_info->test_case_name() << ",\n" + << "you defined test " << first_test_name + << " and test " << this_test_name << "\n" + << "using two different test fixture classes. This can happen if\n" + << "the two classes are from different namespaces or translation\n" + << "units and have the same name. You should probably rename one\n" + << "of the classes to put the tests into different test cases."; + } + return false; + } + + return true; +} + +#if GTEST_HAS_SEH + +// Adds an "exception thrown" fatal failure to the current test. This +// function returns its result via an output parameter pointer because VC++ +// prohibits creation of objects with destructors on stack in functions +// using __try (see error C2712). +static std::string* FormatSehExceptionMessage(DWORD exception_code, + const char* location) { + Message message; + message << "SEH exception with code 0x" << std::setbase(16) << + exception_code << std::setbase(10) << " thrown in " << location << "."; + + return new std::string(message.GetString()); +} + +#endif // GTEST_HAS_SEH + +namespace internal { + +#if GTEST_HAS_EXCEPTIONS + +// Adds an "exception thrown" fatal failure to the current test. +static std::string FormatCxxExceptionMessage(const char* description, + const char* location) { + Message message; + if (description != NULL) { + message << "C++ exception with description \"" << description << "\""; + } else { + message << "Unknown C++ exception"; + } + message << " thrown in " << location << "."; + + return message.GetString(); +} + +static std::string PrintTestPartResultToString( + const TestPartResult& test_part_result); + +GoogleTestFailureException::GoogleTestFailureException( + const TestPartResult& failure) + : ::std::runtime_error(PrintTestPartResultToString(failure).c_str()) {} + +#endif // GTEST_HAS_EXCEPTIONS + +// We put these helper functions in the internal namespace as IBM's xlC +// compiler rejects the code if they were declared static. + +// Runs the given method and handles SEH exceptions it throws, when +// SEH is supported; returns the 0-value for type Result in case of an +// SEH exception. (Microsoft compilers cannot handle SEH and C++ +// exceptions in the same function. Therefore, we provide a separate +// wrapper function for handling SEH exceptions.) +template +Result HandleSehExceptionsInMethodIfSupported( + T* object, Result (T::*method)(), const char* location) { +#if GTEST_HAS_SEH + __try { + return (object->*method)(); + } __except (internal::UnitTestOptions::GTestShouldProcessSEH( // NOLINT + GetExceptionCode())) { + // We create the exception message on the heap because VC++ prohibits + // creation of objects with destructors on stack in functions using __try + // (see error C2712). + std::string* exception_message = FormatSehExceptionMessage( + GetExceptionCode(), location); + internal::ReportFailureInUnknownLocation(TestPartResult::kFatalFailure, + *exception_message); + delete exception_message; + return static_cast(0); + } +#else + (void)location; + return (object->*method)(); +#endif // GTEST_HAS_SEH +} + +// Runs the given method and catches and reports C++ and/or SEH-style +// exceptions, if they are supported; returns the 0-value for type +// Result in case of an SEH exception. +template +Result HandleExceptionsInMethodIfSupported( + T* object, Result (T::*method)(), const char* location) { + // NOTE: The user code can affect the way in which Google Test handles + // exceptions by setting GTEST_FLAG(catch_exceptions), but only before + // RUN_ALL_TESTS() starts. It is technically possible to check the flag + // after the exception is caught and either report or re-throw the + // exception based on the flag's value: + // + // try { + // // Perform the test method. + // } catch (...) { + // if (GTEST_FLAG(catch_exceptions)) + // // Report the exception as failure. + // else + // throw; // Re-throws the original exception. + // } + // + // However, the purpose of this flag is to allow the program to drop into + // the debugger when the exception is thrown. On most platforms, once the + // control enters the catch block, the exception origin information is + // lost and the debugger will stop the program at the point of the + // re-throw in this function -- instead of at the point of the original + // throw statement in the code under test. For this reason, we perform + // the check early, sacrificing the ability to affect Google Test's + // exception handling in the method where the exception is thrown. + if (internal::GetUnitTestImpl()->catch_exceptions()) { +#if GTEST_HAS_EXCEPTIONS + try { + return HandleSehExceptionsInMethodIfSupported(object, method, location); + } catch (const internal::GoogleTestFailureException&) { // NOLINT + // This exception type can only be thrown by a failed Google + // Test assertion with the intention of letting another testing + // framework catch it. Therefore we just re-throw it. + throw; + } catch (const std::exception& e) { // NOLINT + internal::ReportFailureInUnknownLocation( + TestPartResult::kFatalFailure, + FormatCxxExceptionMessage(e.what(), location)); + } catch (...) { // NOLINT + internal::ReportFailureInUnknownLocation( + TestPartResult::kFatalFailure, + FormatCxxExceptionMessage(NULL, location)); + } + return static_cast(0); +#else + return HandleSehExceptionsInMethodIfSupported(object, method, location); +#endif // GTEST_HAS_EXCEPTIONS + } else { + return (object->*method)(); + } +} + +} // namespace internal + +// Runs the test and updates the test result. +void Test::Run() { + if (!HasSameFixtureClass()) return; + + internal::UnitTestImpl* const impl = internal::GetUnitTestImpl(); + impl->os_stack_trace_getter()->UponLeavingGTest(); + internal::HandleExceptionsInMethodIfSupported(this, &Test::SetUp, "SetUp()"); + // We will run the test only if SetUp() was successful. + if (!HasFatalFailure()) { + impl->os_stack_trace_getter()->UponLeavingGTest(); + internal::HandleExceptionsInMethodIfSupported( + this, &Test::TestBody, "the test body"); + } + + // However, we want to clean up as much as possible. Hence we will + // always call TearDown(), even if SetUp() or the test body has + // failed. + impl->os_stack_trace_getter()->UponLeavingGTest(); + internal::HandleExceptionsInMethodIfSupported( + this, &Test::TearDown, "TearDown()"); +} + +// Returns true iff the current test has a fatal failure. +bool Test::HasFatalFailure() { + return internal::GetUnitTestImpl()->current_test_result()->HasFatalFailure(); +} + +// Returns true iff the current test has a non-fatal failure. +bool Test::HasNonfatalFailure() { + return internal::GetUnitTestImpl()->current_test_result()-> + HasNonfatalFailure(); +} + +// class TestInfo + +// Constructs a TestInfo object. It assumes ownership of the test factory +// object. +TestInfo::TestInfo(const std::string& a_test_case_name, + const std::string& a_name, + const char* a_type_param, + const char* a_value_param, + internal::CodeLocation a_code_location, + internal::TypeId fixture_class_id, + internal::TestFactoryBase* factory) + : test_case_name_(a_test_case_name), + name_(a_name), + type_param_(a_type_param ? new std::string(a_type_param) : NULL), + value_param_(a_value_param ? new std::string(a_value_param) : NULL), + location_(a_code_location), + fixture_class_id_(fixture_class_id), + should_run_(false), + is_disabled_(false), + matches_filter_(false), + factory_(factory), + result_() {} + +// Destructs a TestInfo object. +TestInfo::~TestInfo() { delete factory_; } + +namespace internal { + +// Creates a new TestInfo object and registers it with Google Test; +// returns the created object. +// +// Arguments: +// +// test_case_name: name of the test case +// name: name of the test +// type_param: the name of the test's type parameter, or NULL if +// this is not a typed or a type-parameterized test. +// value_param: text representation of the test's value parameter, +// or NULL if this is not a value-parameterized test. +// code_location: code location where the test is defined +// fixture_class_id: ID of the test fixture class +// set_up_tc: pointer to the function that sets up the test case +// tear_down_tc: pointer to the function that tears down the test case +// factory: pointer to the factory that creates a test object. +// The newly created TestInfo instance will assume +// ownership of the factory object. +TestInfo* MakeAndRegisterTestInfo( + const char* test_case_name, + const char* name, + const char* type_param, + const char* value_param, + CodeLocation code_location, + TypeId fixture_class_id, + SetUpTestCaseFunc set_up_tc, + TearDownTestCaseFunc tear_down_tc, + TestFactoryBase* factory) { + TestInfo* const test_info = + new TestInfo(test_case_name, name, type_param, value_param, + code_location, fixture_class_id, factory); + GetUnitTestImpl()->AddTestInfo(set_up_tc, tear_down_tc, test_info); + return test_info; +} + +#if GTEST_HAS_PARAM_TEST +void ReportInvalidTestCaseType(const char* test_case_name, + CodeLocation code_location) { + Message errors; + errors + << "Attempted redefinition of test case " << test_case_name << ".\n" + << "All tests in the same test case must use the same test fixture\n" + << "class. However, in test case " << test_case_name << ", you tried\n" + << "to define a test using a fixture class different from the one\n" + << "used earlier. This can happen if the two fixture classes are\n" + << "from different namespaces and have the same name. You should\n" + << "probably rename one of the classes to put the tests into different\n" + << "test cases."; + + fprintf(stderr, "%s %s", + FormatFileLocation(code_location.file.c_str(), + code_location.line).c_str(), + errors.GetString().c_str()); +} +#endif // GTEST_HAS_PARAM_TEST + +} // namespace internal + +namespace { + +// A predicate that checks the test name of a TestInfo against a known +// value. +// +// This is used for implementation of the TestCase class only. We put +// it in the anonymous namespace to prevent polluting the outer +// namespace. +// +// TestNameIs is copyable. +class TestNameIs { + public: + // Constructor. + // + // TestNameIs has NO default constructor. + explicit TestNameIs(const char* name) + : name_(name) {} + + // Returns true iff the test name of test_info matches name_. + bool operator()(const TestInfo * test_info) const { + return test_info && test_info->name() == name_; + } + + private: + std::string name_; +}; + +} // namespace + +namespace internal { + +// This method expands all parameterized tests registered with macros TEST_P +// and INSTANTIATE_TEST_CASE_P into regular tests and registers those. +// This will be done just once during the program runtime. +void UnitTestImpl::RegisterParameterizedTests() { +#if GTEST_HAS_PARAM_TEST + if (!parameterized_tests_registered_) { + parameterized_test_registry_.RegisterTests(); + parameterized_tests_registered_ = true; + } +#endif +} + +} // namespace internal + +// Creates the test object, runs it, records its result, and then +// deletes it. +void TestInfo::Run() { + if (!should_run_) return; + + // Tells UnitTest where to store test result. + internal::UnitTestImpl* const impl = internal::GetUnitTestImpl(); + impl->set_current_test_info(this); + + TestEventListener* repeater = UnitTest::GetInstance()->listeners().repeater(); + + // Notifies the unit test event listeners that a test is about to start. + repeater->OnTestStart(*this); + + const TimeInMillis start = internal::GetTimeInMillis(); + + impl->os_stack_trace_getter()->UponLeavingGTest(); + + // Creates the test object. + Test* const test = internal::HandleExceptionsInMethodIfSupported( + factory_, &internal::TestFactoryBase::CreateTest, + "the test fixture's constructor"); + + // Runs the test only if the test object was created and its + // constructor didn't generate a fatal failure. + if ((test != NULL) && !Test::HasFatalFailure()) { + // This doesn't throw as all user code that can throw are wrapped into + // exception handling code. + test->Run(); + } + + // Deletes the test object. + impl->os_stack_trace_getter()->UponLeavingGTest(); + internal::HandleExceptionsInMethodIfSupported( + test, &Test::DeleteSelf_, "the test fixture's destructor"); + + result_.set_elapsed_time(internal::GetTimeInMillis() - start); + + // Notifies the unit test event listener that a test has just finished. + repeater->OnTestEnd(*this); + + // Tells UnitTest to stop associating assertion results to this + // test. + impl->set_current_test_info(NULL); +} + +// class TestCase + +// Gets the number of successful tests in this test case. +int TestCase::successful_test_count() const { + return CountIf(test_info_list_, TestPassed); +} + +// Gets the number of failed tests in this test case. +int TestCase::failed_test_count() const { + return CountIf(test_info_list_, TestFailed); +} + +// Gets the number of disabled tests that will be reported in the XML report. +int TestCase::reportable_disabled_test_count() const { + return CountIf(test_info_list_, TestReportableDisabled); +} + +// Gets the number of disabled tests in this test case. +int TestCase::disabled_test_count() const { + return CountIf(test_info_list_, TestDisabled); +} + +// Gets the number of tests to be printed in the XML report. +int TestCase::reportable_test_count() const { + return CountIf(test_info_list_, TestReportable); +} + +// Get the number of tests in this test case that should run. +int TestCase::test_to_run_count() const { + return CountIf(test_info_list_, ShouldRunTest); +} + +// Gets the number of all tests. +int TestCase::total_test_count() const { + return static_cast(test_info_list_.size()); +} + +// Creates a TestCase with the given name. +// +// Arguments: +// +// name: name of the test case +// a_type_param: the name of the test case's type parameter, or NULL if +// this is not a typed or a type-parameterized test case. +// set_up_tc: pointer to the function that sets up the test case +// tear_down_tc: pointer to the function that tears down the test case +TestCase::TestCase(const char* a_name, const char* a_type_param, + Test::SetUpTestCaseFunc set_up_tc, + Test::TearDownTestCaseFunc tear_down_tc) + : name_(a_name), + type_param_(a_type_param ? new std::string(a_type_param) : NULL), + set_up_tc_(set_up_tc), + tear_down_tc_(tear_down_tc), + should_run_(false), + elapsed_time_(0) { +} + +// Destructor of TestCase. +TestCase::~TestCase() { + // Deletes every Test in the collection. + ForEach(test_info_list_, internal::Delete); +} + +// Returns the i-th test among all the tests. i can range from 0 to +// total_test_count() - 1. If i is not in that range, returns NULL. +const TestInfo* TestCase::GetTestInfo(int i) const { + const int index = GetElementOr(test_indices_, i, -1); + return index < 0 ? NULL : test_info_list_[index]; +} + +// Returns the i-th test among all the tests. i can range from 0 to +// total_test_count() - 1. If i is not in that range, returns NULL. +TestInfo* TestCase::GetMutableTestInfo(int i) { + const int index = GetElementOr(test_indices_, i, -1); + return index < 0 ? NULL : test_info_list_[index]; +} + +// Adds a test to this test case. Will delete the test upon +// destruction of the TestCase object. +void TestCase::AddTestInfo(TestInfo * test_info) { + test_info_list_.push_back(test_info); + test_indices_.push_back(static_cast(test_indices_.size())); +} + +// Runs every test in this TestCase. +void TestCase::Run() { + if (!should_run_) return; + + internal::UnitTestImpl* const impl = internal::GetUnitTestImpl(); + impl->set_current_test_case(this); + + TestEventListener* repeater = UnitTest::GetInstance()->listeners().repeater(); + + repeater->OnTestCaseStart(*this); + impl->os_stack_trace_getter()->UponLeavingGTest(); + internal::HandleExceptionsInMethodIfSupported( + this, &TestCase::RunSetUpTestCase, "SetUpTestCase()"); + + const internal::TimeInMillis start = internal::GetTimeInMillis(); + for (int i = 0; i < total_test_count(); i++) { + GetMutableTestInfo(i)->Run(); + } + elapsed_time_ = internal::GetTimeInMillis() - start; + + impl->os_stack_trace_getter()->UponLeavingGTest(); + internal::HandleExceptionsInMethodIfSupported( + this, &TestCase::RunTearDownTestCase, "TearDownTestCase()"); + + repeater->OnTestCaseEnd(*this); + impl->set_current_test_case(NULL); +} + +// Clears the results of all tests in this test case. +void TestCase::ClearResult() { + ad_hoc_test_result_.Clear(); + ForEach(test_info_list_, TestInfo::ClearTestResult); +} + +// Shuffles the tests in this test case. +void TestCase::ShuffleTests(internal::Random* random) { + Shuffle(random, &test_indices_); +} + +// Restores the test order to before the first shuffle. +void TestCase::UnshuffleTests() { + for (size_t i = 0; i < test_indices_.size(); i++) { + test_indices_[i] = static_cast(i); + } +} + +// Formats a countable noun. Depending on its quantity, either the +// singular form or the plural form is used. e.g. +// +// FormatCountableNoun(1, "formula", "formuli") returns "1 formula". +// FormatCountableNoun(5, "book", "books") returns "5 books". +static std::string FormatCountableNoun(int count, + const char * singular_form, + const char * plural_form) { + return internal::StreamableToString(count) + " " + + (count == 1 ? singular_form : plural_form); +} + +// Formats the count of tests. +static std::string FormatTestCount(int test_count) { + return FormatCountableNoun(test_count, "test", "tests"); +} + +// Formats the count of test cases. +static std::string FormatTestCaseCount(int test_case_count) { + return FormatCountableNoun(test_case_count, "test case", "test cases"); +} + +// Converts a TestPartResult::Type enum to human-friendly string +// representation. Both kNonFatalFailure and kFatalFailure are translated +// to "Failure", as the user usually doesn't care about the difference +// between the two when viewing the test result. +static const char * TestPartResultTypeToString(TestPartResult::Type type) { + switch (type) { + case TestPartResult::kSuccess: + return "Success"; + + case TestPartResult::kNonFatalFailure: + case TestPartResult::kFatalFailure: +#ifdef _MSC_VER + return "error: "; +#else + return "Failure\n"; +#endif + default: + return "Unknown result type"; + } +} + +namespace internal { + +// Prints a TestPartResult to an std::string. +static std::string PrintTestPartResultToString( + const TestPartResult& test_part_result) { + return (Message() + << internal::FormatFileLocation(test_part_result.file_name(), + test_part_result.line_number()) + << " " << TestPartResultTypeToString(test_part_result.type()) + << test_part_result.message()).GetString(); +} + +// Prints a TestPartResult. +static void PrintTestPartResult(const TestPartResult& test_part_result) { + const std::string& result = + PrintTestPartResultToString(test_part_result); + printf("%s\n", result.c_str()); + fflush(stdout); + // If the test program runs in Visual Studio or a debugger, the + // following statements add the test part result message to the Output + // window such that the user can double-click on it to jump to the + // corresponding source code location; otherwise they do nothing. +#if GTEST_OS_WINDOWS && !GTEST_OS_WINDOWS_MOBILE + // We don't call OutputDebugString*() on Windows Mobile, as printing + // to stdout is done by OutputDebugString() there already - we don't + // want the same message printed twice. + ::OutputDebugStringA(result.c_str()); + ::OutputDebugStringA("\n"); +#endif +} + +// class PrettyUnitTestResultPrinter + +enum GTestColor { + COLOR_DEFAULT, + COLOR_RED, + COLOR_GREEN, + COLOR_YELLOW +}; + +#if GTEST_OS_WINDOWS && !GTEST_OS_WINDOWS_MOBILE && \ + !GTEST_OS_WINDOWS_PHONE && !GTEST_OS_WINDOWS_RT + +// Returns the character attribute for the given color. +WORD GetColorAttribute(GTestColor color) { + switch (color) { + case COLOR_RED: return FOREGROUND_RED; + case COLOR_GREEN: return FOREGROUND_GREEN; + case COLOR_YELLOW: return FOREGROUND_RED | FOREGROUND_GREEN; + default: return 0; + } +} + +#else + +// Returns the ANSI color code for the given color. COLOR_DEFAULT is +// an invalid input. +const char* GetAnsiColorCode(GTestColor color) { + switch (color) { + case COLOR_RED: return "1"; + case COLOR_GREEN: return "2"; + case COLOR_YELLOW: return "3"; + default: return NULL; + }; +} + +#endif // GTEST_OS_WINDOWS && !GTEST_OS_WINDOWS_MOBILE + +// Returns true iff Google Test should use colors in the output. +bool ShouldUseColor(bool stdout_is_tty) { + const char* const gtest_color = GTEST_FLAG(color).c_str(); + + if (String::CaseInsensitiveCStringEquals(gtest_color, "auto")) { +#if GTEST_OS_WINDOWS + // On Windows the TERM variable is usually not set, but the + // console there does support colors. + return stdout_is_tty; +#else + // On non-Windows platforms, we rely on the TERM variable. + const char* const term = posix::GetEnv("TERM"); + const bool term_supports_color = + String::CStringEquals(term, "xterm") || + String::CStringEquals(term, "xterm-color") || + String::CStringEquals(term, "xterm-256color") || + String::CStringEquals(term, "screen") || + String::CStringEquals(term, "screen-256color") || + String::CStringEquals(term, "tmux") || + String::CStringEquals(term, "tmux-256color") || + String::CStringEquals(term, "rxvt-unicode") || + String::CStringEquals(term, "rxvt-unicode-256color") || + String::CStringEquals(term, "linux") || + String::CStringEquals(term, "cygwin"); + return stdout_is_tty && term_supports_color; +#endif // GTEST_OS_WINDOWS + } + + return String::CaseInsensitiveCStringEquals(gtest_color, "yes") || + String::CaseInsensitiveCStringEquals(gtest_color, "true") || + String::CaseInsensitiveCStringEquals(gtest_color, "t") || + String::CStringEquals(gtest_color, "1"); + // We take "yes", "true", "t", and "1" as meaning "yes". If the + // value is neither one of these nor "auto", we treat it as "no" to + // be conservative. +} + +// Helpers for printing colored strings to stdout. Note that on Windows, we +// cannot simply emit special characters and have the terminal change colors. +// This routine must actually emit the characters rather than return a string +// that would be colored when printed, as can be done on Linux. +void ColoredPrintf(GTestColor color, const char* fmt, ...) { + va_list args; + va_start(args, fmt); + +#if GTEST_OS_WINDOWS_MOBILE || GTEST_OS_SYMBIAN || GTEST_OS_ZOS || \ + GTEST_OS_IOS || GTEST_OS_WINDOWS_PHONE || GTEST_OS_WINDOWS_RT + const bool use_color = AlwaysFalse(); +#else + static const bool in_color_mode = + ShouldUseColor(posix::IsATTY(posix::FileNo(stdout)) != 0); + const bool use_color = in_color_mode && (color != COLOR_DEFAULT); +#endif // GTEST_OS_WINDOWS_MOBILE || GTEST_OS_SYMBIAN || GTEST_OS_ZOS + // The '!= 0' comparison is necessary to satisfy MSVC 7.1. + + if (!use_color) { + vprintf(fmt, args); + va_end(args); + return; + } + +#if GTEST_OS_WINDOWS && !GTEST_OS_WINDOWS_MOBILE && \ + !GTEST_OS_WINDOWS_PHONE && !GTEST_OS_WINDOWS_RT + const HANDLE stdout_handle = GetStdHandle(STD_OUTPUT_HANDLE); + + // Gets the current text color. + CONSOLE_SCREEN_BUFFER_INFO buffer_info; + GetConsoleScreenBufferInfo(stdout_handle, &buffer_info); + const WORD old_color_attrs = buffer_info.wAttributes; + + // We need to flush the stream buffers into the console before each + // SetConsoleTextAttribute call lest it affect the text that is already + // printed but has not yet reached the console. + fflush(stdout); + SetConsoleTextAttribute(stdout_handle, + GetColorAttribute(color) | FOREGROUND_INTENSITY); + vprintf(fmt, args); + + fflush(stdout); + // Restores the text color. + SetConsoleTextAttribute(stdout_handle, old_color_attrs); +#else + printf("\033[0;3%sm", GetAnsiColorCode(color)); + vprintf(fmt, args); + printf("\033[m"); // Resets the terminal to default. +#endif // GTEST_OS_WINDOWS && !GTEST_OS_WINDOWS_MOBILE + va_end(args); +} + +// Text printed in Google Test's text output and --gunit_list_tests +// output to label the type parameter and value parameter for a test. +static const char kTypeParamLabel[] = "TypeParam"; +static const char kValueParamLabel[] = "GetParam()"; + +void PrintFullTestCommentIfPresent(const TestInfo& test_info) { + const char* const type_param = test_info.type_param(); + const char* const value_param = test_info.value_param(); + + if (type_param != NULL || value_param != NULL) { + printf(", where "); + if (type_param != NULL) { + printf("%s = %s", kTypeParamLabel, type_param); + if (value_param != NULL) + printf(" and "); + } + if (value_param != NULL) { + printf("%s = %s", kValueParamLabel, value_param); + } + } +} + +// This class implements the TestEventListener interface. +// +// Class PrettyUnitTestResultPrinter is copyable. +class PrettyUnitTestResultPrinter : public TestEventListener { + public: + PrettyUnitTestResultPrinter() {} + static void PrintTestName(const char * test_case, const char * test) { + printf("%s.%s", test_case, test); + } + + // The following methods override what's in the TestEventListener class. + virtual void OnTestProgramStart(const UnitTest& /*unit_test*/) {} + virtual void OnTestIterationStart(const UnitTest& unit_test, int iteration); + virtual void OnEnvironmentsSetUpStart(const UnitTest& unit_test); + virtual void OnEnvironmentsSetUpEnd(const UnitTest& /*unit_test*/) {} + virtual void OnTestCaseStart(const TestCase& test_case); + virtual void OnTestStart(const TestInfo& test_info); + virtual void OnTestPartResult(const TestPartResult& result); + virtual void OnTestEnd(const TestInfo& test_info); + virtual void OnTestCaseEnd(const TestCase& test_case); + virtual void OnEnvironmentsTearDownStart(const UnitTest& unit_test); + virtual void OnEnvironmentsTearDownEnd(const UnitTest& /*unit_test*/) {} + virtual void OnTestIterationEnd(const UnitTest& unit_test, int iteration); + virtual void OnTestProgramEnd(const UnitTest& /*unit_test*/) {} + + private: + static void PrintFailedTests(const UnitTest& unit_test); +}; + + // Fired before each iteration of tests starts. +void PrettyUnitTestResultPrinter::OnTestIterationStart( + const UnitTest& unit_test, int iteration) { + if (GTEST_FLAG(repeat) != 1) + printf("\nRepeating all tests (iteration %d) . . .\n\n", iteration + 1); + + const char* const filter = GTEST_FLAG(filter).c_str(); + + // Prints the filter if it's not *. This reminds the user that some + // tests may be skipped. + if (!String::CStringEquals(filter, kUniversalFilter)) { + ColoredPrintf(COLOR_YELLOW, + "Note: %s filter = %s\n", GTEST_NAME_, filter); + } + + if (internal::ShouldShard(kTestTotalShards, kTestShardIndex, false)) { + const Int32 shard_index = Int32FromEnvOrDie(kTestShardIndex, -1); + ColoredPrintf(COLOR_YELLOW, + "Note: This is test shard %d of %s.\n", + static_cast(shard_index) + 1, + internal::posix::GetEnv(kTestTotalShards)); + } + + if (GTEST_FLAG(shuffle)) { + ColoredPrintf(COLOR_YELLOW, + "Note: Randomizing tests' orders with a seed of %d .\n", + unit_test.random_seed()); + } + + ColoredPrintf(COLOR_GREEN, "[==========] "); + printf("Running %s from %s.\n", + FormatTestCount(unit_test.test_to_run_count()).c_str(), + FormatTestCaseCount(unit_test.test_case_to_run_count()).c_str()); + fflush(stdout); +} + +void PrettyUnitTestResultPrinter::OnEnvironmentsSetUpStart( + const UnitTest& /*unit_test*/) { + ColoredPrintf(COLOR_GREEN, "[----------] "); + printf("Global test environment set-up.\n"); + fflush(stdout); +} + +void PrettyUnitTestResultPrinter::OnTestCaseStart(const TestCase& test_case) { + const std::string counts = + FormatCountableNoun(test_case.test_to_run_count(), "test", "tests"); + ColoredPrintf(COLOR_GREEN, "[----------] "); + printf("%s from %s", counts.c_str(), test_case.name()); + if (test_case.type_param() == NULL) { + printf("\n"); + } else { + printf(", where %s = %s\n", kTypeParamLabel, test_case.type_param()); + } + fflush(stdout); +} + +void PrettyUnitTestResultPrinter::OnTestStart(const TestInfo& test_info) { + ColoredPrintf(COLOR_GREEN, "[ RUN ] "); + PrintTestName(test_info.test_case_name(), test_info.name()); + printf("\n"); + fflush(stdout); +} + +// Called after an assertion failure. +void PrettyUnitTestResultPrinter::OnTestPartResult( + const TestPartResult& result) { + // If the test part succeeded, we don't need to do anything. + if (result.type() == TestPartResult::kSuccess) + return; + + // Print failure message from the assertion (e.g. expected this and got that). + PrintTestPartResult(result); + fflush(stdout); +} + +void PrettyUnitTestResultPrinter::OnTestEnd(const TestInfo& test_info) { + if (test_info.result()->Passed()) { + ColoredPrintf(COLOR_GREEN, "[ OK ] "); + } else { + ColoredPrintf(COLOR_RED, "[ FAILED ] "); + } + PrintTestName(test_info.test_case_name(), test_info.name()); + if (test_info.result()->Failed()) + PrintFullTestCommentIfPresent(test_info); + + if (GTEST_FLAG(print_time)) { + printf(" (%s ms)\n", internal::StreamableToString( + test_info.result()->elapsed_time()).c_str()); + } else { + printf("\n"); + } + fflush(stdout); +} + +void PrettyUnitTestResultPrinter::OnTestCaseEnd(const TestCase& test_case) { + if (!GTEST_FLAG(print_time)) return; + + const std::string counts = + FormatCountableNoun(test_case.test_to_run_count(), "test", "tests"); + ColoredPrintf(COLOR_GREEN, "[----------] "); + printf("%s from %s (%s ms total)\n\n", + counts.c_str(), test_case.name(), + internal::StreamableToString(test_case.elapsed_time()).c_str()); + fflush(stdout); +} + +void PrettyUnitTestResultPrinter::OnEnvironmentsTearDownStart( + const UnitTest& /*unit_test*/) { + ColoredPrintf(COLOR_GREEN, "[----------] "); + printf("Global test environment tear-down\n"); + fflush(stdout); +} + +// Internal helper for printing the list of failed tests. +void PrettyUnitTestResultPrinter::PrintFailedTests(const UnitTest& unit_test) { + const int failed_test_count = unit_test.failed_test_count(); + if (failed_test_count == 0) { + return; + } + + for (int i = 0; i < unit_test.total_test_case_count(); ++i) { + const TestCase& test_case = *unit_test.GetTestCase(i); + if (!test_case.should_run() || (test_case.failed_test_count() == 0)) { + continue; + } + for (int j = 0; j < test_case.total_test_count(); ++j) { + const TestInfo& test_info = *test_case.GetTestInfo(j); + if (!test_info.should_run() || test_info.result()->Passed()) { + continue; + } + ColoredPrintf(COLOR_RED, "[ FAILED ] "); + printf("%s.%s", test_case.name(), test_info.name()); + PrintFullTestCommentIfPresent(test_info); + printf("\n"); + } + } +} + +void PrettyUnitTestResultPrinter::OnTestIterationEnd(const UnitTest& unit_test, + int /*iteration*/) { + ColoredPrintf(COLOR_GREEN, "[==========] "); + printf("%s from %s ran.", + FormatTestCount(unit_test.test_to_run_count()).c_str(), + FormatTestCaseCount(unit_test.test_case_to_run_count()).c_str()); + if (GTEST_FLAG(print_time)) { + printf(" (%s ms total)", + internal::StreamableToString(unit_test.elapsed_time()).c_str()); + } + printf("\n"); + ColoredPrintf(COLOR_GREEN, "[ PASSED ] "); + printf("%s.\n", FormatTestCount(unit_test.successful_test_count()).c_str()); + + int num_failures = unit_test.failed_test_count(); + if (!unit_test.Passed()) { + const int failed_test_count = unit_test.failed_test_count(); + ColoredPrintf(COLOR_RED, "[ FAILED ] "); + printf("%s, listed below:\n", FormatTestCount(failed_test_count).c_str()); + PrintFailedTests(unit_test); + printf("\n%2d FAILED %s\n", num_failures, + num_failures == 1 ? "TEST" : "TESTS"); + } + + int num_disabled = unit_test.reportable_disabled_test_count(); + if (num_disabled && !GTEST_FLAG(also_run_disabled_tests)) { + if (!num_failures) { + printf("\n"); // Add a spacer if no FAILURE banner is displayed. + } + ColoredPrintf(COLOR_YELLOW, + " YOU HAVE %d DISABLED %s\n\n", + num_disabled, + num_disabled == 1 ? "TEST" : "TESTS"); + } + // Ensure that Google Test output is printed before, e.g., heapchecker output. + fflush(stdout); +} + +// End PrettyUnitTestResultPrinter + +// class TestEventRepeater +// +// This class forwards events to other event listeners. +class TestEventRepeater : public TestEventListener { + public: + TestEventRepeater() : forwarding_enabled_(true) {} + virtual ~TestEventRepeater(); + void Append(TestEventListener *listener); + TestEventListener* Release(TestEventListener* listener); + + // Controls whether events will be forwarded to listeners_. Set to false + // in death test child processes. + bool forwarding_enabled() const { return forwarding_enabled_; } + void set_forwarding_enabled(bool enable) { forwarding_enabled_ = enable; } + + virtual void OnTestProgramStart(const UnitTest& unit_test); + virtual void OnTestIterationStart(const UnitTest& unit_test, int iteration); + virtual void OnEnvironmentsSetUpStart(const UnitTest& unit_test); + virtual void OnEnvironmentsSetUpEnd(const UnitTest& unit_test); + virtual void OnTestCaseStart(const TestCase& test_case); + virtual void OnTestStart(const TestInfo& test_info); + virtual void OnTestPartResult(const TestPartResult& result); + virtual void OnTestEnd(const TestInfo& test_info); + virtual void OnTestCaseEnd(const TestCase& test_case); + virtual void OnEnvironmentsTearDownStart(const UnitTest& unit_test); + virtual void OnEnvironmentsTearDownEnd(const UnitTest& unit_test); + virtual void OnTestIterationEnd(const UnitTest& unit_test, int iteration); + virtual void OnTestProgramEnd(const UnitTest& unit_test); + + private: + // Controls whether events will be forwarded to listeners_. Set to false + // in death test child processes. + bool forwarding_enabled_; + // The list of listeners that receive events. + std::vector listeners_; + + GTEST_DISALLOW_COPY_AND_ASSIGN_(TestEventRepeater); +}; + +TestEventRepeater::~TestEventRepeater() { + ForEach(listeners_, Delete); +} + +void TestEventRepeater::Append(TestEventListener *listener) { + listeners_.push_back(listener); +} + +// TODO(vladl@google.com): Factor the search functionality into Vector::Find. +TestEventListener* TestEventRepeater::Release(TestEventListener *listener) { + for (size_t i = 0; i < listeners_.size(); ++i) { + if (listeners_[i] == listener) { + listeners_.erase(listeners_.begin() + i); + return listener; + } + } + + return NULL; +} + +// Since most methods are very similar, use macros to reduce boilerplate. +// This defines a member that forwards the call to all listeners. +#define GTEST_REPEATER_METHOD_(Name, Type) \ +void TestEventRepeater::Name(const Type& parameter) { \ + if (forwarding_enabled_) { \ + for (size_t i = 0; i < listeners_.size(); i++) { \ + listeners_[i]->Name(parameter); \ + } \ + } \ +} +// This defines a member that forwards the call to all listeners in reverse +// order. +#define GTEST_REVERSE_REPEATER_METHOD_(Name, Type) \ +void TestEventRepeater::Name(const Type& parameter) { \ + if (forwarding_enabled_) { \ + for (int i = static_cast(listeners_.size()) - 1; i >= 0; i--) { \ + listeners_[i]->Name(parameter); \ + } \ + } \ +} + +GTEST_REPEATER_METHOD_(OnTestProgramStart, UnitTest) +GTEST_REPEATER_METHOD_(OnEnvironmentsSetUpStart, UnitTest) +GTEST_REPEATER_METHOD_(OnTestCaseStart, TestCase) +GTEST_REPEATER_METHOD_(OnTestStart, TestInfo) +GTEST_REPEATER_METHOD_(OnTestPartResult, TestPartResult) +GTEST_REPEATER_METHOD_(OnEnvironmentsTearDownStart, UnitTest) +GTEST_REVERSE_REPEATER_METHOD_(OnEnvironmentsSetUpEnd, UnitTest) +GTEST_REVERSE_REPEATER_METHOD_(OnEnvironmentsTearDownEnd, UnitTest) +GTEST_REVERSE_REPEATER_METHOD_(OnTestEnd, TestInfo) +GTEST_REVERSE_REPEATER_METHOD_(OnTestCaseEnd, TestCase) +GTEST_REVERSE_REPEATER_METHOD_(OnTestProgramEnd, UnitTest) + +#undef GTEST_REPEATER_METHOD_ +#undef GTEST_REVERSE_REPEATER_METHOD_ + +void TestEventRepeater::OnTestIterationStart(const UnitTest& unit_test, + int iteration) { + if (forwarding_enabled_) { + for (size_t i = 0; i < listeners_.size(); i++) { + listeners_[i]->OnTestIterationStart(unit_test, iteration); + } + } +} + +void TestEventRepeater::OnTestIterationEnd(const UnitTest& unit_test, + int iteration) { + if (forwarding_enabled_) { + for (int i = static_cast(listeners_.size()) - 1; i >= 0; i--) { + listeners_[i]->OnTestIterationEnd(unit_test, iteration); + } + } +} + +// End TestEventRepeater + +// This class generates an XML output file. +class XmlUnitTestResultPrinter : public EmptyTestEventListener { + public: + explicit XmlUnitTestResultPrinter(const char* output_file); + + virtual void OnTestIterationEnd(const UnitTest& unit_test, int iteration); + + private: + // Is c a whitespace character that is normalized to a space character + // when it appears in an XML attribute value? + static bool IsNormalizableWhitespace(char c) { + return c == 0x9 || c == 0xA || c == 0xD; + } + + // May c appear in a well-formed XML document? + static bool IsValidXmlCharacter(char c) { + return IsNormalizableWhitespace(c) || c >= 0x20; + } + + // Returns an XML-escaped copy of the input string str. If + // is_attribute is true, the text is meant to appear as an attribute + // value, and normalizable whitespace is preserved by replacing it + // with character references. + static std::string EscapeXml(const std::string& str, bool is_attribute); + + // Returns the given string with all characters invalid in XML removed. + static std::string RemoveInvalidXmlCharacters(const std::string& str); + + // Convenience wrapper around EscapeXml when str is an attribute value. + static std::string EscapeXmlAttribute(const std::string& str) { + return EscapeXml(str, true); + } + + // Convenience wrapper around EscapeXml when str is not an attribute value. + static std::string EscapeXmlText(const char* str) { + return EscapeXml(str, false); + } + + // Verifies that the given attribute belongs to the given element and + // streams the attribute as XML. + static void OutputXmlAttribute(std::ostream* stream, + const std::string& element_name, + const std::string& name, + const std::string& value); + + // Streams an XML CDATA section, escaping invalid CDATA sequences as needed. + static void OutputXmlCDataSection(::std::ostream* stream, const char* data); + + // Streams an XML representation of a TestInfo object. + static void OutputXmlTestInfo(::std::ostream* stream, + const char* test_case_name, + const TestInfo& test_info); + + // Prints an XML representation of a TestCase object + static void PrintXmlTestCase(::std::ostream* stream, + const TestCase& test_case); + + // Prints an XML summary of unit_test to output stream out. + static void PrintXmlUnitTest(::std::ostream* stream, + const UnitTest& unit_test); + + // Produces a string representing the test properties in a result as space + // delimited XML attributes based on the property key="value" pairs. + // When the std::string is not empty, it includes a space at the beginning, + // to delimit this attribute from prior attributes. + static std::string TestPropertiesAsXmlAttributes(const TestResult& result); + + // The output file. + const std::string output_file_; + + GTEST_DISALLOW_COPY_AND_ASSIGN_(XmlUnitTestResultPrinter); +}; + +// Creates a new XmlUnitTestResultPrinter. +XmlUnitTestResultPrinter::XmlUnitTestResultPrinter(const char* output_file) + : output_file_(output_file) { + if (output_file_.c_str() == NULL || output_file_.empty()) { + fprintf(stderr, "XML output file may not be null\n"); + fflush(stderr); + exit(EXIT_FAILURE); + } +} + +// Called after the unit test ends. +void XmlUnitTestResultPrinter::OnTestIterationEnd(const UnitTest& unit_test, + int /*iteration*/) { + FILE* xmlout = NULL; + FilePath output_file(output_file_); + FilePath output_dir(output_file.RemoveFileName()); + + if (output_dir.CreateDirectoriesRecursively()) { + xmlout = posix::FOpen(output_file_.c_str(), "w"); + } + if (xmlout == NULL) { + // TODO(wan): report the reason of the failure. + // + // We don't do it for now as: + // + // 1. There is no urgent need for it. + // 2. It's a bit involved to make the errno variable thread-safe on + // all three operating systems (Linux, Windows, and Mac OS). + // 3. To interpret the meaning of errno in a thread-safe way, + // we need the strerror_r() function, which is not available on + // Windows. + fprintf(stderr, + "Unable to open file \"%s\"\n", + output_file_.c_str()); + fflush(stderr); + exit(EXIT_FAILURE); + } + std::stringstream stream; + PrintXmlUnitTest(&stream, unit_test); + fprintf(xmlout, "%s", StringStreamToString(&stream).c_str()); + fclose(xmlout); +} + +// Returns an XML-escaped copy of the input string str. If is_attribute +// is true, the text is meant to appear as an attribute value, and +// normalizable whitespace is preserved by replacing it with character +// references. +// +// Invalid XML characters in str, if any, are stripped from the output. +// It is expected that most, if not all, of the text processed by this +// module will consist of ordinary English text. +// If this module is ever modified to produce version 1.1 XML output, +// most invalid characters can be retained using character references. +// TODO(wan): It might be nice to have a minimally invasive, human-readable +// escaping scheme for invalid characters, rather than dropping them. +std::string XmlUnitTestResultPrinter::EscapeXml( + const std::string& str, bool is_attribute) { + Message m; + + for (size_t i = 0; i < str.size(); ++i) { + const char ch = str[i]; + switch (ch) { + case '<': + m << "<"; + break; + case '>': + m << ">"; + break; + case '&': + m << "&"; + break; + case '\'': + if (is_attribute) + m << "'"; + else + m << '\''; + break; + case '"': + if (is_attribute) + m << """; + else + m << '"'; + break; + default: + if (IsValidXmlCharacter(ch)) { + if (is_attribute && IsNormalizableWhitespace(ch)) + m << "&#x" << String::FormatByte(static_cast(ch)) + << ";"; + else + m << ch; + } + break; + } + } + + return m.GetString(); +} + +// Returns the given string with all characters invalid in XML removed. +// Currently invalid characters are dropped from the string. An +// alternative is to replace them with certain characters such as . or ?. +std::string XmlUnitTestResultPrinter::RemoveInvalidXmlCharacters( + const std::string& str) { + std::string output; + output.reserve(str.size()); + for (std::string::const_iterator it = str.begin(); it != str.end(); ++it) + if (IsValidXmlCharacter(*it)) + output.push_back(*it); + + return output; +} + +// The following routines generate an XML representation of a UnitTest +// object. +// +// This is how Google Test concepts map to the DTD: +// +// <-- corresponds to a UnitTest object +// <-- corresponds to a TestCase object +// <-- corresponds to a TestInfo object +// ... +// ... +// ... +// <-- individual assertion failures +// +// +// + +// Formats the given time in milliseconds as seconds. +std::string FormatTimeInMillisAsSeconds(TimeInMillis ms) { + ::std::stringstream ss; + ss << (static_cast(ms) * 1e-3); + return ss.str(); +} + +static bool PortableLocaltime(time_t seconds, struct tm* out) { +#if defined(_MSC_VER) + return localtime_s(out, &seconds) == 0; +#elif defined(__MINGW32__) || defined(__MINGW64__) + // MINGW provides neither localtime_r nor localtime_s, but uses + // Windows' localtime(), which has a thread-local tm buffer. + struct tm* tm_ptr = localtime(&seconds); // NOLINT + if (tm_ptr == NULL) + return false; + *out = *tm_ptr; + return true; +#else + return localtime_r(&seconds, out) != NULL; +#endif +} + +// Converts the given epoch time in milliseconds to a date string in the ISO +// 8601 format, without the timezone information. +std::string FormatEpochTimeInMillisAsIso8601(TimeInMillis ms) { + struct tm time_struct; + if (!PortableLocaltime(static_cast(ms / 1000), &time_struct)) + return ""; + // YYYY-MM-DDThh:mm:ss + return StreamableToString(time_struct.tm_year + 1900) + "-" + + String::FormatIntWidth2(time_struct.tm_mon + 1) + "-" + + String::FormatIntWidth2(time_struct.tm_mday) + "T" + + String::FormatIntWidth2(time_struct.tm_hour) + ":" + + String::FormatIntWidth2(time_struct.tm_min) + ":" + + String::FormatIntWidth2(time_struct.tm_sec); +} + +// Streams an XML CDATA section, escaping invalid CDATA sequences as needed. +void XmlUnitTestResultPrinter::OutputXmlCDataSection(::std::ostream* stream, + const char* data) { + const char* segment = data; + *stream << ""); + if (next_segment != NULL) { + stream->write( + segment, static_cast(next_segment - segment)); + *stream << "]]>]]>"); + } else { + *stream << segment; + break; + } + } + *stream << "]]>"; +} + +void XmlUnitTestResultPrinter::OutputXmlAttribute( + std::ostream* stream, + const std::string& element_name, + const std::string& name, + const std::string& value) { + const std::vector& allowed_names = + GetReservedAttributesForElement(element_name); + + GTEST_CHECK_(std::find(allowed_names.begin(), allowed_names.end(), name) != + allowed_names.end()) + << "Attribute " << name << " is not allowed for element <" << element_name + << ">."; + + *stream << " " << name << "=\"" << EscapeXmlAttribute(value) << "\""; +} + +// Prints an XML representation of a TestInfo object. +// TODO(wan): There is also value in printing properties with the plain printer. +void XmlUnitTestResultPrinter::OutputXmlTestInfo(::std::ostream* stream, + const char* test_case_name, + const TestInfo& test_info) { + const TestResult& result = *test_info.result(); + const std::string kTestcase = "testcase"; + + *stream << " \n"; + } + const string location = internal::FormatCompilerIndependentFileLocation( + part.file_name(), part.line_number()); + const string summary = location + "\n" + part.summary(); + *stream << " "; + const string detail = location + "\n" + part.message(); + OutputXmlCDataSection(stream, RemoveInvalidXmlCharacters(detail).c_str()); + *stream << "\n"; + } + } + + if (failures == 0) + *stream << " />\n"; + else + *stream << " \n"; +} + +// Prints an XML representation of a TestCase object +void XmlUnitTestResultPrinter::PrintXmlTestCase(std::ostream* stream, + const TestCase& test_case) { + const std::string kTestsuite = "testsuite"; + *stream << " <" << kTestsuite; + OutputXmlAttribute(stream, kTestsuite, "name", test_case.name()); + OutputXmlAttribute(stream, kTestsuite, "tests", + StreamableToString(test_case.reportable_test_count())); + OutputXmlAttribute(stream, kTestsuite, "failures", + StreamableToString(test_case.failed_test_count())); + OutputXmlAttribute( + stream, kTestsuite, "disabled", + StreamableToString(test_case.reportable_disabled_test_count())); + OutputXmlAttribute(stream, kTestsuite, "errors", "0"); + OutputXmlAttribute(stream, kTestsuite, "time", + FormatTimeInMillisAsSeconds(test_case.elapsed_time())); + *stream << TestPropertiesAsXmlAttributes(test_case.ad_hoc_test_result()) + << ">\n"; + + for (int i = 0; i < test_case.total_test_count(); ++i) { + if (test_case.GetTestInfo(i)->is_reportable()) + OutputXmlTestInfo(stream, test_case.name(), *test_case.GetTestInfo(i)); + } + *stream << " \n"; +} + +// Prints an XML summary of unit_test to output stream out. +void XmlUnitTestResultPrinter::PrintXmlUnitTest(std::ostream* stream, + const UnitTest& unit_test) { + const std::string kTestsuites = "testsuites"; + + *stream << "\n"; + *stream << "<" << kTestsuites; + + OutputXmlAttribute(stream, kTestsuites, "tests", + StreamableToString(unit_test.reportable_test_count())); + OutputXmlAttribute(stream, kTestsuites, "failures", + StreamableToString(unit_test.failed_test_count())); + OutputXmlAttribute( + stream, kTestsuites, "disabled", + StreamableToString(unit_test.reportable_disabled_test_count())); + OutputXmlAttribute(stream, kTestsuites, "errors", "0"); + OutputXmlAttribute( + stream, kTestsuites, "timestamp", + FormatEpochTimeInMillisAsIso8601(unit_test.start_timestamp())); + OutputXmlAttribute(stream, kTestsuites, "time", + FormatTimeInMillisAsSeconds(unit_test.elapsed_time())); + + if (GTEST_FLAG(shuffle)) { + OutputXmlAttribute(stream, kTestsuites, "random_seed", + StreamableToString(unit_test.random_seed())); + } + + *stream << TestPropertiesAsXmlAttributes(unit_test.ad_hoc_test_result()); + + OutputXmlAttribute(stream, kTestsuites, "name", "AllTests"); + *stream << ">\n"; + + for (int i = 0; i < unit_test.total_test_case_count(); ++i) { + if (unit_test.GetTestCase(i)->reportable_test_count() > 0) + PrintXmlTestCase(stream, *unit_test.GetTestCase(i)); + } + *stream << "\n"; +} + +// Produces a string representing the test properties in a result as space +// delimited XML attributes based on the property key="value" pairs. +std::string XmlUnitTestResultPrinter::TestPropertiesAsXmlAttributes( + const TestResult& result) { + Message attributes; + for (int i = 0; i < result.test_property_count(); ++i) { + const TestProperty& property = result.GetTestProperty(i); + attributes << " " << property.key() << "=" + << "\"" << EscapeXmlAttribute(property.value()) << "\""; + } + return attributes.GetString(); +} + +// End XmlUnitTestResultPrinter + +#if GTEST_CAN_STREAM_RESULTS_ + +// Checks if str contains '=', '&', '%' or '\n' characters. If yes, +// replaces them by "%xx" where xx is their hexadecimal value. For +// example, replaces "=" with "%3D". This algorithm is O(strlen(str)) +// in both time and space -- important as the input str may contain an +// arbitrarily long test failure message and stack trace. +string StreamingListener::UrlEncode(const char* str) { + string result; + result.reserve(strlen(str) + 1); + for (char ch = *str; ch != '\0'; ch = *++str) { + switch (ch) { + case '%': + case '=': + case '&': + case '\n': + result.append("%" + String::FormatByte(static_cast(ch))); + break; + default: + result.push_back(ch); + break; + } + } + return result; +} + +void StreamingListener::SocketWriter::MakeConnection() { + GTEST_CHECK_(sockfd_ == -1) + << "MakeConnection() can't be called when there is already a connection."; + + addrinfo hints; + memset(&hints, 0, sizeof(hints)); + hints.ai_family = AF_UNSPEC; // To allow both IPv4 and IPv6 addresses. + hints.ai_socktype = SOCK_STREAM; + addrinfo* servinfo = NULL; + + // Use the getaddrinfo() to get a linked list of IP addresses for + // the given host name. + const int error_num = getaddrinfo( + host_name_.c_str(), port_num_.c_str(), &hints, &servinfo); + if (error_num != 0) { + GTEST_LOG_(WARNING) << "stream_result_to: getaddrinfo() failed: " + << gai_strerror(error_num); + } + + // Loop through all the results and connect to the first we can. + for (addrinfo* cur_addr = servinfo; sockfd_ == -1 && cur_addr != NULL; + cur_addr = cur_addr->ai_next) { + sockfd_ = socket( + cur_addr->ai_family, cur_addr->ai_socktype, cur_addr->ai_protocol); + if (sockfd_ != -1) { + // Connect the client socket to the server socket. + if (connect(sockfd_, cur_addr->ai_addr, cur_addr->ai_addrlen) == -1) { + close(sockfd_); + sockfd_ = -1; + } + } + } + + freeaddrinfo(servinfo); // all done with this structure + + if (sockfd_ == -1) { + GTEST_LOG_(WARNING) << "stream_result_to: failed to connect to " + << host_name_ << ":" << port_num_; + } +} + +// End of class Streaming Listener +#endif // GTEST_CAN_STREAM_RESULTS__ + +// Class ScopedTrace + +// Pushes the given source file location and message onto a per-thread +// trace stack maintained by Google Test. +ScopedTrace::ScopedTrace(const char* file, int line, const Message& message) + GTEST_LOCK_EXCLUDED_(&UnitTest::mutex_) { + TraceInfo trace; + trace.file = file; + trace.line = line; + trace.message = message.GetString(); + + UnitTest::GetInstance()->PushGTestTrace(trace); +} + +// Pops the info pushed by the c'tor. +ScopedTrace::~ScopedTrace() + GTEST_LOCK_EXCLUDED_(&UnitTest::mutex_) { + UnitTest::GetInstance()->PopGTestTrace(); +} + + +// class OsStackTraceGetter + +const char* const OsStackTraceGetterInterface::kElidedFramesMarker = + "... " GTEST_NAME_ " internal frames ..."; + +string OsStackTraceGetter::CurrentStackTrace(int /*max_depth*/, + int /*skip_count*/) { + return ""; +} + +void OsStackTraceGetter::UponLeavingGTest() {} + +// A helper class that creates the premature-exit file in its +// constructor and deletes the file in its destructor. +class ScopedPrematureExitFile { + public: + explicit ScopedPrematureExitFile(const char* premature_exit_filepath) + : premature_exit_filepath_(premature_exit_filepath) { + // If a path to the premature-exit file is specified... + if (premature_exit_filepath != NULL && *premature_exit_filepath != '\0') { + // create the file with a single "0" character in it. I/O + // errors are ignored as there's nothing better we can do and we + // don't want to fail the test because of this. + FILE* pfile = posix::FOpen(premature_exit_filepath, "w"); + fwrite("0", 1, 1, pfile); + fclose(pfile); + } + } + + ~ScopedPrematureExitFile() { + if (premature_exit_filepath_ != NULL && *premature_exit_filepath_ != '\0') { + remove(premature_exit_filepath_); + } + } + + private: + const char* const premature_exit_filepath_; + + GTEST_DISALLOW_COPY_AND_ASSIGN_(ScopedPrematureExitFile); +}; + +} // namespace internal + +// class TestEventListeners + +TestEventListeners::TestEventListeners() + : repeater_(new internal::TestEventRepeater()), + default_result_printer_(NULL), + default_xml_generator_(NULL) { +} + +TestEventListeners::~TestEventListeners() { delete repeater_; } + +// Returns the standard listener responsible for the default console +// output. Can be removed from the listeners list to shut down default +// console output. Note that removing this object from the listener list +// with Release transfers its ownership to the user. +void TestEventListeners::Append(TestEventListener* listener) { + repeater_->Append(listener); +} + +// Removes the given event listener from the list and returns it. It then +// becomes the caller's responsibility to delete the listener. Returns +// NULL if the listener is not found in the list. +TestEventListener* TestEventListeners::Release(TestEventListener* listener) { + if (listener == default_result_printer_) + default_result_printer_ = NULL; + else if (listener == default_xml_generator_) + default_xml_generator_ = NULL; + return repeater_->Release(listener); +} + +// Returns repeater that broadcasts the TestEventListener events to all +// subscribers. +TestEventListener* TestEventListeners::repeater() { return repeater_; } + +// Sets the default_result_printer attribute to the provided listener. +// The listener is also added to the listener list and previous +// default_result_printer is removed from it and deleted. The listener can +// also be NULL in which case it will not be added to the list. Does +// nothing if the previous and the current listener objects are the same. +void TestEventListeners::SetDefaultResultPrinter(TestEventListener* listener) { + if (default_result_printer_ != listener) { + // It is an error to pass this method a listener that is already in the + // list. + delete Release(default_result_printer_); + default_result_printer_ = listener; + if (listener != NULL) + Append(listener); + } +} + +// Sets the default_xml_generator attribute to the provided listener. The +// listener is also added to the listener list and previous +// default_xml_generator is removed from it and deleted. The listener can +// also be NULL in which case it will not be added to the list. Does +// nothing if the previous and the current listener objects are the same. +void TestEventListeners::SetDefaultXmlGenerator(TestEventListener* listener) { + if (default_xml_generator_ != listener) { + // It is an error to pass this method a listener that is already in the + // list. + delete Release(default_xml_generator_); + default_xml_generator_ = listener; + if (listener != NULL) + Append(listener); + } +} + +// Controls whether events will be forwarded by the repeater to the +// listeners in the list. +bool TestEventListeners::EventForwardingEnabled() const { + return repeater_->forwarding_enabled(); +} + +void TestEventListeners::SuppressEventForwarding() { + repeater_->set_forwarding_enabled(false); +} + +// class UnitTest + +// Gets the singleton UnitTest object. The first time this method is +// called, a UnitTest object is constructed and returned. Consecutive +// calls will return the same object. +// +// We don't protect this under mutex_ as a user is not supposed to +// call this before main() starts, from which point on the return +// value will never change. +UnitTest* UnitTest::GetInstance() { + // When compiled with MSVC 7.1 in optimized mode, destroying the + // UnitTest object upon exiting the program messes up the exit code, + // causing successful tests to appear failed. We have to use a + // different implementation in this case to bypass the compiler bug. + // This implementation makes the compiler happy, at the cost of + // leaking the UnitTest object. + + // CodeGear C++Builder insists on a public destructor for the + // default implementation. Use this implementation to keep good OO + // design with private destructor. + +#if (_MSC_VER == 1310 && !defined(_DEBUG)) || defined(__BORLANDC__) + static UnitTest* const instance = new UnitTest; + return instance; +#else + static UnitTest instance; + return &instance; +#endif // (_MSC_VER == 1310 && !defined(_DEBUG)) || defined(__BORLANDC__) +} + +// Gets the number of successful test cases. +int UnitTest::successful_test_case_count() const { + return impl()->successful_test_case_count(); +} + +// Gets the number of failed test cases. +int UnitTest::failed_test_case_count() const { + return impl()->failed_test_case_count(); +} + +// Gets the number of all test cases. +int UnitTest::total_test_case_count() const { + return impl()->total_test_case_count(); +} + +// Gets the number of all test cases that contain at least one test +// that should run. +int UnitTest::test_case_to_run_count() const { + return impl()->test_case_to_run_count(); +} + +// Gets the number of successful tests. +int UnitTest::successful_test_count() const { + return impl()->successful_test_count(); +} + +// Gets the number of failed tests. +int UnitTest::failed_test_count() const { return impl()->failed_test_count(); } + +// Gets the number of disabled tests that will be reported in the XML report. +int UnitTest::reportable_disabled_test_count() const { + return impl()->reportable_disabled_test_count(); +} + +// Gets the number of disabled tests. +int UnitTest::disabled_test_count() const { + return impl()->disabled_test_count(); +} + +// Gets the number of tests to be printed in the XML report. +int UnitTest::reportable_test_count() const { + return impl()->reportable_test_count(); +} + +// Gets the number of all tests. +int UnitTest::total_test_count() const { return impl()->total_test_count(); } + +// Gets the number of tests that should run. +int UnitTest::test_to_run_count() const { return impl()->test_to_run_count(); } + +// Gets the time of the test program start, in ms from the start of the +// UNIX epoch. +internal::TimeInMillis UnitTest::start_timestamp() const { + return impl()->start_timestamp(); +} + +// Gets the elapsed time, in milliseconds. +internal::TimeInMillis UnitTest::elapsed_time() const { + return impl()->elapsed_time(); +} + +// Returns true iff the unit test passed (i.e. all test cases passed). +bool UnitTest::Passed() const { return impl()->Passed(); } + +// Returns true iff the unit test failed (i.e. some test case failed +// or something outside of all tests failed). +bool UnitTest::Failed() const { return impl()->Failed(); } + +// Gets the i-th test case among all the test cases. i can range from 0 to +// total_test_case_count() - 1. If i is not in that range, returns NULL. +const TestCase* UnitTest::GetTestCase(int i) const { + return impl()->GetTestCase(i); +} + +// Returns the TestResult containing information on test failures and +// properties logged outside of individual test cases. +const TestResult& UnitTest::ad_hoc_test_result() const { + return *impl()->ad_hoc_test_result(); +} + +// Gets the i-th test case among all the test cases. i can range from 0 to +// total_test_case_count() - 1. If i is not in that range, returns NULL. +TestCase* UnitTest::GetMutableTestCase(int i) { + return impl()->GetMutableTestCase(i); +} + +// Returns the list of event listeners that can be used to track events +// inside Google Test. +TestEventListeners& UnitTest::listeners() { + return *impl()->listeners(); +} + +// Registers and returns a global test environment. When a test +// program is run, all global test environments will be set-up in the +// order they were registered. After all tests in the program have +// finished, all global test environments will be torn-down in the +// *reverse* order they were registered. +// +// The UnitTest object takes ownership of the given environment. +// +// We don't protect this under mutex_, as we only support calling it +// from the main thread. +Environment* UnitTest::AddEnvironment(Environment* env) { + if (env == NULL) { + return NULL; + } + + impl_->environments().push_back(env); + return env; +} + +// Adds a TestPartResult to the current TestResult object. All Google Test +// assertion macros (e.g. ASSERT_TRUE, EXPECT_EQ, etc) eventually call +// this to report their results. The user code should use the +// assertion macros instead of calling this directly. +void UnitTest::AddTestPartResult( + TestPartResult::Type result_type, + const char* file_name, + int line_number, + const std::string& message, + const std::string& os_stack_trace) GTEST_LOCK_EXCLUDED_(mutex_) { + Message msg; + msg << message; + + internal::MutexLock lock(&mutex_); + if (impl_->gtest_trace_stack().size() > 0) { + msg << "\n" << GTEST_NAME_ << " trace:"; + + for (int i = static_cast(impl_->gtest_trace_stack().size()); + i > 0; --i) { + const internal::TraceInfo& trace = impl_->gtest_trace_stack()[i - 1]; + msg << "\n" << internal::FormatFileLocation(trace.file, trace.line) + << " " << trace.message; + } + } + + if (os_stack_trace.c_str() != NULL && !os_stack_trace.empty()) { + msg << internal::kStackTraceMarker << os_stack_trace; + } + + const TestPartResult result = + TestPartResult(result_type, file_name, line_number, + msg.GetString().c_str()); + impl_->GetTestPartResultReporterForCurrentThread()-> + ReportTestPartResult(result); + + if (result_type != TestPartResult::kSuccess) { + // gtest_break_on_failure takes precedence over + // gtest_throw_on_failure. This allows a user to set the latter + // in the code (perhaps in order to use Google Test assertions + // with another testing framework) and specify the former on the + // command line for debugging. + if (GTEST_FLAG(break_on_failure)) { +#if GTEST_OS_WINDOWS && !GTEST_OS_WINDOWS_PHONE && !GTEST_OS_WINDOWS_RT + // Using DebugBreak on Windows allows gtest to still break into a debugger + // when a failure happens and both the --gtest_break_on_failure and + // the --gtest_catch_exceptions flags are specified. + DebugBreak(); +#else + // Dereference NULL through a volatile pointer to prevent the compiler + // from removing. We use this rather than abort() or __builtin_trap() for + // portability: Symbian doesn't implement abort() well, and some debuggers + // don't correctly trap abort(). + *static_cast(NULL) = 1; +#endif // GTEST_OS_WINDOWS + } else if (GTEST_FLAG(throw_on_failure)) { +#if GTEST_HAS_EXCEPTIONS + throw internal::GoogleTestFailureException(result); +#else + // We cannot call abort() as it generates a pop-up in debug mode + // that cannot be suppressed in VC 7.1 or below. + exit(1); +#endif + } + } +} + +// Adds a TestProperty to the current TestResult object when invoked from +// inside a test, to current TestCase's ad_hoc_test_result_ when invoked +// from SetUpTestCase or TearDownTestCase, or to the global property set +// when invoked elsewhere. If the result already contains a property with +// the same key, the value will be updated. +void UnitTest::RecordProperty(const std::string& key, + const std::string& value) { + impl_->RecordProperty(TestProperty(key, value)); +} + +// Runs all tests in this UnitTest object and prints the result. +// Returns 0 if successful, or 1 otherwise. +// +// We don't protect this under mutex_, as we only support calling it +// from the main thread. +int UnitTest::Run() { + const bool in_death_test_child_process = + internal::GTEST_FLAG(internal_run_death_test).length() > 0; + + // Google Test implements this protocol for catching that a test + // program exits before returning control to Google Test: + // + // 1. Upon start, Google Test creates a file whose absolute path + // is specified by the environment variable + // TEST_PREMATURE_EXIT_FILE. + // 2. When Google Test has finished its work, it deletes the file. + // + // This allows a test runner to set TEST_PREMATURE_EXIT_FILE before + // running a Google-Test-based test program and check the existence + // of the file at the end of the test execution to see if it has + // exited prematurely. + + // If we are in the child process of a death test, don't + // create/delete the premature exit file, as doing so is unnecessary + // and will confuse the parent process. Otherwise, create/delete + // the file upon entering/leaving this function. If the program + // somehow exits before this function has a chance to return, the + // premature-exit file will be left undeleted, causing a test runner + // that understands the premature-exit-file protocol to report the + // test as having failed. + const internal::ScopedPrematureExitFile premature_exit_file( + in_death_test_child_process ? + NULL : internal::posix::GetEnv("TEST_PREMATURE_EXIT_FILE")); + + // Captures the value of GTEST_FLAG(catch_exceptions). This value will be + // used for the duration of the program. + impl()->set_catch_exceptions(GTEST_FLAG(catch_exceptions)); + +#if GTEST_HAS_SEH + // Either the user wants Google Test to catch exceptions thrown by the + // tests or this is executing in the context of death test child + // process. In either case the user does not want to see pop-up dialogs + // about crashes - they are expected. + if (impl()->catch_exceptions() || in_death_test_child_process) { +# if !GTEST_OS_WINDOWS_MOBILE && !GTEST_OS_WINDOWS_PHONE && !GTEST_OS_WINDOWS_RT + // SetErrorMode doesn't exist on CE. + SetErrorMode(SEM_FAILCRITICALERRORS | SEM_NOALIGNMENTFAULTEXCEPT | + SEM_NOGPFAULTERRORBOX | SEM_NOOPENFILEERRORBOX); +# endif // !GTEST_OS_WINDOWS_MOBILE + +# if (defined(_MSC_VER) || GTEST_OS_WINDOWS_MINGW) && !GTEST_OS_WINDOWS_MOBILE + // Death test children can be terminated with _abort(). On Windows, + // _abort() can show a dialog with a warning message. This forces the + // abort message to go to stderr instead. + _set_error_mode(_OUT_TO_STDERR); +# endif + +# if _MSC_VER >= 1400 && !GTEST_OS_WINDOWS_MOBILE + // In the debug version, Visual Studio pops up a separate dialog + // offering a choice to debug the aborted program. We need to suppress + // this dialog or it will pop up for every EXPECT/ASSERT_DEATH statement + // executed. Google Test will notify the user of any unexpected + // failure via stderr. + // + // VC++ doesn't define _set_abort_behavior() prior to the version 8.0. + // Users of prior VC versions shall suffer the agony and pain of + // clicking through the countless debug dialogs. + // TODO(vladl@google.com): find a way to suppress the abort dialog() in the + // debug mode when compiled with VC 7.1 or lower. + if (!GTEST_FLAG(break_on_failure)) + _set_abort_behavior( + 0x0, // Clear the following flags: + _WRITE_ABORT_MSG | _CALL_REPORTFAULT); // pop-up window, core dump. +# endif + } +#endif // GTEST_HAS_SEH + + return internal::HandleExceptionsInMethodIfSupported( + impl(), + &internal::UnitTestImpl::RunAllTests, + "auxiliary test code (environments or event listeners)") ? 0 : 1; +} + +// Returns the working directory when the first TEST() or TEST_F() was +// executed. +const char* UnitTest::original_working_dir() const { + return impl_->original_working_dir_.c_str(); +} + +// Returns the TestCase object for the test that's currently running, +// or NULL if no test is running. +const TestCase* UnitTest::current_test_case() const + GTEST_LOCK_EXCLUDED_(mutex_) { + internal::MutexLock lock(&mutex_); + return impl_->current_test_case(); +} + +// Returns the TestInfo object for the test that's currently running, +// or NULL if no test is running. +const TestInfo* UnitTest::current_test_info() const + GTEST_LOCK_EXCLUDED_(mutex_) { + internal::MutexLock lock(&mutex_); + return impl_->current_test_info(); +} + +// Returns the random seed used at the start of the current test run. +int UnitTest::random_seed() const { return impl_->random_seed(); } + +#if GTEST_HAS_PARAM_TEST +// Returns ParameterizedTestCaseRegistry object used to keep track of +// value-parameterized tests and instantiate and register them. +internal::ParameterizedTestCaseRegistry& + UnitTest::parameterized_test_registry() + GTEST_LOCK_EXCLUDED_(mutex_) { + return impl_->parameterized_test_registry(); +} +#endif // GTEST_HAS_PARAM_TEST + +// Creates an empty UnitTest. +UnitTest::UnitTest() { + impl_ = new internal::UnitTestImpl(this); +} + +// Destructor of UnitTest. +UnitTest::~UnitTest() { + delete impl_; +} + +// Pushes a trace defined by SCOPED_TRACE() on to the per-thread +// Google Test trace stack. +void UnitTest::PushGTestTrace(const internal::TraceInfo& trace) + GTEST_LOCK_EXCLUDED_(mutex_) { + internal::MutexLock lock(&mutex_); + impl_->gtest_trace_stack().push_back(trace); +} + +// Pops a trace from the per-thread Google Test trace stack. +void UnitTest::PopGTestTrace() + GTEST_LOCK_EXCLUDED_(mutex_) { + internal::MutexLock lock(&mutex_); + impl_->gtest_trace_stack().pop_back(); +} + +namespace internal { + +UnitTestImpl::UnitTestImpl(UnitTest* parent) + : parent_(parent), + GTEST_DISABLE_MSC_WARNINGS_PUSH_(4355 /* using this in initializer */) + default_global_test_part_result_reporter_(this), + default_per_thread_test_part_result_reporter_(this), + GTEST_DISABLE_MSC_WARNINGS_POP_() + global_test_part_result_repoter_( + &default_global_test_part_result_reporter_), + per_thread_test_part_result_reporter_( + &default_per_thread_test_part_result_reporter_), +#if GTEST_HAS_PARAM_TEST + parameterized_test_registry_(), + parameterized_tests_registered_(false), +#endif // GTEST_HAS_PARAM_TEST + last_death_test_case_(-1), + current_test_case_(NULL), + current_test_info_(NULL), + ad_hoc_test_result_(), + os_stack_trace_getter_(NULL), + post_flag_parse_init_performed_(false), + random_seed_(0), // Will be overridden by the flag before first use. + random_(0), // Will be reseeded before first use. + start_timestamp_(0), + elapsed_time_(0), +#if GTEST_HAS_DEATH_TEST + death_test_factory_(new DefaultDeathTestFactory), +#endif + // Will be overridden by the flag before first use. + catch_exceptions_(false) { + listeners()->SetDefaultResultPrinter(new PrettyUnitTestResultPrinter); +} + +UnitTestImpl::~UnitTestImpl() { + // Deletes every TestCase. + ForEach(test_cases_, internal::Delete); + + // Deletes every Environment. + ForEach(environments_, internal::Delete); + + delete os_stack_trace_getter_; +} + +// Adds a TestProperty to the current TestResult object when invoked in a +// context of a test, to current test case's ad_hoc_test_result when invoke +// from SetUpTestCase/TearDownTestCase, or to the global property set +// otherwise. If the result already contains a property with the same key, +// the value will be updated. +void UnitTestImpl::RecordProperty(const TestProperty& test_property) { + std::string xml_element; + TestResult* test_result; // TestResult appropriate for property recording. + + if (current_test_info_ != NULL) { + xml_element = "testcase"; + test_result = &(current_test_info_->result_); + } else if (current_test_case_ != NULL) { + xml_element = "testsuite"; + test_result = &(current_test_case_->ad_hoc_test_result_); + } else { + xml_element = "testsuites"; + test_result = &ad_hoc_test_result_; + } + test_result->RecordProperty(xml_element, test_property); +} + +#if GTEST_HAS_DEATH_TEST +// Disables event forwarding if the control is currently in a death test +// subprocess. Must not be called before InitGoogleTest. +void UnitTestImpl::SuppressTestEventsIfInSubprocess() { + if (internal_run_death_test_flag_.get() != NULL) + listeners()->SuppressEventForwarding(); +} +#endif // GTEST_HAS_DEATH_TEST + +// Initializes event listeners performing XML output as specified by +// UnitTestOptions. Must not be called before InitGoogleTest. +void UnitTestImpl::ConfigureXmlOutput() { + const std::string& output_format = UnitTestOptions::GetOutputFormat(); + if (output_format == "xml") { + listeners()->SetDefaultXmlGenerator(new XmlUnitTestResultPrinter( + UnitTestOptions::GetAbsolutePathToOutputFile().c_str())); + } else if (output_format != "") { + printf("WARNING: unrecognized output format \"%s\" ignored.\n", + output_format.c_str()); + fflush(stdout); + } +} + +#if GTEST_CAN_STREAM_RESULTS_ +// Initializes event listeners for streaming test results in string form. +// Must not be called before InitGoogleTest. +void UnitTestImpl::ConfigureStreamingOutput() { + const std::string& target = GTEST_FLAG(stream_result_to); + if (!target.empty()) { + const size_t pos = target.find(':'); + if (pos != std::string::npos) { + listeners()->Append(new StreamingListener(target.substr(0, pos), + target.substr(pos+1))); + } else { + printf("WARNING: unrecognized streaming target \"%s\" ignored.\n", + target.c_str()); + fflush(stdout); + } + } +} +#endif // GTEST_CAN_STREAM_RESULTS_ + +// Performs initialization dependent upon flag values obtained in +// ParseGoogleTestFlagsOnly. Is called from InitGoogleTest after the call to +// ParseGoogleTestFlagsOnly. In case a user neglects to call InitGoogleTest +// this function is also called from RunAllTests. Since this function can be +// called more than once, it has to be idempotent. +void UnitTestImpl::PostFlagParsingInit() { + // Ensures that this function does not execute more than once. + if (!post_flag_parse_init_performed_) { + post_flag_parse_init_performed_ = true; + +#if defined(GTEST_CUSTOM_TEST_EVENT_LISTENER_) + // Register to send notifications about key process state changes. + listeners()->Append(new GTEST_CUSTOM_TEST_EVENT_LISTENER_()); +#endif // defined(GTEST_CUSTOM_TEST_EVENT_LISTENER_) + +#if GTEST_HAS_DEATH_TEST + InitDeathTestSubprocessControlInfo(); + SuppressTestEventsIfInSubprocess(); +#endif // GTEST_HAS_DEATH_TEST + + // Registers parameterized tests. This makes parameterized tests + // available to the UnitTest reflection API without running + // RUN_ALL_TESTS. + RegisterParameterizedTests(); + + // Configures listeners for XML output. This makes it possible for users + // to shut down the default XML output before invoking RUN_ALL_TESTS. + ConfigureXmlOutput(); + +#if GTEST_CAN_STREAM_RESULTS_ + // Configures listeners for streaming test results to the specified server. + ConfigureStreamingOutput(); +#endif // GTEST_CAN_STREAM_RESULTS_ + } +} + +// A predicate that checks the name of a TestCase against a known +// value. +// +// This is used for implementation of the UnitTest class only. We put +// it in the anonymous namespace to prevent polluting the outer +// namespace. +// +// TestCaseNameIs is copyable. +class TestCaseNameIs { + public: + // Constructor. + explicit TestCaseNameIs(const std::string& name) + : name_(name) {} + + // Returns true iff the name of test_case matches name_. + bool operator()(const TestCase* test_case) const { + return test_case != NULL && strcmp(test_case->name(), name_.c_str()) == 0; + } + + private: + std::string name_; +}; + +// Finds and returns a TestCase with the given name. If one doesn't +// exist, creates one and returns it. It's the CALLER'S +// RESPONSIBILITY to ensure that this function is only called WHEN THE +// TESTS ARE NOT SHUFFLED. +// +// Arguments: +// +// test_case_name: name of the test case +// type_param: the name of the test case's type parameter, or NULL if +// this is not a typed or a type-parameterized test case. +// set_up_tc: pointer to the function that sets up the test case +// tear_down_tc: pointer to the function that tears down the test case +TestCase* UnitTestImpl::GetTestCase(const char* test_case_name, + const char* type_param, + Test::SetUpTestCaseFunc set_up_tc, + Test::TearDownTestCaseFunc tear_down_tc) { + // Can we find a TestCase with the given name? + const std::vector::const_iterator test_case = + std::find_if(test_cases_.begin(), test_cases_.end(), + TestCaseNameIs(test_case_name)); + + if (test_case != test_cases_.end()) + return *test_case; + + // No. Let's create one. + TestCase* const new_test_case = + new TestCase(test_case_name, type_param, set_up_tc, tear_down_tc); + + // Is this a death test case? + if (internal::UnitTestOptions::MatchesFilter(test_case_name, + kDeathTestCaseFilter)) { + // Yes. Inserts the test case after the last death test case + // defined so far. This only works when the test cases haven't + // been shuffled. Otherwise we may end up running a death test + // after a non-death test. + ++last_death_test_case_; + test_cases_.insert(test_cases_.begin() + last_death_test_case_, + new_test_case); + } else { + // No. Appends to the end of the list. + test_cases_.push_back(new_test_case); + } + + test_case_indices_.push_back(static_cast(test_case_indices_.size())); + return new_test_case; +} + +// Helpers for setting up / tearing down the given environment. They +// are for use in the ForEach() function. +static void SetUpEnvironment(Environment* env) { env->SetUp(); } +static void TearDownEnvironment(Environment* env) { env->TearDown(); } + +// Runs all tests in this UnitTest object, prints the result, and +// returns true if all tests are successful. If any exception is +// thrown during a test, the test is considered to be failed, but the +// rest of the tests will still be run. +// +// When parameterized tests are enabled, it expands and registers +// parameterized tests first in RegisterParameterizedTests(). +// All other functions called from RunAllTests() may safely assume that +// parameterized tests are ready to be counted and run. +bool UnitTestImpl::RunAllTests() { + // Makes sure InitGoogleTest() was called. + if (!GTestIsInitialized()) { + printf("%s", + "\nThis test program did NOT call ::testing::InitGoogleTest " + "before calling RUN_ALL_TESTS(). Please fix it.\n"); + return false; + } + + // Do not run any test if the --help flag was specified. + if (g_help_flag) + return true; + + // Repeats the call to the post-flag parsing initialization in case the + // user didn't call InitGoogleTest. + PostFlagParsingInit(); + + // Even if sharding is not on, test runners may want to use the + // GTEST_SHARD_STATUS_FILE to query whether the test supports the sharding + // protocol. + internal::WriteToShardStatusFileIfNeeded(); + + // True iff we are in a subprocess for running a thread-safe-style + // death test. + bool in_subprocess_for_death_test = false; + +#if GTEST_HAS_DEATH_TEST + in_subprocess_for_death_test = (internal_run_death_test_flag_.get() != NULL); +# if defined(GTEST_EXTRA_DEATH_TEST_CHILD_SETUP_) + if (in_subprocess_for_death_test) { + GTEST_EXTRA_DEATH_TEST_CHILD_SETUP_(); + } +# endif // defined(GTEST_EXTRA_DEATH_TEST_CHILD_SETUP_) +#endif // GTEST_HAS_DEATH_TEST + + const bool should_shard = ShouldShard(kTestTotalShards, kTestShardIndex, + in_subprocess_for_death_test); + + // Compares the full test names with the filter to decide which + // tests to run. + const bool has_tests_to_run = FilterTests(should_shard + ? HONOR_SHARDING_PROTOCOL + : IGNORE_SHARDING_PROTOCOL) > 0; + + // Lists the tests and exits if the --gtest_list_tests flag was specified. + if (GTEST_FLAG(list_tests)) { + // This must be called *after* FilterTests() has been called. + ListTestsMatchingFilter(); + return true; + } + + random_seed_ = GTEST_FLAG(shuffle) ? + GetRandomSeedFromFlag(GTEST_FLAG(random_seed)) : 0; + + // True iff at least one test has failed. + bool failed = false; + + TestEventListener* repeater = listeners()->repeater(); + + start_timestamp_ = GetTimeInMillis(); + repeater->OnTestProgramStart(*parent_); + + // How many times to repeat the tests? We don't want to repeat them + // when we are inside the subprocess of a death test. + const int repeat = in_subprocess_for_death_test ? 1 : GTEST_FLAG(repeat); + // Repeats forever if the repeat count is negative. + const bool forever = repeat < 0; + for (int i = 0; forever || i != repeat; i++) { + // We want to preserve failures generated by ad-hoc test + // assertions executed before RUN_ALL_TESTS(). + ClearNonAdHocTestResult(); + + const TimeInMillis start = GetTimeInMillis(); + + // Shuffles test cases and tests if requested. + if (has_tests_to_run && GTEST_FLAG(shuffle)) { + random()->Reseed(random_seed_); + // This should be done before calling OnTestIterationStart(), + // such that a test event listener can see the actual test order + // in the event. + ShuffleTests(); + } + + // Tells the unit test event listeners that the tests are about to start. + repeater->OnTestIterationStart(*parent_, i); + + // Runs each test case if there is at least one test to run. + if (has_tests_to_run) { + // Sets up all environments beforehand. + repeater->OnEnvironmentsSetUpStart(*parent_); + ForEach(environments_, SetUpEnvironment); + repeater->OnEnvironmentsSetUpEnd(*parent_); + + // Runs the tests only if there was no fatal failure during global + // set-up. + if (!Test::HasFatalFailure()) { + for (int test_index = 0; test_index < total_test_case_count(); + test_index++) { + GetMutableTestCase(test_index)->Run(); + } + } + + // Tears down all environments in reverse order afterwards. + repeater->OnEnvironmentsTearDownStart(*parent_); + std::for_each(environments_.rbegin(), environments_.rend(), + TearDownEnvironment); + repeater->OnEnvironmentsTearDownEnd(*parent_); + } + + elapsed_time_ = GetTimeInMillis() - start; + + // Tells the unit test event listener that the tests have just finished. + repeater->OnTestIterationEnd(*parent_, i); + + // Gets the result and clears it. + if (!Passed()) { + failed = true; + } + + // Restores the original test order after the iteration. This + // allows the user to quickly repro a failure that happens in the + // N-th iteration without repeating the first (N - 1) iterations. + // This is not enclosed in "if (GTEST_FLAG(shuffle)) { ... }", in + // case the user somehow changes the value of the flag somewhere + // (it's always safe to unshuffle the tests). + UnshuffleTests(); + + if (GTEST_FLAG(shuffle)) { + // Picks a new random seed for each iteration. + random_seed_ = GetNextRandomSeed(random_seed_); + } + } + + repeater->OnTestProgramEnd(*parent_); + + return !failed; +} + +// Reads the GTEST_SHARD_STATUS_FILE environment variable, and creates the file +// if the variable is present. If a file already exists at this location, this +// function will write over it. If the variable is present, but the file cannot +// be created, prints an error and exits. +void WriteToShardStatusFileIfNeeded() { + const char* const test_shard_file = posix::GetEnv(kTestShardStatusFile); + if (test_shard_file != NULL) { + FILE* const file = posix::FOpen(test_shard_file, "w"); + if (file == NULL) { + ColoredPrintf(COLOR_RED, + "Could not write to the test shard status file \"%s\" " + "specified by the %s environment variable.\n", + test_shard_file, kTestShardStatusFile); + fflush(stdout); + exit(EXIT_FAILURE); + } + fclose(file); + } +} + +// Checks whether sharding is enabled by examining the relevant +// environment variable values. If the variables are present, +// but inconsistent (i.e., shard_index >= total_shards), prints +// an error and exits. If in_subprocess_for_death_test, sharding is +// disabled because it must only be applied to the original test +// process. Otherwise, we could filter out death tests we intended to execute. +bool ShouldShard(const char* total_shards_env, + const char* shard_index_env, + bool in_subprocess_for_death_test) { + if (in_subprocess_for_death_test) { + return false; + } + + const Int32 total_shards = Int32FromEnvOrDie(total_shards_env, -1); + const Int32 shard_index = Int32FromEnvOrDie(shard_index_env, -1); + + if (total_shards == -1 && shard_index == -1) { + return false; + } else if (total_shards == -1 && shard_index != -1) { + const Message msg = Message() + << "Invalid environment variables: you have " + << kTestShardIndex << " = " << shard_index + << ", but have left " << kTestTotalShards << " unset.\n"; + ColoredPrintf(COLOR_RED, msg.GetString().c_str()); + fflush(stdout); + exit(EXIT_FAILURE); + } else if (total_shards != -1 && shard_index == -1) { + const Message msg = Message() + << "Invalid environment variables: you have " + << kTestTotalShards << " = " << total_shards + << ", but have left " << kTestShardIndex << " unset.\n"; + ColoredPrintf(COLOR_RED, msg.GetString().c_str()); + fflush(stdout); + exit(EXIT_FAILURE); + } else if (shard_index < 0 || shard_index >= total_shards) { + const Message msg = Message() + << "Invalid environment variables: we require 0 <= " + << kTestShardIndex << " < " << kTestTotalShards + << ", but you have " << kTestShardIndex << "=" << shard_index + << ", " << kTestTotalShards << "=" << total_shards << ".\n"; + ColoredPrintf(COLOR_RED, msg.GetString().c_str()); + fflush(stdout); + exit(EXIT_FAILURE); + } + + return total_shards > 1; +} + +// Parses the environment variable var as an Int32. If it is unset, +// returns default_val. If it is not an Int32, prints an error +// and aborts. +Int32 Int32FromEnvOrDie(const char* var, Int32 default_val) { + const char* str_val = posix::GetEnv(var); + if (str_val == NULL) { + return default_val; + } + + Int32 result; + if (!ParseInt32(Message() << "The value of environment variable " << var, + str_val, &result)) { + exit(EXIT_FAILURE); + } + return result; +} + +// Given the total number of shards, the shard index, and the test id, +// returns true iff the test should be run on this shard. The test id is +// some arbitrary but unique non-negative integer assigned to each test +// method. Assumes that 0 <= shard_index < total_shards. +bool ShouldRunTestOnShard(int total_shards, int shard_index, int test_id) { + return (test_id % total_shards) == shard_index; +} + +// Compares the name of each test with the user-specified filter to +// decide whether the test should be run, then records the result in +// each TestCase and TestInfo object. +// If shard_tests == true, further filters tests based on sharding +// variables in the environment - see +// http://code.google.com/p/googletest/wiki/GoogleTestAdvancedGuide. +// Returns the number of tests that should run. +int UnitTestImpl::FilterTests(ReactionToSharding shard_tests) { + const Int32 total_shards = shard_tests == HONOR_SHARDING_PROTOCOL ? + Int32FromEnvOrDie(kTestTotalShards, -1) : -1; + const Int32 shard_index = shard_tests == HONOR_SHARDING_PROTOCOL ? + Int32FromEnvOrDie(kTestShardIndex, -1) : -1; + + // num_runnable_tests are the number of tests that will + // run across all shards (i.e., match filter and are not disabled). + // num_selected_tests are the number of tests to be run on + // this shard. + int num_runnable_tests = 0; + int num_selected_tests = 0; + for (size_t i = 0; i < test_cases_.size(); i++) { + TestCase* const test_case = test_cases_[i]; + const std::string &test_case_name = test_case->name(); + test_case->set_should_run(false); + + for (size_t j = 0; j < test_case->test_info_list().size(); j++) { + TestInfo* const test_info = test_case->test_info_list()[j]; + const std::string test_name(test_info->name()); + // A test is disabled if test case name or test name matches + // kDisableTestFilter. + const bool is_disabled = + internal::UnitTestOptions::MatchesFilter(test_case_name, + kDisableTestFilter) || + internal::UnitTestOptions::MatchesFilter(test_name, + kDisableTestFilter); + test_info->is_disabled_ = is_disabled; + + const bool matches_filter = + internal::UnitTestOptions::FilterMatchesTest(test_case_name, + test_name); + test_info->matches_filter_ = matches_filter; + + const bool is_runnable = + (GTEST_FLAG(also_run_disabled_tests) || !is_disabled) && + matches_filter; + + const bool is_selected = is_runnable && + (shard_tests == IGNORE_SHARDING_PROTOCOL || + ShouldRunTestOnShard(total_shards, shard_index, + num_runnable_tests)); + + num_runnable_tests += is_runnable; + num_selected_tests += is_selected; + + test_info->should_run_ = is_selected; + test_case->set_should_run(test_case->should_run() || is_selected); + } + } + return num_selected_tests; +} + +// Prints the given C-string on a single line by replacing all '\n' +// characters with string "\\n". If the output takes more than +// max_length characters, only prints the first max_length characters +// and "...". +static void PrintOnOneLine(const char* str, int max_length) { + if (str != NULL) { + for (int i = 0; *str != '\0'; ++str) { + if (i >= max_length) { + printf("..."); + break; + } + if (*str == '\n') { + printf("\\n"); + i += 2; + } else { + printf("%c", *str); + ++i; + } + } + } +} + +// Prints the names of the tests matching the user-specified filter flag. +void UnitTestImpl::ListTestsMatchingFilter() { + // Print at most this many characters for each type/value parameter. + const int kMaxParamLength = 250; + + for (size_t i = 0; i < test_cases_.size(); i++) { + const TestCase* const test_case = test_cases_[i]; + bool printed_test_case_name = false; + + for (size_t j = 0; j < test_case->test_info_list().size(); j++) { + const TestInfo* const test_info = + test_case->test_info_list()[j]; + if (test_info->matches_filter_) { + if (!printed_test_case_name) { + printed_test_case_name = true; + printf("%s.", test_case->name()); + if (test_case->type_param() != NULL) { + printf(" # %s = ", kTypeParamLabel); + // We print the type parameter on a single line to make + // the output easy to parse by a program. + PrintOnOneLine(test_case->type_param(), kMaxParamLength); + } + printf("\n"); + } + printf(" %s", test_info->name()); + if (test_info->value_param() != NULL) { + printf(" # %s = ", kValueParamLabel); + // We print the value parameter on a single line to make the + // output easy to parse by a program. + PrintOnOneLine(test_info->value_param(), kMaxParamLength); + } + printf("\n"); + } + } + } + fflush(stdout); +} + +// Sets the OS stack trace getter. +// +// Does nothing if the input and the current OS stack trace getter are +// the same; otherwise, deletes the old getter and makes the input the +// current getter. +void UnitTestImpl::set_os_stack_trace_getter( + OsStackTraceGetterInterface* getter) { + if (os_stack_trace_getter_ != getter) { + delete os_stack_trace_getter_; + os_stack_trace_getter_ = getter; + } +} + +// Returns the current OS stack trace getter if it is not NULL; +// otherwise, creates an OsStackTraceGetter, makes it the current +// getter, and returns it. +OsStackTraceGetterInterface* UnitTestImpl::os_stack_trace_getter() { + if (os_stack_trace_getter_ == NULL) { +#ifdef GTEST_OS_STACK_TRACE_GETTER_ + os_stack_trace_getter_ = new GTEST_OS_STACK_TRACE_GETTER_; +#else + os_stack_trace_getter_ = new OsStackTraceGetter; +#endif // GTEST_OS_STACK_TRACE_GETTER_ + } + + return os_stack_trace_getter_; +} + +// Returns the TestResult for the test that's currently running, or +// the TestResult for the ad hoc test if no test is running. +TestResult* UnitTestImpl::current_test_result() { + return current_test_info_ ? + &(current_test_info_->result_) : &ad_hoc_test_result_; +} + +// Shuffles all test cases, and the tests within each test case, +// making sure that death tests are still run first. +void UnitTestImpl::ShuffleTests() { + // Shuffles the death test cases. + ShuffleRange(random(), 0, last_death_test_case_ + 1, &test_case_indices_); + + // Shuffles the non-death test cases. + ShuffleRange(random(), last_death_test_case_ + 1, + static_cast(test_cases_.size()), &test_case_indices_); + + // Shuffles the tests inside each test case. + for (size_t i = 0; i < test_cases_.size(); i++) { + test_cases_[i]->ShuffleTests(random()); + } +} + +// Restores the test cases and tests to their order before the first shuffle. +void UnitTestImpl::UnshuffleTests() { + for (size_t i = 0; i < test_cases_.size(); i++) { + // Unshuffles the tests in each test case. + test_cases_[i]->UnshuffleTests(); + // Resets the index of each test case. + test_case_indices_[i] = static_cast(i); + } +} + +// Returns the current OS stack trace as an std::string. +// +// The maximum number of stack frames to be included is specified by +// the gtest_stack_trace_depth flag. The skip_count parameter +// specifies the number of top frames to be skipped, which doesn't +// count against the number of frames to be included. +// +// For example, if Foo() calls Bar(), which in turn calls +// GetCurrentOsStackTraceExceptTop(..., 1), Foo() will be included in +// the trace but Bar() and GetCurrentOsStackTraceExceptTop() won't. +std::string GetCurrentOsStackTraceExceptTop(UnitTest* /*unit_test*/, + int skip_count) { + // We pass skip_count + 1 to skip this wrapper function in addition + // to what the user really wants to skip. + return GetUnitTestImpl()->CurrentOsStackTraceExceptTop(skip_count + 1); +} + +// Used by the GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_ macro to +// suppress unreachable code warnings. +namespace { +class ClassUniqueToAlwaysTrue {}; +} + +bool IsTrue(bool condition) { return condition; } + +bool AlwaysTrue() { +#if GTEST_HAS_EXCEPTIONS + // This condition is always false so AlwaysTrue() never actually throws, + // but it makes the compiler think that it may throw. + if (IsTrue(false)) + throw ClassUniqueToAlwaysTrue(); +#endif // GTEST_HAS_EXCEPTIONS + return true; +} + +// If *pstr starts with the given prefix, modifies *pstr to be right +// past the prefix and returns true; otherwise leaves *pstr unchanged +// and returns false. None of pstr, *pstr, and prefix can be NULL. +bool SkipPrefix(const char* prefix, const char** pstr) { + const size_t prefix_len = strlen(prefix); + if (strncmp(*pstr, prefix, prefix_len) == 0) { + *pstr += prefix_len; + return true; + } + return false; +} + +// Parses a string as a command line flag. The string should have +// the format "--flag=value". When def_optional is true, the "=value" +// part can be omitted. +// +// Returns the value of the flag, or NULL if the parsing failed. +const char* ParseFlagValue(const char* str, + const char* flag, + bool def_optional) { + // str and flag must not be NULL. + if (str == NULL || flag == NULL) return NULL; + + // The flag must start with "--" followed by GTEST_FLAG_PREFIX_. + const std::string flag_str = std::string("--") + GTEST_FLAG_PREFIX_ + flag; + const size_t flag_len = flag_str.length(); + if (strncmp(str, flag_str.c_str(), flag_len) != 0) return NULL; + + // Skips the flag name. + const char* flag_end = str + flag_len; + + // When def_optional is true, it's OK to not have a "=value" part. + if (def_optional && (flag_end[0] == '\0')) { + return flag_end; + } + + // If def_optional is true and there are more characters after the + // flag name, or if def_optional is false, there must be a '=' after + // the flag name. + if (flag_end[0] != '=') return NULL; + + // Returns the string after "=". + return flag_end + 1; +} + +// Parses a string for a bool flag, in the form of either +// "--flag=value" or "--flag". +// +// In the former case, the value is taken as true as long as it does +// not start with '0', 'f', or 'F'. +// +// In the latter case, the value is taken as true. +// +// On success, stores the value of the flag in *value, and returns +// true. On failure, returns false without changing *value. +bool ParseBoolFlag(const char* str, const char* flag, bool* value) { + // Gets the value of the flag as a string. + const char* const value_str = ParseFlagValue(str, flag, true); + + // Aborts if the parsing failed. + if (value_str == NULL) return false; + + // Converts the string value to a bool. + *value = !(*value_str == '0' || *value_str == 'f' || *value_str == 'F'); + return true; +} + +// Parses a string for an Int32 flag, in the form of +// "--flag=value". +// +// On success, stores the value of the flag in *value, and returns +// true. On failure, returns false without changing *value. +bool ParseInt32Flag(const char* str, const char* flag, Int32* value) { + // Gets the value of the flag as a string. + const char* const value_str = ParseFlagValue(str, flag, false); + + // Aborts if the parsing failed. + if (value_str == NULL) return false; + + // Sets *value to the value of the flag. + return ParseInt32(Message() << "The value of flag --" << flag, + value_str, value); +} + +// Parses a string for a string flag, in the form of +// "--flag=value". +// +// On success, stores the value of the flag in *value, and returns +// true. On failure, returns false without changing *value. +bool ParseStringFlag(const char* str, const char* flag, std::string* value) { + // Gets the value of the flag as a string. + const char* const value_str = ParseFlagValue(str, flag, false); + + // Aborts if the parsing failed. + if (value_str == NULL) return false; + + // Sets *value to the value of the flag. + *value = value_str; + return true; +} + +// Determines whether a string has a prefix that Google Test uses for its +// flags, i.e., starts with GTEST_FLAG_PREFIX_ or GTEST_FLAG_PREFIX_DASH_. +// If Google Test detects that a command line flag has its prefix but is not +// recognized, it will print its help message. Flags starting with +// GTEST_INTERNAL_PREFIX_ followed by "internal_" are considered Google Test +// internal flags and do not trigger the help message. +static bool HasGoogleTestFlagPrefix(const char* str) { + return (SkipPrefix("--", &str) || + SkipPrefix("-", &str) || + SkipPrefix("/", &str)) && + !SkipPrefix(GTEST_FLAG_PREFIX_ "internal_", &str) && + (SkipPrefix(GTEST_FLAG_PREFIX_, &str) || + SkipPrefix(GTEST_FLAG_PREFIX_DASH_, &str)); +} + +// Prints a string containing code-encoded text. The following escape +// sequences can be used in the string to control the text color: +// +// @@ prints a single '@' character. +// @R changes the color to red. +// @G changes the color to green. +// @Y changes the color to yellow. +// @D changes to the default terminal text color. +// +// TODO(wan@google.com): Write tests for this once we add stdout +// capturing to Google Test. +static void PrintColorEncoded(const char* str) { + GTestColor color = COLOR_DEFAULT; // The current color. + + // Conceptually, we split the string into segments divided by escape + // sequences. Then we print one segment at a time. At the end of + // each iteration, the str pointer advances to the beginning of the + // next segment. + for (;;) { + const char* p = strchr(str, '@'); + if (p == NULL) { + ColoredPrintf(color, "%s", str); + return; + } + + ColoredPrintf(color, "%s", std::string(str, p).c_str()); + + const char ch = p[1]; + str = p + 2; + if (ch == '@') { + ColoredPrintf(color, "@"); + } else if (ch == 'D') { + color = COLOR_DEFAULT; + } else if (ch == 'R') { + color = COLOR_RED; + } else if (ch == 'G') { + color = COLOR_GREEN; + } else if (ch == 'Y') { + color = COLOR_YELLOW; + } else { + --str; + } + } +} + +static const char kColorEncodedHelpMessage[] = +"This program contains tests written using " GTEST_NAME_ ". You can use the\n" +"following command line flags to control its behavior:\n" +"\n" +"Test Selection:\n" +" @G--" GTEST_FLAG_PREFIX_ "list_tests@D\n" +" List the names of all tests instead of running them. The name of\n" +" TEST(Foo, Bar) is \"Foo.Bar\".\n" +" @G--" GTEST_FLAG_PREFIX_ "filter=@YPOSTIVE_PATTERNS" + "[@G-@YNEGATIVE_PATTERNS]@D\n" +" Run only the tests whose name matches one of the positive patterns but\n" +" none of the negative patterns. '?' matches any single character; '*'\n" +" matches any substring; ':' separates two patterns.\n" +" @G--" GTEST_FLAG_PREFIX_ "also_run_disabled_tests@D\n" +" Run all disabled tests too.\n" +"\n" +"Test Execution:\n" +" @G--" GTEST_FLAG_PREFIX_ "repeat=@Y[COUNT]@D\n" +" Run the tests repeatedly; use a negative count to repeat forever.\n" +" @G--" GTEST_FLAG_PREFIX_ "shuffle@D\n" +" Randomize tests' orders on every iteration.\n" +" @G--" GTEST_FLAG_PREFIX_ "random_seed=@Y[NUMBER]@D\n" +" Random number seed to use for shuffling test orders (between 1 and\n" +" 99999, or 0 to use a seed based on the current time).\n" +"\n" +"Test Output:\n" +" @G--" GTEST_FLAG_PREFIX_ "color=@Y(@Gyes@Y|@Gno@Y|@Gauto@Y)@D\n" +" Enable/disable colored output. The default is @Gauto@D.\n" +" -@G-" GTEST_FLAG_PREFIX_ "print_time=0@D\n" +" Don't print the elapsed time of each test.\n" +" @G--" GTEST_FLAG_PREFIX_ "output=xml@Y[@G:@YDIRECTORY_PATH@G" + GTEST_PATH_SEP_ "@Y|@G:@YFILE_PATH]@D\n" +" Generate an XML report in the given directory or with the given file\n" +" name. @YFILE_PATH@D defaults to @Gtest_details.xml@D.\n" +#if GTEST_CAN_STREAM_RESULTS_ +" @G--" GTEST_FLAG_PREFIX_ "stream_result_to=@YHOST@G:@YPORT@D\n" +" Stream test results to the given server.\n" +#endif // GTEST_CAN_STREAM_RESULTS_ +"\n" +"Assertion Behavior:\n" +#if GTEST_HAS_DEATH_TEST && !GTEST_OS_WINDOWS +" @G--" GTEST_FLAG_PREFIX_ "death_test_style=@Y(@Gfast@Y|@Gthreadsafe@Y)@D\n" +" Set the default death test style.\n" +#endif // GTEST_HAS_DEATH_TEST && !GTEST_OS_WINDOWS +" @G--" GTEST_FLAG_PREFIX_ "break_on_failure@D\n" +" Turn assertion failures into debugger break-points.\n" +" @G--" GTEST_FLAG_PREFIX_ "throw_on_failure@D\n" +" Turn assertion failures into C++ exceptions.\n" +" @G--" GTEST_FLAG_PREFIX_ "catch_exceptions=0@D\n" +" Do not report exceptions as test failures. Instead, allow them\n" +" to crash the program or throw a pop-up (on Windows).\n" +"\n" +"Except for @G--" GTEST_FLAG_PREFIX_ "list_tests@D, you can alternatively set " + "the corresponding\n" +"environment variable of a flag (all letters in upper-case). For example, to\n" +"disable colored text output, you can either specify @G--" GTEST_FLAG_PREFIX_ + "color=no@D or set\n" +"the @G" GTEST_FLAG_PREFIX_UPPER_ "COLOR@D environment variable to @Gno@D.\n" +"\n" +"For more information, please read the " GTEST_NAME_ " documentation at\n" +"@G" GTEST_PROJECT_URL_ "@D. If you find a bug in " GTEST_NAME_ "\n" +"(not one in your own code or tests), please report it to\n" +"@G<" GTEST_DEV_EMAIL_ ">@D.\n"; + +bool ParseGoogleTestFlag(const char* const arg) { + return ParseBoolFlag(arg, kAlsoRunDisabledTestsFlag, + >EST_FLAG(also_run_disabled_tests)) || + ParseBoolFlag(arg, kBreakOnFailureFlag, + >EST_FLAG(break_on_failure)) || + ParseBoolFlag(arg, kCatchExceptionsFlag, + >EST_FLAG(catch_exceptions)) || + ParseStringFlag(arg, kColorFlag, >EST_FLAG(color)) || + ParseStringFlag(arg, kDeathTestStyleFlag, + >EST_FLAG(death_test_style)) || + ParseBoolFlag(arg, kDeathTestUseFork, + >EST_FLAG(death_test_use_fork)) || + ParseStringFlag(arg, kFilterFlag, >EST_FLAG(filter)) || + ParseStringFlag(arg, kInternalRunDeathTestFlag, + >EST_FLAG(internal_run_death_test)) || + ParseBoolFlag(arg, kListTestsFlag, >EST_FLAG(list_tests)) || + ParseStringFlag(arg, kOutputFlag, >EST_FLAG(output)) || + ParseBoolFlag(arg, kPrintTimeFlag, >EST_FLAG(print_time)) || + ParseInt32Flag(arg, kRandomSeedFlag, >EST_FLAG(random_seed)) || + ParseInt32Flag(arg, kRepeatFlag, >EST_FLAG(repeat)) || + ParseBoolFlag(arg, kShuffleFlag, >EST_FLAG(shuffle)) || + ParseInt32Flag(arg, kStackTraceDepthFlag, + >EST_FLAG(stack_trace_depth)) || + ParseStringFlag(arg, kStreamResultToFlag, + >EST_FLAG(stream_result_to)) || + ParseBoolFlag(arg, kThrowOnFailureFlag, + >EST_FLAG(throw_on_failure)); +} + +#if GTEST_USE_OWN_FLAGFILE_FLAG_ +void LoadFlagsFromFile(const std::string& path) { + FILE* flagfile = posix::FOpen(path.c_str(), "r"); + if (!flagfile) { + fprintf(stderr, + "Unable to open file \"%s\"\n", + GTEST_FLAG(flagfile).c_str()); + fflush(stderr); + exit(EXIT_FAILURE); + } + std::string contents(ReadEntireFile(flagfile)); + posix::FClose(flagfile); + std::vector lines; + SplitString(contents, '\n', &lines); + for (size_t i = 0; i < lines.size(); ++i) { + if (lines[i].empty()) + continue; + if (!ParseGoogleTestFlag(lines[i].c_str())) + g_help_flag = true; + } +} +#endif // GTEST_USE_OWN_FLAGFILE_FLAG_ + +// Parses the command line for Google Test flags, without initializing +// other parts of Google Test. The type parameter CharType can be +// instantiated to either char or wchar_t. +template +void ParseGoogleTestFlagsOnlyImpl(int* argc, CharType** argv) { + for (int i = 1; i < *argc; i++) { + const std::string arg_string = StreamableToString(argv[i]); + const char* const arg = arg_string.c_str(); + + using internal::ParseBoolFlag; + using internal::ParseInt32Flag; + using internal::ParseStringFlag; + + bool remove_flag = false; + if (ParseGoogleTestFlag(arg)) { + remove_flag = true; +#if GTEST_USE_OWN_FLAGFILE_FLAG_ + } else if (ParseStringFlag(arg, kFlagfileFlag, >EST_FLAG(flagfile))) { + LoadFlagsFromFile(GTEST_FLAG(flagfile)); + remove_flag = true; +#endif // GTEST_USE_OWN_FLAGFILE_FLAG_ + } else if (arg_string == "--help" || arg_string == "-h" || + arg_string == "-?" || arg_string == "/?" || + HasGoogleTestFlagPrefix(arg)) { + // Both help flag and unrecognized Google Test flags (excluding + // internal ones) trigger help display. + g_help_flag = true; + } + + if (remove_flag) { + // Shift the remainder of the argv list left by one. Note + // that argv has (*argc + 1) elements, the last one always being + // NULL. The following loop moves the trailing NULL element as + // well. + for (int j = i; j != *argc; j++) { + argv[j] = argv[j + 1]; + } + + // Decrements the argument count. + (*argc)--; + + // We also need to decrement the iterator as we just removed + // an element. + i--; + } + } + + if (g_help_flag) { + // We print the help here instead of in RUN_ALL_TESTS(), as the + // latter may not be called at all if the user is using Google + // Test with another testing framework. + PrintColorEncoded(kColorEncodedHelpMessage); + } +} + +// Parses the command line for Google Test flags, without initializing +// other parts of Google Test. +void ParseGoogleTestFlagsOnly(int* argc, char** argv) { + ParseGoogleTestFlagsOnlyImpl(argc, argv); +} +void ParseGoogleTestFlagsOnly(int* argc, wchar_t** argv) { + ParseGoogleTestFlagsOnlyImpl(argc, argv); +} + +// The internal implementation of InitGoogleTest(). +// +// The type parameter CharType can be instantiated to either char or +// wchar_t. +template +void InitGoogleTestImpl(int* argc, CharType** argv) { + // We don't want to run the initialization code twice. + if (GTestIsInitialized()) return; + + if (*argc <= 0) return; + + g_argvs.clear(); + for (int i = 0; i != *argc; i++) { + g_argvs.push_back(StreamableToString(argv[i])); + } + + ParseGoogleTestFlagsOnly(argc, argv); + GetUnitTestImpl()->PostFlagParsingInit(); +} + +} // namespace internal + +// Initializes Google Test. This must be called before calling +// RUN_ALL_TESTS(). In particular, it parses a command line for the +// flags that Google Test recognizes. Whenever a Google Test flag is +// seen, it is removed from argv, and *argc is decremented. +// +// No value is returned. Instead, the Google Test flag variables are +// updated. +// +// Calling the function for the second time has no user-visible effect. +void InitGoogleTest(int* argc, char** argv) { +#if defined(GTEST_CUSTOM_INIT_GOOGLE_TEST_FUNCTION_) + GTEST_CUSTOM_INIT_GOOGLE_TEST_FUNCTION_(argc, argv); +#else // defined(GTEST_CUSTOM_INIT_GOOGLE_TEST_FUNCTION_) + internal::InitGoogleTestImpl(argc, argv); +#endif // defined(GTEST_CUSTOM_INIT_GOOGLE_TEST_FUNCTION_) +} + +// This overloaded version can be used in Windows programs compiled in +// UNICODE mode. +void InitGoogleTest(int* argc, wchar_t** argv) { +#if defined(GTEST_CUSTOM_INIT_GOOGLE_TEST_FUNCTION_) + GTEST_CUSTOM_INIT_GOOGLE_TEST_FUNCTION_(argc, argv); +#else // defined(GTEST_CUSTOM_INIT_GOOGLE_TEST_FUNCTION_) + internal::InitGoogleTestImpl(argc, argv); +#endif // defined(GTEST_CUSTOM_INIT_GOOGLE_TEST_FUNCTION_) +} + +} // namespace testing diff --git a/third_party/googletest/src/src/gtest_main.cc b/third_party/googletest/src/src/gtest_main.cc new file mode 100644 index 0000000..f302822 --- /dev/null +++ b/third_party/googletest/src/src/gtest_main.cc @@ -0,0 +1,38 @@ +// Copyright 2006, Google Inc. +// All rights reserved. +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: +// +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above +// copyright notice, this list of conditions and the following disclaimer +// in the documentation and/or other materials provided with the +// distribution. +// * Neither the name of Google Inc. nor the names of its +// contributors may be used to endorse or promote products derived from +// this software without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +#include + +#include "gtest/gtest.h" + +GTEST_API_ int main(int argc, char **argv) { + printf("Running main() from gtest_main.cc\n"); + testing::InitGoogleTest(&argc, argv); + return RUN_ALL_TESTS(); +} diff --git a/third_party/libwebm/AUTHORS.TXT b/third_party/libwebm/AUTHORS.TXT new file mode 100644 index 0000000..8ab6f79 --- /dev/null +++ b/third_party/libwebm/AUTHORS.TXT @@ -0,0 +1,4 @@ +# Names should be added to this file like so: +# Name or Organization + +Google Inc. diff --git a/third_party/libwebm/Android.mk b/third_party/libwebm/Android.mk new file mode 100644 index 0000000..8149a08 --- /dev/null +++ b/third_party/libwebm/Android.mk @@ -0,0 +1,17 @@ +LOCAL_PATH:= $(call my-dir) + +include $(CLEAR_VARS) +LOCAL_MODULE:= libwebm +LOCAL_CPPFLAGS:=-D__STDC_CONSTANT_MACROS -D__STDC_FORMAT_MACROS +LOCAL_CPPFLAGS+=-D__STDC_LIMIT_MACROS -Wno-extern-c-compat +LOCAL_C_INCLUDES:= $(LOCAL_PATH) +LOCAL_EXPORT_C_INCLUDES:= $(LOCAL_PATH) + +LOCAL_SRC_FILES:= common/file_util.cc \ + common/hdr_util.cc \ + mkvparser/mkvparser.cc \ + mkvparser/mkvreader.cc \ + mkvmuxer/mkvmuxer.cc \ + mkvmuxer/mkvmuxerutil.cc \ + mkvmuxer/mkvwriter.cc +include $(BUILD_STATIC_LIBRARY) diff --git a/third_party/libwebm/LICENSE.TXT b/third_party/libwebm/LICENSE.TXT new file mode 100644 index 0000000..7a6f995 --- /dev/null +++ b/third_party/libwebm/LICENSE.TXT @@ -0,0 +1,30 @@ +Copyright (c) 2010, Google Inc. All rights reserved. + +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions are +met: + + * Redistributions of source code must retain the above copyright + notice, this list of conditions and the following disclaimer. + + * Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in + the documentation and/or other materials provided with the + distribution. + + * Neither the name of Google nor the names of its contributors may + be used to endorse or promote products derived from this software + without specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + diff --git a/third_party/libwebm/PATENTS.TXT b/third_party/libwebm/PATENTS.TXT new file mode 100644 index 0000000..caedf60 --- /dev/null +++ b/third_party/libwebm/PATENTS.TXT @@ -0,0 +1,23 @@ +Additional IP Rights Grant (Patents) +------------------------------------ + +"These implementations" means the copyrightable works that implement the WebM +codecs distributed by Google as part of the WebM Project. + +Google hereby grants to you a perpetual, worldwide, non-exclusive, no-charge, +royalty-free, irrevocable (except as stated in this section) patent license to +make, have made, use, offer to sell, sell, import, transfer, and otherwise +run, modify and propagate the contents of these implementations of WebM, where +such license applies only to those patent claims, both currently owned by +Google and acquired in the future, licensable by Google that are necessarily +infringed by these implementations of WebM. This grant does not include claims +that would be infringed only as a consequence of further modification of these +implementations. If you or your agent or exclusive licensee institute or order +or agree to the institution of patent litigation or any other patent +enforcement activity against any entity (including a cross-claim or +counterclaim in a lawsuit) alleging that any of these implementations of WebM +or any code incorporated within any of these implementations of WebM +constitute direct or contributory patent infringement, or inducement of +patent infringement, then any patent rights granted to you under this License +for these implementations of WebM shall terminate as of the date such +litigation is filed. diff --git a/third_party/libwebm/README.libvpx b/third_party/libwebm/README.libvpx new file mode 100644 index 0000000..ebb5ff2 --- /dev/null +++ b/third_party/libwebm/README.libvpx @@ -0,0 +1,10 @@ +URL: https://chromium.googlesource.com/webm/libwebm +Version: 0ae757087f5e6eb01dfea16cc09205b2425cfb74 +License: BSD +License File: LICENSE.txt + +Description: +libwebm is used to handle WebM container I/O. + +Local Changes: +* diff --git a/third_party/libwebm/common/file_util.cc b/third_party/libwebm/common/file_util.cc new file mode 100644 index 0000000..6dab146 --- /dev/null +++ b/third_party/libwebm/common/file_util.cc @@ -0,0 +1,78 @@ +// Copyright (c) 2016 The WebM project authors. All Rights Reserved. +// +// Use of this source code is governed by a BSD-style license +// that can be found in the LICENSE file in the root of the source +// tree. An additional intellectual property rights grant can be found +// in the file PATENTS. All contributing project authors may +// be found in the AUTHORS file in the root of the source tree. +#include "common/file_util.h" + +#include +#ifndef _MSC_VER +#include // close() +#endif + +#include +#include +#include +#include +#include + +namespace libwebm { + +std::string GetTempFileName() { +#if !defined _MSC_VER && !defined __MINGW32__ + std::string temp_file_name_template_str = + std::string(std::getenv("TEST_TMPDIR") ? std::getenv("TEST_TMPDIR") : + ".") + + "/libwebm_temp.XXXXXX"; + char* temp_file_name_template = + new char[temp_file_name_template_str.length() + 1]; + memset(temp_file_name_template, 0, temp_file_name_template_str.length() + 1); + temp_file_name_template_str.copy(temp_file_name_template, + temp_file_name_template_str.length(), 0); + int fd = mkstemp(temp_file_name_template); + std::string temp_file_name = + (fd != -1) ? std::string(temp_file_name_template) : std::string(); + delete[] temp_file_name_template; + if (fd != -1) { + close(fd); + } + return temp_file_name; +#else + char tmp_file_name[_MAX_PATH]; + errno_t err = tmpnam_s(tmp_file_name); + if (err == 0) { + return std::string(tmp_file_name); + } + return std::string(); +#endif +} + +uint64_t GetFileSize(const std::string& file_name) { + uint64_t file_size = 0; +#ifndef _MSC_VER + struct stat st; + st.st_size = 0; + if (stat(file_name.c_str(), &st) == 0) { +#else + struct _stat st; + st.st_size = 0; + if (_stat(file_name.c_str(), &st) == 0) { +#endif + file_size = st.st_size; + } + return file_size; +} + +TempFileDeleter::TempFileDeleter() { file_name_ = GetTempFileName(); } + +TempFileDeleter::~TempFileDeleter() { + std::ifstream file(file_name_.c_str()); + if (file.good()) { + file.close(); + std::remove(file_name_.c_str()); + } +} + +} // namespace libwebm diff --git a/third_party/libwebm/common/file_util.h b/third_party/libwebm/common/file_util.h new file mode 100644 index 0000000..0e71eac --- /dev/null +++ b/third_party/libwebm/common/file_util.h @@ -0,0 +1,41 @@ +// Copyright (c) 2016 The WebM project authors. All Rights Reserved. +// +// Use of this source code is governed by a BSD-style license +// that can be found in the LICENSE file in the root of the source +// tree. An additional intellectual property rights grant can be found +// in the file PATENTS. All contributing project authors may +// be found in the AUTHORS file in the root of the source tree. +#ifndef LIBWEBM_COMMON_FILE_UTIL_H_ +#define LIBWEBM_COMMON_FILE_UTIL_H_ + +#include + +#include + +#include "mkvmuxer/mkvmuxertypes.h" // LIBWEBM_DISALLOW_COPY_AND_ASSIGN() + +namespace libwebm { + +// Returns a temporary file name. +std::string GetTempFileName(); + +// Returns size of file specified by |file_name|, or 0 upon failure. +uint64_t GetFileSize(const std::string& file_name); + +// Manages life of temporary file specified at time of construction. Deletes +// file upon destruction. +class TempFileDeleter { + public: + TempFileDeleter(); + explicit TempFileDeleter(std::string file_name) : file_name_(file_name) {} + ~TempFileDeleter(); + const std::string& name() const { return file_name_; } + + private: + std::string file_name_; + LIBWEBM_DISALLOW_COPY_AND_ASSIGN(TempFileDeleter); +}; + +} // namespace libwebm + +#endif // LIBWEBM_COMMON_FILE_UTIL_H_ \ No newline at end of file diff --git a/third_party/libwebm/common/hdr_util.cc b/third_party/libwebm/common/hdr_util.cc new file mode 100644 index 0000000..e1618ce --- /dev/null +++ b/third_party/libwebm/common/hdr_util.cc @@ -0,0 +1,220 @@ +// Copyright (c) 2016 The WebM project authors. All Rights Reserved. +// +// Use of this source code is governed by a BSD-style license +// that can be found in the LICENSE file in the root of the source +// tree. An additional intellectual property rights grant can be found +// in the file PATENTS. All contributing project authors may +// be found in the AUTHORS file in the root of the source tree. +#include "hdr_util.h" + +#include +#include +#include + +#include "mkvparser/mkvparser.h" + +namespace libwebm { +const int Vp9CodecFeatures::kValueNotPresent = INT_MAX; + +bool CopyPrimaryChromaticity(const mkvparser::PrimaryChromaticity& parser_pc, + PrimaryChromaticityPtr* muxer_pc) { + muxer_pc->reset(new (std::nothrow) + mkvmuxer::PrimaryChromaticity(parser_pc.x, parser_pc.y)); + if (!muxer_pc->get()) + return false; + return true; +} + +bool MasteringMetadataValuePresent(double value) { + return value != mkvparser::MasteringMetadata::kValueNotPresent; +} + +bool CopyMasteringMetadata(const mkvparser::MasteringMetadata& parser_mm, + mkvmuxer::MasteringMetadata* muxer_mm) { + if (MasteringMetadataValuePresent(parser_mm.luminance_max)) + muxer_mm->set_luminance_max(parser_mm.luminance_max); + if (MasteringMetadataValuePresent(parser_mm.luminance_min)) + muxer_mm->set_luminance_min(parser_mm.luminance_min); + + PrimaryChromaticityPtr r_ptr(NULL); + PrimaryChromaticityPtr g_ptr(NULL); + PrimaryChromaticityPtr b_ptr(NULL); + PrimaryChromaticityPtr wp_ptr(NULL); + + if (parser_mm.r) { + if (!CopyPrimaryChromaticity(*parser_mm.r, &r_ptr)) + return false; + } + if (parser_mm.g) { + if (!CopyPrimaryChromaticity(*parser_mm.g, &g_ptr)) + return false; + } + if (parser_mm.b) { + if (!CopyPrimaryChromaticity(*parser_mm.b, &b_ptr)) + return false; + } + if (parser_mm.white_point) { + if (!CopyPrimaryChromaticity(*parser_mm.white_point, &wp_ptr)) + return false; + } + + if (!muxer_mm->SetChromaticity(r_ptr.get(), g_ptr.get(), b_ptr.get(), + wp_ptr.get())) { + return false; + } + + return true; +} + +bool ColourValuePresent(long long value) { + return value != mkvparser::Colour::kValueNotPresent; +} + +bool CopyColour(const mkvparser::Colour& parser_colour, + mkvmuxer::Colour* muxer_colour) { + if (!muxer_colour) + return false; + + if (ColourValuePresent(parser_colour.matrix_coefficients)) + muxer_colour->set_matrix_coefficients(parser_colour.matrix_coefficients); + if (ColourValuePresent(parser_colour.bits_per_channel)) + muxer_colour->set_bits_per_channel(parser_colour.bits_per_channel); + if (ColourValuePresent(parser_colour.chroma_subsampling_horz)) { + muxer_colour->set_chroma_subsampling_horz( + parser_colour.chroma_subsampling_horz); + } + if (ColourValuePresent(parser_colour.chroma_subsampling_vert)) { + muxer_colour->set_chroma_subsampling_vert( + parser_colour.chroma_subsampling_vert); + } + if (ColourValuePresent(parser_colour.cb_subsampling_horz)) + muxer_colour->set_cb_subsampling_horz(parser_colour.cb_subsampling_horz); + if (ColourValuePresent(parser_colour.cb_subsampling_vert)) + muxer_colour->set_cb_subsampling_vert(parser_colour.cb_subsampling_vert); + if (ColourValuePresent(parser_colour.chroma_siting_horz)) + muxer_colour->set_chroma_siting_horz(parser_colour.chroma_siting_horz); + if (ColourValuePresent(parser_colour.chroma_siting_vert)) + muxer_colour->set_chroma_siting_vert(parser_colour.chroma_siting_vert); + if (ColourValuePresent(parser_colour.range)) + muxer_colour->set_range(parser_colour.range); + if (ColourValuePresent(parser_colour.transfer_characteristics)) { + muxer_colour->set_transfer_characteristics( + parser_colour.transfer_characteristics); + } + if (ColourValuePresent(parser_colour.primaries)) + muxer_colour->set_primaries(parser_colour.primaries); + if (ColourValuePresent(parser_colour.max_cll)) + muxer_colour->set_max_cll(parser_colour.max_cll); + if (ColourValuePresent(parser_colour.max_fall)) + muxer_colour->set_max_fall(parser_colour.max_fall); + + if (parser_colour.mastering_metadata) { + mkvmuxer::MasteringMetadata muxer_mm; + if (!CopyMasteringMetadata(*parser_colour.mastering_metadata, &muxer_mm)) + return false; + if (!muxer_colour->SetMasteringMetadata(muxer_mm)) + return false; + } + return true; +} + +// Format of VPx private data: +// +// 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +// | ID Byte | Length | | +// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | +// | | +// : Bytes 1..Length of Codec Feature : +// | | +// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +// +// ID Byte Format +// ID byte is an unsigned byte. +// 0 1 2 3 4 5 6 7 +// +-+-+-+-+-+-+-+-+ +// |X| ID | +// +-+-+-+-+-+-+-+-+ +// +// The X bit is reserved. +// +// See the following link for more information: +// http://www.webmproject.org/vp9/profiles/ +bool ParseVpxCodecPrivate(const uint8_t* private_data, int32_t length, + Vp9CodecFeatures* features) { + const int kVpxCodecPrivateMinLength = 3; + if (!private_data || !features || length < kVpxCodecPrivateMinLength) + return false; + + const uint8_t kVp9ProfileId = 1; + const uint8_t kVp9LevelId = 2; + const uint8_t kVp9BitDepthId = 3; + const uint8_t kVp9ChromaSubsamplingId = 4; + const int kVpxFeatureLength = 1; + int offset = 0; + + // Set features to not set. + features->profile = Vp9CodecFeatures::kValueNotPresent; + features->level = Vp9CodecFeatures::kValueNotPresent; + features->bit_depth = Vp9CodecFeatures::kValueNotPresent; + features->chroma_subsampling = Vp9CodecFeatures::kValueNotPresent; + do { + const uint8_t id_byte = private_data[offset++]; + const uint8_t length_byte = private_data[offset++]; + if (length_byte != kVpxFeatureLength) + return false; + if (id_byte == kVp9ProfileId) { + const int priv_profile = static_cast(private_data[offset++]); + if (priv_profile < 0 || priv_profile > 3) + return false; + if (features->profile != Vp9CodecFeatures::kValueNotPresent && + features->profile != priv_profile) { + return false; + } + features->profile = priv_profile; + } else if (id_byte == kVp9LevelId) { + const int priv_level = static_cast(private_data[offset++]); + + const int kNumLevels = 14; + const int levels[kNumLevels] = {10, 11, 20, 21, 30, 31, 40, + 41, 50, 51, 52, 60, 61, 62}; + + for (int i = 0; i < kNumLevels; ++i) { + if (priv_level == levels[i]) { + if (features->level != Vp9CodecFeatures::kValueNotPresent && + features->level != priv_level) { + return false; + } + features->level = priv_level; + break; + } + } + if (features->level == Vp9CodecFeatures::kValueNotPresent) + return false; + } else if (id_byte == kVp9BitDepthId) { + const int priv_profile = static_cast(private_data[offset++]); + if (priv_profile != 8 && priv_profile != 10 && priv_profile != 12) + return false; + if (features->bit_depth != Vp9CodecFeatures::kValueNotPresent && + features->bit_depth != priv_profile) { + return false; + } + features->bit_depth = priv_profile; + } else if (id_byte == kVp9ChromaSubsamplingId) { + const int priv_profile = static_cast(private_data[offset++]); + if (priv_profile != 0 && priv_profile != 2 && priv_profile != 3) + return false; + if (features->chroma_subsampling != Vp9CodecFeatures::kValueNotPresent && + features->chroma_subsampling != priv_profile) { + return false; + } + features->chroma_subsampling = priv_profile; + } else { + // Invalid ID. + return false; + } + } while (offset + kVpxCodecPrivateMinLength <= length); + + return true; +} +} // namespace libwebm diff --git a/third_party/libwebm/common/hdr_util.h b/third_party/libwebm/common/hdr_util.h new file mode 100644 index 0000000..3ef5388 --- /dev/null +++ b/third_party/libwebm/common/hdr_util.h @@ -0,0 +1,79 @@ +// Copyright (c) 2016 The WebM project authors. All Rights Reserved. +// +// Use of this source code is governed by a BSD-style license +// that can be found in the LICENSE file in the root of the source +// tree. An additional intellectual property rights grant can be found +// in the file PATENTS. All contributing project authors may +// be found in the AUTHORS file in the root of the source tree. +#ifndef LIBWEBM_COMMON_HDR_UTIL_H_ +#define LIBWEBM_COMMON_HDR_UTIL_H_ + +#include + +#include + +#include "mkvmuxer/mkvmuxer.h" + +namespace mkvparser { +struct Colour; +struct MasteringMetadata; +struct PrimaryChromaticity; +} // namespace mkvparser + +namespace libwebm { +// Utility types and functions for working with the Colour element and its +// children. Copiers return true upon success. Presence functions return true +// when the specified element is present. + +// TODO(tomfinegan): These should be moved to libwebm_utils once c++11 is +// required by libwebm. + +// Features of the VP9 codec that may be set in the CodecPrivate of a VP9 video +// stream. A value of kValueNotPresent represents that the value was not set in +// the CodecPrivate. +struct Vp9CodecFeatures { + static const int kValueNotPresent; + + Vp9CodecFeatures() + : profile(kValueNotPresent), + level(kValueNotPresent), + bit_depth(kValueNotPresent), + chroma_subsampling(kValueNotPresent) {} + ~Vp9CodecFeatures() {} + + int profile; + int level; + int bit_depth; + int chroma_subsampling; +}; + +// disable deprecation warnings for auto_ptr +#if defined(__GNUC__) && __GNUC__ >= 5 +#pragma GCC diagnostic push +#pragma GCC diagnostic ignored "-Wdeprecated-declarations" +#endif +typedef std::auto_ptr PrimaryChromaticityPtr; +#if defined(__GNUC__) && __GNUC__ >= 5 +#pragma GCC diagnostic pop +#endif + +bool CopyPrimaryChromaticity(const mkvparser::PrimaryChromaticity& parser_pc, + PrimaryChromaticityPtr* muxer_pc); + +bool MasteringMetadataValuePresent(double value); + +bool CopyMasteringMetadata(const mkvparser::MasteringMetadata& parser_mm, + mkvmuxer::MasteringMetadata* muxer_mm); + +bool ColourValuePresent(long long value); + +bool CopyColour(const mkvparser::Colour& parser_colour, + mkvmuxer::Colour* muxer_colour); + +// Returns true if |features| is set to one or more valid values. +bool ParseVpxCodecPrivate(const uint8_t* private_data, int32_t length, + Vp9CodecFeatures* features); + +} // namespace libwebm + +#endif // LIBWEBM_COMMON_HDR_UTIL_H_ diff --git a/third_party/libwebm/common/webmids.h b/third_party/libwebm/common/webmids.h new file mode 100644 index 0000000..89d722a --- /dev/null +++ b/third_party/libwebm/common/webmids.h @@ -0,0 +1,192 @@ +// Copyright (c) 2012 The WebM project authors. All Rights Reserved. +// +// Use of this source code is governed by a BSD-style license +// that can be found in the LICENSE file in the root of the source +// tree. An additional intellectual property rights grant can be found +// in the file PATENTS. All contributing project authors may +// be found in the AUTHORS file in the root of the source tree. + +#ifndef COMMON_WEBMIDS_H_ +#define COMMON_WEBMIDS_H_ + +namespace libwebm { + +enum MkvId { + kMkvEBML = 0x1A45DFA3, + kMkvEBMLVersion = 0x4286, + kMkvEBMLReadVersion = 0x42F7, + kMkvEBMLMaxIDLength = 0x42F2, + kMkvEBMLMaxSizeLength = 0x42F3, + kMkvDocType = 0x4282, + kMkvDocTypeVersion = 0x4287, + kMkvDocTypeReadVersion = 0x4285, + kMkvVoid = 0xEC, + kMkvSignatureSlot = 0x1B538667, + kMkvSignatureAlgo = 0x7E8A, + kMkvSignatureHash = 0x7E9A, + kMkvSignaturePublicKey = 0x7EA5, + kMkvSignature = 0x7EB5, + kMkvSignatureElements = 0x7E5B, + kMkvSignatureElementList = 0x7E7B, + kMkvSignedElement = 0x6532, + // segment + kMkvSegment = 0x18538067, + // Meta Seek Information + kMkvSeekHead = 0x114D9B74, + kMkvSeek = 0x4DBB, + kMkvSeekID = 0x53AB, + kMkvSeekPosition = 0x53AC, + // Segment Information + kMkvInfo = 0x1549A966, + kMkvTimecodeScale = 0x2AD7B1, + kMkvDuration = 0x4489, + kMkvDateUTC = 0x4461, + kMkvTitle = 0x7BA9, + kMkvMuxingApp = 0x4D80, + kMkvWritingApp = 0x5741, + // Cluster + kMkvCluster = 0x1F43B675, + kMkvTimecode = 0xE7, + kMkvPrevSize = 0xAB, + kMkvBlockGroup = 0xA0, + kMkvBlock = 0xA1, + kMkvBlockDuration = 0x9B, + kMkvReferenceBlock = 0xFB, + kMkvLaceNumber = 0xCC, + kMkvSimpleBlock = 0xA3, + kMkvBlockAdditions = 0x75A1, + kMkvBlockMore = 0xA6, + kMkvBlockAddID = 0xEE, + kMkvBlockAdditional = 0xA5, + kMkvDiscardPadding = 0x75A2, + // Track + kMkvTracks = 0x1654AE6B, + kMkvTrackEntry = 0xAE, + kMkvTrackNumber = 0xD7, + kMkvTrackUID = 0x73C5, + kMkvTrackType = 0x83, + kMkvFlagEnabled = 0xB9, + kMkvFlagDefault = 0x88, + kMkvFlagForced = 0x55AA, + kMkvFlagLacing = 0x9C, + kMkvDefaultDuration = 0x23E383, + kMkvMaxBlockAdditionID = 0x55EE, + kMkvName = 0x536E, + kMkvLanguage = 0x22B59C, + kMkvCodecID = 0x86, + kMkvCodecPrivate = 0x63A2, + kMkvCodecName = 0x258688, + kMkvCodecDelay = 0x56AA, + kMkvSeekPreRoll = 0x56BB, + // video + kMkvVideo = 0xE0, + kMkvFlagInterlaced = 0x9A, + kMkvStereoMode = 0x53B8, + kMkvAlphaMode = 0x53C0, + kMkvPixelWidth = 0xB0, + kMkvPixelHeight = 0xBA, + kMkvPixelCropBottom = 0x54AA, + kMkvPixelCropTop = 0x54BB, + kMkvPixelCropLeft = 0x54CC, + kMkvPixelCropRight = 0x54DD, + kMkvDisplayWidth = 0x54B0, + kMkvDisplayHeight = 0x54BA, + kMkvDisplayUnit = 0x54B2, + kMkvAspectRatioType = 0x54B3, + kMkvFrameRate = 0x2383E3, + // end video + // colour + kMkvColour = 0x55B0, + kMkvMatrixCoefficients = 0x55B1, + kMkvBitsPerChannel = 0x55B2, + kMkvChromaSubsamplingHorz = 0x55B3, + kMkvChromaSubsamplingVert = 0x55B4, + kMkvCbSubsamplingHorz = 0x55B5, + kMkvCbSubsamplingVert = 0x55B6, + kMkvChromaSitingHorz = 0x55B7, + kMkvChromaSitingVert = 0x55B8, + kMkvRange = 0x55B9, + kMkvTransferCharacteristics = 0x55BA, + kMkvPrimaries = 0x55BB, + kMkvMaxCLL = 0x55BC, + kMkvMaxFALL = 0x55BD, + // mastering metadata + kMkvMasteringMetadata = 0x55D0, + kMkvPrimaryRChromaticityX = 0x55D1, + kMkvPrimaryRChromaticityY = 0x55D2, + kMkvPrimaryGChromaticityX = 0x55D3, + kMkvPrimaryGChromaticityY = 0x55D4, + kMkvPrimaryBChromaticityX = 0x55D5, + kMkvPrimaryBChromaticityY = 0x55D6, + kMkvWhitePointChromaticityX = 0x55D7, + kMkvWhitePointChromaticityY = 0x55D8, + kMkvLuminanceMax = 0x55D9, + kMkvLuminanceMin = 0x55DA, + // end mastering metadata + // end colour + // projection + kMkvProjection = 0x7670, + kMkvProjectionType = 0x7671, + kMkvProjectionPrivate = 0x7672, + kMkvProjectionPoseYaw = 0x7673, + kMkvProjectionPosePitch = 0x7674, + kMkvProjectionPoseRoll = 0x7675, + // end projection + // audio + kMkvAudio = 0xE1, + kMkvSamplingFrequency = 0xB5, + kMkvOutputSamplingFrequency = 0x78B5, + kMkvChannels = 0x9F, + kMkvBitDepth = 0x6264, + // end audio + // ContentEncodings + kMkvContentEncodings = 0x6D80, + kMkvContentEncoding = 0x6240, + kMkvContentEncodingOrder = 0x5031, + kMkvContentEncodingScope = 0x5032, + kMkvContentEncodingType = 0x5033, + kMkvContentCompression = 0x5034, + kMkvContentCompAlgo = 0x4254, + kMkvContentCompSettings = 0x4255, + kMkvContentEncryption = 0x5035, + kMkvContentEncAlgo = 0x47E1, + kMkvContentEncKeyID = 0x47E2, + kMkvContentSignature = 0x47E3, + kMkvContentSigKeyID = 0x47E4, + kMkvContentSigAlgo = 0x47E5, + kMkvContentSigHashAlgo = 0x47E6, + kMkvContentEncAESSettings = 0x47E7, + kMkvAESSettingsCipherMode = 0x47E8, + kMkvAESSettingsCipherInitData = 0x47E9, + // end ContentEncodings + // Cueing Data + kMkvCues = 0x1C53BB6B, + kMkvCuePoint = 0xBB, + kMkvCueTime = 0xB3, + kMkvCueTrackPositions = 0xB7, + kMkvCueTrack = 0xF7, + kMkvCueClusterPosition = 0xF1, + kMkvCueBlockNumber = 0x5378, + // Chapters + kMkvChapters = 0x1043A770, + kMkvEditionEntry = 0x45B9, + kMkvChapterAtom = 0xB6, + kMkvChapterUID = 0x73C4, + kMkvChapterStringUID = 0x5654, + kMkvChapterTimeStart = 0x91, + kMkvChapterTimeEnd = 0x92, + kMkvChapterDisplay = 0x80, + kMkvChapString = 0x85, + kMkvChapLanguage = 0x437C, + kMkvChapCountry = 0x437E, + // Tags + kMkvTags = 0x1254C367, + kMkvTag = 0x7373, + kMkvSimpleTag = 0x67C8, + kMkvTagName = 0x45A3, + kMkvTagString = 0x4487 +}; + +} // namespace libwebm + +#endif // COMMON_WEBMIDS_H_ diff --git a/third_party/libwebm/mkvmuxer/mkvmuxer.cc b/third_party/libwebm/mkvmuxer/mkvmuxer.cc new file mode 100644 index 0000000..15b9a90 --- /dev/null +++ b/third_party/libwebm/mkvmuxer/mkvmuxer.cc @@ -0,0 +1,4196 @@ +// Copyright (c) 2012 The WebM project authors. All Rights Reserved. +// +// Use of this source code is governed by a BSD-style license +// that can be found in the LICENSE file in the root of the source +// tree. An additional intellectual property rights grant can be found +// in the file PATENTS. All contributing project authors may +// be found in the AUTHORS file in the root of the source tree. + +#include "mkvmuxer/mkvmuxer.h" + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#include "common/webmids.h" +#include "mkvmuxer/mkvmuxerutil.h" +#include "mkvmuxer/mkvwriter.h" +#include "mkvparser/mkvparser.h" + +// disable deprecation warnings for auto_ptr +#if defined(__GNUC__) && __GNUC__ >= 5 +#pragma GCC diagnostic ignored "-Wdeprecated-declarations" +#endif + +namespace mkvmuxer { + +const float PrimaryChromaticity::kChromaticityMin = 0.0f; +const float PrimaryChromaticity::kChromaticityMax = 1.0f; +const float MasteringMetadata::kMinLuminance = 0.0f; +const float MasteringMetadata::kMinLuminanceMax = 999.99f; +const float MasteringMetadata::kMaxLuminanceMax = 9999.99f; +const float MasteringMetadata::kValueNotPresent = FLT_MAX; +const uint64_t Colour::kValueNotPresent = UINT64_MAX; + +namespace { + +const char kDocTypeWebm[] = "webm"; +const char kDocTypeMatroska[] = "matroska"; + +// Deallocate the string designated by |dst|, and then copy the |src| +// string to |dst|. The caller owns both the |src| string and the +// |dst| copy (hence the caller is responsible for eventually +// deallocating the strings, either directly, or indirectly via +// StrCpy). Returns true if the source string was successfully copied +// to the destination. +bool StrCpy(const char* src, char** dst_ptr) { + if (dst_ptr == NULL) + return false; + + char*& dst = *dst_ptr; + + delete[] dst; + dst = NULL; + + if (src == NULL) + return true; + + const size_t size = strlen(src) + 1; + + dst = new (std::nothrow) char[size]; // NOLINT + if (dst == NULL) + return false; + + strcpy(dst, src); // NOLINT + return true; +} + +typedef std::auto_ptr PrimaryChromaticityPtr; +bool CopyChromaticity(const PrimaryChromaticity* src, + PrimaryChromaticityPtr* dst) { + if (!dst) + return false; + + dst->reset(new (std::nothrow) PrimaryChromaticity(src->x(), src->y())); + if (!dst->get()) + return false; + + return true; +} + +} // namespace + +/////////////////////////////////////////////////////////////// +// +// IMkvWriter Class + +IMkvWriter::IMkvWriter() {} + +IMkvWriter::~IMkvWriter() {} + +bool WriteEbmlHeader(IMkvWriter* writer, uint64_t doc_type_version, + const char* const doc_type) { + // Level 0 + uint64_t size = + EbmlElementSize(libwebm::kMkvEBMLVersion, static_cast(1)); + size += EbmlElementSize(libwebm::kMkvEBMLReadVersion, static_cast(1)); + size += EbmlElementSize(libwebm::kMkvEBMLMaxIDLength, static_cast(4)); + size += + EbmlElementSize(libwebm::kMkvEBMLMaxSizeLength, static_cast(8)); + size += EbmlElementSize(libwebm::kMkvDocType, doc_type); + size += EbmlElementSize(libwebm::kMkvDocTypeVersion, + static_cast(doc_type_version)); + size += + EbmlElementSize(libwebm::kMkvDocTypeReadVersion, static_cast(2)); + + if (!WriteEbmlMasterElement(writer, libwebm::kMkvEBML, size)) + return false; + if (!WriteEbmlElement(writer, libwebm::kMkvEBMLVersion, + static_cast(1))) { + return false; + } + if (!WriteEbmlElement(writer, libwebm::kMkvEBMLReadVersion, + static_cast(1))) { + return false; + } + if (!WriteEbmlElement(writer, libwebm::kMkvEBMLMaxIDLength, + static_cast(4))) { + return false; + } + if (!WriteEbmlElement(writer, libwebm::kMkvEBMLMaxSizeLength, + static_cast(8))) { + return false; + } + if (!WriteEbmlElement(writer, libwebm::kMkvDocType, doc_type)) + return false; + if (!WriteEbmlElement(writer, libwebm::kMkvDocTypeVersion, + static_cast(doc_type_version))) { + return false; + } + if (!WriteEbmlElement(writer, libwebm::kMkvDocTypeReadVersion, + static_cast(2))) { + return false; + } + + return true; +} + +bool WriteEbmlHeader(IMkvWriter* writer, uint64_t doc_type_version) { + return WriteEbmlHeader(writer, doc_type_version, kDocTypeWebm); +} + +bool WriteEbmlHeader(IMkvWriter* writer) { + return WriteEbmlHeader(writer, mkvmuxer::Segment::kDefaultDocTypeVersion); +} + +bool ChunkedCopy(mkvparser::IMkvReader* source, mkvmuxer::IMkvWriter* dst, + int64_t start, int64_t size) { + // TODO(vigneshv): Check if this is a reasonable value. + const uint32_t kBufSize = 2048; + uint8_t* buf = new uint8_t[kBufSize]; + int64_t offset = start; + while (size > 0) { + const int64_t read_len = (size > kBufSize) ? kBufSize : size; + if (source->Read(offset, static_cast(read_len), buf)) + return false; + dst->Write(buf, static_cast(read_len)); + offset += read_len; + size -= read_len; + } + delete[] buf; + return true; +} + +/////////////////////////////////////////////////////////////// +// +// Frame Class + +Frame::Frame() + : add_id_(0), + additional_(NULL), + additional_length_(0), + duration_(0), + duration_set_(false), + frame_(NULL), + is_key_(false), + length_(0), + track_number_(0), + timestamp_(0), + discard_padding_(0), + reference_block_timestamp_(0), + reference_block_timestamp_set_(false) {} + +Frame::~Frame() { + delete[] frame_; + delete[] additional_; +} + +bool Frame::CopyFrom(const Frame& frame) { + delete[] frame_; + frame_ = NULL; + length_ = 0; + if (frame.length() > 0 && frame.frame() != NULL && + !Init(frame.frame(), frame.length())) { + return false; + } + add_id_ = 0; + delete[] additional_; + additional_ = NULL; + additional_length_ = 0; + if (frame.additional_length() > 0 && frame.additional() != NULL && + !AddAdditionalData(frame.additional(), frame.additional_length(), + frame.add_id())) { + return false; + } + duration_ = frame.duration(); + duration_set_ = frame.duration_set(); + is_key_ = frame.is_key(); + track_number_ = frame.track_number(); + timestamp_ = frame.timestamp(); + discard_padding_ = frame.discard_padding(); + reference_block_timestamp_ = frame.reference_block_timestamp(); + reference_block_timestamp_set_ = frame.reference_block_timestamp_set(); + return true; +} + +bool Frame::Init(const uint8_t* frame, uint64_t length) { + uint8_t* const data = + new (std::nothrow) uint8_t[static_cast(length)]; // NOLINT + if (!data) + return false; + + delete[] frame_; + frame_ = data; + length_ = length; + + memcpy(frame_, frame, static_cast(length_)); + return true; +} + +bool Frame::AddAdditionalData(const uint8_t* additional, uint64_t length, + uint64_t add_id) { + uint8_t* const data = + new (std::nothrow) uint8_t[static_cast(length)]; // NOLINT + if (!data) + return false; + + delete[] additional_; + additional_ = data; + additional_length_ = length; + add_id_ = add_id; + + memcpy(additional_, additional, static_cast(additional_length_)); + return true; +} + +bool Frame::IsValid() const { + if (length_ == 0 || !frame_) { + return false; + } + if ((additional_length_ != 0 && !additional_) || + (additional_ != NULL && additional_length_ == 0)) { + return false; + } + if (track_number_ == 0 || track_number_ > kMaxTrackNumber) { + return false; + } + if (!CanBeSimpleBlock() && !is_key_ && !reference_block_timestamp_set_) { + return false; + } + return true; +} + +bool Frame::CanBeSimpleBlock() const { + return additional_ == NULL && discard_padding_ == 0 && duration_ == 0; +} + +void Frame::set_duration(uint64_t duration) { + duration_ = duration; + duration_set_ = true; +} + +void Frame::set_reference_block_timestamp(int64_t reference_block_timestamp) { + reference_block_timestamp_ = reference_block_timestamp; + reference_block_timestamp_set_ = true; +} + +/////////////////////////////////////////////////////////////// +// +// CuePoint Class + +CuePoint::CuePoint() + : time_(0), + track_(0), + cluster_pos_(0), + block_number_(1), + output_block_number_(true) {} + +CuePoint::~CuePoint() {} + +bool CuePoint::Write(IMkvWriter* writer) const { + if (!writer || track_ < 1 || cluster_pos_ < 1) + return false; + + uint64_t size = EbmlElementSize(libwebm::kMkvCueClusterPosition, + static_cast(cluster_pos_)); + size += EbmlElementSize(libwebm::kMkvCueTrack, static_cast(track_)); + if (output_block_number_ && block_number_ > 1) + size += EbmlElementSize(libwebm::kMkvCueBlockNumber, + static_cast(block_number_)); + const uint64_t track_pos_size = + EbmlMasterElementSize(libwebm::kMkvCueTrackPositions, size) + size; + const uint64_t payload_size = + EbmlElementSize(libwebm::kMkvCueTime, static_cast(time_)) + + track_pos_size; + + if (!WriteEbmlMasterElement(writer, libwebm::kMkvCuePoint, payload_size)) + return false; + + const int64_t payload_position = writer->Position(); + if (payload_position < 0) + return false; + + if (!WriteEbmlElement(writer, libwebm::kMkvCueTime, + static_cast(time_))) { + return false; + } + + if (!WriteEbmlMasterElement(writer, libwebm::kMkvCueTrackPositions, size)) + return false; + if (!WriteEbmlElement(writer, libwebm::kMkvCueTrack, + static_cast(track_))) { + return false; + } + if (!WriteEbmlElement(writer, libwebm::kMkvCueClusterPosition, + static_cast(cluster_pos_))) { + return false; + } + if (output_block_number_ && block_number_ > 1) { + if (!WriteEbmlElement(writer, libwebm::kMkvCueBlockNumber, + static_cast(block_number_))) { + return false; + } + } + + const int64_t stop_position = writer->Position(); + if (stop_position < 0) + return false; + + if (stop_position - payload_position != static_cast(payload_size)) + return false; + + return true; +} + +uint64_t CuePoint::PayloadSize() const { + uint64_t size = EbmlElementSize(libwebm::kMkvCueClusterPosition, + static_cast(cluster_pos_)); + size += EbmlElementSize(libwebm::kMkvCueTrack, static_cast(track_)); + if (output_block_number_ && block_number_ > 1) + size += EbmlElementSize(libwebm::kMkvCueBlockNumber, + static_cast(block_number_)); + const uint64_t track_pos_size = + EbmlMasterElementSize(libwebm::kMkvCueTrackPositions, size) + size; + const uint64_t payload_size = + EbmlElementSize(libwebm::kMkvCueTime, static_cast(time_)) + + track_pos_size; + + return payload_size; +} + +uint64_t CuePoint::Size() const { + const uint64_t payload_size = PayloadSize(); + return EbmlMasterElementSize(libwebm::kMkvCuePoint, payload_size) + + payload_size; +} + +/////////////////////////////////////////////////////////////// +// +// Cues Class + +Cues::Cues() + : cue_entries_capacity_(0), + cue_entries_size_(0), + cue_entries_(NULL), + output_block_number_(true) {} + +Cues::~Cues() { + if (cue_entries_) { + for (int32_t i = 0; i < cue_entries_size_; ++i) { + CuePoint* const cue = cue_entries_[i]; + delete cue; + } + delete[] cue_entries_; + } +} + +bool Cues::AddCue(CuePoint* cue) { + if (!cue) + return false; + + if ((cue_entries_size_ + 1) > cue_entries_capacity_) { + // Add more CuePoints. + const int32_t new_capacity = + (!cue_entries_capacity_) ? 2 : cue_entries_capacity_ * 2; + + if (new_capacity < 1) + return false; + + CuePoint** const cues = + new (std::nothrow) CuePoint*[new_capacity]; // NOLINT + if (!cues) + return false; + + for (int32_t i = 0; i < cue_entries_size_; ++i) { + cues[i] = cue_entries_[i]; + } + + delete[] cue_entries_; + + cue_entries_ = cues; + cue_entries_capacity_ = new_capacity; + } + + cue->set_output_block_number(output_block_number_); + cue_entries_[cue_entries_size_++] = cue; + return true; +} + +CuePoint* Cues::GetCueByIndex(int32_t index) const { + if (cue_entries_ == NULL) + return NULL; + + if (index >= cue_entries_size_) + return NULL; + + return cue_entries_[index]; +} + +uint64_t Cues::Size() { + uint64_t size = 0; + for (int32_t i = 0; i < cue_entries_size_; ++i) + size += GetCueByIndex(i)->Size(); + size += EbmlMasterElementSize(libwebm::kMkvCues, size); + return size; +} + +bool Cues::Write(IMkvWriter* writer) const { + if (!writer) + return false; + + uint64_t size = 0; + for (int32_t i = 0; i < cue_entries_size_; ++i) { + const CuePoint* const cue = GetCueByIndex(i); + + if (!cue) + return false; + + size += cue->Size(); + } + + if (!WriteEbmlMasterElement(writer, libwebm::kMkvCues, size)) + return false; + + const int64_t payload_position = writer->Position(); + if (payload_position < 0) + return false; + + for (int32_t i = 0; i < cue_entries_size_; ++i) { + const CuePoint* const cue = GetCueByIndex(i); + + if (!cue->Write(writer)) + return false; + } + + const int64_t stop_position = writer->Position(); + if (stop_position < 0) + return false; + + if (stop_position - payload_position != static_cast(size)) + return false; + + return true; +} + +/////////////////////////////////////////////////////////////// +// +// ContentEncAESSettings Class + +ContentEncAESSettings::ContentEncAESSettings() : cipher_mode_(kCTR) {} + +uint64_t ContentEncAESSettings::Size() const { + const uint64_t payload = PayloadSize(); + const uint64_t size = + EbmlMasterElementSize(libwebm::kMkvContentEncAESSettings, payload) + + payload; + return size; +} + +bool ContentEncAESSettings::Write(IMkvWriter* writer) const { + const uint64_t payload = PayloadSize(); + + if (!WriteEbmlMasterElement(writer, libwebm::kMkvContentEncAESSettings, + payload)) + return false; + + const int64_t payload_position = writer->Position(); + if (payload_position < 0) + return false; + + if (!WriteEbmlElement(writer, libwebm::kMkvAESSettingsCipherMode, + static_cast(cipher_mode_))) { + return false; + } + + const int64_t stop_position = writer->Position(); + if (stop_position < 0 || + stop_position - payload_position != static_cast(payload)) + return false; + + return true; +} + +uint64_t ContentEncAESSettings::PayloadSize() const { + uint64_t size = EbmlElementSize(libwebm::kMkvAESSettingsCipherMode, + static_cast(cipher_mode_)); + return size; +} + +/////////////////////////////////////////////////////////////// +// +// ContentEncoding Class + +ContentEncoding::ContentEncoding() + : enc_algo_(5), + enc_key_id_(NULL), + encoding_order_(0), + encoding_scope_(1), + encoding_type_(1), + enc_key_id_length_(0) {} + +ContentEncoding::~ContentEncoding() { delete[] enc_key_id_; } + +bool ContentEncoding::SetEncryptionID(const uint8_t* id, uint64_t length) { + if (!id || length < 1) + return false; + + delete[] enc_key_id_; + + enc_key_id_ = + new (std::nothrow) uint8_t[static_cast(length)]; // NOLINT + if (!enc_key_id_) + return false; + + memcpy(enc_key_id_, id, static_cast(length)); + enc_key_id_length_ = length; + + return true; +} + +uint64_t ContentEncoding::Size() const { + const uint64_t encryption_size = EncryptionSize(); + const uint64_t encoding_size = EncodingSize(0, encryption_size); + const uint64_t encodings_size = + EbmlMasterElementSize(libwebm::kMkvContentEncoding, encoding_size) + + encoding_size; + + return encodings_size; +} + +bool ContentEncoding::Write(IMkvWriter* writer) const { + const uint64_t encryption_size = EncryptionSize(); + const uint64_t encoding_size = EncodingSize(0, encryption_size); + const uint64_t size = + EbmlMasterElementSize(libwebm::kMkvContentEncoding, encoding_size) + + encoding_size; + + const int64_t payload_position = writer->Position(); + if (payload_position < 0) + return false; + + if (!WriteEbmlMasterElement(writer, libwebm::kMkvContentEncoding, + encoding_size)) + return false; + if (!WriteEbmlElement(writer, libwebm::kMkvContentEncodingOrder, + static_cast(encoding_order_))) + return false; + if (!WriteEbmlElement(writer, libwebm::kMkvContentEncodingScope, + static_cast(encoding_scope_))) + return false; + if (!WriteEbmlElement(writer, libwebm::kMkvContentEncodingType, + static_cast(encoding_type_))) + return false; + + if (!WriteEbmlMasterElement(writer, libwebm::kMkvContentEncryption, + encryption_size)) + return false; + if (!WriteEbmlElement(writer, libwebm::kMkvContentEncAlgo, + static_cast(enc_algo_))) { + return false; + } + if (!WriteEbmlElement(writer, libwebm::kMkvContentEncKeyID, enc_key_id_, + enc_key_id_length_)) + return false; + + if (!enc_aes_settings_.Write(writer)) + return false; + + const int64_t stop_position = writer->Position(); + if (stop_position < 0 || + stop_position - payload_position != static_cast(size)) + return false; + + return true; +} + +uint64_t ContentEncoding::EncodingSize(uint64_t compresion_size, + uint64_t encryption_size) const { + // TODO(fgalligan): Add support for compression settings. + if (compresion_size != 0) + return 0; + + uint64_t encoding_size = 0; + + if (encryption_size > 0) { + encoding_size += + EbmlMasterElementSize(libwebm::kMkvContentEncryption, encryption_size) + + encryption_size; + } + encoding_size += EbmlElementSize(libwebm::kMkvContentEncodingType, + static_cast(encoding_type_)); + encoding_size += EbmlElementSize(libwebm::kMkvContentEncodingScope, + static_cast(encoding_scope_)); + encoding_size += EbmlElementSize(libwebm::kMkvContentEncodingOrder, + static_cast(encoding_order_)); + + return encoding_size; +} + +uint64_t ContentEncoding::EncryptionSize() const { + const uint64_t aes_size = enc_aes_settings_.Size(); + + uint64_t encryption_size = EbmlElementSize(libwebm::kMkvContentEncKeyID, + enc_key_id_, enc_key_id_length_); + encryption_size += EbmlElementSize(libwebm::kMkvContentEncAlgo, + static_cast(enc_algo_)); + + return encryption_size + aes_size; +} + +/////////////////////////////////////////////////////////////// +// +// Track Class + +Track::Track(unsigned int* seed) + : codec_id_(NULL), + codec_private_(NULL), + language_(NULL), + max_block_additional_id_(0), + name_(NULL), + number_(0), + type_(0), + uid_(MakeUID(seed)), + codec_delay_(0), + seek_pre_roll_(0), + default_duration_(0), + codec_private_length_(0), + content_encoding_entries_(NULL), + content_encoding_entries_size_(0) {} + +Track::~Track() { + delete[] codec_id_; + delete[] codec_private_; + delete[] language_; + delete[] name_; + + if (content_encoding_entries_) { + for (uint32_t i = 0; i < content_encoding_entries_size_; ++i) { + ContentEncoding* const encoding = content_encoding_entries_[i]; + delete encoding; + } + delete[] content_encoding_entries_; + } +} + +bool Track::AddContentEncoding() { + const uint32_t count = content_encoding_entries_size_ + 1; + + ContentEncoding** const content_encoding_entries = + new (std::nothrow) ContentEncoding*[count]; // NOLINT + if (!content_encoding_entries) + return false; + + ContentEncoding* const content_encoding = + new (std::nothrow) ContentEncoding(); // NOLINT + if (!content_encoding) { + delete[] content_encoding_entries; + return false; + } + + for (uint32_t i = 0; i < content_encoding_entries_size_; ++i) { + content_encoding_entries[i] = content_encoding_entries_[i]; + } + + delete[] content_encoding_entries_; + + content_encoding_entries_ = content_encoding_entries; + content_encoding_entries_[content_encoding_entries_size_] = content_encoding; + content_encoding_entries_size_ = count; + return true; +} + +ContentEncoding* Track::GetContentEncodingByIndex(uint32_t index) const { + if (content_encoding_entries_ == NULL) + return NULL; + + if (index >= content_encoding_entries_size_) + return NULL; + + return content_encoding_entries_[index]; +} + +uint64_t Track::PayloadSize() const { + uint64_t size = + EbmlElementSize(libwebm::kMkvTrackNumber, static_cast(number_)); + size += EbmlElementSize(libwebm::kMkvTrackUID, static_cast(uid_)); + size += EbmlElementSize(libwebm::kMkvTrackType, static_cast(type_)); + if (codec_id_) + size += EbmlElementSize(libwebm::kMkvCodecID, codec_id_); + if (codec_private_) + size += EbmlElementSize(libwebm::kMkvCodecPrivate, codec_private_, + codec_private_length_); + if (language_) + size += EbmlElementSize(libwebm::kMkvLanguage, language_); + if (name_) + size += EbmlElementSize(libwebm::kMkvName, name_); + if (max_block_additional_id_) { + size += EbmlElementSize(libwebm::kMkvMaxBlockAdditionID, + static_cast(max_block_additional_id_)); + } + if (codec_delay_) { + size += EbmlElementSize(libwebm::kMkvCodecDelay, + static_cast(codec_delay_)); + } + if (seek_pre_roll_) { + size += EbmlElementSize(libwebm::kMkvSeekPreRoll, + static_cast(seek_pre_roll_)); + } + if (default_duration_) { + size += EbmlElementSize(libwebm::kMkvDefaultDuration, + static_cast(default_duration_)); + } + + if (content_encoding_entries_size_ > 0) { + uint64_t content_encodings_size = 0; + for (uint32_t i = 0; i < content_encoding_entries_size_; ++i) { + ContentEncoding* const encoding = content_encoding_entries_[i]; + content_encodings_size += encoding->Size(); + } + + size += EbmlMasterElementSize(libwebm::kMkvContentEncodings, + content_encodings_size) + + content_encodings_size; + } + + return size; +} + +uint64_t Track::Size() const { + uint64_t size = PayloadSize(); + size += EbmlMasterElementSize(libwebm::kMkvTrackEntry, size); + return size; +} + +bool Track::Write(IMkvWriter* writer) const { + if (!writer) + return false; + + // mandatory elements without a default value. + if (!type_ || !codec_id_) + return false; + + // |size| may be bigger than what is written out in this function because + // derived classes may write out more data in the Track element. + const uint64_t payload_size = PayloadSize(); + + if (!WriteEbmlMasterElement(writer, libwebm::kMkvTrackEntry, payload_size)) + return false; + + uint64_t size = + EbmlElementSize(libwebm::kMkvTrackNumber, static_cast(number_)); + size += EbmlElementSize(libwebm::kMkvTrackUID, static_cast(uid_)); + size += EbmlElementSize(libwebm::kMkvTrackType, static_cast(type_)); + if (codec_id_) + size += EbmlElementSize(libwebm::kMkvCodecID, codec_id_); + if (codec_private_) + size += EbmlElementSize(libwebm::kMkvCodecPrivate, codec_private_, + static_cast(codec_private_length_)); + if (language_) + size += EbmlElementSize(libwebm::kMkvLanguage, language_); + if (name_) + size += EbmlElementSize(libwebm::kMkvName, name_); + if (max_block_additional_id_) + size += EbmlElementSize(libwebm::kMkvMaxBlockAdditionID, + static_cast(max_block_additional_id_)); + if (codec_delay_) + size += EbmlElementSize(libwebm::kMkvCodecDelay, + static_cast(codec_delay_)); + if (seek_pre_roll_) + size += EbmlElementSize(libwebm::kMkvSeekPreRoll, + static_cast(seek_pre_roll_)); + if (default_duration_) + size += EbmlElementSize(libwebm::kMkvDefaultDuration, + static_cast(default_duration_)); + + const int64_t payload_position = writer->Position(); + if (payload_position < 0) + return false; + + if (!WriteEbmlElement(writer, libwebm::kMkvTrackNumber, + static_cast(number_))) + return false; + if (!WriteEbmlElement(writer, libwebm::kMkvTrackUID, + static_cast(uid_))) + return false; + if (!WriteEbmlElement(writer, libwebm::kMkvTrackType, + static_cast(type_))) + return false; + if (max_block_additional_id_) { + if (!WriteEbmlElement(writer, libwebm::kMkvMaxBlockAdditionID, + static_cast(max_block_additional_id_))) { + return false; + } + } + if (codec_delay_) { + if (!WriteEbmlElement(writer, libwebm::kMkvCodecDelay, + static_cast(codec_delay_))) + return false; + } + if (seek_pre_roll_) { + if (!WriteEbmlElement(writer, libwebm::kMkvSeekPreRoll, + static_cast(seek_pre_roll_))) + return false; + } + if (default_duration_) { + if (!WriteEbmlElement(writer, libwebm::kMkvDefaultDuration, + static_cast(default_duration_))) + return false; + } + if (codec_id_) { + if (!WriteEbmlElement(writer, libwebm::kMkvCodecID, codec_id_)) + return false; + } + if (codec_private_) { + if (!WriteEbmlElement(writer, libwebm::kMkvCodecPrivate, codec_private_, + static_cast(codec_private_length_))) + return false; + } + if (language_) { + if (!WriteEbmlElement(writer, libwebm::kMkvLanguage, language_)) + return false; + } + if (name_) { + if (!WriteEbmlElement(writer, libwebm::kMkvName, name_)) + return false; + } + + int64_t stop_position = writer->Position(); + if (stop_position < 0 || + stop_position - payload_position != static_cast(size)) + return false; + + if (content_encoding_entries_size_ > 0) { + uint64_t content_encodings_size = 0; + for (uint32_t i = 0; i < content_encoding_entries_size_; ++i) { + ContentEncoding* const encoding = content_encoding_entries_[i]; + content_encodings_size += encoding->Size(); + } + + if (!WriteEbmlMasterElement(writer, libwebm::kMkvContentEncodings, + content_encodings_size)) + return false; + + for (uint32_t i = 0; i < content_encoding_entries_size_; ++i) { + ContentEncoding* const encoding = content_encoding_entries_[i]; + if (!encoding->Write(writer)) + return false; + } + } + + stop_position = writer->Position(); + if (stop_position < 0) + return false; + return true; +} + +bool Track::SetCodecPrivate(const uint8_t* codec_private, uint64_t length) { + if (!codec_private || length < 1) + return false; + + delete[] codec_private_; + + codec_private_ = + new (std::nothrow) uint8_t[static_cast(length)]; // NOLINT + if (!codec_private_) + return false; + + memcpy(codec_private_, codec_private, static_cast(length)); + codec_private_length_ = length; + + return true; +} + +void Track::set_codec_id(const char* codec_id) { + if (codec_id) { + delete[] codec_id_; + + const size_t length = strlen(codec_id) + 1; + codec_id_ = new (std::nothrow) char[length]; // NOLINT + if (codec_id_) { +#ifdef _MSC_VER + strcpy_s(codec_id_, length, codec_id); +#else + strcpy(codec_id_, codec_id); +#endif + } + } +} + +// TODO(fgalligan): Vet the language parameter. +void Track::set_language(const char* language) { + if (language) { + delete[] language_; + + const size_t length = strlen(language) + 1; + language_ = new (std::nothrow) char[length]; // NOLINT + if (language_) { +#ifdef _MSC_VER + strcpy_s(language_, length, language); +#else + strcpy(language_, language); +#endif + } + } +} + +void Track::set_name(const char* name) { + if (name) { + delete[] name_; + + const size_t length = strlen(name) + 1; + name_ = new (std::nothrow) char[length]; // NOLINT + if (name_) { +#ifdef _MSC_VER + strcpy_s(name_, length, name); +#else + strcpy(name_, name); +#endif + } + } +} + +/////////////////////////////////////////////////////////////// +// +// Colour and its child elements + +uint64_t PrimaryChromaticity::PrimaryChromaticitySize( + libwebm::MkvId x_id, libwebm::MkvId y_id) const { + return EbmlElementSize(x_id, x_) + EbmlElementSize(y_id, y_); +} + +bool PrimaryChromaticity::Write(IMkvWriter* writer, libwebm::MkvId x_id, + libwebm::MkvId y_id) const { + if (!Valid()) { + return false; + } + return WriteEbmlElement(writer, x_id, x_) && + WriteEbmlElement(writer, y_id, y_); +} + +bool PrimaryChromaticity::Valid() const { + return (x_ >= kChromaticityMin && x_ <= kChromaticityMax && + y_ >= kChromaticityMin && y_ <= kChromaticityMax); +} + +uint64_t MasteringMetadata::MasteringMetadataSize() const { + uint64_t size = PayloadSize(); + + if (size > 0) + size += EbmlMasterElementSize(libwebm::kMkvMasteringMetadata, size); + + return size; +} + +bool MasteringMetadata::Valid() const { + if (luminance_min_ != kValueNotPresent) { + if (luminance_min_ < kMinLuminance || luminance_min_ > kMinLuminanceMax || + luminance_min_ > luminance_max_) { + return false; + } + } + if (luminance_max_ != kValueNotPresent) { + if (luminance_max_ < kMinLuminance || luminance_max_ > kMaxLuminanceMax || + luminance_max_ < luminance_min_) { + return false; + } + } + if (r_ && !r_->Valid()) + return false; + if (g_ && !g_->Valid()) + return false; + if (b_ && !b_->Valid()) + return false; + if (white_point_ && !white_point_->Valid()) + return false; + + return true; +} + +bool MasteringMetadata::Write(IMkvWriter* writer) const { + const uint64_t size = PayloadSize(); + + // Don't write an empty element. + if (size == 0) + return true; + + if (!WriteEbmlMasterElement(writer, libwebm::kMkvMasteringMetadata, size)) + return false; + if (luminance_max_ != kValueNotPresent && + !WriteEbmlElement(writer, libwebm::kMkvLuminanceMax, luminance_max_)) { + return false; + } + if (luminance_min_ != kValueNotPresent && + !WriteEbmlElement(writer, libwebm::kMkvLuminanceMin, luminance_min_)) { + return false; + } + if (r_ && + !r_->Write(writer, libwebm::kMkvPrimaryRChromaticityX, + libwebm::kMkvPrimaryRChromaticityY)) { + return false; + } + if (g_ && + !g_->Write(writer, libwebm::kMkvPrimaryGChromaticityX, + libwebm::kMkvPrimaryGChromaticityY)) { + return false; + } + if (b_ && + !b_->Write(writer, libwebm::kMkvPrimaryBChromaticityX, + libwebm::kMkvPrimaryBChromaticityY)) { + return false; + } + if (white_point_ && + !white_point_->Write(writer, libwebm::kMkvWhitePointChromaticityX, + libwebm::kMkvWhitePointChromaticityY)) { + return false; + } + + return true; +} + +bool MasteringMetadata::SetChromaticity( + const PrimaryChromaticity* r, const PrimaryChromaticity* g, + const PrimaryChromaticity* b, const PrimaryChromaticity* white_point) { + PrimaryChromaticityPtr r_ptr(NULL); + if (r) { + if (!CopyChromaticity(r, &r_ptr)) + return false; + } + PrimaryChromaticityPtr g_ptr(NULL); + if (g) { + if (!CopyChromaticity(g, &g_ptr)) + return false; + } + PrimaryChromaticityPtr b_ptr(NULL); + if (b) { + if (!CopyChromaticity(b, &b_ptr)) + return false; + } + PrimaryChromaticityPtr wp_ptr(NULL); + if (white_point) { + if (!CopyChromaticity(white_point, &wp_ptr)) + return false; + } + + r_ = r_ptr.release(); + g_ = g_ptr.release(); + b_ = b_ptr.release(); + white_point_ = wp_ptr.release(); + return true; +} + +uint64_t MasteringMetadata::PayloadSize() const { + uint64_t size = 0; + + if (luminance_max_ != kValueNotPresent) + size += EbmlElementSize(libwebm::kMkvLuminanceMax, luminance_max_); + if (luminance_min_ != kValueNotPresent) + size += EbmlElementSize(libwebm::kMkvLuminanceMin, luminance_min_); + + if (r_) { + size += r_->PrimaryChromaticitySize(libwebm::kMkvPrimaryRChromaticityX, + libwebm::kMkvPrimaryRChromaticityY); + } + if (g_) { + size += g_->PrimaryChromaticitySize(libwebm::kMkvPrimaryGChromaticityX, + libwebm::kMkvPrimaryGChromaticityY); + } + if (b_) { + size += b_->PrimaryChromaticitySize(libwebm::kMkvPrimaryBChromaticityX, + libwebm::kMkvPrimaryBChromaticityY); + } + if (white_point_) { + size += white_point_->PrimaryChromaticitySize( + libwebm::kMkvWhitePointChromaticityX, + libwebm::kMkvWhitePointChromaticityY); + } + + return size; +} + +uint64_t Colour::ColourSize() const { + uint64_t size = PayloadSize(); + + if (size > 0) + size += EbmlMasterElementSize(libwebm::kMkvColour, size); + + return size; +} + +bool Colour::Valid() const { + if (mastering_metadata_ && !mastering_metadata_->Valid()) + return false; + if (matrix_coefficients_ != kValueNotPresent && + !IsMatrixCoefficientsValueValid(matrix_coefficients_)) { + return false; + } + if (chroma_siting_horz_ != kValueNotPresent && + !IsChromaSitingHorzValueValid(chroma_siting_horz_)) { + return false; + } + if (chroma_siting_vert_ != kValueNotPresent && + !IsChromaSitingVertValueValid(chroma_siting_vert_)) { + return false; + } + if (range_ != kValueNotPresent && !IsColourRangeValueValid(range_)) + return false; + if (transfer_characteristics_ != kValueNotPresent && + !IsTransferCharacteristicsValueValid(transfer_characteristics_)) { + return false; + } + if (primaries_ != kValueNotPresent && !IsPrimariesValueValid(primaries_)) + return false; + + return true; +} + +bool Colour::Write(IMkvWriter* writer) const { + const uint64_t size = PayloadSize(); + + // Don't write an empty element. + if (size == 0) + return true; + + // Don't write an invalid element. + if (!Valid()) + return false; + + if (!WriteEbmlMasterElement(writer, libwebm::kMkvColour, size)) + return false; + + if (matrix_coefficients_ != kValueNotPresent && + !WriteEbmlElement(writer, libwebm::kMkvMatrixCoefficients, + static_cast(matrix_coefficients_))) { + return false; + } + if (bits_per_channel_ != kValueNotPresent && + !WriteEbmlElement(writer, libwebm::kMkvBitsPerChannel, + static_cast(bits_per_channel_))) { + return false; + } + if (chroma_subsampling_horz_ != kValueNotPresent && + !WriteEbmlElement(writer, libwebm::kMkvChromaSubsamplingHorz, + static_cast(chroma_subsampling_horz_))) { + return false; + } + if (chroma_subsampling_vert_ != kValueNotPresent && + !WriteEbmlElement(writer, libwebm::kMkvChromaSubsamplingVert, + static_cast(chroma_subsampling_vert_))) { + return false; + } + + if (cb_subsampling_horz_ != kValueNotPresent && + !WriteEbmlElement(writer, libwebm::kMkvCbSubsamplingHorz, + static_cast(cb_subsampling_horz_))) { + return false; + } + if (cb_subsampling_vert_ != kValueNotPresent && + !WriteEbmlElement(writer, libwebm::kMkvCbSubsamplingVert, + static_cast(cb_subsampling_vert_))) { + return false; + } + if (chroma_siting_horz_ != kValueNotPresent && + !WriteEbmlElement(writer, libwebm::kMkvChromaSitingHorz, + static_cast(chroma_siting_horz_))) { + return false; + } + if (chroma_siting_vert_ != kValueNotPresent && + !WriteEbmlElement(writer, libwebm::kMkvChromaSitingVert, + static_cast(chroma_siting_vert_))) { + return false; + } + if (range_ != kValueNotPresent && + !WriteEbmlElement(writer, libwebm::kMkvRange, + static_cast(range_))) { + return false; + } + if (transfer_characteristics_ != kValueNotPresent && + !WriteEbmlElement(writer, libwebm::kMkvTransferCharacteristics, + static_cast(transfer_characteristics_))) { + return false; + } + if (primaries_ != kValueNotPresent && + !WriteEbmlElement(writer, libwebm::kMkvPrimaries, + static_cast(primaries_))) { + return false; + } + if (max_cll_ != kValueNotPresent && + !WriteEbmlElement(writer, libwebm::kMkvMaxCLL, + static_cast(max_cll_))) { + return false; + } + if (max_fall_ != kValueNotPresent && + !WriteEbmlElement(writer, libwebm::kMkvMaxFALL, + static_cast(max_fall_))) { + return false; + } + + if (mastering_metadata_ && !mastering_metadata_->Write(writer)) + return false; + + return true; +} + +bool Colour::SetMasteringMetadata(const MasteringMetadata& mastering_metadata) { + std::auto_ptr mm_ptr(new MasteringMetadata()); + if (!mm_ptr.get()) + return false; + + mm_ptr->set_luminance_max(mastering_metadata.luminance_max()); + mm_ptr->set_luminance_min(mastering_metadata.luminance_min()); + + if (!mm_ptr->SetChromaticity(mastering_metadata.r(), mastering_metadata.g(), + mastering_metadata.b(), + mastering_metadata.white_point())) { + return false; + } + + delete mastering_metadata_; + mastering_metadata_ = mm_ptr.release(); + return true; +} + +uint64_t Colour::PayloadSize() const { + uint64_t size = 0; + + if (matrix_coefficients_ != kValueNotPresent) { + size += EbmlElementSize(libwebm::kMkvMatrixCoefficients, + static_cast(matrix_coefficients_)); + } + if (bits_per_channel_ != kValueNotPresent) { + size += EbmlElementSize(libwebm::kMkvBitsPerChannel, + static_cast(bits_per_channel_)); + } + if (chroma_subsampling_horz_ != kValueNotPresent) { + size += EbmlElementSize(libwebm::kMkvChromaSubsamplingHorz, + static_cast(chroma_subsampling_horz_)); + } + if (chroma_subsampling_vert_ != kValueNotPresent) { + size += EbmlElementSize(libwebm::kMkvChromaSubsamplingVert, + static_cast(chroma_subsampling_vert_)); + } + if (cb_subsampling_horz_ != kValueNotPresent) { + size += EbmlElementSize(libwebm::kMkvCbSubsamplingHorz, + static_cast(cb_subsampling_horz_)); + } + if (cb_subsampling_vert_ != kValueNotPresent) { + size += EbmlElementSize(libwebm::kMkvCbSubsamplingVert, + static_cast(cb_subsampling_vert_)); + } + if (chroma_siting_horz_ != kValueNotPresent) { + size += EbmlElementSize(libwebm::kMkvChromaSitingHorz, + static_cast(chroma_siting_horz_)); + } + if (chroma_siting_vert_ != kValueNotPresent) { + size += EbmlElementSize(libwebm::kMkvChromaSitingVert, + static_cast(chroma_siting_vert_)); + } + if (range_ != kValueNotPresent) { + size += EbmlElementSize(libwebm::kMkvRange, static_cast(range_)); + } + if (transfer_characteristics_ != kValueNotPresent) { + size += EbmlElementSize(libwebm::kMkvTransferCharacteristics, + static_cast(transfer_characteristics_)); + } + if (primaries_ != kValueNotPresent) { + size += EbmlElementSize(libwebm::kMkvPrimaries, + static_cast(primaries_)); + } + if (max_cll_ != kValueNotPresent) { + size += EbmlElementSize(libwebm::kMkvMaxCLL, static_cast(max_cll_)); + } + if (max_fall_ != kValueNotPresent) { + size += + EbmlElementSize(libwebm::kMkvMaxFALL, static_cast(max_fall_)); + } + + if (mastering_metadata_) + size += mastering_metadata_->MasteringMetadataSize(); + + return size; +} + +/////////////////////////////////////////////////////////////// +// +// Projection element + +uint64_t Projection::ProjectionSize() const { + uint64_t size = PayloadSize(); + + if (size > 0) + size += EbmlMasterElementSize(libwebm::kMkvProjection, size); + + return size; +} + +bool Projection::Write(IMkvWriter* writer) const { + const uint64_t size = PayloadSize(); + + // Don't write an empty element. + if (size == 0) + return true; + + if (!WriteEbmlMasterElement(writer, libwebm::kMkvProjection, size)) + return false; + + if (!WriteEbmlElement(writer, libwebm::kMkvProjectionType, + static_cast(type_))) { + return false; + } + + if (private_data_length_ > 0 && private_data_ != NULL && + !WriteEbmlElement(writer, libwebm::kMkvProjectionPrivate, private_data_, + private_data_length_)) { + return false; + } + + if (!WriteEbmlElement(writer, libwebm::kMkvProjectionPoseYaw, pose_yaw_)) + return false; + + if (!WriteEbmlElement(writer, libwebm::kMkvProjectionPosePitch, + pose_pitch_)) { + return false; + } + + if (!WriteEbmlElement(writer, libwebm::kMkvProjectionPoseRoll, pose_roll_)) { + return false; + } + + return true; +} + +bool Projection::SetProjectionPrivate(const uint8_t* data, + uint64_t data_length) { + if (data == NULL || data_length == 0) { + return false; + } + + if (data_length != static_cast(data_length)) { + return false; + } + + uint8_t* new_private_data = + new (std::nothrow) uint8_t[static_cast(data_length)]; + if (new_private_data == NULL) { + return false; + } + + delete[] private_data_; + private_data_ = new_private_data; + private_data_length_ = data_length; + memcpy(private_data_, data, static_cast(data_length)); + + return true; +} + +uint64_t Projection::PayloadSize() const { + uint64_t size = + EbmlElementSize(libwebm::kMkvProjection, static_cast(type_)); + + if (private_data_length_ > 0 && private_data_ != NULL) { + size += EbmlElementSize(libwebm::kMkvProjectionPrivate, private_data_, + private_data_length_); + } + + size += EbmlElementSize(libwebm::kMkvProjectionPoseYaw, pose_yaw_); + size += EbmlElementSize(libwebm::kMkvProjectionPosePitch, pose_pitch_); + size += EbmlElementSize(libwebm::kMkvProjectionPoseRoll, pose_roll_); + + return size; +} + +/////////////////////////////////////////////////////////////// +// +// VideoTrack Class + +VideoTrack::VideoTrack(unsigned int* seed) + : Track(seed), + display_height_(0), + display_width_(0), + pixel_height_(0), + pixel_width_(0), + crop_left_(0), + crop_right_(0), + crop_top_(0), + crop_bottom_(0), + frame_rate_(0.0), + height_(0), + stereo_mode_(0), + alpha_mode_(0), + width_(0), + colour_(NULL), + projection_(NULL) {} + +VideoTrack::~VideoTrack() { + delete colour_; + delete projection_; +} + +bool VideoTrack::SetStereoMode(uint64_t stereo_mode) { + if (stereo_mode != kMono && stereo_mode != kSideBySideLeftIsFirst && + stereo_mode != kTopBottomRightIsFirst && + stereo_mode != kTopBottomLeftIsFirst && + stereo_mode != kSideBySideRightIsFirst) + return false; + + stereo_mode_ = stereo_mode; + return true; +} + +bool VideoTrack::SetAlphaMode(uint64_t alpha_mode) { + if (alpha_mode != kNoAlpha && alpha_mode != kAlpha) + return false; + + alpha_mode_ = alpha_mode; + return true; +} + +uint64_t VideoTrack::PayloadSize() const { + const uint64_t parent_size = Track::PayloadSize(); + + uint64_t size = VideoPayloadSize(); + size += EbmlMasterElementSize(libwebm::kMkvVideo, size); + + return parent_size + size; +} + +bool VideoTrack::Write(IMkvWriter* writer) const { + if (!Track::Write(writer)) + return false; + + const uint64_t size = VideoPayloadSize(); + + if (!WriteEbmlMasterElement(writer, libwebm::kMkvVideo, size)) + return false; + + const int64_t payload_position = writer->Position(); + if (payload_position < 0) + return false; + + if (!WriteEbmlElement( + writer, libwebm::kMkvPixelWidth, + static_cast((pixel_width_ > 0) ? pixel_width_ : width_))) + return false; + if (!WriteEbmlElement( + writer, libwebm::kMkvPixelHeight, + static_cast((pixel_height_ > 0) ? pixel_height_ : height_))) + return false; + if (display_width_ > 0) { + if (!WriteEbmlElement(writer, libwebm::kMkvDisplayWidth, + static_cast(display_width_))) + return false; + } + if (display_height_ > 0) { + if (!WriteEbmlElement(writer, libwebm::kMkvDisplayHeight, + static_cast(display_height_))) + return false; + } + if (crop_left_ > 0) { + if (!WriteEbmlElement(writer, libwebm::kMkvPixelCropLeft, + static_cast(crop_left_))) + return false; + } + if (crop_right_ > 0) { + if (!WriteEbmlElement(writer, libwebm::kMkvPixelCropRight, + static_cast(crop_right_))) + return false; + } + if (crop_top_ > 0) { + if (!WriteEbmlElement(writer, libwebm::kMkvPixelCropTop, + static_cast(crop_top_))) + return false; + } + if (crop_bottom_ > 0) { + if (!WriteEbmlElement(writer, libwebm::kMkvPixelCropBottom, + static_cast(crop_bottom_))) + return false; + } + if (stereo_mode_ > kMono) { + if (!WriteEbmlElement(writer, libwebm::kMkvStereoMode, + static_cast(stereo_mode_))) + return false; + } + if (alpha_mode_ > kNoAlpha) { + if (!WriteEbmlElement(writer, libwebm::kMkvAlphaMode, + static_cast(alpha_mode_))) + return false; + } + if (frame_rate_ > 0.0) { + if (!WriteEbmlElement(writer, libwebm::kMkvFrameRate, + static_cast(frame_rate_))) { + return false; + } + } + if (colour_) { + if (!colour_->Write(writer)) + return false; + } + if (projection_) { + if (!projection_->Write(writer)) + return false; + } + + const int64_t stop_position = writer->Position(); + if (stop_position < 0 || + stop_position - payload_position != static_cast(size)) { + return false; + } + + return true; +} + +bool VideoTrack::SetColour(const Colour& colour) { + std::auto_ptr colour_ptr(new Colour()); + if (!colour_ptr.get()) + return false; + + if (colour.mastering_metadata()) { + if (!colour_ptr->SetMasteringMetadata(*colour.mastering_metadata())) + return false; + } + + colour_ptr->set_matrix_coefficients(colour.matrix_coefficients()); + colour_ptr->set_bits_per_channel(colour.bits_per_channel()); + colour_ptr->set_chroma_subsampling_horz(colour.chroma_subsampling_horz()); + colour_ptr->set_chroma_subsampling_vert(colour.chroma_subsampling_vert()); + colour_ptr->set_cb_subsampling_horz(colour.cb_subsampling_horz()); + colour_ptr->set_cb_subsampling_vert(colour.cb_subsampling_vert()); + colour_ptr->set_chroma_siting_horz(colour.chroma_siting_horz()); + colour_ptr->set_chroma_siting_vert(colour.chroma_siting_vert()); + colour_ptr->set_range(colour.range()); + colour_ptr->set_transfer_characteristics(colour.transfer_characteristics()); + colour_ptr->set_primaries(colour.primaries()); + colour_ptr->set_max_cll(colour.max_cll()); + colour_ptr->set_max_fall(colour.max_fall()); + delete colour_; + colour_ = colour_ptr.release(); + return true; +} + +bool VideoTrack::SetProjection(const Projection& projection) { + std::auto_ptr projection_ptr(new Projection()); + if (!projection_ptr.get()) + return false; + + if (projection.private_data()) { + if (!projection_ptr->SetProjectionPrivate( + projection.private_data(), projection.private_data_length())) { + return false; + } + } + + projection_ptr->set_type(projection.type()); + projection_ptr->set_pose_yaw(projection.pose_yaw()); + projection_ptr->set_pose_pitch(projection.pose_pitch()); + projection_ptr->set_pose_roll(projection.pose_roll()); + delete projection_; + projection_ = projection_ptr.release(); + return true; +} + +uint64_t VideoTrack::VideoPayloadSize() const { + uint64_t size = EbmlElementSize( + libwebm::kMkvPixelWidth, + static_cast((pixel_width_ > 0) ? pixel_width_ : width_)); + size += EbmlElementSize( + libwebm::kMkvPixelHeight, + static_cast((pixel_height_ > 0) ? pixel_height_ : height_)); + if (display_width_ > 0) + size += EbmlElementSize(libwebm::kMkvDisplayWidth, + static_cast(display_width_)); + if (display_height_ > 0) + size += EbmlElementSize(libwebm::kMkvDisplayHeight, + static_cast(display_height_)); + if (crop_left_ > 0) + size += EbmlElementSize(libwebm::kMkvPixelCropLeft, + static_cast(crop_left_)); + if (crop_right_ > 0) + size += EbmlElementSize(libwebm::kMkvPixelCropRight, + static_cast(crop_right_)); + if (crop_top_ > 0) + size += EbmlElementSize(libwebm::kMkvPixelCropTop, + static_cast(crop_top_)); + if (crop_bottom_ > 0) + size += EbmlElementSize(libwebm::kMkvPixelCropBottom, + static_cast(crop_bottom_)); + if (stereo_mode_ > kMono) + size += EbmlElementSize(libwebm::kMkvStereoMode, + static_cast(stereo_mode_)); + if (alpha_mode_ > kNoAlpha) + size += EbmlElementSize(libwebm::kMkvAlphaMode, + static_cast(alpha_mode_)); + if (frame_rate_ > 0.0) + size += EbmlElementSize(libwebm::kMkvFrameRate, + static_cast(frame_rate_)); + if (colour_) + size += colour_->ColourSize(); + if (projection_) + size += projection_->ProjectionSize(); + + return size; +} + +/////////////////////////////////////////////////////////////// +// +// AudioTrack Class + +AudioTrack::AudioTrack(unsigned int* seed) + : Track(seed), bit_depth_(0), channels_(1), sample_rate_(0.0) {} + +AudioTrack::~AudioTrack() {} + +uint64_t AudioTrack::PayloadSize() const { + const uint64_t parent_size = Track::PayloadSize(); + + uint64_t size = EbmlElementSize(libwebm::kMkvSamplingFrequency, + static_cast(sample_rate_)); + size += + EbmlElementSize(libwebm::kMkvChannels, static_cast(channels_)); + if (bit_depth_ > 0) + size += + EbmlElementSize(libwebm::kMkvBitDepth, static_cast(bit_depth_)); + size += EbmlMasterElementSize(libwebm::kMkvAudio, size); + + return parent_size + size; +} + +bool AudioTrack::Write(IMkvWriter* writer) const { + if (!Track::Write(writer)) + return false; + + // Calculate AudioSettings size. + uint64_t size = EbmlElementSize(libwebm::kMkvSamplingFrequency, + static_cast(sample_rate_)); + size += + EbmlElementSize(libwebm::kMkvChannels, static_cast(channels_)); + if (bit_depth_ > 0) + size += + EbmlElementSize(libwebm::kMkvBitDepth, static_cast(bit_depth_)); + + if (!WriteEbmlMasterElement(writer, libwebm::kMkvAudio, size)) + return false; + + const int64_t payload_position = writer->Position(); + if (payload_position < 0) + return false; + + if (!WriteEbmlElement(writer, libwebm::kMkvSamplingFrequency, + static_cast(sample_rate_))) + return false; + if (!WriteEbmlElement(writer, libwebm::kMkvChannels, + static_cast(channels_))) + return false; + if (bit_depth_ > 0) + if (!WriteEbmlElement(writer, libwebm::kMkvBitDepth, + static_cast(bit_depth_))) + return false; + + const int64_t stop_position = writer->Position(); + if (stop_position < 0 || + stop_position - payload_position != static_cast(size)) + return false; + + return true; +} + +/////////////////////////////////////////////////////////////// +// +// Tracks Class + +const char Tracks::kOpusCodecId[] = "A_OPUS"; +const char Tracks::kVorbisCodecId[] = "A_VORBIS"; +const char Tracks::kVp8CodecId[] = "V_VP8"; +const char Tracks::kVp9CodecId[] = "V_VP9"; +const char Tracks::kVp10CodecId[] = "V_VP10"; +const char Tracks::kWebVttCaptionsId[] = "D_WEBVTT/CAPTIONS"; +const char Tracks::kWebVttDescriptionsId[] = "D_WEBVTT/DESCRIPTIONS"; +const char Tracks::kWebVttMetadataId[] = "D_WEBVTT/METADATA"; +const char Tracks::kWebVttSubtitlesId[] = "D_WEBVTT/SUBTITLES"; + +Tracks::Tracks() + : track_entries_(NULL), track_entries_size_(0), wrote_tracks_(false) {} + +Tracks::~Tracks() { + if (track_entries_) { + for (uint32_t i = 0; i < track_entries_size_; ++i) { + Track* const track = track_entries_[i]; + delete track; + } + delete[] track_entries_; + } +} + +bool Tracks::AddTrack(Track* track, int32_t number) { + if (number < 0 || wrote_tracks_) + return false; + + // This muxer only supports track numbers in the range [1, 126], in + // order to be able (to use Matroska integer representation) to + // serialize the block header (of which the track number is a part) + // for a frame using exactly 4 bytes. + + if (number > 0x7E) + return false; + + uint32_t track_num = number; + + if (track_num > 0) { + // Check to make sure a track does not already have |track_num|. + for (uint32_t i = 0; i < track_entries_size_; ++i) { + if (track_entries_[i]->number() == track_num) + return false; + } + } + + const uint32_t count = track_entries_size_ + 1; + + Track** const track_entries = new (std::nothrow) Track*[count]; // NOLINT + if (!track_entries) + return false; + + for (uint32_t i = 0; i < track_entries_size_; ++i) { + track_entries[i] = track_entries_[i]; + } + + delete[] track_entries_; + + // Find the lowest availible track number > 0. + if (track_num == 0) { + track_num = count; + + // Check to make sure a track does not already have |track_num|. + bool exit = false; + do { + exit = true; + for (uint32_t i = 0; i < track_entries_size_; ++i) { + if (track_entries[i]->number() == track_num) { + track_num++; + exit = false; + break; + } + } + } while (!exit); + } + track->set_number(track_num); + + track_entries_ = track_entries; + track_entries_[track_entries_size_] = track; + track_entries_size_ = count; + return true; +} + +const Track* Tracks::GetTrackByIndex(uint32_t index) const { + if (track_entries_ == NULL) + return NULL; + + if (index >= track_entries_size_) + return NULL; + + return track_entries_[index]; +} + +Track* Tracks::GetTrackByNumber(uint64_t track_number) const { + const int32_t count = track_entries_size(); + for (int32_t i = 0; i < count; ++i) { + if (track_entries_[i]->number() == track_number) + return track_entries_[i]; + } + + return NULL; +} + +bool Tracks::TrackIsAudio(uint64_t track_number) const { + const Track* const track = GetTrackByNumber(track_number); + + if (track->type() == kAudio) + return true; + + return false; +} + +bool Tracks::TrackIsVideo(uint64_t track_number) const { + const Track* const track = GetTrackByNumber(track_number); + + if (track->type() == kVideo) + return true; + + return false; +} + +bool Tracks::Write(IMkvWriter* writer) const { + uint64_t size = 0; + const int32_t count = track_entries_size(); + for (int32_t i = 0; i < count; ++i) { + const Track* const track = GetTrackByIndex(i); + + if (!track) + return false; + + size += track->Size(); + } + + if (!WriteEbmlMasterElement(writer, libwebm::kMkvTracks, size)) + return false; + + const int64_t payload_position = writer->Position(); + if (payload_position < 0) + return false; + + for (int32_t i = 0; i < count; ++i) { + const Track* const track = GetTrackByIndex(i); + if (!track->Write(writer)) + return false; + } + + const int64_t stop_position = writer->Position(); + if (stop_position < 0 || + stop_position - payload_position != static_cast(size)) + return false; + + wrote_tracks_ = true; + return true; +} + +/////////////////////////////////////////////////////////////// +// +// Chapter Class + +bool Chapter::set_id(const char* id) { return StrCpy(id, &id_); } + +void Chapter::set_time(const Segment& segment, uint64_t start_ns, + uint64_t end_ns) { + const SegmentInfo* const info = segment.GetSegmentInfo(); + const uint64_t timecode_scale = info->timecode_scale(); + start_timecode_ = start_ns / timecode_scale; + end_timecode_ = end_ns / timecode_scale; +} + +bool Chapter::add_string(const char* title, const char* language, + const char* country) { + if (!ExpandDisplaysArray()) + return false; + + Display& d = displays_[displays_count_++]; + d.Init(); + + if (!d.set_title(title)) + return false; + + if (!d.set_language(language)) + return false; + + if (!d.set_country(country)) + return false; + + return true; +} + +Chapter::Chapter() { + // This ctor only constructs the object. Proper initialization is + // done in Init() (called in Chapters::AddChapter()). The only + // reason we bother implementing this ctor is because we had to + // declare it as private (along with the dtor), in order to prevent + // clients from creating Chapter instances (a privelege we grant + // only to the Chapters class). Doing no initialization here also + // means that creating arrays of chapter objects is more efficient, + // because we only initialize each new chapter object as it becomes + // active on the array. +} + +Chapter::~Chapter() {} + +void Chapter::Init(unsigned int* seed) { + id_ = NULL; + start_timecode_ = 0; + end_timecode_ = 0; + displays_ = NULL; + displays_size_ = 0; + displays_count_ = 0; + uid_ = MakeUID(seed); +} + +void Chapter::ShallowCopy(Chapter* dst) const { + dst->id_ = id_; + dst->start_timecode_ = start_timecode_; + dst->end_timecode_ = end_timecode_; + dst->uid_ = uid_; + dst->displays_ = displays_; + dst->displays_size_ = displays_size_; + dst->displays_count_ = displays_count_; +} + +void Chapter::Clear() { + StrCpy(NULL, &id_); + + while (displays_count_ > 0) { + Display& d = displays_[--displays_count_]; + d.Clear(); + } + + delete[] displays_; + displays_ = NULL; + + displays_size_ = 0; +} + +bool Chapter::ExpandDisplaysArray() { + if (displays_size_ > displays_count_) + return true; // nothing to do yet + + const int size = (displays_size_ == 0) ? 1 : 2 * displays_size_; + + Display* const displays = new (std::nothrow) Display[size]; // NOLINT + if (displays == NULL) + return false; + + for (int idx = 0; idx < displays_count_; ++idx) { + displays[idx] = displays_[idx]; // shallow copy + } + + delete[] displays_; + + displays_ = displays; + displays_size_ = size; + + return true; +} + +uint64_t Chapter::WriteAtom(IMkvWriter* writer) const { + uint64_t payload_size = + EbmlElementSize(libwebm::kMkvChapterStringUID, id_) + + EbmlElementSize(libwebm::kMkvChapterUID, static_cast(uid_)) + + EbmlElementSize(libwebm::kMkvChapterTimeStart, + static_cast(start_timecode_)) + + EbmlElementSize(libwebm::kMkvChapterTimeEnd, + static_cast(end_timecode_)); + + for (int idx = 0; idx < displays_count_; ++idx) { + const Display& d = displays_[idx]; + payload_size += d.WriteDisplay(NULL); + } + + const uint64_t atom_size = + EbmlMasterElementSize(libwebm::kMkvChapterAtom, payload_size) + + payload_size; + + if (writer == NULL) + return atom_size; + + const int64_t start = writer->Position(); + + if (!WriteEbmlMasterElement(writer, libwebm::kMkvChapterAtom, payload_size)) + return 0; + + if (!WriteEbmlElement(writer, libwebm::kMkvChapterStringUID, id_)) + return 0; + + if (!WriteEbmlElement(writer, libwebm::kMkvChapterUID, + static_cast(uid_))) + return 0; + + if (!WriteEbmlElement(writer, libwebm::kMkvChapterTimeStart, + static_cast(start_timecode_))) + return 0; + + if (!WriteEbmlElement(writer, libwebm::kMkvChapterTimeEnd, + static_cast(end_timecode_))) + return 0; + + for (int idx = 0; idx < displays_count_; ++idx) { + const Display& d = displays_[idx]; + + if (!d.WriteDisplay(writer)) + return 0; + } + + const int64_t stop = writer->Position(); + + if (stop >= start && uint64_t(stop - start) != atom_size) + return 0; + + return atom_size; +} + +void Chapter::Display::Init() { + title_ = NULL; + language_ = NULL; + country_ = NULL; +} + +void Chapter::Display::Clear() { + StrCpy(NULL, &title_); + StrCpy(NULL, &language_); + StrCpy(NULL, &country_); +} + +bool Chapter::Display::set_title(const char* title) { + return StrCpy(title, &title_); +} + +bool Chapter::Display::set_language(const char* language) { + return StrCpy(language, &language_); +} + +bool Chapter::Display::set_country(const char* country) { + return StrCpy(country, &country_); +} + +uint64_t Chapter::Display::WriteDisplay(IMkvWriter* writer) const { + uint64_t payload_size = EbmlElementSize(libwebm::kMkvChapString, title_); + + if (language_) + payload_size += EbmlElementSize(libwebm::kMkvChapLanguage, language_); + + if (country_) + payload_size += EbmlElementSize(libwebm::kMkvChapCountry, country_); + + const uint64_t display_size = + EbmlMasterElementSize(libwebm::kMkvChapterDisplay, payload_size) + + payload_size; + + if (writer == NULL) + return display_size; + + const int64_t start = writer->Position(); + + if (!WriteEbmlMasterElement(writer, libwebm::kMkvChapterDisplay, + payload_size)) + return 0; + + if (!WriteEbmlElement(writer, libwebm::kMkvChapString, title_)) + return 0; + + if (language_) { + if (!WriteEbmlElement(writer, libwebm::kMkvChapLanguage, language_)) + return 0; + } + + if (country_) { + if (!WriteEbmlElement(writer, libwebm::kMkvChapCountry, country_)) + return 0; + } + + const int64_t stop = writer->Position(); + + if (stop >= start && uint64_t(stop - start) != display_size) + return 0; + + return display_size; +} + +/////////////////////////////////////////////////////////////// +// +// Chapters Class + +Chapters::Chapters() : chapters_size_(0), chapters_count_(0), chapters_(NULL) {} + +Chapters::~Chapters() { + while (chapters_count_ > 0) { + Chapter& chapter = chapters_[--chapters_count_]; + chapter.Clear(); + } + + delete[] chapters_; + chapters_ = NULL; +} + +int Chapters::Count() const { return chapters_count_; } + +Chapter* Chapters::AddChapter(unsigned int* seed) { + if (!ExpandChaptersArray()) + return NULL; + + Chapter& chapter = chapters_[chapters_count_++]; + chapter.Init(seed); + + return &chapter; +} + +bool Chapters::Write(IMkvWriter* writer) const { + if (writer == NULL) + return false; + + const uint64_t payload_size = WriteEdition(NULL); // return size only + + if (!WriteEbmlMasterElement(writer, libwebm::kMkvChapters, payload_size)) + return false; + + const int64_t start = writer->Position(); + + if (WriteEdition(writer) == 0) // error + return false; + + const int64_t stop = writer->Position(); + + if (stop >= start && uint64_t(stop - start) != payload_size) + return false; + + return true; +} + +bool Chapters::ExpandChaptersArray() { + if (chapters_size_ > chapters_count_) + return true; // nothing to do yet + + const int size = (chapters_size_ == 0) ? 1 : 2 * chapters_size_; + + Chapter* const chapters = new (std::nothrow) Chapter[size]; // NOLINT + if (chapters == NULL) + return false; + + for (int idx = 0; idx < chapters_count_; ++idx) { + const Chapter& src = chapters_[idx]; + Chapter* const dst = chapters + idx; + src.ShallowCopy(dst); + } + + delete[] chapters_; + + chapters_ = chapters; + chapters_size_ = size; + + return true; +} + +uint64_t Chapters::WriteEdition(IMkvWriter* writer) const { + uint64_t payload_size = 0; + + for (int idx = 0; idx < chapters_count_; ++idx) { + const Chapter& chapter = chapters_[idx]; + payload_size += chapter.WriteAtom(NULL); + } + + const uint64_t edition_size = + EbmlMasterElementSize(libwebm::kMkvEditionEntry, payload_size) + + payload_size; + + if (writer == NULL) // return size only + return edition_size; + + const int64_t start = writer->Position(); + + if (!WriteEbmlMasterElement(writer, libwebm::kMkvEditionEntry, payload_size)) + return 0; // error + + for (int idx = 0; idx < chapters_count_; ++idx) { + const Chapter& chapter = chapters_[idx]; + + const uint64_t chapter_size = chapter.WriteAtom(writer); + if (chapter_size == 0) // error + return 0; + } + + const int64_t stop = writer->Position(); + + if (stop >= start && uint64_t(stop - start) != edition_size) + return 0; + + return edition_size; +} + +// Tag Class + +bool Tag::add_simple_tag(const char* tag_name, const char* tag_string) { + if (!ExpandSimpleTagsArray()) + return false; + + SimpleTag& st = simple_tags_[simple_tags_count_++]; + st.Init(); + + if (!st.set_tag_name(tag_name)) + return false; + + if (!st.set_tag_string(tag_string)) + return false; + + return true; +} + +Tag::Tag() { + simple_tags_ = NULL; + simple_tags_size_ = 0; + simple_tags_count_ = 0; +} + +Tag::~Tag() {} + +void Tag::ShallowCopy(Tag* dst) const { + dst->simple_tags_ = simple_tags_; + dst->simple_tags_size_ = simple_tags_size_; + dst->simple_tags_count_ = simple_tags_count_; +} + +void Tag::Clear() { + while (simple_tags_count_ > 0) { + SimpleTag& st = simple_tags_[--simple_tags_count_]; + st.Clear(); + } + + delete[] simple_tags_; + simple_tags_ = NULL; + + simple_tags_size_ = 0; +} + +bool Tag::ExpandSimpleTagsArray() { + if (simple_tags_size_ > simple_tags_count_) + return true; // nothing to do yet + + const int size = (simple_tags_size_ == 0) ? 1 : 2 * simple_tags_size_; + + SimpleTag* const simple_tags = new (std::nothrow) SimpleTag[size]; // NOLINT + if (simple_tags == NULL) + return false; + + for (int idx = 0; idx < simple_tags_count_; ++idx) { + simple_tags[idx] = simple_tags_[idx]; // shallow copy + } + + delete[] simple_tags_; + + simple_tags_ = simple_tags; + simple_tags_size_ = size; + + return true; +} + +uint64_t Tag::Write(IMkvWriter* writer) const { + uint64_t payload_size = 0; + + for (int idx = 0; idx < simple_tags_count_; ++idx) { + const SimpleTag& st = simple_tags_[idx]; + payload_size += st.Write(NULL); + } + + const uint64_t tag_size = + EbmlMasterElementSize(libwebm::kMkvTag, payload_size) + payload_size; + + if (writer == NULL) + return tag_size; + + const int64_t start = writer->Position(); + + if (!WriteEbmlMasterElement(writer, libwebm::kMkvTag, payload_size)) + return 0; + + for (int idx = 0; idx < simple_tags_count_; ++idx) { + const SimpleTag& st = simple_tags_[idx]; + + if (!st.Write(writer)) + return 0; + } + + const int64_t stop = writer->Position(); + + if (stop >= start && uint64_t(stop - start) != tag_size) + return 0; + + return tag_size; +} + +// Tag::SimpleTag + +void Tag::SimpleTag::Init() { + tag_name_ = NULL; + tag_string_ = NULL; +} + +void Tag::SimpleTag::Clear() { + StrCpy(NULL, &tag_name_); + StrCpy(NULL, &tag_string_); +} + +bool Tag::SimpleTag::set_tag_name(const char* tag_name) { + return StrCpy(tag_name, &tag_name_); +} + +bool Tag::SimpleTag::set_tag_string(const char* tag_string) { + return StrCpy(tag_string, &tag_string_); +} + +uint64_t Tag::SimpleTag::Write(IMkvWriter* writer) const { + uint64_t payload_size = EbmlElementSize(libwebm::kMkvTagName, tag_name_); + + payload_size += EbmlElementSize(libwebm::kMkvTagString, tag_string_); + + const uint64_t simple_tag_size = + EbmlMasterElementSize(libwebm::kMkvSimpleTag, payload_size) + + payload_size; + + if (writer == NULL) + return simple_tag_size; + + const int64_t start = writer->Position(); + + if (!WriteEbmlMasterElement(writer, libwebm::kMkvSimpleTag, payload_size)) + return 0; + + if (!WriteEbmlElement(writer, libwebm::kMkvTagName, tag_name_)) + return 0; + + if (!WriteEbmlElement(writer, libwebm::kMkvTagString, tag_string_)) + return 0; + + const int64_t stop = writer->Position(); + + if (stop >= start && uint64_t(stop - start) != simple_tag_size) + return 0; + + return simple_tag_size; +} + +// Tags Class + +Tags::Tags() : tags_size_(0), tags_count_(0), tags_(NULL) {} + +Tags::~Tags() { + while (tags_count_ > 0) { + Tag& tag = tags_[--tags_count_]; + tag.Clear(); + } + + delete[] tags_; + tags_ = NULL; +} + +int Tags::Count() const { return tags_count_; } + +Tag* Tags::AddTag() { + if (!ExpandTagsArray()) + return NULL; + + Tag& tag = tags_[tags_count_++]; + + return &tag; +} + +bool Tags::Write(IMkvWriter* writer) const { + if (writer == NULL) + return false; + + uint64_t payload_size = 0; + + for (int idx = 0; idx < tags_count_; ++idx) { + const Tag& tag = tags_[idx]; + payload_size += tag.Write(NULL); + } + + if (!WriteEbmlMasterElement(writer, libwebm::kMkvTags, payload_size)) + return false; + + const int64_t start = writer->Position(); + + for (int idx = 0; idx < tags_count_; ++idx) { + const Tag& tag = tags_[idx]; + + const uint64_t tag_size = tag.Write(writer); + if (tag_size == 0) // error + return 0; + } + + const int64_t stop = writer->Position(); + + if (stop >= start && uint64_t(stop - start) != payload_size) + return false; + + return true; +} + +bool Tags::ExpandTagsArray() { + if (tags_size_ > tags_count_) + return true; // nothing to do yet + + const int size = (tags_size_ == 0) ? 1 : 2 * tags_size_; + + Tag* const tags = new (std::nothrow) Tag[size]; // NOLINT + if (tags == NULL) + return false; + + for (int idx = 0; idx < tags_count_; ++idx) { + const Tag& src = tags_[idx]; + Tag* const dst = tags + idx; + src.ShallowCopy(dst); + } + + delete[] tags_; + + tags_ = tags; + tags_size_ = size; + + return true; +} + +/////////////////////////////////////////////////////////////// +// +// Cluster class + +Cluster::Cluster(uint64_t timecode, int64_t cues_pos, uint64_t timecode_scale, + bool write_last_frame_with_duration, bool fixed_size_timecode) + : blocks_added_(0), + finalized_(false), + fixed_size_timecode_(fixed_size_timecode), + header_written_(false), + payload_size_(0), + position_for_cues_(cues_pos), + size_position_(-1), + timecode_(timecode), + timecode_scale_(timecode_scale), + write_last_frame_with_duration_(write_last_frame_with_duration), + writer_(NULL) {} + +Cluster::~Cluster() { + // Delete any stored frames that are left behind. This will happen if the + // Cluster was not Finalized for whatever reason. + while (!stored_frames_.empty()) { + while (!stored_frames_.begin()->second.empty()) { + delete stored_frames_.begin()->second.front(); + stored_frames_.begin()->second.pop_front(); + } + stored_frames_.erase(stored_frames_.begin()->first); + } +} + +bool Cluster::Init(IMkvWriter* ptr_writer) { + if (!ptr_writer) { + return false; + } + writer_ = ptr_writer; + return true; +} + +bool Cluster::AddFrame(const Frame* const frame) { + return QueueOrWriteFrame(frame); +} + +bool Cluster::AddFrame(const uint8_t* data, uint64_t length, + uint64_t track_number, uint64_t abs_timecode, + bool is_key) { + Frame frame; + if (!frame.Init(data, length)) + return false; + frame.set_track_number(track_number); + frame.set_timestamp(abs_timecode); + frame.set_is_key(is_key); + return QueueOrWriteFrame(&frame); +} + +bool Cluster::AddFrameWithAdditional(const uint8_t* data, uint64_t length, + const uint8_t* additional, + uint64_t additional_length, + uint64_t add_id, uint64_t track_number, + uint64_t abs_timecode, bool is_key) { + if (!additional || additional_length == 0) { + return false; + } + Frame frame; + if (!frame.Init(data, length) || + !frame.AddAdditionalData(additional, additional_length, add_id)) { + return false; + } + frame.set_track_number(track_number); + frame.set_timestamp(abs_timecode); + frame.set_is_key(is_key); + return QueueOrWriteFrame(&frame); +} + +bool Cluster::AddFrameWithDiscardPadding(const uint8_t* data, uint64_t length, + int64_t discard_padding, + uint64_t track_number, + uint64_t abs_timecode, bool is_key) { + Frame frame; + if (!frame.Init(data, length)) + return false; + frame.set_discard_padding(discard_padding); + frame.set_track_number(track_number); + frame.set_timestamp(abs_timecode); + frame.set_is_key(is_key); + return QueueOrWriteFrame(&frame); +} + +bool Cluster::AddMetadata(const uint8_t* data, uint64_t length, + uint64_t track_number, uint64_t abs_timecode, + uint64_t duration_timecode) { + Frame frame; + if (!frame.Init(data, length)) + return false; + frame.set_track_number(track_number); + frame.set_timestamp(abs_timecode); + frame.set_duration(duration_timecode); + frame.set_is_key(true); // All metadata blocks are keyframes. + return QueueOrWriteFrame(&frame); +} + +void Cluster::AddPayloadSize(uint64_t size) { payload_size_ += size; } + +bool Cluster::Finalize() { + return !write_last_frame_with_duration_ && Finalize(false, 0); +} + +bool Cluster::Finalize(bool set_last_frame_duration, uint64_t duration) { + if (!writer_ || finalized_) + return false; + + if (write_last_frame_with_duration_) { + // Write out held back Frames. This essentially performs a k-way merge + // across all tracks in the increasing order of timestamps. + while (!stored_frames_.empty()) { + Frame* frame = stored_frames_.begin()->second.front(); + + // Get the next frame to write (frame with least timestamp across all + // tracks). + for (FrameMapIterator frames_iterator = ++stored_frames_.begin(); + frames_iterator != stored_frames_.end(); ++frames_iterator) { + if (frames_iterator->second.front()->timestamp() < frame->timestamp()) { + frame = frames_iterator->second.front(); + } + } + + // Set the duration if it's the last frame for the track. + if (set_last_frame_duration && + stored_frames_[frame->track_number()].size() == 1 && + !frame->duration_set()) { + frame->set_duration(duration - frame->timestamp()); + if (!frame->is_key() && !frame->reference_block_timestamp_set()) { + frame->set_reference_block_timestamp( + last_block_timestamp_[frame->track_number()]); + } + } + + // Write the frame and remove it from |stored_frames_|. + const bool wrote_frame = DoWriteFrame(frame); + stored_frames_[frame->track_number()].pop_front(); + if (stored_frames_[frame->track_number()].empty()) { + stored_frames_.erase(frame->track_number()); + } + delete frame; + if (!wrote_frame) + return false; + } + } + + if (size_position_ == -1) + return false; + + if (writer_->Seekable()) { + const int64_t pos = writer_->Position(); + + if (writer_->Position(size_position_)) + return false; + + if (WriteUIntSize(writer_, payload_size(), 8)) + return false; + + if (writer_->Position(pos)) + return false; + } + + finalized_ = true; + + return true; +} + +uint64_t Cluster::Size() const { + const uint64_t element_size = + EbmlMasterElementSize(libwebm::kMkvCluster, 0xFFFFFFFFFFFFFFFFULL) + + payload_size_; + return element_size; +} + +bool Cluster::PreWriteBlock() { + if (finalized_) + return false; + + if (!header_written_) { + if (!WriteClusterHeader()) + return false; + } + + return true; +} + +void Cluster::PostWriteBlock(uint64_t element_size) { + AddPayloadSize(element_size); + ++blocks_added_; +} + +int64_t Cluster::GetRelativeTimecode(int64_t abs_timecode) const { + const int64_t cluster_timecode = this->Cluster::timecode(); + const int64_t rel_timecode = + static_cast(abs_timecode) - cluster_timecode; + + if (rel_timecode < 0 || rel_timecode > kMaxBlockTimecode) + return -1; + + return rel_timecode; +} + +bool Cluster::DoWriteFrame(const Frame* const frame) { + if (!frame || !frame->IsValid()) + return false; + + if (!PreWriteBlock()) + return false; + + const uint64_t element_size = WriteFrame(writer_, frame, this); + if (element_size == 0) + return false; + + PostWriteBlock(element_size); + last_block_timestamp_[frame->track_number()] = frame->timestamp(); + return true; +} + +bool Cluster::QueueOrWriteFrame(const Frame* const frame) { + if (!frame || !frame->IsValid()) + return false; + + // If |write_last_frame_with_duration_| is not set, then write the frame right + // away. + if (!write_last_frame_with_duration_) { + return DoWriteFrame(frame); + } + + // Queue the current frame. + uint64_t track_number = frame->track_number(); + Frame* const frame_to_store = new Frame(); + frame_to_store->CopyFrom(*frame); + stored_frames_[track_number].push_back(frame_to_store); + + // Iterate through all queued frames in the current track except the last one + // and write it if it is okay to do so (i.e.) no other track has an held back + // frame with timestamp <= the timestamp of the frame in question. + std::vector::iterator> frames_to_erase; + for (std::list::iterator + current_track_iterator = stored_frames_[track_number].begin(), + end = --stored_frames_[track_number].end(); + current_track_iterator != end; ++current_track_iterator) { + const Frame* const frame_to_write = *current_track_iterator; + bool okay_to_write = true; + for (FrameMapIterator track_iterator = stored_frames_.begin(); + track_iterator != stored_frames_.end(); ++track_iterator) { + if (track_iterator->first == track_number) { + continue; + } + if (track_iterator->second.front()->timestamp() < + frame_to_write->timestamp()) { + okay_to_write = false; + break; + } + } + if (okay_to_write) { + const bool wrote_frame = DoWriteFrame(frame_to_write); + delete frame_to_write; + if (!wrote_frame) + return false; + frames_to_erase.push_back(current_track_iterator); + } else { + break; + } + } + for (std::vector::iterator>::iterator iterator = + frames_to_erase.begin(); + iterator != frames_to_erase.end(); ++iterator) { + stored_frames_[track_number].erase(*iterator); + } + return true; +} + +bool Cluster::WriteClusterHeader() { + if (finalized_) + return false; + + if (WriteID(writer_, libwebm::kMkvCluster)) + return false; + + // Save for later. + size_position_ = writer_->Position(); + + // Write "unknown" (EBML coded -1) as cluster size value. We need to write 8 + // bytes because we do not know how big our cluster will be. + if (SerializeInt(writer_, kEbmlUnknownValue, 8)) + return false; + + if (!WriteEbmlElement(writer_, libwebm::kMkvTimecode, timecode(), + fixed_size_timecode_ ? 8 : 0)) { + return false; + } + AddPayloadSize(EbmlElementSize(libwebm::kMkvTimecode, timecode(), + fixed_size_timecode_ ? 8 : 0)); + header_written_ = true; + + return true; +} + +/////////////////////////////////////////////////////////////// +// +// SeekHead Class + +SeekHead::SeekHead() : start_pos_(0ULL) { + for (int32_t i = 0; i < kSeekEntryCount; ++i) { + seek_entry_id_[i] = 0; + seek_entry_pos_[i] = 0; + } +} + +SeekHead::~SeekHead() {} + +bool SeekHead::Finalize(IMkvWriter* writer) const { + if (writer->Seekable()) { + if (start_pos_ == -1) + return false; + + uint64_t payload_size = 0; + uint64_t entry_size[kSeekEntryCount]; + + for (int32_t i = 0; i < kSeekEntryCount; ++i) { + if (seek_entry_id_[i] != 0) { + entry_size[i] = EbmlElementSize(libwebm::kMkvSeekID, + static_cast(seek_entry_id_[i])); + entry_size[i] += EbmlElementSize( + libwebm::kMkvSeekPosition, static_cast(seek_entry_pos_[i])); + + payload_size += + EbmlMasterElementSize(libwebm::kMkvSeek, entry_size[i]) + + entry_size[i]; + } + } + + // No SeekHead elements + if (payload_size == 0) + return true; + + const int64_t pos = writer->Position(); + if (writer->Position(start_pos_)) + return false; + + if (!WriteEbmlMasterElement(writer, libwebm::kMkvSeekHead, payload_size)) + return false; + + for (int32_t i = 0; i < kSeekEntryCount; ++i) { + if (seek_entry_id_[i] != 0) { + if (!WriteEbmlMasterElement(writer, libwebm::kMkvSeek, entry_size[i])) + return false; + + if (!WriteEbmlElement(writer, libwebm::kMkvSeekID, + static_cast(seek_entry_id_[i]))) + return false; + + if (!WriteEbmlElement(writer, libwebm::kMkvSeekPosition, + static_cast(seek_entry_pos_[i]))) + return false; + } + } + + const uint64_t total_entry_size = kSeekEntryCount * MaxEntrySize(); + const uint64_t total_size = + EbmlMasterElementSize(libwebm::kMkvSeekHead, total_entry_size) + + total_entry_size; + const int64_t size_left = total_size - (writer->Position() - start_pos_); + + const uint64_t bytes_written = WriteVoidElement(writer, size_left); + if (!bytes_written) + return false; + + if (writer->Position(pos)) + return false; + } + + return true; +} + +bool SeekHead::Write(IMkvWriter* writer) { + const uint64_t entry_size = kSeekEntryCount * MaxEntrySize(); + const uint64_t size = + EbmlMasterElementSize(libwebm::kMkvSeekHead, entry_size); + + start_pos_ = writer->Position(); + + const uint64_t bytes_written = WriteVoidElement(writer, size + entry_size); + if (!bytes_written) + return false; + + return true; +} + +bool SeekHead::AddSeekEntry(uint32_t id, uint64_t pos) { + for (int32_t i = 0; i < kSeekEntryCount; ++i) { + if (seek_entry_id_[i] == 0) { + seek_entry_id_[i] = id; + seek_entry_pos_[i] = pos; + return true; + } + } + return false; +} + +uint32_t SeekHead::GetId(int index) const { + if (index < 0 || index >= kSeekEntryCount) + return UINT_MAX; + return seek_entry_id_[index]; +} + +uint64_t SeekHead::GetPosition(int index) const { + if (index < 0 || index >= kSeekEntryCount) + return ULLONG_MAX; + return seek_entry_pos_[index]; +} + +bool SeekHead::SetSeekEntry(int index, uint32_t id, uint64_t position) { + if (index < 0 || index >= kSeekEntryCount) + return false; + seek_entry_id_[index] = id; + seek_entry_pos_[index] = position; + return true; +} + +uint64_t SeekHead::MaxEntrySize() const { + const uint64_t max_entry_payload_size = + EbmlElementSize(libwebm::kMkvSeekID, + static_cast(UINT64_C(0xffffffff))) + + EbmlElementSize(libwebm::kMkvSeekPosition, + static_cast(UINT64_C(0xffffffffffffffff))); + const uint64_t max_entry_size = + EbmlMasterElementSize(libwebm::kMkvSeek, max_entry_payload_size) + + max_entry_payload_size; + + return max_entry_size; +} + +/////////////////////////////////////////////////////////////// +// +// SegmentInfo Class + +SegmentInfo::SegmentInfo() + : duration_(-1.0), + muxing_app_(NULL), + timecode_scale_(1000000ULL), + writing_app_(NULL), + date_utc_(LLONG_MIN), + duration_pos_(-1) {} + +SegmentInfo::~SegmentInfo() { + delete[] muxing_app_; + delete[] writing_app_; +} + +bool SegmentInfo::Init() { + int32_t major; + int32_t minor; + int32_t build; + int32_t revision; + GetVersion(&major, &minor, &build, &revision); + char temp[256]; +#ifdef _MSC_VER + sprintf_s(temp, sizeof(temp) / sizeof(temp[0]), "libwebm-%d.%d.%d.%d", major, + minor, build, revision); +#else + snprintf(temp, sizeof(temp) / sizeof(temp[0]), "libwebm-%d.%d.%d.%d", major, + minor, build, revision); +#endif + + const size_t app_len = strlen(temp) + 1; + + delete[] muxing_app_; + + muxing_app_ = new (std::nothrow) char[app_len]; // NOLINT + if (!muxing_app_) + return false; + +#ifdef _MSC_VER + strcpy_s(muxing_app_, app_len, temp); +#else + strcpy(muxing_app_, temp); +#endif + + set_writing_app(temp); + if (!writing_app_) + return false; + return true; +} + +bool SegmentInfo::Finalize(IMkvWriter* writer) const { + if (!writer) + return false; + + if (duration_ > 0.0) { + if (writer->Seekable()) { + if (duration_pos_ == -1) + return false; + + const int64_t pos = writer->Position(); + + if (writer->Position(duration_pos_)) + return false; + + if (!WriteEbmlElement(writer, libwebm::kMkvDuration, + static_cast(duration_))) + return false; + + if (writer->Position(pos)) + return false; + } + } + + return true; +} + +bool SegmentInfo::Write(IMkvWriter* writer) { + if (!writer || !muxing_app_ || !writing_app_) + return false; + + uint64_t size = EbmlElementSize(libwebm::kMkvTimecodeScale, + static_cast(timecode_scale_)); + if (duration_ > 0.0) + size += + EbmlElementSize(libwebm::kMkvDuration, static_cast(duration_)); + if (date_utc_ != LLONG_MIN) + size += EbmlDateElementSize(libwebm::kMkvDateUTC); + size += EbmlElementSize(libwebm::kMkvMuxingApp, muxing_app_); + size += EbmlElementSize(libwebm::kMkvWritingApp, writing_app_); + + if (!WriteEbmlMasterElement(writer, libwebm::kMkvInfo, size)) + return false; + + const int64_t payload_position = writer->Position(); + if (payload_position < 0) + return false; + + if (!WriteEbmlElement(writer, libwebm::kMkvTimecodeScale, + static_cast(timecode_scale_))) + return false; + + if (duration_ > 0.0) { + // Save for later + duration_pos_ = writer->Position(); + + if (!WriteEbmlElement(writer, libwebm::kMkvDuration, + static_cast(duration_))) + return false; + } + + if (date_utc_ != LLONG_MIN) + WriteEbmlDateElement(writer, libwebm::kMkvDateUTC, date_utc_); + + if (!WriteEbmlElement(writer, libwebm::kMkvMuxingApp, muxing_app_)) + return false; + if (!WriteEbmlElement(writer, libwebm::kMkvWritingApp, writing_app_)) + return false; + + const int64_t stop_position = writer->Position(); + if (stop_position < 0 || + stop_position - payload_position != static_cast(size)) + return false; + + return true; +} + +void SegmentInfo::set_muxing_app(const char* app) { + if (app) { + const size_t length = strlen(app) + 1; + char* temp_str = new (std::nothrow) char[length]; // NOLINT + if (!temp_str) + return; + +#ifdef _MSC_VER + strcpy_s(temp_str, length, app); +#else + strcpy(temp_str, app); +#endif + + delete[] muxing_app_; + muxing_app_ = temp_str; + } +} + +void SegmentInfo::set_writing_app(const char* app) { + if (app) { + const size_t length = strlen(app) + 1; + char* temp_str = new (std::nothrow) char[length]; // NOLINT + if (!temp_str) + return; + +#ifdef _MSC_VER + strcpy_s(temp_str, length, app); +#else + strcpy(temp_str, app); +#endif + + delete[] writing_app_; + writing_app_ = temp_str; + } +} + +/////////////////////////////////////////////////////////////// +// +// Segment Class + +Segment::Segment() + : chunk_count_(0), + chunk_name_(NULL), + chunk_writer_cluster_(NULL), + chunk_writer_cues_(NULL), + chunk_writer_header_(NULL), + chunking_(false), + chunking_base_name_(NULL), + cluster_list_(NULL), + cluster_list_capacity_(0), + cluster_list_size_(0), + cues_position_(kAfterClusters), + cues_track_(0), + force_new_cluster_(false), + frames_(NULL), + frames_capacity_(0), + frames_size_(0), + has_video_(false), + header_written_(false), + last_block_duration_(0), + last_timestamp_(0), + max_cluster_duration_(kDefaultMaxClusterDuration), + max_cluster_size_(0), + mode_(kFile), + new_cuepoint_(false), + output_cues_(true), + accurate_cluster_duration_(false), + fixed_size_cluster_timecode_(false), + estimate_file_duration_(false), + payload_pos_(0), + size_position_(0), + doc_type_version_(kDefaultDocTypeVersion), + doc_type_version_written_(0), + duration_(0.0), + writer_cluster_(NULL), + writer_cues_(NULL), + writer_header_(NULL) { + const time_t curr_time = time(NULL); + seed_ = static_cast(curr_time); +#ifdef _WIN32 + srand(seed_); +#endif +} + +Segment::~Segment() { + if (cluster_list_) { + for (int32_t i = 0; i < cluster_list_size_; ++i) { + Cluster* const cluster = cluster_list_[i]; + delete cluster; + } + delete[] cluster_list_; + } + + if (frames_) { + for (int32_t i = 0; i < frames_size_; ++i) { + Frame* const frame = frames_[i]; + delete frame; + } + delete[] frames_; + } + + delete[] chunk_name_; + delete[] chunking_base_name_; + + if (chunk_writer_cluster_) { + chunk_writer_cluster_->Close(); + delete chunk_writer_cluster_; + } + if (chunk_writer_cues_) { + chunk_writer_cues_->Close(); + delete chunk_writer_cues_; + } + if (chunk_writer_header_) { + chunk_writer_header_->Close(); + delete chunk_writer_header_; + } +} + +void Segment::MoveCuesBeforeClustersHelper(uint64_t diff, int32_t index, + uint64_t* cues_size) { + CuePoint* const cue_point = cues_.GetCueByIndex(index); + if (cue_point == NULL) + return; + const uint64_t old_cue_point_size = cue_point->Size(); + const uint64_t cluster_pos = cue_point->cluster_pos() + diff; + cue_point->set_cluster_pos(cluster_pos); // update the new cluster position + // New size of the cue is computed as follows + // Let a = current sum of size of all CuePoints + // Let b = Increase in Cue Point's size due to this iteration + // Let c = Increase in size of Cues Element's length due to this iteration + // (This is computed as CodedSize(a + b) - CodedSize(a)) + // Let d = b + c. Now d is the |diff| passed to the next recursive call. + // Let e = a + b. Now e is the |cues_size| passed to the next recursive + // call. + const uint64_t cue_point_size_diff = cue_point->Size() - old_cue_point_size; + const uint64_t cue_size_diff = + GetCodedUIntSize(*cues_size + cue_point_size_diff) - + GetCodedUIntSize(*cues_size); + *cues_size += cue_point_size_diff; + diff = cue_size_diff + cue_point_size_diff; + if (diff > 0) { + for (int32_t i = 0; i < cues_.cue_entries_size(); ++i) { + MoveCuesBeforeClustersHelper(diff, i, cues_size); + } + } +} + +void Segment::MoveCuesBeforeClusters() { + const uint64_t current_cue_size = cues_.Size(); + uint64_t cue_size = 0; + for (int32_t i = 0; i < cues_.cue_entries_size(); ++i) + cue_size += cues_.GetCueByIndex(i)->Size(); + for (int32_t i = 0; i < cues_.cue_entries_size(); ++i) + MoveCuesBeforeClustersHelper(current_cue_size, i, &cue_size); + + // Adjust the Seek Entry to reflect the change in position + // of Cluster and Cues + int32_t cluster_index = 0; + int32_t cues_index = 0; + for (int32_t i = 0; i < SeekHead::kSeekEntryCount; ++i) { + if (seek_head_.GetId(i) == libwebm::kMkvCluster) + cluster_index = i; + if (seek_head_.GetId(i) == libwebm::kMkvCues) + cues_index = i; + } + seek_head_.SetSeekEntry(cues_index, libwebm::kMkvCues, + seek_head_.GetPosition(cluster_index)); + seek_head_.SetSeekEntry(cluster_index, libwebm::kMkvCluster, + cues_.Size() + seek_head_.GetPosition(cues_index)); +} + +bool Segment::Init(IMkvWriter* ptr_writer) { + if (!ptr_writer) { + return false; + } + writer_cluster_ = ptr_writer; + writer_cues_ = ptr_writer; + writer_header_ = ptr_writer; + memset(&track_frames_written_, 0, + sizeof(track_frames_written_[0]) * kMaxTrackNumber); + memset(&last_track_timestamp_, 0, + sizeof(last_track_timestamp_[0]) * kMaxTrackNumber); + return segment_info_.Init(); +} + +bool Segment::CopyAndMoveCuesBeforeClusters(mkvparser::IMkvReader* reader, + IMkvWriter* writer) { + if (!writer->Seekable() || chunking_) + return false; + const int64_t cluster_offset = + cluster_list_[0]->size_position() - GetUIntSize(libwebm::kMkvCluster); + + // Copy the headers. + if (!ChunkedCopy(reader, writer, 0, cluster_offset)) + return false; + + // Recompute cue positions and seek entries. + MoveCuesBeforeClusters(); + + // Write cues and seek entries. + // TODO(vigneshv): As of now, it's safe to call seek_head_.Finalize() for the + // second time with a different writer object. But the name Finalize() doesn't + // indicate something we want to call more than once. So consider renaming it + // to write() or some such. + if (!cues_.Write(writer) || !seek_head_.Finalize(writer)) + return false; + + // Copy the Clusters. + if (!ChunkedCopy(reader, writer, cluster_offset, + cluster_end_offset_ - cluster_offset)) + return false; + + // Update the Segment size in case the Cues size has changed. + const int64_t pos = writer->Position(); + const int64_t segment_size = writer->Position() - payload_pos_; + if (writer->Position(size_position_) || + WriteUIntSize(writer, segment_size, 8) || writer->Position(pos)) + return false; + return true; +} + +bool Segment::Finalize() { + if (WriteFramesAll() < 0) + return false; + + // In kLive mode, call Cluster::Finalize only if |accurate_cluster_duration_| + // is set. In all other modes, always call Cluster::Finalize. + if ((mode_ == kLive ? accurate_cluster_duration_ : true) && + cluster_list_size_ > 0) { + // Update last cluster's size + Cluster* const old_cluster = cluster_list_[cluster_list_size_ - 1]; + + // For the last frame of the last Cluster, we don't write it as a BlockGroup + // with Duration unless the frame itself has duration set explicitly. + if (!old_cluster || !old_cluster->Finalize(false, 0)) + return false; + } + + if (mode_ == kFile) { + if (chunking_ && chunk_writer_cluster_) { + chunk_writer_cluster_->Close(); + chunk_count_++; + } + + double duration = + (static_cast(last_timestamp_) + last_block_duration_) / + segment_info_.timecode_scale(); + if (duration_ > 0.0) { + duration = duration_; + } else { + if (last_block_duration_ == 0 && estimate_file_duration_) { + const int num_tracks = static_cast(tracks_.track_entries_size()); + for (int i = 0; i < num_tracks; ++i) { + if (track_frames_written_[i] < 2) + continue; + + // Estimate the duration for the last block of a Track. + const double nano_per_frame = + static_cast(last_track_timestamp_[i]) / + (track_frames_written_[i] - 1); + const double track_duration = + (last_track_timestamp_[i] + nano_per_frame) / + segment_info_.timecode_scale(); + if (track_duration > duration) + duration = track_duration; + } + } + } + segment_info_.set_duration(duration); + if (!segment_info_.Finalize(writer_header_)) + return false; + + if (output_cues_) + if (!seek_head_.AddSeekEntry(libwebm::kMkvCues, MaxOffset())) + return false; + + if (chunking_) { + if (!chunk_writer_cues_) + return false; + + char* name = NULL; + if (!UpdateChunkName("cues", &name)) + return false; + + const bool cues_open = chunk_writer_cues_->Open(name); + delete[] name; + if (!cues_open) + return false; + } + + cluster_end_offset_ = writer_cluster_->Position(); + + // Write the seek headers and cues + if (output_cues_) + if (!cues_.Write(writer_cues_)) + return false; + + if (!seek_head_.Finalize(writer_header_)) + return false; + + if (writer_header_->Seekable()) { + if (size_position_ == -1) + return false; + + const int64_t segment_size = MaxOffset(); + if (segment_size < 1) + return false; + + const int64_t pos = writer_header_->Position(); + UpdateDocTypeVersion(); + if (doc_type_version_ != doc_type_version_written_) { + if (writer_header_->Position(0)) + return false; + + const char* const doc_type = + DocTypeIsWebm() ? kDocTypeWebm : kDocTypeMatroska; + if (!WriteEbmlHeader(writer_header_, doc_type_version_, doc_type)) + return false; + if (writer_header_->Position() != ebml_header_size_) + return false; + + doc_type_version_written_ = doc_type_version_; + } + + if (writer_header_->Position(size_position_)) + return false; + + if (WriteUIntSize(writer_header_, segment_size, 8)) + return false; + + if (writer_header_->Position(pos)) + return false; + } + + if (chunking_) { + // Do not close any writers until the segment size has been written, + // otherwise the size may be off. + if (!chunk_writer_cues_ || !chunk_writer_header_) + return false; + + chunk_writer_cues_->Close(); + chunk_writer_header_->Close(); + } + } + + return true; +} + +Track* Segment::AddTrack(int32_t number) { + Track* const track = new (std::nothrow) Track(&seed_); // NOLINT + + if (!track) + return NULL; + + if (!tracks_.AddTrack(track, number)) { + delete track; + return NULL; + } + + return track; +} + +Chapter* Segment::AddChapter() { return chapters_.AddChapter(&seed_); } + +Tag* Segment::AddTag() { return tags_.AddTag(); } + +uint64_t Segment::AddVideoTrack(int32_t width, int32_t height, int32_t number) { + VideoTrack* const track = new (std::nothrow) VideoTrack(&seed_); // NOLINT + if (!track) + return 0; + + track->set_type(Tracks::kVideo); + track->set_codec_id(Tracks::kVp8CodecId); + track->set_width(width); + track->set_height(height); + + if (!tracks_.AddTrack(track, number)) { + delete track; + return 0; + } + has_video_ = true; + + return track->number(); +} + +bool Segment::AddCuePoint(uint64_t timestamp, uint64_t track) { + if (cluster_list_size_ < 1) + return false; + + const Cluster* const cluster = cluster_list_[cluster_list_size_ - 1]; + if (!cluster) + return false; + + CuePoint* const cue = new (std::nothrow) CuePoint(); // NOLINT + if (!cue) + return false; + + cue->set_time(timestamp / segment_info_.timecode_scale()); + cue->set_block_number(cluster->blocks_added()); + cue->set_cluster_pos(cluster->position_for_cues()); + cue->set_track(track); + if (!cues_.AddCue(cue)) { + delete cue; + return false; + } + + new_cuepoint_ = false; + return true; +} + +uint64_t Segment::AddAudioTrack(int32_t sample_rate, int32_t channels, + int32_t number) { + AudioTrack* const track = new (std::nothrow) AudioTrack(&seed_); // NOLINT + if (!track) + return 0; + + track->set_type(Tracks::kAudio); + track->set_codec_id(Tracks::kVorbisCodecId); + track->set_sample_rate(sample_rate); + track->set_channels(channels); + + if (!tracks_.AddTrack(track, number)) { + delete track; + return 0; + } + + return track->number(); +} + +bool Segment::AddFrame(const uint8_t* data, uint64_t length, + uint64_t track_number, uint64_t timestamp, bool is_key) { + if (!data) + return false; + + Frame frame; + if (!frame.Init(data, length)) + return false; + frame.set_track_number(track_number); + frame.set_timestamp(timestamp); + frame.set_is_key(is_key); + return AddGenericFrame(&frame); +} + +bool Segment::AddFrameWithAdditional(const uint8_t* data, uint64_t length, + const uint8_t* additional, + uint64_t additional_length, + uint64_t add_id, uint64_t track_number, + uint64_t timestamp, bool is_key) { + if (!data || !additional) + return false; + + Frame frame; + if (!frame.Init(data, length) || + !frame.AddAdditionalData(additional, additional_length, add_id)) { + return false; + } + frame.set_track_number(track_number); + frame.set_timestamp(timestamp); + frame.set_is_key(is_key); + return AddGenericFrame(&frame); +} + +bool Segment::AddFrameWithDiscardPadding(const uint8_t* data, uint64_t length, + int64_t discard_padding, + uint64_t track_number, + uint64_t timestamp, bool is_key) { + if (!data) + return false; + + Frame frame; + if (!frame.Init(data, length)) + return false; + frame.set_discard_padding(discard_padding); + frame.set_track_number(track_number); + frame.set_timestamp(timestamp); + frame.set_is_key(is_key); + return AddGenericFrame(&frame); +} + +bool Segment::AddMetadata(const uint8_t* data, uint64_t length, + uint64_t track_number, uint64_t timestamp_ns, + uint64_t duration_ns) { + if (!data) + return false; + + Frame frame; + if (!frame.Init(data, length)) + return false; + frame.set_track_number(track_number); + frame.set_timestamp(timestamp_ns); + frame.set_duration(duration_ns); + frame.set_is_key(true); // All metadata blocks are keyframes. + return AddGenericFrame(&frame); +} + +bool Segment::AddGenericFrame(const Frame* frame) { + if (!frame) + return false; + + if (!CheckHeaderInfo()) + return false; + + // Check for non-monotonically increasing timestamps. + if (frame->timestamp() < last_timestamp_) + return false; + + // Check if the track number is valid. + if (!tracks_.GetTrackByNumber(frame->track_number())) + return false; + + if (frame->discard_padding() != 0) + doc_type_version_ = 4; + + if (cluster_list_size_ > 0) { + const uint64_t timecode_scale = segment_info_.timecode_scale(); + const uint64_t frame_timecode = frame->timestamp() / timecode_scale; + + const Cluster* const last_cluster = cluster_list_[cluster_list_size_ - 1]; + const uint64_t last_cluster_timecode = last_cluster->timecode(); + + const uint64_t rel_timecode = frame_timecode - last_cluster_timecode; + if (rel_timecode > kMaxBlockTimecode) { + force_new_cluster_ = true; + } + } + + // If the segment has a video track hold onto audio frames to make sure the + // audio that is associated with the start time of a video key-frame is + // muxed into the same cluster. + if (has_video_ && tracks_.TrackIsAudio(frame->track_number()) && + !force_new_cluster_) { + Frame* const new_frame = new (std::nothrow) Frame(); + if (!new_frame || !new_frame->CopyFrom(*frame)) { + delete new_frame; + return false; + } + if (!QueueFrame(new_frame)) { + delete new_frame; + return false; + } + track_frames_written_[frame->track_number() - 1]++; + return true; + } + + if (!DoNewClusterProcessing(frame->track_number(), frame->timestamp(), + frame->is_key())) { + return false; + } + + if (cluster_list_size_ < 1) + return false; + + Cluster* const cluster = cluster_list_[cluster_list_size_ - 1]; + if (!cluster) + return false; + + // If the Frame is not a SimpleBlock, then set the reference_block_timestamp + // if it is not set already. + bool frame_created = false; + if (!frame->CanBeSimpleBlock() && !frame->is_key() && + !frame->reference_block_timestamp_set()) { + Frame* const new_frame = new (std::nothrow) Frame(); + if (!new_frame || !new_frame->CopyFrom(*frame)) { + delete new_frame; + return false; + } + new_frame->set_reference_block_timestamp( + last_track_timestamp_[frame->track_number() - 1]); + frame = new_frame; + frame_created = true; + } + + if (!cluster->AddFrame(frame)) + return false; + + if (new_cuepoint_ && cues_track_ == frame->track_number()) { + if (!AddCuePoint(frame->timestamp(), cues_track_)) + return false; + } + + last_timestamp_ = frame->timestamp(); + last_track_timestamp_[frame->track_number() - 1] = frame->timestamp(); + last_block_duration_ = frame->duration(); + track_frames_written_[frame->track_number() - 1]++; + + if (frame_created) + delete frame; + return true; +} + +void Segment::OutputCues(bool output_cues) { output_cues_ = output_cues; } + +void Segment::AccurateClusterDuration(bool accurate_cluster_duration) { + accurate_cluster_duration_ = accurate_cluster_duration; +} + +void Segment::UseFixedSizeClusterTimecode(bool fixed_size_cluster_timecode) { + fixed_size_cluster_timecode_ = fixed_size_cluster_timecode; +} + +bool Segment::SetChunking(bool chunking, const char* filename) { + if (chunk_count_ > 0) + return false; + + if (chunking) { + if (!filename) + return false; + + // Check if we are being set to what is already set. + if (chunking_ && !strcmp(filename, chunking_base_name_)) + return true; + + const size_t name_length = strlen(filename) + 1; + char* const temp = new (std::nothrow) char[name_length]; // NOLINT + if (!temp) + return false; + +#ifdef _MSC_VER + strcpy_s(temp, name_length, filename); +#else + strcpy(temp, filename); +#endif + + delete[] chunking_base_name_; + chunking_base_name_ = temp; + + if (!UpdateChunkName("chk", &chunk_name_)) + return false; + + if (!chunk_writer_cluster_) { + chunk_writer_cluster_ = new (std::nothrow) MkvWriter(); // NOLINT + if (!chunk_writer_cluster_) + return false; + } + + if (!chunk_writer_cues_) { + chunk_writer_cues_ = new (std::nothrow) MkvWriter(); // NOLINT + if (!chunk_writer_cues_) + return false; + } + + if (!chunk_writer_header_) { + chunk_writer_header_ = new (std::nothrow) MkvWriter(); // NOLINT + if (!chunk_writer_header_) + return false; + } + + if (!chunk_writer_cluster_->Open(chunk_name_)) + return false; + + const size_t header_length = strlen(filename) + strlen(".hdr") + 1; + char* const header = new (std::nothrow) char[header_length]; // NOLINT + if (!header) + return false; + +#ifdef _MSC_VER + strcpy_s(header, header_length - strlen(".hdr"), chunking_base_name_); + strcat_s(header, header_length, ".hdr"); +#else + strcpy(header, chunking_base_name_); + strcat(header, ".hdr"); +#endif + if (!chunk_writer_header_->Open(header)) { + delete[] header; + return false; + } + + writer_cluster_ = chunk_writer_cluster_; + writer_cues_ = chunk_writer_cues_; + writer_header_ = chunk_writer_header_; + + delete[] header; + } + + chunking_ = chunking; + + return true; +} + +bool Segment::CuesTrack(uint64_t track_number) { + const Track* const track = GetTrackByNumber(track_number); + if (!track) + return false; + + cues_track_ = track_number; + return true; +} + +void Segment::ForceNewClusterOnNextFrame() { force_new_cluster_ = true; } + +Track* Segment::GetTrackByNumber(uint64_t track_number) const { + return tracks_.GetTrackByNumber(track_number); +} + +bool Segment::WriteSegmentHeader() { + UpdateDocTypeVersion(); + + const char* const doc_type = + DocTypeIsWebm() ? kDocTypeWebm : kDocTypeMatroska; + if (!WriteEbmlHeader(writer_header_, doc_type_version_, doc_type)) + return false; + doc_type_version_written_ = doc_type_version_; + ebml_header_size_ = static_cast(writer_header_->Position()); + + // Write "unknown" (-1) as segment size value. If mode is kFile, Segment + // will write over duration when the file is finalized. + if (WriteID(writer_header_, libwebm::kMkvSegment)) + return false; + + // Save for later. + size_position_ = writer_header_->Position(); + + // Write "unknown" (EBML coded -1) as segment size value. We need to write 8 + // bytes because if we are going to overwrite the segment size later we do + // not know how big our segment will be. + if (SerializeInt(writer_header_, kEbmlUnknownValue, 8)) + return false; + + payload_pos_ = writer_header_->Position(); + + if (mode_ == kFile && writer_header_->Seekable()) { + // Set the duration > 0.0 so SegmentInfo will write out the duration. When + // the muxer is done writing we will set the correct duration and have + // SegmentInfo upadte it. + segment_info_.set_duration(1.0); + + if (!seek_head_.Write(writer_header_)) + return false; + } + + if (!seek_head_.AddSeekEntry(libwebm::kMkvInfo, MaxOffset())) + return false; + if (!segment_info_.Write(writer_header_)) + return false; + + if (!seek_head_.AddSeekEntry(libwebm::kMkvTracks, MaxOffset())) + return false; + if (!tracks_.Write(writer_header_)) + return false; + + if (chapters_.Count() > 0) { + if (!seek_head_.AddSeekEntry(libwebm::kMkvChapters, MaxOffset())) + return false; + if (!chapters_.Write(writer_header_)) + return false; + } + + if (tags_.Count() > 0) { + if (!seek_head_.AddSeekEntry(libwebm::kMkvTags, MaxOffset())) + return false; + if (!tags_.Write(writer_header_)) + return false; + } + + if (chunking_ && (mode_ == kLive || !writer_header_->Seekable())) { + if (!chunk_writer_header_) + return false; + + chunk_writer_header_->Close(); + } + + header_written_ = true; + + return true; +} + +// Here we are testing whether to create a new cluster, given a frame +// having time frame_timestamp_ns. +// +int Segment::TestFrame(uint64_t track_number, uint64_t frame_timestamp_ns, + bool is_key) const { + if (force_new_cluster_) + return 1; + + // If no clusters have been created yet, then create a new cluster + // and write this frame immediately, in the new cluster. This path + // should only be followed once, the first time we attempt to write + // a frame. + + if (cluster_list_size_ <= 0) + return 1; + + // There exists at least one cluster. We must compare the frame to + // the last cluster, in order to determine whether the frame is + // written to the existing cluster, or that a new cluster should be + // created. + + const uint64_t timecode_scale = segment_info_.timecode_scale(); + const uint64_t frame_timecode = frame_timestamp_ns / timecode_scale; + + const Cluster* const last_cluster = cluster_list_[cluster_list_size_ - 1]; + const uint64_t last_cluster_timecode = last_cluster->timecode(); + + // For completeness we test for the case when the frame's timecode + // is less than the cluster's timecode. Although in principle that + // is allowed, this muxer doesn't actually write clusters like that, + // so this indicates a bug somewhere in our algorithm. + + if (frame_timecode < last_cluster_timecode) // should never happen + return -1; + + // If the frame has a timestamp significantly larger than the last + // cluster (in Matroska, cluster-relative timestamps are serialized + // using a 16-bit signed integer), then we cannot write this frame + // to that cluster, and so we must create a new cluster. + + const int64_t delta_timecode = frame_timecode - last_cluster_timecode; + + if (delta_timecode > kMaxBlockTimecode) + return 2; + + // We decide to create a new cluster when we have a video keyframe. + // This will flush queued (audio) frames, and write the keyframe + // immediately, in the newly-created cluster. + + if (is_key && tracks_.TrackIsVideo(track_number)) + return 1; + + // Create a new cluster if we have accumulated too many frames + // already, where "too many" is defined as "the total time of frames + // in the cluster exceeds a threshold". + + const uint64_t delta_ns = delta_timecode * timecode_scale; + + if (max_cluster_duration_ > 0 && delta_ns >= max_cluster_duration_) + return 1; + + // This is similar to the case above, with the difference that a new + // cluster is created when the size of the current cluster exceeds a + // threshold. + + const uint64_t cluster_size = last_cluster->payload_size(); + + if (max_cluster_size_ > 0 && cluster_size >= max_cluster_size_) + return 1; + + // There's no need to create a new cluster, so emit this frame now. + + return 0; +} + +bool Segment::MakeNewCluster(uint64_t frame_timestamp_ns) { + const int32_t new_size = cluster_list_size_ + 1; + + if (new_size > cluster_list_capacity_) { + // Add more clusters. + const int32_t new_capacity = + (cluster_list_capacity_ <= 0) ? 1 : cluster_list_capacity_ * 2; + Cluster** const clusters = + new (std::nothrow) Cluster*[new_capacity]; // NOLINT + if (!clusters) + return false; + + for (int32_t i = 0; i < cluster_list_size_; ++i) { + clusters[i] = cluster_list_[i]; + } + + delete[] cluster_list_; + + cluster_list_ = clusters; + cluster_list_capacity_ = new_capacity; + } + + if (!WriteFramesLessThan(frame_timestamp_ns)) + return false; + + if (cluster_list_size_ > 0) { + // Update old cluster's size + Cluster* const old_cluster = cluster_list_[cluster_list_size_ - 1]; + + if (!old_cluster || !old_cluster->Finalize(true, frame_timestamp_ns)) + return false; + } + + if (output_cues_) + new_cuepoint_ = true; + + if (chunking_ && cluster_list_size_ > 0) { + chunk_writer_cluster_->Close(); + chunk_count_++; + + if (!UpdateChunkName("chk", &chunk_name_)) + return false; + if (!chunk_writer_cluster_->Open(chunk_name_)) + return false; + } + + const uint64_t timecode_scale = segment_info_.timecode_scale(); + const uint64_t frame_timecode = frame_timestamp_ns / timecode_scale; + + uint64_t cluster_timecode = frame_timecode; + + if (frames_size_ > 0) { + const Frame* const f = frames_[0]; // earliest queued frame + const uint64_t ns = f->timestamp(); + const uint64_t tc = ns / timecode_scale; + + if (tc < cluster_timecode) + cluster_timecode = tc; + } + + Cluster*& cluster = cluster_list_[cluster_list_size_]; + const int64_t offset = MaxOffset(); + cluster = new (std::nothrow) + Cluster(cluster_timecode, offset, segment_info_.timecode_scale(), + accurate_cluster_duration_, fixed_size_cluster_timecode_); + if (!cluster) + return false; + + if (!cluster->Init(writer_cluster_)) + return false; + + cluster_list_size_ = new_size; + return true; +} + +bool Segment::DoNewClusterProcessing(uint64_t track_number, + uint64_t frame_timestamp_ns, bool is_key) { + for (;;) { + // Based on the characteristics of the current frame and current + // cluster, decide whether to create a new cluster. + const int result = TestFrame(track_number, frame_timestamp_ns, is_key); + if (result < 0) // error + return false; + + // Always set force_new_cluster_ to false after TestFrame. + force_new_cluster_ = false; + + // A non-zero result means create a new cluster. + if (result > 0 && !MakeNewCluster(frame_timestamp_ns)) + return false; + + // Write queued (audio) frames. + const int frame_count = WriteFramesAll(); + if (frame_count < 0) // error + return false; + + // Write the current frame to the current cluster (if TestFrame + // returns 0) or to a newly created cluster (TestFrame returns 1). + if (result <= 1) + return true; + + // TestFrame returned 2, which means there was a large time + // difference between the cluster and the frame itself. Do the + // test again, comparing the frame to the new cluster. + } +} + +bool Segment::CheckHeaderInfo() { + if (!header_written_) { + if (!WriteSegmentHeader()) + return false; + + if (!seek_head_.AddSeekEntry(libwebm::kMkvCluster, MaxOffset())) + return false; + + if (output_cues_ && cues_track_ == 0) { + // Check for a video track + for (uint32_t i = 0; i < tracks_.track_entries_size(); ++i) { + const Track* const track = tracks_.GetTrackByIndex(i); + if (!track) + return false; + + if (tracks_.TrackIsVideo(track->number())) { + cues_track_ = track->number(); + break; + } + } + + // Set first track found + if (cues_track_ == 0) { + const Track* const track = tracks_.GetTrackByIndex(0); + if (!track) + return false; + + cues_track_ = track->number(); + } + } + } + return true; +} + +void Segment::UpdateDocTypeVersion() { + for (uint32_t index = 0; index < tracks_.track_entries_size(); ++index) { + const Track* track = tracks_.GetTrackByIndex(index); + if (track == NULL) + break; + if ((track->codec_delay() || track->seek_pre_roll()) && + doc_type_version_ < 4) { + doc_type_version_ = 4; + break; + } + } +} + +bool Segment::UpdateChunkName(const char* ext, char** name) const { + if (!name || !ext) + return false; + + char ext_chk[64]; +#ifdef _MSC_VER + sprintf_s(ext_chk, sizeof(ext_chk), "_%06d.%s", chunk_count_, ext); +#else + snprintf(ext_chk, sizeof(ext_chk), "_%06d.%s", chunk_count_, ext); +#endif + + const size_t length = strlen(chunking_base_name_) + strlen(ext_chk) + 1; + char* const str = new (std::nothrow) char[length]; // NOLINT + if (!str) + return false; + +#ifdef _MSC_VER + strcpy_s(str, length - strlen(ext_chk), chunking_base_name_); + strcat_s(str, length, ext_chk); +#else + strcpy(str, chunking_base_name_); + strcat(str, ext_chk); +#endif + + delete[] * name; + *name = str; + + return true; +} + +int64_t Segment::MaxOffset() { + if (!writer_header_) + return -1; + + int64_t offset = writer_header_->Position() - payload_pos_; + + if (chunking_) { + for (int32_t i = 0; i < cluster_list_size_; ++i) { + Cluster* const cluster = cluster_list_[i]; + offset += cluster->Size(); + } + + if (writer_cues_) + offset += writer_cues_->Position(); + } + + return offset; +} + +bool Segment::QueueFrame(Frame* frame) { + const int32_t new_size = frames_size_ + 1; + + if (new_size > frames_capacity_) { + // Add more frames. + const int32_t new_capacity = (!frames_capacity_) ? 2 : frames_capacity_ * 2; + + if (new_capacity < 1) + return false; + + Frame** const frames = new (std::nothrow) Frame*[new_capacity]; // NOLINT + if (!frames) + return false; + + for (int32_t i = 0; i < frames_size_; ++i) { + frames[i] = frames_[i]; + } + + delete[] frames_; + frames_ = frames; + frames_capacity_ = new_capacity; + } + + frames_[frames_size_++] = frame; + + return true; +} + +int Segment::WriteFramesAll() { + if (frames_ == NULL) + return 0; + + if (cluster_list_size_ < 1) + return -1; + + Cluster* const cluster = cluster_list_[cluster_list_size_ - 1]; + + if (!cluster) + return -1; + + for (int32_t i = 0; i < frames_size_; ++i) { + Frame*& frame = frames_[i]; + // TODO(jzern/vigneshv): using Segment::AddGenericFrame here would limit the + // places where |doc_type_version_| needs to be updated. + if (frame->discard_padding() != 0) + doc_type_version_ = 4; + if (!cluster->AddFrame(frame)) + return -1; + + if (new_cuepoint_ && cues_track_ == frame->track_number()) { + if (!AddCuePoint(frame->timestamp(), cues_track_)) + return -1; + } + + if (frame->timestamp() > last_timestamp_) { + last_timestamp_ = frame->timestamp(); + last_track_timestamp_[frame->track_number() - 1] = frame->timestamp(); + } + + delete frame; + frame = NULL; + } + + const int result = frames_size_; + frames_size_ = 0; + + return result; +} + +bool Segment::WriteFramesLessThan(uint64_t timestamp) { + // Check |cluster_list_size_| to see if this is the first cluster. If it is + // the first cluster the audio frames that are less than the first video + // timesatmp will be written in a later step. + if (frames_size_ > 0 && cluster_list_size_ > 0) { + if (!frames_) + return false; + + Cluster* const cluster = cluster_list_[cluster_list_size_ - 1]; + if (!cluster) + return false; + + int32_t shift_left = 0; + + // TODO(fgalligan): Change this to use the durations of frames instead of + // the next frame's start time if the duration is accurate. + for (int32_t i = 1; i < frames_size_; ++i) { + const Frame* const frame_curr = frames_[i]; + + if (frame_curr->timestamp() > timestamp) + break; + + const Frame* const frame_prev = frames_[i - 1]; + if (frame_prev->discard_padding() != 0) + doc_type_version_ = 4; + if (!cluster->AddFrame(frame_prev)) + return false; + + if (new_cuepoint_ && cues_track_ == frame_prev->track_number()) { + if (!AddCuePoint(frame_prev->timestamp(), cues_track_)) + return false; + } + + ++shift_left; + if (frame_prev->timestamp() > last_timestamp_) { + last_timestamp_ = frame_prev->timestamp(); + last_track_timestamp_[frame_prev->track_number() - 1] = + frame_prev->timestamp(); + } + + delete frame_prev; + } + + if (shift_left > 0) { + if (shift_left >= frames_size_) + return false; + + const int32_t new_frames_size = frames_size_ - shift_left; + for (int32_t i = 0; i < new_frames_size; ++i) { + frames_[i] = frames_[i + shift_left]; + } + + frames_size_ = new_frames_size; + } + } + + return true; +} + +bool Segment::DocTypeIsWebm() const { + const int kNumCodecIds = 9; + + // TODO(vigneshv): Tweak .clang-format. + const char* kWebmCodecIds[kNumCodecIds] = { + Tracks::kOpusCodecId, Tracks::kVorbisCodecId, + Tracks::kVp8CodecId, Tracks::kVp9CodecId, + Tracks::kVp10CodecId, Tracks::kWebVttCaptionsId, + Tracks::kWebVttDescriptionsId, Tracks::kWebVttMetadataId, + Tracks::kWebVttSubtitlesId}; + + const int num_tracks = static_cast(tracks_.track_entries_size()); + for (int track_index = 0; track_index < num_tracks; ++track_index) { + const Track* const track = tracks_.GetTrackByIndex(track_index); + const std::string codec_id = track->codec_id(); + + bool id_is_webm = false; + for (int id_index = 0; id_index < kNumCodecIds; ++id_index) { + if (codec_id == kWebmCodecIds[id_index]) { + id_is_webm = true; + break; + } + } + + if (!id_is_webm) + return false; + } + + return true; +} + +} // namespace mkvmuxer diff --git a/third_party/libwebm/mkvmuxer/mkvmuxer.h b/third_party/libwebm/mkvmuxer/mkvmuxer.h new file mode 100644 index 0000000..46b0029 --- /dev/null +++ b/third_party/libwebm/mkvmuxer/mkvmuxer.h @@ -0,0 +1,1921 @@ +// Copyright (c) 2012 The WebM project authors. All Rights Reserved. +// +// Use of this source code is governed by a BSD-style license +// that can be found in the LICENSE file in the root of the source +// tree. An additional intellectual property rights grant can be found +// in the file PATENTS. All contributing project authors may +// be found in the AUTHORS file in the root of the source tree. + +#ifndef MKVMUXER_MKVMUXER_H_ +#define MKVMUXER_MKVMUXER_H_ + +#include + +#include +#include +#include + +#include "common/webmids.h" +#include "mkvmuxer/mkvmuxertypes.h" + +// For a description of the WebM elements see +// http://www.webmproject.org/code/specs/container/. + +namespace mkvparser { +class IMkvReader; +} // namespace mkvparser + +namespace mkvmuxer { + +class MkvWriter; +class Segment; + +const uint64_t kMaxTrackNumber = 126; + +/////////////////////////////////////////////////////////////// +// Interface used by the mkvmuxer to write out the Mkv data. +class IMkvWriter { + public: + // Writes out |len| bytes of |buf|. Returns 0 on success. + virtual int32 Write(const void* buf, uint32 len) = 0; + + // Returns the offset of the output position from the beginning of the + // output. + virtual int64 Position() const = 0; + + // Set the current File position. Returns 0 on success. + virtual int32 Position(int64 position) = 0; + + // Returns true if the writer is seekable. + virtual bool Seekable() const = 0; + + // Element start notification. Called whenever an element identifier is about + // to be written to the stream. |element_id| is the element identifier, and + // |position| is the location in the WebM stream where the first octet of the + // element identifier will be written. + // Note: the |MkvId| enumeration in webmids.hpp defines element values. + virtual void ElementStartNotify(uint64 element_id, int64 position) = 0; + + protected: + IMkvWriter(); + virtual ~IMkvWriter(); + + private: + LIBWEBM_DISALLOW_COPY_AND_ASSIGN(IMkvWriter); +}; + +// Writes out the EBML header for a WebM file, but allows caller to specify +// DocType. This function must be called before any other libwebm writing +// functions are called. +bool WriteEbmlHeader(IMkvWriter* writer, uint64_t doc_type_version, + const char* const doc_type); + +// Writes out the EBML header for a WebM file. This function must be called +// before any other libwebm writing functions are called. +bool WriteEbmlHeader(IMkvWriter* writer, uint64_t doc_type_version); + +// Deprecated. Writes out EBML header with doc_type_version as +// kDefaultDocTypeVersion. Exists for backward compatibility. +bool WriteEbmlHeader(IMkvWriter* writer); + +// Copies in Chunk from source to destination between the given byte positions +bool ChunkedCopy(mkvparser::IMkvReader* source, IMkvWriter* dst, int64_t start, + int64_t size); + +/////////////////////////////////////////////////////////////// +// Class to hold data the will be written to a block. +class Frame { + public: + Frame(); + ~Frame(); + + // Sets this frame's contents based on |frame|. Returns true on success. On + // failure, this frame's existing contents may be lost. + bool CopyFrom(const Frame& frame); + + // Copies |frame| data into |frame_|. Returns true on success. + bool Init(const uint8_t* frame, uint64_t length); + + // Copies |additional| data into |additional_|. Returns true on success. + bool AddAdditionalData(const uint8_t* additional, uint64_t length, + uint64_t add_id); + + // Returns true if the frame has valid parameters. + bool IsValid() const; + + // Returns true if the frame can be written as a SimpleBlock based on current + // parameters. + bool CanBeSimpleBlock() const; + + uint64_t add_id() const { return add_id_; } + const uint8_t* additional() const { return additional_; } + uint64_t additional_length() const { return additional_length_; } + void set_duration(uint64_t duration); + uint64_t duration() const { return duration_; } + bool duration_set() const { return duration_set_; } + const uint8_t* frame() const { return frame_; } + void set_is_key(bool key) { is_key_ = key; } + bool is_key() const { return is_key_; } + uint64_t length() const { return length_; } + void set_track_number(uint64_t track_number) { track_number_ = track_number; } + uint64_t track_number() const { return track_number_; } + void set_timestamp(uint64_t timestamp) { timestamp_ = timestamp; } + uint64_t timestamp() const { return timestamp_; } + void set_discard_padding(int64_t discard_padding) { + discard_padding_ = discard_padding; + } + int64_t discard_padding() const { return discard_padding_; } + void set_reference_block_timestamp(int64_t reference_block_timestamp); + int64_t reference_block_timestamp() const { + return reference_block_timestamp_; + } + bool reference_block_timestamp_set() const { + return reference_block_timestamp_set_; + } + + private: + // Id of the Additional data. + uint64_t add_id_; + + // Pointer to additional data. Owned by this class. + uint8_t* additional_; + + // Length of the additional data. + uint64_t additional_length_; + + // Duration of the frame in nanoseconds. + uint64_t duration_; + + // Flag indicating that |duration_| has been set. Setting duration causes the + // frame to be written out as a Block with BlockDuration instead of as a + // SimpleBlock. + bool duration_set_; + + // Pointer to the data. Owned by this class. + uint8_t* frame_; + + // Flag telling if the data should set the key flag of a block. + bool is_key_; + + // Length of the data. + uint64_t length_; + + // Mkv track number the data is associated with. + uint64_t track_number_; + + // Timestamp of the data in nanoseconds. + uint64_t timestamp_; + + // Discard padding for the frame. + int64_t discard_padding_; + + // Reference block timestamp. + int64_t reference_block_timestamp_; + + // Flag indicating if |reference_block_timestamp_| has been set. + bool reference_block_timestamp_set_; + + LIBWEBM_DISALLOW_COPY_AND_ASSIGN(Frame); +}; + +/////////////////////////////////////////////////////////////// +// Class to hold one cue point in a Cues element. +class CuePoint { + public: + CuePoint(); + ~CuePoint(); + + // Returns the size in bytes for the entire CuePoint element. + uint64_t Size() const; + + // Output the CuePoint element to the writer. Returns true on success. + bool Write(IMkvWriter* writer) const; + + void set_time(uint64_t time) { time_ = time; } + uint64_t time() const { return time_; } + void set_track(uint64_t track) { track_ = track; } + uint64_t track() const { return track_; } + void set_cluster_pos(uint64_t cluster_pos) { cluster_pos_ = cluster_pos; } + uint64_t cluster_pos() const { return cluster_pos_; } + void set_block_number(uint64_t block_number) { block_number_ = block_number; } + uint64_t block_number() const { return block_number_; } + void set_output_block_number(bool output_block_number) { + output_block_number_ = output_block_number; + } + bool output_block_number() const { return output_block_number_; } + + private: + // Returns the size in bytes for the payload of the CuePoint element. + uint64_t PayloadSize() const; + + // Absolute timecode according to the segment time base. + uint64_t time_; + + // The Track element associated with the CuePoint. + uint64_t track_; + + // The position of the Cluster containing the Block. + uint64_t cluster_pos_; + + // Number of the Block within the Cluster, starting from 1. + uint64_t block_number_; + + // If true the muxer will write out the block number for the cue if the + // block number is different than the default of 1. Default is set to true. + bool output_block_number_; + + LIBWEBM_DISALLOW_COPY_AND_ASSIGN(CuePoint); +}; + +/////////////////////////////////////////////////////////////// +// Cues element. +class Cues { + public: + Cues(); + ~Cues(); + + // Adds a cue point to the Cues element. Returns true on success. + bool AddCue(CuePoint* cue); + + // Returns the cue point by index. Returns NULL if there is no cue point + // match. + CuePoint* GetCueByIndex(int32_t index) const; + + // Returns the total size of the Cues element + uint64_t Size(); + + // Output the Cues element to the writer. Returns true on success. + bool Write(IMkvWriter* writer) const; + + int32_t cue_entries_size() const { return cue_entries_size_; } + void set_output_block_number(bool output_block_number) { + output_block_number_ = output_block_number; + } + bool output_block_number() const { return output_block_number_; } + + private: + // Number of allocated elements in |cue_entries_|. + int32_t cue_entries_capacity_; + + // Number of CuePoints in |cue_entries_|. + int32_t cue_entries_size_; + + // CuePoint list. + CuePoint** cue_entries_; + + // If true the muxer will write out the block number for the cue if the + // block number is different than the default of 1. Default is set to true. + bool output_block_number_; + + LIBWEBM_DISALLOW_COPY_AND_ASSIGN(Cues); +}; + +/////////////////////////////////////////////////////////////// +// ContentEncAESSettings element +class ContentEncAESSettings { + public: + enum { kCTR = 1 }; + + ContentEncAESSettings(); + ~ContentEncAESSettings() {} + + // Returns the size in bytes for the ContentEncAESSettings element. + uint64_t Size() const; + + // Writes out the ContentEncAESSettings element to |writer|. Returns true on + // success. + bool Write(IMkvWriter* writer) const; + + uint64_t cipher_mode() const { return cipher_mode_; } + + private: + // Returns the size in bytes for the payload of the ContentEncAESSettings + // element. + uint64_t PayloadSize() const; + + // Sub elements + uint64_t cipher_mode_; + + LIBWEBM_DISALLOW_COPY_AND_ASSIGN(ContentEncAESSettings); +}; + +/////////////////////////////////////////////////////////////// +// ContentEncoding element +// Elements used to describe if the track data has been encrypted or +// compressed with zlib or header stripping. +// Currently only whole frames can be encrypted with AES. This dictates that +// ContentEncodingOrder will be 0, ContentEncodingScope will be 1, +// ContentEncodingType will be 1, and ContentEncAlgo will be 5. +class ContentEncoding { + public: + ContentEncoding(); + ~ContentEncoding(); + + // Sets the content encryption id. Copies |length| bytes from |id| to + // |enc_key_id_|. Returns true on success. + bool SetEncryptionID(const uint8_t* id, uint64_t length); + + // Returns the size in bytes for the ContentEncoding element. + uint64_t Size() const; + + // Writes out the ContentEncoding element to |writer|. Returns true on + // success. + bool Write(IMkvWriter* writer) const; + + uint64_t enc_algo() const { return enc_algo_; } + uint64_t encoding_order() const { return encoding_order_; } + uint64_t encoding_scope() const { return encoding_scope_; } + uint64_t encoding_type() const { return encoding_type_; } + ContentEncAESSettings* enc_aes_settings() { return &enc_aes_settings_; } + + private: + // Returns the size in bytes for the encoding elements. + uint64_t EncodingSize(uint64_t compresion_size, + uint64_t encryption_size) const; + + // Returns the size in bytes for the encryption elements. + uint64_t EncryptionSize() const; + + // Track element names + uint64_t enc_algo_; + uint8_t* enc_key_id_; + uint64_t encoding_order_; + uint64_t encoding_scope_; + uint64_t encoding_type_; + + // ContentEncAESSettings element. + ContentEncAESSettings enc_aes_settings_; + + // Size of the ContentEncKeyID data in bytes. + uint64_t enc_key_id_length_; + + LIBWEBM_DISALLOW_COPY_AND_ASSIGN(ContentEncoding); +}; + +/////////////////////////////////////////////////////////////// +// Colour element. +class PrimaryChromaticity { + public: + static const float kChromaticityMin; + static const float kChromaticityMax; + + PrimaryChromaticity(float x_val, float y_val) : x_(x_val), y_(y_val) {} + PrimaryChromaticity() : x_(0), y_(0) {} + ~PrimaryChromaticity() {} + + // Returns sum of |x_id| and |y_id| element id sizes and payload sizes. + uint64_t PrimaryChromaticitySize(libwebm::MkvId x_id, + libwebm::MkvId y_id) const; + bool Valid() const; + bool Write(IMkvWriter* writer, libwebm::MkvId x_id, + libwebm::MkvId y_id) const; + + float x() const { return x_; } + void set_x(float new_x) { x_ = new_x; } + float y() const { return y_; } + void set_y(float new_y) { y_ = new_y; } + + private: + float x_; + float y_; +}; + +class MasteringMetadata { + public: + static const float kValueNotPresent; + static const float kMinLuminance; + static const float kMinLuminanceMax; + static const float kMaxLuminanceMax; + + MasteringMetadata() + : luminance_max_(kValueNotPresent), + luminance_min_(kValueNotPresent), + r_(NULL), + g_(NULL), + b_(NULL), + white_point_(NULL) {} + ~MasteringMetadata() { + delete r_; + delete g_; + delete b_; + delete white_point_; + } + + // Returns total size of the MasteringMetadata element. + uint64_t MasteringMetadataSize() const; + bool Valid() const; + bool Write(IMkvWriter* writer) const; + + // Copies non-null chromaticity. + bool SetChromaticity(const PrimaryChromaticity* r, + const PrimaryChromaticity* g, + const PrimaryChromaticity* b, + const PrimaryChromaticity* white_point); + const PrimaryChromaticity* r() const { return r_; } + const PrimaryChromaticity* g() const { return g_; } + const PrimaryChromaticity* b() const { return b_; } + const PrimaryChromaticity* white_point() const { return white_point_; } + + float luminance_max() const { return luminance_max_; } + void set_luminance_max(float luminance_max) { + luminance_max_ = luminance_max; + } + float luminance_min() const { return luminance_min_; } + void set_luminance_min(float luminance_min) { + luminance_min_ = luminance_min; + } + + private: + // Returns size of MasteringMetadata child elements. + uint64_t PayloadSize() const; + + float luminance_max_; + float luminance_min_; + PrimaryChromaticity* r_; + PrimaryChromaticity* g_; + PrimaryChromaticity* b_; + PrimaryChromaticity* white_point_; +}; + +class Colour { + public: + enum MatrixCoefficients { + kGbr = 0, + kBt709 = 1, + kUnspecifiedMc = 2, + kReserved = 3, + kFcc = 4, + kBt470bg = 5, + kSmpte170MMc = 6, + kSmpte240MMc = 7, + kYcocg = 8, + kBt2020NonConstantLuminance = 9, + kBt2020ConstantLuminance = 10, + }; + enum ChromaSitingHorz { + kUnspecifiedCsh = 0, + kLeftCollocated = 1, + kHalfCsh = 2, + }; + enum ChromaSitingVert { + kUnspecifiedCsv = 0, + kTopCollocated = 1, + kHalfCsv = 2, + }; + enum Range { + kUnspecifiedCr = 0, + kBroadcastRange = 1, + kFullRange = 2, + kMcTcDefined = 3, // Defined by MatrixCoefficients/TransferCharacteristics. + }; + enum TransferCharacteristics { + kIturBt709Tc = 1, + kUnspecifiedTc = 2, + kReservedTc = 3, + kGamma22Curve = 4, + kGamma28Curve = 5, + kSmpte170MTc = 6, + kSmpte240MTc = 7, + kLinear = 8, + kLog = 9, + kLogSqrt = 10, + kIec6196624 = 11, + kIturBt1361ExtendedColourGamut = 12, + kIec6196621 = 13, + kIturBt202010bit = 14, + kIturBt202012bit = 15, + kSmpteSt2084 = 16, + kSmpteSt4281Tc = 17, + kAribStdB67Hlg = 18, + }; + enum Primaries { + kReservedP0 = 0, + kIturBt709P = 1, + kUnspecifiedP = 2, + kReservedP3 = 3, + kIturBt470M = 4, + kIturBt470Bg = 5, + kSmpte170MP = 6, + kSmpte240MP = 7, + kFilm = 8, + kIturBt2020 = 9, + kSmpteSt4281P = 10, + kJedecP22Phosphors = 22, + }; + static const uint64_t kValueNotPresent; + Colour() + : matrix_coefficients_(kValueNotPresent), + bits_per_channel_(kValueNotPresent), + chroma_subsampling_horz_(kValueNotPresent), + chroma_subsampling_vert_(kValueNotPresent), + cb_subsampling_horz_(kValueNotPresent), + cb_subsampling_vert_(kValueNotPresent), + chroma_siting_horz_(kValueNotPresent), + chroma_siting_vert_(kValueNotPresent), + range_(kValueNotPresent), + transfer_characteristics_(kValueNotPresent), + primaries_(kValueNotPresent), + max_cll_(kValueNotPresent), + max_fall_(kValueNotPresent), + mastering_metadata_(NULL) {} + ~Colour() { delete mastering_metadata_; } + + // Returns total size of the Colour element. + uint64_t ColourSize() const; + bool Valid() const; + bool Write(IMkvWriter* writer) const; + + // Deep copies |mastering_metadata|. + bool SetMasteringMetadata(const MasteringMetadata& mastering_metadata); + + const MasteringMetadata* mastering_metadata() const { + return mastering_metadata_; + } + + uint64_t matrix_coefficients() const { return matrix_coefficients_; } + void set_matrix_coefficients(uint64_t matrix_coefficients) { + matrix_coefficients_ = matrix_coefficients; + } + uint64_t bits_per_channel() const { return bits_per_channel_; } + void set_bits_per_channel(uint64_t bits_per_channel) { + bits_per_channel_ = bits_per_channel; + } + uint64_t chroma_subsampling_horz() const { return chroma_subsampling_horz_; } + void set_chroma_subsampling_horz(uint64_t chroma_subsampling_horz) { + chroma_subsampling_horz_ = chroma_subsampling_horz; + } + uint64_t chroma_subsampling_vert() const { return chroma_subsampling_vert_; } + void set_chroma_subsampling_vert(uint64_t chroma_subsampling_vert) { + chroma_subsampling_vert_ = chroma_subsampling_vert; + } + uint64_t cb_subsampling_horz() const { return cb_subsampling_horz_; } + void set_cb_subsampling_horz(uint64_t cb_subsampling_horz) { + cb_subsampling_horz_ = cb_subsampling_horz; + } + uint64_t cb_subsampling_vert() const { return cb_subsampling_vert_; } + void set_cb_subsampling_vert(uint64_t cb_subsampling_vert) { + cb_subsampling_vert_ = cb_subsampling_vert; + } + uint64_t chroma_siting_horz() const { return chroma_siting_horz_; } + void set_chroma_siting_horz(uint64_t chroma_siting_horz) { + chroma_siting_horz_ = chroma_siting_horz; + } + uint64_t chroma_siting_vert() const { return chroma_siting_vert_; } + void set_chroma_siting_vert(uint64_t chroma_siting_vert) { + chroma_siting_vert_ = chroma_siting_vert; + } + uint64_t range() const { return range_; } + void set_range(uint64_t range) { range_ = range; } + uint64_t transfer_characteristics() const { + return transfer_characteristics_; + } + void set_transfer_characteristics(uint64_t transfer_characteristics) { + transfer_characteristics_ = transfer_characteristics; + } + uint64_t primaries() const { return primaries_; } + void set_primaries(uint64_t primaries) { primaries_ = primaries; } + uint64_t max_cll() const { return max_cll_; } + void set_max_cll(uint64_t max_cll) { max_cll_ = max_cll; } + uint64_t max_fall() const { return max_fall_; } + void set_max_fall(uint64_t max_fall) { max_fall_ = max_fall; } + + private: + // Returns size of Colour child elements. + uint64_t PayloadSize() const; + + uint64_t matrix_coefficients_; + uint64_t bits_per_channel_; + uint64_t chroma_subsampling_horz_; + uint64_t chroma_subsampling_vert_; + uint64_t cb_subsampling_horz_; + uint64_t cb_subsampling_vert_; + uint64_t chroma_siting_horz_; + uint64_t chroma_siting_vert_; + uint64_t range_; + uint64_t transfer_characteristics_; + uint64_t primaries_; + uint64_t max_cll_; + uint64_t max_fall_; + + MasteringMetadata* mastering_metadata_; +}; + +/////////////////////////////////////////////////////////////// +// Projection element. +class Projection { + public: + enum ProjectionType { + kTypeNotPresent = -1, + kRectangular = 0, + kEquirectangular = 1, + kCubeMap = 2, + kMesh = 3, + }; + static const uint64_t kValueNotPresent; + Projection() + : type_(kRectangular), + pose_yaw_(0.0), + pose_pitch_(0.0), + pose_roll_(0.0), + private_data_(NULL), + private_data_length_(0) {} + ~Projection() { delete[] private_data_; } + + uint64_t ProjectionSize() const; + bool Write(IMkvWriter* writer) const; + + bool SetProjectionPrivate(const uint8_t* private_data, + uint64_t private_data_length); + + ProjectionType type() const { return type_; } + void set_type(ProjectionType type) { type_ = type; } + float pose_yaw() const { return pose_yaw_; } + void set_pose_yaw(float pose_yaw) { pose_yaw_ = pose_yaw; } + float pose_pitch() const { return pose_pitch_; } + void set_pose_pitch(float pose_pitch) { pose_pitch_ = pose_pitch; } + float pose_roll() const { return pose_roll_; } + void set_pose_roll(float pose_roll) { pose_roll_ = pose_roll; } + uint8_t* private_data() const { return private_data_; } + uint64_t private_data_length() const { return private_data_length_; } + + private: + // Returns size of VideoProjection child elements. + uint64_t PayloadSize() const; + + ProjectionType type_; + float pose_yaw_; + float pose_pitch_; + float pose_roll_; + uint8_t* private_data_; + uint64_t private_data_length_; +}; + +/////////////////////////////////////////////////////////////// +// Track element. +class Track { + public: + // The |seed| parameter is used to synthesize a UID for the track. + explicit Track(unsigned int* seed); + virtual ~Track(); + + // Adds a ContentEncoding element to the Track. Returns true on success. + virtual bool AddContentEncoding(); + + // Returns the ContentEncoding by index. Returns NULL if there is no + // ContentEncoding match. + ContentEncoding* GetContentEncodingByIndex(uint32_t index) const; + + // Returns the size in bytes for the payload of the Track element. + virtual uint64_t PayloadSize() const; + + // Returns the size in bytes of the Track element. + virtual uint64_t Size() const; + + // Output the Track element to the writer. Returns true on success. + virtual bool Write(IMkvWriter* writer) const; + + // Sets the CodecPrivate element of the Track element. Copies |length| + // bytes from |codec_private| to |codec_private_|. Returns true on success. + bool SetCodecPrivate(const uint8_t* codec_private, uint64_t length); + + void set_codec_id(const char* codec_id); + const char* codec_id() const { return codec_id_; } + const uint8_t* codec_private() const { return codec_private_; } + void set_language(const char* language); + const char* language() const { return language_; } + void set_max_block_additional_id(uint64_t max_block_additional_id) { + max_block_additional_id_ = max_block_additional_id; + } + uint64_t max_block_additional_id() const { return max_block_additional_id_; } + void set_name(const char* name); + const char* name() const { return name_; } + void set_number(uint64_t number) { number_ = number; } + uint64_t number() const { return number_; } + void set_type(uint64_t type) { type_ = type; } + uint64_t type() const { return type_; } + void set_uid(uint64_t uid) { uid_ = uid; } + uint64_t uid() const { return uid_; } + void set_codec_delay(uint64_t codec_delay) { codec_delay_ = codec_delay; } + uint64_t codec_delay() const { return codec_delay_; } + void set_seek_pre_roll(uint64_t seek_pre_roll) { + seek_pre_roll_ = seek_pre_roll; + } + uint64_t seek_pre_roll() const { return seek_pre_roll_; } + void set_default_duration(uint64_t default_duration) { + default_duration_ = default_duration; + } + uint64_t default_duration() const { return default_duration_; } + + uint64_t codec_private_length() const { return codec_private_length_; } + uint32_t content_encoding_entries_size() const { + return content_encoding_entries_size_; + } + + private: + // Track element names. + char* codec_id_; + uint8_t* codec_private_; + char* language_; + uint64_t max_block_additional_id_; + char* name_; + uint64_t number_; + uint64_t type_; + uint64_t uid_; + uint64_t codec_delay_; + uint64_t seek_pre_roll_; + uint64_t default_duration_; + + // Size of the CodecPrivate data in bytes. + uint64_t codec_private_length_; + + // ContentEncoding element list. + ContentEncoding** content_encoding_entries_; + + // Number of ContentEncoding elements added. + uint32_t content_encoding_entries_size_; + + LIBWEBM_DISALLOW_COPY_AND_ASSIGN(Track); +}; + +/////////////////////////////////////////////////////////////// +// Track that has video specific elements. +class VideoTrack : public Track { + public: + // Supported modes for stereo 3D. + enum StereoMode { + kMono = 0, + kSideBySideLeftIsFirst = 1, + kTopBottomRightIsFirst = 2, + kTopBottomLeftIsFirst = 3, + kSideBySideRightIsFirst = 11 + }; + + enum AlphaMode { kNoAlpha = 0, kAlpha = 1 }; + + // The |seed| parameter is used to synthesize a UID for the track. + explicit VideoTrack(unsigned int* seed); + virtual ~VideoTrack(); + + // Returns the size in bytes for the payload of the Track element plus the + // video specific elements. + virtual uint64_t PayloadSize() const; + + // Output the VideoTrack element to the writer. Returns true on success. + virtual bool Write(IMkvWriter* writer) const; + + // Sets the video's stereo mode. Returns true on success. + bool SetStereoMode(uint64_t stereo_mode); + + // Sets the video's alpha mode. Returns true on success. + bool SetAlphaMode(uint64_t alpha_mode); + + void set_display_height(uint64_t height) { display_height_ = height; } + uint64_t display_height() const { return display_height_; } + void set_display_width(uint64_t width) { display_width_ = width; } + uint64_t display_width() const { return display_width_; } + void set_pixel_height(uint64_t height) { pixel_height_ = height; } + uint64_t pixel_height() const { return pixel_height_; } + void set_pixel_width(uint64_t width) { pixel_width_ = width; } + uint64_t pixel_width() const { return pixel_width_; } + + void set_crop_left(uint64_t crop_left) { crop_left_ = crop_left; } + uint64_t crop_left() const { return crop_left_; } + void set_crop_right(uint64_t crop_right) { crop_right_ = crop_right; } + uint64_t crop_right() const { return crop_right_; } + void set_crop_top(uint64_t crop_top) { crop_top_ = crop_top; } + uint64_t crop_top() const { return crop_top_; } + void set_crop_bottom(uint64_t crop_bottom) { crop_bottom_ = crop_bottom; } + uint64_t crop_bottom() const { return crop_bottom_; } + + void set_frame_rate(double frame_rate) { frame_rate_ = frame_rate; } + double frame_rate() const { return frame_rate_; } + void set_height(uint64_t height) { height_ = height; } + uint64_t height() const { return height_; } + uint64_t stereo_mode() { return stereo_mode_; } + uint64_t alpha_mode() { return alpha_mode_; } + void set_width(uint64_t width) { width_ = width; } + uint64_t width() const { return width_; } + + Colour* colour() { return colour_; } + + // Deep copies |colour|. + bool SetColour(const Colour& colour); + + Projection* projection() { return projection_; } + + // Deep copies |projection|. + bool SetProjection(const Projection& projection); + + private: + // Returns the size in bytes of the Video element. + uint64_t VideoPayloadSize() const; + + // Video track element names. + uint64_t display_height_; + uint64_t display_width_; + uint64_t pixel_height_; + uint64_t pixel_width_; + uint64_t crop_left_; + uint64_t crop_right_; + uint64_t crop_top_; + uint64_t crop_bottom_; + double frame_rate_; + uint64_t height_; + uint64_t stereo_mode_; + uint64_t alpha_mode_; + uint64_t width_; + + Colour* colour_; + Projection* projection_; + + LIBWEBM_DISALLOW_COPY_AND_ASSIGN(VideoTrack); +}; + +/////////////////////////////////////////////////////////////// +// Track that has audio specific elements. +class AudioTrack : public Track { + public: + // The |seed| parameter is used to synthesize a UID for the track. + explicit AudioTrack(unsigned int* seed); + virtual ~AudioTrack(); + + // Returns the size in bytes for the payload of the Track element plus the + // audio specific elements. + virtual uint64_t PayloadSize() const; + + // Output the AudioTrack element to the writer. Returns true on success. + virtual bool Write(IMkvWriter* writer) const; + + void set_bit_depth(uint64_t bit_depth) { bit_depth_ = bit_depth; } + uint64_t bit_depth() const { return bit_depth_; } + void set_channels(uint64_t channels) { channels_ = channels; } + uint64_t channels() const { return channels_; } + void set_sample_rate(double sample_rate) { sample_rate_ = sample_rate; } + double sample_rate() const { return sample_rate_; } + + private: + // Audio track element names. + uint64_t bit_depth_; + uint64_t channels_; + double sample_rate_; + + LIBWEBM_DISALLOW_COPY_AND_ASSIGN(AudioTrack); +}; + +/////////////////////////////////////////////////////////////// +// Tracks element +class Tracks { + public: + // Audio and video type defined by the Matroska specs. + enum { kVideo = 0x1, kAudio = 0x2 }; + + static const char kOpusCodecId[]; + static const char kVorbisCodecId[]; + static const char kVp8CodecId[]; + static const char kVp9CodecId[]; + static const char kVp10CodecId[]; + static const char kWebVttCaptionsId[]; + static const char kWebVttDescriptionsId[]; + static const char kWebVttMetadataId[]; + static const char kWebVttSubtitlesId[]; + + Tracks(); + ~Tracks(); + + // Adds a Track element to the Tracks object. |track| will be owned and + // deleted by the Tracks object. Returns true on success. |number| is the + // number to use for the track. |number| must be >= 0. If |number| == 0 + // then the muxer will decide on the track number. + bool AddTrack(Track* track, int32_t number); + + // Returns the track by index. Returns NULL if there is no track match. + const Track* GetTrackByIndex(uint32_t idx) const; + + // Search the Tracks and return the track that matches |tn|. Returns NULL + // if there is no track match. + Track* GetTrackByNumber(uint64_t track_number) const; + + // Returns true if the track number is an audio track. + bool TrackIsAudio(uint64_t track_number) const; + + // Returns true if the track number is a video track. + bool TrackIsVideo(uint64_t track_number) const; + + // Output the Tracks element to the writer. Returns true on success. + bool Write(IMkvWriter* writer) const; + + uint32_t track_entries_size() const { return track_entries_size_; } + + private: + // Track element list. + Track** track_entries_; + + // Number of Track elements added. + uint32_t track_entries_size_; + + // Whether or not Tracks element has already been written via IMkvWriter. + mutable bool wrote_tracks_; + + LIBWEBM_DISALLOW_COPY_AND_ASSIGN(Tracks); +}; + +/////////////////////////////////////////////////////////////// +// Chapter element +// +class Chapter { + public: + // Set the identifier for this chapter. (This corresponds to the + // Cue Identifier line in WebVTT.) + // TODO(matthewjheaney): the actual serialization of this item in + // MKV is pending. + bool set_id(const char* id); + + // Converts the nanosecond start and stop times of this chapter to + // their corresponding timecode values, and stores them that way. + void set_time(const Segment& segment, uint64_t start_time_ns, + uint64_t end_time_ns); + + // Sets the uid for this chapter. Primarily used to enable + // deterministic output from the muxer. + void set_uid(const uint64_t uid) { uid_ = uid; } + + // Add a title string to this chapter, per the semantics described + // here: + // http://www.matroska.org/technical/specs/index.html + // + // The title ("chapter string") is a UTF-8 string. + // + // The language has ISO 639-2 representation, described here: + // http://www.loc.gov/standards/iso639-2/englangn.html + // http://www.loc.gov/standards/iso639-2/php/English_list.php + // If you specify NULL as the language value, this implies + // English ("eng"). + // + // The country value corresponds to the codes listed here: + // http://www.iana.org/domains/root/db/ + // + // The function returns false if the string could not be allocated. + bool add_string(const char* title, const char* language, const char* country); + + private: + friend class Chapters; + + // For storage of chapter titles that differ by language. + class Display { + public: + // Establish representation invariant for new Display object. + void Init(); + + // Reclaim resources, in anticipation of destruction. + void Clear(); + + // Copies the title to the |title_| member. Returns false on + // error. + bool set_title(const char* title); + + // Copies the language to the |language_| member. Returns false + // on error. + bool set_language(const char* language); + + // Copies the country to the |country_| member. Returns false on + // error. + bool set_country(const char* country); + + // If |writer| is non-NULL, serialize the Display sub-element of + // the Atom into the stream. Returns the Display element size on + // success, 0 if error. + uint64_t WriteDisplay(IMkvWriter* writer) const; + + private: + char* title_; + char* language_; + char* country_; + }; + + Chapter(); + ~Chapter(); + + // Establish the representation invariant for a newly-created + // Chapter object. The |seed| parameter is used to create the UID + // for this chapter atom. + void Init(unsigned int* seed); + + // Copies this Chapter object to a different one. This is used when + // expanding a plain array of Chapter objects (see Chapters). + void ShallowCopy(Chapter* dst) const; + + // Reclaim resources used by this Chapter object, pending its + // destruction. + void Clear(); + + // If there is no storage remaining on the |displays_| array for a + // new display object, creates a new, longer array and copies the + // existing Display objects to the new array. Returns false if the + // array cannot be expanded. + bool ExpandDisplaysArray(); + + // If |writer| is non-NULL, serialize the Atom sub-element into the + // stream. Returns the total size of the element on success, 0 if + // error. + uint64_t WriteAtom(IMkvWriter* writer) const; + + // The string identifier for this chapter (corresponds to WebVTT cue + // identifier). + char* id_; + + // Start timecode of the chapter. + uint64_t start_timecode_; + + // Stop timecode of the chapter. + uint64_t end_timecode_; + + // The binary identifier for this chapter. + uint64_t uid_; + + // The Atom element can contain multiple Display sub-elements, as + // the same logical title can be rendered in different languages. + Display* displays_; + + // The physical length (total size) of the |displays_| array. + int displays_size_; + + // The logical length (number of active elements) on the |displays_| + // array. + int displays_count_; + + LIBWEBM_DISALLOW_COPY_AND_ASSIGN(Chapter); +}; + +/////////////////////////////////////////////////////////////// +// Chapters element +// +class Chapters { + public: + Chapters(); + ~Chapters(); + + Chapter* AddChapter(unsigned int* seed); + + // Returns the number of chapters that have been added. + int Count() const; + + // Output the Chapters element to the writer. Returns true on success. + bool Write(IMkvWriter* writer) const; + + private: + // Expands the chapters_ array if there is not enough space to contain + // another chapter object. Returns true on success. + bool ExpandChaptersArray(); + + // If |writer| is non-NULL, serialize the Edition sub-element of the + // Chapters element into the stream. Returns the Edition element + // size on success, 0 if error. + uint64_t WriteEdition(IMkvWriter* writer) const; + + // Total length of the chapters_ array. + int chapters_size_; + + // Number of active chapters on the chapters_ array. + int chapters_count_; + + // Array for storage of chapter objects. + Chapter* chapters_; + + LIBWEBM_DISALLOW_COPY_AND_ASSIGN(Chapters); +}; + +/////////////////////////////////////////////////////////////// +// Tag element +// +class Tag { + public: + bool add_simple_tag(const char* tag_name, const char* tag_string); + + private: + // Tags calls Clear and the destructor of Tag + friend class Tags; + + // For storage of simple tags + class SimpleTag { + public: + // Establish representation invariant for new SimpleTag object. + void Init(); + + // Reclaim resources, in anticipation of destruction. + void Clear(); + + // Copies the title to the |tag_name_| member. Returns false on + // error. + bool set_tag_name(const char* tag_name); + + // Copies the language to the |tag_string_| member. Returns false + // on error. + bool set_tag_string(const char* tag_string); + + // If |writer| is non-NULL, serialize the SimpleTag sub-element of + // the Atom into the stream. Returns the SimpleTag element size on + // success, 0 if error. + uint64_t Write(IMkvWriter* writer) const; + + private: + char* tag_name_; + char* tag_string_; + }; + + Tag(); + ~Tag(); + + // Copies this Tag object to a different one. This is used when + // expanding a plain array of Tag objects (see Tags). + void ShallowCopy(Tag* dst) const; + + // Reclaim resources used by this Tag object, pending its + // destruction. + void Clear(); + + // If there is no storage remaining on the |simple_tags_| array for a + // new display object, creates a new, longer array and copies the + // existing SimpleTag objects to the new array. Returns false if the + // array cannot be expanded. + bool ExpandSimpleTagsArray(); + + // If |writer| is non-NULL, serialize the Tag sub-element into the + // stream. Returns the total size of the element on success, 0 if + // error. + uint64_t Write(IMkvWriter* writer) const; + + // The Atom element can contain multiple SimpleTag sub-elements + SimpleTag* simple_tags_; + + // The physical length (total size) of the |simple_tags_| array. + int simple_tags_size_; + + // The logical length (number of active elements) on the |simple_tags_| + // array. + int simple_tags_count_; + + LIBWEBM_DISALLOW_COPY_AND_ASSIGN(Tag); +}; + +/////////////////////////////////////////////////////////////// +// Tags element +// +class Tags { + public: + Tags(); + ~Tags(); + + Tag* AddTag(); + + // Returns the number of tags that have been added. + int Count() const; + + // Output the Tags element to the writer. Returns true on success. + bool Write(IMkvWriter* writer) const; + + private: + // Expands the tags_ array if there is not enough space to contain + // another tag object. Returns true on success. + bool ExpandTagsArray(); + + // Total length of the tags_ array. + int tags_size_; + + // Number of active tags on the tags_ array. + int tags_count_; + + // Array for storage of tag objects. + Tag* tags_; + + LIBWEBM_DISALLOW_COPY_AND_ASSIGN(Tags); +}; + +/////////////////////////////////////////////////////////////// +// Cluster element +// +// Notes: +// |Init| must be called before any other method in this class. +class Cluster { + public: + // |timecode| is the absolute timecode of the cluster. |cues_pos| is the + // position for the cluster within the segment that should be written in + // the cues element. |timecode_scale| is the timecode scale of the segment. + Cluster(uint64_t timecode, int64_t cues_pos, uint64_t timecode_scale, + bool write_last_frame_with_duration = false, + bool fixed_size_timecode = false); + ~Cluster(); + + bool Init(IMkvWriter* ptr_writer); + + // Adds a frame to be output in the file. The frame is written out through + // |writer_| if successful. Returns true on success. + bool AddFrame(const Frame* frame); + + // Adds a frame to be output in the file. The frame is written out through + // |writer_| if successful. Returns true on success. + // Inputs: + // data: Pointer to the data + // length: Length of the data + // track_number: Track to add the data to. Value returned by Add track + // functions. The range of allowed values is [1, 126]. + // timecode: Absolute (not relative to cluster) timestamp of the + // frame, expressed in timecode units. + // is_key: Flag telling whether or not this frame is a key frame. + bool AddFrame(const uint8_t* data, uint64_t length, uint64_t track_number, + uint64_t timecode, // timecode units (absolute) + bool is_key); + + // Adds a frame to be output in the file. The frame is written out through + // |writer_| if successful. Returns true on success. + // Inputs: + // data: Pointer to the data + // length: Length of the data + // additional: Pointer to the additional data + // additional_length: Length of the additional data + // add_id: Value of BlockAddID element + // track_number: Track to add the data to. Value returned by Add track + // functions. The range of allowed values is [1, 126]. + // abs_timecode: Absolute (not relative to cluster) timestamp of the + // frame, expressed in timecode units. + // is_key: Flag telling whether or not this frame is a key frame. + bool AddFrameWithAdditional(const uint8_t* data, uint64_t length, + const uint8_t* additional, + uint64_t additional_length, uint64_t add_id, + uint64_t track_number, uint64_t abs_timecode, + bool is_key); + + // Adds a frame to be output in the file. The frame is written out through + // |writer_| if successful. Returns true on success. + // Inputs: + // data: Pointer to the data. + // length: Length of the data. + // discard_padding: DiscardPadding element value. + // track_number: Track to add the data to. Value returned by Add track + // functions. The range of allowed values is [1, 126]. + // abs_timecode: Absolute (not relative to cluster) timestamp of the + // frame, expressed in timecode units. + // is_key: Flag telling whether or not this frame is a key frame. + bool AddFrameWithDiscardPadding(const uint8_t* data, uint64_t length, + int64_t discard_padding, + uint64_t track_number, uint64_t abs_timecode, + bool is_key); + + // Writes a frame of metadata to the output medium; returns true on + // success. + // Inputs: + // data: Pointer to the data + // length: Length of the data + // track_number: Track to add the data to. Value returned by Add track + // functions. The range of allowed values is [1, 126]. + // timecode: Absolute (not relative to cluster) timestamp of the + // metadata frame, expressed in timecode units. + // duration: Duration of metadata frame, in timecode units. + // + // The metadata frame is written as a block group, with a duration + // sub-element but no reference time sub-elements (indicating that + // it is considered a keyframe, per Matroska semantics). + bool AddMetadata(const uint8_t* data, uint64_t length, uint64_t track_number, + uint64_t timecode, uint64_t duration); + + // Increments the size of the cluster's data in bytes. + void AddPayloadSize(uint64_t size); + + // Closes the cluster so no more data can be written to it. Will update the + // cluster's size if |writer_| is seekable. Returns true on success. This + // variant of Finalize() fails when |write_last_frame_with_duration_| is set + // to true. + bool Finalize(); + + // Closes the cluster so no more data can be written to it. Will update the + // cluster's size if |writer_| is seekable. Returns true on success. + // Inputs: + // set_last_frame_duration: Boolean indicating whether or not the duration + // of the last frame should be set. If set to + // false, the |duration| value is ignored and + // |write_last_frame_with_duration_| will not be + // honored. + // duration: Duration of the Cluster in timecode scale. + bool Finalize(bool set_last_frame_duration, uint64_t duration); + + // Returns the size in bytes for the entire Cluster element. + uint64_t Size() const; + + // Given |abs_timecode|, calculates timecode relative to most recent timecode. + // Returns -1 on failure, or a relative timecode. + int64_t GetRelativeTimecode(int64_t abs_timecode) const; + + int64_t size_position() const { return size_position_; } + int32_t blocks_added() const { return blocks_added_; } + uint64_t payload_size() const { return payload_size_; } + int64_t position_for_cues() const { return position_for_cues_; } + uint64_t timecode() const { return timecode_; } + uint64_t timecode_scale() const { return timecode_scale_; } + void set_write_last_frame_with_duration(bool write_last_frame_with_duration) { + write_last_frame_with_duration_ = write_last_frame_with_duration; + } + bool write_last_frame_with_duration() const { + return write_last_frame_with_duration_; + } + + private: + // Iterator type for the |stored_frames_| map. + typedef std::map >::iterator FrameMapIterator; + + // Utility method that confirms that blocks can still be added, and that the + // cluster header has been written. Used by |DoWriteFrame*|. Returns true + // when successful. + bool PreWriteBlock(); + + // Utility method used by the |DoWriteFrame*| methods that handles the book + // keeping required after each block is written. + void PostWriteBlock(uint64_t element_size); + + // Does some verification and calls WriteFrame. + bool DoWriteFrame(const Frame* const frame); + + // Either holds back the given frame, or writes it out depending on whether or + // not |write_last_frame_with_duration_| is set. + bool QueueOrWriteFrame(const Frame* const frame); + + // Outputs the Cluster header to |writer_|. Returns true on success. + bool WriteClusterHeader(); + + // Number of blocks added to the cluster. + int32_t blocks_added_; + + // Flag telling if the cluster has been closed. + bool finalized_; + + // Flag indicating whether the cluster's timecode will always be written out + // using 8 bytes. + bool fixed_size_timecode_; + + // Flag telling if the cluster's header has been written. + bool header_written_; + + // The size of the cluster elements in bytes. + uint64_t payload_size_; + + // The file position used for cue points. + const int64_t position_for_cues_; + + // The file position of the cluster's size element. + int64_t size_position_; + + // The absolute timecode of the cluster. + const uint64_t timecode_; + + // The timecode scale of the Segment containing the cluster. + const uint64_t timecode_scale_; + + // Flag indicating whether the last frame of the cluster should be written as + // a Block with Duration. If set to true, then it will result in holding back + // of frames and the parameterized version of Finalize() must be called to + // finish writing the Cluster. + bool write_last_frame_with_duration_; + + // Map used to hold back frames, if required. Track number is the key. + std::map > stored_frames_; + + // Map from track number to the timestamp of the last block written for that + // track. + std::map last_block_timestamp_; + + // Pointer to the writer object. Not owned by this class. + IMkvWriter* writer_; + + LIBWEBM_DISALLOW_COPY_AND_ASSIGN(Cluster); +}; + +/////////////////////////////////////////////////////////////// +// SeekHead element +class SeekHead { + public: + SeekHead(); + ~SeekHead(); + + // TODO(fgalligan): Change this to reserve a certain size. Then check how + // big the seek entry to be added is as not every seek entry will be the + // maximum size it could be. + // Adds a seek entry to be written out when the element is finalized. |id| + // must be the coded mkv element id. |pos| is the file position of the + // element. Returns true on success. + bool AddSeekEntry(uint32_t id, uint64_t pos); + + // Writes out SeekHead and SeekEntry elements. Returns true on success. + bool Finalize(IMkvWriter* writer) const; + + // Returns the id of the Seek Entry at the given index. Returns -1 if index is + // out of range. + uint32_t GetId(int index) const; + + // Returns the position of the Seek Entry at the given index. Returns -1 if + // index is out of range. + uint64_t GetPosition(int index) const; + + // Sets the Seek Entry id and position at given index. + // Returns true on success. + bool SetSeekEntry(int index, uint32_t id, uint64_t position); + + // Reserves space by writing out a Void element which will be updated with + // a SeekHead element later. Returns true on success. + bool Write(IMkvWriter* writer); + + // We are going to put a cap on the number of Seek Entries. + const static int32_t kSeekEntryCount = 5; + + private: + // Returns the maximum size in bytes of one seek entry. + uint64_t MaxEntrySize() const; + + // Seek entry id element list. + uint32_t seek_entry_id_[kSeekEntryCount]; + + // Seek entry pos element list. + uint64_t seek_entry_pos_[kSeekEntryCount]; + + // The file position of SeekHead element. + int64_t start_pos_; + + LIBWEBM_DISALLOW_COPY_AND_ASSIGN(SeekHead); +}; + +/////////////////////////////////////////////////////////////// +// Segment Information element +class SegmentInfo { + public: + SegmentInfo(); + ~SegmentInfo(); + + // Will update the duration if |duration_| is > 0.0. Returns true on success. + bool Finalize(IMkvWriter* writer) const; + + // Sets |muxing_app_| and |writing_app_|. + bool Init(); + + // Output the Segment Information element to the writer. Returns true on + // success. + bool Write(IMkvWriter* writer); + + void set_duration(double duration) { duration_ = duration; } + double duration() const { return duration_; } + void set_muxing_app(const char* app); + const char* muxing_app() const { return muxing_app_; } + void set_timecode_scale(uint64_t scale) { timecode_scale_ = scale; } + uint64_t timecode_scale() const { return timecode_scale_; } + void set_writing_app(const char* app); + const char* writing_app() const { return writing_app_; } + void set_date_utc(int64_t date_utc) { date_utc_ = date_utc; } + int64_t date_utc() const { return date_utc_; } + + private: + // Segment Information element names. + // Initially set to -1 to signify that a duration has not been set and should + // not be written out. + double duration_; + // Set to libwebm-%d.%d.%d.%d, major, minor, build, revision. + char* muxing_app_; + uint64_t timecode_scale_; + // Initially set to libwebm-%d.%d.%d.%d, major, minor, build, revision. + char* writing_app_; + // LLONG_MIN when DateUTC is not set. + int64_t date_utc_; + + // The file position of the duration element. + int64_t duration_pos_; + + LIBWEBM_DISALLOW_COPY_AND_ASSIGN(SegmentInfo); +}; + +/////////////////////////////////////////////////////////////// +// This class represents the main segment in a WebM file. Currently only +// supports one Segment element. +// +// Notes: +// |Init| must be called before any other method in this class. +class Segment { + public: + enum Mode { kLive = 0x1, kFile = 0x2 }; + + enum CuesPosition { + kAfterClusters = 0x0, // Position Cues after Clusters - Default + kBeforeClusters = 0x1 // Position Cues before Clusters + }; + + static const uint32_t kDefaultDocTypeVersion = 4; + static const uint64_t kDefaultMaxClusterDuration = 30000000000ULL; + + Segment(); + ~Segment(); + + // Initializes |SegmentInfo| and returns result. Always returns false when + // |ptr_writer| is NULL. + bool Init(IMkvWriter* ptr_writer); + + // Adds a generic track to the segment. Returns the newly-allocated + // track object (which is owned by the segment) on success, NULL on + // error. |number| is the number to use for the track. |number| + // must be >= 0. If |number| == 0 then the muxer will decide on the + // track number. + Track* AddTrack(int32_t number); + + // Adds a Vorbis audio track to the segment. Returns the number of the track + // on success, 0 on error. |number| is the number to use for the audio track. + // |number| must be >= 0. If |number| == 0 then the muxer will decide on + // the track number. + uint64_t AddAudioTrack(int32_t sample_rate, int32_t channels, int32_t number); + + // Adds an empty chapter to the chapters of this segment. Returns + // non-NULL on success. After adding the chapter, the caller should + // populate its fields via the Chapter member functions. + Chapter* AddChapter(); + + // Adds an empty tag to the tags of this segment. Returns + // non-NULL on success. After adding the tag, the caller should + // populate its fields via the Tag member functions. + Tag* AddTag(); + + // Adds a cue point to the Cues element. |timestamp| is the time in + // nanoseconds of the cue's time. |track| is the Track of the Cue. This + // function must be called after AddFrame to calculate the correct + // BlockNumber for the CuePoint. Returns true on success. + bool AddCuePoint(uint64_t timestamp, uint64_t track); + + // Adds a frame to be output in the file. Returns true on success. + // Inputs: + // data: Pointer to the data + // length: Length of the data + // track_number: Track to add the data to. Value returned by Add track + // functions. + // timestamp: Timestamp of the frame in nanoseconds from 0. + // is_key: Flag telling whether or not this frame is a key frame. + bool AddFrame(const uint8_t* data, uint64_t length, uint64_t track_number, + uint64_t timestamp_ns, bool is_key); + + // Writes a frame of metadata to the output medium; returns true on + // success. + // Inputs: + // data: Pointer to the data + // length: Length of the data + // track_number: Track to add the data to. Value returned by Add track + // functions. + // timecode: Absolute timestamp of the metadata frame, expressed + // in nanosecond units. + // duration: Duration of metadata frame, in nanosecond units. + // + // The metadata frame is written as a block group, with a duration + // sub-element but no reference time sub-elements (indicating that + // it is considered a keyframe, per Matroska semantics). + bool AddMetadata(const uint8_t* data, uint64_t length, uint64_t track_number, + uint64_t timestamp_ns, uint64_t duration_ns); + + // Writes a frame with additional data to the output medium; returns true on + // success. + // Inputs: + // data: Pointer to the data. + // length: Length of the data. + // additional: Pointer to additional data. + // additional_length: Length of additional data. + // add_id: Additional ID which identifies the type of additional data. + // track_number: Track to add the data to. Value returned by Add track + // functions. + // timestamp: Absolute timestamp of the frame, expressed in nanosecond + // units. + // is_key: Flag telling whether or not this frame is a key frame. + bool AddFrameWithAdditional(const uint8_t* data, uint64_t length, + const uint8_t* additional, + uint64_t additional_length, uint64_t add_id, + uint64_t track_number, uint64_t timestamp, + bool is_key); + + // Writes a frame with DiscardPadding to the output medium; returns true on + // success. + // Inputs: + // data: Pointer to the data. + // length: Length of the data. + // discard_padding: DiscardPadding element value. + // track_number: Track to add the data to. Value returned by Add track + // functions. + // timestamp: Absolute timestamp of the frame, expressed in nanosecond + // units. + // is_key: Flag telling whether or not this frame is a key frame. + bool AddFrameWithDiscardPadding(const uint8_t* data, uint64_t length, + int64_t discard_padding, + uint64_t track_number, uint64_t timestamp, + bool is_key); + + // Writes a Frame to the output medium. Chooses the correct way of writing + // the frame (Block vs SimpleBlock) based on the parameters passed. + // Inputs: + // frame: frame object + bool AddGenericFrame(const Frame* frame); + + // Adds a VP8 video track to the segment. Returns the number of the track on + // success, 0 on error. |number| is the number to use for the video track. + // |number| must be >= 0. If |number| == 0 then the muxer will decide on + // the track number. + uint64_t AddVideoTrack(int32_t width, int32_t height, int32_t number); + + // This function must be called after Finalize() if you need a copy of the + // output with Cues written before the Clusters. It will return false if the + // writer is not seekable of if chunking is set to true. + // Input parameters: + // reader - an IMkvReader object created with the same underlying file of the + // current writer object. Make sure to close the existing writer + // object before creating this so that all the data is properly + // flushed and available for reading. + // writer - an IMkvWriter object pointing to a *different* file than the one + // pointed by the current writer object. This file will contain the + // Cues element before the Clusters. + bool CopyAndMoveCuesBeforeClusters(mkvparser::IMkvReader* reader, + IMkvWriter* writer); + + // Sets which track to use for the Cues element. Must have added the track + // before calling this function. Returns true on success. |track_number| is + // returned by the Add track functions. + bool CuesTrack(uint64_t track_number); + + // This will force the muxer to create a new Cluster when the next frame is + // added. + void ForceNewClusterOnNextFrame(); + + // Writes out any frames that have not been written out. Finalizes the last + // cluster. May update the size and duration of the segment. May output the + // Cues element. May finalize the SeekHead element. Returns true on success. + bool Finalize(); + + // Returns the Cues object. + Cues* GetCues() { return &cues_; } + + // Returns the Segment Information object. + const SegmentInfo* GetSegmentInfo() const { return &segment_info_; } + SegmentInfo* GetSegmentInfo() { return &segment_info_; } + + // Search the Tracks and return the track that matches |track_number|. + // Returns NULL if there is no track match. + Track* GetTrackByNumber(uint64_t track_number) const; + + // Toggles whether to output a cues element. + void OutputCues(bool output_cues); + + // Toggles whether to write the last frame in each Cluster with Duration. + void AccurateClusterDuration(bool accurate_cluster_duration); + + // Toggles whether to write the Cluster Timecode using exactly 8 bytes. + void UseFixedSizeClusterTimecode(bool fixed_size_cluster_timecode); + + // Sets if the muxer will output files in chunks or not. |chunking| is a + // flag telling whether or not to turn on chunking. |filename| is the base + // filename for the chunk files. The header chunk file will be named + // |filename|.hdr and the data chunks will be named + // |filename|_XXXXXX.chk. Chunking implies that the muxer will be writing + // to files so the muxer will use the default MkvWriter class to control + // what data is written to what files. Returns true on success. + // TODO: Should we change the IMkvWriter Interface to add Open and Close? + // That will force the interface to be dependent on files. + bool SetChunking(bool chunking, const char* filename); + + bool chunking() const { return chunking_; } + uint64_t cues_track() const { return cues_track_; } + void set_max_cluster_duration(uint64_t max_cluster_duration) { + max_cluster_duration_ = max_cluster_duration; + } + uint64_t max_cluster_duration() const { return max_cluster_duration_; } + void set_max_cluster_size(uint64_t max_cluster_size) { + max_cluster_size_ = max_cluster_size; + } + uint64_t max_cluster_size() const { return max_cluster_size_; } + void set_mode(Mode mode) { mode_ = mode; } + Mode mode() const { return mode_; } + CuesPosition cues_position() const { return cues_position_; } + bool output_cues() const { return output_cues_; } + void set_estimate_file_duration(bool estimate_duration) { + estimate_file_duration_ = estimate_duration; + } + bool estimate_file_duration() const { return estimate_file_duration_; } + const SegmentInfo* segment_info() const { return &segment_info_; } + void set_duration(double duration) { duration_ = duration; } + double duration() const { return duration_; } + + // Returns true when codec IDs are valid for WebM. + bool DocTypeIsWebm() const; + + private: + // Checks if header information has been output and initialized. If not it + // will output the Segment element and initialize the SeekHead elment and + // Cues elements. + bool CheckHeaderInfo(); + + // Sets |doc_type_version_| based on the current element requirements. + void UpdateDocTypeVersion(); + + // Sets |name| according to how many chunks have been written. |ext| is the + // file extension. |name| must be deleted by the calling app. Returns true + // on success. + bool UpdateChunkName(const char* ext, char** name) const; + + // Returns the maximum offset within the segment's payload. When chunking + // this function is needed to determine offsets of elements within the + // chunked files. Returns -1 on error. + int64_t MaxOffset(); + + // Adds the frame to our frame array. + bool QueueFrame(Frame* frame); + + // Output all frames that are queued. Returns -1 on error, otherwise + // it returns the number of frames written. + int WriteFramesAll(); + + // Output all frames that are queued that have an end time that is less + // then |timestamp|. Returns true on success and if there are no frames + // queued. + bool WriteFramesLessThan(uint64_t timestamp); + + // Outputs the segment header, Segment Information element, SeekHead element, + // and Tracks element to |writer_|. + bool WriteSegmentHeader(); + + // Given a frame with the specified timestamp (nanosecond units) and + // keyframe status, determine whether a new cluster should be + // created, before writing enqueued frames and the frame itself. The + // function returns one of the following values: + // -1 = error: an out-of-order frame was detected + // 0 = do not create a new cluster, and write frame to the existing cluster + // 1 = create a new cluster, and write frame to that new cluster + // 2 = create a new cluster, and re-run test + int TestFrame(uint64_t track_num, uint64_t timestamp_ns, bool key) const; + + // Create a new cluster, using the earlier of the first enqueued + // frame, or the indicated time. Returns true on success. + bool MakeNewCluster(uint64_t timestamp_ns); + + // Checks whether a new cluster needs to be created, and if so + // creates a new cluster. Returns false if creation of a new cluster + // was necessary but creation was not successful. + bool DoNewClusterProcessing(uint64_t track_num, uint64_t timestamp_ns, + bool key); + + // Adjusts Cue Point values (to place Cues before Clusters) so that they + // reflect the correct offsets. + void MoveCuesBeforeClusters(); + + // This function recursively computes the correct cluster offsets (this is + // done to move the Cues before Clusters). It recursively updates the change + // in size (which indicates a change in cluster offset) until no sizes change. + // Parameters: + // diff - indicates the difference in size of the Cues element that needs to + // accounted for. + // index - index in the list of Cues which is currently being adjusted. + // cue_size - sum of size of all the CuePoint elements. + void MoveCuesBeforeClustersHelper(uint64_t diff, int index, + uint64_t* cue_size); + + // Seeds the random number generator used to make UIDs. + unsigned int seed_; + + // WebM elements + Cues cues_; + SeekHead seek_head_; + SegmentInfo segment_info_; + Tracks tracks_; + Chapters chapters_; + Tags tags_; + + // Number of chunks written. + int chunk_count_; + + // Current chunk filename. + char* chunk_name_; + + // Default MkvWriter object created by this class used for writing clusters + // out in separate files. + MkvWriter* chunk_writer_cluster_; + + // Default MkvWriter object created by this class used for writing Cues + // element out to a file. + MkvWriter* chunk_writer_cues_; + + // Default MkvWriter object created by this class used for writing the + // Matroska header out to a file. + MkvWriter* chunk_writer_header_; + + // Flag telling whether or not the muxer is chunking output to multiple + // files. + bool chunking_; + + // Base filename for the chunked files. + char* chunking_base_name_; + + // File position offset where the Clusters end. + int64_t cluster_end_offset_; + + // List of clusters. + Cluster** cluster_list_; + + // Number of cluster pointers allocated in the cluster list. + int32_t cluster_list_capacity_; + + // Number of clusters in the cluster list. + int32_t cluster_list_size_; + + // Indicates whether Cues should be written before or after Clusters + CuesPosition cues_position_; + + // Track number that is associated with the cues element for this segment. + uint64_t cues_track_; + + // Tells the muxer to force a new cluster on the next Block. + bool force_new_cluster_; + + // List of stored audio frames. These variables are used to store frames so + // the muxer can follow the guideline "Audio blocks that contain the video + // key frame's timecode should be in the same cluster as the video key frame + // block." + Frame** frames_; + + // Number of frame pointers allocated in the frame list. + int32_t frames_capacity_; + + // Number of frames in the frame list. + int32_t frames_size_; + + // Flag telling if a video track has been added to the segment. + bool has_video_; + + // Flag telling if the segment's header has been written. + bool header_written_; + + // Duration of the last block in nanoseconds. + uint64_t last_block_duration_; + + // Last timestamp in nanoseconds added to a cluster. + uint64_t last_timestamp_; + + // Last timestamp in nanoseconds by track number added to a cluster. + uint64_t last_track_timestamp_[kMaxTrackNumber]; + + // Number of frames written per track. + uint64_t track_frames_written_[kMaxTrackNumber]; + + // Maximum time in nanoseconds for a cluster duration. This variable is a + // guideline and some clusters may have a longer duration. Default is 30 + // seconds. + uint64_t max_cluster_duration_; + + // Maximum size in bytes for a cluster. This variable is a guideline and + // some clusters may have a larger size. Default is 0 which signifies that + // the muxer will decide the size. + uint64_t max_cluster_size_; + + // The mode that segment is in. If set to |kLive| the writer must not + // seek backwards. + Mode mode_; + + // Flag telling the muxer that a new cue point should be added. + bool new_cuepoint_; + + // TODO(fgalligan): Should we add support for more than one Cues element? + // Flag whether or not the muxer should output a Cues element. + bool output_cues_; + + // Flag whether or not the last frame in each Cluster will have a Duration + // element in it. + bool accurate_cluster_duration_; + + // Flag whether or not to write the Cluster Timecode using exactly 8 bytes. + bool fixed_size_cluster_timecode_; + + // Flag whether or not to estimate the file duration. + bool estimate_file_duration_; + + // The size of the EBML header, used to validate the header if + // WriteEbmlHeader() is called more than once. + int32_t ebml_header_size_; + + // The file position of the segment's payload. + int64_t payload_pos_; + + // The file position of the element's size. + int64_t size_position_; + + // Current DocTypeVersion (|doc_type_version_|) and that written in + // WriteSegmentHeader(). + // WriteEbmlHeader() will be called from Finalize() if |doc_type_version_| + // differs from |doc_type_version_written_|. + uint32_t doc_type_version_; + uint32_t doc_type_version_written_; + + // If |duration_| is > 0, then explicitly set the duration of the segment. + double duration_; + + // Pointer to the writer objects. Not owned by this class. + IMkvWriter* writer_cluster_; + IMkvWriter* writer_cues_; + IMkvWriter* writer_header_; + + LIBWEBM_DISALLOW_COPY_AND_ASSIGN(Segment); +}; + +} // namespace mkvmuxer + +#endif // MKVMUXER_MKVMUXER_H_ diff --git a/third_party/libwebm/mkvmuxer/mkvmuxertypes.h b/third_party/libwebm/mkvmuxer/mkvmuxertypes.h new file mode 100644 index 0000000..e5db121 --- /dev/null +++ b/third_party/libwebm/mkvmuxer/mkvmuxertypes.h @@ -0,0 +1,28 @@ +// Copyright (c) 2012 The WebM project authors. All Rights Reserved. +// +// Use of this source code is governed by a BSD-style license +// that can be found in the LICENSE file in the root of the source +// tree. An additional intellectual property rights grant can be found +// in the file PATENTS. All contributing project authors may +// be found in the AUTHORS file in the root of the source tree. + +#ifndef MKVMUXER_MKVMUXERTYPES_H_ +#define MKVMUXER_MKVMUXERTYPES_H_ + +namespace mkvmuxer { +typedef unsigned char uint8; +typedef short int16; +typedef int int32; +typedef unsigned int uint32; +typedef long long int64; +typedef unsigned long long uint64; +} // namespace mkvmuxer + +// Copied from Chromium basictypes.h +// A macro to disallow the copy constructor and operator= functions +// This should be used in the private: declarations for a class +#define LIBWEBM_DISALLOW_COPY_AND_ASSIGN(TypeName) \ + TypeName(const TypeName&); \ + void operator=(const TypeName&) + +#endif // MKVMUXER_MKVMUXERTYPES_HPP_ diff --git a/third_party/libwebm/mkvmuxer/mkvmuxerutil.cc b/third_party/libwebm/mkvmuxer/mkvmuxerutil.cc new file mode 100644 index 0000000..355d4e2 --- /dev/null +++ b/third_party/libwebm/mkvmuxer/mkvmuxerutil.cc @@ -0,0 +1,744 @@ +// Copyright (c) 2012 The WebM project authors. All Rights Reserved. +// +// Use of this source code is governed by a BSD-style license +// that can be found in the LICENSE file in the root of the source +// tree. An additional intellectual property rights grant can be found +// in the file PATENTS. All contributing project authors may +// be found in the AUTHORS file in the root of the source tree. + +#include "mkvmuxer/mkvmuxerutil.h" + +#ifdef __ANDROID__ +#include +#include +#endif + +#include +#include +#include +#include +#include +#include +#include + +#include "common/webmids.h" +#include "mkvmuxer/mkvmuxer.h" +#include "mkvmuxer/mkvwriter.h" + +namespace mkvmuxer { + +namespace { + +// Date elements are always 8 octets in size. +const int kDateElementSize = 8; + +uint64 WriteBlock(IMkvWriter* writer, const Frame* const frame, int64 timecode, + uint64 timecode_scale) { + uint64 block_additional_elem_size = 0; + uint64 block_addid_elem_size = 0; + uint64 block_more_payload_size = 0; + uint64 block_more_elem_size = 0; + uint64 block_additions_payload_size = 0; + uint64 block_additions_elem_size = 0; + if (frame->additional()) { + block_additional_elem_size = + EbmlElementSize(libwebm::kMkvBlockAdditional, frame->additional(), + frame->additional_length()); + block_addid_elem_size = EbmlElementSize( + libwebm::kMkvBlockAddID, static_cast(frame->add_id())); + + block_more_payload_size = + block_addid_elem_size + block_additional_elem_size; + block_more_elem_size = + EbmlMasterElementSize(libwebm::kMkvBlockMore, block_more_payload_size) + + block_more_payload_size; + block_additions_payload_size = block_more_elem_size; + block_additions_elem_size = + EbmlMasterElementSize(libwebm::kMkvBlockAdditions, + block_additions_payload_size) + + block_additions_payload_size; + } + + uint64 discard_padding_elem_size = 0; + if (frame->discard_padding() != 0) { + discard_padding_elem_size = + EbmlElementSize(libwebm::kMkvDiscardPadding, + static_cast(frame->discard_padding())); + } + + const uint64 reference_block_timestamp = + frame->reference_block_timestamp() / timecode_scale; + uint64 reference_block_elem_size = 0; + if (!frame->is_key()) { + reference_block_elem_size = + EbmlElementSize(libwebm::kMkvReferenceBlock, reference_block_timestamp); + } + + const uint64 duration = frame->duration() / timecode_scale; + uint64 block_duration_elem_size = 0; + if (duration > 0) + block_duration_elem_size = + EbmlElementSize(libwebm::kMkvBlockDuration, duration); + + const uint64 block_payload_size = 4 + frame->length(); + const uint64 block_elem_size = + EbmlMasterElementSize(libwebm::kMkvBlock, block_payload_size) + + block_payload_size; + + const uint64 block_group_payload_size = + block_elem_size + block_additions_elem_size + block_duration_elem_size + + discard_padding_elem_size + reference_block_elem_size; + + if (!WriteEbmlMasterElement(writer, libwebm::kMkvBlockGroup, + block_group_payload_size)) { + return 0; + } + + if (!WriteEbmlMasterElement(writer, libwebm::kMkvBlock, block_payload_size)) + return 0; + + if (WriteUInt(writer, frame->track_number())) + return 0; + + if (SerializeInt(writer, timecode, 2)) + return 0; + + // For a Block, flags is always 0. + if (SerializeInt(writer, 0, 1)) + return 0; + + if (writer->Write(frame->frame(), static_cast(frame->length()))) + return 0; + + if (frame->additional()) { + if (!WriteEbmlMasterElement(writer, libwebm::kMkvBlockAdditions, + block_additions_payload_size)) { + return 0; + } + + if (!WriteEbmlMasterElement(writer, libwebm::kMkvBlockMore, + block_more_payload_size)) + return 0; + + if (!WriteEbmlElement(writer, libwebm::kMkvBlockAddID, + static_cast(frame->add_id()))) + return 0; + + if (!WriteEbmlElement(writer, libwebm::kMkvBlockAdditional, + frame->additional(), frame->additional_length())) { + return 0; + } + } + + if (frame->discard_padding() != 0 && + !WriteEbmlElement(writer, libwebm::kMkvDiscardPadding, + static_cast(frame->discard_padding()))) { + return false; + } + + if (!frame->is_key() && + !WriteEbmlElement(writer, libwebm::kMkvReferenceBlock, + reference_block_timestamp)) { + return false; + } + + if (duration > 0 && + !WriteEbmlElement(writer, libwebm::kMkvBlockDuration, duration)) { + return false; + } + return EbmlMasterElementSize(libwebm::kMkvBlockGroup, + block_group_payload_size) + + block_group_payload_size; +} + +uint64 WriteSimpleBlock(IMkvWriter* writer, const Frame* const frame, + int64 timecode) { + if (WriteID(writer, libwebm::kMkvSimpleBlock)) + return 0; + + const int32 size = static_cast(frame->length()) + 4; + if (WriteUInt(writer, size)) + return 0; + + if (WriteUInt(writer, static_cast(frame->track_number()))) + return 0; + + if (SerializeInt(writer, timecode, 2)) + return 0; + + uint64 flags = 0; + if (frame->is_key()) + flags |= 0x80; + + if (SerializeInt(writer, flags, 1)) + return 0; + + if (writer->Write(frame->frame(), static_cast(frame->length()))) + return 0; + + return GetUIntSize(libwebm::kMkvSimpleBlock) + GetCodedUIntSize(size) + 4 + + frame->length(); +} + +} // namespace + +int32 GetCodedUIntSize(uint64 value) { + if (value < 0x000000000000007FULL) + return 1; + else if (value < 0x0000000000003FFFULL) + return 2; + else if (value < 0x00000000001FFFFFULL) + return 3; + else if (value < 0x000000000FFFFFFFULL) + return 4; + else if (value < 0x00000007FFFFFFFFULL) + return 5; + else if (value < 0x000003FFFFFFFFFFULL) + return 6; + else if (value < 0x0001FFFFFFFFFFFFULL) + return 7; + return 8; +} + +int32 GetUIntSize(uint64 value) { + if (value < 0x0000000000000100ULL) + return 1; + else if (value < 0x0000000000010000ULL) + return 2; + else if (value < 0x0000000001000000ULL) + return 3; + else if (value < 0x0000000100000000ULL) + return 4; + else if (value < 0x0000010000000000ULL) + return 5; + else if (value < 0x0001000000000000ULL) + return 6; + else if (value < 0x0100000000000000ULL) + return 7; + return 8; +} + +int32 GetIntSize(int64 value) { + // Doubling the requested value ensures positive values with their high bit + // set are written with 0-padding to avoid flipping the signedness. + const uint64 v = (value < 0) ? value ^ -1LL : value; + return GetUIntSize(2 * v); +} + +uint64 EbmlMasterElementSize(uint64 type, uint64 value) { + // Size of EBML ID + int32 ebml_size = GetUIntSize(type); + + // Datasize + ebml_size += GetCodedUIntSize(value); + + return ebml_size; +} + +uint64 EbmlElementSize(uint64 type, int64 value) { + // Size of EBML ID + int32 ebml_size = GetUIntSize(type); + + // Datasize + ebml_size += GetIntSize(value); + + // Size of Datasize + ebml_size++; + + return ebml_size; +} + +uint64 EbmlElementSize(uint64 type, uint64 value) { + return EbmlElementSize(type, value, 0); +} + +uint64 EbmlElementSize(uint64 type, uint64 value, uint64 fixed_size) { + // Size of EBML ID + uint64 ebml_size = GetUIntSize(type); + + // Datasize + ebml_size += (fixed_size > 0) ? fixed_size : GetUIntSize(value); + + // Size of Datasize + ebml_size++; + + return ebml_size; +} + +uint64 EbmlElementSize(uint64 type, float /* value */) { + // Size of EBML ID + uint64 ebml_size = GetUIntSize(type); + + // Datasize + ebml_size += sizeof(float); + + // Size of Datasize + ebml_size++; + + return ebml_size; +} + +uint64 EbmlElementSize(uint64 type, const char* value) { + if (!value) + return 0; + + // Size of EBML ID + uint64 ebml_size = GetUIntSize(type); + + // Datasize + ebml_size += strlen(value); + + // Size of Datasize + ebml_size += GetCodedUIntSize(strlen(value)); + + return ebml_size; +} + +uint64 EbmlElementSize(uint64 type, const uint8* value, uint64 size) { + if (!value) + return 0; + + // Size of EBML ID + uint64 ebml_size = GetUIntSize(type); + + // Datasize + ebml_size += size; + + // Size of Datasize + ebml_size += GetCodedUIntSize(size); + + return ebml_size; +} + +uint64 EbmlDateElementSize(uint64 type) { + // Size of EBML ID + uint64 ebml_size = GetUIntSize(type); + + // Datasize + ebml_size += kDateElementSize; + + // Size of Datasize + ebml_size++; + + return ebml_size; +} + +int32 SerializeInt(IMkvWriter* writer, int64 value, int32 size) { + if (!writer || size < 1 || size > 8) + return -1; + + for (int32 i = 1; i <= size; ++i) { + const int32 byte_count = size - i; + const int32 bit_count = byte_count * 8; + + const int64 bb = value >> bit_count; + const uint8 b = static_cast(bb); + + const int32 status = writer->Write(&b, 1); + + if (status < 0) + return status; + } + + return 0; +} + +int32 SerializeFloat(IMkvWriter* writer, float f) { + if (!writer) + return -1; + + assert(sizeof(uint32) == sizeof(float)); + // This union is merely used to avoid a reinterpret_cast from float& to + // uint32& which will result in violation of strict aliasing. + union U32 { + uint32 u32; + float f; + } value; + value.f = f; + + for (int32 i = 1; i <= 4; ++i) { + const int32 byte_count = 4 - i; + const int32 bit_count = byte_count * 8; + + const uint8 byte = static_cast(value.u32 >> bit_count); + + const int32 status = writer->Write(&byte, 1); + + if (status < 0) + return status; + } + + return 0; +} + +int32 WriteUInt(IMkvWriter* writer, uint64 value) { + if (!writer) + return -1; + + int32 size = GetCodedUIntSize(value); + + return WriteUIntSize(writer, value, size); +} + +int32 WriteUIntSize(IMkvWriter* writer, uint64 value, int32 size) { + if (!writer || size < 0 || size > 8) + return -1; + + if (size > 0) { + const uint64 bit = 1LL << (size * 7); + + if (value > (bit - 2)) + return -1; + + value |= bit; + } else { + size = 1; + int64 bit; + + for (;;) { + bit = 1LL << (size * 7); + const uint64 max = bit - 2; + + if (value <= max) + break; + + ++size; + } + + if (size > 8) + return false; + + value |= bit; + } + + return SerializeInt(writer, value, size); +} + +int32 WriteID(IMkvWriter* writer, uint64 type) { + if (!writer) + return -1; + + writer->ElementStartNotify(type, writer->Position()); + + const int32 size = GetUIntSize(type); + + return SerializeInt(writer, type, size); +} + +bool WriteEbmlMasterElement(IMkvWriter* writer, uint64 type, uint64 size) { + if (!writer) + return false; + + if (WriteID(writer, type)) + return false; + + if (WriteUInt(writer, size)) + return false; + + return true; +} + +bool WriteEbmlElement(IMkvWriter* writer, uint64 type, uint64 value) { + return WriteEbmlElement(writer, type, value, 0); +} + +bool WriteEbmlElement(IMkvWriter* writer, uint64 type, uint64 value, + uint64 fixed_size) { + if (!writer) + return false; + + if (WriteID(writer, type)) + return false; + + uint64 size = GetUIntSize(value); + if (fixed_size > 0) { + if (size > fixed_size) + return false; + size = fixed_size; + } + if (WriteUInt(writer, size)) + return false; + + if (SerializeInt(writer, value, static_cast(size))) + return false; + + return true; +} + +bool WriteEbmlElement(IMkvWriter* writer, uint64 type, int64 value) { + if (!writer) + return false; + + if (WriteID(writer, type)) + return 0; + + const uint64 size = GetIntSize(value); + if (WriteUInt(writer, size)) + return false; + + if (SerializeInt(writer, value, static_cast(size))) + return false; + + return true; +} + +bool WriteEbmlElement(IMkvWriter* writer, uint64 type, float value) { + if (!writer) + return false; + + if (WriteID(writer, type)) + return false; + + if (WriteUInt(writer, 4)) + return false; + + if (SerializeFloat(writer, value)) + return false; + + return true; +} + +bool WriteEbmlElement(IMkvWriter* writer, uint64 type, const char* value) { + if (!writer || !value) + return false; + + if (WriteID(writer, type)) + return false; + + const uint64 length = strlen(value); + if (WriteUInt(writer, length)) + return false; + + if (writer->Write(value, static_cast(length))) + return false; + + return true; +} + +bool WriteEbmlElement(IMkvWriter* writer, uint64 type, const uint8* value, + uint64 size) { + if (!writer || !value || size < 1) + return false; + + if (WriteID(writer, type)) + return false; + + if (WriteUInt(writer, size)) + return false; + + if (writer->Write(value, static_cast(size))) + return false; + + return true; +} + +bool WriteEbmlDateElement(IMkvWriter* writer, uint64 type, int64 value) { + if (!writer) + return false; + + if (WriteID(writer, type)) + return false; + + if (WriteUInt(writer, kDateElementSize)) + return false; + + if (SerializeInt(writer, value, kDateElementSize)) + return false; + + return true; +} + +uint64 WriteFrame(IMkvWriter* writer, const Frame* const frame, + Cluster* cluster) { + if (!writer || !frame || !frame->IsValid() || !cluster || + !cluster->timecode_scale()) + return 0; + + // Technically the timecode for a block can be less than the + // timecode for the cluster itself (remember that block timecode + // is a signed, 16-bit integer). However, as a simplification we + // only permit non-negative cluster-relative timecodes for blocks. + const int64 relative_timecode = cluster->GetRelativeTimecode( + frame->timestamp() / cluster->timecode_scale()); + if (relative_timecode < 0 || relative_timecode > kMaxBlockTimecode) + return 0; + + return frame->CanBeSimpleBlock() ? + WriteSimpleBlock(writer, frame, relative_timecode) : + WriteBlock(writer, frame, relative_timecode, + cluster->timecode_scale()); +} + +uint64 WriteVoidElement(IMkvWriter* writer, uint64 size) { + if (!writer) + return false; + + // Subtract one for the void ID and the coded size. + uint64 void_entry_size = size - 1 - GetCodedUIntSize(size - 1); + uint64 void_size = EbmlMasterElementSize(libwebm::kMkvVoid, void_entry_size) + + void_entry_size; + + if (void_size != size) + return 0; + + const int64 payload_position = writer->Position(); + if (payload_position < 0) + return 0; + + if (WriteID(writer, libwebm::kMkvVoid)) + return 0; + + if (WriteUInt(writer, void_entry_size)) + return 0; + + const uint8 value = 0; + for (int32 i = 0; i < static_cast(void_entry_size); ++i) { + if (writer->Write(&value, 1)) + return 0; + } + + const int64 stop_position = writer->Position(); + if (stop_position < 0 || + stop_position - payload_position != static_cast(void_size)) + return 0; + + return void_size; +} + +void GetVersion(int32* major, int32* minor, int32* build, int32* revision) { + *major = 0; + *minor = 2; + *build = 1; + *revision = 0; +} + +uint64 MakeUID(unsigned int* seed) { + uint64 uid = 0; + +#ifdef __MINGW32__ + srand(*seed); +#endif + + for (int i = 0; i < 7; ++i) { // avoid problems with 8-byte values + uid <<= 8; + +// TODO(fgalligan): Move random number generation to platform specific code. +#ifdef _MSC_VER + (void)seed; + const int32 nn = rand(); +#elif __ANDROID__ + (void)seed; + int32 temp_num = 1; + int fd = open("/dev/urandom", O_RDONLY); + if (fd != -1) { + read(fd, &temp_num, sizeof(temp_num)); + close(fd); + } + const int32 nn = temp_num; +#elif defined __MINGW32__ + const int32 nn = rand(); +#else + const int32 nn = rand_r(seed); +#endif + const int32 n = 0xFF & (nn >> 4); // throw away low-order bits + + uid |= n; + } + + return uid; +} + +bool IsMatrixCoefficientsValueValid(uint64_t value) { + switch (value) { + case mkvmuxer::Colour::kGbr: + case mkvmuxer::Colour::kBt709: + case mkvmuxer::Colour::kUnspecifiedMc: + case mkvmuxer::Colour::kReserved: + case mkvmuxer::Colour::kFcc: + case mkvmuxer::Colour::kBt470bg: + case mkvmuxer::Colour::kSmpte170MMc: + case mkvmuxer::Colour::kSmpte240MMc: + case mkvmuxer::Colour::kYcocg: + case mkvmuxer::Colour::kBt2020NonConstantLuminance: + case mkvmuxer::Colour::kBt2020ConstantLuminance: + return true; + } + return false; +} + +bool IsChromaSitingHorzValueValid(uint64_t value) { + switch (value) { + case mkvmuxer::Colour::kUnspecifiedCsh: + case mkvmuxer::Colour::kLeftCollocated: + case mkvmuxer::Colour::kHalfCsh: + return true; + } + return false; +} + +bool IsChromaSitingVertValueValid(uint64_t value) { + switch (value) { + case mkvmuxer::Colour::kUnspecifiedCsv: + case mkvmuxer::Colour::kTopCollocated: + case mkvmuxer::Colour::kHalfCsv: + return true; + } + return false; +} + +bool IsColourRangeValueValid(uint64_t value) { + switch (value) { + case mkvmuxer::Colour::kUnspecifiedCr: + case mkvmuxer::Colour::kBroadcastRange: + case mkvmuxer::Colour::kFullRange: + case mkvmuxer::Colour::kMcTcDefined: + return true; + } + return false; +} + +bool IsTransferCharacteristicsValueValid(uint64_t value) { + switch (value) { + case mkvmuxer::Colour::kIturBt709Tc: + case mkvmuxer::Colour::kUnspecifiedTc: + case mkvmuxer::Colour::kReservedTc: + case mkvmuxer::Colour::kGamma22Curve: + case mkvmuxer::Colour::kGamma28Curve: + case mkvmuxer::Colour::kSmpte170MTc: + case mkvmuxer::Colour::kSmpte240MTc: + case mkvmuxer::Colour::kLinear: + case mkvmuxer::Colour::kLog: + case mkvmuxer::Colour::kLogSqrt: + case mkvmuxer::Colour::kIec6196624: + case mkvmuxer::Colour::kIturBt1361ExtendedColourGamut: + case mkvmuxer::Colour::kIec6196621: + case mkvmuxer::Colour::kIturBt202010bit: + case mkvmuxer::Colour::kIturBt202012bit: + case mkvmuxer::Colour::kSmpteSt2084: + case mkvmuxer::Colour::kSmpteSt4281Tc: + case mkvmuxer::Colour::kAribStdB67Hlg: + return true; + } + return false; +} + +bool IsPrimariesValueValid(uint64_t value) { + switch (value) { + case mkvmuxer::Colour::kReservedP0: + case mkvmuxer::Colour::kIturBt709P: + case mkvmuxer::Colour::kUnspecifiedP: + case mkvmuxer::Colour::kReservedP3: + case mkvmuxer::Colour::kIturBt470M: + case mkvmuxer::Colour::kIturBt470Bg: + case mkvmuxer::Colour::kSmpte170MP: + case mkvmuxer::Colour::kSmpte240MP: + case mkvmuxer::Colour::kFilm: + case mkvmuxer::Colour::kIturBt2020: + case mkvmuxer::Colour::kSmpteSt4281P: + case mkvmuxer::Colour::kJedecP22Phosphors: + return true; + } + return false; +} + +} // namespace mkvmuxer diff --git a/third_party/libwebm/mkvmuxer/mkvmuxerutil.h b/third_party/libwebm/mkvmuxer/mkvmuxerutil.h new file mode 100644 index 0000000..132388d --- /dev/null +++ b/third_party/libwebm/mkvmuxer/mkvmuxerutil.h @@ -0,0 +1,112 @@ +// Copyright (c) 2012 The WebM project authors. All Rights Reserved. +// +// Use of this source code is governed by a BSD-style license +// that can be found in the LICENSE file in the root of the source +// tree. An additional intellectual property rights grant can be found +// in the file PATENTS. All contributing project authors may +// be found in the AUTHORS file in the root of the source tree. +#ifndef MKVMUXER_MKVMUXERUTIL_H_ +#define MKVMUXER_MKVMUXERUTIL_H_ + +#include "mkvmuxertypes.h" + +#include "stdint.h" + +namespace mkvmuxer { +class Cluster; +class Frame; +class IMkvWriter; + +// TODO(tomfinegan): mkvmuxer:: integer types continue to be used here because +// changing them causes pain for downstream projects. It would be nice if a +// solution that allows removal of the mkvmuxer:: integer types while avoiding +// pain for downstream users of libwebm. Considering that mkvmuxerutil.{cc,h} +// are really, for the great majority of cases, EBML size calculation and writer +// functions, perhaps a more EBML focused utility would be the way to go as a +// first step. + +const uint64 kEbmlUnknownValue = 0x01FFFFFFFFFFFFFFULL; +const int64 kMaxBlockTimecode = 0x07FFFLL; + +// Writes out |value| in Big Endian order. Returns 0 on success. +int32 SerializeInt(IMkvWriter* writer, int64 value, int32 size); + +// Returns the size in bytes of the element. +int32 GetUIntSize(uint64 value); +int32 GetIntSize(int64 value); +int32 GetCodedUIntSize(uint64 value); +uint64 EbmlMasterElementSize(uint64 type, uint64 value); +uint64 EbmlElementSize(uint64 type, int64 value); +uint64 EbmlElementSize(uint64 type, uint64 value); +uint64 EbmlElementSize(uint64 type, float value); +uint64 EbmlElementSize(uint64 type, const char* value); +uint64 EbmlElementSize(uint64 type, const uint8* value, uint64 size); +uint64 EbmlDateElementSize(uint64 type); + +// Returns the size in bytes of the element assuming that the element was +// written using |fixed_size| bytes. If |fixed_size| is set to zero, then it +// computes the necessary number of bytes based on |value|. +uint64 EbmlElementSize(uint64 type, uint64 value, uint64 fixed_size); + +// Creates an EBML coded number from |value| and writes it out. The size of +// the coded number is determined by the value of |value|. |value| must not +// be in a coded form. Returns 0 on success. +int32 WriteUInt(IMkvWriter* writer, uint64 value); + +// Creates an EBML coded number from |value| and writes it out. The size of +// the coded number is determined by the value of |size|. |value| must not +// be in a coded form. Returns 0 on success. +int32 WriteUIntSize(IMkvWriter* writer, uint64 value, int32 size); + +// Output an Mkv master element. Returns true if the element was written. +bool WriteEbmlMasterElement(IMkvWriter* writer, uint64 value, uint64 size); + +// Outputs an Mkv ID, calls |IMkvWriter::ElementStartNotify|, and passes the +// ID to |SerializeInt|. Returns 0 on success. +int32 WriteID(IMkvWriter* writer, uint64 type); + +// Output an Mkv non-master element. Returns true if the element was written. +bool WriteEbmlElement(IMkvWriter* writer, uint64 type, uint64 value); +bool WriteEbmlElement(IMkvWriter* writer, uint64 type, int64 value); +bool WriteEbmlElement(IMkvWriter* writer, uint64 type, float value); +bool WriteEbmlElement(IMkvWriter* writer, uint64 type, const char* value); +bool WriteEbmlElement(IMkvWriter* writer, uint64 type, const uint8* value, + uint64 size); +bool WriteEbmlDateElement(IMkvWriter* writer, uint64 type, int64 value); + +// Output an Mkv non-master element using fixed size. The element will be +// written out using exactly |fixed_size| bytes. If |fixed_size| is set to zero +// then it computes the necessary number of bytes based on |value|. Returns true +// if the element was written. +bool WriteEbmlElement(IMkvWriter* writer, uint64 type, uint64 value, + uint64 fixed_size); + +// Output a Mkv Frame. It decides the correct element to write (Block vs +// SimpleBlock) based on the parameters of the Frame. +uint64 WriteFrame(IMkvWriter* writer, const Frame* const frame, + Cluster* cluster); + +// Output a void element. |size| must be the entire size in bytes that will be +// void. The function will calculate the size of the void header and subtract +// it from |size|. +uint64 WriteVoidElement(IMkvWriter* writer, uint64 size); + +// Returns the version number of the muxer in |major|, |minor|, |build|, +// and |revision|. +void GetVersion(int32* major, int32* minor, int32* build, int32* revision); + +// Returns a random number to be used for UID, using |seed| to seed +// the random-number generator (see POSIX rand_r() for semantics). +uint64 MakeUID(unsigned int* seed); + +// Colour field validation helpers. All return true when |value| is valid. +bool IsMatrixCoefficientsValueValid(uint64_t value); +bool IsChromaSitingHorzValueValid(uint64_t value); +bool IsChromaSitingVertValueValid(uint64_t value); +bool IsColourRangeValueValid(uint64_t value); +bool IsTransferCharacteristicsValueValid(uint64_t value); +bool IsPrimariesValueValid(uint64_t value); + +} // namespace mkvmuxer + +#endif // MKVMUXER_MKVMUXERUTIL_H_ diff --git a/third_party/libwebm/mkvmuxer/mkvwriter.cc b/third_party/libwebm/mkvmuxer/mkvwriter.cc new file mode 100644 index 0000000..84655d8 --- /dev/null +++ b/third_party/libwebm/mkvmuxer/mkvwriter.cc @@ -0,0 +1,90 @@ +// Copyright (c) 2012 The WebM project authors. All Rights Reserved. +// +// Use of this source code is governed by a BSD-style license +// that can be found in the LICENSE file in the root of the source +// tree. An additional intellectual property rights grant can be found +// in the file PATENTS. All contributing project authors may +// be found in the AUTHORS file in the root of the source tree. + +#include "mkvmuxer/mkvwriter.h" + +#include + +#ifdef _MSC_VER +#include // for _SH_DENYWR +#endif + +namespace mkvmuxer { + +MkvWriter::MkvWriter() : file_(NULL), writer_owns_file_(true) {} + +MkvWriter::MkvWriter(FILE* fp) : file_(fp), writer_owns_file_(false) {} + +MkvWriter::~MkvWriter() { Close(); } + +int32 MkvWriter::Write(const void* buffer, uint32 length) { + if (!file_) + return -1; + + if (length == 0) + return 0; + + if (buffer == NULL) + return -1; + + const size_t bytes_written = fwrite(buffer, 1, length, file_); + + return (bytes_written == length) ? 0 : -1; +} + +bool MkvWriter::Open(const char* filename) { + if (filename == NULL) + return false; + + if (file_) + return false; + +#ifdef _MSC_VER + file_ = _fsopen(filename, "wb", _SH_DENYWR); +#else + file_ = fopen(filename, "wb"); +#endif + if (file_ == NULL) + return false; + return true; +} + +void MkvWriter::Close() { + if (file_ && writer_owns_file_) { + fclose(file_); + } + file_ = NULL; +} + +int64 MkvWriter::Position() const { + if (!file_) + return 0; + +#ifdef _MSC_VER + return _ftelli64(file_); +#else + return ftell(file_); +#endif +} + +int32 MkvWriter::Position(int64 position) { + if (!file_) + return -1; + +#ifdef _MSC_VER + return _fseeki64(file_, position, SEEK_SET); +#else + return fseeko(file_, static_cast(position), SEEK_SET); +#endif +} + +bool MkvWriter::Seekable() const { return true; } + +void MkvWriter::ElementStartNotify(uint64, int64) {} + +} // namespace mkvmuxer diff --git a/third_party/libwebm/mkvmuxer/mkvwriter.h b/third_party/libwebm/mkvmuxer/mkvwriter.h new file mode 100644 index 0000000..4227c63 --- /dev/null +++ b/third_party/libwebm/mkvmuxer/mkvwriter.h @@ -0,0 +1,51 @@ +// Copyright (c) 2012 The WebM project authors. All Rights Reserved. +// +// Use of this source code is governed by a BSD-style license +// that can be found in the LICENSE file in the root of the source +// tree. An additional intellectual property rights grant can be found +// in the file PATENTS. All contributing project authors may +// be found in the AUTHORS file in the root of the source tree. + +#ifndef MKVMUXER_MKVWRITER_H_ +#define MKVMUXER_MKVWRITER_H_ + +#include + +#include "mkvmuxer/mkvmuxer.h" +#include "mkvmuxer/mkvmuxertypes.h" + +namespace mkvmuxer { + +// Default implementation of the IMkvWriter interface on Windows. +class MkvWriter : public IMkvWriter { + public: + MkvWriter(); + explicit MkvWriter(FILE* fp); + virtual ~MkvWriter(); + + // IMkvWriter interface + virtual int64 Position() const; + virtual int32 Position(int64 position); + virtual bool Seekable() const; + virtual int32 Write(const void* buffer, uint32 length); + virtual void ElementStartNotify(uint64 element_id, int64 position); + + // Creates and opens a file for writing. |filename| is the name of the file + // to open. This function will overwrite the contents of |filename|. Returns + // true on success. + bool Open(const char* filename); + + // Closes an opened file. + void Close(); + + private: + // File handle to output file. + FILE* file_; + bool writer_owns_file_; + + LIBWEBM_DISALLOW_COPY_AND_ASSIGN(MkvWriter); +}; + +} // namespace mkvmuxer + +#endif // MKVMUXER_MKVWRITER_H_ diff --git a/third_party/libwebm/mkvparser/mkvparser.cc b/third_party/libwebm/mkvparser/mkvparser.cc new file mode 100644 index 0000000..37f230d --- /dev/null +++ b/third_party/libwebm/mkvparser/mkvparser.cc @@ -0,0 +1,8032 @@ +// Copyright (c) 2012 The WebM project authors. All Rights Reserved. +// +// Use of this source code is governed by a BSD-style license +// that can be found in the LICENSE file in the root of the source +// tree. An additional intellectual property rights grant can be found +// in the file PATENTS. All contributing project authors may +// be found in the AUTHORS file in the root of the source tree. +#include "mkvparser/mkvparser.h" + +#if defined(_MSC_VER) && _MSC_VER < 1800 +#include // _isnan() / _finite() +#define MSC_COMPAT +#endif + +#include +#include +#include +#include +#include +#include +#include + +#include "common/webmids.h" + +// disable deprecation warnings for auto_ptr +#if defined(__GNUC__) && __GNUC__ >= 5 +#pragma GCC diagnostic ignored "-Wdeprecated-declarations" +#endif + +namespace mkvparser { +const float MasteringMetadata::kValueNotPresent = FLT_MAX; +const long long Colour::kValueNotPresent = LLONG_MAX; +const float Projection::kValueNotPresent = FLT_MAX; + +#ifdef MSC_COMPAT +inline bool isnan(double val) { return !!_isnan(val); } +inline bool isinf(double val) { return !_finite(val); } +#else +inline bool isnan(double val) { return std::isnan(val); } +inline bool isinf(double val) { return std::isinf(val); } +#endif // MSC_COMPAT + +IMkvReader::~IMkvReader() {} + +template +Type* SafeArrayAlloc(unsigned long long num_elements, + unsigned long long element_size) { + if (num_elements == 0 || element_size == 0) + return NULL; + + const size_t kMaxAllocSize = 0x80000000; // 2GiB + const unsigned long long num_bytes = num_elements * element_size; + if (element_size > (kMaxAllocSize / num_elements)) + return NULL; + if (num_bytes != static_cast(num_bytes)) + return NULL; + + return new (std::nothrow) Type[static_cast(num_bytes)]; +} + +void GetVersion(int& major, int& minor, int& build, int& revision) { + major = 1; + minor = 0; + build = 0; + revision = 30; +} + +long long ReadUInt(IMkvReader* pReader, long long pos, long& len) { + if (!pReader || pos < 0) + return E_FILE_FORMAT_INVALID; + + len = 1; + unsigned char b; + int status = pReader->Read(pos, 1, &b); + + if (status < 0) // error or underflow + return status; + + if (status > 0) // interpreted as "underflow" + return E_BUFFER_NOT_FULL; + + if (b == 0) // we can't handle u-int values larger than 8 bytes + return E_FILE_FORMAT_INVALID; + + unsigned char m = 0x80; + + while (!(b & m)) { + m >>= 1; + ++len; + } + + long long result = b & (~m); + ++pos; + + for (int i = 1; i < len; ++i) { + status = pReader->Read(pos, 1, &b); + + if (status < 0) { + len = 1; + return status; + } + + if (status > 0) { + len = 1; + return E_BUFFER_NOT_FULL; + } + + result <<= 8; + result |= b; + + ++pos; + } + + return result; +} + +// Reads an EBML ID and returns it. +// An ID must at least 1 byte long, cannot exceed 4, and its value must be +// greater than 0. +// See known EBML values and EBMLMaxIDLength: +// http://www.matroska.org/technical/specs/index.html +// Returns the ID, or a value less than 0 to report an error while reading the +// ID. +long long ReadID(IMkvReader* pReader, long long pos, long& len) { + if (pReader == NULL || pos < 0) + return E_FILE_FORMAT_INVALID; + + // Read the first byte. The length in bytes of the ID is determined by + // finding the first set bit in the first byte of the ID. + unsigned char temp_byte = 0; + int read_status = pReader->Read(pos, 1, &temp_byte); + + if (read_status < 0) + return E_FILE_FORMAT_INVALID; + else if (read_status > 0) // No data to read. + return E_BUFFER_NOT_FULL; + + if (temp_byte == 0) // ID length > 8 bytes; invalid file. + return E_FILE_FORMAT_INVALID; + + int bit_pos = 0; + const int kMaxIdLengthInBytes = 4; + const int kCheckByte = 0x80; + + // Find the first bit that's set. + bool found_bit = false; + for (; bit_pos < kMaxIdLengthInBytes; ++bit_pos) { + if ((kCheckByte >> bit_pos) & temp_byte) { + found_bit = true; + break; + } + } + + if (!found_bit) { + // The value is too large to be a valid ID. + return E_FILE_FORMAT_INVALID; + } + + // Read the remaining bytes of the ID (if any). + const int id_length = bit_pos + 1; + long long ebml_id = temp_byte; + for (int i = 1; i < id_length; ++i) { + ebml_id <<= 8; + read_status = pReader->Read(pos + i, 1, &temp_byte); + + if (read_status < 0) + return E_FILE_FORMAT_INVALID; + else if (read_status > 0) + return E_BUFFER_NOT_FULL; + + ebml_id |= temp_byte; + } + + len = id_length; + return ebml_id; +} + +long long GetUIntLength(IMkvReader* pReader, long long pos, long& len) { + if (!pReader || pos < 0) + return E_FILE_FORMAT_INVALID; + + long long total, available; + + int status = pReader->Length(&total, &available); + if (status < 0 || (total >= 0 && available > total)) + return E_FILE_FORMAT_INVALID; + + len = 1; + + if (pos >= available) + return pos; // too few bytes available + + unsigned char b; + + status = pReader->Read(pos, 1, &b); + + if (status != 0) + return status; + + if (b == 0) // we can't handle u-int values larger than 8 bytes + return E_FILE_FORMAT_INVALID; + + unsigned char m = 0x80; + + while (!(b & m)) { + m >>= 1; + ++len; + } + + return 0; // success +} + +// TODO(vigneshv): This function assumes that unsigned values never have their +// high bit set. +long long UnserializeUInt(IMkvReader* pReader, long long pos, long long size) { + if (!pReader || pos < 0 || (size <= 0) || (size > 8)) + return E_FILE_FORMAT_INVALID; + + long long result = 0; + + for (long long i = 0; i < size; ++i) { + unsigned char b; + + const long status = pReader->Read(pos, 1, &b); + + if (status < 0) + return status; + + result <<= 8; + result |= b; + + ++pos; + } + + return result; +} + +long UnserializeFloat(IMkvReader* pReader, long long pos, long long size_, + double& result) { + if (!pReader || pos < 0 || ((size_ != 4) && (size_ != 8))) + return E_FILE_FORMAT_INVALID; + + const long size = static_cast(size_); + + unsigned char buf[8]; + + const int status = pReader->Read(pos, size, buf); + + if (status < 0) // error + return status; + + if (size == 4) { + union { + float f; + unsigned long ff; + }; + + ff = 0; + + for (int i = 0;;) { + ff |= buf[i]; + + if (++i >= 4) + break; + + ff <<= 8; + } + + result = f; + } else { + union { + double d; + unsigned long long dd; + }; + + dd = 0; + + for (int i = 0;;) { + dd |= buf[i]; + + if (++i >= 8) + break; + + dd <<= 8; + } + + result = d; + } + + if (mkvparser::isinf(result) || mkvparser::isnan(result)) + return E_FILE_FORMAT_INVALID; + + return 0; +} + +long UnserializeInt(IMkvReader* pReader, long long pos, long long size, + long long& result_ref) { + if (!pReader || pos < 0 || size < 1 || size > 8) + return E_FILE_FORMAT_INVALID; + + signed char first_byte = 0; + const long status = pReader->Read(pos, 1, (unsigned char*)&first_byte); + + if (status < 0) + return status; + + unsigned long long result = first_byte; + ++pos; + + for (long i = 1; i < size; ++i) { + unsigned char b; + + const long status = pReader->Read(pos, 1, &b); + + if (status < 0) + return status; + + result <<= 8; + result |= b; + + ++pos; + } + + result_ref = static_cast(result); + return 0; +} + +long UnserializeString(IMkvReader* pReader, long long pos, long long size, + char*& str) { + delete[] str; + str = NULL; + + if (size >= LONG_MAX || size < 0) + return E_FILE_FORMAT_INVALID; + + // +1 for '\0' terminator + const long required_size = static_cast(size) + 1; + + str = SafeArrayAlloc(1, required_size); + if (str == NULL) + return E_FILE_FORMAT_INVALID; + + unsigned char* const buf = reinterpret_cast(str); + + const long status = pReader->Read(pos, static_cast(size), buf); + + if (status) { + delete[] str; + str = NULL; + + return status; + } + + str[required_size - 1] = '\0'; + return 0; +} + +long ParseElementHeader(IMkvReader* pReader, long long& pos, long long stop, + long long& id, long long& size) { + if (stop >= 0 && pos >= stop) + return E_FILE_FORMAT_INVALID; + + long len; + + id = ReadID(pReader, pos, len); + + if (id < 0) + return E_FILE_FORMAT_INVALID; + + pos += len; // consume id + + if (stop >= 0 && pos >= stop) + return E_FILE_FORMAT_INVALID; + + size = ReadUInt(pReader, pos, len); + + if (size < 0 || len < 1 || len > 8) { + // Invalid: Negative payload size, negative or 0 length integer, or integer + // larger than 64 bits (libwebm cannot handle them). + return E_FILE_FORMAT_INVALID; + } + + // Avoid rolling over pos when very close to LLONG_MAX. + const unsigned long long rollover_check = + static_cast(pos) + len; + if (rollover_check > LLONG_MAX) + return E_FILE_FORMAT_INVALID; + + pos += len; // consume length of size + + // pos now designates payload + + if (stop >= 0 && pos > stop) + return E_FILE_FORMAT_INVALID; + + return 0; // success +} + +bool Match(IMkvReader* pReader, long long& pos, unsigned long expected_id, + long long& val) { + if (!pReader || pos < 0) + return false; + + long long total = 0; + long long available = 0; + + const long status = pReader->Length(&total, &available); + if (status < 0 || (total >= 0 && available > total)) + return false; + + long len = 0; + + const long long id = ReadID(pReader, pos, len); + if (id < 0 || (available - pos) > len) + return false; + + if (static_cast(id) != expected_id) + return false; + + pos += len; // consume id + + const long long size = ReadUInt(pReader, pos, len); + if (size < 0 || size > 8 || len < 1 || len > 8 || (available - pos) > len) + return false; + + pos += len; // consume length of size of payload + + val = UnserializeUInt(pReader, pos, size); + if (val < 0) + return false; + + pos += size; // consume size of payload + + return true; +} + +bool Match(IMkvReader* pReader, long long& pos, unsigned long expected_id, + unsigned char*& buf, size_t& buflen) { + if (!pReader || pos < 0) + return false; + + long long total = 0; + long long available = 0; + + long status = pReader->Length(&total, &available); + if (status < 0 || (total >= 0 && available > total)) + return false; + + long len = 0; + const long long id = ReadID(pReader, pos, len); + if (id < 0 || (available - pos) > len) + return false; + + if (static_cast(id) != expected_id) + return false; + + pos += len; // consume id + + const long long size = ReadUInt(pReader, pos, len); + if (size < 0 || len <= 0 || len > 8 || (available - pos) > len) + return false; + + unsigned long long rollover_check = + static_cast(pos) + len; + if (rollover_check > LLONG_MAX) + return false; + + pos += len; // consume length of size of payload + + rollover_check = static_cast(pos) + size; + if (rollover_check > LLONG_MAX) + return false; + + if ((pos + size) > available) + return false; + + if (size >= LONG_MAX) + return false; + + const long buflen_ = static_cast(size); + + buf = SafeArrayAlloc(1, buflen_); + if (!buf) + return false; + + status = pReader->Read(pos, buflen_, buf); + if (status != 0) + return false; + + buflen = buflen_; + + pos += size; // consume size of payload + return true; +} + +EBMLHeader::EBMLHeader() : m_docType(NULL) { Init(); } + +EBMLHeader::~EBMLHeader() { delete[] m_docType; } + +void EBMLHeader::Init() { + m_version = 1; + m_readVersion = 1; + m_maxIdLength = 4; + m_maxSizeLength = 8; + + if (m_docType) { + delete[] m_docType; + m_docType = NULL; + } + + m_docTypeVersion = 1; + m_docTypeReadVersion = 1; +} + +long long EBMLHeader::Parse(IMkvReader* pReader, long long& pos) { + if (!pReader) + return E_FILE_FORMAT_INVALID; + + long long total, available; + + long status = pReader->Length(&total, &available); + + if (status < 0) // error + return status; + + pos = 0; + + // Scan until we find what looks like the first byte of the EBML header. + const long long kMaxScanBytes = (available >= 1024) ? 1024 : available; + const unsigned char kEbmlByte0 = 0x1A; + unsigned char scan_byte = 0; + + while (pos < kMaxScanBytes) { + status = pReader->Read(pos, 1, &scan_byte); + + if (status < 0) // error + return status; + else if (status > 0) + return E_BUFFER_NOT_FULL; + + if (scan_byte == kEbmlByte0) + break; + + ++pos; + } + + long len = 0; + const long long ebml_id = ReadID(pReader, pos, len); + + if (ebml_id == E_BUFFER_NOT_FULL) + return E_BUFFER_NOT_FULL; + + if (len != 4 || ebml_id != libwebm::kMkvEBML) + return E_FILE_FORMAT_INVALID; + + // Move read pos forward to the EBML header size field. + pos += 4; + + // Read length of size field. + long long result = GetUIntLength(pReader, pos, len); + + if (result < 0) // error + return E_FILE_FORMAT_INVALID; + else if (result > 0) // need more data + return E_BUFFER_NOT_FULL; + + if (len < 1 || len > 8) + return E_FILE_FORMAT_INVALID; + + if ((total >= 0) && ((total - pos) < len)) + return E_FILE_FORMAT_INVALID; + + if ((available - pos) < len) + return pos + len; // try again later + + // Read the EBML header size. + result = ReadUInt(pReader, pos, len); + + if (result < 0) // error + return result; + + pos += len; // consume size field + + // pos now designates start of payload + + if ((total >= 0) && ((total - pos) < result)) + return E_FILE_FORMAT_INVALID; + + if ((available - pos) < result) + return pos + result; + + const long long end = pos + result; + + Init(); + + while (pos < end) { + long long id, size; + + status = ParseElementHeader(pReader, pos, end, id, size); + + if (status < 0) // error + return status; + + if (size == 0) + return E_FILE_FORMAT_INVALID; + + if (id == libwebm::kMkvEBMLVersion) { + m_version = UnserializeUInt(pReader, pos, size); + + if (m_version <= 0) + return E_FILE_FORMAT_INVALID; + } else if (id == libwebm::kMkvEBMLReadVersion) { + m_readVersion = UnserializeUInt(pReader, pos, size); + + if (m_readVersion <= 0) + return E_FILE_FORMAT_INVALID; + } else if (id == libwebm::kMkvEBMLMaxIDLength) { + m_maxIdLength = UnserializeUInt(pReader, pos, size); + + if (m_maxIdLength <= 0) + return E_FILE_FORMAT_INVALID; + } else if (id == libwebm::kMkvEBMLMaxSizeLength) { + m_maxSizeLength = UnserializeUInt(pReader, pos, size); + + if (m_maxSizeLength <= 0) + return E_FILE_FORMAT_INVALID; + } else if (id == libwebm::kMkvDocType) { + if (m_docType) + return E_FILE_FORMAT_INVALID; + + status = UnserializeString(pReader, pos, size, m_docType); + + if (status) // error + return status; + } else if (id == libwebm::kMkvDocTypeVersion) { + m_docTypeVersion = UnserializeUInt(pReader, pos, size); + + if (m_docTypeVersion <= 0) + return E_FILE_FORMAT_INVALID; + } else if (id == libwebm::kMkvDocTypeReadVersion) { + m_docTypeReadVersion = UnserializeUInt(pReader, pos, size); + + if (m_docTypeReadVersion <= 0) + return E_FILE_FORMAT_INVALID; + } + + pos += size; + } + + if (pos != end) + return E_FILE_FORMAT_INVALID; + + // Make sure DocType, DocTypeReadVersion, and DocTypeVersion are valid. + if (m_docType == NULL || m_docTypeReadVersion <= 0 || m_docTypeVersion <= 0) + return E_FILE_FORMAT_INVALID; + + // Make sure EBMLMaxIDLength and EBMLMaxSizeLength are valid. + if (m_maxIdLength <= 0 || m_maxIdLength > 4 || m_maxSizeLength <= 0 || + m_maxSizeLength > 8) + return E_FILE_FORMAT_INVALID; + + return 0; +} + +Segment::Segment(IMkvReader* pReader, long long elem_start, + // long long elem_size, + long long start, long long size) + : m_pReader(pReader), + m_element_start(elem_start), + // m_element_size(elem_size), + m_start(start), + m_size(size), + m_pos(start), + m_pUnknownSize(0), + m_pSeekHead(NULL), + m_pInfo(NULL), + m_pTracks(NULL), + m_pCues(NULL), + m_pChapters(NULL), + m_pTags(NULL), + m_clusters(NULL), + m_clusterCount(0), + m_clusterPreloadCount(0), + m_clusterSize(0) {} + +Segment::~Segment() { + const long count = m_clusterCount + m_clusterPreloadCount; + + Cluster** i = m_clusters; + Cluster** j = m_clusters + count; + + while (i != j) { + Cluster* const p = *i++; + delete p; + } + + delete[] m_clusters; + + delete m_pTracks; + delete m_pInfo; + delete m_pCues; + delete m_pChapters; + delete m_pTags; + delete m_pSeekHead; +} + +long long Segment::CreateInstance(IMkvReader* pReader, long long pos, + Segment*& pSegment) { + if (pReader == NULL || pos < 0) + return E_PARSE_FAILED; + + pSegment = NULL; + + long long total, available; + + const long status = pReader->Length(&total, &available); + + if (status < 0) // error + return status; + + if (available < 0) + return -1; + + if ((total >= 0) && (available > total)) + return -1; + + // I would assume that in practice this loop would execute + // exactly once, but we allow for other elements (e.g. Void) + // to immediately follow the EBML header. This is fine for + // the source filter case (since the entire file is available), + // but in the splitter case over a network we should probably + // just give up early. We could for example decide only to + // execute this loop a maximum of, say, 10 times. + // TODO: + // There is an implied "give up early" by only parsing up + // to the available limit. We do do that, but only if the + // total file size is unknown. We could decide to always + // use what's available as our limit (irrespective of whether + // we happen to know the total file length). This would have + // as its sense "parse this much of the file before giving up", + // which a slightly different sense from "try to parse up to + // 10 EMBL elements before giving up". + + for (;;) { + if ((total >= 0) && (pos >= total)) + return E_FILE_FORMAT_INVALID; + + // Read ID + long len; + long long result = GetUIntLength(pReader, pos, len); + + if (result) // error, or too few available bytes + return result; + + if ((total >= 0) && ((pos + len) > total)) + return E_FILE_FORMAT_INVALID; + + if ((pos + len) > available) + return pos + len; + + const long long idpos = pos; + const long long id = ReadID(pReader, pos, len); + + if (id < 0) + return E_FILE_FORMAT_INVALID; + + pos += len; // consume ID + + // Read Size + + result = GetUIntLength(pReader, pos, len); + + if (result) // error, or too few available bytes + return result; + + if ((total >= 0) && ((pos + len) > total)) + return E_FILE_FORMAT_INVALID; + + if ((pos + len) > available) + return pos + len; + + long long size = ReadUInt(pReader, pos, len); + + if (size < 0) // error + return size; + + pos += len; // consume length of size of element + + // Pos now points to start of payload + + // Handle "unknown size" for live streaming of webm files. + const long long unknown_size = (1LL << (7 * len)) - 1; + + if (id == libwebm::kMkvSegment) { + if (size == unknown_size) + size = -1; + + else if (total < 0) + size = -1; + + else if ((pos + size) > total) + size = -1; + + pSegment = new (std::nothrow) Segment(pReader, idpos, pos, size); + if (pSegment == NULL) + return E_PARSE_FAILED; + + return 0; // success + } + + if (size == unknown_size) + return E_FILE_FORMAT_INVALID; + + if ((total >= 0) && ((pos + size) > total)) + return E_FILE_FORMAT_INVALID; + + if ((pos + size) > available) + return pos + size; + + pos += size; // consume payload + } +} + +long long Segment::ParseHeaders() { + // Outermost (level 0) segment object has been constructed, + // and pos designates start of payload. We need to find the + // inner (level 1) elements. + long long total, available; + + const int status = m_pReader->Length(&total, &available); + + if (status < 0) // error + return status; + + if (total > 0 && available > total) + return E_FILE_FORMAT_INVALID; + + const long long segment_stop = (m_size < 0) ? -1 : m_start + m_size; + + if ((segment_stop >= 0 && total >= 0 && segment_stop > total) || + (segment_stop >= 0 && m_pos > segment_stop)) { + return E_FILE_FORMAT_INVALID; + } + + for (;;) { + if ((total >= 0) && (m_pos >= total)) + break; + + if ((segment_stop >= 0) && (m_pos >= segment_stop)) + break; + + long long pos = m_pos; + const long long element_start = pos; + + // Avoid rolling over pos when very close to LLONG_MAX. + unsigned long long rollover_check = pos + 1ULL; + if (rollover_check > LLONG_MAX) + return E_FILE_FORMAT_INVALID; + + if ((pos + 1) > available) + return (pos + 1); + + long len; + long long result = GetUIntLength(m_pReader, pos, len); + + if (result < 0) // error + return result; + + if (result > 0) { + // MkvReader doesn't have enough data to satisfy this read attempt. + return (pos + 1); + } + + if ((segment_stop >= 0) && ((pos + len) > segment_stop)) + return E_FILE_FORMAT_INVALID; + + if ((pos + len) > available) + return pos + len; + + const long long idpos = pos; + const long long id = ReadID(m_pReader, idpos, len); + + if (id < 0) + return E_FILE_FORMAT_INVALID; + + if (id == libwebm::kMkvCluster) + break; + + pos += len; // consume ID + + if ((pos + 1) > available) + return (pos + 1); + + // Read Size + result = GetUIntLength(m_pReader, pos, len); + + if (result < 0) // error + return result; + + if (result > 0) { + // MkvReader doesn't have enough data to satisfy this read attempt. + return (pos + 1); + } + + if ((segment_stop >= 0) && ((pos + len) > segment_stop)) + return E_FILE_FORMAT_INVALID; + + if ((pos + len) > available) + return pos + len; + + const long long size = ReadUInt(m_pReader, pos, len); + + if (size < 0 || len < 1 || len > 8) { + // TODO(tomfinegan): ReadUInt should return an error when len is < 1 or + // len > 8 is true instead of checking this _everywhere_. + return size; + } + + pos += len; // consume length of size of element + + // Avoid rolling over pos when very close to LLONG_MAX. + rollover_check = static_cast(pos) + size; + if (rollover_check > LLONG_MAX) + return E_FILE_FORMAT_INVALID; + + const long long element_size = size + pos - element_start; + + // Pos now points to start of payload + + if ((segment_stop >= 0) && ((pos + size) > segment_stop)) + return E_FILE_FORMAT_INVALID; + + // We read EBML elements either in total or nothing at all. + + if ((pos + size) > available) + return pos + size; + + if (id == libwebm::kMkvInfo) { + if (m_pInfo) + return E_FILE_FORMAT_INVALID; + + m_pInfo = new (std::nothrow) + SegmentInfo(this, pos, size, element_start, element_size); + + if (m_pInfo == NULL) + return -1; + + const long status = m_pInfo->Parse(); + + if (status) + return status; + } else if (id == libwebm::kMkvTracks) { + if (m_pTracks) + return E_FILE_FORMAT_INVALID; + + m_pTracks = new (std::nothrow) + Tracks(this, pos, size, element_start, element_size); + + if (m_pTracks == NULL) + return -1; + + const long status = m_pTracks->Parse(); + + if (status) + return status; + } else if (id == libwebm::kMkvCues) { + if (m_pCues == NULL) { + m_pCues = new (std::nothrow) + Cues(this, pos, size, element_start, element_size); + + if (m_pCues == NULL) + return -1; + } + } else if (id == libwebm::kMkvSeekHead) { + if (m_pSeekHead == NULL) { + m_pSeekHead = new (std::nothrow) + SeekHead(this, pos, size, element_start, element_size); + + if (m_pSeekHead == NULL) + return -1; + + const long status = m_pSeekHead->Parse(); + + if (status) + return status; + } + } else if (id == libwebm::kMkvChapters) { + if (m_pChapters == NULL) { + m_pChapters = new (std::nothrow) + Chapters(this, pos, size, element_start, element_size); + + if (m_pChapters == NULL) + return -1; + + const long status = m_pChapters->Parse(); + + if (status) + return status; + } + } else if (id == libwebm::kMkvTags) { + if (m_pTags == NULL) { + m_pTags = new (std::nothrow) + Tags(this, pos, size, element_start, element_size); + + if (m_pTags == NULL) + return -1; + + const long status = m_pTags->Parse(); + + if (status) + return status; + } + } + + m_pos = pos + size; // consume payload + } + + if (segment_stop >= 0 && m_pos > segment_stop) + return E_FILE_FORMAT_INVALID; + + if (m_pInfo == NULL) // TODO: liberalize this behavior + return E_FILE_FORMAT_INVALID; + + if (m_pTracks == NULL) + return E_FILE_FORMAT_INVALID; + + return 0; // success +} + +long Segment::LoadCluster(long long& pos, long& len) { + for (;;) { + const long result = DoLoadCluster(pos, len); + + if (result <= 1) + return result; + } +} + +long Segment::DoLoadCluster(long long& pos, long& len) { + if (m_pos < 0) + return DoLoadClusterUnknownSize(pos, len); + + long long total, avail; + + long status = m_pReader->Length(&total, &avail); + + if (status < 0) // error + return status; + + if (total >= 0 && avail > total) + return E_FILE_FORMAT_INVALID; + + const long long segment_stop = (m_size < 0) ? -1 : m_start + m_size; + + long long cluster_off = -1; // offset relative to start of segment + long long cluster_size = -1; // size of cluster payload + + for (;;) { + if ((total >= 0) && (m_pos >= total)) + return 1; // no more clusters + + if ((segment_stop >= 0) && (m_pos >= segment_stop)) + return 1; // no more clusters + + pos = m_pos; + + // Read ID + + if ((pos + 1) > avail) { + len = 1; + return E_BUFFER_NOT_FULL; + } + + long long result = GetUIntLength(m_pReader, pos, len); + + if (result < 0) // error + return static_cast(result); + + if (result > 0) + return E_BUFFER_NOT_FULL; + + if ((segment_stop >= 0) && ((pos + len) > segment_stop)) + return E_FILE_FORMAT_INVALID; + + if ((pos + len) > avail) + return E_BUFFER_NOT_FULL; + + const long long idpos = pos; + const long long id = ReadID(m_pReader, idpos, len); + + if (id < 0) + return E_FILE_FORMAT_INVALID; + + pos += len; // consume ID + + // Read Size + + if ((pos + 1) > avail) { + len = 1; + return E_BUFFER_NOT_FULL; + } + + result = GetUIntLength(m_pReader, pos, len); + + if (result < 0) // error + return static_cast(result); + + if (result > 0) + return E_BUFFER_NOT_FULL; + + if ((segment_stop >= 0) && ((pos + len) > segment_stop)) + return E_FILE_FORMAT_INVALID; + + if ((pos + len) > avail) + return E_BUFFER_NOT_FULL; + + const long long size = ReadUInt(m_pReader, pos, len); + + if (size < 0) // error + return static_cast(size); + + pos += len; // consume length of size of element + + // pos now points to start of payload + + if (size == 0) { + // Missing element payload: move on. + m_pos = pos; + continue; + } + + const long long unknown_size = (1LL << (7 * len)) - 1; + + if ((segment_stop >= 0) && (size != unknown_size) && + ((pos + size) > segment_stop)) { + return E_FILE_FORMAT_INVALID; + } + + if (id == libwebm::kMkvCues) { + if (size == unknown_size) { + // Cues element of unknown size: Not supported. + return E_FILE_FORMAT_INVALID; + } + + if (m_pCues == NULL) { + const long long element_size = (pos - idpos) + size; + + m_pCues = new (std::nothrow) Cues(this, pos, size, idpos, element_size); + if (m_pCues == NULL) + return -1; + } + + m_pos = pos + size; // consume payload + continue; + } + + if (id != libwebm::kMkvCluster) { + // Besides the Segment, Libwebm allows only cluster elements of unknown + // size. Fail the parse upon encountering a non-cluster element reporting + // unknown size. + if (size == unknown_size) + return E_FILE_FORMAT_INVALID; + + m_pos = pos + size; // consume payload + continue; + } + + // We have a cluster. + + cluster_off = idpos - m_start; // relative pos + + if (size != unknown_size) + cluster_size = size; + + break; + } + + if (cluster_off < 0) { + // No cluster, die. + return E_FILE_FORMAT_INVALID; + } + + long long pos_; + long len_; + + status = Cluster::HasBlockEntries(this, cluster_off, pos_, len_); + + if (status < 0) { // error, or underflow + pos = pos_; + len = len_; + + return status; + } + + // status == 0 means "no block entries found" + // status > 0 means "found at least one block entry" + + // TODO: + // The issue here is that the segment increments its own + // pos ptr past the most recent cluster parsed, and then + // starts from there to parse the next cluster. If we + // don't know the size of the current cluster, then we + // must either parse its payload (as we do below), looking + // for the cluster (or cues) ID to terminate the parse. + // This isn't really what we want: rather, we really need + // a way to create the curr cluster object immediately. + // The pity is that cluster::parse can determine its own + // boundary, and we largely duplicate that same logic here. + // + // Maybe we need to get rid of our look-ahead preloading + // in source::parse??? + // + // As we're parsing the blocks in the curr cluster + //(in cluster::parse), we should have some way to signal + // to the segment that we have determined the boundary, + // so it can adjust its own segment::m_pos member. + // + // The problem is that we're asserting in asyncreadinit, + // because we adjust the pos down to the curr seek pos, + // and the resulting adjusted len is > 2GB. I'm suspicious + // that this is even correct, but even if it is, we can't + // be loading that much data in the cache anyway. + + const long idx = m_clusterCount; + + if (m_clusterPreloadCount > 0) { + if (idx >= m_clusterSize) + return E_FILE_FORMAT_INVALID; + + Cluster* const pCluster = m_clusters[idx]; + if (pCluster == NULL || pCluster->m_index >= 0) + return E_FILE_FORMAT_INVALID; + + const long long off = pCluster->GetPosition(); + if (off < 0) + return E_FILE_FORMAT_INVALID; + + if (off == cluster_off) { // preloaded already + if (status == 0) // no entries found + return E_FILE_FORMAT_INVALID; + + if (cluster_size >= 0) + pos += cluster_size; + else { + const long long element_size = pCluster->GetElementSize(); + + if (element_size <= 0) + return E_FILE_FORMAT_INVALID; // TODO: handle this case + + pos = pCluster->m_element_start + element_size; + } + + pCluster->m_index = idx; // move from preloaded to loaded + ++m_clusterCount; + --m_clusterPreloadCount; + + m_pos = pos; // consume payload + if (segment_stop >= 0 && m_pos > segment_stop) + return E_FILE_FORMAT_INVALID; + + return 0; // success + } + } + + if (status == 0) { // no entries found + if (cluster_size >= 0) + pos += cluster_size; + + if ((total >= 0) && (pos >= total)) { + m_pos = total; + return 1; // no more clusters + } + + if ((segment_stop >= 0) && (pos >= segment_stop)) { + m_pos = segment_stop; + return 1; // no more clusters + } + + m_pos = pos; + return 2; // try again + } + + // status > 0 means we have an entry + + Cluster* const pCluster = Cluster::Create(this, idx, cluster_off); + if (pCluster == NULL) + return -1; + + if (!AppendCluster(pCluster)) { + delete pCluster; + return -1; + } + + if (cluster_size >= 0) { + pos += cluster_size; + + m_pos = pos; + + if (segment_stop > 0 && m_pos > segment_stop) + return E_FILE_FORMAT_INVALID; + + return 0; + } + + m_pUnknownSize = pCluster; + m_pos = -pos; + + return 0; // partial success, since we have a new cluster + + // status == 0 means "no block entries found" + // pos designates start of payload + // m_pos has NOT been adjusted yet (in case we need to come back here) +} + +long Segment::DoLoadClusterUnknownSize(long long& pos, long& len) { + if (m_pos >= 0 || m_pUnknownSize == NULL) + return E_PARSE_FAILED; + + const long status = m_pUnknownSize->Parse(pos, len); + + if (status < 0) // error or underflow + return status; + + if (status == 0) // parsed a block + return 2; // continue parsing + + const long long start = m_pUnknownSize->m_element_start; + const long long size = m_pUnknownSize->GetElementSize(); + + if (size < 0) + return E_FILE_FORMAT_INVALID; + + pos = start + size; + m_pos = pos; + + m_pUnknownSize = 0; + + return 2; // continue parsing +} + +bool Segment::AppendCluster(Cluster* pCluster) { + if (pCluster == NULL || pCluster->m_index < 0) + return false; + + const long count = m_clusterCount + m_clusterPreloadCount; + + long& size = m_clusterSize; + const long idx = pCluster->m_index; + + if (size < count || idx != m_clusterCount) + return false; + + if (count >= size) { + const long n = (size <= 0) ? 2048 : 2 * size; + + Cluster** const qq = new (std::nothrow) Cluster*[n]; + if (qq == NULL) + return false; + + Cluster** q = qq; + Cluster** p = m_clusters; + Cluster** const pp = p + count; + + while (p != pp) + *q++ = *p++; + + delete[] m_clusters; + + m_clusters = qq; + size = n; + } + + if (m_clusterPreloadCount > 0) { + Cluster** const p = m_clusters + m_clusterCount; + if (*p == NULL || (*p)->m_index >= 0) + return false; + + Cluster** q = p + m_clusterPreloadCount; + if (q >= (m_clusters + size)) + return false; + + for (;;) { + Cluster** const qq = q - 1; + if ((*qq)->m_index >= 0) + return false; + + *q = *qq; + q = qq; + + if (q == p) + break; + } + } + + m_clusters[idx] = pCluster; + ++m_clusterCount; + return true; +} + +bool Segment::PreloadCluster(Cluster* pCluster, ptrdiff_t idx) { + if (pCluster == NULL || pCluster->m_index >= 0 || idx < m_clusterCount) + return false; + + const long count = m_clusterCount + m_clusterPreloadCount; + + long& size = m_clusterSize; + if (size < count) + return false; + + if (count >= size) { + const long n = (size <= 0) ? 2048 : 2 * size; + + Cluster** const qq = new (std::nothrow) Cluster*[n]; + if (qq == NULL) + return false; + Cluster** q = qq; + + Cluster** p = m_clusters; + Cluster** const pp = p + count; + + while (p != pp) + *q++ = *p++; + + delete[] m_clusters; + + m_clusters = qq; + size = n; + } + + if (m_clusters == NULL) + return false; + + Cluster** const p = m_clusters + idx; + + Cluster** q = m_clusters + count; + if (q < p || q >= (m_clusters + size)) + return false; + + while (q > p) { + Cluster** const qq = q - 1; + + if ((*qq)->m_index >= 0) + return false; + + *q = *qq; + q = qq; + } + + m_clusters[idx] = pCluster; + ++m_clusterPreloadCount; + return true; +} + +long Segment::Load() { + if (m_clusters != NULL || m_clusterSize != 0 || m_clusterCount != 0) + return E_PARSE_FAILED; + + // Outermost (level 0) segment object has been constructed, + // and pos designates start of payload. We need to find the + // inner (level 1) elements. + + const long long header_status = ParseHeaders(); + + if (header_status < 0) // error + return static_cast(header_status); + + if (header_status > 0) // underflow + return E_BUFFER_NOT_FULL; + + if (m_pInfo == NULL || m_pTracks == NULL) + return E_FILE_FORMAT_INVALID; + + for (;;) { + const long status = LoadCluster(); + + if (status < 0) // error + return status; + + if (status >= 1) // no more clusters + return 0; + } +} + +SeekHead::Entry::Entry() : id(0), pos(0), element_start(0), element_size(0) {} + +SeekHead::SeekHead(Segment* pSegment, long long start, long long size_, + long long element_start, long long element_size) + : m_pSegment(pSegment), + m_start(start), + m_size(size_), + m_element_start(element_start), + m_element_size(element_size), + m_entries(0), + m_entry_count(0), + m_void_elements(0), + m_void_element_count(0) {} + +SeekHead::~SeekHead() { + delete[] m_entries; + delete[] m_void_elements; +} + +long SeekHead::Parse() { + IMkvReader* const pReader = m_pSegment->m_pReader; + + long long pos = m_start; + const long long stop = m_start + m_size; + + // first count the seek head entries + + int entry_count = 0; + int void_element_count = 0; + + while (pos < stop) { + long long id, size; + + const long status = ParseElementHeader(pReader, pos, stop, id, size); + + if (status < 0) // error + return status; + + if (id == libwebm::kMkvSeek) + ++entry_count; + else if (id == libwebm::kMkvVoid) + ++void_element_count; + + pos += size; // consume payload + + if (pos > stop) + return E_FILE_FORMAT_INVALID; + } + + if (pos != stop) + return E_FILE_FORMAT_INVALID; + + if (entry_count > 0) { + m_entries = new (std::nothrow) Entry[entry_count]; + + if (m_entries == NULL) + return -1; + } + + if (void_element_count > 0) { + m_void_elements = new (std::nothrow) VoidElement[void_element_count]; + + if (m_void_elements == NULL) + return -1; + } + + // now parse the entries and void elements + + Entry* pEntry = m_entries; + VoidElement* pVoidElement = m_void_elements; + + pos = m_start; + + while (pos < stop) { + const long long idpos = pos; + + long long id, size; + + const long status = ParseElementHeader(pReader, pos, stop, id, size); + + if (status < 0) // error + return status; + + if (id == libwebm::kMkvSeek && entry_count > 0) { + if (ParseEntry(pReader, pos, size, pEntry)) { + Entry& e = *pEntry++; + + e.element_start = idpos; + e.element_size = (pos + size) - idpos; + } + } else if (id == libwebm::kMkvVoid && void_element_count > 0) { + VoidElement& e = *pVoidElement++; + + e.element_start = idpos; + e.element_size = (pos + size) - idpos; + } + + pos += size; // consume payload + if (pos > stop) + return E_FILE_FORMAT_INVALID; + } + + if (pos != stop) + return E_FILE_FORMAT_INVALID; + + ptrdiff_t count_ = ptrdiff_t(pEntry - m_entries); + assert(count_ >= 0); + assert(count_ <= entry_count); + + m_entry_count = static_cast(count_); + + count_ = ptrdiff_t(pVoidElement - m_void_elements); + assert(count_ >= 0); + assert(count_ <= void_element_count); + + m_void_element_count = static_cast(count_); + + return 0; +} + +int SeekHead::GetCount() const { return m_entry_count; } + +const SeekHead::Entry* SeekHead::GetEntry(int idx) const { + if (idx < 0) + return 0; + + if (idx >= m_entry_count) + return 0; + + return m_entries + idx; +} + +int SeekHead::GetVoidElementCount() const { return m_void_element_count; } + +const SeekHead::VoidElement* SeekHead::GetVoidElement(int idx) const { + if (idx < 0) + return 0; + + if (idx >= m_void_element_count) + return 0; + + return m_void_elements + idx; +} + +long Segment::ParseCues(long long off, long long& pos, long& len) { + if (m_pCues) + return 0; // success + + if (off < 0) + return -1; + + long long total, avail; + + const int status = m_pReader->Length(&total, &avail); + + if (status < 0) // error + return status; + + assert((total < 0) || (avail <= total)); + + pos = m_start + off; + + if ((total < 0) || (pos >= total)) + return 1; // don't bother parsing cues + + const long long element_start = pos; + const long long segment_stop = (m_size < 0) ? -1 : m_start + m_size; + + if ((pos + 1) > avail) { + len = 1; + return E_BUFFER_NOT_FULL; + } + + long long result = GetUIntLength(m_pReader, pos, len); + + if (result < 0) // error + return static_cast(result); + + if (result > 0) // underflow (weird) + { + len = 1; + return E_BUFFER_NOT_FULL; + } + + if ((segment_stop >= 0) && ((pos + len) > segment_stop)) + return E_FILE_FORMAT_INVALID; + + if ((pos + len) > avail) + return E_BUFFER_NOT_FULL; + + const long long idpos = pos; + + const long long id = ReadID(m_pReader, idpos, len); + + if (id != libwebm::kMkvCues) + return E_FILE_FORMAT_INVALID; + + pos += len; // consume ID + assert((segment_stop < 0) || (pos <= segment_stop)); + + // Read Size + + if ((pos + 1) > avail) { + len = 1; + return E_BUFFER_NOT_FULL; + } + + result = GetUIntLength(m_pReader, pos, len); + + if (result < 0) // error + return static_cast(result); + + if (result > 0) // underflow (weird) + { + len = 1; + return E_BUFFER_NOT_FULL; + } + + if ((segment_stop >= 0) && ((pos + len) > segment_stop)) + return E_FILE_FORMAT_INVALID; + + if ((pos + len) > avail) + return E_BUFFER_NOT_FULL; + + const long long size = ReadUInt(m_pReader, pos, len); + + if (size < 0) // error + return static_cast(size); + + if (size == 0) // weird, although technically not illegal + return 1; // done + + pos += len; // consume length of size of element + assert((segment_stop < 0) || (pos <= segment_stop)); + + // Pos now points to start of payload + + const long long element_stop = pos + size; + + if ((segment_stop >= 0) && (element_stop > segment_stop)) + return E_FILE_FORMAT_INVALID; + + if ((total >= 0) && (element_stop > total)) + return 1; // don't bother parsing anymore + + len = static_cast(size); + + if (element_stop > avail) + return E_BUFFER_NOT_FULL; + + const long long element_size = element_stop - element_start; + + m_pCues = + new (std::nothrow) Cues(this, pos, size, element_start, element_size); + if (m_pCues == NULL) + return -1; + + return 0; // success +} + +bool SeekHead::ParseEntry(IMkvReader* pReader, long long start, long long size_, + Entry* pEntry) { + if (size_ <= 0) + return false; + + long long pos = start; + const long long stop = start + size_; + + long len; + + // parse the container for the level-1 element ID + + const long long seekIdId = ReadID(pReader, pos, len); + if (seekIdId < 0) + return false; + + if (seekIdId != libwebm::kMkvSeekID) + return false; + + if ((pos + len) > stop) + return false; + + pos += len; // consume SeekID id + + const long long seekIdSize = ReadUInt(pReader, pos, len); + + if (seekIdSize <= 0) + return false; + + if ((pos + len) > stop) + return false; + + pos += len; // consume size of field + + if ((pos + seekIdSize) > stop) + return false; + + pEntry->id = ReadID(pReader, pos, len); // payload + + if (pEntry->id <= 0) + return false; + + if (len != seekIdSize) + return false; + + pos += seekIdSize; // consume SeekID payload + + const long long seekPosId = ReadID(pReader, pos, len); + + if (seekPosId != libwebm::kMkvSeekPosition) + return false; + + if ((pos + len) > stop) + return false; + + pos += len; // consume id + + const long long seekPosSize = ReadUInt(pReader, pos, len); + + if (seekPosSize <= 0) + return false; + + if ((pos + len) > stop) + return false; + + pos += len; // consume size + + if ((pos + seekPosSize) > stop) + return false; + + pEntry->pos = UnserializeUInt(pReader, pos, seekPosSize); + + if (pEntry->pos < 0) + return false; + + pos += seekPosSize; // consume payload + + if (pos != stop) + return false; + + return true; +} + +Cues::Cues(Segment* pSegment, long long start_, long long size_, + long long element_start, long long element_size) + : m_pSegment(pSegment), + m_start(start_), + m_size(size_), + m_element_start(element_start), + m_element_size(element_size), + m_cue_points(NULL), + m_count(0), + m_preload_count(0), + m_pos(start_) {} + +Cues::~Cues() { + const long n = m_count + m_preload_count; + + CuePoint** p = m_cue_points; + CuePoint** const q = p + n; + + while (p != q) { + CuePoint* const pCP = *p++; + assert(pCP); + + delete pCP; + } + + delete[] m_cue_points; +} + +long Cues::GetCount() const { + if (m_cue_points == NULL) + return -1; + + return m_count; // TODO: really ignore preload count? +} + +bool Cues::DoneParsing() const { + const long long stop = m_start + m_size; + return (m_pos >= stop); +} + +bool Cues::Init() const { + if (m_cue_points) + return true; + + if (m_count != 0 || m_preload_count != 0) + return false; + + IMkvReader* const pReader = m_pSegment->m_pReader; + + const long long stop = m_start + m_size; + long long pos = m_start; + + long cue_points_size = 0; + + while (pos < stop) { + const long long idpos = pos; + + long len; + + const long long id = ReadID(pReader, pos, len); + if (id < 0 || (pos + len) > stop) { + return false; + } + + pos += len; // consume ID + + const long long size = ReadUInt(pReader, pos, len); + if (size < 0 || (pos + len > stop)) { + return false; + } + + pos += len; // consume Size field + if (pos + size > stop) { + return false; + } + + if (id == libwebm::kMkvCuePoint) { + if (!PreloadCuePoint(cue_points_size, idpos)) + return false; + } + + pos += size; // skip payload + } + return true; +} + +bool Cues::PreloadCuePoint(long& cue_points_size, long long pos) const { + if (m_count != 0) + return false; + + if (m_preload_count >= cue_points_size) { + const long n = (cue_points_size <= 0) ? 2048 : 2 * cue_points_size; + + CuePoint** const qq = new (std::nothrow) CuePoint*[n]; + if (qq == NULL) + return false; + + CuePoint** q = qq; // beginning of target + + CuePoint** p = m_cue_points; // beginning of source + CuePoint** const pp = p + m_preload_count; // end of source + + while (p != pp) + *q++ = *p++; + + delete[] m_cue_points; + + m_cue_points = qq; + cue_points_size = n; + } + + CuePoint* const pCP = new (std::nothrow) CuePoint(m_preload_count, pos); + if (pCP == NULL) + return false; + + m_cue_points[m_preload_count++] = pCP; + return true; +} + +bool Cues::LoadCuePoint() const { + const long long stop = m_start + m_size; + + if (m_pos >= stop) + return false; // nothing else to do + + if (!Init()) { + m_pos = stop; + return false; + } + + IMkvReader* const pReader = m_pSegment->m_pReader; + + while (m_pos < stop) { + const long long idpos = m_pos; + + long len; + + const long long id = ReadID(pReader, m_pos, len); + if (id < 0 || (m_pos + len) > stop) + return false; + + m_pos += len; // consume ID + + const long long size = ReadUInt(pReader, m_pos, len); + if (size < 0 || (m_pos + len) > stop) + return false; + + m_pos += len; // consume Size field + if ((m_pos + size) > stop) + return false; + + if (id != libwebm::kMkvCuePoint) { + m_pos += size; // consume payload + if (m_pos > stop) + return false; + + continue; + } + + if (m_preload_count < 1) + return false; + + CuePoint* const pCP = m_cue_points[m_count]; + if (!pCP || (pCP->GetTimeCode() < 0 && (-pCP->GetTimeCode() != idpos))) + return false; + + if (!pCP->Load(pReader)) { + m_pos = stop; + return false; + } + ++m_count; + --m_preload_count; + + m_pos += size; // consume payload + if (m_pos > stop) + return false; + + return true; // yes, we loaded a cue point + } + + return false; // no, we did not load a cue point +} + +bool Cues::Find(long long time_ns, const Track* pTrack, const CuePoint*& pCP, + const CuePoint::TrackPosition*& pTP) const { + if (time_ns < 0 || pTrack == NULL || m_cue_points == NULL || m_count == 0) + return false; + + CuePoint** const ii = m_cue_points; + CuePoint** i = ii; + + CuePoint** const jj = ii + m_count; + CuePoint** j = jj; + + pCP = *i; + if (pCP == NULL) + return false; + + if (time_ns <= pCP->GetTime(m_pSegment)) { + pTP = pCP->Find(pTrack); + return (pTP != NULL); + } + + while (i < j) { + // INVARIANT: + //[ii, i) <= time_ns + //[i, j) ? + //[j, jj) > time_ns + + CuePoint** const k = i + (j - i) / 2; + if (k >= jj) + return false; + + CuePoint* const pCP = *k; + if (pCP == NULL) + return false; + + const long long t = pCP->GetTime(m_pSegment); + + if (t <= time_ns) + i = k + 1; + else + j = k; + + if (i > j) + return false; + } + + if (i != j || i > jj || i <= ii) + return false; + + pCP = *--i; + + if (pCP == NULL || pCP->GetTime(m_pSegment) > time_ns) + return false; + + // TODO: here and elsewhere, it's probably not correct to search + // for the cue point with this time, and then search for a matching + // track. In principle, the matching track could be on some earlier + // cue point, and with our current algorithm, we'd miss it. To make + // this bullet-proof, we'd need to create a secondary structure, + // with a list of cue points that apply to a track, and then search + // that track-based structure for a matching cue point. + + pTP = pCP->Find(pTrack); + return (pTP != NULL); +} + +const CuePoint* Cues::GetFirst() const { + if (m_cue_points == NULL || m_count == 0) + return NULL; + + CuePoint* const* const pp = m_cue_points; + if (pp == NULL) + return NULL; + + CuePoint* const pCP = pp[0]; + if (pCP == NULL || pCP->GetTimeCode() < 0) + return NULL; + + return pCP; +} + +const CuePoint* Cues::GetLast() const { + if (m_cue_points == NULL || m_count <= 0) + return NULL; + + const long index = m_count - 1; + + CuePoint* const* const pp = m_cue_points; + if (pp == NULL) + return NULL; + + CuePoint* const pCP = pp[index]; + if (pCP == NULL || pCP->GetTimeCode() < 0) + return NULL; + + return pCP; +} + +const CuePoint* Cues::GetNext(const CuePoint* pCurr) const { + if (pCurr == NULL || pCurr->GetTimeCode() < 0 || m_cue_points == NULL || + m_count < 1) { + return NULL; + } + + long index = pCurr->m_index; + if (index >= m_count) + return NULL; + + CuePoint* const* const pp = m_cue_points; + if (pp == NULL || pp[index] != pCurr) + return NULL; + + ++index; + + if (index >= m_count) + return NULL; + + CuePoint* const pNext = pp[index]; + + if (pNext == NULL || pNext->GetTimeCode() < 0) + return NULL; + + return pNext; +} + +const BlockEntry* Cues::GetBlock(const CuePoint* pCP, + const CuePoint::TrackPosition* pTP) const { + if (pCP == NULL || pTP == NULL) + return NULL; + + return m_pSegment->GetBlock(*pCP, *pTP); +} + +const BlockEntry* Segment::GetBlock(const CuePoint& cp, + const CuePoint::TrackPosition& tp) { + Cluster** const ii = m_clusters; + Cluster** i = ii; + + const long count = m_clusterCount + m_clusterPreloadCount; + + Cluster** const jj = ii + count; + Cluster** j = jj; + + while (i < j) { + // INVARIANT: + //[ii, i) < pTP->m_pos + //[i, j) ? + //[j, jj) > pTP->m_pos + + Cluster** const k = i + (j - i) / 2; + assert(k < jj); + + Cluster* const pCluster = *k; + assert(pCluster); + + // const long long pos_ = pCluster->m_pos; + // assert(pos_); + // const long long pos = pos_ * ((pos_ < 0) ? -1 : 1); + + const long long pos = pCluster->GetPosition(); + assert(pos >= 0); + + if (pos < tp.m_pos) + i = k + 1; + else if (pos > tp.m_pos) + j = k; + else + return pCluster->GetEntry(cp, tp); + } + + assert(i == j); + // assert(Cluster::HasBlockEntries(this, tp.m_pos)); + + Cluster* const pCluster = Cluster::Create(this, -1, tp.m_pos); //, -1); + if (pCluster == NULL) + return NULL; + + const ptrdiff_t idx = i - m_clusters; + + if (!PreloadCluster(pCluster, idx)) { + delete pCluster; + return NULL; + } + assert(m_clusters); + assert(m_clusterPreloadCount > 0); + assert(m_clusters[idx] == pCluster); + + return pCluster->GetEntry(cp, tp); +} + +const Cluster* Segment::FindOrPreloadCluster(long long requested_pos) { + if (requested_pos < 0) + return 0; + + Cluster** const ii = m_clusters; + Cluster** i = ii; + + const long count = m_clusterCount + m_clusterPreloadCount; + + Cluster** const jj = ii + count; + Cluster** j = jj; + + while (i < j) { + // INVARIANT: + //[ii, i) < pTP->m_pos + //[i, j) ? + //[j, jj) > pTP->m_pos + + Cluster** const k = i + (j - i) / 2; + assert(k < jj); + + Cluster* const pCluster = *k; + assert(pCluster); + + // const long long pos_ = pCluster->m_pos; + // assert(pos_); + // const long long pos = pos_ * ((pos_ < 0) ? -1 : 1); + + const long long pos = pCluster->GetPosition(); + assert(pos >= 0); + + if (pos < requested_pos) + i = k + 1; + else if (pos > requested_pos) + j = k; + else + return pCluster; + } + + assert(i == j); + // assert(Cluster::HasBlockEntries(this, tp.m_pos)); + + Cluster* const pCluster = Cluster::Create(this, -1, requested_pos); + if (pCluster == NULL) + return NULL; + + const ptrdiff_t idx = i - m_clusters; + + if (!PreloadCluster(pCluster, idx)) { + delete pCluster; + return NULL; + } + assert(m_clusters); + assert(m_clusterPreloadCount > 0); + assert(m_clusters[idx] == pCluster); + + return pCluster; +} + +CuePoint::CuePoint(long idx, long long pos) + : m_element_start(0), + m_element_size(0), + m_index(idx), + m_timecode(-1 * pos), + m_track_positions(NULL), + m_track_positions_count(0) { + assert(pos > 0); +} + +CuePoint::~CuePoint() { delete[] m_track_positions; } + +bool CuePoint::Load(IMkvReader* pReader) { + // odbgstream os; + // os << "CuePoint::Load(begin): timecode=" << m_timecode << endl; + + if (m_timecode >= 0) // already loaded + return true; + + assert(m_track_positions == NULL); + assert(m_track_positions_count == 0); + + long long pos_ = -m_timecode; + const long long element_start = pos_; + + long long stop; + + { + long len; + + const long long id = ReadID(pReader, pos_, len); + if (id != libwebm::kMkvCuePoint) + return false; + + pos_ += len; // consume ID + + const long long size = ReadUInt(pReader, pos_, len); + assert(size >= 0); + + pos_ += len; // consume Size field + // pos_ now points to start of payload + + stop = pos_ + size; + } + + const long long element_size = stop - element_start; + + long long pos = pos_; + + // First count number of track positions + + while (pos < stop) { + long len; + + const long long id = ReadID(pReader, pos, len); + if ((id < 0) || (pos + len > stop)) { + return false; + } + + pos += len; // consume ID + + const long long size = ReadUInt(pReader, pos, len); + if ((size < 0) || (pos + len > stop)) { + return false; + } + + pos += len; // consume Size field + if ((pos + size) > stop) { + return false; + } + + if (id == libwebm::kMkvCueTime) + m_timecode = UnserializeUInt(pReader, pos, size); + + else if (id == libwebm::kMkvCueTrackPositions) + ++m_track_positions_count; + + pos += size; // consume payload + } + + if (m_timecode < 0 || m_track_positions_count <= 0) { + return false; + } + + // os << "CuePoint::Load(cont'd): idpos=" << idpos + // << " timecode=" << m_timecode + // << endl; + + m_track_positions = new (std::nothrow) TrackPosition[m_track_positions_count]; + if (m_track_positions == NULL) + return false; + + // Now parse track positions + + TrackPosition* p = m_track_positions; + pos = pos_; + + while (pos < stop) { + long len; + + const long long id = ReadID(pReader, pos, len); + if (id < 0 || (pos + len) > stop) + return false; + + pos += len; // consume ID + + const long long size = ReadUInt(pReader, pos, len); + assert(size >= 0); + assert((pos + len) <= stop); + + pos += len; // consume Size field + assert((pos + size) <= stop); + + if (id == libwebm::kMkvCueTrackPositions) { + TrackPosition& tp = *p++; + if (!tp.Parse(pReader, pos, size)) { + return false; + } + } + + pos += size; // consume payload + if (pos > stop) + return false; + } + + assert(size_t(p - m_track_positions) == m_track_positions_count); + + m_element_start = element_start; + m_element_size = element_size; + + return true; +} + +bool CuePoint::TrackPosition::Parse(IMkvReader* pReader, long long start_, + long long size_) { + const long long stop = start_ + size_; + long long pos = start_; + + m_track = -1; + m_pos = -1; + m_block = 1; // default + + while (pos < stop) { + long len; + + const long long id = ReadID(pReader, pos, len); + if ((id < 0) || ((pos + len) > stop)) { + return false; + } + + pos += len; // consume ID + + const long long size = ReadUInt(pReader, pos, len); + if ((size < 0) || ((pos + len) > stop)) { + return false; + } + + pos += len; // consume Size field + if ((pos + size) > stop) { + return false; + } + + if (id == libwebm::kMkvCueTrack) + m_track = UnserializeUInt(pReader, pos, size); + else if (id == libwebm::kMkvCueClusterPosition) + m_pos = UnserializeUInt(pReader, pos, size); + else if (id == libwebm::kMkvCueBlockNumber) + m_block = UnserializeUInt(pReader, pos, size); + + pos += size; // consume payload + } + + if ((m_pos < 0) || (m_track <= 0)) { + return false; + } + + return true; +} + +const CuePoint::TrackPosition* CuePoint::Find(const Track* pTrack) const { + if (pTrack == NULL) { + return NULL; + } + + const long long n = pTrack->GetNumber(); + + const TrackPosition* i = m_track_positions; + const TrackPosition* const j = i + m_track_positions_count; + + while (i != j) { + const TrackPosition& p = *i++; + + if (p.m_track == n) + return &p; + } + + return NULL; // no matching track number found +} + +long long CuePoint::GetTimeCode() const { return m_timecode; } + +long long CuePoint::GetTime(const Segment* pSegment) const { + assert(pSegment); + assert(m_timecode >= 0); + + const SegmentInfo* const pInfo = pSegment->GetInfo(); + assert(pInfo); + + const long long scale = pInfo->GetTimeCodeScale(); + assert(scale >= 1); + + const long long time = scale * m_timecode; + + return time; +} + +bool Segment::DoneParsing() const { + if (m_size < 0) { + long long total, avail; + + const int status = m_pReader->Length(&total, &avail); + + if (status < 0) // error + return true; // must assume done + + if (total < 0) + return false; // assume live stream + + return (m_pos >= total); + } + + const long long stop = m_start + m_size; + + return (m_pos >= stop); +} + +const Cluster* Segment::GetFirst() const { + if ((m_clusters == NULL) || (m_clusterCount <= 0)) + return &m_eos; + + Cluster* const pCluster = m_clusters[0]; + assert(pCluster); + + return pCluster; +} + +const Cluster* Segment::GetLast() const { + if ((m_clusters == NULL) || (m_clusterCount <= 0)) + return &m_eos; + + const long idx = m_clusterCount - 1; + + Cluster* const pCluster = m_clusters[idx]; + assert(pCluster); + + return pCluster; +} + +unsigned long Segment::GetCount() const { return m_clusterCount; } + +const Cluster* Segment::GetNext(const Cluster* pCurr) { + assert(pCurr); + assert(pCurr != &m_eos); + assert(m_clusters); + + long idx = pCurr->m_index; + + if (idx >= 0) { + assert(m_clusterCount > 0); + assert(idx < m_clusterCount); + assert(pCurr == m_clusters[idx]); + + ++idx; + + if (idx >= m_clusterCount) + return &m_eos; // caller will LoadCluster as desired + + Cluster* const pNext = m_clusters[idx]; + assert(pNext); + assert(pNext->m_index >= 0); + assert(pNext->m_index == idx); + + return pNext; + } + + assert(m_clusterPreloadCount > 0); + + long long pos = pCurr->m_element_start; + + assert(m_size >= 0); // TODO + const long long stop = m_start + m_size; // end of segment + + { + long len; + + long long result = GetUIntLength(m_pReader, pos, len); + assert(result == 0); + assert((pos + len) <= stop); // TODO + if (result != 0) + return NULL; + + const long long id = ReadID(m_pReader, pos, len); + if (id != libwebm::kMkvCluster) + return NULL; + + pos += len; // consume ID + + // Read Size + result = GetUIntLength(m_pReader, pos, len); + assert(result == 0); // TODO + assert((pos + len) <= stop); // TODO + + const long long size = ReadUInt(m_pReader, pos, len); + assert(size > 0); // TODO + // assert((pCurr->m_size <= 0) || (pCurr->m_size == size)); + + pos += len; // consume length of size of element + assert((pos + size) <= stop); // TODO + + // Pos now points to start of payload + + pos += size; // consume payload + } + + long long off_next = 0; + + while (pos < stop) { + long len; + + long long result = GetUIntLength(m_pReader, pos, len); + assert(result == 0); + assert((pos + len) <= stop); // TODO + if (result != 0) + return NULL; + + const long long idpos = pos; // pos of next (potential) cluster + + const long long id = ReadID(m_pReader, idpos, len); + if (id < 0) + return NULL; + + pos += len; // consume ID + + // Read Size + result = GetUIntLength(m_pReader, pos, len); + assert(result == 0); // TODO + assert((pos + len) <= stop); // TODO + + const long long size = ReadUInt(m_pReader, pos, len); + assert(size >= 0); // TODO + + pos += len; // consume length of size of element + assert((pos + size) <= stop); // TODO + + // Pos now points to start of payload + + if (size == 0) // weird + continue; + + if (id == libwebm::kMkvCluster) { + const long long off_next_ = idpos - m_start; + + long long pos_; + long len_; + + const long status = Cluster::HasBlockEntries(this, off_next_, pos_, len_); + + assert(status >= 0); + + if (status > 0) { + off_next = off_next_; + break; + } + } + + pos += size; // consume payload + } + + if (off_next <= 0) + return 0; + + Cluster** const ii = m_clusters + m_clusterCount; + Cluster** i = ii; + + Cluster** const jj = ii + m_clusterPreloadCount; + Cluster** j = jj; + + while (i < j) { + // INVARIANT: + //[0, i) < pos_next + //[i, j) ? + //[j, jj) > pos_next + + Cluster** const k = i + (j - i) / 2; + assert(k < jj); + + Cluster* const pNext = *k; + assert(pNext); + assert(pNext->m_index < 0); + + // const long long pos_ = pNext->m_pos; + // assert(pos_); + // pos = pos_ * ((pos_ < 0) ? -1 : 1); + + pos = pNext->GetPosition(); + + if (pos < off_next) + i = k + 1; + else if (pos > off_next) + j = k; + else + return pNext; + } + + assert(i == j); + + Cluster* const pNext = Cluster::Create(this, -1, off_next); + if (pNext == NULL) + return NULL; + + const ptrdiff_t idx_next = i - m_clusters; // insertion position + + if (!PreloadCluster(pNext, idx_next)) { + delete pNext; + return NULL; + } + assert(m_clusters); + assert(idx_next < m_clusterSize); + assert(m_clusters[idx_next] == pNext); + + return pNext; +} + +long Segment::ParseNext(const Cluster* pCurr, const Cluster*& pResult, + long long& pos, long& len) { + assert(pCurr); + assert(!pCurr->EOS()); + assert(m_clusters); + + pResult = 0; + + if (pCurr->m_index >= 0) { // loaded (not merely preloaded) + assert(m_clusters[pCurr->m_index] == pCurr); + + const long next_idx = pCurr->m_index + 1; + + if (next_idx < m_clusterCount) { + pResult = m_clusters[next_idx]; + return 0; // success + } + + // curr cluster is last among loaded + + const long result = LoadCluster(pos, len); + + if (result < 0) // error or underflow + return result; + + if (result > 0) // no more clusters + { + // pResult = &m_eos; + return 1; + } + + pResult = GetLast(); + return 0; // success + } + + assert(m_pos > 0); + + long long total, avail; + + long status = m_pReader->Length(&total, &avail); + + if (status < 0) // error + return status; + + assert((total < 0) || (avail <= total)); + + const long long segment_stop = (m_size < 0) ? -1 : m_start + m_size; + + // interrogate curr cluster + + pos = pCurr->m_element_start; + + if (pCurr->m_element_size >= 0) + pos += pCurr->m_element_size; + else { + if ((pos + 1) > avail) { + len = 1; + return E_BUFFER_NOT_FULL; + } + + long long result = GetUIntLength(m_pReader, pos, len); + + if (result < 0) // error + return static_cast(result); + + if (result > 0) // weird + return E_BUFFER_NOT_FULL; + + if ((segment_stop >= 0) && ((pos + len) > segment_stop)) + return E_FILE_FORMAT_INVALID; + + if ((pos + len) > avail) + return E_BUFFER_NOT_FULL; + + const long long id = ReadUInt(m_pReader, pos, len); + + if (id != libwebm::kMkvCluster) + return -1; + + pos += len; // consume ID + + // Read Size + + if ((pos + 1) > avail) { + len = 1; + return E_BUFFER_NOT_FULL; + } + + result = GetUIntLength(m_pReader, pos, len); + + if (result < 0) // error + return static_cast(result); + + if (result > 0) // weird + return E_BUFFER_NOT_FULL; + + if ((segment_stop >= 0) && ((pos + len) > segment_stop)) + return E_FILE_FORMAT_INVALID; + + if ((pos + len) > avail) + return E_BUFFER_NOT_FULL; + + const long long size = ReadUInt(m_pReader, pos, len); + + if (size < 0) // error + return static_cast(size); + + pos += len; // consume size field + + const long long unknown_size = (1LL << (7 * len)) - 1; + + if (size == unknown_size) // TODO: should never happen + return E_FILE_FORMAT_INVALID; // TODO: resolve this + + // assert((pCurr->m_size <= 0) || (pCurr->m_size == size)); + + if ((segment_stop >= 0) && ((pos + size) > segment_stop)) + return E_FILE_FORMAT_INVALID; + + // Pos now points to start of payload + + pos += size; // consume payload (that is, the current cluster) + if (segment_stop >= 0 && pos > segment_stop) + return E_FILE_FORMAT_INVALID; + + // By consuming the payload, we are assuming that the curr + // cluster isn't interesting. That is, we don't bother checking + // whether the payload of the curr cluster is less than what + // happens to be available (obtained via IMkvReader::Length). + // Presumably the caller has already dispensed with the current + // cluster, and really does want the next cluster. + } + + // pos now points to just beyond the last fully-loaded cluster + + for (;;) { + const long status = DoParseNext(pResult, pos, len); + + if (status <= 1) + return status; + } +} + +long Segment::DoParseNext(const Cluster*& pResult, long long& pos, long& len) { + long long total, avail; + + long status = m_pReader->Length(&total, &avail); + + if (status < 0) // error + return status; + + assert((total < 0) || (avail <= total)); + + const long long segment_stop = (m_size < 0) ? -1 : m_start + m_size; + + // Parse next cluster. This is strictly a parsing activity. + // Creation of a new cluster object happens later, after the + // parsing is done. + + long long off_next = 0; + long long cluster_size = -1; + + for (;;) { + if ((total >= 0) && (pos >= total)) + return 1; // EOF + + if ((segment_stop >= 0) && (pos >= segment_stop)) + return 1; // EOF + + if ((pos + 1) > avail) { + len = 1; + return E_BUFFER_NOT_FULL; + } + + long long result = GetUIntLength(m_pReader, pos, len); + + if (result < 0) // error + return static_cast(result); + + if (result > 0) // weird + return E_BUFFER_NOT_FULL; + + if ((segment_stop >= 0) && ((pos + len) > segment_stop)) + return E_FILE_FORMAT_INVALID; + + if ((pos + len) > avail) + return E_BUFFER_NOT_FULL; + + const long long idpos = pos; // absolute + const long long idoff = pos - m_start; // relative + + const long long id = ReadID(m_pReader, idpos, len); // absolute + + if (id < 0) // error + return static_cast(id); + + if (id == 0) // weird + return -1; // generic error + + pos += len; // consume ID + + // Read Size + + if ((pos + 1) > avail) { + len = 1; + return E_BUFFER_NOT_FULL; + } + + result = GetUIntLength(m_pReader, pos, len); + + if (result < 0) // error + return static_cast(result); + + if (result > 0) // weird + return E_BUFFER_NOT_FULL; + + if ((segment_stop >= 0) && ((pos + len) > segment_stop)) + return E_FILE_FORMAT_INVALID; + + if ((pos + len) > avail) + return E_BUFFER_NOT_FULL; + + const long long size = ReadUInt(m_pReader, pos, len); + + if (size < 0) // error + return static_cast(size); + + pos += len; // consume length of size of element + + // Pos now points to start of payload + + if (size == 0) // weird + continue; + + const long long unknown_size = (1LL << (7 * len)) - 1; + + if ((segment_stop >= 0) && (size != unknown_size) && + ((pos + size) > segment_stop)) { + return E_FILE_FORMAT_INVALID; + } + + if (id == libwebm::kMkvCues) { + if (size == unknown_size) + return E_FILE_FORMAT_INVALID; + + const long long element_stop = pos + size; + + if ((segment_stop >= 0) && (element_stop > segment_stop)) + return E_FILE_FORMAT_INVALID; + + const long long element_start = idpos; + const long long element_size = element_stop - element_start; + + if (m_pCues == NULL) { + m_pCues = new (std::nothrow) + Cues(this, pos, size, element_start, element_size); + if (m_pCues == NULL) + return false; + } + + pos += size; // consume payload + if (segment_stop >= 0 && pos > segment_stop) + return E_FILE_FORMAT_INVALID; + + continue; + } + + if (id != libwebm::kMkvCluster) { // not a Cluster ID + if (size == unknown_size) + return E_FILE_FORMAT_INVALID; + + pos += size; // consume payload + if (segment_stop >= 0 && pos > segment_stop) + return E_FILE_FORMAT_INVALID; + + continue; + } + + // We have a cluster. + off_next = idoff; + + if (size != unknown_size) + cluster_size = size; + + break; + } + + assert(off_next > 0); // have cluster + + // We have parsed the next cluster. + // We have not created a cluster object yet. What we need + // to do now is determine whether it has already be preloaded + //(in which case, an object for this cluster has already been + // created), and if not, create a new cluster object. + + Cluster** const ii = m_clusters + m_clusterCount; + Cluster** i = ii; + + Cluster** const jj = ii + m_clusterPreloadCount; + Cluster** j = jj; + + while (i < j) { + // INVARIANT: + //[0, i) < pos_next + //[i, j) ? + //[j, jj) > pos_next + + Cluster** const k = i + (j - i) / 2; + assert(k < jj); + + const Cluster* const pNext = *k; + assert(pNext); + assert(pNext->m_index < 0); + + pos = pNext->GetPosition(); + assert(pos >= 0); + + if (pos < off_next) + i = k + 1; + else if (pos > off_next) + j = k; + else { + pResult = pNext; + return 0; // success + } + } + + assert(i == j); + + long long pos_; + long len_; + + status = Cluster::HasBlockEntries(this, off_next, pos_, len_); + + if (status < 0) { // error or underflow + pos = pos_; + len = len_; + + return status; + } + + if (status > 0) { // means "found at least one block entry" + Cluster* const pNext = Cluster::Create(this, + -1, // preloaded + off_next); + if (pNext == NULL) + return -1; + + const ptrdiff_t idx_next = i - m_clusters; // insertion position + + if (!PreloadCluster(pNext, idx_next)) { + delete pNext; + return -1; + } + assert(m_clusters); + assert(idx_next < m_clusterSize); + assert(m_clusters[idx_next] == pNext); + + pResult = pNext; + return 0; // success + } + + // status == 0 means "no block entries found" + + if (cluster_size < 0) { // unknown size + const long long payload_pos = pos; // absolute pos of cluster payload + + for (;;) { // determine cluster size + if ((total >= 0) && (pos >= total)) + break; + + if ((segment_stop >= 0) && (pos >= segment_stop)) + break; // no more clusters + + // Read ID + + if ((pos + 1) > avail) { + len = 1; + return E_BUFFER_NOT_FULL; + } + + long long result = GetUIntLength(m_pReader, pos, len); + + if (result < 0) // error + return static_cast(result); + + if (result > 0) // weird + return E_BUFFER_NOT_FULL; + + if ((segment_stop >= 0) && ((pos + len) > segment_stop)) + return E_FILE_FORMAT_INVALID; + + if ((pos + len) > avail) + return E_BUFFER_NOT_FULL; + + const long long idpos = pos; + const long long id = ReadID(m_pReader, idpos, len); + + if (id < 0) // error (or underflow) + return static_cast(id); + + // This is the distinguished set of ID's we use to determine + // that we have exhausted the sub-element's inside the cluster + // whose ID we parsed earlier. + + if (id == libwebm::kMkvCluster || id == libwebm::kMkvCues) + break; + + pos += len; // consume ID (of sub-element) + + // Read Size + + if ((pos + 1) > avail) { + len = 1; + return E_BUFFER_NOT_FULL; + } + + result = GetUIntLength(m_pReader, pos, len); + + if (result < 0) // error + return static_cast(result); + + if (result > 0) // weird + return E_BUFFER_NOT_FULL; + + if ((segment_stop >= 0) && ((pos + len) > segment_stop)) + return E_FILE_FORMAT_INVALID; + + if ((pos + len) > avail) + return E_BUFFER_NOT_FULL; + + const long long size = ReadUInt(m_pReader, pos, len); + + if (size < 0) // error + return static_cast(size); + + pos += len; // consume size field of element + + // pos now points to start of sub-element's payload + + if (size == 0) // weird + continue; + + const long long unknown_size = (1LL << (7 * len)) - 1; + + if (size == unknown_size) + return E_FILE_FORMAT_INVALID; // not allowed for sub-elements + + if ((segment_stop >= 0) && ((pos + size) > segment_stop)) // weird + return E_FILE_FORMAT_INVALID; + + pos += size; // consume payload of sub-element + if (segment_stop >= 0 && pos > segment_stop) + return E_FILE_FORMAT_INVALID; + } // determine cluster size + + cluster_size = pos - payload_pos; + assert(cluster_size >= 0); // TODO: handle cluster_size = 0 + + pos = payload_pos; // reset and re-parse original cluster + } + + pos += cluster_size; // consume payload + if (segment_stop >= 0 && pos > segment_stop) + return E_FILE_FORMAT_INVALID; + + return 2; // try to find a cluster that follows next +} + +const Cluster* Segment::FindCluster(long long time_ns) const { + if ((m_clusters == NULL) || (m_clusterCount <= 0)) + return &m_eos; + + { + Cluster* const pCluster = m_clusters[0]; + assert(pCluster); + assert(pCluster->m_index == 0); + + if (time_ns <= pCluster->GetTime()) + return pCluster; + } + + // Binary search of cluster array + + long i = 0; + long j = m_clusterCount; + + while (i < j) { + // INVARIANT: + //[0, i) <= time_ns + //[i, j) ? + //[j, m_clusterCount) > time_ns + + const long k = i + (j - i) / 2; + assert(k < m_clusterCount); + + Cluster* const pCluster = m_clusters[k]; + assert(pCluster); + assert(pCluster->m_index == k); + + const long long t = pCluster->GetTime(); + + if (t <= time_ns) + i = k + 1; + else + j = k; + + assert(i <= j); + } + + assert(i == j); + assert(i > 0); + assert(i <= m_clusterCount); + + const long k = i - 1; + + Cluster* const pCluster = m_clusters[k]; + assert(pCluster); + assert(pCluster->m_index == k); + assert(pCluster->GetTime() <= time_ns); + + return pCluster; +} + +const Tracks* Segment::GetTracks() const { return m_pTracks; } +const SegmentInfo* Segment::GetInfo() const { return m_pInfo; } +const Cues* Segment::GetCues() const { return m_pCues; } +const Chapters* Segment::GetChapters() const { return m_pChapters; } +const Tags* Segment::GetTags() const { return m_pTags; } +const SeekHead* Segment::GetSeekHead() const { return m_pSeekHead; } + +long long Segment::GetDuration() const { + assert(m_pInfo); + return m_pInfo->GetDuration(); +} + +Chapters::Chapters(Segment* pSegment, long long payload_start, + long long payload_size, long long element_start, + long long element_size) + : m_pSegment(pSegment), + m_start(payload_start), + m_size(payload_size), + m_element_start(element_start), + m_element_size(element_size), + m_editions(NULL), + m_editions_size(0), + m_editions_count(0) {} + +Chapters::~Chapters() { + while (m_editions_count > 0) { + Edition& e = m_editions[--m_editions_count]; + e.Clear(); + } + delete[] m_editions; +} + +long Chapters::Parse() { + IMkvReader* const pReader = m_pSegment->m_pReader; + + long long pos = m_start; // payload start + const long long stop = pos + m_size; // payload stop + + while (pos < stop) { + long long id, size; + + long status = ParseElementHeader(pReader, pos, stop, id, size); + + if (status < 0) // error + return status; + + if (size == 0) // weird + continue; + + if (id == libwebm::kMkvEditionEntry) { + status = ParseEdition(pos, size); + + if (status < 0) // error + return status; + } + + pos += size; + if (pos > stop) + return E_FILE_FORMAT_INVALID; + } + + if (pos != stop) + return E_FILE_FORMAT_INVALID; + return 0; +} + +int Chapters::GetEditionCount() const { return m_editions_count; } + +const Chapters::Edition* Chapters::GetEdition(int idx) const { + if (idx < 0) + return NULL; + + if (idx >= m_editions_count) + return NULL; + + return m_editions + idx; +} + +bool Chapters::ExpandEditionsArray() { + if (m_editions_size > m_editions_count) + return true; // nothing else to do + + const int size = (m_editions_size == 0) ? 1 : 2 * m_editions_size; + + Edition* const editions = new (std::nothrow) Edition[size]; + + if (editions == NULL) + return false; + + for (int idx = 0; idx < m_editions_count; ++idx) { + m_editions[idx].ShallowCopy(editions[idx]); + } + + delete[] m_editions; + m_editions = editions; + + m_editions_size = size; + return true; +} + +long Chapters::ParseEdition(long long pos, long long size) { + if (!ExpandEditionsArray()) + return -1; + + Edition& e = m_editions[m_editions_count++]; + e.Init(); + + return e.Parse(m_pSegment->m_pReader, pos, size); +} + +Chapters::Edition::Edition() {} + +Chapters::Edition::~Edition() {} + +int Chapters::Edition::GetAtomCount() const { return m_atoms_count; } + +const Chapters::Atom* Chapters::Edition::GetAtom(int index) const { + if (index < 0) + return NULL; + + if (index >= m_atoms_count) + return NULL; + + return m_atoms + index; +} + +void Chapters::Edition::Init() { + m_atoms = NULL; + m_atoms_size = 0; + m_atoms_count = 0; +} + +void Chapters::Edition::ShallowCopy(Edition& rhs) const { + rhs.m_atoms = m_atoms; + rhs.m_atoms_size = m_atoms_size; + rhs.m_atoms_count = m_atoms_count; +} + +void Chapters::Edition::Clear() { + while (m_atoms_count > 0) { + Atom& a = m_atoms[--m_atoms_count]; + a.Clear(); + } + + delete[] m_atoms; + m_atoms = NULL; + + m_atoms_size = 0; +} + +long Chapters::Edition::Parse(IMkvReader* pReader, long long pos, + long long size) { + const long long stop = pos + size; + + while (pos < stop) { + long long id, size; + + long status = ParseElementHeader(pReader, pos, stop, id, size); + + if (status < 0) // error + return status; + + if (size == 0) + continue; + + if (id == libwebm::kMkvChapterAtom) { + status = ParseAtom(pReader, pos, size); + + if (status < 0) // error + return status; + } + + pos += size; + if (pos > stop) + return E_FILE_FORMAT_INVALID; + } + + if (pos != stop) + return E_FILE_FORMAT_INVALID; + return 0; +} + +long Chapters::Edition::ParseAtom(IMkvReader* pReader, long long pos, + long long size) { + if (!ExpandAtomsArray()) + return -1; + + Atom& a = m_atoms[m_atoms_count++]; + a.Init(); + + return a.Parse(pReader, pos, size); +} + +bool Chapters::Edition::ExpandAtomsArray() { + if (m_atoms_size > m_atoms_count) + return true; // nothing else to do + + const int size = (m_atoms_size == 0) ? 1 : 2 * m_atoms_size; + + Atom* const atoms = new (std::nothrow) Atom[size]; + + if (atoms == NULL) + return false; + + for (int idx = 0; idx < m_atoms_count; ++idx) { + m_atoms[idx].ShallowCopy(atoms[idx]); + } + + delete[] m_atoms; + m_atoms = atoms; + + m_atoms_size = size; + return true; +} + +Chapters::Atom::Atom() {} + +Chapters::Atom::~Atom() {} + +unsigned long long Chapters::Atom::GetUID() const { return m_uid; } + +const char* Chapters::Atom::GetStringUID() const { return m_string_uid; } + +long long Chapters::Atom::GetStartTimecode() const { return m_start_timecode; } + +long long Chapters::Atom::GetStopTimecode() const { return m_stop_timecode; } + +long long Chapters::Atom::GetStartTime(const Chapters* pChapters) const { + return GetTime(pChapters, m_start_timecode); +} + +long long Chapters::Atom::GetStopTime(const Chapters* pChapters) const { + return GetTime(pChapters, m_stop_timecode); +} + +int Chapters::Atom::GetDisplayCount() const { return m_displays_count; } + +const Chapters::Display* Chapters::Atom::GetDisplay(int index) const { + if (index < 0) + return NULL; + + if (index >= m_displays_count) + return NULL; + + return m_displays + index; +} + +void Chapters::Atom::Init() { + m_string_uid = NULL; + m_uid = 0; + m_start_timecode = -1; + m_stop_timecode = -1; + + m_displays = NULL; + m_displays_size = 0; + m_displays_count = 0; +} + +void Chapters::Atom::ShallowCopy(Atom& rhs) const { + rhs.m_string_uid = m_string_uid; + rhs.m_uid = m_uid; + rhs.m_start_timecode = m_start_timecode; + rhs.m_stop_timecode = m_stop_timecode; + + rhs.m_displays = m_displays; + rhs.m_displays_size = m_displays_size; + rhs.m_displays_count = m_displays_count; +} + +void Chapters::Atom::Clear() { + delete[] m_string_uid; + m_string_uid = NULL; + + while (m_displays_count > 0) { + Display& d = m_displays[--m_displays_count]; + d.Clear(); + } + + delete[] m_displays; + m_displays = NULL; + + m_displays_size = 0; +} + +long Chapters::Atom::Parse(IMkvReader* pReader, long long pos, long long size) { + const long long stop = pos + size; + + while (pos < stop) { + long long id, size; + + long status = ParseElementHeader(pReader, pos, stop, id, size); + + if (status < 0) // error + return status; + + if (size == 0) // 0 length payload, skip. + continue; + + if (id == libwebm::kMkvChapterDisplay) { + status = ParseDisplay(pReader, pos, size); + + if (status < 0) // error + return status; + } else if (id == libwebm::kMkvChapterStringUID) { + status = UnserializeString(pReader, pos, size, m_string_uid); + + if (status < 0) // error + return status; + } else if (id == libwebm::kMkvChapterUID) { + long long val; + status = UnserializeInt(pReader, pos, size, val); + + if (status < 0) // error + return status; + + m_uid = static_cast(val); + } else if (id == libwebm::kMkvChapterTimeStart) { + const long long val = UnserializeUInt(pReader, pos, size); + + if (val < 0) // error + return static_cast(val); + + m_start_timecode = val; + } else if (id == libwebm::kMkvChapterTimeEnd) { + const long long val = UnserializeUInt(pReader, pos, size); + + if (val < 0) // error + return static_cast(val); + + m_stop_timecode = val; + } + + pos += size; + if (pos > stop) + return E_FILE_FORMAT_INVALID; + } + + if (pos != stop) + return E_FILE_FORMAT_INVALID; + return 0; +} + +long long Chapters::Atom::GetTime(const Chapters* pChapters, + long long timecode) { + if (pChapters == NULL) + return -1; + + Segment* const pSegment = pChapters->m_pSegment; + + if (pSegment == NULL) // weird + return -1; + + const SegmentInfo* const pInfo = pSegment->GetInfo(); + + if (pInfo == NULL) + return -1; + + const long long timecode_scale = pInfo->GetTimeCodeScale(); + + if (timecode_scale < 1) // weird + return -1; + + if (timecode < 0) + return -1; + + const long long result = timecode_scale * timecode; + + return result; +} + +long Chapters::Atom::ParseDisplay(IMkvReader* pReader, long long pos, + long long size) { + if (!ExpandDisplaysArray()) + return -1; + + Display& d = m_displays[m_displays_count++]; + d.Init(); + + return d.Parse(pReader, pos, size); +} + +bool Chapters::Atom::ExpandDisplaysArray() { + if (m_displays_size > m_displays_count) + return true; // nothing else to do + + const int size = (m_displays_size == 0) ? 1 : 2 * m_displays_size; + + Display* const displays = new (std::nothrow) Display[size]; + + if (displays == NULL) + return false; + + for (int idx = 0; idx < m_displays_count; ++idx) { + m_displays[idx].ShallowCopy(displays[idx]); + } + + delete[] m_displays; + m_displays = displays; + + m_displays_size = size; + return true; +} + +Chapters::Display::Display() {} + +Chapters::Display::~Display() {} + +const char* Chapters::Display::GetString() const { return m_string; } + +const char* Chapters::Display::GetLanguage() const { return m_language; } + +const char* Chapters::Display::GetCountry() const { return m_country; } + +void Chapters::Display::Init() { + m_string = NULL; + m_language = NULL; + m_country = NULL; +} + +void Chapters::Display::ShallowCopy(Display& rhs) const { + rhs.m_string = m_string; + rhs.m_language = m_language; + rhs.m_country = m_country; +} + +void Chapters::Display::Clear() { + delete[] m_string; + m_string = NULL; + + delete[] m_language; + m_language = NULL; + + delete[] m_country; + m_country = NULL; +} + +long Chapters::Display::Parse(IMkvReader* pReader, long long pos, + long long size) { + const long long stop = pos + size; + + while (pos < stop) { + long long id, size; + + long status = ParseElementHeader(pReader, pos, stop, id, size); + + if (status < 0) // error + return status; + + if (size == 0) // No payload. + continue; + + if (id == libwebm::kMkvChapString) { + status = UnserializeString(pReader, pos, size, m_string); + + if (status) + return status; + } else if (id == libwebm::kMkvChapLanguage) { + status = UnserializeString(pReader, pos, size, m_language); + + if (status) + return status; + } else if (id == libwebm::kMkvChapCountry) { + status = UnserializeString(pReader, pos, size, m_country); + + if (status) + return status; + } + + pos += size; + if (pos > stop) + return E_FILE_FORMAT_INVALID; + } + + if (pos != stop) + return E_FILE_FORMAT_INVALID; + return 0; +} + +Tags::Tags(Segment* pSegment, long long payload_start, long long payload_size, + long long element_start, long long element_size) + : m_pSegment(pSegment), + m_start(payload_start), + m_size(payload_size), + m_element_start(element_start), + m_element_size(element_size), + m_tags(NULL), + m_tags_size(0), + m_tags_count(0) {} + +Tags::~Tags() { + while (m_tags_count > 0) { + Tag& t = m_tags[--m_tags_count]; + t.Clear(); + } + delete[] m_tags; +} + +long Tags::Parse() { + IMkvReader* const pReader = m_pSegment->m_pReader; + + long long pos = m_start; // payload start + const long long stop = pos + m_size; // payload stop + + while (pos < stop) { + long long id, size; + + long status = ParseElementHeader(pReader, pos, stop, id, size); + + if (status < 0) + return status; + + if (size == 0) // 0 length tag, read another + continue; + + if (id == libwebm::kMkvTag) { + status = ParseTag(pos, size); + + if (status < 0) + return status; + } + + pos += size; + if (pos > stop) + return E_FILE_FORMAT_INVALID; + } + + if (pos != stop) + return E_FILE_FORMAT_INVALID; + + return 0; +} + +int Tags::GetTagCount() const { return m_tags_count; } + +const Tags::Tag* Tags::GetTag(int idx) const { + if (idx < 0) + return NULL; + + if (idx >= m_tags_count) + return NULL; + + return m_tags + idx; +} + +bool Tags::ExpandTagsArray() { + if (m_tags_size > m_tags_count) + return true; // nothing else to do + + const int size = (m_tags_size == 0) ? 1 : 2 * m_tags_size; + + Tag* const tags = new (std::nothrow) Tag[size]; + + if (tags == NULL) + return false; + + for (int idx = 0; idx < m_tags_count; ++idx) { + m_tags[idx].ShallowCopy(tags[idx]); + } + + delete[] m_tags; + m_tags = tags; + + m_tags_size = size; + return true; +} + +long Tags::ParseTag(long long pos, long long size) { + if (!ExpandTagsArray()) + return -1; + + Tag& t = m_tags[m_tags_count++]; + t.Init(); + + return t.Parse(m_pSegment->m_pReader, pos, size); +} + +Tags::Tag::Tag() {} + +Tags::Tag::~Tag() {} + +int Tags::Tag::GetSimpleTagCount() const { return m_simple_tags_count; } + +const Tags::SimpleTag* Tags::Tag::GetSimpleTag(int index) const { + if (index < 0) + return NULL; + + if (index >= m_simple_tags_count) + return NULL; + + return m_simple_tags + index; +} + +void Tags::Tag::Init() { + m_simple_tags = NULL; + m_simple_tags_size = 0; + m_simple_tags_count = 0; +} + +void Tags::Tag::ShallowCopy(Tag& rhs) const { + rhs.m_simple_tags = m_simple_tags; + rhs.m_simple_tags_size = m_simple_tags_size; + rhs.m_simple_tags_count = m_simple_tags_count; +} + +void Tags::Tag::Clear() { + while (m_simple_tags_count > 0) { + SimpleTag& d = m_simple_tags[--m_simple_tags_count]; + d.Clear(); + } + + delete[] m_simple_tags; + m_simple_tags = NULL; + + m_simple_tags_size = 0; +} + +long Tags::Tag::Parse(IMkvReader* pReader, long long pos, long long size) { + const long long stop = pos + size; + + while (pos < stop) { + long long id, size; + + long status = ParseElementHeader(pReader, pos, stop, id, size); + + if (status < 0) + return status; + + if (size == 0) // 0 length tag, read another + continue; + + if (id == libwebm::kMkvSimpleTag) { + status = ParseSimpleTag(pReader, pos, size); + + if (status < 0) + return status; + } + + pos += size; + if (pos > stop) + return E_FILE_FORMAT_INVALID; + } + + if (pos != stop) + return E_FILE_FORMAT_INVALID; + return 0; +} + +long Tags::Tag::ParseSimpleTag(IMkvReader* pReader, long long pos, + long long size) { + if (!ExpandSimpleTagsArray()) + return -1; + + SimpleTag& st = m_simple_tags[m_simple_tags_count++]; + st.Init(); + + return st.Parse(pReader, pos, size); +} + +bool Tags::Tag::ExpandSimpleTagsArray() { + if (m_simple_tags_size > m_simple_tags_count) + return true; // nothing else to do + + const int size = (m_simple_tags_size == 0) ? 1 : 2 * m_simple_tags_size; + + SimpleTag* const displays = new (std::nothrow) SimpleTag[size]; + + if (displays == NULL) + return false; + + for (int idx = 0; idx < m_simple_tags_count; ++idx) { + m_simple_tags[idx].ShallowCopy(displays[idx]); + } + + delete[] m_simple_tags; + m_simple_tags = displays; + + m_simple_tags_size = size; + return true; +} + +Tags::SimpleTag::SimpleTag() {} + +Tags::SimpleTag::~SimpleTag() {} + +const char* Tags::SimpleTag::GetTagName() const { return m_tag_name; } + +const char* Tags::SimpleTag::GetTagString() const { return m_tag_string; } + +void Tags::SimpleTag::Init() { + m_tag_name = NULL; + m_tag_string = NULL; +} + +void Tags::SimpleTag::ShallowCopy(SimpleTag& rhs) const { + rhs.m_tag_name = m_tag_name; + rhs.m_tag_string = m_tag_string; +} + +void Tags::SimpleTag::Clear() { + delete[] m_tag_name; + m_tag_name = NULL; + + delete[] m_tag_string; + m_tag_string = NULL; +} + +long Tags::SimpleTag::Parse(IMkvReader* pReader, long long pos, + long long size) { + const long long stop = pos + size; + + while (pos < stop) { + long long id, size; + + long status = ParseElementHeader(pReader, pos, stop, id, size); + + if (status < 0) // error + return status; + + if (size == 0) // weird + continue; + + if (id == libwebm::kMkvTagName) { + status = UnserializeString(pReader, pos, size, m_tag_name); + + if (status) + return status; + } else if (id == libwebm::kMkvTagString) { + status = UnserializeString(pReader, pos, size, m_tag_string); + + if (status) + return status; + } + + pos += size; + if (pos > stop) + return E_FILE_FORMAT_INVALID; + } + + if (pos != stop) + return E_FILE_FORMAT_INVALID; + return 0; +} + +SegmentInfo::SegmentInfo(Segment* pSegment, long long start, long long size_, + long long element_start, long long element_size) + : m_pSegment(pSegment), + m_start(start), + m_size(size_), + m_element_start(element_start), + m_element_size(element_size), + m_pMuxingAppAsUTF8(NULL), + m_pWritingAppAsUTF8(NULL), + m_pTitleAsUTF8(NULL) {} + +SegmentInfo::~SegmentInfo() { + delete[] m_pMuxingAppAsUTF8; + m_pMuxingAppAsUTF8 = NULL; + + delete[] m_pWritingAppAsUTF8; + m_pWritingAppAsUTF8 = NULL; + + delete[] m_pTitleAsUTF8; + m_pTitleAsUTF8 = NULL; +} + +long SegmentInfo::Parse() { + assert(m_pMuxingAppAsUTF8 == NULL); + assert(m_pWritingAppAsUTF8 == NULL); + assert(m_pTitleAsUTF8 == NULL); + + IMkvReader* const pReader = m_pSegment->m_pReader; + + long long pos = m_start; + const long long stop = m_start + m_size; + + m_timecodeScale = 1000000; + m_duration = -1; + + while (pos < stop) { + long long id, size; + + const long status = ParseElementHeader(pReader, pos, stop, id, size); + + if (status < 0) // error + return status; + + if (id == libwebm::kMkvTimecodeScale) { + m_timecodeScale = UnserializeUInt(pReader, pos, size); + + if (m_timecodeScale <= 0) + return E_FILE_FORMAT_INVALID; + } else if (id == libwebm::kMkvDuration) { + const long status = UnserializeFloat(pReader, pos, size, m_duration); + + if (status < 0) + return status; + + if (m_duration < 0) + return E_FILE_FORMAT_INVALID; + } else if (id == libwebm::kMkvMuxingApp) { + const long status = + UnserializeString(pReader, pos, size, m_pMuxingAppAsUTF8); + + if (status) + return status; + } else if (id == libwebm::kMkvWritingApp) { + const long status = + UnserializeString(pReader, pos, size, m_pWritingAppAsUTF8); + + if (status) + return status; + } else if (id == libwebm::kMkvTitle) { + const long status = UnserializeString(pReader, pos, size, m_pTitleAsUTF8); + + if (status) + return status; + } + + pos += size; + + if (pos > stop) + return E_FILE_FORMAT_INVALID; + } + + const double rollover_check = m_duration * m_timecodeScale; + if (rollover_check > static_cast(LLONG_MAX)) + return E_FILE_FORMAT_INVALID; + + if (pos != stop) + return E_FILE_FORMAT_INVALID; + + return 0; +} + +long long SegmentInfo::GetTimeCodeScale() const { return m_timecodeScale; } + +long long SegmentInfo::GetDuration() const { + if (m_duration < 0) + return -1; + + assert(m_timecodeScale >= 1); + + const double dd = double(m_duration) * double(m_timecodeScale); + const long long d = static_cast(dd); + + return d; +} + +const char* SegmentInfo::GetMuxingAppAsUTF8() const { + return m_pMuxingAppAsUTF8; +} + +const char* SegmentInfo::GetWritingAppAsUTF8() const { + return m_pWritingAppAsUTF8; +} + +const char* SegmentInfo::GetTitleAsUTF8() const { return m_pTitleAsUTF8; } + +/////////////////////////////////////////////////////////////// +// ContentEncoding element +ContentEncoding::ContentCompression::ContentCompression() + : algo(0), settings(NULL), settings_len(0) {} + +ContentEncoding::ContentCompression::~ContentCompression() { + delete[] settings; +} + +ContentEncoding::ContentEncryption::ContentEncryption() + : algo(0), + key_id(NULL), + key_id_len(0), + signature(NULL), + signature_len(0), + sig_key_id(NULL), + sig_key_id_len(0), + sig_algo(0), + sig_hash_algo(0) {} + +ContentEncoding::ContentEncryption::~ContentEncryption() { + delete[] key_id; + delete[] signature; + delete[] sig_key_id; +} + +ContentEncoding::ContentEncoding() + : compression_entries_(NULL), + compression_entries_end_(NULL), + encryption_entries_(NULL), + encryption_entries_end_(NULL), + encoding_order_(0), + encoding_scope_(1), + encoding_type_(0) {} + +ContentEncoding::~ContentEncoding() { + ContentCompression** comp_i = compression_entries_; + ContentCompression** const comp_j = compression_entries_end_; + + while (comp_i != comp_j) { + ContentCompression* const comp = *comp_i++; + delete comp; + } + + delete[] compression_entries_; + + ContentEncryption** enc_i = encryption_entries_; + ContentEncryption** const enc_j = encryption_entries_end_; + + while (enc_i != enc_j) { + ContentEncryption* const enc = *enc_i++; + delete enc; + } + + delete[] encryption_entries_; +} + +const ContentEncoding::ContentCompression* +ContentEncoding::GetCompressionByIndex(unsigned long idx) const { + const ptrdiff_t count = compression_entries_end_ - compression_entries_; + assert(count >= 0); + + if (idx >= static_cast(count)) + return NULL; + + return compression_entries_[idx]; +} + +unsigned long ContentEncoding::GetCompressionCount() const { + const ptrdiff_t count = compression_entries_end_ - compression_entries_; + assert(count >= 0); + + return static_cast(count); +} + +const ContentEncoding::ContentEncryption* ContentEncoding::GetEncryptionByIndex( + unsigned long idx) const { + const ptrdiff_t count = encryption_entries_end_ - encryption_entries_; + assert(count >= 0); + + if (idx >= static_cast(count)) + return NULL; + + return encryption_entries_[idx]; +} + +unsigned long ContentEncoding::GetEncryptionCount() const { + const ptrdiff_t count = encryption_entries_end_ - encryption_entries_; + assert(count >= 0); + + return static_cast(count); +} + +long ContentEncoding::ParseContentEncAESSettingsEntry( + long long start, long long size, IMkvReader* pReader, + ContentEncAESSettings* aes) { + assert(pReader); + assert(aes); + + long long pos = start; + const long long stop = start + size; + + while (pos < stop) { + long long id, size; + const long status = ParseElementHeader(pReader, pos, stop, id, size); + if (status < 0) // error + return status; + + if (id == libwebm::kMkvAESSettingsCipherMode) { + aes->cipher_mode = UnserializeUInt(pReader, pos, size); + if (aes->cipher_mode != 1) + return E_FILE_FORMAT_INVALID; + } + + pos += size; // consume payload + if (pos > stop) + return E_FILE_FORMAT_INVALID; + } + + return 0; +} + +long ContentEncoding::ParseContentEncodingEntry(long long start, long long size, + IMkvReader* pReader) { + assert(pReader); + + long long pos = start; + const long long stop = start + size; + + // Count ContentCompression and ContentEncryption elements. + int compression_count = 0; + int encryption_count = 0; + + while (pos < stop) { + long long id, size; + const long status = ParseElementHeader(pReader, pos, stop, id, size); + if (status < 0) // error + return status; + + if (id == libwebm::kMkvContentCompression) + ++compression_count; + + if (id == libwebm::kMkvContentEncryption) + ++encryption_count; + + pos += size; // consume payload + if (pos > stop) + return E_FILE_FORMAT_INVALID; + } + + if (compression_count <= 0 && encryption_count <= 0) + return -1; + + if (compression_count > 0) { + compression_entries_ = + new (std::nothrow) ContentCompression*[compression_count]; + if (!compression_entries_) + return -1; + compression_entries_end_ = compression_entries_; + } + + if (encryption_count > 0) { + encryption_entries_ = + new (std::nothrow) ContentEncryption*[encryption_count]; + if (!encryption_entries_) { + delete[] compression_entries_; + return -1; + } + encryption_entries_end_ = encryption_entries_; + } + + pos = start; + while (pos < stop) { + long long id, size; + long status = ParseElementHeader(pReader, pos, stop, id, size); + if (status < 0) // error + return status; + + if (id == libwebm::kMkvContentEncodingOrder) { + encoding_order_ = UnserializeUInt(pReader, pos, size); + } else if (id == libwebm::kMkvContentEncodingScope) { + encoding_scope_ = UnserializeUInt(pReader, pos, size); + if (encoding_scope_ < 1) + return -1; + } else if (id == libwebm::kMkvContentEncodingType) { + encoding_type_ = UnserializeUInt(pReader, pos, size); + } else if (id == libwebm::kMkvContentCompression) { + ContentCompression* const compression = + new (std::nothrow) ContentCompression(); + if (!compression) + return -1; + + status = ParseCompressionEntry(pos, size, pReader, compression); + if (status) { + delete compression; + return status; + } + *compression_entries_end_++ = compression; + } else if (id == libwebm::kMkvContentEncryption) { + ContentEncryption* const encryption = + new (std::nothrow) ContentEncryption(); + if (!encryption) + return -1; + + status = ParseEncryptionEntry(pos, size, pReader, encryption); + if (status) { + delete encryption; + return status; + } + *encryption_entries_end_++ = encryption; + } + + pos += size; // consume payload + if (pos > stop) + return E_FILE_FORMAT_INVALID; + } + + if (pos != stop) + return E_FILE_FORMAT_INVALID; + return 0; +} + +long ContentEncoding::ParseCompressionEntry(long long start, long long size, + IMkvReader* pReader, + ContentCompression* compression) { + assert(pReader); + assert(compression); + + long long pos = start; + const long long stop = start + size; + + bool valid = false; + + while (pos < stop) { + long long id, size; + const long status = ParseElementHeader(pReader, pos, stop, id, size); + if (status < 0) // error + return status; + + if (id == libwebm::kMkvContentCompAlgo) { + long long algo = UnserializeUInt(pReader, pos, size); + if (algo < 0) + return E_FILE_FORMAT_INVALID; + compression->algo = algo; + valid = true; + } else if (id == libwebm::kMkvContentCompSettings) { + if (size <= 0) + return E_FILE_FORMAT_INVALID; + + const size_t buflen = static_cast(size); + unsigned char* buf = SafeArrayAlloc(1, buflen); + if (buf == NULL) + return -1; + + const int read_status = + pReader->Read(pos, static_cast(buflen), buf); + if (read_status) { + delete[] buf; + return status; + } + + compression->settings = buf; + compression->settings_len = buflen; + } + + pos += size; // consume payload + if (pos > stop) + return E_FILE_FORMAT_INVALID; + } + + // ContentCompAlgo is mandatory + if (!valid) + return E_FILE_FORMAT_INVALID; + + return 0; +} + +long ContentEncoding::ParseEncryptionEntry(long long start, long long size, + IMkvReader* pReader, + ContentEncryption* encryption) { + assert(pReader); + assert(encryption); + + long long pos = start; + const long long stop = start + size; + + while (pos < stop) { + long long id, size; + const long status = ParseElementHeader(pReader, pos, stop, id, size); + if (status < 0) // error + return status; + + if (id == libwebm::kMkvContentEncAlgo) { + encryption->algo = UnserializeUInt(pReader, pos, size); + if (encryption->algo != 5) + return E_FILE_FORMAT_INVALID; + } else if (id == libwebm::kMkvContentEncKeyID) { + delete[] encryption->key_id; + encryption->key_id = NULL; + encryption->key_id_len = 0; + + if (size <= 0) + return E_FILE_FORMAT_INVALID; + + const size_t buflen = static_cast(size); + unsigned char* buf = SafeArrayAlloc(1, buflen); + if (buf == NULL) + return -1; + + const int read_status = + pReader->Read(pos, static_cast(buflen), buf); + if (read_status) { + delete[] buf; + return status; + } + + encryption->key_id = buf; + encryption->key_id_len = buflen; + } else if (id == libwebm::kMkvContentSignature) { + delete[] encryption->signature; + encryption->signature = NULL; + encryption->signature_len = 0; + + if (size <= 0) + return E_FILE_FORMAT_INVALID; + + const size_t buflen = static_cast(size); + unsigned char* buf = SafeArrayAlloc(1, buflen); + if (buf == NULL) + return -1; + + const int read_status = + pReader->Read(pos, static_cast(buflen), buf); + if (read_status) { + delete[] buf; + return status; + } + + encryption->signature = buf; + encryption->signature_len = buflen; + } else if (id == libwebm::kMkvContentSigKeyID) { + delete[] encryption->sig_key_id; + encryption->sig_key_id = NULL; + encryption->sig_key_id_len = 0; + + if (size <= 0) + return E_FILE_FORMAT_INVALID; + + const size_t buflen = static_cast(size); + unsigned char* buf = SafeArrayAlloc(1, buflen); + if (buf == NULL) + return -1; + + const int read_status = + pReader->Read(pos, static_cast(buflen), buf); + if (read_status) { + delete[] buf; + return status; + } + + encryption->sig_key_id = buf; + encryption->sig_key_id_len = buflen; + } else if (id == libwebm::kMkvContentSigAlgo) { + encryption->sig_algo = UnserializeUInt(pReader, pos, size); + } else if (id == libwebm::kMkvContentSigHashAlgo) { + encryption->sig_hash_algo = UnserializeUInt(pReader, pos, size); + } else if (id == libwebm::kMkvContentEncAESSettings) { + const long status = ParseContentEncAESSettingsEntry( + pos, size, pReader, &encryption->aes_settings); + if (status) + return status; + } + + pos += size; // consume payload + if (pos > stop) + return E_FILE_FORMAT_INVALID; + } + + return 0; +} + +Track::Track(Segment* pSegment, long long element_start, long long element_size) + : m_pSegment(pSegment), + m_element_start(element_start), + m_element_size(element_size), + content_encoding_entries_(NULL), + content_encoding_entries_end_(NULL) {} + +Track::~Track() { + Info& info = const_cast(m_info); + info.Clear(); + + ContentEncoding** i = content_encoding_entries_; + ContentEncoding** const j = content_encoding_entries_end_; + + while (i != j) { + ContentEncoding* const encoding = *i++; + delete encoding; + } + + delete[] content_encoding_entries_; +} + +long Track::Create(Segment* pSegment, const Info& info, long long element_start, + long long element_size, Track*& pResult) { + if (pResult) + return -1; + + Track* const pTrack = + new (std::nothrow) Track(pSegment, element_start, element_size); + + if (pTrack == NULL) + return -1; // generic error + + const int status = info.Copy(pTrack->m_info); + + if (status) { // error + delete pTrack; + return status; + } + + pResult = pTrack; + return 0; // success +} + +Track::Info::Info() + : uid(0), + defaultDuration(0), + codecDelay(0), + seekPreRoll(0), + nameAsUTF8(NULL), + language(NULL), + codecId(NULL), + codecNameAsUTF8(NULL), + codecPrivate(NULL), + codecPrivateSize(0), + lacing(false) {} + +Track::Info::~Info() { Clear(); } + +void Track::Info::Clear() { + delete[] nameAsUTF8; + nameAsUTF8 = NULL; + + delete[] language; + language = NULL; + + delete[] codecId; + codecId = NULL; + + delete[] codecPrivate; + codecPrivate = NULL; + codecPrivateSize = 0; + + delete[] codecNameAsUTF8; + codecNameAsUTF8 = NULL; +} + +int Track::Info::CopyStr(char* Info::*str, Info& dst_) const { + if (str == static_cast(NULL)) + return -1; + + char*& dst = dst_.*str; + + if (dst) // should be NULL already + return -1; + + const char* const src = this->*str; + + if (src == NULL) + return 0; + + const size_t len = strlen(src); + + dst = SafeArrayAlloc(1, len + 1); + + if (dst == NULL) + return -1; + + strcpy(dst, src); + + return 0; +} + +int Track::Info::Copy(Info& dst) const { + if (&dst == this) + return 0; + + dst.type = type; + dst.number = number; + dst.defaultDuration = defaultDuration; + dst.codecDelay = codecDelay; + dst.seekPreRoll = seekPreRoll; + dst.uid = uid; + dst.lacing = lacing; + dst.settings = settings; + + // We now copy the string member variables from src to dst. + // This involves memory allocation so in principle the operation + // can fail (indeed, that's why we have Info::Copy), so we must + // report this to the caller. An error return from this function + // therefore implies that the copy was only partially successful. + + if (int status = CopyStr(&Info::nameAsUTF8, dst)) + return status; + + if (int status = CopyStr(&Info::language, dst)) + return status; + + if (int status = CopyStr(&Info::codecId, dst)) + return status; + + if (int status = CopyStr(&Info::codecNameAsUTF8, dst)) + return status; + + if (codecPrivateSize > 0) { + if (codecPrivate == NULL) + return -1; + + if (dst.codecPrivate) + return -1; + + if (dst.codecPrivateSize != 0) + return -1; + + dst.codecPrivate = SafeArrayAlloc(1, codecPrivateSize); + + if (dst.codecPrivate == NULL) + return -1; + + memcpy(dst.codecPrivate, codecPrivate, codecPrivateSize); + dst.codecPrivateSize = codecPrivateSize; + } + + return 0; +} + +const BlockEntry* Track::GetEOS() const { return &m_eos; } + +long Track::GetType() const { return m_info.type; } + +long Track::GetNumber() const { return m_info.number; } + +unsigned long long Track::GetUid() const { return m_info.uid; } + +const char* Track::GetNameAsUTF8() const { return m_info.nameAsUTF8; } + +const char* Track::GetLanguage() const { return m_info.language; } + +const char* Track::GetCodecNameAsUTF8() const { return m_info.codecNameAsUTF8; } + +const char* Track::GetCodecId() const { return m_info.codecId; } + +const unsigned char* Track::GetCodecPrivate(size_t& size) const { + size = m_info.codecPrivateSize; + return m_info.codecPrivate; +} + +bool Track::GetLacing() const { return m_info.lacing; } + +unsigned long long Track::GetDefaultDuration() const { + return m_info.defaultDuration; +} + +unsigned long long Track::GetCodecDelay() const { return m_info.codecDelay; } + +unsigned long long Track::GetSeekPreRoll() const { return m_info.seekPreRoll; } + +long Track::GetFirst(const BlockEntry*& pBlockEntry) const { + const Cluster* pCluster = m_pSegment->GetFirst(); + + for (int i = 0;;) { + if (pCluster == NULL) { + pBlockEntry = GetEOS(); + return 1; + } + + if (pCluster->EOS()) { + if (m_pSegment->DoneParsing()) { + pBlockEntry = GetEOS(); + return 1; + } + + pBlockEntry = 0; + return E_BUFFER_NOT_FULL; + } + + long status = pCluster->GetFirst(pBlockEntry); + + if (status < 0) // error + return status; + + if (pBlockEntry == 0) { // empty cluster + pCluster = m_pSegment->GetNext(pCluster); + continue; + } + + for (;;) { + const Block* const pBlock = pBlockEntry->GetBlock(); + assert(pBlock); + + const long long tn = pBlock->GetTrackNumber(); + + if ((tn == m_info.number) && VetEntry(pBlockEntry)) + return 0; + + const BlockEntry* pNextEntry; + + status = pCluster->GetNext(pBlockEntry, pNextEntry); + + if (status < 0) // error + return status; + + if (pNextEntry == 0) + break; + + pBlockEntry = pNextEntry; + } + + ++i; + + if (i >= 100) + break; + + pCluster = m_pSegment->GetNext(pCluster); + } + + // NOTE: if we get here, it means that we didn't find a block with + // a matching track number. We interpret that as an error (which + // might be too conservative). + + pBlockEntry = GetEOS(); // so we can return a non-NULL value + return 1; +} + +long Track::GetNext(const BlockEntry* pCurrEntry, + const BlockEntry*& pNextEntry) const { + assert(pCurrEntry); + assert(!pCurrEntry->EOS()); //? + + const Block* const pCurrBlock = pCurrEntry->GetBlock(); + assert(pCurrBlock && pCurrBlock->GetTrackNumber() == m_info.number); + if (!pCurrBlock || pCurrBlock->GetTrackNumber() != m_info.number) + return -1; + + const Cluster* pCluster = pCurrEntry->GetCluster(); + assert(pCluster); + assert(!pCluster->EOS()); + + long status = pCluster->GetNext(pCurrEntry, pNextEntry); + + if (status < 0) // error + return status; + + for (int i = 0;;) { + while (pNextEntry) { + const Block* const pNextBlock = pNextEntry->GetBlock(); + assert(pNextBlock); + + if (pNextBlock->GetTrackNumber() == m_info.number) + return 0; + + pCurrEntry = pNextEntry; + + status = pCluster->GetNext(pCurrEntry, pNextEntry); + + if (status < 0) // error + return status; + } + + pCluster = m_pSegment->GetNext(pCluster); + + if (pCluster == NULL) { + pNextEntry = GetEOS(); + return 1; + } + + if (pCluster->EOS()) { + if (m_pSegment->DoneParsing()) { + pNextEntry = GetEOS(); + return 1; + } + + // TODO: there is a potential O(n^2) problem here: we tell the + // caller to (pre)load another cluster, which he does, but then he + // calls GetNext again, which repeats the same search. This is + // a pathological case, since the only way it can happen is if + // there exists a long sequence of clusters none of which contain a + // block from this track. One way around this problem is for the + // caller to be smarter when he loads another cluster: don't call + // us back until you have a cluster that contains a block from this + // track. (Of course, that's not cheap either, since our caller + // would have to scan the each cluster as it's loaded, so that + // would just push back the problem.) + + pNextEntry = NULL; + return E_BUFFER_NOT_FULL; + } + + status = pCluster->GetFirst(pNextEntry); + + if (status < 0) // error + return status; + + if (pNextEntry == NULL) // empty cluster + continue; + + ++i; + + if (i >= 100) + break; + } + + // NOTE: if we get here, it means that we didn't find a block with + // a matching track number after lots of searching, so we give + // up trying. + + pNextEntry = GetEOS(); // so we can return a non-NULL value + return 1; +} + +bool Track::VetEntry(const BlockEntry* pBlockEntry) const { + assert(pBlockEntry); + const Block* const pBlock = pBlockEntry->GetBlock(); + assert(pBlock); + assert(pBlock->GetTrackNumber() == m_info.number); + if (!pBlock || pBlock->GetTrackNumber() != m_info.number) + return false; + + // This function is used during a seek to determine whether the + // frame is a valid seek target. This default function simply + // returns true, which means all frames are valid seek targets. + // It gets overridden by the VideoTrack class, because only video + // keyframes can be used as seek target. + + return true; +} + +long Track::Seek(long long time_ns, const BlockEntry*& pResult) const { + const long status = GetFirst(pResult); + + if (status < 0) // buffer underflow, etc + return status; + + assert(pResult); + + if (pResult->EOS()) + return 0; + + const Cluster* pCluster = pResult->GetCluster(); + assert(pCluster); + assert(pCluster->GetIndex() >= 0); + + if (time_ns <= pResult->GetBlock()->GetTime(pCluster)) + return 0; + + Cluster** const clusters = m_pSegment->m_clusters; + assert(clusters); + + const long count = m_pSegment->GetCount(); // loaded only, not preloaded + assert(count > 0); + + Cluster** const i = clusters + pCluster->GetIndex(); + assert(i); + assert(*i == pCluster); + assert(pCluster->GetTime() <= time_ns); + + Cluster** const j = clusters + count; + + Cluster** lo = i; + Cluster** hi = j; + + while (lo < hi) { + // INVARIANT: + //[i, lo) <= time_ns + //[lo, hi) ? + //[hi, j) > time_ns + + Cluster** const mid = lo + (hi - lo) / 2; + assert(mid < hi); + + pCluster = *mid; + assert(pCluster); + assert(pCluster->GetIndex() >= 0); + assert(pCluster->GetIndex() == long(mid - m_pSegment->m_clusters)); + + const long long t = pCluster->GetTime(); + + if (t <= time_ns) + lo = mid + 1; + else + hi = mid; + + assert(lo <= hi); + } + + assert(lo == hi); + assert(lo > i); + assert(lo <= j); + + while (lo > i) { + pCluster = *--lo; + assert(pCluster); + assert(pCluster->GetTime() <= time_ns); + + pResult = pCluster->GetEntry(this); + + if ((pResult != 0) && !pResult->EOS()) + return 0; + + // landed on empty cluster (no entries) + } + + pResult = GetEOS(); // weird + return 0; +} + +const ContentEncoding* Track::GetContentEncodingByIndex( + unsigned long idx) const { + const ptrdiff_t count = + content_encoding_entries_end_ - content_encoding_entries_; + assert(count >= 0); + + if (idx >= static_cast(count)) + return NULL; + + return content_encoding_entries_[idx]; +} + +unsigned long Track::GetContentEncodingCount() const { + const ptrdiff_t count = + content_encoding_entries_end_ - content_encoding_entries_; + assert(count >= 0); + + return static_cast(count); +} + +long Track::ParseContentEncodingsEntry(long long start, long long size) { + IMkvReader* const pReader = m_pSegment->m_pReader; + assert(pReader); + + long long pos = start; + const long long stop = start + size; + + // Count ContentEncoding elements. + int count = 0; + while (pos < stop) { + long long id, size; + const long status = ParseElementHeader(pReader, pos, stop, id, size); + if (status < 0) // error + return status; + + // pos now designates start of element + if (id == libwebm::kMkvContentEncoding) + ++count; + + pos += size; // consume payload + if (pos > stop) + return E_FILE_FORMAT_INVALID; + } + + if (count <= 0) + return -1; + + content_encoding_entries_ = new (std::nothrow) ContentEncoding*[count]; + if (!content_encoding_entries_) + return -1; + + content_encoding_entries_end_ = content_encoding_entries_; + + pos = start; + while (pos < stop) { + long long id, size; + long status = ParseElementHeader(pReader, pos, stop, id, size); + if (status < 0) // error + return status; + + // pos now designates start of element + if (id == libwebm::kMkvContentEncoding) { + ContentEncoding* const content_encoding = + new (std::nothrow) ContentEncoding(); + if (!content_encoding) + return -1; + + status = content_encoding->ParseContentEncodingEntry(pos, size, pReader); + if (status) { + delete content_encoding; + return status; + } + + *content_encoding_entries_end_++ = content_encoding; + } + + pos += size; // consume payload + if (pos > stop) + return E_FILE_FORMAT_INVALID; + } + + if (pos != stop) + return E_FILE_FORMAT_INVALID; + + return 0; +} + +Track::EOSBlock::EOSBlock() : BlockEntry(NULL, LONG_MIN) {} + +BlockEntry::Kind Track::EOSBlock::GetKind() const { return kBlockEOS; } + +const Block* Track::EOSBlock::GetBlock() const { return NULL; } + +bool PrimaryChromaticity::Parse(IMkvReader* reader, long long read_pos, + long long value_size, bool is_x, + PrimaryChromaticity** chromaticity) { + if (!reader) + return false; + + if (!*chromaticity) + *chromaticity = new PrimaryChromaticity(); + + if (!*chromaticity) + return false; + + PrimaryChromaticity* pc = *chromaticity; + float* value = is_x ? &pc->x : &pc->y; + + double parser_value = 0; + const long long parse_status = + UnserializeFloat(reader, read_pos, value_size, parser_value); + + // Valid range is [0, 1]. Make sure the double is representable as a float + // before casting. + if (parse_status < 0 || parser_value < 0.0 || parser_value > 1.0 || + (parser_value > 0.0 && parser_value < FLT_MIN)) + return false; + + *value = static_cast(parser_value); + + return true; +} + +bool MasteringMetadata::Parse(IMkvReader* reader, long long mm_start, + long long mm_size, MasteringMetadata** mm) { + if (!reader || *mm) + return false; + + std::auto_ptr mm_ptr(new MasteringMetadata()); + if (!mm_ptr.get()) + return false; + + const long long mm_end = mm_start + mm_size; + long long read_pos = mm_start; + + while (read_pos < mm_end) { + long long child_id = 0; + long long child_size = 0; + + const long long status = + ParseElementHeader(reader, read_pos, mm_end, child_id, child_size); + if (status < 0) + return false; + + if (child_id == libwebm::kMkvLuminanceMax) { + double value = 0; + const long long value_parse_status = + UnserializeFloat(reader, read_pos, child_size, value); + mm_ptr->luminance_max = static_cast(value); + if (value_parse_status < 0 || mm_ptr->luminance_max < 0.0 || + mm_ptr->luminance_max > 9999.99) { + return false; + } + } else if (child_id == libwebm::kMkvLuminanceMin) { + double value = 0; + const long long value_parse_status = + UnserializeFloat(reader, read_pos, child_size, value); + mm_ptr->luminance_min = static_cast(value); + if (value_parse_status < 0 || mm_ptr->luminance_min < 0.0 || + mm_ptr->luminance_min > 999.9999) { + return false; + } + } else { + bool is_x = false; + PrimaryChromaticity** chromaticity; + switch (child_id) { + case libwebm::kMkvPrimaryRChromaticityX: + case libwebm::kMkvPrimaryRChromaticityY: + is_x = child_id == libwebm::kMkvPrimaryRChromaticityX; + chromaticity = &mm_ptr->r; + break; + case libwebm::kMkvPrimaryGChromaticityX: + case libwebm::kMkvPrimaryGChromaticityY: + is_x = child_id == libwebm::kMkvPrimaryGChromaticityX; + chromaticity = &mm_ptr->g; + break; + case libwebm::kMkvPrimaryBChromaticityX: + case libwebm::kMkvPrimaryBChromaticityY: + is_x = child_id == libwebm::kMkvPrimaryBChromaticityX; + chromaticity = &mm_ptr->b; + break; + case libwebm::kMkvWhitePointChromaticityX: + case libwebm::kMkvWhitePointChromaticityY: + is_x = child_id == libwebm::kMkvWhitePointChromaticityX; + chromaticity = &mm_ptr->white_point; + break; + default: + return false; + } + const bool value_parse_status = PrimaryChromaticity::Parse( + reader, read_pos, child_size, is_x, chromaticity); + if (!value_parse_status) + return false; + } + + read_pos += child_size; + if (read_pos > mm_end) + return false; + } + + *mm = mm_ptr.release(); + return true; +} + +bool Colour::Parse(IMkvReader* reader, long long colour_start, + long long colour_size, Colour** colour) { + if (!reader || *colour) + return false; + + std::auto_ptr colour_ptr(new Colour()); + if (!colour_ptr.get()) + return false; + + const long long colour_end = colour_start + colour_size; + long long read_pos = colour_start; + + while (read_pos < colour_end) { + long long child_id = 0; + long long child_size = 0; + + const long status = + ParseElementHeader(reader, read_pos, colour_end, child_id, child_size); + if (status < 0) + return false; + + if (child_id == libwebm::kMkvMatrixCoefficients) { + colour_ptr->matrix_coefficients = + UnserializeUInt(reader, read_pos, child_size); + if (colour_ptr->matrix_coefficients < 0) + return false; + } else if (child_id == libwebm::kMkvBitsPerChannel) { + colour_ptr->bits_per_channel = + UnserializeUInt(reader, read_pos, child_size); + if (colour_ptr->bits_per_channel < 0) + return false; + } else if (child_id == libwebm::kMkvChromaSubsamplingHorz) { + colour_ptr->chroma_subsampling_horz = + UnserializeUInt(reader, read_pos, child_size); + if (colour_ptr->chroma_subsampling_horz < 0) + return false; + } else if (child_id == libwebm::kMkvChromaSubsamplingVert) { + colour_ptr->chroma_subsampling_vert = + UnserializeUInt(reader, read_pos, child_size); + if (colour_ptr->chroma_subsampling_vert < 0) + return false; + } else if (child_id == libwebm::kMkvCbSubsamplingHorz) { + colour_ptr->cb_subsampling_horz = + UnserializeUInt(reader, read_pos, child_size); + if (colour_ptr->cb_subsampling_horz < 0) + return false; + } else if (child_id == libwebm::kMkvCbSubsamplingVert) { + colour_ptr->cb_subsampling_vert = + UnserializeUInt(reader, read_pos, child_size); + if (colour_ptr->cb_subsampling_vert < 0) + return false; + } else if (child_id == libwebm::kMkvChromaSitingHorz) { + colour_ptr->chroma_siting_horz = + UnserializeUInt(reader, read_pos, child_size); + if (colour_ptr->chroma_siting_horz < 0) + return false; + } else if (child_id == libwebm::kMkvChromaSitingVert) { + colour_ptr->chroma_siting_vert = + UnserializeUInt(reader, read_pos, child_size); + if (colour_ptr->chroma_siting_vert < 0) + return false; + } else if (child_id == libwebm::kMkvRange) { + colour_ptr->range = UnserializeUInt(reader, read_pos, child_size); + if (colour_ptr->range < 0) + return false; + } else if (child_id == libwebm::kMkvTransferCharacteristics) { + colour_ptr->transfer_characteristics = + UnserializeUInt(reader, read_pos, child_size); + if (colour_ptr->transfer_characteristics < 0) + return false; + } else if (child_id == libwebm::kMkvPrimaries) { + colour_ptr->primaries = UnserializeUInt(reader, read_pos, child_size); + if (colour_ptr->primaries < 0) + return false; + } else if (child_id == libwebm::kMkvMaxCLL) { + colour_ptr->max_cll = UnserializeUInt(reader, read_pos, child_size); + if (colour_ptr->max_cll < 0) + return false; + } else if (child_id == libwebm::kMkvMaxFALL) { + colour_ptr->max_fall = UnserializeUInt(reader, read_pos, child_size); + if (colour_ptr->max_fall < 0) + return false; + } else if (child_id == libwebm::kMkvMasteringMetadata) { + if (!MasteringMetadata::Parse(reader, read_pos, child_size, + &colour_ptr->mastering_metadata)) + return false; + } else { + return false; + } + + read_pos += child_size; + if (read_pos > colour_end) + return false; + } + *colour = colour_ptr.release(); + return true; +} + +bool Projection::Parse(IMkvReader* reader, long long start, long long size, + Projection** projection) { + if (!reader || *projection) + return false; + + std::auto_ptr projection_ptr(new Projection()); + if (!projection_ptr.get()) + return false; + + const long long end = start + size; + long long read_pos = start; + + while (read_pos < end) { + long long child_id = 0; + long long child_size = 0; + + const long long status = + ParseElementHeader(reader, read_pos, end, child_id, child_size); + if (status < 0) + return false; + + if (child_id == libwebm::kMkvProjectionType) { + long long projection_type = kTypeNotPresent; + projection_type = UnserializeUInt(reader, read_pos, child_size); + if (projection_type < 0) + return false; + + projection_ptr->type = static_cast(projection_type); + } else if (child_id == libwebm::kMkvProjectionPrivate) { + unsigned char* data = SafeArrayAlloc(1, child_size); + + if (data == NULL) + return false; + + const int status = + reader->Read(read_pos, static_cast(child_size), data); + + if (status) { + delete[] data; + return false; + } + + projection_ptr->private_data = data; + projection_ptr->private_data_length = static_cast(child_size); + } else { + double value = 0; + const long long value_parse_status = + UnserializeFloat(reader, read_pos, child_size, value); + // Make sure value is representable as a float before casting. + if (value_parse_status < 0 || value < -FLT_MAX || value > FLT_MAX || + (value > 0.0 && value < FLT_MIN)) { + return false; + } + + switch (child_id) { + case libwebm::kMkvProjectionPoseYaw: + projection_ptr->pose_yaw = static_cast(value); + break; + case libwebm::kMkvProjectionPosePitch: + projection_ptr->pose_pitch = static_cast(value); + break; + case libwebm::kMkvProjectionPoseRoll: + projection_ptr->pose_roll = static_cast(value); + break; + default: + return false; + } + } + + read_pos += child_size; + if (read_pos > end) + return false; + } + + *projection = projection_ptr.release(); + return true; +} + +VideoTrack::VideoTrack(Segment* pSegment, long long element_start, + long long element_size) + : Track(pSegment, element_start, element_size), + m_colour(NULL), + m_projection(NULL) {} + +VideoTrack::~VideoTrack() { + delete m_colour; + delete m_projection; +} + +long VideoTrack::Parse(Segment* pSegment, const Info& info, + long long element_start, long long element_size, + VideoTrack*& pResult) { + if (pResult) + return -1; + + if (info.type != Track::kVideo) + return -1; + + long long width = 0; + long long height = 0; + long long display_width = 0; + long long display_height = 0; + long long display_unit = 0; + long long stereo_mode = 0; + + double rate = 0.0; + + IMkvReader* const pReader = pSegment->m_pReader; + + const Settings& s = info.settings; + assert(s.start >= 0); + assert(s.size >= 0); + + long long pos = s.start; + assert(pos >= 0); + + const long long stop = pos + s.size; + + Colour* colour = NULL; + Projection* projection = NULL; + + while (pos < stop) { + long long id, size; + + const long status = ParseElementHeader(pReader, pos, stop, id, size); + + if (status < 0) // error + return status; + + if (id == libwebm::kMkvPixelWidth) { + width = UnserializeUInt(pReader, pos, size); + + if (width <= 0) + return E_FILE_FORMAT_INVALID; + } else if (id == libwebm::kMkvPixelHeight) { + height = UnserializeUInt(pReader, pos, size); + + if (height <= 0) + return E_FILE_FORMAT_INVALID; + } else if (id == libwebm::kMkvDisplayWidth) { + display_width = UnserializeUInt(pReader, pos, size); + + if (display_width <= 0) + return E_FILE_FORMAT_INVALID; + } else if (id == libwebm::kMkvDisplayHeight) { + display_height = UnserializeUInt(pReader, pos, size); + + if (display_height <= 0) + return E_FILE_FORMAT_INVALID; + } else if (id == libwebm::kMkvDisplayUnit) { + display_unit = UnserializeUInt(pReader, pos, size); + + if (display_unit < 0) + return E_FILE_FORMAT_INVALID; + } else if (id == libwebm::kMkvStereoMode) { + stereo_mode = UnserializeUInt(pReader, pos, size); + + if (stereo_mode < 0) + return E_FILE_FORMAT_INVALID; + } else if (id == libwebm::kMkvFrameRate) { + const long status = UnserializeFloat(pReader, pos, size, rate); + + if (status < 0) + return status; + + if (rate <= 0) + return E_FILE_FORMAT_INVALID; + } else if (id == libwebm::kMkvColour) { + if (!Colour::Parse(pReader, pos, size, &colour)) + return E_FILE_FORMAT_INVALID; + } else if (id == libwebm::kMkvProjection) { + if (!Projection::Parse(pReader, pos, size, &projection)) + return E_FILE_FORMAT_INVALID; + } + + pos += size; // consume payload + if (pos > stop) + return E_FILE_FORMAT_INVALID; + } + + if (pos != stop) + return E_FILE_FORMAT_INVALID; + + VideoTrack* const pTrack = + new (std::nothrow) VideoTrack(pSegment, element_start, element_size); + + if (pTrack == NULL) + return -1; // generic error + + const int status = info.Copy(pTrack->m_info); + + if (status) { // error + delete pTrack; + return status; + } + + pTrack->m_width = width; + pTrack->m_height = height; + pTrack->m_display_width = display_width; + pTrack->m_display_height = display_height; + pTrack->m_display_unit = display_unit; + pTrack->m_stereo_mode = stereo_mode; + pTrack->m_rate = rate; + pTrack->m_colour = colour; + pTrack->m_projection = projection; + + pResult = pTrack; + return 0; // success +} + +bool VideoTrack::VetEntry(const BlockEntry* pBlockEntry) const { + return Track::VetEntry(pBlockEntry) && pBlockEntry->GetBlock()->IsKey(); +} + +long VideoTrack::Seek(long long time_ns, const BlockEntry*& pResult) const { + const long status = GetFirst(pResult); + + if (status < 0) // buffer underflow, etc + return status; + + assert(pResult); + + if (pResult->EOS()) + return 0; + + const Cluster* pCluster = pResult->GetCluster(); + assert(pCluster); + assert(pCluster->GetIndex() >= 0); + + if (time_ns <= pResult->GetBlock()->GetTime(pCluster)) + return 0; + + Cluster** const clusters = m_pSegment->m_clusters; + assert(clusters); + + const long count = m_pSegment->GetCount(); // loaded only, not pre-loaded + assert(count > 0); + + Cluster** const i = clusters + pCluster->GetIndex(); + assert(i); + assert(*i == pCluster); + assert(pCluster->GetTime() <= time_ns); + + Cluster** const j = clusters + count; + + Cluster** lo = i; + Cluster** hi = j; + + while (lo < hi) { + // INVARIANT: + //[i, lo) <= time_ns + //[lo, hi) ? + //[hi, j) > time_ns + + Cluster** const mid = lo + (hi - lo) / 2; + assert(mid < hi); + + pCluster = *mid; + assert(pCluster); + assert(pCluster->GetIndex() >= 0); + assert(pCluster->GetIndex() == long(mid - m_pSegment->m_clusters)); + + const long long t = pCluster->GetTime(); + + if (t <= time_ns) + lo = mid + 1; + else + hi = mid; + + assert(lo <= hi); + } + + assert(lo == hi); + assert(lo > i); + assert(lo <= j); + + pCluster = *--lo; + assert(pCluster); + assert(pCluster->GetTime() <= time_ns); + + pResult = pCluster->GetEntry(this, time_ns); + + if ((pResult != 0) && !pResult->EOS()) // found a keyframe + return 0; + + while (lo != i) { + pCluster = *--lo; + assert(pCluster); + assert(pCluster->GetTime() <= time_ns); + + pResult = pCluster->GetEntry(this, time_ns); + + if ((pResult != 0) && !pResult->EOS()) + return 0; + } + + // weird: we're on the first cluster, but no keyframe found + // should never happen but we must return something anyway + + pResult = GetEOS(); + return 0; +} + +Colour* VideoTrack::GetColour() const { return m_colour; } + +Projection* VideoTrack::GetProjection() const { return m_projection; } + +long long VideoTrack::GetWidth() const { return m_width; } + +long long VideoTrack::GetHeight() const { return m_height; } + +long long VideoTrack::GetDisplayWidth() const { + return m_display_width > 0 ? m_display_width : GetWidth(); +} + +long long VideoTrack::GetDisplayHeight() const { + return m_display_height > 0 ? m_display_height : GetHeight(); +} + +long long VideoTrack::GetDisplayUnit() const { return m_display_unit; } + +long long VideoTrack::GetStereoMode() const { return m_stereo_mode; } + +double VideoTrack::GetFrameRate() const { return m_rate; } + +AudioTrack::AudioTrack(Segment* pSegment, long long element_start, + long long element_size) + : Track(pSegment, element_start, element_size) {} + +long AudioTrack::Parse(Segment* pSegment, const Info& info, + long long element_start, long long element_size, + AudioTrack*& pResult) { + if (pResult) + return -1; + + if (info.type != Track::kAudio) + return -1; + + IMkvReader* const pReader = pSegment->m_pReader; + + const Settings& s = info.settings; + assert(s.start >= 0); + assert(s.size >= 0); + + long long pos = s.start; + assert(pos >= 0); + + const long long stop = pos + s.size; + + double rate = 8000.0; // MKV default + long long channels = 1; + long long bit_depth = 0; + + while (pos < stop) { + long long id, size; + + long status = ParseElementHeader(pReader, pos, stop, id, size); + + if (status < 0) // error + return status; + + if (id == libwebm::kMkvSamplingFrequency) { + status = UnserializeFloat(pReader, pos, size, rate); + + if (status < 0) + return status; + + if (rate <= 0) + return E_FILE_FORMAT_INVALID; + } else if (id == libwebm::kMkvChannels) { + channels = UnserializeUInt(pReader, pos, size); + + if (channels <= 0) + return E_FILE_FORMAT_INVALID; + } else if (id == libwebm::kMkvBitDepth) { + bit_depth = UnserializeUInt(pReader, pos, size); + + if (bit_depth <= 0) + return E_FILE_FORMAT_INVALID; + } + + pos += size; // consume payload + if (pos > stop) + return E_FILE_FORMAT_INVALID; + } + + if (pos != stop) + return E_FILE_FORMAT_INVALID; + + AudioTrack* const pTrack = + new (std::nothrow) AudioTrack(pSegment, element_start, element_size); + + if (pTrack == NULL) + return -1; // generic error + + const int status = info.Copy(pTrack->m_info); + + if (status) { + delete pTrack; + return status; + } + + pTrack->m_rate = rate; + pTrack->m_channels = channels; + pTrack->m_bitDepth = bit_depth; + + pResult = pTrack; + return 0; // success +} + +double AudioTrack::GetSamplingRate() const { return m_rate; } + +long long AudioTrack::GetChannels() const { return m_channels; } + +long long AudioTrack::GetBitDepth() const { return m_bitDepth; } + +Tracks::Tracks(Segment* pSegment, long long start, long long size_, + long long element_start, long long element_size) + : m_pSegment(pSegment), + m_start(start), + m_size(size_), + m_element_start(element_start), + m_element_size(element_size), + m_trackEntries(NULL), + m_trackEntriesEnd(NULL) {} + +long Tracks::Parse() { + assert(m_trackEntries == NULL); + assert(m_trackEntriesEnd == NULL); + + const long long stop = m_start + m_size; + IMkvReader* const pReader = m_pSegment->m_pReader; + + int count = 0; + long long pos = m_start; + + while (pos < stop) { + long long id, size; + + const long status = ParseElementHeader(pReader, pos, stop, id, size); + + if (status < 0) // error + return status; + + if (size == 0) // weird + continue; + + if (id == libwebm::kMkvTrackEntry) + ++count; + + pos += size; // consume payload + if (pos > stop) + return E_FILE_FORMAT_INVALID; + } + + if (pos != stop) + return E_FILE_FORMAT_INVALID; + + if (count <= 0) + return 0; // success + + m_trackEntries = new (std::nothrow) Track*[count]; + + if (m_trackEntries == NULL) + return -1; + + m_trackEntriesEnd = m_trackEntries; + + pos = m_start; + + while (pos < stop) { + const long long element_start = pos; + + long long id, payload_size; + + const long status = + ParseElementHeader(pReader, pos, stop, id, payload_size); + + if (status < 0) // error + return status; + + if (payload_size == 0) // weird + continue; + + const long long payload_stop = pos + payload_size; + assert(payload_stop <= stop); // checked in ParseElement + + const long long element_size = payload_stop - element_start; + + if (id == libwebm::kMkvTrackEntry) { + Track*& pTrack = *m_trackEntriesEnd; + pTrack = NULL; + + const long status = ParseTrackEntry(pos, payload_size, element_start, + element_size, pTrack); + if (status) + return status; + + if (pTrack) + ++m_trackEntriesEnd; + } + + pos = payload_stop; + if (pos > stop) + return E_FILE_FORMAT_INVALID; + } + + if (pos != stop) + return E_FILE_FORMAT_INVALID; + + return 0; // success +} + +unsigned long Tracks::GetTracksCount() const { + const ptrdiff_t result = m_trackEntriesEnd - m_trackEntries; + assert(result >= 0); + + return static_cast(result); +} + +long Tracks::ParseTrackEntry(long long track_start, long long track_size, + long long element_start, long long element_size, + Track*& pResult) const { + if (pResult) + return -1; + + IMkvReader* const pReader = m_pSegment->m_pReader; + + long long pos = track_start; + const long long track_stop = track_start + track_size; + + Track::Info info; + + info.type = 0; + info.number = 0; + info.uid = 0; + info.defaultDuration = 0; + + Track::Settings v; + v.start = -1; + v.size = -1; + + Track::Settings a; + a.start = -1; + a.size = -1; + + Track::Settings e; // content_encodings_settings; + e.start = -1; + e.size = -1; + + long long lacing = 1; // default is true + + while (pos < track_stop) { + long long id, size; + + const long status = ParseElementHeader(pReader, pos, track_stop, id, size); + + if (status < 0) // error + return status; + + if (size < 0) + return E_FILE_FORMAT_INVALID; + + const long long start = pos; + + if (id == libwebm::kMkvVideo) { + v.start = start; + v.size = size; + } else if (id == libwebm::kMkvAudio) { + a.start = start; + a.size = size; + } else if (id == libwebm::kMkvContentEncodings) { + e.start = start; + e.size = size; + } else if (id == libwebm::kMkvTrackUID) { + if (size > 8) + return E_FILE_FORMAT_INVALID; + + info.uid = 0; + + long long pos_ = start; + const long long pos_end = start + size; + + while (pos_ != pos_end) { + unsigned char b; + + const int status = pReader->Read(pos_, 1, &b); + + if (status) + return status; + + info.uid <<= 8; + info.uid |= b; + + ++pos_; + } + } else if (id == libwebm::kMkvTrackNumber) { + const long long num = UnserializeUInt(pReader, pos, size); + + if ((num <= 0) || (num > 127)) + return E_FILE_FORMAT_INVALID; + + info.number = static_cast(num); + } else if (id == libwebm::kMkvTrackType) { + const long long type = UnserializeUInt(pReader, pos, size); + + if ((type <= 0) || (type > 254)) + return E_FILE_FORMAT_INVALID; + + info.type = static_cast(type); + } else if (id == libwebm::kMkvName) { + const long status = + UnserializeString(pReader, pos, size, info.nameAsUTF8); + + if (status) + return status; + } else if (id == libwebm::kMkvLanguage) { + const long status = UnserializeString(pReader, pos, size, info.language); + + if (status) + return status; + } else if (id == libwebm::kMkvDefaultDuration) { + const long long duration = UnserializeUInt(pReader, pos, size); + + if (duration < 0) + return E_FILE_FORMAT_INVALID; + + info.defaultDuration = static_cast(duration); + } else if (id == libwebm::kMkvCodecID) { + const long status = UnserializeString(pReader, pos, size, info.codecId); + + if (status) + return status; + } else if (id == libwebm::kMkvFlagLacing) { + lacing = UnserializeUInt(pReader, pos, size); + + if ((lacing < 0) || (lacing > 1)) + return E_FILE_FORMAT_INVALID; + } else if (id == libwebm::kMkvCodecPrivate) { + delete[] info.codecPrivate; + info.codecPrivate = NULL; + info.codecPrivateSize = 0; + + const size_t buflen = static_cast(size); + + if (buflen) { + unsigned char* buf = SafeArrayAlloc(1, buflen); + + if (buf == NULL) + return -1; + + const int status = pReader->Read(pos, static_cast(buflen), buf); + + if (status) { + delete[] buf; + return status; + } + + info.codecPrivate = buf; + info.codecPrivateSize = buflen; + } + } else if (id == libwebm::kMkvCodecName) { + const long status = + UnserializeString(pReader, pos, size, info.codecNameAsUTF8); + + if (status) + return status; + } else if (id == libwebm::kMkvCodecDelay) { + info.codecDelay = UnserializeUInt(pReader, pos, size); + } else if (id == libwebm::kMkvSeekPreRoll) { + info.seekPreRoll = UnserializeUInt(pReader, pos, size); + } + + pos += size; // consume payload + if (pos > track_stop) + return E_FILE_FORMAT_INVALID; + } + + if (pos != track_stop) + return E_FILE_FORMAT_INVALID; + + if (info.number <= 0) // not specified + return E_FILE_FORMAT_INVALID; + + if (GetTrackByNumber(info.number)) + return E_FILE_FORMAT_INVALID; + + if (info.type <= 0) // not specified + return E_FILE_FORMAT_INVALID; + + info.lacing = (lacing > 0) ? true : false; + + if (info.type == Track::kVideo) { + if (v.start < 0) + return E_FILE_FORMAT_INVALID; + + if (a.start >= 0) + return E_FILE_FORMAT_INVALID; + + info.settings = v; + + VideoTrack* pTrack = NULL; + + const long status = VideoTrack::Parse(m_pSegment, info, element_start, + element_size, pTrack); + + if (status) + return status; + + pResult = pTrack; + assert(pResult); + + if (e.start >= 0) + pResult->ParseContentEncodingsEntry(e.start, e.size); + } else if (info.type == Track::kAudio) { + if (a.start < 0) + return E_FILE_FORMAT_INVALID; + + if (v.start >= 0) + return E_FILE_FORMAT_INVALID; + + info.settings = a; + + AudioTrack* pTrack = NULL; + + const long status = AudioTrack::Parse(m_pSegment, info, element_start, + element_size, pTrack); + + if (status) + return status; + + pResult = pTrack; + assert(pResult); + + if (e.start >= 0) + pResult->ParseContentEncodingsEntry(e.start, e.size); + } else { + // neither video nor audio - probably metadata or subtitles + + if (a.start >= 0) + return E_FILE_FORMAT_INVALID; + + if (v.start >= 0) + return E_FILE_FORMAT_INVALID; + + if (info.type == Track::kMetadata && e.start >= 0) + return E_FILE_FORMAT_INVALID; + + info.settings.start = -1; + info.settings.size = 0; + + Track* pTrack = NULL; + + const long status = + Track::Create(m_pSegment, info, element_start, element_size, pTrack); + + if (status) + return status; + + pResult = pTrack; + assert(pResult); + } + + return 0; // success +} + +Tracks::~Tracks() { + Track** i = m_trackEntries; + Track** const j = m_trackEntriesEnd; + + while (i != j) { + Track* const pTrack = *i++; + delete pTrack; + } + + delete[] m_trackEntries; +} + +const Track* Tracks::GetTrackByNumber(long tn) const { + if (tn < 0) + return NULL; + + Track** i = m_trackEntries; + Track** const j = m_trackEntriesEnd; + + while (i != j) { + Track* const pTrack = *i++; + + if (pTrack == NULL) + continue; + + if (tn == pTrack->GetNumber()) + return pTrack; + } + + return NULL; // not found +} + +const Track* Tracks::GetTrackByIndex(unsigned long idx) const { + const ptrdiff_t count = m_trackEntriesEnd - m_trackEntries; + + if (idx >= static_cast(count)) + return NULL; + + return m_trackEntries[idx]; +} + +long Cluster::Load(long long& pos, long& len) const { + if (m_pSegment == NULL) + return E_PARSE_FAILED; + + if (m_timecode >= 0) // at least partially loaded + return 0; + + if (m_pos != m_element_start || m_element_size >= 0) + return E_PARSE_FAILED; + + IMkvReader* const pReader = m_pSegment->m_pReader; + long long total, avail; + const int status = pReader->Length(&total, &avail); + + if (status < 0) // error + return status; + + if (total >= 0 && (avail > total || m_pos > total)) + return E_FILE_FORMAT_INVALID; + + pos = m_pos; + + long long cluster_size = -1; + + if ((pos + 1) > avail) { + len = 1; + return E_BUFFER_NOT_FULL; + } + + long long result = GetUIntLength(pReader, pos, len); + + if (result < 0) // error or underflow + return static_cast(result); + + if (result > 0) + return E_BUFFER_NOT_FULL; + + if ((pos + len) > avail) + return E_BUFFER_NOT_FULL; + + const long long id_ = ReadID(pReader, pos, len); + + if (id_ < 0) // error + return static_cast(id_); + + if (id_ != libwebm::kMkvCluster) + return E_FILE_FORMAT_INVALID; + + pos += len; // consume id + + // read cluster size + + if ((pos + 1) > avail) { + len = 1; + return E_BUFFER_NOT_FULL; + } + + result = GetUIntLength(pReader, pos, len); + + if (result < 0) // error + return static_cast(result); + + if (result > 0) + return E_BUFFER_NOT_FULL; + + if ((pos + len) > avail) + return E_BUFFER_NOT_FULL; + + const long long size = ReadUInt(pReader, pos, len); + + if (size < 0) // error + return static_cast(cluster_size); + + if (size == 0) + return E_FILE_FORMAT_INVALID; + + pos += len; // consume length of size of element + + const long long unknown_size = (1LL << (7 * len)) - 1; + + if (size != unknown_size) + cluster_size = size; + + // pos points to start of payload + long long timecode = -1; + long long new_pos = -1; + bool bBlock = false; + + long long cluster_stop = (cluster_size < 0) ? -1 : pos + cluster_size; + + for (;;) { + if ((cluster_stop >= 0) && (pos >= cluster_stop)) + break; + + // Parse ID + + if ((pos + 1) > avail) { + len = 1; + return E_BUFFER_NOT_FULL; + } + + long long result = GetUIntLength(pReader, pos, len); + + if (result < 0) // error + return static_cast(result); + + if (result > 0) + return E_BUFFER_NOT_FULL; + + if ((cluster_stop >= 0) && ((pos + len) > cluster_stop)) + return E_FILE_FORMAT_INVALID; + + if ((pos + len) > avail) + return E_BUFFER_NOT_FULL; + + const long long id = ReadID(pReader, pos, len); + + if (id < 0) // error + return static_cast(id); + + if (id == 0) + return E_FILE_FORMAT_INVALID; + + // This is the distinguished set of ID's we use to determine + // that we have exhausted the sub-element's inside the cluster + // whose ID we parsed earlier. + + if (id == libwebm::kMkvCluster) + break; + + if (id == libwebm::kMkvCues) + break; + + pos += len; // consume ID field + + // Parse Size + + if ((pos + 1) > avail) { + len = 1; + return E_BUFFER_NOT_FULL; + } + + result = GetUIntLength(pReader, pos, len); + + if (result < 0) // error + return static_cast(result); + + if (result > 0) + return E_BUFFER_NOT_FULL; + + if ((cluster_stop >= 0) && ((pos + len) > cluster_stop)) + return E_FILE_FORMAT_INVALID; + + if ((pos + len) > avail) + return E_BUFFER_NOT_FULL; + + const long long size = ReadUInt(pReader, pos, len); + + if (size < 0) // error + return static_cast(size); + + const long long unknown_size = (1LL << (7 * len)) - 1; + + if (size == unknown_size) + return E_FILE_FORMAT_INVALID; + + pos += len; // consume size field + + if ((cluster_stop >= 0) && (pos > cluster_stop)) + return E_FILE_FORMAT_INVALID; + + // pos now points to start of payload + + if (size == 0) + continue; + + if ((cluster_stop >= 0) && ((pos + size) > cluster_stop)) + return E_FILE_FORMAT_INVALID; + + if (id == libwebm::kMkvTimecode) { + len = static_cast(size); + + if ((pos + size) > avail) + return E_BUFFER_NOT_FULL; + + timecode = UnserializeUInt(pReader, pos, size); + + if (timecode < 0) // error (or underflow) + return static_cast(timecode); + + new_pos = pos + size; + + if (bBlock) + break; + } else if (id == libwebm::kMkvBlockGroup) { + bBlock = true; + break; + } else if (id == libwebm::kMkvSimpleBlock) { + bBlock = true; + break; + } + + pos += size; // consume payload + if (cluster_stop >= 0 && pos > cluster_stop) + return E_FILE_FORMAT_INVALID; + } + + if (cluster_stop >= 0 && pos > cluster_stop) + return E_FILE_FORMAT_INVALID; + + if (timecode < 0) // no timecode found + return E_FILE_FORMAT_INVALID; + + if (!bBlock) + return E_FILE_FORMAT_INVALID; + + m_pos = new_pos; // designates position just beyond timecode payload + m_timecode = timecode; // m_timecode >= 0 means we're partially loaded + + if (cluster_size >= 0) + m_element_size = cluster_stop - m_element_start; + + return 0; +} + +long Cluster::Parse(long long& pos, long& len) const { + long status = Load(pos, len); + + if (status < 0) + return status; + + if (m_pos < m_element_start || m_timecode < 0) + return E_PARSE_FAILED; + + const long long cluster_stop = + (m_element_size < 0) ? -1 : m_element_start + m_element_size; + + if ((cluster_stop >= 0) && (m_pos >= cluster_stop)) + return 1; // nothing else to do + + IMkvReader* const pReader = m_pSegment->m_pReader; + + long long total, avail; + + status = pReader->Length(&total, &avail); + + if (status < 0) // error + return status; + + if (total >= 0 && avail > total) + return E_FILE_FORMAT_INVALID; + + pos = m_pos; + + for (;;) { + if ((cluster_stop >= 0) && (pos >= cluster_stop)) + break; + + if ((total >= 0) && (pos >= total)) { + if (m_element_size < 0) + m_element_size = pos - m_element_start; + + break; + } + + // Parse ID + + if ((pos + 1) > avail) { + len = 1; + return E_BUFFER_NOT_FULL; + } + + long long result = GetUIntLength(pReader, pos, len); + + if (result < 0) // error + return static_cast(result); + + if (result > 0) + return E_BUFFER_NOT_FULL; + + if ((cluster_stop >= 0) && ((pos + len) > cluster_stop)) + return E_FILE_FORMAT_INVALID; + + if ((pos + len) > avail) + return E_BUFFER_NOT_FULL; + + const long long id = ReadID(pReader, pos, len); + + if (id < 0) + return E_FILE_FORMAT_INVALID; + + // This is the distinguished set of ID's we use to determine + // that we have exhausted the sub-element's inside the cluster + // whose ID we parsed earlier. + + if ((id == libwebm::kMkvCluster) || (id == libwebm::kMkvCues)) { + if (m_element_size < 0) + m_element_size = pos - m_element_start; + + break; + } + + pos += len; // consume ID field + + // Parse Size + + if ((pos + 1) > avail) { + len = 1; + return E_BUFFER_NOT_FULL; + } + + result = GetUIntLength(pReader, pos, len); + + if (result < 0) // error + return static_cast(result); + + if (result > 0) + return E_BUFFER_NOT_FULL; + + if ((cluster_stop >= 0) && ((pos + len) > cluster_stop)) + return E_FILE_FORMAT_INVALID; + + if ((pos + len) > avail) + return E_BUFFER_NOT_FULL; + + const long long size = ReadUInt(pReader, pos, len); + + if (size < 0) // error + return static_cast(size); + + const long long unknown_size = (1LL << (7 * len)) - 1; + + if (size == unknown_size) + return E_FILE_FORMAT_INVALID; + + pos += len; // consume size field + + if ((cluster_stop >= 0) && (pos > cluster_stop)) + return E_FILE_FORMAT_INVALID; + + // pos now points to start of payload + + if (size == 0) + continue; + + // const long long block_start = pos; + const long long block_stop = pos + size; + + if (cluster_stop >= 0) { + if (block_stop > cluster_stop) { + if (id == libwebm::kMkvBlockGroup || id == libwebm::kMkvSimpleBlock) { + return E_FILE_FORMAT_INVALID; + } + + pos = cluster_stop; + break; + } + } else if ((total >= 0) && (block_stop > total)) { + m_element_size = total - m_element_start; + pos = total; + break; + } else if (block_stop > avail) { + len = static_cast(size); + return E_BUFFER_NOT_FULL; + } + + Cluster* const this_ = const_cast(this); + + if (id == libwebm::kMkvBlockGroup) + return this_->ParseBlockGroup(size, pos, len); + + if (id == libwebm::kMkvSimpleBlock) + return this_->ParseSimpleBlock(size, pos, len); + + pos += size; // consume payload + if (cluster_stop >= 0 && pos > cluster_stop) + return E_FILE_FORMAT_INVALID; + } + + if (m_element_size < 1) + return E_FILE_FORMAT_INVALID; + + m_pos = pos; + if (cluster_stop >= 0 && m_pos > cluster_stop) + return E_FILE_FORMAT_INVALID; + + if (m_entries_count > 0) { + const long idx = m_entries_count - 1; + + const BlockEntry* const pLast = m_entries[idx]; + if (pLast == NULL) + return E_PARSE_FAILED; + + const Block* const pBlock = pLast->GetBlock(); + if (pBlock == NULL) + return E_PARSE_FAILED; + + const long long start = pBlock->m_start; + + if ((total >= 0) && (start > total)) + return E_PARSE_FAILED; // defend against trucated stream + + const long long size = pBlock->m_size; + + const long long stop = start + size; + if (cluster_stop >= 0 && stop > cluster_stop) + return E_FILE_FORMAT_INVALID; + + if ((total >= 0) && (stop > total)) + return E_PARSE_FAILED; // defend against trucated stream + } + + return 1; // no more entries +} + +long Cluster::ParseSimpleBlock(long long block_size, long long& pos, + long& len) { + const long long block_start = pos; + const long long block_stop = pos + block_size; + + IMkvReader* const pReader = m_pSegment->m_pReader; + + long long total, avail; + + long status = pReader->Length(&total, &avail); + + if (status < 0) // error + return status; + + assert((total < 0) || (avail <= total)); + + // parse track number + + if ((pos + 1) > avail) { + len = 1; + return E_BUFFER_NOT_FULL; + } + + long long result = GetUIntLength(pReader, pos, len); + + if (result < 0) // error + return static_cast(result); + + if (result > 0) // weird + return E_BUFFER_NOT_FULL; + + if ((pos + len) > block_stop) + return E_FILE_FORMAT_INVALID; + + if ((pos + len) > avail) + return E_BUFFER_NOT_FULL; + + const long long track = ReadUInt(pReader, pos, len); + + if (track < 0) // error + return static_cast(track); + + if (track == 0) + return E_FILE_FORMAT_INVALID; + + pos += len; // consume track number + + if ((pos + 2) > block_stop) + return E_FILE_FORMAT_INVALID; + + if ((pos + 2) > avail) { + len = 2; + return E_BUFFER_NOT_FULL; + } + + pos += 2; // consume timecode + + if ((pos + 1) > block_stop) + return E_FILE_FORMAT_INVALID; + + if ((pos + 1) > avail) { + len = 1; + return E_BUFFER_NOT_FULL; + } + + unsigned char flags; + + status = pReader->Read(pos, 1, &flags); + + if (status < 0) { // error or underflow + len = 1; + return status; + } + + ++pos; // consume flags byte + assert(pos <= avail); + + if (pos >= block_stop) + return E_FILE_FORMAT_INVALID; + + const int lacing = int(flags & 0x06) >> 1; + + if ((lacing != 0) && (block_stop > avail)) { + len = static_cast(block_stop - pos); + return E_BUFFER_NOT_FULL; + } + + status = CreateBlock(libwebm::kMkvSimpleBlock, block_start, block_size, + 0); // DiscardPadding + + if (status != 0) + return status; + + m_pos = block_stop; + + return 0; // success +} + +long Cluster::ParseBlockGroup(long long payload_size, long long& pos, + long& len) { + const long long payload_start = pos; + const long long payload_stop = pos + payload_size; + + IMkvReader* const pReader = m_pSegment->m_pReader; + + long long total, avail; + + long status = pReader->Length(&total, &avail); + + if (status < 0) // error + return status; + + assert((total < 0) || (avail <= total)); + + if ((total >= 0) && (payload_stop > total)) + return E_FILE_FORMAT_INVALID; + + if (payload_stop > avail) { + len = static_cast(payload_size); + return E_BUFFER_NOT_FULL; + } + + long long discard_padding = 0; + + while (pos < payload_stop) { + // parse sub-block element ID + + if ((pos + 1) > avail) { + len = 1; + return E_BUFFER_NOT_FULL; + } + + long long result = GetUIntLength(pReader, pos, len); + + if (result < 0) // error + return static_cast(result); + + if (result > 0) // weird + return E_BUFFER_NOT_FULL; + + if ((pos + len) > payload_stop) + return E_FILE_FORMAT_INVALID; + + if ((pos + len) > avail) + return E_BUFFER_NOT_FULL; + + const long long id = ReadID(pReader, pos, len); + + if (id < 0) // error + return static_cast(id); + + if (id == 0) // not a valid ID + return E_FILE_FORMAT_INVALID; + + pos += len; // consume ID field + + // Parse Size + + if ((pos + 1) > avail) { + len = 1; + return E_BUFFER_NOT_FULL; + } + + result = GetUIntLength(pReader, pos, len); + + if (result < 0) // error + return static_cast(result); + + if (result > 0) // weird + return E_BUFFER_NOT_FULL; + + if ((pos + len) > payload_stop) + return E_FILE_FORMAT_INVALID; + + if ((pos + len) > avail) + return E_BUFFER_NOT_FULL; + + const long long size = ReadUInt(pReader, pos, len); + + if (size < 0) // error + return static_cast(size); + + pos += len; // consume size field + + // pos now points to start of sub-block group payload + + if (pos > payload_stop) + return E_FILE_FORMAT_INVALID; + + if (size == 0) // weird + continue; + + const long long unknown_size = (1LL << (7 * len)) - 1; + + if (size == unknown_size) + return E_FILE_FORMAT_INVALID; + + if (id == libwebm::kMkvDiscardPadding) { + status = UnserializeInt(pReader, pos, size, discard_padding); + + if (status < 0) // error + return status; + } + + if (id != libwebm::kMkvBlock) { + pos += size; // consume sub-part of block group + + if (pos > payload_stop) + return E_FILE_FORMAT_INVALID; + + continue; + } + + const long long block_stop = pos + size; + + if (block_stop > payload_stop) + return E_FILE_FORMAT_INVALID; + + // parse track number + + if ((pos + 1) > avail) { + len = 1; + return E_BUFFER_NOT_FULL; + } + + result = GetUIntLength(pReader, pos, len); + + if (result < 0) // error + return static_cast(result); + + if (result > 0) // weird + return E_BUFFER_NOT_FULL; + + if ((pos + len) > block_stop) + return E_FILE_FORMAT_INVALID; + + if ((pos + len) > avail) + return E_BUFFER_NOT_FULL; + + const long long track = ReadUInt(pReader, pos, len); + + if (track < 0) // error + return static_cast(track); + + if (track == 0) + return E_FILE_FORMAT_INVALID; + + pos += len; // consume track number + + if ((pos + 2) > block_stop) + return E_FILE_FORMAT_INVALID; + + if ((pos + 2) > avail) { + len = 2; + return E_BUFFER_NOT_FULL; + } + + pos += 2; // consume timecode + + if ((pos + 1) > block_stop) + return E_FILE_FORMAT_INVALID; + + if ((pos + 1) > avail) { + len = 1; + return E_BUFFER_NOT_FULL; + } + + unsigned char flags; + + status = pReader->Read(pos, 1, &flags); + + if (status < 0) { // error or underflow + len = 1; + return status; + } + + ++pos; // consume flags byte + assert(pos <= avail); + + if (pos >= block_stop) + return E_FILE_FORMAT_INVALID; + + const int lacing = int(flags & 0x06) >> 1; + + if ((lacing != 0) && (block_stop > avail)) { + len = static_cast(block_stop - pos); + return E_BUFFER_NOT_FULL; + } + + pos = block_stop; // consume block-part of block group + if (pos > payload_stop) + return E_FILE_FORMAT_INVALID; + } + + if (pos != payload_stop) + return E_FILE_FORMAT_INVALID; + + status = CreateBlock(libwebm::kMkvBlockGroup, payload_start, payload_size, + discard_padding); + if (status != 0) + return status; + + m_pos = payload_stop; + + return 0; // success +} + +long Cluster::GetEntry(long index, const mkvparser::BlockEntry*& pEntry) const { + assert(m_pos >= m_element_start); + + pEntry = NULL; + + if (index < 0) + return -1; // generic error + + if (m_entries_count < 0) + return E_BUFFER_NOT_FULL; + + assert(m_entries); + assert(m_entries_size > 0); + assert(m_entries_count <= m_entries_size); + + if (index < m_entries_count) { + pEntry = m_entries[index]; + assert(pEntry); + + return 1; // found entry + } + + if (m_element_size < 0) // we don't know cluster end yet + return E_BUFFER_NOT_FULL; // underflow + + const long long element_stop = m_element_start + m_element_size; + + if (m_pos >= element_stop) + return 0; // nothing left to parse + + return E_BUFFER_NOT_FULL; // underflow, since more remains to be parsed +} + +Cluster* Cluster::Create(Segment* pSegment, long idx, long long off) { + if (!pSegment || off < 0) + return NULL; + + const long long element_start = pSegment->m_start + off; + + Cluster* const pCluster = + new (std::nothrow) Cluster(pSegment, idx, element_start); + + return pCluster; +} + +Cluster::Cluster() + : m_pSegment(NULL), + m_element_start(0), + m_index(0), + m_pos(0), + m_element_size(0), + m_timecode(0), + m_entries(NULL), + m_entries_size(0), + m_entries_count(0) // means "no entries" +{} + +Cluster::Cluster(Segment* pSegment, long idx, long long element_start + /* long long element_size */) + : m_pSegment(pSegment), + m_element_start(element_start), + m_index(idx), + m_pos(element_start), + m_element_size(-1 /* element_size */), + m_timecode(-1), + m_entries(NULL), + m_entries_size(0), + m_entries_count(-1) // means "has not been parsed yet" +{} + +Cluster::~Cluster() { + if (m_entries_count <= 0) { + delete[] m_entries; + return; + } + + BlockEntry** i = m_entries; + BlockEntry** const j = m_entries + m_entries_count; + + while (i != j) { + BlockEntry* p = *i++; + assert(p); + + delete p; + } + + delete[] m_entries; +} + +bool Cluster::EOS() const { return (m_pSegment == NULL); } + +long Cluster::GetIndex() const { return m_index; } + +long long Cluster::GetPosition() const { + const long long pos = m_element_start - m_pSegment->m_start; + assert(pos >= 0); + + return pos; +} + +long long Cluster::GetElementSize() const { return m_element_size; } + +long Cluster::HasBlockEntries( + const Segment* pSegment, + long long off, // relative to start of segment payload + long long& pos, long& len) { + assert(pSegment); + assert(off >= 0); // relative to segment + + IMkvReader* const pReader = pSegment->m_pReader; + + long long total, avail; + + long status = pReader->Length(&total, &avail); + + if (status < 0) // error + return status; + + assert((total < 0) || (avail <= total)); + + pos = pSegment->m_start + off; // absolute + + if ((total >= 0) && (pos >= total)) + return 0; // we don't even have a complete cluster + + const long long segment_stop = + (pSegment->m_size < 0) ? -1 : pSegment->m_start + pSegment->m_size; + + long long cluster_stop = -1; // interpreted later to mean "unknown size" + + { + if ((pos + 1) > avail) { + len = 1; + return E_BUFFER_NOT_FULL; + } + + long long result = GetUIntLength(pReader, pos, len); + + if (result < 0) // error + return static_cast(result); + + if (result > 0) // need more data + return E_BUFFER_NOT_FULL; + + if ((segment_stop >= 0) && ((pos + len) > segment_stop)) + return E_FILE_FORMAT_INVALID; + + if ((total >= 0) && ((pos + len) > total)) + return 0; + + if ((pos + len) > avail) + return E_BUFFER_NOT_FULL; + + const long long id = ReadID(pReader, pos, len); + + if (id < 0) // error + return static_cast(id); + + if (id != libwebm::kMkvCluster) + return E_PARSE_FAILED; + + pos += len; // consume Cluster ID field + + // read size field + + if ((pos + 1) > avail) { + len = 1; + return E_BUFFER_NOT_FULL; + } + + result = GetUIntLength(pReader, pos, len); + + if (result < 0) // error + return static_cast(result); + + if (result > 0) // weird + return E_BUFFER_NOT_FULL; + + if ((segment_stop >= 0) && ((pos + len) > segment_stop)) + return E_FILE_FORMAT_INVALID; + + if ((total >= 0) && ((pos + len) > total)) + return 0; + + if ((pos + len) > avail) + return E_BUFFER_NOT_FULL; + + const long long size = ReadUInt(pReader, pos, len); + + if (size < 0) // error + return static_cast(size); + + if (size == 0) + return 0; // cluster does not have entries + + pos += len; // consume size field + + // pos now points to start of payload + + const long long unknown_size = (1LL << (7 * len)) - 1; + + if (size != unknown_size) { + cluster_stop = pos + size; + assert(cluster_stop >= 0); + + if ((segment_stop >= 0) && (cluster_stop > segment_stop)) + return E_FILE_FORMAT_INVALID; + + if ((total >= 0) && (cluster_stop > total)) + // return E_FILE_FORMAT_INVALID; //too conservative + return 0; // cluster does not have any entries + } + } + + for (;;) { + if ((cluster_stop >= 0) && (pos >= cluster_stop)) + return 0; // no entries detected + + if ((pos + 1) > avail) { + len = 1; + return E_BUFFER_NOT_FULL; + } + + long long result = GetUIntLength(pReader, pos, len); + + if (result < 0) // error + return static_cast(result); + + if (result > 0) // need more data + return E_BUFFER_NOT_FULL; + + if ((cluster_stop >= 0) && ((pos + len) > cluster_stop)) + return E_FILE_FORMAT_INVALID; + + if ((pos + len) > avail) + return E_BUFFER_NOT_FULL; + + const long long id = ReadID(pReader, pos, len); + + if (id < 0) // error + return static_cast(id); + + // This is the distinguished set of ID's we use to determine + // that we have exhausted the sub-element's inside the cluster + // whose ID we parsed earlier. + + if (id == libwebm::kMkvCluster) + return 0; // no entries found + + if (id == libwebm::kMkvCues) + return 0; // no entries found + + pos += len; // consume id field + + if ((cluster_stop >= 0) && (pos >= cluster_stop)) + return E_FILE_FORMAT_INVALID; + + // read size field + + if ((pos + 1) > avail) { + len = 1; + return E_BUFFER_NOT_FULL; + } + + result = GetUIntLength(pReader, pos, len); + + if (result < 0) // error + return static_cast(result); + + if (result > 0) // underflow + return E_BUFFER_NOT_FULL; + + if ((cluster_stop >= 0) && ((pos + len) > cluster_stop)) + return E_FILE_FORMAT_INVALID; + + if ((pos + len) > avail) + return E_BUFFER_NOT_FULL; + + const long long size = ReadUInt(pReader, pos, len); + + if (size < 0) // error + return static_cast(size); + + pos += len; // consume size field + + // pos now points to start of payload + + if ((cluster_stop >= 0) && (pos > cluster_stop)) + return E_FILE_FORMAT_INVALID; + + if (size == 0) // weird + continue; + + const long long unknown_size = (1LL << (7 * len)) - 1; + + if (size == unknown_size) + return E_FILE_FORMAT_INVALID; // not supported inside cluster + + if ((cluster_stop >= 0) && ((pos + size) > cluster_stop)) + return E_FILE_FORMAT_INVALID; + + if (id == libwebm::kMkvBlockGroup) + return 1; // have at least one entry + + if (id == libwebm::kMkvSimpleBlock) + return 1; // have at least one entry + + pos += size; // consume payload + if (cluster_stop >= 0 && pos > cluster_stop) + return E_FILE_FORMAT_INVALID; + } +} + +long long Cluster::GetTimeCode() const { + long long pos; + long len; + + const long status = Load(pos, len); + + if (status < 0) // error + return status; + + return m_timecode; +} + +long long Cluster::GetTime() const { + const long long tc = GetTimeCode(); + + if (tc < 0) + return tc; + + const SegmentInfo* const pInfo = m_pSegment->GetInfo(); + assert(pInfo); + + const long long scale = pInfo->GetTimeCodeScale(); + assert(scale >= 1); + + const long long t = m_timecode * scale; + + return t; +} + +long long Cluster::GetFirstTime() const { + const BlockEntry* pEntry; + + const long status = GetFirst(pEntry); + + if (status < 0) // error + return status; + + if (pEntry == NULL) // empty cluster + return GetTime(); + + const Block* const pBlock = pEntry->GetBlock(); + assert(pBlock); + + return pBlock->GetTime(this); +} + +long long Cluster::GetLastTime() const { + const BlockEntry* pEntry; + + const long status = GetLast(pEntry); + + if (status < 0) // error + return status; + + if (pEntry == NULL) // empty cluster + return GetTime(); + + const Block* const pBlock = pEntry->GetBlock(); + assert(pBlock); + + return pBlock->GetTime(this); +} + +long Cluster::CreateBlock(long long id, + long long pos, // absolute pos of payload + long long size, long long discard_padding) { + if (id != libwebm::kMkvBlockGroup && id != libwebm::kMkvSimpleBlock) + return E_PARSE_FAILED; + + if (m_entries_count < 0) { // haven't parsed anything yet + assert(m_entries == NULL); + assert(m_entries_size == 0); + + m_entries_size = 1024; + m_entries = new (std::nothrow) BlockEntry*[m_entries_size]; + if (m_entries == NULL) + return -1; + + m_entries_count = 0; + } else { + assert(m_entries); + assert(m_entries_size > 0); + assert(m_entries_count <= m_entries_size); + + if (m_entries_count >= m_entries_size) { + const long entries_size = 2 * m_entries_size; + + BlockEntry** const entries = new (std::nothrow) BlockEntry*[entries_size]; + if (entries == NULL) + return -1; + + BlockEntry** src = m_entries; + BlockEntry** const src_end = src + m_entries_count; + + BlockEntry** dst = entries; + + while (src != src_end) + *dst++ = *src++; + + delete[] m_entries; + + m_entries = entries; + m_entries_size = entries_size; + } + } + + if (id == libwebm::kMkvBlockGroup) + return CreateBlockGroup(pos, size, discard_padding); + else + return CreateSimpleBlock(pos, size); +} + +long Cluster::CreateBlockGroup(long long start_offset, long long size, + long long discard_padding) { + assert(m_entries); + assert(m_entries_size > 0); + assert(m_entries_count >= 0); + assert(m_entries_count < m_entries_size); + + IMkvReader* const pReader = m_pSegment->m_pReader; + + long long pos = start_offset; + const long long stop = start_offset + size; + + // For WebM files, there is a bias towards previous reference times + //(in order to support alt-ref frames, which refer back to the previous + // keyframe). Normally a 0 value is not possible, but here we tenatively + // allow 0 as the value of a reference frame, with the interpretation + // that this is a "previous" reference time. + + long long prev = 1; // nonce + long long next = 0; // nonce + long long duration = -1; // really, this is unsigned + + long long bpos = -1; + long long bsize = -1; + + while (pos < stop) { + long len; + const long long id = ReadID(pReader, pos, len); + if (id < 0 || (pos + len) > stop) + return E_FILE_FORMAT_INVALID; + + pos += len; // consume ID + + const long long size = ReadUInt(pReader, pos, len); + assert(size >= 0); // TODO + assert((pos + len) <= stop); + + pos += len; // consume size + + if (id == libwebm::kMkvBlock) { + if (bpos < 0) { // Block ID + bpos = pos; + bsize = size; + } + } else if (id == libwebm::kMkvBlockDuration) { + if (size > 8) + return E_FILE_FORMAT_INVALID; + + duration = UnserializeUInt(pReader, pos, size); + + if (duration < 0) + return E_FILE_FORMAT_INVALID; + } else if (id == libwebm::kMkvReferenceBlock) { + if (size > 8 || size <= 0) + return E_FILE_FORMAT_INVALID; + const long size_ = static_cast(size); + + long long time; + + long status = UnserializeInt(pReader, pos, size_, time); + assert(status == 0); + if (status != 0) + return -1; + + if (time <= 0) // see note above + prev = time; + else + next = time; + } + + pos += size; // consume payload + if (pos > stop) + return E_FILE_FORMAT_INVALID; + } + if (bpos < 0) + return E_FILE_FORMAT_INVALID; + + if (pos != stop) + return E_FILE_FORMAT_INVALID; + assert(bsize >= 0); + + const long idx = m_entries_count; + + BlockEntry** const ppEntry = m_entries + idx; + BlockEntry*& pEntry = *ppEntry; + + pEntry = new (std::nothrow) + BlockGroup(this, idx, bpos, bsize, prev, next, duration, discard_padding); + + if (pEntry == NULL) + return -1; // generic error + + BlockGroup* const p = static_cast(pEntry); + + const long status = p->Parse(); + + if (status == 0) { // success + ++m_entries_count; + return 0; + } + + delete pEntry; + pEntry = 0; + + return status; +} + +long Cluster::CreateSimpleBlock(long long st, long long sz) { + assert(m_entries); + assert(m_entries_size > 0); + assert(m_entries_count >= 0); + assert(m_entries_count < m_entries_size); + + const long idx = m_entries_count; + + BlockEntry** const ppEntry = m_entries + idx; + BlockEntry*& pEntry = *ppEntry; + + pEntry = new (std::nothrow) SimpleBlock(this, idx, st, sz); + + if (pEntry == NULL) + return -1; // generic error + + SimpleBlock* const p = static_cast(pEntry); + + const long status = p->Parse(); + + if (status == 0) { + ++m_entries_count; + return 0; + } + + delete pEntry; + pEntry = 0; + + return status; +} + +long Cluster::GetFirst(const BlockEntry*& pFirst) const { + if (m_entries_count <= 0) { + long long pos; + long len; + + const long status = Parse(pos, len); + + if (status < 0) { // error + pFirst = NULL; + return status; + } + + if (m_entries_count <= 0) { // empty cluster + pFirst = NULL; + return 0; + } + } + + assert(m_entries); + + pFirst = m_entries[0]; + assert(pFirst); + + return 0; // success +} + +long Cluster::GetLast(const BlockEntry*& pLast) const { + for (;;) { + long long pos; + long len; + + const long status = Parse(pos, len); + + if (status < 0) { // error + pLast = NULL; + return status; + } + + if (status > 0) // no new block + break; + } + + if (m_entries_count <= 0) { + pLast = NULL; + return 0; + } + + assert(m_entries); + + const long idx = m_entries_count - 1; + + pLast = m_entries[idx]; + assert(pLast); + + return 0; +} + +long Cluster::GetNext(const BlockEntry* pCurr, const BlockEntry*& pNext) const { + assert(pCurr); + assert(m_entries); + assert(m_entries_count > 0); + + size_t idx = pCurr->GetIndex(); + assert(idx < size_t(m_entries_count)); + assert(m_entries[idx] == pCurr); + + ++idx; + + if (idx >= size_t(m_entries_count)) { + long long pos; + long len; + + const long status = Parse(pos, len); + + if (status < 0) { // error + pNext = NULL; + return status; + } + + if (status > 0) { + pNext = NULL; + return 0; + } + + assert(m_entries); + assert(m_entries_count > 0); + assert(idx < size_t(m_entries_count)); + } + + pNext = m_entries[idx]; + assert(pNext); + + return 0; +} + +long Cluster::GetEntryCount() const { return m_entries_count; } + +const BlockEntry* Cluster::GetEntry(const Track* pTrack, + long long time_ns) const { + assert(pTrack); + + if (m_pSegment == NULL) // this is the special EOS cluster + return pTrack->GetEOS(); + + const BlockEntry* pResult = pTrack->GetEOS(); + + long index = 0; + + for (;;) { + if (index >= m_entries_count) { + long long pos; + long len; + + const long status = Parse(pos, len); + assert(status >= 0); + + if (status > 0) // completely parsed, and no more entries + return pResult; + + if (status < 0) // should never happen + return 0; + + assert(m_entries); + assert(index < m_entries_count); + } + + const BlockEntry* const pEntry = m_entries[index]; + assert(pEntry); + assert(!pEntry->EOS()); + + const Block* const pBlock = pEntry->GetBlock(); + assert(pBlock); + + if (pBlock->GetTrackNumber() != pTrack->GetNumber()) { + ++index; + continue; + } + + if (pTrack->VetEntry(pEntry)) { + if (time_ns < 0) // just want first candidate block + return pEntry; + + const long long ns = pBlock->GetTime(this); + + if (ns > time_ns) + return pResult; + + pResult = pEntry; // have a candidate + } else if (time_ns >= 0) { + const long long ns = pBlock->GetTime(this); + + if (ns > time_ns) + return pResult; + } + + ++index; + } +} + +const BlockEntry* Cluster::GetEntry(const CuePoint& cp, + const CuePoint::TrackPosition& tp) const { + assert(m_pSegment); + const long long tc = cp.GetTimeCode(); + + if (tp.m_block > 0) { + const long block = static_cast(tp.m_block); + const long index = block - 1; + + while (index >= m_entries_count) { + long long pos; + long len; + + const long status = Parse(pos, len); + + if (status < 0) // TODO: can this happen? + return NULL; + + if (status > 0) // nothing remains to be parsed + return NULL; + } + + const BlockEntry* const pEntry = m_entries[index]; + assert(pEntry); + assert(!pEntry->EOS()); + + const Block* const pBlock = pEntry->GetBlock(); + assert(pBlock); + + if ((pBlock->GetTrackNumber() == tp.m_track) && + (pBlock->GetTimeCode(this) == tc)) { + return pEntry; + } + } + + long index = 0; + + for (;;) { + if (index >= m_entries_count) { + long long pos; + long len; + + const long status = Parse(pos, len); + + if (status < 0) // TODO: can this happen? + return NULL; + + if (status > 0) // nothing remains to be parsed + return NULL; + + assert(m_entries); + assert(index < m_entries_count); + } + + const BlockEntry* const pEntry = m_entries[index]; + assert(pEntry); + assert(!pEntry->EOS()); + + const Block* const pBlock = pEntry->GetBlock(); + assert(pBlock); + + if (pBlock->GetTrackNumber() != tp.m_track) { + ++index; + continue; + } + + const long long tc_ = pBlock->GetTimeCode(this); + + if (tc_ < tc) { + ++index; + continue; + } + + if (tc_ > tc) + return NULL; + + const Tracks* const pTracks = m_pSegment->GetTracks(); + assert(pTracks); + + const long tn = static_cast(tp.m_track); + const Track* const pTrack = pTracks->GetTrackByNumber(tn); + + if (pTrack == NULL) + return NULL; + + const long long type = pTrack->GetType(); + + if (type == 2) // audio + return pEntry; + + if (type != 1) // not video + return NULL; + + if (!pBlock->IsKey()) + return NULL; + + return pEntry; + } +} + +BlockEntry::BlockEntry(Cluster* p, long idx) : m_pCluster(p), m_index(idx) {} +BlockEntry::~BlockEntry() {} +const Cluster* BlockEntry::GetCluster() const { return m_pCluster; } +long BlockEntry::GetIndex() const { return m_index; } + +SimpleBlock::SimpleBlock(Cluster* pCluster, long idx, long long start, + long long size) + : BlockEntry(pCluster, idx), m_block(start, size, 0) {} + +long SimpleBlock::Parse() { return m_block.Parse(m_pCluster); } +BlockEntry::Kind SimpleBlock::GetKind() const { return kBlockSimple; } +const Block* SimpleBlock::GetBlock() const { return &m_block; } + +BlockGroup::BlockGroup(Cluster* pCluster, long idx, long long block_start, + long long block_size, long long prev, long long next, + long long duration, long long discard_padding) + : BlockEntry(pCluster, idx), + m_block(block_start, block_size, discard_padding), + m_prev(prev), + m_next(next), + m_duration(duration) {} + +long BlockGroup::Parse() { + const long status = m_block.Parse(m_pCluster); + + if (status) + return status; + + m_block.SetKey((m_prev > 0) && (m_next <= 0)); + + return 0; +} + +BlockEntry::Kind BlockGroup::GetKind() const { return kBlockGroup; } +const Block* BlockGroup::GetBlock() const { return &m_block; } +long long BlockGroup::GetPrevTimeCode() const { return m_prev; } +long long BlockGroup::GetNextTimeCode() const { return m_next; } +long long BlockGroup::GetDurationTimeCode() const { return m_duration; } + +Block::Block(long long start, long long size_, long long discard_padding) + : m_start(start), + m_size(size_), + m_track(0), + m_timecode(-1), + m_flags(0), + m_frames(NULL), + m_frame_count(-1), + m_discard_padding(discard_padding) {} + +Block::~Block() { delete[] m_frames; } + +long Block::Parse(const Cluster* pCluster) { + if (pCluster == NULL) + return -1; + + if (pCluster->m_pSegment == NULL) + return -1; + + assert(m_start >= 0); + assert(m_size >= 0); + assert(m_track <= 0); + assert(m_frames == NULL); + assert(m_frame_count <= 0); + + long long pos = m_start; + const long long stop = m_start + m_size; + + long len; + + IMkvReader* const pReader = pCluster->m_pSegment->m_pReader; + + m_track = ReadUInt(pReader, pos, len); + + if (m_track <= 0) + return E_FILE_FORMAT_INVALID; + + if ((pos + len) > stop) + return E_FILE_FORMAT_INVALID; + + pos += len; // consume track number + + if ((stop - pos) < 2) + return E_FILE_FORMAT_INVALID; + + long status; + long long value; + + status = UnserializeInt(pReader, pos, 2, value); + + if (status) + return E_FILE_FORMAT_INVALID; + + if (value < SHRT_MIN) + return E_FILE_FORMAT_INVALID; + + if (value > SHRT_MAX) + return E_FILE_FORMAT_INVALID; + + m_timecode = static_cast(value); + + pos += 2; + + if ((stop - pos) <= 0) + return E_FILE_FORMAT_INVALID; + + status = pReader->Read(pos, 1, &m_flags); + + if (status) + return E_FILE_FORMAT_INVALID; + + const int lacing = int(m_flags & 0x06) >> 1; + + ++pos; // consume flags byte + + if (lacing == 0) { // no lacing + if (pos > stop) + return E_FILE_FORMAT_INVALID; + + m_frame_count = 1; + m_frames = new (std::nothrow) Frame[m_frame_count]; + if (m_frames == NULL) + return -1; + + Frame& f = m_frames[0]; + f.pos = pos; + + const long long frame_size = stop - pos; + + if (frame_size > LONG_MAX || frame_size <= 0) + return E_FILE_FORMAT_INVALID; + + f.len = static_cast(frame_size); + + return 0; // success + } + + if (pos >= stop) + return E_FILE_FORMAT_INVALID; + + unsigned char biased_count; + + status = pReader->Read(pos, 1, &biased_count); + + if (status) + return E_FILE_FORMAT_INVALID; + + ++pos; // consume frame count + if (pos > stop) + return E_FILE_FORMAT_INVALID; + + m_frame_count = int(biased_count) + 1; + + m_frames = new (std::nothrow) Frame[m_frame_count]; + if (m_frames == NULL) + return -1; + + if (!m_frames) + return E_FILE_FORMAT_INVALID; + + if (lacing == 1) { // Xiph + Frame* pf = m_frames; + Frame* const pf_end = pf + m_frame_count; + + long long size = 0; + int frame_count = m_frame_count; + + while (frame_count > 1) { + long frame_size = 0; + + for (;;) { + unsigned char val; + + if (pos >= stop) + return E_FILE_FORMAT_INVALID; + + status = pReader->Read(pos, 1, &val); + + if (status) + return E_FILE_FORMAT_INVALID; + + ++pos; // consume xiph size byte + + frame_size += val; + + if (val < 255) + break; + } + + Frame& f = *pf++; + assert(pf < pf_end); + if (pf >= pf_end) + return E_FILE_FORMAT_INVALID; + + f.pos = 0; // patch later + + if (frame_size <= 0) + return E_FILE_FORMAT_INVALID; + + f.len = frame_size; + size += frame_size; // contribution of this frame + + --frame_count; + } + + if (pf >= pf_end || pos > stop) + return E_FILE_FORMAT_INVALID; + + { + Frame& f = *pf++; + + if (pf != pf_end) + return E_FILE_FORMAT_INVALID; + + f.pos = 0; // patch later + + const long long total_size = stop - pos; + + if (total_size < size) + return E_FILE_FORMAT_INVALID; + + const long long frame_size = total_size - size; + + if (frame_size > LONG_MAX || frame_size <= 0) + return E_FILE_FORMAT_INVALID; + + f.len = static_cast(frame_size); + } + + pf = m_frames; + while (pf != pf_end) { + Frame& f = *pf++; + assert((pos + f.len) <= stop); + + if ((pos + f.len) > stop) + return E_FILE_FORMAT_INVALID; + + f.pos = pos; + pos += f.len; + } + + assert(pos == stop); + if (pos != stop) + return E_FILE_FORMAT_INVALID; + + } else if (lacing == 2) { // fixed-size lacing + if (pos >= stop) + return E_FILE_FORMAT_INVALID; + + const long long total_size = stop - pos; + + if ((total_size % m_frame_count) != 0) + return E_FILE_FORMAT_INVALID; + + const long long frame_size = total_size / m_frame_count; + + if (frame_size > LONG_MAX || frame_size <= 0) + return E_FILE_FORMAT_INVALID; + + Frame* pf = m_frames; + Frame* const pf_end = pf + m_frame_count; + + while (pf != pf_end) { + assert((pos + frame_size) <= stop); + if ((pos + frame_size) > stop) + return E_FILE_FORMAT_INVALID; + + Frame& f = *pf++; + + f.pos = pos; + f.len = static_cast(frame_size); + + pos += frame_size; + } + + assert(pos == stop); + if (pos != stop) + return E_FILE_FORMAT_INVALID; + + } else { + assert(lacing == 3); // EBML lacing + + if (pos >= stop) + return E_FILE_FORMAT_INVALID; + + long long size = 0; + int frame_count = m_frame_count; + + long long frame_size = ReadUInt(pReader, pos, len); + + if (frame_size <= 0) + return E_FILE_FORMAT_INVALID; + + if (frame_size > LONG_MAX) + return E_FILE_FORMAT_INVALID; + + if ((pos + len) > stop) + return E_FILE_FORMAT_INVALID; + + pos += len; // consume length of size of first frame + + if ((pos + frame_size) > stop) + return E_FILE_FORMAT_INVALID; + + Frame* pf = m_frames; + Frame* const pf_end = pf + m_frame_count; + + { + Frame& curr = *pf; + + curr.pos = 0; // patch later + + curr.len = static_cast(frame_size); + size += curr.len; // contribution of this frame + } + + --frame_count; + + while (frame_count > 1) { + if (pos >= stop) + return E_FILE_FORMAT_INVALID; + + assert(pf < pf_end); + if (pf >= pf_end) + return E_FILE_FORMAT_INVALID; + + const Frame& prev = *pf++; + assert(prev.len == frame_size); + if (prev.len != frame_size) + return E_FILE_FORMAT_INVALID; + + assert(pf < pf_end); + if (pf >= pf_end) + return E_FILE_FORMAT_INVALID; + + Frame& curr = *pf; + + curr.pos = 0; // patch later + + const long long delta_size_ = ReadUInt(pReader, pos, len); + + if (delta_size_ < 0) + return E_FILE_FORMAT_INVALID; + + if ((pos + len) > stop) + return E_FILE_FORMAT_INVALID; + + pos += len; // consume length of (delta) size + if (pos > stop) + return E_FILE_FORMAT_INVALID; + + const long exp = 7 * len - 1; + const long long bias = (1LL << exp) - 1LL; + const long long delta_size = delta_size_ - bias; + + frame_size += delta_size; + + if (frame_size <= 0) + return E_FILE_FORMAT_INVALID; + + if (frame_size > LONG_MAX) + return E_FILE_FORMAT_INVALID; + + curr.len = static_cast(frame_size); + size += curr.len; // contribution of this frame + + --frame_count; + } + + // parse last frame + if (frame_count > 0) { + if (pos > stop || pf >= pf_end) + return E_FILE_FORMAT_INVALID; + + const Frame& prev = *pf++; + assert(prev.len == frame_size); + if (prev.len != frame_size) + return E_FILE_FORMAT_INVALID; + + if (pf >= pf_end) + return E_FILE_FORMAT_INVALID; + + Frame& curr = *pf++; + if (pf != pf_end) + return E_FILE_FORMAT_INVALID; + + curr.pos = 0; // patch later + + const long long total_size = stop - pos; + + if (total_size < size) + return E_FILE_FORMAT_INVALID; + + frame_size = total_size - size; + + if (frame_size > LONG_MAX || frame_size <= 0) + return E_FILE_FORMAT_INVALID; + + curr.len = static_cast(frame_size); + } + + pf = m_frames; + while (pf != pf_end) { + Frame& f = *pf++; + if ((pos + f.len) > stop) + return E_FILE_FORMAT_INVALID; + + f.pos = pos; + pos += f.len; + } + + if (pos != stop) + return E_FILE_FORMAT_INVALID; + } + + return 0; // success +} + +long long Block::GetTimeCode(const Cluster* pCluster) const { + if (pCluster == 0) + return m_timecode; + + const long long tc0 = pCluster->GetTimeCode(); + assert(tc0 >= 0); + + const long long tc = tc0 + m_timecode; + + return tc; // unscaled timecode units +} + +long long Block::GetTime(const Cluster* pCluster) const { + assert(pCluster); + + const long long tc = GetTimeCode(pCluster); + + const Segment* const pSegment = pCluster->m_pSegment; + const SegmentInfo* const pInfo = pSegment->GetInfo(); + assert(pInfo); + + const long long scale = pInfo->GetTimeCodeScale(); + assert(scale >= 1); + + const long long ns = tc * scale; + + return ns; +} + +long long Block::GetTrackNumber() const { return m_track; } + +bool Block::IsKey() const { + return ((m_flags & static_cast(1 << 7)) != 0); +} + +void Block::SetKey(bool bKey) { + if (bKey) + m_flags |= static_cast(1 << 7); + else + m_flags &= 0x7F; +} + +bool Block::IsInvisible() const { return bool(int(m_flags & 0x08) != 0); } + +Block::Lacing Block::GetLacing() const { + const int value = int(m_flags & 0x06) >> 1; + return static_cast(value); +} + +int Block::GetFrameCount() const { return m_frame_count; } + +const Block::Frame& Block::GetFrame(int idx) const { + assert(idx >= 0); + assert(idx < m_frame_count); + + const Frame& f = m_frames[idx]; + assert(f.pos > 0); + assert(f.len > 0); + + return f; +} + +long Block::Frame::Read(IMkvReader* pReader, unsigned char* buf) const { + assert(pReader); + assert(buf); + + const long status = pReader->Read(pos, len, buf); + return status; +} + +long long Block::GetDiscardPadding() const { return m_discard_padding; } + +} // namespace mkvparser diff --git a/third_party/libwebm/mkvparser/mkvparser.h b/third_party/libwebm/mkvparser/mkvparser.h new file mode 100644 index 0000000..26c2b7e --- /dev/null +++ b/third_party/libwebm/mkvparser/mkvparser.h @@ -0,0 +1,1145 @@ +// Copyright (c) 2012 The WebM project authors. All Rights Reserved. +// +// Use of this source code is governed by a BSD-style license +// that can be found in the LICENSE file in the root of the source +// tree. An additional intellectual property rights grant can be found +// in the file PATENTS. All contributing project authors may +// be found in the AUTHORS file in the root of the source tree. +#ifndef MKVPARSER_MKVPARSER_H_ +#define MKVPARSER_MKVPARSER_H_ + +#include + +namespace mkvparser { + +const int E_PARSE_FAILED = -1; +const int E_FILE_FORMAT_INVALID = -2; +const int E_BUFFER_NOT_FULL = -3; + +class IMkvReader { + public: + virtual int Read(long long pos, long len, unsigned char* buf) = 0; + virtual int Length(long long* total, long long* available) = 0; + + protected: + virtual ~IMkvReader(); +}; + +template +Type* SafeArrayAlloc(unsigned long long num_elements, + unsigned long long element_size); +long long GetUIntLength(IMkvReader*, long long, long&); +long long ReadUInt(IMkvReader*, long long, long&); +long long ReadID(IMkvReader* pReader, long long pos, long& len); +long long UnserializeUInt(IMkvReader*, long long pos, long long size); + +long UnserializeFloat(IMkvReader*, long long pos, long long size, double&); +long UnserializeInt(IMkvReader*, long long pos, long long size, + long long& result); + +long UnserializeString(IMkvReader*, long long pos, long long size, char*& str); + +long ParseElementHeader(IMkvReader* pReader, + long long& pos, // consume id and size fields + long long stop, // if you know size of element's parent + long long& id, long long& size); + +bool Match(IMkvReader*, long long&, unsigned long, long long&); +bool Match(IMkvReader*, long long&, unsigned long, unsigned char*&, size_t&); + +void GetVersion(int& major, int& minor, int& build, int& revision); + +struct EBMLHeader { + EBMLHeader(); + ~EBMLHeader(); + long long m_version; + long long m_readVersion; + long long m_maxIdLength; + long long m_maxSizeLength; + char* m_docType; + long long m_docTypeVersion; + long long m_docTypeReadVersion; + + long long Parse(IMkvReader*, long long&); + void Init(); +}; + +class Segment; +class Track; +class Cluster; + +class Block { + Block(const Block&); + Block& operator=(const Block&); + + public: + const long long m_start; + const long long m_size; + + Block(long long start, long long size, long long discard_padding); + ~Block(); + + long Parse(const Cluster*); + + long long GetTrackNumber() const; + long long GetTimeCode(const Cluster*) const; // absolute, but not scaled + long long GetTime(const Cluster*) const; // absolute, and scaled (ns) + bool IsKey() const; + void SetKey(bool); + bool IsInvisible() const; + + enum Lacing { kLacingNone, kLacingXiph, kLacingFixed, kLacingEbml }; + Lacing GetLacing() const; + + int GetFrameCount() const; // to index frames: [0, count) + + struct Frame { + long long pos; // absolute offset + long len; + + long Read(IMkvReader*, unsigned char*) const; + }; + + const Frame& GetFrame(int frame_index) const; + + long long GetDiscardPadding() const; + + private: + long long m_track; // Track::Number() + short m_timecode; // relative to cluster + unsigned char m_flags; + + Frame* m_frames; + int m_frame_count; + + protected: + const long long m_discard_padding; +}; + +class BlockEntry { + BlockEntry(const BlockEntry&); + BlockEntry& operator=(const BlockEntry&); + + protected: + BlockEntry(Cluster*, long index); + + public: + virtual ~BlockEntry(); + + bool EOS() const { return (GetKind() == kBlockEOS); } + const Cluster* GetCluster() const; + long GetIndex() const; + virtual const Block* GetBlock() const = 0; + + enum Kind { kBlockEOS, kBlockSimple, kBlockGroup }; + virtual Kind GetKind() const = 0; + + protected: + Cluster* const m_pCluster; + const long m_index; +}; + +class SimpleBlock : public BlockEntry { + SimpleBlock(const SimpleBlock&); + SimpleBlock& operator=(const SimpleBlock&); + + public: + SimpleBlock(Cluster*, long index, long long start, long long size); + long Parse(); + + Kind GetKind() const; + const Block* GetBlock() const; + + protected: + Block m_block; +}; + +class BlockGroup : public BlockEntry { + BlockGroup(const BlockGroup&); + BlockGroup& operator=(const BlockGroup&); + + public: + BlockGroup(Cluster*, long index, + long long block_start, // absolute pos of block's payload + long long block_size, // size of block's payload + long long prev, long long next, long long duration, + long long discard_padding); + + long Parse(); + + Kind GetKind() const; + const Block* GetBlock() const; + + long long GetPrevTimeCode() const; // relative to block's time + long long GetNextTimeCode() const; // as above + long long GetDurationTimeCode() const; + + private: + Block m_block; + const long long m_prev; + const long long m_next; + const long long m_duration; +}; + +/////////////////////////////////////////////////////////////// +// ContentEncoding element +// Elements used to describe if the track data has been encrypted or +// compressed with zlib or header stripping. +class ContentEncoding { + public: + enum { kCTR = 1 }; + + ContentEncoding(); + ~ContentEncoding(); + + // ContentCompression element names + struct ContentCompression { + ContentCompression(); + ~ContentCompression(); + + unsigned long long algo; + unsigned char* settings; + long long settings_len; + }; + + // ContentEncAESSettings element names + struct ContentEncAESSettings { + ContentEncAESSettings() : cipher_mode(kCTR) {} + ~ContentEncAESSettings() {} + + unsigned long long cipher_mode; + }; + + // ContentEncryption element names + struct ContentEncryption { + ContentEncryption(); + ~ContentEncryption(); + + unsigned long long algo; + unsigned char* key_id; + long long key_id_len; + unsigned char* signature; + long long signature_len; + unsigned char* sig_key_id; + long long sig_key_id_len; + unsigned long long sig_algo; + unsigned long long sig_hash_algo; + + ContentEncAESSettings aes_settings; + }; + + // Returns ContentCompression represented by |idx|. Returns NULL if |idx| + // is out of bounds. + const ContentCompression* GetCompressionByIndex(unsigned long idx) const; + + // Returns number of ContentCompression elements in this ContentEncoding + // element. + unsigned long GetCompressionCount() const; + + // Parses the ContentCompression element from |pReader|. |start| is the + // starting offset of the ContentCompression payload. |size| is the size in + // bytes of the ContentCompression payload. |compression| is where the parsed + // values will be stored. + long ParseCompressionEntry(long long start, long long size, + IMkvReader* pReader, + ContentCompression* compression); + + // Returns ContentEncryption represented by |idx|. Returns NULL if |idx| + // is out of bounds. + const ContentEncryption* GetEncryptionByIndex(unsigned long idx) const; + + // Returns number of ContentEncryption elements in this ContentEncoding + // element. + unsigned long GetEncryptionCount() const; + + // Parses the ContentEncAESSettings element from |pReader|. |start| is the + // starting offset of the ContentEncAESSettings payload. |size| is the + // size in bytes of the ContentEncAESSettings payload. |encryption| is + // where the parsed values will be stored. + long ParseContentEncAESSettingsEntry(long long start, long long size, + IMkvReader* pReader, + ContentEncAESSettings* aes); + + // Parses the ContentEncoding element from |pReader|. |start| is the + // starting offset of the ContentEncoding payload. |size| is the size in + // bytes of the ContentEncoding payload. Returns true on success. + long ParseContentEncodingEntry(long long start, long long size, + IMkvReader* pReader); + + // Parses the ContentEncryption element from |pReader|. |start| is the + // starting offset of the ContentEncryption payload. |size| is the size in + // bytes of the ContentEncryption payload. |encryption| is where the parsed + // values will be stored. + long ParseEncryptionEntry(long long start, long long size, + IMkvReader* pReader, ContentEncryption* encryption); + + unsigned long long encoding_order() const { return encoding_order_; } + unsigned long long encoding_scope() const { return encoding_scope_; } + unsigned long long encoding_type() const { return encoding_type_; } + + private: + // Member variables for list of ContentCompression elements. + ContentCompression** compression_entries_; + ContentCompression** compression_entries_end_; + + // Member variables for list of ContentEncryption elements. + ContentEncryption** encryption_entries_; + ContentEncryption** encryption_entries_end_; + + // ContentEncoding element names + unsigned long long encoding_order_; + unsigned long long encoding_scope_; + unsigned long long encoding_type_; + + // LIBWEBM_DISALLOW_COPY_AND_ASSIGN(ContentEncoding); + ContentEncoding(const ContentEncoding&); + ContentEncoding& operator=(const ContentEncoding&); +}; + +class Track { + Track(const Track&); + Track& operator=(const Track&); + + public: + class Info; + static long Create(Segment*, const Info&, long long element_start, + long long element_size, Track*&); + + enum Type { kVideo = 1, kAudio = 2, kSubtitle = 0x11, kMetadata = 0x21 }; + + Segment* const m_pSegment; + const long long m_element_start; + const long long m_element_size; + virtual ~Track(); + + long GetType() const; + long GetNumber() const; + unsigned long long GetUid() const; + const char* GetNameAsUTF8() const; + const char* GetLanguage() const; + const char* GetCodecNameAsUTF8() const; + const char* GetCodecId() const; + const unsigned char* GetCodecPrivate(size_t&) const; + bool GetLacing() const; + unsigned long long GetDefaultDuration() const; + unsigned long long GetCodecDelay() const; + unsigned long long GetSeekPreRoll() const; + + const BlockEntry* GetEOS() const; + + struct Settings { + long long start; + long long size; + }; + + class Info { + public: + Info(); + ~Info(); + int Copy(Info&) const; + void Clear(); + long type; + long number; + unsigned long long uid; + unsigned long long defaultDuration; + unsigned long long codecDelay; + unsigned long long seekPreRoll; + char* nameAsUTF8; + char* language; + char* codecId; + char* codecNameAsUTF8; + unsigned char* codecPrivate; + size_t codecPrivateSize; + bool lacing; + Settings settings; + + private: + Info(const Info&); + Info& operator=(const Info&); + int CopyStr(char* Info::*str, Info&) const; + }; + + long GetFirst(const BlockEntry*&) const; + long GetNext(const BlockEntry* pCurr, const BlockEntry*& pNext) const; + virtual bool VetEntry(const BlockEntry*) const; + virtual long Seek(long long time_ns, const BlockEntry*&) const; + + const ContentEncoding* GetContentEncodingByIndex(unsigned long idx) const; + unsigned long GetContentEncodingCount() const; + + long ParseContentEncodingsEntry(long long start, long long size); + + protected: + Track(Segment*, long long element_start, long long element_size); + + Info m_info; + + class EOSBlock : public BlockEntry { + public: + EOSBlock(); + + Kind GetKind() const; + const Block* GetBlock() const; + }; + + EOSBlock m_eos; + + private: + ContentEncoding** content_encoding_entries_; + ContentEncoding** content_encoding_entries_end_; +}; + +struct PrimaryChromaticity { + PrimaryChromaticity() : x(0), y(0) {} + ~PrimaryChromaticity() {} + static bool Parse(IMkvReader* reader, long long read_pos, + long long value_size, bool is_x, + PrimaryChromaticity** chromaticity); + float x; + float y; +}; + +struct MasteringMetadata { + static const float kValueNotPresent; + + MasteringMetadata() + : r(NULL), + g(NULL), + b(NULL), + white_point(NULL), + luminance_max(kValueNotPresent), + luminance_min(kValueNotPresent) {} + ~MasteringMetadata() { + delete r; + delete g; + delete b; + delete white_point; + } + + static bool Parse(IMkvReader* reader, long long element_start, + long long element_size, + MasteringMetadata** mastering_metadata); + + PrimaryChromaticity* r; + PrimaryChromaticity* g; + PrimaryChromaticity* b; + PrimaryChromaticity* white_point; + float luminance_max; + float luminance_min; +}; + +struct Colour { + static const long long kValueNotPresent; + + // Unless otherwise noted all values assigned upon construction are the + // equivalent of unspecified/default. + Colour() + : matrix_coefficients(kValueNotPresent), + bits_per_channel(kValueNotPresent), + chroma_subsampling_horz(kValueNotPresent), + chroma_subsampling_vert(kValueNotPresent), + cb_subsampling_horz(kValueNotPresent), + cb_subsampling_vert(kValueNotPresent), + chroma_siting_horz(kValueNotPresent), + chroma_siting_vert(kValueNotPresent), + range(kValueNotPresent), + transfer_characteristics(kValueNotPresent), + primaries(kValueNotPresent), + max_cll(kValueNotPresent), + max_fall(kValueNotPresent), + mastering_metadata(NULL) {} + ~Colour() { + delete mastering_metadata; + mastering_metadata = NULL; + } + + static bool Parse(IMkvReader* reader, long long element_start, + long long element_size, Colour** colour); + + long long matrix_coefficients; + long long bits_per_channel; + long long chroma_subsampling_horz; + long long chroma_subsampling_vert; + long long cb_subsampling_horz; + long long cb_subsampling_vert; + long long chroma_siting_horz; + long long chroma_siting_vert; + long long range; + long long transfer_characteristics; + long long primaries; + long long max_cll; + long long max_fall; + + MasteringMetadata* mastering_metadata; +}; + +struct Projection { + enum ProjectionType { + kTypeNotPresent = -1, + kRectangular = 0, + kEquirectangular = 1, + kCubeMap = 2, + kMesh = 3, + }; + static const float kValueNotPresent; + Projection() + : type(kTypeNotPresent), + private_data(NULL), + private_data_length(0), + pose_yaw(kValueNotPresent), + pose_pitch(kValueNotPresent), + pose_roll(kValueNotPresent) {} + ~Projection() { delete[] private_data; } + static bool Parse(IMkvReader* reader, long long element_start, + long long element_size, Projection** projection); + + ProjectionType type; + unsigned char* private_data; + size_t private_data_length; + float pose_yaw; + float pose_pitch; + float pose_roll; +}; + +class VideoTrack : public Track { + VideoTrack(const VideoTrack&); + VideoTrack& operator=(const VideoTrack&); + + VideoTrack(Segment*, long long element_start, long long element_size); + + public: + virtual ~VideoTrack(); + static long Parse(Segment*, const Info&, long long element_start, + long long element_size, VideoTrack*&); + + long long GetWidth() const; + long long GetHeight() const; + long long GetDisplayWidth() const; + long long GetDisplayHeight() const; + long long GetDisplayUnit() const; + long long GetStereoMode() const; + double GetFrameRate() const; + + bool VetEntry(const BlockEntry*) const; + long Seek(long long time_ns, const BlockEntry*&) const; + + Colour* GetColour() const; + + Projection* GetProjection() const; + + private: + long long m_width; + long long m_height; + long long m_display_width; + long long m_display_height; + long long m_display_unit; + long long m_stereo_mode; + + double m_rate; + + Colour* m_colour; + Projection* m_projection; +}; + +class AudioTrack : public Track { + AudioTrack(const AudioTrack&); + AudioTrack& operator=(const AudioTrack&); + + AudioTrack(Segment*, long long element_start, long long element_size); + + public: + static long Parse(Segment*, const Info&, long long element_start, + long long element_size, AudioTrack*&); + + double GetSamplingRate() const; + long long GetChannels() const; + long long GetBitDepth() const; + + private: + double m_rate; + long long m_channels; + long long m_bitDepth; +}; + +class Tracks { + Tracks(const Tracks&); + Tracks& operator=(const Tracks&); + + public: + Segment* const m_pSegment; + const long long m_start; + const long long m_size; + const long long m_element_start; + const long long m_element_size; + + Tracks(Segment*, long long start, long long size, long long element_start, + long long element_size); + + ~Tracks(); + + long Parse(); + + unsigned long GetTracksCount() const; + + const Track* GetTrackByNumber(long tn) const; + const Track* GetTrackByIndex(unsigned long idx) const; + + private: + Track** m_trackEntries; + Track** m_trackEntriesEnd; + + long ParseTrackEntry(long long payload_start, long long payload_size, + long long element_start, long long element_size, + Track*&) const; +}; + +class Chapters { + Chapters(const Chapters&); + Chapters& operator=(const Chapters&); + + public: + Segment* const m_pSegment; + const long long m_start; + const long long m_size; + const long long m_element_start; + const long long m_element_size; + + Chapters(Segment*, long long payload_start, long long payload_size, + long long element_start, long long element_size); + + ~Chapters(); + + long Parse(); + + class Atom; + class Edition; + + class Display { + friend class Atom; + Display(); + Display(const Display&); + ~Display(); + Display& operator=(const Display&); + + public: + const char* GetString() const; + const char* GetLanguage() const; + const char* GetCountry() const; + + private: + void Init(); + void ShallowCopy(Display&) const; + void Clear(); + long Parse(IMkvReader*, long long pos, long long size); + + char* m_string; + char* m_language; + char* m_country; + }; + + class Atom { + friend class Edition; + Atom(); + Atom(const Atom&); + ~Atom(); + Atom& operator=(const Atom&); + + public: + unsigned long long GetUID() const; + const char* GetStringUID() const; + + long long GetStartTimecode() const; + long long GetStopTimecode() const; + + long long GetStartTime(const Chapters*) const; + long long GetStopTime(const Chapters*) const; + + int GetDisplayCount() const; + const Display* GetDisplay(int index) const; + + private: + void Init(); + void ShallowCopy(Atom&) const; + void Clear(); + long Parse(IMkvReader*, long long pos, long long size); + static long long GetTime(const Chapters*, long long timecode); + + long ParseDisplay(IMkvReader*, long long pos, long long size); + bool ExpandDisplaysArray(); + + char* m_string_uid; + unsigned long long m_uid; + long long m_start_timecode; + long long m_stop_timecode; + + Display* m_displays; + int m_displays_size; + int m_displays_count; + }; + + class Edition { + friend class Chapters; + Edition(); + Edition(const Edition&); + ~Edition(); + Edition& operator=(const Edition&); + + public: + int GetAtomCount() const; + const Atom* GetAtom(int index) const; + + private: + void Init(); + void ShallowCopy(Edition&) const; + void Clear(); + long Parse(IMkvReader*, long long pos, long long size); + + long ParseAtom(IMkvReader*, long long pos, long long size); + bool ExpandAtomsArray(); + + Atom* m_atoms; + int m_atoms_size; + int m_atoms_count; + }; + + int GetEditionCount() const; + const Edition* GetEdition(int index) const; + + private: + long ParseEdition(long long pos, long long size); + bool ExpandEditionsArray(); + + Edition* m_editions; + int m_editions_size; + int m_editions_count; +}; + +class Tags { + Tags(const Tags&); + Tags& operator=(const Tags&); + + public: + Segment* const m_pSegment; + const long long m_start; + const long long m_size; + const long long m_element_start; + const long long m_element_size; + + Tags(Segment*, long long payload_start, long long payload_size, + long long element_start, long long element_size); + + ~Tags(); + + long Parse(); + + class Tag; + class SimpleTag; + + class SimpleTag { + friend class Tag; + SimpleTag(); + SimpleTag(const SimpleTag&); + ~SimpleTag(); + SimpleTag& operator=(const SimpleTag&); + + public: + const char* GetTagName() const; + const char* GetTagString() const; + + private: + void Init(); + void ShallowCopy(SimpleTag&) const; + void Clear(); + long Parse(IMkvReader*, long long pos, long long size); + + char* m_tag_name; + char* m_tag_string; + }; + + class Tag { + friend class Tags; + Tag(); + Tag(const Tag&); + ~Tag(); + Tag& operator=(const Tag&); + + public: + int GetSimpleTagCount() const; + const SimpleTag* GetSimpleTag(int index) const; + + private: + void Init(); + void ShallowCopy(Tag&) const; + void Clear(); + long Parse(IMkvReader*, long long pos, long long size); + + long ParseSimpleTag(IMkvReader*, long long pos, long long size); + bool ExpandSimpleTagsArray(); + + SimpleTag* m_simple_tags; + int m_simple_tags_size; + int m_simple_tags_count; + }; + + int GetTagCount() const; + const Tag* GetTag(int index) const; + + private: + long ParseTag(long long pos, long long size); + bool ExpandTagsArray(); + + Tag* m_tags; + int m_tags_size; + int m_tags_count; +}; + +class SegmentInfo { + SegmentInfo(const SegmentInfo&); + SegmentInfo& operator=(const SegmentInfo&); + + public: + Segment* const m_pSegment; + const long long m_start; + const long long m_size; + const long long m_element_start; + const long long m_element_size; + + SegmentInfo(Segment*, long long start, long long size, + long long element_start, long long element_size); + + ~SegmentInfo(); + + long Parse(); + + long long GetTimeCodeScale() const; + long long GetDuration() const; // scaled + const char* GetMuxingAppAsUTF8() const; + const char* GetWritingAppAsUTF8() const; + const char* GetTitleAsUTF8() const; + + private: + long long m_timecodeScale; + double m_duration; + char* m_pMuxingAppAsUTF8; + char* m_pWritingAppAsUTF8; + char* m_pTitleAsUTF8; +}; + +class SeekHead { + SeekHead(const SeekHead&); + SeekHead& operator=(const SeekHead&); + + public: + Segment* const m_pSegment; + const long long m_start; + const long long m_size; + const long long m_element_start; + const long long m_element_size; + + SeekHead(Segment*, long long start, long long size, long long element_start, + long long element_size); + + ~SeekHead(); + + long Parse(); + + struct Entry { + Entry(); + + // the SeekHead entry payload + long long id; + long long pos; + + // absolute pos of SeekEntry ID + long long element_start; + + // SeekEntry ID size + size size + payload + long long element_size; + }; + + int GetCount() const; + const Entry* GetEntry(int idx) const; + + struct VoidElement { + // absolute pos of Void ID + long long element_start; + + // ID size + size size + payload size + long long element_size; + }; + + int GetVoidElementCount() const; + const VoidElement* GetVoidElement(int idx) const; + + private: + Entry* m_entries; + int m_entry_count; + + VoidElement* m_void_elements; + int m_void_element_count; + + static bool ParseEntry(IMkvReader*, + long long pos, // payload + long long size, Entry*); +}; + +class Cues; +class CuePoint { + friend class Cues; + + CuePoint(long, long long); + ~CuePoint(); + + CuePoint(const CuePoint&); + CuePoint& operator=(const CuePoint&); + + public: + long long m_element_start; + long long m_element_size; + + bool Load(IMkvReader*); + + long long GetTimeCode() const; // absolute but unscaled + long long GetTime(const Segment*) const; // absolute and scaled (ns units) + + struct TrackPosition { + long long m_track; + long long m_pos; // of cluster + long long m_block; + // codec_state //defaults to 0 + // reference = clusters containing req'd referenced blocks + // reftime = timecode of the referenced block + + bool Parse(IMkvReader*, long long, long long); + }; + + const TrackPosition* Find(const Track*) const; + + private: + const long m_index; + long long m_timecode; + TrackPosition* m_track_positions; + size_t m_track_positions_count; +}; + +class Cues { + friend class Segment; + + Cues(Segment*, long long start, long long size, long long element_start, + long long element_size); + ~Cues(); + + Cues(const Cues&); + Cues& operator=(const Cues&); + + public: + Segment* const m_pSegment; + const long long m_start; + const long long m_size; + const long long m_element_start; + const long long m_element_size; + + bool Find( // lower bound of time_ns + long long time_ns, const Track*, const CuePoint*&, + const CuePoint::TrackPosition*&) const; + + const CuePoint* GetFirst() const; + const CuePoint* GetLast() const; + const CuePoint* GetNext(const CuePoint*) const; + + const BlockEntry* GetBlock(const CuePoint*, + const CuePoint::TrackPosition*) const; + + bool LoadCuePoint() const; + long GetCount() const; // loaded only + // long GetTotal() const; //loaded + preloaded + bool DoneParsing() const; + + private: + bool Init() const; + bool PreloadCuePoint(long&, long long) const; + + mutable CuePoint** m_cue_points; + mutable long m_count; + mutable long m_preload_count; + mutable long long m_pos; +}; + +class Cluster { + friend class Segment; + + Cluster(const Cluster&); + Cluster& operator=(const Cluster&); + + public: + Segment* const m_pSegment; + + public: + static Cluster* Create(Segment*, + long index, // index in segment + long long off); // offset relative to segment + // long long element_size); + + Cluster(); // EndOfStream + ~Cluster(); + + bool EOS() const; + + long long GetTimeCode() const; // absolute, but not scaled + long long GetTime() const; // absolute, and scaled (nanosecond units) + long long GetFirstTime() const; // time (ns) of first (earliest) block + long long GetLastTime() const; // time (ns) of last (latest) block + + long GetFirst(const BlockEntry*&) const; + long GetLast(const BlockEntry*&) const; + long GetNext(const BlockEntry* curr, const BlockEntry*& next) const; + + const BlockEntry* GetEntry(const Track*, long long ns = -1) const; + const BlockEntry* GetEntry(const CuePoint&, + const CuePoint::TrackPosition&) const; + // const BlockEntry* GetMaxKey(const VideoTrack*) const; + + // static bool HasBlockEntries(const Segment*, long long); + + static long HasBlockEntries(const Segment*, long long idoff, long long& pos, + long& size); + + long GetEntryCount() const; + + long Load(long long& pos, long& size) const; + + long Parse(long long& pos, long& size) const; + long GetEntry(long index, const mkvparser::BlockEntry*&) const; + + protected: + Cluster(Segment*, long index, long long element_start); + // long long element_size); + + public: + const long long m_element_start; + long long GetPosition() const; // offset relative to segment + + long GetIndex() const; + long long GetElementSize() const; + // long long GetPayloadSize() const; + + // long long Unparsed() const; + + private: + long m_index; + mutable long long m_pos; + // mutable long long m_size; + mutable long long m_element_size; + mutable long long m_timecode; + mutable BlockEntry** m_entries; + mutable long m_entries_size; + mutable long m_entries_count; + + long ParseSimpleBlock(long long, long long&, long&); + long ParseBlockGroup(long long, long long&, long&); + + long CreateBlock(long long id, long long pos, long long size, + long long discard_padding); + long CreateBlockGroup(long long start_offset, long long size, + long long discard_padding); + long CreateSimpleBlock(long long, long long); +}; + +class Segment { + friend class Cues; + friend class Track; + friend class VideoTrack; + + Segment(const Segment&); + Segment& operator=(const Segment&); + + private: + Segment(IMkvReader*, long long elem_start, + // long long elem_size, + long long pos, long long size); + + public: + IMkvReader* const m_pReader; + const long long m_element_start; + // const long long m_element_size; + const long long m_start; // posn of segment payload + const long long m_size; // size of segment payload + Cluster m_eos; // TODO: make private? + + static long long CreateInstance(IMkvReader*, long long, Segment*&); + ~Segment(); + + long Load(); // loads headers and all clusters + + // for incremental loading + // long long Unparsed() const; + bool DoneParsing() const; + long long ParseHeaders(); // stops when first cluster is found + // long FindNextCluster(long long& pos, long& size) const; + long LoadCluster(long long& pos, long& size); // load one cluster + long LoadCluster(); + + long ParseNext(const Cluster* pCurr, const Cluster*& pNext, long long& pos, + long& size); + + const SeekHead* GetSeekHead() const; + const Tracks* GetTracks() const; + const SegmentInfo* GetInfo() const; + const Cues* GetCues() const; + const Chapters* GetChapters() const; + const Tags* GetTags() const; + + long long GetDuration() const; + + unsigned long GetCount() const; + const Cluster* GetFirst() const; + const Cluster* GetLast() const; + const Cluster* GetNext(const Cluster*); + + const Cluster* FindCluster(long long time_nanoseconds) const; + // const BlockEntry* Seek(long long time_nanoseconds, const Track*) const; + + const Cluster* FindOrPreloadCluster(long long pos); + + long ParseCues(long long cues_off, // offset relative to start of segment + long long& parse_pos, long& parse_len); + + private: + long long m_pos; // absolute file posn; what has been consumed so far + Cluster* m_pUnknownSize; + + SeekHead* m_pSeekHead; + SegmentInfo* m_pInfo; + Tracks* m_pTracks; + Cues* m_pCues; + Chapters* m_pChapters; + Tags* m_pTags; + Cluster** m_clusters; + long m_clusterCount; // number of entries for which m_index >= 0 + long m_clusterPreloadCount; // number of entries for which m_index < 0 + long m_clusterSize; // array size + + long DoLoadCluster(long long&, long&); + long DoLoadClusterUnknownSize(long long&, long&); + long DoParseNext(const Cluster*&, long long&, long&); + + bool AppendCluster(Cluster*); + bool PreloadCluster(Cluster*, ptrdiff_t); + + // void ParseSeekHead(long long pos, long long size); + // void ParseSeekEntry(long long pos, long long size); + // void ParseCues(long long); + + const BlockEntry* GetBlock(const CuePoint&, const CuePoint::TrackPosition&); +}; + +} // namespace mkvparser + +inline long mkvparser::Segment::LoadCluster() { + long long pos; + long size; + + return LoadCluster(pos, size); +} + +#endif // MKVPARSER_MKVPARSER_H_ diff --git a/third_party/libwebm/mkvparser/mkvreader.cc b/third_party/libwebm/mkvparser/mkvreader.cc new file mode 100644 index 0000000..23d68f5 --- /dev/null +++ b/third_party/libwebm/mkvparser/mkvreader.cc @@ -0,0 +1,133 @@ +// Copyright (c) 2010 The WebM project authors. All Rights Reserved. +// +// Use of this source code is governed by a BSD-style license +// that can be found in the LICENSE file in the root of the source +// tree. An additional intellectual property rights grant can be found +// in the file PATENTS. All contributing project authors may +// be found in the AUTHORS file in the root of the source tree. +#include "mkvparser/mkvreader.h" + +#include + +#include + +namespace mkvparser { + +MkvReader::MkvReader() : m_file(NULL), reader_owns_file_(true) {} + +MkvReader::MkvReader(FILE* fp) : m_file(fp), reader_owns_file_(false) { + GetFileSize(); +} + +MkvReader::~MkvReader() { + if (reader_owns_file_) + Close(); + m_file = NULL; +} + +int MkvReader::Open(const char* fileName) { + if (fileName == NULL) + return -1; + + if (m_file) + return -1; + +#ifdef _MSC_VER + const errno_t e = fopen_s(&m_file, fileName, "rb"); + + if (e) + return -1; // error +#else + m_file = fopen(fileName, "rb"); + + if (m_file == NULL) + return -1; +#endif + return !GetFileSize(); +} + +bool MkvReader::GetFileSize() { + if (m_file == NULL) + return false; +#ifdef _MSC_VER + int status = _fseeki64(m_file, 0L, SEEK_END); + + if (status) + return false; // error + + m_length = _ftelli64(m_file); +#else + fseek(m_file, 0L, SEEK_END); + m_length = ftell(m_file); +#endif + assert(m_length >= 0); + + if (m_length < 0) + return false; + +#ifdef _MSC_VER + status = _fseeki64(m_file, 0L, SEEK_SET); + + if (status) + return false; // error +#else + fseek(m_file, 0L, SEEK_SET); +#endif + + return true; +} + +void MkvReader::Close() { + if (m_file != NULL) { + fclose(m_file); + m_file = NULL; + } +} + +int MkvReader::Length(long long* total, long long* available) { + if (m_file == NULL) + return -1; + + if (total) + *total = m_length; + + if (available) + *available = m_length; + + return 0; +} + +int MkvReader::Read(long long offset, long len, unsigned char* buffer) { + if (m_file == NULL) + return -1; + + if (offset < 0) + return -1; + + if (len < 0) + return -1; + + if (len == 0) + return 0; + + if (offset >= m_length) + return -1; + +#ifdef _MSC_VER + const int status = _fseeki64(m_file, offset, SEEK_SET); + + if (status) + return -1; // error +#else + fseeko(m_file, static_cast(offset), SEEK_SET); +#endif + + const size_t size = fread(buffer, 1, len, m_file); + + if (size < size_t(len)) + return -1; // error + + return 0; // success +} + +} // namespace mkvparser diff --git a/third_party/libwebm/mkvparser/mkvreader.h b/third_party/libwebm/mkvparser/mkvreader.h new file mode 100644 index 0000000..9831ecf --- /dev/null +++ b/third_party/libwebm/mkvparser/mkvreader.h @@ -0,0 +1,45 @@ +// Copyright (c) 2010 The WebM project authors. All Rights Reserved. +// +// Use of this source code is governed by a BSD-style license +// that can be found in the LICENSE file in the root of the source +// tree. An additional intellectual property rights grant can be found +// in the file PATENTS. All contributing project authors may +// be found in the AUTHORS file in the root of the source tree. +#ifndef MKVPARSER_MKVREADER_H_ +#define MKVPARSER_MKVREADER_H_ + +#include + +#include "mkvparser/mkvparser.h" + +namespace mkvparser { + +class MkvReader : public IMkvReader { + public: + MkvReader(); + explicit MkvReader(FILE* fp); + virtual ~MkvReader(); + + int Open(const char*); + void Close(); + + virtual int Read(long long position, long length, unsigned char* buffer); + virtual int Length(long long* total, long long* available); + + private: + MkvReader(const MkvReader&); + MkvReader& operator=(const MkvReader&); + + // Determines the size of the file. This is called either by the constructor + // or by the Open function depending on file ownership. Returns true on + // success. + bool GetFileSize(); + + long long m_length; + FILE* m_file; + bool reader_owns_file_; +}; + +} // namespace mkvparser + +#endif // MKVPARSER_MKVREADER_H_ diff --git a/third_party/libyuv/README.libvpx b/third_party/libyuv/README.libvpx new file mode 100644 index 0000000..485f79c --- /dev/null +++ b/third_party/libyuv/README.libvpx @@ -0,0 +1,22 @@ +Name: libyuv +URL: https://chromium.googlesource.com/libyuv/libyuv +Version: de944ed8c74909ea6fbd743a22efe1e55e851b83 +License: BSD +License File: LICENSE + +Description: +libyuv is an open source project that includes YUV conversion and scaling +functionality. + +The optimized scaler in libyuv is used in multiple resolution encoder example, +which down-samples the original input video (f.g. 1280x720) a number of times +in order to encode multiple resolution bit streams. + +Local Modifications: +rm -rf .gitignore .gn AUTHORS Android.mk BUILD.gn CMakeLists.txt DEPS LICENSE \ + LICENSE_THIRD_PARTY OWNERS PATENTS PRESUBMIT.py README.chromium README.md \ + all.gyp build_overrides/ chromium/ codereview.settings docs/ \ + download_vs_toolchain.py gyp_libyuv gyp_libyuv.py include/libyuv.h \ + include/libyuv/compare_row.h libyuv.gyp libyuv.gypi libyuv_nacl.gyp \ + libyuv_test.gyp linux.mk public.mk setup_links.py sync_chromium.py \ + third_party/ tools/ unit_test/ util/ winarm.mk diff --git a/third_party/libyuv/include/libyuv/basic_types.h b/third_party/libyuv/include/libyuv/basic_types.h new file mode 100644 index 0000000..54a2181 --- /dev/null +++ b/third_party/libyuv/include/libyuv/basic_types.h @@ -0,0 +1,118 @@ +/* + * Copyright 2011 The LibYuv Project Authors. All rights reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef INCLUDE_LIBYUV_BASIC_TYPES_H_ // NOLINT +#define INCLUDE_LIBYUV_BASIC_TYPES_H_ + +#include // for NULL, size_t + +#if defined(_MSC_VER) && (_MSC_VER < 1600) +#include // for uintptr_t on x86 +#else +#include // for uintptr_t +#endif + +#ifndef GG_LONGLONG +#ifndef INT_TYPES_DEFINED +#define INT_TYPES_DEFINED +#ifdef COMPILER_MSVC +typedef unsigned __int64 uint64; +typedef __int64 int64; +#ifndef INT64_C +#define INT64_C(x) x ## I64 +#endif +#ifndef UINT64_C +#define UINT64_C(x) x ## UI64 +#endif +#define INT64_F "I64" +#else // COMPILER_MSVC +#if defined(__LP64__) && !defined(__OpenBSD__) && !defined(__APPLE__) +typedef unsigned long uint64; // NOLINT +typedef long int64; // NOLINT +#ifndef INT64_C +#define INT64_C(x) x ## L +#endif +#ifndef UINT64_C +#define UINT64_C(x) x ## UL +#endif +#define INT64_F "l" +#else // defined(__LP64__) && !defined(__OpenBSD__) && !defined(__APPLE__) +typedef unsigned long long uint64; // NOLINT +typedef long long int64; // NOLINT +#ifndef INT64_C +#define INT64_C(x) x ## LL +#endif +#ifndef UINT64_C +#define UINT64_C(x) x ## ULL +#endif +#define INT64_F "ll" +#endif // __LP64__ +#endif // COMPILER_MSVC +typedef unsigned int uint32; +typedef int int32; +typedef unsigned short uint16; // NOLINT +typedef short int16; // NOLINT +typedef unsigned char uint8; +typedef signed char int8; +#endif // INT_TYPES_DEFINED +#endif // GG_LONGLONG + +// Detect compiler is for x86 or x64. +#if defined(__x86_64__) || defined(_M_X64) || \ + defined(__i386__) || defined(_M_IX86) +#define CPU_X86 1 +#endif +// Detect compiler is for ARM. +#if defined(__arm__) || defined(_M_ARM) +#define CPU_ARM 1 +#endif + +#ifndef ALIGNP +#ifdef __cplusplus +#define ALIGNP(p, t) \ + (reinterpret_cast(((reinterpret_cast(p) + \ + ((t) - 1)) & ~((t) - 1)))) +#else +#define ALIGNP(p, t) \ + ((uint8*)((((uintptr_t)(p) + ((t) - 1)) & ~((t) - 1)))) /* NOLINT */ +#endif +#endif + +#if !defined(LIBYUV_API) +#if defined(_WIN32) || defined(__CYGWIN__) +#if defined(LIBYUV_BUILDING_SHARED_LIBRARY) +#define LIBYUV_API __declspec(dllexport) +#elif defined(LIBYUV_USING_SHARED_LIBRARY) +#define LIBYUV_API __declspec(dllimport) +#else +#define LIBYUV_API +#endif // LIBYUV_BUILDING_SHARED_LIBRARY +#elif defined(__GNUC__) && (__GNUC__ >= 4) && !defined(__APPLE__) && \ + (defined(LIBYUV_BUILDING_SHARED_LIBRARY) || \ + defined(LIBYUV_USING_SHARED_LIBRARY)) +#define LIBYUV_API __attribute__ ((visibility ("default"))) +#else +#define LIBYUV_API +#endif // __GNUC__ +#endif // LIBYUV_API + +#define LIBYUV_BOOL int +#define LIBYUV_FALSE 0 +#define LIBYUV_TRUE 1 + +// Visual C x86 or GCC little endian. +#if defined(__x86_64__) || defined(_M_X64) || \ + defined(__i386__) || defined(_M_IX86) || \ + defined(__arm__) || defined(_M_ARM) || \ + (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) +#define LIBYUV_LITTLE_ENDIAN +#endif + +#endif // INCLUDE_LIBYUV_BASIC_TYPES_H_ NOLINT diff --git a/third_party/libyuv/include/libyuv/compare.h b/third_party/libyuv/include/libyuv/compare.h new file mode 100644 index 0000000..08b2bb2 --- /dev/null +++ b/third_party/libyuv/include/libyuv/compare.h @@ -0,0 +1,78 @@ +/* + * Copyright 2011 The LibYuv Project Authors. All rights reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef INCLUDE_LIBYUV_COMPARE_H_ // NOLINT +#define INCLUDE_LIBYUV_COMPARE_H_ + +#include "libyuv/basic_types.h" + +#ifdef __cplusplus +namespace libyuv { +extern "C" { +#endif + +// Compute a hash for specified memory. Seed of 5381 recommended. +LIBYUV_API +uint32 HashDjb2(const uint8* src, uint64 count, uint32 seed); + +// Scan an opaque argb image and return fourcc based on alpha offset. +// Returns FOURCC_ARGB, FOURCC_BGRA, or 0 if unknown. +LIBYUV_API +uint32 ARGBDetect(const uint8* argb, int stride_argb, int width, int height); + +// Sum Square Error - used to compute Mean Square Error or PSNR. +LIBYUV_API +uint64 ComputeSumSquareError(const uint8* src_a, + const uint8* src_b, int count); + +LIBYUV_API +uint64 ComputeSumSquareErrorPlane(const uint8* src_a, int stride_a, + const uint8* src_b, int stride_b, + int width, int height); + +static const int kMaxPsnr = 128; + +LIBYUV_API +double SumSquareErrorToPsnr(uint64 sse, uint64 count); + +LIBYUV_API +double CalcFramePsnr(const uint8* src_a, int stride_a, + const uint8* src_b, int stride_b, + int width, int height); + +LIBYUV_API +double I420Psnr(const uint8* src_y_a, int stride_y_a, + const uint8* src_u_a, int stride_u_a, + const uint8* src_v_a, int stride_v_a, + const uint8* src_y_b, int stride_y_b, + const uint8* src_u_b, int stride_u_b, + const uint8* src_v_b, int stride_v_b, + int width, int height); + +LIBYUV_API +double CalcFrameSsim(const uint8* src_a, int stride_a, + const uint8* src_b, int stride_b, + int width, int height); + +LIBYUV_API +double I420Ssim(const uint8* src_y_a, int stride_y_a, + const uint8* src_u_a, int stride_u_a, + const uint8* src_v_a, int stride_v_a, + const uint8* src_y_b, int stride_y_b, + const uint8* src_u_b, int stride_u_b, + const uint8* src_v_b, int stride_v_b, + int width, int height); + +#ifdef __cplusplus +} // extern "C" +} // namespace libyuv +#endif + +#endif // INCLUDE_LIBYUV_COMPARE_H_ NOLINT diff --git a/third_party/libyuv/include/libyuv/convert.h b/third_party/libyuv/include/libyuv/convert.h new file mode 100644 index 0000000..fcfcf54 --- /dev/null +++ b/third_party/libyuv/include/libyuv/convert.h @@ -0,0 +1,259 @@ +/* + * Copyright 2011 The LibYuv Project Authors. All rights reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef INCLUDE_LIBYUV_CONVERT_H_ // NOLINT +#define INCLUDE_LIBYUV_CONVERT_H_ + +#include "libyuv/basic_types.h" + +#include "libyuv/rotate.h" // For enum RotationMode. + +// TODO(fbarchard): fix WebRTC source to include following libyuv headers: +#include "libyuv/convert_argb.h" // For WebRTC I420ToARGB. b/620 +#include "libyuv/convert_from.h" // For WebRTC ConvertFromI420. b/620 +#include "libyuv/planar_functions.h" // For WebRTC I420Rect, CopyPlane. b/618 + +#ifdef __cplusplus +namespace libyuv { +extern "C" { +#endif + +// Convert I444 to I420. +LIBYUV_API +int I444ToI420(const uint8* src_y, int src_stride_y, + const uint8* src_u, int src_stride_u, + const uint8* src_v, int src_stride_v, + uint8* dst_y, int dst_stride_y, + uint8* dst_u, int dst_stride_u, + uint8* dst_v, int dst_stride_v, + int width, int height); + +// Convert I422 to I420. +LIBYUV_API +int I422ToI420(const uint8* src_y, int src_stride_y, + const uint8* src_u, int src_stride_u, + const uint8* src_v, int src_stride_v, + uint8* dst_y, int dst_stride_y, + uint8* dst_u, int dst_stride_u, + uint8* dst_v, int dst_stride_v, + int width, int height); + +// Convert I411 to I420. +LIBYUV_API +int I411ToI420(const uint8* src_y, int src_stride_y, + const uint8* src_u, int src_stride_u, + const uint8* src_v, int src_stride_v, + uint8* dst_y, int dst_stride_y, + uint8* dst_u, int dst_stride_u, + uint8* dst_v, int dst_stride_v, + int width, int height); + +// Copy I420 to I420. +#define I420ToI420 I420Copy +LIBYUV_API +int I420Copy(const uint8* src_y, int src_stride_y, + const uint8* src_u, int src_stride_u, + const uint8* src_v, int src_stride_v, + uint8* dst_y, int dst_stride_y, + uint8* dst_u, int dst_stride_u, + uint8* dst_v, int dst_stride_v, + int width, int height); + +// Convert I400 (grey) to I420. +LIBYUV_API +int I400ToI420(const uint8* src_y, int src_stride_y, + uint8* dst_y, int dst_stride_y, + uint8* dst_u, int dst_stride_u, + uint8* dst_v, int dst_stride_v, + int width, int height); + +#define J400ToJ420 I400ToI420 + +// Convert NV12 to I420. +LIBYUV_API +int NV12ToI420(const uint8* src_y, int src_stride_y, + const uint8* src_uv, int src_stride_uv, + uint8* dst_y, int dst_stride_y, + uint8* dst_u, int dst_stride_u, + uint8* dst_v, int dst_stride_v, + int width, int height); + +// Convert NV21 to I420. +LIBYUV_API +int NV21ToI420(const uint8* src_y, int src_stride_y, + const uint8* src_vu, int src_stride_vu, + uint8* dst_y, int dst_stride_y, + uint8* dst_u, int dst_stride_u, + uint8* dst_v, int dst_stride_v, + int width, int height); + +// Convert YUY2 to I420. +LIBYUV_API +int YUY2ToI420(const uint8* src_yuy2, int src_stride_yuy2, + uint8* dst_y, int dst_stride_y, + uint8* dst_u, int dst_stride_u, + uint8* dst_v, int dst_stride_v, + int width, int height); + +// Convert UYVY to I420. +LIBYUV_API +int UYVYToI420(const uint8* src_uyvy, int src_stride_uyvy, + uint8* dst_y, int dst_stride_y, + uint8* dst_u, int dst_stride_u, + uint8* dst_v, int dst_stride_v, + int width, int height); + +// Convert M420 to I420. +LIBYUV_API +int M420ToI420(const uint8* src_m420, int src_stride_m420, + uint8* dst_y, int dst_stride_y, + uint8* dst_u, int dst_stride_u, + uint8* dst_v, int dst_stride_v, + int width, int height); + +// Convert Android420 to I420. +LIBYUV_API +int Android420ToI420(const uint8* src_y, int src_stride_y, + const uint8* src_u, int src_stride_u, + const uint8* src_v, int src_stride_v, + int pixel_stride_uv, + uint8* dst_y, int dst_stride_y, + uint8* dst_u, int dst_stride_u, + uint8* dst_v, int dst_stride_v, + int width, int height); + +// ARGB little endian (bgra in memory) to I420. +LIBYUV_API +int ARGBToI420(const uint8* src_frame, int src_stride_frame, + uint8* dst_y, int dst_stride_y, + uint8* dst_u, int dst_stride_u, + uint8* dst_v, int dst_stride_v, + int width, int height); + +// BGRA little endian (argb in memory) to I420. +LIBYUV_API +int BGRAToI420(const uint8* src_frame, int src_stride_frame, + uint8* dst_y, int dst_stride_y, + uint8* dst_u, int dst_stride_u, + uint8* dst_v, int dst_stride_v, + int width, int height); + +// ABGR little endian (rgba in memory) to I420. +LIBYUV_API +int ABGRToI420(const uint8* src_frame, int src_stride_frame, + uint8* dst_y, int dst_stride_y, + uint8* dst_u, int dst_stride_u, + uint8* dst_v, int dst_stride_v, + int width, int height); + +// RGBA little endian (abgr in memory) to I420. +LIBYUV_API +int RGBAToI420(const uint8* src_frame, int src_stride_frame, + uint8* dst_y, int dst_stride_y, + uint8* dst_u, int dst_stride_u, + uint8* dst_v, int dst_stride_v, + int width, int height); + +// RGB little endian (bgr in memory) to I420. +LIBYUV_API +int RGB24ToI420(const uint8* src_frame, int src_stride_frame, + uint8* dst_y, int dst_stride_y, + uint8* dst_u, int dst_stride_u, + uint8* dst_v, int dst_stride_v, + int width, int height); + +// RGB big endian (rgb in memory) to I420. +LIBYUV_API +int RAWToI420(const uint8* src_frame, int src_stride_frame, + uint8* dst_y, int dst_stride_y, + uint8* dst_u, int dst_stride_u, + uint8* dst_v, int dst_stride_v, + int width, int height); + +// RGB16 (RGBP fourcc) little endian to I420. +LIBYUV_API +int RGB565ToI420(const uint8* src_frame, int src_stride_frame, + uint8* dst_y, int dst_stride_y, + uint8* dst_u, int dst_stride_u, + uint8* dst_v, int dst_stride_v, + int width, int height); + +// RGB15 (RGBO fourcc) little endian to I420. +LIBYUV_API +int ARGB1555ToI420(const uint8* src_frame, int src_stride_frame, + uint8* dst_y, int dst_stride_y, + uint8* dst_u, int dst_stride_u, + uint8* dst_v, int dst_stride_v, + int width, int height); + +// RGB12 (R444 fourcc) little endian to I420. +LIBYUV_API +int ARGB4444ToI420(const uint8* src_frame, int src_stride_frame, + uint8* dst_y, int dst_stride_y, + uint8* dst_u, int dst_stride_u, + uint8* dst_v, int dst_stride_v, + int width, int height); + +#ifdef HAVE_JPEG +// src_width/height provided by capture. +// dst_width/height for clipping determine final size. +LIBYUV_API +int MJPGToI420(const uint8* sample, size_t sample_size, + uint8* dst_y, int dst_stride_y, + uint8* dst_u, int dst_stride_u, + uint8* dst_v, int dst_stride_v, + int src_width, int src_height, + int dst_width, int dst_height); + +// Query size of MJPG in pixels. +LIBYUV_API +int MJPGSize(const uint8* sample, size_t sample_size, + int* width, int* height); +#endif + +// Convert camera sample to I420 with cropping, rotation and vertical flip. +// "src_size" is needed to parse MJPG. +// "dst_stride_y" number of bytes in a row of the dst_y plane. +// Normally this would be the same as dst_width, with recommended alignment +// to 16 bytes for better efficiency. +// If rotation of 90 or 270 is used, stride is affected. The caller should +// allocate the I420 buffer according to rotation. +// "dst_stride_u" number of bytes in a row of the dst_u plane. +// Normally this would be the same as (dst_width + 1) / 2, with +// recommended alignment to 16 bytes for better efficiency. +// If rotation of 90 or 270 is used, stride is affected. +// "crop_x" and "crop_y" are starting position for cropping. +// To center, crop_x = (src_width - dst_width) / 2 +// crop_y = (src_height - dst_height) / 2 +// "src_width" / "src_height" is size of src_frame in pixels. +// "src_height" can be negative indicating a vertically flipped image source. +// "crop_width" / "crop_height" is the size to crop the src to. +// Must be less than or equal to src_width/src_height +// Cropping parameters are pre-rotation. +// "rotation" can be 0, 90, 180 or 270. +// "format" is a fourcc. ie 'I420', 'YUY2' +// Returns 0 for successful; -1 for invalid parameter. Non-zero for failure. +LIBYUV_API +int ConvertToI420(const uint8* src_frame, size_t src_size, + uint8* dst_y, int dst_stride_y, + uint8* dst_u, int dst_stride_u, + uint8* dst_v, int dst_stride_v, + int crop_x, int crop_y, + int src_width, int src_height, + int crop_width, int crop_height, + enum RotationMode rotation, + uint32 format); + +#ifdef __cplusplus +} // extern "C" +} // namespace libyuv +#endif + +#endif // INCLUDE_LIBYUV_CONVERT_H_ NOLINT diff --git a/third_party/libyuv/include/libyuv/convert_argb.h b/third_party/libyuv/include/libyuv/convert_argb.h new file mode 100644 index 0000000..19672f3 --- /dev/null +++ b/third_party/libyuv/include/libyuv/convert_argb.h @@ -0,0 +1,319 @@ +/* + * Copyright 2012 The LibYuv Project Authors. All rights reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef INCLUDE_LIBYUV_CONVERT_ARGB_H_ // NOLINT +#define INCLUDE_LIBYUV_CONVERT_ARGB_H_ + +#include "libyuv/basic_types.h" + +#include "libyuv/rotate.h" // For enum RotationMode. + +// TODO(fbarchard): This set of functions should exactly match convert.h +// TODO(fbarchard): Add tests. Create random content of right size and convert +// with C vs Opt and or to I420 and compare. +// TODO(fbarchard): Some of these functions lack parameter setting. + +#ifdef __cplusplus +namespace libyuv { +extern "C" { +#endif + +// Alias. +#define ARGBToARGB ARGBCopy + +// Copy ARGB to ARGB. +LIBYUV_API +int ARGBCopy(const uint8* src_argb, int src_stride_argb, + uint8* dst_argb, int dst_stride_argb, + int width, int height); + +// Convert I420 to ARGB. +LIBYUV_API +int I420ToARGB(const uint8* src_y, int src_stride_y, + const uint8* src_u, int src_stride_u, + const uint8* src_v, int src_stride_v, + uint8* dst_argb, int dst_stride_argb, + int width, int height); + +// Duplicate prototype for function in convert_from.h for remoting. +LIBYUV_API +int I420ToABGR(const uint8* src_y, int src_stride_y, + const uint8* src_u, int src_stride_u, + const uint8* src_v, int src_stride_v, + uint8* dst_argb, int dst_stride_argb, + int width, int height); + +// Convert I422 to ARGB. +LIBYUV_API +int I422ToARGB(const uint8* src_y, int src_stride_y, + const uint8* src_u, int src_stride_u, + const uint8* src_v, int src_stride_v, + uint8* dst_argb, int dst_stride_argb, + int width, int height); + +// Convert I444 to ARGB. +LIBYUV_API +int I444ToARGB(const uint8* src_y, int src_stride_y, + const uint8* src_u, int src_stride_u, + const uint8* src_v, int src_stride_v, + uint8* dst_argb, int dst_stride_argb, + int width, int height); + +// Convert J444 to ARGB. +LIBYUV_API +int J444ToARGB(const uint8* src_y, int src_stride_y, + const uint8* src_u, int src_stride_u, + const uint8* src_v, int src_stride_v, + uint8* dst_argb, int dst_stride_argb, + int width, int height); + +// Convert I444 to ABGR. +LIBYUV_API +int I444ToABGR(const uint8* src_y, int src_stride_y, + const uint8* src_u, int src_stride_u, + const uint8* src_v, int src_stride_v, + uint8* dst_abgr, int dst_stride_abgr, + int width, int height); + +// Convert I411 to ARGB. +LIBYUV_API +int I411ToARGB(const uint8* src_y, int src_stride_y, + const uint8* src_u, int src_stride_u, + const uint8* src_v, int src_stride_v, + uint8* dst_argb, int dst_stride_argb, + int width, int height); + +// Convert I420 with Alpha to preattenuated ARGB. +LIBYUV_API +int I420AlphaToARGB(const uint8* src_y, int src_stride_y, + const uint8* src_u, int src_stride_u, + const uint8* src_v, int src_stride_v, + const uint8* src_a, int src_stride_a, + uint8* dst_argb, int dst_stride_argb, + int width, int height, int attenuate); + +// Convert I420 with Alpha to preattenuated ABGR. +LIBYUV_API +int I420AlphaToABGR(const uint8* src_y, int src_stride_y, + const uint8* src_u, int src_stride_u, + const uint8* src_v, int src_stride_v, + const uint8* src_a, int src_stride_a, + uint8* dst_abgr, int dst_stride_abgr, + int width, int height, int attenuate); + +// Convert I400 (grey) to ARGB. Reverse of ARGBToI400. +LIBYUV_API +int I400ToARGB(const uint8* src_y, int src_stride_y, + uint8* dst_argb, int dst_stride_argb, + int width, int height); + +// Convert J400 (jpeg grey) to ARGB. +LIBYUV_API +int J400ToARGB(const uint8* src_y, int src_stride_y, + uint8* dst_argb, int dst_stride_argb, + int width, int height); + +// Alias. +#define YToARGB I400ToARGB + +// Convert NV12 to ARGB. +LIBYUV_API +int NV12ToARGB(const uint8* src_y, int src_stride_y, + const uint8* src_uv, int src_stride_uv, + uint8* dst_argb, int dst_stride_argb, + int width, int height); + +// Convert NV21 to ARGB. +LIBYUV_API +int NV21ToARGB(const uint8* src_y, int src_stride_y, + const uint8* src_vu, int src_stride_vu, + uint8* dst_argb, int dst_stride_argb, + int width, int height); + +// Convert M420 to ARGB. +LIBYUV_API +int M420ToARGB(const uint8* src_m420, int src_stride_m420, + uint8* dst_argb, int dst_stride_argb, + int width, int height); + +// Convert YUY2 to ARGB. +LIBYUV_API +int YUY2ToARGB(const uint8* src_yuy2, int src_stride_yuy2, + uint8* dst_argb, int dst_stride_argb, + int width, int height); + +// Convert UYVY to ARGB. +LIBYUV_API +int UYVYToARGB(const uint8* src_uyvy, int src_stride_uyvy, + uint8* dst_argb, int dst_stride_argb, + int width, int height); + +// Convert J420 to ARGB. +LIBYUV_API +int J420ToARGB(const uint8* src_y, int src_stride_y, + const uint8* src_u, int src_stride_u, + const uint8* src_v, int src_stride_v, + uint8* dst_argb, int dst_stride_argb, + int width, int height); + +// Convert J422 to ARGB. +LIBYUV_API +int J422ToARGB(const uint8* src_y, int src_stride_y, + const uint8* src_u, int src_stride_u, + const uint8* src_v, int src_stride_v, + uint8* dst_argb, int dst_stride_argb, + int width, int height); + +// Convert J420 to ABGR. +LIBYUV_API +int J420ToABGR(const uint8* src_y, int src_stride_y, + const uint8* src_u, int src_stride_u, + const uint8* src_v, int src_stride_v, + uint8* dst_abgr, int dst_stride_abgr, + int width, int height); + +// Convert J422 to ABGR. +LIBYUV_API +int J422ToABGR(const uint8* src_y, int src_stride_y, + const uint8* src_u, int src_stride_u, + const uint8* src_v, int src_stride_v, + uint8* dst_abgr, int dst_stride_abgr, + int width, int height); + +// Convert H420 to ARGB. +LIBYUV_API +int H420ToARGB(const uint8* src_y, int src_stride_y, + const uint8* src_u, int src_stride_u, + const uint8* src_v, int src_stride_v, + uint8* dst_argb, int dst_stride_argb, + int width, int height); + +// Convert H422 to ARGB. +LIBYUV_API +int H422ToARGB(const uint8* src_y, int src_stride_y, + const uint8* src_u, int src_stride_u, + const uint8* src_v, int src_stride_v, + uint8* dst_argb, int dst_stride_argb, + int width, int height); + +// Convert H420 to ABGR. +LIBYUV_API +int H420ToABGR(const uint8* src_y, int src_stride_y, + const uint8* src_u, int src_stride_u, + const uint8* src_v, int src_stride_v, + uint8* dst_abgr, int dst_stride_abgr, + int width, int height); + +// Convert H422 to ABGR. +LIBYUV_API +int H422ToABGR(const uint8* src_y, int src_stride_y, + const uint8* src_u, int src_stride_u, + const uint8* src_v, int src_stride_v, + uint8* dst_abgr, int dst_stride_abgr, + int width, int height); + +// BGRA little endian (argb in memory) to ARGB. +LIBYUV_API +int BGRAToARGB(const uint8* src_frame, int src_stride_frame, + uint8* dst_argb, int dst_stride_argb, + int width, int height); + +// ABGR little endian (rgba in memory) to ARGB. +LIBYUV_API +int ABGRToARGB(const uint8* src_frame, int src_stride_frame, + uint8* dst_argb, int dst_stride_argb, + int width, int height); + +// RGBA little endian (abgr in memory) to ARGB. +LIBYUV_API +int RGBAToARGB(const uint8* src_frame, int src_stride_frame, + uint8* dst_argb, int dst_stride_argb, + int width, int height); + +// Deprecated function name. +#define BG24ToARGB RGB24ToARGB + +// RGB little endian (bgr in memory) to ARGB. +LIBYUV_API +int RGB24ToARGB(const uint8* src_frame, int src_stride_frame, + uint8* dst_argb, int dst_stride_argb, + int width, int height); + +// RGB big endian (rgb in memory) to ARGB. +LIBYUV_API +int RAWToARGB(const uint8* src_frame, int src_stride_frame, + uint8* dst_argb, int dst_stride_argb, + int width, int height); + +// RGB16 (RGBP fourcc) little endian to ARGB. +LIBYUV_API +int RGB565ToARGB(const uint8* src_frame, int src_stride_frame, + uint8* dst_argb, int dst_stride_argb, + int width, int height); + +// RGB15 (RGBO fourcc) little endian to ARGB. +LIBYUV_API +int ARGB1555ToARGB(const uint8* src_frame, int src_stride_frame, + uint8* dst_argb, int dst_stride_argb, + int width, int height); + +// RGB12 (R444 fourcc) little endian to ARGB. +LIBYUV_API +int ARGB4444ToARGB(const uint8* src_frame, int src_stride_frame, + uint8* dst_argb, int dst_stride_argb, + int width, int height); + +#ifdef HAVE_JPEG +// src_width/height provided by capture +// dst_width/height for clipping determine final size. +LIBYUV_API +int MJPGToARGB(const uint8* sample, size_t sample_size, + uint8* dst_argb, int dst_stride_argb, + int src_width, int src_height, + int dst_width, int dst_height); +#endif + +// Convert camera sample to ARGB with cropping, rotation and vertical flip. +// "src_size" is needed to parse MJPG. +// "dst_stride_argb" number of bytes in a row of the dst_argb plane. +// Normally this would be the same as dst_width, with recommended alignment +// to 16 bytes for better efficiency. +// If rotation of 90 or 270 is used, stride is affected. The caller should +// allocate the I420 buffer according to rotation. +// "dst_stride_u" number of bytes in a row of the dst_u plane. +// Normally this would be the same as (dst_width + 1) / 2, with +// recommended alignment to 16 bytes for better efficiency. +// If rotation of 90 or 270 is used, stride is affected. +// "crop_x" and "crop_y" are starting position for cropping. +// To center, crop_x = (src_width - dst_width) / 2 +// crop_y = (src_height - dst_height) / 2 +// "src_width" / "src_height" is size of src_frame in pixels. +// "src_height" can be negative indicating a vertically flipped image source. +// "crop_width" / "crop_height" is the size to crop the src to. +// Must be less than or equal to src_width/src_height +// Cropping parameters are pre-rotation. +// "rotation" can be 0, 90, 180 or 270. +// "format" is a fourcc. ie 'I420', 'YUY2' +// Returns 0 for successful; -1 for invalid parameter. Non-zero for failure. +LIBYUV_API +int ConvertToARGB(const uint8* src_frame, size_t src_size, + uint8* dst_argb, int dst_stride_argb, + int crop_x, int crop_y, + int src_width, int src_height, + int crop_width, int crop_height, + enum RotationMode rotation, + uint32 format); + +#ifdef __cplusplus +} // extern "C" +} // namespace libyuv +#endif + +#endif // INCLUDE_LIBYUV_CONVERT_ARGB_H_ NOLINT diff --git a/third_party/libyuv/include/libyuv/convert_from.h b/third_party/libyuv/include/libyuv/convert_from.h new file mode 100644 index 0000000..39e1578 --- /dev/null +++ b/third_party/libyuv/include/libyuv/convert_from.h @@ -0,0 +1,179 @@ +/* + * Copyright 2011 The LibYuv Project Authors. All rights reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef INCLUDE_LIBYUV_CONVERT_FROM_H_ // NOLINT +#define INCLUDE_LIBYUV_CONVERT_FROM_H_ + +#include "libyuv/basic_types.h" +#include "libyuv/rotate.h" + +#ifdef __cplusplus +namespace libyuv { +extern "C" { +#endif + +// See Also convert.h for conversions from formats to I420. + +// I420Copy in convert to I420ToI420. + +LIBYUV_API +int I420ToI422(const uint8* src_y, int src_stride_y, + const uint8* src_u, int src_stride_u, + const uint8* src_v, int src_stride_v, + uint8* dst_y, int dst_stride_y, + uint8* dst_u, int dst_stride_u, + uint8* dst_v, int dst_stride_v, + int width, int height); + +LIBYUV_API +int I420ToI444(const uint8* src_y, int src_stride_y, + const uint8* src_u, int src_stride_u, + const uint8* src_v, int src_stride_v, + uint8* dst_y, int dst_stride_y, + uint8* dst_u, int dst_stride_u, + uint8* dst_v, int dst_stride_v, + int width, int height); + +LIBYUV_API +int I420ToI411(const uint8* src_y, int src_stride_y, + const uint8* src_u, int src_stride_u, + const uint8* src_v, int src_stride_v, + uint8* dst_y, int dst_stride_y, + uint8* dst_u, int dst_stride_u, + uint8* dst_v, int dst_stride_v, + int width, int height); + +// Copy to I400. Source can be I420, I422, I444, I400, NV12 or NV21. +LIBYUV_API +int I400Copy(const uint8* src_y, int src_stride_y, + uint8* dst_y, int dst_stride_y, + int width, int height); + +LIBYUV_API +int I420ToNV12(const uint8* src_y, int src_stride_y, + const uint8* src_u, int src_stride_u, + const uint8* src_v, int src_stride_v, + uint8* dst_y, int dst_stride_y, + uint8* dst_uv, int dst_stride_uv, + int width, int height); + +LIBYUV_API +int I420ToNV21(const uint8* src_y, int src_stride_y, + const uint8* src_u, int src_stride_u, + const uint8* src_v, int src_stride_v, + uint8* dst_y, int dst_stride_y, + uint8* dst_vu, int dst_stride_vu, + int width, int height); + +LIBYUV_API +int I420ToYUY2(const uint8* src_y, int src_stride_y, + const uint8* src_u, int src_stride_u, + const uint8* src_v, int src_stride_v, + uint8* dst_frame, int dst_stride_frame, + int width, int height); + +LIBYUV_API +int I420ToUYVY(const uint8* src_y, int src_stride_y, + const uint8* src_u, int src_stride_u, + const uint8* src_v, int src_stride_v, + uint8* dst_frame, int dst_stride_frame, + int width, int height); + +LIBYUV_API +int I420ToARGB(const uint8* src_y, int src_stride_y, + const uint8* src_u, int src_stride_u, + const uint8* src_v, int src_stride_v, + uint8* dst_argb, int dst_stride_argb, + int width, int height); + +LIBYUV_API +int I420ToBGRA(const uint8* src_y, int src_stride_y, + const uint8* src_u, int src_stride_u, + const uint8* src_v, int src_stride_v, + uint8* dst_argb, int dst_stride_argb, + int width, int height); + +LIBYUV_API +int I420ToABGR(const uint8* src_y, int src_stride_y, + const uint8* src_u, int src_stride_u, + const uint8* src_v, int src_stride_v, + uint8* dst_argb, int dst_stride_argb, + int width, int height); + +LIBYUV_API +int I420ToRGBA(const uint8* src_y, int src_stride_y, + const uint8* src_u, int src_stride_u, + const uint8* src_v, int src_stride_v, + uint8* dst_rgba, int dst_stride_rgba, + int width, int height); + +LIBYUV_API +int I420ToRGB24(const uint8* src_y, int src_stride_y, + const uint8* src_u, int src_stride_u, + const uint8* src_v, int src_stride_v, + uint8* dst_frame, int dst_stride_frame, + int width, int height); + +LIBYUV_API +int I420ToRAW(const uint8* src_y, int src_stride_y, + const uint8* src_u, int src_stride_u, + const uint8* src_v, int src_stride_v, + uint8* dst_frame, int dst_stride_frame, + int width, int height); + +LIBYUV_API +int I420ToRGB565(const uint8* src_y, int src_stride_y, + const uint8* src_u, int src_stride_u, + const uint8* src_v, int src_stride_v, + uint8* dst_frame, int dst_stride_frame, + int width, int height); + +// Convert I420 To RGB565 with 4x4 dither matrix (16 bytes). +// Values in dither matrix from 0 to 7 recommended. +// The order of the dither matrix is first byte is upper left. + +LIBYUV_API +int I420ToRGB565Dither(const uint8* src_y, int src_stride_y, + const uint8* src_u, int src_stride_u, + const uint8* src_v, int src_stride_v, + uint8* dst_frame, int dst_stride_frame, + const uint8* dither4x4, int width, int height); + +LIBYUV_API +int I420ToARGB1555(const uint8* src_y, int src_stride_y, + const uint8* src_u, int src_stride_u, + const uint8* src_v, int src_stride_v, + uint8* dst_frame, int dst_stride_frame, + int width, int height); + +LIBYUV_API +int I420ToARGB4444(const uint8* src_y, int src_stride_y, + const uint8* src_u, int src_stride_u, + const uint8* src_v, int src_stride_v, + uint8* dst_frame, int dst_stride_frame, + int width, int height); + +// Convert I420 to specified format. +// "dst_sample_stride" is bytes in a row for the destination. Pass 0 if the +// buffer has contiguous rows. Can be negative. A multiple of 16 is optimal. +LIBYUV_API +int ConvertFromI420(const uint8* y, int y_stride, + const uint8* u, int u_stride, + const uint8* v, int v_stride, + uint8* dst_sample, int dst_sample_stride, + int width, int height, + uint32 format); + +#ifdef __cplusplus +} // extern "C" +} // namespace libyuv +#endif + +#endif // INCLUDE_LIBYUV_CONVERT_FROM_H_ NOLINT diff --git a/third_party/libyuv/include/libyuv/convert_from_argb.h b/third_party/libyuv/include/libyuv/convert_from_argb.h new file mode 100644 index 0000000..1df5320 --- /dev/null +++ b/third_party/libyuv/include/libyuv/convert_from_argb.h @@ -0,0 +1,190 @@ +/* + * Copyright 2012 The LibYuv Project Authors. All rights reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef INCLUDE_LIBYUV_CONVERT_FROM_ARGB_H_ // NOLINT +#define INCLUDE_LIBYUV_CONVERT_FROM_ARGB_H_ + +#include "libyuv/basic_types.h" + +#ifdef __cplusplus +namespace libyuv { +extern "C" { +#endif + +// Copy ARGB to ARGB. +#define ARGBToARGB ARGBCopy +LIBYUV_API +int ARGBCopy(const uint8* src_argb, int src_stride_argb, + uint8* dst_argb, int dst_stride_argb, + int width, int height); + +// Convert ARGB To BGRA. +LIBYUV_API +int ARGBToBGRA(const uint8* src_argb, int src_stride_argb, + uint8* dst_bgra, int dst_stride_bgra, + int width, int height); + +// Convert ARGB To ABGR. +LIBYUV_API +int ARGBToABGR(const uint8* src_argb, int src_stride_argb, + uint8* dst_abgr, int dst_stride_abgr, + int width, int height); + +// Convert ARGB To RGBA. +LIBYUV_API +int ARGBToRGBA(const uint8* src_argb, int src_stride_argb, + uint8* dst_rgba, int dst_stride_rgba, + int width, int height); + +// Convert ARGB To RGB24. +LIBYUV_API +int ARGBToRGB24(const uint8* src_argb, int src_stride_argb, + uint8* dst_rgb24, int dst_stride_rgb24, + int width, int height); + +// Convert ARGB To RAW. +LIBYUV_API +int ARGBToRAW(const uint8* src_argb, int src_stride_argb, + uint8* dst_rgb, int dst_stride_rgb, + int width, int height); + +// Convert ARGB To RGB565. +LIBYUV_API +int ARGBToRGB565(const uint8* src_argb, int src_stride_argb, + uint8* dst_rgb565, int dst_stride_rgb565, + int width, int height); + +// Convert ARGB To RGB565 with 4x4 dither matrix (16 bytes). +// Values in dither matrix from 0 to 7 recommended. +// The order of the dither matrix is first byte is upper left. +// TODO(fbarchard): Consider pointer to 2d array for dither4x4. +// const uint8(*dither)[4][4]; +LIBYUV_API +int ARGBToRGB565Dither(const uint8* src_argb, int src_stride_argb, + uint8* dst_rgb565, int dst_stride_rgb565, + const uint8* dither4x4, int width, int height); + +// Convert ARGB To ARGB1555. +LIBYUV_API +int ARGBToARGB1555(const uint8* src_argb, int src_stride_argb, + uint8* dst_argb1555, int dst_stride_argb1555, + int width, int height); + +// Convert ARGB To ARGB4444. +LIBYUV_API +int ARGBToARGB4444(const uint8* src_argb, int src_stride_argb, + uint8* dst_argb4444, int dst_stride_argb4444, + int width, int height); + +// Convert ARGB To I444. +LIBYUV_API +int ARGBToI444(const uint8* src_argb, int src_stride_argb, + uint8* dst_y, int dst_stride_y, + uint8* dst_u, int dst_stride_u, + uint8* dst_v, int dst_stride_v, + int width, int height); + +// Convert ARGB To I422. +LIBYUV_API +int ARGBToI422(const uint8* src_argb, int src_stride_argb, + uint8* dst_y, int dst_stride_y, + uint8* dst_u, int dst_stride_u, + uint8* dst_v, int dst_stride_v, + int width, int height); + +// Convert ARGB To I420. (also in convert.h) +LIBYUV_API +int ARGBToI420(const uint8* src_argb, int src_stride_argb, + uint8* dst_y, int dst_stride_y, + uint8* dst_u, int dst_stride_u, + uint8* dst_v, int dst_stride_v, + int width, int height); + +// Convert ARGB to J420. (JPeg full range I420). +LIBYUV_API +int ARGBToJ420(const uint8* src_argb, int src_stride_argb, + uint8* dst_yj, int dst_stride_yj, + uint8* dst_u, int dst_stride_u, + uint8* dst_v, int dst_stride_v, + int width, int height); + +// Convert ARGB to J422. +LIBYUV_API +int ARGBToJ422(const uint8* src_argb, int src_stride_argb, + uint8* dst_yj, int dst_stride_yj, + uint8* dst_u, int dst_stride_u, + uint8* dst_v, int dst_stride_v, + int width, int height); + +// Convert ARGB To I411. +LIBYUV_API +int ARGBToI411(const uint8* src_argb, int src_stride_argb, + uint8* dst_y, int dst_stride_y, + uint8* dst_u, int dst_stride_u, + uint8* dst_v, int dst_stride_v, + int width, int height); + +// Convert ARGB to J400. (JPeg full range). +LIBYUV_API +int ARGBToJ400(const uint8* src_argb, int src_stride_argb, + uint8* dst_yj, int dst_stride_yj, + int width, int height); + +// Convert ARGB to I400. +LIBYUV_API +int ARGBToI400(const uint8* src_argb, int src_stride_argb, + uint8* dst_y, int dst_stride_y, + int width, int height); + +// Convert ARGB to G. (Reverse of J400toARGB, which replicates G back to ARGB) +LIBYUV_API +int ARGBToG(const uint8* src_argb, int src_stride_argb, + uint8* dst_g, int dst_stride_g, + int width, int height); + +// Convert ARGB To NV12. +LIBYUV_API +int ARGBToNV12(const uint8* src_argb, int src_stride_argb, + uint8* dst_y, int dst_stride_y, + uint8* dst_uv, int dst_stride_uv, + int width, int height); + +// Convert ARGB To NV21. +LIBYUV_API +int ARGBToNV21(const uint8* src_argb, int src_stride_argb, + uint8* dst_y, int dst_stride_y, + uint8* dst_vu, int dst_stride_vu, + int width, int height); + +// Convert ARGB To NV21. +LIBYUV_API +int ARGBToNV21(const uint8* src_argb, int src_stride_argb, + uint8* dst_y, int dst_stride_y, + uint8* dst_vu, int dst_stride_vu, + int width, int height); + +// Convert ARGB To YUY2. +LIBYUV_API +int ARGBToYUY2(const uint8* src_argb, int src_stride_argb, + uint8* dst_yuy2, int dst_stride_yuy2, + int width, int height); + +// Convert ARGB To UYVY. +LIBYUV_API +int ARGBToUYVY(const uint8* src_argb, int src_stride_argb, + uint8* dst_uyvy, int dst_stride_uyvy, + int width, int height); + +#ifdef __cplusplus +} // extern "C" +} // namespace libyuv +#endif + +#endif // INCLUDE_LIBYUV_CONVERT_FROM_ARGB_H_ NOLINT diff --git a/third_party/libyuv/include/libyuv/cpu_id.h b/third_party/libyuv/include/libyuv/cpu_id.h new file mode 100644 index 0000000..dfb7445 --- /dev/null +++ b/third_party/libyuv/include/libyuv/cpu_id.h @@ -0,0 +1,80 @@ +/* + * Copyright 2011 The LibYuv Project Authors. All rights reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef INCLUDE_LIBYUV_CPU_ID_H_ // NOLINT +#define INCLUDE_LIBYUV_CPU_ID_H_ + +#include "libyuv/basic_types.h" + +#ifdef __cplusplus +namespace libyuv { +extern "C" { +#endif + +// Internal flag to indicate cpuid requires initialization. +static const int kCpuInitialized = 0x1; + +// These flags are only valid on ARM processors. +static const int kCpuHasARM = 0x2; +static const int kCpuHasNEON = 0x4; +// 0x8 reserved for future ARM flag. + +// These flags are only valid on x86 processors. +static const int kCpuHasX86 = 0x10; +static const int kCpuHasSSE2 = 0x20; +static const int kCpuHasSSSE3 = 0x40; +static const int kCpuHasSSE41 = 0x80; +static const int kCpuHasSSE42 = 0x100; +static const int kCpuHasAVX = 0x200; +static const int kCpuHasAVX2 = 0x400; +static const int kCpuHasERMS = 0x800; +static const int kCpuHasFMA3 = 0x1000; +static const int kCpuHasAVX3 = 0x2000; +// 0x2000, 0x4000, 0x8000 reserved for future X86 flags. + +// These flags are only valid on MIPS processors. +static const int kCpuHasMIPS = 0x10000; +static const int kCpuHasDSPR2 = 0x20000; + +// Internal function used to auto-init. +LIBYUV_API +int InitCpuFlags(void); + +// Internal function for parsing /proc/cpuinfo. +LIBYUV_API +int ArmCpuCaps(const char* cpuinfo_name); + +// Detect CPU has SSE2 etc. +// Test_flag parameter should be one of kCpuHas constants above. +// returns non-zero if instruction set is detected +static __inline int TestCpuFlag(int test_flag) { + LIBYUV_API extern int cpu_info_; + return (!cpu_info_ ? InitCpuFlags() : cpu_info_) & test_flag; +} + +// For testing, allow CPU flags to be disabled. +// ie MaskCpuFlags(~kCpuHasSSSE3) to disable SSSE3. +// MaskCpuFlags(-1) to enable all cpu specific optimizations. +// MaskCpuFlags(1) to disable all cpu specific optimizations. +LIBYUV_API +void MaskCpuFlags(int enable_flags); + +// Low level cpuid for X86. Returns zeros on other CPUs. +// eax is the info type that you want. +// ecx is typically the cpu number, and should normally be zero. +LIBYUV_API +void CpuId(uint32 eax, uint32 ecx, uint32* cpu_info); + +#ifdef __cplusplus +} // extern "C" +} // namespace libyuv +#endif + +#endif // INCLUDE_LIBYUV_CPU_ID_H_ NOLINT diff --git a/third_party/libyuv/include/libyuv/mjpeg_decoder.h b/third_party/libyuv/include/libyuv/mjpeg_decoder.h new file mode 100644 index 0000000..8423121 --- /dev/null +++ b/third_party/libyuv/include/libyuv/mjpeg_decoder.h @@ -0,0 +1,192 @@ +/* + * Copyright 2012 The LibYuv Project Authors. All rights reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef INCLUDE_LIBYUV_MJPEG_DECODER_H_ // NOLINT +#define INCLUDE_LIBYUV_MJPEG_DECODER_H_ + +#include "libyuv/basic_types.h" + +#ifdef __cplusplus +// NOTE: For a simplified public API use convert.h MJPGToI420(). + +struct jpeg_common_struct; +struct jpeg_decompress_struct; +struct jpeg_source_mgr; + +namespace libyuv { + +#ifdef __cplusplus +extern "C" { +#endif + +LIBYUV_BOOL ValidateJpeg(const uint8* sample, size_t sample_size); + +#ifdef __cplusplus +} // extern "C" +#endif + +static const uint32 kUnknownDataSize = 0xFFFFFFFF; + +enum JpegSubsamplingType { + kJpegYuv420, + kJpegYuv422, + kJpegYuv411, + kJpegYuv444, + kJpegYuv400, + kJpegUnknown +}; + +struct Buffer { + const uint8* data; + int len; +}; + +struct BufferVector { + Buffer* buffers; + int len; + int pos; +}; + +struct SetJmpErrorMgr; + +// MJPEG ("Motion JPEG") is a pseudo-standard video codec where the frames are +// simply independent JPEG images with a fixed huffman table (which is omitted). +// It is rarely used in video transmission, but is common as a camera capture +// format, especially in Logitech devices. This class implements a decoder for +// MJPEG frames. +// +// See http://tools.ietf.org/html/rfc2435 +class LIBYUV_API MJpegDecoder { + public: + typedef void (*CallbackFunction)(void* opaque, + const uint8* const* data, + const int* strides, + int rows); + + static const int kColorSpaceUnknown; + static const int kColorSpaceGrayscale; + static const int kColorSpaceRgb; + static const int kColorSpaceYCbCr; + static const int kColorSpaceCMYK; + static const int kColorSpaceYCCK; + + MJpegDecoder(); + ~MJpegDecoder(); + + // Loads a new frame, reads its headers, and determines the uncompressed + // image format. + // Returns LIBYUV_TRUE if image looks valid and format is supported. + // If return value is LIBYUV_TRUE, then the values for all the following + // getters are populated. + // src_len is the size of the compressed mjpeg frame in bytes. + LIBYUV_BOOL LoadFrame(const uint8* src, size_t src_len); + + // Returns width of the last loaded frame in pixels. + int GetWidth(); + + // Returns height of the last loaded frame in pixels. + int GetHeight(); + + // Returns format of the last loaded frame. The return value is one of the + // kColorSpace* constants. + int GetColorSpace(); + + // Number of color components in the color space. + int GetNumComponents(); + + // Sample factors of the n-th component. + int GetHorizSampFactor(int component); + + int GetVertSampFactor(int component); + + int GetHorizSubSampFactor(int component); + + int GetVertSubSampFactor(int component); + + // Public for testability. + int GetImageScanlinesPerImcuRow(); + + // Public for testability. + int GetComponentScanlinesPerImcuRow(int component); + + // Width of a component in bytes. + int GetComponentWidth(int component); + + // Height of a component. + int GetComponentHeight(int component); + + // Width of a component in bytes with padding for DCTSIZE. Public for testing. + int GetComponentStride(int component); + + // Size of a component in bytes. + int GetComponentSize(int component); + + // Call this after LoadFrame() if you decide you don't want to decode it + // after all. + LIBYUV_BOOL UnloadFrame(); + + // Decodes the entire image into a one-buffer-per-color-component format. + // dst_width must match exactly. dst_height must be <= to image height; if + // less, the image is cropped. "planes" must have size equal to at least + // GetNumComponents() and they must point to non-overlapping buffers of size + // at least GetComponentSize(i). The pointers in planes are incremented + // to point to after the end of the written data. + // TODO(fbarchard): Add dst_x, dst_y to allow specific rect to be decoded. + LIBYUV_BOOL DecodeToBuffers(uint8** planes, int dst_width, int dst_height); + + // Decodes the entire image and passes the data via repeated calls to a + // callback function. Each call will get the data for a whole number of + // image scanlines. + // TODO(fbarchard): Add dst_x, dst_y to allow specific rect to be decoded. + LIBYUV_BOOL DecodeToCallback(CallbackFunction fn, void* opaque, + int dst_width, int dst_height); + + // The helper function which recognizes the jpeg sub-sampling type. + static JpegSubsamplingType JpegSubsamplingTypeHelper( + int* subsample_x, int* subsample_y, int number_of_components); + + private: + void AllocOutputBuffers(int num_outbufs); + void DestroyOutputBuffers(); + + LIBYUV_BOOL StartDecode(); + LIBYUV_BOOL FinishDecode(); + + void SetScanlinePointers(uint8** data); + LIBYUV_BOOL DecodeImcuRow(); + + int GetComponentScanlinePadding(int component); + + // A buffer holding the input data for a frame. + Buffer buf_; + BufferVector buf_vec_; + + jpeg_decompress_struct* decompress_struct_; + jpeg_source_mgr* source_mgr_; + SetJmpErrorMgr* error_mgr_; + + // LIBYUV_TRUE iff at least one component has scanline padding. (i.e., + // GetComponentScanlinePadding() != 0.) + LIBYUV_BOOL has_scanline_padding_; + + // Temporaries used to point to scanline outputs. + int num_outbufs_; // Outermost size of all arrays below. + uint8*** scanlines_; + int* scanlines_sizes_; + // Temporary buffer used for decoding when we can't decode directly to the + // output buffers. Large enough for just one iMCU row. + uint8** databuf_; + int* databuf_strides_; +}; + +} // namespace libyuv + +#endif // __cplusplus +#endif // INCLUDE_LIBYUV_MJPEG_DECODER_H_ NOLINT diff --git a/third_party/libyuv/include/libyuv/planar_functions.h b/third_party/libyuv/include/libyuv/planar_functions.h new file mode 100644 index 0000000..9662516 --- /dev/null +++ b/third_party/libyuv/include/libyuv/planar_functions.h @@ -0,0 +1,521 @@ +/* + * Copyright 2011 The LibYuv Project Authors. All rights reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef INCLUDE_LIBYUV_PLANAR_FUNCTIONS_H_ // NOLINT +#define INCLUDE_LIBYUV_PLANAR_FUNCTIONS_H_ + +#include "libyuv/basic_types.h" + +// TODO(fbarchard): Remove the following headers includes. +#include "libyuv/convert.h" +#include "libyuv/convert_argb.h" + +#ifdef __cplusplus +namespace libyuv { +extern "C" { +#endif + +// Copy a plane of data. +LIBYUV_API +void CopyPlane(const uint8* src_y, int src_stride_y, + uint8* dst_y, int dst_stride_y, + int width, int height); + +LIBYUV_API +void CopyPlane_16(const uint16* src_y, int src_stride_y, + uint16* dst_y, int dst_stride_y, + int width, int height); + +// Set a plane of data to a 32 bit value. +LIBYUV_API +void SetPlane(uint8* dst_y, int dst_stride_y, + int width, int height, + uint32 value); + +// Split interleaved UV plane into separate U and V planes. +LIBYUV_API +void SplitUVPlane(const uint8* src_uv, int src_stride_uv, + uint8* dst_u, int dst_stride_u, + uint8* dst_v, int dst_stride_v, + int width, int height); + +// Merge separate U and V planes into one interleaved UV plane. +LIBYUV_API +void MergeUVPlane(const uint8* src_u, int src_stride_u, + const uint8* src_v, int src_stride_v, + uint8* dst_uv, int dst_stride_uv, + int width, int height); + +// Copy I400. Supports inverting. +LIBYUV_API +int I400ToI400(const uint8* src_y, int src_stride_y, + uint8* dst_y, int dst_stride_y, + int width, int height); + +#define J400ToJ400 I400ToI400 + +// Copy I422 to I422. +#define I422ToI422 I422Copy +LIBYUV_API +int I422Copy(const uint8* src_y, int src_stride_y, + const uint8* src_u, int src_stride_u, + const uint8* src_v, int src_stride_v, + uint8* dst_y, int dst_stride_y, + uint8* dst_u, int dst_stride_u, + uint8* dst_v, int dst_stride_v, + int width, int height); + +// Copy I444 to I444. +#define I444ToI444 I444Copy +LIBYUV_API +int I444Copy(const uint8* src_y, int src_stride_y, + const uint8* src_u, int src_stride_u, + const uint8* src_v, int src_stride_v, + uint8* dst_y, int dst_stride_y, + uint8* dst_u, int dst_stride_u, + uint8* dst_v, int dst_stride_v, + int width, int height); + +// Convert YUY2 to I422. +LIBYUV_API +int YUY2ToI422(const uint8* src_yuy2, int src_stride_yuy2, + uint8* dst_y, int dst_stride_y, + uint8* dst_u, int dst_stride_u, + uint8* dst_v, int dst_stride_v, + int width, int height); + +// Convert UYVY to I422. +LIBYUV_API +int UYVYToI422(const uint8* src_uyvy, int src_stride_uyvy, + uint8* dst_y, int dst_stride_y, + uint8* dst_u, int dst_stride_u, + uint8* dst_v, int dst_stride_v, + int width, int height); + +LIBYUV_API +int YUY2ToNV12(const uint8* src_yuy2, int src_stride_yuy2, + uint8* dst_y, int dst_stride_y, + uint8* dst_uv, int dst_stride_uv, + int width, int height); + +LIBYUV_API +int UYVYToNV12(const uint8* src_uyvy, int src_stride_uyvy, + uint8* dst_y, int dst_stride_y, + uint8* dst_uv, int dst_stride_uv, + int width, int height); + +// Convert I420 to I400. (calls CopyPlane ignoring u/v). +LIBYUV_API +int I420ToI400(const uint8* src_y, int src_stride_y, + const uint8* src_u, int src_stride_u, + const uint8* src_v, int src_stride_v, + uint8* dst_y, int dst_stride_y, + int width, int height); + +// Alias +#define J420ToJ400 I420ToI400 +#define I420ToI420Mirror I420Mirror + +// I420 mirror. +LIBYUV_API +int I420Mirror(const uint8* src_y, int src_stride_y, + const uint8* src_u, int src_stride_u, + const uint8* src_v, int src_stride_v, + uint8* dst_y, int dst_stride_y, + uint8* dst_u, int dst_stride_u, + uint8* dst_v, int dst_stride_v, + int width, int height); + +// Alias +#define I400ToI400Mirror I400Mirror + +// I400 mirror. A single plane is mirrored horizontally. +// Pass negative height to achieve 180 degree rotation. +LIBYUV_API +int I400Mirror(const uint8* src_y, int src_stride_y, + uint8* dst_y, int dst_stride_y, + int width, int height); + +// Alias +#define ARGBToARGBMirror ARGBMirror + +// ARGB mirror. +LIBYUV_API +int ARGBMirror(const uint8* src_argb, int src_stride_argb, + uint8* dst_argb, int dst_stride_argb, + int width, int height); + +// Convert NV12 to RGB565. +LIBYUV_API +int NV12ToRGB565(const uint8* src_y, int src_stride_y, + const uint8* src_uv, int src_stride_uv, + uint8* dst_rgb565, int dst_stride_rgb565, + int width, int height); + +// I422ToARGB is in convert_argb.h +// Convert I422 to BGRA. +LIBYUV_API +int I422ToBGRA(const uint8* src_y, int src_stride_y, + const uint8* src_u, int src_stride_u, + const uint8* src_v, int src_stride_v, + uint8* dst_bgra, int dst_stride_bgra, + int width, int height); + +// Convert I422 to ABGR. +LIBYUV_API +int I422ToABGR(const uint8* src_y, int src_stride_y, + const uint8* src_u, int src_stride_u, + const uint8* src_v, int src_stride_v, + uint8* dst_abgr, int dst_stride_abgr, + int width, int height); + +// Convert I422 to RGBA. +LIBYUV_API +int I422ToRGBA(const uint8* src_y, int src_stride_y, + const uint8* src_u, int src_stride_u, + const uint8* src_v, int src_stride_v, + uint8* dst_rgba, int dst_stride_rgba, + int width, int height); + +// Alias +#define RGB24ToRAW RAWToRGB24 + +LIBYUV_API +int RAWToRGB24(const uint8* src_raw, int src_stride_raw, + uint8* dst_rgb24, int dst_stride_rgb24, + int width, int height); + +// Draw a rectangle into I420. +LIBYUV_API +int I420Rect(uint8* dst_y, int dst_stride_y, + uint8* dst_u, int dst_stride_u, + uint8* dst_v, int dst_stride_v, + int x, int y, int width, int height, + int value_y, int value_u, int value_v); + +// Draw a rectangle into ARGB. +LIBYUV_API +int ARGBRect(uint8* dst_argb, int dst_stride_argb, + int x, int y, int width, int height, uint32 value); + +// Convert ARGB to gray scale ARGB. +LIBYUV_API +int ARGBGrayTo(const uint8* src_argb, int src_stride_argb, + uint8* dst_argb, int dst_stride_argb, + int width, int height); + +// Make a rectangle of ARGB gray scale. +LIBYUV_API +int ARGBGray(uint8* dst_argb, int dst_stride_argb, + int x, int y, int width, int height); + +// Make a rectangle of ARGB Sepia tone. +LIBYUV_API +int ARGBSepia(uint8* dst_argb, int dst_stride_argb, + int x, int y, int width, int height); + +// Apply a matrix rotation to each ARGB pixel. +// matrix_argb is 4 signed ARGB values. -128 to 127 representing -2 to 2. +// The first 4 coefficients apply to B, G, R, A and produce B of the output. +// The next 4 coefficients apply to B, G, R, A and produce G of the output. +// The next 4 coefficients apply to B, G, R, A and produce R of the output. +// The last 4 coefficients apply to B, G, R, A and produce A of the output. +LIBYUV_API +int ARGBColorMatrix(const uint8* src_argb, int src_stride_argb, + uint8* dst_argb, int dst_stride_argb, + const int8* matrix_argb, + int width, int height); + +// Deprecated. Use ARGBColorMatrix instead. +// Apply a matrix rotation to each ARGB pixel. +// matrix_argb is 3 signed ARGB values. -128 to 127 representing -1 to 1. +// The first 4 coefficients apply to B, G, R, A and produce B of the output. +// The next 4 coefficients apply to B, G, R, A and produce G of the output. +// The last 4 coefficients apply to B, G, R, A and produce R of the output. +LIBYUV_API +int RGBColorMatrix(uint8* dst_argb, int dst_stride_argb, + const int8* matrix_rgb, + int x, int y, int width, int height); + +// Apply a color table each ARGB pixel. +// Table contains 256 ARGB values. +LIBYUV_API +int ARGBColorTable(uint8* dst_argb, int dst_stride_argb, + const uint8* table_argb, + int x, int y, int width, int height); + +// Apply a color table each ARGB pixel but preserve destination alpha. +// Table contains 256 ARGB values. +LIBYUV_API +int RGBColorTable(uint8* dst_argb, int dst_stride_argb, + const uint8* table_argb, + int x, int y, int width, int height); + +// Apply a luma/color table each ARGB pixel but preserve destination alpha. +// Table contains 32768 values indexed by [Y][C] where 7 it 7 bit luma from +// RGB (YJ style) and C is an 8 bit color component (R, G or B). +LIBYUV_API +int ARGBLumaColorTable(const uint8* src_argb, int src_stride_argb, + uint8* dst_argb, int dst_stride_argb, + const uint8* luma_rgb_table, + int width, int height); + +// Apply a 3 term polynomial to ARGB values. +// poly points to a 4x4 matrix. The first row is constants. The 2nd row is +// coefficients for b, g, r and a. The 3rd row is coefficients for b squared, +// g squared, r squared and a squared. The 4rd row is coefficients for b to +// the 3, g to the 3, r to the 3 and a to the 3. The values are summed and +// result clamped to 0 to 255. +// A polynomial approximation can be dirived using software such as 'R'. + +LIBYUV_API +int ARGBPolynomial(const uint8* src_argb, int src_stride_argb, + uint8* dst_argb, int dst_stride_argb, + const float* poly, + int width, int height); + +// Quantize a rectangle of ARGB. Alpha unaffected. +// scale is a 16 bit fractional fixed point scaler between 0 and 65535. +// interval_size should be a value between 1 and 255. +// interval_offset should be a value between 0 and 255. +LIBYUV_API +int ARGBQuantize(uint8* dst_argb, int dst_stride_argb, + int scale, int interval_size, int interval_offset, + int x, int y, int width, int height); + +// Copy ARGB to ARGB. +LIBYUV_API +int ARGBCopy(const uint8* src_argb, int src_stride_argb, + uint8* dst_argb, int dst_stride_argb, + int width, int height); + +// Copy Alpha channel of ARGB to alpha of ARGB. +LIBYUV_API +int ARGBCopyAlpha(const uint8* src_argb, int src_stride_argb, + uint8* dst_argb, int dst_stride_argb, + int width, int height); + +// Extract the alpha channel from ARGB. +LIBYUV_API +int ARGBExtractAlpha(const uint8* src_argb, int src_stride_argb, + uint8* dst_a, int dst_stride_a, + int width, int height); + +// Copy Y channel to Alpha of ARGB. +LIBYUV_API +int ARGBCopyYToAlpha(const uint8* src_y, int src_stride_y, + uint8* dst_argb, int dst_stride_argb, + int width, int height); + +typedef void (*ARGBBlendRow)(const uint8* src_argb0, const uint8* src_argb1, + uint8* dst_argb, int width); + +// Get function to Alpha Blend ARGB pixels and store to destination. +LIBYUV_API +ARGBBlendRow GetARGBBlend(); + +// Alpha Blend ARGB images and store to destination. +// Source is pre-multiplied by alpha using ARGBAttenuate. +// Alpha of destination is set to 255. +LIBYUV_API +int ARGBBlend(const uint8* src_argb0, int src_stride_argb0, + const uint8* src_argb1, int src_stride_argb1, + uint8* dst_argb, int dst_stride_argb, + int width, int height); + +// Alpha Blend plane and store to destination. +// Source is not pre-multiplied by alpha. +LIBYUV_API +int BlendPlane(const uint8* src_y0, int src_stride_y0, + const uint8* src_y1, int src_stride_y1, + const uint8* alpha, int alpha_stride, + uint8* dst_y, int dst_stride_y, + int width, int height); + +// Alpha Blend YUV images and store to destination. +// Source is not pre-multiplied by alpha. +// Alpha is full width x height and subsampled to half size to apply to UV. +LIBYUV_API +int I420Blend(const uint8* src_y0, int src_stride_y0, + const uint8* src_u0, int src_stride_u0, + const uint8* src_v0, int src_stride_v0, + const uint8* src_y1, int src_stride_y1, + const uint8* src_u1, int src_stride_u1, + const uint8* src_v1, int src_stride_v1, + const uint8* alpha, int alpha_stride, + uint8* dst_y, int dst_stride_y, + uint8* dst_u, int dst_stride_u, + uint8* dst_v, int dst_stride_v, + int width, int height); + +// Multiply ARGB image by ARGB image. Shifted down by 8. Saturates to 255. +LIBYUV_API +int ARGBMultiply(const uint8* src_argb0, int src_stride_argb0, + const uint8* src_argb1, int src_stride_argb1, + uint8* dst_argb, int dst_stride_argb, + int width, int height); + +// Add ARGB image with ARGB image. Saturates to 255. +LIBYUV_API +int ARGBAdd(const uint8* src_argb0, int src_stride_argb0, + const uint8* src_argb1, int src_stride_argb1, + uint8* dst_argb, int dst_stride_argb, + int width, int height); + +// Subtract ARGB image (argb1) from ARGB image (argb0). Saturates to 0. +LIBYUV_API +int ARGBSubtract(const uint8* src_argb0, int src_stride_argb0, + const uint8* src_argb1, int src_stride_argb1, + uint8* dst_argb, int dst_stride_argb, + int width, int height); + +// Convert I422 to YUY2. +LIBYUV_API +int I422ToYUY2(const uint8* src_y, int src_stride_y, + const uint8* src_u, int src_stride_u, + const uint8* src_v, int src_stride_v, + uint8* dst_frame, int dst_stride_frame, + int width, int height); + +// Convert I422 to UYVY. +LIBYUV_API +int I422ToUYVY(const uint8* src_y, int src_stride_y, + const uint8* src_u, int src_stride_u, + const uint8* src_v, int src_stride_v, + uint8* dst_frame, int dst_stride_frame, + int width, int height); + +// Convert unattentuated ARGB to preattenuated ARGB. +LIBYUV_API +int ARGBAttenuate(const uint8* src_argb, int src_stride_argb, + uint8* dst_argb, int dst_stride_argb, + int width, int height); + +// Convert preattentuated ARGB to unattenuated ARGB. +LIBYUV_API +int ARGBUnattenuate(const uint8* src_argb, int src_stride_argb, + uint8* dst_argb, int dst_stride_argb, + int width, int height); + +// Internal function - do not call directly. +// Computes table of cumulative sum for image where the value is the sum +// of all values above and to the left of the entry. Used by ARGBBlur. +LIBYUV_API +int ARGBComputeCumulativeSum(const uint8* src_argb, int src_stride_argb, + int32* dst_cumsum, int dst_stride32_cumsum, + int width, int height); + +// Blur ARGB image. +// dst_cumsum table of width * (height + 1) * 16 bytes aligned to +// 16 byte boundary. +// dst_stride32_cumsum is number of ints in a row (width * 4). +// radius is number of pixels around the center. e.g. 1 = 3x3. 2=5x5. +// Blur is optimized for radius of 5 (11x11) or less. +LIBYUV_API +int ARGBBlur(const uint8* src_argb, int src_stride_argb, + uint8* dst_argb, int dst_stride_argb, + int32* dst_cumsum, int dst_stride32_cumsum, + int width, int height, int radius); + +// Multiply ARGB image by ARGB value. +LIBYUV_API +int ARGBShade(const uint8* src_argb, int src_stride_argb, + uint8* dst_argb, int dst_stride_argb, + int width, int height, uint32 value); + +// Interpolate between two images using specified amount of interpolation +// (0 to 255) and store to destination. +// 'interpolation' is specified as 8 bit fraction where 0 means 100% src0 +// and 255 means 1% src0 and 99% src1. +LIBYUV_API +int InterpolatePlane(const uint8* src0, int src_stride0, + const uint8* src1, int src_stride1, + uint8* dst, int dst_stride, + int width, int height, int interpolation); + +// Interpolate between two ARGB images using specified amount of interpolation +// Internally calls InterpolatePlane with width * 4 (bpp). +LIBYUV_API +int ARGBInterpolate(const uint8* src_argb0, int src_stride_argb0, + const uint8* src_argb1, int src_stride_argb1, + uint8* dst_argb, int dst_stride_argb, + int width, int height, int interpolation); + +// Interpolate between two YUV images using specified amount of interpolation +// Internally calls InterpolatePlane on each plane where the U and V planes +// are half width and half height. +LIBYUV_API +int I420Interpolate(const uint8* src0_y, int src0_stride_y, + const uint8* src0_u, int src0_stride_u, + const uint8* src0_v, int src0_stride_v, + const uint8* src1_y, int src1_stride_y, + const uint8* src1_u, int src1_stride_u, + const uint8* src1_v, int src1_stride_v, + uint8* dst_y, int dst_stride_y, + uint8* dst_u, int dst_stride_u, + uint8* dst_v, int dst_stride_v, + int width, int height, int interpolation); + +#if defined(__pnacl__) || defined(__CLR_VER) || \ + (defined(__i386__) && !defined(__SSE2__)) +#define LIBYUV_DISABLE_X86 +#endif +// MemorySanitizer does not support assembly code yet. http://crbug.com/344505 +#if defined(__has_feature) +#if __has_feature(memory_sanitizer) +#define LIBYUV_DISABLE_X86 +#endif +#endif +// The following are available on all x86 platforms: +#if !defined(LIBYUV_DISABLE_X86) && \ + (defined(_M_IX86) || defined(__x86_64__) || defined(__i386__)) +#define HAS_ARGBAFFINEROW_SSE2 +#endif + +// Row function for copying pixels from a source with a slope to a row +// of destination. Useful for scaling, rotation, mirror, texture mapping. +LIBYUV_API +void ARGBAffineRow_C(const uint8* src_argb, int src_argb_stride, + uint8* dst_argb, const float* uv_dudv, int width); +LIBYUV_API +void ARGBAffineRow_SSE2(const uint8* src_argb, int src_argb_stride, + uint8* dst_argb, const float* uv_dudv, int width); + +// Shuffle ARGB channel order. e.g. BGRA to ARGB. +// shuffler is 16 bytes and must be aligned. +LIBYUV_API +int ARGBShuffle(const uint8* src_bgra, int src_stride_bgra, + uint8* dst_argb, int dst_stride_argb, + const uint8* shuffler, int width, int height); + +// Sobel ARGB effect with planar output. +LIBYUV_API +int ARGBSobelToPlane(const uint8* src_argb, int src_stride_argb, + uint8* dst_y, int dst_stride_y, + int width, int height); + +// Sobel ARGB effect. +LIBYUV_API +int ARGBSobel(const uint8* src_argb, int src_stride_argb, + uint8* dst_argb, int dst_stride_argb, + int width, int height); + +// Sobel ARGB effect w/ Sobel X, Sobel, Sobel Y in ARGB. +LIBYUV_API +int ARGBSobelXY(const uint8* src_argb, int src_stride_argb, + uint8* dst_argb, int dst_stride_argb, + int width, int height); + +#ifdef __cplusplus +} // extern "C" +} // namespace libyuv +#endif + +#endif // INCLUDE_LIBYUV_PLANAR_FUNCTIONS_H_ NOLINT diff --git a/third_party/libyuv/include/libyuv/rotate.h b/third_party/libyuv/include/libyuv/rotate.h new file mode 100644 index 0000000..8af60b8 --- /dev/null +++ b/third_party/libyuv/include/libyuv/rotate.h @@ -0,0 +1,117 @@ +/* + * Copyright 2011 The LibYuv Project Authors. All rights reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef INCLUDE_LIBYUV_ROTATE_H_ // NOLINT +#define INCLUDE_LIBYUV_ROTATE_H_ + +#include "libyuv/basic_types.h" + +#ifdef __cplusplus +namespace libyuv { +extern "C" { +#endif + +// Supported rotation. +typedef enum RotationMode { + kRotate0 = 0, // No rotation. + kRotate90 = 90, // Rotate 90 degrees clockwise. + kRotate180 = 180, // Rotate 180 degrees. + kRotate270 = 270, // Rotate 270 degrees clockwise. + + // Deprecated. + kRotateNone = 0, + kRotateClockwise = 90, + kRotateCounterClockwise = 270, +} RotationModeEnum; + +// Rotate I420 frame. +LIBYUV_API +int I420Rotate(const uint8* src_y, int src_stride_y, + const uint8* src_u, int src_stride_u, + const uint8* src_v, int src_stride_v, + uint8* dst_y, int dst_stride_y, + uint8* dst_u, int dst_stride_u, + uint8* dst_v, int dst_stride_v, + int src_width, int src_height, enum RotationMode mode); + +// Rotate NV12 input and store in I420. +LIBYUV_API +int NV12ToI420Rotate(const uint8* src_y, int src_stride_y, + const uint8* src_uv, int src_stride_uv, + uint8* dst_y, int dst_stride_y, + uint8* dst_u, int dst_stride_u, + uint8* dst_v, int dst_stride_v, + int src_width, int src_height, enum RotationMode mode); + +// Rotate a plane by 0, 90, 180, or 270. +LIBYUV_API +int RotatePlane(const uint8* src, int src_stride, + uint8* dst, int dst_stride, + int src_width, int src_height, enum RotationMode mode); + +// Rotate planes by 90, 180, 270. Deprecated. +LIBYUV_API +void RotatePlane90(const uint8* src, int src_stride, + uint8* dst, int dst_stride, + int width, int height); + +LIBYUV_API +void RotatePlane180(const uint8* src, int src_stride, + uint8* dst, int dst_stride, + int width, int height); + +LIBYUV_API +void RotatePlane270(const uint8* src, int src_stride, + uint8* dst, int dst_stride, + int width, int height); + +LIBYUV_API +void RotateUV90(const uint8* src, int src_stride, + uint8* dst_a, int dst_stride_a, + uint8* dst_b, int dst_stride_b, + int width, int height); + +// Rotations for when U and V are interleaved. +// These functions take one input pointer and +// split the data into two buffers while +// rotating them. Deprecated. +LIBYUV_API +void RotateUV180(const uint8* src, int src_stride, + uint8* dst_a, int dst_stride_a, + uint8* dst_b, int dst_stride_b, + int width, int height); + +LIBYUV_API +void RotateUV270(const uint8* src, int src_stride, + uint8* dst_a, int dst_stride_a, + uint8* dst_b, int dst_stride_b, + int width, int height); + +// The 90 and 270 functions are based on transposes. +// Doing a transpose with reversing the read/write +// order will result in a rotation by +- 90 degrees. +// Deprecated. +LIBYUV_API +void TransposePlane(const uint8* src, int src_stride, + uint8* dst, int dst_stride, + int width, int height); + +LIBYUV_API +void TransposeUV(const uint8* src, int src_stride, + uint8* dst_a, int dst_stride_a, + uint8* dst_b, int dst_stride_b, + int width, int height); + +#ifdef __cplusplus +} // extern "C" +} // namespace libyuv +#endif + +#endif // INCLUDE_LIBYUV_ROTATE_H_ NOLINT diff --git a/third_party/libyuv/include/libyuv/rotate_argb.h b/third_party/libyuv/include/libyuv/rotate_argb.h new file mode 100644 index 0000000..660ff55 --- /dev/null +++ b/third_party/libyuv/include/libyuv/rotate_argb.h @@ -0,0 +1,33 @@ +/* + * Copyright 2012 The LibYuv Project Authors. All rights reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef INCLUDE_LIBYUV_ROTATE_ARGB_H_ // NOLINT +#define INCLUDE_LIBYUV_ROTATE_ARGB_H_ + +#include "libyuv/basic_types.h" +#include "libyuv/rotate.h" // For RotationMode. + +#ifdef __cplusplus +namespace libyuv { +extern "C" { +#endif + +// Rotate ARGB frame +LIBYUV_API +int ARGBRotate(const uint8* src_argb, int src_stride_argb, + uint8* dst_argb, int dst_stride_argb, + int src_width, int src_height, enum RotationMode mode); + +#ifdef __cplusplus +} // extern "C" +} // namespace libyuv +#endif + +#endif // INCLUDE_LIBYUV_ROTATE_ARGB_H_ NOLINT diff --git a/third_party/libyuv/include/libyuv/rotate_row.h b/third_party/libyuv/include/libyuv/rotate_row.h new file mode 100644 index 0000000..ebc487f --- /dev/null +++ b/third_party/libyuv/include/libyuv/rotate_row.h @@ -0,0 +1,121 @@ +/* + * Copyright 2013 The LibYuv Project Authors. All rights reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef INCLUDE_LIBYUV_ROTATE_ROW_H_ // NOLINT +#define INCLUDE_LIBYUV_ROTATE_ROW_H_ + +#include "libyuv/basic_types.h" + +#ifdef __cplusplus +namespace libyuv { +extern "C" { +#endif + +#if defined(__pnacl__) || defined(__CLR_VER) || \ + (defined(__i386__) && !defined(__SSE2__)) +#define LIBYUV_DISABLE_X86 +#endif +// MemorySanitizer does not support assembly code yet. http://crbug.com/344505 +#if defined(__has_feature) +#if __has_feature(memory_sanitizer) +#define LIBYUV_DISABLE_X86 +#endif +#endif +// The following are available for Visual C and clangcl 32 bit: +#if !defined(LIBYUV_DISABLE_X86) && defined(_M_IX86) +#define HAS_TRANSPOSEWX8_SSSE3 +#define HAS_TRANSPOSEUVWX8_SSE2 +#endif + +// The following are available for GCC 32 or 64 bit but not NaCL for 64 bit: +#if !defined(LIBYUV_DISABLE_X86) && \ + (defined(__i386__) || (defined(__x86_64__) && !defined(__native_client__))) +#define HAS_TRANSPOSEWX8_SSSE3 +#endif + +// The following are available for 64 bit GCC but not NaCL: +#if !defined(LIBYUV_DISABLE_X86) && !defined(__native_client__) && \ + defined(__x86_64__) +#define HAS_TRANSPOSEWX8_FAST_SSSE3 +#define HAS_TRANSPOSEUVWX8_SSE2 +#endif + +#if !defined(LIBYUV_DISABLE_NEON) && !defined(__native_client__) && \ + (defined(__ARM_NEON__) || defined(LIBYUV_NEON) || defined(__aarch64__)) +#define HAS_TRANSPOSEWX8_NEON +#define HAS_TRANSPOSEUVWX8_NEON +#endif + +#if !defined(LIBYUV_DISABLE_MIPS) && !defined(__native_client__) && \ + defined(__mips__) && \ + defined(__mips_dsp) && (__mips_dsp_rev >= 2) +#define HAS_TRANSPOSEWX8_DSPR2 +#define HAS_TRANSPOSEUVWX8_DSPR2 +#endif // defined(__mips__) + +void TransposeWxH_C(const uint8* src, int src_stride, + uint8* dst, int dst_stride, int width, int height); + +void TransposeWx8_C(const uint8* src, int src_stride, + uint8* dst, int dst_stride, int width); +void TransposeWx8_NEON(const uint8* src, int src_stride, + uint8* dst, int dst_stride, int width); +void TransposeWx8_SSSE3(const uint8* src, int src_stride, + uint8* dst, int dst_stride, int width); +void TransposeWx8_Fast_SSSE3(const uint8* src, int src_stride, + uint8* dst, int dst_stride, int width); +void TransposeWx8_DSPR2(const uint8* src, int src_stride, + uint8* dst, int dst_stride, int width); +void TransposeWx8_Fast_DSPR2(const uint8* src, int src_stride, + uint8* dst, int dst_stride, int width); + +void TransposeWx8_Any_NEON(const uint8* src, int src_stride, + uint8* dst, int dst_stride, int width); +void TransposeWx8_Any_SSSE3(const uint8* src, int src_stride, + uint8* dst, int dst_stride, int width); +void TransposeWx8_Fast_Any_SSSE3(const uint8* src, int src_stride, + uint8* dst, int dst_stride, int width); +void TransposeWx8_Any_DSPR2(const uint8* src, int src_stride, + uint8* dst, int dst_stride, int width); + +void TransposeUVWxH_C(const uint8* src, int src_stride, + uint8* dst_a, int dst_stride_a, + uint8* dst_b, int dst_stride_b, + int width, int height); + +void TransposeUVWx8_C(const uint8* src, int src_stride, + uint8* dst_a, int dst_stride_a, + uint8* dst_b, int dst_stride_b, int width); +void TransposeUVWx8_SSE2(const uint8* src, int src_stride, + uint8* dst_a, int dst_stride_a, + uint8* dst_b, int dst_stride_b, int width); +void TransposeUVWx8_NEON(const uint8* src, int src_stride, + uint8* dst_a, int dst_stride_a, + uint8* dst_b, int dst_stride_b, int width); +void TransposeUVWx8_DSPR2(const uint8* src, int src_stride, + uint8* dst_a, int dst_stride_a, + uint8* dst_b, int dst_stride_b, int width); + +void TransposeUVWx8_Any_SSE2(const uint8* src, int src_stride, + uint8* dst_a, int dst_stride_a, + uint8* dst_b, int dst_stride_b, int width); +void TransposeUVWx8_Any_NEON(const uint8* src, int src_stride, + uint8* dst_a, int dst_stride_a, + uint8* dst_b, int dst_stride_b, int width); +void TransposeUVWx8_Any_DSPR2(const uint8* src, int src_stride, + uint8* dst_a, int dst_stride_a, + uint8* dst_b, int dst_stride_b, int width); + +#ifdef __cplusplus +} // extern "C" +} // namespace libyuv +#endif + +#endif // INCLUDE_LIBYUV_ROTATE_ROW_H_ NOLINT diff --git a/third_party/libyuv/include/libyuv/row.h b/third_party/libyuv/include/libyuv/row.h new file mode 100644 index 0000000..013a7e5 --- /dev/null +++ b/third_party/libyuv/include/libyuv/row.h @@ -0,0 +1,1944 @@ +/* + * Copyright 2011 The LibYuv Project Authors. All rights reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef INCLUDE_LIBYUV_ROW_H_ // NOLINT +#define INCLUDE_LIBYUV_ROW_H_ + +#include // For malloc. + +#include "libyuv/basic_types.h" + +#ifdef __cplusplus +namespace libyuv { +extern "C" { +#endif + +#define IS_ALIGNED(p, a) (!((uintptr_t)(p) & ((a) - 1))) + +#ifdef __cplusplus +#define align_buffer_64(var, size) \ + uint8* var##_mem = reinterpret_cast(malloc((size) + 63)); \ + uint8* var = reinterpret_cast \ + ((reinterpret_cast(var##_mem) + 63) & ~63) +#else +#define align_buffer_64(var, size) \ + uint8* var##_mem = (uint8*)(malloc((size) + 63)); /* NOLINT */ \ + uint8* var = (uint8*)(((intptr_t)(var##_mem) + 63) & ~63) /* NOLINT */ +#endif + +#define free_aligned_buffer_64(var) \ + free(var##_mem); \ + var = 0 + +#if defined(__pnacl__) || defined(__CLR_VER) || \ + (defined(__i386__) && !defined(__SSE2__)) +#define LIBYUV_DISABLE_X86 +#endif +// MemorySanitizer does not support assembly code yet. http://crbug.com/344505 +#if defined(__has_feature) +#if __has_feature(memory_sanitizer) +#define LIBYUV_DISABLE_X86 +#endif +#endif +// True if compiling for SSSE3 as a requirement. +#if defined(__SSSE3__) || (defined(_M_IX86_FP) && (_M_IX86_FP >= 3)) +#define LIBYUV_SSSE3_ONLY +#endif + +#if defined(__native_client__) +#define LIBYUV_DISABLE_NEON +#endif +// clang >= 3.5.0 required for Arm64. +#if defined(__clang__) && defined(__aarch64__) && !defined(LIBYUV_DISABLE_NEON) +#if (__clang_major__ < 3) || (__clang_major__ == 3 && (__clang_minor__ < 5)) +#define LIBYUV_DISABLE_NEON +#endif // clang >= 3.5 +#endif // __clang__ + +// GCC >= 4.7.0 required for AVX2. +#if defined(__GNUC__) && (defined(__x86_64__) || defined(__i386__)) +#if (__GNUC__ > 4) || (__GNUC__ == 4 && (__GNUC_MINOR__ >= 7)) +#define GCC_HAS_AVX2 1 +#endif // GNUC >= 4.7 +#endif // __GNUC__ + +// clang >= 3.4.0 required for AVX2. +#if defined(__clang__) && (defined(__x86_64__) || defined(__i386__)) +#if (__clang_major__ > 3) || (__clang_major__ == 3 && (__clang_minor__ >= 4)) +#define CLANG_HAS_AVX2 1 +#endif // clang >= 3.4 +#endif // __clang__ + +// Visual C 2012 required for AVX2. +#if defined(_M_IX86) && !defined(__clang__) && \ + defined(_MSC_VER) && _MSC_VER >= 1700 +#define VISUALC_HAS_AVX2 1 +#endif // VisualStudio >= 2012 + +// The following are available on all x86 platforms: +#if !defined(LIBYUV_DISABLE_X86) && \ + (defined(_M_IX86) || defined(__x86_64__) || defined(__i386__)) +// Conversions: +#define HAS_ABGRTOUVROW_SSSE3 +#define HAS_ABGRTOYROW_SSSE3 +#define HAS_ARGB1555TOARGBROW_SSE2 +#define HAS_ARGB4444TOARGBROW_SSE2 +#define HAS_ARGBSETROW_X86 +#define HAS_ARGBSHUFFLEROW_SSE2 +#define HAS_ARGBSHUFFLEROW_SSSE3 +#define HAS_ARGBTOARGB1555ROW_SSE2 +#define HAS_ARGBTOARGB4444ROW_SSE2 +#define HAS_ARGBTORAWROW_SSSE3 +#define HAS_ARGBTORGB24ROW_SSSE3 +#define HAS_ARGBTORGB565DITHERROW_SSE2 +#define HAS_ARGBTORGB565ROW_SSE2 +#define HAS_ARGBTOUV444ROW_SSSE3 +#define HAS_ARGBTOUVJROW_SSSE3 +#define HAS_ARGBTOUVROW_SSSE3 +#define HAS_ARGBTOYJROW_SSSE3 +#define HAS_ARGBTOYROW_SSSE3 +#define HAS_ARGBEXTRACTALPHAROW_SSE2 +#define HAS_BGRATOUVROW_SSSE3 +#define HAS_BGRATOYROW_SSSE3 +#define HAS_COPYROW_ERMS +#define HAS_COPYROW_SSE2 +#define HAS_H422TOARGBROW_SSSE3 +#define HAS_I400TOARGBROW_SSE2 +#define HAS_I422TOARGB1555ROW_SSSE3 +#define HAS_I422TOARGB4444ROW_SSSE3 +#define HAS_I422TOARGBROW_SSSE3 +#define HAS_I422TORGB24ROW_SSSE3 +#define HAS_I422TORGB565ROW_SSSE3 +#define HAS_I422TORGBAROW_SSSE3 +#define HAS_I422TOUYVYROW_SSE2 +#define HAS_I422TOYUY2ROW_SSE2 +#define HAS_I444TOARGBROW_SSSE3 +#define HAS_J400TOARGBROW_SSE2 +#define HAS_J422TOARGBROW_SSSE3 +#define HAS_MERGEUVROW_SSE2 +#define HAS_MIRRORROW_SSSE3 +#define HAS_MIRRORUVROW_SSSE3 +#define HAS_NV12TOARGBROW_SSSE3 +#define HAS_NV12TORGB565ROW_SSSE3 +#define HAS_NV21TOARGBROW_SSSE3 +#define HAS_RAWTOARGBROW_SSSE3 +#define HAS_RAWTORGB24ROW_SSSE3 +#define HAS_RAWTOYROW_SSSE3 +#define HAS_RGB24TOARGBROW_SSSE3 +#define HAS_RGB24TOYROW_SSSE3 +#define HAS_RGB565TOARGBROW_SSE2 +#define HAS_RGBATOUVROW_SSSE3 +#define HAS_RGBATOYROW_SSSE3 +#define HAS_SETROW_ERMS +#define HAS_SETROW_X86 +#define HAS_SPLITUVROW_SSE2 +#define HAS_UYVYTOARGBROW_SSSE3 +#define HAS_UYVYTOUV422ROW_SSE2 +#define HAS_UYVYTOUVROW_SSE2 +#define HAS_UYVYTOYROW_SSE2 +#define HAS_YUY2TOARGBROW_SSSE3 +#define HAS_YUY2TOUV422ROW_SSE2 +#define HAS_YUY2TOUVROW_SSE2 +#define HAS_YUY2TOYROW_SSE2 + +// Effects: +#define HAS_ARGBADDROW_SSE2 +#define HAS_ARGBAFFINEROW_SSE2 +#define HAS_ARGBATTENUATEROW_SSSE3 +#define HAS_ARGBBLENDROW_SSSE3 +#define HAS_ARGBCOLORMATRIXROW_SSSE3 +#define HAS_ARGBCOLORTABLEROW_X86 +#define HAS_ARGBCOPYALPHAROW_SSE2 +#define HAS_ARGBCOPYYTOALPHAROW_SSE2 +#define HAS_ARGBGRAYROW_SSSE3 +#define HAS_ARGBLUMACOLORTABLEROW_SSSE3 +#define HAS_ARGBMIRRORROW_SSE2 +#define HAS_ARGBMULTIPLYROW_SSE2 +#define HAS_ARGBPOLYNOMIALROW_SSE2 +#define HAS_ARGBQUANTIZEROW_SSE2 +#define HAS_ARGBSEPIAROW_SSSE3 +#define HAS_ARGBSHADEROW_SSE2 +#define HAS_ARGBSUBTRACTROW_SSE2 +#define HAS_ARGBUNATTENUATEROW_SSE2 +#define HAS_BLENDPLANEROW_SSSE3 +#define HAS_COMPUTECUMULATIVESUMROW_SSE2 +#define HAS_CUMULATIVESUMTOAVERAGEROW_SSE2 +#define HAS_INTERPOLATEROW_SSSE3 +#define HAS_RGBCOLORTABLEROW_X86 +#define HAS_SOBELROW_SSE2 +#define HAS_SOBELTOPLANEROW_SSE2 +#define HAS_SOBELXROW_SSE2 +#define HAS_SOBELXYROW_SSE2 +#define HAS_SOBELYROW_SSE2 + +// The following functions fail on gcc/clang 32 bit with fpic and framepointer. +// caveat: clangcl uses row_win.cc which works. +#if defined(NDEBUG) || !(defined(_DEBUG) && defined(__i386__)) || \ + !defined(__i386__) || defined(_MSC_VER) +// TODO(fbarchard): fix build error on x86 debug +// https://code.google.com/p/libyuv/issues/detail?id=524 +#define HAS_I411TOARGBROW_SSSE3 +// TODO(fbarchard): fix build error on android_full_debug=1 +// https://code.google.com/p/libyuv/issues/detail?id=517 +#define HAS_I422ALPHATOARGBROW_SSSE3 +#endif +#endif + +// The following are available on all x86 platforms, but +// require VS2012, clang 3.4 or gcc 4.7. +// The code supports NaCL but requires a new compiler and validator. +#if !defined(LIBYUV_DISABLE_X86) && (defined(VISUALC_HAS_AVX2) || \ + defined(CLANG_HAS_AVX2) || defined(GCC_HAS_AVX2)) +#define HAS_ARGBCOPYALPHAROW_AVX2 +#define HAS_ARGBCOPYYTOALPHAROW_AVX2 +#define HAS_ARGBMIRRORROW_AVX2 +#define HAS_ARGBPOLYNOMIALROW_AVX2 +#define HAS_ARGBSHUFFLEROW_AVX2 +#define HAS_ARGBTORGB565DITHERROW_AVX2 +#define HAS_ARGBTOUVJROW_AVX2 +#define HAS_ARGBTOUVROW_AVX2 +#define HAS_ARGBTOYJROW_AVX2 +#define HAS_ARGBTOYROW_AVX2 +#define HAS_COPYROW_AVX +#define HAS_H422TOARGBROW_AVX2 +#define HAS_I400TOARGBROW_AVX2 +#if !(defined(_DEBUG) && defined(__i386__)) +// TODO(fbarchard): fix build error on android_full_debug=1 +// https://code.google.com/p/libyuv/issues/detail?id=517 +#define HAS_I422ALPHATOARGBROW_AVX2 +#endif +#define HAS_I411TOARGBROW_AVX2 +#define HAS_I422TOARGB1555ROW_AVX2 +#define HAS_I422TOARGB4444ROW_AVX2 +#define HAS_I422TOARGBROW_AVX2 +#define HAS_I422TORGB24ROW_AVX2 +#define HAS_I422TORGB565ROW_AVX2 +#define HAS_I422TORGBAROW_AVX2 +#define HAS_I444TOARGBROW_AVX2 +#define HAS_INTERPOLATEROW_AVX2 +#define HAS_J422TOARGBROW_AVX2 +#define HAS_MERGEUVROW_AVX2 +#define HAS_MIRRORROW_AVX2 +#define HAS_NV12TOARGBROW_AVX2 +#define HAS_NV12TORGB565ROW_AVX2 +#define HAS_NV21TOARGBROW_AVX2 +#define HAS_SPLITUVROW_AVX2 +#define HAS_UYVYTOARGBROW_AVX2 +#define HAS_UYVYTOUV422ROW_AVX2 +#define HAS_UYVYTOUVROW_AVX2 +#define HAS_UYVYTOYROW_AVX2 +#define HAS_YUY2TOARGBROW_AVX2 +#define HAS_YUY2TOUV422ROW_AVX2 +#define HAS_YUY2TOUVROW_AVX2 +#define HAS_YUY2TOYROW_AVX2 + +// Effects: +#define HAS_ARGBADDROW_AVX2 +#define HAS_ARGBATTENUATEROW_AVX2 +#define HAS_ARGBMULTIPLYROW_AVX2 +#define HAS_ARGBSUBTRACTROW_AVX2 +#define HAS_ARGBUNATTENUATEROW_AVX2 +#define HAS_BLENDPLANEROW_AVX2 +#endif + +// The following are available for AVX2 Visual C and clangcl 32 bit: +// TODO(fbarchard): Port to gcc. +#if !defined(LIBYUV_DISABLE_X86) && defined(_M_IX86) && \ + (defined(VISUALC_HAS_AVX2) || defined(CLANG_HAS_AVX2)) +#define HAS_ARGB1555TOARGBROW_AVX2 +#define HAS_ARGB4444TOARGBROW_AVX2 +#define HAS_ARGBTOARGB1555ROW_AVX2 +#define HAS_ARGBTOARGB4444ROW_AVX2 +#define HAS_ARGBTORGB565ROW_AVX2 +#define HAS_J400TOARGBROW_AVX2 +#define HAS_RGB565TOARGBROW_AVX2 +#endif + +// The following are also available on x64 Visual C. +#if !defined(LIBYUV_DISABLE_X86) && defined(_MSC_VER) && defined(_M_X64) && \ + (!defined(__clang__) || defined(__SSSE3__)) +#define HAS_I422ALPHATOARGBROW_SSSE3 +#define HAS_I422TOARGBROW_SSSE3 +#endif + +// The following are available on Neon platforms: +#if !defined(LIBYUV_DISABLE_NEON) && \ + (defined(__aarch64__) || defined(__ARM_NEON__) || defined(LIBYUV_NEON)) +#define HAS_ABGRTOUVROW_NEON +#define HAS_ABGRTOYROW_NEON +#define HAS_ARGB1555TOARGBROW_NEON +#define HAS_ARGB1555TOUVROW_NEON +#define HAS_ARGB1555TOYROW_NEON +#define HAS_ARGB4444TOARGBROW_NEON +#define HAS_ARGB4444TOUVROW_NEON +#define HAS_ARGB4444TOYROW_NEON +#define HAS_ARGBSETROW_NEON +#define HAS_ARGBTOARGB1555ROW_NEON +#define HAS_ARGBTOARGB4444ROW_NEON +#define HAS_ARGBTORAWROW_NEON +#define HAS_ARGBTORGB24ROW_NEON +#define HAS_ARGBTORGB565DITHERROW_NEON +#define HAS_ARGBTORGB565ROW_NEON +#define HAS_ARGBTOUV411ROW_NEON +#define HAS_ARGBTOUV444ROW_NEON +#define HAS_ARGBTOUVJROW_NEON +#define HAS_ARGBTOUVROW_NEON +#define HAS_ARGBTOYJROW_NEON +#define HAS_ARGBTOYROW_NEON +#define HAS_ARGBEXTRACTALPHAROW_NEON +#define HAS_BGRATOUVROW_NEON +#define HAS_BGRATOYROW_NEON +#define HAS_COPYROW_NEON +#define HAS_I400TOARGBROW_NEON +#define HAS_I411TOARGBROW_NEON +#define HAS_I422ALPHATOARGBROW_NEON +#define HAS_I422TOARGB1555ROW_NEON +#define HAS_I422TOARGB4444ROW_NEON +#define HAS_I422TOARGBROW_NEON +#define HAS_I422TORGB24ROW_NEON +#define HAS_I422TORGB565ROW_NEON +#define HAS_I422TORGBAROW_NEON +#define HAS_I422TOUYVYROW_NEON +#define HAS_I422TOYUY2ROW_NEON +#define HAS_I444TOARGBROW_NEON +#define HAS_J400TOARGBROW_NEON +#define HAS_MERGEUVROW_NEON +#define HAS_MIRRORROW_NEON +#define HAS_MIRRORUVROW_NEON +#define HAS_NV12TOARGBROW_NEON +#define HAS_NV12TORGB565ROW_NEON +#define HAS_NV21TOARGBROW_NEON +#define HAS_RAWTOARGBROW_NEON +#define HAS_RAWTORGB24ROW_NEON +#define HAS_RAWTOUVROW_NEON +#define HAS_RAWTOYROW_NEON +#define HAS_RGB24TOARGBROW_NEON +#define HAS_RGB24TOUVROW_NEON +#define HAS_RGB24TOYROW_NEON +#define HAS_RGB565TOARGBROW_NEON +#define HAS_RGB565TOUVROW_NEON +#define HAS_RGB565TOYROW_NEON +#define HAS_RGBATOUVROW_NEON +#define HAS_RGBATOYROW_NEON +#define HAS_SETROW_NEON +#define HAS_SPLITUVROW_NEON +#define HAS_UYVYTOARGBROW_NEON +#define HAS_UYVYTOUV422ROW_NEON +#define HAS_UYVYTOUVROW_NEON +#define HAS_UYVYTOYROW_NEON +#define HAS_YUY2TOARGBROW_NEON +#define HAS_YUY2TOUV422ROW_NEON +#define HAS_YUY2TOUVROW_NEON +#define HAS_YUY2TOYROW_NEON + +// Effects: +#define HAS_ARGBADDROW_NEON +#define HAS_ARGBATTENUATEROW_NEON +#define HAS_ARGBBLENDROW_NEON +#define HAS_ARGBCOLORMATRIXROW_NEON +#define HAS_ARGBGRAYROW_NEON +#define HAS_ARGBMIRRORROW_NEON +#define HAS_ARGBMULTIPLYROW_NEON +#define HAS_ARGBQUANTIZEROW_NEON +#define HAS_ARGBSEPIAROW_NEON +#define HAS_ARGBSHADEROW_NEON +#define HAS_ARGBSHUFFLEROW_NEON +#define HAS_ARGBSUBTRACTROW_NEON +#define HAS_INTERPOLATEROW_NEON +#define HAS_SOBELROW_NEON +#define HAS_SOBELTOPLANEROW_NEON +#define HAS_SOBELXROW_NEON +#define HAS_SOBELXYROW_NEON +#define HAS_SOBELYROW_NEON +#endif + +// The following are available on Mips platforms: +#if !defined(LIBYUV_DISABLE_MIPS) && defined(__mips__) && \ + (_MIPS_SIM == _MIPS_SIM_ABI32) && (__mips_isa_rev < 6) +#define HAS_COPYROW_MIPS +#if defined(__mips_dsp) && (__mips_dsp_rev >= 2) +#define HAS_I422TOARGBROW_DSPR2 +#define HAS_INTERPOLATEROW_DSPR2 +#define HAS_MIRRORROW_DSPR2 +#define HAS_MIRRORUVROW_DSPR2 +#define HAS_SPLITUVROW_DSPR2 +#endif +#endif + +#if defined(_MSC_VER) && !defined(__CLR_VER) && !defined(__clang__) +#if defined(VISUALC_HAS_AVX2) +#define SIMD_ALIGNED(var) __declspec(align(32)) var +#else +#define SIMD_ALIGNED(var) __declspec(align(16)) var +#endif +typedef __declspec(align(16)) int16 vec16[8]; +typedef __declspec(align(16)) int32 vec32[4]; +typedef __declspec(align(16)) int8 vec8[16]; +typedef __declspec(align(16)) uint16 uvec16[8]; +typedef __declspec(align(16)) uint32 uvec32[4]; +typedef __declspec(align(16)) uint8 uvec8[16]; +typedef __declspec(align(32)) int16 lvec16[16]; +typedef __declspec(align(32)) int32 lvec32[8]; +typedef __declspec(align(32)) int8 lvec8[32]; +typedef __declspec(align(32)) uint16 ulvec16[16]; +typedef __declspec(align(32)) uint32 ulvec32[8]; +typedef __declspec(align(32)) uint8 ulvec8[32]; +#elif !defined(__pnacl__) && (defined(__GNUC__) || defined(__clang__)) +// Caveat GCC 4.2 to 4.7 have a known issue using vectors with const. +#if defined(CLANG_HAS_AVX2) || defined(GCC_HAS_AVX2) +#define SIMD_ALIGNED(var) var __attribute__((aligned(32))) +#else +#define SIMD_ALIGNED(var) var __attribute__((aligned(16))) +#endif +typedef int16 __attribute__((vector_size(16))) vec16; +typedef int32 __attribute__((vector_size(16))) vec32; +typedef int8 __attribute__((vector_size(16))) vec8; +typedef uint16 __attribute__((vector_size(16))) uvec16; +typedef uint32 __attribute__((vector_size(16))) uvec32; +typedef uint8 __attribute__((vector_size(16))) uvec8; +typedef int16 __attribute__((vector_size(32))) lvec16; +typedef int32 __attribute__((vector_size(32))) lvec32; +typedef int8 __attribute__((vector_size(32))) lvec8; +typedef uint16 __attribute__((vector_size(32))) ulvec16; +typedef uint32 __attribute__((vector_size(32))) ulvec32; +typedef uint8 __attribute__((vector_size(32))) ulvec8; +#else +#define SIMD_ALIGNED(var) var +typedef int16 vec16[8]; +typedef int32 vec32[4]; +typedef int8 vec8[16]; +typedef uint16 uvec16[8]; +typedef uint32 uvec32[4]; +typedef uint8 uvec8[16]; +typedef int16 lvec16[16]; +typedef int32 lvec32[8]; +typedef int8 lvec8[32]; +typedef uint16 ulvec16[16]; +typedef uint32 ulvec32[8]; +typedef uint8 ulvec8[32]; +#endif + +#if defined(__aarch64__) +// This struct is for Arm64 color conversion. +struct YuvConstants { + uvec16 kUVToRB; + uvec16 kUVToRB2; + uvec16 kUVToG; + uvec16 kUVToG2; + vec16 kUVBiasBGR; + vec32 kYToRgb; +}; +#elif defined(__arm__) +// This struct is for ArmV7 color conversion. +struct YuvConstants { + uvec8 kUVToRB; + uvec8 kUVToG; + vec16 kUVBiasBGR; + vec32 kYToRgb; +}; +#else +// This struct is for Intel color conversion. +struct YuvConstants { + int8 kUVToB[32]; + int8 kUVToG[32]; + int8 kUVToR[32]; + int16 kUVBiasB[16]; + int16 kUVBiasG[16]; + int16 kUVBiasR[16]; + int16 kYToRgb[16]; +}; + +// Offsets into YuvConstants structure +#define KUVTOB 0 +#define KUVTOG 32 +#define KUVTOR 64 +#define KUVBIASB 96 +#define KUVBIASG 128 +#define KUVBIASR 160 +#define KYTORGB 192 +#endif + +// Conversion matrix for YUV to RGB +extern const struct YuvConstants SIMD_ALIGNED(kYuvI601Constants); // BT.601 +extern const struct YuvConstants SIMD_ALIGNED(kYuvJPEGConstants); // JPeg +extern const struct YuvConstants SIMD_ALIGNED(kYuvH709Constants); // BT.709 + +// Conversion matrix for YVU to BGR +extern const struct YuvConstants SIMD_ALIGNED(kYvuI601Constants); // BT.601 +extern const struct YuvConstants SIMD_ALIGNED(kYvuJPEGConstants); // JPeg +extern const struct YuvConstants SIMD_ALIGNED(kYvuH709Constants); // BT.709 + +#if defined(__APPLE__) || defined(__x86_64__) || defined(__llvm__) +#define OMITFP +#else +#define OMITFP __attribute__((optimize("omit-frame-pointer"))) +#endif + +// NaCL macros for GCC x86 and x64. +#if defined(__native_client__) +#define LABELALIGN ".p2align 5\n" +#else +#define LABELALIGN +#endif +#if defined(__native_client__) && defined(__x86_64__) +// r14 is used for MEMOP macros. +#define NACL_R14 "r14", +#define BUNDLELOCK ".bundle_lock\n" +#define BUNDLEUNLOCK ".bundle_unlock\n" +#define MEMACCESS(base) "%%nacl:(%%r15,%q" #base ")" +#define MEMACCESS2(offset, base) "%%nacl:" #offset "(%%r15,%q" #base ")" +#define MEMLEA(offset, base) #offset "(%q" #base ")" +#define MEMLEA3(offset, index, scale) \ + #offset "(,%q" #index "," #scale ")" +#define MEMLEA4(offset, base, index, scale) \ + #offset "(%q" #base ",%q" #index "," #scale ")" +#define MEMMOVESTRING(s, d) "%%nacl:(%q" #s "),%%nacl:(%q" #d "), %%r15" +#define MEMSTORESTRING(reg, d) "%%" #reg ",%%nacl:(%q" #d "), %%r15" +#define MEMOPREG(opcode, offset, base, index, scale, reg) \ + BUNDLELOCK \ + "lea " #offset "(%q" #base ",%q" #index "," #scale "),%%r14d\n" \ + #opcode " (%%r15,%%r14),%%" #reg "\n" \ + BUNDLEUNLOCK +#define MEMOPMEM(opcode, reg, offset, base, index, scale) \ + BUNDLELOCK \ + "lea " #offset "(%q" #base ",%q" #index "," #scale "),%%r14d\n" \ + #opcode " %%" #reg ",(%%r15,%%r14)\n" \ + BUNDLEUNLOCK +#define MEMOPARG(opcode, offset, base, index, scale, arg) \ + BUNDLELOCK \ + "lea " #offset "(%q" #base ",%q" #index "," #scale "),%%r14d\n" \ + #opcode " (%%r15,%%r14),%" #arg "\n" \ + BUNDLEUNLOCK +#define VMEMOPREG(opcode, offset, base, index, scale, reg1, reg2) \ + BUNDLELOCK \ + "lea " #offset "(%q" #base ",%q" #index "," #scale "),%%r14d\n" \ + #opcode " (%%r15,%%r14),%%" #reg1 ",%%" #reg2 "\n" \ + BUNDLEUNLOCK +#define VEXTOPMEM(op, sel, reg, offset, base, index, scale) \ + BUNDLELOCK \ + "lea " #offset "(%q" #base ",%q" #index "," #scale "),%%r14d\n" \ + #op " $" #sel ",%%" #reg ",(%%r15,%%r14)\n" \ + BUNDLEUNLOCK +#else // defined(__native_client__) && defined(__x86_64__) +#define NACL_R14 +#define BUNDLEALIGN +#define MEMACCESS(base) "(%" #base ")" +#define MEMACCESS2(offset, base) #offset "(%" #base ")" +#define MEMLEA(offset, base) #offset "(%" #base ")" +#define MEMLEA3(offset, index, scale) \ + #offset "(,%" #index "," #scale ")" +#define MEMLEA4(offset, base, index, scale) \ + #offset "(%" #base ",%" #index "," #scale ")" +#define MEMMOVESTRING(s, d) +#define MEMSTORESTRING(reg, d) +#define MEMOPREG(opcode, offset, base, index, scale, reg) \ + #opcode " " #offset "(%" #base ",%" #index "," #scale "),%%" #reg "\n" +#define MEMOPMEM(opcode, reg, offset, base, index, scale) \ + #opcode " %%" #reg ","#offset "(%" #base ",%" #index "," #scale ")\n" +#define MEMOPARG(opcode, offset, base, index, scale, arg) \ + #opcode " " #offset "(%" #base ",%" #index "," #scale "),%" #arg "\n" +#define VMEMOPREG(opcode, offset, base, index, scale, reg1, reg2) \ + #opcode " " #offset "(%" #base ",%" #index "," #scale "),%%" #reg1 ",%%" \ + #reg2 "\n" +#define VEXTOPMEM(op, sel, reg, offset, base, index, scale) \ + #op " $" #sel ",%%" #reg ","#offset "(%" #base ",%" #index "," #scale ")\n" +#endif // defined(__native_client__) && defined(__x86_64__) + +#if defined(__arm__) || defined(__aarch64__) +#undef MEMACCESS +#if defined(__native_client__) +#define MEMACCESS(base) ".p2align 3\nbic %" #base ", #0xc0000000\n" +#else +#define MEMACCESS(base) +#endif +#endif + +void I444ToARGBRow_NEON(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width); +void I422ToARGBRow_NEON(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width); +void I422AlphaToARGBRow_NEON(const uint8* y_buf, + const uint8* u_buf, + const uint8* v_buf, + const uint8* a_buf, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width); +void I422ToARGBRow_NEON(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width); +void I411ToARGBRow_NEON(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width); +void I422ToRGBARow_NEON(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + uint8* dst_rgba, + const struct YuvConstants* yuvconstants, + int width); +void I422ToRGB24Row_NEON(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + uint8* dst_rgb24, + const struct YuvConstants* yuvconstants, + int width); +void I422ToRGB565Row_NEON(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + uint8* dst_rgb565, + const struct YuvConstants* yuvconstants, + int width); +void I422ToARGB1555Row_NEON(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + uint8* dst_argb1555, + const struct YuvConstants* yuvconstants, + int width); +void I422ToARGB4444Row_NEON(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + uint8* dst_argb4444, + const struct YuvConstants* yuvconstants, + int width); +void NV12ToARGBRow_NEON(const uint8* src_y, + const uint8* src_uv, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width); +void NV12ToRGB565Row_NEON(const uint8* src_y, + const uint8* src_uv, + uint8* dst_rgb565, + const struct YuvConstants* yuvconstants, + int width); +void NV21ToARGBRow_NEON(const uint8* src_y, + const uint8* src_vu, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width); +void YUY2ToARGBRow_NEON(const uint8* src_yuy2, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width); +void UYVYToARGBRow_NEON(const uint8* src_uyvy, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width); + +void ARGBToYRow_AVX2(const uint8* src_argb, uint8* dst_y, int width); +void ARGBToYRow_Any_AVX2(const uint8* src_argb, uint8* dst_y, int width); +void ARGBToYRow_SSSE3(const uint8* src_argb, uint8* dst_y, int width); +void ARGBToYJRow_AVX2(const uint8* src_argb, uint8* dst_y, int width); +void ARGBToYJRow_Any_AVX2(const uint8* src_argb, uint8* dst_y, int width); +void ARGBToYJRow_SSSE3(const uint8* src_argb, uint8* dst_y, int width); +void BGRAToYRow_SSSE3(const uint8* src_bgra, uint8* dst_y, int width); +void ABGRToYRow_SSSE3(const uint8* src_abgr, uint8* dst_y, int width); +void RGBAToYRow_SSSE3(const uint8* src_rgba, uint8* dst_y, int width); +void RGB24ToYRow_SSSE3(const uint8* src_rgb24, uint8* dst_y, int width); +void RAWToYRow_SSSE3(const uint8* src_raw, uint8* dst_y, int width); +void ARGBToYRow_NEON(const uint8* src_argb, uint8* dst_y, int width); +void ARGBToYJRow_NEON(const uint8* src_argb, uint8* dst_y, int width); +void ARGBToUV444Row_NEON(const uint8* src_argb, uint8* dst_u, uint8* dst_v, + int width); +void ARGBToUV411Row_NEON(const uint8* src_argb, uint8* dst_u, uint8* dst_v, + int width); +void ARGBToUVRow_NEON(const uint8* src_argb, int src_stride_argb, + uint8* dst_u, uint8* dst_v, int width); +void ARGBToUVJRow_NEON(const uint8* src_argb, int src_stride_argb, + uint8* dst_u, uint8* dst_v, int width); +void BGRAToUVRow_NEON(const uint8* src_bgra, int src_stride_bgra, + uint8* dst_u, uint8* dst_v, int width); +void ABGRToUVRow_NEON(const uint8* src_abgr, int src_stride_abgr, + uint8* dst_u, uint8* dst_v, int width); +void RGBAToUVRow_NEON(const uint8* src_rgba, int src_stride_rgba, + uint8* dst_u, uint8* dst_v, int width); +void RGB24ToUVRow_NEON(const uint8* src_rgb24, int src_stride_rgb24, + uint8* dst_u, uint8* dst_v, int width); +void RAWToUVRow_NEON(const uint8* src_raw, int src_stride_raw, + uint8* dst_u, uint8* dst_v, int width); +void RGB565ToUVRow_NEON(const uint8* src_rgb565, int src_stride_rgb565, + uint8* dst_u, uint8* dst_v, int width); +void ARGB1555ToUVRow_NEON(const uint8* src_argb1555, int src_stride_argb1555, + uint8* dst_u, uint8* dst_v, int width); +void ARGB4444ToUVRow_NEON(const uint8* src_argb4444, int src_stride_argb4444, + uint8* dst_u, uint8* dst_v, int width); +void BGRAToYRow_NEON(const uint8* src_bgra, uint8* dst_y, int width); +void ABGRToYRow_NEON(const uint8* src_abgr, uint8* dst_y, int width); +void RGBAToYRow_NEON(const uint8* src_rgba, uint8* dst_y, int width); +void RGB24ToYRow_NEON(const uint8* src_rgb24, uint8* dst_y, int width); +void RAWToYRow_NEON(const uint8* src_raw, uint8* dst_y, int width); +void RGB565ToYRow_NEON(const uint8* src_rgb565, uint8* dst_y, int width); +void ARGB1555ToYRow_NEON(const uint8* src_argb1555, uint8* dst_y, int width); +void ARGB4444ToYRow_NEON(const uint8* src_argb4444, uint8* dst_y, int width); +void ARGBToYRow_C(const uint8* src_argb, uint8* dst_y, int width); +void ARGBToYJRow_C(const uint8* src_argb, uint8* dst_y, int width); +void BGRAToYRow_C(const uint8* src_bgra, uint8* dst_y, int width); +void ABGRToYRow_C(const uint8* src_abgr, uint8* dst_y, int width); +void RGBAToYRow_C(const uint8* src_rgba, uint8* dst_y, int width); +void RGB24ToYRow_C(const uint8* src_rgb24, uint8* dst_y, int width); +void RAWToYRow_C(const uint8* src_raw, uint8* dst_y, int width); +void RGB565ToYRow_C(const uint8* src_rgb565, uint8* dst_y, int width); +void ARGB1555ToYRow_C(const uint8* src_argb1555, uint8* dst_y, int width); +void ARGB4444ToYRow_C(const uint8* src_argb4444, uint8* dst_y, int width); +void ARGBToYRow_Any_SSSE3(const uint8* src_argb, uint8* dst_y, int width); +void ARGBToYJRow_Any_SSSE3(const uint8* src_argb, uint8* dst_y, int width); +void BGRAToYRow_Any_SSSE3(const uint8* src_bgra, uint8* dst_y, int width); +void ABGRToYRow_Any_SSSE3(const uint8* src_abgr, uint8* dst_y, int width); +void RGBAToYRow_Any_SSSE3(const uint8* src_rgba, uint8* dst_y, int width); +void RGB24ToYRow_Any_SSSE3(const uint8* src_rgb24, uint8* dst_y, int width); +void RAWToYRow_Any_SSSE3(const uint8* src_raw, uint8* dst_y, int width); +void ARGBToYRow_Any_NEON(const uint8* src_argb, uint8* dst_y, int width); +void ARGBToYJRow_Any_NEON(const uint8* src_argb, uint8* dst_y, int width); +void BGRAToYRow_Any_NEON(const uint8* src_bgra, uint8* dst_y, int width); +void ABGRToYRow_Any_NEON(const uint8* src_abgr, uint8* dst_y, int width); +void RGBAToYRow_Any_NEON(const uint8* src_rgba, uint8* dst_y, int width); +void RGB24ToYRow_Any_NEON(const uint8* src_rgb24, uint8* dst_y, int width); +void RAWToYRow_Any_NEON(const uint8* src_raw, uint8* dst_y, int width); +void RGB565ToYRow_Any_NEON(const uint8* src_rgb565, uint8* dst_y, int width); +void ARGB1555ToYRow_Any_NEON(const uint8* src_argb1555, uint8* dst_y, + int width); +void ARGB4444ToYRow_Any_NEON(const uint8* src_argb4444, uint8* dst_y, + int width); + +void ARGBToUVRow_AVX2(const uint8* src_argb, int src_stride_argb, + uint8* dst_u, uint8* dst_v, int width); +void ARGBToUVJRow_AVX2(const uint8* src_argb, int src_stride_argb, + uint8* dst_u, uint8* dst_v, int width); +void ARGBToUVRow_SSSE3(const uint8* src_argb, int src_stride_argb, + uint8* dst_u, uint8* dst_v, int width); +void ARGBToUVJRow_SSSE3(const uint8* src_argb, int src_stride_argb, + uint8* dst_u, uint8* dst_v, int width); +void BGRAToUVRow_SSSE3(const uint8* src_bgra, int src_stride_bgra, + uint8* dst_u, uint8* dst_v, int width); +void ABGRToUVRow_SSSE3(const uint8* src_abgr, int src_stride_abgr, + uint8* dst_u, uint8* dst_v, int width); +void RGBAToUVRow_SSSE3(const uint8* src_rgba, int src_stride_rgba, + uint8* dst_u, uint8* dst_v, int width); +void ARGBToUVRow_Any_AVX2(const uint8* src_argb, int src_stride_argb, + uint8* dst_u, uint8* dst_v, int width); +void ARGBToUVJRow_Any_AVX2(const uint8* src_argb, int src_stride_argb, + uint8* dst_u, uint8* dst_v, int width); +void ARGBToUVRow_Any_SSSE3(const uint8* src_argb, int src_stride_argb, + uint8* dst_u, uint8* dst_v, int width); +void ARGBToUVJRow_Any_SSSE3(const uint8* src_argb, int src_stride_argb, + uint8* dst_u, uint8* dst_v, int width); +void BGRAToUVRow_Any_SSSE3(const uint8* src_bgra, int src_stride_bgra, + uint8* dst_u, uint8* dst_v, int width); +void ABGRToUVRow_Any_SSSE3(const uint8* src_abgr, int src_stride_abgr, + uint8* dst_u, uint8* dst_v, int width); +void RGBAToUVRow_Any_SSSE3(const uint8* src_rgba, int src_stride_rgba, + uint8* dst_u, uint8* dst_v, int width); +void ARGBToUV444Row_Any_NEON(const uint8* src_argb, uint8* dst_u, uint8* dst_v, + int width); +void ARGBToUV411Row_Any_NEON(const uint8* src_argb, uint8* dst_u, uint8* dst_v, + int width); +void ARGBToUVRow_Any_NEON(const uint8* src_argb, int src_stride_argb, + uint8* dst_u, uint8* dst_v, int width); +void ARGBToUVJRow_Any_NEON(const uint8* src_argb, int src_stride_argb, + uint8* dst_u, uint8* dst_v, int width); +void BGRAToUVRow_Any_NEON(const uint8* src_bgra, int src_stride_bgra, + uint8* dst_u, uint8* dst_v, int width); +void ABGRToUVRow_Any_NEON(const uint8* src_abgr, int src_stride_abgr, + uint8* dst_u, uint8* dst_v, int width); +void RGBAToUVRow_Any_NEON(const uint8* src_rgba, int src_stride_rgba, + uint8* dst_u, uint8* dst_v, int width); +void RGB24ToUVRow_Any_NEON(const uint8* src_rgb24, int src_stride_rgb24, + uint8* dst_u, uint8* dst_v, int width); +void RAWToUVRow_Any_NEON(const uint8* src_raw, int src_stride_raw, + uint8* dst_u, uint8* dst_v, int width); +void RGB565ToUVRow_Any_NEON(const uint8* src_rgb565, int src_stride_rgb565, + uint8* dst_u, uint8* dst_v, int width); +void ARGB1555ToUVRow_Any_NEON(const uint8* src_argb1555, + int src_stride_argb1555, + uint8* dst_u, uint8* dst_v, int width); +void ARGB4444ToUVRow_Any_NEON(const uint8* src_argb4444, + int src_stride_argb4444, + uint8* dst_u, uint8* dst_v, int width); +void ARGBToUVRow_C(const uint8* src_argb, int src_stride_argb, + uint8* dst_u, uint8* dst_v, int width); +void ARGBToUVJRow_C(const uint8* src_argb, int src_stride_argb, + uint8* dst_u, uint8* dst_v, int width); +void BGRAToUVRow_C(const uint8* src_bgra, int src_stride_bgra, + uint8* dst_u, uint8* dst_v, int width); +void ABGRToUVRow_C(const uint8* src_abgr, int src_stride_abgr, + uint8* dst_u, uint8* dst_v, int width); +void RGBAToUVRow_C(const uint8* src_rgba, int src_stride_rgba, + uint8* dst_u, uint8* dst_v, int width); +void RGB24ToUVRow_C(const uint8* src_rgb24, int src_stride_rgb24, + uint8* dst_u, uint8* dst_v, int width); +void RAWToUVRow_C(const uint8* src_raw, int src_stride_raw, + uint8* dst_u, uint8* dst_v, int width); +void RGB565ToUVRow_C(const uint8* src_rgb565, int src_stride_rgb565, + uint8* dst_u, uint8* dst_v, int width); +void ARGB1555ToUVRow_C(const uint8* src_argb1555, int src_stride_argb1555, + uint8* dst_u, uint8* dst_v, int width); +void ARGB4444ToUVRow_C(const uint8* src_argb4444, int src_stride_argb4444, + uint8* dst_u, uint8* dst_v, int width); + +void ARGBToUV444Row_SSSE3(const uint8* src_argb, + uint8* dst_u, uint8* dst_v, int width); +void ARGBToUV444Row_Any_SSSE3(const uint8* src_argb, + uint8* dst_u, uint8* dst_v, int width); + +void ARGBToUV444Row_C(const uint8* src_argb, + uint8* dst_u, uint8* dst_v, int width); +void ARGBToUV411Row_C(const uint8* src_argb, + uint8* dst_u, uint8* dst_v, int width); + +void MirrorRow_AVX2(const uint8* src, uint8* dst, int width); +void MirrorRow_SSSE3(const uint8* src, uint8* dst, int width); +void MirrorRow_NEON(const uint8* src, uint8* dst, int width); +void MirrorRow_DSPR2(const uint8* src, uint8* dst, int width); +void MirrorRow_C(const uint8* src, uint8* dst, int width); +void MirrorRow_Any_AVX2(const uint8* src, uint8* dst, int width); +void MirrorRow_Any_SSSE3(const uint8* src, uint8* dst, int width); +void MirrorRow_Any_SSE2(const uint8* src, uint8* dst, int width); +void MirrorRow_Any_NEON(const uint8* src, uint8* dst, int width); + +void MirrorUVRow_SSSE3(const uint8* src_uv, uint8* dst_u, uint8* dst_v, + int width); +void MirrorUVRow_NEON(const uint8* src_uv, uint8* dst_u, uint8* dst_v, + int width); +void MirrorUVRow_DSPR2(const uint8* src_uv, uint8* dst_u, uint8* dst_v, + int width); +void MirrorUVRow_C(const uint8* src_uv, uint8* dst_u, uint8* dst_v, int width); + +void ARGBMirrorRow_AVX2(const uint8* src, uint8* dst, int width); +void ARGBMirrorRow_SSE2(const uint8* src, uint8* dst, int width); +void ARGBMirrorRow_NEON(const uint8* src, uint8* dst, int width); +void ARGBMirrorRow_C(const uint8* src, uint8* dst, int width); +void ARGBMirrorRow_Any_AVX2(const uint8* src, uint8* dst, int width); +void ARGBMirrorRow_Any_SSE2(const uint8* src, uint8* dst, int width); +void ARGBMirrorRow_Any_NEON(const uint8* src, uint8* dst, int width); + +void SplitUVRow_C(const uint8* src_uv, uint8* dst_u, uint8* dst_v, int width); +void SplitUVRow_SSE2(const uint8* src_uv, uint8* dst_u, uint8* dst_v, + int width); +void SplitUVRow_AVX2(const uint8* src_uv, uint8* dst_u, uint8* dst_v, + int width); +void SplitUVRow_NEON(const uint8* src_uv, uint8* dst_u, uint8* dst_v, + int width); +void SplitUVRow_DSPR2(const uint8* src_uv, uint8* dst_u, uint8* dst_v, + int width); +void SplitUVRow_Any_SSE2(const uint8* src_uv, uint8* dst_u, uint8* dst_v, + int width); +void SplitUVRow_Any_AVX2(const uint8* src_uv, uint8* dst_u, uint8* dst_v, + int width); +void SplitUVRow_Any_NEON(const uint8* src_uv, uint8* dst_u, uint8* dst_v, + int width); +void SplitUVRow_Any_DSPR2(const uint8* src_uv, uint8* dst_u, uint8* dst_v, + int width); + +void MergeUVRow_C(const uint8* src_u, const uint8* src_v, uint8* dst_uv, + int width); +void MergeUVRow_SSE2(const uint8* src_u, const uint8* src_v, uint8* dst_uv, + int width); +void MergeUVRow_AVX2(const uint8* src_u, const uint8* src_v, uint8* dst_uv, + int width); +void MergeUVRow_NEON(const uint8* src_u, const uint8* src_v, uint8* dst_uv, + int width); +void MergeUVRow_Any_SSE2(const uint8* src_u, const uint8* src_v, uint8* dst_uv, + int width); +void MergeUVRow_Any_AVX2(const uint8* src_u, const uint8* src_v, uint8* dst_uv, + int width); +void MergeUVRow_Any_NEON(const uint8* src_u, const uint8* src_v, uint8* dst_uv, + int width); + +void CopyRow_SSE2(const uint8* src, uint8* dst, int count); +void CopyRow_AVX(const uint8* src, uint8* dst, int count); +void CopyRow_ERMS(const uint8* src, uint8* dst, int count); +void CopyRow_NEON(const uint8* src, uint8* dst, int count); +void CopyRow_MIPS(const uint8* src, uint8* dst, int count); +void CopyRow_C(const uint8* src, uint8* dst, int count); +void CopyRow_Any_SSE2(const uint8* src, uint8* dst, int count); +void CopyRow_Any_AVX(const uint8* src, uint8* dst, int count); +void CopyRow_Any_NEON(const uint8* src, uint8* dst, int count); + +void CopyRow_16_C(const uint16* src, uint16* dst, int count); + +void ARGBCopyAlphaRow_C(const uint8* src_argb, uint8* dst_argb, int width); +void ARGBCopyAlphaRow_SSE2(const uint8* src_argb, uint8* dst_argb, int width); +void ARGBCopyAlphaRow_AVX2(const uint8* src_argb, uint8* dst_argb, int width); +void ARGBCopyAlphaRow_Any_SSE2(const uint8* src_argb, uint8* dst_argb, + int width); +void ARGBCopyAlphaRow_Any_AVX2(const uint8* src_argb, uint8* dst_argb, + int width); + +void ARGBExtractAlphaRow_C(const uint8* src_argb, uint8* dst_a, int width); +void ARGBExtractAlphaRow_SSE2(const uint8* src_argb, uint8* dst_a, int width); +void ARGBExtractAlphaRow_NEON(const uint8* src_argb, uint8* dst_a, int width); +void ARGBExtractAlphaRow_Any_SSE2(const uint8* src_argb, uint8* dst_a, + int width); +void ARGBExtractAlphaRow_Any_NEON(const uint8* src_argb, uint8* dst_a, + int width); + +void ARGBCopyYToAlphaRow_C(const uint8* src_y, uint8* dst_argb, int width); +void ARGBCopyYToAlphaRow_SSE2(const uint8* src_y, uint8* dst_argb, int width); +void ARGBCopyYToAlphaRow_AVX2(const uint8* src_y, uint8* dst_argb, int width); +void ARGBCopyYToAlphaRow_Any_SSE2(const uint8* src_y, uint8* dst_argb, + int width); +void ARGBCopyYToAlphaRow_Any_AVX2(const uint8* src_y, uint8* dst_argb, + int width); + +void SetRow_C(uint8* dst, uint8 v8, int count); +void SetRow_X86(uint8* dst, uint8 v8, int count); +void SetRow_ERMS(uint8* dst, uint8 v8, int count); +void SetRow_NEON(uint8* dst, uint8 v8, int count); +void SetRow_Any_X86(uint8* dst, uint8 v8, int count); +void SetRow_Any_NEON(uint8* dst, uint8 v8, int count); + +void ARGBSetRow_C(uint8* dst_argb, uint32 v32, int count); +void ARGBSetRow_X86(uint8* dst_argb, uint32 v32, int count); +void ARGBSetRow_NEON(uint8* dst_argb, uint32 v32, int count); +void ARGBSetRow_Any_NEON(uint8* dst_argb, uint32 v32, int count); + +// ARGBShufflers for BGRAToARGB etc. +void ARGBShuffleRow_C(const uint8* src_argb, uint8* dst_argb, + const uint8* shuffler, int width); +void ARGBShuffleRow_SSE2(const uint8* src_argb, uint8* dst_argb, + const uint8* shuffler, int width); +void ARGBShuffleRow_SSSE3(const uint8* src_argb, uint8* dst_argb, + const uint8* shuffler, int width); +void ARGBShuffleRow_AVX2(const uint8* src_argb, uint8* dst_argb, + const uint8* shuffler, int width); +void ARGBShuffleRow_NEON(const uint8* src_argb, uint8* dst_argb, + const uint8* shuffler, int width); +void ARGBShuffleRow_Any_SSE2(const uint8* src_argb, uint8* dst_argb, + const uint8* shuffler, int width); +void ARGBShuffleRow_Any_SSSE3(const uint8* src_argb, uint8* dst_argb, + const uint8* shuffler, int width); +void ARGBShuffleRow_Any_AVX2(const uint8* src_argb, uint8* dst_argb, + const uint8* shuffler, int width); +void ARGBShuffleRow_Any_NEON(const uint8* src_argb, uint8* dst_argb, + const uint8* shuffler, int width); + +void RGB24ToARGBRow_SSSE3(const uint8* src_rgb24, uint8* dst_argb, int width); +void RAWToARGBRow_SSSE3(const uint8* src_raw, uint8* dst_argb, int width); +void RAWToRGB24Row_SSSE3(const uint8* src_raw, uint8* dst_rgb24, int width); +void RGB565ToARGBRow_SSE2(const uint8* src_rgb565, uint8* dst_argb, int width); +void ARGB1555ToARGBRow_SSE2(const uint8* src_argb1555, uint8* dst_argb, + int width); +void ARGB4444ToARGBRow_SSE2(const uint8* src_argb4444, uint8* dst_argb, + int width); +void RGB565ToARGBRow_AVX2(const uint8* src_rgb565, uint8* dst_argb, int width); +void ARGB1555ToARGBRow_AVX2(const uint8* src_argb1555, uint8* dst_argb, + int width); +void ARGB4444ToARGBRow_AVX2(const uint8* src_argb4444, uint8* dst_argb, + int width); + +void RGB24ToARGBRow_NEON(const uint8* src_rgb24, uint8* dst_argb, int width); +void RAWToARGBRow_NEON(const uint8* src_raw, uint8* dst_argb, int width); +void RAWToRGB24Row_NEON(const uint8* src_raw, uint8* dst_rgb24, int width); +void RGB565ToARGBRow_NEON(const uint8* src_rgb565, uint8* dst_argb, int width); +void ARGB1555ToARGBRow_NEON(const uint8* src_argb1555, uint8* dst_argb, + int width); +void ARGB4444ToARGBRow_NEON(const uint8* src_argb4444, uint8* dst_argb, + int width); +void RGB24ToARGBRow_C(const uint8* src_rgb24, uint8* dst_argb, int width); +void RAWToARGBRow_C(const uint8* src_raw, uint8* dst_argb, int width); +void RAWToRGB24Row_C(const uint8* src_raw, uint8* dst_rgb24, int width); +void RGB565ToARGBRow_C(const uint8* src_rgb, uint8* dst_argb, int width); +void ARGB1555ToARGBRow_C(const uint8* src_argb, uint8* dst_argb, int width); +void ARGB4444ToARGBRow_C(const uint8* src_argb, uint8* dst_argb, int width); +void RGB24ToARGBRow_Any_SSSE3(const uint8* src_rgb24, uint8* dst_argb, + int width); +void RAWToARGBRow_Any_SSSE3(const uint8* src_raw, uint8* dst_argb, int width); +void RAWToRGB24Row_Any_SSSE3(const uint8* src_raw, uint8* dst_rgb24, int width); + +void RGB565ToARGBRow_Any_SSE2(const uint8* src_rgb565, uint8* dst_argb, + int width); +void ARGB1555ToARGBRow_Any_SSE2(const uint8* src_argb1555, uint8* dst_argb, + int width); +void ARGB4444ToARGBRow_Any_SSE2(const uint8* src_argb4444, uint8* dst_argb, + int width); +void RGB565ToARGBRow_Any_AVX2(const uint8* src_rgb565, uint8* dst_argb, + int width); +void ARGB1555ToARGBRow_Any_AVX2(const uint8* src_argb1555, uint8* dst_argb, + int width); +void ARGB4444ToARGBRow_Any_AVX2(const uint8* src_argb4444, uint8* dst_argb, + int width); + +void RGB24ToARGBRow_Any_NEON(const uint8* src_rgb24, uint8* dst_argb, + int width); +void RAWToARGBRow_Any_NEON(const uint8* src_raw, uint8* dst_argb, int width); +void RAWToRGB24Row_Any_NEON(const uint8* src_raw, uint8* dst_rgb24, int width); +void RGB565ToARGBRow_Any_NEON(const uint8* src_rgb565, uint8* dst_argb, + int width); +void ARGB1555ToARGBRow_Any_NEON(const uint8* src_argb1555, uint8* dst_argb, + int width); +void ARGB4444ToARGBRow_Any_NEON(const uint8* src_argb4444, uint8* dst_argb, + int width); + +void ARGBToRGB24Row_SSSE3(const uint8* src_argb, uint8* dst_rgb, int width); +void ARGBToRAWRow_SSSE3(const uint8* src_argb, uint8* dst_rgb, int width); +void ARGBToRGB565Row_SSE2(const uint8* src_argb, uint8* dst_rgb, int width); +void ARGBToARGB1555Row_SSE2(const uint8* src_argb, uint8* dst_rgb, int width); +void ARGBToARGB4444Row_SSE2(const uint8* src_argb, uint8* dst_rgb, int width); + +void ARGBToRGB565DitherRow_C(const uint8* src_argb, uint8* dst_rgb, + const uint32 dither4, int width); +void ARGBToRGB565DitherRow_SSE2(const uint8* src_argb, uint8* dst_rgb, + const uint32 dither4, int width); +void ARGBToRGB565DitherRow_AVX2(const uint8* src_argb, uint8* dst_rgb, + const uint32 dither4, int width); + +void ARGBToRGB565Row_AVX2(const uint8* src_argb, uint8* dst_rgb, int width); +void ARGBToARGB1555Row_AVX2(const uint8* src_argb, uint8* dst_rgb, int width); +void ARGBToARGB4444Row_AVX2(const uint8* src_argb, uint8* dst_rgb, int width); + +void ARGBToRGB24Row_NEON(const uint8* src_argb, uint8* dst_rgb, int width); +void ARGBToRAWRow_NEON(const uint8* src_argb, uint8* dst_rgb, int width); +void ARGBToRGB565Row_NEON(const uint8* src_argb, uint8* dst_rgb, int width); +void ARGBToARGB1555Row_NEON(const uint8* src_argb, uint8* dst_rgb, int width); +void ARGBToARGB4444Row_NEON(const uint8* src_argb, uint8* dst_rgb, int width); +void ARGBToRGB565DitherRow_NEON(const uint8* src_argb, uint8* dst_rgb, + const uint32 dither4, int width); + +void ARGBToRGBARow_C(const uint8* src_argb, uint8* dst_rgb, int width); +void ARGBToRGB24Row_C(const uint8* src_argb, uint8* dst_rgb, int width); +void ARGBToRAWRow_C(const uint8* src_argb, uint8* dst_rgb, int width); +void ARGBToRGB565Row_C(const uint8* src_argb, uint8* dst_rgb, int width); +void ARGBToARGB1555Row_C(const uint8* src_argb, uint8* dst_rgb, int width); +void ARGBToARGB4444Row_C(const uint8* src_argb, uint8* dst_rgb, int width); + +void J400ToARGBRow_SSE2(const uint8* src_y, uint8* dst_argb, int width); +void J400ToARGBRow_AVX2(const uint8* src_y, uint8* dst_argb, int width); +void J400ToARGBRow_NEON(const uint8* src_y, uint8* dst_argb, int width); +void J400ToARGBRow_C(const uint8* src_y, uint8* dst_argb, int width); +void J400ToARGBRow_Any_SSE2(const uint8* src_y, uint8* dst_argb, int width); +void J400ToARGBRow_Any_AVX2(const uint8* src_y, uint8* dst_argb, int width); +void J400ToARGBRow_Any_NEON(const uint8* src_y, uint8* dst_argb, int width); + +void I444ToARGBRow_C(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width); +void I422ToARGBRow_C(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width); +void I422ToARGBRow_C(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width); +void I422AlphaToARGBRow_C(const uint8* y_buf, + const uint8* u_buf, + const uint8* v_buf, + const uint8* a_buf, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width); +void I411ToARGBRow_C(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width); +void NV12ToARGBRow_C(const uint8* src_y, + const uint8* src_uv, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width); +void NV12ToRGB565Row_C(const uint8* src_y, + const uint8* src_uv, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width); +void NV21ToARGBRow_C(const uint8* src_y, + const uint8* src_uv, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width); +void YUY2ToARGBRow_C(const uint8* src_yuy2, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width); +void UYVYToARGBRow_C(const uint8* src_uyvy, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width); +void I422ToRGBARow_C(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + uint8* dst_rgba, + const struct YuvConstants* yuvconstants, + int width); +void I422ToRGB24Row_C(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + uint8* dst_rgb24, + const struct YuvConstants* yuvconstants, + int width); +void I422ToARGB4444Row_C(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + uint8* dst_argb4444, + const struct YuvConstants* yuvconstants, + int width); +void I422ToARGB1555Row_C(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + uint8* dst_argb4444, + const struct YuvConstants* yuvconstants, + int width); +void I422ToRGB565Row_C(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + uint8* dst_rgb565, + const struct YuvConstants* yuvconstants, + int width); +void I422ToARGBRow_AVX2(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width); +void I422ToARGBRow_AVX2(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width); +void I422ToRGBARow_AVX2(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width); +void I444ToARGBRow_SSSE3(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width); +void I444ToARGBRow_AVX2(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width); +void I444ToARGBRow_SSSE3(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width); +void I444ToARGBRow_AVX2(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width); +void I422ToARGBRow_SSSE3(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width); +void I422AlphaToARGBRow_SSSE3(const uint8* y_buf, + const uint8* u_buf, + const uint8* v_buf, + const uint8* a_buf, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width); +void I422AlphaToARGBRow_AVX2(const uint8* y_buf, + const uint8* u_buf, + const uint8* v_buf, + const uint8* a_buf, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width); +void I422ToARGBRow_SSSE3(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width); +void I411ToARGBRow_SSSE3(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width); +void I411ToARGBRow_AVX2(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width); +void NV12ToARGBRow_SSSE3(const uint8* src_y, + const uint8* src_uv, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width); +void NV12ToARGBRow_AVX2(const uint8* src_y, + const uint8* src_uv, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width); +void NV12ToRGB565Row_SSSE3(const uint8* src_y, + const uint8* src_uv, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width); +void NV12ToRGB565Row_AVX2(const uint8* src_y, + const uint8* src_uv, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width); +void NV21ToARGBRow_SSSE3(const uint8* src_y, + const uint8* src_uv, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width); +void NV21ToARGBRow_AVX2(const uint8* src_y, + const uint8* src_uv, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width); +void YUY2ToARGBRow_SSSE3(const uint8* src_yuy2, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width); +void UYVYToARGBRow_SSSE3(const uint8* src_uyvy, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width); +void YUY2ToARGBRow_AVX2(const uint8* src_yuy2, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width); +void UYVYToARGBRow_AVX2(const uint8* src_uyvy, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width); +void I422ToRGBARow_SSSE3(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + uint8* dst_rgba, + const struct YuvConstants* yuvconstants, + int width); +void I422ToARGB4444Row_SSSE3(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width); +void I422ToARGB4444Row_AVX2(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width); +void I422ToARGB1555Row_SSSE3(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width); +void I422ToARGB1555Row_AVX2(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width); +void I422ToRGB565Row_SSSE3(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width); +void I422ToRGB565Row_AVX2(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width); +void I422ToRGB24Row_SSSE3(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + uint8* dst_rgb24, + const struct YuvConstants* yuvconstants, + int width); +void I422ToRGB24Row_AVX2(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + uint8* dst_rgb24, + const struct YuvConstants* yuvconstants, + int width); +void I422ToARGBRow_Any_AVX2(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width); +void I422ToRGBARow_Any_AVX2(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width); +void I444ToARGBRow_Any_SSSE3(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width); +void I444ToARGBRow_Any_AVX2(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width); +void I422ToARGBRow_Any_SSSE3(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width); +void I422AlphaToARGBRow_Any_SSSE3(const uint8* y_buf, + const uint8* u_buf, + const uint8* v_buf, + const uint8* a_buf, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width); +void I422AlphaToARGBRow_Any_AVX2(const uint8* y_buf, + const uint8* u_buf, + const uint8* v_buf, + const uint8* a_buf, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width); +void I411ToARGBRow_Any_SSSE3(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width); +void I411ToARGBRow_Any_AVX2(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width); +void NV12ToARGBRow_Any_SSSE3(const uint8* src_y, + const uint8* src_uv, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width); +void NV12ToARGBRow_Any_AVX2(const uint8* src_y, + const uint8* src_uv, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width); +void NV21ToARGBRow_Any_SSSE3(const uint8* src_y, + const uint8* src_vu, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width); +void NV21ToARGBRow_Any_AVX2(const uint8* src_y, + const uint8* src_vu, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width); +void NV12ToRGB565Row_Any_SSSE3(const uint8* src_y, + const uint8* src_uv, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width); +void NV12ToRGB565Row_Any_AVX2(const uint8* src_y, + const uint8* src_uv, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width); +void YUY2ToARGBRow_Any_SSSE3(const uint8* src_yuy2, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width); +void UYVYToARGBRow_Any_SSSE3(const uint8* src_uyvy, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width); +void YUY2ToARGBRow_Any_AVX2(const uint8* src_yuy2, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width); +void UYVYToARGBRow_Any_AVX2(const uint8* src_uyvy, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width); +void I422ToRGBARow_Any_SSSE3(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + uint8* dst_rgba, + const struct YuvConstants* yuvconstants, + int width); +void I422ToARGB4444Row_Any_SSSE3(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + uint8* dst_rgba, + const struct YuvConstants* yuvconstants, + int width); +void I422ToARGB4444Row_Any_AVX2(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + uint8* dst_rgba, + const struct YuvConstants* yuvconstants, + int width); +void I422ToARGB1555Row_Any_SSSE3(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + uint8* dst_rgba, + const struct YuvConstants* yuvconstants, + int width); +void I422ToARGB1555Row_Any_AVX2(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + uint8* dst_rgba, + const struct YuvConstants* yuvconstants, + int width); +void I422ToRGB565Row_Any_SSSE3(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + uint8* dst_rgba, + const struct YuvConstants* yuvconstants, + int width); +void I422ToRGB565Row_Any_AVX2(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + uint8* dst_rgba, + const struct YuvConstants* yuvconstants, + int width); +void I422ToRGB24Row_Any_SSSE3(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width); +void I422ToRGB24Row_Any_AVX2(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width); + +void I400ToARGBRow_C(const uint8* src_y, uint8* dst_argb, int width); +void I400ToARGBRow_SSE2(const uint8* src_y, uint8* dst_argb, int width); +void I400ToARGBRow_AVX2(const uint8* src_y, uint8* dst_argb, int width); +void I400ToARGBRow_NEON(const uint8* src_y, uint8* dst_argb, int width); +void I400ToARGBRow_Any_SSE2(const uint8* src_y, uint8* dst_argb, int width); +void I400ToARGBRow_Any_AVX2(const uint8* src_y, uint8* dst_argb, int width); +void I400ToARGBRow_Any_NEON(const uint8* src_y, uint8* dst_argb, int width); + +// ARGB preattenuated alpha blend. +void ARGBBlendRow_SSSE3(const uint8* src_argb, const uint8* src_argb1, + uint8* dst_argb, int width); +void ARGBBlendRow_NEON(const uint8* src_argb, const uint8* src_argb1, + uint8* dst_argb, int width); +void ARGBBlendRow_C(const uint8* src_argb, const uint8* src_argb1, + uint8* dst_argb, int width); + +// Unattenuated planar alpha blend. +void BlendPlaneRow_SSSE3(const uint8* src0, const uint8* src1, + const uint8* alpha, uint8* dst, int width); +void BlendPlaneRow_Any_SSSE3(const uint8* src0, const uint8* src1, + const uint8* alpha, uint8* dst, int width); +void BlendPlaneRow_AVX2(const uint8* src0, const uint8* src1, + const uint8* alpha, uint8* dst, int width); +void BlendPlaneRow_Any_AVX2(const uint8* src0, const uint8* src1, + const uint8* alpha, uint8* dst, int width); +void BlendPlaneRow_C(const uint8* src0, const uint8* src1, + const uint8* alpha, uint8* dst, int width); + +// ARGB multiply images. Same API as Blend, but these require +// pointer and width alignment for SSE2. +void ARGBMultiplyRow_C(const uint8* src_argb, const uint8* src_argb1, + uint8* dst_argb, int width); +void ARGBMultiplyRow_SSE2(const uint8* src_argb, const uint8* src_argb1, + uint8* dst_argb, int width); +void ARGBMultiplyRow_Any_SSE2(const uint8* src_argb, const uint8* src_argb1, + uint8* dst_argb, int width); +void ARGBMultiplyRow_AVX2(const uint8* src_argb, const uint8* src_argb1, + uint8* dst_argb, int width); +void ARGBMultiplyRow_Any_AVX2(const uint8* src_argb, const uint8* src_argb1, + uint8* dst_argb, int width); +void ARGBMultiplyRow_NEON(const uint8* src_argb, const uint8* src_argb1, + uint8* dst_argb, int width); +void ARGBMultiplyRow_Any_NEON(const uint8* src_argb, const uint8* src_argb1, + uint8* dst_argb, int width); + +// ARGB add images. +void ARGBAddRow_C(const uint8* src_argb, const uint8* src_argb1, + uint8* dst_argb, int width); +void ARGBAddRow_SSE2(const uint8* src_argb, const uint8* src_argb1, + uint8* dst_argb, int width); +void ARGBAddRow_Any_SSE2(const uint8* src_argb, const uint8* src_argb1, + uint8* dst_argb, int width); +void ARGBAddRow_AVX2(const uint8* src_argb, const uint8* src_argb1, + uint8* dst_argb, int width); +void ARGBAddRow_Any_AVX2(const uint8* src_argb, const uint8* src_argb1, + uint8* dst_argb, int width); +void ARGBAddRow_NEON(const uint8* src_argb, const uint8* src_argb1, + uint8* dst_argb, int width); +void ARGBAddRow_Any_NEON(const uint8* src_argb, const uint8* src_argb1, + uint8* dst_argb, int width); + +// ARGB subtract images. Same API as Blend, but these require +// pointer and width alignment for SSE2. +void ARGBSubtractRow_C(const uint8* src_argb, const uint8* src_argb1, + uint8* dst_argb, int width); +void ARGBSubtractRow_SSE2(const uint8* src_argb, const uint8* src_argb1, + uint8* dst_argb, int width); +void ARGBSubtractRow_Any_SSE2(const uint8* src_argb, const uint8* src_argb1, + uint8* dst_argb, int width); +void ARGBSubtractRow_AVX2(const uint8* src_argb, const uint8* src_argb1, + uint8* dst_argb, int width); +void ARGBSubtractRow_Any_AVX2(const uint8* src_argb, const uint8* src_argb1, + uint8* dst_argb, int width); +void ARGBSubtractRow_NEON(const uint8* src_argb, const uint8* src_argb1, + uint8* dst_argb, int width); +void ARGBSubtractRow_Any_NEON(const uint8* src_argb, const uint8* src_argb1, + uint8* dst_argb, int width); + +void ARGBToRGB24Row_Any_SSSE3(const uint8* src_argb, uint8* dst_rgb, int width); +void ARGBToRAWRow_Any_SSSE3(const uint8* src_argb, uint8* dst_rgb, int width); +void ARGBToRGB565Row_Any_SSE2(const uint8* src_argb, uint8* dst_rgb, int width); +void ARGBToARGB1555Row_Any_SSE2(const uint8* src_argb, uint8* dst_rgb, + int width); +void ARGBToARGB4444Row_Any_SSE2(const uint8* src_argb, uint8* dst_rgb, + int width); + +void ARGBToRGB565DitherRow_Any_SSE2(const uint8* src_argb, uint8* dst_rgb, + const uint32 dither4, int width); +void ARGBToRGB565DitherRow_Any_AVX2(const uint8* src_argb, uint8* dst_rgb, + const uint32 dither4, int width); + +void ARGBToRGB565Row_Any_AVX2(const uint8* src_argb, uint8* dst_rgb, int width); +void ARGBToARGB1555Row_Any_AVX2(const uint8* src_argb, uint8* dst_rgb, + int width); +void ARGBToARGB4444Row_Any_AVX2(const uint8* src_argb, uint8* dst_rgb, + int width); + +void ARGBToRGB24Row_Any_NEON(const uint8* src_argb, uint8* dst_rgb, int width); +void ARGBToRAWRow_Any_NEON(const uint8* src_argb, uint8* dst_rgb, int width); +void ARGBToRGB565Row_Any_NEON(const uint8* src_argb, uint8* dst_rgb, int width); +void ARGBToARGB1555Row_Any_NEON(const uint8* src_argb, uint8* dst_rgb, + int width); +void ARGBToARGB4444Row_Any_NEON(const uint8* src_argb, uint8* dst_rgb, + int width); +void ARGBToRGB565DitherRow_Any_NEON(const uint8* src_argb, uint8* dst_rgb, + const uint32 dither4, int width); + +void I444ToARGBRow_Any_NEON(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width); +void I422ToARGBRow_Any_NEON(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width); +void I422AlphaToARGBRow_Any_NEON(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + const uint8* src_a, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width); +void I411ToARGBRow_Any_NEON(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width); +void I422ToRGBARow_Any_NEON(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width); +void I422ToRGB24Row_Any_NEON(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width); +void I422ToARGB4444Row_Any_NEON(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width); +void I422ToARGB1555Row_Any_NEON(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width); +void I422ToRGB565Row_Any_NEON(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width); +void NV12ToARGBRow_Any_NEON(const uint8* src_y, + const uint8* src_uv, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width); +void NV21ToARGBRow_Any_NEON(const uint8* src_y, + const uint8* src_vu, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width); +void NV12ToRGB565Row_Any_NEON(const uint8* src_y, + const uint8* src_uv, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width); +void YUY2ToARGBRow_Any_NEON(const uint8* src_yuy2, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width); +void UYVYToARGBRow_Any_NEON(const uint8* src_uyvy, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width); +void I422ToARGBRow_DSPR2(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width); +void I422ToARGBRow_DSPR2(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width); + +void YUY2ToYRow_AVX2(const uint8* src_yuy2, uint8* dst_y, int width); +void YUY2ToUVRow_AVX2(const uint8* src_yuy2, int stride_yuy2, + uint8* dst_u, uint8* dst_v, int width); +void YUY2ToUV422Row_AVX2(const uint8* src_yuy2, + uint8* dst_u, uint8* dst_v, int width); +void YUY2ToYRow_SSE2(const uint8* src_yuy2, uint8* dst_y, int width); +void YUY2ToUVRow_SSE2(const uint8* src_yuy2, int stride_yuy2, + uint8* dst_u, uint8* dst_v, int width); +void YUY2ToUV422Row_SSE2(const uint8* src_yuy2, + uint8* dst_u, uint8* dst_v, int width); +void YUY2ToYRow_NEON(const uint8* src_yuy2, uint8* dst_y, int width); +void YUY2ToUVRow_NEON(const uint8* src_yuy2, int stride_yuy2, + uint8* dst_u, uint8* dst_v, int width); +void YUY2ToUV422Row_NEON(const uint8* src_yuy2, + uint8* dst_u, uint8* dst_v, int width); +void YUY2ToYRow_C(const uint8* src_yuy2, uint8* dst_y, int width); +void YUY2ToUVRow_C(const uint8* src_yuy2, int stride_yuy2, + uint8* dst_u, uint8* dst_v, int width); +void YUY2ToUV422Row_C(const uint8* src_yuy2, + uint8* dst_u, uint8* dst_v, int width); +void YUY2ToYRow_Any_AVX2(const uint8* src_yuy2, uint8* dst_y, int width); +void YUY2ToUVRow_Any_AVX2(const uint8* src_yuy2, int stride_yuy2, + uint8* dst_u, uint8* dst_v, int width); +void YUY2ToUV422Row_Any_AVX2(const uint8* src_yuy2, + uint8* dst_u, uint8* dst_v, int width); +void YUY2ToYRow_Any_SSE2(const uint8* src_yuy2, uint8* dst_y, int width); +void YUY2ToUVRow_Any_SSE2(const uint8* src_yuy2, int stride_yuy2, + uint8* dst_u, uint8* dst_v, int width); +void YUY2ToUV422Row_Any_SSE2(const uint8* src_yuy2, + uint8* dst_u, uint8* dst_v, int width); +void YUY2ToYRow_Any_NEON(const uint8* src_yuy2, uint8* dst_y, int width); +void YUY2ToUVRow_Any_NEON(const uint8* src_yuy2, int stride_yuy2, + uint8* dst_u, uint8* dst_v, int width); +void YUY2ToUV422Row_Any_NEON(const uint8* src_yuy2, + uint8* dst_u, uint8* dst_v, int width); +void UYVYToYRow_AVX2(const uint8* src_uyvy, uint8* dst_y, int width); +void UYVYToUVRow_AVX2(const uint8* src_uyvy, int stride_uyvy, + uint8* dst_u, uint8* dst_v, int width); +void UYVYToUV422Row_AVX2(const uint8* src_uyvy, + uint8* dst_u, uint8* dst_v, int width); +void UYVYToYRow_SSE2(const uint8* src_uyvy, uint8* dst_y, int width); +void UYVYToUVRow_SSE2(const uint8* src_uyvy, int stride_uyvy, + uint8* dst_u, uint8* dst_v, int width); +void UYVYToUV422Row_SSE2(const uint8* src_uyvy, + uint8* dst_u, uint8* dst_v, int width); +void UYVYToYRow_AVX2(const uint8* src_uyvy, uint8* dst_y, int width); +void UYVYToUVRow_AVX2(const uint8* src_uyvy, int stride_uyvy, + uint8* dst_u, uint8* dst_v, int width); +void UYVYToUV422Row_AVX2(const uint8* src_uyvy, + uint8* dst_u, uint8* dst_v, int width); +void UYVYToYRow_NEON(const uint8* src_uyvy, uint8* dst_y, int width); +void UYVYToUVRow_NEON(const uint8* src_uyvy, int stride_uyvy, + uint8* dst_u, uint8* dst_v, int width); +void UYVYToUV422Row_NEON(const uint8* src_uyvy, + uint8* dst_u, uint8* dst_v, int width); + +void UYVYToYRow_C(const uint8* src_uyvy, uint8* dst_y, int width); +void UYVYToUVRow_C(const uint8* src_uyvy, int stride_uyvy, + uint8* dst_u, uint8* dst_v, int width); +void UYVYToUV422Row_C(const uint8* src_uyvy, + uint8* dst_u, uint8* dst_v, int width); +void UYVYToYRow_Any_AVX2(const uint8* src_uyvy, uint8* dst_y, int width); +void UYVYToUVRow_Any_AVX2(const uint8* src_uyvy, int stride_uyvy, + uint8* dst_u, uint8* dst_v, int width); +void UYVYToUV422Row_Any_AVX2(const uint8* src_uyvy, + uint8* dst_u, uint8* dst_v, int width); +void UYVYToYRow_Any_SSE2(const uint8* src_uyvy, uint8* dst_y, int width); +void UYVYToUVRow_Any_SSE2(const uint8* src_uyvy, int stride_uyvy, + uint8* dst_u, uint8* dst_v, int width); +void UYVYToUV422Row_Any_SSE2(const uint8* src_uyvy, + uint8* dst_u, uint8* dst_v, int width); +void UYVYToYRow_Any_NEON(const uint8* src_uyvy, uint8* dst_y, int width); +void UYVYToUVRow_Any_NEON(const uint8* src_uyvy, int stride_uyvy, + uint8* dst_u, uint8* dst_v, int width); +void UYVYToUV422Row_Any_NEON(const uint8* src_uyvy, + uint8* dst_u, uint8* dst_v, int width); + +void I422ToYUY2Row_C(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + uint8* dst_yuy2, int width); +void I422ToUYVYRow_C(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + uint8* dst_uyvy, int width); +void I422ToYUY2Row_SSE2(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + uint8* dst_yuy2, int width); +void I422ToUYVYRow_SSE2(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + uint8* dst_uyvy, int width); +void I422ToYUY2Row_Any_SSE2(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + uint8* dst_yuy2, int width); +void I422ToUYVYRow_Any_SSE2(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + uint8* dst_uyvy, int width); +void I422ToYUY2Row_NEON(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + uint8* dst_yuy2, int width); +void I422ToUYVYRow_NEON(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + uint8* dst_uyvy, int width); +void I422ToYUY2Row_Any_NEON(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + uint8* dst_yuy2, int width); +void I422ToUYVYRow_Any_NEON(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + uint8* dst_uyvy, int width); + +// Effects related row functions. +void ARGBAttenuateRow_C(const uint8* src_argb, uint8* dst_argb, int width); +void ARGBAttenuateRow_SSSE3(const uint8* src_argb, uint8* dst_argb, int width); +void ARGBAttenuateRow_AVX2(const uint8* src_argb, uint8* dst_argb, int width); +void ARGBAttenuateRow_NEON(const uint8* src_argb, uint8* dst_argb, int width); +void ARGBAttenuateRow_Any_SSE2(const uint8* src_argb, uint8* dst_argb, + int width); +void ARGBAttenuateRow_Any_SSSE3(const uint8* src_argb, uint8* dst_argb, + int width); +void ARGBAttenuateRow_Any_AVX2(const uint8* src_argb, uint8* dst_argb, + int width); +void ARGBAttenuateRow_Any_NEON(const uint8* src_argb, uint8* dst_argb, + int width); + +// Inverse table for unattenuate, shared by C and SSE2. +extern const uint32 fixed_invtbl8[256]; +void ARGBUnattenuateRow_C(const uint8* src_argb, uint8* dst_argb, int width); +void ARGBUnattenuateRow_SSE2(const uint8* src_argb, uint8* dst_argb, int width); +void ARGBUnattenuateRow_AVX2(const uint8* src_argb, uint8* dst_argb, int width); +void ARGBUnattenuateRow_Any_SSE2(const uint8* src_argb, uint8* dst_argb, + int width); +void ARGBUnattenuateRow_Any_AVX2(const uint8* src_argb, uint8* dst_argb, + int width); + +void ARGBGrayRow_C(const uint8* src_argb, uint8* dst_argb, int width); +void ARGBGrayRow_SSSE3(const uint8* src_argb, uint8* dst_argb, int width); +void ARGBGrayRow_NEON(const uint8* src_argb, uint8* dst_argb, int width); + +void ARGBSepiaRow_C(uint8* dst_argb, int width); +void ARGBSepiaRow_SSSE3(uint8* dst_argb, int width); +void ARGBSepiaRow_NEON(uint8* dst_argb, int width); + +void ARGBColorMatrixRow_C(const uint8* src_argb, uint8* dst_argb, + const int8* matrix_argb, int width); +void ARGBColorMatrixRow_SSSE3(const uint8* src_argb, uint8* dst_argb, + const int8* matrix_argb, int width); +void ARGBColorMatrixRow_NEON(const uint8* src_argb, uint8* dst_argb, + const int8* matrix_argb, int width); + +void ARGBColorTableRow_C(uint8* dst_argb, const uint8* table_argb, int width); +void ARGBColorTableRow_X86(uint8* dst_argb, const uint8* table_argb, int width); + +void RGBColorTableRow_C(uint8* dst_argb, const uint8* table_argb, int width); +void RGBColorTableRow_X86(uint8* dst_argb, const uint8* table_argb, int width); + +void ARGBQuantizeRow_C(uint8* dst_argb, int scale, int interval_size, + int interval_offset, int width); +void ARGBQuantizeRow_SSE2(uint8* dst_argb, int scale, int interval_size, + int interval_offset, int width); +void ARGBQuantizeRow_NEON(uint8* dst_argb, int scale, int interval_size, + int interval_offset, int width); + +void ARGBShadeRow_C(const uint8* src_argb, uint8* dst_argb, int width, + uint32 value); +void ARGBShadeRow_SSE2(const uint8* src_argb, uint8* dst_argb, int width, + uint32 value); +void ARGBShadeRow_NEON(const uint8* src_argb, uint8* dst_argb, int width, + uint32 value); + +// Used for blur. +void CumulativeSumToAverageRow_SSE2(const int32* topleft, const int32* botleft, + int width, int area, uint8* dst, int count); +void ComputeCumulativeSumRow_SSE2(const uint8* row, int32* cumsum, + const int32* previous_cumsum, int width); + +void CumulativeSumToAverageRow_C(const int32* topleft, const int32* botleft, + int width, int area, uint8* dst, int count); +void ComputeCumulativeSumRow_C(const uint8* row, int32* cumsum, + const int32* previous_cumsum, int width); + +LIBYUV_API +void ARGBAffineRow_C(const uint8* src_argb, int src_argb_stride, + uint8* dst_argb, const float* uv_dudv, int width); +LIBYUV_API +void ARGBAffineRow_SSE2(const uint8* src_argb, int src_argb_stride, + uint8* dst_argb, const float* uv_dudv, int width); + +// Used for I420Scale, ARGBScale, and ARGBInterpolate. +void InterpolateRow_C(uint8* dst_ptr, const uint8* src_ptr, + ptrdiff_t src_stride_ptr, + int width, int source_y_fraction); +void InterpolateRow_SSSE3(uint8* dst_ptr, const uint8* src_ptr, + ptrdiff_t src_stride_ptr, int width, + int source_y_fraction); +void InterpolateRow_AVX2(uint8* dst_ptr, const uint8* src_ptr, + ptrdiff_t src_stride_ptr, int width, + int source_y_fraction); +void InterpolateRow_NEON(uint8* dst_ptr, const uint8* src_ptr, + ptrdiff_t src_stride_ptr, int width, + int source_y_fraction); +void InterpolateRow_DSPR2(uint8* dst_ptr, const uint8* src_ptr, + ptrdiff_t src_stride_ptr, int width, + int source_y_fraction); +void InterpolateRow_Any_NEON(uint8* dst_ptr, const uint8* src_ptr, + ptrdiff_t src_stride_ptr, int width, + int source_y_fraction); +void InterpolateRow_Any_SSSE3(uint8* dst_ptr, const uint8* src_ptr, + ptrdiff_t src_stride_ptr, int width, + int source_y_fraction); +void InterpolateRow_Any_AVX2(uint8* dst_ptr, const uint8* src_ptr, + ptrdiff_t src_stride_ptr, int width, + int source_y_fraction); +void InterpolateRow_Any_DSPR2(uint8* dst_ptr, const uint8* src_ptr, + ptrdiff_t src_stride_ptr, int width, + int source_y_fraction); + +void InterpolateRow_16_C(uint16* dst_ptr, const uint16* src_ptr, + ptrdiff_t src_stride_ptr, + int width, int source_y_fraction); + +// Sobel images. +void SobelXRow_C(const uint8* src_y0, const uint8* src_y1, const uint8* src_y2, + uint8* dst_sobelx, int width); +void SobelXRow_SSE2(const uint8* src_y0, const uint8* src_y1, + const uint8* src_y2, uint8* dst_sobelx, int width); +void SobelXRow_NEON(const uint8* src_y0, const uint8* src_y1, + const uint8* src_y2, uint8* dst_sobelx, int width); +void SobelYRow_C(const uint8* src_y0, const uint8* src_y1, + uint8* dst_sobely, int width); +void SobelYRow_SSE2(const uint8* src_y0, const uint8* src_y1, + uint8* dst_sobely, int width); +void SobelYRow_NEON(const uint8* src_y0, const uint8* src_y1, + uint8* dst_sobely, int width); +void SobelRow_C(const uint8* src_sobelx, const uint8* src_sobely, + uint8* dst_argb, int width); +void SobelRow_SSE2(const uint8* src_sobelx, const uint8* src_sobely, + uint8* dst_argb, int width); +void SobelRow_NEON(const uint8* src_sobelx, const uint8* src_sobely, + uint8* dst_argb, int width); +void SobelToPlaneRow_C(const uint8* src_sobelx, const uint8* src_sobely, + uint8* dst_y, int width); +void SobelToPlaneRow_SSE2(const uint8* src_sobelx, const uint8* src_sobely, + uint8* dst_y, int width); +void SobelToPlaneRow_NEON(const uint8* src_sobelx, const uint8* src_sobely, + uint8* dst_y, int width); +void SobelXYRow_C(const uint8* src_sobelx, const uint8* src_sobely, + uint8* dst_argb, int width); +void SobelXYRow_SSE2(const uint8* src_sobelx, const uint8* src_sobely, + uint8* dst_argb, int width); +void SobelXYRow_NEON(const uint8* src_sobelx, const uint8* src_sobely, + uint8* dst_argb, int width); +void SobelRow_Any_SSE2(const uint8* src_sobelx, const uint8* src_sobely, + uint8* dst_argb, int width); +void SobelRow_Any_NEON(const uint8* src_sobelx, const uint8* src_sobely, + uint8* dst_argb, int width); +void SobelToPlaneRow_Any_SSE2(const uint8* src_sobelx, const uint8* src_sobely, + uint8* dst_y, int width); +void SobelToPlaneRow_Any_NEON(const uint8* src_sobelx, const uint8* src_sobely, + uint8* dst_y, int width); +void SobelXYRow_Any_SSE2(const uint8* src_sobelx, const uint8* src_sobely, + uint8* dst_argb, int width); +void SobelXYRow_Any_NEON(const uint8* src_sobelx, const uint8* src_sobely, + uint8* dst_argb, int width); + +void ARGBPolynomialRow_C(const uint8* src_argb, + uint8* dst_argb, const float* poly, + int width); +void ARGBPolynomialRow_SSE2(const uint8* src_argb, + uint8* dst_argb, const float* poly, + int width); +void ARGBPolynomialRow_AVX2(const uint8* src_argb, + uint8* dst_argb, const float* poly, + int width); + +void ARGBLumaColorTableRow_C(const uint8* src_argb, uint8* dst_argb, int width, + const uint8* luma, uint32 lumacoeff); +void ARGBLumaColorTableRow_SSSE3(const uint8* src_argb, uint8* dst_argb, + int width, + const uint8* luma, uint32 lumacoeff); + +#ifdef __cplusplus +} // extern "C" +} // namespace libyuv +#endif + +#endif // INCLUDE_LIBYUV_ROW_H_ NOLINT diff --git a/third_party/libyuv/include/libyuv/scale.h b/third_party/libyuv/include/libyuv/scale.h new file mode 100644 index 0000000..102158d --- /dev/null +++ b/third_party/libyuv/include/libyuv/scale.h @@ -0,0 +1,103 @@ +/* + * Copyright 2011 The LibYuv Project Authors. All rights reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef INCLUDE_LIBYUV_SCALE_H_ // NOLINT +#define INCLUDE_LIBYUV_SCALE_H_ + +#include "libyuv/basic_types.h" + +#ifdef __cplusplus +namespace libyuv { +extern "C" { +#endif + +// Supported filtering. +typedef enum FilterMode { + kFilterNone = 0, // Point sample; Fastest. + kFilterLinear = 1, // Filter horizontally only. + kFilterBilinear = 2, // Faster than box, but lower quality scaling down. + kFilterBox = 3 // Highest quality. +} FilterModeEnum; + +// Scale a YUV plane. +LIBYUV_API +void ScalePlane(const uint8* src, int src_stride, + int src_width, int src_height, + uint8* dst, int dst_stride, + int dst_width, int dst_height, + enum FilterMode filtering); + +LIBYUV_API +void ScalePlane_16(const uint16* src, int src_stride, + int src_width, int src_height, + uint16* dst, int dst_stride, + int dst_width, int dst_height, + enum FilterMode filtering); + +// Scales a YUV 4:2:0 image from the src width and height to the +// dst width and height. +// If filtering is kFilterNone, a simple nearest-neighbor algorithm is +// used. This produces basic (blocky) quality at the fastest speed. +// If filtering is kFilterBilinear, interpolation is used to produce a better +// quality image, at the expense of speed. +// If filtering is kFilterBox, averaging is used to produce ever better +// quality image, at further expense of speed. +// Returns 0 if successful. + +LIBYUV_API +int I420Scale(const uint8* src_y, int src_stride_y, + const uint8* src_u, int src_stride_u, + const uint8* src_v, int src_stride_v, + int src_width, int src_height, + uint8* dst_y, int dst_stride_y, + uint8* dst_u, int dst_stride_u, + uint8* dst_v, int dst_stride_v, + int dst_width, int dst_height, + enum FilterMode filtering); + +LIBYUV_API +int I420Scale_16(const uint16* src_y, int src_stride_y, + const uint16* src_u, int src_stride_u, + const uint16* src_v, int src_stride_v, + int src_width, int src_height, + uint16* dst_y, int dst_stride_y, + uint16* dst_u, int dst_stride_u, + uint16* dst_v, int dst_stride_v, + int dst_width, int dst_height, + enum FilterMode filtering); + +#ifdef __cplusplus +// Legacy API. Deprecated. +LIBYUV_API +int Scale(const uint8* src_y, const uint8* src_u, const uint8* src_v, + int src_stride_y, int src_stride_u, int src_stride_v, + int src_width, int src_height, + uint8* dst_y, uint8* dst_u, uint8* dst_v, + int dst_stride_y, int dst_stride_u, int dst_stride_v, + int dst_width, int dst_height, + LIBYUV_BOOL interpolate); + +// Legacy API. Deprecated. +LIBYUV_API +int ScaleOffset(const uint8* src_i420, int src_width, int src_height, + uint8* dst_i420, int dst_width, int dst_height, int dst_yoffset, + LIBYUV_BOOL interpolate); + +// For testing, allow disabling of specialized scalers. +LIBYUV_API +void SetUseReferenceImpl(LIBYUV_BOOL use); +#endif // __cplusplus + +#ifdef __cplusplus +} // extern "C" +} // namespace libyuv +#endif + +#endif // INCLUDE_LIBYUV_SCALE_H_ NOLINT diff --git a/third_party/libyuv/include/libyuv/scale_argb.h b/third_party/libyuv/include/libyuv/scale_argb.h new file mode 100644 index 0000000..b56cf52 --- /dev/null +++ b/third_party/libyuv/include/libyuv/scale_argb.h @@ -0,0 +1,56 @@ +/* + * Copyright 2012 The LibYuv Project Authors. All rights reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef INCLUDE_LIBYUV_SCALE_ARGB_H_ // NOLINT +#define INCLUDE_LIBYUV_SCALE_ARGB_H_ + +#include "libyuv/basic_types.h" +#include "libyuv/scale.h" // For FilterMode + +#ifdef __cplusplus +namespace libyuv { +extern "C" { +#endif + +LIBYUV_API +int ARGBScale(const uint8* src_argb, int src_stride_argb, + int src_width, int src_height, + uint8* dst_argb, int dst_stride_argb, + int dst_width, int dst_height, + enum FilterMode filtering); + +// Clipped scale takes destination rectangle coordinates for clip values. +LIBYUV_API +int ARGBScaleClip(const uint8* src_argb, int src_stride_argb, + int src_width, int src_height, + uint8* dst_argb, int dst_stride_argb, + int dst_width, int dst_height, + int clip_x, int clip_y, int clip_width, int clip_height, + enum FilterMode filtering); + +// Scale with YUV conversion to ARGB and clipping. +LIBYUV_API +int YUVToARGBScaleClip(const uint8* src_y, int src_stride_y, + const uint8* src_u, int src_stride_u, + const uint8* src_v, int src_stride_v, + uint32 src_fourcc, + int src_width, int src_height, + uint8* dst_argb, int dst_stride_argb, + uint32 dst_fourcc, + int dst_width, int dst_height, + int clip_x, int clip_y, int clip_width, int clip_height, + enum FilterMode filtering); + +#ifdef __cplusplus +} // extern "C" +} // namespace libyuv +#endif + +#endif // INCLUDE_LIBYUV_SCALE_ARGB_H_ NOLINT diff --git a/third_party/libyuv/include/libyuv/scale_row.h b/third_party/libyuv/include/libyuv/scale_row.h new file mode 100644 index 0000000..df699e6 --- /dev/null +++ b/third_party/libyuv/include/libyuv/scale_row.h @@ -0,0 +1,503 @@ +/* + * Copyright 2013 The LibYuv Project Authors. All rights reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef INCLUDE_LIBYUV_SCALE_ROW_H_ // NOLINT +#define INCLUDE_LIBYUV_SCALE_ROW_H_ + +#include "libyuv/basic_types.h" +#include "libyuv/scale.h" + +#ifdef __cplusplus +namespace libyuv { +extern "C" { +#endif + +#if defined(__pnacl__) || defined(__CLR_VER) || \ + (defined(__i386__) && !defined(__SSE2__)) +#define LIBYUV_DISABLE_X86 +#endif +// MemorySanitizer does not support assembly code yet. http://crbug.com/344505 +#if defined(__has_feature) +#if __has_feature(memory_sanitizer) +#define LIBYUV_DISABLE_X86 +#endif +#endif + +// GCC >= 4.7.0 required for AVX2. +#if defined(__GNUC__) && (defined(__x86_64__) || defined(__i386__)) +#if (__GNUC__ > 4) || (__GNUC__ == 4 && (__GNUC_MINOR__ >= 7)) +#define GCC_HAS_AVX2 1 +#endif // GNUC >= 4.7 +#endif // __GNUC__ + +// clang >= 3.4.0 required for AVX2. +#if defined(__clang__) && (defined(__x86_64__) || defined(__i386__)) +#if (__clang_major__ > 3) || (__clang_major__ == 3 && (__clang_minor__ >= 4)) +#define CLANG_HAS_AVX2 1 +#endif // clang >= 3.4 +#endif // __clang__ + +// Visual C 2012 required for AVX2. +#if defined(_M_IX86) && !defined(__clang__) && \ + defined(_MSC_VER) && _MSC_VER >= 1700 +#define VISUALC_HAS_AVX2 1 +#endif // VisualStudio >= 2012 + +// The following are available on all x86 platforms: +#if !defined(LIBYUV_DISABLE_X86) && \ + (defined(_M_IX86) || defined(__x86_64__) || defined(__i386__)) +#define HAS_FIXEDDIV1_X86 +#define HAS_FIXEDDIV_X86 +#define HAS_SCALEARGBCOLS_SSE2 +#define HAS_SCALEARGBCOLSUP2_SSE2 +#define HAS_SCALEARGBFILTERCOLS_SSSE3 +#define HAS_SCALEARGBROWDOWN2_SSE2 +#define HAS_SCALEARGBROWDOWNEVEN_SSE2 +#define HAS_SCALECOLSUP2_SSE2 +#define HAS_SCALEFILTERCOLS_SSSE3 +#define HAS_SCALEROWDOWN2_SSSE3 +#define HAS_SCALEROWDOWN34_SSSE3 +#define HAS_SCALEROWDOWN38_SSSE3 +#define HAS_SCALEROWDOWN4_SSSE3 +#define HAS_SCALEADDROW_SSE2 +#endif + +// The following are available on all x86 platforms, but +// require VS2012, clang 3.4 or gcc 4.7. +// The code supports NaCL but requires a new compiler and validator. +#if !defined(LIBYUV_DISABLE_X86) && (defined(VISUALC_HAS_AVX2) || \ + defined(CLANG_HAS_AVX2) || defined(GCC_HAS_AVX2)) +#define HAS_SCALEADDROW_AVX2 +#define HAS_SCALEROWDOWN2_AVX2 +#define HAS_SCALEROWDOWN4_AVX2 +#endif + +// The following are available on Neon platforms: +#if !defined(LIBYUV_DISABLE_NEON) && !defined(__native_client__) && \ + (defined(__ARM_NEON__) || defined(LIBYUV_NEON) || defined(__aarch64__)) +#define HAS_SCALEARGBCOLS_NEON +#define HAS_SCALEARGBROWDOWN2_NEON +#define HAS_SCALEARGBROWDOWNEVEN_NEON +#define HAS_SCALEFILTERCOLS_NEON +#define HAS_SCALEROWDOWN2_NEON +#define HAS_SCALEROWDOWN34_NEON +#define HAS_SCALEROWDOWN38_NEON +#define HAS_SCALEROWDOWN4_NEON +#define HAS_SCALEARGBFILTERCOLS_NEON +#endif + +// The following are available on Mips platforms: +#if !defined(LIBYUV_DISABLE_MIPS) && !defined(__native_client__) && \ + defined(__mips__) && defined(__mips_dsp) && (__mips_dsp_rev >= 2) +#define HAS_SCALEROWDOWN2_DSPR2 +#define HAS_SCALEROWDOWN4_DSPR2 +#define HAS_SCALEROWDOWN34_DSPR2 +#define HAS_SCALEROWDOWN38_DSPR2 +#endif + +// Scale ARGB vertically with bilinear interpolation. +void ScalePlaneVertical(int src_height, + int dst_width, int dst_height, + int src_stride, int dst_stride, + const uint8* src_argb, uint8* dst_argb, + int x, int y, int dy, + int bpp, enum FilterMode filtering); + +void ScalePlaneVertical_16(int src_height, + int dst_width, int dst_height, + int src_stride, int dst_stride, + const uint16* src_argb, uint16* dst_argb, + int x, int y, int dy, + int wpp, enum FilterMode filtering); + +// Simplify the filtering based on scale factors. +enum FilterMode ScaleFilterReduce(int src_width, int src_height, + int dst_width, int dst_height, + enum FilterMode filtering); + +// Divide num by div and return as 16.16 fixed point result. +int FixedDiv_C(int num, int div); +int FixedDiv_X86(int num, int div); +// Divide num - 1 by div - 1 and return as 16.16 fixed point result. +int FixedDiv1_C(int num, int div); +int FixedDiv1_X86(int num, int div); +#ifdef HAS_FIXEDDIV_X86 +#define FixedDiv FixedDiv_X86 +#define FixedDiv1 FixedDiv1_X86 +#else +#define FixedDiv FixedDiv_C +#define FixedDiv1 FixedDiv1_C +#endif + +// Compute slope values for stepping. +void ScaleSlope(int src_width, int src_height, + int dst_width, int dst_height, + enum FilterMode filtering, + int* x, int* y, int* dx, int* dy); + +void ScaleRowDown2_C(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst, int dst_width); +void ScaleRowDown2_16_C(const uint16* src_ptr, ptrdiff_t src_stride, + uint16* dst, int dst_width); +void ScaleRowDown2Linear_C(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst, int dst_width); +void ScaleRowDown2Linear_16_C(const uint16* src_ptr, ptrdiff_t src_stride, + uint16* dst, int dst_width); +void ScaleRowDown2Box_C(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst, int dst_width); +void ScaleRowDown2Box_Odd_C(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst, int dst_width); +void ScaleRowDown2Box_16_C(const uint16* src_ptr, ptrdiff_t src_stride, + uint16* dst, int dst_width); +void ScaleRowDown4_C(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst, int dst_width); +void ScaleRowDown4_16_C(const uint16* src_ptr, ptrdiff_t src_stride, + uint16* dst, int dst_width); +void ScaleRowDown4Box_C(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst, int dst_width); +void ScaleRowDown4Box_16_C(const uint16* src_ptr, ptrdiff_t src_stride, + uint16* dst, int dst_width); +void ScaleRowDown34_C(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst, int dst_width); +void ScaleRowDown34_16_C(const uint16* src_ptr, ptrdiff_t src_stride, + uint16* dst, int dst_width); +void ScaleRowDown34_0_Box_C(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* d, int dst_width); +void ScaleRowDown34_0_Box_16_C(const uint16* src_ptr, ptrdiff_t src_stride, + uint16* d, int dst_width); +void ScaleRowDown34_1_Box_C(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* d, int dst_width); +void ScaleRowDown34_1_Box_16_C(const uint16* src_ptr, ptrdiff_t src_stride, + uint16* d, int dst_width); +void ScaleCols_C(uint8* dst_ptr, const uint8* src_ptr, + int dst_width, int x, int dx); +void ScaleCols_16_C(uint16* dst_ptr, const uint16* src_ptr, + int dst_width, int x, int dx); +void ScaleColsUp2_C(uint8* dst_ptr, const uint8* src_ptr, + int dst_width, int, int); +void ScaleColsUp2_16_C(uint16* dst_ptr, const uint16* src_ptr, + int dst_width, int, int); +void ScaleFilterCols_C(uint8* dst_ptr, const uint8* src_ptr, + int dst_width, int x, int dx); +void ScaleFilterCols_16_C(uint16* dst_ptr, const uint16* src_ptr, + int dst_width, int x, int dx); +void ScaleFilterCols64_C(uint8* dst_ptr, const uint8* src_ptr, + int dst_width, int x, int dx); +void ScaleFilterCols64_16_C(uint16* dst_ptr, const uint16* src_ptr, + int dst_width, int x, int dx); +void ScaleRowDown38_C(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst, int dst_width); +void ScaleRowDown38_16_C(const uint16* src_ptr, ptrdiff_t src_stride, + uint16* dst, int dst_width); +void ScaleRowDown38_3_Box_C(const uint8* src_ptr, + ptrdiff_t src_stride, + uint8* dst_ptr, int dst_width); +void ScaleRowDown38_3_Box_16_C(const uint16* src_ptr, + ptrdiff_t src_stride, + uint16* dst_ptr, int dst_width); +void ScaleRowDown38_2_Box_C(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst_ptr, int dst_width); +void ScaleRowDown38_2_Box_16_C(const uint16* src_ptr, ptrdiff_t src_stride, + uint16* dst_ptr, int dst_width); +void ScaleAddRow_C(const uint8* src_ptr, uint16* dst_ptr, int src_width); +void ScaleAddRow_16_C(const uint16* src_ptr, uint32* dst_ptr, int src_width); +void ScaleARGBRowDown2_C(const uint8* src_argb, + ptrdiff_t src_stride, + uint8* dst_argb, int dst_width); +void ScaleARGBRowDown2Linear_C(const uint8* src_argb, + ptrdiff_t src_stride, + uint8* dst_argb, int dst_width); +void ScaleARGBRowDown2Box_C(const uint8* src_argb, ptrdiff_t src_stride, + uint8* dst_argb, int dst_width); +void ScaleARGBRowDownEven_C(const uint8* src_argb, ptrdiff_t src_stride, + int src_stepx, + uint8* dst_argb, int dst_width); +void ScaleARGBRowDownEvenBox_C(const uint8* src_argb, + ptrdiff_t src_stride, + int src_stepx, + uint8* dst_argb, int dst_width); +void ScaleARGBCols_C(uint8* dst_argb, const uint8* src_argb, + int dst_width, int x, int dx); +void ScaleARGBCols64_C(uint8* dst_argb, const uint8* src_argb, + int dst_width, int x, int dx); +void ScaleARGBColsUp2_C(uint8* dst_argb, const uint8* src_argb, + int dst_width, int, int); +void ScaleARGBFilterCols_C(uint8* dst_argb, const uint8* src_argb, + int dst_width, int x, int dx); +void ScaleARGBFilterCols64_C(uint8* dst_argb, const uint8* src_argb, + int dst_width, int x, int dx); + +// Specialized scalers for x86. +void ScaleRowDown2_SSSE3(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst_ptr, int dst_width); +void ScaleRowDown2Linear_SSSE3(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst_ptr, int dst_width); +void ScaleRowDown2Box_SSSE3(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst_ptr, int dst_width); +void ScaleRowDown2_AVX2(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst_ptr, int dst_width); +void ScaleRowDown2Linear_AVX2(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst_ptr, int dst_width); +void ScaleRowDown2Box_AVX2(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst_ptr, int dst_width); +void ScaleRowDown4_SSSE3(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst_ptr, int dst_width); +void ScaleRowDown4Box_SSSE3(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst_ptr, int dst_width); +void ScaleRowDown4_AVX2(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst_ptr, int dst_width); +void ScaleRowDown4Box_AVX2(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst_ptr, int dst_width); + +void ScaleRowDown34_SSSE3(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst_ptr, int dst_width); +void ScaleRowDown34_1_Box_SSSE3(const uint8* src_ptr, + ptrdiff_t src_stride, + uint8* dst_ptr, int dst_width); +void ScaleRowDown34_0_Box_SSSE3(const uint8* src_ptr, + ptrdiff_t src_stride, + uint8* dst_ptr, int dst_width); +void ScaleRowDown38_SSSE3(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst_ptr, int dst_width); +void ScaleRowDown38_3_Box_SSSE3(const uint8* src_ptr, + ptrdiff_t src_stride, + uint8* dst_ptr, int dst_width); +void ScaleRowDown38_2_Box_SSSE3(const uint8* src_ptr, + ptrdiff_t src_stride, + uint8* dst_ptr, int dst_width); +void ScaleRowDown2_Any_SSSE3(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst_ptr, int dst_width); +void ScaleRowDown2Linear_Any_SSSE3(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst_ptr, int dst_width); +void ScaleRowDown2Box_Any_SSSE3(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst_ptr, int dst_width); +void ScaleRowDown2Box_Odd_SSSE3(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst_ptr, int dst_width); +void ScaleRowDown2_Any_AVX2(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst_ptr, int dst_width); +void ScaleRowDown2Linear_Any_AVX2(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst_ptr, int dst_width); +void ScaleRowDown2Box_Any_AVX2(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst_ptr, int dst_width); +void ScaleRowDown2Box_Odd_AVX2(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst_ptr, int dst_width); +void ScaleRowDown4_Any_SSSE3(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst_ptr, int dst_width); +void ScaleRowDown4Box_Any_SSSE3(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst_ptr, int dst_width); +void ScaleRowDown4_Any_AVX2(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst_ptr, int dst_width); +void ScaleRowDown4Box_Any_AVX2(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst_ptr, int dst_width); + +void ScaleRowDown34_Any_SSSE3(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst_ptr, int dst_width); +void ScaleRowDown34_1_Box_Any_SSSE3(const uint8* src_ptr, + ptrdiff_t src_stride, + uint8* dst_ptr, int dst_width); +void ScaleRowDown34_0_Box_Any_SSSE3(const uint8* src_ptr, + ptrdiff_t src_stride, + uint8* dst_ptr, int dst_width); +void ScaleRowDown38_Any_SSSE3(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst_ptr, int dst_width); +void ScaleRowDown38_3_Box_Any_SSSE3(const uint8* src_ptr, + ptrdiff_t src_stride, + uint8* dst_ptr, int dst_width); +void ScaleRowDown38_2_Box_Any_SSSE3(const uint8* src_ptr, + ptrdiff_t src_stride, + uint8* dst_ptr, int dst_width); + +void ScaleAddRow_SSE2(const uint8* src_ptr, uint16* dst_ptr, int src_width); +void ScaleAddRow_AVX2(const uint8* src_ptr, uint16* dst_ptr, int src_width); +void ScaleAddRow_Any_SSE2(const uint8* src_ptr, uint16* dst_ptr, int src_width); +void ScaleAddRow_Any_AVX2(const uint8* src_ptr, uint16* dst_ptr, int src_width); + +void ScaleFilterCols_SSSE3(uint8* dst_ptr, const uint8* src_ptr, + int dst_width, int x, int dx); +void ScaleColsUp2_SSE2(uint8* dst_ptr, const uint8* src_ptr, + int dst_width, int x, int dx); + + +// ARGB Column functions +void ScaleARGBCols_SSE2(uint8* dst_argb, const uint8* src_argb, + int dst_width, int x, int dx); +void ScaleARGBFilterCols_SSSE3(uint8* dst_argb, const uint8* src_argb, + int dst_width, int x, int dx); +void ScaleARGBColsUp2_SSE2(uint8* dst_argb, const uint8* src_argb, + int dst_width, int x, int dx); +void ScaleARGBFilterCols_NEON(uint8* dst_argb, const uint8* src_argb, + int dst_width, int x, int dx); +void ScaleARGBCols_NEON(uint8* dst_argb, const uint8* src_argb, + int dst_width, int x, int dx); +void ScaleARGBFilterCols_Any_NEON(uint8* dst_argb, const uint8* src_argb, + int dst_width, int x, int dx); +void ScaleARGBCols_Any_NEON(uint8* dst_argb, const uint8* src_argb, + int dst_width, int x, int dx); + +// ARGB Row functions +void ScaleARGBRowDown2_SSE2(const uint8* src_argb, ptrdiff_t src_stride, + uint8* dst_argb, int dst_width); +void ScaleARGBRowDown2Linear_SSE2(const uint8* src_argb, ptrdiff_t src_stride, + uint8* dst_argb, int dst_width); +void ScaleARGBRowDown2Box_SSE2(const uint8* src_argb, ptrdiff_t src_stride, + uint8* dst_argb, int dst_width); +void ScaleARGBRowDown2_NEON(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst, int dst_width); +void ScaleARGBRowDown2Linear_NEON(const uint8* src_argb, ptrdiff_t src_stride, + uint8* dst_argb, int dst_width); +void ScaleARGBRowDown2Box_NEON(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst, int dst_width); +void ScaleARGBRowDown2_Any_SSE2(const uint8* src_argb, ptrdiff_t src_stride, + uint8* dst_argb, int dst_width); +void ScaleARGBRowDown2Linear_Any_SSE2(const uint8* src_argb, + ptrdiff_t src_stride, + uint8* dst_argb, int dst_width); +void ScaleARGBRowDown2Box_Any_SSE2(const uint8* src_argb, ptrdiff_t src_stride, + uint8* dst_argb, int dst_width); +void ScaleARGBRowDown2_Any_NEON(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst, int dst_width); +void ScaleARGBRowDown2Linear_Any_NEON(const uint8* src_argb, + ptrdiff_t src_stride, + uint8* dst_argb, int dst_width); +void ScaleARGBRowDown2Box_Any_NEON(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst, int dst_width); + +void ScaleARGBRowDownEven_SSE2(const uint8* src_argb, ptrdiff_t src_stride, + int src_stepx, uint8* dst_argb, int dst_width); +void ScaleARGBRowDownEvenBox_SSE2(const uint8* src_argb, ptrdiff_t src_stride, + int src_stepx, + uint8* dst_argb, int dst_width); +void ScaleARGBRowDownEven_NEON(const uint8* src_argb, ptrdiff_t src_stride, + int src_stepx, + uint8* dst_argb, int dst_width); +void ScaleARGBRowDownEvenBox_NEON(const uint8* src_argb, ptrdiff_t src_stride, + int src_stepx, + uint8* dst_argb, int dst_width); +void ScaleARGBRowDownEven_Any_SSE2(const uint8* src_argb, ptrdiff_t src_stride, + int src_stepx, + uint8* dst_argb, int dst_width); +void ScaleARGBRowDownEvenBox_Any_SSE2(const uint8* src_argb, + ptrdiff_t src_stride, + int src_stepx, + uint8* dst_argb, int dst_width); +void ScaleARGBRowDownEven_Any_NEON(const uint8* src_argb, ptrdiff_t src_stride, + int src_stepx, + uint8* dst_argb, int dst_width); +void ScaleARGBRowDownEvenBox_Any_NEON(const uint8* src_argb, + ptrdiff_t src_stride, + int src_stepx, + uint8* dst_argb, int dst_width); + +// ScaleRowDown2Box also used by planar functions +// NEON downscalers with interpolation. + +// Note - not static due to reuse in convert for 444 to 420. +void ScaleRowDown2_NEON(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst, int dst_width); +void ScaleRowDown2Linear_NEON(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst, int dst_width); +void ScaleRowDown2Box_NEON(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst, int dst_width); + +void ScaleRowDown4_NEON(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst_ptr, int dst_width); +void ScaleRowDown4Box_NEON(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst_ptr, int dst_width); + +// Down scale from 4 to 3 pixels. Use the neon multilane read/write +// to load up the every 4th pixel into a 4 different registers. +// Point samples 32 pixels to 24 pixels. +void ScaleRowDown34_NEON(const uint8* src_ptr, + ptrdiff_t src_stride, + uint8* dst_ptr, int dst_width); +void ScaleRowDown34_0_Box_NEON(const uint8* src_ptr, + ptrdiff_t src_stride, + uint8* dst_ptr, int dst_width); +void ScaleRowDown34_1_Box_NEON(const uint8* src_ptr, + ptrdiff_t src_stride, + uint8* dst_ptr, int dst_width); + +// 32 -> 12 +void ScaleRowDown38_NEON(const uint8* src_ptr, + ptrdiff_t src_stride, + uint8* dst_ptr, int dst_width); +// 32x3 -> 12x1 +void ScaleRowDown38_3_Box_NEON(const uint8* src_ptr, + ptrdiff_t src_stride, + uint8* dst_ptr, int dst_width); +// 32x2 -> 12x1 +void ScaleRowDown38_2_Box_NEON(const uint8* src_ptr, + ptrdiff_t src_stride, + uint8* dst_ptr, int dst_width); + +void ScaleRowDown2_Any_NEON(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst, int dst_width); +void ScaleRowDown2Linear_Any_NEON(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst, int dst_width); +void ScaleRowDown2Box_Any_NEON(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst, int dst_width); +void ScaleRowDown2Box_Odd_NEON(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst, int dst_width); +void ScaleRowDown4_Any_NEON(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst_ptr, int dst_width); +void ScaleRowDown4Box_Any_NEON(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst_ptr, int dst_width); +void ScaleRowDown34_Any_NEON(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst_ptr, int dst_width); +void ScaleRowDown34_0_Box_Any_NEON(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst_ptr, int dst_width); +void ScaleRowDown34_1_Box_Any_NEON(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst_ptr, int dst_width); +// 32 -> 12 +void ScaleRowDown38_Any_NEON(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst_ptr, int dst_width); +// 32x3 -> 12x1 +void ScaleRowDown38_3_Box_Any_NEON(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst_ptr, int dst_width); +// 32x2 -> 12x1 +void ScaleRowDown38_2_Box_Any_NEON(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst_ptr, int dst_width); + +void ScaleAddRow_NEON(const uint8* src_ptr, uint16* dst_ptr, int src_width); +void ScaleAddRow_Any_NEON(const uint8* src_ptr, uint16* dst_ptr, int src_width); + +void ScaleFilterCols_NEON(uint8* dst_ptr, const uint8* src_ptr, + int dst_width, int x, int dx); + +void ScaleFilterCols_Any_NEON(uint8* dst_ptr, const uint8* src_ptr, + int dst_width, int x, int dx); + +void ScaleRowDown2_DSPR2(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst, int dst_width); +void ScaleRowDown2Box_DSPR2(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst, int dst_width); +void ScaleRowDown4_DSPR2(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst, int dst_width); +void ScaleRowDown4Box_DSPR2(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst, int dst_width); +void ScaleRowDown34_DSPR2(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst, int dst_width); +void ScaleRowDown34_0_Box_DSPR2(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* d, int dst_width); +void ScaleRowDown34_1_Box_DSPR2(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* d, int dst_width); +void ScaleRowDown38_DSPR2(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst, int dst_width); +void ScaleRowDown38_2_Box_DSPR2(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst_ptr, int dst_width); +void ScaleRowDown38_3_Box_DSPR2(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst_ptr, int dst_width); + +#ifdef __cplusplus +} // extern "C" +} // namespace libyuv +#endif + +#endif // INCLUDE_LIBYUV_SCALE_ROW_H_ NOLINT diff --git a/third_party/libyuv/include/libyuv/version.h b/third_party/libyuv/include/libyuv/version.h new file mode 100644 index 0000000..0fbdc02 --- /dev/null +++ b/third_party/libyuv/include/libyuv/version.h @@ -0,0 +1,16 @@ +/* + * Copyright 2012 The LibYuv Project Authors. All rights reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef INCLUDE_LIBYUV_VERSION_H_ // NOLINT +#define INCLUDE_LIBYUV_VERSION_H_ + +#define LIBYUV_VERSION 1616 + +#endif // INCLUDE_LIBYUV_VERSION_H_ NOLINT diff --git a/third_party/libyuv/include/libyuv/video_common.h b/third_party/libyuv/include/libyuv/video_common.h new file mode 100644 index 0000000..ad934e4 --- /dev/null +++ b/third_party/libyuv/include/libyuv/video_common.h @@ -0,0 +1,184 @@ +/* + * Copyright 2011 The LibYuv Project Authors. All rights reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +// Common definitions for video, including fourcc and VideoFormat. + +#ifndef INCLUDE_LIBYUV_VIDEO_COMMON_H_ // NOLINT +#define INCLUDE_LIBYUV_VIDEO_COMMON_H_ + +#include "libyuv/basic_types.h" + +#ifdef __cplusplus +namespace libyuv { +extern "C" { +#endif + +////////////////////////////////////////////////////////////////////////////// +// Definition of FourCC codes +////////////////////////////////////////////////////////////////////////////// + +// Convert four characters to a FourCC code. +// Needs to be a macro otherwise the OS X compiler complains when the kFormat* +// constants are used in a switch. +#ifdef __cplusplus +#define FOURCC(a, b, c, d) ( \ + (static_cast(a)) | (static_cast(b) << 8) | \ + (static_cast(c) << 16) | (static_cast(d) << 24)) +#else +#define FOURCC(a, b, c, d) ( \ + ((uint32)(a)) | ((uint32)(b) << 8) | /* NOLINT */ \ + ((uint32)(c) << 16) | ((uint32)(d) << 24)) /* NOLINT */ +#endif + +// Some pages discussing FourCC codes: +// http://www.fourcc.org/yuv.php +// http://v4l2spec.bytesex.org/spec/book1.htm +// http://developer.apple.com/quicktime/icefloe/dispatch020.html +// http://msdn.microsoft.com/library/windows/desktop/dd206750.aspx#nv12 +// http://people.xiph.org/~xiphmont/containers/nut/nut4cc.txt + +// FourCC codes grouped according to implementation efficiency. +// Primary formats should convert in 1 efficient step. +// Secondary formats are converted in 2 steps. +// Auxilliary formats call primary converters. +enum FourCC { + // 9 Primary YUV formats: 5 planar, 2 biplanar, 2 packed. + FOURCC_I420 = FOURCC('I', '4', '2', '0'), + FOURCC_I422 = FOURCC('I', '4', '2', '2'), + FOURCC_I444 = FOURCC('I', '4', '4', '4'), + FOURCC_I411 = FOURCC('I', '4', '1', '1'), + FOURCC_I400 = FOURCC('I', '4', '0', '0'), + FOURCC_NV21 = FOURCC('N', 'V', '2', '1'), + FOURCC_NV12 = FOURCC('N', 'V', '1', '2'), + FOURCC_YUY2 = FOURCC('Y', 'U', 'Y', '2'), + FOURCC_UYVY = FOURCC('U', 'Y', 'V', 'Y'), + + // 2 Secondary YUV formats: row biplanar. + FOURCC_M420 = FOURCC('M', '4', '2', '0'), + FOURCC_Q420 = FOURCC('Q', '4', '2', '0'), // deprecated. + + // 9 Primary RGB formats: 4 32 bpp, 2 24 bpp, 3 16 bpp. + FOURCC_ARGB = FOURCC('A', 'R', 'G', 'B'), + FOURCC_BGRA = FOURCC('B', 'G', 'R', 'A'), + FOURCC_ABGR = FOURCC('A', 'B', 'G', 'R'), + FOURCC_24BG = FOURCC('2', '4', 'B', 'G'), + FOURCC_RAW = FOURCC('r', 'a', 'w', ' '), + FOURCC_RGBA = FOURCC('R', 'G', 'B', 'A'), + FOURCC_RGBP = FOURCC('R', 'G', 'B', 'P'), // rgb565 LE. + FOURCC_RGBO = FOURCC('R', 'G', 'B', 'O'), // argb1555 LE. + FOURCC_R444 = FOURCC('R', '4', '4', '4'), // argb4444 LE. + + // 4 Secondary RGB formats: 4 Bayer Patterns. deprecated. + FOURCC_RGGB = FOURCC('R', 'G', 'G', 'B'), + FOURCC_BGGR = FOURCC('B', 'G', 'G', 'R'), + FOURCC_GRBG = FOURCC('G', 'R', 'B', 'G'), + FOURCC_GBRG = FOURCC('G', 'B', 'R', 'G'), + + // 1 Primary Compressed YUV format. + FOURCC_MJPG = FOURCC('M', 'J', 'P', 'G'), + + // 5 Auxiliary YUV variations: 3 with U and V planes are swapped, 1 Alias. + FOURCC_YV12 = FOURCC('Y', 'V', '1', '2'), + FOURCC_YV16 = FOURCC('Y', 'V', '1', '6'), + FOURCC_YV24 = FOURCC('Y', 'V', '2', '4'), + FOURCC_YU12 = FOURCC('Y', 'U', '1', '2'), // Linux version of I420. + FOURCC_J420 = FOURCC('J', '4', '2', '0'), + FOURCC_J400 = FOURCC('J', '4', '0', '0'), // unofficial fourcc + FOURCC_H420 = FOURCC('H', '4', '2', '0'), // unofficial fourcc + + // 14 Auxiliary aliases. CanonicalFourCC() maps these to canonical fourcc. + FOURCC_IYUV = FOURCC('I', 'Y', 'U', 'V'), // Alias for I420. + FOURCC_YU16 = FOURCC('Y', 'U', '1', '6'), // Alias for I422. + FOURCC_YU24 = FOURCC('Y', 'U', '2', '4'), // Alias for I444. + FOURCC_YUYV = FOURCC('Y', 'U', 'Y', 'V'), // Alias for YUY2. + FOURCC_YUVS = FOURCC('y', 'u', 'v', 's'), // Alias for YUY2 on Mac. + FOURCC_HDYC = FOURCC('H', 'D', 'Y', 'C'), // Alias for UYVY. + FOURCC_2VUY = FOURCC('2', 'v', 'u', 'y'), // Alias for UYVY on Mac. + FOURCC_JPEG = FOURCC('J', 'P', 'E', 'G'), // Alias for MJPG. + FOURCC_DMB1 = FOURCC('d', 'm', 'b', '1'), // Alias for MJPG on Mac. + FOURCC_BA81 = FOURCC('B', 'A', '8', '1'), // Alias for BGGR. + FOURCC_RGB3 = FOURCC('R', 'G', 'B', '3'), // Alias for RAW. + FOURCC_BGR3 = FOURCC('B', 'G', 'R', '3'), // Alias for 24BG. + FOURCC_CM32 = FOURCC(0, 0, 0, 32), // Alias for BGRA kCMPixelFormat_32ARGB + FOURCC_CM24 = FOURCC(0, 0, 0, 24), // Alias for RAW kCMPixelFormat_24RGB + FOURCC_L555 = FOURCC('L', '5', '5', '5'), // Alias for RGBO. + FOURCC_L565 = FOURCC('L', '5', '6', '5'), // Alias for RGBP. + FOURCC_5551 = FOURCC('5', '5', '5', '1'), // Alias for RGBO. + + // 1 Auxiliary compressed YUV format set aside for capturer. + FOURCC_H264 = FOURCC('H', '2', '6', '4'), + + // Match any fourcc. + FOURCC_ANY = -1, +}; + +enum FourCCBpp { + // Canonical fourcc codes used in our code. + FOURCC_BPP_I420 = 12, + FOURCC_BPP_I422 = 16, + FOURCC_BPP_I444 = 24, + FOURCC_BPP_I411 = 12, + FOURCC_BPP_I400 = 8, + FOURCC_BPP_NV21 = 12, + FOURCC_BPP_NV12 = 12, + FOURCC_BPP_YUY2 = 16, + FOURCC_BPP_UYVY = 16, + FOURCC_BPP_M420 = 12, + FOURCC_BPP_Q420 = 12, + FOURCC_BPP_ARGB = 32, + FOURCC_BPP_BGRA = 32, + FOURCC_BPP_ABGR = 32, + FOURCC_BPP_RGBA = 32, + FOURCC_BPP_24BG = 24, + FOURCC_BPP_RAW = 24, + FOURCC_BPP_RGBP = 16, + FOURCC_BPP_RGBO = 16, + FOURCC_BPP_R444 = 16, + FOURCC_BPP_RGGB = 8, + FOURCC_BPP_BGGR = 8, + FOURCC_BPP_GRBG = 8, + FOURCC_BPP_GBRG = 8, + FOURCC_BPP_YV12 = 12, + FOURCC_BPP_YV16 = 16, + FOURCC_BPP_YV24 = 24, + FOURCC_BPP_YU12 = 12, + FOURCC_BPP_J420 = 12, + FOURCC_BPP_J400 = 8, + FOURCC_BPP_H420 = 12, + FOURCC_BPP_MJPG = 0, // 0 means unknown. + FOURCC_BPP_H264 = 0, + FOURCC_BPP_IYUV = 12, + FOURCC_BPP_YU16 = 16, + FOURCC_BPP_YU24 = 24, + FOURCC_BPP_YUYV = 16, + FOURCC_BPP_YUVS = 16, + FOURCC_BPP_HDYC = 16, + FOURCC_BPP_2VUY = 16, + FOURCC_BPP_JPEG = 1, + FOURCC_BPP_DMB1 = 1, + FOURCC_BPP_BA81 = 8, + FOURCC_BPP_RGB3 = 24, + FOURCC_BPP_BGR3 = 24, + FOURCC_BPP_CM32 = 32, + FOURCC_BPP_CM24 = 24, + + // Match any fourcc. + FOURCC_BPP_ANY = 0, // 0 means unknown. +}; + +// Converts fourcc aliases into canonical ones. +LIBYUV_API uint32 CanonicalFourCC(uint32 fourcc); + +#ifdef __cplusplus +} // extern "C" +} // namespace libyuv +#endif + +#endif // INCLUDE_LIBYUV_VIDEO_COMMON_H_ NOLINT diff --git a/third_party/libyuv/source/compare.cc b/third_party/libyuv/source/compare.cc new file mode 100644 index 0000000..e3846bd --- /dev/null +++ b/third_party/libyuv/source/compare.cc @@ -0,0 +1,340 @@ +/* + * Copyright 2011 The LibYuv Project Authors. All rights reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "libyuv/compare.h" + +#include +#include +#ifdef _OPENMP +#include +#endif + +#include "libyuv/basic_types.h" +#include "libyuv/compare_row.h" +#include "libyuv/cpu_id.h" +#include "libyuv/row.h" +#include "libyuv/video_common.h" + +#ifdef __cplusplus +namespace libyuv { +extern "C" { +#endif + +// hash seed of 5381 recommended. +LIBYUV_API +uint32 HashDjb2(const uint8* src, uint64 count, uint32 seed) { + const int kBlockSize = 1 << 15; // 32768; + int remainder; + uint32 (*HashDjb2_SSE)(const uint8* src, int count, uint32 seed) = + HashDjb2_C; +#if defined(HAS_HASHDJB2_SSE41) + if (TestCpuFlag(kCpuHasSSE41)) { + HashDjb2_SSE = HashDjb2_SSE41; + } +#endif +#if defined(HAS_HASHDJB2_AVX2) + if (TestCpuFlag(kCpuHasAVX2)) { + HashDjb2_SSE = HashDjb2_AVX2; + } +#endif + + while (count >= (uint64)(kBlockSize)) { + seed = HashDjb2_SSE(src, kBlockSize, seed); + src += kBlockSize; + count -= kBlockSize; + } + remainder = (int)(count) & ~15; + if (remainder) { + seed = HashDjb2_SSE(src, remainder, seed); + src += remainder; + count -= remainder; + } + remainder = (int)(count) & 15; + if (remainder) { + seed = HashDjb2_C(src, remainder, seed); + } + return seed; +} + +static uint32 ARGBDetectRow_C(const uint8* argb, int width) { + int x; + for (x = 0; x < width - 1; x += 2) { + if (argb[0] != 255) { // First byte is not Alpha of 255, so not ARGB. + return FOURCC_BGRA; + } + if (argb[3] != 255) { // 4th byte is not Alpha of 255, so not BGRA. + return FOURCC_ARGB; + } + if (argb[4] != 255) { // Second pixel first byte is not Alpha of 255. + return FOURCC_BGRA; + } + if (argb[7] != 255) { // Second pixel 4th byte is not Alpha of 255. + return FOURCC_ARGB; + } + argb += 8; + } + if (width & 1) { + if (argb[0] != 255) { // First byte is not Alpha of 255, so not ARGB. + return FOURCC_BGRA; + } + if (argb[3] != 255) { // 4th byte is not Alpha of 255, so not BGRA. + return FOURCC_ARGB; + } + } + return 0; +} + +// Scan an opaque argb image and return fourcc based on alpha offset. +// Returns FOURCC_ARGB, FOURCC_BGRA, or 0 if unknown. +LIBYUV_API +uint32 ARGBDetect(const uint8* argb, int stride_argb, int width, int height) { + uint32 fourcc = 0; + int h; + + // Coalesce rows. + if (stride_argb == width * 4) { + width *= height; + height = 1; + stride_argb = 0; + } + for (h = 0; h < height && fourcc == 0; ++h) { + fourcc = ARGBDetectRow_C(argb, width); + argb += stride_argb; + } + return fourcc; +} + +// TODO(fbarchard): Refactor into row function. +LIBYUV_API +uint64 ComputeSumSquareError(const uint8* src_a, const uint8* src_b, + int count) { + // SumSquareError returns values 0 to 65535 for each squared difference. + // Up to 65536 of those can be summed and remain within a uint32. + // After each block of 65536 pixels, accumulate into a uint64. + const int kBlockSize = 65536; + int remainder = count & (kBlockSize - 1) & ~31; + uint64 sse = 0; + int i; + uint32 (*SumSquareError)(const uint8* src_a, const uint8* src_b, int count) = + SumSquareError_C; +#if defined(HAS_SUMSQUAREERROR_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + SumSquareError = SumSquareError_NEON; + } +#endif +#if defined(HAS_SUMSQUAREERROR_SSE2) + if (TestCpuFlag(kCpuHasSSE2)) { + // Note only used for multiples of 16 so count is not checked. + SumSquareError = SumSquareError_SSE2; + } +#endif +#if defined(HAS_SUMSQUAREERROR_AVX2) + if (TestCpuFlag(kCpuHasAVX2)) { + // Note only used for multiples of 32 so count is not checked. + SumSquareError = SumSquareError_AVX2; + } +#endif +#ifdef _OPENMP +#pragma omp parallel for reduction(+: sse) +#endif + for (i = 0; i < (count - (kBlockSize - 1)); i += kBlockSize) { + sse += SumSquareError(src_a + i, src_b + i, kBlockSize); + } + src_a += count & ~(kBlockSize - 1); + src_b += count & ~(kBlockSize - 1); + if (remainder) { + sse += SumSquareError(src_a, src_b, remainder); + src_a += remainder; + src_b += remainder; + } + remainder = count & 31; + if (remainder) { + sse += SumSquareError_C(src_a, src_b, remainder); + } + return sse; +} + +LIBYUV_API +uint64 ComputeSumSquareErrorPlane(const uint8* src_a, int stride_a, + const uint8* src_b, int stride_b, + int width, int height) { + uint64 sse = 0; + int h; + // Coalesce rows. + if (stride_a == width && + stride_b == width) { + width *= height; + height = 1; + stride_a = stride_b = 0; + } + for (h = 0; h < height; ++h) { + sse += ComputeSumSquareError(src_a, src_b, width); + src_a += stride_a; + src_b += stride_b; + } + return sse; +} + +LIBYUV_API +double SumSquareErrorToPsnr(uint64 sse, uint64 count) { + double psnr; + if (sse > 0) { + double mse = (double)(count) / (double)(sse); + psnr = 10.0 * log10(255.0 * 255.0 * mse); + } else { + psnr = kMaxPsnr; // Limit to prevent divide by 0 + } + + if (psnr > kMaxPsnr) + psnr = kMaxPsnr; + + return psnr; +} + +LIBYUV_API +double CalcFramePsnr(const uint8* src_a, int stride_a, + const uint8* src_b, int stride_b, + int width, int height) { + const uint64 samples = width * height; + const uint64 sse = ComputeSumSquareErrorPlane(src_a, stride_a, + src_b, stride_b, + width, height); + return SumSquareErrorToPsnr(sse, samples); +} + +LIBYUV_API +double I420Psnr(const uint8* src_y_a, int stride_y_a, + const uint8* src_u_a, int stride_u_a, + const uint8* src_v_a, int stride_v_a, + const uint8* src_y_b, int stride_y_b, + const uint8* src_u_b, int stride_u_b, + const uint8* src_v_b, int stride_v_b, + int width, int height) { + const uint64 sse_y = ComputeSumSquareErrorPlane(src_y_a, stride_y_a, + src_y_b, stride_y_b, + width, height); + const int width_uv = (width + 1) >> 1; + const int height_uv = (height + 1) >> 1; + const uint64 sse_u = ComputeSumSquareErrorPlane(src_u_a, stride_u_a, + src_u_b, stride_u_b, + width_uv, height_uv); + const uint64 sse_v = ComputeSumSquareErrorPlane(src_v_a, stride_v_a, + src_v_b, stride_v_b, + width_uv, height_uv); + const uint64 samples = width * height + 2 * (width_uv * height_uv); + const uint64 sse = sse_y + sse_u + sse_v; + return SumSquareErrorToPsnr(sse, samples); +} + +static const int64 cc1 = 26634; // (64^2*(.01*255)^2 +static const int64 cc2 = 239708; // (64^2*(.03*255)^2 + +static double Ssim8x8_C(const uint8* src_a, int stride_a, + const uint8* src_b, int stride_b) { + int64 sum_a = 0; + int64 sum_b = 0; + int64 sum_sq_a = 0; + int64 sum_sq_b = 0; + int64 sum_axb = 0; + + int i; + for (i = 0; i < 8; ++i) { + int j; + for (j = 0; j < 8; ++j) { + sum_a += src_a[j]; + sum_b += src_b[j]; + sum_sq_a += src_a[j] * src_a[j]; + sum_sq_b += src_b[j] * src_b[j]; + sum_axb += src_a[j] * src_b[j]; + } + + src_a += stride_a; + src_b += stride_b; + } + + { + const int64 count = 64; + // scale the constants by number of pixels + const int64 c1 = (cc1 * count * count) >> 12; + const int64 c2 = (cc2 * count * count) >> 12; + + const int64 sum_a_x_sum_b = sum_a * sum_b; + + const int64 ssim_n = (2 * sum_a_x_sum_b + c1) * + (2 * count * sum_axb - 2 * sum_a_x_sum_b + c2); + + const int64 sum_a_sq = sum_a*sum_a; + const int64 sum_b_sq = sum_b*sum_b; + + const int64 ssim_d = (sum_a_sq + sum_b_sq + c1) * + (count * sum_sq_a - sum_a_sq + + count * sum_sq_b - sum_b_sq + c2); + + if (ssim_d == 0.0) { + return DBL_MAX; + } + return ssim_n * 1.0 / ssim_d; + } +} + +// We are using a 8x8 moving window with starting location of each 8x8 window +// on the 4x4 pixel grid. Such arrangement allows the windows to overlap +// block boundaries to penalize blocking artifacts. +LIBYUV_API +double CalcFrameSsim(const uint8* src_a, int stride_a, + const uint8* src_b, int stride_b, + int width, int height) { + int samples = 0; + double ssim_total = 0; + double (*Ssim8x8)(const uint8* src_a, int stride_a, + const uint8* src_b, int stride_b) = Ssim8x8_C; + + // sample point start with each 4x4 location + int i; + for (i = 0; i < height - 8; i += 4) { + int j; + for (j = 0; j < width - 8; j += 4) { + ssim_total += Ssim8x8(src_a + j, stride_a, src_b + j, stride_b); + samples++; + } + + src_a += stride_a * 4; + src_b += stride_b * 4; + } + + ssim_total /= samples; + return ssim_total; +} + +LIBYUV_API +double I420Ssim(const uint8* src_y_a, int stride_y_a, + const uint8* src_u_a, int stride_u_a, + const uint8* src_v_a, int stride_v_a, + const uint8* src_y_b, int stride_y_b, + const uint8* src_u_b, int stride_u_b, + const uint8* src_v_b, int stride_v_b, + int width, int height) { + const double ssim_y = CalcFrameSsim(src_y_a, stride_y_a, + src_y_b, stride_y_b, width, height); + const int width_uv = (width + 1) >> 1; + const int height_uv = (height + 1) >> 1; + const double ssim_u = CalcFrameSsim(src_u_a, stride_u_a, + src_u_b, stride_u_b, + width_uv, height_uv); + const double ssim_v = CalcFrameSsim(src_v_a, stride_v_a, + src_v_b, stride_v_b, + width_uv, height_uv); + return ssim_y * 0.8 + 0.1 * (ssim_u + ssim_v); +} + +#ifdef __cplusplus +} // extern "C" +} // namespace libyuv +#endif diff --git a/third_party/libyuv/source/compare_common.cc b/third_party/libyuv/source/compare_common.cc new file mode 100644 index 0000000..42fc589 --- /dev/null +++ b/third_party/libyuv/source/compare_common.cc @@ -0,0 +1,44 @@ +/* + * Copyright 2012 The LibYuv Project Authors. All rights reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "libyuv/basic_types.h" + +#include "libyuv/compare_row.h" + +#ifdef __cplusplus +namespace libyuv { +extern "C" { +#endif + +uint32 SumSquareError_C(const uint8* src_a, const uint8* src_b, int count) { + uint32 sse = 0u; + int i; + for (i = 0; i < count; ++i) { + int diff = src_a[i] - src_b[i]; + sse += (uint32)(diff * diff); + } + return sse; +} + +// hash seed of 5381 recommended. +// Internal C version of HashDjb2 with int sized count for efficiency. +uint32 HashDjb2_C(const uint8* src, int count, uint32 seed) { + uint32 hash = seed; + int i; + for (i = 0; i < count; ++i) { + hash += (hash << 5) + src[i]; + } + return hash; +} + +#ifdef __cplusplus +} // extern "C" +} // namespace libyuv +#endif diff --git a/third_party/libyuv/source/compare_gcc.cc b/third_party/libyuv/source/compare_gcc.cc new file mode 100644 index 0000000..1b83edb --- /dev/null +++ b/third_party/libyuv/source/compare_gcc.cc @@ -0,0 +1,151 @@ +/* + * Copyright 2012 The LibYuv Project Authors. All rights reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "libyuv/basic_types.h" + +#include "libyuv/compare_row.h" +#include "libyuv/row.h" + +#ifdef __cplusplus +namespace libyuv { +extern "C" { +#endif + +// This module is for GCC x86 and x64. +#if !defined(LIBYUV_DISABLE_X86) && \ + (defined(__x86_64__) || (defined(__i386__) && !defined(_MSC_VER))) + +uint32 SumSquareError_SSE2(const uint8* src_a, const uint8* src_b, int count) { + uint32 sse; + asm volatile ( + "pxor %%xmm0,%%xmm0 \n" + "pxor %%xmm5,%%xmm5 \n" + LABELALIGN + "1: \n" + "movdqu " MEMACCESS(0) ",%%xmm1 \n" + "lea " MEMLEA(0x10, 0) ",%0 \n" + "movdqu " MEMACCESS(1) ",%%xmm2 \n" + "lea " MEMLEA(0x10, 1) ",%1 \n" + "movdqa %%xmm1,%%xmm3 \n" + "psubusb %%xmm2,%%xmm1 \n" + "psubusb %%xmm3,%%xmm2 \n" + "por %%xmm2,%%xmm1 \n" + "movdqa %%xmm1,%%xmm2 \n" + "punpcklbw %%xmm5,%%xmm1 \n" + "punpckhbw %%xmm5,%%xmm2 \n" + "pmaddwd %%xmm1,%%xmm1 \n" + "pmaddwd %%xmm2,%%xmm2 \n" + "paddd %%xmm1,%%xmm0 \n" + "paddd %%xmm2,%%xmm0 \n" + "sub $0x10,%2 \n" + "jg 1b \n" + + "pshufd $0xee,%%xmm0,%%xmm1 \n" + "paddd %%xmm1,%%xmm0 \n" + "pshufd $0x1,%%xmm0,%%xmm1 \n" + "paddd %%xmm1,%%xmm0 \n" + "movd %%xmm0,%3 \n" + + : "+r"(src_a), // %0 + "+r"(src_b), // %1 + "+r"(count), // %2 + "=g"(sse) // %3 + :: "memory", "cc", "xmm0", "xmm1", "xmm2", "xmm3", "xmm5" + ); + return sse; +} + +static uvec32 kHash16x33 = { 0x92d9e201, 0, 0, 0 }; // 33 ^ 16 +static uvec32 kHashMul0 = { + 0x0c3525e1, // 33 ^ 15 + 0xa3476dc1, // 33 ^ 14 + 0x3b4039a1, // 33 ^ 13 + 0x4f5f0981, // 33 ^ 12 +}; +static uvec32 kHashMul1 = { + 0x30f35d61, // 33 ^ 11 + 0x855cb541, // 33 ^ 10 + 0x040a9121, // 33 ^ 9 + 0x747c7101, // 33 ^ 8 +}; +static uvec32 kHashMul2 = { + 0xec41d4e1, // 33 ^ 7 + 0x4cfa3cc1, // 33 ^ 6 + 0x025528a1, // 33 ^ 5 + 0x00121881, // 33 ^ 4 +}; +static uvec32 kHashMul3 = { + 0x00008c61, // 33 ^ 3 + 0x00000441, // 33 ^ 2 + 0x00000021, // 33 ^ 1 + 0x00000001, // 33 ^ 0 +}; + +uint32 HashDjb2_SSE41(const uint8* src, int count, uint32 seed) { + uint32 hash; + asm volatile ( + "movd %2,%%xmm0 \n" + "pxor %%xmm7,%%xmm7 \n" + "movdqa %4,%%xmm6 \n" + LABELALIGN + "1: \n" + "movdqu " MEMACCESS(0) ",%%xmm1 \n" + "lea " MEMLEA(0x10, 0) ",%0 \n" + "pmulld %%xmm6,%%xmm0 \n" + "movdqa %5,%%xmm5 \n" + "movdqa %%xmm1,%%xmm2 \n" + "punpcklbw %%xmm7,%%xmm2 \n" + "movdqa %%xmm2,%%xmm3 \n" + "punpcklwd %%xmm7,%%xmm3 \n" + "pmulld %%xmm5,%%xmm3 \n" + "movdqa %6,%%xmm5 \n" + "movdqa %%xmm2,%%xmm4 \n" + "punpckhwd %%xmm7,%%xmm4 \n" + "pmulld %%xmm5,%%xmm4 \n" + "movdqa %7,%%xmm5 \n" + "punpckhbw %%xmm7,%%xmm1 \n" + "movdqa %%xmm1,%%xmm2 \n" + "punpcklwd %%xmm7,%%xmm2 \n" + "pmulld %%xmm5,%%xmm2 \n" + "movdqa %8,%%xmm5 \n" + "punpckhwd %%xmm7,%%xmm1 \n" + "pmulld %%xmm5,%%xmm1 \n" + "paddd %%xmm4,%%xmm3 \n" + "paddd %%xmm2,%%xmm1 \n" + "paddd %%xmm3,%%xmm1 \n" + "pshufd $0xe,%%xmm1,%%xmm2 \n" + "paddd %%xmm2,%%xmm1 \n" + "pshufd $0x1,%%xmm1,%%xmm2 \n" + "paddd %%xmm2,%%xmm1 \n" + "paddd %%xmm1,%%xmm0 \n" + "sub $0x10,%1 \n" + "jg 1b \n" + "movd %%xmm0,%3 \n" + : "+r"(src), // %0 + "+r"(count), // %1 + "+rm"(seed), // %2 + "=g"(hash) // %3 + : "m"(kHash16x33), // %4 + "m"(kHashMul0), // %5 + "m"(kHashMul1), // %6 + "m"(kHashMul2), // %7 + "m"(kHashMul3) // %8 + : "memory", "cc" + , "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7" + ); + return hash; +} +#endif // defined(__x86_64__) || (defined(__i386__) && !defined(__pic__))) + +#ifdef __cplusplus +} // extern "C" +} // namespace libyuv +#endif + diff --git a/third_party/libyuv/source/compare_neon.cc b/third_party/libyuv/source/compare_neon.cc new file mode 100644 index 0000000..49aa3b4 --- /dev/null +++ b/third_party/libyuv/source/compare_neon.cc @@ -0,0 +1,66 @@ +/* + * Copyright 2012 The LibYuv Project Authors. All rights reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "libyuv/basic_types.h" + +#include "libyuv/compare_row.h" +#include "libyuv/row.h" + +#ifdef __cplusplus +namespace libyuv { +extern "C" { +#endif + +#if !defined(LIBYUV_DISABLE_NEON) && defined(__ARM_NEON__) && \ + !defined(__aarch64__) + +uint32 SumSquareError_NEON(const uint8* src_a, const uint8* src_b, int count) { + volatile uint32 sse; + asm volatile ( + "vmov.u8 q8, #0 \n" + "vmov.u8 q10, #0 \n" + "vmov.u8 q9, #0 \n" + "vmov.u8 q11, #0 \n" + + "1: \n" + MEMACCESS(0) + "vld1.8 {q0}, [%0]! \n" + MEMACCESS(1) + "vld1.8 {q1}, [%1]! \n" + "subs %2, %2, #16 \n" + "vsubl.u8 q2, d0, d2 \n" + "vsubl.u8 q3, d1, d3 \n" + "vmlal.s16 q8, d4, d4 \n" + "vmlal.s16 q9, d6, d6 \n" + "vmlal.s16 q10, d5, d5 \n" + "vmlal.s16 q11, d7, d7 \n" + "bgt 1b \n" + + "vadd.u32 q8, q8, q9 \n" + "vadd.u32 q10, q10, q11 \n" + "vadd.u32 q11, q8, q10 \n" + "vpaddl.u32 q1, q11 \n" + "vadd.u64 d0, d2, d3 \n" + "vmov.32 %3, d0[0] \n" + : "+r"(src_a), + "+r"(src_b), + "+r"(count), + "=r"(sse) + : + : "memory", "cc", "q0", "q1", "q2", "q3", "q8", "q9", "q10", "q11"); + return sse; +} + +#endif // defined(__ARM_NEON__) && !defined(__aarch64__) + +#ifdef __cplusplus +} // extern "C" +} // namespace libyuv +#endif diff --git a/third_party/libyuv/source/compare_neon64.cc b/third_party/libyuv/source/compare_neon64.cc new file mode 100644 index 0000000..f9c7df9 --- /dev/null +++ b/third_party/libyuv/source/compare_neon64.cc @@ -0,0 +1,64 @@ +/* + * Copyright 2012 The LibYuv Project Authors. All rights reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "libyuv/basic_types.h" + +#include "libyuv/compare_row.h" +#include "libyuv/row.h" + +#ifdef __cplusplus +namespace libyuv { +extern "C" { +#endif + +#if !defined(LIBYUV_DISABLE_NEON) && defined(__aarch64__) + +uint32 SumSquareError_NEON(const uint8* src_a, const uint8* src_b, int count) { + volatile uint32 sse; + asm volatile ( + "eor v16.16b, v16.16b, v16.16b \n" + "eor v18.16b, v18.16b, v18.16b \n" + "eor v17.16b, v17.16b, v17.16b \n" + "eor v19.16b, v19.16b, v19.16b \n" + + "1: \n" + MEMACCESS(0) + "ld1 {v0.16b}, [%0], #16 \n" + MEMACCESS(1) + "ld1 {v1.16b}, [%1], #16 \n" + "subs %w2, %w2, #16 \n" + "usubl v2.8h, v0.8b, v1.8b \n" + "usubl2 v3.8h, v0.16b, v1.16b \n" + "smlal v16.4s, v2.4h, v2.4h \n" + "smlal v17.4s, v3.4h, v3.4h \n" + "smlal2 v18.4s, v2.8h, v2.8h \n" + "smlal2 v19.4s, v3.8h, v3.8h \n" + "b.gt 1b \n" + + "add v16.4s, v16.4s, v17.4s \n" + "add v18.4s, v18.4s, v19.4s \n" + "add v19.4s, v16.4s, v18.4s \n" + "addv s0, v19.4s \n" + "fmov %w3, s0 \n" + : "+r"(src_a), + "+r"(src_b), + "+r"(count), + "=r"(sse) + : + : "cc", "v0", "v1", "v2", "v3", "v16", "v17", "v18", "v19"); + return sse; +} + +#endif // !defined(LIBYUV_DISABLE_NEON) && defined(__aarch64__) + +#ifdef __cplusplus +} // extern "C" +} // namespace libyuv +#endif diff --git a/third_party/libyuv/source/compare_win.cc b/third_party/libyuv/source/compare_win.cc new file mode 100644 index 0000000..dc86fe2 --- /dev/null +++ b/third_party/libyuv/source/compare_win.cc @@ -0,0 +1,222 @@ +/* + * Copyright 2012 The LibYuv Project Authors. All rights reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "libyuv/basic_types.h" + +#include "libyuv/compare_row.h" +#include "libyuv/row.h" + +#ifdef __cplusplus +namespace libyuv { +extern "C" { +#endif + +// This module is for 32 bit Visual C x86 and clangcl +#if !defined(LIBYUV_DISABLE_X86) && defined(_M_IX86) + +__declspec(naked) +uint32 SumSquareError_SSE2(const uint8* src_a, const uint8* src_b, int count) { + __asm { + mov eax, [esp + 4] // src_a + mov edx, [esp + 8] // src_b + mov ecx, [esp + 12] // count + pxor xmm0, xmm0 + pxor xmm5, xmm5 + + wloop: + movdqu xmm1, [eax] + lea eax, [eax + 16] + movdqu xmm2, [edx] + lea edx, [edx + 16] + movdqa xmm3, xmm1 // abs trick + psubusb xmm1, xmm2 + psubusb xmm2, xmm3 + por xmm1, xmm2 + movdqa xmm2, xmm1 + punpcklbw xmm1, xmm5 + punpckhbw xmm2, xmm5 + pmaddwd xmm1, xmm1 + pmaddwd xmm2, xmm2 + paddd xmm0, xmm1 + paddd xmm0, xmm2 + sub ecx, 16 + jg wloop + + pshufd xmm1, xmm0, 0xee + paddd xmm0, xmm1 + pshufd xmm1, xmm0, 0x01 + paddd xmm0, xmm1 + movd eax, xmm0 + ret + } +} + +// Visual C 2012 required for AVX2. +#if _MSC_VER >= 1700 +// C4752: found Intel(R) Advanced Vector Extensions; consider using /arch:AVX. +#pragma warning(disable: 4752) +__declspec(naked) +uint32 SumSquareError_AVX2(const uint8* src_a, const uint8* src_b, int count) { + __asm { + mov eax, [esp + 4] // src_a + mov edx, [esp + 8] // src_b + mov ecx, [esp + 12] // count + vpxor ymm0, ymm0, ymm0 // sum + vpxor ymm5, ymm5, ymm5 // constant 0 for unpck + sub edx, eax + + wloop: + vmovdqu ymm1, [eax] + vmovdqu ymm2, [eax + edx] + lea eax, [eax + 32] + vpsubusb ymm3, ymm1, ymm2 // abs difference trick + vpsubusb ymm2, ymm2, ymm1 + vpor ymm1, ymm2, ymm3 + vpunpcklbw ymm2, ymm1, ymm5 // u16. mutates order. + vpunpckhbw ymm1, ymm1, ymm5 + vpmaddwd ymm2, ymm2, ymm2 // square + hadd to u32. + vpmaddwd ymm1, ymm1, ymm1 + vpaddd ymm0, ymm0, ymm1 + vpaddd ymm0, ymm0, ymm2 + sub ecx, 32 + jg wloop + + vpshufd ymm1, ymm0, 0xee // 3, 2 + 1, 0 both lanes. + vpaddd ymm0, ymm0, ymm1 + vpshufd ymm1, ymm0, 0x01 // 1 + 0 both lanes. + vpaddd ymm0, ymm0, ymm1 + vpermq ymm1, ymm0, 0x02 // high + low lane. + vpaddd ymm0, ymm0, ymm1 + vmovd eax, xmm0 + vzeroupper + ret + } +} +#endif // _MSC_VER >= 1700 + +uvec32 kHash16x33 = { 0x92d9e201, 0, 0, 0 }; // 33 ^ 16 +uvec32 kHashMul0 = { + 0x0c3525e1, // 33 ^ 15 + 0xa3476dc1, // 33 ^ 14 + 0x3b4039a1, // 33 ^ 13 + 0x4f5f0981, // 33 ^ 12 +}; +uvec32 kHashMul1 = { + 0x30f35d61, // 33 ^ 11 + 0x855cb541, // 33 ^ 10 + 0x040a9121, // 33 ^ 9 + 0x747c7101, // 33 ^ 8 +}; +uvec32 kHashMul2 = { + 0xec41d4e1, // 33 ^ 7 + 0x4cfa3cc1, // 33 ^ 6 + 0x025528a1, // 33 ^ 5 + 0x00121881, // 33 ^ 4 +}; +uvec32 kHashMul3 = { + 0x00008c61, // 33 ^ 3 + 0x00000441, // 33 ^ 2 + 0x00000021, // 33 ^ 1 + 0x00000001, // 33 ^ 0 +}; + +__declspec(naked) +uint32 HashDjb2_SSE41(const uint8* src, int count, uint32 seed) { + __asm { + mov eax, [esp + 4] // src + mov ecx, [esp + 8] // count + movd xmm0, [esp + 12] // seed + + pxor xmm7, xmm7 // constant 0 for unpck + movdqa xmm6, xmmword ptr kHash16x33 + + wloop: + movdqu xmm1, [eax] // src[0-15] + lea eax, [eax + 16] + pmulld xmm0, xmm6 // hash *= 33 ^ 16 + movdqa xmm5, xmmword ptr kHashMul0 + movdqa xmm2, xmm1 + punpcklbw xmm2, xmm7 // src[0-7] + movdqa xmm3, xmm2 + punpcklwd xmm3, xmm7 // src[0-3] + pmulld xmm3, xmm5 + movdqa xmm5, xmmword ptr kHashMul1 + movdqa xmm4, xmm2 + punpckhwd xmm4, xmm7 // src[4-7] + pmulld xmm4, xmm5 + movdqa xmm5, xmmword ptr kHashMul2 + punpckhbw xmm1, xmm7 // src[8-15] + movdqa xmm2, xmm1 + punpcklwd xmm2, xmm7 // src[8-11] + pmulld xmm2, xmm5 + movdqa xmm5, xmmword ptr kHashMul3 + punpckhwd xmm1, xmm7 // src[12-15] + pmulld xmm1, xmm5 + paddd xmm3, xmm4 // add 16 results + paddd xmm1, xmm2 + paddd xmm1, xmm3 + + pshufd xmm2, xmm1, 0x0e // upper 2 dwords + paddd xmm1, xmm2 + pshufd xmm2, xmm1, 0x01 + paddd xmm1, xmm2 + paddd xmm0, xmm1 + sub ecx, 16 + jg wloop + + movd eax, xmm0 // return hash + ret + } +} + +// Visual C 2012 required for AVX2. +#if _MSC_VER >= 1700 +__declspec(naked) +uint32 HashDjb2_AVX2(const uint8* src, int count, uint32 seed) { + __asm { + mov eax, [esp + 4] // src + mov ecx, [esp + 8] // count + vmovd xmm0, [esp + 12] // seed + + wloop: + vpmovzxbd xmm3, [eax] // src[0-3] + vpmulld xmm0, xmm0, xmmword ptr kHash16x33 // hash *= 33 ^ 16 + vpmovzxbd xmm4, [eax + 4] // src[4-7] + vpmulld xmm3, xmm3, xmmword ptr kHashMul0 + vpmovzxbd xmm2, [eax + 8] // src[8-11] + vpmulld xmm4, xmm4, xmmword ptr kHashMul1 + vpmovzxbd xmm1, [eax + 12] // src[12-15] + vpmulld xmm2, xmm2, xmmword ptr kHashMul2 + lea eax, [eax + 16] + vpmulld xmm1, xmm1, xmmword ptr kHashMul3 + vpaddd xmm3, xmm3, xmm4 // add 16 results + vpaddd xmm1, xmm1, xmm2 + vpaddd xmm1, xmm1, xmm3 + vpshufd xmm2, xmm1, 0x0e // upper 2 dwords + vpaddd xmm1, xmm1,xmm2 + vpshufd xmm2, xmm1, 0x01 + vpaddd xmm1, xmm1, xmm2 + vpaddd xmm0, xmm0, xmm1 + sub ecx, 16 + jg wloop + + vmovd eax, xmm0 // return hash + vzeroupper + ret + } +} +#endif // _MSC_VER >= 1700 + +#endif // !defined(LIBYUV_DISABLE_X86) && defined(_M_IX86) + +#ifdef __cplusplus +} // extern "C" +} // namespace libyuv +#endif diff --git a/third_party/libyuv/source/convert.cc b/third_party/libyuv/source/convert.cc new file mode 100644 index 0000000..a33742d --- /dev/null +++ b/third_party/libyuv/source/convert.cc @@ -0,0 +1,1427 @@ +/* + * Copyright 2011 The LibYuv Project Authors. All rights reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "libyuv/convert.h" + +#include "libyuv/basic_types.h" +#include "libyuv/cpu_id.h" +#include "libyuv/planar_functions.h" +#include "libyuv/rotate.h" +#include "libyuv/scale.h" // For ScalePlane() +#include "libyuv/row.h" + +#ifdef __cplusplus +namespace libyuv { +extern "C" { +#endif + +#define SUBSAMPLE(v, a, s) (v < 0) ? (-((-v + a) >> s)) : ((v + a) >> s) +static __inline int Abs(int v) { + return v >= 0 ? v : -v; +} + +// Any I4xx To I420 format with mirroring. +static int I4xxToI420(const uint8* src_y, int src_stride_y, + const uint8* src_u, int src_stride_u, + const uint8* src_v, int src_stride_v, + uint8* dst_y, int dst_stride_y, + uint8* dst_u, int dst_stride_u, + uint8* dst_v, int dst_stride_v, + int src_y_width, int src_y_height, + int src_uv_width, int src_uv_height) { + const int dst_y_width = Abs(src_y_width); + const int dst_y_height = Abs(src_y_height); + const int dst_uv_width = SUBSAMPLE(dst_y_width, 1, 1); + const int dst_uv_height = SUBSAMPLE(dst_y_height, 1, 1); + if (src_uv_width == 0 || src_uv_height == 0) { + return -1; + } + if (dst_y) { + ScalePlane(src_y, src_stride_y, src_y_width, src_y_height, + dst_y, dst_stride_y, dst_y_width, dst_y_height, + kFilterBilinear); + } + ScalePlane(src_u, src_stride_u, src_uv_width, src_uv_height, + dst_u, dst_stride_u, dst_uv_width, dst_uv_height, + kFilterBilinear); + ScalePlane(src_v, src_stride_v, src_uv_width, src_uv_height, + dst_v, dst_stride_v, dst_uv_width, dst_uv_height, + kFilterBilinear); + return 0; +} + +// Copy I420 with optional flipping +// TODO(fbarchard): Use Scale plane which supports mirroring, but ensure +// is does row coalescing. +LIBYUV_API +int I420Copy(const uint8* src_y, int src_stride_y, + const uint8* src_u, int src_stride_u, + const uint8* src_v, int src_stride_v, + uint8* dst_y, int dst_stride_y, + uint8* dst_u, int dst_stride_u, + uint8* dst_v, int dst_stride_v, + int width, int height) { + int halfwidth = (width + 1) >> 1; + int halfheight = (height + 1) >> 1; + if (!src_u || !src_v || + !dst_u || !dst_v || + width <= 0 || height == 0) { + return -1; + } + // Negative height means invert the image. + if (height < 0) { + height = -height; + halfheight = (height + 1) >> 1; + src_y = src_y + (height - 1) * src_stride_y; + src_u = src_u + (halfheight - 1) * src_stride_u; + src_v = src_v + (halfheight - 1) * src_stride_v; + src_stride_y = -src_stride_y; + src_stride_u = -src_stride_u; + src_stride_v = -src_stride_v; + } + + if (dst_y) { + CopyPlane(src_y, src_stride_y, dst_y, dst_stride_y, width, height); + } + // Copy UV planes. + CopyPlane(src_u, src_stride_u, dst_u, dst_stride_u, halfwidth, halfheight); + CopyPlane(src_v, src_stride_v, dst_v, dst_stride_v, halfwidth, halfheight); + return 0; +} + +// 422 chroma is 1/2 width, 1x height +// 420 chroma is 1/2 width, 1/2 height +LIBYUV_API +int I422ToI420(const uint8* src_y, int src_stride_y, + const uint8* src_u, int src_stride_u, + const uint8* src_v, int src_stride_v, + uint8* dst_y, int dst_stride_y, + uint8* dst_u, int dst_stride_u, + uint8* dst_v, int dst_stride_v, + int width, int height) { + const int src_uv_width = SUBSAMPLE(width, 1, 1); + return I4xxToI420(src_y, src_stride_y, + src_u, src_stride_u, + src_v, src_stride_v, + dst_y, dst_stride_y, + dst_u, dst_stride_u, + dst_v, dst_stride_v, + width, height, + src_uv_width, height); +} + +// 444 chroma is 1x width, 1x height +// 420 chroma is 1/2 width, 1/2 height +LIBYUV_API +int I444ToI420(const uint8* src_y, int src_stride_y, + const uint8* src_u, int src_stride_u, + const uint8* src_v, int src_stride_v, + uint8* dst_y, int dst_stride_y, + uint8* dst_u, int dst_stride_u, + uint8* dst_v, int dst_stride_v, + int width, int height) { + return I4xxToI420(src_y, src_stride_y, + src_u, src_stride_u, + src_v, src_stride_v, + dst_y, dst_stride_y, + dst_u, dst_stride_u, + dst_v, dst_stride_v, + width, height, + width, height); +} + +// 411 chroma is 1/4 width, 1x height +// 420 chroma is 1/2 width, 1/2 height +LIBYUV_API +int I411ToI420(const uint8* src_y, int src_stride_y, + const uint8* src_u, int src_stride_u, + const uint8* src_v, int src_stride_v, + uint8* dst_y, int dst_stride_y, + uint8* dst_u, int dst_stride_u, + uint8* dst_v, int dst_stride_v, + int width, int height) { + const int src_uv_width = SUBSAMPLE(width, 3, 2); + return I4xxToI420(src_y, src_stride_y, + src_u, src_stride_u, + src_v, src_stride_v, + dst_y, dst_stride_y, + dst_u, dst_stride_u, + dst_v, dst_stride_v, + width, height, + src_uv_width, height); +} + +// I400 is greyscale typically used in MJPG +LIBYUV_API +int I400ToI420(const uint8* src_y, int src_stride_y, + uint8* dst_y, int dst_stride_y, + uint8* dst_u, int dst_stride_u, + uint8* dst_v, int dst_stride_v, + int width, int height) { + int halfwidth = (width + 1) >> 1; + int halfheight = (height + 1) >> 1; + if (!dst_u || !dst_v || + width <= 0 || height == 0) { + return -1; + } + // Negative height means invert the image. + if (height < 0) { + height = -height; + halfheight = (height + 1) >> 1; + src_y = src_y + (height - 1) * src_stride_y; + src_stride_y = -src_stride_y; + } + if (dst_y) { + CopyPlane(src_y, src_stride_y, dst_y, dst_stride_y, width, height); + } + SetPlane(dst_u, dst_stride_u, halfwidth, halfheight, 128); + SetPlane(dst_v, dst_stride_v, halfwidth, halfheight, 128); + return 0; +} + +static void CopyPlane2(const uint8* src, int src_stride_0, int src_stride_1, + uint8* dst, int dst_stride, + int width, int height) { + int y; + void (*CopyRow)(const uint8* src, uint8* dst, int width) = CopyRow_C; +#if defined(HAS_COPYROW_SSE2) + if (TestCpuFlag(kCpuHasSSE2)) { + CopyRow = IS_ALIGNED(width, 32) ? CopyRow_SSE2 : CopyRow_Any_SSE2; + } +#endif +#if defined(HAS_COPYROW_AVX) + if (TestCpuFlag(kCpuHasAVX)) { + CopyRow = IS_ALIGNED(width, 64) ? CopyRow_AVX : CopyRow_Any_AVX; + } +#endif +#if defined(HAS_COPYROW_ERMS) + if (TestCpuFlag(kCpuHasERMS)) { + CopyRow = CopyRow_ERMS; + } +#endif +#if defined(HAS_COPYROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + CopyRow = IS_ALIGNED(width, 32) ? CopyRow_NEON : CopyRow_Any_NEON; + } +#endif +#if defined(HAS_COPYROW_MIPS) + if (TestCpuFlag(kCpuHasMIPS)) { + CopyRow = CopyRow_MIPS; + } +#endif + + // Copy plane + for (y = 0; y < height - 1; y += 2) { + CopyRow(src, dst, width); + CopyRow(src + src_stride_0, dst + dst_stride, width); + src += src_stride_0 + src_stride_1; + dst += dst_stride * 2; + } + if (height & 1) { + CopyRow(src, dst, width); + } +} + +// Support converting from FOURCC_M420 +// Useful for bandwidth constrained transports like USB 1.0 and 2.0 and for +// easy conversion to I420. +// M420 format description: +// M420 is row biplanar 420: 2 rows of Y and 1 row of UV. +// Chroma is half width / half height. (420) +// src_stride_m420 is row planar. Normally this will be the width in pixels. +// The UV plane is half width, but 2 values, so src_stride_m420 applies to +// this as well as the two Y planes. +static int X420ToI420(const uint8* src_y, + int src_stride_y0, int src_stride_y1, + const uint8* src_uv, int src_stride_uv, + uint8* dst_y, int dst_stride_y, + uint8* dst_u, int dst_stride_u, + uint8* dst_v, int dst_stride_v, + int width, int height) { + int halfwidth = (width + 1) >> 1; + int halfheight = (height + 1) >> 1; + if (!src_uv || !dst_u || !dst_v || + width <= 0 || height == 0) { + return -1; + } + // Negative height means invert the image. + if (height < 0) { + height = -height; + halfheight = (height + 1) >> 1; + if (dst_y) { + dst_y = dst_y + (height - 1) * dst_stride_y; + } + dst_u = dst_u + (halfheight - 1) * dst_stride_u; + dst_v = dst_v + (halfheight - 1) * dst_stride_v; + dst_stride_y = -dst_stride_y; + dst_stride_u = -dst_stride_u; + dst_stride_v = -dst_stride_v; + } + // Coalesce rows. + if (src_stride_y0 == width && + src_stride_y1 == width && + dst_stride_y == width) { + width *= height; + height = 1; + src_stride_y0 = src_stride_y1 = dst_stride_y = 0; + } + // Coalesce rows. + if (src_stride_uv == halfwidth * 2 && + dst_stride_u == halfwidth && + dst_stride_v == halfwidth) { + halfwidth *= halfheight; + halfheight = 1; + src_stride_uv = dst_stride_u = dst_stride_v = 0; + } + + if (dst_y) { + if (src_stride_y0 == src_stride_y1) { + CopyPlane(src_y, src_stride_y0, dst_y, dst_stride_y, width, height); + } else { + CopyPlane2(src_y, src_stride_y0, src_stride_y1, dst_y, dst_stride_y, + width, height); + } + } + + // Split UV plane - NV12 / NV21 + SplitUVPlane(src_uv, src_stride_uv, dst_u, dst_stride_u, dst_v, dst_stride_v, + halfwidth, halfheight); + + return 0; +} + +// Convert NV12 to I420. +LIBYUV_API +int NV12ToI420(const uint8* src_y, int src_stride_y, + const uint8* src_uv, int src_stride_uv, + uint8* dst_y, int dst_stride_y, + uint8* dst_u, int dst_stride_u, + uint8* dst_v, int dst_stride_v, + int width, int height) { + return X420ToI420(src_y, src_stride_y, src_stride_y, + src_uv, src_stride_uv, + dst_y, dst_stride_y, + dst_u, dst_stride_u, + dst_v, dst_stride_v, + width, height); +} + +// Convert NV21 to I420. Same as NV12 but u and v pointers swapped. +LIBYUV_API +int NV21ToI420(const uint8* src_y, int src_stride_y, + const uint8* src_vu, int src_stride_vu, + uint8* dst_y, int dst_stride_y, + uint8* dst_u, int dst_stride_u, + uint8* dst_v, int dst_stride_v, + int width, int height) { + return X420ToI420(src_y, src_stride_y, src_stride_y, + src_vu, src_stride_vu, + dst_y, dst_stride_y, + dst_v, dst_stride_v, + dst_u, dst_stride_u, + width, height); +} + +// Convert M420 to I420. +LIBYUV_API +int M420ToI420(const uint8* src_m420, int src_stride_m420, + uint8* dst_y, int dst_stride_y, + uint8* dst_u, int dst_stride_u, + uint8* dst_v, int dst_stride_v, + int width, int height) { + return X420ToI420(src_m420, src_stride_m420, src_stride_m420 * 2, + src_m420 + src_stride_m420 * 2, src_stride_m420 * 3, + dst_y, dst_stride_y, + dst_u, dst_stride_u, + dst_v, dst_stride_v, + width, height); +} + +// Convert YUY2 to I420. +LIBYUV_API +int YUY2ToI420(const uint8* src_yuy2, int src_stride_yuy2, + uint8* dst_y, int dst_stride_y, + uint8* dst_u, int dst_stride_u, + uint8* dst_v, int dst_stride_v, + int width, int height) { + int y; + void (*YUY2ToUVRow)(const uint8* src_yuy2, int src_stride_yuy2, + uint8* dst_u, uint8* dst_v, int width) = YUY2ToUVRow_C; + void (*YUY2ToYRow)(const uint8* src_yuy2, + uint8* dst_y, int width) = YUY2ToYRow_C; + // Negative height means invert the image. + if (height < 0) { + height = -height; + src_yuy2 = src_yuy2 + (height - 1) * src_stride_yuy2; + src_stride_yuy2 = -src_stride_yuy2; + } +#if defined(HAS_YUY2TOYROW_SSE2) + if (TestCpuFlag(kCpuHasSSE2)) { + YUY2ToUVRow = YUY2ToUVRow_Any_SSE2; + YUY2ToYRow = YUY2ToYRow_Any_SSE2; + if (IS_ALIGNED(width, 16)) { + YUY2ToUVRow = YUY2ToUVRow_SSE2; + YUY2ToYRow = YUY2ToYRow_SSE2; + } + } +#endif +#if defined(HAS_YUY2TOYROW_AVX2) + if (TestCpuFlag(kCpuHasAVX2)) { + YUY2ToUVRow = YUY2ToUVRow_Any_AVX2; + YUY2ToYRow = YUY2ToYRow_Any_AVX2; + if (IS_ALIGNED(width, 32)) { + YUY2ToUVRow = YUY2ToUVRow_AVX2; + YUY2ToYRow = YUY2ToYRow_AVX2; + } + } +#endif +#if defined(HAS_YUY2TOYROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + YUY2ToYRow = YUY2ToYRow_Any_NEON; + YUY2ToUVRow = YUY2ToUVRow_Any_NEON; + if (IS_ALIGNED(width, 16)) { + YUY2ToYRow = YUY2ToYRow_NEON; + YUY2ToUVRow = YUY2ToUVRow_NEON; + } + } +#endif + + for (y = 0; y < height - 1; y += 2) { + YUY2ToUVRow(src_yuy2, src_stride_yuy2, dst_u, dst_v, width); + YUY2ToYRow(src_yuy2, dst_y, width); + YUY2ToYRow(src_yuy2 + src_stride_yuy2, dst_y + dst_stride_y, width); + src_yuy2 += src_stride_yuy2 * 2; + dst_y += dst_stride_y * 2; + dst_u += dst_stride_u; + dst_v += dst_stride_v; + } + if (height & 1) { + YUY2ToUVRow(src_yuy2, 0, dst_u, dst_v, width); + YUY2ToYRow(src_yuy2, dst_y, width); + } + return 0; +} + +// Convert UYVY to I420. +LIBYUV_API +int UYVYToI420(const uint8* src_uyvy, int src_stride_uyvy, + uint8* dst_y, int dst_stride_y, + uint8* dst_u, int dst_stride_u, + uint8* dst_v, int dst_stride_v, + int width, int height) { + int y; + void (*UYVYToUVRow)(const uint8* src_uyvy, int src_stride_uyvy, + uint8* dst_u, uint8* dst_v, int width) = UYVYToUVRow_C; + void (*UYVYToYRow)(const uint8* src_uyvy, + uint8* dst_y, int width) = UYVYToYRow_C; + // Negative height means invert the image. + if (height < 0) { + height = -height; + src_uyvy = src_uyvy + (height - 1) * src_stride_uyvy; + src_stride_uyvy = -src_stride_uyvy; + } +#if defined(HAS_UYVYTOYROW_SSE2) + if (TestCpuFlag(kCpuHasSSE2)) { + UYVYToUVRow = UYVYToUVRow_Any_SSE2; + UYVYToYRow = UYVYToYRow_Any_SSE2; + if (IS_ALIGNED(width, 16)) { + UYVYToUVRow = UYVYToUVRow_SSE2; + UYVYToYRow = UYVYToYRow_SSE2; + } + } +#endif +#if defined(HAS_UYVYTOYROW_AVX2) + if (TestCpuFlag(kCpuHasAVX2)) { + UYVYToUVRow = UYVYToUVRow_Any_AVX2; + UYVYToYRow = UYVYToYRow_Any_AVX2; + if (IS_ALIGNED(width, 32)) { + UYVYToUVRow = UYVYToUVRow_AVX2; + UYVYToYRow = UYVYToYRow_AVX2; + } + } +#endif +#if defined(HAS_UYVYTOYROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + UYVYToYRow = UYVYToYRow_Any_NEON; + UYVYToUVRow = UYVYToUVRow_Any_NEON; + if (IS_ALIGNED(width, 16)) { + UYVYToYRow = UYVYToYRow_NEON; + UYVYToUVRow = UYVYToUVRow_NEON; + } + } +#endif + + for (y = 0; y < height - 1; y += 2) { + UYVYToUVRow(src_uyvy, src_stride_uyvy, dst_u, dst_v, width); + UYVYToYRow(src_uyvy, dst_y, width); + UYVYToYRow(src_uyvy + src_stride_uyvy, dst_y + dst_stride_y, width); + src_uyvy += src_stride_uyvy * 2; + dst_y += dst_stride_y * 2; + dst_u += dst_stride_u; + dst_v += dst_stride_v; + } + if (height & 1) { + UYVYToUVRow(src_uyvy, 0, dst_u, dst_v, width); + UYVYToYRow(src_uyvy, dst_y, width); + } + return 0; +} + +// Convert ARGB to I420. +LIBYUV_API +int ARGBToI420(const uint8* src_argb, int src_stride_argb, + uint8* dst_y, int dst_stride_y, + uint8* dst_u, int dst_stride_u, + uint8* dst_v, int dst_stride_v, + int width, int height) { + int y; + void (*ARGBToUVRow)(const uint8* src_argb0, int src_stride_argb, + uint8* dst_u, uint8* dst_v, int width) = ARGBToUVRow_C; + void (*ARGBToYRow)(const uint8* src_argb, uint8* dst_y, int width) = + ARGBToYRow_C; + if (!src_argb || + !dst_y || !dst_u || !dst_v || + width <= 0 || height == 0) { + return -1; + } + // Negative height means invert the image. + if (height < 0) { + height = -height; + src_argb = src_argb + (height - 1) * src_stride_argb; + src_stride_argb = -src_stride_argb; + } +#if defined(HAS_ARGBTOYROW_SSSE3) && defined(HAS_ARGBTOUVROW_SSSE3) + if (TestCpuFlag(kCpuHasSSSE3)) { + ARGBToUVRow = ARGBToUVRow_Any_SSSE3; + ARGBToYRow = ARGBToYRow_Any_SSSE3; + if (IS_ALIGNED(width, 16)) { + ARGBToUVRow = ARGBToUVRow_SSSE3; + ARGBToYRow = ARGBToYRow_SSSE3; + } + } +#endif +#if defined(HAS_ARGBTOYROW_AVX2) && defined(HAS_ARGBTOUVROW_AVX2) + if (TestCpuFlag(kCpuHasAVX2)) { + ARGBToUVRow = ARGBToUVRow_Any_AVX2; + ARGBToYRow = ARGBToYRow_Any_AVX2; + if (IS_ALIGNED(width, 32)) { + ARGBToUVRow = ARGBToUVRow_AVX2; + ARGBToYRow = ARGBToYRow_AVX2; + } + } +#endif +#if defined(HAS_ARGBTOYROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + ARGBToYRow = ARGBToYRow_Any_NEON; + if (IS_ALIGNED(width, 8)) { + ARGBToYRow = ARGBToYRow_NEON; + } + } +#endif +#if defined(HAS_ARGBTOUVROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + ARGBToUVRow = ARGBToUVRow_Any_NEON; + if (IS_ALIGNED(width, 16)) { + ARGBToUVRow = ARGBToUVRow_NEON; + } + } +#endif + + for (y = 0; y < height - 1; y += 2) { + ARGBToUVRow(src_argb, src_stride_argb, dst_u, dst_v, width); + ARGBToYRow(src_argb, dst_y, width); + ARGBToYRow(src_argb + src_stride_argb, dst_y + dst_stride_y, width); + src_argb += src_stride_argb * 2; + dst_y += dst_stride_y * 2; + dst_u += dst_stride_u; + dst_v += dst_stride_v; + } + if (height & 1) { + ARGBToUVRow(src_argb, 0, dst_u, dst_v, width); + ARGBToYRow(src_argb, dst_y, width); + } + return 0; +} + +// Convert BGRA to I420. +LIBYUV_API +int BGRAToI420(const uint8* src_bgra, int src_stride_bgra, + uint8* dst_y, int dst_stride_y, + uint8* dst_u, int dst_stride_u, + uint8* dst_v, int dst_stride_v, + int width, int height) { + int y; + void (*BGRAToUVRow)(const uint8* src_bgra0, int src_stride_bgra, + uint8* dst_u, uint8* dst_v, int width) = BGRAToUVRow_C; + void (*BGRAToYRow)(const uint8* src_bgra, uint8* dst_y, int width) = + BGRAToYRow_C; + if (!src_bgra || + !dst_y || !dst_u || !dst_v || + width <= 0 || height == 0) { + return -1; + } + // Negative height means invert the image. + if (height < 0) { + height = -height; + src_bgra = src_bgra + (height - 1) * src_stride_bgra; + src_stride_bgra = -src_stride_bgra; + } +#if defined(HAS_BGRATOYROW_SSSE3) && defined(HAS_BGRATOUVROW_SSSE3) + if (TestCpuFlag(kCpuHasSSSE3)) { + BGRAToUVRow = BGRAToUVRow_Any_SSSE3; + BGRAToYRow = BGRAToYRow_Any_SSSE3; + if (IS_ALIGNED(width, 16)) { + BGRAToUVRow = BGRAToUVRow_SSSE3; + BGRAToYRow = BGRAToYRow_SSSE3; + } + } +#endif +#if defined(HAS_BGRATOYROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + BGRAToYRow = BGRAToYRow_Any_NEON; + if (IS_ALIGNED(width, 8)) { + BGRAToYRow = BGRAToYRow_NEON; + } + } +#endif +#if defined(HAS_BGRATOUVROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + BGRAToUVRow = BGRAToUVRow_Any_NEON; + if (IS_ALIGNED(width, 16)) { + BGRAToUVRow = BGRAToUVRow_NEON; + } + } +#endif + + for (y = 0; y < height - 1; y += 2) { + BGRAToUVRow(src_bgra, src_stride_bgra, dst_u, dst_v, width); + BGRAToYRow(src_bgra, dst_y, width); + BGRAToYRow(src_bgra + src_stride_bgra, dst_y + dst_stride_y, width); + src_bgra += src_stride_bgra * 2; + dst_y += dst_stride_y * 2; + dst_u += dst_stride_u; + dst_v += dst_stride_v; + } + if (height & 1) { + BGRAToUVRow(src_bgra, 0, dst_u, dst_v, width); + BGRAToYRow(src_bgra, dst_y, width); + } + return 0; +} + +// Convert ABGR to I420. +LIBYUV_API +int ABGRToI420(const uint8* src_abgr, int src_stride_abgr, + uint8* dst_y, int dst_stride_y, + uint8* dst_u, int dst_stride_u, + uint8* dst_v, int dst_stride_v, + int width, int height) { + int y; + void (*ABGRToUVRow)(const uint8* src_abgr0, int src_stride_abgr, + uint8* dst_u, uint8* dst_v, int width) = ABGRToUVRow_C; + void (*ABGRToYRow)(const uint8* src_abgr, uint8* dst_y, int width) = + ABGRToYRow_C; + if (!src_abgr || + !dst_y || !dst_u || !dst_v || + width <= 0 || height == 0) { + return -1; + } + // Negative height means invert the image. + if (height < 0) { + height = -height; + src_abgr = src_abgr + (height - 1) * src_stride_abgr; + src_stride_abgr = -src_stride_abgr; + } +#if defined(HAS_ABGRTOYROW_SSSE3) && defined(HAS_ABGRTOUVROW_SSSE3) + if (TestCpuFlag(kCpuHasSSSE3)) { + ABGRToUVRow = ABGRToUVRow_Any_SSSE3; + ABGRToYRow = ABGRToYRow_Any_SSSE3; + if (IS_ALIGNED(width, 16)) { + ABGRToUVRow = ABGRToUVRow_SSSE3; + ABGRToYRow = ABGRToYRow_SSSE3; + } + } +#endif +#if defined(HAS_ABGRTOYROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + ABGRToYRow = ABGRToYRow_Any_NEON; + if (IS_ALIGNED(width, 8)) { + ABGRToYRow = ABGRToYRow_NEON; + } + } +#endif +#if defined(HAS_ABGRTOUVROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + ABGRToUVRow = ABGRToUVRow_Any_NEON; + if (IS_ALIGNED(width, 16)) { + ABGRToUVRow = ABGRToUVRow_NEON; + } + } +#endif + + for (y = 0; y < height - 1; y += 2) { + ABGRToUVRow(src_abgr, src_stride_abgr, dst_u, dst_v, width); + ABGRToYRow(src_abgr, dst_y, width); + ABGRToYRow(src_abgr + src_stride_abgr, dst_y + dst_stride_y, width); + src_abgr += src_stride_abgr * 2; + dst_y += dst_stride_y * 2; + dst_u += dst_stride_u; + dst_v += dst_stride_v; + } + if (height & 1) { + ABGRToUVRow(src_abgr, 0, dst_u, dst_v, width); + ABGRToYRow(src_abgr, dst_y, width); + } + return 0; +} + +// Convert RGBA to I420. +LIBYUV_API +int RGBAToI420(const uint8* src_rgba, int src_stride_rgba, + uint8* dst_y, int dst_stride_y, + uint8* dst_u, int dst_stride_u, + uint8* dst_v, int dst_stride_v, + int width, int height) { + int y; + void (*RGBAToUVRow)(const uint8* src_rgba0, int src_stride_rgba, + uint8* dst_u, uint8* dst_v, int width) = RGBAToUVRow_C; + void (*RGBAToYRow)(const uint8* src_rgba, uint8* dst_y, int width) = + RGBAToYRow_C; + if (!src_rgba || + !dst_y || !dst_u || !dst_v || + width <= 0 || height == 0) { + return -1; + } + // Negative height means invert the image. + if (height < 0) { + height = -height; + src_rgba = src_rgba + (height - 1) * src_stride_rgba; + src_stride_rgba = -src_stride_rgba; + } +#if defined(HAS_RGBATOYROW_SSSE3) && defined(HAS_RGBATOUVROW_SSSE3) + if (TestCpuFlag(kCpuHasSSSE3)) { + RGBAToUVRow = RGBAToUVRow_Any_SSSE3; + RGBAToYRow = RGBAToYRow_Any_SSSE3; + if (IS_ALIGNED(width, 16)) { + RGBAToUVRow = RGBAToUVRow_SSSE3; + RGBAToYRow = RGBAToYRow_SSSE3; + } + } +#endif +#if defined(HAS_RGBATOYROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + RGBAToYRow = RGBAToYRow_Any_NEON; + if (IS_ALIGNED(width, 8)) { + RGBAToYRow = RGBAToYRow_NEON; + } + } +#endif +#if defined(HAS_RGBATOUVROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + RGBAToUVRow = RGBAToUVRow_Any_NEON; + if (IS_ALIGNED(width, 16)) { + RGBAToUVRow = RGBAToUVRow_NEON; + } + } +#endif + + for (y = 0; y < height - 1; y += 2) { + RGBAToUVRow(src_rgba, src_stride_rgba, dst_u, dst_v, width); + RGBAToYRow(src_rgba, dst_y, width); + RGBAToYRow(src_rgba + src_stride_rgba, dst_y + dst_stride_y, width); + src_rgba += src_stride_rgba * 2; + dst_y += dst_stride_y * 2; + dst_u += dst_stride_u; + dst_v += dst_stride_v; + } + if (height & 1) { + RGBAToUVRow(src_rgba, 0, dst_u, dst_v, width); + RGBAToYRow(src_rgba, dst_y, width); + } + return 0; +} + +// Convert RGB24 to I420. +LIBYUV_API +int RGB24ToI420(const uint8* src_rgb24, int src_stride_rgb24, + uint8* dst_y, int dst_stride_y, + uint8* dst_u, int dst_stride_u, + uint8* dst_v, int dst_stride_v, + int width, int height) { + int y; +#if defined(HAS_RGB24TOYROW_NEON) + void (*RGB24ToUVRow)(const uint8* src_rgb24, int src_stride_rgb24, + uint8* dst_u, uint8* dst_v, int width) = RGB24ToUVRow_C; + void (*RGB24ToYRow)(const uint8* src_rgb24, uint8* dst_y, int width) = + RGB24ToYRow_C; +#else + void (*RGB24ToARGBRow)(const uint8* src_rgb, uint8* dst_argb, int width) = + RGB24ToARGBRow_C; + void (*ARGBToUVRow)(const uint8* src_argb0, int src_stride_argb, + uint8* dst_u, uint8* dst_v, int width) = ARGBToUVRow_C; + void (*ARGBToYRow)(const uint8* src_argb, uint8* dst_y, int width) = + ARGBToYRow_C; +#endif + if (!src_rgb24 || !dst_y || !dst_u || !dst_v || + width <= 0 || height == 0) { + return -1; + } + // Negative height means invert the image. + if (height < 0) { + height = -height; + src_rgb24 = src_rgb24 + (height - 1) * src_stride_rgb24; + src_stride_rgb24 = -src_stride_rgb24; + } + +// Neon version does direct RGB24 to YUV. +#if defined(HAS_RGB24TOYROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + RGB24ToUVRow = RGB24ToUVRow_Any_NEON; + RGB24ToYRow = RGB24ToYRow_Any_NEON; + if (IS_ALIGNED(width, 8)) { + RGB24ToYRow = RGB24ToYRow_NEON; + if (IS_ALIGNED(width, 16)) { + RGB24ToUVRow = RGB24ToUVRow_NEON; + } + } + } +// Other platforms do intermediate conversion from RGB24 to ARGB. +#else +#if defined(HAS_RGB24TOARGBROW_SSSE3) + if (TestCpuFlag(kCpuHasSSSE3)) { + RGB24ToARGBRow = RGB24ToARGBRow_Any_SSSE3; + if (IS_ALIGNED(width, 16)) { + RGB24ToARGBRow = RGB24ToARGBRow_SSSE3; + } + } +#endif +#if defined(HAS_ARGBTOYROW_SSSE3) && defined(HAS_ARGBTOUVROW_SSSE3) + if (TestCpuFlag(kCpuHasSSSE3)) { + ARGBToUVRow = ARGBToUVRow_Any_SSSE3; + ARGBToYRow = ARGBToYRow_Any_SSSE3; + if (IS_ALIGNED(width, 16)) { + ARGBToUVRow = ARGBToUVRow_SSSE3; + ARGBToYRow = ARGBToYRow_SSSE3; + } + } +#endif +#if defined(HAS_ARGBTOYROW_AVX2) && defined(HAS_ARGBTOUVROW_AVX2) + if (TestCpuFlag(kCpuHasAVX2)) { + ARGBToUVRow = ARGBToUVRow_Any_AVX2; + ARGBToYRow = ARGBToYRow_Any_AVX2; + if (IS_ALIGNED(width, 32)) { + ARGBToUVRow = ARGBToUVRow_AVX2; + ARGBToYRow = ARGBToYRow_AVX2; + } + } +#endif + { + // Allocate 2 rows of ARGB. + const int kRowSize = (width * 4 + 31) & ~31; + align_buffer_64(row, kRowSize * 2); +#endif + + for (y = 0; y < height - 1; y += 2) { +#if defined(HAS_RGB24TOYROW_NEON) + RGB24ToUVRow(src_rgb24, src_stride_rgb24, dst_u, dst_v, width); + RGB24ToYRow(src_rgb24, dst_y, width); + RGB24ToYRow(src_rgb24 + src_stride_rgb24, dst_y + dst_stride_y, width); +#else + RGB24ToARGBRow(src_rgb24, row, width); + RGB24ToARGBRow(src_rgb24 + src_stride_rgb24, row + kRowSize, width); + ARGBToUVRow(row, kRowSize, dst_u, dst_v, width); + ARGBToYRow(row, dst_y, width); + ARGBToYRow(row + kRowSize, dst_y + dst_stride_y, width); +#endif + src_rgb24 += src_stride_rgb24 * 2; + dst_y += dst_stride_y * 2; + dst_u += dst_stride_u; + dst_v += dst_stride_v; + } + if (height & 1) { +#if defined(HAS_RGB24TOYROW_NEON) + RGB24ToUVRow(src_rgb24, 0, dst_u, dst_v, width); + RGB24ToYRow(src_rgb24, dst_y, width); +#else + RGB24ToARGBRow(src_rgb24, row, width); + ARGBToUVRow(row, 0, dst_u, dst_v, width); + ARGBToYRow(row, dst_y, width); +#endif + } +#if !defined(HAS_RGB24TOYROW_NEON) + free_aligned_buffer_64(row); + } +#endif + return 0; +} + +// Convert RAW to I420. +LIBYUV_API +int RAWToI420(const uint8* src_raw, int src_stride_raw, + uint8* dst_y, int dst_stride_y, + uint8* dst_u, int dst_stride_u, + uint8* dst_v, int dst_stride_v, + int width, int height) { + int y; +#if defined(HAS_RAWTOYROW_NEON) + void (*RAWToUVRow)(const uint8* src_raw, int src_stride_raw, + uint8* dst_u, uint8* dst_v, int width) = RAWToUVRow_C; + void (*RAWToYRow)(const uint8* src_raw, uint8* dst_y, int width) = + RAWToYRow_C; +#else + void (*RAWToARGBRow)(const uint8* src_rgb, uint8* dst_argb, int width) = + RAWToARGBRow_C; + void (*ARGBToUVRow)(const uint8* src_argb0, int src_stride_argb, + uint8* dst_u, uint8* dst_v, int width) = ARGBToUVRow_C; + void (*ARGBToYRow)(const uint8* src_argb, uint8* dst_y, int width) = + ARGBToYRow_C; +#endif + if (!src_raw || !dst_y || !dst_u || !dst_v || + width <= 0 || height == 0) { + return -1; + } + // Negative height means invert the image. + if (height < 0) { + height = -height; + src_raw = src_raw + (height - 1) * src_stride_raw; + src_stride_raw = -src_stride_raw; + } + +// Neon version does direct RAW to YUV. +#if defined(HAS_RAWTOYROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + RAWToUVRow = RAWToUVRow_Any_NEON; + RAWToYRow = RAWToYRow_Any_NEON; + if (IS_ALIGNED(width, 8)) { + RAWToYRow = RAWToYRow_NEON; + if (IS_ALIGNED(width, 16)) { + RAWToUVRow = RAWToUVRow_NEON; + } + } + } +// Other platforms do intermediate conversion from RAW to ARGB. +#else +#if defined(HAS_RAWTOARGBROW_SSSE3) + if (TestCpuFlag(kCpuHasSSSE3)) { + RAWToARGBRow = RAWToARGBRow_Any_SSSE3; + if (IS_ALIGNED(width, 16)) { + RAWToARGBRow = RAWToARGBRow_SSSE3; + } + } +#endif +#if defined(HAS_ARGBTOYROW_SSSE3) && defined(HAS_ARGBTOUVROW_SSSE3) + if (TestCpuFlag(kCpuHasSSSE3)) { + ARGBToUVRow = ARGBToUVRow_Any_SSSE3; + ARGBToYRow = ARGBToYRow_Any_SSSE3; + if (IS_ALIGNED(width, 16)) { + ARGBToUVRow = ARGBToUVRow_SSSE3; + ARGBToYRow = ARGBToYRow_SSSE3; + } + } +#endif +#if defined(HAS_ARGBTOYROW_AVX2) && defined(HAS_ARGBTOUVROW_AVX2) + if (TestCpuFlag(kCpuHasAVX2)) { + ARGBToUVRow = ARGBToUVRow_Any_AVX2; + ARGBToYRow = ARGBToYRow_Any_AVX2; + if (IS_ALIGNED(width, 32)) { + ARGBToUVRow = ARGBToUVRow_AVX2; + ARGBToYRow = ARGBToYRow_AVX2; + } + } +#endif + { + // Allocate 2 rows of ARGB. + const int kRowSize = (width * 4 + 31) & ~31; + align_buffer_64(row, kRowSize * 2); +#endif + + for (y = 0; y < height - 1; y += 2) { +#if defined(HAS_RAWTOYROW_NEON) + RAWToUVRow(src_raw, src_stride_raw, dst_u, dst_v, width); + RAWToYRow(src_raw, dst_y, width); + RAWToYRow(src_raw + src_stride_raw, dst_y + dst_stride_y, width); +#else + RAWToARGBRow(src_raw, row, width); + RAWToARGBRow(src_raw + src_stride_raw, row + kRowSize, width); + ARGBToUVRow(row, kRowSize, dst_u, dst_v, width); + ARGBToYRow(row, dst_y, width); + ARGBToYRow(row + kRowSize, dst_y + dst_stride_y, width); +#endif + src_raw += src_stride_raw * 2; + dst_y += dst_stride_y * 2; + dst_u += dst_stride_u; + dst_v += dst_stride_v; + } + if (height & 1) { +#if defined(HAS_RAWTOYROW_NEON) + RAWToUVRow(src_raw, 0, dst_u, dst_v, width); + RAWToYRow(src_raw, dst_y, width); +#else + RAWToARGBRow(src_raw, row, width); + ARGBToUVRow(row, 0, dst_u, dst_v, width); + ARGBToYRow(row, dst_y, width); +#endif + } +#if !defined(HAS_RAWTOYROW_NEON) + free_aligned_buffer_64(row); + } +#endif + return 0; +} + +// Convert RGB565 to I420. +LIBYUV_API +int RGB565ToI420(const uint8* src_rgb565, int src_stride_rgb565, + uint8* dst_y, int dst_stride_y, + uint8* dst_u, int dst_stride_u, + uint8* dst_v, int dst_stride_v, + int width, int height) { + int y; +#if defined(HAS_RGB565TOYROW_NEON) + void (*RGB565ToUVRow)(const uint8* src_rgb565, int src_stride_rgb565, + uint8* dst_u, uint8* dst_v, int width) = RGB565ToUVRow_C; + void (*RGB565ToYRow)(const uint8* src_rgb565, uint8* dst_y, int width) = + RGB565ToYRow_C; +#else + void (*RGB565ToARGBRow)(const uint8* src_rgb, uint8* dst_argb, int width) = + RGB565ToARGBRow_C; + void (*ARGBToUVRow)(const uint8* src_argb0, int src_stride_argb, + uint8* dst_u, uint8* dst_v, int width) = ARGBToUVRow_C; + void (*ARGBToYRow)(const uint8* src_argb, uint8* dst_y, int width) = + ARGBToYRow_C; +#endif + if (!src_rgb565 || !dst_y || !dst_u || !dst_v || + width <= 0 || height == 0) { + return -1; + } + // Negative height means invert the image. + if (height < 0) { + height = -height; + src_rgb565 = src_rgb565 + (height - 1) * src_stride_rgb565; + src_stride_rgb565 = -src_stride_rgb565; + } + +// Neon version does direct RGB565 to YUV. +#if defined(HAS_RGB565TOYROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + RGB565ToUVRow = RGB565ToUVRow_Any_NEON; + RGB565ToYRow = RGB565ToYRow_Any_NEON; + if (IS_ALIGNED(width, 8)) { + RGB565ToYRow = RGB565ToYRow_NEON; + if (IS_ALIGNED(width, 16)) { + RGB565ToUVRow = RGB565ToUVRow_NEON; + } + } + } +// Other platforms do intermediate conversion from RGB565 to ARGB. +#else +#if defined(HAS_RGB565TOARGBROW_SSE2) + if (TestCpuFlag(kCpuHasSSE2)) { + RGB565ToARGBRow = RGB565ToARGBRow_Any_SSE2; + if (IS_ALIGNED(width, 8)) { + RGB565ToARGBRow = RGB565ToARGBRow_SSE2; + } + } +#endif +#if defined(HAS_RGB565TOARGBROW_AVX2) + if (TestCpuFlag(kCpuHasAVX2)) { + RGB565ToARGBRow = RGB565ToARGBRow_Any_AVX2; + if (IS_ALIGNED(width, 16)) { + RGB565ToARGBRow = RGB565ToARGBRow_AVX2; + } + } +#endif +#if defined(HAS_ARGBTOYROW_SSSE3) && defined(HAS_ARGBTOUVROW_SSSE3) + if (TestCpuFlag(kCpuHasSSSE3)) { + ARGBToUVRow = ARGBToUVRow_Any_SSSE3; + ARGBToYRow = ARGBToYRow_Any_SSSE3; + if (IS_ALIGNED(width, 16)) { + ARGBToUVRow = ARGBToUVRow_SSSE3; + ARGBToYRow = ARGBToYRow_SSSE3; + } + } +#endif +#if defined(HAS_ARGBTOYROW_AVX2) && defined(HAS_ARGBTOUVROW_AVX2) + if (TestCpuFlag(kCpuHasAVX2)) { + ARGBToUVRow = ARGBToUVRow_Any_AVX2; + ARGBToYRow = ARGBToYRow_Any_AVX2; + if (IS_ALIGNED(width, 32)) { + ARGBToUVRow = ARGBToUVRow_AVX2; + ARGBToYRow = ARGBToYRow_AVX2; + } + } +#endif + { + // Allocate 2 rows of ARGB. + const int kRowSize = (width * 4 + 31) & ~31; + align_buffer_64(row, kRowSize * 2); +#endif + + for (y = 0; y < height - 1; y += 2) { +#if defined(HAS_RGB565TOYROW_NEON) + RGB565ToUVRow(src_rgb565, src_stride_rgb565, dst_u, dst_v, width); + RGB565ToYRow(src_rgb565, dst_y, width); + RGB565ToYRow(src_rgb565 + src_stride_rgb565, dst_y + dst_stride_y, width); +#else + RGB565ToARGBRow(src_rgb565, row, width); + RGB565ToARGBRow(src_rgb565 + src_stride_rgb565, row + kRowSize, width); + ARGBToUVRow(row, kRowSize, dst_u, dst_v, width); + ARGBToYRow(row, dst_y, width); + ARGBToYRow(row + kRowSize, dst_y + dst_stride_y, width); +#endif + src_rgb565 += src_stride_rgb565 * 2; + dst_y += dst_stride_y * 2; + dst_u += dst_stride_u; + dst_v += dst_stride_v; + } + if (height & 1) { +#if defined(HAS_RGB565TOYROW_NEON) + RGB565ToUVRow(src_rgb565, 0, dst_u, dst_v, width); + RGB565ToYRow(src_rgb565, dst_y, width); +#else + RGB565ToARGBRow(src_rgb565, row, width); + ARGBToUVRow(row, 0, dst_u, dst_v, width); + ARGBToYRow(row, dst_y, width); +#endif + } +#if !defined(HAS_RGB565TOYROW_NEON) + free_aligned_buffer_64(row); + } +#endif + return 0; +} + +// Convert ARGB1555 to I420. +LIBYUV_API +int ARGB1555ToI420(const uint8* src_argb1555, int src_stride_argb1555, + uint8* dst_y, int dst_stride_y, + uint8* dst_u, int dst_stride_u, + uint8* dst_v, int dst_stride_v, + int width, int height) { + int y; +#if defined(HAS_ARGB1555TOYROW_NEON) + void (*ARGB1555ToUVRow)(const uint8* src_argb1555, int src_stride_argb1555, + uint8* dst_u, uint8* dst_v, int width) = ARGB1555ToUVRow_C; + void (*ARGB1555ToYRow)(const uint8* src_argb1555, uint8* dst_y, int width) = + ARGB1555ToYRow_C; +#else + void (*ARGB1555ToARGBRow)(const uint8* src_rgb, uint8* dst_argb, int width) = + ARGB1555ToARGBRow_C; + void (*ARGBToUVRow)(const uint8* src_argb0, int src_stride_argb, + uint8* dst_u, uint8* dst_v, int width) = ARGBToUVRow_C; + void (*ARGBToYRow)(const uint8* src_argb, uint8* dst_y, int width) = + ARGBToYRow_C; +#endif + if (!src_argb1555 || !dst_y || !dst_u || !dst_v || + width <= 0 || height == 0) { + return -1; + } + // Negative height means invert the image. + if (height < 0) { + height = -height; + src_argb1555 = src_argb1555 + (height - 1) * src_stride_argb1555; + src_stride_argb1555 = -src_stride_argb1555; + } + +// Neon version does direct ARGB1555 to YUV. +#if defined(HAS_ARGB1555TOYROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + ARGB1555ToUVRow = ARGB1555ToUVRow_Any_NEON; + ARGB1555ToYRow = ARGB1555ToYRow_Any_NEON; + if (IS_ALIGNED(width, 8)) { + ARGB1555ToYRow = ARGB1555ToYRow_NEON; + if (IS_ALIGNED(width, 16)) { + ARGB1555ToUVRow = ARGB1555ToUVRow_NEON; + } + } + } +// Other platforms do intermediate conversion from ARGB1555 to ARGB. +#else +#if defined(HAS_ARGB1555TOARGBROW_SSE2) + if (TestCpuFlag(kCpuHasSSE2)) { + ARGB1555ToARGBRow = ARGB1555ToARGBRow_Any_SSE2; + if (IS_ALIGNED(width, 8)) { + ARGB1555ToARGBRow = ARGB1555ToARGBRow_SSE2; + } + } +#endif +#if defined(HAS_ARGB1555TOARGBROW_AVX2) + if (TestCpuFlag(kCpuHasAVX2)) { + ARGB1555ToARGBRow = ARGB1555ToARGBRow_Any_AVX2; + if (IS_ALIGNED(width, 16)) { + ARGB1555ToARGBRow = ARGB1555ToARGBRow_AVX2; + } + } +#endif +#if defined(HAS_ARGBTOYROW_SSSE3) && defined(HAS_ARGBTOUVROW_SSSE3) + if (TestCpuFlag(kCpuHasSSSE3)) { + ARGBToUVRow = ARGBToUVRow_Any_SSSE3; + ARGBToYRow = ARGBToYRow_Any_SSSE3; + if (IS_ALIGNED(width, 16)) { + ARGBToUVRow = ARGBToUVRow_SSSE3; + ARGBToYRow = ARGBToYRow_SSSE3; + } + } +#endif +#if defined(HAS_ARGBTOYROW_AVX2) && defined(HAS_ARGBTOUVROW_AVX2) + if (TestCpuFlag(kCpuHasAVX2)) { + ARGBToUVRow = ARGBToUVRow_Any_AVX2; + ARGBToYRow = ARGBToYRow_Any_AVX2; + if (IS_ALIGNED(width, 32)) { + ARGBToUVRow = ARGBToUVRow_AVX2; + ARGBToYRow = ARGBToYRow_AVX2; + } + } +#endif + { + // Allocate 2 rows of ARGB. + const int kRowSize = (width * 4 + 31) & ~31; + align_buffer_64(row, kRowSize * 2); +#endif + + for (y = 0; y < height - 1; y += 2) { +#if defined(HAS_ARGB1555TOYROW_NEON) + ARGB1555ToUVRow(src_argb1555, src_stride_argb1555, dst_u, dst_v, width); + ARGB1555ToYRow(src_argb1555, dst_y, width); + ARGB1555ToYRow(src_argb1555 + src_stride_argb1555, dst_y + dst_stride_y, + width); +#else + ARGB1555ToARGBRow(src_argb1555, row, width); + ARGB1555ToARGBRow(src_argb1555 + src_stride_argb1555, row + kRowSize, + width); + ARGBToUVRow(row, kRowSize, dst_u, dst_v, width); + ARGBToYRow(row, dst_y, width); + ARGBToYRow(row + kRowSize, dst_y + dst_stride_y, width); +#endif + src_argb1555 += src_stride_argb1555 * 2; + dst_y += dst_stride_y * 2; + dst_u += dst_stride_u; + dst_v += dst_stride_v; + } + if (height & 1) { +#if defined(HAS_ARGB1555TOYROW_NEON) + ARGB1555ToUVRow(src_argb1555, 0, dst_u, dst_v, width); + ARGB1555ToYRow(src_argb1555, dst_y, width); +#else + ARGB1555ToARGBRow(src_argb1555, row, width); + ARGBToUVRow(row, 0, dst_u, dst_v, width); + ARGBToYRow(row, dst_y, width); +#endif + } +#if !defined(HAS_ARGB1555TOYROW_NEON) + free_aligned_buffer_64(row); + } +#endif + return 0; +} + +// Convert ARGB4444 to I420. +LIBYUV_API +int ARGB4444ToI420(const uint8* src_argb4444, int src_stride_argb4444, + uint8* dst_y, int dst_stride_y, + uint8* dst_u, int dst_stride_u, + uint8* dst_v, int dst_stride_v, + int width, int height) { + int y; +#if defined(HAS_ARGB4444TOYROW_NEON) + void (*ARGB4444ToUVRow)(const uint8* src_argb4444, int src_stride_argb4444, + uint8* dst_u, uint8* dst_v, int width) = ARGB4444ToUVRow_C; + void (*ARGB4444ToYRow)(const uint8* src_argb4444, uint8* dst_y, int width) = + ARGB4444ToYRow_C; +#else + void (*ARGB4444ToARGBRow)(const uint8* src_rgb, uint8* dst_argb, int width) = + ARGB4444ToARGBRow_C; + void (*ARGBToUVRow)(const uint8* src_argb0, int src_stride_argb, + uint8* dst_u, uint8* dst_v, int width) = ARGBToUVRow_C; + void (*ARGBToYRow)(const uint8* src_argb, uint8* dst_y, int width) = + ARGBToYRow_C; +#endif + if (!src_argb4444 || !dst_y || !dst_u || !dst_v || + width <= 0 || height == 0) { + return -1; + } + // Negative height means invert the image. + if (height < 0) { + height = -height; + src_argb4444 = src_argb4444 + (height - 1) * src_stride_argb4444; + src_stride_argb4444 = -src_stride_argb4444; + } + +// Neon version does direct ARGB4444 to YUV. +#if defined(HAS_ARGB4444TOYROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + ARGB4444ToUVRow = ARGB4444ToUVRow_Any_NEON; + ARGB4444ToYRow = ARGB4444ToYRow_Any_NEON; + if (IS_ALIGNED(width, 8)) { + ARGB4444ToYRow = ARGB4444ToYRow_NEON; + if (IS_ALIGNED(width, 16)) { + ARGB4444ToUVRow = ARGB4444ToUVRow_NEON; + } + } + } +// Other platforms do intermediate conversion from ARGB4444 to ARGB. +#else +#if defined(HAS_ARGB4444TOARGBROW_SSE2) + if (TestCpuFlag(kCpuHasSSE2)) { + ARGB4444ToARGBRow = ARGB4444ToARGBRow_Any_SSE2; + if (IS_ALIGNED(width, 8)) { + ARGB4444ToARGBRow = ARGB4444ToARGBRow_SSE2; + } + } +#endif +#if defined(HAS_ARGB4444TOARGBROW_AVX2) + if (TestCpuFlag(kCpuHasAVX2)) { + ARGB4444ToARGBRow = ARGB4444ToARGBRow_Any_AVX2; + if (IS_ALIGNED(width, 16)) { + ARGB4444ToARGBRow = ARGB4444ToARGBRow_AVX2; + } + } +#endif +#if defined(HAS_ARGBTOYROW_SSSE3) && defined(HAS_ARGBTOUVROW_SSSE3) + if (TestCpuFlag(kCpuHasSSSE3)) { + ARGBToUVRow = ARGBToUVRow_Any_SSSE3; + ARGBToYRow = ARGBToYRow_Any_SSSE3; + if (IS_ALIGNED(width, 16)) { + ARGBToUVRow = ARGBToUVRow_SSSE3; + ARGBToYRow = ARGBToYRow_SSSE3; + } + } +#endif +#if defined(HAS_ARGBTOYROW_AVX2) && defined(HAS_ARGBTOUVROW_AVX2) + if (TestCpuFlag(kCpuHasAVX2)) { + ARGBToUVRow = ARGBToUVRow_Any_AVX2; + ARGBToYRow = ARGBToYRow_Any_AVX2; + if (IS_ALIGNED(width, 32)) { + ARGBToUVRow = ARGBToUVRow_AVX2; + ARGBToYRow = ARGBToYRow_AVX2; + } + } +#endif + { + // Allocate 2 rows of ARGB. + const int kRowSize = (width * 4 + 31) & ~31; + align_buffer_64(row, kRowSize * 2); +#endif + + for (y = 0; y < height - 1; y += 2) { +#if defined(HAS_ARGB4444TOYROW_NEON) + ARGB4444ToUVRow(src_argb4444, src_stride_argb4444, dst_u, dst_v, width); + ARGB4444ToYRow(src_argb4444, dst_y, width); + ARGB4444ToYRow(src_argb4444 + src_stride_argb4444, dst_y + dst_stride_y, + width); +#else + ARGB4444ToARGBRow(src_argb4444, row, width); + ARGB4444ToARGBRow(src_argb4444 + src_stride_argb4444, row + kRowSize, + width); + ARGBToUVRow(row, kRowSize, dst_u, dst_v, width); + ARGBToYRow(row, dst_y, width); + ARGBToYRow(row + kRowSize, dst_y + dst_stride_y, width); +#endif + src_argb4444 += src_stride_argb4444 * 2; + dst_y += dst_stride_y * 2; + dst_u += dst_stride_u; + dst_v += dst_stride_v; + } + if (height & 1) { +#if defined(HAS_ARGB4444TOYROW_NEON) + ARGB4444ToUVRow(src_argb4444, 0, dst_u, dst_v, width); + ARGB4444ToYRow(src_argb4444, dst_y, width); +#else + ARGB4444ToARGBRow(src_argb4444, row, width); + ARGBToUVRow(row, 0, dst_u, dst_v, width); + ARGBToYRow(row, dst_y, width); +#endif + } +#if !defined(HAS_ARGB4444TOYROW_NEON) + free_aligned_buffer_64(row); + } +#endif + return 0; +} + +static void SplitPixels(const uint8* src_u, int src_pixel_stride_uv, + uint8* dst_u, int width) { + int i; + for (i = 0; i < width; ++i) { + *dst_u = *src_u; + ++dst_u; + src_u += src_pixel_stride_uv; + } +} + +// Convert Android420 to I420. +LIBYUV_API +int Android420ToI420(const uint8* src_y, int src_stride_y, + const uint8* src_u, int src_stride_u, + const uint8* src_v, int src_stride_v, + int src_pixel_stride_uv, + uint8* dst_y, int dst_stride_y, + uint8* dst_u, int dst_stride_u, + uint8* dst_v, int dst_stride_v, + int width, int height) { + int y; + const int vu_off = src_v - src_u; + int halfwidth = (width + 1) >> 1; + int halfheight = (height + 1) >> 1; + if (!src_u || !src_v || + !dst_u || !dst_v || + width <= 0 || height == 0) { + return -1; + } + // Negative height means invert the image. + if (height < 0) { + height = -height; + halfheight = (height + 1) >> 1; + src_y = src_y + (height - 1) * src_stride_y; + src_u = src_u + (halfheight - 1) * src_stride_u; + src_v = src_v + (halfheight - 1) * src_stride_v; + src_stride_y = -src_stride_y; + src_stride_u = -src_stride_u; + src_stride_v = -src_stride_v; + } + + if (dst_y) { + CopyPlane(src_y, src_stride_y, dst_y, dst_stride_y, width, height); + } + + // Copy UV planes as is - I420 + if (src_pixel_stride_uv == 1) { + CopyPlane(src_u, src_stride_u, dst_u, dst_stride_u, halfwidth, halfheight); + CopyPlane(src_v, src_stride_v, dst_v, dst_stride_v, halfwidth, halfheight); + return 0; + // Split UV planes - NV21 + } else if (src_pixel_stride_uv == 2 && vu_off == -1 && + src_stride_u == src_stride_v) { + SplitUVPlane(src_v, src_stride_v, dst_v, dst_stride_v, dst_u, dst_stride_u, + halfwidth, halfheight); + return 0; + // Split UV planes - NV12 + } else if (src_pixel_stride_uv == 2 && vu_off == 1 && + src_stride_u == src_stride_v) { + SplitUVPlane(src_u, src_stride_u, dst_u, dst_stride_u, dst_v, dst_stride_v, + halfwidth, halfheight); + return 0; + } + + for (y = 0; y < halfheight; ++y) { + SplitPixels(src_u, src_pixel_stride_uv, dst_u, halfwidth); + SplitPixels(src_v, src_pixel_stride_uv, dst_v, halfwidth); + src_u += src_stride_u; + src_v += src_stride_v; + dst_u += dst_stride_u; + dst_v += dst_stride_v; + } + return 0; +} + +#ifdef __cplusplus +} // extern "C" +} // namespace libyuv +#endif diff --git a/third_party/libyuv/source/convert_argb.cc b/third_party/libyuv/source/convert_argb.cc new file mode 100644 index 0000000..fb9582d --- /dev/null +++ b/third_party/libyuv/source/convert_argb.cc @@ -0,0 +1,1456 @@ +/* + * Copyright 2011 The LibYuv Project Authors. All rights reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "libyuv/convert_argb.h" + +#include "libyuv/cpu_id.h" +#ifdef HAVE_JPEG +#include "libyuv/mjpeg_decoder.h" +#endif +#include "libyuv/planar_functions.h" // For CopyPlane and ARGBShuffle. +#include "libyuv/rotate_argb.h" +#include "libyuv/row.h" +#include "libyuv/video_common.h" + +#ifdef __cplusplus +namespace libyuv { +extern "C" { +#endif + +// Copy ARGB with optional flipping +LIBYUV_API +int ARGBCopy(const uint8* src_argb, int src_stride_argb, + uint8* dst_argb, int dst_stride_argb, + int width, int height) { + if (!src_argb || !dst_argb || + width <= 0 || height == 0) { + return -1; + } + // Negative height means invert the image. + if (height < 0) { + height = -height; + src_argb = src_argb + (height - 1) * src_stride_argb; + src_stride_argb = -src_stride_argb; + } + + CopyPlane(src_argb, src_stride_argb, dst_argb, dst_stride_argb, + width * 4, height); + return 0; +} + +// Convert I422 to ARGB with matrix +static int I420ToARGBMatrix(const uint8* src_y, int src_stride_y, + const uint8* src_u, int src_stride_u, + const uint8* src_v, int src_stride_v, + uint8* dst_argb, int dst_stride_argb, + const struct YuvConstants* yuvconstants, + int width, int height) { + int y; + void (*I422ToARGBRow)(const uint8* y_buf, + const uint8* u_buf, + const uint8* v_buf, + uint8* rgb_buf, + const struct YuvConstants* yuvconstants, + int width) = I422ToARGBRow_C; + if (!src_y || !src_u || !src_v || !dst_argb || + width <= 0 || height == 0) { + return -1; + } + // Negative height means invert the image. + if (height < 0) { + height = -height; + dst_argb = dst_argb + (height - 1) * dst_stride_argb; + dst_stride_argb = -dst_stride_argb; + } +#if defined(HAS_I422TOARGBROW_SSSE3) + if (TestCpuFlag(kCpuHasSSSE3)) { + I422ToARGBRow = I422ToARGBRow_Any_SSSE3; + if (IS_ALIGNED(width, 8)) { + I422ToARGBRow = I422ToARGBRow_SSSE3; + } + } +#endif +#if defined(HAS_I422TOARGBROW_AVX2) + if (TestCpuFlag(kCpuHasAVX2)) { + I422ToARGBRow = I422ToARGBRow_Any_AVX2; + if (IS_ALIGNED(width, 16)) { + I422ToARGBRow = I422ToARGBRow_AVX2; + } + } +#endif +#if defined(HAS_I422TOARGBROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + I422ToARGBRow = I422ToARGBRow_Any_NEON; + if (IS_ALIGNED(width, 8)) { + I422ToARGBRow = I422ToARGBRow_NEON; + } + } +#endif +#if defined(HAS_I422TOARGBROW_DSPR2) + if (TestCpuFlag(kCpuHasDSPR2) && IS_ALIGNED(width, 4) && + IS_ALIGNED(src_y, 4) && IS_ALIGNED(src_stride_y, 4) && + IS_ALIGNED(src_u, 2) && IS_ALIGNED(src_stride_u, 2) && + IS_ALIGNED(src_v, 2) && IS_ALIGNED(src_stride_v, 2) && + IS_ALIGNED(dst_argb, 4) && IS_ALIGNED(dst_stride_argb, 4)) { + I422ToARGBRow = I422ToARGBRow_DSPR2; + } +#endif + + for (y = 0; y < height; ++y) { + I422ToARGBRow(src_y, src_u, src_v, dst_argb, yuvconstants, width); + dst_argb += dst_stride_argb; + src_y += src_stride_y; + if (y & 1) { + src_u += src_stride_u; + src_v += src_stride_v; + } + } + return 0; +} + +// Convert I420 to ARGB. +LIBYUV_API +int I420ToARGB(const uint8* src_y, int src_stride_y, + const uint8* src_u, int src_stride_u, + const uint8* src_v, int src_stride_v, + uint8* dst_argb, int dst_stride_argb, + int width, int height) { + return I420ToARGBMatrix(src_y, src_stride_y, + src_u, src_stride_u, + src_v, src_stride_v, + dst_argb, dst_stride_argb, + &kYuvI601Constants, + width, height); +} + +// Convert I420 to ABGR. +LIBYUV_API +int I420ToABGR(const uint8* src_y, int src_stride_y, + const uint8* src_u, int src_stride_u, + const uint8* src_v, int src_stride_v, + uint8* dst_abgr, int dst_stride_abgr, + int width, int height) { + return I420ToARGBMatrix(src_y, src_stride_y, + src_v, src_stride_v, // Swap U and V + src_u, src_stride_u, + dst_abgr, dst_stride_abgr, + &kYvuI601Constants, // Use Yvu matrix + width, height); +} + +// Convert J420 to ARGB. +LIBYUV_API +int J420ToARGB(const uint8* src_y, int src_stride_y, + const uint8* src_u, int src_stride_u, + const uint8* src_v, int src_stride_v, + uint8* dst_argb, int dst_stride_argb, + int width, int height) { + return I420ToARGBMatrix(src_y, src_stride_y, + src_u, src_stride_u, + src_v, src_stride_v, + dst_argb, dst_stride_argb, + &kYuvJPEGConstants, + width, height); +} + +// Convert J420 to ABGR. +LIBYUV_API +int J420ToABGR(const uint8* src_y, int src_stride_y, + const uint8* src_u, int src_stride_u, + const uint8* src_v, int src_stride_v, + uint8* dst_abgr, int dst_stride_abgr, + int width, int height) { + return I420ToARGBMatrix(src_y, src_stride_y, + src_v, src_stride_v, // Swap U and V + src_u, src_stride_u, + dst_abgr, dst_stride_abgr, + &kYvuJPEGConstants, // Use Yvu matrix + width, height); +} + +// Convert H420 to ARGB. +LIBYUV_API +int H420ToARGB(const uint8* src_y, int src_stride_y, + const uint8* src_u, int src_stride_u, + const uint8* src_v, int src_stride_v, + uint8* dst_argb, int dst_stride_argb, + int width, int height) { + return I420ToARGBMatrix(src_y, src_stride_y, + src_u, src_stride_u, + src_v, src_stride_v, + dst_argb, dst_stride_argb, + &kYuvH709Constants, + width, height); +} + +// Convert H420 to ABGR. +LIBYUV_API +int H420ToABGR(const uint8* src_y, int src_stride_y, + const uint8* src_u, int src_stride_u, + const uint8* src_v, int src_stride_v, + uint8* dst_abgr, int dst_stride_abgr, + int width, int height) { + return I420ToARGBMatrix(src_y, src_stride_y, + src_v, src_stride_v, // Swap U and V + src_u, src_stride_u, + dst_abgr, dst_stride_abgr, + &kYvuH709Constants, // Use Yvu matrix + width, height); +} + +// Convert I422 to ARGB with matrix +static int I422ToARGBMatrix(const uint8* src_y, int src_stride_y, + const uint8* src_u, int src_stride_u, + const uint8* src_v, int src_stride_v, + uint8* dst_argb, int dst_stride_argb, + const struct YuvConstants* yuvconstants, + int width, int height) { + int y; + void (*I422ToARGBRow)(const uint8* y_buf, + const uint8* u_buf, + const uint8* v_buf, + uint8* rgb_buf, + const struct YuvConstants* yuvconstants, + int width) = I422ToARGBRow_C; + if (!src_y || !src_u || !src_v || + !dst_argb || + width <= 0 || height == 0) { + return -1; + } + // Negative height means invert the image. + if (height < 0) { + height = -height; + dst_argb = dst_argb + (height - 1) * dst_stride_argb; + dst_stride_argb = -dst_stride_argb; + } + // Coalesce rows. + if (src_stride_y == width && + src_stride_u * 2 == width && + src_stride_v * 2 == width && + dst_stride_argb == width * 4) { + width *= height; + height = 1; + src_stride_y = src_stride_u = src_stride_v = dst_stride_argb = 0; + } +#if defined(HAS_I422TOARGBROW_SSSE3) + if (TestCpuFlag(kCpuHasSSSE3)) { + I422ToARGBRow = I422ToARGBRow_Any_SSSE3; + if (IS_ALIGNED(width, 8)) { + I422ToARGBRow = I422ToARGBRow_SSSE3; + } + } +#endif +#if defined(HAS_I422TOARGBROW_AVX2) + if (TestCpuFlag(kCpuHasAVX2)) { + I422ToARGBRow = I422ToARGBRow_Any_AVX2; + if (IS_ALIGNED(width, 16)) { + I422ToARGBRow = I422ToARGBRow_AVX2; + } + } +#endif +#if defined(HAS_I422TOARGBROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + I422ToARGBRow = I422ToARGBRow_Any_NEON; + if (IS_ALIGNED(width, 8)) { + I422ToARGBRow = I422ToARGBRow_NEON; + } + } +#endif +#if defined(HAS_I422TOARGBROW_DSPR2) + if (TestCpuFlag(kCpuHasDSPR2) && IS_ALIGNED(width, 4) && + IS_ALIGNED(src_y, 4) && IS_ALIGNED(src_stride_y, 4) && + IS_ALIGNED(src_u, 2) && IS_ALIGNED(src_stride_u, 2) && + IS_ALIGNED(src_v, 2) && IS_ALIGNED(src_stride_v, 2) && + IS_ALIGNED(dst_argb, 4) && IS_ALIGNED(dst_stride_argb, 4)) { + I422ToARGBRow = I422ToARGBRow_DSPR2; + } +#endif + + for (y = 0; y < height; ++y) { + I422ToARGBRow(src_y, src_u, src_v, dst_argb, yuvconstants, width); + dst_argb += dst_stride_argb; + src_y += src_stride_y; + src_u += src_stride_u; + src_v += src_stride_v; + } + return 0; +} + +// Convert I422 to ARGB. +LIBYUV_API +int I422ToARGB(const uint8* src_y, int src_stride_y, + const uint8* src_u, int src_stride_u, + const uint8* src_v, int src_stride_v, + uint8* dst_argb, int dst_stride_argb, + int width, int height) { + return I422ToARGBMatrix(src_y, src_stride_y, + src_u, src_stride_u, + src_v, src_stride_v, + dst_argb, dst_stride_argb, + &kYuvI601Constants, + width, height); +} + +// Convert I422 to ABGR. +LIBYUV_API +int I422ToABGR(const uint8* src_y, int src_stride_y, + const uint8* src_u, int src_stride_u, + const uint8* src_v, int src_stride_v, + uint8* dst_abgr, int dst_stride_abgr, + int width, int height) { + return I422ToARGBMatrix(src_y, src_stride_y, + src_v, src_stride_v, // Swap U and V + src_u, src_stride_u, + dst_abgr, dst_stride_abgr, + &kYvuI601Constants, // Use Yvu matrix + width, height); +} + +// Convert J422 to ARGB. +LIBYUV_API +int J422ToARGB(const uint8* src_y, int src_stride_y, + const uint8* src_u, int src_stride_u, + const uint8* src_v, int src_stride_v, + uint8* dst_argb, int dst_stride_argb, + int width, int height) { + return I422ToARGBMatrix(src_y, src_stride_y, + src_u, src_stride_u, + src_v, src_stride_v, + dst_argb, dst_stride_argb, + &kYuvJPEGConstants, + width, height); +} + +// Convert J422 to ABGR. +LIBYUV_API +int J422ToABGR(const uint8* src_y, int src_stride_y, + const uint8* src_u, int src_stride_u, + const uint8* src_v, int src_stride_v, + uint8* dst_abgr, int dst_stride_abgr, + int width, int height) { + return I422ToARGBMatrix(src_y, src_stride_y, + src_v, src_stride_v, // Swap U and V + src_u, src_stride_u, + dst_abgr, dst_stride_abgr, + &kYvuJPEGConstants, // Use Yvu matrix + width, height); +} + +// Convert H422 to ARGB. +LIBYUV_API +int H422ToARGB(const uint8* src_y, int src_stride_y, + const uint8* src_u, int src_stride_u, + const uint8* src_v, int src_stride_v, + uint8* dst_argb, int dst_stride_argb, + int width, int height) { + return I422ToARGBMatrix(src_y, src_stride_y, + src_u, src_stride_u, + src_v, src_stride_v, + dst_argb, dst_stride_argb, + &kYuvH709Constants, + width, height); +} + +// Convert H422 to ABGR. +LIBYUV_API +int H422ToABGR(const uint8* src_y, int src_stride_y, + const uint8* src_u, int src_stride_u, + const uint8* src_v, int src_stride_v, + uint8* dst_abgr, int dst_stride_abgr, + int width, int height) { + return I422ToARGBMatrix(src_y, src_stride_y, + src_v, src_stride_v, // Swap U and V + src_u, src_stride_u, + dst_abgr, dst_stride_abgr, + &kYvuH709Constants, // Use Yvu matrix + width, height); +} + +// Convert I444 to ARGB with matrix +static int I444ToARGBMatrix(const uint8* src_y, int src_stride_y, + const uint8* src_u, int src_stride_u, + const uint8* src_v, int src_stride_v, + uint8* dst_argb, int dst_stride_argb, + const struct YuvConstants* yuvconstants, + int width, int height) { + int y; + void (*I444ToARGBRow)(const uint8* y_buf, + const uint8* u_buf, + const uint8* v_buf, + uint8* rgb_buf, + const struct YuvConstants* yuvconstants, + int width) = I444ToARGBRow_C; + if (!src_y || !src_u || !src_v || + !dst_argb || + width <= 0 || height == 0) { + return -1; + } + // Negative height means invert the image. + if (height < 0) { + height = -height; + dst_argb = dst_argb + (height - 1) * dst_stride_argb; + dst_stride_argb = -dst_stride_argb; + } + // Coalesce rows. + if (src_stride_y == width && + src_stride_u == width && + src_stride_v == width && + dst_stride_argb == width * 4) { + width *= height; + height = 1; + src_stride_y = src_stride_u = src_stride_v = dst_stride_argb = 0; + } +#if defined(HAS_I444TOARGBROW_SSSE3) + if (TestCpuFlag(kCpuHasSSSE3)) { + I444ToARGBRow = I444ToARGBRow_Any_SSSE3; + if (IS_ALIGNED(width, 8)) { + I444ToARGBRow = I444ToARGBRow_SSSE3; + } + } +#endif +#if defined(HAS_I444TOARGBROW_AVX2) + if (TestCpuFlag(kCpuHasAVX2)) { + I444ToARGBRow = I444ToARGBRow_Any_AVX2; + if (IS_ALIGNED(width, 16)) { + I444ToARGBRow = I444ToARGBRow_AVX2; + } + } +#endif +#if defined(HAS_I444TOARGBROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + I444ToARGBRow = I444ToARGBRow_Any_NEON; + if (IS_ALIGNED(width, 8)) { + I444ToARGBRow = I444ToARGBRow_NEON; + } + } +#endif + + for (y = 0; y < height; ++y) { + I444ToARGBRow(src_y, src_u, src_v, dst_argb, yuvconstants, width); + dst_argb += dst_stride_argb; + src_y += src_stride_y; + src_u += src_stride_u; + src_v += src_stride_v; + } + return 0; +} + +// Convert I444 to ARGB. +LIBYUV_API +int I444ToARGB(const uint8* src_y, int src_stride_y, + const uint8* src_u, int src_stride_u, + const uint8* src_v, int src_stride_v, + uint8* dst_argb, int dst_stride_argb, + int width, int height) { + return I444ToARGBMatrix(src_y, src_stride_y, + src_u, src_stride_u, + src_v, src_stride_v, + dst_argb, dst_stride_argb, + &kYuvI601Constants, + width, height); +} + +// Convert I444 to ABGR. +LIBYUV_API +int I444ToABGR(const uint8* src_y, int src_stride_y, + const uint8* src_u, int src_stride_u, + const uint8* src_v, int src_stride_v, + uint8* dst_abgr, int dst_stride_abgr, + int width, int height) { + return I444ToARGBMatrix(src_y, src_stride_y, + src_v, src_stride_v, // Swap U and V + src_u, src_stride_u, + dst_abgr, dst_stride_abgr, + &kYvuI601Constants, // Use Yvu matrix + width, height); +} + +// Convert J444 to ARGB. +LIBYUV_API +int J444ToARGB(const uint8* src_y, int src_stride_y, + const uint8* src_u, int src_stride_u, + const uint8* src_v, int src_stride_v, + uint8* dst_argb, int dst_stride_argb, + int width, int height) { + return I444ToARGBMatrix(src_y, src_stride_y, + src_u, src_stride_u, + src_v, src_stride_v, + dst_argb, dst_stride_argb, + &kYuvJPEGConstants, + width, height); +} + +// Convert I411 to ARGB. +LIBYUV_API +int I411ToARGB(const uint8* src_y, int src_stride_y, + const uint8* src_u, int src_stride_u, + const uint8* src_v, int src_stride_v, + uint8* dst_argb, int dst_stride_argb, + int width, int height) { + int y; + void (*I411ToARGBRow)(const uint8* y_buf, + const uint8* u_buf, + const uint8* v_buf, + uint8* rgb_buf, + const struct YuvConstants* yuvconstants, + int width) = I411ToARGBRow_C; + if (!src_y || !src_u || !src_v || + !dst_argb || + width <= 0 || height == 0) { + return -1; + } + // Negative height means invert the image. + if (height < 0) { + height = -height; + dst_argb = dst_argb + (height - 1) * dst_stride_argb; + dst_stride_argb = -dst_stride_argb; + } + // Coalesce rows. + if (src_stride_y == width && + src_stride_u * 4 == width && + src_stride_v * 4 == width && + dst_stride_argb == width * 4) { + width *= height; + height = 1; + src_stride_y = src_stride_u = src_stride_v = dst_stride_argb = 0; + } +#if defined(HAS_I411TOARGBROW_SSSE3) + if (TestCpuFlag(kCpuHasSSSE3)) { + I411ToARGBRow = I411ToARGBRow_Any_SSSE3; + if (IS_ALIGNED(width, 8)) { + I411ToARGBRow = I411ToARGBRow_SSSE3; + } + } +#endif +#if defined(HAS_I411TOARGBROW_AVX2) + if (TestCpuFlag(kCpuHasAVX2)) { + I411ToARGBRow = I411ToARGBRow_Any_AVX2; + if (IS_ALIGNED(width, 16)) { + I411ToARGBRow = I411ToARGBRow_AVX2; + } + } +#endif +#if defined(HAS_I411TOARGBROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + I411ToARGBRow = I411ToARGBRow_Any_NEON; + if (IS_ALIGNED(width, 8)) { + I411ToARGBRow = I411ToARGBRow_NEON; + } + } +#endif + + for (y = 0; y < height; ++y) { + I411ToARGBRow(src_y, src_u, src_v, dst_argb, &kYuvI601Constants, width); + dst_argb += dst_stride_argb; + src_y += src_stride_y; + src_u += src_stride_u; + src_v += src_stride_v; + } + return 0; +} + +// Convert I420 with Alpha to preattenuated ARGB. +static int I420AlphaToARGBMatrix(const uint8* src_y, int src_stride_y, + const uint8* src_u, int src_stride_u, + const uint8* src_v, int src_stride_v, + const uint8* src_a, int src_stride_a, + uint8* dst_argb, int dst_stride_argb, + const struct YuvConstants* yuvconstants, + int width, int height, int attenuate) { + int y; + void (*I422AlphaToARGBRow)(const uint8* y_buf, + const uint8* u_buf, + const uint8* v_buf, + const uint8* a_buf, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width) = I422AlphaToARGBRow_C; + void (*ARGBAttenuateRow)(const uint8* src_argb, uint8* dst_argb, + int width) = ARGBAttenuateRow_C; + if (!src_y || !src_u || !src_v || !dst_argb || + width <= 0 || height == 0) { + return -1; + } + // Negative height means invert the image. + if (height < 0) { + height = -height; + dst_argb = dst_argb + (height - 1) * dst_stride_argb; + dst_stride_argb = -dst_stride_argb; + } +#if defined(HAS_I422ALPHATOARGBROW_SSSE3) + if (TestCpuFlag(kCpuHasSSSE3)) { + I422AlphaToARGBRow = I422AlphaToARGBRow_Any_SSSE3; + if (IS_ALIGNED(width, 8)) { + I422AlphaToARGBRow = I422AlphaToARGBRow_SSSE3; + } + } +#endif +#if defined(HAS_I422ALPHATOARGBROW_AVX2) + if (TestCpuFlag(kCpuHasAVX2)) { + I422AlphaToARGBRow = I422AlphaToARGBRow_Any_AVX2; + if (IS_ALIGNED(width, 16)) { + I422AlphaToARGBRow = I422AlphaToARGBRow_AVX2; + } + } +#endif +#if defined(HAS_I422ALPHATOARGBROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + I422AlphaToARGBRow = I422AlphaToARGBRow_Any_NEON; + if (IS_ALIGNED(width, 8)) { + I422AlphaToARGBRow = I422AlphaToARGBRow_NEON; + } + } +#endif +#if defined(HAS_I422ALPHATOARGBROW_DSPR2) + if (TestCpuFlag(kCpuHasDSPR2) && IS_ALIGNED(width, 4) && + IS_ALIGNED(src_y, 4) && IS_ALIGNED(src_stride_y, 4) && + IS_ALIGNED(src_u, 2) && IS_ALIGNED(src_stride_u, 2) && + IS_ALIGNED(src_v, 2) && IS_ALIGNED(src_stride_v, 2) && + IS_ALIGNED(dst_argb, 4) && IS_ALIGNED(dst_stride_argb, 4)) { + I422AlphaToARGBRow = I422AlphaToARGBRow_DSPR2; + } +#endif +#if defined(HAS_ARGBATTENUATEROW_SSSE3) + if (TestCpuFlag(kCpuHasSSSE3)) { + ARGBAttenuateRow = ARGBAttenuateRow_Any_SSSE3; + if (IS_ALIGNED(width, 4)) { + ARGBAttenuateRow = ARGBAttenuateRow_SSSE3; + } + } +#endif +#if defined(HAS_ARGBATTENUATEROW_AVX2) + if (TestCpuFlag(kCpuHasAVX2)) { + ARGBAttenuateRow = ARGBAttenuateRow_Any_AVX2; + if (IS_ALIGNED(width, 8)) { + ARGBAttenuateRow = ARGBAttenuateRow_AVX2; + } + } +#endif +#if defined(HAS_ARGBATTENUATEROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + ARGBAttenuateRow = ARGBAttenuateRow_Any_NEON; + if (IS_ALIGNED(width, 8)) { + ARGBAttenuateRow = ARGBAttenuateRow_NEON; + } + } +#endif + + for (y = 0; y < height; ++y) { + I422AlphaToARGBRow(src_y, src_u, src_v, src_a, dst_argb, yuvconstants, + width); + if (attenuate) { + ARGBAttenuateRow(dst_argb, dst_argb, width); + } + dst_argb += dst_stride_argb; + src_a += src_stride_a; + src_y += src_stride_y; + if (y & 1) { + src_u += src_stride_u; + src_v += src_stride_v; + } + } + return 0; +} + +// Convert I420 with Alpha to ARGB. +LIBYUV_API +int I420AlphaToARGB(const uint8* src_y, int src_stride_y, + const uint8* src_u, int src_stride_u, + const uint8* src_v, int src_stride_v, + const uint8* src_a, int src_stride_a, + uint8* dst_argb, int dst_stride_argb, + int width, int height, int attenuate) { + return I420AlphaToARGBMatrix(src_y, src_stride_y, + src_u, src_stride_u, + src_v, src_stride_v, + src_a, src_stride_a, + dst_argb, dst_stride_argb, + &kYuvI601Constants, + width, height, attenuate); +} + +// Convert I420 with Alpha to ABGR. +LIBYUV_API +int I420AlphaToABGR(const uint8* src_y, int src_stride_y, + const uint8* src_u, int src_stride_u, + const uint8* src_v, int src_stride_v, + const uint8* src_a, int src_stride_a, + uint8* dst_abgr, int dst_stride_abgr, + int width, int height, int attenuate) { + return I420AlphaToARGBMatrix(src_y, src_stride_y, + src_v, src_stride_v, // Swap U and V + src_u, src_stride_u, + src_a, src_stride_a, + dst_abgr, dst_stride_abgr, + &kYvuI601Constants, // Use Yvu matrix + width, height, attenuate); +} + +// Convert I400 to ARGB. +LIBYUV_API +int I400ToARGB(const uint8* src_y, int src_stride_y, + uint8* dst_argb, int dst_stride_argb, + int width, int height) { + int y; + void (*I400ToARGBRow)(const uint8* y_buf, + uint8* rgb_buf, + int width) = I400ToARGBRow_C; + if (!src_y || !dst_argb || + width <= 0 || height == 0) { + return -1; + } + // Negative height means invert the image. + if (height < 0) { + height = -height; + dst_argb = dst_argb + (height - 1) * dst_stride_argb; + dst_stride_argb = -dst_stride_argb; + } + // Coalesce rows. + if (src_stride_y == width && + dst_stride_argb == width * 4) { + width *= height; + height = 1; + src_stride_y = dst_stride_argb = 0; + } +#if defined(HAS_I400TOARGBROW_SSE2) + if (TestCpuFlag(kCpuHasSSE2)) { + I400ToARGBRow = I400ToARGBRow_Any_SSE2; + if (IS_ALIGNED(width, 8)) { + I400ToARGBRow = I400ToARGBRow_SSE2; + } + } +#endif +#if defined(HAS_I400TOARGBROW_AVX2) + if (TestCpuFlag(kCpuHasAVX2)) { + I400ToARGBRow = I400ToARGBRow_Any_AVX2; + if (IS_ALIGNED(width, 16)) { + I400ToARGBRow = I400ToARGBRow_AVX2; + } + } +#endif +#if defined(HAS_I400TOARGBROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + I400ToARGBRow = I400ToARGBRow_Any_NEON; + if (IS_ALIGNED(width, 8)) { + I400ToARGBRow = I400ToARGBRow_NEON; + } + } +#endif + + for (y = 0; y < height; ++y) { + I400ToARGBRow(src_y, dst_argb, width); + dst_argb += dst_stride_argb; + src_y += src_stride_y; + } + return 0; +} + +// Convert J400 to ARGB. +LIBYUV_API +int J400ToARGB(const uint8* src_y, int src_stride_y, + uint8* dst_argb, int dst_stride_argb, + int width, int height) { + int y; + void (*J400ToARGBRow)(const uint8* src_y, uint8* dst_argb, int width) = + J400ToARGBRow_C; + if (!src_y || !dst_argb || + width <= 0 || height == 0) { + return -1; + } + // Negative height means invert the image. + if (height < 0) { + height = -height; + src_y = src_y + (height - 1) * src_stride_y; + src_stride_y = -src_stride_y; + } + // Coalesce rows. + if (src_stride_y == width && + dst_stride_argb == width * 4) { + width *= height; + height = 1; + src_stride_y = dst_stride_argb = 0; + } +#if defined(HAS_J400TOARGBROW_SSE2) + if (TestCpuFlag(kCpuHasSSE2)) { + J400ToARGBRow = J400ToARGBRow_Any_SSE2; + if (IS_ALIGNED(width, 8)) { + J400ToARGBRow = J400ToARGBRow_SSE2; + } + } +#endif +#if defined(HAS_J400TOARGBROW_AVX2) + if (TestCpuFlag(kCpuHasAVX2)) { + J400ToARGBRow = J400ToARGBRow_Any_AVX2; + if (IS_ALIGNED(width, 16)) { + J400ToARGBRow = J400ToARGBRow_AVX2; + } + } +#endif +#if defined(HAS_J400TOARGBROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + J400ToARGBRow = J400ToARGBRow_Any_NEON; + if (IS_ALIGNED(width, 8)) { + J400ToARGBRow = J400ToARGBRow_NEON; + } + } +#endif + for (y = 0; y < height; ++y) { + J400ToARGBRow(src_y, dst_argb, width); + src_y += src_stride_y; + dst_argb += dst_stride_argb; + } + return 0; +} + +// Shuffle table for converting BGRA to ARGB. +static uvec8 kShuffleMaskBGRAToARGB = { + 3u, 2u, 1u, 0u, 7u, 6u, 5u, 4u, 11u, 10u, 9u, 8u, 15u, 14u, 13u, 12u +}; + +// Shuffle table for converting ABGR to ARGB. +static uvec8 kShuffleMaskABGRToARGB = { + 2u, 1u, 0u, 3u, 6u, 5u, 4u, 7u, 10u, 9u, 8u, 11u, 14u, 13u, 12u, 15u +}; + +// Shuffle table for converting RGBA to ARGB. +static uvec8 kShuffleMaskRGBAToARGB = { + 1u, 2u, 3u, 0u, 5u, 6u, 7u, 4u, 9u, 10u, 11u, 8u, 13u, 14u, 15u, 12u +}; + +// Convert BGRA to ARGB. +LIBYUV_API +int BGRAToARGB(const uint8* src_bgra, int src_stride_bgra, + uint8* dst_argb, int dst_stride_argb, + int width, int height) { + return ARGBShuffle(src_bgra, src_stride_bgra, + dst_argb, dst_stride_argb, + (const uint8*)(&kShuffleMaskBGRAToARGB), + width, height); +} + +// Convert ARGB to BGRA (same as BGRAToARGB). +LIBYUV_API +int ARGBToBGRA(const uint8* src_bgra, int src_stride_bgra, + uint8* dst_argb, int dst_stride_argb, + int width, int height) { + return ARGBShuffle(src_bgra, src_stride_bgra, + dst_argb, dst_stride_argb, + (const uint8*)(&kShuffleMaskBGRAToARGB), + width, height); +} + +// Convert ABGR to ARGB. +LIBYUV_API +int ABGRToARGB(const uint8* src_abgr, int src_stride_abgr, + uint8* dst_argb, int dst_stride_argb, + int width, int height) { + return ARGBShuffle(src_abgr, src_stride_abgr, + dst_argb, dst_stride_argb, + (const uint8*)(&kShuffleMaskABGRToARGB), + width, height); +} + +// Convert ARGB to ABGR to (same as ABGRToARGB). +LIBYUV_API +int ARGBToABGR(const uint8* src_abgr, int src_stride_abgr, + uint8* dst_argb, int dst_stride_argb, + int width, int height) { + return ARGBShuffle(src_abgr, src_stride_abgr, + dst_argb, dst_stride_argb, + (const uint8*)(&kShuffleMaskABGRToARGB), + width, height); +} + +// Convert RGBA to ARGB. +LIBYUV_API +int RGBAToARGB(const uint8* src_rgba, int src_stride_rgba, + uint8* dst_argb, int dst_stride_argb, + int width, int height) { + return ARGBShuffle(src_rgba, src_stride_rgba, + dst_argb, dst_stride_argb, + (const uint8*)(&kShuffleMaskRGBAToARGB), + width, height); +} + +// Convert RGB24 to ARGB. +LIBYUV_API +int RGB24ToARGB(const uint8* src_rgb24, int src_stride_rgb24, + uint8* dst_argb, int dst_stride_argb, + int width, int height) { + int y; + void (*RGB24ToARGBRow)(const uint8* src_rgb, uint8* dst_argb, int width) = + RGB24ToARGBRow_C; + if (!src_rgb24 || !dst_argb || + width <= 0 || height == 0) { + return -1; + } + // Negative height means invert the image. + if (height < 0) { + height = -height; + src_rgb24 = src_rgb24 + (height - 1) * src_stride_rgb24; + src_stride_rgb24 = -src_stride_rgb24; + } + // Coalesce rows. + if (src_stride_rgb24 == width * 3 && + dst_stride_argb == width * 4) { + width *= height; + height = 1; + src_stride_rgb24 = dst_stride_argb = 0; + } +#if defined(HAS_RGB24TOARGBROW_SSSE3) + if (TestCpuFlag(kCpuHasSSSE3)) { + RGB24ToARGBRow = RGB24ToARGBRow_Any_SSSE3; + if (IS_ALIGNED(width, 16)) { + RGB24ToARGBRow = RGB24ToARGBRow_SSSE3; + } + } +#endif +#if defined(HAS_RGB24TOARGBROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + RGB24ToARGBRow = RGB24ToARGBRow_Any_NEON; + if (IS_ALIGNED(width, 8)) { + RGB24ToARGBRow = RGB24ToARGBRow_NEON; + } + } +#endif + + for (y = 0; y < height; ++y) { + RGB24ToARGBRow(src_rgb24, dst_argb, width); + src_rgb24 += src_stride_rgb24; + dst_argb += dst_stride_argb; + } + return 0; +} + +// Convert RAW to ARGB. +LIBYUV_API +int RAWToARGB(const uint8* src_raw, int src_stride_raw, + uint8* dst_argb, int dst_stride_argb, + int width, int height) { + int y; + void (*RAWToARGBRow)(const uint8* src_rgb, uint8* dst_argb, int width) = + RAWToARGBRow_C; + if (!src_raw || !dst_argb || + width <= 0 || height == 0) { + return -1; + } + // Negative height means invert the image. + if (height < 0) { + height = -height; + src_raw = src_raw + (height - 1) * src_stride_raw; + src_stride_raw = -src_stride_raw; + } + // Coalesce rows. + if (src_stride_raw == width * 3 && + dst_stride_argb == width * 4) { + width *= height; + height = 1; + src_stride_raw = dst_stride_argb = 0; + } +#if defined(HAS_RAWTOARGBROW_SSSE3) + if (TestCpuFlag(kCpuHasSSSE3)) { + RAWToARGBRow = RAWToARGBRow_Any_SSSE3; + if (IS_ALIGNED(width, 16)) { + RAWToARGBRow = RAWToARGBRow_SSSE3; + } + } +#endif +#if defined(HAS_RAWTOARGBROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + RAWToARGBRow = RAWToARGBRow_Any_NEON; + if (IS_ALIGNED(width, 8)) { + RAWToARGBRow = RAWToARGBRow_NEON; + } + } +#endif + + for (y = 0; y < height; ++y) { + RAWToARGBRow(src_raw, dst_argb, width); + src_raw += src_stride_raw; + dst_argb += dst_stride_argb; + } + return 0; +} + +// Convert RGB565 to ARGB. +LIBYUV_API +int RGB565ToARGB(const uint8* src_rgb565, int src_stride_rgb565, + uint8* dst_argb, int dst_stride_argb, + int width, int height) { + int y; + void (*RGB565ToARGBRow)(const uint8* src_rgb565, uint8* dst_argb, int width) = + RGB565ToARGBRow_C; + if (!src_rgb565 || !dst_argb || + width <= 0 || height == 0) { + return -1; + } + // Negative height means invert the image. + if (height < 0) { + height = -height; + src_rgb565 = src_rgb565 + (height - 1) * src_stride_rgb565; + src_stride_rgb565 = -src_stride_rgb565; + } + // Coalesce rows. + if (src_stride_rgb565 == width * 2 && + dst_stride_argb == width * 4) { + width *= height; + height = 1; + src_stride_rgb565 = dst_stride_argb = 0; + } +#if defined(HAS_RGB565TOARGBROW_SSE2) + if (TestCpuFlag(kCpuHasSSE2)) { + RGB565ToARGBRow = RGB565ToARGBRow_Any_SSE2; + if (IS_ALIGNED(width, 8)) { + RGB565ToARGBRow = RGB565ToARGBRow_SSE2; + } + } +#endif +#if defined(HAS_RGB565TOARGBROW_AVX2) + if (TestCpuFlag(kCpuHasAVX2)) { + RGB565ToARGBRow = RGB565ToARGBRow_Any_AVX2; + if (IS_ALIGNED(width, 16)) { + RGB565ToARGBRow = RGB565ToARGBRow_AVX2; + } + } +#endif +#if defined(HAS_RGB565TOARGBROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + RGB565ToARGBRow = RGB565ToARGBRow_Any_NEON; + if (IS_ALIGNED(width, 8)) { + RGB565ToARGBRow = RGB565ToARGBRow_NEON; + } + } +#endif + + for (y = 0; y < height; ++y) { + RGB565ToARGBRow(src_rgb565, dst_argb, width); + src_rgb565 += src_stride_rgb565; + dst_argb += dst_stride_argb; + } + return 0; +} + +// Convert ARGB1555 to ARGB. +LIBYUV_API +int ARGB1555ToARGB(const uint8* src_argb1555, int src_stride_argb1555, + uint8* dst_argb, int dst_stride_argb, + int width, int height) { + int y; + void (*ARGB1555ToARGBRow)(const uint8* src_argb1555, uint8* dst_argb, + int width) = ARGB1555ToARGBRow_C; + if (!src_argb1555 || !dst_argb || + width <= 0 || height == 0) { + return -1; + } + // Negative height means invert the image. + if (height < 0) { + height = -height; + src_argb1555 = src_argb1555 + (height - 1) * src_stride_argb1555; + src_stride_argb1555 = -src_stride_argb1555; + } + // Coalesce rows. + if (src_stride_argb1555 == width * 2 && + dst_stride_argb == width * 4) { + width *= height; + height = 1; + src_stride_argb1555 = dst_stride_argb = 0; + } +#if defined(HAS_ARGB1555TOARGBROW_SSE2) + if (TestCpuFlag(kCpuHasSSE2)) { + ARGB1555ToARGBRow = ARGB1555ToARGBRow_Any_SSE2; + if (IS_ALIGNED(width, 8)) { + ARGB1555ToARGBRow = ARGB1555ToARGBRow_SSE2; + } + } +#endif +#if defined(HAS_ARGB1555TOARGBROW_AVX2) + if (TestCpuFlag(kCpuHasAVX2)) { + ARGB1555ToARGBRow = ARGB1555ToARGBRow_Any_AVX2; + if (IS_ALIGNED(width, 16)) { + ARGB1555ToARGBRow = ARGB1555ToARGBRow_AVX2; + } + } +#endif +#if defined(HAS_ARGB1555TOARGBROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + ARGB1555ToARGBRow = ARGB1555ToARGBRow_Any_NEON; + if (IS_ALIGNED(width, 8)) { + ARGB1555ToARGBRow = ARGB1555ToARGBRow_NEON; + } + } +#endif + + for (y = 0; y < height; ++y) { + ARGB1555ToARGBRow(src_argb1555, dst_argb, width); + src_argb1555 += src_stride_argb1555; + dst_argb += dst_stride_argb; + } + return 0; +} + +// Convert ARGB4444 to ARGB. +LIBYUV_API +int ARGB4444ToARGB(const uint8* src_argb4444, int src_stride_argb4444, + uint8* dst_argb, int dst_stride_argb, + int width, int height) { + int y; + void (*ARGB4444ToARGBRow)(const uint8* src_argb4444, uint8* dst_argb, + int width) = ARGB4444ToARGBRow_C; + if (!src_argb4444 || !dst_argb || + width <= 0 || height == 0) { + return -1; + } + // Negative height means invert the image. + if (height < 0) { + height = -height; + src_argb4444 = src_argb4444 + (height - 1) * src_stride_argb4444; + src_stride_argb4444 = -src_stride_argb4444; + } + // Coalesce rows. + if (src_stride_argb4444 == width * 2 && + dst_stride_argb == width * 4) { + width *= height; + height = 1; + src_stride_argb4444 = dst_stride_argb = 0; + } +#if defined(HAS_ARGB4444TOARGBROW_SSE2) + if (TestCpuFlag(kCpuHasSSE2)) { + ARGB4444ToARGBRow = ARGB4444ToARGBRow_Any_SSE2; + if (IS_ALIGNED(width, 8)) { + ARGB4444ToARGBRow = ARGB4444ToARGBRow_SSE2; + } + } +#endif +#if defined(HAS_ARGB4444TOARGBROW_AVX2) + if (TestCpuFlag(kCpuHasAVX2)) { + ARGB4444ToARGBRow = ARGB4444ToARGBRow_Any_AVX2; + if (IS_ALIGNED(width, 16)) { + ARGB4444ToARGBRow = ARGB4444ToARGBRow_AVX2; + } + } +#endif +#if defined(HAS_ARGB4444TOARGBROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + ARGB4444ToARGBRow = ARGB4444ToARGBRow_Any_NEON; + if (IS_ALIGNED(width, 8)) { + ARGB4444ToARGBRow = ARGB4444ToARGBRow_NEON; + } + } +#endif + + for (y = 0; y < height; ++y) { + ARGB4444ToARGBRow(src_argb4444, dst_argb, width); + src_argb4444 += src_stride_argb4444; + dst_argb += dst_stride_argb; + } + return 0; +} + +// Convert NV12 to ARGB. +LIBYUV_API +int NV12ToARGB(const uint8* src_y, int src_stride_y, + const uint8* src_uv, int src_stride_uv, + uint8* dst_argb, int dst_stride_argb, + int width, int height) { + int y; + void (*NV12ToARGBRow)(const uint8* y_buf, + const uint8* uv_buf, + uint8* rgb_buf, + const struct YuvConstants* yuvconstants, + int width) = NV12ToARGBRow_C; + if (!src_y || !src_uv || !dst_argb || + width <= 0 || height == 0) { + return -1; + } + // Negative height means invert the image. + if (height < 0) { + height = -height; + dst_argb = dst_argb + (height - 1) * dst_stride_argb; + dst_stride_argb = -dst_stride_argb; + } +#if defined(HAS_NV12TOARGBROW_SSSE3) + if (TestCpuFlag(kCpuHasSSSE3)) { + NV12ToARGBRow = NV12ToARGBRow_Any_SSSE3; + if (IS_ALIGNED(width, 8)) { + NV12ToARGBRow = NV12ToARGBRow_SSSE3; + } + } +#endif +#if defined(HAS_NV12TOARGBROW_AVX2) + if (TestCpuFlag(kCpuHasAVX2)) { + NV12ToARGBRow = NV12ToARGBRow_Any_AVX2; + if (IS_ALIGNED(width, 16)) { + NV12ToARGBRow = NV12ToARGBRow_AVX2; + } + } +#endif +#if defined(HAS_NV12TOARGBROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + NV12ToARGBRow = NV12ToARGBRow_Any_NEON; + if (IS_ALIGNED(width, 8)) { + NV12ToARGBRow = NV12ToARGBRow_NEON; + } + } +#endif + + for (y = 0; y < height; ++y) { + NV12ToARGBRow(src_y, src_uv, dst_argb, &kYuvI601Constants, width); + dst_argb += dst_stride_argb; + src_y += src_stride_y; + if (y & 1) { + src_uv += src_stride_uv; + } + } + return 0; +} + +// Convert NV21 to ARGB. +LIBYUV_API +int NV21ToARGB(const uint8* src_y, int src_stride_y, + const uint8* src_uv, int src_stride_uv, + uint8* dst_argb, int dst_stride_argb, + int width, int height) { + int y; + void (*NV21ToARGBRow)(const uint8* y_buf, + const uint8* uv_buf, + uint8* rgb_buf, + const struct YuvConstants* yuvconstants, + int width) = NV21ToARGBRow_C; + if (!src_y || !src_uv || !dst_argb || + width <= 0 || height == 0) { + return -1; + } + // Negative height means invert the image. + if (height < 0) { + height = -height; + dst_argb = dst_argb + (height - 1) * dst_stride_argb; + dst_stride_argb = -dst_stride_argb; + } +#if defined(HAS_NV21TOARGBROW_SSSE3) + if (TestCpuFlag(kCpuHasSSSE3)) { + NV21ToARGBRow = NV21ToARGBRow_Any_SSSE3; + if (IS_ALIGNED(width, 8)) { + NV21ToARGBRow = NV21ToARGBRow_SSSE3; + } + } +#endif +#if defined(HAS_NV21TOARGBROW_AVX2) + if (TestCpuFlag(kCpuHasAVX2)) { + NV21ToARGBRow = NV21ToARGBRow_Any_AVX2; + if (IS_ALIGNED(width, 16)) { + NV21ToARGBRow = NV21ToARGBRow_AVX2; + } + } +#endif +#if defined(HAS_NV21TOARGBROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + NV21ToARGBRow = NV21ToARGBRow_Any_NEON; + if (IS_ALIGNED(width, 8)) { + NV21ToARGBRow = NV21ToARGBRow_NEON; + } + } +#endif + + for (y = 0; y < height; ++y) { + NV21ToARGBRow(src_y, src_uv, dst_argb, &kYuvI601Constants, width); + dst_argb += dst_stride_argb; + src_y += src_stride_y; + if (y & 1) { + src_uv += src_stride_uv; + } + } + return 0; +} + +// Convert M420 to ARGB. +LIBYUV_API +int M420ToARGB(const uint8* src_m420, int src_stride_m420, + uint8* dst_argb, int dst_stride_argb, + int width, int height) { + int y; + void (*NV12ToARGBRow)(const uint8* y_buf, + const uint8* uv_buf, + uint8* rgb_buf, + const struct YuvConstants* yuvconstants, + int width) = NV12ToARGBRow_C; + if (!src_m420 || !dst_argb || + width <= 0 || height == 0) { + return -1; + } + // Negative height means invert the image. + if (height < 0) { + height = -height; + dst_argb = dst_argb + (height - 1) * dst_stride_argb; + dst_stride_argb = -dst_stride_argb; + } +#if defined(HAS_NV12TOARGBROW_SSSE3) + if (TestCpuFlag(kCpuHasSSSE3)) { + NV12ToARGBRow = NV12ToARGBRow_Any_SSSE3; + if (IS_ALIGNED(width, 8)) { + NV12ToARGBRow = NV12ToARGBRow_SSSE3; + } + } +#endif +#if defined(HAS_NV12TOARGBROW_AVX2) + if (TestCpuFlag(kCpuHasAVX2)) { + NV12ToARGBRow = NV12ToARGBRow_Any_AVX2; + if (IS_ALIGNED(width, 16)) { + NV12ToARGBRow = NV12ToARGBRow_AVX2; + } + } +#endif +#if defined(HAS_NV12TOARGBROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + NV12ToARGBRow = NV12ToARGBRow_Any_NEON; + if (IS_ALIGNED(width, 8)) { + NV12ToARGBRow = NV12ToARGBRow_NEON; + } + } +#endif + + for (y = 0; y < height - 1; y += 2) { + NV12ToARGBRow(src_m420, src_m420 + src_stride_m420 * 2, dst_argb, + &kYuvI601Constants, width); + NV12ToARGBRow(src_m420 + src_stride_m420, src_m420 + src_stride_m420 * 2, + dst_argb + dst_stride_argb, &kYuvI601Constants, width); + dst_argb += dst_stride_argb * 2; + src_m420 += src_stride_m420 * 3; + } + if (height & 1) { + NV12ToARGBRow(src_m420, src_m420 + src_stride_m420 * 2, dst_argb, + &kYuvI601Constants, width); + } + return 0; +} + +// Convert YUY2 to ARGB. +LIBYUV_API +int YUY2ToARGB(const uint8* src_yuy2, int src_stride_yuy2, + uint8* dst_argb, int dst_stride_argb, + int width, int height) { + int y; + void (*YUY2ToARGBRow)(const uint8* src_yuy2, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width) = + YUY2ToARGBRow_C; + if (!src_yuy2 || !dst_argb || + width <= 0 || height == 0) { + return -1; + } + // Negative height means invert the image. + if (height < 0) { + height = -height; + src_yuy2 = src_yuy2 + (height - 1) * src_stride_yuy2; + src_stride_yuy2 = -src_stride_yuy2; + } + // Coalesce rows. + if (src_stride_yuy2 == width * 2 && + dst_stride_argb == width * 4) { + width *= height; + height = 1; + src_stride_yuy2 = dst_stride_argb = 0; + } +#if defined(HAS_YUY2TOARGBROW_SSSE3) + if (TestCpuFlag(kCpuHasSSSE3)) { + YUY2ToARGBRow = YUY2ToARGBRow_Any_SSSE3; + if (IS_ALIGNED(width, 16)) { + YUY2ToARGBRow = YUY2ToARGBRow_SSSE3; + } + } +#endif +#if defined(HAS_YUY2TOARGBROW_AVX2) + if (TestCpuFlag(kCpuHasAVX2)) { + YUY2ToARGBRow = YUY2ToARGBRow_Any_AVX2; + if (IS_ALIGNED(width, 32)) { + YUY2ToARGBRow = YUY2ToARGBRow_AVX2; + } + } +#endif +#if defined(HAS_YUY2TOARGBROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + YUY2ToARGBRow = YUY2ToARGBRow_Any_NEON; + if (IS_ALIGNED(width, 8)) { + YUY2ToARGBRow = YUY2ToARGBRow_NEON; + } + } +#endif + for (y = 0; y < height; ++y) { + YUY2ToARGBRow(src_yuy2, dst_argb, &kYuvI601Constants, width); + src_yuy2 += src_stride_yuy2; + dst_argb += dst_stride_argb; + } + return 0; +} + +// Convert UYVY to ARGB. +LIBYUV_API +int UYVYToARGB(const uint8* src_uyvy, int src_stride_uyvy, + uint8* dst_argb, int dst_stride_argb, + int width, int height) { + int y; + void (*UYVYToARGBRow)(const uint8* src_uyvy, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width) = + UYVYToARGBRow_C; + if (!src_uyvy || !dst_argb || + width <= 0 || height == 0) { + return -1; + } + // Negative height means invert the image. + if (height < 0) { + height = -height; + src_uyvy = src_uyvy + (height - 1) * src_stride_uyvy; + src_stride_uyvy = -src_stride_uyvy; + } + // Coalesce rows. + if (src_stride_uyvy == width * 2 && + dst_stride_argb == width * 4) { + width *= height; + height = 1; + src_stride_uyvy = dst_stride_argb = 0; + } +#if defined(HAS_UYVYTOARGBROW_SSSE3) + if (TestCpuFlag(kCpuHasSSSE3)) { + UYVYToARGBRow = UYVYToARGBRow_Any_SSSE3; + if (IS_ALIGNED(width, 16)) { + UYVYToARGBRow = UYVYToARGBRow_SSSE3; + } + } +#endif +#if defined(HAS_UYVYTOARGBROW_AVX2) + if (TestCpuFlag(kCpuHasAVX2)) { + UYVYToARGBRow = UYVYToARGBRow_Any_AVX2; + if (IS_ALIGNED(width, 32)) { + UYVYToARGBRow = UYVYToARGBRow_AVX2; + } + } +#endif +#if defined(HAS_UYVYTOARGBROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + UYVYToARGBRow = UYVYToARGBRow_Any_NEON; + if (IS_ALIGNED(width, 8)) { + UYVYToARGBRow = UYVYToARGBRow_NEON; + } + } +#endif + for (y = 0; y < height; ++y) { + UYVYToARGBRow(src_uyvy, dst_argb, &kYuvI601Constants, width); + src_uyvy += src_stride_uyvy; + dst_argb += dst_stride_argb; + } + return 0; +} + +#ifdef __cplusplus +} // extern "C" +} // namespace libyuv +#endif diff --git a/third_party/libyuv/source/convert_from.cc b/third_party/libyuv/source/convert_from.cc new file mode 100644 index 0000000..3b2dca8 --- /dev/null +++ b/third_party/libyuv/source/convert_from.cc @@ -0,0 +1,1116 @@ +/* + * Copyright 2012 The LibYuv Project Authors. All rights reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "libyuv/convert_from.h" + +#include "libyuv/basic_types.h" +#include "libyuv/convert.h" // For I420Copy +#include "libyuv/cpu_id.h" +#include "libyuv/planar_functions.h" +#include "libyuv/rotate.h" +#include "libyuv/scale.h" // For ScalePlane() +#include "libyuv/video_common.h" +#include "libyuv/row.h" + +#ifdef __cplusplus +namespace libyuv { +extern "C" { +#endif + +#define SUBSAMPLE(v, a, s) (v < 0) ? (-((-v + a) >> s)) : ((v + a) >> s) +static __inline int Abs(int v) { + return v >= 0 ? v : -v; +} + +// I420 To any I4xx YUV format with mirroring. +static int I420ToI4xx(const uint8* src_y, int src_stride_y, + const uint8* src_u, int src_stride_u, + const uint8* src_v, int src_stride_v, + uint8* dst_y, int dst_stride_y, + uint8* dst_u, int dst_stride_u, + uint8* dst_v, int dst_stride_v, + int src_y_width, int src_y_height, + int dst_uv_width, int dst_uv_height) { + const int dst_y_width = Abs(src_y_width); + const int dst_y_height = Abs(src_y_height); + const int src_uv_width = SUBSAMPLE(src_y_width, 1, 1); + const int src_uv_height = SUBSAMPLE(src_y_height, 1, 1); + if (src_y_width == 0 || src_y_height == 0 || + dst_uv_width <= 0 || dst_uv_height <= 0) { + return -1; + } + if (dst_y) { + ScalePlane(src_y, src_stride_y, src_y_width, src_y_height, + dst_y, dst_stride_y, dst_y_width, dst_y_height, + kFilterBilinear); + } + ScalePlane(src_u, src_stride_u, src_uv_width, src_uv_height, + dst_u, dst_stride_u, dst_uv_width, dst_uv_height, + kFilterBilinear); + ScalePlane(src_v, src_stride_v, src_uv_width, src_uv_height, + dst_v, dst_stride_v, dst_uv_width, dst_uv_height, + kFilterBilinear); + return 0; +} + +// 420 chroma is 1/2 width, 1/2 height +// 422 chroma is 1/2 width, 1x height +LIBYUV_API +int I420ToI422(const uint8* src_y, int src_stride_y, + const uint8* src_u, int src_stride_u, + const uint8* src_v, int src_stride_v, + uint8* dst_y, int dst_stride_y, + uint8* dst_u, int dst_stride_u, + uint8* dst_v, int dst_stride_v, + int width, int height) { + const int dst_uv_width = (Abs(width) + 1) >> 1; + const int dst_uv_height = Abs(height); + return I420ToI4xx(src_y, src_stride_y, + src_u, src_stride_u, + src_v, src_stride_v, + dst_y, dst_stride_y, + dst_u, dst_stride_u, + dst_v, dst_stride_v, + width, height, + dst_uv_width, dst_uv_height); +} + +// 420 chroma is 1/2 width, 1/2 height +// 444 chroma is 1x width, 1x height +LIBYUV_API +int I420ToI444(const uint8* src_y, int src_stride_y, + const uint8* src_u, int src_stride_u, + const uint8* src_v, int src_stride_v, + uint8* dst_y, int dst_stride_y, + uint8* dst_u, int dst_stride_u, + uint8* dst_v, int dst_stride_v, + int width, int height) { + const int dst_uv_width = Abs(width); + const int dst_uv_height = Abs(height); + return I420ToI4xx(src_y, src_stride_y, + src_u, src_stride_u, + src_v, src_stride_v, + dst_y, dst_stride_y, + dst_u, dst_stride_u, + dst_v, dst_stride_v, + width, height, + dst_uv_width, dst_uv_height); +} + +// 420 chroma is 1/2 width, 1/2 height +// 411 chroma is 1/4 width, 1x height +LIBYUV_API +int I420ToI411(const uint8* src_y, int src_stride_y, + const uint8* src_u, int src_stride_u, + const uint8* src_v, int src_stride_v, + uint8* dst_y, int dst_stride_y, + uint8* dst_u, int dst_stride_u, + uint8* dst_v, int dst_stride_v, + int width, int height) { + const int dst_uv_width = (Abs(width) + 3) >> 2; + const int dst_uv_height = Abs(height); + return I420ToI4xx(src_y, src_stride_y, + src_u, src_stride_u, + src_v, src_stride_v, + dst_y, dst_stride_y, + dst_u, dst_stride_u, + dst_v, dst_stride_v, + width, height, + dst_uv_width, dst_uv_height); +} + +// Copy to I400. Source can be I420,422,444,400,NV12,NV21 +LIBYUV_API +int I400Copy(const uint8* src_y, int src_stride_y, + uint8* dst_y, int dst_stride_y, + int width, int height) { + if (!src_y || !dst_y || + width <= 0 || height == 0) { + return -1; + } + // Negative height means invert the image. + if (height < 0) { + height = -height; + src_y = src_y + (height - 1) * src_stride_y; + src_stride_y = -src_stride_y; + } + CopyPlane(src_y, src_stride_y, dst_y, dst_stride_y, width, height); + return 0; +} + +LIBYUV_API +int I422ToYUY2(const uint8* src_y, int src_stride_y, + const uint8* src_u, int src_stride_u, + const uint8* src_v, int src_stride_v, + uint8* dst_yuy2, int dst_stride_yuy2, + int width, int height) { + int y; + void (*I422ToYUY2Row)(const uint8* src_y, const uint8* src_u, + const uint8* src_v, uint8* dst_yuy2, int width) = + I422ToYUY2Row_C; + if (!src_y || !src_u || !src_v || !dst_yuy2 || + width <= 0 || height == 0) { + return -1; + } + // Negative height means invert the image. + if (height < 0) { + height = -height; + dst_yuy2 = dst_yuy2 + (height - 1) * dst_stride_yuy2; + dst_stride_yuy2 = -dst_stride_yuy2; + } + // Coalesce rows. + if (src_stride_y == width && + src_stride_u * 2 == width && + src_stride_v * 2 == width && + dst_stride_yuy2 == width * 2) { + width *= height; + height = 1; + src_stride_y = src_stride_u = src_stride_v = dst_stride_yuy2 = 0; + } +#if defined(HAS_I422TOYUY2ROW_SSE2) + if (TestCpuFlag(kCpuHasSSE2)) { + I422ToYUY2Row = I422ToYUY2Row_Any_SSE2; + if (IS_ALIGNED(width, 16)) { + I422ToYUY2Row = I422ToYUY2Row_SSE2; + } + } +#endif +#if defined(HAS_I422TOYUY2ROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + I422ToYUY2Row = I422ToYUY2Row_Any_NEON; + if (IS_ALIGNED(width, 16)) { + I422ToYUY2Row = I422ToYUY2Row_NEON; + } + } +#endif + + for (y = 0; y < height; ++y) { + I422ToYUY2Row(src_y, src_u, src_v, dst_yuy2, width); + src_y += src_stride_y; + src_u += src_stride_u; + src_v += src_stride_v; + dst_yuy2 += dst_stride_yuy2; + } + return 0; +} + +LIBYUV_API +int I420ToYUY2(const uint8* src_y, int src_stride_y, + const uint8* src_u, int src_stride_u, + const uint8* src_v, int src_stride_v, + uint8* dst_yuy2, int dst_stride_yuy2, + int width, int height) { + int y; + void (*I422ToYUY2Row)(const uint8* src_y, const uint8* src_u, + const uint8* src_v, uint8* dst_yuy2, int width) = + I422ToYUY2Row_C; + if (!src_y || !src_u || !src_v || !dst_yuy2 || + width <= 0 || height == 0) { + return -1; + } + // Negative height means invert the image. + if (height < 0) { + height = -height; + dst_yuy2 = dst_yuy2 + (height - 1) * dst_stride_yuy2; + dst_stride_yuy2 = -dst_stride_yuy2; + } +#if defined(HAS_I422TOYUY2ROW_SSE2) + if (TestCpuFlag(kCpuHasSSE2)) { + I422ToYUY2Row = I422ToYUY2Row_Any_SSE2; + if (IS_ALIGNED(width, 16)) { + I422ToYUY2Row = I422ToYUY2Row_SSE2; + } + } +#endif +#if defined(HAS_I422TOYUY2ROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + I422ToYUY2Row = I422ToYUY2Row_Any_NEON; + if (IS_ALIGNED(width, 16)) { + I422ToYUY2Row = I422ToYUY2Row_NEON; + } + } +#endif + + for (y = 0; y < height - 1; y += 2) { + I422ToYUY2Row(src_y, src_u, src_v, dst_yuy2, width); + I422ToYUY2Row(src_y + src_stride_y, src_u, src_v, + dst_yuy2 + dst_stride_yuy2, width); + src_y += src_stride_y * 2; + src_u += src_stride_u; + src_v += src_stride_v; + dst_yuy2 += dst_stride_yuy2 * 2; + } + if (height & 1) { + I422ToYUY2Row(src_y, src_u, src_v, dst_yuy2, width); + } + return 0; +} + +LIBYUV_API +int I422ToUYVY(const uint8* src_y, int src_stride_y, + const uint8* src_u, int src_stride_u, + const uint8* src_v, int src_stride_v, + uint8* dst_uyvy, int dst_stride_uyvy, + int width, int height) { + int y; + void (*I422ToUYVYRow)(const uint8* src_y, const uint8* src_u, + const uint8* src_v, uint8* dst_uyvy, int width) = + I422ToUYVYRow_C; + if (!src_y || !src_u || !src_v || !dst_uyvy || + width <= 0 || height == 0) { + return -1; + } + // Negative height means invert the image. + if (height < 0) { + height = -height; + dst_uyvy = dst_uyvy + (height - 1) * dst_stride_uyvy; + dst_stride_uyvy = -dst_stride_uyvy; + } + // Coalesce rows. + if (src_stride_y == width && + src_stride_u * 2 == width && + src_stride_v * 2 == width && + dst_stride_uyvy == width * 2) { + width *= height; + height = 1; + src_stride_y = src_stride_u = src_stride_v = dst_stride_uyvy = 0; + } +#if defined(HAS_I422TOUYVYROW_SSE2) + if (TestCpuFlag(kCpuHasSSE2)) { + I422ToUYVYRow = I422ToUYVYRow_Any_SSE2; + if (IS_ALIGNED(width, 16)) { + I422ToUYVYRow = I422ToUYVYRow_SSE2; + } + } +#endif +#if defined(HAS_I422TOUYVYROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + I422ToUYVYRow = I422ToUYVYRow_Any_NEON; + if (IS_ALIGNED(width, 16)) { + I422ToUYVYRow = I422ToUYVYRow_NEON; + } + } +#endif + + for (y = 0; y < height; ++y) { + I422ToUYVYRow(src_y, src_u, src_v, dst_uyvy, width); + src_y += src_stride_y; + src_u += src_stride_u; + src_v += src_stride_v; + dst_uyvy += dst_stride_uyvy; + } + return 0; +} + +LIBYUV_API +int I420ToUYVY(const uint8* src_y, int src_stride_y, + const uint8* src_u, int src_stride_u, + const uint8* src_v, int src_stride_v, + uint8* dst_uyvy, int dst_stride_uyvy, + int width, int height) { + int y; + void (*I422ToUYVYRow)(const uint8* src_y, const uint8* src_u, + const uint8* src_v, uint8* dst_uyvy, int width) = + I422ToUYVYRow_C; + if (!src_y || !src_u || !src_v || !dst_uyvy || + width <= 0 || height == 0) { + return -1; + } + // Negative height means invert the image. + if (height < 0) { + height = -height; + dst_uyvy = dst_uyvy + (height - 1) * dst_stride_uyvy; + dst_stride_uyvy = -dst_stride_uyvy; + } +#if defined(HAS_I422TOUYVYROW_SSE2) + if (TestCpuFlag(kCpuHasSSE2)) { + I422ToUYVYRow = I422ToUYVYRow_Any_SSE2; + if (IS_ALIGNED(width, 16)) { + I422ToUYVYRow = I422ToUYVYRow_SSE2; + } + } +#endif +#if defined(HAS_I422TOUYVYROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + I422ToUYVYRow = I422ToUYVYRow_Any_NEON; + if (IS_ALIGNED(width, 16)) { + I422ToUYVYRow = I422ToUYVYRow_NEON; + } + } +#endif + + for (y = 0; y < height - 1; y += 2) { + I422ToUYVYRow(src_y, src_u, src_v, dst_uyvy, width); + I422ToUYVYRow(src_y + src_stride_y, src_u, src_v, + dst_uyvy + dst_stride_uyvy, width); + src_y += src_stride_y * 2; + src_u += src_stride_u; + src_v += src_stride_v; + dst_uyvy += dst_stride_uyvy * 2; + } + if (height & 1) { + I422ToUYVYRow(src_y, src_u, src_v, dst_uyvy, width); + } + return 0; +} + +// TODO(fbarchard): test negative height for invert. +LIBYUV_API +int I420ToNV12(const uint8* src_y, int src_stride_y, + const uint8* src_u, int src_stride_u, + const uint8* src_v, int src_stride_v, + uint8* dst_y, int dst_stride_y, + uint8* dst_uv, int dst_stride_uv, + int width, int height) { + if (!src_y || !src_u || !src_v || !dst_y || !dst_uv || + width <= 0 || height == 0) { + return -1; + } + int halfwidth = (width + 1) / 2; + int halfheight = height > 0 ? (height + 1) / 2 : (height - 1) / 2; + if (dst_y) { + CopyPlane(src_y, src_stride_y, dst_y, dst_stride_y, width, height); + } + MergeUVPlane(src_u, src_stride_u, + src_v, src_stride_v, + dst_uv, dst_stride_uv, + halfwidth, halfheight); + return 0; +} + +LIBYUV_API +int I420ToNV21(const uint8* src_y, int src_stride_y, + const uint8* src_u, int src_stride_u, + const uint8* src_v, int src_stride_v, + uint8* dst_y, int dst_stride_y, + uint8* dst_vu, int dst_stride_vu, + int width, int height) { + return I420ToNV12(src_y, src_stride_y, + src_v, src_stride_v, + src_u, src_stride_u, + dst_y, dst_stride_y, + dst_vu, dst_stride_vu, + width, height); +} + +// Convert I422 to RGBA with matrix +static int I420ToRGBAMatrix(const uint8* src_y, int src_stride_y, + const uint8* src_u, int src_stride_u, + const uint8* src_v, int src_stride_v, + uint8* dst_rgba, int dst_stride_rgba, + const struct YuvConstants* yuvconstants, + int width, int height) { + int y; + void (*I422ToRGBARow)(const uint8* y_buf, + const uint8* u_buf, + const uint8* v_buf, + uint8* rgb_buf, + const struct YuvConstants* yuvconstants, + int width) = I422ToRGBARow_C; + if (!src_y || !src_u || !src_v || !dst_rgba || + width <= 0 || height == 0) { + return -1; + } + // Negative height means invert the image. + if (height < 0) { + height = -height; + dst_rgba = dst_rgba + (height - 1) * dst_stride_rgba; + dst_stride_rgba = -dst_stride_rgba; + } +#if defined(HAS_I422TORGBAROW_SSSE3) + if (TestCpuFlag(kCpuHasSSSE3)) { + I422ToRGBARow = I422ToRGBARow_Any_SSSE3; + if (IS_ALIGNED(width, 8)) { + I422ToRGBARow = I422ToRGBARow_SSSE3; + } + } +#endif +#if defined(HAS_I422TORGBAROW_AVX2) + if (TestCpuFlag(kCpuHasAVX2)) { + I422ToRGBARow = I422ToRGBARow_Any_AVX2; + if (IS_ALIGNED(width, 16)) { + I422ToRGBARow = I422ToRGBARow_AVX2; + } + } +#endif +#if defined(HAS_I422TORGBAROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + I422ToRGBARow = I422ToRGBARow_Any_NEON; + if (IS_ALIGNED(width, 8)) { + I422ToRGBARow = I422ToRGBARow_NEON; + } + } +#endif +#if defined(HAS_I422TORGBAROW_DSPR2) + if (TestCpuFlag(kCpuHasDSPR2) && IS_ALIGNED(width, 4) && + IS_ALIGNED(src_y, 4) && IS_ALIGNED(src_stride_y, 4) && + IS_ALIGNED(src_u, 2) && IS_ALIGNED(src_stride_u, 2) && + IS_ALIGNED(src_v, 2) && IS_ALIGNED(src_stride_v, 2) && + IS_ALIGNED(dst_rgba, 4) && IS_ALIGNED(dst_stride_rgba, 4)) { + I422ToRGBARow = I422ToRGBARow_DSPR2; + } +#endif + + for (y = 0; y < height; ++y) { + I422ToRGBARow(src_y, src_u, src_v, dst_rgba, yuvconstants, width); + dst_rgba += dst_stride_rgba; + src_y += src_stride_y; + if (y & 1) { + src_u += src_stride_u; + src_v += src_stride_v; + } + } + return 0; +} + +// Convert I420 to RGBA. +LIBYUV_API +int I420ToRGBA(const uint8* src_y, int src_stride_y, + const uint8* src_u, int src_stride_u, + const uint8* src_v, int src_stride_v, + uint8* dst_rgba, int dst_stride_rgba, + int width, int height) { + return I420ToRGBAMatrix(src_y, src_stride_y, + src_u, src_stride_u, + src_v, src_stride_v, + dst_rgba, dst_stride_rgba, + &kYuvI601Constants, + width, height); +} + +// Convert I420 to BGRA. +LIBYUV_API +int I420ToBGRA(const uint8* src_y, int src_stride_y, + const uint8* src_u, int src_stride_u, + const uint8* src_v, int src_stride_v, + uint8* dst_bgra, int dst_stride_bgra, + int width, int height) { + return I420ToRGBAMatrix(src_y, src_stride_y, + src_v, src_stride_v, // Swap U and V + src_u, src_stride_u, + dst_bgra, dst_stride_bgra, + &kYvuI601Constants, // Use Yvu matrix + width, height); +} + +// Convert I420 to RGB24 with matrix +static int I420ToRGB24Matrix(const uint8* src_y, int src_stride_y, + const uint8* src_u, int src_stride_u, + const uint8* src_v, int src_stride_v, + uint8* dst_rgb24, int dst_stride_rgb24, + const struct YuvConstants* yuvconstants, + int width, int height) { + int y; + void (*I422ToRGB24Row)(const uint8* y_buf, + const uint8* u_buf, + const uint8* v_buf, + uint8* rgb_buf, + const struct YuvConstants* yuvconstants, + int width) = I422ToRGB24Row_C; + if (!src_y || !src_u || !src_v || !dst_rgb24 || + width <= 0 || height == 0) { + return -1; + } + // Negative height means invert the image. + if (height < 0) { + height = -height; + dst_rgb24 = dst_rgb24 + (height - 1) * dst_stride_rgb24; + dst_stride_rgb24 = -dst_stride_rgb24; + } +#if defined(HAS_I422TORGB24ROW_SSSE3) + if (TestCpuFlag(kCpuHasSSSE3)) { + I422ToRGB24Row = I422ToRGB24Row_Any_SSSE3; + if (IS_ALIGNED(width, 8)) { + I422ToRGB24Row = I422ToRGB24Row_SSSE3; + } + } +#endif +#if defined(HAS_I422TORGB24ROW_AVX2) + if (TestCpuFlag(kCpuHasAVX2)) { + I422ToRGB24Row = I422ToRGB24Row_Any_AVX2; + if (IS_ALIGNED(width, 16)) { + I422ToRGB24Row = I422ToRGB24Row_AVX2; + } + } +#endif +#if defined(HAS_I422TORGB24ROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + I422ToRGB24Row = I422ToRGB24Row_Any_NEON; + if (IS_ALIGNED(width, 8)) { + I422ToRGB24Row = I422ToRGB24Row_NEON; + } + } +#endif + + for (y = 0; y < height; ++y) { + I422ToRGB24Row(src_y, src_u, src_v, dst_rgb24, yuvconstants, width); + dst_rgb24 += dst_stride_rgb24; + src_y += src_stride_y; + if (y & 1) { + src_u += src_stride_u; + src_v += src_stride_v; + } + } + return 0; +} + +// Convert I420 to RGB24. +LIBYUV_API +int I420ToRGB24(const uint8* src_y, int src_stride_y, + const uint8* src_u, int src_stride_u, + const uint8* src_v, int src_stride_v, + uint8* dst_rgb24, int dst_stride_rgb24, + int width, int height) { + return I420ToRGB24Matrix(src_y, src_stride_y, + src_u, src_stride_u, + src_v, src_stride_v, + dst_rgb24, dst_stride_rgb24, + &kYuvI601Constants, + width, height); +} + +// Convert I420 to RAW. +LIBYUV_API +int I420ToRAW(const uint8* src_y, int src_stride_y, + const uint8* src_u, int src_stride_u, + const uint8* src_v, int src_stride_v, + uint8* dst_raw, int dst_stride_raw, + int width, int height) { + return I420ToRGB24Matrix(src_y, src_stride_y, + src_v, src_stride_v, // Swap U and V + src_u, src_stride_u, + dst_raw, dst_stride_raw, + &kYvuI601Constants, // Use Yvu matrix + width, height); +} + +// Convert I420 to ARGB1555. +LIBYUV_API +int I420ToARGB1555(const uint8* src_y, int src_stride_y, + const uint8* src_u, int src_stride_u, + const uint8* src_v, int src_stride_v, + uint8* dst_argb1555, int dst_stride_argb1555, + int width, int height) { + int y; + void (*I422ToARGB1555Row)(const uint8* y_buf, + const uint8* u_buf, + const uint8* v_buf, + uint8* rgb_buf, + const struct YuvConstants* yuvconstants, + int width) = I422ToARGB1555Row_C; + if (!src_y || !src_u || !src_v || !dst_argb1555 || + width <= 0 || height == 0) { + return -1; + } + // Negative height means invert the image. + if (height < 0) { + height = -height; + dst_argb1555 = dst_argb1555 + (height - 1) * dst_stride_argb1555; + dst_stride_argb1555 = -dst_stride_argb1555; + } +#if defined(HAS_I422TOARGB1555ROW_SSSE3) + if (TestCpuFlag(kCpuHasSSSE3)) { + I422ToARGB1555Row = I422ToARGB1555Row_Any_SSSE3; + if (IS_ALIGNED(width, 8)) { + I422ToARGB1555Row = I422ToARGB1555Row_SSSE3; + } + } +#endif +#if defined(HAS_I422TOARGB1555ROW_AVX2) + if (TestCpuFlag(kCpuHasAVX2)) { + I422ToARGB1555Row = I422ToARGB1555Row_Any_AVX2; + if (IS_ALIGNED(width, 16)) { + I422ToARGB1555Row = I422ToARGB1555Row_AVX2; + } + } +#endif +#if defined(HAS_I422TOARGB1555ROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + I422ToARGB1555Row = I422ToARGB1555Row_Any_NEON; + if (IS_ALIGNED(width, 8)) { + I422ToARGB1555Row = I422ToARGB1555Row_NEON; + } + } +#endif + + for (y = 0; y < height; ++y) { + I422ToARGB1555Row(src_y, src_u, src_v, dst_argb1555, &kYuvI601Constants, + width); + dst_argb1555 += dst_stride_argb1555; + src_y += src_stride_y; + if (y & 1) { + src_u += src_stride_u; + src_v += src_stride_v; + } + } + return 0; +} + + +// Convert I420 to ARGB4444. +LIBYUV_API +int I420ToARGB4444(const uint8* src_y, int src_stride_y, + const uint8* src_u, int src_stride_u, + const uint8* src_v, int src_stride_v, + uint8* dst_argb4444, int dst_stride_argb4444, + int width, int height) { + int y; + void (*I422ToARGB4444Row)(const uint8* y_buf, + const uint8* u_buf, + const uint8* v_buf, + uint8* rgb_buf, + const struct YuvConstants* yuvconstants, + int width) = I422ToARGB4444Row_C; + if (!src_y || !src_u || !src_v || !dst_argb4444 || + width <= 0 || height == 0) { + return -1; + } + // Negative height means invert the image. + if (height < 0) { + height = -height; + dst_argb4444 = dst_argb4444 + (height - 1) * dst_stride_argb4444; + dst_stride_argb4444 = -dst_stride_argb4444; + } +#if defined(HAS_I422TOARGB4444ROW_SSSE3) + if (TestCpuFlag(kCpuHasSSSE3)) { + I422ToARGB4444Row = I422ToARGB4444Row_Any_SSSE3; + if (IS_ALIGNED(width, 8)) { + I422ToARGB4444Row = I422ToARGB4444Row_SSSE3; + } + } +#endif +#if defined(HAS_I422TOARGB4444ROW_AVX2) + if (TestCpuFlag(kCpuHasAVX2)) { + I422ToARGB4444Row = I422ToARGB4444Row_Any_AVX2; + if (IS_ALIGNED(width, 16)) { + I422ToARGB4444Row = I422ToARGB4444Row_AVX2; + } + } +#endif +#if defined(HAS_I422TOARGB4444ROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + I422ToARGB4444Row = I422ToARGB4444Row_Any_NEON; + if (IS_ALIGNED(width, 8)) { + I422ToARGB4444Row = I422ToARGB4444Row_NEON; + } + } +#endif + + for (y = 0; y < height; ++y) { + I422ToARGB4444Row(src_y, src_u, src_v, dst_argb4444, &kYuvI601Constants, + width); + dst_argb4444 += dst_stride_argb4444; + src_y += src_stride_y; + if (y & 1) { + src_u += src_stride_u; + src_v += src_stride_v; + } + } + return 0; +} + +// Convert I420 to RGB565. +LIBYUV_API +int I420ToRGB565(const uint8* src_y, int src_stride_y, + const uint8* src_u, int src_stride_u, + const uint8* src_v, int src_stride_v, + uint8* dst_rgb565, int dst_stride_rgb565, + int width, int height) { + int y; + void (*I422ToRGB565Row)(const uint8* y_buf, + const uint8* u_buf, + const uint8* v_buf, + uint8* rgb_buf, + const struct YuvConstants* yuvconstants, + int width) = I422ToRGB565Row_C; + if (!src_y || !src_u || !src_v || !dst_rgb565 || + width <= 0 || height == 0) { + return -1; + } + // Negative height means invert the image. + if (height < 0) { + height = -height; + dst_rgb565 = dst_rgb565 + (height - 1) * dst_stride_rgb565; + dst_stride_rgb565 = -dst_stride_rgb565; + } +#if defined(HAS_I422TORGB565ROW_SSSE3) + if (TestCpuFlag(kCpuHasSSSE3)) { + I422ToRGB565Row = I422ToRGB565Row_Any_SSSE3; + if (IS_ALIGNED(width, 8)) { + I422ToRGB565Row = I422ToRGB565Row_SSSE3; + } + } +#endif +#if defined(HAS_I422TORGB565ROW_AVX2) + if (TestCpuFlag(kCpuHasAVX2)) { + I422ToRGB565Row = I422ToRGB565Row_Any_AVX2; + if (IS_ALIGNED(width, 16)) { + I422ToRGB565Row = I422ToRGB565Row_AVX2; + } + } +#endif +#if defined(HAS_I422TORGB565ROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + I422ToRGB565Row = I422ToRGB565Row_Any_NEON; + if (IS_ALIGNED(width, 8)) { + I422ToRGB565Row = I422ToRGB565Row_NEON; + } + } +#endif + + for (y = 0; y < height; ++y) { + I422ToRGB565Row(src_y, src_u, src_v, dst_rgb565, &kYuvI601Constants, width); + dst_rgb565 += dst_stride_rgb565; + src_y += src_stride_y; + if (y & 1) { + src_u += src_stride_u; + src_v += src_stride_v; + } + } + return 0; +} + +// Ordered 8x8 dither for 888 to 565. Values from 0 to 7. +static const uint8 kDither565_4x4[16] = { + 0, 4, 1, 5, + 6, 2, 7, 3, + 1, 5, 0, 4, + 7, 3, 6, 2, +}; + +// Convert I420 to RGB565 with dithering. +LIBYUV_API +int I420ToRGB565Dither(const uint8* src_y, int src_stride_y, + const uint8* src_u, int src_stride_u, + const uint8* src_v, int src_stride_v, + uint8* dst_rgb565, int dst_stride_rgb565, + const uint8* dither4x4, int width, int height) { + int y; + void (*I422ToARGBRow)(const uint8* y_buf, + const uint8* u_buf, + const uint8* v_buf, + uint8* rgb_buf, + const struct YuvConstants* yuvconstants, + int width) = I422ToARGBRow_C; + void (*ARGBToRGB565DitherRow)(const uint8* src_argb, uint8* dst_rgb, + const uint32 dither4, int width) = ARGBToRGB565DitherRow_C; + if (!src_y || !src_u || !src_v || !dst_rgb565 || + width <= 0 || height == 0) { + return -1; + } + // Negative height means invert the image. + if (height < 0) { + height = -height; + dst_rgb565 = dst_rgb565 + (height - 1) * dst_stride_rgb565; + dst_stride_rgb565 = -dst_stride_rgb565; + } + if (!dither4x4) { + dither4x4 = kDither565_4x4; + } +#if defined(HAS_I422TOARGBROW_SSSE3) + if (TestCpuFlag(kCpuHasSSSE3)) { + I422ToARGBRow = I422ToARGBRow_Any_SSSE3; + if (IS_ALIGNED(width, 8)) { + I422ToARGBRow = I422ToARGBRow_SSSE3; + } + } +#endif +#if defined(HAS_I422TOARGBROW_AVX2) + if (TestCpuFlag(kCpuHasAVX2)) { + I422ToARGBRow = I422ToARGBRow_Any_AVX2; + if (IS_ALIGNED(width, 16)) { + I422ToARGBRow = I422ToARGBRow_AVX2; + } + } +#endif +#if defined(HAS_I422TOARGBROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + I422ToARGBRow = I422ToARGBRow_Any_NEON; + if (IS_ALIGNED(width, 8)) { + I422ToARGBRow = I422ToARGBRow_NEON; + } + } +#endif +#if defined(HAS_I422TOARGBROW_DSPR2) + if (TestCpuFlag(kCpuHasDSPR2) && IS_ALIGNED(width, 4) && + IS_ALIGNED(src_y, 4) && IS_ALIGNED(src_stride_y, 4) && + IS_ALIGNED(src_u, 2) && IS_ALIGNED(src_stride_u, 2) && + IS_ALIGNED(src_v, 2) && IS_ALIGNED(src_stride_v, 2)) { + I422ToARGBRow = I422ToARGBRow_DSPR2; + } +#endif +#if defined(HAS_ARGBTORGB565DITHERROW_SSE2) + if (TestCpuFlag(kCpuHasSSE2)) { + ARGBToRGB565DitherRow = ARGBToRGB565DitherRow_Any_SSE2; + if (IS_ALIGNED(width, 4)) { + ARGBToRGB565DitherRow = ARGBToRGB565DitherRow_SSE2; + } + } +#endif +#if defined(HAS_ARGBTORGB565DITHERROW_AVX2) + if (TestCpuFlag(kCpuHasAVX2)) { + ARGBToRGB565DitherRow = ARGBToRGB565DitherRow_Any_AVX2; + if (IS_ALIGNED(width, 8)) { + ARGBToRGB565DitherRow = ARGBToRGB565DitherRow_AVX2; + } + } +#endif +#if defined(HAS_ARGBTORGB565DITHERROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + ARGBToRGB565DitherRow = ARGBToRGB565DitherRow_Any_NEON; + if (IS_ALIGNED(width, 8)) { + ARGBToRGB565DitherRow = ARGBToRGB565DitherRow_NEON; + } + } +#endif + { + // Allocate a row of argb. + align_buffer_64(row_argb, width * 4); + for (y = 0; y < height; ++y) { + I422ToARGBRow(src_y, src_u, src_v, row_argb, &kYuvI601Constants, width); + ARGBToRGB565DitherRow(row_argb, dst_rgb565, + *(uint32*)(dither4x4 + ((y & 3) << 2)), width); + dst_rgb565 += dst_stride_rgb565; + src_y += src_stride_y; + if (y & 1) { + src_u += src_stride_u; + src_v += src_stride_v; + } + } + free_aligned_buffer_64(row_argb); + } + return 0; +} + +// Convert I420 to specified format +LIBYUV_API +int ConvertFromI420(const uint8* y, int y_stride, + const uint8* u, int u_stride, + const uint8* v, int v_stride, + uint8* dst_sample, int dst_sample_stride, + int width, int height, + uint32 fourcc) { + uint32 format = CanonicalFourCC(fourcc); + int r = 0; + if (!y || !u|| !v || !dst_sample || + width <= 0 || height == 0) { + return -1; + } + switch (format) { + // Single plane formats + case FOURCC_YUY2: + r = I420ToYUY2(y, y_stride, + u, u_stride, + v, v_stride, + dst_sample, + dst_sample_stride ? dst_sample_stride : width * 2, + width, height); + break; + case FOURCC_UYVY: + r = I420ToUYVY(y, y_stride, + u, u_stride, + v, v_stride, + dst_sample, + dst_sample_stride ? dst_sample_stride : width * 2, + width, height); + break; + case FOURCC_RGBP: + r = I420ToRGB565(y, y_stride, + u, u_stride, + v, v_stride, + dst_sample, + dst_sample_stride ? dst_sample_stride : width * 2, + width, height); + break; + case FOURCC_RGBO: + r = I420ToARGB1555(y, y_stride, + u, u_stride, + v, v_stride, + dst_sample, + dst_sample_stride ? dst_sample_stride : width * 2, + width, height); + break; + case FOURCC_R444: + r = I420ToARGB4444(y, y_stride, + u, u_stride, + v, v_stride, + dst_sample, + dst_sample_stride ? dst_sample_stride : width * 2, + width, height); + break; + case FOURCC_24BG: + r = I420ToRGB24(y, y_stride, + u, u_stride, + v, v_stride, + dst_sample, + dst_sample_stride ? dst_sample_stride : width * 3, + width, height); + break; + case FOURCC_RAW: + r = I420ToRAW(y, y_stride, + u, u_stride, + v, v_stride, + dst_sample, + dst_sample_stride ? dst_sample_stride : width * 3, + width, height); + break; + case FOURCC_ARGB: + r = I420ToARGB(y, y_stride, + u, u_stride, + v, v_stride, + dst_sample, + dst_sample_stride ? dst_sample_stride : width * 4, + width, height); + break; + case FOURCC_BGRA: + r = I420ToBGRA(y, y_stride, + u, u_stride, + v, v_stride, + dst_sample, + dst_sample_stride ? dst_sample_stride : width * 4, + width, height); + break; + case FOURCC_ABGR: + r = I420ToABGR(y, y_stride, + u, u_stride, + v, v_stride, + dst_sample, + dst_sample_stride ? dst_sample_stride : width * 4, + width, height); + break; + case FOURCC_RGBA: + r = I420ToRGBA(y, y_stride, + u, u_stride, + v, v_stride, + dst_sample, + dst_sample_stride ? dst_sample_stride : width * 4, + width, height); + break; + case FOURCC_I400: + r = I400Copy(y, y_stride, + dst_sample, + dst_sample_stride ? dst_sample_stride : width, + width, height); + break; + case FOURCC_NV12: { + uint8* dst_uv = dst_sample + width * height; + r = I420ToNV12(y, y_stride, + u, u_stride, + v, v_stride, + dst_sample, + dst_sample_stride ? dst_sample_stride : width, + dst_uv, + dst_sample_stride ? dst_sample_stride : width, + width, height); + break; + } + case FOURCC_NV21: { + uint8* dst_vu = dst_sample + width * height; + r = I420ToNV21(y, y_stride, + u, u_stride, + v, v_stride, + dst_sample, + dst_sample_stride ? dst_sample_stride : width, + dst_vu, + dst_sample_stride ? dst_sample_stride : width, + width, height); + break; + } + // TODO(fbarchard): Add M420. + // Triplanar formats + // TODO(fbarchard): halfstride instead of halfwidth + case FOURCC_I420: + case FOURCC_YV12: { + int halfwidth = (width + 1) / 2; + int halfheight = (height + 1) / 2; + uint8* dst_u; + uint8* dst_v; + if (format == FOURCC_YV12) { + dst_v = dst_sample + width * height; + dst_u = dst_v + halfwidth * halfheight; + } else { + dst_u = dst_sample + width * height; + dst_v = dst_u + halfwidth * halfheight; + } + r = I420Copy(y, y_stride, + u, u_stride, + v, v_stride, + dst_sample, width, + dst_u, halfwidth, + dst_v, halfwidth, + width, height); + break; + } + case FOURCC_I422: + case FOURCC_YV16: { + int halfwidth = (width + 1) / 2; + uint8* dst_u; + uint8* dst_v; + if (format == FOURCC_YV16) { + dst_v = dst_sample + width * height; + dst_u = dst_v + halfwidth * height; + } else { + dst_u = dst_sample + width * height; + dst_v = dst_u + halfwidth * height; + } + r = I420ToI422(y, y_stride, + u, u_stride, + v, v_stride, + dst_sample, width, + dst_u, halfwidth, + dst_v, halfwidth, + width, height); + break; + } + case FOURCC_I444: + case FOURCC_YV24: { + uint8* dst_u; + uint8* dst_v; + if (format == FOURCC_YV24) { + dst_v = dst_sample + width * height; + dst_u = dst_v + width * height; + } else { + dst_u = dst_sample + width * height; + dst_v = dst_u + width * height; + } + r = I420ToI444(y, y_stride, + u, u_stride, + v, v_stride, + dst_sample, width, + dst_u, width, + dst_v, width, + width, height); + break; + } + case FOURCC_I411: { + int quarterwidth = (width + 3) / 4; + uint8* dst_u = dst_sample + width * height; + uint8* dst_v = dst_u + quarterwidth * height; + r = I420ToI411(y, y_stride, + u, u_stride, + v, v_stride, + dst_sample, width, + dst_u, quarterwidth, + dst_v, quarterwidth, + width, height); + break; + } + + // Formats not supported - MJPG, biplanar, some rgb formats. + default: + return -1; // unknown fourcc - return failure code. + } + return r; +} + +#ifdef __cplusplus +} // extern "C" +} // namespace libyuv +#endif diff --git a/third_party/libyuv/source/convert_from_argb.cc b/third_party/libyuv/source/convert_from_argb.cc new file mode 100644 index 0000000..2a8682b --- /dev/null +++ b/third_party/libyuv/source/convert_from_argb.cc @@ -0,0 +1,1286 @@ +/* + * Copyright 2012 The LibYuv Project Authors. All rights reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "libyuv/convert_from_argb.h" + +#include "libyuv/basic_types.h" +#include "libyuv/cpu_id.h" +#include "libyuv/planar_functions.h" +#include "libyuv/row.h" + +#ifdef __cplusplus +namespace libyuv { +extern "C" { +#endif + +// ARGB little endian (bgra in memory) to I444 +LIBYUV_API +int ARGBToI444(const uint8* src_argb, int src_stride_argb, + uint8* dst_y, int dst_stride_y, + uint8* dst_u, int dst_stride_u, + uint8* dst_v, int dst_stride_v, + int width, int height) { + int y; + void (*ARGBToYRow)(const uint8* src_argb, uint8* dst_y, int width) = + ARGBToYRow_C; + void (*ARGBToUV444Row)(const uint8* src_argb, uint8* dst_u, uint8* dst_v, + int width) = ARGBToUV444Row_C; + if (!src_argb || !dst_y || !dst_u || !dst_v || width <= 0 || height == 0) { + return -1; + } + if (height < 0) { + height = -height; + src_argb = src_argb + (height - 1) * src_stride_argb; + src_stride_argb = -src_stride_argb; + } + // Coalesce rows. + if (src_stride_argb == width * 4 && + dst_stride_y == width && + dst_stride_u == width && + dst_stride_v == width) { + width *= height; + height = 1; + src_stride_argb = dst_stride_y = dst_stride_u = dst_stride_v = 0; + } +#if defined(HAS_ARGBTOUV444ROW_SSSE3) + if (TestCpuFlag(kCpuHasSSSE3)) { + ARGBToUV444Row = ARGBToUV444Row_Any_SSSE3; + if (IS_ALIGNED(width, 16)) { + ARGBToUV444Row = ARGBToUV444Row_SSSE3; + } + } +#endif +#if defined(HAS_ARGBTOUV444ROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + ARGBToUV444Row = ARGBToUV444Row_Any_NEON; + if (IS_ALIGNED(width, 8)) { + ARGBToUV444Row = ARGBToUV444Row_NEON; + } + } +#endif +#if defined(HAS_ARGBTOYROW_SSSE3) + if (TestCpuFlag(kCpuHasSSSE3)) { + ARGBToYRow = ARGBToYRow_Any_SSSE3; + if (IS_ALIGNED(width, 16)) { + ARGBToYRow = ARGBToYRow_SSSE3; + } + } +#endif +#if defined(HAS_ARGBTOYROW_AVX2) + if (TestCpuFlag(kCpuHasAVX2)) { + ARGBToYRow = ARGBToYRow_Any_AVX2; + if (IS_ALIGNED(width, 32)) { + ARGBToYRow = ARGBToYRow_AVX2; + } + } +#endif +#if defined(HAS_ARGBTOYROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + ARGBToYRow = ARGBToYRow_Any_NEON; + if (IS_ALIGNED(width, 8)) { + ARGBToYRow = ARGBToYRow_NEON; + } + } +#endif + + for (y = 0; y < height; ++y) { + ARGBToUV444Row(src_argb, dst_u, dst_v, width); + ARGBToYRow(src_argb, dst_y, width); + src_argb += src_stride_argb; + dst_y += dst_stride_y; + dst_u += dst_stride_u; + dst_v += dst_stride_v; + } + return 0; +} + +// ARGB little endian (bgra in memory) to I422 +LIBYUV_API +int ARGBToI422(const uint8* src_argb, int src_stride_argb, + uint8* dst_y, int dst_stride_y, + uint8* dst_u, int dst_stride_u, + uint8* dst_v, int dst_stride_v, + int width, int height) { + int y; + void (*ARGBToUVRow)(const uint8* src_argb0, int src_stride_argb, + uint8* dst_u, uint8* dst_v, int width) = ARGBToUVRow_C; + void (*ARGBToYRow)(const uint8* src_argb, uint8* dst_y, int width) = + ARGBToYRow_C; + if (!src_argb || + !dst_y || !dst_u || !dst_v || + width <= 0 || height == 0) { + return -1; + } + // Negative height means invert the image. + if (height < 0) { + height = -height; + src_argb = src_argb + (height - 1) * src_stride_argb; + src_stride_argb = -src_stride_argb; + } + // Coalesce rows. + if (src_stride_argb == width * 4 && + dst_stride_y == width && + dst_stride_u * 2 == width && + dst_stride_v * 2 == width) { + width *= height; + height = 1; + src_stride_argb = dst_stride_y = dst_stride_u = dst_stride_v = 0; + } +#if defined(HAS_ARGBTOYROW_SSSE3) && defined(HAS_ARGBTOUVROW_SSSE3) + if (TestCpuFlag(kCpuHasSSSE3)) { + ARGBToUVRow = ARGBToUVRow_Any_SSSE3; + ARGBToYRow = ARGBToYRow_Any_SSSE3; + if (IS_ALIGNED(width, 16)) { + ARGBToUVRow = ARGBToUVRow_SSSE3; + ARGBToYRow = ARGBToYRow_SSSE3; + } + } +#endif +#if defined(HAS_ARGBTOYROW_AVX2) && defined(HAS_ARGBTOUVROW_AVX2) + if (TestCpuFlag(kCpuHasAVX2)) { + ARGBToUVRow = ARGBToUVRow_Any_AVX2; + ARGBToYRow = ARGBToYRow_Any_AVX2; + if (IS_ALIGNED(width, 32)) { + ARGBToUVRow = ARGBToUVRow_AVX2; + ARGBToYRow = ARGBToYRow_AVX2; + } + } +#endif +#if defined(HAS_ARGBTOYROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + ARGBToYRow = ARGBToYRow_Any_NEON; + if (IS_ALIGNED(width, 8)) { + ARGBToYRow = ARGBToYRow_NEON; + } + } +#endif +#if defined(HAS_ARGBTOUVROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + ARGBToUVRow = ARGBToUVRow_Any_NEON; + if (IS_ALIGNED(width, 16)) { + ARGBToUVRow = ARGBToUVRow_NEON; + } + } +#endif + + for (y = 0; y < height; ++y) { + ARGBToUVRow(src_argb, 0, dst_u, dst_v, width); + ARGBToYRow(src_argb, dst_y, width); + src_argb += src_stride_argb; + dst_y += dst_stride_y; + dst_u += dst_stride_u; + dst_v += dst_stride_v; + } + return 0; +} + +// ARGB little endian (bgra in memory) to I411 +LIBYUV_API +int ARGBToI411(const uint8* src_argb, int src_stride_argb, + uint8* dst_y, int dst_stride_y, + uint8* dst_u, int dst_stride_u, + uint8* dst_v, int dst_stride_v, + int width, int height) { + int y; + void (*ARGBToUV411Row)(const uint8* src_argb, uint8* dst_u, uint8* dst_v, + int width) = ARGBToUV411Row_C; + void (*ARGBToYRow)(const uint8* src_argb, uint8* dst_y, int width) = + ARGBToYRow_C; + if (!src_argb || !dst_y || !dst_u || !dst_v || width <= 0 || height == 0) { + return -1; + } + if (height < 0) { + height = -height; + src_argb = src_argb + (height - 1) * src_stride_argb; + src_stride_argb = -src_stride_argb; + } + // Coalesce rows. + if (src_stride_argb == width * 4 && + dst_stride_y == width && + dst_stride_u * 4 == width && + dst_stride_v * 4 == width) { + width *= height; + height = 1; + src_stride_argb = dst_stride_y = dst_stride_u = dst_stride_v = 0; + } +#if defined(HAS_ARGBTOYROW_SSSE3) + if (TestCpuFlag(kCpuHasSSSE3)) { + ARGBToYRow = ARGBToYRow_Any_SSSE3; + if (IS_ALIGNED(width, 16)) { + ARGBToYRow = ARGBToYRow_SSSE3; + } + } +#endif +#if defined(HAS_ARGBTOYROW_AVX2) + if (TestCpuFlag(kCpuHasAVX2)) { + ARGBToYRow = ARGBToYRow_Any_AVX2; + if (IS_ALIGNED(width, 32)) { + ARGBToYRow = ARGBToYRow_AVX2; + } + } +#endif +#if defined(HAS_ARGBTOYROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + ARGBToYRow = ARGBToYRow_Any_NEON; + if (IS_ALIGNED(width, 8)) { + ARGBToYRow = ARGBToYRow_NEON; + } + } +#endif +#if defined(HAS_ARGBTOUV411ROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + ARGBToUV411Row = ARGBToUV411Row_Any_NEON; + if (IS_ALIGNED(width, 32)) { + ARGBToUV411Row = ARGBToUV411Row_NEON; + } + } +#endif + + for (y = 0; y < height; ++y) { + ARGBToUV411Row(src_argb, dst_u, dst_v, width); + ARGBToYRow(src_argb, dst_y, width); + src_argb += src_stride_argb; + dst_y += dst_stride_y; + dst_u += dst_stride_u; + dst_v += dst_stride_v; + } + return 0; +} + +LIBYUV_API +int ARGBToNV12(const uint8* src_argb, int src_stride_argb, + uint8* dst_y, int dst_stride_y, + uint8* dst_uv, int dst_stride_uv, + int width, int height) { + int y; + int halfwidth = (width + 1) >> 1; + void (*ARGBToUVRow)(const uint8* src_argb0, int src_stride_argb, + uint8* dst_u, uint8* dst_v, int width) = ARGBToUVRow_C; + void (*ARGBToYRow)(const uint8* src_argb, uint8* dst_y, int width) = + ARGBToYRow_C; + void (*MergeUVRow_)(const uint8* src_u, const uint8* src_v, uint8* dst_uv, + int width) = MergeUVRow_C; + if (!src_argb || + !dst_y || !dst_uv || + width <= 0 || height == 0) { + return -1; + } + // Negative height means invert the image. + if (height < 0) { + height = -height; + src_argb = src_argb + (height - 1) * src_stride_argb; + src_stride_argb = -src_stride_argb; + } +#if defined(HAS_ARGBTOYROW_SSSE3) && defined(HAS_ARGBTOUVROW_SSSE3) + if (TestCpuFlag(kCpuHasSSSE3)) { + ARGBToUVRow = ARGBToUVRow_Any_SSSE3; + ARGBToYRow = ARGBToYRow_Any_SSSE3; + if (IS_ALIGNED(width, 16)) { + ARGBToUVRow = ARGBToUVRow_SSSE3; + ARGBToYRow = ARGBToYRow_SSSE3; + } + } +#endif +#if defined(HAS_ARGBTOYROW_AVX2) && defined(HAS_ARGBTOUVROW_AVX2) + if (TestCpuFlag(kCpuHasAVX2)) { + ARGBToUVRow = ARGBToUVRow_Any_AVX2; + ARGBToYRow = ARGBToYRow_Any_AVX2; + if (IS_ALIGNED(width, 32)) { + ARGBToUVRow = ARGBToUVRow_AVX2; + ARGBToYRow = ARGBToYRow_AVX2; + } + } +#endif +#if defined(HAS_ARGBTOYROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + ARGBToYRow = ARGBToYRow_Any_NEON; + if (IS_ALIGNED(width, 8)) { + ARGBToYRow = ARGBToYRow_NEON; + } + } +#endif +#if defined(HAS_ARGBTOUVROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + ARGBToUVRow = ARGBToUVRow_Any_NEON; + if (IS_ALIGNED(width, 16)) { + ARGBToUVRow = ARGBToUVRow_NEON; + } + } +#endif +#if defined(HAS_MERGEUVROW_SSE2) + if (TestCpuFlag(kCpuHasSSE2)) { + MergeUVRow_ = MergeUVRow_Any_SSE2; + if (IS_ALIGNED(halfwidth, 16)) { + MergeUVRow_ = MergeUVRow_SSE2; + } + } +#endif +#if defined(HAS_MERGEUVROW_AVX2) + if (TestCpuFlag(kCpuHasAVX2)) { + MergeUVRow_ = MergeUVRow_Any_AVX2; + if (IS_ALIGNED(halfwidth, 32)) { + MergeUVRow_ = MergeUVRow_AVX2; + } + } +#endif +#if defined(HAS_MERGEUVROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + MergeUVRow_ = MergeUVRow_Any_NEON; + if (IS_ALIGNED(halfwidth, 16)) { + MergeUVRow_ = MergeUVRow_NEON; + } + } +#endif + { + // Allocate a rows of uv. + align_buffer_64(row_u, ((halfwidth + 31) & ~31) * 2); + uint8* row_v = row_u + ((halfwidth + 31) & ~31); + + for (y = 0; y < height - 1; y += 2) { + ARGBToUVRow(src_argb, src_stride_argb, row_u, row_v, width); + MergeUVRow_(row_u, row_v, dst_uv, halfwidth); + ARGBToYRow(src_argb, dst_y, width); + ARGBToYRow(src_argb + src_stride_argb, dst_y + dst_stride_y, width); + src_argb += src_stride_argb * 2; + dst_y += dst_stride_y * 2; + dst_uv += dst_stride_uv; + } + if (height & 1) { + ARGBToUVRow(src_argb, 0, row_u, row_v, width); + MergeUVRow_(row_u, row_v, dst_uv, halfwidth); + ARGBToYRow(src_argb, dst_y, width); + } + free_aligned_buffer_64(row_u); + } + return 0; +} + +// Same as NV12 but U and V swapped. +LIBYUV_API +int ARGBToNV21(const uint8* src_argb, int src_stride_argb, + uint8* dst_y, int dst_stride_y, + uint8* dst_uv, int dst_stride_uv, + int width, int height) { + int y; + int halfwidth = (width + 1) >> 1; + void (*ARGBToUVRow)(const uint8* src_argb0, int src_stride_argb, + uint8* dst_u, uint8* dst_v, int width) = ARGBToUVRow_C; + void (*ARGBToYRow)(const uint8* src_argb, uint8* dst_y, int width) = + ARGBToYRow_C; + void (*MergeUVRow_)(const uint8* src_u, const uint8* src_v, uint8* dst_uv, + int width) = MergeUVRow_C; + if (!src_argb || + !dst_y || !dst_uv || + width <= 0 || height == 0) { + return -1; + } + // Negative height means invert the image. + if (height < 0) { + height = -height; + src_argb = src_argb + (height - 1) * src_stride_argb; + src_stride_argb = -src_stride_argb; + } +#if defined(HAS_ARGBTOYROW_SSSE3) && defined(HAS_ARGBTOUVROW_SSSE3) + if (TestCpuFlag(kCpuHasSSSE3)) { + ARGBToUVRow = ARGBToUVRow_Any_SSSE3; + ARGBToYRow = ARGBToYRow_Any_SSSE3; + if (IS_ALIGNED(width, 16)) { + ARGBToUVRow = ARGBToUVRow_SSSE3; + ARGBToYRow = ARGBToYRow_SSSE3; + } + } +#endif +#if defined(HAS_ARGBTOYROW_AVX2) && defined(HAS_ARGBTOUVROW_AVX2) + if (TestCpuFlag(kCpuHasAVX2)) { + ARGBToUVRow = ARGBToUVRow_Any_AVX2; + ARGBToYRow = ARGBToYRow_Any_AVX2; + if (IS_ALIGNED(width, 32)) { + ARGBToUVRow = ARGBToUVRow_AVX2; + ARGBToYRow = ARGBToYRow_AVX2; + } + } +#endif +#if defined(HAS_ARGBTOYROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + ARGBToYRow = ARGBToYRow_Any_NEON; + if (IS_ALIGNED(width, 8)) { + ARGBToYRow = ARGBToYRow_NEON; + } + } +#endif +#if defined(HAS_ARGBTOUVROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + ARGBToUVRow = ARGBToUVRow_Any_NEON; + if (IS_ALIGNED(width, 16)) { + ARGBToUVRow = ARGBToUVRow_NEON; + } + } +#endif +#if defined(HAS_MERGEUVROW_SSE2) + if (TestCpuFlag(kCpuHasSSE2)) { + MergeUVRow_ = MergeUVRow_Any_SSE2; + if (IS_ALIGNED(halfwidth, 16)) { + MergeUVRow_ = MergeUVRow_SSE2; + } + } +#endif +#if defined(HAS_MERGEUVROW_AVX2) + if (TestCpuFlag(kCpuHasAVX2)) { + MergeUVRow_ = MergeUVRow_Any_AVX2; + if (IS_ALIGNED(halfwidth, 32)) { + MergeUVRow_ = MergeUVRow_AVX2; + } + } +#endif +#if defined(HAS_MERGEUVROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + MergeUVRow_ = MergeUVRow_Any_NEON; + if (IS_ALIGNED(halfwidth, 16)) { + MergeUVRow_ = MergeUVRow_NEON; + } + } +#endif + { + // Allocate a rows of uv. + align_buffer_64(row_u, ((halfwidth + 31) & ~31) * 2); + uint8* row_v = row_u + ((halfwidth + 31) & ~31); + + for (y = 0; y < height - 1; y += 2) { + ARGBToUVRow(src_argb, src_stride_argb, row_u, row_v, width); + MergeUVRow_(row_v, row_u, dst_uv, halfwidth); + ARGBToYRow(src_argb, dst_y, width); + ARGBToYRow(src_argb + src_stride_argb, dst_y + dst_stride_y, width); + src_argb += src_stride_argb * 2; + dst_y += dst_stride_y * 2; + dst_uv += dst_stride_uv; + } + if (height & 1) { + ARGBToUVRow(src_argb, 0, row_u, row_v, width); + MergeUVRow_(row_v, row_u, dst_uv, halfwidth); + ARGBToYRow(src_argb, dst_y, width); + } + free_aligned_buffer_64(row_u); + } + return 0; +} + +// Convert ARGB to YUY2. +LIBYUV_API +int ARGBToYUY2(const uint8* src_argb, int src_stride_argb, + uint8* dst_yuy2, int dst_stride_yuy2, + int width, int height) { + int y; + void (*ARGBToUVRow)(const uint8* src_argb, int src_stride_argb, + uint8* dst_u, uint8* dst_v, int width) = ARGBToUVRow_C; + void (*ARGBToYRow)(const uint8* src_argb, uint8* dst_y, int width) = + ARGBToYRow_C; + void (*I422ToYUY2Row)(const uint8* src_y, const uint8* src_u, + const uint8* src_v, uint8* dst_yuy2, int width) = I422ToYUY2Row_C; + + if (!src_argb || !dst_yuy2 || + width <= 0 || height == 0) { + return -1; + } + // Negative height means invert the image. + if (height < 0) { + height = -height; + dst_yuy2 = dst_yuy2 + (height - 1) * dst_stride_yuy2; + dst_stride_yuy2 = -dst_stride_yuy2; + } + // Coalesce rows. + if (src_stride_argb == width * 4 && + dst_stride_yuy2 == width * 2) { + width *= height; + height = 1; + src_stride_argb = dst_stride_yuy2 = 0; + } +#if defined(HAS_ARGBTOYROW_SSSE3) && defined(HAS_ARGBTOUVROW_SSSE3) + if (TestCpuFlag(kCpuHasSSSE3)) { + ARGBToUVRow = ARGBToUVRow_Any_SSSE3; + ARGBToYRow = ARGBToYRow_Any_SSSE3; + if (IS_ALIGNED(width, 16)) { + ARGBToUVRow = ARGBToUVRow_SSSE3; + ARGBToYRow = ARGBToYRow_SSSE3; + } + } +#endif +#if defined(HAS_ARGBTOYROW_AVX2) && defined(HAS_ARGBTOUVROW_AVX2) + if (TestCpuFlag(kCpuHasAVX2)) { + ARGBToUVRow = ARGBToUVRow_Any_AVX2; + ARGBToYRow = ARGBToYRow_Any_AVX2; + if (IS_ALIGNED(width, 32)) { + ARGBToUVRow = ARGBToUVRow_AVX2; + ARGBToYRow = ARGBToYRow_AVX2; + } + } +#endif +#if defined(HAS_ARGBTOYROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + ARGBToYRow = ARGBToYRow_Any_NEON; + if (IS_ALIGNED(width, 8)) { + ARGBToYRow = ARGBToYRow_NEON; + } + } +#endif +#if defined(HAS_ARGBTOUVROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + ARGBToUVRow = ARGBToUVRow_Any_NEON; + if (IS_ALIGNED(width, 16)) { + ARGBToUVRow = ARGBToUVRow_NEON; + } + } +#endif +#if defined(HAS_I422TOYUY2ROW_SSE2) + if (TestCpuFlag(kCpuHasSSE2)) { + I422ToYUY2Row = I422ToYUY2Row_Any_SSE2; + if (IS_ALIGNED(width, 16)) { + I422ToYUY2Row = I422ToYUY2Row_SSE2; + } + } +#endif +#if defined(HAS_I422TOYUY2ROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + I422ToYUY2Row = I422ToYUY2Row_Any_NEON; + if (IS_ALIGNED(width, 16)) { + I422ToYUY2Row = I422ToYUY2Row_NEON; + } + } +#endif + + { + // Allocate a rows of yuv. + align_buffer_64(row_y, ((width + 63) & ~63) * 2); + uint8* row_u = row_y + ((width + 63) & ~63); + uint8* row_v = row_u + ((width + 63) & ~63) / 2; + + for (y = 0; y < height; ++y) { + ARGBToUVRow(src_argb, 0, row_u, row_v, width); + ARGBToYRow(src_argb, row_y, width); + I422ToYUY2Row(row_y, row_u, row_v, dst_yuy2, width); + src_argb += src_stride_argb; + dst_yuy2 += dst_stride_yuy2; + } + + free_aligned_buffer_64(row_y); + } + return 0; +} + +// Convert ARGB to UYVY. +LIBYUV_API +int ARGBToUYVY(const uint8* src_argb, int src_stride_argb, + uint8* dst_uyvy, int dst_stride_uyvy, + int width, int height) { + int y; + void (*ARGBToUVRow)(const uint8* src_argb, int src_stride_argb, + uint8* dst_u, uint8* dst_v, int width) = ARGBToUVRow_C; + void (*ARGBToYRow)(const uint8* src_argb, uint8* dst_y, int width) = + ARGBToYRow_C; + void (*I422ToUYVYRow)(const uint8* src_y, const uint8* src_u, + const uint8* src_v, uint8* dst_uyvy, int width) = I422ToUYVYRow_C; + + if (!src_argb || !dst_uyvy || + width <= 0 || height == 0) { + return -1; + } + // Negative height means invert the image. + if (height < 0) { + height = -height; + dst_uyvy = dst_uyvy + (height - 1) * dst_stride_uyvy; + dst_stride_uyvy = -dst_stride_uyvy; + } + // Coalesce rows. + if (src_stride_argb == width * 4 && + dst_stride_uyvy == width * 2) { + width *= height; + height = 1; + src_stride_argb = dst_stride_uyvy = 0; + } +#if defined(HAS_ARGBTOYROW_SSSE3) && defined(HAS_ARGBTOUVROW_SSSE3) + if (TestCpuFlag(kCpuHasSSSE3)) { + ARGBToUVRow = ARGBToUVRow_Any_SSSE3; + ARGBToYRow = ARGBToYRow_Any_SSSE3; + if (IS_ALIGNED(width, 16)) { + ARGBToUVRow = ARGBToUVRow_SSSE3; + ARGBToYRow = ARGBToYRow_SSSE3; + } + } +#endif +#if defined(HAS_ARGBTOYROW_AVX2) && defined(HAS_ARGBTOUVROW_AVX2) + if (TestCpuFlag(kCpuHasAVX2)) { + ARGBToUVRow = ARGBToUVRow_Any_AVX2; + ARGBToYRow = ARGBToYRow_Any_AVX2; + if (IS_ALIGNED(width, 32)) { + ARGBToUVRow = ARGBToUVRow_AVX2; + ARGBToYRow = ARGBToYRow_AVX2; + } + } +#endif +#if defined(HAS_ARGBTOYROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + ARGBToYRow = ARGBToYRow_Any_NEON; + if (IS_ALIGNED(width, 8)) { + ARGBToYRow = ARGBToYRow_NEON; + } + } +#endif +#if defined(HAS_ARGBTOUVROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + ARGBToUVRow = ARGBToUVRow_Any_NEON; + if (IS_ALIGNED(width, 16)) { + ARGBToUVRow = ARGBToUVRow_NEON; + } + } +#endif +#if defined(HAS_I422TOUYVYROW_SSE2) + if (TestCpuFlag(kCpuHasSSE2)) { + I422ToUYVYRow = I422ToUYVYRow_Any_SSE2; + if (IS_ALIGNED(width, 16)) { + I422ToUYVYRow = I422ToUYVYRow_SSE2; + } + } +#endif +#if defined(HAS_I422TOUYVYROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + I422ToUYVYRow = I422ToUYVYRow_Any_NEON; + if (IS_ALIGNED(width, 16)) { + I422ToUYVYRow = I422ToUYVYRow_NEON; + } + } +#endif + + { + // Allocate a rows of yuv. + align_buffer_64(row_y, ((width + 63) & ~63) * 2); + uint8* row_u = row_y + ((width + 63) & ~63); + uint8* row_v = row_u + ((width + 63) & ~63) / 2; + + for (y = 0; y < height; ++y) { + ARGBToUVRow(src_argb, 0, row_u, row_v, width); + ARGBToYRow(src_argb, row_y, width); + I422ToUYVYRow(row_y, row_u, row_v, dst_uyvy, width); + src_argb += src_stride_argb; + dst_uyvy += dst_stride_uyvy; + } + + free_aligned_buffer_64(row_y); + } + return 0; +} + +// Convert ARGB to I400. +LIBYUV_API +int ARGBToI400(const uint8* src_argb, int src_stride_argb, + uint8* dst_y, int dst_stride_y, + int width, int height) { + int y; + void (*ARGBToYRow)(const uint8* src_argb, uint8* dst_y, int width) = + ARGBToYRow_C; + if (!src_argb || !dst_y || width <= 0 || height == 0) { + return -1; + } + if (height < 0) { + height = -height; + src_argb = src_argb + (height - 1) * src_stride_argb; + src_stride_argb = -src_stride_argb; + } + // Coalesce rows. + if (src_stride_argb == width * 4 && + dst_stride_y == width) { + width *= height; + height = 1; + src_stride_argb = dst_stride_y = 0; + } +#if defined(HAS_ARGBTOYROW_SSSE3) + if (TestCpuFlag(kCpuHasSSSE3)) { + ARGBToYRow = ARGBToYRow_Any_SSSE3; + if (IS_ALIGNED(width, 16)) { + ARGBToYRow = ARGBToYRow_SSSE3; + } + } +#endif +#if defined(HAS_ARGBTOYROW_AVX2) + if (TestCpuFlag(kCpuHasAVX2)) { + ARGBToYRow = ARGBToYRow_Any_AVX2; + if (IS_ALIGNED(width, 32)) { + ARGBToYRow = ARGBToYRow_AVX2; + } + } +#endif +#if defined(HAS_ARGBTOYROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + ARGBToYRow = ARGBToYRow_Any_NEON; + if (IS_ALIGNED(width, 8)) { + ARGBToYRow = ARGBToYRow_NEON; + } + } +#endif + + for (y = 0; y < height; ++y) { + ARGBToYRow(src_argb, dst_y, width); + src_argb += src_stride_argb; + dst_y += dst_stride_y; + } + return 0; +} + +// Shuffle table for converting ARGB to RGBA. +static uvec8 kShuffleMaskARGBToRGBA = { + 3u, 0u, 1u, 2u, 7u, 4u, 5u, 6u, 11u, 8u, 9u, 10u, 15u, 12u, 13u, 14u +}; + +// Convert ARGB to RGBA. +LIBYUV_API +int ARGBToRGBA(const uint8* src_argb, int src_stride_argb, + uint8* dst_rgba, int dst_stride_rgba, + int width, int height) { + return ARGBShuffle(src_argb, src_stride_argb, + dst_rgba, dst_stride_rgba, + (const uint8*)(&kShuffleMaskARGBToRGBA), + width, height); +} + +// Convert ARGB To RGB24. +LIBYUV_API +int ARGBToRGB24(const uint8* src_argb, int src_stride_argb, + uint8* dst_rgb24, int dst_stride_rgb24, + int width, int height) { + int y; + void (*ARGBToRGB24Row)(const uint8* src_argb, uint8* dst_rgb, int width) = + ARGBToRGB24Row_C; + if (!src_argb || !dst_rgb24 || width <= 0 || height == 0) { + return -1; + } + if (height < 0) { + height = -height; + src_argb = src_argb + (height - 1) * src_stride_argb; + src_stride_argb = -src_stride_argb; + } + // Coalesce rows. + if (src_stride_argb == width * 4 && + dst_stride_rgb24 == width * 3) { + width *= height; + height = 1; + src_stride_argb = dst_stride_rgb24 = 0; + } +#if defined(HAS_ARGBTORGB24ROW_SSSE3) + if (TestCpuFlag(kCpuHasSSSE3)) { + ARGBToRGB24Row = ARGBToRGB24Row_Any_SSSE3; + if (IS_ALIGNED(width, 16)) { + ARGBToRGB24Row = ARGBToRGB24Row_SSSE3; + } + } +#endif +#if defined(HAS_ARGBTORGB24ROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + ARGBToRGB24Row = ARGBToRGB24Row_Any_NEON; + if (IS_ALIGNED(width, 8)) { + ARGBToRGB24Row = ARGBToRGB24Row_NEON; + } + } +#endif + + for (y = 0; y < height; ++y) { + ARGBToRGB24Row(src_argb, dst_rgb24, width); + src_argb += src_stride_argb; + dst_rgb24 += dst_stride_rgb24; + } + return 0; +} + +// Convert ARGB To RAW. +LIBYUV_API +int ARGBToRAW(const uint8* src_argb, int src_stride_argb, + uint8* dst_raw, int dst_stride_raw, + int width, int height) { + int y; + void (*ARGBToRAWRow)(const uint8* src_argb, uint8* dst_rgb, int width) = + ARGBToRAWRow_C; + if (!src_argb || !dst_raw || width <= 0 || height == 0) { + return -1; + } + if (height < 0) { + height = -height; + src_argb = src_argb + (height - 1) * src_stride_argb; + src_stride_argb = -src_stride_argb; + } + // Coalesce rows. + if (src_stride_argb == width * 4 && + dst_stride_raw == width * 3) { + width *= height; + height = 1; + src_stride_argb = dst_stride_raw = 0; + } +#if defined(HAS_ARGBTORAWROW_SSSE3) + if (TestCpuFlag(kCpuHasSSSE3)) { + ARGBToRAWRow = ARGBToRAWRow_Any_SSSE3; + if (IS_ALIGNED(width, 16)) { + ARGBToRAWRow = ARGBToRAWRow_SSSE3; + } + } +#endif +#if defined(HAS_ARGBTORAWROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + ARGBToRAWRow = ARGBToRAWRow_Any_NEON; + if (IS_ALIGNED(width, 8)) { + ARGBToRAWRow = ARGBToRAWRow_NEON; + } + } +#endif + + for (y = 0; y < height; ++y) { + ARGBToRAWRow(src_argb, dst_raw, width); + src_argb += src_stride_argb; + dst_raw += dst_stride_raw; + } + return 0; +} + +// Ordered 8x8 dither for 888 to 565. Values from 0 to 7. +static const uint8 kDither565_4x4[16] = { + 0, 4, 1, 5, + 6, 2, 7, 3, + 1, 5, 0, 4, + 7, 3, 6, 2, +}; + +// Convert ARGB To RGB565 with 4x4 dither matrix (16 bytes). +LIBYUV_API +int ARGBToRGB565Dither(const uint8* src_argb, int src_stride_argb, + uint8* dst_rgb565, int dst_stride_rgb565, + const uint8* dither4x4, int width, int height) { + int y; + void (*ARGBToRGB565DitherRow)(const uint8* src_argb, uint8* dst_rgb, + const uint32 dither4, int width) = ARGBToRGB565DitherRow_C; + if (!src_argb || !dst_rgb565 || width <= 0 || height == 0) { + return -1; + } + if (height < 0) { + height = -height; + src_argb = src_argb + (height - 1) * src_stride_argb; + src_stride_argb = -src_stride_argb; + } + if (!dither4x4) { + dither4x4 = kDither565_4x4; + } +#if defined(HAS_ARGBTORGB565DITHERROW_SSE2) + if (TestCpuFlag(kCpuHasSSE2)) { + ARGBToRGB565DitherRow = ARGBToRGB565DitherRow_Any_SSE2; + if (IS_ALIGNED(width, 4)) { + ARGBToRGB565DitherRow = ARGBToRGB565DitherRow_SSE2; + } + } +#endif +#if defined(HAS_ARGBTORGB565DITHERROW_AVX2) + if (TestCpuFlag(kCpuHasAVX2)) { + ARGBToRGB565DitherRow = ARGBToRGB565DitherRow_Any_AVX2; + if (IS_ALIGNED(width, 8)) { + ARGBToRGB565DitherRow = ARGBToRGB565DitherRow_AVX2; + } + } +#endif +#if defined(HAS_ARGBTORGB565DITHERROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + ARGBToRGB565DitherRow = ARGBToRGB565DitherRow_Any_NEON; + if (IS_ALIGNED(width, 8)) { + ARGBToRGB565DitherRow = ARGBToRGB565DitherRow_NEON; + } + } +#endif + for (y = 0; y < height; ++y) { + ARGBToRGB565DitherRow(src_argb, dst_rgb565, + *(uint32*)(dither4x4 + ((y & 3) << 2)), width); + src_argb += src_stride_argb; + dst_rgb565 += dst_stride_rgb565; + } + return 0; +} + +// Convert ARGB To RGB565. +// TODO(fbarchard): Consider using dither function low level with zeros. +LIBYUV_API +int ARGBToRGB565(const uint8* src_argb, int src_stride_argb, + uint8* dst_rgb565, int dst_stride_rgb565, + int width, int height) { + int y; + void (*ARGBToRGB565Row)(const uint8* src_argb, uint8* dst_rgb, int width) = + ARGBToRGB565Row_C; + if (!src_argb || !dst_rgb565 || width <= 0 || height == 0) { + return -1; + } + if (height < 0) { + height = -height; + src_argb = src_argb + (height - 1) * src_stride_argb; + src_stride_argb = -src_stride_argb; + } + // Coalesce rows. + if (src_stride_argb == width * 4 && + dst_stride_rgb565 == width * 2) { + width *= height; + height = 1; + src_stride_argb = dst_stride_rgb565 = 0; + } +#if defined(HAS_ARGBTORGB565ROW_SSE2) + if (TestCpuFlag(kCpuHasSSE2)) { + ARGBToRGB565Row = ARGBToRGB565Row_Any_SSE2; + if (IS_ALIGNED(width, 4)) { + ARGBToRGB565Row = ARGBToRGB565Row_SSE2; + } + } +#endif +#if defined(HAS_ARGBTORGB565ROW_AVX2) + if (TestCpuFlag(kCpuHasAVX2)) { + ARGBToRGB565Row = ARGBToRGB565Row_Any_AVX2; + if (IS_ALIGNED(width, 8)) { + ARGBToRGB565Row = ARGBToRGB565Row_AVX2; + } + } +#endif +#if defined(HAS_ARGBTORGB565ROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + ARGBToRGB565Row = ARGBToRGB565Row_Any_NEON; + if (IS_ALIGNED(width, 8)) { + ARGBToRGB565Row = ARGBToRGB565Row_NEON; + } + } +#endif + + for (y = 0; y < height; ++y) { + ARGBToRGB565Row(src_argb, dst_rgb565, width); + src_argb += src_stride_argb; + dst_rgb565 += dst_stride_rgb565; + } + return 0; +} + +// Convert ARGB To ARGB1555. +LIBYUV_API +int ARGBToARGB1555(const uint8* src_argb, int src_stride_argb, + uint8* dst_argb1555, int dst_stride_argb1555, + int width, int height) { + int y; + void (*ARGBToARGB1555Row)(const uint8* src_argb, uint8* dst_rgb, int width) = + ARGBToARGB1555Row_C; + if (!src_argb || !dst_argb1555 || width <= 0 || height == 0) { + return -1; + } + if (height < 0) { + height = -height; + src_argb = src_argb + (height - 1) * src_stride_argb; + src_stride_argb = -src_stride_argb; + } + // Coalesce rows. + if (src_stride_argb == width * 4 && + dst_stride_argb1555 == width * 2) { + width *= height; + height = 1; + src_stride_argb = dst_stride_argb1555 = 0; + } +#if defined(HAS_ARGBTOARGB1555ROW_SSE2) + if (TestCpuFlag(kCpuHasSSE2)) { + ARGBToARGB1555Row = ARGBToARGB1555Row_Any_SSE2; + if (IS_ALIGNED(width, 4)) { + ARGBToARGB1555Row = ARGBToARGB1555Row_SSE2; + } + } +#endif +#if defined(HAS_ARGBTOARGB1555ROW_AVX2) + if (TestCpuFlag(kCpuHasAVX2)) { + ARGBToARGB1555Row = ARGBToARGB1555Row_Any_AVX2; + if (IS_ALIGNED(width, 8)) { + ARGBToARGB1555Row = ARGBToARGB1555Row_AVX2; + } + } +#endif +#if defined(HAS_ARGBTOARGB1555ROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + ARGBToARGB1555Row = ARGBToARGB1555Row_Any_NEON; + if (IS_ALIGNED(width, 8)) { + ARGBToARGB1555Row = ARGBToARGB1555Row_NEON; + } + } +#endif + + for (y = 0; y < height; ++y) { + ARGBToARGB1555Row(src_argb, dst_argb1555, width); + src_argb += src_stride_argb; + dst_argb1555 += dst_stride_argb1555; + } + return 0; +} + +// Convert ARGB To ARGB4444. +LIBYUV_API +int ARGBToARGB4444(const uint8* src_argb, int src_stride_argb, + uint8* dst_argb4444, int dst_stride_argb4444, + int width, int height) { + int y; + void (*ARGBToARGB4444Row)(const uint8* src_argb, uint8* dst_rgb, int width) = + ARGBToARGB4444Row_C; + if (!src_argb || !dst_argb4444 || width <= 0 || height == 0) { + return -1; + } + if (height < 0) { + height = -height; + src_argb = src_argb + (height - 1) * src_stride_argb; + src_stride_argb = -src_stride_argb; + } + // Coalesce rows. + if (src_stride_argb == width * 4 && + dst_stride_argb4444 == width * 2) { + width *= height; + height = 1; + src_stride_argb = dst_stride_argb4444 = 0; + } +#if defined(HAS_ARGBTOARGB4444ROW_SSE2) + if (TestCpuFlag(kCpuHasSSE2)) { + ARGBToARGB4444Row = ARGBToARGB4444Row_Any_SSE2; + if (IS_ALIGNED(width, 4)) { + ARGBToARGB4444Row = ARGBToARGB4444Row_SSE2; + } + } +#endif +#if defined(HAS_ARGBTOARGB4444ROW_AVX2) + if (TestCpuFlag(kCpuHasAVX2)) { + ARGBToARGB4444Row = ARGBToARGB4444Row_Any_AVX2; + if (IS_ALIGNED(width, 8)) { + ARGBToARGB4444Row = ARGBToARGB4444Row_AVX2; + } + } +#endif +#if defined(HAS_ARGBTOARGB4444ROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + ARGBToARGB4444Row = ARGBToARGB4444Row_Any_NEON; + if (IS_ALIGNED(width, 8)) { + ARGBToARGB4444Row = ARGBToARGB4444Row_NEON; + } + } +#endif + + for (y = 0; y < height; ++y) { + ARGBToARGB4444Row(src_argb, dst_argb4444, width); + src_argb += src_stride_argb; + dst_argb4444 += dst_stride_argb4444; + } + return 0; +} + +// Convert ARGB to J420. (JPeg full range I420). +LIBYUV_API +int ARGBToJ420(const uint8* src_argb, int src_stride_argb, + uint8* dst_yj, int dst_stride_yj, + uint8* dst_u, int dst_stride_u, + uint8* dst_v, int dst_stride_v, + int width, int height) { + int y; + void (*ARGBToUVJRow)(const uint8* src_argb0, int src_stride_argb, + uint8* dst_u, uint8* dst_v, int width) = ARGBToUVJRow_C; + void (*ARGBToYJRow)(const uint8* src_argb, uint8* dst_yj, int width) = + ARGBToYJRow_C; + if (!src_argb || + !dst_yj || !dst_u || !dst_v || + width <= 0 || height == 0) { + return -1; + } + // Negative height means invert the image. + if (height < 0) { + height = -height; + src_argb = src_argb + (height - 1) * src_stride_argb; + src_stride_argb = -src_stride_argb; + } +#if defined(HAS_ARGBTOYJROW_SSSE3) && defined(HAS_ARGBTOUVJROW_SSSE3) + if (TestCpuFlag(kCpuHasSSSE3)) { + ARGBToUVJRow = ARGBToUVJRow_Any_SSSE3; + ARGBToYJRow = ARGBToYJRow_Any_SSSE3; + if (IS_ALIGNED(width, 16)) { + ARGBToUVJRow = ARGBToUVJRow_SSSE3; + ARGBToYJRow = ARGBToYJRow_SSSE3; + } + } +#endif +#if defined(HAS_ARGBTOYJROW_AVX2) + if (TestCpuFlag(kCpuHasAVX2)) { + ARGBToYJRow = ARGBToYJRow_Any_AVX2; + if (IS_ALIGNED(width, 32)) { + ARGBToYJRow = ARGBToYJRow_AVX2; + } + } +#endif +#if defined(HAS_ARGBTOYJROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + ARGBToYJRow = ARGBToYJRow_Any_NEON; + if (IS_ALIGNED(width, 8)) { + ARGBToYJRow = ARGBToYJRow_NEON; + } + } +#endif +#if defined(HAS_ARGBTOUVJROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + ARGBToUVJRow = ARGBToUVJRow_Any_NEON; + if (IS_ALIGNED(width, 16)) { + ARGBToUVJRow = ARGBToUVJRow_NEON; + } + } +#endif + + for (y = 0; y < height - 1; y += 2) { + ARGBToUVJRow(src_argb, src_stride_argb, dst_u, dst_v, width); + ARGBToYJRow(src_argb, dst_yj, width); + ARGBToYJRow(src_argb + src_stride_argb, dst_yj + dst_stride_yj, width); + src_argb += src_stride_argb * 2; + dst_yj += dst_stride_yj * 2; + dst_u += dst_stride_u; + dst_v += dst_stride_v; + } + if (height & 1) { + ARGBToUVJRow(src_argb, 0, dst_u, dst_v, width); + ARGBToYJRow(src_argb, dst_yj, width); + } + return 0; +} + +// Convert ARGB to J422. (JPeg full range I422). +LIBYUV_API +int ARGBToJ422(const uint8* src_argb, int src_stride_argb, + uint8* dst_yj, int dst_stride_yj, + uint8* dst_u, int dst_stride_u, + uint8* dst_v, int dst_stride_v, + int width, int height) { + int y; + void (*ARGBToUVJRow)(const uint8* src_argb0, int src_stride_argb, + uint8* dst_u, uint8* dst_v, int width) = ARGBToUVJRow_C; + void (*ARGBToYJRow)(const uint8* src_argb, uint8* dst_yj, int width) = + ARGBToYJRow_C; + if (!src_argb || + !dst_yj || !dst_u || !dst_v || + width <= 0 || height == 0) { + return -1; + } + // Negative height means invert the image. + if (height < 0) { + height = -height; + src_argb = src_argb + (height - 1) * src_stride_argb; + src_stride_argb = -src_stride_argb; + } + // Coalesce rows. + if (src_stride_argb == width * 4 && + dst_stride_yj == width && + dst_stride_u * 2 == width && + dst_stride_v * 2 == width) { + width *= height; + height = 1; + src_stride_argb = dst_stride_yj = dst_stride_u = dst_stride_v = 0; + } +#if defined(HAS_ARGBTOYJROW_SSSE3) && defined(HAS_ARGBTOUVJROW_SSSE3) + if (TestCpuFlag(kCpuHasSSSE3)) { + ARGBToUVJRow = ARGBToUVJRow_Any_SSSE3; + ARGBToYJRow = ARGBToYJRow_Any_SSSE3; + if (IS_ALIGNED(width, 16)) { + ARGBToUVJRow = ARGBToUVJRow_SSSE3; + ARGBToYJRow = ARGBToYJRow_SSSE3; + } + } +#endif +#if defined(HAS_ARGBTOYJROW_AVX2) + if (TestCpuFlag(kCpuHasAVX2)) { + ARGBToYJRow = ARGBToYJRow_Any_AVX2; + if (IS_ALIGNED(width, 32)) { + ARGBToYJRow = ARGBToYJRow_AVX2; + } + } +#endif +#if defined(HAS_ARGBTOYJROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + ARGBToYJRow = ARGBToYJRow_Any_NEON; + if (IS_ALIGNED(width, 8)) { + ARGBToYJRow = ARGBToYJRow_NEON; + } + } +#endif +#if defined(HAS_ARGBTOUVJROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + ARGBToUVJRow = ARGBToUVJRow_Any_NEON; + if (IS_ALIGNED(width, 16)) { + ARGBToUVJRow = ARGBToUVJRow_NEON; + } + } +#endif + + for (y = 0; y < height; ++y) { + ARGBToUVJRow(src_argb, 0, dst_u, dst_v, width); + ARGBToYJRow(src_argb, dst_yj, width); + src_argb += src_stride_argb; + dst_yj += dst_stride_yj; + dst_u += dst_stride_u; + dst_v += dst_stride_v; + } + return 0; +} + +// Convert ARGB to J400. +LIBYUV_API +int ARGBToJ400(const uint8* src_argb, int src_stride_argb, + uint8* dst_yj, int dst_stride_yj, + int width, int height) { + int y; + void (*ARGBToYJRow)(const uint8* src_argb, uint8* dst_yj, int width) = + ARGBToYJRow_C; + if (!src_argb || !dst_yj || width <= 0 || height == 0) { + return -1; + } + if (height < 0) { + height = -height; + src_argb = src_argb + (height - 1) * src_stride_argb; + src_stride_argb = -src_stride_argb; + } + // Coalesce rows. + if (src_stride_argb == width * 4 && + dst_stride_yj == width) { + width *= height; + height = 1; + src_stride_argb = dst_stride_yj = 0; + } +#if defined(HAS_ARGBTOYJROW_SSSE3) + if (TestCpuFlag(kCpuHasSSSE3)) { + ARGBToYJRow = ARGBToYJRow_Any_SSSE3; + if (IS_ALIGNED(width, 16)) { + ARGBToYJRow = ARGBToYJRow_SSSE3; + } + } +#endif +#if defined(HAS_ARGBTOYJROW_AVX2) + if (TestCpuFlag(kCpuHasAVX2)) { + ARGBToYJRow = ARGBToYJRow_Any_AVX2; + if (IS_ALIGNED(width, 32)) { + ARGBToYJRow = ARGBToYJRow_AVX2; + } + } +#endif +#if defined(HAS_ARGBTOYJROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + ARGBToYJRow = ARGBToYJRow_Any_NEON; + if (IS_ALIGNED(width, 8)) { + ARGBToYJRow = ARGBToYJRow_NEON; + } + } +#endif + + for (y = 0; y < height; ++y) { + ARGBToYJRow(src_argb, dst_yj, width); + src_argb += src_stride_argb; + dst_yj += dst_stride_yj; + } + return 0; +} + +#ifdef __cplusplus +} // extern "C" +} // namespace libyuv +#endif diff --git a/third_party/libyuv/source/convert_jpeg.cc b/third_party/libyuv/source/convert_jpeg.cc new file mode 100644 index 0000000..90f550a --- /dev/null +++ b/third_party/libyuv/source/convert_jpeg.cc @@ -0,0 +1,393 @@ +/* + * Copyright 2011 The LibYuv Project Authors. All rights reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "libyuv/convert.h" +#include "libyuv/convert_argb.h" + +#ifdef HAVE_JPEG +#include "libyuv/mjpeg_decoder.h" +#endif + +#ifdef __cplusplus +namespace libyuv { +extern "C" { +#endif + +#ifdef HAVE_JPEG +struct I420Buffers { + uint8* y; + int y_stride; + uint8* u; + int u_stride; + uint8* v; + int v_stride; + int w; + int h; +}; + +static void JpegCopyI420(void* opaque, + const uint8* const* data, + const int* strides, + int rows) { + I420Buffers* dest = (I420Buffers*)(opaque); + I420Copy(data[0], strides[0], + data[1], strides[1], + data[2], strides[2], + dest->y, dest->y_stride, + dest->u, dest->u_stride, + dest->v, dest->v_stride, + dest->w, rows); + dest->y += rows * dest->y_stride; + dest->u += ((rows + 1) >> 1) * dest->u_stride; + dest->v += ((rows + 1) >> 1) * dest->v_stride; + dest->h -= rows; +} + +static void JpegI422ToI420(void* opaque, + const uint8* const* data, + const int* strides, + int rows) { + I420Buffers* dest = (I420Buffers*)(opaque); + I422ToI420(data[0], strides[0], + data[1], strides[1], + data[2], strides[2], + dest->y, dest->y_stride, + dest->u, dest->u_stride, + dest->v, dest->v_stride, + dest->w, rows); + dest->y += rows * dest->y_stride; + dest->u += ((rows + 1) >> 1) * dest->u_stride; + dest->v += ((rows + 1) >> 1) * dest->v_stride; + dest->h -= rows; +} + +static void JpegI444ToI420(void* opaque, + const uint8* const* data, + const int* strides, + int rows) { + I420Buffers* dest = (I420Buffers*)(opaque); + I444ToI420(data[0], strides[0], + data[1], strides[1], + data[2], strides[2], + dest->y, dest->y_stride, + dest->u, dest->u_stride, + dest->v, dest->v_stride, + dest->w, rows); + dest->y += rows * dest->y_stride; + dest->u += ((rows + 1) >> 1) * dest->u_stride; + dest->v += ((rows + 1) >> 1) * dest->v_stride; + dest->h -= rows; +} + +static void JpegI411ToI420(void* opaque, + const uint8* const* data, + const int* strides, + int rows) { + I420Buffers* dest = (I420Buffers*)(opaque); + I411ToI420(data[0], strides[0], + data[1], strides[1], + data[2], strides[2], + dest->y, dest->y_stride, + dest->u, dest->u_stride, + dest->v, dest->v_stride, + dest->w, rows); + dest->y += rows * dest->y_stride; + dest->u += ((rows + 1) >> 1) * dest->u_stride; + dest->v += ((rows + 1) >> 1) * dest->v_stride; + dest->h -= rows; +} + +static void JpegI400ToI420(void* opaque, + const uint8* const* data, + const int* strides, + int rows) { + I420Buffers* dest = (I420Buffers*)(opaque); + I400ToI420(data[0], strides[0], + dest->y, dest->y_stride, + dest->u, dest->u_stride, + dest->v, dest->v_stride, + dest->w, rows); + dest->y += rows * dest->y_stride; + dest->u += ((rows + 1) >> 1) * dest->u_stride; + dest->v += ((rows + 1) >> 1) * dest->v_stride; + dest->h -= rows; +} + +// Query size of MJPG in pixels. +LIBYUV_API +int MJPGSize(const uint8* sample, size_t sample_size, + int* width, int* height) { + MJpegDecoder mjpeg_decoder; + LIBYUV_BOOL ret = mjpeg_decoder.LoadFrame(sample, sample_size); + if (ret) { + *width = mjpeg_decoder.GetWidth(); + *height = mjpeg_decoder.GetHeight(); + } + mjpeg_decoder.UnloadFrame(); + return ret ? 0 : -1; // -1 for runtime failure. +} + +// MJPG (Motion JPeg) to I420 +// TODO(fbarchard): review w and h requirement. dw and dh may be enough. +LIBYUV_API +int MJPGToI420(const uint8* sample, + size_t sample_size, + uint8* y, int y_stride, + uint8* u, int u_stride, + uint8* v, int v_stride, + int w, int h, + int dw, int dh) { + if (sample_size == kUnknownDataSize) { + // ERROR: MJPEG frame size unknown + return -1; + } + + // TODO(fbarchard): Port MJpeg to C. + MJpegDecoder mjpeg_decoder; + LIBYUV_BOOL ret = mjpeg_decoder.LoadFrame(sample, sample_size); + if (ret && (mjpeg_decoder.GetWidth() != w || + mjpeg_decoder.GetHeight() != h)) { + // ERROR: MJPEG frame has unexpected dimensions + mjpeg_decoder.UnloadFrame(); + return 1; // runtime failure + } + if (ret) { + I420Buffers bufs = { y, y_stride, u, u_stride, v, v_stride, dw, dh }; + // YUV420 + if (mjpeg_decoder.GetColorSpace() == + MJpegDecoder::kColorSpaceYCbCr && + mjpeg_decoder.GetNumComponents() == 3 && + mjpeg_decoder.GetVertSampFactor(0) == 2 && + mjpeg_decoder.GetHorizSampFactor(0) == 2 && + mjpeg_decoder.GetVertSampFactor(1) == 1 && + mjpeg_decoder.GetHorizSampFactor(1) == 1 && + mjpeg_decoder.GetVertSampFactor(2) == 1 && + mjpeg_decoder.GetHorizSampFactor(2) == 1) { + ret = mjpeg_decoder.DecodeToCallback(&JpegCopyI420, &bufs, dw, dh); + // YUV422 + } else if (mjpeg_decoder.GetColorSpace() == + MJpegDecoder::kColorSpaceYCbCr && + mjpeg_decoder.GetNumComponents() == 3 && + mjpeg_decoder.GetVertSampFactor(0) == 1 && + mjpeg_decoder.GetHorizSampFactor(0) == 2 && + mjpeg_decoder.GetVertSampFactor(1) == 1 && + mjpeg_decoder.GetHorizSampFactor(1) == 1 && + mjpeg_decoder.GetVertSampFactor(2) == 1 && + mjpeg_decoder.GetHorizSampFactor(2) == 1) { + ret = mjpeg_decoder.DecodeToCallback(&JpegI422ToI420, &bufs, dw, dh); + // YUV444 + } else if (mjpeg_decoder.GetColorSpace() == + MJpegDecoder::kColorSpaceYCbCr && + mjpeg_decoder.GetNumComponents() == 3 && + mjpeg_decoder.GetVertSampFactor(0) == 1 && + mjpeg_decoder.GetHorizSampFactor(0) == 1 && + mjpeg_decoder.GetVertSampFactor(1) == 1 && + mjpeg_decoder.GetHorizSampFactor(1) == 1 && + mjpeg_decoder.GetVertSampFactor(2) == 1 && + mjpeg_decoder.GetHorizSampFactor(2) == 1) { + ret = mjpeg_decoder.DecodeToCallback(&JpegI444ToI420, &bufs, dw, dh); + // YUV411 + } else if (mjpeg_decoder.GetColorSpace() == + MJpegDecoder::kColorSpaceYCbCr && + mjpeg_decoder.GetNumComponents() == 3 && + mjpeg_decoder.GetVertSampFactor(0) == 1 && + mjpeg_decoder.GetHorizSampFactor(0) == 4 && + mjpeg_decoder.GetVertSampFactor(1) == 1 && + mjpeg_decoder.GetHorizSampFactor(1) == 1 && + mjpeg_decoder.GetVertSampFactor(2) == 1 && + mjpeg_decoder.GetHorizSampFactor(2) == 1) { + ret = mjpeg_decoder.DecodeToCallback(&JpegI411ToI420, &bufs, dw, dh); + // YUV400 + } else if (mjpeg_decoder.GetColorSpace() == + MJpegDecoder::kColorSpaceGrayscale && + mjpeg_decoder.GetNumComponents() == 1 && + mjpeg_decoder.GetVertSampFactor(0) == 1 && + mjpeg_decoder.GetHorizSampFactor(0) == 1) { + ret = mjpeg_decoder.DecodeToCallback(&JpegI400ToI420, &bufs, dw, dh); + } else { + // TODO(fbarchard): Implement conversion for any other colorspace/sample + // factors that occur in practice. 411 is supported by libjpeg + // ERROR: Unable to convert MJPEG frame because format is not supported + mjpeg_decoder.UnloadFrame(); + return 1; + } + } + return ret ? 0 : 1; +} + +#ifdef HAVE_JPEG +struct ARGBBuffers { + uint8* argb; + int argb_stride; + int w; + int h; +}; + +static void JpegI420ToARGB(void* opaque, + const uint8* const* data, + const int* strides, + int rows) { + ARGBBuffers* dest = (ARGBBuffers*)(opaque); + I420ToARGB(data[0], strides[0], + data[1], strides[1], + data[2], strides[2], + dest->argb, dest->argb_stride, + dest->w, rows); + dest->argb += rows * dest->argb_stride; + dest->h -= rows; +} + +static void JpegI422ToARGB(void* opaque, + const uint8* const* data, + const int* strides, + int rows) { + ARGBBuffers* dest = (ARGBBuffers*)(opaque); + I422ToARGB(data[0], strides[0], + data[1], strides[1], + data[2], strides[2], + dest->argb, dest->argb_stride, + dest->w, rows); + dest->argb += rows * dest->argb_stride; + dest->h -= rows; +} + +static void JpegI444ToARGB(void* opaque, + const uint8* const* data, + const int* strides, + int rows) { + ARGBBuffers* dest = (ARGBBuffers*)(opaque); + I444ToARGB(data[0], strides[0], + data[1], strides[1], + data[2], strides[2], + dest->argb, dest->argb_stride, + dest->w, rows); + dest->argb += rows * dest->argb_stride; + dest->h -= rows; +} + +static void JpegI411ToARGB(void* opaque, + const uint8* const* data, + const int* strides, + int rows) { + ARGBBuffers* dest = (ARGBBuffers*)(opaque); + I411ToARGB(data[0], strides[0], + data[1], strides[1], + data[2], strides[2], + dest->argb, dest->argb_stride, + dest->w, rows); + dest->argb += rows * dest->argb_stride; + dest->h -= rows; +} + +static void JpegI400ToARGB(void* opaque, + const uint8* const* data, + const int* strides, + int rows) { + ARGBBuffers* dest = (ARGBBuffers*)(opaque); + I400ToARGB(data[0], strides[0], + dest->argb, dest->argb_stride, + dest->w, rows); + dest->argb += rows * dest->argb_stride; + dest->h -= rows; +} + +// MJPG (Motion JPeg) to ARGB +// TODO(fbarchard): review w and h requirement. dw and dh may be enough. +LIBYUV_API +int MJPGToARGB(const uint8* sample, + size_t sample_size, + uint8* argb, int argb_stride, + int w, int h, + int dw, int dh) { + if (sample_size == kUnknownDataSize) { + // ERROR: MJPEG frame size unknown + return -1; + } + + // TODO(fbarchard): Port MJpeg to C. + MJpegDecoder mjpeg_decoder; + LIBYUV_BOOL ret = mjpeg_decoder.LoadFrame(sample, sample_size); + if (ret && (mjpeg_decoder.GetWidth() != w || + mjpeg_decoder.GetHeight() != h)) { + // ERROR: MJPEG frame has unexpected dimensions + mjpeg_decoder.UnloadFrame(); + return 1; // runtime failure + } + if (ret) { + ARGBBuffers bufs = { argb, argb_stride, dw, dh }; + // YUV420 + if (mjpeg_decoder.GetColorSpace() == + MJpegDecoder::kColorSpaceYCbCr && + mjpeg_decoder.GetNumComponents() == 3 && + mjpeg_decoder.GetVertSampFactor(0) == 2 && + mjpeg_decoder.GetHorizSampFactor(0) == 2 && + mjpeg_decoder.GetVertSampFactor(1) == 1 && + mjpeg_decoder.GetHorizSampFactor(1) == 1 && + mjpeg_decoder.GetVertSampFactor(2) == 1 && + mjpeg_decoder.GetHorizSampFactor(2) == 1) { + ret = mjpeg_decoder.DecodeToCallback(&JpegI420ToARGB, &bufs, dw, dh); + // YUV422 + } else if (mjpeg_decoder.GetColorSpace() == + MJpegDecoder::kColorSpaceYCbCr && + mjpeg_decoder.GetNumComponents() == 3 && + mjpeg_decoder.GetVertSampFactor(0) == 1 && + mjpeg_decoder.GetHorizSampFactor(0) == 2 && + mjpeg_decoder.GetVertSampFactor(1) == 1 && + mjpeg_decoder.GetHorizSampFactor(1) == 1 && + mjpeg_decoder.GetVertSampFactor(2) == 1 && + mjpeg_decoder.GetHorizSampFactor(2) == 1) { + ret = mjpeg_decoder.DecodeToCallback(&JpegI422ToARGB, &bufs, dw, dh); + // YUV444 + } else if (mjpeg_decoder.GetColorSpace() == + MJpegDecoder::kColorSpaceYCbCr && + mjpeg_decoder.GetNumComponents() == 3 && + mjpeg_decoder.GetVertSampFactor(0) == 1 && + mjpeg_decoder.GetHorizSampFactor(0) == 1 && + mjpeg_decoder.GetVertSampFactor(1) == 1 && + mjpeg_decoder.GetHorizSampFactor(1) == 1 && + mjpeg_decoder.GetVertSampFactor(2) == 1 && + mjpeg_decoder.GetHorizSampFactor(2) == 1) { + ret = mjpeg_decoder.DecodeToCallback(&JpegI444ToARGB, &bufs, dw, dh); + // YUV411 + } else if (mjpeg_decoder.GetColorSpace() == + MJpegDecoder::kColorSpaceYCbCr && + mjpeg_decoder.GetNumComponents() == 3 && + mjpeg_decoder.GetVertSampFactor(0) == 1 && + mjpeg_decoder.GetHorizSampFactor(0) == 4 && + mjpeg_decoder.GetVertSampFactor(1) == 1 && + mjpeg_decoder.GetHorizSampFactor(1) == 1 && + mjpeg_decoder.GetVertSampFactor(2) == 1 && + mjpeg_decoder.GetHorizSampFactor(2) == 1) { + ret = mjpeg_decoder.DecodeToCallback(&JpegI411ToARGB, &bufs, dw, dh); + // YUV400 + } else if (mjpeg_decoder.GetColorSpace() == + MJpegDecoder::kColorSpaceGrayscale && + mjpeg_decoder.GetNumComponents() == 1 && + mjpeg_decoder.GetVertSampFactor(0) == 1 && + mjpeg_decoder.GetHorizSampFactor(0) == 1) { + ret = mjpeg_decoder.DecodeToCallback(&JpegI400ToARGB, &bufs, dw, dh); + } else { + // TODO(fbarchard): Implement conversion for any other colorspace/sample + // factors that occur in practice. 411 is supported by libjpeg + // ERROR: Unable to convert MJPEG frame because format is not supported + mjpeg_decoder.UnloadFrame(); + return 1; + } + } + return ret ? 0 : 1; +} +#endif + +#endif + +#ifdef __cplusplus +} // extern "C" +} // namespace libyuv +#endif diff --git a/third_party/libyuv/source/convert_to_argb.cc b/third_party/libyuv/source/convert_to_argb.cc new file mode 100644 index 0000000..aecdc80 --- /dev/null +++ b/third_party/libyuv/source/convert_to_argb.cc @@ -0,0 +1,305 @@ +/* + * Copyright 2011 The LibYuv Project Authors. All rights reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "libyuv/convert_argb.h" + +#include "libyuv/cpu_id.h" +#ifdef HAVE_JPEG +#include "libyuv/mjpeg_decoder.h" +#endif +#include "libyuv/rotate_argb.h" +#include "libyuv/row.h" +#include "libyuv/video_common.h" + +#ifdef __cplusplus +namespace libyuv { +extern "C" { +#endif + +// Convert camera sample to ARGB with cropping, rotation and vertical flip. +// src_width is used for source stride computation +// src_height is used to compute location of planes, and indicate inversion +// sample_size is measured in bytes and is the size of the frame. +// With MJPEG it is the compressed size of the frame. +LIBYUV_API +int ConvertToARGB(const uint8* sample, size_t sample_size, + uint8* crop_argb, int argb_stride, + int crop_x, int crop_y, + int src_width, int src_height, + int crop_width, int crop_height, + enum RotationMode rotation, + uint32 fourcc) { + uint32 format = CanonicalFourCC(fourcc); + int aligned_src_width = (src_width + 1) & ~1; + const uint8* src; + const uint8* src_uv; + int abs_src_height = (src_height < 0) ? -src_height : src_height; + int inv_crop_height = (crop_height < 0) ? -crop_height : crop_height; + int r = 0; + + // One pass rotation is available for some formats. For the rest, convert + // to I420 (with optional vertical flipping) into a temporary I420 buffer, + // and then rotate the I420 to the final destination buffer. + // For in-place conversion, if destination crop_argb is same as source sample, + // also enable temporary buffer. + LIBYUV_BOOL need_buf = (rotation && format != FOURCC_ARGB) || + crop_argb == sample; + uint8* dest_argb = crop_argb; + int dest_argb_stride = argb_stride; + uint8* rotate_buffer = NULL; + int abs_crop_height = (crop_height < 0) ? -crop_height : crop_height; + + if (crop_argb == NULL || sample == NULL || + src_width <= 0 || crop_width <= 0 || + src_height == 0 || crop_height == 0) { + return -1; + } + if (src_height < 0) { + inv_crop_height = -inv_crop_height; + } + + if (need_buf) { + int argb_size = crop_width * 4 * abs_crop_height; + rotate_buffer = (uint8*)malloc(argb_size); + if (!rotate_buffer) { + return 1; // Out of memory runtime error. + } + crop_argb = rotate_buffer; + argb_stride = crop_width * 4; + } + + switch (format) { + // Single plane formats + case FOURCC_YUY2: + src = sample + (aligned_src_width * crop_y + crop_x) * 2; + r = YUY2ToARGB(src, aligned_src_width * 2, + crop_argb, argb_stride, + crop_width, inv_crop_height); + break; + case FOURCC_UYVY: + src = sample + (aligned_src_width * crop_y + crop_x) * 2; + r = UYVYToARGB(src, aligned_src_width * 2, + crop_argb, argb_stride, + crop_width, inv_crop_height); + break; + case FOURCC_24BG: + src = sample + (src_width * crop_y + crop_x) * 3; + r = RGB24ToARGB(src, src_width * 3, + crop_argb, argb_stride, + crop_width, inv_crop_height); + break; + case FOURCC_RAW: + src = sample + (src_width * crop_y + crop_x) * 3; + r = RAWToARGB(src, src_width * 3, + crop_argb, argb_stride, + crop_width, inv_crop_height); + break; + case FOURCC_ARGB: + src = sample + (src_width * crop_y + crop_x) * 4; + r = ARGBToARGB(src, src_width * 4, + crop_argb, argb_stride, + crop_width, inv_crop_height); + break; + case FOURCC_BGRA: + src = sample + (src_width * crop_y + crop_x) * 4; + r = BGRAToARGB(src, src_width * 4, + crop_argb, argb_stride, + crop_width, inv_crop_height); + break; + case FOURCC_ABGR: + src = sample + (src_width * crop_y + crop_x) * 4; + r = ABGRToARGB(src, src_width * 4, + crop_argb, argb_stride, + crop_width, inv_crop_height); + break; + case FOURCC_RGBA: + src = sample + (src_width * crop_y + crop_x) * 4; + r = RGBAToARGB(src, src_width * 4, + crop_argb, argb_stride, + crop_width, inv_crop_height); + break; + case FOURCC_RGBP: + src = sample + (src_width * crop_y + crop_x) * 2; + r = RGB565ToARGB(src, src_width * 2, + crop_argb, argb_stride, + crop_width, inv_crop_height); + break; + case FOURCC_RGBO: + src = sample + (src_width * crop_y + crop_x) * 2; + r = ARGB1555ToARGB(src, src_width * 2, + crop_argb, argb_stride, + crop_width, inv_crop_height); + break; + case FOURCC_R444: + src = sample + (src_width * crop_y + crop_x) * 2; + r = ARGB4444ToARGB(src, src_width * 2, + crop_argb, argb_stride, + crop_width, inv_crop_height); + break; + case FOURCC_I400: + src = sample + src_width * crop_y + crop_x; + r = I400ToARGB(src, src_width, + crop_argb, argb_stride, + crop_width, inv_crop_height); + break; + + // Biplanar formats + case FOURCC_NV12: + src = sample + (src_width * crop_y + crop_x); + src_uv = sample + aligned_src_width * (src_height + crop_y / 2) + crop_x; + r = NV12ToARGB(src, src_width, + src_uv, aligned_src_width, + crop_argb, argb_stride, + crop_width, inv_crop_height); + break; + case FOURCC_NV21: + src = sample + (src_width * crop_y + crop_x); + src_uv = sample + aligned_src_width * (src_height + crop_y / 2) + crop_x; + // Call NV12 but with u and v parameters swapped. + r = NV21ToARGB(src, src_width, + src_uv, aligned_src_width, + crop_argb, argb_stride, + crop_width, inv_crop_height); + break; + case FOURCC_M420: + src = sample + (src_width * crop_y) * 12 / 8 + crop_x; + r = M420ToARGB(src, src_width, + crop_argb, argb_stride, + crop_width, inv_crop_height); + break; + // Triplanar formats + case FOURCC_I420: + case FOURCC_YV12: { + const uint8* src_y = sample + (src_width * crop_y + crop_x); + const uint8* src_u; + const uint8* src_v; + int halfwidth = (src_width + 1) / 2; + int halfheight = (abs_src_height + 1) / 2; + if (format == FOURCC_YV12) { + src_v = sample + src_width * abs_src_height + + (halfwidth * crop_y + crop_x) / 2; + src_u = sample + src_width * abs_src_height + + halfwidth * (halfheight + crop_y / 2) + crop_x / 2; + } else { + src_u = sample + src_width * abs_src_height + + (halfwidth * crop_y + crop_x) / 2; + src_v = sample + src_width * abs_src_height + + halfwidth * (halfheight + crop_y / 2) + crop_x / 2; + } + r = I420ToARGB(src_y, src_width, + src_u, halfwidth, + src_v, halfwidth, + crop_argb, argb_stride, + crop_width, inv_crop_height); + break; + } + + case FOURCC_J420: { + const uint8* src_y = sample + (src_width * crop_y + crop_x); + const uint8* src_u; + const uint8* src_v; + int halfwidth = (src_width + 1) / 2; + int halfheight = (abs_src_height + 1) / 2; + src_u = sample + src_width * abs_src_height + + (halfwidth * crop_y + crop_x) / 2; + src_v = sample + src_width * abs_src_height + + halfwidth * (halfheight + crop_y / 2) + crop_x / 2; + r = J420ToARGB(src_y, src_width, + src_u, halfwidth, + src_v, halfwidth, + crop_argb, argb_stride, + crop_width, inv_crop_height); + break; + } + + case FOURCC_I422: + case FOURCC_YV16: { + const uint8* src_y = sample + src_width * crop_y + crop_x; + const uint8* src_u; + const uint8* src_v; + int halfwidth = (src_width + 1) / 2; + if (format == FOURCC_YV16) { + src_v = sample + src_width * abs_src_height + + halfwidth * crop_y + crop_x / 2; + src_u = sample + src_width * abs_src_height + + halfwidth * (abs_src_height + crop_y) + crop_x / 2; + } else { + src_u = sample + src_width * abs_src_height + + halfwidth * crop_y + crop_x / 2; + src_v = sample + src_width * abs_src_height + + halfwidth * (abs_src_height + crop_y) + crop_x / 2; + } + r = I422ToARGB(src_y, src_width, + src_u, halfwidth, + src_v, halfwidth, + crop_argb, argb_stride, + crop_width, inv_crop_height); + break; + } + case FOURCC_I444: + case FOURCC_YV24: { + const uint8* src_y = sample + src_width * crop_y + crop_x; + const uint8* src_u; + const uint8* src_v; + if (format == FOURCC_YV24) { + src_v = sample + src_width * (abs_src_height + crop_y) + crop_x; + src_u = sample + src_width * (abs_src_height * 2 + crop_y) + crop_x; + } else { + src_u = sample + src_width * (abs_src_height + crop_y) + crop_x; + src_v = sample + src_width * (abs_src_height * 2 + crop_y) + crop_x; + } + r = I444ToARGB(src_y, src_width, + src_u, src_width, + src_v, src_width, + crop_argb, argb_stride, + crop_width, inv_crop_height); + break; + } + case FOURCC_I411: { + int quarterwidth = (src_width + 3) / 4; + const uint8* src_y = sample + src_width * crop_y + crop_x; + const uint8* src_u = sample + src_width * abs_src_height + + quarterwidth * crop_y + crop_x / 4; + const uint8* src_v = sample + src_width * abs_src_height + + quarterwidth * (abs_src_height + crop_y) + crop_x / 4; + r = I411ToARGB(src_y, src_width, + src_u, quarterwidth, + src_v, quarterwidth, + crop_argb, argb_stride, + crop_width, inv_crop_height); + break; + } +#ifdef HAVE_JPEG + case FOURCC_MJPG: + r = MJPGToARGB(sample, sample_size, + crop_argb, argb_stride, + src_width, abs_src_height, crop_width, inv_crop_height); + break; +#endif + default: + r = -1; // unknown fourcc - return failure code. + } + + if (need_buf) { + if (!r) { + r = ARGBRotate(crop_argb, argb_stride, + dest_argb, dest_argb_stride, + crop_width, abs_crop_height, rotation); + } + free(rotate_buffer); + } + + return r; +} + +#ifdef __cplusplus +} // extern "C" +} // namespace libyuv +#endif diff --git a/third_party/libyuv/source/convert_to_i420.cc b/third_party/libyuv/source/convert_to_i420.cc new file mode 100644 index 0000000..e5f307c --- /dev/null +++ b/third_party/libyuv/source/convert_to_i420.cc @@ -0,0 +1,337 @@ +/* + * Copyright 2011 The LibYuv Project Authors. All rights reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include + +#include "libyuv/convert.h" + +#include "libyuv/video_common.h" + +#ifdef __cplusplus +namespace libyuv { +extern "C" { +#endif + +// Convert camera sample to I420 with cropping, rotation and vertical flip. +// src_width is used for source stride computation +// src_height is used to compute location of planes, and indicate inversion +// sample_size is measured in bytes and is the size of the frame. +// With MJPEG it is the compressed size of the frame. +LIBYUV_API +int ConvertToI420(const uint8* sample, + size_t sample_size, + uint8* y, int y_stride, + uint8* u, int u_stride, + uint8* v, int v_stride, + int crop_x, int crop_y, + int src_width, int src_height, + int crop_width, int crop_height, + enum RotationMode rotation, + uint32 fourcc) { + uint32 format = CanonicalFourCC(fourcc); + int aligned_src_width = (src_width + 1) & ~1; + const uint8* src; + const uint8* src_uv; + const int abs_src_height = (src_height < 0) ? -src_height : src_height; + // TODO(nisse): Why allow crop_height < 0? + const int abs_crop_height = (crop_height < 0) ? -crop_height : crop_height; + int r = 0; + LIBYUV_BOOL need_buf = (rotation && format != FOURCC_I420 && + format != FOURCC_NV12 && format != FOURCC_NV21 && + format != FOURCC_YV12) || y == sample; + uint8* tmp_y = y; + uint8* tmp_u = u; + uint8* tmp_v = v; + int tmp_y_stride = y_stride; + int tmp_u_stride = u_stride; + int tmp_v_stride = v_stride; + uint8* rotate_buffer = NULL; + const int inv_crop_height = + (src_height < 0) ? -abs_crop_height : abs_crop_height; + + if (!y || !u || !v || !sample || + src_width <= 0 || crop_width <= 0 || + src_height == 0 || crop_height == 0) { + return -1; + } + + // One pass rotation is available for some formats. For the rest, convert + // to I420 (with optional vertical flipping) into a temporary I420 buffer, + // and then rotate the I420 to the final destination buffer. + // For in-place conversion, if destination y is same as source sample, + // also enable temporary buffer. + if (need_buf) { + int y_size = crop_width * abs_crop_height; + int uv_size = ((crop_width + 1) / 2) * ((abs_crop_height + 1) / 2); + rotate_buffer = (uint8*)malloc(y_size + uv_size * 2); + if (!rotate_buffer) { + return 1; // Out of memory runtime error. + } + y = rotate_buffer; + u = y + y_size; + v = u + uv_size; + y_stride = crop_width; + u_stride = v_stride = ((crop_width + 1) / 2); + } + + switch (format) { + // Single plane formats + case FOURCC_YUY2: + src = sample + (aligned_src_width * crop_y + crop_x) * 2; + r = YUY2ToI420(src, aligned_src_width * 2, + y, y_stride, + u, u_stride, + v, v_stride, + crop_width, inv_crop_height); + break; + case FOURCC_UYVY: + src = sample + (aligned_src_width * crop_y + crop_x) * 2; + r = UYVYToI420(src, aligned_src_width * 2, + y, y_stride, + u, u_stride, + v, v_stride, + crop_width, inv_crop_height); + break; + case FOURCC_RGBP: + src = sample + (src_width * crop_y + crop_x) * 2; + r = RGB565ToI420(src, src_width * 2, + y, y_stride, + u, u_stride, + v, v_stride, + crop_width, inv_crop_height); + break; + case FOURCC_RGBO: + src = sample + (src_width * crop_y + crop_x) * 2; + r = ARGB1555ToI420(src, src_width * 2, + y, y_stride, + u, u_stride, + v, v_stride, + crop_width, inv_crop_height); + break; + case FOURCC_R444: + src = sample + (src_width * crop_y + crop_x) * 2; + r = ARGB4444ToI420(src, src_width * 2, + y, y_stride, + u, u_stride, + v, v_stride, + crop_width, inv_crop_height); + break; + case FOURCC_24BG: + src = sample + (src_width * crop_y + crop_x) * 3; + r = RGB24ToI420(src, src_width * 3, + y, y_stride, + u, u_stride, + v, v_stride, + crop_width, inv_crop_height); + break; + case FOURCC_RAW: + src = sample + (src_width * crop_y + crop_x) * 3; + r = RAWToI420(src, src_width * 3, + y, y_stride, + u, u_stride, + v, v_stride, + crop_width, inv_crop_height); + break; + case FOURCC_ARGB: + src = sample + (src_width * crop_y + crop_x) * 4; + r = ARGBToI420(src, src_width * 4, + y, y_stride, + u, u_stride, + v, v_stride, + crop_width, inv_crop_height); + break; + case FOURCC_BGRA: + src = sample + (src_width * crop_y + crop_x) * 4; + r = BGRAToI420(src, src_width * 4, + y, y_stride, + u, u_stride, + v, v_stride, + crop_width, inv_crop_height); + break; + case FOURCC_ABGR: + src = sample + (src_width * crop_y + crop_x) * 4; + r = ABGRToI420(src, src_width * 4, + y, y_stride, + u, u_stride, + v, v_stride, + crop_width, inv_crop_height); + break; + case FOURCC_RGBA: + src = sample + (src_width * crop_y + crop_x) * 4; + r = RGBAToI420(src, src_width * 4, + y, y_stride, + u, u_stride, + v, v_stride, + crop_width, inv_crop_height); + break; + case FOURCC_I400: + src = sample + src_width * crop_y + crop_x; + r = I400ToI420(src, src_width, + y, y_stride, + u, u_stride, + v, v_stride, + crop_width, inv_crop_height); + break; + // Biplanar formats + case FOURCC_NV12: + src = sample + (src_width * crop_y + crop_x); + src_uv = sample + (src_width * src_height) + + ((crop_y / 2) * aligned_src_width) + ((crop_x / 2) * 2); + r = NV12ToI420Rotate(src, src_width, + src_uv, aligned_src_width, + y, y_stride, + u, u_stride, + v, v_stride, + crop_width, inv_crop_height, rotation); + break; + case FOURCC_NV21: + src = sample + (src_width * crop_y + crop_x); + src_uv = sample + (src_width * src_height) + + ((crop_y / 2) * aligned_src_width) + ((crop_x / 2) * 2); + // Call NV12 but with u and v parameters swapped. + r = NV12ToI420Rotate(src, src_width, + src_uv, aligned_src_width, + y, y_stride, + v, v_stride, + u, u_stride, + crop_width, inv_crop_height, rotation); + break; + case FOURCC_M420: + src = sample + (src_width * crop_y) * 12 / 8 + crop_x; + r = M420ToI420(src, src_width, + y, y_stride, + u, u_stride, + v, v_stride, + crop_width, inv_crop_height); + break; + // Triplanar formats + case FOURCC_I420: + case FOURCC_YV12: { + const uint8* src_y = sample + (src_width * crop_y + crop_x); + const uint8* src_u; + const uint8* src_v; + int halfwidth = (src_width + 1) / 2; + int halfheight = (abs_src_height + 1) / 2; + if (format == FOURCC_YV12) { + src_v = sample + src_width * abs_src_height + + (halfwidth * crop_y + crop_x) / 2; + src_u = sample + src_width * abs_src_height + + halfwidth * (halfheight + crop_y / 2) + crop_x / 2; + } else { + src_u = sample + src_width * abs_src_height + + (halfwidth * crop_y + crop_x) / 2; + src_v = sample + src_width * abs_src_height + + halfwidth * (halfheight + crop_y / 2) + crop_x / 2; + } + r = I420Rotate(src_y, src_width, + src_u, halfwidth, + src_v, halfwidth, + y, y_stride, + u, u_stride, + v, v_stride, + crop_width, inv_crop_height, rotation); + break; + } + case FOURCC_I422: + case FOURCC_YV16: { + const uint8* src_y = sample + src_width * crop_y + crop_x; + const uint8* src_u; + const uint8* src_v; + int halfwidth = (src_width + 1) / 2; + if (format == FOURCC_YV16) { + src_v = sample + src_width * abs_src_height + + halfwidth * crop_y + crop_x / 2; + src_u = sample + src_width * abs_src_height + + halfwidth * (abs_src_height + crop_y) + crop_x / 2; + } else { + src_u = sample + src_width * abs_src_height + + halfwidth * crop_y + crop_x / 2; + src_v = sample + src_width * abs_src_height + + halfwidth * (abs_src_height + crop_y) + crop_x / 2; + } + r = I422ToI420(src_y, src_width, + src_u, halfwidth, + src_v, halfwidth, + y, y_stride, + u, u_stride, + v, v_stride, + crop_width, inv_crop_height); + break; + } + case FOURCC_I444: + case FOURCC_YV24: { + const uint8* src_y = sample + src_width * crop_y + crop_x; + const uint8* src_u; + const uint8* src_v; + if (format == FOURCC_YV24) { + src_v = sample + src_width * (abs_src_height + crop_y) + crop_x; + src_u = sample + src_width * (abs_src_height * 2 + crop_y) + crop_x; + } else { + src_u = sample + src_width * (abs_src_height + crop_y) + crop_x; + src_v = sample + src_width * (abs_src_height * 2 + crop_y) + crop_x; + } + r = I444ToI420(src_y, src_width, + src_u, src_width, + src_v, src_width, + y, y_stride, + u, u_stride, + v, v_stride, + crop_width, inv_crop_height); + break; + } + case FOURCC_I411: { + int quarterwidth = (src_width + 3) / 4; + const uint8* src_y = sample + src_width * crop_y + crop_x; + const uint8* src_u = sample + src_width * abs_src_height + + quarterwidth * crop_y + crop_x / 4; + const uint8* src_v = sample + src_width * abs_src_height + + quarterwidth * (abs_src_height + crop_y) + crop_x / 4; + r = I411ToI420(src_y, src_width, + src_u, quarterwidth, + src_v, quarterwidth, + y, y_stride, + u, u_stride, + v, v_stride, + crop_width, inv_crop_height); + break; + } +#ifdef HAVE_JPEG + case FOURCC_MJPG: + r = MJPGToI420(sample, sample_size, + y, y_stride, + u, u_stride, + v, v_stride, + src_width, abs_src_height, crop_width, inv_crop_height); + break; +#endif + default: + r = -1; // unknown fourcc - return failure code. + } + + if (need_buf) { + if (!r) { + r = I420Rotate(y, y_stride, + u, u_stride, + v, v_stride, + tmp_y, tmp_y_stride, + tmp_u, tmp_u_stride, + tmp_v, tmp_v_stride, + crop_width, abs_crop_height, rotation); + } + free(rotate_buffer); + } + + return r; +} + +#ifdef __cplusplus +} // extern "C" +} // namespace libyuv +#endif diff --git a/third_party/libyuv/source/cpu_id.cc b/third_party/libyuv/source/cpu_id.cc new file mode 100644 index 0000000..84927eb --- /dev/null +++ b/third_party/libyuv/source/cpu_id.cc @@ -0,0 +1,300 @@ +/* + * Copyright 2011 The LibYuv Project Authors. All rights reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "libyuv/cpu_id.h" + +#if defined(_MSC_VER) +#include // For __cpuidex() +#endif +#if !defined(__pnacl__) && !defined(__CLR_VER) && \ + !defined(__native_client__) && (defined(_M_IX86) || defined(_M_X64)) && \ + defined(_MSC_FULL_VER) && (_MSC_FULL_VER >= 160040219) +#include // For _xgetbv() +#endif + +#if !defined(__native_client__) +#include // For getenv() +#endif + +// For ArmCpuCaps() but unittested on all platforms +#include +#include + +#include "libyuv/basic_types.h" // For CPU_X86 + +#ifdef __cplusplus +namespace libyuv { +extern "C" { +#endif + +// For functions that use the stack and have runtime checks for overflow, +// use SAFEBUFFERS to avoid additional check. +#if defined(_MSC_FULL_VER) && (_MSC_FULL_VER >= 160040219) && \ + !defined(__clang__) +#define SAFEBUFFERS __declspec(safebuffers) +#else +#define SAFEBUFFERS +#endif + +// Low level cpuid for X86. +#if (defined(_M_IX86) || defined(_M_X64) || \ + defined(__i386__) || defined(__x86_64__)) && \ + !defined(__pnacl__) && !defined(__CLR_VER) +LIBYUV_API +void CpuId(uint32 info_eax, uint32 info_ecx, uint32* cpu_info) { +#if defined(_MSC_VER) +// Visual C version uses intrinsic or inline x86 assembly. +#if defined(_MSC_FULL_VER) && (_MSC_FULL_VER >= 160040219) + __cpuidex((int*)(cpu_info), info_eax, info_ecx); +#elif defined(_M_IX86) + __asm { + mov eax, info_eax + mov ecx, info_ecx + mov edi, cpu_info + cpuid + mov [edi], eax + mov [edi + 4], ebx + mov [edi + 8], ecx + mov [edi + 12], edx + } +#else // Visual C but not x86 + if (info_ecx == 0) { + __cpuid((int*)(cpu_info), info_eax); + } else { + cpu_info[3] = cpu_info[2] = cpu_info[1] = cpu_info[0] = 0; + } +#endif +// GCC version uses inline x86 assembly. +#else // defined(_MSC_VER) + uint32 info_ebx, info_edx; + asm volatile ( +#if defined( __i386__) && defined(__PIC__) + // Preserve ebx for fpic 32 bit. + "mov %%ebx, %%edi \n" + "cpuid \n" + "xchg %%edi, %%ebx \n" + : "=D" (info_ebx), +#else + "cpuid \n" + : "=b" (info_ebx), +#endif // defined( __i386__) && defined(__PIC__) + "+a" (info_eax), "+c" (info_ecx), "=d" (info_edx)); + cpu_info[0] = info_eax; + cpu_info[1] = info_ebx; + cpu_info[2] = info_ecx; + cpu_info[3] = info_edx; +#endif // defined(_MSC_VER) +} +#else // (defined(_M_IX86) || defined(_M_X64) ... +LIBYUV_API +void CpuId(uint32 eax, uint32 ecx, uint32* cpu_info) { + cpu_info[0] = cpu_info[1] = cpu_info[2] = cpu_info[3] = 0; +} +#endif + +// For VS2010 and earlier emit can be used: +// _asm _emit 0x0f _asm _emit 0x01 _asm _emit 0xd0 // For VS2010 and earlier. +// __asm { +// xor ecx, ecx // xcr 0 +// xgetbv +// mov xcr0, eax +// } +// For VS2013 and earlier 32 bit, the _xgetbv(0) optimizer produces bad code. +// https://code.google.com/p/libyuv/issues/detail?id=529 +#if defined(_M_IX86) && (_MSC_VER < 1900) +#pragma optimize("g", off) +#endif +#if (defined(_M_IX86) || defined(_M_X64) || \ + defined(__i386__) || defined(__x86_64__)) && \ + !defined(__pnacl__) && !defined(__CLR_VER) && !defined(__native_client__) +#define HAS_XGETBV +// X86 CPUs have xgetbv to detect OS saves high parts of ymm registers. +int GetXCR0() { + uint32 xcr0 = 0u; +#if defined(_MSC_FULL_VER) && (_MSC_FULL_VER >= 160040219) + xcr0 = (uint32)(_xgetbv(0)); // VS2010 SP1 required. +#elif defined(__i386__) || defined(__x86_64__) + asm(".byte 0x0f, 0x01, 0xd0" : "=a" (xcr0) : "c" (0) : "%edx"); +#endif // defined(__i386__) || defined(__x86_64__) + return xcr0; +} +#endif // defined(_M_IX86) || defined(_M_X64) .. +// Return optimization to previous setting. +#if defined(_M_IX86) && (_MSC_VER < 1900) +#pragma optimize("g", on) +#endif + +// based on libvpx arm_cpudetect.c +// For Arm, but public to allow testing on any CPU +LIBYUV_API SAFEBUFFERS +int ArmCpuCaps(const char* cpuinfo_name) { + char cpuinfo_line[512]; + FILE* f = fopen(cpuinfo_name, "r"); + if (!f) { + // Assume Neon if /proc/cpuinfo is unavailable. + // This will occur for Chrome sandbox for Pepper or Render process. + return kCpuHasNEON; + } + while (fgets(cpuinfo_line, sizeof(cpuinfo_line) - 1, f)) { + if (memcmp(cpuinfo_line, "Features", 8) == 0) { + char* p = strstr(cpuinfo_line, " neon"); + if (p && (p[5] == ' ' || p[5] == '\n')) { + fclose(f); + return kCpuHasNEON; + } + // aarch64 uses asimd for Neon. + p = strstr(cpuinfo_line, " asimd"); + if (p && (p[6] == ' ' || p[6] == '\n')) { + fclose(f); + return kCpuHasNEON; + } + } + } + fclose(f); + return 0; +} + +// CPU detect function for SIMD instruction sets. +LIBYUV_API +int cpu_info_ = 0; // cpu_info is not initialized yet. + +// Test environment variable for disabling CPU features. Any non-zero value +// to disable. Zero ignored to make it easy to set the variable on/off. +#if !defined(__native_client__) && !defined(_M_ARM) + +static LIBYUV_BOOL TestEnv(const char* name) { + const char* var = getenv(name); + if (var) { + if (var[0] != '0') { + return LIBYUV_TRUE; + } + } + return LIBYUV_FALSE; +} +#else // nacl does not support getenv(). +static LIBYUV_BOOL TestEnv(const char*) { + return LIBYUV_FALSE; +} +#endif + +LIBYUV_API SAFEBUFFERS +int InitCpuFlags(void) { + // TODO(fbarchard): swap kCpuInit logic so 0 means uninitialized. + int cpu_info = 0; +#if !defined(__pnacl__) && !defined(__CLR_VER) && defined(CPU_X86) + uint32 cpu_info0[4] = { 0, 0, 0, 0 }; + uint32 cpu_info1[4] = { 0, 0, 0, 0 }; + uint32 cpu_info7[4] = { 0, 0, 0, 0 }; + CpuId(0, 0, cpu_info0); + CpuId(1, 0, cpu_info1); + if (cpu_info0[0] >= 7) { + CpuId(7, 0, cpu_info7); + } + cpu_info = ((cpu_info1[3] & 0x04000000) ? kCpuHasSSE2 : 0) | + ((cpu_info1[2] & 0x00000200) ? kCpuHasSSSE3 : 0) | + ((cpu_info1[2] & 0x00080000) ? kCpuHasSSE41 : 0) | + ((cpu_info1[2] & 0x00100000) ? kCpuHasSSE42 : 0) | + ((cpu_info7[1] & 0x00000200) ? kCpuHasERMS : 0) | + ((cpu_info1[2] & 0x00001000) ? kCpuHasFMA3 : 0) | + kCpuHasX86; + +#ifdef HAS_XGETBV + // AVX requires CPU has AVX, XSAVE and OSXSave for xgetbv + if (((cpu_info1[2] & 0x1c000000) == 0x1c000000) && // AVX and OSXSave + ((GetXCR0() & 6) == 6)) { // Test OS saves YMM registers + cpu_info |= ((cpu_info7[1] & 0x00000020) ? kCpuHasAVX2 : 0) | kCpuHasAVX; + + // Detect AVX512bw + if ((GetXCR0() & 0xe0) == 0xe0) { + cpu_info |= (cpu_info7[1] & 0x40000000) ? kCpuHasAVX3 : 0; + } + } +#endif + + // Environment variable overrides for testing. + if (TestEnv("LIBYUV_DISABLE_X86")) { + cpu_info &= ~kCpuHasX86; + } + if (TestEnv("LIBYUV_DISABLE_SSE2")) { + cpu_info &= ~kCpuHasSSE2; + } + if (TestEnv("LIBYUV_DISABLE_SSSE3")) { + cpu_info &= ~kCpuHasSSSE3; + } + if (TestEnv("LIBYUV_DISABLE_SSE41")) { + cpu_info &= ~kCpuHasSSE41; + } + if (TestEnv("LIBYUV_DISABLE_SSE42")) { + cpu_info &= ~kCpuHasSSE42; + } + if (TestEnv("LIBYUV_DISABLE_AVX")) { + cpu_info &= ~kCpuHasAVX; + } + if (TestEnv("LIBYUV_DISABLE_AVX2")) { + cpu_info &= ~kCpuHasAVX2; + } + if (TestEnv("LIBYUV_DISABLE_ERMS")) { + cpu_info &= ~kCpuHasERMS; + } + if (TestEnv("LIBYUV_DISABLE_FMA3")) { + cpu_info &= ~kCpuHasFMA3; + } + if (TestEnv("LIBYUV_DISABLE_AVX3")) { + cpu_info &= ~kCpuHasAVX3; + } +#endif +#if defined(__mips__) && defined(__linux__) +#if defined(__mips_dspr2) + cpu_info |= kCpuHasDSPR2; +#endif + cpu_info |= kCpuHasMIPS; + if (getenv("LIBYUV_DISABLE_DSPR2")) { + cpu_info &= ~kCpuHasDSPR2; + } +#endif +#if defined(__arm__) || defined(__aarch64__) +// gcc -mfpu=neon defines __ARM_NEON__ +// __ARM_NEON__ generates code that requires Neon. NaCL also requires Neon. +// For Linux, /proc/cpuinfo can be tested but without that assume Neon. +#if defined(__ARM_NEON__) || defined(__native_client__) || !defined(__linux__) + cpu_info = kCpuHasNEON; +// For aarch64(arm64), /proc/cpuinfo's feature is not complete, e.g. no neon +// flag in it. +// So for aarch64, neon enabling is hard coded here. +#endif +#if defined(__aarch64__) + cpu_info = kCpuHasNEON; +#else + // Linux arm parse text file for neon detect. + cpu_info = ArmCpuCaps("/proc/cpuinfo"); +#endif + cpu_info |= kCpuHasARM; + if (TestEnv("LIBYUV_DISABLE_NEON")) { + cpu_info &= ~kCpuHasNEON; + } +#endif // __arm__ + if (TestEnv("LIBYUV_DISABLE_ASM")) { + cpu_info = 0; + } + cpu_info |= kCpuInitialized; + cpu_info_ = cpu_info; + return cpu_info; +} + +// Note that use of this function is not thread safe. +LIBYUV_API +void MaskCpuFlags(int enable_flags) { + cpu_info_ = InitCpuFlags() & enable_flags; +} + +#ifdef __cplusplus +} // extern "C" +} // namespace libyuv +#endif diff --git a/third_party/libyuv/source/mjpeg_decoder.cc b/third_party/libyuv/source/mjpeg_decoder.cc new file mode 100644 index 0000000..22025ad --- /dev/null +++ b/third_party/libyuv/source/mjpeg_decoder.cc @@ -0,0 +1,577 @@ +/* + * Copyright 2012 The LibYuv Project Authors. All rights reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "libyuv/mjpeg_decoder.h" + +#ifdef HAVE_JPEG +#include + +#if !defined(__pnacl__) && !defined(__CLR_VER) && \ + !defined(COVERAGE_ENABLED) && !defined(TARGET_IPHONE_SIMULATOR) +// Must be included before jpeglib. +#include +#define HAVE_SETJMP + +#if defined(_MSC_VER) +// disable warning 4324: structure was padded due to __declspec(align()) +#pragma warning(disable:4324) +#endif + +#endif +struct FILE; // For jpeglib.h. + +// C++ build requires extern C for jpeg internals. +#ifdef __cplusplus +extern "C" { +#endif + +#include + +#ifdef __cplusplus +} // extern "C" +#endif + +#include "libyuv/planar_functions.h" // For CopyPlane(). + +namespace libyuv { + +#ifdef HAVE_SETJMP +struct SetJmpErrorMgr { + jpeg_error_mgr base; // Must be at the top + jmp_buf setjmp_buffer; +}; +#endif + +const int MJpegDecoder::kColorSpaceUnknown = JCS_UNKNOWN; +const int MJpegDecoder::kColorSpaceGrayscale = JCS_GRAYSCALE; +const int MJpegDecoder::kColorSpaceRgb = JCS_RGB; +const int MJpegDecoder::kColorSpaceYCbCr = JCS_YCbCr; +const int MJpegDecoder::kColorSpaceCMYK = JCS_CMYK; +const int MJpegDecoder::kColorSpaceYCCK = JCS_YCCK; + +// Methods that are passed to jpeglib. +boolean fill_input_buffer(jpeg_decompress_struct* cinfo); +void init_source(jpeg_decompress_struct* cinfo); +void skip_input_data(jpeg_decompress_struct* cinfo, long num_bytes); // NOLINT +void term_source(jpeg_decompress_struct* cinfo); +void ErrorHandler(jpeg_common_struct* cinfo); +void OutputHandler(jpeg_common_struct* cinfo); + +MJpegDecoder::MJpegDecoder() + : has_scanline_padding_(LIBYUV_FALSE), + num_outbufs_(0), + scanlines_(NULL), + scanlines_sizes_(NULL), + databuf_(NULL), + databuf_strides_(NULL) { + decompress_struct_ = new jpeg_decompress_struct; + source_mgr_ = new jpeg_source_mgr; +#ifdef HAVE_SETJMP + error_mgr_ = new SetJmpErrorMgr; + decompress_struct_->err = jpeg_std_error(&error_mgr_->base); + // Override standard exit()-based error handler. + error_mgr_->base.error_exit = &ErrorHandler; + error_mgr_->base.output_message = &OutputHandler; +#endif + decompress_struct_->client_data = NULL; + source_mgr_->init_source = &init_source; + source_mgr_->fill_input_buffer = &fill_input_buffer; + source_mgr_->skip_input_data = &skip_input_data; + source_mgr_->resync_to_restart = &jpeg_resync_to_restart; + source_mgr_->term_source = &term_source; + jpeg_create_decompress(decompress_struct_); + decompress_struct_->src = source_mgr_; + buf_vec_.buffers = &buf_; + buf_vec_.len = 1; +} + +MJpegDecoder::~MJpegDecoder() { + jpeg_destroy_decompress(decompress_struct_); + delete decompress_struct_; + delete source_mgr_; +#ifdef HAVE_SETJMP + delete error_mgr_; +#endif + DestroyOutputBuffers(); +} + +LIBYUV_BOOL MJpegDecoder::LoadFrame(const uint8* src, size_t src_len) { + if (!ValidateJpeg(src, src_len)) { + return LIBYUV_FALSE; + } + + buf_.data = src; + buf_.len = static_cast(src_len); + buf_vec_.pos = 0; + decompress_struct_->client_data = &buf_vec_; +#ifdef HAVE_SETJMP + if (setjmp(error_mgr_->setjmp_buffer)) { + // We called jpeg_read_header, it experienced an error, and we called + // longjmp() and rewound the stack to here. Return error. + return LIBYUV_FALSE; + } +#endif + if (jpeg_read_header(decompress_struct_, TRUE) != JPEG_HEADER_OK) { + // ERROR: Bad MJPEG header + return LIBYUV_FALSE; + } + AllocOutputBuffers(GetNumComponents()); + for (int i = 0; i < num_outbufs_; ++i) { + int scanlines_size = GetComponentScanlinesPerImcuRow(i); + if (scanlines_sizes_[i] != scanlines_size) { + if (scanlines_[i]) { + delete scanlines_[i]; + } + scanlines_[i] = new uint8* [scanlines_size]; + scanlines_sizes_[i] = scanlines_size; + } + + // We allocate padding for the final scanline to pad it up to DCTSIZE bytes + // to avoid memory errors, since jpeglib only reads full MCUs blocks. For + // the preceding scanlines, the padding is not needed/wanted because the + // following addresses will already be valid (they are the initial bytes of + // the next scanline) and will be overwritten when jpeglib writes out that + // next scanline. + int databuf_stride = GetComponentStride(i); + int databuf_size = scanlines_size * databuf_stride; + if (databuf_strides_[i] != databuf_stride) { + if (databuf_[i]) { + delete databuf_[i]; + } + databuf_[i] = new uint8[databuf_size]; + databuf_strides_[i] = databuf_stride; + } + + if (GetComponentStride(i) != GetComponentWidth(i)) { + has_scanline_padding_ = LIBYUV_TRUE; + } + } + return LIBYUV_TRUE; +} + +static int DivideAndRoundUp(int numerator, int denominator) { + return (numerator + denominator - 1) / denominator; +} + +static int DivideAndRoundDown(int numerator, int denominator) { + return numerator / denominator; +} + +// Returns width of the last loaded frame. +int MJpegDecoder::GetWidth() { + return decompress_struct_->image_width; +} + +// Returns height of the last loaded frame. +int MJpegDecoder::GetHeight() { + return decompress_struct_->image_height; +} + +// Returns format of the last loaded frame. The return value is one of the +// kColorSpace* constants. +int MJpegDecoder::GetColorSpace() { + return decompress_struct_->jpeg_color_space; +} + +// Number of color components in the color space. +int MJpegDecoder::GetNumComponents() { + return decompress_struct_->num_components; +} + +// Sample factors of the n-th component. +int MJpegDecoder::GetHorizSampFactor(int component) { + return decompress_struct_->comp_info[component].h_samp_factor; +} + +int MJpegDecoder::GetVertSampFactor(int component) { + return decompress_struct_->comp_info[component].v_samp_factor; +} + +int MJpegDecoder::GetHorizSubSampFactor(int component) { + return decompress_struct_->max_h_samp_factor / + GetHorizSampFactor(component); +} + +int MJpegDecoder::GetVertSubSampFactor(int component) { + return decompress_struct_->max_v_samp_factor / + GetVertSampFactor(component); +} + +int MJpegDecoder::GetImageScanlinesPerImcuRow() { + return decompress_struct_->max_v_samp_factor * DCTSIZE; +} + +int MJpegDecoder::GetComponentScanlinesPerImcuRow(int component) { + int vs = GetVertSubSampFactor(component); + return DivideAndRoundUp(GetImageScanlinesPerImcuRow(), vs); +} + +int MJpegDecoder::GetComponentWidth(int component) { + int hs = GetHorizSubSampFactor(component); + return DivideAndRoundUp(GetWidth(), hs); +} + +int MJpegDecoder::GetComponentHeight(int component) { + int vs = GetVertSubSampFactor(component); + return DivideAndRoundUp(GetHeight(), vs); +} + +// Get width in bytes padded out to a multiple of DCTSIZE +int MJpegDecoder::GetComponentStride(int component) { + return (GetComponentWidth(component) + DCTSIZE - 1) & ~(DCTSIZE - 1); +} + +int MJpegDecoder::GetComponentSize(int component) { + return GetComponentWidth(component) * GetComponentHeight(component); +} + +LIBYUV_BOOL MJpegDecoder::UnloadFrame() { +#ifdef HAVE_SETJMP + if (setjmp(error_mgr_->setjmp_buffer)) { + // We called jpeg_abort_decompress, it experienced an error, and we called + // longjmp() and rewound the stack to here. Return error. + return LIBYUV_FALSE; + } +#endif + jpeg_abort_decompress(decompress_struct_); + return LIBYUV_TRUE; +} + +// TODO(fbarchard): Allow rectangle to be specified: x, y, width, height. +LIBYUV_BOOL MJpegDecoder::DecodeToBuffers( + uint8** planes, int dst_width, int dst_height) { + if (dst_width != GetWidth() || + dst_height > GetHeight()) { + // ERROR: Bad dimensions + return LIBYUV_FALSE; + } +#ifdef HAVE_SETJMP + if (setjmp(error_mgr_->setjmp_buffer)) { + // We called into jpeglib, it experienced an error sometime during this + // function call, and we called longjmp() and rewound the stack to here. + // Return error. + return LIBYUV_FALSE; + } +#endif + if (!StartDecode()) { + return LIBYUV_FALSE; + } + SetScanlinePointers(databuf_); + int lines_left = dst_height; + // Compute amount of lines to skip to implement vertical crop. + // TODO(fbarchard): Ensure skip is a multiple of maximum component + // subsample. ie 2 + int skip = (GetHeight() - dst_height) / 2; + if (skip > 0) { + // There is no API to skip lines in the output data, so we read them + // into the temp buffer. + while (skip >= GetImageScanlinesPerImcuRow()) { + if (!DecodeImcuRow()) { + FinishDecode(); + return LIBYUV_FALSE; + } + skip -= GetImageScanlinesPerImcuRow(); + } + if (skip > 0) { + // Have a partial iMCU row left over to skip. Must read it and then + // copy the parts we want into the destination. + if (!DecodeImcuRow()) { + FinishDecode(); + return LIBYUV_FALSE; + } + for (int i = 0; i < num_outbufs_; ++i) { + // TODO(fbarchard): Compute skip to avoid this + assert(skip % GetVertSubSampFactor(i) == 0); + int rows_to_skip = + DivideAndRoundDown(skip, GetVertSubSampFactor(i)); + int scanlines_to_copy = GetComponentScanlinesPerImcuRow(i) - + rows_to_skip; + int data_to_skip = rows_to_skip * GetComponentStride(i); + CopyPlane(databuf_[i] + data_to_skip, GetComponentStride(i), + planes[i], GetComponentWidth(i), + GetComponentWidth(i), scanlines_to_copy); + planes[i] += scanlines_to_copy * GetComponentWidth(i); + } + lines_left -= (GetImageScanlinesPerImcuRow() - skip); + } + } + + // Read full MCUs but cropped horizontally + for (; lines_left > GetImageScanlinesPerImcuRow(); + lines_left -= GetImageScanlinesPerImcuRow()) { + if (!DecodeImcuRow()) { + FinishDecode(); + return LIBYUV_FALSE; + } + for (int i = 0; i < num_outbufs_; ++i) { + int scanlines_to_copy = GetComponentScanlinesPerImcuRow(i); + CopyPlane(databuf_[i], GetComponentStride(i), + planes[i], GetComponentWidth(i), + GetComponentWidth(i), scanlines_to_copy); + planes[i] += scanlines_to_copy * GetComponentWidth(i); + } + } + + if (lines_left > 0) { + // Have a partial iMCU row left over to decode. + if (!DecodeImcuRow()) { + FinishDecode(); + return LIBYUV_FALSE; + } + for (int i = 0; i < num_outbufs_; ++i) { + int scanlines_to_copy = + DivideAndRoundUp(lines_left, GetVertSubSampFactor(i)); + CopyPlane(databuf_[i], GetComponentStride(i), + planes[i], GetComponentWidth(i), + GetComponentWidth(i), scanlines_to_copy); + planes[i] += scanlines_to_copy * GetComponentWidth(i); + } + } + return FinishDecode(); +} + +LIBYUV_BOOL MJpegDecoder::DecodeToCallback(CallbackFunction fn, void* opaque, + int dst_width, int dst_height) { + if (dst_width != GetWidth() || + dst_height > GetHeight()) { + // ERROR: Bad dimensions + return LIBYUV_FALSE; + } +#ifdef HAVE_SETJMP + if (setjmp(error_mgr_->setjmp_buffer)) { + // We called into jpeglib, it experienced an error sometime during this + // function call, and we called longjmp() and rewound the stack to here. + // Return error. + return LIBYUV_FALSE; + } +#endif + if (!StartDecode()) { + return LIBYUV_FALSE; + } + SetScanlinePointers(databuf_); + int lines_left = dst_height; + // TODO(fbarchard): Compute amount of lines to skip to implement vertical crop + int skip = (GetHeight() - dst_height) / 2; + if (skip > 0) { + while (skip >= GetImageScanlinesPerImcuRow()) { + if (!DecodeImcuRow()) { + FinishDecode(); + return LIBYUV_FALSE; + } + skip -= GetImageScanlinesPerImcuRow(); + } + if (skip > 0) { + // Have a partial iMCU row left over to skip. + if (!DecodeImcuRow()) { + FinishDecode(); + return LIBYUV_FALSE; + } + for (int i = 0; i < num_outbufs_; ++i) { + // TODO(fbarchard): Compute skip to avoid this + assert(skip % GetVertSubSampFactor(i) == 0); + int rows_to_skip = DivideAndRoundDown(skip, GetVertSubSampFactor(i)); + int data_to_skip = rows_to_skip * GetComponentStride(i); + // Change our own data buffer pointers so we can pass them to the + // callback. + databuf_[i] += data_to_skip; + } + int scanlines_to_copy = GetImageScanlinesPerImcuRow() - skip; + (*fn)(opaque, databuf_, databuf_strides_, scanlines_to_copy); + // Now change them back. + for (int i = 0; i < num_outbufs_; ++i) { + int rows_to_skip = DivideAndRoundDown(skip, GetVertSubSampFactor(i)); + int data_to_skip = rows_to_skip * GetComponentStride(i); + databuf_[i] -= data_to_skip; + } + lines_left -= scanlines_to_copy; + } + } + // Read full MCUs until we get to the crop point. + for (; lines_left >= GetImageScanlinesPerImcuRow(); + lines_left -= GetImageScanlinesPerImcuRow()) { + if (!DecodeImcuRow()) { + FinishDecode(); + return LIBYUV_FALSE; + } + (*fn)(opaque, databuf_, databuf_strides_, GetImageScanlinesPerImcuRow()); + } + if (lines_left > 0) { + // Have a partial iMCU row left over to decode. + if (!DecodeImcuRow()) { + FinishDecode(); + return LIBYUV_FALSE; + } + (*fn)(opaque, databuf_, databuf_strides_, lines_left); + } + return FinishDecode(); +} + +void init_source(j_decompress_ptr cinfo) { + fill_input_buffer(cinfo); +} + +boolean fill_input_buffer(j_decompress_ptr cinfo) { + BufferVector* buf_vec = reinterpret_cast(cinfo->client_data); + if (buf_vec->pos >= buf_vec->len) { + assert(0 && "No more data"); + // ERROR: No more data + return FALSE; + } + cinfo->src->next_input_byte = buf_vec->buffers[buf_vec->pos].data; + cinfo->src->bytes_in_buffer = buf_vec->buffers[buf_vec->pos].len; + ++buf_vec->pos; + return TRUE; +} + +void skip_input_data(j_decompress_ptr cinfo, long num_bytes) { // NOLINT + cinfo->src->next_input_byte += num_bytes; +} + +void term_source(j_decompress_ptr cinfo) { + // Nothing to do. +} + +#ifdef HAVE_SETJMP +void ErrorHandler(j_common_ptr cinfo) { + // This is called when a jpeglib command experiences an error. Unfortunately + // jpeglib's error handling model is not very flexible, because it expects the + // error handler to not return--i.e., it wants the program to terminate. To + // recover from errors we use setjmp() as shown in their example. setjmp() is + // C's implementation for the "call with current continuation" functionality + // seen in some functional programming languages. + // A formatted message can be output, but is unsafe for release. +#ifdef DEBUG + char buf[JMSG_LENGTH_MAX]; + (*cinfo->err->format_message)(cinfo, buf); + // ERROR: Error in jpeglib: buf +#endif + + SetJmpErrorMgr* mgr = reinterpret_cast(cinfo->err); + // This rewinds the call stack to the point of the corresponding setjmp() + // and causes it to return (for a second time) with value 1. + longjmp(mgr->setjmp_buffer, 1); +} + +void OutputHandler(j_common_ptr cinfo) { + // Suppress fprintf warnings. +} + +#endif // HAVE_SETJMP + +void MJpegDecoder::AllocOutputBuffers(int num_outbufs) { + if (num_outbufs != num_outbufs_) { + // We could perhaps optimize this case to resize the output buffers without + // necessarily having to delete and recreate each one, but it's not worth + // it. + DestroyOutputBuffers(); + + scanlines_ = new uint8** [num_outbufs]; + scanlines_sizes_ = new int[num_outbufs]; + databuf_ = new uint8* [num_outbufs]; + databuf_strides_ = new int[num_outbufs]; + + for (int i = 0; i < num_outbufs; ++i) { + scanlines_[i] = NULL; + scanlines_sizes_[i] = 0; + databuf_[i] = NULL; + databuf_strides_[i] = 0; + } + + num_outbufs_ = num_outbufs; + } +} + +void MJpegDecoder::DestroyOutputBuffers() { + for (int i = 0; i < num_outbufs_; ++i) { + delete [] scanlines_[i]; + delete [] databuf_[i]; + } + delete [] scanlines_; + delete [] databuf_; + delete [] scanlines_sizes_; + delete [] databuf_strides_; + scanlines_ = NULL; + databuf_ = NULL; + scanlines_sizes_ = NULL; + databuf_strides_ = NULL; + num_outbufs_ = 0; +} + +// JDCT_IFAST and do_block_smoothing improve performance substantially. +LIBYUV_BOOL MJpegDecoder::StartDecode() { + decompress_struct_->raw_data_out = TRUE; + decompress_struct_->dct_method = JDCT_IFAST; // JDCT_ISLOW is default + decompress_struct_->dither_mode = JDITHER_NONE; + // Not applicable to 'raw': + decompress_struct_->do_fancy_upsampling = (boolean)(LIBYUV_FALSE); + // Only for buffered mode: + decompress_struct_->enable_2pass_quant = (boolean)(LIBYUV_FALSE); + // Blocky but fast: + decompress_struct_->do_block_smoothing = (boolean)(LIBYUV_FALSE); + + if (!jpeg_start_decompress(decompress_struct_)) { + // ERROR: Couldn't start JPEG decompressor"; + return LIBYUV_FALSE; + } + return LIBYUV_TRUE; +} + +LIBYUV_BOOL MJpegDecoder::FinishDecode() { + // jpeglib considers it an error if we finish without decoding the whole + // image, so we call "abort" rather than "finish". + jpeg_abort_decompress(decompress_struct_); + return LIBYUV_TRUE; +} + +void MJpegDecoder::SetScanlinePointers(uint8** data) { + for (int i = 0; i < num_outbufs_; ++i) { + uint8* data_i = data[i]; + for (int j = 0; j < scanlines_sizes_[i]; ++j) { + scanlines_[i][j] = data_i; + data_i += GetComponentStride(i); + } + } +} + +inline LIBYUV_BOOL MJpegDecoder::DecodeImcuRow() { + return (unsigned int)(GetImageScanlinesPerImcuRow()) == + jpeg_read_raw_data(decompress_struct_, + scanlines_, + GetImageScanlinesPerImcuRow()); +} + +// The helper function which recognizes the jpeg sub-sampling type. +JpegSubsamplingType MJpegDecoder::JpegSubsamplingTypeHelper( + int* subsample_x, int* subsample_y, int number_of_components) { + if (number_of_components == 3) { // Color images. + if (subsample_x[0] == 1 && subsample_y[0] == 1 && + subsample_x[1] == 2 && subsample_y[1] == 2 && + subsample_x[2] == 2 && subsample_y[2] == 2) { + return kJpegYuv420; + } else if (subsample_x[0] == 1 && subsample_y[0] == 1 && + subsample_x[1] == 2 && subsample_y[1] == 1 && + subsample_x[2] == 2 && subsample_y[2] == 1) { + return kJpegYuv422; + } else if (subsample_x[0] == 1 && subsample_y[0] == 1 && + subsample_x[1] == 1 && subsample_y[1] == 1 && + subsample_x[2] == 1 && subsample_y[2] == 1) { + return kJpegYuv444; + } + } else if (number_of_components == 1) { // Grey-scale images. + if (subsample_x[0] == 1 && subsample_y[0] == 1) { + return kJpegYuv400; + } + } + return kJpegUnknown; +} + +} // namespace libyuv +#endif // HAVE_JPEG + diff --git a/third_party/libyuv/source/mjpeg_validate.cc b/third_party/libyuv/source/mjpeg_validate.cc new file mode 100644 index 0000000..9c48832 --- /dev/null +++ b/third_party/libyuv/source/mjpeg_validate.cc @@ -0,0 +1,71 @@ +/* + * Copyright 2012 The LibYuv Project Authors. All rights reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "libyuv/mjpeg_decoder.h" + +#include // For memchr. + +#ifdef __cplusplus +namespace libyuv { +extern "C" { +#endif + +// Helper function to scan for EOI marker (0xff 0xd9). +static LIBYUV_BOOL ScanEOI(const uint8* sample, size_t sample_size) { + if (sample_size >= 2) { + const uint8* end = sample + sample_size - 1; + const uint8* it = sample; + while (it < end) { + // TODO(fbarchard): scan for 0xd9 instead. + it = static_cast(memchr(it, 0xff, end - it)); + if (it == NULL) { + break; + } + if (it[1] == 0xd9) { + return LIBYUV_TRUE; // Success: Valid jpeg. + } + ++it; // Skip over current 0xff. + } + } + // ERROR: Invalid jpeg end code not found. Size sample_size + return LIBYUV_FALSE; +} + +// Helper function to validate the jpeg appears intact. +LIBYUV_BOOL ValidateJpeg(const uint8* sample, size_t sample_size) { + // Maximum size that ValidateJpeg will consider valid. + const size_t kMaxJpegSize = 0x7fffffffull; + const size_t kBackSearchSize = 1024; + if (sample_size < 64 || sample_size > kMaxJpegSize || !sample) { + // ERROR: Invalid jpeg size: sample_size + return LIBYUV_FALSE; + } + if (sample[0] != 0xff || sample[1] != 0xd8) { // SOI marker + // ERROR: Invalid jpeg initial start code + return LIBYUV_FALSE; + } + + // Look for the End Of Image (EOI) marker near the end of the buffer. + if (sample_size > kBackSearchSize) { + if (ScanEOI(sample + sample_size - kBackSearchSize, kBackSearchSize)) { + return LIBYUV_TRUE; // Success: Valid jpeg. + } + // Reduce search size for forward search. + sample_size = sample_size - kBackSearchSize + 1; + } + // Step over SOI marker and scan for EOI. + return ScanEOI(sample + 2, sample_size - 2); +} + +#ifdef __cplusplus +} // extern "C" +} // namespace libyuv +#endif + diff --git a/third_party/libyuv/source/planar_functions.cc b/third_party/libyuv/source/planar_functions.cc new file mode 100644 index 0000000..a764f8d --- /dev/null +++ b/third_party/libyuv/source/planar_functions.cc @@ -0,0 +1,2811 @@ +/* + * Copyright 2011 The LibYuv Project Authors. All rights reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "libyuv/planar_functions.h" + +#include // for memset() + +#include "libyuv/cpu_id.h" +#ifdef HAVE_JPEG +#include "libyuv/mjpeg_decoder.h" +#endif +#include "libyuv/row.h" +#include "libyuv/scale_row.h" // for ScaleRowDown2 + +#ifdef __cplusplus +namespace libyuv { +extern "C" { +#endif + +// Copy a plane of data +LIBYUV_API +void CopyPlane(const uint8* src_y, int src_stride_y, + uint8* dst_y, int dst_stride_y, + int width, int height) { + int y; + void (*CopyRow)(const uint8* src, uint8* dst, int width) = CopyRow_C; + // Negative height means invert the image. + if (height < 0) { + height = -height; + dst_y = dst_y + (height - 1) * dst_stride_y; + dst_stride_y = -dst_stride_y; + } + // Coalesce rows. + if (src_stride_y == width && + dst_stride_y == width) { + width *= height; + height = 1; + src_stride_y = dst_stride_y = 0; + } + // Nothing to do. + if (src_y == dst_y && src_stride_y == dst_stride_y) { + return; + } +#if defined(HAS_COPYROW_SSE2) + if (TestCpuFlag(kCpuHasSSE2)) { + CopyRow = IS_ALIGNED(width, 32) ? CopyRow_SSE2 : CopyRow_Any_SSE2; + } +#endif +#if defined(HAS_COPYROW_AVX) + if (TestCpuFlag(kCpuHasAVX)) { + CopyRow = IS_ALIGNED(width, 64) ? CopyRow_AVX : CopyRow_Any_AVX; + } +#endif +#if defined(HAS_COPYROW_ERMS) + if (TestCpuFlag(kCpuHasERMS)) { + CopyRow = CopyRow_ERMS; + } +#endif +#if defined(HAS_COPYROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + CopyRow = IS_ALIGNED(width, 32) ? CopyRow_NEON : CopyRow_Any_NEON; + } +#endif +#if defined(HAS_COPYROW_MIPS) + if (TestCpuFlag(kCpuHasMIPS)) { + CopyRow = CopyRow_MIPS; + } +#endif + + // Copy plane + for (y = 0; y < height; ++y) { + CopyRow(src_y, dst_y, width); + src_y += src_stride_y; + dst_y += dst_stride_y; + } +} + +// TODO(fbarchard): Consider support for negative height. +LIBYUV_API +void CopyPlane_16(const uint16* src_y, int src_stride_y, + uint16* dst_y, int dst_stride_y, + int width, int height) { + int y; + void (*CopyRow)(const uint16* src, uint16* dst, int width) = CopyRow_16_C; + // Coalesce rows. + if (src_stride_y == width && + dst_stride_y == width) { + width *= height; + height = 1; + src_stride_y = dst_stride_y = 0; + } +#if defined(HAS_COPYROW_16_SSE2) + if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(width, 32)) { + CopyRow = CopyRow_16_SSE2; + } +#endif +#if defined(HAS_COPYROW_16_ERMS) + if (TestCpuFlag(kCpuHasERMS)) { + CopyRow = CopyRow_16_ERMS; + } +#endif +#if defined(HAS_COPYROW_16_NEON) + if (TestCpuFlag(kCpuHasNEON) && IS_ALIGNED(width, 32)) { + CopyRow = CopyRow_16_NEON; + } +#endif +#if defined(HAS_COPYROW_16_MIPS) + if (TestCpuFlag(kCpuHasMIPS)) { + CopyRow = CopyRow_16_MIPS; + } +#endif + + // Copy plane + for (y = 0; y < height; ++y) { + CopyRow(src_y, dst_y, width); + src_y += src_stride_y; + dst_y += dst_stride_y; + } +} + +// Copy I422. +LIBYUV_API +int I422Copy(const uint8* src_y, int src_stride_y, + const uint8* src_u, int src_stride_u, + const uint8* src_v, int src_stride_v, + uint8* dst_y, int dst_stride_y, + uint8* dst_u, int dst_stride_u, + uint8* dst_v, int dst_stride_v, + int width, int height) { + int halfwidth = (width + 1) >> 1; + if (!src_u || !src_v || + !dst_u || !dst_v || + width <= 0 || height == 0) { + return -1; + } + // Negative height means invert the image. + if (height < 0) { + height = -height; + src_y = src_y + (height - 1) * src_stride_y; + src_u = src_u + (height - 1) * src_stride_u; + src_v = src_v + (height - 1) * src_stride_v; + src_stride_y = -src_stride_y; + src_stride_u = -src_stride_u; + src_stride_v = -src_stride_v; + } + + if (dst_y) { + CopyPlane(src_y, src_stride_y, dst_y, dst_stride_y, width, height); + } + CopyPlane(src_u, src_stride_u, dst_u, dst_stride_u, halfwidth, height); + CopyPlane(src_v, src_stride_v, dst_v, dst_stride_v, halfwidth, height); + return 0; +} + +// Copy I444. +LIBYUV_API +int I444Copy(const uint8* src_y, int src_stride_y, + const uint8* src_u, int src_stride_u, + const uint8* src_v, int src_stride_v, + uint8* dst_y, int dst_stride_y, + uint8* dst_u, int dst_stride_u, + uint8* dst_v, int dst_stride_v, + int width, int height) { + if (!src_u || !src_v || + !dst_u || !dst_v || + width <= 0 || height == 0) { + return -1; + } + // Negative height means invert the image. + if (height < 0) { + height = -height; + src_y = src_y + (height - 1) * src_stride_y; + src_u = src_u + (height - 1) * src_stride_u; + src_v = src_v + (height - 1) * src_stride_v; + src_stride_y = -src_stride_y; + src_stride_u = -src_stride_u; + src_stride_v = -src_stride_v; + } + + if (dst_y) { + CopyPlane(src_y, src_stride_y, dst_y, dst_stride_y, width, height); + } + CopyPlane(src_u, src_stride_u, dst_u, dst_stride_u, width, height); + CopyPlane(src_v, src_stride_v, dst_v, dst_stride_v, width, height); + return 0; +} + +// Copy I400. +LIBYUV_API +int I400ToI400(const uint8* src_y, int src_stride_y, + uint8* dst_y, int dst_stride_y, + int width, int height) { + if (!src_y || !dst_y || width <= 0 || height == 0) { + return -1; + } + // Negative height means invert the image. + if (height < 0) { + height = -height; + src_y = src_y + (height - 1) * src_stride_y; + src_stride_y = -src_stride_y; + } + CopyPlane(src_y, src_stride_y, dst_y, dst_stride_y, width, height); + return 0; +} + +// Convert I420 to I400. +LIBYUV_API +int I420ToI400(const uint8* src_y, int src_stride_y, + const uint8* src_u, int src_stride_u, + const uint8* src_v, int src_stride_v, + uint8* dst_y, int dst_stride_y, + int width, int height) { + if (!src_y || !dst_y || width <= 0 || height == 0) { + return -1; + } + // Negative height means invert the image. + if (height < 0) { + height = -height; + src_y = src_y + (height - 1) * src_stride_y; + src_stride_y = -src_stride_y; + } + + CopyPlane(src_y, src_stride_y, dst_y, dst_stride_y, width, height); + return 0; +} + +// Support function for NV12 etc UV channels. +// Width and height are plane sizes (typically half pixel width). +LIBYUV_API +void SplitUVPlane(const uint8* src_uv, int src_stride_uv, + uint8* dst_u, int dst_stride_u, + uint8* dst_v, int dst_stride_v, + int width, int height) { + int y; + void (*SplitUVRow)(const uint8* src_uv, uint8* dst_u, uint8* dst_v, + int width) = SplitUVRow_C; + // Negative height means invert the image. + if (height < 0) { + height = -height; + dst_u = dst_u + (height - 1) * dst_stride_u; + dst_v = dst_v + (height - 1) * dst_stride_v; + dst_stride_u = -dst_stride_u; + dst_stride_v = -dst_stride_v; + } + // Coalesce rows. + if (src_stride_uv == width * 2 && + dst_stride_u == width && + dst_stride_v == width) { + width *= height; + height = 1; + src_stride_uv = dst_stride_u = dst_stride_v = 0; + } +#if defined(HAS_SPLITUVROW_SSE2) + if (TestCpuFlag(kCpuHasSSE2)) { + SplitUVRow = SplitUVRow_Any_SSE2; + if (IS_ALIGNED(width, 16)) { + SplitUVRow = SplitUVRow_SSE2; + } + } +#endif +#if defined(HAS_SPLITUVROW_AVX2) + if (TestCpuFlag(kCpuHasAVX2)) { + SplitUVRow = SplitUVRow_Any_AVX2; + if (IS_ALIGNED(width, 32)) { + SplitUVRow = SplitUVRow_AVX2; + } + } +#endif +#if defined(HAS_SPLITUVROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + SplitUVRow = SplitUVRow_Any_NEON; + if (IS_ALIGNED(width, 16)) { + SplitUVRow = SplitUVRow_NEON; + } + } +#endif +#if defined(HAS_SPLITUVROW_DSPR2) + if (TestCpuFlag(kCpuHasDSPR2) && + IS_ALIGNED(dst_u, 4) && IS_ALIGNED(dst_stride_u, 4) && + IS_ALIGNED(dst_v, 4) && IS_ALIGNED(dst_stride_v, 4)) { + SplitUVRow = SplitUVRow_Any_DSPR2; + if (IS_ALIGNED(width, 16)) { + SplitUVRow = SplitUVRow_DSPR2; + } + } +#endif + + for (y = 0; y < height; ++y) { + // Copy a row of UV. + SplitUVRow(src_uv, dst_u, dst_v, width); + dst_u += dst_stride_u; + dst_v += dst_stride_v; + src_uv += src_stride_uv; + } +} + +LIBYUV_API +void MergeUVPlane(const uint8* src_u, int src_stride_u, + const uint8* src_v, int src_stride_v, + uint8* dst_uv, int dst_stride_uv, + int width, int height) { + int y; + void (*MergeUVRow)(const uint8* src_u, const uint8* src_v, uint8* dst_uv, + int width) = MergeUVRow_C; + // Coalesce rows. + // Negative height means invert the image. + if (height < 0) { + height = -height; + dst_uv = dst_uv + (height - 1) * dst_stride_uv; + dst_stride_uv = -dst_stride_uv; + } + // Coalesce rows. + if (src_stride_u == width && + src_stride_v == width && + dst_stride_uv == width * 2) { + width *= height; + height = 1; + src_stride_u = src_stride_v = dst_stride_uv = 0; + } +#if defined(HAS_MERGEUVROW_SSE2) + if (TestCpuFlag(kCpuHasSSE2)) { + MergeUVRow = MergeUVRow_Any_SSE2; + if (IS_ALIGNED(width, 16)) { + MergeUVRow = MergeUVRow_SSE2; + } + } +#endif +#if defined(HAS_MERGEUVROW_AVX2) + if (TestCpuFlag(kCpuHasAVX2)) { + MergeUVRow = MergeUVRow_Any_AVX2; + if (IS_ALIGNED(width, 32)) { + MergeUVRow = MergeUVRow_AVX2; + } + } +#endif +#if defined(HAS_MERGEUVROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + MergeUVRow = MergeUVRow_Any_NEON; + if (IS_ALIGNED(width, 16)) { + MergeUVRow = MergeUVRow_NEON; + } + } +#endif + + for (y = 0; y < height; ++y) { + // Merge a row of U and V into a row of UV. + MergeUVRow(src_u, src_v, dst_uv, width); + src_u += src_stride_u; + src_v += src_stride_v; + dst_uv += dst_stride_uv; + } +} + +// Mirror a plane of data. +void MirrorPlane(const uint8* src_y, int src_stride_y, + uint8* dst_y, int dst_stride_y, + int width, int height) { + int y; + void (*MirrorRow)(const uint8* src, uint8* dst, int width) = MirrorRow_C; + // Negative height means invert the image. + if (height < 0) { + height = -height; + src_y = src_y + (height - 1) * src_stride_y; + src_stride_y = -src_stride_y; + } +#if defined(HAS_MIRRORROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + MirrorRow = MirrorRow_Any_NEON; + if (IS_ALIGNED(width, 16)) { + MirrorRow = MirrorRow_NEON; + } + } +#endif +#if defined(HAS_MIRRORROW_SSSE3) + if (TestCpuFlag(kCpuHasSSSE3)) { + MirrorRow = MirrorRow_Any_SSSE3; + if (IS_ALIGNED(width, 16)) { + MirrorRow = MirrorRow_SSSE3; + } + } +#endif +#if defined(HAS_MIRRORROW_AVX2) + if (TestCpuFlag(kCpuHasAVX2)) { + MirrorRow = MirrorRow_Any_AVX2; + if (IS_ALIGNED(width, 32)) { + MirrorRow = MirrorRow_AVX2; + } + } +#endif +// TODO(fbarchard): Mirror on mips handle unaligned memory. +#if defined(HAS_MIRRORROW_DSPR2) + if (TestCpuFlag(kCpuHasDSPR2) && + IS_ALIGNED(src_y, 4) && IS_ALIGNED(src_stride_y, 4) && + IS_ALIGNED(dst_y, 4) && IS_ALIGNED(dst_stride_y, 4)) { + MirrorRow = MirrorRow_DSPR2; + } +#endif + + // Mirror plane + for (y = 0; y < height; ++y) { + MirrorRow(src_y, dst_y, width); + src_y += src_stride_y; + dst_y += dst_stride_y; + } +} + +// Convert YUY2 to I422. +LIBYUV_API +int YUY2ToI422(const uint8* src_yuy2, int src_stride_yuy2, + uint8* dst_y, int dst_stride_y, + uint8* dst_u, int dst_stride_u, + uint8* dst_v, int dst_stride_v, + int width, int height) { + int y; + void (*YUY2ToUV422Row)(const uint8* src_yuy2, + uint8* dst_u, uint8* dst_v, int width) = + YUY2ToUV422Row_C; + void (*YUY2ToYRow)(const uint8* src_yuy2, uint8* dst_y, int width) = + YUY2ToYRow_C; + // Negative height means invert the image. + if (height < 0) { + height = -height; + src_yuy2 = src_yuy2 + (height - 1) * src_stride_yuy2; + src_stride_yuy2 = -src_stride_yuy2; + } + // Coalesce rows. + if (src_stride_yuy2 == width * 2 && + dst_stride_y == width && + dst_stride_u * 2 == width && + dst_stride_v * 2 == width) { + width *= height; + height = 1; + src_stride_yuy2 = dst_stride_y = dst_stride_u = dst_stride_v = 0; + } +#if defined(HAS_YUY2TOYROW_SSE2) + if (TestCpuFlag(kCpuHasSSE2)) { + YUY2ToUV422Row = YUY2ToUV422Row_Any_SSE2; + YUY2ToYRow = YUY2ToYRow_Any_SSE2; + if (IS_ALIGNED(width, 16)) { + YUY2ToUV422Row = YUY2ToUV422Row_SSE2; + YUY2ToYRow = YUY2ToYRow_SSE2; + } + } +#endif +#if defined(HAS_YUY2TOYROW_AVX2) + if (TestCpuFlag(kCpuHasAVX2)) { + YUY2ToUV422Row = YUY2ToUV422Row_Any_AVX2; + YUY2ToYRow = YUY2ToYRow_Any_AVX2; + if (IS_ALIGNED(width, 32)) { + YUY2ToUV422Row = YUY2ToUV422Row_AVX2; + YUY2ToYRow = YUY2ToYRow_AVX2; + } + } +#endif +#if defined(HAS_YUY2TOYROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + YUY2ToYRow = YUY2ToYRow_Any_NEON; + if (width >= 16) { + YUY2ToUV422Row = YUY2ToUV422Row_Any_NEON; + } + if (IS_ALIGNED(width, 16)) { + YUY2ToYRow = YUY2ToYRow_NEON; + YUY2ToUV422Row = YUY2ToUV422Row_NEON; + } + } +#endif + + for (y = 0; y < height; ++y) { + YUY2ToUV422Row(src_yuy2, dst_u, dst_v, width); + YUY2ToYRow(src_yuy2, dst_y, width); + src_yuy2 += src_stride_yuy2; + dst_y += dst_stride_y; + dst_u += dst_stride_u; + dst_v += dst_stride_v; + } + return 0; +} + +// Convert UYVY to I422. +LIBYUV_API +int UYVYToI422(const uint8* src_uyvy, int src_stride_uyvy, + uint8* dst_y, int dst_stride_y, + uint8* dst_u, int dst_stride_u, + uint8* dst_v, int dst_stride_v, + int width, int height) { + int y; + void (*UYVYToUV422Row)(const uint8* src_uyvy, + uint8* dst_u, uint8* dst_v, int width) = + UYVYToUV422Row_C; + void (*UYVYToYRow)(const uint8* src_uyvy, + uint8* dst_y, int width) = UYVYToYRow_C; + // Negative height means invert the image. + if (height < 0) { + height = -height; + src_uyvy = src_uyvy + (height - 1) * src_stride_uyvy; + src_stride_uyvy = -src_stride_uyvy; + } + // Coalesce rows. + if (src_stride_uyvy == width * 2 && + dst_stride_y == width && + dst_stride_u * 2 == width && + dst_stride_v * 2 == width) { + width *= height; + height = 1; + src_stride_uyvy = dst_stride_y = dst_stride_u = dst_stride_v = 0; + } +#if defined(HAS_UYVYTOYROW_SSE2) + if (TestCpuFlag(kCpuHasSSE2)) { + UYVYToUV422Row = UYVYToUV422Row_Any_SSE2; + UYVYToYRow = UYVYToYRow_Any_SSE2; + if (IS_ALIGNED(width, 16)) { + UYVYToUV422Row = UYVYToUV422Row_SSE2; + UYVYToYRow = UYVYToYRow_SSE2; + } + } +#endif +#if defined(HAS_UYVYTOYROW_AVX2) + if (TestCpuFlag(kCpuHasAVX2)) { + UYVYToUV422Row = UYVYToUV422Row_Any_AVX2; + UYVYToYRow = UYVYToYRow_Any_AVX2; + if (IS_ALIGNED(width, 32)) { + UYVYToUV422Row = UYVYToUV422Row_AVX2; + UYVYToYRow = UYVYToYRow_AVX2; + } + } +#endif +#if defined(HAS_UYVYTOYROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + UYVYToYRow = UYVYToYRow_Any_NEON; + if (width >= 16) { + UYVYToUV422Row = UYVYToUV422Row_Any_NEON; + } + if (IS_ALIGNED(width, 16)) { + UYVYToYRow = UYVYToYRow_NEON; + UYVYToUV422Row = UYVYToUV422Row_NEON; + } + } +#endif + + for (y = 0; y < height; ++y) { + UYVYToUV422Row(src_uyvy, dst_u, dst_v, width); + UYVYToYRow(src_uyvy, dst_y, width); + src_uyvy += src_stride_uyvy; + dst_y += dst_stride_y; + dst_u += dst_stride_u; + dst_v += dst_stride_v; + } + return 0; +} + +// Mirror I400 with optional flipping +LIBYUV_API +int I400Mirror(const uint8* src_y, int src_stride_y, + uint8* dst_y, int dst_stride_y, + int width, int height) { + if (!src_y || !dst_y || + width <= 0 || height == 0) { + return -1; + } + // Negative height means invert the image. + if (height < 0) { + height = -height; + src_y = src_y + (height - 1) * src_stride_y; + src_stride_y = -src_stride_y; + } + + MirrorPlane(src_y, src_stride_y, dst_y, dst_stride_y, width, height); + return 0; +} + +// Mirror I420 with optional flipping +LIBYUV_API +int I420Mirror(const uint8* src_y, int src_stride_y, + const uint8* src_u, int src_stride_u, + const uint8* src_v, int src_stride_v, + uint8* dst_y, int dst_stride_y, + uint8* dst_u, int dst_stride_u, + uint8* dst_v, int dst_stride_v, + int width, int height) { + int halfwidth = (width + 1) >> 1; + int halfheight = (height + 1) >> 1; + if (!src_y || !src_u || !src_v || !dst_y || !dst_u || !dst_v || + width <= 0 || height == 0) { + return -1; + } + // Negative height means invert the image. + if (height < 0) { + height = -height; + halfheight = (height + 1) >> 1; + src_y = src_y + (height - 1) * src_stride_y; + src_u = src_u + (halfheight - 1) * src_stride_u; + src_v = src_v + (halfheight - 1) * src_stride_v; + src_stride_y = -src_stride_y; + src_stride_u = -src_stride_u; + src_stride_v = -src_stride_v; + } + + if (dst_y) { + MirrorPlane(src_y, src_stride_y, dst_y, dst_stride_y, width, height); + } + MirrorPlane(src_u, src_stride_u, dst_u, dst_stride_u, halfwidth, halfheight); + MirrorPlane(src_v, src_stride_v, dst_v, dst_stride_v, halfwidth, halfheight); + return 0; +} + +// ARGB mirror. +LIBYUV_API +int ARGBMirror(const uint8* src_argb, int src_stride_argb, + uint8* dst_argb, int dst_stride_argb, + int width, int height) { + int y; + void (*ARGBMirrorRow)(const uint8* src, uint8* dst, int width) = + ARGBMirrorRow_C; + if (!src_argb || !dst_argb || width <= 0 || height == 0) { + return -1; + } + // Negative height means invert the image. + if (height < 0) { + height = -height; + src_argb = src_argb + (height - 1) * src_stride_argb; + src_stride_argb = -src_stride_argb; + } +#if defined(HAS_ARGBMIRRORROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + ARGBMirrorRow = ARGBMirrorRow_Any_NEON; + if (IS_ALIGNED(width, 4)) { + ARGBMirrorRow = ARGBMirrorRow_NEON; + } + } +#endif +#if defined(HAS_ARGBMIRRORROW_SSE2) + if (TestCpuFlag(kCpuHasSSE2)) { + ARGBMirrorRow = ARGBMirrorRow_Any_SSE2; + if (IS_ALIGNED(width, 4)) { + ARGBMirrorRow = ARGBMirrorRow_SSE2; + } + } +#endif +#if defined(HAS_ARGBMIRRORROW_AVX2) + if (TestCpuFlag(kCpuHasAVX2)) { + ARGBMirrorRow = ARGBMirrorRow_Any_AVX2; + if (IS_ALIGNED(width, 8)) { + ARGBMirrorRow = ARGBMirrorRow_AVX2; + } + } +#endif + + // Mirror plane + for (y = 0; y < height; ++y) { + ARGBMirrorRow(src_argb, dst_argb, width); + src_argb += src_stride_argb; + dst_argb += dst_stride_argb; + } + return 0; +} + +// Get a blender that optimized for the CPU and pixel count. +// As there are 6 blenders to choose from, the caller should try to use +// the same blend function for all pixels if possible. +LIBYUV_API +ARGBBlendRow GetARGBBlend() { + void (*ARGBBlendRow)(const uint8* src_argb, const uint8* src_argb1, + uint8* dst_argb, int width) = ARGBBlendRow_C; +#if defined(HAS_ARGBBLENDROW_SSSE3) + if (TestCpuFlag(kCpuHasSSSE3)) { + ARGBBlendRow = ARGBBlendRow_SSSE3; + return ARGBBlendRow; + } +#endif +#if defined(HAS_ARGBBLENDROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + ARGBBlendRow = ARGBBlendRow_NEON; + } +#endif + return ARGBBlendRow; +} + +// Alpha Blend 2 ARGB images and store to destination. +LIBYUV_API +int ARGBBlend(const uint8* src_argb0, int src_stride_argb0, + const uint8* src_argb1, int src_stride_argb1, + uint8* dst_argb, int dst_stride_argb, + int width, int height) { + int y; + void (*ARGBBlendRow)(const uint8* src_argb, const uint8* src_argb1, + uint8* dst_argb, int width) = GetARGBBlend(); + if (!src_argb0 || !src_argb1 || !dst_argb || width <= 0 || height == 0) { + return -1; + } + // Negative height means invert the image. + if (height < 0) { + height = -height; + dst_argb = dst_argb + (height - 1) * dst_stride_argb; + dst_stride_argb = -dst_stride_argb; + } + // Coalesce rows. + if (src_stride_argb0 == width * 4 && + src_stride_argb1 == width * 4 && + dst_stride_argb == width * 4) { + width *= height; + height = 1; + src_stride_argb0 = src_stride_argb1 = dst_stride_argb = 0; + } + + for (y = 0; y < height; ++y) { + ARGBBlendRow(src_argb0, src_argb1, dst_argb, width); + src_argb0 += src_stride_argb0; + src_argb1 += src_stride_argb1; + dst_argb += dst_stride_argb; + } + return 0; +} + +// Alpha Blend plane and store to destination. +LIBYUV_API +int BlendPlane(const uint8* src_y0, int src_stride_y0, + const uint8* src_y1, int src_stride_y1, + const uint8* alpha, int alpha_stride, + uint8* dst_y, int dst_stride_y, + int width, int height) { + int y; + void (*BlendPlaneRow)(const uint8* src0, const uint8* src1, + const uint8* alpha, uint8* dst, int width) = BlendPlaneRow_C; + if (!src_y0 || !src_y1 || !alpha || !dst_y || width <= 0 || height == 0) { + return -1; + } + // Negative height means invert the image. + if (height < 0) { + height = -height; + dst_y = dst_y + (height - 1) * dst_stride_y; + dst_stride_y = -dst_stride_y; + } + + // Coalesce rows for Y plane. + if (src_stride_y0 == width && + src_stride_y1 == width && + alpha_stride == width && + dst_stride_y == width) { + width *= height; + height = 1; + src_stride_y0 = src_stride_y1 = alpha_stride = dst_stride_y = 0; + } + +#if defined(HAS_BLENDPLANEROW_SSSE3) + if (TestCpuFlag(kCpuHasSSSE3)) { + BlendPlaneRow = BlendPlaneRow_Any_SSSE3; + if (IS_ALIGNED(width, 8)) { + BlendPlaneRow = BlendPlaneRow_SSSE3; + } + } +#endif +#if defined(HAS_BLENDPLANEROW_AVX2) + if (TestCpuFlag(kCpuHasAVX2)) { + BlendPlaneRow = BlendPlaneRow_Any_AVX2; + if (IS_ALIGNED(width, 32)) { + BlendPlaneRow = BlendPlaneRow_AVX2; + } + } +#endif + + for (y = 0; y < height; ++y) { + BlendPlaneRow(src_y0, src_y1, alpha, dst_y, width); + src_y0 += src_stride_y0; + src_y1 += src_stride_y1; + alpha += alpha_stride; + dst_y += dst_stride_y; + } + return 0; +} + +#define MAXTWIDTH 2048 +// Alpha Blend YUV images and store to destination. +LIBYUV_API +int I420Blend(const uint8* src_y0, int src_stride_y0, + const uint8* src_u0, int src_stride_u0, + const uint8* src_v0, int src_stride_v0, + const uint8* src_y1, int src_stride_y1, + const uint8* src_u1, int src_stride_u1, + const uint8* src_v1, int src_stride_v1, + const uint8* alpha, int alpha_stride, + uint8* dst_y, int dst_stride_y, + uint8* dst_u, int dst_stride_u, + uint8* dst_v, int dst_stride_v, + int width, int height) { + int y; + // Half width/height for UV. + int halfwidth = (width + 1) >> 1; + void (*BlendPlaneRow)(const uint8* src0, const uint8* src1, + const uint8* alpha, uint8* dst, int width) = BlendPlaneRow_C; + void (*ScaleRowDown2)(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst_ptr, int dst_width) = ScaleRowDown2Box_C; + if (!src_y0 || !src_u0 || !src_v0 || !src_y1 || !src_u1 || !src_v1 || + !alpha || !dst_y || !dst_u || !dst_v || width <= 0 || height == 0) { + return -1; + } + + // Negative height means invert the image. + if (height < 0) { + height = -height; + dst_y = dst_y + (height - 1) * dst_stride_y; + dst_stride_y = -dst_stride_y; + } + + // Blend Y plane. + BlendPlane(src_y0, src_stride_y0, + src_y1, src_stride_y1, + alpha, alpha_stride, + dst_y, dst_stride_y, + width, height); + +#if defined(HAS_BLENDPLANEROW_SSSE3) + if (TestCpuFlag(kCpuHasSSSE3)) { + BlendPlaneRow = BlendPlaneRow_Any_SSSE3; + if (IS_ALIGNED(halfwidth, 8)) { + BlendPlaneRow = BlendPlaneRow_SSSE3; + } + } +#endif +#if defined(HAS_BLENDPLANEROW_AVX2) + if (TestCpuFlag(kCpuHasAVX2)) { + BlendPlaneRow = BlendPlaneRow_Any_AVX2; + if (IS_ALIGNED(halfwidth, 32)) { + BlendPlaneRow = BlendPlaneRow_AVX2; + } + } +#endif + if (!IS_ALIGNED(width, 2)) { + ScaleRowDown2 = ScaleRowDown2Box_Odd_C; + } +#if defined(HAS_SCALEROWDOWN2_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + ScaleRowDown2 = ScaleRowDown2Box_Odd_NEON; + if (IS_ALIGNED(width, 2)) { + ScaleRowDown2 = ScaleRowDown2Box_Any_NEON; + if (IS_ALIGNED(halfwidth, 16)) { + ScaleRowDown2 = ScaleRowDown2Box_NEON; + } + } + } +#endif +#if defined(HAS_SCALEROWDOWN2_SSSE3) + if (TestCpuFlag(kCpuHasSSSE3)) { + ScaleRowDown2 = ScaleRowDown2Box_Odd_SSSE3; + if (IS_ALIGNED(width, 2)) { + ScaleRowDown2 = ScaleRowDown2Box_Any_SSSE3; + if (IS_ALIGNED(halfwidth, 16)) { + ScaleRowDown2 = ScaleRowDown2Box_SSSE3; + } + } + } +#endif +#if defined(HAS_SCALEROWDOWN2_AVX2) + if (TestCpuFlag(kCpuHasAVX2)) { + ScaleRowDown2 = ScaleRowDown2Box_Odd_AVX2; + if (IS_ALIGNED(width, 2)) { + ScaleRowDown2 = ScaleRowDown2Box_Any_AVX2; + if (IS_ALIGNED(halfwidth, 32)) { + ScaleRowDown2 = ScaleRowDown2Box_AVX2; + } + } + } +#endif + + // Row buffer for intermediate alpha pixels. + align_buffer_64(halfalpha, halfwidth); + for (y = 0; y < height; y += 2) { + // last row of odd height image use 1 row of alpha instead of 2. + if (y == (height - 1)) { + alpha_stride = 0; + } + // Subsample 2 rows of UV to half width and half height. + ScaleRowDown2(alpha, alpha_stride, halfalpha, halfwidth); + alpha += alpha_stride * 2; + BlendPlaneRow(src_u0, src_u1, halfalpha, dst_u, halfwidth); + BlendPlaneRow(src_v0, src_v1, halfalpha, dst_v, halfwidth); + src_u0 += src_stride_u0; + src_u1 += src_stride_u1; + dst_u += dst_stride_u; + src_v0 += src_stride_v0; + src_v1 += src_stride_v1; + dst_v += dst_stride_v; + } + free_aligned_buffer_64(halfalpha); + return 0; +} + +// Multiply 2 ARGB images and store to destination. +LIBYUV_API +int ARGBMultiply(const uint8* src_argb0, int src_stride_argb0, + const uint8* src_argb1, int src_stride_argb1, + uint8* dst_argb, int dst_stride_argb, + int width, int height) { + int y; + void (*ARGBMultiplyRow)(const uint8* src0, const uint8* src1, uint8* dst, + int width) = ARGBMultiplyRow_C; + if (!src_argb0 || !src_argb1 || !dst_argb || width <= 0 || height == 0) { + return -1; + } + // Negative height means invert the image. + if (height < 0) { + height = -height; + dst_argb = dst_argb + (height - 1) * dst_stride_argb; + dst_stride_argb = -dst_stride_argb; + } + // Coalesce rows. + if (src_stride_argb0 == width * 4 && + src_stride_argb1 == width * 4 && + dst_stride_argb == width * 4) { + width *= height; + height = 1; + src_stride_argb0 = src_stride_argb1 = dst_stride_argb = 0; + } +#if defined(HAS_ARGBMULTIPLYROW_SSE2) + if (TestCpuFlag(kCpuHasSSE2)) { + ARGBMultiplyRow = ARGBMultiplyRow_Any_SSE2; + if (IS_ALIGNED(width, 4)) { + ARGBMultiplyRow = ARGBMultiplyRow_SSE2; + } + } +#endif +#if defined(HAS_ARGBMULTIPLYROW_AVX2) + if (TestCpuFlag(kCpuHasAVX2)) { + ARGBMultiplyRow = ARGBMultiplyRow_Any_AVX2; + if (IS_ALIGNED(width, 8)) { + ARGBMultiplyRow = ARGBMultiplyRow_AVX2; + } + } +#endif +#if defined(HAS_ARGBMULTIPLYROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + ARGBMultiplyRow = ARGBMultiplyRow_Any_NEON; + if (IS_ALIGNED(width, 8)) { + ARGBMultiplyRow = ARGBMultiplyRow_NEON; + } + } +#endif + + // Multiply plane + for (y = 0; y < height; ++y) { + ARGBMultiplyRow(src_argb0, src_argb1, dst_argb, width); + src_argb0 += src_stride_argb0; + src_argb1 += src_stride_argb1; + dst_argb += dst_stride_argb; + } + return 0; +} + +// Add 2 ARGB images and store to destination. +LIBYUV_API +int ARGBAdd(const uint8* src_argb0, int src_stride_argb0, + const uint8* src_argb1, int src_stride_argb1, + uint8* dst_argb, int dst_stride_argb, + int width, int height) { + int y; + void (*ARGBAddRow)(const uint8* src0, const uint8* src1, uint8* dst, + int width) = ARGBAddRow_C; + if (!src_argb0 || !src_argb1 || !dst_argb || width <= 0 || height == 0) { + return -1; + } + // Negative height means invert the image. + if (height < 0) { + height = -height; + dst_argb = dst_argb + (height - 1) * dst_stride_argb; + dst_stride_argb = -dst_stride_argb; + } + // Coalesce rows. + if (src_stride_argb0 == width * 4 && + src_stride_argb1 == width * 4 && + dst_stride_argb == width * 4) { + width *= height; + height = 1; + src_stride_argb0 = src_stride_argb1 = dst_stride_argb = 0; + } +#if defined(HAS_ARGBADDROW_SSE2) && (defined(_MSC_VER) && !defined(__clang__)) + if (TestCpuFlag(kCpuHasSSE2)) { + ARGBAddRow = ARGBAddRow_SSE2; + } +#endif +#if defined(HAS_ARGBADDROW_SSE2) && !(defined(_MSC_VER) && !defined(__clang__)) + if (TestCpuFlag(kCpuHasSSE2)) { + ARGBAddRow = ARGBAddRow_Any_SSE2; + if (IS_ALIGNED(width, 4)) { + ARGBAddRow = ARGBAddRow_SSE2; + } + } +#endif +#if defined(HAS_ARGBADDROW_AVX2) + if (TestCpuFlag(kCpuHasAVX2)) { + ARGBAddRow = ARGBAddRow_Any_AVX2; + if (IS_ALIGNED(width, 8)) { + ARGBAddRow = ARGBAddRow_AVX2; + } + } +#endif +#if defined(HAS_ARGBADDROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + ARGBAddRow = ARGBAddRow_Any_NEON; + if (IS_ALIGNED(width, 8)) { + ARGBAddRow = ARGBAddRow_NEON; + } + } +#endif + + // Add plane + for (y = 0; y < height; ++y) { + ARGBAddRow(src_argb0, src_argb1, dst_argb, width); + src_argb0 += src_stride_argb0; + src_argb1 += src_stride_argb1; + dst_argb += dst_stride_argb; + } + return 0; +} + +// Subtract 2 ARGB images and store to destination. +LIBYUV_API +int ARGBSubtract(const uint8* src_argb0, int src_stride_argb0, + const uint8* src_argb1, int src_stride_argb1, + uint8* dst_argb, int dst_stride_argb, + int width, int height) { + int y; + void (*ARGBSubtractRow)(const uint8* src0, const uint8* src1, uint8* dst, + int width) = ARGBSubtractRow_C; + if (!src_argb0 || !src_argb1 || !dst_argb || width <= 0 || height == 0) { + return -1; + } + // Negative height means invert the image. + if (height < 0) { + height = -height; + dst_argb = dst_argb + (height - 1) * dst_stride_argb; + dst_stride_argb = -dst_stride_argb; + } + // Coalesce rows. + if (src_stride_argb0 == width * 4 && + src_stride_argb1 == width * 4 && + dst_stride_argb == width * 4) { + width *= height; + height = 1; + src_stride_argb0 = src_stride_argb1 = dst_stride_argb = 0; + } +#if defined(HAS_ARGBSUBTRACTROW_SSE2) + if (TestCpuFlag(kCpuHasSSE2)) { + ARGBSubtractRow = ARGBSubtractRow_Any_SSE2; + if (IS_ALIGNED(width, 4)) { + ARGBSubtractRow = ARGBSubtractRow_SSE2; + } + } +#endif +#if defined(HAS_ARGBSUBTRACTROW_AVX2) + if (TestCpuFlag(kCpuHasAVX2)) { + ARGBSubtractRow = ARGBSubtractRow_Any_AVX2; + if (IS_ALIGNED(width, 8)) { + ARGBSubtractRow = ARGBSubtractRow_AVX2; + } + } +#endif +#if defined(HAS_ARGBSUBTRACTROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + ARGBSubtractRow = ARGBSubtractRow_Any_NEON; + if (IS_ALIGNED(width, 8)) { + ARGBSubtractRow = ARGBSubtractRow_NEON; + } + } +#endif + + // Subtract plane + for (y = 0; y < height; ++y) { + ARGBSubtractRow(src_argb0, src_argb1, dst_argb, width); + src_argb0 += src_stride_argb0; + src_argb1 += src_stride_argb1; + dst_argb += dst_stride_argb; + } + return 0; +} +// Convert I422 to RGBA with matrix +static int I422ToRGBAMatrix(const uint8* src_y, int src_stride_y, + const uint8* src_u, int src_stride_u, + const uint8* src_v, int src_stride_v, + uint8* dst_rgba, int dst_stride_rgba, + const struct YuvConstants* yuvconstants, + int width, int height) { + int y; + void (*I422ToRGBARow)(const uint8* y_buf, + const uint8* u_buf, + const uint8* v_buf, + uint8* rgb_buf, + const struct YuvConstants* yuvconstants, + int width) = I422ToRGBARow_C; + if (!src_y || !src_u || !src_v || !dst_rgba || + width <= 0 || height == 0) { + return -1; + } + // Negative height means invert the image. + if (height < 0) { + height = -height; + dst_rgba = dst_rgba + (height - 1) * dst_stride_rgba; + dst_stride_rgba = -dst_stride_rgba; + } +#if defined(HAS_I422TORGBAROW_SSSE3) + if (TestCpuFlag(kCpuHasSSSE3)) { + I422ToRGBARow = I422ToRGBARow_Any_SSSE3; + if (IS_ALIGNED(width, 8)) { + I422ToRGBARow = I422ToRGBARow_SSSE3; + } + } +#endif +#if defined(HAS_I422TORGBAROW_AVX2) + if (TestCpuFlag(kCpuHasAVX2)) { + I422ToRGBARow = I422ToRGBARow_Any_AVX2; + if (IS_ALIGNED(width, 16)) { + I422ToRGBARow = I422ToRGBARow_AVX2; + } + } +#endif +#if defined(HAS_I422TORGBAROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + I422ToRGBARow = I422ToRGBARow_Any_NEON; + if (IS_ALIGNED(width, 8)) { + I422ToRGBARow = I422ToRGBARow_NEON; + } + } +#endif +#if defined(HAS_I422TORGBAROW_DSPR2) + if (TestCpuFlag(kCpuHasDSPR2) && IS_ALIGNED(width, 4) && + IS_ALIGNED(src_y, 4) && IS_ALIGNED(src_stride_y, 4) && + IS_ALIGNED(src_u, 2) && IS_ALIGNED(src_stride_u, 2) && + IS_ALIGNED(src_v, 2) && IS_ALIGNED(src_stride_v, 2) && + IS_ALIGNED(dst_rgba, 4) && IS_ALIGNED(dst_stride_rgba, 4)) { + I422ToRGBARow = I422ToRGBARow_DSPR2; + } +#endif + + for (y = 0; y < height; ++y) { + I422ToRGBARow(src_y, src_u, src_v, dst_rgba, yuvconstants, width); + dst_rgba += dst_stride_rgba; + src_y += src_stride_y; + src_u += src_stride_u; + src_v += src_stride_v; + } + return 0; +} + +// Convert I422 to RGBA. +LIBYUV_API +int I422ToRGBA(const uint8* src_y, int src_stride_y, + const uint8* src_u, int src_stride_u, + const uint8* src_v, int src_stride_v, + uint8* dst_rgba, int dst_stride_rgba, + int width, int height) { + return I422ToRGBAMatrix(src_y, src_stride_y, + src_u, src_stride_u, + src_v, src_stride_v, + dst_rgba, dst_stride_rgba, + &kYuvI601Constants, + width, height); +} + +// Convert I422 to BGRA. +LIBYUV_API +int I422ToBGRA(const uint8* src_y, int src_stride_y, + const uint8* src_u, int src_stride_u, + const uint8* src_v, int src_stride_v, + uint8* dst_bgra, int dst_stride_bgra, + int width, int height) { + return I422ToRGBAMatrix(src_y, src_stride_y, + src_v, src_stride_v, // Swap U and V + src_u, src_stride_u, + dst_bgra, dst_stride_bgra, + &kYvuI601Constants, // Use Yvu matrix + width, height); +} + +// Convert NV12 to RGB565. +LIBYUV_API +int NV12ToRGB565(const uint8* src_y, int src_stride_y, + const uint8* src_uv, int src_stride_uv, + uint8* dst_rgb565, int dst_stride_rgb565, + int width, int height) { + int y; + void (*NV12ToRGB565Row)(const uint8* y_buf, + const uint8* uv_buf, + uint8* rgb_buf, + const struct YuvConstants* yuvconstants, + int width) = NV12ToRGB565Row_C; + if (!src_y || !src_uv || !dst_rgb565 || + width <= 0 || height == 0) { + return -1; + } + // Negative height means invert the image. + if (height < 0) { + height = -height; + dst_rgb565 = dst_rgb565 + (height - 1) * dst_stride_rgb565; + dst_stride_rgb565 = -dst_stride_rgb565; + } +#if defined(HAS_NV12TORGB565ROW_SSSE3) + if (TestCpuFlag(kCpuHasSSSE3)) { + NV12ToRGB565Row = NV12ToRGB565Row_Any_SSSE3; + if (IS_ALIGNED(width, 8)) { + NV12ToRGB565Row = NV12ToRGB565Row_SSSE3; + } + } +#endif +#if defined(HAS_NV12TORGB565ROW_AVX2) + if (TestCpuFlag(kCpuHasAVX2)) { + NV12ToRGB565Row = NV12ToRGB565Row_Any_AVX2; + if (IS_ALIGNED(width, 16)) { + NV12ToRGB565Row = NV12ToRGB565Row_AVX2; + } + } +#endif +#if defined(HAS_NV12TORGB565ROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + NV12ToRGB565Row = NV12ToRGB565Row_Any_NEON; + if (IS_ALIGNED(width, 8)) { + NV12ToRGB565Row = NV12ToRGB565Row_NEON; + } + } +#endif + + for (y = 0; y < height; ++y) { + NV12ToRGB565Row(src_y, src_uv, dst_rgb565, &kYuvI601Constants, width); + dst_rgb565 += dst_stride_rgb565; + src_y += src_stride_y; + if (y & 1) { + src_uv += src_stride_uv; + } + } + return 0; +} + +// Convert RAW to RGB24. +LIBYUV_API +int RAWToRGB24(const uint8* src_raw, int src_stride_raw, + uint8* dst_rgb24, int dst_stride_rgb24, + int width, int height) { + int y; + void (*RAWToRGB24Row)(const uint8* src_rgb, uint8* dst_rgb24, int width) = + RAWToRGB24Row_C; + if (!src_raw || !dst_rgb24 || + width <= 0 || height == 0) { + return -1; + } + // Negative height means invert the image. + if (height < 0) { + height = -height; + src_raw = src_raw + (height - 1) * src_stride_raw; + src_stride_raw = -src_stride_raw; + } + // Coalesce rows. + if (src_stride_raw == width * 3 && + dst_stride_rgb24 == width * 3) { + width *= height; + height = 1; + src_stride_raw = dst_stride_rgb24 = 0; + } +#if defined(HAS_RAWTORGB24ROW_SSSE3) + if (TestCpuFlag(kCpuHasSSSE3)) { + RAWToRGB24Row = RAWToRGB24Row_Any_SSSE3; + if (IS_ALIGNED(width, 8)) { + RAWToRGB24Row = RAWToRGB24Row_SSSE3; + } + } +#endif +#if defined(HAS_RAWTORGB24ROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + RAWToRGB24Row = RAWToRGB24Row_Any_NEON; + if (IS_ALIGNED(width, 8)) { + RAWToRGB24Row = RAWToRGB24Row_NEON; + } + } +#endif + + for (y = 0; y < height; ++y) { + RAWToRGB24Row(src_raw, dst_rgb24, width); + src_raw += src_stride_raw; + dst_rgb24 += dst_stride_rgb24; + } + return 0; +} + +LIBYUV_API +void SetPlane(uint8* dst_y, int dst_stride_y, + int width, int height, + uint32 value) { + int y; + void (*SetRow)(uint8* dst, uint8 value, int width) = SetRow_C; + if (height < 0) { + height = -height; + dst_y = dst_y + (height - 1) * dst_stride_y; + dst_stride_y = -dst_stride_y; + } + // Coalesce rows. + if (dst_stride_y == width) { + width *= height; + height = 1; + dst_stride_y = 0; + } +#if defined(HAS_SETROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + SetRow = SetRow_Any_NEON; + if (IS_ALIGNED(width, 16)) { + SetRow = SetRow_NEON; + } + } +#endif +#if defined(HAS_SETROW_X86) + if (TestCpuFlag(kCpuHasX86)) { + SetRow = SetRow_Any_X86; + if (IS_ALIGNED(width, 4)) { + SetRow = SetRow_X86; + } + } +#endif +#if defined(HAS_SETROW_ERMS) + if (TestCpuFlag(kCpuHasERMS)) { + SetRow = SetRow_ERMS; + } +#endif + + // Set plane + for (y = 0; y < height; ++y) { + SetRow(dst_y, value, width); + dst_y += dst_stride_y; + } +} + +// Draw a rectangle into I420 +LIBYUV_API +int I420Rect(uint8* dst_y, int dst_stride_y, + uint8* dst_u, int dst_stride_u, + uint8* dst_v, int dst_stride_v, + int x, int y, + int width, int height, + int value_y, int value_u, int value_v) { + int halfwidth = (width + 1) >> 1; + int halfheight = (height + 1) >> 1; + uint8* start_y = dst_y + y * dst_stride_y + x; + uint8* start_u = dst_u + (y / 2) * dst_stride_u + (x / 2); + uint8* start_v = dst_v + (y / 2) * dst_stride_v + (x / 2); + if (!dst_y || !dst_u || !dst_v || + width <= 0 || height == 0 || + x < 0 || y < 0 || + value_y < 0 || value_y > 255 || + value_u < 0 || value_u > 255 || + value_v < 0 || value_v > 255) { + return -1; + } + + SetPlane(start_y, dst_stride_y, width, height, value_y); + SetPlane(start_u, dst_stride_u, halfwidth, halfheight, value_u); + SetPlane(start_v, dst_stride_v, halfwidth, halfheight, value_v); + return 0; +} + +// Draw a rectangle into ARGB +LIBYUV_API +int ARGBRect(uint8* dst_argb, int dst_stride_argb, + int dst_x, int dst_y, + int width, int height, + uint32 value) { + int y; + void (*ARGBSetRow)(uint8* dst_argb, uint32 value, int width) = ARGBSetRow_C; + if (!dst_argb || + width <= 0 || height == 0 || + dst_x < 0 || dst_y < 0) { + return -1; + } + if (height < 0) { + height = -height; + dst_argb = dst_argb + (height - 1) * dst_stride_argb; + dst_stride_argb = -dst_stride_argb; + } + dst_argb += dst_y * dst_stride_argb + dst_x * 4; + // Coalesce rows. + if (dst_stride_argb == width * 4) { + width *= height; + height = 1; + dst_stride_argb = 0; + } + +#if defined(HAS_ARGBSETROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + ARGBSetRow = ARGBSetRow_Any_NEON; + if (IS_ALIGNED(width, 4)) { + ARGBSetRow = ARGBSetRow_NEON; + } + } +#endif +#if defined(HAS_ARGBSETROW_X86) + if (TestCpuFlag(kCpuHasX86)) { + ARGBSetRow = ARGBSetRow_X86; + } +#endif + + // Set plane + for (y = 0; y < height; ++y) { + ARGBSetRow(dst_argb, value, width); + dst_argb += dst_stride_argb; + } + return 0; +} + +// Convert unattentuated ARGB to preattenuated ARGB. +// An unattenutated ARGB alpha blend uses the formula +// p = a * f + (1 - a) * b +// where +// p is output pixel +// f is foreground pixel +// b is background pixel +// a is alpha value from foreground pixel +// An preattenutated ARGB alpha blend uses the formula +// p = f + (1 - a) * b +// where +// f is foreground pixel premultiplied by alpha + +LIBYUV_API +int ARGBAttenuate(const uint8* src_argb, int src_stride_argb, + uint8* dst_argb, int dst_stride_argb, + int width, int height) { + int y; + void (*ARGBAttenuateRow)(const uint8* src_argb, uint8* dst_argb, + int width) = ARGBAttenuateRow_C; + if (!src_argb || !dst_argb || width <= 0 || height == 0) { + return -1; + } + if (height < 0) { + height = -height; + src_argb = src_argb + (height - 1) * src_stride_argb; + src_stride_argb = -src_stride_argb; + } + // Coalesce rows. + if (src_stride_argb == width * 4 && + dst_stride_argb == width * 4) { + width *= height; + height = 1; + src_stride_argb = dst_stride_argb = 0; + } +#if defined(HAS_ARGBATTENUATEROW_SSSE3) + if (TestCpuFlag(kCpuHasSSSE3)) { + ARGBAttenuateRow = ARGBAttenuateRow_Any_SSSE3; + if (IS_ALIGNED(width, 4)) { + ARGBAttenuateRow = ARGBAttenuateRow_SSSE3; + } + } +#endif +#if defined(HAS_ARGBATTENUATEROW_AVX2) + if (TestCpuFlag(kCpuHasAVX2)) { + ARGBAttenuateRow = ARGBAttenuateRow_Any_AVX2; + if (IS_ALIGNED(width, 8)) { + ARGBAttenuateRow = ARGBAttenuateRow_AVX2; + } + } +#endif +#if defined(HAS_ARGBATTENUATEROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + ARGBAttenuateRow = ARGBAttenuateRow_Any_NEON; + if (IS_ALIGNED(width, 8)) { + ARGBAttenuateRow = ARGBAttenuateRow_NEON; + } + } +#endif + + for (y = 0; y < height; ++y) { + ARGBAttenuateRow(src_argb, dst_argb, width); + src_argb += src_stride_argb; + dst_argb += dst_stride_argb; + } + return 0; +} + +// Convert preattentuated ARGB to unattenuated ARGB. +LIBYUV_API +int ARGBUnattenuate(const uint8* src_argb, int src_stride_argb, + uint8* dst_argb, int dst_stride_argb, + int width, int height) { + int y; + void (*ARGBUnattenuateRow)(const uint8* src_argb, uint8* dst_argb, + int width) = ARGBUnattenuateRow_C; + if (!src_argb || !dst_argb || width <= 0 || height == 0) { + return -1; + } + if (height < 0) { + height = -height; + src_argb = src_argb + (height - 1) * src_stride_argb; + src_stride_argb = -src_stride_argb; + } + // Coalesce rows. + if (src_stride_argb == width * 4 && + dst_stride_argb == width * 4) { + width *= height; + height = 1; + src_stride_argb = dst_stride_argb = 0; + } +#if defined(HAS_ARGBUNATTENUATEROW_SSE2) + if (TestCpuFlag(kCpuHasSSE2)) { + ARGBUnattenuateRow = ARGBUnattenuateRow_Any_SSE2; + if (IS_ALIGNED(width, 4)) { + ARGBUnattenuateRow = ARGBUnattenuateRow_SSE2; + } + } +#endif +#if defined(HAS_ARGBUNATTENUATEROW_AVX2) + if (TestCpuFlag(kCpuHasAVX2)) { + ARGBUnattenuateRow = ARGBUnattenuateRow_Any_AVX2; + if (IS_ALIGNED(width, 8)) { + ARGBUnattenuateRow = ARGBUnattenuateRow_AVX2; + } + } +#endif +// TODO(fbarchard): Neon version. + + for (y = 0; y < height; ++y) { + ARGBUnattenuateRow(src_argb, dst_argb, width); + src_argb += src_stride_argb; + dst_argb += dst_stride_argb; + } + return 0; +} + +// Convert ARGB to Grayed ARGB. +LIBYUV_API +int ARGBGrayTo(const uint8* src_argb, int src_stride_argb, + uint8* dst_argb, int dst_stride_argb, + int width, int height) { + int y; + void (*ARGBGrayRow)(const uint8* src_argb, uint8* dst_argb, + int width) = ARGBGrayRow_C; + if (!src_argb || !dst_argb || width <= 0 || height == 0) { + return -1; + } + if (height < 0) { + height = -height; + src_argb = src_argb + (height - 1) * src_stride_argb; + src_stride_argb = -src_stride_argb; + } + // Coalesce rows. + if (src_stride_argb == width * 4 && + dst_stride_argb == width * 4) { + width *= height; + height = 1; + src_stride_argb = dst_stride_argb = 0; + } +#if defined(HAS_ARGBGRAYROW_SSSE3) + if (TestCpuFlag(kCpuHasSSSE3) && IS_ALIGNED(width, 8)) { + ARGBGrayRow = ARGBGrayRow_SSSE3; + } +#endif +#if defined(HAS_ARGBGRAYROW_NEON) + if (TestCpuFlag(kCpuHasNEON) && IS_ALIGNED(width, 8)) { + ARGBGrayRow = ARGBGrayRow_NEON; + } +#endif + + for (y = 0; y < height; ++y) { + ARGBGrayRow(src_argb, dst_argb, width); + src_argb += src_stride_argb; + dst_argb += dst_stride_argb; + } + return 0; +} + +// Make a rectangle of ARGB gray scale. +LIBYUV_API +int ARGBGray(uint8* dst_argb, int dst_stride_argb, + int dst_x, int dst_y, + int width, int height) { + int y; + void (*ARGBGrayRow)(const uint8* src_argb, uint8* dst_argb, + int width) = ARGBGrayRow_C; + uint8* dst = dst_argb + dst_y * dst_stride_argb + dst_x * 4; + if (!dst_argb || width <= 0 || height <= 0 || dst_x < 0 || dst_y < 0) { + return -1; + } + // Coalesce rows. + if (dst_stride_argb == width * 4) { + width *= height; + height = 1; + dst_stride_argb = 0; + } +#if defined(HAS_ARGBGRAYROW_SSSE3) + if (TestCpuFlag(kCpuHasSSSE3) && IS_ALIGNED(width, 8)) { + ARGBGrayRow = ARGBGrayRow_SSSE3; + } +#endif +#if defined(HAS_ARGBGRAYROW_NEON) + if (TestCpuFlag(kCpuHasNEON) && IS_ALIGNED(width, 8)) { + ARGBGrayRow = ARGBGrayRow_NEON; + } +#endif + for (y = 0; y < height; ++y) { + ARGBGrayRow(dst, dst, width); + dst += dst_stride_argb; + } + return 0; +} + +// Make a rectangle of ARGB Sepia tone. +LIBYUV_API +int ARGBSepia(uint8* dst_argb, int dst_stride_argb, + int dst_x, int dst_y, int width, int height) { + int y; + void (*ARGBSepiaRow)(uint8* dst_argb, int width) = ARGBSepiaRow_C; + uint8* dst = dst_argb + dst_y * dst_stride_argb + dst_x * 4; + if (!dst_argb || width <= 0 || height <= 0 || dst_x < 0 || dst_y < 0) { + return -1; + } + // Coalesce rows. + if (dst_stride_argb == width * 4) { + width *= height; + height = 1; + dst_stride_argb = 0; + } +#if defined(HAS_ARGBSEPIAROW_SSSE3) + if (TestCpuFlag(kCpuHasSSSE3) && IS_ALIGNED(width, 8)) { + ARGBSepiaRow = ARGBSepiaRow_SSSE3; + } +#endif +#if defined(HAS_ARGBSEPIAROW_NEON) + if (TestCpuFlag(kCpuHasNEON) && IS_ALIGNED(width, 8)) { + ARGBSepiaRow = ARGBSepiaRow_NEON; + } +#endif + for (y = 0; y < height; ++y) { + ARGBSepiaRow(dst, width); + dst += dst_stride_argb; + } + return 0; +} + +// Apply a 4x4 matrix to each ARGB pixel. +// Note: Normally for shading, but can be used to swizzle or invert. +LIBYUV_API +int ARGBColorMatrix(const uint8* src_argb, int src_stride_argb, + uint8* dst_argb, int dst_stride_argb, + const int8* matrix_argb, + int width, int height) { + int y; + void (*ARGBColorMatrixRow)(const uint8* src_argb, uint8* dst_argb, + const int8* matrix_argb, int width) = ARGBColorMatrixRow_C; + if (!src_argb || !dst_argb || !matrix_argb || width <= 0 || height == 0) { + return -1; + } + if (height < 0) { + height = -height; + src_argb = src_argb + (height - 1) * src_stride_argb; + src_stride_argb = -src_stride_argb; + } + // Coalesce rows. + if (src_stride_argb == width * 4 && + dst_stride_argb == width * 4) { + width *= height; + height = 1; + src_stride_argb = dst_stride_argb = 0; + } +#if defined(HAS_ARGBCOLORMATRIXROW_SSSE3) + if (TestCpuFlag(kCpuHasSSSE3) && IS_ALIGNED(width, 8)) { + ARGBColorMatrixRow = ARGBColorMatrixRow_SSSE3; + } +#endif +#if defined(HAS_ARGBCOLORMATRIXROW_NEON) + if (TestCpuFlag(kCpuHasNEON) && IS_ALIGNED(width, 8)) { + ARGBColorMatrixRow = ARGBColorMatrixRow_NEON; + } +#endif + for (y = 0; y < height; ++y) { + ARGBColorMatrixRow(src_argb, dst_argb, matrix_argb, width); + src_argb += src_stride_argb; + dst_argb += dst_stride_argb; + } + return 0; +} + +// Apply a 4x3 matrix to each ARGB pixel. +// Deprecated. +LIBYUV_API +int RGBColorMatrix(uint8* dst_argb, int dst_stride_argb, + const int8* matrix_rgb, + int dst_x, int dst_y, int width, int height) { + SIMD_ALIGNED(int8 matrix_argb[16]); + uint8* dst = dst_argb + dst_y * dst_stride_argb + dst_x * 4; + if (!dst_argb || !matrix_rgb || width <= 0 || height <= 0 || + dst_x < 0 || dst_y < 0) { + return -1; + } + + // Convert 4x3 7 bit matrix to 4x4 6 bit matrix. + matrix_argb[0] = matrix_rgb[0] / 2; + matrix_argb[1] = matrix_rgb[1] / 2; + matrix_argb[2] = matrix_rgb[2] / 2; + matrix_argb[3] = matrix_rgb[3] / 2; + matrix_argb[4] = matrix_rgb[4] / 2; + matrix_argb[5] = matrix_rgb[5] / 2; + matrix_argb[6] = matrix_rgb[6] / 2; + matrix_argb[7] = matrix_rgb[7] / 2; + matrix_argb[8] = matrix_rgb[8] / 2; + matrix_argb[9] = matrix_rgb[9] / 2; + matrix_argb[10] = matrix_rgb[10] / 2; + matrix_argb[11] = matrix_rgb[11] / 2; + matrix_argb[14] = matrix_argb[13] = matrix_argb[12] = 0; + matrix_argb[15] = 64; // 1.0 + + return ARGBColorMatrix((const uint8*)(dst), dst_stride_argb, + dst, dst_stride_argb, + &matrix_argb[0], width, height); +} + +// Apply a color table each ARGB pixel. +// Table contains 256 ARGB values. +LIBYUV_API +int ARGBColorTable(uint8* dst_argb, int dst_stride_argb, + const uint8* table_argb, + int dst_x, int dst_y, int width, int height) { + int y; + void (*ARGBColorTableRow)(uint8* dst_argb, const uint8* table_argb, + int width) = ARGBColorTableRow_C; + uint8* dst = dst_argb + dst_y * dst_stride_argb + dst_x * 4; + if (!dst_argb || !table_argb || width <= 0 || height <= 0 || + dst_x < 0 || dst_y < 0) { + return -1; + } + // Coalesce rows. + if (dst_stride_argb == width * 4) { + width *= height; + height = 1; + dst_stride_argb = 0; + } +#if defined(HAS_ARGBCOLORTABLEROW_X86) + if (TestCpuFlag(kCpuHasX86)) { + ARGBColorTableRow = ARGBColorTableRow_X86; + } +#endif + for (y = 0; y < height; ++y) { + ARGBColorTableRow(dst, table_argb, width); + dst += dst_stride_argb; + } + return 0; +} + +// Apply a color table each ARGB pixel but preserve destination alpha. +// Table contains 256 ARGB values. +LIBYUV_API +int RGBColorTable(uint8* dst_argb, int dst_stride_argb, + const uint8* table_argb, + int dst_x, int dst_y, int width, int height) { + int y; + void (*RGBColorTableRow)(uint8* dst_argb, const uint8* table_argb, + int width) = RGBColorTableRow_C; + uint8* dst = dst_argb + dst_y * dst_stride_argb + dst_x * 4; + if (!dst_argb || !table_argb || width <= 0 || height <= 0 || + dst_x < 0 || dst_y < 0) { + return -1; + } + // Coalesce rows. + if (dst_stride_argb == width * 4) { + width *= height; + height = 1; + dst_stride_argb = 0; + } +#if defined(HAS_RGBCOLORTABLEROW_X86) + if (TestCpuFlag(kCpuHasX86)) { + RGBColorTableRow = RGBColorTableRow_X86; + } +#endif + for (y = 0; y < height; ++y) { + RGBColorTableRow(dst, table_argb, width); + dst += dst_stride_argb; + } + return 0; +} + +// ARGBQuantize is used to posterize art. +// e.g. rgb / qvalue * qvalue + qvalue / 2 +// But the low levels implement efficiently with 3 parameters, and could be +// used for other high level operations. +// dst_argb[0] = (b * scale >> 16) * interval_size + interval_offset; +// where scale is 1 / interval_size as a fixed point value. +// The divide is replaces with a multiply by reciprocal fixed point multiply. +// Caveat - although SSE2 saturates, the C function does not and should be used +// with care if doing anything but quantization. +LIBYUV_API +int ARGBQuantize(uint8* dst_argb, int dst_stride_argb, + int scale, int interval_size, int interval_offset, + int dst_x, int dst_y, int width, int height) { + int y; + void (*ARGBQuantizeRow)(uint8* dst_argb, int scale, int interval_size, + int interval_offset, int width) = ARGBQuantizeRow_C; + uint8* dst = dst_argb + dst_y * dst_stride_argb + dst_x * 4; + if (!dst_argb || width <= 0 || height <= 0 || dst_x < 0 || dst_y < 0 || + interval_size < 1 || interval_size > 255) { + return -1; + } + // Coalesce rows. + if (dst_stride_argb == width * 4) { + width *= height; + height = 1; + dst_stride_argb = 0; + } +#if defined(HAS_ARGBQUANTIZEROW_SSE2) + if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(width, 4)) { + ARGBQuantizeRow = ARGBQuantizeRow_SSE2; + } +#endif +#if defined(HAS_ARGBQUANTIZEROW_NEON) + if (TestCpuFlag(kCpuHasNEON) && IS_ALIGNED(width, 8)) { + ARGBQuantizeRow = ARGBQuantizeRow_NEON; + } +#endif + for (y = 0; y < height; ++y) { + ARGBQuantizeRow(dst, scale, interval_size, interval_offset, width); + dst += dst_stride_argb; + } + return 0; +} + +// Computes table of cumulative sum for image where the value is the sum +// of all values above and to the left of the entry. Used by ARGBBlur. +LIBYUV_API +int ARGBComputeCumulativeSum(const uint8* src_argb, int src_stride_argb, + int32* dst_cumsum, int dst_stride32_cumsum, + int width, int height) { + int y; + void (*ComputeCumulativeSumRow)(const uint8* row, int32* cumsum, + const int32* previous_cumsum, int width) = ComputeCumulativeSumRow_C; + int32* previous_cumsum = dst_cumsum; + if (!dst_cumsum || !src_argb || width <= 0 || height <= 0) { + return -1; + } +#if defined(HAS_CUMULATIVESUMTOAVERAGEROW_SSE2) + if (TestCpuFlag(kCpuHasSSE2)) { + ComputeCumulativeSumRow = ComputeCumulativeSumRow_SSE2; + } +#endif + memset(dst_cumsum, 0, width * sizeof(dst_cumsum[0]) * 4); // 4 int per pixel. + for (y = 0; y < height; ++y) { + ComputeCumulativeSumRow(src_argb, dst_cumsum, previous_cumsum, width); + previous_cumsum = dst_cumsum; + dst_cumsum += dst_stride32_cumsum; + src_argb += src_stride_argb; + } + return 0; +} + +// Blur ARGB image. +// Caller should allocate CumulativeSum table of width * height * 16 bytes +// aligned to 16 byte boundary. height can be radius * 2 + 2 to save memory +// as the buffer is treated as circular. +LIBYUV_API +int ARGBBlur(const uint8* src_argb, int src_stride_argb, + uint8* dst_argb, int dst_stride_argb, + int32* dst_cumsum, int dst_stride32_cumsum, + int width, int height, int radius) { + int y; + void (*ComputeCumulativeSumRow)(const uint8 *row, int32 *cumsum, + const int32* previous_cumsum, int width) = ComputeCumulativeSumRow_C; + void (*CumulativeSumToAverageRow)(const int32* topleft, const int32* botleft, + int width, int area, uint8* dst, int count) = CumulativeSumToAverageRow_C; + int32* cumsum_bot_row; + int32* max_cumsum_bot_row; + int32* cumsum_top_row; + + if (!src_argb || !dst_argb || width <= 0 || height == 0) { + return -1; + } + if (height < 0) { + height = -height; + src_argb = src_argb + (height - 1) * src_stride_argb; + src_stride_argb = -src_stride_argb; + } + if (radius > height) { + radius = height; + } + if (radius > (width / 2 - 1)) { + radius = width / 2 - 1; + } + if (radius <= 0) { + return -1; + } +#if defined(HAS_CUMULATIVESUMTOAVERAGEROW_SSE2) + if (TestCpuFlag(kCpuHasSSE2)) { + ComputeCumulativeSumRow = ComputeCumulativeSumRow_SSE2; + CumulativeSumToAverageRow = CumulativeSumToAverageRow_SSE2; + } +#endif + // Compute enough CumulativeSum for first row to be blurred. After this + // one row of CumulativeSum is updated at a time. + ARGBComputeCumulativeSum(src_argb, src_stride_argb, + dst_cumsum, dst_stride32_cumsum, + width, radius); + + src_argb = src_argb + radius * src_stride_argb; + cumsum_bot_row = &dst_cumsum[(radius - 1) * dst_stride32_cumsum]; + + max_cumsum_bot_row = &dst_cumsum[(radius * 2 + 2) * dst_stride32_cumsum]; + cumsum_top_row = &dst_cumsum[0]; + + for (y = 0; y < height; ++y) { + int top_y = ((y - radius - 1) >= 0) ? (y - radius - 1) : 0; + int bot_y = ((y + radius) < height) ? (y + radius) : (height - 1); + int area = radius * (bot_y - top_y); + int boxwidth = radius * 4; + int x; + int n; + + // Increment cumsum_top_row pointer with circular buffer wrap around. + if (top_y) { + cumsum_top_row += dst_stride32_cumsum; + if (cumsum_top_row >= max_cumsum_bot_row) { + cumsum_top_row = dst_cumsum; + } + } + // Increment cumsum_bot_row pointer with circular buffer wrap around and + // then fill in a row of CumulativeSum. + if ((y + radius) < height) { + const int32* prev_cumsum_bot_row = cumsum_bot_row; + cumsum_bot_row += dst_stride32_cumsum; + if (cumsum_bot_row >= max_cumsum_bot_row) { + cumsum_bot_row = dst_cumsum; + } + ComputeCumulativeSumRow(src_argb, cumsum_bot_row, prev_cumsum_bot_row, + width); + src_argb += src_stride_argb; + } + + // Left clipped. + for (x = 0; x < radius + 1; ++x) { + CumulativeSumToAverageRow(cumsum_top_row, cumsum_bot_row, + boxwidth, area, &dst_argb[x * 4], 1); + area += (bot_y - top_y); + boxwidth += 4; + } + + // Middle unclipped. + n = (width - 1) - radius - x + 1; + CumulativeSumToAverageRow(cumsum_top_row, cumsum_bot_row, + boxwidth, area, &dst_argb[x * 4], n); + + // Right clipped. + for (x += n; x <= width - 1; ++x) { + area -= (bot_y - top_y); + boxwidth -= 4; + CumulativeSumToAverageRow(cumsum_top_row + (x - radius - 1) * 4, + cumsum_bot_row + (x - radius - 1) * 4, + boxwidth, area, &dst_argb[x * 4], 1); + } + dst_argb += dst_stride_argb; + } + return 0; +} + +// Multiply ARGB image by a specified ARGB value. +LIBYUV_API +int ARGBShade(const uint8* src_argb, int src_stride_argb, + uint8* dst_argb, int dst_stride_argb, + int width, int height, uint32 value) { + int y; + void (*ARGBShadeRow)(const uint8* src_argb, uint8* dst_argb, + int width, uint32 value) = ARGBShadeRow_C; + if (!src_argb || !dst_argb || width <= 0 || height == 0 || value == 0u) { + return -1; + } + if (height < 0) { + height = -height; + src_argb = src_argb + (height - 1) * src_stride_argb; + src_stride_argb = -src_stride_argb; + } + // Coalesce rows. + if (src_stride_argb == width * 4 && + dst_stride_argb == width * 4) { + width *= height; + height = 1; + src_stride_argb = dst_stride_argb = 0; + } +#if defined(HAS_ARGBSHADEROW_SSE2) + if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(width, 4)) { + ARGBShadeRow = ARGBShadeRow_SSE2; + } +#endif +#if defined(HAS_ARGBSHADEROW_NEON) + if (TestCpuFlag(kCpuHasNEON) && IS_ALIGNED(width, 8)) { + ARGBShadeRow = ARGBShadeRow_NEON; + } +#endif + + for (y = 0; y < height; ++y) { + ARGBShadeRow(src_argb, dst_argb, width, value); + src_argb += src_stride_argb; + dst_argb += dst_stride_argb; + } + return 0; +} + +// Interpolate 2 planes by specified amount (0 to 255). +LIBYUV_API +int InterpolatePlane(const uint8* src0, int src_stride0, + const uint8* src1, int src_stride1, + uint8* dst, int dst_stride, + int width, int height, int interpolation) { + int y; + void (*InterpolateRow)(uint8* dst_ptr, const uint8* src_ptr, + ptrdiff_t src_stride, int dst_width, + int source_y_fraction) = InterpolateRow_C; + if (!src0 || !src1 || !dst || width <= 0 || height == 0) { + return -1; + } + // Negative height means invert the image. + if (height < 0) { + height = -height; + dst = dst + (height - 1) * dst_stride; + dst_stride = -dst_stride; + } + // Coalesce rows. + if (src_stride0 == width && + src_stride1 == width && + dst_stride == width) { + width *= height; + height = 1; + src_stride0 = src_stride1 = dst_stride = 0; + } +#if defined(HAS_INTERPOLATEROW_SSSE3) + if (TestCpuFlag(kCpuHasSSSE3)) { + InterpolateRow = InterpolateRow_Any_SSSE3; + if (IS_ALIGNED(width, 16)) { + InterpolateRow = InterpolateRow_SSSE3; + } + } +#endif +#if defined(HAS_INTERPOLATEROW_AVX2) + if (TestCpuFlag(kCpuHasAVX2)) { + InterpolateRow = InterpolateRow_Any_AVX2; + if (IS_ALIGNED(width, 32)) { + InterpolateRow = InterpolateRow_AVX2; + } + } +#endif +#if defined(HAS_INTERPOLATEROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + InterpolateRow = InterpolateRow_Any_NEON; + if (IS_ALIGNED(width, 16)) { + InterpolateRow = InterpolateRow_NEON; + } + } +#endif +#if defined(HAS_INTERPOLATEROW_DSPR2) + if (TestCpuFlag(kCpuHasDSPR2) && + IS_ALIGNED(src0, 4) && IS_ALIGNED(src_stride0, 4) && + IS_ALIGNED(src1, 4) && IS_ALIGNED(src_stride1, 4) && + IS_ALIGNED(dst, 4) && IS_ALIGNED(dst_stride, 4) && + IS_ALIGNED(width, 4)) { + InterpolateRow = InterpolateRow_DSPR2; + } +#endif + + for (y = 0; y < height; ++y) { + InterpolateRow(dst, src0, src1 - src0, width, interpolation); + src0 += src_stride0; + src1 += src_stride1; + dst += dst_stride; + } + return 0; +} + +// Interpolate 2 ARGB images by specified amount (0 to 255). +LIBYUV_API +int ARGBInterpolate(const uint8* src_argb0, int src_stride_argb0, + const uint8* src_argb1, int src_stride_argb1, + uint8* dst_argb, int dst_stride_argb, + int width, int height, int interpolation) { + return InterpolatePlane(src_argb0, src_stride_argb0, + src_argb1, src_stride_argb1, + dst_argb, dst_stride_argb, + width * 4, height, interpolation); +} + +// Interpolate 2 YUV images by specified amount (0 to 255). +LIBYUV_API +int I420Interpolate(const uint8* src0_y, int src0_stride_y, + const uint8* src0_u, int src0_stride_u, + const uint8* src0_v, int src0_stride_v, + const uint8* src1_y, int src1_stride_y, + const uint8* src1_u, int src1_stride_u, + const uint8* src1_v, int src1_stride_v, + uint8* dst_y, int dst_stride_y, + uint8* dst_u, int dst_stride_u, + uint8* dst_v, int dst_stride_v, + int width, int height, int interpolation) { + int halfwidth = (width + 1) >> 1; + int halfheight = (height + 1) >> 1; + if (!src0_y || !src0_u || !src0_v || + !src1_y || !src1_u || !src1_v || + !dst_y || !dst_u || !dst_v || + width <= 0 || height == 0) { + return -1; + } + InterpolatePlane(src0_y, src0_stride_y, + src1_y, src1_stride_y, + dst_y, dst_stride_y, + width, height, interpolation); + InterpolatePlane(src0_u, src0_stride_u, + src1_u, src1_stride_u, + dst_u, dst_stride_u, + halfwidth, halfheight, interpolation); + InterpolatePlane(src0_v, src0_stride_v, + src1_v, src1_stride_v, + dst_v, dst_stride_v, + halfwidth, halfheight, interpolation); + return 0; +} + +// Shuffle ARGB channel order. e.g. BGRA to ARGB. +LIBYUV_API +int ARGBShuffle(const uint8* src_bgra, int src_stride_bgra, + uint8* dst_argb, int dst_stride_argb, + const uint8* shuffler, int width, int height) { + int y; + void (*ARGBShuffleRow)(const uint8* src_bgra, uint8* dst_argb, + const uint8* shuffler, int width) = ARGBShuffleRow_C; + if (!src_bgra || !dst_argb || + width <= 0 || height == 0) { + return -1; + } + // Negative height means invert the image. + if (height < 0) { + height = -height; + src_bgra = src_bgra + (height - 1) * src_stride_bgra; + src_stride_bgra = -src_stride_bgra; + } + // Coalesce rows. + if (src_stride_bgra == width * 4 && + dst_stride_argb == width * 4) { + width *= height; + height = 1; + src_stride_bgra = dst_stride_argb = 0; + } +#if defined(HAS_ARGBSHUFFLEROW_SSE2) + if (TestCpuFlag(kCpuHasSSE2)) { + ARGBShuffleRow = ARGBShuffleRow_Any_SSE2; + if (IS_ALIGNED(width, 4)) { + ARGBShuffleRow = ARGBShuffleRow_SSE2; + } + } +#endif +#if defined(HAS_ARGBSHUFFLEROW_SSSE3) + if (TestCpuFlag(kCpuHasSSSE3)) { + ARGBShuffleRow = ARGBShuffleRow_Any_SSSE3; + if (IS_ALIGNED(width, 8)) { + ARGBShuffleRow = ARGBShuffleRow_SSSE3; + } + } +#endif +#if defined(HAS_ARGBSHUFFLEROW_AVX2) + if (TestCpuFlag(kCpuHasAVX2)) { + ARGBShuffleRow = ARGBShuffleRow_Any_AVX2; + if (IS_ALIGNED(width, 16)) { + ARGBShuffleRow = ARGBShuffleRow_AVX2; + } + } +#endif +#if defined(HAS_ARGBSHUFFLEROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + ARGBShuffleRow = ARGBShuffleRow_Any_NEON; + if (IS_ALIGNED(width, 4)) { + ARGBShuffleRow = ARGBShuffleRow_NEON; + } + } +#endif + + for (y = 0; y < height; ++y) { + ARGBShuffleRow(src_bgra, dst_argb, shuffler, width); + src_bgra += src_stride_bgra; + dst_argb += dst_stride_argb; + } + return 0; +} + +// Sobel ARGB effect. +static int ARGBSobelize(const uint8* src_argb, int src_stride_argb, + uint8* dst_argb, int dst_stride_argb, + int width, int height, + void (*SobelRow)(const uint8* src_sobelx, + const uint8* src_sobely, + uint8* dst, int width)) { + int y; + void (*ARGBToYJRow)(const uint8* src_argb, uint8* dst_g, int width) = + ARGBToYJRow_C; + void (*SobelYRow)(const uint8* src_y0, const uint8* src_y1, + uint8* dst_sobely, int width) = SobelYRow_C; + void (*SobelXRow)(const uint8* src_y0, const uint8* src_y1, + const uint8* src_y2, uint8* dst_sobely, int width) = + SobelXRow_C; + const int kEdge = 16; // Extra pixels at start of row for extrude/align. + if (!src_argb || !dst_argb || width <= 0 || height == 0) { + return -1; + } + // Negative height means invert the image. + if (height < 0) { + height = -height; + src_argb = src_argb + (height - 1) * src_stride_argb; + src_stride_argb = -src_stride_argb; + } + +#if defined(HAS_ARGBTOYJROW_SSSE3) + if (TestCpuFlag(kCpuHasSSSE3)) { + ARGBToYJRow = ARGBToYJRow_Any_SSSE3; + if (IS_ALIGNED(width, 16)) { + ARGBToYJRow = ARGBToYJRow_SSSE3; + } + } +#endif +#if defined(HAS_ARGBTOYJROW_AVX2) + if (TestCpuFlag(kCpuHasAVX2)) { + ARGBToYJRow = ARGBToYJRow_Any_AVX2; + if (IS_ALIGNED(width, 32)) { + ARGBToYJRow = ARGBToYJRow_AVX2; + } + } +#endif +#if defined(HAS_ARGBTOYJROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + ARGBToYJRow = ARGBToYJRow_Any_NEON; + if (IS_ALIGNED(width, 8)) { + ARGBToYJRow = ARGBToYJRow_NEON; + } + } +#endif + +#if defined(HAS_SOBELYROW_SSE2) + if (TestCpuFlag(kCpuHasSSE2)) { + SobelYRow = SobelYRow_SSE2; + } +#endif +#if defined(HAS_SOBELYROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + SobelYRow = SobelYRow_NEON; + } +#endif +#if defined(HAS_SOBELXROW_SSE2) + if (TestCpuFlag(kCpuHasSSE2)) { + SobelXRow = SobelXRow_SSE2; + } +#endif +#if defined(HAS_SOBELXROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + SobelXRow = SobelXRow_NEON; + } +#endif + { + // 3 rows with edges before/after. + const int kRowSize = (width + kEdge + 31) & ~31; + align_buffer_64(rows, kRowSize * 2 + (kEdge + kRowSize * 3 + kEdge)); + uint8* row_sobelx = rows; + uint8* row_sobely = rows + kRowSize; + uint8* row_y = rows + kRowSize * 2; + + // Convert first row. + uint8* row_y0 = row_y + kEdge; + uint8* row_y1 = row_y0 + kRowSize; + uint8* row_y2 = row_y1 + kRowSize; + ARGBToYJRow(src_argb, row_y0, width); + row_y0[-1] = row_y0[0]; + memset(row_y0 + width, row_y0[width - 1], 16); // Extrude 16 for valgrind. + ARGBToYJRow(src_argb, row_y1, width); + row_y1[-1] = row_y1[0]; + memset(row_y1 + width, row_y1[width - 1], 16); + memset(row_y2 + width, 0, 16); + + for (y = 0; y < height; ++y) { + // Convert next row of ARGB to G. + if (y < (height - 1)) { + src_argb += src_stride_argb; + } + ARGBToYJRow(src_argb, row_y2, width); + row_y2[-1] = row_y2[0]; + row_y2[width] = row_y2[width - 1]; + + SobelXRow(row_y0 - 1, row_y1 - 1, row_y2 - 1, row_sobelx, width); + SobelYRow(row_y0 - 1, row_y2 - 1, row_sobely, width); + SobelRow(row_sobelx, row_sobely, dst_argb, width); + + // Cycle thru circular queue of 3 row_y buffers. + { + uint8* row_yt = row_y0; + row_y0 = row_y1; + row_y1 = row_y2; + row_y2 = row_yt; + } + + dst_argb += dst_stride_argb; + } + free_aligned_buffer_64(rows); + } + return 0; +} + +// Sobel ARGB effect. +LIBYUV_API +int ARGBSobel(const uint8* src_argb, int src_stride_argb, + uint8* dst_argb, int dst_stride_argb, + int width, int height) { + void (*SobelRow)(const uint8* src_sobelx, const uint8* src_sobely, + uint8* dst_argb, int width) = SobelRow_C; +#if defined(HAS_SOBELROW_SSE2) + if (TestCpuFlag(kCpuHasSSE2)) { + SobelRow = SobelRow_Any_SSE2; + if (IS_ALIGNED(width, 16)) { + SobelRow = SobelRow_SSE2; + } + } +#endif +#if defined(HAS_SOBELROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + SobelRow = SobelRow_Any_NEON; + if (IS_ALIGNED(width, 8)) { + SobelRow = SobelRow_NEON; + } + } +#endif + return ARGBSobelize(src_argb, src_stride_argb, dst_argb, dst_stride_argb, + width, height, SobelRow); +} + +// Sobel ARGB effect with planar output. +LIBYUV_API +int ARGBSobelToPlane(const uint8* src_argb, int src_stride_argb, + uint8* dst_y, int dst_stride_y, + int width, int height) { + void (*SobelToPlaneRow)(const uint8* src_sobelx, const uint8* src_sobely, + uint8* dst_, int width) = SobelToPlaneRow_C; +#if defined(HAS_SOBELTOPLANEROW_SSE2) + if (TestCpuFlag(kCpuHasSSE2)) { + SobelToPlaneRow = SobelToPlaneRow_Any_SSE2; + if (IS_ALIGNED(width, 16)) { + SobelToPlaneRow = SobelToPlaneRow_SSE2; + } + } +#endif +#if defined(HAS_SOBELTOPLANEROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + SobelToPlaneRow = SobelToPlaneRow_Any_NEON; + if (IS_ALIGNED(width, 16)) { + SobelToPlaneRow = SobelToPlaneRow_NEON; + } + } +#endif + return ARGBSobelize(src_argb, src_stride_argb, dst_y, dst_stride_y, + width, height, SobelToPlaneRow); +} + +// SobelXY ARGB effect. +// Similar to Sobel, but also stores Sobel X in R and Sobel Y in B. G = Sobel. +LIBYUV_API +int ARGBSobelXY(const uint8* src_argb, int src_stride_argb, + uint8* dst_argb, int dst_stride_argb, + int width, int height) { + void (*SobelXYRow)(const uint8* src_sobelx, const uint8* src_sobely, + uint8* dst_argb, int width) = SobelXYRow_C; +#if defined(HAS_SOBELXYROW_SSE2) + if (TestCpuFlag(kCpuHasSSE2)) { + SobelXYRow = SobelXYRow_Any_SSE2; + if (IS_ALIGNED(width, 16)) { + SobelXYRow = SobelXYRow_SSE2; + } + } +#endif +#if defined(HAS_SOBELXYROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + SobelXYRow = SobelXYRow_Any_NEON; + if (IS_ALIGNED(width, 8)) { + SobelXYRow = SobelXYRow_NEON; + } + } +#endif + return ARGBSobelize(src_argb, src_stride_argb, dst_argb, dst_stride_argb, + width, height, SobelXYRow); +} + +// Apply a 4x4 polynomial to each ARGB pixel. +LIBYUV_API +int ARGBPolynomial(const uint8* src_argb, int src_stride_argb, + uint8* dst_argb, int dst_stride_argb, + const float* poly, + int width, int height) { + int y; + void (*ARGBPolynomialRow)(const uint8* src_argb, + uint8* dst_argb, const float* poly, + int width) = ARGBPolynomialRow_C; + if (!src_argb || !dst_argb || !poly || width <= 0 || height == 0) { + return -1; + } + // Negative height means invert the image. + if (height < 0) { + height = -height; + src_argb = src_argb + (height - 1) * src_stride_argb; + src_stride_argb = -src_stride_argb; + } + // Coalesce rows. + if (src_stride_argb == width * 4 && + dst_stride_argb == width * 4) { + width *= height; + height = 1; + src_stride_argb = dst_stride_argb = 0; + } +#if defined(HAS_ARGBPOLYNOMIALROW_SSE2) + if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(width, 2)) { + ARGBPolynomialRow = ARGBPolynomialRow_SSE2; + } +#endif +#if defined(HAS_ARGBPOLYNOMIALROW_AVX2) + if (TestCpuFlag(kCpuHasAVX2) && TestCpuFlag(kCpuHasFMA3) && + IS_ALIGNED(width, 2)) { + ARGBPolynomialRow = ARGBPolynomialRow_AVX2; + } +#endif + + for (y = 0; y < height; ++y) { + ARGBPolynomialRow(src_argb, dst_argb, poly, width); + src_argb += src_stride_argb; + dst_argb += dst_stride_argb; + } + return 0; +} + +// Apply a lumacolortable to each ARGB pixel. +LIBYUV_API +int ARGBLumaColorTable(const uint8* src_argb, int src_stride_argb, + uint8* dst_argb, int dst_stride_argb, + const uint8* luma, + int width, int height) { + int y; + void (*ARGBLumaColorTableRow)(const uint8* src_argb, uint8* dst_argb, + int width, const uint8* luma, const uint32 lumacoeff) = + ARGBLumaColorTableRow_C; + if (!src_argb || !dst_argb || !luma || width <= 0 || height == 0) { + return -1; + } + // Negative height means invert the image. + if (height < 0) { + height = -height; + src_argb = src_argb + (height - 1) * src_stride_argb; + src_stride_argb = -src_stride_argb; + } + // Coalesce rows. + if (src_stride_argb == width * 4 && + dst_stride_argb == width * 4) { + width *= height; + height = 1; + src_stride_argb = dst_stride_argb = 0; + } +#if defined(HAS_ARGBLUMACOLORTABLEROW_SSSE3) + if (TestCpuFlag(kCpuHasSSSE3) && IS_ALIGNED(width, 4)) { + ARGBLumaColorTableRow = ARGBLumaColorTableRow_SSSE3; + } +#endif + + for (y = 0; y < height; ++y) { + ARGBLumaColorTableRow(src_argb, dst_argb, width, luma, 0x00264b0f); + src_argb += src_stride_argb; + dst_argb += dst_stride_argb; + } + return 0; +} + +// Copy Alpha from one ARGB image to another. +LIBYUV_API +int ARGBCopyAlpha(const uint8* src_argb, int src_stride_argb, + uint8* dst_argb, int dst_stride_argb, + int width, int height) { + int y; + void (*ARGBCopyAlphaRow)(const uint8* src_argb, uint8* dst_argb, int width) = + ARGBCopyAlphaRow_C; + if (!src_argb || !dst_argb || width <= 0 || height == 0) { + return -1; + } + // Negative height means invert the image. + if (height < 0) { + height = -height; + src_argb = src_argb + (height - 1) * src_stride_argb; + src_stride_argb = -src_stride_argb; + } + // Coalesce rows. + if (src_stride_argb == width * 4 && + dst_stride_argb == width * 4) { + width *= height; + height = 1; + src_stride_argb = dst_stride_argb = 0; + } +#if defined(HAS_ARGBCOPYALPHAROW_SSE2) + if (TestCpuFlag(kCpuHasSSE2)) { + ARGBCopyAlphaRow = ARGBCopyAlphaRow_Any_SSE2; + if (IS_ALIGNED(width, 8)) { + ARGBCopyAlphaRow = ARGBCopyAlphaRow_SSE2; + } + } +#endif +#if defined(HAS_ARGBCOPYALPHAROW_AVX2) + if (TestCpuFlag(kCpuHasAVX2)) { + ARGBCopyAlphaRow = ARGBCopyAlphaRow_Any_AVX2; + if (IS_ALIGNED(width, 16)) { + ARGBCopyAlphaRow = ARGBCopyAlphaRow_AVX2; + } + } +#endif + + for (y = 0; y < height; ++y) { + ARGBCopyAlphaRow(src_argb, dst_argb, width); + src_argb += src_stride_argb; + dst_argb += dst_stride_argb; + } + return 0; +} + +// Extract just the alpha channel from ARGB. +LIBYUV_API +int ARGBExtractAlpha(const uint8* src_argb, int src_stride, + uint8* dst_a, int dst_stride, + int width, int height) { + if (!src_argb || !dst_a || width <= 0 || height == 0) { + return -1; + } + // Negative height means invert the image. + if (height < 0) { + height = -height; + src_argb += (height - 1) * src_stride; + src_stride = -src_stride; + } + // Coalesce rows. + if (src_stride == width * 4 && dst_stride == width) { + width *= height; + height = 1; + src_stride = dst_stride = 0; + } + void (*ARGBExtractAlphaRow)(const uint8 *src_argb, uint8 *dst_a, int width) = + ARGBExtractAlphaRow_C; +#if defined(HAS_ARGBEXTRACTALPHAROW_SSE2) + if (TestCpuFlag(kCpuHasSSE2)) { + ARGBExtractAlphaRow = IS_ALIGNED(width, 8) ? ARGBExtractAlphaRow_SSE2 + : ARGBExtractAlphaRow_Any_SSE2; + } +#endif +#if defined(HAS_ARGBEXTRACTALPHAROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + ARGBExtractAlphaRow = IS_ALIGNED(width, 16) ? ARGBExtractAlphaRow_NEON + : ARGBExtractAlphaRow_Any_NEON; + } +#endif + + for (int y = 0; y < height; ++y) { + ARGBExtractAlphaRow(src_argb, dst_a, width); + src_argb += src_stride; + dst_a += dst_stride; + } + return 0; +} + +// Copy a planar Y channel to the alpha channel of a destination ARGB image. +LIBYUV_API +int ARGBCopyYToAlpha(const uint8* src_y, int src_stride_y, + uint8* dst_argb, int dst_stride_argb, + int width, int height) { + int y; + void (*ARGBCopyYToAlphaRow)(const uint8* src_y, uint8* dst_argb, int width) = + ARGBCopyYToAlphaRow_C; + if (!src_y || !dst_argb || width <= 0 || height == 0) { + return -1; + } + // Negative height means invert the image. + if (height < 0) { + height = -height; + src_y = src_y + (height - 1) * src_stride_y; + src_stride_y = -src_stride_y; + } + // Coalesce rows. + if (src_stride_y == width && + dst_stride_argb == width * 4) { + width *= height; + height = 1; + src_stride_y = dst_stride_argb = 0; + } +#if defined(HAS_ARGBCOPYYTOALPHAROW_SSE2) + if (TestCpuFlag(kCpuHasSSE2)) { + ARGBCopyYToAlphaRow = ARGBCopyYToAlphaRow_Any_SSE2; + if (IS_ALIGNED(width, 8)) { + ARGBCopyYToAlphaRow = ARGBCopyYToAlphaRow_SSE2; + } + } +#endif +#if defined(HAS_ARGBCOPYYTOALPHAROW_AVX2) + if (TestCpuFlag(kCpuHasAVX2)) { + ARGBCopyYToAlphaRow = ARGBCopyYToAlphaRow_Any_AVX2; + if (IS_ALIGNED(width, 16)) { + ARGBCopyYToAlphaRow = ARGBCopyYToAlphaRow_AVX2; + } + } +#endif + + for (y = 0; y < height; ++y) { + ARGBCopyYToAlphaRow(src_y, dst_argb, width); + src_y += src_stride_y; + dst_argb += dst_stride_argb; + } + return 0; +} + +// TODO(fbarchard): Consider if width is even Y channel can be split +// directly. A SplitUVRow_Odd function could copy the remaining chroma. + +LIBYUV_API +int YUY2ToNV12(const uint8* src_yuy2, int src_stride_yuy2, + uint8* dst_y, int dst_stride_y, + uint8* dst_uv, int dst_stride_uv, + int width, int height) { + int y; + int halfwidth = (width + 1) >> 1; + void (*SplitUVRow)(const uint8* src_uv, uint8* dst_u, uint8* dst_v, + int width) = SplitUVRow_C; + void (*InterpolateRow)(uint8* dst_ptr, const uint8* src_ptr, + ptrdiff_t src_stride, int dst_width, + int source_y_fraction) = InterpolateRow_C; + if (!src_yuy2 || + !dst_y || !dst_uv || + width <= 0 || height == 0) { + return -1; + } + // Negative height means invert the image. + if (height < 0) { + height = -height; + src_yuy2 = src_yuy2 + (height - 1) * src_stride_yuy2; + src_stride_yuy2 = -src_stride_yuy2; + } +#if defined(HAS_SPLITUVROW_SSE2) + if (TestCpuFlag(kCpuHasSSE2)) { + SplitUVRow = SplitUVRow_Any_SSE2; + if (IS_ALIGNED(width, 16)) { + SplitUVRow = SplitUVRow_SSE2; + } + } +#endif +#if defined(HAS_SPLITUVROW_AVX2) + if (TestCpuFlag(kCpuHasAVX2)) { + SplitUVRow = SplitUVRow_Any_AVX2; + if (IS_ALIGNED(width, 32)) { + SplitUVRow = SplitUVRow_AVX2; + } + } +#endif +#if defined(HAS_SPLITUVROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + SplitUVRow = SplitUVRow_Any_NEON; + if (IS_ALIGNED(width, 16)) { + SplitUVRow = SplitUVRow_NEON; + } + } +#endif +#if defined(HAS_INTERPOLATEROW_SSSE3) + if (TestCpuFlag(kCpuHasSSSE3)) { + InterpolateRow = InterpolateRow_Any_SSSE3; + if (IS_ALIGNED(width, 16)) { + InterpolateRow = InterpolateRow_SSSE3; + } + } +#endif +#if defined(HAS_INTERPOLATEROW_AVX2) + if (TestCpuFlag(kCpuHasAVX2)) { + InterpolateRow = InterpolateRow_Any_AVX2; + if (IS_ALIGNED(width, 32)) { + InterpolateRow = InterpolateRow_AVX2; + } + } +#endif +#if defined(HAS_INTERPOLATEROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + InterpolateRow = InterpolateRow_Any_NEON; + if (IS_ALIGNED(width, 16)) { + InterpolateRow = InterpolateRow_NEON; + } + } +#endif + + { + int awidth = halfwidth * 2; + // row of y and 2 rows of uv + align_buffer_64(rows, awidth * 3); + + for (y = 0; y < height - 1; y += 2) { + // Split Y from UV. + SplitUVRow(src_yuy2, rows, rows + awidth, awidth); + memcpy(dst_y, rows, width); + SplitUVRow(src_yuy2 + src_stride_yuy2, rows, rows + awidth * 2, awidth); + memcpy(dst_y + dst_stride_y, rows, width); + InterpolateRow(dst_uv, rows + awidth, awidth, awidth, 128); + src_yuy2 += src_stride_yuy2 * 2; + dst_y += dst_stride_y * 2; + dst_uv += dst_stride_uv; + } + if (height & 1) { + // Split Y from UV. + SplitUVRow(src_yuy2, rows, dst_uv, awidth); + memcpy(dst_y, rows, width); + } + free_aligned_buffer_64(rows); + } + return 0; +} + +LIBYUV_API +int UYVYToNV12(const uint8* src_uyvy, int src_stride_uyvy, + uint8* dst_y, int dst_stride_y, + uint8* dst_uv, int dst_stride_uv, + int width, int height) { + int y; + int halfwidth = (width + 1) >> 1; + void (*SplitUVRow)(const uint8* src_uv, uint8* dst_u, uint8* dst_v, + int width) = SplitUVRow_C; + void (*InterpolateRow)(uint8* dst_ptr, const uint8* src_ptr, + ptrdiff_t src_stride, int dst_width, + int source_y_fraction) = InterpolateRow_C; + if (!src_uyvy || + !dst_y || !dst_uv || + width <= 0 || height == 0) { + return -1; + } + // Negative height means invert the image. + if (height < 0) { + height = -height; + src_uyvy = src_uyvy + (height - 1) * src_stride_uyvy; + src_stride_uyvy = -src_stride_uyvy; + } +#if defined(HAS_SPLITUVROW_SSE2) + if (TestCpuFlag(kCpuHasSSE2)) { + SplitUVRow = SplitUVRow_Any_SSE2; + if (IS_ALIGNED(width, 16)) { + SplitUVRow = SplitUVRow_SSE2; + } + } +#endif +#if defined(HAS_SPLITUVROW_AVX2) + if (TestCpuFlag(kCpuHasAVX2)) { + SplitUVRow = SplitUVRow_Any_AVX2; + if (IS_ALIGNED(width, 32)) { + SplitUVRow = SplitUVRow_AVX2; + } + } +#endif +#if defined(HAS_SPLITUVROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + SplitUVRow = SplitUVRow_Any_NEON; + if (IS_ALIGNED(width, 16)) { + SplitUVRow = SplitUVRow_NEON; + } + } +#endif +#if defined(HAS_INTERPOLATEROW_SSSE3) + if (TestCpuFlag(kCpuHasSSSE3)) { + InterpolateRow = InterpolateRow_Any_SSSE3; + if (IS_ALIGNED(width, 16)) { + InterpolateRow = InterpolateRow_SSSE3; + } + } +#endif +#if defined(HAS_INTERPOLATEROW_AVX2) + if (TestCpuFlag(kCpuHasAVX2)) { + InterpolateRow = InterpolateRow_Any_AVX2; + if (IS_ALIGNED(width, 32)) { + InterpolateRow = InterpolateRow_AVX2; + } + } +#endif +#if defined(HAS_INTERPOLATEROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + InterpolateRow = InterpolateRow_Any_NEON; + if (IS_ALIGNED(width, 16)) { + InterpolateRow = InterpolateRow_NEON; + } + } +#endif + + { + int awidth = halfwidth * 2; + // row of y and 2 rows of uv + align_buffer_64(rows, awidth * 3); + + for (y = 0; y < height - 1; y += 2) { + // Split Y from UV. + SplitUVRow(src_uyvy, rows + awidth, rows, awidth); + memcpy(dst_y, rows, width); + SplitUVRow(src_uyvy + src_stride_uyvy, rows + awidth * 2, rows, awidth); + memcpy(dst_y + dst_stride_y, rows, width); + InterpolateRow(dst_uv, rows + awidth, awidth, awidth, 128); + src_uyvy += src_stride_uyvy * 2; + dst_y += dst_stride_y * 2; + dst_uv += dst_stride_uv; + } + if (height & 1) { + // Split Y from UV. + SplitUVRow(src_uyvy, dst_uv, rows, awidth); + memcpy(dst_y, rows, width); + } + free_aligned_buffer_64(rows); + } + return 0; +} + +#ifdef __cplusplus +} // extern "C" +} // namespace libyuv +#endif diff --git a/third_party/libyuv/source/rotate.cc b/third_party/libyuv/source/rotate.cc new file mode 100644 index 0000000..01ea5c4 --- /dev/null +++ b/third_party/libyuv/source/rotate.cc @@ -0,0 +1,491 @@ +/* + * Copyright 2011 The LibYuv Project Authors. All rights reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "libyuv/rotate.h" + +#include "libyuv/cpu_id.h" +#include "libyuv/convert.h" +#include "libyuv/planar_functions.h" +#include "libyuv/rotate_row.h" +#include "libyuv/row.h" + +#ifdef __cplusplus +namespace libyuv { +extern "C" { +#endif + +LIBYUV_API +void TransposePlane(const uint8* src, int src_stride, + uint8* dst, int dst_stride, + int width, int height) { + int i = height; + void (*TransposeWx8)(const uint8* src, int src_stride, + uint8* dst, int dst_stride, int width) = TransposeWx8_C; +#if defined(HAS_TRANSPOSEWX8_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + TransposeWx8 = TransposeWx8_NEON; + } +#endif +#if defined(HAS_TRANSPOSEWX8_SSSE3) + if (TestCpuFlag(kCpuHasSSSE3)) { + TransposeWx8 = TransposeWx8_Any_SSSE3; + if (IS_ALIGNED(width, 8)) { + TransposeWx8 = TransposeWx8_SSSE3; + } + } +#endif +#if defined(HAS_TRANSPOSEWX8_FAST_SSSE3) + if (TestCpuFlag(kCpuHasSSSE3)) { + TransposeWx8 = TransposeWx8_Fast_Any_SSSE3; + if (IS_ALIGNED(width, 16)) { + TransposeWx8 = TransposeWx8_Fast_SSSE3; + } + } +#endif +#if defined(HAS_TRANSPOSEWX8_DSPR2) + if (TestCpuFlag(kCpuHasDSPR2)) { + if (IS_ALIGNED(width, 4) && + IS_ALIGNED(src, 4) && IS_ALIGNED(src_stride, 4)) { + TransposeWx8 = TransposeWx8_Fast_DSPR2; + } else { + TransposeWx8 = TransposeWx8_DSPR2; + } + } +#endif + + // Work across the source in 8x8 tiles + while (i >= 8) { + TransposeWx8(src, src_stride, dst, dst_stride, width); + src += 8 * src_stride; // Go down 8 rows. + dst += 8; // Move over 8 columns. + i -= 8; + } + + if (i > 0) { + TransposeWxH_C(src, src_stride, dst, dst_stride, width, i); + } +} + +LIBYUV_API +void RotatePlane90(const uint8* src, int src_stride, + uint8* dst, int dst_stride, + int width, int height) { + // Rotate by 90 is a transpose with the source read + // from bottom to top. So set the source pointer to the end + // of the buffer and flip the sign of the source stride. + src += src_stride * (height - 1); + src_stride = -src_stride; + TransposePlane(src, src_stride, dst, dst_stride, width, height); +} + +LIBYUV_API +void RotatePlane270(const uint8* src, int src_stride, + uint8* dst, int dst_stride, + int width, int height) { + // Rotate by 270 is a transpose with the destination written + // from bottom to top. So set the destination pointer to the end + // of the buffer and flip the sign of the destination stride. + dst += dst_stride * (width - 1); + dst_stride = -dst_stride; + TransposePlane(src, src_stride, dst, dst_stride, width, height); +} + +LIBYUV_API +void RotatePlane180(const uint8* src, int src_stride, + uint8* dst, int dst_stride, + int width, int height) { + // Swap first and last row and mirror the content. Uses a temporary row. + align_buffer_64(row, width); + const uint8* src_bot = src + src_stride * (height - 1); + uint8* dst_bot = dst + dst_stride * (height - 1); + int half_height = (height + 1) >> 1; + int y; + void (*MirrorRow)(const uint8* src, uint8* dst, int width) = MirrorRow_C; + void (*CopyRow)(const uint8* src, uint8* dst, int width) = CopyRow_C; +#if defined(HAS_MIRRORROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + MirrorRow = MirrorRow_Any_NEON; + if (IS_ALIGNED(width, 16)) { + MirrorRow = MirrorRow_NEON; + } + } +#endif +#if defined(HAS_MIRRORROW_SSSE3) + if (TestCpuFlag(kCpuHasSSSE3)) { + MirrorRow = MirrorRow_Any_SSSE3; + if (IS_ALIGNED(width, 16)) { + MirrorRow = MirrorRow_SSSE3; + } + } +#endif +#if defined(HAS_MIRRORROW_AVX2) + if (TestCpuFlag(kCpuHasAVX2)) { + MirrorRow = MirrorRow_Any_AVX2; + if (IS_ALIGNED(width, 32)) { + MirrorRow = MirrorRow_AVX2; + } + } +#endif +// TODO(fbarchard): Mirror on mips handle unaligned memory. +#if defined(HAS_MIRRORROW_DSPR2) + if (TestCpuFlag(kCpuHasDSPR2) && + IS_ALIGNED(src, 4) && IS_ALIGNED(src_stride, 4) && + IS_ALIGNED(dst, 4) && IS_ALIGNED(dst_stride, 4)) { + MirrorRow = MirrorRow_DSPR2; + } +#endif +#if defined(HAS_COPYROW_SSE2) + if (TestCpuFlag(kCpuHasSSE2)) { + CopyRow = IS_ALIGNED(width, 32) ? CopyRow_SSE2 : CopyRow_Any_SSE2; + } +#endif +#if defined(HAS_COPYROW_AVX) + if (TestCpuFlag(kCpuHasAVX)) { + CopyRow = IS_ALIGNED(width, 64) ? CopyRow_AVX : CopyRow_Any_AVX; + } +#endif +#if defined(HAS_COPYROW_ERMS) + if (TestCpuFlag(kCpuHasERMS)) { + CopyRow = CopyRow_ERMS; + } +#endif +#if defined(HAS_COPYROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + CopyRow = IS_ALIGNED(width, 32) ? CopyRow_NEON : CopyRow_Any_NEON; + } +#endif +#if defined(HAS_COPYROW_MIPS) + if (TestCpuFlag(kCpuHasMIPS)) { + CopyRow = CopyRow_MIPS; + } +#endif + + // Odd height will harmlessly mirror the middle row twice. + for (y = 0; y < half_height; ++y) { + MirrorRow(src, row, width); // Mirror first row into a buffer + src += src_stride; + MirrorRow(src_bot, dst, width); // Mirror last row into first row + dst += dst_stride; + CopyRow(row, dst_bot, width); // Copy first mirrored row into last + src_bot -= src_stride; + dst_bot -= dst_stride; + } + free_aligned_buffer_64(row); +} + +LIBYUV_API +void TransposeUV(const uint8* src, int src_stride, + uint8* dst_a, int dst_stride_a, + uint8* dst_b, int dst_stride_b, + int width, int height) { + int i = height; + void (*TransposeUVWx8)(const uint8* src, int src_stride, + uint8* dst_a, int dst_stride_a, + uint8* dst_b, int dst_stride_b, + int width) = TransposeUVWx8_C; +#if defined(HAS_TRANSPOSEUVWX8_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + TransposeUVWx8 = TransposeUVWx8_NEON; + } +#endif +#if defined(HAS_TRANSPOSEUVWX8_SSE2) + if (TestCpuFlag(kCpuHasSSE2)) { + TransposeUVWx8 = TransposeUVWx8_Any_SSE2; + if (IS_ALIGNED(width, 8)) { + TransposeUVWx8 = TransposeUVWx8_SSE2; + } + } +#endif +#if defined(HAS_TRANSPOSEUVWX8_DSPR2) + if (TestCpuFlag(kCpuHasDSPR2) && IS_ALIGNED(width, 2) && + IS_ALIGNED(src, 4) && IS_ALIGNED(src_stride, 4)) { + TransposeUVWx8 = TransposeUVWx8_DSPR2; + } +#endif + + // Work through the source in 8x8 tiles. + while (i >= 8) { + TransposeUVWx8(src, src_stride, + dst_a, dst_stride_a, + dst_b, dst_stride_b, + width); + src += 8 * src_stride; // Go down 8 rows. + dst_a += 8; // Move over 8 columns. + dst_b += 8; // Move over 8 columns. + i -= 8; + } + + if (i > 0) { + TransposeUVWxH_C(src, src_stride, + dst_a, dst_stride_a, + dst_b, dst_stride_b, + width, i); + } +} + +LIBYUV_API +void RotateUV90(const uint8* src, int src_stride, + uint8* dst_a, int dst_stride_a, + uint8* dst_b, int dst_stride_b, + int width, int height) { + src += src_stride * (height - 1); + src_stride = -src_stride; + + TransposeUV(src, src_stride, + dst_a, dst_stride_a, + dst_b, dst_stride_b, + width, height); +} + +LIBYUV_API +void RotateUV270(const uint8* src, int src_stride, + uint8* dst_a, int dst_stride_a, + uint8* dst_b, int dst_stride_b, + int width, int height) { + dst_a += dst_stride_a * (width - 1); + dst_b += dst_stride_b * (width - 1); + dst_stride_a = -dst_stride_a; + dst_stride_b = -dst_stride_b; + + TransposeUV(src, src_stride, + dst_a, dst_stride_a, + dst_b, dst_stride_b, + width, height); +} + +// Rotate 180 is a horizontal and vertical flip. +LIBYUV_API +void RotateUV180(const uint8* src, int src_stride, + uint8* dst_a, int dst_stride_a, + uint8* dst_b, int dst_stride_b, + int width, int height) { + int i; + void (*MirrorUVRow)(const uint8* src, uint8* dst_u, uint8* dst_v, int width) = + MirrorUVRow_C; +#if defined(HAS_MIRRORUVROW_NEON) + if (TestCpuFlag(kCpuHasNEON) && IS_ALIGNED(width, 8)) { + MirrorUVRow = MirrorUVRow_NEON; + } +#endif +#if defined(HAS_MIRRORUVROW_SSSE3) + if (TestCpuFlag(kCpuHasSSSE3) && IS_ALIGNED(width, 16)) { + MirrorUVRow = MirrorUVRow_SSSE3; + } +#endif +#if defined(HAS_MIRRORUVROW_DSPR2) + if (TestCpuFlag(kCpuHasDSPR2) && + IS_ALIGNED(src, 4) && IS_ALIGNED(src_stride, 4)) { + MirrorUVRow = MirrorUVRow_DSPR2; + } +#endif + + dst_a += dst_stride_a * (height - 1); + dst_b += dst_stride_b * (height - 1); + + for (i = 0; i < height; ++i) { + MirrorUVRow(src, dst_a, dst_b, width); + src += src_stride; + dst_a -= dst_stride_a; + dst_b -= dst_stride_b; + } +} + +LIBYUV_API +int RotatePlane(const uint8* src, int src_stride, + uint8* dst, int dst_stride, + int width, int height, + enum RotationMode mode) { + if (!src || width <= 0 || height == 0 || !dst) { + return -1; + } + + // Negative height means invert the image. + if (height < 0) { + height = -height; + src = src + (height - 1) * src_stride; + src_stride = -src_stride; + } + + switch (mode) { + case kRotate0: + // copy frame + CopyPlane(src, src_stride, + dst, dst_stride, + width, height); + return 0; + case kRotate90: + RotatePlane90(src, src_stride, + dst, dst_stride, + width, height); + return 0; + case kRotate270: + RotatePlane270(src, src_stride, + dst, dst_stride, + width, height); + return 0; + case kRotate180: + RotatePlane180(src, src_stride, + dst, dst_stride, + width, height); + return 0; + default: + break; + } + return -1; +} + +LIBYUV_API +int I420Rotate(const uint8* src_y, int src_stride_y, + const uint8* src_u, int src_stride_u, + const uint8* src_v, int src_stride_v, + uint8* dst_y, int dst_stride_y, + uint8* dst_u, int dst_stride_u, + uint8* dst_v, int dst_stride_v, + int width, int height, + enum RotationMode mode) { + int halfwidth = (width + 1) >> 1; + int halfheight = (height + 1) >> 1; + if (!src_y || !src_u || !src_v || width <= 0 || height == 0 || + !dst_y || !dst_u || !dst_v) { + return -1; + } + + // Negative height means invert the image. + if (height < 0) { + height = -height; + halfheight = (height + 1) >> 1; + src_y = src_y + (height - 1) * src_stride_y; + src_u = src_u + (halfheight - 1) * src_stride_u; + src_v = src_v + (halfheight - 1) * src_stride_v; + src_stride_y = -src_stride_y; + src_stride_u = -src_stride_u; + src_stride_v = -src_stride_v; + } + + switch (mode) { + case kRotate0: + // copy frame + return I420Copy(src_y, src_stride_y, + src_u, src_stride_u, + src_v, src_stride_v, + dst_y, dst_stride_y, + dst_u, dst_stride_u, + dst_v, dst_stride_v, + width, height); + case kRotate90: + RotatePlane90(src_y, src_stride_y, + dst_y, dst_stride_y, + width, height); + RotatePlane90(src_u, src_stride_u, + dst_u, dst_stride_u, + halfwidth, halfheight); + RotatePlane90(src_v, src_stride_v, + dst_v, dst_stride_v, + halfwidth, halfheight); + return 0; + case kRotate270: + RotatePlane270(src_y, src_stride_y, + dst_y, dst_stride_y, + width, height); + RotatePlane270(src_u, src_stride_u, + dst_u, dst_stride_u, + halfwidth, halfheight); + RotatePlane270(src_v, src_stride_v, + dst_v, dst_stride_v, + halfwidth, halfheight); + return 0; + case kRotate180: + RotatePlane180(src_y, src_stride_y, + dst_y, dst_stride_y, + width, height); + RotatePlane180(src_u, src_stride_u, + dst_u, dst_stride_u, + halfwidth, halfheight); + RotatePlane180(src_v, src_stride_v, + dst_v, dst_stride_v, + halfwidth, halfheight); + return 0; + default: + break; + } + return -1; +} + +LIBYUV_API +int NV12ToI420Rotate(const uint8* src_y, int src_stride_y, + const uint8* src_uv, int src_stride_uv, + uint8* dst_y, int dst_stride_y, + uint8* dst_u, int dst_stride_u, + uint8* dst_v, int dst_stride_v, + int width, int height, + enum RotationMode mode) { + int halfwidth = (width + 1) >> 1; + int halfheight = (height + 1) >> 1; + if (!src_y || !src_uv || width <= 0 || height == 0 || + !dst_y || !dst_u || !dst_v) { + return -1; + } + + // Negative height means invert the image. + if (height < 0) { + height = -height; + halfheight = (height + 1) >> 1; + src_y = src_y + (height - 1) * src_stride_y; + src_uv = src_uv + (halfheight - 1) * src_stride_uv; + src_stride_y = -src_stride_y; + src_stride_uv = -src_stride_uv; + } + + switch (mode) { + case kRotate0: + // copy frame + return NV12ToI420(src_y, src_stride_y, + src_uv, src_stride_uv, + dst_y, dst_stride_y, + dst_u, dst_stride_u, + dst_v, dst_stride_v, + width, height); + case kRotate90: + RotatePlane90(src_y, src_stride_y, + dst_y, dst_stride_y, + width, height); + RotateUV90(src_uv, src_stride_uv, + dst_u, dst_stride_u, + dst_v, dst_stride_v, + halfwidth, halfheight); + return 0; + case kRotate270: + RotatePlane270(src_y, src_stride_y, + dst_y, dst_stride_y, + width, height); + RotateUV270(src_uv, src_stride_uv, + dst_u, dst_stride_u, + dst_v, dst_stride_v, + halfwidth, halfheight); + return 0; + case kRotate180: + RotatePlane180(src_y, src_stride_y, + dst_y, dst_stride_y, + width, height); + RotateUV180(src_uv, src_stride_uv, + dst_u, dst_stride_u, + dst_v, dst_stride_v, + halfwidth, halfheight); + return 0; + default: + break; + } + return -1; +} + +#ifdef __cplusplus +} // extern "C" +} // namespace libyuv +#endif diff --git a/third_party/libyuv/source/rotate_any.cc b/third_party/libyuv/source/rotate_any.cc new file mode 100644 index 0000000..31a74c3 --- /dev/null +++ b/third_party/libyuv/source/rotate_any.cc @@ -0,0 +1,80 @@ +/* + * Copyright 2015 The LibYuv Project Authors. All rights reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "libyuv/rotate.h" +#include "libyuv/rotate_row.h" + +#include "libyuv/basic_types.h" + +#ifdef __cplusplus +namespace libyuv { +extern "C" { +#endif + +#define TANY(NAMEANY, TPOS_SIMD, MASK) \ + void NAMEANY(const uint8* src, int src_stride, \ + uint8* dst, int dst_stride, int width) { \ + int r = width & MASK; \ + int n = width - r; \ + if (n > 0) { \ + TPOS_SIMD(src, src_stride, dst, dst_stride, n); \ + } \ + TransposeWx8_C(src + n, src_stride, dst + n * dst_stride, dst_stride, r);\ + } + +#ifdef HAS_TRANSPOSEWX8_NEON +TANY(TransposeWx8_Any_NEON, TransposeWx8_NEON, 7) +#endif +#ifdef HAS_TRANSPOSEWX8_SSSE3 +TANY(TransposeWx8_Any_SSSE3, TransposeWx8_SSSE3, 7) +#endif +#ifdef HAS_TRANSPOSEWX8_FAST_SSSE3 +TANY(TransposeWx8_Fast_Any_SSSE3, TransposeWx8_Fast_SSSE3, 15) +#endif +#ifdef HAS_TRANSPOSEWX8_DSPR2 +TANY(TransposeWx8_Any_DSPR2, TransposeWx8_DSPR2, 7) +#endif +#undef TANY + +#define TUVANY(NAMEANY, TPOS_SIMD, MASK) \ + void NAMEANY(const uint8* src, int src_stride, \ + uint8* dst_a, int dst_stride_a, \ + uint8* dst_b, int dst_stride_b, int width) { \ + int r = width & MASK; \ + int n = width - r; \ + if (n > 0) { \ + TPOS_SIMD(src, src_stride, dst_a, dst_stride_a, dst_b, dst_stride_b, \ + n); \ + } \ + TransposeUVWx8_C(src + n * 2, src_stride, \ + dst_a + n * dst_stride_a, dst_stride_a, \ + dst_b + n * dst_stride_b, dst_stride_b, r); \ + } + +#ifdef HAS_TRANSPOSEUVWX8_NEON +TUVANY(TransposeUVWx8_Any_NEON, TransposeUVWx8_NEON, 7) +#endif +#ifdef HAS_TRANSPOSEUVWX8_SSE2 +TUVANY(TransposeUVWx8_Any_SSE2, TransposeUVWx8_SSE2, 7) +#endif +#ifdef HAS_TRANSPOSEUVWX8_DSPR2 +TUVANY(TransposeUVWx8_Any_DSPR2, TransposeUVWx8_DSPR2, 7) +#endif +#undef TUVANY + +#ifdef __cplusplus +} // extern "C" +} // namespace libyuv +#endif + + + + + diff --git a/third_party/libyuv/source/rotate_argb.cc b/third_party/libyuv/source/rotate_argb.cc new file mode 100644 index 0000000..787c0ad --- /dev/null +++ b/third_party/libyuv/source/rotate_argb.cc @@ -0,0 +1,205 @@ +/* + * Copyright 2012 The LibYuv Project Authors. All rights reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "libyuv/rotate.h" + +#include "libyuv/cpu_id.h" +#include "libyuv/convert.h" +#include "libyuv/planar_functions.h" +#include "libyuv/row.h" + +#ifdef __cplusplus +namespace libyuv { +extern "C" { +#endif + +// ARGBScale has a function to copy pixels to a row, striding each source +// pixel by a constant. +#if !defined(LIBYUV_DISABLE_X86) && \ + (defined(_M_IX86) || \ + (defined(__x86_64__) && !defined(__native_client__)) || defined(__i386__)) +#define HAS_SCALEARGBROWDOWNEVEN_SSE2 +void ScaleARGBRowDownEven_SSE2(const uint8* src_ptr, int src_stride, + int src_stepx, uint8* dst_ptr, int dst_width); +#endif +#if !defined(LIBYUV_DISABLE_NEON) && !defined(__native_client__) && \ + (defined(__ARM_NEON__) || defined(LIBYUV_NEON) || defined(__aarch64__)) +#define HAS_SCALEARGBROWDOWNEVEN_NEON +void ScaleARGBRowDownEven_NEON(const uint8* src_ptr, int src_stride, + int src_stepx, uint8* dst_ptr, int dst_width); +#endif + +void ScaleARGBRowDownEven_C(const uint8* src_ptr, int, + int src_stepx, uint8* dst_ptr, int dst_width); + +static void ARGBTranspose(const uint8* src, int src_stride, + uint8* dst, int dst_stride, int width, int height) { + int i; + int src_pixel_step = src_stride >> 2; + void (*ScaleARGBRowDownEven)(const uint8* src_ptr, int src_stride, + int src_step, uint8* dst_ptr, int dst_width) = ScaleARGBRowDownEven_C; +#if defined(HAS_SCALEARGBROWDOWNEVEN_SSE2) + if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(height, 4)) { // Width of dest. + ScaleARGBRowDownEven = ScaleARGBRowDownEven_SSE2; + } +#endif +#if defined(HAS_SCALEARGBROWDOWNEVEN_NEON) + if (TestCpuFlag(kCpuHasNEON) && IS_ALIGNED(height, 4)) { // Width of dest. + ScaleARGBRowDownEven = ScaleARGBRowDownEven_NEON; + } +#endif + + for (i = 0; i < width; ++i) { // column of source to row of dest. + ScaleARGBRowDownEven(src, 0, src_pixel_step, dst, height); + dst += dst_stride; + src += 4; + } +} + +void ARGBRotate90(const uint8* src, int src_stride, + uint8* dst, int dst_stride, int width, int height) { + // Rotate by 90 is a ARGBTranspose with the source read + // from bottom to top. So set the source pointer to the end + // of the buffer and flip the sign of the source stride. + src += src_stride * (height - 1); + src_stride = -src_stride; + ARGBTranspose(src, src_stride, dst, dst_stride, width, height); +} + +void ARGBRotate270(const uint8* src, int src_stride, + uint8* dst, int dst_stride, int width, int height) { + // Rotate by 270 is a ARGBTranspose with the destination written + // from bottom to top. So set the destination pointer to the end + // of the buffer and flip the sign of the destination stride. + dst += dst_stride * (width - 1); + dst_stride = -dst_stride; + ARGBTranspose(src, src_stride, dst, dst_stride, width, height); +} + +void ARGBRotate180(const uint8* src, int src_stride, + uint8* dst, int dst_stride, int width, int height) { + // Swap first and last row and mirror the content. Uses a temporary row. + align_buffer_64(row, width * 4); + const uint8* src_bot = src + src_stride * (height - 1); + uint8* dst_bot = dst + dst_stride * (height - 1); + int half_height = (height + 1) >> 1; + int y; + void (*ARGBMirrorRow)(const uint8* src, uint8* dst, int width) = + ARGBMirrorRow_C; + void (*CopyRow)(const uint8* src, uint8* dst, int width) = CopyRow_C; +#if defined(HAS_ARGBMIRRORROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + ARGBMirrorRow = ARGBMirrorRow_Any_NEON; + if (IS_ALIGNED(width, 4)) { + ARGBMirrorRow = ARGBMirrorRow_NEON; + } + } +#endif +#if defined(HAS_ARGBMIRRORROW_SSE2) + if (TestCpuFlag(kCpuHasSSE2)) { + ARGBMirrorRow = ARGBMirrorRow_Any_SSE2; + if (IS_ALIGNED(width, 4)) { + ARGBMirrorRow = ARGBMirrorRow_SSE2; + } + } +#endif +#if defined(HAS_ARGBMIRRORROW_AVX2) + if (TestCpuFlag(kCpuHasAVX2)) { + ARGBMirrorRow = ARGBMirrorRow_Any_AVX2; + if (IS_ALIGNED(width, 8)) { + ARGBMirrorRow = ARGBMirrorRow_AVX2; + } + } +#endif +#if defined(HAS_COPYROW_SSE2) + if (TestCpuFlag(kCpuHasSSE2)) { + CopyRow = IS_ALIGNED(width * 4, 32) ? CopyRow_SSE2 : CopyRow_Any_SSE2; + } +#endif +#if defined(HAS_COPYROW_AVX) + if (TestCpuFlag(kCpuHasAVX)) { + CopyRow = IS_ALIGNED(width * 4, 64) ? CopyRow_AVX : CopyRow_Any_AVX; + } +#endif +#if defined(HAS_COPYROW_ERMS) + if (TestCpuFlag(kCpuHasERMS)) { + CopyRow = CopyRow_ERMS; + } +#endif +#if defined(HAS_COPYROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + CopyRow = IS_ALIGNED(width * 4, 32) ? CopyRow_NEON : CopyRow_Any_NEON; + } +#endif +#if defined(HAS_COPYROW_MIPS) + if (TestCpuFlag(kCpuHasMIPS)) { + CopyRow = CopyRow_MIPS; + } +#endif + + // Odd height will harmlessly mirror the middle row twice. + for (y = 0; y < half_height; ++y) { + ARGBMirrorRow(src, row, width); // Mirror first row into a buffer + ARGBMirrorRow(src_bot, dst, width); // Mirror last row into first row + CopyRow(row, dst_bot, width * 4); // Copy first mirrored row into last + src += src_stride; + dst += dst_stride; + src_bot -= src_stride; + dst_bot -= dst_stride; + } + free_aligned_buffer_64(row); +} + +LIBYUV_API +int ARGBRotate(const uint8* src_argb, int src_stride_argb, + uint8* dst_argb, int dst_stride_argb, int width, int height, + enum RotationMode mode) { + if (!src_argb || width <= 0 || height == 0 || !dst_argb) { + return -1; + } + + // Negative height means invert the image. + if (height < 0) { + height = -height; + src_argb = src_argb + (height - 1) * src_stride_argb; + src_stride_argb = -src_stride_argb; + } + + switch (mode) { + case kRotate0: + // copy frame + return ARGBCopy(src_argb, src_stride_argb, + dst_argb, dst_stride_argb, + width, height); + case kRotate90: + ARGBRotate90(src_argb, src_stride_argb, + dst_argb, dst_stride_argb, + width, height); + return 0; + case kRotate270: + ARGBRotate270(src_argb, src_stride_argb, + dst_argb, dst_stride_argb, + width, height); + return 0; + case kRotate180: + ARGBRotate180(src_argb, src_stride_argb, + dst_argb, dst_stride_argb, + width, height); + return 0; + default: + break; + } + return -1; +} + +#ifdef __cplusplus +} // extern "C" +} // namespace libyuv +#endif diff --git a/third_party/libyuv/source/rotate_common.cc b/third_party/libyuv/source/rotate_common.cc new file mode 100644 index 0000000..b33a9a0 --- /dev/null +++ b/third_party/libyuv/source/rotate_common.cc @@ -0,0 +1,92 @@ +/* + * Copyright 2011 The LibYuv Project Authors. All rights reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "libyuv/row.h" +#include "libyuv/rotate_row.h" + +#ifdef __cplusplus +namespace libyuv { +extern "C" { +#endif + +void TransposeWx8_C(const uint8* src, int src_stride, + uint8* dst, int dst_stride, int width) { + int i; + for (i = 0; i < width; ++i) { + dst[0] = src[0 * src_stride]; + dst[1] = src[1 * src_stride]; + dst[2] = src[2 * src_stride]; + dst[3] = src[3 * src_stride]; + dst[4] = src[4 * src_stride]; + dst[5] = src[5 * src_stride]; + dst[6] = src[6 * src_stride]; + dst[7] = src[7 * src_stride]; + ++src; + dst += dst_stride; + } +} + +void TransposeUVWx8_C(const uint8* src, int src_stride, + uint8* dst_a, int dst_stride_a, + uint8* dst_b, int dst_stride_b, int width) { + int i; + for (i = 0; i < width; ++i) { + dst_a[0] = src[0 * src_stride + 0]; + dst_b[0] = src[0 * src_stride + 1]; + dst_a[1] = src[1 * src_stride + 0]; + dst_b[1] = src[1 * src_stride + 1]; + dst_a[2] = src[2 * src_stride + 0]; + dst_b[2] = src[2 * src_stride + 1]; + dst_a[3] = src[3 * src_stride + 0]; + dst_b[3] = src[3 * src_stride + 1]; + dst_a[4] = src[4 * src_stride + 0]; + dst_b[4] = src[4 * src_stride + 1]; + dst_a[5] = src[5 * src_stride + 0]; + dst_b[5] = src[5 * src_stride + 1]; + dst_a[6] = src[6 * src_stride + 0]; + dst_b[6] = src[6 * src_stride + 1]; + dst_a[7] = src[7 * src_stride + 0]; + dst_b[7] = src[7 * src_stride + 1]; + src += 2; + dst_a += dst_stride_a; + dst_b += dst_stride_b; + } +} + +void TransposeWxH_C(const uint8* src, int src_stride, + uint8* dst, int dst_stride, + int width, int height) { + int i; + for (i = 0; i < width; ++i) { + int j; + for (j = 0; j < height; ++j) { + dst[i * dst_stride + j] = src[j * src_stride + i]; + } + } +} + +void TransposeUVWxH_C(const uint8* src, int src_stride, + uint8* dst_a, int dst_stride_a, + uint8* dst_b, int dst_stride_b, + int width, int height) { + int i; + for (i = 0; i < width * 2; i += 2) { + int j; + for (j = 0; j < height; ++j) { + dst_a[j + ((i >> 1) * dst_stride_a)] = src[i + (j * src_stride)]; + dst_b[j + ((i >> 1) * dst_stride_b)] = src[i + (j * src_stride) + 1]; + } + } +} + +#ifdef __cplusplus +} // extern "C" +} // namespace libyuv +#endif diff --git a/third_party/libyuv/source/rotate_gcc.cc b/third_party/libyuv/source/rotate_gcc.cc new file mode 100644 index 0000000..cbe870c --- /dev/null +++ b/third_party/libyuv/source/rotate_gcc.cc @@ -0,0 +1,368 @@ +/* + * Copyright 2015 The LibYuv Project Authors. All rights reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "libyuv/row.h" +#include "libyuv/rotate_row.h" + +#ifdef __cplusplus +namespace libyuv { +extern "C" { +#endif + +// This module is for GCC x86 and x64. +#if !defined(LIBYUV_DISABLE_X86) && \ + (defined(__x86_64__) || (defined(__i386__) && !defined(_MSC_VER))) + +// Transpose 8x8. 32 or 64 bit, but not NaCL for 64 bit. +#if defined(HAS_TRANSPOSEWX8_SSSE3) +void TransposeWx8_SSSE3(const uint8* src, int src_stride, + uint8* dst, int dst_stride, int width) { + asm volatile ( + // Read in the data from the source pointer. + // First round of bit swap. + LABELALIGN + "1: \n" + "movq (%0),%%xmm0 \n" + "movq (%0,%3),%%xmm1 \n" + "lea (%0,%3,2),%0 \n" + "punpcklbw %%xmm1,%%xmm0 \n" + "movq (%0),%%xmm2 \n" + "movdqa %%xmm0,%%xmm1 \n" + "palignr $0x8,%%xmm1,%%xmm1 \n" + "movq (%0,%3),%%xmm3 \n" + "lea (%0,%3,2),%0 \n" + "punpcklbw %%xmm3,%%xmm2 \n" + "movdqa %%xmm2,%%xmm3 \n" + "movq (%0),%%xmm4 \n" + "palignr $0x8,%%xmm3,%%xmm3 \n" + "movq (%0,%3),%%xmm5 \n" + "lea (%0,%3,2),%0 \n" + "punpcklbw %%xmm5,%%xmm4 \n" + "movdqa %%xmm4,%%xmm5 \n" + "movq (%0),%%xmm6 \n" + "palignr $0x8,%%xmm5,%%xmm5 \n" + "movq (%0,%3),%%xmm7 \n" + "lea (%0,%3,2),%0 \n" + "punpcklbw %%xmm7,%%xmm6 \n" + "neg %3 \n" + "movdqa %%xmm6,%%xmm7 \n" + "lea 0x8(%0,%3,8),%0 \n" + "palignr $0x8,%%xmm7,%%xmm7 \n" + "neg %3 \n" + // Second round of bit swap. + "punpcklwd %%xmm2,%%xmm0 \n" + "punpcklwd %%xmm3,%%xmm1 \n" + "movdqa %%xmm0,%%xmm2 \n" + "movdqa %%xmm1,%%xmm3 \n" + "palignr $0x8,%%xmm2,%%xmm2 \n" + "palignr $0x8,%%xmm3,%%xmm3 \n" + "punpcklwd %%xmm6,%%xmm4 \n" + "punpcklwd %%xmm7,%%xmm5 \n" + "movdqa %%xmm4,%%xmm6 \n" + "movdqa %%xmm5,%%xmm7 \n" + "palignr $0x8,%%xmm6,%%xmm6 \n" + "palignr $0x8,%%xmm7,%%xmm7 \n" + // Third round of bit swap. + // Write to the destination pointer. + "punpckldq %%xmm4,%%xmm0 \n" + "movq %%xmm0,(%1) \n" + "movdqa %%xmm0,%%xmm4 \n" + "palignr $0x8,%%xmm4,%%xmm4 \n" + "movq %%xmm4,(%1,%4) \n" + "lea (%1,%4,2),%1 \n" + "punpckldq %%xmm6,%%xmm2 \n" + "movdqa %%xmm2,%%xmm6 \n" + "movq %%xmm2,(%1) \n" + "palignr $0x8,%%xmm6,%%xmm6 \n" + "punpckldq %%xmm5,%%xmm1 \n" + "movq %%xmm6,(%1,%4) \n" + "lea (%1,%4,2),%1 \n" + "movdqa %%xmm1,%%xmm5 \n" + "movq %%xmm1,(%1) \n" + "palignr $0x8,%%xmm5,%%xmm5 \n" + "movq %%xmm5,(%1,%4) \n" + "lea (%1,%4,2),%1 \n" + "punpckldq %%xmm7,%%xmm3 \n" + "movq %%xmm3,(%1) \n" + "movdqa %%xmm3,%%xmm7 \n" + "palignr $0x8,%%xmm7,%%xmm7 \n" + "sub $0x8,%2 \n" + "movq %%xmm7,(%1,%4) \n" + "lea (%1,%4,2),%1 \n" + "jg 1b \n" + : "+r"(src), // %0 + "+r"(dst), // %1 + "+r"(width) // %2 + : "r"((intptr_t)(src_stride)), // %3 + "r"((intptr_t)(dst_stride)) // %4 + : "memory", "cc", + "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7" + ); +} +#endif // defined(HAS_TRANSPOSEWX8_SSSE3) + +// Transpose 16x8. 64 bit +#if defined(HAS_TRANSPOSEWX8_FAST_SSSE3) +void TransposeWx8_Fast_SSSE3(const uint8* src, int src_stride, + uint8* dst, int dst_stride, int width) { + asm volatile ( + // Read in the data from the source pointer. + // First round of bit swap. + LABELALIGN + "1: \n" + "movdqu (%0),%%xmm0 \n" + "movdqu (%0,%3),%%xmm1 \n" + "lea (%0,%3,2),%0 \n" + "movdqa %%xmm0,%%xmm8 \n" + "punpcklbw %%xmm1,%%xmm0 \n" + "punpckhbw %%xmm1,%%xmm8 \n" + "movdqu (%0),%%xmm2 \n" + "movdqa %%xmm0,%%xmm1 \n" + "movdqa %%xmm8,%%xmm9 \n" + "palignr $0x8,%%xmm1,%%xmm1 \n" + "palignr $0x8,%%xmm9,%%xmm9 \n" + "movdqu (%0,%3),%%xmm3 \n" + "lea (%0,%3,2),%0 \n" + "movdqa %%xmm2,%%xmm10 \n" + "punpcklbw %%xmm3,%%xmm2 \n" + "punpckhbw %%xmm3,%%xmm10 \n" + "movdqa %%xmm2,%%xmm3 \n" + "movdqa %%xmm10,%%xmm11 \n" + "movdqu (%0),%%xmm4 \n" + "palignr $0x8,%%xmm3,%%xmm3 \n" + "palignr $0x8,%%xmm11,%%xmm11 \n" + "movdqu (%0,%3),%%xmm5 \n" + "lea (%0,%3,2),%0 \n" + "movdqa %%xmm4,%%xmm12 \n" + "punpcklbw %%xmm5,%%xmm4 \n" + "punpckhbw %%xmm5,%%xmm12 \n" + "movdqa %%xmm4,%%xmm5 \n" + "movdqa %%xmm12,%%xmm13 \n" + "movdqu (%0),%%xmm6 \n" + "palignr $0x8,%%xmm5,%%xmm5 \n" + "palignr $0x8,%%xmm13,%%xmm13 \n" + "movdqu (%0,%3),%%xmm7 \n" + "lea (%0,%3,2),%0 \n" + "movdqa %%xmm6,%%xmm14 \n" + "punpcklbw %%xmm7,%%xmm6 \n" + "punpckhbw %%xmm7,%%xmm14 \n" + "neg %3 \n" + "movdqa %%xmm6,%%xmm7 \n" + "movdqa %%xmm14,%%xmm15 \n" + "lea 0x10(%0,%3,8),%0 \n" + "palignr $0x8,%%xmm7,%%xmm7 \n" + "palignr $0x8,%%xmm15,%%xmm15 \n" + "neg %3 \n" + // Second round of bit swap. + "punpcklwd %%xmm2,%%xmm0 \n" + "punpcklwd %%xmm3,%%xmm1 \n" + "movdqa %%xmm0,%%xmm2 \n" + "movdqa %%xmm1,%%xmm3 \n" + "palignr $0x8,%%xmm2,%%xmm2 \n" + "palignr $0x8,%%xmm3,%%xmm3 \n" + "punpcklwd %%xmm6,%%xmm4 \n" + "punpcklwd %%xmm7,%%xmm5 \n" + "movdqa %%xmm4,%%xmm6 \n" + "movdqa %%xmm5,%%xmm7 \n" + "palignr $0x8,%%xmm6,%%xmm6 \n" + "palignr $0x8,%%xmm7,%%xmm7 \n" + "punpcklwd %%xmm10,%%xmm8 \n" + "punpcklwd %%xmm11,%%xmm9 \n" + "movdqa %%xmm8,%%xmm10 \n" + "movdqa %%xmm9,%%xmm11 \n" + "palignr $0x8,%%xmm10,%%xmm10 \n" + "palignr $0x8,%%xmm11,%%xmm11 \n" + "punpcklwd %%xmm14,%%xmm12 \n" + "punpcklwd %%xmm15,%%xmm13 \n" + "movdqa %%xmm12,%%xmm14 \n" + "movdqa %%xmm13,%%xmm15 \n" + "palignr $0x8,%%xmm14,%%xmm14 \n" + "palignr $0x8,%%xmm15,%%xmm15 \n" + // Third round of bit swap. + // Write to the destination pointer. + "punpckldq %%xmm4,%%xmm0 \n" + "movq %%xmm0,(%1) \n" + "movdqa %%xmm0,%%xmm4 \n" + "palignr $0x8,%%xmm4,%%xmm4 \n" + "movq %%xmm4,(%1,%4) \n" + "lea (%1,%4,2),%1 \n" + "punpckldq %%xmm6,%%xmm2 \n" + "movdqa %%xmm2,%%xmm6 \n" + "movq %%xmm2,(%1) \n" + "palignr $0x8,%%xmm6,%%xmm6 \n" + "punpckldq %%xmm5,%%xmm1 \n" + "movq %%xmm6,(%1,%4) \n" + "lea (%1,%4,2),%1 \n" + "movdqa %%xmm1,%%xmm5 \n" + "movq %%xmm1,(%1) \n" + "palignr $0x8,%%xmm5,%%xmm5 \n" + "movq %%xmm5,(%1,%4) \n" + "lea (%1,%4,2),%1 \n" + "punpckldq %%xmm7,%%xmm3 \n" + "movq %%xmm3,(%1) \n" + "movdqa %%xmm3,%%xmm7 \n" + "palignr $0x8,%%xmm7,%%xmm7 \n" + "movq %%xmm7,(%1,%4) \n" + "lea (%1,%4,2),%1 \n" + "punpckldq %%xmm12,%%xmm8 \n" + "movq %%xmm8,(%1) \n" + "movdqa %%xmm8,%%xmm12 \n" + "palignr $0x8,%%xmm12,%%xmm12 \n" + "movq %%xmm12,(%1,%4) \n" + "lea (%1,%4,2),%1 \n" + "punpckldq %%xmm14,%%xmm10 \n" + "movdqa %%xmm10,%%xmm14 \n" + "movq %%xmm10,(%1) \n" + "palignr $0x8,%%xmm14,%%xmm14 \n" + "punpckldq %%xmm13,%%xmm9 \n" + "movq %%xmm14,(%1,%4) \n" + "lea (%1,%4,2),%1 \n" + "movdqa %%xmm9,%%xmm13 \n" + "movq %%xmm9,(%1) \n" + "palignr $0x8,%%xmm13,%%xmm13 \n" + "movq %%xmm13,(%1,%4) \n" + "lea (%1,%4,2),%1 \n" + "punpckldq %%xmm15,%%xmm11 \n" + "movq %%xmm11,(%1) \n" + "movdqa %%xmm11,%%xmm15 \n" + "palignr $0x8,%%xmm15,%%xmm15 \n" + "sub $0x10,%2 \n" + "movq %%xmm15,(%1,%4) \n" + "lea (%1,%4,2),%1 \n" + "jg 1b \n" + : "+r"(src), // %0 + "+r"(dst), // %1 + "+r"(width) // %2 + : "r"((intptr_t)(src_stride)), // %3 + "r"((intptr_t)(dst_stride)) // %4 + : "memory", "cc", + "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7", + "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15" + ); +} +#endif // defined(HAS_TRANSPOSEWX8_FAST_SSSE3) + +// Transpose UV 8x8. 64 bit. +#if defined(HAS_TRANSPOSEUVWX8_SSE2) +void TransposeUVWx8_SSE2(const uint8* src, int src_stride, + uint8* dst_a, int dst_stride_a, + uint8* dst_b, int dst_stride_b, int width) { + asm volatile ( + // Read in the data from the source pointer. + // First round of bit swap. + LABELALIGN + "1: \n" + "movdqu (%0),%%xmm0 \n" + "movdqu (%0,%4),%%xmm1 \n" + "lea (%0,%4,2),%0 \n" + "movdqa %%xmm0,%%xmm8 \n" + "punpcklbw %%xmm1,%%xmm0 \n" + "punpckhbw %%xmm1,%%xmm8 \n" + "movdqa %%xmm8,%%xmm1 \n" + "movdqu (%0),%%xmm2 \n" + "movdqu (%0,%4),%%xmm3 \n" + "lea (%0,%4,2),%0 \n" + "movdqa %%xmm2,%%xmm8 \n" + "punpcklbw %%xmm3,%%xmm2 \n" + "punpckhbw %%xmm3,%%xmm8 \n" + "movdqa %%xmm8,%%xmm3 \n" + "movdqu (%0),%%xmm4 \n" + "movdqu (%0,%4),%%xmm5 \n" + "lea (%0,%4,2),%0 \n" + "movdqa %%xmm4,%%xmm8 \n" + "punpcklbw %%xmm5,%%xmm4 \n" + "punpckhbw %%xmm5,%%xmm8 \n" + "movdqa %%xmm8,%%xmm5 \n" + "movdqu (%0),%%xmm6 \n" + "movdqu (%0,%4),%%xmm7 \n" + "lea (%0,%4,2),%0 \n" + "movdqa %%xmm6,%%xmm8 \n" + "punpcklbw %%xmm7,%%xmm6 \n" + "neg %4 \n" + "lea 0x10(%0,%4,8),%0 \n" + "punpckhbw %%xmm7,%%xmm8 \n" + "movdqa %%xmm8,%%xmm7 \n" + "neg %4 \n" + // Second round of bit swap. + "movdqa %%xmm0,%%xmm8 \n" + "movdqa %%xmm1,%%xmm9 \n" + "punpckhwd %%xmm2,%%xmm8 \n" + "punpckhwd %%xmm3,%%xmm9 \n" + "punpcklwd %%xmm2,%%xmm0 \n" + "punpcklwd %%xmm3,%%xmm1 \n" + "movdqa %%xmm8,%%xmm2 \n" + "movdqa %%xmm9,%%xmm3 \n" + "movdqa %%xmm4,%%xmm8 \n" + "movdqa %%xmm5,%%xmm9 \n" + "punpckhwd %%xmm6,%%xmm8 \n" + "punpckhwd %%xmm7,%%xmm9 \n" + "punpcklwd %%xmm6,%%xmm4 \n" + "punpcklwd %%xmm7,%%xmm5 \n" + "movdqa %%xmm8,%%xmm6 \n" + "movdqa %%xmm9,%%xmm7 \n" + // Third round of bit swap. + // Write to the destination pointer. + "movdqa %%xmm0,%%xmm8 \n" + "punpckldq %%xmm4,%%xmm0 \n" + "movlpd %%xmm0,(%1) \n" // Write back U channel + "movhpd %%xmm0,(%2) \n" // Write back V channel + "punpckhdq %%xmm4,%%xmm8 \n" + "movlpd %%xmm8,(%1,%5) \n" + "lea (%1,%5,2),%1 \n" + "movhpd %%xmm8,(%2,%6) \n" + "lea (%2,%6,2),%2 \n" + "movdqa %%xmm2,%%xmm8 \n" + "punpckldq %%xmm6,%%xmm2 \n" + "movlpd %%xmm2,(%1) \n" + "movhpd %%xmm2,(%2) \n" + "punpckhdq %%xmm6,%%xmm8 \n" + "movlpd %%xmm8,(%1,%5) \n" + "lea (%1,%5,2),%1 \n" + "movhpd %%xmm8,(%2,%6) \n" + "lea (%2,%6,2),%2 \n" + "movdqa %%xmm1,%%xmm8 \n" + "punpckldq %%xmm5,%%xmm1 \n" + "movlpd %%xmm1,(%1) \n" + "movhpd %%xmm1,(%2) \n" + "punpckhdq %%xmm5,%%xmm8 \n" + "movlpd %%xmm8,(%1,%5) \n" + "lea (%1,%5,2),%1 \n" + "movhpd %%xmm8,(%2,%6) \n" + "lea (%2,%6,2),%2 \n" + "movdqa %%xmm3,%%xmm8 \n" + "punpckldq %%xmm7,%%xmm3 \n" + "movlpd %%xmm3,(%1) \n" + "movhpd %%xmm3,(%2) \n" + "punpckhdq %%xmm7,%%xmm8 \n" + "sub $0x8,%3 \n" + "movlpd %%xmm8,(%1,%5) \n" + "lea (%1,%5,2),%1 \n" + "movhpd %%xmm8,(%2,%6) \n" + "lea (%2,%6,2),%2 \n" + "jg 1b \n" + : "+r"(src), // %0 + "+r"(dst_a), // %1 + "+r"(dst_b), // %2 + "+r"(width) // %3 + : "r"((intptr_t)(src_stride)), // %4 + "r"((intptr_t)(dst_stride_a)), // %5 + "r"((intptr_t)(dst_stride_b)) // %6 + : "memory", "cc", + "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7", + "xmm8", "xmm9" + ); +} +#endif // defined(HAS_TRANSPOSEUVWX8_SSE2) +#endif // defined(__x86_64__) || defined(__i386__) + +#ifdef __cplusplus +} // extern "C" +} // namespace libyuv +#endif diff --git a/third_party/libyuv/source/rotate_mips.cc b/third_party/libyuv/source/rotate_mips.cc new file mode 100644 index 0000000..1e8ce25 --- /dev/null +++ b/third_party/libyuv/source/rotate_mips.cc @@ -0,0 +1,484 @@ +/* + * Copyright 2011 The LibYuv Project Authors. All rights reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "libyuv/row.h" +#include "libyuv/rotate_row.h" + +#include "libyuv/basic_types.h" + +#ifdef __cplusplus +namespace libyuv { +extern "C" { +#endif + +#if !defined(LIBYUV_DISABLE_MIPS) && \ + defined(__mips_dsp) && (__mips_dsp_rev >= 2) && \ + (_MIPS_SIM == _MIPS_SIM_ABI32) + +void TransposeWx8_DSPR2(const uint8* src, int src_stride, + uint8* dst, int dst_stride, int width) { + __asm__ __volatile__ ( + ".set push \n" + ".set noreorder \n" + "sll $t2, %[src_stride], 0x1 \n" // src_stride x 2 + "sll $t4, %[src_stride], 0x2 \n" // src_stride x 4 + "sll $t9, %[src_stride], 0x3 \n" // src_stride x 8 + "addu $t3, $t2, %[src_stride] \n" + "addu $t5, $t4, %[src_stride] \n" + "addu $t6, $t2, $t4 \n" + "andi $t0, %[dst], 0x3 \n" + "andi $t1, %[dst_stride], 0x3 \n" + "or $t0, $t0, $t1 \n" + "bnez $t0, 11f \n" + " subu $t7, $t9, %[src_stride] \n" +//dst + dst_stride word aligned + "1: \n" + "lbu $t0, 0(%[src]) \n" + "lbux $t1, %[src_stride](%[src]) \n" + "lbux $t8, $t2(%[src]) \n" + "lbux $t9, $t3(%[src]) \n" + "sll $t1, $t1, 16 \n" + "sll $t9, $t9, 16 \n" + "or $t0, $t0, $t1 \n" + "or $t8, $t8, $t9 \n" + "precr.qb.ph $s0, $t8, $t0 \n" + "lbux $t0, $t4(%[src]) \n" + "lbux $t1, $t5(%[src]) \n" + "lbux $t8, $t6(%[src]) \n" + "lbux $t9, $t7(%[src]) \n" + "sll $t1, $t1, 16 \n" + "sll $t9, $t9, 16 \n" + "or $t0, $t0, $t1 \n" + "or $t8, $t8, $t9 \n" + "precr.qb.ph $s1, $t8, $t0 \n" + "sw $s0, 0(%[dst]) \n" + "addiu %[width], -1 \n" + "addiu %[src], 1 \n" + "sw $s1, 4(%[dst]) \n" + "bnez %[width], 1b \n" + " addu %[dst], %[dst], %[dst_stride] \n" + "b 2f \n" +//dst + dst_stride unaligned + "11: \n" + "lbu $t0, 0(%[src]) \n" + "lbux $t1, %[src_stride](%[src]) \n" + "lbux $t8, $t2(%[src]) \n" + "lbux $t9, $t3(%[src]) \n" + "sll $t1, $t1, 16 \n" + "sll $t9, $t9, 16 \n" + "or $t0, $t0, $t1 \n" + "or $t8, $t8, $t9 \n" + "precr.qb.ph $s0, $t8, $t0 \n" + "lbux $t0, $t4(%[src]) \n" + "lbux $t1, $t5(%[src]) \n" + "lbux $t8, $t6(%[src]) \n" + "lbux $t9, $t7(%[src]) \n" + "sll $t1, $t1, 16 \n" + "sll $t9, $t9, 16 \n" + "or $t0, $t0, $t1 \n" + "or $t8, $t8, $t9 \n" + "precr.qb.ph $s1, $t8, $t0 \n" + "swr $s0, 0(%[dst]) \n" + "swl $s0, 3(%[dst]) \n" + "addiu %[width], -1 \n" + "addiu %[src], 1 \n" + "swr $s1, 4(%[dst]) \n" + "swl $s1, 7(%[dst]) \n" + "bnez %[width], 11b \n" + "addu %[dst], %[dst], %[dst_stride] \n" + "2: \n" + ".set pop \n" + :[src] "+r" (src), + [dst] "+r" (dst), + [width] "+r" (width) + :[src_stride] "r" (src_stride), + [dst_stride] "r" (dst_stride) + : "t0", "t1", "t2", "t3", "t4", "t5", + "t6", "t7", "t8", "t9", + "s0", "s1" + ); +} + +void TransposeWx8_Fast_DSPR2(const uint8* src, int src_stride, + uint8* dst, int dst_stride, int width) { + __asm__ __volatile__ ( + ".set noat \n" + ".set push \n" + ".set noreorder \n" + "beqz %[width], 2f \n" + " sll $t2, %[src_stride], 0x1 \n" // src_stride x 2 + "sll $t4, %[src_stride], 0x2 \n" // src_stride x 4 + "sll $t9, %[src_stride], 0x3 \n" // src_stride x 8 + "addu $t3, $t2, %[src_stride] \n" + "addu $t5, $t4, %[src_stride] \n" + "addu $t6, $t2, $t4 \n" + + "srl $AT, %[width], 0x2 \n" + "andi $t0, %[dst], 0x3 \n" + "andi $t1, %[dst_stride], 0x3 \n" + "or $t0, $t0, $t1 \n" + "bnez $t0, 11f \n" + " subu $t7, $t9, %[src_stride] \n" +//dst + dst_stride word aligned + "1: \n" + "lw $t0, 0(%[src]) \n" + "lwx $t1, %[src_stride](%[src]) \n" + "lwx $t8, $t2(%[src]) \n" + "lwx $t9, $t3(%[src]) \n" + +// t0 = | 30 | 20 | 10 | 00 | +// t1 = | 31 | 21 | 11 | 01 | +// t8 = | 32 | 22 | 12 | 02 | +// t9 = | 33 | 23 | 13 | 03 | + + "precr.qb.ph $s0, $t1, $t0 \n" + "precr.qb.ph $s1, $t9, $t8 \n" + "precrq.qb.ph $s2, $t1, $t0 \n" + "precrq.qb.ph $s3, $t9, $t8 \n" + + // s0 = | 21 | 01 | 20 | 00 | + // s1 = | 23 | 03 | 22 | 02 | + // s2 = | 31 | 11 | 30 | 10 | + // s3 = | 33 | 13 | 32 | 12 | + + "precr.qb.ph $s4, $s1, $s0 \n" + "precrq.qb.ph $s5, $s1, $s0 \n" + "precr.qb.ph $s6, $s3, $s2 \n" + "precrq.qb.ph $s7, $s3, $s2 \n" + + // s4 = | 03 | 02 | 01 | 00 | + // s5 = | 23 | 22 | 21 | 20 | + // s6 = | 13 | 12 | 11 | 10 | + // s7 = | 33 | 32 | 31 | 30 | + + "lwx $t0, $t4(%[src]) \n" + "lwx $t1, $t5(%[src]) \n" + "lwx $t8, $t6(%[src]) \n" + "lwx $t9, $t7(%[src]) \n" + +// t0 = | 34 | 24 | 14 | 04 | +// t1 = | 35 | 25 | 15 | 05 | +// t8 = | 36 | 26 | 16 | 06 | +// t9 = | 37 | 27 | 17 | 07 | + + "precr.qb.ph $s0, $t1, $t0 \n" + "precr.qb.ph $s1, $t9, $t8 \n" + "precrq.qb.ph $s2, $t1, $t0 \n" + "precrq.qb.ph $s3, $t9, $t8 \n" + + // s0 = | 25 | 05 | 24 | 04 | + // s1 = | 27 | 07 | 26 | 06 | + // s2 = | 35 | 15 | 34 | 14 | + // s3 = | 37 | 17 | 36 | 16 | + + "precr.qb.ph $t0, $s1, $s0 \n" + "precrq.qb.ph $t1, $s1, $s0 \n" + "precr.qb.ph $t8, $s3, $s2 \n" + "precrq.qb.ph $t9, $s3, $s2 \n" + + // t0 = | 07 | 06 | 05 | 04 | + // t1 = | 27 | 26 | 25 | 24 | + // t8 = | 17 | 16 | 15 | 14 | + // t9 = | 37 | 36 | 35 | 34 | + + "addu $s0, %[dst], %[dst_stride] \n" + "addu $s1, $s0, %[dst_stride] \n" + "addu $s2, $s1, %[dst_stride] \n" + + "sw $s4, 0(%[dst]) \n" + "sw $t0, 4(%[dst]) \n" + "sw $s6, 0($s0) \n" + "sw $t8, 4($s0) \n" + "sw $s5, 0($s1) \n" + "sw $t1, 4($s1) \n" + "sw $s7, 0($s2) \n" + "sw $t9, 4($s2) \n" + + "addiu $AT, -1 \n" + "addiu %[src], 4 \n" + + "bnez $AT, 1b \n" + " addu %[dst], $s2, %[dst_stride] \n" + "b 2f \n" +//dst + dst_stride unaligned + "11: \n" + "lw $t0, 0(%[src]) \n" + "lwx $t1, %[src_stride](%[src]) \n" + "lwx $t8, $t2(%[src]) \n" + "lwx $t9, $t3(%[src]) \n" + +// t0 = | 30 | 20 | 10 | 00 | +// t1 = | 31 | 21 | 11 | 01 | +// t8 = | 32 | 22 | 12 | 02 | +// t9 = | 33 | 23 | 13 | 03 | + + "precr.qb.ph $s0, $t1, $t0 \n" + "precr.qb.ph $s1, $t9, $t8 \n" + "precrq.qb.ph $s2, $t1, $t0 \n" + "precrq.qb.ph $s3, $t9, $t8 \n" + + // s0 = | 21 | 01 | 20 | 00 | + // s1 = | 23 | 03 | 22 | 02 | + // s2 = | 31 | 11 | 30 | 10 | + // s3 = | 33 | 13 | 32 | 12 | + + "precr.qb.ph $s4, $s1, $s0 \n" + "precrq.qb.ph $s5, $s1, $s0 \n" + "precr.qb.ph $s6, $s3, $s2 \n" + "precrq.qb.ph $s7, $s3, $s2 \n" + + // s4 = | 03 | 02 | 01 | 00 | + // s5 = | 23 | 22 | 21 | 20 | + // s6 = | 13 | 12 | 11 | 10 | + // s7 = | 33 | 32 | 31 | 30 | + + "lwx $t0, $t4(%[src]) \n" + "lwx $t1, $t5(%[src]) \n" + "lwx $t8, $t6(%[src]) \n" + "lwx $t9, $t7(%[src]) \n" + +// t0 = | 34 | 24 | 14 | 04 | +// t1 = | 35 | 25 | 15 | 05 | +// t8 = | 36 | 26 | 16 | 06 | +// t9 = | 37 | 27 | 17 | 07 | + + "precr.qb.ph $s0, $t1, $t0 \n" + "precr.qb.ph $s1, $t9, $t8 \n" + "precrq.qb.ph $s2, $t1, $t0 \n" + "precrq.qb.ph $s3, $t9, $t8 \n" + + // s0 = | 25 | 05 | 24 | 04 | + // s1 = | 27 | 07 | 26 | 06 | + // s2 = | 35 | 15 | 34 | 14 | + // s3 = | 37 | 17 | 36 | 16 | + + "precr.qb.ph $t0, $s1, $s0 \n" + "precrq.qb.ph $t1, $s1, $s0 \n" + "precr.qb.ph $t8, $s3, $s2 \n" + "precrq.qb.ph $t9, $s3, $s2 \n" + + // t0 = | 07 | 06 | 05 | 04 | + // t1 = | 27 | 26 | 25 | 24 | + // t8 = | 17 | 16 | 15 | 14 | + // t9 = | 37 | 36 | 35 | 34 | + + "addu $s0, %[dst], %[dst_stride] \n" + "addu $s1, $s0, %[dst_stride] \n" + "addu $s2, $s1, %[dst_stride] \n" + + "swr $s4, 0(%[dst]) \n" + "swl $s4, 3(%[dst]) \n" + "swr $t0, 4(%[dst]) \n" + "swl $t0, 7(%[dst]) \n" + "swr $s6, 0($s0) \n" + "swl $s6, 3($s0) \n" + "swr $t8, 4($s0) \n" + "swl $t8, 7($s0) \n" + "swr $s5, 0($s1) \n" + "swl $s5, 3($s1) \n" + "swr $t1, 4($s1) \n" + "swl $t1, 7($s1) \n" + "swr $s7, 0($s2) \n" + "swl $s7, 3($s2) \n" + "swr $t9, 4($s2) \n" + "swl $t9, 7($s2) \n" + + "addiu $AT, -1 \n" + "addiu %[src], 4 \n" + + "bnez $AT, 11b \n" + " addu %[dst], $s2, %[dst_stride] \n" + "2: \n" + ".set pop \n" + ".set at \n" + :[src] "+r" (src), + [dst] "+r" (dst), + [width] "+r" (width) + :[src_stride] "r" (src_stride), + [dst_stride] "r" (dst_stride) + : "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7", "t8", "t9", + "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7" + ); +} + +void TransposeUVWx8_DSPR2(const uint8* src, int src_stride, + uint8* dst_a, int dst_stride_a, + uint8* dst_b, int dst_stride_b, + int width) { + __asm__ __volatile__ ( + ".set push \n" + ".set noreorder \n" + "beqz %[width], 2f \n" + " sll $t2, %[src_stride], 0x1 \n" // src_stride x 2 + "sll $t4, %[src_stride], 0x2 \n" // src_stride x 4 + "sll $t9, %[src_stride], 0x3 \n" // src_stride x 8 + "addu $t3, $t2, %[src_stride] \n" + "addu $t5, $t4, %[src_stride] \n" + "addu $t6, $t2, $t4 \n" + "subu $t7, $t9, %[src_stride] \n" + "srl $t1, %[width], 1 \n" + +// check word aligment for dst_a, dst_b, dst_stride_a and dst_stride_b + "andi $t0, %[dst_a], 0x3 \n" + "andi $t8, %[dst_b], 0x3 \n" + "or $t0, $t0, $t8 \n" + "andi $t8, %[dst_stride_a], 0x3 \n" + "andi $s5, %[dst_stride_b], 0x3 \n" + "or $t8, $t8, $s5 \n" + "or $t0, $t0, $t8 \n" + "bnez $t0, 11f \n" + " nop \n" +// dst + dst_stride word aligned (both, a & b dst addresses) + "1: \n" + "lw $t0, 0(%[src]) \n" // |B0|A0|b0|a0| + "lwx $t8, %[src_stride](%[src]) \n" // |B1|A1|b1|a1| + "addu $s5, %[dst_a], %[dst_stride_a] \n" + "lwx $t9, $t2(%[src]) \n" // |B2|A2|b2|a2| + "lwx $s0, $t3(%[src]) \n" // |B3|A3|b3|a3| + "addu $s6, %[dst_b], %[dst_stride_b] \n" + + "precrq.ph.w $s1, $t8, $t0 \n" // |B1|A1|B0|A0| + "precrq.ph.w $s2, $s0, $t9 \n" // |B3|A3|B2|A2| + "precr.qb.ph $s3, $s2, $s1 \n" // |A3|A2|A1|A0| + "precrq.qb.ph $s4, $s2, $s1 \n" // |B3|B2|B1|B0| + + "sll $t0, $t0, 16 \n" + "packrl.ph $s1, $t8, $t0 \n" // |b1|a1|b0|a0| + "sll $t9, $t9, 16 \n" + "packrl.ph $s2, $s0, $t9 \n" // |b3|a3|b2|a2| + + "sw $s3, 0($s5) \n" + "sw $s4, 0($s6) \n" + + "precr.qb.ph $s3, $s2, $s1 \n" // |a3|a2|a1|a0| + "precrq.qb.ph $s4, $s2, $s1 \n" // |b3|b2|b1|b0| + + "lwx $t0, $t4(%[src]) \n" // |B4|A4|b4|a4| + "lwx $t8, $t5(%[src]) \n" // |B5|A5|b5|a5| + "lwx $t9, $t6(%[src]) \n" // |B6|A6|b6|a6| + "lwx $s0, $t7(%[src]) \n" // |B7|A7|b7|a7| + "sw $s3, 0(%[dst_a]) \n" + "sw $s4, 0(%[dst_b]) \n" + + "precrq.ph.w $s1, $t8, $t0 \n" // |B5|A5|B4|A4| + "precrq.ph.w $s2, $s0, $t9 \n" // |B6|A6|B7|A7| + "precr.qb.ph $s3, $s2, $s1 \n" // |A7|A6|A5|A4| + "precrq.qb.ph $s4, $s2, $s1 \n" // |B7|B6|B5|B4| + + "sll $t0, $t0, 16 \n" + "packrl.ph $s1, $t8, $t0 \n" // |b5|a5|b4|a4| + "sll $t9, $t9, 16 \n" + "packrl.ph $s2, $s0, $t9 \n" // |b7|a7|b6|a6| + "sw $s3, 4($s5) \n" + "sw $s4, 4($s6) \n" + + "precr.qb.ph $s3, $s2, $s1 \n" // |a7|a6|a5|a4| + "precrq.qb.ph $s4, $s2, $s1 \n" // |b7|b6|b5|b4| + + "addiu %[src], 4 \n" + "addiu $t1, -1 \n" + "sll $t0, %[dst_stride_a], 1 \n" + "sll $t8, %[dst_stride_b], 1 \n" + "sw $s3, 4(%[dst_a]) \n" + "sw $s4, 4(%[dst_b]) \n" + "addu %[dst_a], %[dst_a], $t0 \n" + "bnez $t1, 1b \n" + " addu %[dst_b], %[dst_b], $t8 \n" + "b 2f \n" + " nop \n" + +// dst_a or dst_b or dst_stride_a or dst_stride_b not word aligned + "11: \n" + "lw $t0, 0(%[src]) \n" // |B0|A0|b0|a0| + "lwx $t8, %[src_stride](%[src]) \n" // |B1|A1|b1|a1| + "addu $s5, %[dst_a], %[dst_stride_a] \n" + "lwx $t9, $t2(%[src]) \n" // |B2|A2|b2|a2| + "lwx $s0, $t3(%[src]) \n" // |B3|A3|b3|a3| + "addu $s6, %[dst_b], %[dst_stride_b] \n" + + "precrq.ph.w $s1, $t8, $t0 \n" // |B1|A1|B0|A0| + "precrq.ph.w $s2, $s0, $t9 \n" // |B3|A3|B2|A2| + "precr.qb.ph $s3, $s2, $s1 \n" // |A3|A2|A1|A0| + "precrq.qb.ph $s4, $s2, $s1 \n" // |B3|B2|B1|B0| + + "sll $t0, $t0, 16 \n" + "packrl.ph $s1, $t8, $t0 \n" // |b1|a1|b0|a0| + "sll $t9, $t9, 16 \n" + "packrl.ph $s2, $s0, $t9 \n" // |b3|a3|b2|a2| + + "swr $s3, 0($s5) \n" + "swl $s3, 3($s5) \n" + "swr $s4, 0($s6) \n" + "swl $s4, 3($s6) \n" + + "precr.qb.ph $s3, $s2, $s1 \n" // |a3|a2|a1|a0| + "precrq.qb.ph $s4, $s2, $s1 \n" // |b3|b2|b1|b0| + + "lwx $t0, $t4(%[src]) \n" // |B4|A4|b4|a4| + "lwx $t8, $t5(%[src]) \n" // |B5|A5|b5|a5| + "lwx $t9, $t6(%[src]) \n" // |B6|A6|b6|a6| + "lwx $s0, $t7(%[src]) \n" // |B7|A7|b7|a7| + "swr $s3, 0(%[dst_a]) \n" + "swl $s3, 3(%[dst_a]) \n" + "swr $s4, 0(%[dst_b]) \n" + "swl $s4, 3(%[dst_b]) \n" + + "precrq.ph.w $s1, $t8, $t0 \n" // |B5|A5|B4|A4| + "precrq.ph.w $s2, $s0, $t9 \n" // |B6|A6|B7|A7| + "precr.qb.ph $s3, $s2, $s1 \n" // |A7|A6|A5|A4| + "precrq.qb.ph $s4, $s2, $s1 \n" // |B7|B6|B5|B4| + + "sll $t0, $t0, 16 \n" + "packrl.ph $s1, $t8, $t0 \n" // |b5|a5|b4|a4| + "sll $t9, $t9, 16 \n" + "packrl.ph $s2, $s0, $t9 \n" // |b7|a7|b6|a6| + + "swr $s3, 4($s5) \n" + "swl $s3, 7($s5) \n" + "swr $s4, 4($s6) \n" + "swl $s4, 7($s6) \n" + + "precr.qb.ph $s3, $s2, $s1 \n" // |a7|a6|a5|a4| + "precrq.qb.ph $s4, $s2, $s1 \n" // |b7|b6|b5|b4| + + "addiu %[src], 4 \n" + "addiu $t1, -1 \n" + "sll $t0, %[dst_stride_a], 1 \n" + "sll $t8, %[dst_stride_b], 1 \n" + "swr $s3, 4(%[dst_a]) \n" + "swl $s3, 7(%[dst_a]) \n" + "swr $s4, 4(%[dst_b]) \n" + "swl $s4, 7(%[dst_b]) \n" + "addu %[dst_a], %[dst_a], $t0 \n" + "bnez $t1, 11b \n" + " addu %[dst_b], %[dst_b], $t8 \n" + + "2: \n" + ".set pop \n" + : [src] "+r" (src), + [dst_a] "+r" (dst_a), + [dst_b] "+r" (dst_b), + [width] "+r" (width), + [src_stride] "+r" (src_stride) + : [dst_stride_a] "r" (dst_stride_a), + [dst_stride_b] "r" (dst_stride_b) + : "t0", "t1", "t2", "t3", "t4", "t5", + "t6", "t7", "t8", "t9", + "s0", "s1", "s2", "s3", + "s4", "s5", "s6" + ); +} + +#endif // defined(__mips_dsp) && (__mips_dsp_rev >= 2) + +#ifdef __cplusplus +} // extern "C" +} // namespace libyuv +#endif diff --git a/third_party/libyuv/source/rotate_neon.cc b/third_party/libyuv/source/rotate_neon.cc new file mode 100644 index 0000000..1c22b47 --- /dev/null +++ b/third_party/libyuv/source/rotate_neon.cc @@ -0,0 +1,533 @@ +/* + * Copyright 2011 The LibYuv Project Authors. All rights reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "libyuv/row.h" +#include "libyuv/rotate_row.h" + +#include "libyuv/basic_types.h" + +#ifdef __cplusplus +namespace libyuv { +extern "C" { +#endif + +#if !defined(LIBYUV_DISABLE_NEON) && defined(__ARM_NEON__) && \ + !defined(__aarch64__) + +static uvec8 kVTbl4x4Transpose = + { 0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15 }; + +void TransposeWx8_NEON(const uint8* src, int src_stride, + uint8* dst, int dst_stride, + int width) { + const uint8* src_temp; + asm volatile ( + // loops are on blocks of 8. loop will stop when + // counter gets to or below 0. starting the counter + // at w-8 allow for this + "sub %5, #8 \n" + + // handle 8x8 blocks. this should be the majority of the plane + "1: \n" + "mov %0, %1 \n" + + MEMACCESS(0) + "vld1.8 {d0}, [%0], %2 \n" + MEMACCESS(0) + "vld1.8 {d1}, [%0], %2 \n" + MEMACCESS(0) + "vld1.8 {d2}, [%0], %2 \n" + MEMACCESS(0) + "vld1.8 {d3}, [%0], %2 \n" + MEMACCESS(0) + "vld1.8 {d4}, [%0], %2 \n" + MEMACCESS(0) + "vld1.8 {d5}, [%0], %2 \n" + MEMACCESS(0) + "vld1.8 {d6}, [%0], %2 \n" + MEMACCESS(0) + "vld1.8 {d7}, [%0] \n" + + "vtrn.8 d1, d0 \n" + "vtrn.8 d3, d2 \n" + "vtrn.8 d5, d4 \n" + "vtrn.8 d7, d6 \n" + + "vtrn.16 d1, d3 \n" + "vtrn.16 d0, d2 \n" + "vtrn.16 d5, d7 \n" + "vtrn.16 d4, d6 \n" + + "vtrn.32 d1, d5 \n" + "vtrn.32 d0, d4 \n" + "vtrn.32 d3, d7 \n" + "vtrn.32 d2, d6 \n" + + "vrev16.8 q0, q0 \n" + "vrev16.8 q1, q1 \n" + "vrev16.8 q2, q2 \n" + "vrev16.8 q3, q3 \n" + + "mov %0, %3 \n" + + MEMACCESS(0) + "vst1.8 {d1}, [%0], %4 \n" + MEMACCESS(0) + "vst1.8 {d0}, [%0], %4 \n" + MEMACCESS(0) + "vst1.8 {d3}, [%0], %4 \n" + MEMACCESS(0) + "vst1.8 {d2}, [%0], %4 \n" + MEMACCESS(0) + "vst1.8 {d5}, [%0], %4 \n" + MEMACCESS(0) + "vst1.8 {d4}, [%0], %4 \n" + MEMACCESS(0) + "vst1.8 {d7}, [%0], %4 \n" + MEMACCESS(0) + "vst1.8 {d6}, [%0] \n" + + "add %1, #8 \n" // src += 8 + "add %3, %3, %4, lsl #3 \n" // dst += 8 * dst_stride + "subs %5, #8 \n" // w -= 8 + "bge 1b \n" + + // add 8 back to counter. if the result is 0 there are + // no residuals. + "adds %5, #8 \n" + "beq 4f \n" + + // some residual, so between 1 and 7 lines left to transpose + "cmp %5, #2 \n" + "blt 3f \n" + + "cmp %5, #4 \n" + "blt 2f \n" + + // 4x8 block + "mov %0, %1 \n" + MEMACCESS(0) + "vld1.32 {d0[0]}, [%0], %2 \n" + MEMACCESS(0) + "vld1.32 {d0[1]}, [%0], %2 \n" + MEMACCESS(0) + "vld1.32 {d1[0]}, [%0], %2 \n" + MEMACCESS(0) + "vld1.32 {d1[1]}, [%0], %2 \n" + MEMACCESS(0) + "vld1.32 {d2[0]}, [%0], %2 \n" + MEMACCESS(0) + "vld1.32 {d2[1]}, [%0], %2 \n" + MEMACCESS(0) + "vld1.32 {d3[0]}, [%0], %2 \n" + MEMACCESS(0) + "vld1.32 {d3[1]}, [%0] \n" + + "mov %0, %3 \n" + + MEMACCESS(6) + "vld1.8 {q3}, [%6] \n" + + "vtbl.8 d4, {d0, d1}, d6 \n" + "vtbl.8 d5, {d0, d1}, d7 \n" + "vtbl.8 d0, {d2, d3}, d6 \n" + "vtbl.8 d1, {d2, d3}, d7 \n" + + // TODO(frkoenig): Rework shuffle above to + // write out with 4 instead of 8 writes. + MEMACCESS(0) + "vst1.32 {d4[0]}, [%0], %4 \n" + MEMACCESS(0) + "vst1.32 {d4[1]}, [%0], %4 \n" + MEMACCESS(0) + "vst1.32 {d5[0]}, [%0], %4 \n" + MEMACCESS(0) + "vst1.32 {d5[1]}, [%0] \n" + + "add %0, %3, #4 \n" + MEMACCESS(0) + "vst1.32 {d0[0]}, [%0], %4 \n" + MEMACCESS(0) + "vst1.32 {d0[1]}, [%0], %4 \n" + MEMACCESS(0) + "vst1.32 {d1[0]}, [%0], %4 \n" + MEMACCESS(0) + "vst1.32 {d1[1]}, [%0] \n" + + "add %1, #4 \n" // src += 4 + "add %3, %3, %4, lsl #2 \n" // dst += 4 * dst_stride + "subs %5, #4 \n" // w -= 4 + "beq 4f \n" + + // some residual, check to see if it includes a 2x8 block, + // or less + "cmp %5, #2 \n" + "blt 3f \n" + + // 2x8 block + "2: \n" + "mov %0, %1 \n" + MEMACCESS(0) + "vld1.16 {d0[0]}, [%0], %2 \n" + MEMACCESS(0) + "vld1.16 {d1[0]}, [%0], %2 \n" + MEMACCESS(0) + "vld1.16 {d0[1]}, [%0], %2 \n" + MEMACCESS(0) + "vld1.16 {d1[1]}, [%0], %2 \n" + MEMACCESS(0) + "vld1.16 {d0[2]}, [%0], %2 \n" + MEMACCESS(0) + "vld1.16 {d1[2]}, [%0], %2 \n" + MEMACCESS(0) + "vld1.16 {d0[3]}, [%0], %2 \n" + MEMACCESS(0) + "vld1.16 {d1[3]}, [%0] \n" + + "vtrn.8 d0, d1 \n" + + "mov %0, %3 \n" + + MEMACCESS(0) + "vst1.64 {d0}, [%0], %4 \n" + MEMACCESS(0) + "vst1.64 {d1}, [%0] \n" + + "add %1, #2 \n" // src += 2 + "add %3, %3, %4, lsl #1 \n" // dst += 2 * dst_stride + "subs %5, #2 \n" // w -= 2 + "beq 4f \n" + + // 1x8 block + "3: \n" + MEMACCESS(1) + "vld1.8 {d0[0]}, [%1], %2 \n" + MEMACCESS(1) + "vld1.8 {d0[1]}, [%1], %2 \n" + MEMACCESS(1) + "vld1.8 {d0[2]}, [%1], %2 \n" + MEMACCESS(1) + "vld1.8 {d0[3]}, [%1], %2 \n" + MEMACCESS(1) + "vld1.8 {d0[4]}, [%1], %2 \n" + MEMACCESS(1) + "vld1.8 {d0[5]}, [%1], %2 \n" + MEMACCESS(1) + "vld1.8 {d0[6]}, [%1], %2 \n" + MEMACCESS(1) + "vld1.8 {d0[7]}, [%1] \n" + + MEMACCESS(3) + "vst1.64 {d0}, [%3] \n" + + "4: \n" + + : "=&r"(src_temp), // %0 + "+r"(src), // %1 + "+r"(src_stride), // %2 + "+r"(dst), // %3 + "+r"(dst_stride), // %4 + "+r"(width) // %5 + : "r"(&kVTbl4x4Transpose) // %6 + : "memory", "cc", "q0", "q1", "q2", "q3" + ); +} + +static uvec8 kVTbl4x4TransposeDi = + { 0, 8, 1, 9, 2, 10, 3, 11, 4, 12, 5, 13, 6, 14, 7, 15 }; + +void TransposeUVWx8_NEON(const uint8* src, int src_stride, + uint8* dst_a, int dst_stride_a, + uint8* dst_b, int dst_stride_b, + int width) { + const uint8* src_temp; + asm volatile ( + // loops are on blocks of 8. loop will stop when + // counter gets to or below 0. starting the counter + // at w-8 allow for this + "sub %7, #8 \n" + + // handle 8x8 blocks. this should be the majority of the plane + "1: \n" + "mov %0, %1 \n" + + MEMACCESS(0) + "vld2.8 {d0, d1}, [%0], %2 \n" + MEMACCESS(0) + "vld2.8 {d2, d3}, [%0], %2 \n" + MEMACCESS(0) + "vld2.8 {d4, d5}, [%0], %2 \n" + MEMACCESS(0) + "vld2.8 {d6, d7}, [%0], %2 \n" + MEMACCESS(0) + "vld2.8 {d16, d17}, [%0], %2 \n" + MEMACCESS(0) + "vld2.8 {d18, d19}, [%0], %2 \n" + MEMACCESS(0) + "vld2.8 {d20, d21}, [%0], %2 \n" + MEMACCESS(0) + "vld2.8 {d22, d23}, [%0] \n" + + "vtrn.8 q1, q0 \n" + "vtrn.8 q3, q2 \n" + "vtrn.8 q9, q8 \n" + "vtrn.8 q11, q10 \n" + + "vtrn.16 q1, q3 \n" + "vtrn.16 q0, q2 \n" + "vtrn.16 q9, q11 \n" + "vtrn.16 q8, q10 \n" + + "vtrn.32 q1, q9 \n" + "vtrn.32 q0, q8 \n" + "vtrn.32 q3, q11 \n" + "vtrn.32 q2, q10 \n" + + "vrev16.8 q0, q0 \n" + "vrev16.8 q1, q1 \n" + "vrev16.8 q2, q2 \n" + "vrev16.8 q3, q3 \n" + "vrev16.8 q8, q8 \n" + "vrev16.8 q9, q9 \n" + "vrev16.8 q10, q10 \n" + "vrev16.8 q11, q11 \n" + + "mov %0, %3 \n" + + MEMACCESS(0) + "vst1.8 {d2}, [%0], %4 \n" + MEMACCESS(0) + "vst1.8 {d0}, [%0], %4 \n" + MEMACCESS(0) + "vst1.8 {d6}, [%0], %4 \n" + MEMACCESS(0) + "vst1.8 {d4}, [%0], %4 \n" + MEMACCESS(0) + "vst1.8 {d18}, [%0], %4 \n" + MEMACCESS(0) + "vst1.8 {d16}, [%0], %4 \n" + MEMACCESS(0) + "vst1.8 {d22}, [%0], %4 \n" + MEMACCESS(0) + "vst1.8 {d20}, [%0] \n" + + "mov %0, %5 \n" + + MEMACCESS(0) + "vst1.8 {d3}, [%0], %6 \n" + MEMACCESS(0) + "vst1.8 {d1}, [%0], %6 \n" + MEMACCESS(0) + "vst1.8 {d7}, [%0], %6 \n" + MEMACCESS(0) + "vst1.8 {d5}, [%0], %6 \n" + MEMACCESS(0) + "vst1.8 {d19}, [%0], %6 \n" + MEMACCESS(0) + "vst1.8 {d17}, [%0], %6 \n" + MEMACCESS(0) + "vst1.8 {d23}, [%0], %6 \n" + MEMACCESS(0) + "vst1.8 {d21}, [%0] \n" + + "add %1, #8*2 \n" // src += 8*2 + "add %3, %3, %4, lsl #3 \n" // dst_a += 8 * dst_stride_a + "add %5, %5, %6, lsl #3 \n" // dst_b += 8 * dst_stride_b + "subs %7, #8 \n" // w -= 8 + "bge 1b \n" + + // add 8 back to counter. if the result is 0 there are + // no residuals. + "adds %7, #8 \n" + "beq 4f \n" + + // some residual, so between 1 and 7 lines left to transpose + "cmp %7, #2 \n" + "blt 3f \n" + + "cmp %7, #4 \n" + "blt 2f \n" + + // TODO(frkoenig): Clean this up + // 4x8 block + "mov %0, %1 \n" + MEMACCESS(0) + "vld1.64 {d0}, [%0], %2 \n" + MEMACCESS(0) + "vld1.64 {d1}, [%0], %2 \n" + MEMACCESS(0) + "vld1.64 {d2}, [%0], %2 \n" + MEMACCESS(0) + "vld1.64 {d3}, [%0], %2 \n" + MEMACCESS(0) + "vld1.64 {d4}, [%0], %2 \n" + MEMACCESS(0) + "vld1.64 {d5}, [%0], %2 \n" + MEMACCESS(0) + "vld1.64 {d6}, [%0], %2 \n" + MEMACCESS(0) + "vld1.64 {d7}, [%0] \n" + + MEMACCESS(8) + "vld1.8 {q15}, [%8] \n" + + "vtrn.8 q0, q1 \n" + "vtrn.8 q2, q3 \n" + + "vtbl.8 d16, {d0, d1}, d30 \n" + "vtbl.8 d17, {d0, d1}, d31 \n" + "vtbl.8 d18, {d2, d3}, d30 \n" + "vtbl.8 d19, {d2, d3}, d31 \n" + "vtbl.8 d20, {d4, d5}, d30 \n" + "vtbl.8 d21, {d4, d5}, d31 \n" + "vtbl.8 d22, {d6, d7}, d30 \n" + "vtbl.8 d23, {d6, d7}, d31 \n" + + "mov %0, %3 \n" + + MEMACCESS(0) + "vst1.32 {d16[0]}, [%0], %4 \n" + MEMACCESS(0) + "vst1.32 {d16[1]}, [%0], %4 \n" + MEMACCESS(0) + "vst1.32 {d17[0]}, [%0], %4 \n" + MEMACCESS(0) + "vst1.32 {d17[1]}, [%0], %4 \n" + + "add %0, %3, #4 \n" + MEMACCESS(0) + "vst1.32 {d20[0]}, [%0], %4 \n" + MEMACCESS(0) + "vst1.32 {d20[1]}, [%0], %4 \n" + MEMACCESS(0) + "vst1.32 {d21[0]}, [%0], %4 \n" + MEMACCESS(0) + "vst1.32 {d21[1]}, [%0] \n" + + "mov %0, %5 \n" + + MEMACCESS(0) + "vst1.32 {d18[0]}, [%0], %6 \n" + MEMACCESS(0) + "vst1.32 {d18[1]}, [%0], %6 \n" + MEMACCESS(0) + "vst1.32 {d19[0]}, [%0], %6 \n" + MEMACCESS(0) + "vst1.32 {d19[1]}, [%0], %6 \n" + + "add %0, %5, #4 \n" + MEMACCESS(0) + "vst1.32 {d22[0]}, [%0], %6 \n" + MEMACCESS(0) + "vst1.32 {d22[1]}, [%0], %6 \n" + MEMACCESS(0) + "vst1.32 {d23[0]}, [%0], %6 \n" + MEMACCESS(0) + "vst1.32 {d23[1]}, [%0] \n" + + "add %1, #4*2 \n" // src += 4 * 2 + "add %3, %3, %4, lsl #2 \n" // dst_a += 4 * dst_stride_a + "add %5, %5, %6, lsl #2 \n" // dst_b += 4 * dst_stride_b + "subs %7, #4 \n" // w -= 4 + "beq 4f \n" + + // some residual, check to see if it includes a 2x8 block, + // or less + "cmp %7, #2 \n" + "blt 3f \n" + + // 2x8 block + "2: \n" + "mov %0, %1 \n" + MEMACCESS(0) + "vld2.16 {d0[0], d2[0]}, [%0], %2 \n" + MEMACCESS(0) + "vld2.16 {d1[0], d3[0]}, [%0], %2 \n" + MEMACCESS(0) + "vld2.16 {d0[1], d2[1]}, [%0], %2 \n" + MEMACCESS(0) + "vld2.16 {d1[1], d3[1]}, [%0], %2 \n" + MEMACCESS(0) + "vld2.16 {d0[2], d2[2]}, [%0], %2 \n" + MEMACCESS(0) + "vld2.16 {d1[2], d3[2]}, [%0], %2 \n" + MEMACCESS(0) + "vld2.16 {d0[3], d2[3]}, [%0], %2 \n" + MEMACCESS(0) + "vld2.16 {d1[3], d3[3]}, [%0] \n" + + "vtrn.8 d0, d1 \n" + "vtrn.8 d2, d3 \n" + + "mov %0, %3 \n" + + MEMACCESS(0) + "vst1.64 {d0}, [%0], %4 \n" + MEMACCESS(0) + "vst1.64 {d2}, [%0] \n" + + "mov %0, %5 \n" + + MEMACCESS(0) + "vst1.64 {d1}, [%0], %6 \n" + MEMACCESS(0) + "vst1.64 {d3}, [%0] \n" + + "add %1, #2*2 \n" // src += 2 * 2 + "add %3, %3, %4, lsl #1 \n" // dst_a += 2 * dst_stride_a + "add %5, %5, %6, lsl #1 \n" // dst_b += 2 * dst_stride_b + "subs %7, #2 \n" // w -= 2 + "beq 4f \n" + + // 1x8 block + "3: \n" + MEMACCESS(1) + "vld2.8 {d0[0], d1[0]}, [%1], %2 \n" + MEMACCESS(1) + "vld2.8 {d0[1], d1[1]}, [%1], %2 \n" + MEMACCESS(1) + "vld2.8 {d0[2], d1[2]}, [%1], %2 \n" + MEMACCESS(1) + "vld2.8 {d0[3], d1[3]}, [%1], %2 \n" + MEMACCESS(1) + "vld2.8 {d0[4], d1[4]}, [%1], %2 \n" + MEMACCESS(1) + "vld2.8 {d0[5], d1[5]}, [%1], %2 \n" + MEMACCESS(1) + "vld2.8 {d0[6], d1[6]}, [%1], %2 \n" + MEMACCESS(1) + "vld2.8 {d0[7], d1[7]}, [%1] \n" + + MEMACCESS(3) + "vst1.64 {d0}, [%3] \n" + MEMACCESS(5) + "vst1.64 {d1}, [%5] \n" + + "4: \n" + + : "=&r"(src_temp), // %0 + "+r"(src), // %1 + "+r"(src_stride), // %2 + "+r"(dst_a), // %3 + "+r"(dst_stride_a), // %4 + "+r"(dst_b), // %5 + "+r"(dst_stride_b), // %6 + "+r"(width) // %7 + : "r"(&kVTbl4x4TransposeDi) // %8 + : "memory", "cc", + "q0", "q1", "q2", "q3", "q8", "q9", "q10", "q11" + ); +} +#endif // defined(__ARM_NEON__) && !defined(__aarch64__) + +#ifdef __cplusplus +} // extern "C" +} // namespace libyuv +#endif diff --git a/third_party/libyuv/source/rotate_neon64.cc b/third_party/libyuv/source/rotate_neon64.cc new file mode 100644 index 0000000..1ab448f --- /dev/null +++ b/third_party/libyuv/source/rotate_neon64.cc @@ -0,0 +1,543 @@ +/* + * Copyright 2014 The LibYuv Project Authors. All rights reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "libyuv/row.h" +#include "libyuv/rotate_row.h" + +#include "libyuv/basic_types.h" + +#ifdef __cplusplus +namespace libyuv { +extern "C" { +#endif + +// This module is for GCC Neon armv8 64 bit. +#if !defined(LIBYUV_DISABLE_NEON) && defined(__aarch64__) + +static uvec8 kVTbl4x4Transpose = + { 0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15 }; + +void TransposeWx8_NEON(const uint8* src, int src_stride, + uint8* dst, int dst_stride, int width) { + const uint8* src_temp; + int64 width64 = (int64) width; // Work around clang 3.4 warning. + asm volatile ( + // loops are on blocks of 8. loop will stop when + // counter gets to or below 0. starting the counter + // at w-8 allow for this + "sub %3, %3, #8 \n" + + // handle 8x8 blocks. this should be the majority of the plane + "1: \n" + "mov %0, %1 \n" + + MEMACCESS(0) + "ld1 {v0.8b}, [%0], %5 \n" + MEMACCESS(0) + "ld1 {v1.8b}, [%0], %5 \n" + MEMACCESS(0) + "ld1 {v2.8b}, [%0], %5 \n" + MEMACCESS(0) + "ld1 {v3.8b}, [%0], %5 \n" + MEMACCESS(0) + "ld1 {v4.8b}, [%0], %5 \n" + MEMACCESS(0) + "ld1 {v5.8b}, [%0], %5 \n" + MEMACCESS(0) + "ld1 {v6.8b}, [%0], %5 \n" + MEMACCESS(0) + "ld1 {v7.8b}, [%0] \n" + + "trn2 v16.8b, v0.8b, v1.8b \n" + "trn1 v17.8b, v0.8b, v1.8b \n" + "trn2 v18.8b, v2.8b, v3.8b \n" + "trn1 v19.8b, v2.8b, v3.8b \n" + "trn2 v20.8b, v4.8b, v5.8b \n" + "trn1 v21.8b, v4.8b, v5.8b \n" + "trn2 v22.8b, v6.8b, v7.8b \n" + "trn1 v23.8b, v6.8b, v7.8b \n" + + "trn2 v3.4h, v17.4h, v19.4h \n" + "trn1 v1.4h, v17.4h, v19.4h \n" + "trn2 v2.4h, v16.4h, v18.4h \n" + "trn1 v0.4h, v16.4h, v18.4h \n" + "trn2 v7.4h, v21.4h, v23.4h \n" + "trn1 v5.4h, v21.4h, v23.4h \n" + "trn2 v6.4h, v20.4h, v22.4h \n" + "trn1 v4.4h, v20.4h, v22.4h \n" + + "trn2 v21.2s, v1.2s, v5.2s \n" + "trn1 v17.2s, v1.2s, v5.2s \n" + "trn2 v20.2s, v0.2s, v4.2s \n" + "trn1 v16.2s, v0.2s, v4.2s \n" + "trn2 v23.2s, v3.2s, v7.2s \n" + "trn1 v19.2s, v3.2s, v7.2s \n" + "trn2 v22.2s, v2.2s, v6.2s \n" + "trn1 v18.2s, v2.2s, v6.2s \n" + + "mov %0, %2 \n" + + MEMACCESS(0) + "st1 {v17.8b}, [%0], %6 \n" + MEMACCESS(0) + "st1 {v16.8b}, [%0], %6 \n" + MEMACCESS(0) + "st1 {v19.8b}, [%0], %6 \n" + MEMACCESS(0) + "st1 {v18.8b}, [%0], %6 \n" + MEMACCESS(0) + "st1 {v21.8b}, [%0], %6 \n" + MEMACCESS(0) + "st1 {v20.8b}, [%0], %6 \n" + MEMACCESS(0) + "st1 {v23.8b}, [%0], %6 \n" + MEMACCESS(0) + "st1 {v22.8b}, [%0] \n" + + "add %1, %1, #8 \n" // src += 8 + "add %2, %2, %6, lsl #3 \n" // dst += 8 * dst_stride + "subs %3, %3, #8 \n" // w -= 8 + "b.ge 1b \n" + + // add 8 back to counter. if the result is 0 there are + // no residuals. + "adds %3, %3, #8 \n" + "b.eq 4f \n" + + // some residual, so between 1 and 7 lines left to transpose + "cmp %3, #2 \n" + "b.lt 3f \n" + + "cmp %3, #4 \n" + "b.lt 2f \n" + + // 4x8 block + "mov %0, %1 \n" + MEMACCESS(0) + "ld1 {v0.s}[0], [%0], %5 \n" + MEMACCESS(0) + "ld1 {v0.s}[1], [%0], %5 \n" + MEMACCESS(0) + "ld1 {v0.s}[2], [%0], %5 \n" + MEMACCESS(0) + "ld1 {v0.s}[3], [%0], %5 \n" + MEMACCESS(0) + "ld1 {v1.s}[0], [%0], %5 \n" + MEMACCESS(0) + "ld1 {v1.s}[1], [%0], %5 \n" + MEMACCESS(0) + "ld1 {v1.s}[2], [%0], %5 \n" + MEMACCESS(0) + "ld1 {v1.s}[3], [%0] \n" + + "mov %0, %2 \n" + + MEMACCESS(4) + "ld1 {v2.16b}, [%4] \n" + + "tbl v3.16b, {v0.16b}, v2.16b \n" + "tbl v0.16b, {v1.16b}, v2.16b \n" + + // TODO(frkoenig): Rework shuffle above to + // write out with 4 instead of 8 writes. + MEMACCESS(0) + "st1 {v3.s}[0], [%0], %6 \n" + MEMACCESS(0) + "st1 {v3.s}[1], [%0], %6 \n" + MEMACCESS(0) + "st1 {v3.s}[2], [%0], %6 \n" + MEMACCESS(0) + "st1 {v3.s}[3], [%0] \n" + + "add %0, %2, #4 \n" + MEMACCESS(0) + "st1 {v0.s}[0], [%0], %6 \n" + MEMACCESS(0) + "st1 {v0.s}[1], [%0], %6 \n" + MEMACCESS(0) + "st1 {v0.s}[2], [%0], %6 \n" + MEMACCESS(0) + "st1 {v0.s}[3], [%0] \n" + + "add %1, %1, #4 \n" // src += 4 + "add %2, %2, %6, lsl #2 \n" // dst += 4 * dst_stride + "subs %3, %3, #4 \n" // w -= 4 + "b.eq 4f \n" + + // some residual, check to see if it includes a 2x8 block, + // or less + "cmp %3, #2 \n" + "b.lt 3f \n" + + // 2x8 block + "2: \n" + "mov %0, %1 \n" + MEMACCESS(0) + "ld1 {v0.h}[0], [%0], %5 \n" + MEMACCESS(0) + "ld1 {v1.h}[0], [%0], %5 \n" + MEMACCESS(0) + "ld1 {v0.h}[1], [%0], %5 \n" + MEMACCESS(0) + "ld1 {v1.h}[1], [%0], %5 \n" + MEMACCESS(0) + "ld1 {v0.h}[2], [%0], %5 \n" + MEMACCESS(0) + "ld1 {v1.h}[2], [%0], %5 \n" + MEMACCESS(0) + "ld1 {v0.h}[3], [%0], %5 \n" + MEMACCESS(0) + "ld1 {v1.h}[3], [%0] \n" + + "trn2 v2.8b, v0.8b, v1.8b \n" + "trn1 v3.8b, v0.8b, v1.8b \n" + + "mov %0, %2 \n" + + MEMACCESS(0) + "st1 {v3.8b}, [%0], %6 \n" + MEMACCESS(0) + "st1 {v2.8b}, [%0] \n" + + "add %1, %1, #2 \n" // src += 2 + "add %2, %2, %6, lsl #1 \n" // dst += 2 * dst_stride + "subs %3, %3, #2 \n" // w -= 2 + "b.eq 4f \n" + + // 1x8 block + "3: \n" + MEMACCESS(1) + "ld1 {v0.b}[0], [%1], %5 \n" + MEMACCESS(1) + "ld1 {v0.b}[1], [%1], %5 \n" + MEMACCESS(1) + "ld1 {v0.b}[2], [%1], %5 \n" + MEMACCESS(1) + "ld1 {v0.b}[3], [%1], %5 \n" + MEMACCESS(1) + "ld1 {v0.b}[4], [%1], %5 \n" + MEMACCESS(1) + "ld1 {v0.b}[5], [%1], %5 \n" + MEMACCESS(1) + "ld1 {v0.b}[6], [%1], %5 \n" + MEMACCESS(1) + "ld1 {v0.b}[7], [%1] \n" + + MEMACCESS(2) + "st1 {v0.8b}, [%2] \n" + + "4: \n" + + : "=&r"(src_temp), // %0 + "+r"(src), // %1 + "+r"(dst), // %2 + "+r"(width64) // %3 + : "r"(&kVTbl4x4Transpose), // %4 + "r"(static_cast(src_stride)), // %5 + "r"(static_cast(dst_stride)) // %6 + : "memory", "cc", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", "v16", + "v17", "v18", "v19", "v20", "v21", "v22", "v23" + ); +} + +static uint8 kVTbl4x4TransposeDi[32] = + { 0, 16, 32, 48, 2, 18, 34, 50, 4, 20, 36, 52, 6, 22, 38, 54, + 1, 17, 33, 49, 3, 19, 35, 51, 5, 21, 37, 53, 7, 23, 39, 55}; + +void TransposeUVWx8_NEON(const uint8* src, int src_stride, + uint8* dst_a, int dst_stride_a, + uint8* dst_b, int dst_stride_b, + int width) { + const uint8* src_temp; + int64 width64 = (int64) width; // Work around clang 3.4 warning. + asm volatile ( + // loops are on blocks of 8. loop will stop when + // counter gets to or below 0. starting the counter + // at w-8 allow for this + "sub %4, %4, #8 \n" + + // handle 8x8 blocks. this should be the majority of the plane + "1: \n" + "mov %0, %1 \n" + + MEMACCESS(0) + "ld1 {v0.16b}, [%0], %5 \n" + MEMACCESS(0) + "ld1 {v1.16b}, [%0], %5 \n" + MEMACCESS(0) + "ld1 {v2.16b}, [%0], %5 \n" + MEMACCESS(0) + "ld1 {v3.16b}, [%0], %5 \n" + MEMACCESS(0) + "ld1 {v4.16b}, [%0], %5 \n" + MEMACCESS(0) + "ld1 {v5.16b}, [%0], %5 \n" + MEMACCESS(0) + "ld1 {v6.16b}, [%0], %5 \n" + MEMACCESS(0) + "ld1 {v7.16b}, [%0] \n" + + "trn1 v16.16b, v0.16b, v1.16b \n" + "trn2 v17.16b, v0.16b, v1.16b \n" + "trn1 v18.16b, v2.16b, v3.16b \n" + "trn2 v19.16b, v2.16b, v3.16b \n" + "trn1 v20.16b, v4.16b, v5.16b \n" + "trn2 v21.16b, v4.16b, v5.16b \n" + "trn1 v22.16b, v6.16b, v7.16b \n" + "trn2 v23.16b, v6.16b, v7.16b \n" + + "trn1 v0.8h, v16.8h, v18.8h \n" + "trn2 v1.8h, v16.8h, v18.8h \n" + "trn1 v2.8h, v20.8h, v22.8h \n" + "trn2 v3.8h, v20.8h, v22.8h \n" + "trn1 v4.8h, v17.8h, v19.8h \n" + "trn2 v5.8h, v17.8h, v19.8h \n" + "trn1 v6.8h, v21.8h, v23.8h \n" + "trn2 v7.8h, v21.8h, v23.8h \n" + + "trn1 v16.4s, v0.4s, v2.4s \n" + "trn2 v17.4s, v0.4s, v2.4s \n" + "trn1 v18.4s, v1.4s, v3.4s \n" + "trn2 v19.4s, v1.4s, v3.4s \n" + "trn1 v20.4s, v4.4s, v6.4s \n" + "trn2 v21.4s, v4.4s, v6.4s \n" + "trn1 v22.4s, v5.4s, v7.4s \n" + "trn2 v23.4s, v5.4s, v7.4s \n" + + "mov %0, %2 \n" + + MEMACCESS(0) + "st1 {v16.d}[0], [%0], %6 \n" + MEMACCESS(0) + "st1 {v18.d}[0], [%0], %6 \n" + MEMACCESS(0) + "st1 {v17.d}[0], [%0], %6 \n" + MEMACCESS(0) + "st1 {v19.d}[0], [%0], %6 \n" + MEMACCESS(0) + "st1 {v16.d}[1], [%0], %6 \n" + MEMACCESS(0) + "st1 {v18.d}[1], [%0], %6 \n" + MEMACCESS(0) + "st1 {v17.d}[1], [%0], %6 \n" + MEMACCESS(0) + "st1 {v19.d}[1], [%0] \n" + + "mov %0, %3 \n" + + MEMACCESS(0) + "st1 {v20.d}[0], [%0], %7 \n" + MEMACCESS(0) + "st1 {v22.d}[0], [%0], %7 \n" + MEMACCESS(0) + "st1 {v21.d}[0], [%0], %7 \n" + MEMACCESS(0) + "st1 {v23.d}[0], [%0], %7 \n" + MEMACCESS(0) + "st1 {v20.d}[1], [%0], %7 \n" + MEMACCESS(0) + "st1 {v22.d}[1], [%0], %7 \n" + MEMACCESS(0) + "st1 {v21.d}[1], [%0], %7 \n" + MEMACCESS(0) + "st1 {v23.d}[1], [%0] \n" + + "add %1, %1, #16 \n" // src += 8*2 + "add %2, %2, %6, lsl #3 \n" // dst_a += 8 * dst_stride_a + "add %3, %3, %7, lsl #3 \n" // dst_b += 8 * dst_stride_b + "subs %4, %4, #8 \n" // w -= 8 + "b.ge 1b \n" + + // add 8 back to counter. if the result is 0 there are + // no residuals. + "adds %4, %4, #8 \n" + "b.eq 4f \n" + + // some residual, so between 1 and 7 lines left to transpose + "cmp %4, #2 \n" + "b.lt 3f \n" + + "cmp %4, #4 \n" + "b.lt 2f \n" + + // TODO(frkoenig): Clean this up + // 4x8 block + "mov %0, %1 \n" + MEMACCESS(0) + "ld1 {v0.8b}, [%0], %5 \n" + MEMACCESS(0) + "ld1 {v1.8b}, [%0], %5 \n" + MEMACCESS(0) + "ld1 {v2.8b}, [%0], %5 \n" + MEMACCESS(0) + "ld1 {v3.8b}, [%0], %5 \n" + MEMACCESS(0) + "ld1 {v4.8b}, [%0], %5 \n" + MEMACCESS(0) + "ld1 {v5.8b}, [%0], %5 \n" + MEMACCESS(0) + "ld1 {v6.8b}, [%0], %5 \n" + MEMACCESS(0) + "ld1 {v7.8b}, [%0] \n" + + MEMACCESS(8) + "ld1 {v30.16b}, [%8], #16 \n" + "ld1 {v31.16b}, [%8] \n" + + "tbl v16.16b, {v0.16b, v1.16b, v2.16b, v3.16b}, v30.16b \n" + "tbl v17.16b, {v0.16b, v1.16b, v2.16b, v3.16b}, v31.16b \n" + "tbl v18.16b, {v4.16b, v5.16b, v6.16b, v7.16b}, v30.16b \n" + "tbl v19.16b, {v4.16b, v5.16b, v6.16b, v7.16b}, v31.16b \n" + + "mov %0, %2 \n" + + MEMACCESS(0) + "st1 {v16.s}[0], [%0], %6 \n" + MEMACCESS(0) + "st1 {v16.s}[1], [%0], %6 \n" + MEMACCESS(0) + "st1 {v16.s}[2], [%0], %6 \n" + MEMACCESS(0) + "st1 {v16.s}[3], [%0], %6 \n" + + "add %0, %2, #4 \n" + MEMACCESS(0) + "st1 {v18.s}[0], [%0], %6 \n" + MEMACCESS(0) + "st1 {v18.s}[1], [%0], %6 \n" + MEMACCESS(0) + "st1 {v18.s}[2], [%0], %6 \n" + MEMACCESS(0) + "st1 {v18.s}[3], [%0] \n" + + "mov %0, %3 \n" + + MEMACCESS(0) + "st1 {v17.s}[0], [%0], %7 \n" + MEMACCESS(0) + "st1 {v17.s}[1], [%0], %7 \n" + MEMACCESS(0) + "st1 {v17.s}[2], [%0], %7 \n" + MEMACCESS(0) + "st1 {v17.s}[3], [%0], %7 \n" + + "add %0, %3, #4 \n" + MEMACCESS(0) + "st1 {v19.s}[0], [%0], %7 \n" + MEMACCESS(0) + "st1 {v19.s}[1], [%0], %7 \n" + MEMACCESS(0) + "st1 {v19.s}[2], [%0], %7 \n" + MEMACCESS(0) + "st1 {v19.s}[3], [%0] \n" + + "add %1, %1, #8 \n" // src += 4 * 2 + "add %2, %2, %6, lsl #2 \n" // dst_a += 4 * dst_stride_a + "add %3, %3, %7, lsl #2 \n" // dst_b += 4 * dst_stride_b + "subs %4, %4, #4 \n" // w -= 4 + "b.eq 4f \n" + + // some residual, check to see if it includes a 2x8 block, + // or less + "cmp %4, #2 \n" + "b.lt 3f \n" + + // 2x8 block + "2: \n" + "mov %0, %1 \n" + MEMACCESS(0) + "ld2 {v0.h, v1.h}[0], [%0], %5 \n" + MEMACCESS(0) + "ld2 {v2.h, v3.h}[0], [%0], %5 \n" + MEMACCESS(0) + "ld2 {v0.h, v1.h}[1], [%0], %5 \n" + MEMACCESS(0) + "ld2 {v2.h, v3.h}[1], [%0], %5 \n" + MEMACCESS(0) + "ld2 {v0.h, v1.h}[2], [%0], %5 \n" + MEMACCESS(0) + "ld2 {v2.h, v3.h}[2], [%0], %5 \n" + MEMACCESS(0) + "ld2 {v0.h, v1.h}[3], [%0], %5 \n" + MEMACCESS(0) + "ld2 {v2.h, v3.h}[3], [%0] \n" + + "trn1 v4.8b, v0.8b, v2.8b \n" + "trn2 v5.8b, v0.8b, v2.8b \n" + "trn1 v6.8b, v1.8b, v3.8b \n" + "trn2 v7.8b, v1.8b, v3.8b \n" + + "mov %0, %2 \n" + + MEMACCESS(0) + "st1 {v4.d}[0], [%0], %6 \n" + MEMACCESS(0) + "st1 {v6.d}[0], [%0] \n" + + "mov %0, %3 \n" + + MEMACCESS(0) + "st1 {v5.d}[0], [%0], %7 \n" + MEMACCESS(0) + "st1 {v7.d}[0], [%0] \n" + + "add %1, %1, #4 \n" // src += 2 * 2 + "add %2, %2, %6, lsl #1 \n" // dst_a += 2 * dst_stride_a + "add %3, %3, %7, lsl #1 \n" // dst_b += 2 * dst_stride_b + "subs %4, %4, #2 \n" // w -= 2 + "b.eq 4f \n" + + // 1x8 block + "3: \n" + MEMACCESS(1) + "ld2 {v0.b, v1.b}[0], [%1], %5 \n" + MEMACCESS(1) + "ld2 {v0.b, v1.b}[1], [%1], %5 \n" + MEMACCESS(1) + "ld2 {v0.b, v1.b}[2], [%1], %5 \n" + MEMACCESS(1) + "ld2 {v0.b, v1.b}[3], [%1], %5 \n" + MEMACCESS(1) + "ld2 {v0.b, v1.b}[4], [%1], %5 \n" + MEMACCESS(1) + "ld2 {v0.b, v1.b}[5], [%1], %5 \n" + MEMACCESS(1) + "ld2 {v0.b, v1.b}[6], [%1], %5 \n" + MEMACCESS(1) + "ld2 {v0.b, v1.b}[7], [%1] \n" + + MEMACCESS(2) + "st1 {v0.d}[0], [%2] \n" + MEMACCESS(3) + "st1 {v1.d}[0], [%3] \n" + + "4: \n" + + : "=&r"(src_temp), // %0 + "+r"(src), // %1 + "+r"(dst_a), // %2 + "+r"(dst_b), // %3 + "+r"(width64) // %4 + : "r"(static_cast(src_stride)), // %5 + "r"(static_cast(dst_stride_a)), // %6 + "r"(static_cast(dst_stride_b)), // %7 + "r"(&kVTbl4x4TransposeDi) // %8 + : "memory", "cc", + "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", + "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23", + "v30", "v31" + ); +} +#endif // !defined(LIBYUV_DISABLE_NEON) && defined(__aarch64__) + +#ifdef __cplusplus +} // extern "C" +} // namespace libyuv +#endif diff --git a/third_party/libyuv/source/rotate_win.cc b/third_party/libyuv/source/rotate_win.cc new file mode 100644 index 0000000..1300fc0 --- /dev/null +++ b/third_party/libyuv/source/rotate_win.cc @@ -0,0 +1,247 @@ +/* + * Copyright 2013 The LibYuv Project Authors. All rights reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "libyuv/row.h" +#include "libyuv/rotate_row.h" + +#ifdef __cplusplus +namespace libyuv { +extern "C" { +#endif + +// This module is for 32 bit Visual C x86 and clangcl +#if !defined(LIBYUV_DISABLE_X86) && defined(_M_IX86) + +__declspec(naked) +void TransposeWx8_SSSE3(const uint8* src, int src_stride, + uint8* dst, int dst_stride, int width) { + __asm { + push edi + push esi + push ebp + mov eax, [esp + 12 + 4] // src + mov edi, [esp + 12 + 8] // src_stride + mov edx, [esp + 12 + 12] // dst + mov esi, [esp + 12 + 16] // dst_stride + mov ecx, [esp + 12 + 20] // width + + // Read in the data from the source pointer. + // First round of bit swap. + align 4 + convertloop: + movq xmm0, qword ptr [eax] + lea ebp, [eax + 8] + movq xmm1, qword ptr [eax + edi] + lea eax, [eax + 2 * edi] + punpcklbw xmm0, xmm1 + movq xmm2, qword ptr [eax] + movdqa xmm1, xmm0 + palignr xmm1, xmm1, 8 + movq xmm3, qword ptr [eax + edi] + lea eax, [eax + 2 * edi] + punpcklbw xmm2, xmm3 + movdqa xmm3, xmm2 + movq xmm4, qword ptr [eax] + palignr xmm3, xmm3, 8 + movq xmm5, qword ptr [eax + edi] + punpcklbw xmm4, xmm5 + lea eax, [eax + 2 * edi] + movdqa xmm5, xmm4 + movq xmm6, qword ptr [eax] + palignr xmm5, xmm5, 8 + movq xmm7, qword ptr [eax + edi] + punpcklbw xmm6, xmm7 + mov eax, ebp + movdqa xmm7, xmm6 + palignr xmm7, xmm7, 8 + // Second round of bit swap. + punpcklwd xmm0, xmm2 + punpcklwd xmm1, xmm3 + movdqa xmm2, xmm0 + movdqa xmm3, xmm1 + palignr xmm2, xmm2, 8 + palignr xmm3, xmm3, 8 + punpcklwd xmm4, xmm6 + punpcklwd xmm5, xmm7 + movdqa xmm6, xmm4 + movdqa xmm7, xmm5 + palignr xmm6, xmm6, 8 + palignr xmm7, xmm7, 8 + // Third round of bit swap. + // Write to the destination pointer. + punpckldq xmm0, xmm4 + movq qword ptr [edx], xmm0 + movdqa xmm4, xmm0 + palignr xmm4, xmm4, 8 + movq qword ptr [edx + esi], xmm4 + lea edx, [edx + 2 * esi] + punpckldq xmm2, xmm6 + movdqa xmm6, xmm2 + palignr xmm6, xmm6, 8 + movq qword ptr [edx], xmm2 + punpckldq xmm1, xmm5 + movq qword ptr [edx + esi], xmm6 + lea edx, [edx + 2 * esi] + movdqa xmm5, xmm1 + movq qword ptr [edx], xmm1 + palignr xmm5, xmm5, 8 + punpckldq xmm3, xmm7 + movq qword ptr [edx + esi], xmm5 + lea edx, [edx + 2 * esi] + movq qword ptr [edx], xmm3 + movdqa xmm7, xmm3 + palignr xmm7, xmm7, 8 + sub ecx, 8 + movq qword ptr [edx + esi], xmm7 + lea edx, [edx + 2 * esi] + jg convertloop + + pop ebp + pop esi + pop edi + ret + } +} + +__declspec(naked) +void TransposeUVWx8_SSE2(const uint8* src, int src_stride, + uint8* dst_a, int dst_stride_a, + uint8* dst_b, int dst_stride_b, + int w) { + __asm { + push ebx + push esi + push edi + push ebp + mov eax, [esp + 16 + 4] // src + mov edi, [esp + 16 + 8] // src_stride + mov edx, [esp + 16 + 12] // dst_a + mov esi, [esp + 16 + 16] // dst_stride_a + mov ebx, [esp + 16 + 20] // dst_b + mov ebp, [esp + 16 + 24] // dst_stride_b + mov ecx, esp + sub esp, 4 + 16 + and esp, ~15 + mov [esp + 16], ecx + mov ecx, [ecx + 16 + 28] // w + + align 4 + convertloop: + // Read in the data from the source pointer. + // First round of bit swap. + movdqu xmm0, [eax] + movdqu xmm1, [eax + edi] + lea eax, [eax + 2 * edi] + movdqa xmm7, xmm0 // use xmm7 as temp register. + punpcklbw xmm0, xmm1 + punpckhbw xmm7, xmm1 + movdqa xmm1, xmm7 + movdqu xmm2, [eax] + movdqu xmm3, [eax + edi] + lea eax, [eax + 2 * edi] + movdqa xmm7, xmm2 + punpcklbw xmm2, xmm3 + punpckhbw xmm7, xmm3 + movdqa xmm3, xmm7 + movdqu xmm4, [eax] + movdqu xmm5, [eax + edi] + lea eax, [eax + 2 * edi] + movdqa xmm7, xmm4 + punpcklbw xmm4, xmm5 + punpckhbw xmm7, xmm5 + movdqa xmm5, xmm7 + movdqu xmm6, [eax] + movdqu xmm7, [eax + edi] + lea eax, [eax + 2 * edi] + movdqu [esp], xmm5 // backup xmm5 + neg edi + movdqa xmm5, xmm6 // use xmm5 as temp register. + punpcklbw xmm6, xmm7 + punpckhbw xmm5, xmm7 + movdqa xmm7, xmm5 + lea eax, [eax + 8 * edi + 16] + neg edi + // Second round of bit swap. + movdqa xmm5, xmm0 + punpcklwd xmm0, xmm2 + punpckhwd xmm5, xmm2 + movdqa xmm2, xmm5 + movdqa xmm5, xmm1 + punpcklwd xmm1, xmm3 + punpckhwd xmm5, xmm3 + movdqa xmm3, xmm5 + movdqa xmm5, xmm4 + punpcklwd xmm4, xmm6 + punpckhwd xmm5, xmm6 + movdqa xmm6, xmm5 + movdqu xmm5, [esp] // restore xmm5 + movdqu [esp], xmm6 // backup xmm6 + movdqa xmm6, xmm5 // use xmm6 as temp register. + punpcklwd xmm5, xmm7 + punpckhwd xmm6, xmm7 + movdqa xmm7, xmm6 + // Third round of bit swap. + // Write to the destination pointer. + movdqa xmm6, xmm0 + punpckldq xmm0, xmm4 + punpckhdq xmm6, xmm4 + movdqa xmm4, xmm6 + movdqu xmm6, [esp] // restore xmm6 + movlpd qword ptr [edx], xmm0 + movhpd qword ptr [ebx], xmm0 + movlpd qword ptr [edx + esi], xmm4 + lea edx, [edx + 2 * esi] + movhpd qword ptr [ebx + ebp], xmm4 + lea ebx, [ebx + 2 * ebp] + movdqa xmm0, xmm2 // use xmm0 as the temp register. + punpckldq xmm2, xmm6 + movlpd qword ptr [edx], xmm2 + movhpd qword ptr [ebx], xmm2 + punpckhdq xmm0, xmm6 + movlpd qword ptr [edx + esi], xmm0 + lea edx, [edx + 2 * esi] + movhpd qword ptr [ebx + ebp], xmm0 + lea ebx, [ebx + 2 * ebp] + movdqa xmm0, xmm1 // use xmm0 as the temp register. + punpckldq xmm1, xmm5 + movlpd qword ptr [edx], xmm1 + movhpd qword ptr [ebx], xmm1 + punpckhdq xmm0, xmm5 + movlpd qword ptr [edx + esi], xmm0 + lea edx, [edx + 2 * esi] + movhpd qword ptr [ebx + ebp], xmm0 + lea ebx, [ebx + 2 * ebp] + movdqa xmm0, xmm3 // use xmm0 as the temp register. + punpckldq xmm3, xmm7 + movlpd qword ptr [edx], xmm3 + movhpd qword ptr [ebx], xmm3 + punpckhdq xmm0, xmm7 + sub ecx, 8 + movlpd qword ptr [edx + esi], xmm0 + lea edx, [edx + 2 * esi] + movhpd qword ptr [ebx + ebp], xmm0 + lea ebx, [ebx + 2 * ebp] + jg convertloop + + mov esp, [esp + 16] + pop ebp + pop edi + pop esi + pop ebx + ret + } +} + +#endif // !defined(LIBYUV_DISABLE_X86) && defined(_M_IX86) + +#ifdef __cplusplus +} // extern "C" +} // namespace libyuv +#endif diff --git a/third_party/libyuv/source/row_any.cc b/third_party/libyuv/source/row_any.cc new file mode 100644 index 0000000..494164f --- /dev/null +++ b/third_party/libyuv/source/row_any.cc @@ -0,0 +1,824 @@ +/* + * Copyright 2012 The LibYuv Project Authors. All rights reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "libyuv/row.h" + +#include // For memset. + +#include "libyuv/basic_types.h" + +#ifdef __cplusplus +namespace libyuv { +extern "C" { +#endif + +// Subsampled source needs to be increase by 1 of not even. +#define SS(width, shift) (((width) + (1 << (shift)) - 1) >> (shift)) + +// Any 4 planes to 1 with yuvconstants +#define ANY41C(NAMEANY, ANY_SIMD, UVSHIFT, DUVSHIFT, BPP, MASK) \ + void NAMEANY(const uint8* y_buf, const uint8* u_buf, const uint8* v_buf, \ + const uint8* a_buf, uint8* dst_ptr, \ + const struct YuvConstants* yuvconstants, int width) { \ + SIMD_ALIGNED(uint8 temp[64 * 5]); \ + memset(temp, 0, 64 * 4); /* for msan */ \ + int r = width & MASK; \ + int n = width & ~MASK; \ + if (n > 0) { \ + ANY_SIMD(y_buf, u_buf, v_buf, a_buf, dst_ptr, yuvconstants, n); \ + } \ + memcpy(temp, y_buf + n, r); \ + memcpy(temp + 64, u_buf + (n >> UVSHIFT), SS(r, UVSHIFT)); \ + memcpy(temp + 128, v_buf + (n >> UVSHIFT), SS(r, UVSHIFT)); \ + memcpy(temp + 192, a_buf + n, r); \ + ANY_SIMD(temp, temp + 64, temp + 128, temp + 192, temp + 256, \ + yuvconstants, MASK + 1); \ + memcpy(dst_ptr + (n >> DUVSHIFT) * BPP, temp + 256, \ + SS(r, DUVSHIFT) * BPP); \ + } + +#ifdef HAS_I422ALPHATOARGBROW_SSSE3 +ANY41C(I422AlphaToARGBRow_Any_SSSE3, I422AlphaToARGBRow_SSSE3, 1, 0, 4, 7) +#endif +#ifdef HAS_I422ALPHATOARGBROW_AVX2 +ANY41C(I422AlphaToARGBRow_Any_AVX2, I422AlphaToARGBRow_AVX2, 1, 0, 4, 15) +#endif +#ifdef HAS_I422ALPHATOARGBROW_NEON +ANY41C(I422AlphaToARGBRow_Any_NEON, I422AlphaToARGBRow_NEON, 1, 0, 4, 7) +#endif +#undef ANY41C + +// Any 3 planes to 1. +#define ANY31(NAMEANY, ANY_SIMD, UVSHIFT, DUVSHIFT, BPP, MASK) \ + void NAMEANY(const uint8* y_buf, const uint8* u_buf, const uint8* v_buf, \ + uint8* dst_ptr, int width) { \ + SIMD_ALIGNED(uint8 temp[64 * 4]); \ + memset(temp, 0, 64 * 3); /* for YUY2 and msan */ \ + int r = width & MASK; \ + int n = width & ~MASK; \ + if (n > 0) { \ + ANY_SIMD(y_buf, u_buf, v_buf, dst_ptr, n); \ + } \ + memcpy(temp, y_buf + n, r); \ + memcpy(temp + 64, u_buf + (n >> UVSHIFT), SS(r, UVSHIFT)); \ + memcpy(temp + 128, v_buf + (n >> UVSHIFT), SS(r, UVSHIFT)); \ + ANY_SIMD(temp, temp + 64, temp + 128, temp + 192, MASK + 1); \ + memcpy(dst_ptr + (n >> DUVSHIFT) * BPP, temp + 192, \ + SS(r, DUVSHIFT) * BPP); \ + } +#ifdef HAS_I422TOYUY2ROW_SSE2 +ANY31(I422ToYUY2Row_Any_SSE2, I422ToYUY2Row_SSE2, 1, 1, 4, 15) +ANY31(I422ToUYVYRow_Any_SSE2, I422ToUYVYRow_SSE2, 1, 1, 4, 15) +#endif +#ifdef HAS_I422TOYUY2ROW_NEON +ANY31(I422ToYUY2Row_Any_NEON, I422ToYUY2Row_NEON, 1, 1, 4, 15) +#endif +#ifdef HAS_I422TOUYVYROW_NEON +ANY31(I422ToUYVYRow_Any_NEON, I422ToUYVYRow_NEON, 1, 1, 4, 15) +#endif +#ifdef HAS_BLENDPLANEROW_AVX2 +ANY31(BlendPlaneRow_Any_AVX2, BlendPlaneRow_AVX2, 0, 0, 1, 31) +#endif +#ifdef HAS_BLENDPLANEROW_SSSE3 +ANY31(BlendPlaneRow_Any_SSSE3, BlendPlaneRow_SSSE3, 0, 0, 1, 7) +#endif +#undef ANY31 + +// Note that odd width replication includes 444 due to implementation +// on arm that subsamples 444 to 422 internally. +// Any 3 planes to 1 with yuvconstants +#define ANY31C(NAMEANY, ANY_SIMD, UVSHIFT, DUVSHIFT, BPP, MASK) \ + void NAMEANY(const uint8* y_buf, const uint8* u_buf, const uint8* v_buf, \ + uint8* dst_ptr, const struct YuvConstants* yuvconstants, \ + int width) { \ + SIMD_ALIGNED(uint8 temp[64 * 4]); \ + memset(temp, 0, 64 * 3); /* for YUY2 and msan */ \ + int r = width & MASK; \ + int n = width & ~MASK; \ + if (n > 0) { \ + ANY_SIMD(y_buf, u_buf, v_buf, dst_ptr, yuvconstants, n); \ + } \ + memcpy(temp, y_buf + n, r); \ + memcpy(temp + 64, u_buf + (n >> UVSHIFT), SS(r, UVSHIFT)); \ + memcpy(temp + 128, v_buf + (n >> UVSHIFT), SS(r, UVSHIFT)); \ + if (width & 1) { \ + temp[64 + SS(r, UVSHIFT)] = temp[64 + SS(r, UVSHIFT) - 1]; \ + temp[128 + SS(r, UVSHIFT)] = temp[128 + SS(r, UVSHIFT) - 1]; \ + } \ + ANY_SIMD(temp, temp + 64, temp + 128, temp + 192, \ + yuvconstants, MASK + 1); \ + memcpy(dst_ptr + (n >> DUVSHIFT) * BPP, temp + 192, \ + SS(r, DUVSHIFT) * BPP); \ + } + +#ifdef HAS_I422TOARGBROW_SSSE3 +ANY31C(I422ToARGBRow_Any_SSSE3, I422ToARGBRow_SSSE3, 1, 0, 4, 7) +#endif +#ifdef HAS_I411TOARGBROW_SSSE3 +ANY31C(I411ToARGBRow_Any_SSSE3, I411ToARGBRow_SSSE3, 2, 0, 4, 7) +#endif +#ifdef HAS_I444TOARGBROW_SSSE3 +ANY31C(I444ToARGBRow_Any_SSSE3, I444ToARGBRow_SSSE3, 0, 0, 4, 7) +ANY31C(I422ToRGBARow_Any_SSSE3, I422ToRGBARow_SSSE3, 1, 0, 4, 7) +ANY31C(I422ToARGB4444Row_Any_SSSE3, I422ToARGB4444Row_SSSE3, 1, 0, 2, 7) +ANY31C(I422ToARGB1555Row_Any_SSSE3, I422ToARGB1555Row_SSSE3, 1, 0, 2, 7) +ANY31C(I422ToRGB565Row_Any_SSSE3, I422ToRGB565Row_SSSE3, 1, 0, 2, 7) +ANY31C(I422ToRGB24Row_Any_SSSE3, I422ToRGB24Row_SSSE3, 1, 0, 3, 7) +#endif // HAS_I444TOARGBROW_SSSE3 +#ifdef HAS_I422TORGB24ROW_AVX2 +ANY31C(I422ToRGB24Row_Any_AVX2, I422ToRGB24Row_AVX2, 1, 0, 3, 15) +#endif +#ifdef HAS_I422TOARGBROW_AVX2 +ANY31C(I422ToARGBRow_Any_AVX2, I422ToARGBRow_AVX2, 1, 0, 4, 15) +#endif +#ifdef HAS_I422TORGBAROW_AVX2 +ANY31C(I422ToRGBARow_Any_AVX2, I422ToRGBARow_AVX2, 1, 0, 4, 15) +#endif +#ifdef HAS_I444TOARGBROW_AVX2 +ANY31C(I444ToARGBRow_Any_AVX2, I444ToARGBRow_AVX2, 0, 0, 4, 15) +#endif +#ifdef HAS_I411TOARGBROW_AVX2 +ANY31C(I411ToARGBRow_Any_AVX2, I411ToARGBRow_AVX2, 2, 0, 4, 15) +#endif +#ifdef HAS_I422TOARGB4444ROW_AVX2 +ANY31C(I422ToARGB4444Row_Any_AVX2, I422ToARGB4444Row_AVX2, 1, 0, 2, 7) +#endif +#ifdef HAS_I422TOARGB1555ROW_AVX2 +ANY31C(I422ToARGB1555Row_Any_AVX2, I422ToARGB1555Row_AVX2, 1, 0, 2, 7) +#endif +#ifdef HAS_I422TORGB565ROW_AVX2 +ANY31C(I422ToRGB565Row_Any_AVX2, I422ToRGB565Row_AVX2, 1, 0, 2, 7) +#endif +#ifdef HAS_I422TOARGBROW_NEON +ANY31C(I444ToARGBRow_Any_NEON, I444ToARGBRow_NEON, 0, 0, 4, 7) +ANY31C(I422ToARGBRow_Any_NEON, I422ToARGBRow_NEON, 1, 0, 4, 7) +ANY31C(I411ToARGBRow_Any_NEON, I411ToARGBRow_NEON, 2, 0, 4, 7) +ANY31C(I422ToRGBARow_Any_NEON, I422ToRGBARow_NEON, 1, 0, 4, 7) +ANY31C(I422ToRGB24Row_Any_NEON, I422ToRGB24Row_NEON, 1, 0, 3, 7) +ANY31C(I422ToARGB4444Row_Any_NEON, I422ToARGB4444Row_NEON, 1, 0, 2, 7) +ANY31C(I422ToARGB1555Row_Any_NEON, I422ToARGB1555Row_NEON, 1, 0, 2, 7) +ANY31C(I422ToRGB565Row_Any_NEON, I422ToRGB565Row_NEON, 1, 0, 2, 7) +#endif +#undef ANY31C + +// Any 2 planes to 1. +#define ANY21(NAMEANY, ANY_SIMD, UVSHIFT, SBPP, SBPP2, BPP, MASK) \ + void NAMEANY(const uint8* y_buf, const uint8* uv_buf, \ + uint8* dst_ptr, int width) { \ + SIMD_ALIGNED(uint8 temp[64 * 3]); \ + memset(temp, 0, 64 * 2); /* for msan */ \ + int r = width & MASK; \ + int n = width & ~MASK; \ + if (n > 0) { \ + ANY_SIMD(y_buf, uv_buf, dst_ptr, n); \ + } \ + memcpy(temp, y_buf + n * SBPP, r * SBPP); \ + memcpy(temp + 64, uv_buf + (n >> UVSHIFT) * SBPP2, \ + SS(r, UVSHIFT) * SBPP2); \ + ANY_SIMD(temp, temp + 64, temp + 128, MASK + 1); \ + memcpy(dst_ptr + n * BPP, temp + 128, r * BPP); \ + } + +// Merge functions. +#ifdef HAS_MERGEUVROW_SSE2 +ANY21(MergeUVRow_Any_SSE2, MergeUVRow_SSE2, 0, 1, 1, 2, 15) +#endif +#ifdef HAS_MERGEUVROW_AVX2 +ANY21(MergeUVRow_Any_AVX2, MergeUVRow_AVX2, 0, 1, 1, 2, 31) +#endif +#ifdef HAS_MERGEUVROW_NEON +ANY21(MergeUVRow_Any_NEON, MergeUVRow_NEON, 0, 1, 1, 2, 15) +#endif + +// Math functions. +#ifdef HAS_ARGBMULTIPLYROW_SSE2 +ANY21(ARGBMultiplyRow_Any_SSE2, ARGBMultiplyRow_SSE2, 0, 4, 4, 4, 3) +#endif +#ifdef HAS_ARGBADDROW_SSE2 +ANY21(ARGBAddRow_Any_SSE2, ARGBAddRow_SSE2, 0, 4, 4, 4, 3) +#endif +#ifdef HAS_ARGBSUBTRACTROW_SSE2 +ANY21(ARGBSubtractRow_Any_SSE2, ARGBSubtractRow_SSE2, 0, 4, 4, 4, 3) +#endif +#ifdef HAS_ARGBMULTIPLYROW_AVX2 +ANY21(ARGBMultiplyRow_Any_AVX2, ARGBMultiplyRow_AVX2, 0, 4, 4, 4, 7) +#endif +#ifdef HAS_ARGBADDROW_AVX2 +ANY21(ARGBAddRow_Any_AVX2, ARGBAddRow_AVX2, 0, 4, 4, 4, 7) +#endif +#ifdef HAS_ARGBSUBTRACTROW_AVX2 +ANY21(ARGBSubtractRow_Any_AVX2, ARGBSubtractRow_AVX2, 0, 4, 4, 4, 7) +#endif +#ifdef HAS_ARGBMULTIPLYROW_NEON +ANY21(ARGBMultiplyRow_Any_NEON, ARGBMultiplyRow_NEON, 0, 4, 4, 4, 7) +#endif +#ifdef HAS_ARGBADDROW_NEON +ANY21(ARGBAddRow_Any_NEON, ARGBAddRow_NEON, 0, 4, 4, 4, 7) +#endif +#ifdef HAS_ARGBSUBTRACTROW_NEON +ANY21(ARGBSubtractRow_Any_NEON, ARGBSubtractRow_NEON, 0, 4, 4, 4, 7) +#endif +#ifdef HAS_SOBELROW_SSE2 +ANY21(SobelRow_Any_SSE2, SobelRow_SSE2, 0, 1, 1, 4, 15) +#endif +#ifdef HAS_SOBELROW_NEON +ANY21(SobelRow_Any_NEON, SobelRow_NEON, 0, 1, 1, 4, 7) +#endif +#ifdef HAS_SOBELTOPLANEROW_SSE2 +ANY21(SobelToPlaneRow_Any_SSE2, SobelToPlaneRow_SSE2, 0, 1, 1, 1, 15) +#endif +#ifdef HAS_SOBELTOPLANEROW_NEON +ANY21(SobelToPlaneRow_Any_NEON, SobelToPlaneRow_NEON, 0, 1, 1, 1, 15) +#endif +#ifdef HAS_SOBELXYROW_SSE2 +ANY21(SobelXYRow_Any_SSE2, SobelXYRow_SSE2, 0, 1, 1, 4, 15) +#endif +#ifdef HAS_SOBELXYROW_NEON +ANY21(SobelXYRow_Any_NEON, SobelXYRow_NEON, 0, 1, 1, 4, 7) +#endif +#undef ANY21 + +// Any 2 planes to 1 with yuvconstants +#define ANY21C(NAMEANY, ANY_SIMD, UVSHIFT, SBPP, SBPP2, BPP, MASK) \ + void NAMEANY(const uint8* y_buf, const uint8* uv_buf, \ + uint8* dst_ptr, const struct YuvConstants* yuvconstants, \ + int width) { \ + SIMD_ALIGNED(uint8 temp[64 * 3]); \ + memset(temp, 0, 64 * 2); /* for msan */ \ + int r = width & MASK; \ + int n = width & ~MASK; \ + if (n > 0) { \ + ANY_SIMD(y_buf, uv_buf, dst_ptr, yuvconstants, n); \ + } \ + memcpy(temp, y_buf + n * SBPP, r * SBPP); \ + memcpy(temp + 64, uv_buf + (n >> UVSHIFT) * SBPP2, \ + SS(r, UVSHIFT) * SBPP2); \ + ANY_SIMD(temp, temp + 64, temp + 128, yuvconstants, MASK + 1); \ + memcpy(dst_ptr + n * BPP, temp + 128, r * BPP); \ + } + +// Biplanar to RGB. +#ifdef HAS_NV12TOARGBROW_SSSE3 +ANY21C(NV12ToARGBRow_Any_SSSE3, NV12ToARGBRow_SSSE3, 1, 1, 2, 4, 7) +#endif +#ifdef HAS_NV12TOARGBROW_AVX2 +ANY21C(NV12ToARGBRow_Any_AVX2, NV12ToARGBRow_AVX2, 1, 1, 2, 4, 15) +#endif +#ifdef HAS_NV12TOARGBROW_NEON +ANY21C(NV12ToARGBRow_Any_NEON, NV12ToARGBRow_NEON, 1, 1, 2, 4, 7) +#endif +#ifdef HAS_NV21TOARGBROW_SSSE3 +ANY21C(NV21ToARGBRow_Any_SSSE3, NV21ToARGBRow_SSSE3, 1, 1, 2, 4, 7) +#endif +#ifdef HAS_NV21TOARGBROW_AVX2 +ANY21C(NV21ToARGBRow_Any_AVX2, NV21ToARGBRow_AVX2, 1, 1, 2, 4, 15) +#endif +#ifdef HAS_NV21TOARGBROW_NEON +ANY21C(NV21ToARGBRow_Any_NEON, NV21ToARGBRow_NEON, 1, 1, 2, 4, 7) +#endif +#ifdef HAS_NV12TORGB565ROW_SSSE3 +ANY21C(NV12ToRGB565Row_Any_SSSE3, NV12ToRGB565Row_SSSE3, 1, 1, 2, 2, 7) +#endif +#ifdef HAS_NV12TORGB565ROW_AVX2 +ANY21C(NV12ToRGB565Row_Any_AVX2, NV12ToRGB565Row_AVX2, 1, 1, 2, 2, 15) +#endif +#ifdef HAS_NV12TORGB565ROW_NEON +ANY21C(NV12ToRGB565Row_Any_NEON, NV12ToRGB565Row_NEON, 1, 1, 2, 2, 7) +#endif +#undef ANY21C + +// Any 1 to 1. +#define ANY11(NAMEANY, ANY_SIMD, UVSHIFT, SBPP, BPP, MASK) \ + void NAMEANY(const uint8* src_ptr, uint8* dst_ptr, int width) { \ + SIMD_ALIGNED(uint8 temp[128 * 2]); \ + memset(temp, 0, 128); /* for YUY2 and msan */ \ + int r = width & MASK; \ + int n = width & ~MASK; \ + if (n > 0) { \ + ANY_SIMD(src_ptr, dst_ptr, n); \ + } \ + memcpy(temp, src_ptr + (n >> UVSHIFT) * SBPP, SS(r, UVSHIFT) * SBPP); \ + ANY_SIMD(temp, temp + 128, MASK + 1); \ + memcpy(dst_ptr + n * BPP, temp + 128, r * BPP); \ + } + +#ifdef HAS_COPYROW_AVX +ANY11(CopyRow_Any_AVX, CopyRow_AVX, 0, 1, 1, 63) +#endif +#ifdef HAS_COPYROW_SSE2 +ANY11(CopyRow_Any_SSE2, CopyRow_SSE2, 0, 1, 1, 31) +#endif +#ifdef HAS_COPYROW_NEON +ANY11(CopyRow_Any_NEON, CopyRow_NEON, 0, 1, 1, 31) +#endif +#if defined(HAS_ARGBTORGB24ROW_SSSE3) +ANY11(ARGBToRGB24Row_Any_SSSE3, ARGBToRGB24Row_SSSE3, 0, 4, 3, 15) +ANY11(ARGBToRAWRow_Any_SSSE3, ARGBToRAWRow_SSSE3, 0, 4, 3, 15) +ANY11(ARGBToRGB565Row_Any_SSE2, ARGBToRGB565Row_SSE2, 0, 4, 2, 3) +ANY11(ARGBToARGB1555Row_Any_SSE2, ARGBToARGB1555Row_SSE2, 0, 4, 2, 3) +ANY11(ARGBToARGB4444Row_Any_SSE2, ARGBToARGB4444Row_SSE2, 0, 4, 2, 3) +#endif +#if defined(HAS_ARGBTORGB565ROW_AVX2) +ANY11(ARGBToRGB565Row_Any_AVX2, ARGBToRGB565Row_AVX2, 0, 4, 2, 7) +#endif +#if defined(HAS_ARGBTOARGB4444ROW_AVX2) +ANY11(ARGBToARGB1555Row_Any_AVX2, ARGBToARGB1555Row_AVX2, 0, 4, 2, 7) +ANY11(ARGBToARGB4444Row_Any_AVX2, ARGBToARGB4444Row_AVX2, 0, 4, 2, 7) +#endif +#if defined(HAS_J400TOARGBROW_SSE2) +ANY11(J400ToARGBRow_Any_SSE2, J400ToARGBRow_SSE2, 0, 1, 4, 7) +#endif +#if defined(HAS_J400TOARGBROW_AVX2) +ANY11(J400ToARGBRow_Any_AVX2, J400ToARGBRow_AVX2, 0, 1, 4, 15) +#endif +#if defined(HAS_I400TOARGBROW_SSE2) +ANY11(I400ToARGBRow_Any_SSE2, I400ToARGBRow_SSE2, 0, 1, 4, 7) +#endif +#if defined(HAS_I400TOARGBROW_AVX2) +ANY11(I400ToARGBRow_Any_AVX2, I400ToARGBRow_AVX2, 0, 1, 4, 15) +#endif +#if defined(HAS_RGB24TOARGBROW_SSSE3) +ANY11(RGB24ToARGBRow_Any_SSSE3, RGB24ToARGBRow_SSSE3, 0, 3, 4, 15) +ANY11(RAWToARGBRow_Any_SSSE3, RAWToARGBRow_SSSE3, 0, 3, 4, 15) +ANY11(RGB565ToARGBRow_Any_SSE2, RGB565ToARGBRow_SSE2, 0, 2, 4, 7) +ANY11(ARGB1555ToARGBRow_Any_SSE2, ARGB1555ToARGBRow_SSE2, 0, 2, 4, 7) +ANY11(ARGB4444ToARGBRow_Any_SSE2, ARGB4444ToARGBRow_SSE2, 0, 2, 4, 7) +#endif +#if defined(HAS_RAWTORGB24ROW_SSSE3) +ANY11(RAWToRGB24Row_Any_SSSE3, RAWToRGB24Row_SSSE3, 0, 3, 3, 7) +#endif +#if defined(HAS_RGB565TOARGBROW_AVX2) +ANY11(RGB565ToARGBRow_Any_AVX2, RGB565ToARGBRow_AVX2, 0, 2, 4, 15) +#endif +#if defined(HAS_ARGB1555TOARGBROW_AVX2) +ANY11(ARGB1555ToARGBRow_Any_AVX2, ARGB1555ToARGBRow_AVX2, 0, 2, 4, 15) +#endif +#if defined(HAS_ARGB4444TOARGBROW_AVX2) +ANY11(ARGB4444ToARGBRow_Any_AVX2, ARGB4444ToARGBRow_AVX2, 0, 2, 4, 15) +#endif +#if defined(HAS_ARGBTORGB24ROW_NEON) +ANY11(ARGBToRGB24Row_Any_NEON, ARGBToRGB24Row_NEON, 0, 4, 3, 7) +ANY11(ARGBToRAWRow_Any_NEON, ARGBToRAWRow_NEON, 0, 4, 3, 7) +ANY11(ARGBToRGB565Row_Any_NEON, ARGBToRGB565Row_NEON, 0, 4, 2, 7) +ANY11(ARGBToARGB1555Row_Any_NEON, ARGBToARGB1555Row_NEON, 0, 4, 2, 7) +ANY11(ARGBToARGB4444Row_Any_NEON, ARGBToARGB4444Row_NEON, 0, 4, 2, 7) +ANY11(J400ToARGBRow_Any_NEON, J400ToARGBRow_NEON, 0, 1, 4, 7) +ANY11(I400ToARGBRow_Any_NEON, I400ToARGBRow_NEON, 0, 1, 4, 7) +#endif +#if defined(HAS_RAWTORGB24ROW_NEON) +ANY11(RAWToRGB24Row_Any_NEON, RAWToRGB24Row_NEON, 0, 3, 3, 7) +#endif +#ifdef HAS_ARGBTOYROW_AVX2 +ANY11(ARGBToYRow_Any_AVX2, ARGBToYRow_AVX2, 0, 4, 1, 31) +#endif +#ifdef HAS_ARGBTOYJROW_AVX2 +ANY11(ARGBToYJRow_Any_AVX2, ARGBToYJRow_AVX2, 0, 4, 1, 31) +#endif +#ifdef HAS_UYVYTOYROW_AVX2 +ANY11(UYVYToYRow_Any_AVX2, UYVYToYRow_AVX2, 0, 2, 1, 31) +#endif +#ifdef HAS_YUY2TOYROW_AVX2 +ANY11(YUY2ToYRow_Any_AVX2, YUY2ToYRow_AVX2, 1, 4, 1, 31) +#endif +#ifdef HAS_ARGBTOYROW_SSSE3 +ANY11(ARGBToYRow_Any_SSSE3, ARGBToYRow_SSSE3, 0, 4, 1, 15) +#endif +#ifdef HAS_BGRATOYROW_SSSE3 +ANY11(BGRAToYRow_Any_SSSE3, BGRAToYRow_SSSE3, 0, 4, 1, 15) +ANY11(ABGRToYRow_Any_SSSE3, ABGRToYRow_SSSE3, 0, 4, 1, 15) +ANY11(RGBAToYRow_Any_SSSE3, RGBAToYRow_SSSE3, 0, 4, 1, 15) +ANY11(YUY2ToYRow_Any_SSE2, YUY2ToYRow_SSE2, 1, 4, 1, 15) +ANY11(UYVYToYRow_Any_SSE2, UYVYToYRow_SSE2, 1, 4, 1, 15) +#endif +#ifdef HAS_ARGBTOYJROW_SSSE3 +ANY11(ARGBToYJRow_Any_SSSE3, ARGBToYJRow_SSSE3, 0, 4, 1, 15) +#endif +#ifdef HAS_ARGBTOYROW_NEON +ANY11(ARGBToYRow_Any_NEON, ARGBToYRow_NEON, 0, 4, 1, 7) +#endif +#ifdef HAS_ARGBTOYJROW_NEON +ANY11(ARGBToYJRow_Any_NEON, ARGBToYJRow_NEON, 0, 4, 1, 7) +#endif +#ifdef HAS_BGRATOYROW_NEON +ANY11(BGRAToYRow_Any_NEON, BGRAToYRow_NEON, 0, 4, 1, 7) +#endif +#ifdef HAS_ABGRTOYROW_NEON +ANY11(ABGRToYRow_Any_NEON, ABGRToYRow_NEON, 0, 4, 1, 7) +#endif +#ifdef HAS_RGBATOYROW_NEON +ANY11(RGBAToYRow_Any_NEON, RGBAToYRow_NEON, 0, 4, 1, 7) +#endif +#ifdef HAS_RGB24TOYROW_NEON +ANY11(RGB24ToYRow_Any_NEON, RGB24ToYRow_NEON, 0, 3, 1, 7) +#endif +#ifdef HAS_RAWTOYROW_NEON +ANY11(RAWToYRow_Any_NEON, RAWToYRow_NEON, 0, 3, 1, 7) +#endif +#ifdef HAS_RGB565TOYROW_NEON +ANY11(RGB565ToYRow_Any_NEON, RGB565ToYRow_NEON, 0, 2, 1, 7) +#endif +#ifdef HAS_ARGB1555TOYROW_NEON +ANY11(ARGB1555ToYRow_Any_NEON, ARGB1555ToYRow_NEON, 0, 2, 1, 7) +#endif +#ifdef HAS_ARGB4444TOYROW_NEON +ANY11(ARGB4444ToYRow_Any_NEON, ARGB4444ToYRow_NEON, 0, 2, 1, 7) +#endif +#ifdef HAS_YUY2TOYROW_NEON +ANY11(YUY2ToYRow_Any_NEON, YUY2ToYRow_NEON, 1, 4, 1, 15) +#endif +#ifdef HAS_UYVYTOYROW_NEON +ANY11(UYVYToYRow_Any_NEON, UYVYToYRow_NEON, 0, 2, 1, 15) +#endif +#ifdef HAS_RGB24TOARGBROW_NEON +ANY11(RGB24ToARGBRow_Any_NEON, RGB24ToARGBRow_NEON, 0, 3, 4, 7) +#endif +#ifdef HAS_RAWTOARGBROW_NEON +ANY11(RAWToARGBRow_Any_NEON, RAWToARGBRow_NEON, 0, 3, 4, 7) +#endif +#ifdef HAS_RGB565TOARGBROW_NEON +ANY11(RGB565ToARGBRow_Any_NEON, RGB565ToARGBRow_NEON, 0, 2, 4, 7) +#endif +#ifdef HAS_ARGB1555TOARGBROW_NEON +ANY11(ARGB1555ToARGBRow_Any_NEON, ARGB1555ToARGBRow_NEON, 0, 2, 4, 7) +#endif +#ifdef HAS_ARGB4444TOARGBROW_NEON +ANY11(ARGB4444ToARGBRow_Any_NEON, ARGB4444ToARGBRow_NEON, 0, 2, 4, 7) +#endif +#ifdef HAS_ARGBATTENUATEROW_SSSE3 +ANY11(ARGBAttenuateRow_Any_SSSE3, ARGBAttenuateRow_SSSE3, 0, 4, 4, 3) +#endif +#ifdef HAS_ARGBUNATTENUATEROW_SSE2 +ANY11(ARGBUnattenuateRow_Any_SSE2, ARGBUnattenuateRow_SSE2, 0, 4, 4, 3) +#endif +#ifdef HAS_ARGBATTENUATEROW_AVX2 +ANY11(ARGBAttenuateRow_Any_AVX2, ARGBAttenuateRow_AVX2, 0, 4, 4, 7) +#endif +#ifdef HAS_ARGBUNATTENUATEROW_AVX2 +ANY11(ARGBUnattenuateRow_Any_AVX2, ARGBUnattenuateRow_AVX2, 0, 4, 4, 7) +#endif +#ifdef HAS_ARGBATTENUATEROW_NEON +ANY11(ARGBAttenuateRow_Any_NEON, ARGBAttenuateRow_NEON, 0, 4, 4, 7) +#endif +#ifdef HAS_ARGBEXTRACTALPHAROW_SSE2 +ANY11(ARGBExtractAlphaRow_Any_SSE2, ARGBExtractAlphaRow_SSE2, 0, 4, 1, 7) +#endif +#ifdef HAS_ARGBEXTRACTALPHAROW_NEON +ANY11(ARGBExtractAlphaRow_Any_NEON, ARGBExtractAlphaRow_NEON, 0, 4, 1, 15) +#endif +#undef ANY11 + +// Any 1 to 1 blended. Destination is read, modify, write. +#define ANY11B(NAMEANY, ANY_SIMD, UVSHIFT, SBPP, BPP, MASK) \ + void NAMEANY(const uint8* src_ptr, uint8* dst_ptr, int width) { \ + SIMD_ALIGNED(uint8 temp[128 * 2]); \ + memset(temp, 0, 128 * 2); /* for YUY2 and msan */ \ + int r = width & MASK; \ + int n = width & ~MASK; \ + if (n > 0) { \ + ANY_SIMD(src_ptr, dst_ptr, n); \ + } \ + memcpy(temp, src_ptr + (n >> UVSHIFT) * SBPP, SS(r, UVSHIFT) * SBPP); \ + memcpy(temp + 128, dst_ptr + n * BPP, r * BPP); \ + ANY_SIMD(temp, temp + 128, MASK + 1); \ + memcpy(dst_ptr + n * BPP, temp + 128, r * BPP); \ + } + +#ifdef HAS_ARGBCOPYALPHAROW_AVX2 +ANY11B(ARGBCopyAlphaRow_Any_AVX2, ARGBCopyAlphaRow_AVX2, 0, 4, 4, 15) +#endif +#ifdef HAS_ARGBCOPYALPHAROW_SSE2 +ANY11B(ARGBCopyAlphaRow_Any_SSE2, ARGBCopyAlphaRow_SSE2, 0, 4, 4, 7) +#endif +#ifdef HAS_ARGBCOPYYTOALPHAROW_AVX2 +ANY11B(ARGBCopyYToAlphaRow_Any_AVX2, ARGBCopyYToAlphaRow_AVX2, 0, 1, 4, 15) +#endif +#ifdef HAS_ARGBCOPYYTOALPHAROW_SSE2 +ANY11B(ARGBCopyYToAlphaRow_Any_SSE2, ARGBCopyYToAlphaRow_SSE2, 0, 1, 4, 7) +#endif +#undef ANY11B + +// Any 1 to 1 with parameter. +#define ANY11P(NAMEANY, ANY_SIMD, T, SBPP, BPP, MASK) \ + void NAMEANY(const uint8* src_ptr, uint8* dst_ptr, \ + T shuffler, int width) { \ + SIMD_ALIGNED(uint8 temp[64 * 2]); \ + memset(temp, 0, 64); /* for msan */ \ + int r = width & MASK; \ + int n = width & ~MASK; \ + if (n > 0) { \ + ANY_SIMD(src_ptr, dst_ptr, shuffler, n); \ + } \ + memcpy(temp, src_ptr + n * SBPP, r * SBPP); \ + ANY_SIMD(temp, temp + 64, shuffler, MASK + 1); \ + memcpy(dst_ptr + n * BPP, temp + 64, r * BPP); \ + } + +#if defined(HAS_ARGBTORGB565DITHERROW_SSE2) +ANY11P(ARGBToRGB565DitherRow_Any_SSE2, ARGBToRGB565DitherRow_SSE2, + const uint32, 4, 2, 3) +#endif +#if defined(HAS_ARGBTORGB565DITHERROW_AVX2) +ANY11P(ARGBToRGB565DitherRow_Any_AVX2, ARGBToRGB565DitherRow_AVX2, + const uint32, 4, 2, 7) +#endif +#if defined(HAS_ARGBTORGB565DITHERROW_NEON) +ANY11P(ARGBToRGB565DitherRow_Any_NEON, ARGBToRGB565DitherRow_NEON, + const uint32, 4, 2, 7) +#endif +#ifdef HAS_ARGBSHUFFLEROW_SSE2 +ANY11P(ARGBShuffleRow_Any_SSE2, ARGBShuffleRow_SSE2, const uint8*, 4, 4, 3) +#endif +#ifdef HAS_ARGBSHUFFLEROW_SSSE3 +ANY11P(ARGBShuffleRow_Any_SSSE3, ARGBShuffleRow_SSSE3, const uint8*, 4, 4, 7) +#endif +#ifdef HAS_ARGBSHUFFLEROW_AVX2 +ANY11P(ARGBShuffleRow_Any_AVX2, ARGBShuffleRow_AVX2, const uint8*, 4, 4, 15) +#endif +#ifdef HAS_ARGBSHUFFLEROW_NEON +ANY11P(ARGBShuffleRow_Any_NEON, ARGBShuffleRow_NEON, const uint8*, 4, 4, 3) +#endif +#undef ANY11P + +// Any 1 to 1 with yuvconstants +#define ANY11C(NAMEANY, ANY_SIMD, UVSHIFT, SBPP, BPP, MASK) \ + void NAMEANY(const uint8* src_ptr, uint8* dst_ptr, \ + const struct YuvConstants* yuvconstants, int width) { \ + SIMD_ALIGNED(uint8 temp[128 * 2]); \ + memset(temp, 0, 128); /* for YUY2 and msan */ \ + int r = width & MASK; \ + int n = width & ~MASK; \ + if (n > 0) { \ + ANY_SIMD(src_ptr, dst_ptr, yuvconstants, n); \ + } \ + memcpy(temp, src_ptr + (n >> UVSHIFT) * SBPP, SS(r, UVSHIFT) * SBPP); \ + ANY_SIMD(temp, temp + 128, yuvconstants, MASK + 1); \ + memcpy(dst_ptr + n * BPP, temp + 128, r * BPP); \ + } +#if defined(HAS_YUY2TOARGBROW_SSSE3) +ANY11C(YUY2ToARGBRow_Any_SSSE3, YUY2ToARGBRow_SSSE3, 1, 4, 4, 15) +ANY11C(UYVYToARGBRow_Any_SSSE3, UYVYToARGBRow_SSSE3, 1, 4, 4, 15) +#endif +#if defined(HAS_YUY2TOARGBROW_AVX2) +ANY11C(YUY2ToARGBRow_Any_AVX2, YUY2ToARGBRow_AVX2, 1, 4, 4, 31) +ANY11C(UYVYToARGBRow_Any_AVX2, UYVYToARGBRow_AVX2, 1, 4, 4, 31) +#endif +#if defined(HAS_YUY2TOARGBROW_NEON) +ANY11C(YUY2ToARGBRow_Any_NEON, YUY2ToARGBRow_NEON, 1, 4, 4, 7) +ANY11C(UYVYToARGBRow_Any_NEON, UYVYToARGBRow_NEON, 1, 4, 4, 7) +#endif +#undef ANY11C + +// Any 1 to 1 interpolate. Takes 2 rows of source via stride. +#define ANY11T(NAMEANY, ANY_SIMD, SBPP, BPP, MASK) \ + void NAMEANY(uint8* dst_ptr, const uint8* src_ptr, \ + ptrdiff_t src_stride_ptr, int width, \ + int source_y_fraction) { \ + SIMD_ALIGNED(uint8 temp[64 * 3]); \ + memset(temp, 0, 64 * 2); /* for msan */ \ + int r = width & MASK; \ + int n = width & ~MASK; \ + if (n > 0) { \ + ANY_SIMD(dst_ptr, src_ptr, src_stride_ptr, n, source_y_fraction); \ + } \ + memcpy(temp, src_ptr + n * SBPP, r * SBPP); \ + memcpy(temp + 64, src_ptr + src_stride_ptr + n * SBPP, r * SBPP); \ + ANY_SIMD(temp + 128, temp, 64, MASK + 1, source_y_fraction); \ + memcpy(dst_ptr + n * BPP, temp + 128, r * BPP); \ + } + +#ifdef HAS_INTERPOLATEROW_AVX2 +ANY11T(InterpolateRow_Any_AVX2, InterpolateRow_AVX2, 1, 1, 31) +#endif +#ifdef HAS_INTERPOLATEROW_SSSE3 +ANY11T(InterpolateRow_Any_SSSE3, InterpolateRow_SSSE3, 1, 1, 15) +#endif +#ifdef HAS_INTERPOLATEROW_NEON +ANY11T(InterpolateRow_Any_NEON, InterpolateRow_NEON, 1, 1, 15) +#endif +#ifdef HAS_INTERPOLATEROW_DSPR2 +ANY11T(InterpolateRow_Any_DSPR2, InterpolateRow_DSPR2, 1, 1, 3) +#endif +#undef ANY11T + +// Any 1 to 1 mirror. +#define ANY11M(NAMEANY, ANY_SIMD, BPP, MASK) \ + void NAMEANY(const uint8* src_ptr, uint8* dst_ptr, int width) { \ + SIMD_ALIGNED(uint8 temp[64 * 2]); \ + memset(temp, 0, 64); /* for msan */ \ + int r = width & MASK; \ + int n = width & ~MASK; \ + if (n > 0) { \ + ANY_SIMD(src_ptr + r * BPP, dst_ptr, n); \ + } \ + memcpy(temp, src_ptr, r * BPP); \ + ANY_SIMD(temp, temp + 64, MASK + 1); \ + memcpy(dst_ptr + n * BPP, temp + 64 + (MASK + 1 - r) * BPP, r * BPP); \ + } + +#ifdef HAS_MIRRORROW_AVX2 +ANY11M(MirrorRow_Any_AVX2, MirrorRow_AVX2, 1, 31) +#endif +#ifdef HAS_MIRRORROW_SSSE3 +ANY11M(MirrorRow_Any_SSSE3, MirrorRow_SSSE3, 1, 15) +#endif +#ifdef HAS_MIRRORROW_NEON +ANY11M(MirrorRow_Any_NEON, MirrorRow_NEON, 1, 15) +#endif +#ifdef HAS_ARGBMIRRORROW_AVX2 +ANY11M(ARGBMirrorRow_Any_AVX2, ARGBMirrorRow_AVX2, 4, 7) +#endif +#ifdef HAS_ARGBMIRRORROW_SSE2 +ANY11M(ARGBMirrorRow_Any_SSE2, ARGBMirrorRow_SSE2, 4, 3) +#endif +#ifdef HAS_ARGBMIRRORROW_NEON +ANY11M(ARGBMirrorRow_Any_NEON, ARGBMirrorRow_NEON, 4, 3) +#endif +#undef ANY11M + +// Any 1 plane. (memset) +#define ANY1(NAMEANY, ANY_SIMD, T, BPP, MASK) \ + void NAMEANY(uint8* dst_ptr, T v32, int width) { \ + SIMD_ALIGNED(uint8 temp[64]); \ + int r = width & MASK; \ + int n = width & ~MASK; \ + if (n > 0) { \ + ANY_SIMD(dst_ptr, v32, n); \ + } \ + ANY_SIMD(temp, v32, MASK + 1); \ + memcpy(dst_ptr + n * BPP, temp, r * BPP); \ + } + +#ifdef HAS_SETROW_X86 +ANY1(SetRow_Any_X86, SetRow_X86, uint8, 1, 3) +#endif +#ifdef HAS_SETROW_NEON +ANY1(SetRow_Any_NEON, SetRow_NEON, uint8, 1, 15) +#endif +#ifdef HAS_ARGBSETROW_NEON +ANY1(ARGBSetRow_Any_NEON, ARGBSetRow_NEON, uint32, 4, 3) +#endif +#undef ANY1 + +// Any 1 to 2. Outputs UV planes. +#define ANY12(NAMEANY, ANY_SIMD, UVSHIFT, BPP, DUVSHIFT, MASK) \ + void NAMEANY(const uint8* src_ptr, uint8* dst_u, uint8* dst_v, int width) {\ + SIMD_ALIGNED(uint8 temp[128 * 3]); \ + memset(temp, 0, 128); /* for msan */ \ + int r = width & MASK; \ + int n = width & ~MASK; \ + if (n > 0) { \ + ANY_SIMD(src_ptr, dst_u, dst_v, n); \ + } \ + memcpy(temp, src_ptr + (n >> UVSHIFT) * BPP, SS(r, UVSHIFT) * BPP); \ + /* repeat last 4 bytes for 422 subsampler */ \ + if ((width & 1) && BPP == 4 && DUVSHIFT == 1) { \ + memcpy(temp + SS(r, UVSHIFT) * BPP, \ + temp + SS(r, UVSHIFT) * BPP - BPP, BPP); \ + } \ + /* repeat last 4 - 12 bytes for 411 subsampler */ \ + if (((width & 3) == 1) && BPP == 4 && DUVSHIFT == 2) { \ + memcpy(temp + SS(r, UVSHIFT) * BPP, \ + temp + SS(r, UVSHIFT) * BPP - BPP, BPP); \ + memcpy(temp + SS(r, UVSHIFT) * BPP + BPP, \ + temp + SS(r, UVSHIFT) * BPP - BPP, BPP * 2); \ + } \ + if (((width & 3) == 2) && BPP == 4 && DUVSHIFT == 2) { \ + memcpy(temp + SS(r, UVSHIFT) * BPP, \ + temp + SS(r, UVSHIFT) * BPP - BPP * 2, BPP * 2); \ + } \ + if (((width & 3) == 3) && BPP == 4 && DUVSHIFT == 2) { \ + memcpy(temp + SS(r, UVSHIFT) * BPP, \ + temp + SS(r, UVSHIFT) * BPP - BPP, BPP); \ + } \ + ANY_SIMD(temp, temp + 128, temp + 256, MASK + 1); \ + memcpy(dst_u + (n >> DUVSHIFT), temp + 128, SS(r, DUVSHIFT)); \ + memcpy(dst_v + (n >> DUVSHIFT), temp + 256, SS(r, DUVSHIFT)); \ + } + +#ifdef HAS_SPLITUVROW_SSE2 +ANY12(SplitUVRow_Any_SSE2, SplitUVRow_SSE2, 0, 2, 0, 15) +#endif +#ifdef HAS_SPLITUVROW_AVX2 +ANY12(SplitUVRow_Any_AVX2, SplitUVRow_AVX2, 0, 2, 0, 31) +#endif +#ifdef HAS_SPLITUVROW_NEON +ANY12(SplitUVRow_Any_NEON, SplitUVRow_NEON, 0, 2, 0, 15) +#endif +#ifdef HAS_SPLITUVROW_DSPR2 +ANY12(SplitUVRow_Any_DSPR2, SplitUVRow_DSPR2, 0, 2, 0, 15) +#endif +#ifdef HAS_ARGBTOUV444ROW_SSSE3 +ANY12(ARGBToUV444Row_Any_SSSE3, ARGBToUV444Row_SSSE3, 0, 4, 0, 15) +#endif +#ifdef HAS_YUY2TOUV422ROW_AVX2 +ANY12(YUY2ToUV422Row_Any_AVX2, YUY2ToUV422Row_AVX2, 1, 4, 1, 31) +ANY12(UYVYToUV422Row_Any_AVX2, UYVYToUV422Row_AVX2, 1, 4, 1, 31) +#endif +#ifdef HAS_YUY2TOUV422ROW_SSE2 +ANY12(YUY2ToUV422Row_Any_SSE2, YUY2ToUV422Row_SSE2, 1, 4, 1, 15) +ANY12(UYVYToUV422Row_Any_SSE2, UYVYToUV422Row_SSE2, 1, 4, 1, 15) +#endif +#ifdef HAS_YUY2TOUV422ROW_NEON +ANY12(ARGBToUV444Row_Any_NEON, ARGBToUV444Row_NEON, 0, 4, 0, 7) +ANY12(ARGBToUV411Row_Any_NEON, ARGBToUV411Row_NEON, 0, 4, 2, 31) +ANY12(YUY2ToUV422Row_Any_NEON, YUY2ToUV422Row_NEON, 1, 4, 1, 15) +ANY12(UYVYToUV422Row_Any_NEON, UYVYToUV422Row_NEON, 1, 4, 1, 15) +#endif +#undef ANY12 + +// Any 1 to 2 with source stride (2 rows of source). Outputs UV planes. +// 128 byte row allows for 32 avx ARGB pixels. +#define ANY12S(NAMEANY, ANY_SIMD, UVSHIFT, BPP, MASK) \ + void NAMEANY(const uint8* src_ptr, int src_stride_ptr, \ + uint8* dst_u, uint8* dst_v, int width) { \ + SIMD_ALIGNED(uint8 temp[128 * 4]); \ + memset(temp, 0, 128 * 2); /* for msan */ \ + int r = width & MASK; \ + int n = width & ~MASK; \ + if (n > 0) { \ + ANY_SIMD(src_ptr, src_stride_ptr, dst_u, dst_v, n); \ + } \ + memcpy(temp, src_ptr + (n >> UVSHIFT) * BPP, SS(r, UVSHIFT) * BPP); \ + memcpy(temp + 128, src_ptr + src_stride_ptr + (n >> UVSHIFT) * BPP, \ + SS(r, UVSHIFT) * BPP); \ + if ((width & 1) && UVSHIFT == 0) { /* repeat last pixel for subsample */\ + memcpy(temp + SS(r, UVSHIFT) * BPP, \ + temp + SS(r, UVSHIFT) * BPP - BPP, BPP); \ + memcpy(temp + 128 + SS(r, UVSHIFT) * BPP, \ + temp + 128 + SS(r, UVSHIFT) * BPP - BPP, BPP); \ + } \ + ANY_SIMD(temp, 128, temp + 256, temp + 384, MASK + 1); \ + memcpy(dst_u + (n >> 1), temp + 256, SS(r, 1)); \ + memcpy(dst_v + (n >> 1), temp + 384, SS(r, 1)); \ + } + +#ifdef HAS_ARGBTOUVROW_AVX2 +ANY12S(ARGBToUVRow_Any_AVX2, ARGBToUVRow_AVX2, 0, 4, 31) +#endif +#ifdef HAS_ARGBTOUVJROW_AVX2 +ANY12S(ARGBToUVJRow_Any_AVX2, ARGBToUVJRow_AVX2, 0, 4, 31) +#endif +#ifdef HAS_ARGBTOUVROW_SSSE3 +ANY12S(ARGBToUVRow_Any_SSSE3, ARGBToUVRow_SSSE3, 0, 4, 15) +ANY12S(ARGBToUVJRow_Any_SSSE3, ARGBToUVJRow_SSSE3, 0, 4, 15) +ANY12S(BGRAToUVRow_Any_SSSE3, BGRAToUVRow_SSSE3, 0, 4, 15) +ANY12S(ABGRToUVRow_Any_SSSE3, ABGRToUVRow_SSSE3, 0, 4, 15) +ANY12S(RGBAToUVRow_Any_SSSE3, RGBAToUVRow_SSSE3, 0, 4, 15) +#endif +#ifdef HAS_YUY2TOUVROW_AVX2 +ANY12S(YUY2ToUVRow_Any_AVX2, YUY2ToUVRow_AVX2, 1, 4, 31) +ANY12S(UYVYToUVRow_Any_AVX2, UYVYToUVRow_AVX2, 1, 4, 31) +#endif +#ifdef HAS_YUY2TOUVROW_SSE2 +ANY12S(YUY2ToUVRow_Any_SSE2, YUY2ToUVRow_SSE2, 1, 4, 15) +ANY12S(UYVYToUVRow_Any_SSE2, UYVYToUVRow_SSE2, 1, 4, 15) +#endif +#ifdef HAS_ARGBTOUVROW_NEON +ANY12S(ARGBToUVRow_Any_NEON, ARGBToUVRow_NEON, 0, 4, 15) +#endif +#ifdef HAS_ARGBTOUVJROW_NEON +ANY12S(ARGBToUVJRow_Any_NEON, ARGBToUVJRow_NEON, 0, 4, 15) +#endif +#ifdef HAS_BGRATOUVROW_NEON +ANY12S(BGRAToUVRow_Any_NEON, BGRAToUVRow_NEON, 0, 4, 15) +#endif +#ifdef HAS_ABGRTOUVROW_NEON +ANY12S(ABGRToUVRow_Any_NEON, ABGRToUVRow_NEON, 0, 4, 15) +#endif +#ifdef HAS_RGBATOUVROW_NEON +ANY12S(RGBAToUVRow_Any_NEON, RGBAToUVRow_NEON, 0, 4, 15) +#endif +#ifdef HAS_RGB24TOUVROW_NEON +ANY12S(RGB24ToUVRow_Any_NEON, RGB24ToUVRow_NEON, 0, 3, 15) +#endif +#ifdef HAS_RAWTOUVROW_NEON +ANY12S(RAWToUVRow_Any_NEON, RAWToUVRow_NEON, 0, 3, 15) +#endif +#ifdef HAS_RGB565TOUVROW_NEON +ANY12S(RGB565ToUVRow_Any_NEON, RGB565ToUVRow_NEON, 0, 2, 15) +#endif +#ifdef HAS_ARGB1555TOUVROW_NEON +ANY12S(ARGB1555ToUVRow_Any_NEON, ARGB1555ToUVRow_NEON, 0, 2, 15) +#endif +#ifdef HAS_ARGB4444TOUVROW_NEON +ANY12S(ARGB4444ToUVRow_Any_NEON, ARGB4444ToUVRow_NEON, 0, 2, 15) +#endif +#ifdef HAS_YUY2TOUVROW_NEON +ANY12S(YUY2ToUVRow_Any_NEON, YUY2ToUVRow_NEON, 1, 4, 15) +#endif +#ifdef HAS_UYVYTOUVROW_NEON +ANY12S(UYVYToUVRow_Any_NEON, UYVYToUVRow_NEON, 1, 4, 15) +#endif +#undef ANY12S + +#ifdef __cplusplus +} // extern "C" +} // namespace libyuv +#endif diff --git a/third_party/libyuv/source/row_common.cc b/third_party/libyuv/source/row_common.cc new file mode 100644 index 0000000..aefa38c --- /dev/null +++ b/third_party/libyuv/source/row_common.cc @@ -0,0 +1,2627 @@ +/* + * Copyright 2011 The LibYuv Project Authors. All rights reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "libyuv/row.h" + +#include // For memcpy and memset. + +#include "libyuv/basic_types.h" + +#ifdef __cplusplus +namespace libyuv { +extern "C" { +#endif + +// llvm x86 is poor at ternary operator, so use branchless min/max. + +#define USE_BRANCHLESS 1 +#if USE_BRANCHLESS +static __inline int32 clamp0(int32 v) { + return ((-(v) >> 31) & (v)); +} + +static __inline int32 clamp255(int32 v) { + return (((255 - (v)) >> 31) | (v)) & 255; +} + +static __inline uint32 Clamp(int32 val) { + int v = clamp0(val); + return (uint32)(clamp255(v)); +} + +static __inline uint32 Abs(int32 v) { + int m = v >> 31; + return (v + m) ^ m; +} +#else // USE_BRANCHLESS +static __inline int32 clamp0(int32 v) { + return (v < 0) ? 0 : v; +} + +static __inline int32 clamp255(int32 v) { + return (v > 255) ? 255 : v; +} + +static __inline uint32 Clamp(int32 val) { + int v = clamp0(val); + return (uint32)(clamp255(v)); +} + +static __inline uint32 Abs(int32 v) { + return (v < 0) ? -v : v; +} +#endif // USE_BRANCHLESS + +#ifdef LIBYUV_LITTLE_ENDIAN +#define WRITEWORD(p, v) *(uint32*)(p) = v +#else +static inline void WRITEWORD(uint8* p, uint32 v) { + p[0] = (uint8)(v & 255); + p[1] = (uint8)((v >> 8) & 255); + p[2] = (uint8)((v >> 16) & 255); + p[3] = (uint8)((v >> 24) & 255); +} +#endif + +void RGB24ToARGBRow_C(const uint8* src_rgb24, uint8* dst_argb, int width) { + int x; + for (x = 0; x < width; ++x) { + uint8 b = src_rgb24[0]; + uint8 g = src_rgb24[1]; + uint8 r = src_rgb24[2]; + dst_argb[0] = b; + dst_argb[1] = g; + dst_argb[2] = r; + dst_argb[3] = 255u; + dst_argb += 4; + src_rgb24 += 3; + } +} + +void RAWToARGBRow_C(const uint8* src_raw, uint8* dst_argb, int width) { + int x; + for (x = 0; x < width; ++x) { + uint8 r = src_raw[0]; + uint8 g = src_raw[1]; + uint8 b = src_raw[2]; + dst_argb[0] = b; + dst_argb[1] = g; + dst_argb[2] = r; + dst_argb[3] = 255u; + dst_argb += 4; + src_raw += 3; + } +} + +void RAWToRGB24Row_C(const uint8* src_raw, uint8* dst_rgb24, int width) { + int x; + for (x = 0; x < width; ++x) { + uint8 r = src_raw[0]; + uint8 g = src_raw[1]; + uint8 b = src_raw[2]; + dst_rgb24[0] = b; + dst_rgb24[1] = g; + dst_rgb24[2] = r; + dst_rgb24 += 3; + src_raw += 3; + } +} + +void RGB565ToARGBRow_C(const uint8* src_rgb565, uint8* dst_argb, int width) { + int x; + for (x = 0; x < width; ++x) { + uint8 b = src_rgb565[0] & 0x1f; + uint8 g = (src_rgb565[0] >> 5) | ((src_rgb565[1] & 0x07) << 3); + uint8 r = src_rgb565[1] >> 3; + dst_argb[0] = (b << 3) | (b >> 2); + dst_argb[1] = (g << 2) | (g >> 4); + dst_argb[2] = (r << 3) | (r >> 2); + dst_argb[3] = 255u; + dst_argb += 4; + src_rgb565 += 2; + } +} + +void ARGB1555ToARGBRow_C(const uint8* src_argb1555, uint8* dst_argb, + int width) { + int x; + for (x = 0; x < width; ++x) { + uint8 b = src_argb1555[0] & 0x1f; + uint8 g = (src_argb1555[0] >> 5) | ((src_argb1555[1] & 0x03) << 3); + uint8 r = (src_argb1555[1] & 0x7c) >> 2; + uint8 a = src_argb1555[1] >> 7; + dst_argb[0] = (b << 3) | (b >> 2); + dst_argb[1] = (g << 3) | (g >> 2); + dst_argb[2] = (r << 3) | (r >> 2); + dst_argb[3] = -a; + dst_argb += 4; + src_argb1555 += 2; + } +} + +void ARGB4444ToARGBRow_C(const uint8* src_argb4444, uint8* dst_argb, + int width) { + int x; + for (x = 0; x < width; ++x) { + uint8 b = src_argb4444[0] & 0x0f; + uint8 g = src_argb4444[0] >> 4; + uint8 r = src_argb4444[1] & 0x0f; + uint8 a = src_argb4444[1] >> 4; + dst_argb[0] = (b << 4) | b; + dst_argb[1] = (g << 4) | g; + dst_argb[2] = (r << 4) | r; + dst_argb[3] = (a << 4) | a; + dst_argb += 4; + src_argb4444 += 2; + } +} + +void ARGBToRGB24Row_C(const uint8* src_argb, uint8* dst_rgb, int width) { + int x; + for (x = 0; x < width; ++x) { + uint8 b = src_argb[0]; + uint8 g = src_argb[1]; + uint8 r = src_argb[2]; + dst_rgb[0] = b; + dst_rgb[1] = g; + dst_rgb[2] = r; + dst_rgb += 3; + src_argb += 4; + } +} + +void ARGBToRAWRow_C(const uint8* src_argb, uint8* dst_rgb, int width) { + int x; + for (x = 0; x < width; ++x) { + uint8 b = src_argb[0]; + uint8 g = src_argb[1]; + uint8 r = src_argb[2]; + dst_rgb[0] = r; + dst_rgb[1] = g; + dst_rgb[2] = b; + dst_rgb += 3; + src_argb += 4; + } +} + +void ARGBToRGB565Row_C(const uint8* src_argb, uint8* dst_rgb, int width) { + int x; + for (x = 0; x < width - 1; x += 2) { + uint8 b0 = src_argb[0] >> 3; + uint8 g0 = src_argb[1] >> 2; + uint8 r0 = src_argb[2] >> 3; + uint8 b1 = src_argb[4] >> 3; + uint8 g1 = src_argb[5] >> 2; + uint8 r1 = src_argb[6] >> 3; + WRITEWORD(dst_rgb, b0 | (g0 << 5) | (r0 << 11) | + (b1 << 16) | (g1 << 21) | (r1 << 27)); + dst_rgb += 4; + src_argb += 8; + } + if (width & 1) { + uint8 b0 = src_argb[0] >> 3; + uint8 g0 = src_argb[1] >> 2; + uint8 r0 = src_argb[2] >> 3; + *(uint16*)(dst_rgb) = b0 | (g0 << 5) | (r0 << 11); + } +} + +// dither4 is a row of 4 values from 4x4 dither matrix. +// The 4x4 matrix contains values to increase RGB. When converting to +// fewer bits (565) this provides an ordered dither. +// The order in the 4x4 matrix in first byte is upper left. +// The 4 values are passed as an int, then referenced as an array, so +// endian will not affect order of the original matrix. But the dither4 +// will containing the first pixel in the lower byte for little endian +// or the upper byte for big endian. +void ARGBToRGB565DitherRow_C(const uint8* src_argb, uint8* dst_rgb, + const uint32 dither4, int width) { + int x; + for (x = 0; x < width - 1; x += 2) { + int dither0 = ((const unsigned char*)(&dither4))[x & 3]; + int dither1 = ((const unsigned char*)(&dither4))[(x + 1) & 3]; + uint8 b0 = clamp255(src_argb[0] + dither0) >> 3; + uint8 g0 = clamp255(src_argb[1] + dither0) >> 2; + uint8 r0 = clamp255(src_argb[2] + dither0) >> 3; + uint8 b1 = clamp255(src_argb[4] + dither1) >> 3; + uint8 g1 = clamp255(src_argb[5] + dither1) >> 2; + uint8 r1 = clamp255(src_argb[6] + dither1) >> 3; + WRITEWORD(dst_rgb, b0 | (g0 << 5) | (r0 << 11) | + (b1 << 16) | (g1 << 21) | (r1 << 27)); + dst_rgb += 4; + src_argb += 8; + } + if (width & 1) { + int dither0 = ((const unsigned char*)(&dither4))[(width - 1) & 3]; + uint8 b0 = clamp255(src_argb[0] + dither0) >> 3; + uint8 g0 = clamp255(src_argb[1] + dither0) >> 2; + uint8 r0 = clamp255(src_argb[2] + dither0) >> 3; + *(uint16*)(dst_rgb) = b0 | (g0 << 5) | (r0 << 11); + } +} + +void ARGBToARGB1555Row_C(const uint8* src_argb, uint8* dst_rgb, int width) { + int x; + for (x = 0; x < width - 1; x += 2) { + uint8 b0 = src_argb[0] >> 3; + uint8 g0 = src_argb[1] >> 3; + uint8 r0 = src_argb[2] >> 3; + uint8 a0 = src_argb[3] >> 7; + uint8 b1 = src_argb[4] >> 3; + uint8 g1 = src_argb[5] >> 3; + uint8 r1 = src_argb[6] >> 3; + uint8 a1 = src_argb[7] >> 7; + *(uint32*)(dst_rgb) = + b0 | (g0 << 5) | (r0 << 10) | (a0 << 15) | + (b1 << 16) | (g1 << 21) | (r1 << 26) | (a1 << 31); + dst_rgb += 4; + src_argb += 8; + } + if (width & 1) { + uint8 b0 = src_argb[0] >> 3; + uint8 g0 = src_argb[1] >> 3; + uint8 r0 = src_argb[2] >> 3; + uint8 a0 = src_argb[3] >> 7; + *(uint16*)(dst_rgb) = + b0 | (g0 << 5) | (r0 << 10) | (a0 << 15); + } +} + +void ARGBToARGB4444Row_C(const uint8* src_argb, uint8* dst_rgb, int width) { + int x; + for (x = 0; x < width - 1; x += 2) { + uint8 b0 = src_argb[0] >> 4; + uint8 g0 = src_argb[1] >> 4; + uint8 r0 = src_argb[2] >> 4; + uint8 a0 = src_argb[3] >> 4; + uint8 b1 = src_argb[4] >> 4; + uint8 g1 = src_argb[5] >> 4; + uint8 r1 = src_argb[6] >> 4; + uint8 a1 = src_argb[7] >> 4; + *(uint32*)(dst_rgb) = + b0 | (g0 << 4) | (r0 << 8) | (a0 << 12) | + (b1 << 16) | (g1 << 20) | (r1 << 24) | (a1 << 28); + dst_rgb += 4; + src_argb += 8; + } + if (width & 1) { + uint8 b0 = src_argb[0] >> 4; + uint8 g0 = src_argb[1] >> 4; + uint8 r0 = src_argb[2] >> 4; + uint8 a0 = src_argb[3] >> 4; + *(uint16*)(dst_rgb) = + b0 | (g0 << 4) | (r0 << 8) | (a0 << 12); + } +} + +static __inline int RGBToY(uint8 r, uint8 g, uint8 b) { + return (66 * r + 129 * g + 25 * b + 0x1080) >> 8; +} + +static __inline int RGBToU(uint8 r, uint8 g, uint8 b) { + return (112 * b - 74 * g - 38 * r + 0x8080) >> 8; +} +static __inline int RGBToV(uint8 r, uint8 g, uint8 b) { + return (112 * r - 94 * g - 18 * b + 0x8080) >> 8; +} + +#define MAKEROWY(NAME, R, G, B, BPP) \ +void NAME ## ToYRow_C(const uint8* src_argb0, uint8* dst_y, int width) { \ + int x; \ + for (x = 0; x < width; ++x) { \ + dst_y[0] = RGBToY(src_argb0[R], src_argb0[G], src_argb0[B]); \ + src_argb0 += BPP; \ + dst_y += 1; \ + } \ +} \ +void NAME ## ToUVRow_C(const uint8* src_rgb0, int src_stride_rgb, \ + uint8* dst_u, uint8* dst_v, int width) { \ + const uint8* src_rgb1 = src_rgb0 + src_stride_rgb; \ + int x; \ + for (x = 0; x < width - 1; x += 2) { \ + uint8 ab = (src_rgb0[B] + src_rgb0[B + BPP] + \ + src_rgb1[B] + src_rgb1[B + BPP]) >> 2; \ + uint8 ag = (src_rgb0[G] + src_rgb0[G + BPP] + \ + src_rgb1[G] + src_rgb1[G + BPP]) >> 2; \ + uint8 ar = (src_rgb0[R] + src_rgb0[R + BPP] + \ + src_rgb1[R] + src_rgb1[R + BPP]) >> 2; \ + dst_u[0] = RGBToU(ar, ag, ab); \ + dst_v[0] = RGBToV(ar, ag, ab); \ + src_rgb0 += BPP * 2; \ + src_rgb1 += BPP * 2; \ + dst_u += 1; \ + dst_v += 1; \ + } \ + if (width & 1) { \ + uint8 ab = (src_rgb0[B] + src_rgb1[B]) >> 1; \ + uint8 ag = (src_rgb0[G] + src_rgb1[G]) >> 1; \ + uint8 ar = (src_rgb0[R] + src_rgb1[R]) >> 1; \ + dst_u[0] = RGBToU(ar, ag, ab); \ + dst_v[0] = RGBToV(ar, ag, ab); \ + } \ +} + +MAKEROWY(ARGB, 2, 1, 0, 4) +MAKEROWY(BGRA, 1, 2, 3, 4) +MAKEROWY(ABGR, 0, 1, 2, 4) +MAKEROWY(RGBA, 3, 2, 1, 4) +MAKEROWY(RGB24, 2, 1, 0, 3) +MAKEROWY(RAW, 0, 1, 2, 3) +#undef MAKEROWY + +// JPeg uses a variation on BT.601-1 full range +// y = 0.29900 * r + 0.58700 * g + 0.11400 * b +// u = -0.16874 * r - 0.33126 * g + 0.50000 * b + center +// v = 0.50000 * r - 0.41869 * g - 0.08131 * b + center +// BT.601 Mpeg range uses: +// b 0.1016 * 255 = 25.908 = 25 +// g 0.5078 * 255 = 129.489 = 129 +// r 0.2578 * 255 = 65.739 = 66 +// JPeg 8 bit Y (not used): +// b 0.11400 * 256 = 29.184 = 29 +// g 0.58700 * 256 = 150.272 = 150 +// r 0.29900 * 256 = 76.544 = 77 +// JPeg 7 bit Y: +// b 0.11400 * 128 = 14.592 = 15 +// g 0.58700 * 128 = 75.136 = 75 +// r 0.29900 * 128 = 38.272 = 38 +// JPeg 8 bit U: +// b 0.50000 * 255 = 127.5 = 127 +// g -0.33126 * 255 = -84.4713 = -84 +// r -0.16874 * 255 = -43.0287 = -43 +// JPeg 8 bit V: +// b -0.08131 * 255 = -20.73405 = -20 +// g -0.41869 * 255 = -106.76595 = -107 +// r 0.50000 * 255 = 127.5 = 127 + +static __inline int RGBToYJ(uint8 r, uint8 g, uint8 b) { + return (38 * r + 75 * g + 15 * b + 64) >> 7; +} + +static __inline int RGBToUJ(uint8 r, uint8 g, uint8 b) { + return (127 * b - 84 * g - 43 * r + 0x8080) >> 8; +} +static __inline int RGBToVJ(uint8 r, uint8 g, uint8 b) { + return (127 * r - 107 * g - 20 * b + 0x8080) >> 8; +} + +#define AVGB(a, b) (((a) + (b) + 1) >> 1) + +#define MAKEROWYJ(NAME, R, G, B, BPP) \ +void NAME ## ToYJRow_C(const uint8* src_argb0, uint8* dst_y, int width) { \ + int x; \ + for (x = 0; x < width; ++x) { \ + dst_y[0] = RGBToYJ(src_argb0[R], src_argb0[G], src_argb0[B]); \ + src_argb0 += BPP; \ + dst_y += 1; \ + } \ +} \ +void NAME ## ToUVJRow_C(const uint8* src_rgb0, int src_stride_rgb, \ + uint8* dst_u, uint8* dst_v, int width) { \ + const uint8* src_rgb1 = src_rgb0 + src_stride_rgb; \ + int x; \ + for (x = 0; x < width - 1; x += 2) { \ + uint8 ab = AVGB(AVGB(src_rgb0[B], src_rgb1[B]), \ + AVGB(src_rgb0[B + BPP], src_rgb1[B + BPP])); \ + uint8 ag = AVGB(AVGB(src_rgb0[G], src_rgb1[G]), \ + AVGB(src_rgb0[G + BPP], src_rgb1[G + BPP])); \ + uint8 ar = AVGB(AVGB(src_rgb0[R], src_rgb1[R]), \ + AVGB(src_rgb0[R + BPP], src_rgb1[R + BPP])); \ + dst_u[0] = RGBToUJ(ar, ag, ab); \ + dst_v[0] = RGBToVJ(ar, ag, ab); \ + src_rgb0 += BPP * 2; \ + src_rgb1 += BPP * 2; \ + dst_u += 1; \ + dst_v += 1; \ + } \ + if (width & 1) { \ + uint8 ab = AVGB(src_rgb0[B], src_rgb1[B]); \ + uint8 ag = AVGB(src_rgb0[G], src_rgb1[G]); \ + uint8 ar = AVGB(src_rgb0[R], src_rgb1[R]); \ + dst_u[0] = RGBToUJ(ar, ag, ab); \ + dst_v[0] = RGBToVJ(ar, ag, ab); \ + } \ +} + +MAKEROWYJ(ARGB, 2, 1, 0, 4) +#undef MAKEROWYJ + +void RGB565ToYRow_C(const uint8* src_rgb565, uint8* dst_y, int width) { + int x; + for (x = 0; x < width; ++x) { + uint8 b = src_rgb565[0] & 0x1f; + uint8 g = (src_rgb565[0] >> 5) | ((src_rgb565[1] & 0x07) << 3); + uint8 r = src_rgb565[1] >> 3; + b = (b << 3) | (b >> 2); + g = (g << 2) | (g >> 4); + r = (r << 3) | (r >> 2); + dst_y[0] = RGBToY(r, g, b); + src_rgb565 += 2; + dst_y += 1; + } +} + +void ARGB1555ToYRow_C(const uint8* src_argb1555, uint8* dst_y, int width) { + int x; + for (x = 0; x < width; ++x) { + uint8 b = src_argb1555[0] & 0x1f; + uint8 g = (src_argb1555[0] >> 5) | ((src_argb1555[1] & 0x03) << 3); + uint8 r = (src_argb1555[1] & 0x7c) >> 2; + b = (b << 3) | (b >> 2); + g = (g << 3) | (g >> 2); + r = (r << 3) | (r >> 2); + dst_y[0] = RGBToY(r, g, b); + src_argb1555 += 2; + dst_y += 1; + } +} + +void ARGB4444ToYRow_C(const uint8* src_argb4444, uint8* dst_y, int width) { + int x; + for (x = 0; x < width; ++x) { + uint8 b = src_argb4444[0] & 0x0f; + uint8 g = src_argb4444[0] >> 4; + uint8 r = src_argb4444[1] & 0x0f; + b = (b << 4) | b; + g = (g << 4) | g; + r = (r << 4) | r; + dst_y[0] = RGBToY(r, g, b); + src_argb4444 += 2; + dst_y += 1; + } +} + +void RGB565ToUVRow_C(const uint8* src_rgb565, int src_stride_rgb565, + uint8* dst_u, uint8* dst_v, int width) { + const uint8* next_rgb565 = src_rgb565 + src_stride_rgb565; + int x; + for (x = 0; x < width - 1; x += 2) { + uint8 b0 = src_rgb565[0] & 0x1f; + uint8 g0 = (src_rgb565[0] >> 5) | ((src_rgb565[1] & 0x07) << 3); + uint8 r0 = src_rgb565[1] >> 3; + uint8 b1 = src_rgb565[2] & 0x1f; + uint8 g1 = (src_rgb565[2] >> 5) | ((src_rgb565[3] & 0x07) << 3); + uint8 r1 = src_rgb565[3] >> 3; + uint8 b2 = next_rgb565[0] & 0x1f; + uint8 g2 = (next_rgb565[0] >> 5) | ((next_rgb565[1] & 0x07) << 3); + uint8 r2 = next_rgb565[1] >> 3; + uint8 b3 = next_rgb565[2] & 0x1f; + uint8 g3 = (next_rgb565[2] >> 5) | ((next_rgb565[3] & 0x07) << 3); + uint8 r3 = next_rgb565[3] >> 3; + uint8 b = (b0 + b1 + b2 + b3); // 565 * 4 = 787. + uint8 g = (g0 + g1 + g2 + g3); + uint8 r = (r0 + r1 + r2 + r3); + b = (b << 1) | (b >> 6); // 787 -> 888. + r = (r << 1) | (r >> 6); + dst_u[0] = RGBToU(r, g, b); + dst_v[0] = RGBToV(r, g, b); + src_rgb565 += 4; + next_rgb565 += 4; + dst_u += 1; + dst_v += 1; + } + if (width & 1) { + uint8 b0 = src_rgb565[0] & 0x1f; + uint8 g0 = (src_rgb565[0] >> 5) | ((src_rgb565[1] & 0x07) << 3); + uint8 r0 = src_rgb565[1] >> 3; + uint8 b2 = next_rgb565[0] & 0x1f; + uint8 g2 = (next_rgb565[0] >> 5) | ((next_rgb565[1] & 0x07) << 3); + uint8 r2 = next_rgb565[1] >> 3; + uint8 b = (b0 + b2); // 565 * 2 = 676. + uint8 g = (g0 + g2); + uint8 r = (r0 + r2); + b = (b << 2) | (b >> 4); // 676 -> 888 + g = (g << 1) | (g >> 6); + r = (r << 2) | (r >> 4); + dst_u[0] = RGBToU(r, g, b); + dst_v[0] = RGBToV(r, g, b); + } +} + +void ARGB1555ToUVRow_C(const uint8* src_argb1555, int src_stride_argb1555, + uint8* dst_u, uint8* dst_v, int width) { + const uint8* next_argb1555 = src_argb1555 + src_stride_argb1555; + int x; + for (x = 0; x < width - 1; x += 2) { + uint8 b0 = src_argb1555[0] & 0x1f; + uint8 g0 = (src_argb1555[0] >> 5) | ((src_argb1555[1] & 0x03) << 3); + uint8 r0 = (src_argb1555[1] & 0x7c) >> 2; + uint8 b1 = src_argb1555[2] & 0x1f; + uint8 g1 = (src_argb1555[2] >> 5) | ((src_argb1555[3] & 0x03) << 3); + uint8 r1 = (src_argb1555[3] & 0x7c) >> 2; + uint8 b2 = next_argb1555[0] & 0x1f; + uint8 g2 = (next_argb1555[0] >> 5) | ((next_argb1555[1] & 0x03) << 3); + uint8 r2 = (next_argb1555[1] & 0x7c) >> 2; + uint8 b3 = next_argb1555[2] & 0x1f; + uint8 g3 = (next_argb1555[2] >> 5) | ((next_argb1555[3] & 0x03) << 3); + uint8 r3 = (next_argb1555[3] & 0x7c) >> 2; + uint8 b = (b0 + b1 + b2 + b3); // 555 * 4 = 777. + uint8 g = (g0 + g1 + g2 + g3); + uint8 r = (r0 + r1 + r2 + r3); + b = (b << 1) | (b >> 6); // 777 -> 888. + g = (g << 1) | (g >> 6); + r = (r << 1) | (r >> 6); + dst_u[0] = RGBToU(r, g, b); + dst_v[0] = RGBToV(r, g, b); + src_argb1555 += 4; + next_argb1555 += 4; + dst_u += 1; + dst_v += 1; + } + if (width & 1) { + uint8 b0 = src_argb1555[0] & 0x1f; + uint8 g0 = (src_argb1555[0] >> 5) | ((src_argb1555[1] & 0x03) << 3); + uint8 r0 = (src_argb1555[1] & 0x7c) >> 2; + uint8 b2 = next_argb1555[0] & 0x1f; + uint8 g2 = (next_argb1555[0] >> 5) | ((next_argb1555[1] & 0x03) << 3); + uint8 r2 = next_argb1555[1] >> 3; + uint8 b = (b0 + b2); // 555 * 2 = 666. + uint8 g = (g0 + g2); + uint8 r = (r0 + r2); + b = (b << 2) | (b >> 4); // 666 -> 888. + g = (g << 2) | (g >> 4); + r = (r << 2) | (r >> 4); + dst_u[0] = RGBToU(r, g, b); + dst_v[0] = RGBToV(r, g, b); + } +} + +void ARGB4444ToUVRow_C(const uint8* src_argb4444, int src_stride_argb4444, + uint8* dst_u, uint8* dst_v, int width) { + const uint8* next_argb4444 = src_argb4444 + src_stride_argb4444; + int x; + for (x = 0; x < width - 1; x += 2) { + uint8 b0 = src_argb4444[0] & 0x0f; + uint8 g0 = src_argb4444[0] >> 4; + uint8 r0 = src_argb4444[1] & 0x0f; + uint8 b1 = src_argb4444[2] & 0x0f; + uint8 g1 = src_argb4444[2] >> 4; + uint8 r1 = src_argb4444[3] & 0x0f; + uint8 b2 = next_argb4444[0] & 0x0f; + uint8 g2 = next_argb4444[0] >> 4; + uint8 r2 = next_argb4444[1] & 0x0f; + uint8 b3 = next_argb4444[2] & 0x0f; + uint8 g3 = next_argb4444[2] >> 4; + uint8 r3 = next_argb4444[3] & 0x0f; + uint8 b = (b0 + b1 + b2 + b3); // 444 * 4 = 666. + uint8 g = (g0 + g1 + g2 + g3); + uint8 r = (r0 + r1 + r2 + r3); + b = (b << 2) | (b >> 4); // 666 -> 888. + g = (g << 2) | (g >> 4); + r = (r << 2) | (r >> 4); + dst_u[0] = RGBToU(r, g, b); + dst_v[0] = RGBToV(r, g, b); + src_argb4444 += 4; + next_argb4444 += 4; + dst_u += 1; + dst_v += 1; + } + if (width & 1) { + uint8 b0 = src_argb4444[0] & 0x0f; + uint8 g0 = src_argb4444[0] >> 4; + uint8 r0 = src_argb4444[1] & 0x0f; + uint8 b2 = next_argb4444[0] & 0x0f; + uint8 g2 = next_argb4444[0] >> 4; + uint8 r2 = next_argb4444[1] & 0x0f; + uint8 b = (b0 + b2); // 444 * 2 = 555. + uint8 g = (g0 + g2); + uint8 r = (r0 + r2); + b = (b << 3) | (b >> 2); // 555 -> 888. + g = (g << 3) | (g >> 2); + r = (r << 3) | (r >> 2); + dst_u[0] = RGBToU(r, g, b); + dst_v[0] = RGBToV(r, g, b); + } +} + +void ARGBToUV444Row_C(const uint8* src_argb, + uint8* dst_u, uint8* dst_v, int width) { + int x; + for (x = 0; x < width; ++x) { + uint8 ab = src_argb[0]; + uint8 ag = src_argb[1]; + uint8 ar = src_argb[2]; + dst_u[0] = RGBToU(ar, ag, ab); + dst_v[0] = RGBToV(ar, ag, ab); + src_argb += 4; + dst_u += 1; + dst_v += 1; + } +} + +void ARGBToUV411Row_C(const uint8* src_argb, + uint8* dst_u, uint8* dst_v, int width) { + int x; + for (x = 0; x < width - 3; x += 4) { + uint8 ab = (src_argb[0] + src_argb[4] + src_argb[8] + src_argb[12]) >> 2; + uint8 ag = (src_argb[1] + src_argb[5] + src_argb[9] + src_argb[13]) >> 2; + uint8 ar = (src_argb[2] + src_argb[6] + src_argb[10] + src_argb[14]) >> 2; + dst_u[0] = RGBToU(ar, ag, ab); + dst_v[0] = RGBToV(ar, ag, ab); + src_argb += 16; + dst_u += 1; + dst_v += 1; + } + // Odd width handling mimics 'any' function which replicates last pixel. + if ((width & 3) == 3) { + uint8 ab = (src_argb[0] + src_argb[4] + src_argb[8] + src_argb[8]) >> 2; + uint8 ag = (src_argb[1] + src_argb[5] + src_argb[9] + src_argb[9]) >> 2; + uint8 ar = (src_argb[2] + src_argb[6] + src_argb[10] + src_argb[10]) >> 2; + dst_u[0] = RGBToU(ar, ag, ab); + dst_v[0] = RGBToV(ar, ag, ab); + } else if ((width & 3) == 2) { + uint8 ab = (src_argb[0] + src_argb[4]) >> 1; + uint8 ag = (src_argb[1] + src_argb[5]) >> 1; + uint8 ar = (src_argb[2] + src_argb[6]) >> 1; + dst_u[0] = RGBToU(ar, ag, ab); + dst_v[0] = RGBToV(ar, ag, ab); + } else if ((width & 3) == 1) { + uint8 ab = src_argb[0]; + uint8 ag = src_argb[1]; + uint8 ar = src_argb[2]; + dst_u[0] = RGBToU(ar, ag, ab); + dst_v[0] = RGBToV(ar, ag, ab); + } +} + +void ARGBGrayRow_C(const uint8* src_argb, uint8* dst_argb, int width) { + int x; + for (x = 0; x < width; ++x) { + uint8 y = RGBToYJ(src_argb[2], src_argb[1], src_argb[0]); + dst_argb[2] = dst_argb[1] = dst_argb[0] = y; + dst_argb[3] = src_argb[3]; + dst_argb += 4; + src_argb += 4; + } +} + +// Convert a row of image to Sepia tone. +void ARGBSepiaRow_C(uint8* dst_argb, int width) { + int x; + for (x = 0; x < width; ++x) { + int b = dst_argb[0]; + int g = dst_argb[1]; + int r = dst_argb[2]; + int sb = (b * 17 + g * 68 + r * 35) >> 7; + int sg = (b * 22 + g * 88 + r * 45) >> 7; + int sr = (b * 24 + g * 98 + r * 50) >> 7; + // b does not over flow. a is preserved from original. + dst_argb[0] = sb; + dst_argb[1] = clamp255(sg); + dst_argb[2] = clamp255(sr); + dst_argb += 4; + } +} + +// Apply color matrix to a row of image. Matrix is signed. +// TODO(fbarchard): Consider adding rounding (+32). +void ARGBColorMatrixRow_C(const uint8* src_argb, uint8* dst_argb, + const int8* matrix_argb, int width) { + int x; + for (x = 0; x < width; ++x) { + int b = src_argb[0]; + int g = src_argb[1]; + int r = src_argb[2]; + int a = src_argb[3]; + int sb = (b * matrix_argb[0] + g * matrix_argb[1] + + r * matrix_argb[2] + a * matrix_argb[3]) >> 6; + int sg = (b * matrix_argb[4] + g * matrix_argb[5] + + r * matrix_argb[6] + a * matrix_argb[7]) >> 6; + int sr = (b * matrix_argb[8] + g * matrix_argb[9] + + r * matrix_argb[10] + a * matrix_argb[11]) >> 6; + int sa = (b * matrix_argb[12] + g * matrix_argb[13] + + r * matrix_argb[14] + a * matrix_argb[15]) >> 6; + dst_argb[0] = Clamp(sb); + dst_argb[1] = Clamp(sg); + dst_argb[2] = Clamp(sr); + dst_argb[3] = Clamp(sa); + src_argb += 4; + dst_argb += 4; + } +} + +// Apply color table to a row of image. +void ARGBColorTableRow_C(uint8* dst_argb, const uint8* table_argb, int width) { + int x; + for (x = 0; x < width; ++x) { + int b = dst_argb[0]; + int g = dst_argb[1]; + int r = dst_argb[2]; + int a = dst_argb[3]; + dst_argb[0] = table_argb[b * 4 + 0]; + dst_argb[1] = table_argb[g * 4 + 1]; + dst_argb[2] = table_argb[r * 4 + 2]; + dst_argb[3] = table_argb[a * 4 + 3]; + dst_argb += 4; + } +} + +// Apply color table to a row of image. +void RGBColorTableRow_C(uint8* dst_argb, const uint8* table_argb, int width) { + int x; + for (x = 0; x < width; ++x) { + int b = dst_argb[0]; + int g = dst_argb[1]; + int r = dst_argb[2]; + dst_argb[0] = table_argb[b * 4 + 0]; + dst_argb[1] = table_argb[g * 4 + 1]; + dst_argb[2] = table_argb[r * 4 + 2]; + dst_argb += 4; + } +} + +void ARGBQuantizeRow_C(uint8* dst_argb, int scale, int interval_size, + int interval_offset, int width) { + int x; + for (x = 0; x < width; ++x) { + int b = dst_argb[0]; + int g = dst_argb[1]; + int r = dst_argb[2]; + dst_argb[0] = (b * scale >> 16) * interval_size + interval_offset; + dst_argb[1] = (g * scale >> 16) * interval_size + interval_offset; + dst_argb[2] = (r * scale >> 16) * interval_size + interval_offset; + dst_argb += 4; + } +} + +#define REPEAT8(v) (v) | ((v) << 8) +#define SHADE(f, v) v * f >> 24 + +void ARGBShadeRow_C(const uint8* src_argb, uint8* dst_argb, int width, + uint32 value) { + const uint32 b_scale = REPEAT8(value & 0xff); + const uint32 g_scale = REPEAT8((value >> 8) & 0xff); + const uint32 r_scale = REPEAT8((value >> 16) & 0xff); + const uint32 a_scale = REPEAT8(value >> 24); + + int i; + for (i = 0; i < width; ++i) { + const uint32 b = REPEAT8(src_argb[0]); + const uint32 g = REPEAT8(src_argb[1]); + const uint32 r = REPEAT8(src_argb[2]); + const uint32 a = REPEAT8(src_argb[3]); + dst_argb[0] = SHADE(b, b_scale); + dst_argb[1] = SHADE(g, g_scale); + dst_argb[2] = SHADE(r, r_scale); + dst_argb[3] = SHADE(a, a_scale); + src_argb += 4; + dst_argb += 4; + } +} +#undef REPEAT8 +#undef SHADE + +#define REPEAT8(v) (v) | ((v) << 8) +#define SHADE(f, v) v * f >> 16 + +void ARGBMultiplyRow_C(const uint8* src_argb0, const uint8* src_argb1, + uint8* dst_argb, int width) { + int i; + for (i = 0; i < width; ++i) { + const uint32 b = REPEAT8(src_argb0[0]); + const uint32 g = REPEAT8(src_argb0[1]); + const uint32 r = REPEAT8(src_argb0[2]); + const uint32 a = REPEAT8(src_argb0[3]); + const uint32 b_scale = src_argb1[0]; + const uint32 g_scale = src_argb1[1]; + const uint32 r_scale = src_argb1[2]; + const uint32 a_scale = src_argb1[3]; + dst_argb[0] = SHADE(b, b_scale); + dst_argb[1] = SHADE(g, g_scale); + dst_argb[2] = SHADE(r, r_scale); + dst_argb[3] = SHADE(a, a_scale); + src_argb0 += 4; + src_argb1 += 4; + dst_argb += 4; + } +} +#undef REPEAT8 +#undef SHADE + +#define SHADE(f, v) clamp255(v + f) + +void ARGBAddRow_C(const uint8* src_argb0, const uint8* src_argb1, + uint8* dst_argb, int width) { + int i; + for (i = 0; i < width; ++i) { + const int b = src_argb0[0]; + const int g = src_argb0[1]; + const int r = src_argb0[2]; + const int a = src_argb0[3]; + const int b_add = src_argb1[0]; + const int g_add = src_argb1[1]; + const int r_add = src_argb1[2]; + const int a_add = src_argb1[3]; + dst_argb[0] = SHADE(b, b_add); + dst_argb[1] = SHADE(g, g_add); + dst_argb[2] = SHADE(r, r_add); + dst_argb[3] = SHADE(a, a_add); + src_argb0 += 4; + src_argb1 += 4; + dst_argb += 4; + } +} +#undef SHADE + +#define SHADE(f, v) clamp0(f - v) + +void ARGBSubtractRow_C(const uint8* src_argb0, const uint8* src_argb1, + uint8* dst_argb, int width) { + int i; + for (i = 0; i < width; ++i) { + const int b = src_argb0[0]; + const int g = src_argb0[1]; + const int r = src_argb0[2]; + const int a = src_argb0[3]; + const int b_sub = src_argb1[0]; + const int g_sub = src_argb1[1]; + const int r_sub = src_argb1[2]; + const int a_sub = src_argb1[3]; + dst_argb[0] = SHADE(b, b_sub); + dst_argb[1] = SHADE(g, g_sub); + dst_argb[2] = SHADE(r, r_sub); + dst_argb[3] = SHADE(a, a_sub); + src_argb0 += 4; + src_argb1 += 4; + dst_argb += 4; + } +} +#undef SHADE + +// Sobel functions which mimics SSSE3. +void SobelXRow_C(const uint8* src_y0, const uint8* src_y1, const uint8* src_y2, + uint8* dst_sobelx, int width) { + int i; + for (i = 0; i < width; ++i) { + int a = src_y0[i]; + int b = src_y1[i]; + int c = src_y2[i]; + int a_sub = src_y0[i + 2]; + int b_sub = src_y1[i + 2]; + int c_sub = src_y2[i + 2]; + int a_diff = a - a_sub; + int b_diff = b - b_sub; + int c_diff = c - c_sub; + int sobel = Abs(a_diff + b_diff * 2 + c_diff); + dst_sobelx[i] = (uint8)(clamp255(sobel)); + } +} + +void SobelYRow_C(const uint8* src_y0, const uint8* src_y1, + uint8* dst_sobely, int width) { + int i; + for (i = 0; i < width; ++i) { + int a = src_y0[i + 0]; + int b = src_y0[i + 1]; + int c = src_y0[i + 2]; + int a_sub = src_y1[i + 0]; + int b_sub = src_y1[i + 1]; + int c_sub = src_y1[i + 2]; + int a_diff = a - a_sub; + int b_diff = b - b_sub; + int c_diff = c - c_sub; + int sobel = Abs(a_diff + b_diff * 2 + c_diff); + dst_sobely[i] = (uint8)(clamp255(sobel)); + } +} + +void SobelRow_C(const uint8* src_sobelx, const uint8* src_sobely, + uint8* dst_argb, int width) { + int i; + for (i = 0; i < width; ++i) { + int r = src_sobelx[i]; + int b = src_sobely[i]; + int s = clamp255(r + b); + dst_argb[0] = (uint8)(s); + dst_argb[1] = (uint8)(s); + dst_argb[2] = (uint8)(s); + dst_argb[3] = (uint8)(255u); + dst_argb += 4; + } +} + +void SobelToPlaneRow_C(const uint8* src_sobelx, const uint8* src_sobely, + uint8* dst_y, int width) { + int i; + for (i = 0; i < width; ++i) { + int r = src_sobelx[i]; + int b = src_sobely[i]; + int s = clamp255(r + b); + dst_y[i] = (uint8)(s); + } +} + +void SobelXYRow_C(const uint8* src_sobelx, const uint8* src_sobely, + uint8* dst_argb, int width) { + int i; + for (i = 0; i < width; ++i) { + int r = src_sobelx[i]; + int b = src_sobely[i]; + int g = clamp255(r + b); + dst_argb[0] = (uint8)(b); + dst_argb[1] = (uint8)(g); + dst_argb[2] = (uint8)(r); + dst_argb[3] = (uint8)(255u); + dst_argb += 4; + } +} + +void J400ToARGBRow_C(const uint8* src_y, uint8* dst_argb, int width) { + // Copy a Y to RGB. + int x; + for (x = 0; x < width; ++x) { + uint8 y = src_y[0]; + dst_argb[2] = dst_argb[1] = dst_argb[0] = y; + dst_argb[3] = 255u; + dst_argb += 4; + ++src_y; + } +} + +// TODO(fbarchard): Unify these structures to be platform independent. +// TODO(fbarchard): Generate SIMD structures from float matrix. + +// BT.601 YUV to RGB reference +// R = (Y - 16) * 1.164 - V * -1.596 +// G = (Y - 16) * 1.164 - U * 0.391 - V * 0.813 +// B = (Y - 16) * 1.164 - U * -2.018 + +// Y contribution to R,G,B. Scale and bias. +#define YG 18997 /* round(1.164 * 64 * 256 * 256 / 257) */ +#define YGB -1160 /* 1.164 * 64 * -16 + 64 / 2 */ + +// U and V contributions to R,G,B. +#define UB -128 /* max(-128, round(-2.018 * 64)) */ +#define UG 25 /* round(0.391 * 64) */ +#define VG 52 /* round(0.813 * 64) */ +#define VR -102 /* round(-1.596 * 64) */ + +// Bias values to subtract 16 from Y and 128 from U and V. +#define BB (UB * 128 + YGB) +#define BG (UG * 128 + VG * 128 + YGB) +#define BR (VR * 128 + YGB) + +#if defined(__aarch64__) // 64 bit arm +const struct YuvConstants SIMD_ALIGNED(kYuvI601Constants) = { + { -UB, -VR, -UB, -VR, -UB, -VR, -UB, -VR }, + { -UB, -VR, -UB, -VR, -UB, -VR, -UB, -VR }, + { UG, VG, UG, VG, UG, VG, UG, VG }, + { UG, VG, UG, VG, UG, VG, UG, VG }, + { BB, BG, BR, 0, 0, 0, 0, 0 }, + { 0x0101 * YG, 0, 0, 0 } +}; +const struct YuvConstants SIMD_ALIGNED(kYvuI601Constants) = { + { -VR, -UB, -VR, -UB, -VR, -UB, -VR, -UB }, + { -VR, -UB, -VR, -UB, -VR, -UB, -VR, -UB }, + { VG, UG, VG, UG, VG, UG, VG, UG }, + { VG, UG, VG, UG, VG, UG, VG, UG }, + { BR, BG, BB, 0, 0, 0, 0, 0 }, + { 0x0101 * YG, 0, 0, 0 } +}; +#elif defined(__arm__) // 32 bit arm +const struct YuvConstants SIMD_ALIGNED(kYuvI601Constants) = { + { -UB, -UB, -UB, -UB, -VR, -VR, -VR, -VR, 0, 0, 0, 0, 0, 0, 0, 0 }, + { UG, UG, UG, UG, VG, VG, VG, VG, 0, 0, 0, 0, 0, 0, 0, 0 }, + { BB, BG, BR, 0, 0, 0, 0, 0 }, + { 0x0101 * YG, 0, 0, 0 } +}; +const struct YuvConstants SIMD_ALIGNED(kYvuI601Constants) = { + { -VR, -VR, -VR, -VR, -UB, -UB, -UB, -UB, 0, 0, 0, 0, 0, 0, 0, 0 }, + { VG, VG, VG, VG, UG, UG, UG, UG, 0, 0, 0, 0, 0, 0, 0, 0 }, + { BR, BG, BB, 0, 0, 0, 0, 0 }, + { 0x0101 * YG, 0, 0, 0 } +}; +#else +const struct YuvConstants SIMD_ALIGNED(kYuvI601Constants) = { + { UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, + UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0 }, + { UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, + UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG }, + { 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, + 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR }, + { BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB }, + { BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG }, + { BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR }, + { YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG } +}; +const struct YuvConstants SIMD_ALIGNED(kYvuI601Constants) = { + { VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, + VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0 }, + { VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, + VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG }, + { 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, + 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB }, + { BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR }, + { BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG }, + { BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB }, + { YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG } +}; +#endif + +#undef BB +#undef BG +#undef BR +#undef YGB +#undef UB +#undef UG +#undef VG +#undef VR +#undef YG + +// JPEG YUV to RGB reference +// * R = Y - V * -1.40200 +// * G = Y - U * 0.34414 - V * 0.71414 +// * B = Y - U * -1.77200 + +// Y contribution to R,G,B. Scale and bias. +#define YG 16320 /* round(1.000 * 64 * 256 * 256 / 257) */ +#define YGB 32 /* 64 / 2 */ + +// U and V contributions to R,G,B. +#define UB -113 /* round(-1.77200 * 64) */ +#define UG 22 /* round(0.34414 * 64) */ +#define VG 46 /* round(0.71414 * 64) */ +#define VR -90 /* round(-1.40200 * 64) */ + +// Bias values to round, and subtract 128 from U and V. +#define BB (UB * 128 + YGB) +#define BG (UG * 128 + VG * 128 + YGB) +#define BR (VR * 128 + YGB) + +#if defined(__aarch64__) +const struct YuvConstants SIMD_ALIGNED(kYuvJPEGConstants) = { + { -UB, -VR, -UB, -VR, -UB, -VR, -UB, -VR }, + { -UB, -VR, -UB, -VR, -UB, -VR, -UB, -VR }, + { UG, VG, UG, VG, UG, VG, UG, VG }, + { UG, VG, UG, VG, UG, VG, UG, VG }, + { BB, BG, BR, 0, 0, 0, 0, 0 }, + { 0x0101 * YG, 0, 0, 0 } +}; +const struct YuvConstants SIMD_ALIGNED(kYvuJPEGConstants) = { + { -VR, -UB, -VR, -UB, -VR, -UB, -VR, -UB }, + { -VR, -UB, -VR, -UB, -VR, -UB, -VR, -UB }, + { VG, UG, VG, UG, VG, UG, VG, UG }, + { VG, UG, VG, UG, VG, UG, VG, UG }, + { BR, BG, BB, 0, 0, 0, 0, 0 }, + { 0x0101 * YG, 0, 0, 0 } +}; +#elif defined(__arm__) +const struct YuvConstants SIMD_ALIGNED(kYuvJPEGConstants) = { + { -UB, -UB, -UB, -UB, -VR, -VR, -VR, -VR, 0, 0, 0, 0, 0, 0, 0, 0 }, + { UG, UG, UG, UG, VG, VG, VG, VG, 0, 0, 0, 0, 0, 0, 0, 0 }, + { BB, BG, BR, 0, 0, 0, 0, 0 }, + { 0x0101 * YG, 0, 0, 0 } +}; +const struct YuvConstants SIMD_ALIGNED(kYvuJPEGConstants) = { + { -VR, -VR, -VR, -VR, -UB, -UB, -UB, -UB, 0, 0, 0, 0, 0, 0, 0, 0 }, + { VG, VG, VG, VG, UG, UG, UG, UG, 0, 0, 0, 0, 0, 0, 0, 0 }, + { BR, BG, BB, 0, 0, 0, 0, 0 }, + { 0x0101 * YG, 0, 0, 0 } +}; +#else +const struct YuvConstants SIMD_ALIGNED(kYuvJPEGConstants) = { + { UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, + UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0 }, + { UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, + UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG }, + { 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, + 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR }, + { BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB }, + { BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG }, + { BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR }, + { YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG } +}; +const struct YuvConstants SIMD_ALIGNED(kYvuJPEGConstants) = { + { VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, + VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0 }, + { VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, + VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG }, + { 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, + 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB }, + { BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR }, + { BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG }, + { BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB }, + { YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG } +}; +#endif + +#undef BB +#undef BG +#undef BR +#undef YGB +#undef UB +#undef UG +#undef VG +#undef VR +#undef YG + +// BT.709 YUV to RGB reference +// * R = Y - V * -1.28033 +// * G = Y - U * 0.21482 - V * 0.38059 +// * B = Y - U * -2.12798 + +// Y contribution to R,G,B. Scale and bias. +#define YG 16320 /* round(1.000 * 64 * 256 * 256 / 257) */ +#define YGB 32 /* 64 / 2 */ + +// TODO(fbarchard): Find way to express 2.12 instead of 2.0. +// U and V contributions to R,G,B. +#define UB -128 /* max(-128, round(-2.12798 * 64)) */ +#define UG 14 /* round(0.21482 * 64) */ +#define VG 24 /* round(0.38059 * 64) */ +#define VR -82 /* round(-1.28033 * 64) */ + +// Bias values to round, and subtract 128 from U and V. +#define BB (UB * 128 + YGB) +#define BG (UG * 128 + VG * 128 + YGB) +#define BR (VR * 128 + YGB) + +#if defined(__aarch64__) +const struct YuvConstants SIMD_ALIGNED(kYuvH709Constants) = { + { -UB, -VR, -UB, -VR, -UB, -VR, -UB, -VR }, + { -UB, -VR, -UB, -VR, -UB, -VR, -UB, -VR }, + { UG, VG, UG, VG, UG, VG, UG, VG }, + { UG, VG, UG, VG, UG, VG, UG, VG }, + { BB, BG, BR, 0, 0, 0, 0, 0 }, + { 0x0101 * YG, 0, 0, 0 } +}; +const struct YuvConstants SIMD_ALIGNED(kYvuH709Constants) = { + { -VR, -UB, -VR, -UB, -VR, -UB, -VR, -UB }, + { -VR, -UB, -VR, -UB, -VR, -UB, -VR, -UB }, + { VG, UG, VG, UG, VG, UG, VG, UG }, + { VG, UG, VG, UG, VG, UG, VG, UG }, + { BR, BG, BB, 0, 0, 0, 0, 0 }, + { 0x0101 * YG, 0, 0, 0 } +}; +#elif defined(__arm__) +const struct YuvConstants SIMD_ALIGNED(kYuvH709Constants) = { + { -UB, -UB, -UB, -UB, -VR, -VR, -VR, -VR, 0, 0, 0, 0, 0, 0, 0, 0 }, + { UG, UG, UG, UG, VG, VG, VG, VG, 0, 0, 0, 0, 0, 0, 0, 0 }, + { BB, BG, BR, 0, 0, 0, 0, 0 }, + { 0x0101 * YG, 0, 0, 0 } +}; +const struct YuvConstants SIMD_ALIGNED(kYvuH709Constants) = { + { -VR, -VR, -VR, -VR, -UB, -UB, -UB, -UB, 0, 0, 0, 0, 0, 0, 0, 0 }, + { VG, VG, VG, VG, UG, UG, UG, UG, 0, 0, 0, 0, 0, 0, 0, 0 }, + { BR, BG, BB, 0, 0, 0, 0, 0 }, + { 0x0101 * YG, 0, 0, 0 } +}; +#else +const struct YuvConstants SIMD_ALIGNED(kYuvH709Constants) = { + { UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, + UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0 }, + { UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, + UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG }, + { 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, + 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR }, + { BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB }, + { BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG }, + { BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR }, + { YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG } +}; +const struct YuvConstants SIMD_ALIGNED(kYvuH709Constants) = { + { VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, + VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0 }, + { VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, + VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG }, + { 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, + 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB }, + { BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR }, + { BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG }, + { BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB }, + { YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG } +}; +#endif + +#undef BB +#undef BG +#undef BR +#undef YGB +#undef UB +#undef UG +#undef VG +#undef VR +#undef YG + +// C reference code that mimics the YUV assembly. +static __inline void YuvPixel(uint8 y, uint8 u, uint8 v, + uint8* b, uint8* g, uint8* r, + const struct YuvConstants* yuvconstants) { +#if defined(__aarch64__) + int ub = -yuvconstants->kUVToRB[0]; + int ug = yuvconstants->kUVToG[0]; + int vg = yuvconstants->kUVToG[1]; + int vr = -yuvconstants->kUVToRB[1]; + int bb = yuvconstants->kUVBiasBGR[0]; + int bg = yuvconstants->kUVBiasBGR[1]; + int br = yuvconstants->kUVBiasBGR[2]; + int yg = yuvconstants->kYToRgb[0] / 0x0101; +#elif defined(__arm__) + int ub = -yuvconstants->kUVToRB[0]; + int ug = yuvconstants->kUVToG[0]; + int vg = yuvconstants->kUVToG[4]; + int vr = -yuvconstants->kUVToRB[4]; + int bb = yuvconstants->kUVBiasBGR[0]; + int bg = yuvconstants->kUVBiasBGR[1]; + int br = yuvconstants->kUVBiasBGR[2]; + int yg = yuvconstants->kYToRgb[0] / 0x0101; +#else + int ub = yuvconstants->kUVToB[0]; + int ug = yuvconstants->kUVToG[0]; + int vg = yuvconstants->kUVToG[1]; + int vr = yuvconstants->kUVToR[1]; + int bb = yuvconstants->kUVBiasB[0]; + int bg = yuvconstants->kUVBiasG[0]; + int br = yuvconstants->kUVBiasR[0]; + int yg = yuvconstants->kYToRgb[0]; +#endif + + uint32 y1 = (uint32)(y * 0x0101 * yg) >> 16; + *b = Clamp((int32)(-(u * ub) + y1 + bb) >> 6); + *g = Clamp((int32)(-(u * ug + v * vg) + y1 + bg) >> 6); + *r = Clamp((int32) (-(v * vr) + y1 + br) >> 6); +} + +// Y contribution to R,G,B. Scale and bias. +#define YG 18997 /* round(1.164 * 64 * 256 * 256 / 257) */ +#define YGB -1160 /* 1.164 * 64 * -16 + 64 / 2 */ + +// C reference code that mimics the YUV assembly. +static __inline void YPixel(uint8 y, uint8* b, uint8* g, uint8* r) { + uint32 y1 = (uint32)(y * 0x0101 * YG) >> 16; + *b = Clamp((int32)(y1 + YGB) >> 6); + *g = Clamp((int32)(y1 + YGB) >> 6); + *r = Clamp((int32)(y1 + YGB) >> 6); +} + +#undef YG +#undef YGB + +#if !defined(LIBYUV_DISABLE_NEON) && \ + (defined(__ARM_NEON__) || defined(__aarch64__) || defined(LIBYUV_NEON)) +// C mimic assembly. +// TODO(fbarchard): Remove subsampling from Neon. +void I444ToARGBRow_C(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + uint8* rgb_buf, + const struct YuvConstants* yuvconstants, + int width) { + int x; + for (x = 0; x < width - 1; x += 2) { + uint8 u = (src_u[0] + src_u[1] + 1) >> 1; + uint8 v = (src_v[0] + src_v[1] + 1) >> 1; + YuvPixel(src_y[0], u, v, rgb_buf + 0, rgb_buf + 1, rgb_buf + 2, + yuvconstants); + rgb_buf[3] = 255; + YuvPixel(src_y[1], u, v, rgb_buf + 4, rgb_buf + 5, rgb_buf + 6, + yuvconstants); + rgb_buf[7] = 255; + src_y += 2; + src_u += 2; + src_v += 2; + rgb_buf += 8; // Advance 2 pixels. + } + if (width & 1) { + YuvPixel(src_y[0], src_u[0], src_v[0], + rgb_buf + 0, rgb_buf + 1, rgb_buf + 2, yuvconstants); + rgb_buf[3] = 255; + } +} +#else +void I444ToARGBRow_C(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + uint8* rgb_buf, + const struct YuvConstants* yuvconstants, + int width) { + int x; + for (x = 0; x < width; ++x) { + YuvPixel(src_y[0], src_u[0], src_v[0], + rgb_buf + 0, rgb_buf + 1, rgb_buf + 2, yuvconstants); + rgb_buf[3] = 255; + src_y += 1; + src_u += 1; + src_v += 1; + rgb_buf += 4; // Advance 1 pixel. + } +} +#endif + +// Also used for 420 +void I422ToARGBRow_C(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + uint8* rgb_buf, + const struct YuvConstants* yuvconstants, + int width) { + int x; + for (x = 0; x < width - 1; x += 2) { + YuvPixel(src_y[0], src_u[0], src_v[0], + rgb_buf + 0, rgb_buf + 1, rgb_buf + 2, yuvconstants); + rgb_buf[3] = 255; + YuvPixel(src_y[1], src_u[0], src_v[0], + rgb_buf + 4, rgb_buf + 5, rgb_buf + 6, yuvconstants); + rgb_buf[7] = 255; + src_y += 2; + src_u += 1; + src_v += 1; + rgb_buf += 8; // Advance 2 pixels. + } + if (width & 1) { + YuvPixel(src_y[0], src_u[0], src_v[0], + rgb_buf + 0, rgb_buf + 1, rgb_buf + 2, yuvconstants); + rgb_buf[3] = 255; + } +} + +void I422AlphaToARGBRow_C(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + const uint8* src_a, + uint8* rgb_buf, + const struct YuvConstants* yuvconstants, + int width) { + int x; + for (x = 0; x < width - 1; x += 2) { + YuvPixel(src_y[0], src_u[0], src_v[0], + rgb_buf + 0, rgb_buf + 1, rgb_buf + 2, yuvconstants); + rgb_buf[3] = src_a[0]; + YuvPixel(src_y[1], src_u[0], src_v[0], + rgb_buf + 4, rgb_buf + 5, rgb_buf + 6, yuvconstants); + rgb_buf[7] = src_a[1]; + src_y += 2; + src_u += 1; + src_v += 1; + src_a += 2; + rgb_buf += 8; // Advance 2 pixels. + } + if (width & 1) { + YuvPixel(src_y[0], src_u[0], src_v[0], + rgb_buf + 0, rgb_buf + 1, rgb_buf + 2, yuvconstants); + rgb_buf[3] = src_a[0]; + } +} + +void I422ToRGB24Row_C(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + uint8* rgb_buf, + const struct YuvConstants* yuvconstants, + int width) { + int x; + for (x = 0; x < width - 1; x += 2) { + YuvPixel(src_y[0], src_u[0], src_v[0], + rgb_buf + 0, rgb_buf + 1, rgb_buf + 2, yuvconstants); + YuvPixel(src_y[1], src_u[0], src_v[0], + rgb_buf + 3, rgb_buf + 4, rgb_buf + 5, yuvconstants); + src_y += 2; + src_u += 1; + src_v += 1; + rgb_buf += 6; // Advance 2 pixels. + } + if (width & 1) { + YuvPixel(src_y[0], src_u[0], src_v[0], + rgb_buf + 0, rgb_buf + 1, rgb_buf + 2, yuvconstants); + } +} + +void I422ToARGB4444Row_C(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + uint8* dst_argb4444, + const struct YuvConstants* yuvconstants, + int width) { + uint8 b0; + uint8 g0; + uint8 r0; + uint8 b1; + uint8 g1; + uint8 r1; + int x; + for (x = 0; x < width - 1; x += 2) { + YuvPixel(src_y[0], src_u[0], src_v[0], &b0, &g0, &r0, yuvconstants); + YuvPixel(src_y[1], src_u[0], src_v[0], &b1, &g1, &r1, yuvconstants); + b0 = b0 >> 4; + g0 = g0 >> 4; + r0 = r0 >> 4; + b1 = b1 >> 4; + g1 = g1 >> 4; + r1 = r1 >> 4; + *(uint32*)(dst_argb4444) = b0 | (g0 << 4) | (r0 << 8) | + (b1 << 16) | (g1 << 20) | (r1 << 24) | 0xf000f000; + src_y += 2; + src_u += 1; + src_v += 1; + dst_argb4444 += 4; // Advance 2 pixels. + } + if (width & 1) { + YuvPixel(src_y[0], src_u[0], src_v[0], &b0, &g0, &r0, yuvconstants); + b0 = b0 >> 4; + g0 = g0 >> 4; + r0 = r0 >> 4; + *(uint16*)(dst_argb4444) = b0 | (g0 << 4) | (r0 << 8) | + 0xf000; + } +} + +void I422ToARGB1555Row_C(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + uint8* dst_argb1555, + const struct YuvConstants* yuvconstants, + int width) { + uint8 b0; + uint8 g0; + uint8 r0; + uint8 b1; + uint8 g1; + uint8 r1; + int x; + for (x = 0; x < width - 1; x += 2) { + YuvPixel(src_y[0], src_u[0], src_v[0], &b0, &g0, &r0, yuvconstants); + YuvPixel(src_y[1], src_u[0], src_v[0], &b1, &g1, &r1, yuvconstants); + b0 = b0 >> 3; + g0 = g0 >> 3; + r0 = r0 >> 3; + b1 = b1 >> 3; + g1 = g1 >> 3; + r1 = r1 >> 3; + *(uint32*)(dst_argb1555) = b0 | (g0 << 5) | (r0 << 10) | + (b1 << 16) | (g1 << 21) | (r1 << 26) | 0x80008000; + src_y += 2; + src_u += 1; + src_v += 1; + dst_argb1555 += 4; // Advance 2 pixels. + } + if (width & 1) { + YuvPixel(src_y[0], src_u[0], src_v[0], &b0, &g0, &r0, yuvconstants); + b0 = b0 >> 3; + g0 = g0 >> 3; + r0 = r0 >> 3; + *(uint16*)(dst_argb1555) = b0 | (g0 << 5) | (r0 << 10) | + 0x8000; + } +} + +void I422ToRGB565Row_C(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + uint8* dst_rgb565, + const struct YuvConstants* yuvconstants, + int width) { + uint8 b0; + uint8 g0; + uint8 r0; + uint8 b1; + uint8 g1; + uint8 r1; + int x; + for (x = 0; x < width - 1; x += 2) { + YuvPixel(src_y[0], src_u[0], src_v[0], &b0, &g0, &r0, yuvconstants); + YuvPixel(src_y[1], src_u[0], src_v[0], &b1, &g1, &r1, yuvconstants); + b0 = b0 >> 3; + g0 = g0 >> 2; + r0 = r0 >> 3; + b1 = b1 >> 3; + g1 = g1 >> 2; + r1 = r1 >> 3; + *(uint32*)(dst_rgb565) = b0 | (g0 << 5) | (r0 << 11) | + (b1 << 16) | (g1 << 21) | (r1 << 27); + src_y += 2; + src_u += 1; + src_v += 1; + dst_rgb565 += 4; // Advance 2 pixels. + } + if (width & 1) { + YuvPixel(src_y[0], src_u[0], src_v[0], &b0, &g0, &r0, yuvconstants); + b0 = b0 >> 3; + g0 = g0 >> 2; + r0 = r0 >> 3; + *(uint16*)(dst_rgb565) = b0 | (g0 << 5) | (r0 << 11); + } +} + +void I411ToARGBRow_C(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + uint8* rgb_buf, + const struct YuvConstants* yuvconstants, + int width) { + int x; + for (x = 0; x < width - 3; x += 4) { + YuvPixel(src_y[0], src_u[0], src_v[0], + rgb_buf + 0, rgb_buf + 1, rgb_buf + 2, yuvconstants); + rgb_buf[3] = 255; + YuvPixel(src_y[1], src_u[0], src_v[0], + rgb_buf + 4, rgb_buf + 5, rgb_buf + 6, yuvconstants); + rgb_buf[7] = 255; + YuvPixel(src_y[2], src_u[0], src_v[0], + rgb_buf + 8, rgb_buf + 9, rgb_buf + 10, yuvconstants); + rgb_buf[11] = 255; + YuvPixel(src_y[3], src_u[0], src_v[0], + rgb_buf + 12, rgb_buf + 13, rgb_buf + 14, yuvconstants); + rgb_buf[15] = 255; + src_y += 4; + src_u += 1; + src_v += 1; + rgb_buf += 16; // Advance 4 pixels. + } + if (width & 2) { + YuvPixel(src_y[0], src_u[0], src_v[0], + rgb_buf + 0, rgb_buf + 1, rgb_buf + 2, yuvconstants); + rgb_buf[3] = 255; + YuvPixel(src_y[1], src_u[0], src_v[0], + rgb_buf + 4, rgb_buf + 5, rgb_buf + 6, yuvconstants); + rgb_buf[7] = 255; + src_y += 2; + rgb_buf += 8; // Advance 2 pixels. + } + if (width & 1) { + YuvPixel(src_y[0], src_u[0], src_v[0], + rgb_buf + 0, rgb_buf + 1, rgb_buf + 2, yuvconstants); + rgb_buf[3] = 255; + } +} + +void NV12ToARGBRow_C(const uint8* src_y, + const uint8* src_uv, + uint8* rgb_buf, + const struct YuvConstants* yuvconstants, + int width) { + int x; + for (x = 0; x < width - 1; x += 2) { + YuvPixel(src_y[0], src_uv[0], src_uv[1], + rgb_buf + 0, rgb_buf + 1, rgb_buf + 2, yuvconstants); + rgb_buf[3] = 255; + YuvPixel(src_y[1], src_uv[0], src_uv[1], + rgb_buf + 4, rgb_buf + 5, rgb_buf + 6, yuvconstants); + rgb_buf[7] = 255; + src_y += 2; + src_uv += 2; + rgb_buf += 8; // Advance 2 pixels. + } + if (width & 1) { + YuvPixel(src_y[0], src_uv[0], src_uv[1], + rgb_buf + 0, rgb_buf + 1, rgb_buf + 2, yuvconstants); + rgb_buf[3] = 255; + } +} + +void NV21ToARGBRow_C(const uint8* src_y, + const uint8* src_vu, + uint8* rgb_buf, + const struct YuvConstants* yuvconstants, + int width) { + int x; + for (x = 0; x < width - 1; x += 2) { + YuvPixel(src_y[0], src_vu[1], src_vu[0], + rgb_buf + 0, rgb_buf + 1, rgb_buf + 2, yuvconstants); + rgb_buf[3] = 255; + YuvPixel(src_y[1], src_vu[1], src_vu[0], + rgb_buf + 4, rgb_buf + 5, rgb_buf + 6, yuvconstants); + rgb_buf[7] = 255; + src_y += 2; + src_vu += 2; + rgb_buf += 8; // Advance 2 pixels. + } + if (width & 1) { + YuvPixel(src_y[0], src_vu[1], src_vu[0], + rgb_buf + 0, rgb_buf + 1, rgb_buf + 2, yuvconstants); + rgb_buf[3] = 255; + } +} + +void NV12ToRGB565Row_C(const uint8* src_y, + const uint8* src_uv, + uint8* dst_rgb565, + const struct YuvConstants* yuvconstants, + int width) { + uint8 b0; + uint8 g0; + uint8 r0; + uint8 b1; + uint8 g1; + uint8 r1; + int x; + for (x = 0; x < width - 1; x += 2) { + YuvPixel(src_y[0], src_uv[0], src_uv[1], &b0, &g0, &r0, yuvconstants); + YuvPixel(src_y[1], src_uv[0], src_uv[1], &b1, &g1, &r1, yuvconstants); + b0 = b0 >> 3; + g0 = g0 >> 2; + r0 = r0 >> 3; + b1 = b1 >> 3; + g1 = g1 >> 2; + r1 = r1 >> 3; + *(uint32*)(dst_rgb565) = b0 | (g0 << 5) | (r0 << 11) | + (b1 << 16) | (g1 << 21) | (r1 << 27); + src_y += 2; + src_uv += 2; + dst_rgb565 += 4; // Advance 2 pixels. + } + if (width & 1) { + YuvPixel(src_y[0], src_uv[0], src_uv[1], &b0, &g0, &r0, yuvconstants); + b0 = b0 >> 3; + g0 = g0 >> 2; + r0 = r0 >> 3; + *(uint16*)(dst_rgb565) = b0 | (g0 << 5) | (r0 << 11); + } +} + +void YUY2ToARGBRow_C(const uint8* src_yuy2, + uint8* rgb_buf, + const struct YuvConstants* yuvconstants, + int width) { + int x; + for (x = 0; x < width - 1; x += 2) { + YuvPixel(src_yuy2[0], src_yuy2[1], src_yuy2[3], + rgb_buf + 0, rgb_buf + 1, rgb_buf + 2, yuvconstants); + rgb_buf[3] = 255; + YuvPixel(src_yuy2[2], src_yuy2[1], src_yuy2[3], + rgb_buf + 4, rgb_buf + 5, rgb_buf + 6, yuvconstants); + rgb_buf[7] = 255; + src_yuy2 += 4; + rgb_buf += 8; // Advance 2 pixels. + } + if (width & 1) { + YuvPixel(src_yuy2[0], src_yuy2[1], src_yuy2[3], + rgb_buf + 0, rgb_buf + 1, rgb_buf + 2, yuvconstants); + rgb_buf[3] = 255; + } +} + +void UYVYToARGBRow_C(const uint8* src_uyvy, + uint8* rgb_buf, + const struct YuvConstants* yuvconstants, + int width) { + int x; + for (x = 0; x < width - 1; x += 2) { + YuvPixel(src_uyvy[1], src_uyvy[0], src_uyvy[2], + rgb_buf + 0, rgb_buf + 1, rgb_buf + 2, yuvconstants); + rgb_buf[3] = 255; + YuvPixel(src_uyvy[3], src_uyvy[0], src_uyvy[2], + rgb_buf + 4, rgb_buf + 5, rgb_buf + 6, yuvconstants); + rgb_buf[7] = 255; + src_uyvy += 4; + rgb_buf += 8; // Advance 2 pixels. + } + if (width & 1) { + YuvPixel(src_uyvy[1], src_uyvy[0], src_uyvy[2], + rgb_buf + 0, rgb_buf + 1, rgb_buf + 2, yuvconstants); + rgb_buf[3] = 255; + } +} + +void I422ToRGBARow_C(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + uint8* rgb_buf, + const struct YuvConstants* yuvconstants, + int width) { + int x; + for (x = 0; x < width - 1; x += 2) { + YuvPixel(src_y[0], src_u[0], src_v[0], + rgb_buf + 1, rgb_buf + 2, rgb_buf + 3, yuvconstants); + rgb_buf[0] = 255; + YuvPixel(src_y[1], src_u[0], src_v[0], + rgb_buf + 5, rgb_buf + 6, rgb_buf + 7, yuvconstants); + rgb_buf[4] = 255; + src_y += 2; + src_u += 1; + src_v += 1; + rgb_buf += 8; // Advance 2 pixels. + } + if (width & 1) { + YuvPixel(src_y[0], src_u[0], src_v[0], + rgb_buf + 1, rgb_buf + 2, rgb_buf + 3, yuvconstants); + rgb_buf[0] = 255; + } +} + +void I400ToARGBRow_C(const uint8* src_y, uint8* rgb_buf, int width) { + int x; + for (x = 0; x < width - 1; x += 2) { + YPixel(src_y[0], rgb_buf + 0, rgb_buf + 1, rgb_buf + 2); + rgb_buf[3] = 255; + YPixel(src_y[1], rgb_buf + 4, rgb_buf + 5, rgb_buf + 6); + rgb_buf[7] = 255; + src_y += 2; + rgb_buf += 8; // Advance 2 pixels. + } + if (width & 1) { + YPixel(src_y[0], rgb_buf + 0, rgb_buf + 1, rgb_buf + 2); + rgb_buf[3] = 255; + } +} + +void MirrorRow_C(const uint8* src, uint8* dst, int width) { + int x; + src += width - 1; + for (x = 0; x < width - 1; x += 2) { + dst[x] = src[0]; + dst[x + 1] = src[-1]; + src -= 2; + } + if (width & 1) { + dst[width - 1] = src[0]; + } +} + +void MirrorUVRow_C(const uint8* src_uv, uint8* dst_u, uint8* dst_v, int width) { + int x; + src_uv += (width - 1) << 1; + for (x = 0; x < width - 1; x += 2) { + dst_u[x] = src_uv[0]; + dst_u[x + 1] = src_uv[-2]; + dst_v[x] = src_uv[1]; + dst_v[x + 1] = src_uv[-2 + 1]; + src_uv -= 4; + } + if (width & 1) { + dst_u[width - 1] = src_uv[0]; + dst_v[width - 1] = src_uv[1]; + } +} + +void ARGBMirrorRow_C(const uint8* src, uint8* dst, int width) { + int x; + const uint32* src32 = (const uint32*)(src); + uint32* dst32 = (uint32*)(dst); + src32 += width - 1; + for (x = 0; x < width - 1; x += 2) { + dst32[x] = src32[0]; + dst32[x + 1] = src32[-1]; + src32 -= 2; + } + if (width & 1) { + dst32[width - 1] = src32[0]; + } +} + +void SplitUVRow_C(const uint8* src_uv, uint8* dst_u, uint8* dst_v, int width) { + int x; + for (x = 0; x < width - 1; x += 2) { + dst_u[x] = src_uv[0]; + dst_u[x + 1] = src_uv[2]; + dst_v[x] = src_uv[1]; + dst_v[x + 1] = src_uv[3]; + src_uv += 4; + } + if (width & 1) { + dst_u[width - 1] = src_uv[0]; + dst_v[width - 1] = src_uv[1]; + } +} + +void MergeUVRow_C(const uint8* src_u, const uint8* src_v, uint8* dst_uv, + int width) { + int x; + for (x = 0; x < width - 1; x += 2) { + dst_uv[0] = src_u[x]; + dst_uv[1] = src_v[x]; + dst_uv[2] = src_u[x + 1]; + dst_uv[3] = src_v[x + 1]; + dst_uv += 4; + } + if (width & 1) { + dst_uv[0] = src_u[width - 1]; + dst_uv[1] = src_v[width - 1]; + } +} + +void CopyRow_C(const uint8* src, uint8* dst, int count) { + memcpy(dst, src, count); +} + +void CopyRow_16_C(const uint16* src, uint16* dst, int count) { + memcpy(dst, src, count * 2); +} + +void SetRow_C(uint8* dst, uint8 v8, int width) { + memset(dst, v8, width); +} + +void ARGBSetRow_C(uint8* dst_argb, uint32 v32, int width) { + uint32* d = (uint32*)(dst_argb); + int x; + for (x = 0; x < width; ++x) { + d[x] = v32; + } +} + +// Filter 2 rows of YUY2 UV's (422) into U and V (420). +void YUY2ToUVRow_C(const uint8* src_yuy2, int src_stride_yuy2, + uint8* dst_u, uint8* dst_v, int width) { + // Output a row of UV values, filtering 2 rows of YUY2. + int x; + for (x = 0; x < width; x += 2) { + dst_u[0] = (src_yuy2[1] + src_yuy2[src_stride_yuy2 + 1] + 1) >> 1; + dst_v[0] = (src_yuy2[3] + src_yuy2[src_stride_yuy2 + 3] + 1) >> 1; + src_yuy2 += 4; + dst_u += 1; + dst_v += 1; + } +} + +// Copy row of YUY2 UV's (422) into U and V (422). +void YUY2ToUV422Row_C(const uint8* src_yuy2, + uint8* dst_u, uint8* dst_v, int width) { + // Output a row of UV values. + int x; + for (x = 0; x < width; x += 2) { + dst_u[0] = src_yuy2[1]; + dst_v[0] = src_yuy2[3]; + src_yuy2 += 4; + dst_u += 1; + dst_v += 1; + } +} + +// Copy row of YUY2 Y's (422) into Y (420/422). +void YUY2ToYRow_C(const uint8* src_yuy2, uint8* dst_y, int width) { + // Output a row of Y values. + int x; + for (x = 0; x < width - 1; x += 2) { + dst_y[x] = src_yuy2[0]; + dst_y[x + 1] = src_yuy2[2]; + src_yuy2 += 4; + } + if (width & 1) { + dst_y[width - 1] = src_yuy2[0]; + } +} + +// Filter 2 rows of UYVY UV's (422) into U and V (420). +void UYVYToUVRow_C(const uint8* src_uyvy, int src_stride_uyvy, + uint8* dst_u, uint8* dst_v, int width) { + // Output a row of UV values. + int x; + for (x = 0; x < width; x += 2) { + dst_u[0] = (src_uyvy[0] + src_uyvy[src_stride_uyvy + 0] + 1) >> 1; + dst_v[0] = (src_uyvy[2] + src_uyvy[src_stride_uyvy + 2] + 1) >> 1; + src_uyvy += 4; + dst_u += 1; + dst_v += 1; + } +} + +// Copy row of UYVY UV's (422) into U and V (422). +void UYVYToUV422Row_C(const uint8* src_uyvy, + uint8* dst_u, uint8* dst_v, int width) { + // Output a row of UV values. + int x; + for (x = 0; x < width; x += 2) { + dst_u[0] = src_uyvy[0]; + dst_v[0] = src_uyvy[2]; + src_uyvy += 4; + dst_u += 1; + dst_v += 1; + } +} + +// Copy row of UYVY Y's (422) into Y (420/422). +void UYVYToYRow_C(const uint8* src_uyvy, uint8* dst_y, int width) { + // Output a row of Y values. + int x; + for (x = 0; x < width - 1; x += 2) { + dst_y[x] = src_uyvy[1]; + dst_y[x + 1] = src_uyvy[3]; + src_uyvy += 4; + } + if (width & 1) { + dst_y[width - 1] = src_uyvy[1]; + } +} + +#define BLEND(f, b, a) (((256 - a) * b) >> 8) + f + +// Blend src_argb0 over src_argb1 and store to dst_argb. +// dst_argb may be src_argb0 or src_argb1. +// This code mimics the SSSE3 version for better testability. +void ARGBBlendRow_C(const uint8* src_argb0, const uint8* src_argb1, + uint8* dst_argb, int width) { + int x; + for (x = 0; x < width - 1; x += 2) { + uint32 fb = src_argb0[0]; + uint32 fg = src_argb0[1]; + uint32 fr = src_argb0[2]; + uint32 a = src_argb0[3]; + uint32 bb = src_argb1[0]; + uint32 bg = src_argb1[1]; + uint32 br = src_argb1[2]; + dst_argb[0] = BLEND(fb, bb, a); + dst_argb[1] = BLEND(fg, bg, a); + dst_argb[2] = BLEND(fr, br, a); + dst_argb[3] = 255u; + + fb = src_argb0[4 + 0]; + fg = src_argb0[4 + 1]; + fr = src_argb0[4 + 2]; + a = src_argb0[4 + 3]; + bb = src_argb1[4 + 0]; + bg = src_argb1[4 + 1]; + br = src_argb1[4 + 2]; + dst_argb[4 + 0] = BLEND(fb, bb, a); + dst_argb[4 + 1] = BLEND(fg, bg, a); + dst_argb[4 + 2] = BLEND(fr, br, a); + dst_argb[4 + 3] = 255u; + src_argb0 += 8; + src_argb1 += 8; + dst_argb += 8; + } + + if (width & 1) { + uint32 fb = src_argb0[0]; + uint32 fg = src_argb0[1]; + uint32 fr = src_argb0[2]; + uint32 a = src_argb0[3]; + uint32 bb = src_argb1[0]; + uint32 bg = src_argb1[1]; + uint32 br = src_argb1[2]; + dst_argb[0] = BLEND(fb, bb, a); + dst_argb[1] = BLEND(fg, bg, a); + dst_argb[2] = BLEND(fr, br, a); + dst_argb[3] = 255u; + } +} +#undef BLEND + +#define UBLEND(f, b, a) (((a) * f) + ((255 - a) * b) + 255) >> 8 +void BlendPlaneRow_C(const uint8* src0, const uint8* src1, + const uint8* alpha, uint8* dst, int width) { + int x; + for (x = 0; x < width - 1; x += 2) { + dst[0] = UBLEND(src0[0], src1[0], alpha[0]); + dst[1] = UBLEND(src0[1], src1[1], alpha[1]); + src0 += 2; + src1 += 2; + alpha += 2; + dst += 2; + } + if (width & 1) { + dst[0] = UBLEND(src0[0], src1[0], alpha[0]); + } +} +#undef UBLEND + +#define ATTENUATE(f, a) (a | (a << 8)) * (f | (f << 8)) >> 24 + +// Multiply source RGB by alpha and store to destination. +// This code mimics the SSSE3 version for better testability. +void ARGBAttenuateRow_C(const uint8* src_argb, uint8* dst_argb, int width) { + int i; + for (i = 0; i < width - 1; i += 2) { + uint32 b = src_argb[0]; + uint32 g = src_argb[1]; + uint32 r = src_argb[2]; + uint32 a = src_argb[3]; + dst_argb[0] = ATTENUATE(b, a); + dst_argb[1] = ATTENUATE(g, a); + dst_argb[2] = ATTENUATE(r, a); + dst_argb[3] = a; + b = src_argb[4]; + g = src_argb[5]; + r = src_argb[6]; + a = src_argb[7]; + dst_argb[4] = ATTENUATE(b, a); + dst_argb[5] = ATTENUATE(g, a); + dst_argb[6] = ATTENUATE(r, a); + dst_argb[7] = a; + src_argb += 8; + dst_argb += 8; + } + + if (width & 1) { + const uint32 b = src_argb[0]; + const uint32 g = src_argb[1]; + const uint32 r = src_argb[2]; + const uint32 a = src_argb[3]; + dst_argb[0] = ATTENUATE(b, a); + dst_argb[1] = ATTENUATE(g, a); + dst_argb[2] = ATTENUATE(r, a); + dst_argb[3] = a; + } +} +#undef ATTENUATE + +// Divide source RGB by alpha and store to destination. +// b = (b * 255 + (a / 2)) / a; +// g = (g * 255 + (a / 2)) / a; +// r = (r * 255 + (a / 2)) / a; +// Reciprocal method is off by 1 on some values. ie 125 +// 8.8 fixed point inverse table with 1.0 in upper short and 1 / a in lower. +#define T(a) 0x01000000 + (0x10000 / a) +const uint32 fixed_invtbl8[256] = { + 0x01000000, 0x0100ffff, T(0x02), T(0x03), T(0x04), T(0x05), T(0x06), T(0x07), + T(0x08), T(0x09), T(0x0a), T(0x0b), T(0x0c), T(0x0d), T(0x0e), T(0x0f), + T(0x10), T(0x11), T(0x12), T(0x13), T(0x14), T(0x15), T(0x16), T(0x17), + T(0x18), T(0x19), T(0x1a), T(0x1b), T(0x1c), T(0x1d), T(0x1e), T(0x1f), + T(0x20), T(0x21), T(0x22), T(0x23), T(0x24), T(0x25), T(0x26), T(0x27), + T(0x28), T(0x29), T(0x2a), T(0x2b), T(0x2c), T(0x2d), T(0x2e), T(0x2f), + T(0x30), T(0x31), T(0x32), T(0x33), T(0x34), T(0x35), T(0x36), T(0x37), + T(0x38), T(0x39), T(0x3a), T(0x3b), T(0x3c), T(0x3d), T(0x3e), T(0x3f), + T(0x40), T(0x41), T(0x42), T(0x43), T(0x44), T(0x45), T(0x46), T(0x47), + T(0x48), T(0x49), T(0x4a), T(0x4b), T(0x4c), T(0x4d), T(0x4e), T(0x4f), + T(0x50), T(0x51), T(0x52), T(0x53), T(0x54), T(0x55), T(0x56), T(0x57), + T(0x58), T(0x59), T(0x5a), T(0x5b), T(0x5c), T(0x5d), T(0x5e), T(0x5f), + T(0x60), T(0x61), T(0x62), T(0x63), T(0x64), T(0x65), T(0x66), T(0x67), + T(0x68), T(0x69), T(0x6a), T(0x6b), T(0x6c), T(0x6d), T(0x6e), T(0x6f), + T(0x70), T(0x71), T(0x72), T(0x73), T(0x74), T(0x75), T(0x76), T(0x77), + T(0x78), T(0x79), T(0x7a), T(0x7b), T(0x7c), T(0x7d), T(0x7e), T(0x7f), + T(0x80), T(0x81), T(0x82), T(0x83), T(0x84), T(0x85), T(0x86), T(0x87), + T(0x88), T(0x89), T(0x8a), T(0x8b), T(0x8c), T(0x8d), T(0x8e), T(0x8f), + T(0x90), T(0x91), T(0x92), T(0x93), T(0x94), T(0x95), T(0x96), T(0x97), + T(0x98), T(0x99), T(0x9a), T(0x9b), T(0x9c), T(0x9d), T(0x9e), T(0x9f), + T(0xa0), T(0xa1), T(0xa2), T(0xa3), T(0xa4), T(0xa5), T(0xa6), T(0xa7), + T(0xa8), T(0xa9), T(0xaa), T(0xab), T(0xac), T(0xad), T(0xae), T(0xaf), + T(0xb0), T(0xb1), T(0xb2), T(0xb3), T(0xb4), T(0xb5), T(0xb6), T(0xb7), + T(0xb8), T(0xb9), T(0xba), T(0xbb), T(0xbc), T(0xbd), T(0xbe), T(0xbf), + T(0xc0), T(0xc1), T(0xc2), T(0xc3), T(0xc4), T(0xc5), T(0xc6), T(0xc7), + T(0xc8), T(0xc9), T(0xca), T(0xcb), T(0xcc), T(0xcd), T(0xce), T(0xcf), + T(0xd0), T(0xd1), T(0xd2), T(0xd3), T(0xd4), T(0xd5), T(0xd6), T(0xd7), + T(0xd8), T(0xd9), T(0xda), T(0xdb), T(0xdc), T(0xdd), T(0xde), T(0xdf), + T(0xe0), T(0xe1), T(0xe2), T(0xe3), T(0xe4), T(0xe5), T(0xe6), T(0xe7), + T(0xe8), T(0xe9), T(0xea), T(0xeb), T(0xec), T(0xed), T(0xee), T(0xef), + T(0xf0), T(0xf1), T(0xf2), T(0xf3), T(0xf4), T(0xf5), T(0xf6), T(0xf7), + T(0xf8), T(0xf9), T(0xfa), T(0xfb), T(0xfc), T(0xfd), T(0xfe), 0x01000100 }; +#undef T + +void ARGBUnattenuateRow_C(const uint8* src_argb, uint8* dst_argb, int width) { + int i; + for (i = 0; i < width; ++i) { + uint32 b = src_argb[0]; + uint32 g = src_argb[1]; + uint32 r = src_argb[2]; + const uint32 a = src_argb[3]; + const uint32 ia = fixed_invtbl8[a] & 0xffff; // 8.8 fixed point + b = (b * ia) >> 8; + g = (g * ia) >> 8; + r = (r * ia) >> 8; + // Clamping should not be necessary but is free in assembly. + dst_argb[0] = clamp255(b); + dst_argb[1] = clamp255(g); + dst_argb[2] = clamp255(r); + dst_argb[3] = a; + src_argb += 4; + dst_argb += 4; + } +} + +void ComputeCumulativeSumRow_C(const uint8* row, int32* cumsum, + const int32* previous_cumsum, int width) { + int32 row_sum[4] = {0, 0, 0, 0}; + int x; + for (x = 0; x < width; ++x) { + row_sum[0] += row[x * 4 + 0]; + row_sum[1] += row[x * 4 + 1]; + row_sum[2] += row[x * 4 + 2]; + row_sum[3] += row[x * 4 + 3]; + cumsum[x * 4 + 0] = row_sum[0] + previous_cumsum[x * 4 + 0]; + cumsum[x * 4 + 1] = row_sum[1] + previous_cumsum[x * 4 + 1]; + cumsum[x * 4 + 2] = row_sum[2] + previous_cumsum[x * 4 + 2]; + cumsum[x * 4 + 3] = row_sum[3] + previous_cumsum[x * 4 + 3]; + } +} + +void CumulativeSumToAverageRow_C(const int32* tl, const int32* bl, + int w, int area, uint8* dst, int count) { + float ooa = 1.0f / area; + int i; + for (i = 0; i < count; ++i) { + dst[0] = (uint8)((bl[w + 0] + tl[0] - bl[0] - tl[w + 0]) * ooa); + dst[1] = (uint8)((bl[w + 1] + tl[1] - bl[1] - tl[w + 1]) * ooa); + dst[2] = (uint8)((bl[w + 2] + tl[2] - bl[2] - tl[w + 2]) * ooa); + dst[3] = (uint8)((bl[w + 3] + tl[3] - bl[3] - tl[w + 3]) * ooa); + dst += 4; + tl += 4; + bl += 4; + } +} + +// Copy pixels from rotated source to destination row with a slope. +LIBYUV_API +void ARGBAffineRow_C(const uint8* src_argb, int src_argb_stride, + uint8* dst_argb, const float* uv_dudv, int width) { + int i; + // Render a row of pixels from source into a buffer. + float uv[2]; + uv[0] = uv_dudv[0]; + uv[1] = uv_dudv[1]; + for (i = 0; i < width; ++i) { + int x = (int)(uv[0]); + int y = (int)(uv[1]); + *(uint32*)(dst_argb) = + *(const uint32*)(src_argb + y * src_argb_stride + + x * 4); + dst_argb += 4; + uv[0] += uv_dudv[2]; + uv[1] += uv_dudv[3]; + } +} + +// Blend 2 rows into 1. +static void HalfRow_C(const uint8* src_uv, ptrdiff_t src_uv_stride, + uint8* dst_uv, int width) { + int x; + for (x = 0; x < width; ++x) { + dst_uv[x] = (src_uv[x] + src_uv[src_uv_stride + x] + 1) >> 1; + } +} + +static void HalfRow_16_C(const uint16* src_uv, ptrdiff_t src_uv_stride, + uint16* dst_uv, int width) { + int x; + for (x = 0; x < width; ++x) { + dst_uv[x] = (src_uv[x] + src_uv[src_uv_stride + x] + 1) >> 1; + } +} + +// C version 2x2 -> 2x1. +void InterpolateRow_C(uint8* dst_ptr, const uint8* src_ptr, + ptrdiff_t src_stride, + int width, int source_y_fraction) { + int y1_fraction = source_y_fraction; + int y0_fraction = 256 - y1_fraction; + const uint8* src_ptr1 = src_ptr + src_stride; + int x; + if (y1_fraction == 0) { + memcpy(dst_ptr, src_ptr, width); + return; + } + if (y1_fraction == 128) { + HalfRow_C(src_ptr, src_stride, dst_ptr, width); + return; + } + for (x = 0; x < width - 1; x += 2) { + dst_ptr[0] = + (src_ptr[0] * y0_fraction + src_ptr1[0] * y1_fraction + 128) >> 8; + dst_ptr[1] = + (src_ptr[1] * y0_fraction + src_ptr1[1] * y1_fraction + 128) >> 8; + src_ptr += 2; + src_ptr1 += 2; + dst_ptr += 2; + } + if (width & 1) { + dst_ptr[0] = + (src_ptr[0] * y0_fraction + src_ptr1[0] * y1_fraction + 128) >> 8; + } +} + +void InterpolateRow_16_C(uint16* dst_ptr, const uint16* src_ptr, + ptrdiff_t src_stride, + int width, int source_y_fraction) { + int y1_fraction = source_y_fraction; + int y0_fraction = 256 - y1_fraction; + const uint16* src_ptr1 = src_ptr + src_stride; + int x; + if (source_y_fraction == 0) { + memcpy(dst_ptr, src_ptr, width * 2); + return; + } + if (source_y_fraction == 128) { + HalfRow_16_C(src_ptr, src_stride, dst_ptr, width); + return; + } + for (x = 0; x < width - 1; x += 2) { + dst_ptr[0] = (src_ptr[0] * y0_fraction + src_ptr1[0] * y1_fraction) >> 8; + dst_ptr[1] = (src_ptr[1] * y0_fraction + src_ptr1[1] * y1_fraction) >> 8; + src_ptr += 2; + src_ptr1 += 2; + dst_ptr += 2; + } + if (width & 1) { + dst_ptr[0] = (src_ptr[0] * y0_fraction + src_ptr1[0] * y1_fraction) >> 8; + } +} + +// Use first 4 shuffler values to reorder ARGB channels. +void ARGBShuffleRow_C(const uint8* src_argb, uint8* dst_argb, + const uint8* shuffler, int width) { + int index0 = shuffler[0]; + int index1 = shuffler[1]; + int index2 = shuffler[2]; + int index3 = shuffler[3]; + // Shuffle a row of ARGB. + int x; + for (x = 0; x < width; ++x) { + // To support in-place conversion. + uint8 b = src_argb[index0]; + uint8 g = src_argb[index1]; + uint8 r = src_argb[index2]; + uint8 a = src_argb[index3]; + dst_argb[0] = b; + dst_argb[1] = g; + dst_argb[2] = r; + dst_argb[3] = a; + src_argb += 4; + dst_argb += 4; + } +} + +void I422ToYUY2Row_C(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + uint8* dst_frame, int width) { + int x; + for (x = 0; x < width - 1; x += 2) { + dst_frame[0] = src_y[0]; + dst_frame[1] = src_u[0]; + dst_frame[2] = src_y[1]; + dst_frame[3] = src_v[0]; + dst_frame += 4; + src_y += 2; + src_u += 1; + src_v += 1; + } + if (width & 1) { + dst_frame[0] = src_y[0]; + dst_frame[1] = src_u[0]; + dst_frame[2] = 0; + dst_frame[3] = src_v[0]; + } +} + +void I422ToUYVYRow_C(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + uint8* dst_frame, int width) { + int x; + for (x = 0; x < width - 1; x += 2) { + dst_frame[0] = src_u[0]; + dst_frame[1] = src_y[0]; + dst_frame[2] = src_v[0]; + dst_frame[3] = src_y[1]; + dst_frame += 4; + src_y += 2; + src_u += 1; + src_v += 1; + } + if (width & 1) { + dst_frame[0] = src_u[0]; + dst_frame[1] = src_y[0]; + dst_frame[2] = src_v[0]; + dst_frame[3] = 0; + } +} + + +void ARGBPolynomialRow_C(const uint8* src_argb, + uint8* dst_argb, + const float* poly, + int width) { + int i; + for (i = 0; i < width; ++i) { + float b = (float)(src_argb[0]); + float g = (float)(src_argb[1]); + float r = (float)(src_argb[2]); + float a = (float)(src_argb[3]); + float b2 = b * b; + float g2 = g * g; + float r2 = r * r; + float a2 = a * a; + float db = poly[0] + poly[4] * b; + float dg = poly[1] + poly[5] * g; + float dr = poly[2] + poly[6] * r; + float da = poly[3] + poly[7] * a; + float b3 = b2 * b; + float g3 = g2 * g; + float r3 = r2 * r; + float a3 = a2 * a; + db += poly[8] * b2; + dg += poly[9] * g2; + dr += poly[10] * r2; + da += poly[11] * a2; + db += poly[12] * b3; + dg += poly[13] * g3; + dr += poly[14] * r3; + da += poly[15] * a3; + + dst_argb[0] = Clamp((int32)(db)); + dst_argb[1] = Clamp((int32)(dg)); + dst_argb[2] = Clamp((int32)(dr)); + dst_argb[3] = Clamp((int32)(da)); + src_argb += 4; + dst_argb += 4; + } +} + +void ARGBLumaColorTableRow_C(const uint8* src_argb, uint8* dst_argb, int width, + const uint8* luma, uint32 lumacoeff) { + uint32 bc = lumacoeff & 0xff; + uint32 gc = (lumacoeff >> 8) & 0xff; + uint32 rc = (lumacoeff >> 16) & 0xff; + + int i; + for (i = 0; i < width - 1; i += 2) { + // Luminance in rows, color values in columns. + const uint8* luma0 = ((src_argb[0] * bc + src_argb[1] * gc + + src_argb[2] * rc) & 0x7F00u) + luma; + const uint8* luma1; + dst_argb[0] = luma0[src_argb[0]]; + dst_argb[1] = luma0[src_argb[1]]; + dst_argb[2] = luma0[src_argb[2]]; + dst_argb[3] = src_argb[3]; + luma1 = ((src_argb[4] * bc + src_argb[5] * gc + + src_argb[6] * rc) & 0x7F00u) + luma; + dst_argb[4] = luma1[src_argb[4]]; + dst_argb[5] = luma1[src_argb[5]]; + dst_argb[6] = luma1[src_argb[6]]; + dst_argb[7] = src_argb[7]; + src_argb += 8; + dst_argb += 8; + } + if (width & 1) { + // Luminance in rows, color values in columns. + const uint8* luma0 = ((src_argb[0] * bc + src_argb[1] * gc + + src_argb[2] * rc) & 0x7F00u) + luma; + dst_argb[0] = luma0[src_argb[0]]; + dst_argb[1] = luma0[src_argb[1]]; + dst_argb[2] = luma0[src_argb[2]]; + dst_argb[3] = src_argb[3]; + } +} + +void ARGBCopyAlphaRow_C(const uint8* src, uint8* dst, int width) { + int i; + for (i = 0; i < width - 1; i += 2) { + dst[3] = src[3]; + dst[7] = src[7]; + dst += 8; + src += 8; + } + if (width & 1) { + dst[3] = src[3]; + } +} + +void ARGBExtractAlphaRow_C(const uint8* src_argb, uint8* dst_a, int width) { + int i; + for (i = 0; i < width - 1; i += 2) { + dst_a[0] = src_argb[3]; + dst_a[1] = src_argb[7]; + dst_a += 2; + src_argb += 8; + } + if (width & 1) { + dst_a[0] = src_argb[3]; + } +} + +void ARGBCopyYToAlphaRow_C(const uint8* src, uint8* dst, int width) { + int i; + for (i = 0; i < width - 1; i += 2) { + dst[3] = src[0]; + dst[7] = src[1]; + dst += 8; + src += 2; + } + if (width & 1) { + dst[3] = src[0]; + } +} + +// Maximum temporary width for wrappers to process at a time, in pixels. +#define MAXTWIDTH 2048 + +#if !(defined(_MSC_VER) && defined(_M_IX86)) && \ + defined(HAS_I422TORGB565ROW_SSSE3) +// row_win.cc has asm version, but GCC uses 2 step wrapper. +void I422ToRGB565Row_SSSE3(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + uint8* dst_rgb565, + const struct YuvConstants* yuvconstants, + int width) { + SIMD_ALIGNED(uint8 row[MAXTWIDTH * 4]); + while (width > 0) { + int twidth = width > MAXTWIDTH ? MAXTWIDTH : width; + I422ToARGBRow_SSSE3(src_y, src_u, src_v, row, yuvconstants, twidth); + ARGBToRGB565Row_SSE2(row, dst_rgb565, twidth); + src_y += twidth; + src_u += twidth / 2; + src_v += twidth / 2; + dst_rgb565 += twidth * 2; + width -= twidth; + } +} +#endif + +#if defined(HAS_I422TOARGB1555ROW_SSSE3) +void I422ToARGB1555Row_SSSE3(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + uint8* dst_argb1555, + const struct YuvConstants* yuvconstants, + int width) { + // Row buffer for intermediate ARGB pixels. + SIMD_ALIGNED(uint8 row[MAXTWIDTH * 4]); + while (width > 0) { + int twidth = width > MAXTWIDTH ? MAXTWIDTH : width; + I422ToARGBRow_SSSE3(src_y, src_u, src_v, row, yuvconstants, twidth); + ARGBToARGB1555Row_SSE2(row, dst_argb1555, twidth); + src_y += twidth; + src_u += twidth / 2; + src_v += twidth / 2; + dst_argb1555 += twidth * 2; + width -= twidth; + } +} +#endif + +#if defined(HAS_I422TOARGB4444ROW_SSSE3) +void I422ToARGB4444Row_SSSE3(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + uint8* dst_argb4444, + const struct YuvConstants* yuvconstants, + int width) { + // Row buffer for intermediate ARGB pixels. + SIMD_ALIGNED(uint8 row[MAXTWIDTH * 4]); + while (width > 0) { + int twidth = width > MAXTWIDTH ? MAXTWIDTH : width; + I422ToARGBRow_SSSE3(src_y, src_u, src_v, row, yuvconstants, twidth); + ARGBToARGB4444Row_SSE2(row, dst_argb4444, twidth); + src_y += twidth; + src_u += twidth / 2; + src_v += twidth / 2; + dst_argb4444 += twidth * 2; + width -= twidth; + } +} +#endif + +#if defined(HAS_NV12TORGB565ROW_SSSE3) +void NV12ToRGB565Row_SSSE3(const uint8* src_y, + const uint8* src_uv, + uint8* dst_rgb565, + const struct YuvConstants* yuvconstants, + int width) { + // Row buffer for intermediate ARGB pixels. + SIMD_ALIGNED(uint8 row[MAXTWIDTH * 4]); + while (width > 0) { + int twidth = width > MAXTWIDTH ? MAXTWIDTH : width; + NV12ToARGBRow_SSSE3(src_y, src_uv, row, yuvconstants, twidth); + ARGBToRGB565Row_SSE2(row, dst_rgb565, twidth); + src_y += twidth; + src_uv += twidth; + dst_rgb565 += twidth * 2; + width -= twidth; + } +} +#endif + +#if defined(HAS_I422TORGB565ROW_AVX2) +void I422ToRGB565Row_AVX2(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + uint8* dst_rgb565, + const struct YuvConstants* yuvconstants, + int width) { + SIMD_ALIGNED(uint8 row[MAXTWIDTH * 4]); + while (width > 0) { + int twidth = width > MAXTWIDTH ? MAXTWIDTH : width; + I422ToARGBRow_AVX2(src_y, src_u, src_v, row, yuvconstants, twidth); +#if defined(HAS_ARGBTORGB565ROW_AVX2) + ARGBToRGB565Row_AVX2(row, dst_rgb565, twidth); +#else + ARGBToRGB565Row_SSE2(row, dst_rgb565, twidth); +#endif + src_y += twidth; + src_u += twidth / 2; + src_v += twidth / 2; + dst_rgb565 += twidth * 2; + width -= twidth; + } +} +#endif + +#if defined(HAS_I422TOARGB1555ROW_AVX2) +void I422ToARGB1555Row_AVX2(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + uint8* dst_argb1555, + const struct YuvConstants* yuvconstants, + int width) { + // Row buffer for intermediate ARGB pixels. + SIMD_ALIGNED(uint8 row[MAXTWIDTH * 4]); + while (width > 0) { + int twidth = width > MAXTWIDTH ? MAXTWIDTH : width; + I422ToARGBRow_AVX2(src_y, src_u, src_v, row, yuvconstants, twidth); +#if defined(HAS_ARGBTOARGB1555ROW_AVX2) + ARGBToARGB1555Row_AVX2(row, dst_argb1555, twidth); +#else + ARGBToARGB1555Row_SSE2(row, dst_argb1555, twidth); +#endif + src_y += twidth; + src_u += twidth / 2; + src_v += twidth / 2; + dst_argb1555 += twidth * 2; + width -= twidth; + } +} +#endif + +#if defined(HAS_I422TOARGB4444ROW_AVX2) +void I422ToARGB4444Row_AVX2(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + uint8* dst_argb4444, + const struct YuvConstants* yuvconstants, + int width) { + // Row buffer for intermediate ARGB pixels. + SIMD_ALIGNED(uint8 row[MAXTWIDTH * 4]); + while (width > 0) { + int twidth = width > MAXTWIDTH ? MAXTWIDTH : width; + I422ToARGBRow_AVX2(src_y, src_u, src_v, row, yuvconstants, twidth); +#if defined(HAS_ARGBTOARGB4444ROW_AVX2) + ARGBToARGB4444Row_AVX2(row, dst_argb4444, twidth); +#else + ARGBToARGB4444Row_SSE2(row, dst_argb4444, twidth); +#endif + src_y += twidth; + src_u += twidth / 2; + src_v += twidth / 2; + dst_argb4444 += twidth * 2; + width -= twidth; + } +} +#endif + +#if defined(HAS_I422TORGB24ROW_AVX2) +void I422ToRGB24Row_AVX2(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + uint8* dst_rgb24, + const struct YuvConstants* yuvconstants, + int width) { + // Row buffer for intermediate ARGB pixels. + SIMD_ALIGNED(uint8 row[MAXTWIDTH * 4]); + while (width > 0) { + int twidth = width > MAXTWIDTH ? MAXTWIDTH : width; + I422ToARGBRow_AVX2(src_y, src_u, src_v, row, yuvconstants, twidth); + // TODO(fbarchard): ARGBToRGB24Row_AVX2 + ARGBToRGB24Row_SSSE3(row, dst_rgb24, twidth); + src_y += twidth; + src_u += twidth / 2; + src_v += twidth / 2; + dst_rgb24 += twidth * 3; + width -= twidth; + } +} +#endif + +#if defined(HAS_NV12TORGB565ROW_AVX2) +void NV12ToRGB565Row_AVX2(const uint8* src_y, + const uint8* src_uv, + uint8* dst_rgb565, + const struct YuvConstants* yuvconstants, + int width) { + // Row buffer for intermediate ARGB pixels. + SIMD_ALIGNED(uint8 row[MAXTWIDTH * 4]); + while (width > 0) { + int twidth = width > MAXTWIDTH ? MAXTWIDTH : width; + NV12ToARGBRow_AVX2(src_y, src_uv, row, yuvconstants, twidth); +#if defined(HAS_ARGBTORGB565ROW_AVX2) + ARGBToRGB565Row_AVX2(row, dst_rgb565, twidth); +#else + ARGBToRGB565Row_SSE2(row, dst_rgb565, twidth); +#endif + src_y += twidth; + src_uv += twidth; + dst_rgb565 += twidth * 2; + width -= twidth; + } +} +#endif + +#ifdef __cplusplus +} // extern "C" +} // namespace libyuv +#endif diff --git a/third_party/libyuv/source/row_gcc.cc b/third_party/libyuv/source/row_gcc.cc new file mode 100644 index 0000000..1ac7ef1 --- /dev/null +++ b/third_party/libyuv/source/row_gcc.cc @@ -0,0 +1,5534 @@ +// VERSION 2 +/* + * Copyright 2011 The LibYuv Project Authors. All rights reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "libyuv/row.h" + +#ifdef __cplusplus +namespace libyuv { +extern "C" { +#endif + +// This module is for GCC x86 and x64. +#if !defined(LIBYUV_DISABLE_X86) && \ + (defined(__x86_64__) || (defined(__i386__) && !defined(_MSC_VER))) + +#if defined(HAS_ARGBTOYROW_SSSE3) || defined(HAS_ARGBGRAYROW_SSSE3) + +// Constants for ARGB +static vec8 kARGBToY = { + 13, 65, 33, 0, 13, 65, 33, 0, 13, 65, 33, 0, 13, 65, 33, 0 +}; + +// JPeg full range. +static vec8 kARGBToYJ = { + 15, 75, 38, 0, 15, 75, 38, 0, 15, 75, 38, 0, 15, 75, 38, 0 +}; +#endif // defined(HAS_ARGBTOYROW_SSSE3) || defined(HAS_ARGBGRAYROW_SSSE3) + +#if defined(HAS_ARGBTOYROW_SSSE3) || defined(HAS_I422TOARGBROW_SSSE3) + +static vec8 kARGBToU = { + 112, -74, -38, 0, 112, -74, -38, 0, 112, -74, -38, 0, 112, -74, -38, 0 +}; + +static vec8 kARGBToUJ = { + 127, -84, -43, 0, 127, -84, -43, 0, 127, -84, -43, 0, 127, -84, -43, 0 +}; + +static vec8 kARGBToV = { + -18, -94, 112, 0, -18, -94, 112, 0, -18, -94, 112, 0, -18, -94, 112, 0, +}; + +static vec8 kARGBToVJ = { + -20, -107, 127, 0, -20, -107, 127, 0, -20, -107, 127, 0, -20, -107, 127, 0 +}; + +// Constants for BGRA +static vec8 kBGRAToY = { + 0, 33, 65, 13, 0, 33, 65, 13, 0, 33, 65, 13, 0, 33, 65, 13 +}; + +static vec8 kBGRAToU = { + 0, -38, -74, 112, 0, -38, -74, 112, 0, -38, -74, 112, 0, -38, -74, 112 +}; + +static vec8 kBGRAToV = { + 0, 112, -94, -18, 0, 112, -94, -18, 0, 112, -94, -18, 0, 112, -94, -18 +}; + +// Constants for ABGR +static vec8 kABGRToY = { + 33, 65, 13, 0, 33, 65, 13, 0, 33, 65, 13, 0, 33, 65, 13, 0 +}; + +static vec8 kABGRToU = { + -38, -74, 112, 0, -38, -74, 112, 0, -38, -74, 112, 0, -38, -74, 112, 0 +}; + +static vec8 kABGRToV = { + 112, -94, -18, 0, 112, -94, -18, 0, 112, -94, -18, 0, 112, -94, -18, 0 +}; + +// Constants for RGBA. +static vec8 kRGBAToY = { + 0, 13, 65, 33, 0, 13, 65, 33, 0, 13, 65, 33, 0, 13, 65, 33 +}; + +static vec8 kRGBAToU = { + 0, 112, -74, -38, 0, 112, -74, -38, 0, 112, -74, -38, 0, 112, -74, -38 +}; + +static vec8 kRGBAToV = { + 0, -18, -94, 112, 0, -18, -94, 112, 0, -18, -94, 112, 0, -18, -94, 112 +}; + +static uvec8 kAddY16 = { + 16u, 16u, 16u, 16u, 16u, 16u, 16u, 16u, 16u, 16u, 16u, 16u, 16u, 16u, 16u, 16u +}; + +// 7 bit fixed point 0.5. +static vec16 kAddYJ64 = { + 64, 64, 64, 64, 64, 64, 64, 64 +}; + +static uvec8 kAddUV128 = { + 128u, 128u, 128u, 128u, 128u, 128u, 128u, 128u, + 128u, 128u, 128u, 128u, 128u, 128u, 128u, 128u +}; + +static uvec16 kAddUVJ128 = { + 0x8080u, 0x8080u, 0x8080u, 0x8080u, 0x8080u, 0x8080u, 0x8080u, 0x8080u +}; +#endif // defined(HAS_ARGBTOYROW_SSSE3) || defined(HAS_I422TOARGBROW_SSSE3) + +#ifdef HAS_RGB24TOARGBROW_SSSE3 + +// Shuffle table for converting RGB24 to ARGB. +static uvec8 kShuffleMaskRGB24ToARGB = { + 0u, 1u, 2u, 12u, 3u, 4u, 5u, 13u, 6u, 7u, 8u, 14u, 9u, 10u, 11u, 15u +}; + +// Shuffle table for converting RAW to ARGB. +static uvec8 kShuffleMaskRAWToARGB = { + 2u, 1u, 0u, 12u, 5u, 4u, 3u, 13u, 8u, 7u, 6u, 14u, 11u, 10u, 9u, 15u +}; + +// Shuffle table for converting RAW to RGB24. First 8. +static const uvec8 kShuffleMaskRAWToRGB24_0 = { + 2u, 1u, 0u, 5u, 4u, 3u, 8u, 7u, + 128u, 128u, 128u, 128u, 128u, 128u, 128u, 128u +}; + +// Shuffle table for converting RAW to RGB24. Middle 8. +static const uvec8 kShuffleMaskRAWToRGB24_1 = { + 2u, 7u, 6u, 5u, 10u, 9u, 8u, 13u, + 128u, 128u, 128u, 128u, 128u, 128u, 128u, 128u +}; + +// Shuffle table for converting RAW to RGB24. Last 8. +static const uvec8 kShuffleMaskRAWToRGB24_2 = { + 8u, 7u, 12u, 11u, 10u, 15u, 14u, 13u, + 128u, 128u, 128u, 128u, 128u, 128u, 128u, 128u +}; + +// Shuffle table for converting ARGB to RGB24. +static uvec8 kShuffleMaskARGBToRGB24 = { + 0u, 1u, 2u, 4u, 5u, 6u, 8u, 9u, 10u, 12u, 13u, 14u, 128u, 128u, 128u, 128u +}; + +// Shuffle table for converting ARGB to RAW. +static uvec8 kShuffleMaskARGBToRAW = { + 2u, 1u, 0u, 6u, 5u, 4u, 10u, 9u, 8u, 14u, 13u, 12u, 128u, 128u, 128u, 128u +}; + +// Shuffle table for converting ARGBToRGB24 for I422ToRGB24. First 8 + next 4 +static uvec8 kShuffleMaskARGBToRGB24_0 = { + 0u, 1u, 2u, 4u, 5u, 6u, 8u, 9u, 128u, 128u, 128u, 128u, 10u, 12u, 13u, 14u +}; + +// YUY2 shuf 16 Y to 32 Y. +static const lvec8 kShuffleYUY2Y = { + 0, 0, 2, 2, 4, 4, 6, 6, 8, 8, 10, 10, 12, 12, 14, 14, + 0, 0, 2, 2, 4, 4, 6, 6, 8, 8, 10, 10, 12, 12, 14, 14 +}; + +// YUY2 shuf 8 UV to 16 UV. +static const lvec8 kShuffleYUY2UV = { + 1, 3, 1, 3, 5, 7, 5, 7, 9, 11, 9, 11, 13, 15, 13, 15, + 1, 3, 1, 3, 5, 7, 5, 7, 9, 11, 9, 11, 13, 15, 13, 15 +}; + +// UYVY shuf 16 Y to 32 Y. +static const lvec8 kShuffleUYVYY = { + 1, 1, 3, 3, 5, 5, 7, 7, 9, 9, 11, 11, 13, 13, 15, 15, + 1, 1, 3, 3, 5, 5, 7, 7, 9, 9, 11, 11, 13, 13, 15, 15 +}; + +// UYVY shuf 8 UV to 16 UV. +static const lvec8 kShuffleUYVYUV = { + 0, 2, 0, 2, 4, 6, 4, 6, 8, 10, 8, 10, 12, 14, 12, 14, + 0, 2, 0, 2, 4, 6, 4, 6, 8, 10, 8, 10, 12, 14, 12, 14 +}; + +// NV21 shuf 8 VU to 16 UV. +static const lvec8 kShuffleNV21 = { + 1, 0, 1, 0, 3, 2, 3, 2, 5, 4, 5, 4, 7, 6, 7, 6, + 1, 0, 1, 0, 3, 2, 3, 2, 5, 4, 5, 4, 7, 6, 7, 6, +}; +#endif // HAS_RGB24TOARGBROW_SSSE3 + +#ifdef HAS_J400TOARGBROW_SSE2 +void J400ToARGBRow_SSE2(const uint8* src_y, uint8* dst_argb, int width) { + asm volatile ( + "pcmpeqb %%xmm5,%%xmm5 \n" + "pslld $0x18,%%xmm5 \n" + LABELALIGN + "1: \n" + "movq " MEMACCESS(0) ",%%xmm0 \n" + "lea " MEMLEA(0x8,0) ",%0 \n" + "punpcklbw %%xmm0,%%xmm0 \n" + "movdqa %%xmm0,%%xmm1 \n" + "punpcklwd %%xmm0,%%xmm0 \n" + "punpckhwd %%xmm1,%%xmm1 \n" + "por %%xmm5,%%xmm0 \n" + "por %%xmm5,%%xmm1 \n" + "movdqu %%xmm0," MEMACCESS(1) " \n" + "movdqu %%xmm1," MEMACCESS2(0x10,1) " \n" + "lea " MEMLEA(0x20,1) ",%1 \n" + "sub $0x8,%2 \n" + "jg 1b \n" + : "+r"(src_y), // %0 + "+r"(dst_argb), // %1 + "+r"(width) // %2 + :: "memory", "cc", "xmm0", "xmm1", "xmm5" + ); +} +#endif // HAS_J400TOARGBROW_SSE2 + +#ifdef HAS_RGB24TOARGBROW_SSSE3 +void RGB24ToARGBRow_SSSE3(const uint8* src_rgb24, uint8* dst_argb, int width) { + asm volatile ( + "pcmpeqb %%xmm5,%%xmm5 \n" // generate mask 0xff000000 + "pslld $0x18,%%xmm5 \n" + "movdqa %3,%%xmm4 \n" + LABELALIGN + "1: \n" + "movdqu " MEMACCESS(0) ",%%xmm0 \n" + "movdqu " MEMACCESS2(0x10,0) ",%%xmm1 \n" + "movdqu " MEMACCESS2(0x20,0) ",%%xmm3 \n" + "lea " MEMLEA(0x30,0) ",%0 \n" + "movdqa %%xmm3,%%xmm2 \n" + "palignr $0x8,%%xmm1,%%xmm2 \n" + "pshufb %%xmm4,%%xmm2 \n" + "por %%xmm5,%%xmm2 \n" + "palignr $0xc,%%xmm0,%%xmm1 \n" + "pshufb %%xmm4,%%xmm0 \n" + "movdqu %%xmm2," MEMACCESS2(0x20,1) " \n" + "por %%xmm5,%%xmm0 \n" + "pshufb %%xmm4,%%xmm1 \n" + "movdqu %%xmm0," MEMACCESS(1) " \n" + "por %%xmm5,%%xmm1 \n" + "palignr $0x4,%%xmm3,%%xmm3 \n" + "pshufb %%xmm4,%%xmm3 \n" + "movdqu %%xmm1," MEMACCESS2(0x10,1) " \n" + "por %%xmm5,%%xmm3 \n" + "movdqu %%xmm3," MEMACCESS2(0x30,1) " \n" + "lea " MEMLEA(0x40,1) ",%1 \n" + "sub $0x10,%2 \n" + "jg 1b \n" + : "+r"(src_rgb24), // %0 + "+r"(dst_argb), // %1 + "+r"(width) // %2 + : "m"(kShuffleMaskRGB24ToARGB) // %3 + : "memory", "cc" , "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5" + ); +} + +void RAWToARGBRow_SSSE3(const uint8* src_raw, uint8* dst_argb, int width) { + asm volatile ( + "pcmpeqb %%xmm5,%%xmm5 \n" // generate mask 0xff000000 + "pslld $0x18,%%xmm5 \n" + "movdqa %3,%%xmm4 \n" + LABELALIGN + "1: \n" + "movdqu " MEMACCESS(0) ",%%xmm0 \n" + "movdqu " MEMACCESS2(0x10,0) ",%%xmm1 \n" + "movdqu " MEMACCESS2(0x20,0) ",%%xmm3 \n" + "lea " MEMLEA(0x30,0) ",%0 \n" + "movdqa %%xmm3,%%xmm2 \n" + "palignr $0x8,%%xmm1,%%xmm2 \n" + "pshufb %%xmm4,%%xmm2 \n" + "por %%xmm5,%%xmm2 \n" + "palignr $0xc,%%xmm0,%%xmm1 \n" + "pshufb %%xmm4,%%xmm0 \n" + "movdqu %%xmm2," MEMACCESS2(0x20,1) " \n" + "por %%xmm5,%%xmm0 \n" + "pshufb %%xmm4,%%xmm1 \n" + "movdqu %%xmm0," MEMACCESS(1) " \n" + "por %%xmm5,%%xmm1 \n" + "palignr $0x4,%%xmm3,%%xmm3 \n" + "pshufb %%xmm4,%%xmm3 \n" + "movdqu %%xmm1," MEMACCESS2(0x10,1) " \n" + "por %%xmm5,%%xmm3 \n" + "movdqu %%xmm3," MEMACCESS2(0x30,1) " \n" + "lea " MEMLEA(0x40,1) ",%1 \n" + "sub $0x10,%2 \n" + "jg 1b \n" + : "+r"(src_raw), // %0 + "+r"(dst_argb), // %1 + "+r"(width) // %2 + : "m"(kShuffleMaskRAWToARGB) // %3 + : "memory", "cc", "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5" + ); +} + +void RAWToRGB24Row_SSSE3(const uint8* src_raw, uint8* dst_rgb24, int width) { + asm volatile ( + "movdqa %3,%%xmm3 \n" + "movdqa %4,%%xmm4 \n" + "movdqa %5,%%xmm5 \n" + LABELALIGN + "1: \n" + "movdqu " MEMACCESS(0) ",%%xmm0 \n" + "movdqu " MEMACCESS2(0x4,0) ",%%xmm1 \n" + "movdqu " MEMACCESS2(0x8,0) ",%%xmm2 \n" + "lea " MEMLEA(0x18,0) ",%0 \n" + "pshufb %%xmm3,%%xmm0 \n" + "pshufb %%xmm4,%%xmm1 \n" + "pshufb %%xmm5,%%xmm2 \n" + "movq %%xmm0," MEMACCESS(1) " \n" + "movq %%xmm1," MEMACCESS2(0x8,1) " \n" + "movq %%xmm2," MEMACCESS2(0x10,1) " \n" + "lea " MEMLEA(0x18,1) ",%1 \n" + "sub $0x8,%2 \n" + "jg 1b \n" + : "+r"(src_raw), // %0 + "+r"(dst_rgb24), // %1 + "+r"(width) // %2 + : "m"(kShuffleMaskRAWToRGB24_0), // %3 + "m"(kShuffleMaskRAWToRGB24_1), // %4 + "m"(kShuffleMaskRAWToRGB24_2) // %5 + : "memory", "cc", "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5" + ); +} + +void RGB565ToARGBRow_SSE2(const uint8* src, uint8* dst, int width) { + asm volatile ( + "mov $0x1080108,%%eax \n" + "movd %%eax,%%xmm5 \n" + "pshufd $0x0,%%xmm5,%%xmm5 \n" + "mov $0x20802080,%%eax \n" + "movd %%eax,%%xmm6 \n" + "pshufd $0x0,%%xmm6,%%xmm6 \n" + "pcmpeqb %%xmm3,%%xmm3 \n" + "psllw $0xb,%%xmm3 \n" + "pcmpeqb %%xmm4,%%xmm4 \n" + "psllw $0xa,%%xmm4 \n" + "psrlw $0x5,%%xmm4 \n" + "pcmpeqb %%xmm7,%%xmm7 \n" + "psllw $0x8,%%xmm7 \n" + "sub %0,%1 \n" + "sub %0,%1 \n" + LABELALIGN + "1: \n" + "movdqu " MEMACCESS(0) ",%%xmm0 \n" + "movdqa %%xmm0,%%xmm1 \n" + "movdqa %%xmm0,%%xmm2 \n" + "pand %%xmm3,%%xmm1 \n" + "psllw $0xb,%%xmm2 \n" + "pmulhuw %%xmm5,%%xmm1 \n" + "pmulhuw %%xmm5,%%xmm2 \n" + "psllw $0x8,%%xmm1 \n" + "por %%xmm2,%%xmm1 \n" + "pand %%xmm4,%%xmm0 \n" + "pmulhuw %%xmm6,%%xmm0 \n" + "por %%xmm7,%%xmm0 \n" + "movdqa %%xmm1,%%xmm2 \n" + "punpcklbw %%xmm0,%%xmm1 \n" + "punpckhbw %%xmm0,%%xmm2 \n" + MEMOPMEM(movdqu,xmm1,0x00,1,0,2) // movdqu %%xmm1,(%1,%0,2) + MEMOPMEM(movdqu,xmm2,0x10,1,0,2) // movdqu %%xmm2,0x10(%1,%0,2) + "lea " MEMLEA(0x10,0) ",%0 \n" + "sub $0x8,%2 \n" + "jg 1b \n" + : "+r"(src), // %0 + "+r"(dst), // %1 + "+r"(width) // %2 + : + : "memory", "cc", "eax", NACL_R14 + "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7" + ); +} + +void ARGB1555ToARGBRow_SSE2(const uint8* src, uint8* dst, int width) { + asm volatile ( + "mov $0x1080108,%%eax \n" + "movd %%eax,%%xmm5 \n" + "pshufd $0x0,%%xmm5,%%xmm5 \n" + "mov $0x42004200,%%eax \n" + "movd %%eax,%%xmm6 \n" + "pshufd $0x0,%%xmm6,%%xmm6 \n" + "pcmpeqb %%xmm3,%%xmm3 \n" + "psllw $0xb,%%xmm3 \n" + "movdqa %%xmm3,%%xmm4 \n" + "psrlw $0x6,%%xmm4 \n" + "pcmpeqb %%xmm7,%%xmm7 \n" + "psllw $0x8,%%xmm7 \n" + "sub %0,%1 \n" + "sub %0,%1 \n" + LABELALIGN + "1: \n" + "movdqu " MEMACCESS(0) ",%%xmm0 \n" + "movdqa %%xmm0,%%xmm1 \n" + "movdqa %%xmm0,%%xmm2 \n" + "psllw $0x1,%%xmm1 \n" + "psllw $0xb,%%xmm2 \n" + "pand %%xmm3,%%xmm1 \n" + "pmulhuw %%xmm5,%%xmm2 \n" + "pmulhuw %%xmm5,%%xmm1 \n" + "psllw $0x8,%%xmm1 \n" + "por %%xmm2,%%xmm1 \n" + "movdqa %%xmm0,%%xmm2 \n" + "pand %%xmm4,%%xmm0 \n" + "psraw $0x8,%%xmm2 \n" + "pmulhuw %%xmm6,%%xmm0 \n" + "pand %%xmm7,%%xmm2 \n" + "por %%xmm2,%%xmm0 \n" + "movdqa %%xmm1,%%xmm2 \n" + "punpcklbw %%xmm0,%%xmm1 \n" + "punpckhbw %%xmm0,%%xmm2 \n" + MEMOPMEM(movdqu,xmm1,0x00,1,0,2) // movdqu %%xmm1,(%1,%0,2) + MEMOPMEM(movdqu,xmm2,0x10,1,0,2) // movdqu %%xmm2,0x10(%1,%0,2) + "lea " MEMLEA(0x10,0) ",%0 \n" + "sub $0x8,%2 \n" + "jg 1b \n" + : "+r"(src), // %0 + "+r"(dst), // %1 + "+r"(width) // %2 + : + : "memory", "cc", "eax", NACL_R14 + "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7" + ); +} + +void ARGB4444ToARGBRow_SSE2(const uint8* src, uint8* dst, int width) { + asm volatile ( + "mov $0xf0f0f0f,%%eax \n" + "movd %%eax,%%xmm4 \n" + "pshufd $0x0,%%xmm4,%%xmm4 \n" + "movdqa %%xmm4,%%xmm5 \n" + "pslld $0x4,%%xmm5 \n" + "sub %0,%1 \n" + "sub %0,%1 \n" + LABELALIGN + "1: \n" + "movdqu " MEMACCESS(0) ",%%xmm0 \n" + "movdqa %%xmm0,%%xmm2 \n" + "pand %%xmm4,%%xmm0 \n" + "pand %%xmm5,%%xmm2 \n" + "movdqa %%xmm0,%%xmm1 \n" + "movdqa %%xmm2,%%xmm3 \n" + "psllw $0x4,%%xmm1 \n" + "psrlw $0x4,%%xmm3 \n" + "por %%xmm1,%%xmm0 \n" + "por %%xmm3,%%xmm2 \n" + "movdqa %%xmm0,%%xmm1 \n" + "punpcklbw %%xmm2,%%xmm0 \n" + "punpckhbw %%xmm2,%%xmm1 \n" + MEMOPMEM(movdqu,xmm0,0x00,1,0,2) // movdqu %%xmm0,(%1,%0,2) + MEMOPMEM(movdqu,xmm1,0x10,1,0,2) // movdqu %%xmm1,0x10(%1,%0,2) + "lea " MEMLEA(0x10,0) ",%0 \n" + "sub $0x8,%2 \n" + "jg 1b \n" + : "+r"(src), // %0 + "+r"(dst), // %1 + "+r"(width) // %2 + : + : "memory", "cc", "eax", NACL_R14 + "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5" + ); +} + +void ARGBToRGB24Row_SSSE3(const uint8* src, uint8* dst, int width) { + asm volatile ( + "movdqa %3,%%xmm6 \n" + LABELALIGN + "1: \n" + "movdqu " MEMACCESS(0) ",%%xmm0 \n" + "movdqu " MEMACCESS2(0x10,0) ",%%xmm1 \n" + "movdqu " MEMACCESS2(0x20,0) ",%%xmm2 \n" + "movdqu " MEMACCESS2(0x30,0) ",%%xmm3 \n" + "lea " MEMLEA(0x40,0) ",%0 \n" + "pshufb %%xmm6,%%xmm0 \n" + "pshufb %%xmm6,%%xmm1 \n" + "pshufb %%xmm6,%%xmm2 \n" + "pshufb %%xmm6,%%xmm3 \n" + "movdqa %%xmm1,%%xmm4 \n" + "psrldq $0x4,%%xmm1 \n" + "pslldq $0xc,%%xmm4 \n" + "movdqa %%xmm2,%%xmm5 \n" + "por %%xmm4,%%xmm0 \n" + "pslldq $0x8,%%xmm5 \n" + "movdqu %%xmm0," MEMACCESS(1) " \n" + "por %%xmm5,%%xmm1 \n" + "psrldq $0x8,%%xmm2 \n" + "pslldq $0x4,%%xmm3 \n" + "por %%xmm3,%%xmm2 \n" + "movdqu %%xmm1," MEMACCESS2(0x10,1) " \n" + "movdqu %%xmm2," MEMACCESS2(0x20,1) " \n" + "lea " MEMLEA(0x30,1) ",%1 \n" + "sub $0x10,%2 \n" + "jg 1b \n" + : "+r"(src), // %0 + "+r"(dst), // %1 + "+r"(width) // %2 + : "m"(kShuffleMaskARGBToRGB24) // %3 + : "memory", "cc", "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6" + ); +} + +void ARGBToRAWRow_SSSE3(const uint8* src, uint8* dst, int width) { + asm volatile ( + "movdqa %3,%%xmm6 \n" + LABELALIGN + "1: \n" + "movdqu " MEMACCESS(0) ",%%xmm0 \n" + "movdqu " MEMACCESS2(0x10,0) ",%%xmm1 \n" + "movdqu " MEMACCESS2(0x20,0) ",%%xmm2 \n" + "movdqu " MEMACCESS2(0x30,0) ",%%xmm3 \n" + "lea " MEMLEA(0x40,0) ",%0 \n" + "pshufb %%xmm6,%%xmm0 \n" + "pshufb %%xmm6,%%xmm1 \n" + "pshufb %%xmm6,%%xmm2 \n" + "pshufb %%xmm6,%%xmm3 \n" + "movdqa %%xmm1,%%xmm4 \n" + "psrldq $0x4,%%xmm1 \n" + "pslldq $0xc,%%xmm4 \n" + "movdqa %%xmm2,%%xmm5 \n" + "por %%xmm4,%%xmm0 \n" + "pslldq $0x8,%%xmm5 \n" + "movdqu %%xmm0," MEMACCESS(1) " \n" + "por %%xmm5,%%xmm1 \n" + "psrldq $0x8,%%xmm2 \n" + "pslldq $0x4,%%xmm3 \n" + "por %%xmm3,%%xmm2 \n" + "movdqu %%xmm1," MEMACCESS2(0x10,1) " \n" + "movdqu %%xmm2," MEMACCESS2(0x20,1) " \n" + "lea " MEMLEA(0x30,1) ",%1 \n" + "sub $0x10,%2 \n" + "jg 1b \n" + : "+r"(src), // %0 + "+r"(dst), // %1 + "+r"(width) // %2 + : "m"(kShuffleMaskARGBToRAW) // %3 + : "memory", "cc", "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6" + ); +} + +void ARGBToRGB565Row_SSE2(const uint8* src, uint8* dst, int width) { + asm volatile ( + "pcmpeqb %%xmm3,%%xmm3 \n" + "psrld $0x1b,%%xmm3 \n" + "pcmpeqb %%xmm4,%%xmm4 \n" + "psrld $0x1a,%%xmm4 \n" + "pslld $0x5,%%xmm4 \n" + "pcmpeqb %%xmm5,%%xmm5 \n" + "pslld $0xb,%%xmm5 \n" + LABELALIGN + "1: \n" + "movdqu " MEMACCESS(0) ",%%xmm0 \n" + "movdqa %%xmm0,%%xmm1 \n" + "movdqa %%xmm0,%%xmm2 \n" + "pslld $0x8,%%xmm0 \n" + "psrld $0x3,%%xmm1 \n" + "psrld $0x5,%%xmm2 \n" + "psrad $0x10,%%xmm0 \n" + "pand %%xmm3,%%xmm1 \n" + "pand %%xmm4,%%xmm2 \n" + "pand %%xmm5,%%xmm0 \n" + "por %%xmm2,%%xmm1 \n" + "por %%xmm1,%%xmm0 \n" + "packssdw %%xmm0,%%xmm0 \n" + "lea " MEMLEA(0x10,0) ",%0 \n" + "movq %%xmm0," MEMACCESS(1) " \n" + "lea " MEMLEA(0x8,1) ",%1 \n" + "sub $0x4,%2 \n" + "jg 1b \n" + : "+r"(src), // %0 + "+r"(dst), // %1 + "+r"(width) // %2 + :: "memory", "cc", "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5" + ); +} + +void ARGBToRGB565DitherRow_SSE2(const uint8* src, uint8* dst, + const uint32 dither4, int width) { + asm volatile ( + "movd %3,%%xmm6 \n" + "punpcklbw %%xmm6,%%xmm6 \n" + "movdqa %%xmm6,%%xmm7 \n" + "punpcklwd %%xmm6,%%xmm6 \n" + "punpckhwd %%xmm7,%%xmm7 \n" + "pcmpeqb %%xmm3,%%xmm3 \n" + "psrld $0x1b,%%xmm3 \n" + "pcmpeqb %%xmm4,%%xmm4 \n" + "psrld $0x1a,%%xmm4 \n" + "pslld $0x5,%%xmm4 \n" + "pcmpeqb %%xmm5,%%xmm5 \n" + "pslld $0xb,%%xmm5 \n" + + LABELALIGN + "1: \n" + "movdqu (%0),%%xmm0 \n" + "paddusb %%xmm6,%%xmm0 \n" + "movdqa %%xmm0,%%xmm1 \n" + "movdqa %%xmm0,%%xmm2 \n" + "pslld $0x8,%%xmm0 \n" + "psrld $0x3,%%xmm1 \n" + "psrld $0x5,%%xmm2 \n" + "psrad $0x10,%%xmm0 \n" + "pand %%xmm3,%%xmm1 \n" + "pand %%xmm4,%%xmm2 \n" + "pand %%xmm5,%%xmm0 \n" + "por %%xmm2,%%xmm1 \n" + "por %%xmm1,%%xmm0 \n" + "packssdw %%xmm0,%%xmm0 \n" + "lea 0x10(%0),%0 \n" + "movq %%xmm0,(%1) \n" + "lea 0x8(%1),%1 \n" + "sub $0x4,%2 \n" + "jg 1b \n" + : "+r"(src), // %0 + "+r"(dst), // %1 + "+r"(width) // %2 + : "m"(dither4) // %3 + : "memory", "cc", + "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7" + ); +} + +#ifdef HAS_ARGBTORGB565DITHERROW_AVX2 +void ARGBToRGB565DitherRow_AVX2(const uint8* src, uint8* dst, + const uint32 dither4, int width) { + asm volatile ( + "vbroadcastss %3,%%xmm6 \n" + "vpunpcklbw %%xmm6,%%xmm6,%%xmm6 \n" + "vpermq $0xd8,%%ymm6,%%ymm6 \n" + "vpunpcklwd %%ymm6,%%ymm6,%%ymm6 \n" + "vpcmpeqb %%ymm3,%%ymm3,%%ymm3 \n" + "vpsrld $0x1b,%%ymm3,%%ymm3 \n" + "vpcmpeqb %%ymm4,%%ymm4,%%ymm4 \n" + "vpsrld $0x1a,%%ymm4,%%ymm4 \n" + "vpslld $0x5,%%ymm4,%%ymm4 \n" + "vpslld $0xb,%%ymm3,%%ymm5 \n" + + LABELALIGN + "1: \n" + "vmovdqu (%0),%%ymm0 \n" + "vpaddusb %%ymm6,%%ymm0,%%ymm0 \n" + "vpsrld $0x5,%%ymm0,%%ymm2 \n" + "vpsrld $0x3,%%ymm0,%%ymm1 \n" + "vpsrld $0x8,%%ymm0,%%ymm0 \n" + "vpand %%ymm4,%%ymm2,%%ymm2 \n" + "vpand %%ymm3,%%ymm1,%%ymm1 \n" + "vpand %%ymm5,%%ymm0,%%ymm0 \n" + "vpor %%ymm2,%%ymm1,%%ymm1 \n" + "vpor %%ymm1,%%ymm0,%%ymm0 \n" + "vpackusdw %%ymm0,%%ymm0,%%ymm0 \n" + "vpermq $0xd8,%%ymm0,%%ymm0 \n" + "lea 0x20(%0),%0 \n" + "vmovdqu %%xmm0,(%1) \n" + "lea 0x10(%1),%1 \n" + "sub $0x8,%2 \n" + "jg 1b \n" + "vzeroupper \n" + : "+r"(src), // %0 + "+r"(dst), // %1 + "+r"(width) // %2 + : "m"(dither4) // %3 + : "memory", "cc", + "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7" + ); +} +#endif // HAS_ARGBTORGB565DITHERROW_AVX2 + + +void ARGBToARGB1555Row_SSE2(const uint8* src, uint8* dst, int width) { + asm volatile ( + "pcmpeqb %%xmm4,%%xmm4 \n" + "psrld $0x1b,%%xmm4 \n" + "movdqa %%xmm4,%%xmm5 \n" + "pslld $0x5,%%xmm5 \n" + "movdqa %%xmm4,%%xmm6 \n" + "pslld $0xa,%%xmm6 \n" + "pcmpeqb %%xmm7,%%xmm7 \n" + "pslld $0xf,%%xmm7 \n" + LABELALIGN + "1: \n" + "movdqu " MEMACCESS(0) ",%%xmm0 \n" + "movdqa %%xmm0,%%xmm1 \n" + "movdqa %%xmm0,%%xmm2 \n" + "movdqa %%xmm0,%%xmm3 \n" + "psrad $0x10,%%xmm0 \n" + "psrld $0x3,%%xmm1 \n" + "psrld $0x6,%%xmm2 \n" + "psrld $0x9,%%xmm3 \n" + "pand %%xmm7,%%xmm0 \n" + "pand %%xmm4,%%xmm1 \n" + "pand %%xmm5,%%xmm2 \n" + "pand %%xmm6,%%xmm3 \n" + "por %%xmm1,%%xmm0 \n" + "por %%xmm3,%%xmm2 \n" + "por %%xmm2,%%xmm0 \n" + "packssdw %%xmm0,%%xmm0 \n" + "lea " MEMLEA(0x10,0) ",%0 \n" + "movq %%xmm0," MEMACCESS(1) " \n" + "lea " MEMLEA(0x8,1) ",%1 \n" + "sub $0x4,%2 \n" + "jg 1b \n" + : "+r"(src), // %0 + "+r"(dst), // %1 + "+r"(width) // %2 + :: "memory", "cc", + "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7" + ); +} + +void ARGBToARGB4444Row_SSE2(const uint8* src, uint8* dst, int width) { + asm volatile ( + "pcmpeqb %%xmm4,%%xmm4 \n" + "psllw $0xc,%%xmm4 \n" + "movdqa %%xmm4,%%xmm3 \n" + "psrlw $0x8,%%xmm3 \n" + LABELALIGN + "1: \n" + "movdqu " MEMACCESS(0) ",%%xmm0 \n" + "movdqa %%xmm0,%%xmm1 \n" + "pand %%xmm3,%%xmm0 \n" + "pand %%xmm4,%%xmm1 \n" + "psrlq $0x4,%%xmm0 \n" + "psrlq $0x8,%%xmm1 \n" + "por %%xmm1,%%xmm0 \n" + "packuswb %%xmm0,%%xmm0 \n" + "lea " MEMLEA(0x10,0) ",%0 \n" + "movq %%xmm0," MEMACCESS(1) " \n" + "lea " MEMLEA(0x8,1) ",%1 \n" + "sub $0x4,%2 \n" + "jg 1b \n" + : "+r"(src), // %0 + "+r"(dst), // %1 + "+r"(width) // %2 + :: "memory", "cc", "xmm0", "xmm1", "xmm2", "xmm3", "xmm4" + ); +} +#endif // HAS_RGB24TOARGBROW_SSSE3 + +#ifdef HAS_ARGBTOYROW_SSSE3 +// Convert 16 ARGB pixels (64 bytes) to 16 Y values. +void ARGBToYRow_SSSE3(const uint8* src_argb, uint8* dst_y, int width) { + asm volatile ( + "movdqa %3,%%xmm4 \n" + "movdqa %4,%%xmm5 \n" + LABELALIGN + "1: \n" + "movdqu " MEMACCESS(0) ",%%xmm0 \n" + "movdqu " MEMACCESS2(0x10,0) ",%%xmm1 \n" + "movdqu " MEMACCESS2(0x20,0) ",%%xmm2 \n" + "movdqu " MEMACCESS2(0x30,0) ",%%xmm3 \n" + "pmaddubsw %%xmm4,%%xmm0 \n" + "pmaddubsw %%xmm4,%%xmm1 \n" + "pmaddubsw %%xmm4,%%xmm2 \n" + "pmaddubsw %%xmm4,%%xmm3 \n" + "lea " MEMLEA(0x40,0) ",%0 \n" + "phaddw %%xmm1,%%xmm0 \n" + "phaddw %%xmm3,%%xmm2 \n" + "psrlw $0x7,%%xmm0 \n" + "psrlw $0x7,%%xmm2 \n" + "packuswb %%xmm2,%%xmm0 \n" + "paddb %%xmm5,%%xmm0 \n" + "movdqu %%xmm0," MEMACCESS(1) " \n" + "lea " MEMLEA(0x10,1) ",%1 \n" + "sub $0x10,%2 \n" + "jg 1b \n" + : "+r"(src_argb), // %0 + "+r"(dst_y), // %1 + "+r"(width) // %2 + : "m"(kARGBToY), // %3 + "m"(kAddY16) // %4 + : "memory", "cc", "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5" + ); +} +#endif // HAS_ARGBTOYROW_SSSE3 + +#ifdef HAS_ARGBTOYJROW_SSSE3 +// Convert 16 ARGB pixels (64 bytes) to 16 YJ values. +// Same as ARGBToYRow but different coefficients, no add 16, but do rounding. +void ARGBToYJRow_SSSE3(const uint8* src_argb, uint8* dst_y, int width) { + asm volatile ( + "movdqa %3,%%xmm4 \n" + "movdqa %4,%%xmm5 \n" + LABELALIGN + "1: \n" + "movdqu " MEMACCESS(0) ",%%xmm0 \n" + "movdqu " MEMACCESS2(0x10,0) ",%%xmm1 \n" + "movdqu " MEMACCESS2(0x20,0) ",%%xmm2 \n" + "movdqu " MEMACCESS2(0x30,0) ",%%xmm3 \n" + "pmaddubsw %%xmm4,%%xmm0 \n" + "pmaddubsw %%xmm4,%%xmm1 \n" + "pmaddubsw %%xmm4,%%xmm2 \n" + "pmaddubsw %%xmm4,%%xmm3 \n" + "lea " MEMLEA(0x40,0) ",%0 \n" + "phaddw %%xmm1,%%xmm0 \n" + "phaddw %%xmm3,%%xmm2 \n" + "paddw %%xmm5,%%xmm0 \n" + "paddw %%xmm5,%%xmm2 \n" + "psrlw $0x7,%%xmm0 \n" + "psrlw $0x7,%%xmm2 \n" + "packuswb %%xmm2,%%xmm0 \n" + "movdqu %%xmm0," MEMACCESS(1) " \n" + "lea " MEMLEA(0x10,1) ",%1 \n" + "sub $0x10,%2 \n" + "jg 1b \n" + : "+r"(src_argb), // %0 + "+r"(dst_y), // %1 + "+r"(width) // %2 + : "m"(kARGBToYJ), // %3 + "m"(kAddYJ64) // %4 + : "memory", "cc", "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5" + ); +} +#endif // HAS_ARGBTOYJROW_SSSE3 + +#ifdef HAS_ARGBTOYROW_AVX2 +// vpermd for vphaddw + vpackuswb vpermd. +static const lvec32 kPermdARGBToY_AVX = { + 0, 4, 1, 5, 2, 6, 3, 7 +}; + +// Convert 32 ARGB pixels (128 bytes) to 32 Y values. +void ARGBToYRow_AVX2(const uint8* src_argb, uint8* dst_y, int width) { + asm volatile ( + "vbroadcastf128 %3,%%ymm4 \n" + "vbroadcastf128 %4,%%ymm5 \n" + "vmovdqu %5,%%ymm6 \n" + LABELALIGN + "1: \n" + "vmovdqu " MEMACCESS(0) ",%%ymm0 \n" + "vmovdqu " MEMACCESS2(0x20,0) ",%%ymm1 \n" + "vmovdqu " MEMACCESS2(0x40,0) ",%%ymm2 \n" + "vmovdqu " MEMACCESS2(0x60,0) ",%%ymm3 \n" + "vpmaddubsw %%ymm4,%%ymm0,%%ymm0 \n" + "vpmaddubsw %%ymm4,%%ymm1,%%ymm1 \n" + "vpmaddubsw %%ymm4,%%ymm2,%%ymm2 \n" + "vpmaddubsw %%ymm4,%%ymm3,%%ymm3 \n" + "lea " MEMLEA(0x80,0) ",%0 \n" + "vphaddw %%ymm1,%%ymm0,%%ymm0 \n" // mutates. + "vphaddw %%ymm3,%%ymm2,%%ymm2 \n" + "vpsrlw $0x7,%%ymm0,%%ymm0 \n" + "vpsrlw $0x7,%%ymm2,%%ymm2 \n" + "vpackuswb %%ymm2,%%ymm0,%%ymm0 \n" // mutates. + "vpermd %%ymm0,%%ymm6,%%ymm0 \n" // unmutate. + "vpaddb %%ymm5,%%ymm0,%%ymm0 \n" // add 16 for Y + "vmovdqu %%ymm0," MEMACCESS(1) " \n" + "lea " MEMLEA(0x20,1) ",%1 \n" + "sub $0x20,%2 \n" + "jg 1b \n" + "vzeroupper \n" + : "+r"(src_argb), // %0 + "+r"(dst_y), // %1 + "+r"(width) // %2 + : "m"(kARGBToY), // %3 + "m"(kAddY16), // %4 + "m"(kPermdARGBToY_AVX) // %5 + : "memory", "cc", "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6" + ); +} +#endif // HAS_ARGBTOYROW_AVX2 + +#ifdef HAS_ARGBTOYJROW_AVX2 +// Convert 32 ARGB pixels (128 bytes) to 32 Y values. +void ARGBToYJRow_AVX2(const uint8* src_argb, uint8* dst_y, int width) { + asm volatile ( + "vbroadcastf128 %3,%%ymm4 \n" + "vbroadcastf128 %4,%%ymm5 \n" + "vmovdqu %5,%%ymm6 \n" + LABELALIGN + "1: \n" + "vmovdqu " MEMACCESS(0) ",%%ymm0 \n" + "vmovdqu " MEMACCESS2(0x20,0) ",%%ymm1 \n" + "vmovdqu " MEMACCESS2(0x40,0) ",%%ymm2 \n" + "vmovdqu " MEMACCESS2(0x60,0) ",%%ymm3 \n" + "vpmaddubsw %%ymm4,%%ymm0,%%ymm0 \n" + "vpmaddubsw %%ymm4,%%ymm1,%%ymm1 \n" + "vpmaddubsw %%ymm4,%%ymm2,%%ymm2 \n" + "vpmaddubsw %%ymm4,%%ymm3,%%ymm3 \n" + "lea " MEMLEA(0x80,0) ",%0 \n" + "vphaddw %%ymm1,%%ymm0,%%ymm0 \n" // mutates. + "vphaddw %%ymm3,%%ymm2,%%ymm2 \n" + "vpaddw %%ymm5,%%ymm0,%%ymm0 \n" // Add .5 for rounding. + "vpaddw %%ymm5,%%ymm2,%%ymm2 \n" + "vpsrlw $0x7,%%ymm0,%%ymm0 \n" + "vpsrlw $0x7,%%ymm2,%%ymm2 \n" + "vpackuswb %%ymm2,%%ymm0,%%ymm0 \n" // mutates. + "vpermd %%ymm0,%%ymm6,%%ymm0 \n" // unmutate. + "vmovdqu %%ymm0," MEMACCESS(1) " \n" + "lea " MEMLEA(0x20,1) ",%1 \n" + "sub $0x20,%2 \n" + "jg 1b \n" + "vzeroupper \n" + : "+r"(src_argb), // %0 + "+r"(dst_y), // %1 + "+r"(width) // %2 + : "m"(kARGBToYJ), // %3 + "m"(kAddYJ64), // %4 + "m"(kPermdARGBToY_AVX) // %5 + : "memory", "cc", "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6" + ); +} +#endif // HAS_ARGBTOYJROW_AVX2 + +#ifdef HAS_ARGBTOUVROW_SSSE3 +void ARGBToUVRow_SSSE3(const uint8* src_argb0, int src_stride_argb, + uint8* dst_u, uint8* dst_v, int width) { + asm volatile ( + "movdqa %5,%%xmm3 \n" + "movdqa %6,%%xmm4 \n" + "movdqa %7,%%xmm5 \n" + "sub %1,%2 \n" + LABELALIGN + "1: \n" + "movdqu " MEMACCESS(0) ",%%xmm0 \n" + MEMOPREG(movdqu,0x00,0,4,1,xmm7) // movdqu (%0,%4,1),%%xmm7 + "pavgb %%xmm7,%%xmm0 \n" + "movdqu " MEMACCESS2(0x10,0) ",%%xmm1 \n" + MEMOPREG(movdqu,0x10,0,4,1,xmm7) // movdqu 0x10(%0,%4,1),%%xmm7 + "pavgb %%xmm7,%%xmm1 \n" + "movdqu " MEMACCESS2(0x20,0) ",%%xmm2 \n" + MEMOPREG(movdqu,0x20,0,4,1,xmm7) // movdqu 0x20(%0,%4,1),%%xmm7 + "pavgb %%xmm7,%%xmm2 \n" + "movdqu " MEMACCESS2(0x30,0) ",%%xmm6 \n" + MEMOPREG(movdqu,0x30,0,4,1,xmm7) // movdqu 0x30(%0,%4,1),%%xmm7 + "pavgb %%xmm7,%%xmm6 \n" + + "lea " MEMLEA(0x40,0) ",%0 \n" + "movdqa %%xmm0,%%xmm7 \n" + "shufps $0x88,%%xmm1,%%xmm0 \n" + "shufps $0xdd,%%xmm1,%%xmm7 \n" + "pavgb %%xmm7,%%xmm0 \n" + "movdqa %%xmm2,%%xmm7 \n" + "shufps $0x88,%%xmm6,%%xmm2 \n" + "shufps $0xdd,%%xmm6,%%xmm7 \n" + "pavgb %%xmm7,%%xmm2 \n" + "movdqa %%xmm0,%%xmm1 \n" + "movdqa %%xmm2,%%xmm6 \n" + "pmaddubsw %%xmm4,%%xmm0 \n" + "pmaddubsw %%xmm4,%%xmm2 \n" + "pmaddubsw %%xmm3,%%xmm1 \n" + "pmaddubsw %%xmm3,%%xmm6 \n" + "phaddw %%xmm2,%%xmm0 \n" + "phaddw %%xmm6,%%xmm1 \n" + "psraw $0x8,%%xmm0 \n" + "psraw $0x8,%%xmm1 \n" + "packsswb %%xmm1,%%xmm0 \n" + "paddb %%xmm5,%%xmm0 \n" + "movlps %%xmm0," MEMACCESS(1) " \n" + MEMOPMEM(movhps,xmm0,0x00,1,2,1) // movhps %%xmm0,(%1,%2,1) + "lea " MEMLEA(0x8,1) ",%1 \n" + "sub $0x10,%3 \n" + "jg 1b \n" + : "+r"(src_argb0), // %0 + "+r"(dst_u), // %1 + "+r"(dst_v), // %2 + "+rm"(width) // %3 + : "r"((intptr_t)(src_stride_argb)), // %4 + "m"(kARGBToV), // %5 + "m"(kARGBToU), // %6 + "m"(kAddUV128) // %7 + : "memory", "cc", NACL_R14 + "xmm0", "xmm1", "xmm2", "xmm6", "xmm7" + ); +} +#endif // HAS_ARGBTOUVROW_SSSE3 + +#ifdef HAS_ARGBTOUVROW_AVX2 +// vpshufb for vphaddw + vpackuswb packed to shorts. +static const lvec8 kShufARGBToUV_AVX = { + 0, 1, 8, 9, 2, 3, 10, 11, 4, 5, 12, 13, 6, 7, 14, 15, + 0, 1, 8, 9, 2, 3, 10, 11, 4, 5, 12, 13, 6, 7, 14, 15 +}; +void ARGBToUVRow_AVX2(const uint8* src_argb0, int src_stride_argb, + uint8* dst_u, uint8* dst_v, int width) { + asm volatile ( + "vbroadcastf128 %5,%%ymm5 \n" + "vbroadcastf128 %6,%%ymm6 \n" + "vbroadcastf128 %7,%%ymm7 \n" + "sub %1,%2 \n" + LABELALIGN + "1: \n" + "vmovdqu " MEMACCESS(0) ",%%ymm0 \n" + "vmovdqu " MEMACCESS2(0x20,0) ",%%ymm1 \n" + "vmovdqu " MEMACCESS2(0x40,0) ",%%ymm2 \n" + "vmovdqu " MEMACCESS2(0x60,0) ",%%ymm3 \n" + VMEMOPREG(vpavgb,0x00,0,4,1,ymm0,ymm0) // vpavgb (%0,%4,1),%%ymm0,%%ymm0 + VMEMOPREG(vpavgb,0x20,0,4,1,ymm1,ymm1) + VMEMOPREG(vpavgb,0x40,0,4,1,ymm2,ymm2) + VMEMOPREG(vpavgb,0x60,0,4,1,ymm3,ymm3) + "lea " MEMLEA(0x80,0) ",%0 \n" + "vshufps $0x88,%%ymm1,%%ymm0,%%ymm4 \n" + "vshufps $0xdd,%%ymm1,%%ymm0,%%ymm0 \n" + "vpavgb %%ymm4,%%ymm0,%%ymm0 \n" + "vshufps $0x88,%%ymm3,%%ymm2,%%ymm4 \n" + "vshufps $0xdd,%%ymm3,%%ymm2,%%ymm2 \n" + "vpavgb %%ymm4,%%ymm2,%%ymm2 \n" + + "vpmaddubsw %%ymm7,%%ymm0,%%ymm1 \n" + "vpmaddubsw %%ymm7,%%ymm2,%%ymm3 \n" + "vpmaddubsw %%ymm6,%%ymm0,%%ymm0 \n" + "vpmaddubsw %%ymm6,%%ymm2,%%ymm2 \n" + "vphaddw %%ymm3,%%ymm1,%%ymm1 \n" + "vphaddw %%ymm2,%%ymm0,%%ymm0 \n" + "vpsraw $0x8,%%ymm1,%%ymm1 \n" + "vpsraw $0x8,%%ymm0,%%ymm0 \n" + "vpacksswb %%ymm0,%%ymm1,%%ymm0 \n" + "vpermq $0xd8,%%ymm0,%%ymm0 \n" + "vpshufb %8,%%ymm0,%%ymm0 \n" + "vpaddb %%ymm5,%%ymm0,%%ymm0 \n" + + "vextractf128 $0x0,%%ymm0," MEMACCESS(1) " \n" + VEXTOPMEM(vextractf128,1,ymm0,0x0,1,2,1) // vextractf128 $1,%%ymm0,(%1,%2,1) + "lea " MEMLEA(0x10,1) ",%1 \n" + "sub $0x20,%3 \n" + "jg 1b \n" + "vzeroupper \n" + : "+r"(src_argb0), // %0 + "+r"(dst_u), // %1 + "+r"(dst_v), // %2 + "+rm"(width) // %3 + : "r"((intptr_t)(src_stride_argb)), // %4 + "m"(kAddUV128), // %5 + "m"(kARGBToV), // %6 + "m"(kARGBToU), // %7 + "m"(kShufARGBToUV_AVX) // %8 + : "memory", "cc", NACL_R14 + "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7" + ); +} +#endif // HAS_ARGBTOUVROW_AVX2 + +#ifdef HAS_ARGBTOUVJROW_AVX2 +void ARGBToUVJRow_AVX2(const uint8* src_argb0, int src_stride_argb, + uint8* dst_u, uint8* dst_v, int width) { + asm volatile ( + "vbroadcastf128 %5,%%ymm5 \n" + "vbroadcastf128 %6,%%ymm6 \n" + "vbroadcastf128 %7,%%ymm7 \n" + "sub %1,%2 \n" + LABELALIGN + "1: \n" + "vmovdqu " MEMACCESS(0) ",%%ymm0 \n" + "vmovdqu " MEMACCESS2(0x20,0) ",%%ymm1 \n" + "vmovdqu " MEMACCESS2(0x40,0) ",%%ymm2 \n" + "vmovdqu " MEMACCESS2(0x60,0) ",%%ymm3 \n" + VMEMOPREG(vpavgb,0x00,0,4,1,ymm0,ymm0) // vpavgb (%0,%4,1),%%ymm0,%%ymm0 + VMEMOPREG(vpavgb,0x20,0,4,1,ymm1,ymm1) + VMEMOPREG(vpavgb,0x40,0,4,1,ymm2,ymm2) + VMEMOPREG(vpavgb,0x60,0,4,1,ymm3,ymm3) + "lea " MEMLEA(0x80,0) ",%0 \n" + "vshufps $0x88,%%ymm1,%%ymm0,%%ymm4 \n" + "vshufps $0xdd,%%ymm1,%%ymm0,%%ymm0 \n" + "vpavgb %%ymm4,%%ymm0,%%ymm0 \n" + "vshufps $0x88,%%ymm3,%%ymm2,%%ymm4 \n" + "vshufps $0xdd,%%ymm3,%%ymm2,%%ymm2 \n" + "vpavgb %%ymm4,%%ymm2,%%ymm2 \n" + + "vpmaddubsw %%ymm7,%%ymm0,%%ymm1 \n" + "vpmaddubsw %%ymm7,%%ymm2,%%ymm3 \n" + "vpmaddubsw %%ymm6,%%ymm0,%%ymm0 \n" + "vpmaddubsw %%ymm6,%%ymm2,%%ymm2 \n" + "vphaddw %%ymm3,%%ymm1,%%ymm1 \n" + "vphaddw %%ymm2,%%ymm0,%%ymm0 \n" + "vpaddw %%ymm5,%%ymm0,%%ymm0 \n" + "vpaddw %%ymm5,%%ymm1,%%ymm1 \n" + "vpsraw $0x8,%%ymm1,%%ymm1 \n" + "vpsraw $0x8,%%ymm0,%%ymm0 \n" + "vpacksswb %%ymm0,%%ymm1,%%ymm0 \n" + "vpermq $0xd8,%%ymm0,%%ymm0 \n" + "vpshufb %8,%%ymm0,%%ymm0 \n" + + "vextractf128 $0x0,%%ymm0," MEMACCESS(1) " \n" + VEXTOPMEM(vextractf128,1,ymm0,0x0,1,2,1) // vextractf128 $1,%%ymm0,(%1,%2,1) + "lea " MEMLEA(0x10,1) ",%1 \n" + "sub $0x20,%3 \n" + "jg 1b \n" + "vzeroupper \n" + : "+r"(src_argb0), // %0 + "+r"(dst_u), // %1 + "+r"(dst_v), // %2 + "+rm"(width) // %3 + : "r"((intptr_t)(src_stride_argb)), // %4 + "m"(kAddUVJ128), // %5 + "m"(kARGBToVJ), // %6 + "m"(kARGBToUJ), // %7 + "m"(kShufARGBToUV_AVX) // %8 + : "memory", "cc", NACL_R14 + "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7" + ); +} +#endif // HAS_ARGBTOUVJROW_AVX2 + +#ifdef HAS_ARGBTOUVJROW_SSSE3 +void ARGBToUVJRow_SSSE3(const uint8* src_argb0, int src_stride_argb, + uint8* dst_u, uint8* dst_v, int width) { + asm volatile ( + "movdqa %5,%%xmm3 \n" + "movdqa %6,%%xmm4 \n" + "movdqa %7,%%xmm5 \n" + "sub %1,%2 \n" + LABELALIGN + "1: \n" + "movdqu " MEMACCESS(0) ",%%xmm0 \n" + MEMOPREG(movdqu,0x00,0,4,1,xmm7) // movdqu (%0,%4,1),%%xmm7 + "pavgb %%xmm7,%%xmm0 \n" + "movdqu " MEMACCESS2(0x10,0) ",%%xmm1 \n" + MEMOPREG(movdqu,0x10,0,4,1,xmm7) // movdqu 0x10(%0,%4,1),%%xmm7 + "pavgb %%xmm7,%%xmm1 \n" + "movdqu " MEMACCESS2(0x20,0) ",%%xmm2 \n" + MEMOPREG(movdqu,0x20,0,4,1,xmm7) // movdqu 0x20(%0,%4,1),%%xmm7 + "pavgb %%xmm7,%%xmm2 \n" + "movdqu " MEMACCESS2(0x30,0) ",%%xmm6 \n" + MEMOPREG(movdqu,0x30,0,4,1,xmm7) // movdqu 0x30(%0,%4,1),%%xmm7 + "pavgb %%xmm7,%%xmm6 \n" + + "lea " MEMLEA(0x40,0) ",%0 \n" + "movdqa %%xmm0,%%xmm7 \n" + "shufps $0x88,%%xmm1,%%xmm0 \n" + "shufps $0xdd,%%xmm1,%%xmm7 \n" + "pavgb %%xmm7,%%xmm0 \n" + "movdqa %%xmm2,%%xmm7 \n" + "shufps $0x88,%%xmm6,%%xmm2 \n" + "shufps $0xdd,%%xmm6,%%xmm7 \n" + "pavgb %%xmm7,%%xmm2 \n" + "movdqa %%xmm0,%%xmm1 \n" + "movdqa %%xmm2,%%xmm6 \n" + "pmaddubsw %%xmm4,%%xmm0 \n" + "pmaddubsw %%xmm4,%%xmm2 \n" + "pmaddubsw %%xmm3,%%xmm1 \n" + "pmaddubsw %%xmm3,%%xmm6 \n" + "phaddw %%xmm2,%%xmm0 \n" + "phaddw %%xmm6,%%xmm1 \n" + "paddw %%xmm5,%%xmm0 \n" + "paddw %%xmm5,%%xmm1 \n" + "psraw $0x8,%%xmm0 \n" + "psraw $0x8,%%xmm1 \n" + "packsswb %%xmm1,%%xmm0 \n" + "movlps %%xmm0," MEMACCESS(1) " \n" + MEMOPMEM(movhps,xmm0,0x00,1,2,1) // movhps %%xmm0,(%1,%2,1) + "lea " MEMLEA(0x8,1) ",%1 \n" + "sub $0x10,%3 \n" + "jg 1b \n" + : "+r"(src_argb0), // %0 + "+r"(dst_u), // %1 + "+r"(dst_v), // %2 + "+rm"(width) // %3 + : "r"((intptr_t)(src_stride_argb)), // %4 + "m"(kARGBToVJ), // %5 + "m"(kARGBToUJ), // %6 + "m"(kAddUVJ128) // %7 + : "memory", "cc", NACL_R14 + "xmm0", "xmm1", "xmm2", "xmm6", "xmm7" + ); +} +#endif // HAS_ARGBTOUVJROW_SSSE3 + +#ifdef HAS_ARGBTOUV444ROW_SSSE3 +void ARGBToUV444Row_SSSE3(const uint8* src_argb, uint8* dst_u, uint8* dst_v, + int width) { + asm volatile ( + "movdqa %4,%%xmm3 \n" + "movdqa %5,%%xmm4 \n" + "movdqa %6,%%xmm5 \n" + "sub %1,%2 \n" + LABELALIGN + "1: \n" + "movdqu " MEMACCESS(0) ",%%xmm0 \n" + "movdqu " MEMACCESS2(0x10,0) ",%%xmm1 \n" + "movdqu " MEMACCESS2(0x20,0) ",%%xmm2 \n" + "movdqu " MEMACCESS2(0x30,0) ",%%xmm6 \n" + "pmaddubsw %%xmm4,%%xmm0 \n" + "pmaddubsw %%xmm4,%%xmm1 \n" + "pmaddubsw %%xmm4,%%xmm2 \n" + "pmaddubsw %%xmm4,%%xmm6 \n" + "phaddw %%xmm1,%%xmm0 \n" + "phaddw %%xmm6,%%xmm2 \n" + "psraw $0x8,%%xmm0 \n" + "psraw $0x8,%%xmm2 \n" + "packsswb %%xmm2,%%xmm0 \n" + "paddb %%xmm5,%%xmm0 \n" + "movdqu %%xmm0," MEMACCESS(1) " \n" + "movdqu " MEMACCESS(0) ",%%xmm0 \n" + "movdqu " MEMACCESS2(0x10,0) ",%%xmm1 \n" + "movdqu " MEMACCESS2(0x20,0) ",%%xmm2 \n" + "movdqu " MEMACCESS2(0x30,0) ",%%xmm6 \n" + "pmaddubsw %%xmm3,%%xmm0 \n" + "pmaddubsw %%xmm3,%%xmm1 \n" + "pmaddubsw %%xmm3,%%xmm2 \n" + "pmaddubsw %%xmm3,%%xmm6 \n" + "phaddw %%xmm1,%%xmm0 \n" + "phaddw %%xmm6,%%xmm2 \n" + "psraw $0x8,%%xmm0 \n" + "psraw $0x8,%%xmm2 \n" + "packsswb %%xmm2,%%xmm0 \n" + "paddb %%xmm5,%%xmm0 \n" + "lea " MEMLEA(0x40,0) ",%0 \n" + MEMOPMEM(movdqu,xmm0,0x00,1,2,1) // movdqu %%xmm0,(%1,%2,1) + "lea " MEMLEA(0x10,1) ",%1 \n" + "sub $0x10,%3 \n" + "jg 1b \n" + : "+r"(src_argb), // %0 + "+r"(dst_u), // %1 + "+r"(dst_v), // %2 + "+rm"(width) // %3 + : "m"(kARGBToV), // %4 + "m"(kARGBToU), // %5 + "m"(kAddUV128) // %6 + : "memory", "cc", NACL_R14 + "xmm0", "xmm1", "xmm2", "xmm6" + ); +} +#endif // HAS_ARGBTOUV444ROW_SSSE3 + +void BGRAToYRow_SSSE3(const uint8* src_bgra, uint8* dst_y, int width) { + asm volatile ( + "movdqa %4,%%xmm5 \n" + "movdqa %3,%%xmm4 \n" + LABELALIGN + "1: \n" + "movdqu " MEMACCESS(0) ",%%xmm0 \n" + "movdqu " MEMACCESS2(0x10,0) ",%%xmm1 \n" + "movdqu " MEMACCESS2(0x20,0) ",%%xmm2 \n" + "movdqu " MEMACCESS2(0x30,0) ",%%xmm3 \n" + "pmaddubsw %%xmm4,%%xmm0 \n" + "pmaddubsw %%xmm4,%%xmm1 \n" + "pmaddubsw %%xmm4,%%xmm2 \n" + "pmaddubsw %%xmm4,%%xmm3 \n" + "lea " MEMLEA(0x40,0) ",%0 \n" + "phaddw %%xmm1,%%xmm0 \n" + "phaddw %%xmm3,%%xmm2 \n" + "psrlw $0x7,%%xmm0 \n" + "psrlw $0x7,%%xmm2 \n" + "packuswb %%xmm2,%%xmm0 \n" + "paddb %%xmm5,%%xmm0 \n" + "movdqu %%xmm0," MEMACCESS(1) " \n" + "lea " MEMLEA(0x10,1) ",%1 \n" + "sub $0x10,%2 \n" + "jg 1b \n" + : "+r"(src_bgra), // %0 + "+r"(dst_y), // %1 + "+r"(width) // %2 + : "m"(kBGRAToY), // %3 + "m"(kAddY16) // %4 + : "memory", "cc", "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5" + ); +} + +void BGRAToUVRow_SSSE3(const uint8* src_bgra0, int src_stride_bgra, + uint8* dst_u, uint8* dst_v, int width) { + asm volatile ( + "movdqa %5,%%xmm3 \n" + "movdqa %6,%%xmm4 \n" + "movdqa %7,%%xmm5 \n" + "sub %1,%2 \n" + LABELALIGN + "1: \n" + "movdqu " MEMACCESS(0) ",%%xmm0 \n" + MEMOPREG(movdqu,0x00,0,4,1,xmm7) // movdqu (%0,%4,1),%%xmm7 + "pavgb %%xmm7,%%xmm0 \n" + "movdqu " MEMACCESS2(0x10,0) ",%%xmm1 \n" + MEMOPREG(movdqu,0x10,0,4,1,xmm7) // movdqu 0x10(%0,%4,1),%%xmm7 + "pavgb %%xmm7,%%xmm1 \n" + "movdqu " MEMACCESS2(0x20,0) ",%%xmm2 \n" + MEMOPREG(movdqu,0x20,0,4,1,xmm7) // movdqu 0x20(%0,%4,1),%%xmm7 + "pavgb %%xmm7,%%xmm2 \n" + "movdqu " MEMACCESS2(0x30,0) ",%%xmm6 \n" + MEMOPREG(movdqu,0x30,0,4,1,xmm7) // movdqu 0x30(%0,%4,1),%%xmm7 + "pavgb %%xmm7,%%xmm6 \n" + + "lea " MEMLEA(0x40,0) ",%0 \n" + "movdqa %%xmm0,%%xmm7 \n" + "shufps $0x88,%%xmm1,%%xmm0 \n" + "shufps $0xdd,%%xmm1,%%xmm7 \n" + "pavgb %%xmm7,%%xmm0 \n" + "movdqa %%xmm2,%%xmm7 \n" + "shufps $0x88,%%xmm6,%%xmm2 \n" + "shufps $0xdd,%%xmm6,%%xmm7 \n" + "pavgb %%xmm7,%%xmm2 \n" + "movdqa %%xmm0,%%xmm1 \n" + "movdqa %%xmm2,%%xmm6 \n" + "pmaddubsw %%xmm4,%%xmm0 \n" + "pmaddubsw %%xmm4,%%xmm2 \n" + "pmaddubsw %%xmm3,%%xmm1 \n" + "pmaddubsw %%xmm3,%%xmm6 \n" + "phaddw %%xmm2,%%xmm0 \n" + "phaddw %%xmm6,%%xmm1 \n" + "psraw $0x8,%%xmm0 \n" + "psraw $0x8,%%xmm1 \n" + "packsswb %%xmm1,%%xmm0 \n" + "paddb %%xmm5,%%xmm0 \n" + "movlps %%xmm0," MEMACCESS(1) " \n" + MEMOPMEM(movhps,xmm0,0x00,1,2,1) // movhps %%xmm0,(%1,%2,1) + "lea " MEMLEA(0x8,1) ",%1 \n" + "sub $0x10,%3 \n" + "jg 1b \n" + : "+r"(src_bgra0), // %0 + "+r"(dst_u), // %1 + "+r"(dst_v), // %2 + "+rm"(width) // %3 + : "r"((intptr_t)(src_stride_bgra)), // %4 + "m"(kBGRAToV), // %5 + "m"(kBGRAToU), // %6 + "m"(kAddUV128) // %7 + : "memory", "cc", NACL_R14 + "xmm0", "xmm1", "xmm2", "xmm6", "xmm7" + ); +} + +void ABGRToYRow_SSSE3(const uint8* src_abgr, uint8* dst_y, int width) { + asm volatile ( + "movdqa %4,%%xmm5 \n" + "movdqa %3,%%xmm4 \n" + LABELALIGN + "1: \n" + "movdqu " MEMACCESS(0) ",%%xmm0 \n" + "movdqu " MEMACCESS2(0x10,0) ",%%xmm1 \n" + "movdqu " MEMACCESS2(0x20,0) ",%%xmm2 \n" + "movdqu " MEMACCESS2(0x30,0) ",%%xmm3 \n" + "pmaddubsw %%xmm4,%%xmm0 \n" + "pmaddubsw %%xmm4,%%xmm1 \n" + "pmaddubsw %%xmm4,%%xmm2 \n" + "pmaddubsw %%xmm4,%%xmm3 \n" + "lea " MEMLEA(0x40,0) ",%0 \n" + "phaddw %%xmm1,%%xmm0 \n" + "phaddw %%xmm3,%%xmm2 \n" + "psrlw $0x7,%%xmm0 \n" + "psrlw $0x7,%%xmm2 \n" + "packuswb %%xmm2,%%xmm0 \n" + "paddb %%xmm5,%%xmm0 \n" + "movdqu %%xmm0," MEMACCESS(1) " \n" + "lea " MEMLEA(0x10,1) ",%1 \n" + "sub $0x10,%2 \n" + "jg 1b \n" + : "+r"(src_abgr), // %0 + "+r"(dst_y), // %1 + "+r"(width) // %2 + : "m"(kABGRToY), // %3 + "m"(kAddY16) // %4 + : "memory", "cc", "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5" + ); +} + +void RGBAToYRow_SSSE3(const uint8* src_rgba, uint8* dst_y, int width) { + asm volatile ( + "movdqa %4,%%xmm5 \n" + "movdqa %3,%%xmm4 \n" + LABELALIGN + "1: \n" + "movdqu " MEMACCESS(0) ",%%xmm0 \n" + "movdqu " MEMACCESS2(0x10,0) ",%%xmm1 \n" + "movdqu " MEMACCESS2(0x20,0) ",%%xmm2 \n" + "movdqu " MEMACCESS2(0x30,0) ",%%xmm3 \n" + "pmaddubsw %%xmm4,%%xmm0 \n" + "pmaddubsw %%xmm4,%%xmm1 \n" + "pmaddubsw %%xmm4,%%xmm2 \n" + "pmaddubsw %%xmm4,%%xmm3 \n" + "lea " MEMLEA(0x40,0) ",%0 \n" + "phaddw %%xmm1,%%xmm0 \n" + "phaddw %%xmm3,%%xmm2 \n" + "psrlw $0x7,%%xmm0 \n" + "psrlw $0x7,%%xmm2 \n" + "packuswb %%xmm2,%%xmm0 \n" + "paddb %%xmm5,%%xmm0 \n" + "movdqu %%xmm0," MEMACCESS(1) " \n" + "lea " MEMLEA(0x10,1) ",%1 \n" + "sub $0x10,%2 \n" + "jg 1b \n" + : "+r"(src_rgba), // %0 + "+r"(dst_y), // %1 + "+r"(width) // %2 + : "m"(kRGBAToY), // %3 + "m"(kAddY16) // %4 + : "memory", "cc", "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5" + ); +} + +void ABGRToUVRow_SSSE3(const uint8* src_abgr0, int src_stride_abgr, + uint8* dst_u, uint8* dst_v, int width) { + asm volatile ( + "movdqa %5,%%xmm3 \n" + "movdqa %6,%%xmm4 \n" + "movdqa %7,%%xmm5 \n" + "sub %1,%2 \n" + LABELALIGN + "1: \n" + "movdqu " MEMACCESS(0) ",%%xmm0 \n" + MEMOPREG(movdqu,0x00,0,4,1,xmm7) // movdqu (%0,%4,1),%%xmm7 + "pavgb %%xmm7,%%xmm0 \n" + "movdqu " MEMACCESS2(0x10,0) ",%%xmm1 \n" + MEMOPREG(movdqu,0x10,0,4,1,xmm7) // movdqu 0x10(%0,%4,1),%%xmm7 + "pavgb %%xmm7,%%xmm1 \n" + "movdqu " MEMACCESS2(0x20,0) ",%%xmm2 \n" + MEMOPREG(movdqu,0x20,0,4,1,xmm7) // movdqu 0x20(%0,%4,1),%%xmm7 + "pavgb %%xmm7,%%xmm2 \n" + "movdqu " MEMACCESS2(0x30,0) ",%%xmm6 \n" + MEMOPREG(movdqu,0x30,0,4,1,xmm7) // movdqu 0x30(%0,%4,1),%%xmm7 + "pavgb %%xmm7,%%xmm6 \n" + + "lea " MEMLEA(0x40,0) ",%0 \n" + "movdqa %%xmm0,%%xmm7 \n" + "shufps $0x88,%%xmm1,%%xmm0 \n" + "shufps $0xdd,%%xmm1,%%xmm7 \n" + "pavgb %%xmm7,%%xmm0 \n" + "movdqa %%xmm2,%%xmm7 \n" + "shufps $0x88,%%xmm6,%%xmm2 \n" + "shufps $0xdd,%%xmm6,%%xmm7 \n" + "pavgb %%xmm7,%%xmm2 \n" + "movdqa %%xmm0,%%xmm1 \n" + "movdqa %%xmm2,%%xmm6 \n" + "pmaddubsw %%xmm4,%%xmm0 \n" + "pmaddubsw %%xmm4,%%xmm2 \n" + "pmaddubsw %%xmm3,%%xmm1 \n" + "pmaddubsw %%xmm3,%%xmm6 \n" + "phaddw %%xmm2,%%xmm0 \n" + "phaddw %%xmm6,%%xmm1 \n" + "psraw $0x8,%%xmm0 \n" + "psraw $0x8,%%xmm1 \n" + "packsswb %%xmm1,%%xmm0 \n" + "paddb %%xmm5,%%xmm0 \n" + "movlps %%xmm0," MEMACCESS(1) " \n" + MEMOPMEM(movhps,xmm0,0x00,1,2,1) // movhps %%xmm0,(%1,%2,1) + "lea " MEMLEA(0x8,1) ",%1 \n" + "sub $0x10,%3 \n" + "jg 1b \n" + : "+r"(src_abgr0), // %0 + "+r"(dst_u), // %1 + "+r"(dst_v), // %2 + "+rm"(width) // %3 + : "r"((intptr_t)(src_stride_abgr)), // %4 + "m"(kABGRToV), // %5 + "m"(kABGRToU), // %6 + "m"(kAddUV128) // %7 + : "memory", "cc", NACL_R14 + "xmm0", "xmm1", "xmm2", "xmm6", "xmm7" + ); +} + +void RGBAToUVRow_SSSE3(const uint8* src_rgba0, int src_stride_rgba, + uint8* dst_u, uint8* dst_v, int width) { + asm volatile ( + "movdqa %5,%%xmm3 \n" + "movdqa %6,%%xmm4 \n" + "movdqa %7,%%xmm5 \n" + "sub %1,%2 \n" + LABELALIGN + "1: \n" + "movdqu " MEMACCESS(0) ",%%xmm0 \n" + MEMOPREG(movdqu,0x00,0,4,1,xmm7) // movdqu (%0,%4,1),%%xmm7 + "pavgb %%xmm7,%%xmm0 \n" + "movdqu " MEMACCESS2(0x10,0) ",%%xmm1 \n" + MEMOPREG(movdqu,0x10,0,4,1,xmm7) // movdqu 0x10(%0,%4,1),%%xmm7 + "pavgb %%xmm7,%%xmm1 \n" + "movdqu " MEMACCESS2(0x20,0) ",%%xmm2 \n" + MEMOPREG(movdqu,0x20,0,4,1,xmm7) // movdqu 0x20(%0,%4,1),%%xmm7 + "pavgb %%xmm7,%%xmm2 \n" + "movdqu " MEMACCESS2(0x30,0) ",%%xmm6 \n" + MEMOPREG(movdqu,0x30,0,4,1,xmm7) // movdqu 0x30(%0,%4,1),%%xmm7 + "pavgb %%xmm7,%%xmm6 \n" + + "lea " MEMLEA(0x40,0) ",%0 \n" + "movdqa %%xmm0,%%xmm7 \n" + "shufps $0x88,%%xmm1,%%xmm0 \n" + "shufps $0xdd,%%xmm1,%%xmm7 \n" + "pavgb %%xmm7,%%xmm0 \n" + "movdqa %%xmm2,%%xmm7 \n" + "shufps $0x88,%%xmm6,%%xmm2 \n" + "shufps $0xdd,%%xmm6,%%xmm7 \n" + "pavgb %%xmm7,%%xmm2 \n" + "movdqa %%xmm0,%%xmm1 \n" + "movdqa %%xmm2,%%xmm6 \n" + "pmaddubsw %%xmm4,%%xmm0 \n" + "pmaddubsw %%xmm4,%%xmm2 \n" + "pmaddubsw %%xmm3,%%xmm1 \n" + "pmaddubsw %%xmm3,%%xmm6 \n" + "phaddw %%xmm2,%%xmm0 \n" + "phaddw %%xmm6,%%xmm1 \n" + "psraw $0x8,%%xmm0 \n" + "psraw $0x8,%%xmm1 \n" + "packsswb %%xmm1,%%xmm0 \n" + "paddb %%xmm5,%%xmm0 \n" + "movlps %%xmm0," MEMACCESS(1) " \n" + MEMOPMEM(movhps,xmm0,0x00,1,2,1) // movhps %%xmm0,(%1,%2,1) + "lea " MEMLEA(0x8,1) ",%1 \n" + "sub $0x10,%3 \n" + "jg 1b \n" + : "+r"(src_rgba0), // %0 + "+r"(dst_u), // %1 + "+r"(dst_v), // %2 + "+rm"(width) // %3 + : "r"((intptr_t)(src_stride_rgba)), // %4 + "m"(kRGBAToV), // %5 + "m"(kRGBAToU), // %6 + "m"(kAddUV128) // %7 + : "memory", "cc", NACL_R14 + "xmm0", "xmm1", "xmm2", "xmm6", "xmm7" + ); +} + +#if defined(HAS_I422TOARGBROW_SSSE3) || defined(HAS_I422TOARGBROW_AVX2) + +// Read 8 UV from 444 +#define READYUV444 \ + "movq " MEMACCESS([u_buf]) ",%%xmm0 \n" \ + MEMOPREG(movq, 0x00, [u_buf], [v_buf], 1, xmm1) \ + "lea " MEMLEA(0x8, [u_buf]) ",%[u_buf] \n" \ + "punpcklbw %%xmm1,%%xmm0 \n" \ + "movq " MEMACCESS([y_buf]) ",%%xmm4 \n" \ + "punpcklbw %%xmm4,%%xmm4 \n" \ + "lea " MEMLEA(0x8, [y_buf]) ",%[y_buf] \n" + +// Read 4 UV from 422, upsample to 8 UV +#define READYUV422 \ + "movd " MEMACCESS([u_buf]) ",%%xmm0 \n" \ + MEMOPREG(movd, 0x00, [u_buf], [v_buf], 1, xmm1) \ + "lea " MEMLEA(0x4, [u_buf]) ",%[u_buf] \n" \ + "punpcklbw %%xmm1,%%xmm0 \n" \ + "punpcklwd %%xmm0,%%xmm0 \n" \ + "movq " MEMACCESS([y_buf]) ",%%xmm4 \n" \ + "punpcklbw %%xmm4,%%xmm4 \n" \ + "lea " MEMLEA(0x8, [y_buf]) ",%[y_buf] \n" + +// Read 4 UV from 422, upsample to 8 UV. With 8 Alpha. +#define READYUVA422 \ + "movd " MEMACCESS([u_buf]) ",%%xmm0 \n" \ + MEMOPREG(movd, 0x00, [u_buf], [v_buf], 1, xmm1) \ + "lea " MEMLEA(0x4, [u_buf]) ",%[u_buf] \n" \ + "punpcklbw %%xmm1,%%xmm0 \n" \ + "punpcklwd %%xmm0,%%xmm0 \n" \ + "movq " MEMACCESS([y_buf]) ",%%xmm4 \n" \ + "punpcklbw %%xmm4,%%xmm4 \n" \ + "lea " MEMLEA(0x8, [y_buf]) ",%[y_buf] \n" \ + "movq " MEMACCESS([a_buf]) ",%%xmm5 \n" \ + "lea " MEMLEA(0x8, [a_buf]) ",%[a_buf] \n" + +// Read 2 UV from 411, upsample to 8 UV. +// reading 4 bytes is an msan violation. +// "movd " MEMACCESS([u_buf]) ",%%xmm0 \n" +// MEMOPREG(movd, 0x00, [u_buf], [v_buf], 1, xmm1) +// pinsrw fails with drmemory +// __asm pinsrw xmm0, [esi], 0 /* U */ +// __asm pinsrw xmm1, [esi + edi], 0 /* V */ +#define READYUV411_TEMP \ + "movzwl " MEMACCESS([u_buf]) ",%[temp] \n" \ + "movd %[temp],%%xmm0 \n" \ + MEMOPARG(movzwl, 0x00, [u_buf], [v_buf], 1, [temp]) " \n" \ + "movd %[temp],%%xmm1 \n" \ + "lea " MEMLEA(0x2, [u_buf]) ",%[u_buf] \n" \ + "punpcklbw %%xmm1,%%xmm0 \n" \ + "punpcklwd %%xmm0,%%xmm0 \n" \ + "punpckldq %%xmm0,%%xmm0 \n" \ + "movq " MEMACCESS([y_buf]) ",%%xmm4 \n" \ + "punpcklbw %%xmm4,%%xmm4 \n" \ + "lea " MEMLEA(0x8, [y_buf]) ",%[y_buf] \n" + +// Read 4 UV from NV12, upsample to 8 UV +#define READNV12 \ + "movq " MEMACCESS([uv_buf]) ",%%xmm0 \n" \ + "lea " MEMLEA(0x8, [uv_buf]) ",%[uv_buf] \n" \ + "punpcklwd %%xmm0,%%xmm0 \n" \ + "movq " MEMACCESS([y_buf]) ",%%xmm4 \n" \ + "punpcklbw %%xmm4,%%xmm4 \n" \ + "lea " MEMLEA(0x8, [y_buf]) ",%[y_buf] \n" + +// Read 4 VU from NV21, upsample to 8 UV +#define READNV21 \ + "movq " MEMACCESS([vu_buf]) ",%%xmm0 \n" \ + "lea " MEMLEA(0x8, [vu_buf]) ",%[vu_buf] \n" \ + "pshufb %[kShuffleNV21], %%xmm0 \n" \ + "movq " MEMACCESS([y_buf]) ",%%xmm4 \n" \ + "punpcklbw %%xmm4,%%xmm4 \n" \ + "lea " MEMLEA(0x8, [y_buf]) ",%[y_buf] \n" + +// Read 4 YUY2 with 8 Y and update 4 UV to 8 UV. +#define READYUY2 \ + "movdqu " MEMACCESS([yuy2_buf]) ",%%xmm4 \n" \ + "pshufb %[kShuffleYUY2Y], %%xmm4 \n" \ + "movdqu " MEMACCESS([yuy2_buf]) ",%%xmm0 \n" \ + "pshufb %[kShuffleYUY2UV], %%xmm0 \n" \ + "lea " MEMLEA(0x10, [yuy2_buf]) ",%[yuy2_buf] \n" + +// Read 4 UYVY with 8 Y and update 4 UV to 8 UV. +#define READUYVY \ + "movdqu " MEMACCESS([uyvy_buf]) ",%%xmm4 \n" \ + "pshufb %[kShuffleUYVYY], %%xmm4 \n" \ + "movdqu " MEMACCESS([uyvy_buf]) ",%%xmm0 \n" \ + "pshufb %[kShuffleUYVYUV], %%xmm0 \n" \ + "lea " MEMLEA(0x10, [uyvy_buf]) ",%[uyvy_buf] \n" + +#if defined(__x86_64__) +#define YUVTORGB_SETUP(yuvconstants) \ + "movdqa " MEMACCESS([yuvconstants]) ",%%xmm8 \n" \ + "movdqa " MEMACCESS2(32, [yuvconstants]) ",%%xmm9 \n" \ + "movdqa " MEMACCESS2(64, [yuvconstants]) ",%%xmm10 \n" \ + "movdqa " MEMACCESS2(96, [yuvconstants]) ",%%xmm11 \n" \ + "movdqa " MEMACCESS2(128, [yuvconstants]) ",%%xmm12 \n" \ + "movdqa " MEMACCESS2(160, [yuvconstants]) ",%%xmm13 \n" \ + "movdqa " MEMACCESS2(192, [yuvconstants]) ",%%xmm14 \n" +// Convert 8 pixels: 8 UV and 8 Y +#define YUVTORGB(yuvconstants) \ + "movdqa %%xmm0,%%xmm1 \n" \ + "movdqa %%xmm0,%%xmm2 \n" \ + "movdqa %%xmm0,%%xmm3 \n" \ + "movdqa %%xmm11,%%xmm0 \n" \ + "pmaddubsw %%xmm8,%%xmm1 \n" \ + "psubw %%xmm1,%%xmm0 \n" \ + "movdqa %%xmm12,%%xmm1 \n" \ + "pmaddubsw %%xmm9,%%xmm2 \n" \ + "psubw %%xmm2,%%xmm1 \n" \ + "movdqa %%xmm13,%%xmm2 \n" \ + "pmaddubsw %%xmm10,%%xmm3 \n" \ + "psubw %%xmm3,%%xmm2 \n" \ + "pmulhuw %%xmm14,%%xmm4 \n" \ + "paddsw %%xmm4,%%xmm0 \n" \ + "paddsw %%xmm4,%%xmm1 \n" \ + "paddsw %%xmm4,%%xmm2 \n" \ + "psraw $0x6,%%xmm0 \n" \ + "psraw $0x6,%%xmm1 \n" \ + "psraw $0x6,%%xmm2 \n" \ + "packuswb %%xmm0,%%xmm0 \n" \ + "packuswb %%xmm1,%%xmm1 \n" \ + "packuswb %%xmm2,%%xmm2 \n" +#define YUVTORGB_REGS \ + "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", + +#else +#define YUVTORGB_SETUP(yuvconstants) +// Convert 8 pixels: 8 UV and 8 Y +#define YUVTORGB(yuvconstants) \ + "movdqa %%xmm0,%%xmm1 \n" \ + "movdqa %%xmm0,%%xmm2 \n" \ + "movdqa %%xmm0,%%xmm3 \n" \ + "movdqa " MEMACCESS2(96, [yuvconstants]) ",%%xmm0 \n" \ + "pmaddubsw " MEMACCESS([yuvconstants]) ",%%xmm1 \n" \ + "psubw %%xmm1,%%xmm0 \n" \ + "movdqa " MEMACCESS2(128, [yuvconstants]) ",%%xmm1 \n" \ + "pmaddubsw " MEMACCESS2(32, [yuvconstants]) ",%%xmm2 \n" \ + "psubw %%xmm2,%%xmm1 \n" \ + "movdqa " MEMACCESS2(160, [yuvconstants]) ",%%xmm2 \n" \ + "pmaddubsw " MEMACCESS2(64, [yuvconstants]) ",%%xmm3 \n" \ + "psubw %%xmm3,%%xmm2 \n" \ + "pmulhuw " MEMACCESS2(192, [yuvconstants]) ",%%xmm4 \n" \ + "paddsw %%xmm4,%%xmm0 \n" \ + "paddsw %%xmm4,%%xmm1 \n" \ + "paddsw %%xmm4,%%xmm2 \n" \ + "psraw $0x6,%%xmm0 \n" \ + "psraw $0x6,%%xmm1 \n" \ + "psraw $0x6,%%xmm2 \n" \ + "packuswb %%xmm0,%%xmm0 \n" \ + "packuswb %%xmm1,%%xmm1 \n" \ + "packuswb %%xmm2,%%xmm2 \n" +#define YUVTORGB_REGS +#endif + +// Store 8 ARGB values. +#define STOREARGB \ + "punpcklbw %%xmm1,%%xmm0 \n" \ + "punpcklbw %%xmm5,%%xmm2 \n" \ + "movdqa %%xmm0,%%xmm1 \n" \ + "punpcklwd %%xmm2,%%xmm0 \n" \ + "punpckhwd %%xmm2,%%xmm1 \n" \ + "movdqu %%xmm0," MEMACCESS([dst_argb]) " \n" \ + "movdqu %%xmm1," MEMACCESS2(0x10, [dst_argb]) " \n" \ + "lea " MEMLEA(0x20, [dst_argb]) ", %[dst_argb] \n" + +// Store 8 RGBA values. +#define STORERGBA \ + "pcmpeqb %%xmm5,%%xmm5 \n" \ + "punpcklbw %%xmm2,%%xmm1 \n" \ + "punpcklbw %%xmm0,%%xmm5 \n" \ + "movdqa %%xmm5,%%xmm0 \n" \ + "punpcklwd %%xmm1,%%xmm5 \n" \ + "punpckhwd %%xmm1,%%xmm0 \n" \ + "movdqu %%xmm5," MEMACCESS([dst_rgba]) " \n" \ + "movdqu %%xmm0," MEMACCESS2(0x10, [dst_rgba]) " \n" \ + "lea " MEMLEA(0x20, [dst_rgba]) ",%[dst_rgba] \n" + +void OMITFP I444ToARGBRow_SSSE3(const uint8* y_buf, + const uint8* u_buf, + const uint8* v_buf, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width) { + asm volatile ( + YUVTORGB_SETUP(yuvconstants) + "sub %[u_buf],%[v_buf] \n" + "pcmpeqb %%xmm5,%%xmm5 \n" + LABELALIGN + "1: \n" + READYUV444 + YUVTORGB(yuvconstants) + STOREARGB + "sub $0x8,%[width] \n" + "jg 1b \n" + : [y_buf]"+r"(y_buf), // %[y_buf] + [u_buf]"+r"(u_buf), // %[u_buf] + [v_buf]"+r"(v_buf), // %[v_buf] + [dst_argb]"+r"(dst_argb), // %[dst_argb] + [width]"+rm"(width) // %[width] + : [yuvconstants]"r"(yuvconstants) // %[yuvconstants] + : "memory", "cc", NACL_R14 YUVTORGB_REGS + "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5" + ); +} + +void OMITFP I422ToRGB24Row_SSSE3(const uint8* y_buf, + const uint8* u_buf, + const uint8* v_buf, + uint8* dst_rgb24, + const struct YuvConstants* yuvconstants, + int width) { + asm volatile ( + YUVTORGB_SETUP(yuvconstants) + "movdqa %[kShuffleMaskARGBToRGB24_0],%%xmm5 \n" + "movdqa %[kShuffleMaskARGBToRGB24],%%xmm6 \n" + "sub %[u_buf],%[v_buf] \n" + LABELALIGN + "1: \n" + READYUV422 + YUVTORGB(yuvconstants) + "punpcklbw %%xmm1,%%xmm0 \n" + "punpcklbw %%xmm2,%%xmm2 \n" + "movdqa %%xmm0,%%xmm1 \n" + "punpcklwd %%xmm2,%%xmm0 \n" + "punpckhwd %%xmm2,%%xmm1 \n" + "pshufb %%xmm5,%%xmm0 \n" + "pshufb %%xmm6,%%xmm1 \n" + "palignr $0xc,%%xmm0,%%xmm1 \n" + "movq %%xmm0," MEMACCESS([dst_rgb24]) "\n" + "movdqu %%xmm1," MEMACCESS2(0x8,[dst_rgb24]) "\n" + "lea " MEMLEA(0x18,[dst_rgb24]) ",%[dst_rgb24] \n" + "subl $0x8,%[width] \n" + "jg 1b \n" + : [y_buf]"+r"(y_buf), // %[y_buf] + [u_buf]"+r"(u_buf), // %[u_buf] + [v_buf]"+r"(v_buf), // %[v_buf] + [dst_rgb24]"+r"(dst_rgb24), // %[dst_rgb24] +#if defined(__i386__) && defined(__pic__) + [width]"+m"(width) // %[width] +#else + [width]"+rm"(width) // %[width] +#endif + : [yuvconstants]"r"(yuvconstants), // %[yuvconstants] + [kShuffleMaskARGBToRGB24_0]"m"(kShuffleMaskARGBToRGB24_0), + [kShuffleMaskARGBToRGB24]"m"(kShuffleMaskARGBToRGB24) + : "memory", "cc", NACL_R14 YUVTORGB_REGS + "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6" + ); +} + +void OMITFP I422ToARGBRow_SSSE3(const uint8* y_buf, + const uint8* u_buf, + const uint8* v_buf, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width) { + asm volatile ( + YUVTORGB_SETUP(yuvconstants) + "sub %[u_buf],%[v_buf] \n" + "pcmpeqb %%xmm5,%%xmm5 \n" + LABELALIGN + "1: \n" + READYUV422 + YUVTORGB(yuvconstants) + STOREARGB + "sub $0x8,%[width] \n" + "jg 1b \n" + : [y_buf]"+r"(y_buf), // %[y_buf] + [u_buf]"+r"(u_buf), // %[u_buf] + [v_buf]"+r"(v_buf), // %[v_buf] + [dst_argb]"+r"(dst_argb), // %[dst_argb] + [width]"+rm"(width) // %[width] + : [yuvconstants]"r"(yuvconstants) // %[yuvconstants] + : "memory", "cc", NACL_R14 YUVTORGB_REGS + "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5" + ); +} + +#ifdef HAS_I422ALPHATOARGBROW_SSSE3 +void OMITFP I422AlphaToARGBRow_SSSE3(const uint8* y_buf, + const uint8* u_buf, + const uint8* v_buf, + const uint8* a_buf, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width) { + asm volatile ( + YUVTORGB_SETUP(yuvconstants) + "sub %[u_buf],%[v_buf] \n" + LABELALIGN + "1: \n" + READYUVA422 + YUVTORGB(yuvconstants) + STOREARGB + "subl $0x8,%[width] \n" + "jg 1b \n" + : [y_buf]"+r"(y_buf), // %[y_buf] + [u_buf]"+r"(u_buf), // %[u_buf] + [v_buf]"+r"(v_buf), // %[v_buf] + [a_buf]"+r"(a_buf), // %[a_buf] + [dst_argb]"+r"(dst_argb), // %[dst_argb] +#if defined(__i386__) && defined(__pic__) + [width]"+m"(width) // %[width] +#else + [width]"+rm"(width) // %[width] +#endif + : [yuvconstants]"r"(yuvconstants) // %[yuvconstants] + : "memory", "cc", NACL_R14 YUVTORGB_REGS + "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5" + ); +} +#endif // HAS_I422ALPHATOARGBROW_SSSE3 + +#ifdef HAS_I411TOARGBROW_SSSE3 +void OMITFP I411ToARGBRow_SSSE3(const uint8* y_buf, + const uint8* u_buf, + const uint8* v_buf, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width) { + int temp; + asm volatile ( + YUVTORGB_SETUP(yuvconstants) + "sub %[u_buf],%[v_buf] \n" + "pcmpeqb %%xmm5,%%xmm5 \n" + LABELALIGN + "1: \n" + READYUV411_TEMP + YUVTORGB(yuvconstants) + STOREARGB + "subl $0x8,%[width] \n" + "jg 1b \n" + : [y_buf]"+r"(y_buf), // %[y_buf] + [u_buf]"+r"(u_buf), // %[u_buf] + [v_buf]"+r"(v_buf), // %[v_buf] + [dst_argb]"+r"(dst_argb), // %[dst_argb] + [temp]"=&r"(temp), // %[temp] +#if defined(__i386__) && defined(__pic__) + [width]"+m"(width) // %[width] +#else + [width]"+rm"(width) // %[width] +#endif + : [yuvconstants]"r"(yuvconstants) // %[yuvconstants] + : "memory", "cc", NACL_R14 YUVTORGB_REGS + "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5" + ); +} +#endif + +void OMITFP NV12ToARGBRow_SSSE3(const uint8* y_buf, + const uint8* uv_buf, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width) { + asm volatile ( + YUVTORGB_SETUP(yuvconstants) + "pcmpeqb %%xmm5,%%xmm5 \n" + LABELALIGN + "1: \n" + READNV12 + YUVTORGB(yuvconstants) + STOREARGB + "sub $0x8,%[width] \n" + "jg 1b \n" + : [y_buf]"+r"(y_buf), // %[y_buf] + [uv_buf]"+r"(uv_buf), // %[uv_buf] + [dst_argb]"+r"(dst_argb), // %[dst_argb] + [width]"+rm"(width) // %[width] + : [yuvconstants]"r"(yuvconstants) // %[yuvconstants] + : "memory", "cc", YUVTORGB_REGS // Does not use r14. + "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5" + ); +} + +void OMITFP NV21ToARGBRow_SSSE3(const uint8* y_buf, + const uint8* vu_buf, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width) { + asm volatile ( + YUVTORGB_SETUP(yuvconstants) + "pcmpeqb %%xmm5,%%xmm5 \n" + LABELALIGN + "1: \n" + READNV21 + YUVTORGB(yuvconstants) + STOREARGB + "sub $0x8,%[width] \n" + "jg 1b \n" + : [y_buf]"+r"(y_buf), // %[y_buf] + [vu_buf]"+r"(vu_buf), // %[vu_buf] + [dst_argb]"+r"(dst_argb), // %[dst_argb] + [width]"+rm"(width) // %[width] + : [yuvconstants]"r"(yuvconstants), // %[yuvconstants] + [kShuffleNV21]"m"(kShuffleNV21) + : "memory", "cc", YUVTORGB_REGS // Does not use r14. + "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5" + ); +} + +void OMITFP YUY2ToARGBRow_SSSE3(const uint8* yuy2_buf, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width) { + asm volatile ( + YUVTORGB_SETUP(yuvconstants) + "pcmpeqb %%xmm5,%%xmm5 \n" + LABELALIGN + "1: \n" + READYUY2 + YUVTORGB(yuvconstants) + STOREARGB + "sub $0x8,%[width] \n" + "jg 1b \n" + : [yuy2_buf]"+r"(yuy2_buf), // %[yuy2_buf] + [dst_argb]"+r"(dst_argb), // %[dst_argb] + [width]"+rm"(width) // %[width] + : [yuvconstants]"r"(yuvconstants), // %[yuvconstants] + [kShuffleYUY2Y]"m"(kShuffleYUY2Y), + [kShuffleYUY2UV]"m"(kShuffleYUY2UV) + : "memory", "cc", YUVTORGB_REGS // Does not use r14. + "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5" + ); +} + +void OMITFP UYVYToARGBRow_SSSE3(const uint8* uyvy_buf, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width) { + asm volatile ( + YUVTORGB_SETUP(yuvconstants) + "pcmpeqb %%xmm5,%%xmm5 \n" + LABELALIGN + "1: \n" + READUYVY + YUVTORGB(yuvconstants) + STOREARGB + "sub $0x8,%[width] \n" + "jg 1b \n" + : [uyvy_buf]"+r"(uyvy_buf), // %[uyvy_buf] + [dst_argb]"+r"(dst_argb), // %[dst_argb] + [width]"+rm"(width) // %[width] + : [yuvconstants]"r"(yuvconstants), // %[yuvconstants] + [kShuffleUYVYY]"m"(kShuffleUYVYY), + [kShuffleUYVYUV]"m"(kShuffleUYVYUV) + : "memory", "cc", YUVTORGB_REGS // Does not use r14. + "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5" + ); +} + +void OMITFP I422ToRGBARow_SSSE3(const uint8* y_buf, + const uint8* u_buf, + const uint8* v_buf, + uint8* dst_rgba, + const struct YuvConstants* yuvconstants, + int width) { + asm volatile ( + YUVTORGB_SETUP(yuvconstants) + "sub %[u_buf],%[v_buf] \n" + "pcmpeqb %%xmm5,%%xmm5 \n" + LABELALIGN + "1: \n" + READYUV422 + YUVTORGB(yuvconstants) + STORERGBA + "sub $0x8,%[width] \n" + "jg 1b \n" + : [y_buf]"+r"(y_buf), // %[y_buf] + [u_buf]"+r"(u_buf), // %[u_buf] + [v_buf]"+r"(v_buf), // %[v_buf] + [dst_rgba]"+r"(dst_rgba), // %[dst_rgba] + [width]"+rm"(width) // %[width] + : [yuvconstants]"r"(yuvconstants) // %[yuvconstants] + : "memory", "cc", NACL_R14 YUVTORGB_REGS + "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5" + ); +} + +#endif // HAS_I422TOARGBROW_SSSE3 + +// Read 16 UV from 444 +#define READYUV444_AVX2 \ + "vmovdqu " MEMACCESS([u_buf]) ",%%xmm0 \n" \ + MEMOPREG(vmovdqu, 0x00, [u_buf], [v_buf], 1, xmm1) \ + "lea " MEMLEA(0x10, [u_buf]) ",%[u_buf] \n" \ + "vpermq $0xd8,%%ymm0,%%ymm0 \n" \ + "vpermq $0xd8,%%ymm1,%%ymm1 \n" \ + "vpunpcklbw %%ymm1,%%ymm0,%%ymm0 \n" \ + "vmovdqu " MEMACCESS([y_buf]) ",%%xmm4 \n" \ + "vpermq $0xd8,%%ymm4,%%ymm4 \n" \ + "vpunpcklbw %%ymm4,%%ymm4,%%ymm4 \n" \ + "lea " MEMLEA(0x10, [y_buf]) ",%[y_buf] \n" + +// Read 8 UV from 422, upsample to 16 UV. +#define READYUV422_AVX2 \ + "vmovq " MEMACCESS([u_buf]) ",%%xmm0 \n" \ + MEMOPREG(vmovq, 0x00, [u_buf], [v_buf], 1, xmm1) \ + "lea " MEMLEA(0x8, [u_buf]) ",%[u_buf] \n" \ + "vpunpcklbw %%ymm1,%%ymm0,%%ymm0 \n" \ + "vpermq $0xd8,%%ymm0,%%ymm0 \n" \ + "vpunpcklwd %%ymm0,%%ymm0,%%ymm0 \n" \ + "vmovdqu " MEMACCESS([y_buf]) ",%%xmm4 \n" \ + "vpermq $0xd8,%%ymm4,%%ymm4 \n" \ + "vpunpcklbw %%ymm4,%%ymm4,%%ymm4 \n" \ + "lea " MEMLEA(0x10, [y_buf]) ",%[y_buf] \n" + +// Read 8 UV from 422, upsample to 16 UV. With 16 Alpha. +#define READYUVA422_AVX2 \ + "vmovq " MEMACCESS([u_buf]) ",%%xmm0 \n" \ + MEMOPREG(vmovq, 0x00, [u_buf], [v_buf], 1, xmm1) \ + "lea " MEMLEA(0x8, [u_buf]) ",%[u_buf] \n" \ + "vpunpcklbw %%ymm1,%%ymm0,%%ymm0 \n" \ + "vpermq $0xd8,%%ymm0,%%ymm0 \n" \ + "vpunpcklwd %%ymm0,%%ymm0,%%ymm0 \n" \ + "vmovdqu " MEMACCESS([y_buf]) ",%%xmm4 \n" \ + "vpermq $0xd8,%%ymm4,%%ymm4 \n" \ + "vpunpcklbw %%ymm4,%%ymm4,%%ymm4 \n" \ + "lea " MEMLEA(0x10, [y_buf]) ",%[y_buf] \n" \ + "vmovdqu " MEMACCESS([a_buf]) ",%%xmm5 \n" \ + "vpermq $0xd8,%%ymm5,%%ymm5 \n" \ + "lea " MEMLEA(0x10, [a_buf]) ",%[a_buf] \n" + +// Read 4 UV from 411, upsample to 16 UV. +#define READYUV411_AVX2 \ + "vmovd " MEMACCESS([u_buf]) ",%%xmm0 \n" \ + MEMOPREG(vmovd, 0x00, [u_buf], [v_buf], 1, xmm1) \ + "lea " MEMLEA(0x4, [u_buf]) ",%[u_buf] \n" \ + "vpunpcklbw %%ymm1,%%ymm0,%%ymm0 \n" \ + "vpunpcklwd %%ymm0,%%ymm0,%%ymm0 \n" \ + "vpermq $0xd8,%%ymm0,%%ymm0 \n" \ + "vpunpckldq %%ymm0,%%ymm0,%%ymm0 \n" \ + "vmovdqu " MEMACCESS([y_buf]) ",%%xmm4 \n" \ + "vpermq $0xd8,%%ymm4,%%ymm4 \n" \ + "vpunpcklbw %%ymm4,%%ymm4,%%ymm4 \n" \ + "lea " MEMLEA(0x10, [y_buf]) ",%[y_buf] \n" + +// Read 8 UV from NV12, upsample to 16 UV. +#define READNV12_AVX2 \ + "vmovdqu " MEMACCESS([uv_buf]) ",%%xmm0 \n" \ + "lea " MEMLEA(0x10, [uv_buf]) ",%[uv_buf] \n" \ + "vpermq $0xd8,%%ymm0,%%ymm0 \n" \ + "vpunpcklwd %%ymm0,%%ymm0,%%ymm0 \n" \ + "vmovdqu " MEMACCESS([y_buf]) ",%%xmm4 \n" \ + "vpermq $0xd8,%%ymm4,%%ymm4 \n" \ + "vpunpcklbw %%ymm4,%%ymm4,%%ymm4 \n" \ + "lea " MEMLEA(0x10, [y_buf]) ",%[y_buf] \n" + +// Read 8 VU from NV21, upsample to 16 UV. +#define READNV21_AVX2 \ + "vmovdqu " MEMACCESS([vu_buf]) ",%%xmm0 \n" \ + "lea " MEMLEA(0x10, [vu_buf]) ",%[vu_buf] \n" \ + "vpermq $0xd8,%%ymm0,%%ymm0 \n" \ + "vpshufb %[kShuffleNV21], %%ymm0, %%ymm0 \n" \ + "vmovdqu " MEMACCESS([y_buf]) ",%%xmm4 \n" \ + "vpermq $0xd8,%%ymm4,%%ymm4 \n" \ + "vpunpcklbw %%ymm4,%%ymm4,%%ymm4 \n" \ + "lea " MEMLEA(0x10, [y_buf]) ",%[y_buf] \n" + +// Read 8 YUY2 with 16 Y and upsample 8 UV to 16 UV. +#define READYUY2_AVX2 \ + "vmovdqu " MEMACCESS([yuy2_buf]) ",%%ymm4 \n" \ + "vpshufb %[kShuffleYUY2Y], %%ymm4, %%ymm4 \n" \ + "vmovdqu " MEMACCESS([yuy2_buf]) ",%%ymm0 \n" \ + "vpshufb %[kShuffleYUY2UV], %%ymm0, %%ymm0 \n" \ + "lea " MEMLEA(0x20, [yuy2_buf]) ",%[yuy2_buf] \n" + +// Read 8 UYVY with 16 Y and upsample 8 UV to 16 UV. +#define READUYVY_AVX2 \ + "vmovdqu " MEMACCESS([uyvy_buf]) ",%%ymm4 \n" \ + "vpshufb %[kShuffleUYVYY], %%ymm4, %%ymm4 \n" \ + "vmovdqu " MEMACCESS([uyvy_buf]) ",%%ymm0 \n" \ + "vpshufb %[kShuffleUYVYUV], %%ymm0, %%ymm0 \n" \ + "lea " MEMLEA(0x20, [uyvy_buf]) ",%[uyvy_buf] \n" + +#if defined(__x86_64__) +#define YUVTORGB_SETUP_AVX2(yuvconstants) \ + "vmovdqa " MEMACCESS([yuvconstants]) ",%%ymm8 \n" \ + "vmovdqa " MEMACCESS2(32, [yuvconstants]) ",%%ymm9 \n" \ + "vmovdqa " MEMACCESS2(64, [yuvconstants]) ",%%ymm10 \n" \ + "vmovdqa " MEMACCESS2(96, [yuvconstants]) ",%%ymm11 \n" \ + "vmovdqa " MEMACCESS2(128, [yuvconstants]) ",%%ymm12 \n" \ + "vmovdqa " MEMACCESS2(160, [yuvconstants]) ",%%ymm13 \n" \ + "vmovdqa " MEMACCESS2(192, [yuvconstants]) ",%%ymm14 \n" +#define YUVTORGB_AVX2(yuvconstants) \ + "vpmaddubsw %%ymm10,%%ymm0,%%ymm2 \n" \ + "vpmaddubsw %%ymm9,%%ymm0,%%ymm1 \n" \ + "vpmaddubsw %%ymm8,%%ymm0,%%ymm0 \n" \ + "vpsubw %%ymm2,%%ymm13,%%ymm2 \n" \ + "vpsubw %%ymm1,%%ymm12,%%ymm1 \n" \ + "vpsubw %%ymm0,%%ymm11,%%ymm0 \n" \ + "vpmulhuw %%ymm14,%%ymm4,%%ymm4 \n" \ + "vpaddsw %%ymm4,%%ymm0,%%ymm0 \n" \ + "vpaddsw %%ymm4,%%ymm1,%%ymm1 \n" \ + "vpaddsw %%ymm4,%%ymm2,%%ymm2 \n" \ + "vpsraw $0x6,%%ymm0,%%ymm0 \n" \ + "vpsraw $0x6,%%ymm1,%%ymm1 \n" \ + "vpsraw $0x6,%%ymm2,%%ymm2 \n" \ + "vpackuswb %%ymm0,%%ymm0,%%ymm0 \n" \ + "vpackuswb %%ymm1,%%ymm1,%%ymm1 \n" \ + "vpackuswb %%ymm2,%%ymm2,%%ymm2 \n" +#define YUVTORGB_REGS_AVX2 \ + "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", +#else // Convert 16 pixels: 16 UV and 16 Y. +#define YUVTORGB_SETUP_AVX2(yuvconstants) +#define YUVTORGB_AVX2(yuvconstants) \ + "vpmaddubsw " MEMACCESS2(64, [yuvconstants]) ",%%ymm0,%%ymm2 \n" \ + "vpmaddubsw " MEMACCESS2(32, [yuvconstants]) ",%%ymm0,%%ymm1 \n" \ + "vpmaddubsw " MEMACCESS([yuvconstants]) ",%%ymm0,%%ymm0 \n" \ + "vmovdqu " MEMACCESS2(160, [yuvconstants]) ",%%ymm3 \n" \ + "vpsubw %%ymm2,%%ymm3,%%ymm2 \n" \ + "vmovdqu " MEMACCESS2(128, [yuvconstants]) ",%%ymm3 \n" \ + "vpsubw %%ymm1,%%ymm3,%%ymm1 \n" \ + "vmovdqu " MEMACCESS2(96, [yuvconstants]) ",%%ymm3 \n" \ + "vpsubw %%ymm0,%%ymm3,%%ymm0 \n" \ + "vpmulhuw " MEMACCESS2(192, [yuvconstants]) ",%%ymm4,%%ymm4 \n" \ + "vpaddsw %%ymm4,%%ymm0,%%ymm0 \n" \ + "vpaddsw %%ymm4,%%ymm1,%%ymm1 \n" \ + "vpaddsw %%ymm4,%%ymm2,%%ymm2 \n" \ + "vpsraw $0x6,%%ymm0,%%ymm0 \n" \ + "vpsraw $0x6,%%ymm1,%%ymm1 \n" \ + "vpsraw $0x6,%%ymm2,%%ymm2 \n" \ + "vpackuswb %%ymm0,%%ymm0,%%ymm0 \n" \ + "vpackuswb %%ymm1,%%ymm1,%%ymm1 \n" \ + "vpackuswb %%ymm2,%%ymm2,%%ymm2 \n" +#define YUVTORGB_REGS_AVX2 +#endif + +// Store 16 ARGB values. +#define STOREARGB_AVX2 \ + "vpunpcklbw %%ymm1,%%ymm0,%%ymm0 \n" \ + "vpermq $0xd8,%%ymm0,%%ymm0 \n" \ + "vpunpcklbw %%ymm5,%%ymm2,%%ymm2 \n" \ + "vpermq $0xd8,%%ymm2,%%ymm2 \n" \ + "vpunpcklwd %%ymm2,%%ymm0,%%ymm1 \n" \ + "vpunpckhwd %%ymm2,%%ymm0,%%ymm0 \n" \ + "vmovdqu %%ymm1," MEMACCESS([dst_argb]) " \n" \ + "vmovdqu %%ymm0," MEMACCESS2(0x20, [dst_argb]) " \n" \ + "lea " MEMLEA(0x40, [dst_argb]) ", %[dst_argb] \n" + +#ifdef HAS_I444TOARGBROW_AVX2 +// 16 pixels +// 16 UV values with 16 Y producing 16 ARGB (64 bytes). +void OMITFP I444ToARGBRow_AVX2(const uint8* y_buf, + const uint8* u_buf, + const uint8* v_buf, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width) { + asm volatile ( + YUVTORGB_SETUP_AVX2(yuvconstants) + "sub %[u_buf],%[v_buf] \n" + "vpcmpeqb %%ymm5,%%ymm5,%%ymm5 \n" + LABELALIGN + "1: \n" + READYUV444_AVX2 + YUVTORGB_AVX2(yuvconstants) + STOREARGB_AVX2 + "sub $0x10,%[width] \n" + "jg 1b \n" + "vzeroupper \n" + : [y_buf]"+r"(y_buf), // %[y_buf] + [u_buf]"+r"(u_buf), // %[u_buf] + [v_buf]"+r"(v_buf), // %[v_buf] + [dst_argb]"+r"(dst_argb), // %[dst_argb] + [width]"+rm"(width) // %[width] + : [yuvconstants]"r"(yuvconstants) // %[yuvconstants] + : "memory", "cc", NACL_R14 YUVTORGB_REGS_AVX2 + "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5" + ); +} +#endif // HAS_I444TOARGBROW_AVX2 + +#ifdef HAS_I411TOARGBROW_AVX2 +// 16 pixels +// 4 UV values upsampled to 16 UV, mixed with 16 Y producing 16 ARGB (64 bytes). +void OMITFP I411ToARGBRow_AVX2(const uint8* y_buf, + const uint8* u_buf, + const uint8* v_buf, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width) { + asm volatile ( + YUVTORGB_SETUP_AVX2(yuvconstants) + "sub %[u_buf],%[v_buf] \n" + "vpcmpeqb %%ymm5,%%ymm5,%%ymm5 \n" + LABELALIGN + "1: \n" + READYUV411_AVX2 + YUVTORGB_AVX2(yuvconstants) + STOREARGB_AVX2 + "sub $0x10,%[width] \n" + "jg 1b \n" + "vzeroupper \n" + : [y_buf]"+r"(y_buf), // %[y_buf] + [u_buf]"+r"(u_buf), // %[u_buf] + [v_buf]"+r"(v_buf), // %[v_buf] + [dst_argb]"+r"(dst_argb), // %[dst_argb] + [width]"+rm"(width) // %[width] + : [yuvconstants]"r"(yuvconstants) // %[yuvconstants] + : "memory", "cc", NACL_R14 YUVTORGB_REGS_AVX2 + "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5" + ); +} +#endif // HAS_I411TOARGBROW_AVX2 + +#if defined(HAS_I422TOARGBROW_AVX2) +// 16 pixels +// 8 UV values upsampled to 16 UV, mixed with 16 Y producing 16 ARGB (64 bytes). +void OMITFP I422ToARGBRow_AVX2(const uint8* y_buf, + const uint8* u_buf, + const uint8* v_buf, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width) { + asm volatile ( + YUVTORGB_SETUP_AVX2(yuvconstants) + "sub %[u_buf],%[v_buf] \n" + "vpcmpeqb %%ymm5,%%ymm5,%%ymm5 \n" + LABELALIGN + "1: \n" + READYUV422_AVX2 + YUVTORGB_AVX2(yuvconstants) + STOREARGB_AVX2 + "sub $0x10,%[width] \n" + "jg 1b \n" + "vzeroupper \n" + : [y_buf]"+r"(y_buf), // %[y_buf] + [u_buf]"+r"(u_buf), // %[u_buf] + [v_buf]"+r"(v_buf), // %[v_buf] + [dst_argb]"+r"(dst_argb), // %[dst_argb] + [width]"+rm"(width) // %[width] + : [yuvconstants]"r"(yuvconstants) // %[yuvconstants] + : "memory", "cc", NACL_R14 YUVTORGB_REGS_AVX2 + "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5" + ); +} +#endif // HAS_I422TOARGBROW_AVX2 + +#if defined(HAS_I422ALPHATOARGBROW_AVX2) +// 16 pixels +// 8 UV values upsampled to 16 UV, mixed with 16 Y and 16 A producing 16 ARGB. +void OMITFP I422AlphaToARGBRow_AVX2(const uint8* y_buf, + const uint8* u_buf, + const uint8* v_buf, + const uint8* a_buf, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width) { + asm volatile ( + YUVTORGB_SETUP_AVX2(yuvconstants) + "sub %[u_buf],%[v_buf] \n" + LABELALIGN + "1: \n" + READYUVA422_AVX2 + YUVTORGB_AVX2(yuvconstants) + STOREARGB_AVX2 + "subl $0x10,%[width] \n" + "jg 1b \n" + "vzeroupper \n" + : [y_buf]"+r"(y_buf), // %[y_buf] + [u_buf]"+r"(u_buf), // %[u_buf] + [v_buf]"+r"(v_buf), // %[v_buf] + [a_buf]"+r"(a_buf), // %[a_buf] + [dst_argb]"+r"(dst_argb), // %[dst_argb] +#if defined(__i386__) && defined(__pic__) + [width]"+m"(width) // %[width] +#else + [width]"+rm"(width) // %[width] +#endif + : [yuvconstants]"r"(yuvconstants) // %[yuvconstants] + : "memory", "cc", NACL_R14 YUVTORGB_REGS_AVX2 + "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5" + ); +} +#endif // HAS_I422ALPHATOARGBROW_AVX2 + +#if defined(HAS_I422TORGBAROW_AVX2) +// 16 pixels +// 8 UV values upsampled to 16 UV, mixed with 16 Y producing 16 RGBA (64 bytes). +void OMITFP I422ToRGBARow_AVX2(const uint8* y_buf, + const uint8* u_buf, + const uint8* v_buf, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width) { + asm volatile ( + YUVTORGB_SETUP_AVX2(yuvconstants) + "sub %[u_buf],%[v_buf] \n" + "vpcmpeqb %%ymm5,%%ymm5,%%ymm5 \n" + LABELALIGN + "1: \n" + READYUV422_AVX2 + YUVTORGB_AVX2(yuvconstants) + + // Step 3: Weave into RGBA + "vpunpcklbw %%ymm2,%%ymm1,%%ymm1 \n" + "vpermq $0xd8,%%ymm1,%%ymm1 \n" + "vpunpcklbw %%ymm0,%%ymm5,%%ymm2 \n" + "vpermq $0xd8,%%ymm2,%%ymm2 \n" + "vpunpcklwd %%ymm1,%%ymm2,%%ymm0 \n" + "vpunpckhwd %%ymm1,%%ymm2,%%ymm1 \n" + "vmovdqu %%ymm0," MEMACCESS([dst_argb]) "\n" + "vmovdqu %%ymm1," MEMACCESS2(0x20,[dst_argb]) "\n" + "lea " MEMLEA(0x40,[dst_argb]) ",%[dst_argb] \n" + "sub $0x10,%[width] \n" + "jg 1b \n" + "vzeroupper \n" + : [y_buf]"+r"(y_buf), // %[y_buf] + [u_buf]"+r"(u_buf), // %[u_buf] + [v_buf]"+r"(v_buf), // %[v_buf] + [dst_argb]"+r"(dst_argb), // %[dst_argb] + [width]"+rm"(width) // %[width] + : [yuvconstants]"r"(yuvconstants) // %[yuvconstants] + : "memory", "cc", NACL_R14 YUVTORGB_REGS_AVX2 + "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5" + ); +} +#endif // HAS_I422TORGBAROW_AVX2 + +#if defined(HAS_NV12TOARGBROW_AVX2) +// 16 pixels. +// 8 UV values upsampled to 16 UV, mixed with 16 Y producing 16 ARGB (64 bytes). +void OMITFP NV12ToARGBRow_AVX2(const uint8* y_buf, + const uint8* uv_buf, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width) { + asm volatile ( + YUVTORGB_SETUP_AVX2(yuvconstants) + "vpcmpeqb %%ymm5,%%ymm5,%%ymm5 \n" + LABELALIGN + "1: \n" + READNV12_AVX2 + YUVTORGB_AVX2(yuvconstants) + STOREARGB_AVX2 + "sub $0x10,%[width] \n" + "jg 1b \n" + "vzeroupper \n" + : [y_buf]"+r"(y_buf), // %[y_buf] + [uv_buf]"+r"(uv_buf), // %[uv_buf] + [dst_argb]"+r"(dst_argb), // %[dst_argb] + [width]"+rm"(width) // %[width] + : [yuvconstants]"r"(yuvconstants) // %[yuvconstants] + : "memory", "cc", YUVTORGB_REGS_AVX2 // Does not use r14. + "xmm0", "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5" + ); +} +#endif // HAS_NV12TOARGBROW_AVX2 + +#if defined(HAS_NV21TOARGBROW_AVX2) +// 16 pixels. +// 8 VU values upsampled to 16 UV, mixed with 16 Y producing 16 ARGB (64 bytes). +void OMITFP NV21ToARGBRow_AVX2(const uint8* y_buf, + const uint8* vu_buf, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width) { + asm volatile ( + YUVTORGB_SETUP_AVX2(yuvconstants) + "vpcmpeqb %%ymm5,%%ymm5,%%ymm5 \n" + LABELALIGN + "1: \n" + READNV21_AVX2 + YUVTORGB_AVX2(yuvconstants) + STOREARGB_AVX2 + "sub $0x10,%[width] \n" + "jg 1b \n" + "vzeroupper \n" + : [y_buf]"+r"(y_buf), // %[y_buf] + [vu_buf]"+r"(vu_buf), // %[vu_buf] + [dst_argb]"+r"(dst_argb), // %[dst_argb] + [width]"+rm"(width) // %[width] + : [yuvconstants]"r"(yuvconstants), // %[yuvconstants] + [kShuffleNV21]"m"(kShuffleNV21) + : "memory", "cc", YUVTORGB_REGS_AVX2 // Does not use r14. + "xmm0", "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5" + ); +} +#endif // HAS_NV21TOARGBROW_AVX2 + +#if defined(HAS_YUY2TOARGBROW_AVX2) +// 16 pixels. +// 8 YUY2 values with 16 Y and 8 UV producing 16 ARGB (64 bytes). +void OMITFP YUY2ToARGBRow_AVX2(const uint8* yuy2_buf, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width) { + asm volatile ( + YUVTORGB_SETUP_AVX2(yuvconstants) + "vpcmpeqb %%ymm5,%%ymm5,%%ymm5 \n" + LABELALIGN + "1: \n" + READYUY2_AVX2 + YUVTORGB_AVX2(yuvconstants) + STOREARGB_AVX2 + "sub $0x10,%[width] \n" + "jg 1b \n" + "vzeroupper \n" + : [yuy2_buf]"+r"(yuy2_buf), // %[yuy2_buf] + [dst_argb]"+r"(dst_argb), // %[dst_argb] + [width]"+rm"(width) // %[width] + : [yuvconstants]"r"(yuvconstants), // %[yuvconstants] + [kShuffleYUY2Y]"m"(kShuffleYUY2Y), + [kShuffleYUY2UV]"m"(kShuffleYUY2UV) + : "memory", "cc", YUVTORGB_REGS_AVX2 // Does not use r14. + "xmm0", "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5" + ); +} +#endif // HAS_YUY2TOARGBROW_AVX2 + +#if defined(HAS_UYVYTOARGBROW_AVX2) +// 16 pixels. +// 8 UYVY values with 16 Y and 8 UV producing 16 ARGB (64 bytes). +void OMITFP UYVYToARGBRow_AVX2(const uint8* uyvy_buf, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width) { + asm volatile ( + YUVTORGB_SETUP_AVX2(yuvconstants) + "vpcmpeqb %%ymm5,%%ymm5,%%ymm5 \n" + LABELALIGN + "1: \n" + READUYVY_AVX2 + YUVTORGB_AVX2(yuvconstants) + STOREARGB_AVX2 + "sub $0x10,%[width] \n" + "jg 1b \n" + "vzeroupper \n" + : [uyvy_buf]"+r"(uyvy_buf), // %[uyvy_buf] + [dst_argb]"+r"(dst_argb), // %[dst_argb] + [width]"+rm"(width) // %[width] + : [yuvconstants]"r"(yuvconstants), // %[yuvconstants] + [kShuffleUYVYY]"m"(kShuffleUYVYY), + [kShuffleUYVYUV]"m"(kShuffleUYVYUV) + : "memory", "cc", YUVTORGB_REGS_AVX2 // Does not use r14. + "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5" + ); +} +#endif // HAS_UYVYTOARGBROW_AVX2 + +#ifdef HAS_I400TOARGBROW_SSE2 +void I400ToARGBRow_SSE2(const uint8* y_buf, uint8* dst_argb, int width) { + asm volatile ( + "mov $0x4a354a35,%%eax \n" // 4a35 = 18997 = 1.164 + "movd %%eax,%%xmm2 \n" + "pshufd $0x0,%%xmm2,%%xmm2 \n" + "mov $0x04880488,%%eax \n" // 0488 = 1160 = 1.164 * 16 + "movd %%eax,%%xmm3 \n" + "pshufd $0x0,%%xmm3,%%xmm3 \n" + "pcmpeqb %%xmm4,%%xmm4 \n" + "pslld $0x18,%%xmm4 \n" + LABELALIGN + "1: \n" + // Step 1: Scale Y contribution to 8 G values. G = (y - 16) * 1.164 + "movq " MEMACCESS(0) ",%%xmm0 \n" + "lea " MEMLEA(0x8,0) ",%0 \n" + "punpcklbw %%xmm0,%%xmm0 \n" + "pmulhuw %%xmm2,%%xmm0 \n" + "psubusw %%xmm3,%%xmm0 \n" + "psrlw $6, %%xmm0 \n" + "packuswb %%xmm0,%%xmm0 \n" + + // Step 2: Weave into ARGB + "punpcklbw %%xmm0,%%xmm0 \n" + "movdqa %%xmm0,%%xmm1 \n" + "punpcklwd %%xmm0,%%xmm0 \n" + "punpckhwd %%xmm1,%%xmm1 \n" + "por %%xmm4,%%xmm0 \n" + "por %%xmm4,%%xmm1 \n" + "movdqu %%xmm0," MEMACCESS(1) " \n" + "movdqu %%xmm1," MEMACCESS2(0x10,1) " \n" + "lea " MEMLEA(0x20,1) ",%1 \n" + + "sub $0x8,%2 \n" + "jg 1b \n" + : "+r"(y_buf), // %0 + "+r"(dst_argb), // %1 + "+rm"(width) // %2 + : + : "memory", "cc", "eax" + , "xmm0", "xmm1", "xmm2", "xmm3", "xmm4" + ); +} +#endif // HAS_I400TOARGBROW_SSE2 + +#ifdef HAS_I400TOARGBROW_AVX2 +// 16 pixels of Y converted to 16 pixels of ARGB (64 bytes). +// note: vpunpcklbw mutates and vpackuswb unmutates. +void I400ToARGBRow_AVX2(const uint8* y_buf, uint8* dst_argb, int width) { + asm volatile ( + "mov $0x4a354a35,%%eax \n" // 0488 = 1160 = 1.164 * 16 + "vmovd %%eax,%%xmm2 \n" + "vbroadcastss %%xmm2,%%ymm2 \n" + "mov $0x4880488,%%eax \n" // 4a35 = 18997 = 1.164 + "vmovd %%eax,%%xmm3 \n" + "vbroadcastss %%xmm3,%%ymm3 \n" + "vpcmpeqb %%ymm4,%%ymm4,%%ymm4 \n" + "vpslld $0x18,%%ymm4,%%ymm4 \n" + + LABELALIGN + "1: \n" + // Step 1: Scale Y contribution to 16 G values. G = (y - 16) * 1.164 + "vmovdqu " MEMACCESS(0) ",%%xmm0 \n" + "lea " MEMLEA(0x10,0) ",%0 \n" + "vpermq $0xd8,%%ymm0,%%ymm0 \n" + "vpunpcklbw %%ymm0,%%ymm0,%%ymm0 \n" + "vpmulhuw %%ymm2,%%ymm0,%%ymm0 \n" + "vpsubusw %%ymm3,%%ymm0,%%ymm0 \n" + "vpsrlw $0x6,%%ymm0,%%ymm0 \n" + "vpackuswb %%ymm0,%%ymm0,%%ymm0 \n" + "vpunpcklbw %%ymm0,%%ymm0,%%ymm1 \n" + "vpermq $0xd8,%%ymm1,%%ymm1 \n" + "vpunpcklwd %%ymm1,%%ymm1,%%ymm0 \n" + "vpunpckhwd %%ymm1,%%ymm1,%%ymm1 \n" + "vpor %%ymm4,%%ymm0,%%ymm0 \n" + "vpor %%ymm4,%%ymm1,%%ymm1 \n" + "vmovdqu %%ymm0," MEMACCESS(1) " \n" + "vmovdqu %%ymm1," MEMACCESS2(0x20,1) " \n" + "lea " MEMLEA(0x40,1) ",%1 \n" + "sub $0x10,%2 \n" + "jg 1b \n" + "vzeroupper \n" + : "+r"(y_buf), // %0 + "+r"(dst_argb), // %1 + "+rm"(width) // %2 + : + : "memory", "cc", "eax" + , "xmm0", "xmm1", "xmm2", "xmm3", "xmm4" + ); +} +#endif // HAS_I400TOARGBROW_AVX2 + +#ifdef HAS_MIRRORROW_SSSE3 +// Shuffle table for reversing the bytes. +static uvec8 kShuffleMirror = { + 15u, 14u, 13u, 12u, 11u, 10u, 9u, 8u, 7u, 6u, 5u, 4u, 3u, 2u, 1u, 0u +}; + +void MirrorRow_SSSE3(const uint8* src, uint8* dst, int width) { + intptr_t temp_width = (intptr_t)(width); + asm volatile ( + "movdqa %3,%%xmm5 \n" + LABELALIGN + "1: \n" + MEMOPREG(movdqu,-0x10,0,2,1,xmm0) // movdqu -0x10(%0,%2),%%xmm0 + "pshufb %%xmm5,%%xmm0 \n" + "movdqu %%xmm0," MEMACCESS(1) " \n" + "lea " MEMLEA(0x10,1) ",%1 \n" + "sub $0x10,%2 \n" + "jg 1b \n" + : "+r"(src), // %0 + "+r"(dst), // %1 + "+r"(temp_width) // %2 + : "m"(kShuffleMirror) // %3 + : "memory", "cc", NACL_R14 + "xmm0", "xmm5" + ); +} +#endif // HAS_MIRRORROW_SSSE3 + +#ifdef HAS_MIRRORROW_AVX2 +void MirrorRow_AVX2(const uint8* src, uint8* dst, int width) { + intptr_t temp_width = (intptr_t)(width); + asm volatile ( + "vbroadcastf128 %3,%%ymm5 \n" + LABELALIGN + "1: \n" + MEMOPREG(vmovdqu,-0x20,0,2,1,ymm0) // vmovdqu -0x20(%0,%2),%%ymm0 + "vpshufb %%ymm5,%%ymm0,%%ymm0 \n" + "vpermq $0x4e,%%ymm0,%%ymm0 \n" + "vmovdqu %%ymm0," MEMACCESS(1) " \n" + "lea " MEMLEA(0x20,1) ",%1 \n" + "sub $0x20,%2 \n" + "jg 1b \n" + "vzeroupper \n" + : "+r"(src), // %0 + "+r"(dst), // %1 + "+r"(temp_width) // %2 + : "m"(kShuffleMirror) // %3 + : "memory", "cc", NACL_R14 + "xmm0", "xmm5" + ); +} +#endif // HAS_MIRRORROW_AVX2 + +#ifdef HAS_MIRRORUVROW_SSSE3 +// Shuffle table for reversing the bytes of UV channels. +static uvec8 kShuffleMirrorUV = { + 14u, 12u, 10u, 8u, 6u, 4u, 2u, 0u, 15u, 13u, 11u, 9u, 7u, 5u, 3u, 1u +}; +void MirrorUVRow_SSSE3(const uint8* src, uint8* dst_u, uint8* dst_v, + int width) { + intptr_t temp_width = (intptr_t)(width); + asm volatile ( + "movdqa %4,%%xmm1 \n" + "lea " MEMLEA4(-0x10,0,3,2) ",%0 \n" + "sub %1,%2 \n" + LABELALIGN + "1: \n" + "movdqu " MEMACCESS(0) ",%%xmm0 \n" + "lea " MEMLEA(-0x10,0) ",%0 \n" + "pshufb %%xmm1,%%xmm0 \n" + "movlpd %%xmm0," MEMACCESS(1) " \n" + MEMOPMEM(movhpd,xmm0,0x00,1,2,1) // movhpd %%xmm0,(%1,%2) + "lea " MEMLEA(0x8,1) ",%1 \n" + "sub $8,%3 \n" + "jg 1b \n" + : "+r"(src), // %0 + "+r"(dst_u), // %1 + "+r"(dst_v), // %2 + "+r"(temp_width) // %3 + : "m"(kShuffleMirrorUV) // %4 + : "memory", "cc", NACL_R14 + "xmm0", "xmm1" + ); +} +#endif // HAS_MIRRORUVROW_SSSE3 + +#ifdef HAS_ARGBMIRRORROW_SSE2 + +void ARGBMirrorRow_SSE2(const uint8* src, uint8* dst, int width) { + intptr_t temp_width = (intptr_t)(width); + asm volatile ( + "lea " MEMLEA4(-0x10,0,2,4) ",%0 \n" + LABELALIGN + "1: \n" + "movdqu " MEMACCESS(0) ",%%xmm0 \n" + "pshufd $0x1b,%%xmm0,%%xmm0 \n" + "lea " MEMLEA(-0x10,0) ",%0 \n" + "movdqu %%xmm0," MEMACCESS(1) " \n" + "lea " MEMLEA(0x10,1) ",%1 \n" + "sub $0x4,%2 \n" + "jg 1b \n" + : "+r"(src), // %0 + "+r"(dst), // %1 + "+r"(temp_width) // %2 + : + : "memory", "cc" + , "xmm0" + ); +} +#endif // HAS_ARGBMIRRORROW_SSE2 + +#ifdef HAS_ARGBMIRRORROW_AVX2 +// Shuffle table for reversing the bytes. +static const ulvec32 kARGBShuffleMirror_AVX2 = { + 7u, 6u, 5u, 4u, 3u, 2u, 1u, 0u +}; +void ARGBMirrorRow_AVX2(const uint8* src, uint8* dst, int width) { + intptr_t temp_width = (intptr_t)(width); + asm volatile ( + "vmovdqu %3,%%ymm5 \n" + LABELALIGN + "1: \n" + VMEMOPREG(vpermd,-0x20,0,2,4,ymm5,ymm0) // vpermd -0x20(%0,%2,4),ymm5,ymm0 + "vmovdqu %%ymm0," MEMACCESS(1) " \n" + "lea " MEMLEA(0x20,1) ",%1 \n" + "sub $0x8,%2 \n" + "jg 1b \n" + "vzeroupper \n" + : "+r"(src), // %0 + "+r"(dst), // %1 + "+r"(temp_width) // %2 + : "m"(kARGBShuffleMirror_AVX2) // %3 + : "memory", "cc", NACL_R14 + "xmm0", "xmm5" + ); +} +#endif // HAS_ARGBMIRRORROW_AVX2 + +#ifdef HAS_SPLITUVROW_AVX2 +void SplitUVRow_AVX2(const uint8* src_uv, uint8* dst_u, uint8* dst_v, + int width) { + asm volatile ( + "vpcmpeqb %%ymm5,%%ymm5,%%ymm5 \n" + "vpsrlw $0x8,%%ymm5,%%ymm5 \n" + "sub %1,%2 \n" + LABELALIGN + "1: \n" + "vmovdqu " MEMACCESS(0) ",%%ymm0 \n" + "vmovdqu " MEMACCESS2(0x20,0) ",%%ymm1 \n" + "lea " MEMLEA(0x40,0) ",%0 \n" + "vpsrlw $0x8,%%ymm0,%%ymm2 \n" + "vpsrlw $0x8,%%ymm1,%%ymm3 \n" + "vpand %%ymm5,%%ymm0,%%ymm0 \n" + "vpand %%ymm5,%%ymm1,%%ymm1 \n" + "vpackuswb %%ymm1,%%ymm0,%%ymm0 \n" + "vpackuswb %%ymm3,%%ymm2,%%ymm2 \n" + "vpermq $0xd8,%%ymm0,%%ymm0 \n" + "vpermq $0xd8,%%ymm2,%%ymm2 \n" + "vmovdqu %%ymm0," MEMACCESS(1) " \n" + MEMOPMEM(vmovdqu,ymm2,0x00,1,2,1) // vmovdqu %%ymm2,(%1,%2) + "lea " MEMLEA(0x20,1) ",%1 \n" + "sub $0x20,%3 \n" + "jg 1b \n" + "vzeroupper \n" + : "+r"(src_uv), // %0 + "+r"(dst_u), // %1 + "+r"(dst_v), // %2 + "+r"(width) // %3 + : + : "memory", "cc", NACL_R14 + "xmm0", "xmm1", "xmm2", "xmm3", "xmm5" + ); +} +#endif // HAS_SPLITUVROW_AVX2 + +#ifdef HAS_SPLITUVROW_SSE2 +void SplitUVRow_SSE2(const uint8* src_uv, uint8* dst_u, uint8* dst_v, + int width) { + asm volatile ( + "pcmpeqb %%xmm5,%%xmm5 \n" + "psrlw $0x8,%%xmm5 \n" + "sub %1,%2 \n" + LABELALIGN + "1: \n" + "movdqu " MEMACCESS(0) ",%%xmm0 \n" + "movdqu " MEMACCESS2(0x10,0) ",%%xmm1 \n" + "lea " MEMLEA(0x20,0) ",%0 \n" + "movdqa %%xmm0,%%xmm2 \n" + "movdqa %%xmm1,%%xmm3 \n" + "pand %%xmm5,%%xmm0 \n" + "pand %%xmm5,%%xmm1 \n" + "packuswb %%xmm1,%%xmm0 \n" + "psrlw $0x8,%%xmm2 \n" + "psrlw $0x8,%%xmm3 \n" + "packuswb %%xmm3,%%xmm2 \n" + "movdqu %%xmm0," MEMACCESS(1) " \n" + MEMOPMEM(movdqu,xmm2,0x00,1,2,1) // movdqu %%xmm2,(%1,%2) + "lea " MEMLEA(0x10,1) ",%1 \n" + "sub $0x10,%3 \n" + "jg 1b \n" + : "+r"(src_uv), // %0 + "+r"(dst_u), // %1 + "+r"(dst_v), // %2 + "+r"(width) // %3 + : + : "memory", "cc", NACL_R14 + "xmm0", "xmm1", "xmm2", "xmm3", "xmm5" + ); +} +#endif // HAS_SPLITUVROW_SSE2 + +#ifdef HAS_MERGEUVROW_AVX2 +void MergeUVRow_AVX2(const uint8* src_u, const uint8* src_v, uint8* dst_uv, + int width) { + asm volatile ( + "sub %0,%1 \n" + LABELALIGN + "1: \n" + "vmovdqu " MEMACCESS(0) ",%%ymm0 \n" + MEMOPREG(vmovdqu,0x00,0,1,1,ymm1) // vmovdqu (%0,%1,1),%%ymm1 + "lea " MEMLEA(0x20,0) ",%0 \n" + "vpunpcklbw %%ymm1,%%ymm0,%%ymm2 \n" + "vpunpckhbw %%ymm1,%%ymm0,%%ymm0 \n" + "vextractf128 $0x0,%%ymm2," MEMACCESS(2) " \n" + "vextractf128 $0x0,%%ymm0," MEMACCESS2(0x10,2) "\n" + "vextractf128 $0x1,%%ymm2," MEMACCESS2(0x20,2) "\n" + "vextractf128 $0x1,%%ymm0," MEMACCESS2(0x30,2) "\n" + "lea " MEMLEA(0x40,2) ",%2 \n" + "sub $0x20,%3 \n" + "jg 1b \n" + "vzeroupper \n" + : "+r"(src_u), // %0 + "+r"(src_v), // %1 + "+r"(dst_uv), // %2 + "+r"(width) // %3 + : + : "memory", "cc", NACL_R14 + "xmm0", "xmm1", "xmm2" + ); +} +#endif // HAS_MERGEUVROW_AVX2 + +#ifdef HAS_MERGEUVROW_SSE2 +void MergeUVRow_SSE2(const uint8* src_u, const uint8* src_v, uint8* dst_uv, + int width) { + asm volatile ( + "sub %0,%1 \n" + LABELALIGN + "1: \n" + "movdqu " MEMACCESS(0) ",%%xmm0 \n" + MEMOPREG(movdqu,0x00,0,1,1,xmm1) // movdqu (%0,%1,1),%%xmm1 + "lea " MEMLEA(0x10,0) ",%0 \n" + "movdqa %%xmm0,%%xmm2 \n" + "punpcklbw %%xmm1,%%xmm0 \n" + "punpckhbw %%xmm1,%%xmm2 \n" + "movdqu %%xmm0," MEMACCESS(2) " \n" + "movdqu %%xmm2," MEMACCESS2(0x10,2) " \n" + "lea " MEMLEA(0x20,2) ",%2 \n" + "sub $0x10,%3 \n" + "jg 1b \n" + : "+r"(src_u), // %0 + "+r"(src_v), // %1 + "+r"(dst_uv), // %2 + "+r"(width) // %3 + : + : "memory", "cc", NACL_R14 + "xmm0", "xmm1", "xmm2" + ); +} +#endif // HAS_MERGEUVROW_SSE2 + +#ifdef HAS_COPYROW_SSE2 +void CopyRow_SSE2(const uint8* src, uint8* dst, int count) { + asm volatile ( + "test $0xf,%0 \n" + "jne 2f \n" + "test $0xf,%1 \n" + "jne 2f \n" + LABELALIGN + "1: \n" + "movdqa " MEMACCESS(0) ",%%xmm0 \n" + "movdqa " MEMACCESS2(0x10,0) ",%%xmm1 \n" + "lea " MEMLEA(0x20,0) ",%0 \n" + "movdqa %%xmm0," MEMACCESS(1) " \n" + "movdqa %%xmm1," MEMACCESS2(0x10,1) " \n" + "lea " MEMLEA(0x20,1) ",%1 \n" + "sub $0x20,%2 \n" + "jg 1b \n" + "jmp 9f \n" + LABELALIGN + "2: \n" + "movdqu " MEMACCESS(0) ",%%xmm0 \n" + "movdqu " MEMACCESS2(0x10,0) ",%%xmm1 \n" + "lea " MEMLEA(0x20,0) ",%0 \n" + "movdqu %%xmm0," MEMACCESS(1) " \n" + "movdqu %%xmm1," MEMACCESS2(0x10,1) " \n" + "lea " MEMLEA(0x20,1) ",%1 \n" + "sub $0x20,%2 \n" + "jg 2b \n" + "9: \n" + : "+r"(src), // %0 + "+r"(dst), // %1 + "+r"(count) // %2 + : + : "memory", "cc" + , "xmm0", "xmm1" + ); +} +#endif // HAS_COPYROW_SSE2 + +#ifdef HAS_COPYROW_AVX +void CopyRow_AVX(const uint8* src, uint8* dst, int count) { + asm volatile ( + LABELALIGN + "1: \n" + "vmovdqu " MEMACCESS(0) ",%%ymm0 \n" + "vmovdqu " MEMACCESS2(0x20,0) ",%%ymm1 \n" + "lea " MEMLEA(0x40,0) ",%0 \n" + "vmovdqu %%ymm0," MEMACCESS(1) " \n" + "vmovdqu %%ymm1," MEMACCESS2(0x20,1) " \n" + "lea " MEMLEA(0x40,1) ",%1 \n" + "sub $0x40,%2 \n" + "jg 1b \n" + : "+r"(src), // %0 + "+r"(dst), // %1 + "+r"(count) // %2 + : + : "memory", "cc" + , "xmm0", "xmm1" + ); +} +#endif // HAS_COPYROW_AVX + +#ifdef HAS_COPYROW_ERMS +// Multiple of 1. +void CopyRow_ERMS(const uint8* src, uint8* dst, int width) { + size_t width_tmp = (size_t)(width); + asm volatile ( + "rep movsb " MEMMOVESTRING(0,1) " \n" + : "+S"(src), // %0 + "+D"(dst), // %1 + "+c"(width_tmp) // %2 + : + : "memory", "cc" + ); +} +#endif // HAS_COPYROW_ERMS + +#ifdef HAS_ARGBCOPYALPHAROW_SSE2 +// width in pixels +void ARGBCopyAlphaRow_SSE2(const uint8* src, uint8* dst, int width) { + asm volatile ( + "pcmpeqb %%xmm0,%%xmm0 \n" + "pslld $0x18,%%xmm0 \n" + "pcmpeqb %%xmm1,%%xmm1 \n" + "psrld $0x8,%%xmm1 \n" + LABELALIGN + "1: \n" + "movdqu " MEMACCESS(0) ",%%xmm2 \n" + "movdqu " MEMACCESS2(0x10,0) ",%%xmm3 \n" + "lea " MEMLEA(0x20,0) ",%0 \n" + "movdqu " MEMACCESS(1) ",%%xmm4 \n" + "movdqu " MEMACCESS2(0x10,1) ",%%xmm5 \n" + "pand %%xmm0,%%xmm2 \n" + "pand %%xmm0,%%xmm3 \n" + "pand %%xmm1,%%xmm4 \n" + "pand %%xmm1,%%xmm5 \n" + "por %%xmm4,%%xmm2 \n" + "por %%xmm5,%%xmm3 \n" + "movdqu %%xmm2," MEMACCESS(1) " \n" + "movdqu %%xmm3," MEMACCESS2(0x10,1) " \n" + "lea " MEMLEA(0x20,1) ",%1 \n" + "sub $0x8,%2 \n" + "jg 1b \n" + : "+r"(src), // %0 + "+r"(dst), // %1 + "+r"(width) // %2 + : + : "memory", "cc" + , "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5" + ); +} +#endif // HAS_ARGBCOPYALPHAROW_SSE2 + +#ifdef HAS_ARGBCOPYALPHAROW_AVX2 +// width in pixels +void ARGBCopyAlphaRow_AVX2(const uint8* src, uint8* dst, int width) { + asm volatile ( + "vpcmpeqb %%ymm0,%%ymm0,%%ymm0 \n" + "vpsrld $0x8,%%ymm0,%%ymm0 \n" + LABELALIGN + "1: \n" + "vmovdqu " MEMACCESS(0) ",%%ymm1 \n" + "vmovdqu " MEMACCESS2(0x20,0) ",%%ymm2 \n" + "lea " MEMLEA(0x40,0) ",%0 \n" + "vpblendvb %%ymm0," MEMACCESS(1) ",%%ymm1,%%ymm1 \n" + "vpblendvb %%ymm0," MEMACCESS2(0x20,1) ",%%ymm2,%%ymm2 \n" + "vmovdqu %%ymm1," MEMACCESS(1) " \n" + "vmovdqu %%ymm2," MEMACCESS2(0x20,1) " \n" + "lea " MEMLEA(0x40,1) ",%1 \n" + "sub $0x10,%2 \n" + "jg 1b \n" + "vzeroupper \n" + : "+r"(src), // %0 + "+r"(dst), // %1 + "+r"(width) // %2 + : + : "memory", "cc" + , "xmm0", "xmm1", "xmm2" + ); +} +#endif // HAS_ARGBCOPYALPHAROW_AVX2 + +#ifdef HAS_ARGBEXTRACTALPHAROW_SSE2 +// width in pixels +void ARGBExtractAlphaRow_SSE2(const uint8* src_argb, uint8* dst_a, int width) { + asm volatile ( + LABELALIGN + "1: \n" + "movdqu " MEMACCESS(0) ", %%xmm0 \n" + "movdqu " MEMACCESS2(0x10, 0) ", %%xmm1 \n" + "lea " MEMLEA(0x20, 0) ", %0 \n" + "psrld $0x18, %%xmm0 \n" + "psrld $0x18, %%xmm1 \n" + "packssdw %%xmm1, %%xmm0 \n" + "packuswb %%xmm0, %%xmm0 \n" + "movq %%xmm0," MEMACCESS(1) " \n" + "lea " MEMLEA(0x8, 1) ", %1 \n" + "sub $0x8, %2 \n" + "jg 1b \n" + : "+r"(src_argb), // %0 + "+r"(dst_a), // %1 + "+rm"(width) // %2 + : + : "memory", "cc" + , "xmm0", "xmm1" + ); +} +#endif // HAS_ARGBEXTRACTALPHAROW_SSE2 + +#ifdef HAS_ARGBCOPYYTOALPHAROW_SSE2 +// width in pixels +void ARGBCopyYToAlphaRow_SSE2(const uint8* src, uint8* dst, int width) { + asm volatile ( + "pcmpeqb %%xmm0,%%xmm0 \n" + "pslld $0x18,%%xmm0 \n" + "pcmpeqb %%xmm1,%%xmm1 \n" + "psrld $0x8,%%xmm1 \n" + LABELALIGN + "1: \n" + "movq " MEMACCESS(0) ",%%xmm2 \n" + "lea " MEMLEA(0x8,0) ",%0 \n" + "punpcklbw %%xmm2,%%xmm2 \n" + "punpckhwd %%xmm2,%%xmm3 \n" + "punpcklwd %%xmm2,%%xmm2 \n" + "movdqu " MEMACCESS(1) ",%%xmm4 \n" + "movdqu " MEMACCESS2(0x10,1) ",%%xmm5 \n" + "pand %%xmm0,%%xmm2 \n" + "pand %%xmm0,%%xmm3 \n" + "pand %%xmm1,%%xmm4 \n" + "pand %%xmm1,%%xmm5 \n" + "por %%xmm4,%%xmm2 \n" + "por %%xmm5,%%xmm3 \n" + "movdqu %%xmm2," MEMACCESS(1) " \n" + "movdqu %%xmm3," MEMACCESS2(0x10,1) " \n" + "lea " MEMLEA(0x20,1) ",%1 \n" + "sub $0x8,%2 \n" + "jg 1b \n" + : "+r"(src), // %0 + "+r"(dst), // %1 + "+r"(width) // %2 + : + : "memory", "cc" + , "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5" + ); +} +#endif // HAS_ARGBCOPYYTOALPHAROW_SSE2 + +#ifdef HAS_ARGBCOPYYTOALPHAROW_AVX2 +// width in pixels +void ARGBCopyYToAlphaRow_AVX2(const uint8* src, uint8* dst, int width) { + asm volatile ( + "vpcmpeqb %%ymm0,%%ymm0,%%ymm0 \n" + "vpsrld $0x8,%%ymm0,%%ymm0 \n" + LABELALIGN + "1: \n" + "vpmovzxbd " MEMACCESS(0) ",%%ymm1 \n" + "vpmovzxbd " MEMACCESS2(0x8,0) ",%%ymm2 \n" + "lea " MEMLEA(0x10,0) ",%0 \n" + "vpslld $0x18,%%ymm1,%%ymm1 \n" + "vpslld $0x18,%%ymm2,%%ymm2 \n" + "vpblendvb %%ymm0," MEMACCESS(1) ",%%ymm1,%%ymm1 \n" + "vpblendvb %%ymm0," MEMACCESS2(0x20,1) ",%%ymm2,%%ymm2 \n" + "vmovdqu %%ymm1," MEMACCESS(1) " \n" + "vmovdqu %%ymm2," MEMACCESS2(0x20,1) " \n" + "lea " MEMLEA(0x40,1) ",%1 \n" + "sub $0x10,%2 \n" + "jg 1b \n" + "vzeroupper \n" + : "+r"(src), // %0 + "+r"(dst), // %1 + "+r"(width) // %2 + : + : "memory", "cc" + , "xmm0", "xmm1", "xmm2" + ); +} +#endif // HAS_ARGBCOPYYTOALPHAROW_AVX2 + +#ifdef HAS_SETROW_X86 +void SetRow_X86(uint8* dst, uint8 v8, int width) { + size_t width_tmp = (size_t)(width >> 2); + const uint32 v32 = v8 * 0x01010101u; // Duplicate byte to all bytes. + asm volatile ( + "rep stosl " MEMSTORESTRING(eax,0) " \n" + : "+D"(dst), // %0 + "+c"(width_tmp) // %1 + : "a"(v32) // %2 + : "memory", "cc"); +} + +void SetRow_ERMS(uint8* dst, uint8 v8, int width) { + size_t width_tmp = (size_t)(width); + asm volatile ( + "rep stosb " MEMSTORESTRING(al,0) " \n" + : "+D"(dst), // %0 + "+c"(width_tmp) // %1 + : "a"(v8) // %2 + : "memory", "cc"); +} + +void ARGBSetRow_X86(uint8* dst_argb, uint32 v32, int width) { + size_t width_tmp = (size_t)(width); + asm volatile ( + "rep stosl " MEMSTORESTRING(eax,0) " \n" + : "+D"(dst_argb), // %0 + "+c"(width_tmp) // %1 + : "a"(v32) // %2 + : "memory", "cc"); +} +#endif // HAS_SETROW_X86 + +#ifdef HAS_YUY2TOYROW_SSE2 +void YUY2ToYRow_SSE2(const uint8* src_yuy2, uint8* dst_y, int width) { + asm volatile ( + "pcmpeqb %%xmm5,%%xmm5 \n" + "psrlw $0x8,%%xmm5 \n" + LABELALIGN + "1: \n" + "movdqu " MEMACCESS(0) ",%%xmm0 \n" + "movdqu " MEMACCESS2(0x10,0) ",%%xmm1 \n" + "lea " MEMLEA(0x20,0) ",%0 \n" + "pand %%xmm5,%%xmm0 \n" + "pand %%xmm5,%%xmm1 \n" + "packuswb %%xmm1,%%xmm0 \n" + "movdqu %%xmm0," MEMACCESS(1) " \n" + "lea " MEMLEA(0x10,1) ",%1 \n" + "sub $0x10,%2 \n" + "jg 1b \n" + : "+r"(src_yuy2), // %0 + "+r"(dst_y), // %1 + "+r"(width) // %2 + : + : "memory", "cc" + , "xmm0", "xmm1", "xmm5" + ); +} + +void YUY2ToUVRow_SSE2(const uint8* src_yuy2, int stride_yuy2, + uint8* dst_u, uint8* dst_v, int width) { + asm volatile ( + "pcmpeqb %%xmm5,%%xmm5 \n" + "psrlw $0x8,%%xmm5 \n" + "sub %1,%2 \n" + LABELALIGN + "1: \n" + "movdqu " MEMACCESS(0) ",%%xmm0 \n" + "movdqu " MEMACCESS2(0x10,0) ",%%xmm1 \n" + MEMOPREG(movdqu,0x00,0,4,1,xmm2) // movdqu (%0,%4,1),%%xmm2 + MEMOPREG(movdqu,0x10,0,4,1,xmm3) // movdqu 0x10(%0,%4,1),%%xmm3 + "lea " MEMLEA(0x20,0) ",%0 \n" + "pavgb %%xmm2,%%xmm0 \n" + "pavgb %%xmm3,%%xmm1 \n" + "psrlw $0x8,%%xmm0 \n" + "psrlw $0x8,%%xmm1 \n" + "packuswb %%xmm1,%%xmm0 \n" + "movdqa %%xmm0,%%xmm1 \n" + "pand %%xmm5,%%xmm0 \n" + "packuswb %%xmm0,%%xmm0 \n" + "psrlw $0x8,%%xmm1 \n" + "packuswb %%xmm1,%%xmm1 \n" + "movq %%xmm0," MEMACCESS(1) " \n" + MEMOPMEM(movq,xmm1,0x00,1,2,1) // movq %%xmm1,(%1,%2) + "lea " MEMLEA(0x8,1) ",%1 \n" + "sub $0x10,%3 \n" + "jg 1b \n" + : "+r"(src_yuy2), // %0 + "+r"(dst_u), // %1 + "+r"(dst_v), // %2 + "+r"(width) // %3 + : "r"((intptr_t)(stride_yuy2)) // %4 + : "memory", "cc", NACL_R14 + "xmm0", "xmm1", "xmm2", "xmm3", "xmm5" + ); +} + +void YUY2ToUV422Row_SSE2(const uint8* src_yuy2, + uint8* dst_u, uint8* dst_v, int width) { + asm volatile ( + "pcmpeqb %%xmm5,%%xmm5 \n" + "psrlw $0x8,%%xmm5 \n" + "sub %1,%2 \n" + LABELALIGN + "1: \n" + "movdqu " MEMACCESS(0) ",%%xmm0 \n" + "movdqu " MEMACCESS2(0x10,0) ",%%xmm1 \n" + "lea " MEMLEA(0x20,0) ",%0 \n" + "psrlw $0x8,%%xmm0 \n" + "psrlw $0x8,%%xmm1 \n" + "packuswb %%xmm1,%%xmm0 \n" + "movdqa %%xmm0,%%xmm1 \n" + "pand %%xmm5,%%xmm0 \n" + "packuswb %%xmm0,%%xmm0 \n" + "psrlw $0x8,%%xmm1 \n" + "packuswb %%xmm1,%%xmm1 \n" + "movq %%xmm0," MEMACCESS(1) " \n" + MEMOPMEM(movq,xmm1,0x00,1,2,1) // movq %%xmm1,(%1,%2) + "lea " MEMLEA(0x8,1) ",%1 \n" + "sub $0x10,%3 \n" + "jg 1b \n" + : "+r"(src_yuy2), // %0 + "+r"(dst_u), // %1 + "+r"(dst_v), // %2 + "+r"(width) // %3 + : + : "memory", "cc", NACL_R14 + "xmm0", "xmm1", "xmm5" + ); +} + +void UYVYToYRow_SSE2(const uint8* src_uyvy, uint8* dst_y, int width) { + asm volatile ( + LABELALIGN + "1: \n" + "movdqu " MEMACCESS(0) ",%%xmm0 \n" + "movdqu " MEMACCESS2(0x10,0) ",%%xmm1 \n" + "lea " MEMLEA(0x20,0) ",%0 \n" + "psrlw $0x8,%%xmm0 \n" + "psrlw $0x8,%%xmm1 \n" + "packuswb %%xmm1,%%xmm0 \n" + "movdqu %%xmm0," MEMACCESS(1) " \n" + "lea " MEMLEA(0x10,1) ",%1 \n" + "sub $0x10,%2 \n" + "jg 1b \n" + : "+r"(src_uyvy), // %0 + "+r"(dst_y), // %1 + "+r"(width) // %2 + : + : "memory", "cc" + , "xmm0", "xmm1" + ); +} + +void UYVYToUVRow_SSE2(const uint8* src_uyvy, int stride_uyvy, + uint8* dst_u, uint8* dst_v, int width) { + asm volatile ( + "pcmpeqb %%xmm5,%%xmm5 \n" + "psrlw $0x8,%%xmm5 \n" + "sub %1,%2 \n" + LABELALIGN + "1: \n" + "movdqu " MEMACCESS(0) ",%%xmm0 \n" + "movdqu " MEMACCESS2(0x10,0) ",%%xmm1 \n" + MEMOPREG(movdqu,0x00,0,4,1,xmm2) // movdqu (%0,%4,1),%%xmm2 + MEMOPREG(movdqu,0x10,0,4,1,xmm3) // movdqu 0x10(%0,%4,1),%%xmm3 + "lea " MEMLEA(0x20,0) ",%0 \n" + "pavgb %%xmm2,%%xmm0 \n" + "pavgb %%xmm3,%%xmm1 \n" + "pand %%xmm5,%%xmm0 \n" + "pand %%xmm5,%%xmm1 \n" + "packuswb %%xmm1,%%xmm0 \n" + "movdqa %%xmm0,%%xmm1 \n" + "pand %%xmm5,%%xmm0 \n" + "packuswb %%xmm0,%%xmm0 \n" + "psrlw $0x8,%%xmm1 \n" + "packuswb %%xmm1,%%xmm1 \n" + "movq %%xmm0," MEMACCESS(1) " \n" + MEMOPMEM(movq,xmm1,0x00,1,2,1) // movq %%xmm1,(%1,%2) + "lea " MEMLEA(0x8,1) ",%1 \n" + "sub $0x10,%3 \n" + "jg 1b \n" + : "+r"(src_uyvy), // %0 + "+r"(dst_u), // %1 + "+r"(dst_v), // %2 + "+r"(width) // %3 + : "r"((intptr_t)(stride_uyvy)) // %4 + : "memory", "cc", NACL_R14 + "xmm0", "xmm1", "xmm2", "xmm3", "xmm5" + ); +} + +void UYVYToUV422Row_SSE2(const uint8* src_uyvy, + uint8* dst_u, uint8* dst_v, int width) { + asm volatile ( + "pcmpeqb %%xmm5,%%xmm5 \n" + "psrlw $0x8,%%xmm5 \n" + "sub %1,%2 \n" + LABELALIGN + "1: \n" + "movdqu " MEMACCESS(0) ",%%xmm0 \n" + "movdqu " MEMACCESS2(0x10,0) ",%%xmm1 \n" + "lea " MEMLEA(0x20,0) ",%0 \n" + "pand %%xmm5,%%xmm0 \n" + "pand %%xmm5,%%xmm1 \n" + "packuswb %%xmm1,%%xmm0 \n" + "movdqa %%xmm0,%%xmm1 \n" + "pand %%xmm5,%%xmm0 \n" + "packuswb %%xmm0,%%xmm0 \n" + "psrlw $0x8,%%xmm1 \n" + "packuswb %%xmm1,%%xmm1 \n" + "movq %%xmm0," MEMACCESS(1) " \n" + MEMOPMEM(movq,xmm1,0x00,1,2,1) // movq %%xmm1,(%1,%2) + "lea " MEMLEA(0x8,1) ",%1 \n" + "sub $0x10,%3 \n" + "jg 1b \n" + : "+r"(src_uyvy), // %0 + "+r"(dst_u), // %1 + "+r"(dst_v), // %2 + "+r"(width) // %3 + : + : "memory", "cc", NACL_R14 + "xmm0", "xmm1", "xmm5" + ); +} +#endif // HAS_YUY2TOYROW_SSE2 + +#ifdef HAS_YUY2TOYROW_AVX2 +void YUY2ToYRow_AVX2(const uint8* src_yuy2, uint8* dst_y, int width) { + asm volatile ( + "vpcmpeqb %%ymm5,%%ymm5,%%ymm5 \n" + "vpsrlw $0x8,%%ymm5,%%ymm5 \n" + LABELALIGN + "1: \n" + "vmovdqu " MEMACCESS(0) ",%%ymm0 \n" + "vmovdqu " MEMACCESS2(0x20,0) ",%%ymm1 \n" + "lea " MEMLEA(0x40,0) ",%0 \n" + "vpand %%ymm5,%%ymm0,%%ymm0 \n" + "vpand %%ymm5,%%ymm1,%%ymm1 \n" + "vpackuswb %%ymm1,%%ymm0,%%ymm0 \n" + "vpermq $0xd8,%%ymm0,%%ymm0 \n" + "vmovdqu %%ymm0," MEMACCESS(1) " \n" + "lea " MEMLEA(0x20,1) ",%1 \n" + "sub $0x20,%2 \n" + "jg 1b \n" + "vzeroupper \n" + : "+r"(src_yuy2), // %0 + "+r"(dst_y), // %1 + "+r"(width) // %2 + : + : "memory", "cc" + , "xmm0", "xmm1", "xmm5" + ); +} + +void YUY2ToUVRow_AVX2(const uint8* src_yuy2, int stride_yuy2, + uint8* dst_u, uint8* dst_v, int width) { + asm volatile ( + "vpcmpeqb %%ymm5,%%ymm5,%%ymm5 \n" + "vpsrlw $0x8,%%ymm5,%%ymm5 \n" + "sub %1,%2 \n" + LABELALIGN + "1: \n" + "vmovdqu " MEMACCESS(0) ",%%ymm0 \n" + "vmovdqu " MEMACCESS2(0x20,0) ",%%ymm1 \n" + VMEMOPREG(vpavgb,0x00,0,4,1,ymm0,ymm0) // vpavgb (%0,%4,1),%%ymm0,%%ymm0 + VMEMOPREG(vpavgb,0x20,0,4,1,ymm1,ymm1) + "lea " MEMLEA(0x40,0) ",%0 \n" + "vpsrlw $0x8,%%ymm0,%%ymm0 \n" + "vpsrlw $0x8,%%ymm1,%%ymm1 \n" + "vpackuswb %%ymm1,%%ymm0,%%ymm0 \n" + "vpermq $0xd8,%%ymm0,%%ymm0 \n" + "vpand %%ymm5,%%ymm0,%%ymm1 \n" + "vpsrlw $0x8,%%ymm0,%%ymm0 \n" + "vpackuswb %%ymm1,%%ymm1,%%ymm1 \n" + "vpackuswb %%ymm0,%%ymm0,%%ymm0 \n" + "vpermq $0xd8,%%ymm1,%%ymm1 \n" + "vpermq $0xd8,%%ymm0,%%ymm0 \n" + "vextractf128 $0x0,%%ymm1," MEMACCESS(1) " \n" + VEXTOPMEM(vextractf128,0,ymm0,0x00,1,2,1) // vextractf128 $0x0,%%ymm0,(%1,%2,1) + "lea " MEMLEA(0x10,1) ",%1 \n" + "sub $0x20,%3 \n" + "jg 1b \n" + "vzeroupper \n" + : "+r"(src_yuy2), // %0 + "+r"(dst_u), // %1 + "+r"(dst_v), // %2 + "+r"(width) // %3 + : "r"((intptr_t)(stride_yuy2)) // %4 + : "memory", "cc", NACL_R14 + "xmm0", "xmm1", "xmm5" + ); +} + +void YUY2ToUV422Row_AVX2(const uint8* src_yuy2, + uint8* dst_u, uint8* dst_v, int width) { + asm volatile ( + "vpcmpeqb %%ymm5,%%ymm5,%%ymm5 \n" + "vpsrlw $0x8,%%ymm5,%%ymm5 \n" + "sub %1,%2 \n" + LABELALIGN + "1: \n" + "vmovdqu " MEMACCESS(0) ",%%ymm0 \n" + "vmovdqu " MEMACCESS2(0x20,0) ",%%ymm1 \n" + "lea " MEMLEA(0x40,0) ",%0 \n" + "vpsrlw $0x8,%%ymm0,%%ymm0 \n" + "vpsrlw $0x8,%%ymm1,%%ymm1 \n" + "vpackuswb %%ymm1,%%ymm0,%%ymm0 \n" + "vpermq $0xd8,%%ymm0,%%ymm0 \n" + "vpand %%ymm5,%%ymm0,%%ymm1 \n" + "vpsrlw $0x8,%%ymm0,%%ymm0 \n" + "vpackuswb %%ymm1,%%ymm1,%%ymm1 \n" + "vpackuswb %%ymm0,%%ymm0,%%ymm0 \n" + "vpermq $0xd8,%%ymm1,%%ymm1 \n" + "vpermq $0xd8,%%ymm0,%%ymm0 \n" + "vextractf128 $0x0,%%ymm1," MEMACCESS(1) " \n" + VEXTOPMEM(vextractf128,0,ymm0,0x00,1,2,1) // vextractf128 $0x0,%%ymm0,(%1,%2,1) + "lea " MEMLEA(0x10,1) ",%1 \n" + "sub $0x20,%3 \n" + "jg 1b \n" + "vzeroupper \n" + : "+r"(src_yuy2), // %0 + "+r"(dst_u), // %1 + "+r"(dst_v), // %2 + "+r"(width) // %3 + : + : "memory", "cc", NACL_R14 + "xmm0", "xmm1", "xmm5" + ); +} + +void UYVYToYRow_AVX2(const uint8* src_uyvy, uint8* dst_y, int width) { + asm volatile ( + LABELALIGN + "1: \n" + "vmovdqu " MEMACCESS(0) ",%%ymm0 \n" + "vmovdqu " MEMACCESS2(0x20,0) ",%%ymm1 \n" + "lea " MEMLEA(0x40,0) ",%0 \n" + "vpsrlw $0x8,%%ymm0,%%ymm0 \n" + "vpsrlw $0x8,%%ymm1,%%ymm1 \n" + "vpackuswb %%ymm1,%%ymm0,%%ymm0 \n" + "vpermq $0xd8,%%ymm0,%%ymm0 \n" + "vmovdqu %%ymm0," MEMACCESS(1) " \n" + "lea " MEMLEA(0x20,1) ",%1 \n" + "sub $0x20,%2 \n" + "jg 1b \n" + "vzeroupper \n" + : "+r"(src_uyvy), // %0 + "+r"(dst_y), // %1 + "+r"(width) // %2 + : + : "memory", "cc" + , "xmm0", "xmm1", "xmm5" + ); +} +void UYVYToUVRow_AVX2(const uint8* src_uyvy, int stride_uyvy, + uint8* dst_u, uint8* dst_v, int width) { + asm volatile ( + "vpcmpeqb %%ymm5,%%ymm5,%%ymm5 \n" + "vpsrlw $0x8,%%ymm5,%%ymm5 \n" + "sub %1,%2 \n" + + LABELALIGN + "1: \n" + "vmovdqu " MEMACCESS(0) ",%%ymm0 \n" + "vmovdqu " MEMACCESS2(0x20,0) ",%%ymm1 \n" + VMEMOPREG(vpavgb,0x00,0,4,1,ymm0,ymm0) // vpavgb (%0,%4,1),%%ymm0,%%ymm0 + VMEMOPREG(vpavgb,0x20,0,4,1,ymm1,ymm1) + "lea " MEMLEA(0x40,0) ",%0 \n" + "vpand %%ymm5,%%ymm0,%%ymm0 \n" + "vpand %%ymm5,%%ymm1,%%ymm1 \n" + "vpackuswb %%ymm1,%%ymm0,%%ymm0 \n" + "vpermq $0xd8,%%ymm0,%%ymm0 \n" + "vpand %%ymm5,%%ymm0,%%ymm1 \n" + "vpsrlw $0x8,%%ymm0,%%ymm0 \n" + "vpackuswb %%ymm1,%%ymm1,%%ymm1 \n" + "vpackuswb %%ymm0,%%ymm0,%%ymm0 \n" + "vpermq $0xd8,%%ymm1,%%ymm1 \n" + "vpermq $0xd8,%%ymm0,%%ymm0 \n" + "vextractf128 $0x0,%%ymm1," MEMACCESS(1) " \n" + VEXTOPMEM(vextractf128,0,ymm0,0x00,1,2,1) // vextractf128 $0x0,%%ymm0,(%1,%2,1) + "lea " MEMLEA(0x10,1) ",%1 \n" + "sub $0x20,%3 \n" + "jg 1b \n" + "vzeroupper \n" + : "+r"(src_uyvy), // %0 + "+r"(dst_u), // %1 + "+r"(dst_v), // %2 + "+r"(width) // %3 + : "r"((intptr_t)(stride_uyvy)) // %4 + : "memory", "cc", NACL_R14 + "xmm0", "xmm1", "xmm5" + ); +} + +void UYVYToUV422Row_AVX2(const uint8* src_uyvy, + uint8* dst_u, uint8* dst_v, int width) { + asm volatile ( + "vpcmpeqb %%ymm5,%%ymm5,%%ymm5 \n" + "vpsrlw $0x8,%%ymm5,%%ymm5 \n" + "sub %1,%2 \n" + LABELALIGN + "1: \n" + "vmovdqu " MEMACCESS(0) ",%%ymm0 \n" + "vmovdqu " MEMACCESS2(0x20,0) ",%%ymm1 \n" + "lea " MEMLEA(0x40,0) ",%0 \n" + "vpand %%ymm5,%%ymm0,%%ymm0 \n" + "vpand %%ymm5,%%ymm1,%%ymm1 \n" + "vpackuswb %%ymm1,%%ymm0,%%ymm0 \n" + "vpermq $0xd8,%%ymm0,%%ymm0 \n" + "vpand %%ymm5,%%ymm0,%%ymm1 \n" + "vpsrlw $0x8,%%ymm0,%%ymm0 \n" + "vpackuswb %%ymm1,%%ymm1,%%ymm1 \n" + "vpackuswb %%ymm0,%%ymm0,%%ymm0 \n" + "vpermq $0xd8,%%ymm1,%%ymm1 \n" + "vpermq $0xd8,%%ymm0,%%ymm0 \n" + "vextractf128 $0x0,%%ymm1," MEMACCESS(1) " \n" + VEXTOPMEM(vextractf128,0,ymm0,0x00,1,2,1) // vextractf128 $0x0,%%ymm0,(%1,%2,1) + "lea " MEMLEA(0x10,1) ",%1 \n" + "sub $0x20,%3 \n" + "jg 1b \n" + "vzeroupper \n" + : "+r"(src_uyvy), // %0 + "+r"(dst_u), // %1 + "+r"(dst_v), // %2 + "+r"(width) // %3 + : + : "memory", "cc", NACL_R14 + "xmm0", "xmm1", "xmm5" + ); +} +#endif // HAS_YUY2TOYROW_AVX2 + +#ifdef HAS_ARGBBLENDROW_SSSE3 +// Shuffle table for isolating alpha. +static uvec8 kShuffleAlpha = { + 3u, 0x80, 3u, 0x80, 7u, 0x80, 7u, 0x80, + 11u, 0x80, 11u, 0x80, 15u, 0x80, 15u, 0x80 +}; + +// Blend 8 pixels at a time +void ARGBBlendRow_SSSE3(const uint8* src_argb0, const uint8* src_argb1, + uint8* dst_argb, int width) { + asm volatile ( + "pcmpeqb %%xmm7,%%xmm7 \n" + "psrlw $0xf,%%xmm7 \n" + "pcmpeqb %%xmm6,%%xmm6 \n" + "psrlw $0x8,%%xmm6 \n" + "pcmpeqb %%xmm5,%%xmm5 \n" + "psllw $0x8,%%xmm5 \n" + "pcmpeqb %%xmm4,%%xmm4 \n" + "pslld $0x18,%%xmm4 \n" + "sub $0x4,%3 \n" + "jl 49f \n" + + // 4 pixel loop. + LABELALIGN + "40: \n" + "movdqu " MEMACCESS(0) ",%%xmm3 \n" + "lea " MEMLEA(0x10,0) ",%0 \n" + "movdqa %%xmm3,%%xmm0 \n" + "pxor %%xmm4,%%xmm3 \n" + "movdqu " MEMACCESS(1) ",%%xmm2 \n" + "pshufb %4,%%xmm3 \n" + "pand %%xmm6,%%xmm2 \n" + "paddw %%xmm7,%%xmm3 \n" + "pmullw %%xmm3,%%xmm2 \n" + "movdqu " MEMACCESS(1) ",%%xmm1 \n" + "lea " MEMLEA(0x10,1) ",%1 \n" + "psrlw $0x8,%%xmm1 \n" + "por %%xmm4,%%xmm0 \n" + "pmullw %%xmm3,%%xmm1 \n" + "psrlw $0x8,%%xmm2 \n" + "paddusb %%xmm2,%%xmm0 \n" + "pand %%xmm5,%%xmm1 \n" + "paddusb %%xmm1,%%xmm0 \n" + "movdqu %%xmm0," MEMACCESS(2) " \n" + "lea " MEMLEA(0x10,2) ",%2 \n" + "sub $0x4,%3 \n" + "jge 40b \n" + + "49: \n" + "add $0x3,%3 \n" + "jl 99f \n" + + // 1 pixel loop. + "91: \n" + "movd " MEMACCESS(0) ",%%xmm3 \n" + "lea " MEMLEA(0x4,0) ",%0 \n" + "movdqa %%xmm3,%%xmm0 \n" + "pxor %%xmm4,%%xmm3 \n" + "movd " MEMACCESS(1) ",%%xmm2 \n" + "pshufb %4,%%xmm3 \n" + "pand %%xmm6,%%xmm2 \n" + "paddw %%xmm7,%%xmm3 \n" + "pmullw %%xmm3,%%xmm2 \n" + "movd " MEMACCESS(1) ",%%xmm1 \n" + "lea " MEMLEA(0x4,1) ",%1 \n" + "psrlw $0x8,%%xmm1 \n" + "por %%xmm4,%%xmm0 \n" + "pmullw %%xmm3,%%xmm1 \n" + "psrlw $0x8,%%xmm2 \n" + "paddusb %%xmm2,%%xmm0 \n" + "pand %%xmm5,%%xmm1 \n" + "paddusb %%xmm1,%%xmm0 \n" + "movd %%xmm0," MEMACCESS(2) " \n" + "lea " MEMLEA(0x4,2) ",%2 \n" + "sub $0x1,%3 \n" + "jge 91b \n" + "99: \n" + : "+r"(src_argb0), // %0 + "+r"(src_argb1), // %1 + "+r"(dst_argb), // %2 + "+r"(width) // %3 + : "m"(kShuffleAlpha) // %4 + : "memory", "cc" + , "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7" + ); +} +#endif // HAS_ARGBBLENDROW_SSSE3 + +#ifdef HAS_BLENDPLANEROW_SSSE3 +// Blend 8 pixels at a time. +// unsigned version of math +// =((A2*C2)+(B2*(255-C2))+255)/256 +// signed version of math +// =(((A2-128)*C2)+((B2-128)*(255-C2))+32768+127)/256 +void BlendPlaneRow_SSSE3(const uint8* src0, const uint8* src1, + const uint8* alpha, uint8* dst, int width) { + asm volatile ( + "pcmpeqb %%xmm5,%%xmm5 \n" + "psllw $0x8,%%xmm5 \n" + "mov $0x80808080,%%eax \n" + "movd %%eax,%%xmm6 \n" + "pshufd $0x0,%%xmm6,%%xmm6 \n" + "mov $0x807f807f,%%eax \n" + "movd %%eax,%%xmm7 \n" + "pshufd $0x0,%%xmm7,%%xmm7 \n" + "sub %2,%0 \n" + "sub %2,%1 \n" + "sub %2,%3 \n" + + // 8 pixel loop. + LABELALIGN + "1: \n" + "movq (%2),%%xmm0 \n" + "punpcklbw %%xmm0,%%xmm0 \n" + "pxor %%xmm5,%%xmm0 \n" + "movq (%0,%2,1),%%xmm1 \n" + "movq (%1,%2,1),%%xmm2 \n" + "punpcklbw %%xmm2,%%xmm1 \n" + "psubb %%xmm6,%%xmm1 \n" + "pmaddubsw %%xmm1,%%xmm0 \n" + "paddw %%xmm7,%%xmm0 \n" + "psrlw $0x8,%%xmm0 \n" + "packuswb %%xmm0,%%xmm0 \n" + "movq %%xmm0,(%3,%2,1) \n" + "lea 0x8(%2),%2 \n" + "sub $0x8,%4 \n" + "jg 1b \n" + : "+r"(src0), // %0 + "+r"(src1), // %1 + "+r"(alpha), // %2 + "+r"(dst), // %3 + "+rm"(width) // %4 + :: "memory", "cc", "eax", "xmm0", "xmm1", "xmm2", "xmm5", "xmm6", "xmm7" + ); +} +#endif // HAS_BLENDPLANEROW_SSSE3 + +#ifdef HAS_BLENDPLANEROW_AVX2 +// Blend 32 pixels at a time. +// unsigned version of math +// =((A2*C2)+(B2*(255-C2))+255)/256 +// signed version of math +// =(((A2-128)*C2)+((B2-128)*(255-C2))+32768+127)/256 +void BlendPlaneRow_AVX2(const uint8* src0, const uint8* src1, + const uint8* alpha, uint8* dst, int width) { + asm volatile ( + "vpcmpeqb %%ymm5,%%ymm5,%%ymm5 \n" + "vpsllw $0x8,%%ymm5,%%ymm5 \n" + "mov $0x80808080,%%eax \n" + "vmovd %%eax,%%xmm6 \n" + "vbroadcastss %%xmm6,%%ymm6 \n" + "mov $0x807f807f,%%eax \n" + "vmovd %%eax,%%xmm7 \n" + "vbroadcastss %%xmm7,%%ymm7 \n" + "sub %2,%0 \n" + "sub %2,%1 \n" + "sub %2,%3 \n" + + // 32 pixel loop. + LABELALIGN + "1: \n" + "vmovdqu (%2),%%ymm0 \n" + "vpunpckhbw %%ymm0,%%ymm0,%%ymm3 \n" + "vpunpcklbw %%ymm0,%%ymm0,%%ymm0 \n" + "vpxor %%ymm5,%%ymm3,%%ymm3 \n" + "vpxor %%ymm5,%%ymm0,%%ymm0 \n" + "vmovdqu (%0,%2,1),%%ymm1 \n" + "vmovdqu (%1,%2,1),%%ymm2 \n" + "vpunpckhbw %%ymm2,%%ymm1,%%ymm4 \n" + "vpunpcklbw %%ymm2,%%ymm1,%%ymm1 \n" + "vpsubb %%ymm6,%%ymm4,%%ymm4 \n" + "vpsubb %%ymm6,%%ymm1,%%ymm1 \n" + "vpmaddubsw %%ymm4,%%ymm3,%%ymm3 \n" + "vpmaddubsw %%ymm1,%%ymm0,%%ymm0 \n" + "vpaddw %%ymm7,%%ymm3,%%ymm3 \n" + "vpaddw %%ymm7,%%ymm0,%%ymm0 \n" + "vpsrlw $0x8,%%ymm3,%%ymm3 \n" + "vpsrlw $0x8,%%ymm0,%%ymm0 \n" + "vpackuswb %%ymm3,%%ymm0,%%ymm0 \n" + "vmovdqu %%ymm0,(%3,%2,1) \n" + "lea 0x20(%2),%2 \n" + "sub $0x20,%4 \n" + "jg 1b \n" + "vzeroupper \n" + : "+r"(src0), // %0 + "+r"(src1), // %1 + "+r"(alpha), // %2 + "+r"(dst), // %3 + "+rm"(width) // %4 + :: "memory", "cc", "eax", + "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7" + ); +} +#endif // HAS_BLENDPLANEROW_AVX2 + +#ifdef HAS_ARGBATTENUATEROW_SSSE3 +// Shuffle table duplicating alpha +static uvec8 kShuffleAlpha0 = { + 3u, 3u, 3u, 3u, 3u, 3u, 128u, 128u, 7u, 7u, 7u, 7u, 7u, 7u, 128u, 128u +}; +static uvec8 kShuffleAlpha1 = { + 11u, 11u, 11u, 11u, 11u, 11u, 128u, 128u, + 15u, 15u, 15u, 15u, 15u, 15u, 128u, 128u +}; +// Attenuate 4 pixels at a time. +void ARGBAttenuateRow_SSSE3(const uint8* src_argb, uint8* dst_argb, int width) { + asm volatile ( + "pcmpeqb %%xmm3,%%xmm3 \n" + "pslld $0x18,%%xmm3 \n" + "movdqa %3,%%xmm4 \n" + "movdqa %4,%%xmm5 \n" + + // 4 pixel loop. + LABELALIGN + "1: \n" + "movdqu " MEMACCESS(0) ",%%xmm0 \n" + "pshufb %%xmm4,%%xmm0 \n" + "movdqu " MEMACCESS(0) ",%%xmm1 \n" + "punpcklbw %%xmm1,%%xmm1 \n" + "pmulhuw %%xmm1,%%xmm0 \n" + "movdqu " MEMACCESS(0) ",%%xmm1 \n" + "pshufb %%xmm5,%%xmm1 \n" + "movdqu " MEMACCESS(0) ",%%xmm2 \n" + "punpckhbw %%xmm2,%%xmm2 \n" + "pmulhuw %%xmm2,%%xmm1 \n" + "movdqu " MEMACCESS(0) ",%%xmm2 \n" + "lea " MEMLEA(0x10,0) ",%0 \n" + "pand %%xmm3,%%xmm2 \n" + "psrlw $0x8,%%xmm0 \n" + "psrlw $0x8,%%xmm1 \n" + "packuswb %%xmm1,%%xmm0 \n" + "por %%xmm2,%%xmm0 \n" + "movdqu %%xmm0," MEMACCESS(1) " \n" + "lea " MEMLEA(0x10,1) ",%1 \n" + "sub $0x4,%2 \n" + "jg 1b \n" + : "+r"(src_argb), // %0 + "+r"(dst_argb), // %1 + "+r"(width) // %2 + : "m"(kShuffleAlpha0), // %3 + "m"(kShuffleAlpha1) // %4 + : "memory", "cc" + , "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5" + ); +} +#endif // HAS_ARGBATTENUATEROW_SSSE3 + +#ifdef HAS_ARGBATTENUATEROW_AVX2 +// Shuffle table duplicating alpha. +static const uvec8 kShuffleAlpha_AVX2 = { + 6u, 7u, 6u, 7u, 6u, 7u, 128u, 128u, 14u, 15u, 14u, 15u, 14u, 15u, 128u, 128u +}; +// Attenuate 8 pixels at a time. +void ARGBAttenuateRow_AVX2(const uint8* src_argb, uint8* dst_argb, int width) { + asm volatile ( + "vbroadcastf128 %3,%%ymm4 \n" + "vpcmpeqb %%ymm5,%%ymm5,%%ymm5 \n" + "vpslld $0x18,%%ymm5,%%ymm5 \n" + "sub %0,%1 \n" + + // 8 pixel loop. + LABELALIGN + "1: \n" + "vmovdqu " MEMACCESS(0) ",%%ymm6 \n" + "vpunpcklbw %%ymm6,%%ymm6,%%ymm0 \n" + "vpunpckhbw %%ymm6,%%ymm6,%%ymm1 \n" + "vpshufb %%ymm4,%%ymm0,%%ymm2 \n" + "vpshufb %%ymm4,%%ymm1,%%ymm3 \n" + "vpmulhuw %%ymm2,%%ymm0,%%ymm0 \n" + "vpmulhuw %%ymm3,%%ymm1,%%ymm1 \n" + "vpand %%ymm5,%%ymm6,%%ymm6 \n" + "vpsrlw $0x8,%%ymm0,%%ymm0 \n" + "vpsrlw $0x8,%%ymm1,%%ymm1 \n" + "vpackuswb %%ymm1,%%ymm0,%%ymm0 \n" + "vpor %%ymm6,%%ymm0,%%ymm0 \n" + MEMOPMEM(vmovdqu,ymm0,0x00,0,1,1) // vmovdqu %%ymm0,(%0,%1) + "lea " MEMLEA(0x20,0) ",%0 \n" + "sub $0x8,%2 \n" + "jg 1b \n" + "vzeroupper \n" + : "+r"(src_argb), // %0 + "+r"(dst_argb), // %1 + "+r"(width) // %2 + : "m"(kShuffleAlpha_AVX2) // %3 + : "memory", "cc" + , "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6" + ); +} +#endif // HAS_ARGBATTENUATEROW_AVX2 + +#ifdef HAS_ARGBUNATTENUATEROW_SSE2 +// Unattenuate 4 pixels at a time. +void ARGBUnattenuateRow_SSE2(const uint8* src_argb, uint8* dst_argb, + int width) { + uintptr_t alpha; + asm volatile ( + // 4 pixel loop. + LABELALIGN + "1: \n" + "movdqu " MEMACCESS(0) ",%%xmm0 \n" + "movzb " MEMACCESS2(0x03,0) ",%3 \n" + "punpcklbw %%xmm0,%%xmm0 \n" + MEMOPREG(movd,0x00,4,3,4,xmm2) // movd 0x0(%4,%3,4),%%xmm2 + "movzb " MEMACCESS2(0x07,0) ",%3 \n" + MEMOPREG(movd,0x00,4,3,4,xmm3) // movd 0x0(%4,%3,4),%%xmm3 + "pshuflw $0x40,%%xmm2,%%xmm2 \n" + "pshuflw $0x40,%%xmm3,%%xmm3 \n" + "movlhps %%xmm3,%%xmm2 \n" + "pmulhuw %%xmm2,%%xmm0 \n" + "movdqu " MEMACCESS(0) ",%%xmm1 \n" + "movzb " MEMACCESS2(0x0b,0) ",%3 \n" + "punpckhbw %%xmm1,%%xmm1 \n" + MEMOPREG(movd,0x00,4,3,4,xmm2) // movd 0x0(%4,%3,4),%%xmm2 + "movzb " MEMACCESS2(0x0f,0) ",%3 \n" + MEMOPREG(movd,0x00,4,3,4,xmm3) // movd 0x0(%4,%3,4),%%xmm3 + "pshuflw $0x40,%%xmm2,%%xmm2 \n" + "pshuflw $0x40,%%xmm3,%%xmm3 \n" + "movlhps %%xmm3,%%xmm2 \n" + "pmulhuw %%xmm2,%%xmm1 \n" + "lea " MEMLEA(0x10,0) ",%0 \n" + "packuswb %%xmm1,%%xmm0 \n" + "movdqu %%xmm0," MEMACCESS(1) " \n" + "lea " MEMLEA(0x10,1) ",%1 \n" + "sub $0x4,%2 \n" + "jg 1b \n" + : "+r"(src_argb), // %0 + "+r"(dst_argb), // %1 + "+r"(width), // %2 + "=&r"(alpha) // %3 + : "r"(fixed_invtbl8) // %4 + : "memory", "cc", NACL_R14 + "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5" + ); +} +#endif // HAS_ARGBUNATTENUATEROW_SSE2 + +#ifdef HAS_ARGBUNATTENUATEROW_AVX2 +// Shuffle table duplicating alpha. +static const uvec8 kUnattenShuffleAlpha_AVX2 = { + 0u, 1u, 0u, 1u, 0u, 1u, 6u, 7u, 8u, 9u, 8u, 9u, 8u, 9u, 14u, 15u +}; +// Unattenuate 8 pixels at a time. +void ARGBUnattenuateRow_AVX2(const uint8* src_argb, uint8* dst_argb, + int width) { + uintptr_t alpha; + asm volatile ( + "sub %0,%1 \n" + "vbroadcastf128 %5,%%ymm5 \n" + + // 8 pixel loop. + LABELALIGN + "1: \n" + // replace VPGATHER + "movzb " MEMACCESS2(0x03,0) ",%3 \n" + MEMOPREG(vmovd,0x00,4,3,4,xmm0) // vmovd 0x0(%4,%3,4),%%xmm0 + "movzb " MEMACCESS2(0x07,0) ",%3 \n" + MEMOPREG(vmovd,0x00,4,3,4,xmm1) // vmovd 0x0(%4,%3,4),%%xmm1 + "movzb " MEMACCESS2(0x0b,0) ",%3 \n" + "vpunpckldq %%xmm1,%%xmm0,%%xmm6 \n" + MEMOPREG(vmovd,0x00,4,3,4,xmm2) // vmovd 0x0(%4,%3,4),%%xmm2 + "movzb " MEMACCESS2(0x0f,0) ",%3 \n" + MEMOPREG(vmovd,0x00,4,3,4,xmm3) // vmovd 0x0(%4,%3,4),%%xmm3 + "movzb " MEMACCESS2(0x13,0) ",%3 \n" + "vpunpckldq %%xmm3,%%xmm2,%%xmm7 \n" + MEMOPREG(vmovd,0x00,4,3,4,xmm0) // vmovd 0x0(%4,%3,4),%%xmm0 + "movzb " MEMACCESS2(0x17,0) ",%3 \n" + MEMOPREG(vmovd,0x00,4,3,4,xmm1) // vmovd 0x0(%4,%3,4),%%xmm1 + "movzb " MEMACCESS2(0x1b,0) ",%3 \n" + "vpunpckldq %%xmm1,%%xmm0,%%xmm0 \n" + MEMOPREG(vmovd,0x00,4,3,4,xmm2) // vmovd 0x0(%4,%3,4),%%xmm2 + "movzb " MEMACCESS2(0x1f,0) ",%3 \n" + MEMOPREG(vmovd,0x00,4,3,4,xmm3) // vmovd 0x0(%4,%3,4),%%xmm3 + "vpunpckldq %%xmm3,%%xmm2,%%xmm2 \n" + "vpunpcklqdq %%xmm7,%%xmm6,%%xmm3 \n" + "vpunpcklqdq %%xmm2,%%xmm0,%%xmm0 \n" + "vinserti128 $0x1,%%xmm0,%%ymm3,%%ymm3 \n" + // end of VPGATHER + + "vmovdqu " MEMACCESS(0) ",%%ymm6 \n" + "vpunpcklbw %%ymm6,%%ymm6,%%ymm0 \n" + "vpunpckhbw %%ymm6,%%ymm6,%%ymm1 \n" + "vpunpcklwd %%ymm3,%%ymm3,%%ymm2 \n" + "vpunpckhwd %%ymm3,%%ymm3,%%ymm3 \n" + "vpshufb %%ymm5,%%ymm2,%%ymm2 \n" + "vpshufb %%ymm5,%%ymm3,%%ymm3 \n" + "vpmulhuw %%ymm2,%%ymm0,%%ymm0 \n" + "vpmulhuw %%ymm3,%%ymm1,%%ymm1 \n" + "vpackuswb %%ymm1,%%ymm0,%%ymm0 \n" + MEMOPMEM(vmovdqu,ymm0,0x00,0,1,1) // vmovdqu %%ymm0,(%0,%1) + "lea " MEMLEA(0x20,0) ",%0 \n" + "sub $0x8,%2 \n" + "jg 1b \n" + "vzeroupper \n" + : "+r"(src_argb), // %0 + "+r"(dst_argb), // %1 + "+r"(width), // %2 + "=&r"(alpha) // %3 + : "r"(fixed_invtbl8), // %4 + "m"(kUnattenShuffleAlpha_AVX2) // %5 + : "memory", "cc", NACL_R14 + "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7" + ); +} +#endif // HAS_ARGBUNATTENUATEROW_AVX2 + +#ifdef HAS_ARGBGRAYROW_SSSE3 +// Convert 8 ARGB pixels (64 bytes) to 8 Gray ARGB pixels +void ARGBGrayRow_SSSE3(const uint8* src_argb, uint8* dst_argb, int width) { + asm volatile ( + "movdqa %3,%%xmm4 \n" + "movdqa %4,%%xmm5 \n" + + // 8 pixel loop. + LABELALIGN + "1: \n" + "movdqu " MEMACCESS(0) ",%%xmm0 \n" + "movdqu " MEMACCESS2(0x10,0) ",%%xmm1 \n" + "pmaddubsw %%xmm4,%%xmm0 \n" + "pmaddubsw %%xmm4,%%xmm1 \n" + "phaddw %%xmm1,%%xmm0 \n" + "paddw %%xmm5,%%xmm0 \n" + "psrlw $0x7,%%xmm0 \n" + "packuswb %%xmm0,%%xmm0 \n" + "movdqu " MEMACCESS(0) ",%%xmm2 \n" + "movdqu " MEMACCESS2(0x10,0) ",%%xmm3 \n" + "lea " MEMLEA(0x20,0) ",%0 \n" + "psrld $0x18,%%xmm2 \n" + "psrld $0x18,%%xmm3 \n" + "packuswb %%xmm3,%%xmm2 \n" + "packuswb %%xmm2,%%xmm2 \n" + "movdqa %%xmm0,%%xmm3 \n" + "punpcklbw %%xmm0,%%xmm0 \n" + "punpcklbw %%xmm2,%%xmm3 \n" + "movdqa %%xmm0,%%xmm1 \n" + "punpcklwd %%xmm3,%%xmm0 \n" + "punpckhwd %%xmm3,%%xmm1 \n" + "movdqu %%xmm0," MEMACCESS(1) " \n" + "movdqu %%xmm1," MEMACCESS2(0x10,1) " \n" + "lea " MEMLEA(0x20,1) ",%1 \n" + "sub $0x8,%2 \n" + "jg 1b \n" + : "+r"(src_argb), // %0 + "+r"(dst_argb), // %1 + "+r"(width) // %2 + : "m"(kARGBToYJ), // %3 + "m"(kAddYJ64) // %4 + : "memory", "cc" + , "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5" + ); +} +#endif // HAS_ARGBGRAYROW_SSSE3 + +#ifdef HAS_ARGBSEPIAROW_SSSE3 +// b = (r * 35 + g * 68 + b * 17) >> 7 +// g = (r * 45 + g * 88 + b * 22) >> 7 +// r = (r * 50 + g * 98 + b * 24) >> 7 +// Constant for ARGB color to sepia tone +static vec8 kARGBToSepiaB = { + 17, 68, 35, 0, 17, 68, 35, 0, 17, 68, 35, 0, 17, 68, 35, 0 +}; + +static vec8 kARGBToSepiaG = { + 22, 88, 45, 0, 22, 88, 45, 0, 22, 88, 45, 0, 22, 88, 45, 0 +}; + +static vec8 kARGBToSepiaR = { + 24, 98, 50, 0, 24, 98, 50, 0, 24, 98, 50, 0, 24, 98, 50, 0 +}; + +// Convert 8 ARGB pixels (32 bytes) to 8 Sepia ARGB pixels. +void ARGBSepiaRow_SSSE3(uint8* dst_argb, int width) { + asm volatile ( + "movdqa %2,%%xmm2 \n" + "movdqa %3,%%xmm3 \n" + "movdqa %4,%%xmm4 \n" + + // 8 pixel loop. + LABELALIGN + "1: \n" + "movdqu " MEMACCESS(0) ",%%xmm0 \n" + "movdqu " MEMACCESS2(0x10,0) ",%%xmm6 \n" + "pmaddubsw %%xmm2,%%xmm0 \n" + "pmaddubsw %%xmm2,%%xmm6 \n" + "phaddw %%xmm6,%%xmm0 \n" + "psrlw $0x7,%%xmm0 \n" + "packuswb %%xmm0,%%xmm0 \n" + "movdqu " MEMACCESS(0) ",%%xmm5 \n" + "movdqu " MEMACCESS2(0x10,0) ",%%xmm1 \n" + "pmaddubsw %%xmm3,%%xmm5 \n" + "pmaddubsw %%xmm3,%%xmm1 \n" + "phaddw %%xmm1,%%xmm5 \n" + "psrlw $0x7,%%xmm5 \n" + "packuswb %%xmm5,%%xmm5 \n" + "punpcklbw %%xmm5,%%xmm0 \n" + "movdqu " MEMACCESS(0) ",%%xmm5 \n" + "movdqu " MEMACCESS2(0x10,0) ",%%xmm1 \n" + "pmaddubsw %%xmm4,%%xmm5 \n" + "pmaddubsw %%xmm4,%%xmm1 \n" + "phaddw %%xmm1,%%xmm5 \n" + "psrlw $0x7,%%xmm5 \n" + "packuswb %%xmm5,%%xmm5 \n" + "movdqu " MEMACCESS(0) ",%%xmm6 \n" + "movdqu " MEMACCESS2(0x10,0) ",%%xmm1 \n" + "psrld $0x18,%%xmm6 \n" + "psrld $0x18,%%xmm1 \n" + "packuswb %%xmm1,%%xmm6 \n" + "packuswb %%xmm6,%%xmm6 \n" + "punpcklbw %%xmm6,%%xmm5 \n" + "movdqa %%xmm0,%%xmm1 \n" + "punpcklwd %%xmm5,%%xmm0 \n" + "punpckhwd %%xmm5,%%xmm1 \n" + "movdqu %%xmm0," MEMACCESS(0) " \n" + "movdqu %%xmm1," MEMACCESS2(0x10,0) " \n" + "lea " MEMLEA(0x20,0) ",%0 \n" + "sub $0x8,%1 \n" + "jg 1b \n" + : "+r"(dst_argb), // %0 + "+r"(width) // %1 + : "m"(kARGBToSepiaB), // %2 + "m"(kARGBToSepiaG), // %3 + "m"(kARGBToSepiaR) // %4 + : "memory", "cc" + , "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6" + ); +} +#endif // HAS_ARGBSEPIAROW_SSSE3 + +#ifdef HAS_ARGBCOLORMATRIXROW_SSSE3 +// Tranform 8 ARGB pixels (32 bytes) with color matrix. +// Same as Sepia except matrix is provided. +void ARGBColorMatrixRow_SSSE3(const uint8* src_argb, uint8* dst_argb, + const int8* matrix_argb, int width) { + asm volatile ( + "movdqu " MEMACCESS(3) ",%%xmm5 \n" + "pshufd $0x00,%%xmm5,%%xmm2 \n" + "pshufd $0x55,%%xmm5,%%xmm3 \n" + "pshufd $0xaa,%%xmm5,%%xmm4 \n" + "pshufd $0xff,%%xmm5,%%xmm5 \n" + + // 8 pixel loop. + LABELALIGN + "1: \n" + "movdqu " MEMACCESS(0) ",%%xmm0 \n" + "movdqu " MEMACCESS2(0x10,0) ",%%xmm7 \n" + "pmaddubsw %%xmm2,%%xmm0 \n" + "pmaddubsw %%xmm2,%%xmm7 \n" + "movdqu " MEMACCESS(0) ",%%xmm6 \n" + "movdqu " MEMACCESS2(0x10,0) ",%%xmm1 \n" + "pmaddubsw %%xmm3,%%xmm6 \n" + "pmaddubsw %%xmm3,%%xmm1 \n" + "phaddsw %%xmm7,%%xmm0 \n" + "phaddsw %%xmm1,%%xmm6 \n" + "psraw $0x6,%%xmm0 \n" + "psraw $0x6,%%xmm6 \n" + "packuswb %%xmm0,%%xmm0 \n" + "packuswb %%xmm6,%%xmm6 \n" + "punpcklbw %%xmm6,%%xmm0 \n" + "movdqu " MEMACCESS(0) ",%%xmm1 \n" + "movdqu " MEMACCESS2(0x10,0) ",%%xmm7 \n" + "pmaddubsw %%xmm4,%%xmm1 \n" + "pmaddubsw %%xmm4,%%xmm7 \n" + "phaddsw %%xmm7,%%xmm1 \n" + "movdqu " MEMACCESS(0) ",%%xmm6 \n" + "movdqu " MEMACCESS2(0x10,0) ",%%xmm7 \n" + "pmaddubsw %%xmm5,%%xmm6 \n" + "pmaddubsw %%xmm5,%%xmm7 \n" + "phaddsw %%xmm7,%%xmm6 \n" + "psraw $0x6,%%xmm1 \n" + "psraw $0x6,%%xmm6 \n" + "packuswb %%xmm1,%%xmm1 \n" + "packuswb %%xmm6,%%xmm6 \n" + "punpcklbw %%xmm6,%%xmm1 \n" + "movdqa %%xmm0,%%xmm6 \n" + "punpcklwd %%xmm1,%%xmm0 \n" + "punpckhwd %%xmm1,%%xmm6 \n" + "movdqu %%xmm0," MEMACCESS(1) " \n" + "movdqu %%xmm6," MEMACCESS2(0x10,1) " \n" + "lea " MEMLEA(0x20,0) ",%0 \n" + "lea " MEMLEA(0x20,1) ",%1 \n" + "sub $0x8,%2 \n" + "jg 1b \n" + : "+r"(src_argb), // %0 + "+r"(dst_argb), // %1 + "+r"(width) // %2 + : "r"(matrix_argb) // %3 + : "memory", "cc" + , "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7" + ); +} +#endif // HAS_ARGBCOLORMATRIXROW_SSSE3 + +#ifdef HAS_ARGBQUANTIZEROW_SSE2 +// Quantize 4 ARGB pixels (16 bytes). +void ARGBQuantizeRow_SSE2(uint8* dst_argb, int scale, int interval_size, + int interval_offset, int width) { + asm volatile ( + "movd %2,%%xmm2 \n" + "movd %3,%%xmm3 \n" + "movd %4,%%xmm4 \n" + "pshuflw $0x40,%%xmm2,%%xmm2 \n" + "pshufd $0x44,%%xmm2,%%xmm2 \n" + "pshuflw $0x40,%%xmm3,%%xmm3 \n" + "pshufd $0x44,%%xmm3,%%xmm3 \n" + "pshuflw $0x40,%%xmm4,%%xmm4 \n" + "pshufd $0x44,%%xmm4,%%xmm4 \n" + "pxor %%xmm5,%%xmm5 \n" + "pcmpeqb %%xmm6,%%xmm6 \n" + "pslld $0x18,%%xmm6 \n" + + // 4 pixel loop. + LABELALIGN + "1: \n" + "movdqu " MEMACCESS(0) ",%%xmm0 \n" + "punpcklbw %%xmm5,%%xmm0 \n" + "pmulhuw %%xmm2,%%xmm0 \n" + "movdqu " MEMACCESS(0) ",%%xmm1 \n" + "punpckhbw %%xmm5,%%xmm1 \n" + "pmulhuw %%xmm2,%%xmm1 \n" + "pmullw %%xmm3,%%xmm0 \n" + "movdqu " MEMACCESS(0) ",%%xmm7 \n" + "pmullw %%xmm3,%%xmm1 \n" + "pand %%xmm6,%%xmm7 \n" + "paddw %%xmm4,%%xmm0 \n" + "paddw %%xmm4,%%xmm1 \n" + "packuswb %%xmm1,%%xmm0 \n" + "por %%xmm7,%%xmm0 \n" + "movdqu %%xmm0," MEMACCESS(0) " \n" + "lea " MEMLEA(0x10,0) ",%0 \n" + "sub $0x4,%1 \n" + "jg 1b \n" + : "+r"(dst_argb), // %0 + "+r"(width) // %1 + : "r"(scale), // %2 + "r"(interval_size), // %3 + "r"(interval_offset) // %4 + : "memory", "cc" + , "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7" + ); +} +#endif // HAS_ARGBQUANTIZEROW_SSE2 + +#ifdef HAS_ARGBSHADEROW_SSE2 +// Shade 4 pixels at a time by specified value. +void ARGBShadeRow_SSE2(const uint8* src_argb, uint8* dst_argb, int width, + uint32 value) { + asm volatile ( + "movd %3,%%xmm2 \n" + "punpcklbw %%xmm2,%%xmm2 \n" + "punpcklqdq %%xmm2,%%xmm2 \n" + + // 4 pixel loop. + LABELALIGN + "1: \n" + "movdqu " MEMACCESS(0) ",%%xmm0 \n" + "lea " MEMLEA(0x10,0) ",%0 \n" + "movdqa %%xmm0,%%xmm1 \n" + "punpcklbw %%xmm0,%%xmm0 \n" + "punpckhbw %%xmm1,%%xmm1 \n" + "pmulhuw %%xmm2,%%xmm0 \n" + "pmulhuw %%xmm2,%%xmm1 \n" + "psrlw $0x8,%%xmm0 \n" + "psrlw $0x8,%%xmm1 \n" + "packuswb %%xmm1,%%xmm0 \n" + "movdqu %%xmm0," MEMACCESS(1) " \n" + "lea " MEMLEA(0x10,1) ",%1 \n" + "sub $0x4,%2 \n" + "jg 1b \n" + : "+r"(src_argb), // %0 + "+r"(dst_argb), // %1 + "+r"(width) // %2 + : "r"(value) // %3 + : "memory", "cc" + , "xmm0", "xmm1", "xmm2" + ); +} +#endif // HAS_ARGBSHADEROW_SSE2 + +#ifdef HAS_ARGBMULTIPLYROW_SSE2 +// Multiply 2 rows of ARGB pixels together, 4 pixels at a time. +void ARGBMultiplyRow_SSE2(const uint8* src_argb0, const uint8* src_argb1, + uint8* dst_argb, int width) { + asm volatile ( + "pxor %%xmm5,%%xmm5 \n" + + // 4 pixel loop. + LABELALIGN + "1: \n" + "movdqu " MEMACCESS(0) ",%%xmm0 \n" + "lea " MEMLEA(0x10,0) ",%0 \n" + "movdqu " MEMACCESS(1) ",%%xmm2 \n" + "lea " MEMLEA(0x10,1) ",%1 \n" + "movdqu %%xmm0,%%xmm1 \n" + "movdqu %%xmm2,%%xmm3 \n" + "punpcklbw %%xmm0,%%xmm0 \n" + "punpckhbw %%xmm1,%%xmm1 \n" + "punpcklbw %%xmm5,%%xmm2 \n" + "punpckhbw %%xmm5,%%xmm3 \n" + "pmulhuw %%xmm2,%%xmm0 \n" + "pmulhuw %%xmm3,%%xmm1 \n" + "packuswb %%xmm1,%%xmm0 \n" + "movdqu %%xmm0," MEMACCESS(2) " \n" + "lea " MEMLEA(0x10,2) ",%2 \n" + "sub $0x4,%3 \n" + "jg 1b \n" + : "+r"(src_argb0), // %0 + "+r"(src_argb1), // %1 + "+r"(dst_argb), // %2 + "+r"(width) // %3 + : + : "memory", "cc" + , "xmm0", "xmm1", "xmm2", "xmm3", "xmm5" + ); +} +#endif // HAS_ARGBMULTIPLYROW_SSE2 + +#ifdef HAS_ARGBMULTIPLYROW_AVX2 +// Multiply 2 rows of ARGB pixels together, 8 pixels at a time. +void ARGBMultiplyRow_AVX2(const uint8* src_argb0, const uint8* src_argb1, + uint8* dst_argb, int width) { + asm volatile ( + "vpxor %%ymm5,%%ymm5,%%ymm5 \n" + + // 4 pixel loop. + LABELALIGN + "1: \n" + "vmovdqu " MEMACCESS(0) ",%%ymm1 \n" + "lea " MEMLEA(0x20,0) ",%0 \n" + "vmovdqu " MEMACCESS(1) ",%%ymm3 \n" + "lea " MEMLEA(0x20,1) ",%1 \n" + "vpunpcklbw %%ymm1,%%ymm1,%%ymm0 \n" + "vpunpckhbw %%ymm1,%%ymm1,%%ymm1 \n" + "vpunpcklbw %%ymm5,%%ymm3,%%ymm2 \n" + "vpunpckhbw %%ymm5,%%ymm3,%%ymm3 \n" + "vpmulhuw %%ymm2,%%ymm0,%%ymm0 \n" + "vpmulhuw %%ymm3,%%ymm1,%%ymm1 \n" + "vpackuswb %%ymm1,%%ymm0,%%ymm0 \n" + "vmovdqu %%ymm0," MEMACCESS(2) " \n" + "lea " MEMLEA(0x20,2) ",%2 \n" + "sub $0x8,%3 \n" + "jg 1b \n" + "vzeroupper \n" + : "+r"(src_argb0), // %0 + "+r"(src_argb1), // %1 + "+r"(dst_argb), // %2 + "+r"(width) // %3 + : + : "memory", "cc" +#if defined(__AVX2__) + , "xmm0", "xmm1", "xmm2", "xmm3", "xmm5" +#endif + ); +} +#endif // HAS_ARGBMULTIPLYROW_AVX2 + +#ifdef HAS_ARGBADDROW_SSE2 +// Add 2 rows of ARGB pixels together, 4 pixels at a time. +void ARGBAddRow_SSE2(const uint8* src_argb0, const uint8* src_argb1, + uint8* dst_argb, int width) { + asm volatile ( + // 4 pixel loop. + LABELALIGN + "1: \n" + "movdqu " MEMACCESS(0) ",%%xmm0 \n" + "lea " MEMLEA(0x10,0) ",%0 \n" + "movdqu " MEMACCESS(1) ",%%xmm1 \n" + "lea " MEMLEA(0x10,1) ",%1 \n" + "paddusb %%xmm1,%%xmm0 \n" + "movdqu %%xmm0," MEMACCESS(2) " \n" + "lea " MEMLEA(0x10,2) ",%2 \n" + "sub $0x4,%3 \n" + "jg 1b \n" + : "+r"(src_argb0), // %0 + "+r"(src_argb1), // %1 + "+r"(dst_argb), // %2 + "+r"(width) // %3 + : + : "memory", "cc" + , "xmm0", "xmm1" + ); +} +#endif // HAS_ARGBADDROW_SSE2 + +#ifdef HAS_ARGBADDROW_AVX2 +// Add 2 rows of ARGB pixels together, 4 pixels at a time. +void ARGBAddRow_AVX2(const uint8* src_argb0, const uint8* src_argb1, + uint8* dst_argb, int width) { + asm volatile ( + // 4 pixel loop. + LABELALIGN + "1: \n" + "vmovdqu " MEMACCESS(0) ",%%ymm0 \n" + "lea " MEMLEA(0x20,0) ",%0 \n" + "vpaddusb " MEMACCESS(1) ",%%ymm0,%%ymm0 \n" + "lea " MEMLEA(0x20,1) ",%1 \n" + "vmovdqu %%ymm0," MEMACCESS(2) " \n" + "lea " MEMLEA(0x20,2) ",%2 \n" + "sub $0x8,%3 \n" + "jg 1b \n" + "vzeroupper \n" + : "+r"(src_argb0), // %0 + "+r"(src_argb1), // %1 + "+r"(dst_argb), // %2 + "+r"(width) // %3 + : + : "memory", "cc" + , "xmm0" + ); +} +#endif // HAS_ARGBADDROW_AVX2 + +#ifdef HAS_ARGBSUBTRACTROW_SSE2 +// Subtract 2 rows of ARGB pixels, 4 pixels at a time. +void ARGBSubtractRow_SSE2(const uint8* src_argb0, const uint8* src_argb1, + uint8* dst_argb, int width) { + asm volatile ( + // 4 pixel loop. + LABELALIGN + "1: \n" + "movdqu " MEMACCESS(0) ",%%xmm0 \n" + "lea " MEMLEA(0x10,0) ",%0 \n" + "movdqu " MEMACCESS(1) ",%%xmm1 \n" + "lea " MEMLEA(0x10,1) ",%1 \n" + "psubusb %%xmm1,%%xmm0 \n" + "movdqu %%xmm0," MEMACCESS(2) " \n" + "lea " MEMLEA(0x10,2) ",%2 \n" + "sub $0x4,%3 \n" + "jg 1b \n" + : "+r"(src_argb0), // %0 + "+r"(src_argb1), // %1 + "+r"(dst_argb), // %2 + "+r"(width) // %3 + : + : "memory", "cc" + , "xmm0", "xmm1" + ); +} +#endif // HAS_ARGBSUBTRACTROW_SSE2 + +#ifdef HAS_ARGBSUBTRACTROW_AVX2 +// Subtract 2 rows of ARGB pixels, 8 pixels at a time. +void ARGBSubtractRow_AVX2(const uint8* src_argb0, const uint8* src_argb1, + uint8* dst_argb, int width) { + asm volatile ( + // 4 pixel loop. + LABELALIGN + "1: \n" + "vmovdqu " MEMACCESS(0) ",%%ymm0 \n" + "lea " MEMLEA(0x20,0) ",%0 \n" + "vpsubusb " MEMACCESS(1) ",%%ymm0,%%ymm0 \n" + "lea " MEMLEA(0x20,1) ",%1 \n" + "vmovdqu %%ymm0," MEMACCESS(2) " \n" + "lea " MEMLEA(0x20,2) ",%2 \n" + "sub $0x8,%3 \n" + "jg 1b \n" + "vzeroupper \n" + : "+r"(src_argb0), // %0 + "+r"(src_argb1), // %1 + "+r"(dst_argb), // %2 + "+r"(width) // %3 + : + : "memory", "cc" + , "xmm0" + ); +} +#endif // HAS_ARGBSUBTRACTROW_AVX2 + +#ifdef HAS_SOBELXROW_SSE2 +// SobelX as a matrix is +// -1 0 1 +// -2 0 2 +// -1 0 1 +void SobelXRow_SSE2(const uint8* src_y0, const uint8* src_y1, + const uint8* src_y2, uint8* dst_sobelx, int width) { + asm volatile ( + "sub %0,%1 \n" + "sub %0,%2 \n" + "sub %0,%3 \n" + "pxor %%xmm5,%%xmm5 \n" + + // 8 pixel loop. + LABELALIGN + "1: \n" + "movq " MEMACCESS(0) ",%%xmm0 \n" + "movq " MEMACCESS2(0x2,0) ",%%xmm1 \n" + "punpcklbw %%xmm5,%%xmm0 \n" + "punpcklbw %%xmm5,%%xmm1 \n" + "psubw %%xmm1,%%xmm0 \n" + MEMOPREG(movq,0x00,0,1,1,xmm1) // movq (%0,%1,1),%%xmm1 + MEMOPREG(movq,0x02,0,1,1,xmm2) // movq 0x2(%0,%1,1),%%xmm2 + "punpcklbw %%xmm5,%%xmm1 \n" + "punpcklbw %%xmm5,%%xmm2 \n" + "psubw %%xmm2,%%xmm1 \n" + MEMOPREG(movq,0x00,0,2,1,xmm2) // movq (%0,%2,1),%%xmm2 + MEMOPREG(movq,0x02,0,2,1,xmm3) // movq 0x2(%0,%2,1),%%xmm3 + "punpcklbw %%xmm5,%%xmm2 \n" + "punpcklbw %%xmm5,%%xmm3 \n" + "psubw %%xmm3,%%xmm2 \n" + "paddw %%xmm2,%%xmm0 \n" + "paddw %%xmm1,%%xmm0 \n" + "paddw %%xmm1,%%xmm0 \n" + "pxor %%xmm1,%%xmm1 \n" + "psubw %%xmm0,%%xmm1 \n" + "pmaxsw %%xmm1,%%xmm0 \n" + "packuswb %%xmm0,%%xmm0 \n" + MEMOPMEM(movq,xmm0,0x00,0,3,1) // movq %%xmm0,(%0,%3,1) + "lea " MEMLEA(0x8,0) ",%0 \n" + "sub $0x8,%4 \n" + "jg 1b \n" + : "+r"(src_y0), // %0 + "+r"(src_y1), // %1 + "+r"(src_y2), // %2 + "+r"(dst_sobelx), // %3 + "+r"(width) // %4 + : + : "memory", "cc", NACL_R14 + "xmm0", "xmm1", "xmm2", "xmm3", "xmm5" + ); +} +#endif // HAS_SOBELXROW_SSE2 + +#ifdef HAS_SOBELYROW_SSE2 +// SobelY as a matrix is +// -1 -2 -1 +// 0 0 0 +// 1 2 1 +void SobelYRow_SSE2(const uint8* src_y0, const uint8* src_y1, + uint8* dst_sobely, int width) { + asm volatile ( + "sub %0,%1 \n" + "sub %0,%2 \n" + "pxor %%xmm5,%%xmm5 \n" + + // 8 pixel loop. + LABELALIGN + "1: \n" + "movq " MEMACCESS(0) ",%%xmm0 \n" + MEMOPREG(movq,0x00,0,1,1,xmm1) // movq (%0,%1,1),%%xmm1 + "punpcklbw %%xmm5,%%xmm0 \n" + "punpcklbw %%xmm5,%%xmm1 \n" + "psubw %%xmm1,%%xmm0 \n" + "movq " MEMACCESS2(0x1,0) ",%%xmm1 \n" + MEMOPREG(movq,0x01,0,1,1,xmm2) // movq 0x1(%0,%1,1),%%xmm2 + "punpcklbw %%xmm5,%%xmm1 \n" + "punpcklbw %%xmm5,%%xmm2 \n" + "psubw %%xmm2,%%xmm1 \n" + "movq " MEMACCESS2(0x2,0) ",%%xmm2 \n" + MEMOPREG(movq,0x02,0,1,1,xmm3) // movq 0x2(%0,%1,1),%%xmm3 + "punpcklbw %%xmm5,%%xmm2 \n" + "punpcklbw %%xmm5,%%xmm3 \n" + "psubw %%xmm3,%%xmm2 \n" + "paddw %%xmm2,%%xmm0 \n" + "paddw %%xmm1,%%xmm0 \n" + "paddw %%xmm1,%%xmm0 \n" + "pxor %%xmm1,%%xmm1 \n" + "psubw %%xmm0,%%xmm1 \n" + "pmaxsw %%xmm1,%%xmm0 \n" + "packuswb %%xmm0,%%xmm0 \n" + MEMOPMEM(movq,xmm0,0x00,0,2,1) // movq %%xmm0,(%0,%2,1) + "lea " MEMLEA(0x8,0) ",%0 \n" + "sub $0x8,%3 \n" + "jg 1b \n" + : "+r"(src_y0), // %0 + "+r"(src_y1), // %1 + "+r"(dst_sobely), // %2 + "+r"(width) // %3 + : + : "memory", "cc", NACL_R14 + "xmm0", "xmm1", "xmm2", "xmm3", "xmm5" + ); +} +#endif // HAS_SOBELYROW_SSE2 + +#ifdef HAS_SOBELROW_SSE2 +// Adds Sobel X and Sobel Y and stores Sobel into ARGB. +// A = 255 +// R = Sobel +// G = Sobel +// B = Sobel +void SobelRow_SSE2(const uint8* src_sobelx, const uint8* src_sobely, + uint8* dst_argb, int width) { + asm volatile ( + "sub %0,%1 \n" + "pcmpeqb %%xmm5,%%xmm5 \n" + "pslld $0x18,%%xmm5 \n" + + // 8 pixel loop. + LABELALIGN + "1: \n" + "movdqu " MEMACCESS(0) ",%%xmm0 \n" + MEMOPREG(movdqu,0x00,0,1,1,xmm1) // movdqu (%0,%1,1),%%xmm1 + "lea " MEMLEA(0x10,0) ",%0 \n" + "paddusb %%xmm1,%%xmm0 \n" + "movdqa %%xmm0,%%xmm2 \n" + "punpcklbw %%xmm0,%%xmm2 \n" + "punpckhbw %%xmm0,%%xmm0 \n" + "movdqa %%xmm2,%%xmm1 \n" + "punpcklwd %%xmm2,%%xmm1 \n" + "punpckhwd %%xmm2,%%xmm2 \n" + "por %%xmm5,%%xmm1 \n" + "por %%xmm5,%%xmm2 \n" + "movdqa %%xmm0,%%xmm3 \n" + "punpcklwd %%xmm0,%%xmm3 \n" + "punpckhwd %%xmm0,%%xmm0 \n" + "por %%xmm5,%%xmm3 \n" + "por %%xmm5,%%xmm0 \n" + "movdqu %%xmm1," MEMACCESS(2) " \n" + "movdqu %%xmm2," MEMACCESS2(0x10,2) " \n" + "movdqu %%xmm3," MEMACCESS2(0x20,2) " \n" + "movdqu %%xmm0," MEMACCESS2(0x30,2) " \n" + "lea " MEMLEA(0x40,2) ",%2 \n" + "sub $0x10,%3 \n" + "jg 1b \n" + : "+r"(src_sobelx), // %0 + "+r"(src_sobely), // %1 + "+r"(dst_argb), // %2 + "+r"(width) // %3 + : + : "memory", "cc", NACL_R14 + "xmm0", "xmm1", "xmm2", "xmm3", "xmm5" + ); +} +#endif // HAS_SOBELROW_SSE2 + +#ifdef HAS_SOBELTOPLANEROW_SSE2 +// Adds Sobel X and Sobel Y and stores Sobel into a plane. +void SobelToPlaneRow_SSE2(const uint8* src_sobelx, const uint8* src_sobely, + uint8* dst_y, int width) { + asm volatile ( + "sub %0,%1 \n" + "pcmpeqb %%xmm5,%%xmm5 \n" + "pslld $0x18,%%xmm5 \n" + + // 8 pixel loop. + LABELALIGN + "1: \n" + "movdqu " MEMACCESS(0) ",%%xmm0 \n" + MEMOPREG(movdqu,0x00,0,1,1,xmm1) // movdqu (%0,%1,1),%%xmm1 + "lea " MEMLEA(0x10,0) ",%0 \n" + "paddusb %%xmm1,%%xmm0 \n" + "movdqu %%xmm0," MEMACCESS(2) " \n" + "lea " MEMLEA(0x10,2) ",%2 \n" + "sub $0x10,%3 \n" + "jg 1b \n" + : "+r"(src_sobelx), // %0 + "+r"(src_sobely), // %1 + "+r"(dst_y), // %2 + "+r"(width) // %3 + : + : "memory", "cc", NACL_R14 + "xmm0", "xmm1" + ); +} +#endif // HAS_SOBELTOPLANEROW_SSE2 + +#ifdef HAS_SOBELXYROW_SSE2 +// Mixes Sobel X, Sobel Y and Sobel into ARGB. +// A = 255 +// R = Sobel X +// G = Sobel +// B = Sobel Y +void SobelXYRow_SSE2(const uint8* src_sobelx, const uint8* src_sobely, + uint8* dst_argb, int width) { + asm volatile ( + "sub %0,%1 \n" + "pcmpeqb %%xmm5,%%xmm5 \n" + + // 8 pixel loop. + LABELALIGN + "1: \n" + "movdqu " MEMACCESS(0) ",%%xmm0 \n" + MEMOPREG(movdqu,0x00,0,1,1,xmm1) // movdqu (%0,%1,1),%%xmm1 + "lea " MEMLEA(0x10,0) ",%0 \n" + "movdqa %%xmm0,%%xmm2 \n" + "paddusb %%xmm1,%%xmm2 \n" + "movdqa %%xmm0,%%xmm3 \n" + "punpcklbw %%xmm5,%%xmm3 \n" + "punpckhbw %%xmm5,%%xmm0 \n" + "movdqa %%xmm1,%%xmm4 \n" + "punpcklbw %%xmm2,%%xmm4 \n" + "punpckhbw %%xmm2,%%xmm1 \n" + "movdqa %%xmm4,%%xmm6 \n" + "punpcklwd %%xmm3,%%xmm6 \n" + "punpckhwd %%xmm3,%%xmm4 \n" + "movdqa %%xmm1,%%xmm7 \n" + "punpcklwd %%xmm0,%%xmm7 \n" + "punpckhwd %%xmm0,%%xmm1 \n" + "movdqu %%xmm6," MEMACCESS(2) " \n" + "movdqu %%xmm4," MEMACCESS2(0x10,2) " \n" + "movdqu %%xmm7," MEMACCESS2(0x20,2) " \n" + "movdqu %%xmm1," MEMACCESS2(0x30,2) " \n" + "lea " MEMLEA(0x40,2) ",%2 \n" + "sub $0x10,%3 \n" + "jg 1b \n" + : "+r"(src_sobelx), // %0 + "+r"(src_sobely), // %1 + "+r"(dst_argb), // %2 + "+r"(width) // %3 + : + : "memory", "cc", NACL_R14 + "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7" + ); +} +#endif // HAS_SOBELXYROW_SSE2 + +#ifdef HAS_COMPUTECUMULATIVESUMROW_SSE2 +// Creates a table of cumulative sums where each value is a sum of all values +// above and to the left of the value, inclusive of the value. +void ComputeCumulativeSumRow_SSE2(const uint8* row, int32* cumsum, + const int32* previous_cumsum, int width) { + asm volatile ( + "pxor %%xmm0,%%xmm0 \n" + "pxor %%xmm1,%%xmm1 \n" + "sub $0x4,%3 \n" + "jl 49f \n" + "test $0xf,%1 \n" + "jne 49f \n" + + // 4 pixel loop \n" + LABELALIGN + "40: \n" + "movdqu " MEMACCESS(0) ",%%xmm2 \n" + "lea " MEMLEA(0x10,0) ",%0 \n" + "movdqa %%xmm2,%%xmm4 \n" + "punpcklbw %%xmm1,%%xmm2 \n" + "movdqa %%xmm2,%%xmm3 \n" + "punpcklwd %%xmm1,%%xmm2 \n" + "punpckhwd %%xmm1,%%xmm3 \n" + "punpckhbw %%xmm1,%%xmm4 \n" + "movdqa %%xmm4,%%xmm5 \n" + "punpcklwd %%xmm1,%%xmm4 \n" + "punpckhwd %%xmm1,%%xmm5 \n" + "paddd %%xmm2,%%xmm0 \n" + "movdqu " MEMACCESS(2) ",%%xmm2 \n" + "paddd %%xmm0,%%xmm2 \n" + "paddd %%xmm3,%%xmm0 \n" + "movdqu " MEMACCESS2(0x10,2) ",%%xmm3 \n" + "paddd %%xmm0,%%xmm3 \n" + "paddd %%xmm4,%%xmm0 \n" + "movdqu " MEMACCESS2(0x20,2) ",%%xmm4 \n" + "paddd %%xmm0,%%xmm4 \n" + "paddd %%xmm5,%%xmm0 \n" + "movdqu " MEMACCESS2(0x30,2) ",%%xmm5 \n" + "lea " MEMLEA(0x40,2) ",%2 \n" + "paddd %%xmm0,%%xmm5 \n" + "movdqu %%xmm2," MEMACCESS(1) " \n" + "movdqu %%xmm3," MEMACCESS2(0x10,1) " \n" + "movdqu %%xmm4," MEMACCESS2(0x20,1) " \n" + "movdqu %%xmm5," MEMACCESS2(0x30,1) " \n" + "lea " MEMLEA(0x40,1) ",%1 \n" + "sub $0x4,%3 \n" + "jge 40b \n" + + "49: \n" + "add $0x3,%3 \n" + "jl 19f \n" + + // 1 pixel loop \n" + LABELALIGN + "10: \n" + "movd " MEMACCESS(0) ",%%xmm2 \n" + "lea " MEMLEA(0x4,0) ",%0 \n" + "punpcklbw %%xmm1,%%xmm2 \n" + "punpcklwd %%xmm1,%%xmm2 \n" + "paddd %%xmm2,%%xmm0 \n" + "movdqu " MEMACCESS(2) ",%%xmm2 \n" + "lea " MEMLEA(0x10,2) ",%2 \n" + "paddd %%xmm0,%%xmm2 \n" + "movdqu %%xmm2," MEMACCESS(1) " \n" + "lea " MEMLEA(0x10,1) ",%1 \n" + "sub $0x1,%3 \n" + "jge 10b \n" + + "19: \n" + : "+r"(row), // %0 + "+r"(cumsum), // %1 + "+r"(previous_cumsum), // %2 + "+r"(width) // %3 + : + : "memory", "cc" + , "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5" + ); +} +#endif // HAS_COMPUTECUMULATIVESUMROW_SSE2 + +#ifdef HAS_CUMULATIVESUMTOAVERAGEROW_SSE2 +void CumulativeSumToAverageRow_SSE2(const int32* topleft, const int32* botleft, + int width, int area, uint8* dst, + int count) { + asm volatile ( + "movd %5,%%xmm5 \n" + "cvtdq2ps %%xmm5,%%xmm5 \n" + "rcpss %%xmm5,%%xmm4 \n" + "pshufd $0x0,%%xmm4,%%xmm4 \n" + "sub $0x4,%3 \n" + "jl 49f \n" + "cmpl $0x80,%5 \n" + "ja 40f \n" + + "pshufd $0x0,%%xmm5,%%xmm5 \n" + "pcmpeqb %%xmm6,%%xmm6 \n" + "psrld $0x10,%%xmm6 \n" + "cvtdq2ps %%xmm6,%%xmm6 \n" + "addps %%xmm6,%%xmm5 \n" + "mulps %%xmm4,%%xmm5 \n" + "cvtps2dq %%xmm5,%%xmm5 \n" + "packssdw %%xmm5,%%xmm5 \n" + + // 4 pixel small loop \n" + LABELALIGN + "4: \n" + "movdqu " MEMACCESS(0) ",%%xmm0 \n" + "movdqu " MEMACCESS2(0x10,0) ",%%xmm1 \n" + "movdqu " MEMACCESS2(0x20,0) ",%%xmm2 \n" + "movdqu " MEMACCESS2(0x30,0) ",%%xmm3 \n" + MEMOPREG(psubd,0x00,0,4,4,xmm0) // psubd 0x00(%0,%4,4),%%xmm0 + MEMOPREG(psubd,0x10,0,4,4,xmm1) // psubd 0x10(%0,%4,4),%%xmm1 + MEMOPREG(psubd,0x20,0,4,4,xmm2) // psubd 0x20(%0,%4,4),%%xmm2 + MEMOPREG(psubd,0x30,0,4,4,xmm3) // psubd 0x30(%0,%4,4),%%xmm3 + "lea " MEMLEA(0x40,0) ",%0 \n" + "psubd " MEMACCESS(1) ",%%xmm0 \n" + "psubd " MEMACCESS2(0x10,1) ",%%xmm1 \n" + "psubd " MEMACCESS2(0x20,1) ",%%xmm2 \n" + "psubd " MEMACCESS2(0x30,1) ",%%xmm3 \n" + MEMOPREG(paddd,0x00,1,4,4,xmm0) // paddd 0x00(%1,%4,4),%%xmm0 + MEMOPREG(paddd,0x10,1,4,4,xmm1) // paddd 0x10(%1,%4,4),%%xmm1 + MEMOPREG(paddd,0x20,1,4,4,xmm2) // paddd 0x20(%1,%4,4),%%xmm2 + MEMOPREG(paddd,0x30,1,4,4,xmm3) // paddd 0x30(%1,%4,4),%%xmm3 + "lea " MEMLEA(0x40,1) ",%1 \n" + "packssdw %%xmm1,%%xmm0 \n" + "packssdw %%xmm3,%%xmm2 \n" + "pmulhuw %%xmm5,%%xmm0 \n" + "pmulhuw %%xmm5,%%xmm2 \n" + "packuswb %%xmm2,%%xmm0 \n" + "movdqu %%xmm0," MEMACCESS(2) " \n" + "lea " MEMLEA(0x10,2) ",%2 \n" + "sub $0x4,%3 \n" + "jge 4b \n" + "jmp 49f \n" + + // 4 pixel loop \n" + LABELALIGN + "40: \n" + "movdqu " MEMACCESS(0) ",%%xmm0 \n" + "movdqu " MEMACCESS2(0x10,0) ",%%xmm1 \n" + "movdqu " MEMACCESS2(0x20,0) ",%%xmm2 \n" + "movdqu " MEMACCESS2(0x30,0) ",%%xmm3 \n" + MEMOPREG(psubd,0x00,0,4,4,xmm0) // psubd 0x00(%0,%4,4),%%xmm0 + MEMOPREG(psubd,0x10,0,4,4,xmm1) // psubd 0x10(%0,%4,4),%%xmm1 + MEMOPREG(psubd,0x20,0,4,4,xmm2) // psubd 0x20(%0,%4,4),%%xmm2 + MEMOPREG(psubd,0x30,0,4,4,xmm3) // psubd 0x30(%0,%4,4),%%xmm3 + "lea " MEMLEA(0x40,0) ",%0 \n" + "psubd " MEMACCESS(1) ",%%xmm0 \n" + "psubd " MEMACCESS2(0x10,1) ",%%xmm1 \n" + "psubd " MEMACCESS2(0x20,1) ",%%xmm2 \n" + "psubd " MEMACCESS2(0x30,1) ",%%xmm3 \n" + MEMOPREG(paddd,0x00,1,4,4,xmm0) // paddd 0x00(%1,%4,4),%%xmm0 + MEMOPREG(paddd,0x10,1,4,4,xmm1) // paddd 0x10(%1,%4,4),%%xmm1 + MEMOPREG(paddd,0x20,1,4,4,xmm2) // paddd 0x20(%1,%4,4),%%xmm2 + MEMOPREG(paddd,0x30,1,4,4,xmm3) // paddd 0x30(%1,%4,4),%%xmm3 + "lea " MEMLEA(0x40,1) ",%1 \n" + "cvtdq2ps %%xmm0,%%xmm0 \n" + "cvtdq2ps %%xmm1,%%xmm1 \n" + "mulps %%xmm4,%%xmm0 \n" + "mulps %%xmm4,%%xmm1 \n" + "cvtdq2ps %%xmm2,%%xmm2 \n" + "cvtdq2ps %%xmm3,%%xmm3 \n" + "mulps %%xmm4,%%xmm2 \n" + "mulps %%xmm4,%%xmm3 \n" + "cvtps2dq %%xmm0,%%xmm0 \n" + "cvtps2dq %%xmm1,%%xmm1 \n" + "cvtps2dq %%xmm2,%%xmm2 \n" + "cvtps2dq %%xmm3,%%xmm3 \n" + "packssdw %%xmm1,%%xmm0 \n" + "packssdw %%xmm3,%%xmm2 \n" + "packuswb %%xmm2,%%xmm0 \n" + "movdqu %%xmm0," MEMACCESS(2) " \n" + "lea " MEMLEA(0x10,2) ",%2 \n" + "sub $0x4,%3 \n" + "jge 40b \n" + + "49: \n" + "add $0x3,%3 \n" + "jl 19f \n" + + // 1 pixel loop \n" + LABELALIGN + "10: \n" + "movdqu " MEMACCESS(0) ",%%xmm0 \n" + MEMOPREG(psubd,0x00,0,4,4,xmm0) // psubd 0x00(%0,%4,4),%%xmm0 + "lea " MEMLEA(0x10,0) ",%0 \n" + "psubd " MEMACCESS(1) ",%%xmm0 \n" + MEMOPREG(paddd,0x00,1,4,4,xmm0) // paddd 0x00(%1,%4,4),%%xmm0 + "lea " MEMLEA(0x10,1) ",%1 \n" + "cvtdq2ps %%xmm0,%%xmm0 \n" + "mulps %%xmm4,%%xmm0 \n" + "cvtps2dq %%xmm0,%%xmm0 \n" + "packssdw %%xmm0,%%xmm0 \n" + "packuswb %%xmm0,%%xmm0 \n" + "movd %%xmm0," MEMACCESS(2) " \n" + "lea " MEMLEA(0x4,2) ",%2 \n" + "sub $0x1,%3 \n" + "jge 10b \n" + "19: \n" + : "+r"(topleft), // %0 + "+r"(botleft), // %1 + "+r"(dst), // %2 + "+rm"(count) // %3 + : "r"((intptr_t)(width)), // %4 + "rm"(area) // %5 + : "memory", "cc", NACL_R14 + "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6" + ); +} +#endif // HAS_CUMULATIVESUMTOAVERAGEROW_SSE2 + +#ifdef HAS_ARGBAFFINEROW_SSE2 +// Copy ARGB pixels from source image with slope to a row of destination. +LIBYUV_API +void ARGBAffineRow_SSE2(const uint8* src_argb, int src_argb_stride, + uint8* dst_argb, const float* src_dudv, int width) { + intptr_t src_argb_stride_temp = src_argb_stride; + intptr_t temp; + asm volatile ( + "movq " MEMACCESS(3) ",%%xmm2 \n" + "movq " MEMACCESS2(0x08,3) ",%%xmm7 \n" + "shl $0x10,%1 \n" + "add $0x4,%1 \n" + "movd %1,%%xmm5 \n" + "sub $0x4,%4 \n" + "jl 49f \n" + + "pshufd $0x44,%%xmm7,%%xmm7 \n" + "pshufd $0x0,%%xmm5,%%xmm5 \n" + "movdqa %%xmm2,%%xmm0 \n" + "addps %%xmm7,%%xmm0 \n" + "movlhps %%xmm0,%%xmm2 \n" + "movdqa %%xmm7,%%xmm4 \n" + "addps %%xmm4,%%xmm4 \n" + "movdqa %%xmm2,%%xmm3 \n" + "addps %%xmm4,%%xmm3 \n" + "addps %%xmm4,%%xmm4 \n" + + // 4 pixel loop \n" + LABELALIGN + "40: \n" + "cvttps2dq %%xmm2,%%xmm0 \n" // x, y float to int first 2 + "cvttps2dq %%xmm3,%%xmm1 \n" // x, y float to int next 2 + "packssdw %%xmm1,%%xmm0 \n" // x, y as 8 shorts + "pmaddwd %%xmm5,%%xmm0 \n" // off = x * 4 + y * stride + "movd %%xmm0,%k1 \n" + "pshufd $0x39,%%xmm0,%%xmm0 \n" + "movd %%xmm0,%k5 \n" + "pshufd $0x39,%%xmm0,%%xmm0 \n" + MEMOPREG(movd,0x00,0,1,1,xmm1) // movd (%0,%1,1),%%xmm1 + MEMOPREG(movd,0x00,0,5,1,xmm6) // movd (%0,%5,1),%%xmm6 + "punpckldq %%xmm6,%%xmm1 \n" + "addps %%xmm4,%%xmm2 \n" + "movq %%xmm1," MEMACCESS(2) " \n" + "movd %%xmm0,%k1 \n" + "pshufd $0x39,%%xmm0,%%xmm0 \n" + "movd %%xmm0,%k5 \n" + MEMOPREG(movd,0x00,0,1,1,xmm0) // movd (%0,%1,1),%%xmm0 + MEMOPREG(movd,0x00,0,5,1,xmm6) // movd (%0,%5,1),%%xmm6 + "punpckldq %%xmm6,%%xmm0 \n" + "addps %%xmm4,%%xmm3 \n" + "movq %%xmm0," MEMACCESS2(0x08,2) " \n" + "lea " MEMLEA(0x10,2) ",%2 \n" + "sub $0x4,%4 \n" + "jge 40b \n" + + "49: \n" + "add $0x3,%4 \n" + "jl 19f \n" + + // 1 pixel loop \n" + LABELALIGN + "10: \n" + "cvttps2dq %%xmm2,%%xmm0 \n" + "packssdw %%xmm0,%%xmm0 \n" + "pmaddwd %%xmm5,%%xmm0 \n" + "addps %%xmm7,%%xmm2 \n" + "movd %%xmm0,%k1 \n" + MEMOPREG(movd,0x00,0,1,1,xmm0) // movd (%0,%1,1),%%xmm0 + "movd %%xmm0," MEMACCESS(2) " \n" + "lea " MEMLEA(0x04,2) ",%2 \n" + "sub $0x1,%4 \n" + "jge 10b \n" + "19: \n" + : "+r"(src_argb), // %0 + "+r"(src_argb_stride_temp), // %1 + "+r"(dst_argb), // %2 + "+r"(src_dudv), // %3 + "+rm"(width), // %4 + "=&r"(temp) // %5 + : + : "memory", "cc", NACL_R14 + "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7" + ); +} +#endif // HAS_ARGBAFFINEROW_SSE2 + +#ifdef HAS_INTERPOLATEROW_SSSE3 +// Bilinear filter 16x2 -> 16x1 +void InterpolateRow_SSSE3(uint8* dst_ptr, const uint8* src_ptr, + ptrdiff_t src_stride, int dst_width, + int source_y_fraction) { + asm volatile ( + "sub %1,%0 \n" + "cmp $0x0,%3 \n" + "je 100f \n" + "cmp $0x80,%3 \n" + "je 50f \n" + + "movd %3,%%xmm0 \n" + "neg %3 \n" + "add $0x100,%3 \n" + "movd %3,%%xmm5 \n" + "punpcklbw %%xmm0,%%xmm5 \n" + "punpcklwd %%xmm5,%%xmm5 \n" + "pshufd $0x0,%%xmm5,%%xmm5 \n" + "mov $0x80808080,%%eax \n" + "movd %%eax,%%xmm4 \n" + "pshufd $0x0,%%xmm4,%%xmm4 \n" + + // General purpose row blend. + LABELALIGN + "1: \n" + "movdqu " MEMACCESS(1) ",%%xmm0 \n" + MEMOPREG(movdqu,0x00,1,4,1,xmm2) + "movdqa %%xmm0,%%xmm1 \n" + "punpcklbw %%xmm2,%%xmm0 \n" + "punpckhbw %%xmm2,%%xmm1 \n" + "psubb %%xmm4,%%xmm0 \n" + "psubb %%xmm4,%%xmm1 \n" + "movdqa %%xmm5,%%xmm2 \n" + "movdqa %%xmm5,%%xmm3 \n" + "pmaddubsw %%xmm0,%%xmm2 \n" + "pmaddubsw %%xmm1,%%xmm3 \n" + "paddw %%xmm4,%%xmm2 \n" + "paddw %%xmm4,%%xmm3 \n" + "psrlw $0x8,%%xmm2 \n" + "psrlw $0x8,%%xmm3 \n" + "packuswb %%xmm3,%%xmm2 \n" + MEMOPMEM(movdqu,xmm2,0x00,1,0,1) + "lea " MEMLEA(0x10,1) ",%1 \n" + "sub $0x10,%2 \n" + "jg 1b \n" + "jmp 99f \n" + + // Blend 50 / 50. + LABELALIGN + "50: \n" + "movdqu " MEMACCESS(1) ",%%xmm0 \n" + MEMOPREG(movdqu,0x00,1,4,1,xmm1) + "pavgb %%xmm1,%%xmm0 \n" + MEMOPMEM(movdqu,xmm0,0x00,1,0,1) + "lea " MEMLEA(0x10,1) ",%1 \n" + "sub $0x10,%2 \n" + "jg 50b \n" + "jmp 99f \n" + + // Blend 100 / 0 - Copy row unchanged. + LABELALIGN + "100: \n" + "movdqu " MEMACCESS(1) ",%%xmm0 \n" + MEMOPMEM(movdqu,xmm0,0x00,1,0,1) + "lea " MEMLEA(0x10,1) ",%1 \n" + "sub $0x10,%2 \n" + "jg 100b \n" + + "99: \n" + : "+r"(dst_ptr), // %0 + "+r"(src_ptr), // %1 + "+rm"(dst_width), // %2 + "+r"(source_y_fraction) // %3 + : "r"((intptr_t)(src_stride)) // %4 + : "memory", "cc", "eax", NACL_R14 + "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5" + ); +} +#endif // HAS_INTERPOLATEROW_SSSE3 + +#ifdef HAS_INTERPOLATEROW_AVX2 +// Bilinear filter 32x2 -> 32x1 +void InterpolateRow_AVX2(uint8* dst_ptr, const uint8* src_ptr, + ptrdiff_t src_stride, int dst_width, + int source_y_fraction) { + asm volatile ( + "cmp $0x0,%3 \n" + "je 100f \n" + "sub %1,%0 \n" + "cmp $0x80,%3 \n" + "je 50f \n" + + "vmovd %3,%%xmm0 \n" + "neg %3 \n" + "add $0x100,%3 \n" + "vmovd %3,%%xmm5 \n" + "vpunpcklbw %%xmm0,%%xmm5,%%xmm5 \n" + "vpunpcklwd %%xmm5,%%xmm5,%%xmm5 \n" + "vbroadcastss %%xmm5,%%ymm5 \n" + "mov $0x80808080,%%eax \n" + "vmovd %%eax,%%xmm4 \n" + "vbroadcastss %%xmm4,%%ymm4 \n" + + // General purpose row blend. + LABELALIGN + "1: \n" + "vmovdqu " MEMACCESS(1) ",%%ymm0 \n" + MEMOPREG(vmovdqu,0x00,1,4,1,ymm2) + "vpunpckhbw %%ymm2,%%ymm0,%%ymm1 \n" + "vpunpcklbw %%ymm2,%%ymm0,%%ymm0 \n" + "vpsubb %%ymm4,%%ymm1,%%ymm1 \n" + "vpsubb %%ymm4,%%ymm0,%%ymm0 \n" + "vpmaddubsw %%ymm1,%%ymm5,%%ymm1 \n" + "vpmaddubsw %%ymm0,%%ymm5,%%ymm0 \n" + "vpaddw %%ymm4,%%ymm1,%%ymm1 \n" + "vpaddw %%ymm4,%%ymm0,%%ymm0 \n" + "vpsrlw $0x8,%%ymm1,%%ymm1 \n" + "vpsrlw $0x8,%%ymm0,%%ymm0 \n" + "vpackuswb %%ymm1,%%ymm0,%%ymm0 \n" + MEMOPMEM(vmovdqu,ymm0,0x00,1,0,1) + "lea " MEMLEA(0x20,1) ",%1 \n" + "sub $0x20,%2 \n" + "jg 1b \n" + "jmp 99f \n" + + // Blend 50 / 50. + LABELALIGN + "50: \n" + "vmovdqu " MEMACCESS(1) ",%%ymm0 \n" + VMEMOPREG(vpavgb,0x00,1,4,1,ymm0,ymm0) // vpavgb (%1,%4,1),%%ymm0,%%ymm0 + MEMOPMEM(vmovdqu,ymm0,0x00,1,0,1) + "lea " MEMLEA(0x20,1) ",%1 \n" + "sub $0x20,%2 \n" + "jg 50b \n" + "jmp 99f \n" + + // Blend 100 / 0 - Copy row unchanged. + LABELALIGN + "100: \n" + "rep movsb " MEMMOVESTRING(1,0) " \n" + "jmp 999f \n" + + "99: \n" + "vzeroupper \n" + "999: \n" + : "+D"(dst_ptr), // %0 + "+S"(src_ptr), // %1 + "+cm"(dst_width), // %2 + "+r"(source_y_fraction) // %3 + : "r"((intptr_t)(src_stride)) // %4 + : "memory", "cc", "eax", NACL_R14 + "xmm0", "xmm1", "xmm2", "xmm4", "xmm5" + ); +} +#endif // HAS_INTERPOLATEROW_AVX2 + +#ifdef HAS_ARGBSHUFFLEROW_SSSE3 +// For BGRAToARGB, ABGRToARGB, RGBAToARGB, and ARGBToRGBA. +void ARGBShuffleRow_SSSE3(const uint8* src_argb, uint8* dst_argb, + const uint8* shuffler, int width) { + asm volatile ( + "movdqu " MEMACCESS(3) ",%%xmm5 \n" + LABELALIGN + "1: \n" + "movdqu " MEMACCESS(0) ",%%xmm0 \n" + "movdqu " MEMACCESS2(0x10,0) ",%%xmm1 \n" + "lea " MEMLEA(0x20,0) ",%0 \n" + "pshufb %%xmm5,%%xmm0 \n" + "pshufb %%xmm5,%%xmm1 \n" + "movdqu %%xmm0," MEMACCESS(1) " \n" + "movdqu %%xmm1," MEMACCESS2(0x10,1) " \n" + "lea " MEMLEA(0x20,1) ",%1 \n" + "sub $0x8,%2 \n" + "jg 1b \n" + : "+r"(src_argb), // %0 + "+r"(dst_argb), // %1 + "+r"(width) // %2 + : "r"(shuffler) // %3 + : "memory", "cc" + , "xmm0", "xmm1", "xmm5" + ); +} +#endif // HAS_ARGBSHUFFLEROW_SSSE3 + +#ifdef HAS_ARGBSHUFFLEROW_AVX2 +// For BGRAToARGB, ABGRToARGB, RGBAToARGB, and ARGBToRGBA. +void ARGBShuffleRow_AVX2(const uint8* src_argb, uint8* dst_argb, + const uint8* shuffler, int width) { + asm volatile ( + "vbroadcastf128 " MEMACCESS(3) ",%%ymm5 \n" + LABELALIGN + "1: \n" + "vmovdqu " MEMACCESS(0) ",%%ymm0 \n" + "vmovdqu " MEMACCESS2(0x20,0) ",%%ymm1 \n" + "lea " MEMLEA(0x40,0) ",%0 \n" + "vpshufb %%ymm5,%%ymm0,%%ymm0 \n" + "vpshufb %%ymm5,%%ymm1,%%ymm1 \n" + "vmovdqu %%ymm0," MEMACCESS(1) " \n" + "vmovdqu %%ymm1," MEMACCESS2(0x20,1) " \n" + "lea " MEMLEA(0x40,1) ",%1 \n" + "sub $0x10,%2 \n" + "jg 1b \n" + "vzeroupper \n" + : "+r"(src_argb), // %0 + "+r"(dst_argb), // %1 + "+r"(width) // %2 + : "r"(shuffler) // %3 + : "memory", "cc" + , "xmm0", "xmm1", "xmm5" + ); +} +#endif // HAS_ARGBSHUFFLEROW_AVX2 + +#ifdef HAS_ARGBSHUFFLEROW_SSE2 +// For BGRAToARGB, ABGRToARGB, RGBAToARGB, and ARGBToRGBA. +void ARGBShuffleRow_SSE2(const uint8* src_argb, uint8* dst_argb, + const uint8* shuffler, int width) { + uintptr_t pixel_temp; + asm volatile ( + "pxor %%xmm5,%%xmm5 \n" + "mov " MEMACCESS(4) ",%k2 \n" + "cmp $0x3000102,%k2 \n" + "je 3012f \n" + "cmp $0x10203,%k2 \n" + "je 123f \n" + "cmp $0x30201,%k2 \n" + "je 321f \n" + "cmp $0x2010003,%k2 \n" + "je 2103f \n" + + LABELALIGN + "1: \n" + "movzb " MEMACCESS(4) ",%2 \n" + MEMOPARG(movzb,0x00,0,2,1,2) " \n" // movzb (%0,%2,1),%2 + "mov %b2," MEMACCESS(1) " \n" + "movzb " MEMACCESS2(0x1,4) ",%2 \n" + MEMOPARG(movzb,0x00,0,2,1,2) " \n" // movzb (%0,%2,1),%2 + "mov %b2," MEMACCESS2(0x1,1) " \n" + "movzb " MEMACCESS2(0x2,4) ",%2 \n" + MEMOPARG(movzb,0x00,0,2,1,2) " \n" // movzb (%0,%2,1),%2 + "mov %b2," MEMACCESS2(0x2,1) " \n" + "movzb " MEMACCESS2(0x3,4) ",%2 \n" + MEMOPARG(movzb,0x00,0,2,1,2) " \n" // movzb (%0,%2,1),%2 + "mov %b2," MEMACCESS2(0x3,1) " \n" + "lea " MEMLEA(0x4,0) ",%0 \n" + "lea " MEMLEA(0x4,1) ",%1 \n" + "sub $0x1,%3 \n" + "jg 1b \n" + "jmp 99f \n" + + LABELALIGN + "123: \n" + "movdqu " MEMACCESS(0) ",%%xmm0 \n" + "lea " MEMLEA(0x10,0) ",%0 \n" + "movdqa %%xmm0,%%xmm1 \n" + "punpcklbw %%xmm5,%%xmm0 \n" + "punpckhbw %%xmm5,%%xmm1 \n" + "pshufhw $0x1b,%%xmm0,%%xmm0 \n" + "pshuflw $0x1b,%%xmm0,%%xmm0 \n" + "pshufhw $0x1b,%%xmm1,%%xmm1 \n" + "pshuflw $0x1b,%%xmm1,%%xmm1 \n" + "packuswb %%xmm1,%%xmm0 \n" + "movdqu %%xmm0," MEMACCESS(1) " \n" + "lea " MEMLEA(0x10,1) ",%1 \n" + "sub $0x4,%3 \n" + "jg 123b \n" + "jmp 99f \n" + + LABELALIGN + "321: \n" + "movdqu " MEMACCESS(0) ",%%xmm0 \n" + "lea " MEMLEA(0x10,0) ",%0 \n" + "movdqa %%xmm0,%%xmm1 \n" + "punpcklbw %%xmm5,%%xmm0 \n" + "punpckhbw %%xmm5,%%xmm1 \n" + "pshufhw $0x39,%%xmm0,%%xmm0 \n" + "pshuflw $0x39,%%xmm0,%%xmm0 \n" + "pshufhw $0x39,%%xmm1,%%xmm1 \n" + "pshuflw $0x39,%%xmm1,%%xmm1 \n" + "packuswb %%xmm1,%%xmm0 \n" + "movdqu %%xmm0," MEMACCESS(1) " \n" + "lea " MEMLEA(0x10,1) ",%1 \n" + "sub $0x4,%3 \n" + "jg 321b \n" + "jmp 99f \n" + + LABELALIGN + "2103: \n" + "movdqu " MEMACCESS(0) ",%%xmm0 \n" + "lea " MEMLEA(0x10,0) ",%0 \n" + "movdqa %%xmm0,%%xmm1 \n" + "punpcklbw %%xmm5,%%xmm0 \n" + "punpckhbw %%xmm5,%%xmm1 \n" + "pshufhw $0x93,%%xmm0,%%xmm0 \n" + "pshuflw $0x93,%%xmm0,%%xmm0 \n" + "pshufhw $0x93,%%xmm1,%%xmm1 \n" + "pshuflw $0x93,%%xmm1,%%xmm1 \n" + "packuswb %%xmm1,%%xmm0 \n" + "movdqu %%xmm0," MEMACCESS(1) " \n" + "lea " MEMLEA(0x10,1) ",%1 \n" + "sub $0x4,%3 \n" + "jg 2103b \n" + "jmp 99f \n" + + LABELALIGN + "3012: \n" + "movdqu " MEMACCESS(0) ",%%xmm0 \n" + "lea " MEMLEA(0x10,0) ",%0 \n" + "movdqa %%xmm0,%%xmm1 \n" + "punpcklbw %%xmm5,%%xmm0 \n" + "punpckhbw %%xmm5,%%xmm1 \n" + "pshufhw $0xc6,%%xmm0,%%xmm0 \n" + "pshuflw $0xc6,%%xmm0,%%xmm0 \n" + "pshufhw $0xc6,%%xmm1,%%xmm1 \n" + "pshuflw $0xc6,%%xmm1,%%xmm1 \n" + "packuswb %%xmm1,%%xmm0 \n" + "movdqu %%xmm0," MEMACCESS(1) " \n" + "lea " MEMLEA(0x10,1) ",%1 \n" + "sub $0x4,%3 \n" + "jg 3012b \n" + + "99: \n" + : "+r"(src_argb), // %0 + "+r"(dst_argb), // %1 + "=&d"(pixel_temp), // %2 + "+r"(width) // %3 + : "r"(shuffler) // %4 + : "memory", "cc", NACL_R14 + "xmm0", "xmm1", "xmm5" + ); +} +#endif // HAS_ARGBSHUFFLEROW_SSE2 + +#ifdef HAS_I422TOYUY2ROW_SSE2 +void I422ToYUY2Row_SSE2(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + uint8* dst_frame, int width) { + asm volatile ( + "sub %1,%2 \n" + LABELALIGN + "1: \n" + "movq " MEMACCESS(1) ",%%xmm2 \n" + MEMOPREG(movq,0x00,1,2,1,xmm3) // movq (%1,%2,1),%%xmm3 + "lea " MEMLEA(0x8,1) ",%1 \n" + "punpcklbw %%xmm3,%%xmm2 \n" + "movdqu " MEMACCESS(0) ",%%xmm0 \n" + "lea " MEMLEA(0x10,0) ",%0 \n" + "movdqa %%xmm0,%%xmm1 \n" + "punpcklbw %%xmm2,%%xmm0 \n" + "punpckhbw %%xmm2,%%xmm1 \n" + "movdqu %%xmm0," MEMACCESS(3) " \n" + "movdqu %%xmm1," MEMACCESS2(0x10,3) " \n" + "lea " MEMLEA(0x20,3) ",%3 \n" + "sub $0x10,%4 \n" + "jg 1b \n" + : "+r"(src_y), // %0 + "+r"(src_u), // %1 + "+r"(src_v), // %2 + "+r"(dst_frame), // %3 + "+rm"(width) // %4 + : + : "memory", "cc", NACL_R14 + "xmm0", "xmm1", "xmm2", "xmm3" + ); +} +#endif // HAS_I422TOYUY2ROW_SSE2 + +#ifdef HAS_I422TOUYVYROW_SSE2 +void I422ToUYVYRow_SSE2(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + uint8* dst_frame, int width) { + asm volatile ( + "sub %1,%2 \n" + LABELALIGN + "1: \n" + "movq " MEMACCESS(1) ",%%xmm2 \n" + MEMOPREG(movq,0x00,1,2,1,xmm3) // movq (%1,%2,1),%%xmm3 + "lea " MEMLEA(0x8,1) ",%1 \n" + "punpcklbw %%xmm3,%%xmm2 \n" + "movdqu " MEMACCESS(0) ",%%xmm0 \n" + "movdqa %%xmm2,%%xmm1 \n" + "lea " MEMLEA(0x10,0) ",%0 \n" + "punpcklbw %%xmm0,%%xmm1 \n" + "punpckhbw %%xmm0,%%xmm2 \n" + "movdqu %%xmm1," MEMACCESS(3) " \n" + "movdqu %%xmm2," MEMACCESS2(0x10,3) " \n" + "lea " MEMLEA(0x20,3) ",%3 \n" + "sub $0x10,%4 \n" + "jg 1b \n" + : "+r"(src_y), // %0 + "+r"(src_u), // %1 + "+r"(src_v), // %2 + "+r"(dst_frame), // %3 + "+rm"(width) // %4 + : + : "memory", "cc", NACL_R14 + "xmm0", "xmm1", "xmm2", "xmm3" + ); +} +#endif // HAS_I422TOUYVYROW_SSE2 + +#ifdef HAS_ARGBPOLYNOMIALROW_SSE2 +void ARGBPolynomialRow_SSE2(const uint8* src_argb, + uint8* dst_argb, const float* poly, + int width) { + asm volatile ( + "pxor %%xmm3,%%xmm3 \n" + + // 2 pixel loop. + LABELALIGN + "1: \n" + "movq " MEMACCESS(0) ",%%xmm0 \n" + "lea " MEMLEA(0x8,0) ",%0 \n" + "punpcklbw %%xmm3,%%xmm0 \n" + "movdqa %%xmm0,%%xmm4 \n" + "punpcklwd %%xmm3,%%xmm0 \n" + "punpckhwd %%xmm3,%%xmm4 \n" + "cvtdq2ps %%xmm0,%%xmm0 \n" + "cvtdq2ps %%xmm4,%%xmm4 \n" + "movdqa %%xmm0,%%xmm1 \n" + "movdqa %%xmm4,%%xmm5 \n" + "mulps " MEMACCESS2(0x10,3) ",%%xmm0 \n" + "mulps " MEMACCESS2(0x10,3) ",%%xmm4 \n" + "addps " MEMACCESS(3) ",%%xmm0 \n" + "addps " MEMACCESS(3) ",%%xmm4 \n" + "movdqa %%xmm1,%%xmm2 \n" + "movdqa %%xmm5,%%xmm6 \n" + "mulps %%xmm1,%%xmm2 \n" + "mulps %%xmm5,%%xmm6 \n" + "mulps %%xmm2,%%xmm1 \n" + "mulps %%xmm6,%%xmm5 \n" + "mulps " MEMACCESS2(0x20,3) ",%%xmm2 \n" + "mulps " MEMACCESS2(0x20,3) ",%%xmm6 \n" + "mulps " MEMACCESS2(0x30,3) ",%%xmm1 \n" + "mulps " MEMACCESS2(0x30,3) ",%%xmm5 \n" + "addps %%xmm2,%%xmm0 \n" + "addps %%xmm6,%%xmm4 \n" + "addps %%xmm1,%%xmm0 \n" + "addps %%xmm5,%%xmm4 \n" + "cvttps2dq %%xmm0,%%xmm0 \n" + "cvttps2dq %%xmm4,%%xmm4 \n" + "packuswb %%xmm4,%%xmm0 \n" + "packuswb %%xmm0,%%xmm0 \n" + "movq %%xmm0," MEMACCESS(1) " \n" + "lea " MEMLEA(0x8,1) ",%1 \n" + "sub $0x2,%2 \n" + "jg 1b \n" + : "+r"(src_argb), // %0 + "+r"(dst_argb), // %1 + "+r"(width) // %2 + : "r"(poly) // %3 + : "memory", "cc" + , "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6" + ); +} +#endif // HAS_ARGBPOLYNOMIALROW_SSE2 + +#ifdef HAS_ARGBPOLYNOMIALROW_AVX2 +void ARGBPolynomialRow_AVX2(const uint8* src_argb, + uint8* dst_argb, const float* poly, + int width) { + asm volatile ( + "vbroadcastf128 " MEMACCESS(3) ",%%ymm4 \n" + "vbroadcastf128 " MEMACCESS2(0x10,3) ",%%ymm5 \n" + "vbroadcastf128 " MEMACCESS2(0x20,3) ",%%ymm6 \n" + "vbroadcastf128 " MEMACCESS2(0x30,3) ",%%ymm7 \n" + + // 2 pixel loop. + LABELALIGN + "1: \n" + "vpmovzxbd " MEMACCESS(0) ",%%ymm0 \n" // 2 ARGB pixels + "lea " MEMLEA(0x8,0) ",%0 \n" + "vcvtdq2ps %%ymm0,%%ymm0 \n" // X 8 floats + "vmulps %%ymm0,%%ymm0,%%ymm2 \n" // X * X + "vmulps %%ymm7,%%ymm0,%%ymm3 \n" // C3 * X + "vfmadd132ps %%ymm5,%%ymm4,%%ymm0 \n" // result = C0 + C1 * X + "vfmadd231ps %%ymm6,%%ymm2,%%ymm0 \n" // result += C2 * X * X + "vfmadd231ps %%ymm3,%%ymm2,%%ymm0 \n" // result += C3 * X * X * X + "vcvttps2dq %%ymm0,%%ymm0 \n" + "vpackusdw %%ymm0,%%ymm0,%%ymm0 \n" + "vpermq $0xd8,%%ymm0,%%ymm0 \n" + "vpackuswb %%xmm0,%%xmm0,%%xmm0 \n" + "vmovq %%xmm0," MEMACCESS(1) " \n" + "lea " MEMLEA(0x8,1) ",%1 \n" + "sub $0x2,%2 \n" + "jg 1b \n" + "vzeroupper \n" + : "+r"(src_argb), // %0 + "+r"(dst_argb), // %1 + "+r"(width) // %2 + : "r"(poly) // %3 + : "memory", "cc", + "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7" + ); +} +#endif // HAS_ARGBPOLYNOMIALROW_AVX2 + +#ifdef HAS_ARGBCOLORTABLEROW_X86 +// Tranform ARGB pixels with color table. +void ARGBColorTableRow_X86(uint8* dst_argb, const uint8* table_argb, + int width) { + uintptr_t pixel_temp; + asm volatile ( + // 1 pixel loop. + LABELALIGN + "1: \n" + "movzb " MEMACCESS(0) ",%1 \n" + "lea " MEMLEA(0x4,0) ",%0 \n" + MEMOPARG(movzb,0x00,3,1,4,1) " \n" // movzb (%3,%1,4),%1 + "mov %b1," MEMACCESS2(-0x4,0) " \n" + "movzb " MEMACCESS2(-0x3,0) ",%1 \n" + MEMOPARG(movzb,0x01,3,1,4,1) " \n" // movzb 0x1(%3,%1,4),%1 + "mov %b1," MEMACCESS2(-0x3,0) " \n" + "movzb " MEMACCESS2(-0x2,0) ",%1 \n" + MEMOPARG(movzb,0x02,3,1,4,1) " \n" // movzb 0x2(%3,%1,4),%1 + "mov %b1," MEMACCESS2(-0x2,0) " \n" + "movzb " MEMACCESS2(-0x1,0) ",%1 \n" + MEMOPARG(movzb,0x03,3,1,4,1) " \n" // movzb 0x3(%3,%1,4),%1 + "mov %b1," MEMACCESS2(-0x1,0) " \n" + "dec %2 \n" + "jg 1b \n" + : "+r"(dst_argb), // %0 + "=&d"(pixel_temp), // %1 + "+r"(width) // %2 + : "r"(table_argb) // %3 + : "memory", "cc"); +} +#endif // HAS_ARGBCOLORTABLEROW_X86 + +#ifdef HAS_RGBCOLORTABLEROW_X86 +// Tranform RGB pixels with color table. +void RGBColorTableRow_X86(uint8* dst_argb, const uint8* table_argb, int width) { + uintptr_t pixel_temp; + asm volatile ( + // 1 pixel loop. + LABELALIGN + "1: \n" + "movzb " MEMACCESS(0) ",%1 \n" + "lea " MEMLEA(0x4,0) ",%0 \n" + MEMOPARG(movzb,0x00,3,1,4,1) " \n" // movzb (%3,%1,4),%1 + "mov %b1," MEMACCESS2(-0x4,0) " \n" + "movzb " MEMACCESS2(-0x3,0) ",%1 \n" + MEMOPARG(movzb,0x01,3,1,4,1) " \n" // movzb 0x1(%3,%1,4),%1 + "mov %b1," MEMACCESS2(-0x3,0) " \n" + "movzb " MEMACCESS2(-0x2,0) ",%1 \n" + MEMOPARG(movzb,0x02,3,1,4,1) " \n" // movzb 0x2(%3,%1,4),%1 + "mov %b1," MEMACCESS2(-0x2,0) " \n" + "dec %2 \n" + "jg 1b \n" + : "+r"(dst_argb), // %0 + "=&d"(pixel_temp), // %1 + "+r"(width) // %2 + : "r"(table_argb) // %3 + : "memory", "cc"); +} +#endif // HAS_RGBCOLORTABLEROW_X86 + +#ifdef HAS_ARGBLUMACOLORTABLEROW_SSSE3 +// Tranform RGB pixels with luma table. +void ARGBLumaColorTableRow_SSSE3(const uint8* src_argb, uint8* dst_argb, + int width, + const uint8* luma, uint32 lumacoeff) { + uintptr_t pixel_temp; + uintptr_t table_temp; + asm volatile ( + "movd %6,%%xmm3 \n" + "pshufd $0x0,%%xmm3,%%xmm3 \n" + "pcmpeqb %%xmm4,%%xmm4 \n" + "psllw $0x8,%%xmm4 \n" + "pxor %%xmm5,%%xmm5 \n" + + // 4 pixel loop. + LABELALIGN + "1: \n" + "movdqu " MEMACCESS(2) ",%%xmm0 \n" + "pmaddubsw %%xmm3,%%xmm0 \n" + "phaddw %%xmm0,%%xmm0 \n" + "pand %%xmm4,%%xmm0 \n" + "punpcklwd %%xmm5,%%xmm0 \n" + "movd %%xmm0,%k1 \n" // 32 bit offset + "add %5,%1 \n" + "pshufd $0x39,%%xmm0,%%xmm0 \n" + + "movzb " MEMACCESS(2) ",%0 \n" + MEMOPARG(movzb,0x00,1,0,1,0) " \n" // movzb (%1,%0,1),%0 + "mov %b0," MEMACCESS(3) " \n" + "movzb " MEMACCESS2(0x1,2) ",%0 \n" + MEMOPARG(movzb,0x00,1,0,1,0) " \n" // movzb (%1,%0,1),%0 + "mov %b0," MEMACCESS2(0x1,3) " \n" + "movzb " MEMACCESS2(0x2,2) ",%0 \n" + MEMOPARG(movzb,0x00,1,0,1,0) " \n" // movzb (%1,%0,1),%0 + "mov %b0," MEMACCESS2(0x2,3) " \n" + "movzb " MEMACCESS2(0x3,2) ",%0 \n" + "mov %b0," MEMACCESS2(0x3,3) " \n" + + "movd %%xmm0,%k1 \n" // 32 bit offset + "add %5,%1 \n" + "pshufd $0x39,%%xmm0,%%xmm0 \n" + + "movzb " MEMACCESS2(0x4,2) ",%0 \n" + MEMOPARG(movzb,0x00,1,0,1,0) " \n" // movzb (%1,%0,1),%0 + "mov %b0," MEMACCESS2(0x4,3) " \n" + "movzb " MEMACCESS2(0x5,2) ",%0 \n" + MEMOPARG(movzb,0x00,1,0,1,0) " \n" // movzb (%1,%0,1),%0 + "mov %b0," MEMACCESS2(0x5,3) " \n" + "movzb " MEMACCESS2(0x6,2) ",%0 \n" + MEMOPARG(movzb,0x00,1,0,1,0) " \n" // movzb (%1,%0,1),%0 + "mov %b0," MEMACCESS2(0x6,3) " \n" + "movzb " MEMACCESS2(0x7,2) ",%0 \n" + "mov %b0," MEMACCESS2(0x7,3) " \n" + + "movd %%xmm0,%k1 \n" // 32 bit offset + "add %5,%1 \n" + "pshufd $0x39,%%xmm0,%%xmm0 \n" + + "movzb " MEMACCESS2(0x8,2) ",%0 \n" + MEMOPARG(movzb,0x00,1,0,1,0) " \n" // movzb (%1,%0,1),%0 + "mov %b0," MEMACCESS2(0x8,3) " \n" + "movzb " MEMACCESS2(0x9,2) ",%0 \n" + MEMOPARG(movzb,0x00,1,0,1,0) " \n" // movzb (%1,%0,1),%0 + "mov %b0," MEMACCESS2(0x9,3) " \n" + "movzb " MEMACCESS2(0xa,2) ",%0 \n" + MEMOPARG(movzb,0x00,1,0,1,0) " \n" // movzb (%1,%0,1),%0 + "mov %b0," MEMACCESS2(0xa,3) " \n" + "movzb " MEMACCESS2(0xb,2) ",%0 \n" + "mov %b0," MEMACCESS2(0xb,3) " \n" + + "movd %%xmm0,%k1 \n" // 32 bit offset + "add %5,%1 \n" + + "movzb " MEMACCESS2(0xc,2) ",%0 \n" + MEMOPARG(movzb,0x00,1,0,1,0) " \n" // movzb (%1,%0,1),%0 + "mov %b0," MEMACCESS2(0xc,3) " \n" + "movzb " MEMACCESS2(0xd,2) ",%0 \n" + MEMOPARG(movzb,0x00,1,0,1,0) " \n" // movzb (%1,%0,1),%0 + "mov %b0," MEMACCESS2(0xd,3) " \n" + "movzb " MEMACCESS2(0xe,2) ",%0 \n" + MEMOPARG(movzb,0x00,1,0,1,0) " \n" // movzb (%1,%0,1),%0 + "mov %b0," MEMACCESS2(0xe,3) " \n" + "movzb " MEMACCESS2(0xf,2) ",%0 \n" + "mov %b0," MEMACCESS2(0xf,3) " \n" + "lea " MEMLEA(0x10,2) ",%2 \n" + "lea " MEMLEA(0x10,3) ",%3 \n" + "sub $0x4,%4 \n" + "jg 1b \n" + : "=&d"(pixel_temp), // %0 + "=&a"(table_temp), // %1 + "+r"(src_argb), // %2 + "+r"(dst_argb), // %3 + "+rm"(width) // %4 + : "r"(luma), // %5 + "rm"(lumacoeff) // %6 + : "memory", "cc", "xmm0", "xmm3", "xmm4", "xmm5" + ); +} +#endif // HAS_ARGBLUMACOLORTABLEROW_SSSE3 + +#endif // defined(__x86_64__) || defined(__i386__) + +#ifdef __cplusplus +} // extern "C" +} // namespace libyuv +#endif diff --git a/third_party/libyuv/source/row_mips.cc b/third_party/libyuv/source/row_mips.cc new file mode 100644 index 0000000..285f0b5 --- /dev/null +++ b/third_party/libyuv/source/row_mips.cc @@ -0,0 +1,782 @@ +/* + * Copyright (c) 2012 The LibYuv project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "libyuv/row.h" + +#ifdef __cplusplus +namespace libyuv { +extern "C" { +#endif + +// The following are available on Mips platforms: +#if !defined(LIBYUV_DISABLE_MIPS) && defined(__mips__) && \ + (_MIPS_SIM == _MIPS_SIM_ABI32) + +#ifdef HAS_COPYROW_MIPS +void CopyRow_MIPS(const uint8* src, uint8* dst, int count) { + __asm__ __volatile__ ( + ".set noreorder \n" + ".set noat \n" + "slti $at, %[count], 8 \n" + "bne $at ,$zero, $last8 \n" + "xor $t8, %[src], %[dst] \n" + "andi $t8, $t8, 0x3 \n" + + "bne $t8, $zero, unaligned \n" + "negu $a3, %[dst] \n" + // make dst/src aligned + "andi $a3, $a3, 0x3 \n" + "beq $a3, $zero, $chk16w \n" + // word-aligned now count is the remining bytes count + "subu %[count], %[count], $a3 \n" + + "lwr $t8, 0(%[src]) \n" + "addu %[src], %[src], $a3 \n" + "swr $t8, 0(%[dst]) \n" + "addu %[dst], %[dst], $a3 \n" + + // Now the dst/src are mutually word-aligned with word-aligned addresses + "$chk16w: \n" + "andi $t8, %[count], 0x3f \n" // whole 64-B chunks? + // t8 is the byte count after 64-byte chunks + "beq %[count], $t8, chk8w \n" + // There will be at most 1 32-byte chunk after it + "subu $a3, %[count], $t8 \n" // the reminder + // Here a3 counts bytes in 16w chunks + "addu $a3, %[dst], $a3 \n" + // Now a3 is the final dst after 64-byte chunks + "addu $t0, %[dst], %[count] \n" + // t0 is the "past the end" address + + // When in the loop we exercise "pref 30,x(a1)", the a1+x should not be past + // the "t0-32" address + // This means: for x=128 the last "safe" a1 address is "t0-160" + // Alternatively, for x=64 the last "safe" a1 address is "t0-96" + // we will use "pref 30,128(a1)", so "t0-160" is the limit + "subu $t9, $t0, 160 \n" + // t9 is the "last safe pref 30,128(a1)" address + "pref 0, 0(%[src]) \n" // first line of src + "pref 0, 32(%[src]) \n" // second line of src + "pref 0, 64(%[src]) \n" + "pref 30, 32(%[dst]) \n" + // In case the a1 > t9 don't use "pref 30" at all + "sgtu $v1, %[dst], $t9 \n" + "bgtz $v1, $loop16w \n" + "nop \n" + // otherwise, start with using pref30 + "pref 30, 64(%[dst]) \n" + "$loop16w: \n" + "pref 0, 96(%[src]) \n" + "lw $t0, 0(%[src]) \n" + "bgtz $v1, $skip_pref30_96 \n" // skip + "lw $t1, 4(%[src]) \n" + "pref 30, 96(%[dst]) \n" // continue + "$skip_pref30_96: \n" + "lw $t2, 8(%[src]) \n" + "lw $t3, 12(%[src]) \n" + "lw $t4, 16(%[src]) \n" + "lw $t5, 20(%[src]) \n" + "lw $t6, 24(%[src]) \n" + "lw $t7, 28(%[src]) \n" + "pref 0, 128(%[src]) \n" + // bring the next lines of src, addr 128 + "sw $t0, 0(%[dst]) \n" + "sw $t1, 4(%[dst]) \n" + "sw $t2, 8(%[dst]) \n" + "sw $t3, 12(%[dst]) \n" + "sw $t4, 16(%[dst]) \n" + "sw $t5, 20(%[dst]) \n" + "sw $t6, 24(%[dst]) \n" + "sw $t7, 28(%[dst]) \n" + "lw $t0, 32(%[src]) \n" + "bgtz $v1, $skip_pref30_128 \n" // skip pref 30,128(a1) + "lw $t1, 36(%[src]) \n" + "pref 30, 128(%[dst]) \n" // set dest, addr 128 + "$skip_pref30_128: \n" + "lw $t2, 40(%[src]) \n" + "lw $t3, 44(%[src]) \n" + "lw $t4, 48(%[src]) \n" + "lw $t5, 52(%[src]) \n" + "lw $t6, 56(%[src]) \n" + "lw $t7, 60(%[src]) \n" + "pref 0, 160(%[src]) \n" + // bring the next lines of src, addr 160 + "sw $t0, 32(%[dst]) \n" + "sw $t1, 36(%[dst]) \n" + "sw $t2, 40(%[dst]) \n" + "sw $t3, 44(%[dst]) \n" + "sw $t4, 48(%[dst]) \n" + "sw $t5, 52(%[dst]) \n" + "sw $t6, 56(%[dst]) \n" + "sw $t7, 60(%[dst]) \n" + + "addiu %[dst], %[dst], 64 \n" // adding 64 to dest + "sgtu $v1, %[dst], $t9 \n" + "bne %[dst], $a3, $loop16w \n" + " addiu %[src], %[src], 64 \n" // adding 64 to src + "move %[count], $t8 \n" + + // Here we have src and dest word-aligned but less than 64-bytes to go + + "chk8w: \n" + "pref 0, 0x0(%[src]) \n" + "andi $t8, %[count], 0x1f \n" // 32-byte chunk? + // the t8 is the reminder count past 32-bytes + "beq %[count], $t8, chk1w \n" + // count=t8,no 32-byte chunk + " nop \n" + + "lw $t0, 0(%[src]) \n" + "lw $t1, 4(%[src]) \n" + "lw $t2, 8(%[src]) \n" + "lw $t3, 12(%[src]) \n" + "lw $t4, 16(%[src]) \n" + "lw $t5, 20(%[src]) \n" + "lw $t6, 24(%[src]) \n" + "lw $t7, 28(%[src]) \n" + "addiu %[src], %[src], 32 \n" + + "sw $t0, 0(%[dst]) \n" + "sw $t1, 4(%[dst]) \n" + "sw $t2, 8(%[dst]) \n" + "sw $t3, 12(%[dst]) \n" + "sw $t4, 16(%[dst]) \n" + "sw $t5, 20(%[dst]) \n" + "sw $t6, 24(%[dst]) \n" + "sw $t7, 28(%[dst]) \n" + "addiu %[dst], %[dst], 32 \n" + + "chk1w: \n" + "andi %[count], $t8, 0x3 \n" + // now count is the reminder past 1w chunks + "beq %[count], $t8, $last8 \n" + " subu $a3, $t8, %[count] \n" + // a3 is count of bytes in 1w chunks + "addu $a3, %[dst], $a3 \n" + // now a3 is the dst address past the 1w chunks + // copying in words (4-byte chunks) + "$wordCopy_loop: \n" + "lw $t3, 0(%[src]) \n" + // the first t3 may be equal t0 ... optimize? + "addiu %[src], %[src],4 \n" + "addiu %[dst], %[dst],4 \n" + "bne %[dst], $a3,$wordCopy_loop \n" + " sw $t3, -4(%[dst]) \n" + + // For the last (<8) bytes + "$last8: \n" + "blez %[count], leave \n" + " addu $a3, %[dst], %[count] \n" // a3 -last dst address + "$last8loop: \n" + "lb $v1, 0(%[src]) \n" + "addiu %[src], %[src], 1 \n" + "addiu %[dst], %[dst], 1 \n" + "bne %[dst], $a3, $last8loop \n" + " sb $v1, -1(%[dst]) \n" + + "leave: \n" + " j $ra \n" + " nop \n" + + // + // UNALIGNED case + // + + "unaligned: \n" + // got here with a3="negu a1" + "andi $a3, $a3, 0x3 \n" // a1 is word aligned? + "beqz $a3, $ua_chk16w \n" + " subu %[count], %[count], $a3 \n" + // bytes left after initial a3 bytes + "lwr $v1, 0(%[src]) \n" + "lwl $v1, 3(%[src]) \n" + "addu %[src], %[src], $a3 \n" // a3 may be 1, 2 or 3 + "swr $v1, 0(%[dst]) \n" + "addu %[dst], %[dst], $a3 \n" + // below the dst will be word aligned (NOTE1) + "$ua_chk16w: \n" + "andi $t8, %[count], 0x3f \n" // whole 64-B chunks? + // t8 is the byte count after 64-byte chunks + "beq %[count], $t8, ua_chk8w \n" + // if a2==t8, no 64-byte chunks + // There will be at most 1 32-byte chunk after it + "subu $a3, %[count], $t8 \n" // the reminder + // Here a3 counts bytes in 16w chunks + "addu $a3, %[dst], $a3 \n" + // Now a3 is the final dst after 64-byte chunks + "addu $t0, %[dst], %[count] \n" // t0 "past the end" + "subu $t9, $t0, 160 \n" + // t9 is the "last safe pref 30,128(a1)" address + "pref 0, 0(%[src]) \n" // first line of src + "pref 0, 32(%[src]) \n" // second line addr 32 + "pref 0, 64(%[src]) \n" + "pref 30, 32(%[dst]) \n" + // safe, as we have at least 64 bytes ahead + // In case the a1 > t9 don't use "pref 30" at all + "sgtu $v1, %[dst], $t9 \n" + "bgtz $v1, $ua_loop16w \n" + // skip "pref 30,64(a1)" for too short arrays + " nop \n" + // otherwise, start with using pref30 + "pref 30, 64(%[dst]) \n" + "$ua_loop16w: \n" + "pref 0, 96(%[src]) \n" + "lwr $t0, 0(%[src]) \n" + "lwl $t0, 3(%[src]) \n" + "lwr $t1, 4(%[src]) \n" + "bgtz $v1, $ua_skip_pref30_96 \n" + " lwl $t1, 7(%[src]) \n" + "pref 30, 96(%[dst]) \n" + // continue setting up the dest, addr 96 + "$ua_skip_pref30_96: \n" + "lwr $t2, 8(%[src]) \n" + "lwl $t2, 11(%[src]) \n" + "lwr $t3, 12(%[src]) \n" + "lwl $t3, 15(%[src]) \n" + "lwr $t4, 16(%[src]) \n" + "lwl $t4, 19(%[src]) \n" + "lwr $t5, 20(%[src]) \n" + "lwl $t5, 23(%[src]) \n" + "lwr $t6, 24(%[src]) \n" + "lwl $t6, 27(%[src]) \n" + "lwr $t7, 28(%[src]) \n" + "lwl $t7, 31(%[src]) \n" + "pref 0, 128(%[src]) \n" + // bring the next lines of src, addr 128 + "sw $t0, 0(%[dst]) \n" + "sw $t1, 4(%[dst]) \n" + "sw $t2, 8(%[dst]) \n" + "sw $t3, 12(%[dst]) \n" + "sw $t4, 16(%[dst]) \n" + "sw $t5, 20(%[dst]) \n" + "sw $t6, 24(%[dst]) \n" + "sw $t7, 28(%[dst]) \n" + "lwr $t0, 32(%[src]) \n" + "lwl $t0, 35(%[src]) \n" + "lwr $t1, 36(%[src]) \n" + "bgtz $v1, ua_skip_pref30_128 \n" + " lwl $t1, 39(%[src]) \n" + "pref 30, 128(%[dst]) \n" + // continue setting up the dest, addr 128 + "ua_skip_pref30_128: \n" + + "lwr $t2, 40(%[src]) \n" + "lwl $t2, 43(%[src]) \n" + "lwr $t3, 44(%[src]) \n" + "lwl $t3, 47(%[src]) \n" + "lwr $t4, 48(%[src]) \n" + "lwl $t4, 51(%[src]) \n" + "lwr $t5, 52(%[src]) \n" + "lwl $t5, 55(%[src]) \n" + "lwr $t6, 56(%[src]) \n" + "lwl $t6, 59(%[src]) \n" + "lwr $t7, 60(%[src]) \n" + "lwl $t7, 63(%[src]) \n" + "pref 0, 160(%[src]) \n" + // bring the next lines of src, addr 160 + "sw $t0, 32(%[dst]) \n" + "sw $t1, 36(%[dst]) \n" + "sw $t2, 40(%[dst]) \n" + "sw $t3, 44(%[dst]) \n" + "sw $t4, 48(%[dst]) \n" + "sw $t5, 52(%[dst]) \n" + "sw $t6, 56(%[dst]) \n" + "sw $t7, 60(%[dst]) \n" + + "addiu %[dst],%[dst],64 \n" // adding 64 to dest + "sgtu $v1,%[dst],$t9 \n" + "bne %[dst],$a3,$ua_loop16w \n" + " addiu %[src],%[src],64 \n" // adding 64 to src + "move %[count],$t8 \n" + + // Here we have src and dest word-aligned but less than 64-bytes to go + + "ua_chk8w: \n" + "pref 0, 0x0(%[src]) \n" + "andi $t8, %[count], 0x1f \n" // 32-byte chunk? + // the t8 is the reminder count + "beq %[count], $t8, $ua_chk1w \n" + // when count==t8, no 32-byte chunk + + "lwr $t0, 0(%[src]) \n" + "lwl $t0, 3(%[src]) \n" + "lwr $t1, 4(%[src]) \n" + "lwl $t1, 7(%[src]) \n" + "lwr $t2, 8(%[src]) \n" + "lwl $t2, 11(%[src]) \n" + "lwr $t3, 12(%[src]) \n" + "lwl $t3, 15(%[src]) \n" + "lwr $t4, 16(%[src]) \n" + "lwl $t4, 19(%[src]) \n" + "lwr $t5, 20(%[src]) \n" + "lwl $t5, 23(%[src]) \n" + "lwr $t6, 24(%[src]) \n" + "lwl $t6, 27(%[src]) \n" + "lwr $t7, 28(%[src]) \n" + "lwl $t7, 31(%[src]) \n" + "addiu %[src], %[src], 32 \n" + + "sw $t0, 0(%[dst]) \n" + "sw $t1, 4(%[dst]) \n" + "sw $t2, 8(%[dst]) \n" + "sw $t3, 12(%[dst]) \n" + "sw $t4, 16(%[dst]) \n" + "sw $t5, 20(%[dst]) \n" + "sw $t6, 24(%[dst]) \n" + "sw $t7, 28(%[dst]) \n" + "addiu %[dst], %[dst], 32 \n" + + "$ua_chk1w: \n" + "andi %[count], $t8, 0x3 \n" + // now count is the reminder past 1w chunks + "beq %[count], $t8, ua_smallCopy \n" + "subu $a3, $t8, %[count] \n" + // a3 is count of bytes in 1w chunks + "addu $a3, %[dst], $a3 \n" + // now a3 is the dst address past the 1w chunks + + // copying in words (4-byte chunks) + "$ua_wordCopy_loop: \n" + "lwr $v1, 0(%[src]) \n" + "lwl $v1, 3(%[src]) \n" + "addiu %[src], %[src], 4 \n" + "addiu %[dst], %[dst], 4 \n" + // note: dst=a1 is word aligned here, see NOTE1 + "bne %[dst], $a3, $ua_wordCopy_loop \n" + " sw $v1,-4(%[dst]) \n" + + // Now less than 4 bytes (value in count) left to copy + "ua_smallCopy: \n" + "beqz %[count], leave \n" + " addu $a3, %[dst], %[count] \n" // a3 = last dst address + "$ua_smallCopy_loop: \n" + "lb $v1, 0(%[src]) \n" + "addiu %[src], %[src], 1 \n" + "addiu %[dst], %[dst], 1 \n" + "bne %[dst],$a3,$ua_smallCopy_loop \n" + " sb $v1, -1(%[dst]) \n" + + "j $ra \n" + " nop \n" + ".set at \n" + ".set reorder \n" + : [dst] "+r" (dst), [src] "+r" (src) + : [count] "r" (count) + : "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7", + "t8", "t9", "a3", "v1", "at" + ); +} +#endif // HAS_COPYROW_MIPS + +// DSPR2 functions +#if !defined(LIBYUV_DISABLE_MIPS) && defined(__mips_dsp) && \ + (__mips_dsp_rev >= 2) && \ + (_MIPS_SIM == _MIPS_SIM_ABI32) && (__mips_isa_rev < 6) + +void SplitUVRow_DSPR2(const uint8* src_uv, uint8* dst_u, uint8* dst_v, + int width) { + __asm__ __volatile__ ( + ".set push \n" + ".set noreorder \n" + "srl $t4, %[width], 4 \n" // multiplies of 16 + "blez $t4, 2f \n" + " andi %[width], %[width], 0xf \n" // residual + + "1: \n" + "addiu $t4, $t4, -1 \n" + "lw $t0, 0(%[src_uv]) \n" // V1 | U1 | V0 | U0 + "lw $t1, 4(%[src_uv]) \n" // V3 | U3 | V2 | U2 + "lw $t2, 8(%[src_uv]) \n" // V5 | U5 | V4 | U4 + "lw $t3, 12(%[src_uv]) \n" // V7 | U7 | V6 | U6 + "lw $t5, 16(%[src_uv]) \n" // V9 | U9 | V8 | U8 + "lw $t6, 20(%[src_uv]) \n" // V11 | U11 | V10 | U10 + "lw $t7, 24(%[src_uv]) \n" // V13 | U13 | V12 | U12 + "lw $t8, 28(%[src_uv]) \n" // V15 | U15 | V14 | U14 + "addiu %[src_uv], %[src_uv], 32 \n" + "precrq.qb.ph $t9, $t1, $t0 \n" // V3 | V2 | V1 | V0 + "precr.qb.ph $t0, $t1, $t0 \n" // U3 | U2 | U1 | U0 + "precrq.qb.ph $t1, $t3, $t2 \n" // V7 | V6 | V5 | V4 + "precr.qb.ph $t2, $t3, $t2 \n" // U7 | U6 | U5 | U4 + "precrq.qb.ph $t3, $t6, $t5 \n" // V11 | V10 | V9 | V8 + "precr.qb.ph $t5, $t6, $t5 \n" // U11 | U10 | U9 | U8 + "precrq.qb.ph $t6, $t8, $t7 \n" // V15 | V14 | V13 | V12 + "precr.qb.ph $t7, $t8, $t7 \n" // U15 | U14 | U13 | U12 + "sw $t9, 0(%[dst_v]) \n" + "sw $t0, 0(%[dst_u]) \n" + "sw $t1, 4(%[dst_v]) \n" + "sw $t2, 4(%[dst_u]) \n" + "sw $t3, 8(%[dst_v]) \n" + "sw $t5, 8(%[dst_u]) \n" + "sw $t6, 12(%[dst_v]) \n" + "sw $t7, 12(%[dst_u]) \n" + "addiu %[dst_v], %[dst_v], 16 \n" + "bgtz $t4, 1b \n" + " addiu %[dst_u], %[dst_u], 16 \n" + + "beqz %[width], 3f \n" + " nop \n" + + "2: \n" + "lbu $t0, 0(%[src_uv]) \n" + "lbu $t1, 1(%[src_uv]) \n" + "addiu %[src_uv], %[src_uv], 2 \n" + "addiu %[width], %[width], -1 \n" + "sb $t0, 0(%[dst_u]) \n" + "sb $t1, 0(%[dst_v]) \n" + "addiu %[dst_u], %[dst_u], 1 \n" + "bgtz %[width], 2b \n" + " addiu %[dst_v], %[dst_v], 1 \n" + + "3: \n" + ".set pop \n" + : [src_uv] "+r" (src_uv), + [width] "+r" (width), + [dst_u] "+r" (dst_u), + [dst_v] "+r" (dst_v) + : + : "t0", "t1", "t2", "t3", + "t4", "t5", "t6", "t7", "t8", "t9" + ); +} + +void MirrorRow_DSPR2(const uint8* src, uint8* dst, int width) { + __asm__ __volatile__ ( + ".set push \n" + ".set noreorder \n" + + "srl $t4, %[width], 4 \n" // multiplies of 16 + "andi $t5, %[width], 0xf \n" + "blez $t4, 2f \n" + " addu %[src], %[src], %[width] \n" // src += width + + "1: \n" + "lw $t0, -16(%[src]) \n" // |3|2|1|0| + "lw $t1, -12(%[src]) \n" // |7|6|5|4| + "lw $t2, -8(%[src]) \n" // |11|10|9|8| + "lw $t3, -4(%[src]) \n" // |15|14|13|12| + "wsbh $t0, $t0 \n" // |2|3|0|1| + "wsbh $t1, $t1 \n" // |6|7|4|5| + "wsbh $t2, $t2 \n" // |10|11|8|9| + "wsbh $t3, $t3 \n" // |14|15|12|13| + "rotr $t0, $t0, 16 \n" // |0|1|2|3| + "rotr $t1, $t1, 16 \n" // |4|5|6|7| + "rotr $t2, $t2, 16 \n" // |8|9|10|11| + "rotr $t3, $t3, 16 \n" // |12|13|14|15| + "addiu %[src], %[src], -16 \n" + "addiu $t4, $t4, -1 \n" + "sw $t3, 0(%[dst]) \n" // |15|14|13|12| + "sw $t2, 4(%[dst]) \n" // |11|10|9|8| + "sw $t1, 8(%[dst]) \n" // |7|6|5|4| + "sw $t0, 12(%[dst]) \n" // |3|2|1|0| + "bgtz $t4, 1b \n" + " addiu %[dst], %[dst], 16 \n" + "beqz $t5, 3f \n" + " nop \n" + + "2: \n" + "lbu $t0, -1(%[src]) \n" + "addiu $t5, $t5, -1 \n" + "addiu %[src], %[src], -1 \n" + "sb $t0, 0(%[dst]) \n" + "bgez $t5, 2b \n" + " addiu %[dst], %[dst], 1 \n" + + "3: \n" + ".set pop \n" + : [src] "+r" (src), [dst] "+r" (dst) + : [width] "r" (width) + : "t0", "t1", "t2", "t3", "t4", "t5" + ); +} + +void MirrorUVRow_DSPR2(const uint8* src_uv, uint8* dst_u, uint8* dst_v, + int width) { + int x; + int y; + __asm__ __volatile__ ( + ".set push \n" + ".set noreorder \n" + + "addu $t4, %[width], %[width] \n" + "srl %[x], %[width], 4 \n" + "andi %[y], %[width], 0xf \n" + "blez %[x], 2f \n" + " addu %[src_uv], %[src_uv], $t4 \n" + + "1: \n" + "lw $t0, -32(%[src_uv]) \n" // |3|2|1|0| + "lw $t1, -28(%[src_uv]) \n" // |7|6|5|4| + "lw $t2, -24(%[src_uv]) \n" // |11|10|9|8| + "lw $t3, -20(%[src_uv]) \n" // |15|14|13|12| + "lw $t4, -16(%[src_uv]) \n" // |19|18|17|16| + "lw $t6, -12(%[src_uv]) \n" // |23|22|21|20| + "lw $t7, -8(%[src_uv]) \n" // |27|26|25|24| + "lw $t8, -4(%[src_uv]) \n" // |31|30|29|28| + + "rotr $t0, $t0, 16 \n" // |1|0|3|2| + "rotr $t1, $t1, 16 \n" // |5|4|7|6| + "rotr $t2, $t2, 16 \n" // |9|8|11|10| + "rotr $t3, $t3, 16 \n" // |13|12|15|14| + "rotr $t4, $t4, 16 \n" // |17|16|19|18| + "rotr $t6, $t6, 16 \n" // |21|20|23|22| + "rotr $t7, $t7, 16 \n" // |25|24|27|26| + "rotr $t8, $t8, 16 \n" // |29|28|31|30| + "precr.qb.ph $t9, $t0, $t1 \n" // |0|2|4|6| + "precrq.qb.ph $t5, $t0, $t1 \n" // |1|3|5|7| + "precr.qb.ph $t0, $t2, $t3 \n" // |8|10|12|14| + "precrq.qb.ph $t1, $t2, $t3 \n" // |9|11|13|15| + "precr.qb.ph $t2, $t4, $t6 \n" // |16|18|20|22| + "precrq.qb.ph $t3, $t4, $t6 \n" // |17|19|21|23| + "precr.qb.ph $t4, $t7, $t8 \n" // |24|26|28|30| + "precrq.qb.ph $t6, $t7, $t8 \n" // |25|27|29|31| + "addiu %[src_uv], %[src_uv], -32 \n" + "addiu %[x], %[x], -1 \n" + "swr $t4, 0(%[dst_u]) \n" + "swl $t4, 3(%[dst_u]) \n" // |30|28|26|24| + "swr $t6, 0(%[dst_v]) \n" + "swl $t6, 3(%[dst_v]) \n" // |31|29|27|25| + "swr $t2, 4(%[dst_u]) \n" + "swl $t2, 7(%[dst_u]) \n" // |22|20|18|16| + "swr $t3, 4(%[dst_v]) \n" + "swl $t3, 7(%[dst_v]) \n" // |23|21|19|17| + "swr $t0, 8(%[dst_u]) \n" + "swl $t0, 11(%[dst_u]) \n" // |14|12|10|8| + "swr $t1, 8(%[dst_v]) \n" + "swl $t1, 11(%[dst_v]) \n" // |15|13|11|9| + "swr $t9, 12(%[dst_u]) \n" + "swl $t9, 15(%[dst_u]) \n" // |6|4|2|0| + "swr $t5, 12(%[dst_v]) \n" + "swl $t5, 15(%[dst_v]) \n" // |7|5|3|1| + "addiu %[dst_v], %[dst_v], 16 \n" + "bgtz %[x], 1b \n" + " addiu %[dst_u], %[dst_u], 16 \n" + "beqz %[y], 3f \n" + " nop \n" + "b 2f \n" + " nop \n" + + "2: \n" + "lbu $t0, -2(%[src_uv]) \n" + "lbu $t1, -1(%[src_uv]) \n" + "addiu %[src_uv], %[src_uv], -2 \n" + "addiu %[y], %[y], -1 \n" + "sb $t0, 0(%[dst_u]) \n" + "sb $t1, 0(%[dst_v]) \n" + "addiu %[dst_u], %[dst_u], 1 \n" + "bgtz %[y], 2b \n" + " addiu %[dst_v], %[dst_v], 1 \n" + + "3: \n" + ".set pop \n" + : [src_uv] "+r" (src_uv), + [dst_u] "+r" (dst_u), + [dst_v] "+r" (dst_v), + [x] "=&r" (x), + [y] "=&r" (y) + : [width] "r" (width) + : "t0", "t1", "t2", "t3", "t4", + "t5", "t7", "t8", "t9" + ); +} + +// Convert (4 Y and 2 VU) I422 and arrange RGB values into +// t5 = | 0 | B0 | 0 | b0 | +// t4 = | 0 | B1 | 0 | b1 | +// t9 = | 0 | G0 | 0 | g0 | +// t8 = | 0 | G1 | 0 | g1 | +// t2 = | 0 | R0 | 0 | r0 | +// t1 = | 0 | R1 | 0 | r1 | +#define YUVTORGB \ + "lw $t0, 0(%[y_buf]) \n" \ + "lhu $t1, 0(%[u_buf]) \n" \ + "lhu $t2, 0(%[v_buf]) \n" \ + "preceu.ph.qbr $t1, $t1 \n" \ + "preceu.ph.qbr $t2, $t2 \n" \ + "preceu.ph.qbra $t3, $t0 \n" \ + "preceu.ph.qbla $t0, $t0 \n" \ + "subu.ph $t1, $t1, $s5 \n" \ + "subu.ph $t2, $t2, $s5 \n" \ + "subu.ph $t3, $t3, $s4 \n" \ + "subu.ph $t0, $t0, $s4 \n" \ + "mul.ph $t3, $t3, $s0 \n" \ + "mul.ph $t0, $t0, $s0 \n" \ + "shll.ph $t4, $t1, 0x7 \n" \ + "subu.ph $t4, $t4, $t1 \n" \ + "mul.ph $t6, $t1, $s1 \n" \ + "mul.ph $t1, $t2, $s2 \n" \ + "addq_s.ph $t5, $t4, $t3 \n" \ + "addq_s.ph $t4, $t4, $t0 \n" \ + "shra.ph $t5, $t5, 6 \n" \ + "shra.ph $t4, $t4, 6 \n" \ + "addiu %[u_buf], 2 \n" \ + "addiu %[v_buf], 2 \n" \ + "addu.ph $t6, $t6, $t1 \n" \ + "mul.ph $t1, $t2, $s3 \n" \ + "addu.ph $t9, $t6, $t3 \n" \ + "addu.ph $t8, $t6, $t0 \n" \ + "shra.ph $t9, $t9, 6 \n" \ + "shra.ph $t8, $t8, 6 \n" \ + "addu.ph $t2, $t1, $t3 \n" \ + "addu.ph $t1, $t1, $t0 \n" \ + "shra.ph $t2, $t2, 6 \n" \ + "shra.ph $t1, $t1, 6 \n" \ + "subu.ph $t5, $t5, $s5 \n" \ + "subu.ph $t4, $t4, $s5 \n" \ + "subu.ph $t9, $t9, $s5 \n" \ + "subu.ph $t8, $t8, $s5 \n" \ + "subu.ph $t2, $t2, $s5 \n" \ + "subu.ph $t1, $t1, $s5 \n" \ + "shll_s.ph $t5, $t5, 8 \n" \ + "shll_s.ph $t4, $t4, 8 \n" \ + "shll_s.ph $t9, $t9, 8 \n" \ + "shll_s.ph $t8, $t8, 8 \n" \ + "shll_s.ph $t2, $t2, 8 \n" \ + "shll_s.ph $t1, $t1, 8 \n" \ + "shra.ph $t5, $t5, 8 \n" \ + "shra.ph $t4, $t4, 8 \n" \ + "shra.ph $t9, $t9, 8 \n" \ + "shra.ph $t8, $t8, 8 \n" \ + "shra.ph $t2, $t2, 8 \n" \ + "shra.ph $t1, $t1, 8 \n" \ + "addu.ph $t5, $t5, $s5 \n" \ + "addu.ph $t4, $t4, $s5 \n" \ + "addu.ph $t9, $t9, $s5 \n" \ + "addu.ph $t8, $t8, $s5 \n" \ + "addu.ph $t2, $t2, $s5 \n" \ + "addu.ph $t1, $t1, $s5 \n" + +// TODO(fbarchard): accept yuv conversion constants. +void I422ToARGBRow_DSPR2(const uint8* y_buf, + const uint8* u_buf, + const uint8* v_buf, + uint8* rgb_buf, + const struct YuvConstants* yuvconstants, + int width) { + __asm__ __volatile__ ( + ".set push \n" + ".set noreorder \n" + "beqz %[width], 2f \n" + " repl.ph $s0, 74 \n" // |YG|YG| = |74|74| + "repl.ph $s1, -25 \n" // |UG|UG| = |-25|-25| + "repl.ph $s2, -52 \n" // |VG|VG| = |-52|-52| + "repl.ph $s3, 102 \n" // |VR|VR| = |102|102| + "repl.ph $s4, 16 \n" // |0|16|0|16| + "repl.ph $s5, 128 \n" // |128|128| // clipping + "lui $s6, 0xff00 \n" + "ori $s6, 0xff00 \n" // |ff|00|ff|00|ff| + + "1: \n" + YUVTORGB +// Arranging into argb format + "precr.qb.ph $t4, $t8, $t4 \n" // |G1|g1|B1|b1| + "precr.qb.ph $t5, $t9, $t5 \n" // |G0|g0|B0|b0| + "addiu %[width], -4 \n" + "precrq.qb.ph $t8, $t4, $t5 \n" // |G1|B1|G0|B0| + "precr.qb.ph $t9, $t4, $t5 \n" // |g1|b1|g0|b0| + "precr.qb.ph $t2, $t1, $t2 \n" // |R1|r1|R0|r0| + + "addiu %[y_buf], 4 \n" + "preceu.ph.qbla $t1, $t2 \n" // |0 |R1|0 |R0| + "preceu.ph.qbra $t2, $t2 \n" // |0 |r1|0 |r0| + "or $t1, $t1, $s6 \n" // |ff|R1|ff|R0| + "or $t2, $t2, $s6 \n" // |ff|r1|ff|r0| + "precrq.ph.w $t0, $t2, $t9 \n" // |ff|r1|g1|b1| + "precrq.ph.w $t3, $t1, $t8 \n" // |ff|R1|G1|B1| + "sll $t9, $t9, 16 \n" + "sll $t8, $t8, 16 \n" + "packrl.ph $t2, $t2, $t9 \n" // |ff|r0|g0|b0| + "packrl.ph $t1, $t1, $t8 \n" // |ff|R0|G0|B0| +// Store results. + "sw $t2, 0(%[rgb_buf]) \n" + "sw $t0, 4(%[rgb_buf]) \n" + "sw $t1, 8(%[rgb_buf]) \n" + "sw $t3, 12(%[rgb_buf]) \n" + "bnez %[width], 1b \n" + " addiu %[rgb_buf], 16 \n" + "2: \n" + ".set pop \n" + :[y_buf] "+r" (y_buf), + [u_buf] "+r" (u_buf), + [v_buf] "+r" (v_buf), + [width] "+r" (width), + [rgb_buf] "+r" (rgb_buf) + : + : "t0", "t1", "t2", "t3", "t4", "t5", + "t6", "t7", "t8", "t9", + "s0", "s1", "s2", "s3", + "s4", "s5", "s6" + ); +} + +// Bilinear filter 8x2 -> 8x1 +void InterpolateRow_DSPR2(uint8* dst_ptr, const uint8* src_ptr, + ptrdiff_t src_stride, int dst_width, + int source_y_fraction) { + int y0_fraction = 256 - source_y_fraction; + const uint8* src_ptr1 = src_ptr + src_stride; + + __asm__ __volatile__ ( + ".set push \n" + ".set noreorder \n" + + "replv.ph $t0, %[y0_fraction] \n" + "replv.ph $t1, %[source_y_fraction] \n" + + "1: \n" + "lw $t2, 0(%[src_ptr]) \n" + "lw $t3, 0(%[src_ptr1]) \n" + "lw $t4, 4(%[src_ptr]) \n" + "lw $t5, 4(%[src_ptr1]) \n" + "muleu_s.ph.qbl $t6, $t2, $t0 \n" + "muleu_s.ph.qbr $t7, $t2, $t0 \n" + "muleu_s.ph.qbl $t8, $t3, $t1 \n" + "muleu_s.ph.qbr $t9, $t3, $t1 \n" + "muleu_s.ph.qbl $t2, $t4, $t0 \n" + "muleu_s.ph.qbr $t3, $t4, $t0 \n" + "muleu_s.ph.qbl $t4, $t5, $t1 \n" + "muleu_s.ph.qbr $t5, $t5, $t1 \n" + "addq.ph $t6, $t6, $t8 \n" + "addq.ph $t7, $t7, $t9 \n" + "addq.ph $t2, $t2, $t4 \n" + "addq.ph $t3, $t3, $t5 \n" + "shra.ph $t6, $t6, 8 \n" + "shra.ph $t7, $t7, 8 \n" + "shra.ph $t2, $t2, 8 \n" + "shra.ph $t3, $t3, 8 \n" + "precr.qb.ph $t6, $t6, $t7 \n" + "precr.qb.ph $t2, $t2, $t3 \n" + "addiu %[src_ptr], %[src_ptr], 8 \n" + "addiu %[src_ptr1], %[src_ptr1], 8 \n" + "addiu %[dst_width], %[dst_width], -8 \n" + "sw $t6, 0(%[dst_ptr]) \n" + "sw $t2, 4(%[dst_ptr]) \n" + "bgtz %[dst_width], 1b \n" + " addiu %[dst_ptr], %[dst_ptr], 8 \n" + + ".set pop \n" + : [dst_ptr] "+r" (dst_ptr), + [src_ptr1] "+r" (src_ptr1), + [src_ptr] "+r" (src_ptr), + [dst_width] "+r" (dst_width) + : [source_y_fraction] "r" (source_y_fraction), + [y0_fraction] "r" (y0_fraction), + [src_stride] "r" (src_stride) + : "t0", "t1", "t2", "t3", "t4", "t5", + "t6", "t7", "t8", "t9" + ); +} +#endif // __mips_dsp_rev >= 2 + +#endif // defined(__mips__) + +#ifdef __cplusplus +} // extern "C" +} // namespace libyuv +#endif diff --git a/third_party/libyuv/source/row_neon.cc b/third_party/libyuv/source/row_neon.cc new file mode 100644 index 0000000..909df06 --- /dev/null +++ b/third_party/libyuv/source/row_neon.cc @@ -0,0 +1,2843 @@ +/* + * Copyright 2011 The LibYuv Project Authors. All rights reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "libyuv/row.h" + +#ifdef __cplusplus +namespace libyuv { +extern "C" { +#endif + +// This module is for GCC Neon +#if !defined(LIBYUV_DISABLE_NEON) && defined(__ARM_NEON__) && \ + !defined(__aarch64__) + +// Read 8 Y, 4 U and 4 V from 422 +#define READYUV422 \ + MEMACCESS(0) \ + "vld1.8 {d0}, [%0]! \n" \ + MEMACCESS(1) \ + "vld1.32 {d2[0]}, [%1]! \n" \ + MEMACCESS(2) \ + "vld1.32 {d2[1]}, [%2]! \n" + +// Read 8 Y, 2 U and 2 V from 422 +#define READYUV411 \ + MEMACCESS(0) \ + "vld1.8 {d0}, [%0]! \n" \ + MEMACCESS(1) \ + "vld1.16 {d2[0]}, [%1]! \n" \ + MEMACCESS(2) \ + "vld1.16 {d2[1]}, [%2]! \n" \ + "vmov.u8 d3, d2 \n" \ + "vzip.u8 d2, d3 \n" + +// Read 8 Y, 8 U and 8 V from 444 +#define READYUV444 \ + MEMACCESS(0) \ + "vld1.8 {d0}, [%0]! \n" \ + MEMACCESS(1) \ + "vld1.8 {d2}, [%1]! \n" \ + MEMACCESS(2) \ + "vld1.8 {d3}, [%2]! \n" \ + "vpaddl.u8 q1, q1 \n" \ + "vrshrn.u16 d2, q1, #1 \n" + +// Read 8 Y, and set 4 U and 4 V to 128 +#define READYUV400 \ + MEMACCESS(0) \ + "vld1.8 {d0}, [%0]! \n" \ + "vmov.u8 d2, #128 \n" + +// Read 8 Y and 4 UV from NV12 +#define READNV12 \ + MEMACCESS(0) \ + "vld1.8 {d0}, [%0]! \n" \ + MEMACCESS(1) \ + "vld1.8 {d2}, [%1]! \n" \ + "vmov.u8 d3, d2 \n"/* split odd/even uv apart */\ + "vuzp.u8 d2, d3 \n" \ + "vtrn.u32 d2, d3 \n" + +// Read 8 Y and 4 VU from NV21 +#define READNV21 \ + MEMACCESS(0) \ + "vld1.8 {d0}, [%0]! \n" \ + MEMACCESS(1) \ + "vld1.8 {d2}, [%1]! \n" \ + "vmov.u8 d3, d2 \n"/* split odd/even uv apart */\ + "vuzp.u8 d3, d2 \n" \ + "vtrn.u32 d2, d3 \n" + +// Read 8 YUY2 +#define READYUY2 \ + MEMACCESS(0) \ + "vld2.8 {d0, d2}, [%0]! \n" \ + "vmov.u8 d3, d2 \n" \ + "vuzp.u8 d2, d3 \n" \ + "vtrn.u32 d2, d3 \n" + +// Read 8 UYVY +#define READUYVY \ + MEMACCESS(0) \ + "vld2.8 {d2, d3}, [%0]! \n" \ + "vmov.u8 d0, d3 \n" \ + "vmov.u8 d3, d2 \n" \ + "vuzp.u8 d2, d3 \n" \ + "vtrn.u32 d2, d3 \n" + +#define YUVTORGB_SETUP \ + MEMACCESS([kUVToRB]) \ + "vld1.8 {d24}, [%[kUVToRB]] \n" \ + MEMACCESS([kUVToG]) \ + "vld1.8 {d25}, [%[kUVToG]] \n" \ + MEMACCESS([kUVBiasBGR]) \ + "vld1.16 {d26[], d27[]}, [%[kUVBiasBGR]]! \n" \ + MEMACCESS([kUVBiasBGR]) \ + "vld1.16 {d8[], d9[]}, [%[kUVBiasBGR]]! \n" \ + MEMACCESS([kUVBiasBGR]) \ + "vld1.16 {d28[], d29[]}, [%[kUVBiasBGR]] \n" \ + MEMACCESS([kYToRgb]) \ + "vld1.32 {d30[], d31[]}, [%[kYToRgb]] \n" + +#define YUVTORGB \ + "vmull.u8 q8, d2, d24 \n" /* u/v B/R component */\ + "vmull.u8 q9, d2, d25 \n" /* u/v G component */\ + "vmovl.u8 q0, d0 \n" /* Y */\ + "vmovl.s16 q10, d1 \n" \ + "vmovl.s16 q0, d0 \n" \ + "vmul.s32 q10, q10, q15 \n" \ + "vmul.s32 q0, q0, q15 \n" \ + "vqshrun.s32 d0, q0, #16 \n" \ + "vqshrun.s32 d1, q10, #16 \n" /* Y */\ + "vadd.s16 d18, d19 \n" \ + "vshll.u16 q1, d16, #16 \n" /* Replicate u * UB */\ + "vshll.u16 q10, d17, #16 \n" /* Replicate v * VR */\ + "vshll.u16 q3, d18, #16 \n" /* Replicate (v*VG + u*UG)*/\ + "vaddw.u16 q1, q1, d16 \n" \ + "vaddw.u16 q10, q10, d17 \n" \ + "vaddw.u16 q3, q3, d18 \n" \ + "vqadd.s16 q8, q0, q13 \n" /* B */ \ + "vqadd.s16 q9, q0, q14 \n" /* R */ \ + "vqadd.s16 q0, q0, q4 \n" /* G */ \ + "vqadd.s16 q8, q8, q1 \n" /* B */ \ + "vqadd.s16 q9, q9, q10 \n" /* R */ \ + "vqsub.s16 q0, q0, q3 \n" /* G */ \ + "vqshrun.s16 d20, q8, #6 \n" /* B */ \ + "vqshrun.s16 d22, q9, #6 \n" /* R */ \ + "vqshrun.s16 d21, q0, #6 \n" /* G */ + +void I444ToARGBRow_NEON(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width) { + asm volatile ( + YUVTORGB_SETUP + "vmov.u8 d23, #255 \n" + "1: \n" + READYUV444 + YUVTORGB + "subs %4, %4, #8 \n" + MEMACCESS(3) + "vst4.8 {d20, d21, d22, d23}, [%3]! \n" + "bgt 1b \n" + : "+r"(src_y), // %0 + "+r"(src_u), // %1 + "+r"(src_v), // %2 + "+r"(dst_argb), // %3 + "+r"(width) // %4 + : [kUVToRB]"r"(&yuvconstants->kUVToRB), + [kUVToG]"r"(&yuvconstants->kUVToG), + [kUVBiasBGR]"r"(&yuvconstants->kUVBiasBGR), + [kYToRgb]"r"(&yuvconstants->kYToRgb) + : "cc", "memory", "q0", "q1", "q2", "q3", "q4", + "q8", "q9", "q10", "q11", "q12", "q13", "q14", "q15" + ); +} + +void I422ToARGBRow_NEON(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width) { + asm volatile ( + YUVTORGB_SETUP + "vmov.u8 d23, #255 \n" + "1: \n" + READYUV422 + YUVTORGB + "subs %4, %4, #8 \n" + MEMACCESS(3) + "vst4.8 {d20, d21, d22, d23}, [%3]! \n" + "bgt 1b \n" + : "+r"(src_y), // %0 + "+r"(src_u), // %1 + "+r"(src_v), // %2 + "+r"(dst_argb), // %3 + "+r"(width) // %4 + : [kUVToRB]"r"(&yuvconstants->kUVToRB), + [kUVToG]"r"(&yuvconstants->kUVToG), + [kUVBiasBGR]"r"(&yuvconstants->kUVBiasBGR), + [kYToRgb]"r"(&yuvconstants->kYToRgb) + : "cc", "memory", "q0", "q1", "q2", "q3", "q4", + "q8", "q9", "q10", "q11", "q12", "q13", "q14", "q15" + ); +} + +void I422AlphaToARGBRow_NEON(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + const uint8* src_a, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width) { + asm volatile ( + YUVTORGB_SETUP + "1: \n" + READYUV422 + YUVTORGB + "subs %5, %5, #8 \n" + MEMACCESS(3) + "vld1.8 {d23}, [%3]! \n" + MEMACCESS(4) + "vst4.8 {d20, d21, d22, d23}, [%4]! \n" + "bgt 1b \n" + : "+r"(src_y), // %0 + "+r"(src_u), // %1 + "+r"(src_v), // %2 + "+r"(src_a), // %3 + "+r"(dst_argb), // %4 + "+r"(width) // %5 + : [kUVToRB]"r"(&yuvconstants->kUVToRB), + [kUVToG]"r"(&yuvconstants->kUVToG), + [kUVBiasBGR]"r"(&yuvconstants->kUVBiasBGR), + [kYToRgb]"r"(&yuvconstants->kYToRgb) + : "cc", "memory", "q0", "q1", "q2", "q3", "q4", + "q8", "q9", "q10", "q11", "q12", "q13", "q14", "q15" + ); +} + +void I411ToARGBRow_NEON(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width) { + asm volatile ( + YUVTORGB_SETUP + "vmov.u8 d23, #255 \n" + "1: \n" + READYUV411 + YUVTORGB + "subs %4, %4, #8 \n" + MEMACCESS(3) + "vst4.8 {d20, d21, d22, d23}, [%3]! \n" + "bgt 1b \n" + : "+r"(src_y), // %0 + "+r"(src_u), // %1 + "+r"(src_v), // %2 + "+r"(dst_argb), // %3 + "+r"(width) // %4 + : [kUVToRB]"r"(&yuvconstants->kUVToRB), + [kUVToG]"r"(&yuvconstants->kUVToG), + [kUVBiasBGR]"r"(&yuvconstants->kUVBiasBGR), + [kYToRgb]"r"(&yuvconstants->kYToRgb) + : "cc", "memory", "q0", "q1", "q2", "q3", "q4", + "q8", "q9", "q10", "q11", "q12", "q13", "q14", "q15" + ); +} + +void I422ToRGBARow_NEON(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + uint8* dst_rgba, + const struct YuvConstants* yuvconstants, + int width) { + asm volatile ( + YUVTORGB_SETUP + "1: \n" + READYUV422 + YUVTORGB + "subs %4, %4, #8 \n" + "vmov.u8 d19, #255 \n" // d19 modified by YUVTORGB + MEMACCESS(3) + "vst4.8 {d19, d20, d21, d22}, [%3]! \n" + "bgt 1b \n" + : "+r"(src_y), // %0 + "+r"(src_u), // %1 + "+r"(src_v), // %2 + "+r"(dst_rgba), // %3 + "+r"(width) // %4 + : [kUVToRB]"r"(&yuvconstants->kUVToRB), + [kUVToG]"r"(&yuvconstants->kUVToG), + [kUVBiasBGR]"r"(&yuvconstants->kUVBiasBGR), + [kYToRgb]"r"(&yuvconstants->kYToRgb) + : "cc", "memory", "q0", "q1", "q2", "q3", "q4", + "q8", "q9", "q10", "q11", "q12", "q13", "q14", "q15" + ); +} + +void I422ToRGB24Row_NEON(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + uint8* dst_rgb24, + const struct YuvConstants* yuvconstants, + int width) { + asm volatile ( + YUVTORGB_SETUP + "1: \n" + READYUV422 + YUVTORGB + "subs %4, %4, #8 \n" + MEMACCESS(3) + "vst3.8 {d20, d21, d22}, [%3]! \n" + "bgt 1b \n" + : "+r"(src_y), // %0 + "+r"(src_u), // %1 + "+r"(src_v), // %2 + "+r"(dst_rgb24), // %3 + "+r"(width) // %4 + : [kUVToRB]"r"(&yuvconstants->kUVToRB), + [kUVToG]"r"(&yuvconstants->kUVToG), + [kUVBiasBGR]"r"(&yuvconstants->kUVBiasBGR), + [kYToRgb]"r"(&yuvconstants->kYToRgb) + : "cc", "memory", "q0", "q1", "q2", "q3", "q4", + "q8", "q9", "q10", "q11", "q12", "q13", "q14", "q15" + ); +} + +#define ARGBTORGB565 \ + "vshll.u8 q0, d22, #8 \n" /* R */ \ + "vshll.u8 q8, d21, #8 \n" /* G */ \ + "vshll.u8 q9, d20, #8 \n" /* B */ \ + "vsri.16 q0, q8, #5 \n" /* RG */ \ + "vsri.16 q0, q9, #11 \n" /* RGB */ + +void I422ToRGB565Row_NEON(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + uint8* dst_rgb565, + const struct YuvConstants* yuvconstants, + int width) { + asm volatile ( + YUVTORGB_SETUP + "1: \n" + READYUV422 + YUVTORGB + "subs %4, %4, #8 \n" + ARGBTORGB565 + MEMACCESS(3) + "vst1.8 {q0}, [%3]! \n" // store 8 pixels RGB565. + "bgt 1b \n" + : "+r"(src_y), // %0 + "+r"(src_u), // %1 + "+r"(src_v), // %2 + "+r"(dst_rgb565), // %3 + "+r"(width) // %4 + : [kUVToRB]"r"(&yuvconstants->kUVToRB), + [kUVToG]"r"(&yuvconstants->kUVToG), + [kUVBiasBGR]"r"(&yuvconstants->kUVBiasBGR), + [kYToRgb]"r"(&yuvconstants->kYToRgb) + : "cc", "memory", "q0", "q1", "q2", "q3", "q4", + "q8", "q9", "q10", "q11", "q12", "q13", "q14", "q15" + ); +} + +#define ARGBTOARGB1555 \ + "vshll.u8 q0, d23, #8 \n" /* A */ \ + "vshll.u8 q8, d22, #8 \n" /* R */ \ + "vshll.u8 q9, d21, #8 \n" /* G */ \ + "vshll.u8 q10, d20, #8 \n" /* B */ \ + "vsri.16 q0, q8, #1 \n" /* AR */ \ + "vsri.16 q0, q9, #6 \n" /* ARG */ \ + "vsri.16 q0, q10, #11 \n" /* ARGB */ + +void I422ToARGB1555Row_NEON(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + uint8* dst_argb1555, + const struct YuvConstants* yuvconstants, + int width) { + asm volatile ( + YUVTORGB_SETUP + "1: \n" + READYUV422 + YUVTORGB + "subs %4, %4, #8 \n" + "vmov.u8 d23, #255 \n" + ARGBTOARGB1555 + MEMACCESS(3) + "vst1.8 {q0}, [%3]! \n" // store 8 pixels ARGB1555. + "bgt 1b \n" + : "+r"(src_y), // %0 + "+r"(src_u), // %1 + "+r"(src_v), // %2 + "+r"(dst_argb1555), // %3 + "+r"(width) // %4 + : [kUVToRB]"r"(&yuvconstants->kUVToRB), + [kUVToG]"r"(&yuvconstants->kUVToG), + [kUVBiasBGR]"r"(&yuvconstants->kUVBiasBGR), + [kYToRgb]"r"(&yuvconstants->kYToRgb) + : "cc", "memory", "q0", "q1", "q2", "q3", "q4", + "q8", "q9", "q10", "q11", "q12", "q13", "q14", "q15" + ); +} + +#define ARGBTOARGB4444 \ + "vshr.u8 d20, d20, #4 \n" /* B */ \ + "vbic.32 d21, d21, d4 \n" /* G */ \ + "vshr.u8 d22, d22, #4 \n" /* R */ \ + "vbic.32 d23, d23, d4 \n" /* A */ \ + "vorr d0, d20, d21 \n" /* BG */ \ + "vorr d1, d22, d23 \n" /* RA */ \ + "vzip.u8 d0, d1 \n" /* BGRA */ + +void I422ToARGB4444Row_NEON(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + uint8* dst_argb4444, + const struct YuvConstants* yuvconstants, + int width) { + asm volatile ( + YUVTORGB_SETUP + "vmov.u8 d4, #0x0f \n" // bits to clear with vbic. + "1: \n" + READYUV422 + YUVTORGB + "subs %4, %4, #8 \n" + "vmov.u8 d23, #255 \n" + ARGBTOARGB4444 + MEMACCESS(3) + "vst1.8 {q0}, [%3]! \n" // store 8 pixels ARGB4444. + "bgt 1b \n" + : "+r"(src_y), // %0 + "+r"(src_u), // %1 + "+r"(src_v), // %2 + "+r"(dst_argb4444), // %3 + "+r"(width) // %4 + : [kUVToRB]"r"(&yuvconstants->kUVToRB), + [kUVToG]"r"(&yuvconstants->kUVToG), + [kUVBiasBGR]"r"(&yuvconstants->kUVBiasBGR), + [kYToRgb]"r"(&yuvconstants->kYToRgb) + : "cc", "memory", "q0", "q1", "q2", "q3", "q4", + "q8", "q9", "q10", "q11", "q12", "q13", "q14", "q15" + ); +} + +void I400ToARGBRow_NEON(const uint8* src_y, + uint8* dst_argb, + int width) { + asm volatile ( + YUVTORGB_SETUP + "vmov.u8 d23, #255 \n" + "1: \n" + READYUV400 + YUVTORGB + "subs %2, %2, #8 \n" + MEMACCESS(1) + "vst4.8 {d20, d21, d22, d23}, [%1]! \n" + "bgt 1b \n" + : "+r"(src_y), // %0 + "+r"(dst_argb), // %1 + "+r"(width) // %2 + : [kUVToRB]"r"(&kYuvI601Constants.kUVToRB), + [kUVToG]"r"(&kYuvI601Constants.kUVToG), + [kUVBiasBGR]"r"(&kYuvI601Constants.kUVBiasBGR), + [kYToRgb]"r"(&kYuvI601Constants.kYToRgb) + : "cc", "memory", "q0", "q1", "q2", "q3", "q4", + "q8", "q9", "q10", "q11", "q12", "q13", "q14", "q15" + ); +} + +void J400ToARGBRow_NEON(const uint8* src_y, + uint8* dst_argb, + int width) { + asm volatile ( + "vmov.u8 d23, #255 \n" + "1: \n" + MEMACCESS(0) + "vld1.8 {d20}, [%0]! \n" + "vmov d21, d20 \n" + "vmov d22, d20 \n" + "subs %2, %2, #8 \n" + MEMACCESS(1) + "vst4.8 {d20, d21, d22, d23}, [%1]! \n" + "bgt 1b \n" + : "+r"(src_y), // %0 + "+r"(dst_argb), // %1 + "+r"(width) // %2 + : + : "cc", "memory", "d20", "d21", "d22", "d23" + ); +} + +void NV12ToARGBRow_NEON(const uint8* src_y, + const uint8* src_uv, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width) { + asm volatile ( + YUVTORGB_SETUP + "vmov.u8 d23, #255 \n" + "1: \n" + READNV12 + YUVTORGB + "subs %3, %3, #8 \n" + MEMACCESS(2) + "vst4.8 {d20, d21, d22, d23}, [%2]! \n" + "bgt 1b \n" + : "+r"(src_y), // %0 + "+r"(src_uv), // %1 + "+r"(dst_argb), // %2 + "+r"(width) // %3 + : [kUVToRB]"r"(&yuvconstants->kUVToRB), + [kUVToG]"r"(&yuvconstants->kUVToG), + [kUVBiasBGR]"r"(&yuvconstants->kUVBiasBGR), + [kYToRgb]"r"(&yuvconstants->kYToRgb) + : "cc", "memory", "q0", "q1", "q2", "q3", "q4", + "q8", "q9", "q10", "q11", "q12", "q13", "q14", "q15" + ); +} + +void NV21ToARGBRow_NEON(const uint8* src_y, + const uint8* src_vu, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width) { + asm volatile ( + YUVTORGB_SETUP + "vmov.u8 d23, #255 \n" + "1: \n" + READNV21 + YUVTORGB + "subs %3, %3, #8 \n" + MEMACCESS(2) + "vst4.8 {d20, d21, d22, d23}, [%2]! \n" + "bgt 1b \n" + : "+r"(src_y), // %0 + "+r"(src_vu), // %1 + "+r"(dst_argb), // %2 + "+r"(width) // %3 + : [kUVToRB]"r"(&yuvconstants->kUVToRB), + [kUVToG]"r"(&yuvconstants->kUVToG), + [kUVBiasBGR]"r"(&yuvconstants->kUVBiasBGR), + [kYToRgb]"r"(&yuvconstants->kYToRgb) + : "cc", "memory", "q0", "q1", "q2", "q3", "q4", + "q8", "q9", "q10", "q11", "q12", "q13", "q14", "q15" + ); +} + +void NV12ToRGB565Row_NEON(const uint8* src_y, + const uint8* src_uv, + uint8* dst_rgb565, + const struct YuvConstants* yuvconstants, + int width) { + asm volatile ( + YUVTORGB_SETUP + "1: \n" + READNV12 + YUVTORGB + "subs %3, %3, #8 \n" + ARGBTORGB565 + MEMACCESS(2) + "vst1.8 {q0}, [%2]! \n" // store 8 pixels RGB565. + "bgt 1b \n" + : "+r"(src_y), // %0 + "+r"(src_uv), // %1 + "+r"(dst_rgb565), // %2 + "+r"(width) // %3 + : [kUVToRB]"r"(&yuvconstants->kUVToRB), + [kUVToG]"r"(&yuvconstants->kUVToG), + [kUVBiasBGR]"r"(&yuvconstants->kUVBiasBGR), + [kYToRgb]"r"(&yuvconstants->kYToRgb) + : "cc", "memory", "q0", "q1", "q2", "q3", "q4", + "q8", "q9", "q10", "q11", "q12", "q13", "q14", "q15" + ); +} + +void YUY2ToARGBRow_NEON(const uint8* src_yuy2, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width) { + asm volatile ( + YUVTORGB_SETUP + "vmov.u8 d23, #255 \n" + "1: \n" + READYUY2 + YUVTORGB + "subs %2, %2, #8 \n" + MEMACCESS(1) + "vst4.8 {d20, d21, d22, d23}, [%1]! \n" + "bgt 1b \n" + : "+r"(src_yuy2), // %0 + "+r"(dst_argb), // %1 + "+r"(width) // %2 + : [kUVToRB]"r"(&yuvconstants->kUVToRB), + [kUVToG]"r"(&yuvconstants->kUVToG), + [kUVBiasBGR]"r"(&yuvconstants->kUVBiasBGR), + [kYToRgb]"r"(&yuvconstants->kYToRgb) + : "cc", "memory", "q0", "q1", "q2", "q3", "q4", + "q8", "q9", "q10", "q11", "q12", "q13", "q14", "q15" + ); +} + +void UYVYToARGBRow_NEON(const uint8* src_uyvy, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width) { + asm volatile ( + YUVTORGB_SETUP + "vmov.u8 d23, #255 \n" + "1: \n" + READUYVY + YUVTORGB + "subs %2, %2, #8 \n" + MEMACCESS(1) + "vst4.8 {d20, d21, d22, d23}, [%1]! \n" + "bgt 1b \n" + : "+r"(src_uyvy), // %0 + "+r"(dst_argb), // %1 + "+r"(width) // %2 + : [kUVToRB]"r"(&yuvconstants->kUVToRB), + [kUVToG]"r"(&yuvconstants->kUVToG), + [kUVBiasBGR]"r"(&yuvconstants->kUVBiasBGR), + [kYToRgb]"r"(&yuvconstants->kYToRgb) + : "cc", "memory", "q0", "q1", "q2", "q3", "q4", + "q8", "q9", "q10", "q11", "q12", "q13", "q14", "q15" + ); +} + +// Reads 16 pairs of UV and write even values to dst_u and odd to dst_v. +void SplitUVRow_NEON(const uint8* src_uv, uint8* dst_u, uint8* dst_v, + int width) { + asm volatile ( + "1: \n" + MEMACCESS(0) + "vld2.8 {q0, q1}, [%0]! \n" // load 16 pairs of UV + "subs %3, %3, #16 \n" // 16 processed per loop + MEMACCESS(1) + "vst1.8 {q0}, [%1]! \n" // store U + MEMACCESS(2) + "vst1.8 {q1}, [%2]! \n" // store V + "bgt 1b \n" + : "+r"(src_uv), // %0 + "+r"(dst_u), // %1 + "+r"(dst_v), // %2 + "+r"(width) // %3 // Output registers + : // Input registers + : "cc", "memory", "q0", "q1" // Clobber List + ); +} + +// Reads 16 U's and V's and writes out 16 pairs of UV. +void MergeUVRow_NEON(const uint8* src_u, const uint8* src_v, uint8* dst_uv, + int width) { + asm volatile ( + "1: \n" + MEMACCESS(0) + "vld1.8 {q0}, [%0]! \n" // load U + MEMACCESS(1) + "vld1.8 {q1}, [%1]! \n" // load V + "subs %3, %3, #16 \n" // 16 processed per loop + MEMACCESS(2) + "vst2.u8 {q0, q1}, [%2]! \n" // store 16 pairs of UV + "bgt 1b \n" + : + "+r"(src_u), // %0 + "+r"(src_v), // %1 + "+r"(dst_uv), // %2 + "+r"(width) // %3 // Output registers + : // Input registers + : "cc", "memory", "q0", "q1" // Clobber List + ); +} + +// Copy multiple of 32. vld4.8 allow unaligned and is fastest on a15. +void CopyRow_NEON(const uint8* src, uint8* dst, int count) { + asm volatile ( + "1: \n" + MEMACCESS(0) + "vld1.8 {d0, d1, d2, d3}, [%0]! \n" // load 32 + "subs %2, %2, #32 \n" // 32 processed per loop + MEMACCESS(1) + "vst1.8 {d0, d1, d2, d3}, [%1]! \n" // store 32 + "bgt 1b \n" + : "+r"(src), // %0 + "+r"(dst), // %1 + "+r"(count) // %2 // Output registers + : // Input registers + : "cc", "memory", "q0", "q1" // Clobber List + ); +} + +// SetRow writes 'count' bytes using an 8 bit value repeated. +void SetRow_NEON(uint8* dst, uint8 v8, int count) { + asm volatile ( + "vdup.8 q0, %2 \n" // duplicate 16 bytes + "1: \n" + "subs %1, %1, #16 \n" // 16 bytes per loop + MEMACCESS(0) + "vst1.8 {q0}, [%0]! \n" // store + "bgt 1b \n" + : "+r"(dst), // %0 + "+r"(count) // %1 + : "r"(v8) // %2 + : "cc", "memory", "q0" + ); +} + +// ARGBSetRow writes 'count' pixels using an 32 bit value repeated. +void ARGBSetRow_NEON(uint8* dst, uint32 v32, int count) { + asm volatile ( + "vdup.u32 q0, %2 \n" // duplicate 4 ints + "1: \n" + "subs %1, %1, #4 \n" // 4 pixels per loop + MEMACCESS(0) + "vst1.8 {q0}, [%0]! \n" // store + "bgt 1b \n" + : "+r"(dst), // %0 + "+r"(count) // %1 + : "r"(v32) // %2 + : "cc", "memory", "q0" + ); +} + +void MirrorRow_NEON(const uint8* src, uint8* dst, int width) { + asm volatile ( + // Start at end of source row. + "mov r3, #-16 \n" + "add %0, %0, %2 \n" + "sub %0, #16 \n" + + "1: \n" + MEMACCESS(0) + "vld1.8 {q0}, [%0], r3 \n" // src -= 16 + "subs %2, #16 \n" // 16 pixels per loop. + "vrev64.8 q0, q0 \n" + MEMACCESS(1) + "vst1.8 {d1}, [%1]! \n" // dst += 16 + MEMACCESS(1) + "vst1.8 {d0}, [%1]! \n" + "bgt 1b \n" + : "+r"(src), // %0 + "+r"(dst), // %1 + "+r"(width) // %2 + : + : "cc", "memory", "r3", "q0" + ); +} + +void MirrorUVRow_NEON(const uint8* src_uv, uint8* dst_u, uint8* dst_v, + int width) { + asm volatile ( + // Start at end of source row. + "mov r12, #-16 \n" + "add %0, %0, %3, lsl #1 \n" + "sub %0, #16 \n" + + "1: \n" + MEMACCESS(0) + "vld2.8 {d0, d1}, [%0], r12 \n" // src -= 16 + "subs %3, #8 \n" // 8 pixels per loop. + "vrev64.8 q0, q0 \n" + MEMACCESS(1) + "vst1.8 {d0}, [%1]! \n" // dst += 8 + MEMACCESS(2) + "vst1.8 {d1}, [%2]! \n" + "bgt 1b \n" + : "+r"(src_uv), // %0 + "+r"(dst_u), // %1 + "+r"(dst_v), // %2 + "+r"(width) // %3 + : + : "cc", "memory", "r12", "q0" + ); +} + +void ARGBMirrorRow_NEON(const uint8* src, uint8* dst, int width) { + asm volatile ( + // Start at end of source row. + "mov r3, #-16 \n" + "add %0, %0, %2, lsl #2 \n" + "sub %0, #16 \n" + + "1: \n" + MEMACCESS(0) + "vld1.8 {q0}, [%0], r3 \n" // src -= 16 + "subs %2, #4 \n" // 4 pixels per loop. + "vrev64.32 q0, q0 \n" + MEMACCESS(1) + "vst1.8 {d1}, [%1]! \n" // dst += 16 + MEMACCESS(1) + "vst1.8 {d0}, [%1]! \n" + "bgt 1b \n" + : "+r"(src), // %0 + "+r"(dst), // %1 + "+r"(width) // %2 + : + : "cc", "memory", "r3", "q0" + ); +} + +void RGB24ToARGBRow_NEON(const uint8* src_rgb24, uint8* dst_argb, int width) { + asm volatile ( + "vmov.u8 d4, #255 \n" // Alpha + "1: \n" + MEMACCESS(0) + "vld3.8 {d1, d2, d3}, [%0]! \n" // load 8 pixels of RGB24. + "subs %2, %2, #8 \n" // 8 processed per loop. + MEMACCESS(1) + "vst4.8 {d1, d2, d3, d4}, [%1]! \n" // store 8 pixels of ARGB. + "bgt 1b \n" + : "+r"(src_rgb24), // %0 + "+r"(dst_argb), // %1 + "+r"(width) // %2 + : + : "cc", "memory", "d1", "d2", "d3", "d4" // Clobber List + ); +} + +void RAWToARGBRow_NEON(const uint8* src_raw, uint8* dst_argb, int width) { + asm volatile ( + "vmov.u8 d4, #255 \n" // Alpha + "1: \n" + MEMACCESS(0) + "vld3.8 {d1, d2, d3}, [%0]! \n" // load 8 pixels of RAW. + "subs %2, %2, #8 \n" // 8 processed per loop. + "vswp.u8 d1, d3 \n" // swap R, B + MEMACCESS(1) + "vst4.8 {d1, d2, d3, d4}, [%1]! \n" // store 8 pixels of ARGB. + "bgt 1b \n" + : "+r"(src_raw), // %0 + "+r"(dst_argb), // %1 + "+r"(width) // %2 + : + : "cc", "memory", "d1", "d2", "d3", "d4" // Clobber List + ); +} + +void RAWToRGB24Row_NEON(const uint8* src_raw, uint8* dst_rgb24, int width) { + asm volatile ( + "1: \n" + MEMACCESS(0) + "vld3.8 {d1, d2, d3}, [%0]! \n" // load 8 pixels of RAW. + "subs %2, %2, #8 \n" // 8 processed per loop. + "vswp.u8 d1, d3 \n" // swap R, B + MEMACCESS(1) + "vst3.8 {d1, d2, d3}, [%1]! \n" // store 8 pixels of RGB24. + "bgt 1b \n" + : "+r"(src_raw), // %0 + "+r"(dst_rgb24), // %1 + "+r"(width) // %2 + : + : "cc", "memory", "d1", "d2", "d3" // Clobber List + ); +} + +#define RGB565TOARGB \ + "vshrn.u16 d6, q0, #5 \n" /* G xxGGGGGG */ \ + "vuzp.u8 d0, d1 \n" /* d0 xxxBBBBB RRRRRxxx */ \ + "vshl.u8 d6, d6, #2 \n" /* G GGGGGG00 upper 6 */ \ + "vshr.u8 d1, d1, #3 \n" /* R 000RRRRR lower 5 */ \ + "vshl.u8 q0, q0, #3 \n" /* B,R BBBBB000 upper 5 */ \ + "vshr.u8 q2, q0, #5 \n" /* B,R 00000BBB lower 3 */ \ + "vorr.u8 d0, d0, d4 \n" /* B */ \ + "vshr.u8 d4, d6, #6 \n" /* G 000000GG lower 2 */ \ + "vorr.u8 d2, d1, d5 \n" /* R */ \ + "vorr.u8 d1, d4, d6 \n" /* G */ + +void RGB565ToARGBRow_NEON(const uint8* src_rgb565, uint8* dst_argb, int width) { + asm volatile ( + "vmov.u8 d3, #255 \n" // Alpha + "1: \n" + MEMACCESS(0) + "vld1.8 {q0}, [%0]! \n" // load 8 RGB565 pixels. + "subs %2, %2, #8 \n" // 8 processed per loop. + RGB565TOARGB + MEMACCESS(1) + "vst4.8 {d0, d1, d2, d3}, [%1]! \n" // store 8 pixels of ARGB. + "bgt 1b \n" + : "+r"(src_rgb565), // %0 + "+r"(dst_argb), // %1 + "+r"(width) // %2 + : + : "cc", "memory", "q0", "q1", "q2", "q3" // Clobber List + ); +} + +#define ARGB1555TOARGB \ + "vshrn.u16 d7, q0, #8 \n" /* A Arrrrrxx */ \ + "vshr.u8 d6, d7, #2 \n" /* R xxxRRRRR */ \ + "vshrn.u16 d5, q0, #5 \n" /* G xxxGGGGG */ \ + "vmovn.u16 d4, q0 \n" /* B xxxBBBBB */ \ + "vshr.u8 d7, d7, #7 \n" /* A 0000000A */ \ + "vneg.s8 d7, d7 \n" /* A AAAAAAAA upper 8 */ \ + "vshl.u8 d6, d6, #3 \n" /* R RRRRR000 upper 5 */ \ + "vshr.u8 q1, q3, #5 \n" /* R,A 00000RRR lower 3 */ \ + "vshl.u8 q0, q2, #3 \n" /* B,G BBBBB000 upper 5 */ \ + "vshr.u8 q2, q0, #5 \n" /* B,G 00000BBB lower 3 */ \ + "vorr.u8 q1, q1, q3 \n" /* R,A */ \ + "vorr.u8 q0, q0, q2 \n" /* B,G */ \ + +// RGB555TOARGB is same as ARGB1555TOARGB but ignores alpha. +#define RGB555TOARGB \ + "vshrn.u16 d6, q0, #5 \n" /* G xxxGGGGG */ \ + "vuzp.u8 d0, d1 \n" /* d0 xxxBBBBB xRRRRRxx */ \ + "vshl.u8 d6, d6, #3 \n" /* G GGGGG000 upper 5 */ \ + "vshr.u8 d1, d1, #2 \n" /* R 00xRRRRR lower 5 */ \ + "vshl.u8 q0, q0, #3 \n" /* B,R BBBBB000 upper 5 */ \ + "vshr.u8 q2, q0, #5 \n" /* B,R 00000BBB lower 3 */ \ + "vorr.u8 d0, d0, d4 \n" /* B */ \ + "vshr.u8 d4, d6, #5 \n" /* G 00000GGG lower 3 */ \ + "vorr.u8 d2, d1, d5 \n" /* R */ \ + "vorr.u8 d1, d4, d6 \n" /* G */ + +void ARGB1555ToARGBRow_NEON(const uint8* src_argb1555, uint8* dst_argb, + int width) { + asm volatile ( + "vmov.u8 d3, #255 \n" // Alpha + "1: \n" + MEMACCESS(0) + "vld1.8 {q0}, [%0]! \n" // load 8 ARGB1555 pixels. + "subs %2, %2, #8 \n" // 8 processed per loop. + ARGB1555TOARGB + MEMACCESS(1) + "vst4.8 {d0, d1, d2, d3}, [%1]! \n" // store 8 pixels of ARGB. + "bgt 1b \n" + : "+r"(src_argb1555), // %0 + "+r"(dst_argb), // %1 + "+r"(width) // %2 + : + : "cc", "memory", "q0", "q1", "q2", "q3" // Clobber List + ); +} + +#define ARGB4444TOARGB \ + "vuzp.u8 d0, d1 \n" /* d0 BG, d1 RA */ \ + "vshl.u8 q2, q0, #4 \n" /* B,R BBBB0000 */ \ + "vshr.u8 q1, q0, #4 \n" /* G,A 0000GGGG */ \ + "vshr.u8 q0, q2, #4 \n" /* B,R 0000BBBB */ \ + "vorr.u8 q0, q0, q2 \n" /* B,R BBBBBBBB */ \ + "vshl.u8 q2, q1, #4 \n" /* G,A GGGG0000 */ \ + "vorr.u8 q1, q1, q2 \n" /* G,A GGGGGGGG */ \ + "vswp.u8 d1, d2 \n" /* B,R,G,A -> B,G,R,A */ + +void ARGB4444ToARGBRow_NEON(const uint8* src_argb4444, uint8* dst_argb, + int width) { + asm volatile ( + "vmov.u8 d3, #255 \n" // Alpha + "1: \n" + MEMACCESS(0) + "vld1.8 {q0}, [%0]! \n" // load 8 ARGB4444 pixels. + "subs %2, %2, #8 \n" // 8 processed per loop. + ARGB4444TOARGB + MEMACCESS(1) + "vst4.8 {d0, d1, d2, d3}, [%1]! \n" // store 8 pixels of ARGB. + "bgt 1b \n" + : "+r"(src_argb4444), // %0 + "+r"(dst_argb), // %1 + "+r"(width) // %2 + : + : "cc", "memory", "q0", "q1", "q2" // Clobber List + ); +} + +void ARGBToRGB24Row_NEON(const uint8* src_argb, uint8* dst_rgb24, int width) { + asm volatile ( + "1: \n" + MEMACCESS(0) + "vld4.8 {d1, d2, d3, d4}, [%0]! \n" // load 8 pixels of ARGB. + "subs %2, %2, #8 \n" // 8 processed per loop. + MEMACCESS(1) + "vst3.8 {d1, d2, d3}, [%1]! \n" // store 8 pixels of RGB24. + "bgt 1b \n" + : "+r"(src_argb), // %0 + "+r"(dst_rgb24), // %1 + "+r"(width) // %2 + : + : "cc", "memory", "d1", "d2", "d3", "d4" // Clobber List + ); +} + +void ARGBToRAWRow_NEON(const uint8* src_argb, uint8* dst_raw, int width) { + asm volatile ( + "1: \n" + MEMACCESS(0) + "vld4.8 {d1, d2, d3, d4}, [%0]! \n" // load 8 pixels of ARGB. + "subs %2, %2, #8 \n" // 8 processed per loop. + "vswp.u8 d1, d3 \n" // swap R, B + MEMACCESS(1) + "vst3.8 {d1, d2, d3}, [%1]! \n" // store 8 pixels of RAW. + "bgt 1b \n" + : "+r"(src_argb), // %0 + "+r"(dst_raw), // %1 + "+r"(width) // %2 + : + : "cc", "memory", "d1", "d2", "d3", "d4" // Clobber List + ); +} + +void YUY2ToYRow_NEON(const uint8* src_yuy2, uint8* dst_y, int width) { + asm volatile ( + "1: \n" + MEMACCESS(0) + "vld2.8 {q0, q1}, [%0]! \n" // load 16 pixels of YUY2. + "subs %2, %2, #16 \n" // 16 processed per loop. + MEMACCESS(1) + "vst1.8 {q0}, [%1]! \n" // store 16 pixels of Y. + "bgt 1b \n" + : "+r"(src_yuy2), // %0 + "+r"(dst_y), // %1 + "+r"(width) // %2 + : + : "cc", "memory", "q0", "q1" // Clobber List + ); +} + +void UYVYToYRow_NEON(const uint8* src_uyvy, uint8* dst_y, int width) { + asm volatile ( + "1: \n" + MEMACCESS(0) + "vld2.8 {q0, q1}, [%0]! \n" // load 16 pixels of UYVY. + "subs %2, %2, #16 \n" // 16 processed per loop. + MEMACCESS(1) + "vst1.8 {q1}, [%1]! \n" // store 16 pixels of Y. + "bgt 1b \n" + : "+r"(src_uyvy), // %0 + "+r"(dst_y), // %1 + "+r"(width) // %2 + : + : "cc", "memory", "q0", "q1" // Clobber List + ); +} + +void YUY2ToUV422Row_NEON(const uint8* src_yuy2, uint8* dst_u, uint8* dst_v, + int width) { + asm volatile ( + "1: \n" + MEMACCESS(0) + "vld4.8 {d0, d1, d2, d3}, [%0]! \n" // load 16 pixels of YUY2. + "subs %3, %3, #16 \n" // 16 pixels = 8 UVs. + MEMACCESS(1) + "vst1.8 {d1}, [%1]! \n" // store 8 U. + MEMACCESS(2) + "vst1.8 {d3}, [%2]! \n" // store 8 V. + "bgt 1b \n" + : "+r"(src_yuy2), // %0 + "+r"(dst_u), // %1 + "+r"(dst_v), // %2 + "+r"(width) // %3 + : + : "cc", "memory", "d0", "d1", "d2", "d3" // Clobber List + ); +} + +void UYVYToUV422Row_NEON(const uint8* src_uyvy, uint8* dst_u, uint8* dst_v, + int width) { + asm volatile ( + "1: \n" + MEMACCESS(0) + "vld4.8 {d0, d1, d2, d3}, [%0]! \n" // load 16 pixels of UYVY. + "subs %3, %3, #16 \n" // 16 pixels = 8 UVs. + MEMACCESS(1) + "vst1.8 {d0}, [%1]! \n" // store 8 U. + MEMACCESS(2) + "vst1.8 {d2}, [%2]! \n" // store 8 V. + "bgt 1b \n" + : "+r"(src_uyvy), // %0 + "+r"(dst_u), // %1 + "+r"(dst_v), // %2 + "+r"(width) // %3 + : + : "cc", "memory", "d0", "d1", "d2", "d3" // Clobber List + ); +} + +void YUY2ToUVRow_NEON(const uint8* src_yuy2, int stride_yuy2, + uint8* dst_u, uint8* dst_v, int width) { + asm volatile ( + "add %1, %0, %1 \n" // stride + src_yuy2 + "1: \n" + MEMACCESS(0) + "vld4.8 {d0, d1, d2, d3}, [%0]! \n" // load 16 pixels of YUY2. + "subs %4, %4, #16 \n" // 16 pixels = 8 UVs. + MEMACCESS(1) + "vld4.8 {d4, d5, d6, d7}, [%1]! \n" // load next row YUY2. + "vrhadd.u8 d1, d1, d5 \n" // average rows of U + "vrhadd.u8 d3, d3, d7 \n" // average rows of V + MEMACCESS(2) + "vst1.8 {d1}, [%2]! \n" // store 8 U. + MEMACCESS(3) + "vst1.8 {d3}, [%3]! \n" // store 8 V. + "bgt 1b \n" + : "+r"(src_yuy2), // %0 + "+r"(stride_yuy2), // %1 + "+r"(dst_u), // %2 + "+r"(dst_v), // %3 + "+r"(width) // %4 + : + : "cc", "memory", "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7" // Clobber List + ); +} + +void UYVYToUVRow_NEON(const uint8* src_uyvy, int stride_uyvy, + uint8* dst_u, uint8* dst_v, int width) { + asm volatile ( + "add %1, %0, %1 \n" // stride + src_uyvy + "1: \n" + MEMACCESS(0) + "vld4.8 {d0, d1, d2, d3}, [%0]! \n" // load 16 pixels of UYVY. + "subs %4, %4, #16 \n" // 16 pixels = 8 UVs. + MEMACCESS(1) + "vld4.8 {d4, d5, d6, d7}, [%1]! \n" // load next row UYVY. + "vrhadd.u8 d0, d0, d4 \n" // average rows of U + "vrhadd.u8 d2, d2, d6 \n" // average rows of V + MEMACCESS(2) + "vst1.8 {d0}, [%2]! \n" // store 8 U. + MEMACCESS(3) + "vst1.8 {d2}, [%3]! \n" // store 8 V. + "bgt 1b \n" + : "+r"(src_uyvy), // %0 + "+r"(stride_uyvy), // %1 + "+r"(dst_u), // %2 + "+r"(dst_v), // %3 + "+r"(width) // %4 + : + : "cc", "memory", "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7" // Clobber List + ); +} + +// For BGRAToARGB, ABGRToARGB, RGBAToARGB, and ARGBToRGBA. +void ARGBShuffleRow_NEON(const uint8* src_argb, uint8* dst_argb, + const uint8* shuffler, int width) { + asm volatile ( + MEMACCESS(3) + "vld1.8 {q2}, [%3] \n" // shuffler + "1: \n" + MEMACCESS(0) + "vld1.8 {q0}, [%0]! \n" // load 4 pixels. + "subs %2, %2, #4 \n" // 4 processed per loop + "vtbl.8 d2, {d0, d1}, d4 \n" // look up 2 first pixels + "vtbl.8 d3, {d0, d1}, d5 \n" // look up 2 next pixels + MEMACCESS(1) + "vst1.8 {q1}, [%1]! \n" // store 4. + "bgt 1b \n" + : "+r"(src_argb), // %0 + "+r"(dst_argb), // %1 + "+r"(width) // %2 + : "r"(shuffler) // %3 + : "cc", "memory", "q0", "q1", "q2" // Clobber List + ); +} + +void I422ToYUY2Row_NEON(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + uint8* dst_yuy2, int width) { + asm volatile ( + "1: \n" + MEMACCESS(0) + "vld2.8 {d0, d2}, [%0]! \n" // load 16 Ys + MEMACCESS(1) + "vld1.8 {d1}, [%1]! \n" // load 8 Us + MEMACCESS(2) + "vld1.8 {d3}, [%2]! \n" // load 8 Vs + "subs %4, %4, #16 \n" // 16 pixels + MEMACCESS(3) + "vst4.8 {d0, d1, d2, d3}, [%3]! \n" // Store 8 YUY2/16 pixels. + "bgt 1b \n" + : "+r"(src_y), // %0 + "+r"(src_u), // %1 + "+r"(src_v), // %2 + "+r"(dst_yuy2), // %3 + "+r"(width) // %4 + : + : "cc", "memory", "d0", "d1", "d2", "d3" + ); +} + +void I422ToUYVYRow_NEON(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + uint8* dst_uyvy, int width) { + asm volatile ( + "1: \n" + MEMACCESS(0) + "vld2.8 {d1, d3}, [%0]! \n" // load 16 Ys + MEMACCESS(1) + "vld1.8 {d0}, [%1]! \n" // load 8 Us + MEMACCESS(2) + "vld1.8 {d2}, [%2]! \n" // load 8 Vs + "subs %4, %4, #16 \n" // 16 pixels + MEMACCESS(3) + "vst4.8 {d0, d1, d2, d3}, [%3]! \n" // Store 8 UYVY/16 pixels. + "bgt 1b \n" + : "+r"(src_y), // %0 + "+r"(src_u), // %1 + "+r"(src_v), // %2 + "+r"(dst_uyvy), // %3 + "+r"(width) // %4 + : + : "cc", "memory", "d0", "d1", "d2", "d3" + ); +} + +void ARGBToRGB565Row_NEON(const uint8* src_argb, uint8* dst_rgb565, int width) { + asm volatile ( + "1: \n" + MEMACCESS(0) + "vld4.8 {d20, d21, d22, d23}, [%0]! \n" // load 8 pixels of ARGB. + "subs %2, %2, #8 \n" // 8 processed per loop. + ARGBTORGB565 + MEMACCESS(1) + "vst1.8 {q0}, [%1]! \n" // store 8 pixels RGB565. + "bgt 1b \n" + : "+r"(src_argb), // %0 + "+r"(dst_rgb565), // %1 + "+r"(width) // %2 + : + : "cc", "memory", "q0", "q8", "q9", "q10", "q11" + ); +} + +void ARGBToRGB565DitherRow_NEON(const uint8* src_argb, uint8* dst_rgb, + const uint32 dither4, int width) { + asm volatile ( + "vdup.32 d2, %2 \n" // dither4 + "1: \n" + MEMACCESS(1) + "vld4.8 {d20, d21, d22, d23}, [%1]! \n" // load 8 pixels of ARGB. + "subs %3, %3, #8 \n" // 8 processed per loop. + "vqadd.u8 d20, d20, d2 \n" + "vqadd.u8 d21, d21, d2 \n" + "vqadd.u8 d22, d22, d2 \n" + ARGBTORGB565 + MEMACCESS(0) + "vst1.8 {q0}, [%0]! \n" // store 8 pixels RGB565. + "bgt 1b \n" + : "+r"(dst_rgb) // %0 + : "r"(src_argb), // %1 + "r"(dither4), // %2 + "r"(width) // %3 + : "cc", "memory", "q0", "q1", "q8", "q9", "q10", "q11" + ); +} + +void ARGBToARGB1555Row_NEON(const uint8* src_argb, uint8* dst_argb1555, + int width) { + asm volatile ( + "1: \n" + MEMACCESS(0) + "vld4.8 {d20, d21, d22, d23}, [%0]! \n" // load 8 pixels of ARGB. + "subs %2, %2, #8 \n" // 8 processed per loop. + ARGBTOARGB1555 + MEMACCESS(1) + "vst1.8 {q0}, [%1]! \n" // store 8 pixels ARGB1555. + "bgt 1b \n" + : "+r"(src_argb), // %0 + "+r"(dst_argb1555), // %1 + "+r"(width) // %2 + : + : "cc", "memory", "q0", "q8", "q9", "q10", "q11" + ); +} + +void ARGBToARGB4444Row_NEON(const uint8* src_argb, uint8* dst_argb4444, + int width) { + asm volatile ( + "vmov.u8 d4, #0x0f \n" // bits to clear with vbic. + "1: \n" + MEMACCESS(0) + "vld4.8 {d20, d21, d22, d23}, [%0]! \n" // load 8 pixels of ARGB. + "subs %2, %2, #8 \n" // 8 processed per loop. + ARGBTOARGB4444 + MEMACCESS(1) + "vst1.8 {q0}, [%1]! \n" // store 8 pixels ARGB4444. + "bgt 1b \n" + : "+r"(src_argb), // %0 + "+r"(dst_argb4444), // %1 + "+r"(width) // %2 + : + : "cc", "memory", "q0", "q8", "q9", "q10", "q11" + ); +} + +void ARGBToYRow_NEON(const uint8* src_argb, uint8* dst_y, int width) { + asm volatile ( + "vmov.u8 d24, #13 \n" // B * 0.1016 coefficient + "vmov.u8 d25, #65 \n" // G * 0.5078 coefficient + "vmov.u8 d26, #33 \n" // R * 0.2578 coefficient + "vmov.u8 d27, #16 \n" // Add 16 constant + "1: \n" + MEMACCESS(0) + "vld4.8 {d0, d1, d2, d3}, [%0]! \n" // load 8 ARGB pixels. + "subs %2, %2, #8 \n" // 8 processed per loop. + "vmull.u8 q2, d0, d24 \n" // B + "vmlal.u8 q2, d1, d25 \n" // G + "vmlal.u8 q2, d2, d26 \n" // R + "vqrshrun.s16 d0, q2, #7 \n" // 16 bit to 8 bit Y + "vqadd.u8 d0, d27 \n" + MEMACCESS(1) + "vst1.8 {d0}, [%1]! \n" // store 8 pixels Y. + "bgt 1b \n" + : "+r"(src_argb), // %0 + "+r"(dst_y), // %1 + "+r"(width) // %2 + : + : "cc", "memory", "q0", "q1", "q2", "q12", "q13" + ); +} + +void ARGBExtractAlphaRow_NEON(const uint8* src_argb, uint8* dst_a, int width) { + asm volatile ( + "1: \n" + MEMACCESS(0) + "vld4.8 {d0, d2, d4, d6}, [%0]! \n" // load 8 ARGB pixels + "vld4.8 {d1, d3, d5, d7}, [%0]! \n" // load next 8 ARGB pixels + "subs %2, %2, #16 \n" // 16 processed per loop + MEMACCESS(1) + "vst1.8 {q3}, [%1]! \n" // store 16 A's. + "bgt 1b \n" + : "+r"(src_argb), // %0 + "+r"(dst_a), // %1 + "+r"(width) // %2 + : + : "cc", "memory", "q0", "q1", "q2", "q3" // Clobber List + ); +} + +void ARGBToYJRow_NEON(const uint8* src_argb, uint8* dst_y, int width) { + asm volatile ( + "vmov.u8 d24, #15 \n" // B * 0.11400 coefficient + "vmov.u8 d25, #75 \n" // G * 0.58700 coefficient + "vmov.u8 d26, #38 \n" // R * 0.29900 coefficient + "1: \n" + MEMACCESS(0) + "vld4.8 {d0, d1, d2, d3}, [%0]! \n" // load 8 ARGB pixels. + "subs %2, %2, #8 \n" // 8 processed per loop. + "vmull.u8 q2, d0, d24 \n" // B + "vmlal.u8 q2, d1, d25 \n" // G + "vmlal.u8 q2, d2, d26 \n" // R + "vqrshrun.s16 d0, q2, #7 \n" // 15 bit to 8 bit Y + MEMACCESS(1) + "vst1.8 {d0}, [%1]! \n" // store 8 pixels Y. + "bgt 1b \n" + : "+r"(src_argb), // %0 + "+r"(dst_y), // %1 + "+r"(width) // %2 + : + : "cc", "memory", "q0", "q1", "q2", "q12", "q13" + ); +} + +// 8x1 pixels. +void ARGBToUV444Row_NEON(const uint8* src_argb, uint8* dst_u, uint8* dst_v, + int width) { + asm volatile ( + "vmov.u8 d24, #112 \n" // UB / VR 0.875 coefficient + "vmov.u8 d25, #74 \n" // UG -0.5781 coefficient + "vmov.u8 d26, #38 \n" // UR -0.2969 coefficient + "vmov.u8 d27, #18 \n" // VB -0.1406 coefficient + "vmov.u8 d28, #94 \n" // VG -0.7344 coefficient + "vmov.u16 q15, #0x8080 \n" // 128.5 + "1: \n" + MEMACCESS(0) + "vld4.8 {d0, d1, d2, d3}, [%0]! \n" // load 8 ARGB pixels. + "subs %3, %3, #8 \n" // 8 processed per loop. + "vmull.u8 q2, d0, d24 \n" // B + "vmlsl.u8 q2, d1, d25 \n" // G + "vmlsl.u8 q2, d2, d26 \n" // R + "vadd.u16 q2, q2, q15 \n" // +128 -> unsigned + + "vmull.u8 q3, d2, d24 \n" // R + "vmlsl.u8 q3, d1, d28 \n" // G + "vmlsl.u8 q3, d0, d27 \n" // B + "vadd.u16 q3, q3, q15 \n" // +128 -> unsigned + + "vqshrn.u16 d0, q2, #8 \n" // 16 bit to 8 bit U + "vqshrn.u16 d1, q3, #8 \n" // 16 bit to 8 bit V + + MEMACCESS(1) + "vst1.8 {d0}, [%1]! \n" // store 8 pixels U. + MEMACCESS(2) + "vst1.8 {d1}, [%2]! \n" // store 8 pixels V. + "bgt 1b \n" + : "+r"(src_argb), // %0 + "+r"(dst_u), // %1 + "+r"(dst_v), // %2 + "+r"(width) // %3 + : + : "cc", "memory", "q0", "q1", "q2", "q3", "q4", "q12", "q13", "q14", "q15" + ); +} + +// 32x1 pixels -> 8x1. width is number of argb pixels. e.g. 32. +void ARGBToUV411Row_NEON(const uint8* src_argb, uint8* dst_u, uint8* dst_v, + int width) { + asm volatile ( + "vmov.s16 q10, #112 / 2 \n" // UB / VR 0.875 coefficient + "vmov.s16 q11, #74 / 2 \n" // UG -0.5781 coefficient + "vmov.s16 q12, #38 / 2 \n" // UR -0.2969 coefficient + "vmov.s16 q13, #18 / 2 \n" // VB -0.1406 coefficient + "vmov.s16 q14, #94 / 2 \n" // VG -0.7344 coefficient + "vmov.u16 q15, #0x8080 \n" // 128.5 + "1: \n" + MEMACCESS(0) + "vld4.8 {d0, d2, d4, d6}, [%0]! \n" // load 8 ARGB pixels. + MEMACCESS(0) + "vld4.8 {d1, d3, d5, d7}, [%0]! \n" // load next 8 ARGB pixels. + "vpaddl.u8 q0, q0 \n" // B 16 bytes -> 8 shorts. + "vpaddl.u8 q1, q1 \n" // G 16 bytes -> 8 shorts. + "vpaddl.u8 q2, q2 \n" // R 16 bytes -> 8 shorts. + MEMACCESS(0) + "vld4.8 {d8, d10, d12, d14}, [%0]! \n" // load 8 more ARGB pixels. + MEMACCESS(0) + "vld4.8 {d9, d11, d13, d15}, [%0]! \n" // load last 8 ARGB pixels. + "vpaddl.u8 q4, q4 \n" // B 16 bytes -> 8 shorts. + "vpaddl.u8 q5, q5 \n" // G 16 bytes -> 8 shorts. + "vpaddl.u8 q6, q6 \n" // R 16 bytes -> 8 shorts. + + "vpadd.u16 d0, d0, d1 \n" // B 16 shorts -> 8 shorts. + "vpadd.u16 d1, d8, d9 \n" // B + "vpadd.u16 d2, d2, d3 \n" // G 16 shorts -> 8 shorts. + "vpadd.u16 d3, d10, d11 \n" // G + "vpadd.u16 d4, d4, d5 \n" // R 16 shorts -> 8 shorts. + "vpadd.u16 d5, d12, d13 \n" // R + + "vrshr.u16 q0, q0, #1 \n" // 2x average + "vrshr.u16 q1, q1, #1 \n" + "vrshr.u16 q2, q2, #1 \n" + + "subs %3, %3, #32 \n" // 32 processed per loop. + "vmul.s16 q8, q0, q10 \n" // B + "vmls.s16 q8, q1, q11 \n" // G + "vmls.s16 q8, q2, q12 \n" // R + "vadd.u16 q8, q8, q15 \n" // +128 -> unsigned + "vmul.s16 q9, q2, q10 \n" // R + "vmls.s16 q9, q1, q14 \n" // G + "vmls.s16 q9, q0, q13 \n" // B + "vadd.u16 q9, q9, q15 \n" // +128 -> unsigned + "vqshrn.u16 d0, q8, #8 \n" // 16 bit to 8 bit U + "vqshrn.u16 d1, q9, #8 \n" // 16 bit to 8 bit V + MEMACCESS(1) + "vst1.8 {d0}, [%1]! \n" // store 8 pixels U. + MEMACCESS(2) + "vst1.8 {d1}, [%2]! \n" // store 8 pixels V. + "bgt 1b \n" + : "+r"(src_argb), // %0 + "+r"(dst_u), // %1 + "+r"(dst_v), // %2 + "+r"(width) // %3 + : + : "cc", "memory", "q0", "q1", "q2", "q3", "q4", "q5", "q6", "q7", + "q8", "q9", "q10", "q11", "q12", "q13", "q14", "q15" + ); +} + +// 16x2 pixels -> 8x1. width is number of argb pixels. e.g. 16. +#define RGBTOUV(QB, QG, QR) \ + "vmul.s16 q8, " #QB ", q10 \n" /* B */ \ + "vmls.s16 q8, " #QG ", q11 \n" /* G */ \ + "vmls.s16 q8, " #QR ", q12 \n" /* R */ \ + "vadd.u16 q8, q8, q15 \n" /* +128 -> unsigned */ \ + "vmul.s16 q9, " #QR ", q10 \n" /* R */ \ + "vmls.s16 q9, " #QG ", q14 \n" /* G */ \ + "vmls.s16 q9, " #QB ", q13 \n" /* B */ \ + "vadd.u16 q9, q9, q15 \n" /* +128 -> unsigned */ \ + "vqshrn.u16 d0, q8, #8 \n" /* 16 bit to 8 bit U */ \ + "vqshrn.u16 d1, q9, #8 \n" /* 16 bit to 8 bit V */ + +// TODO(fbarchard): Consider vhadd vertical, then vpaddl horizontal, avoid shr. +void ARGBToUVRow_NEON(const uint8* src_argb, int src_stride_argb, + uint8* dst_u, uint8* dst_v, int width) { + asm volatile ( + "add %1, %0, %1 \n" // src_stride + src_argb + "vmov.s16 q10, #112 / 2 \n" // UB / VR 0.875 coefficient + "vmov.s16 q11, #74 / 2 \n" // UG -0.5781 coefficient + "vmov.s16 q12, #38 / 2 \n" // UR -0.2969 coefficient + "vmov.s16 q13, #18 / 2 \n" // VB -0.1406 coefficient + "vmov.s16 q14, #94 / 2 \n" // VG -0.7344 coefficient + "vmov.u16 q15, #0x8080 \n" // 128.5 + "1: \n" + MEMACCESS(0) + "vld4.8 {d0, d2, d4, d6}, [%0]! \n" // load 8 ARGB pixels. + MEMACCESS(0) + "vld4.8 {d1, d3, d5, d7}, [%0]! \n" // load next 8 ARGB pixels. + "vpaddl.u8 q0, q0 \n" // B 16 bytes -> 8 shorts. + "vpaddl.u8 q1, q1 \n" // G 16 bytes -> 8 shorts. + "vpaddl.u8 q2, q2 \n" // R 16 bytes -> 8 shorts. + MEMACCESS(1) + "vld4.8 {d8, d10, d12, d14}, [%1]! \n" // load 8 more ARGB pixels. + MEMACCESS(1) + "vld4.8 {d9, d11, d13, d15}, [%1]! \n" // load last 8 ARGB pixels. + "vpadal.u8 q0, q4 \n" // B 16 bytes -> 8 shorts. + "vpadal.u8 q1, q5 \n" // G 16 bytes -> 8 shorts. + "vpadal.u8 q2, q6 \n" // R 16 bytes -> 8 shorts. + + "vrshr.u16 q0, q0, #1 \n" // 2x average + "vrshr.u16 q1, q1, #1 \n" + "vrshr.u16 q2, q2, #1 \n" + + "subs %4, %4, #16 \n" // 32 processed per loop. + RGBTOUV(q0, q1, q2) + MEMACCESS(2) + "vst1.8 {d0}, [%2]! \n" // store 8 pixels U. + MEMACCESS(3) + "vst1.8 {d1}, [%3]! \n" // store 8 pixels V. + "bgt 1b \n" + : "+r"(src_argb), // %0 + "+r"(src_stride_argb), // %1 + "+r"(dst_u), // %2 + "+r"(dst_v), // %3 + "+r"(width) // %4 + : + : "cc", "memory", "q0", "q1", "q2", "q3", "q4", "q5", "q6", "q7", + "q8", "q9", "q10", "q11", "q12", "q13", "q14", "q15" + ); +} + +// TODO(fbarchard): Subsample match C code. +void ARGBToUVJRow_NEON(const uint8* src_argb, int src_stride_argb, + uint8* dst_u, uint8* dst_v, int width) { + asm volatile ( + "add %1, %0, %1 \n" // src_stride + src_argb + "vmov.s16 q10, #127 / 2 \n" // UB / VR 0.500 coefficient + "vmov.s16 q11, #84 / 2 \n" // UG -0.33126 coefficient + "vmov.s16 q12, #43 / 2 \n" // UR -0.16874 coefficient + "vmov.s16 q13, #20 / 2 \n" // VB -0.08131 coefficient + "vmov.s16 q14, #107 / 2 \n" // VG -0.41869 coefficient + "vmov.u16 q15, #0x8080 \n" // 128.5 + "1: \n" + MEMACCESS(0) + "vld4.8 {d0, d2, d4, d6}, [%0]! \n" // load 8 ARGB pixels. + MEMACCESS(0) + "vld4.8 {d1, d3, d5, d7}, [%0]! \n" // load next 8 ARGB pixels. + "vpaddl.u8 q0, q0 \n" // B 16 bytes -> 8 shorts. + "vpaddl.u8 q1, q1 \n" // G 16 bytes -> 8 shorts. + "vpaddl.u8 q2, q2 \n" // R 16 bytes -> 8 shorts. + MEMACCESS(1) + "vld4.8 {d8, d10, d12, d14}, [%1]! \n" // load 8 more ARGB pixels. + MEMACCESS(1) + "vld4.8 {d9, d11, d13, d15}, [%1]! \n" // load last 8 ARGB pixels. + "vpadal.u8 q0, q4 \n" // B 16 bytes -> 8 shorts. + "vpadal.u8 q1, q5 \n" // G 16 bytes -> 8 shorts. + "vpadal.u8 q2, q6 \n" // R 16 bytes -> 8 shorts. + + "vrshr.u16 q0, q0, #1 \n" // 2x average + "vrshr.u16 q1, q1, #1 \n" + "vrshr.u16 q2, q2, #1 \n" + + "subs %4, %4, #16 \n" // 32 processed per loop. + RGBTOUV(q0, q1, q2) + MEMACCESS(2) + "vst1.8 {d0}, [%2]! \n" // store 8 pixels U. + MEMACCESS(3) + "vst1.8 {d1}, [%3]! \n" // store 8 pixels V. + "bgt 1b \n" + : "+r"(src_argb), // %0 + "+r"(src_stride_argb), // %1 + "+r"(dst_u), // %2 + "+r"(dst_v), // %3 + "+r"(width) // %4 + : + : "cc", "memory", "q0", "q1", "q2", "q3", "q4", "q5", "q6", "q7", + "q8", "q9", "q10", "q11", "q12", "q13", "q14", "q15" + ); +} + +void BGRAToUVRow_NEON(const uint8* src_bgra, int src_stride_bgra, + uint8* dst_u, uint8* dst_v, int width) { + asm volatile ( + "add %1, %0, %1 \n" // src_stride + src_bgra + "vmov.s16 q10, #112 / 2 \n" // UB / VR 0.875 coefficient + "vmov.s16 q11, #74 / 2 \n" // UG -0.5781 coefficient + "vmov.s16 q12, #38 / 2 \n" // UR -0.2969 coefficient + "vmov.s16 q13, #18 / 2 \n" // VB -0.1406 coefficient + "vmov.s16 q14, #94 / 2 \n" // VG -0.7344 coefficient + "vmov.u16 q15, #0x8080 \n" // 128.5 + "1: \n" + MEMACCESS(0) + "vld4.8 {d0, d2, d4, d6}, [%0]! \n" // load 8 BGRA pixels. + MEMACCESS(0) + "vld4.8 {d1, d3, d5, d7}, [%0]! \n" // load next 8 BGRA pixels. + "vpaddl.u8 q3, q3 \n" // B 16 bytes -> 8 shorts. + "vpaddl.u8 q2, q2 \n" // G 16 bytes -> 8 shorts. + "vpaddl.u8 q1, q1 \n" // R 16 bytes -> 8 shorts. + MEMACCESS(1) + "vld4.8 {d8, d10, d12, d14}, [%1]! \n" // load 8 more BGRA pixels. + MEMACCESS(1) + "vld4.8 {d9, d11, d13, d15}, [%1]! \n" // load last 8 BGRA pixels. + "vpadal.u8 q3, q7 \n" // B 16 bytes -> 8 shorts. + "vpadal.u8 q2, q6 \n" // G 16 bytes -> 8 shorts. + "vpadal.u8 q1, q5 \n" // R 16 bytes -> 8 shorts. + + "vrshr.u16 q1, q1, #1 \n" // 2x average + "vrshr.u16 q2, q2, #1 \n" + "vrshr.u16 q3, q3, #1 \n" + + "subs %4, %4, #16 \n" // 32 processed per loop. + RGBTOUV(q3, q2, q1) + MEMACCESS(2) + "vst1.8 {d0}, [%2]! \n" // store 8 pixels U. + MEMACCESS(3) + "vst1.8 {d1}, [%3]! \n" // store 8 pixels V. + "bgt 1b \n" + : "+r"(src_bgra), // %0 + "+r"(src_stride_bgra), // %1 + "+r"(dst_u), // %2 + "+r"(dst_v), // %3 + "+r"(width) // %4 + : + : "cc", "memory", "q0", "q1", "q2", "q3", "q4", "q5", "q6", "q7", + "q8", "q9", "q10", "q11", "q12", "q13", "q14", "q15" + ); +} + +void ABGRToUVRow_NEON(const uint8* src_abgr, int src_stride_abgr, + uint8* dst_u, uint8* dst_v, int width) { + asm volatile ( + "add %1, %0, %1 \n" // src_stride + src_abgr + "vmov.s16 q10, #112 / 2 \n" // UB / VR 0.875 coefficient + "vmov.s16 q11, #74 / 2 \n" // UG -0.5781 coefficient + "vmov.s16 q12, #38 / 2 \n" // UR -0.2969 coefficient + "vmov.s16 q13, #18 / 2 \n" // VB -0.1406 coefficient + "vmov.s16 q14, #94 / 2 \n" // VG -0.7344 coefficient + "vmov.u16 q15, #0x8080 \n" // 128.5 + "1: \n" + MEMACCESS(0) + "vld4.8 {d0, d2, d4, d6}, [%0]! \n" // load 8 ABGR pixels. + MEMACCESS(0) + "vld4.8 {d1, d3, d5, d7}, [%0]! \n" // load next 8 ABGR pixels. + "vpaddl.u8 q2, q2 \n" // B 16 bytes -> 8 shorts. + "vpaddl.u8 q1, q1 \n" // G 16 bytes -> 8 shorts. + "vpaddl.u8 q0, q0 \n" // R 16 bytes -> 8 shorts. + MEMACCESS(1) + "vld4.8 {d8, d10, d12, d14}, [%1]! \n" // load 8 more ABGR pixels. + MEMACCESS(1) + "vld4.8 {d9, d11, d13, d15}, [%1]! \n" // load last 8 ABGR pixels. + "vpadal.u8 q2, q6 \n" // B 16 bytes -> 8 shorts. + "vpadal.u8 q1, q5 \n" // G 16 bytes -> 8 shorts. + "vpadal.u8 q0, q4 \n" // R 16 bytes -> 8 shorts. + + "vrshr.u16 q0, q0, #1 \n" // 2x average + "vrshr.u16 q1, q1, #1 \n" + "vrshr.u16 q2, q2, #1 \n" + + "subs %4, %4, #16 \n" // 32 processed per loop. + RGBTOUV(q2, q1, q0) + MEMACCESS(2) + "vst1.8 {d0}, [%2]! \n" // store 8 pixels U. + MEMACCESS(3) + "vst1.8 {d1}, [%3]! \n" // store 8 pixels V. + "bgt 1b \n" + : "+r"(src_abgr), // %0 + "+r"(src_stride_abgr), // %1 + "+r"(dst_u), // %2 + "+r"(dst_v), // %3 + "+r"(width) // %4 + : + : "cc", "memory", "q0", "q1", "q2", "q3", "q4", "q5", "q6", "q7", + "q8", "q9", "q10", "q11", "q12", "q13", "q14", "q15" + ); +} + +void RGBAToUVRow_NEON(const uint8* src_rgba, int src_stride_rgba, + uint8* dst_u, uint8* dst_v, int width) { + asm volatile ( + "add %1, %0, %1 \n" // src_stride + src_rgba + "vmov.s16 q10, #112 / 2 \n" // UB / VR 0.875 coefficient + "vmov.s16 q11, #74 / 2 \n" // UG -0.5781 coefficient + "vmov.s16 q12, #38 / 2 \n" // UR -0.2969 coefficient + "vmov.s16 q13, #18 / 2 \n" // VB -0.1406 coefficient + "vmov.s16 q14, #94 / 2 \n" // VG -0.7344 coefficient + "vmov.u16 q15, #0x8080 \n" // 128.5 + "1: \n" + MEMACCESS(0) + "vld4.8 {d0, d2, d4, d6}, [%0]! \n" // load 8 RGBA pixels. + MEMACCESS(0) + "vld4.8 {d1, d3, d5, d7}, [%0]! \n" // load next 8 RGBA pixels. + "vpaddl.u8 q0, q1 \n" // B 16 bytes -> 8 shorts. + "vpaddl.u8 q1, q2 \n" // G 16 bytes -> 8 shorts. + "vpaddl.u8 q2, q3 \n" // R 16 bytes -> 8 shorts. + MEMACCESS(1) + "vld4.8 {d8, d10, d12, d14}, [%1]! \n" // load 8 more RGBA pixels. + MEMACCESS(1) + "vld4.8 {d9, d11, d13, d15}, [%1]! \n" // load last 8 RGBA pixels. + "vpadal.u8 q0, q5 \n" // B 16 bytes -> 8 shorts. + "vpadal.u8 q1, q6 \n" // G 16 bytes -> 8 shorts. + "vpadal.u8 q2, q7 \n" // R 16 bytes -> 8 shorts. + + "vrshr.u16 q0, q0, #1 \n" // 2x average + "vrshr.u16 q1, q1, #1 \n" + "vrshr.u16 q2, q2, #1 \n" + + "subs %4, %4, #16 \n" // 32 processed per loop. + RGBTOUV(q0, q1, q2) + MEMACCESS(2) + "vst1.8 {d0}, [%2]! \n" // store 8 pixels U. + MEMACCESS(3) + "vst1.8 {d1}, [%3]! \n" // store 8 pixels V. + "bgt 1b \n" + : "+r"(src_rgba), // %0 + "+r"(src_stride_rgba), // %1 + "+r"(dst_u), // %2 + "+r"(dst_v), // %3 + "+r"(width) // %4 + : + : "cc", "memory", "q0", "q1", "q2", "q3", "q4", "q5", "q6", "q7", + "q8", "q9", "q10", "q11", "q12", "q13", "q14", "q15" + ); +} + +void RGB24ToUVRow_NEON(const uint8* src_rgb24, int src_stride_rgb24, + uint8* dst_u, uint8* dst_v, int width) { + asm volatile ( + "add %1, %0, %1 \n" // src_stride + src_rgb24 + "vmov.s16 q10, #112 / 2 \n" // UB / VR 0.875 coefficient + "vmov.s16 q11, #74 / 2 \n" // UG -0.5781 coefficient + "vmov.s16 q12, #38 / 2 \n" // UR -0.2969 coefficient + "vmov.s16 q13, #18 / 2 \n" // VB -0.1406 coefficient + "vmov.s16 q14, #94 / 2 \n" // VG -0.7344 coefficient + "vmov.u16 q15, #0x8080 \n" // 128.5 + "1: \n" + MEMACCESS(0) + "vld3.8 {d0, d2, d4}, [%0]! \n" // load 8 RGB24 pixels. + MEMACCESS(0) + "vld3.8 {d1, d3, d5}, [%0]! \n" // load next 8 RGB24 pixels. + "vpaddl.u8 q0, q0 \n" // B 16 bytes -> 8 shorts. + "vpaddl.u8 q1, q1 \n" // G 16 bytes -> 8 shorts. + "vpaddl.u8 q2, q2 \n" // R 16 bytes -> 8 shorts. + MEMACCESS(1) + "vld3.8 {d8, d10, d12}, [%1]! \n" // load 8 more RGB24 pixels. + MEMACCESS(1) + "vld3.8 {d9, d11, d13}, [%1]! \n" // load last 8 RGB24 pixels. + "vpadal.u8 q0, q4 \n" // B 16 bytes -> 8 shorts. + "vpadal.u8 q1, q5 \n" // G 16 bytes -> 8 shorts. + "vpadal.u8 q2, q6 \n" // R 16 bytes -> 8 shorts. + + "vrshr.u16 q0, q0, #1 \n" // 2x average + "vrshr.u16 q1, q1, #1 \n" + "vrshr.u16 q2, q2, #1 \n" + + "subs %4, %4, #16 \n" // 32 processed per loop. + RGBTOUV(q0, q1, q2) + MEMACCESS(2) + "vst1.8 {d0}, [%2]! \n" // store 8 pixels U. + MEMACCESS(3) + "vst1.8 {d1}, [%3]! \n" // store 8 pixels V. + "bgt 1b \n" + : "+r"(src_rgb24), // %0 + "+r"(src_stride_rgb24), // %1 + "+r"(dst_u), // %2 + "+r"(dst_v), // %3 + "+r"(width) // %4 + : + : "cc", "memory", "q0", "q1", "q2", "q3", "q4", "q5", "q6", "q7", + "q8", "q9", "q10", "q11", "q12", "q13", "q14", "q15" + ); +} + +void RAWToUVRow_NEON(const uint8* src_raw, int src_stride_raw, + uint8* dst_u, uint8* dst_v, int width) { + asm volatile ( + "add %1, %0, %1 \n" // src_stride + src_raw + "vmov.s16 q10, #112 / 2 \n" // UB / VR 0.875 coefficient + "vmov.s16 q11, #74 / 2 \n" // UG -0.5781 coefficient + "vmov.s16 q12, #38 / 2 \n" // UR -0.2969 coefficient + "vmov.s16 q13, #18 / 2 \n" // VB -0.1406 coefficient + "vmov.s16 q14, #94 / 2 \n" // VG -0.7344 coefficient + "vmov.u16 q15, #0x8080 \n" // 128.5 + "1: \n" + MEMACCESS(0) + "vld3.8 {d0, d2, d4}, [%0]! \n" // load 8 RAW pixels. + MEMACCESS(0) + "vld3.8 {d1, d3, d5}, [%0]! \n" // load next 8 RAW pixels. + "vpaddl.u8 q2, q2 \n" // B 16 bytes -> 8 shorts. + "vpaddl.u8 q1, q1 \n" // G 16 bytes -> 8 shorts. + "vpaddl.u8 q0, q0 \n" // R 16 bytes -> 8 shorts. + MEMACCESS(1) + "vld3.8 {d8, d10, d12}, [%1]! \n" // load 8 more RAW pixels. + MEMACCESS(1) + "vld3.8 {d9, d11, d13}, [%1]! \n" // load last 8 RAW pixels. + "vpadal.u8 q2, q6 \n" // B 16 bytes -> 8 shorts. + "vpadal.u8 q1, q5 \n" // G 16 bytes -> 8 shorts. + "vpadal.u8 q0, q4 \n" // R 16 bytes -> 8 shorts. + + "vrshr.u16 q0, q0, #1 \n" // 2x average + "vrshr.u16 q1, q1, #1 \n" + "vrshr.u16 q2, q2, #1 \n" + + "subs %4, %4, #16 \n" // 32 processed per loop. + RGBTOUV(q2, q1, q0) + MEMACCESS(2) + "vst1.8 {d0}, [%2]! \n" // store 8 pixels U. + MEMACCESS(3) + "vst1.8 {d1}, [%3]! \n" // store 8 pixels V. + "bgt 1b \n" + : "+r"(src_raw), // %0 + "+r"(src_stride_raw), // %1 + "+r"(dst_u), // %2 + "+r"(dst_v), // %3 + "+r"(width) // %4 + : + : "cc", "memory", "q0", "q1", "q2", "q3", "q4", "q5", "q6", "q7", + "q8", "q9", "q10", "q11", "q12", "q13", "q14", "q15" + ); +} + +// 16x2 pixels -> 8x1. width is number of argb pixels. e.g. 16. +void RGB565ToUVRow_NEON(const uint8* src_rgb565, int src_stride_rgb565, + uint8* dst_u, uint8* dst_v, int width) { + asm volatile ( + "add %1, %0, %1 \n" // src_stride + src_argb + "vmov.s16 q10, #112 / 2 \n" // UB / VR 0.875 coefficient + "vmov.s16 q11, #74 / 2 \n" // UG -0.5781 coefficient + "vmov.s16 q12, #38 / 2 \n" // UR -0.2969 coefficient + "vmov.s16 q13, #18 / 2 \n" // VB -0.1406 coefficient + "vmov.s16 q14, #94 / 2 \n" // VG -0.7344 coefficient + "vmov.u16 q15, #0x8080 \n" // 128.5 + "1: \n" + MEMACCESS(0) + "vld1.8 {q0}, [%0]! \n" // load 8 RGB565 pixels. + RGB565TOARGB + "vpaddl.u8 d8, d0 \n" // B 8 bytes -> 4 shorts. + "vpaddl.u8 d10, d1 \n" // G 8 bytes -> 4 shorts. + "vpaddl.u8 d12, d2 \n" // R 8 bytes -> 4 shorts. + MEMACCESS(0) + "vld1.8 {q0}, [%0]! \n" // next 8 RGB565 pixels. + RGB565TOARGB + "vpaddl.u8 d9, d0 \n" // B 8 bytes -> 4 shorts. + "vpaddl.u8 d11, d1 \n" // G 8 bytes -> 4 shorts. + "vpaddl.u8 d13, d2 \n" // R 8 bytes -> 4 shorts. + + MEMACCESS(1) + "vld1.8 {q0}, [%1]! \n" // load 8 RGB565 pixels. + RGB565TOARGB + "vpadal.u8 d8, d0 \n" // B 8 bytes -> 4 shorts. + "vpadal.u8 d10, d1 \n" // G 8 bytes -> 4 shorts. + "vpadal.u8 d12, d2 \n" // R 8 bytes -> 4 shorts. + MEMACCESS(1) + "vld1.8 {q0}, [%1]! \n" // next 8 RGB565 pixels. + RGB565TOARGB + "vpadal.u8 d9, d0 \n" // B 8 bytes -> 4 shorts. + "vpadal.u8 d11, d1 \n" // G 8 bytes -> 4 shorts. + "vpadal.u8 d13, d2 \n" // R 8 bytes -> 4 shorts. + + "vrshr.u16 q4, q4, #1 \n" // 2x average + "vrshr.u16 q5, q5, #1 \n" + "vrshr.u16 q6, q6, #1 \n" + + "subs %4, %4, #16 \n" // 16 processed per loop. + "vmul.s16 q8, q4, q10 \n" // B + "vmls.s16 q8, q5, q11 \n" // G + "vmls.s16 q8, q6, q12 \n" // R + "vadd.u16 q8, q8, q15 \n" // +128 -> unsigned + "vmul.s16 q9, q6, q10 \n" // R + "vmls.s16 q9, q5, q14 \n" // G + "vmls.s16 q9, q4, q13 \n" // B + "vadd.u16 q9, q9, q15 \n" // +128 -> unsigned + "vqshrn.u16 d0, q8, #8 \n" // 16 bit to 8 bit U + "vqshrn.u16 d1, q9, #8 \n" // 16 bit to 8 bit V + MEMACCESS(2) + "vst1.8 {d0}, [%2]! \n" // store 8 pixels U. + MEMACCESS(3) + "vst1.8 {d1}, [%3]! \n" // store 8 pixels V. + "bgt 1b \n" + : "+r"(src_rgb565), // %0 + "+r"(src_stride_rgb565), // %1 + "+r"(dst_u), // %2 + "+r"(dst_v), // %3 + "+r"(width) // %4 + : + : "cc", "memory", "q0", "q1", "q2", "q3", "q4", "q5", "q6", "q7", + "q8", "q9", "q10", "q11", "q12", "q13", "q14", "q15" + ); +} + +// 16x2 pixels -> 8x1. width is number of argb pixels. e.g. 16. +void ARGB1555ToUVRow_NEON(const uint8* src_argb1555, int src_stride_argb1555, + uint8* dst_u, uint8* dst_v, int width) { + asm volatile ( + "add %1, %0, %1 \n" // src_stride + src_argb + "vmov.s16 q10, #112 / 2 \n" // UB / VR 0.875 coefficient + "vmov.s16 q11, #74 / 2 \n" // UG -0.5781 coefficient + "vmov.s16 q12, #38 / 2 \n" // UR -0.2969 coefficient + "vmov.s16 q13, #18 / 2 \n" // VB -0.1406 coefficient + "vmov.s16 q14, #94 / 2 \n" // VG -0.7344 coefficient + "vmov.u16 q15, #0x8080 \n" // 128.5 + "1: \n" + MEMACCESS(0) + "vld1.8 {q0}, [%0]! \n" // load 8 ARGB1555 pixels. + RGB555TOARGB + "vpaddl.u8 d8, d0 \n" // B 8 bytes -> 4 shorts. + "vpaddl.u8 d10, d1 \n" // G 8 bytes -> 4 shorts. + "vpaddl.u8 d12, d2 \n" // R 8 bytes -> 4 shorts. + MEMACCESS(0) + "vld1.8 {q0}, [%0]! \n" // next 8 ARGB1555 pixels. + RGB555TOARGB + "vpaddl.u8 d9, d0 \n" // B 8 bytes -> 4 shorts. + "vpaddl.u8 d11, d1 \n" // G 8 bytes -> 4 shorts. + "vpaddl.u8 d13, d2 \n" // R 8 bytes -> 4 shorts. + + MEMACCESS(1) + "vld1.8 {q0}, [%1]! \n" // load 8 ARGB1555 pixels. + RGB555TOARGB + "vpadal.u8 d8, d0 \n" // B 8 bytes -> 4 shorts. + "vpadal.u8 d10, d1 \n" // G 8 bytes -> 4 shorts. + "vpadal.u8 d12, d2 \n" // R 8 bytes -> 4 shorts. + MEMACCESS(1) + "vld1.8 {q0}, [%1]! \n" // next 8 ARGB1555 pixels. + RGB555TOARGB + "vpadal.u8 d9, d0 \n" // B 8 bytes -> 4 shorts. + "vpadal.u8 d11, d1 \n" // G 8 bytes -> 4 shorts. + "vpadal.u8 d13, d2 \n" // R 8 bytes -> 4 shorts. + + "vrshr.u16 q4, q4, #1 \n" // 2x average + "vrshr.u16 q5, q5, #1 \n" + "vrshr.u16 q6, q6, #1 \n" + + "subs %4, %4, #16 \n" // 16 processed per loop. + "vmul.s16 q8, q4, q10 \n" // B + "vmls.s16 q8, q5, q11 \n" // G + "vmls.s16 q8, q6, q12 \n" // R + "vadd.u16 q8, q8, q15 \n" // +128 -> unsigned + "vmul.s16 q9, q6, q10 \n" // R + "vmls.s16 q9, q5, q14 \n" // G + "vmls.s16 q9, q4, q13 \n" // B + "vadd.u16 q9, q9, q15 \n" // +128 -> unsigned + "vqshrn.u16 d0, q8, #8 \n" // 16 bit to 8 bit U + "vqshrn.u16 d1, q9, #8 \n" // 16 bit to 8 bit V + MEMACCESS(2) + "vst1.8 {d0}, [%2]! \n" // store 8 pixels U. + MEMACCESS(3) + "vst1.8 {d1}, [%3]! \n" // store 8 pixels V. + "bgt 1b \n" + : "+r"(src_argb1555), // %0 + "+r"(src_stride_argb1555), // %1 + "+r"(dst_u), // %2 + "+r"(dst_v), // %3 + "+r"(width) // %4 + : + : "cc", "memory", "q0", "q1", "q2", "q3", "q4", "q5", "q6", "q7", + "q8", "q9", "q10", "q11", "q12", "q13", "q14", "q15" + ); +} + +// 16x2 pixels -> 8x1. width is number of argb pixels. e.g. 16. +void ARGB4444ToUVRow_NEON(const uint8* src_argb4444, int src_stride_argb4444, + uint8* dst_u, uint8* dst_v, int width) { + asm volatile ( + "add %1, %0, %1 \n" // src_stride + src_argb + "vmov.s16 q10, #112 / 2 \n" // UB / VR 0.875 coefficient + "vmov.s16 q11, #74 / 2 \n" // UG -0.5781 coefficient + "vmov.s16 q12, #38 / 2 \n" // UR -0.2969 coefficient + "vmov.s16 q13, #18 / 2 \n" // VB -0.1406 coefficient + "vmov.s16 q14, #94 / 2 \n" // VG -0.7344 coefficient + "vmov.u16 q15, #0x8080 \n" // 128.5 + "1: \n" + MEMACCESS(0) + "vld1.8 {q0}, [%0]! \n" // load 8 ARGB4444 pixels. + ARGB4444TOARGB + "vpaddl.u8 d8, d0 \n" // B 8 bytes -> 4 shorts. + "vpaddl.u8 d10, d1 \n" // G 8 bytes -> 4 shorts. + "vpaddl.u8 d12, d2 \n" // R 8 bytes -> 4 shorts. + MEMACCESS(0) + "vld1.8 {q0}, [%0]! \n" // next 8 ARGB4444 pixels. + ARGB4444TOARGB + "vpaddl.u8 d9, d0 \n" // B 8 bytes -> 4 shorts. + "vpaddl.u8 d11, d1 \n" // G 8 bytes -> 4 shorts. + "vpaddl.u8 d13, d2 \n" // R 8 bytes -> 4 shorts. + + MEMACCESS(1) + "vld1.8 {q0}, [%1]! \n" // load 8 ARGB4444 pixels. + ARGB4444TOARGB + "vpadal.u8 d8, d0 \n" // B 8 bytes -> 4 shorts. + "vpadal.u8 d10, d1 \n" // G 8 bytes -> 4 shorts. + "vpadal.u8 d12, d2 \n" // R 8 bytes -> 4 shorts. + MEMACCESS(1) + "vld1.8 {q0}, [%1]! \n" // next 8 ARGB4444 pixels. + ARGB4444TOARGB + "vpadal.u8 d9, d0 \n" // B 8 bytes -> 4 shorts. + "vpadal.u8 d11, d1 \n" // G 8 bytes -> 4 shorts. + "vpadal.u8 d13, d2 \n" // R 8 bytes -> 4 shorts. + + "vrshr.u16 q4, q4, #1 \n" // 2x average + "vrshr.u16 q5, q5, #1 \n" + "vrshr.u16 q6, q6, #1 \n" + + "subs %4, %4, #16 \n" // 16 processed per loop. + "vmul.s16 q8, q4, q10 \n" // B + "vmls.s16 q8, q5, q11 \n" // G + "vmls.s16 q8, q6, q12 \n" // R + "vadd.u16 q8, q8, q15 \n" // +128 -> unsigned + "vmul.s16 q9, q6, q10 \n" // R + "vmls.s16 q9, q5, q14 \n" // G + "vmls.s16 q9, q4, q13 \n" // B + "vadd.u16 q9, q9, q15 \n" // +128 -> unsigned + "vqshrn.u16 d0, q8, #8 \n" // 16 bit to 8 bit U + "vqshrn.u16 d1, q9, #8 \n" // 16 bit to 8 bit V + MEMACCESS(2) + "vst1.8 {d0}, [%2]! \n" // store 8 pixels U. + MEMACCESS(3) + "vst1.8 {d1}, [%3]! \n" // store 8 pixels V. + "bgt 1b \n" + : "+r"(src_argb4444), // %0 + "+r"(src_stride_argb4444), // %1 + "+r"(dst_u), // %2 + "+r"(dst_v), // %3 + "+r"(width) // %4 + : + : "cc", "memory", "q0", "q1", "q2", "q3", "q4", "q5", "q6", "q7", + "q8", "q9", "q10", "q11", "q12", "q13", "q14", "q15" + ); +} + +void RGB565ToYRow_NEON(const uint8* src_rgb565, uint8* dst_y, int width) { + asm volatile ( + "vmov.u8 d24, #13 \n" // B * 0.1016 coefficient + "vmov.u8 d25, #65 \n" // G * 0.5078 coefficient + "vmov.u8 d26, #33 \n" // R * 0.2578 coefficient + "vmov.u8 d27, #16 \n" // Add 16 constant + "1: \n" + MEMACCESS(0) + "vld1.8 {q0}, [%0]! \n" // load 8 RGB565 pixels. + "subs %2, %2, #8 \n" // 8 processed per loop. + RGB565TOARGB + "vmull.u8 q2, d0, d24 \n" // B + "vmlal.u8 q2, d1, d25 \n" // G + "vmlal.u8 q2, d2, d26 \n" // R + "vqrshrun.s16 d0, q2, #7 \n" // 16 bit to 8 bit Y + "vqadd.u8 d0, d27 \n" + MEMACCESS(1) + "vst1.8 {d0}, [%1]! \n" // store 8 pixels Y. + "bgt 1b \n" + : "+r"(src_rgb565), // %0 + "+r"(dst_y), // %1 + "+r"(width) // %2 + : + : "cc", "memory", "q0", "q1", "q2", "q3", "q12", "q13" + ); +} + +void ARGB1555ToYRow_NEON(const uint8* src_argb1555, uint8* dst_y, int width) { + asm volatile ( + "vmov.u8 d24, #13 \n" // B * 0.1016 coefficient + "vmov.u8 d25, #65 \n" // G * 0.5078 coefficient + "vmov.u8 d26, #33 \n" // R * 0.2578 coefficient + "vmov.u8 d27, #16 \n" // Add 16 constant + "1: \n" + MEMACCESS(0) + "vld1.8 {q0}, [%0]! \n" // load 8 ARGB1555 pixels. + "subs %2, %2, #8 \n" // 8 processed per loop. + ARGB1555TOARGB + "vmull.u8 q2, d0, d24 \n" // B + "vmlal.u8 q2, d1, d25 \n" // G + "vmlal.u8 q2, d2, d26 \n" // R + "vqrshrun.s16 d0, q2, #7 \n" // 16 bit to 8 bit Y + "vqadd.u8 d0, d27 \n" + MEMACCESS(1) + "vst1.8 {d0}, [%1]! \n" // store 8 pixels Y. + "bgt 1b \n" + : "+r"(src_argb1555), // %0 + "+r"(dst_y), // %1 + "+r"(width) // %2 + : + : "cc", "memory", "q0", "q1", "q2", "q3", "q12", "q13" + ); +} + +void ARGB4444ToYRow_NEON(const uint8* src_argb4444, uint8* dst_y, int width) { + asm volatile ( + "vmov.u8 d24, #13 \n" // B * 0.1016 coefficient + "vmov.u8 d25, #65 \n" // G * 0.5078 coefficient + "vmov.u8 d26, #33 \n" // R * 0.2578 coefficient + "vmov.u8 d27, #16 \n" // Add 16 constant + "1: \n" + MEMACCESS(0) + "vld1.8 {q0}, [%0]! \n" // load 8 ARGB4444 pixels. + "subs %2, %2, #8 \n" // 8 processed per loop. + ARGB4444TOARGB + "vmull.u8 q2, d0, d24 \n" // B + "vmlal.u8 q2, d1, d25 \n" // G + "vmlal.u8 q2, d2, d26 \n" // R + "vqrshrun.s16 d0, q2, #7 \n" // 16 bit to 8 bit Y + "vqadd.u8 d0, d27 \n" + MEMACCESS(1) + "vst1.8 {d0}, [%1]! \n" // store 8 pixels Y. + "bgt 1b \n" + : "+r"(src_argb4444), // %0 + "+r"(dst_y), // %1 + "+r"(width) // %2 + : + : "cc", "memory", "q0", "q1", "q2", "q3", "q12", "q13" + ); +} + +void BGRAToYRow_NEON(const uint8* src_bgra, uint8* dst_y, int width) { + asm volatile ( + "vmov.u8 d4, #33 \n" // R * 0.2578 coefficient + "vmov.u8 d5, #65 \n" // G * 0.5078 coefficient + "vmov.u8 d6, #13 \n" // B * 0.1016 coefficient + "vmov.u8 d7, #16 \n" // Add 16 constant + "1: \n" + MEMACCESS(0) + "vld4.8 {d0, d1, d2, d3}, [%0]! \n" // load 8 pixels of BGRA. + "subs %2, %2, #8 \n" // 8 processed per loop. + "vmull.u8 q8, d1, d4 \n" // R + "vmlal.u8 q8, d2, d5 \n" // G + "vmlal.u8 q8, d3, d6 \n" // B + "vqrshrun.s16 d0, q8, #7 \n" // 16 bit to 8 bit Y + "vqadd.u8 d0, d7 \n" + MEMACCESS(1) + "vst1.8 {d0}, [%1]! \n" // store 8 pixels Y. + "bgt 1b \n" + : "+r"(src_bgra), // %0 + "+r"(dst_y), // %1 + "+r"(width) // %2 + : + : "cc", "memory", "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7", "q8" + ); +} + +void ABGRToYRow_NEON(const uint8* src_abgr, uint8* dst_y, int width) { + asm volatile ( + "vmov.u8 d4, #33 \n" // R * 0.2578 coefficient + "vmov.u8 d5, #65 \n" // G * 0.5078 coefficient + "vmov.u8 d6, #13 \n" // B * 0.1016 coefficient + "vmov.u8 d7, #16 \n" // Add 16 constant + "1: \n" + MEMACCESS(0) + "vld4.8 {d0, d1, d2, d3}, [%0]! \n" // load 8 pixels of ABGR. + "subs %2, %2, #8 \n" // 8 processed per loop. + "vmull.u8 q8, d0, d4 \n" // R + "vmlal.u8 q8, d1, d5 \n" // G + "vmlal.u8 q8, d2, d6 \n" // B + "vqrshrun.s16 d0, q8, #7 \n" // 16 bit to 8 bit Y + "vqadd.u8 d0, d7 \n" + MEMACCESS(1) + "vst1.8 {d0}, [%1]! \n" // store 8 pixels Y. + "bgt 1b \n" + : "+r"(src_abgr), // %0 + "+r"(dst_y), // %1 + "+r"(width) // %2 + : + : "cc", "memory", "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7", "q8" + ); +} + +void RGBAToYRow_NEON(const uint8* src_rgba, uint8* dst_y, int width) { + asm volatile ( + "vmov.u8 d4, #13 \n" // B * 0.1016 coefficient + "vmov.u8 d5, #65 \n" // G * 0.5078 coefficient + "vmov.u8 d6, #33 \n" // R * 0.2578 coefficient + "vmov.u8 d7, #16 \n" // Add 16 constant + "1: \n" + MEMACCESS(0) + "vld4.8 {d0, d1, d2, d3}, [%0]! \n" // load 8 pixels of RGBA. + "subs %2, %2, #8 \n" // 8 processed per loop. + "vmull.u8 q8, d1, d4 \n" // B + "vmlal.u8 q8, d2, d5 \n" // G + "vmlal.u8 q8, d3, d6 \n" // R + "vqrshrun.s16 d0, q8, #7 \n" // 16 bit to 8 bit Y + "vqadd.u8 d0, d7 \n" + MEMACCESS(1) + "vst1.8 {d0}, [%1]! \n" // store 8 pixels Y. + "bgt 1b \n" + : "+r"(src_rgba), // %0 + "+r"(dst_y), // %1 + "+r"(width) // %2 + : + : "cc", "memory", "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7", "q8" + ); +} + +void RGB24ToYRow_NEON(const uint8* src_rgb24, uint8* dst_y, int width) { + asm volatile ( + "vmov.u8 d4, #13 \n" // B * 0.1016 coefficient + "vmov.u8 d5, #65 \n" // G * 0.5078 coefficient + "vmov.u8 d6, #33 \n" // R * 0.2578 coefficient + "vmov.u8 d7, #16 \n" // Add 16 constant + "1: \n" + MEMACCESS(0) + "vld3.8 {d0, d1, d2}, [%0]! \n" // load 8 pixels of RGB24. + "subs %2, %2, #8 \n" // 8 processed per loop. + "vmull.u8 q8, d0, d4 \n" // B + "vmlal.u8 q8, d1, d5 \n" // G + "vmlal.u8 q8, d2, d6 \n" // R + "vqrshrun.s16 d0, q8, #7 \n" // 16 bit to 8 bit Y + "vqadd.u8 d0, d7 \n" + MEMACCESS(1) + "vst1.8 {d0}, [%1]! \n" // store 8 pixels Y. + "bgt 1b \n" + : "+r"(src_rgb24), // %0 + "+r"(dst_y), // %1 + "+r"(width) // %2 + : + : "cc", "memory", "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7", "q8" + ); +} + +void RAWToYRow_NEON(const uint8* src_raw, uint8* dst_y, int width) { + asm volatile ( + "vmov.u8 d4, #33 \n" // R * 0.2578 coefficient + "vmov.u8 d5, #65 \n" // G * 0.5078 coefficient + "vmov.u8 d6, #13 \n" // B * 0.1016 coefficient + "vmov.u8 d7, #16 \n" // Add 16 constant + "1: \n" + MEMACCESS(0) + "vld3.8 {d0, d1, d2}, [%0]! \n" // load 8 pixels of RAW. + "subs %2, %2, #8 \n" // 8 processed per loop. + "vmull.u8 q8, d0, d4 \n" // B + "vmlal.u8 q8, d1, d5 \n" // G + "vmlal.u8 q8, d2, d6 \n" // R + "vqrshrun.s16 d0, q8, #7 \n" // 16 bit to 8 bit Y + "vqadd.u8 d0, d7 \n" + MEMACCESS(1) + "vst1.8 {d0}, [%1]! \n" // store 8 pixels Y. + "bgt 1b \n" + : "+r"(src_raw), // %0 + "+r"(dst_y), // %1 + "+r"(width) // %2 + : + : "cc", "memory", "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7", "q8" + ); +} + +// Bilinear filter 16x2 -> 16x1 +void InterpolateRow_NEON(uint8* dst_ptr, + const uint8* src_ptr, ptrdiff_t src_stride, + int dst_width, int source_y_fraction) { + int y1_fraction = source_y_fraction; + asm volatile ( + "cmp %4, #0 \n" + "beq 100f \n" + "add %2, %1 \n" + "cmp %4, #128 \n" + "beq 50f \n" + + "vdup.8 d5, %4 \n" + "rsb %4, #256 \n" + "vdup.8 d4, %4 \n" + // General purpose row blend. + "1: \n" + MEMACCESS(1) + "vld1.8 {q0}, [%1]! \n" + MEMACCESS(2) + "vld1.8 {q1}, [%2]! \n" + "subs %3, %3, #16 \n" + "vmull.u8 q13, d0, d4 \n" + "vmull.u8 q14, d1, d4 \n" + "vmlal.u8 q13, d2, d5 \n" + "vmlal.u8 q14, d3, d5 \n" + "vrshrn.u16 d0, q13, #8 \n" + "vrshrn.u16 d1, q14, #8 \n" + MEMACCESS(0) + "vst1.8 {q0}, [%0]! \n" + "bgt 1b \n" + "b 99f \n" + + // Blend 50 / 50. + "50: \n" + MEMACCESS(1) + "vld1.8 {q0}, [%1]! \n" + MEMACCESS(2) + "vld1.8 {q1}, [%2]! \n" + "subs %3, %3, #16 \n" + "vrhadd.u8 q0, q1 \n" + MEMACCESS(0) + "vst1.8 {q0}, [%0]! \n" + "bgt 50b \n" + "b 99f \n" + + // Blend 100 / 0 - Copy row unchanged. + "100: \n" + MEMACCESS(1) + "vld1.8 {q0}, [%1]! \n" + "subs %3, %3, #16 \n" + MEMACCESS(0) + "vst1.8 {q0}, [%0]! \n" + "bgt 100b \n" + + "99: \n" + : "+r"(dst_ptr), // %0 + "+r"(src_ptr), // %1 + "+r"(src_stride), // %2 + "+r"(dst_width), // %3 + "+r"(y1_fraction) // %4 + : + : "cc", "memory", "q0", "q1", "d4", "d5", "q13", "q14" + ); +} + +// dr * (256 - sa) / 256 + sr = dr - dr * sa / 256 + sr +void ARGBBlendRow_NEON(const uint8* src_argb0, const uint8* src_argb1, + uint8* dst_argb, int width) { + asm volatile ( + "subs %3, #8 \n" + "blt 89f \n" + // Blend 8 pixels. + "8: \n" + MEMACCESS(0) + "vld4.8 {d0, d1, d2, d3}, [%0]! \n" // load 8 pixels of ARGB0. + MEMACCESS(1) + "vld4.8 {d4, d5, d6, d7}, [%1]! \n" // load 8 pixels of ARGB1. + "subs %3, %3, #8 \n" // 8 processed per loop. + "vmull.u8 q10, d4, d3 \n" // db * a + "vmull.u8 q11, d5, d3 \n" // dg * a + "vmull.u8 q12, d6, d3 \n" // dr * a + "vqrshrn.u16 d20, q10, #8 \n" // db >>= 8 + "vqrshrn.u16 d21, q11, #8 \n" // dg >>= 8 + "vqrshrn.u16 d22, q12, #8 \n" // dr >>= 8 + "vqsub.u8 q2, q2, q10 \n" // dbg - dbg * a / 256 + "vqsub.u8 d6, d6, d22 \n" // dr - dr * a / 256 + "vqadd.u8 q0, q0, q2 \n" // + sbg + "vqadd.u8 d2, d2, d6 \n" // + sr + "vmov.u8 d3, #255 \n" // a = 255 + MEMACCESS(2) + "vst4.8 {d0, d1, d2, d3}, [%2]! \n" // store 8 pixels of ARGB. + "bge 8b \n" + + "89: \n" + "adds %3, #8-1 \n" + "blt 99f \n" + + // Blend 1 pixels. + "1: \n" + MEMACCESS(0) + "vld4.8 {d0[0],d1[0],d2[0],d3[0]}, [%0]! \n" // load 1 pixel ARGB0. + MEMACCESS(1) + "vld4.8 {d4[0],d5[0],d6[0],d7[0]}, [%1]! \n" // load 1 pixel ARGB1. + "subs %3, %3, #1 \n" // 1 processed per loop. + "vmull.u8 q10, d4, d3 \n" // db * a + "vmull.u8 q11, d5, d3 \n" // dg * a + "vmull.u8 q12, d6, d3 \n" // dr * a + "vqrshrn.u16 d20, q10, #8 \n" // db >>= 8 + "vqrshrn.u16 d21, q11, #8 \n" // dg >>= 8 + "vqrshrn.u16 d22, q12, #8 \n" // dr >>= 8 + "vqsub.u8 q2, q2, q10 \n" // dbg - dbg * a / 256 + "vqsub.u8 d6, d6, d22 \n" // dr - dr * a / 256 + "vqadd.u8 q0, q0, q2 \n" // + sbg + "vqadd.u8 d2, d2, d6 \n" // + sr + "vmov.u8 d3, #255 \n" // a = 255 + MEMACCESS(2) + "vst4.8 {d0[0],d1[0],d2[0],d3[0]}, [%2]! \n" // store 1 pixel. + "bge 1b \n" + + "99: \n" + + : "+r"(src_argb0), // %0 + "+r"(src_argb1), // %1 + "+r"(dst_argb), // %2 + "+r"(width) // %3 + : + : "cc", "memory", "q0", "q1", "q2", "q3", "q10", "q11", "q12" + ); +} + +// Attenuate 8 pixels at a time. +void ARGBAttenuateRow_NEON(const uint8* src_argb, uint8* dst_argb, int width) { + asm volatile ( + // Attenuate 8 pixels. + "1: \n" + MEMACCESS(0) + "vld4.8 {d0, d1, d2, d3}, [%0]! \n" // load 8 pixels of ARGB. + "subs %2, %2, #8 \n" // 8 processed per loop. + "vmull.u8 q10, d0, d3 \n" // b * a + "vmull.u8 q11, d1, d3 \n" // g * a + "vmull.u8 q12, d2, d3 \n" // r * a + "vqrshrn.u16 d0, q10, #8 \n" // b >>= 8 + "vqrshrn.u16 d1, q11, #8 \n" // g >>= 8 + "vqrshrn.u16 d2, q12, #8 \n" // r >>= 8 + MEMACCESS(1) + "vst4.8 {d0, d1, d2, d3}, [%1]! \n" // store 8 pixels of ARGB. + "bgt 1b \n" + : "+r"(src_argb), // %0 + "+r"(dst_argb), // %1 + "+r"(width) // %2 + : + : "cc", "memory", "q0", "q1", "q10", "q11", "q12" + ); +} + +// Quantize 8 ARGB pixels (32 bytes). +// dst = (dst * scale >> 16) * interval_size + interval_offset; +void ARGBQuantizeRow_NEON(uint8* dst_argb, int scale, int interval_size, + int interval_offset, int width) { + asm volatile ( + "vdup.u16 q8, %2 \n" + "vshr.u16 q8, q8, #1 \n" // scale >>= 1 + "vdup.u16 q9, %3 \n" // interval multiply. + "vdup.u16 q10, %4 \n" // interval add + + // 8 pixel loop. + "1: \n" + MEMACCESS(0) + "vld4.8 {d0, d2, d4, d6}, [%0] \n" // load 8 pixels of ARGB. + "subs %1, %1, #8 \n" // 8 processed per loop. + "vmovl.u8 q0, d0 \n" // b (0 .. 255) + "vmovl.u8 q1, d2 \n" + "vmovl.u8 q2, d4 \n" + "vqdmulh.s16 q0, q0, q8 \n" // b * scale + "vqdmulh.s16 q1, q1, q8 \n" // g + "vqdmulh.s16 q2, q2, q8 \n" // r + "vmul.u16 q0, q0, q9 \n" // b * interval_size + "vmul.u16 q1, q1, q9 \n" // g + "vmul.u16 q2, q2, q9 \n" // r + "vadd.u16 q0, q0, q10 \n" // b + interval_offset + "vadd.u16 q1, q1, q10 \n" // g + "vadd.u16 q2, q2, q10 \n" // r + "vqmovn.u16 d0, q0 \n" + "vqmovn.u16 d2, q1 \n" + "vqmovn.u16 d4, q2 \n" + MEMACCESS(0) + "vst4.8 {d0, d2, d4, d6}, [%0]! \n" // store 8 pixels of ARGB. + "bgt 1b \n" + : "+r"(dst_argb), // %0 + "+r"(width) // %1 + : "r"(scale), // %2 + "r"(interval_size), // %3 + "r"(interval_offset) // %4 + : "cc", "memory", "q0", "q1", "q2", "q3", "q8", "q9", "q10" + ); +} + +// Shade 8 pixels at a time by specified value. +// NOTE vqrdmulh.s16 q10, q10, d0[0] must use a scaler register from 0 to 8. +// Rounding in vqrdmulh does +1 to high if high bit of low s16 is set. +void ARGBShadeRow_NEON(const uint8* src_argb, uint8* dst_argb, int width, + uint32 value) { + asm volatile ( + "vdup.u32 q0, %3 \n" // duplicate scale value. + "vzip.u8 d0, d1 \n" // d0 aarrggbb. + "vshr.u16 q0, q0, #1 \n" // scale / 2. + + // 8 pixel loop. + "1: \n" + MEMACCESS(0) + "vld4.8 {d20, d22, d24, d26}, [%0]! \n" // load 8 pixels of ARGB. + "subs %2, %2, #8 \n" // 8 processed per loop. + "vmovl.u8 q10, d20 \n" // b (0 .. 255) + "vmovl.u8 q11, d22 \n" + "vmovl.u8 q12, d24 \n" + "vmovl.u8 q13, d26 \n" + "vqrdmulh.s16 q10, q10, d0[0] \n" // b * scale * 2 + "vqrdmulh.s16 q11, q11, d0[1] \n" // g + "vqrdmulh.s16 q12, q12, d0[2] \n" // r + "vqrdmulh.s16 q13, q13, d0[3] \n" // a + "vqmovn.u16 d20, q10 \n" + "vqmovn.u16 d22, q11 \n" + "vqmovn.u16 d24, q12 \n" + "vqmovn.u16 d26, q13 \n" + MEMACCESS(1) + "vst4.8 {d20, d22, d24, d26}, [%1]! \n" // store 8 pixels of ARGB. + "bgt 1b \n" + : "+r"(src_argb), // %0 + "+r"(dst_argb), // %1 + "+r"(width) // %2 + : "r"(value) // %3 + : "cc", "memory", "q0", "q10", "q11", "q12", "q13" + ); +} + +// Convert 8 ARGB pixels (64 bytes) to 8 Gray ARGB pixels +// Similar to ARGBToYJ but stores ARGB. +// C code is (15 * b + 75 * g + 38 * r + 64) >> 7; +void ARGBGrayRow_NEON(const uint8* src_argb, uint8* dst_argb, int width) { + asm volatile ( + "vmov.u8 d24, #15 \n" // B * 0.11400 coefficient + "vmov.u8 d25, #75 \n" // G * 0.58700 coefficient + "vmov.u8 d26, #38 \n" // R * 0.29900 coefficient + "1: \n" + MEMACCESS(0) + "vld4.8 {d0, d1, d2, d3}, [%0]! \n" // load 8 ARGB pixels. + "subs %2, %2, #8 \n" // 8 processed per loop. + "vmull.u8 q2, d0, d24 \n" // B + "vmlal.u8 q2, d1, d25 \n" // G + "vmlal.u8 q2, d2, d26 \n" // R + "vqrshrun.s16 d0, q2, #7 \n" // 15 bit to 8 bit B + "vmov d1, d0 \n" // G + "vmov d2, d0 \n" // R + MEMACCESS(1) + "vst4.8 {d0, d1, d2, d3}, [%1]! \n" // store 8 ARGB pixels. + "bgt 1b \n" + : "+r"(src_argb), // %0 + "+r"(dst_argb), // %1 + "+r"(width) // %2 + : + : "cc", "memory", "q0", "q1", "q2", "q12", "q13" + ); +} + +// Convert 8 ARGB pixels (32 bytes) to 8 Sepia ARGB pixels. +// b = (r * 35 + g * 68 + b * 17) >> 7 +// g = (r * 45 + g * 88 + b * 22) >> 7 +// r = (r * 50 + g * 98 + b * 24) >> 7 +void ARGBSepiaRow_NEON(uint8* dst_argb, int width) { + asm volatile ( + "vmov.u8 d20, #17 \n" // BB coefficient + "vmov.u8 d21, #68 \n" // BG coefficient + "vmov.u8 d22, #35 \n" // BR coefficient + "vmov.u8 d24, #22 \n" // GB coefficient + "vmov.u8 d25, #88 \n" // GG coefficient + "vmov.u8 d26, #45 \n" // GR coefficient + "vmov.u8 d28, #24 \n" // BB coefficient + "vmov.u8 d29, #98 \n" // BG coefficient + "vmov.u8 d30, #50 \n" // BR coefficient + "1: \n" + MEMACCESS(0) + "vld4.8 {d0, d1, d2, d3}, [%0] \n" // load 8 ARGB pixels. + "subs %1, %1, #8 \n" // 8 processed per loop. + "vmull.u8 q2, d0, d20 \n" // B to Sepia B + "vmlal.u8 q2, d1, d21 \n" // G + "vmlal.u8 q2, d2, d22 \n" // R + "vmull.u8 q3, d0, d24 \n" // B to Sepia G + "vmlal.u8 q3, d1, d25 \n" // G + "vmlal.u8 q3, d2, d26 \n" // R + "vmull.u8 q8, d0, d28 \n" // B to Sepia R + "vmlal.u8 q8, d1, d29 \n" // G + "vmlal.u8 q8, d2, d30 \n" // R + "vqshrn.u16 d0, q2, #7 \n" // 16 bit to 8 bit B + "vqshrn.u16 d1, q3, #7 \n" // 16 bit to 8 bit G + "vqshrn.u16 d2, q8, #7 \n" // 16 bit to 8 bit R + MEMACCESS(0) + "vst4.8 {d0, d1, d2, d3}, [%0]! \n" // store 8 ARGB pixels. + "bgt 1b \n" + : "+r"(dst_argb), // %0 + "+r"(width) // %1 + : + : "cc", "memory", "q0", "q1", "q2", "q3", + "q10", "q11", "q12", "q13", "q14", "q15" + ); +} + +// Tranform 8 ARGB pixels (32 bytes) with color matrix. +// TODO(fbarchard): Was same as Sepia except matrix is provided. This function +// needs to saturate. Consider doing a non-saturating version. +void ARGBColorMatrixRow_NEON(const uint8* src_argb, uint8* dst_argb, + const int8* matrix_argb, int width) { + asm volatile ( + MEMACCESS(3) + "vld1.8 {q2}, [%3] \n" // load 3 ARGB vectors. + "vmovl.s8 q0, d4 \n" // B,G coefficients s16. + "vmovl.s8 q1, d5 \n" // R,A coefficients s16. + + "1: \n" + MEMACCESS(0) + "vld4.8 {d16, d18, d20, d22}, [%0]! \n" // load 8 ARGB pixels. + "subs %2, %2, #8 \n" // 8 processed per loop. + "vmovl.u8 q8, d16 \n" // b (0 .. 255) 16 bit + "vmovl.u8 q9, d18 \n" // g + "vmovl.u8 q10, d20 \n" // r + "vmovl.u8 q11, d22 \n" // a + "vmul.s16 q12, q8, d0[0] \n" // B = B * Matrix B + "vmul.s16 q13, q8, d1[0] \n" // G = B * Matrix G + "vmul.s16 q14, q8, d2[0] \n" // R = B * Matrix R + "vmul.s16 q15, q8, d3[0] \n" // A = B * Matrix A + "vmul.s16 q4, q9, d0[1] \n" // B += G * Matrix B + "vmul.s16 q5, q9, d1[1] \n" // G += G * Matrix G + "vmul.s16 q6, q9, d2[1] \n" // R += G * Matrix R + "vmul.s16 q7, q9, d3[1] \n" // A += G * Matrix A + "vqadd.s16 q12, q12, q4 \n" // Accumulate B + "vqadd.s16 q13, q13, q5 \n" // Accumulate G + "vqadd.s16 q14, q14, q6 \n" // Accumulate R + "vqadd.s16 q15, q15, q7 \n" // Accumulate A + "vmul.s16 q4, q10, d0[2] \n" // B += R * Matrix B + "vmul.s16 q5, q10, d1[2] \n" // G += R * Matrix G + "vmul.s16 q6, q10, d2[2] \n" // R += R * Matrix R + "vmul.s16 q7, q10, d3[2] \n" // A += R * Matrix A + "vqadd.s16 q12, q12, q4 \n" // Accumulate B + "vqadd.s16 q13, q13, q5 \n" // Accumulate G + "vqadd.s16 q14, q14, q6 \n" // Accumulate R + "vqadd.s16 q15, q15, q7 \n" // Accumulate A + "vmul.s16 q4, q11, d0[3] \n" // B += A * Matrix B + "vmul.s16 q5, q11, d1[3] \n" // G += A * Matrix G + "vmul.s16 q6, q11, d2[3] \n" // R += A * Matrix R + "vmul.s16 q7, q11, d3[3] \n" // A += A * Matrix A + "vqadd.s16 q12, q12, q4 \n" // Accumulate B + "vqadd.s16 q13, q13, q5 \n" // Accumulate G + "vqadd.s16 q14, q14, q6 \n" // Accumulate R + "vqadd.s16 q15, q15, q7 \n" // Accumulate A + "vqshrun.s16 d16, q12, #6 \n" // 16 bit to 8 bit B + "vqshrun.s16 d18, q13, #6 \n" // 16 bit to 8 bit G + "vqshrun.s16 d20, q14, #6 \n" // 16 bit to 8 bit R + "vqshrun.s16 d22, q15, #6 \n" // 16 bit to 8 bit A + MEMACCESS(1) + "vst4.8 {d16, d18, d20, d22}, [%1]! \n" // store 8 ARGB pixels. + "bgt 1b \n" + : "+r"(src_argb), // %0 + "+r"(dst_argb), // %1 + "+r"(width) // %2 + : "r"(matrix_argb) // %3 + : "cc", "memory", "q0", "q1", "q2", "q4", "q5", "q6", "q7", "q8", "q9", + "q10", "q11", "q12", "q13", "q14", "q15" + ); +} + +// Multiply 2 rows of ARGB pixels together, 8 pixels at a time. +void ARGBMultiplyRow_NEON(const uint8* src_argb0, const uint8* src_argb1, + uint8* dst_argb, int width) { + asm volatile ( + // 8 pixel loop. + "1: \n" + MEMACCESS(0) + "vld4.8 {d0, d2, d4, d6}, [%0]! \n" // load 8 ARGB pixels. + MEMACCESS(1) + "vld4.8 {d1, d3, d5, d7}, [%1]! \n" // load 8 more ARGB pixels. + "subs %3, %3, #8 \n" // 8 processed per loop. + "vmull.u8 q0, d0, d1 \n" // multiply B + "vmull.u8 q1, d2, d3 \n" // multiply G + "vmull.u8 q2, d4, d5 \n" // multiply R + "vmull.u8 q3, d6, d7 \n" // multiply A + "vrshrn.u16 d0, q0, #8 \n" // 16 bit to 8 bit B + "vrshrn.u16 d1, q1, #8 \n" // 16 bit to 8 bit G + "vrshrn.u16 d2, q2, #8 \n" // 16 bit to 8 bit R + "vrshrn.u16 d3, q3, #8 \n" // 16 bit to 8 bit A + MEMACCESS(2) + "vst4.8 {d0, d1, d2, d3}, [%2]! \n" // store 8 ARGB pixels. + "bgt 1b \n" + + : "+r"(src_argb0), // %0 + "+r"(src_argb1), // %1 + "+r"(dst_argb), // %2 + "+r"(width) // %3 + : + : "cc", "memory", "q0", "q1", "q2", "q3" + ); +} + +// Add 2 rows of ARGB pixels together, 8 pixels at a time. +void ARGBAddRow_NEON(const uint8* src_argb0, const uint8* src_argb1, + uint8* dst_argb, int width) { + asm volatile ( + // 8 pixel loop. + "1: \n" + MEMACCESS(0) + "vld4.8 {d0, d1, d2, d3}, [%0]! \n" // load 8 ARGB pixels. + MEMACCESS(1) + "vld4.8 {d4, d5, d6, d7}, [%1]! \n" // load 8 more ARGB pixels. + "subs %3, %3, #8 \n" // 8 processed per loop. + "vqadd.u8 q0, q0, q2 \n" // add B, G + "vqadd.u8 q1, q1, q3 \n" // add R, A + MEMACCESS(2) + "vst4.8 {d0, d1, d2, d3}, [%2]! \n" // store 8 ARGB pixels. + "bgt 1b \n" + + : "+r"(src_argb0), // %0 + "+r"(src_argb1), // %1 + "+r"(dst_argb), // %2 + "+r"(width) // %3 + : + : "cc", "memory", "q0", "q1", "q2", "q3" + ); +} + +// Subtract 2 rows of ARGB pixels, 8 pixels at a time. +void ARGBSubtractRow_NEON(const uint8* src_argb0, const uint8* src_argb1, + uint8* dst_argb, int width) { + asm volatile ( + // 8 pixel loop. + "1: \n" + MEMACCESS(0) + "vld4.8 {d0, d1, d2, d3}, [%0]! \n" // load 8 ARGB pixels. + MEMACCESS(1) + "vld4.8 {d4, d5, d6, d7}, [%1]! \n" // load 8 more ARGB pixels. + "subs %3, %3, #8 \n" // 8 processed per loop. + "vqsub.u8 q0, q0, q2 \n" // subtract B, G + "vqsub.u8 q1, q1, q3 \n" // subtract R, A + MEMACCESS(2) + "vst4.8 {d0, d1, d2, d3}, [%2]! \n" // store 8 ARGB pixels. + "bgt 1b \n" + + : "+r"(src_argb0), // %0 + "+r"(src_argb1), // %1 + "+r"(dst_argb), // %2 + "+r"(width) // %3 + : + : "cc", "memory", "q0", "q1", "q2", "q3" + ); +} + +// Adds Sobel X and Sobel Y and stores Sobel into ARGB. +// A = 255 +// R = Sobel +// G = Sobel +// B = Sobel +void SobelRow_NEON(const uint8* src_sobelx, const uint8* src_sobely, + uint8* dst_argb, int width) { + asm volatile ( + "vmov.u8 d3, #255 \n" // alpha + // 8 pixel loop. + "1: \n" + MEMACCESS(0) + "vld1.8 {d0}, [%0]! \n" // load 8 sobelx. + MEMACCESS(1) + "vld1.8 {d1}, [%1]! \n" // load 8 sobely. + "subs %3, %3, #8 \n" // 8 processed per loop. + "vqadd.u8 d0, d0, d1 \n" // add + "vmov.u8 d1, d0 \n" + "vmov.u8 d2, d0 \n" + MEMACCESS(2) + "vst4.8 {d0, d1, d2, d3}, [%2]! \n" // store 8 ARGB pixels. + "bgt 1b \n" + : "+r"(src_sobelx), // %0 + "+r"(src_sobely), // %1 + "+r"(dst_argb), // %2 + "+r"(width) // %3 + : + : "cc", "memory", "q0", "q1" + ); +} + +// Adds Sobel X and Sobel Y and stores Sobel into plane. +void SobelToPlaneRow_NEON(const uint8* src_sobelx, const uint8* src_sobely, + uint8* dst_y, int width) { + asm volatile ( + // 16 pixel loop. + "1: \n" + MEMACCESS(0) + "vld1.8 {q0}, [%0]! \n" // load 16 sobelx. + MEMACCESS(1) + "vld1.8 {q1}, [%1]! \n" // load 16 sobely. + "subs %3, %3, #16 \n" // 16 processed per loop. + "vqadd.u8 q0, q0, q1 \n" // add + MEMACCESS(2) + "vst1.8 {q0}, [%2]! \n" // store 16 pixels. + "bgt 1b \n" + : "+r"(src_sobelx), // %0 + "+r"(src_sobely), // %1 + "+r"(dst_y), // %2 + "+r"(width) // %3 + : + : "cc", "memory", "q0", "q1" + ); +} + +// Mixes Sobel X, Sobel Y and Sobel into ARGB. +// A = 255 +// R = Sobel X +// G = Sobel +// B = Sobel Y +void SobelXYRow_NEON(const uint8* src_sobelx, const uint8* src_sobely, + uint8* dst_argb, int width) { + asm volatile ( + "vmov.u8 d3, #255 \n" // alpha + // 8 pixel loop. + "1: \n" + MEMACCESS(0) + "vld1.8 {d2}, [%0]! \n" // load 8 sobelx. + MEMACCESS(1) + "vld1.8 {d0}, [%1]! \n" // load 8 sobely. + "subs %3, %3, #8 \n" // 8 processed per loop. + "vqadd.u8 d1, d0, d2 \n" // add + MEMACCESS(2) + "vst4.8 {d0, d1, d2, d3}, [%2]! \n" // store 8 ARGB pixels. + "bgt 1b \n" + : "+r"(src_sobelx), // %0 + "+r"(src_sobely), // %1 + "+r"(dst_argb), // %2 + "+r"(width) // %3 + : + : "cc", "memory", "q0", "q1" + ); +} + +// SobelX as a matrix is +// -1 0 1 +// -2 0 2 +// -1 0 1 +void SobelXRow_NEON(const uint8* src_y0, const uint8* src_y1, + const uint8* src_y2, uint8* dst_sobelx, int width) { + asm volatile ( + "1: \n" + MEMACCESS(0) + "vld1.8 {d0}, [%0],%5 \n" // top + MEMACCESS(0) + "vld1.8 {d1}, [%0],%6 \n" + "vsubl.u8 q0, d0, d1 \n" + MEMACCESS(1) + "vld1.8 {d2}, [%1],%5 \n" // center * 2 + MEMACCESS(1) + "vld1.8 {d3}, [%1],%6 \n" + "vsubl.u8 q1, d2, d3 \n" + "vadd.s16 q0, q0, q1 \n" + "vadd.s16 q0, q0, q1 \n" + MEMACCESS(2) + "vld1.8 {d2}, [%2],%5 \n" // bottom + MEMACCESS(2) + "vld1.8 {d3}, [%2],%6 \n" + "subs %4, %4, #8 \n" // 8 pixels + "vsubl.u8 q1, d2, d3 \n" + "vadd.s16 q0, q0, q1 \n" + "vabs.s16 q0, q0 \n" + "vqmovn.u16 d0, q0 \n" + MEMACCESS(3) + "vst1.8 {d0}, [%3]! \n" // store 8 sobelx + "bgt 1b \n" + : "+r"(src_y0), // %0 + "+r"(src_y1), // %1 + "+r"(src_y2), // %2 + "+r"(dst_sobelx), // %3 + "+r"(width) // %4 + : "r"(2), // %5 + "r"(6) // %6 + : "cc", "memory", "q0", "q1" // Clobber List + ); +} + +// SobelY as a matrix is +// -1 -2 -1 +// 0 0 0 +// 1 2 1 +void SobelYRow_NEON(const uint8* src_y0, const uint8* src_y1, + uint8* dst_sobely, int width) { + asm volatile ( + "1: \n" + MEMACCESS(0) + "vld1.8 {d0}, [%0],%4 \n" // left + MEMACCESS(1) + "vld1.8 {d1}, [%1],%4 \n" + "vsubl.u8 q0, d0, d1 \n" + MEMACCESS(0) + "vld1.8 {d2}, [%0],%4 \n" // center * 2 + MEMACCESS(1) + "vld1.8 {d3}, [%1],%4 \n" + "vsubl.u8 q1, d2, d3 \n" + "vadd.s16 q0, q0, q1 \n" + "vadd.s16 q0, q0, q1 \n" + MEMACCESS(0) + "vld1.8 {d2}, [%0],%5 \n" // right + MEMACCESS(1) + "vld1.8 {d3}, [%1],%5 \n" + "subs %3, %3, #8 \n" // 8 pixels + "vsubl.u8 q1, d2, d3 \n" + "vadd.s16 q0, q0, q1 \n" + "vabs.s16 q0, q0 \n" + "vqmovn.u16 d0, q0 \n" + MEMACCESS(2) + "vst1.8 {d0}, [%2]! \n" // store 8 sobely + "bgt 1b \n" + : "+r"(src_y0), // %0 + "+r"(src_y1), // %1 + "+r"(dst_sobely), // %2 + "+r"(width) // %3 + : "r"(1), // %4 + "r"(6) // %5 + : "cc", "memory", "q0", "q1" // Clobber List + ); +} +#endif // defined(__ARM_NEON__) && !defined(__aarch64__) + +#ifdef __cplusplus +} // extern "C" +} // namespace libyuv +#endif diff --git a/third_party/libyuv/source/row_neon64.cc b/third_party/libyuv/source/row_neon64.cc new file mode 100644 index 0000000..6375d4f --- /dev/null +++ b/third_party/libyuv/source/row_neon64.cc @@ -0,0 +1,2809 @@ +/* + * Copyright 2014 The LibYuv Project Authors. All rights reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "libyuv/row.h" + +#ifdef __cplusplus +namespace libyuv { +extern "C" { +#endif + +// This module is for GCC Neon armv8 64 bit. +#if !defined(LIBYUV_DISABLE_NEON) && defined(__aarch64__) + +// Read 8 Y, 4 U and 4 V from 422 +#define READYUV422 \ + MEMACCESS(0) \ + "ld1 {v0.8b}, [%0], #8 \n" \ + MEMACCESS(1) \ + "ld1 {v1.s}[0], [%1], #4 \n" \ + MEMACCESS(2) \ + "ld1 {v1.s}[1], [%2], #4 \n" + +// Read 8 Y, 2 U and 2 V from 422 +#define READYUV411 \ + MEMACCESS(0) \ + "ld1 {v0.8b}, [%0], #8 \n" \ + MEMACCESS(1) \ + "ld1 {v2.h}[0], [%1], #2 \n" \ + MEMACCESS(2) \ + "ld1 {v2.h}[1], [%2], #2 \n" \ + "zip1 v1.8b, v2.8b, v2.8b \n" + +// Read 8 Y, 8 U and 8 V from 444 +#define READYUV444 \ + MEMACCESS(0) \ + "ld1 {v0.8b}, [%0], #8 \n" \ + MEMACCESS(1) \ + "ld1 {v1.d}[0], [%1], #8 \n" \ + MEMACCESS(2) \ + "ld1 {v1.d}[1], [%2], #8 \n" \ + "uaddlp v1.8h, v1.16b \n" \ + "rshrn v1.8b, v1.8h, #1 \n" + +// Read 8 Y, and set 4 U and 4 V to 128 +#define READYUV400 \ + MEMACCESS(0) \ + "ld1 {v0.8b}, [%0], #8 \n" \ + "movi v1.8b , #128 \n" + +// Read 8 Y and 4 UV from NV12 +#define READNV12 \ + MEMACCESS(0) \ + "ld1 {v0.8b}, [%0], #8 \n" \ + MEMACCESS(1) \ + "ld1 {v2.8b}, [%1], #8 \n" \ + "uzp1 v1.8b, v2.8b, v2.8b \n" \ + "uzp2 v3.8b, v2.8b, v2.8b \n" \ + "ins v1.s[1], v3.s[0] \n" + +// Read 8 Y and 4 VU from NV21 +#define READNV21 \ + MEMACCESS(0) \ + "ld1 {v0.8b}, [%0], #8 \n" \ + MEMACCESS(1) \ + "ld1 {v2.8b}, [%1], #8 \n" \ + "uzp1 v3.8b, v2.8b, v2.8b \n" \ + "uzp2 v1.8b, v2.8b, v2.8b \n" \ + "ins v1.s[1], v3.s[0] \n" + +// Read 8 YUY2 +#define READYUY2 \ + MEMACCESS(0) \ + "ld2 {v0.8b, v1.8b}, [%0], #16 \n" \ + "uzp2 v3.8b, v1.8b, v1.8b \n" \ + "uzp1 v1.8b, v1.8b, v1.8b \n" \ + "ins v1.s[1], v3.s[0] \n" + +// Read 8 UYVY +#define READUYVY \ + MEMACCESS(0) \ + "ld2 {v2.8b, v3.8b}, [%0], #16 \n" \ + "orr v0.8b, v3.8b, v3.8b \n" \ + "uzp1 v1.8b, v2.8b, v2.8b \n" \ + "uzp2 v3.8b, v2.8b, v2.8b \n" \ + "ins v1.s[1], v3.s[0] \n" + +#define YUVTORGB_SETUP \ + "ld1r {v24.8h}, [%[kUVBiasBGR]], #2 \n" \ + "ld1r {v25.8h}, [%[kUVBiasBGR]], #2 \n" \ + "ld1r {v26.8h}, [%[kUVBiasBGR]] \n" \ + "ld1r {v31.4s}, [%[kYToRgb]] \n" \ + "ld2 {v27.8h, v28.8h}, [%[kUVToRB]] \n" \ + "ld2 {v29.8h, v30.8h}, [%[kUVToG]] \n" + +#define YUVTORGB(vR, vG, vB) \ + "uxtl v0.8h, v0.8b \n" /* Extract Y */ \ + "shll v2.8h, v1.8b, #8 \n" /* Replicate UV */ \ + "ushll2 v3.4s, v0.8h, #0 \n" /* Y */ \ + "ushll v0.4s, v0.4h, #0 \n" \ + "mul v3.4s, v3.4s, v31.4s \n" \ + "mul v0.4s, v0.4s, v31.4s \n" \ + "sqshrun v0.4h, v0.4s, #16 \n" \ + "sqshrun2 v0.8h, v3.4s, #16 \n" /* Y */ \ + "uaddw v1.8h, v2.8h, v1.8b \n" /* Replicate UV */ \ + "mov v2.d[0], v1.d[1] \n" /* Extract V */ \ + "uxtl v2.8h, v2.8b \n" \ + "uxtl v1.8h, v1.8b \n" /* Extract U */ \ + "mul v3.8h, v1.8h, v27.8h \n" \ + "mul v5.8h, v1.8h, v29.8h \n" \ + "mul v6.8h, v2.8h, v30.8h \n" \ + "mul v7.8h, v2.8h, v28.8h \n" \ + "sqadd v6.8h, v6.8h, v5.8h \n" \ + "sqadd " #vB ".8h, v24.8h, v0.8h \n" /* B */ \ + "sqadd " #vG ".8h, v25.8h, v0.8h \n" /* G */ \ + "sqadd " #vR ".8h, v26.8h, v0.8h \n" /* R */ \ + "sqadd " #vB ".8h, " #vB ".8h, v3.8h \n" /* B */ \ + "sqsub " #vG ".8h, " #vG ".8h, v6.8h \n" /* G */ \ + "sqadd " #vR ".8h, " #vR ".8h, v7.8h \n" /* R */ \ + "sqshrun " #vB ".8b, " #vB ".8h, #6 \n" /* B */ \ + "sqshrun " #vG ".8b, " #vG ".8h, #6 \n" /* G */ \ + "sqshrun " #vR ".8b, " #vR ".8h, #6 \n" /* R */ \ + +void I444ToARGBRow_NEON(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width) { + asm volatile ( + YUVTORGB_SETUP + "movi v23.8b, #255 \n" /* A */ + "1: \n" + READYUV444 + YUVTORGB(v22, v21, v20) + "subs %w4, %w4, #8 \n" + MEMACCESS(3) + "st4 {v20.8b,v21.8b,v22.8b,v23.8b}, [%3], #32 \n" + "b.gt 1b \n" + : "+r"(src_y), // %0 + "+r"(src_u), // %1 + "+r"(src_v), // %2 + "+r"(dst_argb), // %3 + "+r"(width) // %4 + : [kUVToRB]"r"(&yuvconstants->kUVToRB), + [kUVToG]"r"(&yuvconstants->kUVToG), + [kUVBiasBGR]"r"(&yuvconstants->kUVBiasBGR), + [kYToRgb]"r"(&yuvconstants->kYToRgb) + : "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", "v20", + "v21", "v22", "v23", "v24", "v25", "v26", "v27", "v28", "v29", "v30" + ); +} + +void I422ToARGBRow_NEON(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width) { + asm volatile ( + YUVTORGB_SETUP + "movi v23.8b, #255 \n" /* A */ + "1: \n" + READYUV422 + YUVTORGB(v22, v21, v20) + "subs %w4, %w4, #8 \n" + MEMACCESS(3) + "st4 {v20.8b,v21.8b,v22.8b,v23.8b}, [%3], #32 \n" + "b.gt 1b \n" + : "+r"(src_y), // %0 + "+r"(src_u), // %1 + "+r"(src_v), // %2 + "+r"(dst_argb), // %3 + "+r"(width) // %4 + : [kUVToRB]"r"(&yuvconstants->kUVToRB), + [kUVToG]"r"(&yuvconstants->kUVToG), + [kUVBiasBGR]"r"(&yuvconstants->kUVBiasBGR), + [kYToRgb]"r"(&yuvconstants->kYToRgb) + : "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", "v20", + "v21", "v22", "v23", "v24", "v25", "v26", "v27", "v28", "v29", "v30" + ); +} + +void I422AlphaToARGBRow_NEON(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + const uint8* src_a, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width) { + asm volatile ( + YUVTORGB_SETUP + "1: \n" + READYUV422 + YUVTORGB(v22, v21, v20) + MEMACCESS(3) + "ld1 {v23.8b}, [%3], #8 \n" + "subs %w5, %w5, #8 \n" + MEMACCESS(4) + "st4 {v20.8b,v21.8b,v22.8b,v23.8b}, [%4], #32 \n" + "b.gt 1b \n" + : "+r"(src_y), // %0 + "+r"(src_u), // %1 + "+r"(src_v), // %2 + "+r"(src_a), // %3 + "+r"(dst_argb), // %4 + "+r"(width) // %5 + : [kUVToRB]"r"(&yuvconstants->kUVToRB), + [kUVToG]"r"(&yuvconstants->kUVToG), + [kUVBiasBGR]"r"(&yuvconstants->kUVBiasBGR), + [kYToRgb]"r"(&yuvconstants->kYToRgb) + : "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", "v20", + "v21", "v22", "v23", "v24", "v25", "v26", "v27", "v28", "v29", "v30" + ); +} + +void I411ToARGBRow_NEON(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width) { + asm volatile ( + YUVTORGB_SETUP + "movi v23.8b, #255 \n" /* A */ + "1: \n" + READYUV411 + YUVTORGB(v22, v21, v20) + "subs %w4, %w4, #8 \n" + MEMACCESS(3) + "st4 {v20.8b,v21.8b,v22.8b,v23.8b}, [%3], #32 \n" + "b.gt 1b \n" + : "+r"(src_y), // %0 + "+r"(src_u), // %1 + "+r"(src_v), // %2 + "+r"(dst_argb), // %3 + "+r"(width) // %4 + : [kUVToRB]"r"(&yuvconstants->kUVToRB), + [kUVToG]"r"(&yuvconstants->kUVToG), + [kUVBiasBGR]"r"(&yuvconstants->kUVBiasBGR), + [kYToRgb]"r"(&yuvconstants->kYToRgb) + : "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", "v20", + "v21", "v22", "v23", "v24", "v25", "v26", "v27", "v28", "v29", "v30" + ); +} + +void I422ToRGBARow_NEON(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + uint8* dst_rgba, + const struct YuvConstants* yuvconstants, + int width) { + asm volatile ( + YUVTORGB_SETUP + "movi v20.8b, #255 \n" /* A */ + "1: \n" + READYUV422 + YUVTORGB(v23, v22, v21) + "subs %w4, %w4, #8 \n" + MEMACCESS(3) + "st4 {v20.8b,v21.8b,v22.8b,v23.8b}, [%3], #32 \n" + "b.gt 1b \n" + : "+r"(src_y), // %0 + "+r"(src_u), // %1 + "+r"(src_v), // %2 + "+r"(dst_rgba), // %3 + "+r"(width) // %4 + : [kUVToRB]"r"(&yuvconstants->kUVToRB), + [kUVToG]"r"(&yuvconstants->kUVToG), + [kUVBiasBGR]"r"(&yuvconstants->kUVBiasBGR), + [kYToRgb]"r"(&yuvconstants->kYToRgb) + : "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", "v20", + "v21", "v22", "v23", "v24", "v25", "v26", "v27", "v28", "v29", "v30" + ); +} + +void I422ToRGB24Row_NEON(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + uint8* dst_rgb24, + const struct YuvConstants* yuvconstants, + int width) { + asm volatile ( + YUVTORGB_SETUP + "1: \n" + READYUV422 + YUVTORGB(v22, v21, v20) + "subs %w4, %w4, #8 \n" + MEMACCESS(3) + "st3 {v20.8b,v21.8b,v22.8b}, [%3], #24 \n" + "b.gt 1b \n" + : "+r"(src_y), // %0 + "+r"(src_u), // %1 + "+r"(src_v), // %2 + "+r"(dst_rgb24), // %3 + "+r"(width) // %4 + : [kUVToRB]"r"(&yuvconstants->kUVToRB), + [kUVToG]"r"(&yuvconstants->kUVToG), + [kUVBiasBGR]"r"(&yuvconstants->kUVBiasBGR), + [kYToRgb]"r"(&yuvconstants->kYToRgb) + : "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", "v20", + "v21", "v22", "v23", "v24", "v25", "v26", "v27", "v28", "v29", "v30" + ); +} + +#define ARGBTORGB565 \ + "shll v0.8h, v22.8b, #8 \n" /* R */ \ + "shll v21.8h, v21.8b, #8 \n" /* G */ \ + "shll v20.8h, v20.8b, #8 \n" /* B */ \ + "sri v0.8h, v21.8h, #5 \n" /* RG */ \ + "sri v0.8h, v20.8h, #11 \n" /* RGB */ + +void I422ToRGB565Row_NEON(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + uint8* dst_rgb565, + const struct YuvConstants* yuvconstants, + int width) { + asm volatile ( + YUVTORGB_SETUP + "1: \n" + READYUV422 + YUVTORGB(v22, v21, v20) + "subs %w4, %w4, #8 \n" + ARGBTORGB565 + MEMACCESS(3) + "st1 {v0.8h}, [%3], #16 \n" // store 8 pixels RGB565. + "b.gt 1b \n" + : "+r"(src_y), // %0 + "+r"(src_u), // %1 + "+r"(src_v), // %2 + "+r"(dst_rgb565), // %3 + "+r"(width) // %4 + : [kUVToRB]"r"(&yuvconstants->kUVToRB), + [kUVToG]"r"(&yuvconstants->kUVToG), + [kUVBiasBGR]"r"(&yuvconstants->kUVBiasBGR), + [kYToRgb]"r"(&yuvconstants->kYToRgb) + : "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", "v20", + "v21", "v22", "v23", "v24", "v25", "v26", "v27", "v28", "v29", "v30" + ); +} + +#define ARGBTOARGB1555 \ + "shll v0.8h, v23.8b, #8 \n" /* A */ \ + "shll v22.8h, v22.8b, #8 \n" /* R */ \ + "shll v21.8h, v21.8b, #8 \n" /* G */ \ + "shll v20.8h, v20.8b, #8 \n" /* B */ \ + "sri v0.8h, v22.8h, #1 \n" /* AR */ \ + "sri v0.8h, v21.8h, #6 \n" /* ARG */ \ + "sri v0.8h, v20.8h, #11 \n" /* ARGB */ + +void I422ToARGB1555Row_NEON(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + uint8* dst_argb1555, + const struct YuvConstants* yuvconstants, + int width) { + asm volatile ( + YUVTORGB_SETUP + "movi v23.8b, #255 \n" + "1: \n" + READYUV422 + YUVTORGB(v22, v21, v20) + "subs %w4, %w4, #8 \n" + ARGBTOARGB1555 + MEMACCESS(3) + "st1 {v0.8h}, [%3], #16 \n" // store 8 pixels RGB565. + "b.gt 1b \n" + : "+r"(src_y), // %0 + "+r"(src_u), // %1 + "+r"(src_v), // %2 + "+r"(dst_argb1555), // %3 + "+r"(width) // %4 + : [kUVToRB]"r"(&yuvconstants->kUVToRB), + [kUVToG]"r"(&yuvconstants->kUVToG), + [kUVBiasBGR]"r"(&yuvconstants->kUVBiasBGR), + [kYToRgb]"r"(&yuvconstants->kYToRgb) + : "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", "v20", + "v21", "v22", "v23", "v24", "v25", "v26", "v27", "v28", "v29", "v30" + ); +} + +#define ARGBTOARGB4444 \ + /* Input v20.8b<=B, v21.8b<=G, v22.8b<=R, v23.8b<=A, v4.8b<=0x0f */ \ + "ushr v20.8b, v20.8b, #4 \n" /* B */ \ + "bic v21.8b, v21.8b, v4.8b \n" /* G */ \ + "ushr v22.8b, v22.8b, #4 \n" /* R */ \ + "bic v23.8b, v23.8b, v4.8b \n" /* A */ \ + "orr v0.8b, v20.8b, v21.8b \n" /* BG */ \ + "orr v1.8b, v22.8b, v23.8b \n" /* RA */ \ + "zip1 v0.16b, v0.16b, v1.16b \n" /* BGRA */ + +void I422ToARGB4444Row_NEON(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + uint8* dst_argb4444, + const struct YuvConstants* yuvconstants, + int width) { + asm volatile ( + YUVTORGB_SETUP + "movi v4.16b, #0x0f \n" // bits to clear with vbic. + "1: \n" + READYUV422 + YUVTORGB(v22, v21, v20) + "subs %w4, %w4, #8 \n" + "movi v23.8b, #255 \n" + ARGBTOARGB4444 + MEMACCESS(3) + "st1 {v0.8h}, [%3], #16 \n" // store 8 pixels ARGB4444. + "b.gt 1b \n" + : "+r"(src_y), // %0 + "+r"(src_u), // %1 + "+r"(src_v), // %2 + "+r"(dst_argb4444), // %3 + "+r"(width) // %4 + : [kUVToRB]"r"(&yuvconstants->kUVToRB), + [kUVToG]"r"(&yuvconstants->kUVToG), + [kUVBiasBGR]"r"(&yuvconstants->kUVBiasBGR), + [kYToRgb]"r"(&yuvconstants->kYToRgb) + : "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", "v20", + "v21", "v22", "v23", "v24", "v25", "v26", "v27", "v28", "v29", "v30" + ); +} + +void I400ToARGBRow_NEON(const uint8* src_y, + uint8* dst_argb, + int width) { + asm volatile ( + YUVTORGB_SETUP + "movi v23.8b, #255 \n" + "1: \n" + READYUV400 + YUVTORGB(v22, v21, v20) + "subs %w2, %w2, #8 \n" + MEMACCESS(1) + "st4 {v20.8b,v21.8b,v22.8b,v23.8b}, [%1], #32 \n" + "b.gt 1b \n" + : "+r"(src_y), // %0 + "+r"(dst_argb), // %1 + "+r"(width) // %2 + : [kUVToRB]"r"(&kYuvI601Constants.kUVToRB), + [kUVToG]"r"(&kYuvI601Constants.kUVToG), + [kUVBiasBGR]"r"(&kYuvI601Constants.kUVBiasBGR), + [kYToRgb]"r"(&kYuvI601Constants.kYToRgb) + : "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", "v20", + "v21", "v22", "v23", "v24", "v25", "v26", "v27", "v28", "v29", "v30" + ); +} + +void J400ToARGBRow_NEON(const uint8* src_y, + uint8* dst_argb, + int width) { + asm volatile ( + "movi v23.8b, #255 \n" + "1: \n" + MEMACCESS(0) + "ld1 {v20.8b}, [%0], #8 \n" + "orr v21.8b, v20.8b, v20.8b \n" + "orr v22.8b, v20.8b, v20.8b \n" + "subs %w2, %w2, #8 \n" + MEMACCESS(1) + "st4 {v20.8b,v21.8b,v22.8b,v23.8b}, [%1], #32 \n" + "b.gt 1b \n" + : "+r"(src_y), // %0 + "+r"(dst_argb), // %1 + "+r"(width) // %2 + : + : "cc", "memory", "v20", "v21", "v22", "v23" + ); +} + +void NV12ToARGBRow_NEON(const uint8* src_y, + const uint8* src_uv, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width) { + asm volatile ( + YUVTORGB_SETUP + "movi v23.8b, #255 \n" + "1: \n" + READNV12 + YUVTORGB(v22, v21, v20) + "subs %w3, %w3, #8 \n" + MEMACCESS(2) + "st4 {v20.8b,v21.8b,v22.8b,v23.8b}, [%2], #32 \n" + "b.gt 1b \n" + : "+r"(src_y), // %0 + "+r"(src_uv), // %1 + "+r"(dst_argb), // %2 + "+r"(width) // %3 + : [kUVToRB]"r"(&yuvconstants->kUVToRB), + [kUVToG]"r"(&yuvconstants->kUVToG), + [kUVBiasBGR]"r"(&yuvconstants->kUVBiasBGR), + [kYToRgb]"r"(&yuvconstants->kYToRgb) + : "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", "v20", + "v21", "v22", "v23", "v24", "v25", "v26", "v27", "v28", "v29", "v30" + ); +} + +void NV21ToARGBRow_NEON(const uint8* src_y, + const uint8* src_vu, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width) { + asm volatile ( + YUVTORGB_SETUP + "movi v23.8b, #255 \n" + "1: \n" + READNV21 + YUVTORGB(v22, v21, v20) + "subs %w3, %w3, #8 \n" + MEMACCESS(2) + "st4 {v20.8b,v21.8b,v22.8b,v23.8b}, [%2], #32 \n" + "b.gt 1b \n" + : "+r"(src_y), // %0 + "+r"(src_vu), // %1 + "+r"(dst_argb), // %2 + "+r"(width) // %3 + : [kUVToRB]"r"(&yuvconstants->kUVToRB), + [kUVToG]"r"(&yuvconstants->kUVToG), + [kUVBiasBGR]"r"(&yuvconstants->kUVBiasBGR), + [kYToRgb]"r"(&yuvconstants->kYToRgb) + : "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", "v20", + "v21", "v22", "v23", "v24", "v25", "v26", "v27", "v28", "v29", "v30" + ); +} + +void NV12ToRGB565Row_NEON(const uint8* src_y, + const uint8* src_uv, + uint8* dst_rgb565, + const struct YuvConstants* yuvconstants, + int width) { + asm volatile ( + YUVTORGB_SETUP + "1: \n" + READNV12 + YUVTORGB(v22, v21, v20) + "subs %w3, %w3, #8 \n" + ARGBTORGB565 + MEMACCESS(2) + "st1 {v0.8h}, [%2], 16 \n" // store 8 pixels RGB565. + "b.gt 1b \n" + : "+r"(src_y), // %0 + "+r"(src_uv), // %1 + "+r"(dst_rgb565), // %2 + "+r"(width) // %3 + : [kUVToRB]"r"(&yuvconstants->kUVToRB), + [kUVToG]"r"(&yuvconstants->kUVToG), + [kUVBiasBGR]"r"(&yuvconstants->kUVBiasBGR), + [kYToRgb]"r"(&yuvconstants->kYToRgb) + : "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", "v20", + "v21", "v22", "v23", "v24", "v25", "v26", "v27", "v28", "v29", "v30" + ); +} + +void YUY2ToARGBRow_NEON(const uint8* src_yuy2, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width) { + asm volatile ( + YUVTORGB_SETUP + "movi v23.8b, #255 \n" + "1: \n" + READYUY2 + YUVTORGB(v22, v21, v20) + "subs %w2, %w2, #8 \n" + MEMACCESS(1) + "st4 {v20.8b,v21.8b,v22.8b,v23.8b}, [%1], #32 \n" + "b.gt 1b \n" + : "+r"(src_yuy2), // %0 + "+r"(dst_argb), // %1 + "+r"(width) // %2 + : [kUVToRB]"r"(&yuvconstants->kUVToRB), + [kUVToG]"r"(&yuvconstants->kUVToG), + [kUVBiasBGR]"r"(&yuvconstants->kUVBiasBGR), + [kYToRgb]"r"(&yuvconstants->kYToRgb) + : "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", "v20", + "v21", "v22", "v23", "v24", "v25", "v26", "v27", "v28", "v29", "v30" + ); +} + +void UYVYToARGBRow_NEON(const uint8* src_uyvy, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width) { + asm volatile ( + YUVTORGB_SETUP + "movi v23.8b, #255 \n" + "1: \n" + READUYVY + YUVTORGB(v22, v21, v20) + "subs %w2, %w2, #8 \n" + MEMACCESS(1) + "st4 {v20.8b,v21.8b,v22.8b,v23.8b}, [%1], 32 \n" + "b.gt 1b \n" + : "+r"(src_uyvy), // %0 + "+r"(dst_argb), // %1 + "+r"(width) // %2 + : [kUVToRB]"r"(&yuvconstants->kUVToRB), + [kUVToG]"r"(&yuvconstants->kUVToG), + [kUVBiasBGR]"r"(&yuvconstants->kUVBiasBGR), + [kYToRgb]"r"(&yuvconstants->kYToRgb) + : "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", "v20", + "v21", "v22", "v23", "v24", "v25", "v26", "v27", "v28", "v29", "v30" + ); +} + +// Reads 16 pairs of UV and write even values to dst_u and odd to dst_v. +void SplitUVRow_NEON(const uint8* src_uv, uint8* dst_u, uint8* dst_v, + int width) { + asm volatile ( + "1: \n" + MEMACCESS(0) + "ld2 {v0.16b,v1.16b}, [%0], #32 \n" // load 16 pairs of UV + "subs %w3, %w3, #16 \n" // 16 processed per loop + MEMACCESS(1) + "st1 {v0.16b}, [%1], #16 \n" // store U + MEMACCESS(2) + "st1 {v1.16b}, [%2], #16 \n" // store V + "b.gt 1b \n" + : "+r"(src_uv), // %0 + "+r"(dst_u), // %1 + "+r"(dst_v), // %2 + "+r"(width) // %3 // Output registers + : // Input registers + : "cc", "memory", "v0", "v1" // Clobber List + ); +} + +// Reads 16 U's and V's and writes out 16 pairs of UV. +void MergeUVRow_NEON(const uint8* src_u, const uint8* src_v, uint8* dst_uv, + int width) { + asm volatile ( + "1: \n" + MEMACCESS(0) + "ld1 {v0.16b}, [%0], #16 \n" // load U + MEMACCESS(1) + "ld1 {v1.16b}, [%1], #16 \n" // load V + "subs %w3, %w3, #16 \n" // 16 processed per loop + MEMACCESS(2) + "st2 {v0.16b,v1.16b}, [%2], #32 \n" // store 16 pairs of UV + "b.gt 1b \n" + : + "+r"(src_u), // %0 + "+r"(src_v), // %1 + "+r"(dst_uv), // %2 + "+r"(width) // %3 // Output registers + : // Input registers + : "cc", "memory", "v0", "v1" // Clobber List + ); +} + +// Copy multiple of 32. vld4.8 allow unaligned and is fastest on a15. +void CopyRow_NEON(const uint8* src, uint8* dst, int count) { + asm volatile ( + "1: \n" + MEMACCESS(0) + "ld1 {v0.8b,v1.8b,v2.8b,v3.8b}, [%0], #32 \n" // load 32 + "subs %w2, %w2, #32 \n" // 32 processed per loop + MEMACCESS(1) + "st1 {v0.8b,v1.8b,v2.8b,v3.8b}, [%1], #32 \n" // store 32 + "b.gt 1b \n" + : "+r"(src), // %0 + "+r"(dst), // %1 + "+r"(count) // %2 // Output registers + : // Input registers + : "cc", "memory", "v0", "v1", "v2", "v3" // Clobber List + ); +} + +// SetRow writes 'count' bytes using an 8 bit value repeated. +void SetRow_NEON(uint8* dst, uint8 v8, int count) { + asm volatile ( + "dup v0.16b, %w2 \n" // duplicate 16 bytes + "1: \n" + "subs %w1, %w1, #16 \n" // 16 bytes per loop + MEMACCESS(0) + "st1 {v0.16b}, [%0], #16 \n" // store + "b.gt 1b \n" + : "+r"(dst), // %0 + "+r"(count) // %1 + : "r"(v8) // %2 + : "cc", "memory", "v0" + ); +} + +void ARGBSetRow_NEON(uint8* dst, uint32 v32, int count) { + asm volatile ( + "dup v0.4s, %w2 \n" // duplicate 4 ints + "1: \n" + "subs %w1, %w1, #4 \n" // 4 ints per loop + MEMACCESS(0) + "st1 {v0.16b}, [%0], #16 \n" // store + "b.gt 1b \n" + : "+r"(dst), // %0 + "+r"(count) // %1 + : "r"(v32) // %2 + : "cc", "memory", "v0" + ); +} + +void MirrorRow_NEON(const uint8* src, uint8* dst, int width) { + asm volatile ( + // Start at end of source row. + "add %0, %0, %w2, sxtw \n" + "sub %0, %0, #16 \n" + "1: \n" + MEMACCESS(0) + "ld1 {v0.16b}, [%0], %3 \n" // src -= 16 + "subs %w2, %w2, #16 \n" // 16 pixels per loop. + "rev64 v0.16b, v0.16b \n" + MEMACCESS(1) + "st1 {v0.D}[1], [%1], #8 \n" // dst += 16 + MEMACCESS(1) + "st1 {v0.D}[0], [%1], #8 \n" + "b.gt 1b \n" + : "+r"(src), // %0 + "+r"(dst), // %1 + "+r"(width) // %2 + : "r"((ptrdiff_t)-16) // %3 + : "cc", "memory", "v0" + ); +} + +void MirrorUVRow_NEON(const uint8* src_uv, uint8* dst_u, uint8* dst_v, + int width) { + asm volatile ( + // Start at end of source row. + "add %0, %0, %w3, sxtw #1 \n" + "sub %0, %0, #16 \n" + "1: \n" + MEMACCESS(0) + "ld2 {v0.8b, v1.8b}, [%0], %4 \n" // src -= 16 + "subs %w3, %w3, #8 \n" // 8 pixels per loop. + "rev64 v0.8b, v0.8b \n" + "rev64 v1.8b, v1.8b \n" + MEMACCESS(1) + "st1 {v0.8b}, [%1], #8 \n" // dst += 8 + MEMACCESS(2) + "st1 {v1.8b}, [%2], #8 \n" + "b.gt 1b \n" + : "+r"(src_uv), // %0 + "+r"(dst_u), // %1 + "+r"(dst_v), // %2 + "+r"(width) // %3 + : "r"((ptrdiff_t)-16) // %4 + : "cc", "memory", "v0", "v1" + ); +} + +void ARGBMirrorRow_NEON(const uint8* src, uint8* dst, int width) { + asm volatile ( + // Start at end of source row. + "add %0, %0, %w2, sxtw #2 \n" + "sub %0, %0, #16 \n" + "1: \n" + MEMACCESS(0) + "ld1 {v0.16b}, [%0], %3 \n" // src -= 16 + "subs %w2, %w2, #4 \n" // 4 pixels per loop. + "rev64 v0.4s, v0.4s \n" + MEMACCESS(1) + "st1 {v0.D}[1], [%1], #8 \n" // dst += 16 + MEMACCESS(1) + "st1 {v0.D}[0], [%1], #8 \n" + "b.gt 1b \n" + : "+r"(src), // %0 + "+r"(dst), // %1 + "+r"(width) // %2 + : "r"((ptrdiff_t)-16) // %3 + : "cc", "memory", "v0" + ); +} + +void RGB24ToARGBRow_NEON(const uint8* src_rgb24, uint8* dst_argb, int width) { + asm volatile ( + "movi v4.8b, #255 \n" // Alpha + "1: \n" + MEMACCESS(0) + "ld3 {v1.8b,v2.8b,v3.8b}, [%0], #24 \n" // load 8 pixels of RGB24. + "subs %w2, %w2, #8 \n" // 8 processed per loop. + MEMACCESS(1) + "st4 {v1.8b,v2.8b,v3.8b,v4.8b}, [%1], #32 \n" // store 8 ARGB pixels + "b.gt 1b \n" + : "+r"(src_rgb24), // %0 + "+r"(dst_argb), // %1 + "+r"(width) // %2 + : + : "cc", "memory", "v1", "v2", "v3", "v4" // Clobber List + ); +} + +void RAWToARGBRow_NEON(const uint8* src_raw, uint8* dst_argb, int width) { + asm volatile ( + "movi v5.8b, #255 \n" // Alpha + "1: \n" + MEMACCESS(0) + "ld3 {v0.8b,v1.8b,v2.8b}, [%0], #24 \n" // read r g b + "subs %w2, %w2, #8 \n" // 8 processed per loop. + "orr v3.8b, v1.8b, v1.8b \n" // move g + "orr v4.8b, v0.8b, v0.8b \n" // move r + MEMACCESS(1) + "st4 {v2.8b,v3.8b,v4.8b,v5.8b}, [%1], #32 \n" // store b g r a + "b.gt 1b \n" + : "+r"(src_raw), // %0 + "+r"(dst_argb), // %1 + "+r"(width) // %2 + : + : "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5" // Clobber List + ); +} + +void RAWToRGB24Row_NEON(const uint8* src_raw, uint8* dst_rgb24, int width) { + asm volatile ( + "1: \n" + MEMACCESS(0) + "ld3 {v0.8b,v1.8b,v2.8b}, [%0], #24 \n" // read r g b + "subs %w2, %w2, #8 \n" // 8 processed per loop. + "orr v3.8b, v1.8b, v1.8b \n" // move g + "orr v4.8b, v0.8b, v0.8b \n" // move r + MEMACCESS(1) + "st3 {v2.8b,v3.8b,v4.8b}, [%1], #24 \n" // store b g r + "b.gt 1b \n" + : "+r"(src_raw), // %0 + "+r"(dst_rgb24), // %1 + "+r"(width) // %2 + : + : "cc", "memory", "v0", "v1", "v2", "v3", "v4" // Clobber List + ); +} + +#define RGB565TOARGB \ + "shrn v6.8b, v0.8h, #5 \n" /* G xxGGGGGG */ \ + "shl v6.8b, v6.8b, #2 \n" /* G GGGGGG00 upper 6 */ \ + "ushr v4.8b, v6.8b, #6 \n" /* G 000000GG lower 2 */ \ + "orr v1.8b, v4.8b, v6.8b \n" /* G */ \ + "xtn v2.8b, v0.8h \n" /* B xxxBBBBB */ \ + "ushr v0.8h, v0.8h, #11 \n" /* R 000RRRRR */ \ + "xtn2 v2.16b,v0.8h \n" /* R in upper part */ \ + "shl v2.16b, v2.16b, #3 \n" /* R,B BBBBB000 upper 5 */ \ + "ushr v0.16b, v2.16b, #5 \n" /* R,B 00000BBB lower 3 */ \ + "orr v0.16b, v0.16b, v2.16b \n" /* R,B */ \ + "dup v2.2D, v0.D[1] \n" /* R */ + +void RGB565ToARGBRow_NEON(const uint8* src_rgb565, uint8* dst_argb, int width) { + asm volatile ( + "movi v3.8b, #255 \n" // Alpha + "1: \n" + MEMACCESS(0) + "ld1 {v0.16b}, [%0], #16 \n" // load 8 RGB565 pixels. + "subs %w2, %w2, #8 \n" // 8 processed per loop. + RGB565TOARGB + MEMACCESS(1) + "st4 {v0.8b,v1.8b,v2.8b,v3.8b}, [%1], #32 \n" // store 8 ARGB pixels + "b.gt 1b \n" + : "+r"(src_rgb565), // %0 + "+r"(dst_argb), // %1 + "+r"(width) // %2 + : + : "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v6" // Clobber List + ); +} + +#define ARGB1555TOARGB \ + "ushr v2.8h, v0.8h, #10 \n" /* R xxxRRRRR */ \ + "shl v2.8h, v2.8h, #3 \n" /* R RRRRR000 upper 5 */ \ + "xtn v3.8b, v2.8h \n" /* RRRRR000 AAAAAAAA */ \ + \ + "sshr v2.8h, v0.8h, #15 \n" /* A AAAAAAAA */ \ + "xtn2 v3.16b, v2.8h \n" \ + \ + "xtn v2.8b, v0.8h \n" /* B xxxBBBBB */ \ + "shrn2 v2.16b,v0.8h, #5 \n" /* G xxxGGGGG */ \ + \ + "ushr v1.16b, v3.16b, #5 \n" /* R,A 00000RRR lower 3 */ \ + "shl v0.16b, v2.16b, #3 \n" /* B,G BBBBB000 upper 5 */ \ + "ushr v2.16b, v0.16b, #5 \n" /* B,G 00000BBB lower 3 */ \ + \ + "orr v0.16b, v0.16b, v2.16b \n" /* B,G */ \ + "orr v2.16b, v1.16b, v3.16b \n" /* R,A */ \ + "dup v1.2D, v0.D[1] \n" \ + "dup v3.2D, v2.D[1] \n" + +// RGB555TOARGB is same as ARGB1555TOARGB but ignores alpha. +#define RGB555TOARGB \ + "ushr v2.8h, v0.8h, #10 \n" /* R xxxRRRRR */ \ + "shl v2.8h, v2.8h, #3 \n" /* R RRRRR000 upper 5 */ \ + "xtn v3.8b, v2.8h \n" /* RRRRR000 */ \ + \ + "xtn v2.8b, v0.8h \n" /* B xxxBBBBB */ \ + "shrn2 v2.16b,v0.8h, #5 \n" /* G xxxGGGGG */ \ + \ + "ushr v1.16b, v3.16b, #5 \n" /* R 00000RRR lower 3 */ \ + "shl v0.16b, v2.16b, #3 \n" /* B,G BBBBB000 upper 5 */ \ + "ushr v2.16b, v0.16b, #5 \n" /* B,G 00000BBB lower 3 */ \ + \ + "orr v0.16b, v0.16b, v2.16b \n" /* B,G */ \ + "orr v2.16b, v1.16b, v3.16b \n" /* R */ \ + "dup v1.2D, v0.D[1] \n" /* G */ \ + +void ARGB1555ToARGBRow_NEON(const uint8* src_argb1555, uint8* dst_argb, + int width) { + asm volatile ( + "movi v3.8b, #255 \n" // Alpha + "1: \n" + MEMACCESS(0) + "ld1 {v0.16b}, [%0], #16 \n" // load 8 ARGB1555 pixels. + "subs %w2, %w2, #8 \n" // 8 processed per loop. + ARGB1555TOARGB + MEMACCESS(1) + "st4 {v0.8b,v1.8b,v2.8b,v3.8b}, [%1], #32 \n" // store 8 ARGB pixels + "b.gt 1b \n" + : "+r"(src_argb1555), // %0 + "+r"(dst_argb), // %1 + "+r"(width) // %2 + : + : "cc", "memory", "v0", "v1", "v2", "v3" // Clobber List + ); +} + +#define ARGB4444TOARGB \ + "shrn v1.8b, v0.8h, #8 \n" /* v1(l) AR */ \ + "xtn2 v1.16b, v0.8h \n" /* v1(h) GB */ \ + "shl v2.16b, v1.16b, #4 \n" /* B,R BBBB0000 */ \ + "ushr v3.16b, v1.16b, #4 \n" /* G,A 0000GGGG */ \ + "ushr v0.16b, v2.16b, #4 \n" /* B,R 0000BBBB */ \ + "shl v1.16b, v3.16b, #4 \n" /* G,A GGGG0000 */ \ + "orr v2.16b, v0.16b, v2.16b \n" /* B,R BBBBBBBB */ \ + "orr v3.16b, v1.16b, v3.16b \n" /* G,A GGGGGGGG */ \ + "dup v0.2D, v2.D[1] \n" \ + "dup v1.2D, v3.D[1] \n" + +void ARGB4444ToARGBRow_NEON(const uint8* src_argb4444, uint8* dst_argb, + int width) { + asm volatile ( + "1: \n" + MEMACCESS(0) + "ld1 {v0.16b}, [%0], #16 \n" // load 8 ARGB4444 pixels. + "subs %w2, %w2, #8 \n" // 8 processed per loop. + ARGB4444TOARGB + MEMACCESS(1) + "st4 {v0.8b,v1.8b,v2.8b,v3.8b}, [%1], #32 \n" // store 8 ARGB pixels + "b.gt 1b \n" + : "+r"(src_argb4444), // %0 + "+r"(dst_argb), // %1 + "+r"(width) // %2 + : + : "cc", "memory", "v0", "v1", "v2", "v3", "v4" // Clobber List + ); +} + +void ARGBToRGB24Row_NEON(const uint8* src_argb, uint8* dst_rgb24, int width) { + asm volatile ( + "1: \n" + MEMACCESS(0) + "ld4 {v1.8b,v2.8b,v3.8b,v4.8b}, [%0], #32 \n" // load 8 ARGB pixels + "subs %w2, %w2, #8 \n" // 8 processed per loop. + MEMACCESS(1) + "st3 {v1.8b,v2.8b,v3.8b}, [%1], #24 \n" // store 8 pixels of RGB24. + "b.gt 1b \n" + : "+r"(src_argb), // %0 + "+r"(dst_rgb24), // %1 + "+r"(width) // %2 + : + : "cc", "memory", "v1", "v2", "v3", "v4" // Clobber List + ); +} + +void ARGBToRAWRow_NEON(const uint8* src_argb, uint8* dst_raw, int width) { + asm volatile ( + "1: \n" + MEMACCESS(0) + "ld4 {v1.8b,v2.8b,v3.8b,v4.8b}, [%0], #32 \n" // load b g r a + "subs %w2, %w2, #8 \n" // 8 processed per loop. + "orr v4.8b, v2.8b, v2.8b \n" // mov g + "orr v5.8b, v1.8b, v1.8b \n" // mov b + MEMACCESS(1) + "st3 {v3.8b,v4.8b,v5.8b}, [%1], #24 \n" // store r g b + "b.gt 1b \n" + : "+r"(src_argb), // %0 + "+r"(dst_raw), // %1 + "+r"(width) // %2 + : + : "cc", "memory", "v1", "v2", "v3", "v4", "v5" // Clobber List + ); +} + +void YUY2ToYRow_NEON(const uint8* src_yuy2, uint8* dst_y, int width) { + asm volatile ( + "1: \n" + MEMACCESS(0) + "ld2 {v0.16b,v1.16b}, [%0], #32 \n" // load 16 pixels of YUY2. + "subs %w2, %w2, #16 \n" // 16 processed per loop. + MEMACCESS(1) + "st1 {v0.16b}, [%1], #16 \n" // store 16 pixels of Y. + "b.gt 1b \n" + : "+r"(src_yuy2), // %0 + "+r"(dst_y), // %1 + "+r"(width) // %2 + : + : "cc", "memory", "v0", "v1" // Clobber List + ); +} + +void UYVYToYRow_NEON(const uint8* src_uyvy, uint8* dst_y, int width) { + asm volatile ( + "1: \n" + MEMACCESS(0) + "ld2 {v0.16b,v1.16b}, [%0], #32 \n" // load 16 pixels of UYVY. + "subs %w2, %w2, #16 \n" // 16 processed per loop. + MEMACCESS(1) + "st1 {v1.16b}, [%1], #16 \n" // store 16 pixels of Y. + "b.gt 1b \n" + : "+r"(src_uyvy), // %0 + "+r"(dst_y), // %1 + "+r"(width) // %2 + : + : "cc", "memory", "v0", "v1" // Clobber List + ); +} + +void YUY2ToUV422Row_NEON(const uint8* src_yuy2, uint8* dst_u, uint8* dst_v, + int width) { + asm volatile ( + "1: \n" + MEMACCESS(0) + "ld4 {v0.8b,v1.8b,v2.8b,v3.8b}, [%0], #32 \n" // load 16 YUY2 pixels + "subs %w3, %w3, #16 \n" // 16 pixels = 8 UVs. + MEMACCESS(1) + "st1 {v1.8b}, [%1], #8 \n" // store 8 U. + MEMACCESS(2) + "st1 {v3.8b}, [%2], #8 \n" // store 8 V. + "b.gt 1b \n" + : "+r"(src_yuy2), // %0 + "+r"(dst_u), // %1 + "+r"(dst_v), // %2 + "+r"(width) // %3 + : + : "cc", "memory", "v0", "v1", "v2", "v3" // Clobber List + ); +} + +void UYVYToUV422Row_NEON(const uint8* src_uyvy, uint8* dst_u, uint8* dst_v, + int width) { + asm volatile ( + "1: \n" + MEMACCESS(0) + "ld4 {v0.8b,v1.8b,v2.8b,v3.8b}, [%0], #32 \n" // load 16 UYVY pixels + "subs %w3, %w3, #16 \n" // 16 pixels = 8 UVs. + MEMACCESS(1) + "st1 {v0.8b}, [%1], #8 \n" // store 8 U. + MEMACCESS(2) + "st1 {v2.8b}, [%2], #8 \n" // store 8 V. + "b.gt 1b \n" + : "+r"(src_uyvy), // %0 + "+r"(dst_u), // %1 + "+r"(dst_v), // %2 + "+r"(width) // %3 + : + : "cc", "memory", "v0", "v1", "v2", "v3" // Clobber List + ); +} + +void YUY2ToUVRow_NEON(const uint8* src_yuy2, int stride_yuy2, + uint8* dst_u, uint8* dst_v, int width) { + const uint8* src_yuy2b = src_yuy2 + stride_yuy2; + asm volatile ( + "1: \n" + MEMACCESS(0) + "ld4 {v0.8b,v1.8b,v2.8b,v3.8b}, [%0], #32 \n" // load 16 pixels + "subs %w4, %w4, #16 \n" // 16 pixels = 8 UVs. + MEMACCESS(1) + "ld4 {v4.8b,v5.8b,v6.8b,v7.8b}, [%1], #32 \n" // load next row + "urhadd v1.8b, v1.8b, v5.8b \n" // average rows of U + "urhadd v3.8b, v3.8b, v7.8b \n" // average rows of V + MEMACCESS(2) + "st1 {v1.8b}, [%2], #8 \n" // store 8 U. + MEMACCESS(3) + "st1 {v3.8b}, [%3], #8 \n" // store 8 V. + "b.gt 1b \n" + : "+r"(src_yuy2), // %0 + "+r"(src_yuy2b), // %1 + "+r"(dst_u), // %2 + "+r"(dst_v), // %3 + "+r"(width) // %4 + : + : "cc", "memory", "v0", "v1", "v2", "v3", "v4", + "v5", "v6", "v7" // Clobber List + ); +} + +void UYVYToUVRow_NEON(const uint8* src_uyvy, int stride_uyvy, + uint8* dst_u, uint8* dst_v, int width) { + const uint8* src_uyvyb = src_uyvy + stride_uyvy; + asm volatile ( + "1: \n" + MEMACCESS(0) + "ld4 {v0.8b,v1.8b,v2.8b,v3.8b}, [%0], #32 \n" // load 16 pixels + "subs %w4, %w4, #16 \n" // 16 pixels = 8 UVs. + MEMACCESS(1) + "ld4 {v4.8b,v5.8b,v6.8b,v7.8b}, [%1], #32 \n" // load next row + "urhadd v0.8b, v0.8b, v4.8b \n" // average rows of U + "urhadd v2.8b, v2.8b, v6.8b \n" // average rows of V + MEMACCESS(2) + "st1 {v0.8b}, [%2], #8 \n" // store 8 U. + MEMACCESS(3) + "st1 {v2.8b}, [%3], #8 \n" // store 8 V. + "b.gt 1b \n" + : "+r"(src_uyvy), // %0 + "+r"(src_uyvyb), // %1 + "+r"(dst_u), // %2 + "+r"(dst_v), // %3 + "+r"(width) // %4 + : + : "cc", "memory", "v0", "v1", "v2", "v3", "v4", + "v5", "v6", "v7" // Clobber List + ); +} + +// For BGRAToARGB, ABGRToARGB, RGBAToARGB, and ARGBToRGBA. +void ARGBShuffleRow_NEON(const uint8* src_argb, uint8* dst_argb, + const uint8* shuffler, int width) { + asm volatile ( + MEMACCESS(3) + "ld1 {v2.16b}, [%3] \n" // shuffler + "1: \n" + MEMACCESS(0) + "ld1 {v0.16b}, [%0], #16 \n" // load 4 pixels. + "subs %w2, %w2, #4 \n" // 4 processed per loop + "tbl v1.16b, {v0.16b}, v2.16b \n" // look up 4 pixels + MEMACCESS(1) + "st1 {v1.16b}, [%1], #16 \n" // store 4. + "b.gt 1b \n" + : "+r"(src_argb), // %0 + "+r"(dst_argb), // %1 + "+r"(width) // %2 + : "r"(shuffler) // %3 + : "cc", "memory", "v0", "v1", "v2" // Clobber List + ); +} + +void I422ToYUY2Row_NEON(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + uint8* dst_yuy2, int width) { + asm volatile ( + "1: \n" + MEMACCESS(0) + "ld2 {v0.8b, v1.8b}, [%0], #16 \n" // load 16 Ys + "orr v2.8b, v1.8b, v1.8b \n" + MEMACCESS(1) + "ld1 {v1.8b}, [%1], #8 \n" // load 8 Us + MEMACCESS(2) + "ld1 {v3.8b}, [%2], #8 \n" // load 8 Vs + "subs %w4, %w4, #16 \n" // 16 pixels + MEMACCESS(3) + "st4 {v0.8b,v1.8b,v2.8b,v3.8b}, [%3], #32 \n" // Store 16 pixels. + "b.gt 1b \n" + : "+r"(src_y), // %0 + "+r"(src_u), // %1 + "+r"(src_v), // %2 + "+r"(dst_yuy2), // %3 + "+r"(width) // %4 + : + : "cc", "memory", "v0", "v1", "v2", "v3" + ); +} + +void I422ToUYVYRow_NEON(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + uint8* dst_uyvy, int width) { + asm volatile ( + "1: \n" + MEMACCESS(0) + "ld2 {v1.8b,v2.8b}, [%0], #16 \n" // load 16 Ys + "orr v3.8b, v2.8b, v2.8b \n" + MEMACCESS(1) + "ld1 {v0.8b}, [%1], #8 \n" // load 8 Us + MEMACCESS(2) + "ld1 {v2.8b}, [%2], #8 \n" // load 8 Vs + "subs %w4, %w4, #16 \n" // 16 pixels + MEMACCESS(3) + "st4 {v0.8b,v1.8b,v2.8b,v3.8b}, [%3], #32 \n" // Store 16 pixels. + "b.gt 1b \n" + : "+r"(src_y), // %0 + "+r"(src_u), // %1 + "+r"(src_v), // %2 + "+r"(dst_uyvy), // %3 + "+r"(width) // %4 + : + : "cc", "memory", "v0", "v1", "v2", "v3" + ); +} + +void ARGBToRGB565Row_NEON(const uint8* src_argb, uint8* dst_rgb565, int width) { + asm volatile ( + "1: \n" + MEMACCESS(0) + "ld4 {v20.8b,v21.8b,v22.8b,v23.8b}, [%0], #32 \n" // load 8 pixels + "subs %w2, %w2, #8 \n" // 8 processed per loop. + ARGBTORGB565 + MEMACCESS(1) + "st1 {v0.16b}, [%1], #16 \n" // store 8 pixels RGB565. + "b.gt 1b \n" + : "+r"(src_argb), // %0 + "+r"(dst_rgb565), // %1 + "+r"(width) // %2 + : + : "cc", "memory", "v0", "v20", "v21", "v22", "v23" + ); +} + +void ARGBToRGB565DitherRow_NEON(const uint8* src_argb, uint8* dst_rgb, + const uint32 dither4, int width) { + asm volatile ( + "dup v1.4s, %w2 \n" // dither4 + "1: \n" + MEMACCESS(1) + "ld4 {v20.8b,v21.8b,v22.8b,v23.8b}, [%1], #32 \n" // load 8 pixels + "subs %w3, %w3, #8 \n" // 8 processed per loop. + "uqadd v20.8b, v20.8b, v1.8b \n" + "uqadd v21.8b, v21.8b, v1.8b \n" + "uqadd v22.8b, v22.8b, v1.8b \n" + ARGBTORGB565 + MEMACCESS(0) + "st1 {v0.16b}, [%0], #16 \n" // store 8 pixels RGB565. + "b.gt 1b \n" + : "+r"(dst_rgb) // %0 + : "r"(src_argb), // %1 + "r"(dither4), // %2 + "r"(width) // %3 + : "cc", "memory", "v0", "v1", "v20", "v21", "v22", "v23" + ); +} + +void ARGBToARGB1555Row_NEON(const uint8* src_argb, uint8* dst_argb1555, + int width) { + asm volatile ( + "1: \n" + MEMACCESS(0) + "ld4 {v20.8b,v21.8b,v22.8b,v23.8b}, [%0], #32 \n" // load 8 pixels + "subs %w2, %w2, #8 \n" // 8 processed per loop. + ARGBTOARGB1555 + MEMACCESS(1) + "st1 {v0.16b}, [%1], #16 \n" // store 8 pixels ARGB1555. + "b.gt 1b \n" + : "+r"(src_argb), // %0 + "+r"(dst_argb1555), // %1 + "+r"(width) // %2 + : + : "cc", "memory", "v0", "v20", "v21", "v22", "v23" + ); +} + +void ARGBToARGB4444Row_NEON(const uint8* src_argb, uint8* dst_argb4444, + int width) { + asm volatile ( + "movi v4.16b, #0x0f \n" // bits to clear with vbic. + "1: \n" + MEMACCESS(0) + "ld4 {v20.8b,v21.8b,v22.8b,v23.8b}, [%0], #32 \n" // load 8 pixels + "subs %w2, %w2, #8 \n" // 8 processed per loop. + ARGBTOARGB4444 + MEMACCESS(1) + "st1 {v0.16b}, [%1], #16 \n" // store 8 pixels ARGB4444. + "b.gt 1b \n" + : "+r"(src_argb), // %0 + "+r"(dst_argb4444), // %1 + "+r"(width) // %2 + : + : "cc", "memory", "v0", "v1", "v4", "v20", "v21", "v22", "v23" + ); +} + +void ARGBToYRow_NEON(const uint8* src_argb, uint8* dst_y, int width) { + asm volatile ( + "movi v4.8b, #13 \n" // B * 0.1016 coefficient + "movi v5.8b, #65 \n" // G * 0.5078 coefficient + "movi v6.8b, #33 \n" // R * 0.2578 coefficient + "movi v7.8b, #16 \n" // Add 16 constant + "1: \n" + MEMACCESS(0) + "ld4 {v0.8b,v1.8b,v2.8b,v3.8b}, [%0], #32 \n" // load 8 ARGB pixels. + "subs %w2, %w2, #8 \n" // 8 processed per loop. + "umull v3.8h, v0.8b, v4.8b \n" // B + "umlal v3.8h, v1.8b, v5.8b \n" // G + "umlal v3.8h, v2.8b, v6.8b \n" // R + "sqrshrun v0.8b, v3.8h, #7 \n" // 16 bit to 8 bit Y + "uqadd v0.8b, v0.8b, v7.8b \n" + MEMACCESS(1) + "st1 {v0.8b}, [%1], #8 \n" // store 8 pixels Y. + "b.gt 1b \n" + : "+r"(src_argb), // %0 + "+r"(dst_y), // %1 + "+r"(width) // %2 + : + : "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7" + ); +} + +void ARGBExtractAlphaRow_NEON(const uint8* src_argb, uint8* dst_a, int width) { + asm volatile ( + "1: \n" + MEMACCESS(0) + "ld4 {v0.16b,v1.16b,v2.16b,v3.16b}, [%0], #64 \n" // load row 16 pixels + "subs %w2, %w2, #16 \n" // 16 processed per loop + MEMACCESS(1) + "st1 {v3.16b}, [%1], #16 \n" // store 16 A's. + "b.gt 1b \n" + : "+r"(src_argb), // %0 + "+r"(dst_a), // %1 + "+r"(width) // %2 + : + : "cc", "memory", "v0", "v1", "v2", "v3" // Clobber List + ); +} + +void ARGBToYJRow_NEON(const uint8* src_argb, uint8* dst_y, int width) { + asm volatile ( + "movi v4.8b, #15 \n" // B * 0.11400 coefficient + "movi v5.8b, #75 \n" // G * 0.58700 coefficient + "movi v6.8b, #38 \n" // R * 0.29900 coefficient + "1: \n" + MEMACCESS(0) + "ld4 {v0.8b,v1.8b,v2.8b,v3.8b}, [%0], #32 \n" // load 8 ARGB pixels. + "subs %w2, %w2, #8 \n" // 8 processed per loop. + "umull v3.8h, v0.8b, v4.8b \n" // B + "umlal v3.8h, v1.8b, v5.8b \n" // G + "umlal v3.8h, v2.8b, v6.8b \n" // R + "sqrshrun v0.8b, v3.8h, #7 \n" // 15 bit to 8 bit Y + MEMACCESS(1) + "st1 {v0.8b}, [%1], #8 \n" // store 8 pixels Y. + "b.gt 1b \n" + : "+r"(src_argb), // %0 + "+r"(dst_y), // %1 + "+r"(width) // %2 + : + : "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6" + ); +} + +// 8x1 pixels. +void ARGBToUV444Row_NEON(const uint8* src_argb, uint8* dst_u, uint8* dst_v, + int width) { + asm volatile ( + "movi v24.8b, #112 \n" // UB / VR 0.875 coefficient + "movi v25.8b, #74 \n" // UG -0.5781 coefficient + "movi v26.8b, #38 \n" // UR -0.2969 coefficient + "movi v27.8b, #18 \n" // VB -0.1406 coefficient + "movi v28.8b, #94 \n" // VG -0.7344 coefficient + "movi v29.16b,#0x80 \n" // 128.5 + "1: \n" + MEMACCESS(0) + "ld4 {v0.8b,v1.8b,v2.8b,v3.8b}, [%0], #32 \n" // load 8 ARGB pixels. + "subs %w3, %w3, #8 \n" // 8 processed per loop. + "umull v4.8h, v0.8b, v24.8b \n" // B + "umlsl v4.8h, v1.8b, v25.8b \n" // G + "umlsl v4.8h, v2.8b, v26.8b \n" // R + "add v4.8h, v4.8h, v29.8h \n" // +128 -> unsigned + + "umull v3.8h, v2.8b, v24.8b \n" // R + "umlsl v3.8h, v1.8b, v28.8b \n" // G + "umlsl v3.8h, v0.8b, v27.8b \n" // B + "add v3.8h, v3.8h, v29.8h \n" // +128 -> unsigned + + "uqshrn v0.8b, v4.8h, #8 \n" // 16 bit to 8 bit U + "uqshrn v1.8b, v3.8h, #8 \n" // 16 bit to 8 bit V + + MEMACCESS(1) + "st1 {v0.8b}, [%1], #8 \n" // store 8 pixels U. + MEMACCESS(2) + "st1 {v1.8b}, [%2], #8 \n" // store 8 pixels V. + "b.gt 1b \n" + : "+r"(src_argb), // %0 + "+r"(dst_u), // %1 + "+r"(dst_v), // %2 + "+r"(width) // %3 + : + : "cc", "memory", "v0", "v1", "v2", "v3", "v4", + "v24", "v25", "v26", "v27", "v28", "v29" + ); +} + +#define RGBTOUV_SETUP_REG \ + "movi v20.8h, #56, lsl #0 \n" /* UB/VR coefficient (0.875) / 2 */ \ + "movi v21.8h, #37, lsl #0 \n" /* UG coefficient (-0.5781) / 2 */ \ + "movi v22.8h, #19, lsl #0 \n" /* UR coefficient (-0.2969) / 2 */ \ + "movi v23.8h, #9, lsl #0 \n" /* VB coefficient (-0.1406) / 2 */ \ + "movi v24.8h, #47, lsl #0 \n" /* VG coefficient (-0.7344) / 2 */ \ + "movi v25.16b, #0x80 \n" /* 128.5 (0x8080 in 16-bit) */ + +// 32x1 pixels -> 8x1. width is number of argb pixels. e.g. 32. +void ARGBToUV411Row_NEON(const uint8* src_argb, uint8* dst_u, uint8* dst_v, + int width) { + asm volatile ( + RGBTOUV_SETUP_REG + "1: \n" + MEMACCESS(0) + "ld4 {v0.16b,v1.16b,v2.16b,v3.16b}, [%0], #64 \n" // load 16 pixels. + "uaddlp v0.8h, v0.16b \n" // B 16 bytes -> 8 shorts. + "uaddlp v1.8h, v1.16b \n" // G 16 bytes -> 8 shorts. + "uaddlp v2.8h, v2.16b \n" // R 16 bytes -> 8 shorts. + MEMACCESS(0) + "ld4 {v4.16b,v5.16b,v6.16b,v7.16b}, [%0], #64 \n" // load next 16. + "uaddlp v4.8h, v4.16b \n" // B 16 bytes -> 8 shorts. + "uaddlp v5.8h, v5.16b \n" // G 16 bytes -> 8 shorts. + "uaddlp v6.8h, v6.16b \n" // R 16 bytes -> 8 shorts. + + "addp v0.8h, v0.8h, v4.8h \n" // B 16 shorts -> 8 shorts. + "addp v1.8h, v1.8h, v5.8h \n" // G 16 shorts -> 8 shorts. + "addp v2.8h, v2.8h, v6.8h \n" // R 16 shorts -> 8 shorts. + + "urshr v0.8h, v0.8h, #1 \n" // 2x average + "urshr v1.8h, v1.8h, #1 \n" + "urshr v2.8h, v2.8h, #1 \n" + + "subs %w3, %w3, #32 \n" // 32 processed per loop. + "mul v3.8h, v0.8h, v20.8h \n" // B + "mls v3.8h, v1.8h, v21.8h \n" // G + "mls v3.8h, v2.8h, v22.8h \n" // R + "add v3.8h, v3.8h, v25.8h \n" // +128 -> unsigned + "mul v4.8h, v2.8h, v20.8h \n" // R + "mls v4.8h, v1.8h, v24.8h \n" // G + "mls v4.8h, v0.8h, v23.8h \n" // B + "add v4.8h, v4.8h, v25.8h \n" // +128 -> unsigned + "uqshrn v0.8b, v3.8h, #8 \n" // 16 bit to 8 bit U + "uqshrn v1.8b, v4.8h, #8 \n" // 16 bit to 8 bit V + MEMACCESS(1) + "st1 {v0.8b}, [%1], #8 \n" // store 8 pixels U. + MEMACCESS(2) + "st1 {v1.8b}, [%2], #8 \n" // store 8 pixels V. + "b.gt 1b \n" + : "+r"(src_argb), // %0 + "+r"(dst_u), // %1 + "+r"(dst_v), // %2 + "+r"(width) // %3 + : + : "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", + "v20", "v21", "v22", "v23", "v24", "v25" + ); +} + +// 16x2 pixels -> 8x1. width is number of argb pixels. e.g. 16. +#define RGBTOUV(QB, QG, QR) \ + "mul v3.8h, " #QB ",v20.8h \n" /* B */ \ + "mul v4.8h, " #QR ",v20.8h \n" /* R */ \ + "mls v3.8h, " #QG ",v21.8h \n" /* G */ \ + "mls v4.8h, " #QG ",v24.8h \n" /* G */ \ + "mls v3.8h, " #QR ",v22.8h \n" /* R */ \ + "mls v4.8h, " #QB ",v23.8h \n" /* B */ \ + "add v3.8h, v3.8h, v25.8h \n" /* +128 -> unsigned */ \ + "add v4.8h, v4.8h, v25.8h \n" /* +128 -> unsigned */ \ + "uqshrn v0.8b, v3.8h, #8 \n" /* 16 bit to 8 bit U */ \ + "uqshrn v1.8b, v4.8h, #8 \n" /* 16 bit to 8 bit V */ + +// TODO(fbarchard): Consider vhadd vertical, then vpaddl horizontal, avoid shr. +// TODO(fbarchard): consider ptrdiff_t for all strides. + +void ARGBToUVRow_NEON(const uint8* src_argb, int src_stride_argb, + uint8* dst_u, uint8* dst_v, int width) { + const uint8* src_argb_1 = src_argb + src_stride_argb; + asm volatile ( + RGBTOUV_SETUP_REG + "1: \n" + MEMACCESS(0) + "ld4 {v0.16b,v1.16b,v2.16b,v3.16b}, [%0], #64 \n" // load 16 pixels. + "uaddlp v0.8h, v0.16b \n" // B 16 bytes -> 8 shorts. + "uaddlp v1.8h, v1.16b \n" // G 16 bytes -> 8 shorts. + "uaddlp v2.8h, v2.16b \n" // R 16 bytes -> 8 shorts. + + MEMACCESS(1) + "ld4 {v4.16b,v5.16b,v6.16b,v7.16b}, [%1], #64 \n" // load next 16 + "uadalp v0.8h, v4.16b \n" // B 16 bytes -> 8 shorts. + "uadalp v1.8h, v5.16b \n" // G 16 bytes -> 8 shorts. + "uadalp v2.8h, v6.16b \n" // R 16 bytes -> 8 shorts. + + "urshr v0.8h, v0.8h, #1 \n" // 2x average + "urshr v1.8h, v1.8h, #1 \n" + "urshr v2.8h, v2.8h, #1 \n" + + "subs %w4, %w4, #16 \n" // 32 processed per loop. + RGBTOUV(v0.8h, v1.8h, v2.8h) + MEMACCESS(2) + "st1 {v0.8b}, [%2], #8 \n" // store 8 pixels U. + MEMACCESS(3) + "st1 {v1.8b}, [%3], #8 \n" // store 8 pixels V. + "b.gt 1b \n" + : "+r"(src_argb), // %0 + "+r"(src_argb_1), // %1 + "+r"(dst_u), // %2 + "+r"(dst_v), // %3 + "+r"(width) // %4 + : + : "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", + "v20", "v21", "v22", "v23", "v24", "v25" + ); +} + +// TODO(fbarchard): Subsample match C code. +void ARGBToUVJRow_NEON(const uint8* src_argb, int src_stride_argb, + uint8* dst_u, uint8* dst_v, int width) { + const uint8* src_argb_1 = src_argb + src_stride_argb; + asm volatile ( + "movi v20.8h, #63, lsl #0 \n" // UB/VR coeff (0.500) / 2 + "movi v21.8h, #42, lsl #0 \n" // UG coeff (-0.33126) / 2 + "movi v22.8h, #21, lsl #0 \n" // UR coeff (-0.16874) / 2 + "movi v23.8h, #10, lsl #0 \n" // VB coeff (-0.08131) / 2 + "movi v24.8h, #53, lsl #0 \n" // VG coeff (-0.41869) / 2 + "movi v25.16b, #0x80 \n" // 128.5 (0x8080 in 16-bit) + "1: \n" + MEMACCESS(0) + "ld4 {v0.16b,v1.16b,v2.16b,v3.16b}, [%0], #64 \n" // load 16 pixels. + "uaddlp v0.8h, v0.16b \n" // B 16 bytes -> 8 shorts. + "uaddlp v1.8h, v1.16b \n" // G 16 bytes -> 8 shorts. + "uaddlp v2.8h, v2.16b \n" // R 16 bytes -> 8 shorts. + MEMACCESS(1) + "ld4 {v4.16b,v5.16b,v6.16b,v7.16b}, [%1], #64 \n" // load next 16 + "uadalp v0.8h, v4.16b \n" // B 16 bytes -> 8 shorts. + "uadalp v1.8h, v5.16b \n" // G 16 bytes -> 8 shorts. + "uadalp v2.8h, v6.16b \n" // R 16 bytes -> 8 shorts. + + "urshr v0.8h, v0.8h, #1 \n" // 2x average + "urshr v1.8h, v1.8h, #1 \n" + "urshr v2.8h, v2.8h, #1 \n" + + "subs %w4, %w4, #16 \n" // 32 processed per loop. + RGBTOUV(v0.8h, v1.8h, v2.8h) + MEMACCESS(2) + "st1 {v0.8b}, [%2], #8 \n" // store 8 pixels U. + MEMACCESS(3) + "st1 {v1.8b}, [%3], #8 \n" // store 8 pixels V. + "b.gt 1b \n" + : "+r"(src_argb), // %0 + "+r"(src_argb_1), // %1 + "+r"(dst_u), // %2 + "+r"(dst_v), // %3 + "+r"(width) // %4 + : + : "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", + "v20", "v21", "v22", "v23", "v24", "v25" + ); +} + +void BGRAToUVRow_NEON(const uint8* src_bgra, int src_stride_bgra, + uint8* dst_u, uint8* dst_v, int width) { + const uint8* src_bgra_1 = src_bgra + src_stride_bgra; + asm volatile ( + RGBTOUV_SETUP_REG + "1: \n" + MEMACCESS(0) + "ld4 {v0.16b,v1.16b,v2.16b,v3.16b}, [%0], #64 \n" // load 16 pixels. + "uaddlp v0.8h, v3.16b \n" // B 16 bytes -> 8 shorts. + "uaddlp v3.8h, v2.16b \n" // G 16 bytes -> 8 shorts. + "uaddlp v2.8h, v1.16b \n" // R 16 bytes -> 8 shorts. + MEMACCESS(1) + "ld4 {v4.16b,v5.16b,v6.16b,v7.16b}, [%1], #64 \n" // load 16 more + "uadalp v0.8h, v7.16b \n" // B 16 bytes -> 8 shorts. + "uadalp v3.8h, v6.16b \n" // G 16 bytes -> 8 shorts. + "uadalp v2.8h, v5.16b \n" // R 16 bytes -> 8 shorts. + + "urshr v0.8h, v0.8h, #1 \n" // 2x average + "urshr v1.8h, v3.8h, #1 \n" + "urshr v2.8h, v2.8h, #1 \n" + + "subs %w4, %w4, #16 \n" // 32 processed per loop. + RGBTOUV(v0.8h, v1.8h, v2.8h) + MEMACCESS(2) + "st1 {v0.8b}, [%2], #8 \n" // store 8 pixels U. + MEMACCESS(3) + "st1 {v1.8b}, [%3], #8 \n" // store 8 pixels V. + "b.gt 1b \n" + : "+r"(src_bgra), // %0 + "+r"(src_bgra_1), // %1 + "+r"(dst_u), // %2 + "+r"(dst_v), // %3 + "+r"(width) // %4 + : + : "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", + "v20", "v21", "v22", "v23", "v24", "v25" + ); +} + +void ABGRToUVRow_NEON(const uint8* src_abgr, int src_stride_abgr, + uint8* dst_u, uint8* dst_v, int width) { + const uint8* src_abgr_1 = src_abgr + src_stride_abgr; + asm volatile ( + RGBTOUV_SETUP_REG + "1: \n" + MEMACCESS(0) + "ld4 {v0.16b,v1.16b,v2.16b,v3.16b}, [%0], #64 \n" // load 16 pixels. + "uaddlp v3.8h, v2.16b \n" // B 16 bytes -> 8 shorts. + "uaddlp v2.8h, v1.16b \n" // G 16 bytes -> 8 shorts. + "uaddlp v1.8h, v0.16b \n" // R 16 bytes -> 8 shorts. + MEMACCESS(1) + "ld4 {v4.16b,v5.16b,v6.16b,v7.16b}, [%1], #64 \n" // load 16 more. + "uadalp v3.8h, v6.16b \n" // B 16 bytes -> 8 shorts. + "uadalp v2.8h, v5.16b \n" // G 16 bytes -> 8 shorts. + "uadalp v1.8h, v4.16b \n" // R 16 bytes -> 8 shorts. + + "urshr v0.8h, v3.8h, #1 \n" // 2x average + "urshr v2.8h, v2.8h, #1 \n" + "urshr v1.8h, v1.8h, #1 \n" + + "subs %w4, %w4, #16 \n" // 32 processed per loop. + RGBTOUV(v0.8h, v2.8h, v1.8h) + MEMACCESS(2) + "st1 {v0.8b}, [%2], #8 \n" // store 8 pixels U. + MEMACCESS(3) + "st1 {v1.8b}, [%3], #8 \n" // store 8 pixels V. + "b.gt 1b \n" + : "+r"(src_abgr), // %0 + "+r"(src_abgr_1), // %1 + "+r"(dst_u), // %2 + "+r"(dst_v), // %3 + "+r"(width) // %4 + : + : "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", + "v20", "v21", "v22", "v23", "v24", "v25" + ); +} + +void RGBAToUVRow_NEON(const uint8* src_rgba, int src_stride_rgba, + uint8* dst_u, uint8* dst_v, int width) { + const uint8* src_rgba_1 = src_rgba + src_stride_rgba; + asm volatile ( + RGBTOUV_SETUP_REG + "1: \n" + MEMACCESS(0) + "ld4 {v0.16b,v1.16b,v2.16b,v3.16b}, [%0], #64 \n" // load 16 pixels. + "uaddlp v0.8h, v1.16b \n" // B 16 bytes -> 8 shorts. + "uaddlp v1.8h, v2.16b \n" // G 16 bytes -> 8 shorts. + "uaddlp v2.8h, v3.16b \n" // R 16 bytes -> 8 shorts. + MEMACCESS(1) + "ld4 {v4.16b,v5.16b,v6.16b,v7.16b}, [%1], #64 \n" // load 16 more. + "uadalp v0.8h, v5.16b \n" // B 16 bytes -> 8 shorts. + "uadalp v1.8h, v6.16b \n" // G 16 bytes -> 8 shorts. + "uadalp v2.8h, v7.16b \n" // R 16 bytes -> 8 shorts. + + "urshr v0.8h, v0.8h, #1 \n" // 2x average + "urshr v1.8h, v1.8h, #1 \n" + "urshr v2.8h, v2.8h, #1 \n" + + "subs %w4, %w4, #16 \n" // 32 processed per loop. + RGBTOUV(v0.8h, v1.8h, v2.8h) + MEMACCESS(2) + "st1 {v0.8b}, [%2], #8 \n" // store 8 pixels U. + MEMACCESS(3) + "st1 {v1.8b}, [%3], #8 \n" // store 8 pixels V. + "b.gt 1b \n" + : "+r"(src_rgba), // %0 + "+r"(src_rgba_1), // %1 + "+r"(dst_u), // %2 + "+r"(dst_v), // %3 + "+r"(width) // %4 + : + : "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", + "v20", "v21", "v22", "v23", "v24", "v25" + ); +} + +void RGB24ToUVRow_NEON(const uint8* src_rgb24, int src_stride_rgb24, + uint8* dst_u, uint8* dst_v, int width) { + const uint8* src_rgb24_1 = src_rgb24 + src_stride_rgb24; + asm volatile ( + RGBTOUV_SETUP_REG + "1: \n" + MEMACCESS(0) + "ld3 {v0.16b,v1.16b,v2.16b}, [%0], #48 \n" // load 16 pixels. + "uaddlp v0.8h, v0.16b \n" // B 16 bytes -> 8 shorts. + "uaddlp v1.8h, v1.16b \n" // G 16 bytes -> 8 shorts. + "uaddlp v2.8h, v2.16b \n" // R 16 bytes -> 8 shorts. + MEMACCESS(1) + "ld3 {v4.16b,v5.16b,v6.16b}, [%1], #48 \n" // load 16 more. + "uadalp v0.8h, v4.16b \n" // B 16 bytes -> 8 shorts. + "uadalp v1.8h, v5.16b \n" // G 16 bytes -> 8 shorts. + "uadalp v2.8h, v6.16b \n" // R 16 bytes -> 8 shorts. + + "urshr v0.8h, v0.8h, #1 \n" // 2x average + "urshr v1.8h, v1.8h, #1 \n" + "urshr v2.8h, v2.8h, #1 \n" + + "subs %w4, %w4, #16 \n" // 32 processed per loop. + RGBTOUV(v0.8h, v1.8h, v2.8h) + MEMACCESS(2) + "st1 {v0.8b}, [%2], #8 \n" // store 8 pixels U. + MEMACCESS(3) + "st1 {v1.8b}, [%3], #8 \n" // store 8 pixels V. + "b.gt 1b \n" + : "+r"(src_rgb24), // %0 + "+r"(src_rgb24_1), // %1 + "+r"(dst_u), // %2 + "+r"(dst_v), // %3 + "+r"(width) // %4 + : + : "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", + "v20", "v21", "v22", "v23", "v24", "v25" + ); +} + +void RAWToUVRow_NEON(const uint8* src_raw, int src_stride_raw, + uint8* dst_u, uint8* dst_v, int width) { + const uint8* src_raw_1 = src_raw + src_stride_raw; + asm volatile ( + RGBTOUV_SETUP_REG + "1: \n" + MEMACCESS(0) + "ld3 {v0.16b,v1.16b,v2.16b}, [%0], #48 \n" // load 8 RAW pixels. + "uaddlp v2.8h, v2.16b \n" // B 16 bytes -> 8 shorts. + "uaddlp v1.8h, v1.16b \n" // G 16 bytes -> 8 shorts. + "uaddlp v0.8h, v0.16b \n" // R 16 bytes -> 8 shorts. + MEMACCESS(1) + "ld3 {v4.16b,v5.16b,v6.16b}, [%1], #48 \n" // load 8 more RAW pixels + "uadalp v2.8h, v6.16b \n" // B 16 bytes -> 8 shorts. + "uadalp v1.8h, v5.16b \n" // G 16 bytes -> 8 shorts. + "uadalp v0.8h, v4.16b \n" // R 16 bytes -> 8 shorts. + + "urshr v2.8h, v2.8h, #1 \n" // 2x average + "urshr v1.8h, v1.8h, #1 \n" + "urshr v0.8h, v0.8h, #1 \n" + + "subs %w4, %w4, #16 \n" // 32 processed per loop. + RGBTOUV(v2.8h, v1.8h, v0.8h) + MEMACCESS(2) + "st1 {v0.8b}, [%2], #8 \n" // store 8 pixels U. + MEMACCESS(3) + "st1 {v1.8b}, [%3], #8 \n" // store 8 pixels V. + "b.gt 1b \n" + : "+r"(src_raw), // %0 + "+r"(src_raw_1), // %1 + "+r"(dst_u), // %2 + "+r"(dst_v), // %3 + "+r"(width) // %4 + : + : "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", + "v20", "v21", "v22", "v23", "v24", "v25" + ); +} + +// 16x2 pixels -> 8x1. width is number of argb pixels. e.g. 16. +void RGB565ToUVRow_NEON(const uint8* src_rgb565, int src_stride_rgb565, + uint8* dst_u, uint8* dst_v, int width) { + const uint8* src_rgb565_1 = src_rgb565 + src_stride_rgb565; + asm volatile ( + "movi v22.8h, #56, lsl #0 \n" // UB / VR coeff (0.875) / 2 + "movi v23.8h, #37, lsl #0 \n" // UG coeff (-0.5781) / 2 + "movi v24.8h, #19, lsl #0 \n" // UR coeff (-0.2969) / 2 + "movi v25.8h, #9 , lsl #0 \n" // VB coeff (-0.1406) / 2 + "movi v26.8h, #47, lsl #0 \n" // VG coeff (-0.7344) / 2 + "movi v27.16b, #0x80 \n" // 128.5 (0x8080 in 16-bit) + "1: \n" + MEMACCESS(0) + "ld1 {v0.16b}, [%0], #16 \n" // load 8 RGB565 pixels. + RGB565TOARGB + "uaddlp v16.4h, v0.8b \n" // B 8 bytes -> 4 shorts. + "uaddlp v18.4h, v1.8b \n" // G 8 bytes -> 4 shorts. + "uaddlp v20.4h, v2.8b \n" // R 8 bytes -> 4 shorts. + MEMACCESS(0) + "ld1 {v0.16b}, [%0], #16 \n" // next 8 RGB565 pixels. + RGB565TOARGB + "uaddlp v17.4h, v0.8b \n" // B 8 bytes -> 4 shorts. + "uaddlp v19.4h, v1.8b \n" // G 8 bytes -> 4 shorts. + "uaddlp v21.4h, v2.8b \n" // R 8 bytes -> 4 shorts. + + MEMACCESS(1) + "ld1 {v0.16b}, [%1], #16 \n" // load 8 RGB565 pixels. + RGB565TOARGB + "uadalp v16.4h, v0.8b \n" // B 8 bytes -> 4 shorts. + "uadalp v18.4h, v1.8b \n" // G 8 bytes -> 4 shorts. + "uadalp v20.4h, v2.8b \n" // R 8 bytes -> 4 shorts. + MEMACCESS(1) + "ld1 {v0.16b}, [%1], #16 \n" // next 8 RGB565 pixels. + RGB565TOARGB + "uadalp v17.4h, v0.8b \n" // B 8 bytes -> 4 shorts. + "uadalp v19.4h, v1.8b \n" // G 8 bytes -> 4 shorts. + "uadalp v21.4h, v2.8b \n" // R 8 bytes -> 4 shorts. + + "ins v16.D[1], v17.D[0] \n" + "ins v18.D[1], v19.D[0] \n" + "ins v20.D[1], v21.D[0] \n" + + "urshr v4.8h, v16.8h, #1 \n" // 2x average + "urshr v5.8h, v18.8h, #1 \n" + "urshr v6.8h, v20.8h, #1 \n" + + "subs %w4, %w4, #16 \n" // 16 processed per loop. + "mul v16.8h, v4.8h, v22.8h \n" // B + "mls v16.8h, v5.8h, v23.8h \n" // G + "mls v16.8h, v6.8h, v24.8h \n" // R + "add v16.8h, v16.8h, v27.8h \n" // +128 -> unsigned + "mul v17.8h, v6.8h, v22.8h \n" // R + "mls v17.8h, v5.8h, v26.8h \n" // G + "mls v17.8h, v4.8h, v25.8h \n" // B + "add v17.8h, v17.8h, v27.8h \n" // +128 -> unsigned + "uqshrn v0.8b, v16.8h, #8 \n" // 16 bit to 8 bit U + "uqshrn v1.8b, v17.8h, #8 \n" // 16 bit to 8 bit V + MEMACCESS(2) + "st1 {v0.8b}, [%2], #8 \n" // store 8 pixels U. + MEMACCESS(3) + "st1 {v1.8b}, [%3], #8 \n" // store 8 pixels V. + "b.gt 1b \n" + : "+r"(src_rgb565), // %0 + "+r"(src_rgb565_1), // %1 + "+r"(dst_u), // %2 + "+r"(dst_v), // %3 + "+r"(width) // %4 + : + : "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", + "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23", "v24", + "v25", "v26", "v27" + ); +} + +// 16x2 pixels -> 8x1. width is number of argb pixels. e.g. 16. +void ARGB1555ToUVRow_NEON(const uint8* src_argb1555, int src_stride_argb1555, + uint8* dst_u, uint8* dst_v, int width) { + const uint8* src_argb1555_1 = src_argb1555 + src_stride_argb1555; + asm volatile ( + RGBTOUV_SETUP_REG + "1: \n" + MEMACCESS(0) + "ld1 {v0.16b}, [%0], #16 \n" // load 8 ARGB1555 pixels. + RGB555TOARGB + "uaddlp v16.4h, v0.8b \n" // B 8 bytes -> 4 shorts. + "uaddlp v17.4h, v1.8b \n" // G 8 bytes -> 4 shorts. + "uaddlp v18.4h, v2.8b \n" // R 8 bytes -> 4 shorts. + MEMACCESS(0) + "ld1 {v0.16b}, [%0], #16 \n" // next 8 ARGB1555 pixels. + RGB555TOARGB + "uaddlp v26.4h, v0.8b \n" // B 8 bytes -> 4 shorts. + "uaddlp v27.4h, v1.8b \n" // G 8 bytes -> 4 shorts. + "uaddlp v28.4h, v2.8b \n" // R 8 bytes -> 4 shorts. + + MEMACCESS(1) + "ld1 {v0.16b}, [%1], #16 \n" // load 8 ARGB1555 pixels. + RGB555TOARGB + "uadalp v16.4h, v0.8b \n" // B 8 bytes -> 4 shorts. + "uadalp v17.4h, v1.8b \n" // G 8 bytes -> 4 shorts. + "uadalp v18.4h, v2.8b \n" // R 8 bytes -> 4 shorts. + MEMACCESS(1) + "ld1 {v0.16b}, [%1], #16 \n" // next 8 ARGB1555 pixels. + RGB555TOARGB + "uadalp v26.4h, v0.8b \n" // B 8 bytes -> 4 shorts. + "uadalp v27.4h, v1.8b \n" // G 8 bytes -> 4 shorts. + "uadalp v28.4h, v2.8b \n" // R 8 bytes -> 4 shorts. + + "ins v16.D[1], v26.D[0] \n" + "ins v17.D[1], v27.D[0] \n" + "ins v18.D[1], v28.D[0] \n" + + "urshr v4.8h, v16.8h, #1 \n" // 2x average + "urshr v5.8h, v17.8h, #1 \n" + "urshr v6.8h, v18.8h, #1 \n" + + "subs %w4, %w4, #16 \n" // 16 processed per loop. + "mul v2.8h, v4.8h, v20.8h \n" // B + "mls v2.8h, v5.8h, v21.8h \n" // G + "mls v2.8h, v6.8h, v22.8h \n" // R + "add v2.8h, v2.8h, v25.8h \n" // +128 -> unsigned + "mul v3.8h, v6.8h, v20.8h \n" // R + "mls v3.8h, v5.8h, v24.8h \n" // G + "mls v3.8h, v4.8h, v23.8h \n" // B + "add v3.8h, v3.8h, v25.8h \n" // +128 -> unsigned + "uqshrn v0.8b, v2.8h, #8 \n" // 16 bit to 8 bit U + "uqshrn v1.8b, v3.8h, #8 \n" // 16 bit to 8 bit V + MEMACCESS(2) + "st1 {v0.8b}, [%2], #8 \n" // store 8 pixels U. + MEMACCESS(3) + "st1 {v1.8b}, [%3], #8 \n" // store 8 pixels V. + "b.gt 1b \n" + : "+r"(src_argb1555), // %0 + "+r"(src_argb1555_1), // %1 + "+r"(dst_u), // %2 + "+r"(dst_v), // %3 + "+r"(width) // %4 + : + : "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6", + "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23", "v24", "v25", + "v26", "v27", "v28" + ); +} + +// 16x2 pixels -> 8x1. width is number of argb pixels. e.g. 16. +void ARGB4444ToUVRow_NEON(const uint8* src_argb4444, int src_stride_argb4444, + uint8* dst_u, uint8* dst_v, int width) { + const uint8* src_argb4444_1 = src_argb4444 + src_stride_argb4444; + asm volatile ( + RGBTOUV_SETUP_REG + "1: \n" + MEMACCESS(0) + "ld1 {v0.16b}, [%0], #16 \n" // load 8 ARGB4444 pixels. + ARGB4444TOARGB + "uaddlp v16.4h, v0.8b \n" // B 8 bytes -> 4 shorts. + "uaddlp v17.4h, v1.8b \n" // G 8 bytes -> 4 shorts. + "uaddlp v18.4h, v2.8b \n" // R 8 bytes -> 4 shorts. + MEMACCESS(0) + "ld1 {v0.16b}, [%0], #16 \n" // next 8 ARGB4444 pixels. + ARGB4444TOARGB + "uaddlp v26.4h, v0.8b \n" // B 8 bytes -> 4 shorts. + "uaddlp v27.4h, v1.8b \n" // G 8 bytes -> 4 shorts. + "uaddlp v28.4h, v2.8b \n" // R 8 bytes -> 4 shorts. + + MEMACCESS(1) + "ld1 {v0.16b}, [%1], #16 \n" // load 8 ARGB4444 pixels. + ARGB4444TOARGB + "uadalp v16.4h, v0.8b \n" // B 8 bytes -> 4 shorts. + "uadalp v17.4h, v1.8b \n" // G 8 bytes -> 4 shorts. + "uadalp v18.4h, v2.8b \n" // R 8 bytes -> 4 shorts. + MEMACCESS(1) + "ld1 {v0.16b}, [%1], #16 \n" // next 8 ARGB4444 pixels. + ARGB4444TOARGB + "uadalp v26.4h, v0.8b \n" // B 8 bytes -> 4 shorts. + "uadalp v27.4h, v1.8b \n" // G 8 bytes -> 4 shorts. + "uadalp v28.4h, v2.8b \n" // R 8 bytes -> 4 shorts. + + "ins v16.D[1], v26.D[0] \n" + "ins v17.D[1], v27.D[0] \n" + "ins v18.D[1], v28.D[0] \n" + + "urshr v4.8h, v16.8h, #1 \n" // 2x average + "urshr v5.8h, v17.8h, #1 \n" + "urshr v6.8h, v18.8h, #1 \n" + + "subs %w4, %w4, #16 \n" // 16 processed per loop. + "mul v2.8h, v4.8h, v20.8h \n" // B + "mls v2.8h, v5.8h, v21.8h \n" // G + "mls v2.8h, v6.8h, v22.8h \n" // R + "add v2.8h, v2.8h, v25.8h \n" // +128 -> unsigned + "mul v3.8h, v6.8h, v20.8h \n" // R + "mls v3.8h, v5.8h, v24.8h \n" // G + "mls v3.8h, v4.8h, v23.8h \n" // B + "add v3.8h, v3.8h, v25.8h \n" // +128 -> unsigned + "uqshrn v0.8b, v2.8h, #8 \n" // 16 bit to 8 bit U + "uqshrn v1.8b, v3.8h, #8 \n" // 16 bit to 8 bit V + MEMACCESS(2) + "st1 {v0.8b}, [%2], #8 \n" // store 8 pixels U. + MEMACCESS(3) + "st1 {v1.8b}, [%3], #8 \n" // store 8 pixels V. + "b.gt 1b \n" + : "+r"(src_argb4444), // %0 + "+r"(src_argb4444_1), // %1 + "+r"(dst_u), // %2 + "+r"(dst_v), // %3 + "+r"(width) // %4 + : + : "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6", + "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23", "v24", "v25", + "v26", "v27", "v28" + + ); +} + +void RGB565ToYRow_NEON(const uint8* src_rgb565, uint8* dst_y, int width) { + asm volatile ( + "movi v24.8b, #13 \n" // B * 0.1016 coefficient + "movi v25.8b, #65 \n" // G * 0.5078 coefficient + "movi v26.8b, #33 \n" // R * 0.2578 coefficient + "movi v27.8b, #16 \n" // Add 16 constant + "1: \n" + MEMACCESS(0) + "ld1 {v0.16b}, [%0], #16 \n" // load 8 RGB565 pixels. + "subs %w2, %w2, #8 \n" // 8 processed per loop. + RGB565TOARGB + "umull v3.8h, v0.8b, v24.8b \n" // B + "umlal v3.8h, v1.8b, v25.8b \n" // G + "umlal v3.8h, v2.8b, v26.8b \n" // R + "sqrshrun v0.8b, v3.8h, #7 \n" // 16 bit to 8 bit Y + "uqadd v0.8b, v0.8b, v27.8b \n" + MEMACCESS(1) + "st1 {v0.8b}, [%1], #8 \n" // store 8 pixels Y. + "b.gt 1b \n" + : "+r"(src_rgb565), // %0 + "+r"(dst_y), // %1 + "+r"(width) // %2 + : + : "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v6", + "v24", "v25", "v26", "v27" + ); +} + +void ARGB1555ToYRow_NEON(const uint8* src_argb1555, uint8* dst_y, int width) { + asm volatile ( + "movi v4.8b, #13 \n" // B * 0.1016 coefficient + "movi v5.8b, #65 \n" // G * 0.5078 coefficient + "movi v6.8b, #33 \n" // R * 0.2578 coefficient + "movi v7.8b, #16 \n" // Add 16 constant + "1: \n" + MEMACCESS(0) + "ld1 {v0.16b}, [%0], #16 \n" // load 8 ARGB1555 pixels. + "subs %w2, %w2, #8 \n" // 8 processed per loop. + ARGB1555TOARGB + "umull v3.8h, v0.8b, v4.8b \n" // B + "umlal v3.8h, v1.8b, v5.8b \n" // G + "umlal v3.8h, v2.8b, v6.8b \n" // R + "sqrshrun v0.8b, v3.8h, #7 \n" // 16 bit to 8 bit Y + "uqadd v0.8b, v0.8b, v7.8b \n" + MEMACCESS(1) + "st1 {v0.8b}, [%1], #8 \n" // store 8 pixels Y. + "b.gt 1b \n" + : "+r"(src_argb1555), // %0 + "+r"(dst_y), // %1 + "+r"(width) // %2 + : + : "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7" + ); +} + +void ARGB4444ToYRow_NEON(const uint8* src_argb4444, uint8* dst_y, int width) { + asm volatile ( + "movi v24.8b, #13 \n" // B * 0.1016 coefficient + "movi v25.8b, #65 \n" // G * 0.5078 coefficient + "movi v26.8b, #33 \n" // R * 0.2578 coefficient + "movi v27.8b, #16 \n" // Add 16 constant + "1: \n" + MEMACCESS(0) + "ld1 {v0.16b}, [%0], #16 \n" // load 8 ARGB4444 pixels. + "subs %w2, %w2, #8 \n" // 8 processed per loop. + ARGB4444TOARGB + "umull v3.8h, v0.8b, v24.8b \n" // B + "umlal v3.8h, v1.8b, v25.8b \n" // G + "umlal v3.8h, v2.8b, v26.8b \n" // R + "sqrshrun v0.8b, v3.8h, #7 \n" // 16 bit to 8 bit Y + "uqadd v0.8b, v0.8b, v27.8b \n" + MEMACCESS(1) + "st1 {v0.8b}, [%1], #8 \n" // store 8 pixels Y. + "b.gt 1b \n" + : "+r"(src_argb4444), // %0 + "+r"(dst_y), // %1 + "+r"(width) // %2 + : + : "cc", "memory", "v0", "v1", "v2", "v3", "v24", "v25", "v26", "v27" + ); +} + +void BGRAToYRow_NEON(const uint8* src_bgra, uint8* dst_y, int width) { + asm volatile ( + "movi v4.8b, #33 \n" // R * 0.2578 coefficient + "movi v5.8b, #65 \n" // G * 0.5078 coefficient + "movi v6.8b, #13 \n" // B * 0.1016 coefficient + "movi v7.8b, #16 \n" // Add 16 constant + "1: \n" + MEMACCESS(0) + "ld4 {v0.8b,v1.8b,v2.8b,v3.8b}, [%0], #32 \n" // load 8 pixels. + "subs %w2, %w2, #8 \n" // 8 processed per loop. + "umull v16.8h, v1.8b, v4.8b \n" // R + "umlal v16.8h, v2.8b, v5.8b \n" // G + "umlal v16.8h, v3.8b, v6.8b \n" // B + "sqrshrun v0.8b, v16.8h, #7 \n" // 16 bit to 8 bit Y + "uqadd v0.8b, v0.8b, v7.8b \n" + MEMACCESS(1) + "st1 {v0.8b}, [%1], #8 \n" // store 8 pixels Y. + "b.gt 1b \n" + : "+r"(src_bgra), // %0 + "+r"(dst_y), // %1 + "+r"(width) // %2 + : + : "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", "v16" + ); +} + +void ABGRToYRow_NEON(const uint8* src_abgr, uint8* dst_y, int width) { + asm volatile ( + "movi v4.8b, #33 \n" // R * 0.2578 coefficient + "movi v5.8b, #65 \n" // G * 0.5078 coefficient + "movi v6.8b, #13 \n" // B * 0.1016 coefficient + "movi v7.8b, #16 \n" // Add 16 constant + "1: \n" + MEMACCESS(0) + "ld4 {v0.8b,v1.8b,v2.8b,v3.8b}, [%0], #32 \n" // load 8 pixels. + "subs %w2, %w2, #8 \n" // 8 processed per loop. + "umull v16.8h, v0.8b, v4.8b \n" // R + "umlal v16.8h, v1.8b, v5.8b \n" // G + "umlal v16.8h, v2.8b, v6.8b \n" // B + "sqrshrun v0.8b, v16.8h, #7 \n" // 16 bit to 8 bit Y + "uqadd v0.8b, v0.8b, v7.8b \n" + MEMACCESS(1) + "st1 {v0.8b}, [%1], #8 \n" // store 8 pixels Y. + "b.gt 1b \n" + : "+r"(src_abgr), // %0 + "+r"(dst_y), // %1 + "+r"(width) // %2 + : + : "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", "v16" + ); +} + +void RGBAToYRow_NEON(const uint8* src_rgba, uint8* dst_y, int width) { + asm volatile ( + "movi v4.8b, #13 \n" // B * 0.1016 coefficient + "movi v5.8b, #65 \n" // G * 0.5078 coefficient + "movi v6.8b, #33 \n" // R * 0.2578 coefficient + "movi v7.8b, #16 \n" // Add 16 constant + "1: \n" + MEMACCESS(0) + "ld4 {v0.8b,v1.8b,v2.8b,v3.8b}, [%0], #32 \n" // load 8 pixels. + "subs %w2, %w2, #8 \n" // 8 processed per loop. + "umull v16.8h, v1.8b, v4.8b \n" // B + "umlal v16.8h, v2.8b, v5.8b \n" // G + "umlal v16.8h, v3.8b, v6.8b \n" // R + "sqrshrun v0.8b, v16.8h, #7 \n" // 16 bit to 8 bit Y + "uqadd v0.8b, v0.8b, v7.8b \n" + MEMACCESS(1) + "st1 {v0.8b}, [%1], #8 \n" // store 8 pixels Y. + "b.gt 1b \n" + : "+r"(src_rgba), // %0 + "+r"(dst_y), // %1 + "+r"(width) // %2 + : + : "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", "v16" + ); +} + +void RGB24ToYRow_NEON(const uint8* src_rgb24, uint8* dst_y, int width) { + asm volatile ( + "movi v4.8b, #13 \n" // B * 0.1016 coefficient + "movi v5.8b, #65 \n" // G * 0.5078 coefficient + "movi v6.8b, #33 \n" // R * 0.2578 coefficient + "movi v7.8b, #16 \n" // Add 16 constant + "1: \n" + MEMACCESS(0) + "ld3 {v0.8b,v1.8b,v2.8b}, [%0], #24 \n" // load 8 pixels. + "subs %w2, %w2, #8 \n" // 8 processed per loop. + "umull v16.8h, v0.8b, v4.8b \n" // B + "umlal v16.8h, v1.8b, v5.8b \n" // G + "umlal v16.8h, v2.8b, v6.8b \n" // R + "sqrshrun v0.8b, v16.8h, #7 \n" // 16 bit to 8 bit Y + "uqadd v0.8b, v0.8b, v7.8b \n" + MEMACCESS(1) + "st1 {v0.8b}, [%1], #8 \n" // store 8 pixels Y. + "b.gt 1b \n" + : "+r"(src_rgb24), // %0 + "+r"(dst_y), // %1 + "+r"(width) // %2 + : + : "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", "v16" + ); +} + +void RAWToYRow_NEON(const uint8* src_raw, uint8* dst_y, int width) { + asm volatile ( + "movi v4.8b, #33 \n" // R * 0.2578 coefficient + "movi v5.8b, #65 \n" // G * 0.5078 coefficient + "movi v6.8b, #13 \n" // B * 0.1016 coefficient + "movi v7.8b, #16 \n" // Add 16 constant + "1: \n" + MEMACCESS(0) + "ld3 {v0.8b,v1.8b,v2.8b}, [%0], #24 \n" // load 8 pixels. + "subs %w2, %w2, #8 \n" // 8 processed per loop. + "umull v16.8h, v0.8b, v4.8b \n" // B + "umlal v16.8h, v1.8b, v5.8b \n" // G + "umlal v16.8h, v2.8b, v6.8b \n" // R + "sqrshrun v0.8b, v16.8h, #7 \n" // 16 bit to 8 bit Y + "uqadd v0.8b, v0.8b, v7.8b \n" + MEMACCESS(1) + "st1 {v0.8b}, [%1], #8 \n" // store 8 pixels Y. + "b.gt 1b \n" + : "+r"(src_raw), // %0 + "+r"(dst_y), // %1 + "+r"(width) // %2 + : + : "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", "v16" + ); +} + +// Bilinear filter 16x2 -> 16x1 +void InterpolateRow_NEON(uint8* dst_ptr, + const uint8* src_ptr, ptrdiff_t src_stride, + int dst_width, int source_y_fraction) { + int y1_fraction = source_y_fraction; + int y0_fraction = 256 - y1_fraction; + const uint8* src_ptr1 = src_ptr + src_stride; + asm volatile ( + "cmp %w4, #0 \n" + "b.eq 100f \n" + "cmp %w4, #128 \n" + "b.eq 50f \n" + + "dup v5.16b, %w4 \n" + "dup v4.16b, %w5 \n" + // General purpose row blend. + "1: \n" + MEMACCESS(1) + "ld1 {v0.16b}, [%1], #16 \n" + MEMACCESS(2) + "ld1 {v1.16b}, [%2], #16 \n" + "subs %w3, %w3, #16 \n" + "umull v2.8h, v0.8b, v4.8b \n" + "umull2 v3.8h, v0.16b, v4.16b \n" + "umlal v2.8h, v1.8b, v5.8b \n" + "umlal2 v3.8h, v1.16b, v5.16b \n" + "rshrn v0.8b, v2.8h, #8 \n" + "rshrn2 v0.16b, v3.8h, #8 \n" + MEMACCESS(0) + "st1 {v0.16b}, [%0], #16 \n" + "b.gt 1b \n" + "b 99f \n" + + // Blend 50 / 50. + "50: \n" + MEMACCESS(1) + "ld1 {v0.16b}, [%1], #16 \n" + MEMACCESS(2) + "ld1 {v1.16b}, [%2], #16 \n" + "subs %w3, %w3, #16 \n" + "urhadd v0.16b, v0.16b, v1.16b \n" + MEMACCESS(0) + "st1 {v0.16b}, [%0], #16 \n" + "b.gt 50b \n" + "b 99f \n" + + // Blend 100 / 0 - Copy row unchanged. + "100: \n" + MEMACCESS(1) + "ld1 {v0.16b}, [%1], #16 \n" + "subs %w3, %w3, #16 \n" + MEMACCESS(0) + "st1 {v0.16b}, [%0], #16 \n" + "b.gt 100b \n" + + "99: \n" + : "+r"(dst_ptr), // %0 + "+r"(src_ptr), // %1 + "+r"(src_ptr1), // %2 + "+r"(dst_width), // %3 + "+r"(y1_fraction), // %4 + "+r"(y0_fraction) // %5 + : + : "cc", "memory", "v0", "v1", "v3", "v4", "v5" + ); +} + +// dr * (256 - sa) / 256 + sr = dr - dr * sa / 256 + sr +void ARGBBlendRow_NEON(const uint8* src_argb0, const uint8* src_argb1, + uint8* dst_argb, int width) { + asm volatile ( + "subs %w3, %w3, #8 \n" + "b.lt 89f \n" + // Blend 8 pixels. + "8: \n" + MEMACCESS(0) + "ld4 {v0.8b,v1.8b,v2.8b,v3.8b}, [%0], #32 \n" // load 8 ARGB0 pixels + MEMACCESS(1) + "ld4 {v4.8b,v5.8b,v6.8b,v7.8b}, [%1], #32 \n" // load 8 ARGB1 pixels + "subs %w3, %w3, #8 \n" // 8 processed per loop. + "umull v16.8h, v4.8b, v3.8b \n" // db * a + "umull v17.8h, v5.8b, v3.8b \n" // dg * a + "umull v18.8h, v6.8b, v3.8b \n" // dr * a + "uqrshrn v16.8b, v16.8h, #8 \n" // db >>= 8 + "uqrshrn v17.8b, v17.8h, #8 \n" // dg >>= 8 + "uqrshrn v18.8b, v18.8h, #8 \n" // dr >>= 8 + "uqsub v4.8b, v4.8b, v16.8b \n" // db - (db * a / 256) + "uqsub v5.8b, v5.8b, v17.8b \n" // dg - (dg * a / 256) + "uqsub v6.8b, v6.8b, v18.8b \n" // dr - (dr * a / 256) + "uqadd v0.8b, v0.8b, v4.8b \n" // + sb + "uqadd v1.8b, v1.8b, v5.8b \n" // + sg + "uqadd v2.8b, v2.8b, v6.8b \n" // + sr + "movi v3.8b, #255 \n" // a = 255 + MEMACCESS(2) + "st4 {v0.8b,v1.8b,v2.8b,v3.8b}, [%2], #32 \n" // store 8 ARGB pixels + "b.ge 8b \n" + + "89: \n" + "adds %w3, %w3, #8-1 \n" + "b.lt 99f \n" + + // Blend 1 pixels. + "1: \n" + MEMACCESS(0) + "ld4 {v0.b,v1.b,v2.b,v3.b}[0], [%0], #4 \n" // load 1 pixel ARGB0. + MEMACCESS(1) + "ld4 {v4.b,v5.b,v6.b,v7.b}[0], [%1], #4 \n" // load 1 pixel ARGB1. + "subs %w3, %w3, #1 \n" // 1 processed per loop. + "umull v16.8h, v4.8b, v3.8b \n" // db * a + "umull v17.8h, v5.8b, v3.8b \n" // dg * a + "umull v18.8h, v6.8b, v3.8b \n" // dr * a + "uqrshrn v16.8b, v16.8h, #8 \n" // db >>= 8 + "uqrshrn v17.8b, v17.8h, #8 \n" // dg >>= 8 + "uqrshrn v18.8b, v18.8h, #8 \n" // dr >>= 8 + "uqsub v4.8b, v4.8b, v16.8b \n" // db - (db * a / 256) + "uqsub v5.8b, v5.8b, v17.8b \n" // dg - (dg * a / 256) + "uqsub v6.8b, v6.8b, v18.8b \n" // dr - (dr * a / 256) + "uqadd v0.8b, v0.8b, v4.8b \n" // + sb + "uqadd v1.8b, v1.8b, v5.8b \n" // + sg + "uqadd v2.8b, v2.8b, v6.8b \n" // + sr + "movi v3.8b, #255 \n" // a = 255 + MEMACCESS(2) + "st4 {v0.b,v1.b,v2.b,v3.b}[0], [%2], #4 \n" // store 1 pixel. + "b.ge 1b \n" + + "99: \n" + + : "+r"(src_argb0), // %0 + "+r"(src_argb1), // %1 + "+r"(dst_argb), // %2 + "+r"(width) // %3 + : + : "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", + "v16", "v17", "v18" + ); +} + +// Attenuate 8 pixels at a time. +void ARGBAttenuateRow_NEON(const uint8* src_argb, uint8* dst_argb, int width) { + asm volatile ( + // Attenuate 8 pixels. + "1: \n" + MEMACCESS(0) + "ld4 {v0.8b,v1.8b,v2.8b,v3.8b}, [%0], #32 \n" // load 8 ARGB pixels + "subs %w2, %w2, #8 \n" // 8 processed per loop. + "umull v4.8h, v0.8b, v3.8b \n" // b * a + "umull v5.8h, v1.8b, v3.8b \n" // g * a + "umull v6.8h, v2.8b, v3.8b \n" // r * a + "uqrshrn v0.8b, v4.8h, #8 \n" // b >>= 8 + "uqrshrn v1.8b, v5.8h, #8 \n" // g >>= 8 + "uqrshrn v2.8b, v6.8h, #8 \n" // r >>= 8 + MEMACCESS(1) + "st4 {v0.8b,v1.8b,v2.8b,v3.8b}, [%1], #32 \n" // store 8 ARGB pixels + "b.gt 1b \n" + : "+r"(src_argb), // %0 + "+r"(dst_argb), // %1 + "+r"(width) // %2 + : + : "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6" + ); +} + +// Quantize 8 ARGB pixels (32 bytes). +// dst = (dst * scale >> 16) * interval_size + interval_offset; +void ARGBQuantizeRow_NEON(uint8* dst_argb, int scale, int interval_size, + int interval_offset, int width) { + asm volatile ( + "dup v4.8h, %w2 \n" + "ushr v4.8h, v4.8h, #1 \n" // scale >>= 1 + "dup v5.8h, %w3 \n" // interval multiply. + "dup v6.8h, %w4 \n" // interval add + + // 8 pixel loop. + "1: \n" + MEMACCESS(0) + "ld4 {v0.8b,v1.8b,v2.8b,v3.8b}, [%0] \n" // load 8 pixels of ARGB. + "subs %w1, %w1, #8 \n" // 8 processed per loop. + "uxtl v0.8h, v0.8b \n" // b (0 .. 255) + "uxtl v1.8h, v1.8b \n" + "uxtl v2.8h, v2.8b \n" + "sqdmulh v0.8h, v0.8h, v4.8h \n" // b * scale + "sqdmulh v1.8h, v1.8h, v4.8h \n" // g + "sqdmulh v2.8h, v2.8h, v4.8h \n" // r + "mul v0.8h, v0.8h, v5.8h \n" // b * interval_size + "mul v1.8h, v1.8h, v5.8h \n" // g + "mul v2.8h, v2.8h, v5.8h \n" // r + "add v0.8h, v0.8h, v6.8h \n" // b + interval_offset + "add v1.8h, v1.8h, v6.8h \n" // g + "add v2.8h, v2.8h, v6.8h \n" // r + "uqxtn v0.8b, v0.8h \n" + "uqxtn v1.8b, v1.8h \n" + "uqxtn v2.8b, v2.8h \n" + MEMACCESS(0) + "st4 {v0.8b,v1.8b,v2.8b,v3.8b}, [%0], #32 \n" // store 8 ARGB pixels + "b.gt 1b \n" + : "+r"(dst_argb), // %0 + "+r"(width) // %1 + : "r"(scale), // %2 + "r"(interval_size), // %3 + "r"(interval_offset) // %4 + : "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6" + ); +} + +// Shade 8 pixels at a time by specified value. +// NOTE vqrdmulh.s16 q10, q10, d0[0] must use a scaler register from 0 to 8. +// Rounding in vqrdmulh does +1 to high if high bit of low s16 is set. +void ARGBShadeRow_NEON(const uint8* src_argb, uint8* dst_argb, int width, + uint32 value) { + asm volatile ( + "dup v0.4s, %w3 \n" // duplicate scale value. + "zip1 v0.8b, v0.8b, v0.8b \n" // v0.8b aarrggbb. + "ushr v0.8h, v0.8h, #1 \n" // scale / 2. + + // 8 pixel loop. + "1: \n" + MEMACCESS(0) + "ld4 {v4.8b,v5.8b,v6.8b,v7.8b}, [%0], #32 \n" // load 8 ARGB pixels. + "subs %w2, %w2, #8 \n" // 8 processed per loop. + "uxtl v4.8h, v4.8b \n" // b (0 .. 255) + "uxtl v5.8h, v5.8b \n" + "uxtl v6.8h, v6.8b \n" + "uxtl v7.8h, v7.8b \n" + "sqrdmulh v4.8h, v4.8h, v0.h[0] \n" // b * scale * 2 + "sqrdmulh v5.8h, v5.8h, v0.h[1] \n" // g + "sqrdmulh v6.8h, v6.8h, v0.h[2] \n" // r + "sqrdmulh v7.8h, v7.8h, v0.h[3] \n" // a + "uqxtn v4.8b, v4.8h \n" + "uqxtn v5.8b, v5.8h \n" + "uqxtn v6.8b, v6.8h \n" + "uqxtn v7.8b, v7.8h \n" + MEMACCESS(1) + "st4 {v4.8b,v5.8b,v6.8b,v7.8b}, [%1], #32 \n" // store 8 ARGB pixels + "b.gt 1b \n" + : "+r"(src_argb), // %0 + "+r"(dst_argb), // %1 + "+r"(width) // %2 + : "r"(value) // %3 + : "cc", "memory", "v0", "v4", "v5", "v6", "v7" + ); +} + +// Convert 8 ARGB pixels (64 bytes) to 8 Gray ARGB pixels +// Similar to ARGBToYJ but stores ARGB. +// C code is (15 * b + 75 * g + 38 * r + 64) >> 7; +void ARGBGrayRow_NEON(const uint8* src_argb, uint8* dst_argb, int width) { + asm volatile ( + "movi v24.8b, #15 \n" // B * 0.11400 coefficient + "movi v25.8b, #75 \n" // G * 0.58700 coefficient + "movi v26.8b, #38 \n" // R * 0.29900 coefficient + "1: \n" + MEMACCESS(0) + "ld4 {v0.8b,v1.8b,v2.8b,v3.8b}, [%0], #32 \n" // load 8 ARGB pixels. + "subs %w2, %w2, #8 \n" // 8 processed per loop. + "umull v4.8h, v0.8b, v24.8b \n" // B + "umlal v4.8h, v1.8b, v25.8b \n" // G + "umlal v4.8h, v2.8b, v26.8b \n" // R + "sqrshrun v0.8b, v4.8h, #7 \n" // 15 bit to 8 bit B + "orr v1.8b, v0.8b, v0.8b \n" // G + "orr v2.8b, v0.8b, v0.8b \n" // R + MEMACCESS(1) + "st4 {v0.8b,v1.8b,v2.8b,v3.8b}, [%1], #32 \n" // store 8 pixels. + "b.gt 1b \n" + : "+r"(src_argb), // %0 + "+r"(dst_argb), // %1 + "+r"(width) // %2 + : + : "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v24", "v25", "v26" + ); +} + +// Convert 8 ARGB pixels (32 bytes) to 8 Sepia ARGB pixels. +// b = (r * 35 + g * 68 + b * 17) >> 7 +// g = (r * 45 + g * 88 + b * 22) >> 7 +// r = (r * 50 + g * 98 + b * 24) >> 7 + +void ARGBSepiaRow_NEON(uint8* dst_argb, int width) { + asm volatile ( + "movi v20.8b, #17 \n" // BB coefficient + "movi v21.8b, #68 \n" // BG coefficient + "movi v22.8b, #35 \n" // BR coefficient + "movi v24.8b, #22 \n" // GB coefficient + "movi v25.8b, #88 \n" // GG coefficient + "movi v26.8b, #45 \n" // GR coefficient + "movi v28.8b, #24 \n" // BB coefficient + "movi v29.8b, #98 \n" // BG coefficient + "movi v30.8b, #50 \n" // BR coefficient + "1: \n" + MEMACCESS(0) + "ld4 {v0.8b,v1.8b,v2.8b,v3.8b}, [%0] \n" // load 8 ARGB pixels. + "subs %w1, %w1, #8 \n" // 8 processed per loop. + "umull v4.8h, v0.8b, v20.8b \n" // B to Sepia B + "umlal v4.8h, v1.8b, v21.8b \n" // G + "umlal v4.8h, v2.8b, v22.8b \n" // R + "umull v5.8h, v0.8b, v24.8b \n" // B to Sepia G + "umlal v5.8h, v1.8b, v25.8b \n" // G + "umlal v5.8h, v2.8b, v26.8b \n" // R + "umull v6.8h, v0.8b, v28.8b \n" // B to Sepia R + "umlal v6.8h, v1.8b, v29.8b \n" // G + "umlal v6.8h, v2.8b, v30.8b \n" // R + "uqshrn v0.8b, v4.8h, #7 \n" // 16 bit to 8 bit B + "uqshrn v1.8b, v5.8h, #7 \n" // 16 bit to 8 bit G + "uqshrn v2.8b, v6.8h, #7 \n" // 16 bit to 8 bit R + MEMACCESS(0) + "st4 {v0.8b,v1.8b,v2.8b,v3.8b}, [%0], #32 \n" // store 8 pixels. + "b.gt 1b \n" + : "+r"(dst_argb), // %0 + "+r"(width) // %1 + : + : "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", + "v20", "v21", "v22", "v24", "v25", "v26", "v28", "v29", "v30" + ); +} + +// Tranform 8 ARGB pixels (32 bytes) with color matrix. +// TODO(fbarchard): Was same as Sepia except matrix is provided. This function +// needs to saturate. Consider doing a non-saturating version. +void ARGBColorMatrixRow_NEON(const uint8* src_argb, uint8* dst_argb, + const int8* matrix_argb, int width) { + asm volatile ( + MEMACCESS(3) + "ld1 {v2.16b}, [%3] \n" // load 3 ARGB vectors. + "sxtl v0.8h, v2.8b \n" // B,G coefficients s16. + "sxtl2 v1.8h, v2.16b \n" // R,A coefficients s16. + + "1: \n" + MEMACCESS(0) + "ld4 {v16.8b,v17.8b,v18.8b,v19.8b}, [%0], #32 \n" // load 8 pixels. + "subs %w2, %w2, #8 \n" // 8 processed per loop. + "uxtl v16.8h, v16.8b \n" // b (0 .. 255) 16 bit + "uxtl v17.8h, v17.8b \n" // g + "uxtl v18.8h, v18.8b \n" // r + "uxtl v19.8h, v19.8b \n" // a + "mul v22.8h, v16.8h, v0.h[0] \n" // B = B * Matrix B + "mul v23.8h, v16.8h, v0.h[4] \n" // G = B * Matrix G + "mul v24.8h, v16.8h, v1.h[0] \n" // R = B * Matrix R + "mul v25.8h, v16.8h, v1.h[4] \n" // A = B * Matrix A + "mul v4.8h, v17.8h, v0.h[1] \n" // B += G * Matrix B + "mul v5.8h, v17.8h, v0.h[5] \n" // G += G * Matrix G + "mul v6.8h, v17.8h, v1.h[1] \n" // R += G * Matrix R + "mul v7.8h, v17.8h, v1.h[5] \n" // A += G * Matrix A + "sqadd v22.8h, v22.8h, v4.8h \n" // Accumulate B + "sqadd v23.8h, v23.8h, v5.8h \n" // Accumulate G + "sqadd v24.8h, v24.8h, v6.8h \n" // Accumulate R + "sqadd v25.8h, v25.8h, v7.8h \n" // Accumulate A + "mul v4.8h, v18.8h, v0.h[2] \n" // B += R * Matrix B + "mul v5.8h, v18.8h, v0.h[6] \n" // G += R * Matrix G + "mul v6.8h, v18.8h, v1.h[2] \n" // R += R * Matrix R + "mul v7.8h, v18.8h, v1.h[6] \n" // A += R * Matrix A + "sqadd v22.8h, v22.8h, v4.8h \n" // Accumulate B + "sqadd v23.8h, v23.8h, v5.8h \n" // Accumulate G + "sqadd v24.8h, v24.8h, v6.8h \n" // Accumulate R + "sqadd v25.8h, v25.8h, v7.8h \n" // Accumulate A + "mul v4.8h, v19.8h, v0.h[3] \n" // B += A * Matrix B + "mul v5.8h, v19.8h, v0.h[7] \n" // G += A * Matrix G + "mul v6.8h, v19.8h, v1.h[3] \n" // R += A * Matrix R + "mul v7.8h, v19.8h, v1.h[7] \n" // A += A * Matrix A + "sqadd v22.8h, v22.8h, v4.8h \n" // Accumulate B + "sqadd v23.8h, v23.8h, v5.8h \n" // Accumulate G + "sqadd v24.8h, v24.8h, v6.8h \n" // Accumulate R + "sqadd v25.8h, v25.8h, v7.8h \n" // Accumulate A + "sqshrun v16.8b, v22.8h, #6 \n" // 16 bit to 8 bit B + "sqshrun v17.8b, v23.8h, #6 \n" // 16 bit to 8 bit G + "sqshrun v18.8b, v24.8h, #6 \n" // 16 bit to 8 bit R + "sqshrun v19.8b, v25.8h, #6 \n" // 16 bit to 8 bit A + MEMACCESS(1) + "st4 {v16.8b,v17.8b,v18.8b,v19.8b}, [%1], #32 \n" // store 8 pixels. + "b.gt 1b \n" + : "+r"(src_argb), // %0 + "+r"(dst_argb), // %1 + "+r"(width) // %2 + : "r"(matrix_argb) // %3 + : "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", "v16", "v17", + "v18", "v19", "v22", "v23", "v24", "v25" + ); +} + +// TODO(fbarchard): fix vqshrun in ARGBMultiplyRow_NEON and reenable. +// Multiply 2 rows of ARGB pixels together, 8 pixels at a time. +void ARGBMultiplyRow_NEON(const uint8* src_argb0, const uint8* src_argb1, + uint8* dst_argb, int width) { + asm volatile ( + // 8 pixel loop. + "1: \n" + MEMACCESS(0) + "ld4 {v0.8b,v1.8b,v2.8b,v3.8b}, [%0], #32 \n" // load 8 ARGB pixels. + MEMACCESS(1) + "ld4 {v4.8b,v5.8b,v6.8b,v7.8b}, [%1], #32 \n" // load 8 more pixels. + "subs %w3, %w3, #8 \n" // 8 processed per loop. + "umull v0.8h, v0.8b, v4.8b \n" // multiply B + "umull v1.8h, v1.8b, v5.8b \n" // multiply G + "umull v2.8h, v2.8b, v6.8b \n" // multiply R + "umull v3.8h, v3.8b, v7.8b \n" // multiply A + "rshrn v0.8b, v0.8h, #8 \n" // 16 bit to 8 bit B + "rshrn v1.8b, v1.8h, #8 \n" // 16 bit to 8 bit G + "rshrn v2.8b, v2.8h, #8 \n" // 16 bit to 8 bit R + "rshrn v3.8b, v3.8h, #8 \n" // 16 bit to 8 bit A + MEMACCESS(2) + "st4 {v0.8b,v1.8b,v2.8b,v3.8b}, [%2], #32 \n" // store 8 ARGB pixels + "b.gt 1b \n" + + : "+r"(src_argb0), // %0 + "+r"(src_argb1), // %1 + "+r"(dst_argb), // %2 + "+r"(width) // %3 + : + : "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7" + ); +} + +// Add 2 rows of ARGB pixels together, 8 pixels at a time. +void ARGBAddRow_NEON(const uint8* src_argb0, const uint8* src_argb1, + uint8* dst_argb, int width) { + asm volatile ( + // 8 pixel loop. + "1: \n" + MEMACCESS(0) + "ld4 {v0.8b,v1.8b,v2.8b,v3.8b}, [%0], #32 \n" // load 8 ARGB pixels. + MEMACCESS(1) + "ld4 {v4.8b,v5.8b,v6.8b,v7.8b}, [%1], #32 \n" // load 8 more pixels. + "subs %w3, %w3, #8 \n" // 8 processed per loop. + "uqadd v0.8b, v0.8b, v4.8b \n" + "uqadd v1.8b, v1.8b, v5.8b \n" + "uqadd v2.8b, v2.8b, v6.8b \n" + "uqadd v3.8b, v3.8b, v7.8b \n" + MEMACCESS(2) + "st4 {v0.8b,v1.8b,v2.8b,v3.8b}, [%2], #32 \n" // store 8 ARGB pixels + "b.gt 1b \n" + + : "+r"(src_argb0), // %0 + "+r"(src_argb1), // %1 + "+r"(dst_argb), // %2 + "+r"(width) // %3 + : + : "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7" + ); +} + +// Subtract 2 rows of ARGB pixels, 8 pixels at a time. +void ARGBSubtractRow_NEON(const uint8* src_argb0, const uint8* src_argb1, + uint8* dst_argb, int width) { + asm volatile ( + // 8 pixel loop. + "1: \n" + MEMACCESS(0) + "ld4 {v0.8b,v1.8b,v2.8b,v3.8b}, [%0], #32 \n" // load 8 ARGB pixels. + MEMACCESS(1) + "ld4 {v4.8b,v5.8b,v6.8b,v7.8b}, [%1], #32 \n" // load 8 more pixels. + "subs %w3, %w3, #8 \n" // 8 processed per loop. + "uqsub v0.8b, v0.8b, v4.8b \n" + "uqsub v1.8b, v1.8b, v5.8b \n" + "uqsub v2.8b, v2.8b, v6.8b \n" + "uqsub v3.8b, v3.8b, v7.8b \n" + MEMACCESS(2) + "st4 {v0.8b,v1.8b,v2.8b,v3.8b}, [%2], #32 \n" // store 8 ARGB pixels + "b.gt 1b \n" + + : "+r"(src_argb0), // %0 + "+r"(src_argb1), // %1 + "+r"(dst_argb), // %2 + "+r"(width) // %3 + : + : "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7" + ); +} + +// Adds Sobel X and Sobel Y and stores Sobel into ARGB. +// A = 255 +// R = Sobel +// G = Sobel +// B = Sobel +void SobelRow_NEON(const uint8* src_sobelx, const uint8* src_sobely, + uint8* dst_argb, int width) { + asm volatile ( + "movi v3.8b, #255 \n" // alpha + // 8 pixel loop. + "1: \n" + MEMACCESS(0) + "ld1 {v0.8b}, [%0], #8 \n" // load 8 sobelx. + MEMACCESS(1) + "ld1 {v1.8b}, [%1], #8 \n" // load 8 sobely. + "subs %w3, %w3, #8 \n" // 8 processed per loop. + "uqadd v0.8b, v0.8b, v1.8b \n" // add + "orr v1.8b, v0.8b, v0.8b \n" + "orr v2.8b, v0.8b, v0.8b \n" + MEMACCESS(2) + "st4 {v0.8b,v1.8b,v2.8b,v3.8b}, [%2], #32 \n" // store 8 ARGB pixels + "b.gt 1b \n" + : "+r"(src_sobelx), // %0 + "+r"(src_sobely), // %1 + "+r"(dst_argb), // %2 + "+r"(width) // %3 + : + : "cc", "memory", "v0", "v1", "v2", "v3" + ); +} + +// Adds Sobel X and Sobel Y and stores Sobel into plane. +void SobelToPlaneRow_NEON(const uint8* src_sobelx, const uint8* src_sobely, + uint8* dst_y, int width) { + asm volatile ( + // 16 pixel loop. + "1: \n" + MEMACCESS(0) + "ld1 {v0.16b}, [%0], #16 \n" // load 16 sobelx. + MEMACCESS(1) + "ld1 {v1.16b}, [%1], #16 \n" // load 16 sobely. + "subs %w3, %w3, #16 \n" // 16 processed per loop. + "uqadd v0.16b, v0.16b, v1.16b \n" // add + MEMACCESS(2) + "st1 {v0.16b}, [%2], #16 \n" // store 16 pixels. + "b.gt 1b \n" + : "+r"(src_sobelx), // %0 + "+r"(src_sobely), // %1 + "+r"(dst_y), // %2 + "+r"(width) // %3 + : + : "cc", "memory", "v0", "v1" + ); +} + +// Mixes Sobel X, Sobel Y and Sobel into ARGB. +// A = 255 +// R = Sobel X +// G = Sobel +// B = Sobel Y +void SobelXYRow_NEON(const uint8* src_sobelx, const uint8* src_sobely, + uint8* dst_argb, int width) { + asm volatile ( + "movi v3.8b, #255 \n" // alpha + // 8 pixel loop. + "1: \n" + MEMACCESS(0) + "ld1 {v2.8b}, [%0], #8 \n" // load 8 sobelx. + MEMACCESS(1) + "ld1 {v0.8b}, [%1], #8 \n" // load 8 sobely. + "subs %w3, %w3, #8 \n" // 8 processed per loop. + "uqadd v1.8b, v0.8b, v2.8b \n" // add + MEMACCESS(2) + "st4 {v0.8b,v1.8b,v2.8b,v3.8b}, [%2], #32 \n" // store 8 ARGB pixels + "b.gt 1b \n" + : "+r"(src_sobelx), // %0 + "+r"(src_sobely), // %1 + "+r"(dst_argb), // %2 + "+r"(width) // %3 + : + : "cc", "memory", "v0", "v1", "v2", "v3" + ); +} + +// SobelX as a matrix is +// -1 0 1 +// -2 0 2 +// -1 0 1 +void SobelXRow_NEON(const uint8* src_y0, const uint8* src_y1, + const uint8* src_y2, uint8* dst_sobelx, int width) { + asm volatile ( + "1: \n" + MEMACCESS(0) + "ld1 {v0.8b}, [%0],%5 \n" // top + MEMACCESS(0) + "ld1 {v1.8b}, [%0],%6 \n" + "usubl v0.8h, v0.8b, v1.8b \n" + MEMACCESS(1) + "ld1 {v2.8b}, [%1],%5 \n" // center * 2 + MEMACCESS(1) + "ld1 {v3.8b}, [%1],%6 \n" + "usubl v1.8h, v2.8b, v3.8b \n" + "add v0.8h, v0.8h, v1.8h \n" + "add v0.8h, v0.8h, v1.8h \n" + MEMACCESS(2) + "ld1 {v2.8b}, [%2],%5 \n" // bottom + MEMACCESS(2) + "ld1 {v3.8b}, [%2],%6 \n" + "subs %w4, %w4, #8 \n" // 8 pixels + "usubl v1.8h, v2.8b, v3.8b \n" + "add v0.8h, v0.8h, v1.8h \n" + "abs v0.8h, v0.8h \n" + "uqxtn v0.8b, v0.8h \n" + MEMACCESS(3) + "st1 {v0.8b}, [%3], #8 \n" // store 8 sobelx + "b.gt 1b \n" + : "+r"(src_y0), // %0 + "+r"(src_y1), // %1 + "+r"(src_y2), // %2 + "+r"(dst_sobelx), // %3 + "+r"(width) // %4 + : "r"(2LL), // %5 + "r"(6LL) // %6 + : "cc", "memory", "v0", "v1", "v2", "v3" // Clobber List + ); +} + +// SobelY as a matrix is +// -1 -2 -1 +// 0 0 0 +// 1 2 1 +void SobelYRow_NEON(const uint8* src_y0, const uint8* src_y1, + uint8* dst_sobely, int width) { + asm volatile ( + "1: \n" + MEMACCESS(0) + "ld1 {v0.8b}, [%0],%4 \n" // left + MEMACCESS(1) + "ld1 {v1.8b}, [%1],%4 \n" + "usubl v0.8h, v0.8b, v1.8b \n" + MEMACCESS(0) + "ld1 {v2.8b}, [%0],%4 \n" // center * 2 + MEMACCESS(1) + "ld1 {v3.8b}, [%1],%4 \n" + "usubl v1.8h, v2.8b, v3.8b \n" + "add v0.8h, v0.8h, v1.8h \n" + "add v0.8h, v0.8h, v1.8h \n" + MEMACCESS(0) + "ld1 {v2.8b}, [%0],%5 \n" // right + MEMACCESS(1) + "ld1 {v3.8b}, [%1],%5 \n" + "subs %w3, %w3, #8 \n" // 8 pixels + "usubl v1.8h, v2.8b, v3.8b \n" + "add v0.8h, v0.8h, v1.8h \n" + "abs v0.8h, v0.8h \n" + "uqxtn v0.8b, v0.8h \n" + MEMACCESS(2) + "st1 {v0.8b}, [%2], #8 \n" // store 8 sobely + "b.gt 1b \n" + : "+r"(src_y0), // %0 + "+r"(src_y1), // %1 + "+r"(dst_sobely), // %2 + "+r"(width) // %3 + : "r"(1LL), // %4 + "r"(6LL) // %5 + : "cc", "memory", "v0", "v1", "v2", "v3" // Clobber List + ); +} +#endif // !defined(LIBYUV_DISABLE_NEON) && defined(__aarch64__) + +#ifdef __cplusplus +} // extern "C" +} // namespace libyuv +#endif diff --git a/third_party/libyuv/source/row_win.cc b/third_party/libyuv/source/row_win.cc new file mode 100644 index 0000000..2a3da89 --- /dev/null +++ b/third_party/libyuv/source/row_win.cc @@ -0,0 +1,6269 @@ +/* + * Copyright 2011 The LibYuv Project Authors. All rights reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "libyuv/row.h" + +// This module is for Visual C 32/64 bit and clangcl 32 bit +#if !defined(LIBYUV_DISABLE_X86) && defined(_MSC_VER) && \ + (defined(_M_IX86) || (defined(_M_X64) && !defined(__clang__))) + +#if defined(_M_X64) +#include +#include // For _mm_maddubs_epi16 +#endif + +#ifdef __cplusplus +namespace libyuv { +extern "C" { +#endif + +// 64 bit +#if defined(_M_X64) + +// Read 4 UV from 422, upsample to 8 UV. +#define READYUV422 \ + xmm0 = _mm_cvtsi32_si128(*(uint32*)u_buf); \ + xmm1 = _mm_cvtsi32_si128(*(uint32*)(u_buf + offset)); \ + xmm0 = _mm_unpacklo_epi8(xmm0, xmm1); \ + xmm0 = _mm_unpacklo_epi16(xmm0, xmm0); \ + u_buf += 4; \ + xmm4 = _mm_loadl_epi64((__m128i*)y_buf); \ + xmm4 = _mm_unpacklo_epi8(xmm4, xmm4); \ + y_buf += 8; + +// Read 4 UV from 422, upsample to 8 UV. With 8 Alpha. +#define READYUVA422 \ + xmm0 = _mm_cvtsi32_si128(*(uint32*)u_buf); \ + xmm1 = _mm_cvtsi32_si128(*(uint32*)(u_buf + offset)); \ + xmm0 = _mm_unpacklo_epi8(xmm0, xmm1); \ + xmm0 = _mm_unpacklo_epi16(xmm0, xmm0); \ + u_buf += 4; \ + xmm4 = _mm_loadl_epi64((__m128i*)y_buf); \ + xmm4 = _mm_unpacklo_epi8(xmm4, xmm4); \ + y_buf += 8; \ + xmm5 = _mm_loadl_epi64((__m128i*)a_buf); \ + a_buf += 8; + +// Convert 8 pixels: 8 UV and 8 Y. +#define YUVTORGB(yuvconstants) \ + xmm1 = _mm_loadu_si128(&xmm0); \ + xmm2 = _mm_loadu_si128(&xmm0); \ + xmm0 = _mm_maddubs_epi16(xmm0, *(__m128i*)yuvconstants->kUVToB); \ + xmm1 = _mm_maddubs_epi16(xmm1, *(__m128i*)yuvconstants->kUVToG); \ + xmm2 = _mm_maddubs_epi16(xmm2, *(__m128i*)yuvconstants->kUVToR); \ + xmm0 = _mm_sub_epi16(*(__m128i*)yuvconstants->kUVBiasB, xmm0); \ + xmm1 = _mm_sub_epi16(*(__m128i*)yuvconstants->kUVBiasG, xmm1); \ + xmm2 = _mm_sub_epi16(*(__m128i*)yuvconstants->kUVBiasR, xmm2); \ + xmm4 = _mm_mulhi_epu16(xmm4, *(__m128i*)yuvconstants->kYToRgb); \ + xmm0 = _mm_adds_epi16(xmm0, xmm4); \ + xmm1 = _mm_adds_epi16(xmm1, xmm4); \ + xmm2 = _mm_adds_epi16(xmm2, xmm4); \ + xmm0 = _mm_srai_epi16(xmm0, 6); \ + xmm1 = _mm_srai_epi16(xmm1, 6); \ + xmm2 = _mm_srai_epi16(xmm2, 6); \ + xmm0 = _mm_packus_epi16(xmm0, xmm0); \ + xmm1 = _mm_packus_epi16(xmm1, xmm1); \ + xmm2 = _mm_packus_epi16(xmm2, xmm2); + +// Store 8 ARGB values. +#define STOREARGB \ + xmm0 = _mm_unpacklo_epi8(xmm0, xmm1); \ + xmm2 = _mm_unpacklo_epi8(xmm2, xmm5); \ + xmm1 = _mm_loadu_si128(&xmm0); \ + xmm0 = _mm_unpacklo_epi16(xmm0, xmm2); \ + xmm1 = _mm_unpackhi_epi16(xmm1, xmm2); \ + _mm_storeu_si128((__m128i *)dst_argb, xmm0); \ + _mm_storeu_si128((__m128i *)(dst_argb + 16), xmm1); \ + dst_argb += 32; + + +#if defined(HAS_I422TOARGBROW_SSSE3) +void I422ToARGBRow_SSSE3(const uint8* y_buf, + const uint8* u_buf, + const uint8* v_buf, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width) { + __m128i xmm0, xmm1, xmm2, xmm4; + const __m128i xmm5 = _mm_set1_epi8(-1); + const ptrdiff_t offset = (uint8*)v_buf - (uint8*)u_buf; + while (width > 0) { + READYUV422 + YUVTORGB(yuvconstants) + STOREARGB + width -= 8; + } +} +#endif + +#if defined(HAS_I422ALPHATOARGBROW_SSSE3) +void I422AlphaToARGBRow_SSSE3(const uint8* y_buf, + const uint8* u_buf, + const uint8* v_buf, + const uint8* a_buf, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width) { + __m128i xmm0, xmm1, xmm2, xmm4, xmm5; + const ptrdiff_t offset = (uint8*)v_buf - (uint8*)u_buf; + while (width > 0) { + READYUVA422 + YUVTORGB(yuvconstants) + STOREARGB + width -= 8; + } +} +#endif + +// 32 bit +#else // defined(_M_X64) +#ifdef HAS_ARGBTOYROW_SSSE3 + +// Constants for ARGB. +static const vec8 kARGBToY = { + 13, 65, 33, 0, 13, 65, 33, 0, 13, 65, 33, 0, 13, 65, 33, 0 +}; + +// JPeg full range. +static const vec8 kARGBToYJ = { + 15, 75, 38, 0, 15, 75, 38, 0, 15, 75, 38, 0, 15, 75, 38, 0 +}; + +static const vec8 kARGBToU = { + 112, -74, -38, 0, 112, -74, -38, 0, 112, -74, -38, 0, 112, -74, -38, 0 +}; + +static const vec8 kARGBToUJ = { + 127, -84, -43, 0, 127, -84, -43, 0, 127, -84, -43, 0, 127, -84, -43, 0 +}; + +static const vec8 kARGBToV = { + -18, -94, 112, 0, -18, -94, 112, 0, -18, -94, 112, 0, -18, -94, 112, 0, +}; + +static const vec8 kARGBToVJ = { + -20, -107, 127, 0, -20, -107, 127, 0, -20, -107, 127, 0, -20, -107, 127, 0 +}; + +// vpshufb for vphaddw + vpackuswb packed to shorts. +static const lvec8 kShufARGBToUV_AVX = { + 0, 1, 8, 9, 2, 3, 10, 11, 4, 5, 12, 13, 6, 7, 14, 15, + 0, 1, 8, 9, 2, 3, 10, 11, 4, 5, 12, 13, 6, 7, 14, 15 +}; + +// Constants for BGRA. +static const vec8 kBGRAToY = { + 0, 33, 65, 13, 0, 33, 65, 13, 0, 33, 65, 13, 0, 33, 65, 13 +}; + +static const vec8 kBGRAToU = { + 0, -38, -74, 112, 0, -38, -74, 112, 0, -38, -74, 112, 0, -38, -74, 112 +}; + +static const vec8 kBGRAToV = { + 0, 112, -94, -18, 0, 112, -94, -18, 0, 112, -94, -18, 0, 112, -94, -18 +}; + +// Constants for ABGR. +static const vec8 kABGRToY = { + 33, 65, 13, 0, 33, 65, 13, 0, 33, 65, 13, 0, 33, 65, 13, 0 +}; + +static const vec8 kABGRToU = { + -38, -74, 112, 0, -38, -74, 112, 0, -38, -74, 112, 0, -38, -74, 112, 0 +}; + +static const vec8 kABGRToV = { + 112, -94, -18, 0, 112, -94, -18, 0, 112, -94, -18, 0, 112, -94, -18, 0 +}; + +// Constants for RGBA. +static const vec8 kRGBAToY = { + 0, 13, 65, 33, 0, 13, 65, 33, 0, 13, 65, 33, 0, 13, 65, 33 +}; + +static const vec8 kRGBAToU = { + 0, 112, -74, -38, 0, 112, -74, -38, 0, 112, -74, -38, 0, 112, -74, -38 +}; + +static const vec8 kRGBAToV = { + 0, -18, -94, 112, 0, -18, -94, 112, 0, -18, -94, 112, 0, -18, -94, 112 +}; + +static const uvec8 kAddY16 = { + 16u, 16u, 16u, 16u, 16u, 16u, 16u, 16u, 16u, 16u, 16u, 16u, 16u, 16u, 16u, 16u +}; + +// 7 bit fixed point 0.5. +static const vec16 kAddYJ64 = { + 64, 64, 64, 64, 64, 64, 64, 64 +}; + +static const uvec8 kAddUV128 = { + 128u, 128u, 128u, 128u, 128u, 128u, 128u, 128u, + 128u, 128u, 128u, 128u, 128u, 128u, 128u, 128u +}; + +static const uvec16 kAddUVJ128 = { + 0x8080u, 0x8080u, 0x8080u, 0x8080u, 0x8080u, 0x8080u, 0x8080u, 0x8080u +}; + +// Shuffle table for converting RGB24 to ARGB. +static const uvec8 kShuffleMaskRGB24ToARGB = { + 0u, 1u, 2u, 12u, 3u, 4u, 5u, 13u, 6u, 7u, 8u, 14u, 9u, 10u, 11u, 15u +}; + +// Shuffle table for converting RAW to ARGB. +static const uvec8 kShuffleMaskRAWToARGB = { + 2u, 1u, 0u, 12u, 5u, 4u, 3u, 13u, 8u, 7u, 6u, 14u, 11u, 10u, 9u, 15u +}; + +// Shuffle table for converting RAW to RGB24. First 8. +static const uvec8 kShuffleMaskRAWToRGB24_0 = { + 2u, 1u, 0u, 5u, 4u, 3u, 8u, 7u, + 128u, 128u, 128u, 128u, 128u, 128u, 128u, 128u +}; + +// Shuffle table for converting RAW to RGB24. Middle 8. +static const uvec8 kShuffleMaskRAWToRGB24_1 = { + 2u, 7u, 6u, 5u, 10u, 9u, 8u, 13u, + 128u, 128u, 128u, 128u, 128u, 128u, 128u, 128u +}; + +// Shuffle table for converting RAW to RGB24. Last 8. +static const uvec8 kShuffleMaskRAWToRGB24_2 = { + 8u, 7u, 12u, 11u, 10u, 15u, 14u, 13u, + 128u, 128u, 128u, 128u, 128u, 128u, 128u, 128u +}; + +// Shuffle table for converting ARGB to RGB24. +static const uvec8 kShuffleMaskARGBToRGB24 = { + 0u, 1u, 2u, 4u, 5u, 6u, 8u, 9u, 10u, 12u, 13u, 14u, 128u, 128u, 128u, 128u +}; + +// Shuffle table for converting ARGB to RAW. +static const uvec8 kShuffleMaskARGBToRAW = { + 2u, 1u, 0u, 6u, 5u, 4u, 10u, 9u, 8u, 14u, 13u, 12u, 128u, 128u, 128u, 128u +}; + +// Shuffle table for converting ARGBToRGB24 for I422ToRGB24. First 8 + next 4 +static const uvec8 kShuffleMaskARGBToRGB24_0 = { + 0u, 1u, 2u, 4u, 5u, 6u, 8u, 9u, 128u, 128u, 128u, 128u, 10u, 12u, 13u, 14u +}; + +// YUY2 shuf 16 Y to 32 Y. +static const lvec8 kShuffleYUY2Y = { + 0, 0, 2, 2, 4, 4, 6, 6, 8, 8, 10, 10, 12, 12, 14, 14, + 0, 0, 2, 2, 4, 4, 6, 6, 8, 8, 10, 10, 12, 12, 14, 14 +}; + +// YUY2 shuf 8 UV to 16 UV. +static const lvec8 kShuffleYUY2UV = { + 1, 3, 1, 3, 5, 7, 5, 7, 9, 11, 9, 11, 13, 15, 13, 15, + 1, 3, 1, 3, 5, 7, 5, 7, 9, 11, 9, 11, 13, 15, 13, 15 +}; + +// UYVY shuf 16 Y to 32 Y. +static const lvec8 kShuffleUYVYY = { + 1, 1, 3, 3, 5, 5, 7, 7, 9, 9, 11, 11, 13, 13, 15, 15, + 1, 1, 3, 3, 5, 5, 7, 7, 9, 9, 11, 11, 13, 13, 15, 15 +}; + +// UYVY shuf 8 UV to 16 UV. +static const lvec8 kShuffleUYVYUV = { + 0, 2, 0, 2, 4, 6, 4, 6, 8, 10, 8, 10, 12, 14, 12, 14, + 0, 2, 0, 2, 4, 6, 4, 6, 8, 10, 8, 10, 12, 14, 12, 14 +}; + +// NV21 shuf 8 VU to 16 UV. +static const lvec8 kShuffleNV21 = { + 1, 0, 1, 0, 3, 2, 3, 2, 5, 4, 5, 4, 7, 6, 7, 6, + 1, 0, 1, 0, 3, 2, 3, 2, 5, 4, 5, 4, 7, 6, 7, 6, +}; + +// Duplicates gray value 3 times and fills in alpha opaque. +__declspec(naked) +void J400ToARGBRow_SSE2(const uint8* src_y, uint8* dst_argb, int width) { + __asm { + mov eax, [esp + 4] // src_y + mov edx, [esp + 8] // dst_argb + mov ecx, [esp + 12] // width + pcmpeqb xmm5, xmm5 // generate mask 0xff000000 + pslld xmm5, 24 + + convertloop: + movq xmm0, qword ptr [eax] + lea eax, [eax + 8] + punpcklbw xmm0, xmm0 + movdqa xmm1, xmm0 + punpcklwd xmm0, xmm0 + punpckhwd xmm1, xmm1 + por xmm0, xmm5 + por xmm1, xmm5 + movdqu [edx], xmm0 + movdqu [edx + 16], xmm1 + lea edx, [edx + 32] + sub ecx, 8 + jg convertloop + ret + } +} + +#ifdef HAS_J400TOARGBROW_AVX2 +// Duplicates gray value 3 times and fills in alpha opaque. +__declspec(naked) +void J400ToARGBRow_AVX2(const uint8* src_y, uint8* dst_argb, int width) { + __asm { + mov eax, [esp + 4] // src_y + mov edx, [esp + 8] // dst_argb + mov ecx, [esp + 12] // width + vpcmpeqb ymm5, ymm5, ymm5 // generate mask 0xff000000 + vpslld ymm5, ymm5, 24 + + convertloop: + vmovdqu xmm0, [eax] + lea eax, [eax + 16] + vpermq ymm0, ymm0, 0xd8 + vpunpcklbw ymm0, ymm0, ymm0 + vpermq ymm0, ymm0, 0xd8 + vpunpckhwd ymm1, ymm0, ymm0 + vpunpcklwd ymm0, ymm0, ymm0 + vpor ymm0, ymm0, ymm5 + vpor ymm1, ymm1, ymm5 + vmovdqu [edx], ymm0 + vmovdqu [edx + 32], ymm1 + lea edx, [edx + 64] + sub ecx, 16 + jg convertloop + vzeroupper + ret + } +} +#endif // HAS_J400TOARGBROW_AVX2 + +__declspec(naked) +void RGB24ToARGBRow_SSSE3(const uint8* src_rgb24, uint8* dst_argb, int width) { + __asm { + mov eax, [esp + 4] // src_rgb24 + mov edx, [esp + 8] // dst_argb + mov ecx, [esp + 12] // width + pcmpeqb xmm5, xmm5 // generate mask 0xff000000 + pslld xmm5, 24 + movdqa xmm4, xmmword ptr kShuffleMaskRGB24ToARGB + + convertloop: + movdqu xmm0, [eax] + movdqu xmm1, [eax + 16] + movdqu xmm3, [eax + 32] + lea eax, [eax + 48] + movdqa xmm2, xmm3 + palignr xmm2, xmm1, 8 // xmm2 = { xmm3[0:3] xmm1[8:15]} + pshufb xmm2, xmm4 + por xmm2, xmm5 + palignr xmm1, xmm0, 12 // xmm1 = { xmm3[0:7] xmm0[12:15]} + pshufb xmm0, xmm4 + movdqu [edx + 32], xmm2 + por xmm0, xmm5 + pshufb xmm1, xmm4 + movdqu [edx], xmm0 + por xmm1, xmm5 + palignr xmm3, xmm3, 4 // xmm3 = { xmm3[4:15]} + pshufb xmm3, xmm4 + movdqu [edx + 16], xmm1 + por xmm3, xmm5 + movdqu [edx + 48], xmm3 + lea edx, [edx + 64] + sub ecx, 16 + jg convertloop + ret + } +} + +__declspec(naked) +void RAWToARGBRow_SSSE3(const uint8* src_raw, uint8* dst_argb, + int width) { + __asm { + mov eax, [esp + 4] // src_raw + mov edx, [esp + 8] // dst_argb + mov ecx, [esp + 12] // width + pcmpeqb xmm5, xmm5 // generate mask 0xff000000 + pslld xmm5, 24 + movdqa xmm4, xmmword ptr kShuffleMaskRAWToARGB + + convertloop: + movdqu xmm0, [eax] + movdqu xmm1, [eax + 16] + movdqu xmm3, [eax + 32] + lea eax, [eax + 48] + movdqa xmm2, xmm3 + palignr xmm2, xmm1, 8 // xmm2 = { xmm3[0:3] xmm1[8:15]} + pshufb xmm2, xmm4 + por xmm2, xmm5 + palignr xmm1, xmm0, 12 // xmm1 = { xmm3[0:7] xmm0[12:15]} + pshufb xmm0, xmm4 + movdqu [edx + 32], xmm2 + por xmm0, xmm5 + pshufb xmm1, xmm4 + movdqu [edx], xmm0 + por xmm1, xmm5 + palignr xmm3, xmm3, 4 // xmm3 = { xmm3[4:15]} + pshufb xmm3, xmm4 + movdqu [edx + 16], xmm1 + por xmm3, xmm5 + movdqu [edx + 48], xmm3 + lea edx, [edx + 64] + sub ecx, 16 + jg convertloop + ret + } +} + +__declspec(naked) +void RAWToRGB24Row_SSSE3(const uint8* src_raw, uint8* dst_rgb24, int width) { + __asm { + mov eax, [esp + 4] // src_raw + mov edx, [esp + 8] // dst_rgb24 + mov ecx, [esp + 12] // width + movdqa xmm3, xmmword ptr kShuffleMaskRAWToRGB24_0 + movdqa xmm4, xmmword ptr kShuffleMaskRAWToRGB24_1 + movdqa xmm5, xmmword ptr kShuffleMaskRAWToRGB24_2 + + convertloop: + movdqu xmm0, [eax] + movdqu xmm1, [eax + 4] + movdqu xmm2, [eax + 8] + lea eax, [eax + 24] + pshufb xmm0, xmm3 + pshufb xmm1, xmm4 + pshufb xmm2, xmm5 + movq qword ptr [edx], xmm0 + movq qword ptr [edx + 8], xmm1 + movq qword ptr [edx + 16], xmm2 + lea edx, [edx + 24] + sub ecx, 8 + jg convertloop + ret + } +} + +// pmul method to replicate bits. +// Math to replicate bits: +// (v << 8) | (v << 3) +// v * 256 + v * 8 +// v * (256 + 8) +// G shift of 5 is incorporated, so shift is 5 + 8 and 5 + 3 +// 20 instructions. +__declspec(naked) +void RGB565ToARGBRow_SSE2(const uint8* src_rgb565, uint8* dst_argb, + int width) { + __asm { + mov eax, 0x01080108 // generate multiplier to repeat 5 bits + movd xmm5, eax + pshufd xmm5, xmm5, 0 + mov eax, 0x20802080 // multiplier shift by 5 and then repeat 6 bits + movd xmm6, eax + pshufd xmm6, xmm6, 0 + pcmpeqb xmm3, xmm3 // generate mask 0xf800f800 for Red + psllw xmm3, 11 + pcmpeqb xmm4, xmm4 // generate mask 0x07e007e0 for Green + psllw xmm4, 10 + psrlw xmm4, 5 + pcmpeqb xmm7, xmm7 // generate mask 0xff00ff00 for Alpha + psllw xmm7, 8 + + mov eax, [esp + 4] // src_rgb565 + mov edx, [esp + 8] // dst_argb + mov ecx, [esp + 12] // width + sub edx, eax + sub edx, eax + + convertloop: + movdqu xmm0, [eax] // fetch 8 pixels of bgr565 + movdqa xmm1, xmm0 + movdqa xmm2, xmm0 + pand xmm1, xmm3 // R in upper 5 bits + psllw xmm2, 11 // B in upper 5 bits + pmulhuw xmm1, xmm5 // * (256 + 8) + pmulhuw xmm2, xmm5 // * (256 + 8) + psllw xmm1, 8 + por xmm1, xmm2 // RB + pand xmm0, xmm4 // G in middle 6 bits + pmulhuw xmm0, xmm6 // << 5 * (256 + 4) + por xmm0, xmm7 // AG + movdqa xmm2, xmm1 + punpcklbw xmm1, xmm0 + punpckhbw xmm2, xmm0 + movdqu [eax * 2 + edx], xmm1 // store 4 pixels of ARGB + movdqu [eax * 2 + edx + 16], xmm2 // store next 4 pixels of ARGB + lea eax, [eax + 16] + sub ecx, 8 + jg convertloop + ret + } +} + +#ifdef HAS_RGB565TOARGBROW_AVX2 +// pmul method to replicate bits. +// Math to replicate bits: +// (v << 8) | (v << 3) +// v * 256 + v * 8 +// v * (256 + 8) +// G shift of 5 is incorporated, so shift is 5 + 8 and 5 + 3 +__declspec(naked) +void RGB565ToARGBRow_AVX2(const uint8* src_rgb565, uint8* dst_argb, + int width) { + __asm { + mov eax, 0x01080108 // generate multiplier to repeat 5 bits + vmovd xmm5, eax + vbroadcastss ymm5, xmm5 + mov eax, 0x20802080 // multiplier shift by 5 and then repeat 6 bits + vmovd xmm6, eax + vbroadcastss ymm6, xmm6 + vpcmpeqb ymm3, ymm3, ymm3 // generate mask 0xf800f800 for Red + vpsllw ymm3, ymm3, 11 + vpcmpeqb ymm4, ymm4, ymm4 // generate mask 0x07e007e0 for Green + vpsllw ymm4, ymm4, 10 + vpsrlw ymm4, ymm4, 5 + vpcmpeqb ymm7, ymm7, ymm7 // generate mask 0xff00ff00 for Alpha + vpsllw ymm7, ymm7, 8 + + mov eax, [esp + 4] // src_rgb565 + mov edx, [esp + 8] // dst_argb + mov ecx, [esp + 12] // width + sub edx, eax + sub edx, eax + + convertloop: + vmovdqu ymm0, [eax] // fetch 16 pixels of bgr565 + vpand ymm1, ymm0, ymm3 // R in upper 5 bits + vpsllw ymm2, ymm0, 11 // B in upper 5 bits + vpmulhuw ymm1, ymm1, ymm5 // * (256 + 8) + vpmulhuw ymm2, ymm2, ymm5 // * (256 + 8) + vpsllw ymm1, ymm1, 8 + vpor ymm1, ymm1, ymm2 // RB + vpand ymm0, ymm0, ymm4 // G in middle 6 bits + vpmulhuw ymm0, ymm0, ymm6 // << 5 * (256 + 4) + vpor ymm0, ymm0, ymm7 // AG + vpermq ymm0, ymm0, 0xd8 // mutate for unpack + vpermq ymm1, ymm1, 0xd8 + vpunpckhbw ymm2, ymm1, ymm0 + vpunpcklbw ymm1, ymm1, ymm0 + vmovdqu [eax * 2 + edx], ymm1 // store 4 pixels of ARGB + vmovdqu [eax * 2 + edx + 32], ymm2 // store next 4 pixels of ARGB + lea eax, [eax + 32] + sub ecx, 16 + jg convertloop + vzeroupper + ret + } +} +#endif // HAS_RGB565TOARGBROW_AVX2 + +#ifdef HAS_ARGB1555TOARGBROW_AVX2 +__declspec(naked) +void ARGB1555ToARGBRow_AVX2(const uint8* src_argb1555, uint8* dst_argb, + int width) { + __asm { + mov eax, 0x01080108 // generate multiplier to repeat 5 bits + vmovd xmm5, eax + vbroadcastss ymm5, xmm5 + mov eax, 0x42004200 // multiplier shift by 6 and then repeat 5 bits + vmovd xmm6, eax + vbroadcastss ymm6, xmm6 + vpcmpeqb ymm3, ymm3, ymm3 // generate mask 0xf800f800 for Red + vpsllw ymm3, ymm3, 11 + vpsrlw ymm4, ymm3, 6 // generate mask 0x03e003e0 for Green + vpcmpeqb ymm7, ymm7, ymm7 // generate mask 0xff00ff00 for Alpha + vpsllw ymm7, ymm7, 8 + + mov eax, [esp + 4] // src_argb1555 + mov edx, [esp + 8] // dst_argb + mov ecx, [esp + 12] // width + sub edx, eax + sub edx, eax + + convertloop: + vmovdqu ymm0, [eax] // fetch 16 pixels of 1555 + vpsllw ymm1, ymm0, 1 // R in upper 5 bits + vpsllw ymm2, ymm0, 11 // B in upper 5 bits + vpand ymm1, ymm1, ymm3 + vpmulhuw ymm2, ymm2, ymm5 // * (256 + 8) + vpmulhuw ymm1, ymm1, ymm5 // * (256 + 8) + vpsllw ymm1, ymm1, 8 + vpor ymm1, ymm1, ymm2 // RB + vpsraw ymm2, ymm0, 8 // A + vpand ymm0, ymm0, ymm4 // G in middle 5 bits + vpmulhuw ymm0, ymm0, ymm6 // << 6 * (256 + 8) + vpand ymm2, ymm2, ymm7 + vpor ymm0, ymm0, ymm2 // AG + vpermq ymm0, ymm0, 0xd8 // mutate for unpack + vpermq ymm1, ymm1, 0xd8 + vpunpckhbw ymm2, ymm1, ymm0 + vpunpcklbw ymm1, ymm1, ymm0 + vmovdqu [eax * 2 + edx], ymm1 // store 8 pixels of ARGB + vmovdqu [eax * 2 + edx + 32], ymm2 // store next 8 pixels of ARGB + lea eax, [eax + 32] + sub ecx, 16 + jg convertloop + vzeroupper + ret + } +} +#endif // HAS_ARGB1555TOARGBROW_AVX2 + +#ifdef HAS_ARGB4444TOARGBROW_AVX2 +__declspec(naked) +void ARGB4444ToARGBRow_AVX2(const uint8* src_argb4444, uint8* dst_argb, + int width) { + __asm { + mov eax, 0x0f0f0f0f // generate mask 0x0f0f0f0f + vmovd xmm4, eax + vbroadcastss ymm4, xmm4 + vpslld ymm5, ymm4, 4 // 0xf0f0f0f0 for high nibbles + mov eax, [esp + 4] // src_argb4444 + mov edx, [esp + 8] // dst_argb + mov ecx, [esp + 12] // width + sub edx, eax + sub edx, eax + + convertloop: + vmovdqu ymm0, [eax] // fetch 16 pixels of bgra4444 + vpand ymm2, ymm0, ymm5 // mask high nibbles + vpand ymm0, ymm0, ymm4 // mask low nibbles + vpsrlw ymm3, ymm2, 4 + vpsllw ymm1, ymm0, 4 + vpor ymm2, ymm2, ymm3 + vpor ymm0, ymm0, ymm1 + vpermq ymm0, ymm0, 0xd8 // mutate for unpack + vpermq ymm2, ymm2, 0xd8 + vpunpckhbw ymm1, ymm0, ymm2 + vpunpcklbw ymm0, ymm0, ymm2 + vmovdqu [eax * 2 + edx], ymm0 // store 8 pixels of ARGB + vmovdqu [eax * 2 + edx + 32], ymm1 // store next 8 pixels of ARGB + lea eax, [eax + 32] + sub ecx, 16 + jg convertloop + vzeroupper + ret + } +} +#endif // HAS_ARGB4444TOARGBROW_AVX2 + +// 24 instructions +__declspec(naked) +void ARGB1555ToARGBRow_SSE2(const uint8* src_argb1555, uint8* dst_argb, + int width) { + __asm { + mov eax, 0x01080108 // generate multiplier to repeat 5 bits + movd xmm5, eax + pshufd xmm5, xmm5, 0 + mov eax, 0x42004200 // multiplier shift by 6 and then repeat 5 bits + movd xmm6, eax + pshufd xmm6, xmm6, 0 + pcmpeqb xmm3, xmm3 // generate mask 0xf800f800 for Red + psllw xmm3, 11 + movdqa xmm4, xmm3 // generate mask 0x03e003e0 for Green + psrlw xmm4, 6 + pcmpeqb xmm7, xmm7 // generate mask 0xff00ff00 for Alpha + psllw xmm7, 8 + + mov eax, [esp + 4] // src_argb1555 + mov edx, [esp + 8] // dst_argb + mov ecx, [esp + 12] // width + sub edx, eax + sub edx, eax + + convertloop: + movdqu xmm0, [eax] // fetch 8 pixels of 1555 + movdqa xmm1, xmm0 + movdqa xmm2, xmm0 + psllw xmm1, 1 // R in upper 5 bits + psllw xmm2, 11 // B in upper 5 bits + pand xmm1, xmm3 + pmulhuw xmm2, xmm5 // * (256 + 8) + pmulhuw xmm1, xmm5 // * (256 + 8) + psllw xmm1, 8 + por xmm1, xmm2 // RB + movdqa xmm2, xmm0 + pand xmm0, xmm4 // G in middle 5 bits + psraw xmm2, 8 // A + pmulhuw xmm0, xmm6 // << 6 * (256 + 8) + pand xmm2, xmm7 + por xmm0, xmm2 // AG + movdqa xmm2, xmm1 + punpcklbw xmm1, xmm0 + punpckhbw xmm2, xmm0 + movdqu [eax * 2 + edx], xmm1 // store 4 pixels of ARGB + movdqu [eax * 2 + edx + 16], xmm2 // store next 4 pixels of ARGB + lea eax, [eax + 16] + sub ecx, 8 + jg convertloop + ret + } +} + +// 18 instructions. +__declspec(naked) +void ARGB4444ToARGBRow_SSE2(const uint8* src_argb4444, uint8* dst_argb, + int width) { + __asm { + mov eax, 0x0f0f0f0f // generate mask 0x0f0f0f0f + movd xmm4, eax + pshufd xmm4, xmm4, 0 + movdqa xmm5, xmm4 // 0xf0f0f0f0 for high nibbles + pslld xmm5, 4 + mov eax, [esp + 4] // src_argb4444 + mov edx, [esp + 8] // dst_argb + mov ecx, [esp + 12] // width + sub edx, eax + sub edx, eax + + convertloop: + movdqu xmm0, [eax] // fetch 8 pixels of bgra4444 + movdqa xmm2, xmm0 + pand xmm0, xmm4 // mask low nibbles + pand xmm2, xmm5 // mask high nibbles + movdqa xmm1, xmm0 + movdqa xmm3, xmm2 + psllw xmm1, 4 + psrlw xmm3, 4 + por xmm0, xmm1 + por xmm2, xmm3 + movdqa xmm1, xmm0 + punpcklbw xmm0, xmm2 + punpckhbw xmm1, xmm2 + movdqu [eax * 2 + edx], xmm0 // store 4 pixels of ARGB + movdqu [eax * 2 + edx + 16], xmm1 // store next 4 pixels of ARGB + lea eax, [eax + 16] + sub ecx, 8 + jg convertloop + ret + } +} + +__declspec(naked) +void ARGBToRGB24Row_SSSE3(const uint8* src_argb, uint8* dst_rgb, int width) { + __asm { + mov eax, [esp + 4] // src_argb + mov edx, [esp + 8] // dst_rgb + mov ecx, [esp + 12] // width + movdqa xmm6, xmmword ptr kShuffleMaskARGBToRGB24 + + convertloop: + movdqu xmm0, [eax] // fetch 16 pixels of argb + movdqu xmm1, [eax + 16] + movdqu xmm2, [eax + 32] + movdqu xmm3, [eax + 48] + lea eax, [eax + 64] + pshufb xmm0, xmm6 // pack 16 bytes of ARGB to 12 bytes of RGB + pshufb xmm1, xmm6 + pshufb xmm2, xmm6 + pshufb xmm3, xmm6 + movdqa xmm4, xmm1 // 4 bytes from 1 for 0 + psrldq xmm1, 4 // 8 bytes from 1 + pslldq xmm4, 12 // 4 bytes from 1 for 0 + movdqa xmm5, xmm2 // 8 bytes from 2 for 1 + por xmm0, xmm4 // 4 bytes from 1 for 0 + pslldq xmm5, 8 // 8 bytes from 2 for 1 + movdqu [edx], xmm0 // store 0 + por xmm1, xmm5 // 8 bytes from 2 for 1 + psrldq xmm2, 8 // 4 bytes from 2 + pslldq xmm3, 4 // 12 bytes from 3 for 2 + por xmm2, xmm3 // 12 bytes from 3 for 2 + movdqu [edx + 16], xmm1 // store 1 + movdqu [edx + 32], xmm2 // store 2 + lea edx, [edx + 48] + sub ecx, 16 + jg convertloop + ret + } +} + +__declspec(naked) +void ARGBToRAWRow_SSSE3(const uint8* src_argb, uint8* dst_rgb, int width) { + __asm { + mov eax, [esp + 4] // src_argb + mov edx, [esp + 8] // dst_rgb + mov ecx, [esp + 12] // width + movdqa xmm6, xmmword ptr kShuffleMaskARGBToRAW + + convertloop: + movdqu xmm0, [eax] // fetch 16 pixels of argb + movdqu xmm1, [eax + 16] + movdqu xmm2, [eax + 32] + movdqu xmm3, [eax + 48] + lea eax, [eax + 64] + pshufb xmm0, xmm6 // pack 16 bytes of ARGB to 12 bytes of RGB + pshufb xmm1, xmm6 + pshufb xmm2, xmm6 + pshufb xmm3, xmm6 + movdqa xmm4, xmm1 // 4 bytes from 1 for 0 + psrldq xmm1, 4 // 8 bytes from 1 + pslldq xmm4, 12 // 4 bytes from 1 for 0 + movdqa xmm5, xmm2 // 8 bytes from 2 for 1 + por xmm0, xmm4 // 4 bytes from 1 for 0 + pslldq xmm5, 8 // 8 bytes from 2 for 1 + movdqu [edx], xmm0 // store 0 + por xmm1, xmm5 // 8 bytes from 2 for 1 + psrldq xmm2, 8 // 4 bytes from 2 + pslldq xmm3, 4 // 12 bytes from 3 for 2 + por xmm2, xmm3 // 12 bytes from 3 for 2 + movdqu [edx + 16], xmm1 // store 1 + movdqu [edx + 32], xmm2 // store 2 + lea edx, [edx + 48] + sub ecx, 16 + jg convertloop + ret + } +} + +__declspec(naked) +void ARGBToRGB565Row_SSE2(const uint8* src_argb, uint8* dst_rgb, int width) { + __asm { + mov eax, [esp + 4] // src_argb + mov edx, [esp + 8] // dst_rgb + mov ecx, [esp + 12] // width + pcmpeqb xmm3, xmm3 // generate mask 0x0000001f + psrld xmm3, 27 + pcmpeqb xmm4, xmm4 // generate mask 0x000007e0 + psrld xmm4, 26 + pslld xmm4, 5 + pcmpeqb xmm5, xmm5 // generate mask 0xfffff800 + pslld xmm5, 11 + + convertloop: + movdqu xmm0, [eax] // fetch 4 pixels of argb + movdqa xmm1, xmm0 // B + movdqa xmm2, xmm0 // G + pslld xmm0, 8 // R + psrld xmm1, 3 // B + psrld xmm2, 5 // G + psrad xmm0, 16 // R + pand xmm1, xmm3 // B + pand xmm2, xmm4 // G + pand xmm0, xmm5 // R + por xmm1, xmm2 // BG + por xmm0, xmm1 // BGR + packssdw xmm0, xmm0 + lea eax, [eax + 16] + movq qword ptr [edx], xmm0 // store 4 pixels of RGB565 + lea edx, [edx + 8] + sub ecx, 4 + jg convertloop + ret + } +} + +__declspec(naked) +void ARGBToRGB565DitherRow_SSE2(const uint8* src_argb, uint8* dst_rgb, + const uint32 dither4, int width) { + __asm { + + mov eax, [esp + 4] // src_argb + mov edx, [esp + 8] // dst_rgb + movd xmm6, [esp + 12] // dither4 + mov ecx, [esp + 16] // width + punpcklbw xmm6, xmm6 // make dither 16 bytes + movdqa xmm7, xmm6 + punpcklwd xmm6, xmm6 + punpckhwd xmm7, xmm7 + pcmpeqb xmm3, xmm3 // generate mask 0x0000001f + psrld xmm3, 27 + pcmpeqb xmm4, xmm4 // generate mask 0x000007e0 + psrld xmm4, 26 + pslld xmm4, 5 + pcmpeqb xmm5, xmm5 // generate mask 0xfffff800 + pslld xmm5, 11 + + convertloop: + movdqu xmm0, [eax] // fetch 4 pixels of argb + paddusb xmm0, xmm6 // add dither + movdqa xmm1, xmm0 // B + movdqa xmm2, xmm0 // G + pslld xmm0, 8 // R + psrld xmm1, 3 // B + psrld xmm2, 5 // G + psrad xmm0, 16 // R + pand xmm1, xmm3 // B + pand xmm2, xmm4 // G + pand xmm0, xmm5 // R + por xmm1, xmm2 // BG + por xmm0, xmm1 // BGR + packssdw xmm0, xmm0 + lea eax, [eax + 16] + movq qword ptr [edx], xmm0 // store 4 pixels of RGB565 + lea edx, [edx + 8] + sub ecx, 4 + jg convertloop + ret + } +} + +#ifdef HAS_ARGBTORGB565DITHERROW_AVX2 +__declspec(naked) +void ARGBToRGB565DitherRow_AVX2(const uint8* src_argb, uint8* dst_rgb, + const uint32 dither4, int width) { + __asm { + mov eax, [esp + 4] // src_argb + mov edx, [esp + 8] // dst_rgb + vbroadcastss xmm6, [esp + 12] // dither4 + mov ecx, [esp + 16] // width + vpunpcklbw xmm6, xmm6, xmm6 // make dither 32 bytes + vpermq ymm6, ymm6, 0xd8 + vpunpcklwd ymm6, ymm6, ymm6 + vpcmpeqb ymm3, ymm3, ymm3 // generate mask 0x0000001f + vpsrld ymm3, ymm3, 27 + vpcmpeqb ymm4, ymm4, ymm4 // generate mask 0x000007e0 + vpsrld ymm4, ymm4, 26 + vpslld ymm4, ymm4, 5 + vpslld ymm5, ymm3, 11 // generate mask 0x0000f800 + + convertloop: + vmovdqu ymm0, [eax] // fetch 8 pixels of argb + vpaddusb ymm0, ymm0, ymm6 // add dither + vpsrld ymm2, ymm0, 5 // G + vpsrld ymm1, ymm0, 3 // B + vpsrld ymm0, ymm0, 8 // R + vpand ymm2, ymm2, ymm4 // G + vpand ymm1, ymm1, ymm3 // B + vpand ymm0, ymm0, ymm5 // R + vpor ymm1, ymm1, ymm2 // BG + vpor ymm0, ymm0, ymm1 // BGR + vpackusdw ymm0, ymm0, ymm0 + vpermq ymm0, ymm0, 0xd8 + lea eax, [eax + 32] + vmovdqu [edx], xmm0 // store 8 pixels of RGB565 + lea edx, [edx + 16] + sub ecx, 8 + jg convertloop + vzeroupper + ret + } +} +#endif // HAS_ARGBTORGB565DITHERROW_AVX2 + +// TODO(fbarchard): Improve sign extension/packing. +__declspec(naked) +void ARGBToARGB1555Row_SSE2(const uint8* src_argb, uint8* dst_rgb, int width) { + __asm { + mov eax, [esp + 4] // src_argb + mov edx, [esp + 8] // dst_rgb + mov ecx, [esp + 12] // width + pcmpeqb xmm4, xmm4 // generate mask 0x0000001f + psrld xmm4, 27 + movdqa xmm5, xmm4 // generate mask 0x000003e0 + pslld xmm5, 5 + movdqa xmm6, xmm4 // generate mask 0x00007c00 + pslld xmm6, 10 + pcmpeqb xmm7, xmm7 // generate mask 0xffff8000 + pslld xmm7, 15 + + convertloop: + movdqu xmm0, [eax] // fetch 4 pixels of argb + movdqa xmm1, xmm0 // B + movdqa xmm2, xmm0 // G + movdqa xmm3, xmm0 // R + psrad xmm0, 16 // A + psrld xmm1, 3 // B + psrld xmm2, 6 // G + psrld xmm3, 9 // R + pand xmm0, xmm7 // A + pand xmm1, xmm4 // B + pand xmm2, xmm5 // G + pand xmm3, xmm6 // R + por xmm0, xmm1 // BA + por xmm2, xmm3 // GR + por xmm0, xmm2 // BGRA + packssdw xmm0, xmm0 + lea eax, [eax + 16] + movq qword ptr [edx], xmm0 // store 4 pixels of ARGB1555 + lea edx, [edx + 8] + sub ecx, 4 + jg convertloop + ret + } +} + +__declspec(naked) +void ARGBToARGB4444Row_SSE2(const uint8* src_argb, uint8* dst_rgb, int width) { + __asm { + mov eax, [esp + 4] // src_argb + mov edx, [esp + 8] // dst_rgb + mov ecx, [esp + 12] // width + pcmpeqb xmm4, xmm4 // generate mask 0xf000f000 + psllw xmm4, 12 + movdqa xmm3, xmm4 // generate mask 0x00f000f0 + psrlw xmm3, 8 + + convertloop: + movdqu xmm0, [eax] // fetch 4 pixels of argb + movdqa xmm1, xmm0 + pand xmm0, xmm3 // low nibble + pand xmm1, xmm4 // high nibble + psrld xmm0, 4 + psrld xmm1, 8 + por xmm0, xmm1 + packuswb xmm0, xmm0 + lea eax, [eax + 16] + movq qword ptr [edx], xmm0 // store 4 pixels of ARGB4444 + lea edx, [edx + 8] + sub ecx, 4 + jg convertloop + ret + } +} + +#ifdef HAS_ARGBTORGB565ROW_AVX2 +__declspec(naked) +void ARGBToRGB565Row_AVX2(const uint8* src_argb, uint8* dst_rgb, int width) { + __asm { + mov eax, [esp + 4] // src_argb + mov edx, [esp + 8] // dst_rgb + mov ecx, [esp + 12] // width + vpcmpeqb ymm3, ymm3, ymm3 // generate mask 0x0000001f + vpsrld ymm3, ymm3, 27 + vpcmpeqb ymm4, ymm4, ymm4 // generate mask 0x000007e0 + vpsrld ymm4, ymm4, 26 + vpslld ymm4, ymm4, 5 + vpslld ymm5, ymm3, 11 // generate mask 0x0000f800 + + convertloop: + vmovdqu ymm0, [eax] // fetch 8 pixels of argb + vpsrld ymm2, ymm0, 5 // G + vpsrld ymm1, ymm0, 3 // B + vpsrld ymm0, ymm0, 8 // R + vpand ymm2, ymm2, ymm4 // G + vpand ymm1, ymm1, ymm3 // B + vpand ymm0, ymm0, ymm5 // R + vpor ymm1, ymm1, ymm2 // BG + vpor ymm0, ymm0, ymm1 // BGR + vpackusdw ymm0, ymm0, ymm0 + vpermq ymm0, ymm0, 0xd8 + lea eax, [eax + 32] + vmovdqu [edx], xmm0 // store 8 pixels of RGB565 + lea edx, [edx + 16] + sub ecx, 8 + jg convertloop + vzeroupper + ret + } +} +#endif // HAS_ARGBTORGB565ROW_AVX2 + +#ifdef HAS_ARGBTOARGB1555ROW_AVX2 +__declspec(naked) +void ARGBToARGB1555Row_AVX2(const uint8* src_argb, uint8* dst_rgb, int width) { + __asm { + mov eax, [esp + 4] // src_argb + mov edx, [esp + 8] // dst_rgb + mov ecx, [esp + 12] // width + vpcmpeqb ymm4, ymm4, ymm4 + vpsrld ymm4, ymm4, 27 // generate mask 0x0000001f + vpslld ymm5, ymm4, 5 // generate mask 0x000003e0 + vpslld ymm6, ymm4, 10 // generate mask 0x00007c00 + vpcmpeqb ymm7, ymm7, ymm7 // generate mask 0xffff8000 + vpslld ymm7, ymm7, 15 + + convertloop: + vmovdqu ymm0, [eax] // fetch 8 pixels of argb + vpsrld ymm3, ymm0, 9 // R + vpsrld ymm2, ymm0, 6 // G + vpsrld ymm1, ymm0, 3 // B + vpsrad ymm0, ymm0, 16 // A + vpand ymm3, ymm3, ymm6 // R + vpand ymm2, ymm2, ymm5 // G + vpand ymm1, ymm1, ymm4 // B + vpand ymm0, ymm0, ymm7 // A + vpor ymm0, ymm0, ymm1 // BA + vpor ymm2, ymm2, ymm3 // GR + vpor ymm0, ymm0, ymm2 // BGRA + vpackssdw ymm0, ymm0, ymm0 + vpermq ymm0, ymm0, 0xd8 + lea eax, [eax + 32] + vmovdqu [edx], xmm0 // store 8 pixels of ARGB1555 + lea edx, [edx + 16] + sub ecx, 8 + jg convertloop + vzeroupper + ret + } +} +#endif // HAS_ARGBTOARGB1555ROW_AVX2 + +#ifdef HAS_ARGBTOARGB4444ROW_AVX2 +__declspec(naked) +void ARGBToARGB4444Row_AVX2(const uint8* src_argb, uint8* dst_rgb, int width) { + __asm { + mov eax, [esp + 4] // src_argb + mov edx, [esp + 8] // dst_rgb + mov ecx, [esp + 12] // width + vpcmpeqb ymm4, ymm4, ymm4 // generate mask 0xf000f000 + vpsllw ymm4, ymm4, 12 + vpsrlw ymm3, ymm4, 8 // generate mask 0x00f000f0 + + convertloop: + vmovdqu ymm0, [eax] // fetch 8 pixels of argb + vpand ymm1, ymm0, ymm4 // high nibble + vpand ymm0, ymm0, ymm3 // low nibble + vpsrld ymm1, ymm1, 8 + vpsrld ymm0, ymm0, 4 + vpor ymm0, ymm0, ymm1 + vpackuswb ymm0, ymm0, ymm0 + vpermq ymm0, ymm0, 0xd8 + lea eax, [eax + 32] + vmovdqu [edx], xmm0 // store 8 pixels of ARGB4444 + lea edx, [edx + 16] + sub ecx, 8 + jg convertloop + vzeroupper + ret + } +} +#endif // HAS_ARGBTOARGB4444ROW_AVX2 + +// Convert 16 ARGB pixels (64 bytes) to 16 Y values. +__declspec(naked) +void ARGBToYRow_SSSE3(const uint8* src_argb, uint8* dst_y, int width) { + __asm { + mov eax, [esp + 4] /* src_argb */ + mov edx, [esp + 8] /* dst_y */ + mov ecx, [esp + 12] /* width */ + movdqa xmm4, xmmword ptr kARGBToY + movdqa xmm5, xmmword ptr kAddY16 + + convertloop: + movdqu xmm0, [eax] + movdqu xmm1, [eax + 16] + movdqu xmm2, [eax + 32] + movdqu xmm3, [eax + 48] + pmaddubsw xmm0, xmm4 + pmaddubsw xmm1, xmm4 + pmaddubsw xmm2, xmm4 + pmaddubsw xmm3, xmm4 + lea eax, [eax + 64] + phaddw xmm0, xmm1 + phaddw xmm2, xmm3 + psrlw xmm0, 7 + psrlw xmm2, 7 + packuswb xmm0, xmm2 + paddb xmm0, xmm5 + movdqu [edx], xmm0 + lea edx, [edx + 16] + sub ecx, 16 + jg convertloop + ret + } +} + +// Convert 16 ARGB pixels (64 bytes) to 16 YJ values. +// Same as ARGBToYRow but different coefficients, no add 16, but do rounding. +__declspec(naked) +void ARGBToYJRow_SSSE3(const uint8* src_argb, uint8* dst_y, int width) { + __asm { + mov eax, [esp + 4] /* src_argb */ + mov edx, [esp + 8] /* dst_y */ + mov ecx, [esp + 12] /* width */ + movdqa xmm4, xmmword ptr kARGBToYJ + movdqa xmm5, xmmword ptr kAddYJ64 + + convertloop: + movdqu xmm0, [eax] + movdqu xmm1, [eax + 16] + movdqu xmm2, [eax + 32] + movdqu xmm3, [eax + 48] + pmaddubsw xmm0, xmm4 + pmaddubsw xmm1, xmm4 + pmaddubsw xmm2, xmm4 + pmaddubsw xmm3, xmm4 + lea eax, [eax + 64] + phaddw xmm0, xmm1 + phaddw xmm2, xmm3 + paddw xmm0, xmm5 // Add .5 for rounding. + paddw xmm2, xmm5 + psrlw xmm0, 7 + psrlw xmm2, 7 + packuswb xmm0, xmm2 + movdqu [edx], xmm0 + lea edx, [edx + 16] + sub ecx, 16 + jg convertloop + ret + } +} + +#ifdef HAS_ARGBTOYROW_AVX2 +// vpermd for vphaddw + vpackuswb vpermd. +static const lvec32 kPermdARGBToY_AVX = { + 0, 4, 1, 5, 2, 6, 3, 7 +}; + +// Convert 32 ARGB pixels (128 bytes) to 32 Y values. +__declspec(naked) +void ARGBToYRow_AVX2(const uint8* src_argb, uint8* dst_y, int width) { + __asm { + mov eax, [esp + 4] /* src_argb */ + mov edx, [esp + 8] /* dst_y */ + mov ecx, [esp + 12] /* width */ + vbroadcastf128 ymm4, xmmword ptr kARGBToY + vbroadcastf128 ymm5, xmmword ptr kAddY16 + vmovdqu ymm6, ymmword ptr kPermdARGBToY_AVX + + convertloop: + vmovdqu ymm0, [eax] + vmovdqu ymm1, [eax + 32] + vmovdqu ymm2, [eax + 64] + vmovdqu ymm3, [eax + 96] + vpmaddubsw ymm0, ymm0, ymm4 + vpmaddubsw ymm1, ymm1, ymm4 + vpmaddubsw ymm2, ymm2, ymm4 + vpmaddubsw ymm3, ymm3, ymm4 + lea eax, [eax + 128] + vphaddw ymm0, ymm0, ymm1 // mutates. + vphaddw ymm2, ymm2, ymm3 + vpsrlw ymm0, ymm0, 7 + vpsrlw ymm2, ymm2, 7 + vpackuswb ymm0, ymm0, ymm2 // mutates. + vpermd ymm0, ymm6, ymm0 // For vphaddw + vpackuswb mutation. + vpaddb ymm0, ymm0, ymm5 // add 16 for Y + vmovdqu [edx], ymm0 + lea edx, [edx + 32] + sub ecx, 32 + jg convertloop + vzeroupper + ret + } +} +#endif // HAS_ARGBTOYROW_AVX2 + +#ifdef HAS_ARGBTOYJROW_AVX2 +// Convert 32 ARGB pixels (128 bytes) to 32 Y values. +__declspec(naked) +void ARGBToYJRow_AVX2(const uint8* src_argb, uint8* dst_y, int width) { + __asm { + mov eax, [esp + 4] /* src_argb */ + mov edx, [esp + 8] /* dst_y */ + mov ecx, [esp + 12] /* width */ + vbroadcastf128 ymm4, xmmword ptr kARGBToYJ + vbroadcastf128 ymm5, xmmword ptr kAddYJ64 + vmovdqu ymm6, ymmword ptr kPermdARGBToY_AVX + + convertloop: + vmovdqu ymm0, [eax] + vmovdqu ymm1, [eax + 32] + vmovdqu ymm2, [eax + 64] + vmovdqu ymm3, [eax + 96] + vpmaddubsw ymm0, ymm0, ymm4 + vpmaddubsw ymm1, ymm1, ymm4 + vpmaddubsw ymm2, ymm2, ymm4 + vpmaddubsw ymm3, ymm3, ymm4 + lea eax, [eax + 128] + vphaddw ymm0, ymm0, ymm1 // mutates. + vphaddw ymm2, ymm2, ymm3 + vpaddw ymm0, ymm0, ymm5 // Add .5 for rounding. + vpaddw ymm2, ymm2, ymm5 + vpsrlw ymm0, ymm0, 7 + vpsrlw ymm2, ymm2, 7 + vpackuswb ymm0, ymm0, ymm2 // mutates. + vpermd ymm0, ymm6, ymm0 // For vphaddw + vpackuswb mutation. + vmovdqu [edx], ymm0 + lea edx, [edx + 32] + sub ecx, 32 + jg convertloop + + vzeroupper + ret + } +} +#endif // HAS_ARGBTOYJROW_AVX2 + +__declspec(naked) +void BGRAToYRow_SSSE3(const uint8* src_argb, uint8* dst_y, int width) { + __asm { + mov eax, [esp + 4] /* src_argb */ + mov edx, [esp + 8] /* dst_y */ + mov ecx, [esp + 12] /* width */ + movdqa xmm4, xmmword ptr kBGRAToY + movdqa xmm5, xmmword ptr kAddY16 + + convertloop: + movdqu xmm0, [eax] + movdqu xmm1, [eax + 16] + movdqu xmm2, [eax + 32] + movdqu xmm3, [eax + 48] + pmaddubsw xmm0, xmm4 + pmaddubsw xmm1, xmm4 + pmaddubsw xmm2, xmm4 + pmaddubsw xmm3, xmm4 + lea eax, [eax + 64] + phaddw xmm0, xmm1 + phaddw xmm2, xmm3 + psrlw xmm0, 7 + psrlw xmm2, 7 + packuswb xmm0, xmm2 + paddb xmm0, xmm5 + movdqu [edx], xmm0 + lea edx, [edx + 16] + sub ecx, 16 + jg convertloop + ret + } +} + +__declspec(naked) +void ABGRToYRow_SSSE3(const uint8* src_argb, uint8* dst_y, int width) { + __asm { + mov eax, [esp + 4] /* src_argb */ + mov edx, [esp + 8] /* dst_y */ + mov ecx, [esp + 12] /* width */ + movdqa xmm4, xmmword ptr kABGRToY + movdqa xmm5, xmmword ptr kAddY16 + + convertloop: + movdqu xmm0, [eax] + movdqu xmm1, [eax + 16] + movdqu xmm2, [eax + 32] + movdqu xmm3, [eax + 48] + pmaddubsw xmm0, xmm4 + pmaddubsw xmm1, xmm4 + pmaddubsw xmm2, xmm4 + pmaddubsw xmm3, xmm4 + lea eax, [eax + 64] + phaddw xmm0, xmm1 + phaddw xmm2, xmm3 + psrlw xmm0, 7 + psrlw xmm2, 7 + packuswb xmm0, xmm2 + paddb xmm0, xmm5 + movdqu [edx], xmm0 + lea edx, [edx + 16] + sub ecx, 16 + jg convertloop + ret + } +} + +__declspec(naked) +void RGBAToYRow_SSSE3(const uint8* src_argb, uint8* dst_y, int width) { + __asm { + mov eax, [esp + 4] /* src_argb */ + mov edx, [esp + 8] /* dst_y */ + mov ecx, [esp + 12] /* width */ + movdqa xmm4, xmmword ptr kRGBAToY + movdqa xmm5, xmmword ptr kAddY16 + + convertloop: + movdqu xmm0, [eax] + movdqu xmm1, [eax + 16] + movdqu xmm2, [eax + 32] + movdqu xmm3, [eax + 48] + pmaddubsw xmm0, xmm4 + pmaddubsw xmm1, xmm4 + pmaddubsw xmm2, xmm4 + pmaddubsw xmm3, xmm4 + lea eax, [eax + 64] + phaddw xmm0, xmm1 + phaddw xmm2, xmm3 + psrlw xmm0, 7 + psrlw xmm2, 7 + packuswb xmm0, xmm2 + paddb xmm0, xmm5 + movdqu [edx], xmm0 + lea edx, [edx + 16] + sub ecx, 16 + jg convertloop + ret + } +} + +__declspec(naked) +void ARGBToUVRow_SSSE3(const uint8* src_argb0, int src_stride_argb, + uint8* dst_u, uint8* dst_v, int width) { + __asm { + push esi + push edi + mov eax, [esp + 8 + 4] // src_argb + mov esi, [esp + 8 + 8] // src_stride_argb + mov edx, [esp + 8 + 12] // dst_u + mov edi, [esp + 8 + 16] // dst_v + mov ecx, [esp + 8 + 20] // width + movdqa xmm5, xmmword ptr kAddUV128 + movdqa xmm6, xmmword ptr kARGBToV + movdqa xmm7, xmmword ptr kARGBToU + sub edi, edx // stride from u to v + + convertloop: + /* step 1 - subsample 16x2 argb pixels to 8x1 */ + movdqu xmm0, [eax] + movdqu xmm4, [eax + esi] + pavgb xmm0, xmm4 + movdqu xmm1, [eax + 16] + movdqu xmm4, [eax + esi + 16] + pavgb xmm1, xmm4 + movdqu xmm2, [eax + 32] + movdqu xmm4, [eax + esi + 32] + pavgb xmm2, xmm4 + movdqu xmm3, [eax + 48] + movdqu xmm4, [eax + esi + 48] + pavgb xmm3, xmm4 + + lea eax, [eax + 64] + movdqa xmm4, xmm0 + shufps xmm0, xmm1, 0x88 + shufps xmm4, xmm1, 0xdd + pavgb xmm0, xmm4 + movdqa xmm4, xmm2 + shufps xmm2, xmm3, 0x88 + shufps xmm4, xmm3, 0xdd + pavgb xmm2, xmm4 + + // step 2 - convert to U and V + // from here down is very similar to Y code except + // instead of 16 different pixels, its 8 pixels of U and 8 of V + movdqa xmm1, xmm0 + movdqa xmm3, xmm2 + pmaddubsw xmm0, xmm7 // U + pmaddubsw xmm2, xmm7 + pmaddubsw xmm1, xmm6 // V + pmaddubsw xmm3, xmm6 + phaddw xmm0, xmm2 + phaddw xmm1, xmm3 + psraw xmm0, 8 + psraw xmm1, 8 + packsswb xmm0, xmm1 + paddb xmm0, xmm5 // -> unsigned + + // step 3 - store 8 U and 8 V values + movlps qword ptr [edx], xmm0 // U + movhps qword ptr [edx + edi], xmm0 // V + lea edx, [edx + 8] + sub ecx, 16 + jg convertloop + + pop edi + pop esi + ret + } +} + +__declspec(naked) +void ARGBToUVJRow_SSSE3(const uint8* src_argb0, int src_stride_argb, + uint8* dst_u, uint8* dst_v, int width) { + __asm { + push esi + push edi + mov eax, [esp + 8 + 4] // src_argb + mov esi, [esp + 8 + 8] // src_stride_argb + mov edx, [esp + 8 + 12] // dst_u + mov edi, [esp + 8 + 16] // dst_v + mov ecx, [esp + 8 + 20] // width + movdqa xmm5, xmmword ptr kAddUVJ128 + movdqa xmm6, xmmword ptr kARGBToVJ + movdqa xmm7, xmmword ptr kARGBToUJ + sub edi, edx // stride from u to v + + convertloop: + /* step 1 - subsample 16x2 argb pixels to 8x1 */ + movdqu xmm0, [eax] + movdqu xmm4, [eax + esi] + pavgb xmm0, xmm4 + movdqu xmm1, [eax + 16] + movdqu xmm4, [eax + esi + 16] + pavgb xmm1, xmm4 + movdqu xmm2, [eax + 32] + movdqu xmm4, [eax + esi + 32] + pavgb xmm2, xmm4 + movdqu xmm3, [eax + 48] + movdqu xmm4, [eax + esi + 48] + pavgb xmm3, xmm4 + + lea eax, [eax + 64] + movdqa xmm4, xmm0 + shufps xmm0, xmm1, 0x88 + shufps xmm4, xmm1, 0xdd + pavgb xmm0, xmm4 + movdqa xmm4, xmm2 + shufps xmm2, xmm3, 0x88 + shufps xmm4, xmm3, 0xdd + pavgb xmm2, xmm4 + + // step 2 - convert to U and V + // from here down is very similar to Y code except + // instead of 16 different pixels, its 8 pixels of U and 8 of V + movdqa xmm1, xmm0 + movdqa xmm3, xmm2 + pmaddubsw xmm0, xmm7 // U + pmaddubsw xmm2, xmm7 + pmaddubsw xmm1, xmm6 // V + pmaddubsw xmm3, xmm6 + phaddw xmm0, xmm2 + phaddw xmm1, xmm3 + paddw xmm0, xmm5 // +.5 rounding -> unsigned + paddw xmm1, xmm5 + psraw xmm0, 8 + psraw xmm1, 8 + packsswb xmm0, xmm1 + + // step 3 - store 8 U and 8 V values + movlps qword ptr [edx], xmm0 // U + movhps qword ptr [edx + edi], xmm0 // V + lea edx, [edx + 8] + sub ecx, 16 + jg convertloop + + pop edi + pop esi + ret + } +} + +#ifdef HAS_ARGBTOUVROW_AVX2 +__declspec(naked) +void ARGBToUVRow_AVX2(const uint8* src_argb0, int src_stride_argb, + uint8* dst_u, uint8* dst_v, int width) { + __asm { + push esi + push edi + mov eax, [esp + 8 + 4] // src_argb + mov esi, [esp + 8 + 8] // src_stride_argb + mov edx, [esp + 8 + 12] // dst_u + mov edi, [esp + 8 + 16] // dst_v + mov ecx, [esp + 8 + 20] // width + vbroadcastf128 ymm5, xmmword ptr kAddUV128 + vbroadcastf128 ymm6, xmmword ptr kARGBToV + vbroadcastf128 ymm7, xmmword ptr kARGBToU + sub edi, edx // stride from u to v + + convertloop: + /* step 1 - subsample 32x2 argb pixels to 16x1 */ + vmovdqu ymm0, [eax] + vmovdqu ymm1, [eax + 32] + vmovdqu ymm2, [eax + 64] + vmovdqu ymm3, [eax + 96] + vpavgb ymm0, ymm0, [eax + esi] + vpavgb ymm1, ymm1, [eax + esi + 32] + vpavgb ymm2, ymm2, [eax + esi + 64] + vpavgb ymm3, ymm3, [eax + esi + 96] + lea eax, [eax + 128] + vshufps ymm4, ymm0, ymm1, 0x88 + vshufps ymm0, ymm0, ymm1, 0xdd + vpavgb ymm0, ymm0, ymm4 // mutated by vshufps + vshufps ymm4, ymm2, ymm3, 0x88 + vshufps ymm2, ymm2, ymm3, 0xdd + vpavgb ymm2, ymm2, ymm4 // mutated by vshufps + + // step 2 - convert to U and V + // from here down is very similar to Y code except + // instead of 32 different pixels, its 16 pixels of U and 16 of V + vpmaddubsw ymm1, ymm0, ymm7 // U + vpmaddubsw ymm3, ymm2, ymm7 + vpmaddubsw ymm0, ymm0, ymm6 // V + vpmaddubsw ymm2, ymm2, ymm6 + vphaddw ymm1, ymm1, ymm3 // mutates + vphaddw ymm0, ymm0, ymm2 + vpsraw ymm1, ymm1, 8 + vpsraw ymm0, ymm0, 8 + vpacksswb ymm0, ymm1, ymm0 // mutates + vpermq ymm0, ymm0, 0xd8 // For vpacksswb + vpshufb ymm0, ymm0, ymmword ptr kShufARGBToUV_AVX // for vshufps/vphaddw + vpaddb ymm0, ymm0, ymm5 // -> unsigned + + // step 3 - store 16 U and 16 V values + vextractf128 [edx], ymm0, 0 // U + vextractf128 [edx + edi], ymm0, 1 // V + lea edx, [edx + 16] + sub ecx, 32 + jg convertloop + + pop edi + pop esi + vzeroupper + ret + } +} +#endif // HAS_ARGBTOUVROW_AVX2 + +#ifdef HAS_ARGBTOUVJROW_AVX2 +__declspec(naked) +void ARGBToUVJRow_AVX2(const uint8* src_argb0, int src_stride_argb, + uint8* dst_u, uint8* dst_v, int width) { + __asm { + push esi + push edi + mov eax, [esp + 8 + 4] // src_argb + mov esi, [esp + 8 + 8] // src_stride_argb + mov edx, [esp + 8 + 12] // dst_u + mov edi, [esp + 8 + 16] // dst_v + mov ecx, [esp + 8 + 20] // width + vbroadcastf128 ymm5, xmmword ptr kAddUV128 + vbroadcastf128 ymm6, xmmword ptr kARGBToV + vbroadcastf128 ymm7, xmmword ptr kARGBToU + sub edi, edx // stride from u to v + + convertloop: + /* step 1 - subsample 32x2 argb pixels to 16x1 */ + vmovdqu ymm0, [eax] + vmovdqu ymm1, [eax + 32] + vmovdqu ymm2, [eax + 64] + vmovdqu ymm3, [eax + 96] + vpavgb ymm0, ymm0, [eax + esi] + vpavgb ymm1, ymm1, [eax + esi + 32] + vpavgb ymm2, ymm2, [eax + esi + 64] + vpavgb ymm3, ymm3, [eax + esi + 96] + lea eax, [eax + 128] + vshufps ymm4, ymm0, ymm1, 0x88 + vshufps ymm0, ymm0, ymm1, 0xdd + vpavgb ymm0, ymm0, ymm4 // mutated by vshufps + vshufps ymm4, ymm2, ymm3, 0x88 + vshufps ymm2, ymm2, ymm3, 0xdd + vpavgb ymm2, ymm2, ymm4 // mutated by vshufps + + // step 2 - convert to U and V + // from here down is very similar to Y code except + // instead of 32 different pixels, its 16 pixels of U and 16 of V + vpmaddubsw ymm1, ymm0, ymm7 // U + vpmaddubsw ymm3, ymm2, ymm7 + vpmaddubsw ymm0, ymm0, ymm6 // V + vpmaddubsw ymm2, ymm2, ymm6 + vphaddw ymm1, ymm1, ymm3 // mutates + vphaddw ymm0, ymm0, ymm2 + vpaddw ymm1, ymm1, ymm5 // +.5 rounding -> unsigned + vpaddw ymm0, ymm0, ymm5 + vpsraw ymm1, ymm1, 8 + vpsraw ymm0, ymm0, 8 + vpacksswb ymm0, ymm1, ymm0 // mutates + vpermq ymm0, ymm0, 0xd8 // For vpacksswb + vpshufb ymm0, ymm0, ymmword ptr kShufARGBToUV_AVX // for vshufps/vphaddw + + // step 3 - store 16 U and 16 V values + vextractf128 [edx], ymm0, 0 // U + vextractf128 [edx + edi], ymm0, 1 // V + lea edx, [edx + 16] + sub ecx, 32 + jg convertloop + + pop edi + pop esi + vzeroupper + ret + } +} +#endif // HAS_ARGBTOUVJROW_AVX2 + +__declspec(naked) +void ARGBToUV444Row_SSSE3(const uint8* src_argb0, + uint8* dst_u, uint8* dst_v, int width) { + __asm { + push edi + mov eax, [esp + 4 + 4] // src_argb + mov edx, [esp + 4 + 8] // dst_u + mov edi, [esp + 4 + 12] // dst_v + mov ecx, [esp + 4 + 16] // width + movdqa xmm5, xmmword ptr kAddUV128 + movdqa xmm6, xmmword ptr kARGBToV + movdqa xmm7, xmmword ptr kARGBToU + sub edi, edx // stride from u to v + + convertloop: + /* convert to U and V */ + movdqu xmm0, [eax] // U + movdqu xmm1, [eax + 16] + movdqu xmm2, [eax + 32] + movdqu xmm3, [eax + 48] + pmaddubsw xmm0, xmm7 + pmaddubsw xmm1, xmm7 + pmaddubsw xmm2, xmm7 + pmaddubsw xmm3, xmm7 + phaddw xmm0, xmm1 + phaddw xmm2, xmm3 + psraw xmm0, 8 + psraw xmm2, 8 + packsswb xmm0, xmm2 + paddb xmm0, xmm5 + movdqu [edx], xmm0 + + movdqu xmm0, [eax] // V + movdqu xmm1, [eax + 16] + movdqu xmm2, [eax + 32] + movdqu xmm3, [eax + 48] + pmaddubsw xmm0, xmm6 + pmaddubsw xmm1, xmm6 + pmaddubsw xmm2, xmm6 + pmaddubsw xmm3, xmm6 + phaddw xmm0, xmm1 + phaddw xmm2, xmm3 + psraw xmm0, 8 + psraw xmm2, 8 + packsswb xmm0, xmm2 + paddb xmm0, xmm5 + lea eax, [eax + 64] + movdqu [edx + edi], xmm0 + lea edx, [edx + 16] + sub ecx, 16 + jg convertloop + + pop edi + ret + } +} + +__declspec(naked) +void BGRAToUVRow_SSSE3(const uint8* src_argb0, int src_stride_argb, + uint8* dst_u, uint8* dst_v, int width) { + __asm { + push esi + push edi + mov eax, [esp + 8 + 4] // src_argb + mov esi, [esp + 8 + 8] // src_stride_argb + mov edx, [esp + 8 + 12] // dst_u + mov edi, [esp + 8 + 16] // dst_v + mov ecx, [esp + 8 + 20] // width + movdqa xmm5, xmmword ptr kAddUV128 + movdqa xmm6, xmmword ptr kBGRAToV + movdqa xmm7, xmmword ptr kBGRAToU + sub edi, edx // stride from u to v + + convertloop: + /* step 1 - subsample 16x2 argb pixels to 8x1 */ + movdqu xmm0, [eax] + movdqu xmm4, [eax + esi] + pavgb xmm0, xmm4 + movdqu xmm1, [eax + 16] + movdqu xmm4, [eax + esi + 16] + pavgb xmm1, xmm4 + movdqu xmm2, [eax + 32] + movdqu xmm4, [eax + esi + 32] + pavgb xmm2, xmm4 + movdqu xmm3, [eax + 48] + movdqu xmm4, [eax + esi + 48] + pavgb xmm3, xmm4 + + lea eax, [eax + 64] + movdqa xmm4, xmm0 + shufps xmm0, xmm1, 0x88 + shufps xmm4, xmm1, 0xdd + pavgb xmm0, xmm4 + movdqa xmm4, xmm2 + shufps xmm2, xmm3, 0x88 + shufps xmm4, xmm3, 0xdd + pavgb xmm2, xmm4 + + // step 2 - convert to U and V + // from here down is very similar to Y code except + // instead of 16 different pixels, its 8 pixels of U and 8 of V + movdqa xmm1, xmm0 + movdqa xmm3, xmm2 + pmaddubsw xmm0, xmm7 // U + pmaddubsw xmm2, xmm7 + pmaddubsw xmm1, xmm6 // V + pmaddubsw xmm3, xmm6 + phaddw xmm0, xmm2 + phaddw xmm1, xmm3 + psraw xmm0, 8 + psraw xmm1, 8 + packsswb xmm0, xmm1 + paddb xmm0, xmm5 // -> unsigned + + // step 3 - store 8 U and 8 V values + movlps qword ptr [edx], xmm0 // U + movhps qword ptr [edx + edi], xmm0 // V + lea edx, [edx + 8] + sub ecx, 16 + jg convertloop + + pop edi + pop esi + ret + } +} + +__declspec(naked) +void ABGRToUVRow_SSSE3(const uint8* src_argb0, int src_stride_argb, + uint8* dst_u, uint8* dst_v, int width) { + __asm { + push esi + push edi + mov eax, [esp + 8 + 4] // src_argb + mov esi, [esp + 8 + 8] // src_stride_argb + mov edx, [esp + 8 + 12] // dst_u + mov edi, [esp + 8 + 16] // dst_v + mov ecx, [esp + 8 + 20] // width + movdqa xmm5, xmmword ptr kAddUV128 + movdqa xmm6, xmmword ptr kABGRToV + movdqa xmm7, xmmword ptr kABGRToU + sub edi, edx // stride from u to v + + convertloop: + /* step 1 - subsample 16x2 argb pixels to 8x1 */ + movdqu xmm0, [eax] + movdqu xmm4, [eax + esi] + pavgb xmm0, xmm4 + movdqu xmm1, [eax + 16] + movdqu xmm4, [eax + esi + 16] + pavgb xmm1, xmm4 + movdqu xmm2, [eax + 32] + movdqu xmm4, [eax + esi + 32] + pavgb xmm2, xmm4 + movdqu xmm3, [eax + 48] + movdqu xmm4, [eax + esi + 48] + pavgb xmm3, xmm4 + + lea eax, [eax + 64] + movdqa xmm4, xmm0 + shufps xmm0, xmm1, 0x88 + shufps xmm4, xmm1, 0xdd + pavgb xmm0, xmm4 + movdqa xmm4, xmm2 + shufps xmm2, xmm3, 0x88 + shufps xmm4, xmm3, 0xdd + pavgb xmm2, xmm4 + + // step 2 - convert to U and V + // from here down is very similar to Y code except + // instead of 16 different pixels, its 8 pixels of U and 8 of V + movdqa xmm1, xmm0 + movdqa xmm3, xmm2 + pmaddubsw xmm0, xmm7 // U + pmaddubsw xmm2, xmm7 + pmaddubsw xmm1, xmm6 // V + pmaddubsw xmm3, xmm6 + phaddw xmm0, xmm2 + phaddw xmm1, xmm3 + psraw xmm0, 8 + psraw xmm1, 8 + packsswb xmm0, xmm1 + paddb xmm0, xmm5 // -> unsigned + + // step 3 - store 8 U and 8 V values + movlps qword ptr [edx], xmm0 // U + movhps qword ptr [edx + edi], xmm0 // V + lea edx, [edx + 8] + sub ecx, 16 + jg convertloop + + pop edi + pop esi + ret + } +} + +__declspec(naked) +void RGBAToUVRow_SSSE3(const uint8* src_argb0, int src_stride_argb, + uint8* dst_u, uint8* dst_v, int width) { + __asm { + push esi + push edi + mov eax, [esp + 8 + 4] // src_argb + mov esi, [esp + 8 + 8] // src_stride_argb + mov edx, [esp + 8 + 12] // dst_u + mov edi, [esp + 8 + 16] // dst_v + mov ecx, [esp + 8 + 20] // width + movdqa xmm5, xmmword ptr kAddUV128 + movdqa xmm6, xmmword ptr kRGBAToV + movdqa xmm7, xmmword ptr kRGBAToU + sub edi, edx // stride from u to v + + convertloop: + /* step 1 - subsample 16x2 argb pixels to 8x1 */ + movdqu xmm0, [eax] + movdqu xmm4, [eax + esi] + pavgb xmm0, xmm4 + movdqu xmm1, [eax + 16] + movdqu xmm4, [eax + esi + 16] + pavgb xmm1, xmm4 + movdqu xmm2, [eax + 32] + movdqu xmm4, [eax + esi + 32] + pavgb xmm2, xmm4 + movdqu xmm3, [eax + 48] + movdqu xmm4, [eax + esi + 48] + pavgb xmm3, xmm4 + + lea eax, [eax + 64] + movdqa xmm4, xmm0 + shufps xmm0, xmm1, 0x88 + shufps xmm4, xmm1, 0xdd + pavgb xmm0, xmm4 + movdqa xmm4, xmm2 + shufps xmm2, xmm3, 0x88 + shufps xmm4, xmm3, 0xdd + pavgb xmm2, xmm4 + + // step 2 - convert to U and V + // from here down is very similar to Y code except + // instead of 16 different pixels, its 8 pixels of U and 8 of V + movdqa xmm1, xmm0 + movdqa xmm3, xmm2 + pmaddubsw xmm0, xmm7 // U + pmaddubsw xmm2, xmm7 + pmaddubsw xmm1, xmm6 // V + pmaddubsw xmm3, xmm6 + phaddw xmm0, xmm2 + phaddw xmm1, xmm3 + psraw xmm0, 8 + psraw xmm1, 8 + packsswb xmm0, xmm1 + paddb xmm0, xmm5 // -> unsigned + + // step 3 - store 8 U and 8 V values + movlps qword ptr [edx], xmm0 // U + movhps qword ptr [edx + edi], xmm0 // V + lea edx, [edx + 8] + sub ecx, 16 + jg convertloop + + pop edi + pop esi + ret + } +} +#endif // HAS_ARGBTOYROW_SSSE3 + +// Read 16 UV from 444 +#define READYUV444_AVX2 __asm { \ + __asm vmovdqu xmm0, [esi] /* U */ \ + __asm vmovdqu xmm1, [esi + edi] /* V */ \ + __asm lea esi, [esi + 16] \ + __asm vpermq ymm0, ymm0, 0xd8 \ + __asm vpermq ymm1, ymm1, 0xd8 \ + __asm vpunpcklbw ymm0, ymm0, ymm1 /* UV */ \ + __asm vmovdqu xmm4, [eax] /* Y */ \ + __asm vpermq ymm4, ymm4, 0xd8 \ + __asm vpunpcklbw ymm4, ymm4, ymm4 \ + __asm lea eax, [eax + 16] \ + } + +// Read 8 UV from 422, upsample to 16 UV. +#define READYUV422_AVX2 __asm { \ + __asm vmovq xmm0, qword ptr [esi] /* U */ \ + __asm vmovq xmm1, qword ptr [esi + edi] /* V */ \ + __asm lea esi, [esi + 8] \ + __asm vpunpcklbw ymm0, ymm0, ymm1 /* UV */ \ + __asm vpermq ymm0, ymm0, 0xd8 \ + __asm vpunpcklwd ymm0, ymm0, ymm0 /* UVUV (upsample) */ \ + __asm vmovdqu xmm4, [eax] /* Y */ \ + __asm vpermq ymm4, ymm4, 0xd8 \ + __asm vpunpcklbw ymm4, ymm4, ymm4 \ + __asm lea eax, [eax + 16] \ + } + +// Read 8 UV from 422, upsample to 16 UV. With 16 Alpha. +#define READYUVA422_AVX2 __asm { \ + __asm vmovq xmm0, qword ptr [esi] /* U */ \ + __asm vmovq xmm1, qword ptr [esi + edi] /* V */ \ + __asm lea esi, [esi + 8] \ + __asm vpunpcklbw ymm0, ymm0, ymm1 /* UV */ \ + __asm vpermq ymm0, ymm0, 0xd8 \ + __asm vpunpcklwd ymm0, ymm0, ymm0 /* UVUV (upsample) */ \ + __asm vmovdqu xmm4, [eax] /* Y */ \ + __asm vpermq ymm4, ymm4, 0xd8 \ + __asm vpunpcklbw ymm4, ymm4, ymm4 \ + __asm lea eax, [eax + 16] \ + __asm vmovdqu xmm5, [ebp] /* A */ \ + __asm vpermq ymm5, ymm5, 0xd8 \ + __asm lea ebp, [ebp + 16] \ + } + +// Read 4 UV from 411, upsample to 16 UV. +#define READYUV411_AVX2 __asm { \ + __asm vmovd xmm0, dword ptr [esi] /* U */ \ + __asm vmovd xmm1, dword ptr [esi + edi] /* V */ \ + __asm lea esi, [esi + 4] \ + __asm vpunpcklbw ymm0, ymm0, ymm1 /* UV */ \ + __asm vpunpcklwd ymm0, ymm0, ymm0 /* UVUV (upsample) */ \ + __asm vpermq ymm0, ymm0, 0xd8 \ + __asm vpunpckldq ymm0, ymm0, ymm0 /* UVUVUVUV (upsample) */ \ + __asm vmovdqu xmm4, [eax] /* Y */ \ + __asm vpermq ymm4, ymm4, 0xd8 \ + __asm vpunpcklbw ymm4, ymm4, ymm4 \ + __asm lea eax, [eax + 16] \ + } + +// Read 8 UV from NV12, upsample to 16 UV. +#define READNV12_AVX2 __asm { \ + __asm vmovdqu xmm0, [esi] /* UV */ \ + __asm lea esi, [esi + 16] \ + __asm vpermq ymm0, ymm0, 0xd8 \ + __asm vpunpcklwd ymm0, ymm0, ymm0 /* UVUV (upsample) */ \ + __asm vmovdqu xmm4, [eax] /* Y */ \ + __asm vpermq ymm4, ymm4, 0xd8 \ + __asm vpunpcklbw ymm4, ymm4, ymm4 \ + __asm lea eax, [eax + 16] \ + } + +// Read 8 UV from NV21, upsample to 16 UV. +#define READNV21_AVX2 __asm { \ + __asm vmovdqu xmm0, [esi] /* UV */ \ + __asm lea esi, [esi + 16] \ + __asm vpermq ymm0, ymm0, 0xd8 \ + __asm vpshufb ymm0, ymm0, ymmword ptr kShuffleNV21 \ + __asm vmovdqu xmm4, [eax] /* Y */ \ + __asm vpermq ymm4, ymm4, 0xd8 \ + __asm vpunpcklbw ymm4, ymm4, ymm4 \ + __asm lea eax, [eax + 16] \ + } + +// Read 8 YUY2 with 16 Y and upsample 8 UV to 16 UV. +#define READYUY2_AVX2 __asm { \ + __asm vmovdqu ymm4, [eax] /* YUY2 */ \ + __asm vpshufb ymm4, ymm4, ymmword ptr kShuffleYUY2Y \ + __asm vmovdqu ymm0, [eax] /* UV */ \ + __asm vpshufb ymm0, ymm0, ymmword ptr kShuffleYUY2UV \ + __asm lea eax, [eax + 32] \ + } + +// Read 8 UYVY with 16 Y and upsample 8 UV to 16 UV. +#define READUYVY_AVX2 __asm { \ + __asm vmovdqu ymm4, [eax] /* UYVY */ \ + __asm vpshufb ymm4, ymm4, ymmword ptr kShuffleUYVYY \ + __asm vmovdqu ymm0, [eax] /* UV */ \ + __asm vpshufb ymm0, ymm0, ymmword ptr kShuffleUYVYUV \ + __asm lea eax, [eax + 32] \ + } + +// Convert 16 pixels: 16 UV and 16 Y. +#define YUVTORGB_AVX2(YuvConstants) __asm { \ + __asm vpmaddubsw ymm2, ymm0, ymmword ptr [YuvConstants + KUVTOR] /* R UV */\ + __asm vpmaddubsw ymm1, ymm0, ymmword ptr [YuvConstants + KUVTOG] /* G UV */\ + __asm vpmaddubsw ymm0, ymm0, ymmword ptr [YuvConstants + KUVTOB] /* B UV */\ + __asm vmovdqu ymm3, ymmword ptr [YuvConstants + KUVBIASR] \ + __asm vpsubw ymm2, ymm3, ymm2 \ + __asm vmovdqu ymm3, ymmword ptr [YuvConstants + KUVBIASG] \ + __asm vpsubw ymm1, ymm3, ymm1 \ + __asm vmovdqu ymm3, ymmword ptr [YuvConstants + KUVBIASB] \ + __asm vpsubw ymm0, ymm3, ymm0 \ + /* Step 2: Find Y contribution to 16 R,G,B values */ \ + __asm vpmulhuw ymm4, ymm4, ymmword ptr [YuvConstants + KYTORGB] \ + __asm vpaddsw ymm0, ymm0, ymm4 /* B += Y */ \ + __asm vpaddsw ymm1, ymm1, ymm4 /* G += Y */ \ + __asm vpaddsw ymm2, ymm2, ymm4 /* R += Y */ \ + __asm vpsraw ymm0, ymm0, 6 \ + __asm vpsraw ymm1, ymm1, 6 \ + __asm vpsraw ymm2, ymm2, 6 \ + __asm vpackuswb ymm0, ymm0, ymm0 /* B */ \ + __asm vpackuswb ymm1, ymm1, ymm1 /* G */ \ + __asm vpackuswb ymm2, ymm2, ymm2 /* R */ \ + } + +// Store 16 ARGB values. +#define STOREARGB_AVX2 __asm { \ + __asm vpunpcklbw ymm0, ymm0, ymm1 /* BG */ \ + __asm vpermq ymm0, ymm0, 0xd8 \ + __asm vpunpcklbw ymm2, ymm2, ymm5 /* RA */ \ + __asm vpermq ymm2, ymm2, 0xd8 \ + __asm vpunpcklwd ymm1, ymm0, ymm2 /* BGRA first 8 pixels */ \ + __asm vpunpckhwd ymm0, ymm0, ymm2 /* BGRA next 8 pixels */ \ + __asm vmovdqu 0[edx], ymm1 \ + __asm vmovdqu 32[edx], ymm0 \ + __asm lea edx, [edx + 64] \ + } + +// Store 16 RGBA values. +#define STORERGBA_AVX2 __asm { \ + __asm vpunpcklbw ymm1, ymm1, ymm2 /* GR */ \ + __asm vpermq ymm1, ymm1, 0xd8 \ + __asm vpunpcklbw ymm2, ymm5, ymm0 /* AB */ \ + __asm vpermq ymm2, ymm2, 0xd8 \ + __asm vpunpcklwd ymm0, ymm2, ymm1 /* ABGR first 8 pixels */ \ + __asm vpunpckhwd ymm1, ymm2, ymm1 /* ABGR next 8 pixels */ \ + __asm vmovdqu [edx], ymm0 \ + __asm vmovdqu [edx + 32], ymm1 \ + __asm lea edx, [edx + 64] \ + } + +#ifdef HAS_I422TOARGBROW_AVX2 +// 16 pixels +// 8 UV values upsampled to 16 UV, mixed with 16 Y producing 16 ARGB (64 bytes). +__declspec(naked) +void I422ToARGBRow_AVX2(const uint8* y_buf, + const uint8* u_buf, + const uint8* v_buf, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width) { + __asm { + push esi + push edi + push ebx + mov eax, [esp + 12 + 4] // Y + mov esi, [esp + 12 + 8] // U + mov edi, [esp + 12 + 12] // V + mov edx, [esp + 12 + 16] // argb + mov ebx, [esp + 12 + 20] // yuvconstants + mov ecx, [esp + 12 + 24] // width + sub edi, esi + vpcmpeqb ymm5, ymm5, ymm5 // generate 0xffffffffffffffff for alpha + + convertloop: + READYUV422_AVX2 + YUVTORGB_AVX2(ebx) + STOREARGB_AVX2 + + sub ecx, 16 + jg convertloop + + pop ebx + pop edi + pop esi + vzeroupper + ret + } +} +#endif // HAS_I422TOARGBROW_AVX2 + +#ifdef HAS_I422ALPHATOARGBROW_AVX2 +// 16 pixels +// 8 UV values upsampled to 16 UV, mixed with 16 Y and 16 A producing 16 ARGB. +__declspec(naked) +void I422AlphaToARGBRow_AVX2(const uint8* y_buf, + const uint8* u_buf, + const uint8* v_buf, + const uint8* a_buf, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width) { + __asm { + push esi + push edi + push ebx + push ebp + mov eax, [esp + 16 + 4] // Y + mov esi, [esp + 16 + 8] // U + mov edi, [esp + 16 + 12] // V + mov ebp, [esp + 16 + 16] // A + mov edx, [esp + 16 + 20] // argb + mov ebx, [esp + 16 + 24] // yuvconstants + mov ecx, [esp + 16 + 28] // width + sub edi, esi + + convertloop: + READYUVA422_AVX2 + YUVTORGB_AVX2(ebx) + STOREARGB_AVX2 + + sub ecx, 16 + jg convertloop + + pop ebp + pop ebx + pop edi + pop esi + vzeroupper + ret + } +} +#endif // HAS_I422ALPHATOARGBROW_AVX2 + +#ifdef HAS_I444TOARGBROW_AVX2 +// 16 pixels +// 16 UV values with 16 Y producing 16 ARGB (64 bytes). +__declspec(naked) +void I444ToARGBRow_AVX2(const uint8* y_buf, + const uint8* u_buf, + const uint8* v_buf, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width) { + __asm { + push esi + push edi + push ebx + mov eax, [esp + 12 + 4] // Y + mov esi, [esp + 12 + 8] // U + mov edi, [esp + 12 + 12] // V + mov edx, [esp + 12 + 16] // argb + mov ebx, [esp + 12 + 20] // yuvconstants + mov ecx, [esp + 12 + 24] // width + sub edi, esi + vpcmpeqb ymm5, ymm5, ymm5 // generate 0xffffffffffffffff for alpha + convertloop: + READYUV444_AVX2 + YUVTORGB_AVX2(ebx) + STOREARGB_AVX2 + + sub ecx, 16 + jg convertloop + + pop ebx + pop edi + pop esi + vzeroupper + ret + } +} +#endif // HAS_I444TOARGBROW_AVX2 + +#ifdef HAS_I411TOARGBROW_AVX2 +// 16 pixels +// 4 UV values upsampled to 16 UV, mixed with 16 Y producing 16 ARGB (64 bytes). +__declspec(naked) +void I411ToARGBRow_AVX2(const uint8* y_buf, + const uint8* u_buf, + const uint8* v_buf, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width) { + __asm { + push esi + push edi + push ebx + mov eax, [esp + 12 + 4] // Y + mov esi, [esp + 12 + 8] // U + mov edi, [esp + 12 + 12] // V + mov edx, [esp + 12 + 16] // abgr + mov ebx, [esp + 12 + 20] // yuvconstants + mov ecx, [esp + 12 + 24] // width + sub edi, esi + vpcmpeqb ymm5, ymm5, ymm5 // generate 0xffffffffffffffff for alpha + + convertloop: + READYUV411_AVX2 + YUVTORGB_AVX2(ebx) + STOREARGB_AVX2 + + sub ecx, 16 + jg convertloop + + pop ebx + pop edi + pop esi + vzeroupper + ret + } +} +#endif // HAS_I411TOARGBROW_AVX2 + +#ifdef HAS_NV12TOARGBROW_AVX2 +// 16 pixels. +// 8 UV values upsampled to 16 UV, mixed with 16 Y producing 16 ARGB (64 bytes). +__declspec(naked) +void NV12ToARGBRow_AVX2(const uint8* y_buf, + const uint8* uv_buf, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width) { + __asm { + push esi + push ebx + mov eax, [esp + 8 + 4] // Y + mov esi, [esp + 8 + 8] // UV + mov edx, [esp + 8 + 12] // argb + mov ebx, [esp + 8 + 16] // yuvconstants + mov ecx, [esp + 8 + 20] // width + vpcmpeqb ymm5, ymm5, ymm5 // generate 0xffffffffffffffff for alpha + + convertloop: + READNV12_AVX2 + YUVTORGB_AVX2(ebx) + STOREARGB_AVX2 + + sub ecx, 16 + jg convertloop + + pop ebx + pop esi + vzeroupper + ret + } +} +#endif // HAS_NV12TOARGBROW_AVX2 + +#ifdef HAS_NV21TOARGBROW_AVX2 +// 16 pixels. +// 8 VU values upsampled to 16 UV, mixed with 16 Y producing 16 ARGB (64 bytes). +__declspec(naked) +void NV21ToARGBRow_AVX2(const uint8* y_buf, + const uint8* vu_buf, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width) { + __asm { + push esi + push ebx + mov eax, [esp + 8 + 4] // Y + mov esi, [esp + 8 + 8] // VU + mov edx, [esp + 8 + 12] // argb + mov ebx, [esp + 8 + 16] // yuvconstants + mov ecx, [esp + 8 + 20] // width + vpcmpeqb ymm5, ymm5, ymm5 // generate 0xffffffffffffffff for alpha + + convertloop: + READNV21_AVX2 + YUVTORGB_AVX2(ebx) + STOREARGB_AVX2 + + sub ecx, 16 + jg convertloop + + pop ebx + pop esi + vzeroupper + ret + } +} +#endif // HAS_NV21TOARGBROW_AVX2 + +#ifdef HAS_YUY2TOARGBROW_AVX2 +// 16 pixels. +// 8 YUY2 values with 16 Y and 8 UV producing 16 ARGB (64 bytes). +__declspec(naked) +void YUY2ToARGBRow_AVX2(const uint8* src_yuy2, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width) { + __asm { + push ebx + mov eax, [esp + 4 + 4] // yuy2 + mov edx, [esp + 4 + 8] // argb + mov ebx, [esp + 4 + 12] // yuvconstants + mov ecx, [esp + 4 + 16] // width + vpcmpeqb ymm5, ymm5, ymm5 // generate 0xffffffffffffffff for alpha + + convertloop: + READYUY2_AVX2 + YUVTORGB_AVX2(ebx) + STOREARGB_AVX2 + + sub ecx, 16 + jg convertloop + + pop ebx + vzeroupper + ret + } +} +#endif // HAS_YUY2TOARGBROW_AVX2 + +#ifdef HAS_UYVYTOARGBROW_AVX2 +// 16 pixels. +// 8 UYVY values with 16 Y and 8 UV producing 16 ARGB (64 bytes). +__declspec(naked) +void UYVYToARGBRow_AVX2(const uint8* src_uyvy, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width) { + __asm { + push ebx + mov eax, [esp + 4 + 4] // uyvy + mov edx, [esp + 4 + 8] // argb + mov ebx, [esp + 4 + 12] // yuvconstants + mov ecx, [esp + 4 + 16] // width + vpcmpeqb ymm5, ymm5, ymm5 // generate 0xffffffffffffffff for alpha + + convertloop: + READUYVY_AVX2 + YUVTORGB_AVX2(ebx) + STOREARGB_AVX2 + + sub ecx, 16 + jg convertloop + + pop ebx + vzeroupper + ret + } +} +#endif // HAS_UYVYTOARGBROW_AVX2 + +#ifdef HAS_I422TORGBAROW_AVX2 +// 16 pixels +// 8 UV values upsampled to 16 UV, mixed with 16 Y producing 16 RGBA (64 bytes). +__declspec(naked) +void I422ToRGBARow_AVX2(const uint8* y_buf, + const uint8* u_buf, + const uint8* v_buf, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width) { + __asm { + push esi + push edi + push ebx + mov eax, [esp + 12 + 4] // Y + mov esi, [esp + 12 + 8] // U + mov edi, [esp + 12 + 12] // V + mov edx, [esp + 12 + 16] // abgr + mov ebx, [esp + 12 + 20] // yuvconstants + mov ecx, [esp + 12 + 24] // width + sub edi, esi + vpcmpeqb ymm5, ymm5, ymm5 // generate 0xffffffffffffffff for alpha + + convertloop: + READYUV422_AVX2 + YUVTORGB_AVX2(ebx) + STORERGBA_AVX2 + + sub ecx, 16 + jg convertloop + + pop ebx + pop edi + pop esi + vzeroupper + ret + } +} +#endif // HAS_I422TORGBAROW_AVX2 + +#if defined(HAS_I422TOARGBROW_SSSE3) +// TODO(fbarchard): Read that does half size on Y and treats 420 as 444. +// Allows a conversion with half size scaling. + +// Read 8 UV from 444. +#define READYUV444 __asm { \ + __asm movq xmm0, qword ptr [esi] /* U */ \ + __asm movq xmm1, qword ptr [esi + edi] /* V */ \ + __asm lea esi, [esi + 8] \ + __asm punpcklbw xmm0, xmm1 /* UV */ \ + __asm movq xmm4, qword ptr [eax] \ + __asm punpcklbw xmm4, xmm4 \ + __asm lea eax, [eax + 8] \ + } + +// Read 4 UV from 422, upsample to 8 UV. +#define READYUV422 __asm { \ + __asm movd xmm0, [esi] /* U */ \ + __asm movd xmm1, [esi + edi] /* V */ \ + __asm lea esi, [esi + 4] \ + __asm punpcklbw xmm0, xmm1 /* UV */ \ + __asm punpcklwd xmm0, xmm0 /* UVUV (upsample) */ \ + __asm movq xmm4, qword ptr [eax] \ + __asm punpcklbw xmm4, xmm4 \ + __asm lea eax, [eax + 8] \ + } + +// Read 4 UV from 422, upsample to 8 UV. With 8 Alpha. +#define READYUVA422 __asm { \ + __asm movd xmm0, [esi] /* U */ \ + __asm movd xmm1, [esi + edi] /* V */ \ + __asm lea esi, [esi + 4] \ + __asm punpcklbw xmm0, xmm1 /* UV */ \ + __asm punpcklwd xmm0, xmm0 /* UVUV (upsample) */ \ + __asm movq xmm4, qword ptr [eax] /* Y */ \ + __asm punpcklbw xmm4, xmm4 \ + __asm lea eax, [eax + 8] \ + __asm movq xmm5, qword ptr [ebp] /* A */ \ + __asm lea ebp, [ebp + 8] \ + } + +// Read 2 UV from 411, upsample to 8 UV. +// drmemory fails with memory fault if pinsrw used. libyuv bug: 525 +// __asm pinsrw xmm0, [esi], 0 /* U */ +// __asm pinsrw xmm1, [esi + edi], 0 /* V */ +#define READYUV411_EBX __asm { \ + __asm movzx ebx, word ptr [esi] /* U */ \ + __asm movd xmm0, ebx \ + __asm movzx ebx, word ptr [esi + edi] /* V */ \ + __asm movd xmm1, ebx \ + __asm lea esi, [esi + 2] \ + __asm punpcklbw xmm0, xmm1 /* UV */ \ + __asm punpcklwd xmm0, xmm0 /* UVUV (upsample) */ \ + __asm punpckldq xmm0, xmm0 /* UVUVUVUV (upsample) */ \ + __asm movq xmm4, qword ptr [eax] \ + __asm punpcklbw xmm4, xmm4 \ + __asm lea eax, [eax + 8] \ + } + +// Read 4 UV from NV12, upsample to 8 UV. +#define READNV12 __asm { \ + __asm movq xmm0, qword ptr [esi] /* UV */ \ + __asm lea esi, [esi + 8] \ + __asm punpcklwd xmm0, xmm0 /* UVUV (upsample) */ \ + __asm movq xmm4, qword ptr [eax] \ + __asm punpcklbw xmm4, xmm4 \ + __asm lea eax, [eax + 8] \ + } + +// Read 4 VU from NV21, upsample to 8 UV. +#define READNV21 __asm { \ + __asm movq xmm0, qword ptr [esi] /* UV */ \ + __asm lea esi, [esi + 8] \ + __asm pshufb xmm0, xmmword ptr kShuffleNV21 \ + __asm movq xmm4, qword ptr [eax] \ + __asm punpcklbw xmm4, xmm4 \ + __asm lea eax, [eax + 8] \ + } + +// Read 4 YUY2 with 8 Y and upsample 4 UV to 8 UV. +#define READYUY2 __asm { \ + __asm movdqu xmm4, [eax] /* YUY2 */ \ + __asm pshufb xmm4, xmmword ptr kShuffleYUY2Y \ + __asm movdqu xmm0, [eax] /* UV */ \ + __asm pshufb xmm0, xmmword ptr kShuffleYUY2UV \ + __asm lea eax, [eax + 16] \ + } + +// Read 4 UYVY with 8 Y and upsample 4 UV to 8 UV. +#define READUYVY __asm { \ + __asm movdqu xmm4, [eax] /* UYVY */ \ + __asm pshufb xmm4, xmmword ptr kShuffleUYVYY \ + __asm movdqu xmm0, [eax] /* UV */ \ + __asm pshufb xmm0, xmmword ptr kShuffleUYVYUV \ + __asm lea eax, [eax + 16] \ + } + +// Convert 8 pixels: 8 UV and 8 Y. +#define YUVTORGB(YuvConstants) __asm { \ + __asm movdqa xmm1, xmm0 \ + __asm movdqa xmm2, xmm0 \ + __asm movdqa xmm3, xmm0 \ + __asm movdqa xmm0, xmmword ptr [YuvConstants + KUVBIASB] \ + __asm pmaddubsw xmm1, xmmword ptr [YuvConstants + KUVTOB] \ + __asm psubw xmm0, xmm1 \ + __asm movdqa xmm1, xmmword ptr [YuvConstants + KUVBIASG] \ + __asm pmaddubsw xmm2, xmmword ptr [YuvConstants + KUVTOG] \ + __asm psubw xmm1, xmm2 \ + __asm movdqa xmm2, xmmword ptr [YuvConstants + KUVBIASR] \ + __asm pmaddubsw xmm3, xmmword ptr [YuvConstants + KUVTOR] \ + __asm psubw xmm2, xmm3 \ + __asm pmulhuw xmm4, xmmword ptr [YuvConstants + KYTORGB] \ + __asm paddsw xmm0, xmm4 /* B += Y */ \ + __asm paddsw xmm1, xmm4 /* G += Y */ \ + __asm paddsw xmm2, xmm4 /* R += Y */ \ + __asm psraw xmm0, 6 \ + __asm psraw xmm1, 6 \ + __asm psraw xmm2, 6 \ + __asm packuswb xmm0, xmm0 /* B */ \ + __asm packuswb xmm1, xmm1 /* G */ \ + __asm packuswb xmm2, xmm2 /* R */ \ + } + +// Store 8 ARGB values. +#define STOREARGB __asm { \ + __asm punpcklbw xmm0, xmm1 /* BG */ \ + __asm punpcklbw xmm2, xmm5 /* RA */ \ + __asm movdqa xmm1, xmm0 \ + __asm punpcklwd xmm0, xmm2 /* BGRA first 4 pixels */ \ + __asm punpckhwd xmm1, xmm2 /* BGRA next 4 pixels */ \ + __asm movdqu 0[edx], xmm0 \ + __asm movdqu 16[edx], xmm1 \ + __asm lea edx, [edx + 32] \ + } + +// Store 8 BGRA values. +#define STOREBGRA __asm { \ + __asm pcmpeqb xmm5, xmm5 /* generate 0xffffffff for alpha */ \ + __asm punpcklbw xmm1, xmm0 /* GB */ \ + __asm punpcklbw xmm5, xmm2 /* AR */ \ + __asm movdqa xmm0, xmm5 \ + __asm punpcklwd xmm5, xmm1 /* BGRA first 4 pixels */ \ + __asm punpckhwd xmm0, xmm1 /* BGRA next 4 pixels */ \ + __asm movdqu 0[edx], xmm5 \ + __asm movdqu 16[edx], xmm0 \ + __asm lea edx, [edx + 32] \ + } + +// Store 8 RGBA values. +#define STORERGBA __asm { \ + __asm pcmpeqb xmm5, xmm5 /* generate 0xffffffff for alpha */ \ + __asm punpcklbw xmm1, xmm2 /* GR */ \ + __asm punpcklbw xmm5, xmm0 /* AB */ \ + __asm movdqa xmm0, xmm5 \ + __asm punpcklwd xmm5, xmm1 /* RGBA first 4 pixels */ \ + __asm punpckhwd xmm0, xmm1 /* RGBA next 4 pixels */ \ + __asm movdqu 0[edx], xmm5 \ + __asm movdqu 16[edx], xmm0 \ + __asm lea edx, [edx + 32] \ + } + +// Store 8 RGB24 values. +#define STORERGB24 __asm { \ + /* Weave into RRGB */ \ + __asm punpcklbw xmm0, xmm1 /* BG */ \ + __asm punpcklbw xmm2, xmm2 /* RR */ \ + __asm movdqa xmm1, xmm0 \ + __asm punpcklwd xmm0, xmm2 /* BGRR first 4 pixels */ \ + __asm punpckhwd xmm1, xmm2 /* BGRR next 4 pixels */ \ + /* RRGB -> RGB24 */ \ + __asm pshufb xmm0, xmm5 /* Pack first 8 and last 4 bytes. */ \ + __asm pshufb xmm1, xmm6 /* Pack first 12 bytes. */ \ + __asm palignr xmm1, xmm0, 12 /* last 4 bytes of xmm0 + 12 xmm1 */ \ + __asm movq qword ptr 0[edx], xmm0 /* First 8 bytes */ \ + __asm movdqu 8[edx], xmm1 /* Last 16 bytes */ \ + __asm lea edx, [edx + 24] \ + } + +// Store 8 RGB565 values. +#define STORERGB565 __asm { \ + /* Weave into RRGB */ \ + __asm punpcklbw xmm0, xmm1 /* BG */ \ + __asm punpcklbw xmm2, xmm2 /* RR */ \ + __asm movdqa xmm1, xmm0 \ + __asm punpcklwd xmm0, xmm2 /* BGRR first 4 pixels */ \ + __asm punpckhwd xmm1, xmm2 /* BGRR next 4 pixels */ \ + /* RRGB -> RGB565 */ \ + __asm movdqa xmm3, xmm0 /* B first 4 pixels of argb */ \ + __asm movdqa xmm2, xmm0 /* G */ \ + __asm pslld xmm0, 8 /* R */ \ + __asm psrld xmm3, 3 /* B */ \ + __asm psrld xmm2, 5 /* G */ \ + __asm psrad xmm0, 16 /* R */ \ + __asm pand xmm3, xmm5 /* B */ \ + __asm pand xmm2, xmm6 /* G */ \ + __asm pand xmm0, xmm7 /* R */ \ + __asm por xmm3, xmm2 /* BG */ \ + __asm por xmm0, xmm3 /* BGR */ \ + __asm movdqa xmm3, xmm1 /* B next 4 pixels of argb */ \ + __asm movdqa xmm2, xmm1 /* G */ \ + __asm pslld xmm1, 8 /* R */ \ + __asm psrld xmm3, 3 /* B */ \ + __asm psrld xmm2, 5 /* G */ \ + __asm psrad xmm1, 16 /* R */ \ + __asm pand xmm3, xmm5 /* B */ \ + __asm pand xmm2, xmm6 /* G */ \ + __asm pand xmm1, xmm7 /* R */ \ + __asm por xmm3, xmm2 /* BG */ \ + __asm por xmm1, xmm3 /* BGR */ \ + __asm packssdw xmm0, xmm1 \ + __asm movdqu 0[edx], xmm0 /* store 8 pixels of RGB565 */ \ + __asm lea edx, [edx + 16] \ + } + +// 8 pixels. +// 8 UV values, mixed with 8 Y producing 8 ARGB (32 bytes). +__declspec(naked) +void I444ToARGBRow_SSSE3(const uint8* y_buf, + const uint8* u_buf, + const uint8* v_buf, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width) { + __asm { + push esi + push edi + push ebx + mov eax, [esp + 12 + 4] // Y + mov esi, [esp + 12 + 8] // U + mov edi, [esp + 12 + 12] // V + mov edx, [esp + 12 + 16] // argb + mov ebx, [esp + 12 + 20] // yuvconstants + mov ecx, [esp + 12 + 24] // width + sub edi, esi + pcmpeqb xmm5, xmm5 // generate 0xffffffff for alpha + + convertloop: + READYUV444 + YUVTORGB(ebx) + STOREARGB + + sub ecx, 8 + jg convertloop + + pop ebx + pop edi + pop esi + ret + } +} + +// 8 pixels. +// 4 UV values upsampled to 8 UV, mixed with 8 Y producing 8 RGB24 (24 bytes). +__declspec(naked) +void I422ToRGB24Row_SSSE3(const uint8* y_buf, + const uint8* u_buf, + const uint8* v_buf, + uint8* dst_rgb24, + const struct YuvConstants* yuvconstants, + int width) { + __asm { + push esi + push edi + push ebx + mov eax, [esp + 12 + 4] // Y + mov esi, [esp + 12 + 8] // U + mov edi, [esp + 12 + 12] // V + mov edx, [esp + 12 + 16] // argb + mov ebx, [esp + 12 + 20] // yuvconstants + mov ecx, [esp + 12 + 24] // width + sub edi, esi + movdqa xmm5, xmmword ptr kShuffleMaskARGBToRGB24_0 + movdqa xmm6, xmmword ptr kShuffleMaskARGBToRGB24 + + convertloop: + READYUV422 + YUVTORGB(ebx) + STORERGB24 + + sub ecx, 8 + jg convertloop + + pop ebx + pop edi + pop esi + ret + } +} + +// 8 pixels +// 4 UV values upsampled to 8 UV, mixed with 8 Y producing 8 RGB565 (16 bytes). +__declspec(naked) +void I422ToRGB565Row_SSSE3(const uint8* y_buf, + const uint8* u_buf, + const uint8* v_buf, + uint8* rgb565_buf, + const struct YuvConstants* yuvconstants, + int width) { + __asm { + push esi + push edi + push ebx + mov eax, [esp + 12 + 4] // Y + mov esi, [esp + 12 + 8] // U + mov edi, [esp + 12 + 12] // V + mov edx, [esp + 12 + 16] // argb + mov ebx, [esp + 12 + 20] // yuvconstants + mov ecx, [esp + 12 + 24] // width + sub edi, esi + pcmpeqb xmm5, xmm5 // generate mask 0x0000001f + psrld xmm5, 27 + pcmpeqb xmm6, xmm6 // generate mask 0x000007e0 + psrld xmm6, 26 + pslld xmm6, 5 + pcmpeqb xmm7, xmm7 // generate mask 0xfffff800 + pslld xmm7, 11 + + convertloop: + READYUV422 + YUVTORGB(ebx) + STORERGB565 + + sub ecx, 8 + jg convertloop + + pop ebx + pop edi + pop esi + ret + } +} + +// 8 pixels. +// 4 UV values upsampled to 8 UV, mixed with 8 Y producing 8 ARGB (32 bytes). +__declspec(naked) +void I422ToARGBRow_SSSE3(const uint8* y_buf, + const uint8* u_buf, + const uint8* v_buf, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width) { + __asm { + push esi + push edi + push ebx + mov eax, [esp + 12 + 4] // Y + mov esi, [esp + 12 + 8] // U + mov edi, [esp + 12 + 12] // V + mov edx, [esp + 12 + 16] // argb + mov ebx, [esp + 12 + 20] // yuvconstants + mov ecx, [esp + 12 + 24] // width + sub edi, esi + pcmpeqb xmm5, xmm5 // generate 0xffffffff for alpha + + convertloop: + READYUV422 + YUVTORGB(ebx) + STOREARGB + + sub ecx, 8 + jg convertloop + + pop ebx + pop edi + pop esi + ret + } +} + +// 8 pixels. +// 4 UV values upsampled to 8 UV, mixed with 8 Y and 8 A producing 8 ARGB. +__declspec(naked) +void I422AlphaToARGBRow_SSSE3(const uint8* y_buf, + const uint8* u_buf, + const uint8* v_buf, + const uint8* a_buf, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width) { + __asm { + push esi + push edi + push ebx + push ebp + mov eax, [esp + 16 + 4] // Y + mov esi, [esp + 16 + 8] // U + mov edi, [esp + 16 + 12] // V + mov ebp, [esp + 16 + 16] // A + mov edx, [esp + 16 + 20] // argb + mov ebx, [esp + 16 + 24] // yuvconstants + mov ecx, [esp + 16 + 28] // width + sub edi, esi + + convertloop: + READYUVA422 + YUVTORGB(ebx) + STOREARGB + + sub ecx, 8 + jg convertloop + + pop ebp + pop ebx + pop edi + pop esi + ret + } +} + +// 8 pixels. +// 2 UV values upsampled to 8 UV, mixed with 8 Y producing 8 ARGB (32 bytes). +// Similar to I420 but duplicate UV once more. +__declspec(naked) +void I411ToARGBRow_SSSE3(const uint8* y_buf, + const uint8* u_buf, + const uint8* v_buf, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width) { + __asm { + push esi + push edi + push ebx + push ebp + mov eax, [esp + 16 + 4] // Y + mov esi, [esp + 16 + 8] // U + mov edi, [esp + 16 + 12] // V + mov edx, [esp + 16 + 16] // abgr + mov ebp, [esp + 16 + 20] // yuvconstants + mov ecx, [esp + 16 + 24] // width + sub edi, esi + pcmpeqb xmm5, xmm5 // generate 0xffffffff for alpha + + convertloop: + READYUV411_EBX + YUVTORGB(ebp) + STOREARGB + + sub ecx, 8 + jg convertloop + + pop ebp + pop ebx + pop edi + pop esi + ret + } +} + +// 8 pixels. +// 4 UV values upsampled to 8 UV, mixed with 8 Y producing 8 ARGB (32 bytes). +__declspec(naked) +void NV12ToARGBRow_SSSE3(const uint8* y_buf, + const uint8* uv_buf, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width) { + __asm { + push esi + push ebx + mov eax, [esp + 8 + 4] // Y + mov esi, [esp + 8 + 8] // UV + mov edx, [esp + 8 + 12] // argb + mov ebx, [esp + 8 + 16] // yuvconstants + mov ecx, [esp + 8 + 20] // width + pcmpeqb xmm5, xmm5 // generate 0xffffffff for alpha + + convertloop: + READNV12 + YUVTORGB(ebx) + STOREARGB + + sub ecx, 8 + jg convertloop + + pop ebx + pop esi + ret + } +} + +// 8 pixels. +// 4 UV values upsampled to 8 UV, mixed with 8 Y producing 8 ARGB (32 bytes). +__declspec(naked) +void NV21ToARGBRow_SSSE3(const uint8* y_buf, + const uint8* vu_buf, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width) { + __asm { + push esi + push ebx + mov eax, [esp + 8 + 4] // Y + mov esi, [esp + 8 + 8] // VU + mov edx, [esp + 8 + 12] // argb + mov ebx, [esp + 8 + 16] // yuvconstants + mov ecx, [esp + 8 + 20] // width + pcmpeqb xmm5, xmm5 // generate 0xffffffff for alpha + + convertloop: + READNV21 + YUVTORGB(ebx) + STOREARGB + + sub ecx, 8 + jg convertloop + + pop ebx + pop esi + ret + } +} + +// 8 pixels. +// 4 YUY2 values with 8 Y and 4 UV producing 8 ARGB (32 bytes). +__declspec(naked) +void YUY2ToARGBRow_SSSE3(const uint8* src_yuy2, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width) { + __asm { + push ebx + mov eax, [esp + 4 + 4] // yuy2 + mov edx, [esp + 4 + 8] // argb + mov ebx, [esp + 4 + 12] // yuvconstants + mov ecx, [esp + 4 + 16] // width + pcmpeqb xmm5, xmm5 // generate 0xffffffff for alpha + + convertloop: + READYUY2 + YUVTORGB(ebx) + STOREARGB + + sub ecx, 8 + jg convertloop + + pop ebx + ret + } +} + +// 8 pixels. +// 4 UYVY values with 8 Y and 4 UV producing 8 ARGB (32 bytes). +__declspec(naked) +void UYVYToARGBRow_SSSE3(const uint8* src_uyvy, + uint8* dst_argb, + const struct YuvConstants* yuvconstants, + int width) { + __asm { + push ebx + mov eax, [esp + 4 + 4] // uyvy + mov edx, [esp + 4 + 8] // argb + mov ebx, [esp + 4 + 12] // yuvconstants + mov ecx, [esp + 4 + 16] // width + pcmpeqb xmm5, xmm5 // generate 0xffffffff for alpha + + convertloop: + READUYVY + YUVTORGB(ebx) + STOREARGB + + sub ecx, 8 + jg convertloop + + pop ebx + ret + } +} + +__declspec(naked) +void I422ToRGBARow_SSSE3(const uint8* y_buf, + const uint8* u_buf, + const uint8* v_buf, + uint8* dst_rgba, + const struct YuvConstants* yuvconstants, + int width) { + __asm { + push esi + push edi + push ebx + mov eax, [esp + 12 + 4] // Y + mov esi, [esp + 12 + 8] // U + mov edi, [esp + 12 + 12] // V + mov edx, [esp + 12 + 16] // argb + mov ebx, [esp + 12 + 20] // yuvconstants + mov ecx, [esp + 12 + 24] // width + sub edi, esi + + convertloop: + READYUV422 + YUVTORGB(ebx) + STORERGBA + + sub ecx, 8 + jg convertloop + + pop ebx + pop edi + pop esi + ret + } +} +#endif // HAS_I422TOARGBROW_SSSE3 + +#ifdef HAS_I400TOARGBROW_SSE2 +// 8 pixels of Y converted to 8 pixels of ARGB (32 bytes). +__declspec(naked) +void I400ToARGBRow_SSE2(const uint8* y_buf, + uint8* rgb_buf, + int width) { + __asm { + mov eax, 0x4a354a35 // 4a35 = 18997 = round(1.164 * 64 * 256) + movd xmm2, eax + pshufd xmm2, xmm2,0 + mov eax, 0x04880488 // 0488 = 1160 = round(1.164 * 64 * 16) + movd xmm3, eax + pshufd xmm3, xmm3, 0 + pcmpeqb xmm4, xmm4 // generate mask 0xff000000 + pslld xmm4, 24 + + mov eax, [esp + 4] // Y + mov edx, [esp + 8] // rgb + mov ecx, [esp + 12] // width + + convertloop: + // Step 1: Scale Y contribution to 8 G values. G = (y - 16) * 1.164 + movq xmm0, qword ptr [eax] + lea eax, [eax + 8] + punpcklbw xmm0, xmm0 // Y.Y + pmulhuw xmm0, xmm2 + psubusw xmm0, xmm3 + psrlw xmm0, 6 + packuswb xmm0, xmm0 // G + + // Step 2: Weave into ARGB + punpcklbw xmm0, xmm0 // GG + movdqa xmm1, xmm0 + punpcklwd xmm0, xmm0 // BGRA first 4 pixels + punpckhwd xmm1, xmm1 // BGRA next 4 pixels + por xmm0, xmm4 + por xmm1, xmm4 + movdqu [edx], xmm0 + movdqu [edx + 16], xmm1 + lea edx, [edx + 32] + sub ecx, 8 + jg convertloop + ret + } +} +#endif // HAS_I400TOARGBROW_SSE2 + +#ifdef HAS_I400TOARGBROW_AVX2 +// 16 pixels of Y converted to 16 pixels of ARGB (64 bytes). +// note: vpunpcklbw mutates and vpackuswb unmutates. +__declspec(naked) +void I400ToARGBRow_AVX2(const uint8* y_buf, + uint8* rgb_buf, + int width) { + __asm { + mov eax, 0x4a354a35 // 4a35 = 18997 = round(1.164 * 64 * 256) + vmovd xmm2, eax + vbroadcastss ymm2, xmm2 + mov eax, 0x04880488 // 0488 = 1160 = round(1.164 * 64 * 16) + vmovd xmm3, eax + vbroadcastss ymm3, xmm3 + vpcmpeqb ymm4, ymm4, ymm4 // generate mask 0xff000000 + vpslld ymm4, ymm4, 24 + + mov eax, [esp + 4] // Y + mov edx, [esp + 8] // rgb + mov ecx, [esp + 12] // width + + convertloop: + // Step 1: Scale Y contriportbution to 16 G values. G = (y - 16) * 1.164 + vmovdqu xmm0, [eax] + lea eax, [eax + 16] + vpermq ymm0, ymm0, 0xd8 // vpunpcklbw mutates + vpunpcklbw ymm0, ymm0, ymm0 // Y.Y + vpmulhuw ymm0, ymm0, ymm2 + vpsubusw ymm0, ymm0, ymm3 + vpsrlw ymm0, ymm0, 6 + vpackuswb ymm0, ymm0, ymm0 // G. still mutated: 3120 + + // TODO(fbarchard): Weave alpha with unpack. + // Step 2: Weave into ARGB + vpunpcklbw ymm1, ymm0, ymm0 // GG - mutates + vpermq ymm1, ymm1, 0xd8 + vpunpcklwd ymm0, ymm1, ymm1 // GGGG first 8 pixels + vpunpckhwd ymm1, ymm1, ymm1 // GGGG next 8 pixels + vpor ymm0, ymm0, ymm4 + vpor ymm1, ymm1, ymm4 + vmovdqu [edx], ymm0 + vmovdqu [edx + 32], ymm1 + lea edx, [edx + 64] + sub ecx, 16 + jg convertloop + vzeroupper + ret + } +} +#endif // HAS_I400TOARGBROW_AVX2 + +#ifdef HAS_MIRRORROW_SSSE3 +// Shuffle table for reversing the bytes. +static const uvec8 kShuffleMirror = { + 15u, 14u, 13u, 12u, 11u, 10u, 9u, 8u, 7u, 6u, 5u, 4u, 3u, 2u, 1u, 0u +}; + +// TODO(fbarchard): Replace lea with -16 offset. +__declspec(naked) +void MirrorRow_SSSE3(const uint8* src, uint8* dst, int width) { + __asm { + mov eax, [esp + 4] // src + mov edx, [esp + 8] // dst + mov ecx, [esp + 12] // width + movdqa xmm5, xmmword ptr kShuffleMirror + + convertloop: + movdqu xmm0, [eax - 16 + ecx] + pshufb xmm0, xmm5 + movdqu [edx], xmm0 + lea edx, [edx + 16] + sub ecx, 16 + jg convertloop + ret + } +} +#endif // HAS_MIRRORROW_SSSE3 + +#ifdef HAS_MIRRORROW_AVX2 +__declspec(naked) +void MirrorRow_AVX2(const uint8* src, uint8* dst, int width) { + __asm { + mov eax, [esp + 4] // src + mov edx, [esp + 8] // dst + mov ecx, [esp + 12] // width + vbroadcastf128 ymm5, xmmword ptr kShuffleMirror + + convertloop: + vmovdqu ymm0, [eax - 32 + ecx] + vpshufb ymm0, ymm0, ymm5 + vpermq ymm0, ymm0, 0x4e // swap high and low halfs + vmovdqu [edx], ymm0 + lea edx, [edx + 32] + sub ecx, 32 + jg convertloop + vzeroupper + ret + } +} +#endif // HAS_MIRRORROW_AVX2 + +#ifdef HAS_MIRRORUVROW_SSSE3 +// Shuffle table for reversing the bytes of UV channels. +static const uvec8 kShuffleMirrorUV = { + 14u, 12u, 10u, 8u, 6u, 4u, 2u, 0u, 15u, 13u, 11u, 9u, 7u, 5u, 3u, 1u +}; + +__declspec(naked) +void MirrorUVRow_SSSE3(const uint8* src, uint8* dst_u, uint8* dst_v, + int width) { + __asm { + push edi + mov eax, [esp + 4 + 4] // src + mov edx, [esp + 4 + 8] // dst_u + mov edi, [esp + 4 + 12] // dst_v + mov ecx, [esp + 4 + 16] // width + movdqa xmm1, xmmword ptr kShuffleMirrorUV + lea eax, [eax + ecx * 2 - 16] + sub edi, edx + + convertloop: + movdqu xmm0, [eax] + lea eax, [eax - 16] + pshufb xmm0, xmm1 + movlpd qword ptr [edx], xmm0 + movhpd qword ptr [edx + edi], xmm0 + lea edx, [edx + 8] + sub ecx, 8 + jg convertloop + + pop edi + ret + } +} +#endif // HAS_MIRRORUVROW_SSSE3 + +#ifdef HAS_ARGBMIRRORROW_SSE2 +__declspec(naked) +void ARGBMirrorRow_SSE2(const uint8* src, uint8* dst, int width) { + __asm { + mov eax, [esp + 4] // src + mov edx, [esp + 8] // dst + mov ecx, [esp + 12] // width + lea eax, [eax - 16 + ecx * 4] // last 4 pixels. + + convertloop: + movdqu xmm0, [eax] + lea eax, [eax - 16] + pshufd xmm0, xmm0, 0x1b + movdqu [edx], xmm0 + lea edx, [edx + 16] + sub ecx, 4 + jg convertloop + ret + } +} +#endif // HAS_ARGBMIRRORROW_SSE2 + +#ifdef HAS_ARGBMIRRORROW_AVX2 +// Shuffle table for reversing the bytes. +static const ulvec32 kARGBShuffleMirror_AVX2 = { + 7u, 6u, 5u, 4u, 3u, 2u, 1u, 0u +}; + +__declspec(naked) +void ARGBMirrorRow_AVX2(const uint8* src, uint8* dst, int width) { + __asm { + mov eax, [esp + 4] // src + mov edx, [esp + 8] // dst + mov ecx, [esp + 12] // width + vmovdqu ymm5, ymmword ptr kARGBShuffleMirror_AVX2 + + convertloop: + vpermd ymm0, ymm5, [eax - 32 + ecx * 4] // permute dword order + vmovdqu [edx], ymm0 + lea edx, [edx + 32] + sub ecx, 8 + jg convertloop + vzeroupper + ret + } +} +#endif // HAS_ARGBMIRRORROW_AVX2 + +#ifdef HAS_SPLITUVROW_SSE2 +__declspec(naked) +void SplitUVRow_SSE2(const uint8* src_uv, uint8* dst_u, uint8* dst_v, + int width) { + __asm { + push edi + mov eax, [esp + 4 + 4] // src_uv + mov edx, [esp + 4 + 8] // dst_u + mov edi, [esp + 4 + 12] // dst_v + mov ecx, [esp + 4 + 16] // width + pcmpeqb xmm5, xmm5 // generate mask 0x00ff00ff + psrlw xmm5, 8 + sub edi, edx + + convertloop: + movdqu xmm0, [eax] + movdqu xmm1, [eax + 16] + lea eax, [eax + 32] + movdqa xmm2, xmm0 + movdqa xmm3, xmm1 + pand xmm0, xmm5 // even bytes + pand xmm1, xmm5 + packuswb xmm0, xmm1 + psrlw xmm2, 8 // odd bytes + psrlw xmm3, 8 + packuswb xmm2, xmm3 + movdqu [edx], xmm0 + movdqu [edx + edi], xmm2 + lea edx, [edx + 16] + sub ecx, 16 + jg convertloop + + pop edi + ret + } +} + +#endif // HAS_SPLITUVROW_SSE2 + +#ifdef HAS_SPLITUVROW_AVX2 +__declspec(naked) +void SplitUVRow_AVX2(const uint8* src_uv, uint8* dst_u, uint8* dst_v, + int width) { + __asm { + push edi + mov eax, [esp + 4 + 4] // src_uv + mov edx, [esp + 4 + 8] // dst_u + mov edi, [esp + 4 + 12] // dst_v + mov ecx, [esp + 4 + 16] // width + vpcmpeqb ymm5, ymm5, ymm5 // generate mask 0x00ff00ff + vpsrlw ymm5, ymm5, 8 + sub edi, edx + + convertloop: + vmovdqu ymm0, [eax] + vmovdqu ymm1, [eax + 32] + lea eax, [eax + 64] + vpsrlw ymm2, ymm0, 8 // odd bytes + vpsrlw ymm3, ymm1, 8 + vpand ymm0, ymm0, ymm5 // even bytes + vpand ymm1, ymm1, ymm5 + vpackuswb ymm0, ymm0, ymm1 + vpackuswb ymm2, ymm2, ymm3 + vpermq ymm0, ymm0, 0xd8 + vpermq ymm2, ymm2, 0xd8 + vmovdqu [edx], ymm0 + vmovdqu [edx + edi], ymm2 + lea edx, [edx + 32] + sub ecx, 32 + jg convertloop + + pop edi + vzeroupper + ret + } +} +#endif // HAS_SPLITUVROW_AVX2 + +#ifdef HAS_MERGEUVROW_SSE2 +__declspec(naked) +void MergeUVRow_SSE2(const uint8* src_u, const uint8* src_v, uint8* dst_uv, + int width) { + __asm { + push edi + mov eax, [esp + 4 + 4] // src_u + mov edx, [esp + 4 + 8] // src_v + mov edi, [esp + 4 + 12] // dst_uv + mov ecx, [esp + 4 + 16] // width + sub edx, eax + + convertloop: + movdqu xmm0, [eax] // read 16 U's + movdqu xmm1, [eax + edx] // and 16 V's + lea eax, [eax + 16] + movdqa xmm2, xmm0 + punpcklbw xmm0, xmm1 // first 8 UV pairs + punpckhbw xmm2, xmm1 // next 8 UV pairs + movdqu [edi], xmm0 + movdqu [edi + 16], xmm2 + lea edi, [edi + 32] + sub ecx, 16 + jg convertloop + + pop edi + ret + } +} +#endif // HAS_MERGEUVROW_SSE2 + +#ifdef HAS_MERGEUVROW_AVX2 +__declspec(naked) +void MergeUVRow_AVX2(const uint8* src_u, const uint8* src_v, uint8* dst_uv, + int width) { + __asm { + push edi + mov eax, [esp + 4 + 4] // src_u + mov edx, [esp + 4 + 8] // src_v + mov edi, [esp + 4 + 12] // dst_uv + mov ecx, [esp + 4 + 16] // width + sub edx, eax + + convertloop: + vmovdqu ymm0, [eax] // read 32 U's + vmovdqu ymm1, [eax + edx] // and 32 V's + lea eax, [eax + 32] + vpunpcklbw ymm2, ymm0, ymm1 // low 16 UV pairs. mutated qqword 0,2 + vpunpckhbw ymm0, ymm0, ymm1 // high 16 UV pairs. mutated qqword 1,3 + vextractf128 [edi], ymm2, 0 // bytes 0..15 + vextractf128 [edi + 16], ymm0, 0 // bytes 16..31 + vextractf128 [edi + 32], ymm2, 1 // bytes 32..47 + vextractf128 [edi + 48], ymm0, 1 // bytes 47..63 + lea edi, [edi + 64] + sub ecx, 32 + jg convertloop + + pop edi + vzeroupper + ret + } +} +#endif // HAS_MERGEUVROW_AVX2 + +#ifdef HAS_COPYROW_SSE2 +// CopyRow copys 'count' bytes using a 16 byte load/store, 32 bytes at time. +__declspec(naked) +void CopyRow_SSE2(const uint8* src, uint8* dst, int count) { + __asm { + mov eax, [esp + 4] // src + mov edx, [esp + 8] // dst + mov ecx, [esp + 12] // count + test eax, 15 + jne convertloopu + test edx, 15 + jne convertloopu + + convertloopa: + movdqa xmm0, [eax] + movdqa xmm1, [eax + 16] + lea eax, [eax + 32] + movdqa [edx], xmm0 + movdqa [edx + 16], xmm1 + lea edx, [edx + 32] + sub ecx, 32 + jg convertloopa + ret + + convertloopu: + movdqu xmm0, [eax] + movdqu xmm1, [eax + 16] + lea eax, [eax + 32] + movdqu [edx], xmm0 + movdqu [edx + 16], xmm1 + lea edx, [edx + 32] + sub ecx, 32 + jg convertloopu + ret + } +} +#endif // HAS_COPYROW_SSE2 + +#ifdef HAS_COPYROW_AVX +// CopyRow copys 'count' bytes using a 32 byte load/store, 64 bytes at time. +__declspec(naked) +void CopyRow_AVX(const uint8* src, uint8* dst, int count) { + __asm { + mov eax, [esp + 4] // src + mov edx, [esp + 8] // dst + mov ecx, [esp + 12] // count + + convertloop: + vmovdqu ymm0, [eax] + vmovdqu ymm1, [eax + 32] + lea eax, [eax + 64] + vmovdqu [edx], ymm0 + vmovdqu [edx + 32], ymm1 + lea edx, [edx + 64] + sub ecx, 64 + jg convertloop + + vzeroupper + ret + } +} +#endif // HAS_COPYROW_AVX + +// Multiple of 1. +__declspec(naked) +void CopyRow_ERMS(const uint8* src, uint8* dst, int count) { + __asm { + mov eax, esi + mov edx, edi + mov esi, [esp + 4] // src + mov edi, [esp + 8] // dst + mov ecx, [esp + 12] // count + rep movsb + mov edi, edx + mov esi, eax + ret + } +} + +#ifdef HAS_ARGBCOPYALPHAROW_SSE2 +// width in pixels +__declspec(naked) +void ARGBCopyAlphaRow_SSE2(const uint8* src, uint8* dst, int width) { + __asm { + mov eax, [esp + 4] // src + mov edx, [esp + 8] // dst + mov ecx, [esp + 12] // count + pcmpeqb xmm0, xmm0 // generate mask 0xff000000 + pslld xmm0, 24 + pcmpeqb xmm1, xmm1 // generate mask 0x00ffffff + psrld xmm1, 8 + + convertloop: + movdqu xmm2, [eax] + movdqu xmm3, [eax + 16] + lea eax, [eax + 32] + movdqu xmm4, [edx] + movdqu xmm5, [edx + 16] + pand xmm2, xmm0 + pand xmm3, xmm0 + pand xmm4, xmm1 + pand xmm5, xmm1 + por xmm2, xmm4 + por xmm3, xmm5 + movdqu [edx], xmm2 + movdqu [edx + 16], xmm3 + lea edx, [edx + 32] + sub ecx, 8 + jg convertloop + + ret + } +} +#endif // HAS_ARGBCOPYALPHAROW_SSE2 + +#ifdef HAS_ARGBCOPYALPHAROW_AVX2 +// width in pixels +__declspec(naked) +void ARGBCopyAlphaRow_AVX2(const uint8* src, uint8* dst, int width) { + __asm { + mov eax, [esp + 4] // src + mov edx, [esp + 8] // dst + mov ecx, [esp + 12] // count + vpcmpeqb ymm0, ymm0, ymm0 + vpsrld ymm0, ymm0, 8 // generate mask 0x00ffffff + + convertloop: + vmovdqu ymm1, [eax] + vmovdqu ymm2, [eax + 32] + lea eax, [eax + 64] + vpblendvb ymm1, ymm1, [edx], ymm0 + vpblendvb ymm2, ymm2, [edx + 32], ymm0 + vmovdqu [edx], ymm1 + vmovdqu [edx + 32], ymm2 + lea edx, [edx + 64] + sub ecx, 16 + jg convertloop + + vzeroupper + ret + } +} +#endif // HAS_ARGBCOPYALPHAROW_AVX2 + +#ifdef HAS_ARGBEXTRACTALPHAROW_SSE2 +// width in pixels +__declspec(naked) +void ARGBExtractAlphaRow_SSE2(const uint8* src_argb, uint8* dst_a, int width) { + __asm { + mov eax, [esp + 4] // src_argb + mov edx, [esp + 8] // dst_a + mov ecx, [esp + 12] // width + + extractloop: + movdqu xmm0, [eax] + movdqu xmm1, [eax + 16] + lea eax, [eax + 32] + psrld xmm0, 24 + psrld xmm1, 24 + packssdw xmm0, xmm1 + packuswb xmm0, xmm0 + movq qword ptr [edx], xmm0 + lea edx, [edx + 8] + sub ecx, 8 + jg extractloop + + ret + } +} +#endif // HAS_ARGBEXTRACTALPHAROW_SSE2 + +#ifdef HAS_ARGBCOPYYTOALPHAROW_SSE2 +// width in pixels +__declspec(naked) +void ARGBCopyYToAlphaRow_SSE2(const uint8* src, uint8* dst, int width) { + __asm { + mov eax, [esp + 4] // src + mov edx, [esp + 8] // dst + mov ecx, [esp + 12] // count + pcmpeqb xmm0, xmm0 // generate mask 0xff000000 + pslld xmm0, 24 + pcmpeqb xmm1, xmm1 // generate mask 0x00ffffff + psrld xmm1, 8 + + convertloop: + movq xmm2, qword ptr [eax] // 8 Y's + lea eax, [eax + 8] + punpcklbw xmm2, xmm2 + punpckhwd xmm3, xmm2 + punpcklwd xmm2, xmm2 + movdqu xmm4, [edx] + movdqu xmm5, [edx + 16] + pand xmm2, xmm0 + pand xmm3, xmm0 + pand xmm4, xmm1 + pand xmm5, xmm1 + por xmm2, xmm4 + por xmm3, xmm5 + movdqu [edx], xmm2 + movdqu [edx + 16], xmm3 + lea edx, [edx + 32] + sub ecx, 8 + jg convertloop + + ret + } +} +#endif // HAS_ARGBCOPYYTOALPHAROW_SSE2 + +#ifdef HAS_ARGBCOPYYTOALPHAROW_AVX2 +// width in pixels +__declspec(naked) +void ARGBCopyYToAlphaRow_AVX2(const uint8* src, uint8* dst, int width) { + __asm { + mov eax, [esp + 4] // src + mov edx, [esp + 8] // dst + mov ecx, [esp + 12] // count + vpcmpeqb ymm0, ymm0, ymm0 + vpsrld ymm0, ymm0, 8 // generate mask 0x00ffffff + + convertloop: + vpmovzxbd ymm1, qword ptr [eax] + vpmovzxbd ymm2, qword ptr [eax + 8] + lea eax, [eax + 16] + vpslld ymm1, ymm1, 24 + vpslld ymm2, ymm2, 24 + vpblendvb ymm1, ymm1, [edx], ymm0 + vpblendvb ymm2, ymm2, [edx + 32], ymm0 + vmovdqu [edx], ymm1 + vmovdqu [edx + 32], ymm2 + lea edx, [edx + 64] + sub ecx, 16 + jg convertloop + + vzeroupper + ret + } +} +#endif // HAS_ARGBCOPYYTOALPHAROW_AVX2 + +#ifdef HAS_SETROW_X86 +// Write 'count' bytes using an 8 bit value repeated. +// Count should be multiple of 4. +__declspec(naked) +void SetRow_X86(uint8* dst, uint8 v8, int count) { + __asm { + movzx eax, byte ptr [esp + 8] // v8 + mov edx, 0x01010101 // Duplicate byte to all bytes. + mul edx // overwrites edx with upper part of result. + mov edx, edi + mov edi, [esp + 4] // dst + mov ecx, [esp + 12] // count + shr ecx, 2 + rep stosd + mov edi, edx + ret + } +} + +// Write 'count' bytes using an 8 bit value repeated. +__declspec(naked) +void SetRow_ERMS(uint8* dst, uint8 v8, int count) { + __asm { + mov edx, edi + mov edi, [esp + 4] // dst + mov eax, [esp + 8] // v8 + mov ecx, [esp + 12] // count + rep stosb + mov edi, edx + ret + } +} + +// Write 'count' 32 bit values. +__declspec(naked) +void ARGBSetRow_X86(uint8* dst_argb, uint32 v32, int count) { + __asm { + mov edx, edi + mov edi, [esp + 4] // dst + mov eax, [esp + 8] // v32 + mov ecx, [esp + 12] // count + rep stosd + mov edi, edx + ret + } +} +#endif // HAS_SETROW_X86 + +#ifdef HAS_YUY2TOYROW_AVX2 +__declspec(naked) +void YUY2ToYRow_AVX2(const uint8* src_yuy2, uint8* dst_y, int width) { + __asm { + mov eax, [esp + 4] // src_yuy2 + mov edx, [esp + 8] // dst_y + mov ecx, [esp + 12] // width + vpcmpeqb ymm5, ymm5, ymm5 // generate mask 0x00ff00ff + vpsrlw ymm5, ymm5, 8 + + convertloop: + vmovdqu ymm0, [eax] + vmovdqu ymm1, [eax + 32] + lea eax, [eax + 64] + vpand ymm0, ymm0, ymm5 // even bytes are Y + vpand ymm1, ymm1, ymm5 + vpackuswb ymm0, ymm0, ymm1 // mutates. + vpermq ymm0, ymm0, 0xd8 + vmovdqu [edx], ymm0 + lea edx, [edx + 32] + sub ecx, 32 + jg convertloop + vzeroupper + ret + } +} + +__declspec(naked) +void YUY2ToUVRow_AVX2(const uint8* src_yuy2, int stride_yuy2, + uint8* dst_u, uint8* dst_v, int width) { + __asm { + push esi + push edi + mov eax, [esp + 8 + 4] // src_yuy2 + mov esi, [esp + 8 + 8] // stride_yuy2 + mov edx, [esp + 8 + 12] // dst_u + mov edi, [esp + 8 + 16] // dst_v + mov ecx, [esp + 8 + 20] // width + vpcmpeqb ymm5, ymm5, ymm5 // generate mask 0x00ff00ff + vpsrlw ymm5, ymm5, 8 + sub edi, edx + + convertloop: + vmovdqu ymm0, [eax] + vmovdqu ymm1, [eax + 32] + vpavgb ymm0, ymm0, [eax + esi] + vpavgb ymm1, ymm1, [eax + esi + 32] + lea eax, [eax + 64] + vpsrlw ymm0, ymm0, 8 // YUYV -> UVUV + vpsrlw ymm1, ymm1, 8 + vpackuswb ymm0, ymm0, ymm1 // mutates. + vpermq ymm0, ymm0, 0xd8 + vpand ymm1, ymm0, ymm5 // U + vpsrlw ymm0, ymm0, 8 // V + vpackuswb ymm1, ymm1, ymm1 // mutates. + vpackuswb ymm0, ymm0, ymm0 // mutates. + vpermq ymm1, ymm1, 0xd8 + vpermq ymm0, ymm0, 0xd8 + vextractf128 [edx], ymm1, 0 // U + vextractf128 [edx + edi], ymm0, 0 // V + lea edx, [edx + 16] + sub ecx, 32 + jg convertloop + + pop edi + pop esi + vzeroupper + ret + } +} + +__declspec(naked) +void YUY2ToUV422Row_AVX2(const uint8* src_yuy2, + uint8* dst_u, uint8* dst_v, int width) { + __asm { + push edi + mov eax, [esp + 4 + 4] // src_yuy2 + mov edx, [esp + 4 + 8] // dst_u + mov edi, [esp + 4 + 12] // dst_v + mov ecx, [esp + 4 + 16] // width + vpcmpeqb ymm5, ymm5, ymm5 // generate mask 0x00ff00ff + vpsrlw ymm5, ymm5, 8 + sub edi, edx + + convertloop: + vmovdqu ymm0, [eax] + vmovdqu ymm1, [eax + 32] + lea eax, [eax + 64] + vpsrlw ymm0, ymm0, 8 // YUYV -> UVUV + vpsrlw ymm1, ymm1, 8 + vpackuswb ymm0, ymm0, ymm1 // mutates. + vpermq ymm0, ymm0, 0xd8 + vpand ymm1, ymm0, ymm5 // U + vpsrlw ymm0, ymm0, 8 // V + vpackuswb ymm1, ymm1, ymm1 // mutates. + vpackuswb ymm0, ymm0, ymm0 // mutates. + vpermq ymm1, ymm1, 0xd8 + vpermq ymm0, ymm0, 0xd8 + vextractf128 [edx], ymm1, 0 // U + vextractf128 [edx + edi], ymm0, 0 // V + lea edx, [edx + 16] + sub ecx, 32 + jg convertloop + + pop edi + vzeroupper + ret + } +} + +__declspec(naked) +void UYVYToYRow_AVX2(const uint8* src_uyvy, + uint8* dst_y, int width) { + __asm { + mov eax, [esp + 4] // src_uyvy + mov edx, [esp + 8] // dst_y + mov ecx, [esp + 12] // width + + convertloop: + vmovdqu ymm0, [eax] + vmovdqu ymm1, [eax + 32] + lea eax, [eax + 64] + vpsrlw ymm0, ymm0, 8 // odd bytes are Y + vpsrlw ymm1, ymm1, 8 + vpackuswb ymm0, ymm0, ymm1 // mutates. + vpermq ymm0, ymm0, 0xd8 + vmovdqu [edx], ymm0 + lea edx, [edx + 32] + sub ecx, 32 + jg convertloop + vzeroupper + ret + } +} + +__declspec(naked) +void UYVYToUVRow_AVX2(const uint8* src_uyvy, int stride_uyvy, + uint8* dst_u, uint8* dst_v, int width) { + __asm { + push esi + push edi + mov eax, [esp + 8 + 4] // src_yuy2 + mov esi, [esp + 8 + 8] // stride_yuy2 + mov edx, [esp + 8 + 12] // dst_u + mov edi, [esp + 8 + 16] // dst_v + mov ecx, [esp + 8 + 20] // width + vpcmpeqb ymm5, ymm5, ymm5 // generate mask 0x00ff00ff + vpsrlw ymm5, ymm5, 8 + sub edi, edx + + convertloop: + vmovdqu ymm0, [eax] + vmovdqu ymm1, [eax + 32] + vpavgb ymm0, ymm0, [eax + esi] + vpavgb ymm1, ymm1, [eax + esi + 32] + lea eax, [eax + 64] + vpand ymm0, ymm0, ymm5 // UYVY -> UVUV + vpand ymm1, ymm1, ymm5 + vpackuswb ymm0, ymm0, ymm1 // mutates. + vpermq ymm0, ymm0, 0xd8 + vpand ymm1, ymm0, ymm5 // U + vpsrlw ymm0, ymm0, 8 // V + vpackuswb ymm1, ymm1, ymm1 // mutates. + vpackuswb ymm0, ymm0, ymm0 // mutates. + vpermq ymm1, ymm1, 0xd8 + vpermq ymm0, ymm0, 0xd8 + vextractf128 [edx], ymm1, 0 // U + vextractf128 [edx + edi], ymm0, 0 // V + lea edx, [edx + 16] + sub ecx, 32 + jg convertloop + + pop edi + pop esi + vzeroupper + ret + } +} + +__declspec(naked) +void UYVYToUV422Row_AVX2(const uint8* src_uyvy, + uint8* dst_u, uint8* dst_v, int width) { + __asm { + push edi + mov eax, [esp + 4 + 4] // src_yuy2 + mov edx, [esp + 4 + 8] // dst_u + mov edi, [esp + 4 + 12] // dst_v + mov ecx, [esp + 4 + 16] // width + vpcmpeqb ymm5, ymm5, ymm5 // generate mask 0x00ff00ff + vpsrlw ymm5, ymm5, 8 + sub edi, edx + + convertloop: + vmovdqu ymm0, [eax] + vmovdqu ymm1, [eax + 32] + lea eax, [eax + 64] + vpand ymm0, ymm0, ymm5 // UYVY -> UVUV + vpand ymm1, ymm1, ymm5 + vpackuswb ymm0, ymm0, ymm1 // mutates. + vpermq ymm0, ymm0, 0xd8 + vpand ymm1, ymm0, ymm5 // U + vpsrlw ymm0, ymm0, 8 // V + vpackuswb ymm1, ymm1, ymm1 // mutates. + vpackuswb ymm0, ymm0, ymm0 // mutates. + vpermq ymm1, ymm1, 0xd8 + vpermq ymm0, ymm0, 0xd8 + vextractf128 [edx], ymm1, 0 // U + vextractf128 [edx + edi], ymm0, 0 // V + lea edx, [edx + 16] + sub ecx, 32 + jg convertloop + + pop edi + vzeroupper + ret + } +} +#endif // HAS_YUY2TOYROW_AVX2 + +#ifdef HAS_YUY2TOYROW_SSE2 +__declspec(naked) +void YUY2ToYRow_SSE2(const uint8* src_yuy2, + uint8* dst_y, int width) { + __asm { + mov eax, [esp + 4] // src_yuy2 + mov edx, [esp + 8] // dst_y + mov ecx, [esp + 12] // width + pcmpeqb xmm5, xmm5 // generate mask 0x00ff00ff + psrlw xmm5, 8 + + convertloop: + movdqu xmm0, [eax] + movdqu xmm1, [eax + 16] + lea eax, [eax + 32] + pand xmm0, xmm5 // even bytes are Y + pand xmm1, xmm5 + packuswb xmm0, xmm1 + movdqu [edx], xmm0 + lea edx, [edx + 16] + sub ecx, 16 + jg convertloop + ret + } +} + +__declspec(naked) +void YUY2ToUVRow_SSE2(const uint8* src_yuy2, int stride_yuy2, + uint8* dst_u, uint8* dst_v, int width) { + __asm { + push esi + push edi + mov eax, [esp + 8 + 4] // src_yuy2 + mov esi, [esp + 8 + 8] // stride_yuy2 + mov edx, [esp + 8 + 12] // dst_u + mov edi, [esp + 8 + 16] // dst_v + mov ecx, [esp + 8 + 20] // width + pcmpeqb xmm5, xmm5 // generate mask 0x00ff00ff + psrlw xmm5, 8 + sub edi, edx + + convertloop: + movdqu xmm0, [eax] + movdqu xmm1, [eax + 16] + movdqu xmm2, [eax + esi] + movdqu xmm3, [eax + esi + 16] + lea eax, [eax + 32] + pavgb xmm0, xmm2 + pavgb xmm1, xmm3 + psrlw xmm0, 8 // YUYV -> UVUV + psrlw xmm1, 8 + packuswb xmm0, xmm1 + movdqa xmm1, xmm0 + pand xmm0, xmm5 // U + packuswb xmm0, xmm0 + psrlw xmm1, 8 // V + packuswb xmm1, xmm1 + movq qword ptr [edx], xmm0 + movq qword ptr [edx + edi], xmm1 + lea edx, [edx + 8] + sub ecx, 16 + jg convertloop + + pop edi + pop esi + ret + } +} + +__declspec(naked) +void YUY2ToUV422Row_SSE2(const uint8* src_yuy2, + uint8* dst_u, uint8* dst_v, int width) { + __asm { + push edi + mov eax, [esp + 4 + 4] // src_yuy2 + mov edx, [esp + 4 + 8] // dst_u + mov edi, [esp + 4 + 12] // dst_v + mov ecx, [esp + 4 + 16] // width + pcmpeqb xmm5, xmm5 // generate mask 0x00ff00ff + psrlw xmm5, 8 + sub edi, edx + + convertloop: + movdqu xmm0, [eax] + movdqu xmm1, [eax + 16] + lea eax, [eax + 32] + psrlw xmm0, 8 // YUYV -> UVUV + psrlw xmm1, 8 + packuswb xmm0, xmm1 + movdqa xmm1, xmm0 + pand xmm0, xmm5 // U + packuswb xmm0, xmm0 + psrlw xmm1, 8 // V + packuswb xmm1, xmm1 + movq qword ptr [edx], xmm0 + movq qword ptr [edx + edi], xmm1 + lea edx, [edx + 8] + sub ecx, 16 + jg convertloop + + pop edi + ret + } +} + +__declspec(naked) +void UYVYToYRow_SSE2(const uint8* src_uyvy, + uint8* dst_y, int width) { + __asm { + mov eax, [esp + 4] // src_uyvy + mov edx, [esp + 8] // dst_y + mov ecx, [esp + 12] // width + + convertloop: + movdqu xmm0, [eax] + movdqu xmm1, [eax + 16] + lea eax, [eax + 32] + psrlw xmm0, 8 // odd bytes are Y + psrlw xmm1, 8 + packuswb xmm0, xmm1 + movdqu [edx], xmm0 + lea edx, [edx + 16] + sub ecx, 16 + jg convertloop + ret + } +} + +__declspec(naked) +void UYVYToUVRow_SSE2(const uint8* src_uyvy, int stride_uyvy, + uint8* dst_u, uint8* dst_v, int width) { + __asm { + push esi + push edi + mov eax, [esp + 8 + 4] // src_yuy2 + mov esi, [esp + 8 + 8] // stride_yuy2 + mov edx, [esp + 8 + 12] // dst_u + mov edi, [esp + 8 + 16] // dst_v + mov ecx, [esp + 8 + 20] // width + pcmpeqb xmm5, xmm5 // generate mask 0x00ff00ff + psrlw xmm5, 8 + sub edi, edx + + convertloop: + movdqu xmm0, [eax] + movdqu xmm1, [eax + 16] + movdqu xmm2, [eax + esi] + movdqu xmm3, [eax + esi + 16] + lea eax, [eax + 32] + pavgb xmm0, xmm2 + pavgb xmm1, xmm3 + pand xmm0, xmm5 // UYVY -> UVUV + pand xmm1, xmm5 + packuswb xmm0, xmm1 + movdqa xmm1, xmm0 + pand xmm0, xmm5 // U + packuswb xmm0, xmm0 + psrlw xmm1, 8 // V + packuswb xmm1, xmm1 + movq qword ptr [edx], xmm0 + movq qword ptr [edx + edi], xmm1 + lea edx, [edx + 8] + sub ecx, 16 + jg convertloop + + pop edi + pop esi + ret + } +} + +__declspec(naked) +void UYVYToUV422Row_SSE2(const uint8* src_uyvy, + uint8* dst_u, uint8* dst_v, int width) { + __asm { + push edi + mov eax, [esp + 4 + 4] // src_yuy2 + mov edx, [esp + 4 + 8] // dst_u + mov edi, [esp + 4 + 12] // dst_v + mov ecx, [esp + 4 + 16] // width + pcmpeqb xmm5, xmm5 // generate mask 0x00ff00ff + psrlw xmm5, 8 + sub edi, edx + + convertloop: + movdqu xmm0, [eax] + movdqu xmm1, [eax + 16] + lea eax, [eax + 32] + pand xmm0, xmm5 // UYVY -> UVUV + pand xmm1, xmm5 + packuswb xmm0, xmm1 + movdqa xmm1, xmm0 + pand xmm0, xmm5 // U + packuswb xmm0, xmm0 + psrlw xmm1, 8 // V + packuswb xmm1, xmm1 + movq qword ptr [edx], xmm0 + movq qword ptr [edx + edi], xmm1 + lea edx, [edx + 8] + sub ecx, 16 + jg convertloop + + pop edi + ret + } +} +#endif // HAS_YUY2TOYROW_SSE2 + +#ifdef HAS_BLENDPLANEROW_SSSE3 +// Blend 8 pixels at a time. +// unsigned version of math +// =((A2*C2)+(B2*(255-C2))+255)/256 +// signed version of math +// =(((A2-128)*C2)+((B2-128)*(255-C2))+32768+127)/256 +__declspec(naked) +void BlendPlaneRow_SSSE3(const uint8* src0, const uint8* src1, + const uint8* alpha, uint8* dst, int width) { + __asm { + push esi + push edi + pcmpeqb xmm5, xmm5 // generate mask 0xff00ff00 + psllw xmm5, 8 + mov eax, 0x80808080 // 128 for biasing image to signed. + movd xmm6, eax + pshufd xmm6, xmm6, 0x00 + + mov eax, 0x807f807f // 32768 + 127 for unbias and round. + movd xmm7, eax + pshufd xmm7, xmm7, 0x00 + mov eax, [esp + 8 + 4] // src0 + mov edx, [esp + 8 + 8] // src1 + mov esi, [esp + 8 + 12] // alpha + mov edi, [esp + 8 + 16] // dst + mov ecx, [esp + 8 + 20] // width + sub eax, esi + sub edx, esi + sub edi, esi + + // 8 pixel loop. + convertloop8: + movq xmm0, qword ptr [esi] // alpha + punpcklbw xmm0, xmm0 + pxor xmm0, xmm5 // a, 255-a + movq xmm1, qword ptr [eax + esi] // src0 + movq xmm2, qword ptr [edx + esi] // src1 + punpcklbw xmm1, xmm2 + psubb xmm1, xmm6 // bias src0/1 - 128 + pmaddubsw xmm0, xmm1 + paddw xmm0, xmm7 // unbias result - 32768 and round. + psrlw xmm0, 8 + packuswb xmm0, xmm0 + movq qword ptr [edi + esi], xmm0 + lea esi, [esi + 8] + sub ecx, 8 + jg convertloop8 + + pop edi + pop esi + ret + } +} +#endif // HAS_BLENDPLANEROW_SSSE3 + +#ifdef HAS_BLENDPLANEROW_AVX2 +// Blend 32 pixels at a time. +// unsigned version of math +// =((A2*C2)+(B2*(255-C2))+255)/256 +// signed version of math +// =(((A2-128)*C2)+((B2-128)*(255-C2))+32768+127)/256 +__declspec(naked) +void BlendPlaneRow_AVX2(const uint8* src0, const uint8* src1, + const uint8* alpha, uint8* dst, int width) { + __asm { + push esi + push edi + vpcmpeqb ymm5, ymm5, ymm5 // generate mask 0xff00ff00 + vpsllw ymm5, ymm5, 8 + mov eax, 0x80808080 // 128 for biasing image to signed. + vmovd xmm6, eax + vbroadcastss ymm6, xmm6 + mov eax, 0x807f807f // 32768 + 127 for unbias and round. + vmovd xmm7, eax + vbroadcastss ymm7, xmm7 + mov eax, [esp + 8 + 4] // src0 + mov edx, [esp + 8 + 8] // src1 + mov esi, [esp + 8 + 12] // alpha + mov edi, [esp + 8 + 16] // dst + mov ecx, [esp + 8 + 20] // width + sub eax, esi + sub edx, esi + sub edi, esi + + // 32 pixel loop. + convertloop32: + vmovdqu ymm0, [esi] // alpha + vpunpckhbw ymm3, ymm0, ymm0 // 8..15, 24..31 + vpunpcklbw ymm0, ymm0, ymm0 // 0..7, 16..23 + vpxor ymm3, ymm3, ymm5 // a, 255-a + vpxor ymm0, ymm0, ymm5 // a, 255-a + vmovdqu ymm1, [eax + esi] // src0 + vmovdqu ymm2, [edx + esi] // src1 + vpunpckhbw ymm4, ymm1, ymm2 + vpunpcklbw ymm1, ymm1, ymm2 + vpsubb ymm4, ymm4, ymm6 // bias src0/1 - 128 + vpsubb ymm1, ymm1, ymm6 // bias src0/1 - 128 + vpmaddubsw ymm3, ymm3, ymm4 + vpmaddubsw ymm0, ymm0, ymm1 + vpaddw ymm3, ymm3, ymm7 // unbias result - 32768 and round. + vpaddw ymm0, ymm0, ymm7 // unbias result - 32768 and round. + vpsrlw ymm3, ymm3, 8 + vpsrlw ymm0, ymm0, 8 + vpackuswb ymm0, ymm0, ymm3 + vmovdqu [edi + esi], ymm0 + lea esi, [esi + 32] + sub ecx, 32 + jg convertloop32 + + pop edi + pop esi + vzeroupper + ret + } +} +#endif // HAS_BLENDPLANEROW_AVX2 + +#ifdef HAS_ARGBBLENDROW_SSSE3 +// Shuffle table for isolating alpha. +static const uvec8 kShuffleAlpha = { + 3u, 0x80, 3u, 0x80, 7u, 0x80, 7u, 0x80, + 11u, 0x80, 11u, 0x80, 15u, 0x80, 15u, 0x80 +}; + +// Blend 8 pixels at a time. +__declspec(naked) +void ARGBBlendRow_SSSE3(const uint8* src_argb0, const uint8* src_argb1, + uint8* dst_argb, int width) { + __asm { + push esi + mov eax, [esp + 4 + 4] // src_argb0 + mov esi, [esp + 4 + 8] // src_argb1 + mov edx, [esp + 4 + 12] // dst_argb + mov ecx, [esp + 4 + 16] // width + pcmpeqb xmm7, xmm7 // generate constant 0x0001 + psrlw xmm7, 15 + pcmpeqb xmm6, xmm6 // generate mask 0x00ff00ff + psrlw xmm6, 8 + pcmpeqb xmm5, xmm5 // generate mask 0xff00ff00 + psllw xmm5, 8 + pcmpeqb xmm4, xmm4 // generate mask 0xff000000 + pslld xmm4, 24 + sub ecx, 4 + jl convertloop4b // less than 4 pixels? + + // 4 pixel loop. + convertloop4: + movdqu xmm3, [eax] // src argb + lea eax, [eax + 16] + movdqa xmm0, xmm3 // src argb + pxor xmm3, xmm4 // ~alpha + movdqu xmm2, [esi] // _r_b + pshufb xmm3, xmmword ptr kShuffleAlpha // alpha + pand xmm2, xmm6 // _r_b + paddw xmm3, xmm7 // 256 - alpha + pmullw xmm2, xmm3 // _r_b * alpha + movdqu xmm1, [esi] // _a_g + lea esi, [esi + 16] + psrlw xmm1, 8 // _a_g + por xmm0, xmm4 // set alpha to 255 + pmullw xmm1, xmm3 // _a_g * alpha + psrlw xmm2, 8 // _r_b convert to 8 bits again + paddusb xmm0, xmm2 // + src argb + pand xmm1, xmm5 // a_g_ convert to 8 bits again + paddusb xmm0, xmm1 // + src argb + movdqu [edx], xmm0 + lea edx, [edx + 16] + sub ecx, 4 + jge convertloop4 + + convertloop4b: + add ecx, 4 - 1 + jl convertloop1b + + // 1 pixel loop. + convertloop1: + movd xmm3, [eax] // src argb + lea eax, [eax + 4] + movdqa xmm0, xmm3 // src argb + pxor xmm3, xmm4 // ~alpha + movd xmm2, [esi] // _r_b + pshufb xmm3, xmmword ptr kShuffleAlpha // alpha + pand xmm2, xmm6 // _r_b + paddw xmm3, xmm7 // 256 - alpha + pmullw xmm2, xmm3 // _r_b * alpha + movd xmm1, [esi] // _a_g + lea esi, [esi + 4] + psrlw xmm1, 8 // _a_g + por xmm0, xmm4 // set alpha to 255 + pmullw xmm1, xmm3 // _a_g * alpha + psrlw xmm2, 8 // _r_b convert to 8 bits again + paddusb xmm0, xmm2 // + src argb + pand xmm1, xmm5 // a_g_ convert to 8 bits again + paddusb xmm0, xmm1 // + src argb + movd [edx], xmm0 + lea edx, [edx + 4] + sub ecx, 1 + jge convertloop1 + + convertloop1b: + pop esi + ret + } +} +#endif // HAS_ARGBBLENDROW_SSSE3 + +#ifdef HAS_ARGBATTENUATEROW_SSSE3 +// Shuffle table duplicating alpha. +static const uvec8 kShuffleAlpha0 = { + 3u, 3u, 3u, 3u, 3u, 3u, 128u, 128u, 7u, 7u, 7u, 7u, 7u, 7u, 128u, 128u, +}; +static const uvec8 kShuffleAlpha1 = { + 11u, 11u, 11u, 11u, 11u, 11u, 128u, 128u, + 15u, 15u, 15u, 15u, 15u, 15u, 128u, 128u, +}; +__declspec(naked) +void ARGBAttenuateRow_SSSE3(const uint8* src_argb, uint8* dst_argb, int width) { + __asm { + mov eax, [esp + 4] // src_argb0 + mov edx, [esp + 8] // dst_argb + mov ecx, [esp + 12] // width + pcmpeqb xmm3, xmm3 // generate mask 0xff000000 + pslld xmm3, 24 + movdqa xmm4, xmmword ptr kShuffleAlpha0 + movdqa xmm5, xmmword ptr kShuffleAlpha1 + + convertloop: + movdqu xmm0, [eax] // read 4 pixels + pshufb xmm0, xmm4 // isolate first 2 alphas + movdqu xmm1, [eax] // read 4 pixels + punpcklbw xmm1, xmm1 // first 2 pixel rgbs + pmulhuw xmm0, xmm1 // rgb * a + movdqu xmm1, [eax] // read 4 pixels + pshufb xmm1, xmm5 // isolate next 2 alphas + movdqu xmm2, [eax] // read 4 pixels + punpckhbw xmm2, xmm2 // next 2 pixel rgbs + pmulhuw xmm1, xmm2 // rgb * a + movdqu xmm2, [eax] // mask original alpha + lea eax, [eax + 16] + pand xmm2, xmm3 + psrlw xmm0, 8 + psrlw xmm1, 8 + packuswb xmm0, xmm1 + por xmm0, xmm2 // copy original alpha + movdqu [edx], xmm0 + lea edx, [edx + 16] + sub ecx, 4 + jg convertloop + + ret + } +} +#endif // HAS_ARGBATTENUATEROW_SSSE3 + +#ifdef HAS_ARGBATTENUATEROW_AVX2 +// Shuffle table duplicating alpha. +static const uvec8 kShuffleAlpha_AVX2 = { + 6u, 7u, 6u, 7u, 6u, 7u, 128u, 128u, 14u, 15u, 14u, 15u, 14u, 15u, 128u, 128u +}; +__declspec(naked) +void ARGBAttenuateRow_AVX2(const uint8* src_argb, uint8* dst_argb, int width) { + __asm { + mov eax, [esp + 4] // src_argb0 + mov edx, [esp + 8] // dst_argb + mov ecx, [esp + 12] // width + sub edx, eax + vbroadcastf128 ymm4, xmmword ptr kShuffleAlpha_AVX2 + vpcmpeqb ymm5, ymm5, ymm5 // generate mask 0xff000000 + vpslld ymm5, ymm5, 24 + + convertloop: + vmovdqu ymm6, [eax] // read 8 pixels. + vpunpcklbw ymm0, ymm6, ymm6 // low 4 pixels. mutated. + vpunpckhbw ymm1, ymm6, ymm6 // high 4 pixels. mutated. + vpshufb ymm2, ymm0, ymm4 // low 4 alphas + vpshufb ymm3, ymm1, ymm4 // high 4 alphas + vpmulhuw ymm0, ymm0, ymm2 // rgb * a + vpmulhuw ymm1, ymm1, ymm3 // rgb * a + vpand ymm6, ymm6, ymm5 // isolate alpha + vpsrlw ymm0, ymm0, 8 + vpsrlw ymm1, ymm1, 8 + vpackuswb ymm0, ymm0, ymm1 // unmutated. + vpor ymm0, ymm0, ymm6 // copy original alpha + vmovdqu [eax + edx], ymm0 + lea eax, [eax + 32] + sub ecx, 8 + jg convertloop + + vzeroupper + ret + } +} +#endif // HAS_ARGBATTENUATEROW_AVX2 + +#ifdef HAS_ARGBUNATTENUATEROW_SSE2 +// Unattenuate 4 pixels at a time. +__declspec(naked) +void ARGBUnattenuateRow_SSE2(const uint8* src_argb, uint8* dst_argb, + int width) { + __asm { + push ebx + push esi + push edi + mov eax, [esp + 12 + 4] // src_argb + mov edx, [esp + 12 + 8] // dst_argb + mov ecx, [esp + 12 + 12] // width + lea ebx, fixed_invtbl8 + + convertloop: + movdqu xmm0, [eax] // read 4 pixels + movzx esi, byte ptr [eax + 3] // first alpha + movzx edi, byte ptr [eax + 7] // second alpha + punpcklbw xmm0, xmm0 // first 2 + movd xmm2, dword ptr [ebx + esi * 4] + movd xmm3, dword ptr [ebx + edi * 4] + pshuflw xmm2, xmm2, 040h // first 4 inv_alpha words. 1, a, a, a + pshuflw xmm3, xmm3, 040h // next 4 inv_alpha words + movlhps xmm2, xmm3 + pmulhuw xmm0, xmm2 // rgb * a + + movdqu xmm1, [eax] // read 4 pixels + movzx esi, byte ptr [eax + 11] // third alpha + movzx edi, byte ptr [eax + 15] // forth alpha + punpckhbw xmm1, xmm1 // next 2 + movd xmm2, dword ptr [ebx + esi * 4] + movd xmm3, dword ptr [ebx + edi * 4] + pshuflw xmm2, xmm2, 040h // first 4 inv_alpha words + pshuflw xmm3, xmm3, 040h // next 4 inv_alpha words + movlhps xmm2, xmm3 + pmulhuw xmm1, xmm2 // rgb * a + lea eax, [eax + 16] + packuswb xmm0, xmm1 + movdqu [edx], xmm0 + lea edx, [edx + 16] + sub ecx, 4 + jg convertloop + + pop edi + pop esi + pop ebx + ret + } +} +#endif // HAS_ARGBUNATTENUATEROW_SSE2 + +#ifdef HAS_ARGBUNATTENUATEROW_AVX2 +// Shuffle table duplicating alpha. +static const uvec8 kUnattenShuffleAlpha_AVX2 = { + 0u, 1u, 0u, 1u, 0u, 1u, 6u, 7u, 8u, 9u, 8u, 9u, 8u, 9u, 14u, 15u +}; +// TODO(fbarchard): Enable USE_GATHER for future hardware if faster. +// USE_GATHER is not on by default, due to being a slow instruction. +#ifdef USE_GATHER +__declspec(naked) +void ARGBUnattenuateRow_AVX2(const uint8* src_argb, uint8* dst_argb, + int width) { + __asm { + mov eax, [esp + 4] // src_argb0 + mov edx, [esp + 8] // dst_argb + mov ecx, [esp + 12] // width + sub edx, eax + vbroadcastf128 ymm4, xmmword ptr kUnattenShuffleAlpha_AVX2 + + convertloop: + vmovdqu ymm6, [eax] // read 8 pixels. + vpcmpeqb ymm5, ymm5, ymm5 // generate mask 0xffffffff for gather. + vpsrld ymm2, ymm6, 24 // alpha in low 8 bits. + vpunpcklbw ymm0, ymm6, ymm6 // low 4 pixels. mutated. + vpunpckhbw ymm1, ymm6, ymm6 // high 4 pixels. mutated. + vpgatherdd ymm3, [ymm2 * 4 + fixed_invtbl8], ymm5 // ymm5 cleared. 1, a + vpunpcklwd ymm2, ymm3, ymm3 // low 4 inverted alphas. mutated. 1, 1, a, a + vpunpckhwd ymm3, ymm3, ymm3 // high 4 inverted alphas. mutated. + vpshufb ymm2, ymm2, ymm4 // replicate low 4 alphas. 1, a, a, a + vpshufb ymm3, ymm3, ymm4 // replicate high 4 alphas + vpmulhuw ymm0, ymm0, ymm2 // rgb * ia + vpmulhuw ymm1, ymm1, ymm3 // rgb * ia + vpackuswb ymm0, ymm0, ymm1 // unmutated. + vmovdqu [eax + edx], ymm0 + lea eax, [eax + 32] + sub ecx, 8 + jg convertloop + + vzeroupper + ret + } +} +#else // USE_GATHER +__declspec(naked) +void ARGBUnattenuateRow_AVX2(const uint8* src_argb, uint8* dst_argb, + int width) { + __asm { + + push ebx + push esi + push edi + mov eax, [esp + 12 + 4] // src_argb + mov edx, [esp + 12 + 8] // dst_argb + mov ecx, [esp + 12 + 12] // width + sub edx, eax + lea ebx, fixed_invtbl8 + vbroadcastf128 ymm5, xmmword ptr kUnattenShuffleAlpha_AVX2 + + convertloop: + // replace VPGATHER + movzx esi, byte ptr [eax + 3] // alpha0 + movzx edi, byte ptr [eax + 7] // alpha1 + vmovd xmm0, dword ptr [ebx + esi * 4] // [1,a0] + vmovd xmm1, dword ptr [ebx + edi * 4] // [1,a1] + movzx esi, byte ptr [eax + 11] // alpha2 + movzx edi, byte ptr [eax + 15] // alpha3 + vpunpckldq xmm6, xmm0, xmm1 // [1,a1,1,a0] + vmovd xmm2, dword ptr [ebx + esi * 4] // [1,a2] + vmovd xmm3, dword ptr [ebx + edi * 4] // [1,a3] + movzx esi, byte ptr [eax + 19] // alpha4 + movzx edi, byte ptr [eax + 23] // alpha5 + vpunpckldq xmm7, xmm2, xmm3 // [1,a3,1,a2] + vmovd xmm0, dword ptr [ebx + esi * 4] // [1,a4] + vmovd xmm1, dword ptr [ebx + edi * 4] // [1,a5] + movzx esi, byte ptr [eax + 27] // alpha6 + movzx edi, byte ptr [eax + 31] // alpha7 + vpunpckldq xmm0, xmm0, xmm1 // [1,a5,1,a4] + vmovd xmm2, dword ptr [ebx + esi * 4] // [1,a6] + vmovd xmm3, dword ptr [ebx + edi * 4] // [1,a7] + vpunpckldq xmm2, xmm2, xmm3 // [1,a7,1,a6] + vpunpcklqdq xmm3, xmm6, xmm7 // [1,a3,1,a2,1,a1,1,a0] + vpunpcklqdq xmm0, xmm0, xmm2 // [1,a7,1,a6,1,a5,1,a4] + vinserti128 ymm3, ymm3, xmm0, 1 // [1,a7,1,a6,1,a5,1,a4,1,a3,1,a2,1,a1,1,a0] + // end of VPGATHER + + vmovdqu ymm6, [eax] // read 8 pixels. + vpunpcklbw ymm0, ymm6, ymm6 // low 4 pixels. mutated. + vpunpckhbw ymm1, ymm6, ymm6 // high 4 pixels. mutated. + vpunpcklwd ymm2, ymm3, ymm3 // low 4 inverted alphas. mutated. 1, 1, a, a + vpunpckhwd ymm3, ymm3, ymm3 // high 4 inverted alphas. mutated. + vpshufb ymm2, ymm2, ymm5 // replicate low 4 alphas. 1, a, a, a + vpshufb ymm3, ymm3, ymm5 // replicate high 4 alphas + vpmulhuw ymm0, ymm0, ymm2 // rgb * ia + vpmulhuw ymm1, ymm1, ymm3 // rgb * ia + vpackuswb ymm0, ymm0, ymm1 // unmutated. + vmovdqu [eax + edx], ymm0 + lea eax, [eax + 32] + sub ecx, 8 + jg convertloop + + pop edi + pop esi + pop ebx + vzeroupper + ret + } +} +#endif // USE_GATHER +#endif // HAS_ARGBATTENUATEROW_AVX2 + +#ifdef HAS_ARGBGRAYROW_SSSE3 +// Convert 8 ARGB pixels (64 bytes) to 8 Gray ARGB pixels. +__declspec(naked) +void ARGBGrayRow_SSSE3(const uint8* src_argb, uint8* dst_argb, int width) { + __asm { + mov eax, [esp + 4] /* src_argb */ + mov edx, [esp + 8] /* dst_argb */ + mov ecx, [esp + 12] /* width */ + movdqa xmm4, xmmword ptr kARGBToYJ + movdqa xmm5, xmmword ptr kAddYJ64 + + convertloop: + movdqu xmm0, [eax] // G + movdqu xmm1, [eax + 16] + pmaddubsw xmm0, xmm4 + pmaddubsw xmm1, xmm4 + phaddw xmm0, xmm1 + paddw xmm0, xmm5 // Add .5 for rounding. + psrlw xmm0, 7 + packuswb xmm0, xmm0 // 8 G bytes + movdqu xmm2, [eax] // A + movdqu xmm3, [eax + 16] + lea eax, [eax + 32] + psrld xmm2, 24 + psrld xmm3, 24 + packuswb xmm2, xmm3 + packuswb xmm2, xmm2 // 8 A bytes + movdqa xmm3, xmm0 // Weave into GG, GA, then GGGA + punpcklbw xmm0, xmm0 // 8 GG words + punpcklbw xmm3, xmm2 // 8 GA words + movdqa xmm1, xmm0 + punpcklwd xmm0, xmm3 // GGGA first 4 + punpckhwd xmm1, xmm3 // GGGA next 4 + movdqu [edx], xmm0 + movdqu [edx + 16], xmm1 + lea edx, [edx + 32] + sub ecx, 8 + jg convertloop + ret + } +} +#endif // HAS_ARGBGRAYROW_SSSE3 + +#ifdef HAS_ARGBSEPIAROW_SSSE3 +// b = (r * 35 + g * 68 + b * 17) >> 7 +// g = (r * 45 + g * 88 + b * 22) >> 7 +// r = (r * 50 + g * 98 + b * 24) >> 7 +// Constant for ARGB color to sepia tone. +static const vec8 kARGBToSepiaB = { + 17, 68, 35, 0, 17, 68, 35, 0, 17, 68, 35, 0, 17, 68, 35, 0 +}; + +static const vec8 kARGBToSepiaG = { + 22, 88, 45, 0, 22, 88, 45, 0, 22, 88, 45, 0, 22, 88, 45, 0 +}; + +static const vec8 kARGBToSepiaR = { + 24, 98, 50, 0, 24, 98, 50, 0, 24, 98, 50, 0, 24, 98, 50, 0 +}; + +// Convert 8 ARGB pixels (32 bytes) to 8 Sepia ARGB pixels. +__declspec(naked) +void ARGBSepiaRow_SSSE3(uint8* dst_argb, int width) { + __asm { + mov eax, [esp + 4] /* dst_argb */ + mov ecx, [esp + 8] /* width */ + movdqa xmm2, xmmword ptr kARGBToSepiaB + movdqa xmm3, xmmword ptr kARGBToSepiaG + movdqa xmm4, xmmword ptr kARGBToSepiaR + + convertloop: + movdqu xmm0, [eax] // B + movdqu xmm6, [eax + 16] + pmaddubsw xmm0, xmm2 + pmaddubsw xmm6, xmm2 + phaddw xmm0, xmm6 + psrlw xmm0, 7 + packuswb xmm0, xmm0 // 8 B values + movdqu xmm5, [eax] // G + movdqu xmm1, [eax + 16] + pmaddubsw xmm5, xmm3 + pmaddubsw xmm1, xmm3 + phaddw xmm5, xmm1 + psrlw xmm5, 7 + packuswb xmm5, xmm5 // 8 G values + punpcklbw xmm0, xmm5 // 8 BG values + movdqu xmm5, [eax] // R + movdqu xmm1, [eax + 16] + pmaddubsw xmm5, xmm4 + pmaddubsw xmm1, xmm4 + phaddw xmm5, xmm1 + psrlw xmm5, 7 + packuswb xmm5, xmm5 // 8 R values + movdqu xmm6, [eax] // A + movdqu xmm1, [eax + 16] + psrld xmm6, 24 + psrld xmm1, 24 + packuswb xmm6, xmm1 + packuswb xmm6, xmm6 // 8 A values + punpcklbw xmm5, xmm6 // 8 RA values + movdqa xmm1, xmm0 // Weave BG, RA together + punpcklwd xmm0, xmm5 // BGRA first 4 + punpckhwd xmm1, xmm5 // BGRA next 4 + movdqu [eax], xmm0 + movdqu [eax + 16], xmm1 + lea eax, [eax + 32] + sub ecx, 8 + jg convertloop + ret + } +} +#endif // HAS_ARGBSEPIAROW_SSSE3 + +#ifdef HAS_ARGBCOLORMATRIXROW_SSSE3 +// Tranform 8 ARGB pixels (32 bytes) with color matrix. +// Same as Sepia except matrix is provided. +// TODO(fbarchard): packuswbs only use half of the reg. To make RGBA, combine R +// and B into a high and low, then G/A, unpackl/hbw and then unpckl/hwd. +__declspec(naked) +void ARGBColorMatrixRow_SSSE3(const uint8* src_argb, uint8* dst_argb, + const int8* matrix_argb, int width) { + __asm { + mov eax, [esp + 4] /* src_argb */ + mov edx, [esp + 8] /* dst_argb */ + mov ecx, [esp + 12] /* matrix_argb */ + movdqu xmm5, [ecx] + pshufd xmm2, xmm5, 0x00 + pshufd xmm3, xmm5, 0x55 + pshufd xmm4, xmm5, 0xaa + pshufd xmm5, xmm5, 0xff + mov ecx, [esp + 16] /* width */ + + convertloop: + movdqu xmm0, [eax] // B + movdqu xmm7, [eax + 16] + pmaddubsw xmm0, xmm2 + pmaddubsw xmm7, xmm2 + movdqu xmm6, [eax] // G + movdqu xmm1, [eax + 16] + pmaddubsw xmm6, xmm3 + pmaddubsw xmm1, xmm3 + phaddsw xmm0, xmm7 // B + phaddsw xmm6, xmm1 // G + psraw xmm0, 6 // B + psraw xmm6, 6 // G + packuswb xmm0, xmm0 // 8 B values + packuswb xmm6, xmm6 // 8 G values + punpcklbw xmm0, xmm6 // 8 BG values + movdqu xmm1, [eax] // R + movdqu xmm7, [eax + 16] + pmaddubsw xmm1, xmm4 + pmaddubsw xmm7, xmm4 + phaddsw xmm1, xmm7 // R + movdqu xmm6, [eax] // A + movdqu xmm7, [eax + 16] + pmaddubsw xmm6, xmm5 + pmaddubsw xmm7, xmm5 + phaddsw xmm6, xmm7 // A + psraw xmm1, 6 // R + psraw xmm6, 6 // A + packuswb xmm1, xmm1 // 8 R values + packuswb xmm6, xmm6 // 8 A values + punpcklbw xmm1, xmm6 // 8 RA values + movdqa xmm6, xmm0 // Weave BG, RA together + punpcklwd xmm0, xmm1 // BGRA first 4 + punpckhwd xmm6, xmm1 // BGRA next 4 + movdqu [edx], xmm0 + movdqu [edx + 16], xmm6 + lea eax, [eax + 32] + lea edx, [edx + 32] + sub ecx, 8 + jg convertloop + ret + } +} +#endif // HAS_ARGBCOLORMATRIXROW_SSSE3 + +#ifdef HAS_ARGBQUANTIZEROW_SSE2 +// Quantize 4 ARGB pixels (16 bytes). +__declspec(naked) +void ARGBQuantizeRow_SSE2(uint8* dst_argb, int scale, int interval_size, + int interval_offset, int width) { + __asm { + mov eax, [esp + 4] /* dst_argb */ + movd xmm2, [esp + 8] /* scale */ + movd xmm3, [esp + 12] /* interval_size */ + movd xmm4, [esp + 16] /* interval_offset */ + mov ecx, [esp + 20] /* width */ + pshuflw xmm2, xmm2, 040h + pshufd xmm2, xmm2, 044h + pshuflw xmm3, xmm3, 040h + pshufd xmm3, xmm3, 044h + pshuflw xmm4, xmm4, 040h + pshufd xmm4, xmm4, 044h + pxor xmm5, xmm5 // constant 0 + pcmpeqb xmm6, xmm6 // generate mask 0xff000000 + pslld xmm6, 24 + + convertloop: + movdqu xmm0, [eax] // read 4 pixels + punpcklbw xmm0, xmm5 // first 2 pixels + pmulhuw xmm0, xmm2 // pixel * scale >> 16 + movdqu xmm1, [eax] // read 4 pixels + punpckhbw xmm1, xmm5 // next 2 pixels + pmulhuw xmm1, xmm2 + pmullw xmm0, xmm3 // * interval_size + movdqu xmm7, [eax] // read 4 pixels + pmullw xmm1, xmm3 + pand xmm7, xmm6 // mask alpha + paddw xmm0, xmm4 // + interval_size / 2 + paddw xmm1, xmm4 + packuswb xmm0, xmm1 + por xmm0, xmm7 + movdqu [eax], xmm0 + lea eax, [eax + 16] + sub ecx, 4 + jg convertloop + ret + } +} +#endif // HAS_ARGBQUANTIZEROW_SSE2 + +#ifdef HAS_ARGBSHADEROW_SSE2 +// Shade 4 pixels at a time by specified value. +__declspec(naked) +void ARGBShadeRow_SSE2(const uint8* src_argb, uint8* dst_argb, int width, + uint32 value) { + __asm { + mov eax, [esp + 4] // src_argb + mov edx, [esp + 8] // dst_argb + mov ecx, [esp + 12] // width + movd xmm2, [esp + 16] // value + punpcklbw xmm2, xmm2 + punpcklqdq xmm2, xmm2 + + convertloop: + movdqu xmm0, [eax] // read 4 pixels + lea eax, [eax + 16] + movdqa xmm1, xmm0 + punpcklbw xmm0, xmm0 // first 2 + punpckhbw xmm1, xmm1 // next 2 + pmulhuw xmm0, xmm2 // argb * value + pmulhuw xmm1, xmm2 // argb * value + psrlw xmm0, 8 + psrlw xmm1, 8 + packuswb xmm0, xmm1 + movdqu [edx], xmm0 + lea edx, [edx + 16] + sub ecx, 4 + jg convertloop + + ret + } +} +#endif // HAS_ARGBSHADEROW_SSE2 + +#ifdef HAS_ARGBMULTIPLYROW_SSE2 +// Multiply 2 rows of ARGB pixels together, 4 pixels at a time. +__declspec(naked) +void ARGBMultiplyRow_SSE2(const uint8* src_argb0, const uint8* src_argb1, + uint8* dst_argb, int width) { + __asm { + push esi + mov eax, [esp + 4 + 4] // src_argb0 + mov esi, [esp + 4 + 8] // src_argb1 + mov edx, [esp + 4 + 12] // dst_argb + mov ecx, [esp + 4 + 16] // width + pxor xmm5, xmm5 // constant 0 + + convertloop: + movdqu xmm0, [eax] // read 4 pixels from src_argb0 + movdqu xmm2, [esi] // read 4 pixels from src_argb1 + movdqu xmm1, xmm0 + movdqu xmm3, xmm2 + punpcklbw xmm0, xmm0 // first 2 + punpckhbw xmm1, xmm1 // next 2 + punpcklbw xmm2, xmm5 // first 2 + punpckhbw xmm3, xmm5 // next 2 + pmulhuw xmm0, xmm2 // src_argb0 * src_argb1 first 2 + pmulhuw xmm1, xmm3 // src_argb0 * src_argb1 next 2 + lea eax, [eax + 16] + lea esi, [esi + 16] + packuswb xmm0, xmm1 + movdqu [edx], xmm0 + lea edx, [edx + 16] + sub ecx, 4 + jg convertloop + + pop esi + ret + } +} +#endif // HAS_ARGBMULTIPLYROW_SSE2 + +#ifdef HAS_ARGBADDROW_SSE2 +// Add 2 rows of ARGB pixels together, 4 pixels at a time. +// TODO(fbarchard): Port this to posix, neon and other math functions. +__declspec(naked) +void ARGBAddRow_SSE2(const uint8* src_argb0, const uint8* src_argb1, + uint8* dst_argb, int width) { + __asm { + push esi + mov eax, [esp + 4 + 4] // src_argb0 + mov esi, [esp + 4 + 8] // src_argb1 + mov edx, [esp + 4 + 12] // dst_argb + mov ecx, [esp + 4 + 16] // width + + sub ecx, 4 + jl convertloop49 + + convertloop4: + movdqu xmm0, [eax] // read 4 pixels from src_argb0 + lea eax, [eax + 16] + movdqu xmm1, [esi] // read 4 pixels from src_argb1 + lea esi, [esi + 16] + paddusb xmm0, xmm1 // src_argb0 + src_argb1 + movdqu [edx], xmm0 + lea edx, [edx + 16] + sub ecx, 4 + jge convertloop4 + + convertloop49: + add ecx, 4 - 1 + jl convertloop19 + + convertloop1: + movd xmm0, [eax] // read 1 pixels from src_argb0 + lea eax, [eax + 4] + movd xmm1, [esi] // read 1 pixels from src_argb1 + lea esi, [esi + 4] + paddusb xmm0, xmm1 // src_argb0 + src_argb1 + movd [edx], xmm0 + lea edx, [edx + 4] + sub ecx, 1 + jge convertloop1 + + convertloop19: + pop esi + ret + } +} +#endif // HAS_ARGBADDROW_SSE2 + +#ifdef HAS_ARGBSUBTRACTROW_SSE2 +// Subtract 2 rows of ARGB pixels together, 4 pixels at a time. +__declspec(naked) +void ARGBSubtractRow_SSE2(const uint8* src_argb0, const uint8* src_argb1, + uint8* dst_argb, int width) { + __asm { + push esi + mov eax, [esp + 4 + 4] // src_argb0 + mov esi, [esp + 4 + 8] // src_argb1 + mov edx, [esp + 4 + 12] // dst_argb + mov ecx, [esp + 4 + 16] // width + + convertloop: + movdqu xmm0, [eax] // read 4 pixels from src_argb0 + lea eax, [eax + 16] + movdqu xmm1, [esi] // read 4 pixels from src_argb1 + lea esi, [esi + 16] + psubusb xmm0, xmm1 // src_argb0 - src_argb1 + movdqu [edx], xmm0 + lea edx, [edx + 16] + sub ecx, 4 + jg convertloop + + pop esi + ret + } +} +#endif // HAS_ARGBSUBTRACTROW_SSE2 + +#ifdef HAS_ARGBMULTIPLYROW_AVX2 +// Multiply 2 rows of ARGB pixels together, 8 pixels at a time. +__declspec(naked) +void ARGBMultiplyRow_AVX2(const uint8* src_argb0, const uint8* src_argb1, + uint8* dst_argb, int width) { + __asm { + push esi + mov eax, [esp + 4 + 4] // src_argb0 + mov esi, [esp + 4 + 8] // src_argb1 + mov edx, [esp + 4 + 12] // dst_argb + mov ecx, [esp + 4 + 16] // width + vpxor ymm5, ymm5, ymm5 // constant 0 + + convertloop: + vmovdqu ymm1, [eax] // read 8 pixels from src_argb0 + lea eax, [eax + 32] + vmovdqu ymm3, [esi] // read 8 pixels from src_argb1 + lea esi, [esi + 32] + vpunpcklbw ymm0, ymm1, ymm1 // low 4 + vpunpckhbw ymm1, ymm1, ymm1 // high 4 + vpunpcklbw ymm2, ymm3, ymm5 // low 4 + vpunpckhbw ymm3, ymm3, ymm5 // high 4 + vpmulhuw ymm0, ymm0, ymm2 // src_argb0 * src_argb1 low 4 + vpmulhuw ymm1, ymm1, ymm3 // src_argb0 * src_argb1 high 4 + vpackuswb ymm0, ymm0, ymm1 + vmovdqu [edx], ymm0 + lea edx, [edx + 32] + sub ecx, 8 + jg convertloop + + pop esi + vzeroupper + ret + } +} +#endif // HAS_ARGBMULTIPLYROW_AVX2 + +#ifdef HAS_ARGBADDROW_AVX2 +// Add 2 rows of ARGB pixels together, 8 pixels at a time. +__declspec(naked) +void ARGBAddRow_AVX2(const uint8* src_argb0, const uint8* src_argb1, + uint8* dst_argb, int width) { + __asm { + push esi + mov eax, [esp + 4 + 4] // src_argb0 + mov esi, [esp + 4 + 8] // src_argb1 + mov edx, [esp + 4 + 12] // dst_argb + mov ecx, [esp + 4 + 16] // width + + convertloop: + vmovdqu ymm0, [eax] // read 8 pixels from src_argb0 + lea eax, [eax + 32] + vpaddusb ymm0, ymm0, [esi] // add 8 pixels from src_argb1 + lea esi, [esi + 32] + vmovdqu [edx], ymm0 + lea edx, [edx + 32] + sub ecx, 8 + jg convertloop + + pop esi + vzeroupper + ret + } +} +#endif // HAS_ARGBADDROW_AVX2 + +#ifdef HAS_ARGBSUBTRACTROW_AVX2 +// Subtract 2 rows of ARGB pixels together, 8 pixels at a time. +__declspec(naked) +void ARGBSubtractRow_AVX2(const uint8* src_argb0, const uint8* src_argb1, + uint8* dst_argb, int width) { + __asm { + push esi + mov eax, [esp + 4 + 4] // src_argb0 + mov esi, [esp + 4 + 8] // src_argb1 + mov edx, [esp + 4 + 12] // dst_argb + mov ecx, [esp + 4 + 16] // width + + convertloop: + vmovdqu ymm0, [eax] // read 8 pixels from src_argb0 + lea eax, [eax + 32] + vpsubusb ymm0, ymm0, [esi] // src_argb0 - src_argb1 + lea esi, [esi + 32] + vmovdqu [edx], ymm0 + lea edx, [edx + 32] + sub ecx, 8 + jg convertloop + + pop esi + vzeroupper + ret + } +} +#endif // HAS_ARGBSUBTRACTROW_AVX2 + +#ifdef HAS_SOBELXROW_SSE2 +// SobelX as a matrix is +// -1 0 1 +// -2 0 2 +// -1 0 1 +__declspec(naked) +void SobelXRow_SSE2(const uint8* src_y0, const uint8* src_y1, + const uint8* src_y2, uint8* dst_sobelx, int width) { + __asm { + push esi + push edi + mov eax, [esp + 8 + 4] // src_y0 + mov esi, [esp + 8 + 8] // src_y1 + mov edi, [esp + 8 + 12] // src_y2 + mov edx, [esp + 8 + 16] // dst_sobelx + mov ecx, [esp + 8 + 20] // width + sub esi, eax + sub edi, eax + sub edx, eax + pxor xmm5, xmm5 // constant 0 + + convertloop: + movq xmm0, qword ptr [eax] // read 8 pixels from src_y0[0] + movq xmm1, qword ptr [eax + 2] // read 8 pixels from src_y0[2] + punpcklbw xmm0, xmm5 + punpcklbw xmm1, xmm5 + psubw xmm0, xmm1 + movq xmm1, qword ptr [eax + esi] // read 8 pixels from src_y1[0] + movq xmm2, qword ptr [eax + esi + 2] // read 8 pixels from src_y1[2] + punpcklbw xmm1, xmm5 + punpcklbw xmm2, xmm5 + psubw xmm1, xmm2 + movq xmm2, qword ptr [eax + edi] // read 8 pixels from src_y2[0] + movq xmm3, qword ptr [eax + edi + 2] // read 8 pixels from src_y2[2] + punpcklbw xmm2, xmm5 + punpcklbw xmm3, xmm5 + psubw xmm2, xmm3 + paddw xmm0, xmm2 + paddw xmm0, xmm1 + paddw xmm0, xmm1 + pxor xmm1, xmm1 // abs = max(xmm0, -xmm0). SSSE3 could use pabsw + psubw xmm1, xmm0 + pmaxsw xmm0, xmm1 + packuswb xmm0, xmm0 + movq qword ptr [eax + edx], xmm0 + lea eax, [eax + 8] + sub ecx, 8 + jg convertloop + + pop edi + pop esi + ret + } +} +#endif // HAS_SOBELXROW_SSE2 + +#ifdef HAS_SOBELYROW_SSE2 +// SobelY as a matrix is +// -1 -2 -1 +// 0 0 0 +// 1 2 1 +__declspec(naked) +void SobelYRow_SSE2(const uint8* src_y0, const uint8* src_y1, + uint8* dst_sobely, int width) { + __asm { + push esi + mov eax, [esp + 4 + 4] // src_y0 + mov esi, [esp + 4 + 8] // src_y1 + mov edx, [esp + 4 + 12] // dst_sobely + mov ecx, [esp + 4 + 16] // width + sub esi, eax + sub edx, eax + pxor xmm5, xmm5 // constant 0 + + convertloop: + movq xmm0, qword ptr [eax] // read 8 pixels from src_y0[0] + movq xmm1, qword ptr [eax + esi] // read 8 pixels from src_y1[0] + punpcklbw xmm0, xmm5 + punpcklbw xmm1, xmm5 + psubw xmm0, xmm1 + movq xmm1, qword ptr [eax + 1] // read 8 pixels from src_y0[1] + movq xmm2, qword ptr [eax + esi + 1] // read 8 pixels from src_y1[1] + punpcklbw xmm1, xmm5 + punpcklbw xmm2, xmm5 + psubw xmm1, xmm2 + movq xmm2, qword ptr [eax + 2] // read 8 pixels from src_y0[2] + movq xmm3, qword ptr [eax + esi + 2] // read 8 pixels from src_y1[2] + punpcklbw xmm2, xmm5 + punpcklbw xmm3, xmm5 + psubw xmm2, xmm3 + paddw xmm0, xmm2 + paddw xmm0, xmm1 + paddw xmm0, xmm1 + pxor xmm1, xmm1 // abs = max(xmm0, -xmm0). SSSE3 could use pabsw + psubw xmm1, xmm0 + pmaxsw xmm0, xmm1 + packuswb xmm0, xmm0 + movq qword ptr [eax + edx], xmm0 + lea eax, [eax + 8] + sub ecx, 8 + jg convertloop + + pop esi + ret + } +} +#endif // HAS_SOBELYROW_SSE2 + +#ifdef HAS_SOBELROW_SSE2 +// Adds Sobel X and Sobel Y and stores Sobel into ARGB. +// A = 255 +// R = Sobel +// G = Sobel +// B = Sobel +__declspec(naked) +void SobelRow_SSE2(const uint8* src_sobelx, const uint8* src_sobely, + uint8* dst_argb, int width) { + __asm { + push esi + mov eax, [esp + 4 + 4] // src_sobelx + mov esi, [esp + 4 + 8] // src_sobely + mov edx, [esp + 4 + 12] // dst_argb + mov ecx, [esp + 4 + 16] // width + sub esi, eax + pcmpeqb xmm5, xmm5 // alpha 255 + pslld xmm5, 24 // 0xff000000 + + convertloop: + movdqu xmm0, [eax] // read 16 pixels src_sobelx + movdqu xmm1, [eax + esi] // read 16 pixels src_sobely + lea eax, [eax + 16] + paddusb xmm0, xmm1 // sobel = sobelx + sobely + movdqa xmm2, xmm0 // GG + punpcklbw xmm2, xmm0 // First 8 + punpckhbw xmm0, xmm0 // Next 8 + movdqa xmm1, xmm2 // GGGG + punpcklwd xmm1, xmm2 // First 4 + punpckhwd xmm2, xmm2 // Next 4 + por xmm1, xmm5 // GGGA + por xmm2, xmm5 + movdqa xmm3, xmm0 // GGGG + punpcklwd xmm3, xmm0 // Next 4 + punpckhwd xmm0, xmm0 // Last 4 + por xmm3, xmm5 // GGGA + por xmm0, xmm5 + movdqu [edx], xmm1 + movdqu [edx + 16], xmm2 + movdqu [edx + 32], xmm3 + movdqu [edx + 48], xmm0 + lea edx, [edx + 64] + sub ecx, 16 + jg convertloop + + pop esi + ret + } +} +#endif // HAS_SOBELROW_SSE2 + +#ifdef HAS_SOBELTOPLANEROW_SSE2 +// Adds Sobel X and Sobel Y and stores Sobel into a plane. +__declspec(naked) +void SobelToPlaneRow_SSE2(const uint8* src_sobelx, const uint8* src_sobely, + uint8* dst_y, int width) { + __asm { + push esi + mov eax, [esp + 4 + 4] // src_sobelx + mov esi, [esp + 4 + 8] // src_sobely + mov edx, [esp + 4 + 12] // dst_argb + mov ecx, [esp + 4 + 16] // width + sub esi, eax + + convertloop: + movdqu xmm0, [eax] // read 16 pixels src_sobelx + movdqu xmm1, [eax + esi] // read 16 pixels src_sobely + lea eax, [eax + 16] + paddusb xmm0, xmm1 // sobel = sobelx + sobely + movdqu [edx], xmm0 + lea edx, [edx + 16] + sub ecx, 16 + jg convertloop + + pop esi + ret + } +} +#endif // HAS_SOBELTOPLANEROW_SSE2 + +#ifdef HAS_SOBELXYROW_SSE2 +// Mixes Sobel X, Sobel Y and Sobel into ARGB. +// A = 255 +// R = Sobel X +// G = Sobel +// B = Sobel Y +__declspec(naked) +void SobelXYRow_SSE2(const uint8* src_sobelx, const uint8* src_sobely, + uint8* dst_argb, int width) { + __asm { + push esi + mov eax, [esp + 4 + 4] // src_sobelx + mov esi, [esp + 4 + 8] // src_sobely + mov edx, [esp + 4 + 12] // dst_argb + mov ecx, [esp + 4 + 16] // width + sub esi, eax + pcmpeqb xmm5, xmm5 // alpha 255 + + convertloop: + movdqu xmm0, [eax] // read 16 pixels src_sobelx + movdqu xmm1, [eax + esi] // read 16 pixels src_sobely + lea eax, [eax + 16] + movdqa xmm2, xmm0 + paddusb xmm2, xmm1 // sobel = sobelx + sobely + movdqa xmm3, xmm0 // XA + punpcklbw xmm3, xmm5 + punpckhbw xmm0, xmm5 + movdqa xmm4, xmm1 // YS + punpcklbw xmm4, xmm2 + punpckhbw xmm1, xmm2 + movdqa xmm6, xmm4 // YSXA + punpcklwd xmm6, xmm3 // First 4 + punpckhwd xmm4, xmm3 // Next 4 + movdqa xmm7, xmm1 // YSXA + punpcklwd xmm7, xmm0 // Next 4 + punpckhwd xmm1, xmm0 // Last 4 + movdqu [edx], xmm6 + movdqu [edx + 16], xmm4 + movdqu [edx + 32], xmm7 + movdqu [edx + 48], xmm1 + lea edx, [edx + 64] + sub ecx, 16 + jg convertloop + + pop esi + ret + } +} +#endif // HAS_SOBELXYROW_SSE2 + +#ifdef HAS_CUMULATIVESUMTOAVERAGEROW_SSE2 +// Consider float CumulativeSum. +// Consider calling CumulativeSum one row at time as needed. +// Consider circular CumulativeSum buffer of radius * 2 + 1 height. +// Convert cumulative sum for an area to an average for 1 pixel. +// topleft is pointer to top left of CumulativeSum buffer for area. +// botleft is pointer to bottom left of CumulativeSum buffer. +// width is offset from left to right of area in CumulativeSum buffer measured +// in number of ints. +// area is the number of pixels in the area being averaged. +// dst points to pixel to store result to. +// count is number of averaged pixels to produce. +// Does 4 pixels at a time. +// This function requires alignment on accumulation buffer pointers. +void CumulativeSumToAverageRow_SSE2(const int32* topleft, const int32* botleft, + int width, int area, uint8* dst, + int count) { + __asm { + mov eax, topleft // eax topleft + mov esi, botleft // esi botleft + mov edx, width + movd xmm5, area + mov edi, dst + mov ecx, count + cvtdq2ps xmm5, xmm5 + rcpss xmm4, xmm5 // 1.0f / area + pshufd xmm4, xmm4, 0 + sub ecx, 4 + jl l4b + + cmp area, 128 // 128 pixels will not overflow 15 bits. + ja l4 + + pshufd xmm5, xmm5, 0 // area + pcmpeqb xmm6, xmm6 // constant of 65536.0 - 1 = 65535.0 + psrld xmm6, 16 + cvtdq2ps xmm6, xmm6 + addps xmm5, xmm6 // (65536.0 + area - 1) + mulps xmm5, xmm4 // (65536.0 + area - 1) * 1 / area + cvtps2dq xmm5, xmm5 // 0.16 fixed point + packssdw xmm5, xmm5 // 16 bit shorts + + // 4 pixel loop small blocks. + s4: + // top left + movdqu xmm0, [eax] + movdqu xmm1, [eax + 16] + movdqu xmm2, [eax + 32] + movdqu xmm3, [eax + 48] + + // - top right + psubd xmm0, [eax + edx * 4] + psubd xmm1, [eax + edx * 4 + 16] + psubd xmm2, [eax + edx * 4 + 32] + psubd xmm3, [eax + edx * 4 + 48] + lea eax, [eax + 64] + + // - bottom left + psubd xmm0, [esi] + psubd xmm1, [esi + 16] + psubd xmm2, [esi + 32] + psubd xmm3, [esi + 48] + + // + bottom right + paddd xmm0, [esi + edx * 4] + paddd xmm1, [esi + edx * 4 + 16] + paddd xmm2, [esi + edx * 4 + 32] + paddd xmm3, [esi + edx * 4 + 48] + lea esi, [esi + 64] + + packssdw xmm0, xmm1 // pack 4 pixels into 2 registers + packssdw xmm2, xmm3 + + pmulhuw xmm0, xmm5 + pmulhuw xmm2, xmm5 + + packuswb xmm0, xmm2 + movdqu [edi], xmm0 + lea edi, [edi + 16] + sub ecx, 4 + jge s4 + + jmp l4b + + // 4 pixel loop + l4: + // top left + movdqu xmm0, [eax] + movdqu xmm1, [eax + 16] + movdqu xmm2, [eax + 32] + movdqu xmm3, [eax + 48] + + // - top right + psubd xmm0, [eax + edx * 4] + psubd xmm1, [eax + edx * 4 + 16] + psubd xmm2, [eax + edx * 4 + 32] + psubd xmm3, [eax + edx * 4 + 48] + lea eax, [eax + 64] + + // - bottom left + psubd xmm0, [esi] + psubd xmm1, [esi + 16] + psubd xmm2, [esi + 32] + psubd xmm3, [esi + 48] + + // + bottom right + paddd xmm0, [esi + edx * 4] + paddd xmm1, [esi + edx * 4 + 16] + paddd xmm2, [esi + edx * 4 + 32] + paddd xmm3, [esi + edx * 4 + 48] + lea esi, [esi + 64] + + cvtdq2ps xmm0, xmm0 // Average = Sum * 1 / Area + cvtdq2ps xmm1, xmm1 + mulps xmm0, xmm4 + mulps xmm1, xmm4 + cvtdq2ps xmm2, xmm2 + cvtdq2ps xmm3, xmm3 + mulps xmm2, xmm4 + mulps xmm3, xmm4 + cvtps2dq xmm0, xmm0 + cvtps2dq xmm1, xmm1 + cvtps2dq xmm2, xmm2 + cvtps2dq xmm3, xmm3 + packssdw xmm0, xmm1 + packssdw xmm2, xmm3 + packuswb xmm0, xmm2 + movdqu [edi], xmm0 + lea edi, [edi + 16] + sub ecx, 4 + jge l4 + + l4b: + add ecx, 4 - 1 + jl l1b + + // 1 pixel loop + l1: + movdqu xmm0, [eax] + psubd xmm0, [eax + edx * 4] + lea eax, [eax + 16] + psubd xmm0, [esi] + paddd xmm0, [esi + edx * 4] + lea esi, [esi + 16] + cvtdq2ps xmm0, xmm0 + mulps xmm0, xmm4 + cvtps2dq xmm0, xmm0 + packssdw xmm0, xmm0 + packuswb xmm0, xmm0 + movd dword ptr [edi], xmm0 + lea edi, [edi + 4] + sub ecx, 1 + jge l1 + l1b: + } +} +#endif // HAS_CUMULATIVESUMTOAVERAGEROW_SSE2 + +#ifdef HAS_COMPUTECUMULATIVESUMROW_SSE2 +// Creates a table of cumulative sums where each value is a sum of all values +// above and to the left of the value. +void ComputeCumulativeSumRow_SSE2(const uint8* row, int32* cumsum, + const int32* previous_cumsum, int width) { + __asm { + mov eax, row + mov edx, cumsum + mov esi, previous_cumsum + mov ecx, width + pxor xmm0, xmm0 + pxor xmm1, xmm1 + + sub ecx, 4 + jl l4b + test edx, 15 + jne l4b + + // 4 pixel loop + l4: + movdqu xmm2, [eax] // 4 argb pixels 16 bytes. + lea eax, [eax + 16] + movdqa xmm4, xmm2 + + punpcklbw xmm2, xmm1 + movdqa xmm3, xmm2 + punpcklwd xmm2, xmm1 + punpckhwd xmm3, xmm1 + + punpckhbw xmm4, xmm1 + movdqa xmm5, xmm4 + punpcklwd xmm4, xmm1 + punpckhwd xmm5, xmm1 + + paddd xmm0, xmm2 + movdqu xmm2, [esi] // previous row above. + paddd xmm2, xmm0 + + paddd xmm0, xmm3 + movdqu xmm3, [esi + 16] + paddd xmm3, xmm0 + + paddd xmm0, xmm4 + movdqu xmm4, [esi + 32] + paddd xmm4, xmm0 + + paddd xmm0, xmm5 + movdqu xmm5, [esi + 48] + lea esi, [esi + 64] + paddd xmm5, xmm0 + + movdqu [edx], xmm2 + movdqu [edx + 16], xmm3 + movdqu [edx + 32], xmm4 + movdqu [edx + 48], xmm5 + + lea edx, [edx + 64] + sub ecx, 4 + jge l4 + + l4b: + add ecx, 4 - 1 + jl l1b + + // 1 pixel loop + l1: + movd xmm2, dword ptr [eax] // 1 argb pixel 4 bytes. + lea eax, [eax + 4] + punpcklbw xmm2, xmm1 + punpcklwd xmm2, xmm1 + paddd xmm0, xmm2 + movdqu xmm2, [esi] + lea esi, [esi + 16] + paddd xmm2, xmm0 + movdqu [edx], xmm2 + lea edx, [edx + 16] + sub ecx, 1 + jge l1 + + l1b: + } +} +#endif // HAS_COMPUTECUMULATIVESUMROW_SSE2 + +#ifdef HAS_ARGBAFFINEROW_SSE2 +// Copy ARGB pixels from source image with slope to a row of destination. +__declspec(naked) +LIBYUV_API +void ARGBAffineRow_SSE2(const uint8* src_argb, int src_argb_stride, + uint8* dst_argb, const float* uv_dudv, int width) { + __asm { + push esi + push edi + mov eax, [esp + 12] // src_argb + mov esi, [esp + 16] // stride + mov edx, [esp + 20] // dst_argb + mov ecx, [esp + 24] // pointer to uv_dudv + movq xmm2, qword ptr [ecx] // uv + movq xmm7, qword ptr [ecx + 8] // dudv + mov ecx, [esp + 28] // width + shl esi, 16 // 4, stride + add esi, 4 + movd xmm5, esi + sub ecx, 4 + jl l4b + + // setup for 4 pixel loop + pshufd xmm7, xmm7, 0x44 // dup dudv + pshufd xmm5, xmm5, 0 // dup 4, stride + movdqa xmm0, xmm2 // x0, y0, x1, y1 + addps xmm0, xmm7 + movlhps xmm2, xmm0 + movdqa xmm4, xmm7 + addps xmm4, xmm4 // dudv *= 2 + movdqa xmm3, xmm2 // x2, y2, x3, y3 + addps xmm3, xmm4 + addps xmm4, xmm4 // dudv *= 4 + + // 4 pixel loop + l4: + cvttps2dq xmm0, xmm2 // x, y float to int first 2 + cvttps2dq xmm1, xmm3 // x, y float to int next 2 + packssdw xmm0, xmm1 // x, y as 8 shorts + pmaddwd xmm0, xmm5 // offsets = x * 4 + y * stride. + movd esi, xmm0 + pshufd xmm0, xmm0, 0x39 // shift right + movd edi, xmm0 + pshufd xmm0, xmm0, 0x39 // shift right + movd xmm1, [eax + esi] // read pixel 0 + movd xmm6, [eax + edi] // read pixel 1 + punpckldq xmm1, xmm6 // combine pixel 0 and 1 + addps xmm2, xmm4 // x, y += dx, dy first 2 + movq qword ptr [edx], xmm1 + movd esi, xmm0 + pshufd xmm0, xmm0, 0x39 // shift right + movd edi, xmm0 + movd xmm6, [eax + esi] // read pixel 2 + movd xmm0, [eax + edi] // read pixel 3 + punpckldq xmm6, xmm0 // combine pixel 2 and 3 + addps xmm3, xmm4 // x, y += dx, dy next 2 + movq qword ptr 8[edx], xmm6 + lea edx, [edx + 16] + sub ecx, 4 + jge l4 + + l4b: + add ecx, 4 - 1 + jl l1b + + // 1 pixel loop + l1: + cvttps2dq xmm0, xmm2 // x, y float to int + packssdw xmm0, xmm0 // x, y as shorts + pmaddwd xmm0, xmm5 // offset = x * 4 + y * stride + addps xmm2, xmm7 // x, y += dx, dy + movd esi, xmm0 + movd xmm0, [eax + esi] // copy a pixel + movd [edx], xmm0 + lea edx, [edx + 4] + sub ecx, 1 + jge l1 + l1b: + pop edi + pop esi + ret + } +} +#endif // HAS_ARGBAFFINEROW_SSE2 + +#ifdef HAS_INTERPOLATEROW_AVX2 +// Bilinear filter 32x2 -> 32x1 +__declspec(naked) +void InterpolateRow_AVX2(uint8* dst_ptr, const uint8* src_ptr, + ptrdiff_t src_stride, int dst_width, + int source_y_fraction) { + __asm { + push esi + push edi + mov edi, [esp + 8 + 4] // dst_ptr + mov esi, [esp + 8 + 8] // src_ptr + mov edx, [esp + 8 + 12] // src_stride + mov ecx, [esp + 8 + 16] // dst_width + mov eax, [esp + 8 + 20] // source_y_fraction (0..255) + // Dispatch to specialized filters if applicable. + cmp eax, 0 + je xloop100 // 0 / 256. Blend 100 / 0. + sub edi, esi + cmp eax, 128 + je xloop50 // 128 /256 is 0.50. Blend 50 / 50. + + vmovd xmm0, eax // high fraction 0..255 + neg eax + add eax, 256 + vmovd xmm5, eax // low fraction 256..1 + vpunpcklbw xmm5, xmm5, xmm0 + vpunpcklwd xmm5, xmm5, xmm5 + vbroadcastss ymm5, xmm5 + + mov eax, 0x80808080 // 128b for bias and rounding. + vmovd xmm4, eax + vbroadcastss ymm4, xmm4 + + xloop: + vmovdqu ymm0, [esi] + vmovdqu ymm2, [esi + edx] + vpunpckhbw ymm1, ymm0, ymm2 // mutates + vpunpcklbw ymm0, ymm0, ymm2 + vpsubb ymm1, ymm1, ymm4 // bias to signed image + vpsubb ymm0, ymm0, ymm4 + vpmaddubsw ymm1, ymm5, ymm1 + vpmaddubsw ymm0, ymm5, ymm0 + vpaddw ymm1, ymm1, ymm4 // unbias and round + vpaddw ymm0, ymm0, ymm4 + vpsrlw ymm1, ymm1, 8 + vpsrlw ymm0, ymm0, 8 + vpackuswb ymm0, ymm0, ymm1 // unmutates + vmovdqu [esi + edi], ymm0 + lea esi, [esi + 32] + sub ecx, 32 + jg xloop + jmp xloop99 + + // Blend 50 / 50. + xloop50: + vmovdqu ymm0, [esi] + vpavgb ymm0, ymm0, [esi + edx] + vmovdqu [esi + edi], ymm0 + lea esi, [esi + 32] + sub ecx, 32 + jg xloop50 + jmp xloop99 + + // Blend 100 / 0 - Copy row unchanged. + xloop100: + rep movsb + + xloop99: + pop edi + pop esi + vzeroupper + ret + } +} +#endif // HAS_INTERPOLATEROW_AVX2 + +// Bilinear filter 16x2 -> 16x1 +// TODO(fbarchard): Consider allowing 256 using memcpy. +__declspec(naked) +void InterpolateRow_SSSE3(uint8* dst_ptr, const uint8* src_ptr, + ptrdiff_t src_stride, int dst_width, + int source_y_fraction) { + __asm { + push esi + push edi + + mov edi, [esp + 8 + 4] // dst_ptr + mov esi, [esp + 8 + 8] // src_ptr + mov edx, [esp + 8 + 12] // src_stride + mov ecx, [esp + 8 + 16] // dst_width + mov eax, [esp + 8 + 20] // source_y_fraction (0..255) + sub edi, esi + // Dispatch to specialized filters if applicable. + cmp eax, 0 + je xloop100 // 0 /256. Blend 100 / 0. + cmp eax, 128 + je xloop50 // 128 / 256 is 0.50. Blend 50 / 50. + + movd xmm0, eax // high fraction 0..255 + neg eax + add eax, 256 + movd xmm5, eax // low fraction 255..1 + punpcklbw xmm5, xmm0 + punpcklwd xmm5, xmm5 + pshufd xmm5, xmm5, 0 + mov eax, 0x80808080 // 128 for biasing image to signed. + movd xmm4, eax + pshufd xmm4, xmm4, 0x00 + + xloop: + movdqu xmm0, [esi] + movdqu xmm2, [esi + edx] + movdqu xmm1, xmm0 + punpcklbw xmm0, xmm2 + punpckhbw xmm1, xmm2 + psubb xmm0, xmm4 // bias image by -128 + psubb xmm1, xmm4 + movdqa xmm2, xmm5 + movdqa xmm3, xmm5 + pmaddubsw xmm2, xmm0 + pmaddubsw xmm3, xmm1 + paddw xmm2, xmm4 + paddw xmm3, xmm4 + psrlw xmm2, 8 + psrlw xmm3, 8 + packuswb xmm2, xmm3 + movdqu [esi + edi], xmm2 + lea esi, [esi + 16] + sub ecx, 16 + jg xloop + jmp xloop99 + + // Blend 50 / 50. + xloop50: + movdqu xmm0, [esi] + movdqu xmm1, [esi + edx] + pavgb xmm0, xmm1 + movdqu [esi + edi], xmm0 + lea esi, [esi + 16] + sub ecx, 16 + jg xloop50 + jmp xloop99 + + // Blend 100 / 0 - Copy row unchanged. + xloop100: + movdqu xmm0, [esi] + movdqu [esi + edi], xmm0 + lea esi, [esi + 16] + sub ecx, 16 + jg xloop100 + + xloop99: + pop edi + pop esi + ret + } +} + +// For BGRAToARGB, ABGRToARGB, RGBAToARGB, and ARGBToRGBA. +__declspec(naked) +void ARGBShuffleRow_SSSE3(const uint8* src_argb, uint8* dst_argb, + const uint8* shuffler, int width) { + __asm { + mov eax, [esp + 4] // src_argb + mov edx, [esp + 8] // dst_argb + mov ecx, [esp + 12] // shuffler + movdqu xmm5, [ecx] + mov ecx, [esp + 16] // width + + wloop: + movdqu xmm0, [eax] + movdqu xmm1, [eax + 16] + lea eax, [eax + 32] + pshufb xmm0, xmm5 + pshufb xmm1, xmm5 + movdqu [edx], xmm0 + movdqu [edx + 16], xmm1 + lea edx, [edx + 32] + sub ecx, 8 + jg wloop + ret + } +} + +#ifdef HAS_ARGBSHUFFLEROW_AVX2 +__declspec(naked) +void ARGBShuffleRow_AVX2(const uint8* src_argb, uint8* dst_argb, + const uint8* shuffler, int width) { + __asm { + mov eax, [esp + 4] // src_argb + mov edx, [esp + 8] // dst_argb + mov ecx, [esp + 12] // shuffler + vbroadcastf128 ymm5, [ecx] // same shuffle in high as low. + mov ecx, [esp + 16] // width + + wloop: + vmovdqu ymm0, [eax] + vmovdqu ymm1, [eax + 32] + lea eax, [eax + 64] + vpshufb ymm0, ymm0, ymm5 + vpshufb ymm1, ymm1, ymm5 + vmovdqu [edx], ymm0 + vmovdqu [edx + 32], ymm1 + lea edx, [edx + 64] + sub ecx, 16 + jg wloop + + vzeroupper + ret + } +} +#endif // HAS_ARGBSHUFFLEROW_AVX2 + +__declspec(naked) +void ARGBShuffleRow_SSE2(const uint8* src_argb, uint8* dst_argb, + const uint8* shuffler, int width) { + __asm { + push ebx + push esi + mov eax, [esp + 8 + 4] // src_argb + mov edx, [esp + 8 + 8] // dst_argb + mov esi, [esp + 8 + 12] // shuffler + mov ecx, [esp + 8 + 16] // width + pxor xmm5, xmm5 + + mov ebx, [esi] // shuffler + cmp ebx, 0x03000102 + je shuf_3012 + cmp ebx, 0x00010203 + je shuf_0123 + cmp ebx, 0x00030201 + je shuf_0321 + cmp ebx, 0x02010003 + je shuf_2103 + + // TODO(fbarchard): Use one source pointer and 3 offsets. + shuf_any1: + movzx ebx, byte ptr [esi] + movzx ebx, byte ptr [eax + ebx] + mov [edx], bl + movzx ebx, byte ptr [esi + 1] + movzx ebx, byte ptr [eax + ebx] + mov [edx + 1], bl + movzx ebx, byte ptr [esi + 2] + movzx ebx, byte ptr [eax + ebx] + mov [edx + 2], bl + movzx ebx, byte ptr [esi + 3] + movzx ebx, byte ptr [eax + ebx] + mov [edx + 3], bl + lea eax, [eax + 4] + lea edx, [edx + 4] + sub ecx, 1 + jg shuf_any1 + jmp shuf99 + + shuf_0123: + movdqu xmm0, [eax] + lea eax, [eax + 16] + movdqa xmm1, xmm0 + punpcklbw xmm0, xmm5 + punpckhbw xmm1, xmm5 + pshufhw xmm0, xmm0, 01Bh // 1B = 00011011 = 0x0123 = BGRAToARGB + pshuflw xmm0, xmm0, 01Bh + pshufhw xmm1, xmm1, 01Bh + pshuflw xmm1, xmm1, 01Bh + packuswb xmm0, xmm1 + movdqu [edx], xmm0 + lea edx, [edx + 16] + sub ecx, 4 + jg shuf_0123 + jmp shuf99 + + shuf_0321: + movdqu xmm0, [eax] + lea eax, [eax + 16] + movdqa xmm1, xmm0 + punpcklbw xmm0, xmm5 + punpckhbw xmm1, xmm5 + pshufhw xmm0, xmm0, 039h // 39 = 00111001 = 0x0321 = RGBAToARGB + pshuflw xmm0, xmm0, 039h + pshufhw xmm1, xmm1, 039h + pshuflw xmm1, xmm1, 039h + packuswb xmm0, xmm1 + movdqu [edx], xmm0 + lea edx, [edx + 16] + sub ecx, 4 + jg shuf_0321 + jmp shuf99 + + shuf_2103: + movdqu xmm0, [eax] + lea eax, [eax + 16] + movdqa xmm1, xmm0 + punpcklbw xmm0, xmm5 + punpckhbw xmm1, xmm5 + pshufhw xmm0, xmm0, 093h // 93 = 10010011 = 0x2103 = ARGBToRGBA + pshuflw xmm0, xmm0, 093h + pshufhw xmm1, xmm1, 093h + pshuflw xmm1, xmm1, 093h + packuswb xmm0, xmm1 + movdqu [edx], xmm0 + lea edx, [edx + 16] + sub ecx, 4 + jg shuf_2103 + jmp shuf99 + + shuf_3012: + movdqu xmm0, [eax] + lea eax, [eax + 16] + movdqa xmm1, xmm0 + punpcklbw xmm0, xmm5 + punpckhbw xmm1, xmm5 + pshufhw xmm0, xmm0, 0C6h // C6 = 11000110 = 0x3012 = ABGRToARGB + pshuflw xmm0, xmm0, 0C6h + pshufhw xmm1, xmm1, 0C6h + pshuflw xmm1, xmm1, 0C6h + packuswb xmm0, xmm1 + movdqu [edx], xmm0 + lea edx, [edx + 16] + sub ecx, 4 + jg shuf_3012 + + shuf99: + pop esi + pop ebx + ret + } +} + +// YUY2 - Macro-pixel = 2 image pixels +// Y0U0Y1V0....Y2U2Y3V2...Y4U4Y5V4.... + +// UYVY - Macro-pixel = 2 image pixels +// U0Y0V0Y1 + +__declspec(naked) +void I422ToYUY2Row_SSE2(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + uint8* dst_frame, int width) { + __asm { + push esi + push edi + mov eax, [esp + 8 + 4] // src_y + mov esi, [esp + 8 + 8] // src_u + mov edx, [esp + 8 + 12] // src_v + mov edi, [esp + 8 + 16] // dst_frame + mov ecx, [esp + 8 + 20] // width + sub edx, esi + + convertloop: + movq xmm2, qword ptr [esi] // U + movq xmm3, qword ptr [esi + edx] // V + lea esi, [esi + 8] + punpcklbw xmm2, xmm3 // UV + movdqu xmm0, [eax] // Y + lea eax, [eax + 16] + movdqa xmm1, xmm0 + punpcklbw xmm0, xmm2 // YUYV + punpckhbw xmm1, xmm2 + movdqu [edi], xmm0 + movdqu [edi + 16], xmm1 + lea edi, [edi + 32] + sub ecx, 16 + jg convertloop + + pop edi + pop esi + ret + } +} + +__declspec(naked) +void I422ToUYVYRow_SSE2(const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + uint8* dst_frame, int width) { + __asm { + push esi + push edi + mov eax, [esp + 8 + 4] // src_y + mov esi, [esp + 8 + 8] // src_u + mov edx, [esp + 8 + 12] // src_v + mov edi, [esp + 8 + 16] // dst_frame + mov ecx, [esp + 8 + 20] // width + sub edx, esi + + convertloop: + movq xmm2, qword ptr [esi] // U + movq xmm3, qword ptr [esi + edx] // V + lea esi, [esi + 8] + punpcklbw xmm2, xmm3 // UV + movdqu xmm0, [eax] // Y + movdqa xmm1, xmm2 + lea eax, [eax + 16] + punpcklbw xmm1, xmm0 // UYVY + punpckhbw xmm2, xmm0 + movdqu [edi], xmm1 + movdqu [edi + 16], xmm2 + lea edi, [edi + 32] + sub ecx, 16 + jg convertloop + + pop edi + pop esi + ret + } +} + +#ifdef HAS_ARGBPOLYNOMIALROW_SSE2 +__declspec(naked) +void ARGBPolynomialRow_SSE2(const uint8* src_argb, + uint8* dst_argb, const float* poly, + int width) { + __asm { + push esi + mov eax, [esp + 4 + 4] /* src_argb */ + mov edx, [esp + 4 + 8] /* dst_argb */ + mov esi, [esp + 4 + 12] /* poly */ + mov ecx, [esp + 4 + 16] /* width */ + pxor xmm3, xmm3 // 0 constant for zero extending bytes to ints. + + // 2 pixel loop. + convertloop: +// pmovzxbd xmm0, dword ptr [eax] // BGRA pixel +// pmovzxbd xmm4, dword ptr [eax + 4] // BGRA pixel + movq xmm0, qword ptr [eax] // BGRABGRA + lea eax, [eax + 8] + punpcklbw xmm0, xmm3 + movdqa xmm4, xmm0 + punpcklwd xmm0, xmm3 // pixel 0 + punpckhwd xmm4, xmm3 // pixel 1 + cvtdq2ps xmm0, xmm0 // 4 floats + cvtdq2ps xmm4, xmm4 + movdqa xmm1, xmm0 // X + movdqa xmm5, xmm4 + mulps xmm0, [esi + 16] // C1 * X + mulps xmm4, [esi + 16] + addps xmm0, [esi] // result = C0 + C1 * X + addps xmm4, [esi] + movdqa xmm2, xmm1 + movdqa xmm6, xmm5 + mulps xmm2, xmm1 // X * X + mulps xmm6, xmm5 + mulps xmm1, xmm2 // X * X * X + mulps xmm5, xmm6 + mulps xmm2, [esi + 32] // C2 * X * X + mulps xmm6, [esi + 32] + mulps xmm1, [esi + 48] // C3 * X * X * X + mulps xmm5, [esi + 48] + addps xmm0, xmm2 // result += C2 * X * X + addps xmm4, xmm6 + addps xmm0, xmm1 // result += C3 * X * X * X + addps xmm4, xmm5 + cvttps2dq xmm0, xmm0 + cvttps2dq xmm4, xmm4 + packuswb xmm0, xmm4 + packuswb xmm0, xmm0 + movq qword ptr [edx], xmm0 + lea edx, [edx + 8] + sub ecx, 2 + jg convertloop + pop esi + ret + } +} +#endif // HAS_ARGBPOLYNOMIALROW_SSE2 + +#ifdef HAS_ARGBPOLYNOMIALROW_AVX2 +__declspec(naked) +void ARGBPolynomialRow_AVX2(const uint8* src_argb, + uint8* dst_argb, const float* poly, + int width) { + __asm { + mov eax, [esp + 4] /* src_argb */ + mov edx, [esp + 8] /* dst_argb */ + mov ecx, [esp + 12] /* poly */ + vbroadcastf128 ymm4, [ecx] // C0 + vbroadcastf128 ymm5, [ecx + 16] // C1 + vbroadcastf128 ymm6, [ecx + 32] // C2 + vbroadcastf128 ymm7, [ecx + 48] // C3 + mov ecx, [esp + 16] /* width */ + + // 2 pixel loop. + convertloop: + vpmovzxbd ymm0, qword ptr [eax] // 2 BGRA pixels + lea eax, [eax + 8] + vcvtdq2ps ymm0, ymm0 // X 8 floats + vmulps ymm2, ymm0, ymm0 // X * X + vmulps ymm3, ymm0, ymm7 // C3 * X + vfmadd132ps ymm0, ymm4, ymm5 // result = C0 + C1 * X + vfmadd231ps ymm0, ymm2, ymm6 // result += C2 * X * X + vfmadd231ps ymm0, ymm2, ymm3 // result += C3 * X * X * X + vcvttps2dq ymm0, ymm0 + vpackusdw ymm0, ymm0, ymm0 // b0g0r0a0_00000000_b0g0r0a0_00000000 + vpermq ymm0, ymm0, 0xd8 // b0g0r0a0_b0g0r0a0_00000000_00000000 + vpackuswb xmm0, xmm0, xmm0 // bgrabgra_00000000_00000000_00000000 + vmovq qword ptr [edx], xmm0 + lea edx, [edx + 8] + sub ecx, 2 + jg convertloop + vzeroupper + ret + } +} +#endif // HAS_ARGBPOLYNOMIALROW_AVX2 + +#ifdef HAS_ARGBCOLORTABLEROW_X86 +// Tranform ARGB pixels with color table. +__declspec(naked) +void ARGBColorTableRow_X86(uint8* dst_argb, const uint8* table_argb, + int width) { + __asm { + push esi + mov eax, [esp + 4 + 4] /* dst_argb */ + mov esi, [esp + 4 + 8] /* table_argb */ + mov ecx, [esp + 4 + 12] /* width */ + + // 1 pixel loop. + convertloop: + movzx edx, byte ptr [eax] + lea eax, [eax + 4] + movzx edx, byte ptr [esi + edx * 4] + mov byte ptr [eax - 4], dl + movzx edx, byte ptr [eax - 4 + 1] + movzx edx, byte ptr [esi + edx * 4 + 1] + mov byte ptr [eax - 4 + 1], dl + movzx edx, byte ptr [eax - 4 + 2] + movzx edx, byte ptr [esi + edx * 4 + 2] + mov byte ptr [eax - 4 + 2], dl + movzx edx, byte ptr [eax - 4 + 3] + movzx edx, byte ptr [esi + edx * 4 + 3] + mov byte ptr [eax - 4 + 3], dl + dec ecx + jg convertloop + pop esi + ret + } +} +#endif // HAS_ARGBCOLORTABLEROW_X86 + +#ifdef HAS_RGBCOLORTABLEROW_X86 +// Tranform RGB pixels with color table. +__declspec(naked) +void RGBColorTableRow_X86(uint8* dst_argb, const uint8* table_argb, int width) { + __asm { + push esi + mov eax, [esp + 4 + 4] /* dst_argb */ + mov esi, [esp + 4 + 8] /* table_argb */ + mov ecx, [esp + 4 + 12] /* width */ + + // 1 pixel loop. + convertloop: + movzx edx, byte ptr [eax] + lea eax, [eax + 4] + movzx edx, byte ptr [esi + edx * 4] + mov byte ptr [eax - 4], dl + movzx edx, byte ptr [eax - 4 + 1] + movzx edx, byte ptr [esi + edx * 4 + 1] + mov byte ptr [eax - 4 + 1], dl + movzx edx, byte ptr [eax - 4 + 2] + movzx edx, byte ptr [esi + edx * 4 + 2] + mov byte ptr [eax - 4 + 2], dl + dec ecx + jg convertloop + + pop esi + ret + } +} +#endif // HAS_RGBCOLORTABLEROW_X86 + +#ifdef HAS_ARGBLUMACOLORTABLEROW_SSSE3 +// Tranform RGB pixels with luma table. +__declspec(naked) +void ARGBLumaColorTableRow_SSSE3(const uint8* src_argb, uint8* dst_argb, + int width, + const uint8* luma, uint32 lumacoeff) { + __asm { + push esi + push edi + mov eax, [esp + 8 + 4] /* src_argb */ + mov edi, [esp + 8 + 8] /* dst_argb */ + mov ecx, [esp + 8 + 12] /* width */ + movd xmm2, dword ptr [esp + 8 + 16] // luma table + movd xmm3, dword ptr [esp + 8 + 20] // lumacoeff + pshufd xmm2, xmm2, 0 + pshufd xmm3, xmm3, 0 + pcmpeqb xmm4, xmm4 // generate mask 0xff00ff00 + psllw xmm4, 8 + pxor xmm5, xmm5 + + // 4 pixel loop. + convertloop: + movdqu xmm0, xmmword ptr [eax] // generate luma ptr + pmaddubsw xmm0, xmm3 + phaddw xmm0, xmm0 + pand xmm0, xmm4 // mask out low bits + punpcklwd xmm0, xmm5 + paddd xmm0, xmm2 // add table base + movd esi, xmm0 + pshufd xmm0, xmm0, 0x39 // 00111001 to rotate right 32 + + movzx edx, byte ptr [eax] + movzx edx, byte ptr [esi + edx] + mov byte ptr [edi], dl + movzx edx, byte ptr [eax + 1] + movzx edx, byte ptr [esi + edx] + mov byte ptr [edi + 1], dl + movzx edx, byte ptr [eax + 2] + movzx edx, byte ptr [esi + edx] + mov byte ptr [edi + 2], dl + movzx edx, byte ptr [eax + 3] // copy alpha. + mov byte ptr [edi + 3], dl + + movd esi, xmm0 + pshufd xmm0, xmm0, 0x39 // 00111001 to rotate right 32 + + movzx edx, byte ptr [eax + 4] + movzx edx, byte ptr [esi + edx] + mov byte ptr [edi + 4], dl + movzx edx, byte ptr [eax + 5] + movzx edx, byte ptr [esi + edx] + mov byte ptr [edi + 5], dl + movzx edx, byte ptr [eax + 6] + movzx edx, byte ptr [esi + edx] + mov byte ptr [edi + 6], dl + movzx edx, byte ptr [eax + 7] // copy alpha. + mov byte ptr [edi + 7], dl + + movd esi, xmm0 + pshufd xmm0, xmm0, 0x39 // 00111001 to rotate right 32 + + movzx edx, byte ptr [eax + 8] + movzx edx, byte ptr [esi + edx] + mov byte ptr [edi + 8], dl + movzx edx, byte ptr [eax + 9] + movzx edx, byte ptr [esi + edx] + mov byte ptr [edi + 9], dl + movzx edx, byte ptr [eax + 10] + movzx edx, byte ptr [esi + edx] + mov byte ptr [edi + 10], dl + movzx edx, byte ptr [eax + 11] // copy alpha. + mov byte ptr [edi + 11], dl + + movd esi, xmm0 + + movzx edx, byte ptr [eax + 12] + movzx edx, byte ptr [esi + edx] + mov byte ptr [edi + 12], dl + movzx edx, byte ptr [eax + 13] + movzx edx, byte ptr [esi + edx] + mov byte ptr [edi + 13], dl + movzx edx, byte ptr [eax + 14] + movzx edx, byte ptr [esi + edx] + mov byte ptr [edi + 14], dl + movzx edx, byte ptr [eax + 15] // copy alpha. + mov byte ptr [edi + 15], dl + + lea eax, [eax + 16] + lea edi, [edi + 16] + sub ecx, 4 + jg convertloop + + pop edi + pop esi + ret + } +} +#endif // HAS_ARGBLUMACOLORTABLEROW_SSSE3 + +#endif // defined(_M_X64) + +#ifdef __cplusplus +} // extern "C" +} // namespace libyuv +#endif + +#endif // !defined(LIBYUV_DISABLE_X86) && (defined(_M_IX86) || defined(_M_X64)) diff --git a/third_party/libyuv/source/scale.cc b/third_party/libyuv/source/scale.cc new file mode 100644 index 0000000..36e3fe5 --- /dev/null +++ b/third_party/libyuv/source/scale.cc @@ -0,0 +1,1672 @@ +/* + * Copyright 2011 The LibYuv Project Authors. All rights reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "libyuv/scale.h" + +#include +#include + +#include "libyuv/cpu_id.h" +#include "libyuv/planar_functions.h" // For CopyPlane +#include "libyuv/row.h" +#include "libyuv/scale_row.h" + +#ifdef __cplusplus +namespace libyuv { +extern "C" { +#endif + +static __inline int Abs(int v) { + return v >= 0 ? v : -v; +} + +#define SUBSAMPLE(v, a, s) (v < 0) ? (-((-v + a) >> s)) : ((v + a) >> s) + +// Scale plane, 1/2 +// This is an optimized version for scaling down a plane to 1/2 of +// its original size. + +static void ScalePlaneDown2(int src_width, int src_height, + int dst_width, int dst_height, + int src_stride, int dst_stride, + const uint8* src_ptr, uint8* dst_ptr, + enum FilterMode filtering) { + int y; + void (*ScaleRowDown2)(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst_ptr, int dst_width) = + filtering == kFilterNone ? ScaleRowDown2_C : + (filtering == kFilterLinear ? ScaleRowDown2Linear_C : ScaleRowDown2Box_C); + int row_stride = src_stride << 1; + if (!filtering) { + src_ptr += src_stride; // Point to odd rows. + src_stride = 0; + } + +#if defined(HAS_SCALEROWDOWN2_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + ScaleRowDown2 = filtering == kFilterNone ? ScaleRowDown2_Any_NEON : + (filtering == kFilterLinear ? ScaleRowDown2Linear_Any_NEON : + ScaleRowDown2Box_Any_NEON); + if (IS_ALIGNED(dst_width, 16)) { + ScaleRowDown2 = filtering == kFilterNone ? ScaleRowDown2_NEON : + (filtering == kFilterLinear ? ScaleRowDown2Linear_NEON : + ScaleRowDown2Box_NEON); + } + } +#endif +#if defined(HAS_SCALEROWDOWN2_SSSE3) + if (TestCpuFlag(kCpuHasSSSE3)) { + ScaleRowDown2 = filtering == kFilterNone ? ScaleRowDown2_Any_SSSE3 : + (filtering == kFilterLinear ? ScaleRowDown2Linear_Any_SSSE3 : + ScaleRowDown2Box_Any_SSSE3); + if (IS_ALIGNED(dst_width, 16)) { + ScaleRowDown2 = filtering == kFilterNone ? ScaleRowDown2_SSSE3 : + (filtering == kFilterLinear ? ScaleRowDown2Linear_SSSE3 : + ScaleRowDown2Box_SSSE3); + } + } +#endif +#if defined(HAS_SCALEROWDOWN2_AVX2) + if (TestCpuFlag(kCpuHasAVX2)) { + ScaleRowDown2 = filtering == kFilterNone ? ScaleRowDown2_Any_AVX2 : + (filtering == kFilterLinear ? ScaleRowDown2Linear_Any_AVX2 : + ScaleRowDown2Box_Any_AVX2); + if (IS_ALIGNED(dst_width, 32)) { + ScaleRowDown2 = filtering == kFilterNone ? ScaleRowDown2_AVX2 : + (filtering == kFilterLinear ? ScaleRowDown2Linear_AVX2 : + ScaleRowDown2Box_AVX2); + } + } +#endif +#if defined(HAS_SCALEROWDOWN2_DSPR2) + if (TestCpuFlag(kCpuHasDSPR2) && IS_ALIGNED(src_ptr, 4) && + IS_ALIGNED(src_stride, 4) && IS_ALIGNED(row_stride, 4) && + IS_ALIGNED(dst_ptr, 4) && IS_ALIGNED(dst_stride, 4)) { + ScaleRowDown2 = filtering ? + ScaleRowDown2Box_DSPR2 : ScaleRowDown2_DSPR2; + } +#endif + + if (filtering == kFilterLinear) { + src_stride = 0; + } + // TODO(fbarchard): Loop through source height to allow odd height. + for (y = 0; y < dst_height; ++y) { + ScaleRowDown2(src_ptr, src_stride, dst_ptr, dst_width); + src_ptr += row_stride; + dst_ptr += dst_stride; + } +} + +static void ScalePlaneDown2_16(int src_width, int src_height, + int dst_width, int dst_height, + int src_stride, int dst_stride, + const uint16* src_ptr, uint16* dst_ptr, + enum FilterMode filtering) { + int y; + void (*ScaleRowDown2)(const uint16* src_ptr, ptrdiff_t src_stride, + uint16* dst_ptr, int dst_width) = + filtering == kFilterNone ? ScaleRowDown2_16_C : + (filtering == kFilterLinear ? ScaleRowDown2Linear_16_C : + ScaleRowDown2Box_16_C); + int row_stride = src_stride << 1; + if (!filtering) { + src_ptr += src_stride; // Point to odd rows. + src_stride = 0; + } + +#if defined(HAS_SCALEROWDOWN2_16_NEON) + if (TestCpuFlag(kCpuHasNEON) && IS_ALIGNED(dst_width, 16)) { + ScaleRowDown2 = filtering ? ScaleRowDown2Box_16_NEON : + ScaleRowDown2_16_NEON; + } +#endif +#if defined(HAS_SCALEROWDOWN2_16_SSE2) + if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(dst_width, 16)) { + ScaleRowDown2 = filtering == kFilterNone ? ScaleRowDown2_16_SSE2 : + (filtering == kFilterLinear ? ScaleRowDown2Linear_16_SSE2 : + ScaleRowDown2Box_16_SSE2); + } +#endif +#if defined(HAS_SCALEROWDOWN2_16_DSPR2) + if (TestCpuFlag(kCpuHasDSPR2) && IS_ALIGNED(src_ptr, 4) && + IS_ALIGNED(src_stride, 4) && IS_ALIGNED(row_stride, 4) && + IS_ALIGNED(dst_ptr, 4) && IS_ALIGNED(dst_stride, 4)) { + ScaleRowDown2 = filtering ? + ScaleRowDown2Box_16_DSPR2 : ScaleRowDown2_16_DSPR2; + } +#endif + + if (filtering == kFilterLinear) { + src_stride = 0; + } + // TODO(fbarchard): Loop through source height to allow odd height. + for (y = 0; y < dst_height; ++y) { + ScaleRowDown2(src_ptr, src_stride, dst_ptr, dst_width); + src_ptr += row_stride; + dst_ptr += dst_stride; + } +} + +// Scale plane, 1/4 +// This is an optimized version for scaling down a plane to 1/4 of +// its original size. + +static void ScalePlaneDown4(int src_width, int src_height, + int dst_width, int dst_height, + int src_stride, int dst_stride, + const uint8* src_ptr, uint8* dst_ptr, + enum FilterMode filtering) { + int y; + void (*ScaleRowDown4)(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst_ptr, int dst_width) = + filtering ? ScaleRowDown4Box_C : ScaleRowDown4_C; + int row_stride = src_stride << 2; + if (!filtering) { + src_ptr += src_stride * 2; // Point to row 2. + src_stride = 0; + } +#if defined(HAS_SCALEROWDOWN4_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + ScaleRowDown4 = filtering ? + ScaleRowDown4Box_Any_NEON : ScaleRowDown4_Any_NEON; + if (IS_ALIGNED(dst_width, 8)) { + ScaleRowDown4 = filtering ? ScaleRowDown4Box_NEON : ScaleRowDown4_NEON; + } + } +#endif +#if defined(HAS_SCALEROWDOWN4_SSSE3) + if (TestCpuFlag(kCpuHasSSSE3)) { + ScaleRowDown4 = filtering ? + ScaleRowDown4Box_Any_SSSE3 : ScaleRowDown4_Any_SSSE3; + if (IS_ALIGNED(dst_width, 8)) { + ScaleRowDown4 = filtering ? ScaleRowDown4Box_SSSE3 : ScaleRowDown4_SSSE3; + } + } +#endif +#if defined(HAS_SCALEROWDOWN4_AVX2) + if (TestCpuFlag(kCpuHasAVX2)) { + ScaleRowDown4 = filtering ? + ScaleRowDown4Box_Any_AVX2 : ScaleRowDown4_Any_AVX2; + if (IS_ALIGNED(dst_width, 16)) { + ScaleRowDown4 = filtering ? ScaleRowDown4Box_AVX2 : ScaleRowDown4_AVX2; + } + } +#endif +#if defined(HAS_SCALEROWDOWN4_DSPR2) + if (TestCpuFlag(kCpuHasDSPR2) && IS_ALIGNED(row_stride, 4) && + IS_ALIGNED(src_ptr, 4) && IS_ALIGNED(src_stride, 4) && + IS_ALIGNED(dst_ptr, 4) && IS_ALIGNED(dst_stride, 4)) { + ScaleRowDown4 = filtering ? + ScaleRowDown4Box_DSPR2 : ScaleRowDown4_DSPR2; + } +#endif + + if (filtering == kFilterLinear) { + src_stride = 0; + } + for (y = 0; y < dst_height; ++y) { + ScaleRowDown4(src_ptr, src_stride, dst_ptr, dst_width); + src_ptr += row_stride; + dst_ptr += dst_stride; + } +} + +static void ScalePlaneDown4_16(int src_width, int src_height, + int dst_width, int dst_height, + int src_stride, int dst_stride, + const uint16* src_ptr, uint16* dst_ptr, + enum FilterMode filtering) { + int y; + void (*ScaleRowDown4)(const uint16* src_ptr, ptrdiff_t src_stride, + uint16* dst_ptr, int dst_width) = + filtering ? ScaleRowDown4Box_16_C : ScaleRowDown4_16_C; + int row_stride = src_stride << 2; + if (!filtering) { + src_ptr += src_stride * 2; // Point to row 2. + src_stride = 0; + } +#if defined(HAS_SCALEROWDOWN4_16_NEON) + if (TestCpuFlag(kCpuHasNEON) && IS_ALIGNED(dst_width, 8)) { + ScaleRowDown4 = filtering ? ScaleRowDown4Box_16_NEON : + ScaleRowDown4_16_NEON; + } +#endif +#if defined(HAS_SCALEROWDOWN4_16_SSE2) + if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(dst_width, 8)) { + ScaleRowDown4 = filtering ? ScaleRowDown4Box_16_SSE2 : + ScaleRowDown4_16_SSE2; + } +#endif +#if defined(HAS_SCALEROWDOWN4_16_DSPR2) + if (TestCpuFlag(kCpuHasDSPR2) && IS_ALIGNED(row_stride, 4) && + IS_ALIGNED(src_ptr, 4) && IS_ALIGNED(src_stride, 4) && + IS_ALIGNED(dst_ptr, 4) && IS_ALIGNED(dst_stride, 4)) { + ScaleRowDown4 = filtering ? + ScaleRowDown4Box_16_DSPR2 : ScaleRowDown4_16_DSPR2; + } +#endif + + if (filtering == kFilterLinear) { + src_stride = 0; + } + for (y = 0; y < dst_height; ++y) { + ScaleRowDown4(src_ptr, src_stride, dst_ptr, dst_width); + src_ptr += row_stride; + dst_ptr += dst_stride; + } +} + +// Scale plane down, 3/4 + +static void ScalePlaneDown34(int src_width, int src_height, + int dst_width, int dst_height, + int src_stride, int dst_stride, + const uint8* src_ptr, uint8* dst_ptr, + enum FilterMode filtering) { + int y; + void (*ScaleRowDown34_0)(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst_ptr, int dst_width); + void (*ScaleRowDown34_1)(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst_ptr, int dst_width); + const int filter_stride = (filtering == kFilterLinear) ? 0 : src_stride; + assert(dst_width % 3 == 0); + if (!filtering) { + ScaleRowDown34_0 = ScaleRowDown34_C; + ScaleRowDown34_1 = ScaleRowDown34_C; + } else { + ScaleRowDown34_0 = ScaleRowDown34_0_Box_C; + ScaleRowDown34_1 = ScaleRowDown34_1_Box_C; + } +#if defined(HAS_SCALEROWDOWN34_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + if (!filtering) { + ScaleRowDown34_0 = ScaleRowDown34_Any_NEON; + ScaleRowDown34_1 = ScaleRowDown34_Any_NEON; + } else { + ScaleRowDown34_0 = ScaleRowDown34_0_Box_Any_NEON; + ScaleRowDown34_1 = ScaleRowDown34_1_Box_Any_NEON; + } + if (dst_width % 24 == 0) { + if (!filtering) { + ScaleRowDown34_0 = ScaleRowDown34_NEON; + ScaleRowDown34_1 = ScaleRowDown34_NEON; + } else { + ScaleRowDown34_0 = ScaleRowDown34_0_Box_NEON; + ScaleRowDown34_1 = ScaleRowDown34_1_Box_NEON; + } + } + } +#endif +#if defined(HAS_SCALEROWDOWN34_SSSE3) + if (TestCpuFlag(kCpuHasSSSE3)) { + if (!filtering) { + ScaleRowDown34_0 = ScaleRowDown34_Any_SSSE3; + ScaleRowDown34_1 = ScaleRowDown34_Any_SSSE3; + } else { + ScaleRowDown34_0 = ScaleRowDown34_0_Box_Any_SSSE3; + ScaleRowDown34_1 = ScaleRowDown34_1_Box_Any_SSSE3; + } + if (dst_width % 24 == 0) { + if (!filtering) { + ScaleRowDown34_0 = ScaleRowDown34_SSSE3; + ScaleRowDown34_1 = ScaleRowDown34_SSSE3; + } else { + ScaleRowDown34_0 = ScaleRowDown34_0_Box_SSSE3; + ScaleRowDown34_1 = ScaleRowDown34_1_Box_SSSE3; + } + } + } +#endif +#if defined(HAS_SCALEROWDOWN34_DSPR2) + if (TestCpuFlag(kCpuHasDSPR2) && (dst_width % 24 == 0) && + IS_ALIGNED(src_ptr, 4) && IS_ALIGNED(src_stride, 4) && + IS_ALIGNED(dst_ptr, 4) && IS_ALIGNED(dst_stride, 4)) { + if (!filtering) { + ScaleRowDown34_0 = ScaleRowDown34_DSPR2; + ScaleRowDown34_1 = ScaleRowDown34_DSPR2; + } else { + ScaleRowDown34_0 = ScaleRowDown34_0_Box_DSPR2; + ScaleRowDown34_1 = ScaleRowDown34_1_Box_DSPR2; + } + } +#endif + + for (y = 0; y < dst_height - 2; y += 3) { + ScaleRowDown34_0(src_ptr, filter_stride, dst_ptr, dst_width); + src_ptr += src_stride; + dst_ptr += dst_stride; + ScaleRowDown34_1(src_ptr, filter_stride, dst_ptr, dst_width); + src_ptr += src_stride; + dst_ptr += dst_stride; + ScaleRowDown34_0(src_ptr + src_stride, -filter_stride, + dst_ptr, dst_width); + src_ptr += src_stride * 2; + dst_ptr += dst_stride; + } + + // Remainder 1 or 2 rows with last row vertically unfiltered + if ((dst_height % 3) == 2) { + ScaleRowDown34_0(src_ptr, filter_stride, dst_ptr, dst_width); + src_ptr += src_stride; + dst_ptr += dst_stride; + ScaleRowDown34_1(src_ptr, 0, dst_ptr, dst_width); + } else if ((dst_height % 3) == 1) { + ScaleRowDown34_0(src_ptr, 0, dst_ptr, dst_width); + } +} + +static void ScalePlaneDown34_16(int src_width, int src_height, + int dst_width, int dst_height, + int src_stride, int dst_stride, + const uint16* src_ptr, uint16* dst_ptr, + enum FilterMode filtering) { + int y; + void (*ScaleRowDown34_0)(const uint16* src_ptr, ptrdiff_t src_stride, + uint16* dst_ptr, int dst_width); + void (*ScaleRowDown34_1)(const uint16* src_ptr, ptrdiff_t src_stride, + uint16* dst_ptr, int dst_width); + const int filter_stride = (filtering == kFilterLinear) ? 0 : src_stride; + assert(dst_width % 3 == 0); + if (!filtering) { + ScaleRowDown34_0 = ScaleRowDown34_16_C; + ScaleRowDown34_1 = ScaleRowDown34_16_C; + } else { + ScaleRowDown34_0 = ScaleRowDown34_0_Box_16_C; + ScaleRowDown34_1 = ScaleRowDown34_1_Box_16_C; + } +#if defined(HAS_SCALEROWDOWN34_16_NEON) + if (TestCpuFlag(kCpuHasNEON) && (dst_width % 24 == 0)) { + if (!filtering) { + ScaleRowDown34_0 = ScaleRowDown34_16_NEON; + ScaleRowDown34_1 = ScaleRowDown34_16_NEON; + } else { + ScaleRowDown34_0 = ScaleRowDown34_0_Box_16_NEON; + ScaleRowDown34_1 = ScaleRowDown34_1_Box_16_NEON; + } + } +#endif +#if defined(HAS_SCALEROWDOWN34_16_SSSE3) + if (TestCpuFlag(kCpuHasSSSE3) && (dst_width % 24 == 0)) { + if (!filtering) { + ScaleRowDown34_0 = ScaleRowDown34_16_SSSE3; + ScaleRowDown34_1 = ScaleRowDown34_16_SSSE3; + } else { + ScaleRowDown34_0 = ScaleRowDown34_0_Box_16_SSSE3; + ScaleRowDown34_1 = ScaleRowDown34_1_Box_16_SSSE3; + } + } +#endif +#if defined(HAS_SCALEROWDOWN34_16_DSPR2) + if (TestCpuFlag(kCpuHasDSPR2) && (dst_width % 24 == 0) && + IS_ALIGNED(src_ptr, 4) && IS_ALIGNED(src_stride, 4) && + IS_ALIGNED(dst_ptr, 4) && IS_ALIGNED(dst_stride, 4)) { + if (!filtering) { + ScaleRowDown34_0 = ScaleRowDown34_16_DSPR2; + ScaleRowDown34_1 = ScaleRowDown34_16_DSPR2; + } else { + ScaleRowDown34_0 = ScaleRowDown34_0_Box_16_DSPR2; + ScaleRowDown34_1 = ScaleRowDown34_1_Box_16_DSPR2; + } + } +#endif + + for (y = 0; y < dst_height - 2; y += 3) { + ScaleRowDown34_0(src_ptr, filter_stride, dst_ptr, dst_width); + src_ptr += src_stride; + dst_ptr += dst_stride; + ScaleRowDown34_1(src_ptr, filter_stride, dst_ptr, dst_width); + src_ptr += src_stride; + dst_ptr += dst_stride; + ScaleRowDown34_0(src_ptr + src_stride, -filter_stride, + dst_ptr, dst_width); + src_ptr += src_stride * 2; + dst_ptr += dst_stride; + } + + // Remainder 1 or 2 rows with last row vertically unfiltered + if ((dst_height % 3) == 2) { + ScaleRowDown34_0(src_ptr, filter_stride, dst_ptr, dst_width); + src_ptr += src_stride; + dst_ptr += dst_stride; + ScaleRowDown34_1(src_ptr, 0, dst_ptr, dst_width); + } else if ((dst_height % 3) == 1) { + ScaleRowDown34_0(src_ptr, 0, dst_ptr, dst_width); + } +} + + +// Scale plane, 3/8 +// This is an optimized version for scaling down a plane to 3/8 +// of its original size. +// +// Uses box filter arranges like this +// aaabbbcc -> abc +// aaabbbcc def +// aaabbbcc ghi +// dddeeeff +// dddeeeff +// dddeeeff +// ggghhhii +// ggghhhii +// Boxes are 3x3, 2x3, 3x2 and 2x2 + +static void ScalePlaneDown38(int src_width, int src_height, + int dst_width, int dst_height, + int src_stride, int dst_stride, + const uint8* src_ptr, uint8* dst_ptr, + enum FilterMode filtering) { + int y; + void (*ScaleRowDown38_3)(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst_ptr, int dst_width); + void (*ScaleRowDown38_2)(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst_ptr, int dst_width); + const int filter_stride = (filtering == kFilterLinear) ? 0 : src_stride; + assert(dst_width % 3 == 0); + if (!filtering) { + ScaleRowDown38_3 = ScaleRowDown38_C; + ScaleRowDown38_2 = ScaleRowDown38_C; + } else { + ScaleRowDown38_3 = ScaleRowDown38_3_Box_C; + ScaleRowDown38_2 = ScaleRowDown38_2_Box_C; + } + +#if defined(HAS_SCALEROWDOWN38_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + if (!filtering) { + ScaleRowDown38_3 = ScaleRowDown38_Any_NEON; + ScaleRowDown38_2 = ScaleRowDown38_Any_NEON; + } else { + ScaleRowDown38_3 = ScaleRowDown38_3_Box_Any_NEON; + ScaleRowDown38_2 = ScaleRowDown38_2_Box_Any_NEON; + } + if (dst_width % 12 == 0) { + if (!filtering) { + ScaleRowDown38_3 = ScaleRowDown38_NEON; + ScaleRowDown38_2 = ScaleRowDown38_NEON; + } else { + ScaleRowDown38_3 = ScaleRowDown38_3_Box_NEON; + ScaleRowDown38_2 = ScaleRowDown38_2_Box_NEON; + } + } + } +#endif +#if defined(HAS_SCALEROWDOWN38_SSSE3) + if (TestCpuFlag(kCpuHasSSSE3)) { + if (!filtering) { + ScaleRowDown38_3 = ScaleRowDown38_Any_SSSE3; + ScaleRowDown38_2 = ScaleRowDown38_Any_SSSE3; + } else { + ScaleRowDown38_3 = ScaleRowDown38_3_Box_Any_SSSE3; + ScaleRowDown38_2 = ScaleRowDown38_2_Box_Any_SSSE3; + } + if (dst_width % 12 == 0 && !filtering) { + ScaleRowDown38_3 = ScaleRowDown38_SSSE3; + ScaleRowDown38_2 = ScaleRowDown38_SSSE3; + } + if (dst_width % 6 == 0 && filtering) { + ScaleRowDown38_3 = ScaleRowDown38_3_Box_SSSE3; + ScaleRowDown38_2 = ScaleRowDown38_2_Box_SSSE3; + } + } +#endif +#if defined(HAS_SCALEROWDOWN38_DSPR2) + if (TestCpuFlag(kCpuHasDSPR2) && (dst_width % 12 == 0) && + IS_ALIGNED(src_ptr, 4) && IS_ALIGNED(src_stride, 4) && + IS_ALIGNED(dst_ptr, 4) && IS_ALIGNED(dst_stride, 4)) { + if (!filtering) { + ScaleRowDown38_3 = ScaleRowDown38_DSPR2; + ScaleRowDown38_2 = ScaleRowDown38_DSPR2; + } else { + ScaleRowDown38_3 = ScaleRowDown38_3_Box_DSPR2; + ScaleRowDown38_2 = ScaleRowDown38_2_Box_DSPR2; + } + } +#endif + + for (y = 0; y < dst_height - 2; y += 3) { + ScaleRowDown38_3(src_ptr, filter_stride, dst_ptr, dst_width); + src_ptr += src_stride * 3; + dst_ptr += dst_stride; + ScaleRowDown38_3(src_ptr, filter_stride, dst_ptr, dst_width); + src_ptr += src_stride * 3; + dst_ptr += dst_stride; + ScaleRowDown38_2(src_ptr, filter_stride, dst_ptr, dst_width); + src_ptr += src_stride * 2; + dst_ptr += dst_stride; + } + + // Remainder 1 or 2 rows with last row vertically unfiltered + if ((dst_height % 3) == 2) { + ScaleRowDown38_3(src_ptr, filter_stride, dst_ptr, dst_width); + src_ptr += src_stride * 3; + dst_ptr += dst_stride; + ScaleRowDown38_3(src_ptr, 0, dst_ptr, dst_width); + } else if ((dst_height % 3) == 1) { + ScaleRowDown38_3(src_ptr, 0, dst_ptr, dst_width); + } +} + +static void ScalePlaneDown38_16(int src_width, int src_height, + int dst_width, int dst_height, + int src_stride, int dst_stride, + const uint16* src_ptr, uint16* dst_ptr, + enum FilterMode filtering) { + int y; + void (*ScaleRowDown38_3)(const uint16* src_ptr, ptrdiff_t src_stride, + uint16* dst_ptr, int dst_width); + void (*ScaleRowDown38_2)(const uint16* src_ptr, ptrdiff_t src_stride, + uint16* dst_ptr, int dst_width); + const int filter_stride = (filtering == kFilterLinear) ? 0 : src_stride; + assert(dst_width % 3 == 0); + if (!filtering) { + ScaleRowDown38_3 = ScaleRowDown38_16_C; + ScaleRowDown38_2 = ScaleRowDown38_16_C; + } else { + ScaleRowDown38_3 = ScaleRowDown38_3_Box_16_C; + ScaleRowDown38_2 = ScaleRowDown38_2_Box_16_C; + } +#if defined(HAS_SCALEROWDOWN38_16_NEON) + if (TestCpuFlag(kCpuHasNEON) && (dst_width % 12 == 0)) { + if (!filtering) { + ScaleRowDown38_3 = ScaleRowDown38_16_NEON; + ScaleRowDown38_2 = ScaleRowDown38_16_NEON; + } else { + ScaleRowDown38_3 = ScaleRowDown38_3_Box_16_NEON; + ScaleRowDown38_2 = ScaleRowDown38_2_Box_16_NEON; + } + } +#endif +#if defined(HAS_SCALEROWDOWN38_16_SSSE3) + if (TestCpuFlag(kCpuHasSSSE3) && (dst_width % 24 == 0)) { + if (!filtering) { + ScaleRowDown38_3 = ScaleRowDown38_16_SSSE3; + ScaleRowDown38_2 = ScaleRowDown38_16_SSSE3; + } else { + ScaleRowDown38_3 = ScaleRowDown38_3_Box_16_SSSE3; + ScaleRowDown38_2 = ScaleRowDown38_2_Box_16_SSSE3; + } + } +#endif +#if defined(HAS_SCALEROWDOWN38_16_DSPR2) + if (TestCpuFlag(kCpuHasDSPR2) && (dst_width % 12 == 0) && + IS_ALIGNED(src_ptr, 4) && IS_ALIGNED(src_stride, 4) && + IS_ALIGNED(dst_ptr, 4) && IS_ALIGNED(dst_stride, 4)) { + if (!filtering) { + ScaleRowDown38_3 = ScaleRowDown38_16_DSPR2; + ScaleRowDown38_2 = ScaleRowDown38_16_DSPR2; + } else { + ScaleRowDown38_3 = ScaleRowDown38_3_Box_16_DSPR2; + ScaleRowDown38_2 = ScaleRowDown38_2_Box_16_DSPR2; + } + } +#endif + + for (y = 0; y < dst_height - 2; y += 3) { + ScaleRowDown38_3(src_ptr, filter_stride, dst_ptr, dst_width); + src_ptr += src_stride * 3; + dst_ptr += dst_stride; + ScaleRowDown38_3(src_ptr, filter_stride, dst_ptr, dst_width); + src_ptr += src_stride * 3; + dst_ptr += dst_stride; + ScaleRowDown38_2(src_ptr, filter_stride, dst_ptr, dst_width); + src_ptr += src_stride * 2; + dst_ptr += dst_stride; + } + + // Remainder 1 or 2 rows with last row vertically unfiltered + if ((dst_height % 3) == 2) { + ScaleRowDown38_3(src_ptr, filter_stride, dst_ptr, dst_width); + src_ptr += src_stride * 3; + dst_ptr += dst_stride; + ScaleRowDown38_3(src_ptr, 0, dst_ptr, dst_width); + } else if ((dst_height % 3) == 1) { + ScaleRowDown38_3(src_ptr, 0, dst_ptr, dst_width); + } +} + +#define MIN1(x) ((x) < 1 ? 1 : (x)) + +static __inline uint32 SumPixels(int iboxwidth, const uint16* src_ptr) { + uint32 sum = 0u; + int x; + assert(iboxwidth > 0); + for (x = 0; x < iboxwidth; ++x) { + sum += src_ptr[x]; + } + return sum; +} + +static __inline uint32 SumPixels_16(int iboxwidth, const uint32* src_ptr) { + uint32 sum = 0u; + int x; + assert(iboxwidth > 0); + for (x = 0; x < iboxwidth; ++x) { + sum += src_ptr[x]; + } + return sum; +} + +static void ScaleAddCols2_C(int dst_width, int boxheight, int x, int dx, + const uint16* src_ptr, uint8* dst_ptr) { + int i; + int scaletbl[2]; + int minboxwidth = dx >> 16; + int boxwidth; + scaletbl[0] = 65536 / (MIN1(minboxwidth) * boxheight); + scaletbl[1] = 65536 / (MIN1(minboxwidth + 1) * boxheight); + for (i = 0; i < dst_width; ++i) { + int ix = x >> 16; + x += dx; + boxwidth = MIN1((x >> 16) - ix); + *dst_ptr++ = SumPixels(boxwidth, src_ptr + ix) * + scaletbl[boxwidth - minboxwidth] >> 16; + } +} + +static void ScaleAddCols2_16_C(int dst_width, int boxheight, int x, int dx, + const uint32* src_ptr, uint16* dst_ptr) { + int i; + int scaletbl[2]; + int minboxwidth = dx >> 16; + int boxwidth; + scaletbl[0] = 65536 / (MIN1(minboxwidth) * boxheight); + scaletbl[1] = 65536 / (MIN1(minboxwidth + 1) * boxheight); + for (i = 0; i < dst_width; ++i) { + int ix = x >> 16; + x += dx; + boxwidth = MIN1((x >> 16) - ix); + *dst_ptr++ = SumPixels_16(boxwidth, src_ptr + ix) * + scaletbl[boxwidth - minboxwidth] >> 16; + } +} + +static void ScaleAddCols0_C(int dst_width, int boxheight, int x, int, + const uint16* src_ptr, uint8* dst_ptr) { + int scaleval = 65536 / boxheight; + int i; + src_ptr += (x >> 16); + for (i = 0; i < dst_width; ++i) { + *dst_ptr++ = src_ptr[i] * scaleval >> 16; + } +} + +static void ScaleAddCols1_C(int dst_width, int boxheight, int x, int dx, + const uint16* src_ptr, uint8* dst_ptr) { + int boxwidth = MIN1(dx >> 16); + int scaleval = 65536 / (boxwidth * boxheight); + int i; + x >>= 16; + for (i = 0; i < dst_width; ++i) { + *dst_ptr++ = SumPixels(boxwidth, src_ptr + x) * scaleval >> 16; + x += boxwidth; + } +} + +static void ScaleAddCols1_16_C(int dst_width, int boxheight, int x, int dx, + const uint32* src_ptr, uint16* dst_ptr) { + int boxwidth = MIN1(dx >> 16); + int scaleval = 65536 / (boxwidth * boxheight); + int i; + for (i = 0; i < dst_width; ++i) { + *dst_ptr++ = SumPixels_16(boxwidth, src_ptr + x) * scaleval >> 16; + x += boxwidth; + } +} + +// Scale plane down to any dimensions, with interpolation. +// (boxfilter). +// +// Same method as SimpleScale, which is fixed point, outputting +// one pixel of destination using fixed point (16.16) to step +// through source, sampling a box of pixel with simple +// averaging. +static void ScalePlaneBox(int src_width, int src_height, + int dst_width, int dst_height, + int src_stride, int dst_stride, + const uint8* src_ptr, uint8* dst_ptr) { + int j, k; + // Initial source x/y coordinate and step values as 16.16 fixed point. + int x = 0; + int y = 0; + int dx = 0; + int dy = 0; + const int max_y = (src_height << 16); + ScaleSlope(src_width, src_height, dst_width, dst_height, kFilterBox, + &x, &y, &dx, &dy); + src_width = Abs(src_width); + { + // Allocate a row buffer of uint16. + align_buffer_64(row16, src_width * 2); + void (*ScaleAddCols)(int dst_width, int boxheight, int x, int dx, + const uint16* src_ptr, uint8* dst_ptr) = + (dx & 0xffff) ? ScaleAddCols2_C: + ((dx != 0x10000) ? ScaleAddCols1_C : ScaleAddCols0_C); + void (*ScaleAddRow)(const uint8* src_ptr, uint16* dst_ptr, int src_width) = + ScaleAddRow_C; +#if defined(HAS_SCALEADDROW_SSE2) + if (TestCpuFlag(kCpuHasSSE2)) { + ScaleAddRow = ScaleAddRow_Any_SSE2; + if (IS_ALIGNED(src_width, 16)) { + ScaleAddRow = ScaleAddRow_SSE2; + } + } +#endif +#if defined(HAS_SCALEADDROW_AVX2) + if (TestCpuFlag(kCpuHasAVX2)) { + ScaleAddRow = ScaleAddRow_Any_AVX2; + if (IS_ALIGNED(src_width, 32)) { + ScaleAddRow = ScaleAddRow_AVX2; + } + } +#endif +#if defined(HAS_SCALEADDROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + ScaleAddRow = ScaleAddRow_Any_NEON; + if (IS_ALIGNED(src_width, 16)) { + ScaleAddRow = ScaleAddRow_NEON; + } + } +#endif + + for (j = 0; j < dst_height; ++j) { + int boxheight; + int iy = y >> 16; + const uint8* src = src_ptr + iy * src_stride; + y += dy; + if (y > max_y) { + y = max_y; + } + boxheight = MIN1((y >> 16) - iy); + memset(row16, 0, src_width * 2); + for (k = 0; k < boxheight; ++k) { + ScaleAddRow(src, (uint16 *)(row16), src_width); + src += src_stride; + } + ScaleAddCols(dst_width, boxheight, x, dx, (uint16*)(row16), dst_ptr); + dst_ptr += dst_stride; + } + free_aligned_buffer_64(row16); + } +} + +static void ScalePlaneBox_16(int src_width, int src_height, + int dst_width, int dst_height, + int src_stride, int dst_stride, + const uint16* src_ptr, uint16* dst_ptr) { + int j, k; + // Initial source x/y coordinate and step values as 16.16 fixed point. + int x = 0; + int y = 0; + int dx = 0; + int dy = 0; + const int max_y = (src_height << 16); + ScaleSlope(src_width, src_height, dst_width, dst_height, kFilterBox, + &x, &y, &dx, &dy); + src_width = Abs(src_width); + { + // Allocate a row buffer of uint32. + align_buffer_64(row32, src_width * 4); + void (*ScaleAddCols)(int dst_width, int boxheight, int x, int dx, + const uint32* src_ptr, uint16* dst_ptr) = + (dx & 0xffff) ? ScaleAddCols2_16_C: ScaleAddCols1_16_C; + void (*ScaleAddRow)(const uint16* src_ptr, uint32* dst_ptr, int src_width) = + ScaleAddRow_16_C; + +#if defined(HAS_SCALEADDROW_16_SSE2) + if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(src_width, 16)) { + ScaleAddRow = ScaleAddRow_16_SSE2; + } +#endif + + for (j = 0; j < dst_height; ++j) { + int boxheight; + int iy = y >> 16; + const uint16* src = src_ptr + iy * src_stride; + y += dy; + if (y > max_y) { + y = max_y; + } + boxheight = MIN1((y >> 16) - iy); + memset(row32, 0, src_width * 4); + for (k = 0; k < boxheight; ++k) { + ScaleAddRow(src, (uint32 *)(row32), src_width); + src += src_stride; + } + ScaleAddCols(dst_width, boxheight, x, dx, (uint32*)(row32), dst_ptr); + dst_ptr += dst_stride; + } + free_aligned_buffer_64(row32); + } +} + +// Scale plane down with bilinear interpolation. +void ScalePlaneBilinearDown(int src_width, int src_height, + int dst_width, int dst_height, + int src_stride, int dst_stride, + const uint8* src_ptr, uint8* dst_ptr, + enum FilterMode filtering) { + // Initial source x/y coordinate and step values as 16.16 fixed point. + int x = 0; + int y = 0; + int dx = 0; + int dy = 0; + // TODO(fbarchard): Consider not allocating row buffer for kFilterLinear. + // Allocate a row buffer. + align_buffer_64(row, src_width); + + const int max_y = (src_height - 1) << 16; + int j; + void (*ScaleFilterCols)(uint8* dst_ptr, const uint8* src_ptr, + int dst_width, int x, int dx) = + (src_width >= 32768) ? ScaleFilterCols64_C : ScaleFilterCols_C; + void (*InterpolateRow)(uint8* dst_ptr, const uint8* src_ptr, + ptrdiff_t src_stride, int dst_width, int source_y_fraction) = + InterpolateRow_C; + ScaleSlope(src_width, src_height, dst_width, dst_height, filtering, + &x, &y, &dx, &dy); + src_width = Abs(src_width); + +#if defined(HAS_INTERPOLATEROW_SSSE3) + if (TestCpuFlag(kCpuHasSSSE3)) { + InterpolateRow = InterpolateRow_Any_SSSE3; + if (IS_ALIGNED(src_width, 16)) { + InterpolateRow = InterpolateRow_SSSE3; + } + } +#endif +#if defined(HAS_INTERPOLATEROW_AVX2) + if (TestCpuFlag(kCpuHasAVX2)) { + InterpolateRow = InterpolateRow_Any_AVX2; + if (IS_ALIGNED(src_width, 32)) { + InterpolateRow = InterpolateRow_AVX2; + } + } +#endif +#if defined(HAS_INTERPOLATEROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + InterpolateRow = InterpolateRow_Any_NEON; + if (IS_ALIGNED(src_width, 16)) { + InterpolateRow = InterpolateRow_NEON; + } + } +#endif +#if defined(HAS_INTERPOLATEROW_DSPR2) + if (TestCpuFlag(kCpuHasDSPR2)) { + InterpolateRow = InterpolateRow_Any_DSPR2; + if (IS_ALIGNED(src_width, 4)) { + InterpolateRow = InterpolateRow_DSPR2; + } + } +#endif + + +#if defined(HAS_SCALEFILTERCOLS_SSSE3) + if (TestCpuFlag(kCpuHasSSSE3) && src_width < 32768) { + ScaleFilterCols = ScaleFilterCols_SSSE3; + } +#endif +#if defined(HAS_SCALEFILTERCOLS_NEON) + if (TestCpuFlag(kCpuHasNEON) && src_width < 32768) { + ScaleFilterCols = ScaleFilterCols_Any_NEON; + if (IS_ALIGNED(dst_width, 8)) { + ScaleFilterCols = ScaleFilterCols_NEON; + } + } +#endif + if (y > max_y) { + y = max_y; + } + + for (j = 0; j < dst_height; ++j) { + int yi = y >> 16; + const uint8* src = src_ptr + yi * src_stride; + if (filtering == kFilterLinear) { + ScaleFilterCols(dst_ptr, src, dst_width, x, dx); + } else { + int yf = (y >> 8) & 255; + InterpolateRow(row, src, src_stride, src_width, yf); + ScaleFilterCols(dst_ptr, row, dst_width, x, dx); + } + dst_ptr += dst_stride; + y += dy; + if (y > max_y) { + y = max_y; + } + } + free_aligned_buffer_64(row); +} + +void ScalePlaneBilinearDown_16(int src_width, int src_height, + int dst_width, int dst_height, + int src_stride, int dst_stride, + const uint16* src_ptr, uint16* dst_ptr, + enum FilterMode filtering) { + // Initial source x/y coordinate and step values as 16.16 fixed point. + int x = 0; + int y = 0; + int dx = 0; + int dy = 0; + // TODO(fbarchard): Consider not allocating row buffer for kFilterLinear. + // Allocate a row buffer. + align_buffer_64(row, src_width * 2); + + const int max_y = (src_height - 1) << 16; + int j; + void (*ScaleFilterCols)(uint16* dst_ptr, const uint16* src_ptr, + int dst_width, int x, int dx) = + (src_width >= 32768) ? ScaleFilterCols64_16_C : ScaleFilterCols_16_C; + void (*InterpolateRow)(uint16* dst_ptr, const uint16* src_ptr, + ptrdiff_t src_stride, int dst_width, int source_y_fraction) = + InterpolateRow_16_C; + ScaleSlope(src_width, src_height, dst_width, dst_height, filtering, + &x, &y, &dx, &dy); + src_width = Abs(src_width); + +#if defined(HAS_INTERPOLATEROW_16_SSE2) + if (TestCpuFlag(kCpuHasSSE2)) { + InterpolateRow = InterpolateRow_Any_16_SSE2; + if (IS_ALIGNED(src_width, 16)) { + InterpolateRow = InterpolateRow_16_SSE2; + } + } +#endif +#if defined(HAS_INTERPOLATEROW_16_SSSE3) + if (TestCpuFlag(kCpuHasSSSE3)) { + InterpolateRow = InterpolateRow_Any_16_SSSE3; + if (IS_ALIGNED(src_width, 16)) { + InterpolateRow = InterpolateRow_16_SSSE3; + } + } +#endif +#if defined(HAS_INTERPOLATEROW_16_AVX2) + if (TestCpuFlag(kCpuHasAVX2)) { + InterpolateRow = InterpolateRow_Any_16_AVX2; + if (IS_ALIGNED(src_width, 32)) { + InterpolateRow = InterpolateRow_16_AVX2; + } + } +#endif +#if defined(HAS_INTERPOLATEROW_16_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + InterpolateRow = InterpolateRow_Any_16_NEON; + if (IS_ALIGNED(src_width, 16)) { + InterpolateRow = InterpolateRow_16_NEON; + } + } +#endif +#if defined(HAS_INTERPOLATEROW_16_DSPR2) + if (TestCpuFlag(kCpuHasDSPR2)) { + InterpolateRow = InterpolateRow_Any_16_DSPR2; + if (IS_ALIGNED(src_width, 4)) { + InterpolateRow = InterpolateRow_16_DSPR2; + } + } +#endif + + +#if defined(HAS_SCALEFILTERCOLS_16_SSSE3) + if (TestCpuFlag(kCpuHasSSSE3) && src_width < 32768) { + ScaleFilterCols = ScaleFilterCols_16_SSSE3; + } +#endif + if (y > max_y) { + y = max_y; + } + + for (j = 0; j < dst_height; ++j) { + int yi = y >> 16; + const uint16* src = src_ptr + yi * src_stride; + if (filtering == kFilterLinear) { + ScaleFilterCols(dst_ptr, src, dst_width, x, dx); + } else { + int yf = (y >> 8) & 255; + InterpolateRow((uint16*)row, src, src_stride, src_width, yf); + ScaleFilterCols(dst_ptr, (uint16*)row, dst_width, x, dx); + } + dst_ptr += dst_stride; + y += dy; + if (y > max_y) { + y = max_y; + } + } + free_aligned_buffer_64(row); +} + +// Scale up down with bilinear interpolation. +void ScalePlaneBilinearUp(int src_width, int src_height, + int dst_width, int dst_height, + int src_stride, int dst_stride, + const uint8* src_ptr, uint8* dst_ptr, + enum FilterMode filtering) { + int j; + // Initial source x/y coordinate and step values as 16.16 fixed point. + int x = 0; + int y = 0; + int dx = 0; + int dy = 0; + const int max_y = (src_height - 1) << 16; + void (*InterpolateRow)(uint8* dst_ptr, const uint8* src_ptr, + ptrdiff_t src_stride, int dst_width, int source_y_fraction) = + InterpolateRow_C; + void (*ScaleFilterCols)(uint8* dst_ptr, const uint8* src_ptr, + int dst_width, int x, int dx) = + filtering ? ScaleFilterCols_C : ScaleCols_C; + ScaleSlope(src_width, src_height, dst_width, dst_height, filtering, + &x, &y, &dx, &dy); + src_width = Abs(src_width); + +#if defined(HAS_INTERPOLATEROW_SSSE3) + if (TestCpuFlag(kCpuHasSSSE3)) { + InterpolateRow = InterpolateRow_Any_SSSE3; + if (IS_ALIGNED(dst_width, 16)) { + InterpolateRow = InterpolateRow_SSSE3; + } + } +#endif +#if defined(HAS_INTERPOLATEROW_AVX2) + if (TestCpuFlag(kCpuHasAVX2)) { + InterpolateRow = InterpolateRow_Any_AVX2; + if (IS_ALIGNED(dst_width, 32)) { + InterpolateRow = InterpolateRow_AVX2; + } + } +#endif +#if defined(HAS_INTERPOLATEROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + InterpolateRow = InterpolateRow_Any_NEON; + if (IS_ALIGNED(dst_width, 16)) { + InterpolateRow = InterpolateRow_NEON; + } + } +#endif +#if defined(HAS_INTERPOLATEROW_DSPR2) + if (TestCpuFlag(kCpuHasDSPR2)) { + InterpolateRow = InterpolateRow_Any_DSPR2; + if (IS_ALIGNED(dst_width, 4)) { + InterpolateRow = InterpolateRow_DSPR2; + } + } +#endif + + if (filtering && src_width >= 32768) { + ScaleFilterCols = ScaleFilterCols64_C; + } +#if defined(HAS_SCALEFILTERCOLS_SSSE3) + if (filtering && TestCpuFlag(kCpuHasSSSE3) && src_width < 32768) { + ScaleFilterCols = ScaleFilterCols_SSSE3; + } +#endif +#if defined(HAS_SCALEFILTERCOLS_NEON) + if (filtering && TestCpuFlag(kCpuHasNEON) && src_width < 32768) { + ScaleFilterCols = ScaleFilterCols_Any_NEON; + if (IS_ALIGNED(dst_width, 8)) { + ScaleFilterCols = ScaleFilterCols_NEON; + } + } +#endif + if (!filtering && src_width * 2 == dst_width && x < 0x8000) { + ScaleFilterCols = ScaleColsUp2_C; +#if defined(HAS_SCALECOLS_SSE2) + if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(dst_width, 8)) { + ScaleFilterCols = ScaleColsUp2_SSE2; + } +#endif + } + + if (y > max_y) { + y = max_y; + } + { + int yi = y >> 16; + const uint8* src = src_ptr + yi * src_stride; + + // Allocate 2 row buffers. + const int kRowSize = (dst_width + 31) & ~31; + align_buffer_64(row, kRowSize * 2); + + uint8* rowptr = row; + int rowstride = kRowSize; + int lasty = yi; + + ScaleFilterCols(rowptr, src, dst_width, x, dx); + if (src_height > 1) { + src += src_stride; + } + ScaleFilterCols(rowptr + rowstride, src, dst_width, x, dx); + src += src_stride; + + for (j = 0; j < dst_height; ++j) { + yi = y >> 16; + if (yi != lasty) { + if (y > max_y) { + y = max_y; + yi = y >> 16; + src = src_ptr + yi * src_stride; + } + if (yi != lasty) { + ScaleFilterCols(rowptr, src, dst_width, x, dx); + rowptr += rowstride; + rowstride = -rowstride; + lasty = yi; + src += src_stride; + } + } + if (filtering == kFilterLinear) { + InterpolateRow(dst_ptr, rowptr, 0, dst_width, 0); + } else { + int yf = (y >> 8) & 255; + InterpolateRow(dst_ptr, rowptr, rowstride, dst_width, yf); + } + dst_ptr += dst_stride; + y += dy; + } + free_aligned_buffer_64(row); + } +} + +void ScalePlaneBilinearUp_16(int src_width, int src_height, + int dst_width, int dst_height, + int src_stride, int dst_stride, + const uint16* src_ptr, uint16* dst_ptr, + enum FilterMode filtering) { + int j; + // Initial source x/y coordinate and step values as 16.16 fixed point. + int x = 0; + int y = 0; + int dx = 0; + int dy = 0; + const int max_y = (src_height - 1) << 16; + void (*InterpolateRow)(uint16* dst_ptr, const uint16* src_ptr, + ptrdiff_t src_stride, int dst_width, int source_y_fraction) = + InterpolateRow_16_C; + void (*ScaleFilterCols)(uint16* dst_ptr, const uint16* src_ptr, + int dst_width, int x, int dx) = + filtering ? ScaleFilterCols_16_C : ScaleCols_16_C; + ScaleSlope(src_width, src_height, dst_width, dst_height, filtering, + &x, &y, &dx, &dy); + src_width = Abs(src_width); + +#if defined(HAS_INTERPOLATEROW_16_SSE2) + if (TestCpuFlag(kCpuHasSSE2)) { + InterpolateRow = InterpolateRow_Any_16_SSE2; + if (IS_ALIGNED(dst_width, 16)) { + InterpolateRow = InterpolateRow_16_SSE2; + } + } +#endif +#if defined(HAS_INTERPOLATEROW_16_SSSE3) + if (TestCpuFlag(kCpuHasSSSE3)) { + InterpolateRow = InterpolateRow_Any_16_SSSE3; + if (IS_ALIGNED(dst_width, 16)) { + InterpolateRow = InterpolateRow_16_SSSE3; + } + } +#endif +#if defined(HAS_INTERPOLATEROW_16_AVX2) + if (TestCpuFlag(kCpuHasAVX2)) { + InterpolateRow = InterpolateRow_Any_16_AVX2; + if (IS_ALIGNED(dst_width, 32)) { + InterpolateRow = InterpolateRow_16_AVX2; + } + } +#endif +#if defined(HAS_INTERPOLATEROW_16_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + InterpolateRow = InterpolateRow_Any_16_NEON; + if (IS_ALIGNED(dst_width, 16)) { + InterpolateRow = InterpolateRow_16_NEON; + } + } +#endif +#if defined(HAS_INTERPOLATEROW_16_DSPR2) + if (TestCpuFlag(kCpuHasDSPR2)) { + InterpolateRow = InterpolateRow_Any_16_DSPR2; + if (IS_ALIGNED(dst_width, 4)) { + InterpolateRow = InterpolateRow_16_DSPR2; + } + } +#endif + + if (filtering && src_width >= 32768) { + ScaleFilterCols = ScaleFilterCols64_16_C; + } +#if defined(HAS_SCALEFILTERCOLS_16_SSSE3) + if (filtering && TestCpuFlag(kCpuHasSSSE3) && src_width < 32768) { + ScaleFilterCols = ScaleFilterCols_16_SSSE3; + } +#endif + if (!filtering && src_width * 2 == dst_width && x < 0x8000) { + ScaleFilterCols = ScaleColsUp2_16_C; +#if defined(HAS_SCALECOLS_16_SSE2) + if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(dst_width, 8)) { + ScaleFilterCols = ScaleColsUp2_16_SSE2; + } +#endif + } + + if (y > max_y) { + y = max_y; + } + { + int yi = y >> 16; + const uint16* src = src_ptr + yi * src_stride; + + // Allocate 2 row buffers. + const int kRowSize = (dst_width + 31) & ~31; + align_buffer_64(row, kRowSize * 4); + + uint16* rowptr = (uint16*)row; + int rowstride = kRowSize; + int lasty = yi; + + ScaleFilterCols(rowptr, src, dst_width, x, dx); + if (src_height > 1) { + src += src_stride; + } + ScaleFilterCols(rowptr + rowstride, src, dst_width, x, dx); + src += src_stride; + + for (j = 0; j < dst_height; ++j) { + yi = y >> 16; + if (yi != lasty) { + if (y > max_y) { + y = max_y; + yi = y >> 16; + src = src_ptr + yi * src_stride; + } + if (yi != lasty) { + ScaleFilterCols(rowptr, src, dst_width, x, dx); + rowptr += rowstride; + rowstride = -rowstride; + lasty = yi; + src += src_stride; + } + } + if (filtering == kFilterLinear) { + InterpolateRow(dst_ptr, rowptr, 0, dst_width, 0); + } else { + int yf = (y >> 8) & 255; + InterpolateRow(dst_ptr, rowptr, rowstride, dst_width, yf); + } + dst_ptr += dst_stride; + y += dy; + } + free_aligned_buffer_64(row); + } +} + +// Scale Plane to/from any dimensions, without interpolation. +// Fixed point math is used for performance: The upper 16 bits +// of x and dx is the integer part of the source position and +// the lower 16 bits are the fixed decimal part. + +static void ScalePlaneSimple(int src_width, int src_height, + int dst_width, int dst_height, + int src_stride, int dst_stride, + const uint8* src_ptr, uint8* dst_ptr) { + int i; + void (*ScaleCols)(uint8* dst_ptr, const uint8* src_ptr, + int dst_width, int x, int dx) = ScaleCols_C; + // Initial source x/y coordinate and step values as 16.16 fixed point. + int x = 0; + int y = 0; + int dx = 0; + int dy = 0; + ScaleSlope(src_width, src_height, dst_width, dst_height, kFilterNone, + &x, &y, &dx, &dy); + src_width = Abs(src_width); + + if (src_width * 2 == dst_width && x < 0x8000) { + ScaleCols = ScaleColsUp2_C; +#if defined(HAS_SCALECOLS_SSE2) + if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(dst_width, 8)) { + ScaleCols = ScaleColsUp2_SSE2; + } +#endif + } + + for (i = 0; i < dst_height; ++i) { + ScaleCols(dst_ptr, src_ptr + (y >> 16) * src_stride, dst_width, x, dx); + dst_ptr += dst_stride; + y += dy; + } +} + +static void ScalePlaneSimple_16(int src_width, int src_height, + int dst_width, int dst_height, + int src_stride, int dst_stride, + const uint16* src_ptr, uint16* dst_ptr) { + int i; + void (*ScaleCols)(uint16* dst_ptr, const uint16* src_ptr, + int dst_width, int x, int dx) = ScaleCols_16_C; + // Initial source x/y coordinate and step values as 16.16 fixed point. + int x = 0; + int y = 0; + int dx = 0; + int dy = 0; + ScaleSlope(src_width, src_height, dst_width, dst_height, kFilterNone, + &x, &y, &dx, &dy); + src_width = Abs(src_width); + + if (src_width * 2 == dst_width && x < 0x8000) { + ScaleCols = ScaleColsUp2_16_C; +#if defined(HAS_SCALECOLS_16_SSE2) + if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(dst_width, 8)) { + ScaleCols = ScaleColsUp2_16_SSE2; + } +#endif + } + + for (i = 0; i < dst_height; ++i) { + ScaleCols(dst_ptr, src_ptr + (y >> 16) * src_stride, + dst_width, x, dx); + dst_ptr += dst_stride; + y += dy; + } +} + +// Scale a plane. +// This function dispatches to a specialized scaler based on scale factor. + +LIBYUV_API +void ScalePlane(const uint8* src, int src_stride, + int src_width, int src_height, + uint8* dst, int dst_stride, + int dst_width, int dst_height, + enum FilterMode filtering) { + // Simplify filtering when possible. + filtering = ScaleFilterReduce(src_width, src_height, + dst_width, dst_height, filtering); + + // Negative height means invert the image. + if (src_height < 0) { + src_height = -src_height; + src = src + (src_height - 1) * src_stride; + src_stride = -src_stride; + } + + // Use specialized scales to improve performance for common resolutions. + // For example, all the 1/2 scalings will use ScalePlaneDown2() + if (dst_width == src_width && dst_height == src_height) { + // Straight copy. + CopyPlane(src, src_stride, dst, dst_stride, dst_width, dst_height); + return; + } + if (dst_width == src_width && filtering != kFilterBox) { + int dy = FixedDiv(src_height, dst_height); + // Arbitrary scale vertically, but unscaled horizontally. + ScalePlaneVertical(src_height, + dst_width, dst_height, + src_stride, dst_stride, src, dst, + 0, 0, dy, 1, filtering); + return; + } + if (dst_width <= Abs(src_width) && dst_height <= src_height) { + // Scale down. + if (4 * dst_width == 3 * src_width && + 4 * dst_height == 3 * src_height) { + // optimized, 3/4 + ScalePlaneDown34(src_width, src_height, dst_width, dst_height, + src_stride, dst_stride, src, dst, filtering); + return; + } + if (2 * dst_width == src_width && 2 * dst_height == src_height) { + // optimized, 1/2 + ScalePlaneDown2(src_width, src_height, dst_width, dst_height, + src_stride, dst_stride, src, dst, filtering); + return; + } + // 3/8 rounded up for odd sized chroma height. + if (8 * dst_width == 3 * src_width && + dst_height == ((src_height * 3 + 7) / 8)) { + // optimized, 3/8 + ScalePlaneDown38(src_width, src_height, dst_width, dst_height, + src_stride, dst_stride, src, dst, filtering); + return; + } + if (4 * dst_width == src_width && 4 * dst_height == src_height && + (filtering == kFilterBox || filtering == kFilterNone)) { + // optimized, 1/4 + ScalePlaneDown4(src_width, src_height, dst_width, dst_height, + src_stride, dst_stride, src, dst, filtering); + return; + } + } + if (filtering == kFilterBox && dst_height * 2 < src_height) { + ScalePlaneBox(src_width, src_height, dst_width, dst_height, + src_stride, dst_stride, src, dst); + return; + } + if (filtering && dst_height > src_height) { + ScalePlaneBilinearUp(src_width, src_height, dst_width, dst_height, + src_stride, dst_stride, src, dst, filtering); + return; + } + if (filtering) { + ScalePlaneBilinearDown(src_width, src_height, dst_width, dst_height, + src_stride, dst_stride, src, dst, filtering); + return; + } + ScalePlaneSimple(src_width, src_height, dst_width, dst_height, + src_stride, dst_stride, src, dst); +} + +LIBYUV_API +void ScalePlane_16(const uint16* src, int src_stride, + int src_width, int src_height, + uint16* dst, int dst_stride, + int dst_width, int dst_height, + enum FilterMode filtering) { + // Simplify filtering when possible. + filtering = ScaleFilterReduce(src_width, src_height, + dst_width, dst_height, filtering); + + // Negative height means invert the image. + if (src_height < 0) { + src_height = -src_height; + src = src + (src_height - 1) * src_stride; + src_stride = -src_stride; + } + + // Use specialized scales to improve performance for common resolutions. + // For example, all the 1/2 scalings will use ScalePlaneDown2() + if (dst_width == src_width && dst_height == src_height) { + // Straight copy. + CopyPlane_16(src, src_stride, dst, dst_stride, dst_width, dst_height); + return; + } + if (dst_width == src_width) { + int dy = FixedDiv(src_height, dst_height); + // Arbitrary scale vertically, but unscaled vertically. + ScalePlaneVertical_16(src_height, + dst_width, dst_height, + src_stride, dst_stride, src, dst, + 0, 0, dy, 1, filtering); + return; + } + if (dst_width <= Abs(src_width) && dst_height <= src_height) { + // Scale down. + if (4 * dst_width == 3 * src_width && + 4 * dst_height == 3 * src_height) { + // optimized, 3/4 + ScalePlaneDown34_16(src_width, src_height, dst_width, dst_height, + src_stride, dst_stride, src, dst, filtering); + return; + } + if (2 * dst_width == src_width && 2 * dst_height == src_height) { + // optimized, 1/2 + ScalePlaneDown2_16(src_width, src_height, dst_width, dst_height, + src_stride, dst_stride, src, dst, filtering); + return; + } + // 3/8 rounded up for odd sized chroma height. + if (8 * dst_width == 3 * src_width && + dst_height == ((src_height * 3 + 7) / 8)) { + // optimized, 3/8 + ScalePlaneDown38_16(src_width, src_height, dst_width, dst_height, + src_stride, dst_stride, src, dst, filtering); + return; + } + if (4 * dst_width == src_width && 4 * dst_height == src_height && + filtering != kFilterBilinear) { + // optimized, 1/4 + ScalePlaneDown4_16(src_width, src_height, dst_width, dst_height, + src_stride, dst_stride, src, dst, filtering); + return; + } + } + if (filtering == kFilterBox && dst_height * 2 < src_height) { + ScalePlaneBox_16(src_width, src_height, dst_width, dst_height, + src_stride, dst_stride, src, dst); + return; + } + if (filtering && dst_height > src_height) { + ScalePlaneBilinearUp_16(src_width, src_height, dst_width, dst_height, + src_stride, dst_stride, src, dst, filtering); + return; + } + if (filtering) { + ScalePlaneBilinearDown_16(src_width, src_height, dst_width, dst_height, + src_stride, dst_stride, src, dst, filtering); + return; + } + ScalePlaneSimple_16(src_width, src_height, dst_width, dst_height, + src_stride, dst_stride, src, dst); +} + +// Scale an I420 image. +// This function in turn calls a scaling function for each plane. + +LIBYUV_API +int I420Scale(const uint8* src_y, int src_stride_y, + const uint8* src_u, int src_stride_u, + const uint8* src_v, int src_stride_v, + int src_width, int src_height, + uint8* dst_y, int dst_stride_y, + uint8* dst_u, int dst_stride_u, + uint8* dst_v, int dst_stride_v, + int dst_width, int dst_height, + enum FilterMode filtering) { + int src_halfwidth = SUBSAMPLE(src_width, 1, 1); + int src_halfheight = SUBSAMPLE(src_height, 1, 1); + int dst_halfwidth = SUBSAMPLE(dst_width, 1, 1); + int dst_halfheight = SUBSAMPLE(dst_height, 1, 1); + if (!src_y || !src_u || !src_v || src_width == 0 || src_height == 0 || + src_width > 32768 || src_height > 32768 || + !dst_y || !dst_u || !dst_v || dst_width <= 0 || dst_height <= 0) { + return -1; + } + + ScalePlane(src_y, src_stride_y, src_width, src_height, + dst_y, dst_stride_y, dst_width, dst_height, + filtering); + ScalePlane(src_u, src_stride_u, src_halfwidth, src_halfheight, + dst_u, dst_stride_u, dst_halfwidth, dst_halfheight, + filtering); + ScalePlane(src_v, src_stride_v, src_halfwidth, src_halfheight, + dst_v, dst_stride_v, dst_halfwidth, dst_halfheight, + filtering); + return 0; +} + +LIBYUV_API +int I420Scale_16(const uint16* src_y, int src_stride_y, + const uint16* src_u, int src_stride_u, + const uint16* src_v, int src_stride_v, + int src_width, int src_height, + uint16* dst_y, int dst_stride_y, + uint16* dst_u, int dst_stride_u, + uint16* dst_v, int dst_stride_v, + int dst_width, int dst_height, + enum FilterMode filtering) { + int src_halfwidth = SUBSAMPLE(src_width, 1, 1); + int src_halfheight = SUBSAMPLE(src_height, 1, 1); + int dst_halfwidth = SUBSAMPLE(dst_width, 1, 1); + int dst_halfheight = SUBSAMPLE(dst_height, 1, 1); + if (!src_y || !src_u || !src_v || src_width == 0 || src_height == 0 || + src_width > 32768 || src_height > 32768 || + !dst_y || !dst_u || !dst_v || dst_width <= 0 || dst_height <= 0) { + return -1; + } + + ScalePlane_16(src_y, src_stride_y, src_width, src_height, + dst_y, dst_stride_y, dst_width, dst_height, + filtering); + ScalePlane_16(src_u, src_stride_u, src_halfwidth, src_halfheight, + dst_u, dst_stride_u, dst_halfwidth, dst_halfheight, + filtering); + ScalePlane_16(src_v, src_stride_v, src_halfwidth, src_halfheight, + dst_v, dst_stride_v, dst_halfwidth, dst_halfheight, + filtering); + return 0; +} + +// Deprecated api +LIBYUV_API +int Scale(const uint8* src_y, const uint8* src_u, const uint8* src_v, + int src_stride_y, int src_stride_u, int src_stride_v, + int src_width, int src_height, + uint8* dst_y, uint8* dst_u, uint8* dst_v, + int dst_stride_y, int dst_stride_u, int dst_stride_v, + int dst_width, int dst_height, + LIBYUV_BOOL interpolate) { + return I420Scale(src_y, src_stride_y, + src_u, src_stride_u, + src_v, src_stride_v, + src_width, src_height, + dst_y, dst_stride_y, + dst_u, dst_stride_u, + dst_v, dst_stride_v, + dst_width, dst_height, + interpolate ? kFilterBox : kFilterNone); +} + +// Deprecated api +LIBYUV_API +int ScaleOffset(const uint8* src, int src_width, int src_height, + uint8* dst, int dst_width, int dst_height, int dst_yoffset, + LIBYUV_BOOL interpolate) { + // Chroma requires offset to multiple of 2. + int dst_yoffset_even = dst_yoffset & ~1; + int src_halfwidth = SUBSAMPLE(src_width, 1, 1); + int src_halfheight = SUBSAMPLE(src_height, 1, 1); + int dst_halfwidth = SUBSAMPLE(dst_width, 1, 1); + int dst_halfheight = SUBSAMPLE(dst_height, 1, 1); + int aheight = dst_height - dst_yoffset_even * 2; // actual output height + const uint8* src_y = src; + const uint8* src_u = src + src_width * src_height; + const uint8* src_v = src + src_width * src_height + + src_halfwidth * src_halfheight; + uint8* dst_y = dst + dst_yoffset_even * dst_width; + uint8* dst_u = dst + dst_width * dst_height + + (dst_yoffset_even >> 1) * dst_halfwidth; + uint8* dst_v = dst + dst_width * dst_height + dst_halfwidth * dst_halfheight + + (dst_yoffset_even >> 1) * dst_halfwidth; + if (!src || src_width <= 0 || src_height <= 0 || + !dst || dst_width <= 0 || dst_height <= 0 || dst_yoffset_even < 0 || + dst_yoffset_even >= dst_height) { + return -1; + } + return I420Scale(src_y, src_width, + src_u, src_halfwidth, + src_v, src_halfwidth, + src_width, src_height, + dst_y, dst_width, + dst_u, dst_halfwidth, + dst_v, dst_halfwidth, + dst_width, aheight, + interpolate ? kFilterBox : kFilterNone); +} + +#ifdef __cplusplus +} // extern "C" +} // namespace libyuv +#endif diff --git a/third_party/libyuv/source/scale_any.cc b/third_party/libyuv/source/scale_any.cc new file mode 100644 index 0000000..ed76a9e --- /dev/null +++ b/third_party/libyuv/source/scale_any.cc @@ -0,0 +1,221 @@ +/* + * Copyright 2015 The LibYuv Project Authors. All rights reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "libyuv/scale.h" +#include "libyuv/scale_row.h" + +#include "libyuv/basic_types.h" + +#ifdef __cplusplus +namespace libyuv { +extern "C" { +#endif + +// Definition for ScaleFilterCols, ScaleARGBCols and ScaleARGBFilterCols +#define CANY(NAMEANY, TERP_SIMD, TERP_C, BPP, MASK) \ + void NAMEANY(uint8* dst_ptr, const uint8* src_ptr, \ + int dst_width, int x, int dx) { \ + int n = dst_width & ~MASK; \ + if (n > 0) { \ + TERP_SIMD(dst_ptr, src_ptr, n, x, dx); \ + } \ + TERP_C(dst_ptr + n * BPP, src_ptr, \ + dst_width & MASK, x + n * dx, dx); \ + } + +#ifdef HAS_SCALEFILTERCOLS_NEON +CANY(ScaleFilterCols_Any_NEON, ScaleFilterCols_NEON, ScaleFilterCols_C, 1, 7) +#endif +#ifdef HAS_SCALEARGBCOLS_NEON +CANY(ScaleARGBCols_Any_NEON, ScaleARGBCols_NEON, ScaleARGBCols_C, 4, 7) +#endif +#ifdef HAS_SCALEARGBFILTERCOLS_NEON +CANY(ScaleARGBFilterCols_Any_NEON, ScaleARGBFilterCols_NEON, + ScaleARGBFilterCols_C, 4, 3) +#endif +#undef CANY + +// Fixed scale down. +#define SDANY(NAMEANY, SCALEROWDOWN_SIMD, SCALEROWDOWN_C, FACTOR, BPP, MASK) \ + void NAMEANY(const uint8* src_ptr, ptrdiff_t src_stride, \ + uint8* dst_ptr, int dst_width) { \ + int r = (int)((unsigned int)dst_width % (MASK + 1)); \ + int n = dst_width - r; \ + if (n > 0) { \ + SCALEROWDOWN_SIMD(src_ptr, src_stride, dst_ptr, n); \ + } \ + SCALEROWDOWN_C(src_ptr + (n * FACTOR) * BPP, src_stride, \ + dst_ptr + n * BPP, r); \ + } + +// Fixed scale down for odd source width. Used by I420Blend subsampling. +// Since dst_width is (width + 1) / 2, this function scales one less pixel +// and copies the last pixel. +#define SDODD(NAMEANY, SCALEROWDOWN_SIMD, SCALEROWDOWN_C, FACTOR, BPP, MASK) \ + void NAMEANY(const uint8* src_ptr, ptrdiff_t src_stride, \ + uint8* dst_ptr, int dst_width) { \ + int r = (int)((unsigned int)(dst_width - 1) % (MASK + 1)); \ + int n = dst_width - r; \ + if (n > 0) { \ + SCALEROWDOWN_SIMD(src_ptr, src_stride, dst_ptr, n); \ + } \ + SCALEROWDOWN_C(src_ptr + (n * FACTOR) * BPP, src_stride, \ + dst_ptr + n * BPP, r); \ + } + +#ifdef HAS_SCALEROWDOWN2_SSSE3 +SDANY(ScaleRowDown2_Any_SSSE3, ScaleRowDown2_SSSE3, ScaleRowDown2_C, 2, 1, 15) +SDANY(ScaleRowDown2Linear_Any_SSSE3, ScaleRowDown2Linear_SSSE3, + ScaleRowDown2Linear_C, 2, 1, 15) +SDANY(ScaleRowDown2Box_Any_SSSE3, ScaleRowDown2Box_SSSE3, ScaleRowDown2Box_C, + 2, 1, 15) +SDODD(ScaleRowDown2Box_Odd_SSSE3, ScaleRowDown2Box_SSSE3, + ScaleRowDown2Box_Odd_C, 2, 1, 15) +#endif +#ifdef HAS_SCALEROWDOWN2_AVX2 +SDANY(ScaleRowDown2_Any_AVX2, ScaleRowDown2_AVX2, ScaleRowDown2_C, 2, 1, 31) +SDANY(ScaleRowDown2Linear_Any_AVX2, ScaleRowDown2Linear_AVX2, + ScaleRowDown2Linear_C, 2, 1, 31) +SDANY(ScaleRowDown2Box_Any_AVX2, ScaleRowDown2Box_AVX2, ScaleRowDown2Box_C, + 2, 1, 31) +SDODD(ScaleRowDown2Box_Odd_AVX2, ScaleRowDown2Box_AVX2, ScaleRowDown2Box_Odd_C, + 2, 1, 31) +#endif +#ifdef HAS_SCALEROWDOWN2_NEON +SDANY(ScaleRowDown2_Any_NEON, ScaleRowDown2_NEON, ScaleRowDown2_C, 2, 1, 15) +SDANY(ScaleRowDown2Linear_Any_NEON, ScaleRowDown2Linear_NEON, + ScaleRowDown2Linear_C, 2, 1, 15) +SDANY(ScaleRowDown2Box_Any_NEON, ScaleRowDown2Box_NEON, + ScaleRowDown2Box_C, 2, 1, 15) +SDODD(ScaleRowDown2Box_Odd_NEON, ScaleRowDown2Box_NEON, + ScaleRowDown2Box_Odd_C, 2, 1, 15) +#endif +#ifdef HAS_SCALEROWDOWN4_SSSE3 +SDANY(ScaleRowDown4_Any_SSSE3, ScaleRowDown4_SSSE3, ScaleRowDown4_C, 4, 1, 7) +SDANY(ScaleRowDown4Box_Any_SSSE3, ScaleRowDown4Box_SSSE3, ScaleRowDown4Box_C, + 4, 1, 7) +#endif +#ifdef HAS_SCALEROWDOWN4_AVX2 +SDANY(ScaleRowDown4_Any_AVX2, ScaleRowDown4_AVX2, ScaleRowDown4_C, 4, 1, 15) +SDANY(ScaleRowDown4Box_Any_AVX2, ScaleRowDown4Box_AVX2, ScaleRowDown4Box_C, + 4, 1, 15) +#endif +#ifdef HAS_SCALEROWDOWN4_NEON +SDANY(ScaleRowDown4_Any_NEON, ScaleRowDown4_NEON, ScaleRowDown4_C, 4, 1, 7) +SDANY(ScaleRowDown4Box_Any_NEON, ScaleRowDown4Box_NEON, ScaleRowDown4Box_C, + 4, 1, 7) +#endif +#ifdef HAS_SCALEROWDOWN34_SSSE3 +SDANY(ScaleRowDown34_Any_SSSE3, ScaleRowDown34_SSSE3, + ScaleRowDown34_C, 4 / 3, 1, 23) +SDANY(ScaleRowDown34_0_Box_Any_SSSE3, ScaleRowDown34_0_Box_SSSE3, + ScaleRowDown34_0_Box_C, 4 / 3, 1, 23) +SDANY(ScaleRowDown34_1_Box_Any_SSSE3, ScaleRowDown34_1_Box_SSSE3, + ScaleRowDown34_1_Box_C, 4 / 3, 1, 23) +#endif +#ifdef HAS_SCALEROWDOWN34_NEON +SDANY(ScaleRowDown34_Any_NEON, ScaleRowDown34_NEON, + ScaleRowDown34_C, 4 / 3, 1, 23) +SDANY(ScaleRowDown34_0_Box_Any_NEON, ScaleRowDown34_0_Box_NEON, + ScaleRowDown34_0_Box_C, 4 / 3, 1, 23) +SDANY(ScaleRowDown34_1_Box_Any_NEON, ScaleRowDown34_1_Box_NEON, + ScaleRowDown34_1_Box_C, 4 / 3, 1, 23) +#endif +#ifdef HAS_SCALEROWDOWN38_SSSE3 +SDANY(ScaleRowDown38_Any_SSSE3, ScaleRowDown38_SSSE3, + ScaleRowDown38_C, 8 / 3, 1, 11) +SDANY(ScaleRowDown38_3_Box_Any_SSSE3, ScaleRowDown38_3_Box_SSSE3, + ScaleRowDown38_3_Box_C, 8 / 3, 1, 5) +SDANY(ScaleRowDown38_2_Box_Any_SSSE3, ScaleRowDown38_2_Box_SSSE3, + ScaleRowDown38_2_Box_C, 8 / 3, 1, 5) +#endif +#ifdef HAS_SCALEROWDOWN38_NEON +SDANY(ScaleRowDown38_Any_NEON, ScaleRowDown38_NEON, + ScaleRowDown38_C, 8 / 3, 1, 11) +SDANY(ScaleRowDown38_3_Box_Any_NEON, ScaleRowDown38_3_Box_NEON, + ScaleRowDown38_3_Box_C, 8 / 3, 1, 11) +SDANY(ScaleRowDown38_2_Box_Any_NEON, ScaleRowDown38_2_Box_NEON, + ScaleRowDown38_2_Box_C, 8 / 3, 1, 11) +#endif + +#ifdef HAS_SCALEARGBROWDOWN2_SSE2 +SDANY(ScaleARGBRowDown2_Any_SSE2, ScaleARGBRowDown2_SSE2, + ScaleARGBRowDown2_C, 2, 4, 3) +SDANY(ScaleARGBRowDown2Linear_Any_SSE2, ScaleARGBRowDown2Linear_SSE2, + ScaleARGBRowDown2Linear_C, 2, 4, 3) +SDANY(ScaleARGBRowDown2Box_Any_SSE2, ScaleARGBRowDown2Box_SSE2, + ScaleARGBRowDown2Box_C, 2, 4, 3) +#endif +#ifdef HAS_SCALEARGBROWDOWN2_NEON +SDANY(ScaleARGBRowDown2_Any_NEON, ScaleARGBRowDown2_NEON, + ScaleARGBRowDown2_C, 2, 4, 7) +SDANY(ScaleARGBRowDown2Linear_Any_NEON, ScaleARGBRowDown2Linear_NEON, + ScaleARGBRowDown2Linear_C, 2, 4, 7) +SDANY(ScaleARGBRowDown2Box_Any_NEON, ScaleARGBRowDown2Box_NEON, + ScaleARGBRowDown2Box_C, 2, 4, 7) +#endif +#undef SDANY + +// Scale down by even scale factor. +#define SDAANY(NAMEANY, SCALEROWDOWN_SIMD, SCALEROWDOWN_C, BPP, MASK) \ + void NAMEANY(const uint8* src_ptr, ptrdiff_t src_stride, int src_stepx, \ + uint8* dst_ptr, int dst_width) { \ + int r = (int)((unsigned int)dst_width % (MASK + 1)); \ + int n = dst_width - r; \ + if (n > 0) { \ + SCALEROWDOWN_SIMD(src_ptr, src_stride, src_stepx, dst_ptr, n); \ + } \ + SCALEROWDOWN_C(src_ptr + (n * src_stepx) * BPP, src_stride, \ + src_stepx, dst_ptr + n * BPP, r); \ + } + +#ifdef HAS_SCALEARGBROWDOWNEVEN_SSE2 +SDAANY(ScaleARGBRowDownEven_Any_SSE2, ScaleARGBRowDownEven_SSE2, + ScaleARGBRowDownEven_C, 4, 3) +SDAANY(ScaleARGBRowDownEvenBox_Any_SSE2, ScaleARGBRowDownEvenBox_SSE2, + ScaleARGBRowDownEvenBox_C, 4, 3) +#endif +#ifdef HAS_SCALEARGBROWDOWNEVEN_NEON +SDAANY(ScaleARGBRowDownEven_Any_NEON, ScaleARGBRowDownEven_NEON, + ScaleARGBRowDownEven_C, 4, 3) +SDAANY(ScaleARGBRowDownEvenBox_Any_NEON, ScaleARGBRowDownEvenBox_NEON, + ScaleARGBRowDownEvenBox_C, 4, 3) +#endif + +// Add rows box filter scale down. +#define SAANY(NAMEANY, SCALEADDROW_SIMD, SCALEADDROW_C, MASK) \ + void NAMEANY(const uint8* src_ptr, uint16* dst_ptr, int src_width) { \ + int n = src_width & ~MASK; \ + if (n > 0) { \ + SCALEADDROW_SIMD(src_ptr, dst_ptr, n); \ + } \ + SCALEADDROW_C(src_ptr + n, dst_ptr + n, src_width & MASK); \ + } + +#ifdef HAS_SCALEADDROW_SSE2 +SAANY(ScaleAddRow_Any_SSE2, ScaleAddRow_SSE2, ScaleAddRow_C, 15) +#endif +#ifdef HAS_SCALEADDROW_AVX2 +SAANY(ScaleAddRow_Any_AVX2, ScaleAddRow_AVX2, ScaleAddRow_C, 31) +#endif +#ifdef HAS_SCALEADDROW_NEON +SAANY(ScaleAddRow_Any_NEON, ScaleAddRow_NEON, ScaleAddRow_C, 15) +#endif +#undef SAANY + +#ifdef __cplusplus +} // extern "C" +} // namespace libyuv +#endif + + + + + diff --git a/third_party/libyuv/source/scale_argb.cc b/third_party/libyuv/source/scale_argb.cc new file mode 100644 index 0000000..17f51ae --- /dev/null +++ b/third_party/libyuv/source/scale_argb.cc @@ -0,0 +1,859 @@ +/* + * Copyright 2011 The LibYuv Project Authors. All rights reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "libyuv/scale.h" + +#include +#include + +#include "libyuv/cpu_id.h" +#include "libyuv/planar_functions.h" // For CopyARGB +#include "libyuv/row.h" +#include "libyuv/scale_row.h" + +#ifdef __cplusplus +namespace libyuv { +extern "C" { +#endif + +static __inline int Abs(int v) { + return v >= 0 ? v : -v; +} + +// ScaleARGB ARGB, 1/2 +// This is an optimized version for scaling down a ARGB to 1/2 of +// its original size. +static void ScaleARGBDown2(int src_width, int src_height, + int dst_width, int dst_height, + int src_stride, int dst_stride, + const uint8* src_argb, uint8* dst_argb, + int x, int dx, int y, int dy, + enum FilterMode filtering) { + int j; + int row_stride = src_stride * (dy >> 16); + void (*ScaleARGBRowDown2)(const uint8* src_argb, ptrdiff_t src_stride, + uint8* dst_argb, int dst_width) = + filtering == kFilterNone ? ScaleARGBRowDown2_C : + (filtering == kFilterLinear ? ScaleARGBRowDown2Linear_C : + ScaleARGBRowDown2Box_C); + assert(dx == 65536 * 2); // Test scale factor of 2. + assert((dy & 0x1ffff) == 0); // Test vertical scale is multiple of 2. + // Advance to odd row, even column. + if (filtering == kFilterBilinear) { + src_argb += (y >> 16) * src_stride + (x >> 16) * 4; + } else { + src_argb += (y >> 16) * src_stride + ((x >> 16) - 1) * 4; + } + +#if defined(HAS_SCALEARGBROWDOWN2_SSE2) + if (TestCpuFlag(kCpuHasSSE2)) { + ScaleARGBRowDown2 = filtering == kFilterNone ? ScaleARGBRowDown2_Any_SSE2 : + (filtering == kFilterLinear ? ScaleARGBRowDown2Linear_Any_SSE2 : + ScaleARGBRowDown2Box_Any_SSE2); + if (IS_ALIGNED(dst_width, 4)) { + ScaleARGBRowDown2 = filtering == kFilterNone ? ScaleARGBRowDown2_SSE2 : + (filtering == kFilterLinear ? ScaleARGBRowDown2Linear_SSE2 : + ScaleARGBRowDown2Box_SSE2); + } + } +#endif +#if defined(HAS_SCALEARGBROWDOWN2_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + ScaleARGBRowDown2 = filtering == kFilterNone ? ScaleARGBRowDown2_Any_NEON : + (filtering == kFilterLinear ? ScaleARGBRowDown2Linear_Any_NEON : + ScaleARGBRowDown2Box_Any_NEON); + if (IS_ALIGNED(dst_width, 8)) { + ScaleARGBRowDown2 = filtering == kFilterNone ? ScaleARGBRowDown2_NEON : + (filtering == kFilterLinear ? ScaleARGBRowDown2Linear_NEON : + ScaleARGBRowDown2Box_NEON); + } + } +#endif + + if (filtering == kFilterLinear) { + src_stride = 0; + } + for (j = 0; j < dst_height; ++j) { + ScaleARGBRowDown2(src_argb, src_stride, dst_argb, dst_width); + src_argb += row_stride; + dst_argb += dst_stride; + } +} + +// ScaleARGB ARGB, 1/4 +// This is an optimized version for scaling down a ARGB to 1/4 of +// its original size. +static void ScaleARGBDown4Box(int src_width, int src_height, + int dst_width, int dst_height, + int src_stride, int dst_stride, + const uint8* src_argb, uint8* dst_argb, + int x, int dx, int y, int dy) { + int j; + // Allocate 2 rows of ARGB. + const int kRowSize = (dst_width * 2 * 4 + 31) & ~31; + align_buffer_64(row, kRowSize * 2); + int row_stride = src_stride * (dy >> 16); + void (*ScaleARGBRowDown2)(const uint8* src_argb, ptrdiff_t src_stride, + uint8* dst_argb, int dst_width) = ScaleARGBRowDown2Box_C; + // Advance to odd row, even column. + src_argb += (y >> 16) * src_stride + (x >> 16) * 4; + assert(dx == 65536 * 4); // Test scale factor of 4. + assert((dy & 0x3ffff) == 0); // Test vertical scale is multiple of 4. +#if defined(HAS_SCALEARGBROWDOWN2_SSE2) + if (TestCpuFlag(kCpuHasSSE2)) { + ScaleARGBRowDown2 = ScaleARGBRowDown2Box_Any_SSE2; + if (IS_ALIGNED(dst_width, 4)) { + ScaleARGBRowDown2 = ScaleARGBRowDown2Box_SSE2; + } + } +#endif +#if defined(HAS_SCALEARGBROWDOWN2_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + ScaleARGBRowDown2 = ScaleARGBRowDown2Box_Any_NEON; + if (IS_ALIGNED(dst_width, 8)) { + ScaleARGBRowDown2 = ScaleARGBRowDown2Box_NEON; + } + } +#endif + + for (j = 0; j < dst_height; ++j) { + ScaleARGBRowDown2(src_argb, src_stride, row, dst_width * 2); + ScaleARGBRowDown2(src_argb + src_stride * 2, src_stride, + row + kRowSize, dst_width * 2); + ScaleARGBRowDown2(row, kRowSize, dst_argb, dst_width); + src_argb += row_stride; + dst_argb += dst_stride; + } + free_aligned_buffer_64(row); +} + +// ScaleARGB ARGB Even +// This is an optimized version for scaling down a ARGB to even +// multiple of its original size. +static void ScaleARGBDownEven(int src_width, int src_height, + int dst_width, int dst_height, + int src_stride, int dst_stride, + const uint8* src_argb, uint8* dst_argb, + int x, int dx, int y, int dy, + enum FilterMode filtering) { + int j; + int col_step = dx >> 16; + int row_stride = (dy >> 16) * src_stride; + void (*ScaleARGBRowDownEven)(const uint8* src_argb, ptrdiff_t src_stride, + int src_step, uint8* dst_argb, int dst_width) = + filtering ? ScaleARGBRowDownEvenBox_C : ScaleARGBRowDownEven_C; + assert(IS_ALIGNED(src_width, 2)); + assert(IS_ALIGNED(src_height, 2)); + src_argb += (y >> 16) * src_stride + (x >> 16) * 4; +#if defined(HAS_SCALEARGBROWDOWNEVEN_SSE2) + if (TestCpuFlag(kCpuHasSSE2)) { + ScaleARGBRowDownEven = filtering ? ScaleARGBRowDownEvenBox_Any_SSE2 : + ScaleARGBRowDownEven_Any_SSE2; + if (IS_ALIGNED(dst_width, 4)) { + ScaleARGBRowDownEven = filtering ? ScaleARGBRowDownEvenBox_SSE2 : + ScaleARGBRowDownEven_SSE2; + } + } +#endif +#if defined(HAS_SCALEARGBROWDOWNEVEN_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + ScaleARGBRowDownEven = filtering ? ScaleARGBRowDownEvenBox_Any_NEON : + ScaleARGBRowDownEven_Any_NEON; + if (IS_ALIGNED(dst_width, 4)) { + ScaleARGBRowDownEven = filtering ? ScaleARGBRowDownEvenBox_NEON : + ScaleARGBRowDownEven_NEON; + } + } +#endif + + if (filtering == kFilterLinear) { + src_stride = 0; + } + for (j = 0; j < dst_height; ++j) { + ScaleARGBRowDownEven(src_argb, src_stride, col_step, dst_argb, dst_width); + src_argb += row_stride; + dst_argb += dst_stride; + } +} + +// Scale ARGB down with bilinear interpolation. +static void ScaleARGBBilinearDown(int src_width, int src_height, + int dst_width, int dst_height, + int src_stride, int dst_stride, + const uint8* src_argb, uint8* dst_argb, + int x, int dx, int y, int dy, + enum FilterMode filtering) { + int j; + void (*InterpolateRow)(uint8* dst_argb, const uint8* src_argb, + ptrdiff_t src_stride, int dst_width, int source_y_fraction) = + InterpolateRow_C; + void (*ScaleARGBFilterCols)(uint8* dst_argb, const uint8* src_argb, + int dst_width, int x, int dx) = + (src_width >= 32768) ? ScaleARGBFilterCols64_C : ScaleARGBFilterCols_C; + int64 xlast = x + (int64)(dst_width - 1) * dx; + int64 xl = (dx >= 0) ? x : xlast; + int64 xr = (dx >= 0) ? xlast : x; + int clip_src_width; + xl = (xl >> 16) & ~3; // Left edge aligned. + xr = (xr >> 16) + 1; // Right most pixel used. Bilinear uses 2 pixels. + xr = (xr + 1 + 3) & ~3; // 1 beyond 4 pixel aligned right most pixel. + if (xr > src_width) { + xr = src_width; + } + clip_src_width = (int)(xr - xl) * 4; // Width aligned to 4. + src_argb += xl * 4; + x -= (int)(xl << 16); +#if defined(HAS_INTERPOLATEROW_SSSE3) + if (TestCpuFlag(kCpuHasSSSE3)) { + InterpolateRow = InterpolateRow_Any_SSSE3; + if (IS_ALIGNED(clip_src_width, 16)) { + InterpolateRow = InterpolateRow_SSSE3; + } + } +#endif +#if defined(HAS_INTERPOLATEROW_AVX2) + if (TestCpuFlag(kCpuHasAVX2)) { + InterpolateRow = InterpolateRow_Any_AVX2; + if (IS_ALIGNED(clip_src_width, 32)) { + InterpolateRow = InterpolateRow_AVX2; + } + } +#endif +#if defined(HAS_INTERPOLATEROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + InterpolateRow = InterpolateRow_Any_NEON; + if (IS_ALIGNED(clip_src_width, 16)) { + InterpolateRow = InterpolateRow_NEON; + } + } +#endif +#if defined(HAS_INTERPOLATEROW_DSPR2) + if (TestCpuFlag(kCpuHasDSPR2) && + IS_ALIGNED(src_argb, 4) && IS_ALIGNED(src_stride, 4)) { + InterpolateRow = InterpolateRow_Any_DSPR2; + if (IS_ALIGNED(clip_src_width, 4)) { + InterpolateRow = InterpolateRow_DSPR2; + } + } +#endif +#if defined(HAS_SCALEARGBFILTERCOLS_SSSE3) + if (TestCpuFlag(kCpuHasSSSE3) && src_width < 32768) { + ScaleARGBFilterCols = ScaleARGBFilterCols_SSSE3; + } +#endif +#if defined(HAS_SCALEARGBFILTERCOLS_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + ScaleARGBFilterCols = ScaleARGBFilterCols_Any_NEON; + if (IS_ALIGNED(dst_width, 4)) { + ScaleARGBFilterCols = ScaleARGBFilterCols_NEON; + } + } +#endif + // TODO(fbarchard): Consider not allocating row buffer for kFilterLinear. + // Allocate a row of ARGB. + { + align_buffer_64(row, clip_src_width * 4); + + const int max_y = (src_height - 1) << 16; + if (y > max_y) { + y = max_y; + } + for (j = 0; j < dst_height; ++j) { + int yi = y >> 16; + const uint8* src = src_argb + yi * src_stride; + if (filtering == kFilterLinear) { + ScaleARGBFilterCols(dst_argb, src, dst_width, x, dx); + } else { + int yf = (y >> 8) & 255; + InterpolateRow(row, src, src_stride, clip_src_width, yf); + ScaleARGBFilterCols(dst_argb, row, dst_width, x, dx); + } + dst_argb += dst_stride; + y += dy; + if (y > max_y) { + y = max_y; + } + } + free_aligned_buffer_64(row); + } +} + +// Scale ARGB up with bilinear interpolation. +static void ScaleARGBBilinearUp(int src_width, int src_height, + int dst_width, int dst_height, + int src_stride, int dst_stride, + const uint8* src_argb, uint8* dst_argb, + int x, int dx, int y, int dy, + enum FilterMode filtering) { + int j; + void (*InterpolateRow)(uint8* dst_argb, const uint8* src_argb, + ptrdiff_t src_stride, int dst_width, int source_y_fraction) = + InterpolateRow_C; + void (*ScaleARGBFilterCols)(uint8* dst_argb, const uint8* src_argb, + int dst_width, int x, int dx) = + filtering ? ScaleARGBFilterCols_C : ScaleARGBCols_C; + const int max_y = (src_height - 1) << 16; +#if defined(HAS_INTERPOLATEROW_SSSE3) + if (TestCpuFlag(kCpuHasSSSE3)) { + InterpolateRow = InterpolateRow_Any_SSSE3; + if (IS_ALIGNED(dst_width, 4)) { + InterpolateRow = InterpolateRow_SSSE3; + } + } +#endif +#if defined(HAS_INTERPOLATEROW_AVX2) + if (TestCpuFlag(kCpuHasAVX2)) { + InterpolateRow = InterpolateRow_Any_AVX2; + if (IS_ALIGNED(dst_width, 8)) { + InterpolateRow = InterpolateRow_AVX2; + } + } +#endif +#if defined(HAS_INTERPOLATEROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + InterpolateRow = InterpolateRow_Any_NEON; + if (IS_ALIGNED(dst_width, 4)) { + InterpolateRow = InterpolateRow_NEON; + } + } +#endif +#if defined(HAS_INTERPOLATEROW_DSPR2) + if (TestCpuFlag(kCpuHasDSPR2) && + IS_ALIGNED(dst_argb, 4) && IS_ALIGNED(dst_stride, 4)) { + InterpolateRow = InterpolateRow_DSPR2; + } +#endif + if (src_width >= 32768) { + ScaleARGBFilterCols = filtering ? + ScaleARGBFilterCols64_C : ScaleARGBCols64_C; + } +#if defined(HAS_SCALEARGBFILTERCOLS_SSSE3) + if (filtering && TestCpuFlag(kCpuHasSSSE3) && src_width < 32768) { + ScaleARGBFilterCols = ScaleARGBFilterCols_SSSE3; + } +#endif +#if defined(HAS_SCALEARGBFILTERCOLS_NEON) + if (filtering && TestCpuFlag(kCpuHasNEON)) { + ScaleARGBFilterCols = ScaleARGBFilterCols_Any_NEON; + if (IS_ALIGNED(dst_width, 4)) { + ScaleARGBFilterCols = ScaleARGBFilterCols_NEON; + } + } +#endif +#if defined(HAS_SCALEARGBCOLS_SSE2) + if (!filtering && TestCpuFlag(kCpuHasSSE2) && src_width < 32768) { + ScaleARGBFilterCols = ScaleARGBCols_SSE2; + } +#endif +#if defined(HAS_SCALEARGBCOLS_NEON) + if (!filtering && TestCpuFlag(kCpuHasNEON)) { + ScaleARGBFilterCols = ScaleARGBCols_Any_NEON; + if (IS_ALIGNED(dst_width, 8)) { + ScaleARGBFilterCols = ScaleARGBCols_NEON; + } + } +#endif + if (!filtering && src_width * 2 == dst_width && x < 0x8000) { + ScaleARGBFilterCols = ScaleARGBColsUp2_C; +#if defined(HAS_SCALEARGBCOLSUP2_SSE2) + if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(dst_width, 8)) { + ScaleARGBFilterCols = ScaleARGBColsUp2_SSE2; + } +#endif + } + + if (y > max_y) { + y = max_y; + } + + { + int yi = y >> 16; + const uint8* src = src_argb + yi * src_stride; + + // Allocate 2 rows of ARGB. + const int kRowSize = (dst_width * 4 + 31) & ~31; + align_buffer_64(row, kRowSize * 2); + + uint8* rowptr = row; + int rowstride = kRowSize; + int lasty = yi; + + ScaleARGBFilterCols(rowptr, src, dst_width, x, dx); + if (src_height > 1) { + src += src_stride; + } + ScaleARGBFilterCols(rowptr + rowstride, src, dst_width, x, dx); + src += src_stride; + + for (j = 0; j < dst_height; ++j) { + yi = y >> 16; + if (yi != lasty) { + if (y > max_y) { + y = max_y; + yi = y >> 16; + src = src_argb + yi * src_stride; + } + if (yi != lasty) { + ScaleARGBFilterCols(rowptr, src, dst_width, x, dx); + rowptr += rowstride; + rowstride = -rowstride; + lasty = yi; + src += src_stride; + } + } + if (filtering == kFilterLinear) { + InterpolateRow(dst_argb, rowptr, 0, dst_width * 4, 0); + } else { + int yf = (y >> 8) & 255; + InterpolateRow(dst_argb, rowptr, rowstride, dst_width * 4, yf); + } + dst_argb += dst_stride; + y += dy; + } + free_aligned_buffer_64(row); + } +} + +#ifdef YUVSCALEUP +// Scale YUV to ARGB up with bilinear interpolation. +static void ScaleYUVToARGBBilinearUp(int src_width, int src_height, + int dst_width, int dst_height, + int src_stride_y, + int src_stride_u, + int src_stride_v, + int dst_stride_argb, + const uint8* src_y, + const uint8* src_u, + const uint8* src_v, + uint8* dst_argb, + int x, int dx, int y, int dy, + enum FilterMode filtering) { + int j; + void (*I422ToARGBRow)(const uint8* y_buf, + const uint8* u_buf, + const uint8* v_buf, + uint8* rgb_buf, + int width) = I422ToARGBRow_C; +#if defined(HAS_I422TOARGBROW_SSSE3) + if (TestCpuFlag(kCpuHasSSSE3)) { + I422ToARGBRow = I422ToARGBRow_Any_SSSE3; + if (IS_ALIGNED(src_width, 8)) { + I422ToARGBRow = I422ToARGBRow_SSSE3; + } + } +#endif +#if defined(HAS_I422TOARGBROW_AVX2) + if (TestCpuFlag(kCpuHasAVX2)) { + I422ToARGBRow = I422ToARGBRow_Any_AVX2; + if (IS_ALIGNED(src_width, 16)) { + I422ToARGBRow = I422ToARGBRow_AVX2; + } + } +#endif +#if defined(HAS_I422TOARGBROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + I422ToARGBRow = I422ToARGBRow_Any_NEON; + if (IS_ALIGNED(src_width, 8)) { + I422ToARGBRow = I422ToARGBRow_NEON; + } + } +#endif +#if defined(HAS_I422TOARGBROW_DSPR2) + if (TestCpuFlag(kCpuHasDSPR2) && IS_ALIGNED(src_width, 4) && + IS_ALIGNED(src_y, 4) && IS_ALIGNED(src_stride_y, 4) && + IS_ALIGNED(src_u, 2) && IS_ALIGNED(src_stride_u, 2) && + IS_ALIGNED(src_v, 2) && IS_ALIGNED(src_stride_v, 2) && + IS_ALIGNED(dst_argb, 4) && IS_ALIGNED(dst_stride_argb, 4)) { + I422ToARGBRow = I422ToARGBRow_DSPR2; + } +#endif + + void (*InterpolateRow)(uint8* dst_argb, const uint8* src_argb, + ptrdiff_t src_stride, int dst_width, int source_y_fraction) = + InterpolateRow_C; +#if defined(HAS_INTERPOLATEROW_SSSE3) + if (TestCpuFlag(kCpuHasSSSE3)) { + InterpolateRow = InterpolateRow_Any_SSSE3; + if (IS_ALIGNED(dst_width, 4)) { + InterpolateRow = InterpolateRow_SSSE3; + } + } +#endif +#if defined(HAS_INTERPOLATEROW_AVX2) + if (TestCpuFlag(kCpuHasAVX2)) { + InterpolateRow = InterpolateRow_Any_AVX2; + if (IS_ALIGNED(dst_width, 8)) { + InterpolateRow = InterpolateRow_AVX2; + } + } +#endif +#if defined(HAS_INTERPOLATEROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + InterpolateRow = InterpolateRow_Any_NEON; + if (IS_ALIGNED(dst_width, 4)) { + InterpolateRow = InterpolateRow_NEON; + } + } +#endif +#if defined(HAS_INTERPOLATEROW_DSPR2) + if (TestCpuFlag(kCpuHasDSPR2) && + IS_ALIGNED(dst_argb, 4) && IS_ALIGNED(dst_stride_argb, 4)) { + InterpolateRow = InterpolateRow_DSPR2; + } +#endif + + void (*ScaleARGBFilterCols)(uint8* dst_argb, const uint8* src_argb, + int dst_width, int x, int dx) = + filtering ? ScaleARGBFilterCols_C : ScaleARGBCols_C; + if (src_width >= 32768) { + ScaleARGBFilterCols = filtering ? + ScaleARGBFilterCols64_C : ScaleARGBCols64_C; + } +#if defined(HAS_SCALEARGBFILTERCOLS_SSSE3) + if (filtering && TestCpuFlag(kCpuHasSSSE3) && src_width < 32768) { + ScaleARGBFilterCols = ScaleARGBFilterCols_SSSE3; + } +#endif +#if defined(HAS_SCALEARGBFILTERCOLS_NEON) + if (filtering && TestCpuFlag(kCpuHasNEON)) { + ScaleARGBFilterCols = ScaleARGBFilterCols_Any_NEON; + if (IS_ALIGNED(dst_width, 4)) { + ScaleARGBFilterCols = ScaleARGBFilterCols_NEON; + } + } +#endif +#if defined(HAS_SCALEARGBCOLS_SSE2) + if (!filtering && TestCpuFlag(kCpuHasSSE2) && src_width < 32768) { + ScaleARGBFilterCols = ScaleARGBCols_SSE2; + } +#endif +#if defined(HAS_SCALEARGBCOLS_NEON) + if (!filtering && TestCpuFlag(kCpuHasNEON)) { + ScaleARGBFilterCols = ScaleARGBCols_Any_NEON; + if (IS_ALIGNED(dst_width, 8)) { + ScaleARGBFilterCols = ScaleARGBCols_NEON; + } + } +#endif + if (!filtering && src_width * 2 == dst_width && x < 0x8000) { + ScaleARGBFilterCols = ScaleARGBColsUp2_C; +#if defined(HAS_SCALEARGBCOLSUP2_SSE2) + if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(dst_width, 8)) { + ScaleARGBFilterCols = ScaleARGBColsUp2_SSE2; + } +#endif + } + + const int max_y = (src_height - 1) << 16; + if (y > max_y) { + y = max_y; + } + const int kYShift = 1; // Shift Y by 1 to convert Y plane to UV coordinate. + int yi = y >> 16; + int uv_yi = yi >> kYShift; + const uint8* src_row_y = src_y + yi * src_stride_y; + const uint8* src_row_u = src_u + uv_yi * src_stride_u; + const uint8* src_row_v = src_v + uv_yi * src_stride_v; + + // Allocate 2 rows of ARGB. + const int kRowSize = (dst_width * 4 + 31) & ~31; + align_buffer_64(row, kRowSize * 2); + + // Allocate 1 row of ARGB for source conversion. + align_buffer_64(argb_row, src_width * 4); + + uint8* rowptr = row; + int rowstride = kRowSize; + int lasty = yi; + + // TODO(fbarchard): Convert first 2 rows of YUV to ARGB. + ScaleARGBFilterCols(rowptr, src_row_y, dst_width, x, dx); + if (src_height > 1) { + src_row_y += src_stride_y; + if (yi & 1) { + src_row_u += src_stride_u; + src_row_v += src_stride_v; + } + } + ScaleARGBFilterCols(rowptr + rowstride, src_row_y, dst_width, x, dx); + if (src_height > 2) { + src_row_y += src_stride_y; + if (!(yi & 1)) { + src_row_u += src_stride_u; + src_row_v += src_stride_v; + } + } + + for (j = 0; j < dst_height; ++j) { + yi = y >> 16; + if (yi != lasty) { + if (y > max_y) { + y = max_y; + yi = y >> 16; + uv_yi = yi >> kYShift; + src_row_y = src_y + yi * src_stride_y; + src_row_u = src_u + uv_yi * src_stride_u; + src_row_v = src_v + uv_yi * src_stride_v; + } + if (yi != lasty) { + // TODO(fbarchard): Convert the clipped region of row. + I422ToARGBRow(src_row_y, src_row_u, src_row_v, argb_row, src_width); + ScaleARGBFilterCols(rowptr, argb_row, dst_width, x, dx); + rowptr += rowstride; + rowstride = -rowstride; + lasty = yi; + src_row_y += src_stride_y; + if (yi & 1) { + src_row_u += src_stride_u; + src_row_v += src_stride_v; + } + } + } + if (filtering == kFilterLinear) { + InterpolateRow(dst_argb, rowptr, 0, dst_width * 4, 0); + } else { + int yf = (y >> 8) & 255; + InterpolateRow(dst_argb, rowptr, rowstride, dst_width * 4, yf); + } + dst_argb += dst_stride_argb; + y += dy; + } + free_aligned_buffer_64(row); + free_aligned_buffer_64(row_argb); +} +#endif + +// Scale ARGB to/from any dimensions, without interpolation. +// Fixed point math is used for performance: The upper 16 bits +// of x and dx is the integer part of the source position and +// the lower 16 bits are the fixed decimal part. + +static void ScaleARGBSimple(int src_width, int src_height, + int dst_width, int dst_height, + int src_stride, int dst_stride, + const uint8* src_argb, uint8* dst_argb, + int x, int dx, int y, int dy) { + int j; + void (*ScaleARGBCols)(uint8* dst_argb, const uint8* src_argb, + int dst_width, int x, int dx) = + (src_width >= 32768) ? ScaleARGBCols64_C : ScaleARGBCols_C; +#if defined(HAS_SCALEARGBCOLS_SSE2) + if (TestCpuFlag(kCpuHasSSE2) && src_width < 32768) { + ScaleARGBCols = ScaleARGBCols_SSE2; + } +#endif +#if defined(HAS_SCALEARGBCOLS_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + ScaleARGBCols = ScaleARGBCols_Any_NEON; + if (IS_ALIGNED(dst_width, 8)) { + ScaleARGBCols = ScaleARGBCols_NEON; + } + } +#endif + if (src_width * 2 == dst_width && x < 0x8000) { + ScaleARGBCols = ScaleARGBColsUp2_C; +#if defined(HAS_SCALEARGBCOLSUP2_SSE2) + if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(dst_width, 8)) { + ScaleARGBCols = ScaleARGBColsUp2_SSE2; + } +#endif + } + + for (j = 0; j < dst_height; ++j) { + ScaleARGBCols(dst_argb, src_argb + (y >> 16) * src_stride, + dst_width, x, dx); + dst_argb += dst_stride; + y += dy; + } +} + +// ScaleARGB a ARGB. +// This function in turn calls a scaling function +// suitable for handling the desired resolutions. +static void ScaleARGB(const uint8* src, int src_stride, + int src_width, int src_height, + uint8* dst, int dst_stride, + int dst_width, int dst_height, + int clip_x, int clip_y, int clip_width, int clip_height, + enum FilterMode filtering) { + // Initial source x/y coordinate and step values as 16.16 fixed point. + int x = 0; + int y = 0; + int dx = 0; + int dy = 0; + // ARGB does not support box filter yet, but allow the user to pass it. + // Simplify filtering when possible. + filtering = ScaleFilterReduce(src_width, src_height, + dst_width, dst_height, + filtering); + + // Negative src_height means invert the image. + if (src_height < 0) { + src_height = -src_height; + src = src + (src_height - 1) * src_stride; + src_stride = -src_stride; + } + ScaleSlope(src_width, src_height, dst_width, dst_height, filtering, + &x, &y, &dx, &dy); + src_width = Abs(src_width); + if (clip_x) { + int64 clipf = (int64)(clip_x) * dx; + x += (clipf & 0xffff); + src += (clipf >> 16) * 4; + dst += clip_x * 4; + } + if (clip_y) { + int64 clipf = (int64)(clip_y) * dy; + y += (clipf & 0xffff); + src += (clipf >> 16) * src_stride; + dst += clip_y * dst_stride; + } + + // Special case for integer step values. + if (((dx | dy) & 0xffff) == 0) { + if (!dx || !dy) { // 1 pixel wide and/or tall. + filtering = kFilterNone; + } else { + // Optimized even scale down. ie 2, 4, 6, 8, 10x. + if (!(dx & 0x10000) && !(dy & 0x10000)) { + if (dx == 0x20000) { + // Optimized 1/2 downsample. + ScaleARGBDown2(src_width, src_height, + clip_width, clip_height, + src_stride, dst_stride, src, dst, + x, dx, y, dy, filtering); + return; + } + if (dx == 0x40000 && filtering == kFilterBox) { + // Optimized 1/4 box downsample. + ScaleARGBDown4Box(src_width, src_height, + clip_width, clip_height, + src_stride, dst_stride, src, dst, + x, dx, y, dy); + return; + } + ScaleARGBDownEven(src_width, src_height, + clip_width, clip_height, + src_stride, dst_stride, src, dst, + x, dx, y, dy, filtering); + return; + } + // Optimized odd scale down. ie 3, 5, 7, 9x. + if ((dx & 0x10000) && (dy & 0x10000)) { + filtering = kFilterNone; + if (dx == 0x10000 && dy == 0x10000) { + // Straight copy. + ARGBCopy(src + (y >> 16) * src_stride + (x >> 16) * 4, src_stride, + dst, dst_stride, clip_width, clip_height); + return; + } + } + } + } + if (dx == 0x10000 && (x & 0xffff) == 0) { + // Arbitrary scale vertically, but unscaled vertically. + ScalePlaneVertical(src_height, + clip_width, clip_height, + src_stride, dst_stride, src, dst, + x, y, dy, 4, filtering); + return; + } + if (filtering && dy < 65536) { + ScaleARGBBilinearUp(src_width, src_height, + clip_width, clip_height, + src_stride, dst_stride, src, dst, + x, dx, y, dy, filtering); + return; + } + if (filtering) { + ScaleARGBBilinearDown(src_width, src_height, + clip_width, clip_height, + src_stride, dst_stride, src, dst, + x, dx, y, dy, filtering); + return; + } + ScaleARGBSimple(src_width, src_height, clip_width, clip_height, + src_stride, dst_stride, src, dst, + x, dx, y, dy); +} + +LIBYUV_API +int ARGBScaleClip(const uint8* src_argb, int src_stride_argb, + int src_width, int src_height, + uint8* dst_argb, int dst_stride_argb, + int dst_width, int dst_height, + int clip_x, int clip_y, int clip_width, int clip_height, + enum FilterMode filtering) { + if (!src_argb || src_width == 0 || src_height == 0 || + !dst_argb || dst_width <= 0 || dst_height <= 0 || + clip_x < 0 || clip_y < 0 || + clip_width > 32768 || clip_height > 32768 || + (clip_x + clip_width) > dst_width || + (clip_y + clip_height) > dst_height) { + return -1; + } + ScaleARGB(src_argb, src_stride_argb, src_width, src_height, + dst_argb, dst_stride_argb, dst_width, dst_height, + clip_x, clip_y, clip_width, clip_height, filtering); + return 0; +} + +// Scale an ARGB image. +LIBYUV_API +int ARGBScale(const uint8* src_argb, int src_stride_argb, + int src_width, int src_height, + uint8* dst_argb, int dst_stride_argb, + int dst_width, int dst_height, + enum FilterMode filtering) { + if (!src_argb || src_width == 0 || src_height == 0 || + src_width > 32768 || src_height > 32768 || + !dst_argb || dst_width <= 0 || dst_height <= 0) { + return -1; + } + ScaleARGB(src_argb, src_stride_argb, src_width, src_height, + dst_argb, dst_stride_argb, dst_width, dst_height, + 0, 0, dst_width, dst_height, filtering); + return 0; +} + +// Scale with YUV conversion to ARGB and clipping. +LIBYUV_API +int YUVToARGBScaleClip(const uint8* src_y, int src_stride_y, + const uint8* src_u, int src_stride_u, + const uint8* src_v, int src_stride_v, + uint32 src_fourcc, + int src_width, int src_height, + uint8* dst_argb, int dst_stride_argb, + uint32 dst_fourcc, + int dst_width, int dst_height, + int clip_x, int clip_y, int clip_width, int clip_height, + enum FilterMode filtering) { + uint8* argb_buffer = (uint8*)malloc(src_width * src_height * 4); + int r; + I420ToARGB(src_y, src_stride_y, + src_u, src_stride_u, + src_v, src_stride_v, + argb_buffer, src_width * 4, + src_width, src_height); + + r = ARGBScaleClip(argb_buffer, src_width * 4, + src_width, src_height, + dst_argb, dst_stride_argb, + dst_width, dst_height, + clip_x, clip_y, clip_width, clip_height, + filtering); + free(argb_buffer); + return r; +} + +#ifdef __cplusplus +} // extern "C" +} // namespace libyuv +#endif diff --git a/third_party/libyuv/source/scale_common.cc b/third_party/libyuv/source/scale_common.cc new file mode 100644 index 0000000..3507aa4 --- /dev/null +++ b/third_party/libyuv/source/scale_common.cc @@ -0,0 +1,1159 @@ +/* + * Copyright 2013 The LibYuv Project Authors. All rights reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "libyuv/scale.h" + +#include +#include + +#include "libyuv/cpu_id.h" +#include "libyuv/planar_functions.h" // For CopyARGB +#include "libyuv/row.h" +#include "libyuv/scale_row.h" + +#ifdef __cplusplus +namespace libyuv { +extern "C" { +#endif + +static __inline int Abs(int v) { + return v >= 0 ? v : -v; +} + +// CPU agnostic row functions +void ScaleRowDown2_C(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst, int dst_width) { + int x; + for (x = 0; x < dst_width - 1; x += 2) { + dst[0] = src_ptr[1]; + dst[1] = src_ptr[3]; + dst += 2; + src_ptr += 4; + } + if (dst_width & 1) { + dst[0] = src_ptr[1]; + } +} + +void ScaleRowDown2_16_C(const uint16* src_ptr, ptrdiff_t src_stride, + uint16* dst, int dst_width) { + int x; + for (x = 0; x < dst_width - 1; x += 2) { + dst[0] = src_ptr[1]; + dst[1] = src_ptr[3]; + dst += 2; + src_ptr += 4; + } + if (dst_width & 1) { + dst[0] = src_ptr[1]; + } +} + +void ScaleRowDown2Linear_C(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst, int dst_width) { + const uint8* s = src_ptr; + int x; + for (x = 0; x < dst_width - 1; x += 2) { + dst[0] = (s[0] + s[1] + 1) >> 1; + dst[1] = (s[2] + s[3] + 1) >> 1; + dst += 2; + s += 4; + } + if (dst_width & 1) { + dst[0] = (s[0] + s[1] + 1) >> 1; + } +} + +void ScaleRowDown2Linear_16_C(const uint16* src_ptr, ptrdiff_t src_stride, + uint16* dst, int dst_width) { + const uint16* s = src_ptr; + int x; + for (x = 0; x < dst_width - 1; x += 2) { + dst[0] = (s[0] + s[1] + 1) >> 1; + dst[1] = (s[2] + s[3] + 1) >> 1; + dst += 2; + s += 4; + } + if (dst_width & 1) { + dst[0] = (s[0] + s[1] + 1) >> 1; + } +} + +void ScaleRowDown2Box_C(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst, int dst_width) { + const uint8* s = src_ptr; + const uint8* t = src_ptr + src_stride; + int x; + for (x = 0; x < dst_width - 1; x += 2) { + dst[0] = (s[0] + s[1] + t[0] + t[1] + 2) >> 2; + dst[1] = (s[2] + s[3] + t[2] + t[3] + 2) >> 2; + dst += 2; + s += 4; + t += 4; + } + if (dst_width & 1) { + dst[0] = (s[0] + s[1] + t[0] + t[1] + 2) >> 2; + } +} + +void ScaleRowDown2Box_Odd_C(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst, int dst_width) { + const uint8* s = src_ptr; + const uint8* t = src_ptr + src_stride; + int x; + dst_width -= 1; + for (x = 0; x < dst_width - 1; x += 2) { + dst[0] = (s[0] + s[1] + t[0] + t[1] + 2) >> 2; + dst[1] = (s[2] + s[3] + t[2] + t[3] + 2) >> 2; + dst += 2; + s += 4; + t += 4; + } + if (dst_width & 1) { + dst[0] = (s[0] + s[1] + t[0] + t[1] + 2) >> 2; + dst += 1; + s += 2; + t += 2; + } + dst[0] = (s[0] + t[0] + 1) >> 1; +} + +void ScaleRowDown2Box_16_C(const uint16* src_ptr, ptrdiff_t src_stride, + uint16* dst, int dst_width) { + const uint16* s = src_ptr; + const uint16* t = src_ptr + src_stride; + int x; + for (x = 0; x < dst_width - 1; x += 2) { + dst[0] = (s[0] + s[1] + t[0] + t[1] + 2) >> 2; + dst[1] = (s[2] + s[3] + t[2] + t[3] + 2) >> 2; + dst += 2; + s += 4; + t += 4; + } + if (dst_width & 1) { + dst[0] = (s[0] + s[1] + t[0] + t[1] + 2) >> 2; + } +} + +void ScaleRowDown4_C(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst, int dst_width) { + int x; + for (x = 0; x < dst_width - 1; x += 2) { + dst[0] = src_ptr[2]; + dst[1] = src_ptr[6]; + dst += 2; + src_ptr += 8; + } + if (dst_width & 1) { + dst[0] = src_ptr[2]; + } +} + +void ScaleRowDown4_16_C(const uint16* src_ptr, ptrdiff_t src_stride, + uint16* dst, int dst_width) { + int x; + for (x = 0; x < dst_width - 1; x += 2) { + dst[0] = src_ptr[2]; + dst[1] = src_ptr[6]; + dst += 2; + src_ptr += 8; + } + if (dst_width & 1) { + dst[0] = src_ptr[2]; + } +} + +void ScaleRowDown4Box_C(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst, int dst_width) { + intptr_t stride = src_stride; + int x; + for (x = 0; x < dst_width - 1; x += 2) { + dst[0] = (src_ptr[0] + src_ptr[1] + src_ptr[2] + src_ptr[3] + + src_ptr[stride + 0] + src_ptr[stride + 1] + + src_ptr[stride + 2] + src_ptr[stride + 3] + + src_ptr[stride * 2 + 0] + src_ptr[stride * 2 + 1] + + src_ptr[stride * 2 + 2] + src_ptr[stride * 2 + 3] + + src_ptr[stride * 3 + 0] + src_ptr[stride * 3 + 1] + + src_ptr[stride * 3 + 2] + src_ptr[stride * 3 + 3] + + 8) >> 4; + dst[1] = (src_ptr[4] + src_ptr[5] + src_ptr[6] + src_ptr[7] + + src_ptr[stride + 4] + src_ptr[stride + 5] + + src_ptr[stride + 6] + src_ptr[stride + 7] + + src_ptr[stride * 2 + 4] + src_ptr[stride * 2 + 5] + + src_ptr[stride * 2 + 6] + src_ptr[stride * 2 + 7] + + src_ptr[stride * 3 + 4] + src_ptr[stride * 3 + 5] + + src_ptr[stride * 3 + 6] + src_ptr[stride * 3 + 7] + + 8) >> 4; + dst += 2; + src_ptr += 8; + } + if (dst_width & 1) { + dst[0] = (src_ptr[0] + src_ptr[1] + src_ptr[2] + src_ptr[3] + + src_ptr[stride + 0] + src_ptr[stride + 1] + + src_ptr[stride + 2] + src_ptr[stride + 3] + + src_ptr[stride * 2 + 0] + src_ptr[stride * 2 + 1] + + src_ptr[stride * 2 + 2] + src_ptr[stride * 2 + 3] + + src_ptr[stride * 3 + 0] + src_ptr[stride * 3 + 1] + + src_ptr[stride * 3 + 2] + src_ptr[stride * 3 + 3] + + 8) >> 4; + } +} + +void ScaleRowDown4Box_16_C(const uint16* src_ptr, ptrdiff_t src_stride, + uint16* dst, int dst_width) { + intptr_t stride = src_stride; + int x; + for (x = 0; x < dst_width - 1; x += 2) { + dst[0] = (src_ptr[0] + src_ptr[1] + src_ptr[2] + src_ptr[3] + + src_ptr[stride + 0] + src_ptr[stride + 1] + + src_ptr[stride + 2] + src_ptr[stride + 3] + + src_ptr[stride * 2 + 0] + src_ptr[stride * 2 + 1] + + src_ptr[stride * 2 + 2] + src_ptr[stride * 2 + 3] + + src_ptr[stride * 3 + 0] + src_ptr[stride * 3 + 1] + + src_ptr[stride * 3 + 2] + src_ptr[stride * 3 + 3] + + 8) >> 4; + dst[1] = (src_ptr[4] + src_ptr[5] + src_ptr[6] + src_ptr[7] + + src_ptr[stride + 4] + src_ptr[stride + 5] + + src_ptr[stride + 6] + src_ptr[stride + 7] + + src_ptr[stride * 2 + 4] + src_ptr[stride * 2 + 5] + + src_ptr[stride * 2 + 6] + src_ptr[stride * 2 + 7] + + src_ptr[stride * 3 + 4] + src_ptr[stride * 3 + 5] + + src_ptr[stride * 3 + 6] + src_ptr[stride * 3 + 7] + + 8) >> 4; + dst += 2; + src_ptr += 8; + } + if (dst_width & 1) { + dst[0] = (src_ptr[0] + src_ptr[1] + src_ptr[2] + src_ptr[3] + + src_ptr[stride + 0] + src_ptr[stride + 1] + + src_ptr[stride + 2] + src_ptr[stride + 3] + + src_ptr[stride * 2 + 0] + src_ptr[stride * 2 + 1] + + src_ptr[stride * 2 + 2] + src_ptr[stride * 2 + 3] + + src_ptr[stride * 3 + 0] + src_ptr[stride * 3 + 1] + + src_ptr[stride * 3 + 2] + src_ptr[stride * 3 + 3] + + 8) >> 4; + } +} + +void ScaleRowDown34_C(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst, int dst_width) { + int x; + assert((dst_width % 3 == 0) && (dst_width > 0)); + for (x = 0; x < dst_width; x += 3) { + dst[0] = src_ptr[0]; + dst[1] = src_ptr[1]; + dst[2] = src_ptr[3]; + dst += 3; + src_ptr += 4; + } +} + +void ScaleRowDown34_16_C(const uint16* src_ptr, ptrdiff_t src_stride, + uint16* dst, int dst_width) { + int x; + assert((dst_width % 3 == 0) && (dst_width > 0)); + for (x = 0; x < dst_width; x += 3) { + dst[0] = src_ptr[0]; + dst[1] = src_ptr[1]; + dst[2] = src_ptr[3]; + dst += 3; + src_ptr += 4; + } +} + +// Filter rows 0 and 1 together, 3 : 1 +void ScaleRowDown34_0_Box_C(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* d, int dst_width) { + const uint8* s = src_ptr; + const uint8* t = src_ptr + src_stride; + int x; + assert((dst_width % 3 == 0) && (dst_width > 0)); + for (x = 0; x < dst_width; x += 3) { + uint8 a0 = (s[0] * 3 + s[1] * 1 + 2) >> 2; + uint8 a1 = (s[1] * 1 + s[2] * 1 + 1) >> 1; + uint8 a2 = (s[2] * 1 + s[3] * 3 + 2) >> 2; + uint8 b0 = (t[0] * 3 + t[1] * 1 + 2) >> 2; + uint8 b1 = (t[1] * 1 + t[2] * 1 + 1) >> 1; + uint8 b2 = (t[2] * 1 + t[3] * 3 + 2) >> 2; + d[0] = (a0 * 3 + b0 + 2) >> 2; + d[1] = (a1 * 3 + b1 + 2) >> 2; + d[2] = (a2 * 3 + b2 + 2) >> 2; + d += 3; + s += 4; + t += 4; + } +} + +void ScaleRowDown34_0_Box_16_C(const uint16* src_ptr, ptrdiff_t src_stride, + uint16* d, int dst_width) { + const uint16* s = src_ptr; + const uint16* t = src_ptr + src_stride; + int x; + assert((dst_width % 3 == 0) && (dst_width > 0)); + for (x = 0; x < dst_width; x += 3) { + uint16 a0 = (s[0] * 3 + s[1] * 1 + 2) >> 2; + uint16 a1 = (s[1] * 1 + s[2] * 1 + 1) >> 1; + uint16 a2 = (s[2] * 1 + s[3] * 3 + 2) >> 2; + uint16 b0 = (t[0] * 3 + t[1] * 1 + 2) >> 2; + uint16 b1 = (t[1] * 1 + t[2] * 1 + 1) >> 1; + uint16 b2 = (t[2] * 1 + t[3] * 3 + 2) >> 2; + d[0] = (a0 * 3 + b0 + 2) >> 2; + d[1] = (a1 * 3 + b1 + 2) >> 2; + d[2] = (a2 * 3 + b2 + 2) >> 2; + d += 3; + s += 4; + t += 4; + } +} + +// Filter rows 1 and 2 together, 1 : 1 +void ScaleRowDown34_1_Box_C(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* d, int dst_width) { + const uint8* s = src_ptr; + const uint8* t = src_ptr + src_stride; + int x; + assert((dst_width % 3 == 0) && (dst_width > 0)); + for (x = 0; x < dst_width; x += 3) { + uint8 a0 = (s[0] * 3 + s[1] * 1 + 2) >> 2; + uint8 a1 = (s[1] * 1 + s[2] * 1 + 1) >> 1; + uint8 a2 = (s[2] * 1 + s[3] * 3 + 2) >> 2; + uint8 b0 = (t[0] * 3 + t[1] * 1 + 2) >> 2; + uint8 b1 = (t[1] * 1 + t[2] * 1 + 1) >> 1; + uint8 b2 = (t[2] * 1 + t[3] * 3 + 2) >> 2; + d[0] = (a0 + b0 + 1) >> 1; + d[1] = (a1 + b1 + 1) >> 1; + d[2] = (a2 + b2 + 1) >> 1; + d += 3; + s += 4; + t += 4; + } +} + +void ScaleRowDown34_1_Box_16_C(const uint16* src_ptr, ptrdiff_t src_stride, + uint16* d, int dst_width) { + const uint16* s = src_ptr; + const uint16* t = src_ptr + src_stride; + int x; + assert((dst_width % 3 == 0) && (dst_width > 0)); + for (x = 0; x < dst_width; x += 3) { + uint16 a0 = (s[0] * 3 + s[1] * 1 + 2) >> 2; + uint16 a1 = (s[1] * 1 + s[2] * 1 + 1) >> 1; + uint16 a2 = (s[2] * 1 + s[3] * 3 + 2) >> 2; + uint16 b0 = (t[0] * 3 + t[1] * 1 + 2) >> 2; + uint16 b1 = (t[1] * 1 + t[2] * 1 + 1) >> 1; + uint16 b2 = (t[2] * 1 + t[3] * 3 + 2) >> 2; + d[0] = (a0 + b0 + 1) >> 1; + d[1] = (a1 + b1 + 1) >> 1; + d[2] = (a2 + b2 + 1) >> 1; + d += 3; + s += 4; + t += 4; + } +} + +// Scales a single row of pixels using point sampling. +void ScaleCols_C(uint8* dst_ptr, const uint8* src_ptr, + int dst_width, int x, int dx) { + int j; + for (j = 0; j < dst_width - 1; j += 2) { + dst_ptr[0] = src_ptr[x >> 16]; + x += dx; + dst_ptr[1] = src_ptr[x >> 16]; + x += dx; + dst_ptr += 2; + } + if (dst_width & 1) { + dst_ptr[0] = src_ptr[x >> 16]; + } +} + +void ScaleCols_16_C(uint16* dst_ptr, const uint16* src_ptr, + int dst_width, int x, int dx) { + int j; + for (j = 0; j < dst_width - 1; j += 2) { + dst_ptr[0] = src_ptr[x >> 16]; + x += dx; + dst_ptr[1] = src_ptr[x >> 16]; + x += dx; + dst_ptr += 2; + } + if (dst_width & 1) { + dst_ptr[0] = src_ptr[x >> 16]; + } +} + +// Scales a single row of pixels up by 2x using point sampling. +void ScaleColsUp2_C(uint8* dst_ptr, const uint8* src_ptr, + int dst_width, int x, int dx) { + int j; + for (j = 0; j < dst_width - 1; j += 2) { + dst_ptr[1] = dst_ptr[0] = src_ptr[0]; + src_ptr += 1; + dst_ptr += 2; + } + if (dst_width & 1) { + dst_ptr[0] = src_ptr[0]; + } +} + +void ScaleColsUp2_16_C(uint16* dst_ptr, const uint16* src_ptr, + int dst_width, int x, int dx) { + int j; + for (j = 0; j < dst_width - 1; j += 2) { + dst_ptr[1] = dst_ptr[0] = src_ptr[0]; + src_ptr += 1; + dst_ptr += 2; + } + if (dst_width & 1) { + dst_ptr[0] = src_ptr[0]; + } +} + +// (1-f)a + fb can be replaced with a + f(b-a) +#if defined(__arm__) || defined(__aarch64__) +#define BLENDER(a, b, f) (uint8)((int)(a) + \ + ((((int)((f)) * ((int)(b) - (int)(a))) + 0x8000) >> 16)) +#else +// inteluses 7 bit math with rounding. +#define BLENDER(a, b, f) (uint8)((int)(a) + \ + (((int)((f) >> 9) * ((int)(b) - (int)(a)) + 0x40) >> 7)) +#endif + +void ScaleFilterCols_C(uint8* dst_ptr, const uint8* src_ptr, + int dst_width, int x, int dx) { + int j; + for (j = 0; j < dst_width - 1; j += 2) { + int xi = x >> 16; + int a = src_ptr[xi]; + int b = src_ptr[xi + 1]; + dst_ptr[0] = BLENDER(a, b, x & 0xffff); + x += dx; + xi = x >> 16; + a = src_ptr[xi]; + b = src_ptr[xi + 1]; + dst_ptr[1] = BLENDER(a, b, x & 0xffff); + x += dx; + dst_ptr += 2; + } + if (dst_width & 1) { + int xi = x >> 16; + int a = src_ptr[xi]; + int b = src_ptr[xi + 1]; + dst_ptr[0] = BLENDER(a, b, x & 0xffff); + } +} + +void ScaleFilterCols64_C(uint8* dst_ptr, const uint8* src_ptr, + int dst_width, int x32, int dx) { + int64 x = (int64)(x32); + int j; + for (j = 0; j < dst_width - 1; j += 2) { + int64 xi = x >> 16; + int a = src_ptr[xi]; + int b = src_ptr[xi + 1]; + dst_ptr[0] = BLENDER(a, b, x & 0xffff); + x += dx; + xi = x >> 16; + a = src_ptr[xi]; + b = src_ptr[xi + 1]; + dst_ptr[1] = BLENDER(a, b, x & 0xffff); + x += dx; + dst_ptr += 2; + } + if (dst_width & 1) { + int64 xi = x >> 16; + int a = src_ptr[xi]; + int b = src_ptr[xi + 1]; + dst_ptr[0] = BLENDER(a, b, x & 0xffff); + } +} +#undef BLENDER + +// Same as 8 bit arm blender but return is cast to uint16 +#define BLENDER(a, b, f) (uint16)((int)(a) + \ + ((((int)((f)) * ((int)(b) - (int)(a))) + 0x8000) >> 16)) + +void ScaleFilterCols_16_C(uint16* dst_ptr, const uint16* src_ptr, + int dst_width, int x, int dx) { + int j; + for (j = 0; j < dst_width - 1; j += 2) { + int xi = x >> 16; + int a = src_ptr[xi]; + int b = src_ptr[xi + 1]; + dst_ptr[0] = BLENDER(a, b, x & 0xffff); + x += dx; + xi = x >> 16; + a = src_ptr[xi]; + b = src_ptr[xi + 1]; + dst_ptr[1] = BLENDER(a, b, x & 0xffff); + x += dx; + dst_ptr += 2; + } + if (dst_width & 1) { + int xi = x >> 16; + int a = src_ptr[xi]; + int b = src_ptr[xi + 1]; + dst_ptr[0] = BLENDER(a, b, x & 0xffff); + } +} + +void ScaleFilterCols64_16_C(uint16* dst_ptr, const uint16* src_ptr, + int dst_width, int x32, int dx) { + int64 x = (int64)(x32); + int j; + for (j = 0; j < dst_width - 1; j += 2) { + int64 xi = x >> 16; + int a = src_ptr[xi]; + int b = src_ptr[xi + 1]; + dst_ptr[0] = BLENDER(a, b, x & 0xffff); + x += dx; + xi = x >> 16; + a = src_ptr[xi]; + b = src_ptr[xi + 1]; + dst_ptr[1] = BLENDER(a, b, x & 0xffff); + x += dx; + dst_ptr += 2; + } + if (dst_width & 1) { + int64 xi = x >> 16; + int a = src_ptr[xi]; + int b = src_ptr[xi + 1]; + dst_ptr[0] = BLENDER(a, b, x & 0xffff); + } +} +#undef BLENDER + +void ScaleRowDown38_C(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst, int dst_width) { + int x; + assert(dst_width % 3 == 0); + for (x = 0; x < dst_width; x += 3) { + dst[0] = src_ptr[0]; + dst[1] = src_ptr[3]; + dst[2] = src_ptr[6]; + dst += 3; + src_ptr += 8; + } +} + +void ScaleRowDown38_16_C(const uint16* src_ptr, ptrdiff_t src_stride, + uint16* dst, int dst_width) { + int x; + assert(dst_width % 3 == 0); + for (x = 0; x < dst_width; x += 3) { + dst[0] = src_ptr[0]; + dst[1] = src_ptr[3]; + dst[2] = src_ptr[6]; + dst += 3; + src_ptr += 8; + } +} + +// 8x3 -> 3x1 +void ScaleRowDown38_3_Box_C(const uint8* src_ptr, + ptrdiff_t src_stride, + uint8* dst_ptr, int dst_width) { + intptr_t stride = src_stride; + int i; + assert((dst_width % 3 == 0) && (dst_width > 0)); + for (i = 0; i < dst_width; i += 3) { + dst_ptr[0] = (src_ptr[0] + src_ptr[1] + src_ptr[2] + + src_ptr[stride + 0] + src_ptr[stride + 1] + + src_ptr[stride + 2] + src_ptr[stride * 2 + 0] + + src_ptr[stride * 2 + 1] + src_ptr[stride * 2 + 2]) * + (65536 / 9) >> 16; + dst_ptr[1] = (src_ptr[3] + src_ptr[4] + src_ptr[5] + + src_ptr[stride + 3] + src_ptr[stride + 4] + + src_ptr[stride + 5] + src_ptr[stride * 2 + 3] + + src_ptr[stride * 2 + 4] + src_ptr[stride * 2 + 5]) * + (65536 / 9) >> 16; + dst_ptr[2] = (src_ptr[6] + src_ptr[7] + + src_ptr[stride + 6] + src_ptr[stride + 7] + + src_ptr[stride * 2 + 6] + src_ptr[stride * 2 + 7]) * + (65536 / 6) >> 16; + src_ptr += 8; + dst_ptr += 3; + } +} + +void ScaleRowDown38_3_Box_16_C(const uint16* src_ptr, + ptrdiff_t src_stride, + uint16* dst_ptr, int dst_width) { + intptr_t stride = src_stride; + int i; + assert((dst_width % 3 == 0) && (dst_width > 0)); + for (i = 0; i < dst_width; i += 3) { + dst_ptr[0] = (src_ptr[0] + src_ptr[1] + src_ptr[2] + + src_ptr[stride + 0] + src_ptr[stride + 1] + + src_ptr[stride + 2] + src_ptr[stride * 2 + 0] + + src_ptr[stride * 2 + 1] + src_ptr[stride * 2 + 2]) * + (65536 / 9) >> 16; + dst_ptr[1] = (src_ptr[3] + src_ptr[4] + src_ptr[5] + + src_ptr[stride + 3] + src_ptr[stride + 4] + + src_ptr[stride + 5] + src_ptr[stride * 2 + 3] + + src_ptr[stride * 2 + 4] + src_ptr[stride * 2 + 5]) * + (65536 / 9) >> 16; + dst_ptr[2] = (src_ptr[6] + src_ptr[7] + + src_ptr[stride + 6] + src_ptr[stride + 7] + + src_ptr[stride * 2 + 6] + src_ptr[stride * 2 + 7]) * + (65536 / 6) >> 16; + src_ptr += 8; + dst_ptr += 3; + } +} + +// 8x2 -> 3x1 +void ScaleRowDown38_2_Box_C(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst_ptr, int dst_width) { + intptr_t stride = src_stride; + int i; + assert((dst_width % 3 == 0) && (dst_width > 0)); + for (i = 0; i < dst_width; i += 3) { + dst_ptr[0] = (src_ptr[0] + src_ptr[1] + src_ptr[2] + + src_ptr[stride + 0] + src_ptr[stride + 1] + + src_ptr[stride + 2]) * (65536 / 6) >> 16; + dst_ptr[1] = (src_ptr[3] + src_ptr[4] + src_ptr[5] + + src_ptr[stride + 3] + src_ptr[stride + 4] + + src_ptr[stride + 5]) * (65536 / 6) >> 16; + dst_ptr[2] = (src_ptr[6] + src_ptr[7] + + src_ptr[stride + 6] + src_ptr[stride + 7]) * + (65536 / 4) >> 16; + src_ptr += 8; + dst_ptr += 3; + } +} + +void ScaleRowDown38_2_Box_16_C(const uint16* src_ptr, ptrdiff_t src_stride, + uint16* dst_ptr, int dst_width) { + intptr_t stride = src_stride; + int i; + assert((dst_width % 3 == 0) && (dst_width > 0)); + for (i = 0; i < dst_width; i += 3) { + dst_ptr[0] = (src_ptr[0] + src_ptr[1] + src_ptr[2] + + src_ptr[stride + 0] + src_ptr[stride + 1] + + src_ptr[stride + 2]) * (65536 / 6) >> 16; + dst_ptr[1] = (src_ptr[3] + src_ptr[4] + src_ptr[5] + + src_ptr[stride + 3] + src_ptr[stride + 4] + + src_ptr[stride + 5]) * (65536 / 6) >> 16; + dst_ptr[2] = (src_ptr[6] + src_ptr[7] + + src_ptr[stride + 6] + src_ptr[stride + 7]) * + (65536 / 4) >> 16; + src_ptr += 8; + dst_ptr += 3; + } +} + +void ScaleAddRow_C(const uint8* src_ptr, uint16* dst_ptr, int src_width) { + int x; + assert(src_width > 0); + for (x = 0; x < src_width - 1; x += 2) { + dst_ptr[0] += src_ptr[0]; + dst_ptr[1] += src_ptr[1]; + src_ptr += 2; + dst_ptr += 2; + } + if (src_width & 1) { + dst_ptr[0] += src_ptr[0]; + } +} + +void ScaleAddRow_16_C(const uint16* src_ptr, uint32* dst_ptr, int src_width) { + int x; + assert(src_width > 0); + for (x = 0; x < src_width - 1; x += 2) { + dst_ptr[0] += src_ptr[0]; + dst_ptr[1] += src_ptr[1]; + src_ptr += 2; + dst_ptr += 2; + } + if (src_width & 1) { + dst_ptr[0] += src_ptr[0]; + } +} + +void ScaleARGBRowDown2_C(const uint8* src_argb, + ptrdiff_t src_stride, + uint8* dst_argb, int dst_width) { + const uint32* src = (const uint32*)(src_argb); + uint32* dst = (uint32*)(dst_argb); + + int x; + for (x = 0; x < dst_width - 1; x += 2) { + dst[0] = src[1]; + dst[1] = src[3]; + src += 4; + dst += 2; + } + if (dst_width & 1) { + dst[0] = src[1]; + } +} + +void ScaleARGBRowDown2Linear_C(const uint8* src_argb, + ptrdiff_t src_stride, + uint8* dst_argb, int dst_width) { + int x; + for (x = 0; x < dst_width; ++x) { + dst_argb[0] = (src_argb[0] + src_argb[4] + 1) >> 1; + dst_argb[1] = (src_argb[1] + src_argb[5] + 1) >> 1; + dst_argb[2] = (src_argb[2] + src_argb[6] + 1) >> 1; + dst_argb[3] = (src_argb[3] + src_argb[7] + 1) >> 1; + src_argb += 8; + dst_argb += 4; + } +} + +void ScaleARGBRowDown2Box_C(const uint8* src_argb, ptrdiff_t src_stride, + uint8* dst_argb, int dst_width) { + int x; + for (x = 0; x < dst_width; ++x) { + dst_argb[0] = (src_argb[0] + src_argb[4] + + src_argb[src_stride] + src_argb[src_stride + 4] + 2) >> 2; + dst_argb[1] = (src_argb[1] + src_argb[5] + + src_argb[src_stride + 1] + src_argb[src_stride + 5] + 2) >> 2; + dst_argb[2] = (src_argb[2] + src_argb[6] + + src_argb[src_stride + 2] + src_argb[src_stride + 6] + 2) >> 2; + dst_argb[3] = (src_argb[3] + src_argb[7] + + src_argb[src_stride + 3] + src_argb[src_stride + 7] + 2) >> 2; + src_argb += 8; + dst_argb += 4; + } +} + +void ScaleARGBRowDownEven_C(const uint8* src_argb, ptrdiff_t src_stride, + int src_stepx, + uint8* dst_argb, int dst_width) { + const uint32* src = (const uint32*)(src_argb); + uint32* dst = (uint32*)(dst_argb); + + int x; + for (x = 0; x < dst_width - 1; x += 2) { + dst[0] = src[0]; + dst[1] = src[src_stepx]; + src += src_stepx * 2; + dst += 2; + } + if (dst_width & 1) { + dst[0] = src[0]; + } +} + +void ScaleARGBRowDownEvenBox_C(const uint8* src_argb, + ptrdiff_t src_stride, + int src_stepx, + uint8* dst_argb, int dst_width) { + int x; + for (x = 0; x < dst_width; ++x) { + dst_argb[0] = (src_argb[0] + src_argb[4] + + src_argb[src_stride] + src_argb[src_stride + 4] + 2) >> 2; + dst_argb[1] = (src_argb[1] + src_argb[5] + + src_argb[src_stride + 1] + src_argb[src_stride + 5] + 2) >> 2; + dst_argb[2] = (src_argb[2] + src_argb[6] + + src_argb[src_stride + 2] + src_argb[src_stride + 6] + 2) >> 2; + dst_argb[3] = (src_argb[3] + src_argb[7] + + src_argb[src_stride + 3] + src_argb[src_stride + 7] + 2) >> 2; + src_argb += src_stepx * 4; + dst_argb += 4; + } +} + +// Scales a single row of pixels using point sampling. +void ScaleARGBCols_C(uint8* dst_argb, const uint8* src_argb, + int dst_width, int x, int dx) { + const uint32* src = (const uint32*)(src_argb); + uint32* dst = (uint32*)(dst_argb); + int j; + for (j = 0; j < dst_width - 1; j += 2) { + dst[0] = src[x >> 16]; + x += dx; + dst[1] = src[x >> 16]; + x += dx; + dst += 2; + } + if (dst_width & 1) { + dst[0] = src[x >> 16]; + } +} + +void ScaleARGBCols64_C(uint8* dst_argb, const uint8* src_argb, + int dst_width, int x32, int dx) { + int64 x = (int64)(x32); + const uint32* src = (const uint32*)(src_argb); + uint32* dst = (uint32*)(dst_argb); + int j; + for (j = 0; j < dst_width - 1; j += 2) { + dst[0] = src[x >> 16]; + x += dx; + dst[1] = src[x >> 16]; + x += dx; + dst += 2; + } + if (dst_width & 1) { + dst[0] = src[x >> 16]; + } +} + +// Scales a single row of pixels up by 2x using point sampling. +void ScaleARGBColsUp2_C(uint8* dst_argb, const uint8* src_argb, + int dst_width, int x, int dx) { + const uint32* src = (const uint32*)(src_argb); + uint32* dst = (uint32*)(dst_argb); + int j; + for (j = 0; j < dst_width - 1; j += 2) { + dst[1] = dst[0] = src[0]; + src += 1; + dst += 2; + } + if (dst_width & 1) { + dst[0] = src[0]; + } +} + +// TODO(fbarchard): Replace 0x7f ^ f with 128-f. bug=607. +// Mimics SSSE3 blender +#define BLENDER1(a, b, f) ((a) * (0x7f ^ f) + (b) * f) >> 7 +#define BLENDERC(a, b, f, s) (uint32)( \ + BLENDER1(((a) >> s) & 255, ((b) >> s) & 255, f) << s) +#define BLENDER(a, b, f) \ + BLENDERC(a, b, f, 24) | BLENDERC(a, b, f, 16) | \ + BLENDERC(a, b, f, 8) | BLENDERC(a, b, f, 0) + +void ScaleARGBFilterCols_C(uint8* dst_argb, const uint8* src_argb, + int dst_width, int x, int dx) { + const uint32* src = (const uint32*)(src_argb); + uint32* dst = (uint32*)(dst_argb); + int j; + for (j = 0; j < dst_width - 1; j += 2) { + int xi = x >> 16; + int xf = (x >> 9) & 0x7f; + uint32 a = src[xi]; + uint32 b = src[xi + 1]; + dst[0] = BLENDER(a, b, xf); + x += dx; + xi = x >> 16; + xf = (x >> 9) & 0x7f; + a = src[xi]; + b = src[xi + 1]; + dst[1] = BLENDER(a, b, xf); + x += dx; + dst += 2; + } + if (dst_width & 1) { + int xi = x >> 16; + int xf = (x >> 9) & 0x7f; + uint32 a = src[xi]; + uint32 b = src[xi + 1]; + dst[0] = BLENDER(a, b, xf); + } +} + +void ScaleARGBFilterCols64_C(uint8* dst_argb, const uint8* src_argb, + int dst_width, int x32, int dx) { + int64 x = (int64)(x32); + const uint32* src = (const uint32*)(src_argb); + uint32* dst = (uint32*)(dst_argb); + int j; + for (j = 0; j < dst_width - 1; j += 2) { + int64 xi = x >> 16; + int xf = (x >> 9) & 0x7f; + uint32 a = src[xi]; + uint32 b = src[xi + 1]; + dst[0] = BLENDER(a, b, xf); + x += dx; + xi = x >> 16; + xf = (x >> 9) & 0x7f; + a = src[xi]; + b = src[xi + 1]; + dst[1] = BLENDER(a, b, xf); + x += dx; + dst += 2; + } + if (dst_width & 1) { + int64 xi = x >> 16; + int xf = (x >> 9) & 0x7f; + uint32 a = src[xi]; + uint32 b = src[xi + 1]; + dst[0] = BLENDER(a, b, xf); + } +} +#undef BLENDER1 +#undef BLENDERC +#undef BLENDER + +// Scale plane vertically with bilinear interpolation. +void ScalePlaneVertical(int src_height, + int dst_width, int dst_height, + int src_stride, int dst_stride, + const uint8* src_argb, uint8* dst_argb, + int x, int y, int dy, + int bpp, enum FilterMode filtering) { + // TODO(fbarchard): Allow higher bpp. + int dst_width_bytes = dst_width * bpp; + void (*InterpolateRow)(uint8* dst_argb, const uint8* src_argb, + ptrdiff_t src_stride, int dst_width, int source_y_fraction) = + InterpolateRow_C; + const int max_y = (src_height > 1) ? ((src_height - 1) << 16) - 1 : 0; + int j; + assert(bpp >= 1 && bpp <= 4); + assert(src_height != 0); + assert(dst_width > 0); + assert(dst_height > 0); + src_argb += (x >> 16) * bpp; +#if defined(HAS_INTERPOLATEROW_SSSE3) + if (TestCpuFlag(kCpuHasSSSE3)) { + InterpolateRow = InterpolateRow_Any_SSSE3; + if (IS_ALIGNED(dst_width_bytes, 16)) { + InterpolateRow = InterpolateRow_SSSE3; + } + } +#endif +#if defined(HAS_INTERPOLATEROW_AVX2) + if (TestCpuFlag(kCpuHasAVX2)) { + InterpolateRow = InterpolateRow_Any_AVX2; + if (IS_ALIGNED(dst_width_bytes, 32)) { + InterpolateRow = InterpolateRow_AVX2; + } + } +#endif +#if defined(HAS_INTERPOLATEROW_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + InterpolateRow = InterpolateRow_Any_NEON; + if (IS_ALIGNED(dst_width_bytes, 16)) { + InterpolateRow = InterpolateRow_NEON; + } + } +#endif +#if defined(HAS_INTERPOLATEROW_DSPR2) + if (TestCpuFlag(kCpuHasDSPR2) && + IS_ALIGNED(src_argb, 4) && IS_ALIGNED(src_stride, 4) && + IS_ALIGNED(dst_argb, 4) && IS_ALIGNED(dst_stride, 4)) { + InterpolateRow = InterpolateRow_Any_DSPR2; + if (IS_ALIGNED(dst_width_bytes, 4)) { + InterpolateRow = InterpolateRow_DSPR2; + } + } +#endif + for (j = 0; j < dst_height; ++j) { + int yi; + int yf; + if (y > max_y) { + y = max_y; + } + yi = y >> 16; + yf = filtering ? ((y >> 8) & 255) : 0; + InterpolateRow(dst_argb, src_argb + yi * src_stride, + src_stride, dst_width_bytes, yf); + dst_argb += dst_stride; + y += dy; + } +} +void ScalePlaneVertical_16(int src_height, + int dst_width, int dst_height, + int src_stride, int dst_stride, + const uint16* src_argb, uint16* dst_argb, + int x, int y, int dy, + int wpp, enum FilterMode filtering) { + // TODO(fbarchard): Allow higher wpp. + int dst_width_words = dst_width * wpp; + void (*InterpolateRow)(uint16* dst_argb, const uint16* src_argb, + ptrdiff_t src_stride, int dst_width, int source_y_fraction) = + InterpolateRow_16_C; + const int max_y = (src_height > 1) ? ((src_height - 1) << 16) - 1 : 0; + int j; + assert(wpp >= 1 && wpp <= 2); + assert(src_height != 0); + assert(dst_width > 0); + assert(dst_height > 0); + src_argb += (x >> 16) * wpp; +#if defined(HAS_INTERPOLATEROW_16_SSE2) + if (TestCpuFlag(kCpuHasSSE2)) { + InterpolateRow = InterpolateRow_Any_16_SSE2; + if (IS_ALIGNED(dst_width_bytes, 16)) { + InterpolateRow = InterpolateRow_16_SSE2; + } + } +#endif +#if defined(HAS_INTERPOLATEROW_16_SSSE3) + if (TestCpuFlag(kCpuHasSSSE3)) { + InterpolateRow = InterpolateRow_Any_16_SSSE3; + if (IS_ALIGNED(dst_width_bytes, 16)) { + InterpolateRow = InterpolateRow_16_SSSE3; + } + } +#endif +#if defined(HAS_INTERPOLATEROW_16_AVX2) + if (TestCpuFlag(kCpuHasAVX2)) { + InterpolateRow = InterpolateRow_Any_16_AVX2; + if (IS_ALIGNED(dst_width_bytes, 32)) { + InterpolateRow = InterpolateRow_16_AVX2; + } + } +#endif +#if defined(HAS_INTERPOLATEROW_16_NEON) + if (TestCpuFlag(kCpuHasNEON)) { + InterpolateRow = InterpolateRow_Any_16_NEON; + if (IS_ALIGNED(dst_width_bytes, 16)) { + InterpolateRow = InterpolateRow_16_NEON; + } + } +#endif +#if defined(HAS_INTERPOLATEROW_16_DSPR2) + if (TestCpuFlag(kCpuHasDSPR2) && + IS_ALIGNED(src_argb, 4) && IS_ALIGNED(src_stride, 4) && + IS_ALIGNED(dst_argb, 4) && IS_ALIGNED(dst_stride, 4)) { + InterpolateRow = InterpolateRow_Any_16_DSPR2; + if (IS_ALIGNED(dst_width_bytes, 4)) { + InterpolateRow = InterpolateRow_16_DSPR2; + } + } +#endif + for (j = 0; j < dst_height; ++j) { + int yi; + int yf; + if (y > max_y) { + y = max_y; + } + yi = y >> 16; + yf = filtering ? ((y >> 8) & 255) : 0; + InterpolateRow(dst_argb, src_argb + yi * src_stride, + src_stride, dst_width_words, yf); + dst_argb += dst_stride; + y += dy; + } +} + +// Simplify the filtering based on scale factors. +enum FilterMode ScaleFilterReduce(int src_width, int src_height, + int dst_width, int dst_height, + enum FilterMode filtering) { + if (src_width < 0) { + src_width = -src_width; + } + if (src_height < 0) { + src_height = -src_height; + } + if (filtering == kFilterBox) { + // If scaling both axis to 0.5 or larger, switch from Box to Bilinear. + if (dst_width * 2 >= src_width && dst_height * 2 >= src_height) { + filtering = kFilterBilinear; + } + } + if (filtering == kFilterBilinear) { + if (src_height == 1) { + filtering = kFilterLinear; + } + // TODO(fbarchard): Detect any odd scale factor and reduce to Linear. + if (dst_height == src_height || dst_height * 3 == src_height) { + filtering = kFilterLinear; + } + // TODO(fbarchard): Remove 1 pixel wide filter restriction, which is to + // avoid reading 2 pixels horizontally that causes memory exception. + if (src_width == 1) { + filtering = kFilterNone; + } + } + if (filtering == kFilterLinear) { + if (src_width == 1) { + filtering = kFilterNone; + } + // TODO(fbarchard): Detect any odd scale factor and reduce to None. + if (dst_width == src_width || dst_width * 3 == src_width) { + filtering = kFilterNone; + } + } + return filtering; +} + +// Divide num by div and return as 16.16 fixed point result. +int FixedDiv_C(int num, int div) { + return (int)(((int64)(num) << 16) / div); +} + +// Divide num by div and return as 16.16 fixed point result. +int FixedDiv1_C(int num, int div) { + return (int)((((int64)(num) << 16) - 0x00010001) / + (div - 1)); +} + +#define CENTERSTART(dx, s) (dx < 0) ? -((-dx >> 1) + s) : ((dx >> 1) + s) + +// Compute slope values for stepping. +void ScaleSlope(int src_width, int src_height, + int dst_width, int dst_height, + enum FilterMode filtering, + int* x, int* y, int* dx, int* dy) { + assert(x != NULL); + assert(y != NULL); + assert(dx != NULL); + assert(dy != NULL); + assert(src_width != 0); + assert(src_height != 0); + assert(dst_width > 0); + assert(dst_height > 0); + // Check for 1 pixel and avoid FixedDiv overflow. + if (dst_width == 1 && src_width >= 32768) { + dst_width = src_width; + } + if (dst_height == 1 && src_height >= 32768) { + dst_height = src_height; + } + if (filtering == kFilterBox) { + // Scale step for point sampling duplicates all pixels equally. + *dx = FixedDiv(Abs(src_width), dst_width); + *dy = FixedDiv(src_height, dst_height); + *x = 0; + *y = 0; + } else if (filtering == kFilterBilinear) { + // Scale step for bilinear sampling renders last pixel once for upsample. + if (dst_width <= Abs(src_width)) { + *dx = FixedDiv(Abs(src_width), dst_width); + *x = CENTERSTART(*dx, -32768); // Subtract 0.5 (32768) to center filter. + } else if (dst_width > 1) { + *dx = FixedDiv1(Abs(src_width), dst_width); + *x = 0; + } + if (dst_height <= src_height) { + *dy = FixedDiv(src_height, dst_height); + *y = CENTERSTART(*dy, -32768); // Subtract 0.5 (32768) to center filter. + } else if (dst_height > 1) { + *dy = FixedDiv1(src_height, dst_height); + *y = 0; + } + } else if (filtering == kFilterLinear) { + // Scale step for bilinear sampling renders last pixel once for upsample. + if (dst_width <= Abs(src_width)) { + *dx = FixedDiv(Abs(src_width), dst_width); + *x = CENTERSTART(*dx, -32768); // Subtract 0.5 (32768) to center filter. + } else if (dst_width > 1) { + *dx = FixedDiv1(Abs(src_width), dst_width); + *x = 0; + } + *dy = FixedDiv(src_height, dst_height); + *y = *dy >> 1; + } else { + // Scale step for point sampling duplicates all pixels equally. + *dx = FixedDiv(Abs(src_width), dst_width); + *dy = FixedDiv(src_height, dst_height); + *x = CENTERSTART(*dx, 0); + *y = CENTERSTART(*dy, 0); + } + // Negative src_width means horizontally mirror. + if (src_width < 0) { + *x += (dst_width - 1) * *dx; + *dx = -*dx; + // src_width = -src_width; // Caller must do this. + } +} +#undef CENTERSTART + +#ifdef __cplusplus +} // extern "C" +} // namespace libyuv +#endif diff --git a/third_party/libyuv/source/scale_gcc.cc b/third_party/libyuv/source/scale_gcc.cc new file mode 100644 index 0000000..e2f8854 --- /dev/null +++ b/third_party/libyuv/source/scale_gcc.cc @@ -0,0 +1,1322 @@ +/* + * Copyright 2013 The LibYuv Project Authors. All rights reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "libyuv/row.h" +#include "libyuv/scale_row.h" + +#ifdef __cplusplus +namespace libyuv { +extern "C" { +#endif + +// This module is for GCC x86 and x64. +#if !defined(LIBYUV_DISABLE_X86) && \ + (defined(__x86_64__) || (defined(__i386__) && !defined(_MSC_VER))) + +// Offsets for source bytes 0 to 9 +static uvec8 kShuf0 = + { 0, 1, 3, 4, 5, 7, 8, 9, 128, 128, 128, 128, 128, 128, 128, 128 }; + +// Offsets for source bytes 11 to 20 with 8 subtracted = 3 to 12. +static uvec8 kShuf1 = + { 3, 4, 5, 7, 8, 9, 11, 12, 128, 128, 128, 128, 128, 128, 128, 128 }; + +// Offsets for source bytes 21 to 31 with 16 subtracted = 5 to 31. +static uvec8 kShuf2 = + { 5, 7, 8, 9, 11, 12, 13, 15, 128, 128, 128, 128, 128, 128, 128, 128 }; + +// Offsets for source bytes 0 to 10 +static uvec8 kShuf01 = + { 0, 1, 1, 2, 2, 3, 4, 5, 5, 6, 6, 7, 8, 9, 9, 10 }; + +// Offsets for source bytes 10 to 21 with 8 subtracted = 3 to 13. +static uvec8 kShuf11 = + { 2, 3, 4, 5, 5, 6, 6, 7, 8, 9, 9, 10, 10, 11, 12, 13 }; + +// Offsets for source bytes 21 to 31 with 16 subtracted = 5 to 31. +static uvec8 kShuf21 = + { 5, 6, 6, 7, 8, 9, 9, 10, 10, 11, 12, 13, 13, 14, 14, 15 }; + +// Coefficients for source bytes 0 to 10 +static uvec8 kMadd01 = + { 3, 1, 2, 2, 1, 3, 3, 1, 2, 2, 1, 3, 3, 1, 2, 2 }; + +// Coefficients for source bytes 10 to 21 +static uvec8 kMadd11 = + { 1, 3, 3, 1, 2, 2, 1, 3, 3, 1, 2, 2, 1, 3, 3, 1 }; + +// Coefficients for source bytes 21 to 31 +static uvec8 kMadd21 = + { 2, 2, 1, 3, 3, 1, 2, 2, 1, 3, 3, 1, 2, 2, 1, 3 }; + +// Coefficients for source bytes 21 to 31 +static vec16 kRound34 = + { 2, 2, 2, 2, 2, 2, 2, 2 }; + +static uvec8 kShuf38a = + { 0, 3, 6, 8, 11, 14, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128 }; + +static uvec8 kShuf38b = + { 128, 128, 128, 128, 128, 128, 0, 3, 6, 8, 11, 14, 128, 128, 128, 128 }; + +// Arrange words 0,3,6 into 0,1,2 +static uvec8 kShufAc = + { 0, 1, 6, 7, 12, 13, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128 }; + +// Arrange words 0,3,6 into 3,4,5 +static uvec8 kShufAc3 = + { 128, 128, 128, 128, 128, 128, 0, 1, 6, 7, 12, 13, 128, 128, 128, 128 }; + +// Scaling values for boxes of 3x3 and 2x3 +static uvec16 kScaleAc33 = + { 65536 / 9, 65536 / 9, 65536 / 6, 65536 / 9, 65536 / 9, 65536 / 6, 0, 0 }; + +// Arrange first value for pixels 0,1,2,3,4,5 +static uvec8 kShufAb0 = + { 0, 128, 3, 128, 6, 128, 8, 128, 11, 128, 14, 128, 128, 128, 128, 128 }; + +// Arrange second value for pixels 0,1,2,3,4,5 +static uvec8 kShufAb1 = + { 1, 128, 4, 128, 7, 128, 9, 128, 12, 128, 15, 128, 128, 128, 128, 128 }; + +// Arrange third value for pixels 0,1,2,3,4,5 +static uvec8 kShufAb2 = + { 2, 128, 5, 128, 128, 128, 10, 128, 13, 128, 128, 128, 128, 128, 128, 128 }; + +// Scaling values for boxes of 3x2 and 2x2 +static uvec16 kScaleAb2 = + { 65536 / 3, 65536 / 3, 65536 / 2, 65536 / 3, 65536 / 3, 65536 / 2, 0, 0 }; + +// GCC versions of row functions are verbatim conversions from Visual C. +// Generated using gcc disassembly on Visual C object file: +// objdump -D yuvscaler.obj >yuvscaler.txt + +void ScaleRowDown2_SSSE3(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst_ptr, int dst_width) { + asm volatile ( + LABELALIGN + "1: \n" + "movdqu " MEMACCESS(0) ",%%xmm0 \n" + "movdqu " MEMACCESS2(0x10,0) ",%%xmm1 \n" + "lea " MEMLEA(0x20,0) ",%0 \n" + "psrlw $0x8,%%xmm0 \n" + "psrlw $0x8,%%xmm1 \n" + "packuswb %%xmm1,%%xmm0 \n" + "movdqu %%xmm0," MEMACCESS(1) " \n" + "lea " MEMLEA(0x10,1) ",%1 \n" + "sub $0x10,%2 \n" + "jg 1b \n" + : "+r"(src_ptr), // %0 + "+r"(dst_ptr), // %1 + "+r"(dst_width) // %2 + :: "memory", "cc", "xmm0", "xmm1" + ); +} + +void ScaleRowDown2Linear_SSSE3(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst_ptr, int dst_width) { + asm volatile ( + "pcmpeqb %%xmm4,%%xmm4 \n" + "psrlw $0xf,%%xmm4 \n" + "packuswb %%xmm4,%%xmm4 \n" + "pxor %%xmm5,%%xmm5 \n" + + LABELALIGN + "1: \n" + "movdqu " MEMACCESS(0) ",%%xmm0 \n" + "movdqu " MEMACCESS2(0x10, 0) ",%%xmm1 \n" + "lea " MEMLEA(0x20,0) ",%0 \n" + "pmaddubsw %%xmm4,%%xmm0 \n" + "pmaddubsw %%xmm4,%%xmm1 \n" + "pavgw %%xmm5,%%xmm0 \n" + "pavgw %%xmm5,%%xmm1 \n" + "packuswb %%xmm1,%%xmm0 \n" + "movdqu %%xmm0," MEMACCESS(1) " \n" + "lea " MEMLEA(0x10,1) ",%1 \n" + "sub $0x10,%2 \n" + "jg 1b \n" + : "+r"(src_ptr), // %0 + "+r"(dst_ptr), // %1 + "+r"(dst_width) // %2 + :: "memory", "cc", "xmm0", "xmm1", "xmm4", "xmm5" + ); +} + +void ScaleRowDown2Box_SSSE3(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst_ptr, int dst_width) { + asm volatile ( + "pcmpeqb %%xmm4,%%xmm4 \n" + "psrlw $0xf,%%xmm4 \n" + "packuswb %%xmm4,%%xmm4 \n" + "pxor %%xmm5,%%xmm5 \n" + + LABELALIGN + "1: \n" + "movdqu " MEMACCESS(0) ",%%xmm0 \n" + "movdqu " MEMACCESS2(0x10,0) ",%%xmm1 \n" + MEMOPREG(movdqu,0x00,0,3,1,xmm2) // movdqu (%0,%3,1),%%xmm2 + MEMOPREG(movdqu,0x10,0,3,1,xmm3) // movdqu 0x10(%0,%3,1),%%xmm3 + "lea " MEMLEA(0x20,0) ",%0 \n" + "pmaddubsw %%xmm4,%%xmm0 \n" + "pmaddubsw %%xmm4,%%xmm1 \n" + "pmaddubsw %%xmm4,%%xmm2 \n" + "pmaddubsw %%xmm4,%%xmm3 \n" + "paddw %%xmm2,%%xmm0 \n" + "paddw %%xmm3,%%xmm1 \n" + "psrlw $0x1,%%xmm0 \n" + "psrlw $0x1,%%xmm1 \n" + "pavgw %%xmm5,%%xmm0 \n" + "pavgw %%xmm5,%%xmm1 \n" + "packuswb %%xmm1,%%xmm0 \n" + "movdqu %%xmm0," MEMACCESS(1) " \n" + "lea " MEMLEA(0x10,1) ",%1 \n" + "sub $0x10,%2 \n" + "jg 1b \n" + : "+r"(src_ptr), // %0 + "+r"(dst_ptr), // %1 + "+r"(dst_width) // %2 + : "r"((intptr_t)(src_stride)) // %3 + : "memory", "cc", NACL_R14 + "xmm0", "xmm1", "xmm2", "xmm3", "xmm5" + ); +} + +#ifdef HAS_SCALEROWDOWN2_AVX2 +void ScaleRowDown2_AVX2(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst_ptr, int dst_width) { + asm volatile ( + LABELALIGN + "1: \n" + "vmovdqu " MEMACCESS(0) ",%%ymm0 \n" + "vmovdqu " MEMACCESS2(0x20,0) ",%%ymm1 \n" + "lea " MEMLEA(0x40,0) ",%0 \n" + "vpsrlw $0x8,%%ymm0,%%ymm0 \n" + "vpsrlw $0x8,%%ymm1,%%ymm1 \n" + "vpackuswb %%ymm1,%%ymm0,%%ymm0 \n" + "vpermq $0xd8,%%ymm0,%%ymm0 \n" + "vmovdqu %%ymm0," MEMACCESS(1) " \n" + "lea " MEMLEA(0x20,1) ",%1 \n" + "sub $0x20,%2 \n" + "jg 1b \n" + "vzeroupper \n" + : "+r"(src_ptr), // %0 + "+r"(dst_ptr), // %1 + "+r"(dst_width) // %2 + :: "memory", "cc", "xmm0", "xmm1" + ); +} + +void ScaleRowDown2Linear_AVX2(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst_ptr, int dst_width) { + asm volatile ( + "vpcmpeqb %%ymm4,%%ymm4,%%ymm4 \n" + "vpsrlw $0xf,%%ymm4,%%ymm4 \n" + "vpackuswb %%ymm4,%%ymm4,%%ymm4 \n" + "vpxor %%ymm5,%%ymm5,%%ymm5 \n" + + LABELALIGN + "1: \n" + "vmovdqu " MEMACCESS(0) ",%%ymm0 \n" + "vmovdqu " MEMACCESS2(0x20, 0) ",%%ymm1 \n" + "lea " MEMLEA(0x40,0) ",%0 \n" + "vpmaddubsw %%ymm4,%%ymm0,%%ymm0 \n" + "vpmaddubsw %%ymm4,%%ymm1,%%ymm1 \n" + "vpavgw %%ymm5,%%ymm0,%%ymm0 \n" + "vpavgw %%ymm5,%%ymm1,%%ymm1 \n" + "vpackuswb %%ymm1,%%ymm0,%%ymm0 \n" + "vpermq $0xd8,%%ymm0,%%ymm0 \n" + "vmovdqu %%ymm0," MEMACCESS(1) " \n" + "lea " MEMLEA(0x20,1) ",%1 \n" + "sub $0x20,%2 \n" + "jg 1b \n" + "vzeroupper \n" + : "+r"(src_ptr), // %0 + "+r"(dst_ptr), // %1 + "+r"(dst_width) // %2 + :: "memory", "cc", "xmm0", "xmm1", "xmm4", "xmm5" + ); +} + +void ScaleRowDown2Box_AVX2(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst_ptr, int dst_width) { + asm volatile ( + "vpcmpeqb %%ymm4,%%ymm4,%%ymm4 \n" + "vpsrlw $0xf,%%ymm4,%%ymm4 \n" + "vpackuswb %%ymm4,%%ymm4,%%ymm4 \n" + "vpxor %%ymm5,%%ymm5,%%ymm5 \n" + + LABELALIGN + "1: \n" + "vmovdqu " MEMACCESS(0) ",%%ymm0 \n" + "vmovdqu " MEMACCESS2(0x20,0) ",%%ymm1 \n" + MEMOPREG(vmovdqu,0x00,0,3,1,ymm2) // vmovdqu (%0,%3,1),%%ymm2 + MEMOPREG(vmovdqu,0x20,0,3,1,ymm3) // vmovdqu 0x20(%0,%3,1),%%ymm3 + "lea " MEMLEA(0x40,0) ",%0 \n" + "vpmaddubsw %%ymm4,%%ymm0,%%ymm0 \n" + "vpmaddubsw %%ymm4,%%ymm1,%%ymm1 \n" + "vpmaddubsw %%ymm4,%%ymm2,%%ymm2 \n" + "vpmaddubsw %%ymm4,%%ymm3,%%ymm3 \n" + "vpaddw %%ymm2,%%ymm0,%%ymm0 \n" + "vpaddw %%ymm3,%%ymm1,%%ymm1 \n" + "vpsrlw $0x1,%%ymm0,%%ymm0 \n" + "vpsrlw $0x1,%%ymm1,%%ymm1 \n" + "vpavgw %%ymm5,%%ymm0,%%ymm0 \n" + "vpavgw %%ymm5,%%ymm1,%%ymm1 \n" + "vpackuswb %%ymm1,%%ymm0,%%ymm0 \n" + "vpermq $0xd8,%%ymm0,%%ymm0 \n" + "vmovdqu %%ymm0," MEMACCESS(1) " \n" + "lea " MEMLEA(0x20,1) ",%1 \n" + "sub $0x20,%2 \n" + "jg 1b \n" + "vzeroupper \n" + : "+r"(src_ptr), // %0 + "+r"(dst_ptr), // %1 + "+r"(dst_width) // %2 + : "r"((intptr_t)(src_stride)) // %3 + : "memory", "cc", NACL_R14 + "xmm0", "xmm1", "xmm2", "xmm3", "xmm5" + ); +} +#endif // HAS_SCALEROWDOWN2_AVX2 + +void ScaleRowDown4_SSSE3(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst_ptr, int dst_width) { + asm volatile ( + "pcmpeqb %%xmm5,%%xmm5 \n" + "psrld $0x18,%%xmm5 \n" + "pslld $0x10,%%xmm5 \n" + + LABELALIGN + "1: \n" + "movdqu " MEMACCESS(0) ",%%xmm0 \n" + "movdqu " MEMACCESS2(0x10,0) ",%%xmm1 \n" + "lea " MEMLEA(0x20,0) ",%0 \n" + "pand %%xmm5,%%xmm0 \n" + "pand %%xmm5,%%xmm1 \n" + "packuswb %%xmm1,%%xmm0 \n" + "psrlw $0x8,%%xmm0 \n" + "packuswb %%xmm0,%%xmm0 \n" + "movq %%xmm0," MEMACCESS(1) " \n" + "lea " MEMLEA(0x8,1) ",%1 \n" + "sub $0x8,%2 \n" + "jg 1b \n" + : "+r"(src_ptr), // %0 + "+r"(dst_ptr), // %1 + "+r"(dst_width) // %2 + :: "memory", "cc", "xmm0", "xmm1", "xmm5" + ); +} + +void ScaleRowDown4Box_SSSE3(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst_ptr, int dst_width) { + intptr_t stridex3; + asm volatile ( + "pcmpeqb %%xmm4,%%xmm4 \n" + "psrlw $0xf,%%xmm4 \n" + "movdqa %%xmm4,%%xmm5 \n" + "packuswb %%xmm4,%%xmm4 \n" + "psllw $0x3,%%xmm5 \n" + "lea " MEMLEA4(0x00,4,4,2) ",%3 \n" + + LABELALIGN + "1: \n" + "movdqu " MEMACCESS(0) ",%%xmm0 \n" + "movdqu " MEMACCESS2(0x10,0) ",%%xmm1 \n" + MEMOPREG(movdqu,0x00,0,4,1,xmm2) // movdqu (%0,%4,1),%%xmm2 + MEMOPREG(movdqu,0x10,0,4,1,xmm3) // movdqu 0x10(%0,%4,1),%%xmm3 + "pmaddubsw %%xmm4,%%xmm0 \n" + "pmaddubsw %%xmm4,%%xmm1 \n" + "pmaddubsw %%xmm4,%%xmm2 \n" + "pmaddubsw %%xmm4,%%xmm3 \n" + "paddw %%xmm2,%%xmm0 \n" + "paddw %%xmm3,%%xmm1 \n" + MEMOPREG(movdqu,0x00,0,4,2,xmm2) // movdqu (%0,%4,2),%%xmm2 + MEMOPREG(movdqu,0x10,0,4,2,xmm3) // movdqu 0x10(%0,%4,2),%%xmm3 + "pmaddubsw %%xmm4,%%xmm2 \n" + "pmaddubsw %%xmm4,%%xmm3 \n" + "paddw %%xmm2,%%xmm0 \n" + "paddw %%xmm3,%%xmm1 \n" + MEMOPREG(movdqu,0x00,0,3,1,xmm2) // movdqu (%0,%3,1),%%xmm2 + MEMOPREG(movdqu,0x10,0,3,1,xmm3) // movdqu 0x10(%0,%3,1),%%xmm3 + "lea " MEMLEA(0x20,0) ",%0 \n" + "pmaddubsw %%xmm4,%%xmm2 \n" + "pmaddubsw %%xmm4,%%xmm3 \n" + "paddw %%xmm2,%%xmm0 \n" + "paddw %%xmm3,%%xmm1 \n" + "phaddw %%xmm1,%%xmm0 \n" + "paddw %%xmm5,%%xmm0 \n" + "psrlw $0x4,%%xmm0 \n" + "packuswb %%xmm0,%%xmm0 \n" + "movq %%xmm0," MEMACCESS(1) " \n" + "lea " MEMLEA(0x8,1) ",%1 \n" + "sub $0x8,%2 \n" + "jg 1b \n" + : "+r"(src_ptr), // %0 + "+r"(dst_ptr), // %1 + "+r"(dst_width), // %2 + "=&r"(stridex3) // %3 + : "r"((intptr_t)(src_stride)) // %4 + : "memory", "cc", NACL_R14 + "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5" + ); +} + + +#ifdef HAS_SCALEROWDOWN4_AVX2 +void ScaleRowDown4_AVX2(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst_ptr, int dst_width) { + asm volatile ( + "vpcmpeqb %%ymm5,%%ymm5,%%ymm5 \n" + "vpsrld $0x18,%%ymm5,%%ymm5 \n" + "vpslld $0x10,%%ymm5,%%ymm5 \n" + LABELALIGN + "1: \n" + "vmovdqu " MEMACCESS(0) ",%%ymm0 \n" + "vmovdqu " MEMACCESS2(0x20,0) ",%%ymm1 \n" + "lea " MEMLEA(0x40,0) ",%0 \n" + "vpand %%ymm5,%%ymm0,%%ymm0 \n" + "vpand %%ymm5,%%ymm1,%%ymm1 \n" + "vpackuswb %%ymm1,%%ymm0,%%ymm0 \n" + "vpermq $0xd8,%%ymm0,%%ymm0 \n" + "vpsrlw $0x8,%%ymm0,%%ymm0 \n" + "vpackuswb %%ymm0,%%ymm0,%%ymm0 \n" + "vpermq $0xd8,%%ymm0,%%ymm0 \n" + "vmovdqu %%xmm0," MEMACCESS(1) " \n" + "lea " MEMLEA(0x10,1) ",%1 \n" + "sub $0x10,%2 \n" + "jg 1b \n" + "vzeroupper \n" + : "+r"(src_ptr), // %0 + "+r"(dst_ptr), // %1 + "+r"(dst_width) // %2 + :: "memory", "cc", "xmm0", "xmm1", "xmm5" + ); +} + +void ScaleRowDown4Box_AVX2(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst_ptr, int dst_width) { + asm volatile ( + "vpcmpeqb %%ymm4,%%ymm4,%%ymm4 \n" + "vpsrlw $0xf,%%ymm4,%%ymm4 \n" + "vpsllw $0x3,%%ymm4,%%ymm5 \n" + "vpackuswb %%ymm4,%%ymm4,%%ymm4 \n" + + LABELALIGN + "1: \n" + "vmovdqu " MEMACCESS(0) ",%%ymm0 \n" + "vmovdqu " MEMACCESS2(0x20,0) ",%%ymm1 \n" + MEMOPREG(vmovdqu,0x00,0,3,1,ymm2) // vmovdqu (%0,%3,1),%%ymm2 + MEMOPREG(vmovdqu,0x20,0,3,1,ymm3) // vmovdqu 0x20(%0,%3,1),%%ymm3 + "vpmaddubsw %%ymm4,%%ymm0,%%ymm0 \n" + "vpmaddubsw %%ymm4,%%ymm1,%%ymm1 \n" + "vpmaddubsw %%ymm4,%%ymm2,%%ymm2 \n" + "vpmaddubsw %%ymm4,%%ymm3,%%ymm3 \n" + "vpaddw %%ymm2,%%ymm0,%%ymm0 \n" + "vpaddw %%ymm3,%%ymm1,%%ymm1 \n" + MEMOPREG(vmovdqu,0x00,0,3,2,ymm2) // vmovdqu (%0,%3,2),%%ymm2 + MEMOPREG(vmovdqu,0x20,0,3,2,ymm3) // vmovdqu 0x20(%0,%3,2),%%ymm3 + "vpmaddubsw %%ymm4,%%ymm2,%%ymm2 \n" + "vpmaddubsw %%ymm4,%%ymm3,%%ymm3 \n" + "vpaddw %%ymm2,%%ymm0,%%ymm0 \n" + "vpaddw %%ymm3,%%ymm1,%%ymm1 \n" + MEMOPREG(vmovdqu,0x00,0,4,1,ymm2) // vmovdqu (%0,%4,1),%%ymm2 + MEMOPREG(vmovdqu,0x20,0,4,1,ymm3) // vmovdqu 0x20(%0,%4,1),%%ymm3 + "lea " MEMLEA(0x40,0) ",%0 \n" + "vpmaddubsw %%ymm4,%%ymm2,%%ymm2 \n" + "vpmaddubsw %%ymm4,%%ymm3,%%ymm3 \n" + "vpaddw %%ymm2,%%ymm0,%%ymm0 \n" + "vpaddw %%ymm3,%%ymm1,%%ymm1 \n" + "vphaddw %%ymm1,%%ymm0,%%ymm0 \n" + "vpermq $0xd8,%%ymm0,%%ymm0 \n" + "vpaddw %%ymm5,%%ymm0,%%ymm0 \n" + "vpsrlw $0x4,%%ymm0,%%ymm0 \n" + "vpackuswb %%ymm0,%%ymm0,%%ymm0 \n" + "vpermq $0xd8,%%ymm0,%%ymm0 \n" + "vmovdqu %%xmm0," MEMACCESS(1) " \n" + "lea " MEMLEA(0x10,1) ",%1 \n" + "sub $0x10,%2 \n" + "jg 1b \n" + "vzeroupper \n" + : "+r"(src_ptr), // %0 + "+r"(dst_ptr), // %1 + "+r"(dst_width) // %2 + : "r"((intptr_t)(src_stride)), // %3 + "r"((intptr_t)(src_stride * 3)) // %4 + : "memory", "cc", NACL_R14 + "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5" + ); +} +#endif // HAS_SCALEROWDOWN4_AVX2 + +void ScaleRowDown34_SSSE3(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst_ptr, int dst_width) { + asm volatile ( + "movdqa %0,%%xmm3 \n" + "movdqa %1,%%xmm4 \n" + "movdqa %2,%%xmm5 \n" + : + : "m"(kShuf0), // %0 + "m"(kShuf1), // %1 + "m"(kShuf2) // %2 + ); + asm volatile ( + LABELALIGN + "1: \n" + "movdqu " MEMACCESS(0) ",%%xmm0 \n" + "movdqu " MEMACCESS2(0x10,0) ",%%xmm2 \n" + "lea " MEMLEA(0x20,0) ",%0 \n" + "movdqa %%xmm2,%%xmm1 \n" + "palignr $0x8,%%xmm0,%%xmm1 \n" + "pshufb %%xmm3,%%xmm0 \n" + "pshufb %%xmm4,%%xmm1 \n" + "pshufb %%xmm5,%%xmm2 \n" + "movq %%xmm0," MEMACCESS(1) " \n" + "movq %%xmm1," MEMACCESS2(0x8,1) " \n" + "movq %%xmm2," MEMACCESS2(0x10,1) " \n" + "lea " MEMLEA(0x18,1) ",%1 \n" + "sub $0x18,%2 \n" + "jg 1b \n" + : "+r"(src_ptr), // %0 + "+r"(dst_ptr), // %1 + "+r"(dst_width) // %2 + :: "memory", "cc", "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5" + ); +} + +void ScaleRowDown34_1_Box_SSSE3(const uint8* src_ptr, + ptrdiff_t src_stride, + uint8* dst_ptr, int dst_width) { + asm volatile ( + "movdqa %0,%%xmm2 \n" // kShuf01 + "movdqa %1,%%xmm3 \n" // kShuf11 + "movdqa %2,%%xmm4 \n" // kShuf21 + : + : "m"(kShuf01), // %0 + "m"(kShuf11), // %1 + "m"(kShuf21) // %2 + ); + asm volatile ( + "movdqa %0,%%xmm5 \n" // kMadd01 + "movdqa %1,%%xmm0 \n" // kMadd11 + "movdqa %2,%%xmm1 \n" // kRound34 + : + : "m"(kMadd01), // %0 + "m"(kMadd11), // %1 + "m"(kRound34) // %2 + ); + asm volatile ( + LABELALIGN + "1: \n" + "movdqu " MEMACCESS(0) ",%%xmm6 \n" + MEMOPREG(movdqu,0x00,0,3,1,xmm7) // movdqu (%0,%3),%%xmm7 + "pavgb %%xmm7,%%xmm6 \n" + "pshufb %%xmm2,%%xmm6 \n" + "pmaddubsw %%xmm5,%%xmm6 \n" + "paddsw %%xmm1,%%xmm6 \n" + "psrlw $0x2,%%xmm6 \n" + "packuswb %%xmm6,%%xmm6 \n" + "movq %%xmm6," MEMACCESS(1) " \n" + "movdqu " MEMACCESS2(0x8,0) ",%%xmm6 \n" + MEMOPREG(movdqu,0x8,0,3,1,xmm7) // movdqu 0x8(%0,%3),%%xmm7 + "pavgb %%xmm7,%%xmm6 \n" + "pshufb %%xmm3,%%xmm6 \n" + "pmaddubsw %%xmm0,%%xmm6 \n" + "paddsw %%xmm1,%%xmm6 \n" + "psrlw $0x2,%%xmm6 \n" + "packuswb %%xmm6,%%xmm6 \n" + "movq %%xmm6," MEMACCESS2(0x8,1) " \n" + "movdqu " MEMACCESS2(0x10,0) ",%%xmm6 \n" + MEMOPREG(movdqu,0x10,0,3,1,xmm7) // movdqu 0x10(%0,%3),%%xmm7 + "lea " MEMLEA(0x20,0) ",%0 \n" + "pavgb %%xmm7,%%xmm6 \n" + "pshufb %%xmm4,%%xmm6 \n" + "pmaddubsw %4,%%xmm6 \n" + "paddsw %%xmm1,%%xmm6 \n" + "psrlw $0x2,%%xmm6 \n" + "packuswb %%xmm6,%%xmm6 \n" + "movq %%xmm6," MEMACCESS2(0x10,1) " \n" + "lea " MEMLEA(0x18,1) ",%1 \n" + "sub $0x18,%2 \n" + "jg 1b \n" + : "+r"(src_ptr), // %0 + "+r"(dst_ptr), // %1 + "+r"(dst_width) // %2 + : "r"((intptr_t)(src_stride)), // %3 + "m"(kMadd21) // %4 + : "memory", "cc", NACL_R14 + "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7" + ); +} + +void ScaleRowDown34_0_Box_SSSE3(const uint8* src_ptr, + ptrdiff_t src_stride, + uint8* dst_ptr, int dst_width) { + asm volatile ( + "movdqa %0,%%xmm2 \n" // kShuf01 + "movdqa %1,%%xmm3 \n" // kShuf11 + "movdqa %2,%%xmm4 \n" // kShuf21 + : + : "m"(kShuf01), // %0 + "m"(kShuf11), // %1 + "m"(kShuf21) // %2 + ); + asm volatile ( + "movdqa %0,%%xmm5 \n" // kMadd01 + "movdqa %1,%%xmm0 \n" // kMadd11 + "movdqa %2,%%xmm1 \n" // kRound34 + : + : "m"(kMadd01), // %0 + "m"(kMadd11), // %1 + "m"(kRound34) // %2 + ); + + asm volatile ( + LABELALIGN + "1: \n" + "movdqu " MEMACCESS(0) ",%%xmm6 \n" + MEMOPREG(movdqu,0x00,0,3,1,xmm7) // movdqu (%0,%3,1),%%xmm7 + "pavgb %%xmm6,%%xmm7 \n" + "pavgb %%xmm7,%%xmm6 \n" + "pshufb %%xmm2,%%xmm6 \n" + "pmaddubsw %%xmm5,%%xmm6 \n" + "paddsw %%xmm1,%%xmm6 \n" + "psrlw $0x2,%%xmm6 \n" + "packuswb %%xmm6,%%xmm6 \n" + "movq %%xmm6," MEMACCESS(1) " \n" + "movdqu " MEMACCESS2(0x8,0) ",%%xmm6 \n" + MEMOPREG(movdqu,0x8,0,3,1,xmm7) // movdqu 0x8(%0,%3,1),%%xmm7 + "pavgb %%xmm6,%%xmm7 \n" + "pavgb %%xmm7,%%xmm6 \n" + "pshufb %%xmm3,%%xmm6 \n" + "pmaddubsw %%xmm0,%%xmm6 \n" + "paddsw %%xmm1,%%xmm6 \n" + "psrlw $0x2,%%xmm6 \n" + "packuswb %%xmm6,%%xmm6 \n" + "movq %%xmm6," MEMACCESS2(0x8,1) " \n" + "movdqu " MEMACCESS2(0x10,0) ",%%xmm6 \n" + MEMOPREG(movdqu,0x10,0,3,1,xmm7) // movdqu 0x10(%0,%3,1),%%xmm7 + "lea " MEMLEA(0x20,0) ",%0 \n" + "pavgb %%xmm6,%%xmm7 \n" + "pavgb %%xmm7,%%xmm6 \n" + "pshufb %%xmm4,%%xmm6 \n" + "pmaddubsw %4,%%xmm6 \n" + "paddsw %%xmm1,%%xmm6 \n" + "psrlw $0x2,%%xmm6 \n" + "packuswb %%xmm6,%%xmm6 \n" + "movq %%xmm6," MEMACCESS2(0x10,1) " \n" + "lea " MEMLEA(0x18,1) ",%1 \n" + "sub $0x18,%2 \n" + "jg 1b \n" + : "+r"(src_ptr), // %0 + "+r"(dst_ptr), // %1 + "+r"(dst_width) // %2 + : "r"((intptr_t)(src_stride)), // %3 + "m"(kMadd21) // %4 + : "memory", "cc", NACL_R14 + "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7" + ); +} + +void ScaleRowDown38_SSSE3(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst_ptr, int dst_width) { + asm volatile ( + "movdqa %3,%%xmm4 \n" + "movdqa %4,%%xmm5 \n" + + LABELALIGN + "1: \n" + "movdqu " MEMACCESS(0) ",%%xmm0 \n" + "movdqu " MEMACCESS2(0x10,0) ",%%xmm1 \n" + "lea " MEMLEA(0x20,0) ",%0 \n" + "pshufb %%xmm4,%%xmm0 \n" + "pshufb %%xmm5,%%xmm1 \n" + "paddusb %%xmm1,%%xmm0 \n" + "movq %%xmm0," MEMACCESS(1) " \n" + "movhlps %%xmm0,%%xmm1 \n" + "movd %%xmm1," MEMACCESS2(0x8,1) " \n" + "lea " MEMLEA(0xc,1) ",%1 \n" + "sub $0xc,%2 \n" + "jg 1b \n" + : "+r"(src_ptr), // %0 + "+r"(dst_ptr), // %1 + "+r"(dst_width) // %2 + : "m"(kShuf38a), // %3 + "m"(kShuf38b) // %4 + : "memory", "cc", "xmm0", "xmm1", "xmm4", "xmm5" + ); +} + +void ScaleRowDown38_2_Box_SSSE3(const uint8* src_ptr, + ptrdiff_t src_stride, + uint8* dst_ptr, int dst_width) { + asm volatile ( + "movdqa %0,%%xmm2 \n" + "movdqa %1,%%xmm3 \n" + "movdqa %2,%%xmm4 \n" + "movdqa %3,%%xmm5 \n" + : + : "m"(kShufAb0), // %0 + "m"(kShufAb1), // %1 + "m"(kShufAb2), // %2 + "m"(kScaleAb2) // %3 + ); + asm volatile ( + LABELALIGN + "1: \n" + "movdqu " MEMACCESS(0) ",%%xmm0 \n" + MEMOPREG(movdqu,0x00,0,3,1,xmm1) // movdqu (%0,%3,1),%%xmm1 + "lea " MEMLEA(0x10,0) ",%0 \n" + "pavgb %%xmm1,%%xmm0 \n" + "movdqa %%xmm0,%%xmm1 \n" + "pshufb %%xmm2,%%xmm1 \n" + "movdqa %%xmm0,%%xmm6 \n" + "pshufb %%xmm3,%%xmm6 \n" + "paddusw %%xmm6,%%xmm1 \n" + "pshufb %%xmm4,%%xmm0 \n" + "paddusw %%xmm0,%%xmm1 \n" + "pmulhuw %%xmm5,%%xmm1 \n" + "packuswb %%xmm1,%%xmm1 \n" + "movd %%xmm1," MEMACCESS(1) " \n" + "psrlq $0x10,%%xmm1 \n" + "movd %%xmm1," MEMACCESS2(0x2,1) " \n" + "lea " MEMLEA(0x6,1) ",%1 \n" + "sub $0x6,%2 \n" + "jg 1b \n" + : "+r"(src_ptr), // %0 + "+r"(dst_ptr), // %1 + "+r"(dst_width) // %2 + : "r"((intptr_t)(src_stride)) // %3 + : "memory", "cc", NACL_R14 + "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6" + ); +} + +void ScaleRowDown38_3_Box_SSSE3(const uint8* src_ptr, + ptrdiff_t src_stride, + uint8* dst_ptr, int dst_width) { + asm volatile ( + "movdqa %0,%%xmm2 \n" + "movdqa %1,%%xmm3 \n" + "movdqa %2,%%xmm4 \n" + "pxor %%xmm5,%%xmm5 \n" + : + : "m"(kShufAc), // %0 + "m"(kShufAc3), // %1 + "m"(kScaleAc33) // %2 + ); + asm volatile ( + LABELALIGN + "1: \n" + "movdqu " MEMACCESS(0) ",%%xmm0 \n" + MEMOPREG(movdqu,0x00,0,3,1,xmm6) // movdqu (%0,%3,1),%%xmm6 + "movhlps %%xmm0,%%xmm1 \n" + "movhlps %%xmm6,%%xmm7 \n" + "punpcklbw %%xmm5,%%xmm0 \n" + "punpcklbw %%xmm5,%%xmm1 \n" + "punpcklbw %%xmm5,%%xmm6 \n" + "punpcklbw %%xmm5,%%xmm7 \n" + "paddusw %%xmm6,%%xmm0 \n" + "paddusw %%xmm7,%%xmm1 \n" + MEMOPREG(movdqu,0x00,0,3,2,xmm6) // movdqu (%0,%3,2),%%xmm6 + "lea " MEMLEA(0x10,0) ",%0 \n" + "movhlps %%xmm6,%%xmm7 \n" + "punpcklbw %%xmm5,%%xmm6 \n" + "punpcklbw %%xmm5,%%xmm7 \n" + "paddusw %%xmm6,%%xmm0 \n" + "paddusw %%xmm7,%%xmm1 \n" + "movdqa %%xmm0,%%xmm6 \n" + "psrldq $0x2,%%xmm0 \n" + "paddusw %%xmm0,%%xmm6 \n" + "psrldq $0x2,%%xmm0 \n" + "paddusw %%xmm0,%%xmm6 \n" + "pshufb %%xmm2,%%xmm6 \n" + "movdqa %%xmm1,%%xmm7 \n" + "psrldq $0x2,%%xmm1 \n" + "paddusw %%xmm1,%%xmm7 \n" + "psrldq $0x2,%%xmm1 \n" + "paddusw %%xmm1,%%xmm7 \n" + "pshufb %%xmm3,%%xmm7 \n" + "paddusw %%xmm7,%%xmm6 \n" + "pmulhuw %%xmm4,%%xmm6 \n" + "packuswb %%xmm6,%%xmm6 \n" + "movd %%xmm6," MEMACCESS(1) " \n" + "psrlq $0x10,%%xmm6 \n" + "movd %%xmm6," MEMACCESS2(0x2,1) " \n" + "lea " MEMLEA(0x6,1) ",%1 \n" + "sub $0x6,%2 \n" + "jg 1b \n" + : "+r"(src_ptr), // %0 + "+r"(dst_ptr), // %1 + "+r"(dst_width) // %2 + : "r"((intptr_t)(src_stride)) // %3 + : "memory", "cc", NACL_R14 + "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7" + ); +} + +// Reads 16xN bytes and produces 16 shorts at a time. +void ScaleAddRow_SSE2(const uint8* src_ptr, uint16* dst_ptr, int src_width) { + asm volatile ( + "pxor %%xmm5,%%xmm5 \n" + + LABELALIGN + "1: \n" + "movdqu " MEMACCESS(0) ",%%xmm3 \n" + "lea " MEMLEA(0x10,0) ",%0 \n" // src_ptr += 16 + "movdqu " MEMACCESS(1) ",%%xmm0 \n" + "movdqu " MEMACCESS2(0x10,1) ",%%xmm1 \n" + "movdqa %%xmm3,%%xmm2 \n" + "punpcklbw %%xmm5,%%xmm2 \n" + "punpckhbw %%xmm5,%%xmm3 \n" + "paddusw %%xmm2,%%xmm0 \n" + "paddusw %%xmm3,%%xmm1 \n" + "movdqu %%xmm0," MEMACCESS(1) " \n" + "movdqu %%xmm1," MEMACCESS2(0x10,1) " \n" + "lea " MEMLEA(0x20,1) ",%1 \n" + "sub $0x10,%2 \n" + "jg 1b \n" + : "+r"(src_ptr), // %0 + "+r"(dst_ptr), // %1 + "+r"(src_width) // %2 + : + : "memory", "cc", "xmm0", "xmm1", "xmm2", "xmm3", "xmm5" + ); +} + + +#ifdef HAS_SCALEADDROW_AVX2 +// Reads 32 bytes and accumulates to 32 shorts at a time. +void ScaleAddRow_AVX2(const uint8* src_ptr, uint16* dst_ptr, int src_width) { + asm volatile ( + "vpxor %%ymm5,%%ymm5,%%ymm5 \n" + + LABELALIGN + "1: \n" + "vmovdqu " MEMACCESS(0) ",%%ymm3 \n" + "lea " MEMLEA(0x20,0) ",%0 \n" // src_ptr += 32 + "vpermq $0xd8,%%ymm3,%%ymm3 \n" + "vpunpcklbw %%ymm5,%%ymm3,%%ymm2 \n" + "vpunpckhbw %%ymm5,%%ymm3,%%ymm3 \n" + "vpaddusw " MEMACCESS(1) ",%%ymm2,%%ymm0 \n" + "vpaddusw " MEMACCESS2(0x20,1) ",%%ymm3,%%ymm1 \n" + "vmovdqu %%ymm0," MEMACCESS(1) " \n" + "vmovdqu %%ymm1," MEMACCESS2(0x20,1) " \n" + "lea " MEMLEA(0x40,1) ",%1 \n" + "sub $0x20,%2 \n" + "jg 1b \n" + "vzeroupper \n" + : "+r"(src_ptr), // %0 + "+r"(dst_ptr), // %1 + "+r"(src_width) // %2 + : + : "memory", "cc", "xmm0", "xmm1", "xmm2", "xmm3", "xmm5" + ); +} +#endif // HAS_SCALEADDROW_AVX2 + +// Constant for making pixels signed to avoid pmaddubsw +// saturation. +static uvec8 kFsub80 = + { 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, + 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80 }; + +// Constant for making pixels unsigned and adding .5 for rounding. +static uvec16 kFadd40 = + { 0x4040, 0x4040, 0x4040, 0x4040, 0x4040, 0x4040, 0x4040, 0x4040 }; + +// Bilinear column filtering. SSSE3 version. +void ScaleFilterCols_SSSE3(uint8* dst_ptr, const uint8* src_ptr, + int dst_width, int x, int dx) { + intptr_t x0, x1, temp_pixel; + asm volatile ( + "movd %6,%%xmm2 \n" + "movd %7,%%xmm3 \n" + "movl $0x04040000,%k2 \n" + "movd %k2,%%xmm5 \n" + "pcmpeqb %%xmm6,%%xmm6 \n" + "psrlw $0x9,%%xmm6 \n" // 0x007f007f + "pcmpeqb %%xmm7,%%xmm7 \n" + "psrlw $15,%%xmm7 \n" // 0x00010001 + + "pextrw $0x1,%%xmm2,%k3 \n" + "subl $0x2,%5 \n" + "jl 29f \n" + "movdqa %%xmm2,%%xmm0 \n" + "paddd %%xmm3,%%xmm0 \n" + "punpckldq %%xmm0,%%xmm2 \n" + "punpckldq %%xmm3,%%xmm3 \n" + "paddd %%xmm3,%%xmm3 \n" + "pextrw $0x3,%%xmm2,%k4 \n" + + LABELALIGN + "2: \n" + "movdqa %%xmm2,%%xmm1 \n" + "paddd %%xmm3,%%xmm2 \n" + MEMOPARG(movzwl,0x00,1,3,1,k2) // movzwl (%1,%3,1),%k2 + "movd %k2,%%xmm0 \n" + "psrlw $0x9,%%xmm1 \n" + MEMOPARG(movzwl,0x00,1,4,1,k2) // movzwl (%1,%4,1),%k2 + "movd %k2,%%xmm4 \n" + "pshufb %%xmm5,%%xmm1 \n" + "punpcklwd %%xmm4,%%xmm0 \n" + "psubb %8,%%xmm0 \n" // make pixels signed. + "pxor %%xmm6,%%xmm1 \n" // 128 -f = (f ^ 127 ) + 1 + "paddusb %%xmm7,%%xmm1 \n" + "pmaddubsw %%xmm0,%%xmm1 \n" + "pextrw $0x1,%%xmm2,%k3 \n" + "pextrw $0x3,%%xmm2,%k4 \n" + "paddw %9,%%xmm1 \n" // make pixels unsigned. + "psrlw $0x7,%%xmm1 \n" + "packuswb %%xmm1,%%xmm1 \n" + "movd %%xmm1,%k2 \n" + "mov %w2," MEMACCESS(0) " \n" + "lea " MEMLEA(0x2,0) ",%0 \n" + "subl $0x2,%5 \n" + "jge 2b \n" + + LABELALIGN + "29: \n" + "addl $0x1,%5 \n" + "jl 99f \n" + MEMOPARG(movzwl,0x00,1,3,1,k2) // movzwl (%1,%3,1),%k2 + "movd %k2,%%xmm0 \n" + "psrlw $0x9,%%xmm2 \n" + "pshufb %%xmm5,%%xmm2 \n" + "psubb %8,%%xmm0 \n" // make pixels signed. + "pxor %%xmm6,%%xmm2 \n" + "paddusb %%xmm7,%%xmm2 \n" + "pmaddubsw %%xmm0,%%xmm2 \n" + "paddw %9,%%xmm2 \n" // make pixels unsigned. + "psrlw $0x7,%%xmm2 \n" + "packuswb %%xmm2,%%xmm2 \n" + "movd %%xmm2,%k2 \n" + "mov %b2," MEMACCESS(0) " \n" + "99: \n" + : "+r"(dst_ptr), // %0 + "+r"(src_ptr), // %1 + "=&a"(temp_pixel), // %2 + "=&r"(x0), // %3 + "=&r"(x1), // %4 +#if defined(__x86_64__) + "+rm"(dst_width) // %5 +#else + "+m"(dst_width) // %5 +#endif + : "rm"(x), // %6 + "rm"(dx), // %7 +#if defined(__x86_64__) + "x"(kFsub80), // %8 + "x"(kFadd40) // %9 +#else + "m"(kFsub80), // %8 + "m"(kFadd40) // %9 +#endif + : "memory", "cc", NACL_R14 + "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7" + ); +} + +// Reads 4 pixels, duplicates them and writes 8 pixels. +// Alignment requirement: src_argb 16 byte aligned, dst_argb 16 byte aligned. +void ScaleColsUp2_SSE2(uint8* dst_ptr, const uint8* src_ptr, + int dst_width, int x, int dx) { + asm volatile ( + LABELALIGN + "1: \n" + "movdqu " MEMACCESS(1) ",%%xmm0 \n" + "lea " MEMLEA(0x10,1) ",%1 \n" + "movdqa %%xmm0,%%xmm1 \n" + "punpcklbw %%xmm0,%%xmm0 \n" + "punpckhbw %%xmm1,%%xmm1 \n" + "movdqu %%xmm0," MEMACCESS(0) " \n" + "movdqu %%xmm1," MEMACCESS2(0x10,0) " \n" + "lea " MEMLEA(0x20,0) ",%0 \n" + "sub $0x20,%2 \n" + "jg 1b \n" + + : "+r"(dst_ptr), // %0 + "+r"(src_ptr), // %1 + "+r"(dst_width) // %2 + :: "memory", "cc", "xmm0", "xmm1" + ); +} + +void ScaleARGBRowDown2_SSE2(const uint8* src_argb, + ptrdiff_t src_stride, + uint8* dst_argb, int dst_width) { + asm volatile ( + LABELALIGN + "1: \n" + "movdqu " MEMACCESS(0) ",%%xmm0 \n" + "movdqu " MEMACCESS2(0x10,0) ",%%xmm1 \n" + "lea " MEMLEA(0x20,0) ",%0 \n" + "shufps $0xdd,%%xmm1,%%xmm0 \n" + "movdqu %%xmm0," MEMACCESS(1) " \n" + "lea " MEMLEA(0x10,1) ",%1 \n" + "sub $0x4,%2 \n" + "jg 1b \n" + : "+r"(src_argb), // %0 + "+r"(dst_argb), // %1 + "+r"(dst_width) // %2 + :: "memory", "cc", "xmm0", "xmm1" + ); +} + +void ScaleARGBRowDown2Linear_SSE2(const uint8* src_argb, + ptrdiff_t src_stride, + uint8* dst_argb, int dst_width) { + asm volatile ( + LABELALIGN + "1: \n" + "movdqu " MEMACCESS(0) ",%%xmm0 \n" + "movdqu " MEMACCESS2(0x10,0) ",%%xmm1 \n" + "lea " MEMLEA(0x20,0) ",%0 \n" + "movdqa %%xmm0,%%xmm2 \n" + "shufps $0x88,%%xmm1,%%xmm0 \n" + "shufps $0xdd,%%xmm1,%%xmm2 \n" + "pavgb %%xmm2,%%xmm0 \n" + "movdqu %%xmm0," MEMACCESS(1) " \n" + "lea " MEMLEA(0x10,1) ",%1 \n" + "sub $0x4,%2 \n" + "jg 1b \n" + : "+r"(src_argb), // %0 + "+r"(dst_argb), // %1 + "+r"(dst_width) // %2 + :: "memory", "cc", "xmm0", "xmm1" + ); +} + +void ScaleARGBRowDown2Box_SSE2(const uint8* src_argb, + ptrdiff_t src_stride, + uint8* dst_argb, int dst_width) { + asm volatile ( + LABELALIGN + "1: \n" + "movdqu " MEMACCESS(0) ",%%xmm0 \n" + "movdqu " MEMACCESS2(0x10,0) ",%%xmm1 \n" + MEMOPREG(movdqu,0x00,0,3,1,xmm2) // movdqu (%0,%3,1),%%xmm2 + MEMOPREG(movdqu,0x10,0,3,1,xmm3) // movdqu 0x10(%0,%3,1),%%xmm3 + "lea " MEMLEA(0x20,0) ",%0 \n" + "pavgb %%xmm2,%%xmm0 \n" + "pavgb %%xmm3,%%xmm1 \n" + "movdqa %%xmm0,%%xmm2 \n" + "shufps $0x88,%%xmm1,%%xmm0 \n" + "shufps $0xdd,%%xmm1,%%xmm2 \n" + "pavgb %%xmm2,%%xmm0 \n" + "movdqu %%xmm0," MEMACCESS(1) " \n" + "lea " MEMLEA(0x10,1) ",%1 \n" + "sub $0x4,%2 \n" + "jg 1b \n" + : "+r"(src_argb), // %0 + "+r"(dst_argb), // %1 + "+r"(dst_width) // %2 + : "r"((intptr_t)(src_stride)) // %3 + : "memory", "cc", NACL_R14 + "xmm0", "xmm1", "xmm2", "xmm3" + ); +} + +// Reads 4 pixels at a time. +// Alignment requirement: dst_argb 16 byte aligned. +void ScaleARGBRowDownEven_SSE2(const uint8* src_argb, ptrdiff_t src_stride, + int src_stepx, uint8* dst_argb, int dst_width) { + intptr_t src_stepx_x4 = (intptr_t)(src_stepx); + intptr_t src_stepx_x12; + asm volatile ( + "lea " MEMLEA3(0x00,1,4) ",%1 \n" + "lea " MEMLEA4(0x00,1,1,2) ",%4 \n" + LABELALIGN + "1: \n" + "movd " MEMACCESS(0) ",%%xmm0 \n" + MEMOPREG(movd,0x00,0,1,1,xmm1) // movd (%0,%1,1),%%xmm1 + "punpckldq %%xmm1,%%xmm0 \n" + MEMOPREG(movd,0x00,0,1,2,xmm2) // movd (%0,%1,2),%%xmm2 + MEMOPREG(movd,0x00,0,4,1,xmm3) // movd (%0,%4,1),%%xmm3 + "lea " MEMLEA4(0x00,0,1,4) ",%0 \n" + "punpckldq %%xmm3,%%xmm2 \n" + "punpcklqdq %%xmm2,%%xmm0 \n" + "movdqu %%xmm0," MEMACCESS(2) " \n" + "lea " MEMLEA(0x10,2) ",%2 \n" + "sub $0x4,%3 \n" + "jg 1b \n" + : "+r"(src_argb), // %0 + "+r"(src_stepx_x4), // %1 + "+r"(dst_argb), // %2 + "+r"(dst_width), // %3 + "=&r"(src_stepx_x12) // %4 + :: "memory", "cc", NACL_R14 + "xmm0", "xmm1", "xmm2", "xmm3" + ); +} + +// Blends four 2x2 to 4x1. +// Alignment requirement: dst_argb 16 byte aligned. +void ScaleARGBRowDownEvenBox_SSE2(const uint8* src_argb, + ptrdiff_t src_stride, int src_stepx, + uint8* dst_argb, int dst_width) { + intptr_t src_stepx_x4 = (intptr_t)(src_stepx); + intptr_t src_stepx_x12; + intptr_t row1 = (intptr_t)(src_stride); + asm volatile ( + "lea " MEMLEA3(0x00,1,4) ",%1 \n" + "lea " MEMLEA4(0x00,1,1,2) ",%4 \n" + "lea " MEMLEA4(0x00,0,5,1) ",%5 \n" + + LABELALIGN + "1: \n" + "movq " MEMACCESS(0) ",%%xmm0 \n" + MEMOPREG(movhps,0x00,0,1,1,xmm0) // movhps (%0,%1,1),%%xmm0 + MEMOPREG(movq,0x00,0,1,2,xmm1) // movq (%0,%1,2),%%xmm1 + MEMOPREG(movhps,0x00,0,4,1,xmm1) // movhps (%0,%4,1),%%xmm1 + "lea " MEMLEA4(0x00,0,1,4) ",%0 \n" + "movq " MEMACCESS(5) ",%%xmm2 \n" + MEMOPREG(movhps,0x00,5,1,1,xmm2) // movhps (%5,%1,1),%%xmm2 + MEMOPREG(movq,0x00,5,1,2,xmm3) // movq (%5,%1,2),%%xmm3 + MEMOPREG(movhps,0x00,5,4,1,xmm3) // movhps (%5,%4,1),%%xmm3 + "lea " MEMLEA4(0x00,5,1,4) ",%5 \n" + "pavgb %%xmm2,%%xmm0 \n" + "pavgb %%xmm3,%%xmm1 \n" + "movdqa %%xmm0,%%xmm2 \n" + "shufps $0x88,%%xmm1,%%xmm0 \n" + "shufps $0xdd,%%xmm1,%%xmm2 \n" + "pavgb %%xmm2,%%xmm0 \n" + "movdqu %%xmm0," MEMACCESS(2) " \n" + "lea " MEMLEA(0x10,2) ",%2 \n" + "sub $0x4,%3 \n" + "jg 1b \n" + : "+r"(src_argb), // %0 + "+r"(src_stepx_x4), // %1 + "+r"(dst_argb), // %2 + "+rm"(dst_width), // %3 + "=&r"(src_stepx_x12), // %4 + "+r"(row1) // %5 + :: "memory", "cc", NACL_R14 + "xmm0", "xmm1", "xmm2", "xmm3" + ); +} + +void ScaleARGBCols_SSE2(uint8* dst_argb, const uint8* src_argb, + int dst_width, int x, int dx) { + intptr_t x0, x1; + asm volatile ( + "movd %5,%%xmm2 \n" + "movd %6,%%xmm3 \n" + "pshufd $0x0,%%xmm2,%%xmm2 \n" + "pshufd $0x11,%%xmm3,%%xmm0 \n" + "paddd %%xmm0,%%xmm2 \n" + "paddd %%xmm3,%%xmm3 \n" + "pshufd $0x5,%%xmm3,%%xmm0 \n" + "paddd %%xmm0,%%xmm2 \n" + "paddd %%xmm3,%%xmm3 \n" + "pshufd $0x0,%%xmm3,%%xmm3 \n" + "pextrw $0x1,%%xmm2,%k0 \n" + "pextrw $0x3,%%xmm2,%k1 \n" + "cmp $0x0,%4 \n" + "jl 99f \n" + "sub $0x4,%4 \n" + "jl 49f \n" + + LABELALIGN + "40: \n" + MEMOPREG(movd,0x00,3,0,4,xmm0) // movd (%3,%0,4),%%xmm0 + MEMOPREG(movd,0x00,3,1,4,xmm1) // movd (%3,%1,4),%%xmm1 + "pextrw $0x5,%%xmm2,%k0 \n" + "pextrw $0x7,%%xmm2,%k1 \n" + "paddd %%xmm3,%%xmm2 \n" + "punpckldq %%xmm1,%%xmm0 \n" + MEMOPREG(movd,0x00,3,0,4,xmm1) // movd (%3,%0,4),%%xmm1 + MEMOPREG(movd,0x00,3,1,4,xmm4) // movd (%3,%1,4),%%xmm4 + "pextrw $0x1,%%xmm2,%k0 \n" + "pextrw $0x3,%%xmm2,%k1 \n" + "punpckldq %%xmm4,%%xmm1 \n" + "punpcklqdq %%xmm1,%%xmm0 \n" + "movdqu %%xmm0," MEMACCESS(2) " \n" + "lea " MEMLEA(0x10,2) ",%2 \n" + "sub $0x4,%4 \n" + "jge 40b \n" + + "49: \n" + "test $0x2,%4 \n" + "je 29f \n" + MEMOPREG(movd,0x00,3,0,4,xmm0) // movd (%3,%0,4),%%xmm0 + MEMOPREG(movd,0x00,3,1,4,xmm1) // movd (%3,%1,4),%%xmm1 + "pextrw $0x5,%%xmm2,%k0 \n" + "punpckldq %%xmm1,%%xmm0 \n" + "movq %%xmm0," MEMACCESS(2) " \n" + "lea " MEMLEA(0x8,2) ",%2 \n" + "29: \n" + "test $0x1,%4 \n" + "je 99f \n" + MEMOPREG(movd,0x00,3,0,4,xmm0) // movd (%3,%0,4),%%xmm0 + "movd %%xmm0," MEMACCESS(2) " \n" + "99: \n" + : "=&a"(x0), // %0 + "=&d"(x1), // %1 + "+r"(dst_argb), // %2 + "+r"(src_argb), // %3 + "+r"(dst_width) // %4 + : "rm"(x), // %5 + "rm"(dx) // %6 + : "memory", "cc", NACL_R14 + "xmm0", "xmm1", "xmm2", "xmm3", "xmm4" + ); +} + +// Reads 4 pixels, duplicates them and writes 8 pixels. +// Alignment requirement: src_argb 16 byte aligned, dst_argb 16 byte aligned. +void ScaleARGBColsUp2_SSE2(uint8* dst_argb, const uint8* src_argb, + int dst_width, int x, int dx) { + asm volatile ( + LABELALIGN + "1: \n" + "movdqu " MEMACCESS(1) ",%%xmm0 \n" + "lea " MEMLEA(0x10,1) ",%1 \n" + "movdqa %%xmm0,%%xmm1 \n" + "punpckldq %%xmm0,%%xmm0 \n" + "punpckhdq %%xmm1,%%xmm1 \n" + "movdqu %%xmm0," MEMACCESS(0) " \n" + "movdqu %%xmm1," MEMACCESS2(0x10,0) " \n" + "lea " MEMLEA(0x20,0) ",%0 \n" + "sub $0x8,%2 \n" + "jg 1b \n" + + : "+r"(dst_argb), // %0 + "+r"(src_argb), // %1 + "+r"(dst_width) // %2 + :: "memory", "cc", NACL_R14 + "xmm0", "xmm1" + ); +} + +// Shuffle table for arranging 2 pixels into pairs for pmaddubsw +static uvec8 kShuffleColARGB = { + 0u, 4u, 1u, 5u, 2u, 6u, 3u, 7u, // bbggrraa 1st pixel + 8u, 12u, 9u, 13u, 10u, 14u, 11u, 15u // bbggrraa 2nd pixel +}; + +// Shuffle table for duplicating 2 fractions into 8 bytes each +static uvec8 kShuffleFractions = { + 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 4u, 4u, 4u, 4u, 4u, 4u, 4u, 4u, +}; + +// Bilinear row filtering combines 4x2 -> 4x1. SSSE3 version +void ScaleARGBFilterCols_SSSE3(uint8* dst_argb, const uint8* src_argb, + int dst_width, int x, int dx) { + intptr_t x0, x1; + asm volatile ( + "movdqa %0,%%xmm4 \n" + "movdqa %1,%%xmm5 \n" + : + : "m"(kShuffleColARGB), // %0 + "m"(kShuffleFractions) // %1 + ); + + asm volatile ( + "movd %5,%%xmm2 \n" + "movd %6,%%xmm3 \n" + "pcmpeqb %%xmm6,%%xmm6 \n" + "psrlw $0x9,%%xmm6 \n" + "pextrw $0x1,%%xmm2,%k3 \n" + "sub $0x2,%2 \n" + "jl 29f \n" + "movdqa %%xmm2,%%xmm0 \n" + "paddd %%xmm3,%%xmm0 \n" + "punpckldq %%xmm0,%%xmm2 \n" + "punpckldq %%xmm3,%%xmm3 \n" + "paddd %%xmm3,%%xmm3 \n" + "pextrw $0x3,%%xmm2,%k4 \n" + + LABELALIGN + "2: \n" + "movdqa %%xmm2,%%xmm1 \n" + "paddd %%xmm3,%%xmm2 \n" + MEMOPREG(movq,0x00,1,3,4,xmm0) // movq (%1,%3,4),%%xmm0 + "psrlw $0x9,%%xmm1 \n" + MEMOPREG(movhps,0x00,1,4,4,xmm0) // movhps (%1,%4,4),%%xmm0 + "pshufb %%xmm5,%%xmm1 \n" + "pshufb %%xmm4,%%xmm0 \n" + "pxor %%xmm6,%%xmm1 \n" + "pmaddubsw %%xmm1,%%xmm0 \n" + "psrlw $0x7,%%xmm0 \n" + "pextrw $0x1,%%xmm2,%k3 \n" + "pextrw $0x3,%%xmm2,%k4 \n" + "packuswb %%xmm0,%%xmm0 \n" + "movq %%xmm0," MEMACCESS(0) " \n" + "lea " MEMLEA(0x8,0) ",%0 \n" + "sub $0x2,%2 \n" + "jge 2b \n" + + LABELALIGN + "29: \n" + "add $0x1,%2 \n" + "jl 99f \n" + "psrlw $0x9,%%xmm2 \n" + MEMOPREG(movq,0x00,1,3,4,xmm0) // movq (%1,%3,4),%%xmm0 + "pshufb %%xmm5,%%xmm2 \n" + "pshufb %%xmm4,%%xmm0 \n" + "pxor %%xmm6,%%xmm2 \n" + "pmaddubsw %%xmm2,%%xmm0 \n" + "psrlw $0x7,%%xmm0 \n" + "packuswb %%xmm0,%%xmm0 \n" + "movd %%xmm0," MEMACCESS(0) " \n" + + LABELALIGN + "99: \n" + : "+r"(dst_argb), // %0 + "+r"(src_argb), // %1 + "+rm"(dst_width), // %2 + "=&r"(x0), // %3 + "=&r"(x1) // %4 + : "rm"(x), // %5 + "rm"(dx) // %6 + : "memory", "cc", NACL_R14 + "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6" + ); +} + +// Divide num by div and return as 16.16 fixed point result. +int FixedDiv_X86(int num, int div) { + asm volatile ( + "cdq \n" + "shld $0x10,%%eax,%%edx \n" + "shl $0x10,%%eax \n" + "idiv %1 \n" + "mov %0, %%eax \n" + : "+a"(num) // %0 + : "c"(div) // %1 + : "memory", "cc", "edx" + ); + return num; +} + +// Divide num - 1 by div - 1 and return as 16.16 fixed point result. +int FixedDiv1_X86(int num, int div) { + asm volatile ( + "cdq \n" + "shld $0x10,%%eax,%%edx \n" + "shl $0x10,%%eax \n" + "sub $0x10001,%%eax \n" + "sbb $0x0,%%edx \n" + "sub $0x1,%1 \n" + "idiv %1 \n" + "mov %0, %%eax \n" + : "+a"(num) // %0 + : "c"(div) // %1 + : "memory", "cc", "edx" + ); + return num; +} + +#endif // defined(__x86_64__) || defined(__i386__) + +#ifdef __cplusplus +} // extern "C" +} // namespace libyuv +#endif diff --git a/third_party/libyuv/source/scale_mips.cc b/third_party/libyuv/source/scale_mips.cc new file mode 100644 index 0000000..ae95307 --- /dev/null +++ b/third_party/libyuv/source/scale_mips.cc @@ -0,0 +1,644 @@ +/* + * Copyright 2012 The LibYuv Project Authors. All rights reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "libyuv/basic_types.h" +#include "libyuv/row.h" + +#ifdef __cplusplus +namespace libyuv { +extern "C" { +#endif + +// This module is for GCC MIPS DSPR2 +#if !defined(LIBYUV_DISABLE_MIPS) && \ + defined(__mips_dsp) && (__mips_dsp_rev >= 2) && \ + (_MIPS_SIM == _MIPS_SIM_ABI32) + +void ScaleRowDown2_DSPR2(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst, int dst_width) { + __asm__ __volatile__( + ".set push \n" + ".set noreorder \n" + + "srl $t9, %[dst_width], 4 \n" // iterations -> by 16 + "beqz $t9, 2f \n" + " nop \n" + + "1: \n" + "lw $t0, 0(%[src_ptr]) \n" // |3|2|1|0| + "lw $t1, 4(%[src_ptr]) \n" // |7|6|5|4| + "lw $t2, 8(%[src_ptr]) \n" // |11|10|9|8| + "lw $t3, 12(%[src_ptr]) \n" // |15|14|13|12| + "lw $t4, 16(%[src_ptr]) \n" // |19|18|17|16| + "lw $t5, 20(%[src_ptr]) \n" // |23|22|21|20| + "lw $t6, 24(%[src_ptr]) \n" // |27|26|25|24| + "lw $t7, 28(%[src_ptr]) \n" // |31|30|29|28| + // TODO(fbarchard): Use odd pixels instead of even. + "precr.qb.ph $t8, $t1, $t0 \n" // |6|4|2|0| + "precr.qb.ph $t0, $t3, $t2 \n" // |14|12|10|8| + "precr.qb.ph $t1, $t5, $t4 \n" // |22|20|18|16| + "precr.qb.ph $t2, $t7, $t6 \n" // |30|28|26|24| + "addiu %[src_ptr], %[src_ptr], 32 \n" + "addiu $t9, $t9, -1 \n" + "sw $t8, 0(%[dst]) \n" + "sw $t0, 4(%[dst]) \n" + "sw $t1, 8(%[dst]) \n" + "sw $t2, 12(%[dst]) \n" + "bgtz $t9, 1b \n" + " addiu %[dst], %[dst], 16 \n" + + "2: \n" + "andi $t9, %[dst_width], 0xf \n" // residue + "beqz $t9, 3f \n" + " nop \n" + + "21: \n" + "lbu $t0, 0(%[src_ptr]) \n" + "addiu %[src_ptr], %[src_ptr], 2 \n" + "addiu $t9, $t9, -1 \n" + "sb $t0, 0(%[dst]) \n" + "bgtz $t9, 21b \n" + " addiu %[dst], %[dst], 1 \n" + + "3: \n" + ".set pop \n" + : [src_ptr] "+r" (src_ptr), + [dst] "+r" (dst) + : [dst_width] "r" (dst_width) + : "t0", "t1", "t2", "t3", "t4", "t5", + "t6", "t7", "t8", "t9" + ); +} + +void ScaleRowDown2Box_DSPR2(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst, int dst_width) { + const uint8* t = src_ptr + src_stride; + + __asm__ __volatile__ ( + ".set push \n" + ".set noreorder \n" + + "srl $t9, %[dst_width], 3 \n" // iterations -> step 8 + "bltz $t9, 2f \n" + " nop \n" + + "1: \n" + "lw $t0, 0(%[src_ptr]) \n" // |3|2|1|0| + "lw $t1, 4(%[src_ptr]) \n" // |7|6|5|4| + "lw $t2, 8(%[src_ptr]) \n" // |11|10|9|8| + "lw $t3, 12(%[src_ptr]) \n" // |15|14|13|12| + "lw $t4, 0(%[t]) \n" // |19|18|17|16| + "lw $t5, 4(%[t]) \n" // |23|22|21|20| + "lw $t6, 8(%[t]) \n" // |27|26|25|24| + "lw $t7, 12(%[t]) \n" // |31|30|29|28| + "addiu $t9, $t9, -1 \n" + "srl $t8, $t0, 16 \n" // |X|X|3|2| + "ins $t0, $t4, 16, 16 \n" // |17|16|1|0| + "ins $t4, $t8, 0, 16 \n" // |19|18|3|2| + "raddu.w.qb $t0, $t0 \n" // |17+16+1+0| + "raddu.w.qb $t4, $t4 \n" // |19+18+3+2| + "shra_r.w $t0, $t0, 2 \n" // |t0+2|>>2 + "shra_r.w $t4, $t4, 2 \n" // |t4+2|>>2 + "srl $t8, $t1, 16 \n" // |X|X|7|6| + "ins $t1, $t5, 16, 16 \n" // |21|20|5|4| + "ins $t5, $t8, 0, 16 \n" // |22|23|7|6| + "raddu.w.qb $t1, $t1 \n" // |21+20+5+4| + "raddu.w.qb $t5, $t5 \n" // |23+22+7+6| + "shra_r.w $t1, $t1, 2 \n" // |t1+2|>>2 + "shra_r.w $t5, $t5, 2 \n" // |t5+2|>>2 + "srl $t8, $t2, 16 \n" // |X|X|11|10| + "ins $t2, $t6, 16, 16 \n" // |25|24|9|8| + "ins $t6, $t8, 0, 16 \n" // |27|26|11|10| + "raddu.w.qb $t2, $t2 \n" // |25+24+9+8| + "raddu.w.qb $t6, $t6 \n" // |27+26+11+10| + "shra_r.w $t2, $t2, 2 \n" // |t2+2|>>2 + "shra_r.w $t6, $t6, 2 \n" // |t5+2|>>2 + "srl $t8, $t3, 16 \n" // |X|X|15|14| + "ins $t3, $t7, 16, 16 \n" // |29|28|13|12| + "ins $t7, $t8, 0, 16 \n" // |31|30|15|14| + "raddu.w.qb $t3, $t3 \n" // |29+28+13+12| + "raddu.w.qb $t7, $t7 \n" // |31+30+15+14| + "shra_r.w $t3, $t3, 2 \n" // |t3+2|>>2 + "shra_r.w $t7, $t7, 2 \n" // |t7+2|>>2 + "addiu %[src_ptr], %[src_ptr], 16 \n" + "addiu %[t], %[t], 16 \n" + "sb $t0, 0(%[dst]) \n" + "sb $t4, 1(%[dst]) \n" + "sb $t1, 2(%[dst]) \n" + "sb $t5, 3(%[dst]) \n" + "sb $t2, 4(%[dst]) \n" + "sb $t6, 5(%[dst]) \n" + "sb $t3, 6(%[dst]) \n" + "sb $t7, 7(%[dst]) \n" + "bgtz $t9, 1b \n" + " addiu %[dst], %[dst], 8 \n" + + "2: \n" + "andi $t9, %[dst_width], 0x7 \n" // x = residue + "beqz $t9, 3f \n" + " nop \n" + + "21: \n" + "lwr $t1, 0(%[src_ptr]) \n" + "lwl $t1, 3(%[src_ptr]) \n" + "lwr $t2, 0(%[t]) \n" + "lwl $t2, 3(%[t]) \n" + "srl $t8, $t1, 16 \n" + "ins $t1, $t2, 16, 16 \n" + "ins $t2, $t8, 0, 16 \n" + "raddu.w.qb $t1, $t1 \n" + "raddu.w.qb $t2, $t2 \n" + "shra_r.w $t1, $t1, 2 \n" + "shra_r.w $t2, $t2, 2 \n" + "sb $t1, 0(%[dst]) \n" + "sb $t2, 1(%[dst]) \n" + "addiu %[src_ptr], %[src_ptr], 4 \n" + "addiu $t9, $t9, -2 \n" + "addiu %[t], %[t], 4 \n" + "bgtz $t9, 21b \n" + " addiu %[dst], %[dst], 2 \n" + + "3: \n" + ".set pop \n" + + : [src_ptr] "+r" (src_ptr), + [dst] "+r" (dst), [t] "+r" (t) + : [dst_width] "r" (dst_width) + : "t0", "t1", "t2", "t3", "t4", "t5", + "t6", "t7", "t8", "t9" + ); +} + +void ScaleRowDown4_DSPR2(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst, int dst_width) { + __asm__ __volatile__ ( + ".set push \n" + ".set noreorder \n" + + "srl $t9, %[dst_width], 3 \n" + "beqz $t9, 2f \n" + " nop \n" + + "1: \n" + "lw $t1, 0(%[src_ptr]) \n" // |3|2|1|0| + "lw $t2, 4(%[src_ptr]) \n" // |7|6|5|4| + "lw $t3, 8(%[src_ptr]) \n" // |11|10|9|8| + "lw $t4, 12(%[src_ptr]) \n" // |15|14|13|12| + "lw $t5, 16(%[src_ptr]) \n" // |19|18|17|16| + "lw $t6, 20(%[src_ptr]) \n" // |23|22|21|20| + "lw $t7, 24(%[src_ptr]) \n" // |27|26|25|24| + "lw $t8, 28(%[src_ptr]) \n" // |31|30|29|28| + "precr.qb.ph $t1, $t2, $t1 \n" // |6|4|2|0| + "precr.qb.ph $t2, $t4, $t3 \n" // |14|12|10|8| + "precr.qb.ph $t5, $t6, $t5 \n" // |22|20|18|16| + "precr.qb.ph $t6, $t8, $t7 \n" // |30|28|26|24| + "precr.qb.ph $t1, $t2, $t1 \n" // |12|8|4|0| + "precr.qb.ph $t5, $t6, $t5 \n" // |28|24|20|16| + "addiu %[src_ptr], %[src_ptr], 32 \n" + "addiu $t9, $t9, -1 \n" + "sw $t1, 0(%[dst]) \n" + "sw $t5, 4(%[dst]) \n" + "bgtz $t9, 1b \n" + " addiu %[dst], %[dst], 8 \n" + + "2: \n" + "andi $t9, %[dst_width], 7 \n" // residue + "beqz $t9, 3f \n" + " nop \n" + + "21: \n" + "lbu $t1, 0(%[src_ptr]) \n" + "addiu %[src_ptr], %[src_ptr], 4 \n" + "addiu $t9, $t9, -1 \n" + "sb $t1, 0(%[dst]) \n" + "bgtz $t9, 21b \n" + " addiu %[dst], %[dst], 1 \n" + + "3: \n" + ".set pop \n" + : [src_ptr] "+r" (src_ptr), + [dst] "+r" (dst) + : [dst_width] "r" (dst_width) + : "t1", "t2", "t3", "t4", "t5", + "t6", "t7", "t8", "t9" + ); +} + +void ScaleRowDown4Box_DSPR2(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst, int dst_width) { + intptr_t stride = src_stride; + const uint8* s1 = src_ptr + stride; + const uint8* s2 = s1 + stride; + const uint8* s3 = s2 + stride; + + __asm__ __volatile__ ( + ".set push \n" + ".set noreorder \n" + + "srl $t9, %[dst_width], 1 \n" + "andi $t8, %[dst_width], 1 \n" + + "1: \n" + "lw $t0, 0(%[src_ptr]) \n" // |3|2|1|0| + "lw $t1, 0(%[s1]) \n" // |7|6|5|4| + "lw $t2, 0(%[s2]) \n" // |11|10|9|8| + "lw $t3, 0(%[s3]) \n" // |15|14|13|12| + "lw $t4, 4(%[src_ptr]) \n" // |19|18|17|16| + "lw $t5, 4(%[s1]) \n" // |23|22|21|20| + "lw $t6, 4(%[s2]) \n" // |27|26|25|24| + "lw $t7, 4(%[s3]) \n" // |31|30|29|28| + "raddu.w.qb $t0, $t0 \n" // |3 + 2 + 1 + 0| + "raddu.w.qb $t1, $t1 \n" // |7 + 6 + 5 + 4| + "raddu.w.qb $t2, $t2 \n" // |11 + 10 + 9 + 8| + "raddu.w.qb $t3, $t3 \n" // |15 + 14 + 13 + 12| + "raddu.w.qb $t4, $t4 \n" // |19 + 18 + 17 + 16| + "raddu.w.qb $t5, $t5 \n" // |23 + 22 + 21 + 20| + "raddu.w.qb $t6, $t6 \n" // |27 + 26 + 25 + 24| + "raddu.w.qb $t7, $t7 \n" // |31 + 30 + 29 + 28| + "add $t0, $t0, $t1 \n" + "add $t1, $t2, $t3 \n" + "add $t0, $t0, $t1 \n" + "add $t4, $t4, $t5 \n" + "add $t6, $t6, $t7 \n" + "add $t4, $t4, $t6 \n" + "shra_r.w $t0, $t0, 4 \n" + "shra_r.w $t4, $t4, 4 \n" + "sb $t0, 0(%[dst]) \n" + "sb $t4, 1(%[dst]) \n" + "addiu %[src_ptr], %[src_ptr], 8 \n" + "addiu %[s1], %[s1], 8 \n" + "addiu %[s2], %[s2], 8 \n" + "addiu %[s3], %[s3], 8 \n" + "addiu $t9, $t9, -1 \n" + "bgtz $t9, 1b \n" + " addiu %[dst], %[dst], 2 \n" + "beqz $t8, 2f \n" + " nop \n" + + "lw $t0, 0(%[src_ptr]) \n" // |3|2|1|0| + "lw $t1, 0(%[s1]) \n" // |7|6|5|4| + "lw $t2, 0(%[s2]) \n" // |11|10|9|8| + "lw $t3, 0(%[s3]) \n" // |15|14|13|12| + "raddu.w.qb $t0, $t0 \n" // |3 + 2 + 1 + 0| + "raddu.w.qb $t1, $t1 \n" // |7 + 6 + 5 + 4| + "raddu.w.qb $t2, $t2 \n" // |11 + 10 + 9 + 8| + "raddu.w.qb $t3, $t3 \n" // |15 + 14 + 13 + 12| + "add $t0, $t0, $t1 \n" + "add $t1, $t2, $t3 \n" + "add $t0, $t0, $t1 \n" + "shra_r.w $t0, $t0, 4 \n" + "sb $t0, 0(%[dst]) \n" + + "2: \n" + ".set pop \n" + + : [src_ptr] "+r" (src_ptr), + [dst] "+r" (dst), + [s1] "+r" (s1), + [s2] "+r" (s2), + [s3] "+r" (s3) + : [dst_width] "r" (dst_width) + : "t0", "t1", "t2", "t3", "t4", "t5", + "t6","t7", "t8", "t9" + ); +} + +void ScaleRowDown34_DSPR2(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst, int dst_width) { + __asm__ __volatile__ ( + ".set push \n" + ".set noreorder \n" + "1: \n" + "lw $t1, 0(%[src_ptr]) \n" // |3|2|1|0| + "lw $t2, 4(%[src_ptr]) \n" // |7|6|5|4| + "lw $t3, 8(%[src_ptr]) \n" // |11|10|9|8| + "lw $t4, 12(%[src_ptr]) \n" // |15|14|13|12| + "lw $t5, 16(%[src_ptr]) \n" // |19|18|17|16| + "lw $t6, 20(%[src_ptr]) \n" // |23|22|21|20| + "lw $t7, 24(%[src_ptr]) \n" // |27|26|25|24| + "lw $t8, 28(%[src_ptr]) \n" // |31|30|29|28| + "precrq.qb.ph $t0, $t2, $t4 \n" // |7|5|15|13| + "precrq.qb.ph $t9, $t6, $t8 \n" // |23|21|31|30| + "addiu %[dst_width], %[dst_width], -24 \n" + "ins $t1, $t1, 8, 16 \n" // |3|1|0|X| + "ins $t4, $t0, 8, 16 \n" // |X|15|13|12| + "ins $t5, $t5, 8, 16 \n" // |19|17|16|X| + "ins $t8, $t9, 8, 16 \n" // |X|31|29|28| + "addiu %[src_ptr], %[src_ptr], 32 \n" + "packrl.ph $t0, $t3, $t0 \n" // |9|8|7|5| + "packrl.ph $t9, $t7, $t9 \n" // |25|24|23|21| + "prepend $t1, $t2, 8 \n" // |4|3|1|0| + "prepend $t3, $t4, 24 \n" // |15|13|12|11| + "prepend $t5, $t6, 8 \n" // |20|19|17|16| + "prepend $t7, $t8, 24 \n" // |31|29|28|27| + "sw $t1, 0(%[dst]) \n" + "sw $t0, 4(%[dst]) \n" + "sw $t3, 8(%[dst]) \n" + "sw $t5, 12(%[dst]) \n" + "sw $t9, 16(%[dst]) \n" + "sw $t7, 20(%[dst]) \n" + "bnez %[dst_width], 1b \n" + " addiu %[dst], %[dst], 24 \n" + ".set pop \n" + : [src_ptr] "+r" (src_ptr), + [dst] "+r" (dst), + [dst_width] "+r" (dst_width) + : + : "t0", "t1", "t2", "t3", "t4", "t5", + "t6","t7", "t8", "t9" + ); +} + +void ScaleRowDown34_0_Box_DSPR2(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* d, int dst_width) { + __asm__ __volatile__ ( + ".set push \n" + ".set noreorder \n" + "repl.ph $t3, 3 \n" // 0x00030003 + + "1: \n" + "lw $t0, 0(%[src_ptr]) \n" // |S3|S2|S1|S0| + "lwx $t1, %[src_stride](%[src_ptr]) \n" // |T3|T2|T1|T0| + "rotr $t2, $t0, 8 \n" // |S0|S3|S2|S1| + "rotr $t6, $t1, 8 \n" // |T0|T3|T2|T1| + "muleu_s.ph.qbl $t4, $t2, $t3 \n" // |S0*3|S3*3| + "muleu_s.ph.qbl $t5, $t6, $t3 \n" // |T0*3|T3*3| + "andi $t0, $t2, 0xFFFF \n" // |0|0|S2|S1| + "andi $t1, $t6, 0xFFFF \n" // |0|0|T2|T1| + "raddu.w.qb $t0, $t0 \n" + "raddu.w.qb $t1, $t1 \n" + "shra_r.w $t0, $t0, 1 \n" + "shra_r.w $t1, $t1, 1 \n" + "preceu.ph.qbr $t2, $t2 \n" // |0|S2|0|S1| + "preceu.ph.qbr $t6, $t6 \n" // |0|T2|0|T1| + "rotr $t2, $t2, 16 \n" // |0|S1|0|S2| + "rotr $t6, $t6, 16 \n" // |0|T1|0|T2| + "addu.ph $t2, $t2, $t4 \n" + "addu.ph $t6, $t6, $t5 \n" + "sll $t5, $t0, 1 \n" + "add $t0, $t5, $t0 \n" + "shra_r.ph $t2, $t2, 2 \n" + "shra_r.ph $t6, $t6, 2 \n" + "shll.ph $t4, $t2, 1 \n" + "addq.ph $t4, $t4, $t2 \n" + "addu $t0, $t0, $t1 \n" + "addiu %[src_ptr], %[src_ptr], 4 \n" + "shra_r.w $t0, $t0, 2 \n" + "addu.ph $t6, $t6, $t4 \n" + "shra_r.ph $t6, $t6, 2 \n" + "srl $t1, $t6, 16 \n" + "addiu %[dst_width], %[dst_width], -3 \n" + "sb $t1, 0(%[d]) \n" + "sb $t0, 1(%[d]) \n" + "sb $t6, 2(%[d]) \n" + "bgtz %[dst_width], 1b \n" + " addiu %[d], %[d], 3 \n" + "3: \n" + ".set pop \n" + : [src_ptr] "+r" (src_ptr), + [src_stride] "+r" (src_stride), + [d] "+r" (d), + [dst_width] "+r" (dst_width) + : + : "t0", "t1", "t2", "t3", + "t4", "t5", "t6" + ); +} + +void ScaleRowDown34_1_Box_DSPR2(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* d, int dst_width) { + __asm__ __volatile__ ( + ".set push \n" + ".set noreorder \n" + "repl.ph $t2, 3 \n" // 0x00030003 + + "1: \n" + "lw $t0, 0(%[src_ptr]) \n" // |S3|S2|S1|S0| + "lwx $t1, %[src_stride](%[src_ptr]) \n" // |T3|T2|T1|T0| + "rotr $t4, $t0, 8 \n" // |S0|S3|S2|S1| + "rotr $t6, $t1, 8 \n" // |T0|T3|T2|T1| + "muleu_s.ph.qbl $t3, $t4, $t2 \n" // |S0*3|S3*3| + "muleu_s.ph.qbl $t5, $t6, $t2 \n" // |T0*3|T3*3| + "andi $t0, $t4, 0xFFFF \n" // |0|0|S2|S1| + "andi $t1, $t6, 0xFFFF \n" // |0|0|T2|T1| + "raddu.w.qb $t0, $t0 \n" + "raddu.w.qb $t1, $t1 \n" + "shra_r.w $t0, $t0, 1 \n" + "shra_r.w $t1, $t1, 1 \n" + "preceu.ph.qbr $t4, $t4 \n" // |0|S2|0|S1| + "preceu.ph.qbr $t6, $t6 \n" // |0|T2|0|T1| + "rotr $t4, $t4, 16 \n" // |0|S1|0|S2| + "rotr $t6, $t6, 16 \n" // |0|T1|0|T2| + "addu.ph $t4, $t4, $t3 \n" + "addu.ph $t6, $t6, $t5 \n" + "shra_r.ph $t6, $t6, 2 \n" + "shra_r.ph $t4, $t4, 2 \n" + "addu.ph $t6, $t6, $t4 \n" + "addiu %[src_ptr], %[src_ptr], 4 \n" + "shra_r.ph $t6, $t6, 1 \n" + "addu $t0, $t0, $t1 \n" + "addiu %[dst_width], %[dst_width], -3 \n" + "shra_r.w $t0, $t0, 1 \n" + "srl $t1, $t6, 16 \n" + "sb $t1, 0(%[d]) \n" + "sb $t0, 1(%[d]) \n" + "sb $t6, 2(%[d]) \n" + "bgtz %[dst_width], 1b \n" + " addiu %[d], %[d], 3 \n" + "3: \n" + ".set pop \n" + : [src_ptr] "+r" (src_ptr), + [src_stride] "+r" (src_stride), + [d] "+r" (d), + [dst_width] "+r" (dst_width) + : + : "t0", "t1", "t2", "t3", + "t4", "t5", "t6" + ); +} + +void ScaleRowDown38_DSPR2(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst, int dst_width) { + __asm__ __volatile__ ( + ".set push \n" + ".set noreorder \n" + + "1: \n" + "lw $t0, 0(%[src_ptr]) \n" // |3|2|1|0| + "lw $t1, 4(%[src_ptr]) \n" // |7|6|5|4| + "lw $t2, 8(%[src_ptr]) \n" // |11|10|9|8| + "lw $t3, 12(%[src_ptr]) \n" // |15|14|13|12| + "lw $t4, 16(%[src_ptr]) \n" // |19|18|17|16| + "lw $t5, 20(%[src_ptr]) \n" // |23|22|21|20| + "lw $t6, 24(%[src_ptr]) \n" // |27|26|25|24| + "lw $t7, 28(%[src_ptr]) \n" // |31|30|29|28| + "wsbh $t0, $t0 \n" // |2|3|0|1| + "wsbh $t6, $t6 \n" // |26|27|24|25| + "srl $t0, $t0, 8 \n" // |X|2|3|0| + "srl $t3, $t3, 16 \n" // |X|X|15|14| + "srl $t5, $t5, 16 \n" // |X|X|23|22| + "srl $t7, $t7, 16 \n" // |X|X|31|30| + "ins $t1, $t2, 24, 8 \n" // |8|6|5|4| + "ins $t6, $t5, 0, 8 \n" // |26|27|24|22| + "ins $t1, $t0, 0, 16 \n" // |8|6|3|0| + "ins $t6, $t7, 24, 8 \n" // |30|27|24|22| + "prepend $t2, $t3, 24 \n" // |X|15|14|11| + "ins $t4, $t4, 16, 8 \n" // |19|16|17|X| + "ins $t4, $t2, 0, 16 \n" // |19|16|14|11| + "addiu %[src_ptr], %[src_ptr], 32 \n" + "addiu %[dst_width], %[dst_width], -12 \n" + "addiu $t8,%[dst_width], -12 \n" + "sw $t1, 0(%[dst]) \n" + "sw $t4, 4(%[dst]) \n" + "sw $t6, 8(%[dst]) \n" + "bgez $t8, 1b \n" + " addiu %[dst], %[dst], 12 \n" + ".set pop \n" + : [src_ptr] "+r" (src_ptr), + [dst] "+r" (dst), + [dst_width] "+r" (dst_width) + : + : "t0", "t1", "t2", "t3", "t4", + "t5", "t6", "t7", "t8" + ); +} + +void ScaleRowDown38_2_Box_DSPR2(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst_ptr, int dst_width) { + intptr_t stride = src_stride; + const uint8* t = src_ptr + stride; + const int c = 0x2AAA; + + __asm__ __volatile__ ( + ".set push \n" + ".set noreorder \n" + + "1: \n" + "lw $t0, 0(%[src_ptr]) \n" // |S3|S2|S1|S0| + "lw $t1, 4(%[src_ptr]) \n" // |S7|S6|S5|S4| + "lw $t2, 0(%[t]) \n" // |T3|T2|T1|T0| + "lw $t3, 4(%[t]) \n" // |T7|T6|T5|T4| + "rotr $t1, $t1, 16 \n" // |S5|S4|S7|S6| + "packrl.ph $t4, $t1, $t3 \n" // |S7|S6|T7|T6| + "packrl.ph $t5, $t3, $t1 \n" // |T5|T4|S5|S4| + "raddu.w.qb $t4, $t4 \n" // S7+S6+T7+T6 + "raddu.w.qb $t5, $t5 \n" // T5+T4+S5+S4 + "precrq.qb.ph $t6, $t0, $t2 \n" // |S3|S1|T3|T1| + "precrq.qb.ph $t6, $t6, $t6 \n" // |S3|T3|S3|T3| + "srl $t4, $t4, 2 \n" // t4 / 4 + "srl $t6, $t6, 16 \n" // |0|0|S3|T3| + "raddu.w.qb $t6, $t6 \n" // 0+0+S3+T3 + "addu $t6, $t5, $t6 \n" + "mul $t6, $t6, %[c] \n" // t6 * 0x2AAA + "sll $t0, $t0, 8 \n" // |S2|S1|S0|0| + "sll $t2, $t2, 8 \n" // |T2|T1|T0|0| + "raddu.w.qb $t0, $t0 \n" // S2+S1+S0+0 + "raddu.w.qb $t2, $t2 \n" // T2+T1+T0+0 + "addu $t0, $t0, $t2 \n" + "mul $t0, $t0, %[c] \n" // t0 * 0x2AAA + "addiu %[src_ptr], %[src_ptr], 8 \n" + "addiu %[t], %[t], 8 \n" + "addiu %[dst_width], %[dst_width], -3 \n" + "addiu %[dst_ptr], %[dst_ptr], 3 \n" + "srl $t6, $t6, 16 \n" + "srl $t0, $t0, 16 \n" + "sb $t4, -1(%[dst_ptr]) \n" + "sb $t6, -2(%[dst_ptr]) \n" + "bgtz %[dst_width], 1b \n" + " sb $t0, -3(%[dst_ptr]) \n" + ".set pop \n" + : [src_ptr] "+r" (src_ptr), + [dst_ptr] "+r" (dst_ptr), + [t] "+r" (t), + [dst_width] "+r" (dst_width) + : [c] "r" (c) + : "t0", "t1", "t2", "t3", "t4", "t5", "t6" + ); +} + +void ScaleRowDown38_3_Box_DSPR2(const uint8* src_ptr, + ptrdiff_t src_stride, + uint8* dst_ptr, int dst_width) { + intptr_t stride = src_stride; + const uint8* s1 = src_ptr + stride; + stride += stride; + const uint8* s2 = src_ptr + stride; + const int c1 = 0x1C71; + const int c2 = 0x2AAA; + + __asm__ __volatile__ ( + ".set push \n" + ".set noreorder \n" + + "1: \n" + "lw $t0, 0(%[src_ptr]) \n" // |S3|S2|S1|S0| + "lw $t1, 4(%[src_ptr]) \n" // |S7|S6|S5|S4| + "lw $t2, 0(%[s1]) \n" // |T3|T2|T1|T0| + "lw $t3, 4(%[s1]) \n" // |T7|T6|T5|T4| + "lw $t4, 0(%[s2]) \n" // |R3|R2|R1|R0| + "lw $t5, 4(%[s2]) \n" // |R7|R6|R5|R4| + "rotr $t1, $t1, 16 \n" // |S5|S4|S7|S6| + "packrl.ph $t6, $t1, $t3 \n" // |S7|S6|T7|T6| + "raddu.w.qb $t6, $t6 \n" // S7+S6+T7+T6 + "packrl.ph $t7, $t3, $t1 \n" // |T5|T4|S5|S4| + "raddu.w.qb $t7, $t7 \n" // T5+T4+S5+S4 + "sll $t8, $t5, 16 \n" // |R5|R4|0|0| + "raddu.w.qb $t8, $t8 \n" // R5+R4 + "addu $t7, $t7, $t8 \n" + "srl $t8, $t5, 16 \n" // |0|0|R7|R6| + "raddu.w.qb $t8, $t8 \n" // R7 + R6 + "addu $t6, $t6, $t8 \n" + "mul $t6, $t6, %[c2] \n" // t6 * 0x2AAA + "precrq.qb.ph $t8, $t0, $t2 \n" // |S3|S1|T3|T1| + "precrq.qb.ph $t8, $t8, $t4 \n" // |S3|T3|R3|R1| + "srl $t8, $t8, 8 \n" // |0|S3|T3|R3| + "raddu.w.qb $t8, $t8 \n" // S3 + T3 + R3 + "addu $t7, $t7, $t8 \n" + "mul $t7, $t7, %[c1] \n" // t7 * 0x1C71 + "sll $t0, $t0, 8 \n" // |S2|S1|S0|0| + "sll $t2, $t2, 8 \n" // |T2|T1|T0|0| + "sll $t4, $t4, 8 \n" // |R2|R1|R0|0| + "raddu.w.qb $t0, $t0 \n" + "raddu.w.qb $t2, $t2 \n" + "raddu.w.qb $t4, $t4 \n" + "addu $t0, $t0, $t2 \n" + "addu $t0, $t0, $t4 \n" + "mul $t0, $t0, %[c1] \n" // t0 * 0x1C71 + "addiu %[src_ptr], %[src_ptr], 8 \n" + "addiu %[s1], %[s1], 8 \n" + "addiu %[s2], %[s2], 8 \n" + "addiu %[dst_width], %[dst_width], -3 \n" + "addiu %[dst_ptr], %[dst_ptr], 3 \n" + "srl $t6, $t6, 16 \n" + "srl $t7, $t7, 16 \n" + "srl $t0, $t0, 16 \n" + "sb $t6, -1(%[dst_ptr]) \n" + "sb $t7, -2(%[dst_ptr]) \n" + "bgtz %[dst_width], 1b \n" + " sb $t0, -3(%[dst_ptr]) \n" + ".set pop \n" + : [src_ptr] "+r" (src_ptr), + [dst_ptr] "+r" (dst_ptr), + [s1] "+r" (s1), + [s2] "+r" (s2), + [dst_width] "+r" (dst_width) + : [c1] "r" (c1), [c2] "r" (c2) + : "t0", "t1", "t2", "t3", "t4", + "t5", "t6", "t7", "t8" + ); +} + +#endif // defined(__mips_dsp) && (__mips_dsp_rev >= 2) + +#ifdef __cplusplus +} // extern "C" +} // namespace libyuv +#endif + diff --git a/third_party/libyuv/source/scale_neon.cc b/third_party/libyuv/source/scale_neon.cc new file mode 100644 index 0000000..44b0c80 --- /dev/null +++ b/third_party/libyuv/source/scale_neon.cc @@ -0,0 +1,1021 @@ +/* + * Copyright 2011 The LibYuv Project Authors. All rights reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "libyuv/row.h" + +#ifdef __cplusplus +namespace libyuv { +extern "C" { +#endif + +// This module is for GCC Neon. +#if !defined(LIBYUV_DISABLE_NEON) && defined(__ARM_NEON__) && \ + !defined(__aarch64__) + +// NEON downscalers with interpolation. +// Provided by Fritz Koenig + +// Read 32x1 throw away even pixels, and write 16x1. +void ScaleRowDown2_NEON(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst, int dst_width) { + asm volatile ( + "1: \n" + // load even pixels into q0, odd into q1 + MEMACCESS(0) + "vld2.8 {q0, q1}, [%0]! \n" + "subs %2, %2, #16 \n" // 16 processed per loop + MEMACCESS(1) + "vst1.8 {q1}, [%1]! \n" // store odd pixels + "bgt 1b \n" + : "+r"(src_ptr), // %0 + "+r"(dst), // %1 + "+r"(dst_width) // %2 + : + : "q0", "q1" // Clobber List + ); +} + +// Read 32x1 average down and write 16x1. +void ScaleRowDown2Linear_NEON(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst, int dst_width) { + asm volatile ( + "1: \n" + MEMACCESS(0) + "vld1.8 {q0, q1}, [%0]! \n" // load pixels and post inc + "subs %2, %2, #16 \n" // 16 processed per loop + "vpaddl.u8 q0, q0 \n" // add adjacent + "vpaddl.u8 q1, q1 \n" + "vrshrn.u16 d0, q0, #1 \n" // downshift, round and pack + "vrshrn.u16 d1, q1, #1 \n" + MEMACCESS(1) + "vst1.8 {q0}, [%1]! \n" + "bgt 1b \n" + : "+r"(src_ptr), // %0 + "+r"(dst), // %1 + "+r"(dst_width) // %2 + : + : "q0", "q1" // Clobber List + ); +} + +// Read 32x2 average down and write 16x1. +void ScaleRowDown2Box_NEON(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst, int dst_width) { + asm volatile ( + // change the stride to row 2 pointer + "add %1, %0 \n" + "1: \n" + MEMACCESS(0) + "vld1.8 {q0, q1}, [%0]! \n" // load row 1 and post inc + MEMACCESS(1) + "vld1.8 {q2, q3}, [%1]! \n" // load row 2 and post inc + "subs %3, %3, #16 \n" // 16 processed per loop + "vpaddl.u8 q0, q0 \n" // row 1 add adjacent + "vpaddl.u8 q1, q1 \n" + "vpadal.u8 q0, q2 \n" // row 2 add adjacent + row1 + "vpadal.u8 q1, q3 \n" + "vrshrn.u16 d0, q0, #2 \n" // downshift, round and pack + "vrshrn.u16 d1, q1, #2 \n" + MEMACCESS(2) + "vst1.8 {q0}, [%2]! \n" + "bgt 1b \n" + : "+r"(src_ptr), // %0 + "+r"(src_stride), // %1 + "+r"(dst), // %2 + "+r"(dst_width) // %3 + : + : "q0", "q1", "q2", "q3" // Clobber List + ); +} + +void ScaleRowDown4_NEON(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst_ptr, int dst_width) { + asm volatile ( + "1: \n" + MEMACCESS(0) + "vld4.8 {d0, d1, d2, d3}, [%0]! \n" // src line 0 + "subs %2, %2, #8 \n" // 8 processed per loop + MEMACCESS(1) + "vst1.8 {d2}, [%1]! \n" + "bgt 1b \n" + : "+r"(src_ptr), // %0 + "+r"(dst_ptr), // %1 + "+r"(dst_width) // %2 + : + : "q0", "q1", "memory", "cc" + ); +} + +void ScaleRowDown4Box_NEON(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst_ptr, int dst_width) { + const uint8* src_ptr1 = src_ptr + src_stride; + const uint8* src_ptr2 = src_ptr + src_stride * 2; + const uint8* src_ptr3 = src_ptr + src_stride * 3; +asm volatile ( + "1: \n" + MEMACCESS(0) + "vld1.8 {q0}, [%0]! \n" // load up 16x4 + MEMACCESS(3) + "vld1.8 {q1}, [%3]! \n" + MEMACCESS(4) + "vld1.8 {q2}, [%4]! \n" + MEMACCESS(5) + "vld1.8 {q3}, [%5]! \n" + "subs %2, %2, #4 \n" + "vpaddl.u8 q0, q0 \n" + "vpadal.u8 q0, q1 \n" + "vpadal.u8 q0, q2 \n" + "vpadal.u8 q0, q3 \n" + "vpaddl.u16 q0, q0 \n" + "vrshrn.u32 d0, q0, #4 \n" // divide by 16 w/rounding + "vmovn.u16 d0, q0 \n" + MEMACCESS(1) + "vst1.32 {d0[0]}, [%1]! \n" + "bgt 1b \n" + : "+r"(src_ptr), // %0 + "+r"(dst_ptr), // %1 + "+r"(dst_width), // %2 + "+r"(src_ptr1), // %3 + "+r"(src_ptr2), // %4 + "+r"(src_ptr3) // %5 + : + : "q0", "q1", "q2", "q3", "memory", "cc" + ); +} + +// Down scale from 4 to 3 pixels. Use the neon multilane read/write +// to load up the every 4th pixel into a 4 different registers. +// Point samples 32 pixels to 24 pixels. +void ScaleRowDown34_NEON(const uint8* src_ptr, + ptrdiff_t src_stride, + uint8* dst_ptr, int dst_width) { + asm volatile ( + "1: \n" + MEMACCESS(0) + "vld4.8 {d0, d1, d2, d3}, [%0]! \n" // src line 0 + "subs %2, %2, #24 \n" + "vmov d2, d3 \n" // order d0, d1, d2 + MEMACCESS(1) + "vst3.8 {d0, d1, d2}, [%1]! \n" + "bgt 1b \n" + : "+r"(src_ptr), // %0 + "+r"(dst_ptr), // %1 + "+r"(dst_width) // %2 + : + : "d0", "d1", "d2", "d3", "memory", "cc" + ); +} + +void ScaleRowDown34_0_Box_NEON(const uint8* src_ptr, + ptrdiff_t src_stride, + uint8* dst_ptr, int dst_width) { + asm volatile ( + "vmov.u8 d24, #3 \n" + "add %3, %0 \n" + "1: \n" + MEMACCESS(0) + "vld4.8 {d0, d1, d2, d3}, [%0]! \n" // src line 0 + MEMACCESS(3) + "vld4.8 {d4, d5, d6, d7}, [%3]! \n" // src line 1 + "subs %2, %2, #24 \n" + + // filter src line 0 with src line 1 + // expand chars to shorts to allow for room + // when adding lines together + "vmovl.u8 q8, d4 \n" + "vmovl.u8 q9, d5 \n" + "vmovl.u8 q10, d6 \n" + "vmovl.u8 q11, d7 \n" + + // 3 * line_0 + line_1 + "vmlal.u8 q8, d0, d24 \n" + "vmlal.u8 q9, d1, d24 \n" + "vmlal.u8 q10, d2, d24 \n" + "vmlal.u8 q11, d3, d24 \n" + + // (3 * line_0 + line_1) >> 2 + "vqrshrn.u16 d0, q8, #2 \n" + "vqrshrn.u16 d1, q9, #2 \n" + "vqrshrn.u16 d2, q10, #2 \n" + "vqrshrn.u16 d3, q11, #2 \n" + + // a0 = (src[0] * 3 + s[1] * 1) >> 2 + "vmovl.u8 q8, d1 \n" + "vmlal.u8 q8, d0, d24 \n" + "vqrshrn.u16 d0, q8, #2 \n" + + // a1 = (src[1] * 1 + s[2] * 1) >> 1 + "vrhadd.u8 d1, d1, d2 \n" + + // a2 = (src[2] * 1 + s[3] * 3) >> 2 + "vmovl.u8 q8, d2 \n" + "vmlal.u8 q8, d3, d24 \n" + "vqrshrn.u16 d2, q8, #2 \n" + + MEMACCESS(1) + "vst3.8 {d0, d1, d2}, [%1]! \n" + + "bgt 1b \n" + : "+r"(src_ptr), // %0 + "+r"(dst_ptr), // %1 + "+r"(dst_width), // %2 + "+r"(src_stride) // %3 + : + : "q0", "q1", "q2", "q3", "q8", "q9", "q10", "q11", "d24", "memory", "cc" + ); +} + +void ScaleRowDown34_1_Box_NEON(const uint8* src_ptr, + ptrdiff_t src_stride, + uint8* dst_ptr, int dst_width) { + asm volatile ( + "vmov.u8 d24, #3 \n" + "add %3, %0 \n" + "1: \n" + MEMACCESS(0) + "vld4.8 {d0, d1, d2, d3}, [%0]! \n" // src line 0 + MEMACCESS(3) + "vld4.8 {d4, d5, d6, d7}, [%3]! \n" // src line 1 + "subs %2, %2, #24 \n" + // average src line 0 with src line 1 + "vrhadd.u8 q0, q0, q2 \n" + "vrhadd.u8 q1, q1, q3 \n" + + // a0 = (src[0] * 3 + s[1] * 1) >> 2 + "vmovl.u8 q3, d1 \n" + "vmlal.u8 q3, d0, d24 \n" + "vqrshrn.u16 d0, q3, #2 \n" + + // a1 = (src[1] * 1 + s[2] * 1) >> 1 + "vrhadd.u8 d1, d1, d2 \n" + + // a2 = (src[2] * 1 + s[3] * 3) >> 2 + "vmovl.u8 q3, d2 \n" + "vmlal.u8 q3, d3, d24 \n" + "vqrshrn.u16 d2, q3, #2 \n" + + MEMACCESS(1) + "vst3.8 {d0, d1, d2}, [%1]! \n" + "bgt 1b \n" + : "+r"(src_ptr), // %0 + "+r"(dst_ptr), // %1 + "+r"(dst_width), // %2 + "+r"(src_stride) // %3 + : + : "r4", "q0", "q1", "q2", "q3", "d24", "memory", "cc" + ); +} + +#define HAS_SCALEROWDOWN38_NEON +static uvec8 kShuf38 = + { 0, 3, 6, 8, 11, 14, 16, 19, 22, 24, 27, 30, 0, 0, 0, 0 }; +static uvec8 kShuf38_2 = + { 0, 8, 16, 2, 10, 17, 4, 12, 18, 6, 14, 19, 0, 0, 0, 0 }; +static vec16 kMult38_Div6 = + { 65536 / 12, 65536 / 12, 65536 / 12, 65536 / 12, + 65536 / 12, 65536 / 12, 65536 / 12, 65536 / 12 }; +static vec16 kMult38_Div9 = + { 65536 / 18, 65536 / 18, 65536 / 18, 65536 / 18, + 65536 / 18, 65536 / 18, 65536 / 18, 65536 / 18 }; + +// 32 -> 12 +void ScaleRowDown38_NEON(const uint8* src_ptr, + ptrdiff_t src_stride, + uint8* dst_ptr, int dst_width) { + asm volatile ( + MEMACCESS(3) + "vld1.8 {q3}, [%3] \n" + "1: \n" + MEMACCESS(0) + "vld1.8 {d0, d1, d2, d3}, [%0]! \n" + "subs %2, %2, #12 \n" + "vtbl.u8 d4, {d0, d1, d2, d3}, d6 \n" + "vtbl.u8 d5, {d0, d1, d2, d3}, d7 \n" + MEMACCESS(1) + "vst1.8 {d4}, [%1]! \n" + MEMACCESS(1) + "vst1.32 {d5[0]}, [%1]! \n" + "bgt 1b \n" + : "+r"(src_ptr), // %0 + "+r"(dst_ptr), // %1 + "+r"(dst_width) // %2 + : "r"(&kShuf38) // %3 + : "d0", "d1", "d2", "d3", "d4", "d5", "memory", "cc" + ); +} + +// 32x3 -> 12x1 +void OMITFP ScaleRowDown38_3_Box_NEON(const uint8* src_ptr, + ptrdiff_t src_stride, + uint8* dst_ptr, int dst_width) { + const uint8* src_ptr1 = src_ptr + src_stride * 2; + + asm volatile ( + MEMACCESS(5) + "vld1.16 {q13}, [%5] \n" + MEMACCESS(6) + "vld1.8 {q14}, [%6] \n" + MEMACCESS(7) + "vld1.8 {q15}, [%7] \n" + "add %3, %0 \n" + "1: \n" + + // d0 = 00 40 01 41 02 42 03 43 + // d1 = 10 50 11 51 12 52 13 53 + // d2 = 20 60 21 61 22 62 23 63 + // d3 = 30 70 31 71 32 72 33 73 + MEMACCESS(0) + "vld4.8 {d0, d1, d2, d3}, [%0]! \n" + MEMACCESS(3) + "vld4.8 {d4, d5, d6, d7}, [%3]! \n" + MEMACCESS(4) + "vld4.8 {d16, d17, d18, d19}, [%4]! \n" + "subs %2, %2, #12 \n" + + // Shuffle the input data around to get align the data + // so adjacent data can be added. 0,1 - 2,3 - 4,5 - 6,7 + // d0 = 00 10 01 11 02 12 03 13 + // d1 = 40 50 41 51 42 52 43 53 + "vtrn.u8 d0, d1 \n" + "vtrn.u8 d4, d5 \n" + "vtrn.u8 d16, d17 \n" + + // d2 = 20 30 21 31 22 32 23 33 + // d3 = 60 70 61 71 62 72 63 73 + "vtrn.u8 d2, d3 \n" + "vtrn.u8 d6, d7 \n" + "vtrn.u8 d18, d19 \n" + + // d0 = 00+10 01+11 02+12 03+13 + // d2 = 40+50 41+51 42+52 43+53 + "vpaddl.u8 q0, q0 \n" + "vpaddl.u8 q2, q2 \n" + "vpaddl.u8 q8, q8 \n" + + // d3 = 60+70 61+71 62+72 63+73 + "vpaddl.u8 d3, d3 \n" + "vpaddl.u8 d7, d7 \n" + "vpaddl.u8 d19, d19 \n" + + // combine source lines + "vadd.u16 q0, q2 \n" + "vadd.u16 q0, q8 \n" + "vadd.u16 d4, d3, d7 \n" + "vadd.u16 d4, d19 \n" + + // dst_ptr[3] = (s[6 + st * 0] + s[7 + st * 0] + // + s[6 + st * 1] + s[7 + st * 1] + // + s[6 + st * 2] + s[7 + st * 2]) / 6 + "vqrdmulh.s16 q2, q2, q13 \n" + "vmovn.u16 d4, q2 \n" + + // Shuffle 2,3 reg around so that 2 can be added to the + // 0,1 reg and 3 can be added to the 4,5 reg. This + // requires expanding from u8 to u16 as the 0,1 and 4,5 + // registers are already expanded. Then do transposes + // to get aligned. + // q2 = xx 20 xx 30 xx 21 xx 31 xx 22 xx 32 xx 23 xx 33 + "vmovl.u8 q1, d2 \n" + "vmovl.u8 q3, d6 \n" + "vmovl.u8 q9, d18 \n" + + // combine source lines + "vadd.u16 q1, q3 \n" + "vadd.u16 q1, q9 \n" + + // d4 = xx 20 xx 30 xx 22 xx 32 + // d5 = xx 21 xx 31 xx 23 xx 33 + "vtrn.u32 d2, d3 \n" + + // d4 = xx 20 xx 21 xx 22 xx 23 + // d5 = xx 30 xx 31 xx 32 xx 33 + "vtrn.u16 d2, d3 \n" + + // 0+1+2, 3+4+5 + "vadd.u16 q0, q1 \n" + + // Need to divide, but can't downshift as the the value + // isn't a power of 2. So multiply by 65536 / n + // and take the upper 16 bits. + "vqrdmulh.s16 q0, q0, q15 \n" + + // Align for table lookup, vtbl requires registers to + // be adjacent + "vmov.u8 d2, d4 \n" + + "vtbl.u8 d3, {d0, d1, d2}, d28 \n" + "vtbl.u8 d4, {d0, d1, d2}, d29 \n" + + MEMACCESS(1) + "vst1.8 {d3}, [%1]! \n" + MEMACCESS(1) + "vst1.32 {d4[0]}, [%1]! \n" + "bgt 1b \n" + : "+r"(src_ptr), // %0 + "+r"(dst_ptr), // %1 + "+r"(dst_width), // %2 + "+r"(src_stride), // %3 + "+r"(src_ptr1) // %4 + : "r"(&kMult38_Div6), // %5 + "r"(&kShuf38_2), // %6 + "r"(&kMult38_Div9) // %7 + : "q0", "q1", "q2", "q3", "q8", "q9", "q13", "q14", "q15", "memory", "cc" + ); +} + +// 32x2 -> 12x1 +void ScaleRowDown38_2_Box_NEON(const uint8* src_ptr, + ptrdiff_t src_stride, + uint8* dst_ptr, int dst_width) { + asm volatile ( + MEMACCESS(4) + "vld1.16 {q13}, [%4] \n" + MEMACCESS(5) + "vld1.8 {q14}, [%5] \n" + "add %3, %0 \n" + "1: \n" + + // d0 = 00 40 01 41 02 42 03 43 + // d1 = 10 50 11 51 12 52 13 53 + // d2 = 20 60 21 61 22 62 23 63 + // d3 = 30 70 31 71 32 72 33 73 + MEMACCESS(0) + "vld4.8 {d0, d1, d2, d3}, [%0]! \n" + MEMACCESS(3) + "vld4.8 {d4, d5, d6, d7}, [%3]! \n" + "subs %2, %2, #12 \n" + + // Shuffle the input data around to get align the data + // so adjacent data can be added. 0,1 - 2,3 - 4,5 - 6,7 + // d0 = 00 10 01 11 02 12 03 13 + // d1 = 40 50 41 51 42 52 43 53 + "vtrn.u8 d0, d1 \n" + "vtrn.u8 d4, d5 \n" + + // d2 = 20 30 21 31 22 32 23 33 + // d3 = 60 70 61 71 62 72 63 73 + "vtrn.u8 d2, d3 \n" + "vtrn.u8 d6, d7 \n" + + // d0 = 00+10 01+11 02+12 03+13 + // d2 = 40+50 41+51 42+52 43+53 + "vpaddl.u8 q0, q0 \n" + "vpaddl.u8 q2, q2 \n" + + // d3 = 60+70 61+71 62+72 63+73 + "vpaddl.u8 d3, d3 \n" + "vpaddl.u8 d7, d7 \n" + + // combine source lines + "vadd.u16 q0, q2 \n" + "vadd.u16 d4, d3, d7 \n" + + // dst_ptr[3] = (s[6] + s[7] + s[6+st] + s[7+st]) / 4 + "vqrshrn.u16 d4, q2, #2 \n" + + // Shuffle 2,3 reg around so that 2 can be added to the + // 0,1 reg and 3 can be added to the 4,5 reg. This + // requires expanding from u8 to u16 as the 0,1 and 4,5 + // registers are already expanded. Then do transposes + // to get aligned. + // q2 = xx 20 xx 30 xx 21 xx 31 xx 22 xx 32 xx 23 xx 33 + "vmovl.u8 q1, d2 \n" + "vmovl.u8 q3, d6 \n" + + // combine source lines + "vadd.u16 q1, q3 \n" + + // d4 = xx 20 xx 30 xx 22 xx 32 + // d5 = xx 21 xx 31 xx 23 xx 33 + "vtrn.u32 d2, d3 \n" + + // d4 = xx 20 xx 21 xx 22 xx 23 + // d5 = xx 30 xx 31 xx 32 xx 33 + "vtrn.u16 d2, d3 \n" + + // 0+1+2, 3+4+5 + "vadd.u16 q0, q1 \n" + + // Need to divide, but can't downshift as the the value + // isn't a power of 2. So multiply by 65536 / n + // and take the upper 16 bits. + "vqrdmulh.s16 q0, q0, q13 \n" + + // Align for table lookup, vtbl requires registers to + // be adjacent + "vmov.u8 d2, d4 \n" + + "vtbl.u8 d3, {d0, d1, d2}, d28 \n" + "vtbl.u8 d4, {d0, d1, d2}, d29 \n" + + MEMACCESS(1) + "vst1.8 {d3}, [%1]! \n" + MEMACCESS(1) + "vst1.32 {d4[0]}, [%1]! \n" + "bgt 1b \n" + : "+r"(src_ptr), // %0 + "+r"(dst_ptr), // %1 + "+r"(dst_width), // %2 + "+r"(src_stride) // %3 + : "r"(&kMult38_Div6), // %4 + "r"(&kShuf38_2) // %5 + : "q0", "q1", "q2", "q3", "q13", "q14", "memory", "cc" + ); +} + +void ScaleAddRows_NEON(const uint8* src_ptr, ptrdiff_t src_stride, + uint16* dst_ptr, int src_width, int src_height) { + const uint8* src_tmp; + asm volatile ( + "1: \n" + "mov %0, %1 \n" + "mov r12, %5 \n" + "veor q2, q2, q2 \n" + "veor q3, q3, q3 \n" + "2: \n" + // load 16 pixels into q0 + MEMACCESS(0) + "vld1.8 {q0}, [%0], %3 \n" + "vaddw.u8 q3, q3, d1 \n" + "vaddw.u8 q2, q2, d0 \n" + "subs r12, r12, #1 \n" + "bgt 2b \n" + MEMACCESS(2) + "vst1.16 {q2, q3}, [%2]! \n" // store pixels + "add %1, %1, #16 \n" + "subs %4, %4, #16 \n" // 16 processed per loop + "bgt 1b \n" + : "=&r"(src_tmp), // %0 + "+r"(src_ptr), // %1 + "+r"(dst_ptr), // %2 + "+r"(src_stride), // %3 + "+r"(src_width), // %4 + "+r"(src_height) // %5 + : + : "memory", "cc", "r12", "q0", "q1", "q2", "q3" // Clobber List + ); +} + +// TODO(Yang Zhang): Investigate less load instructions for +// the x/dx stepping +#define LOAD2_DATA8_LANE(n) \ + "lsr %5, %3, #16 \n" \ + "add %6, %1, %5 \n" \ + "add %3, %3, %4 \n" \ + MEMACCESS(6) \ + "vld2.8 {d6["#n"], d7["#n"]}, [%6] \n" + +// The NEON version mimics this formula: +// #define BLENDER(a, b, f) (uint8)((int)(a) + +// ((int)(f) * ((int)(b) - (int)(a)) >> 16)) + +void ScaleFilterCols_NEON(uint8* dst_ptr, const uint8* src_ptr, + int dst_width, int x, int dx) { + int dx_offset[4] = {0, 1, 2, 3}; + int* tmp = dx_offset; + const uint8* src_tmp = src_ptr; + asm volatile ( + "vdup.32 q0, %3 \n" // x + "vdup.32 q1, %4 \n" // dx + "vld1.32 {q2}, [%5] \n" // 0 1 2 3 + "vshl.i32 q3, q1, #2 \n" // 4 * dx + "vmul.s32 q1, q1, q2 \n" + // x , x + 1 * dx, x + 2 * dx, x + 3 * dx + "vadd.s32 q1, q1, q0 \n" + // x + 4 * dx, x + 5 * dx, x + 6 * dx, x + 7 * dx + "vadd.s32 q2, q1, q3 \n" + "vshl.i32 q0, q3, #1 \n" // 8 * dx + "1: \n" + LOAD2_DATA8_LANE(0) + LOAD2_DATA8_LANE(1) + LOAD2_DATA8_LANE(2) + LOAD2_DATA8_LANE(3) + LOAD2_DATA8_LANE(4) + LOAD2_DATA8_LANE(5) + LOAD2_DATA8_LANE(6) + LOAD2_DATA8_LANE(7) + "vmov q10, q1 \n" + "vmov q11, q2 \n" + "vuzp.16 q10, q11 \n" + "vmovl.u8 q8, d6 \n" + "vmovl.u8 q9, d7 \n" + "vsubl.s16 q11, d18, d16 \n" + "vsubl.s16 q12, d19, d17 \n" + "vmovl.u16 q13, d20 \n" + "vmovl.u16 q10, d21 \n" + "vmul.s32 q11, q11, q13 \n" + "vmul.s32 q12, q12, q10 \n" + "vrshrn.s32 d18, q11, #16 \n" + "vrshrn.s32 d19, q12, #16 \n" + "vadd.s16 q8, q8, q9 \n" + "vmovn.s16 d6, q8 \n" + + MEMACCESS(0) + "vst1.8 {d6}, [%0]! \n" // store pixels + "vadd.s32 q1, q1, q0 \n" + "vadd.s32 q2, q2, q0 \n" + "subs %2, %2, #8 \n" // 8 processed per loop + "bgt 1b \n" + : "+r"(dst_ptr), // %0 + "+r"(src_ptr), // %1 + "+r"(dst_width), // %2 + "+r"(x), // %3 + "+r"(dx), // %4 + "+r"(tmp), // %5 + "+r"(src_tmp) // %6 + : + : "memory", "cc", "q0", "q1", "q2", "q3", + "q8", "q9", "q10", "q11", "q12", "q13" + ); +} + +#undef LOAD2_DATA8_LANE + +// 16x2 -> 16x1 +void ScaleFilterRows_NEON(uint8* dst_ptr, + const uint8* src_ptr, ptrdiff_t src_stride, + int dst_width, int source_y_fraction) { + asm volatile ( + "cmp %4, #0 \n" + "beq 100f \n" + "add %2, %1 \n" + "cmp %4, #64 \n" + "beq 75f \n" + "cmp %4, #128 \n" + "beq 50f \n" + "cmp %4, #192 \n" + "beq 25f \n" + + "vdup.8 d5, %4 \n" + "rsb %4, #256 \n" + "vdup.8 d4, %4 \n" + // General purpose row blend. + "1: \n" + MEMACCESS(1) + "vld1.8 {q0}, [%1]! \n" + MEMACCESS(2) + "vld1.8 {q1}, [%2]! \n" + "subs %3, %3, #16 \n" + "vmull.u8 q13, d0, d4 \n" + "vmull.u8 q14, d1, d4 \n" + "vmlal.u8 q13, d2, d5 \n" + "vmlal.u8 q14, d3, d5 \n" + "vrshrn.u16 d0, q13, #8 \n" + "vrshrn.u16 d1, q14, #8 \n" + MEMACCESS(0) + "vst1.8 {q0}, [%0]! \n" + "bgt 1b \n" + "b 99f \n" + + // Blend 25 / 75. + "25: \n" + MEMACCESS(1) + "vld1.8 {q0}, [%1]! \n" + MEMACCESS(2) + "vld1.8 {q1}, [%2]! \n" + "subs %3, %3, #16 \n" + "vrhadd.u8 q0, q1 \n" + "vrhadd.u8 q0, q1 \n" + MEMACCESS(0) + "vst1.8 {q0}, [%0]! \n" + "bgt 25b \n" + "b 99f \n" + + // Blend 50 / 50. + "50: \n" + MEMACCESS(1) + "vld1.8 {q0}, [%1]! \n" + MEMACCESS(2) + "vld1.8 {q1}, [%2]! \n" + "subs %3, %3, #16 \n" + "vrhadd.u8 q0, q1 \n" + MEMACCESS(0) + "vst1.8 {q0}, [%0]! \n" + "bgt 50b \n" + "b 99f \n" + + // Blend 75 / 25. + "75: \n" + MEMACCESS(1) + "vld1.8 {q1}, [%1]! \n" + MEMACCESS(2) + "vld1.8 {q0}, [%2]! \n" + "subs %3, %3, #16 \n" + "vrhadd.u8 q0, q1 \n" + "vrhadd.u8 q0, q1 \n" + MEMACCESS(0) + "vst1.8 {q0}, [%0]! \n" + "bgt 75b \n" + "b 99f \n" + + // Blend 100 / 0 - Copy row unchanged. + "100: \n" + MEMACCESS(1) + "vld1.8 {q0}, [%1]! \n" + "subs %3, %3, #16 \n" + MEMACCESS(0) + "vst1.8 {q0}, [%0]! \n" + "bgt 100b \n" + + "99: \n" + MEMACCESS(0) + "vst1.8 {d1[7]}, [%0] \n" + : "+r"(dst_ptr), // %0 + "+r"(src_ptr), // %1 + "+r"(src_stride), // %2 + "+r"(dst_width), // %3 + "+r"(source_y_fraction) // %4 + : + : "q0", "q1", "d4", "d5", "q13", "q14", "memory", "cc" + ); +} + +void ScaleARGBRowDown2_NEON(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst, int dst_width) { + asm volatile ( + "1: \n" + // load even pixels into q0, odd into q1 + MEMACCESS(0) + "vld2.32 {q0, q1}, [%0]! \n" + MEMACCESS(0) + "vld2.32 {q2, q3}, [%0]! \n" + "subs %2, %2, #8 \n" // 8 processed per loop + MEMACCESS(1) + "vst1.8 {q1}, [%1]! \n" // store odd pixels + MEMACCESS(1) + "vst1.8 {q3}, [%1]! \n" + "bgt 1b \n" + : "+r"(src_ptr), // %0 + "+r"(dst), // %1 + "+r"(dst_width) // %2 + : + : "memory", "cc", "q0", "q1", "q2", "q3" // Clobber List + ); +} + +void ScaleARGBRowDown2Linear_NEON(const uint8* src_argb, ptrdiff_t src_stride, + uint8* dst_argb, int dst_width) { + asm volatile ( + "1: \n" + MEMACCESS(0) + "vld4.8 {d0, d2, d4, d6}, [%0]! \n" // load 8 ARGB pixels. + MEMACCESS(0) + "vld4.8 {d1, d3, d5, d7}, [%0]! \n" // load next 8 ARGB pixels. + "subs %2, %2, #8 \n" // 8 processed per loop + "vpaddl.u8 q0, q0 \n" // B 16 bytes -> 8 shorts. + "vpaddl.u8 q1, q1 \n" // G 16 bytes -> 8 shorts. + "vpaddl.u8 q2, q2 \n" // R 16 bytes -> 8 shorts. + "vpaddl.u8 q3, q3 \n" // A 16 bytes -> 8 shorts. + "vrshrn.u16 d0, q0, #1 \n" // downshift, round and pack + "vrshrn.u16 d1, q1, #1 \n" + "vrshrn.u16 d2, q2, #1 \n" + "vrshrn.u16 d3, q3, #1 \n" + MEMACCESS(1) + "vst4.8 {d0, d1, d2, d3}, [%1]! \n" + "bgt 1b \n" + : "+r"(src_argb), // %0 + "+r"(dst_argb), // %1 + "+r"(dst_width) // %2 + : + : "memory", "cc", "q0", "q1", "q2", "q3" // Clobber List + ); +} + +void ScaleARGBRowDown2Box_NEON(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst, int dst_width) { + asm volatile ( + // change the stride to row 2 pointer + "add %1, %1, %0 \n" + "1: \n" + MEMACCESS(0) + "vld4.8 {d0, d2, d4, d6}, [%0]! \n" // load 8 ARGB pixels. + MEMACCESS(0) + "vld4.8 {d1, d3, d5, d7}, [%0]! \n" // load next 8 ARGB pixels. + "subs %3, %3, #8 \n" // 8 processed per loop. + "vpaddl.u8 q0, q0 \n" // B 16 bytes -> 8 shorts. + "vpaddl.u8 q1, q1 \n" // G 16 bytes -> 8 shorts. + "vpaddl.u8 q2, q2 \n" // R 16 bytes -> 8 shorts. + "vpaddl.u8 q3, q3 \n" // A 16 bytes -> 8 shorts. + MEMACCESS(1) + "vld4.8 {d16, d18, d20, d22}, [%1]! \n" // load 8 more ARGB pixels. + MEMACCESS(1) + "vld4.8 {d17, d19, d21, d23}, [%1]! \n" // load last 8 ARGB pixels. + "vpadal.u8 q0, q8 \n" // B 16 bytes -> 8 shorts. + "vpadal.u8 q1, q9 \n" // G 16 bytes -> 8 shorts. + "vpadal.u8 q2, q10 \n" // R 16 bytes -> 8 shorts. + "vpadal.u8 q3, q11 \n" // A 16 bytes -> 8 shorts. + "vrshrn.u16 d0, q0, #2 \n" // downshift, round and pack + "vrshrn.u16 d1, q1, #2 \n" + "vrshrn.u16 d2, q2, #2 \n" + "vrshrn.u16 d3, q3, #2 \n" + MEMACCESS(2) + "vst4.8 {d0, d1, d2, d3}, [%2]! \n" + "bgt 1b \n" + : "+r"(src_ptr), // %0 + "+r"(src_stride), // %1 + "+r"(dst), // %2 + "+r"(dst_width) // %3 + : + : "memory", "cc", "q0", "q1", "q2", "q3", "q8", "q9", "q10", "q11" + ); +} + +// Reads 4 pixels at a time. +// Alignment requirement: src_argb 4 byte aligned. +void ScaleARGBRowDownEven_NEON(const uint8* src_argb, ptrdiff_t src_stride, + int src_stepx, uint8* dst_argb, int dst_width) { + asm volatile ( + "mov r12, %3, lsl #2 \n" + "1: \n" + MEMACCESS(0) + "vld1.32 {d0[0]}, [%0], r12 \n" + MEMACCESS(0) + "vld1.32 {d0[1]}, [%0], r12 \n" + MEMACCESS(0) + "vld1.32 {d1[0]}, [%0], r12 \n" + MEMACCESS(0) + "vld1.32 {d1[1]}, [%0], r12 \n" + "subs %2, %2, #4 \n" // 4 pixels per loop. + MEMACCESS(1) + "vst1.8 {q0}, [%1]! \n" + "bgt 1b \n" + : "+r"(src_argb), // %0 + "+r"(dst_argb), // %1 + "+r"(dst_width) // %2 + : "r"(src_stepx) // %3 + : "memory", "cc", "r12", "q0" + ); +} + +// Reads 4 pixels at a time. +// Alignment requirement: src_argb 4 byte aligned. +void ScaleARGBRowDownEvenBox_NEON(const uint8* src_argb, ptrdiff_t src_stride, + int src_stepx, + uint8* dst_argb, int dst_width) { + asm volatile ( + "mov r12, %4, lsl #2 \n" + "add %1, %1, %0 \n" + "1: \n" + MEMACCESS(0) + "vld1.8 {d0}, [%0], r12 \n" // Read 4 2x2 blocks -> 2x1 + MEMACCESS(1) + "vld1.8 {d1}, [%1], r12 \n" + MEMACCESS(0) + "vld1.8 {d2}, [%0], r12 \n" + MEMACCESS(1) + "vld1.8 {d3}, [%1], r12 \n" + MEMACCESS(0) + "vld1.8 {d4}, [%0], r12 \n" + MEMACCESS(1) + "vld1.8 {d5}, [%1], r12 \n" + MEMACCESS(0) + "vld1.8 {d6}, [%0], r12 \n" + MEMACCESS(1) + "vld1.8 {d7}, [%1], r12 \n" + "vaddl.u8 q0, d0, d1 \n" + "vaddl.u8 q1, d2, d3 \n" + "vaddl.u8 q2, d4, d5 \n" + "vaddl.u8 q3, d6, d7 \n" + "vswp.8 d1, d2 \n" // ab_cd -> ac_bd + "vswp.8 d5, d6 \n" // ef_gh -> eg_fh + "vadd.u16 q0, q0, q1 \n" // (a+b)_(c+d) + "vadd.u16 q2, q2, q3 \n" // (e+f)_(g+h) + "vrshrn.u16 d0, q0, #2 \n" // first 2 pixels. + "vrshrn.u16 d1, q2, #2 \n" // next 2 pixels. + "subs %3, %3, #4 \n" // 4 pixels per loop. + MEMACCESS(2) + "vst1.8 {q0}, [%2]! \n" + "bgt 1b \n" + : "+r"(src_argb), // %0 + "+r"(src_stride), // %1 + "+r"(dst_argb), // %2 + "+r"(dst_width) // %3 + : "r"(src_stepx) // %4 + : "memory", "cc", "r12", "q0", "q1", "q2", "q3" + ); +} + +// TODO(Yang Zhang): Investigate less load instructions for +// the x/dx stepping +#define LOAD1_DATA32_LANE(dn, n) \ + "lsr %5, %3, #16 \n" \ + "add %6, %1, %5, lsl #2 \n" \ + "add %3, %3, %4 \n" \ + MEMACCESS(6) \ + "vld1.32 {"#dn"["#n"]}, [%6] \n" + +void ScaleARGBCols_NEON(uint8* dst_argb, const uint8* src_argb, + int dst_width, int x, int dx) { + int tmp; + const uint8* src_tmp = src_argb; + asm volatile ( + "1: \n" + LOAD1_DATA32_LANE(d0, 0) + LOAD1_DATA32_LANE(d0, 1) + LOAD1_DATA32_LANE(d1, 0) + LOAD1_DATA32_LANE(d1, 1) + LOAD1_DATA32_LANE(d2, 0) + LOAD1_DATA32_LANE(d2, 1) + LOAD1_DATA32_LANE(d3, 0) + LOAD1_DATA32_LANE(d3, 1) + + MEMACCESS(0) + "vst1.32 {q0, q1}, [%0]! \n" // store pixels + "subs %2, %2, #8 \n" // 8 processed per loop + "bgt 1b \n" + : "+r"(dst_argb), // %0 + "+r"(src_argb), // %1 + "+r"(dst_width), // %2 + "+r"(x), // %3 + "+r"(dx), // %4 + "=&r"(tmp), // %5 + "+r"(src_tmp) // %6 + : + : "memory", "cc", "q0", "q1" + ); +} + +#undef LOAD1_DATA32_LANE + +// TODO(Yang Zhang): Investigate less load instructions for +// the x/dx stepping +#define LOAD2_DATA32_LANE(dn1, dn2, n) \ + "lsr %5, %3, #16 \n" \ + "add %6, %1, %5, lsl #2 \n" \ + "add %3, %3, %4 \n" \ + MEMACCESS(6) \ + "vld2.32 {"#dn1"["#n"], "#dn2"["#n"]}, [%6] \n" + +void ScaleARGBFilterCols_NEON(uint8* dst_argb, const uint8* src_argb, + int dst_width, int x, int dx) { + int dx_offset[4] = {0, 1, 2, 3}; + int* tmp = dx_offset; + const uint8* src_tmp = src_argb; + asm volatile ( + "vdup.32 q0, %3 \n" // x + "vdup.32 q1, %4 \n" // dx + "vld1.32 {q2}, [%5] \n" // 0 1 2 3 + "vshl.i32 q9, q1, #2 \n" // 4 * dx + "vmul.s32 q1, q1, q2 \n" + "vmov.i8 q3, #0x7f \n" // 0x7F + "vmov.i16 q15, #0x7f \n" // 0x7F + // x , x + 1 * dx, x + 2 * dx, x + 3 * dx + "vadd.s32 q8, q1, q0 \n" + "1: \n" + // d0, d1: a + // d2, d3: b + LOAD2_DATA32_LANE(d0, d2, 0) + LOAD2_DATA32_LANE(d0, d2, 1) + LOAD2_DATA32_LANE(d1, d3, 0) + LOAD2_DATA32_LANE(d1, d3, 1) + "vshrn.i32 d22, q8, #9 \n" + "vand.16 d22, d22, d30 \n" + "vdup.8 d24, d22[0] \n" + "vdup.8 d25, d22[2] \n" + "vdup.8 d26, d22[4] \n" + "vdup.8 d27, d22[6] \n" + "vext.8 d4, d24, d25, #4 \n" + "vext.8 d5, d26, d27, #4 \n" // f + "veor.8 q10, q2, q3 \n" // 0x7f ^ f + "vmull.u8 q11, d0, d20 \n" + "vmull.u8 q12, d1, d21 \n" + "vmull.u8 q13, d2, d4 \n" + "vmull.u8 q14, d3, d5 \n" + "vadd.i16 q11, q11, q13 \n" + "vadd.i16 q12, q12, q14 \n" + "vshrn.i16 d0, q11, #7 \n" + "vshrn.i16 d1, q12, #7 \n" + + MEMACCESS(0) + "vst1.32 {d0, d1}, [%0]! \n" // store pixels + "vadd.s32 q8, q8, q9 \n" + "subs %2, %2, #4 \n" // 4 processed per loop + "bgt 1b \n" + : "+r"(dst_argb), // %0 + "+r"(src_argb), // %1 + "+r"(dst_width), // %2 + "+r"(x), // %3 + "+r"(dx), // %4 + "+r"(tmp), // %5 + "+r"(src_tmp) // %6 + : + : "memory", "cc", "q0", "q1", "q2", "q3", "q8", "q9", + "q10", "q11", "q12", "q13", "q14", "q15" + ); +} + +#undef LOAD2_DATA32_LANE + +#endif // defined(__ARM_NEON__) && !defined(__aarch64__) + +#ifdef __cplusplus +} // extern "C" +} // namespace libyuv +#endif diff --git a/third_party/libyuv/source/scale_neon64.cc b/third_party/libyuv/source/scale_neon64.cc new file mode 100644 index 0000000..ff277f2 --- /dev/null +++ b/third_party/libyuv/source/scale_neon64.cc @@ -0,0 +1,1042 @@ +/* + * Copyright 2014 The LibYuv Project Authors. All rights reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "libyuv/scale.h" +#include "libyuv/row.h" +#include "libyuv/scale_row.h" + +#ifdef __cplusplus +namespace libyuv { +extern "C" { +#endif + +// This module is for GCC Neon armv8 64 bit. +#if !defined(LIBYUV_DISABLE_NEON) && defined(__aarch64__) + +// Read 32x1 throw away even pixels, and write 16x1. +void ScaleRowDown2_NEON(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst, int dst_width) { + asm volatile ( + "1: \n" + // load even pixels into v0, odd into v1 + MEMACCESS(0) + "ld2 {v0.16b,v1.16b}, [%0], #32 \n" + "subs %w2, %w2, #16 \n" // 16 processed per loop + MEMACCESS(1) + "st1 {v1.16b}, [%1], #16 \n" // store odd pixels + "b.gt 1b \n" + : "+r"(src_ptr), // %0 + "+r"(dst), // %1 + "+r"(dst_width) // %2 + : + : "v0", "v1" // Clobber List + ); +} + +// Read 32x1 average down and write 16x1. +void ScaleRowDown2Linear_NEON(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst, int dst_width) { + asm volatile ( + "1: \n" + MEMACCESS(0) + "ld1 {v0.16b,v1.16b}, [%0], #32 \n" // load pixels and post inc + "subs %w2, %w2, #16 \n" // 16 processed per loop + "uaddlp v0.8h, v0.16b \n" // add adjacent + "uaddlp v1.8h, v1.16b \n" + "rshrn v0.8b, v0.8h, #1 \n" // downshift, round and pack + "rshrn2 v0.16b, v1.8h, #1 \n" + MEMACCESS(1) + "st1 {v0.16b}, [%1], #16 \n" + "b.gt 1b \n" + : "+r"(src_ptr), // %0 + "+r"(dst), // %1 + "+r"(dst_width) // %2 + : + : "v0", "v1" // Clobber List + ); +} + +// Read 32x2 average down and write 16x1. +void ScaleRowDown2Box_NEON(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst, int dst_width) { + asm volatile ( + // change the stride to row 2 pointer + "add %1, %1, %0 \n" + "1: \n" + MEMACCESS(0) + "ld1 {v0.16b,v1.16b}, [%0], #32 \n" // load row 1 and post inc + MEMACCESS(1) + "ld1 {v2.16b, v3.16b}, [%1], #32 \n" // load row 2 and post inc + "subs %w3, %w3, #16 \n" // 16 processed per loop + "uaddlp v0.8h, v0.16b \n" // row 1 add adjacent + "uaddlp v1.8h, v1.16b \n" + "uadalp v0.8h, v2.16b \n" // row 2 add adjacent + row1 + "uadalp v1.8h, v3.16b \n" + "rshrn v0.8b, v0.8h, #2 \n" // downshift, round and pack + "rshrn2 v0.16b, v1.8h, #2 \n" + MEMACCESS(2) + "st1 {v0.16b}, [%2], #16 \n" + "b.gt 1b \n" + : "+r"(src_ptr), // %0 + "+r"(src_stride), // %1 + "+r"(dst), // %2 + "+r"(dst_width) // %3 + : + : "v0", "v1", "v2", "v3" // Clobber List + ); +} + +void ScaleRowDown4_NEON(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst_ptr, int dst_width) { + asm volatile ( + "1: \n" + MEMACCESS(0) + "ld4 {v0.8b,v1.8b,v2.8b,v3.8b}, [%0], #32 \n" // src line 0 + "subs %w2, %w2, #8 \n" // 8 processed per loop + MEMACCESS(1) + "st1 {v2.8b}, [%1], #8 \n" + "b.gt 1b \n" + : "+r"(src_ptr), // %0 + "+r"(dst_ptr), // %1 + "+r"(dst_width) // %2 + : + : "v0", "v1", "v2", "v3", "memory", "cc" + ); +} + +void ScaleRowDown4Box_NEON(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst_ptr, int dst_width) { + const uint8* src_ptr1 = src_ptr + src_stride; + const uint8* src_ptr2 = src_ptr + src_stride * 2; + const uint8* src_ptr3 = src_ptr + src_stride * 3; +asm volatile ( + "1: \n" + MEMACCESS(0) + "ld1 {v0.16b}, [%0], #16 \n" // load up 16x4 + MEMACCESS(3) + "ld1 {v1.16b}, [%2], #16 \n" + MEMACCESS(4) + "ld1 {v2.16b}, [%3], #16 \n" + MEMACCESS(5) + "ld1 {v3.16b}, [%4], #16 \n" + "subs %w5, %w5, #4 \n" + "uaddlp v0.8h, v0.16b \n" + "uadalp v0.8h, v1.16b \n" + "uadalp v0.8h, v2.16b \n" + "uadalp v0.8h, v3.16b \n" + "addp v0.8h, v0.8h, v0.8h \n" + "rshrn v0.8b, v0.8h, #4 \n" // divide by 16 w/rounding + MEMACCESS(1) + "st1 {v0.s}[0], [%1], #4 \n" + "b.gt 1b \n" + : "+r"(src_ptr), // %0 + "+r"(dst_ptr), // %1 + "+r"(src_ptr1), // %2 + "+r"(src_ptr2), // %3 + "+r"(src_ptr3), // %4 + "+r"(dst_width) // %5 + : + : "v0", "v1", "v2", "v3", "memory", "cc" + ); +} + +// Down scale from 4 to 3 pixels. Use the neon multilane read/write +// to load up the every 4th pixel into a 4 different registers. +// Point samples 32 pixels to 24 pixels. +void ScaleRowDown34_NEON(const uint8* src_ptr, + ptrdiff_t src_stride, + uint8* dst_ptr, int dst_width) { + asm volatile ( + "1: \n" + MEMACCESS(0) + "ld4 {v0.8b,v1.8b,v2.8b,v3.8b}, [%0], #32 \n" // src line 0 + "subs %w2, %w2, #24 \n" + "orr v2.16b, v3.16b, v3.16b \n" // order v0, v1, v2 + MEMACCESS(1) + "st3 {v0.8b,v1.8b,v2.8b}, [%1], #24 \n" + "b.gt 1b \n" + : "+r"(src_ptr), // %0 + "+r"(dst_ptr), // %1 + "+r"(dst_width) // %2 + : + : "v0", "v1", "v2", "v3", "memory", "cc" + ); +} + +void ScaleRowDown34_0_Box_NEON(const uint8* src_ptr, + ptrdiff_t src_stride, + uint8* dst_ptr, int dst_width) { + asm volatile ( + "movi v20.8b, #3 \n" + "add %3, %3, %0 \n" + "1: \n" + MEMACCESS(0) + "ld4 {v0.8b,v1.8b,v2.8b,v3.8b}, [%0], #32 \n" // src line 0 + MEMACCESS(3) + "ld4 {v4.8b,v5.8b,v6.8b,v7.8b}, [%3], #32 \n" // src line 1 + "subs %w2, %w2, #24 \n" + + // filter src line 0 with src line 1 + // expand chars to shorts to allow for room + // when adding lines together + "ushll v16.8h, v4.8b, #0 \n" + "ushll v17.8h, v5.8b, #0 \n" + "ushll v18.8h, v6.8b, #0 \n" + "ushll v19.8h, v7.8b, #0 \n" + + // 3 * line_0 + line_1 + "umlal v16.8h, v0.8b, v20.8b \n" + "umlal v17.8h, v1.8b, v20.8b \n" + "umlal v18.8h, v2.8b, v20.8b \n" + "umlal v19.8h, v3.8b, v20.8b \n" + + // (3 * line_0 + line_1) >> 2 + "uqrshrn v0.8b, v16.8h, #2 \n" + "uqrshrn v1.8b, v17.8h, #2 \n" + "uqrshrn v2.8b, v18.8h, #2 \n" + "uqrshrn v3.8b, v19.8h, #2 \n" + + // a0 = (src[0] * 3 + s[1] * 1) >> 2 + "ushll v16.8h, v1.8b, #0 \n" + "umlal v16.8h, v0.8b, v20.8b \n" + "uqrshrn v0.8b, v16.8h, #2 \n" + + // a1 = (src[1] * 1 + s[2] * 1) >> 1 + "urhadd v1.8b, v1.8b, v2.8b \n" + + // a2 = (src[2] * 1 + s[3] * 3) >> 2 + "ushll v16.8h, v2.8b, #0 \n" + "umlal v16.8h, v3.8b, v20.8b \n" + "uqrshrn v2.8b, v16.8h, #2 \n" + + MEMACCESS(1) + "st3 {v0.8b,v1.8b,v2.8b}, [%1], #24 \n" + + "b.gt 1b \n" + : "+r"(src_ptr), // %0 + "+r"(dst_ptr), // %1 + "+r"(dst_width), // %2 + "+r"(src_stride) // %3 + : + : "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", "v16", "v17", "v18", "v19", + "v20", "memory", "cc" + ); +} + +void ScaleRowDown34_1_Box_NEON(const uint8* src_ptr, + ptrdiff_t src_stride, + uint8* dst_ptr, int dst_width) { + asm volatile ( + "movi v20.8b, #3 \n" + "add %3, %3, %0 \n" + "1: \n" + MEMACCESS(0) + "ld4 {v0.8b,v1.8b,v2.8b,v3.8b}, [%0], #32 \n" // src line 0 + MEMACCESS(3) + "ld4 {v4.8b,v5.8b,v6.8b,v7.8b}, [%3], #32 \n" // src line 1 + "subs %w2, %w2, #24 \n" + // average src line 0 with src line 1 + "urhadd v0.8b, v0.8b, v4.8b \n" + "urhadd v1.8b, v1.8b, v5.8b \n" + "urhadd v2.8b, v2.8b, v6.8b \n" + "urhadd v3.8b, v3.8b, v7.8b \n" + + // a0 = (src[0] * 3 + s[1] * 1) >> 2 + "ushll v4.8h, v1.8b, #0 \n" + "umlal v4.8h, v0.8b, v20.8b \n" + "uqrshrn v0.8b, v4.8h, #2 \n" + + // a1 = (src[1] * 1 + s[2] * 1) >> 1 + "urhadd v1.8b, v1.8b, v2.8b \n" + + // a2 = (src[2] * 1 + s[3] * 3) >> 2 + "ushll v4.8h, v2.8b, #0 \n" + "umlal v4.8h, v3.8b, v20.8b \n" + "uqrshrn v2.8b, v4.8h, #2 \n" + + MEMACCESS(1) + "st3 {v0.8b,v1.8b,v2.8b}, [%1], #24 \n" + "b.gt 1b \n" + : "+r"(src_ptr), // %0 + "+r"(dst_ptr), // %1 + "+r"(dst_width), // %2 + "+r"(src_stride) // %3 + : + : "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", "v20", "memory", "cc" + ); +} + +static uvec8 kShuf38 = + { 0, 3, 6, 8, 11, 14, 16, 19, 22, 24, 27, 30, 0, 0, 0, 0 }; +static uvec8 kShuf38_2 = + { 0, 16, 32, 2, 18, 33, 4, 20, 34, 6, 22, 35, 0, 0, 0, 0 }; +static vec16 kMult38_Div6 = + { 65536 / 12, 65536 / 12, 65536 / 12, 65536 / 12, + 65536 / 12, 65536 / 12, 65536 / 12, 65536 / 12 }; +static vec16 kMult38_Div9 = + { 65536 / 18, 65536 / 18, 65536 / 18, 65536 / 18, + 65536 / 18, 65536 / 18, 65536 / 18, 65536 / 18 }; + +// 32 -> 12 +void ScaleRowDown38_NEON(const uint8* src_ptr, + ptrdiff_t src_stride, + uint8* dst_ptr, int dst_width) { + asm volatile ( + MEMACCESS(3) + "ld1 {v3.16b}, [%3] \n" + "1: \n" + MEMACCESS(0) + "ld1 {v0.16b,v1.16b}, [%0], #32 \n" + "subs %w2, %w2, #12 \n" + "tbl v2.16b, {v0.16b,v1.16b}, v3.16b \n" + MEMACCESS(1) + "st1 {v2.8b}, [%1], #8 \n" + MEMACCESS(1) + "st1 {v2.s}[2], [%1], #4 \n" + "b.gt 1b \n" + : "+r"(src_ptr), // %0 + "+r"(dst_ptr), // %1 + "+r"(dst_width) // %2 + : "r"(&kShuf38) // %3 + : "v0", "v1", "v2", "v3", "memory", "cc" + ); +} + +// 32x3 -> 12x1 +void OMITFP ScaleRowDown38_3_Box_NEON(const uint8* src_ptr, + ptrdiff_t src_stride, + uint8* dst_ptr, int dst_width) { + const uint8* src_ptr1 = src_ptr + src_stride * 2; + ptrdiff_t tmp_src_stride = src_stride; + + asm volatile ( + MEMACCESS(5) + "ld1 {v29.8h}, [%5] \n" + MEMACCESS(6) + "ld1 {v30.16b}, [%6] \n" + MEMACCESS(7) + "ld1 {v31.8h}, [%7] \n" + "add %2, %2, %0 \n" + "1: \n" + + // 00 40 01 41 02 42 03 43 + // 10 50 11 51 12 52 13 53 + // 20 60 21 61 22 62 23 63 + // 30 70 31 71 32 72 33 73 + MEMACCESS(0) + "ld4 {v0.8b,v1.8b,v2.8b,v3.8b}, [%0], #32 \n" + MEMACCESS(3) + "ld4 {v4.8b,v5.8b,v6.8b,v7.8b}, [%2], #32 \n" + MEMACCESS(4) + "ld4 {v16.8b,v17.8b,v18.8b,v19.8b}, [%3], #32 \n" + "subs %w4, %w4, #12 \n" + + // Shuffle the input data around to get align the data + // so adjacent data can be added. 0,1 - 2,3 - 4,5 - 6,7 + // 00 10 01 11 02 12 03 13 + // 40 50 41 51 42 52 43 53 + "trn1 v20.8b, v0.8b, v1.8b \n" + "trn2 v21.8b, v0.8b, v1.8b \n" + "trn1 v22.8b, v4.8b, v5.8b \n" + "trn2 v23.8b, v4.8b, v5.8b \n" + "trn1 v24.8b, v16.8b, v17.8b \n" + "trn2 v25.8b, v16.8b, v17.8b \n" + + // 20 30 21 31 22 32 23 33 + // 60 70 61 71 62 72 63 73 + "trn1 v0.8b, v2.8b, v3.8b \n" + "trn2 v1.8b, v2.8b, v3.8b \n" + "trn1 v4.8b, v6.8b, v7.8b \n" + "trn2 v5.8b, v6.8b, v7.8b \n" + "trn1 v16.8b, v18.8b, v19.8b \n" + "trn2 v17.8b, v18.8b, v19.8b \n" + + // 00+10 01+11 02+12 03+13 + // 40+50 41+51 42+52 43+53 + "uaddlp v20.4h, v20.8b \n" + "uaddlp v21.4h, v21.8b \n" + "uaddlp v22.4h, v22.8b \n" + "uaddlp v23.4h, v23.8b \n" + "uaddlp v24.4h, v24.8b \n" + "uaddlp v25.4h, v25.8b \n" + + // 60+70 61+71 62+72 63+73 + "uaddlp v1.4h, v1.8b \n" + "uaddlp v5.4h, v5.8b \n" + "uaddlp v17.4h, v17.8b \n" + + // combine source lines + "add v20.4h, v20.4h, v22.4h \n" + "add v21.4h, v21.4h, v23.4h \n" + "add v20.4h, v20.4h, v24.4h \n" + "add v21.4h, v21.4h, v25.4h \n" + "add v2.4h, v1.4h, v5.4h \n" + "add v2.4h, v2.4h, v17.4h \n" + + // dst_ptr[3] = (s[6 + st * 0] + s[7 + st * 0] + // + s[6 + st * 1] + s[7 + st * 1] + // + s[6 + st * 2] + s[7 + st * 2]) / 6 + "sqrdmulh v2.8h, v2.8h, v29.8h \n" + "xtn v2.8b, v2.8h \n" + + // Shuffle 2,3 reg around so that 2 can be added to the + // 0,1 reg and 3 can be added to the 4,5 reg. This + // requires expanding from u8 to u16 as the 0,1 and 4,5 + // registers are already expanded. Then do transposes + // to get aligned. + // xx 20 xx 30 xx 21 xx 31 xx 22 xx 32 xx 23 xx 33 + "ushll v16.8h, v16.8b, #0 \n" + "uaddl v0.8h, v0.8b, v4.8b \n" + + // combine source lines + "add v0.8h, v0.8h, v16.8h \n" + + // xx 20 xx 21 xx 22 xx 23 + // xx 30 xx 31 xx 32 xx 33 + "trn1 v1.8h, v0.8h, v0.8h \n" + "trn2 v4.8h, v0.8h, v0.8h \n" + "xtn v0.4h, v1.4s \n" + "xtn v4.4h, v4.4s \n" + + // 0+1+2, 3+4+5 + "add v20.8h, v20.8h, v0.8h \n" + "add v21.8h, v21.8h, v4.8h \n" + + // Need to divide, but can't downshift as the the value + // isn't a power of 2. So multiply by 65536 / n + // and take the upper 16 bits. + "sqrdmulh v0.8h, v20.8h, v31.8h \n" + "sqrdmulh v1.8h, v21.8h, v31.8h \n" + + // Align for table lookup, vtbl requires registers to + // be adjacent + "tbl v3.16b, {v0.16b, v1.16b, v2.16b}, v30.16b \n" + + MEMACCESS(1) + "st1 {v3.8b}, [%1], #8 \n" + MEMACCESS(1) + "st1 {v3.s}[2], [%1], #4 \n" + "b.gt 1b \n" + : "+r"(src_ptr), // %0 + "+r"(dst_ptr), // %1 + "+r"(tmp_src_stride), // %2 + "+r"(src_ptr1), // %3 + "+r"(dst_width) // %4 + : "r"(&kMult38_Div6), // %5 + "r"(&kShuf38_2), // %6 + "r"(&kMult38_Div9) // %7 + : "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", "v16", "v17", + "v18", "v19", "v20", "v21", "v22", "v23", "v24", "v25", "v29", + "v30", "v31", "memory", "cc" + ); +} + +// 32x2 -> 12x1 +void ScaleRowDown38_2_Box_NEON(const uint8* src_ptr, + ptrdiff_t src_stride, + uint8* dst_ptr, int dst_width) { + // TODO(fbarchard): use src_stride directly for clang 3.5+. + ptrdiff_t tmp_src_stride = src_stride; + asm volatile ( + MEMACCESS(4) + "ld1 {v30.8h}, [%4] \n" + MEMACCESS(5) + "ld1 {v31.16b}, [%5] \n" + "add %2, %2, %0 \n" + "1: \n" + + // 00 40 01 41 02 42 03 43 + // 10 50 11 51 12 52 13 53 + // 20 60 21 61 22 62 23 63 + // 30 70 31 71 32 72 33 73 + MEMACCESS(0) + "ld4 {v0.8b,v1.8b,v2.8b,v3.8b}, [%0], #32 \n" + MEMACCESS(3) + "ld4 {v4.8b,v5.8b,v6.8b,v7.8b}, [%2], #32 \n" + "subs %w3, %w3, #12 \n" + + // Shuffle the input data around to get align the data + // so adjacent data can be added. 0,1 - 2,3 - 4,5 - 6,7 + // 00 10 01 11 02 12 03 13 + // 40 50 41 51 42 52 43 53 + "trn1 v16.8b, v0.8b, v1.8b \n" + "trn2 v17.8b, v0.8b, v1.8b \n" + "trn1 v18.8b, v4.8b, v5.8b \n" + "trn2 v19.8b, v4.8b, v5.8b \n" + + // 20 30 21 31 22 32 23 33 + // 60 70 61 71 62 72 63 73 + "trn1 v0.8b, v2.8b, v3.8b \n" + "trn2 v1.8b, v2.8b, v3.8b \n" + "trn1 v4.8b, v6.8b, v7.8b \n" + "trn2 v5.8b, v6.8b, v7.8b \n" + + // 00+10 01+11 02+12 03+13 + // 40+50 41+51 42+52 43+53 + "uaddlp v16.4h, v16.8b \n" + "uaddlp v17.4h, v17.8b \n" + "uaddlp v18.4h, v18.8b \n" + "uaddlp v19.4h, v19.8b \n" + + // 60+70 61+71 62+72 63+73 + "uaddlp v1.4h, v1.8b \n" + "uaddlp v5.4h, v5.8b \n" + + // combine source lines + "add v16.4h, v16.4h, v18.4h \n" + "add v17.4h, v17.4h, v19.4h \n" + "add v2.4h, v1.4h, v5.4h \n" + + // dst_ptr[3] = (s[6] + s[7] + s[6+st] + s[7+st]) / 4 + "uqrshrn v2.8b, v2.8h, #2 \n" + + // Shuffle 2,3 reg around so that 2 can be added to the + // 0,1 reg and 3 can be added to the 4,5 reg. This + // requires expanding from u8 to u16 as the 0,1 and 4,5 + // registers are already expanded. Then do transposes + // to get aligned. + // xx 20 xx 30 xx 21 xx 31 xx 22 xx 32 xx 23 xx 33 + + // combine source lines + "uaddl v0.8h, v0.8b, v4.8b \n" + + // xx 20 xx 21 xx 22 xx 23 + // xx 30 xx 31 xx 32 xx 33 + "trn1 v1.8h, v0.8h, v0.8h \n" + "trn2 v4.8h, v0.8h, v0.8h \n" + "xtn v0.4h, v1.4s \n" + "xtn v4.4h, v4.4s \n" + + // 0+1+2, 3+4+5 + "add v16.8h, v16.8h, v0.8h \n" + "add v17.8h, v17.8h, v4.8h \n" + + // Need to divide, but can't downshift as the the value + // isn't a power of 2. So multiply by 65536 / n + // and take the upper 16 bits. + "sqrdmulh v0.8h, v16.8h, v30.8h \n" + "sqrdmulh v1.8h, v17.8h, v30.8h \n" + + // Align for table lookup, vtbl requires registers to + // be adjacent + + "tbl v3.16b, {v0.16b, v1.16b, v2.16b}, v31.16b \n" + + MEMACCESS(1) + "st1 {v3.8b}, [%1], #8 \n" + MEMACCESS(1) + "st1 {v3.s}[2], [%1], #4 \n" + "b.gt 1b \n" + : "+r"(src_ptr), // %0 + "+r"(dst_ptr), // %1 + "+r"(tmp_src_stride), // %2 + "+r"(dst_width) // %3 + : "r"(&kMult38_Div6), // %4 + "r"(&kShuf38_2) // %5 + : "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", "v16", "v17", + "v18", "v19", "v30", "v31", "memory", "cc" + ); +} + +void ScaleAddRows_NEON(const uint8* src_ptr, ptrdiff_t src_stride, + uint16* dst_ptr, int src_width, int src_height) { + const uint8* src_tmp; + asm volatile ( + "1: \n" + "mov %0, %1 \n" + "mov w12, %w5 \n" + "eor v2.16b, v2.16b, v2.16b \n" + "eor v3.16b, v3.16b, v3.16b \n" + "2: \n" + // load 16 pixels into q0 + MEMACCESS(0) + "ld1 {v0.16b}, [%0], %3 \n" + "uaddw2 v3.8h, v3.8h, v0.16b \n" + "uaddw v2.8h, v2.8h, v0.8b \n" + "subs w12, w12, #1 \n" + "b.gt 2b \n" + MEMACCESS(2) + "st1 {v2.8h, v3.8h}, [%2], #32 \n" // store pixels + "add %1, %1, #16 \n" + "subs %w4, %w4, #16 \n" // 16 processed per loop + "b.gt 1b \n" + : "=&r"(src_tmp), // %0 + "+r"(src_ptr), // %1 + "+r"(dst_ptr), // %2 + "+r"(src_stride), // %3 + "+r"(src_width), // %4 + "+r"(src_height) // %5 + : + : "memory", "cc", "w12", "v0", "v1", "v2", "v3" // Clobber List + ); +} + +// TODO(Yang Zhang): Investigate less load instructions for +// the x/dx stepping +#define LOAD2_DATA8_LANE(n) \ + "lsr %5, %3, #16 \n" \ + "add %6, %1, %5 \n" \ + "add %3, %3, %4 \n" \ + MEMACCESS(6) \ + "ld2 {v4.b, v5.b}["#n"], [%6] \n" + +void ScaleFilterCols_NEON(uint8* dst_ptr, const uint8* src_ptr, + int dst_width, int x, int dx) { + int dx_offset[4] = {0, 1, 2, 3}; + int* tmp = dx_offset; + const uint8* src_tmp = src_ptr; + int64 dst_width64 = (int64) dst_width; // Work around ios 64 bit warning. + int64 x64 = (int64) x; + int64 dx64 = (int64) dx; + asm volatile ( + "dup v0.4s, %w3 \n" // x + "dup v1.4s, %w4 \n" // dx + "ld1 {v2.4s}, [%5] \n" // 0 1 2 3 + "shl v3.4s, v1.4s, #2 \n" // 4 * dx + "mul v1.4s, v1.4s, v2.4s \n" + // x , x + 1 * dx, x + 2 * dx, x + 3 * dx + "add v1.4s, v1.4s, v0.4s \n" + // x + 4 * dx, x + 5 * dx, x + 6 * dx, x + 7 * dx + "add v2.4s, v1.4s, v3.4s \n" + "shl v0.4s, v3.4s, #1 \n" // 8 * dx + "1: \n" + LOAD2_DATA8_LANE(0) + LOAD2_DATA8_LANE(1) + LOAD2_DATA8_LANE(2) + LOAD2_DATA8_LANE(3) + LOAD2_DATA8_LANE(4) + LOAD2_DATA8_LANE(5) + LOAD2_DATA8_LANE(6) + LOAD2_DATA8_LANE(7) + "mov v6.16b, v1.16b \n" + "mov v7.16b, v2.16b \n" + "uzp1 v6.8h, v6.8h, v7.8h \n" + "ushll v4.8h, v4.8b, #0 \n" + "ushll v5.8h, v5.8b, #0 \n" + "ssubl v16.4s, v5.4h, v4.4h \n" + "ssubl2 v17.4s, v5.8h, v4.8h \n" + "ushll v7.4s, v6.4h, #0 \n" + "ushll2 v6.4s, v6.8h, #0 \n" + "mul v16.4s, v16.4s, v7.4s \n" + "mul v17.4s, v17.4s, v6.4s \n" + "rshrn v6.4h, v16.4s, #16 \n" + "rshrn2 v6.8h, v17.4s, #16 \n" + "add v4.8h, v4.8h, v6.8h \n" + "xtn v4.8b, v4.8h \n" + + MEMACCESS(0) + "st1 {v4.8b}, [%0], #8 \n" // store pixels + "add v1.4s, v1.4s, v0.4s \n" + "add v2.4s, v2.4s, v0.4s \n" + "subs %w2, %w2, #8 \n" // 8 processed per loop + "b.gt 1b \n" + : "+r"(dst_ptr), // %0 + "+r"(src_ptr), // %1 + "+r"(dst_width64), // %2 + "+r"(x64), // %3 + "+r"(dx64), // %4 + "+r"(tmp), // %5 + "+r"(src_tmp) // %6 + : + : "memory", "cc", "v0", "v1", "v2", "v3", + "v4", "v5", "v6", "v7", "v16", "v17" + ); +} + +#undef LOAD2_DATA8_LANE + +// 16x2 -> 16x1 +void ScaleFilterRows_NEON(uint8* dst_ptr, + const uint8* src_ptr, ptrdiff_t src_stride, + int dst_width, int source_y_fraction) { + int y_fraction = 256 - source_y_fraction; + asm volatile ( + "cmp %w4, #0 \n" + "b.eq 100f \n" + "add %2, %2, %1 \n" + "cmp %w4, #64 \n" + "b.eq 75f \n" + "cmp %w4, #128 \n" + "b.eq 50f \n" + "cmp %w4, #192 \n" + "b.eq 25f \n" + + "dup v5.8b, %w4 \n" + "dup v4.8b, %w5 \n" + // General purpose row blend. + "1: \n" + MEMACCESS(1) + "ld1 {v0.16b}, [%1], #16 \n" + MEMACCESS(2) + "ld1 {v1.16b}, [%2], #16 \n" + "subs %w3, %w3, #16 \n" + "umull v6.8h, v0.8b, v4.8b \n" + "umull2 v7.8h, v0.16b, v4.16b \n" + "umlal v6.8h, v1.8b, v5.8b \n" + "umlal2 v7.8h, v1.16b, v5.16b \n" + "rshrn v0.8b, v6.8h, #8 \n" + "rshrn2 v0.16b, v7.8h, #8 \n" + MEMACCESS(0) + "st1 {v0.16b}, [%0], #16 \n" + "b.gt 1b \n" + "b 99f \n" + + // Blend 25 / 75. + "25: \n" + MEMACCESS(1) + "ld1 {v0.16b}, [%1], #16 \n" + MEMACCESS(2) + "ld1 {v1.16b}, [%2], #16 \n" + "subs %w3, %w3, #16 \n" + "urhadd v0.16b, v0.16b, v1.16b \n" + "urhadd v0.16b, v0.16b, v1.16b \n" + MEMACCESS(0) + "st1 {v0.16b}, [%0], #16 \n" + "b.gt 25b \n" + "b 99f \n" + + // Blend 50 / 50. + "50: \n" + MEMACCESS(1) + "ld1 {v0.16b}, [%1], #16 \n" + MEMACCESS(2) + "ld1 {v1.16b}, [%2], #16 \n" + "subs %w3, %w3, #16 \n" + "urhadd v0.16b, v0.16b, v1.16b \n" + MEMACCESS(0) + "st1 {v0.16b}, [%0], #16 \n" + "b.gt 50b \n" + "b 99f \n" + + // Blend 75 / 25. + "75: \n" + MEMACCESS(1) + "ld1 {v1.16b}, [%1], #16 \n" + MEMACCESS(2) + "ld1 {v0.16b}, [%2], #16 \n" + "subs %w3, %w3, #16 \n" + "urhadd v0.16b, v0.16b, v1.16b \n" + "urhadd v0.16b, v0.16b, v1.16b \n" + MEMACCESS(0) + "st1 {v0.16b}, [%0], #16 \n" + "b.gt 75b \n" + "b 99f \n" + + // Blend 100 / 0 - Copy row unchanged. + "100: \n" + MEMACCESS(1) + "ld1 {v0.16b}, [%1], #16 \n" + "subs %w3, %w3, #16 \n" + MEMACCESS(0) + "st1 {v0.16b}, [%0], #16 \n" + "b.gt 100b \n" + + "99: \n" + MEMACCESS(0) + "st1 {v0.b}[15], [%0] \n" + : "+r"(dst_ptr), // %0 + "+r"(src_ptr), // %1 + "+r"(src_stride), // %2 + "+r"(dst_width), // %3 + "+r"(source_y_fraction),// %4 + "+r"(y_fraction) // %5 + : + : "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", "memory", "cc" + ); +} + +void ScaleARGBRowDown2_NEON(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst, int dst_width) { + asm volatile ( + "1: \n" + // load even pixels into q0, odd into q1 + MEMACCESS (0) + "ld2 {v0.4s, v1.4s}, [%0], #32 \n" + MEMACCESS (0) + "ld2 {v2.4s, v3.4s}, [%0], #32 \n" + "subs %w2, %w2, #8 \n" // 8 processed per loop + MEMACCESS (1) + "st1 {v1.16b}, [%1], #16 \n" // store odd pixels + MEMACCESS (1) + "st1 {v3.16b}, [%1], #16 \n" + "b.gt 1b \n" + : "+r" (src_ptr), // %0 + "+r" (dst), // %1 + "+r" (dst_width) // %2 + : + : "memory", "cc", "v0", "v1", "v2", "v3" // Clobber List + ); +} + +void ScaleARGBRowDown2Linear_NEON(const uint8* src_argb, ptrdiff_t src_stride, + uint8* dst_argb, int dst_width) { + asm volatile ( + "1: \n" + MEMACCESS (0) + // load 8 ARGB pixels. + "ld4 {v0.16b,v1.16b,v2.16b,v3.16b}, [%0], #64 \n" + "subs %w2, %w2, #8 \n" // 8 processed per loop. + "uaddlp v0.8h, v0.16b \n" // B 16 bytes -> 8 shorts. + "uaddlp v1.8h, v1.16b \n" // G 16 bytes -> 8 shorts. + "uaddlp v2.8h, v2.16b \n" // R 16 bytes -> 8 shorts. + "uaddlp v3.8h, v3.16b \n" // A 16 bytes -> 8 shorts. + "rshrn v0.8b, v0.8h, #1 \n" // downshift, round and pack + "rshrn v1.8b, v1.8h, #1 \n" + "rshrn v2.8b, v2.8h, #1 \n" + "rshrn v3.8b, v3.8h, #1 \n" + MEMACCESS (1) + "st4 {v0.8b,v1.8b,v2.8b,v3.8b}, [%1], #32 \n" + "b.gt 1b \n" + : "+r"(src_argb), // %0 + "+r"(dst_argb), // %1 + "+r"(dst_width) // %2 + : + : "memory", "cc", "v0", "v1", "v2", "v3" // Clobber List + ); +} + +void ScaleARGBRowDown2Box_NEON(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst, int dst_width) { + asm volatile ( + // change the stride to row 2 pointer + "add %1, %1, %0 \n" + "1: \n" + MEMACCESS (0) + "ld4 {v0.16b,v1.16b,v2.16b,v3.16b}, [%0], #64 \n" // load 8 ARGB pixels. + "subs %w3, %w3, #8 \n" // 8 processed per loop. + "uaddlp v0.8h, v0.16b \n" // B 16 bytes -> 8 shorts. + "uaddlp v1.8h, v1.16b \n" // G 16 bytes -> 8 shorts. + "uaddlp v2.8h, v2.16b \n" // R 16 bytes -> 8 shorts. + "uaddlp v3.8h, v3.16b \n" // A 16 bytes -> 8 shorts. + MEMACCESS (1) + "ld4 {v16.16b,v17.16b,v18.16b,v19.16b}, [%1], #64 \n" // load 8 more ARGB pixels. + "uadalp v0.8h, v16.16b \n" // B 16 bytes -> 8 shorts. + "uadalp v1.8h, v17.16b \n" // G 16 bytes -> 8 shorts. + "uadalp v2.8h, v18.16b \n" // R 16 bytes -> 8 shorts. + "uadalp v3.8h, v19.16b \n" // A 16 bytes -> 8 shorts. + "rshrn v0.8b, v0.8h, #2 \n" // downshift, round and pack + "rshrn v1.8b, v1.8h, #2 \n" + "rshrn v2.8b, v2.8h, #2 \n" + "rshrn v3.8b, v3.8h, #2 \n" + MEMACCESS (2) + "st4 {v0.8b,v1.8b,v2.8b,v3.8b}, [%2], #32 \n" + "b.gt 1b \n" + : "+r" (src_ptr), // %0 + "+r" (src_stride), // %1 + "+r" (dst), // %2 + "+r" (dst_width) // %3 + : + : "memory", "cc", "v0", "v1", "v2", "v3", "v16", "v17", "v18", "v19" + ); +} + +// Reads 4 pixels at a time. +// Alignment requirement: src_argb 4 byte aligned. +void ScaleARGBRowDownEven_NEON(const uint8* src_argb, ptrdiff_t src_stride, + int src_stepx, uint8* dst_argb, int dst_width) { + asm volatile ( + "1: \n" + MEMACCESS(0) + "ld1 {v0.s}[0], [%0], %3 \n" + MEMACCESS(0) + "ld1 {v0.s}[1], [%0], %3 \n" + MEMACCESS(0) + "ld1 {v0.s}[2], [%0], %3 \n" + MEMACCESS(0) + "ld1 {v0.s}[3], [%0], %3 \n" + "subs %w2, %w2, #4 \n" // 4 pixels per loop. + MEMACCESS(1) + "st1 {v0.16b}, [%1], #16 \n" + "b.gt 1b \n" + : "+r"(src_argb), // %0 + "+r"(dst_argb), // %1 + "+r"(dst_width) // %2 + : "r"((int64)(src_stepx * 4)) // %3 + : "memory", "cc", "v0" + ); +} + +// Reads 4 pixels at a time. +// Alignment requirement: src_argb 4 byte aligned. +// TODO(Yang Zhang): Might be worth another optimization pass in future. +// It could be upgraded to 8 pixels at a time to start with. +void ScaleARGBRowDownEvenBox_NEON(const uint8* src_argb, ptrdiff_t src_stride, + int src_stepx, + uint8* dst_argb, int dst_width) { + asm volatile ( + "add %1, %1, %0 \n" + "1: \n" + MEMACCESS(0) + "ld1 {v0.8b}, [%0], %4 \n" // Read 4 2x2 blocks -> 2x1 + MEMACCESS(1) + "ld1 {v1.8b}, [%1], %4 \n" + MEMACCESS(0) + "ld1 {v2.8b}, [%0], %4 \n" + MEMACCESS(1) + "ld1 {v3.8b}, [%1], %4 \n" + MEMACCESS(0) + "ld1 {v4.8b}, [%0], %4 \n" + MEMACCESS(1) + "ld1 {v5.8b}, [%1], %4 \n" + MEMACCESS(0) + "ld1 {v6.8b}, [%0], %4 \n" + MEMACCESS(1) + "ld1 {v7.8b}, [%1], %4 \n" + "uaddl v0.8h, v0.8b, v1.8b \n" + "uaddl v2.8h, v2.8b, v3.8b \n" + "uaddl v4.8h, v4.8b, v5.8b \n" + "uaddl v6.8h, v6.8b, v7.8b \n" + "mov v16.d[1], v0.d[1] \n" // ab_cd -> ac_bd + "mov v0.d[1], v2.d[0] \n" + "mov v2.d[0], v16.d[1] \n" + "mov v16.d[1], v4.d[1] \n" // ef_gh -> eg_fh + "mov v4.d[1], v6.d[0] \n" + "mov v6.d[0], v16.d[1] \n" + "add v0.8h, v0.8h, v2.8h \n" // (a+b)_(c+d) + "add v4.8h, v4.8h, v6.8h \n" // (e+f)_(g+h) + "rshrn v0.8b, v0.8h, #2 \n" // first 2 pixels. + "rshrn2 v0.16b, v4.8h, #2 \n" // next 2 pixels. + "subs %w3, %w3, #4 \n" // 4 pixels per loop. + MEMACCESS(2) + "st1 {v0.16b}, [%2], #16 \n" + "b.gt 1b \n" + : "+r"(src_argb), // %0 + "+r"(src_stride), // %1 + "+r"(dst_argb), // %2 + "+r"(dst_width) // %3 + : "r"((int64)(src_stepx * 4)) // %4 + : "memory", "cc", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", "v16" + ); +} + +// TODO(Yang Zhang): Investigate less load instructions for +// the x/dx stepping +#define LOAD1_DATA32_LANE(vn, n) \ + "lsr %5, %3, #16 \n" \ + "add %6, %1, %5, lsl #2 \n" \ + "add %3, %3, %4 \n" \ + MEMACCESS(6) \ + "ld1 {"#vn".s}["#n"], [%6] \n" + +void ScaleARGBCols_NEON(uint8* dst_argb, const uint8* src_argb, + int dst_width, int x, int dx) { + const uint8* src_tmp = src_argb; + int64 dst_width64 = (int64) dst_width; // Work around ios 64 bit warning. + int64 x64 = (int64) x; + int64 dx64 = (int64) dx; + int64 tmp64; + asm volatile ( + "1: \n" + LOAD1_DATA32_LANE(v0, 0) + LOAD1_DATA32_LANE(v0, 1) + LOAD1_DATA32_LANE(v0, 2) + LOAD1_DATA32_LANE(v0, 3) + LOAD1_DATA32_LANE(v1, 0) + LOAD1_DATA32_LANE(v1, 1) + LOAD1_DATA32_LANE(v1, 2) + LOAD1_DATA32_LANE(v1, 3) + + MEMACCESS(0) + "st1 {v0.4s, v1.4s}, [%0], #32 \n" // store pixels + "subs %w2, %w2, #8 \n" // 8 processed per loop + "b.gt 1b \n" + : "+r"(dst_argb), // %0 + "+r"(src_argb), // %1 + "+r"(dst_width64), // %2 + "+r"(x64), // %3 + "+r"(dx64), // %4 + "=&r"(tmp64), // %5 + "+r"(src_tmp) // %6 + : + : "memory", "cc", "v0", "v1" + ); +} + +#undef LOAD1_DATA32_LANE + +// TODO(Yang Zhang): Investigate less load instructions for +// the x/dx stepping +#define LOAD2_DATA32_LANE(vn1, vn2, n) \ + "lsr %5, %3, #16 \n" \ + "add %6, %1, %5, lsl #2 \n" \ + "add %3, %3, %4 \n" \ + MEMACCESS(6) \ + "ld2 {"#vn1".s, "#vn2".s}["#n"], [%6] \n" + +void ScaleARGBFilterCols_NEON(uint8* dst_argb, const uint8* src_argb, + int dst_width, int x, int dx) { + int dx_offset[4] = {0, 1, 2, 3}; + int* tmp = dx_offset; + const uint8* src_tmp = src_argb; + int64 dst_width64 = (int64) dst_width; // Work around ios 64 bit warning. + int64 x64 = (int64) x; + int64 dx64 = (int64) dx; + asm volatile ( + "dup v0.4s, %w3 \n" // x + "dup v1.4s, %w4 \n" // dx + "ld1 {v2.4s}, [%5] \n" // 0 1 2 3 + "shl v6.4s, v1.4s, #2 \n" // 4 * dx + "mul v1.4s, v1.4s, v2.4s \n" + "movi v3.16b, #0x7f \n" // 0x7F + "movi v4.8h, #0x7f \n" // 0x7F + // x , x + 1 * dx, x + 2 * dx, x + 3 * dx + "add v5.4s, v1.4s, v0.4s \n" + "1: \n" + // d0, d1: a + // d2, d3: b + LOAD2_DATA32_LANE(v0, v1, 0) + LOAD2_DATA32_LANE(v0, v1, 1) + LOAD2_DATA32_LANE(v0, v1, 2) + LOAD2_DATA32_LANE(v0, v1, 3) + "shrn v2.4h, v5.4s, #9 \n" + "and v2.8b, v2.8b, v4.8b \n" + "dup v16.8b, v2.b[0] \n" + "dup v17.8b, v2.b[2] \n" + "dup v18.8b, v2.b[4] \n" + "dup v19.8b, v2.b[6] \n" + "ext v2.8b, v16.8b, v17.8b, #4 \n" + "ext v17.8b, v18.8b, v19.8b, #4 \n" + "ins v2.d[1], v17.d[0] \n" // f + "eor v7.16b, v2.16b, v3.16b \n" // 0x7f ^ f + "umull v16.8h, v0.8b, v7.8b \n" + "umull2 v17.8h, v0.16b, v7.16b \n" + "umull v18.8h, v1.8b, v2.8b \n" + "umull2 v19.8h, v1.16b, v2.16b \n" + "add v16.8h, v16.8h, v18.8h \n" + "add v17.8h, v17.8h, v19.8h \n" + "shrn v0.8b, v16.8h, #7 \n" + "shrn2 v0.16b, v17.8h, #7 \n" + + MEMACCESS(0) + "st1 {v0.4s}, [%0], #16 \n" // store pixels + "add v5.4s, v5.4s, v6.4s \n" + "subs %w2, %w2, #4 \n" // 4 processed per loop + "b.gt 1b \n" + : "+r"(dst_argb), // %0 + "+r"(src_argb), // %1 + "+r"(dst_width64), // %2 + "+r"(x64), // %3 + "+r"(dx64), // %4 + "+r"(tmp), // %5 + "+r"(src_tmp) // %6 + : + : "memory", "cc", "v0", "v1", "v2", "v3", "v4", "v5", + "v6", "v7", "v16", "v17", "v18", "v19" + ); +} + +#undef LOAD2_DATA32_LANE + +#endif // !defined(LIBYUV_DISABLE_NEON) && defined(__aarch64__) + +#ifdef __cplusplus +} // extern "C" +} // namespace libyuv +#endif diff --git a/third_party/libyuv/source/scale_win.cc b/third_party/libyuv/source/scale_win.cc new file mode 100644 index 0000000..f170973 --- /dev/null +++ b/third_party/libyuv/source/scale_win.cc @@ -0,0 +1,1374 @@ +/* + * Copyright 2013 The LibYuv Project Authors. All rights reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "libyuv/row.h" +#include "libyuv/scale_row.h" + +#ifdef __cplusplus +namespace libyuv { +extern "C" { +#endif + +// This module is for 32 bit Visual C x86 and clangcl +#if !defined(LIBYUV_DISABLE_X86) && defined(_M_IX86) + +// Offsets for source bytes 0 to 9 +static uvec8 kShuf0 = + { 0, 1, 3, 4, 5, 7, 8, 9, 128, 128, 128, 128, 128, 128, 128, 128 }; + +// Offsets for source bytes 11 to 20 with 8 subtracted = 3 to 12. +static uvec8 kShuf1 = + { 3, 4, 5, 7, 8, 9, 11, 12, 128, 128, 128, 128, 128, 128, 128, 128 }; + +// Offsets for source bytes 21 to 31 with 16 subtracted = 5 to 31. +static uvec8 kShuf2 = + { 5, 7, 8, 9, 11, 12, 13, 15, 128, 128, 128, 128, 128, 128, 128, 128 }; + +// Offsets for source bytes 0 to 10 +static uvec8 kShuf01 = + { 0, 1, 1, 2, 2, 3, 4, 5, 5, 6, 6, 7, 8, 9, 9, 10 }; + +// Offsets for source bytes 10 to 21 with 8 subtracted = 3 to 13. +static uvec8 kShuf11 = + { 2, 3, 4, 5, 5, 6, 6, 7, 8, 9, 9, 10, 10, 11, 12, 13 }; + +// Offsets for source bytes 21 to 31 with 16 subtracted = 5 to 31. +static uvec8 kShuf21 = + { 5, 6, 6, 7, 8, 9, 9, 10, 10, 11, 12, 13, 13, 14, 14, 15 }; + +// Coefficients for source bytes 0 to 10 +static uvec8 kMadd01 = + { 3, 1, 2, 2, 1, 3, 3, 1, 2, 2, 1, 3, 3, 1, 2, 2 }; + +// Coefficients for source bytes 10 to 21 +static uvec8 kMadd11 = + { 1, 3, 3, 1, 2, 2, 1, 3, 3, 1, 2, 2, 1, 3, 3, 1 }; + +// Coefficients for source bytes 21 to 31 +static uvec8 kMadd21 = + { 2, 2, 1, 3, 3, 1, 2, 2, 1, 3, 3, 1, 2, 2, 1, 3 }; + +// Coefficients for source bytes 21 to 31 +static vec16 kRound34 = + { 2, 2, 2, 2, 2, 2, 2, 2 }; + +static uvec8 kShuf38a = + { 0, 3, 6, 8, 11, 14, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128 }; + +static uvec8 kShuf38b = + { 128, 128, 128, 128, 128, 128, 0, 3, 6, 8, 11, 14, 128, 128, 128, 128 }; + +// Arrange words 0,3,6 into 0,1,2 +static uvec8 kShufAc = + { 0, 1, 6, 7, 12, 13, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128 }; + +// Arrange words 0,3,6 into 3,4,5 +static uvec8 kShufAc3 = + { 128, 128, 128, 128, 128, 128, 0, 1, 6, 7, 12, 13, 128, 128, 128, 128 }; + +// Scaling values for boxes of 3x3 and 2x3 +static uvec16 kScaleAc33 = + { 65536 / 9, 65536 / 9, 65536 / 6, 65536 / 9, 65536 / 9, 65536 / 6, 0, 0 }; + +// Arrange first value for pixels 0,1,2,3,4,5 +static uvec8 kShufAb0 = + { 0, 128, 3, 128, 6, 128, 8, 128, 11, 128, 14, 128, 128, 128, 128, 128 }; + +// Arrange second value for pixels 0,1,2,3,4,5 +static uvec8 kShufAb1 = + { 1, 128, 4, 128, 7, 128, 9, 128, 12, 128, 15, 128, 128, 128, 128, 128 }; + +// Arrange third value for pixels 0,1,2,3,4,5 +static uvec8 kShufAb2 = + { 2, 128, 5, 128, 128, 128, 10, 128, 13, 128, 128, 128, 128, 128, 128, 128 }; + +// Scaling values for boxes of 3x2 and 2x2 +static uvec16 kScaleAb2 = + { 65536 / 3, 65536 / 3, 65536 / 2, 65536 / 3, 65536 / 3, 65536 / 2, 0, 0 }; + +// Reads 32 pixels, throws half away and writes 16 pixels. +__declspec(naked) +void ScaleRowDown2_SSSE3(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst_ptr, int dst_width) { + __asm { + mov eax, [esp + 4] // src_ptr + // src_stride ignored + mov edx, [esp + 12] // dst_ptr + mov ecx, [esp + 16] // dst_width + + wloop: + movdqu xmm0, [eax] + movdqu xmm1, [eax + 16] + lea eax, [eax + 32] + psrlw xmm0, 8 // isolate odd pixels. + psrlw xmm1, 8 + packuswb xmm0, xmm1 + movdqu [edx], xmm0 + lea edx, [edx + 16] + sub ecx, 16 + jg wloop + + ret + } +} + +// Blends 32x1 rectangle to 16x1. +__declspec(naked) +void ScaleRowDown2Linear_SSSE3(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst_ptr, int dst_width) { + __asm { + mov eax, [esp + 4] // src_ptr + // src_stride + mov edx, [esp + 12] // dst_ptr + mov ecx, [esp + 16] // dst_width + + pcmpeqb xmm4, xmm4 // constant 0x0101 + psrlw xmm4, 15 + packuswb xmm4, xmm4 + pxor xmm5, xmm5 // constant 0 + + wloop: + movdqu xmm0, [eax] + movdqu xmm1, [eax + 16] + lea eax, [eax + 32] + pmaddubsw xmm0, xmm4 // horizontal add + pmaddubsw xmm1, xmm4 + pavgw xmm0, xmm5 // (x + 1) / 2 + pavgw xmm1, xmm5 + packuswb xmm0, xmm1 + movdqu [edx], xmm0 + lea edx, [edx + 16] + sub ecx, 16 + jg wloop + + ret + } +} + +// Blends 32x2 rectangle to 16x1. +__declspec(naked) +void ScaleRowDown2Box_SSSE3(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst_ptr, int dst_width) { + __asm { + push esi + mov eax, [esp + 4 + 4] // src_ptr + mov esi, [esp + 4 + 8] // src_stride + mov edx, [esp + 4 + 12] // dst_ptr + mov ecx, [esp + 4 + 16] // dst_width + + pcmpeqb xmm4, xmm4 // constant 0x0101 + psrlw xmm4, 15 + packuswb xmm4, xmm4 + pxor xmm5, xmm5 // constant 0 + + wloop: + movdqu xmm0, [eax] + movdqu xmm1, [eax + 16] + movdqu xmm2, [eax + esi] + movdqu xmm3, [eax + esi + 16] + lea eax, [eax + 32] + pmaddubsw xmm0, xmm4 // horizontal add + pmaddubsw xmm1, xmm4 + pmaddubsw xmm2, xmm4 + pmaddubsw xmm3, xmm4 + paddw xmm0, xmm2 // vertical add + paddw xmm1, xmm3 + psrlw xmm0, 1 + psrlw xmm1, 1 + pavgw xmm0, xmm5 // (x + 1) / 2 + pavgw xmm1, xmm5 + packuswb xmm0, xmm1 + movdqu [edx], xmm0 + lea edx, [edx + 16] + sub ecx, 16 + jg wloop + + pop esi + ret + } +} + +#ifdef HAS_SCALEROWDOWN2_AVX2 +// Reads 64 pixels, throws half away and writes 32 pixels. +__declspec(naked) +void ScaleRowDown2_AVX2(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst_ptr, int dst_width) { + __asm { + mov eax, [esp + 4] // src_ptr + // src_stride ignored + mov edx, [esp + 12] // dst_ptr + mov ecx, [esp + 16] // dst_width + + wloop: + vmovdqu ymm0, [eax] + vmovdqu ymm1, [eax + 32] + lea eax, [eax + 64] + vpsrlw ymm0, ymm0, 8 // isolate odd pixels. + vpsrlw ymm1, ymm1, 8 + vpackuswb ymm0, ymm0, ymm1 + vpermq ymm0, ymm0, 0xd8 // unmutate vpackuswb + vmovdqu [edx], ymm0 + lea edx, [edx + 32] + sub ecx, 32 + jg wloop + + vzeroupper + ret + } +} + +// Blends 64x1 rectangle to 32x1. +__declspec(naked) +void ScaleRowDown2Linear_AVX2(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst_ptr, int dst_width) { + __asm { + mov eax, [esp + 4] // src_ptr + // src_stride + mov edx, [esp + 12] // dst_ptr + mov ecx, [esp + 16] // dst_width + + vpcmpeqb ymm4, ymm4, ymm4 // '1' constant, 8b + vpsrlw ymm4, ymm4, 15 + vpackuswb ymm4, ymm4, ymm4 + vpxor ymm5, ymm5, ymm5 // constant 0 + + wloop: + vmovdqu ymm0, [eax] + vmovdqu ymm1, [eax + 32] + lea eax, [eax + 64] + vpmaddubsw ymm0, ymm0, ymm4 // horizontal add + vpmaddubsw ymm1, ymm1, ymm4 + vpavgw ymm0, ymm0, ymm5 // (x + 1) / 2 + vpavgw ymm1, ymm1, ymm5 + vpackuswb ymm0, ymm0, ymm1 + vpermq ymm0, ymm0, 0xd8 // unmutate vpackuswb + vmovdqu [edx], ymm0 + lea edx, [edx + 32] + sub ecx, 32 + jg wloop + + vzeroupper + ret + } +} + +// For rounding, average = (sum + 2) / 4 +// becomes average((sum >> 1), 0) +// Blends 64x2 rectangle to 32x1. +__declspec(naked) +void ScaleRowDown2Box_AVX2(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst_ptr, int dst_width) { + __asm { + push esi + mov eax, [esp + 4 + 4] // src_ptr + mov esi, [esp + 4 + 8] // src_stride + mov edx, [esp + 4 + 12] // dst_ptr + mov ecx, [esp + 4 + 16] // dst_width + + vpcmpeqb ymm4, ymm4, ymm4 // '1' constant, 8b + vpsrlw ymm4, ymm4, 15 + vpackuswb ymm4, ymm4, ymm4 + vpxor ymm5, ymm5, ymm5 // constant 0 + + wloop: + vmovdqu ymm0, [eax] + vmovdqu ymm1, [eax + 32] + vmovdqu ymm2, [eax + esi] + vmovdqu ymm3, [eax + esi + 32] + lea eax, [eax + 64] + vpmaddubsw ymm0, ymm0, ymm4 // horizontal add + vpmaddubsw ymm1, ymm1, ymm4 + vpmaddubsw ymm2, ymm2, ymm4 + vpmaddubsw ymm3, ymm3, ymm4 + vpaddw ymm0, ymm0, ymm2 // vertical add + vpaddw ymm1, ymm1, ymm3 + vpsrlw ymm0, ymm0, 1 // (x + 2) / 4 = (x / 2 + 1) / 2 + vpsrlw ymm1, ymm1, 1 + vpavgw ymm0, ymm0, ymm5 // (x + 1) / 2 + vpavgw ymm1, ymm1, ymm5 + vpackuswb ymm0, ymm0, ymm1 + vpermq ymm0, ymm0, 0xd8 // unmutate vpackuswb + vmovdqu [edx], ymm0 + lea edx, [edx + 32] + sub ecx, 32 + jg wloop + + pop esi + vzeroupper + ret + } +} +#endif // HAS_SCALEROWDOWN2_AVX2 + +// Point samples 32 pixels to 8 pixels. +__declspec(naked) +void ScaleRowDown4_SSSE3(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst_ptr, int dst_width) { + __asm { + mov eax, [esp + 4] // src_ptr + // src_stride ignored + mov edx, [esp + 12] // dst_ptr + mov ecx, [esp + 16] // dst_width + pcmpeqb xmm5, xmm5 // generate mask 0x00ff0000 + psrld xmm5, 24 + pslld xmm5, 16 + + wloop: + movdqu xmm0, [eax] + movdqu xmm1, [eax + 16] + lea eax, [eax + 32] + pand xmm0, xmm5 + pand xmm1, xmm5 + packuswb xmm0, xmm1 + psrlw xmm0, 8 + packuswb xmm0, xmm0 + movq qword ptr [edx], xmm0 + lea edx, [edx + 8] + sub ecx, 8 + jg wloop + + ret + } +} + +// Blends 32x4 rectangle to 8x1. +__declspec(naked) +void ScaleRowDown4Box_SSSE3(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst_ptr, int dst_width) { + __asm { + push esi + push edi + mov eax, [esp + 8 + 4] // src_ptr + mov esi, [esp + 8 + 8] // src_stride + mov edx, [esp + 8 + 12] // dst_ptr + mov ecx, [esp + 8 + 16] // dst_width + lea edi, [esi + esi * 2] // src_stride * 3 + pcmpeqb xmm4, xmm4 // constant 0x0101 + psrlw xmm4, 15 + movdqa xmm5, xmm4 + packuswb xmm4, xmm4 + psllw xmm5, 3 // constant 0x0008 + + wloop: + movdqu xmm0, [eax] // average rows + movdqu xmm1, [eax + 16] + movdqu xmm2, [eax + esi] + movdqu xmm3, [eax + esi + 16] + pmaddubsw xmm0, xmm4 // horizontal add + pmaddubsw xmm1, xmm4 + pmaddubsw xmm2, xmm4 + pmaddubsw xmm3, xmm4 + paddw xmm0, xmm2 // vertical add rows 0, 1 + paddw xmm1, xmm3 + movdqu xmm2, [eax + esi * 2] + movdqu xmm3, [eax + esi * 2 + 16] + pmaddubsw xmm2, xmm4 + pmaddubsw xmm3, xmm4 + paddw xmm0, xmm2 // add row 2 + paddw xmm1, xmm3 + movdqu xmm2, [eax + edi] + movdqu xmm3, [eax + edi + 16] + lea eax, [eax + 32] + pmaddubsw xmm2, xmm4 + pmaddubsw xmm3, xmm4 + paddw xmm0, xmm2 // add row 3 + paddw xmm1, xmm3 + phaddw xmm0, xmm1 + paddw xmm0, xmm5 // + 8 for round + psrlw xmm0, 4 // /16 for average of 4 * 4 + packuswb xmm0, xmm0 + movq qword ptr [edx], xmm0 + lea edx, [edx + 8] + sub ecx, 8 + jg wloop + + pop edi + pop esi + ret + } +} + +#ifdef HAS_SCALEROWDOWN4_AVX2 +// Point samples 64 pixels to 16 pixels. +__declspec(naked) +void ScaleRowDown4_AVX2(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst_ptr, int dst_width) { + __asm { + mov eax, [esp + 4] // src_ptr + // src_stride ignored + mov edx, [esp + 12] // dst_ptr + mov ecx, [esp + 16] // dst_width + vpcmpeqb ymm5, ymm5, ymm5 // generate mask 0x00ff0000 + vpsrld ymm5, ymm5, 24 + vpslld ymm5, ymm5, 16 + + wloop: + vmovdqu ymm0, [eax] + vmovdqu ymm1, [eax + 32] + lea eax, [eax + 64] + vpand ymm0, ymm0, ymm5 + vpand ymm1, ymm1, ymm5 + vpackuswb ymm0, ymm0, ymm1 + vpermq ymm0, ymm0, 0xd8 // unmutate vpackuswb + vpsrlw ymm0, ymm0, 8 + vpackuswb ymm0, ymm0, ymm0 + vpermq ymm0, ymm0, 0xd8 // unmutate vpackuswb + vmovdqu [edx], xmm0 + lea edx, [edx + 16] + sub ecx, 16 + jg wloop + + vzeroupper + ret + } +} + +// Blends 64x4 rectangle to 16x1. +__declspec(naked) +void ScaleRowDown4Box_AVX2(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst_ptr, int dst_width) { + __asm { + push esi + push edi + mov eax, [esp + 8 + 4] // src_ptr + mov esi, [esp + 8 + 8] // src_stride + mov edx, [esp + 8 + 12] // dst_ptr + mov ecx, [esp + 8 + 16] // dst_width + lea edi, [esi + esi * 2] // src_stride * 3 + vpcmpeqb ymm4, ymm4, ymm4 // constant 0x0101 + vpsrlw ymm4, ymm4, 15 + vpsllw ymm5, ymm4, 3 // constant 0x0008 + vpackuswb ymm4, ymm4, ymm4 + + wloop: + vmovdqu ymm0, [eax] // average rows + vmovdqu ymm1, [eax + 32] + vmovdqu ymm2, [eax + esi] + vmovdqu ymm3, [eax + esi + 32] + vpmaddubsw ymm0, ymm0, ymm4 // horizontal add + vpmaddubsw ymm1, ymm1, ymm4 + vpmaddubsw ymm2, ymm2, ymm4 + vpmaddubsw ymm3, ymm3, ymm4 + vpaddw ymm0, ymm0, ymm2 // vertical add rows 0, 1 + vpaddw ymm1, ymm1, ymm3 + vmovdqu ymm2, [eax + esi * 2] + vmovdqu ymm3, [eax + esi * 2 + 32] + vpmaddubsw ymm2, ymm2, ymm4 + vpmaddubsw ymm3, ymm3, ymm4 + vpaddw ymm0, ymm0, ymm2 // add row 2 + vpaddw ymm1, ymm1, ymm3 + vmovdqu ymm2, [eax + edi] + vmovdqu ymm3, [eax + edi + 32] + lea eax, [eax + 64] + vpmaddubsw ymm2, ymm2, ymm4 + vpmaddubsw ymm3, ymm3, ymm4 + vpaddw ymm0, ymm0, ymm2 // add row 3 + vpaddw ymm1, ymm1, ymm3 + vphaddw ymm0, ymm0, ymm1 // mutates + vpermq ymm0, ymm0, 0xd8 // unmutate vphaddw + vpaddw ymm0, ymm0, ymm5 // + 8 for round + vpsrlw ymm0, ymm0, 4 // /32 for average of 4 * 4 + vpackuswb ymm0, ymm0, ymm0 + vpermq ymm0, ymm0, 0xd8 // unmutate vpackuswb + vmovdqu [edx], xmm0 + lea edx, [edx + 16] + sub ecx, 16 + jg wloop + + pop edi + pop esi + vzeroupper + ret + } +} +#endif // HAS_SCALEROWDOWN4_AVX2 + +// Point samples 32 pixels to 24 pixels. +// Produces three 8 byte values. For each 8 bytes, 16 bytes are read. +// Then shuffled to do the scaling. + +__declspec(naked) +void ScaleRowDown34_SSSE3(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst_ptr, int dst_width) { + __asm { + mov eax, [esp + 4] // src_ptr + // src_stride ignored + mov edx, [esp + 12] // dst_ptr + mov ecx, [esp + 16] // dst_width + movdqa xmm3, xmmword ptr kShuf0 + movdqa xmm4, xmmword ptr kShuf1 + movdqa xmm5, xmmword ptr kShuf2 + + wloop: + movdqu xmm0, [eax] + movdqu xmm1, [eax + 16] + lea eax, [eax + 32] + movdqa xmm2, xmm1 + palignr xmm1, xmm0, 8 + pshufb xmm0, xmm3 + pshufb xmm1, xmm4 + pshufb xmm2, xmm5 + movq qword ptr [edx], xmm0 + movq qword ptr [edx + 8], xmm1 + movq qword ptr [edx + 16], xmm2 + lea edx, [edx + 24] + sub ecx, 24 + jg wloop + + ret + } +} + +// Blends 32x2 rectangle to 24x1 +// Produces three 8 byte values. For each 8 bytes, 16 bytes are read. +// Then shuffled to do the scaling. + +// Register usage: +// xmm0 src_row 0 +// xmm1 src_row 1 +// xmm2 shuf 0 +// xmm3 shuf 1 +// xmm4 shuf 2 +// xmm5 madd 0 +// xmm6 madd 1 +// xmm7 kRound34 + +// Note that movdqa+palign may be better than movdqu. +__declspec(naked) +void ScaleRowDown34_1_Box_SSSE3(const uint8* src_ptr, + ptrdiff_t src_stride, + uint8* dst_ptr, int dst_width) { + __asm { + push esi + mov eax, [esp + 4 + 4] // src_ptr + mov esi, [esp + 4 + 8] // src_stride + mov edx, [esp + 4 + 12] // dst_ptr + mov ecx, [esp + 4 + 16] // dst_width + movdqa xmm2, xmmword ptr kShuf01 + movdqa xmm3, xmmword ptr kShuf11 + movdqa xmm4, xmmword ptr kShuf21 + movdqa xmm5, xmmword ptr kMadd01 + movdqa xmm6, xmmword ptr kMadd11 + movdqa xmm7, xmmword ptr kRound34 + + wloop: + movdqu xmm0, [eax] // pixels 0..7 + movdqu xmm1, [eax + esi] + pavgb xmm0, xmm1 + pshufb xmm0, xmm2 + pmaddubsw xmm0, xmm5 + paddsw xmm0, xmm7 + psrlw xmm0, 2 + packuswb xmm0, xmm0 + movq qword ptr [edx], xmm0 + movdqu xmm0, [eax + 8] // pixels 8..15 + movdqu xmm1, [eax + esi + 8] + pavgb xmm0, xmm1 + pshufb xmm0, xmm3 + pmaddubsw xmm0, xmm6 + paddsw xmm0, xmm7 + psrlw xmm0, 2 + packuswb xmm0, xmm0 + movq qword ptr [edx + 8], xmm0 + movdqu xmm0, [eax + 16] // pixels 16..23 + movdqu xmm1, [eax + esi + 16] + lea eax, [eax + 32] + pavgb xmm0, xmm1 + pshufb xmm0, xmm4 + movdqa xmm1, xmmword ptr kMadd21 + pmaddubsw xmm0, xmm1 + paddsw xmm0, xmm7 + psrlw xmm0, 2 + packuswb xmm0, xmm0 + movq qword ptr [edx + 16], xmm0 + lea edx, [edx + 24] + sub ecx, 24 + jg wloop + + pop esi + ret + } +} + +// Note that movdqa+palign may be better than movdqu. +__declspec(naked) +void ScaleRowDown34_0_Box_SSSE3(const uint8* src_ptr, + ptrdiff_t src_stride, + uint8* dst_ptr, int dst_width) { + __asm { + push esi + mov eax, [esp + 4 + 4] // src_ptr + mov esi, [esp + 4 + 8] // src_stride + mov edx, [esp + 4 + 12] // dst_ptr + mov ecx, [esp + 4 + 16] // dst_width + movdqa xmm2, xmmword ptr kShuf01 + movdqa xmm3, xmmword ptr kShuf11 + movdqa xmm4, xmmword ptr kShuf21 + movdqa xmm5, xmmword ptr kMadd01 + movdqa xmm6, xmmword ptr kMadd11 + movdqa xmm7, xmmword ptr kRound34 + + wloop: + movdqu xmm0, [eax] // pixels 0..7 + movdqu xmm1, [eax + esi] + pavgb xmm1, xmm0 + pavgb xmm0, xmm1 + pshufb xmm0, xmm2 + pmaddubsw xmm0, xmm5 + paddsw xmm0, xmm7 + psrlw xmm0, 2 + packuswb xmm0, xmm0 + movq qword ptr [edx], xmm0 + movdqu xmm0, [eax + 8] // pixels 8..15 + movdqu xmm1, [eax + esi + 8] + pavgb xmm1, xmm0 + pavgb xmm0, xmm1 + pshufb xmm0, xmm3 + pmaddubsw xmm0, xmm6 + paddsw xmm0, xmm7 + psrlw xmm0, 2 + packuswb xmm0, xmm0 + movq qword ptr [edx + 8], xmm0 + movdqu xmm0, [eax + 16] // pixels 16..23 + movdqu xmm1, [eax + esi + 16] + lea eax, [eax + 32] + pavgb xmm1, xmm0 + pavgb xmm0, xmm1 + pshufb xmm0, xmm4 + movdqa xmm1, xmmword ptr kMadd21 + pmaddubsw xmm0, xmm1 + paddsw xmm0, xmm7 + psrlw xmm0, 2 + packuswb xmm0, xmm0 + movq qword ptr [edx + 16], xmm0 + lea edx, [edx+24] + sub ecx, 24 + jg wloop + + pop esi + ret + } +} + +// 3/8 point sampler + +// Scale 32 pixels to 12 +__declspec(naked) +void ScaleRowDown38_SSSE3(const uint8* src_ptr, ptrdiff_t src_stride, + uint8* dst_ptr, int dst_width) { + __asm { + mov eax, [esp + 4] // src_ptr + // src_stride ignored + mov edx, [esp + 12] // dst_ptr + mov ecx, [esp + 16] // dst_width + movdqa xmm4, xmmword ptr kShuf38a + movdqa xmm5, xmmword ptr kShuf38b + + xloop: + movdqu xmm0, [eax] // 16 pixels -> 0,1,2,3,4,5 + movdqu xmm1, [eax + 16] // 16 pixels -> 6,7,8,9,10,11 + lea eax, [eax + 32] + pshufb xmm0, xmm4 + pshufb xmm1, xmm5 + paddusb xmm0, xmm1 + + movq qword ptr [edx], xmm0 // write 12 pixels + movhlps xmm1, xmm0 + movd [edx + 8], xmm1 + lea edx, [edx + 12] + sub ecx, 12 + jg xloop + + ret + } +} + +// Scale 16x3 pixels to 6x1 with interpolation +__declspec(naked) +void ScaleRowDown38_3_Box_SSSE3(const uint8* src_ptr, + ptrdiff_t src_stride, + uint8* dst_ptr, int dst_width) { + __asm { + push esi + mov eax, [esp + 4 + 4] // src_ptr + mov esi, [esp + 4 + 8] // src_stride + mov edx, [esp + 4 + 12] // dst_ptr + mov ecx, [esp + 4 + 16] // dst_width + movdqa xmm2, xmmword ptr kShufAc + movdqa xmm3, xmmword ptr kShufAc3 + movdqa xmm4, xmmword ptr kScaleAc33 + pxor xmm5, xmm5 + + xloop: + movdqu xmm0, [eax] // sum up 3 rows into xmm0/1 + movdqu xmm6, [eax + esi] + movhlps xmm1, xmm0 + movhlps xmm7, xmm6 + punpcklbw xmm0, xmm5 + punpcklbw xmm1, xmm5 + punpcklbw xmm6, xmm5 + punpcklbw xmm7, xmm5 + paddusw xmm0, xmm6 + paddusw xmm1, xmm7 + movdqu xmm6, [eax + esi * 2] + lea eax, [eax + 16] + movhlps xmm7, xmm6 + punpcklbw xmm6, xmm5 + punpcklbw xmm7, xmm5 + paddusw xmm0, xmm6 + paddusw xmm1, xmm7 + + movdqa xmm6, xmm0 // 8 pixels -> 0,1,2 of xmm6 + psrldq xmm0, 2 + paddusw xmm6, xmm0 + psrldq xmm0, 2 + paddusw xmm6, xmm0 + pshufb xmm6, xmm2 + + movdqa xmm7, xmm1 // 8 pixels -> 3,4,5 of xmm6 + psrldq xmm1, 2 + paddusw xmm7, xmm1 + psrldq xmm1, 2 + paddusw xmm7, xmm1 + pshufb xmm7, xmm3 + paddusw xmm6, xmm7 + + pmulhuw xmm6, xmm4 // divide by 9,9,6, 9,9,6 + packuswb xmm6, xmm6 + + movd [edx], xmm6 // write 6 pixels + psrlq xmm6, 16 + movd [edx + 2], xmm6 + lea edx, [edx + 6] + sub ecx, 6 + jg xloop + + pop esi + ret + } +} + +// Scale 16x2 pixels to 6x1 with interpolation +__declspec(naked) +void ScaleRowDown38_2_Box_SSSE3(const uint8* src_ptr, + ptrdiff_t src_stride, + uint8* dst_ptr, int dst_width) { + __asm { + push esi + mov eax, [esp + 4 + 4] // src_ptr + mov esi, [esp + 4 + 8] // src_stride + mov edx, [esp + 4 + 12] // dst_ptr + mov ecx, [esp + 4 + 16] // dst_width + movdqa xmm2, xmmword ptr kShufAb0 + movdqa xmm3, xmmword ptr kShufAb1 + movdqa xmm4, xmmword ptr kShufAb2 + movdqa xmm5, xmmword ptr kScaleAb2 + + xloop: + movdqu xmm0, [eax] // average 2 rows into xmm0 + movdqu xmm1, [eax + esi] + lea eax, [eax + 16] + pavgb xmm0, xmm1 + + movdqa xmm1, xmm0 // 16 pixels -> 0,1,2,3,4,5 of xmm1 + pshufb xmm1, xmm2 + movdqa xmm6, xmm0 + pshufb xmm6, xmm3 + paddusw xmm1, xmm6 + pshufb xmm0, xmm4 + paddusw xmm1, xmm0 + + pmulhuw xmm1, xmm5 // divide by 3,3,2, 3,3,2 + packuswb xmm1, xmm1 + + movd [edx], xmm1 // write 6 pixels + psrlq xmm1, 16 + movd [edx + 2], xmm1 + lea edx, [edx + 6] + sub ecx, 6 + jg xloop + + pop esi + ret + } +} + +// Reads 16 bytes and accumulates to 16 shorts at a time. +__declspec(naked) +void ScaleAddRow_SSE2(const uint8* src_ptr, uint16* dst_ptr, int src_width) { + __asm { + mov eax, [esp + 4] // src_ptr + mov edx, [esp + 8] // dst_ptr + mov ecx, [esp + 12] // src_width + pxor xmm5, xmm5 + + // sum rows + xloop: + movdqu xmm3, [eax] // read 16 bytes + lea eax, [eax + 16] + movdqu xmm0, [edx] // read 16 words from destination + movdqu xmm1, [edx + 16] + movdqa xmm2, xmm3 + punpcklbw xmm2, xmm5 + punpckhbw xmm3, xmm5 + paddusw xmm0, xmm2 // sum 16 words + paddusw xmm1, xmm3 + movdqu [edx], xmm0 // write 16 words to destination + movdqu [edx + 16], xmm1 + lea edx, [edx + 32] + sub ecx, 16 + jg xloop + ret + } +} + +#ifdef HAS_SCALEADDROW_AVX2 +// Reads 32 bytes and accumulates to 32 shorts at a time. +__declspec(naked) +void ScaleAddRow_AVX2(const uint8* src_ptr, uint16* dst_ptr, int src_width) { + __asm { + mov eax, [esp + 4] // src_ptr + mov edx, [esp + 8] // dst_ptr + mov ecx, [esp + 12] // src_width + vpxor ymm5, ymm5, ymm5 + + // sum rows + xloop: + vmovdqu ymm3, [eax] // read 32 bytes + lea eax, [eax + 32] + vpermq ymm3, ymm3, 0xd8 // unmutate for vpunpck + vpunpcklbw ymm2, ymm3, ymm5 + vpunpckhbw ymm3, ymm3, ymm5 + vpaddusw ymm0, ymm2, [edx] // sum 16 words + vpaddusw ymm1, ymm3, [edx + 32] + vmovdqu [edx], ymm0 // write 32 words to destination + vmovdqu [edx + 32], ymm1 + lea edx, [edx + 64] + sub ecx, 32 + jg xloop + + vzeroupper + ret + } +} +#endif // HAS_SCALEADDROW_AVX2 + +// Constant for making pixels signed to avoid pmaddubsw +// saturation. +static uvec8 kFsub80 = + { 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, + 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80 }; + +// Constant for making pixels unsigned and adding .5 for rounding. +static uvec16 kFadd40 = + { 0x4040, 0x4040, 0x4040, 0x4040, 0x4040, 0x4040, 0x4040, 0x4040 }; + +// Bilinear column filtering. SSSE3 version. +__declspec(naked) +void ScaleFilterCols_SSSE3(uint8* dst_ptr, const uint8* src_ptr, + int dst_width, int x, int dx) { + __asm { + push ebx + push esi + push edi + mov edi, [esp + 12 + 4] // dst_ptr + mov esi, [esp + 12 + 8] // src_ptr + mov ecx, [esp + 12 + 12] // dst_width + movd xmm2, [esp + 12 + 16] // x + movd xmm3, [esp + 12 + 20] // dx + mov eax, 0x04040000 // shuffle to line up fractions with pixel. + movd xmm5, eax + pcmpeqb xmm6, xmm6 // generate 0x007f for inverting fraction. + psrlw xmm6, 9 + pcmpeqb xmm7, xmm7 // generate 0x0001 + psrlw xmm7, 15 + pextrw eax, xmm2, 1 // get x0 integer. preroll + sub ecx, 2 + jl xloop29 + + movdqa xmm0, xmm2 // x1 = x0 + dx + paddd xmm0, xmm3 + punpckldq xmm2, xmm0 // x0 x1 + punpckldq xmm3, xmm3 // dx dx + paddd xmm3, xmm3 // dx * 2, dx * 2 + pextrw edx, xmm2, 3 // get x1 integer. preroll + + // 2 Pixel loop. + xloop2: + movdqa xmm1, xmm2 // x0, x1 fractions. + paddd xmm2, xmm3 // x += dx + movzx ebx, word ptr [esi + eax] // 2 source x0 pixels + movd xmm0, ebx + psrlw xmm1, 9 // 7 bit fractions. + movzx ebx, word ptr [esi + edx] // 2 source x1 pixels + movd xmm4, ebx + pshufb xmm1, xmm5 // 0011 + punpcklwd xmm0, xmm4 + psubb xmm0, xmmword ptr kFsub80 // make pixels signed. + pxor xmm1, xmm6 // 0..7f and 7f..0 + paddusb xmm1, xmm7 // +1 so 0..7f and 80..1 + pmaddubsw xmm1, xmm0 // 16 bit, 2 pixels. + pextrw eax, xmm2, 1 // get x0 integer. next iteration. + pextrw edx, xmm2, 3 // get x1 integer. next iteration. + paddw xmm1, xmmword ptr kFadd40 // make pixels unsigned and round. + psrlw xmm1, 7 // 8.7 fixed point to low 8 bits. + packuswb xmm1, xmm1 // 8 bits, 2 pixels. + movd ebx, xmm1 + mov [edi], bx + lea edi, [edi + 2] + sub ecx, 2 // 2 pixels + jge xloop2 + + xloop29: + add ecx, 2 - 1 + jl xloop99 + + // 1 pixel remainder + movzx ebx, word ptr [esi + eax] // 2 source x0 pixels + movd xmm0, ebx + psrlw xmm2, 9 // 7 bit fractions. + pshufb xmm2, xmm5 // 0011 + psubb xmm0, xmmword ptr kFsub80 // make pixels signed. + pxor xmm2, xmm6 // 0..7f and 7f..0 + paddusb xmm2, xmm7 // +1 so 0..7f and 80..1 + pmaddubsw xmm2, xmm0 // 16 bit + paddw xmm2, xmmword ptr kFadd40 // make pixels unsigned and round. + psrlw xmm2, 7 // 8.7 fixed point to low 8 bits. + packuswb xmm2, xmm2 // 8 bits + movd ebx, xmm2 + mov [edi], bl + + xloop99: + + pop edi + pop esi + pop ebx + ret + } +} + +// Reads 16 pixels, duplicates them and writes 32 pixels. +__declspec(naked) +void ScaleColsUp2_SSE2(uint8* dst_ptr, const uint8* src_ptr, + int dst_width, int x, int dx) { + __asm { + mov edx, [esp + 4] // dst_ptr + mov eax, [esp + 8] // src_ptr + mov ecx, [esp + 12] // dst_width + + wloop: + movdqu xmm0, [eax] + lea eax, [eax + 16] + movdqa xmm1, xmm0 + punpcklbw xmm0, xmm0 + punpckhbw xmm1, xmm1 + movdqu [edx], xmm0 + movdqu [edx + 16], xmm1 + lea edx, [edx + 32] + sub ecx, 32 + jg wloop + + ret + } +} + +// Reads 8 pixels, throws half away and writes 4 even pixels (0, 2, 4, 6) +__declspec(naked) +void ScaleARGBRowDown2_SSE2(const uint8* src_argb, + ptrdiff_t src_stride, + uint8* dst_argb, int dst_width) { + __asm { + mov eax, [esp + 4] // src_argb + // src_stride ignored + mov edx, [esp + 12] // dst_argb + mov ecx, [esp + 16] // dst_width + + wloop: + movdqu xmm0, [eax] + movdqu xmm1, [eax + 16] + lea eax, [eax + 32] + shufps xmm0, xmm1, 0xdd + movdqu [edx], xmm0 + lea edx, [edx + 16] + sub ecx, 4 + jg wloop + + ret + } +} + +// Blends 8x1 rectangle to 4x1. +__declspec(naked) +void ScaleARGBRowDown2Linear_SSE2(const uint8* src_argb, + ptrdiff_t src_stride, + uint8* dst_argb, int dst_width) { + __asm { + mov eax, [esp + 4] // src_argb + // src_stride ignored + mov edx, [esp + 12] // dst_argb + mov ecx, [esp + 16] // dst_width + + wloop: + movdqu xmm0, [eax] + movdqu xmm1, [eax + 16] + lea eax, [eax + 32] + movdqa xmm2, xmm0 + shufps xmm0, xmm1, 0x88 // even pixels + shufps xmm2, xmm1, 0xdd // odd pixels + pavgb xmm0, xmm2 + movdqu [edx], xmm0 + lea edx, [edx + 16] + sub ecx, 4 + jg wloop + + ret + } +} + +// Blends 8x2 rectangle to 4x1. +__declspec(naked) +void ScaleARGBRowDown2Box_SSE2(const uint8* src_argb, + ptrdiff_t src_stride, + uint8* dst_argb, int dst_width) { + __asm { + push esi + mov eax, [esp + 4 + 4] // src_argb + mov esi, [esp + 4 + 8] // src_stride + mov edx, [esp + 4 + 12] // dst_argb + mov ecx, [esp + 4 + 16] // dst_width + + wloop: + movdqu xmm0, [eax] + movdqu xmm1, [eax + 16] + movdqu xmm2, [eax + esi] + movdqu xmm3, [eax + esi + 16] + lea eax, [eax + 32] + pavgb xmm0, xmm2 // average rows + pavgb xmm1, xmm3 + movdqa xmm2, xmm0 // average columns (8 to 4 pixels) + shufps xmm0, xmm1, 0x88 // even pixels + shufps xmm2, xmm1, 0xdd // odd pixels + pavgb xmm0, xmm2 + movdqu [edx], xmm0 + lea edx, [edx + 16] + sub ecx, 4 + jg wloop + + pop esi + ret + } +} + +// Reads 4 pixels at a time. +__declspec(naked) +void ScaleARGBRowDownEven_SSE2(const uint8* src_argb, ptrdiff_t src_stride, + int src_stepx, + uint8* dst_argb, int dst_width) { + __asm { + push ebx + push edi + mov eax, [esp + 8 + 4] // src_argb + // src_stride ignored + mov ebx, [esp + 8 + 12] // src_stepx + mov edx, [esp + 8 + 16] // dst_argb + mov ecx, [esp + 8 + 20] // dst_width + lea ebx, [ebx * 4] + lea edi, [ebx + ebx * 2] + + wloop: + movd xmm0, [eax] + movd xmm1, [eax + ebx] + punpckldq xmm0, xmm1 + movd xmm2, [eax + ebx * 2] + movd xmm3, [eax + edi] + lea eax, [eax + ebx * 4] + punpckldq xmm2, xmm3 + punpcklqdq xmm0, xmm2 + movdqu [edx], xmm0 + lea edx, [edx + 16] + sub ecx, 4 + jg wloop + + pop edi + pop ebx + ret + } +} + +// Blends four 2x2 to 4x1. +__declspec(naked) +void ScaleARGBRowDownEvenBox_SSE2(const uint8* src_argb, + ptrdiff_t src_stride, + int src_stepx, + uint8* dst_argb, int dst_width) { + __asm { + push ebx + push esi + push edi + mov eax, [esp + 12 + 4] // src_argb + mov esi, [esp + 12 + 8] // src_stride + mov ebx, [esp + 12 + 12] // src_stepx + mov edx, [esp + 12 + 16] // dst_argb + mov ecx, [esp + 12 + 20] // dst_width + lea esi, [eax + esi] // row1 pointer + lea ebx, [ebx * 4] + lea edi, [ebx + ebx * 2] + + wloop: + movq xmm0, qword ptr [eax] // row0 4 pairs + movhps xmm0, qword ptr [eax + ebx] + movq xmm1, qword ptr [eax + ebx * 2] + movhps xmm1, qword ptr [eax + edi] + lea eax, [eax + ebx * 4] + movq xmm2, qword ptr [esi] // row1 4 pairs + movhps xmm2, qword ptr [esi + ebx] + movq xmm3, qword ptr [esi + ebx * 2] + movhps xmm3, qword ptr [esi + edi] + lea esi, [esi + ebx * 4] + pavgb xmm0, xmm2 // average rows + pavgb xmm1, xmm3 + movdqa xmm2, xmm0 // average columns (8 to 4 pixels) + shufps xmm0, xmm1, 0x88 // even pixels + shufps xmm2, xmm1, 0xdd // odd pixels + pavgb xmm0, xmm2 + movdqu [edx], xmm0 + lea edx, [edx + 16] + sub ecx, 4 + jg wloop + + pop edi + pop esi + pop ebx + ret + } +} + +// Column scaling unfiltered. SSE2 version. +__declspec(naked) +void ScaleARGBCols_SSE2(uint8* dst_argb, const uint8* src_argb, + int dst_width, int x, int dx) { + __asm { + push edi + push esi + mov edi, [esp + 8 + 4] // dst_argb + mov esi, [esp + 8 + 8] // src_argb + mov ecx, [esp + 8 + 12] // dst_width + movd xmm2, [esp + 8 + 16] // x + movd xmm3, [esp + 8 + 20] // dx + + pshufd xmm2, xmm2, 0 // x0 x0 x0 x0 + pshufd xmm0, xmm3, 0x11 // dx 0 dx 0 + paddd xmm2, xmm0 + paddd xmm3, xmm3 // 0, 0, 0, dx * 2 + pshufd xmm0, xmm3, 0x05 // dx * 2, dx * 2, 0, 0 + paddd xmm2, xmm0 // x3 x2 x1 x0 + paddd xmm3, xmm3 // 0, 0, 0, dx * 4 + pshufd xmm3, xmm3, 0 // dx * 4, dx * 4, dx * 4, dx * 4 + + pextrw eax, xmm2, 1 // get x0 integer. + pextrw edx, xmm2, 3 // get x1 integer. + + cmp ecx, 0 + jle xloop99 + sub ecx, 4 + jl xloop49 + + // 4 Pixel loop. + xloop4: + movd xmm0, [esi + eax * 4] // 1 source x0 pixels + movd xmm1, [esi + edx * 4] // 1 source x1 pixels + pextrw eax, xmm2, 5 // get x2 integer. + pextrw edx, xmm2, 7 // get x3 integer. + paddd xmm2, xmm3 // x += dx + punpckldq xmm0, xmm1 // x0 x1 + + movd xmm1, [esi + eax * 4] // 1 source x2 pixels + movd xmm4, [esi + edx * 4] // 1 source x3 pixels + pextrw eax, xmm2, 1 // get x0 integer. next iteration. + pextrw edx, xmm2, 3 // get x1 integer. next iteration. + punpckldq xmm1, xmm4 // x2 x3 + punpcklqdq xmm0, xmm1 // x0 x1 x2 x3 + movdqu [edi], xmm0 + lea edi, [edi + 16] + sub ecx, 4 // 4 pixels + jge xloop4 + + xloop49: + test ecx, 2 + je xloop29 + + // 2 Pixels. + movd xmm0, [esi + eax * 4] // 1 source x0 pixels + movd xmm1, [esi + edx * 4] // 1 source x1 pixels + pextrw eax, xmm2, 5 // get x2 integer. + punpckldq xmm0, xmm1 // x0 x1 + + movq qword ptr [edi], xmm0 + lea edi, [edi + 8] + + xloop29: + test ecx, 1 + je xloop99 + + // 1 Pixels. + movd xmm0, [esi + eax * 4] // 1 source x2 pixels + movd dword ptr [edi], xmm0 + xloop99: + + pop esi + pop edi + ret + } +} + +// Bilinear row filtering combines 2x1 -> 1x1. SSSE3 version. +// TODO(fbarchard): Port to Neon + +// Shuffle table for arranging 2 pixels into pairs for pmaddubsw +static uvec8 kShuffleColARGB = { + 0u, 4u, 1u, 5u, 2u, 6u, 3u, 7u, // bbggrraa 1st pixel + 8u, 12u, 9u, 13u, 10u, 14u, 11u, 15u // bbggrraa 2nd pixel +}; + +// Shuffle table for duplicating 2 fractions into 8 bytes each +static uvec8 kShuffleFractions = { + 0u, 0u, 0u, 0u, 0u, 0u, 0u, 0u, 4u, 4u, 4u, 4u, 4u, 4u, 4u, 4u, +}; + +__declspec(naked) +void ScaleARGBFilterCols_SSSE3(uint8* dst_argb, const uint8* src_argb, + int dst_width, int x, int dx) { + __asm { + push esi + push edi + mov edi, [esp + 8 + 4] // dst_argb + mov esi, [esp + 8 + 8] // src_argb + mov ecx, [esp + 8 + 12] // dst_width + movd xmm2, [esp + 8 + 16] // x + movd xmm3, [esp + 8 + 20] // dx + movdqa xmm4, xmmword ptr kShuffleColARGB + movdqa xmm5, xmmword ptr kShuffleFractions + pcmpeqb xmm6, xmm6 // generate 0x007f for inverting fraction. + psrlw xmm6, 9 + pextrw eax, xmm2, 1 // get x0 integer. preroll + sub ecx, 2 + jl xloop29 + + movdqa xmm0, xmm2 // x1 = x0 + dx + paddd xmm0, xmm3 + punpckldq xmm2, xmm0 // x0 x1 + punpckldq xmm3, xmm3 // dx dx + paddd xmm3, xmm3 // dx * 2, dx * 2 + pextrw edx, xmm2, 3 // get x1 integer. preroll + + // 2 Pixel loop. + xloop2: + movdqa xmm1, xmm2 // x0, x1 fractions. + paddd xmm2, xmm3 // x += dx + movq xmm0, qword ptr [esi + eax * 4] // 2 source x0 pixels + psrlw xmm1, 9 // 7 bit fractions. + movhps xmm0, qword ptr [esi + edx * 4] // 2 source x1 pixels + pshufb xmm1, xmm5 // 0000000011111111 + pshufb xmm0, xmm4 // arrange pixels into pairs + pxor xmm1, xmm6 // 0..7f and 7f..0 + pmaddubsw xmm0, xmm1 // argb_argb 16 bit, 2 pixels. + pextrw eax, xmm2, 1 // get x0 integer. next iteration. + pextrw edx, xmm2, 3 // get x1 integer. next iteration. + psrlw xmm0, 7 // argb 8.7 fixed point to low 8 bits. + packuswb xmm0, xmm0 // argb_argb 8 bits, 2 pixels. + movq qword ptr [edi], xmm0 + lea edi, [edi + 8] + sub ecx, 2 // 2 pixels + jge xloop2 + + xloop29: + + add ecx, 2 - 1 + jl xloop99 + + // 1 pixel remainder + psrlw xmm2, 9 // 7 bit fractions. + movq xmm0, qword ptr [esi + eax * 4] // 2 source x0 pixels + pshufb xmm2, xmm5 // 00000000 + pshufb xmm0, xmm4 // arrange pixels into pairs + pxor xmm2, xmm6 // 0..7f and 7f..0 + pmaddubsw xmm0, xmm2 // argb 16 bit, 1 pixel. + psrlw xmm0, 7 + packuswb xmm0, xmm0 // argb 8 bits, 1 pixel. + movd [edi], xmm0 + + xloop99: + + pop edi + pop esi + ret + } +} + +// Reads 4 pixels, duplicates them and writes 8 pixels. +__declspec(naked) +void ScaleARGBColsUp2_SSE2(uint8* dst_argb, const uint8* src_argb, + int dst_width, int x, int dx) { + __asm { + mov edx, [esp + 4] // dst_argb + mov eax, [esp + 8] // src_argb + mov ecx, [esp + 12] // dst_width + + wloop: + movdqu xmm0, [eax] + lea eax, [eax + 16] + movdqa xmm1, xmm0 + punpckldq xmm0, xmm0 + punpckhdq xmm1, xmm1 + movdqu [edx], xmm0 + movdqu [edx + 16], xmm1 + lea edx, [edx + 32] + sub ecx, 8 + jg wloop + + ret + } +} + +// Divide num by div and return as 16.16 fixed point result. +__declspec(naked) +int FixedDiv_X86(int num, int div) { + __asm { + mov eax, [esp + 4] // num + cdq // extend num to 64 bits + shld edx, eax, 16 // 32.16 + shl eax, 16 + idiv dword ptr [esp + 8] + ret + } +} + +// Divide num by div and return as 16.16 fixed point result. +__declspec(naked) +int FixedDiv1_X86(int num, int div) { + __asm { + mov eax, [esp + 4] // num + mov ecx, [esp + 8] // denom + cdq // extend num to 64 bits + shld edx, eax, 16 // 32.16 + shl eax, 16 + sub eax, 0x00010001 + sbb edx, 0 + sub ecx, 1 + idiv ecx + ret + } +} +#endif // !defined(LIBYUV_DISABLE_X86) && defined(_M_IX86) + +#ifdef __cplusplus +} // extern "C" +} // namespace libyuv +#endif diff --git a/third_party/libyuv/source/video_common.cc b/third_party/libyuv/source/video_common.cc new file mode 100644 index 0000000..00fb71e --- /dev/null +++ b/third_party/libyuv/source/video_common.cc @@ -0,0 +1,65 @@ +/* + * Copyright 2011 The LibYuv Project Authors. All rights reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + + +#include "libyuv/video_common.h" + +#ifdef __cplusplus +namespace libyuv { +extern "C" { +#endif + +#define ARRAY_SIZE(x) (int)(sizeof(x) / sizeof(x[0])) + +struct FourCCAliasEntry { + uint32 alias; + uint32 canonical; +}; + +static const struct FourCCAliasEntry kFourCCAliases[] = { + {FOURCC_IYUV, FOURCC_I420}, + {FOURCC_YU12, FOURCC_I420}, + {FOURCC_YU16, FOURCC_I422}, + {FOURCC_YU24, FOURCC_I444}, + {FOURCC_YUYV, FOURCC_YUY2}, + {FOURCC_YUVS, FOURCC_YUY2}, // kCMPixelFormat_422YpCbCr8_yuvs + {FOURCC_HDYC, FOURCC_UYVY}, + {FOURCC_2VUY, FOURCC_UYVY}, // kCMPixelFormat_422YpCbCr8 + {FOURCC_JPEG, FOURCC_MJPG}, // Note: JPEG has DHT while MJPG does not. + {FOURCC_DMB1, FOURCC_MJPG}, + {FOURCC_BA81, FOURCC_BGGR}, // deprecated. + {FOURCC_RGB3, FOURCC_RAW }, + {FOURCC_BGR3, FOURCC_24BG}, + {FOURCC_CM32, FOURCC_BGRA}, // kCMPixelFormat_32ARGB + {FOURCC_CM24, FOURCC_RAW }, // kCMPixelFormat_24RGB + {FOURCC_L555, FOURCC_RGBO}, // kCMPixelFormat_16LE555 + {FOURCC_L565, FOURCC_RGBP}, // kCMPixelFormat_16LE565 + {FOURCC_5551, FOURCC_RGBO}, // kCMPixelFormat_16LE5551 +}; +// TODO(fbarchard): Consider mapping kCMPixelFormat_32BGRA to FOURCC_ARGB. +// {FOURCC_BGRA, FOURCC_ARGB}, // kCMPixelFormat_32BGRA + +LIBYUV_API +uint32 CanonicalFourCC(uint32 fourcc) { + int i; + for (i = 0; i < ARRAY_SIZE(kFourCCAliases); ++i) { + if (kFourCCAliases[i].alias == fourcc) { + return kFourCCAliases[i].canonical; + } + } + // Not an alias, so return it as-is. + return fourcc; +} + +#ifdef __cplusplus +} // extern "C" +} // namespace libyuv +#endif + diff --git a/third_party/x86inc/LICENSE b/third_party/x86inc/LICENSE new file mode 100644 index 0000000..7d07645 --- /dev/null +++ b/third_party/x86inc/LICENSE @@ -0,0 +1,18 @@ +Copyright (C) 2005-2012 x264 project + +Authors: Loren Merritt + Anton Mitrofanov + Jason Garrett-Glaser + Henrik Gramner + +Permission to use, copy, modify, and/or distribute this software for any +purpose with or without fee is hereby granted, provided that the above +copyright notice and this permission notice appear in all copies. + +THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES +WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF +MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR +ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES +WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN +ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF +OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. diff --git a/third_party/x86inc/README.libvpx b/third_party/x86inc/README.libvpx new file mode 100644 index 0000000..8d3cd96 --- /dev/null +++ b/third_party/x86inc/README.libvpx @@ -0,0 +1,20 @@ +URL: https://git.videolan.org/git/x264.git +Version: d23d18655249944c1ca894b451e2c82c7a584c62 +License: ISC +License File: LICENSE + +Description: +x264/libav's framework for x86 assembly. Contains a variety of macros and +defines that help automatically allow assembly to work cross-platform. + +Local Modifications: +Get configuration from vpx_config.asm. +Prefix functions with vpx by default. +Manage name mangling (prefixing with '_') manually because 'PREFIX' does not + exist in libvpx. +Expand PIC default to macho64 and respect CONFIG_PIC from libvpx +Set 'private_extern' visibility for macho targets. +Copy PIC 'GLOBAL' macros from x86_abi_support.asm +Use .text instead of .rodata on macho to avoid broken tables in PIC mode. +Use .text with no alignment for aout +Only use 'hidden' visibility with Chromium diff --git a/third_party/x86inc/x86inc.asm b/third_party/x86inc/x86inc.asm new file mode 100644 index 0000000..b647dff --- /dev/null +++ b/third_party/x86inc/x86inc.asm @@ -0,0 +1,1649 @@ +;***************************************************************************** +;* x86inc.asm: x264asm abstraction layer +;***************************************************************************** +;* Copyright (C) 2005-2016 x264 project +;* +;* Authors: Loren Merritt +;* Anton Mitrofanov +;* Fiona Glaser +;* Henrik Gramner +;* +;* Permission to use, copy, modify, and/or distribute this software for any +;* purpose with or without fee is hereby granted, provided that the above +;* copyright notice and this permission notice appear in all copies. +;* +;* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES +;* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF +;* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR +;* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES +;* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN +;* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF +;* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. +;***************************************************************************** + +; This is a header file for the x264ASM assembly language, which uses +; NASM/YASM syntax combined with a large number of macros to provide easy +; abstraction between different calling conventions (x86_32, win64, linux64). +; It also has various other useful features to simplify writing the kind of +; DSP functions that are most often used in x264. + +; Unlike the rest of x264, this file is available under an ISC license, as it +; has significant usefulness outside of x264 and we want it to be available +; to the largest audience possible. Of course, if you modify it for your own +; purposes to add a new feature, we strongly encourage contributing a patch +; as this feature might be useful for others as well. Send patches or ideas +; to x264-devel@videolan.org . + +%include "vpx_config.asm" + +%ifndef private_prefix + %define private_prefix vpx +%endif + +%ifndef public_prefix + %define public_prefix private_prefix +%endif + +%ifndef STACK_ALIGNMENT + %if ARCH_X86_64 + %define STACK_ALIGNMENT 16 + %else + %define STACK_ALIGNMENT 4 + %endif +%endif + +%define WIN64 0 +%define UNIX64 0 +%if ARCH_X86_64 + %ifidn __OUTPUT_FORMAT__,win32 + %define WIN64 1 + %elifidn __OUTPUT_FORMAT__,win64 + %define WIN64 1 + %elifidn __OUTPUT_FORMAT__,x64 + %define WIN64 1 + %else + %define UNIX64 1 + %endif +%endif + +%define FORMAT_ELF 0 +%ifidn __OUTPUT_FORMAT__,elf + %define FORMAT_ELF 1 +%elifidn __OUTPUT_FORMAT__,elf32 + %define FORMAT_ELF 1 +%elifidn __OUTPUT_FORMAT__,elf64 + %define FORMAT_ELF 1 +%endif + +%define FORMAT_MACHO 0 +%ifidn __OUTPUT_FORMAT__,macho32 + %define FORMAT_MACHO 1 +%elifidn __OUTPUT_FORMAT__,macho64 + %define FORMAT_MACHO 1 +%endif + +; Set PREFIX for libvpx builds. +%if FORMAT_ELF + %undef PREFIX +%elif WIN64 + %undef PREFIX +%else + %define PREFIX +%endif + +%ifdef PREFIX + %define mangle(x) _ %+ x +%else + %define mangle(x) x +%endif + +; In some instances macho32 tables get misaligned when using .rodata. +; When looking at the disassembly it appears that the offset is either +; correct or consistently off by 90. Placing them in the .text section +; works around the issue. It appears to be specific to the way libvpx +; handles the tables. +%macro SECTION_RODATA 0-1 16 + %ifidn __OUTPUT_FORMAT__,macho32 + SECTION .text align=%1 + fakegot: + %elifidn __OUTPUT_FORMAT__,aout + SECTION .text + %else + SECTION .rodata align=%1 + %endif +%endmacro + +; PIC macros are copied from vpx_ports/x86_abi_support.asm. The "define PIC" +; from original code is added in for 64bit. +%ifidn __OUTPUT_FORMAT__,elf32 +%define ABI_IS_32BIT 1 +%elifidn __OUTPUT_FORMAT__,macho32 +%define ABI_IS_32BIT 1 +%elifidn __OUTPUT_FORMAT__,win32 +%define ABI_IS_32BIT 1 +%elifidn __OUTPUT_FORMAT__,aout +%define ABI_IS_32BIT 1 +%else +%define ABI_IS_32BIT 0 +%endif + +%if ABI_IS_32BIT + %if CONFIG_PIC=1 + %ifidn __OUTPUT_FORMAT__,elf32 + %define GET_GOT_DEFINED 1 + %define WRT_PLT wrt ..plt + %macro GET_GOT 1 + extern _GLOBAL_OFFSET_TABLE_ + push %1 + call %%get_got + %%sub_offset: + jmp %%exitGG + %%get_got: + mov %1, [esp] + add %1, _GLOBAL_OFFSET_TABLE_ + $$ - %%sub_offset wrt ..gotpc + ret + %%exitGG: + %undef GLOBAL + %define GLOBAL(x) x + %1 wrt ..gotoff + %undef RESTORE_GOT + %define RESTORE_GOT pop %1 + %endmacro + %elifidn __OUTPUT_FORMAT__,macho32 + %define GET_GOT_DEFINED 1 + %macro GET_GOT 1 + push %1 + call %%get_got + %%get_got: + pop %1 + %undef GLOBAL + %define GLOBAL(x) x + %1 - %%get_got + %undef RESTORE_GOT + %define RESTORE_GOT pop %1 + %endmacro + %else + %define GET_GOT_DEFINED 0 + %endif + %endif + + %if ARCH_X86_64 == 0 + %undef PIC + %endif + +%else + %macro GET_GOT 1 + %endmacro + %define GLOBAL(x) rel x + %define WRT_PLT wrt ..plt + + %if WIN64 + %define PIC + %elifidn __OUTPUT_FORMAT__,macho64 + %define PIC + %elif CONFIG_PIC + %define PIC + %endif +%endif + +%ifnmacro GET_GOT + %macro GET_GOT 1 + %endmacro + %define GLOBAL(x) x +%endif +%ifndef RESTORE_GOT + %define RESTORE_GOT +%endif +%ifndef WRT_PLT + %define WRT_PLT +%endif + +%ifdef PIC + default rel +%endif + +%ifndef GET_GOT_DEFINED + %define GET_GOT_DEFINED 0 +%endif +; Done with PIC macros + +%ifdef __NASM_VER__ + %use smartalign +%endif + +; Macros to eliminate most code duplication between x86_32 and x86_64: +; Currently this works only for leaf functions which load all their arguments +; into registers at the start, and make no other use of the stack. Luckily that +; covers most of x264's asm. + +; PROLOGUE: +; %1 = number of arguments. loads them from stack if needed. +; %2 = number of registers used. pushes callee-saved regs if needed. +; %3 = number of xmm registers used. pushes callee-saved xmm regs if needed. +; %4 = (optional) stack size to be allocated. The stack will be aligned before +; allocating the specified stack size. If the required stack alignment is +; larger than the known stack alignment the stack will be manually aligned +; and an extra register will be allocated to hold the original stack +; pointer (to not invalidate r0m etc.). To prevent the use of an extra +; register as stack pointer, request a negative stack size. +; %4+/%5+ = list of names to define to registers +; PROLOGUE can also be invoked by adding the same options to cglobal + +; e.g. +; cglobal foo, 2,3,7,0x40, dst, src, tmp +; declares a function (foo) that automatically loads two arguments (dst and +; src) into registers, uses one additional register (tmp) plus 7 vector +; registers (m0-m6) and allocates 0x40 bytes of stack space. + +; TODO Some functions can use some args directly from the stack. If they're the +; last args then you can just not declare them, but if they're in the middle +; we need more flexible macro. + +; RET: +; Pops anything that was pushed by PROLOGUE, and returns. + +; REP_RET: +; Use this instead of RET if it's a branch target. + +; registers: +; rN and rNq are the native-size register holding function argument N +; rNd, rNw, rNb are dword, word, and byte size +; rNh is the high 8 bits of the word size +; rNm is the original location of arg N (a register or on the stack), dword +; rNmp is native size + +%macro DECLARE_REG 2-3 + %define r%1q %2 + %define r%1d %2d + %define r%1w %2w + %define r%1b %2b + %define r%1h %2h + %define %2q %2 + %if %0 == 2 + %define r%1m %2d + %define r%1mp %2 + %elif ARCH_X86_64 ; memory + %define r%1m [rstk + stack_offset + %3] + %define r%1mp qword r %+ %1 %+ m + %else + %define r%1m [rstk + stack_offset + %3] + %define r%1mp dword r %+ %1 %+ m + %endif + %define r%1 %2 +%endmacro + +%macro DECLARE_REG_SIZE 3 + %define r%1q r%1 + %define e%1q r%1 + %define r%1d e%1 + %define e%1d e%1 + %define r%1w %1 + %define e%1w %1 + %define r%1h %3 + %define e%1h %3 + %define r%1b %2 + %define e%1b %2 + %if ARCH_X86_64 == 0 + %define r%1 e%1 + %endif +%endmacro + +DECLARE_REG_SIZE ax, al, ah +DECLARE_REG_SIZE bx, bl, bh +DECLARE_REG_SIZE cx, cl, ch +DECLARE_REG_SIZE dx, dl, dh +DECLARE_REG_SIZE si, sil, null +DECLARE_REG_SIZE di, dil, null +DECLARE_REG_SIZE bp, bpl, null + +; t# defines for when per-arch register allocation is more complex than just function arguments + +%macro DECLARE_REG_TMP 1-* + %assign %%i 0 + %rep %0 + CAT_XDEFINE t, %%i, r%1 + %assign %%i %%i+1 + %rotate 1 + %endrep +%endmacro + +%macro DECLARE_REG_TMP_SIZE 0-* + %rep %0 + %define t%1q t%1 %+ q + %define t%1d t%1 %+ d + %define t%1w t%1 %+ w + %define t%1h t%1 %+ h + %define t%1b t%1 %+ b + %rotate 1 + %endrep +%endmacro + +DECLARE_REG_TMP_SIZE 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14 + +%if ARCH_X86_64 + %define gprsize 8 +%else + %define gprsize 4 +%endif + +%macro PUSH 1 + push %1 + %ifidn rstk, rsp + %assign stack_offset stack_offset+gprsize + %endif +%endmacro + +%macro POP 1 + pop %1 + %ifidn rstk, rsp + %assign stack_offset stack_offset-gprsize + %endif +%endmacro + +%macro PUSH_IF_USED 1-* + %rep %0 + %if %1 < regs_used + PUSH r%1 + %endif + %rotate 1 + %endrep +%endmacro + +%macro POP_IF_USED 1-* + %rep %0 + %if %1 < regs_used + pop r%1 + %endif + %rotate 1 + %endrep +%endmacro + +%macro LOAD_IF_USED 1-* + %rep %0 + %if %1 < num_args + mov r%1, r %+ %1 %+ mp + %endif + %rotate 1 + %endrep +%endmacro + +%macro SUB 2 + sub %1, %2 + %ifidn %1, rstk + %assign stack_offset stack_offset+(%2) + %endif +%endmacro + +%macro ADD 2 + add %1, %2 + %ifidn %1, rstk + %assign stack_offset stack_offset-(%2) + %endif +%endmacro + +%macro movifnidn 2 + %ifnidn %1, %2 + mov %1, %2 + %endif +%endmacro + +%macro movsxdifnidn 2 + %ifnidn %1, %2 + movsxd %1, %2 + %endif +%endmacro + +%macro ASSERT 1 + %if (%1) == 0 + %error assertion ``%1'' failed + %endif +%endmacro + +%macro DEFINE_ARGS 0-* + %ifdef n_arg_names + %assign %%i 0 + %rep n_arg_names + CAT_UNDEF arg_name %+ %%i, q + CAT_UNDEF arg_name %+ %%i, d + CAT_UNDEF arg_name %+ %%i, w + CAT_UNDEF arg_name %+ %%i, h + CAT_UNDEF arg_name %+ %%i, b + CAT_UNDEF arg_name %+ %%i, m + CAT_UNDEF arg_name %+ %%i, mp + CAT_UNDEF arg_name, %%i + %assign %%i %%i+1 + %endrep + %endif + + %xdefine %%stack_offset stack_offset + %undef stack_offset ; so that the current value of stack_offset doesn't get baked in by xdefine + %assign %%i 0 + %rep %0 + %xdefine %1q r %+ %%i %+ q + %xdefine %1d r %+ %%i %+ d + %xdefine %1w r %+ %%i %+ w + %xdefine %1h r %+ %%i %+ h + %xdefine %1b r %+ %%i %+ b + %xdefine %1m r %+ %%i %+ m + %xdefine %1mp r %+ %%i %+ mp + CAT_XDEFINE arg_name, %%i, %1 + %assign %%i %%i+1 + %rotate 1 + %endrep + %xdefine stack_offset %%stack_offset + %assign n_arg_names %0 +%endmacro + +%define required_stack_alignment ((mmsize + 15) & ~15) + +%macro ALLOC_STACK 1-2 0 ; stack_size, n_xmm_regs (for win64 only) + %ifnum %1 + %if %1 != 0 + %assign %%pad 0 + %assign stack_size %1 + %if stack_size < 0 + %assign stack_size -stack_size + %endif + %if WIN64 + %assign %%pad %%pad + 32 ; shadow space + %if mmsize != 8 + %assign xmm_regs_used %2 + %if xmm_regs_used > 8 + %assign %%pad %%pad + (xmm_regs_used-8)*16 ; callee-saved xmm registers + %endif + %endif + %endif + %if required_stack_alignment <= STACK_ALIGNMENT + ; maintain the current stack alignment + %assign stack_size_padded stack_size + %%pad + ((-%%pad-stack_offset-gprsize) & (STACK_ALIGNMENT-1)) + SUB rsp, stack_size_padded + %else + %assign %%reg_num (regs_used - 1) + %xdefine rstk r %+ %%reg_num + ; align stack, and save original stack location directly above + ; it, i.e. in [rsp+stack_size_padded], so we can restore the + ; stack in a single instruction (i.e. mov rsp, rstk or mov + ; rsp, [rsp+stack_size_padded]) + %if %1 < 0 ; need to store rsp on stack + %xdefine rstkm [rsp + stack_size + %%pad] + %assign %%pad %%pad + gprsize + %else ; can keep rsp in rstk during whole function + %xdefine rstkm rstk + %endif + %assign stack_size_padded stack_size + ((%%pad + required_stack_alignment-1) & ~(required_stack_alignment-1)) + mov rstk, rsp + and rsp, ~(required_stack_alignment-1) + sub rsp, stack_size_padded + movifnidn rstkm, rstk + %endif + WIN64_PUSH_XMM + %endif + %endif +%endmacro + +%macro SETUP_STACK_POINTER 1 + %ifnum %1 + %if %1 != 0 && required_stack_alignment > STACK_ALIGNMENT + %if %1 > 0 + %assign regs_used (regs_used + 1) + %endif + %if ARCH_X86_64 && regs_used < 5 + UNIX64 * 3 + ; Ensure that we don't clobber any registers containing arguments + %assign regs_used 5 + UNIX64 * 3 + %endif + %endif + %endif +%endmacro + +%macro DEFINE_ARGS_INTERNAL 3+ + %ifnum %2 + DEFINE_ARGS %3 + %elif %1 == 4 + DEFINE_ARGS %2 + %elif %1 > 4 + DEFINE_ARGS %2, %3 + %endif +%endmacro + +%if WIN64 ; Windows x64 ;================================================= + +DECLARE_REG 0, rcx +DECLARE_REG 1, rdx +DECLARE_REG 2, R8 +DECLARE_REG 3, R9 +DECLARE_REG 4, R10, 40 +DECLARE_REG 5, R11, 48 +DECLARE_REG 6, rax, 56 +DECLARE_REG 7, rdi, 64 +DECLARE_REG 8, rsi, 72 +DECLARE_REG 9, rbx, 80 +DECLARE_REG 10, rbp, 88 +DECLARE_REG 11, R12, 96 +DECLARE_REG 12, R13, 104 +DECLARE_REG 13, R14, 112 +DECLARE_REG 14, R15, 120 + +%macro PROLOGUE 2-5+ 0 ; #args, #regs, #xmm_regs, [stack_size,] arg_names... + %assign num_args %1 + %assign regs_used %2 + ASSERT regs_used >= num_args + SETUP_STACK_POINTER %4 + ASSERT regs_used <= 15 + PUSH_IF_USED 7, 8, 9, 10, 11, 12, 13, 14 + ALLOC_STACK %4, %3 + %if mmsize != 8 && stack_size == 0 + WIN64_SPILL_XMM %3 + %endif + LOAD_IF_USED 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 + DEFINE_ARGS_INTERNAL %0, %4, %5 +%endmacro + +%macro WIN64_PUSH_XMM 0 + ; Use the shadow space to store XMM6 and XMM7, the rest needs stack space allocated. + %if xmm_regs_used > 6 + movaps [rstk + stack_offset + 8], xmm6 + %endif + %if xmm_regs_used > 7 + movaps [rstk + stack_offset + 24], xmm7 + %endif + %if xmm_regs_used > 8 + %assign %%i 8 + %rep xmm_regs_used-8 + movaps [rsp + (%%i-8)*16 + stack_size + 32], xmm %+ %%i + %assign %%i %%i+1 + %endrep + %endif +%endmacro + +%macro WIN64_SPILL_XMM 1 + %assign xmm_regs_used %1 + ASSERT xmm_regs_used <= 16 + %if xmm_regs_used > 8 + ; Allocate stack space for callee-saved xmm registers plus shadow space and align the stack. + %assign %%pad (xmm_regs_used-8)*16 + 32 + %assign stack_size_padded %%pad + ((-%%pad-stack_offset-gprsize) & (STACK_ALIGNMENT-1)) + SUB rsp, stack_size_padded + %endif + WIN64_PUSH_XMM +%endmacro + +%macro WIN64_RESTORE_XMM_INTERNAL 1 + %assign %%pad_size 0 + %if xmm_regs_used > 8 + %assign %%i xmm_regs_used + %rep xmm_regs_used-8 + %assign %%i %%i-1 + movaps xmm %+ %%i, [%1 + (%%i-8)*16 + stack_size + 32] + %endrep + %endif + %if stack_size_padded > 0 + %if stack_size > 0 && required_stack_alignment > STACK_ALIGNMENT + mov rsp, rstkm + %else + add %1, stack_size_padded + %assign %%pad_size stack_size_padded + %endif + %endif + %if xmm_regs_used > 7 + movaps xmm7, [%1 + stack_offset - %%pad_size + 24] + %endif + %if xmm_regs_used > 6 + movaps xmm6, [%1 + stack_offset - %%pad_size + 8] + %endif +%endmacro + +%macro WIN64_RESTORE_XMM 1 + WIN64_RESTORE_XMM_INTERNAL %1 + %assign stack_offset (stack_offset-stack_size_padded) + %assign xmm_regs_used 0 +%endmacro + +%define has_epilogue regs_used > 7 || xmm_regs_used > 6 || mmsize == 32 || stack_size > 0 + +%macro RET 0 + WIN64_RESTORE_XMM_INTERNAL rsp + POP_IF_USED 14, 13, 12, 11, 10, 9, 8, 7 + %if mmsize == 32 + vzeroupper + %endif + AUTO_REP_RET +%endmacro + +%elif ARCH_X86_64 ; *nix x64 ;============================================= + +DECLARE_REG 0, rdi +DECLARE_REG 1, rsi +DECLARE_REG 2, rdx +DECLARE_REG 3, rcx +DECLARE_REG 4, R8 +DECLARE_REG 5, R9 +DECLARE_REG 6, rax, 8 +DECLARE_REG 7, R10, 16 +DECLARE_REG 8, R11, 24 +DECLARE_REG 9, rbx, 32 +DECLARE_REG 10, rbp, 40 +DECLARE_REG 11, R12, 48 +DECLARE_REG 12, R13, 56 +DECLARE_REG 13, R14, 64 +DECLARE_REG 14, R15, 72 + +%macro PROLOGUE 2-5+ ; #args, #regs, #xmm_regs, [stack_size,] arg_names... + %assign num_args %1 + %assign regs_used %2 + ASSERT regs_used >= num_args + SETUP_STACK_POINTER %4 + ASSERT regs_used <= 15 + PUSH_IF_USED 9, 10, 11, 12, 13, 14 + ALLOC_STACK %4 + LOAD_IF_USED 6, 7, 8, 9, 10, 11, 12, 13, 14 + DEFINE_ARGS_INTERNAL %0, %4, %5 +%endmacro + +%define has_epilogue regs_used > 9 || mmsize == 32 || stack_size > 0 + +%macro RET 0 + %if stack_size_padded > 0 + %if required_stack_alignment > STACK_ALIGNMENT + mov rsp, rstkm + %else + add rsp, stack_size_padded + %endif + %endif + POP_IF_USED 14, 13, 12, 11, 10, 9 + %if mmsize == 32 + vzeroupper + %endif + AUTO_REP_RET +%endmacro + +%else ; X86_32 ;============================================================== + +DECLARE_REG 0, eax, 4 +DECLARE_REG 1, ecx, 8 +DECLARE_REG 2, edx, 12 +DECLARE_REG 3, ebx, 16 +DECLARE_REG 4, esi, 20 +DECLARE_REG 5, edi, 24 +DECLARE_REG 6, ebp, 28 +%define rsp esp + +%macro DECLARE_ARG 1-* + %rep %0 + %define r%1m [rstk + stack_offset + 4*%1 + 4] + %define r%1mp dword r%1m + %rotate 1 + %endrep +%endmacro + +DECLARE_ARG 7, 8, 9, 10, 11, 12, 13, 14 + +%macro PROLOGUE 2-5+ ; #args, #regs, #xmm_regs, [stack_size,] arg_names... + %assign num_args %1 + %assign regs_used %2 + ASSERT regs_used >= num_args + %if num_args > 7 + %assign num_args 7 + %endif + %if regs_used > 7 + %assign regs_used 7 + %endif + SETUP_STACK_POINTER %4 + ASSERT regs_used <= 7 + PUSH_IF_USED 3, 4, 5, 6 + ALLOC_STACK %4 + LOAD_IF_USED 0, 1, 2, 3, 4, 5, 6 + DEFINE_ARGS_INTERNAL %0, %4, %5 +%endmacro + +%define has_epilogue regs_used > 3 || mmsize == 32 || stack_size > 0 + +%macro RET 0 + %if stack_size_padded > 0 + %if required_stack_alignment > STACK_ALIGNMENT + mov rsp, rstkm + %else + add rsp, stack_size_padded + %endif + %endif + POP_IF_USED 6, 5, 4, 3 + %if mmsize == 32 + vzeroupper + %endif + AUTO_REP_RET +%endmacro + +%endif ;====================================================================== + +%if WIN64 == 0 + %macro WIN64_SPILL_XMM 1 + %endmacro + %macro WIN64_RESTORE_XMM 1 + %endmacro + %macro WIN64_PUSH_XMM 0 + %endmacro +%endif + +; On AMD cpus <=K10, an ordinary ret is slow if it immediately follows either +; a branch or a branch target. So switch to a 2-byte form of ret in that case. +; We can automatically detect "follows a branch", but not a branch target. +; (SSSE3 is a sufficient condition to know that your cpu doesn't have this problem.) +%macro REP_RET 0 + %if has_epilogue + RET + %else + rep ret + %endif + annotate_function_size +%endmacro + +%define last_branch_adr $$ +%macro AUTO_REP_RET 0 + %if notcpuflag(ssse3) + times ((last_branch_adr-$)>>31)+1 rep ; times 1 iff $ == last_branch_adr. + %endif + ret + annotate_function_size +%endmacro + +%macro BRANCH_INSTR 0-* + %rep %0 + %macro %1 1-2 %1 + %2 %1 + %if notcpuflag(ssse3) + %%branch_instr equ $ + %xdefine last_branch_adr %%branch_instr + %endif + %endmacro + %rotate 1 + %endrep +%endmacro + +BRANCH_INSTR jz, je, jnz, jne, jl, jle, jnl, jnle, jg, jge, jng, jnge, ja, jae, jna, jnae, jb, jbe, jnb, jnbe, jc, jnc, js, jns, jo, jno, jp, jnp + +%macro TAIL_CALL 2 ; callee, is_nonadjacent + %if has_epilogue + call %1 + RET + %elif %2 + jmp %1 + %endif + annotate_function_size +%endmacro + +;============================================================================= +; arch-independent part +;============================================================================= + +%assign function_align 16 + +; Begin a function. +; Applies any symbol mangling needed for C linkage, and sets up a define such that +; subsequent uses of the function name automatically refer to the mangled version. +; Appends cpuflags to the function name if cpuflags has been specified. +; The "" empty default parameter is a workaround for nasm, which fails if SUFFIX +; is empty and we call cglobal_internal with just %1 %+ SUFFIX (without %2). +%macro cglobal 1-2+ "" ; name, [PROLOGUE args] + cglobal_internal 1, %1 %+ SUFFIX, %2 +%endmacro +%macro cvisible 1-2+ "" ; name, [PROLOGUE args] + cglobal_internal 0, %1 %+ SUFFIX, %2 +%endmacro +%macro cglobal_internal 2-3+ + annotate_function_size + %if %1 + %xdefine %%FUNCTION_PREFIX private_prefix + ; libvpx explicitly sets visibility in shared object builds. Avoid + ; setting visibility to hidden as it may break builds that split + ; sources on e.g., directory boundaries. + %ifdef CHROMIUM + %xdefine %%VISIBILITY hidden + %else + %xdefine %%VISIBILITY + %endif + %else + %xdefine %%FUNCTION_PREFIX public_prefix + %xdefine %%VISIBILITY + %endif + %ifndef cglobaled_%2 + %xdefine %2 mangle(%%FUNCTION_PREFIX %+ _ %+ %2) + %xdefine %2.skip_prologue %2 %+ .skip_prologue + CAT_XDEFINE cglobaled_, %2, 1 + %endif + %xdefine current_function %2 + %xdefine current_function_section __SECT__ + %if FORMAT_ELF + global %2:function %%VISIBILITY + %elif FORMAT_MACHO + %ifdef __NASM_VER__ + global %2 + %else + global %2:private_extern + %endif + %else + global %2 + %endif + align function_align + %2: + RESET_MM_PERMUTATION ; needed for x86-64, also makes disassembly somewhat nicer + %xdefine rstk rsp ; copy of the original stack pointer, used when greater alignment than the known stack alignment is required + %assign stack_offset 0 ; stack pointer offset relative to the return address + %assign stack_size 0 ; amount of stack space that can be freely used inside a function + %assign stack_size_padded 0 ; total amount of allocated stack space, including space for callee-saved xmm registers on WIN64 and alignment padding + %assign xmm_regs_used 0 ; number of XMM registers requested, used for dealing with callee-saved registers on WIN64 + %ifnidn %3, "" + PROLOGUE %3 + %endif +%endmacro + +%macro cextern 1 + %xdefine %1 mangle(private_prefix %+ _ %+ %1) + CAT_XDEFINE cglobaled_, %1, 1 + extern %1 +%endmacro + +; like cextern, but without the prefix +%macro cextern_naked 1 + %ifdef PREFIX + %xdefine %1 mangle(%1) + %endif + CAT_XDEFINE cglobaled_, %1, 1 + extern %1 +%endmacro + +%macro const 1-2+ + %xdefine %1 mangle(private_prefix %+ _ %+ %1) + %if FORMAT_ELF + global %1:data hidden + %else + global %1 + %endif + %1: %2 +%endmacro + +; This is needed for ELF, otherwise the GNU linker assumes the stack is executable by default. +%if FORMAT_ELF + [SECTION .note.GNU-stack noalloc noexec nowrite progbits] +%endif + +; Tell debuggers how large the function was. +; This may be invoked multiple times per function; we rely on later instances overriding earlier ones. +; This is invoked by RET and similar macros, and also cglobal does it for the previous function, +; but if the last function in a source file doesn't use any of the standard macros for its epilogue, +; then its size might be unspecified. +%macro annotate_function_size 0 + %ifdef __YASM_VER__ + %ifdef current_function + %if FORMAT_ELF + current_function_section + %%ecf equ $ + size current_function %%ecf - current_function + __SECT__ + %endif + %endif + %endif +%endmacro + +; cpuflags + +%assign cpuflags_mmx (1<<0) +%assign cpuflags_mmx2 (1<<1) | cpuflags_mmx +%assign cpuflags_3dnow (1<<2) | cpuflags_mmx +%assign cpuflags_3dnowext (1<<3) | cpuflags_3dnow +%assign cpuflags_sse (1<<4) | cpuflags_mmx2 +%assign cpuflags_sse2 (1<<5) | cpuflags_sse +%assign cpuflags_sse2slow (1<<6) | cpuflags_sse2 +%assign cpuflags_sse3 (1<<7) | cpuflags_sse2 +%assign cpuflags_ssse3 (1<<8) | cpuflags_sse3 +%assign cpuflags_sse4 (1<<9) | cpuflags_ssse3 +%assign cpuflags_sse42 (1<<10)| cpuflags_sse4 +%assign cpuflags_avx (1<<11)| cpuflags_sse42 +%assign cpuflags_xop (1<<12)| cpuflags_avx +%assign cpuflags_fma4 (1<<13)| cpuflags_avx +%assign cpuflags_fma3 (1<<14)| cpuflags_avx +%assign cpuflags_avx2 (1<<15)| cpuflags_fma3 + +%assign cpuflags_cache32 (1<<16) +%assign cpuflags_cache64 (1<<17) +%assign cpuflags_slowctz (1<<18) +%assign cpuflags_lzcnt (1<<19) +%assign cpuflags_aligned (1<<20) ; not a cpu feature, but a function variant +%assign cpuflags_atom (1<<21) +%assign cpuflags_bmi1 (1<<22)|cpuflags_lzcnt +%assign cpuflags_bmi2 (1<<23)|cpuflags_bmi1 + +; Returns a boolean value expressing whether or not the specified cpuflag is enabled. +%define cpuflag(x) (((((cpuflags & (cpuflags_ %+ x)) ^ (cpuflags_ %+ x)) - 1) >> 31) & 1) +%define notcpuflag(x) (cpuflag(x) ^ 1) + +; Takes an arbitrary number of cpuflags from the above list. +; All subsequent functions (up to the next INIT_CPUFLAGS) is built for the specified cpu. +; You shouldn't need to invoke this macro directly, it's a subroutine for INIT_MMX &co. +%macro INIT_CPUFLAGS 0-* + %xdefine SUFFIX + %undef cpuname + %assign cpuflags 0 + + %if %0 >= 1 + %rep %0 + %ifdef cpuname + %xdefine cpuname cpuname %+ _%1 + %else + %xdefine cpuname %1 + %endif + %assign cpuflags cpuflags | cpuflags_%1 + %rotate 1 + %endrep + %xdefine SUFFIX _ %+ cpuname + + %if cpuflag(avx) + %assign avx_enabled 1 + %endif + %if (mmsize == 16 && notcpuflag(sse2)) || (mmsize == 32 && notcpuflag(avx2)) + %define mova movaps + %define movu movups + %define movnta movntps + %endif + %if cpuflag(aligned) + %define movu mova + %elif cpuflag(sse3) && notcpuflag(ssse3) + %define movu lddqu + %endif + %endif + + %if ARCH_X86_64 || cpuflag(sse2) + %ifdef __NASM_VER__ + ALIGNMODE k8 + %else + CPU amdnop + %endif + %else + %ifdef __NASM_VER__ + ALIGNMODE nop + %else + CPU basicnop + %endif + %endif +%endmacro + +; Merge mmx and sse* +; m# is a simd register of the currently selected size +; xm# is the corresponding xmm register if mmsize >= 16, otherwise the same as m# +; ym# is the corresponding ymm register if mmsize >= 32, otherwise the same as m# +; (All 3 remain in sync through SWAP.) + +%macro CAT_XDEFINE 3 + %xdefine %1%2 %3 +%endmacro + +%macro CAT_UNDEF 2 + %undef %1%2 +%endmacro + +%macro INIT_MMX 0-1+ + %assign avx_enabled 0 + %define RESET_MM_PERMUTATION INIT_MMX %1 + %define mmsize 8 + %define num_mmregs 8 + %define mova movq + %define movu movq + %define movh movd + %define movnta movntq + %assign %%i 0 + %rep 8 + CAT_XDEFINE m, %%i, mm %+ %%i + CAT_XDEFINE nnmm, %%i, %%i + %assign %%i %%i+1 + %endrep + %rep 8 + CAT_UNDEF m, %%i + CAT_UNDEF nnmm, %%i + %assign %%i %%i+1 + %endrep + INIT_CPUFLAGS %1 +%endmacro + +%macro INIT_XMM 0-1+ + %assign avx_enabled 0 + %define RESET_MM_PERMUTATION INIT_XMM %1 + %define mmsize 16 + %define num_mmregs 8 + %if ARCH_X86_64 + %define num_mmregs 16 + %endif + %define mova movdqa + %define movu movdqu + %define movh movq + %define movnta movntdq + %assign %%i 0 + %rep num_mmregs + CAT_XDEFINE m, %%i, xmm %+ %%i + CAT_XDEFINE nnxmm, %%i, %%i + %assign %%i %%i+1 + %endrep + INIT_CPUFLAGS %1 +%endmacro + +%macro INIT_YMM 0-1+ + %assign avx_enabled 1 + %define RESET_MM_PERMUTATION INIT_YMM %1 + %define mmsize 32 + %define num_mmregs 8 + %if ARCH_X86_64 + %define num_mmregs 16 + %endif + %define mova movdqa + %define movu movdqu + %undef movh + %define movnta movntdq + %assign %%i 0 + %rep num_mmregs + CAT_XDEFINE m, %%i, ymm %+ %%i + CAT_XDEFINE nnymm, %%i, %%i + %assign %%i %%i+1 + %endrep + INIT_CPUFLAGS %1 +%endmacro + +INIT_XMM + +%macro DECLARE_MMCAST 1 + %define mmmm%1 mm%1 + %define mmxmm%1 mm%1 + %define mmymm%1 mm%1 + %define xmmmm%1 mm%1 + %define xmmxmm%1 xmm%1 + %define xmmymm%1 xmm%1 + %define ymmmm%1 mm%1 + %define ymmxmm%1 xmm%1 + %define ymmymm%1 ymm%1 + %define xm%1 xmm %+ m%1 + %define ym%1 ymm %+ m%1 +%endmacro + +%assign i 0 +%rep 16 + DECLARE_MMCAST i + %assign i i+1 +%endrep + +; I often want to use macros that permute their arguments. e.g. there's no +; efficient way to implement butterfly or transpose or dct without swapping some +; arguments. +; +; I would like to not have to manually keep track of the permutations: +; If I insert a permutation in the middle of a function, it should automatically +; change everything that follows. For more complex macros I may also have multiple +; implementations, e.g. the SSE2 and SSSE3 versions may have different permutations. +; +; Hence these macros. Insert a PERMUTE or some SWAPs at the end of a macro that +; permutes its arguments. It's equivalent to exchanging the contents of the +; registers, except that this way you exchange the register names instead, so it +; doesn't cost any cycles. + +%macro PERMUTE 2-* ; takes a list of pairs to swap + %rep %0/2 + %xdefine %%tmp%2 m%2 + %rotate 2 + %endrep + %rep %0/2 + %xdefine m%1 %%tmp%2 + CAT_XDEFINE nn, m%1, %1 + %rotate 2 + %endrep +%endmacro + +%macro SWAP 2+ ; swaps a single chain (sometimes more concise than pairs) + %ifnum %1 ; SWAP 0, 1, ... + SWAP_INTERNAL_NUM %1, %2 + %else ; SWAP m0, m1, ... + SWAP_INTERNAL_NAME %1, %2 + %endif +%endmacro + +%macro SWAP_INTERNAL_NUM 2-* + %rep %0-1 + %xdefine %%tmp m%1 + %xdefine m%1 m%2 + %xdefine m%2 %%tmp + CAT_XDEFINE nn, m%1, %1 + CAT_XDEFINE nn, m%2, %2 + %rotate 1 + %endrep +%endmacro + +%macro SWAP_INTERNAL_NAME 2-* + %xdefine %%args nn %+ %1 + %rep %0-1 + %xdefine %%args %%args, nn %+ %2 + %rotate 1 + %endrep + SWAP_INTERNAL_NUM %%args +%endmacro + +; If SAVE_MM_PERMUTATION is placed at the end of a function, then any later +; calls to that function will automatically load the permutation, so values can +; be returned in mmregs. +%macro SAVE_MM_PERMUTATION 0-1 + %if %0 + %xdefine %%f %1_m + %else + %xdefine %%f current_function %+ _m + %endif + %assign %%i 0 + %rep num_mmregs + CAT_XDEFINE %%f, %%i, m %+ %%i + %assign %%i %%i+1 + %endrep +%endmacro + +%macro LOAD_MM_PERMUTATION 1 ; name to load from + %ifdef %1_m0 + %assign %%i 0 + %rep num_mmregs + CAT_XDEFINE m, %%i, %1_m %+ %%i + CAT_XDEFINE nn, m %+ %%i, %%i + %assign %%i %%i+1 + %endrep + %endif +%endmacro + +; Append cpuflags to the callee's name iff the appended name is known and the plain name isn't +%macro call 1 + call_internal %1 %+ SUFFIX, %1 +%endmacro +%macro call_internal 2 + %xdefine %%i %2 + %ifndef cglobaled_%2 + %ifdef cglobaled_%1 + %xdefine %%i %1 + %endif + %endif + call %%i + LOAD_MM_PERMUTATION %%i +%endmacro + +; Substitutions that reduce instruction size but are functionally equivalent +%macro add 2 + %ifnum %2 + %if %2==128 + sub %1, -128 + %else + add %1, %2 + %endif + %else + add %1, %2 + %endif +%endmacro + +%macro sub 2 + %ifnum %2 + %if %2==128 + add %1, -128 + %else + sub %1, %2 + %endif + %else + sub %1, %2 + %endif +%endmacro + +;============================================================================= +; AVX abstraction layer +;============================================================================= + +%assign i 0 +%rep 16 + %if i < 8 + CAT_XDEFINE sizeofmm, i, 8 + %endif + CAT_XDEFINE sizeofxmm, i, 16 + CAT_XDEFINE sizeofymm, i, 32 + %assign i i+1 +%endrep +%undef i + +%macro CHECK_AVX_INSTR_EMU 3-* + %xdefine %%opcode %1 + %xdefine %%dst %2 + %rep %0-2 + %ifidn %%dst, %3 + %error non-avx emulation of ``%%opcode'' is not supported + %endif + %rotate 1 + %endrep +%endmacro + +;%1 == instruction +;%2 == minimal instruction set +;%3 == 1 if float, 0 if int +;%4 == 1 if non-destructive or 4-operand (xmm, xmm, xmm, imm), 0 otherwise +;%5 == 1 if commutative (i.e. doesn't matter which src arg is which), 0 if not +;%6+: operands +%macro RUN_AVX_INSTR 6-9+ + %ifnum sizeof%7 + %assign __sizeofreg sizeof%7 + %elifnum sizeof%6 + %assign __sizeofreg sizeof%6 + %else + %assign __sizeofreg mmsize + %endif + %assign __emulate_avx 0 + %if avx_enabled && __sizeofreg >= 16 + %xdefine __instr v%1 + %else + %xdefine __instr %1 + %if %0 >= 8+%4 + %assign __emulate_avx 1 + %endif + %endif + %ifnidn %2, fnord + %ifdef cpuname + %if notcpuflag(%2) + %error use of ``%1'' %2 instruction in cpuname function: current_function + %elif cpuflags_%2 < cpuflags_sse && notcpuflag(sse2) && __sizeofreg > 8 + %error use of ``%1'' sse2 instruction in cpuname function: current_function + %endif + %endif + %endif + + %if __emulate_avx + %xdefine __src1 %7 + %xdefine __src2 %8 + %ifnidn %6, %7 + %if %0 >= 9 + CHECK_AVX_INSTR_EMU {%1 %6, %7, %8, %9}, %6, %8, %9 + %else + CHECK_AVX_INSTR_EMU {%1 %6, %7, %8}, %6, %8 + %endif + %if %5 && %4 == 0 + %ifnid %8 + ; 3-operand AVX instructions with a memory arg can only have it in src2, + ; whereas SSE emulation prefers to have it in src1 (i.e. the mov). + ; So, if the instruction is commutative with a memory arg, swap them. + %xdefine __src1 %8 + %xdefine __src2 %7 + %endif + %endif + %if __sizeofreg == 8 + MOVQ %6, __src1 + %elif %3 + MOVAPS %6, __src1 + %else + MOVDQA %6, __src1 + %endif + %endif + %if %0 >= 9 + %1 %6, __src2, %9 + %else + %1 %6, __src2 + %endif + %elif %0 >= 9 + __instr %6, %7, %8, %9 + %elif %0 == 8 + __instr %6, %7, %8 + %elif %0 == 7 + __instr %6, %7 + %else + __instr %6 + %endif +%endmacro + +;%1 == instruction +;%2 == minimal instruction set +;%3 == 1 if float, 0 if int +;%4 == 1 if non-destructive or 4-operand (xmm, xmm, xmm, imm), 0 otherwise +;%5 == 1 if commutative (i.e. doesn't matter which src arg is which), 0 if not +%macro AVX_INSTR 1-5 fnord, 0, 1, 0 + %macro %1 1-10 fnord, fnord, fnord, fnord, %1, %2, %3, %4, %5 + %ifidn %2, fnord + RUN_AVX_INSTR %6, %7, %8, %9, %10, %1 + %elifidn %3, fnord + RUN_AVX_INSTR %6, %7, %8, %9, %10, %1, %2 + %elifidn %4, fnord + RUN_AVX_INSTR %6, %7, %8, %9, %10, %1, %2, %3 + %elifidn %5, fnord + RUN_AVX_INSTR %6, %7, %8, %9, %10, %1, %2, %3, %4 + %else + RUN_AVX_INSTR %6, %7, %8, %9, %10, %1, %2, %3, %4, %5 + %endif + %endmacro +%endmacro + +; Instructions with both VEX and non-VEX encodings +; Non-destructive instructions are written without parameters +AVX_INSTR addpd, sse2, 1, 0, 1 +AVX_INSTR addps, sse, 1, 0, 1 +AVX_INSTR addsd, sse2, 1, 0, 1 +AVX_INSTR addss, sse, 1, 0, 1 +AVX_INSTR addsubpd, sse3, 1, 0, 0 +AVX_INSTR addsubps, sse3, 1, 0, 0 +AVX_INSTR aesdec, fnord, 0, 0, 0 +AVX_INSTR aesdeclast, fnord, 0, 0, 0 +AVX_INSTR aesenc, fnord, 0, 0, 0 +AVX_INSTR aesenclast, fnord, 0, 0, 0 +AVX_INSTR aesimc +AVX_INSTR aeskeygenassist +AVX_INSTR andnpd, sse2, 1, 0, 0 +AVX_INSTR andnps, sse, 1, 0, 0 +AVX_INSTR andpd, sse2, 1, 0, 1 +AVX_INSTR andps, sse, 1, 0, 1 +AVX_INSTR blendpd, sse4, 1, 0, 0 +AVX_INSTR blendps, sse4, 1, 0, 0 +AVX_INSTR blendvpd, sse4, 1, 0, 0 +AVX_INSTR blendvps, sse4, 1, 0, 0 +AVX_INSTR cmppd, sse2, 1, 1, 0 +AVX_INSTR cmpps, sse, 1, 1, 0 +AVX_INSTR cmpsd, sse2, 1, 1, 0 +AVX_INSTR cmpss, sse, 1, 1, 0 +AVX_INSTR comisd, sse2 +AVX_INSTR comiss, sse +AVX_INSTR cvtdq2pd, sse2 +AVX_INSTR cvtdq2ps, sse2 +AVX_INSTR cvtpd2dq, sse2 +AVX_INSTR cvtpd2ps, sse2 +AVX_INSTR cvtps2dq, sse2 +AVX_INSTR cvtps2pd, sse2 +AVX_INSTR cvtsd2si, sse2 +AVX_INSTR cvtsd2ss, sse2 +AVX_INSTR cvtsi2sd, sse2 +AVX_INSTR cvtsi2ss, sse +AVX_INSTR cvtss2sd, sse2 +AVX_INSTR cvtss2si, sse +AVX_INSTR cvttpd2dq, sse2 +AVX_INSTR cvttps2dq, sse2 +AVX_INSTR cvttsd2si, sse2 +AVX_INSTR cvttss2si, sse +AVX_INSTR divpd, sse2, 1, 0, 0 +AVX_INSTR divps, sse, 1, 0, 0 +AVX_INSTR divsd, sse2, 1, 0, 0 +AVX_INSTR divss, sse, 1, 0, 0 +AVX_INSTR dppd, sse4, 1, 1, 0 +AVX_INSTR dpps, sse4, 1, 1, 0 +AVX_INSTR extractps, sse4 +AVX_INSTR haddpd, sse3, 1, 0, 0 +AVX_INSTR haddps, sse3, 1, 0, 0 +AVX_INSTR hsubpd, sse3, 1, 0, 0 +AVX_INSTR hsubps, sse3, 1, 0, 0 +AVX_INSTR insertps, sse4, 1, 1, 0 +AVX_INSTR lddqu, sse3 +AVX_INSTR ldmxcsr, sse +AVX_INSTR maskmovdqu, sse2 +AVX_INSTR maxpd, sse2, 1, 0, 1 +AVX_INSTR maxps, sse, 1, 0, 1 +AVX_INSTR maxsd, sse2, 1, 0, 1 +AVX_INSTR maxss, sse, 1, 0, 1 +AVX_INSTR minpd, sse2, 1, 0, 1 +AVX_INSTR minps, sse, 1, 0, 1 +AVX_INSTR minsd, sse2, 1, 0, 1 +AVX_INSTR minss, sse, 1, 0, 1 +AVX_INSTR movapd, sse2 +AVX_INSTR movaps, sse +AVX_INSTR movd, mmx +AVX_INSTR movddup, sse3 +AVX_INSTR movdqa, sse2 +AVX_INSTR movdqu, sse2 +AVX_INSTR movhlps, sse, 1, 0, 0 +AVX_INSTR movhpd, sse2, 1, 0, 0 +AVX_INSTR movhps, sse, 1, 0, 0 +AVX_INSTR movlhps, sse, 1, 0, 0 +AVX_INSTR movlpd, sse2, 1, 0, 0 +AVX_INSTR movlps, sse, 1, 0, 0 +AVX_INSTR movmskpd, sse2 +AVX_INSTR movmskps, sse +AVX_INSTR movntdq, sse2 +AVX_INSTR movntdqa, sse4 +AVX_INSTR movntpd, sse2 +AVX_INSTR movntps, sse +AVX_INSTR movq, mmx +AVX_INSTR movsd, sse2, 1, 0, 0 +AVX_INSTR movshdup, sse3 +AVX_INSTR movsldup, sse3 +AVX_INSTR movss, sse, 1, 0, 0 +AVX_INSTR movupd, sse2 +AVX_INSTR movups, sse +AVX_INSTR mpsadbw, sse4 +AVX_INSTR mulpd, sse2, 1, 0, 1 +AVX_INSTR mulps, sse, 1, 0, 1 +AVX_INSTR mulsd, sse2, 1, 0, 1 +AVX_INSTR mulss, sse, 1, 0, 1 +AVX_INSTR orpd, sse2, 1, 0, 1 +AVX_INSTR orps, sse, 1, 0, 1 +AVX_INSTR pabsb, ssse3 +AVX_INSTR pabsd, ssse3 +AVX_INSTR pabsw, ssse3 +AVX_INSTR packsswb, mmx, 0, 0, 0 +AVX_INSTR packssdw, mmx, 0, 0, 0 +AVX_INSTR packuswb, mmx, 0, 0, 0 +AVX_INSTR packusdw, sse4, 0, 0, 0 +AVX_INSTR paddb, mmx, 0, 0, 1 +AVX_INSTR paddw, mmx, 0, 0, 1 +AVX_INSTR paddd, mmx, 0, 0, 1 +AVX_INSTR paddq, sse2, 0, 0, 1 +AVX_INSTR paddsb, mmx, 0, 0, 1 +AVX_INSTR paddsw, mmx, 0, 0, 1 +AVX_INSTR paddusb, mmx, 0, 0, 1 +AVX_INSTR paddusw, mmx, 0, 0, 1 +AVX_INSTR palignr, ssse3 +AVX_INSTR pand, mmx, 0, 0, 1 +AVX_INSTR pandn, mmx, 0, 0, 0 +AVX_INSTR pavgb, mmx2, 0, 0, 1 +AVX_INSTR pavgw, mmx2, 0, 0, 1 +AVX_INSTR pblendvb, sse4, 0, 0, 0 +AVX_INSTR pblendw, sse4 +AVX_INSTR pclmulqdq +AVX_INSTR pcmpestri, sse42 +AVX_INSTR pcmpestrm, sse42 +AVX_INSTR pcmpistri, sse42 +AVX_INSTR pcmpistrm, sse42 +AVX_INSTR pcmpeqb, mmx, 0, 0, 1 +AVX_INSTR pcmpeqw, mmx, 0, 0, 1 +AVX_INSTR pcmpeqd, mmx, 0, 0, 1 +AVX_INSTR pcmpeqq, sse4, 0, 0, 1 +AVX_INSTR pcmpgtb, mmx, 0, 0, 0 +AVX_INSTR pcmpgtw, mmx, 0, 0, 0 +AVX_INSTR pcmpgtd, mmx, 0, 0, 0 +AVX_INSTR pcmpgtq, sse42, 0, 0, 0 +AVX_INSTR pextrb, sse4 +AVX_INSTR pextrd, sse4 +AVX_INSTR pextrq, sse4 +AVX_INSTR pextrw, mmx2 +AVX_INSTR phaddw, ssse3, 0, 0, 0 +AVX_INSTR phaddd, ssse3, 0, 0, 0 +AVX_INSTR phaddsw, ssse3, 0, 0, 0 +AVX_INSTR phminposuw, sse4 +AVX_INSTR phsubw, ssse3, 0, 0, 0 +AVX_INSTR phsubd, ssse3, 0, 0, 0 +AVX_INSTR phsubsw, ssse3, 0, 0, 0 +AVX_INSTR pinsrb, sse4 +AVX_INSTR pinsrd, sse4 +AVX_INSTR pinsrq, sse4 +AVX_INSTR pinsrw, mmx2 +AVX_INSTR pmaddwd, mmx, 0, 0, 1 +AVX_INSTR pmaddubsw, ssse3, 0, 0, 0 +AVX_INSTR pmaxsb, sse4, 0, 0, 1 +AVX_INSTR pmaxsw, mmx2, 0, 0, 1 +AVX_INSTR pmaxsd, sse4, 0, 0, 1 +AVX_INSTR pmaxub, mmx2, 0, 0, 1 +AVX_INSTR pmaxuw, sse4, 0, 0, 1 +AVX_INSTR pmaxud, sse4, 0, 0, 1 +AVX_INSTR pminsb, sse4, 0, 0, 1 +AVX_INSTR pminsw, mmx2, 0, 0, 1 +AVX_INSTR pminsd, sse4, 0, 0, 1 +AVX_INSTR pminub, mmx2, 0, 0, 1 +AVX_INSTR pminuw, sse4, 0, 0, 1 +AVX_INSTR pminud, sse4, 0, 0, 1 +AVX_INSTR pmovmskb, mmx2 +AVX_INSTR pmovsxbw, sse4 +AVX_INSTR pmovsxbd, sse4 +AVX_INSTR pmovsxbq, sse4 +AVX_INSTR pmovsxwd, sse4 +AVX_INSTR pmovsxwq, sse4 +AVX_INSTR pmovsxdq, sse4 +AVX_INSTR pmovzxbw, sse4 +AVX_INSTR pmovzxbd, sse4 +AVX_INSTR pmovzxbq, sse4 +AVX_INSTR pmovzxwd, sse4 +AVX_INSTR pmovzxwq, sse4 +AVX_INSTR pmovzxdq, sse4 +AVX_INSTR pmuldq, sse4, 0, 0, 1 +AVX_INSTR pmulhrsw, ssse3, 0, 0, 1 +AVX_INSTR pmulhuw, mmx2, 0, 0, 1 +AVX_INSTR pmulhw, mmx, 0, 0, 1 +AVX_INSTR pmullw, mmx, 0, 0, 1 +AVX_INSTR pmulld, sse4, 0, 0, 1 +AVX_INSTR pmuludq, sse2, 0, 0, 1 +AVX_INSTR por, mmx, 0, 0, 1 +AVX_INSTR psadbw, mmx2, 0, 0, 1 +AVX_INSTR pshufb, ssse3, 0, 0, 0 +AVX_INSTR pshufd, sse2 +AVX_INSTR pshufhw, sse2 +AVX_INSTR pshuflw, sse2 +AVX_INSTR psignb, ssse3, 0, 0, 0 +AVX_INSTR psignw, ssse3, 0, 0, 0 +AVX_INSTR psignd, ssse3, 0, 0, 0 +AVX_INSTR psllw, mmx, 0, 0, 0 +AVX_INSTR pslld, mmx, 0, 0, 0 +AVX_INSTR psllq, mmx, 0, 0, 0 +AVX_INSTR pslldq, sse2, 0, 0, 0 +AVX_INSTR psraw, mmx, 0, 0, 0 +AVX_INSTR psrad, mmx, 0, 0, 0 +AVX_INSTR psrlw, mmx, 0, 0, 0 +AVX_INSTR psrld, mmx, 0, 0, 0 +AVX_INSTR psrlq, mmx, 0, 0, 0 +AVX_INSTR psrldq, sse2, 0, 0, 0 +AVX_INSTR psubb, mmx, 0, 0, 0 +AVX_INSTR psubw, mmx, 0, 0, 0 +AVX_INSTR psubd, mmx, 0, 0, 0 +AVX_INSTR psubq, sse2, 0, 0, 0 +AVX_INSTR psubsb, mmx, 0, 0, 0 +AVX_INSTR psubsw, mmx, 0, 0, 0 +AVX_INSTR psubusb, mmx, 0, 0, 0 +AVX_INSTR psubusw, mmx, 0, 0, 0 +AVX_INSTR ptest, sse4 +AVX_INSTR punpckhbw, mmx, 0, 0, 0 +AVX_INSTR punpckhwd, mmx, 0, 0, 0 +AVX_INSTR punpckhdq, mmx, 0, 0, 0 +AVX_INSTR punpckhqdq, sse2, 0, 0, 0 +AVX_INSTR punpcklbw, mmx, 0, 0, 0 +AVX_INSTR punpcklwd, mmx, 0, 0, 0 +AVX_INSTR punpckldq, mmx, 0, 0, 0 +AVX_INSTR punpcklqdq, sse2, 0, 0, 0 +AVX_INSTR pxor, mmx, 0, 0, 1 +AVX_INSTR rcpps, sse, 1, 0, 0 +AVX_INSTR rcpss, sse, 1, 0, 0 +AVX_INSTR roundpd, sse4 +AVX_INSTR roundps, sse4 +AVX_INSTR roundsd, sse4 +AVX_INSTR roundss, sse4 +AVX_INSTR rsqrtps, sse, 1, 0, 0 +AVX_INSTR rsqrtss, sse, 1, 0, 0 +AVX_INSTR shufpd, sse2, 1, 1, 0 +AVX_INSTR shufps, sse, 1, 1, 0 +AVX_INSTR sqrtpd, sse2, 1, 0, 0 +AVX_INSTR sqrtps, sse, 1, 0, 0 +AVX_INSTR sqrtsd, sse2, 1, 0, 0 +AVX_INSTR sqrtss, sse, 1, 0, 0 +AVX_INSTR stmxcsr, sse +AVX_INSTR subpd, sse2, 1, 0, 0 +AVX_INSTR subps, sse, 1, 0, 0 +AVX_INSTR subsd, sse2, 1, 0, 0 +AVX_INSTR subss, sse, 1, 0, 0 +AVX_INSTR ucomisd, sse2 +AVX_INSTR ucomiss, sse +AVX_INSTR unpckhpd, sse2, 1, 0, 0 +AVX_INSTR unpckhps, sse, 1, 0, 0 +AVX_INSTR unpcklpd, sse2, 1, 0, 0 +AVX_INSTR unpcklps, sse, 1, 0, 0 +AVX_INSTR xorpd, sse2, 1, 0, 1 +AVX_INSTR xorps, sse, 1, 0, 1 + +; 3DNow instructions, for sharing code between AVX, SSE and 3DN +AVX_INSTR pfadd, 3dnow, 1, 0, 1 +AVX_INSTR pfsub, 3dnow, 1, 0, 0 +AVX_INSTR pfmul, 3dnow, 1, 0, 1 + +; base-4 constants for shuffles +%assign i 0 +%rep 256 + %assign j ((i>>6)&3)*1000 + ((i>>4)&3)*100 + ((i>>2)&3)*10 + (i&3) + %if j < 10 + CAT_XDEFINE q000, j, i + %elif j < 100 + CAT_XDEFINE q00, j, i + %elif j < 1000 + CAT_XDEFINE q0, j, i + %else + CAT_XDEFINE q, j, i + %endif + %assign i i+1 +%endrep +%undef i +%undef j + +%macro FMA_INSTR 3 + %macro %1 4-7 %1, %2, %3 + %if cpuflag(xop) + v%5 %1, %2, %3, %4 + %elifnidn %1, %4 + %6 %1, %2, %3 + %7 %1, %4 + %else + %error non-xop emulation of ``%5 %1, %2, %3, %4'' is not supported + %endif + %endmacro +%endmacro + +FMA_INSTR pmacsww, pmullw, paddw +FMA_INSTR pmacsdd, pmulld, paddd ; sse4 emulation +FMA_INSTR pmacsdql, pmuldq, paddq ; sse4 emulation +FMA_INSTR pmadcswd, pmaddwd, paddd + +; Macros for consolidating FMA3 and FMA4 using 4-operand (dst, src1, src2, src3) syntax. +; FMA3 is only possible if dst is the same as one of the src registers. +; Either src2 or src3 can be a memory operand. +%macro FMA4_INSTR 2-* + %push fma4_instr + %xdefine %$prefix %1 + %rep %0 - 1 + %macro %$prefix%2 4-6 %$prefix, %2 + %if notcpuflag(fma3) && notcpuflag(fma4) + %error use of ``%5%6'' fma instruction in cpuname function: current_function + %elif cpuflag(fma4) + v%5%6 %1, %2, %3, %4 + %elifidn %1, %2 + ; If %3 or %4 is a memory operand it needs to be encoded as the last operand. + %ifid %3 + v%{5}213%6 %2, %3, %4 + %else + v%{5}132%6 %2, %4, %3 + %endif + %elifidn %1, %3 + v%{5}213%6 %3, %2, %4 + %elifidn %1, %4 + v%{5}231%6 %4, %2, %3 + %else + %error fma3 emulation of ``%5%6 %1, %2, %3, %4'' is not supported + %endif + %endmacro + %rotate 1 + %endrep + %pop +%endmacro + +FMA4_INSTR fmadd, pd, ps, sd, ss +FMA4_INSTR fmaddsub, pd, ps +FMA4_INSTR fmsub, pd, ps, sd, ss +FMA4_INSTR fmsubadd, pd, ps +FMA4_INSTR fnmadd, pd, ps, sd, ss +FMA4_INSTR fnmsub, pd, ps, sd, ss + +; workaround: vpbroadcastq is broken in x86_32 due to a yasm bug (fixed in 1.3.0) +%ifdef __YASM_VER__ + %if __YASM_VERSION_ID__ < 0x01030000 && ARCH_X86_64 == 0 + %macro vpbroadcastq 2 + %if sizeof%1 == 16 + movddup %1, %2 + %else + vbroadcastsd %1, %2 + %endif + %endmacro + %endif +%endif diff --git a/tools.mk b/tools.mk new file mode 100644 index 0000000..1d005b2 --- /dev/null +++ b/tools.mk @@ -0,0 +1,115 @@ +## +## Copyright (c) 2016 The WebM project authors. All Rights Reserved. +## +## Use of this source code is governed by a BSD-style license +## that can be found in the LICENSE file in the root of the source +## tree. An additional intellectual property rights grant can be found +## in the file PATENTS. All contributing project authors may +## be found in the AUTHORS file in the root of the source tree. +## + +# List of tools to build. +TOOLS-yes += tiny_ssim.c +tiny_ssim.SRCS += vpx/vpx_integer.h y4minput.c y4minput.h \ + vpx/vpx_codec.h vpx/src/vpx_image.c +tiny_ssim.SRCS += vpx_mem/vpx_mem.c vpx_mem/vpx_mem.h +tiny_ssim.SRCS += vpx_dsp/ssim.h vpx_scale/yv12config.h +tiny_ssim.SRCS += vpx_ports/mem.h vpx_ports/mem.h +tiny_ssim.SRCS += vpx_mem/include/vpx_mem_intrnl.h +tiny_ssim.GUID = 3afa9b05-940b-4d68-b5aa-55157d8ed7b4 +tiny_ssim.DESCRIPTION = Generate SSIM/PSNR from raw .yuv files + +# +# End of specified files. The rest of the build rules should happen +# automagically from here. +# + + +# Expand list of selected tools to build (as specified above) +TOOLS = $(addprefix tools/,$(call enabled,TOOLS)) +ALL_SRCS = $(foreach ex,$(TOOLS),$($(notdir $(ex:.c=)).SRCS)) +CFLAGS += -I../include + +ifneq ($(CONFIG_CODEC_SRCS), yes) + CFLAGS += -I../include/vpx +endif + +# Expand all tools sources into a variable containing all sources +# for that tools (not just them main one specified in TOOLS) +# and add this file to the list (for MSVS workspace generation) +$(foreach ex,$(TOOLS),$(eval $(notdir $(ex:.c=)).SRCS += $(ex) tools.mk)) + + +# Create build/install dependencies for all tools. The common case +# is handled here. The MSVS case is handled below. +NOT_MSVS = $(if $(CONFIG_MSVS),,yes) +DIST-BINS-$(NOT_MSVS) += $(addprefix bin/,$(TOOLS:.c=$(EXE_SFX))) +DIST-SRCS-yes += $(ALL_SRCS) +OBJS-$(NOT_MSVS) += $(call objs,$(ALL_SRCS)) +BINS-$(NOT_MSVS) += $(addprefix $(BUILD_PFX),$(TOOLS:.c=$(EXE_SFX))) + +# Instantiate linker template for all tools. +$(foreach bin,$(BINS-yes),\ + $(eval $(bin):)\ + $(eval $(call linker_template,$(bin),\ + $(call objs,$($(notdir $(bin:$(EXE_SFX)=)).SRCS)) -lm))) + +# The following pairs define a mapping of locations in the distribution +# tree to locations in the source/build trees. +INSTALL_MAPS += src/%.c %.c +INSTALL_MAPS += src/% $(SRC_PATH_BARE)/% +INSTALL_MAPS += bin/% % +INSTALL_MAPS += % % + + +# Build Visual Studio Projects. We use a template here to instantiate +# explicit rules rather than using an implicit rule because we want to +# leverage make's VPATH searching rather than specifying the paths on +# each file in TOOLS. This has the unfortunate side effect that +# touching the source files trigger a rebuild of the project files +# even though there is no real dependency there (the dependency is on +# the makefiles). We may want to revisit this. +define vcproj_template +$(1): $($(1:.$(VCPROJ_SFX)=).SRCS) vpx.$(VCPROJ_SFX) + $(if $(quiet),@echo " [vcproj] $$@") + $(qexec)$$(GEN_VCPROJ)\ + --exe\ + --target=$$(TOOLCHAIN)\ + --name=$$(@:.$(VCPROJ_SFX)=)\ + --ver=$$(CONFIG_VS_VERSION)\ + --proj-guid=$$($$(@:.$(VCPROJ_SFX)=).GUID)\ + --src-path-bare="$(SRC_PATH_BARE)" \ + $$(if $$(CONFIG_STATIC_MSVCRT),--static-crt) \ + --out=$$@ $$(INTERNAL_CFLAGS) $$(CFLAGS) \ + $$(INTERNAL_LDFLAGS) $$(LDFLAGS) $$^ +endef +TOOLS_BASENAME := $(notdir $(TOOLS)) +PROJECTS-$(CONFIG_MSVS) += $(TOOLS_BASENAME:.c=.$(VCPROJ_SFX)) +INSTALL-BINS-$(CONFIG_MSVS) += $(foreach p,$(VS_PLATFORMS),\ + $(addprefix bin/$(p)/,$(TOOLS_BASENAME:.c=.exe))) +$(foreach proj,$(call enabled,PROJECTS),\ + $(eval $(call vcproj_template,$(proj)))) + +# +# Documentation Rules +# +%.dox: %.c + @echo " [DOXY] $@" + @mkdir -p $(dir $@) + @echo "/*!\page tools_$(@F:.dox=) $(@F:.dox=)" > $@ + @echo " \includelineno $(> $@ + @echo "*/" >> $@ + +tools.dox: tools.mk + @echo " [DOXY] $@" + @echo "/*!\page tools Tools" > $@ + @echo " This SDK includes a number of tools/utilities."\ + "The following tools are included: ">>$@ + @$(foreach ex,$(sort $(notdir $(TOOLS:.c=))),\ + echo " - \subpage tools_$(ex) $($(ex).DESCRIPTION)" >> $@;) + @echo "*/" >> $@ + +CLEAN-OBJS += tools.doxy tools.dox $(TOOLS:.c=.dox) +DOCS-yes += tools.doxy tools.dox +tools.doxy: tools.dox $(TOOLS:.c=.dox) + @echo "INPUT += $^" > $@ diff --git a/tools/cpplint.py b/tools/cpplint.py new file mode 100755 index 0000000..25fbef7 --- /dev/null +++ b/tools/cpplint.py @@ -0,0 +1,4756 @@ +#!/usr/bin/python +# +# Copyright (c) 2009 Google Inc. All rights reserved. +# +# Redistribution and use in source and binary forms, with or without +# modification, are permitted provided that the following conditions are +# met: +# +# * Redistributions of source code must retain the above copyright +# notice, this list of conditions and the following disclaimer. +# * Redistributions in binary form must reproduce the above +# copyright notice, this list of conditions and the following disclaimer +# in the documentation and/or other materials provided with the +# distribution. +# * Neither the name of Google Inc. nor the names of its +# contributors may be used to endorse or promote products derived from +# this software without specific prior written permission. +# +# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +"""Does google-lint on c++ files. + +The goal of this script is to identify places in the code that *may* +be in non-compliance with google style. It does not attempt to fix +up these problems -- the point is to educate. It does also not +attempt to find all problems, or to ensure that everything it does +find is legitimately a problem. + +In particular, we can get very confused by /* and // inside strings! +We do a small hack, which is to ignore //'s with "'s after them on the +same line, but it is far from perfect (in either direction). +""" + +import codecs +import copy +import getopt +import math # for log +import os +import re +import sre_compile +import string +import sys +import unicodedata + + +_USAGE = """ +Syntax: cpplint.py [--verbose=#] [--output=vs7] [--filter=-x,+y,...] + [--counting=total|toplevel|detailed] [--root=subdir] + [--linelength=digits] + [file] ... + + The style guidelines this tries to follow are those in + http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml + + Every problem is given a confidence score from 1-5, with 5 meaning we are + certain of the problem, and 1 meaning it could be a legitimate construct. + This will miss some errors, and is not a substitute for a code review. + + To suppress false-positive errors of a certain category, add a + 'NOLINT(category)' comment to the line. NOLINT or NOLINT(*) + suppresses errors of all categories on that line. + + The files passed in will be linted; at least one file must be provided. + Default linted extensions are .cc, .cpp, .cu, .cuh and .h. Change the + extensions with the --extensions flag. + + Flags: + + output=vs7 + By default, the output is formatted to ease emacs parsing. Visual Studio + compatible output (vs7) may also be used. Other formats are unsupported. + + verbose=# + Specify a number 0-5 to restrict errors to certain verbosity levels. + + filter=-x,+y,... + Specify a comma-separated list of category-filters to apply: only + error messages whose category names pass the filters will be printed. + (Category names are printed with the message and look like + "[whitespace/indent]".) Filters are evaluated left to right. + "-FOO" and "FOO" means "do not print categories that start with FOO". + "+FOO" means "do print categories that start with FOO". + + Examples: --filter=-whitespace,+whitespace/braces + --filter=whitespace,runtime/printf,+runtime/printf_format + --filter=-,+build/include_what_you_use + + To see a list of all the categories used in cpplint, pass no arg: + --filter= + + counting=total|toplevel|detailed + The total number of errors found is always printed. If + 'toplevel' is provided, then the count of errors in each of + the top-level categories like 'build' and 'whitespace' will + also be printed. If 'detailed' is provided, then a count + is provided for each category like 'build/class'. + + root=subdir + The root directory used for deriving header guard CPP variable. + By default, the header guard CPP variable is calculated as the relative + path to the directory that contains .git, .hg, or .svn. When this flag + is specified, the relative path is calculated from the specified + directory. If the specified directory does not exist, this flag is + ignored. + + Examples: + Assuing that src/.git exists, the header guard CPP variables for + src/chrome/browser/ui/browser.h are: + + No flag => CHROME_BROWSER_UI_BROWSER_H_ + --root=chrome => BROWSER_UI_BROWSER_H_ + --root=chrome/browser => UI_BROWSER_H_ + + linelength=digits + This is the allowed line length for the project. The default value is + 80 characters. + + Examples: + --linelength=120 + + extensions=extension,extension,... + The allowed file extensions that cpplint will check + + Examples: + --extensions=hpp,cpp +""" + +# We categorize each error message we print. Here are the categories. +# We want an explicit list so we can list them all in cpplint --filter=. +# If you add a new error message with a new category, add it to the list +# here! cpplint_unittest.py should tell you if you forget to do this. +_ERROR_CATEGORIES = [ + 'build/class', + 'build/deprecated', + 'build/endif_comment', + 'build/explicit_make_pair', + 'build/forward_decl', + 'build/header_guard', + 'build/include', + 'build/include_alpha', + 'build/include_order', + 'build/include_what_you_use', + 'build/namespaces', + 'build/printf_format', + 'build/storage_class', + 'legal/copyright', + 'readability/alt_tokens', + 'readability/braces', + 'readability/casting', + 'readability/check', + 'readability/constructors', + 'readability/fn_size', + 'readability/function', + 'readability/multiline_comment', + 'readability/multiline_string', + 'readability/namespace', + 'readability/nolint', + 'readability/nul', + 'readability/streams', + 'readability/todo', + 'readability/utf8', + 'runtime/arrays', + 'runtime/casting', + 'runtime/explicit', + 'runtime/int', + 'runtime/init', + 'runtime/invalid_increment', + 'runtime/member_string_references', + 'runtime/memset', + 'runtime/operator', + 'runtime/printf', + 'runtime/printf_format', + 'runtime/references', + 'runtime/sizeof', + 'runtime/string', + 'runtime/threadsafe_fn', + 'runtime/vlog', + 'whitespace/blank_line', + 'whitespace/braces', + 'whitespace/comma', + 'whitespace/comments', + 'whitespace/empty_conditional_body', + 'whitespace/empty_loop_body', + 'whitespace/end_of_line', + 'whitespace/ending_newline', + 'whitespace/forcolon', + 'whitespace/indent', + 'whitespace/line_length', + 'whitespace/newline', + 'whitespace/operators', + 'whitespace/parens', + 'whitespace/semicolon', + 'whitespace/tab', + 'whitespace/todo' + ] + +# The default state of the category filter. This is overrided by the --filter= +# flag. By default all errors are on, so only add here categories that should be +# off by default (i.e., categories that must be enabled by the --filter= flags). +# All entries here should start with a '-' or '+', as in the --filter= flag. +_DEFAULT_FILTERS = ['-build/include_alpha'] + +# We used to check for high-bit characters, but after much discussion we +# decided those were OK, as long as they were in UTF-8 and didn't represent +# hard-coded international strings, which belong in a separate i18n file. + + +# C++ headers +_CPP_HEADERS = frozenset([ + # Legacy + 'algobase.h', + 'algo.h', + 'alloc.h', + 'builtinbuf.h', + 'bvector.h', + 'complex.h', + 'defalloc.h', + 'deque.h', + 'editbuf.h', + 'fstream.h', + 'function.h', + 'hash_map', + 'hash_map.h', + 'hash_set', + 'hash_set.h', + 'hashtable.h', + 'heap.h', + 'indstream.h', + 'iomanip.h', + 'iostream.h', + 'istream.h', + 'iterator.h', + 'list.h', + 'map.h', + 'multimap.h', + 'multiset.h', + 'ostream.h', + 'pair.h', + 'parsestream.h', + 'pfstream.h', + 'procbuf.h', + 'pthread_alloc', + 'pthread_alloc.h', + 'rope', + 'rope.h', + 'ropeimpl.h', + 'set.h', + 'slist', + 'slist.h', + 'stack.h', + 'stdiostream.h', + 'stl_alloc.h', + 'stl_relops.h', + 'streambuf.h', + 'stream.h', + 'strfile.h', + 'strstream.h', + 'tempbuf.h', + 'tree.h', + 'type_traits.h', + 'vector.h', + # 17.6.1.2 C++ library headers + 'algorithm', + 'array', + 'atomic', + 'bitset', + 'chrono', + 'codecvt', + 'complex', + 'condition_variable', + 'deque', + 'exception', + 'forward_list', + 'fstream', + 'functional', + 'future', + 'initializer_list', + 'iomanip', + 'ios', + 'iosfwd', + 'iostream', + 'istream', + 'iterator', + 'limits', + 'list', + 'locale', + 'map', + 'memory', + 'mutex', + 'new', + 'numeric', + 'ostream', + 'queue', + 'random', + 'ratio', + 'regex', + 'set', + 'sstream', + 'stack', + 'stdexcept', + 'streambuf', + 'string', + 'strstream', + 'system_error', + 'thread', + 'tuple', + 'typeindex', + 'typeinfo', + 'type_traits', + 'unordered_map', + 'unordered_set', + 'utility', + 'valarray', + 'vector', + # 17.6.1.2 C++ headers for C library facilities + 'cassert', + 'ccomplex', + 'cctype', + 'cerrno', + 'cfenv', + 'cfloat', + 'cinttypes', + 'ciso646', + 'climits', + 'clocale', + 'cmath', + 'csetjmp', + 'csignal', + 'cstdalign', + 'cstdarg', + 'cstdbool', + 'cstddef', + 'cstdint', + 'cstdio', + 'cstdlib', + 'cstring', + 'ctgmath', + 'ctime', + 'cuchar', + 'cwchar', + 'cwctype', + ]) + +# Assertion macros. These are defined in base/logging.h and +# testing/base/gunit.h. Note that the _M versions need to come first +# for substring matching to work. +_CHECK_MACROS = [ + 'DCHECK', 'CHECK', + 'EXPECT_TRUE_M', 'EXPECT_TRUE', + 'ASSERT_TRUE_M', 'ASSERT_TRUE', + 'EXPECT_FALSE_M', 'EXPECT_FALSE', + 'ASSERT_FALSE_M', 'ASSERT_FALSE', + ] + +# Replacement macros for CHECK/DCHECK/EXPECT_TRUE/EXPECT_FALSE +_CHECK_REPLACEMENT = dict([(m, {}) for m in _CHECK_MACROS]) + +for op, replacement in [('==', 'EQ'), ('!=', 'NE'), + ('>=', 'GE'), ('>', 'GT'), + ('<=', 'LE'), ('<', 'LT')]: + _CHECK_REPLACEMENT['DCHECK'][op] = 'DCHECK_%s' % replacement + _CHECK_REPLACEMENT['CHECK'][op] = 'CHECK_%s' % replacement + _CHECK_REPLACEMENT['EXPECT_TRUE'][op] = 'EXPECT_%s' % replacement + _CHECK_REPLACEMENT['ASSERT_TRUE'][op] = 'ASSERT_%s' % replacement + _CHECK_REPLACEMENT['EXPECT_TRUE_M'][op] = 'EXPECT_%s_M' % replacement + _CHECK_REPLACEMENT['ASSERT_TRUE_M'][op] = 'ASSERT_%s_M' % replacement + +for op, inv_replacement in [('==', 'NE'), ('!=', 'EQ'), + ('>=', 'LT'), ('>', 'LE'), + ('<=', 'GT'), ('<', 'GE')]: + _CHECK_REPLACEMENT['EXPECT_FALSE'][op] = 'EXPECT_%s' % inv_replacement + _CHECK_REPLACEMENT['ASSERT_FALSE'][op] = 'ASSERT_%s' % inv_replacement + _CHECK_REPLACEMENT['EXPECT_FALSE_M'][op] = 'EXPECT_%s_M' % inv_replacement + _CHECK_REPLACEMENT['ASSERT_FALSE_M'][op] = 'ASSERT_%s_M' % inv_replacement + +# Alternative tokens and their replacements. For full list, see section 2.5 +# Alternative tokens [lex.digraph] in the C++ standard. +# +# Digraphs (such as '%:') are not included here since it's a mess to +# match those on a word boundary. +_ALT_TOKEN_REPLACEMENT = { + 'and': '&&', + 'bitor': '|', + 'or': '||', + 'xor': '^', + 'compl': '~', + 'bitand': '&', + 'and_eq': '&=', + 'or_eq': '|=', + 'xor_eq': '^=', + 'not': '!', + 'not_eq': '!=' + } + +# Compile regular expression that matches all the above keywords. The "[ =()]" +# bit is meant to avoid matching these keywords outside of boolean expressions. +# +# False positives include C-style multi-line comments and multi-line strings +# but those have always been troublesome for cpplint. +_ALT_TOKEN_REPLACEMENT_PATTERN = re.compile( + r'[ =()](' + ('|'.join(_ALT_TOKEN_REPLACEMENT.keys())) + r')(?=[ (]|$)') + + +# These constants define types of headers for use with +# _IncludeState.CheckNextIncludeOrder(). +_C_SYS_HEADER = 1 +_CPP_SYS_HEADER = 2 +_LIKELY_MY_HEADER = 3 +_POSSIBLE_MY_HEADER = 4 +_OTHER_HEADER = 5 + +# These constants define the current inline assembly state +_NO_ASM = 0 # Outside of inline assembly block +_INSIDE_ASM = 1 # Inside inline assembly block +_END_ASM = 2 # Last line of inline assembly block +_BLOCK_ASM = 3 # The whole block is an inline assembly block + +# Match start of assembly blocks +_MATCH_ASM = re.compile(r'^\s*(?:asm|_asm|__asm|__asm__)' + r'(?:\s+(volatile|__volatile__))?' + r'\s*[{(]') + + +_regexp_compile_cache = {} + +# Finds occurrences of NOLINT or NOLINT(...). +_RE_SUPPRESSION = re.compile(r'\bNOLINT\b(\([^)]*\))?') + +# {str, set(int)}: a map from error categories to sets of linenumbers +# on which those errors are expected and should be suppressed. +_error_suppressions = {} + +# The root directory used for deriving header guard CPP variable. +# This is set by --root flag. +_root = None + +# The allowed line length of files. +# This is set by --linelength flag. +_line_length = 80 + +# The allowed extensions for file names +# This is set by --extensions flag. +_valid_extensions = set(['cc', 'h', 'cpp', 'cu', 'cuh']) + +def ParseNolintSuppressions(filename, raw_line, linenum, error): + """Updates the global list of error-suppressions. + + Parses any NOLINT comments on the current line, updating the global + error_suppressions store. Reports an error if the NOLINT comment + was malformed. + + Args: + filename: str, the name of the input file. + raw_line: str, the line of input text, with comments. + linenum: int, the number of the current line. + error: function, an error handler. + """ + # FIXME(adonovan): "NOLINT(" is misparsed as NOLINT(*). + matched = _RE_SUPPRESSION.search(raw_line) + if matched: + category = matched.group(1) + if category in (None, '(*)'): # => "suppress all" + _error_suppressions.setdefault(None, set()).add(linenum) + else: + if category.startswith('(') and category.endswith(')'): + category = category[1:-1] + if category in _ERROR_CATEGORIES: + _error_suppressions.setdefault(category, set()).add(linenum) + else: + error(filename, linenum, 'readability/nolint', 5, + 'Unknown NOLINT error category: %s' % category) + + +def ResetNolintSuppressions(): + "Resets the set of NOLINT suppressions to empty." + _error_suppressions.clear() + + +def IsErrorSuppressedByNolint(category, linenum): + """Returns true if the specified error category is suppressed on this line. + + Consults the global error_suppressions map populated by + ParseNolintSuppressions/ResetNolintSuppressions. + + Args: + category: str, the category of the error. + linenum: int, the current line number. + Returns: + bool, True iff the error should be suppressed due to a NOLINT comment. + """ + return (linenum in _error_suppressions.get(category, set()) or + linenum in _error_suppressions.get(None, set())) + +def Match(pattern, s): + """Matches the string with the pattern, caching the compiled regexp.""" + # The regexp compilation caching is inlined in both Match and Search for + # performance reasons; factoring it out into a separate function turns out + # to be noticeably expensive. + if pattern not in _regexp_compile_cache: + _regexp_compile_cache[pattern] = sre_compile.compile(pattern) + return _regexp_compile_cache[pattern].match(s) + + +def ReplaceAll(pattern, rep, s): + """Replaces instances of pattern in a string with a replacement. + + The compiled regex is kept in a cache shared by Match and Search. + + Args: + pattern: regex pattern + rep: replacement text + s: search string + + Returns: + string with replacements made (or original string if no replacements) + """ + if pattern not in _regexp_compile_cache: + _regexp_compile_cache[pattern] = sre_compile.compile(pattern) + return _regexp_compile_cache[pattern].sub(rep, s) + + +def Search(pattern, s): + """Searches the string for the pattern, caching the compiled regexp.""" + if pattern not in _regexp_compile_cache: + _regexp_compile_cache[pattern] = sre_compile.compile(pattern) + return _regexp_compile_cache[pattern].search(s) + + +class _IncludeState(dict): + """Tracks line numbers for includes, and the order in which includes appear. + + As a dict, an _IncludeState object serves as a mapping between include + filename and line number on which that file was included. + + Call CheckNextIncludeOrder() once for each header in the file, passing + in the type constants defined above. Calls in an illegal order will + raise an _IncludeError with an appropriate error message. + + """ + # self._section will move monotonically through this set. If it ever + # needs to move backwards, CheckNextIncludeOrder will raise an error. + _INITIAL_SECTION = 0 + _MY_H_SECTION = 1 + _C_SECTION = 2 + _CPP_SECTION = 3 + _OTHER_H_SECTION = 4 + + _TYPE_NAMES = { + _C_SYS_HEADER: 'C system header', + _CPP_SYS_HEADER: 'C++ system header', + _LIKELY_MY_HEADER: 'header this file implements', + _POSSIBLE_MY_HEADER: 'header this file may implement', + _OTHER_HEADER: 'other header', + } + _SECTION_NAMES = { + _INITIAL_SECTION: "... nothing. (This can't be an error.)", + _MY_H_SECTION: 'a header this file implements', + _C_SECTION: 'C system header', + _CPP_SECTION: 'C++ system header', + _OTHER_H_SECTION: 'other header', + } + + def __init__(self): + dict.__init__(self) + self.ResetSection() + + def ResetSection(self): + # The name of the current section. + self._section = self._INITIAL_SECTION + # The path of last found header. + self._last_header = '' + + def SetLastHeader(self, header_path): + self._last_header = header_path + + def CanonicalizeAlphabeticalOrder(self, header_path): + """Returns a path canonicalized for alphabetical comparison. + + - replaces "-" with "_" so they both cmp the same. + - removes '-inl' since we don't require them to be after the main header. + - lowercase everything, just in case. + + Args: + header_path: Path to be canonicalized. + + Returns: + Canonicalized path. + """ + return header_path.replace('-inl.h', '.h').replace('-', '_').lower() + + def IsInAlphabeticalOrder(self, clean_lines, linenum, header_path): + """Check if a header is in alphabetical order with the previous header. + + Args: + clean_lines: A CleansedLines instance containing the file. + linenum: The number of the line to check. + header_path: Canonicalized header to be checked. + + Returns: + Returns true if the header is in alphabetical order. + """ + # If previous section is different from current section, _last_header will + # be reset to empty string, so it's always less than current header. + # + # If previous line was a blank line, assume that the headers are + # intentionally sorted the way they are. + if (self._last_header > header_path and + not Match(r'^\s*$', clean_lines.elided[linenum - 1])): + return False + return True + + def CheckNextIncludeOrder(self, header_type): + """Returns a non-empty error message if the next header is out of order. + + This function also updates the internal state to be ready to check + the next include. + + Args: + header_type: One of the _XXX_HEADER constants defined above. + + Returns: + The empty string if the header is in the right order, or an + error message describing what's wrong. + + """ + error_message = ('Found %s after %s' % + (self._TYPE_NAMES[header_type], + self._SECTION_NAMES[self._section])) + + last_section = self._section + + if header_type == _C_SYS_HEADER: + if self._section <= self._C_SECTION: + self._section = self._C_SECTION + else: + self._last_header = '' + return error_message + elif header_type == _CPP_SYS_HEADER: + if self._section <= self._CPP_SECTION: + self._section = self._CPP_SECTION + else: + self._last_header = '' + return error_message + elif header_type == _LIKELY_MY_HEADER: + if self._section <= self._MY_H_SECTION: + self._section = self._MY_H_SECTION + else: + self._section = self._OTHER_H_SECTION + elif header_type == _POSSIBLE_MY_HEADER: + if self._section <= self._MY_H_SECTION: + self._section = self._MY_H_SECTION + else: + # This will always be the fallback because we're not sure + # enough that the header is associated with this file. + self._section = self._OTHER_H_SECTION + else: + assert header_type == _OTHER_HEADER + self._section = self._OTHER_H_SECTION + + if last_section != self._section: + self._last_header = '' + + return '' + + +class _CppLintState(object): + """Maintains module-wide state..""" + + def __init__(self): + self.verbose_level = 1 # global setting. + self.error_count = 0 # global count of reported errors + # filters to apply when emitting error messages + self.filters = _DEFAULT_FILTERS[:] + self.counting = 'total' # In what way are we counting errors? + self.errors_by_category = {} # string to int dict storing error counts + + # output format: + # "emacs" - format that emacs can parse (default) + # "vs7" - format that Microsoft Visual Studio 7 can parse + self.output_format = 'emacs' + + def SetOutputFormat(self, output_format): + """Sets the output format for errors.""" + self.output_format = output_format + + def SetVerboseLevel(self, level): + """Sets the module's verbosity, and returns the previous setting.""" + last_verbose_level = self.verbose_level + self.verbose_level = level + return last_verbose_level + + def SetCountingStyle(self, counting_style): + """Sets the module's counting options.""" + self.counting = counting_style + + def SetFilters(self, filters): + """Sets the error-message filters. + + These filters are applied when deciding whether to emit a given + error message. + + Args: + filters: A string of comma-separated filters (eg "+whitespace/indent"). + Each filter should start with + or -; else we die. + + Raises: + ValueError: The comma-separated filters did not all start with '+' or '-'. + E.g. "-,+whitespace,-whitespace/indent,whitespace/badfilter" + """ + # Default filters always have less priority than the flag ones. + self.filters = _DEFAULT_FILTERS[:] + for filt in filters.split(','): + clean_filt = filt.strip() + if clean_filt: + self.filters.append(clean_filt) + for filt in self.filters: + if not (filt.startswith('+') or filt.startswith('-')): + raise ValueError('Every filter in --filters must start with + or -' + ' (%s does not)' % filt) + + def ResetErrorCounts(self): + """Sets the module's error statistic back to zero.""" + self.error_count = 0 + self.errors_by_category = {} + + def IncrementErrorCount(self, category): + """Bumps the module's error statistic.""" + self.error_count += 1 + if self.counting in ('toplevel', 'detailed'): + if self.counting != 'detailed': + category = category.split('/')[0] + if category not in self.errors_by_category: + self.errors_by_category[category] = 0 + self.errors_by_category[category] += 1 + + def PrintErrorCounts(self): + """Print a summary of errors by category, and the total.""" + for category, count in self.errors_by_category.iteritems(): + sys.stderr.write('Category \'%s\' errors found: %d\n' % + (category, count)) + sys.stderr.write('Total errors found: %d\n' % self.error_count) + +_cpplint_state = _CppLintState() + + +def _OutputFormat(): + """Gets the module's output format.""" + return _cpplint_state.output_format + + +def _SetOutputFormat(output_format): + """Sets the module's output format.""" + _cpplint_state.SetOutputFormat(output_format) + + +def _VerboseLevel(): + """Returns the module's verbosity setting.""" + return _cpplint_state.verbose_level + + +def _SetVerboseLevel(level): + """Sets the module's verbosity, and returns the previous setting.""" + return _cpplint_state.SetVerboseLevel(level) + + +def _SetCountingStyle(level): + """Sets the module's counting options.""" + _cpplint_state.SetCountingStyle(level) + + +def _Filters(): + """Returns the module's list of output filters, as a list.""" + return _cpplint_state.filters + + +def _SetFilters(filters): + """Sets the module's error-message filters. + + These filters are applied when deciding whether to emit a given + error message. + + Args: + filters: A string of comma-separated filters (eg "whitespace/indent"). + Each filter should start with + or -; else we die. + """ + _cpplint_state.SetFilters(filters) + + +class _FunctionState(object): + """Tracks current function name and the number of lines in its body.""" + + _NORMAL_TRIGGER = 250 # for --v=0, 500 for --v=1, etc. + _TEST_TRIGGER = 400 # about 50% more than _NORMAL_TRIGGER. + + def __init__(self): + self.in_a_function = False + self.lines_in_function = 0 + self.current_function = '' + + def Begin(self, function_name): + """Start analyzing function body. + + Args: + function_name: The name of the function being tracked. + """ + self.in_a_function = True + self.lines_in_function = 0 + self.current_function = function_name + + def Count(self): + """Count line in current function body.""" + if self.in_a_function: + self.lines_in_function += 1 + + def Check(self, error, filename, linenum): + """Report if too many lines in function body. + + Args: + error: The function to call with any errors found. + filename: The name of the current file. + linenum: The number of the line to check. + """ + if Match(r'T(EST|est)', self.current_function): + base_trigger = self._TEST_TRIGGER + else: + base_trigger = self._NORMAL_TRIGGER + trigger = base_trigger * 2**_VerboseLevel() + + if self.lines_in_function > trigger: + error_level = int(math.log(self.lines_in_function / base_trigger, 2)) + # 50 => 0, 100 => 1, 200 => 2, 400 => 3, 800 => 4, 1600 => 5, ... + if error_level > 5: + error_level = 5 + error(filename, linenum, 'readability/fn_size', error_level, + 'Small and focused functions are preferred:' + ' %s has %d non-comment lines' + ' (error triggered by exceeding %d lines).' % ( + self.current_function, self.lines_in_function, trigger)) + + def End(self): + """Stop analyzing function body.""" + self.in_a_function = False + + +class _IncludeError(Exception): + """Indicates a problem with the include order in a file.""" + pass + + +class FileInfo: + """Provides utility functions for filenames. + + FileInfo provides easy access to the components of a file's path + relative to the project root. + """ + + def __init__(self, filename): + self._filename = filename + + def FullName(self): + """Make Windows paths like Unix.""" + return os.path.abspath(self._filename).replace('\\', '/') + + def RepositoryName(self): + """FullName after removing the local path to the repository. + + If we have a real absolute path name here we can try to do something smart: + detecting the root of the checkout and truncating /path/to/checkout from + the name so that we get header guards that don't include things like + "C:\Documents and Settings\..." or "/home/username/..." in them and thus + people on different computers who have checked the source out to different + locations won't see bogus errors. + """ + fullname = self.FullName() + + if os.path.exists(fullname): + project_dir = os.path.dirname(fullname) + + if os.path.exists(os.path.join(project_dir, ".svn")): + # If there's a .svn file in the current directory, we recursively look + # up the directory tree for the top of the SVN checkout + root_dir = project_dir + one_up_dir = os.path.dirname(root_dir) + while os.path.exists(os.path.join(one_up_dir, ".svn")): + root_dir = os.path.dirname(root_dir) + one_up_dir = os.path.dirname(one_up_dir) + + prefix = os.path.commonprefix([root_dir, project_dir]) + return fullname[len(prefix) + 1:] + + # Not SVN <= 1.6? Try to find a git, hg, or svn top level directory by + # searching up from the current path. + root_dir = os.path.dirname(fullname) + while (root_dir != os.path.dirname(root_dir) and + not os.path.exists(os.path.join(root_dir, ".git")) and + not os.path.exists(os.path.join(root_dir, ".hg")) and + not os.path.exists(os.path.join(root_dir, ".svn"))): + root_dir = os.path.dirname(root_dir) + + if (os.path.exists(os.path.join(root_dir, ".git")) or + os.path.exists(os.path.join(root_dir, ".hg")) or + os.path.exists(os.path.join(root_dir, ".svn"))): + prefix = os.path.commonprefix([root_dir, project_dir]) + return fullname[len(prefix) + 1:] + + # Don't know what to do; header guard warnings may be wrong... + return fullname + + def Split(self): + """Splits the file into the directory, basename, and extension. + + For 'chrome/browser/browser.cc', Split() would + return ('chrome/browser', 'browser', '.cc') + + Returns: + A tuple of (directory, basename, extension). + """ + + googlename = self.RepositoryName() + project, rest = os.path.split(googlename) + return (project,) + os.path.splitext(rest) + + def BaseName(self): + """File base name - text after the final slash, before the final period.""" + return self.Split()[1] + + def Extension(self): + """File extension - text following the final period.""" + return self.Split()[2] + + def NoExtension(self): + """File has no source file extension.""" + return '/'.join(self.Split()[0:2]) + + def IsSource(self): + """File has a source file extension.""" + return self.Extension()[1:] in ('c', 'cc', 'cpp', 'cxx') + + +def _ShouldPrintError(category, confidence, linenum): + """If confidence >= verbose, category passes filter and is not suppressed.""" + + # There are three ways we might decide not to print an error message: + # a "NOLINT(category)" comment appears in the source, + # the verbosity level isn't high enough, or the filters filter it out. + if IsErrorSuppressedByNolint(category, linenum): + return False + if confidence < _cpplint_state.verbose_level: + return False + + is_filtered = False + for one_filter in _Filters(): + if one_filter.startswith('-'): + if category.startswith(one_filter[1:]): + is_filtered = True + elif one_filter.startswith('+'): + if category.startswith(one_filter[1:]): + is_filtered = False + else: + assert False # should have been checked for in SetFilter. + if is_filtered: + return False + + return True + + +def Error(filename, linenum, category, confidence, message): + """Logs the fact we've found a lint error. + + We log where the error was found, and also our confidence in the error, + that is, how certain we are this is a legitimate style regression, and + not a misidentification or a use that's sometimes justified. + + False positives can be suppressed by the use of + "cpplint(category)" comments on the offending line. These are + parsed into _error_suppressions. + + Args: + filename: The name of the file containing the error. + linenum: The number of the line containing the error. + category: A string used to describe the "category" this bug + falls under: "whitespace", say, or "runtime". Categories + may have a hierarchy separated by slashes: "whitespace/indent". + confidence: A number from 1-5 representing a confidence score for + the error, with 5 meaning that we are certain of the problem, + and 1 meaning that it could be a legitimate construct. + message: The error message. + """ + if _ShouldPrintError(category, confidence, linenum): + _cpplint_state.IncrementErrorCount(category) + if _cpplint_state.output_format == 'vs7': + sys.stderr.write('%s(%s): %s [%s] [%d]\n' % ( + filename, linenum, message, category, confidence)) + elif _cpplint_state.output_format == 'eclipse': + sys.stderr.write('%s:%s: warning: %s [%s] [%d]\n' % ( + filename, linenum, message, category, confidence)) + else: + sys.stderr.write('%s:%s: %s [%s] [%d]\n' % ( + filename, linenum, message, category, confidence)) + + +# Matches standard C++ escape sequences per 2.13.2.3 of the C++ standard. +_RE_PATTERN_CLEANSE_LINE_ESCAPES = re.compile( + r'\\([abfnrtv?"\\\']|\d+|x[0-9a-fA-F]+)') +# Matches strings. Escape codes should already be removed by ESCAPES. +_RE_PATTERN_CLEANSE_LINE_DOUBLE_QUOTES = re.compile(r'"[^"]*"') +# Matches characters. Escape codes should already be removed by ESCAPES. +_RE_PATTERN_CLEANSE_LINE_SINGLE_QUOTES = re.compile(r"'.'") +# Matches multi-line C++ comments. +# This RE is a little bit more complicated than one might expect, because we +# have to take care of space removals tools so we can handle comments inside +# statements better. +# The current rule is: We only clear spaces from both sides when we're at the +# end of the line. Otherwise, we try to remove spaces from the right side, +# if this doesn't work we try on left side but only if there's a non-character +# on the right. +_RE_PATTERN_CLEANSE_LINE_C_COMMENTS = re.compile( + r"""(\s*/\*.*\*/\s*$| + /\*.*\*/\s+| + \s+/\*.*\*/(?=\W)| + /\*.*\*/)""", re.VERBOSE) + + +def IsCppString(line): + """Does line terminate so, that the next symbol is in string constant. + + This function does not consider single-line nor multi-line comments. + + Args: + line: is a partial line of code starting from the 0..n. + + Returns: + True, if next character appended to 'line' is inside a + string constant. + """ + + line = line.replace(r'\\', 'XX') # after this, \\" does not match to \" + return ((line.count('"') - line.count(r'\"') - line.count("'\"'")) & 1) == 1 + + +def CleanseRawStrings(raw_lines): + """Removes C++11 raw strings from lines. + + Before: + static const char kData[] = R"( + multi-line string + )"; + + After: + static const char kData[] = "" + (replaced by blank line) + ""; + + Args: + raw_lines: list of raw lines. + + Returns: + list of lines with C++11 raw strings replaced by empty strings. + """ + + delimiter = None + lines_without_raw_strings = [] + for line in raw_lines: + if delimiter: + # Inside a raw string, look for the end + end = line.find(delimiter) + if end >= 0: + # Found the end of the string, match leading space for this + # line and resume copying the original lines, and also insert + # a "" on the last line. + leading_space = Match(r'^(\s*)\S', line) + line = leading_space.group(1) + '""' + line[end + len(delimiter):] + delimiter = None + else: + # Haven't found the end yet, append a blank line. + line = '' + + else: + # Look for beginning of a raw string. + # See 2.14.15 [lex.string] for syntax. + matched = Match(r'^(.*)\b(?:R|u8R|uR|UR|LR)"([^\s\\()]*)\((.*)$', line) + if matched: + delimiter = ')' + matched.group(2) + '"' + + end = matched.group(3).find(delimiter) + if end >= 0: + # Raw string ended on same line + line = (matched.group(1) + '""' + + matched.group(3)[end + len(delimiter):]) + delimiter = None + else: + # Start of a multi-line raw string + line = matched.group(1) + '""' + + lines_without_raw_strings.append(line) + + # TODO(unknown): if delimiter is not None here, we might want to + # emit a warning for unterminated string. + return lines_without_raw_strings + + +def FindNextMultiLineCommentStart(lines, lineix): + """Find the beginning marker for a multiline comment.""" + while lineix < len(lines): + if lines[lineix].strip().startswith('/*'): + # Only return this marker if the comment goes beyond this line + if lines[lineix].strip().find('*/', 2) < 0: + return lineix + lineix += 1 + return len(lines) + + +def FindNextMultiLineCommentEnd(lines, lineix): + """We are inside a comment, find the end marker.""" + while lineix < len(lines): + if lines[lineix].strip().endswith('*/'): + return lineix + lineix += 1 + return len(lines) + + +def RemoveMultiLineCommentsFromRange(lines, begin, end): + """Clears a range of lines for multi-line comments.""" + # Having // dummy comments makes the lines non-empty, so we will not get + # unnecessary blank line warnings later in the code. + for i in range(begin, end): + lines[i] = '// dummy' + + +def RemoveMultiLineComments(filename, lines, error): + """Removes multiline (c-style) comments from lines.""" + lineix = 0 + while lineix < len(lines): + lineix_begin = FindNextMultiLineCommentStart(lines, lineix) + if lineix_begin >= len(lines): + return + lineix_end = FindNextMultiLineCommentEnd(lines, lineix_begin) + if lineix_end >= len(lines): + error(filename, lineix_begin + 1, 'readability/multiline_comment', 5, + 'Could not find end of multi-line comment') + return + RemoveMultiLineCommentsFromRange(lines, lineix_begin, lineix_end + 1) + lineix = lineix_end + 1 + + +def CleanseComments(line): + """Removes //-comments and single-line C-style /* */ comments. + + Args: + line: A line of C++ source. + + Returns: + The line with single-line comments removed. + """ + commentpos = line.find('//') + if commentpos != -1 and not IsCppString(line[:commentpos]): + line = line[:commentpos].rstrip() + # get rid of /* ... */ + return _RE_PATTERN_CLEANSE_LINE_C_COMMENTS.sub('', line) + + +class CleansedLines(object): + """Holds 3 copies of all lines with different preprocessing applied to them. + + 1) elided member contains lines without strings and comments, + 2) lines member contains lines without comments, and + 3) raw_lines member contains all the lines without processing. + All these three members are of , and of the same length. + """ + + def __init__(self, lines): + self.elided = [] + self.lines = [] + self.raw_lines = lines + self.num_lines = len(lines) + self.lines_without_raw_strings = CleanseRawStrings(lines) + for linenum in range(len(self.lines_without_raw_strings)): + self.lines.append(CleanseComments( + self.lines_without_raw_strings[linenum])) + elided = self._CollapseStrings(self.lines_without_raw_strings[linenum]) + self.elided.append(CleanseComments(elided)) + + def NumLines(self): + """Returns the number of lines represented.""" + return self.num_lines + + @staticmethod + def _CollapseStrings(elided): + """Collapses strings and chars on a line to simple "" or '' blocks. + + We nix strings first so we're not fooled by text like '"http://"' + + Args: + elided: The line being processed. + + Returns: + The line with collapsed strings. + """ + if not _RE_PATTERN_INCLUDE.match(elided): + # Remove escaped characters first to make quote/single quote collapsing + # basic. Things that look like escaped characters shouldn't occur + # outside of strings and chars. + elided = _RE_PATTERN_CLEANSE_LINE_ESCAPES.sub('', elided) + elided = _RE_PATTERN_CLEANSE_LINE_SINGLE_QUOTES.sub("''", elided) + elided = _RE_PATTERN_CLEANSE_LINE_DOUBLE_QUOTES.sub('""', elided) + return elided + + +def FindEndOfExpressionInLine(line, startpos, depth, startchar, endchar): + """Find the position just after the matching endchar. + + Args: + line: a CleansedLines line. + startpos: start searching at this position. + depth: nesting level at startpos. + startchar: expression opening character. + endchar: expression closing character. + + Returns: + On finding matching endchar: (index just after matching endchar, 0) + Otherwise: (-1, new depth at end of this line) + """ + for i in xrange(startpos, len(line)): + if line[i] == startchar: + depth += 1 + elif line[i] == endchar: + depth -= 1 + if depth == 0: + return (i + 1, 0) + return (-1, depth) + + +def CloseExpression(clean_lines, linenum, pos): + """If input points to ( or { or [ or <, finds the position that closes it. + + If lines[linenum][pos] points to a '(' or '{' or '[' or '<', finds the + linenum/pos that correspond to the closing of the expression. + + Args: + clean_lines: A CleansedLines instance containing the file. + linenum: The number of the line to check. + pos: A position on the line. + + Returns: + A tuple (line, linenum, pos) pointer *past* the closing brace, or + (line, len(lines), -1) if we never find a close. Note we ignore + strings and comments when matching; and the line we return is the + 'cleansed' line at linenum. + """ + + line = clean_lines.elided[linenum] + startchar = line[pos] + if startchar not in '({[<': + return (line, clean_lines.NumLines(), -1) + if startchar == '(': endchar = ')' + if startchar == '[': endchar = ']' + if startchar == '{': endchar = '}' + if startchar == '<': endchar = '>' + + # Check first line + (end_pos, num_open) = FindEndOfExpressionInLine( + line, pos, 0, startchar, endchar) + if end_pos > -1: + return (line, linenum, end_pos) + + # Continue scanning forward + while linenum < clean_lines.NumLines() - 1: + linenum += 1 + line = clean_lines.elided[linenum] + (end_pos, num_open) = FindEndOfExpressionInLine( + line, 0, num_open, startchar, endchar) + if end_pos > -1: + return (line, linenum, end_pos) + + # Did not find endchar before end of file, give up + return (line, clean_lines.NumLines(), -1) + + +def FindStartOfExpressionInLine(line, endpos, depth, startchar, endchar): + """Find position at the matching startchar. + + This is almost the reverse of FindEndOfExpressionInLine, but note + that the input position and returned position differs by 1. + + Args: + line: a CleansedLines line. + endpos: start searching at this position. + depth: nesting level at endpos. + startchar: expression opening character. + endchar: expression closing character. + + Returns: + On finding matching startchar: (index at matching startchar, 0) + Otherwise: (-1, new depth at beginning of this line) + """ + for i in xrange(endpos, -1, -1): + if line[i] == endchar: + depth += 1 + elif line[i] == startchar: + depth -= 1 + if depth == 0: + return (i, 0) + return (-1, depth) + + +def ReverseCloseExpression(clean_lines, linenum, pos): + """If input points to ) or } or ] or >, finds the position that opens it. + + If lines[linenum][pos] points to a ')' or '}' or ']' or '>', finds the + linenum/pos that correspond to the opening of the expression. + + Args: + clean_lines: A CleansedLines instance containing the file. + linenum: The number of the line to check. + pos: A position on the line. + + Returns: + A tuple (line, linenum, pos) pointer *at* the opening brace, or + (line, 0, -1) if we never find the matching opening brace. Note + we ignore strings and comments when matching; and the line we + return is the 'cleansed' line at linenum. + """ + line = clean_lines.elided[linenum] + endchar = line[pos] + if endchar not in ')}]>': + return (line, 0, -1) + if endchar == ')': startchar = '(' + if endchar == ']': startchar = '[' + if endchar == '}': startchar = '{' + if endchar == '>': startchar = '<' + + # Check last line + (start_pos, num_open) = FindStartOfExpressionInLine( + line, pos, 0, startchar, endchar) + if start_pos > -1: + return (line, linenum, start_pos) + + # Continue scanning backward + while linenum > 0: + linenum -= 1 + line = clean_lines.elided[linenum] + (start_pos, num_open) = FindStartOfExpressionInLine( + line, len(line) - 1, num_open, startchar, endchar) + if start_pos > -1: + return (line, linenum, start_pos) + + # Did not find startchar before beginning of file, give up + return (line, 0, -1) + + +def CheckForCopyright(filename, lines, error): + """Logs an error if no Copyright message appears at the top of the file.""" + + # We'll say it should occur by line 10. Don't forget there's a + # dummy line at the front. + for line in xrange(1, min(len(lines), 11)): + if re.search(r'Copyright', lines[line], re.I): break + else: # means no copyright line was found + error(filename, 0, 'legal/copyright', 5, + 'No copyright message found. ' + 'You should have a line: "Copyright [year] "') + + +def GetHeaderGuardCPPVariable(filename): + """Returns the CPP variable that should be used as a header guard. + + Args: + filename: The name of a C++ header file. + + Returns: + The CPP variable that should be used as a header guard in the + named file. + + """ + + # Restores original filename in case that cpplint is invoked from Emacs's + # flymake. + filename = re.sub(r'_flymake\.h$', '.h', filename) + filename = re.sub(r'/\.flymake/([^/]*)$', r'/\1', filename) + + fileinfo = FileInfo(filename) + file_path_from_root = fileinfo.RepositoryName() + if _root: + file_path_from_root = re.sub('^' + _root + os.sep, '', file_path_from_root) + return re.sub(r'[-./\s]', '_', file_path_from_root).upper() + '_' + + +def CheckForHeaderGuard(filename, lines, error): + """Checks that the file contains a header guard. + + Logs an error if no #ifndef header guard is present. For other + headers, checks that the full pathname is used. + + Args: + filename: The name of the C++ header file. + lines: An array of strings, each representing a line of the file. + error: The function to call with any errors found. + """ + + cppvar = GetHeaderGuardCPPVariable(filename) + + ifndef = None + ifndef_linenum = 0 + define = None + endif = None + endif_linenum = 0 + for linenum, line in enumerate(lines): + linesplit = line.split() + if len(linesplit) >= 2: + # find the first occurrence of #ifndef and #define, save arg + if not ifndef and linesplit[0] == '#ifndef': + # set ifndef to the header guard presented on the #ifndef line. + ifndef = linesplit[1] + ifndef_linenum = linenum + if not define and linesplit[0] == '#define': + define = linesplit[1] + # find the last occurrence of #endif, save entire line + if line.startswith('#endif'): + endif = line + endif_linenum = linenum + + if not ifndef: + error(filename, 0, 'build/header_guard', 5, + 'No #ifndef header guard found, suggested CPP variable is: %s' % + cppvar) + return + + if not define: + error(filename, 0, 'build/header_guard', 5, + 'No #define header guard found, suggested CPP variable is: %s' % + cppvar) + return + + # The guard should be PATH_FILE_H_, but we also allow PATH_FILE_H__ + # for backward compatibility. + if ifndef != cppvar: + error_level = 0 + if ifndef != cppvar + '_': + error_level = 5 + + ParseNolintSuppressions(filename, lines[ifndef_linenum], ifndef_linenum, + error) + error(filename, ifndef_linenum, 'build/header_guard', error_level, + '#ifndef header guard has wrong style, please use: %s' % cppvar) + + if define != ifndef: + error(filename, 0, 'build/header_guard', 5, + '#ifndef and #define don\'t match, suggested CPP variable is: %s' % + cppvar) + return + + if endif != ('#endif // %s' % cppvar): + error_level = 0 + if endif != ('#endif // %s' % (cppvar + '_')): + error_level = 5 + + ParseNolintSuppressions(filename, lines[endif_linenum], endif_linenum, + error) + error(filename, endif_linenum, 'build/header_guard', error_level, + '#endif line should be "#endif // %s"' % cppvar) + + +def CheckForBadCharacters(filename, lines, error): + """Logs an error for each line containing bad characters. + + Two kinds of bad characters: + + 1. Unicode replacement characters: These indicate that either the file + contained invalid UTF-8 (likely) or Unicode replacement characters (which + it shouldn't). Note that it's possible for this to throw off line + numbering if the invalid UTF-8 occurred adjacent to a newline. + + 2. NUL bytes. These are problematic for some tools. + + Args: + filename: The name of the current file. + lines: An array of strings, each representing a line of the file. + error: The function to call with any errors found. + """ + for linenum, line in enumerate(lines): + if u'\ufffd' in line: + error(filename, linenum, 'readability/utf8', 5, + 'Line contains invalid UTF-8 (or Unicode replacement character).') + if '\0' in line: + error(filename, linenum, 'readability/nul', 5, 'Line contains NUL byte.') + + +def CheckForNewlineAtEOF(filename, lines, error): + """Logs an error if there is no newline char at the end of the file. + + Args: + filename: The name of the current file. + lines: An array of strings, each representing a line of the file. + error: The function to call with any errors found. + """ + + # The array lines() was created by adding two newlines to the + # original file (go figure), then splitting on \n. + # To verify that the file ends in \n, we just have to make sure the + # last-but-two element of lines() exists and is empty. + if len(lines) < 3 or lines[-2]: + error(filename, len(lines) - 2, 'whitespace/ending_newline', 5, + 'Could not find a newline character at the end of the file.') + + +def CheckForMultilineCommentsAndStrings(filename, clean_lines, linenum, error): + """Logs an error if we see /* ... */ or "..." that extend past one line. + + /* ... */ comments are legit inside macros, for one line. + Otherwise, we prefer // comments, so it's ok to warn about the + other. Likewise, it's ok for strings to extend across multiple + lines, as long as a line continuation character (backslash) + terminates each line. Although not currently prohibited by the C++ + style guide, it's ugly and unnecessary. We don't do well with either + in this lint program, so we warn about both. + + Args: + filename: The name of the current file. + clean_lines: A CleansedLines instance containing the file. + linenum: The number of the line to check. + error: The function to call with any errors found. + """ + line = clean_lines.elided[linenum] + + # Remove all \\ (escaped backslashes) from the line. They are OK, and the + # second (escaped) slash may trigger later \" detection erroneously. + line = line.replace('\\\\', '') + + if line.count('/*') > line.count('*/'): + error(filename, linenum, 'readability/multiline_comment', 5, + 'Complex multi-line /*...*/-style comment found. ' + 'Lint may give bogus warnings. ' + 'Consider replacing these with //-style comments, ' + 'with #if 0...#endif, ' + 'or with more clearly structured multi-line comments.') + + if (line.count('"') - line.count('\\"')) % 2: + error(filename, linenum, 'readability/multiline_string', 5, + 'Multi-line string ("...") found. This lint script doesn\'t ' + 'do well with such strings, and may give bogus warnings. ' + 'Use C++11 raw strings or concatenation instead.') + + +threading_list = ( + ('asctime(', 'asctime_r('), + ('ctime(', 'ctime_r('), + ('getgrgid(', 'getgrgid_r('), + ('getgrnam(', 'getgrnam_r('), + ('getlogin(', 'getlogin_r('), + ('getpwnam(', 'getpwnam_r('), + ('getpwuid(', 'getpwuid_r('), + ('gmtime(', 'gmtime_r('), + ('localtime(', 'localtime_r('), + ('rand(', 'rand_r('), + ('strtok(', 'strtok_r('), + ('ttyname(', 'ttyname_r('), + ) + + +def CheckPosixThreading(filename, clean_lines, linenum, error): + """Checks for calls to thread-unsafe functions. + + Much code has been originally written without consideration of + multi-threading. Also, engineers are relying on their old experience; + they have learned posix before threading extensions were added. These + tests guide the engineers to use thread-safe functions (when using + posix directly). + + Args: + filename: The name of the current file. + clean_lines: A CleansedLines instance containing the file. + linenum: The number of the line to check. + error: The function to call with any errors found. + """ + line = clean_lines.elided[linenum] + for single_thread_function, multithread_safe_function in threading_list: + ix = line.find(single_thread_function) + # Comparisons made explicit for clarity -- pylint: disable=g-explicit-bool-comparison + if ix >= 0 and (ix == 0 or (not line[ix - 1].isalnum() and + line[ix - 1] not in ('_', '.', '>'))): + error(filename, linenum, 'runtime/threadsafe_fn', 2, + 'Consider using ' + multithread_safe_function + + '...) instead of ' + single_thread_function + + '...) for improved thread safety.') + + +def CheckVlogArguments(filename, clean_lines, linenum, error): + """Checks that VLOG() is only used for defining a logging level. + + For example, VLOG(2) is correct. VLOG(INFO), VLOG(WARNING), VLOG(ERROR), and + VLOG(FATAL) are not. + + Args: + filename: The name of the current file. + clean_lines: A CleansedLines instance containing the file. + linenum: The number of the line to check. + error: The function to call with any errors found. + """ + line = clean_lines.elided[linenum] + if Search(r'\bVLOG\((INFO|ERROR|WARNING|DFATAL|FATAL)\)', line): + error(filename, linenum, 'runtime/vlog', 5, + 'VLOG() should be used with numeric verbosity level. ' + 'Use LOG() if you want symbolic severity levels.') + + +# Matches invalid increment: *count++, which moves pointer instead of +# incrementing a value. +_RE_PATTERN_INVALID_INCREMENT = re.compile( + r'^\s*\*\w+(\+\+|--);') + + +def CheckInvalidIncrement(filename, clean_lines, linenum, error): + """Checks for invalid increment *count++. + + For example following function: + void increment_counter(int* count) { + *count++; + } + is invalid, because it effectively does count++, moving pointer, and should + be replaced with ++*count, (*count)++ or *count += 1. + + Args: + filename: The name of the current file. + clean_lines: A CleansedLines instance containing the file. + linenum: The number of the line to check. + error: The function to call with any errors found. + """ + line = clean_lines.elided[linenum] + if _RE_PATTERN_INVALID_INCREMENT.match(line): + error(filename, linenum, 'runtime/invalid_increment', 5, + 'Changing pointer instead of value (or unused value of operator*).') + + +class _BlockInfo(object): + """Stores information about a generic block of code.""" + + def __init__(self, seen_open_brace): + self.seen_open_brace = seen_open_brace + self.open_parentheses = 0 + self.inline_asm = _NO_ASM + + def CheckBegin(self, filename, clean_lines, linenum, error): + """Run checks that applies to text up to the opening brace. + + This is mostly for checking the text after the class identifier + and the "{", usually where the base class is specified. For other + blocks, there isn't much to check, so we always pass. + + Args: + filename: The name of the current file. + clean_lines: A CleansedLines instance containing the file. + linenum: The number of the line to check. + error: The function to call with any errors found. + """ + pass + + def CheckEnd(self, filename, clean_lines, linenum, error): + """Run checks that applies to text after the closing brace. + + This is mostly used for checking end of namespace comments. + + Args: + filename: The name of the current file. + clean_lines: A CleansedLines instance containing the file. + linenum: The number of the line to check. + error: The function to call with any errors found. + """ + pass + + +class _ClassInfo(_BlockInfo): + """Stores information about a class.""" + + def __init__(self, name, class_or_struct, clean_lines, linenum): + _BlockInfo.__init__(self, False) + self.name = name + self.starting_linenum = linenum + self.is_derived = False + if class_or_struct == 'struct': + self.access = 'public' + self.is_struct = True + else: + self.access = 'private' + self.is_struct = False + + # Remember initial indentation level for this class. Using raw_lines here + # instead of elided to account for leading comments. + initial_indent = Match(r'^( *)\S', clean_lines.raw_lines[linenum]) + if initial_indent: + self.class_indent = len(initial_indent.group(1)) + else: + self.class_indent = 0 + + # Try to find the end of the class. This will be confused by things like: + # class A { + # } *x = { ... + # + # But it's still good enough for CheckSectionSpacing. + self.last_line = 0 + depth = 0 + for i in range(linenum, clean_lines.NumLines()): + line = clean_lines.elided[i] + depth += line.count('{') - line.count('}') + if not depth: + self.last_line = i + break + + def CheckBegin(self, filename, clean_lines, linenum, error): + # Look for a bare ':' + if Search('(^|[^:]):($|[^:])', clean_lines.elided[linenum]): + self.is_derived = True + + def CheckEnd(self, filename, clean_lines, linenum, error): + # Check that closing brace is aligned with beginning of the class. + # Only do this if the closing brace is indented by only whitespaces. + # This means we will not check single-line class definitions. + indent = Match(r'^( *)\}', clean_lines.elided[linenum]) + if indent and len(indent.group(1)) != self.class_indent: + if self.is_struct: + parent = 'struct ' + self.name + else: + parent = 'class ' + self.name + error(filename, linenum, 'whitespace/indent', 3, + 'Closing brace should be aligned with beginning of %s' % parent) + + +class _NamespaceInfo(_BlockInfo): + """Stores information about a namespace.""" + + def __init__(self, name, linenum): + _BlockInfo.__init__(self, False) + self.name = name or '' + self.starting_linenum = linenum + + def CheckEnd(self, filename, clean_lines, linenum, error): + """Check end of namespace comments.""" + line = clean_lines.raw_lines[linenum] + + # Check how many lines is enclosed in this namespace. Don't issue + # warning for missing namespace comments if there aren't enough + # lines. However, do apply checks if there is already an end of + # namespace comment and it's incorrect. + # + # TODO(unknown): We always want to check end of namespace comments + # if a namespace is large, but sometimes we also want to apply the + # check if a short namespace contained nontrivial things (something + # other than forward declarations). There is currently no logic on + # deciding what these nontrivial things are, so this check is + # triggered by namespace size only, which works most of the time. + if (linenum - self.starting_linenum < 10 + and not Match(r'};*\s*(//|/\*).*\bnamespace\b', line)): + return + + # Look for matching comment at end of namespace. + # + # Note that we accept C style "/* */" comments for terminating + # namespaces, so that code that terminate namespaces inside + # preprocessor macros can be cpplint clean. + # + # We also accept stuff like "// end of namespace ." with the + # period at the end. + # + # Besides these, we don't accept anything else, otherwise we might + # get false negatives when existing comment is a substring of the + # expected namespace. + if self.name: + # Named namespace + if not Match((r'};*\s*(//|/\*).*\bnamespace\s+' + re.escape(self.name) + + r'[\*/\.\\\s]*$'), + line): + error(filename, linenum, 'readability/namespace', 5, + 'Namespace should be terminated with "// namespace %s"' % + self.name) + else: + # Anonymous namespace + if not Match(r'};*\s*(//|/\*).*\bnamespace[\*/\.\\\s]*$', line): + error(filename, linenum, 'readability/namespace', 5, + 'Namespace should be terminated with "// namespace"') + + +class _PreprocessorInfo(object): + """Stores checkpoints of nesting stacks when #if/#else is seen.""" + + def __init__(self, stack_before_if): + # The entire nesting stack before #if + self.stack_before_if = stack_before_if + + # The entire nesting stack up to #else + self.stack_before_else = [] + + # Whether we have already seen #else or #elif + self.seen_else = False + + +class _NestingState(object): + """Holds states related to parsing braces.""" + + def __init__(self): + # Stack for tracking all braces. An object is pushed whenever we + # see a "{", and popped when we see a "}". Only 3 types of + # objects are possible: + # - _ClassInfo: a class or struct. + # - _NamespaceInfo: a namespace. + # - _BlockInfo: some other type of block. + self.stack = [] + + # Stack of _PreprocessorInfo objects. + self.pp_stack = [] + + def SeenOpenBrace(self): + """Check if we have seen the opening brace for the innermost block. + + Returns: + True if we have seen the opening brace, False if the innermost + block is still expecting an opening brace. + """ + return (not self.stack) or self.stack[-1].seen_open_brace + + def InNamespaceBody(self): + """Check if we are currently one level inside a namespace body. + + Returns: + True if top of the stack is a namespace block, False otherwise. + """ + return self.stack and isinstance(self.stack[-1], _NamespaceInfo) + + def UpdatePreprocessor(self, line): + """Update preprocessor stack. + + We need to handle preprocessors due to classes like this: + #ifdef SWIG + struct ResultDetailsPageElementExtensionPoint { + #else + struct ResultDetailsPageElementExtensionPoint : public Extension { + #endif + + We make the following assumptions (good enough for most files): + - Preprocessor condition evaluates to true from #if up to first + #else/#elif/#endif. + + - Preprocessor condition evaluates to false from #else/#elif up + to #endif. We still perform lint checks on these lines, but + these do not affect nesting stack. + + Args: + line: current line to check. + """ + if Match(r'^\s*#\s*(if|ifdef|ifndef)\b', line): + # Beginning of #if block, save the nesting stack here. The saved + # stack will allow us to restore the parsing state in the #else case. + self.pp_stack.append(_PreprocessorInfo(copy.deepcopy(self.stack))) + elif Match(r'^\s*#\s*(else|elif)\b', line): + # Beginning of #else block + if self.pp_stack: + if not self.pp_stack[-1].seen_else: + # This is the first #else or #elif block. Remember the + # whole nesting stack up to this point. This is what we + # keep after the #endif. + self.pp_stack[-1].seen_else = True + self.pp_stack[-1].stack_before_else = copy.deepcopy(self.stack) + + # Restore the stack to how it was before the #if + self.stack = copy.deepcopy(self.pp_stack[-1].stack_before_if) + else: + # TODO(unknown): unexpected #else, issue warning? + pass + elif Match(r'^\s*#\s*endif\b', line): + # End of #if or #else blocks. + if self.pp_stack: + # If we saw an #else, we will need to restore the nesting + # stack to its former state before the #else, otherwise we + # will just continue from where we left off. + if self.pp_stack[-1].seen_else: + # Here we can just use a shallow copy since we are the last + # reference to it. + self.stack = self.pp_stack[-1].stack_before_else + # Drop the corresponding #if + self.pp_stack.pop() + else: + # TODO(unknown): unexpected #endif, issue warning? + pass + + def Update(self, filename, clean_lines, linenum, error): + """Update nesting state with current line. + + Args: + filename: The name of the current file. + clean_lines: A CleansedLines instance containing the file. + linenum: The number of the line to check. + error: The function to call with any errors found. + """ + line = clean_lines.elided[linenum] + + # Update pp_stack first + self.UpdatePreprocessor(line) + + # Count parentheses. This is to avoid adding struct arguments to + # the nesting stack. + if self.stack: + inner_block = self.stack[-1] + depth_change = line.count('(') - line.count(')') + inner_block.open_parentheses += depth_change + + # Also check if we are starting or ending an inline assembly block. + if inner_block.inline_asm in (_NO_ASM, _END_ASM): + if (depth_change != 0 and + inner_block.open_parentheses == 1 and + _MATCH_ASM.match(line)): + # Enter assembly block + inner_block.inline_asm = _INSIDE_ASM + else: + # Not entering assembly block. If previous line was _END_ASM, + # we will now shift to _NO_ASM state. + inner_block.inline_asm = _NO_ASM + elif (inner_block.inline_asm == _INSIDE_ASM and + inner_block.open_parentheses == 0): + # Exit assembly block + inner_block.inline_asm = _END_ASM + + # Consume namespace declaration at the beginning of the line. Do + # this in a loop so that we catch same line declarations like this: + # namespace proto2 { namespace bridge { class MessageSet; } } + while True: + # Match start of namespace. The "\b\s*" below catches namespace + # declarations even if it weren't followed by a whitespace, this + # is so that we don't confuse our namespace checker. The + # missing spaces will be flagged by CheckSpacing. + namespace_decl_match = Match(r'^\s*namespace\b\s*([:\w]+)?(.*)$', line) + if not namespace_decl_match: + break + + new_namespace = _NamespaceInfo(namespace_decl_match.group(1), linenum) + self.stack.append(new_namespace) + + line = namespace_decl_match.group(2) + if line.find('{') != -1: + new_namespace.seen_open_brace = True + line = line[line.find('{') + 1:] + + # Look for a class declaration in whatever is left of the line + # after parsing namespaces. The regexp accounts for decorated classes + # such as in: + # class LOCKABLE API Object { + # }; + # + # Templates with class arguments may confuse the parser, for example: + # template , + # class Vector = vector > + # class HeapQueue { + # + # Because this parser has no nesting state about templates, by the + # time it saw "class Comparator", it may think that it's a new class. + # Nested templates have a similar problem: + # template < + # typename ExportedType, + # typename TupleType, + # template class ImplTemplate> + # + # To avoid these cases, we ignore classes that are followed by '=' or '>' + class_decl_match = Match( + r'\s*(template\s*<[\w\s<>,:]*>\s*)?' + r'(class|struct)\s+([A-Z_]+\s+)*(\w+(?:::\w+)*)' + r'(([^=>]|<[^<>]*>|<[^<>]*<[^<>]*>\s*>)*)$', line) + if (class_decl_match and + (not self.stack or self.stack[-1].open_parentheses == 0)): + self.stack.append(_ClassInfo( + class_decl_match.group(4), class_decl_match.group(2), + clean_lines, linenum)) + line = class_decl_match.group(5) + + # If we have not yet seen the opening brace for the innermost block, + # run checks here. + if not self.SeenOpenBrace(): + self.stack[-1].CheckBegin(filename, clean_lines, linenum, error) + + # Update access control if we are inside a class/struct + if self.stack and isinstance(self.stack[-1], _ClassInfo): + classinfo = self.stack[-1] + access_match = Match( + r'^(.*)\b(public|private|protected|signals)(\s+(?:slots\s*)?)?' + r':(?:[^:]|$)', + line) + if access_match: + classinfo.access = access_match.group(2) + + # Check that access keywords are indented +1 space. Skip this + # check if the keywords are not preceded by whitespaces. + indent = access_match.group(1) + if (len(indent) != classinfo.class_indent + 1 and + Match(r'^\s*$', indent)): + if classinfo.is_struct: + parent = 'struct ' + classinfo.name + else: + parent = 'class ' + classinfo.name + slots = '' + if access_match.group(3): + slots = access_match.group(3) + error(filename, linenum, 'whitespace/indent', 3, + '%s%s: should be indented +1 space inside %s' % ( + access_match.group(2), slots, parent)) + + # Consume braces or semicolons from what's left of the line + while True: + # Match first brace, semicolon, or closed parenthesis. + matched = Match(r'^[^{;)}]*([{;)}])(.*)$', line) + if not matched: + break + + token = matched.group(1) + if token == '{': + # If namespace or class hasn't seen a opening brace yet, mark + # namespace/class head as complete. Push a new block onto the + # stack otherwise. + if not self.SeenOpenBrace(): + self.stack[-1].seen_open_brace = True + else: + self.stack.append(_BlockInfo(True)) + if _MATCH_ASM.match(line): + self.stack[-1].inline_asm = _BLOCK_ASM + elif token == ';' or token == ')': + # If we haven't seen an opening brace yet, but we already saw + # a semicolon, this is probably a forward declaration. Pop + # the stack for these. + # + # Similarly, if we haven't seen an opening brace yet, but we + # already saw a closing parenthesis, then these are probably + # function arguments with extra "class" or "struct" keywords. + # Also pop these stack for these. + if not self.SeenOpenBrace(): + self.stack.pop() + else: # token == '}' + # Perform end of block checks and pop the stack. + if self.stack: + self.stack[-1].CheckEnd(filename, clean_lines, linenum, error) + self.stack.pop() + line = matched.group(2) + + def InnermostClass(self): + """Get class info on the top of the stack. + + Returns: + A _ClassInfo object if we are inside a class, or None otherwise. + """ + for i in range(len(self.stack), 0, -1): + classinfo = self.stack[i - 1] + if isinstance(classinfo, _ClassInfo): + return classinfo + return None + + def CheckCompletedBlocks(self, filename, error): + """Checks that all classes and namespaces have been completely parsed. + + Call this when all lines in a file have been processed. + Args: + filename: The name of the current file. + error: The function to call with any errors found. + """ + # Note: This test can result in false positives if #ifdef constructs + # get in the way of brace matching. See the testBuildClass test in + # cpplint_unittest.py for an example of this. + for obj in self.stack: + if isinstance(obj, _ClassInfo): + error(filename, obj.starting_linenum, 'build/class', 5, + 'Failed to find complete declaration of class %s' % + obj.name) + elif isinstance(obj, _NamespaceInfo): + error(filename, obj.starting_linenum, 'build/namespaces', 5, + 'Failed to find complete declaration of namespace %s' % + obj.name) + + +def CheckForNonStandardConstructs(filename, clean_lines, linenum, + nesting_state, error): + r"""Logs an error if we see certain non-ANSI constructs ignored by gcc-2. + + Complain about several constructs which gcc-2 accepts, but which are + not standard C++. Warning about these in lint is one way to ease the + transition to new compilers. + - put storage class first (e.g. "static const" instead of "const static"). + - "%lld" instead of %qd" in printf-type functions. + - "%1$d" is non-standard in printf-type functions. + - "\%" is an undefined character escape sequence. + - text after #endif is not allowed. + - invalid inner-style forward declaration. + - >? and ?= and )\?=?\s*(\w+|[+-]?\d+)(\.\d*)?', + line): + error(filename, linenum, 'build/deprecated', 3, + '>? and ))?' + # r'\s*const\s*' + type_name + '\s*&\s*\w+\s*;' + error(filename, linenum, 'runtime/member_string_references', 2, + 'const string& members are dangerous. It is much better to use ' + 'alternatives, such as pointers or simple constants.') + + # Everything else in this function operates on class declarations. + # Return early if the top of the nesting stack is not a class, or if + # the class head is not completed yet. + classinfo = nesting_state.InnermostClass() + if not classinfo or not classinfo.seen_open_brace: + return + + # The class may have been declared with namespace or classname qualifiers. + # The constructor and destructor will not have those qualifiers. + base_classname = classinfo.name.split('::')[-1] + + # Look for single-argument constructors that aren't marked explicit. + # Technically a valid construct, but against style. + args = Match(r'\s+(?:inline\s+)?%s\s*\(([^,()]+)\)' + % re.escape(base_classname), + line) + if (args and + args.group(1) != 'void' and + not Match(r'(const\s+)?%s(\s+const)?\s*(?:<\w+>\s*)?&' + % re.escape(base_classname), args.group(1).strip())): + error(filename, linenum, 'runtime/explicit', 5, + 'Single-argument constructors should be marked explicit.') + + +def CheckSpacingForFunctionCall(filename, line, linenum, error): + """Checks for the correctness of various spacing around function calls. + + Args: + filename: The name of the current file. + line: The text of the line to check. + linenum: The number of the line to check. + error: The function to call with any errors found. + """ + + # Since function calls often occur inside if/for/while/switch + # expressions - which have their own, more liberal conventions - we + # first see if we should be looking inside such an expression for a + # function call, to which we can apply more strict standards. + fncall = line # if there's no control flow construct, look at whole line + for pattern in (r'\bif\s*\((.*)\)\s*{', + r'\bfor\s*\((.*)\)\s*{', + r'\bwhile\s*\((.*)\)\s*[{;]', + r'\bswitch\s*\((.*)\)\s*{'): + match = Search(pattern, line) + if match: + fncall = match.group(1) # look inside the parens for function calls + break + + # Except in if/for/while/switch, there should never be space + # immediately inside parens (eg "f( 3, 4 )"). We make an exception + # for nested parens ( (a+b) + c ). Likewise, there should never be + # a space before a ( when it's a function argument. I assume it's a + # function argument when the char before the whitespace is legal in + # a function name (alnum + _) and we're not starting a macro. Also ignore + # pointers and references to arrays and functions coz they're too tricky: + # we use a very simple way to recognize these: + # " (something)(maybe-something)" or + # " (something)(maybe-something," or + # " (something)[something]" + # Note that we assume the contents of [] to be short enough that + # they'll never need to wrap. + if ( # Ignore control structures. + not Search(r'\b(if|for|while|switch|return|new|delete|catch|sizeof)\b', + fncall) and + # Ignore pointers/references to functions. + not Search(r' \([^)]+\)\([^)]*(\)|,$)', fncall) and + # Ignore pointers/references to arrays. + not Search(r' \([^)]+\)\[[^\]]+\]', fncall)): + if Search(r'\w\s*\(\s(?!\s*\\$)', fncall): # a ( used for a fn call + error(filename, linenum, 'whitespace/parens', 4, + 'Extra space after ( in function call') + elif Search(r'\(\s+(?!(\s*\\)|\()', fncall): + error(filename, linenum, 'whitespace/parens', 2, + 'Extra space after (') + if (Search(r'\w\s+\(', fncall) and + not Search(r'#\s*define|typedef', fncall) and + not Search(r'\w\s+\((\w+::)*\*\w+\)\(', fncall)): + error(filename, linenum, 'whitespace/parens', 4, + 'Extra space before ( in function call') + # If the ) is followed only by a newline or a { + newline, assume it's + # part of a control statement (if/while/etc), and don't complain + if Search(r'[^)]\s+\)\s*[^{\s]', fncall): + # If the closing parenthesis is preceded by only whitespaces, + # try to give a more descriptive error message. + if Search(r'^\s+\)', fncall): + error(filename, linenum, 'whitespace/parens', 2, + 'Closing ) should be moved to the previous line') + else: + error(filename, linenum, 'whitespace/parens', 2, + 'Extra space before )') + + +def IsBlankLine(line): + """Returns true if the given line is blank. + + We consider a line to be blank if the line is empty or consists of + only white spaces. + + Args: + line: A line of a string. + + Returns: + True, if the given line is blank. + """ + return not line or line.isspace() + + +def CheckForFunctionLengths(filename, clean_lines, linenum, + function_state, error): + """Reports for long function bodies. + + For an overview why this is done, see: + http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml#Write_Short_Functions + + Uses a simplistic algorithm assuming other style guidelines + (especially spacing) are followed. + Only checks unindented functions, so class members are unchecked. + Trivial bodies are unchecked, so constructors with huge initializer lists + may be missed. + Blank/comment lines are not counted so as to avoid encouraging the removal + of vertical space and comments just to get through a lint check. + NOLINT *on the last line of a function* disables this check. + + Args: + filename: The name of the current file. + clean_lines: A CleansedLines instance containing the file. + linenum: The number of the line to check. + function_state: Current function name and lines in body so far. + error: The function to call with any errors found. + """ + lines = clean_lines.lines + line = lines[linenum] + raw = clean_lines.raw_lines + raw_line = raw[linenum] + joined_line = '' + + starting_func = False + regexp = r'(\w(\w|::|\*|\&|\s)*)\(' # decls * & space::name( ... + match_result = Match(regexp, line) + if match_result: + # If the name is all caps and underscores, figure it's a macro and + # ignore it, unless it's TEST or TEST_F. + function_name = match_result.group(1).split()[-1] + if function_name == 'TEST' or function_name == 'TEST_F' or ( + not Match(r'[A-Z_]+$', function_name)): + starting_func = True + + if starting_func: + body_found = False + for start_linenum in xrange(linenum, clean_lines.NumLines()): + start_line = lines[start_linenum] + joined_line += ' ' + start_line.lstrip() + if Search(r'(;|})', start_line): # Declarations and trivial functions + body_found = True + break # ... ignore + elif Search(r'{', start_line): + body_found = True + function = Search(r'((\w|:)*)\(', line).group(1) + if Match(r'TEST', function): # Handle TEST... macros + parameter_regexp = Search(r'(\(.*\))', joined_line) + if parameter_regexp: # Ignore bad syntax + function += parameter_regexp.group(1) + else: + function += '()' + function_state.Begin(function) + break + if not body_found: + # No body for the function (or evidence of a non-function) was found. + error(filename, linenum, 'readability/fn_size', 5, + 'Lint failed to find start of function body.') + elif Match(r'^\}\s*$', line): # function end + function_state.Check(error, filename, linenum) + function_state.End() + elif not Match(r'^\s*$', line): + function_state.Count() # Count non-blank/non-comment lines. + + +_RE_PATTERN_TODO = re.compile(r'^//(\s*)TODO(\(.+?\))?:?(\s|$)?') + + +def CheckComment(comment, filename, linenum, error): + """Checks for common mistakes in TODO comments. + + Args: + comment: The text of the comment from the line in question. + filename: The name of the current file. + linenum: The number of the line to check. + error: The function to call with any errors found. + """ + match = _RE_PATTERN_TODO.match(comment) + if match: + # One whitespace is correct; zero whitespace is handled elsewhere. + leading_whitespace = match.group(1) + if len(leading_whitespace) > 1: + error(filename, linenum, 'whitespace/todo', 2, + 'Too many spaces before TODO') + + username = match.group(2) + if not username: + error(filename, linenum, 'readability/todo', 2, + 'Missing username in TODO; it should look like ' + '"// TODO(my_username): Stuff."') + + middle_whitespace = match.group(3) + # Comparisons made explicit for correctness -- pylint: disable=g-explicit-bool-comparison + if middle_whitespace != ' ' and middle_whitespace != '': + error(filename, linenum, 'whitespace/todo', 2, + 'TODO(my_username) should be followed by a space') + +def CheckAccess(filename, clean_lines, linenum, nesting_state, error): + """Checks for improper use of DISALLOW* macros. + + Args: + filename: The name of the current file. + clean_lines: A CleansedLines instance containing the file. + linenum: The number of the line to check. + nesting_state: A _NestingState instance which maintains information about + the current stack of nested blocks being parsed. + error: The function to call with any errors found. + """ + line = clean_lines.elided[linenum] # get rid of comments and strings + + matched = Match((r'\s*(DISALLOW_COPY_AND_ASSIGN|' + r'DISALLOW_EVIL_CONSTRUCTORS|' + r'DISALLOW_IMPLICIT_CONSTRUCTORS)'), line) + if not matched: + return + if nesting_state.stack and isinstance(nesting_state.stack[-1], _ClassInfo): + if nesting_state.stack[-1].access != 'private': + error(filename, linenum, 'readability/constructors', 3, + '%s must be in the private: section' % matched.group(1)) + + else: + # Found DISALLOW* macro outside a class declaration, or perhaps it + # was used inside a function when it should have been part of the + # class declaration. We could issue a warning here, but it + # probably resulted in a compiler error already. + pass + + +def FindNextMatchingAngleBracket(clean_lines, linenum, init_suffix): + """Find the corresponding > to close a template. + + Args: + clean_lines: A CleansedLines instance containing the file. + linenum: Current line number. + init_suffix: Remainder of the current line after the initial <. + + Returns: + True if a matching bracket exists. + """ + line = init_suffix + nesting_stack = ['<'] + while True: + # Find the next operator that can tell us whether < is used as an + # opening bracket or as a less-than operator. We only want to + # warn on the latter case. + # + # We could also check all other operators and terminate the search + # early, e.g. if we got something like this "a(),;\[\]]*([<>(),;\[\]])(.*)$', line) + if match: + # Found an operator, update nesting stack + operator = match.group(1) + line = match.group(2) + + if nesting_stack[-1] == '<': + # Expecting closing angle bracket + if operator in ('<', '(', '['): + nesting_stack.append(operator) + elif operator == '>': + nesting_stack.pop() + if not nesting_stack: + # Found matching angle bracket + return True + elif operator == ',': + # Got a comma after a bracket, this is most likely a template + # argument. We have not seen a closing angle bracket yet, but + # it's probably a few lines later if we look for it, so just + # return early here. + return True + else: + # Got some other operator. + return False + + else: + # Expecting closing parenthesis or closing bracket + if operator in ('<', '(', '['): + nesting_stack.append(operator) + elif operator in (')', ']'): + # We don't bother checking for matching () or []. If we got + # something like (] or [), it would have been a syntax error. + nesting_stack.pop() + + else: + # Scan the next line + linenum += 1 + if linenum >= len(clean_lines.elided): + break + line = clean_lines.elided[linenum] + + # Exhausted all remaining lines and still no matching angle bracket. + # Most likely the input was incomplete, otherwise we should have + # seen a semicolon and returned early. + return True + + +def FindPreviousMatchingAngleBracket(clean_lines, linenum, init_prefix): + """Find the corresponding < that started a template. + + Args: + clean_lines: A CleansedLines instance containing the file. + linenum: Current line number. + init_prefix: Part of the current line before the initial >. + + Returns: + True if a matching bracket exists. + """ + line = init_prefix + nesting_stack = ['>'] + while True: + # Find the previous operator + match = Search(r'^(.*)([<>(),;\[\]])[^<>(),;\[\]]*$', line) + if match: + # Found an operator, update nesting stack + operator = match.group(2) + line = match.group(1) + + if nesting_stack[-1] == '>': + # Expecting opening angle bracket + if operator in ('>', ')', ']'): + nesting_stack.append(operator) + elif operator == '<': + nesting_stack.pop() + if not nesting_stack: + # Found matching angle bracket + return True + elif operator == ',': + # Got a comma before a bracket, this is most likely a + # template argument. The opening angle bracket is probably + # there if we look for it, so just return early here. + return True + else: + # Got some other operator. + return False + + else: + # Expecting opening parenthesis or opening bracket + if operator in ('>', ')', ']'): + nesting_stack.append(operator) + elif operator in ('(', '['): + nesting_stack.pop() + + else: + # Scan the previous line + linenum -= 1 + if linenum < 0: + break + line = clean_lines.elided[linenum] + + # Exhausted all earlier lines and still no matching angle bracket. + return False + + +def CheckSpacing(filename, clean_lines, linenum, nesting_state, error): + """Checks for the correctness of various spacing issues in the code. + + Things we check for: spaces around operators, spaces after + if/for/while/switch, no spaces around parens in function calls, two + spaces between code and comment, don't start a block with a blank + line, don't end a function with a blank line, don't add a blank line + after public/protected/private, don't have too many blank lines in a row. + + Args: + filename: The name of the current file. + clean_lines: A CleansedLines instance containing the file. + linenum: The number of the line to check. + nesting_state: A _NestingState instance which maintains information about + the current stack of nested blocks being parsed. + error: The function to call with any errors found. + """ + + # Don't use "elided" lines here, otherwise we can't check commented lines. + # Don't want to use "raw" either, because we don't want to check inside C++11 + # raw strings, + raw = clean_lines.lines_without_raw_strings + line = raw[linenum] + + # Before nixing comments, check if the line is blank for no good + # reason. This includes the first line after a block is opened, and + # blank lines at the end of a function (ie, right before a line like '}' + # + # Skip all the blank line checks if we are immediately inside a + # namespace body. In other words, don't issue blank line warnings + # for this block: + # namespace { + # + # } + # + # A warning about missing end of namespace comments will be issued instead. + if IsBlankLine(line) and not nesting_state.InNamespaceBody(): + elided = clean_lines.elided + prev_line = elided[linenum - 1] + prevbrace = prev_line.rfind('{') + # TODO(unknown): Don't complain if line before blank line, and line after, + # both start with alnums and are indented the same amount. + # This ignores whitespace at the start of a namespace block + # because those are not usually indented. + if prevbrace != -1 and prev_line[prevbrace:].find('}') == -1: + # OK, we have a blank line at the start of a code block. Before we + # complain, we check if it is an exception to the rule: The previous + # non-empty line has the parameters of a function header that are indented + # 4 spaces (because they did not fit in a 80 column line when placed on + # the same line as the function name). We also check for the case where + # the previous line is indented 6 spaces, which may happen when the + # initializers of a constructor do not fit into a 80 column line. + exception = False + if Match(r' {6}\w', prev_line): # Initializer list? + # We are looking for the opening column of initializer list, which + # should be indented 4 spaces to cause 6 space indentation afterwards. + search_position = linenum-2 + while (search_position >= 0 + and Match(r' {6}\w', elided[search_position])): + search_position -= 1 + exception = (search_position >= 0 + and elided[search_position][:5] == ' :') + else: + # Search for the function arguments or an initializer list. We use a + # simple heuristic here: If the line is indented 4 spaces; and we have a + # closing paren, without the opening paren, followed by an opening brace + # or colon (for initializer lists) we assume that it is the last line of + # a function header. If we have a colon indented 4 spaces, it is an + # initializer list. + exception = (Match(r' {4}\w[^\(]*\)\s*(const\s*)?(\{\s*$|:)', + prev_line) + or Match(r' {4}:', prev_line)) + + if not exception: + error(filename, linenum, 'whitespace/blank_line', 2, + 'Redundant blank line at the start of a code block ' + 'should be deleted.') + # Ignore blank lines at the end of a block in a long if-else + # chain, like this: + # if (condition1) { + # // Something followed by a blank line + # + # } else if (condition2) { + # // Something else + # } + if linenum + 1 < clean_lines.NumLines(): + next_line = raw[linenum + 1] + if (next_line + and Match(r'\s*}', next_line) + and next_line.find('} else ') == -1): + error(filename, linenum, 'whitespace/blank_line', 3, + 'Redundant blank line at the end of a code block ' + 'should be deleted.') + + matched = Match(r'\s*(public|protected|private):', prev_line) + if matched: + error(filename, linenum, 'whitespace/blank_line', 3, + 'Do not leave a blank line after "%s:"' % matched.group(1)) + + # Next, we complain if there's a comment too near the text + commentpos = line.find('//') + if commentpos != -1: + # Check if the // may be in quotes. If so, ignore it + # Comparisons made explicit for clarity -- pylint: disable=g-explicit-bool-comparison + if (line.count('"', 0, commentpos) - + line.count('\\"', 0, commentpos)) % 2 == 0: # not in quotes + # Allow one space for new scopes, two spaces otherwise: + if (not Match(r'^\s*{ //', line) and + ((commentpos >= 1 and + line[commentpos-1] not in string.whitespace) or + (commentpos >= 2 and + line[commentpos-2] not in string.whitespace))): + error(filename, linenum, 'whitespace/comments', 2, + 'At least two spaces is best between code and comments') + # There should always be a space between the // and the comment + commentend = commentpos + 2 + if commentend < len(line) and not line[commentend] == ' ': + # but some lines are exceptions -- e.g. if they're big + # comment delimiters like: + # //---------------------------------------------------------- + # or are an empty C++ style Doxygen comment, like: + # /// + # or C++ style Doxygen comments placed after the variable: + # ///< Header comment + # //!< Header comment + # or they begin with multiple slashes followed by a space: + # //////// Header comment + match = (Search(r'[=/-]{4,}\s*$', line[commentend:]) or + Search(r'^/$', line[commentend:]) or + Search(r'^!< ', line[commentend:]) or + Search(r'^/< ', line[commentend:]) or + Search(r'^/+ ', line[commentend:])) + if not match: + error(filename, linenum, 'whitespace/comments', 4, + 'Should have a space between // and comment') + CheckComment(line[commentpos:], filename, linenum, error) + + line = clean_lines.elided[linenum] # get rid of comments and strings + + # Don't try to do spacing checks for operator methods + line = re.sub(r'operator(==|!=|<|<<|<=|>=|>>|>)\(', 'operator\(', line) + + # We allow no-spaces around = within an if: "if ( (a=Foo()) == 0 )". + # Otherwise not. Note we only check for non-spaces on *both* sides; + # sometimes people put non-spaces on one side when aligning ='s among + # many lines (not that this is behavior that I approve of...) + if Search(r'[\w.]=[\w.]', line) and not Search(r'\b(if|while) ', line): + error(filename, linenum, 'whitespace/operators', 4, + 'Missing spaces around =') + + # It's ok not to have spaces around binary operators like + - * /, but if + # there's too little whitespace, we get concerned. It's hard to tell, + # though, so we punt on this one for now. TODO. + + # You should always have whitespace around binary operators. + # + # Check <= and >= first to avoid false positives with < and >, then + # check non-include lines for spacing around < and >. + match = Search(r'[^<>=!\s](==|!=|<=|>=)[^<>=!\s]', line) + if match: + error(filename, linenum, 'whitespace/operators', 3, + 'Missing spaces around %s' % match.group(1)) + # We allow no-spaces around << when used like this: 10<<20, but + # not otherwise (particularly, not when used as streams) + # Also ignore using ns::operator<<; + match = Search(r'(operator|\S)(?:L|UL|ULL|l|ul|ull)?<<(\S)', line) + if (match and + not (match.group(1).isdigit() and match.group(2).isdigit()) and + not (match.group(1) == 'operator' and match.group(2) == ';')): + error(filename, linenum, 'whitespace/operators', 3, + 'Missing spaces around <<') + elif not Match(r'#.*include', line): + # Avoid false positives on -> + reduced_line = line.replace('->', '') + + # Look for < that is not surrounded by spaces. This is only + # triggered if both sides are missing spaces, even though + # technically should should flag if at least one side is missing a + # space. This is done to avoid some false positives with shifts. + match = Search(r'[^\s<]<([^\s=<].*)', reduced_line) + if (match and + not FindNextMatchingAngleBracket(clean_lines, linenum, match.group(1))): + error(filename, linenum, 'whitespace/operators', 3, + 'Missing spaces around <') + + # Look for > that is not surrounded by spaces. Similar to the + # above, we only trigger if both sides are missing spaces to avoid + # false positives with shifts. + match = Search(r'^(.*[^\s>])>[^\s=>]', reduced_line) + if (match and + not FindPreviousMatchingAngleBracket(clean_lines, linenum, + match.group(1))): + error(filename, linenum, 'whitespace/operators', 3, + 'Missing spaces around >') + + # We allow no-spaces around >> for almost anything. This is because + # C++11 allows ">>" to close nested templates, which accounts for + # most cases when ">>" is not followed by a space. + # + # We still warn on ">>" followed by alpha character, because that is + # likely due to ">>" being used for right shifts, e.g.: + # value >> alpha + # + # When ">>" is used to close templates, the alphanumeric letter that + # follows would be part of an identifier, and there should still be + # a space separating the template type and the identifier. + # type> alpha + match = Search(r'>>[a-zA-Z_]', line) + if match: + error(filename, linenum, 'whitespace/operators', 3, + 'Missing spaces around >>') + + # There shouldn't be space around unary operators + match = Search(r'(!\s|~\s|[\s]--[\s;]|[\s]\+\+[\s;])', line) + if match: + error(filename, linenum, 'whitespace/operators', 4, + 'Extra space for operator %s' % match.group(1)) + + # A pet peeve of mine: no spaces after an if, while, switch, or for + match = Search(r' (if\(|for\(|while\(|switch\()', line) + if match: + error(filename, linenum, 'whitespace/parens', 5, + 'Missing space before ( in %s' % match.group(1)) + + # For if/for/while/switch, the left and right parens should be + # consistent about how many spaces are inside the parens, and + # there should either be zero or one spaces inside the parens. + # We don't want: "if ( foo)" or "if ( foo )". + # Exception: "for ( ; foo; bar)" and "for (foo; bar; )" are allowed. + match = Search(r'\b(if|for|while|switch)\s*' + r'\(([ ]*)(.).*[^ ]+([ ]*)\)\s*{\s*$', + line) + if match: + if len(match.group(2)) != len(match.group(4)): + if not (match.group(3) == ';' and + len(match.group(2)) == 1 + len(match.group(4)) or + not match.group(2) and Search(r'\bfor\s*\(.*; \)', line)): + error(filename, linenum, 'whitespace/parens', 5, + 'Mismatching spaces inside () in %s' % match.group(1)) + if len(match.group(2)) not in [0, 1]: + error(filename, linenum, 'whitespace/parens', 5, + 'Should have zero or one spaces inside ( and ) in %s' % + match.group(1)) + + # You should always have a space after a comma (either as fn arg or operator) + # + # This does not apply when the non-space character following the + # comma is another comma, since the only time when that happens is + # for empty macro arguments. + # + # We run this check in two passes: first pass on elided lines to + # verify that lines contain missing whitespaces, second pass on raw + # lines to confirm that those missing whitespaces are not due to + # elided comments. + if Search(r',[^,\s]', line) and Search(r',[^,\s]', raw[linenum]): + error(filename, linenum, 'whitespace/comma', 3, + 'Missing space after ,') + + # You should always have a space after a semicolon + # except for few corner cases + # TODO(unknown): clarify if 'if (1) { return 1;}' is requires one more + # space after ; + if Search(r';[^\s};\\)/]', line): + error(filename, linenum, 'whitespace/semicolon', 3, + 'Missing space after ;') + + # Next we will look for issues with function calls. + CheckSpacingForFunctionCall(filename, line, linenum, error) + + # Except after an opening paren, or after another opening brace (in case of + # an initializer list, for instance), you should have spaces before your + # braces. And since you should never have braces at the beginning of a line, + # this is an easy test. + match = Match(r'^(.*[^ ({]){', line) + if match: + # Try a bit harder to check for brace initialization. This + # happens in one of the following forms: + # Constructor() : initializer_list_{} { ... } + # Constructor{}.MemberFunction() + # Type variable{}; + # FunctionCall(type{}, ...); + # LastArgument(..., type{}); + # LOG(INFO) << type{} << " ..."; + # map_of_type[{...}] = ...; + # + # We check for the character following the closing brace, and + # silence the warning if it's one of those listed above, i.e. + # "{.;,)<]". + # + # To account for nested initializer list, we allow any number of + # closing braces up to "{;,)<". We can't simply silence the + # warning on first sight of closing brace, because that would + # cause false negatives for things that are not initializer lists. + # Silence this: But not this: + # Outer{ if (...) { + # Inner{...} if (...){ // Missing space before { + # }; } + # + # There is a false negative with this approach if people inserted + # spurious semicolons, e.g. "if (cond){};", but we will catch the + # spurious semicolon with a separate check. + (endline, endlinenum, endpos) = CloseExpression( + clean_lines, linenum, len(match.group(1))) + trailing_text = '' + if endpos > -1: + trailing_text = endline[endpos:] + for offset in xrange(endlinenum + 1, + min(endlinenum + 3, clean_lines.NumLines() - 1)): + trailing_text += clean_lines.elided[offset] + if not Match(r'^[\s}]*[{.;,)<\]]', trailing_text): + error(filename, linenum, 'whitespace/braces', 5, + 'Missing space before {') + + # Make sure '} else {' has spaces. + if Search(r'}else', line): + error(filename, linenum, 'whitespace/braces', 5, + 'Missing space before else') + + # You shouldn't have spaces before your brackets, except maybe after + # 'delete []' or 'new char * []'. + if Search(r'\w\s+\[', line) and not Search(r'delete\s+\[', line): + error(filename, linenum, 'whitespace/braces', 5, + 'Extra space before [') + + # You shouldn't have a space before a semicolon at the end of the line. + # There's a special case for "for" since the style guide allows space before + # the semicolon there. + if Search(r':\s*;\s*$', line): + error(filename, linenum, 'whitespace/semicolon', 5, + 'Semicolon defining empty statement. Use {} instead.') + elif Search(r'^\s*;\s*$', line): + error(filename, linenum, 'whitespace/semicolon', 5, + 'Line contains only semicolon. If this should be an empty statement, ' + 'use {} instead.') + elif (Search(r'\s+;\s*$', line) and + not Search(r'\bfor\b', line)): + error(filename, linenum, 'whitespace/semicolon', 5, + 'Extra space before last semicolon. If this should be an empty ' + 'statement, use {} instead.') + + # In range-based for, we wanted spaces before and after the colon, but + # not around "::" tokens that might appear. + if (Search('for *\(.*[^:]:[^: ]', line) or + Search('for *\(.*[^: ]:[^:]', line)): + error(filename, linenum, 'whitespace/forcolon', 2, + 'Missing space around colon in range-based for loop') + + +def CheckSectionSpacing(filename, clean_lines, class_info, linenum, error): + """Checks for additional blank line issues related to sections. + + Currently the only thing checked here is blank line before protected/private. + + Args: + filename: The name of the current file. + clean_lines: A CleansedLines instance containing the file. + class_info: A _ClassInfo objects. + linenum: The number of the line to check. + error: The function to call with any errors found. + """ + # Skip checks if the class is small, where small means 25 lines or less. + # 25 lines seems like a good cutoff since that's the usual height of + # terminals, and any class that can't fit in one screen can't really + # be considered "small". + # + # Also skip checks if we are on the first line. This accounts for + # classes that look like + # class Foo { public: ... }; + # + # If we didn't find the end of the class, last_line would be zero, + # and the check will be skipped by the first condition. + if (class_info.last_line - class_info.starting_linenum <= 24 or + linenum <= class_info.starting_linenum): + return + + matched = Match(r'\s*(public|protected|private):', clean_lines.lines[linenum]) + if matched: + # Issue warning if the line before public/protected/private was + # not a blank line, but don't do this if the previous line contains + # "class" or "struct". This can happen two ways: + # - We are at the beginning of the class. + # - We are forward-declaring an inner class that is semantically + # private, but needed to be public for implementation reasons. + # Also ignores cases where the previous line ends with a backslash as can be + # common when defining classes in C macros. + prev_line = clean_lines.lines[linenum - 1] + if (not IsBlankLine(prev_line) and + not Search(r'\b(class|struct)\b', prev_line) and + not Search(r'\\$', prev_line)): + # Try a bit harder to find the beginning of the class. This is to + # account for multi-line base-specifier lists, e.g.: + # class Derived + # : public Base { + end_class_head = class_info.starting_linenum + for i in range(class_info.starting_linenum, linenum): + if Search(r'\{\s*$', clean_lines.lines[i]): + end_class_head = i + break + if end_class_head < linenum - 1: + error(filename, linenum, 'whitespace/blank_line', 3, + '"%s:" should be preceded by a blank line' % matched.group(1)) + + +def GetPreviousNonBlankLine(clean_lines, linenum): + """Return the most recent non-blank line and its line number. + + Args: + clean_lines: A CleansedLines instance containing the file contents. + linenum: The number of the line to check. + + Returns: + A tuple with two elements. The first element is the contents of the last + non-blank line before the current line, or the empty string if this is the + first non-blank line. The second is the line number of that line, or -1 + if this is the first non-blank line. + """ + + prevlinenum = linenum - 1 + while prevlinenum >= 0: + prevline = clean_lines.elided[prevlinenum] + if not IsBlankLine(prevline): # if not a blank line... + return (prevline, prevlinenum) + prevlinenum -= 1 + return ('', -1) + + +def CheckBraces(filename, clean_lines, linenum, error): + """Looks for misplaced braces (e.g. at the end of line). + + Args: + filename: The name of the current file. + clean_lines: A CleansedLines instance containing the file. + linenum: The number of the line to check. + error: The function to call with any errors found. + """ + + line = clean_lines.elided[linenum] # get rid of comments and strings + + if Match(r'\s*{\s*$', line): + # We allow an open brace to start a line in the case where someone is using + # braces in a block to explicitly create a new scope, which is commonly used + # to control the lifetime of stack-allocated variables. Braces are also + # used for brace initializers inside function calls. We don't detect this + # perfectly: we just don't complain if the last non-whitespace character on + # the previous non-blank line is ',', ';', ':', '(', '{', or '}', or if the + # previous line starts a preprocessor block. + prevline = GetPreviousNonBlankLine(clean_lines, linenum)[0] + if (not Search(r'[,;:}{(]\s*$', prevline) and + not Match(r'\s*#', prevline)): + error(filename, linenum, 'whitespace/braces', 4, + '{ should almost always be at the end of the previous line') + + # An else clause should be on the same line as the preceding closing brace. + if Match(r'\s*else\s*', line): + prevline = GetPreviousNonBlankLine(clean_lines, linenum)[0] + if Match(r'\s*}\s*$', prevline): + error(filename, linenum, 'whitespace/newline', 4, + 'An else should appear on the same line as the preceding }') + + # If braces come on one side of an else, they should be on both. + # However, we have to worry about "else if" that spans multiple lines! + if Search(r'}\s*else[^{]*$', line) or Match(r'[^}]*else\s*{', line): + if Search(r'}\s*else if([^{]*)$', line): # could be multi-line if + # find the ( after the if + pos = line.find('else if') + pos = line.find('(', pos) + if pos > 0: + (endline, _, endpos) = CloseExpression(clean_lines, linenum, pos) + if endline[endpos:].find('{') == -1: # must be brace after if + error(filename, linenum, 'readability/braces', 5, + 'If an else has a brace on one side, it should have it on both') + else: # common case: else not followed by a multi-line if + error(filename, linenum, 'readability/braces', 5, + 'If an else has a brace on one side, it should have it on both') + + # Likewise, an else should never have the else clause on the same line + if Search(r'\belse [^\s{]', line) and not Search(r'\belse if\b', line): + error(filename, linenum, 'whitespace/newline', 4, + 'Else clause should never be on same line as else (use 2 lines)') + + # In the same way, a do/while should never be on one line + if Match(r'\s*do [^\s{]', line): + error(filename, linenum, 'whitespace/newline', 4, + 'do/while clauses should not be on a single line') + + # Block bodies should not be followed by a semicolon. Due to C++11 + # brace initialization, there are more places where semicolons are + # required than not, so we use a whitelist approach to check these + # rather than a blacklist. These are the places where "};" should + # be replaced by just "}": + # 1. Some flavor of block following closing parenthesis: + # for (;;) {}; + # while (...) {}; + # switch (...) {}; + # Function(...) {}; + # if (...) {}; + # if (...) else if (...) {}; + # + # 2. else block: + # if (...) else {}; + # + # 3. const member function: + # Function(...) const {}; + # + # 4. Block following some statement: + # x = 42; + # {}; + # + # 5. Block at the beginning of a function: + # Function(...) { + # {}; + # } + # + # Note that naively checking for the preceding "{" will also match + # braces inside multi-dimensional arrays, but this is fine since + # that expression will not contain semicolons. + # + # 6. Block following another block: + # while (true) {} + # {}; + # + # 7. End of namespaces: + # namespace {}; + # + # These semicolons seems far more common than other kinds of + # redundant semicolons, possibly due to people converting classes + # to namespaces. For now we do not warn for this case. + # + # Try matching case 1 first. + match = Match(r'^(.*\)\s*)\{', line) + if match: + # Matched closing parenthesis (case 1). Check the token before the + # matching opening parenthesis, and don't warn if it looks like a + # macro. This avoids these false positives: + # - macro that defines a base class + # - multi-line macro that defines a base class + # - macro that defines the whole class-head + # + # But we still issue warnings for macros that we know are safe to + # warn, specifically: + # - TEST, TEST_F, TEST_P, MATCHER, MATCHER_P + # - TYPED_TEST + # - INTERFACE_DEF + # - EXCLUSIVE_LOCKS_REQUIRED, SHARED_LOCKS_REQUIRED, LOCKS_EXCLUDED: + # + # We implement a whitelist of safe macros instead of a blacklist of + # unsafe macros, even though the latter appears less frequently in + # google code and would have been easier to implement. This is because + # the downside for getting the whitelist wrong means some extra + # semicolons, while the downside for getting the blacklist wrong + # would result in compile errors. + # + # In addition to macros, we also don't want to warn on compound + # literals. + closing_brace_pos = match.group(1).rfind(')') + opening_parenthesis = ReverseCloseExpression( + clean_lines, linenum, closing_brace_pos) + if opening_parenthesis[2] > -1: + line_prefix = opening_parenthesis[0][0:opening_parenthesis[2]] + macro = Search(r'\b([A-Z_]+)\s*$', line_prefix) + if ((macro and + macro.group(1) not in ( + 'TEST', 'TEST_F', 'MATCHER', 'MATCHER_P', 'TYPED_TEST', + 'EXCLUSIVE_LOCKS_REQUIRED', 'SHARED_LOCKS_REQUIRED', + 'LOCKS_EXCLUDED', 'INTERFACE_DEF')) or + Search(r'\s+=\s*$', line_prefix)): + match = None + + else: + # Try matching cases 2-3. + match = Match(r'^(.*(?:else|\)\s*const)\s*)\{', line) + if not match: + # Try matching cases 4-6. These are always matched on separate lines. + # + # Note that we can't simply concatenate the previous line to the + # current line and do a single match, otherwise we may output + # duplicate warnings for the blank line case: + # if (cond) { + # // blank line + # } + prevline = GetPreviousNonBlankLine(clean_lines, linenum)[0] + if prevline and Search(r'[;{}]\s*$', prevline): + match = Match(r'^(\s*)\{', line) + + # Check matching closing brace + if match: + (endline, endlinenum, endpos) = CloseExpression( + clean_lines, linenum, len(match.group(1))) + if endpos > -1 and Match(r'^\s*;', endline[endpos:]): + # Current {} pair is eligible for semicolon check, and we have found + # the redundant semicolon, output warning here. + # + # Note: because we are scanning forward for opening braces, and + # outputting warnings for the matching closing brace, if there are + # nested blocks with trailing semicolons, we will get the error + # messages in reversed order. + error(filename, endlinenum, 'readability/braces', 4, + "You don't need a ; after a }") + + +def CheckEmptyBlockBody(filename, clean_lines, linenum, error): + """Look for empty loop/conditional body with only a single semicolon. + + Args: + filename: The name of the current file. + clean_lines: A CleansedLines instance containing the file. + linenum: The number of the line to check. + error: The function to call with any errors found. + """ + + # Search for loop keywords at the beginning of the line. Because only + # whitespaces are allowed before the keywords, this will also ignore most + # do-while-loops, since those lines should start with closing brace. + # + # We also check "if" blocks here, since an empty conditional block + # is likely an error. + line = clean_lines.elided[linenum] + matched = Match(r'\s*(for|while|if)\s*\(', line) + if matched: + # Find the end of the conditional expression + (end_line, end_linenum, end_pos) = CloseExpression( + clean_lines, linenum, line.find('(')) + + # Output warning if what follows the condition expression is a semicolon. + # No warning for all other cases, including whitespace or newline, since we + # have a separate check for semicolons preceded by whitespace. + if end_pos >= 0 and Match(r';', end_line[end_pos:]): + if matched.group(1) == 'if': + error(filename, end_linenum, 'whitespace/empty_conditional_body', 5, + 'Empty conditional bodies should use {}') + else: + error(filename, end_linenum, 'whitespace/empty_loop_body', 5, + 'Empty loop bodies should use {} or continue') + + +def CheckCheck(filename, clean_lines, linenum, error): + """Checks the use of CHECK and EXPECT macros. + + Args: + filename: The name of the current file. + clean_lines: A CleansedLines instance containing the file. + linenum: The number of the line to check. + error: The function to call with any errors found. + """ + + # Decide the set of replacement macros that should be suggested + lines = clean_lines.elided + check_macro = None + start_pos = -1 + for macro in _CHECK_MACROS: + i = lines[linenum].find(macro) + if i >= 0: + check_macro = macro + + # Find opening parenthesis. Do a regular expression match here + # to make sure that we are matching the expected CHECK macro, as + # opposed to some other macro that happens to contain the CHECK + # substring. + matched = Match(r'^(.*\b' + check_macro + r'\s*)\(', lines[linenum]) + if not matched: + continue + start_pos = len(matched.group(1)) + break + if not check_macro or start_pos < 0: + # Don't waste time here if line doesn't contain 'CHECK' or 'EXPECT' + return + + # Find end of the boolean expression by matching parentheses + (last_line, end_line, end_pos) = CloseExpression( + clean_lines, linenum, start_pos) + if end_pos < 0: + return + if linenum == end_line: + expression = lines[linenum][start_pos + 1:end_pos - 1] + else: + expression = lines[linenum][start_pos + 1:] + for i in xrange(linenum + 1, end_line): + expression += lines[i] + expression += last_line[0:end_pos - 1] + + # Parse expression so that we can take parentheses into account. + # This avoids false positives for inputs like "CHECK((a < 4) == b)", + # which is not replaceable by CHECK_LE. + lhs = '' + rhs = '' + operator = None + while expression: + matched = Match(r'^\s*(<<|<<=|>>|>>=|->\*|->|&&|\|\||' + r'==|!=|>=|>|<=|<|\()(.*)$', expression) + if matched: + token = matched.group(1) + if token == '(': + # Parenthesized operand + expression = matched.group(2) + (end, _) = FindEndOfExpressionInLine(expression, 0, 1, '(', ')') + if end < 0: + return # Unmatched parenthesis + lhs += '(' + expression[0:end] + expression = expression[end:] + elif token in ('&&', '||'): + # Logical and/or operators. This means the expression + # contains more than one term, for example: + # CHECK(42 < a && a < b); + # + # These are not replaceable with CHECK_LE, so bail out early. + return + elif token in ('<<', '<<=', '>>', '>>=', '->*', '->'): + # Non-relational operator + lhs += token + expression = matched.group(2) + else: + # Relational operator + operator = token + rhs = matched.group(2) + break + else: + # Unparenthesized operand. Instead of appending to lhs one character + # at a time, we do another regular expression match to consume several + # characters at once if possible. Trivial benchmark shows that this + # is more efficient when the operands are longer than a single + # character, which is generally the case. + matched = Match(r'^([^-=!<>()&|]+)(.*)$', expression) + if not matched: + matched = Match(r'^(\s*\S)(.*)$', expression) + if not matched: + break + lhs += matched.group(1) + expression = matched.group(2) + + # Only apply checks if we got all parts of the boolean expression + if not (lhs and operator and rhs): + return + + # Check that rhs do not contain logical operators. We already know + # that lhs is fine since the loop above parses out && and ||. + if rhs.find('&&') > -1 or rhs.find('||') > -1: + return + + # At least one of the operands must be a constant literal. This is + # to avoid suggesting replacements for unprintable things like + # CHECK(variable != iterator) + # + # The following pattern matches decimal, hex integers, strings, and + # characters (in that order). + lhs = lhs.strip() + rhs = rhs.strip() + match_constant = r'^([-+]?(\d+|0[xX][0-9a-fA-F]+)[lLuU]{0,3}|".*"|\'.*\')$' + if Match(match_constant, lhs) or Match(match_constant, rhs): + # Note: since we know both lhs and rhs, we can provide a more + # descriptive error message like: + # Consider using CHECK_EQ(x, 42) instead of CHECK(x == 42) + # Instead of: + # Consider using CHECK_EQ instead of CHECK(a == b) + # + # We are still keeping the less descriptive message because if lhs + # or rhs gets long, the error message might become unreadable. + error(filename, linenum, 'readability/check', 2, + 'Consider using %s instead of %s(a %s b)' % ( + _CHECK_REPLACEMENT[check_macro][operator], + check_macro, operator)) + + +def CheckAltTokens(filename, clean_lines, linenum, error): + """Check alternative keywords being used in boolean expressions. + + Args: + filename: The name of the current file. + clean_lines: A CleansedLines instance containing the file. + linenum: The number of the line to check. + error: The function to call with any errors found. + """ + line = clean_lines.elided[linenum] + + # Avoid preprocessor lines + if Match(r'^\s*#', line): + return + + # Last ditch effort to avoid multi-line comments. This will not help + # if the comment started before the current line or ended after the + # current line, but it catches most of the false positives. At least, + # it provides a way to workaround this warning for people who use + # multi-line comments in preprocessor macros. + # + # TODO(unknown): remove this once cpplint has better support for + # multi-line comments. + if line.find('/*') >= 0 or line.find('*/') >= 0: + return + + for match in _ALT_TOKEN_REPLACEMENT_PATTERN.finditer(line): + error(filename, linenum, 'readability/alt_tokens', 2, + 'Use operator %s instead of %s' % ( + _ALT_TOKEN_REPLACEMENT[match.group(1)], match.group(1))) + + +def GetLineWidth(line): + """Determines the width of the line in column positions. + + Args: + line: A string, which may be a Unicode string. + + Returns: + The width of the line in column positions, accounting for Unicode + combining characters and wide characters. + """ + if isinstance(line, unicode): + width = 0 + for uc in unicodedata.normalize('NFC', line): + if unicodedata.east_asian_width(uc) in ('W', 'F'): + width += 2 + elif not unicodedata.combining(uc): + width += 1 + return width + else: + return len(line) + + +def CheckStyle(filename, clean_lines, linenum, file_extension, nesting_state, + error): + """Checks rules from the 'C++ style rules' section of cppguide.html. + + Most of these rules are hard to test (naming, comment style), but we + do what we can. In particular we check for 2-space indents, line lengths, + tab usage, spaces inside code, etc. + + Args: + filename: The name of the current file. + clean_lines: A CleansedLines instance containing the file. + linenum: The number of the line to check. + file_extension: The extension (without the dot) of the filename. + nesting_state: A _NestingState instance which maintains information about + the current stack of nested blocks being parsed. + error: The function to call with any errors found. + """ + + # Don't use "elided" lines here, otherwise we can't check commented lines. + # Don't want to use "raw" either, because we don't want to check inside C++11 + # raw strings, + raw_lines = clean_lines.lines_without_raw_strings + line = raw_lines[linenum] + + if line.find('\t') != -1: + error(filename, linenum, 'whitespace/tab', 1, + 'Tab found; better to use spaces') + + # One or three blank spaces at the beginning of the line is weird; it's + # hard to reconcile that with 2-space indents. + # NOTE: here are the conditions rob pike used for his tests. Mine aren't + # as sophisticated, but it may be worth becoming so: RLENGTH==initial_spaces + # if(RLENGTH > 20) complain = 0; + # if(match($0, " +(error|private|public|protected):")) complain = 0; + # if(match(prev, "&& *$")) complain = 0; + # if(match(prev, "\\|\\| *$")) complain = 0; + # if(match(prev, "[\",=><] *$")) complain = 0; + # if(match($0, " <<")) complain = 0; + # if(match(prev, " +for \\(")) complain = 0; + # if(prevodd && match(prevprev, " +for \\(")) complain = 0; + initial_spaces = 0 + cleansed_line = clean_lines.elided[linenum] + while initial_spaces < len(line) and line[initial_spaces] == ' ': + initial_spaces += 1 + if line and line[-1].isspace(): + error(filename, linenum, 'whitespace/end_of_line', 4, + 'Line ends in whitespace. Consider deleting these extra spaces.') + # There are certain situations we allow one space, notably for section labels + elif ((initial_spaces == 1 or initial_spaces == 3) and + not Match(r'\s*\w+\s*:\s*$', cleansed_line)): + error(filename, linenum, 'whitespace/indent', 3, + 'Weird number of spaces at line-start. ' + 'Are you using a 2-space indent?') + + # Check if the line is a header guard. + is_header_guard = False + if file_extension == 'h': + cppvar = GetHeaderGuardCPPVariable(filename) + if (line.startswith('#ifndef %s' % cppvar) or + line.startswith('#define %s' % cppvar) or + line.startswith('#endif // %s' % cppvar)): + is_header_guard = True + # #include lines and header guards can be long, since there's no clean way to + # split them. + # + # URLs can be long too. It's possible to split these, but it makes them + # harder to cut&paste. + # + # The "$Id:...$" comment may also get very long without it being the + # developers fault. + if (not line.startswith('#include') and not is_header_guard and + not Match(r'^\s*//.*http(s?)://\S*$', line) and + not Match(r'^// \$Id:.*#[0-9]+ \$$', line)): + line_width = GetLineWidth(line) + extended_length = int((_line_length * 1.25)) + if line_width > extended_length: + error(filename, linenum, 'whitespace/line_length', 4, + 'Lines should very rarely be longer than %i characters' % + extended_length) + elif line_width > _line_length: + error(filename, linenum, 'whitespace/line_length', 2, + 'Lines should be <= %i characters long' % _line_length) + + if (cleansed_line.count(';') > 1 and + # for loops are allowed two ;'s (and may run over two lines). + cleansed_line.find('for') == -1 and + (GetPreviousNonBlankLine(clean_lines, linenum)[0].find('for') == -1 or + GetPreviousNonBlankLine(clean_lines, linenum)[0].find(';') != -1) and + # It's ok to have many commands in a switch case that fits in 1 line + not ((cleansed_line.find('case ') != -1 or + cleansed_line.find('default:') != -1) and + cleansed_line.find('break;') != -1)): + error(filename, linenum, 'whitespace/newline', 0, + 'More than one command on the same line') + + # Some more style checks + CheckBraces(filename, clean_lines, linenum, error) + CheckEmptyBlockBody(filename, clean_lines, linenum, error) + CheckAccess(filename, clean_lines, linenum, nesting_state, error) + CheckSpacing(filename, clean_lines, linenum, nesting_state, error) + CheckCheck(filename, clean_lines, linenum, error) + CheckAltTokens(filename, clean_lines, linenum, error) + classinfo = nesting_state.InnermostClass() + if classinfo: + CheckSectionSpacing(filename, clean_lines, classinfo, linenum, error) + + +_RE_PATTERN_INCLUDE_NEW_STYLE = re.compile(r'#include +"[^/]+\.h"') +_RE_PATTERN_INCLUDE = re.compile(r'^\s*#\s*include\s*([<"])([^>"]*)[>"].*$') +# Matches the first component of a filename delimited by -s and _s. That is: +# _RE_FIRST_COMPONENT.match('foo').group(0) == 'foo' +# _RE_FIRST_COMPONENT.match('foo.cc').group(0) == 'foo' +# _RE_FIRST_COMPONENT.match('foo-bar_baz.cc').group(0) == 'foo' +# _RE_FIRST_COMPONENT.match('foo_bar-baz.cc').group(0) == 'foo' +_RE_FIRST_COMPONENT = re.compile(r'^[^-_.]+') + + +def _DropCommonSuffixes(filename): + """Drops common suffixes like _test.cc or -inl.h from filename. + + For example: + >>> _DropCommonSuffixes('foo/foo-inl.h') + 'foo/foo' + >>> _DropCommonSuffixes('foo/bar/foo.cc') + 'foo/bar/foo' + >>> _DropCommonSuffixes('foo/foo_internal.h') + 'foo/foo' + >>> _DropCommonSuffixes('foo/foo_unusualinternal.h') + 'foo/foo_unusualinternal' + + Args: + filename: The input filename. + + Returns: + The filename with the common suffix removed. + """ + for suffix in ('test.cc', 'regtest.cc', 'unittest.cc', + 'inl.h', 'impl.h', 'internal.h'): + if (filename.endswith(suffix) and len(filename) > len(suffix) and + filename[-len(suffix) - 1] in ('-', '_')): + return filename[:-len(suffix) - 1] + return os.path.splitext(filename)[0] + + +def _IsTestFilename(filename): + """Determines if the given filename has a suffix that identifies it as a test. + + Args: + filename: The input filename. + + Returns: + True if 'filename' looks like a test, False otherwise. + """ + if (filename.endswith('_test.cc') or + filename.endswith('_unittest.cc') or + filename.endswith('_regtest.cc')): + return True + else: + return False + + +def _ClassifyInclude(fileinfo, include, is_system): + """Figures out what kind of header 'include' is. + + Args: + fileinfo: The current file cpplint is running over. A FileInfo instance. + include: The path to a #included file. + is_system: True if the #include used <> rather than "". + + Returns: + One of the _XXX_HEADER constants. + + For example: + >>> _ClassifyInclude(FileInfo('foo/foo.cc'), 'stdio.h', True) + _C_SYS_HEADER + >>> _ClassifyInclude(FileInfo('foo/foo.cc'), 'string', True) + _CPP_SYS_HEADER + >>> _ClassifyInclude(FileInfo('foo/foo.cc'), 'foo/foo.h', False) + _LIKELY_MY_HEADER + >>> _ClassifyInclude(FileInfo('foo/foo_unknown_extension.cc'), + ... 'bar/foo_other_ext.h', False) + _POSSIBLE_MY_HEADER + >>> _ClassifyInclude(FileInfo('foo/foo.cc'), 'foo/bar.h', False) + _OTHER_HEADER + """ + # This is a list of all standard c++ header files, except + # those already checked for above. + is_cpp_h = include in _CPP_HEADERS + + if is_system: + if is_cpp_h: + return _CPP_SYS_HEADER + else: + return _C_SYS_HEADER + + # If the target file and the include we're checking share a + # basename when we drop common extensions, and the include + # lives in . , then it's likely to be owned by the target file. + target_dir, target_base = ( + os.path.split(_DropCommonSuffixes(fileinfo.RepositoryName()))) + include_dir, include_base = os.path.split(_DropCommonSuffixes(include)) + if target_base == include_base and ( + include_dir == target_dir or + include_dir == os.path.normpath(target_dir + '/../public')): + return _LIKELY_MY_HEADER + + # If the target and include share some initial basename + # component, it's possible the target is implementing the + # include, so it's allowed to be first, but we'll never + # complain if it's not there. + target_first_component = _RE_FIRST_COMPONENT.match(target_base) + include_first_component = _RE_FIRST_COMPONENT.match(include_base) + if (target_first_component and include_first_component and + target_first_component.group(0) == + include_first_component.group(0)): + return _POSSIBLE_MY_HEADER + + return _OTHER_HEADER + + + +def CheckIncludeLine(filename, clean_lines, linenum, include_state, error): + """Check rules that are applicable to #include lines. + + Strings on #include lines are NOT removed from elided line, to make + certain tasks easier. However, to prevent false positives, checks + applicable to #include lines in CheckLanguage must be put here. + + Args: + filename: The name of the current file. + clean_lines: A CleansedLines instance containing the file. + linenum: The number of the line to check. + include_state: An _IncludeState instance in which the headers are inserted. + error: The function to call with any errors found. + """ + fileinfo = FileInfo(filename) + + line = clean_lines.lines[linenum] + + # "include" should use the new style "foo/bar.h" instead of just "bar.h" + if _RE_PATTERN_INCLUDE_NEW_STYLE.search(line): + error(filename, linenum, 'build/include', 4, + 'Include the directory when naming .h files') + + # we shouldn't include a file more than once. actually, there are a + # handful of instances where doing so is okay, but in general it's + # not. + match = _RE_PATTERN_INCLUDE.search(line) + if match: + include = match.group(2) + is_system = (match.group(1) == '<') + if include in include_state: + error(filename, linenum, 'build/include', 4, + '"%s" already included at %s:%s' % + (include, filename, include_state[include])) + else: + include_state[include] = linenum + + # We want to ensure that headers appear in the right order: + # 1) for foo.cc, foo.h (preferred location) + # 2) c system files + # 3) cpp system files + # 4) for foo.cc, foo.h (deprecated location) + # 5) other google headers + # + # We classify each include statement as one of those 5 types + # using a number of techniques. The include_state object keeps + # track of the highest type seen, and complains if we see a + # lower type after that. + error_message = include_state.CheckNextIncludeOrder( + _ClassifyInclude(fileinfo, include, is_system)) + if error_message: + error(filename, linenum, 'build/include_order', 4, + '%s. Should be: %s.h, c system, c++ system, other.' % + (error_message, fileinfo.BaseName())) + canonical_include = include_state.CanonicalizeAlphabeticalOrder(include) + if not include_state.IsInAlphabeticalOrder( + clean_lines, linenum, canonical_include): + error(filename, linenum, 'build/include_alpha', 4, + 'Include "%s" not in alphabetical order' % include) + include_state.SetLastHeader(canonical_include) + + # Look for any of the stream classes that are part of standard C++. + match = _RE_PATTERN_INCLUDE.match(line) + if match: + include = match.group(2) + if Match(r'(f|ind|io|i|o|parse|pf|stdio|str|)?stream$', include): + # Many unit tests use cout, so we exempt them. + if not _IsTestFilename(filename): + error(filename, linenum, 'readability/streams', 3, + 'Streams are highly discouraged.') + + +def _GetTextInside(text, start_pattern): + r"""Retrieves all the text between matching open and close parentheses. + + Given a string of lines and a regular expression string, retrieve all the text + following the expression and between opening punctuation symbols like + (, [, or {, and the matching close-punctuation symbol. This properly nested + occurrences of the punctuations, so for the text like + printf(a(), b(c())); + a call to _GetTextInside(text, r'printf\(') will return 'a(), b(c())'. + start_pattern must match string having an open punctuation symbol at the end. + + Args: + text: The lines to extract text. Its comments and strings must be elided. + It can be single line and can span multiple lines. + start_pattern: The regexp string indicating where to start extracting + the text. + Returns: + The extracted text. + None if either the opening string or ending punctuation could not be found. + """ + # TODO(sugawarayu): Audit cpplint.py to see what places could be profitably + # rewritten to use _GetTextInside (and use inferior regexp matching today). + + # Give opening punctuations to get the matching close-punctuations. + matching_punctuation = {'(': ')', '{': '}', '[': ']'} + closing_punctuation = set(matching_punctuation.itervalues()) + + # Find the position to start extracting text. + match = re.search(start_pattern, text, re.M) + if not match: # start_pattern not found in text. + return None + start_position = match.end(0) + + assert start_position > 0, ( + 'start_pattern must ends with an opening punctuation.') + assert text[start_position - 1] in matching_punctuation, ( + 'start_pattern must ends with an opening punctuation.') + # Stack of closing punctuations we expect to have in text after position. + punctuation_stack = [matching_punctuation[text[start_position - 1]]] + position = start_position + while punctuation_stack and position < len(text): + if text[position] == punctuation_stack[-1]: + punctuation_stack.pop() + elif text[position] in closing_punctuation: + # A closing punctuation without matching opening punctuations. + return None + elif text[position] in matching_punctuation: + punctuation_stack.append(matching_punctuation[text[position]]) + position += 1 + if punctuation_stack: + # Opening punctuations left without matching close-punctuations. + return None + # punctuations match. + return text[start_position:position - 1] + + +# Patterns for matching call-by-reference parameters. +# +# Supports nested templates up to 2 levels deep using this messy pattern: +# < (?: < (?: < [^<>]* +# > +# | [^<>] )* +# > +# | [^<>] )* +# > +_RE_PATTERN_IDENT = r'[_a-zA-Z]\w*' # =~ [[:alpha:]][[:alnum:]]* +_RE_PATTERN_TYPE = ( + r'(?:const\s+)?(?:typename\s+|class\s+|struct\s+|union\s+|enum\s+)?' + r'(?:\w|' + r'\s*<(?:<(?:<[^<>]*>|[^<>])*>|[^<>])*>|' + r'::)+') +# A call-by-reference parameter ends with '& identifier'. +_RE_PATTERN_REF_PARAM = re.compile( + r'(' + _RE_PATTERN_TYPE + r'(?:\s*(?:\bconst\b|[*]))*\s*' + r'&\s*' + _RE_PATTERN_IDENT + r')\s*(?:=[^,()]+)?[,)]') +# A call-by-const-reference parameter either ends with 'const& identifier' +# or looks like 'const type& identifier' when 'type' is atomic. +_RE_PATTERN_CONST_REF_PARAM = ( + r'(?:.*\s*\bconst\s*&\s*' + _RE_PATTERN_IDENT + + r'|const\s+' + _RE_PATTERN_TYPE + r'\s*&\s*' + _RE_PATTERN_IDENT + r')') + + +def CheckLanguage(filename, clean_lines, linenum, file_extension, + include_state, nesting_state, error): + """Checks rules from the 'C++ language rules' section of cppguide.html. + + Some of these rules are hard to test (function overloading, using + uint32 inappropriately), but we do the best we can. + + Args: + filename: The name of the current file. + clean_lines: A CleansedLines instance containing the file. + linenum: The number of the line to check. + file_extension: The extension (without the dot) of the filename. + include_state: An _IncludeState instance in which the headers are inserted. + nesting_state: A _NestingState instance which maintains information about + the current stack of nested blocks being parsed. + error: The function to call with any errors found. + """ + # If the line is empty or consists of entirely a comment, no need to + # check it. + line = clean_lines.elided[linenum] + if not line: + return + + match = _RE_PATTERN_INCLUDE.search(line) + if match: + CheckIncludeLine(filename, clean_lines, linenum, include_state, error) + return + + # Reset include state across preprocessor directives. This is meant + # to silence warnings for conditional includes. + if Match(r'^\s*#\s*(?:ifdef|elif|else|endif)\b', line): + include_state.ResetSection() + + # Make Windows paths like Unix. + fullname = os.path.abspath(filename).replace('\\', '/') + + # TODO(unknown): figure out if they're using default arguments in fn proto. + + # Check to see if they're using an conversion function cast. + # I just try to capture the most common basic types, though there are more. + # Parameterless conversion functions, such as bool(), are allowed as they are + # probably a member operator declaration or default constructor. + match = Search( + r'(\bnew\s+)?\b' # Grab 'new' operator, if it's there + r'(int|float|double|bool|char|int32|uint32|int64|uint64)' + r'(\([^)].*)', line) + if match: + matched_new = match.group(1) + matched_type = match.group(2) + matched_funcptr = match.group(3) + + # gMock methods are defined using some variant of MOCK_METHODx(name, type) + # where type may be float(), int(string), etc. Without context they are + # virtually indistinguishable from int(x) casts. Likewise, gMock's + # MockCallback takes a template parameter of the form return_type(arg_type), + # which looks much like the cast we're trying to detect. + # + # std::function<> wrapper has a similar problem. + # + # Return types for function pointers also look like casts if they + # don't have an extra space. + if (matched_new is None and # If new operator, then this isn't a cast + not (Match(r'^\s*MOCK_(CONST_)?METHOD\d+(_T)?\(', line) or + Search(r'\bMockCallback<.*>', line) or + Search(r'\bstd::function<.*>', line)) and + not (matched_funcptr and + Match(r'\((?:[^() ]+::\s*\*\s*)?[^() ]+\)\s*\(', + matched_funcptr))): + # Try a bit harder to catch gmock lines: the only place where + # something looks like an old-style cast is where we declare the + # return type of the mocked method, and the only time when we + # are missing context is if MOCK_METHOD was split across + # multiple lines. The missing MOCK_METHOD is usually one or two + # lines back, so scan back one or two lines. + # + # It's not possible for gmock macros to appear in the first 2 + # lines, since the class head + section name takes up 2 lines. + if (linenum < 2 or + not (Match(r'^\s*MOCK_(?:CONST_)?METHOD\d+(?:_T)?\((?:\S+,)?\s*$', + clean_lines.elided[linenum - 1]) or + Match(r'^\s*MOCK_(?:CONST_)?METHOD\d+(?:_T)?\(\s*$', + clean_lines.elided[linenum - 2]))): + error(filename, linenum, 'readability/casting', 4, + 'Using deprecated casting style. ' + 'Use static_cast<%s>(...) instead' % + matched_type) + + CheckCStyleCast(filename, linenum, line, clean_lines.raw_lines[linenum], + 'static_cast', + r'\((int|float|double|bool|char|u?int(16|32|64))\)', error) + + # This doesn't catch all cases. Consider (const char * const)"hello". + # + # (char *) "foo" should always be a const_cast (reinterpret_cast won't + # compile). + if CheckCStyleCast(filename, linenum, line, clean_lines.raw_lines[linenum], + 'const_cast', r'\((char\s?\*+\s?)\)\s*"', error): + pass + else: + # Check pointer casts for other than string constants + CheckCStyleCast(filename, linenum, line, clean_lines.raw_lines[linenum], + 'reinterpret_cast', r'\((\w+\s?\*+\s?)\)', error) + + # In addition, we look for people taking the address of a cast. This + # is dangerous -- casts can assign to temporaries, so the pointer doesn't + # point where you think. + match = Search( + r'(?:&\(([^)]+)\)[\w(])|' + r'(?:&(static|dynamic|down|reinterpret)_cast\b)', line) + if match and match.group(1) != '*': + error(filename, linenum, 'runtime/casting', 4, + ('Are you taking an address of a cast? ' + 'This is dangerous: could be a temp var. ' + 'Take the address before doing the cast, rather than after')) + + # Create an extended_line, which is the concatenation of the current and + # next lines, for more effective checking of code that may span more than one + # line. + if linenum + 1 < clean_lines.NumLines(): + extended_line = line + clean_lines.elided[linenum + 1] + else: + extended_line = line + + # Check for people declaring static/global STL strings at the top level. + # This is dangerous because the C++ language does not guarantee that + # globals with constructors are initialized before the first access. + match = Match( + r'((?:|static +)(?:|const +))string +([a-zA-Z0-9_:]+)\b(.*)', + line) + # Make sure it's not a function. + # Function template specialization looks like: "string foo(...". + # Class template definitions look like: "string Foo::Method(...". + # + # Also ignore things that look like operators. These are matched separately + # because operator names cross non-word boundaries. If we change the pattern + # above, we would decrease the accuracy of matching identifiers. + if (match and + not Search(r'\boperator\W', line) and + not Match(r'\s*(<.*>)?(::[a-zA-Z0-9_]+)?\s*\(([^"]|$)', match.group(3))): + error(filename, linenum, 'runtime/string', 4, + 'For a static/global string constant, use a C style string instead: ' + '"%schar %s[]".' % + (match.group(1), match.group(2))) + + if Search(r'\b([A-Za-z0-9_]*_)\(\1\)', line): + error(filename, linenum, 'runtime/init', 4, + 'You seem to be initializing a member variable with itself.') + + if file_extension == 'h': + # TODO(unknown): check that 1-arg constructors are explicit. + # How to tell it's a constructor? + # (handled in CheckForNonStandardConstructs for now) + # TODO(unknown): check that classes have DISALLOW_EVIL_CONSTRUCTORS + # (level 1 error) + pass + + # Check if people are using the verboten C basic types. The only exception + # we regularly allow is "unsigned short port" for port. + if Search(r'\bshort port\b', line): + if not Search(r'\bunsigned short port\b', line): + error(filename, linenum, 'runtime/int', 4, + 'Use "unsigned short" for ports, not "short"') + else: + match = Search(r'\b(short|long(?! +double)|long long)\b', line) + if match: + error(filename, linenum, 'runtime/int', 4, + 'Use int16/int64/etc, rather than the C type %s' % match.group(1)) + + # When snprintf is used, the second argument shouldn't be a literal. + match = Search(r'snprintf\s*\(([^,]*),\s*([0-9]*)\s*,', line) + if match and match.group(2) != '0': + # If 2nd arg is zero, snprintf is used to calculate size. + error(filename, linenum, 'runtime/printf', 3, + 'If you can, use sizeof(%s) instead of %s as the 2nd arg ' + 'to snprintf.' % (match.group(1), match.group(2))) + + # Check if some verboten C functions are being used. + if Search(r'\bsprintf\b', line): + error(filename, linenum, 'runtime/printf', 5, + 'Never use sprintf. Use snprintf instead.') + match = Search(r'\b(strcpy|strcat)\b', line) + if match: + error(filename, linenum, 'runtime/printf', 4, + 'Almost always, snprintf is better than %s' % match.group(1)) + + # Check if some verboten operator overloading is going on + # TODO(unknown): catch out-of-line unary operator&: + # class X {}; + # int operator&(const X& x) { return 42; } // unary operator& + # The trick is it's hard to tell apart from binary operator&: + # class Y { int operator&(const Y& x) { return 23; } }; // binary operator& + if Search(r'\boperator\s*&\s*\(\s*\)', line): + error(filename, linenum, 'runtime/operator', 4, + 'Unary operator& is dangerous. Do not use it.') + + # Check for suspicious usage of "if" like + # } if (a == b) { + if Search(r'\}\s*if\s*\(', line): + error(filename, linenum, 'readability/braces', 4, + 'Did you mean "else if"? If not, start a new line for "if".') + + # Check for potential format string bugs like printf(foo). + # We constrain the pattern not to pick things like DocidForPrintf(foo). + # Not perfect but it can catch printf(foo.c_str()) and printf(foo->c_str()) + # TODO(sugawarayu): Catch the following case. Need to change the calling + # convention of the whole function to process multiple line to handle it. + # printf( + # boy_this_is_a_really_long_variable_that_cannot_fit_on_the_prev_line); + printf_args = _GetTextInside(line, r'(?i)\b(string)?printf\s*\(') + if printf_args: + match = Match(r'([\w.\->()]+)$', printf_args) + if match and match.group(1) != '__VA_ARGS__': + function_name = re.search(r'\b((?:string)?printf)\s*\(', + line, re.I).group(1) + error(filename, linenum, 'runtime/printf', 4, + 'Potential format string bug. Do %s("%%s", %s) instead.' + % (function_name, match.group(1))) + + # Check for potential memset bugs like memset(buf, sizeof(buf), 0). + match = Search(r'memset\s*\(([^,]*),\s*([^,]*),\s*0\s*\)', line) + if match and not Match(r"^''|-?[0-9]+|0x[0-9A-Fa-f]$", match.group(2)): + error(filename, linenum, 'runtime/memset', 4, + 'Did you mean "memset(%s, 0, %s)"?' + % (match.group(1), match.group(2))) + + if Search(r'\busing namespace\b', line): + error(filename, linenum, 'build/namespaces', 5, + 'Do not use namespace using-directives. ' + 'Use using-declarations instead.') + + # Detect variable-length arrays. + match = Match(r'\s*(.+::)?(\w+) [a-z]\w*\[(.+)];', line) + if (match and match.group(2) != 'return' and match.group(2) != 'delete' and + match.group(3).find(']') == -1): + # Split the size using space and arithmetic operators as delimiters. + # If any of the resulting tokens are not compile time constants then + # report the error. + tokens = re.split(r'\s|\+|\-|\*|\/|<<|>>]', match.group(3)) + is_const = True + skip_next = False + for tok in tokens: + if skip_next: + skip_next = False + continue + + if Search(r'sizeof\(.+\)', tok): continue + if Search(r'arraysize\(\w+\)', tok): continue + + tok = tok.lstrip('(') + tok = tok.rstrip(')') + if not tok: continue + if Match(r'\d+', tok): continue + if Match(r'0[xX][0-9a-fA-F]+', tok): continue + if Match(r'k[A-Z0-9]\w*', tok): continue + if Match(r'(.+::)?k[A-Z0-9]\w*', tok): continue + if Match(r'(.+::)?[A-Z][A-Z0-9_]*', tok): continue + # A catch all for tricky sizeof cases, including 'sizeof expression', + # 'sizeof(*type)', 'sizeof(const type)', 'sizeof(struct StructName)' + # requires skipping the next token because we split on ' ' and '*'. + if tok.startswith('sizeof'): + skip_next = True + continue + is_const = False + break + if not is_const: + error(filename, linenum, 'runtime/arrays', 1, + 'Do not use variable-length arrays. Use an appropriately named ' + "('k' followed by CamelCase) compile-time constant for the size.") + + # If DISALLOW_EVIL_CONSTRUCTORS, DISALLOW_COPY_AND_ASSIGN, or + # DISALLOW_IMPLICIT_CONSTRUCTORS is present, then it should be the last thing + # in the class declaration. + match = Match( + (r'\s*' + r'(DISALLOW_(EVIL_CONSTRUCTORS|COPY_AND_ASSIGN|IMPLICIT_CONSTRUCTORS))' + r'\(.*\);$'), + line) + if match and linenum + 1 < clean_lines.NumLines(): + next_line = clean_lines.elided[linenum + 1] + # We allow some, but not all, declarations of variables to be present + # in the statement that defines the class. The [\w\*,\s]* fragment of + # the regular expression below allows users to declare instances of + # the class or pointers to instances, but not less common types such + # as function pointers or arrays. It's a tradeoff between allowing + # reasonable code and avoiding trying to parse more C++ using regexps. + if not Search(r'^\s*}[\w\*,\s]*;', next_line): + error(filename, linenum, 'readability/constructors', 3, + match.group(1) + ' should be the last thing in the class') + + # Check for use of unnamed namespaces in header files. Registration + # macros are typically OK, so we allow use of "namespace {" on lines + # that end with backslashes. + if (file_extension == 'h' + and Search(r'\bnamespace\s*{', line) + and line[-1] != '\\'): + error(filename, linenum, 'build/namespaces', 4, + 'Do not use unnamed namespaces in header files. See ' + 'http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml#Namespaces' + ' for more information.') + +def CheckForNonConstReference(filename, clean_lines, linenum, + nesting_state, error): + """Check for non-const references. + + Separate from CheckLanguage since it scans backwards from current + line, instead of scanning forward. + + Args: + filename: The name of the current file. + clean_lines: A CleansedLines instance containing the file. + linenum: The number of the line to check. + nesting_state: A _NestingState instance which maintains information about + the current stack of nested blocks being parsed. + error: The function to call with any errors found. + """ + # Do nothing if there is no '&' on current line. + line = clean_lines.elided[linenum] + if '&' not in line: + return + + # Long type names may be broken across multiple lines, usually in one + # of these forms: + # LongType + # ::LongTypeContinued &identifier + # LongType:: + # LongTypeContinued &identifier + # LongType< + # ...>::LongTypeContinued &identifier + # + # If we detected a type split across two lines, join the previous + # line to current line so that we can match const references + # accordingly. + # + # Note that this only scans back one line, since scanning back + # arbitrary number of lines would be expensive. If you have a type + # that spans more than 2 lines, please use a typedef. + if linenum > 1: + previous = None + if Match(r'\s*::(?:[\w<>]|::)+\s*&\s*\S', line): + # previous_line\n + ::current_line + previous = Search(r'\b((?:const\s*)?(?:[\w<>]|::)+[\w<>])\s*$', + clean_lines.elided[linenum - 1]) + elif Match(r'\s*[a-zA-Z_]([\w<>]|::)+\s*&\s*\S', line): + # previous_line::\n + current_line + previous = Search(r'\b((?:const\s*)?(?:[\w<>]|::)+::)\s*$', + clean_lines.elided[linenum - 1]) + if previous: + line = previous.group(1) + line.lstrip() + else: + # Check for templated parameter that is split across multiple lines + endpos = line.rfind('>') + if endpos > -1: + (_, startline, startpos) = ReverseCloseExpression( + clean_lines, linenum, endpos) + if startpos > -1 and startline < linenum: + # Found the matching < on an earlier line, collect all + # pieces up to current line. + line = '' + for i in xrange(startline, linenum + 1): + line += clean_lines.elided[i].strip() + + # Check for non-const references in function parameters. A single '&' may + # found in the following places: + # inside expression: binary & for bitwise AND + # inside expression: unary & for taking the address of something + # inside declarators: reference parameter + # We will exclude the first two cases by checking that we are not inside a + # function body, including one that was just introduced by a trailing '{'. + # TODO(unknwon): Doesn't account for preprocessor directives. + # TODO(unknown): Doesn't account for 'catch(Exception& e)' [rare]. + check_params = False + if not nesting_state.stack: + check_params = True # top level + elif (isinstance(nesting_state.stack[-1], _ClassInfo) or + isinstance(nesting_state.stack[-1], _NamespaceInfo)): + check_params = True # within class or namespace + elif Match(r'.*{\s*$', line): + if (len(nesting_state.stack) == 1 or + isinstance(nesting_state.stack[-2], _ClassInfo) or + isinstance(nesting_state.stack[-2], _NamespaceInfo)): + check_params = True # just opened global/class/namespace block + # We allow non-const references in a few standard places, like functions + # called "swap()" or iostream operators like "<<" or ">>". Do not check + # those function parameters. + # + # We also accept & in static_assert, which looks like a function but + # it's actually a declaration expression. + whitelisted_functions = (r'(?:[sS]wap(?:<\w:+>)?|' + r'operator\s*[<>][<>]|' + r'static_assert|COMPILE_ASSERT' + r')\s*\(') + if Search(whitelisted_functions, line): + check_params = False + elif not Search(r'\S+\([^)]*$', line): + # Don't see a whitelisted function on this line. Actually we + # didn't see any function name on this line, so this is likely a + # multi-line parameter list. Try a bit harder to catch this case. + for i in xrange(2): + if (linenum > i and + Search(whitelisted_functions, clean_lines.elided[linenum - i - 1])): + check_params = False + break + + if check_params: + decls = ReplaceAll(r'{[^}]*}', ' ', line) # exclude function body + for parameter in re.findall(_RE_PATTERN_REF_PARAM, decls): + if not Match(_RE_PATTERN_CONST_REF_PARAM, parameter): + error(filename, linenum, 'runtime/references', 2, + 'Is this a non-const reference? ' + 'If so, make const or use a pointer: ' + + ReplaceAll(' *<', '<', parameter)) + + +def CheckCStyleCast(filename, linenum, line, raw_line, cast_type, pattern, + error): + """Checks for a C-style cast by looking for the pattern. + + Args: + filename: The name of the current file. + linenum: The number of the line to check. + line: The line of code to check. + raw_line: The raw line of code to check, with comments. + cast_type: The string for the C++ cast to recommend. This is either + reinterpret_cast, static_cast, or const_cast, depending. + pattern: The regular expression used to find C-style casts. + error: The function to call with any errors found. + + Returns: + True if an error was emitted. + False otherwise. + """ + match = Search(pattern, line) + if not match: + return False + + # e.g., sizeof(int) + sizeof_match = Match(r'.*sizeof\s*$', line[0:match.start(1) - 1]) + if sizeof_match: + error(filename, linenum, 'runtime/sizeof', 1, + 'Using sizeof(type). Use sizeof(varname) instead if possible') + return True + + # operator++(int) and operator--(int) + if (line[0:match.start(1) - 1].endswith(' operator++') or + line[0:match.start(1) - 1].endswith(' operator--')): + return False + + # A single unnamed argument for a function tends to look like old + # style cast. If we see those, don't issue warnings for deprecated + # casts, instead issue warnings for unnamed arguments where + # appropriate. + # + # These are things that we want warnings for, since the style guide + # explicitly require all parameters to be named: + # Function(int); + # Function(int) { + # ConstMember(int) const; + # ConstMember(int) const { + # ExceptionMember(int) throw (...); + # ExceptionMember(int) throw (...) { + # PureVirtual(int) = 0; + # + # These are functions of some sort, where the compiler would be fine + # if they had named parameters, but people often omit those + # identifiers to reduce clutter: + # (FunctionPointer)(int); + # (FunctionPointer)(int) = value; + # Function((function_pointer_arg)(int)) + # ; + # <(FunctionPointerTemplateArgument)(int)>; + remainder = line[match.end(0):] + if Match(r'^\s*(?:;|const\b|throw\b|=|>|\{|\))', remainder): + # Looks like an unnamed parameter. + + # Don't warn on any kind of template arguments. + if Match(r'^\s*>', remainder): + return False + + # Don't warn on assignments to function pointers, but keep warnings for + # unnamed parameters to pure virtual functions. Note that this pattern + # will also pass on assignments of "0" to function pointers, but the + # preferred values for those would be "nullptr" or "NULL". + matched_zero = Match(r'^\s=\s*(\S+)\s*;', remainder) + if matched_zero and matched_zero.group(1) != '0': + return False + + # Don't warn on function pointer declarations. For this we need + # to check what came before the "(type)" string. + if Match(r'.*\)\s*$', line[0:match.start(0)]): + return False + + # Don't warn if the parameter is named with block comments, e.g.: + # Function(int /*unused_param*/); + if '/*' in raw_line: + return False + + # Passed all filters, issue warning here. + error(filename, linenum, 'readability/function', 3, + 'All parameters should be named in a function') + return True + + # At this point, all that should be left is actual casts. + error(filename, linenum, 'readability/casting', 4, + 'Using C-style cast. Use %s<%s>(...) instead' % + (cast_type, match.group(1))) + + return True + + +_HEADERS_CONTAINING_TEMPLATES = ( + ('', ('deque',)), + ('', ('unary_function', 'binary_function', + 'plus', 'minus', 'multiplies', 'divides', 'modulus', + 'negate', + 'equal_to', 'not_equal_to', 'greater', 'less', + 'greater_equal', 'less_equal', + 'logical_and', 'logical_or', 'logical_not', + 'unary_negate', 'not1', 'binary_negate', 'not2', + 'bind1st', 'bind2nd', + 'pointer_to_unary_function', + 'pointer_to_binary_function', + 'ptr_fun', + 'mem_fun_t', 'mem_fun', 'mem_fun1_t', 'mem_fun1_ref_t', + 'mem_fun_ref_t', + 'const_mem_fun_t', 'const_mem_fun1_t', + 'const_mem_fun_ref_t', 'const_mem_fun1_ref_t', + 'mem_fun_ref', + )), + ('', ('numeric_limits',)), + ('', ('list',)), + ('', ('map', 'multimap',)), + ('', ('allocator',)), + ('', ('queue', 'priority_queue',)), + ('', ('set', 'multiset',)), + ('', ('stack',)), + ('', ('char_traits', 'basic_string',)), + ('', ('pair',)), + ('', ('vector',)), + + # gcc extensions. + # Note: std::hash is their hash, ::hash is our hash + ('', ('hash_map', 'hash_multimap',)), + ('', ('hash_set', 'hash_multiset',)), + ('', ('slist',)), + ) + +_RE_PATTERN_STRING = re.compile(r'\bstring\b') + +_re_pattern_algorithm_header = [] +for _template in ('copy', 'max', 'min', 'min_element', 'sort', 'swap', + 'transform'): + # Match max(..., ...), max(..., ...), but not foo->max, foo.max or + # type::max(). + _re_pattern_algorithm_header.append( + (re.compile(r'[^>.]\b' + _template + r'(<.*?>)?\([^\)]'), + _template, + '')) + +_re_pattern_templates = [] +for _header, _templates in _HEADERS_CONTAINING_TEMPLATES: + for _template in _templates: + _re_pattern_templates.append( + (re.compile(r'(\<|\b)' + _template + r'\s*\<'), + _template + '<>', + _header)) + + +def FilesBelongToSameModule(filename_cc, filename_h): + """Check if these two filenames belong to the same module. + + The concept of a 'module' here is a as follows: + foo.h, foo-inl.h, foo.cc, foo_test.cc and foo_unittest.cc belong to the + same 'module' if they are in the same directory. + some/path/public/xyzzy and some/path/internal/xyzzy are also considered + to belong to the same module here. + + If the filename_cc contains a longer path than the filename_h, for example, + '/absolute/path/to/base/sysinfo.cc', and this file would include + 'base/sysinfo.h', this function also produces the prefix needed to open the + header. This is used by the caller of this function to more robustly open the + header file. We don't have access to the real include paths in this context, + so we need this guesswork here. + + Known bugs: tools/base/bar.cc and base/bar.h belong to the same module + according to this implementation. Because of this, this function gives + some false positives. This should be sufficiently rare in practice. + + Args: + filename_cc: is the path for the .cc file + filename_h: is the path for the header path + + Returns: + Tuple with a bool and a string: + bool: True if filename_cc and filename_h belong to the same module. + string: the additional prefix needed to open the header file. + """ + + if not filename_cc.endswith('.cc'): + return (False, '') + filename_cc = filename_cc[:-len('.cc')] + if filename_cc.endswith('_unittest'): + filename_cc = filename_cc[:-len('_unittest')] + elif filename_cc.endswith('_test'): + filename_cc = filename_cc[:-len('_test')] + filename_cc = filename_cc.replace('/public/', '/') + filename_cc = filename_cc.replace('/internal/', '/') + + if not filename_h.endswith('.h'): + return (False, '') + filename_h = filename_h[:-len('.h')] + if filename_h.endswith('-inl'): + filename_h = filename_h[:-len('-inl')] + filename_h = filename_h.replace('/public/', '/') + filename_h = filename_h.replace('/internal/', '/') + + files_belong_to_same_module = filename_cc.endswith(filename_h) + common_path = '' + if files_belong_to_same_module: + common_path = filename_cc[:-len(filename_h)] + return files_belong_to_same_module, common_path + + +def UpdateIncludeState(filename, include_state, io=codecs): + """Fill up the include_state with new includes found from the file. + + Args: + filename: the name of the header to read. + include_state: an _IncludeState instance in which the headers are inserted. + io: The io factory to use to read the file. Provided for testability. + + Returns: + True if a header was succesfully added. False otherwise. + """ + headerfile = None + try: + headerfile = io.open(filename, 'r', 'utf8', 'replace') + except IOError: + return False + linenum = 0 + for line in headerfile: + linenum += 1 + clean_line = CleanseComments(line) + match = _RE_PATTERN_INCLUDE.search(clean_line) + if match: + include = match.group(2) + # The value formatting is cute, but not really used right now. + # What matters here is that the key is in include_state. + include_state.setdefault(include, '%s:%d' % (filename, linenum)) + return True + + +def CheckForIncludeWhatYouUse(filename, clean_lines, include_state, error, + io=codecs): + """Reports for missing stl includes. + + This function will output warnings to make sure you are including the headers + necessary for the stl containers and functions that you use. We only give one + reason to include a header. For example, if you use both equal_to<> and + less<> in a .h file, only one (the latter in the file) of these will be + reported as a reason to include the . + + Args: + filename: The name of the current file. + clean_lines: A CleansedLines instance containing the file. + include_state: An _IncludeState instance. + error: The function to call with any errors found. + io: The IO factory to use to read the header file. Provided for unittest + injection. + """ + required = {} # A map of header name to linenumber and the template entity. + # Example of required: { '': (1219, 'less<>') } + + for linenum in xrange(clean_lines.NumLines()): + line = clean_lines.elided[linenum] + if not line or line[0] == '#': + continue + + # String is special -- it is a non-templatized type in STL. + matched = _RE_PATTERN_STRING.search(line) + if matched: + # Don't warn about strings in non-STL namespaces: + # (We check only the first match per line; good enough.) + prefix = line[:matched.start()] + if prefix.endswith('std::') or not prefix.endswith('::'): + required[''] = (linenum, 'string') + + for pattern, template, header in _re_pattern_algorithm_header: + if pattern.search(line): + required[header] = (linenum, template) + + # The following function is just a speed up, no semantics are changed. + if not '<' in line: # Reduces the cpu time usage by skipping lines. + continue + + for pattern, template, header in _re_pattern_templates: + if pattern.search(line): + required[header] = (linenum, template) + + # The policy is that if you #include something in foo.h you don't need to + # include it again in foo.cc. Here, we will look at possible includes. + # Let's copy the include_state so it is only messed up within this function. + include_state = include_state.copy() + + # Did we find the header for this file (if any) and succesfully load it? + header_found = False + + # Use the absolute path so that matching works properly. + abs_filename = FileInfo(filename).FullName() + + # For Emacs's flymake. + # If cpplint is invoked from Emacs's flymake, a temporary file is generated + # by flymake and that file name might end with '_flymake.cc'. In that case, + # restore original file name here so that the corresponding header file can be + # found. + # e.g. If the file name is 'foo_flymake.cc', we should search for 'foo.h' + # instead of 'foo_flymake.h' + abs_filename = re.sub(r'_flymake\.cc$', '.cc', abs_filename) + + # include_state is modified during iteration, so we iterate over a copy of + # the keys. + header_keys = include_state.keys() + for header in header_keys: + (same_module, common_path) = FilesBelongToSameModule(abs_filename, header) + fullpath = common_path + header + if same_module and UpdateIncludeState(fullpath, include_state, io): + header_found = True + + # If we can't find the header file for a .cc, assume it's because we don't + # know where to look. In that case we'll give up as we're not sure they + # didn't include it in the .h file. + # TODO(unknown): Do a better job of finding .h files so we are confident that + # not having the .h file means there isn't one. + if filename.endswith('.cc') and not header_found: + return + + # All the lines have been processed, report the errors found. + for required_header_unstripped in required: + template = required[required_header_unstripped][1] + if required_header_unstripped.strip('<>"') not in include_state: + error(filename, required[required_header_unstripped][0], + 'build/include_what_you_use', 4, + 'Add #include ' + required_header_unstripped + ' for ' + template) + + +_RE_PATTERN_EXPLICIT_MAKEPAIR = re.compile(r'\bmake_pair\s*<') + + +def CheckMakePairUsesDeduction(filename, clean_lines, linenum, error): + """Check that make_pair's template arguments are deduced. + + G++ 4.6 in C++0x mode fails badly if make_pair's template arguments are + specified explicitly, and such use isn't intended in any case. + + Args: + filename: The name of the current file. + clean_lines: A CleansedLines instance containing the file. + linenum: The number of the line to check. + error: The function to call with any errors found. + """ + line = clean_lines.elided[linenum] + match = _RE_PATTERN_EXPLICIT_MAKEPAIR.search(line) + if match: + error(filename, linenum, 'build/explicit_make_pair', + 4, # 4 = high confidence + 'For C++11-compatibility, omit template arguments from make_pair' + ' OR use pair directly OR if appropriate, construct a pair directly') + + +def ProcessLine(filename, file_extension, clean_lines, line, + include_state, function_state, nesting_state, error, + extra_check_functions=[]): + """Processes a single line in the file. + + Args: + filename: Filename of the file that is being processed. + file_extension: The extension (dot not included) of the file. + clean_lines: An array of strings, each representing a line of the file, + with comments stripped. + line: Number of line being processed. + include_state: An _IncludeState instance in which the headers are inserted. + function_state: A _FunctionState instance which counts function lines, etc. + nesting_state: A _NestingState instance which maintains information about + the current stack of nested blocks being parsed. + error: A callable to which errors are reported, which takes 4 arguments: + filename, line number, error level, and message + extra_check_functions: An array of additional check functions that will be + run on each source line. Each function takes 4 + arguments: filename, clean_lines, line, error + """ + raw_lines = clean_lines.raw_lines + ParseNolintSuppressions(filename, raw_lines[line], line, error) + nesting_state.Update(filename, clean_lines, line, error) + if nesting_state.stack and nesting_state.stack[-1].inline_asm != _NO_ASM: + return + CheckForFunctionLengths(filename, clean_lines, line, function_state, error) + CheckForMultilineCommentsAndStrings(filename, clean_lines, line, error) + CheckStyle(filename, clean_lines, line, file_extension, nesting_state, error) + CheckLanguage(filename, clean_lines, line, file_extension, include_state, + nesting_state, error) + CheckForNonConstReference(filename, clean_lines, line, nesting_state, error) + CheckForNonStandardConstructs(filename, clean_lines, line, + nesting_state, error) + CheckVlogArguments(filename, clean_lines, line, error) + CheckPosixThreading(filename, clean_lines, line, error) + CheckInvalidIncrement(filename, clean_lines, line, error) + CheckMakePairUsesDeduction(filename, clean_lines, line, error) + for check_fn in extra_check_functions: + check_fn(filename, clean_lines, line, error) + +def ProcessFileData(filename, file_extension, lines, error, + extra_check_functions=[]): + """Performs lint checks and reports any errors to the given error function. + + Args: + filename: Filename of the file that is being processed. + file_extension: The extension (dot not included) of the file. + lines: An array of strings, each representing a line of the file, with the + last element being empty if the file is terminated with a newline. + error: A callable to which errors are reported, which takes 4 arguments: + filename, line number, error level, and message + extra_check_functions: An array of additional check functions that will be + run on each source line. Each function takes 4 + arguments: filename, clean_lines, line, error + """ + lines = (['// marker so line numbers and indices both start at 1'] + lines + + ['// marker so line numbers end in a known way']) + + include_state = _IncludeState() + function_state = _FunctionState() + nesting_state = _NestingState() + + ResetNolintSuppressions() + + CheckForCopyright(filename, lines, error) + + if file_extension == 'h': + CheckForHeaderGuard(filename, lines, error) + + RemoveMultiLineComments(filename, lines, error) + clean_lines = CleansedLines(lines) + for line in xrange(clean_lines.NumLines()): + ProcessLine(filename, file_extension, clean_lines, line, + include_state, function_state, nesting_state, error, + extra_check_functions) + nesting_state.CheckCompletedBlocks(filename, error) + + CheckForIncludeWhatYouUse(filename, clean_lines, include_state, error) + + # We check here rather than inside ProcessLine so that we see raw + # lines rather than "cleaned" lines. + CheckForBadCharacters(filename, lines, error) + + CheckForNewlineAtEOF(filename, lines, error) + +def ProcessFile(filename, vlevel, extra_check_functions=[]): + """Does google-lint on a single file. + + Args: + filename: The name of the file to parse. + + vlevel: The level of errors to report. Every error of confidence + >= verbose_level will be reported. 0 is a good default. + + extra_check_functions: An array of additional check functions that will be + run on each source line. Each function takes 4 + arguments: filename, clean_lines, line, error + """ + + _SetVerboseLevel(vlevel) + + try: + # Support the UNIX convention of using "-" for stdin. Note that + # we are not opening the file with universal newline support + # (which codecs doesn't support anyway), so the resulting lines do + # contain trailing '\r' characters if we are reading a file that + # has CRLF endings. + # If after the split a trailing '\r' is present, it is removed + # below. If it is not expected to be present (i.e. os.linesep != + # '\r\n' as in Windows), a warning is issued below if this file + # is processed. + + if filename == '-': + lines = codecs.StreamReaderWriter(sys.stdin, + codecs.getreader('utf8'), + codecs.getwriter('utf8'), + 'replace').read().split('\n') + else: + lines = codecs.open(filename, 'r', 'utf8', 'replace').read().split('\n') + + carriage_return_found = False + # Remove trailing '\r'. + for linenum in range(len(lines)): + if lines[linenum].endswith('\r'): + lines[linenum] = lines[linenum].rstrip('\r') + carriage_return_found = True + + except IOError: + sys.stderr.write( + "Skipping input '%s': Can't open for reading\n" % filename) + return + + # Note, if no dot is found, this will give the entire filename as the ext. + file_extension = filename[filename.rfind('.') + 1:] + + # When reading from stdin, the extension is unknown, so no cpplint tests + # should rely on the extension. + if filename != '-' and file_extension not in _valid_extensions: + sys.stderr.write('Ignoring %s; not a valid file name ' + '(%s)\n' % (filename, ', '.join(_valid_extensions))) + else: + ProcessFileData(filename, file_extension, lines, Error, + extra_check_functions) + if carriage_return_found and os.linesep != '\r\n': + # Use 0 for linenum since outputting only one error for potentially + # several lines. + Error(filename, 0, 'whitespace/newline', 1, + 'One or more unexpected \\r (^M) found;' + 'better to use only a \\n') + + sys.stderr.write('Done processing %s\n' % filename) + + +def PrintUsage(message): + """Prints a brief usage string and exits, optionally with an error message. + + Args: + message: The optional error message. + """ + sys.stderr.write(_USAGE) + if message: + sys.exit('\nFATAL ERROR: ' + message) + else: + sys.exit(1) + + +def PrintCategories(): + """Prints a list of all the error-categories used by error messages. + + These are the categories used to filter messages via --filter. + """ + sys.stderr.write(''.join(' %s\n' % cat for cat in _ERROR_CATEGORIES)) + sys.exit(0) + + +def ParseArguments(args): + """Parses the command line arguments. + + This may set the output format and verbosity level as side-effects. + + Args: + args: The command line arguments: + + Returns: + The list of filenames to lint. + """ + try: + (opts, filenames) = getopt.getopt(args, '', ['help', 'output=', 'verbose=', + 'counting=', + 'filter=', + 'root=', + 'linelength=', + 'extensions=']) + except getopt.GetoptError: + PrintUsage('Invalid arguments.') + + verbosity = _VerboseLevel() + output_format = _OutputFormat() + filters = '' + counting_style = '' + + for (opt, val) in opts: + if opt == '--help': + PrintUsage(None) + elif opt == '--output': + if val not in ('emacs', 'vs7', 'eclipse'): + PrintUsage('The only allowed output formats are emacs, vs7 and eclipse.') + output_format = val + elif opt == '--verbose': + verbosity = int(val) + elif opt == '--filter': + filters = val + if not filters: + PrintCategories() + elif opt == '--counting': + if val not in ('total', 'toplevel', 'detailed'): + PrintUsage('Valid counting options are total, toplevel, and detailed') + counting_style = val + elif opt == '--root': + global _root + _root = val + elif opt == '--linelength': + global _line_length + try: + _line_length = int(val) + except ValueError: + PrintUsage('Line length must be digits.') + elif opt == '--extensions': + global _valid_extensions + try: + _valid_extensions = set(val.split(',')) + except ValueError: + PrintUsage('Extensions must be comma seperated list.') + + if not filenames: + PrintUsage('No files were specified.') + + _SetOutputFormat(output_format) + _SetVerboseLevel(verbosity) + _SetFilters(filters) + _SetCountingStyle(counting_style) + + return filenames + + +def main(): + filenames = ParseArguments(sys.argv[1:]) + + # Change stderr to write with replacement characters so we don't die + # if we try to print something containing non-ASCII characters. + sys.stderr = codecs.StreamReaderWriter(sys.stderr, + codecs.getreader('utf8'), + codecs.getwriter('utf8'), + 'replace') + + _cpplint_state.ResetErrorCounts() + for filename in filenames: + ProcessFile(filename, _cpplint_state.verbose_level) + _cpplint_state.PrintErrorCounts() + + sys.exit(_cpplint_state.error_count > 0) + + +if __name__ == '__main__': + main() diff --git a/tools/diff.py b/tools/diff.py new file mode 100644 index 0000000..a96c7db --- /dev/null +++ b/tools/diff.py @@ -0,0 +1,130 @@ +#!/usr/bin/env python +## Copyright (c) 2012 The WebM project authors. All Rights Reserved. +## +## Use of this source code is governed by a BSD-style license +## that can be found in the LICENSE file in the root of the source +## tree. An additional intellectual property rights grant can be found +## in the file PATENTS. All contributing project authors may +## be found in the AUTHORS file in the root of the source tree. +## +"""Classes for representing diff pieces.""" + +__author__ = "jkoleszar@google.com" + +import re + + +class DiffLines(object): + """A container for one half of a diff.""" + + def __init__(self, filename, offset, length): + self.filename = filename + self.offset = offset + self.length = length + self.lines = [] + self.delta_line_nums = [] + + def Append(self, line): + l = len(self.lines) + if line[0] != " ": + self.delta_line_nums.append(self.offset + l) + self.lines.append(line[1:]) + assert l+1 <= self.length + + def Complete(self): + return len(self.lines) == self.length + + def __contains__(self, item): + return item >= self.offset and item <= self.offset + self.length - 1 + + +class DiffHunk(object): + """A container for one diff hunk, consisting of two DiffLines.""" + + def __init__(self, header, file_a, file_b, start_a, len_a, start_b, len_b): + self.header = header + self.left = DiffLines(file_a, start_a, len_a) + self.right = DiffLines(file_b, start_b, len_b) + self.lines = [] + + def Append(self, line): + """Adds a line to the DiffHunk and its DiffLines children.""" + if line[0] == "-": + self.left.Append(line) + elif line[0] == "+": + self.right.Append(line) + elif line[0] == " ": + self.left.Append(line) + self.right.Append(line) + elif line[0] == "\\": + # Ignore newline messages from git diff. + pass + else: + assert False, ("Unrecognized character at start of diff line " + "%r" % line[0]) + self.lines.append(line) + + def Complete(self): + return self.left.Complete() and self.right.Complete() + + def __repr__(self): + return "DiffHunk(%s, %s, len %d)" % ( + self.left.filename, self.right.filename, + max(self.left.length, self.right.length)) + + +def ParseDiffHunks(stream): + """Walk a file-like object, yielding DiffHunks as they're parsed.""" + + file_regex = re.compile(r"(\+\+\+|---) (\S+)") + range_regex = re.compile(r"@@ -(\d+)(,(\d+))? \+(\d+)(,(\d+))?") + hunk = None + while True: + line = stream.readline() + if not line: + break + + if hunk is None: + # Parse file names + diff_file = file_regex.match(line) + if diff_file: + if line.startswith("---"): + a_line = line + a = diff_file.group(2) + continue + if line.startswith("+++"): + b_line = line + b = diff_file.group(2) + continue + + # Parse offset/lengths + diffrange = range_regex.match(line) + if diffrange: + if diffrange.group(2): + start_a = int(diffrange.group(1)) + len_a = int(diffrange.group(3)) + else: + start_a = 1 + len_a = int(diffrange.group(1)) + + if diffrange.group(5): + start_b = int(diffrange.group(4)) + len_b = int(diffrange.group(6)) + else: + start_b = 1 + len_b = int(diffrange.group(4)) + + header = [a_line, b_line, line] + hunk = DiffHunk(header, a, b, start_a, len_a, start_b, len_b) + else: + # Add the current line to the hunk + hunk.Append(line) + + # See if the whole hunk has been parsed. If so, yield it and prepare + # for the next hunk. + if hunk.Complete(): + yield hunk + hunk = None + + # Partial hunks are a parse error + assert hunk is None diff --git a/tools/gen_authors.sh b/tools/gen_authors.sh new file mode 100755 index 0000000..f163f66 --- /dev/null +++ b/tools/gen_authors.sh @@ -0,0 +1,14 @@ +#!/bin/bash + +# Add organization names manually. + +cat <" | sort | uniq | grep -v corp.google \ + | grep -v noreply) +Google Inc. +The Mozilla Foundation +The Xiph.Org Foundation +EOF diff --git a/tools/intersect-diffs.py b/tools/intersect-diffs.py new file mode 100755 index 0000000..4dbafa9 --- /dev/null +++ b/tools/intersect-diffs.py @@ -0,0 +1,76 @@ +#!/usr/bin/env python +## Copyright (c) 2012 The WebM project authors. All Rights Reserved. +## +## Use of this source code is governed by a BSD-style license +## that can be found in the LICENSE file in the root of the source +## tree. An additional intellectual property rights grant can be found +## in the file PATENTS. All contributing project authors may +## be found in the AUTHORS file in the root of the source tree. +## +"""Calculates the "intersection" of two unified diffs. + +Given two diffs, A and B, it finds all hunks in B that had non-context lines +in A and prints them to stdout. This is useful to determine the hunks in B that +are relevant to A. The resulting file can be applied with patch(1) on top of A. +""" + +__author__ = "jkoleszar@google.com" + +import sys + +import diff + + +def FormatDiffHunks(hunks): + """Re-serialize a list of DiffHunks.""" + r = [] + last_header = None + for hunk in hunks: + this_header = hunk.header[0:2] + if last_header != this_header: + r.extend(hunk.header) + last_header = this_header + else: + r.extend(hunk.header[2]) + r.extend(hunk.lines) + r.append("\n") + return "".join(r) + + +def ZipHunks(rhs_hunks, lhs_hunks): + """Join two hunk lists on filename.""" + for rhs_hunk in rhs_hunks: + rhs_file = rhs_hunk.right.filename.split("/")[1:] + + for lhs_hunk in lhs_hunks: + lhs_file = lhs_hunk.left.filename.split("/")[1:] + if lhs_file != rhs_file: + continue + yield (rhs_hunk, lhs_hunk) + + +def main(): + old_hunks = [x for x in diff.ParseDiffHunks(open(sys.argv[1], "r"))] + new_hunks = [x for x in diff.ParseDiffHunks(open(sys.argv[2], "r"))] + out_hunks = [] + + # Join the right hand side of the older diff with the left hand side of the + # newer diff. + for old_hunk, new_hunk in ZipHunks(old_hunks, new_hunks): + if new_hunk in out_hunks: + continue + old_lines = old_hunk.right + new_lines = new_hunk.left + + # Determine if this hunk overlaps any non-context line from the other + for i in old_lines.delta_line_nums: + if i in new_lines: + out_hunks.append(new_hunk) + break + + if out_hunks: + print FormatDiffHunks(out_hunks) + sys.exit(1) + +if __name__ == "__main__": + main() diff --git a/tools/lint-hunks.py b/tools/lint-hunks.py new file mode 100755 index 0000000..6e25d93 --- /dev/null +++ b/tools/lint-hunks.py @@ -0,0 +1,144 @@ +#!/usr/bin/python +## Copyright (c) 2012 The WebM project authors. All Rights Reserved. +## +## Use of this source code is governed by a BSD-style license +## that can be found in the LICENSE file in the root of the source +## tree. An additional intellectual property rights grant can be found +## in the file PATENTS. All contributing project authors may +## be found in the AUTHORS file in the root of the source tree. +## +"""Performs style checking on each diff hunk.""" +import getopt +import os +import StringIO +import subprocess +import sys + +import diff + + +SHORT_OPTIONS = "h" +LONG_OPTIONS = ["help"] + +TOPLEVEL_CMD = ["git", "rev-parse", "--show-toplevel"] +DIFF_CMD = ["git", "diff"] +DIFF_INDEX_CMD = ["git", "diff-index", "-u", "HEAD", "--"] +SHOW_CMD = ["git", "show"] +CPPLINT_FILTERS = ["-readability/casting"] + + +class Usage(Exception): + pass + + +class SubprocessException(Exception): + def __init__(self, args): + msg = "Failed to execute '%s'"%(" ".join(args)) + super(SubprocessException, self).__init__(msg) + + +class Subprocess(subprocess.Popen): + """Adds the notion of an expected returncode to Popen.""" + + def __init__(self, args, expected_returncode=0, **kwargs): + self._args = args + self._expected_returncode = expected_returncode + super(Subprocess, self).__init__(args, **kwargs) + + def communicate(self, *args, **kwargs): + result = super(Subprocess, self).communicate(*args, **kwargs) + if self._expected_returncode is not None: + try: + ok = self.returncode in self._expected_returncode + except TypeError: + ok = self.returncode == self._expected_returncode + if not ok: + raise SubprocessException(self._args) + return result + + +def main(argv=None): + if argv is None: + argv = sys.argv + try: + try: + opts, args = getopt.getopt(argv[1:], SHORT_OPTIONS, LONG_OPTIONS) + except getopt.error, msg: + raise Usage(msg) + + # process options + for o, _ in opts: + if o in ("-h", "--help"): + print __doc__ + sys.exit(0) + + if args and len(args) > 1: + print __doc__ + sys.exit(0) + + # Find the fully qualified path to the root of the tree + tl = Subprocess(TOPLEVEL_CMD, stdout=subprocess.PIPE) + tl = tl.communicate()[0].strip() + + # See if we're working on the index or not. + if args: + diff_cmd = DIFF_CMD + [args[0] + "^!"] + else: + diff_cmd = DIFF_INDEX_CMD + + # Build the command line to execute cpplint + cpplint_cmd = [os.path.join(tl, "tools", "cpplint.py"), + "--filter=" + ",".join(CPPLINT_FILTERS), + "-"] + + # Get a list of all affected lines + file_affected_line_map = {} + p = Subprocess(diff_cmd, stdout=subprocess.PIPE) + stdout = p.communicate()[0] + for hunk in diff.ParseDiffHunks(StringIO.StringIO(stdout)): + filename = hunk.right.filename[2:] + if filename not in file_affected_line_map: + file_affected_line_map[filename] = set() + file_affected_line_map[filename].update(hunk.right.delta_line_nums) + + # Run each affected file through cpplint + lint_failed = False + for filename, affected_lines in file_affected_line_map.iteritems(): + if filename.split(".")[-1] not in ("c", "h", "cc"): + continue + + if args: + # File contents come from git + show_cmd = SHOW_CMD + [args[0] + ":" + filename] + show = Subprocess(show_cmd, stdout=subprocess.PIPE) + lint = Subprocess(cpplint_cmd, expected_returncode=(0, 1), + stdin=show.stdout, stderr=subprocess.PIPE) + lint_out = lint.communicate()[1] + else: + # File contents come from the working tree + lint = Subprocess(cpplint_cmd, expected_returncode=(0, 1), + stdin=subprocess.PIPE, stderr=subprocess.PIPE) + stdin = open(os.path.join(tl, filename)).read() + lint_out = lint.communicate(stdin)[1] + + for line in lint_out.split("\n"): + fields = line.split(":") + if fields[0] != "-": + continue + warning_line_num = int(fields[1]) + if warning_line_num in affected_lines: + print "%s:%d:%s"%(filename, warning_line_num, + ":".join(fields[2:])) + lint_failed = True + + # Set exit code if any relevant lint errors seen + if lint_failed: + return 1 + + except Usage, err: + print >>sys.stderr, err + print >>sys.stderr, "for help use --help" + return 2 + +if __name__ == "__main__": + sys.exit(main()) diff --git a/tools/tiny_ssim.c b/tools/tiny_ssim.c new file mode 100644 index 0000000..5e8ca02 --- /dev/null +++ b/tools/tiny_ssim.c @@ -0,0 +1,802 @@ +/* + * Copyright (c) 2016 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include +#include +#include +#include +#include +#include "vpx/vpx_codec.h" +#include "vpx/vpx_integer.h" +#include "./y4minput.h" +#include "vpx_dsp/ssim.h" +#include "vpx_ports/mem.h" + +static const int64_t cc1 = 26634; // (64^2*(.01*255)^2 +static const int64_t cc2 = 239708; // (64^2*(.03*255)^2 +static const int64_t cc1_10 = 428658; // (64^2*(.01*1023)^2 +static const int64_t cc2_10 = 3857925; // (64^2*(.03*1023)^2 +static const int64_t cc1_12 = 6868593; // (64^2*(.01*4095)^2 +static const int64_t cc2_12 = 61817334; // (64^2*(.03*4095)^2 + +#if CONFIG_VP9_HIGHBITDEPTH +static uint64_t calc_plane_error16(uint16_t *orig, int orig_stride, + uint16_t *recon, int recon_stride, + unsigned int cols, unsigned int rows) { + unsigned int row, col; + uint64_t total_sse = 0; + int diff; + + for (row = 0; row < rows; row++) { + for (col = 0; col < cols; col++) { + diff = orig[col] - recon[col]; + total_sse += diff * diff; + } + + orig += orig_stride; + recon += recon_stride; + } + return total_sse; +} +#endif +static uint64_t calc_plane_error(uint8_t *orig, int orig_stride, uint8_t *recon, + int recon_stride, unsigned int cols, + unsigned int rows) { + unsigned int row, col; + uint64_t total_sse = 0; + int diff; + + for (row = 0; row < rows; row++) { + for (col = 0; col < cols; col++) { + diff = orig[col] - recon[col]; + total_sse += diff * diff; + } + + orig += orig_stride; + recon += recon_stride; + } + return total_sse; +} + +#define MAX_PSNR 100 +static double mse2psnr(double samples, double peak, double mse) { + double psnr; + + if (mse > 0.0) + psnr = 10.0 * log10(peak * peak * samples / mse); + else + psnr = MAX_PSNR; // Limit to prevent / 0 + + if (psnr > MAX_PSNR) psnr = MAX_PSNR; + + return psnr; +} + +typedef enum { RAW_YUV, Y4M } input_file_type; + +typedef struct input_file { + FILE *file; + input_file_type type; + unsigned char *buf; + y4m_input y4m; + vpx_image_t img; + int w; + int h; + int bit_depth; +} input_file_t; + +// Open a file and determine if its y4m or raw. If y4m get the header. +static int open_input_file(const char *file_name, input_file_t *input, int w, + int h, int bit_depth) { + char y4m_buf[4]; + size_t r1; + input->type = RAW_YUV; + input->buf = NULL; + input->file = strcmp(file_name, "-") ? fopen(file_name, "rb") : stdin; + if (input->file == NULL) return -1; + r1 = fread(y4m_buf, 1, 4, input->file); + if (r1 == 4) { + if (memcmp(y4m_buf, "YUV4", 4) == 0) input->type = Y4M; + switch (input->type) { + case Y4M: + y4m_input_open(&input->y4m, input->file, y4m_buf, 4, 0); + input->w = input->y4m.pic_w; + input->h = input->y4m.pic_h; + input->bit_depth = input->y4m.bit_depth; + // Y4M alloc's its own buf. Init this to avoid problems if we never + // read frames. + memset(&input->img, 0, sizeof(input->img)); + break; + case RAW_YUV: + fseek(input->file, 0, SEEK_SET); + input->w = w; + input->h = h; + if (bit_depth < 9) + input->buf = malloc(w * h * 3 / 2); + else + input->buf = malloc(w * h * 3); + break; + } + } + return 0; +} + +static void close_input_file(input_file_t *in) { + if (in->file) fclose(in->file); + if (in->type == Y4M) { + vpx_img_free(&in->img); + } else { + free(in->buf); + } +} + +static size_t read_input_file(input_file_t *in, unsigned char **y, + unsigned char **u, unsigned char **v, int bd) { + size_t r1 = 0; + switch (in->type) { + case Y4M: + r1 = y4m_input_fetch_frame(&in->y4m, in->file, &in->img); + *y = in->img.planes[0]; + *u = in->img.planes[1]; + *v = in->img.planes[2]; + break; + case RAW_YUV: + if (bd < 9) { + r1 = fread(in->buf, in->w * in->h * 3 / 2, 1, in->file); + *y = in->buf; + *u = in->buf + in->w * in->h; + *v = in->buf + 5 * in->w * in->h / 4; + } else { + r1 = fread(in->buf, in->w * in->h * 3, 1, in->file); + *y = in->buf; + *u = in->buf + in->w * in->h / 2; + *v = *u + in->w * in->h / 2; + } + break; + } + + return r1; +} + +void ssim_parms_16x16(const uint8_t *s, int sp, const uint8_t *r, int rp, + uint32_t *sum_s, uint32_t *sum_r, uint32_t *sum_sq_s, + uint32_t *sum_sq_r, uint32_t *sum_sxr) { + int i, j; + for (i = 0; i < 16; i++, s += sp, r += rp) { + for (j = 0; j < 16; j++) { + *sum_s += s[j]; + *sum_r += r[j]; + *sum_sq_s += s[j] * s[j]; + *sum_sq_r += r[j] * r[j]; + *sum_sxr += s[j] * r[j]; + } + } +} +void ssim_parms_8x8(const uint8_t *s, int sp, const uint8_t *r, int rp, + uint32_t *sum_s, uint32_t *sum_r, uint32_t *sum_sq_s, + uint32_t *sum_sq_r, uint32_t *sum_sxr) { + int i, j; + for (i = 0; i < 8; i++, s += sp, r += rp) { + for (j = 0; j < 8; j++) { + *sum_s += s[j]; + *sum_r += r[j]; + *sum_sq_s += s[j] * s[j]; + *sum_sq_r += r[j] * r[j]; + *sum_sxr += s[j] * r[j]; + } + } +} + +void highbd_ssim_parms_8x8(const uint16_t *s, int sp, const uint16_t *r, int rp, + uint32_t *sum_s, uint32_t *sum_r, uint32_t *sum_sq_s, + uint32_t *sum_sq_r, uint32_t *sum_sxr) { + int i, j; + for (i = 0; i < 8; i++, s += sp, r += rp) { + for (j = 0; j < 8; j++) { + *sum_s += s[j]; + *sum_r += r[j]; + *sum_sq_s += s[j] * s[j]; + *sum_sq_r += r[j] * r[j]; + *sum_sxr += s[j] * r[j]; + } + } +} + +static double similarity(uint32_t sum_s, uint32_t sum_r, uint32_t sum_sq_s, + uint32_t sum_sq_r, uint32_t sum_sxr, int count, + uint32_t bd) { + int64_t ssim_n, ssim_d; + int64_t c1 = 0, c2 = 0; + if (bd == 8) { + // scale the constants by number of pixels + c1 = (cc1 * count * count) >> 12; + c2 = (cc2 * count * count) >> 12; + } else if (bd == 10) { + c1 = (cc1_10 * count * count) >> 12; + c2 = (cc2_10 * count * count) >> 12; + } else if (bd == 12) { + c1 = (cc1_12 * count * count) >> 12; + c2 = (cc2_12 * count * count) >> 12; + } else { + assert(0); + } + + ssim_n = (2 * sum_s * sum_r + c1) * + ((int64_t)2 * count * sum_sxr - (int64_t)2 * sum_s * sum_r + c2); + + ssim_d = (sum_s * sum_s + sum_r * sum_r + c1) * + ((int64_t)count * sum_sq_s - (int64_t)sum_s * sum_s + + (int64_t)count * sum_sq_r - (int64_t)sum_r * sum_r + c2); + + return ssim_n * 1.0 / ssim_d; +} + +static double ssim_8x8(const uint8_t *s, int sp, const uint8_t *r, int rp) { + uint32_t sum_s = 0, sum_r = 0, sum_sq_s = 0, sum_sq_r = 0, sum_sxr = 0; + ssim_parms_8x8(s, sp, r, rp, &sum_s, &sum_r, &sum_sq_s, &sum_sq_r, &sum_sxr); + return similarity(sum_s, sum_r, sum_sq_s, sum_sq_r, sum_sxr, 64, 8); +} + +static double highbd_ssim_8x8(const uint16_t *s, int sp, const uint16_t *r, + int rp, uint32_t bd, uint32_t shift) { + uint32_t sum_s = 0, sum_r = 0, sum_sq_s = 0, sum_sq_r = 0, sum_sxr = 0; + highbd_ssim_parms_8x8(s, sp, r, rp, &sum_s, &sum_r, &sum_sq_s, &sum_sq_r, + &sum_sxr); + return similarity(sum_s >> shift, sum_r >> shift, sum_sq_s >> (2 * shift), + sum_sq_r >> (2 * shift), sum_sxr >> (2 * shift), 64, bd); +} + +// We are using a 8x8 moving window with starting location of each 8x8 window +// on the 4x4 pixel grid. Such arrangement allows the windows to overlap +// block boundaries to penalize blocking artifacts. +static double ssim2(const uint8_t *img1, const uint8_t *img2, int stride_img1, + int stride_img2, int width, int height) { + int i, j; + int samples = 0; + double ssim_total = 0; + + // sample point start with each 4x4 location + for (i = 0; i <= height - 8; + i += 4, img1 += stride_img1 * 4, img2 += stride_img2 * 4) { + for (j = 0; j <= width - 8; j += 4) { + double v = ssim_8x8(img1 + j, stride_img1, img2 + j, stride_img2); + ssim_total += v; + samples++; + } + } + ssim_total /= samples; + return ssim_total; +} + +static double highbd_ssim2(const uint8_t *img1, const uint8_t *img2, + int stride_img1, int stride_img2, int width, + int height, uint32_t bd, uint32_t shift) { + int i, j; + int samples = 0; + double ssim_total = 0; + + // sample point start with each 4x4 location + for (i = 0; i <= height - 8; + i += 4, img1 += stride_img1 * 4, img2 += stride_img2 * 4) { + for (j = 0; j <= width - 8; j += 4) { + double v = highbd_ssim_8x8(CONVERT_TO_SHORTPTR(img1 + j), stride_img1, + CONVERT_TO_SHORTPTR(img2 + j), stride_img2, bd, + shift); + ssim_total += v; + samples++; + } + } + ssim_total /= samples; + return ssim_total; +} + +// traditional ssim as per: http://en.wikipedia.org/wiki/Structural_similarity +// +// Re working out the math -> +// +// ssim(x,y) = (2*mean(x)*mean(y) + c1)*(2*cov(x,y)+c2) / +// ((mean(x)^2+mean(y)^2+c1)*(var(x)+var(y)+c2)) +// +// mean(x) = sum(x) / n +// +// cov(x,y) = (n*sum(xi*yi)-sum(x)*sum(y))/(n*n) +// +// var(x) = (n*sum(xi*xi)-sum(xi)*sum(xi))/(n*n) +// +// ssim(x,y) = +// (2*sum(x)*sum(y)/(n*n) + c1)*(2*(n*sum(xi*yi)-sum(x)*sum(y))/(n*n)+c2) / +// (((sum(x)*sum(x)+sum(y)*sum(y))/(n*n) +c1) * +// ((n*sum(xi*xi) - sum(xi)*sum(xi))/(n*n)+ +// (n*sum(yi*yi) - sum(yi)*sum(yi))/(n*n)+c2))) +// +// factoring out n*n +// +// ssim(x,y) = +// (2*sum(x)*sum(y) + n*n*c1)*(2*(n*sum(xi*yi)-sum(x)*sum(y))+n*n*c2) / +// (((sum(x)*sum(x)+sum(y)*sum(y)) + n*n*c1) * +// (n*sum(xi*xi)-sum(xi)*sum(xi)+n*sum(yi*yi)-sum(yi)*sum(yi)+n*n*c2)) +// +// Replace c1 with n*n * c1 for the final step that leads to this code: +// The final step scales by 12 bits so we don't lose precision in the constants. + +static double ssimv_similarity(const Ssimv *sv, int64_t n) { + // Scale the constants by number of pixels. + const int64_t c1 = (cc1 * n * n) >> 12; + const int64_t c2 = (cc2 * n * n) >> 12; + + const double l = 1.0 * (2 * sv->sum_s * sv->sum_r + c1) / + (sv->sum_s * sv->sum_s + sv->sum_r * sv->sum_r + c1); + + // Since these variables are unsigned sums, convert to double so + // math is done in double arithmetic. + const double v = (2.0 * n * sv->sum_sxr - 2 * sv->sum_s * sv->sum_r + c2) / + (n * sv->sum_sq_s - sv->sum_s * sv->sum_s + + n * sv->sum_sq_r - sv->sum_r * sv->sum_r + c2); + + return l * v; +} + +// The first term of the ssim metric is a luminance factor. +// +// (2*mean(x)*mean(y) + c1)/ (mean(x)^2+mean(y)^2+c1) +// +// This luminance factor is super sensitive to the dark side of luminance +// values and completely insensitive on the white side. check out 2 sets +// (1,3) and (250,252) the term gives ( 2*1*3/(1+9) = .60 +// 2*250*252/ (250^2+252^2) => .99999997 +// +// As a result in this tweaked version of the calculation in which the +// luminance is taken as percentage off from peak possible. +// +// 255 * 255 - (sum_s - sum_r) / count * (sum_s - sum_r) / count +// +static double ssimv_similarity2(const Ssimv *sv, int64_t n) { + // Scale the constants by number of pixels. + const int64_t c1 = (cc1 * n * n) >> 12; + const int64_t c2 = (cc2 * n * n) >> 12; + + const double mean_diff = (1.0 * sv->sum_s - sv->sum_r) / n; + const double l = (255 * 255 - mean_diff * mean_diff + c1) / (255 * 255 + c1); + + // Since these variables are unsigned, sums convert to double so + // math is done in double arithmetic. + const double v = (2.0 * n * sv->sum_sxr - 2 * sv->sum_s * sv->sum_r + c2) / + (n * sv->sum_sq_s - sv->sum_s * sv->sum_s + + n * sv->sum_sq_r - sv->sum_r * sv->sum_r + c2); + + return l * v; +} +static void ssimv_parms(uint8_t *img1, int img1_pitch, uint8_t *img2, + int img2_pitch, Ssimv *sv) { + ssim_parms_8x8(img1, img1_pitch, img2, img2_pitch, &sv->sum_s, &sv->sum_r, + &sv->sum_sq_s, &sv->sum_sq_r, &sv->sum_sxr); +} + +double get_ssim_metrics(uint8_t *img1, int img1_pitch, uint8_t *img2, + int img2_pitch, int width, int height, Ssimv *sv2, + Metrics *m, int do_inconsistency) { + double dssim_total = 0; + double ssim_total = 0; + double ssim2_total = 0; + double inconsistency_total = 0; + int i, j; + int c = 0; + double norm; + double old_ssim_total = 0; + + // We can sample points as frequently as we like start with 1 per 4x4. + for (i = 0; i < height; + i += 4, img1 += img1_pitch * 4, img2 += img2_pitch * 4) { + for (j = 0; j < width; j += 4, ++c) { + Ssimv sv = { 0, 0, 0, 0, 0, 0 }; + double ssim; + double ssim2; + double dssim; + uint32_t var_new; + uint32_t var_old; + uint32_t mean_new; + uint32_t mean_old; + double ssim_new; + double ssim_old; + + // Not sure there's a great way to handle the edge pixels + // in ssim when using a window. Seems biased against edge pixels + // however you handle this. This uses only samples that are + // fully in the frame. + if (j + 8 <= width && i + 8 <= height) { + ssimv_parms(img1 + j, img1_pitch, img2 + j, img2_pitch, &sv); + } + + ssim = ssimv_similarity(&sv, 64); + ssim2 = ssimv_similarity2(&sv, 64); + + sv.ssim = ssim2; + + // dssim is calculated to use as an actual error metric and + // is scaled up to the same range as sum square error. + // Since we are subsampling every 16th point maybe this should be + // *16 ? + dssim = 255 * 255 * (1 - ssim2) / 2; + + // Here I introduce a new error metric: consistency-weighted + // SSIM-inconsistency. This metric isolates frames where the + // SSIM 'suddenly' changes, e.g. if one frame in every 8 is much + // sharper or blurrier than the others. Higher values indicate a + // temporally inconsistent SSIM. There are two ideas at work: + // + // 1) 'SSIM-inconsistency': the total inconsistency value + // reflects how much SSIM values are changing between this + // source / reference frame pair and the previous pair. + // + // 2) 'consistency-weighted': weights de-emphasize areas in the + // frame where the scene content has changed. Changes in scene + // content are detected via changes in local variance and local + // mean. + // + // Thus the overall measure reflects how inconsistent the SSIM + // values are, over consistent regions of the frame. + // + // The metric has three terms: + // + // term 1 -> uses change in scene Variance to weight error score + // 2 * var(Fi)*var(Fi-1) / (var(Fi)^2+var(Fi-1)^2) + // larger changes from one frame to the next mean we care + // less about consistency. + // + // term 2 -> uses change in local scene luminance to weight error + // 2 * avg(Fi)*avg(Fi-1) / (avg(Fi)^2+avg(Fi-1)^2) + // larger changes from one frame to the next mean we care + // less about consistency. + // + // term3 -> measures inconsistency in ssim scores between frames + // 1 - ( 2 * ssim(Fi)*ssim(Fi-1)/(ssim(Fi)^2+sssim(Fi-1)^2). + // + // This term compares the ssim score for the same location in 2 + // subsequent frames. + var_new = sv.sum_sq_s - sv.sum_s * sv.sum_s / 64; + var_old = sv2[c].sum_sq_s - sv2[c].sum_s * sv2[c].sum_s / 64; + mean_new = sv.sum_s; + mean_old = sv2[c].sum_s; + ssim_new = sv.ssim; + ssim_old = sv2[c].ssim; + + if (do_inconsistency) { + // We do the metric once for every 4x4 block in the image. Since + // we are scaling the error to SSE for use in a psnr calculation + // 1.0 = 4x4x255x255 the worst error we can possibly have. + static const double kScaling = 4. * 4 * 255 * 255; + + // The constants have to be non 0 to avoid potential divide by 0 + // issues other than that they affect kind of a weighting between + // the terms. No testing of what the right terms should be has been + // done. + static const double c1 = 1, c2 = 1, c3 = 1; + + // This measures how much consistent variance is in two consecutive + // source frames. 1.0 means they have exactly the same variance. + const double variance_term = + (2.0 * var_old * var_new + c1) / + (1.0 * var_old * var_old + 1.0 * var_new * var_new + c1); + + // This measures how consistent the local mean are between two + // consecutive frames. 1.0 means they have exactly the same mean. + const double mean_term = + (2.0 * mean_old * mean_new + c2) / + (1.0 * mean_old * mean_old + 1.0 * mean_new * mean_new + c2); + + // This measures how consistent the ssims of two + // consecutive frames is. 1.0 means they are exactly the same. + double ssim_term = + pow((2.0 * ssim_old * ssim_new + c3) / + (ssim_old * ssim_old + ssim_new * ssim_new + c3), + 5); + + double this_inconsistency; + + // Floating point math sometimes makes this > 1 by a tiny bit. + // We want the metric to scale between 0 and 1.0 so we can convert + // it to an snr scaled value. + if (ssim_term > 1) ssim_term = 1; + + // This converts the consistency metric to an inconsistency metric + // ( so we can scale it like psnr to something like sum square error. + // The reason for the variance and mean terms is the assumption that + // if there are big changes in the source we shouldn't penalize + // inconsistency in ssim scores a bit less as it will be less visible + // to the user. + this_inconsistency = (1 - ssim_term) * variance_term * mean_term; + + this_inconsistency *= kScaling; + inconsistency_total += this_inconsistency; + } + sv2[c] = sv; + ssim_total += ssim; + ssim2_total += ssim2; + dssim_total += dssim; + + old_ssim_total += ssim_old; + } + old_ssim_total += 0; + } + + norm = 1. / (width / 4) / (height / 4); + ssim_total *= norm; + ssim2_total *= norm; + m->ssim2 = ssim2_total; + m->ssim = ssim_total; + if (old_ssim_total == 0) inconsistency_total = 0; + + m->ssimc = inconsistency_total; + + m->dssim = dssim_total; + return inconsistency_total; +} + +double highbd_calc_ssim(const YV12_BUFFER_CONFIG *source, + const YV12_BUFFER_CONFIG *dest, double *weight, + uint32_t bd, uint32_t in_bd) { + double a, b, c; + double ssimv; + uint32_t shift = 0; + + assert(bd >= in_bd); + shift = bd - in_bd; + + a = highbd_ssim2(source->y_buffer, dest->y_buffer, source->y_stride, + dest->y_stride, source->y_crop_width, source->y_crop_height, + in_bd, shift); + + b = highbd_ssim2(source->u_buffer, dest->u_buffer, source->uv_stride, + dest->uv_stride, source->uv_crop_width, + source->uv_crop_height, in_bd, shift); + + c = highbd_ssim2(source->v_buffer, dest->v_buffer, source->uv_stride, + dest->uv_stride, source->uv_crop_width, + source->uv_crop_height, in_bd, shift); + + ssimv = a * .8 + .1 * (b + c); + + *weight = 1; + + return ssimv; +} + +int main(int argc, char *argv[]) { + FILE *framestats = NULL; + int bit_depth = 8; + int w = 0, h = 0, tl_skip = 0, tl_skips_remaining = 0; + double ssimavg = 0, ssimyavg = 0, ssimuavg = 0, ssimvavg = 0; + double psnrglb = 0, psnryglb = 0, psnruglb = 0, psnrvglb = 0; + double psnravg = 0, psnryavg = 0, psnruavg = 0, psnrvavg = 0; + double *ssimy = NULL, *ssimu = NULL, *ssimv = NULL; + uint64_t *psnry = NULL, *psnru = NULL, *psnrv = NULL; + size_t i, n_frames = 0, allocated_frames = 0; + int return_value = 0; + input_file_t in[2]; + double peak = 255.0; + + if (argc < 2) { + fprintf(stderr, + "Usage: %s file1.{yuv|y4m} file2.{yuv|y4m}" + "[WxH tl_skip={0,1,3} frame_stats_file bits]\n", + argv[0]); + return_value = 1; + goto clean_up; + } + + if (argc > 3) { + sscanf(argv[3], "%dx%d", &w, &h); + } + + if (argc > 6) { + sscanf(argv[6], "%d", &bit_depth); + } + + if (open_input_file(argv[1], &in[0], w, h, bit_depth) < 0) { + fprintf(stderr, "File %s can't be opened or parsed!\n", argv[2]); + goto clean_up; + } + + if (w == 0 && h == 0) { + // If a y4m is the first file and w, h is not set grab from first file. + w = in[0].w; + h = in[0].h; + bit_depth = in[0].bit_depth; + } + if (bit_depth == 10) peak = 1023.0; + + if (bit_depth == 12) peak = 4095; + + if (open_input_file(argv[2], &in[1], w, h, bit_depth) < 0) { + fprintf(stderr, "File %s can't be opened or parsed!\n", argv[2]); + goto clean_up; + } + + if (in[0].w != in[1].w || in[0].h != in[1].h || in[0].w != w || + in[0].h != h || w == 0 || h == 0) { + fprintf(stderr, + "Failing: Image dimensions don't match or are unspecified!\n"); + return_value = 1; + goto clean_up; + } + + // Number of frames to skip from file1.yuv for every frame used. Normal values + // 0, 1 and 3 correspond to TL2, TL1 and TL0 respectively for a 3TL encoding + // in mode 10. 7 would be reasonable for comparing TL0 of a 4-layer encoding. + if (argc > 4) { + sscanf(argv[4], "%d", &tl_skip); + if (argc > 5) { + framestats = fopen(argv[5], "w"); + if (!framestats) { + fprintf(stderr, "Could not open \"%s\" for writing: %s\n", argv[5], + strerror(errno)); + return_value = 1; + goto clean_up; + } + } + } + + if (w & 1 || h & 1) { + fprintf(stderr, "Invalid size %dx%d\n", w, h); + return_value = 1; + goto clean_up; + } + + while (1) { + size_t r1, r2; + unsigned char *y[2], *u[2], *v[2]; + + r1 = read_input_file(&in[0], &y[0], &u[0], &v[0], bit_depth); + + if (r1) { + // Reading parts of file1.yuv that were not used in temporal layer. + if (tl_skips_remaining > 0) { + --tl_skips_remaining; + continue; + } + // Use frame, but skip |tl_skip| after it. + tl_skips_remaining = tl_skip; + } + + r2 = read_input_file(&in[1], &y[1], &u[1], &v[1], bit_depth); + + if (r1 && r2 && r1 != r2) { + fprintf(stderr, "Failed to read data: %s [%d/%d]\n", strerror(errno), + (int)r1, (int)r2); + return_value = 1; + goto clean_up; + } else if (r1 == 0 || r2 == 0) { + break; + } +#if CONFIG_VP9_HIGHBITDEPTH +#define psnr_and_ssim(ssim, psnr, buf0, buf1, w, h) \ + if (bit_depth < 9) { \ + ssim = ssim2(buf0, buf1, w, w, w, h); \ + psnr = calc_plane_error(buf0, w, buf1, w, w, h); \ + } else { \ + ssim = highbd_ssim2(CONVERT_TO_BYTEPTR(buf0), CONVERT_TO_BYTEPTR(buf1), w, \ + w, w, h, bit_depth, bit_depth - 8); \ + psnr = calc_plane_error16(CAST_TO_SHORTPTR(buf0), w, \ + CAST_TO_SHORTPTR(buf1), w, w, h); \ + } +#else +#define psnr_and_ssim(ssim, psnr, buf0, buf1, w, h) \ + ssim = ssim2(buf0, buf1, w, w, w, h); \ + psnr = calc_plane_error(buf0, w, buf1, w, w, h); +#endif + + if (n_frames == allocated_frames) { + allocated_frames = allocated_frames == 0 ? 1024 : allocated_frames * 2; + ssimy = realloc(ssimy, allocated_frames * sizeof(*ssimy)); + ssimu = realloc(ssimu, allocated_frames * sizeof(*ssimu)); + ssimv = realloc(ssimv, allocated_frames * sizeof(*ssimv)); + psnry = realloc(psnry, allocated_frames * sizeof(*psnry)); + psnru = realloc(psnru, allocated_frames * sizeof(*psnru)); + psnrv = realloc(psnrv, allocated_frames * sizeof(*psnrv)); + } + psnr_and_ssim(ssimy[n_frames], psnry[n_frames], y[0], y[1], w, h); + psnr_and_ssim(ssimu[n_frames], psnru[n_frames], u[0], u[1], w / 2, h / 2); + psnr_and_ssim(ssimv[n_frames], psnrv[n_frames], v[0], v[1], w / 2, h / 2); + + n_frames++; + } + + if (framestats) { + fprintf(framestats, + "ssim,ssim-y,ssim-u,ssim-v,psnr,psnr-y,psnr-u,psnr-v\n"); + } + + for (i = 0; i < n_frames; ++i) { + double frame_ssim; + double frame_psnr, frame_psnry, frame_psnru, frame_psnrv; + + frame_ssim = 0.8 * ssimy[i] + 0.1 * (ssimu[i] + ssimv[i]); + ssimavg += frame_ssim; + ssimyavg += ssimy[i]; + ssimuavg += ssimu[i]; + ssimvavg += ssimv[i]; + + frame_psnr = + mse2psnr(w * h * 6 / 4, peak, (double)psnry[i] + psnru[i] + psnrv[i]); + frame_psnry = mse2psnr(w * h * 4 / 4, peak, (double)psnry[i]); + frame_psnru = mse2psnr(w * h * 1 / 4, peak, (double)psnru[i]); + frame_psnrv = mse2psnr(w * h * 1 / 4, peak, (double)psnrv[i]); + + psnravg += frame_psnr; + psnryavg += frame_psnry; + psnruavg += frame_psnru; + psnrvavg += frame_psnrv; + + psnryglb += psnry[i]; + psnruglb += psnru[i]; + psnrvglb += psnrv[i]; + + if (framestats) { + fprintf(framestats, "%lf,%lf,%lf,%lf,%lf,%lf,%lf,%lf\n", frame_ssim, + ssimy[i], ssimu[i], ssimv[i], frame_psnr, frame_psnry, + frame_psnru, frame_psnrv); + } + } + + ssimavg /= n_frames; + ssimyavg /= n_frames; + ssimuavg /= n_frames; + ssimvavg /= n_frames; + + printf("VpxSSIM: %lf\n", 100 * pow(ssimavg, 8.0)); + printf("SSIM: %lf\n", ssimavg); + printf("SSIM-Y: %lf\n", ssimyavg); + printf("SSIM-U: %lf\n", ssimuavg); + printf("SSIM-V: %lf\n", ssimvavg); + puts(""); + + psnravg /= n_frames; + psnryavg /= n_frames; + psnruavg /= n_frames; + psnrvavg /= n_frames; + + printf("AvgPSNR: %lf\n", psnravg); + printf("AvgPSNR-Y: %lf\n", psnryavg); + printf("AvgPSNR-U: %lf\n", psnruavg); + printf("AvgPSNR-V: %lf\n", psnrvavg); + puts(""); + + psnrglb = psnryglb + psnruglb + psnrvglb; + psnrglb = mse2psnr((double)n_frames * w * h * 6 / 4, peak, psnrglb); + psnryglb = mse2psnr((double)n_frames * w * h * 4 / 4, peak, psnryglb); + psnruglb = mse2psnr((double)n_frames * w * h * 1 / 4, peak, psnruglb); + psnrvglb = mse2psnr((double)n_frames * w * h * 1 / 4, peak, psnrvglb); + + printf("GlbPSNR: %lf\n", psnrglb); + printf("GlbPSNR-Y: %lf\n", psnryglb); + printf("GlbPSNR-U: %lf\n", psnruglb); + printf("GlbPSNR-V: %lf\n", psnrvglb); + puts(""); + + printf("Nframes: %d\n", (int)n_frames); + +clean_up: + + close_input_file(&in[0]); + close_input_file(&in[1]); + + if (framestats) fclose(framestats); + + free(ssimy); + free(ssimu); + free(ssimv); + + free(psnry); + free(psnru); + free(psnrv); + + return return_value; +} diff --git a/tools/wrap-commit-msg.py b/tools/wrap-commit-msg.py new file mode 100755 index 0000000..d5b4b04 --- /dev/null +++ b/tools/wrap-commit-msg.py @@ -0,0 +1,70 @@ +#!/usr/bin/env python +## Copyright (c) 2012 The WebM project authors. All Rights Reserved. +## +## Use of this source code is governed by a BSD-style license +## that can be found in the LICENSE file in the root of the source +## tree. An additional intellectual property rights grant can be found +## in the file PATENTS. All contributing project authors may +## be found in the AUTHORS file in the root of the source tree. +## +"""Wraps paragraphs of text, preserving manual formatting + +This is like fold(1), but has the special convention of not modifying lines +that start with whitespace. This allows you to intersperse blocks with +special formatting, like code blocks, with written prose. The prose will +be wordwrapped, and the manual formatting will be preserved. + + * This won't handle the case of a bulleted (or ordered) list specially, so + manual wrapping must be done. + +Occasionally it's useful to put something with explicit formatting that +doesn't look at all like a block of text inline. + + indicator = has_leading_whitespace(line); + if (indicator) + preserve_formatting(line); + +The intent is that this docstring would make it through the transform +and still be legible and presented as it is in the source. If additional +cases are handled, update this doc to describe the effect. +""" + +__author__ = "jkoleszar@google.com" +import textwrap +import sys + +def wrap(text): + if text: + return textwrap.fill(text, break_long_words=False) + '\n' + return "" + + +def main(fileobj): + text = "" + output = "" + while True: + line = fileobj.readline() + if not line: + break + + if line.lstrip() == line: + text += line + else: + output += wrap(text) + text="" + output += line + output += wrap(text) + + # Replace the file or write to stdout. + if fileobj == sys.stdin: + fileobj = sys.stdout + else: + fileobj.seek(0) + fileobj.truncate(0) + fileobj.write(output) + +if __name__ == "__main__": + if len(sys.argv) > 1: + main(open(sys.argv[1], "r+")) + else: + main(sys.stdin) diff --git a/tools_common.c b/tools_common.c new file mode 100644 index 0000000..6f14c25 --- /dev/null +++ b/tools_common.c @@ -0,0 +1,461 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include +#include +#include +#include + +#include "./tools_common.h" + +#if CONFIG_VP8_ENCODER || CONFIG_VP9_ENCODER +#include "vpx/vp8cx.h" +#endif + +#if CONFIG_VP8_DECODER || CONFIG_VP9_DECODER +#include "vpx/vp8dx.h" +#endif + +#if defined(_WIN32) || defined(__OS2__) +#include +#include + +#ifdef __OS2__ +#define _setmode setmode +#define _fileno fileno +#define _O_BINARY O_BINARY +#endif +#endif + +#define LOG_ERROR(label) \ + do { \ + const char *l = label; \ + va_list ap; \ + va_start(ap, fmt); \ + if (l) fprintf(stderr, "%s: ", l); \ + vfprintf(stderr, fmt, ap); \ + fprintf(stderr, "\n"); \ + va_end(ap); \ + } while (0) + +FILE *set_binary_mode(FILE *stream) { + (void)stream; +#if defined(_WIN32) || defined(__OS2__) + _setmode(_fileno(stream), _O_BINARY); +#endif + return stream; +} + +void die(const char *fmt, ...) { + LOG_ERROR(NULL); + usage_exit(); +} + +void fatal(const char *fmt, ...) { + LOG_ERROR("Fatal"); + exit(EXIT_FAILURE); +} + +void warn(const char *fmt, ...) { LOG_ERROR("Warning"); } + +void die_codec(vpx_codec_ctx_t *ctx, const char *s) { + const char *detail = vpx_codec_error_detail(ctx); + + printf("%s: %s\n", s, vpx_codec_error(ctx)); + if (detail) printf(" %s\n", detail); + exit(EXIT_FAILURE); +} + +int read_yuv_frame(struct VpxInputContext *input_ctx, vpx_image_t *yuv_frame) { + FILE *f = input_ctx->file; + struct FileTypeDetectionBuffer *detect = &input_ctx->detect; + int plane = 0; + int shortread = 0; + const int bytespp = (yuv_frame->fmt & VPX_IMG_FMT_HIGHBITDEPTH) ? 2 : 1; + + for (plane = 0; plane < 3; ++plane) { + uint8_t *ptr; + const int w = vpx_img_plane_width(yuv_frame, plane); + const int h = vpx_img_plane_height(yuv_frame, plane); + int r; + + /* Determine the correct plane based on the image format. The for-loop + * always counts in Y,U,V order, but this may not match the order of + * the data on disk. + */ + switch (plane) { + case 1: + ptr = + yuv_frame->planes[yuv_frame->fmt == VPX_IMG_FMT_YV12 ? VPX_PLANE_V + : VPX_PLANE_U]; + break; + case 2: + ptr = + yuv_frame->planes[yuv_frame->fmt == VPX_IMG_FMT_YV12 ? VPX_PLANE_U + : VPX_PLANE_V]; + break; + default: ptr = yuv_frame->planes[plane]; + } + + for (r = 0; r < h; ++r) { + size_t needed = w * bytespp; + size_t buf_position = 0; + const size_t left = detect->buf_read - detect->position; + if (left > 0) { + const size_t more = (left < needed) ? left : needed; + memcpy(ptr, detect->buf + detect->position, more); + buf_position = more; + needed -= more; + detect->position += more; + } + if (needed > 0) { + shortread |= (fread(ptr + buf_position, 1, needed, f) < needed); + } + + ptr += yuv_frame->stride[plane]; + } + } + + return shortread; +} + +#if CONFIG_ENCODERS + +static const VpxInterface vpx_encoders[] = { +#if CONFIG_VP8_ENCODER + { "vp8", VP8_FOURCC, &vpx_codec_vp8_cx }, +#endif + +#if CONFIG_VP9_ENCODER + { "vp9", VP9_FOURCC, &vpx_codec_vp9_cx }, +#endif +}; + +int get_vpx_encoder_count(void) { + return sizeof(vpx_encoders) / sizeof(vpx_encoders[0]); +} + +const VpxInterface *get_vpx_encoder_by_index(int i) { return &vpx_encoders[i]; } + +const VpxInterface *get_vpx_encoder_by_name(const char *name) { + int i; + + for (i = 0; i < get_vpx_encoder_count(); ++i) { + const VpxInterface *encoder = get_vpx_encoder_by_index(i); + if (strcmp(encoder->name, name) == 0) return encoder; + } + + return NULL; +} + +#endif // CONFIG_ENCODERS + +#if CONFIG_DECODERS + +static const VpxInterface vpx_decoders[] = { +#if CONFIG_VP8_DECODER + { "vp8", VP8_FOURCC, &vpx_codec_vp8_dx }, +#endif + +#if CONFIG_VP9_DECODER + { "vp9", VP9_FOURCC, &vpx_codec_vp9_dx }, +#endif +}; + +int get_vpx_decoder_count(void) { + return sizeof(vpx_decoders) / sizeof(vpx_decoders[0]); +} + +const VpxInterface *get_vpx_decoder_by_index(int i) { return &vpx_decoders[i]; } + +const VpxInterface *get_vpx_decoder_by_name(const char *name) { + int i; + + for (i = 0; i < get_vpx_decoder_count(); ++i) { + const VpxInterface *const decoder = get_vpx_decoder_by_index(i); + if (strcmp(decoder->name, name) == 0) return decoder; + } + + return NULL; +} + +const VpxInterface *get_vpx_decoder_by_fourcc(uint32_t fourcc) { + int i; + + for (i = 0; i < get_vpx_decoder_count(); ++i) { + const VpxInterface *const decoder = get_vpx_decoder_by_index(i); + if (decoder->fourcc == fourcc) return decoder; + } + + return NULL; +} + +#endif // CONFIG_DECODERS + +// TODO(dkovalev): move this function to vpx_image.{c, h}, so it will be part +// of vpx_image_t support +int vpx_img_plane_width(const vpx_image_t *img, int plane) { + if (plane > 0 && img->x_chroma_shift > 0) + return (img->d_w + 1) >> img->x_chroma_shift; + else + return img->d_w; +} + +int vpx_img_plane_height(const vpx_image_t *img, int plane) { + if (plane > 0 && img->y_chroma_shift > 0) + return (img->d_h + 1) >> img->y_chroma_shift; + else + return img->d_h; +} + +void vpx_img_write(const vpx_image_t *img, FILE *file) { + int plane; + + for (plane = 0; plane < 3; ++plane) { + const unsigned char *buf = img->planes[plane]; + const int stride = img->stride[plane]; + const int w = vpx_img_plane_width(img, plane) * + ((img->fmt & VPX_IMG_FMT_HIGHBITDEPTH) ? 2 : 1); + const int h = vpx_img_plane_height(img, plane); + int y; + + for (y = 0; y < h; ++y) { + fwrite(buf, 1, w, file); + buf += stride; + } + } +} + +int vpx_img_read(vpx_image_t *img, FILE *file) { + int plane; + + for (plane = 0; plane < 3; ++plane) { + unsigned char *buf = img->planes[plane]; + const int stride = img->stride[plane]; + const int w = vpx_img_plane_width(img, plane) * + ((img->fmt & VPX_IMG_FMT_HIGHBITDEPTH) ? 2 : 1); + const int h = vpx_img_plane_height(img, plane); + int y; + + for (y = 0; y < h; ++y) { + if (fread(buf, 1, w, file) != (size_t)w) return 0; + buf += stride; + } + } + + return 1; +} + +// TODO(dkovalev) change sse_to_psnr signature: double -> int64_t +double sse_to_psnr(double samples, double peak, double sse) { + static const double kMaxPSNR = 100.0; + + if (sse > 0.0) { + const double psnr = 10.0 * log10(samples * peak * peak / sse); + return psnr > kMaxPSNR ? kMaxPSNR : psnr; + } else { + return kMaxPSNR; + } +} + +// TODO(debargha): Consolidate the functions below into a separate file. +#if CONFIG_VP9_HIGHBITDEPTH +static void highbd_img_upshift(vpx_image_t *dst, vpx_image_t *src, + int input_shift) { + // Note the offset is 1 less than half. + const int offset = input_shift > 0 ? (1 << (input_shift - 1)) - 1 : 0; + int plane; + if (dst->d_w != src->d_w || dst->d_h != src->d_h || + dst->x_chroma_shift != src->x_chroma_shift || + dst->y_chroma_shift != src->y_chroma_shift || dst->fmt != src->fmt || + input_shift < 0) { + fatal("Unsupported image conversion"); + } + switch (src->fmt) { + case VPX_IMG_FMT_I42016: + case VPX_IMG_FMT_I42216: + case VPX_IMG_FMT_I44416: + case VPX_IMG_FMT_I44016: break; + default: fatal("Unsupported image conversion"); break; + } + for (plane = 0; plane < 3; plane++) { + int w = src->d_w; + int h = src->d_h; + int x, y; + if (plane) { + w = (w + src->x_chroma_shift) >> src->x_chroma_shift; + h = (h + src->y_chroma_shift) >> src->y_chroma_shift; + } + for (y = 0; y < h; y++) { + uint16_t *p_src = + (uint16_t *)(src->planes[plane] + y * src->stride[plane]); + uint16_t *p_dst = + (uint16_t *)(dst->planes[plane] + y * dst->stride[plane]); + for (x = 0; x < w; x++) *p_dst++ = (*p_src++ << input_shift) + offset; + } + } +} + +static void lowbd_img_upshift(vpx_image_t *dst, vpx_image_t *src, + int input_shift) { + // Note the offset is 1 less than half. + const int offset = input_shift > 0 ? (1 << (input_shift - 1)) - 1 : 0; + int plane; + if (dst->d_w != src->d_w || dst->d_h != src->d_h || + dst->x_chroma_shift != src->x_chroma_shift || + dst->y_chroma_shift != src->y_chroma_shift || + dst->fmt != src->fmt + VPX_IMG_FMT_HIGHBITDEPTH || input_shift < 0) { + fatal("Unsupported image conversion"); + } + switch (src->fmt) { + case VPX_IMG_FMT_I420: + case VPX_IMG_FMT_I422: + case VPX_IMG_FMT_I444: + case VPX_IMG_FMT_I440: break; + default: fatal("Unsupported image conversion"); break; + } + for (plane = 0; plane < 3; plane++) { + int w = src->d_w; + int h = src->d_h; + int x, y; + if (plane) { + w = (w + src->x_chroma_shift) >> src->x_chroma_shift; + h = (h + src->y_chroma_shift) >> src->y_chroma_shift; + } + for (y = 0; y < h; y++) { + uint8_t *p_src = src->planes[plane] + y * src->stride[plane]; + uint16_t *p_dst = + (uint16_t *)(dst->planes[plane] + y * dst->stride[plane]); + for (x = 0; x < w; x++) { + *p_dst++ = (*p_src++ << input_shift) + offset; + } + } + } +} + +void vpx_img_upshift(vpx_image_t *dst, vpx_image_t *src, int input_shift) { + if (src->fmt & VPX_IMG_FMT_HIGHBITDEPTH) { + highbd_img_upshift(dst, src, input_shift); + } else { + lowbd_img_upshift(dst, src, input_shift); + } +} + +void vpx_img_truncate_16_to_8(vpx_image_t *dst, vpx_image_t *src) { + int plane; + if (dst->fmt + VPX_IMG_FMT_HIGHBITDEPTH != src->fmt || dst->d_w != src->d_w || + dst->d_h != src->d_h || dst->x_chroma_shift != src->x_chroma_shift || + dst->y_chroma_shift != src->y_chroma_shift) { + fatal("Unsupported image conversion"); + } + switch (dst->fmt) { + case VPX_IMG_FMT_I420: + case VPX_IMG_FMT_I422: + case VPX_IMG_FMT_I444: + case VPX_IMG_FMT_I440: break; + default: fatal("Unsupported image conversion"); break; + } + for (plane = 0; plane < 3; plane++) { + int w = src->d_w; + int h = src->d_h; + int x, y; + if (plane) { + w = (w + src->x_chroma_shift) >> src->x_chroma_shift; + h = (h + src->y_chroma_shift) >> src->y_chroma_shift; + } + for (y = 0; y < h; y++) { + uint16_t *p_src = + (uint16_t *)(src->planes[plane] + y * src->stride[plane]); + uint8_t *p_dst = dst->planes[plane] + y * dst->stride[plane]; + for (x = 0; x < w; x++) { + *p_dst++ = (uint8_t)(*p_src++); + } + } + } +} + +static void highbd_img_downshift(vpx_image_t *dst, vpx_image_t *src, + int down_shift) { + int plane; + if (dst->d_w != src->d_w || dst->d_h != src->d_h || + dst->x_chroma_shift != src->x_chroma_shift || + dst->y_chroma_shift != src->y_chroma_shift || dst->fmt != src->fmt || + down_shift < 0) { + fatal("Unsupported image conversion"); + } + switch (src->fmt) { + case VPX_IMG_FMT_I42016: + case VPX_IMG_FMT_I42216: + case VPX_IMG_FMT_I44416: + case VPX_IMG_FMT_I44016: break; + default: fatal("Unsupported image conversion"); break; + } + for (plane = 0; plane < 3; plane++) { + int w = src->d_w; + int h = src->d_h; + int x, y; + if (plane) { + w = (w + src->x_chroma_shift) >> src->x_chroma_shift; + h = (h + src->y_chroma_shift) >> src->y_chroma_shift; + } + for (y = 0; y < h; y++) { + uint16_t *p_src = + (uint16_t *)(src->planes[plane] + y * src->stride[plane]); + uint16_t *p_dst = + (uint16_t *)(dst->planes[plane] + y * dst->stride[plane]); + for (x = 0; x < w; x++) *p_dst++ = *p_src++ >> down_shift; + } + } +} + +static void lowbd_img_downshift(vpx_image_t *dst, vpx_image_t *src, + int down_shift) { + int plane; + if (dst->d_w != src->d_w || dst->d_h != src->d_h || + dst->x_chroma_shift != src->x_chroma_shift || + dst->y_chroma_shift != src->y_chroma_shift || + src->fmt != dst->fmt + VPX_IMG_FMT_HIGHBITDEPTH || down_shift < 0) { + fatal("Unsupported image conversion"); + } + switch (dst->fmt) { + case VPX_IMG_FMT_I420: + case VPX_IMG_FMT_I422: + case VPX_IMG_FMT_I444: + case VPX_IMG_FMT_I440: break; + default: fatal("Unsupported image conversion"); break; + } + for (plane = 0; plane < 3; plane++) { + int w = src->d_w; + int h = src->d_h; + int x, y; + if (plane) { + w = (w + src->x_chroma_shift) >> src->x_chroma_shift; + h = (h + src->y_chroma_shift) >> src->y_chroma_shift; + } + for (y = 0; y < h; y++) { + uint16_t *p_src = + (uint16_t *)(src->planes[plane] + y * src->stride[plane]); + uint8_t *p_dst = dst->planes[plane] + y * dst->stride[plane]; + for (x = 0; x < w; x++) { + *p_dst++ = *p_src++ >> down_shift; + } + } + } +} + +void vpx_img_downshift(vpx_image_t *dst, vpx_image_t *src, int down_shift) { + if (dst->fmt & VPX_IMG_FMT_HIGHBITDEPTH) { + highbd_img_downshift(dst, src, down_shift); + } else { + lowbd_img_downshift(dst, src, down_shift); + } +} +#endif // CONFIG_VP9_HIGHBITDEPTH diff --git a/tools_common.h b/tools_common.h new file mode 100644 index 0000000..e41de31 --- /dev/null +++ b/tools_common.h @@ -0,0 +1,166 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ +#ifndef TOOLS_COMMON_H_ +#define TOOLS_COMMON_H_ + +#include + +#include "./vpx_config.h" +#include "vpx/vpx_codec.h" +#include "vpx/vpx_image.h" +#include "vpx/vpx_integer.h" +#include "vpx_ports/msvc.h" + +#if CONFIG_ENCODERS +#include "./y4minput.h" +#endif + +#if defined(_MSC_VER) +/* MSVS uses _f{seek,tell}i64. */ +#define fseeko _fseeki64 +#define ftello _ftelli64 +typedef int64_t FileOffset; +#elif defined(_WIN32) +/* MinGW uses f{seek,tell}o64 for large files. */ +#define fseeko fseeko64 +#define ftello ftello64 +typedef off64_t FileOffset; +#elif CONFIG_OS_SUPPORT +typedef off_t FileOffset; +/* Use 32-bit file operations in WebM file format when building ARM + * executables (.axf) with RVCT. */ +#else +#define fseeko fseek +#define ftello ftell +typedef long FileOffset; /* NOLINT */ +#endif /* CONFIG_OS_SUPPORT */ + +#if CONFIG_OS_SUPPORT +#if defined(_MSC_VER) +#include /* NOLINT */ +#define isatty _isatty +#define fileno _fileno +#else +#include /* NOLINT */ +#endif /* _MSC_VER */ +#endif /* CONFIG_OS_SUPPORT */ + +#define LITERALU64(hi, lo) ((((uint64_t)hi) << 32) | lo) + +#ifndef PATH_MAX +#define PATH_MAX 512 +#endif + +#define IVF_FRAME_HDR_SZ (4 + 8) /* 4 byte size + 8 byte timestamp */ +#define IVF_FILE_HDR_SZ 32 + +#define RAW_FRAME_HDR_SZ sizeof(uint32_t) + +#define VP8_FOURCC 0x30385056 +#define VP9_FOURCC 0x30395056 + +enum VideoFileType { + FILE_TYPE_RAW, + FILE_TYPE_IVF, + FILE_TYPE_Y4M, + FILE_TYPE_WEBM +}; + +struct FileTypeDetectionBuffer { + char buf[4]; + size_t buf_read; + size_t position; +}; + +struct VpxRational { + int numerator; + int denominator; +}; + +struct VpxInputContext { + const char *filename; + FILE *file; + int64_t length; + struct FileTypeDetectionBuffer detect; + enum VideoFileType file_type; + uint32_t width; + uint32_t height; + struct VpxRational pixel_aspect_ratio; + vpx_img_fmt_t fmt; + vpx_bit_depth_t bit_depth; + int only_i420; + uint32_t fourcc; + struct VpxRational framerate; +#if CONFIG_ENCODERS + y4m_input y4m; +#endif +}; + +#ifdef __cplusplus +extern "C" { +#endif + +#if defined(__GNUC__) +#define VPX_NO_RETURN __attribute__((noreturn)) +#else +#define VPX_NO_RETURN +#endif + +/* Sets a stdio stream into binary mode */ +FILE *set_binary_mode(FILE *stream); + +void die(const char *fmt, ...) VPX_NO_RETURN; +void fatal(const char *fmt, ...) VPX_NO_RETURN; +void warn(const char *fmt, ...); + +void die_codec(vpx_codec_ctx_t *ctx, const char *s) VPX_NO_RETURN; + +/* The tool including this file must define usage_exit() */ +void usage_exit(void) VPX_NO_RETURN; + +#undef VPX_NO_RETURN + +int read_yuv_frame(struct VpxInputContext *input_ctx, vpx_image_t *yuv_frame); + +typedef struct VpxInterface { + const char *const name; + const uint32_t fourcc; + vpx_codec_iface_t *(*const codec_interface)(); +} VpxInterface; + +int get_vpx_encoder_count(void); +const VpxInterface *get_vpx_encoder_by_index(int i); +const VpxInterface *get_vpx_encoder_by_name(const char *name); + +int get_vpx_decoder_count(void); +const VpxInterface *get_vpx_decoder_by_index(int i); +const VpxInterface *get_vpx_decoder_by_name(const char *name); +const VpxInterface *get_vpx_decoder_by_fourcc(uint32_t fourcc); + +// TODO(dkovalev): move this function to vpx_image.{c, h}, so it will be part +// of vpx_image_t support +int vpx_img_plane_width(const vpx_image_t *img, int plane); +int vpx_img_plane_height(const vpx_image_t *img, int plane); +void vpx_img_write(const vpx_image_t *img, FILE *file); +int vpx_img_read(vpx_image_t *img, FILE *file); + +double sse_to_psnr(double samples, double peak, double mse); + +#if CONFIG_VP9_HIGHBITDEPTH +void vpx_img_upshift(vpx_image_t *dst, vpx_image_t *src, int input_shift); +void vpx_img_downshift(vpx_image_t *dst, vpx_image_t *src, int down_shift); +void vpx_img_truncate_16_to_8(vpx_image_t *dst, vpx_image_t *src); +#endif + +#ifdef __cplusplus +} /* extern "C" */ +#endif + +#endif // TOOLS_COMMON_H_ diff --git a/usage.dox b/usage.dox new file mode 100644 index 0000000..8823520 --- /dev/null +++ b/usage.dox @@ -0,0 +1,136 @@ +/*!\page usage Usage + + The vpx multi-format codec SDK provides a unified interface amongst its + supported codecs. This abstraction allows applications using this SDK to + easily support multiple video formats with minimal code duplication or + "special casing." This section describes the interface common to all codecs. + For codec-specific details, see the \ref codecs page. + + The following sections are common to all codecs: + - \ref usage_types + - \ref usage_features + - \ref usage_init + - \ref usage_errors + + For more information on decoder and encoder specific usage, see the + following pages: + \if decoder + \li \subpage usage_decode + \endif + \if encoder + \li \subpage usage_encode + \endif + + \section usage_types Important Data Types + There are two important data structures to consider in this interface. + + \subsection usage_ctxs Contexts + A context is a storage area allocated by the calling application that the + codec may write into to store details about a single instance of that codec. + Most of the context is implementation specific, and thus opaque to the + application. The context structure as seen by the application is of fixed + size, and thus can be allocated with automatic storage or dynamically + on the heap. + + Most operations require an initialized codec context. Codec context + instances are codec specific. That is, the codec to be used for the encoded + video must be known at initialization time. See #vpx_codec_ctx_t for further + information. + + \subsection usage_ifaces Interfaces + A codec interface is an opaque structure that controls how function calls + into the generic interface are dispatched to their codec-specific + implementations. Applications \ref MUSTNOT attempt to examine or override + this storage, as it contains internal implementation details likely to + change from release to release. + + Each supported codec will expose an interface structure to the application + as an extern reference to a structure of the incomplete type + #vpx_codec_iface_t. + + \section usage_features Features + Several "features" are defined that are optionally implemented by codec + algorithms. Indeed, the same algorithm may support different features on + different platforms. The purpose of defining these features is that when + they are implemented, they conform to a common interface. The features, or + capabilities, of an algorithm can be queried from it's interface by using + the vpx_codec_get_caps() method. Attempts to invoke features not supported + by an algorithm will generally result in #VPX_CODEC_INCAPABLE. + + \if decoder + Currently defined decoder features include: + - \ref usage_cb + - \ref usage_postproc + \endif + + \section usage_init Initialization + To initialize a codec instance, the address of the codec context + and interface structures are passed to an initialization function. Depending + on the \ref usage_features that the codec supports, the codec could be + initialized in different modes. + + To prevent cases of confusion where the ABI of the library changes, + the ABI is versioned. The ABI version number must be passed at + initialization time to ensure the application is using a header file that + matches the library. The current ABI version number is stored in the + preprocessor macros #VPX_CODEC_ABI_VERSION, #VPX_ENCODER_ABI_VERSION, and + #VPX_DECODER_ABI_VERSION. For convenience, each initialization function has + a wrapper macro that inserts the correct version number. These macros are + named like the initialization methods, but without the _ver suffix. + + + The available initialization methods are: + \if encoder + \li #vpx_codec_enc_init (calls vpx_codec_enc_init_ver()) + \li #vpx_codec_enc_init_multi (calls vpx_codec_enc_init_multi_ver()) + \endif + \if decoder + \li #vpx_codec_dec_init (calls vpx_codec_dec_init_ver()) + \endif + + + \section usage_errors Error Handling + Almost all codec functions return an error status of type #vpx_codec_err_t. + The semantics of how each error condition should be processed is clearly + defined in the definitions of each enumerated value. Error values can be + converted into ASCII strings with the vpx_codec_error() and + vpx_codec_err_to_string() methods. The difference between these two methods is + that vpx_codec_error() returns the error state from an initialized context, + whereas vpx_codec_err_to_string() can be used in cases where an error occurs + outside any context. The enumerated value returned from the last call can be + retrieved from the err member of the decoder context as well. + Finally, more detailed error information may be able to be obtained by using + the vpx_codec_error_detail() method. Not all errors produce detailed error + information. + + In addition to error information, the codec library's build configuration + is available at runtime on some platforms. This information can be returned + by calling vpx_codec_build_config(), and is formatted as a base64 coded string + (comprised of characters in the set [a-z_a-Z0-9+/]). This information is not + useful to an application at runtime, but may be of use to vpx for support. + + + \section usage_deadline Deadline + Both the encoding and decoding functions have a deadline + parameter. This parameter indicates the amount of time, in microseconds + (us), that the application wants the codec to spend processing before + returning. This is a soft deadline -- that is, the semantics of the + requested operation take precedence over meeting the deadline. If, for + example, an application sets a deadline of 1000us, and the + frame takes 2000us to decode, the call to vpx_codec_decode() will return + after 2000us. In this case the deadline is not met, but the semantics of the + function are preserved. If, for the same frame, an application instead sets + a deadline of 5000us, the decoder will see that it has 3000us + remaining in its time slice when decoding completes. It could then choose to + run a set of \ref usage_postproc filters, and perhaps would return after + 4000us (instead of the allocated 5000us). In this case the deadline is met, + and the semantics of the call are preserved, as before. + + The special value 0 is reserved to represent an infinite + deadline. In this case, the codec will perform as much processing as + possible to yield the highest quality frame. + + By convention, the value 1 is used to mean "return as fast as + possible." + +*/ diff --git a/usage_cx.dox b/usage_cx.dox new file mode 100644 index 0000000..92b0d34 --- /dev/null +++ b/usage_cx.dox @@ -0,0 +1,13 @@ +/*! \page usage_encode Encoding + + The vpx_codec_encode() function is at the core of the encode loop. It + processes raw images passed by the application, producing packets of + compressed data. The deadline parameter controls the amount + of time in microseconds the encoder should spend working on the frame. For + more information on the deadline parameter, see + \ref usage_deadline. + + + \ref samples + +*/ diff --git a/usage_dx.dox b/usage_dx.dox new file mode 100644 index 0000000..883ce24 --- /dev/null +++ b/usage_dx.dox @@ -0,0 +1,62 @@ +/*! \page usage_decode Decoding + + The vpx_codec_decode() function is at the core of the decode loop. It + processes packets of compressed data passed by the application, producing + decoded images. The decoder expects packets to comprise exactly one image + frame of data. Packets \ref MUST be passed in decode order. If the + application wishes to associate some data with the frame, the + user_priv member may be set. The deadline + parameter controls the amount of time in microseconds the decoder should + spend working on the frame. This is typically used to support adaptive + \ref usage_postproc based on the amount of free CPU time. For more + information on the deadline parameter, see \ref usage_deadline. + + \ref samples + + + \section usage_cb Callback Based Decoding + There are two methods for the application to access decoded frame data. Some + codecs support asynchronous (callback-based) decoding \ref usage_features + that allow the application to register a callback to be invoked by the + decoder when decoded data becomes available. Decoders are not required to + support this feature, however. Like all \ref usage_features, support can be + determined by calling vpx_codec_get_caps(). Callbacks are available in both + frame-based and slice-based variants. Frame based callbacks conform to the + signature of #vpx_codec_put_frame_cb_fn_t and are invoked once the entire + frame has been decoded. Slice based callbacks conform to the signature of + #vpx_codec_put_slice_cb_fn_t and are invoked after a subsection of the frame + is decoded. For example, a slice callback could be issued for each + macroblock row. However, the number and size of slices to return is + implementation specific. Also, the image data passed in a slice callback is + not necessarily in the same memory segment as the data will be when it is + assembled into a full frame. For this reason, the application \ref MUST + examine the rectangles that describe what data is valid to access and what + data has been updated in this call. For all their additional complexity, + slice based decoding callbacks provide substantial speed gains to the + overall application in some cases, due to improved cache behavior. + + + \section usage_frame_iter Frame Iterator Based Decoding + If the codec does not support callback based decoding, or the application + chooses not to make use of that feature, decoded frames are made available + through the vpx_codec_get_frame() iterator. The application initializes the + iterator storage (of type #vpx_codec_iter_t) to NULL, then calls + vpx_codec_get_frame repeatedly until it returns NULL, indicating that all + images have been returned. This process may result in zero, one, or many + frames that are ready for display, depending on the codec. + + + \section usage_postproc Postprocessing + Postprocessing is a process that is applied after a frame is decoded to + enhance the image's appearance by removing artifacts introduced in the + compression process. It is not required to properly decode the frame, and + is generally done only when there is enough spare CPU time to execute + the required filters. Codecs may support a number of different + postprocessing filters, and the available filters may differ from platform + to platform. Embedded devices often do not have enough CPU to implement + postprocessing in software. The filter selection is generally handled + automatically by the codec, depending on the amount of time remaining before + hitting the user-specified \ref usage_deadline after decoding the frame. + + +*/ diff --git a/video_common.h b/video_common.h new file mode 100644 index 0000000..44b27a8 --- /dev/null +++ b/video_common.h @@ -0,0 +1,23 @@ +/* + * Copyright (c) 2014 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VIDEO_COMMON_H_ +#define VIDEO_COMMON_H_ + +#include "./tools_common.h" + +typedef struct { + uint32_t codec_fourcc; + int frame_width; + int frame_height; + struct VpxRational time_base; +} VpxVideoInfo; + +#endif // VIDEO_COMMON_H_ diff --git a/video_reader.c b/video_reader.c new file mode 100644 index 0000000..a0ba252 --- /dev/null +++ b/video_reader.c @@ -0,0 +1,77 @@ +/* + * Copyright (c) 2014 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include + +#include "./ivfdec.h" +#include "./video_reader.h" + +#include "vpx_ports/mem_ops.h" + +static const char *const kIVFSignature = "DKIF"; + +struct VpxVideoReaderStruct { + VpxVideoInfo info; + FILE *file; + uint8_t *buffer; + size_t buffer_size; + size_t frame_size; +}; + +VpxVideoReader *vpx_video_reader_open(const char *filename) { + char header[32]; + VpxVideoReader *reader = NULL; + FILE *const file = fopen(filename, "rb"); + if (!file) return NULL; // Can't open file + + if (fread(header, 1, 32, file) != 32) return NULL; // Can't read file header + + if (memcmp(kIVFSignature, header, 4) != 0) + return NULL; // Wrong IVF signature + + if (mem_get_le16(header + 4) != 0) return NULL; // Wrong IVF version + + reader = calloc(1, sizeof(*reader)); + if (!reader) return NULL; // Can't allocate VpxVideoReader + + reader->file = file; + reader->info.codec_fourcc = mem_get_le32(header + 8); + reader->info.frame_width = mem_get_le16(header + 12); + reader->info.frame_height = mem_get_le16(header + 14); + reader->info.time_base.numerator = mem_get_le32(header + 16); + reader->info.time_base.denominator = mem_get_le32(header + 20); + + return reader; +} + +void vpx_video_reader_close(VpxVideoReader *reader) { + if (reader) { + fclose(reader->file); + free(reader->buffer); + free(reader); + } +} + +int vpx_video_reader_read_frame(VpxVideoReader *reader) { + return !ivf_read_frame(reader->file, &reader->buffer, &reader->frame_size, + &reader->buffer_size); +} + +const uint8_t *vpx_video_reader_get_frame(VpxVideoReader *reader, + size_t *size) { + if (size) *size = reader->frame_size; + + return reader->buffer; +} + +const VpxVideoInfo *vpx_video_reader_get_info(VpxVideoReader *reader) { + return &reader->info; +} diff --git a/video_reader.h b/video_reader.h new file mode 100644 index 0000000..73c25b0 --- /dev/null +++ b/video_reader.h @@ -0,0 +1,51 @@ +/* + * Copyright (c) 2014 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VIDEO_READER_H_ +#define VIDEO_READER_H_ + +#include "./video_common.h" + +// The following code is work in progress. It is going to support transparent +// reading of input files. Right now only IVF format is supported for +// simplicity. The main goal the API is to be simple and easy to use in example +// code and in vpxenc/vpxdec later. All low-level details like memory +// buffer management are hidden from API users. +struct VpxVideoReaderStruct; +typedef struct VpxVideoReaderStruct VpxVideoReader; + +#ifdef __cplusplus +extern "C" { +#endif + +// Opens the input file for reading and inspects it to determine file type. +// Returns an opaque VpxVideoReader* upon success, or NULL upon failure. +// Right now only IVF format is supported. +VpxVideoReader *vpx_video_reader_open(const char *filename); + +// Frees all resources associated with VpxVideoReader* returned from +// vpx_video_reader_open() call. +void vpx_video_reader_close(VpxVideoReader *reader); + +// Reads frame from the file and stores it in internal buffer. +int vpx_video_reader_read_frame(VpxVideoReader *reader); + +// Returns the pointer to memory buffer with frame data read by last call to +// vpx_video_reader_read_frame(). +const uint8_t *vpx_video_reader_get_frame(VpxVideoReader *reader, size_t *size); + +// Fills VpxVideoInfo with information from opened video file. +const VpxVideoInfo *vpx_video_reader_get_info(VpxVideoReader *reader); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VIDEO_READER_H_ diff --git a/video_writer.c b/video_writer.c new file mode 100644 index 0000000..56d428b --- /dev/null +++ b/video_writer.c @@ -0,0 +1,76 @@ +/* + * Copyright (c) 2014 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include + +#include "./ivfenc.h" +#include "./video_writer.h" +#include "vpx/vpx_encoder.h" + +struct VpxVideoWriterStruct { + VpxVideoInfo info; + FILE *file; + int frame_count; +}; + +static void write_header(FILE *file, const VpxVideoInfo *info, + int frame_count) { + struct vpx_codec_enc_cfg cfg; + cfg.g_w = info->frame_width; + cfg.g_h = info->frame_height; + cfg.g_timebase.num = info->time_base.numerator; + cfg.g_timebase.den = info->time_base.denominator; + + ivf_write_file_header(file, &cfg, info->codec_fourcc, frame_count); +} + +VpxVideoWriter *vpx_video_writer_open(const char *filename, + VpxContainer container, + const VpxVideoInfo *info) { + if (container == kContainerIVF) { + VpxVideoWriter *writer = NULL; + FILE *const file = fopen(filename, "wb"); + if (!file) return NULL; + + writer = malloc(sizeof(*writer)); + if (!writer) return NULL; + + writer->frame_count = 0; + writer->info = *info; + writer->file = file; + + write_header(writer->file, info, 0); + + return writer; + } + + return NULL; +} + +void vpx_video_writer_close(VpxVideoWriter *writer) { + if (writer) { + // Rewriting frame header with real frame count + rewind(writer->file); + write_header(writer->file, &writer->info, writer->frame_count); + + fclose(writer->file); + free(writer); + } +} + +int vpx_video_writer_write_frame(VpxVideoWriter *writer, const uint8_t *buffer, + size_t size, int64_t pts) { + ivf_write_frame_header(writer->file, pts, size); + if (fwrite(buffer, 1, size, writer->file) != size) return 0; + + ++writer->frame_count; + + return 1; +} diff --git a/video_writer.h b/video_writer.h new file mode 100644 index 0000000..a769811 --- /dev/null +++ b/video_writer.h @@ -0,0 +1,44 @@ +/* + * Copyright (c) 2014 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VIDEO_WRITER_H_ +#define VIDEO_WRITER_H_ + +#include "./video_common.h" + +typedef enum { kContainerIVF } VpxContainer; + +struct VpxVideoWriterStruct; +typedef struct VpxVideoWriterStruct VpxVideoWriter; + +#ifdef __cplusplus +extern "C" { +#endif + +// Finds and opens writer for specified container format. +// Returns an opaque VpxVideoWriter* upon success, or NULL upon failure. +// Right now only IVF format is supported. +VpxVideoWriter *vpx_video_writer_open(const char *filename, + VpxContainer container, + const VpxVideoInfo *info); + +// Frees all resources associated with VpxVideoWriter* returned from +// vpx_video_writer_open() call. +void vpx_video_writer_close(VpxVideoWriter *writer); + +// Writes frame bytes to the file. +int vpx_video_writer_write_frame(VpxVideoWriter *writer, const uint8_t *buffer, + size_t size, int64_t pts); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VIDEO_WRITER_H_ diff --git a/vp8/common/alloccommon.c b/vp8/common/alloccommon.c new file mode 100644 index 0000000..722b158 --- /dev/null +++ b/vp8/common/alloccommon.c @@ -0,0 +1,187 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "vpx_config.h" +#include "alloccommon.h" +#include "blockd.h" +#include "vpx_mem/vpx_mem.h" +#include "onyxc_int.h" +#include "findnearmv.h" +#include "entropymode.h" +#include "systemdependent.h" + +void vp8_de_alloc_frame_buffers(VP8_COMMON *oci) { + int i; + for (i = 0; i < NUM_YV12_BUFFERS; ++i) { + vp8_yv12_de_alloc_frame_buffer(&oci->yv12_fb[i]); + } + + vp8_yv12_de_alloc_frame_buffer(&oci->temp_scale_frame); +#if CONFIG_POSTPROC + vp8_yv12_de_alloc_frame_buffer(&oci->post_proc_buffer); + if (oci->post_proc_buffer_int_used) { + vp8_yv12_de_alloc_frame_buffer(&oci->post_proc_buffer_int); + } + + vpx_free(oci->pp_limits_buffer); + oci->pp_limits_buffer = NULL; + + vpx_free(oci->postproc_state.generated_noise); + oci->postproc_state.generated_noise = NULL; +#endif + + vpx_free(oci->above_context); + vpx_free(oci->mip); +#if CONFIG_ERROR_CONCEALMENT + vpx_free(oci->prev_mip); + oci->prev_mip = NULL; +#endif + + oci->above_context = NULL; + oci->mip = NULL; +} + +int vp8_alloc_frame_buffers(VP8_COMMON *oci, int width, int height) { + int i; + + vp8_de_alloc_frame_buffers(oci); + + /* our internal buffers are always multiples of 16 */ + if ((width & 0xf) != 0) width += 16 - (width & 0xf); + + if ((height & 0xf) != 0) height += 16 - (height & 0xf); + + for (i = 0; i < NUM_YV12_BUFFERS; ++i) { + oci->fb_idx_ref_cnt[i] = 0; + oci->yv12_fb[i].flags = 0; + if (vp8_yv12_alloc_frame_buffer(&oci->yv12_fb[i], width, height, + VP8BORDERINPIXELS) < 0) { + goto allocation_fail; + } + } + + oci->new_fb_idx = 0; + oci->lst_fb_idx = 1; + oci->gld_fb_idx = 2; + oci->alt_fb_idx = 3; + + oci->fb_idx_ref_cnt[0] = 1; + oci->fb_idx_ref_cnt[1] = 1; + oci->fb_idx_ref_cnt[2] = 1; + oci->fb_idx_ref_cnt[3] = 1; + + if (vp8_yv12_alloc_frame_buffer(&oci->temp_scale_frame, width, 16, + VP8BORDERINPIXELS) < 0) { + goto allocation_fail; + } + + oci->mb_rows = height >> 4; + oci->mb_cols = width >> 4; + oci->MBs = oci->mb_rows * oci->mb_cols; + oci->mode_info_stride = oci->mb_cols + 1; + oci->mip = + vpx_calloc((oci->mb_cols + 1) * (oci->mb_rows + 1), sizeof(MODE_INFO)); + + if (!oci->mip) goto allocation_fail; + + oci->mi = oci->mip + oci->mode_info_stride + 1; + + /* Allocation of previous mode info will be done in vp8_decode_frame() + * as it is a decoder only data */ + + oci->above_context = + vpx_calloc(sizeof(ENTROPY_CONTEXT_PLANES) * oci->mb_cols, 1); + + if (!oci->above_context) goto allocation_fail; + +#if CONFIG_POSTPROC + if (vp8_yv12_alloc_frame_buffer(&oci->post_proc_buffer, width, height, + VP8BORDERINPIXELS) < 0) { + goto allocation_fail; + } + + oci->post_proc_buffer_int_used = 0; + memset(&oci->postproc_state, 0, sizeof(oci->postproc_state)); + memset(oci->post_proc_buffer.buffer_alloc, 128, + oci->post_proc_buffer.frame_size); + + /* Allocate buffer to store post-processing filter coefficients. + * + * Note: Round up mb_cols to support SIMD reads + */ + oci->pp_limits_buffer = vpx_memalign(16, 24 * ((oci->mb_cols + 1) & ~1)); + if (!oci->pp_limits_buffer) goto allocation_fail; +#endif + + return 0; + +allocation_fail: + vp8_de_alloc_frame_buffers(oci); + return 1; +} + +void vp8_setup_version(VP8_COMMON *cm) { + switch (cm->version) { + case 0: + cm->no_lpf = 0; + cm->filter_type = NORMAL_LOOPFILTER; + cm->use_bilinear_mc_filter = 0; + cm->full_pixel = 0; + break; + case 1: + cm->no_lpf = 0; + cm->filter_type = SIMPLE_LOOPFILTER; + cm->use_bilinear_mc_filter = 1; + cm->full_pixel = 0; + break; + case 2: + cm->no_lpf = 1; + cm->filter_type = NORMAL_LOOPFILTER; + cm->use_bilinear_mc_filter = 1; + cm->full_pixel = 0; + break; + case 3: + cm->no_lpf = 1; + cm->filter_type = SIMPLE_LOOPFILTER; + cm->use_bilinear_mc_filter = 1; + cm->full_pixel = 1; + break; + default: + /*4,5,6,7 are reserved for future use*/ + cm->no_lpf = 0; + cm->filter_type = NORMAL_LOOPFILTER; + cm->use_bilinear_mc_filter = 0; + cm->full_pixel = 0; + break; + } +} +void vp8_create_common(VP8_COMMON *oci) { + vp8_machine_specific_config(oci); + + vp8_init_mbmode_probs(oci); + vp8_default_bmode_probs(oci->fc.bmode_prob); + + oci->mb_no_coeff_skip = 1; + oci->no_lpf = 0; + oci->filter_type = NORMAL_LOOPFILTER; + oci->use_bilinear_mc_filter = 0; + oci->full_pixel = 0; + oci->multi_token_partition = ONE_PARTITION; + oci->clamp_type = RECON_CLAMP_REQUIRED; + + /* Initialize reference frame sign bias structure to defaults */ + memset(oci->ref_frame_sign_bias, 0, sizeof(oci->ref_frame_sign_bias)); + + /* Default disable buffer to buffer copying */ + oci->copy_buffer_to_gf = 0; + oci->copy_buffer_to_arf = 0; +} + +void vp8_remove_common(VP8_COMMON *oci) { vp8_de_alloc_frame_buffers(oci); } diff --git a/vp8/common/alloccommon.h b/vp8/common/alloccommon.h new file mode 100644 index 0000000..5d0840c --- /dev/null +++ b/vp8/common/alloccommon.h @@ -0,0 +1,30 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP8_COMMON_ALLOCCOMMON_H_ +#define VP8_COMMON_ALLOCCOMMON_H_ + +#include "onyxc_int.h" + +#ifdef __cplusplus +extern "C" { +#endif + +void vp8_create_common(VP8_COMMON *oci); +void vp8_remove_common(VP8_COMMON *oci); +void vp8_de_alloc_frame_buffers(VP8_COMMON *oci); +int vp8_alloc_frame_buffers(VP8_COMMON *oci, int width, int height); +void vp8_setup_version(VP8_COMMON *oci); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP8_COMMON_ALLOCCOMMON_H_ diff --git a/vp8/common/arm/loopfilter_arm.c b/vp8/common/arm/loopfilter_arm.c new file mode 100644 index 0000000..e12f65a --- /dev/null +++ b/vp8/common/arm/loopfilter_arm.c @@ -0,0 +1,101 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "vpx_config.h" +#include "vp8_rtcd.h" +#include "vp8/common/loopfilter.h" +#include "vp8/common/onyxc_int.h" + +typedef void loopfilter_y_neon(unsigned char *src, int pitch, + unsigned char blimit, unsigned char limit, + unsigned char thresh); +typedef void loopfilter_uv_neon(unsigned char *u, int pitch, + unsigned char blimit, unsigned char limit, + unsigned char thresh, unsigned char *v); + +extern loopfilter_y_neon vp8_loop_filter_horizontal_edge_y_neon; +extern loopfilter_y_neon vp8_loop_filter_vertical_edge_y_neon; +extern loopfilter_uv_neon vp8_loop_filter_horizontal_edge_uv_neon; +extern loopfilter_uv_neon vp8_loop_filter_vertical_edge_uv_neon; + +extern loopfilter_y_neon vp8_mbloop_filter_horizontal_edge_y_neon; +extern loopfilter_y_neon vp8_mbloop_filter_vertical_edge_y_neon; +extern loopfilter_uv_neon vp8_mbloop_filter_horizontal_edge_uv_neon; +extern loopfilter_uv_neon vp8_mbloop_filter_vertical_edge_uv_neon; + +/* NEON loopfilter functions */ +/* Horizontal MB filtering */ +void vp8_loop_filter_mbh_neon(unsigned char *y_ptr, unsigned char *u_ptr, + unsigned char *v_ptr, int y_stride, int uv_stride, + loop_filter_info *lfi) { + unsigned char mblim = *lfi->mblim; + unsigned char lim = *lfi->lim; + unsigned char hev_thr = *lfi->hev_thr; + vp8_mbloop_filter_horizontal_edge_y_neon(y_ptr, y_stride, mblim, lim, + hev_thr); + + if (u_ptr) + vp8_mbloop_filter_horizontal_edge_uv_neon(u_ptr, uv_stride, mblim, lim, + hev_thr, v_ptr); +} + +/* Vertical MB Filtering */ +void vp8_loop_filter_mbv_neon(unsigned char *y_ptr, unsigned char *u_ptr, + unsigned char *v_ptr, int y_stride, int uv_stride, + loop_filter_info *lfi) { + unsigned char mblim = *lfi->mblim; + unsigned char lim = *lfi->lim; + unsigned char hev_thr = *lfi->hev_thr; + + vp8_mbloop_filter_vertical_edge_y_neon(y_ptr, y_stride, mblim, lim, hev_thr); + + if (u_ptr) + vp8_mbloop_filter_vertical_edge_uv_neon(u_ptr, uv_stride, mblim, lim, + hev_thr, v_ptr); +} + +/* Horizontal B Filtering */ +void vp8_loop_filter_bh_neon(unsigned char *y_ptr, unsigned char *u_ptr, + unsigned char *v_ptr, int y_stride, int uv_stride, + loop_filter_info *lfi) { + unsigned char blim = *lfi->blim; + unsigned char lim = *lfi->lim; + unsigned char hev_thr = *lfi->hev_thr; + + vp8_loop_filter_horizontal_edge_y_neon(y_ptr + 4 * y_stride, y_stride, blim, + lim, hev_thr); + vp8_loop_filter_horizontal_edge_y_neon(y_ptr + 8 * y_stride, y_stride, blim, + lim, hev_thr); + vp8_loop_filter_horizontal_edge_y_neon(y_ptr + 12 * y_stride, y_stride, blim, + lim, hev_thr); + + if (u_ptr) + vp8_loop_filter_horizontal_edge_uv_neon(u_ptr + 4 * uv_stride, uv_stride, + blim, lim, hev_thr, + v_ptr + 4 * uv_stride); +} + +/* Vertical B Filtering */ +void vp8_loop_filter_bv_neon(unsigned char *y_ptr, unsigned char *u_ptr, + unsigned char *v_ptr, int y_stride, int uv_stride, + loop_filter_info *lfi) { + unsigned char blim = *lfi->blim; + unsigned char lim = *lfi->lim; + unsigned char hev_thr = *lfi->hev_thr; + + vp8_loop_filter_vertical_edge_y_neon(y_ptr + 4, y_stride, blim, lim, hev_thr); + vp8_loop_filter_vertical_edge_y_neon(y_ptr + 8, y_stride, blim, lim, hev_thr); + vp8_loop_filter_vertical_edge_y_neon(y_ptr + 12, y_stride, blim, lim, + hev_thr); + + if (u_ptr) + vp8_loop_filter_vertical_edge_uv_neon(u_ptr + 4, uv_stride, blim, lim, + hev_thr, v_ptr + 4); +} diff --git a/vp8/common/arm/neon/bilinearpredict_neon.c b/vp8/common/arm/neon/bilinearpredict_neon.c new file mode 100644 index 0000000..8520ab5 --- /dev/null +++ b/vp8/common/arm/neon/bilinearpredict_neon.c @@ -0,0 +1,762 @@ +/* + * Copyright (c) 2014 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include +#include "./vpx_config.h" +#include "vpx_dsp/arm/mem_neon.h" + +static const uint8_t bifilter4_coeff[8][2] = { { 128, 0 }, { 112, 16 }, + { 96, 32 }, { 80, 48 }, + { 64, 64 }, { 48, 80 }, + { 32, 96 }, { 16, 112 } }; + +static INLINE uint8x8_t load_and_shift(const unsigned char *a) { + return vreinterpret_u8_u64(vshl_n_u64(vreinterpret_u64_u8(vld1_u8(a)), 32)); +} + +void vp8_bilinear_predict4x4_neon(unsigned char *src_ptr, + int src_pixels_per_line, int xoffset, + int yoffset, unsigned char *dst_ptr, + int dst_pitch) { + uint8x8_t e0, e1, e2; + + if (xoffset == 0) { // skip_1stpass_filter + uint8x8_t a0, a1, a2, a3, a4; + + a0 = load_and_shift(src_ptr); + src_ptr += src_pixels_per_line; + a1 = vld1_u8(src_ptr); + src_ptr += src_pixels_per_line; + a2 = load_and_shift(src_ptr); + src_ptr += src_pixels_per_line; + a3 = vld1_u8(src_ptr); + src_ptr += src_pixels_per_line; + a4 = vld1_u8(src_ptr); + + e0 = vext_u8(a0, a1, 4); + e1 = vext_u8(a2, a3, 4); + e2 = a4; + } else { + uint8x8_t a0, a1, a2, a3, a4, b4; + uint8x16_t a01, a23; + uint8x16_t b01, b23; + uint32x2x2_t c0, c1, c2, c3; + uint16x8_t d0, d1, d2; + const uint8x8_t filter0 = vdup_n_u8(bifilter4_coeff[xoffset][0]); + const uint8x8_t filter1 = vdup_n_u8(bifilter4_coeff[xoffset][1]); + + a0 = vld1_u8(src_ptr); + src_ptr += src_pixels_per_line; + a1 = vld1_u8(src_ptr); + src_ptr += src_pixels_per_line; + a2 = vld1_u8(src_ptr); + src_ptr += src_pixels_per_line; + a3 = vld1_u8(src_ptr); + src_ptr += src_pixels_per_line; + a4 = vld1_u8(src_ptr); + + a01 = vcombine_u8(a0, a1); + a23 = vcombine_u8(a2, a3); + + b01 = vreinterpretq_u8_u64(vshrq_n_u64(vreinterpretq_u64_u8(a01), 8)); + b23 = vreinterpretq_u8_u64(vshrq_n_u64(vreinterpretq_u64_u8(a23), 8)); + b4 = vreinterpret_u8_u64(vshr_n_u64(vreinterpret_u64_u8(a4), 8)); + + c0 = vzip_u32(vreinterpret_u32_u8(vget_low_u8(a01)), + vreinterpret_u32_u8(vget_high_u8(a01))); + c1 = vzip_u32(vreinterpret_u32_u8(vget_low_u8(a23)), + vreinterpret_u32_u8(vget_high_u8(a23))); + c2 = vzip_u32(vreinterpret_u32_u8(vget_low_u8(b01)), + vreinterpret_u32_u8(vget_high_u8(b01))); + c3 = vzip_u32(vreinterpret_u32_u8(vget_low_u8(b23)), + vreinterpret_u32_u8(vget_high_u8(b23))); + + d0 = vmull_u8(vreinterpret_u8_u32(c0.val[0]), filter0); + d1 = vmull_u8(vreinterpret_u8_u32(c1.val[0]), filter0); + d2 = vmull_u8(a4, filter0); + + d0 = vmlal_u8(d0, vreinterpret_u8_u32(c2.val[0]), filter1); + d1 = vmlal_u8(d1, vreinterpret_u8_u32(c3.val[0]), filter1); + d2 = vmlal_u8(d2, b4, filter1); + + e0 = vqrshrn_n_u16(d0, 7); + e1 = vqrshrn_n_u16(d1, 7); + e2 = vqrshrn_n_u16(d2, 7); + } + + // secondpass_filter + if (yoffset == 0) { // skip_2ndpass_filter + store_unaligned_u8q(dst_ptr, dst_pitch, vcombine_u8(e0, e1)); + } else { + uint8x8_t f0, f1; + const uint8x8_t filter0 = vdup_n_u8(bifilter4_coeff[yoffset][0]); + const uint8x8_t filter1 = vdup_n_u8(bifilter4_coeff[yoffset][1]); + + uint16x8_t b0 = vmull_u8(e0, filter0); + uint16x8_t b1 = vmull_u8(e1, filter0); + + const uint8x8_t a0 = vext_u8(e0, e1, 4); + const uint8x8_t a1 = vext_u8(e1, e2, 4); + + b0 = vmlal_u8(b0, a0, filter1); + b1 = vmlal_u8(b1, a1, filter1); + + f0 = vqrshrn_n_u16(b0, 7); + f1 = vqrshrn_n_u16(b1, 7); + + store_unaligned_u8q(dst_ptr, dst_pitch, vcombine_u8(f0, f1)); + } +} + +void vp8_bilinear_predict8x4_neon(unsigned char *src_ptr, + int src_pixels_per_line, int xoffset, + int yoffset, unsigned char *dst_ptr, + int dst_pitch) { + uint8x8_t d0u8, d1u8, d2u8, d3u8, d4u8, d5u8; + uint8x8_t d7u8, d9u8, d11u8, d22u8, d23u8, d24u8, d25u8, d26u8; + uint8x16_t q1u8, q2u8, q3u8, q4u8, q5u8; + uint16x8_t q1u16, q2u16, q3u16, q4u16; + uint16x8_t q6u16, q7u16, q8u16, q9u16, q10u16; + + if (xoffset == 0) { // skip_1stpass_filter + d22u8 = vld1_u8(src_ptr); + src_ptr += src_pixels_per_line; + d23u8 = vld1_u8(src_ptr); + src_ptr += src_pixels_per_line; + d24u8 = vld1_u8(src_ptr); + src_ptr += src_pixels_per_line; + d25u8 = vld1_u8(src_ptr); + src_ptr += src_pixels_per_line; + d26u8 = vld1_u8(src_ptr); + } else { + q1u8 = vld1q_u8(src_ptr); + src_ptr += src_pixels_per_line; + q2u8 = vld1q_u8(src_ptr); + src_ptr += src_pixels_per_line; + q3u8 = vld1q_u8(src_ptr); + src_ptr += src_pixels_per_line; + q4u8 = vld1q_u8(src_ptr); + src_ptr += src_pixels_per_line; + q5u8 = vld1q_u8(src_ptr); + + d0u8 = vdup_n_u8(bifilter4_coeff[xoffset][0]); + d1u8 = vdup_n_u8(bifilter4_coeff[xoffset][1]); + + q6u16 = vmull_u8(vget_low_u8(q1u8), d0u8); + q7u16 = vmull_u8(vget_low_u8(q2u8), d0u8); + q8u16 = vmull_u8(vget_low_u8(q3u8), d0u8); + q9u16 = vmull_u8(vget_low_u8(q4u8), d0u8); + q10u16 = vmull_u8(vget_low_u8(q5u8), d0u8); + + d3u8 = vext_u8(vget_low_u8(q1u8), vget_high_u8(q1u8), 1); + d5u8 = vext_u8(vget_low_u8(q2u8), vget_high_u8(q2u8), 1); + d7u8 = vext_u8(vget_low_u8(q3u8), vget_high_u8(q3u8), 1); + d9u8 = vext_u8(vget_low_u8(q4u8), vget_high_u8(q4u8), 1); + d11u8 = vext_u8(vget_low_u8(q5u8), vget_high_u8(q5u8), 1); + + q6u16 = vmlal_u8(q6u16, d3u8, d1u8); + q7u16 = vmlal_u8(q7u16, d5u8, d1u8); + q8u16 = vmlal_u8(q8u16, d7u8, d1u8); + q9u16 = vmlal_u8(q9u16, d9u8, d1u8); + q10u16 = vmlal_u8(q10u16, d11u8, d1u8); + + d22u8 = vqrshrn_n_u16(q6u16, 7); + d23u8 = vqrshrn_n_u16(q7u16, 7); + d24u8 = vqrshrn_n_u16(q8u16, 7); + d25u8 = vqrshrn_n_u16(q9u16, 7); + d26u8 = vqrshrn_n_u16(q10u16, 7); + } + + // secondpass_filter + if (yoffset == 0) { // skip_2ndpass_filter + vst1_u8((uint8_t *)dst_ptr, d22u8); + dst_ptr += dst_pitch; + vst1_u8((uint8_t *)dst_ptr, d23u8); + dst_ptr += dst_pitch; + vst1_u8((uint8_t *)dst_ptr, d24u8); + dst_ptr += dst_pitch; + vst1_u8((uint8_t *)dst_ptr, d25u8); + } else { + d0u8 = vdup_n_u8(bifilter4_coeff[yoffset][0]); + d1u8 = vdup_n_u8(bifilter4_coeff[yoffset][1]); + + q1u16 = vmull_u8(d22u8, d0u8); + q2u16 = vmull_u8(d23u8, d0u8); + q3u16 = vmull_u8(d24u8, d0u8); + q4u16 = vmull_u8(d25u8, d0u8); + + q1u16 = vmlal_u8(q1u16, d23u8, d1u8); + q2u16 = vmlal_u8(q2u16, d24u8, d1u8); + q3u16 = vmlal_u8(q3u16, d25u8, d1u8); + q4u16 = vmlal_u8(q4u16, d26u8, d1u8); + + d2u8 = vqrshrn_n_u16(q1u16, 7); + d3u8 = vqrshrn_n_u16(q2u16, 7); + d4u8 = vqrshrn_n_u16(q3u16, 7); + d5u8 = vqrshrn_n_u16(q4u16, 7); + + vst1_u8((uint8_t *)dst_ptr, d2u8); + dst_ptr += dst_pitch; + vst1_u8((uint8_t *)dst_ptr, d3u8); + dst_ptr += dst_pitch; + vst1_u8((uint8_t *)dst_ptr, d4u8); + dst_ptr += dst_pitch; + vst1_u8((uint8_t *)dst_ptr, d5u8); + } + return; +} + +void vp8_bilinear_predict8x8_neon(unsigned char *src_ptr, + int src_pixels_per_line, int xoffset, + int yoffset, unsigned char *dst_ptr, + int dst_pitch) { + uint8x8_t d0u8, d1u8, d2u8, d3u8, d4u8, d5u8, d6u8, d7u8, d8u8, d9u8, d11u8; + uint8x8_t d22u8, d23u8, d24u8, d25u8, d26u8, d27u8, d28u8, d29u8, d30u8; + uint8x16_t q1u8, q2u8, q3u8, q4u8, q5u8; + uint16x8_t q1u16, q2u16, q3u16, q4u16, q5u16; + uint16x8_t q6u16, q7u16, q8u16, q9u16, q10u16; + + if (xoffset == 0) { // skip_1stpass_filter + d22u8 = vld1_u8(src_ptr); + src_ptr += src_pixels_per_line; + d23u8 = vld1_u8(src_ptr); + src_ptr += src_pixels_per_line; + d24u8 = vld1_u8(src_ptr); + src_ptr += src_pixels_per_line; + d25u8 = vld1_u8(src_ptr); + src_ptr += src_pixels_per_line; + d26u8 = vld1_u8(src_ptr); + src_ptr += src_pixels_per_line; + d27u8 = vld1_u8(src_ptr); + src_ptr += src_pixels_per_line; + d28u8 = vld1_u8(src_ptr); + src_ptr += src_pixels_per_line; + d29u8 = vld1_u8(src_ptr); + src_ptr += src_pixels_per_line; + d30u8 = vld1_u8(src_ptr); + } else { + q1u8 = vld1q_u8(src_ptr); + src_ptr += src_pixels_per_line; + q2u8 = vld1q_u8(src_ptr); + src_ptr += src_pixels_per_line; + q3u8 = vld1q_u8(src_ptr); + src_ptr += src_pixels_per_line; + q4u8 = vld1q_u8(src_ptr); + src_ptr += src_pixels_per_line; + + d0u8 = vdup_n_u8(bifilter4_coeff[xoffset][0]); + d1u8 = vdup_n_u8(bifilter4_coeff[xoffset][1]); + + q6u16 = vmull_u8(vget_low_u8(q1u8), d0u8); + q7u16 = vmull_u8(vget_low_u8(q2u8), d0u8); + q8u16 = vmull_u8(vget_low_u8(q3u8), d0u8); + q9u16 = vmull_u8(vget_low_u8(q4u8), d0u8); + + d3u8 = vext_u8(vget_low_u8(q1u8), vget_high_u8(q1u8), 1); + d5u8 = vext_u8(vget_low_u8(q2u8), vget_high_u8(q2u8), 1); + d7u8 = vext_u8(vget_low_u8(q3u8), vget_high_u8(q3u8), 1); + d9u8 = vext_u8(vget_low_u8(q4u8), vget_high_u8(q4u8), 1); + + q6u16 = vmlal_u8(q6u16, d3u8, d1u8); + q7u16 = vmlal_u8(q7u16, d5u8, d1u8); + q8u16 = vmlal_u8(q8u16, d7u8, d1u8); + q9u16 = vmlal_u8(q9u16, d9u8, d1u8); + + d22u8 = vqrshrn_n_u16(q6u16, 7); + d23u8 = vqrshrn_n_u16(q7u16, 7); + d24u8 = vqrshrn_n_u16(q8u16, 7); + d25u8 = vqrshrn_n_u16(q9u16, 7); + + // first_pass filtering on the rest 5-line data + q1u8 = vld1q_u8(src_ptr); + src_ptr += src_pixels_per_line; + q2u8 = vld1q_u8(src_ptr); + src_ptr += src_pixels_per_line; + q3u8 = vld1q_u8(src_ptr); + src_ptr += src_pixels_per_line; + q4u8 = vld1q_u8(src_ptr); + src_ptr += src_pixels_per_line; + q5u8 = vld1q_u8(src_ptr); + + q6u16 = vmull_u8(vget_low_u8(q1u8), d0u8); + q7u16 = vmull_u8(vget_low_u8(q2u8), d0u8); + q8u16 = vmull_u8(vget_low_u8(q3u8), d0u8); + q9u16 = vmull_u8(vget_low_u8(q4u8), d0u8); + q10u16 = vmull_u8(vget_low_u8(q5u8), d0u8); + + d3u8 = vext_u8(vget_low_u8(q1u8), vget_high_u8(q1u8), 1); + d5u8 = vext_u8(vget_low_u8(q2u8), vget_high_u8(q2u8), 1); + d7u8 = vext_u8(vget_low_u8(q3u8), vget_high_u8(q3u8), 1); + d9u8 = vext_u8(vget_low_u8(q4u8), vget_high_u8(q4u8), 1); + d11u8 = vext_u8(vget_low_u8(q5u8), vget_high_u8(q5u8), 1); + + q6u16 = vmlal_u8(q6u16, d3u8, d1u8); + q7u16 = vmlal_u8(q7u16, d5u8, d1u8); + q8u16 = vmlal_u8(q8u16, d7u8, d1u8); + q9u16 = vmlal_u8(q9u16, d9u8, d1u8); + q10u16 = vmlal_u8(q10u16, d11u8, d1u8); + + d26u8 = vqrshrn_n_u16(q6u16, 7); + d27u8 = vqrshrn_n_u16(q7u16, 7); + d28u8 = vqrshrn_n_u16(q8u16, 7); + d29u8 = vqrshrn_n_u16(q9u16, 7); + d30u8 = vqrshrn_n_u16(q10u16, 7); + } + + // secondpass_filter + if (yoffset == 0) { // skip_2ndpass_filter + vst1_u8((uint8_t *)dst_ptr, d22u8); + dst_ptr += dst_pitch; + vst1_u8((uint8_t *)dst_ptr, d23u8); + dst_ptr += dst_pitch; + vst1_u8((uint8_t *)dst_ptr, d24u8); + dst_ptr += dst_pitch; + vst1_u8((uint8_t *)dst_ptr, d25u8); + dst_ptr += dst_pitch; + vst1_u8((uint8_t *)dst_ptr, d26u8); + dst_ptr += dst_pitch; + vst1_u8((uint8_t *)dst_ptr, d27u8); + dst_ptr += dst_pitch; + vst1_u8((uint8_t *)dst_ptr, d28u8); + dst_ptr += dst_pitch; + vst1_u8((uint8_t *)dst_ptr, d29u8); + } else { + d0u8 = vdup_n_u8(bifilter4_coeff[yoffset][0]); + d1u8 = vdup_n_u8(bifilter4_coeff[yoffset][1]); + + q1u16 = vmull_u8(d22u8, d0u8); + q2u16 = vmull_u8(d23u8, d0u8); + q3u16 = vmull_u8(d24u8, d0u8); + q4u16 = vmull_u8(d25u8, d0u8); + q5u16 = vmull_u8(d26u8, d0u8); + q6u16 = vmull_u8(d27u8, d0u8); + q7u16 = vmull_u8(d28u8, d0u8); + q8u16 = vmull_u8(d29u8, d0u8); + + q1u16 = vmlal_u8(q1u16, d23u8, d1u8); + q2u16 = vmlal_u8(q2u16, d24u8, d1u8); + q3u16 = vmlal_u8(q3u16, d25u8, d1u8); + q4u16 = vmlal_u8(q4u16, d26u8, d1u8); + q5u16 = vmlal_u8(q5u16, d27u8, d1u8); + q6u16 = vmlal_u8(q6u16, d28u8, d1u8); + q7u16 = vmlal_u8(q7u16, d29u8, d1u8); + q8u16 = vmlal_u8(q8u16, d30u8, d1u8); + + d2u8 = vqrshrn_n_u16(q1u16, 7); + d3u8 = vqrshrn_n_u16(q2u16, 7); + d4u8 = vqrshrn_n_u16(q3u16, 7); + d5u8 = vqrshrn_n_u16(q4u16, 7); + d6u8 = vqrshrn_n_u16(q5u16, 7); + d7u8 = vqrshrn_n_u16(q6u16, 7); + d8u8 = vqrshrn_n_u16(q7u16, 7); + d9u8 = vqrshrn_n_u16(q8u16, 7); + + vst1_u8((uint8_t *)dst_ptr, d2u8); + dst_ptr += dst_pitch; + vst1_u8((uint8_t *)dst_ptr, d3u8); + dst_ptr += dst_pitch; + vst1_u8((uint8_t *)dst_ptr, d4u8); + dst_ptr += dst_pitch; + vst1_u8((uint8_t *)dst_ptr, d5u8); + dst_ptr += dst_pitch; + vst1_u8((uint8_t *)dst_ptr, d6u8); + dst_ptr += dst_pitch; + vst1_u8((uint8_t *)dst_ptr, d7u8); + dst_ptr += dst_pitch; + vst1_u8((uint8_t *)dst_ptr, d8u8); + dst_ptr += dst_pitch; + vst1_u8((uint8_t *)dst_ptr, d9u8); + } + return; +} + +void vp8_bilinear_predict16x16_neon(unsigned char *src_ptr, + int src_pixels_per_line, int xoffset, + int yoffset, unsigned char *dst_ptr, + int dst_pitch) { + int i; + unsigned char tmp[272]; + unsigned char *tmpp; + uint8x8_t d0u8, d1u8, d2u8, d3u8, d4u8, d5u8, d6u8, d7u8, d8u8, d9u8; + uint8x8_t d10u8, d11u8, d12u8, d13u8, d14u8, d15u8, d16u8, d17u8, d18u8; + uint8x8_t d19u8, d20u8, d21u8; + uint8x16_t q1u8, q2u8, q3u8, q4u8, q5u8, q6u8, q7u8, q8u8, q9u8, q10u8; + uint8x16_t q11u8, q12u8, q13u8, q14u8, q15u8; + uint16x8_t q1u16, q2u16, q3u16, q4u16, q5u16, q6u16, q7u16, q8u16; + uint16x8_t q9u16, q10u16, q11u16, q12u16, q13u16, q14u16; + + if (xoffset == 0) { // secondpass_bfilter16x16_only + d0u8 = vdup_n_u8(bifilter4_coeff[yoffset][0]); + d1u8 = vdup_n_u8(bifilter4_coeff[yoffset][1]); + + q11u8 = vld1q_u8(src_ptr); + src_ptr += src_pixels_per_line; + for (i = 4; i > 0; i--) { + q12u8 = vld1q_u8(src_ptr); + src_ptr += src_pixels_per_line; + q13u8 = vld1q_u8(src_ptr); + src_ptr += src_pixels_per_line; + q14u8 = vld1q_u8(src_ptr); + src_ptr += src_pixels_per_line; + q15u8 = vld1q_u8(src_ptr); + src_ptr += src_pixels_per_line; + + q1u16 = vmull_u8(vget_low_u8(q11u8), d0u8); + q2u16 = vmull_u8(vget_high_u8(q11u8), d0u8); + q3u16 = vmull_u8(vget_low_u8(q12u8), d0u8); + q4u16 = vmull_u8(vget_high_u8(q12u8), d0u8); + q5u16 = vmull_u8(vget_low_u8(q13u8), d0u8); + q6u16 = vmull_u8(vget_high_u8(q13u8), d0u8); + q7u16 = vmull_u8(vget_low_u8(q14u8), d0u8); + q8u16 = vmull_u8(vget_high_u8(q14u8), d0u8); + + q1u16 = vmlal_u8(q1u16, vget_low_u8(q12u8), d1u8); + q2u16 = vmlal_u8(q2u16, vget_high_u8(q12u8), d1u8); + q3u16 = vmlal_u8(q3u16, vget_low_u8(q13u8), d1u8); + q4u16 = vmlal_u8(q4u16, vget_high_u8(q13u8), d1u8); + q5u16 = vmlal_u8(q5u16, vget_low_u8(q14u8), d1u8); + q6u16 = vmlal_u8(q6u16, vget_high_u8(q14u8), d1u8); + q7u16 = vmlal_u8(q7u16, vget_low_u8(q15u8), d1u8); + q8u16 = vmlal_u8(q8u16, vget_high_u8(q15u8), d1u8); + + d2u8 = vqrshrn_n_u16(q1u16, 7); + d3u8 = vqrshrn_n_u16(q2u16, 7); + d4u8 = vqrshrn_n_u16(q3u16, 7); + d5u8 = vqrshrn_n_u16(q4u16, 7); + d6u8 = vqrshrn_n_u16(q5u16, 7); + d7u8 = vqrshrn_n_u16(q6u16, 7); + d8u8 = vqrshrn_n_u16(q7u16, 7); + d9u8 = vqrshrn_n_u16(q8u16, 7); + + q1u8 = vcombine_u8(d2u8, d3u8); + q2u8 = vcombine_u8(d4u8, d5u8); + q3u8 = vcombine_u8(d6u8, d7u8); + q4u8 = vcombine_u8(d8u8, d9u8); + + q11u8 = q15u8; + + vst1q_u8((uint8_t *)dst_ptr, q1u8); + dst_ptr += dst_pitch; + vst1q_u8((uint8_t *)dst_ptr, q2u8); + dst_ptr += dst_pitch; + vst1q_u8((uint8_t *)dst_ptr, q3u8); + dst_ptr += dst_pitch; + vst1q_u8((uint8_t *)dst_ptr, q4u8); + dst_ptr += dst_pitch; + } + return; + } + + if (yoffset == 0) { // firstpass_bfilter16x16_only + d0u8 = vdup_n_u8(bifilter4_coeff[xoffset][0]); + d1u8 = vdup_n_u8(bifilter4_coeff[xoffset][1]); + + for (i = 4; i > 0; i--) { + d2u8 = vld1_u8(src_ptr); + d3u8 = vld1_u8(src_ptr + 8); + d4u8 = vld1_u8(src_ptr + 16); + src_ptr += src_pixels_per_line; + d5u8 = vld1_u8(src_ptr); + d6u8 = vld1_u8(src_ptr + 8); + d7u8 = vld1_u8(src_ptr + 16); + src_ptr += src_pixels_per_line; + d8u8 = vld1_u8(src_ptr); + d9u8 = vld1_u8(src_ptr + 8); + d10u8 = vld1_u8(src_ptr + 16); + src_ptr += src_pixels_per_line; + d11u8 = vld1_u8(src_ptr); + d12u8 = vld1_u8(src_ptr + 8); + d13u8 = vld1_u8(src_ptr + 16); + src_ptr += src_pixels_per_line; + + q7u16 = vmull_u8(d2u8, d0u8); + q8u16 = vmull_u8(d3u8, d0u8); + q9u16 = vmull_u8(d5u8, d0u8); + q10u16 = vmull_u8(d6u8, d0u8); + q11u16 = vmull_u8(d8u8, d0u8); + q12u16 = vmull_u8(d9u8, d0u8); + q13u16 = vmull_u8(d11u8, d0u8); + q14u16 = vmull_u8(d12u8, d0u8); + + d2u8 = vext_u8(d2u8, d3u8, 1); + d5u8 = vext_u8(d5u8, d6u8, 1); + d8u8 = vext_u8(d8u8, d9u8, 1); + d11u8 = vext_u8(d11u8, d12u8, 1); + + q7u16 = vmlal_u8(q7u16, d2u8, d1u8); + q9u16 = vmlal_u8(q9u16, d5u8, d1u8); + q11u16 = vmlal_u8(q11u16, d8u8, d1u8); + q13u16 = vmlal_u8(q13u16, d11u8, d1u8); + + d3u8 = vext_u8(d3u8, d4u8, 1); + d6u8 = vext_u8(d6u8, d7u8, 1); + d9u8 = vext_u8(d9u8, d10u8, 1); + d12u8 = vext_u8(d12u8, d13u8, 1); + + q8u16 = vmlal_u8(q8u16, d3u8, d1u8); + q10u16 = vmlal_u8(q10u16, d6u8, d1u8); + q12u16 = vmlal_u8(q12u16, d9u8, d1u8); + q14u16 = vmlal_u8(q14u16, d12u8, d1u8); + + d14u8 = vqrshrn_n_u16(q7u16, 7); + d15u8 = vqrshrn_n_u16(q8u16, 7); + d16u8 = vqrshrn_n_u16(q9u16, 7); + d17u8 = vqrshrn_n_u16(q10u16, 7); + d18u8 = vqrshrn_n_u16(q11u16, 7); + d19u8 = vqrshrn_n_u16(q12u16, 7); + d20u8 = vqrshrn_n_u16(q13u16, 7); + d21u8 = vqrshrn_n_u16(q14u16, 7); + + q7u8 = vcombine_u8(d14u8, d15u8); + q8u8 = vcombine_u8(d16u8, d17u8); + q9u8 = vcombine_u8(d18u8, d19u8); + q10u8 = vcombine_u8(d20u8, d21u8); + + vst1q_u8((uint8_t *)dst_ptr, q7u8); + dst_ptr += dst_pitch; + vst1q_u8((uint8_t *)dst_ptr, q8u8); + dst_ptr += dst_pitch; + vst1q_u8((uint8_t *)dst_ptr, q9u8); + dst_ptr += dst_pitch; + vst1q_u8((uint8_t *)dst_ptr, q10u8); + dst_ptr += dst_pitch; + } + return; + } + + d0u8 = vdup_n_u8(bifilter4_coeff[xoffset][0]); + d1u8 = vdup_n_u8(bifilter4_coeff[xoffset][1]); + + d2u8 = vld1_u8(src_ptr); + d3u8 = vld1_u8(src_ptr + 8); + d4u8 = vld1_u8(src_ptr + 16); + src_ptr += src_pixels_per_line; + d5u8 = vld1_u8(src_ptr); + d6u8 = vld1_u8(src_ptr + 8); + d7u8 = vld1_u8(src_ptr + 16); + src_ptr += src_pixels_per_line; + d8u8 = vld1_u8(src_ptr); + d9u8 = vld1_u8(src_ptr + 8); + d10u8 = vld1_u8(src_ptr + 16); + src_ptr += src_pixels_per_line; + d11u8 = vld1_u8(src_ptr); + d12u8 = vld1_u8(src_ptr + 8); + d13u8 = vld1_u8(src_ptr + 16); + src_ptr += src_pixels_per_line; + + // First Pass: output_height lines x output_width columns (17x16) + tmpp = tmp; + for (i = 3; i > 0; i--) { + q7u16 = vmull_u8(d2u8, d0u8); + q8u16 = vmull_u8(d3u8, d0u8); + q9u16 = vmull_u8(d5u8, d0u8); + q10u16 = vmull_u8(d6u8, d0u8); + q11u16 = vmull_u8(d8u8, d0u8); + q12u16 = vmull_u8(d9u8, d0u8); + q13u16 = vmull_u8(d11u8, d0u8); + q14u16 = vmull_u8(d12u8, d0u8); + + d2u8 = vext_u8(d2u8, d3u8, 1); + d5u8 = vext_u8(d5u8, d6u8, 1); + d8u8 = vext_u8(d8u8, d9u8, 1); + d11u8 = vext_u8(d11u8, d12u8, 1); + + q7u16 = vmlal_u8(q7u16, d2u8, d1u8); + q9u16 = vmlal_u8(q9u16, d5u8, d1u8); + q11u16 = vmlal_u8(q11u16, d8u8, d1u8); + q13u16 = vmlal_u8(q13u16, d11u8, d1u8); + + d3u8 = vext_u8(d3u8, d4u8, 1); + d6u8 = vext_u8(d6u8, d7u8, 1); + d9u8 = vext_u8(d9u8, d10u8, 1); + d12u8 = vext_u8(d12u8, d13u8, 1); + + q8u16 = vmlal_u8(q8u16, d3u8, d1u8); + q10u16 = vmlal_u8(q10u16, d6u8, d1u8); + q12u16 = vmlal_u8(q12u16, d9u8, d1u8); + q14u16 = vmlal_u8(q14u16, d12u8, d1u8); + + d14u8 = vqrshrn_n_u16(q7u16, 7); + d15u8 = vqrshrn_n_u16(q8u16, 7); + d16u8 = vqrshrn_n_u16(q9u16, 7); + d17u8 = vqrshrn_n_u16(q10u16, 7); + d18u8 = vqrshrn_n_u16(q11u16, 7); + d19u8 = vqrshrn_n_u16(q12u16, 7); + d20u8 = vqrshrn_n_u16(q13u16, 7); + d21u8 = vqrshrn_n_u16(q14u16, 7); + + d2u8 = vld1_u8(src_ptr); + d3u8 = vld1_u8(src_ptr + 8); + d4u8 = vld1_u8(src_ptr + 16); + src_ptr += src_pixels_per_line; + d5u8 = vld1_u8(src_ptr); + d6u8 = vld1_u8(src_ptr + 8); + d7u8 = vld1_u8(src_ptr + 16); + src_ptr += src_pixels_per_line; + d8u8 = vld1_u8(src_ptr); + d9u8 = vld1_u8(src_ptr + 8); + d10u8 = vld1_u8(src_ptr + 16); + src_ptr += src_pixels_per_line; + d11u8 = vld1_u8(src_ptr); + d12u8 = vld1_u8(src_ptr + 8); + d13u8 = vld1_u8(src_ptr + 16); + src_ptr += src_pixels_per_line; + + q7u8 = vcombine_u8(d14u8, d15u8); + q8u8 = vcombine_u8(d16u8, d17u8); + q9u8 = vcombine_u8(d18u8, d19u8); + q10u8 = vcombine_u8(d20u8, d21u8); + + vst1q_u8((uint8_t *)tmpp, q7u8); + tmpp += 16; + vst1q_u8((uint8_t *)tmpp, q8u8); + tmpp += 16; + vst1q_u8((uint8_t *)tmpp, q9u8); + tmpp += 16; + vst1q_u8((uint8_t *)tmpp, q10u8); + tmpp += 16; + } + + // First-pass filtering for rest 5 lines + d14u8 = vld1_u8(src_ptr); + d15u8 = vld1_u8(src_ptr + 8); + d16u8 = vld1_u8(src_ptr + 16); + src_ptr += src_pixels_per_line; + + q9u16 = vmull_u8(d2u8, d0u8); + q10u16 = vmull_u8(d3u8, d0u8); + q11u16 = vmull_u8(d5u8, d0u8); + q12u16 = vmull_u8(d6u8, d0u8); + q13u16 = vmull_u8(d8u8, d0u8); + q14u16 = vmull_u8(d9u8, d0u8); + + d2u8 = vext_u8(d2u8, d3u8, 1); + d5u8 = vext_u8(d5u8, d6u8, 1); + d8u8 = vext_u8(d8u8, d9u8, 1); + + q9u16 = vmlal_u8(q9u16, d2u8, d1u8); + q11u16 = vmlal_u8(q11u16, d5u8, d1u8); + q13u16 = vmlal_u8(q13u16, d8u8, d1u8); + + d3u8 = vext_u8(d3u8, d4u8, 1); + d6u8 = vext_u8(d6u8, d7u8, 1); + d9u8 = vext_u8(d9u8, d10u8, 1); + + q10u16 = vmlal_u8(q10u16, d3u8, d1u8); + q12u16 = vmlal_u8(q12u16, d6u8, d1u8); + q14u16 = vmlal_u8(q14u16, d9u8, d1u8); + + q1u16 = vmull_u8(d11u8, d0u8); + q2u16 = vmull_u8(d12u8, d0u8); + q3u16 = vmull_u8(d14u8, d0u8); + q4u16 = vmull_u8(d15u8, d0u8); + + d11u8 = vext_u8(d11u8, d12u8, 1); + d14u8 = vext_u8(d14u8, d15u8, 1); + + q1u16 = vmlal_u8(q1u16, d11u8, d1u8); + q3u16 = vmlal_u8(q3u16, d14u8, d1u8); + + d12u8 = vext_u8(d12u8, d13u8, 1); + d15u8 = vext_u8(d15u8, d16u8, 1); + + q2u16 = vmlal_u8(q2u16, d12u8, d1u8); + q4u16 = vmlal_u8(q4u16, d15u8, d1u8); + + d10u8 = vqrshrn_n_u16(q9u16, 7); + d11u8 = vqrshrn_n_u16(q10u16, 7); + d12u8 = vqrshrn_n_u16(q11u16, 7); + d13u8 = vqrshrn_n_u16(q12u16, 7); + d14u8 = vqrshrn_n_u16(q13u16, 7); + d15u8 = vqrshrn_n_u16(q14u16, 7); + d16u8 = vqrshrn_n_u16(q1u16, 7); + d17u8 = vqrshrn_n_u16(q2u16, 7); + d18u8 = vqrshrn_n_u16(q3u16, 7); + d19u8 = vqrshrn_n_u16(q4u16, 7); + + q5u8 = vcombine_u8(d10u8, d11u8); + q6u8 = vcombine_u8(d12u8, d13u8); + q7u8 = vcombine_u8(d14u8, d15u8); + q8u8 = vcombine_u8(d16u8, d17u8); + q9u8 = vcombine_u8(d18u8, d19u8); + + vst1q_u8((uint8_t *)tmpp, q5u8); + tmpp += 16; + vst1q_u8((uint8_t *)tmpp, q6u8); + tmpp += 16; + vst1q_u8((uint8_t *)tmpp, q7u8); + tmpp += 16; + vst1q_u8((uint8_t *)tmpp, q8u8); + tmpp += 16; + vst1q_u8((uint8_t *)tmpp, q9u8); + + // secondpass_filter + d0u8 = vdup_n_u8(bifilter4_coeff[yoffset][0]); + d1u8 = vdup_n_u8(bifilter4_coeff[yoffset][1]); + + tmpp = tmp; + q11u8 = vld1q_u8(tmpp); + tmpp += 16; + for (i = 4; i > 0; i--) { + q12u8 = vld1q_u8(tmpp); + tmpp += 16; + q13u8 = vld1q_u8(tmpp); + tmpp += 16; + q14u8 = vld1q_u8(tmpp); + tmpp += 16; + q15u8 = vld1q_u8(tmpp); + tmpp += 16; + + q1u16 = vmull_u8(vget_low_u8(q11u8), d0u8); + q2u16 = vmull_u8(vget_high_u8(q11u8), d0u8); + q3u16 = vmull_u8(vget_low_u8(q12u8), d0u8); + q4u16 = vmull_u8(vget_high_u8(q12u8), d0u8); + q5u16 = vmull_u8(vget_low_u8(q13u8), d0u8); + q6u16 = vmull_u8(vget_high_u8(q13u8), d0u8); + q7u16 = vmull_u8(vget_low_u8(q14u8), d0u8); + q8u16 = vmull_u8(vget_high_u8(q14u8), d0u8); + + q1u16 = vmlal_u8(q1u16, vget_low_u8(q12u8), d1u8); + q2u16 = vmlal_u8(q2u16, vget_high_u8(q12u8), d1u8); + q3u16 = vmlal_u8(q3u16, vget_low_u8(q13u8), d1u8); + q4u16 = vmlal_u8(q4u16, vget_high_u8(q13u8), d1u8); + q5u16 = vmlal_u8(q5u16, vget_low_u8(q14u8), d1u8); + q6u16 = vmlal_u8(q6u16, vget_high_u8(q14u8), d1u8); + q7u16 = vmlal_u8(q7u16, vget_low_u8(q15u8), d1u8); + q8u16 = vmlal_u8(q8u16, vget_high_u8(q15u8), d1u8); + + d2u8 = vqrshrn_n_u16(q1u16, 7); + d3u8 = vqrshrn_n_u16(q2u16, 7); + d4u8 = vqrshrn_n_u16(q3u16, 7); + d5u8 = vqrshrn_n_u16(q4u16, 7); + d6u8 = vqrshrn_n_u16(q5u16, 7); + d7u8 = vqrshrn_n_u16(q6u16, 7); + d8u8 = vqrshrn_n_u16(q7u16, 7); + d9u8 = vqrshrn_n_u16(q8u16, 7); + + q1u8 = vcombine_u8(d2u8, d3u8); + q2u8 = vcombine_u8(d4u8, d5u8); + q3u8 = vcombine_u8(d6u8, d7u8); + q4u8 = vcombine_u8(d8u8, d9u8); + + q11u8 = q15u8; + + vst1q_u8((uint8_t *)dst_ptr, q1u8); + dst_ptr += dst_pitch; + vst1q_u8((uint8_t *)dst_ptr, q2u8); + dst_ptr += dst_pitch; + vst1q_u8((uint8_t *)dst_ptr, q3u8); + dst_ptr += dst_pitch; + vst1q_u8((uint8_t *)dst_ptr, q4u8); + dst_ptr += dst_pitch; + } + return; +} diff --git a/vp8/common/arm/neon/copymem_neon.c b/vp8/common/arm/neon/copymem_neon.c new file mode 100644 index 0000000..c1d293b --- /dev/null +++ b/vp8/common/arm/neon/copymem_neon.c @@ -0,0 +1,50 @@ +/* + * Copyright (c) 2014 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include + +void vp8_copy_mem8x4_neon(unsigned char *src, int src_stride, + unsigned char *dst, int dst_stride) { + uint8x8_t vtmp; + int r; + + for (r = 0; r < 4; ++r) { + vtmp = vld1_u8(src); + vst1_u8(dst, vtmp); + src += src_stride; + dst += dst_stride; + } +} + +void vp8_copy_mem8x8_neon(unsigned char *src, int src_stride, + unsigned char *dst, int dst_stride) { + uint8x8_t vtmp; + int r; + + for (r = 0; r < 8; ++r) { + vtmp = vld1_u8(src); + vst1_u8(dst, vtmp); + src += src_stride; + dst += dst_stride; + } +} + +void vp8_copy_mem16x16_neon(unsigned char *src, int src_stride, + unsigned char *dst, int dst_stride) { + int r; + uint8x16_t qtmp; + + for (r = 0; r < 16; ++r) { + qtmp = vld1q_u8(src); + vst1q_u8(dst, qtmp); + src += src_stride; + dst += dst_stride; + } +} diff --git a/vp8/common/arm/neon/dc_only_idct_add_neon.c b/vp8/common/arm/neon/dc_only_idct_add_neon.c new file mode 100644 index 0000000..d12c3a8 --- /dev/null +++ b/vp8/common/arm/neon/dc_only_idct_add_neon.c @@ -0,0 +1,41 @@ +/* + * Copyright (c) 2014 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include + +#include "./vp8_rtcd.h" + +void vp8_dc_only_idct_add_neon(int16_t input_dc, unsigned char *pred_ptr, + int pred_stride, unsigned char *dst_ptr, + int dst_stride) { + int i; + uint16_t a1 = ((input_dc + 4) >> 3); + uint32x2_t d2u32 = vdup_n_u32(0); + uint8x8_t d2u8; + uint16x8_t q1u16; + uint16x8_t qAdd; + + qAdd = vdupq_n_u16(a1); + + for (i = 0; i < 2; ++i) { + d2u32 = vld1_lane_u32((const uint32_t *)pred_ptr, d2u32, 0); + pred_ptr += pred_stride; + d2u32 = vld1_lane_u32((const uint32_t *)pred_ptr, d2u32, 1); + pred_ptr += pred_stride; + + q1u16 = vaddw_u8(qAdd, vreinterpret_u8_u32(d2u32)); + d2u8 = vqmovun_s16(vreinterpretq_s16_u16(q1u16)); + + vst1_lane_u32((uint32_t *)dst_ptr, vreinterpret_u32_u8(d2u8), 0); + dst_ptr += dst_stride; + vst1_lane_u32((uint32_t *)dst_ptr, vreinterpret_u32_u8(d2u8), 1); + dst_ptr += dst_stride; + } +} diff --git a/vp8/common/arm/neon/dequant_idct_neon.c b/vp8/common/arm/neon/dequant_idct_neon.c new file mode 100644 index 0000000..5445f29 --- /dev/null +++ b/vp8/common/arm/neon/dequant_idct_neon.c @@ -0,0 +1,141 @@ +/* + * Copyright (c) 2014 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include + +#include "./vp8_rtcd.h" + +static const int16_t cospi8sqrt2minus1 = 20091; +// 35468 exceeds INT16_MAX and gets converted to a negative number. Because of +// the way it is used in vqdmulh, where the result is doubled, it can be divided +// by 2 beforehand. This saves compensating for the negative value as well as +// shifting the result. +static const int16_t sinpi8sqrt2 = 35468 >> 1; + +void vp8_dequant_idct_add_neon(int16_t *input, int16_t *dq, unsigned char *dst, + int stride) { + unsigned char *dst0; + int32x2_t d14, d15; + int16x4_t d2, d3, d4, d5, d10, d11, d12, d13; + int16x8_t q1, q2, q3, q4, q5, q6; + int16x8_t qEmpty = vdupq_n_s16(0); + int32x2x2_t d2tmp0, d2tmp1; + int16x4x2_t d2tmp2, d2tmp3; + + d14 = d15 = vdup_n_s32(0); + + // load input + q3 = vld1q_s16(input); + vst1q_s16(input, qEmpty); + input += 8; + q4 = vld1q_s16(input); + vst1q_s16(input, qEmpty); + + // load dq + q5 = vld1q_s16(dq); + dq += 8; + q6 = vld1q_s16(dq); + + // load src from dst + dst0 = dst; + d14 = vld1_lane_s32((const int32_t *)dst0, d14, 0); + dst0 += stride; + d14 = vld1_lane_s32((const int32_t *)dst0, d14, 1); + dst0 += stride; + d15 = vld1_lane_s32((const int32_t *)dst0, d15, 0); + dst0 += stride; + d15 = vld1_lane_s32((const int32_t *)dst0, d15, 1); + + q1 = vreinterpretq_s16_u16( + vmulq_u16(vreinterpretq_u16_s16(q3), vreinterpretq_u16_s16(q5))); + q2 = vreinterpretq_s16_u16( + vmulq_u16(vreinterpretq_u16_s16(q4), vreinterpretq_u16_s16(q6))); + + d12 = vqadd_s16(vget_low_s16(q1), vget_low_s16(q2)); + d13 = vqsub_s16(vget_low_s16(q1), vget_low_s16(q2)); + + q2 = vcombine_s16(vget_high_s16(q1), vget_high_s16(q2)); + + q3 = vqdmulhq_n_s16(q2, sinpi8sqrt2); + q4 = vqdmulhq_n_s16(q2, cospi8sqrt2minus1); + + q4 = vshrq_n_s16(q4, 1); + + q4 = vqaddq_s16(q4, q2); + + d10 = vqsub_s16(vget_low_s16(q3), vget_high_s16(q4)); + d11 = vqadd_s16(vget_high_s16(q3), vget_low_s16(q4)); + + d2 = vqadd_s16(d12, d11); + d3 = vqadd_s16(d13, d10); + d4 = vqsub_s16(d13, d10); + d5 = vqsub_s16(d12, d11); + + d2tmp0 = vtrn_s32(vreinterpret_s32_s16(d2), vreinterpret_s32_s16(d4)); + d2tmp1 = vtrn_s32(vreinterpret_s32_s16(d3), vreinterpret_s32_s16(d5)); + d2tmp2 = vtrn_s16(vreinterpret_s16_s32(d2tmp0.val[0]), + vreinterpret_s16_s32(d2tmp1.val[0])); + d2tmp3 = vtrn_s16(vreinterpret_s16_s32(d2tmp0.val[1]), + vreinterpret_s16_s32(d2tmp1.val[1])); + + // loop 2 + q2 = vcombine_s16(d2tmp2.val[1], d2tmp3.val[1]); + + q3 = vqdmulhq_n_s16(q2, sinpi8sqrt2); + q4 = vqdmulhq_n_s16(q2, cospi8sqrt2minus1); + + d12 = vqadd_s16(d2tmp2.val[0], d2tmp3.val[0]); + d13 = vqsub_s16(d2tmp2.val[0], d2tmp3.val[0]); + + q4 = vshrq_n_s16(q4, 1); + + q4 = vqaddq_s16(q4, q2); + + d10 = vqsub_s16(vget_low_s16(q3), vget_high_s16(q4)); + d11 = vqadd_s16(vget_high_s16(q3), vget_low_s16(q4)); + + d2 = vqadd_s16(d12, d11); + d3 = vqadd_s16(d13, d10); + d4 = vqsub_s16(d13, d10); + d5 = vqsub_s16(d12, d11); + + d2 = vrshr_n_s16(d2, 3); + d3 = vrshr_n_s16(d3, 3); + d4 = vrshr_n_s16(d4, 3); + d5 = vrshr_n_s16(d5, 3); + + d2tmp0 = vtrn_s32(vreinterpret_s32_s16(d2), vreinterpret_s32_s16(d4)); + d2tmp1 = vtrn_s32(vreinterpret_s32_s16(d3), vreinterpret_s32_s16(d5)); + d2tmp2 = vtrn_s16(vreinterpret_s16_s32(d2tmp0.val[0]), + vreinterpret_s16_s32(d2tmp1.val[0])); + d2tmp3 = vtrn_s16(vreinterpret_s16_s32(d2tmp0.val[1]), + vreinterpret_s16_s32(d2tmp1.val[1])); + + q1 = vcombine_s16(d2tmp2.val[0], d2tmp2.val[1]); + q2 = vcombine_s16(d2tmp3.val[0], d2tmp3.val[1]); + + q1 = vreinterpretq_s16_u16( + vaddw_u8(vreinterpretq_u16_s16(q1), vreinterpret_u8_s32(d14))); + q2 = vreinterpretq_s16_u16( + vaddw_u8(vreinterpretq_u16_s16(q2), vreinterpret_u8_s32(d15))); + + d14 = vreinterpret_s32_u8(vqmovun_s16(q1)); + d15 = vreinterpret_s32_u8(vqmovun_s16(q2)); + + dst0 = dst; + vst1_lane_s32((int32_t *)dst0, d14, 0); + dst0 += stride; + vst1_lane_s32((int32_t *)dst0, d14, 1); + dst0 += stride; + vst1_lane_s32((int32_t *)dst0, d15, 0); + dst0 += stride; + vst1_lane_s32((int32_t *)dst0, d15, 1); + return; +} diff --git a/vp8/common/arm/neon/dequantizeb_neon.c b/vp8/common/arm/neon/dequantizeb_neon.c new file mode 100644 index 0000000..6edff3c --- /dev/null +++ b/vp8/common/arm/neon/dequantizeb_neon.c @@ -0,0 +1,25 @@ +/* + * Copyright (c) 2014 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include + +#include "vp8/common/blockd.h" + +void vp8_dequantize_b_neon(BLOCKD *d, short *DQC) { + int16x8x2_t qQ, qDQC, qDQ; + + qQ = vld2q_s16(d->qcoeff); + qDQC = vld2q_s16(DQC); + + qDQ.val[0] = vmulq_s16(qQ.val[0], qDQC.val[0]); + qDQ.val[1] = vmulq_s16(qQ.val[1], qDQC.val[1]); + + vst2q_s16(d->dqcoeff, qDQ); +} diff --git a/vp8/common/arm/neon/idct_blk_neon.c b/vp8/common/arm/neon/idct_blk_neon.c new file mode 100644 index 0000000..d61dde8 --- /dev/null +++ b/vp8/common/arm/neon/idct_blk_neon.c @@ -0,0 +1,84 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "vpx_config.h" +#include "vp8_rtcd.h" + +/* place these declarations here because we don't want to maintain them + * outside of this scope + */ +void idct_dequant_full_2x_neon(short *q, short *dq, unsigned char *dst, + int stride); +void idct_dequant_0_2x_neon(short *q, short dq, unsigned char *dst, int stride); + +void vp8_dequant_idct_add_y_block_neon(short *q, short *dq, unsigned char *dst, + int stride, char *eobs) { + int i; + + for (i = 0; i < 4; ++i) { + if (((short *)(eobs))[0]) { + if (((short *)eobs)[0] & 0xfefe) + idct_dequant_full_2x_neon(q, dq, dst, stride); + else + idct_dequant_0_2x_neon(q, dq[0], dst, stride); + } + + if (((short *)(eobs))[1]) { + if (((short *)eobs)[1] & 0xfefe) + idct_dequant_full_2x_neon(q + 32, dq, dst + 8, stride); + else + idct_dequant_0_2x_neon(q + 32, dq[0], dst + 8, stride); + } + q += 64; + dst += 4 * stride; + eobs += 4; + } +} + +void vp8_dequant_idct_add_uv_block_neon(short *q, short *dq, + unsigned char *dstu, + unsigned char *dstv, int stride, + char *eobs) { + if (((short *)(eobs))[0]) { + if (((short *)eobs)[0] & 0xfefe) + idct_dequant_full_2x_neon(q, dq, dstu, stride); + else + idct_dequant_0_2x_neon(q, dq[0], dstu, stride); + } + + q += 32; + dstu += 4 * stride; + + if (((short *)(eobs))[1]) { + if (((short *)eobs)[1] & 0xfefe) + idct_dequant_full_2x_neon(q, dq, dstu, stride); + else + idct_dequant_0_2x_neon(q, dq[0], dstu, stride); + } + + q += 32; + + if (((short *)(eobs))[2]) { + if (((short *)eobs)[2] & 0xfefe) + idct_dequant_full_2x_neon(q, dq, dstv, stride); + else + idct_dequant_0_2x_neon(q, dq[0], dstv, stride); + } + + q += 32; + dstv += 4 * stride; + + if (((short *)(eobs))[3]) { + if (((short *)eobs)[3] & 0xfefe) + idct_dequant_full_2x_neon(q, dq, dstv, stride); + else + idct_dequant_0_2x_neon(q, dq[0], dstv, stride); + } +} diff --git a/vp8/common/arm/neon/idct_dequant_0_2x_neon.c b/vp8/common/arm/neon/idct_dequant_0_2x_neon.c new file mode 100644 index 0000000..c83102a --- /dev/null +++ b/vp8/common/arm/neon/idct_dequant_0_2x_neon.c @@ -0,0 +1,59 @@ +/* + * Copyright (c) 2014 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include + +void idct_dequant_0_2x_neon(int16_t *q, int16_t dq, unsigned char *dst, + int stride) { + unsigned char *dst0; + int i, a0, a1; + int16x8x2_t q2Add; + int32x2_t d2s32 = vdup_n_s32(0), d4s32 = vdup_n_s32(0); + uint8x8_t d2u8, d4u8; + uint16x8_t q1u16, q2u16; + + a0 = ((q[0] * dq) + 4) >> 3; + a1 = ((q[16] * dq) + 4) >> 3; + q[0] = q[16] = 0; + q2Add.val[0] = vdupq_n_s16((int16_t)a0); + q2Add.val[1] = vdupq_n_s16((int16_t)a1); + + for (i = 0; i < 2; i++, dst += 4) { + dst0 = dst; + d2s32 = vld1_lane_s32((const int32_t *)dst0, d2s32, 0); + dst0 += stride; + d2s32 = vld1_lane_s32((const int32_t *)dst0, d2s32, 1); + dst0 += stride; + d4s32 = vld1_lane_s32((const int32_t *)dst0, d4s32, 0); + dst0 += stride; + d4s32 = vld1_lane_s32((const int32_t *)dst0, d4s32, 1); + + q1u16 = vaddw_u8(vreinterpretq_u16_s16(q2Add.val[i]), + vreinterpret_u8_s32(d2s32)); + q2u16 = vaddw_u8(vreinterpretq_u16_s16(q2Add.val[i]), + vreinterpret_u8_s32(d4s32)); + + d2u8 = vqmovun_s16(vreinterpretq_s16_u16(q1u16)); + d4u8 = vqmovun_s16(vreinterpretq_s16_u16(q2u16)); + + d2s32 = vreinterpret_s32_u8(d2u8); + d4s32 = vreinterpret_s32_u8(d4u8); + + dst0 = dst; + vst1_lane_s32((int32_t *)dst0, d2s32, 0); + dst0 += stride; + vst1_lane_s32((int32_t *)dst0, d2s32, 1); + dst0 += stride; + vst1_lane_s32((int32_t *)dst0, d4s32, 0); + dst0 += stride; + vst1_lane_s32((int32_t *)dst0, d4s32, 1); + } + return; +} diff --git a/vp8/common/arm/neon/idct_dequant_full_2x_neon.c b/vp8/common/arm/neon/idct_dequant_full_2x_neon.c new file mode 100644 index 0000000..f30671c --- /dev/null +++ b/vp8/common/arm/neon/idct_dequant_full_2x_neon.c @@ -0,0 +1,182 @@ +/* + * Copyright (c) 2014 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include + +static const int16_t cospi8sqrt2minus1 = 20091; +static const int16_t sinpi8sqrt2 = 17734; +// because the lowest bit in 0x8a8c is 0, we can pre-shift this + +void idct_dequant_full_2x_neon(int16_t *q, int16_t *dq, unsigned char *dst, + int stride) { + unsigned char *dst0, *dst1; + int32x2_t d28, d29, d30, d31; + int16x8_t q0, q1, q2, q3, q4, q5, q6, q7, q8, q9, q10, q11; + int16x8_t qEmpty = vdupq_n_s16(0); + int32x4x2_t q2tmp0, q2tmp1; + int16x8x2_t q2tmp2, q2tmp3; + int16x4_t dLow0, dLow1, dHigh0, dHigh1; + + d28 = d29 = d30 = d31 = vdup_n_s32(0); + + // load dq + q0 = vld1q_s16(dq); + dq += 8; + q1 = vld1q_s16(dq); + + // load q + q2 = vld1q_s16(q); + vst1q_s16(q, qEmpty); + q += 8; + q3 = vld1q_s16(q); + vst1q_s16(q, qEmpty); + q += 8; + q4 = vld1q_s16(q); + vst1q_s16(q, qEmpty); + q += 8; + q5 = vld1q_s16(q); + vst1q_s16(q, qEmpty); + + // load src from dst + dst0 = dst; + dst1 = dst + 4; + d28 = vld1_lane_s32((const int32_t *)dst0, d28, 0); + dst0 += stride; + d28 = vld1_lane_s32((const int32_t *)dst1, d28, 1); + dst1 += stride; + d29 = vld1_lane_s32((const int32_t *)dst0, d29, 0); + dst0 += stride; + d29 = vld1_lane_s32((const int32_t *)dst1, d29, 1); + dst1 += stride; + + d30 = vld1_lane_s32((const int32_t *)dst0, d30, 0); + dst0 += stride; + d30 = vld1_lane_s32((const int32_t *)dst1, d30, 1); + dst1 += stride; + d31 = vld1_lane_s32((const int32_t *)dst0, d31, 0); + d31 = vld1_lane_s32((const int32_t *)dst1, d31, 1); + + q2 = vmulq_s16(q2, q0); + q3 = vmulq_s16(q3, q1); + q4 = vmulq_s16(q4, q0); + q5 = vmulq_s16(q5, q1); + + // vswp + dLow0 = vget_low_s16(q2); + dHigh0 = vget_high_s16(q2); + dLow1 = vget_low_s16(q4); + dHigh1 = vget_high_s16(q4); + q2 = vcombine_s16(dLow0, dLow1); + q4 = vcombine_s16(dHigh0, dHigh1); + + dLow0 = vget_low_s16(q3); + dHigh0 = vget_high_s16(q3); + dLow1 = vget_low_s16(q5); + dHigh1 = vget_high_s16(q5); + q3 = vcombine_s16(dLow0, dLow1); + q5 = vcombine_s16(dHigh0, dHigh1); + + q6 = vqdmulhq_n_s16(q4, sinpi8sqrt2); + q7 = vqdmulhq_n_s16(q5, sinpi8sqrt2); + q8 = vqdmulhq_n_s16(q4, cospi8sqrt2minus1); + q9 = vqdmulhq_n_s16(q5, cospi8sqrt2minus1); + + q10 = vqaddq_s16(q2, q3); + q11 = vqsubq_s16(q2, q3); + + q8 = vshrq_n_s16(q8, 1); + q9 = vshrq_n_s16(q9, 1); + + q4 = vqaddq_s16(q4, q8); + q5 = vqaddq_s16(q5, q9); + + q2 = vqsubq_s16(q6, q5); + q3 = vqaddq_s16(q7, q4); + + q4 = vqaddq_s16(q10, q3); + q5 = vqaddq_s16(q11, q2); + q6 = vqsubq_s16(q11, q2); + q7 = vqsubq_s16(q10, q3); + + q2tmp0 = vtrnq_s32(vreinterpretq_s32_s16(q4), vreinterpretq_s32_s16(q6)); + q2tmp1 = vtrnq_s32(vreinterpretq_s32_s16(q5), vreinterpretq_s32_s16(q7)); + q2tmp2 = vtrnq_s16(vreinterpretq_s16_s32(q2tmp0.val[0]), + vreinterpretq_s16_s32(q2tmp1.val[0])); + q2tmp3 = vtrnq_s16(vreinterpretq_s16_s32(q2tmp0.val[1]), + vreinterpretq_s16_s32(q2tmp1.val[1])); + + // loop 2 + q8 = vqdmulhq_n_s16(q2tmp2.val[1], sinpi8sqrt2); + q9 = vqdmulhq_n_s16(q2tmp3.val[1], sinpi8sqrt2); + q10 = vqdmulhq_n_s16(q2tmp2.val[1], cospi8sqrt2minus1); + q11 = vqdmulhq_n_s16(q2tmp3.val[1], cospi8sqrt2minus1); + + q2 = vqaddq_s16(q2tmp2.val[0], q2tmp3.val[0]); + q3 = vqsubq_s16(q2tmp2.val[0], q2tmp3.val[0]); + + q10 = vshrq_n_s16(q10, 1); + q11 = vshrq_n_s16(q11, 1); + + q10 = vqaddq_s16(q2tmp2.val[1], q10); + q11 = vqaddq_s16(q2tmp3.val[1], q11); + + q8 = vqsubq_s16(q8, q11); + q9 = vqaddq_s16(q9, q10); + + q4 = vqaddq_s16(q2, q9); + q5 = vqaddq_s16(q3, q8); + q6 = vqsubq_s16(q3, q8); + q7 = vqsubq_s16(q2, q9); + + q4 = vrshrq_n_s16(q4, 3); + q5 = vrshrq_n_s16(q5, 3); + q6 = vrshrq_n_s16(q6, 3); + q7 = vrshrq_n_s16(q7, 3); + + q2tmp0 = vtrnq_s32(vreinterpretq_s32_s16(q4), vreinterpretq_s32_s16(q6)); + q2tmp1 = vtrnq_s32(vreinterpretq_s32_s16(q5), vreinterpretq_s32_s16(q7)); + q2tmp2 = vtrnq_s16(vreinterpretq_s16_s32(q2tmp0.val[0]), + vreinterpretq_s16_s32(q2tmp1.val[0])); + q2tmp3 = vtrnq_s16(vreinterpretq_s16_s32(q2tmp0.val[1]), + vreinterpretq_s16_s32(q2tmp1.val[1])); + + q4 = vreinterpretq_s16_u16( + vaddw_u8(vreinterpretq_u16_s16(q2tmp2.val[0]), vreinterpret_u8_s32(d28))); + q5 = vreinterpretq_s16_u16( + vaddw_u8(vreinterpretq_u16_s16(q2tmp2.val[1]), vreinterpret_u8_s32(d29))); + q6 = vreinterpretq_s16_u16( + vaddw_u8(vreinterpretq_u16_s16(q2tmp3.val[0]), vreinterpret_u8_s32(d30))); + q7 = vreinterpretq_s16_u16( + vaddw_u8(vreinterpretq_u16_s16(q2tmp3.val[1]), vreinterpret_u8_s32(d31))); + + d28 = vreinterpret_s32_u8(vqmovun_s16(q4)); + d29 = vreinterpret_s32_u8(vqmovun_s16(q5)); + d30 = vreinterpret_s32_u8(vqmovun_s16(q6)); + d31 = vreinterpret_s32_u8(vqmovun_s16(q7)); + + dst0 = dst; + dst1 = dst + 4; + vst1_lane_s32((int32_t *)dst0, d28, 0); + dst0 += stride; + vst1_lane_s32((int32_t *)dst1, d28, 1); + dst1 += stride; + vst1_lane_s32((int32_t *)dst0, d29, 0); + dst0 += stride; + vst1_lane_s32((int32_t *)dst1, d29, 1); + dst1 += stride; + + vst1_lane_s32((int32_t *)dst0, d30, 0); + dst0 += stride; + vst1_lane_s32((int32_t *)dst1, d30, 1); + dst1 += stride; + vst1_lane_s32((int32_t *)dst0, d31, 0); + vst1_lane_s32((int32_t *)dst1, d31, 1); + return; +} diff --git a/vp8/common/arm/neon/iwalsh_neon.c b/vp8/common/arm/neon/iwalsh_neon.c new file mode 100644 index 0000000..6c4bcc1 --- /dev/null +++ b/vp8/common/arm/neon/iwalsh_neon.c @@ -0,0 +1,100 @@ +/* + * Copyright (c) 2014 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include + +void vp8_short_inv_walsh4x4_neon(int16_t *input, int16_t *mb_dqcoeff) { + int16x8_t q0s16, q1s16, q2s16, q3s16; + int16x4_t d4s16, d5s16, d6s16, d7s16; + int16x4x2_t v2tmp0, v2tmp1; + int32x2x2_t v2tmp2, v2tmp3; + int16x8_t qAdd3; + + q0s16 = vld1q_s16(input); + q1s16 = vld1q_s16(input + 8); + + // 1st for loop + d4s16 = vadd_s16(vget_low_s16(q0s16), vget_high_s16(q1s16)); + d6s16 = vadd_s16(vget_high_s16(q0s16), vget_low_s16(q1s16)); + d5s16 = vsub_s16(vget_low_s16(q0s16), vget_high_s16(q1s16)); + d7s16 = vsub_s16(vget_high_s16(q0s16), vget_low_s16(q1s16)); + + q2s16 = vcombine_s16(d4s16, d5s16); + q3s16 = vcombine_s16(d6s16, d7s16); + + q0s16 = vaddq_s16(q2s16, q3s16); + q1s16 = vsubq_s16(q2s16, q3s16); + + v2tmp2 = vtrn_s32(vreinterpret_s32_s16(vget_low_s16(q0s16)), + vreinterpret_s32_s16(vget_low_s16(q1s16))); + v2tmp3 = vtrn_s32(vreinterpret_s32_s16(vget_high_s16(q0s16)), + vreinterpret_s32_s16(vget_high_s16(q1s16))); + v2tmp0 = vtrn_s16(vreinterpret_s16_s32(v2tmp2.val[0]), + vreinterpret_s16_s32(v2tmp3.val[0])); + v2tmp1 = vtrn_s16(vreinterpret_s16_s32(v2tmp2.val[1]), + vreinterpret_s16_s32(v2tmp3.val[1])); + + // 2nd for loop + d4s16 = vadd_s16(v2tmp0.val[0], v2tmp1.val[1]); + d6s16 = vadd_s16(v2tmp0.val[1], v2tmp1.val[0]); + d5s16 = vsub_s16(v2tmp0.val[0], v2tmp1.val[1]); + d7s16 = vsub_s16(v2tmp0.val[1], v2tmp1.val[0]); + q2s16 = vcombine_s16(d4s16, d5s16); + q3s16 = vcombine_s16(d6s16, d7s16); + + qAdd3 = vdupq_n_s16(3); + + q0s16 = vaddq_s16(q2s16, q3s16); + q1s16 = vsubq_s16(q2s16, q3s16); + + q0s16 = vaddq_s16(q0s16, qAdd3); + q1s16 = vaddq_s16(q1s16, qAdd3); + + q0s16 = vshrq_n_s16(q0s16, 3); + q1s16 = vshrq_n_s16(q1s16, 3); + + // store + vst1_lane_s16(mb_dqcoeff, vget_low_s16(q0s16), 0); + mb_dqcoeff += 16; + vst1_lane_s16(mb_dqcoeff, vget_high_s16(q0s16), 0); + mb_dqcoeff += 16; + vst1_lane_s16(mb_dqcoeff, vget_low_s16(q1s16), 0); + mb_dqcoeff += 16; + vst1_lane_s16(mb_dqcoeff, vget_high_s16(q1s16), 0); + mb_dqcoeff += 16; + + vst1_lane_s16(mb_dqcoeff, vget_low_s16(q0s16), 1); + mb_dqcoeff += 16; + vst1_lane_s16(mb_dqcoeff, vget_high_s16(q0s16), 1); + mb_dqcoeff += 16; + vst1_lane_s16(mb_dqcoeff, vget_low_s16(q1s16), 1); + mb_dqcoeff += 16; + vst1_lane_s16(mb_dqcoeff, vget_high_s16(q1s16), 1); + mb_dqcoeff += 16; + + vst1_lane_s16(mb_dqcoeff, vget_low_s16(q0s16), 2); + mb_dqcoeff += 16; + vst1_lane_s16(mb_dqcoeff, vget_high_s16(q0s16), 2); + mb_dqcoeff += 16; + vst1_lane_s16(mb_dqcoeff, vget_low_s16(q1s16), 2); + mb_dqcoeff += 16; + vst1_lane_s16(mb_dqcoeff, vget_high_s16(q1s16), 2); + mb_dqcoeff += 16; + + vst1_lane_s16(mb_dqcoeff, vget_low_s16(q0s16), 3); + mb_dqcoeff += 16; + vst1_lane_s16(mb_dqcoeff, vget_high_s16(q0s16), 3); + mb_dqcoeff += 16; + vst1_lane_s16(mb_dqcoeff, vget_low_s16(q1s16), 3); + mb_dqcoeff += 16; + vst1_lane_s16(mb_dqcoeff, vget_high_s16(q1s16), 3); + mb_dqcoeff += 16; + return; +} diff --git a/vp8/common/arm/neon/loopfiltersimplehorizontaledge_neon.c b/vp8/common/arm/neon/loopfiltersimplehorizontaledge_neon.c new file mode 100644 index 0000000..a168219 --- /dev/null +++ b/vp8/common/arm/neon/loopfiltersimplehorizontaledge_neon.c @@ -0,0 +1,104 @@ +/* + * Copyright (c) 2014 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include "./vpx_config.h" + +static INLINE void vp8_loop_filter_simple_horizontal_edge_neon( + unsigned char *s, int p, const unsigned char *blimit) { + uint8_t *sp; + uint8x16_t qblimit, q0u8; + uint8x16_t q5u8, q6u8, q7u8, q8u8, q9u8, q10u8, q14u8, q15u8; + int16x8_t q2s16, q3s16, q13s16; + int8x8_t d8s8, d9s8; + int8x16_t q2s8, q3s8, q4s8, q10s8, q11s8, q14s8; + + qblimit = vdupq_n_u8(*blimit); + + sp = s - (p << 1); + q5u8 = vld1q_u8(sp); + sp += p; + q6u8 = vld1q_u8(sp); + sp += p; + q7u8 = vld1q_u8(sp); + sp += p; + q8u8 = vld1q_u8(sp); + + q15u8 = vabdq_u8(q6u8, q7u8); + q14u8 = vabdq_u8(q5u8, q8u8); + + q15u8 = vqaddq_u8(q15u8, q15u8); + q14u8 = vshrq_n_u8(q14u8, 1); + q0u8 = vdupq_n_u8(0x80); + q13s16 = vdupq_n_s16(3); + q15u8 = vqaddq_u8(q15u8, q14u8); + + q5u8 = veorq_u8(q5u8, q0u8); + q6u8 = veorq_u8(q6u8, q0u8); + q7u8 = veorq_u8(q7u8, q0u8); + q8u8 = veorq_u8(q8u8, q0u8); + + q15u8 = vcgeq_u8(qblimit, q15u8); + + q2s16 = vsubl_s8(vget_low_s8(vreinterpretq_s8_u8(q7u8)), + vget_low_s8(vreinterpretq_s8_u8(q6u8))); + q3s16 = vsubl_s8(vget_high_s8(vreinterpretq_s8_u8(q7u8)), + vget_high_s8(vreinterpretq_s8_u8(q6u8))); + + q4s8 = vqsubq_s8(vreinterpretq_s8_u8(q5u8), vreinterpretq_s8_u8(q8u8)); + + q2s16 = vmulq_s16(q2s16, q13s16); + q3s16 = vmulq_s16(q3s16, q13s16); + + q10u8 = vdupq_n_u8(3); + q9u8 = vdupq_n_u8(4); + + q2s16 = vaddw_s8(q2s16, vget_low_s8(q4s8)); + q3s16 = vaddw_s8(q3s16, vget_high_s8(q4s8)); + + d8s8 = vqmovn_s16(q2s16); + d9s8 = vqmovn_s16(q3s16); + q4s8 = vcombine_s8(d8s8, d9s8); + + q14s8 = vandq_s8(q4s8, vreinterpretq_s8_u8(q15u8)); + + q2s8 = vqaddq_s8(q14s8, vreinterpretq_s8_u8(q10u8)); + q3s8 = vqaddq_s8(q14s8, vreinterpretq_s8_u8(q9u8)); + q2s8 = vshrq_n_s8(q2s8, 3); + q3s8 = vshrq_n_s8(q3s8, 3); + + q11s8 = vqaddq_s8(vreinterpretq_s8_u8(q6u8), q2s8); + q10s8 = vqsubq_s8(vreinterpretq_s8_u8(q7u8), q3s8); + + q6u8 = veorq_u8(vreinterpretq_u8_s8(q11s8), q0u8); + q7u8 = veorq_u8(vreinterpretq_u8_s8(q10s8), q0u8); + + vst1q_u8(s, q7u8); + s -= p; + vst1q_u8(s, q6u8); + return; +} + +void vp8_loop_filter_bhs_neon(unsigned char *y_ptr, int y_stride, + const unsigned char *blimit) { + y_ptr += y_stride * 4; + vp8_loop_filter_simple_horizontal_edge_neon(y_ptr, y_stride, blimit); + y_ptr += y_stride * 4; + vp8_loop_filter_simple_horizontal_edge_neon(y_ptr, y_stride, blimit); + y_ptr += y_stride * 4; + vp8_loop_filter_simple_horizontal_edge_neon(y_ptr, y_stride, blimit); + return; +} + +void vp8_loop_filter_mbhs_neon(unsigned char *y_ptr, int y_stride, + const unsigned char *blimit) { + vp8_loop_filter_simple_horizontal_edge_neon(y_ptr, y_stride, blimit); + return; +} diff --git a/vp8/common/arm/neon/loopfiltersimpleverticaledge_neon.c b/vp8/common/arm/neon/loopfiltersimpleverticaledge_neon.c new file mode 100644 index 0000000..80a222d --- /dev/null +++ b/vp8/common/arm/neon/loopfiltersimpleverticaledge_neon.c @@ -0,0 +1,272 @@ +/* + * Copyright (c) 2014 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include "./vpx_config.h" +#include "vpx_ports/arm.h" + +#ifdef VPX_INCOMPATIBLE_GCC +static INLINE void write_2x4(unsigned char *dst, int pitch, + const uint8x8x2_t result) { + /* + * uint8x8x2_t result + 00 01 02 03 | 04 05 06 07 + 10 11 12 13 | 14 15 16 17 + --- + * after vtrn_u8 + 00 10 02 12 | 04 14 06 16 + 01 11 03 13 | 05 15 07 17 + */ + const uint8x8x2_t r01_u8 = vtrn_u8(result.val[0], result.val[1]); + const uint16x4_t x_0_4 = vreinterpret_u16_u8(r01_u8.val[0]); + const uint16x4_t x_1_5 = vreinterpret_u16_u8(r01_u8.val[1]); + vst1_lane_u16((uint16_t *)dst, x_0_4, 0); + dst += pitch; + vst1_lane_u16((uint16_t *)dst, x_1_5, 0); + dst += pitch; + vst1_lane_u16((uint16_t *)dst, x_0_4, 1); + dst += pitch; + vst1_lane_u16((uint16_t *)dst, x_1_5, 1); + dst += pitch; + vst1_lane_u16((uint16_t *)dst, x_0_4, 2); + dst += pitch; + vst1_lane_u16((uint16_t *)dst, x_1_5, 2); + dst += pitch; + vst1_lane_u16((uint16_t *)dst, x_0_4, 3); + dst += pitch; + vst1_lane_u16((uint16_t *)dst, x_1_5, 3); +} + +static INLINE void write_2x8(unsigned char *dst, int pitch, + const uint8x8x2_t result, + const uint8x8x2_t result2) { + write_2x4(dst, pitch, result); + dst += pitch * 8; + write_2x4(dst, pitch, result2); +} +#else +static INLINE void write_2x8(unsigned char *dst, int pitch, + const uint8x8x2_t result, + const uint8x8x2_t result2) { + vst2_lane_u8(dst, result, 0); + dst += pitch; + vst2_lane_u8(dst, result, 1); + dst += pitch; + vst2_lane_u8(dst, result, 2); + dst += pitch; + vst2_lane_u8(dst, result, 3); + dst += pitch; + vst2_lane_u8(dst, result, 4); + dst += pitch; + vst2_lane_u8(dst, result, 5); + dst += pitch; + vst2_lane_u8(dst, result, 6); + dst += pitch; + vst2_lane_u8(dst, result, 7); + dst += pitch; + + vst2_lane_u8(dst, result2, 0); + dst += pitch; + vst2_lane_u8(dst, result2, 1); + dst += pitch; + vst2_lane_u8(dst, result2, 2); + dst += pitch; + vst2_lane_u8(dst, result2, 3); + dst += pitch; + vst2_lane_u8(dst, result2, 4); + dst += pitch; + vst2_lane_u8(dst, result2, 5); + dst += pitch; + vst2_lane_u8(dst, result2, 6); + dst += pitch; + vst2_lane_u8(dst, result2, 7); +} +#endif // VPX_INCOMPATIBLE_GCC + +#ifdef VPX_INCOMPATIBLE_GCC +static INLINE uint8x8x4_t read_4x8(unsigned char *src, int pitch) { + uint8x8x4_t x; + const uint8x8_t a = vld1_u8(src); + const uint8x8_t b = vld1_u8(src + pitch * 1); + const uint8x8_t c = vld1_u8(src + pitch * 2); + const uint8x8_t d = vld1_u8(src + pitch * 3); + const uint8x8_t e = vld1_u8(src + pitch * 4); + const uint8x8_t f = vld1_u8(src + pitch * 5); + const uint8x8_t g = vld1_u8(src + pitch * 6); + const uint8x8_t h = vld1_u8(src + pitch * 7); + const uint32x2x2_t r04_u32 = + vtrn_u32(vreinterpret_u32_u8(a), vreinterpret_u32_u8(e)); + const uint32x2x2_t r15_u32 = + vtrn_u32(vreinterpret_u32_u8(b), vreinterpret_u32_u8(f)); + const uint32x2x2_t r26_u32 = + vtrn_u32(vreinterpret_u32_u8(c), vreinterpret_u32_u8(g)); + const uint32x2x2_t r37_u32 = + vtrn_u32(vreinterpret_u32_u8(d), vreinterpret_u32_u8(h)); + const uint16x4x2_t r02_u16 = vtrn_u16(vreinterpret_u16_u32(r04_u32.val[0]), + vreinterpret_u16_u32(r26_u32.val[0])); + const uint16x4x2_t r13_u16 = vtrn_u16(vreinterpret_u16_u32(r15_u32.val[0]), + vreinterpret_u16_u32(r37_u32.val[0])); + const uint8x8x2_t r01_u8 = vtrn_u8(vreinterpret_u8_u16(r02_u16.val[0]), + vreinterpret_u8_u16(r13_u16.val[0])); + const uint8x8x2_t r23_u8 = vtrn_u8(vreinterpret_u8_u16(r02_u16.val[1]), + vreinterpret_u8_u16(r13_u16.val[1])); + /* + * after vtrn_u32 + 00 01 02 03 | 40 41 42 43 + 10 11 12 13 | 50 51 52 53 + 20 21 22 23 | 60 61 62 63 + 30 31 32 33 | 70 71 72 73 + --- + * after vtrn_u16 + 00 01 20 21 | 40 41 60 61 + 02 03 22 23 | 42 43 62 63 + 10 11 30 31 | 50 51 70 71 + 12 13 32 33 | 52 52 72 73 + + 00 01 20 21 | 40 41 60 61 + 10 11 30 31 | 50 51 70 71 + 02 03 22 23 | 42 43 62 63 + 12 13 32 33 | 52 52 72 73 + --- + * after vtrn_u8 + 00 10 20 30 | 40 50 60 70 + 01 11 21 31 | 41 51 61 71 + 02 12 22 32 | 42 52 62 72 + 03 13 23 33 | 43 53 63 73 + */ + x.val[0] = r01_u8.val[0]; + x.val[1] = r01_u8.val[1]; + x.val[2] = r23_u8.val[0]; + x.val[3] = r23_u8.val[1]; + + return x; +} +#else +static INLINE uint8x8x4_t read_4x8(unsigned char *src, int pitch) { + uint8x8x4_t x; + x.val[0] = x.val[1] = x.val[2] = x.val[3] = vdup_n_u8(0); + x = vld4_lane_u8(src, x, 0); + src += pitch; + x = vld4_lane_u8(src, x, 1); + src += pitch; + x = vld4_lane_u8(src, x, 2); + src += pitch; + x = vld4_lane_u8(src, x, 3); + src += pitch; + x = vld4_lane_u8(src, x, 4); + src += pitch; + x = vld4_lane_u8(src, x, 5); + src += pitch; + x = vld4_lane_u8(src, x, 6); + src += pitch; + x = vld4_lane_u8(src, x, 7); + return x; +} +#endif // VPX_INCOMPATIBLE_GCC + +static INLINE void vp8_loop_filter_simple_vertical_edge_neon( + unsigned char *s, int p, const unsigned char *blimit) { + unsigned char *src1; + uint8x16_t qblimit, q0u8; + uint8x16_t q3u8, q4u8, q5u8, q6u8, q7u8, q11u8, q12u8, q14u8, q15u8; + int16x8_t q2s16, q13s16, q11s16; + int8x8_t d28s8, d29s8; + int8x16_t q2s8, q3s8, q10s8, q11s8, q14s8; + uint8x8x4_t d0u8x4; // d6, d7, d8, d9 + uint8x8x4_t d1u8x4; // d10, d11, d12, d13 + uint8x8x2_t d2u8x2; // d12, d13 + uint8x8x2_t d3u8x2; // d14, d15 + + qblimit = vdupq_n_u8(*blimit); + + src1 = s - 2; + d0u8x4 = read_4x8(src1, p); + src1 += p * 8; + d1u8x4 = read_4x8(src1, p); + + q3u8 = vcombine_u8(d0u8x4.val[0], d1u8x4.val[0]); // d6 d10 + q4u8 = vcombine_u8(d0u8x4.val[2], d1u8x4.val[2]); // d8 d12 + q5u8 = vcombine_u8(d0u8x4.val[1], d1u8x4.val[1]); // d7 d11 + q6u8 = vcombine_u8(d0u8x4.val[3], d1u8x4.val[3]); // d9 d13 + + q15u8 = vabdq_u8(q5u8, q4u8); + q14u8 = vabdq_u8(q3u8, q6u8); + + q15u8 = vqaddq_u8(q15u8, q15u8); + q14u8 = vshrq_n_u8(q14u8, 1); + q0u8 = vdupq_n_u8(0x80); + q11s16 = vdupq_n_s16(3); + q15u8 = vqaddq_u8(q15u8, q14u8); + + q3u8 = veorq_u8(q3u8, q0u8); + q4u8 = veorq_u8(q4u8, q0u8); + q5u8 = veorq_u8(q5u8, q0u8); + q6u8 = veorq_u8(q6u8, q0u8); + + q15u8 = vcgeq_u8(qblimit, q15u8); + + q2s16 = vsubl_s8(vget_low_s8(vreinterpretq_s8_u8(q4u8)), + vget_low_s8(vreinterpretq_s8_u8(q5u8))); + q13s16 = vsubl_s8(vget_high_s8(vreinterpretq_s8_u8(q4u8)), + vget_high_s8(vreinterpretq_s8_u8(q5u8))); + + q14s8 = vqsubq_s8(vreinterpretq_s8_u8(q3u8), vreinterpretq_s8_u8(q6u8)); + + q2s16 = vmulq_s16(q2s16, q11s16); + q13s16 = vmulq_s16(q13s16, q11s16); + + q11u8 = vdupq_n_u8(3); + q12u8 = vdupq_n_u8(4); + + q2s16 = vaddw_s8(q2s16, vget_low_s8(q14s8)); + q13s16 = vaddw_s8(q13s16, vget_high_s8(q14s8)); + + d28s8 = vqmovn_s16(q2s16); + d29s8 = vqmovn_s16(q13s16); + q14s8 = vcombine_s8(d28s8, d29s8); + + q14s8 = vandq_s8(q14s8, vreinterpretq_s8_u8(q15u8)); + + q2s8 = vqaddq_s8(q14s8, vreinterpretq_s8_u8(q11u8)); + q3s8 = vqaddq_s8(q14s8, vreinterpretq_s8_u8(q12u8)); + q2s8 = vshrq_n_s8(q2s8, 3); + q14s8 = vshrq_n_s8(q3s8, 3); + + q11s8 = vqaddq_s8(vreinterpretq_s8_u8(q5u8), q2s8); + q10s8 = vqsubq_s8(vreinterpretq_s8_u8(q4u8), q14s8); + + q6u8 = veorq_u8(vreinterpretq_u8_s8(q11s8), q0u8); + q7u8 = veorq_u8(vreinterpretq_u8_s8(q10s8), q0u8); + + d2u8x2.val[0] = vget_low_u8(q6u8); // d12 + d2u8x2.val[1] = vget_low_u8(q7u8); // d14 + d3u8x2.val[0] = vget_high_u8(q6u8); // d13 + d3u8x2.val[1] = vget_high_u8(q7u8); // d15 + + src1 = s - 1; + write_2x8(src1, p, d2u8x2, d3u8x2); +} + +void vp8_loop_filter_bvs_neon(unsigned char *y_ptr, int y_stride, + const unsigned char *blimit) { + y_ptr += 4; + vp8_loop_filter_simple_vertical_edge_neon(y_ptr, y_stride, blimit); + y_ptr += 4; + vp8_loop_filter_simple_vertical_edge_neon(y_ptr, y_stride, blimit); + y_ptr += 4; + vp8_loop_filter_simple_vertical_edge_neon(y_ptr, y_stride, blimit); + return; +} + +void vp8_loop_filter_mbvs_neon(unsigned char *y_ptr, int y_stride, + const unsigned char *blimit) { + vp8_loop_filter_simple_vertical_edge_neon(y_ptr, y_stride, blimit); + return; +} diff --git a/vp8/common/arm/neon/mbloopfilter_neon.c b/vp8/common/arm/neon/mbloopfilter_neon.c new file mode 100644 index 0000000..65eec30 --- /dev/null +++ b/vp8/common/arm/neon/mbloopfilter_neon.c @@ -0,0 +1,611 @@ +/* + * Copyright (c) 2014 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include "./vpx_config.h" + +static INLINE void vp8_mbloop_filter_neon(uint8x16_t qblimit, // mblimit + uint8x16_t qlimit, // limit + uint8x16_t qthresh, // thresh + uint8x16_t q3, // p2 + uint8x16_t q4, // p2 + uint8x16_t q5, // p1 + uint8x16_t q6, // p0 + uint8x16_t q7, // q0 + uint8x16_t q8, // q1 + uint8x16_t q9, // q2 + uint8x16_t q10, // q3 + uint8x16_t *q4r, // p1 + uint8x16_t *q5r, // p1 + uint8x16_t *q6r, // p0 + uint8x16_t *q7r, // q0 + uint8x16_t *q8r, // q1 + uint8x16_t *q9r) { // q1 + uint8x16_t q0u8, q1u8, q11u8, q12u8, q13u8, q14u8, q15u8; + int16x8_t q0s16, q2s16, q11s16, q12s16, q13s16, q14s16, q15s16; + int8x16_t q1s8, q6s8, q7s8, q2s8, q11s8, q13s8; + uint16x8_t q0u16, q11u16, q12u16, q13u16, q14u16, q15u16; + int8x16_t q0s8, q12s8, q14s8, q15s8; + int8x8_t d0, d1, d2, d3, d4, d5, d24, d25, d28, d29; + + q11u8 = vabdq_u8(q3, q4); + q12u8 = vabdq_u8(q4, q5); + q13u8 = vabdq_u8(q5, q6); + q14u8 = vabdq_u8(q8, q7); + q1u8 = vabdq_u8(q9, q8); + q0u8 = vabdq_u8(q10, q9); + + q11u8 = vmaxq_u8(q11u8, q12u8); + q12u8 = vmaxq_u8(q13u8, q14u8); + q1u8 = vmaxq_u8(q1u8, q0u8); + q15u8 = vmaxq_u8(q11u8, q12u8); + + q12u8 = vabdq_u8(q6, q7); + + // vp8_hevmask + q13u8 = vcgtq_u8(q13u8, qthresh); + q14u8 = vcgtq_u8(q14u8, qthresh); + q15u8 = vmaxq_u8(q15u8, q1u8); + + q15u8 = vcgeq_u8(qlimit, q15u8); + + q1u8 = vabdq_u8(q5, q8); + q12u8 = vqaddq_u8(q12u8, q12u8); + + // vp8_filter() function + // convert to signed + q0u8 = vdupq_n_u8(0x80); + q9 = veorq_u8(q9, q0u8); + q8 = veorq_u8(q8, q0u8); + q7 = veorq_u8(q7, q0u8); + q6 = veorq_u8(q6, q0u8); + q5 = veorq_u8(q5, q0u8); + q4 = veorq_u8(q4, q0u8); + + q1u8 = vshrq_n_u8(q1u8, 1); + q12u8 = vqaddq_u8(q12u8, q1u8); + + q14u8 = vorrq_u8(q13u8, q14u8); + q12u8 = vcgeq_u8(qblimit, q12u8); + + q2s16 = vsubl_s8(vget_low_s8(vreinterpretq_s8_u8(q7)), + vget_low_s8(vreinterpretq_s8_u8(q6))); + q13s16 = vsubl_s8(vget_high_s8(vreinterpretq_s8_u8(q7)), + vget_high_s8(vreinterpretq_s8_u8(q6))); + + q1s8 = vqsubq_s8(vreinterpretq_s8_u8(q5), vreinterpretq_s8_u8(q8)); + + q11s16 = vdupq_n_s16(3); + q2s16 = vmulq_s16(q2s16, q11s16); + q13s16 = vmulq_s16(q13s16, q11s16); + + q15u8 = vandq_u8(q15u8, q12u8); + + q2s16 = vaddw_s8(q2s16, vget_low_s8(q1s8)); + q13s16 = vaddw_s8(q13s16, vget_high_s8(q1s8)); + + q12u8 = vdupq_n_u8(3); + q11u8 = vdupq_n_u8(4); + // vp8_filter = clamp(vp8_filter + 3 * ( qs0 - ps0)) + d2 = vqmovn_s16(q2s16); + d3 = vqmovn_s16(q13s16); + q1s8 = vcombine_s8(d2, d3); + q1s8 = vandq_s8(q1s8, vreinterpretq_s8_u8(q15u8)); + q13s8 = vandq_s8(q1s8, vreinterpretq_s8_u8(q14u8)); + + q2s8 = vqaddq_s8(q13s8, vreinterpretq_s8_u8(q11u8)); + q13s8 = vqaddq_s8(q13s8, vreinterpretq_s8_u8(q12u8)); + q2s8 = vshrq_n_s8(q2s8, 3); + q13s8 = vshrq_n_s8(q13s8, 3); + + q7s8 = vqsubq_s8(vreinterpretq_s8_u8(q7), q2s8); + q6s8 = vqaddq_s8(vreinterpretq_s8_u8(q6), q13s8); + + q1s8 = vbicq_s8(q1s8, vreinterpretq_s8_u8(q14u8)); + + q0u16 = q11u16 = q12u16 = q13u16 = q14u16 = q15u16 = vdupq_n_u16(63); + d5 = vdup_n_s8(9); + d4 = vdup_n_s8(18); + + q0s16 = vmlal_s8(vreinterpretq_s16_u16(q0u16), vget_low_s8(q1s8), d5); + q11s16 = vmlal_s8(vreinterpretq_s16_u16(q11u16), vget_high_s8(q1s8), d5); + d5 = vdup_n_s8(27); + q12s16 = vmlal_s8(vreinterpretq_s16_u16(q12u16), vget_low_s8(q1s8), d4); + q13s16 = vmlal_s8(vreinterpretq_s16_u16(q13u16), vget_high_s8(q1s8), d4); + q14s16 = vmlal_s8(vreinterpretq_s16_u16(q14u16), vget_low_s8(q1s8), d5); + q15s16 = vmlal_s8(vreinterpretq_s16_u16(q15u16), vget_high_s8(q1s8), d5); + + d0 = vqshrn_n_s16(q0s16, 7); + d1 = vqshrn_n_s16(q11s16, 7); + d24 = vqshrn_n_s16(q12s16, 7); + d25 = vqshrn_n_s16(q13s16, 7); + d28 = vqshrn_n_s16(q14s16, 7); + d29 = vqshrn_n_s16(q15s16, 7); + + q0s8 = vcombine_s8(d0, d1); + q12s8 = vcombine_s8(d24, d25); + q14s8 = vcombine_s8(d28, d29); + + q11s8 = vqsubq_s8(vreinterpretq_s8_u8(q9), q0s8); + q0s8 = vqaddq_s8(vreinterpretq_s8_u8(q4), q0s8); + q13s8 = vqsubq_s8(vreinterpretq_s8_u8(q8), q12s8); + q12s8 = vqaddq_s8(vreinterpretq_s8_u8(q5), q12s8); + q15s8 = vqsubq_s8((q7s8), q14s8); + q14s8 = vqaddq_s8((q6s8), q14s8); + + q1u8 = vdupq_n_u8(0x80); + *q9r = veorq_u8(vreinterpretq_u8_s8(q11s8), q1u8); + *q8r = veorq_u8(vreinterpretq_u8_s8(q13s8), q1u8); + *q7r = veorq_u8(vreinterpretq_u8_s8(q15s8), q1u8); + *q6r = veorq_u8(vreinterpretq_u8_s8(q14s8), q1u8); + *q5r = veorq_u8(vreinterpretq_u8_s8(q12s8), q1u8); + *q4r = veorq_u8(vreinterpretq_u8_s8(q0s8), q1u8); + return; +} + +void vp8_mbloop_filter_horizontal_edge_y_neon(unsigned char *src, int pitch, + unsigned char blimit, + unsigned char limit, + unsigned char thresh) { + uint8x16_t qblimit, qlimit, qthresh, q3, q4; + uint8x16_t q5, q6, q7, q8, q9, q10; + + qblimit = vdupq_n_u8(blimit); + qlimit = vdupq_n_u8(limit); + qthresh = vdupq_n_u8(thresh); + + src -= (pitch << 2); + + q3 = vld1q_u8(src); + src += pitch; + q4 = vld1q_u8(src); + src += pitch; + q5 = vld1q_u8(src); + src += pitch; + q6 = vld1q_u8(src); + src += pitch; + q7 = vld1q_u8(src); + src += pitch; + q8 = vld1q_u8(src); + src += pitch; + q9 = vld1q_u8(src); + src += pitch; + q10 = vld1q_u8(src); + + vp8_mbloop_filter_neon(qblimit, qlimit, qthresh, q3, q4, q5, q6, q7, q8, q9, + q10, &q4, &q5, &q6, &q7, &q8, &q9); + + src -= (pitch * 6); + vst1q_u8(src, q4); + src += pitch; + vst1q_u8(src, q5); + src += pitch; + vst1q_u8(src, q6); + src += pitch; + vst1q_u8(src, q7); + src += pitch; + vst1q_u8(src, q8); + src += pitch; + vst1q_u8(src, q9); + return; +} + +void vp8_mbloop_filter_horizontal_edge_uv_neon(unsigned char *u, int pitch, + unsigned char blimit, + unsigned char limit, + unsigned char thresh, + unsigned char *v) { + uint8x16_t qblimit, qlimit, qthresh, q3, q4; + uint8x16_t q5, q6, q7, q8, q9, q10; + uint8x8_t d6, d7, d8, d9, d10, d11, d12, d13, d14; + uint8x8_t d15, d16, d17, d18, d19, d20, d21; + + qblimit = vdupq_n_u8(blimit); + qlimit = vdupq_n_u8(limit); + qthresh = vdupq_n_u8(thresh); + + u -= (pitch << 2); + v -= (pitch << 2); + + d6 = vld1_u8(u); + u += pitch; + d7 = vld1_u8(v); + v += pitch; + d8 = vld1_u8(u); + u += pitch; + d9 = vld1_u8(v); + v += pitch; + d10 = vld1_u8(u); + u += pitch; + d11 = vld1_u8(v); + v += pitch; + d12 = vld1_u8(u); + u += pitch; + d13 = vld1_u8(v); + v += pitch; + d14 = vld1_u8(u); + u += pitch; + d15 = vld1_u8(v); + v += pitch; + d16 = vld1_u8(u); + u += pitch; + d17 = vld1_u8(v); + v += pitch; + d18 = vld1_u8(u); + u += pitch; + d19 = vld1_u8(v); + v += pitch; + d20 = vld1_u8(u); + d21 = vld1_u8(v); + + q3 = vcombine_u8(d6, d7); + q4 = vcombine_u8(d8, d9); + q5 = vcombine_u8(d10, d11); + q6 = vcombine_u8(d12, d13); + q7 = vcombine_u8(d14, d15); + q8 = vcombine_u8(d16, d17); + q9 = vcombine_u8(d18, d19); + q10 = vcombine_u8(d20, d21); + + vp8_mbloop_filter_neon(qblimit, qlimit, qthresh, q3, q4, q5, q6, q7, q8, q9, + q10, &q4, &q5, &q6, &q7, &q8, &q9); + + u -= (pitch * 6); + v -= (pitch * 6); + vst1_u8(u, vget_low_u8(q4)); + u += pitch; + vst1_u8(v, vget_high_u8(q4)); + v += pitch; + vst1_u8(u, vget_low_u8(q5)); + u += pitch; + vst1_u8(v, vget_high_u8(q5)); + v += pitch; + vst1_u8(u, vget_low_u8(q6)); + u += pitch; + vst1_u8(v, vget_high_u8(q6)); + v += pitch; + vst1_u8(u, vget_low_u8(q7)); + u += pitch; + vst1_u8(v, vget_high_u8(q7)); + v += pitch; + vst1_u8(u, vget_low_u8(q8)); + u += pitch; + vst1_u8(v, vget_high_u8(q8)); + v += pitch; + vst1_u8(u, vget_low_u8(q9)); + vst1_u8(v, vget_high_u8(q9)); + return; +} + +void vp8_mbloop_filter_vertical_edge_y_neon(unsigned char *src, int pitch, + unsigned char blimit, + unsigned char limit, + unsigned char thresh) { + unsigned char *s1, *s2; + uint8x16_t qblimit, qlimit, qthresh, q3, q4; + uint8x16_t q5, q6, q7, q8, q9, q10; + uint8x8_t d6, d7, d8, d9, d10, d11, d12, d13, d14; + uint8x8_t d15, d16, d17, d18, d19, d20, d21; + uint32x4x2_t q2tmp0, q2tmp1, q2tmp2, q2tmp3; + uint16x8x2_t q2tmp4, q2tmp5, q2tmp6, q2tmp7; + uint8x16x2_t q2tmp8, q2tmp9, q2tmp10, q2tmp11; + + qblimit = vdupq_n_u8(blimit); + qlimit = vdupq_n_u8(limit); + qthresh = vdupq_n_u8(thresh); + + s1 = src - 4; + s2 = s1 + 8 * pitch; + d6 = vld1_u8(s1); + s1 += pitch; + d7 = vld1_u8(s2); + s2 += pitch; + d8 = vld1_u8(s1); + s1 += pitch; + d9 = vld1_u8(s2); + s2 += pitch; + d10 = vld1_u8(s1); + s1 += pitch; + d11 = vld1_u8(s2); + s2 += pitch; + d12 = vld1_u8(s1); + s1 += pitch; + d13 = vld1_u8(s2); + s2 += pitch; + d14 = vld1_u8(s1); + s1 += pitch; + d15 = vld1_u8(s2); + s2 += pitch; + d16 = vld1_u8(s1); + s1 += pitch; + d17 = vld1_u8(s2); + s2 += pitch; + d18 = vld1_u8(s1); + s1 += pitch; + d19 = vld1_u8(s2); + s2 += pitch; + d20 = vld1_u8(s1); + d21 = vld1_u8(s2); + + q3 = vcombine_u8(d6, d7); + q4 = vcombine_u8(d8, d9); + q5 = vcombine_u8(d10, d11); + q6 = vcombine_u8(d12, d13); + q7 = vcombine_u8(d14, d15); + q8 = vcombine_u8(d16, d17); + q9 = vcombine_u8(d18, d19); + q10 = vcombine_u8(d20, d21); + + q2tmp0 = vtrnq_u32(vreinterpretq_u32_u8(q3), vreinterpretq_u32_u8(q7)); + q2tmp1 = vtrnq_u32(vreinterpretq_u32_u8(q4), vreinterpretq_u32_u8(q8)); + q2tmp2 = vtrnq_u32(vreinterpretq_u32_u8(q5), vreinterpretq_u32_u8(q9)); + q2tmp3 = vtrnq_u32(vreinterpretq_u32_u8(q6), vreinterpretq_u32_u8(q10)); + + q2tmp4 = vtrnq_u16(vreinterpretq_u16_u32(q2tmp0.val[0]), + vreinterpretq_u16_u32(q2tmp2.val[0])); + q2tmp5 = vtrnq_u16(vreinterpretq_u16_u32(q2tmp1.val[0]), + vreinterpretq_u16_u32(q2tmp3.val[0])); + q2tmp6 = vtrnq_u16(vreinterpretq_u16_u32(q2tmp0.val[1]), + vreinterpretq_u16_u32(q2tmp2.val[1])); + q2tmp7 = vtrnq_u16(vreinterpretq_u16_u32(q2tmp1.val[1]), + vreinterpretq_u16_u32(q2tmp3.val[1])); + + q2tmp8 = vtrnq_u8(vreinterpretq_u8_u16(q2tmp4.val[0]), + vreinterpretq_u8_u16(q2tmp5.val[0])); + q2tmp9 = vtrnq_u8(vreinterpretq_u8_u16(q2tmp4.val[1]), + vreinterpretq_u8_u16(q2tmp5.val[1])); + q2tmp10 = vtrnq_u8(vreinterpretq_u8_u16(q2tmp6.val[0]), + vreinterpretq_u8_u16(q2tmp7.val[0])); + q2tmp11 = vtrnq_u8(vreinterpretq_u8_u16(q2tmp6.val[1]), + vreinterpretq_u8_u16(q2tmp7.val[1])); + + q3 = q2tmp8.val[0]; + q4 = q2tmp8.val[1]; + q5 = q2tmp9.val[0]; + q6 = q2tmp9.val[1]; + q7 = q2tmp10.val[0]; + q8 = q2tmp10.val[1]; + q9 = q2tmp11.val[0]; + q10 = q2tmp11.val[1]; + + vp8_mbloop_filter_neon(qblimit, qlimit, qthresh, q3, q4, q5, q6, q7, q8, q9, + q10, &q4, &q5, &q6, &q7, &q8, &q9); + + q2tmp0 = vtrnq_u32(vreinterpretq_u32_u8(q3), vreinterpretq_u32_u8(q7)); + q2tmp1 = vtrnq_u32(vreinterpretq_u32_u8(q4), vreinterpretq_u32_u8(q8)); + q2tmp2 = vtrnq_u32(vreinterpretq_u32_u8(q5), vreinterpretq_u32_u8(q9)); + q2tmp3 = vtrnq_u32(vreinterpretq_u32_u8(q6), vreinterpretq_u32_u8(q10)); + + q2tmp4 = vtrnq_u16(vreinterpretq_u16_u32(q2tmp0.val[0]), + vreinterpretq_u16_u32(q2tmp2.val[0])); + q2tmp5 = vtrnq_u16(vreinterpretq_u16_u32(q2tmp1.val[0]), + vreinterpretq_u16_u32(q2tmp3.val[0])); + q2tmp6 = vtrnq_u16(vreinterpretq_u16_u32(q2tmp0.val[1]), + vreinterpretq_u16_u32(q2tmp2.val[1])); + q2tmp7 = vtrnq_u16(vreinterpretq_u16_u32(q2tmp1.val[1]), + vreinterpretq_u16_u32(q2tmp3.val[1])); + + q2tmp8 = vtrnq_u8(vreinterpretq_u8_u16(q2tmp4.val[0]), + vreinterpretq_u8_u16(q2tmp5.val[0])); + q2tmp9 = vtrnq_u8(vreinterpretq_u8_u16(q2tmp4.val[1]), + vreinterpretq_u8_u16(q2tmp5.val[1])); + q2tmp10 = vtrnq_u8(vreinterpretq_u8_u16(q2tmp6.val[0]), + vreinterpretq_u8_u16(q2tmp7.val[0])); + q2tmp11 = vtrnq_u8(vreinterpretq_u8_u16(q2tmp6.val[1]), + vreinterpretq_u8_u16(q2tmp7.val[1])); + + q3 = q2tmp8.val[0]; + q4 = q2tmp8.val[1]; + q5 = q2tmp9.val[0]; + q6 = q2tmp9.val[1]; + q7 = q2tmp10.val[0]; + q8 = q2tmp10.val[1]; + q9 = q2tmp11.val[0]; + q10 = q2tmp11.val[1]; + + s1 -= 7 * pitch; + s2 -= 7 * pitch; + + vst1_u8(s1, vget_low_u8(q3)); + s1 += pitch; + vst1_u8(s2, vget_high_u8(q3)); + s2 += pitch; + vst1_u8(s1, vget_low_u8(q4)); + s1 += pitch; + vst1_u8(s2, vget_high_u8(q4)); + s2 += pitch; + vst1_u8(s1, vget_low_u8(q5)); + s1 += pitch; + vst1_u8(s2, vget_high_u8(q5)); + s2 += pitch; + vst1_u8(s1, vget_low_u8(q6)); + s1 += pitch; + vst1_u8(s2, vget_high_u8(q6)); + s2 += pitch; + vst1_u8(s1, vget_low_u8(q7)); + s1 += pitch; + vst1_u8(s2, vget_high_u8(q7)); + s2 += pitch; + vst1_u8(s1, vget_low_u8(q8)); + s1 += pitch; + vst1_u8(s2, vget_high_u8(q8)); + s2 += pitch; + vst1_u8(s1, vget_low_u8(q9)); + s1 += pitch; + vst1_u8(s2, vget_high_u8(q9)); + s2 += pitch; + vst1_u8(s1, vget_low_u8(q10)); + vst1_u8(s2, vget_high_u8(q10)); + return; +} + +void vp8_mbloop_filter_vertical_edge_uv_neon(unsigned char *u, int pitch, + unsigned char blimit, + unsigned char limit, + unsigned char thresh, + unsigned char *v) { + unsigned char *us, *ud; + unsigned char *vs, *vd; + uint8x16_t qblimit, qlimit, qthresh, q3, q4; + uint8x16_t q5, q6, q7, q8, q9, q10; + uint8x8_t d6, d7, d8, d9, d10, d11, d12, d13, d14; + uint8x8_t d15, d16, d17, d18, d19, d20, d21; + uint32x4x2_t q2tmp0, q2tmp1, q2tmp2, q2tmp3; + uint16x8x2_t q2tmp4, q2tmp5, q2tmp6, q2tmp7; + uint8x16x2_t q2tmp8, q2tmp9, q2tmp10, q2tmp11; + + qblimit = vdupq_n_u8(blimit); + qlimit = vdupq_n_u8(limit); + qthresh = vdupq_n_u8(thresh); + + us = u - 4; + vs = v - 4; + d6 = vld1_u8(us); + us += pitch; + d7 = vld1_u8(vs); + vs += pitch; + d8 = vld1_u8(us); + us += pitch; + d9 = vld1_u8(vs); + vs += pitch; + d10 = vld1_u8(us); + us += pitch; + d11 = vld1_u8(vs); + vs += pitch; + d12 = vld1_u8(us); + us += pitch; + d13 = vld1_u8(vs); + vs += pitch; + d14 = vld1_u8(us); + us += pitch; + d15 = vld1_u8(vs); + vs += pitch; + d16 = vld1_u8(us); + us += pitch; + d17 = vld1_u8(vs); + vs += pitch; + d18 = vld1_u8(us); + us += pitch; + d19 = vld1_u8(vs); + vs += pitch; + d20 = vld1_u8(us); + d21 = vld1_u8(vs); + + q3 = vcombine_u8(d6, d7); + q4 = vcombine_u8(d8, d9); + q5 = vcombine_u8(d10, d11); + q6 = vcombine_u8(d12, d13); + q7 = vcombine_u8(d14, d15); + q8 = vcombine_u8(d16, d17); + q9 = vcombine_u8(d18, d19); + q10 = vcombine_u8(d20, d21); + + q2tmp0 = vtrnq_u32(vreinterpretq_u32_u8(q3), vreinterpretq_u32_u8(q7)); + q2tmp1 = vtrnq_u32(vreinterpretq_u32_u8(q4), vreinterpretq_u32_u8(q8)); + q2tmp2 = vtrnq_u32(vreinterpretq_u32_u8(q5), vreinterpretq_u32_u8(q9)); + q2tmp3 = vtrnq_u32(vreinterpretq_u32_u8(q6), vreinterpretq_u32_u8(q10)); + + q2tmp4 = vtrnq_u16(vreinterpretq_u16_u32(q2tmp0.val[0]), + vreinterpretq_u16_u32(q2tmp2.val[0])); + q2tmp5 = vtrnq_u16(vreinterpretq_u16_u32(q2tmp1.val[0]), + vreinterpretq_u16_u32(q2tmp3.val[0])); + q2tmp6 = vtrnq_u16(vreinterpretq_u16_u32(q2tmp0.val[1]), + vreinterpretq_u16_u32(q2tmp2.val[1])); + q2tmp7 = vtrnq_u16(vreinterpretq_u16_u32(q2tmp1.val[1]), + vreinterpretq_u16_u32(q2tmp3.val[1])); + + q2tmp8 = vtrnq_u8(vreinterpretq_u8_u16(q2tmp4.val[0]), + vreinterpretq_u8_u16(q2tmp5.val[0])); + q2tmp9 = vtrnq_u8(vreinterpretq_u8_u16(q2tmp4.val[1]), + vreinterpretq_u8_u16(q2tmp5.val[1])); + q2tmp10 = vtrnq_u8(vreinterpretq_u8_u16(q2tmp6.val[0]), + vreinterpretq_u8_u16(q2tmp7.val[0])); + q2tmp11 = vtrnq_u8(vreinterpretq_u8_u16(q2tmp6.val[1]), + vreinterpretq_u8_u16(q2tmp7.val[1])); + + q3 = q2tmp8.val[0]; + q4 = q2tmp8.val[1]; + q5 = q2tmp9.val[0]; + q6 = q2tmp9.val[1]; + q7 = q2tmp10.val[0]; + q8 = q2tmp10.val[1]; + q9 = q2tmp11.val[0]; + q10 = q2tmp11.val[1]; + + vp8_mbloop_filter_neon(qblimit, qlimit, qthresh, q3, q4, q5, q6, q7, q8, q9, + q10, &q4, &q5, &q6, &q7, &q8, &q9); + + q2tmp0 = vtrnq_u32(vreinterpretq_u32_u8(q3), vreinterpretq_u32_u8(q7)); + q2tmp1 = vtrnq_u32(vreinterpretq_u32_u8(q4), vreinterpretq_u32_u8(q8)); + q2tmp2 = vtrnq_u32(vreinterpretq_u32_u8(q5), vreinterpretq_u32_u8(q9)); + q2tmp3 = vtrnq_u32(vreinterpretq_u32_u8(q6), vreinterpretq_u32_u8(q10)); + + q2tmp4 = vtrnq_u16(vreinterpretq_u16_u32(q2tmp0.val[0]), + vreinterpretq_u16_u32(q2tmp2.val[0])); + q2tmp5 = vtrnq_u16(vreinterpretq_u16_u32(q2tmp1.val[0]), + vreinterpretq_u16_u32(q2tmp3.val[0])); + q2tmp6 = vtrnq_u16(vreinterpretq_u16_u32(q2tmp0.val[1]), + vreinterpretq_u16_u32(q2tmp2.val[1])); + q2tmp7 = vtrnq_u16(vreinterpretq_u16_u32(q2tmp1.val[1]), + vreinterpretq_u16_u32(q2tmp3.val[1])); + + q2tmp8 = vtrnq_u8(vreinterpretq_u8_u16(q2tmp4.val[0]), + vreinterpretq_u8_u16(q2tmp5.val[0])); + q2tmp9 = vtrnq_u8(vreinterpretq_u8_u16(q2tmp4.val[1]), + vreinterpretq_u8_u16(q2tmp5.val[1])); + q2tmp10 = vtrnq_u8(vreinterpretq_u8_u16(q2tmp6.val[0]), + vreinterpretq_u8_u16(q2tmp7.val[0])); + q2tmp11 = vtrnq_u8(vreinterpretq_u8_u16(q2tmp6.val[1]), + vreinterpretq_u8_u16(q2tmp7.val[1])); + + q3 = q2tmp8.val[0]; + q4 = q2tmp8.val[1]; + q5 = q2tmp9.val[0]; + q6 = q2tmp9.val[1]; + q7 = q2tmp10.val[0]; + q8 = q2tmp10.val[1]; + q9 = q2tmp11.val[0]; + q10 = q2tmp11.val[1]; + + ud = u - 4; + vst1_u8(ud, vget_low_u8(q3)); + ud += pitch; + vst1_u8(ud, vget_low_u8(q4)); + ud += pitch; + vst1_u8(ud, vget_low_u8(q5)); + ud += pitch; + vst1_u8(ud, vget_low_u8(q6)); + ud += pitch; + vst1_u8(ud, vget_low_u8(q7)); + ud += pitch; + vst1_u8(ud, vget_low_u8(q8)); + ud += pitch; + vst1_u8(ud, vget_low_u8(q9)); + ud += pitch; + vst1_u8(ud, vget_low_u8(q10)); + + vd = v - 4; + vst1_u8(vd, vget_high_u8(q3)); + vd += pitch; + vst1_u8(vd, vget_high_u8(q4)); + vd += pitch; + vst1_u8(vd, vget_high_u8(q5)); + vd += pitch; + vst1_u8(vd, vget_high_u8(q6)); + vd += pitch; + vst1_u8(vd, vget_high_u8(q7)); + vd += pitch; + vst1_u8(vd, vget_high_u8(q8)); + vd += pitch; + vst1_u8(vd, vget_high_u8(q9)); + vd += pitch; + vst1_u8(vd, vget_high_u8(q10)); + return; +} diff --git a/vp8/common/arm/neon/shortidct4x4llm_neon.c b/vp8/common/arm/neon/shortidct4x4llm_neon.c new file mode 100644 index 0000000..2724ca2 --- /dev/null +++ b/vp8/common/arm/neon/shortidct4x4llm_neon.c @@ -0,0 +1,121 @@ +/* + * Copyright (c) 2014 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include + +#include "./vp8_rtcd.h" + +static const int16_t cospi8sqrt2minus1 = 20091; +// 35468 exceeds INT16_MAX and gets converted to a negative number. Because of +// the way it is used in vqdmulh, where the result is doubled, it can be divided +// by 2 beforehand. This saves compensating for the negative value as well as +// shifting the result. +static const int16_t sinpi8sqrt2 = 35468 >> 1; + +void vp8_short_idct4x4llm_neon(int16_t *input, unsigned char *pred_ptr, + int pred_stride, unsigned char *dst_ptr, + int dst_stride) { + int i; + uint32x2_t d6u32 = vdup_n_u32(0); + uint8x8_t d1u8; + int16x4_t d2, d3, d4, d5, d10, d11, d12, d13; + uint16x8_t q1u16; + int16x8_t q1s16, q2s16, q3s16, q4s16; + int32x2x2_t v2tmp0, v2tmp1; + int16x4x2_t v2tmp2, v2tmp3; + + d2 = vld1_s16(input); + d3 = vld1_s16(input + 4); + d4 = vld1_s16(input + 8); + d5 = vld1_s16(input + 12); + + // 1st for loop + q1s16 = vcombine_s16(d2, d4); // Swap d3 d4 here + q2s16 = vcombine_s16(d3, d5); + + q3s16 = vqdmulhq_n_s16(q2s16, sinpi8sqrt2); + q4s16 = vqdmulhq_n_s16(q2s16, cospi8sqrt2minus1); + + d12 = vqadd_s16(vget_low_s16(q1s16), vget_high_s16(q1s16)); // a1 + d13 = vqsub_s16(vget_low_s16(q1s16), vget_high_s16(q1s16)); // b1 + + q4s16 = vshrq_n_s16(q4s16, 1); + + q4s16 = vqaddq_s16(q4s16, q2s16); + + d10 = vqsub_s16(vget_low_s16(q3s16), vget_high_s16(q4s16)); // c1 + d11 = vqadd_s16(vget_high_s16(q3s16), vget_low_s16(q4s16)); // d1 + + d2 = vqadd_s16(d12, d11); + d3 = vqadd_s16(d13, d10); + d4 = vqsub_s16(d13, d10); + d5 = vqsub_s16(d12, d11); + + v2tmp0 = vtrn_s32(vreinterpret_s32_s16(d2), vreinterpret_s32_s16(d4)); + v2tmp1 = vtrn_s32(vreinterpret_s32_s16(d3), vreinterpret_s32_s16(d5)); + v2tmp2 = vtrn_s16(vreinterpret_s16_s32(v2tmp0.val[0]), + vreinterpret_s16_s32(v2tmp1.val[0])); + v2tmp3 = vtrn_s16(vreinterpret_s16_s32(v2tmp0.val[1]), + vreinterpret_s16_s32(v2tmp1.val[1])); + + // 2nd for loop + q1s16 = vcombine_s16(v2tmp2.val[0], v2tmp3.val[0]); + q2s16 = vcombine_s16(v2tmp2.val[1], v2tmp3.val[1]); + + q3s16 = vqdmulhq_n_s16(q2s16, sinpi8sqrt2); + q4s16 = vqdmulhq_n_s16(q2s16, cospi8sqrt2minus1); + + d12 = vqadd_s16(vget_low_s16(q1s16), vget_high_s16(q1s16)); // a1 + d13 = vqsub_s16(vget_low_s16(q1s16), vget_high_s16(q1s16)); // b1 + + q4s16 = vshrq_n_s16(q4s16, 1); + + q4s16 = vqaddq_s16(q4s16, q2s16); + + d10 = vqsub_s16(vget_low_s16(q3s16), vget_high_s16(q4s16)); // c1 + d11 = vqadd_s16(vget_high_s16(q3s16), vget_low_s16(q4s16)); // d1 + + d2 = vqadd_s16(d12, d11); + d3 = vqadd_s16(d13, d10); + d4 = vqsub_s16(d13, d10); + d5 = vqsub_s16(d12, d11); + + d2 = vrshr_n_s16(d2, 3); + d3 = vrshr_n_s16(d3, 3); + d4 = vrshr_n_s16(d4, 3); + d5 = vrshr_n_s16(d5, 3); + + v2tmp0 = vtrn_s32(vreinterpret_s32_s16(d2), vreinterpret_s32_s16(d4)); + v2tmp1 = vtrn_s32(vreinterpret_s32_s16(d3), vreinterpret_s32_s16(d5)); + v2tmp2 = vtrn_s16(vreinterpret_s16_s32(v2tmp0.val[0]), + vreinterpret_s16_s32(v2tmp1.val[0])); + v2tmp3 = vtrn_s16(vreinterpret_s16_s32(v2tmp0.val[1]), + vreinterpret_s16_s32(v2tmp1.val[1])); + + q1s16 = vcombine_s16(v2tmp2.val[0], v2tmp2.val[1]); + q2s16 = vcombine_s16(v2tmp3.val[0], v2tmp3.val[1]); + + // dc_only_idct_add + for (i = 0; i < 2; i++, q1s16 = q2s16) { + d6u32 = vld1_lane_u32((const uint32_t *)pred_ptr, d6u32, 0); + pred_ptr += pred_stride; + d6u32 = vld1_lane_u32((const uint32_t *)pred_ptr, d6u32, 1); + pred_ptr += pred_stride; + + q1u16 = vaddw_u8(vreinterpretq_u16_s16(q1s16), vreinterpret_u8_u32(d6u32)); + d1u8 = vqmovun_s16(vreinterpretq_s16_u16(q1u16)); + + vst1_lane_u32((uint32_t *)dst_ptr, vreinterpret_u32_u8(d1u8), 0); + dst_ptr += dst_stride; + vst1_lane_u32((uint32_t *)dst_ptr, vreinterpret_u32_u8(d1u8), 1); + dst_ptr += dst_stride; + } + return; +} diff --git a/vp8/common/arm/neon/sixtappredict_neon.c b/vp8/common/arm/neon/sixtappredict_neon.c new file mode 100644 index 0000000..aa2567d --- /dev/null +++ b/vp8/common/arm/neon/sixtappredict_neon.c @@ -0,0 +1,1729 @@ +/* + * Copyright (c) 2014 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include +#include "./vpx_config.h" +#include "vpx_dsp/arm/mem_neon.h" +#include "vpx_ports/mem.h" + +static const int8_t vp8_sub_pel_filters[8][8] = { + { 0, 0, 128, 0, 0, 0, 0, 0 }, /* note that 1/8 pel positionyys are */ + { 0, -6, 123, 12, -1, 0, 0, 0 }, /* just as per alpha -0.5 bicubic */ + { 2, -11, 108, 36, -8, 1, 0, 0 }, /* New 1/4 pel 6 tap filter */ + { 0, -9, 93, 50, -6, 0, 0, 0 }, + { 3, -16, 77, 77, -16, 3, 0, 0 }, /* New 1/2 pel 6 tap filter */ + { 0, -6, 50, 93, -9, 0, 0, 0 }, + { 1, -8, 36, 108, -11, 2, 0, 0 }, /* New 1/4 pel 6 tap filter */ + { 0, -1, 12, 123, -6, 0, 0, 0 }, +}; + +// This table is derived from vp8/common/filter.c:vp8_sub_pel_filters. +// Apply abs() to all the values. Elements 0, 2, 3, and 5 are always positive. +// Elements 1 and 4 are either 0 or negative. The code accounts for this with +// multiply/accumulates which either add or subtract as needed. The other +// functions will be updated to use this table later. +// It is also expanded to 8 elements to allow loading into 64 bit neon +// registers. +static const uint8_t abs_filters[8][8] = { + { 0, 0, 128, 0, 0, 0, 0, 0 }, { 0, 6, 123, 12, 1, 0, 0, 0 }, + { 2, 11, 108, 36, 8, 1, 0, 0 }, { 0, 9, 93, 50, 6, 0, 0, 0 }, + { 3, 16, 77, 77, 16, 3, 0, 0 }, { 0, 6, 50, 93, 9, 0, 0, 0 }, + { 1, 8, 36, 108, 11, 2, 0, 0 }, { 0, 1, 12, 123, 6, 0, 0, 0 }, +}; + +static INLINE uint8x8_t load_and_shift(const unsigned char *a) { + return vreinterpret_u8_u64(vshl_n_u64(vreinterpret_u64_u8(vld1_u8(a)), 32)); +} + +static INLINE void filter_add_accumulate(const uint8x16_t a, const uint8x16_t b, + const uint8x8_t filter, uint16x8_t *c, + uint16x8_t *d) { + const uint32x2x2_t a_shuf = vzip_u32(vreinterpret_u32_u8(vget_low_u8(a)), + vreinterpret_u32_u8(vget_high_u8(a))); + const uint32x2x2_t b_shuf = vzip_u32(vreinterpret_u32_u8(vget_low_u8(b)), + vreinterpret_u32_u8(vget_high_u8(b))); + *c = vmlal_u8(*c, vreinterpret_u8_u32(a_shuf.val[0]), filter); + *d = vmlal_u8(*d, vreinterpret_u8_u32(b_shuf.val[0]), filter); +} + +static INLINE void filter_sub_accumulate(const uint8x16_t a, const uint8x16_t b, + const uint8x8_t filter, uint16x8_t *c, + uint16x8_t *d) { + const uint32x2x2_t a_shuf = vzip_u32(vreinterpret_u32_u8(vget_low_u8(a)), + vreinterpret_u32_u8(vget_high_u8(a))); + const uint32x2x2_t b_shuf = vzip_u32(vreinterpret_u32_u8(vget_low_u8(b)), + vreinterpret_u32_u8(vget_high_u8(b))); + *c = vmlsl_u8(*c, vreinterpret_u8_u32(a_shuf.val[0]), filter); + *d = vmlsl_u8(*d, vreinterpret_u8_u32(b_shuf.val[0]), filter); +} + +static INLINE void yonly4x4(const unsigned char *src, int src_stride, + int filter_offset, unsigned char *dst, + int dst_stride) { + uint8x8_t a0, a1, a2, a3, a4, a5, a6, a7, a8; + uint8x8_t b0, b1, b2, b3, b4, b5, b6, b7, b8; + uint16x8_t c0, c1, c2, c3; + int16x8_t d0, d1; + uint8x8_t e0, e1; + + const uint8x8_t filter = vld1_u8(abs_filters[filter_offset]); + const uint8x8_t filter0 = vdup_lane_u8(filter, 0); + const uint8x8_t filter1 = vdup_lane_u8(filter, 1); + const uint8x8_t filter2 = vdup_lane_u8(filter, 2); + const uint8x8_t filter3 = vdup_lane_u8(filter, 3); + const uint8x8_t filter4 = vdup_lane_u8(filter, 4); + const uint8x8_t filter5 = vdup_lane_u8(filter, 5); + + src -= src_stride * 2; + // Shift the even rows to allow using 'vext' to combine the vectors. armv8 + // has vcopy_lane which would be interesting. This started as just a + // horrible workaround for clang adding alignment hints to 32bit loads: + // https://llvm.org/bugs/show_bug.cgi?id=24421 + // But it turns out it almost identical to casting the loads. + a0 = load_and_shift(src); + src += src_stride; + a1 = vld1_u8(src); + src += src_stride; + a2 = load_and_shift(src); + src += src_stride; + a3 = vld1_u8(src); + src += src_stride; + a4 = load_and_shift(src); + src += src_stride; + a5 = vld1_u8(src); + src += src_stride; + a6 = load_and_shift(src); + src += src_stride; + a7 = vld1_u8(src); + src += src_stride; + a8 = vld1_u8(src); + + // Combine the rows so we can operate on 8 at a time. + b0 = vext_u8(a0, a1, 4); + b2 = vext_u8(a2, a3, 4); + b4 = vext_u8(a4, a5, 4); + b6 = vext_u8(a6, a7, 4); + b8 = a8; + + // To keep with the 8-at-a-time theme, combine *alternate* rows. This + // allows combining the odd rows with the even. + b1 = vext_u8(b0, b2, 4); + b3 = vext_u8(b2, b4, 4); + b5 = vext_u8(b4, b6, 4); + b7 = vext_u8(b6, b8, 4); + + // Multiply and expand to 16 bits. + c0 = vmull_u8(b0, filter0); + c1 = vmull_u8(b2, filter0); + c2 = vmull_u8(b5, filter5); + c3 = vmull_u8(b7, filter5); + + // Multiply, subtract and accumulate for filters 1 and 4 (the negative + // ones). + c0 = vmlsl_u8(c0, b4, filter4); + c1 = vmlsl_u8(c1, b6, filter4); + c2 = vmlsl_u8(c2, b1, filter1); + c3 = vmlsl_u8(c3, b3, filter1); + + // Add more positive ones. vmlal should really return a signed type. + // It's doing signed math internally, as evidenced by the fact we can do + // subtractions followed by more additions. Ideally we could use + // vqmlal/sl but that instruction doesn't exist. Might be able to + // shoehorn vqdmlal/vqdmlsl in here but it would take some effort. + c0 = vmlal_u8(c0, b2, filter2); + c1 = vmlal_u8(c1, b4, filter2); + c2 = vmlal_u8(c2, b3, filter3); + c3 = vmlal_u8(c3, b5, filter3); + + // Use signed saturation math because vmlsl may have left some negative + // numbers in there. + d0 = vqaddq_s16(vreinterpretq_s16_u16(c2), vreinterpretq_s16_u16(c0)); + d1 = vqaddq_s16(vreinterpretq_s16_u16(c3), vreinterpretq_s16_u16(c1)); + + // Use signed again because numbers like -200 need to be saturated to 0. + e0 = vqrshrun_n_s16(d0, 7); + e1 = vqrshrun_n_s16(d1, 7); + + store_unaligned_u8q(dst, dst_stride, vcombine_u8(e0, e1)); +} + +void vp8_sixtap_predict4x4_neon(unsigned char *src_ptr, int src_pixels_per_line, + int xoffset, int yoffset, + unsigned char *dst_ptr, int dst_pitch) { + uint8x16_t s0, s1, s2, s3, s4; + uint64x2_t s01, s23; + // Variables to hold src[] elements for the given filter[] + uint8x8_t s0_f5, s1_f5, s2_f5, s3_f5, s4_f5; + uint8x8_t s4_f1, s4_f2, s4_f3, s4_f4; + uint8x16_t s01_f0, s23_f0; + uint64x2_t s01_f3, s23_f3; + uint32x2x2_t s01_f3_q, s23_f3_q, s01_f5_q, s23_f5_q; + // Accumulator variables. + uint16x8_t d0123, d4567, d89; + uint16x8_t d0123_a, d4567_a, d89_a; + int16x8_t e0123, e4567, e89; + // Second pass intermediates. + uint8x8_t b0, b1, b2, b3, b4, b5, b6, b7, b8; + uint16x8_t c0, c1, c2, c3; + int16x8_t d0, d1; + uint8x8_t e0, e1; + uint8x8_t filter, filter0, filter1, filter2, filter3, filter4, filter5; + + if (xoffset == 0) { // Second pass only. + yonly4x4(src_ptr, src_pixels_per_line, yoffset, dst_ptr, dst_pitch); + return; + } + + if (yoffset == 0) { // First pass only. + src_ptr -= 2; + } else { // Add context for the second pass. 2 extra lines on top. + src_ptr -= 2 + (src_pixels_per_line * 2); + } + + filter = vld1_u8(abs_filters[xoffset]); + filter0 = vdup_lane_u8(filter, 0); + filter1 = vdup_lane_u8(filter, 1); + filter2 = vdup_lane_u8(filter, 2); + filter3 = vdup_lane_u8(filter, 3); + filter4 = vdup_lane_u8(filter, 4); + filter5 = vdup_lane_u8(filter, 5); + + // 2 bytes of context, 4 bytes of src values, 3 bytes of context, 7 bytes of + // garbage. So much effort for that last single bit. + // The low values of each pair are for filter0. + s0 = vld1q_u8(src_ptr); + src_ptr += src_pixels_per_line; + s1 = vld1q_u8(src_ptr); + src_ptr += src_pixels_per_line; + s2 = vld1q_u8(src_ptr); + src_ptr += src_pixels_per_line; + s3 = vld1q_u8(src_ptr); + src_ptr += src_pixels_per_line; + + // Shift to extract values for filter[5] + // If src[] is 0, this puts: + // 3 4 5 6 7 8 9 10 in s0_f5 + // Can't use vshr.u64 because it crosses the double word boundary. + s0_f5 = vext_u8(vget_low_u8(s0), vget_high_u8(s0), 5); + s1_f5 = vext_u8(vget_low_u8(s1), vget_high_u8(s1), 5); + s2_f5 = vext_u8(vget_low_u8(s2), vget_high_u8(s2), 5); + s3_f5 = vext_u8(vget_low_u8(s3), vget_high_u8(s3), 5); + + s01_f0 = vcombine_u8(vget_low_u8(s0), vget_low_u8(s1)); + s23_f0 = vcombine_u8(vget_low_u8(s2), vget_low_u8(s3)); + + s01_f5_q = vzip_u32(vreinterpret_u32_u8(s0_f5), vreinterpret_u32_u8(s1_f5)); + s23_f5_q = vzip_u32(vreinterpret_u32_u8(s2_f5), vreinterpret_u32_u8(s3_f5)); + d0123 = vmull_u8(vreinterpret_u8_u32(s01_f5_q.val[0]), filter5); + d4567 = vmull_u8(vreinterpret_u8_u32(s23_f5_q.val[0]), filter5); + + // Keep original src data as 64 bits to simplify shifting and extracting. + s01 = vreinterpretq_u64_u8(s01_f0); + s23 = vreinterpretq_u64_u8(s23_f0); + + // 3 4 5 6 * filter0 + filter_add_accumulate(s01_f0, s23_f0, filter0, &d0123, &d4567); + + // Shift over one to use -1, 0, 1, 2 for filter1 + // -1 0 1 2 * filter1 + filter_sub_accumulate(vreinterpretq_u8_u64(vshrq_n_u64(s01, 8)), + vreinterpretq_u8_u64(vshrq_n_u64(s23, 8)), filter1, + &d0123, &d4567); + + // 2 3 4 5 * filter4 + filter_sub_accumulate(vreinterpretq_u8_u64(vshrq_n_u64(s01, 32)), + vreinterpretq_u8_u64(vshrq_n_u64(s23, 32)), filter4, + &d0123, &d4567); + + // 0 1 2 3 * filter2 + filter_add_accumulate(vreinterpretq_u8_u64(vshrq_n_u64(s01, 16)), + vreinterpretq_u8_u64(vshrq_n_u64(s23, 16)), filter2, + &d0123, &d4567); + + // 1 2 3 4 * filter3 + s01_f3 = vshrq_n_u64(s01, 24); + s23_f3 = vshrq_n_u64(s23, 24); + s01_f3_q = vzip_u32(vreinterpret_u32_u64(vget_low_u64(s01_f3)), + vreinterpret_u32_u64(vget_high_u64(s01_f3))); + s23_f3_q = vzip_u32(vreinterpret_u32_u64(vget_low_u64(s23_f3)), + vreinterpret_u32_u64(vget_high_u64(s23_f3))); + // Accumulate into different registers so it can use saturated addition. + d0123_a = vmull_u8(vreinterpret_u8_u32(s01_f3_q.val[0]), filter3); + d4567_a = vmull_u8(vreinterpret_u8_u32(s23_f3_q.val[0]), filter3); + + e0123 = + vqaddq_s16(vreinterpretq_s16_u16(d0123), vreinterpretq_s16_u16(d0123_a)); + e4567 = + vqaddq_s16(vreinterpretq_s16_u16(d4567), vreinterpretq_s16_u16(d4567_a)); + + // Shift and narrow. + b0 = vqrshrun_n_s16(e0123, 7); + b2 = vqrshrun_n_s16(e4567, 7); + + if (yoffset == 0) { // firstpass_filter4x4_only + store_unaligned_u8q(dst_ptr, dst_pitch, vcombine_u8(b0, b2)); + return; + } + + // Load additional context when doing both filters. + s0 = vld1q_u8(src_ptr); + src_ptr += src_pixels_per_line; + s1 = vld1q_u8(src_ptr); + src_ptr += src_pixels_per_line; + s2 = vld1q_u8(src_ptr); + src_ptr += src_pixels_per_line; + s3 = vld1q_u8(src_ptr); + src_ptr += src_pixels_per_line; + s4 = vld1q_u8(src_ptr); + + s0_f5 = vext_u8(vget_low_u8(s0), vget_high_u8(s0), 5); + s1_f5 = vext_u8(vget_low_u8(s1), vget_high_u8(s1), 5); + s2_f5 = vext_u8(vget_low_u8(s2), vget_high_u8(s2), 5); + s3_f5 = vext_u8(vget_low_u8(s3), vget_high_u8(s3), 5); + s4_f5 = vext_u8(vget_low_u8(s4), vget_high_u8(s4), 5); + + // 3 4 5 6 * filter0 + s01_f0 = vcombine_u8(vget_low_u8(s0), vget_low_u8(s1)); + s23_f0 = vcombine_u8(vget_low_u8(s2), vget_low_u8(s3)); + + s01_f5_q = vzip_u32(vreinterpret_u32_u8(s0_f5), vreinterpret_u32_u8(s1_f5)); + s23_f5_q = vzip_u32(vreinterpret_u32_u8(s2_f5), vreinterpret_u32_u8(s3_f5)); + // But this time instead of 16 pixels to filter, there are 20. So an extra + // run with a doubleword register. + d0123 = vmull_u8(vreinterpret_u8_u32(s01_f5_q.val[0]), filter5); + d4567 = vmull_u8(vreinterpret_u8_u32(s23_f5_q.val[0]), filter5); + d89 = vmull_u8(s4_f5, filter5); + + // Save a copy as u64 for shifting. + s01 = vreinterpretq_u64_u8(s01_f0); + s23 = vreinterpretq_u64_u8(s23_f0); + + filter_add_accumulate(s01_f0, s23_f0, filter0, &d0123, &d4567); + d89 = vmlal_u8(d89, vget_low_u8(s4), filter0); + + filter_sub_accumulate(vreinterpretq_u8_u64(vshrq_n_u64(s01, 8)), + vreinterpretq_u8_u64(vshrq_n_u64(s23, 8)), filter1, + &d0123, &d4567); + s4_f1 = vext_u8(vget_low_u8(s4), vget_high_u8(s4), 1); + d89 = vmlsl_u8(d89, s4_f1, filter1); + + filter_sub_accumulate(vreinterpretq_u8_u64(vshrq_n_u64(s01, 32)), + vreinterpretq_u8_u64(vshrq_n_u64(s23, 32)), filter4, + &d0123, &d4567); + s4_f4 = vext_u8(vget_low_u8(s4), vget_high_u8(s4), 4); + d89 = vmlsl_u8(d89, s4_f4, filter4); + + filter_add_accumulate(vreinterpretq_u8_u64(vshrq_n_u64(s01, 16)), + vreinterpretq_u8_u64(vshrq_n_u64(s23, 16)), filter2, + &d0123, &d4567); + s4_f2 = vext_u8(vget_low_u8(s4), vget_high_u8(s4), 2); + d89 = vmlal_u8(d89, s4_f2, filter2); + + s01_f3 = vshrq_n_u64(s01, 24); + s23_f3 = vshrq_n_u64(s23, 24); + s01_f3_q = vzip_u32(vreinterpret_u32_u64(vget_low_u64(s01_f3)), + vreinterpret_u32_u64(vget_high_u64(s01_f3))); + s23_f3_q = vzip_u32(vreinterpret_u32_u64(vget_low_u64(s23_f3)), + vreinterpret_u32_u64(vget_high_u64(s23_f3))); + s4_f3 = vext_u8(vget_low_u8(s4), vget_high_u8(s4), 3); + d0123_a = vmull_u8(vreinterpret_u8_u32(s01_f3_q.val[0]), filter3); + d4567_a = vmull_u8(vreinterpret_u8_u32(s23_f3_q.val[0]), filter3); + d89_a = vmull_u8(s4_f3, filter3); + + e0123 = + vqaddq_s16(vreinterpretq_s16_u16(d0123), vreinterpretq_s16_u16(d0123_a)); + e4567 = + vqaddq_s16(vreinterpretq_s16_u16(d4567), vreinterpretq_s16_u16(d4567_a)); + e89 = vqaddq_s16(vreinterpretq_s16_u16(d89), vreinterpretq_s16_u16(d89_a)); + + b4 = vqrshrun_n_s16(e0123, 7); + b6 = vqrshrun_n_s16(e4567, 7); + b8 = vqrshrun_n_s16(e89, 7); + + // Second pass: 4x4 + filter = vld1_u8(abs_filters[yoffset]); + filter0 = vdup_lane_u8(filter, 0); + filter1 = vdup_lane_u8(filter, 1); + filter2 = vdup_lane_u8(filter, 2); + filter3 = vdup_lane_u8(filter, 3); + filter4 = vdup_lane_u8(filter, 4); + filter5 = vdup_lane_u8(filter, 5); + + b1 = vext_u8(b0, b2, 4); + b3 = vext_u8(b2, b4, 4); + b5 = vext_u8(b4, b6, 4); + b7 = vext_u8(b6, b8, 4); + + c0 = vmull_u8(b0, filter0); + c1 = vmull_u8(b2, filter0); + c2 = vmull_u8(b5, filter5); + c3 = vmull_u8(b7, filter5); + + c0 = vmlsl_u8(c0, b4, filter4); + c1 = vmlsl_u8(c1, b6, filter4); + c2 = vmlsl_u8(c2, b1, filter1); + c3 = vmlsl_u8(c3, b3, filter1); + + c0 = vmlal_u8(c0, b2, filter2); + c1 = vmlal_u8(c1, b4, filter2); + c2 = vmlal_u8(c2, b3, filter3); + c3 = vmlal_u8(c3, b5, filter3); + + d0 = vqaddq_s16(vreinterpretq_s16_u16(c2), vreinterpretq_s16_u16(c0)); + d1 = vqaddq_s16(vreinterpretq_s16_u16(c3), vreinterpretq_s16_u16(c1)); + + e0 = vqrshrun_n_s16(d0, 7); + e1 = vqrshrun_n_s16(d1, 7); + + store_unaligned_u8q(dst_ptr, dst_pitch, vcombine_u8(e0, e1)); +} + +void vp8_sixtap_predict8x4_neon(unsigned char *src_ptr, int src_pixels_per_line, + int xoffset, int yoffset, + unsigned char *dst_ptr, int dst_pitch) { + unsigned char *src; + uint8x8_t d0u8, d1u8, d2u8, d3u8, d4u8, d5u8, d6u8, d7u8, d8u8, d9u8; + uint8x8_t d22u8, d23u8, d24u8, d25u8, d26u8; + uint8x8_t d27u8, d28u8, d29u8, d30u8, d31u8; + int8x8_t dtmps8, d0s8, d1s8, d2s8, d3s8, d4s8, d5s8; + uint16x8_t q3u16, q4u16, q5u16, q6u16, q7u16; + uint16x8_t q8u16, q9u16, q10u16, q11u16, q12u16; + int16x8_t q3s16, q4s16, q5s16, q6s16, q7s16; + int16x8_t q8s16, q9s16, q10s16, q11s16, q12s16; + uint8x16_t q3u8, q4u8, q5u8, q6u8, q7u8; + + if (xoffset == 0) { // secondpass_filter8x4_only + // load second_pass filter + dtmps8 = vld1_s8(vp8_sub_pel_filters[yoffset]); + d0s8 = vdup_lane_s8(dtmps8, 0); + d1s8 = vdup_lane_s8(dtmps8, 1); + d2s8 = vdup_lane_s8(dtmps8, 2); + d3s8 = vdup_lane_s8(dtmps8, 3); + d4s8 = vdup_lane_s8(dtmps8, 4); + d5s8 = vdup_lane_s8(dtmps8, 5); + d0u8 = vreinterpret_u8_s8(vabs_s8(d0s8)); + d1u8 = vreinterpret_u8_s8(vabs_s8(d1s8)); + d2u8 = vreinterpret_u8_s8(vabs_s8(d2s8)); + d3u8 = vreinterpret_u8_s8(vabs_s8(d3s8)); + d4u8 = vreinterpret_u8_s8(vabs_s8(d4s8)); + d5u8 = vreinterpret_u8_s8(vabs_s8(d5s8)); + + // load src data + src = src_ptr - src_pixels_per_line * 2; + d22u8 = vld1_u8(src); + src += src_pixels_per_line; + d23u8 = vld1_u8(src); + src += src_pixels_per_line; + d24u8 = vld1_u8(src); + src += src_pixels_per_line; + d25u8 = vld1_u8(src); + src += src_pixels_per_line; + d26u8 = vld1_u8(src); + src += src_pixels_per_line; + d27u8 = vld1_u8(src); + src += src_pixels_per_line; + d28u8 = vld1_u8(src); + src += src_pixels_per_line; + d29u8 = vld1_u8(src); + src += src_pixels_per_line; + d30u8 = vld1_u8(src); + + q3u16 = vmull_u8(d22u8, d0u8); + q4u16 = vmull_u8(d23u8, d0u8); + q5u16 = vmull_u8(d24u8, d0u8); + q6u16 = vmull_u8(d25u8, d0u8); + + q3u16 = vmlsl_u8(q3u16, d23u8, d1u8); + q4u16 = vmlsl_u8(q4u16, d24u8, d1u8); + q5u16 = vmlsl_u8(q5u16, d25u8, d1u8); + q6u16 = vmlsl_u8(q6u16, d26u8, d1u8); + + q3u16 = vmlsl_u8(q3u16, d26u8, d4u8); + q4u16 = vmlsl_u8(q4u16, d27u8, d4u8); + q5u16 = vmlsl_u8(q5u16, d28u8, d4u8); + q6u16 = vmlsl_u8(q6u16, d29u8, d4u8); + + q3u16 = vmlal_u8(q3u16, d24u8, d2u8); + q4u16 = vmlal_u8(q4u16, d25u8, d2u8); + q5u16 = vmlal_u8(q5u16, d26u8, d2u8); + q6u16 = vmlal_u8(q6u16, d27u8, d2u8); + + q3u16 = vmlal_u8(q3u16, d27u8, d5u8); + q4u16 = vmlal_u8(q4u16, d28u8, d5u8); + q5u16 = vmlal_u8(q5u16, d29u8, d5u8); + q6u16 = vmlal_u8(q6u16, d30u8, d5u8); + + q7u16 = vmull_u8(d25u8, d3u8); + q8u16 = vmull_u8(d26u8, d3u8); + q9u16 = vmull_u8(d27u8, d3u8); + q10u16 = vmull_u8(d28u8, d3u8); + + q3s16 = vreinterpretq_s16_u16(q3u16); + q4s16 = vreinterpretq_s16_u16(q4u16); + q5s16 = vreinterpretq_s16_u16(q5u16); + q6s16 = vreinterpretq_s16_u16(q6u16); + q7s16 = vreinterpretq_s16_u16(q7u16); + q8s16 = vreinterpretq_s16_u16(q8u16); + q9s16 = vreinterpretq_s16_u16(q9u16); + q10s16 = vreinterpretq_s16_u16(q10u16); + + q7s16 = vqaddq_s16(q7s16, q3s16); + q8s16 = vqaddq_s16(q8s16, q4s16); + q9s16 = vqaddq_s16(q9s16, q5s16); + q10s16 = vqaddq_s16(q10s16, q6s16); + + d6u8 = vqrshrun_n_s16(q7s16, 7); + d7u8 = vqrshrun_n_s16(q8s16, 7); + d8u8 = vqrshrun_n_s16(q9s16, 7); + d9u8 = vqrshrun_n_s16(q10s16, 7); + + vst1_u8(dst_ptr, d6u8); + dst_ptr += dst_pitch; + vst1_u8(dst_ptr, d7u8); + dst_ptr += dst_pitch; + vst1_u8(dst_ptr, d8u8); + dst_ptr += dst_pitch; + vst1_u8(dst_ptr, d9u8); + return; + } + + // load first_pass filter + dtmps8 = vld1_s8(vp8_sub_pel_filters[xoffset]); + d0s8 = vdup_lane_s8(dtmps8, 0); + d1s8 = vdup_lane_s8(dtmps8, 1); + d2s8 = vdup_lane_s8(dtmps8, 2); + d3s8 = vdup_lane_s8(dtmps8, 3); + d4s8 = vdup_lane_s8(dtmps8, 4); + d5s8 = vdup_lane_s8(dtmps8, 5); + d0u8 = vreinterpret_u8_s8(vabs_s8(d0s8)); + d1u8 = vreinterpret_u8_s8(vabs_s8(d1s8)); + d2u8 = vreinterpret_u8_s8(vabs_s8(d2s8)); + d3u8 = vreinterpret_u8_s8(vabs_s8(d3s8)); + d4u8 = vreinterpret_u8_s8(vabs_s8(d4s8)); + d5u8 = vreinterpret_u8_s8(vabs_s8(d5s8)); + + // First pass: output_height lines x output_width columns (9x4) + if (yoffset == 0) // firstpass_filter4x4_only + src = src_ptr - 2; + else + src = src_ptr - 2 - (src_pixels_per_line * 2); + q3u8 = vld1q_u8(src); + src += src_pixels_per_line; + q4u8 = vld1q_u8(src); + src += src_pixels_per_line; + q5u8 = vld1q_u8(src); + src += src_pixels_per_line; + q6u8 = vld1q_u8(src); + + q7u16 = vmull_u8(vget_low_u8(q3u8), d0u8); + q8u16 = vmull_u8(vget_low_u8(q4u8), d0u8); + q9u16 = vmull_u8(vget_low_u8(q5u8), d0u8); + q10u16 = vmull_u8(vget_low_u8(q6u8), d0u8); + + d28u8 = vext_u8(vget_low_u8(q3u8), vget_high_u8(q3u8), 1); + d29u8 = vext_u8(vget_low_u8(q4u8), vget_high_u8(q4u8), 1); + d30u8 = vext_u8(vget_low_u8(q5u8), vget_high_u8(q5u8), 1); + d31u8 = vext_u8(vget_low_u8(q6u8), vget_high_u8(q6u8), 1); + + q7u16 = vmlsl_u8(q7u16, d28u8, d1u8); + q8u16 = vmlsl_u8(q8u16, d29u8, d1u8); + q9u16 = vmlsl_u8(q9u16, d30u8, d1u8); + q10u16 = vmlsl_u8(q10u16, d31u8, d1u8); + + d28u8 = vext_u8(vget_low_u8(q3u8), vget_high_u8(q3u8), 4); + d29u8 = vext_u8(vget_low_u8(q4u8), vget_high_u8(q4u8), 4); + d30u8 = vext_u8(vget_low_u8(q5u8), vget_high_u8(q5u8), 4); + d31u8 = vext_u8(vget_low_u8(q6u8), vget_high_u8(q6u8), 4); + + q7u16 = vmlsl_u8(q7u16, d28u8, d4u8); + q8u16 = vmlsl_u8(q8u16, d29u8, d4u8); + q9u16 = vmlsl_u8(q9u16, d30u8, d4u8); + q10u16 = vmlsl_u8(q10u16, d31u8, d4u8); + + d28u8 = vext_u8(vget_low_u8(q3u8), vget_high_u8(q3u8), 2); + d29u8 = vext_u8(vget_low_u8(q4u8), vget_high_u8(q4u8), 2); + d30u8 = vext_u8(vget_low_u8(q5u8), vget_high_u8(q5u8), 2); + d31u8 = vext_u8(vget_low_u8(q6u8), vget_high_u8(q6u8), 2); + + q7u16 = vmlal_u8(q7u16, d28u8, d2u8); + q8u16 = vmlal_u8(q8u16, d29u8, d2u8); + q9u16 = vmlal_u8(q9u16, d30u8, d2u8); + q10u16 = vmlal_u8(q10u16, d31u8, d2u8); + + d28u8 = vext_u8(vget_low_u8(q3u8), vget_high_u8(q3u8), 5); + d29u8 = vext_u8(vget_low_u8(q4u8), vget_high_u8(q4u8), 5); + d30u8 = vext_u8(vget_low_u8(q5u8), vget_high_u8(q5u8), 5); + d31u8 = vext_u8(vget_low_u8(q6u8), vget_high_u8(q6u8), 5); + + q7u16 = vmlal_u8(q7u16, d28u8, d5u8); + q8u16 = vmlal_u8(q8u16, d29u8, d5u8); + q9u16 = vmlal_u8(q9u16, d30u8, d5u8); + q10u16 = vmlal_u8(q10u16, d31u8, d5u8); + + d28u8 = vext_u8(vget_low_u8(q3u8), vget_high_u8(q3u8), 3); + d29u8 = vext_u8(vget_low_u8(q4u8), vget_high_u8(q4u8), 3); + d30u8 = vext_u8(vget_low_u8(q5u8), vget_high_u8(q5u8), 3); + d31u8 = vext_u8(vget_low_u8(q6u8), vget_high_u8(q6u8), 3); + + q3u16 = vmull_u8(d28u8, d3u8); + q4u16 = vmull_u8(d29u8, d3u8); + q5u16 = vmull_u8(d30u8, d3u8); + q6u16 = vmull_u8(d31u8, d3u8); + + q3s16 = vreinterpretq_s16_u16(q3u16); + q4s16 = vreinterpretq_s16_u16(q4u16); + q5s16 = vreinterpretq_s16_u16(q5u16); + q6s16 = vreinterpretq_s16_u16(q6u16); + q7s16 = vreinterpretq_s16_u16(q7u16); + q8s16 = vreinterpretq_s16_u16(q8u16); + q9s16 = vreinterpretq_s16_u16(q9u16); + q10s16 = vreinterpretq_s16_u16(q10u16); + + q7s16 = vqaddq_s16(q7s16, q3s16); + q8s16 = vqaddq_s16(q8s16, q4s16); + q9s16 = vqaddq_s16(q9s16, q5s16); + q10s16 = vqaddq_s16(q10s16, q6s16); + + d22u8 = vqrshrun_n_s16(q7s16, 7); + d23u8 = vqrshrun_n_s16(q8s16, 7); + d24u8 = vqrshrun_n_s16(q9s16, 7); + d25u8 = vqrshrun_n_s16(q10s16, 7); + + if (yoffset == 0) { // firstpass_filter8x4_only + vst1_u8(dst_ptr, d22u8); + dst_ptr += dst_pitch; + vst1_u8(dst_ptr, d23u8); + dst_ptr += dst_pitch; + vst1_u8(dst_ptr, d24u8); + dst_ptr += dst_pitch; + vst1_u8(dst_ptr, d25u8); + return; + } + + // First Pass on rest 5-line data + src += src_pixels_per_line; + q3u8 = vld1q_u8(src); + src += src_pixels_per_line; + q4u8 = vld1q_u8(src); + src += src_pixels_per_line; + q5u8 = vld1q_u8(src); + src += src_pixels_per_line; + q6u8 = vld1q_u8(src); + src += src_pixels_per_line; + q7u8 = vld1q_u8(src); + + q8u16 = vmull_u8(vget_low_u8(q3u8), d0u8); + q9u16 = vmull_u8(vget_low_u8(q4u8), d0u8); + q10u16 = vmull_u8(vget_low_u8(q5u8), d0u8); + q11u16 = vmull_u8(vget_low_u8(q6u8), d0u8); + q12u16 = vmull_u8(vget_low_u8(q7u8), d0u8); + + d27u8 = vext_u8(vget_low_u8(q3u8), vget_high_u8(q3u8), 1); + d28u8 = vext_u8(vget_low_u8(q4u8), vget_high_u8(q4u8), 1); + d29u8 = vext_u8(vget_low_u8(q5u8), vget_high_u8(q5u8), 1); + d30u8 = vext_u8(vget_low_u8(q6u8), vget_high_u8(q6u8), 1); + d31u8 = vext_u8(vget_low_u8(q7u8), vget_high_u8(q7u8), 1); + + q8u16 = vmlsl_u8(q8u16, d27u8, d1u8); + q9u16 = vmlsl_u8(q9u16, d28u8, d1u8); + q10u16 = vmlsl_u8(q10u16, d29u8, d1u8); + q11u16 = vmlsl_u8(q11u16, d30u8, d1u8); + q12u16 = vmlsl_u8(q12u16, d31u8, d1u8); + + d27u8 = vext_u8(vget_low_u8(q3u8), vget_high_u8(q3u8), 4); + d28u8 = vext_u8(vget_low_u8(q4u8), vget_high_u8(q4u8), 4); + d29u8 = vext_u8(vget_low_u8(q5u8), vget_high_u8(q5u8), 4); + d30u8 = vext_u8(vget_low_u8(q6u8), vget_high_u8(q6u8), 4); + d31u8 = vext_u8(vget_low_u8(q7u8), vget_high_u8(q7u8), 4); + + q8u16 = vmlsl_u8(q8u16, d27u8, d4u8); + q9u16 = vmlsl_u8(q9u16, d28u8, d4u8); + q10u16 = vmlsl_u8(q10u16, d29u8, d4u8); + q11u16 = vmlsl_u8(q11u16, d30u8, d4u8); + q12u16 = vmlsl_u8(q12u16, d31u8, d4u8); + + d27u8 = vext_u8(vget_low_u8(q3u8), vget_high_u8(q3u8), 2); + d28u8 = vext_u8(vget_low_u8(q4u8), vget_high_u8(q4u8), 2); + d29u8 = vext_u8(vget_low_u8(q5u8), vget_high_u8(q5u8), 2); + d30u8 = vext_u8(vget_low_u8(q6u8), vget_high_u8(q6u8), 2); + d31u8 = vext_u8(vget_low_u8(q7u8), vget_high_u8(q7u8), 2); + + q8u16 = vmlal_u8(q8u16, d27u8, d2u8); + q9u16 = vmlal_u8(q9u16, d28u8, d2u8); + q10u16 = vmlal_u8(q10u16, d29u8, d2u8); + q11u16 = vmlal_u8(q11u16, d30u8, d2u8); + q12u16 = vmlal_u8(q12u16, d31u8, d2u8); + + d27u8 = vext_u8(vget_low_u8(q3u8), vget_high_u8(q3u8), 5); + d28u8 = vext_u8(vget_low_u8(q4u8), vget_high_u8(q4u8), 5); + d29u8 = vext_u8(vget_low_u8(q5u8), vget_high_u8(q5u8), 5); + d30u8 = vext_u8(vget_low_u8(q6u8), vget_high_u8(q6u8), 5); + d31u8 = vext_u8(vget_low_u8(q7u8), vget_high_u8(q7u8), 5); + + q8u16 = vmlal_u8(q8u16, d27u8, d5u8); + q9u16 = vmlal_u8(q9u16, d28u8, d5u8); + q10u16 = vmlal_u8(q10u16, d29u8, d5u8); + q11u16 = vmlal_u8(q11u16, d30u8, d5u8); + q12u16 = vmlal_u8(q12u16, d31u8, d5u8); + + d27u8 = vext_u8(vget_low_u8(q3u8), vget_high_u8(q3u8), 3); + d28u8 = vext_u8(vget_low_u8(q4u8), vget_high_u8(q4u8), 3); + d29u8 = vext_u8(vget_low_u8(q5u8), vget_high_u8(q5u8), 3); + d30u8 = vext_u8(vget_low_u8(q6u8), vget_high_u8(q6u8), 3); + d31u8 = vext_u8(vget_low_u8(q7u8), vget_high_u8(q7u8), 3); + + q3u16 = vmull_u8(d27u8, d3u8); + q4u16 = vmull_u8(d28u8, d3u8); + q5u16 = vmull_u8(d29u8, d3u8); + q6u16 = vmull_u8(d30u8, d3u8); + q7u16 = vmull_u8(d31u8, d3u8); + + q3s16 = vreinterpretq_s16_u16(q3u16); + q4s16 = vreinterpretq_s16_u16(q4u16); + q5s16 = vreinterpretq_s16_u16(q5u16); + q6s16 = vreinterpretq_s16_u16(q6u16); + q7s16 = vreinterpretq_s16_u16(q7u16); + q8s16 = vreinterpretq_s16_u16(q8u16); + q9s16 = vreinterpretq_s16_u16(q9u16); + q10s16 = vreinterpretq_s16_u16(q10u16); + q11s16 = vreinterpretq_s16_u16(q11u16); + q12s16 = vreinterpretq_s16_u16(q12u16); + + q8s16 = vqaddq_s16(q8s16, q3s16); + q9s16 = vqaddq_s16(q9s16, q4s16); + q10s16 = vqaddq_s16(q10s16, q5s16); + q11s16 = vqaddq_s16(q11s16, q6s16); + q12s16 = vqaddq_s16(q12s16, q7s16); + + d26u8 = vqrshrun_n_s16(q8s16, 7); + d27u8 = vqrshrun_n_s16(q9s16, 7); + d28u8 = vqrshrun_n_s16(q10s16, 7); + d29u8 = vqrshrun_n_s16(q11s16, 7); + d30u8 = vqrshrun_n_s16(q12s16, 7); + + // Second pass: 8x4 + dtmps8 = vld1_s8(vp8_sub_pel_filters[yoffset]); + d0s8 = vdup_lane_s8(dtmps8, 0); + d1s8 = vdup_lane_s8(dtmps8, 1); + d2s8 = vdup_lane_s8(dtmps8, 2); + d3s8 = vdup_lane_s8(dtmps8, 3); + d4s8 = vdup_lane_s8(dtmps8, 4); + d5s8 = vdup_lane_s8(dtmps8, 5); + d0u8 = vreinterpret_u8_s8(vabs_s8(d0s8)); + d1u8 = vreinterpret_u8_s8(vabs_s8(d1s8)); + d2u8 = vreinterpret_u8_s8(vabs_s8(d2s8)); + d3u8 = vreinterpret_u8_s8(vabs_s8(d3s8)); + d4u8 = vreinterpret_u8_s8(vabs_s8(d4s8)); + d5u8 = vreinterpret_u8_s8(vabs_s8(d5s8)); + + q3u16 = vmull_u8(d22u8, d0u8); + q4u16 = vmull_u8(d23u8, d0u8); + q5u16 = vmull_u8(d24u8, d0u8); + q6u16 = vmull_u8(d25u8, d0u8); + + q3u16 = vmlsl_u8(q3u16, d23u8, d1u8); + q4u16 = vmlsl_u8(q4u16, d24u8, d1u8); + q5u16 = vmlsl_u8(q5u16, d25u8, d1u8); + q6u16 = vmlsl_u8(q6u16, d26u8, d1u8); + + q3u16 = vmlsl_u8(q3u16, d26u8, d4u8); + q4u16 = vmlsl_u8(q4u16, d27u8, d4u8); + q5u16 = vmlsl_u8(q5u16, d28u8, d4u8); + q6u16 = vmlsl_u8(q6u16, d29u8, d4u8); + + q3u16 = vmlal_u8(q3u16, d24u8, d2u8); + q4u16 = vmlal_u8(q4u16, d25u8, d2u8); + q5u16 = vmlal_u8(q5u16, d26u8, d2u8); + q6u16 = vmlal_u8(q6u16, d27u8, d2u8); + + q3u16 = vmlal_u8(q3u16, d27u8, d5u8); + q4u16 = vmlal_u8(q4u16, d28u8, d5u8); + q5u16 = vmlal_u8(q5u16, d29u8, d5u8); + q6u16 = vmlal_u8(q6u16, d30u8, d5u8); + + q7u16 = vmull_u8(d25u8, d3u8); + q8u16 = vmull_u8(d26u8, d3u8); + q9u16 = vmull_u8(d27u8, d3u8); + q10u16 = vmull_u8(d28u8, d3u8); + + q3s16 = vreinterpretq_s16_u16(q3u16); + q4s16 = vreinterpretq_s16_u16(q4u16); + q5s16 = vreinterpretq_s16_u16(q5u16); + q6s16 = vreinterpretq_s16_u16(q6u16); + q7s16 = vreinterpretq_s16_u16(q7u16); + q8s16 = vreinterpretq_s16_u16(q8u16); + q9s16 = vreinterpretq_s16_u16(q9u16); + q10s16 = vreinterpretq_s16_u16(q10u16); + + q7s16 = vqaddq_s16(q7s16, q3s16); + q8s16 = vqaddq_s16(q8s16, q4s16); + q9s16 = vqaddq_s16(q9s16, q5s16); + q10s16 = vqaddq_s16(q10s16, q6s16); + + d6u8 = vqrshrun_n_s16(q7s16, 7); + d7u8 = vqrshrun_n_s16(q8s16, 7); + d8u8 = vqrshrun_n_s16(q9s16, 7); + d9u8 = vqrshrun_n_s16(q10s16, 7); + + vst1_u8(dst_ptr, d6u8); + dst_ptr += dst_pitch; + vst1_u8(dst_ptr, d7u8); + dst_ptr += dst_pitch; + vst1_u8(dst_ptr, d8u8); + dst_ptr += dst_pitch; + vst1_u8(dst_ptr, d9u8); + return; +} + +void vp8_sixtap_predict8x8_neon(unsigned char *src_ptr, int src_pixels_per_line, + int xoffset, int yoffset, + unsigned char *dst_ptr, int dst_pitch) { + unsigned char *src, *tmpp; + unsigned char tmp[64]; + int i; + uint8x8_t d0u8, d1u8, d2u8, d3u8, d4u8, d5u8, d6u8, d7u8, d8u8, d9u8; + uint8x8_t d18u8, d19u8, d20u8, d21u8, d22u8, d23u8, d24u8, d25u8; + uint8x8_t d26u8, d27u8, d28u8, d29u8, d30u8, d31u8; + int8x8_t dtmps8, d0s8, d1s8, d2s8, d3s8, d4s8, d5s8; + uint16x8_t q3u16, q4u16, q5u16, q6u16, q7u16; + uint16x8_t q8u16, q9u16, q10u16, q11u16, q12u16; + int16x8_t q3s16, q4s16, q5s16, q6s16, q7s16; + int16x8_t q8s16, q9s16, q10s16, q11s16, q12s16; + uint8x16_t q3u8, q4u8, q5u8, q6u8, q7u8, q9u8, q10u8, q11u8, q12u8; + + if (xoffset == 0) { // secondpass_filter8x8_only + // load second_pass filter + dtmps8 = vld1_s8(vp8_sub_pel_filters[yoffset]); + d0s8 = vdup_lane_s8(dtmps8, 0); + d1s8 = vdup_lane_s8(dtmps8, 1); + d2s8 = vdup_lane_s8(dtmps8, 2); + d3s8 = vdup_lane_s8(dtmps8, 3); + d4s8 = vdup_lane_s8(dtmps8, 4); + d5s8 = vdup_lane_s8(dtmps8, 5); + d0u8 = vreinterpret_u8_s8(vabs_s8(d0s8)); + d1u8 = vreinterpret_u8_s8(vabs_s8(d1s8)); + d2u8 = vreinterpret_u8_s8(vabs_s8(d2s8)); + d3u8 = vreinterpret_u8_s8(vabs_s8(d3s8)); + d4u8 = vreinterpret_u8_s8(vabs_s8(d4s8)); + d5u8 = vreinterpret_u8_s8(vabs_s8(d5s8)); + + // load src data + src = src_ptr - src_pixels_per_line * 2; + d18u8 = vld1_u8(src); + src += src_pixels_per_line; + d19u8 = vld1_u8(src); + src += src_pixels_per_line; + d20u8 = vld1_u8(src); + src += src_pixels_per_line; + d21u8 = vld1_u8(src); + src += src_pixels_per_line; + d22u8 = vld1_u8(src); + src += src_pixels_per_line; + d23u8 = vld1_u8(src); + src += src_pixels_per_line; + d24u8 = vld1_u8(src); + src += src_pixels_per_line; + d25u8 = vld1_u8(src); + src += src_pixels_per_line; + d26u8 = vld1_u8(src); + src += src_pixels_per_line; + d27u8 = vld1_u8(src); + src += src_pixels_per_line; + d28u8 = vld1_u8(src); + src += src_pixels_per_line; + d29u8 = vld1_u8(src); + src += src_pixels_per_line; + d30u8 = vld1_u8(src); + + for (i = 2; i > 0; i--) { + q3u16 = vmull_u8(d18u8, d0u8); + q4u16 = vmull_u8(d19u8, d0u8); + q5u16 = vmull_u8(d20u8, d0u8); + q6u16 = vmull_u8(d21u8, d0u8); + + q3u16 = vmlsl_u8(q3u16, d19u8, d1u8); + q4u16 = vmlsl_u8(q4u16, d20u8, d1u8); + q5u16 = vmlsl_u8(q5u16, d21u8, d1u8); + q6u16 = vmlsl_u8(q6u16, d22u8, d1u8); + + q3u16 = vmlsl_u8(q3u16, d22u8, d4u8); + q4u16 = vmlsl_u8(q4u16, d23u8, d4u8); + q5u16 = vmlsl_u8(q5u16, d24u8, d4u8); + q6u16 = vmlsl_u8(q6u16, d25u8, d4u8); + + q3u16 = vmlal_u8(q3u16, d20u8, d2u8); + q4u16 = vmlal_u8(q4u16, d21u8, d2u8); + q5u16 = vmlal_u8(q5u16, d22u8, d2u8); + q6u16 = vmlal_u8(q6u16, d23u8, d2u8); + + q3u16 = vmlal_u8(q3u16, d23u8, d5u8); + q4u16 = vmlal_u8(q4u16, d24u8, d5u8); + q5u16 = vmlal_u8(q5u16, d25u8, d5u8); + q6u16 = vmlal_u8(q6u16, d26u8, d5u8); + + q7u16 = vmull_u8(d21u8, d3u8); + q8u16 = vmull_u8(d22u8, d3u8); + q9u16 = vmull_u8(d23u8, d3u8); + q10u16 = vmull_u8(d24u8, d3u8); + + q3s16 = vreinterpretq_s16_u16(q3u16); + q4s16 = vreinterpretq_s16_u16(q4u16); + q5s16 = vreinterpretq_s16_u16(q5u16); + q6s16 = vreinterpretq_s16_u16(q6u16); + q7s16 = vreinterpretq_s16_u16(q7u16); + q8s16 = vreinterpretq_s16_u16(q8u16); + q9s16 = vreinterpretq_s16_u16(q9u16); + q10s16 = vreinterpretq_s16_u16(q10u16); + + q7s16 = vqaddq_s16(q7s16, q3s16); + q8s16 = vqaddq_s16(q8s16, q4s16); + q9s16 = vqaddq_s16(q9s16, q5s16); + q10s16 = vqaddq_s16(q10s16, q6s16); + + d6u8 = vqrshrun_n_s16(q7s16, 7); + d7u8 = vqrshrun_n_s16(q8s16, 7); + d8u8 = vqrshrun_n_s16(q9s16, 7); + d9u8 = vqrshrun_n_s16(q10s16, 7); + + d18u8 = d22u8; + d19u8 = d23u8; + d20u8 = d24u8; + d21u8 = d25u8; + d22u8 = d26u8; + d23u8 = d27u8; + d24u8 = d28u8; + d25u8 = d29u8; + d26u8 = d30u8; + + vst1_u8(dst_ptr, d6u8); + dst_ptr += dst_pitch; + vst1_u8(dst_ptr, d7u8); + dst_ptr += dst_pitch; + vst1_u8(dst_ptr, d8u8); + dst_ptr += dst_pitch; + vst1_u8(dst_ptr, d9u8); + dst_ptr += dst_pitch; + } + return; + } + + // load first_pass filter + dtmps8 = vld1_s8(vp8_sub_pel_filters[xoffset]); + d0s8 = vdup_lane_s8(dtmps8, 0); + d1s8 = vdup_lane_s8(dtmps8, 1); + d2s8 = vdup_lane_s8(dtmps8, 2); + d3s8 = vdup_lane_s8(dtmps8, 3); + d4s8 = vdup_lane_s8(dtmps8, 4); + d5s8 = vdup_lane_s8(dtmps8, 5); + d0u8 = vreinterpret_u8_s8(vabs_s8(d0s8)); + d1u8 = vreinterpret_u8_s8(vabs_s8(d1s8)); + d2u8 = vreinterpret_u8_s8(vabs_s8(d2s8)); + d3u8 = vreinterpret_u8_s8(vabs_s8(d3s8)); + d4u8 = vreinterpret_u8_s8(vabs_s8(d4s8)); + d5u8 = vreinterpret_u8_s8(vabs_s8(d5s8)); + + // First pass: output_height lines x output_width columns (9x4) + if (yoffset == 0) // firstpass_filter4x4_only + src = src_ptr - 2; + else + src = src_ptr - 2 - (src_pixels_per_line * 2); + + tmpp = tmp; + for (i = 2; i > 0; i--) { + q3u8 = vld1q_u8(src); + src += src_pixels_per_line; + q4u8 = vld1q_u8(src); + src += src_pixels_per_line; + q5u8 = vld1q_u8(src); + src += src_pixels_per_line; + q6u8 = vld1q_u8(src); + src += src_pixels_per_line; + + __builtin_prefetch(src); + __builtin_prefetch(src + src_pixels_per_line); + __builtin_prefetch(src + src_pixels_per_line * 2); + + q7u16 = vmull_u8(vget_low_u8(q3u8), d0u8); + q8u16 = vmull_u8(vget_low_u8(q4u8), d0u8); + q9u16 = vmull_u8(vget_low_u8(q5u8), d0u8); + q10u16 = vmull_u8(vget_low_u8(q6u8), d0u8); + + d28u8 = vext_u8(vget_low_u8(q3u8), vget_high_u8(q3u8), 1); + d29u8 = vext_u8(vget_low_u8(q4u8), vget_high_u8(q4u8), 1); + d30u8 = vext_u8(vget_low_u8(q5u8), vget_high_u8(q5u8), 1); + d31u8 = vext_u8(vget_low_u8(q6u8), vget_high_u8(q6u8), 1); + + q7u16 = vmlsl_u8(q7u16, d28u8, d1u8); + q8u16 = vmlsl_u8(q8u16, d29u8, d1u8); + q9u16 = vmlsl_u8(q9u16, d30u8, d1u8); + q10u16 = vmlsl_u8(q10u16, d31u8, d1u8); + + d28u8 = vext_u8(vget_low_u8(q3u8), vget_high_u8(q3u8), 4); + d29u8 = vext_u8(vget_low_u8(q4u8), vget_high_u8(q4u8), 4); + d30u8 = vext_u8(vget_low_u8(q5u8), vget_high_u8(q5u8), 4); + d31u8 = vext_u8(vget_low_u8(q6u8), vget_high_u8(q6u8), 4); + + q7u16 = vmlsl_u8(q7u16, d28u8, d4u8); + q8u16 = vmlsl_u8(q8u16, d29u8, d4u8); + q9u16 = vmlsl_u8(q9u16, d30u8, d4u8); + q10u16 = vmlsl_u8(q10u16, d31u8, d4u8); + + d28u8 = vext_u8(vget_low_u8(q3u8), vget_high_u8(q3u8), 2); + d29u8 = vext_u8(vget_low_u8(q4u8), vget_high_u8(q4u8), 2); + d30u8 = vext_u8(vget_low_u8(q5u8), vget_high_u8(q5u8), 2); + d31u8 = vext_u8(vget_low_u8(q6u8), vget_high_u8(q6u8), 2); + + q7u16 = vmlal_u8(q7u16, d28u8, d2u8); + q8u16 = vmlal_u8(q8u16, d29u8, d2u8); + q9u16 = vmlal_u8(q9u16, d30u8, d2u8); + q10u16 = vmlal_u8(q10u16, d31u8, d2u8); + + d28u8 = vext_u8(vget_low_u8(q3u8), vget_high_u8(q3u8), 5); + d29u8 = vext_u8(vget_low_u8(q4u8), vget_high_u8(q4u8), 5); + d30u8 = vext_u8(vget_low_u8(q5u8), vget_high_u8(q5u8), 5); + d31u8 = vext_u8(vget_low_u8(q6u8), vget_high_u8(q6u8), 5); + + q7u16 = vmlal_u8(q7u16, d28u8, d5u8); + q8u16 = vmlal_u8(q8u16, d29u8, d5u8); + q9u16 = vmlal_u8(q9u16, d30u8, d5u8); + q10u16 = vmlal_u8(q10u16, d31u8, d5u8); + + d28u8 = vext_u8(vget_low_u8(q3u8), vget_high_u8(q3u8), 3); + d29u8 = vext_u8(vget_low_u8(q4u8), vget_high_u8(q4u8), 3); + d30u8 = vext_u8(vget_low_u8(q5u8), vget_high_u8(q5u8), 3); + d31u8 = vext_u8(vget_low_u8(q6u8), vget_high_u8(q6u8), 3); + + q3u16 = vmull_u8(d28u8, d3u8); + q4u16 = vmull_u8(d29u8, d3u8); + q5u16 = vmull_u8(d30u8, d3u8); + q6u16 = vmull_u8(d31u8, d3u8); + + q3s16 = vreinterpretq_s16_u16(q3u16); + q4s16 = vreinterpretq_s16_u16(q4u16); + q5s16 = vreinterpretq_s16_u16(q5u16); + q6s16 = vreinterpretq_s16_u16(q6u16); + q7s16 = vreinterpretq_s16_u16(q7u16); + q8s16 = vreinterpretq_s16_u16(q8u16); + q9s16 = vreinterpretq_s16_u16(q9u16); + q10s16 = vreinterpretq_s16_u16(q10u16); + + q7s16 = vqaddq_s16(q7s16, q3s16); + q8s16 = vqaddq_s16(q8s16, q4s16); + q9s16 = vqaddq_s16(q9s16, q5s16); + q10s16 = vqaddq_s16(q10s16, q6s16); + + d22u8 = vqrshrun_n_s16(q7s16, 7); + d23u8 = vqrshrun_n_s16(q8s16, 7); + d24u8 = vqrshrun_n_s16(q9s16, 7); + d25u8 = vqrshrun_n_s16(q10s16, 7); + + if (yoffset == 0) { // firstpass_filter8x4_only + vst1_u8(dst_ptr, d22u8); + dst_ptr += dst_pitch; + vst1_u8(dst_ptr, d23u8); + dst_ptr += dst_pitch; + vst1_u8(dst_ptr, d24u8); + dst_ptr += dst_pitch; + vst1_u8(dst_ptr, d25u8); + dst_ptr += dst_pitch; + } else { + vst1_u8(tmpp, d22u8); + tmpp += 8; + vst1_u8(tmpp, d23u8); + tmpp += 8; + vst1_u8(tmpp, d24u8); + tmpp += 8; + vst1_u8(tmpp, d25u8); + tmpp += 8; + } + } + if (yoffset == 0) return; + + // First Pass on rest 5-line data + q3u8 = vld1q_u8(src); + src += src_pixels_per_line; + q4u8 = vld1q_u8(src); + src += src_pixels_per_line; + q5u8 = vld1q_u8(src); + src += src_pixels_per_line; + q6u8 = vld1q_u8(src); + src += src_pixels_per_line; + q7u8 = vld1q_u8(src); + + q8u16 = vmull_u8(vget_low_u8(q3u8), d0u8); + q9u16 = vmull_u8(vget_low_u8(q4u8), d0u8); + q10u16 = vmull_u8(vget_low_u8(q5u8), d0u8); + q11u16 = vmull_u8(vget_low_u8(q6u8), d0u8); + q12u16 = vmull_u8(vget_low_u8(q7u8), d0u8); + + d27u8 = vext_u8(vget_low_u8(q3u8), vget_high_u8(q3u8), 1); + d28u8 = vext_u8(vget_low_u8(q4u8), vget_high_u8(q4u8), 1); + d29u8 = vext_u8(vget_low_u8(q5u8), vget_high_u8(q5u8), 1); + d30u8 = vext_u8(vget_low_u8(q6u8), vget_high_u8(q6u8), 1); + d31u8 = vext_u8(vget_low_u8(q7u8), vget_high_u8(q7u8), 1); + + q8u16 = vmlsl_u8(q8u16, d27u8, d1u8); + q9u16 = vmlsl_u8(q9u16, d28u8, d1u8); + q10u16 = vmlsl_u8(q10u16, d29u8, d1u8); + q11u16 = vmlsl_u8(q11u16, d30u8, d1u8); + q12u16 = vmlsl_u8(q12u16, d31u8, d1u8); + + d27u8 = vext_u8(vget_low_u8(q3u8), vget_high_u8(q3u8), 4); + d28u8 = vext_u8(vget_low_u8(q4u8), vget_high_u8(q4u8), 4); + d29u8 = vext_u8(vget_low_u8(q5u8), vget_high_u8(q5u8), 4); + d30u8 = vext_u8(vget_low_u8(q6u8), vget_high_u8(q6u8), 4); + d31u8 = vext_u8(vget_low_u8(q7u8), vget_high_u8(q7u8), 4); + + q8u16 = vmlsl_u8(q8u16, d27u8, d4u8); + q9u16 = vmlsl_u8(q9u16, d28u8, d4u8); + q10u16 = vmlsl_u8(q10u16, d29u8, d4u8); + q11u16 = vmlsl_u8(q11u16, d30u8, d4u8); + q12u16 = vmlsl_u8(q12u16, d31u8, d4u8); + + d27u8 = vext_u8(vget_low_u8(q3u8), vget_high_u8(q3u8), 2); + d28u8 = vext_u8(vget_low_u8(q4u8), vget_high_u8(q4u8), 2); + d29u8 = vext_u8(vget_low_u8(q5u8), vget_high_u8(q5u8), 2); + d30u8 = vext_u8(vget_low_u8(q6u8), vget_high_u8(q6u8), 2); + d31u8 = vext_u8(vget_low_u8(q7u8), vget_high_u8(q7u8), 2); + + q8u16 = vmlal_u8(q8u16, d27u8, d2u8); + q9u16 = vmlal_u8(q9u16, d28u8, d2u8); + q10u16 = vmlal_u8(q10u16, d29u8, d2u8); + q11u16 = vmlal_u8(q11u16, d30u8, d2u8); + q12u16 = vmlal_u8(q12u16, d31u8, d2u8); + + d27u8 = vext_u8(vget_low_u8(q3u8), vget_high_u8(q3u8), 5); + d28u8 = vext_u8(vget_low_u8(q4u8), vget_high_u8(q4u8), 5); + d29u8 = vext_u8(vget_low_u8(q5u8), vget_high_u8(q5u8), 5); + d30u8 = vext_u8(vget_low_u8(q6u8), vget_high_u8(q6u8), 5); + d31u8 = vext_u8(vget_low_u8(q7u8), vget_high_u8(q7u8), 5); + + q8u16 = vmlal_u8(q8u16, d27u8, d5u8); + q9u16 = vmlal_u8(q9u16, d28u8, d5u8); + q10u16 = vmlal_u8(q10u16, d29u8, d5u8); + q11u16 = vmlal_u8(q11u16, d30u8, d5u8); + q12u16 = vmlal_u8(q12u16, d31u8, d5u8); + + d27u8 = vext_u8(vget_low_u8(q3u8), vget_high_u8(q3u8), 3); + d28u8 = vext_u8(vget_low_u8(q4u8), vget_high_u8(q4u8), 3); + d29u8 = vext_u8(vget_low_u8(q5u8), vget_high_u8(q5u8), 3); + d30u8 = vext_u8(vget_low_u8(q6u8), vget_high_u8(q6u8), 3); + d31u8 = vext_u8(vget_low_u8(q7u8), vget_high_u8(q7u8), 3); + + q3u16 = vmull_u8(d27u8, d3u8); + q4u16 = vmull_u8(d28u8, d3u8); + q5u16 = vmull_u8(d29u8, d3u8); + q6u16 = vmull_u8(d30u8, d3u8); + q7u16 = vmull_u8(d31u8, d3u8); + + q3s16 = vreinterpretq_s16_u16(q3u16); + q4s16 = vreinterpretq_s16_u16(q4u16); + q5s16 = vreinterpretq_s16_u16(q5u16); + q6s16 = vreinterpretq_s16_u16(q6u16); + q7s16 = vreinterpretq_s16_u16(q7u16); + q8s16 = vreinterpretq_s16_u16(q8u16); + q9s16 = vreinterpretq_s16_u16(q9u16); + q10s16 = vreinterpretq_s16_u16(q10u16); + q11s16 = vreinterpretq_s16_u16(q11u16); + q12s16 = vreinterpretq_s16_u16(q12u16); + + q8s16 = vqaddq_s16(q8s16, q3s16); + q9s16 = vqaddq_s16(q9s16, q4s16); + q10s16 = vqaddq_s16(q10s16, q5s16); + q11s16 = vqaddq_s16(q11s16, q6s16); + q12s16 = vqaddq_s16(q12s16, q7s16); + + d26u8 = vqrshrun_n_s16(q8s16, 7); + d27u8 = vqrshrun_n_s16(q9s16, 7); + d28u8 = vqrshrun_n_s16(q10s16, 7); + d29u8 = vqrshrun_n_s16(q11s16, 7); + d30u8 = vqrshrun_n_s16(q12s16, 7); + + // Second pass: 8x8 + dtmps8 = vld1_s8(vp8_sub_pel_filters[yoffset]); + d0s8 = vdup_lane_s8(dtmps8, 0); + d1s8 = vdup_lane_s8(dtmps8, 1); + d2s8 = vdup_lane_s8(dtmps8, 2); + d3s8 = vdup_lane_s8(dtmps8, 3); + d4s8 = vdup_lane_s8(dtmps8, 4); + d5s8 = vdup_lane_s8(dtmps8, 5); + d0u8 = vreinterpret_u8_s8(vabs_s8(d0s8)); + d1u8 = vreinterpret_u8_s8(vabs_s8(d1s8)); + d2u8 = vreinterpret_u8_s8(vabs_s8(d2s8)); + d3u8 = vreinterpret_u8_s8(vabs_s8(d3s8)); + d4u8 = vreinterpret_u8_s8(vabs_s8(d4s8)); + d5u8 = vreinterpret_u8_s8(vabs_s8(d5s8)); + + tmpp = tmp; + q9u8 = vld1q_u8(tmpp); + tmpp += 16; + q10u8 = vld1q_u8(tmpp); + tmpp += 16; + q11u8 = vld1q_u8(tmpp); + tmpp += 16; + q12u8 = vld1q_u8(tmpp); + + d18u8 = vget_low_u8(q9u8); + d19u8 = vget_high_u8(q9u8); + d20u8 = vget_low_u8(q10u8); + d21u8 = vget_high_u8(q10u8); + d22u8 = vget_low_u8(q11u8); + d23u8 = vget_high_u8(q11u8); + d24u8 = vget_low_u8(q12u8); + d25u8 = vget_high_u8(q12u8); + + for (i = 2; i > 0; i--) { + q3u16 = vmull_u8(d18u8, d0u8); + q4u16 = vmull_u8(d19u8, d0u8); + q5u16 = vmull_u8(d20u8, d0u8); + q6u16 = vmull_u8(d21u8, d0u8); + + q3u16 = vmlsl_u8(q3u16, d19u8, d1u8); + q4u16 = vmlsl_u8(q4u16, d20u8, d1u8); + q5u16 = vmlsl_u8(q5u16, d21u8, d1u8); + q6u16 = vmlsl_u8(q6u16, d22u8, d1u8); + + q3u16 = vmlsl_u8(q3u16, d22u8, d4u8); + q4u16 = vmlsl_u8(q4u16, d23u8, d4u8); + q5u16 = vmlsl_u8(q5u16, d24u8, d4u8); + q6u16 = vmlsl_u8(q6u16, d25u8, d4u8); + + q3u16 = vmlal_u8(q3u16, d20u8, d2u8); + q4u16 = vmlal_u8(q4u16, d21u8, d2u8); + q5u16 = vmlal_u8(q5u16, d22u8, d2u8); + q6u16 = vmlal_u8(q6u16, d23u8, d2u8); + + q3u16 = vmlal_u8(q3u16, d23u8, d5u8); + q4u16 = vmlal_u8(q4u16, d24u8, d5u8); + q5u16 = vmlal_u8(q5u16, d25u8, d5u8); + q6u16 = vmlal_u8(q6u16, d26u8, d5u8); + + q7u16 = vmull_u8(d21u8, d3u8); + q8u16 = vmull_u8(d22u8, d3u8); + q9u16 = vmull_u8(d23u8, d3u8); + q10u16 = vmull_u8(d24u8, d3u8); + + q3s16 = vreinterpretq_s16_u16(q3u16); + q4s16 = vreinterpretq_s16_u16(q4u16); + q5s16 = vreinterpretq_s16_u16(q5u16); + q6s16 = vreinterpretq_s16_u16(q6u16); + q7s16 = vreinterpretq_s16_u16(q7u16); + q8s16 = vreinterpretq_s16_u16(q8u16); + q9s16 = vreinterpretq_s16_u16(q9u16); + q10s16 = vreinterpretq_s16_u16(q10u16); + + q7s16 = vqaddq_s16(q7s16, q3s16); + q8s16 = vqaddq_s16(q8s16, q4s16); + q9s16 = vqaddq_s16(q9s16, q5s16); + q10s16 = vqaddq_s16(q10s16, q6s16); + + d6u8 = vqrshrun_n_s16(q7s16, 7); + d7u8 = vqrshrun_n_s16(q8s16, 7); + d8u8 = vqrshrun_n_s16(q9s16, 7); + d9u8 = vqrshrun_n_s16(q10s16, 7); + + d18u8 = d22u8; + d19u8 = d23u8; + d20u8 = d24u8; + d21u8 = d25u8; + d22u8 = d26u8; + d23u8 = d27u8; + d24u8 = d28u8; + d25u8 = d29u8; + d26u8 = d30u8; + + vst1_u8(dst_ptr, d6u8); + dst_ptr += dst_pitch; + vst1_u8(dst_ptr, d7u8); + dst_ptr += dst_pitch; + vst1_u8(dst_ptr, d8u8); + dst_ptr += dst_pitch; + vst1_u8(dst_ptr, d9u8); + dst_ptr += dst_pitch; + } + return; +} + +void vp8_sixtap_predict16x16_neon(unsigned char *src_ptr, + int src_pixels_per_line, int xoffset, + int yoffset, unsigned char *dst_ptr, + int dst_pitch) { + unsigned char *src, *src_tmp, *dst, *tmpp; + unsigned char tmp[336]; + int i, j; + uint8x8_t d0u8, d1u8, d2u8, d3u8, d4u8, d5u8, d6u8, d7u8, d8u8, d9u8; + uint8x8_t d10u8, d11u8, d12u8, d13u8, d14u8, d15u8, d18u8, d19u8; + uint8x8_t d20u8, d21u8, d22u8, d23u8, d24u8, d25u8, d26u8, d27u8; + uint8x8_t d28u8, d29u8, d30u8, d31u8; + int8x8_t dtmps8, d0s8, d1s8, d2s8, d3s8, d4s8, d5s8; + uint8x16_t q3u8, q4u8; + uint16x8_t q3u16, q4u16, q5u16, q6u16, q7u16, q8u16, q9u16, q10u16; + uint16x8_t q11u16, q12u16, q13u16, q15u16; + int16x8_t q3s16, q4s16, q5s16, q6s16, q7s16, q8s16, q9s16, q10s16; + int16x8_t q11s16, q12s16, q13s16, q15s16; + + if (xoffset == 0) { // secondpass_filter8x8_only + // load second_pass filter + dtmps8 = vld1_s8(vp8_sub_pel_filters[yoffset]); + d0s8 = vdup_lane_s8(dtmps8, 0); + d1s8 = vdup_lane_s8(dtmps8, 1); + d2s8 = vdup_lane_s8(dtmps8, 2); + d3s8 = vdup_lane_s8(dtmps8, 3); + d4s8 = vdup_lane_s8(dtmps8, 4); + d5s8 = vdup_lane_s8(dtmps8, 5); + d0u8 = vreinterpret_u8_s8(vabs_s8(d0s8)); + d1u8 = vreinterpret_u8_s8(vabs_s8(d1s8)); + d2u8 = vreinterpret_u8_s8(vabs_s8(d2s8)); + d3u8 = vreinterpret_u8_s8(vabs_s8(d3s8)); + d4u8 = vreinterpret_u8_s8(vabs_s8(d4s8)); + d5u8 = vreinterpret_u8_s8(vabs_s8(d5s8)); + + // load src data + src_tmp = src_ptr - src_pixels_per_line * 2; + for (i = 0; i < 2; ++i) { + src = src_tmp + i * 8; + dst = dst_ptr + i * 8; + d18u8 = vld1_u8(src); + src += src_pixels_per_line; + d19u8 = vld1_u8(src); + src += src_pixels_per_line; + d20u8 = vld1_u8(src); + src += src_pixels_per_line; + d21u8 = vld1_u8(src); + src += src_pixels_per_line; + d22u8 = vld1_u8(src); + src += src_pixels_per_line; + for (j = 0; j < 4; ++j) { + d23u8 = vld1_u8(src); + src += src_pixels_per_line; + d24u8 = vld1_u8(src); + src += src_pixels_per_line; + d25u8 = vld1_u8(src); + src += src_pixels_per_line; + d26u8 = vld1_u8(src); + src += src_pixels_per_line; + + q3u16 = vmull_u8(d18u8, d0u8); + q4u16 = vmull_u8(d19u8, d0u8); + q5u16 = vmull_u8(d20u8, d0u8); + q6u16 = vmull_u8(d21u8, d0u8); + + q3u16 = vmlsl_u8(q3u16, d19u8, d1u8); + q4u16 = vmlsl_u8(q4u16, d20u8, d1u8); + q5u16 = vmlsl_u8(q5u16, d21u8, d1u8); + q6u16 = vmlsl_u8(q6u16, d22u8, d1u8); + + q3u16 = vmlsl_u8(q3u16, d22u8, d4u8); + q4u16 = vmlsl_u8(q4u16, d23u8, d4u8); + q5u16 = vmlsl_u8(q5u16, d24u8, d4u8); + q6u16 = vmlsl_u8(q6u16, d25u8, d4u8); + + q3u16 = vmlal_u8(q3u16, d20u8, d2u8); + q4u16 = vmlal_u8(q4u16, d21u8, d2u8); + q5u16 = vmlal_u8(q5u16, d22u8, d2u8); + q6u16 = vmlal_u8(q6u16, d23u8, d2u8); + + q3u16 = vmlal_u8(q3u16, d23u8, d5u8); + q4u16 = vmlal_u8(q4u16, d24u8, d5u8); + q5u16 = vmlal_u8(q5u16, d25u8, d5u8); + q6u16 = vmlal_u8(q6u16, d26u8, d5u8); + + q7u16 = vmull_u8(d21u8, d3u8); + q8u16 = vmull_u8(d22u8, d3u8); + q9u16 = vmull_u8(d23u8, d3u8); + q10u16 = vmull_u8(d24u8, d3u8); + + q3s16 = vreinterpretq_s16_u16(q3u16); + q4s16 = vreinterpretq_s16_u16(q4u16); + q5s16 = vreinterpretq_s16_u16(q5u16); + q6s16 = vreinterpretq_s16_u16(q6u16); + q7s16 = vreinterpretq_s16_u16(q7u16); + q8s16 = vreinterpretq_s16_u16(q8u16); + q9s16 = vreinterpretq_s16_u16(q9u16); + q10s16 = vreinterpretq_s16_u16(q10u16); + + q7s16 = vqaddq_s16(q7s16, q3s16); + q8s16 = vqaddq_s16(q8s16, q4s16); + q9s16 = vqaddq_s16(q9s16, q5s16); + q10s16 = vqaddq_s16(q10s16, q6s16); + + d6u8 = vqrshrun_n_s16(q7s16, 7); + d7u8 = vqrshrun_n_s16(q8s16, 7); + d8u8 = vqrshrun_n_s16(q9s16, 7); + d9u8 = vqrshrun_n_s16(q10s16, 7); + + d18u8 = d22u8; + d19u8 = d23u8; + d20u8 = d24u8; + d21u8 = d25u8; + d22u8 = d26u8; + + vst1_u8(dst, d6u8); + dst += dst_pitch; + vst1_u8(dst, d7u8); + dst += dst_pitch; + vst1_u8(dst, d8u8); + dst += dst_pitch; + vst1_u8(dst, d9u8); + dst += dst_pitch; + } + } + return; + } + + // load first_pass filter + dtmps8 = vld1_s8(vp8_sub_pel_filters[xoffset]); + d0s8 = vdup_lane_s8(dtmps8, 0); + d1s8 = vdup_lane_s8(dtmps8, 1); + d2s8 = vdup_lane_s8(dtmps8, 2); + d3s8 = vdup_lane_s8(dtmps8, 3); + d4s8 = vdup_lane_s8(dtmps8, 4); + d5s8 = vdup_lane_s8(dtmps8, 5); + d0u8 = vreinterpret_u8_s8(vabs_s8(d0s8)); + d1u8 = vreinterpret_u8_s8(vabs_s8(d1s8)); + d2u8 = vreinterpret_u8_s8(vabs_s8(d2s8)); + d3u8 = vreinterpret_u8_s8(vabs_s8(d3s8)); + d4u8 = vreinterpret_u8_s8(vabs_s8(d4s8)); + d5u8 = vreinterpret_u8_s8(vabs_s8(d5s8)); + + // First pass: output_height lines x output_width columns (9x4) + if (yoffset == 0) { // firstpass_filter4x4_only + src = src_ptr - 2; + dst = dst_ptr; + for (i = 0; i < 8; ++i) { + d6u8 = vld1_u8(src); + d7u8 = vld1_u8(src + 8); + d8u8 = vld1_u8(src + 16); + src += src_pixels_per_line; + d9u8 = vld1_u8(src); + d10u8 = vld1_u8(src + 8); + d11u8 = vld1_u8(src + 16); + src += src_pixels_per_line; + + __builtin_prefetch(src); + __builtin_prefetch(src + src_pixels_per_line); + + q6u16 = vmull_u8(d6u8, d0u8); + q7u16 = vmull_u8(d7u8, d0u8); + q8u16 = vmull_u8(d9u8, d0u8); + q9u16 = vmull_u8(d10u8, d0u8); + + d20u8 = vext_u8(d6u8, d7u8, 1); + d21u8 = vext_u8(d9u8, d10u8, 1); + d22u8 = vext_u8(d7u8, d8u8, 1); + d23u8 = vext_u8(d10u8, d11u8, 1); + d24u8 = vext_u8(d6u8, d7u8, 4); + d25u8 = vext_u8(d9u8, d10u8, 4); + d26u8 = vext_u8(d7u8, d8u8, 4); + d27u8 = vext_u8(d10u8, d11u8, 4); + d28u8 = vext_u8(d6u8, d7u8, 5); + d29u8 = vext_u8(d9u8, d10u8, 5); + + q6u16 = vmlsl_u8(q6u16, d20u8, d1u8); + q8u16 = vmlsl_u8(q8u16, d21u8, d1u8); + q7u16 = vmlsl_u8(q7u16, d22u8, d1u8); + q9u16 = vmlsl_u8(q9u16, d23u8, d1u8); + q6u16 = vmlsl_u8(q6u16, d24u8, d4u8); + q8u16 = vmlsl_u8(q8u16, d25u8, d4u8); + q7u16 = vmlsl_u8(q7u16, d26u8, d4u8); + q9u16 = vmlsl_u8(q9u16, d27u8, d4u8); + q6u16 = vmlal_u8(q6u16, d28u8, d5u8); + q8u16 = vmlal_u8(q8u16, d29u8, d5u8); + + d20u8 = vext_u8(d7u8, d8u8, 5); + d21u8 = vext_u8(d10u8, d11u8, 5); + d22u8 = vext_u8(d6u8, d7u8, 2); + d23u8 = vext_u8(d9u8, d10u8, 2); + d24u8 = vext_u8(d7u8, d8u8, 2); + d25u8 = vext_u8(d10u8, d11u8, 2); + d26u8 = vext_u8(d6u8, d7u8, 3); + d27u8 = vext_u8(d9u8, d10u8, 3); + d28u8 = vext_u8(d7u8, d8u8, 3); + d29u8 = vext_u8(d10u8, d11u8, 3); + + q7u16 = vmlal_u8(q7u16, d20u8, d5u8); + q9u16 = vmlal_u8(q9u16, d21u8, d5u8); + q6u16 = vmlal_u8(q6u16, d22u8, d2u8); + q8u16 = vmlal_u8(q8u16, d23u8, d2u8); + q7u16 = vmlal_u8(q7u16, d24u8, d2u8); + q9u16 = vmlal_u8(q9u16, d25u8, d2u8); + + q10u16 = vmull_u8(d26u8, d3u8); + q11u16 = vmull_u8(d27u8, d3u8); + q12u16 = vmull_u8(d28u8, d3u8); + q15u16 = vmull_u8(d29u8, d3u8); + + q6s16 = vreinterpretq_s16_u16(q6u16); + q7s16 = vreinterpretq_s16_u16(q7u16); + q8s16 = vreinterpretq_s16_u16(q8u16); + q9s16 = vreinterpretq_s16_u16(q9u16); + q10s16 = vreinterpretq_s16_u16(q10u16); + q11s16 = vreinterpretq_s16_u16(q11u16); + q12s16 = vreinterpretq_s16_u16(q12u16); + q15s16 = vreinterpretq_s16_u16(q15u16); + + q6s16 = vqaddq_s16(q6s16, q10s16); + q8s16 = vqaddq_s16(q8s16, q11s16); + q7s16 = vqaddq_s16(q7s16, q12s16); + q9s16 = vqaddq_s16(q9s16, q15s16); + + d6u8 = vqrshrun_n_s16(q6s16, 7); + d7u8 = vqrshrun_n_s16(q7s16, 7); + d8u8 = vqrshrun_n_s16(q8s16, 7); + d9u8 = vqrshrun_n_s16(q9s16, 7); + + q3u8 = vcombine_u8(d6u8, d7u8); + q4u8 = vcombine_u8(d8u8, d9u8); + vst1q_u8(dst, q3u8); + dst += dst_pitch; + vst1q_u8(dst, q4u8); + dst += dst_pitch; + } + return; + } + + src = src_ptr - 2 - src_pixels_per_line * 2; + tmpp = tmp; + for (i = 0; i < 7; ++i) { + d6u8 = vld1_u8(src); + d7u8 = vld1_u8(src + 8); + d8u8 = vld1_u8(src + 16); + src += src_pixels_per_line; + d9u8 = vld1_u8(src); + d10u8 = vld1_u8(src + 8); + d11u8 = vld1_u8(src + 16); + src += src_pixels_per_line; + d12u8 = vld1_u8(src); + d13u8 = vld1_u8(src + 8); + d14u8 = vld1_u8(src + 16); + src += src_pixels_per_line; + + __builtin_prefetch(src); + __builtin_prefetch(src + src_pixels_per_line); + __builtin_prefetch(src + src_pixels_per_line * 2); + + q8u16 = vmull_u8(d6u8, d0u8); + q9u16 = vmull_u8(d7u8, d0u8); + q10u16 = vmull_u8(d9u8, d0u8); + q11u16 = vmull_u8(d10u8, d0u8); + q12u16 = vmull_u8(d12u8, d0u8); + q13u16 = vmull_u8(d13u8, d0u8); + + d28u8 = vext_u8(d6u8, d7u8, 1); + d29u8 = vext_u8(d9u8, d10u8, 1); + d30u8 = vext_u8(d12u8, d13u8, 1); + q8u16 = vmlsl_u8(q8u16, d28u8, d1u8); + q10u16 = vmlsl_u8(q10u16, d29u8, d1u8); + q12u16 = vmlsl_u8(q12u16, d30u8, d1u8); + d28u8 = vext_u8(d7u8, d8u8, 1); + d29u8 = vext_u8(d10u8, d11u8, 1); + d30u8 = vext_u8(d13u8, d14u8, 1); + q9u16 = vmlsl_u8(q9u16, d28u8, d1u8); + q11u16 = vmlsl_u8(q11u16, d29u8, d1u8); + q13u16 = vmlsl_u8(q13u16, d30u8, d1u8); + + d28u8 = vext_u8(d6u8, d7u8, 4); + d29u8 = vext_u8(d9u8, d10u8, 4); + d30u8 = vext_u8(d12u8, d13u8, 4); + q8u16 = vmlsl_u8(q8u16, d28u8, d4u8); + q10u16 = vmlsl_u8(q10u16, d29u8, d4u8); + q12u16 = vmlsl_u8(q12u16, d30u8, d4u8); + d28u8 = vext_u8(d7u8, d8u8, 4); + d29u8 = vext_u8(d10u8, d11u8, 4); + d30u8 = vext_u8(d13u8, d14u8, 4); + q9u16 = vmlsl_u8(q9u16, d28u8, d4u8); + q11u16 = vmlsl_u8(q11u16, d29u8, d4u8); + q13u16 = vmlsl_u8(q13u16, d30u8, d4u8); + + d28u8 = vext_u8(d6u8, d7u8, 5); + d29u8 = vext_u8(d9u8, d10u8, 5); + d30u8 = vext_u8(d12u8, d13u8, 5); + q8u16 = vmlal_u8(q8u16, d28u8, d5u8); + q10u16 = vmlal_u8(q10u16, d29u8, d5u8); + q12u16 = vmlal_u8(q12u16, d30u8, d5u8); + d28u8 = vext_u8(d7u8, d8u8, 5); + d29u8 = vext_u8(d10u8, d11u8, 5); + d30u8 = vext_u8(d13u8, d14u8, 5); + q9u16 = vmlal_u8(q9u16, d28u8, d5u8); + q11u16 = vmlal_u8(q11u16, d29u8, d5u8); + q13u16 = vmlal_u8(q13u16, d30u8, d5u8); + + d28u8 = vext_u8(d6u8, d7u8, 2); + d29u8 = vext_u8(d9u8, d10u8, 2); + d30u8 = vext_u8(d12u8, d13u8, 2); + q8u16 = vmlal_u8(q8u16, d28u8, d2u8); + q10u16 = vmlal_u8(q10u16, d29u8, d2u8); + q12u16 = vmlal_u8(q12u16, d30u8, d2u8); + d28u8 = vext_u8(d7u8, d8u8, 2); + d29u8 = vext_u8(d10u8, d11u8, 2); + d30u8 = vext_u8(d13u8, d14u8, 2); + q9u16 = vmlal_u8(q9u16, d28u8, d2u8); + q11u16 = vmlal_u8(q11u16, d29u8, d2u8); + q13u16 = vmlal_u8(q13u16, d30u8, d2u8); + + d28u8 = vext_u8(d6u8, d7u8, 3); + d29u8 = vext_u8(d9u8, d10u8, 3); + d30u8 = vext_u8(d12u8, d13u8, 3); + d15u8 = vext_u8(d7u8, d8u8, 3); + d31u8 = vext_u8(d10u8, d11u8, 3); + d6u8 = vext_u8(d13u8, d14u8, 3); + q4u16 = vmull_u8(d28u8, d3u8); + q5u16 = vmull_u8(d29u8, d3u8); + q6u16 = vmull_u8(d30u8, d3u8); + q4s16 = vreinterpretq_s16_u16(q4u16); + q5s16 = vreinterpretq_s16_u16(q5u16); + q6s16 = vreinterpretq_s16_u16(q6u16); + q8s16 = vreinterpretq_s16_u16(q8u16); + q10s16 = vreinterpretq_s16_u16(q10u16); + q12s16 = vreinterpretq_s16_u16(q12u16); + q8s16 = vqaddq_s16(q8s16, q4s16); + q10s16 = vqaddq_s16(q10s16, q5s16); + q12s16 = vqaddq_s16(q12s16, q6s16); + + q6u16 = vmull_u8(d15u8, d3u8); + q7u16 = vmull_u8(d31u8, d3u8); + q3u16 = vmull_u8(d6u8, d3u8); + q3s16 = vreinterpretq_s16_u16(q3u16); + q6s16 = vreinterpretq_s16_u16(q6u16); + q7s16 = vreinterpretq_s16_u16(q7u16); + q9s16 = vreinterpretq_s16_u16(q9u16); + q11s16 = vreinterpretq_s16_u16(q11u16); + q13s16 = vreinterpretq_s16_u16(q13u16); + q9s16 = vqaddq_s16(q9s16, q6s16); + q11s16 = vqaddq_s16(q11s16, q7s16); + q13s16 = vqaddq_s16(q13s16, q3s16); + + d6u8 = vqrshrun_n_s16(q8s16, 7); + d7u8 = vqrshrun_n_s16(q9s16, 7); + d8u8 = vqrshrun_n_s16(q10s16, 7); + d9u8 = vqrshrun_n_s16(q11s16, 7); + d10u8 = vqrshrun_n_s16(q12s16, 7); + d11u8 = vqrshrun_n_s16(q13s16, 7); + + vst1_u8(tmpp, d6u8); + tmpp += 8; + vst1_u8(tmpp, d7u8); + tmpp += 8; + vst1_u8(tmpp, d8u8); + tmpp += 8; + vst1_u8(tmpp, d9u8); + tmpp += 8; + vst1_u8(tmpp, d10u8); + tmpp += 8; + vst1_u8(tmpp, d11u8); + tmpp += 8; + } + + // Second pass: 16x16 + dtmps8 = vld1_s8(vp8_sub_pel_filters[yoffset]); + d0s8 = vdup_lane_s8(dtmps8, 0); + d1s8 = vdup_lane_s8(dtmps8, 1); + d2s8 = vdup_lane_s8(dtmps8, 2); + d3s8 = vdup_lane_s8(dtmps8, 3); + d4s8 = vdup_lane_s8(dtmps8, 4); + d5s8 = vdup_lane_s8(dtmps8, 5); + d0u8 = vreinterpret_u8_s8(vabs_s8(d0s8)); + d1u8 = vreinterpret_u8_s8(vabs_s8(d1s8)); + d2u8 = vreinterpret_u8_s8(vabs_s8(d2s8)); + d3u8 = vreinterpret_u8_s8(vabs_s8(d3s8)); + d4u8 = vreinterpret_u8_s8(vabs_s8(d4s8)); + d5u8 = vreinterpret_u8_s8(vabs_s8(d5s8)); + + for (i = 0; i < 2; ++i) { + dst = dst_ptr + 8 * i; + tmpp = tmp + 8 * i; + d18u8 = vld1_u8(tmpp); + tmpp += 16; + d19u8 = vld1_u8(tmpp); + tmpp += 16; + d20u8 = vld1_u8(tmpp); + tmpp += 16; + d21u8 = vld1_u8(tmpp); + tmpp += 16; + d22u8 = vld1_u8(tmpp); + tmpp += 16; + for (j = 0; j < 4; ++j) { + d23u8 = vld1_u8(tmpp); + tmpp += 16; + d24u8 = vld1_u8(tmpp); + tmpp += 16; + d25u8 = vld1_u8(tmpp); + tmpp += 16; + d26u8 = vld1_u8(tmpp); + tmpp += 16; + + q3u16 = vmull_u8(d18u8, d0u8); + q4u16 = vmull_u8(d19u8, d0u8); + q5u16 = vmull_u8(d20u8, d0u8); + q6u16 = vmull_u8(d21u8, d0u8); + + q3u16 = vmlsl_u8(q3u16, d19u8, d1u8); + q4u16 = vmlsl_u8(q4u16, d20u8, d1u8); + q5u16 = vmlsl_u8(q5u16, d21u8, d1u8); + q6u16 = vmlsl_u8(q6u16, d22u8, d1u8); + + q3u16 = vmlsl_u8(q3u16, d22u8, d4u8); + q4u16 = vmlsl_u8(q4u16, d23u8, d4u8); + q5u16 = vmlsl_u8(q5u16, d24u8, d4u8); + q6u16 = vmlsl_u8(q6u16, d25u8, d4u8); + + q3u16 = vmlal_u8(q3u16, d20u8, d2u8); + q4u16 = vmlal_u8(q4u16, d21u8, d2u8); + q5u16 = vmlal_u8(q5u16, d22u8, d2u8); + q6u16 = vmlal_u8(q6u16, d23u8, d2u8); + + q3u16 = vmlal_u8(q3u16, d23u8, d5u8); + q4u16 = vmlal_u8(q4u16, d24u8, d5u8); + q5u16 = vmlal_u8(q5u16, d25u8, d5u8); + q6u16 = vmlal_u8(q6u16, d26u8, d5u8); + + q7u16 = vmull_u8(d21u8, d3u8); + q8u16 = vmull_u8(d22u8, d3u8); + q9u16 = vmull_u8(d23u8, d3u8); + q10u16 = vmull_u8(d24u8, d3u8); + + q3s16 = vreinterpretq_s16_u16(q3u16); + q4s16 = vreinterpretq_s16_u16(q4u16); + q5s16 = vreinterpretq_s16_u16(q5u16); + q6s16 = vreinterpretq_s16_u16(q6u16); + q7s16 = vreinterpretq_s16_u16(q7u16); + q8s16 = vreinterpretq_s16_u16(q8u16); + q9s16 = vreinterpretq_s16_u16(q9u16); + q10s16 = vreinterpretq_s16_u16(q10u16); + + q7s16 = vqaddq_s16(q7s16, q3s16); + q8s16 = vqaddq_s16(q8s16, q4s16); + q9s16 = vqaddq_s16(q9s16, q5s16); + q10s16 = vqaddq_s16(q10s16, q6s16); + + d6u8 = vqrshrun_n_s16(q7s16, 7); + d7u8 = vqrshrun_n_s16(q8s16, 7); + d8u8 = vqrshrun_n_s16(q9s16, 7); + d9u8 = vqrshrun_n_s16(q10s16, 7); + + d18u8 = d22u8; + d19u8 = d23u8; + d20u8 = d24u8; + d21u8 = d25u8; + d22u8 = d26u8; + + vst1_u8(dst, d6u8); + dst += dst_pitch; + vst1_u8(dst, d7u8); + dst += dst_pitch; + vst1_u8(dst, d8u8); + dst += dst_pitch; + vst1_u8(dst, d9u8); + dst += dst_pitch; + } + } + return; +} diff --git a/vp8/common/arm/neon/vp8_loopfilter_neon.c b/vp8/common/arm/neon/vp8_loopfilter_neon.c new file mode 100644 index 0000000..d728673 --- /dev/null +++ b/vp8/common/arm/neon/vp8_loopfilter_neon.c @@ -0,0 +1,536 @@ +/* + * Copyright (c) 2014 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include "./vpx_config.h" +#include "vpx_ports/arm.h" + +static INLINE void vp8_loop_filter_neon(uint8x16_t qblimit, // flimit + uint8x16_t qlimit, // limit + uint8x16_t qthresh, // thresh + uint8x16_t q3, // p3 + uint8x16_t q4, // p2 + uint8x16_t q5, // p1 + uint8x16_t q6, // p0 + uint8x16_t q7, // q0 + uint8x16_t q8, // q1 + uint8x16_t q9, // q2 + uint8x16_t q10, // q3 + uint8x16_t *q5r, // p1 + uint8x16_t *q6r, // p0 + uint8x16_t *q7r, // q0 + uint8x16_t *q8r) { // q1 + uint8x16_t q0u8, q1u8, q2u8, q11u8, q12u8, q13u8, q14u8, q15u8; + int16x8_t q2s16, q11s16; + uint16x8_t q4u16; + int8x16_t q1s8, q2s8, q10s8, q11s8, q12s8, q13s8; + int8x8_t d2s8, d3s8; + + q11u8 = vabdq_u8(q3, q4); + q12u8 = vabdq_u8(q4, q5); + q13u8 = vabdq_u8(q5, q6); + q14u8 = vabdq_u8(q8, q7); + q3 = vabdq_u8(q9, q8); + q4 = vabdq_u8(q10, q9); + + q11u8 = vmaxq_u8(q11u8, q12u8); + q12u8 = vmaxq_u8(q13u8, q14u8); + q3 = vmaxq_u8(q3, q4); + q15u8 = vmaxq_u8(q11u8, q12u8); + + q9 = vabdq_u8(q6, q7); + + // vp8_hevmask + q13u8 = vcgtq_u8(q13u8, qthresh); + q14u8 = vcgtq_u8(q14u8, qthresh); + q15u8 = vmaxq_u8(q15u8, q3); + + q2u8 = vabdq_u8(q5, q8); + q9 = vqaddq_u8(q9, q9); + + q15u8 = vcgeq_u8(qlimit, q15u8); + + // vp8_filter() function + // convert to signed + q10 = vdupq_n_u8(0x80); + q8 = veorq_u8(q8, q10); + q7 = veorq_u8(q7, q10); + q6 = veorq_u8(q6, q10); + q5 = veorq_u8(q5, q10); + + q2u8 = vshrq_n_u8(q2u8, 1); + q9 = vqaddq_u8(q9, q2u8); + + q10 = vdupq_n_u8(3); + + q2s16 = vsubl_s8(vget_low_s8(vreinterpretq_s8_u8(q7)), + vget_low_s8(vreinterpretq_s8_u8(q6))); + q11s16 = vsubl_s8(vget_high_s8(vreinterpretq_s8_u8(q7)), + vget_high_s8(vreinterpretq_s8_u8(q6))); + + q9 = vcgeq_u8(qblimit, q9); + + q1s8 = vqsubq_s8(vreinterpretq_s8_u8(q5), vreinterpretq_s8_u8(q8)); + + q14u8 = vorrq_u8(q13u8, q14u8); + + q4u16 = vmovl_u8(vget_low_u8(q10)); + q2s16 = vmulq_s16(q2s16, vreinterpretq_s16_u16(q4u16)); + q11s16 = vmulq_s16(q11s16, vreinterpretq_s16_u16(q4u16)); + + q1u8 = vandq_u8(vreinterpretq_u8_s8(q1s8), q14u8); + q15u8 = vandq_u8(q15u8, q9); + + q1s8 = vreinterpretq_s8_u8(q1u8); + q2s16 = vaddw_s8(q2s16, vget_low_s8(q1s8)); + q11s16 = vaddw_s8(q11s16, vget_high_s8(q1s8)); + + q9 = vdupq_n_u8(4); + // vp8_filter = clamp(vp8_filter + 3 * ( qs0 - ps0)) + d2s8 = vqmovn_s16(q2s16); + d3s8 = vqmovn_s16(q11s16); + q1s8 = vcombine_s8(d2s8, d3s8); + q1u8 = vandq_u8(vreinterpretq_u8_s8(q1s8), q15u8); + q1s8 = vreinterpretq_s8_u8(q1u8); + + q2s8 = vqaddq_s8(q1s8, vreinterpretq_s8_u8(q10)); + q1s8 = vqaddq_s8(q1s8, vreinterpretq_s8_u8(q9)); + q2s8 = vshrq_n_s8(q2s8, 3); + q1s8 = vshrq_n_s8(q1s8, 3); + + q11s8 = vqaddq_s8(vreinterpretq_s8_u8(q6), q2s8); + q10s8 = vqsubq_s8(vreinterpretq_s8_u8(q7), q1s8); + + q1s8 = vrshrq_n_s8(q1s8, 1); + q1s8 = vbicq_s8(q1s8, vreinterpretq_s8_u8(q14u8)); + + q13s8 = vqaddq_s8(vreinterpretq_s8_u8(q5), q1s8); + q12s8 = vqsubq_s8(vreinterpretq_s8_u8(q8), q1s8); + + q0u8 = vdupq_n_u8(0x80); + *q8r = veorq_u8(vreinterpretq_u8_s8(q12s8), q0u8); + *q7r = veorq_u8(vreinterpretq_u8_s8(q10s8), q0u8); + *q6r = veorq_u8(vreinterpretq_u8_s8(q11s8), q0u8); + *q5r = veorq_u8(vreinterpretq_u8_s8(q13s8), q0u8); + return; +} + +void vp8_loop_filter_horizontal_edge_y_neon(unsigned char *src, int pitch, + unsigned char blimit, + unsigned char limit, + unsigned char thresh) { + uint8x16_t qblimit, qlimit, qthresh, q3, q4; + uint8x16_t q5, q6, q7, q8, q9, q10; + + qblimit = vdupq_n_u8(blimit); + qlimit = vdupq_n_u8(limit); + qthresh = vdupq_n_u8(thresh); + src -= (pitch << 2); + + q3 = vld1q_u8(src); + src += pitch; + q4 = vld1q_u8(src); + src += pitch; + q5 = vld1q_u8(src); + src += pitch; + q6 = vld1q_u8(src); + src += pitch; + q7 = vld1q_u8(src); + src += pitch; + q8 = vld1q_u8(src); + src += pitch; + q9 = vld1q_u8(src); + src += pitch; + q10 = vld1q_u8(src); + + vp8_loop_filter_neon(qblimit, qlimit, qthresh, q3, q4, q5, q6, q7, q8, q9, + q10, &q5, &q6, &q7, &q8); + + src -= (pitch * 5); + vst1q_u8(src, q5); + src += pitch; + vst1q_u8(src, q6); + src += pitch; + vst1q_u8(src, q7); + src += pitch; + vst1q_u8(src, q8); + return; +} + +void vp8_loop_filter_horizontal_edge_uv_neon(unsigned char *u, int pitch, + unsigned char blimit, + unsigned char limit, + unsigned char thresh, + unsigned char *v) { + uint8x16_t qblimit, qlimit, qthresh, q3, q4; + uint8x16_t q5, q6, q7, q8, q9, q10; + uint8x8_t d6, d7, d8, d9, d10, d11, d12, d13, d14; + uint8x8_t d15, d16, d17, d18, d19, d20, d21; + + qblimit = vdupq_n_u8(blimit); + qlimit = vdupq_n_u8(limit); + qthresh = vdupq_n_u8(thresh); + + u -= (pitch << 2); + v -= (pitch << 2); + + d6 = vld1_u8(u); + u += pitch; + d7 = vld1_u8(v); + v += pitch; + d8 = vld1_u8(u); + u += pitch; + d9 = vld1_u8(v); + v += pitch; + d10 = vld1_u8(u); + u += pitch; + d11 = vld1_u8(v); + v += pitch; + d12 = vld1_u8(u); + u += pitch; + d13 = vld1_u8(v); + v += pitch; + d14 = vld1_u8(u); + u += pitch; + d15 = vld1_u8(v); + v += pitch; + d16 = vld1_u8(u); + u += pitch; + d17 = vld1_u8(v); + v += pitch; + d18 = vld1_u8(u); + u += pitch; + d19 = vld1_u8(v); + v += pitch; + d20 = vld1_u8(u); + d21 = vld1_u8(v); + + q3 = vcombine_u8(d6, d7); + q4 = vcombine_u8(d8, d9); + q5 = vcombine_u8(d10, d11); + q6 = vcombine_u8(d12, d13); + q7 = vcombine_u8(d14, d15); + q8 = vcombine_u8(d16, d17); + q9 = vcombine_u8(d18, d19); + q10 = vcombine_u8(d20, d21); + + vp8_loop_filter_neon(qblimit, qlimit, qthresh, q3, q4, q5, q6, q7, q8, q9, + q10, &q5, &q6, &q7, &q8); + + u -= (pitch * 5); + vst1_u8(u, vget_low_u8(q5)); + u += pitch; + vst1_u8(u, vget_low_u8(q6)); + u += pitch; + vst1_u8(u, vget_low_u8(q7)); + u += pitch; + vst1_u8(u, vget_low_u8(q8)); + + v -= (pitch * 5); + vst1_u8(v, vget_high_u8(q5)); + v += pitch; + vst1_u8(v, vget_high_u8(q6)); + v += pitch; + vst1_u8(v, vget_high_u8(q7)); + v += pitch; + vst1_u8(v, vget_high_u8(q8)); + return; +} + +static INLINE void write_4x8(unsigned char *dst, int pitch, + const uint8x8x4_t result) { +#ifdef VPX_INCOMPATIBLE_GCC + /* + * uint8x8x4_t result + 00 01 02 03 | 04 05 06 07 + 10 11 12 13 | 14 15 16 17 + 20 21 22 23 | 24 25 26 27 + 30 31 32 33 | 34 35 36 37 + --- + * after vtrn_u16 + 00 01 20 21 | 04 05 24 25 + 02 03 22 23 | 06 07 26 27 + 10 11 30 31 | 14 15 34 35 + 12 13 32 33 | 16 17 36 37 + --- + * after vtrn_u8 + 00 10 20 30 | 04 14 24 34 + 01 11 21 31 | 05 15 25 35 + 02 12 22 32 | 06 16 26 36 + 03 13 23 33 | 07 17 27 37 + */ + const uint16x4x2_t r02_u16 = vtrn_u16(vreinterpret_u16_u8(result.val[0]), + vreinterpret_u16_u8(result.val[2])); + const uint16x4x2_t r13_u16 = vtrn_u16(vreinterpret_u16_u8(result.val[1]), + vreinterpret_u16_u8(result.val[3])); + const uint8x8x2_t r01_u8 = vtrn_u8(vreinterpret_u8_u16(r02_u16.val[0]), + vreinterpret_u8_u16(r13_u16.val[0])); + const uint8x8x2_t r23_u8 = vtrn_u8(vreinterpret_u8_u16(r02_u16.val[1]), + vreinterpret_u8_u16(r13_u16.val[1])); + const uint32x2_t x_0_4 = vreinterpret_u32_u8(r01_u8.val[0]); + const uint32x2_t x_1_5 = vreinterpret_u32_u8(r01_u8.val[1]); + const uint32x2_t x_2_6 = vreinterpret_u32_u8(r23_u8.val[0]); + const uint32x2_t x_3_7 = vreinterpret_u32_u8(r23_u8.val[1]); + vst1_lane_u32((uint32_t *)dst, x_0_4, 0); + dst += pitch; + vst1_lane_u32((uint32_t *)dst, x_1_5, 0); + dst += pitch; + vst1_lane_u32((uint32_t *)dst, x_2_6, 0); + dst += pitch; + vst1_lane_u32((uint32_t *)dst, x_3_7, 0); + dst += pitch; + vst1_lane_u32((uint32_t *)dst, x_0_4, 1); + dst += pitch; + vst1_lane_u32((uint32_t *)dst, x_1_5, 1); + dst += pitch; + vst1_lane_u32((uint32_t *)dst, x_2_6, 1); + dst += pitch; + vst1_lane_u32((uint32_t *)dst, x_3_7, 1); +#else + vst4_lane_u8(dst, result, 0); + dst += pitch; + vst4_lane_u8(dst, result, 1); + dst += pitch; + vst4_lane_u8(dst, result, 2); + dst += pitch; + vst4_lane_u8(dst, result, 3); + dst += pitch; + vst4_lane_u8(dst, result, 4); + dst += pitch; + vst4_lane_u8(dst, result, 5); + dst += pitch; + vst4_lane_u8(dst, result, 6); + dst += pitch; + vst4_lane_u8(dst, result, 7); +#endif // VPX_INCOMPATIBLE_GCC +} + +void vp8_loop_filter_vertical_edge_y_neon(unsigned char *src, int pitch, + unsigned char blimit, + unsigned char limit, + unsigned char thresh) { + unsigned char *s, *d; + uint8x16_t qblimit, qlimit, qthresh, q3, q4; + uint8x16_t q5, q6, q7, q8, q9, q10; + uint8x8_t d6, d7, d8, d9, d10, d11, d12, d13, d14; + uint8x8_t d15, d16, d17, d18, d19, d20, d21; + uint32x4x2_t q2tmp0, q2tmp1, q2tmp2, q2tmp3; + uint16x8x2_t q2tmp4, q2tmp5, q2tmp6, q2tmp7; + uint8x16x2_t q2tmp8, q2tmp9, q2tmp10, q2tmp11; + uint8x8x4_t q4ResultH, q4ResultL; + + qblimit = vdupq_n_u8(blimit); + qlimit = vdupq_n_u8(limit); + qthresh = vdupq_n_u8(thresh); + + s = src - 4; + d6 = vld1_u8(s); + s += pitch; + d8 = vld1_u8(s); + s += pitch; + d10 = vld1_u8(s); + s += pitch; + d12 = vld1_u8(s); + s += pitch; + d14 = vld1_u8(s); + s += pitch; + d16 = vld1_u8(s); + s += pitch; + d18 = vld1_u8(s); + s += pitch; + d20 = vld1_u8(s); + s += pitch; + d7 = vld1_u8(s); + s += pitch; + d9 = vld1_u8(s); + s += pitch; + d11 = vld1_u8(s); + s += pitch; + d13 = vld1_u8(s); + s += pitch; + d15 = vld1_u8(s); + s += pitch; + d17 = vld1_u8(s); + s += pitch; + d19 = vld1_u8(s); + s += pitch; + d21 = vld1_u8(s); + + q3 = vcombine_u8(d6, d7); + q4 = vcombine_u8(d8, d9); + q5 = vcombine_u8(d10, d11); + q6 = vcombine_u8(d12, d13); + q7 = vcombine_u8(d14, d15); + q8 = vcombine_u8(d16, d17); + q9 = vcombine_u8(d18, d19); + q10 = vcombine_u8(d20, d21); + + q2tmp0 = vtrnq_u32(vreinterpretq_u32_u8(q3), vreinterpretq_u32_u8(q7)); + q2tmp1 = vtrnq_u32(vreinterpretq_u32_u8(q4), vreinterpretq_u32_u8(q8)); + q2tmp2 = vtrnq_u32(vreinterpretq_u32_u8(q5), vreinterpretq_u32_u8(q9)); + q2tmp3 = vtrnq_u32(vreinterpretq_u32_u8(q6), vreinterpretq_u32_u8(q10)); + + q2tmp4 = vtrnq_u16(vreinterpretq_u16_u32(q2tmp0.val[0]), + vreinterpretq_u16_u32(q2tmp2.val[0])); + q2tmp5 = vtrnq_u16(vreinterpretq_u16_u32(q2tmp1.val[0]), + vreinterpretq_u16_u32(q2tmp3.val[0])); + q2tmp6 = vtrnq_u16(vreinterpretq_u16_u32(q2tmp0.val[1]), + vreinterpretq_u16_u32(q2tmp2.val[1])); + q2tmp7 = vtrnq_u16(vreinterpretq_u16_u32(q2tmp1.val[1]), + vreinterpretq_u16_u32(q2tmp3.val[1])); + + q2tmp8 = vtrnq_u8(vreinterpretq_u8_u16(q2tmp4.val[0]), + vreinterpretq_u8_u16(q2tmp5.val[0])); + q2tmp9 = vtrnq_u8(vreinterpretq_u8_u16(q2tmp4.val[1]), + vreinterpretq_u8_u16(q2tmp5.val[1])); + q2tmp10 = vtrnq_u8(vreinterpretq_u8_u16(q2tmp6.val[0]), + vreinterpretq_u8_u16(q2tmp7.val[0])); + q2tmp11 = vtrnq_u8(vreinterpretq_u8_u16(q2tmp6.val[1]), + vreinterpretq_u8_u16(q2tmp7.val[1])); + + q3 = q2tmp8.val[0]; + q4 = q2tmp8.val[1]; + q5 = q2tmp9.val[0]; + q6 = q2tmp9.val[1]; + q7 = q2tmp10.val[0]; + q8 = q2tmp10.val[1]; + q9 = q2tmp11.val[0]; + q10 = q2tmp11.val[1]; + + vp8_loop_filter_neon(qblimit, qlimit, qthresh, q3, q4, q5, q6, q7, q8, q9, + q10, &q5, &q6, &q7, &q8); + + q4ResultL.val[0] = vget_low_u8(q5); // d10 + q4ResultL.val[1] = vget_low_u8(q6); // d12 + q4ResultL.val[2] = vget_low_u8(q7); // d14 + q4ResultL.val[3] = vget_low_u8(q8); // d16 + q4ResultH.val[0] = vget_high_u8(q5); // d11 + q4ResultH.val[1] = vget_high_u8(q6); // d13 + q4ResultH.val[2] = vget_high_u8(q7); // d15 + q4ResultH.val[3] = vget_high_u8(q8); // d17 + + d = src - 2; + write_4x8(d, pitch, q4ResultL); + d += pitch * 8; + write_4x8(d, pitch, q4ResultH); +} + +void vp8_loop_filter_vertical_edge_uv_neon(unsigned char *u, int pitch, + unsigned char blimit, + unsigned char limit, + unsigned char thresh, + unsigned char *v) { + unsigned char *us, *ud; + unsigned char *vs, *vd; + uint8x16_t qblimit, qlimit, qthresh, q3, q4; + uint8x16_t q5, q6, q7, q8, q9, q10; + uint8x8_t d6, d7, d8, d9, d10, d11, d12, d13, d14; + uint8x8_t d15, d16, d17, d18, d19, d20, d21; + uint32x4x2_t q2tmp0, q2tmp1, q2tmp2, q2tmp3; + uint16x8x2_t q2tmp4, q2tmp5, q2tmp6, q2tmp7; + uint8x16x2_t q2tmp8, q2tmp9, q2tmp10, q2tmp11; + uint8x8x4_t q4ResultH, q4ResultL; + + qblimit = vdupq_n_u8(blimit); + qlimit = vdupq_n_u8(limit); + qthresh = vdupq_n_u8(thresh); + + us = u - 4; + d6 = vld1_u8(us); + us += pitch; + d8 = vld1_u8(us); + us += pitch; + d10 = vld1_u8(us); + us += pitch; + d12 = vld1_u8(us); + us += pitch; + d14 = vld1_u8(us); + us += pitch; + d16 = vld1_u8(us); + us += pitch; + d18 = vld1_u8(us); + us += pitch; + d20 = vld1_u8(us); + + vs = v - 4; + d7 = vld1_u8(vs); + vs += pitch; + d9 = vld1_u8(vs); + vs += pitch; + d11 = vld1_u8(vs); + vs += pitch; + d13 = vld1_u8(vs); + vs += pitch; + d15 = vld1_u8(vs); + vs += pitch; + d17 = vld1_u8(vs); + vs += pitch; + d19 = vld1_u8(vs); + vs += pitch; + d21 = vld1_u8(vs); + + q3 = vcombine_u8(d6, d7); + q4 = vcombine_u8(d8, d9); + q5 = vcombine_u8(d10, d11); + q6 = vcombine_u8(d12, d13); + q7 = vcombine_u8(d14, d15); + q8 = vcombine_u8(d16, d17); + q9 = vcombine_u8(d18, d19); + q10 = vcombine_u8(d20, d21); + + q2tmp0 = vtrnq_u32(vreinterpretq_u32_u8(q3), vreinterpretq_u32_u8(q7)); + q2tmp1 = vtrnq_u32(vreinterpretq_u32_u8(q4), vreinterpretq_u32_u8(q8)); + q2tmp2 = vtrnq_u32(vreinterpretq_u32_u8(q5), vreinterpretq_u32_u8(q9)); + q2tmp3 = vtrnq_u32(vreinterpretq_u32_u8(q6), vreinterpretq_u32_u8(q10)); + + q2tmp4 = vtrnq_u16(vreinterpretq_u16_u32(q2tmp0.val[0]), + vreinterpretq_u16_u32(q2tmp2.val[0])); + q2tmp5 = vtrnq_u16(vreinterpretq_u16_u32(q2tmp1.val[0]), + vreinterpretq_u16_u32(q2tmp3.val[0])); + q2tmp6 = vtrnq_u16(vreinterpretq_u16_u32(q2tmp0.val[1]), + vreinterpretq_u16_u32(q2tmp2.val[1])); + q2tmp7 = vtrnq_u16(vreinterpretq_u16_u32(q2tmp1.val[1]), + vreinterpretq_u16_u32(q2tmp3.val[1])); + + q2tmp8 = vtrnq_u8(vreinterpretq_u8_u16(q2tmp4.val[0]), + vreinterpretq_u8_u16(q2tmp5.val[0])); + q2tmp9 = vtrnq_u8(vreinterpretq_u8_u16(q2tmp4.val[1]), + vreinterpretq_u8_u16(q2tmp5.val[1])); + q2tmp10 = vtrnq_u8(vreinterpretq_u8_u16(q2tmp6.val[0]), + vreinterpretq_u8_u16(q2tmp7.val[0])); + q2tmp11 = vtrnq_u8(vreinterpretq_u8_u16(q2tmp6.val[1]), + vreinterpretq_u8_u16(q2tmp7.val[1])); + + q3 = q2tmp8.val[0]; + q4 = q2tmp8.val[1]; + q5 = q2tmp9.val[0]; + q6 = q2tmp9.val[1]; + q7 = q2tmp10.val[0]; + q8 = q2tmp10.val[1]; + q9 = q2tmp11.val[0]; + q10 = q2tmp11.val[1]; + + vp8_loop_filter_neon(qblimit, qlimit, qthresh, q3, q4, q5, q6, q7, q8, q9, + q10, &q5, &q6, &q7, &q8); + + q4ResultL.val[0] = vget_low_u8(q5); // d10 + q4ResultL.val[1] = vget_low_u8(q6); // d12 + q4ResultL.val[2] = vget_low_u8(q7); // d14 + q4ResultL.val[3] = vget_low_u8(q8); // d16 + ud = u - 2; + write_4x8(ud, pitch, q4ResultL); + + q4ResultH.val[0] = vget_high_u8(q5); // d11 + q4ResultH.val[1] = vget_high_u8(q6); // d13 + q4ResultH.val[2] = vget_high_u8(q7); // d15 + q4ResultH.val[3] = vget_high_u8(q8); // d17 + vd = v - 2; + write_4x8(vd, pitch, q4ResultH); +} diff --git a/vp8/common/blockd.c b/vp8/common/blockd.c new file mode 100644 index 0000000..f47c5ba --- /dev/null +++ b/vp8/common/blockd.c @@ -0,0 +1,19 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "blockd.h" +#include "vpx_mem/vpx_mem.h" + +const unsigned char vp8_block2left[25] = { + 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8 +}; +const unsigned char vp8_block2above[25] = { + 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 4, 5, 4, 5, 6, 7, 6, 7, 8 +}; diff --git a/vp8/common/blockd.h b/vp8/common/blockd.h new file mode 100644 index 0000000..1a3aad1 --- /dev/null +++ b/vp8/common/blockd.h @@ -0,0 +1,302 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP8_COMMON_BLOCKD_H_ +#define VP8_COMMON_BLOCKD_H_ + +void vpx_log(const char *format, ...); + +#include "vpx_config.h" +#include "vpx_scale/yv12config.h" +#include "mv.h" +#include "treecoder.h" +#include "vpx_ports/mem.h" + +#ifdef __cplusplus +extern "C" { +#endif + +/*#define DCPRED 1*/ +#define DCPREDSIMTHRESH 0 +#define DCPREDCNTTHRESH 3 + +#define MB_FEATURE_TREE_PROBS 3 +#define MAX_MB_SEGMENTS 4 + +#define MAX_REF_LF_DELTAS 4 +#define MAX_MODE_LF_DELTAS 4 + +/* Segment Feature Masks */ +#define SEGMENT_DELTADATA 0 +#define SEGMENT_ABSDATA 1 + +typedef struct { int r, c; } POS; + +#define PLANE_TYPE_Y_NO_DC 0 +#define PLANE_TYPE_Y2 1 +#define PLANE_TYPE_UV 2 +#define PLANE_TYPE_Y_WITH_DC 3 + +typedef char ENTROPY_CONTEXT; +typedef struct { + ENTROPY_CONTEXT y1[4]; + ENTROPY_CONTEXT u[2]; + ENTROPY_CONTEXT v[2]; + ENTROPY_CONTEXT y2; +} ENTROPY_CONTEXT_PLANES; + +extern const unsigned char vp8_block2left[25]; +extern const unsigned char vp8_block2above[25]; + +#define VP8_COMBINEENTROPYCONTEXTS(Dest, A, B) Dest = (A) + (B); + +typedef enum { KEY_FRAME = 0, INTER_FRAME = 1 } FRAME_TYPE; + +typedef enum { + DC_PRED, /* average of above and left pixels */ + V_PRED, /* vertical prediction */ + H_PRED, /* horizontal prediction */ + TM_PRED, /* Truemotion prediction */ + B_PRED, /* block based prediction, each block has its own prediction mode */ + + NEARESTMV, + NEARMV, + ZEROMV, + NEWMV, + SPLITMV, + + MB_MODE_COUNT +} MB_PREDICTION_MODE; + +/* Macroblock level features */ +typedef enum { + MB_LVL_ALT_Q = 0, /* Use alternate Quantizer .... */ + MB_LVL_ALT_LF = 1, /* Use alternate loop filter value... */ + MB_LVL_MAX = 2 /* Number of MB level features supported */ + +} MB_LVL_FEATURES; + +/* Segment Feature Masks */ +#define SEGMENT_ALTQ 0x01 +#define SEGMENT_ALT_LF 0x02 + +#define VP8_YMODES (B_PRED + 1) +#define VP8_UV_MODES (TM_PRED + 1) + +#define VP8_MVREFS (1 + SPLITMV - NEARESTMV) + +typedef enum { + B_DC_PRED, /* average of above and left pixels */ + B_TM_PRED, + + B_VE_PRED, /* vertical prediction */ + B_HE_PRED, /* horizontal prediction */ + + B_LD_PRED, + B_RD_PRED, + + B_VR_PRED, + B_VL_PRED, + B_HD_PRED, + B_HU_PRED, + + LEFT4X4, + ABOVE4X4, + ZERO4X4, + NEW4X4, + + B_MODE_COUNT +} B_PREDICTION_MODE; + +#define VP8_BINTRAMODES (B_HU_PRED + 1) /* 10 */ +#define VP8_SUBMVREFS (1 + NEW4X4 - LEFT4X4) + +/* For keyframes, intra block modes are predicted by the (already decoded) + modes for the Y blocks to the left and above us; for interframes, there + is a single probability table. */ + +union b_mode_info { + B_PREDICTION_MODE as_mode; + int_mv mv; +}; + +typedef enum { + INTRA_FRAME = 0, + LAST_FRAME = 1, + GOLDEN_FRAME = 2, + ALTREF_FRAME = 3, + MAX_REF_FRAMES = 4 +} MV_REFERENCE_FRAME; + +typedef struct { + uint8_t mode, uv_mode; + uint8_t ref_frame; + uint8_t is_4x4; + int_mv mv; + + uint8_t partitioning; + /* does this mb has coefficients at all, 1=no coefficients, 0=need decode + tokens */ + uint8_t mb_skip_coeff; + uint8_t need_to_clamp_mvs; + /* Which set of segmentation parameters should be used for this MB */ + uint8_t segment_id; +} MB_MODE_INFO; + +typedef struct modeinfo { + MB_MODE_INFO mbmi; + union b_mode_info bmi[16]; +} MODE_INFO; + +#if CONFIG_MULTI_RES_ENCODING +/* The mb-level information needed to be stored for higher-resolution encoder */ +typedef struct { + MB_PREDICTION_MODE mode; + MV_REFERENCE_FRAME ref_frame; + int_mv mv; + int dissim; /* dissimilarity level of the macroblock */ +} LOWER_RES_MB_INFO; + +/* The frame-level information needed to be stored for higher-resolution + * encoder */ +typedef struct { + FRAME_TYPE frame_type; + int is_frame_dropped; + // If frame is dropped due to overshoot after encode_frame. This triggers a + // drop and resets rate control with Q forced to max for following frame. + // The check for this dropping due to overshoot is only done on lowest stream, + // and if set will force drop on all spatial streams for that current frame. + int is_frame_dropped_overshoot_maxqp; + // The frame rate for the lowest resolution. + double low_res_framerate; + /* The frame number of each reference frames */ + unsigned int low_res_ref_frames[MAX_REF_FRAMES]; + // The video frame counter value for the key frame, for lowest resolution. + unsigned int key_frame_counter_value; + LOWER_RES_MB_INFO *mb_info; +} LOWER_RES_FRAME_INFO; +#endif + +typedef struct blockd { + short *qcoeff; + short *dqcoeff; + unsigned char *predictor; + short *dequant; + + int offset; + char *eob; + + union b_mode_info bmi; +} BLOCKD; + +typedef void (*vp8_subpix_fn_t)(unsigned char *src, int src_pitch, int xofst, + int yofst, unsigned char *dst, int dst_pitch); + +typedef struct macroblockd { + DECLARE_ALIGNED(16, unsigned char, predictor[384]); + DECLARE_ALIGNED(16, short, qcoeff[400]); + DECLARE_ALIGNED(16, short, dqcoeff[400]); + DECLARE_ALIGNED(16, char, eobs[25]); + + DECLARE_ALIGNED(16, short, dequant_y1[16]); + DECLARE_ALIGNED(16, short, dequant_y1_dc[16]); + DECLARE_ALIGNED(16, short, dequant_y2[16]); + DECLARE_ALIGNED(16, short, dequant_uv[16]); + + /* 16 Y blocks, 4 U, 4 V, 1 DC 2nd order block, each with 16 entries. */ + BLOCKD block[25]; + int fullpixel_mask; + + YV12_BUFFER_CONFIG pre; /* Filtered copy of previous frame reconstruction */ + YV12_BUFFER_CONFIG dst; + + MODE_INFO *mode_info_context; + int mode_info_stride; + + FRAME_TYPE frame_type; + + int up_available; + int left_available; + + unsigned char *recon_above[3]; + unsigned char *recon_left[3]; + int recon_left_stride[2]; + + /* Y,U,V,Y2 */ + ENTROPY_CONTEXT_PLANES *above_context; + ENTROPY_CONTEXT_PLANES *left_context; + + /* 0 indicates segmentation at MB level is not enabled. Otherwise the + * individual bits indicate which features are active. */ + unsigned char segmentation_enabled; + + /* 0 (do not update) 1 (update) the macroblock segmentation map. */ + unsigned char update_mb_segmentation_map; + + /* 0 (do not update) 1 (update) the macroblock segmentation feature data. */ + unsigned char update_mb_segmentation_data; + + /* 0 (do not update) 1 (update) the macroblock segmentation feature data. */ + unsigned char mb_segement_abs_delta; + + /* Per frame flags that define which MB level features (such as quantizer or + * loop filter level) */ + /* are enabled and when enabled the proabilities used to decode the per MB + * flags in MB_MODE_INFO */ + /* Probability Tree used to code Segment number */ + vp8_prob mb_segment_tree_probs[MB_FEATURE_TREE_PROBS]; + /* Segment parameters */ + signed char segment_feature_data[MB_LVL_MAX][MAX_MB_SEGMENTS]; + + /* mode_based Loop filter adjustment */ + unsigned char mode_ref_lf_delta_enabled; + unsigned char mode_ref_lf_delta_update; + + /* Delta values have the range +/- MAX_LOOP_FILTER */ + signed char + last_ref_lf_deltas[MAX_REF_LF_DELTAS]; /* 0 = Intra, Last, GF, ARF */ + signed char ref_lf_deltas[MAX_REF_LF_DELTAS]; /* 0 = Intra, Last, GF, ARF */ + /* 0 = BPRED, ZERO_MV, MV, SPLIT */ + signed char last_mode_lf_deltas[MAX_MODE_LF_DELTAS]; + signed char + mode_lf_deltas[MAX_MODE_LF_DELTAS]; /* 0 = BPRED, ZERO_MV, MV, SPLIT */ + + /* Distance of MB away from frame edges */ + int mb_to_left_edge; + int mb_to_right_edge; + int mb_to_top_edge; + int mb_to_bottom_edge; + + vp8_subpix_fn_t subpixel_predict; + vp8_subpix_fn_t subpixel_predict8x4; + vp8_subpix_fn_t subpixel_predict8x8; + vp8_subpix_fn_t subpixel_predict16x16; + + void *current_bc; + + int corrupted; + +#if ARCH_X86 || ARCH_X86_64 + /* This is an intermediate buffer currently used in sub-pixel motion search + * to keep a copy of the reference area. This buffer can be used for other + * purpose. + */ + DECLARE_ALIGNED(32, unsigned char, y_buf[22 * 32]); +#endif +} MACROBLOCKD; + +extern void vp8_build_block_doffsets(MACROBLOCKD *x); +extern void vp8_setup_block_dptrs(MACROBLOCKD *x); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP8_COMMON_BLOCKD_H_ diff --git a/vp8/common/coefupdateprobs.h b/vp8/common/coefupdateprobs.h new file mode 100644 index 0000000..9b01bba --- /dev/null +++ b/vp8/common/coefupdateprobs.h @@ -0,0 +1,197 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP8_COMMON_COEFUPDATEPROBS_H_ +#define VP8_COMMON_COEFUPDATEPROBS_H_ + +#ifdef __cplusplus +extern "C" { +#endif + +/* Update probabilities for the nodes in the token entropy tree. + Generated file included by entropy.c */ + +const vp8_prob vp8_coef_update_probs + [BLOCK_TYPES][COEF_BANDS][PREV_COEF_CONTEXTS][ENTROPY_NODES] = { + { + { + { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 }, + { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 }, + { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 }, + }, + { + { 176, 246, 255, 255, 255, 255, 255, 255, 255, 255, 255 }, + { 223, 241, 252, 255, 255, 255, 255, 255, 255, 255, 255 }, + { 249, 253, 253, 255, 255, 255, 255, 255, 255, 255, 255 }, + }, + { + { 255, 244, 252, 255, 255, 255, 255, 255, 255, 255, 255 }, + { 234, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255 }, + { 253, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 }, + }, + { + { 255, 246, 254, 255, 255, 255, 255, 255, 255, 255, 255 }, + { 239, 253, 254, 255, 255, 255, 255, 255, 255, 255, 255 }, + { 254, 255, 254, 255, 255, 255, 255, 255, 255, 255, 255 }, + }, + { + { 255, 248, 254, 255, 255, 255, 255, 255, 255, 255, 255 }, + { 251, 255, 254, 255, 255, 255, 255, 255, 255, 255, 255 }, + { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 }, + }, + { + { 255, 253, 254, 255, 255, 255, 255, 255, 255, 255, 255 }, + { 251, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255 }, + { 254, 255, 254, 255, 255, 255, 255, 255, 255, 255, 255 }, + }, + { + { 255, 254, 253, 255, 254, 255, 255, 255, 255, 255, 255 }, + { 250, 255, 254, 255, 254, 255, 255, 255, 255, 255, 255 }, + { 254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 }, + }, + { + { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 }, + { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 }, + { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 }, + }, + }, + { + { + { 217, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 }, + { 225, 252, 241, 253, 255, 255, 254, 255, 255, 255, 255 }, + { 234, 250, 241, 250, 253, 255, 253, 254, 255, 255, 255 }, + }, + { + { 255, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255 }, + { 223, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255 }, + { 238, 253, 254, 254, 255, 255, 255, 255, 255, 255, 255 }, + }, + { + { 255, 248, 254, 255, 255, 255, 255, 255, 255, 255, 255 }, + { 249, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255 }, + { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 }, + }, + { + { 255, 253, 255, 255, 255, 255, 255, 255, 255, 255, 255 }, + { 247, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255 }, + { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 }, + }, + { + { 255, 253, 254, 255, 255, 255, 255, 255, 255, 255, 255 }, + { 252, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 }, + { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 }, + }, + { + { 255, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255 }, + { 253, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 }, + { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 }, + }, + { + { 255, 254, 253, 255, 255, 255, 255, 255, 255, 255, 255 }, + { 250, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 }, + { 254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 }, + }, + { + { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 }, + { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 }, + { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 }, + }, + }, + { + { + { 186, 251, 250, 255, 255, 255, 255, 255, 255, 255, 255 }, + { 234, 251, 244, 254, 255, 255, 255, 255, 255, 255, 255 }, + { 251, 251, 243, 253, 254, 255, 254, 255, 255, 255, 255 }, + }, + { + { 255, 253, 254, 255, 255, 255, 255, 255, 255, 255, 255 }, + { 236, 253, 254, 255, 255, 255, 255, 255, 255, 255, 255 }, + { 251, 253, 253, 254, 254, 255, 255, 255, 255, 255, 255 }, + }, + { + { 255, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255 }, + { 254, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255 }, + { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 }, + }, + { + { 255, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255 }, + { 254, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255 }, + { 254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 }, + }, + { + { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 }, + { 254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 }, + { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 }, + }, + { + { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 }, + { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 }, + { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 }, + }, + { + { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 }, + { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 }, + { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 }, + }, + { + { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 }, + { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 }, + { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 }, + }, + }, + { + { + { 248, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 }, + { 250, 254, 252, 254, 255, 255, 255, 255, 255, 255, 255 }, + { 248, 254, 249, 253, 255, 255, 255, 255, 255, 255, 255 }, + }, + { + { 255, 253, 253, 255, 255, 255, 255, 255, 255, 255, 255 }, + { 246, 253, 253, 255, 255, 255, 255, 255, 255, 255, 255 }, + { 252, 254, 251, 254, 254, 255, 255, 255, 255, 255, 255 }, + }, + { + { 255, 254, 252, 255, 255, 255, 255, 255, 255, 255, 255 }, + { 248, 254, 253, 255, 255, 255, 255, 255, 255, 255, 255 }, + { 253, 255, 254, 254, 255, 255, 255, 255, 255, 255, 255 }, + }, + { + { 255, 251, 254, 255, 255, 255, 255, 255, 255, 255, 255 }, + { 245, 251, 254, 255, 255, 255, 255, 255, 255, 255, 255 }, + { 253, 253, 254, 255, 255, 255, 255, 255, 255, 255, 255 }, + }, + { + { 255, 251, 253, 255, 255, 255, 255, 255, 255, 255, 255 }, + { 252, 253, 254, 255, 255, 255, 255, 255, 255, 255, 255 }, + { 255, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255 }, + }, + { + { 255, 252, 255, 255, 255, 255, 255, 255, 255, 255, 255 }, + { 249, 255, 254, 255, 255, 255, 255, 255, 255, 255, 255 }, + { 255, 255, 254, 255, 255, 255, 255, 255, 255, 255, 255 }, + }, + { + { 255, 255, 253, 255, 255, 255, 255, 255, 255, 255, 255 }, + { 250, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 }, + { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 }, + }, + { + { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 }, + { 254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 }, + { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 }, + }, + }, + }; + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP8_COMMON_COEFUPDATEPROBS_H_ diff --git a/vp8/common/common.h b/vp8/common/common.h new file mode 100644 index 0000000..bbfc4f3 --- /dev/null +++ b/vp8/common/common.h @@ -0,0 +1,48 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP8_COMMON_COMMON_H_ +#define VP8_COMMON_COMMON_H_ + +#include + +/* Interface header for common constant data structures and lookup tables */ + +#include "vpx_mem/vpx_mem.h" + +#ifdef __cplusplus +extern "C" { +#endif + +/* Only need this for fixed-size arrays, for structs just assign. */ + +#define vp8_copy(Dest, Src) \ + { \ + assert(sizeof(Dest) == sizeof(Src)); \ + memcpy(Dest, Src, sizeof(Src)); \ + } + +/* Use this for variably-sized arrays. */ + +#define vp8_copy_array(Dest, Src, N) \ + { \ + assert(sizeof(*Dest) == sizeof(*Src)); \ + memcpy(Dest, Src, N * sizeof(*Src)); \ + } + +#define vp8_zero(Dest) memset(&Dest, 0, sizeof(Dest)); + +#define vp8_zero_array(Dest, N) memset(Dest, 0, N * sizeof(*Dest)); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP8_COMMON_COMMON_H_ diff --git a/vp8/common/context.c b/vp8/common/context.c new file mode 100644 index 0000000..3c624ae --- /dev/null +++ b/vp8/common/context.c @@ -0,0 +1,398 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "entropy.h" + +/* *** GENERATED FILE: DO NOT EDIT *** */ + +#if 0 +int Contexts[vp8_coef_counter_dimen]; + +const int default_contexts[vp8_coef_counter_dimen] = +{ + { + // Block Type ( 0 ) + { + // Coeff Band ( 0 ) + { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,}, + { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,}, + { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,}, + }, + { + // Coeff Band ( 1 ) + {30190, 26544, 225, 24, 4, 0, 0, 0, 0, 0, 0, 4171593,}, + {26846, 25157, 1241, 130, 26, 6, 1, 0, 0, 0, 0, 149987,}, + {10484, 9538, 1006, 160, 36, 18, 0, 0, 0, 0, 0, 15104,}, + }, + { + // Coeff Band ( 2 ) + {25842, 40456, 1126, 83, 11, 2, 0, 0, 0, 0, 0, 0,}, + {9338, 8010, 512, 73, 7, 3, 2, 0, 0, 0, 0, 43294,}, + {1047, 751, 149, 31, 13, 6, 1, 0, 0, 0, 0, 879,}, + }, + { + // Coeff Band ( 3 ) + {26136, 9826, 252, 13, 0, 0, 0, 0, 0, 0, 0, 0,}, + {8134, 5574, 191, 14, 2, 0, 0, 0, 0, 0, 0, 35302,}, + { 605, 677, 116, 9, 1, 0, 0, 0, 0, 0, 0, 611,}, + }, + { + // Coeff Band ( 4 ) + {10263, 15463, 283, 17, 0, 0, 0, 0, 0, 0, 0, 0,}, + {2773, 2191, 128, 9, 2, 2, 0, 0, 0, 0, 0, 10073,}, + { 134, 125, 32, 4, 0, 2, 0, 0, 0, 0, 0, 50,}, + }, + { + // Coeff Band ( 5 ) + {10483, 2663, 23, 1, 0, 0, 0, 0, 0, 0, 0, 0,}, + {2137, 1251, 27, 1, 1, 0, 0, 0, 0, 0, 0, 14362,}, + { 116, 156, 14, 2, 1, 0, 0, 0, 0, 0, 0, 190,}, + }, + { + // Coeff Band ( 6 ) + {40977, 27614, 412, 28, 0, 0, 0, 0, 0, 0, 0, 0,}, + {6113, 5213, 261, 22, 3, 0, 0, 0, 0, 0, 0, 26164,}, + { 382, 312, 50, 14, 2, 0, 0, 0, 0, 0, 0, 345,}, + }, + { + // Coeff Band ( 7 ) + { 0, 26, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,}, + { 0, 13, 0, 0, 0, 0, 0, 0, 0, 0, 0, 319,}, + { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8,}, + }, + }, + { + // Block Type ( 1 ) + { + // Coeff Band ( 0 ) + {3268, 19382, 1043, 250, 93, 82, 49, 26, 17, 8, 25, 82289,}, + {8758, 32110, 5436, 1832, 827, 668, 420, 153, 24, 0, 3, 52914,}, + {9337, 23725, 8487, 3954, 2107, 1836, 1069, 399, 59, 0, 0, 18620,}, + }, + { + // Coeff Band ( 1 ) + {12419, 8420, 452, 62, 9, 1, 0, 0, 0, 0, 0, 0,}, + {11715, 8705, 693, 92, 15, 7, 2, 0, 0, 0, 0, 53988,}, + {7603, 8585, 2306, 778, 270, 145, 39, 5, 0, 0, 0, 9136,}, + }, + { + // Coeff Band ( 2 ) + {15938, 14335, 1207, 184, 55, 13, 4, 1, 0, 0, 0, 0,}, + {7415, 6829, 1138, 244, 71, 26, 7, 0, 0, 0, 0, 9980,}, + {1580, 1824, 655, 241, 89, 46, 10, 2, 0, 0, 0, 429,}, + }, + { + // Coeff Band ( 3 ) + {19453, 5260, 201, 19, 0, 0, 0, 0, 0, 0, 0, 0,}, + {9173, 3758, 213, 22, 1, 1, 0, 0, 0, 0, 0, 9820,}, + {1689, 1277, 276, 51, 17, 4, 0, 0, 0, 0, 0, 679,}, + }, + { + // Coeff Band ( 4 ) + {12076, 10667, 620, 85, 19, 9, 5, 0, 0, 0, 0, 0,}, + {4665, 3625, 423, 55, 19, 9, 0, 0, 0, 0, 0, 5127,}, + { 415, 440, 143, 34, 20, 7, 2, 0, 0, 0, 0, 101,}, + }, + { + // Coeff Band ( 5 ) + {12183, 4846, 115, 11, 1, 0, 0, 0, 0, 0, 0, 0,}, + {4226, 3149, 177, 21, 2, 0, 0, 0, 0, 0, 0, 7157,}, + { 375, 621, 189, 51, 11, 4, 1, 0, 0, 0, 0, 198,}, + }, + { + // Coeff Band ( 6 ) + {61658, 37743, 1203, 94, 10, 3, 0, 0, 0, 0, 0, 0,}, + {15514, 11563, 903, 111, 14, 5, 0, 0, 0, 0, 0, 25195,}, + { 929, 1077, 291, 78, 14, 7, 1, 0, 0, 0, 0, 507,}, + }, + { + // Coeff Band ( 7 ) + { 0, 990, 15, 3, 0, 0, 0, 0, 0, 0, 0, 0,}, + { 0, 412, 13, 0, 0, 0, 0, 0, 0, 0, 0, 1641,}, + { 0, 18, 7, 1, 0, 0, 0, 0, 0, 0, 0, 30,}, + }, + }, + { + // Block Type ( 2 ) + { + // Coeff Band ( 0 ) + { 953, 24519, 628, 120, 28, 12, 4, 0, 0, 0, 0, 2248798,}, + {1525, 25654, 2647, 617, 239, 143, 42, 5, 0, 0, 0, 66837,}, + {1180, 11011, 3001, 1237, 532, 448, 239, 54, 5, 0, 0, 7122,}, + }, + { + // Coeff Band ( 1 ) + {1356, 2220, 67, 10, 4, 1, 0, 0, 0, 0, 0, 0,}, + {1450, 2544, 102, 18, 4, 3, 0, 0, 0, 0, 0, 57063,}, + {1182, 2110, 470, 130, 41, 21, 0, 0, 0, 0, 0, 6047,}, + }, + { + // Coeff Band ( 2 ) + { 370, 3378, 200, 30, 5, 4, 1, 0, 0, 0, 0, 0,}, + { 293, 1006, 131, 29, 11, 0, 0, 0, 0, 0, 0, 5404,}, + { 114, 387, 98, 23, 4, 8, 1, 0, 0, 0, 0, 236,}, + }, + { + // Coeff Band ( 3 ) + { 579, 194, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0,}, + { 395, 213, 5, 1, 0, 0, 0, 0, 0, 0, 0, 4157,}, + { 119, 122, 4, 0, 0, 0, 0, 0, 0, 0, 0, 300,}, + }, + { + // Coeff Band ( 4 ) + { 38, 557, 19, 0, 0, 0, 0, 0, 0, 0, 0, 0,}, + { 21, 114, 12, 1, 0, 0, 0, 0, 0, 0, 0, 427,}, + { 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7,}, + }, + { + // Coeff Band ( 5 ) + { 52, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,}, + { 18, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 652,}, + { 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 30,}, + }, + { + // Coeff Band ( 6 ) + { 640, 569, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0,}, + { 25, 77, 2, 0, 0, 0, 0, 0, 0, 0, 0, 517,}, + { 4, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3,}, + }, + { + // Coeff Band ( 7 ) + { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,}, + { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,}, + { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,}, + }, + }, + { + // Block Type ( 3 ) + { + // Coeff Band ( 0 ) + {2506, 20161, 2707, 767, 261, 178, 107, 30, 14, 3, 0, 100694,}, + {8806, 36478, 8817, 3268, 1280, 850, 401, 114, 42, 0, 0, 58572,}, + {11003, 27214, 11798, 5716, 2482, 2072, 1048, 175, 32, 0, 0, 19284,}, + }, + { + // Coeff Band ( 1 ) + {9738, 11313, 959, 205, 70, 18, 11, 1, 0, 0, 0, 0,}, + {12628, 15085, 1507, 273, 52, 19, 9, 0, 0, 0, 0, 54280,}, + {10701, 15846, 5561, 1926, 813, 570, 249, 36, 0, 0, 0, 6460,}, + }, + { + // Coeff Band ( 2 ) + {6781, 22539, 2784, 634, 182, 123, 20, 4, 0, 0, 0, 0,}, + {6263, 11544, 2649, 790, 259, 168, 27, 5, 0, 0, 0, 20539,}, + {3109, 4075, 2031, 896, 457, 386, 158, 29, 0, 0, 0, 1138,}, + }, + { + // Coeff Band ( 3 ) + {11515, 4079, 465, 73, 5, 14, 2, 0, 0, 0, 0, 0,}, + {9361, 5834, 650, 96, 24, 8, 4, 0, 0, 0, 0, 22181,}, + {4343, 3974, 1360, 415, 132, 96, 14, 1, 0, 0, 0, 1267,}, + }, + { + // Coeff Band ( 4 ) + {4787, 9297, 823, 168, 44, 12, 4, 0, 0, 0, 0, 0,}, + {3619, 4472, 719, 198, 60, 31, 3, 0, 0, 0, 0, 8401,}, + {1157, 1175, 483, 182, 88, 31, 8, 0, 0, 0, 0, 268,}, + }, + { + // Coeff Band ( 5 ) + {8299, 1226, 32, 5, 1, 0, 0, 0, 0, 0, 0, 0,}, + {3502, 1568, 57, 4, 1, 1, 0, 0, 0, 0, 0, 9811,}, + {1055, 1070, 166, 29, 6, 1, 0, 0, 0, 0, 0, 527,}, + }, + { + // Coeff Band ( 6 ) + {27414, 27927, 1989, 347, 69, 26, 0, 0, 0, 0, 0, 0,}, + {5876, 10074, 1574, 341, 91, 24, 4, 0, 0, 0, 0, 21954,}, + {1571, 2171, 778, 324, 124, 65, 16, 0, 0, 0, 0, 979,}, + }, + { + // Coeff Band ( 7 ) + { 0, 29, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,}, + { 0, 23, 0, 0, 0, 0, 0, 0, 0, 0, 0, 459,}, + { 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 13,}, + }, + }, +}; + +//Update probabilities for the nodes in the token entropy tree. +const vp8_prob tree_update_probs[vp8_coef_tree_dimen] = +{ + { + { + {255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, }, + {255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, }, + {255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, }, + }, + { + {176, 246, 255, 255, 255, 255, 255, 255, 255, 255, 255, }, + {223, 241, 252, 255, 255, 255, 255, 255, 255, 255, 255, }, + {249, 253, 253, 255, 255, 255, 255, 255, 255, 255, 255, }, + }, + { + {255, 244, 252, 255, 255, 255, 255, 255, 255, 255, 255, }, + {234, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255, }, + {253, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, }, + }, + { + {255, 246, 254, 255, 255, 255, 255, 255, 255, 255, 255, }, + {239, 253, 254, 255, 255, 255, 255, 255, 255, 255, 255, }, + {254, 255, 254, 255, 255, 255, 255, 255, 255, 255, 255, }, + }, + { + {255, 248, 254, 255, 255, 255, 255, 255, 255, 255, 255, }, + {251, 255, 254, 255, 255, 255, 255, 255, 255, 255, 255, }, + {255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, }, + }, + { + {255, 253, 254, 255, 255, 255, 255, 255, 255, 255, 255, }, + {251, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255, }, + {254, 255, 254, 255, 255, 255, 255, 255, 255, 255, 255, }, + }, + { + {255, 254, 253, 255, 254, 255, 255, 255, 255, 255, 255, }, + {250, 255, 254, 255, 254, 255, 255, 255, 255, 255, 255, }, + {254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, }, + }, + { + {255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, }, + {255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, }, + {255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, }, + }, + }, + { + { + {217, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, }, + {225, 252, 241, 253, 255, 255, 254, 255, 255, 255, 255, }, + {234, 250, 241, 250, 253, 255, 253, 254, 255, 255, 255, }, + }, + { + {255, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255, }, + {223, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255, }, + {238, 253, 254, 254, 255, 255, 255, 255, 255, 255, 255, }, + }, + { + {255, 248, 254, 255, 255, 255, 255, 255, 255, 255, 255, }, + {249, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255, }, + {255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, }, + }, + { + {255, 253, 255, 255, 255, 255, 255, 255, 255, 255, 255, }, + {247, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255, }, + {255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, }, + }, + { + {255, 253, 254, 255, 255, 255, 255, 255, 255, 255, 255, }, + {252, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, }, + {255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, }, + }, + { + {255, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255, }, + {253, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, }, + {255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, }, + }, + { + {255, 254, 253, 255, 255, 255, 255, 255, 255, 255, 255, }, + {250, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, }, + {254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, }, + }, + { + {255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, }, + {255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, }, + {255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, }, + }, + }, + { + { + {186, 251, 250, 255, 255, 255, 255, 255, 255, 255, 255, }, + {234, 251, 244, 254, 255, 255, 255, 255, 255, 255, 255, }, + {251, 251, 243, 253, 254, 255, 254, 255, 255, 255, 255, }, + }, + { + {255, 253, 254, 255, 255, 255, 255, 255, 255, 255, 255, }, + {236, 253, 254, 255, 255, 255, 255, 255, 255, 255, 255, }, + {251, 253, 253, 254, 254, 255, 255, 255, 255, 255, 255, }, + }, + { + {255, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255, }, + {254, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255, }, + {255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, }, + }, + { + {255, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255, }, + {254, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255, }, + {254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, }, + }, + { + {255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, }, + {254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, }, + {255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, }, + }, + { + {255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, }, + {255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, }, + {255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, }, + }, + { + {255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, }, + {255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, }, + {255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, }, + }, + { + {255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, }, + {255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, }, + {255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, }, + }, + }, + { + { + {248, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, }, + {250, 254, 252, 254, 255, 255, 255, 255, 255, 255, 255, }, + {248, 254, 249, 253, 255, 255, 255, 255, 255, 255, 255, }, + }, + { + {255, 253, 253, 255, 255, 255, 255, 255, 255, 255, 255, }, + {246, 253, 253, 255, 255, 255, 255, 255, 255, 255, 255, }, + {252, 254, 251, 254, 254, 255, 255, 255, 255, 255, 255, }, + }, + { + {255, 254, 252, 255, 255, 255, 255, 255, 255, 255, 255, }, + {248, 254, 253, 255, 255, 255, 255, 255, 255, 255, 255, }, + {253, 255, 254, 254, 255, 255, 255, 255, 255, 255, 255, }, + }, + { + {255, 251, 254, 255, 255, 255, 255, 255, 255, 255, 255, }, + {245, 251, 254, 255, 255, 255, 255, 255, 255, 255, 255, }, + {253, 253, 254, 255, 255, 255, 255, 255, 255, 255, 255, }, + }, + { + {255, 251, 253, 255, 255, 255, 255, 255, 255, 255, 255, }, + {252, 253, 254, 255, 255, 255, 255, 255, 255, 255, 255, }, + {255, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255, }, + }, + { + {255, 252, 255, 255, 255, 255, 255, 255, 255, 255, 255, }, + {249, 255, 254, 255, 255, 255, 255, 255, 255, 255, 255, }, + {255, 255, 254, 255, 255, 255, 255, 255, 255, 255, 255, }, + }, + { + {255, 255, 253, 255, 255, 255, 255, 255, 255, 255, 255, }, + {250, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, }, + {255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, }, + }, + { + {255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, }, + {254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, }, + {255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, }, + }, + }, +}; +#endif diff --git a/vp8/common/copy_c.c b/vp8/common/copy_c.c new file mode 100644 index 0000000..4746125 --- /dev/null +++ b/vp8/common/copy_c.c @@ -0,0 +1,27 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include + +#include "./vp8_rtcd.h" +#include "vpx/vpx_integer.h" + +/* Copy 2 macroblocks to a buffer */ +void vp8_copy32xn_c(const unsigned char *src_ptr, int src_stride, + unsigned char *dst_ptr, int dst_stride, int height) { + int r; + + for (r = 0; r < height; ++r) { + memcpy(dst_ptr, src_ptr, 32); + + src_ptr += src_stride; + dst_ptr += dst_stride; + } +} diff --git a/vp8/common/debugmodes.c b/vp8/common/debugmodes.c new file mode 100644 index 0000000..27a97b2 --- /dev/null +++ b/vp8/common/debugmodes.c @@ -0,0 +1,135 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include "blockd.h" + +void vp8_print_modes_and_motion_vectors(MODE_INFO *mi, int rows, int cols, + int frame) { + int mb_row; + int mb_col; + int mb_index = 0; + FILE *mvs = fopen("mvs.stt", "a"); + + /* print out the macroblock Y modes */ + mb_index = 0; + fprintf(mvs, "Mb Modes for Frame %d\n", frame); + + for (mb_row = 0; mb_row < rows; ++mb_row) { + for (mb_col = 0; mb_col < cols; ++mb_col) { + fprintf(mvs, "%2d ", mi[mb_index].mbmi.mode); + + mb_index++; + } + + fprintf(mvs, "\n"); + mb_index++; + } + + fprintf(mvs, "\n"); + + mb_index = 0; + fprintf(mvs, "Mb mv ref for Frame %d\n", frame); + + for (mb_row = 0; mb_row < rows; ++mb_row) { + for (mb_col = 0; mb_col < cols; ++mb_col) { + fprintf(mvs, "%2d ", mi[mb_index].mbmi.ref_frame); + + mb_index++; + } + + fprintf(mvs, "\n"); + mb_index++; + } + + fprintf(mvs, "\n"); + + /* print out the macroblock UV modes */ + mb_index = 0; + fprintf(mvs, "UV Modes for Frame %d\n", frame); + + for (mb_row = 0; mb_row < rows; ++mb_row) { + for (mb_col = 0; mb_col < cols; ++mb_col) { + fprintf(mvs, "%2d ", mi[mb_index].mbmi.uv_mode); + + mb_index++; + } + + mb_index++; + fprintf(mvs, "\n"); + } + + fprintf(mvs, "\n"); + + /* print out the block modes */ + fprintf(mvs, "Mbs for Frame %d\n", frame); + { + int b_row; + + for (b_row = 0; b_row < 4 * rows; ++b_row) { + int b_col; + int bindex; + + for (b_col = 0; b_col < 4 * cols; ++b_col) { + mb_index = (b_row >> 2) * (cols + 1) + (b_col >> 2); + bindex = (b_row & 3) * 4 + (b_col & 3); + + if (mi[mb_index].mbmi.mode == B_PRED) + fprintf(mvs, "%2d ", mi[mb_index].bmi[bindex].as_mode); + else + fprintf(mvs, "xx "); + } + + fprintf(mvs, "\n"); + } + } + fprintf(mvs, "\n"); + + /* print out the macroblock mvs */ + mb_index = 0; + fprintf(mvs, "MVs for Frame %d\n", frame); + + for (mb_row = 0; mb_row < rows; ++mb_row) { + for (mb_col = 0; mb_col < cols; ++mb_col) { + fprintf(mvs, "%5d:%-5d", mi[mb_index].mbmi.mv.as_mv.row / 2, + mi[mb_index].mbmi.mv.as_mv.col / 2); + + mb_index++; + } + + mb_index++; + fprintf(mvs, "\n"); + } + + fprintf(mvs, "\n"); + + /* print out the block modes */ + fprintf(mvs, "MVs for Frame %d\n", frame); + { + int b_row; + + for (b_row = 0; b_row < 4 * rows; ++b_row) { + int b_col; + int bindex; + + for (b_col = 0; b_col < 4 * cols; ++b_col) { + mb_index = (b_row >> 2) * (cols + 1) + (b_col >> 2); + bindex = (b_row & 3) * 4 + (b_col & 3); + fprintf(mvs, "%3d:%-3d ", mi[mb_index].bmi[bindex].mv.as_mv.row, + mi[mb_index].bmi[bindex].mv.as_mv.col); + } + + fprintf(mvs, "\n"); + } + } + fprintf(mvs, "\n"); + + fclose(mvs); +} diff --git a/vp8/common/default_coef_probs.h b/vp8/common/default_coef_probs.h new file mode 100644 index 0000000..8c861ac --- /dev/null +++ b/vp8/common/default_coef_probs.h @@ -0,0 +1,160 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. +*/ + +#ifndef VP8_COMMON_DEFAULT_COEF_PROBS_H_ +#define VP8_COMMON_DEFAULT_COEF_PROBS_H_ + +#ifdef __cplusplus +extern "C" { +#endif + +/*Generated file, included by entropy.c*/ + +static const vp8_prob default_coef_probs + [BLOCK_TYPES][COEF_BANDS][PREV_COEF_CONTEXTS][ENTROPY_NODES] = { + { /* Block Type ( 0 ) */ + { /* Coeff Band ( 0 )*/ + { 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128 }, + { 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128 }, + { 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128 } }, + { /* Coeff Band ( 1 )*/ + { 253, 136, 254, 255, 228, 219, 128, 128, 128, 128, 128 }, + { 189, 129, 242, 255, 227, 213, 255, 219, 128, 128, 128 }, + { 106, 126, 227, 252, 214, 209, 255, 255, 128, 128, 128 } }, + { /* Coeff Band ( 2 )*/ + { 1, 98, 248, 255, 236, 226, 255, 255, 128, 128, 128 }, + { 181, 133, 238, 254, 221, 234, 255, 154, 128, 128, 128 }, + { 78, 134, 202, 247, 198, 180, 255, 219, 128, 128, 128 } }, + { /* Coeff Band ( 3 )*/ + { 1, 185, 249, 255, 243, 255, 128, 128, 128, 128, 128 }, + { 184, 150, 247, 255, 236, 224, 128, 128, 128, 128, 128 }, + { 77, 110, 216, 255, 236, 230, 128, 128, 128, 128, 128 } }, + { /* Coeff Band ( 4 )*/ + { 1, 101, 251, 255, 241, 255, 128, 128, 128, 128, 128 }, + { 170, 139, 241, 252, 236, 209, 255, 255, 128, 128, 128 }, + { 37, 116, 196, 243, 228, 255, 255, 255, 128, 128, 128 } }, + { /* Coeff Band ( 5 )*/ + { 1, 204, 254, 255, 245, 255, 128, 128, 128, 128, 128 }, + { 207, 160, 250, 255, 238, 128, 128, 128, 128, 128, 128 }, + { 102, 103, 231, 255, 211, 171, 128, 128, 128, 128, 128 } }, + { /* Coeff Band ( 6 )*/ + { 1, 152, 252, 255, 240, 255, 128, 128, 128, 128, 128 }, + { 177, 135, 243, 255, 234, 225, 128, 128, 128, 128, 128 }, + { 80, 129, 211, 255, 194, 224, 128, 128, 128, 128, 128 } }, + { /* Coeff Band ( 7 )*/ + { 1, 1, 255, 128, 128, 128, 128, 128, 128, 128, 128 }, + { 246, 1, 255, 128, 128, 128, 128, 128, 128, 128, 128 }, + { 255, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128 } } }, + { /* Block Type ( 1 ) */ + { /* Coeff Band ( 0 )*/ + { 198, 35, 237, 223, 193, 187, 162, 160, 145, 155, 62 }, + { 131, 45, 198, 221, 172, 176, 220, 157, 252, 221, 1 }, + { 68, 47, 146, 208, 149, 167, 221, 162, 255, 223, 128 } }, + { /* Coeff Band ( 1 )*/ + { 1, 149, 241, 255, 221, 224, 255, 255, 128, 128, 128 }, + { 184, 141, 234, 253, 222, 220, 255, 199, 128, 128, 128 }, + { 81, 99, 181, 242, 176, 190, 249, 202, 255, 255, 128 } }, + { /* Coeff Band ( 2 )*/ + { 1, 129, 232, 253, 214, 197, 242, 196, 255, 255, 128 }, + { 99, 121, 210, 250, 201, 198, 255, 202, 128, 128, 128 }, + { 23, 91, 163, 242, 170, 187, 247, 210, 255, 255, 128 } }, + { /* Coeff Band ( 3 )*/ + { 1, 200, 246, 255, 234, 255, 128, 128, 128, 128, 128 }, + { 109, 178, 241, 255, 231, 245, 255, 255, 128, 128, 128 }, + { 44, 130, 201, 253, 205, 192, 255, 255, 128, 128, 128 } }, + { /* Coeff Band ( 4 )*/ + { 1, 132, 239, 251, 219, 209, 255, 165, 128, 128, 128 }, + { 94, 136, 225, 251, 218, 190, 255, 255, 128, 128, 128 }, + { 22, 100, 174, 245, 186, 161, 255, 199, 128, 128, 128 } }, + { /* Coeff Band ( 5 )*/ + { 1, 182, 249, 255, 232, 235, 128, 128, 128, 128, 128 }, + { 124, 143, 241, 255, 227, 234, 128, 128, 128, 128, 128 }, + { 35, 77, 181, 251, 193, 211, 255, 205, 128, 128, 128 } }, + { /* Coeff Band ( 6 )*/ + { 1, 157, 247, 255, 236, 231, 255, 255, 128, 128, 128 }, + { 121, 141, 235, 255, 225, 227, 255, 255, 128, 128, 128 }, + { 45, 99, 188, 251, 195, 217, 255, 224, 128, 128, 128 } }, + { /* Coeff Band ( 7 )*/ + { 1, 1, 251, 255, 213, 255, 128, 128, 128, 128, 128 }, + { 203, 1, 248, 255, 255, 128, 128, 128, 128, 128, 128 }, + { 137, 1, 177, 255, 224, 255, 128, 128, 128, 128, 128 } } }, + { /* Block Type ( 2 ) */ + { /* Coeff Band ( 0 )*/ + { 253, 9, 248, 251, 207, 208, 255, 192, 128, 128, 128 }, + { 175, 13, 224, 243, 193, 185, 249, 198, 255, 255, 128 }, + { 73, 17, 171, 221, 161, 179, 236, 167, 255, 234, 128 } }, + { /* Coeff Band ( 1 )*/ + { 1, 95, 247, 253, 212, 183, 255, 255, 128, 128, 128 }, + { 239, 90, 244, 250, 211, 209, 255, 255, 128, 128, 128 }, + { 155, 77, 195, 248, 188, 195, 255, 255, 128, 128, 128 } }, + { /* Coeff Band ( 2 )*/ + { 1, 24, 239, 251, 218, 219, 255, 205, 128, 128, 128 }, + { 201, 51, 219, 255, 196, 186, 128, 128, 128, 128, 128 }, + { 69, 46, 190, 239, 201, 218, 255, 228, 128, 128, 128 } }, + { /* Coeff Band ( 3 )*/ + { 1, 191, 251, 255, 255, 128, 128, 128, 128, 128, 128 }, + { 223, 165, 249, 255, 213, 255, 128, 128, 128, 128, 128 }, + { 141, 124, 248, 255, 255, 128, 128, 128, 128, 128, 128 } }, + { /* Coeff Band ( 4 )*/ + { 1, 16, 248, 255, 255, 128, 128, 128, 128, 128, 128 }, + { 190, 36, 230, 255, 236, 255, 128, 128, 128, 128, 128 }, + { 149, 1, 255, 128, 128, 128, 128, 128, 128, 128, 128 } }, + { /* Coeff Band ( 5 )*/ + { 1, 226, 255, 128, 128, 128, 128, 128, 128, 128, 128 }, + { 247, 192, 255, 128, 128, 128, 128, 128, 128, 128, 128 }, + { 240, 128, 255, 128, 128, 128, 128, 128, 128, 128, 128 } }, + { /* Coeff Band ( 6 )*/ + { 1, 134, 252, 255, 255, 128, 128, 128, 128, 128, 128 }, + { 213, 62, 250, 255, 255, 128, 128, 128, 128, 128, 128 }, + { 55, 93, 255, 128, 128, 128, 128, 128, 128, 128, 128 } }, + { /* Coeff Band ( 7 )*/ + { 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128 }, + { 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128 }, + { 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128 } } }, + { /* Block Type ( 3 ) */ + { /* Coeff Band ( 0 )*/ + { 202, 24, 213, 235, 186, 191, 220, 160, 240, 175, 255 }, + { 126, 38, 182, 232, 169, 184, 228, 174, 255, 187, 128 }, + { 61, 46, 138, 219, 151, 178, 240, 170, 255, 216, 128 } }, + { /* Coeff Band ( 1 )*/ + { 1, 112, 230, 250, 199, 191, 247, 159, 255, 255, 128 }, + { 166, 109, 228, 252, 211, 215, 255, 174, 128, 128, 128 }, + { 39, 77, 162, 232, 172, 180, 245, 178, 255, 255, 128 } }, + { /* Coeff Band ( 2 )*/ + { 1, 52, 220, 246, 198, 199, 249, 220, 255, 255, 128 }, + { 124, 74, 191, 243, 183, 193, 250, 221, 255, 255, 128 }, + { 24, 71, 130, 219, 154, 170, 243, 182, 255, 255, 128 } }, + { /* Coeff Band ( 3 )*/ + { 1, 182, 225, 249, 219, 240, 255, 224, 128, 128, 128 }, + { 149, 150, 226, 252, 216, 205, 255, 171, 128, 128, 128 }, + { 28, 108, 170, 242, 183, 194, 254, 223, 255, 255, 128 } }, + { /* Coeff Band ( 4 )*/ + { 1, 81, 230, 252, 204, 203, 255, 192, 128, 128, 128 }, + { 123, 102, 209, 247, 188, 196, 255, 233, 128, 128, 128 }, + { 20, 95, 153, 243, 164, 173, 255, 203, 128, 128, 128 } }, + { /* Coeff Band ( 5 )*/ + { 1, 222, 248, 255, 216, 213, 128, 128, 128, 128, 128 }, + { 168, 175, 246, 252, 235, 205, 255, 255, 128, 128, 128 }, + { 47, 116, 215, 255, 211, 212, 255, 255, 128, 128, 128 } }, + { /* Coeff Band ( 6 )*/ + { 1, 121, 236, 253, 212, 214, 255, 255, 128, 128, 128 }, + { 141, 84, 213, 252, 201, 202, 255, 219, 128, 128, 128 }, + { 42, 80, 160, 240, 162, 185, 255, 205, 128, 128, 128 } }, + { /* Coeff Band ( 7 )*/ + { 1, 1, 255, 128, 128, 128, 128, 128, 128, 128, 128 }, + { 244, 1, 255, 128, 128, 128, 128, 128, 128, 128, 128 }, + { 238, 1, 255, 128, 128, 128, 128, 128, 128, 128, 128 } } } + }; + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP8_COMMON_DEFAULT_COEF_PROBS_H_ diff --git a/vp8/common/dequantize.c b/vp8/common/dequantize.c new file mode 100644 index 0000000..8a56ae6 --- /dev/null +++ b/vp8/common/dequantize.c @@ -0,0 +1,37 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "vpx_config.h" +#include "vp8_rtcd.h" +#include "vp8/common/blockd.h" +#include "vpx_mem/vpx_mem.h" + +void vp8_dequantize_b_c(BLOCKD *d, short *DQC) { + int i; + short *DQ = d->dqcoeff; + short *Q = d->qcoeff; + + for (i = 0; i < 16; ++i) { + DQ[i] = Q[i] * DQC[i]; + } +} + +void vp8_dequant_idct_add_c(short *input, short *dq, unsigned char *dest, + int stride) { + int i; + + for (i = 0; i < 16; ++i) { + input[i] = dq[i] * input[i]; + } + + vp8_short_idct4x4llm_c(input, dest, stride, dest, stride); + + memset(input, 0, 32); +} diff --git a/vp8/common/entropy.c b/vp8/common/entropy.c new file mode 100644 index 0000000..f61fa9e --- /dev/null +++ b/vp8/common/entropy.c @@ -0,0 +1,147 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "entropy.h" +#include "blockd.h" +#include "onyxc_int.h" +#include "vpx_mem/vpx_mem.h" + +#include "coefupdateprobs.h" + +DECLARE_ALIGNED(16, const unsigned char, vp8_norm[256]) = { + 0, 7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, + 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 +}; + +DECLARE_ALIGNED(16, const unsigned char, vp8_coef_bands[16]) = { + 0, 1, 2, 3, 6, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6, 7 +}; + +DECLARE_ALIGNED(16, const unsigned char, + vp8_prev_token_class[MAX_ENTROPY_TOKENS]) = { + 0, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0 +}; + +DECLARE_ALIGNED(16, const int, vp8_default_zig_zag1d[16]) = { + 0, 1, 4, 8, 5, 2, 3, 6, 9, 12, 13, 10, 7, 11, 14, 15, +}; + +DECLARE_ALIGNED(16, const short, vp8_default_inv_zig_zag[16]) = { + 1, 2, 6, 7, 3, 5, 8, 13, 4, 9, 12, 14, 10, 11, 15, 16 +}; + +/* vp8_default_zig_zag_mask generated with: + + void vp8_init_scan_order_mask() + { + int i; + + for (i = 0; i < 16; ++i) + { + vp8_default_zig_zag_mask[vp8_default_zig_zag1d[i]] = 1 << i; + } + + } +*/ +DECLARE_ALIGNED(16, const short, vp8_default_zig_zag_mask[16]) = { + 1, 2, 32, 64, 4, 16, 128, 4096, 8, 256, 2048, 8192, 512, 1024, 16384, -32768 +}; + +const int vp8_mb_feature_data_bits[MB_LVL_MAX] = { 7, 6 }; + +/* Array indices are identical to previously-existing CONTEXT_NODE indices */ +/* corresponding _CONTEXT_NODEs */ +/* clang-format off */ +const vp8_tree_index vp8_coef_tree[22] = { + -DCT_EOB_TOKEN, 2, /* 0 = EOB */ + -ZERO_TOKEN, 4, /* 1 = ZERO */ + -ONE_TOKEN, 6, /* 2 = ONE */ + 8, 12, /* 3 = LOW_VAL */ + -TWO_TOKEN, 10, /* 4 = TWO */ + -THREE_TOKEN, -FOUR_TOKEN, /* 5 = THREE */ + 14, 16, /* 6 = HIGH_LOW */ + -DCT_VAL_CATEGORY1, -DCT_VAL_CATEGORY2, /* 7 = CAT_ONE */ + 18, 20, /* 8 = CAT_THREEFOUR */ + -DCT_VAL_CATEGORY3, -DCT_VAL_CATEGORY4, /* 9 = CAT_THREE */ + -DCT_VAL_CATEGORY5, -DCT_VAL_CATEGORY6 /* 10 = CAT_FIVE */ +}; +/* clang-format on */ + +/* vp8_coef_encodings generated with: + vp8_tokens_from_tree(vp8_coef_encodings, vp8_coef_tree); +*/ +vp8_token vp8_coef_encodings[MAX_ENTROPY_TOKENS] = { + { 2, 2 }, { 6, 3 }, { 28, 5 }, { 58, 6 }, { 59, 6 }, { 60, 6 }, + { 61, 6 }, { 124, 7 }, { 125, 7 }, { 126, 7 }, { 127, 7 }, { 0, 1 } +}; + +/* Trees for extra bits. Probabilities are constant and + do not depend on previously encoded bits */ + +static const vp8_prob Pcat1[] = { 159 }; +static const vp8_prob Pcat2[] = { 165, 145 }; +static const vp8_prob Pcat3[] = { 173, 148, 140 }; +static const vp8_prob Pcat4[] = { 176, 155, 140, 135 }; +static const vp8_prob Pcat5[] = { 180, 157, 141, 134, 130 }; +static const vp8_prob Pcat6[] = { 254, 254, 243, 230, 196, 177, + 153, 140, 133, 130, 129 }; + +/* tree index tables generated with: + + void init_bit_tree(vp8_tree_index *p, int n) { + int i = 0; + + while (++i < n) { + p[0] = p[1] = i << 1; + p += 2; + } + + p[0] = p[1] = 0; + } + + void init_bit_trees() { + init_bit_tree(cat1, 1); + init_bit_tree(cat2, 2); + init_bit_tree(cat3, 3); + init_bit_tree(cat4, 4); + init_bit_tree(cat5, 5); + init_bit_tree(cat6, 11); + } +*/ + +static const vp8_tree_index cat1[2] = { 0, 0 }; +static const vp8_tree_index cat2[4] = { 2, 2, 0, 0 }; +static const vp8_tree_index cat3[6] = { 2, 2, 4, 4, 0, 0 }; +static const vp8_tree_index cat4[8] = { 2, 2, 4, 4, 6, 6, 0, 0 }; +static const vp8_tree_index cat5[10] = { 2, 2, 4, 4, 6, 6, 8, 8, 0, 0 }; +static const vp8_tree_index cat6[22] = { + 2, 2, 4, 4, 6, 6, 8, 8, 10, 10, 12, 12, 14, 14, 16, 16, 18, 18, 20, 20, 0, 0 +}; + +const vp8_extra_bit_struct vp8_extra_bits[12] = { + { 0, 0, 0, 0 }, { 0, 0, 0, 1 }, { 0, 0, 0, 2 }, + { 0, 0, 0, 3 }, { 0, 0, 0, 4 }, { cat1, Pcat1, 1, 5 }, + { cat2, Pcat2, 2, 7 }, { cat3, Pcat3, 3, 11 }, { cat4, Pcat4, 4, 19 }, + { cat5, Pcat5, 5, 35 }, { cat6, Pcat6, 11, 67 }, { 0, 0, 0, 0 } +}; + +#include "default_coef_probs.h" + +void vp8_default_coef_probs(VP8_COMMON *pc) { + memcpy(pc->fc.coef_probs, default_coef_probs, sizeof(default_coef_probs)); +} diff --git a/vp8/common/entropy.h b/vp8/common/entropy.h new file mode 100644 index 0000000..d088560 --- /dev/null +++ b/vp8/common/entropy.h @@ -0,0 +1,108 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP8_COMMON_ENTROPY_H_ +#define VP8_COMMON_ENTROPY_H_ + +#include "treecoder.h" +#include "blockd.h" + +#ifdef __cplusplus +extern "C" { +#endif + +/* Coefficient token alphabet */ + +#define ZERO_TOKEN 0 /* 0 Extra Bits 0+0 */ +#define ONE_TOKEN 1 /* 1 Extra Bits 0+1 */ +#define TWO_TOKEN 2 /* 2 Extra Bits 0+1 */ +#define THREE_TOKEN 3 /* 3 Extra Bits 0+1 */ +#define FOUR_TOKEN 4 /* 4 Extra Bits 0+1 */ +#define DCT_VAL_CATEGORY1 5 /* 5-6 Extra Bits 1+1 */ +#define DCT_VAL_CATEGORY2 6 /* 7-10 Extra Bits 2+1 */ +#define DCT_VAL_CATEGORY3 7 /* 11-18 Extra Bits 3+1 */ +#define DCT_VAL_CATEGORY4 8 /* 19-34 Extra Bits 4+1 */ +#define DCT_VAL_CATEGORY5 9 /* 35-66 Extra Bits 5+1 */ +#define DCT_VAL_CATEGORY6 10 /* 67+ Extra Bits 11+1 */ +#define DCT_EOB_TOKEN 11 /* EOB Extra Bits 0+0 */ + +#define MAX_ENTROPY_TOKENS 12 +#define ENTROPY_NODES 11 + +extern const vp8_tree_index vp8_coef_tree[]; + +extern const struct vp8_token_struct vp8_coef_encodings[MAX_ENTROPY_TOKENS]; + +typedef struct { + vp8_tree_p tree; + const vp8_prob *prob; + int Len; + int base_val; +} vp8_extra_bit_struct; + +extern const vp8_extra_bit_struct + vp8_extra_bits[12]; /* indexed by token value */ + +#define PROB_UPDATE_BASELINE_COST 7 + +#define MAX_PROB 255 +#define DCT_MAX_VALUE 2048 + +/* Coefficients are predicted via a 3-dimensional probability table. */ + +/* Outside dimension. 0 = Y no DC, 1 = Y2, 2 = UV, 3 = Y with DC */ + +#define BLOCK_TYPES 4 + +/* Middle dimension is a coarsening of the coefficient's + position within the 4x4 DCT. */ + +#define COEF_BANDS 8 +extern DECLARE_ALIGNED(16, const unsigned char, vp8_coef_bands[16]); + +/* Inside dimension is 3-valued measure of nearby complexity, that is, + the extent to which nearby coefficients are nonzero. For the first + coefficient (DC, unless block type is 0), we look at the (already encoded) + blocks above and to the left of the current block. The context index is + then the number (0,1,or 2) of these blocks having nonzero coefficients. + After decoding a coefficient, the measure is roughly the size of the + most recently decoded coefficient (0 for 0, 1 for 1, 2 for >1). + Note that the intuitive meaning of this measure changes as coefficients + are decoded, e.g., prior to the first token, a zero means that my neighbors + are empty while, after the first token, because of the use of end-of-block, + a zero means we just decoded a zero and hence guarantees that a non-zero + coefficient will appear later in this block. However, this shift + in meaning is perfectly OK because our context depends also on the + coefficient band (and since zigzag positions 0, 1, and 2 are in + distinct bands). */ + +/*# define DC_TOKEN_CONTEXTS 3*/ /* 00, 0!0, !0!0 */ +#define PREV_COEF_CONTEXTS 3 + +extern DECLARE_ALIGNED(16, const unsigned char, + vp8_prev_token_class[MAX_ENTROPY_TOKENS]); + +extern const vp8_prob vp8_coef_update_probs[BLOCK_TYPES][COEF_BANDS] + [PREV_COEF_CONTEXTS][ENTROPY_NODES]; + +struct VP8Common; +void vp8_default_coef_probs(struct VP8Common *); + +extern DECLARE_ALIGNED(16, const int, vp8_default_zig_zag1d[16]); +extern DECLARE_ALIGNED(16, const short, vp8_default_inv_zig_zag[16]); +extern DECLARE_ALIGNED(16, const short, vp8_default_zig_zag_mask[16]); +extern const int vp8_mb_feature_data_bits[MB_LVL_MAX]; + +void vp8_coef_tree_initialize(void); +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP8_COMMON_ENTROPY_H_ diff --git a/vp8/common/entropymode.c b/vp8/common/entropymode.c new file mode 100644 index 0000000..239492a --- /dev/null +++ b/vp8/common/entropymode.c @@ -0,0 +1,104 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#define USE_PREBUILT_TABLES + +#include "entropymode.h" +#include "entropy.h" +#include "vpx_mem/vpx_mem.h" + +#include "vp8_entropymodedata.h" + +int vp8_mv_cont(const int_mv *l, const int_mv *a) { + int lez = (l->as_int == 0); + int aez = (a->as_int == 0); + int lea = (l->as_int == a->as_int); + + if (lea && lez) return SUBMVREF_LEFT_ABOVE_ZED; + + if (lea) return SUBMVREF_LEFT_ABOVE_SAME; + + if (aez) return SUBMVREF_ABOVE_ZED; + + if (lez) return SUBMVREF_LEFT_ZED; + + return SUBMVREF_NORMAL; +} + +static const vp8_prob sub_mv_ref_prob[VP8_SUBMVREFS - 1] = { 180, 162, 25 }; + +const vp8_prob vp8_sub_mv_ref_prob2[SUBMVREF_COUNT][VP8_SUBMVREFS - 1] = { + { 147, 136, 18 }, + { 106, 145, 1 }, + { 179, 121, 1 }, + { 223, 1, 34 }, + { 208, 1, 1 } +}; + +const vp8_mbsplit vp8_mbsplits[VP8_NUMMBSPLITS] = { + { 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1 }, + { 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1 }, + { 0, 0, 1, 1, 0, 0, 1, 1, 2, 2, 3, 3, 2, 2, 3, 3 }, + { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 } +}; + +const int vp8_mbsplit_count[VP8_NUMMBSPLITS] = { 2, 2, 4, 16 }; + +const vp8_prob vp8_mbsplit_probs[VP8_NUMMBSPLITS - 1] = { 110, 111, 150 }; + +/* Array indices are identical to previously-existing INTRAMODECONTEXTNODES. */ + +const vp8_tree_index vp8_bmode_tree[18] = /* INTRAMODECONTEXTNODE value */ + { + -B_DC_PRED, 2, /* 0 = DC_NODE */ + -B_TM_PRED, 4, /* 1 = TM_NODE */ + -B_VE_PRED, 6, /* 2 = VE_NODE */ + 8, 12, /* 3 = COM_NODE */ + -B_HE_PRED, 10, /* 4 = HE_NODE */ + -B_RD_PRED, -B_VR_PRED, /* 5 = RD_NODE */ + -B_LD_PRED, 14, /* 6 = LD_NODE */ + -B_VL_PRED, 16, /* 7 = VL_NODE */ + -B_HD_PRED, -B_HU_PRED /* 8 = HD_NODE */ + }; + +/* Again, these trees use the same probability indices as their + explicitly-programmed predecessors. */ + +const vp8_tree_index vp8_ymode_tree[8] = { + -DC_PRED, 2, 4, 6, -V_PRED, -H_PRED, -TM_PRED, -B_PRED +}; + +const vp8_tree_index vp8_kf_ymode_tree[8] = { + -B_PRED, 2, 4, 6, -DC_PRED, -V_PRED, -H_PRED, -TM_PRED +}; + +const vp8_tree_index vp8_uv_mode_tree[6] = { -DC_PRED, 2, -V_PRED, + 4, -H_PRED, -TM_PRED }; + +const vp8_tree_index vp8_mbsplit_tree[6] = { -3, 2, -2, 4, -0, -1 }; + +const vp8_tree_index vp8_mv_ref_tree[8] = { -ZEROMV, 2, -NEARESTMV, 4, + -NEARMV, 6, -NEWMV, -SPLITMV }; + +const vp8_tree_index vp8_sub_mv_ref_tree[6] = { -LEFT4X4, 2, -ABOVE4X4, + 4, -ZERO4X4, -NEW4X4 }; + +const vp8_tree_index vp8_small_mvtree[14] = { 2, 8, 4, 6, -0, -1, -2, + -3, 10, 12, -4, -5, -6, -7 }; + +void vp8_init_mbmode_probs(VP8_COMMON *x) { + memcpy(x->fc.ymode_prob, vp8_ymode_prob, sizeof(vp8_ymode_prob)); + memcpy(x->fc.uv_mode_prob, vp8_uv_mode_prob, sizeof(vp8_uv_mode_prob)); + memcpy(x->fc.sub_mv_ref_prob, sub_mv_ref_prob, sizeof(sub_mv_ref_prob)); +} + +void vp8_default_bmode_probs(vp8_prob p[VP8_BINTRAMODES - 1]) { + memcpy(p, vp8_bmode_prob, sizeof(vp8_bmode_prob)); +} diff --git a/vp8/common/entropymode.h b/vp8/common/entropymode.h new file mode 100644 index 0000000..b3fad19 --- /dev/null +++ b/vp8/common/entropymode.h @@ -0,0 +1,88 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP8_COMMON_ENTROPYMODE_H_ +#define VP8_COMMON_ENTROPYMODE_H_ + +#include "onyxc_int.h" +#include "treecoder.h" + +#ifdef __cplusplus +extern "C" { +#endif + +typedef enum { + SUBMVREF_NORMAL, + SUBMVREF_LEFT_ZED, + SUBMVREF_ABOVE_ZED, + SUBMVREF_LEFT_ABOVE_SAME, + SUBMVREF_LEFT_ABOVE_ZED +} sumvfref_t; + +typedef int vp8_mbsplit[16]; + +#define VP8_NUMMBSPLITS 4 + +extern const vp8_mbsplit vp8_mbsplits[VP8_NUMMBSPLITS]; + +extern const int vp8_mbsplit_count[VP8_NUMMBSPLITS]; /* # of subsets */ + +extern const vp8_prob vp8_mbsplit_probs[VP8_NUMMBSPLITS - 1]; + +extern int vp8_mv_cont(const int_mv *l, const int_mv *a); +#define SUBMVREF_COUNT 5 +extern const vp8_prob vp8_sub_mv_ref_prob2[SUBMVREF_COUNT][VP8_SUBMVREFS - 1]; + +extern const unsigned int vp8_kf_default_bmode_counts[VP8_BINTRAMODES] + [VP8_BINTRAMODES] + [VP8_BINTRAMODES]; + +extern const vp8_tree_index vp8_bmode_tree[]; + +extern const vp8_tree_index vp8_ymode_tree[]; +extern const vp8_tree_index vp8_kf_ymode_tree[]; +extern const vp8_tree_index vp8_uv_mode_tree[]; + +extern const vp8_tree_index vp8_mbsplit_tree[]; +extern const vp8_tree_index vp8_mv_ref_tree[]; +extern const vp8_tree_index vp8_sub_mv_ref_tree[]; + +extern const struct vp8_token_struct vp8_bmode_encodings[VP8_BINTRAMODES]; +extern const struct vp8_token_struct vp8_ymode_encodings[VP8_YMODES]; +extern const struct vp8_token_struct vp8_kf_ymode_encodings[VP8_YMODES]; +extern const struct vp8_token_struct vp8_uv_mode_encodings[VP8_UV_MODES]; +extern const struct vp8_token_struct vp8_mbsplit_encodings[VP8_NUMMBSPLITS]; + +/* Inter mode values do not start at zero */ + +extern const struct vp8_token_struct vp8_mv_ref_encoding_array[VP8_MVREFS]; +extern const struct vp8_token_struct + vp8_sub_mv_ref_encoding_array[VP8_SUBMVREFS]; + +extern const vp8_tree_index vp8_small_mvtree[]; + +extern const struct vp8_token_struct vp8_small_mvencodings[8]; + +/* Key frame default mode probs */ +extern const vp8_prob vp8_kf_bmode_prob[VP8_BINTRAMODES][VP8_BINTRAMODES] + [VP8_BINTRAMODES - 1]; +extern const vp8_prob vp8_kf_uv_mode_prob[VP8_UV_MODES - 1]; +extern const vp8_prob vp8_kf_ymode_prob[VP8_YMODES - 1]; + +void vp8_init_mbmode_probs(VP8_COMMON *x); +void vp8_default_bmode_probs(vp8_prob dest[VP8_BINTRAMODES - 1]); +void vp8_kf_default_bmode_probs( + vp8_prob dest[VP8_BINTRAMODES][VP8_BINTRAMODES][VP8_BINTRAMODES - 1]); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP8_COMMON_ENTROPYMODE_H_ diff --git a/vp8/common/entropymv.c b/vp8/common/entropymv.c new file mode 100644 index 0000000..fb4f0c8 --- /dev/null +++ b/vp8/common/entropymv.c @@ -0,0 +1,47 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "entropymv.h" + +/* clang-format off */ +const MV_CONTEXT vp8_mv_update_probs[2] = { + { { + 237, + 246, + 253, 253, 254, 254, 254, 254, 254, + 254, 254, 254, 254, 254, 250, 250, 252, 254, 254 + } }, + { { + 231, + 243, + 245, 253, 254, 254, 254, 254, 254, + 254, 254, 254, 254, 254, 251, 251, 254, 254, 254 + } } +}; +/* clang-format on */ + +const MV_CONTEXT vp8_default_mv_context[2] = { + { { + /* row */ + 162, /* is short */ + 128, /* sign */ + 225, 146, 172, 147, 214, 39, 156, /* short tree */ + 128, 129, 132, 75, 145, 178, 206, 239, 254, 254 /* long bits */ + } }, + + { { + /* same for column */ + 164, /* is short */ + 128, /**/ + 204, 170, 119, 235, 140, 230, 228, /**/ + 128, 130, 130, 74, 148, 180, 203, 236, 254, 254 /* long bits */ + + } } +}; diff --git a/vp8/common/entropymv.h b/vp8/common/entropymv.h new file mode 100644 index 0000000..6373000 --- /dev/null +++ b/vp8/common/entropymv.h @@ -0,0 +1,49 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP8_COMMON_ENTROPYMV_H_ +#define VP8_COMMON_ENTROPYMV_H_ + +#include "treecoder.h" + +#ifdef __cplusplus +extern "C" { +#endif + +enum { + mv_max = 1023, /* max absolute value of a MV component */ + MVvals = (2 * mv_max) + 1, /* # possible values "" */ + mvfp_max = 255, /* max absolute value of a full pixel MV component */ + MVfpvals = (2 * mvfp_max) + 1, /* # possible full pixel MV values */ + + mvlong_width = 10, /* Large MVs have 9 bit magnitudes */ + mvnum_short = 8, /* magnitudes 0 through 7 */ + + /* probability offsets for coding each MV component */ + + mvpis_short = 0, /* short (<= 7) vs long (>= 8) */ + MVPsign, /* sign for non-zero */ + MVPshort, /* 8 short values = 7-position tree */ + + MVPbits = MVPshort + mvnum_short - 1, /* mvlong_width long value bits */ + MVPcount = MVPbits + mvlong_width /* (with independent probabilities) */ +}; + +typedef struct mv_context { + vp8_prob prob[MVPcount]; /* often come in row, col pairs */ +} MV_CONTEXT; + +extern const MV_CONTEXT vp8_mv_update_probs[2], vp8_default_mv_context[2]; + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP8_COMMON_ENTROPYMV_H_ diff --git a/vp8/common/extend.c b/vp8/common/extend.c new file mode 100644 index 0000000..2d67b51 --- /dev/null +++ b/vp8/common/extend.c @@ -0,0 +1,153 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "extend.h" +#include "vpx_mem/vpx_mem.h" + +static void copy_and_extend_plane(unsigned char *s, /* source */ + int sp, /* source pitch */ + unsigned char *d, /* destination */ + int dp, /* destination pitch */ + int h, /* height */ + int w, /* width */ + int et, /* extend top border */ + int el, /* extend left border */ + int eb, /* extend bottom border */ + int er /* extend right border */ + ) { + int i; + unsigned char *src_ptr1, *src_ptr2; + unsigned char *dest_ptr1, *dest_ptr2; + int linesize; + + /* copy the left and right most columns out */ + src_ptr1 = s; + src_ptr2 = s + w - 1; + dest_ptr1 = d - el; + dest_ptr2 = d + w; + + for (i = 0; i < h; ++i) { + memset(dest_ptr1, src_ptr1[0], el); + memcpy(dest_ptr1 + el, src_ptr1, w); + memset(dest_ptr2, src_ptr2[0], er); + src_ptr1 += sp; + src_ptr2 += sp; + dest_ptr1 += dp; + dest_ptr2 += dp; + } + + /* Now copy the top and bottom lines into each line of the respective + * borders + */ + src_ptr1 = d - el; + src_ptr2 = d + dp * (h - 1) - el; + dest_ptr1 = d + dp * (-et) - el; + dest_ptr2 = d + dp * (h)-el; + linesize = el + er + w; + + for (i = 0; i < et; ++i) { + memcpy(dest_ptr1, src_ptr1, linesize); + dest_ptr1 += dp; + } + + for (i = 0; i < eb; ++i) { + memcpy(dest_ptr2, src_ptr2, linesize); + dest_ptr2 += dp; + } +} + +void vp8_copy_and_extend_frame(YV12_BUFFER_CONFIG *src, + YV12_BUFFER_CONFIG *dst) { + int et = dst->border; + int el = dst->border; + int eb = dst->border + dst->y_height - src->y_height; + int er = dst->border + dst->y_width - src->y_width; + + copy_and_extend_plane(src->y_buffer, src->y_stride, dst->y_buffer, + dst->y_stride, src->y_height, src->y_width, et, el, eb, + er); + + et = dst->border >> 1; + el = dst->border >> 1; + eb = (dst->border >> 1) + dst->uv_height - src->uv_height; + er = (dst->border >> 1) + dst->uv_width - src->uv_width; + + copy_and_extend_plane(src->u_buffer, src->uv_stride, dst->u_buffer, + dst->uv_stride, src->uv_height, src->uv_width, et, el, + eb, er); + + copy_and_extend_plane(src->v_buffer, src->uv_stride, dst->v_buffer, + dst->uv_stride, src->uv_height, src->uv_width, et, el, + eb, er); +} + +void vp8_copy_and_extend_frame_with_rect(YV12_BUFFER_CONFIG *src, + YV12_BUFFER_CONFIG *dst, int srcy, + int srcx, int srch, int srcw) { + int et = dst->border; + int el = dst->border; + int eb = dst->border + dst->y_height - src->y_height; + int er = dst->border + dst->y_width - src->y_width; + int src_y_offset = srcy * src->y_stride + srcx; + int dst_y_offset = srcy * dst->y_stride + srcx; + int src_uv_offset = ((srcy * src->uv_stride) >> 1) + (srcx >> 1); + int dst_uv_offset = ((srcy * dst->uv_stride) >> 1) + (srcx >> 1); + + /* If the side is not touching the bounder then don't extend. */ + if (srcy) et = 0; + if (srcx) el = 0; + if (srcy + srch != src->y_height) eb = 0; + if (srcx + srcw != src->y_width) er = 0; + + copy_and_extend_plane(src->y_buffer + src_y_offset, src->y_stride, + dst->y_buffer + dst_y_offset, dst->y_stride, srch, srcw, + et, el, eb, er); + + et = (et + 1) >> 1; + el = (el + 1) >> 1; + eb = (eb + 1) >> 1; + er = (er + 1) >> 1; + srch = (srch + 1) >> 1; + srcw = (srcw + 1) >> 1; + + copy_and_extend_plane(src->u_buffer + src_uv_offset, src->uv_stride, + dst->u_buffer + dst_uv_offset, dst->uv_stride, srch, + srcw, et, el, eb, er); + + copy_and_extend_plane(src->v_buffer + src_uv_offset, src->uv_stride, + dst->v_buffer + dst_uv_offset, dst->uv_stride, srch, + srcw, et, el, eb, er); +} + +/* note the extension is only for the last row, for intra prediction purpose */ +void vp8_extend_mb_row(YV12_BUFFER_CONFIG *ybf, unsigned char *YPtr, + unsigned char *UPtr, unsigned char *VPtr) { + int i; + + YPtr += ybf->y_stride * 14; + UPtr += ybf->uv_stride * 6; + VPtr += ybf->uv_stride * 6; + + for (i = 0; i < 4; ++i) { + YPtr[i] = YPtr[-1]; + UPtr[i] = UPtr[-1]; + VPtr[i] = VPtr[-1]; + } + + YPtr += ybf->y_stride; + UPtr += ybf->uv_stride; + VPtr += ybf->uv_stride; + + for (i = 0; i < 4; ++i) { + YPtr[i] = YPtr[-1]; + UPtr[i] = UPtr[-1]; + VPtr[i] = VPtr[-1]; + } +} diff --git a/vp8/common/extend.h b/vp8/common/extend.h new file mode 100644 index 0000000..7da5ce3 --- /dev/null +++ b/vp8/common/extend.h @@ -0,0 +1,32 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP8_COMMON_EXTEND_H_ +#define VP8_COMMON_EXTEND_H_ + +#include "vpx_scale/yv12config.h" + +#ifdef __cplusplus +extern "C" { +#endif + +void vp8_extend_mb_row(YV12_BUFFER_CONFIG *ybf, unsigned char *YPtr, + unsigned char *UPtr, unsigned char *VPtr); +void vp8_copy_and_extend_frame(YV12_BUFFER_CONFIG *src, + YV12_BUFFER_CONFIG *dst); +void vp8_copy_and_extend_frame_with_rect(YV12_BUFFER_CONFIG *src, + YV12_BUFFER_CONFIG *dst, int srcy, + int srcx, int srch, int srcw); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP8_COMMON_EXTEND_H_ diff --git a/vp8/common/filter.c b/vp8/common/filter.c new file mode 100644 index 0000000..2674983 --- /dev/null +++ b/vp8/common/filter.c @@ -0,0 +1,381 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include "./vp8_rtcd.h" +#include "vp8/common/filter.h" + +DECLARE_ALIGNED(16, const short, vp8_bilinear_filters[8][2]) = { + { 128, 0 }, { 112, 16 }, { 96, 32 }, { 80, 48 }, + { 64, 64 }, { 48, 80 }, { 32, 96 }, { 16, 112 } +}; + +DECLARE_ALIGNED(16, const short, vp8_sub_pel_filters[8][6]) = { + + { 0, 0, 128, 0, 0, + 0 }, /* note that 1/8 pel positions are just as per alpha -0.5 bicubic */ + { 0, -6, 123, 12, -1, 0 }, + { 2, -11, 108, 36, -8, 1 }, /* New 1/4 pel 6 tap filter */ + { 0, -9, 93, 50, -6, 0 }, + { 3, -16, 77, 77, -16, 3 }, /* New 1/2 pel 6 tap filter */ + { 0, -6, 50, 93, -9, 0 }, + { 1, -8, 36, 108, -11, 2 }, /* New 1/4 pel 6 tap filter */ + { 0, -1, 12, 123, -6, 0 }, +}; + +static void filter_block2d_first_pass(unsigned char *src_ptr, int *output_ptr, + unsigned int src_pixels_per_line, + unsigned int pixel_step, + unsigned int output_height, + unsigned int output_width, + const short *vp8_filter) { + unsigned int i, j; + int Temp; + + for (i = 0; i < output_height; ++i) { + for (j = 0; j < output_width; ++j) { + Temp = ((int)src_ptr[-2 * (int)pixel_step] * vp8_filter[0]) + + ((int)src_ptr[-1 * (int)pixel_step] * vp8_filter[1]) + + ((int)src_ptr[0] * vp8_filter[2]) + + ((int)src_ptr[pixel_step] * vp8_filter[3]) + + ((int)src_ptr[2 * pixel_step] * vp8_filter[4]) + + ((int)src_ptr[3 * pixel_step] * vp8_filter[5]) + + (VP8_FILTER_WEIGHT >> 1); /* Rounding */ + + /* Normalize back to 0-255 */ + Temp = Temp >> VP8_FILTER_SHIFT; + + if (Temp < 0) { + Temp = 0; + } else if (Temp > 255) { + Temp = 255; + } + + output_ptr[j] = Temp; + src_ptr++; + } + + /* Next row... */ + src_ptr += src_pixels_per_line - output_width; + output_ptr += output_width; + } +} + +static void filter_block2d_second_pass(int *src_ptr, unsigned char *output_ptr, + int output_pitch, + unsigned int src_pixels_per_line, + unsigned int pixel_step, + unsigned int output_height, + unsigned int output_width, + const short *vp8_filter) { + unsigned int i, j; + int Temp; + + for (i = 0; i < output_height; ++i) { + for (j = 0; j < output_width; ++j) { + /* Apply filter */ + Temp = ((int)src_ptr[-2 * (int)pixel_step] * vp8_filter[0]) + + ((int)src_ptr[-1 * (int)pixel_step] * vp8_filter[1]) + + ((int)src_ptr[0] * vp8_filter[2]) + + ((int)src_ptr[pixel_step] * vp8_filter[3]) + + ((int)src_ptr[2 * pixel_step] * vp8_filter[4]) + + ((int)src_ptr[3 * pixel_step] * vp8_filter[5]) + + (VP8_FILTER_WEIGHT >> 1); /* Rounding */ + + /* Normalize back to 0-255 */ + Temp = Temp >> VP8_FILTER_SHIFT; + + if (Temp < 0) { + Temp = 0; + } else if (Temp > 255) { + Temp = 255; + } + + output_ptr[j] = (unsigned char)Temp; + src_ptr++; + } + + /* Start next row */ + src_ptr += src_pixels_per_line - output_width; + output_ptr += output_pitch; + } +} + +static void filter_block2d(unsigned char *src_ptr, unsigned char *output_ptr, + unsigned int src_pixels_per_line, int output_pitch, + const short *HFilter, const short *VFilter) { + int FData[9 * 4]; /* Temp data buffer used in filtering */ + + /* First filter 1-D horizontally... */ + filter_block2d_first_pass(src_ptr - (2 * src_pixels_per_line), FData, + src_pixels_per_line, 1, 9, 4, HFilter); + + /* then filter verticaly... */ + filter_block2d_second_pass(FData + 8, output_ptr, output_pitch, 4, 4, 4, 4, + VFilter); +} + +void vp8_sixtap_predict4x4_c(unsigned char *src_ptr, int src_pixels_per_line, + int xoffset, int yoffset, unsigned char *dst_ptr, + int dst_pitch) { + const short *HFilter; + const short *VFilter; + + HFilter = vp8_sub_pel_filters[xoffset]; /* 6 tap */ + VFilter = vp8_sub_pel_filters[yoffset]; /* 6 tap */ + + filter_block2d(src_ptr, dst_ptr, src_pixels_per_line, dst_pitch, HFilter, + VFilter); +} +void vp8_sixtap_predict8x8_c(unsigned char *src_ptr, int src_pixels_per_line, + int xoffset, int yoffset, unsigned char *dst_ptr, + int dst_pitch) { + const short *HFilter; + const short *VFilter; + int FData[13 * 16]; /* Temp data buffer used in filtering */ + + HFilter = vp8_sub_pel_filters[xoffset]; /* 6 tap */ + VFilter = vp8_sub_pel_filters[yoffset]; /* 6 tap */ + + /* First filter 1-D horizontally... */ + filter_block2d_first_pass(src_ptr - (2 * src_pixels_per_line), FData, + src_pixels_per_line, 1, 13, 8, HFilter); + + /* then filter verticaly... */ + filter_block2d_second_pass(FData + 16, dst_ptr, dst_pitch, 8, 8, 8, 8, + VFilter); +} + +void vp8_sixtap_predict8x4_c(unsigned char *src_ptr, int src_pixels_per_line, + int xoffset, int yoffset, unsigned char *dst_ptr, + int dst_pitch) { + const short *HFilter; + const short *VFilter; + int FData[13 * 16]; /* Temp data buffer used in filtering */ + + HFilter = vp8_sub_pel_filters[xoffset]; /* 6 tap */ + VFilter = vp8_sub_pel_filters[yoffset]; /* 6 tap */ + + /* First filter 1-D horizontally... */ + filter_block2d_first_pass(src_ptr - (2 * src_pixels_per_line), FData, + src_pixels_per_line, 1, 9, 8, HFilter); + + /* then filter verticaly... */ + filter_block2d_second_pass(FData + 16, dst_ptr, dst_pitch, 8, 8, 4, 8, + VFilter); +} + +void vp8_sixtap_predict16x16_c(unsigned char *src_ptr, int src_pixels_per_line, + int xoffset, int yoffset, unsigned char *dst_ptr, + int dst_pitch) { + const short *HFilter; + const short *VFilter; + int FData[21 * 24]; /* Temp data buffer used in filtering */ + + HFilter = vp8_sub_pel_filters[xoffset]; /* 6 tap */ + VFilter = vp8_sub_pel_filters[yoffset]; /* 6 tap */ + + /* First filter 1-D horizontally... */ + filter_block2d_first_pass(src_ptr - (2 * src_pixels_per_line), FData, + src_pixels_per_line, 1, 21, 16, HFilter); + + /* then filter verticaly... */ + filter_block2d_second_pass(FData + 32, dst_ptr, dst_pitch, 16, 16, 16, 16, + VFilter); +} + +/**************************************************************************** + * + * ROUTINE : filter_block2d_bil_first_pass + * + * INPUTS : UINT8 *src_ptr : Pointer to source block. + * UINT32 src_stride : Stride of source block. + * UINT32 height : Block height. + * UINT32 width : Block width. + * INT32 *vp8_filter : Array of 2 bi-linear filter taps. + * + * OUTPUTS : INT32 *dst_ptr : Pointer to filtered block. + * + * RETURNS : void + * + * FUNCTION : Applies a 1-D 2-tap bi-linear filter to the source block + * in the horizontal direction to produce the filtered output + * block. Used to implement first-pass of 2-D separable filter. + * + * SPECIAL NOTES : Produces INT32 output to retain precision for next pass. + * Two filter taps should sum to VP8_FILTER_WEIGHT. + * + ****************************************************************************/ +static void filter_block2d_bil_first_pass( + unsigned char *src_ptr, unsigned short *dst_ptr, unsigned int src_stride, + unsigned int height, unsigned int width, const short *vp8_filter) { + unsigned int i, j; + + for (i = 0; i < height; ++i) { + for (j = 0; j < width; ++j) { + /* Apply bilinear filter */ + dst_ptr[j] = + (((int)src_ptr[0] * vp8_filter[0]) + + ((int)src_ptr[1] * vp8_filter[1]) + (VP8_FILTER_WEIGHT / 2)) >> + VP8_FILTER_SHIFT; + src_ptr++; + } + + /* Next row... */ + src_ptr += src_stride - width; + dst_ptr += width; + } +} + +/**************************************************************************** + * + * ROUTINE : filter_block2d_bil_second_pass + * + * INPUTS : INT32 *src_ptr : Pointer to source block. + * UINT32 dst_pitch : Destination block pitch. + * UINT32 height : Block height. + * UINT32 width : Block width. + * INT32 *vp8_filter : Array of 2 bi-linear filter taps. + * + * OUTPUTS : UINT16 *dst_ptr : Pointer to filtered block. + * + * RETURNS : void + * + * FUNCTION : Applies a 1-D 2-tap bi-linear filter to the source block + * in the vertical direction to produce the filtered output + * block. Used to implement second-pass of 2-D separable + * filter. + * + * SPECIAL NOTES : Requires 32-bit input as produced by + * filter_block2d_bil_first_pass. + * Two filter taps should sum to VP8_FILTER_WEIGHT. + * + ****************************************************************************/ +static void filter_block2d_bil_second_pass(unsigned short *src_ptr, + unsigned char *dst_ptr, + int dst_pitch, unsigned int height, + unsigned int width, + const short *vp8_filter) { + unsigned int i, j; + int Temp; + + for (i = 0; i < height; ++i) { + for (j = 0; j < width; ++j) { + /* Apply filter */ + Temp = ((int)src_ptr[0] * vp8_filter[0]) + + ((int)src_ptr[width] * vp8_filter[1]) + (VP8_FILTER_WEIGHT / 2); + dst_ptr[j] = (unsigned int)(Temp >> VP8_FILTER_SHIFT); + src_ptr++; + } + + /* Next row... */ + dst_ptr += dst_pitch; + } +} + +/**************************************************************************** + * + * ROUTINE : filter_block2d_bil + * + * INPUTS : UINT8 *src_ptr : Pointer to source block. + * UINT32 src_pitch : Stride of source block. + * UINT32 dst_pitch : Stride of destination block. + * INT32 *HFilter : Array of 2 horizontal filter + * taps. + * INT32 *VFilter : Array of 2 vertical filter taps. + * INT32 Width : Block width + * INT32 Height : Block height + * + * OUTPUTS : UINT16 *dst_ptr : Pointer to filtered block. + * + * RETURNS : void + * + * FUNCTION : 2-D filters an input block by applying a 2-tap + * bi-linear filter horizontally followed by a 2-tap + * bi-linear filter vertically on the result. + * + * SPECIAL NOTES : The largest block size can be handled here is 16x16 + * + ****************************************************************************/ +static void filter_block2d_bil(unsigned char *src_ptr, unsigned char *dst_ptr, + unsigned int src_pitch, unsigned int dst_pitch, + const short *HFilter, const short *VFilter, + int Width, int Height) { + unsigned short FData[17 * 16]; /* Temp data buffer used in filtering */ + + /* First filter 1-D horizontally... */ + filter_block2d_bil_first_pass(src_ptr, FData, src_pitch, Height + 1, Width, + HFilter); + + /* then 1-D vertically... */ + filter_block2d_bil_second_pass(FData, dst_ptr, dst_pitch, Height, Width, + VFilter); +} + +void vp8_bilinear_predict4x4_c(unsigned char *src_ptr, int src_pixels_per_line, + int xoffset, int yoffset, unsigned char *dst_ptr, + int dst_pitch) { + const short *HFilter; + const short *VFilter; + + // This represents a copy and is not required to be handled by optimizations. + assert((xoffset | yoffset) != 0); + + HFilter = vp8_bilinear_filters[xoffset]; + VFilter = vp8_bilinear_filters[yoffset]; + filter_block2d_bil(src_ptr, dst_ptr, src_pixels_per_line, dst_pitch, HFilter, + VFilter, 4, 4); +} + +void vp8_bilinear_predict8x8_c(unsigned char *src_ptr, int src_pixels_per_line, + int xoffset, int yoffset, unsigned char *dst_ptr, + int dst_pitch) { + const short *HFilter; + const short *VFilter; + + assert((xoffset | yoffset) != 0); + + HFilter = vp8_bilinear_filters[xoffset]; + VFilter = vp8_bilinear_filters[yoffset]; + + filter_block2d_bil(src_ptr, dst_ptr, src_pixels_per_line, dst_pitch, HFilter, + VFilter, 8, 8); +} + +void vp8_bilinear_predict8x4_c(unsigned char *src_ptr, int src_pixels_per_line, + int xoffset, int yoffset, unsigned char *dst_ptr, + int dst_pitch) { + const short *HFilter; + const short *VFilter; + + assert((xoffset | yoffset) != 0); + + HFilter = vp8_bilinear_filters[xoffset]; + VFilter = vp8_bilinear_filters[yoffset]; + + filter_block2d_bil(src_ptr, dst_ptr, src_pixels_per_line, dst_pitch, HFilter, + VFilter, 8, 4); +} + +void vp8_bilinear_predict16x16_c(unsigned char *src_ptr, + int src_pixels_per_line, int xoffset, + int yoffset, unsigned char *dst_ptr, + int dst_pitch) { + const short *HFilter; + const short *VFilter; + + assert((xoffset | yoffset) != 0); + + HFilter = vp8_bilinear_filters[xoffset]; + VFilter = vp8_bilinear_filters[yoffset]; + + filter_block2d_bil(src_ptr, dst_ptr, src_pixels_per_line, dst_pitch, HFilter, + VFilter, 16, 16); +} diff --git a/vp8/common/filter.h b/vp8/common/filter.h new file mode 100644 index 0000000..f1d5ece --- /dev/null +++ b/vp8/common/filter.h @@ -0,0 +1,31 @@ +/* + * Copyright (c) 2011 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP8_COMMON_FILTER_H_ +#define VP8_COMMON_FILTER_H_ + +#include "vpx_ports/mem.h" + +#ifdef __cplusplus +extern "C" { +#endif + +#define BLOCK_HEIGHT_WIDTH 4 +#define VP8_FILTER_WEIGHT 128 +#define VP8_FILTER_SHIFT 7 + +extern DECLARE_ALIGNED(16, const short, vp8_bilinear_filters[8][2]); +extern DECLARE_ALIGNED(16, const short, vp8_sub_pel_filters[8][6]); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP8_COMMON_FILTER_H_ diff --git a/vp8/common/findnearmv.c b/vp8/common/findnearmv.c new file mode 100644 index 0000000..f40d2c6 --- /dev/null +++ b/vp8/common/findnearmv.c @@ -0,0 +1,157 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "findnearmv.h" + +const unsigned char vp8_mbsplit_offset[4][16] = { + { 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, + { 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, + { 0, 2, 8, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, + { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 } +}; + +/* Predict motion vectors using those from already-decoded nearby blocks. + Note that we only consider one 4x4 subblock from each candidate 16x16 + macroblock. */ +void vp8_find_near_mvs(MACROBLOCKD *xd, const MODE_INFO *here, int_mv *nearest, + int_mv *nearby, int_mv *best_mv, int cnt[4], + int refframe, int *ref_frame_sign_bias) { + const MODE_INFO *above = here - xd->mode_info_stride; + const MODE_INFO *left = here - 1; + const MODE_INFO *aboveleft = above - 1; + int_mv near_mvs[4]; + int_mv *mv = near_mvs; + int *cntx = cnt; + enum { CNT_INTRA, CNT_NEAREST, CNT_NEAR, CNT_SPLITMV }; + + /* Zero accumulators */ + mv[0].as_int = mv[1].as_int = mv[2].as_int = 0; + cnt[0] = cnt[1] = cnt[2] = cnt[3] = 0; + + /* Process above */ + if (above->mbmi.ref_frame != INTRA_FRAME) { + if (above->mbmi.mv.as_int) { + (++mv)->as_int = above->mbmi.mv.as_int; + mv_bias(ref_frame_sign_bias[above->mbmi.ref_frame], refframe, mv, + ref_frame_sign_bias); + ++cntx; + } + + *cntx += 2; + } + + /* Process left */ + if (left->mbmi.ref_frame != INTRA_FRAME) { + if (left->mbmi.mv.as_int) { + int_mv this_mv; + + this_mv.as_int = left->mbmi.mv.as_int; + mv_bias(ref_frame_sign_bias[left->mbmi.ref_frame], refframe, &this_mv, + ref_frame_sign_bias); + + if (this_mv.as_int != mv->as_int) { + (++mv)->as_int = this_mv.as_int; + ++cntx; + } + + *cntx += 2; + } else { + cnt[CNT_INTRA] += 2; + } + } + + /* Process above left */ + if (aboveleft->mbmi.ref_frame != INTRA_FRAME) { + if (aboveleft->mbmi.mv.as_int) { + int_mv this_mv; + + this_mv.as_int = aboveleft->mbmi.mv.as_int; + mv_bias(ref_frame_sign_bias[aboveleft->mbmi.ref_frame], refframe, + &this_mv, ref_frame_sign_bias); + + if (this_mv.as_int != mv->as_int) { + (++mv)->as_int = this_mv.as_int; + ++cntx; + } + + *cntx += 1; + } else { + cnt[CNT_INTRA] += 1; + } + } + + /* If we have three distinct MV's ... */ + if (cnt[CNT_SPLITMV]) { + /* See if above-left MV can be merged with NEAREST */ + if (mv->as_int == near_mvs[CNT_NEAREST].as_int) cnt[CNT_NEAREST] += 1; + } + + cnt[CNT_SPLITMV] = + ((above->mbmi.mode == SPLITMV) + (left->mbmi.mode == SPLITMV)) * 2 + + (aboveleft->mbmi.mode == SPLITMV); + + /* Swap near and nearest if necessary */ + if (cnt[CNT_NEAR] > cnt[CNT_NEAREST]) { + int tmp; + tmp = cnt[CNT_NEAREST]; + cnt[CNT_NEAREST] = cnt[CNT_NEAR]; + cnt[CNT_NEAR] = tmp; + tmp = near_mvs[CNT_NEAREST].as_int; + near_mvs[CNT_NEAREST].as_int = near_mvs[CNT_NEAR].as_int; + near_mvs[CNT_NEAR].as_int = tmp; + } + + /* Use near_mvs[0] to store the "best" MV */ + if (cnt[CNT_NEAREST] >= cnt[CNT_INTRA]) { + near_mvs[CNT_INTRA] = near_mvs[CNT_NEAREST]; + } + + /* Set up return values */ + best_mv->as_int = near_mvs[0].as_int; + nearest->as_int = near_mvs[CNT_NEAREST].as_int; + nearby->as_int = near_mvs[CNT_NEAR].as_int; +} + +static void invert_and_clamp_mvs(int_mv *inv, int_mv *src, MACROBLOCKD *xd) { + inv->as_mv.row = src->as_mv.row * -1; + inv->as_mv.col = src->as_mv.col * -1; + vp8_clamp_mv2(inv, xd); + vp8_clamp_mv2(src, xd); +} + +int vp8_find_near_mvs_bias(MACROBLOCKD *xd, const MODE_INFO *here, + int_mv mode_mv_sb[2][MB_MODE_COUNT], + int_mv best_mv_sb[2], int cnt[4], int refframe, + int *ref_frame_sign_bias) { + int sign_bias = ref_frame_sign_bias[refframe]; + + vp8_find_near_mvs(xd, here, &mode_mv_sb[sign_bias][NEARESTMV], + &mode_mv_sb[sign_bias][NEARMV], &best_mv_sb[sign_bias], cnt, + refframe, ref_frame_sign_bias); + + invert_and_clamp_mvs(&mode_mv_sb[!sign_bias][NEARESTMV], + &mode_mv_sb[sign_bias][NEARESTMV], xd); + invert_and_clamp_mvs(&mode_mv_sb[!sign_bias][NEARMV], + &mode_mv_sb[sign_bias][NEARMV], xd); + invert_and_clamp_mvs(&best_mv_sb[!sign_bias], &best_mv_sb[sign_bias], xd); + + return sign_bias; +} + +vp8_prob *vp8_mv_ref_probs(vp8_prob p[VP8_MVREFS - 1], + const int near_mv_ref_ct[4]) { + p[0] = vp8_mode_contexts[near_mv_ref_ct[0]][0]; + p[1] = vp8_mode_contexts[near_mv_ref_ct[1]][1]; + p[2] = vp8_mode_contexts[near_mv_ref_ct[2]][2]; + p[3] = vp8_mode_contexts[near_mv_ref_ct[3]][3]; + /* p[3] = vp8_mode_contexts[near_mv_ref_ct[1] + near_mv_ref_ct[2] + + near_mv_ref_ct[3]][3]; */ + return p; +} diff --git a/vp8/common/findnearmv.h b/vp8/common/findnearmv.h new file mode 100644 index 0000000..c1eaa26 --- /dev/null +++ b/vp8/common/findnearmv.h @@ -0,0 +1,151 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP8_COMMON_FINDNEARMV_H_ +#define VP8_COMMON_FINDNEARMV_H_ + +#include "./vpx_config.h" +#include "mv.h" +#include "blockd.h" +#include "modecont.h" +#include "treecoder.h" + +#ifdef __cplusplus +extern "C" { +#endif + +static INLINE void mv_bias(int refmb_ref_frame_sign_bias, int refframe, + int_mv *mvp, const int *ref_frame_sign_bias) { + if (refmb_ref_frame_sign_bias != ref_frame_sign_bias[refframe]) { + mvp->as_mv.row *= -1; + mvp->as_mv.col *= -1; + } +} + +#define LEFT_TOP_MARGIN (16 << 3) +#define RIGHT_BOTTOM_MARGIN (16 << 3) +static INLINE void vp8_clamp_mv2(int_mv *mv, const MACROBLOCKD *xd) { + if (mv->as_mv.col < (xd->mb_to_left_edge - LEFT_TOP_MARGIN)) { + mv->as_mv.col = xd->mb_to_left_edge - LEFT_TOP_MARGIN; + } else if (mv->as_mv.col > xd->mb_to_right_edge + RIGHT_BOTTOM_MARGIN) { + mv->as_mv.col = xd->mb_to_right_edge + RIGHT_BOTTOM_MARGIN; + } + + if (mv->as_mv.row < (xd->mb_to_top_edge - LEFT_TOP_MARGIN)) { + mv->as_mv.row = xd->mb_to_top_edge - LEFT_TOP_MARGIN; + } else if (mv->as_mv.row > xd->mb_to_bottom_edge + RIGHT_BOTTOM_MARGIN) { + mv->as_mv.row = xd->mb_to_bottom_edge + RIGHT_BOTTOM_MARGIN; + } +} + +static INLINE void vp8_clamp_mv(int_mv *mv, int mb_to_left_edge, + int mb_to_right_edge, int mb_to_top_edge, + int mb_to_bottom_edge) { + mv->as_mv.col = + (mv->as_mv.col < mb_to_left_edge) ? mb_to_left_edge : mv->as_mv.col; + mv->as_mv.col = + (mv->as_mv.col > mb_to_right_edge) ? mb_to_right_edge : mv->as_mv.col; + mv->as_mv.row = + (mv->as_mv.row < mb_to_top_edge) ? mb_to_top_edge : mv->as_mv.row; + mv->as_mv.row = + (mv->as_mv.row > mb_to_bottom_edge) ? mb_to_bottom_edge : mv->as_mv.row; +} +static INLINE unsigned int vp8_check_mv_bounds(int_mv *mv, int mb_to_left_edge, + int mb_to_right_edge, + int mb_to_top_edge, + int mb_to_bottom_edge) { + unsigned int need_to_clamp; + need_to_clamp = (mv->as_mv.col < mb_to_left_edge); + need_to_clamp |= (mv->as_mv.col > mb_to_right_edge); + need_to_clamp |= (mv->as_mv.row < mb_to_top_edge); + need_to_clamp |= (mv->as_mv.row > mb_to_bottom_edge); + return need_to_clamp; +} + +void vp8_find_near_mvs(MACROBLOCKD *xd, const MODE_INFO *here, int_mv *nearest, + int_mv *nearby, int_mv *best, int near_mv_ref_cts[4], + int refframe, int *ref_frame_sign_bias); + +int vp8_find_near_mvs_bias(MACROBLOCKD *xd, const MODE_INFO *here, + int_mv mode_mv_sb[2][MB_MODE_COUNT], + int_mv best_mv_sb[2], int cnt[4], int refframe, + int *ref_frame_sign_bias); + +vp8_prob *vp8_mv_ref_probs(vp8_prob p[VP8_MVREFS - 1], + const int near_mv_ref_ct[4]); + +extern const unsigned char vp8_mbsplit_offset[4][16]; + +static INLINE uint32_t left_block_mv(const MODE_INFO *cur_mb, int b) { + if (!(b & 3)) { + /* On L edge, get from MB to left of us */ + --cur_mb; + + if (cur_mb->mbmi.mode != SPLITMV) return cur_mb->mbmi.mv.as_int; + b += 4; + } + + return (cur_mb->bmi + b - 1)->mv.as_int; +} + +static INLINE uint32_t above_block_mv(const MODE_INFO *cur_mb, int b, + int mi_stride) { + if (!(b >> 2)) { + /* On top edge, get from MB above us */ + cur_mb -= mi_stride; + + if (cur_mb->mbmi.mode != SPLITMV) return cur_mb->mbmi.mv.as_int; + b += 16; + } + + return (cur_mb->bmi + (b - 4))->mv.as_int; +} +static INLINE B_PREDICTION_MODE left_block_mode(const MODE_INFO *cur_mb, + int b) { + if (!(b & 3)) { + /* On L edge, get from MB to left of us */ + --cur_mb; + switch (cur_mb->mbmi.mode) { + case B_PRED: return (cur_mb->bmi + b + 3)->as_mode; + case DC_PRED: return B_DC_PRED; + case V_PRED: return B_VE_PRED; + case H_PRED: return B_HE_PRED; + case TM_PRED: return B_TM_PRED; + default: return B_DC_PRED; + } + } + + return (cur_mb->bmi + b - 1)->as_mode; +} + +static INLINE B_PREDICTION_MODE above_block_mode(const MODE_INFO *cur_mb, int b, + int mi_stride) { + if (!(b >> 2)) { + /* On top edge, get from MB above us */ + cur_mb -= mi_stride; + + switch (cur_mb->mbmi.mode) { + case B_PRED: return (cur_mb->bmi + b + 12)->as_mode; + case DC_PRED: return B_DC_PRED; + case V_PRED: return B_VE_PRED; + case H_PRED: return B_HE_PRED; + case TM_PRED: return B_TM_PRED; + default: return B_DC_PRED; + } + } + + return (cur_mb->bmi + b - 4)->as_mode; +} + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP8_COMMON_FINDNEARMV_H_ diff --git a/vp8/common/generic/systemdependent.c b/vp8/common/generic/systemdependent.c new file mode 100644 index 0000000..0432ee9 --- /dev/null +++ b/vp8/common/generic/systemdependent.c @@ -0,0 +1,102 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "vpx_config.h" +#include "vp8_rtcd.h" +#if ARCH_ARM +#include "vpx_ports/arm.h" +#elif ARCH_X86 || ARCH_X86_64 +#include "vpx_ports/x86.h" +#elif ARCH_PPC +#include "vpx_ports/ppc.h" +#endif +#include "vp8/common/onyxc_int.h" +#include "vp8/common/systemdependent.h" + +#if CONFIG_MULTITHREAD +#if HAVE_UNISTD_H && !defined(__OS2__) +#include +#elif defined(_WIN32) +#include +typedef void(WINAPI *PGNSI)(LPSYSTEM_INFO); +#elif defined(__OS2__) +#define INCL_DOS +#define INCL_DOSSPINLOCK +#include +#endif +#endif + +#if CONFIG_MULTITHREAD +static int get_cpu_count() { + int core_count = 16; + +#if HAVE_UNISTD_H && !defined(__OS2__) +#if defined(_SC_NPROCESSORS_ONLN) + core_count = (int)sysconf(_SC_NPROCESSORS_ONLN); +#elif defined(_SC_NPROC_ONLN) + core_count = (int)sysconf(_SC_NPROC_ONLN); +#endif +#elif defined(_WIN32) + { +#if _WIN32_WINNT >= 0x0501 + SYSTEM_INFO sysinfo; + GetNativeSystemInfo(&sysinfo); +#else + PGNSI pGNSI; + SYSTEM_INFO sysinfo; + + /* Call GetNativeSystemInfo if supported or + * GetSystemInfo otherwise. */ + + pGNSI = (PGNSI)GetProcAddress(GetModuleHandle(TEXT("kernel32.dll")), + "GetNativeSystemInfo"); + if (pGNSI != NULL) + pGNSI(&sysinfo); + else + GetSystemInfo(&sysinfo); +#endif + + core_count = (int)sysinfo.dwNumberOfProcessors; + } +#elif defined(__OS2__) + { + ULONG proc_id; + ULONG status; + + core_count = 0; + for (proc_id = 1;; ++proc_id) { + if (DosGetProcessorStatus(proc_id, &status)) break; + + if (status == PROC_ONLINE) core_count++; + } + } +#else +/* other platforms */ +#endif + + return core_count > 0 ? core_count : 1; +} +#endif + +void vp8_machine_specific_config(VP8_COMMON *ctx) { +#if CONFIG_MULTITHREAD + ctx->processor_core_count = get_cpu_count(); +#else + (void)ctx; +#endif /* CONFIG_MULTITHREAD */ + +#if ARCH_ARM + ctx->cpu_caps = arm_cpu_caps(); +#elif ARCH_X86 || ARCH_X86_64 + ctx->cpu_caps = x86_simd_caps(); +#elif ARCH_PPC + ctx->cpu_caps = ppc_simd_caps(); +#endif +} diff --git a/vp8/common/header.h b/vp8/common/header.h new file mode 100644 index 0000000..1df01fc --- /dev/null +++ b/vp8/common/header.h @@ -0,0 +1,48 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP8_COMMON_HEADER_H_ +#define VP8_COMMON_HEADER_H_ + +#ifdef __cplusplus +extern "C" { +#endif + +/* 24 bits total */ +typedef struct { + unsigned int type : 1; + unsigned int version : 3; + unsigned int show_frame : 1; + + /* Allow 2^20 bytes = 8 megabits for first partition */ + + unsigned int first_partition_length_in_bytes : 19; + +#ifdef PACKET_TESTING + unsigned int frame_number; + unsigned int update_gold : 1; + unsigned int uses_gold : 1; + unsigned int update_last : 1; + unsigned int uses_last : 1; +#endif + +} VP8_HEADER; + +#ifdef PACKET_TESTING +#define VP8_HEADER_SIZE 8 +#else +#define VP8_HEADER_SIZE 3 +#endif + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP8_COMMON_HEADER_H_ diff --git a/vp8/common/idct_blk.c b/vp8/common/idct_blk.c new file mode 100644 index 0000000..ff9f3eb --- /dev/null +++ b/vp8/common/idct_blk.c @@ -0,0 +1,78 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "vpx_config.h" +#include "vp8_rtcd.h" +#include "vpx_mem/vpx_mem.h" + +void vp8_dequant_idct_add_c(short *input, short *dq, unsigned char *dest, + int stride); +void vp8_dc_only_idct_add_c(short input_dc, unsigned char *pred, + int pred_stride, unsigned char *dst_ptr, + int dst_stride); + +void vp8_dequant_idct_add_y_block_c(short *q, short *dq, unsigned char *dst, + int stride, char *eobs) { + int i, j; + + for (i = 0; i < 4; ++i) { + for (j = 0; j < 4; ++j) { + if (*eobs++ > 1) { + vp8_dequant_idct_add_c(q, dq, dst, stride); + } else { + vp8_dc_only_idct_add_c(q[0] * dq[0], dst, stride, dst, stride); + memset(q, 0, 2 * sizeof(q[0])); + } + + q += 16; + dst += 4; + } + + dst += 4 * stride - 16; + } +} + +void vp8_dequant_idct_add_uv_block_c(short *q, short *dq, unsigned char *dstu, + unsigned char *dstv, int stride, + char *eobs) { + int i, j; + + for (i = 0; i < 2; ++i) { + for (j = 0; j < 2; ++j) { + if (*eobs++ > 1) { + vp8_dequant_idct_add_c(q, dq, dstu, stride); + } else { + vp8_dc_only_idct_add_c(q[0] * dq[0], dstu, stride, dstu, stride); + memset(q, 0, 2 * sizeof(q[0])); + } + + q += 16; + dstu += 4; + } + + dstu += 4 * stride - 8; + } + + for (i = 0; i < 2; ++i) { + for (j = 0; j < 2; ++j) { + if (*eobs++ > 1) { + vp8_dequant_idct_add_c(q, dq, dstv, stride); + } else { + vp8_dc_only_idct_add_c(q[0] * dq[0], dstv, stride, dstv, stride); + memset(q, 0, 2 * sizeof(q[0])); + } + + q += 16; + dstv += 4; + } + + dstv += 4 * stride - 8; + } +} diff --git a/vp8/common/idctllm.c b/vp8/common/idctllm.c new file mode 100644 index 0000000..2f5adc0 --- /dev/null +++ b/vp8/common/idctllm.c @@ -0,0 +1,185 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "./vp8_rtcd.h" + +/**************************************************************************** + * Notes: + * + * This implementation makes use of 16 bit fixed point verio of two multiply + * constants: + * 1. sqrt(2) * cos (pi/8) + * 2. sqrt(2) * sin (pi/8) + * Becuase the first constant is bigger than 1, to maintain the same 16 bit + * fixed point precision as the second one, we use a trick of + * x * a = x + x*(a-1) + * so + * x * sqrt(2) * cos (pi/8) = x + x * (sqrt(2) *cos(pi/8)-1). + **************************************************************************/ +static const int cospi8sqrt2minus1 = 20091; +static const int sinpi8sqrt2 = 35468; + +void vp8_short_idct4x4llm_c(short *input, unsigned char *pred_ptr, + int pred_stride, unsigned char *dst_ptr, + int dst_stride) { + int i; + int r, c; + int a1, b1, c1, d1; + short output[16]; + short *ip = input; + short *op = output; + int temp1, temp2; + int shortpitch = 4; + + for (i = 0; i < 4; ++i) { + a1 = ip[0] + ip[8]; + b1 = ip[0] - ip[8]; + + temp1 = (ip[4] * sinpi8sqrt2) >> 16; + temp2 = ip[12] + ((ip[12] * cospi8sqrt2minus1) >> 16); + c1 = temp1 - temp2; + + temp1 = ip[4] + ((ip[4] * cospi8sqrt2minus1) >> 16); + temp2 = (ip[12] * sinpi8sqrt2) >> 16; + d1 = temp1 + temp2; + + op[shortpitch * 0] = a1 + d1; + op[shortpitch * 3] = a1 - d1; + + op[shortpitch * 1] = b1 + c1; + op[shortpitch * 2] = b1 - c1; + + ip++; + op++; + } + + ip = output; + op = output; + + for (i = 0; i < 4; ++i) { + a1 = ip[0] + ip[2]; + b1 = ip[0] - ip[2]; + + temp1 = (ip[1] * sinpi8sqrt2) >> 16; + temp2 = ip[3] + ((ip[3] * cospi8sqrt2minus1) >> 16); + c1 = temp1 - temp2; + + temp1 = ip[1] + ((ip[1] * cospi8sqrt2minus1) >> 16); + temp2 = (ip[3] * sinpi8sqrt2) >> 16; + d1 = temp1 + temp2; + + op[0] = (a1 + d1 + 4) >> 3; + op[3] = (a1 - d1 + 4) >> 3; + + op[1] = (b1 + c1 + 4) >> 3; + op[2] = (b1 - c1 + 4) >> 3; + + ip += shortpitch; + op += shortpitch; + } + + ip = output; + for (r = 0; r < 4; ++r) { + for (c = 0; c < 4; ++c) { + int a = ip[c] + pred_ptr[c]; + + if (a < 0) a = 0; + + if (a > 255) a = 255; + + dst_ptr[c] = (unsigned char)a; + } + ip += 4; + dst_ptr += dst_stride; + pred_ptr += pred_stride; + } +} + +void vp8_dc_only_idct_add_c(short input_dc, unsigned char *pred_ptr, + int pred_stride, unsigned char *dst_ptr, + int dst_stride) { + int a1 = ((input_dc + 4) >> 3); + int r, c; + + for (r = 0; r < 4; ++r) { + for (c = 0; c < 4; ++c) { + int a = a1 + pred_ptr[c]; + + if (a < 0) a = 0; + + if (a > 255) a = 255; + + dst_ptr[c] = (unsigned char)a; + } + + dst_ptr += dst_stride; + pred_ptr += pred_stride; + } +} + +void vp8_short_inv_walsh4x4_c(short *input, short *mb_dqcoeff) { + short output[16]; + int i; + int a1, b1, c1, d1; + int a2, b2, c2, d2; + short *ip = input; + short *op = output; + + for (i = 0; i < 4; ++i) { + a1 = ip[0] + ip[12]; + b1 = ip[4] + ip[8]; + c1 = ip[4] - ip[8]; + d1 = ip[0] - ip[12]; + + op[0] = a1 + b1; + op[4] = c1 + d1; + op[8] = a1 - b1; + op[12] = d1 - c1; + ip++; + op++; + } + + ip = output; + op = output; + + for (i = 0; i < 4; ++i) { + a1 = ip[0] + ip[3]; + b1 = ip[1] + ip[2]; + c1 = ip[1] - ip[2]; + d1 = ip[0] - ip[3]; + + a2 = a1 + b1; + b2 = c1 + d1; + c2 = a1 - b1; + d2 = d1 - c1; + + op[0] = (a2 + 3) >> 3; + op[1] = (b2 + 3) >> 3; + op[2] = (c2 + 3) >> 3; + op[3] = (d2 + 3) >> 3; + + ip += 4; + op += 4; + } + + for (i = 0; i < 16; ++i) { + mb_dqcoeff[i * 16] = output[i]; + } +} + +void vp8_short_inv_walsh4x4_1_c(short *input, short *mb_dqcoeff) { + int i; + int a1; + + a1 = ((input[0] + 3) >> 3); + for (i = 0; i < 16; ++i) { + mb_dqcoeff[i * 16] = a1; + } +} diff --git a/vp8/common/invtrans.h b/vp8/common/invtrans.h new file mode 100644 index 0000000..c7af32f --- /dev/null +++ b/vp8/common/invtrans.h @@ -0,0 +1,57 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP8_COMMON_INVTRANS_H_ +#define VP8_COMMON_INVTRANS_H_ + +#include "./vpx_config.h" +#include "vp8_rtcd.h" +#include "blockd.h" +#include "onyxc_int.h" + +#if CONFIG_MULTITHREAD +#include "vpx_mem/vpx_mem.h" +#endif + +#ifdef __cplusplus +extern "C" { +#endif + +static void eob_adjust(char *eobs, short *diff) { + /* eob adjust.... the idct can only skip if both the dc and eob are zero */ + int js; + for (js = 0; js < 16; ++js) { + if ((eobs[js] == 0) && (diff[0] != 0)) eobs[js]++; + diff += 16; + } +} + +static INLINE void vp8_inverse_transform_mby(MACROBLOCKD *xd) { + short *DQC = xd->dequant_y1; + + if (xd->mode_info_context->mbmi.mode != SPLITMV) { + /* do 2nd order transform on the dc block */ + if (xd->eobs[24] > 1) { + vp8_short_inv_walsh4x4(&xd->block[24].dqcoeff[0], xd->qcoeff); + } else { + vp8_short_inv_walsh4x4_1(&xd->block[24].dqcoeff[0], xd->qcoeff); + } + eob_adjust(xd->eobs, xd->qcoeff); + + DQC = xd->dequant_y1_dc; + } + vp8_dequant_idct_add_y_block(xd->qcoeff, DQC, xd->dst.y_buffer, + xd->dst.y_stride, xd->eobs); +} +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP8_COMMON_INVTRANS_H_ diff --git a/vp8/common/loopfilter.h b/vp8/common/loopfilter.h new file mode 100644 index 0000000..7484563 --- /dev/null +++ b/vp8/common/loopfilter.h @@ -0,0 +1,103 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP8_COMMON_LOOPFILTER_H_ +#define VP8_COMMON_LOOPFILTER_H_ + +#include "vpx_ports/mem.h" +#include "vpx_config.h" +#include "vp8_rtcd.h" + +#ifdef __cplusplus +extern "C" { +#endif + +#define MAX_LOOP_FILTER 63 +/* fraction of total macroblock rows to be used in fast filter level picking */ +/* has to be > 2 */ +#define PARTIAL_FRAME_FRACTION 8 + +typedef enum { NORMAL_LOOPFILTER = 0, SIMPLE_LOOPFILTER = 1 } LOOPFILTERTYPE; + +#if ARCH_ARM +#define SIMD_WIDTH 1 +#else +#define SIMD_WIDTH 16 +#endif + +/* Need to align this structure so when it is declared and + * passed it can be loaded into vector registers. + */ +typedef struct { + DECLARE_ALIGNED(SIMD_WIDTH, unsigned char, + mblim[MAX_LOOP_FILTER + 1][SIMD_WIDTH]); + DECLARE_ALIGNED(SIMD_WIDTH, unsigned char, + blim[MAX_LOOP_FILTER + 1][SIMD_WIDTH]); + DECLARE_ALIGNED(SIMD_WIDTH, unsigned char, + lim[MAX_LOOP_FILTER + 1][SIMD_WIDTH]); + DECLARE_ALIGNED(SIMD_WIDTH, unsigned char, hev_thr[4][SIMD_WIDTH]); + unsigned char lvl[4][4][4]; + unsigned char hev_thr_lut[2][MAX_LOOP_FILTER + 1]; + unsigned char mode_lf_lut[10]; +} loop_filter_info_n; + +typedef struct loop_filter_info { + const unsigned char *mblim; + const unsigned char *blim; + const unsigned char *lim; + const unsigned char *hev_thr; +} loop_filter_info; + +typedef void loop_filter_uvfunction(unsigned char *u, /* source pointer */ + int p, /* pitch */ + const unsigned char *blimit, + const unsigned char *limit, + const unsigned char *thresh, + unsigned char *v); + +/* assorted loopfilter functions which get used elsewhere */ +struct VP8Common; +struct macroblockd; +struct modeinfo; + +void vp8_loop_filter_init(struct VP8Common *cm); + +void vp8_loop_filter_frame_init(struct VP8Common *cm, struct macroblockd *mbd, + int default_filt_lvl); + +void vp8_loop_filter_frame(struct VP8Common *cm, struct macroblockd *mbd, + int frame_type); + +void vp8_loop_filter_partial_frame(struct VP8Common *cm, + struct macroblockd *mbd, + int default_filt_lvl); + +void vp8_loop_filter_frame_yonly(struct VP8Common *cm, struct macroblockd *mbd, + int default_filt_lvl); + +void vp8_loop_filter_update_sharpness(loop_filter_info_n *lfi, + int sharpness_lvl); + +void vp8_loop_filter_row_normal(struct VP8Common *cm, + struct modeinfo *mode_info_context, int mb_row, + int post_ystride, int post_uvstride, + unsigned char *y_ptr, unsigned char *u_ptr, + unsigned char *v_ptr); + +void vp8_loop_filter_row_simple(struct VP8Common *cm, + struct modeinfo *mode_info_context, int mb_row, + int post_ystride, int post_uvstride, + unsigned char *y_ptr, unsigned char *u_ptr, + unsigned char *v_ptr); +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP8_COMMON_LOOPFILTER_H_ diff --git a/vp8/common/loopfilter_filters.c b/vp8/common/loopfilter_filters.c new file mode 100644 index 0000000..188e290 --- /dev/null +++ b/vp8/common/loopfilter_filters.c @@ -0,0 +1,393 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include "loopfilter.h" +#include "onyxc_int.h" + +typedef unsigned char uc; + +static signed char vp8_signed_char_clamp(int t) { + t = (t < -128 ? -128 : t); + t = (t > 127 ? 127 : t); + return (signed char)t; +} + +/* should we apply any filter at all ( 11111111 yes, 00000000 no) */ +static signed char vp8_filter_mask(uc limit, uc blimit, uc p3, uc p2, uc p1, + uc p0, uc q0, uc q1, uc q2, uc q3) { + signed char mask = 0; + mask |= (abs(p3 - p2) > limit); + mask |= (abs(p2 - p1) > limit); + mask |= (abs(p1 - p0) > limit); + mask |= (abs(q1 - q0) > limit); + mask |= (abs(q2 - q1) > limit); + mask |= (abs(q3 - q2) > limit); + mask |= (abs(p0 - q0) * 2 + abs(p1 - q1) / 2 > blimit); + return mask - 1; +} + +/* is there high variance internal edge ( 11111111 yes, 00000000 no) */ +static signed char vp8_hevmask(uc thresh, uc p1, uc p0, uc q0, uc q1) { + signed char hev = 0; + hev |= (abs(p1 - p0) > thresh) * -1; + hev |= (abs(q1 - q0) > thresh) * -1; + return hev; +} + +static void vp8_filter(signed char mask, uc hev, uc *op1, uc *op0, uc *oq0, + uc *oq1) { + signed char ps0, qs0; + signed char ps1, qs1; + signed char filter_value, Filter1, Filter2; + signed char u; + + ps1 = (signed char)*op1 ^ 0x80; + ps0 = (signed char)*op0 ^ 0x80; + qs0 = (signed char)*oq0 ^ 0x80; + qs1 = (signed char)*oq1 ^ 0x80; + + /* add outer taps if we have high edge variance */ + filter_value = vp8_signed_char_clamp(ps1 - qs1); + filter_value &= hev; + + /* inner taps */ + filter_value = vp8_signed_char_clamp(filter_value + 3 * (qs0 - ps0)); + filter_value &= mask; + + /* save bottom 3 bits so that we round one side +4 and the other +3 + * if it equals 4 we'll set it to adjust by -1 to account for the fact + * we'd round it by 3 the other way + */ + Filter1 = vp8_signed_char_clamp(filter_value + 4); + Filter2 = vp8_signed_char_clamp(filter_value + 3); + Filter1 >>= 3; + Filter2 >>= 3; + u = vp8_signed_char_clamp(qs0 - Filter1); + *oq0 = u ^ 0x80; + u = vp8_signed_char_clamp(ps0 + Filter2); + *op0 = u ^ 0x80; + filter_value = Filter1; + + /* outer tap adjustments */ + filter_value += 1; + filter_value >>= 1; + filter_value &= ~hev; + + u = vp8_signed_char_clamp(qs1 - filter_value); + *oq1 = u ^ 0x80; + u = vp8_signed_char_clamp(ps1 + filter_value); + *op1 = u ^ 0x80; +} + +static void loop_filter_horizontal_edge_c(unsigned char *s, int p, /* pitch */ + const unsigned char *blimit, + const unsigned char *limit, + const unsigned char *thresh, + int count) { + int hev = 0; /* high edge variance */ + signed char mask = 0; + int i = 0; + + /* loop filter designed to work using chars so that we can make maximum use + * of 8 bit simd instructions. + */ + do { + mask = vp8_filter_mask(limit[0], blimit[0], s[-4 * p], s[-3 * p], s[-2 * p], + s[-1 * p], s[0 * p], s[1 * p], s[2 * p], s[3 * p]); + + hev = vp8_hevmask(thresh[0], s[-2 * p], s[-1 * p], s[0 * p], s[1 * p]); + + vp8_filter(mask, hev, s - 2 * p, s - 1 * p, s, s + 1 * p); + + ++s; + } while (++i < count * 8); +} + +static void loop_filter_vertical_edge_c(unsigned char *s, int p, + const unsigned char *blimit, + const unsigned char *limit, + const unsigned char *thresh, + int count) { + int hev = 0; /* high edge variance */ + signed char mask = 0; + int i = 0; + + /* loop filter designed to work using chars so that we can make maximum use + * of 8 bit simd instructions. + */ + do { + mask = vp8_filter_mask(limit[0], blimit[0], s[-4], s[-3], s[-2], s[-1], + s[0], s[1], s[2], s[3]); + + hev = vp8_hevmask(thresh[0], s[-2], s[-1], s[0], s[1]); + + vp8_filter(mask, hev, s - 2, s - 1, s, s + 1); + + s += p; + } while (++i < count * 8); +} + +static void vp8_mbfilter(signed char mask, uc hev, uc *op2, uc *op1, uc *op0, + uc *oq0, uc *oq1, uc *oq2) { + signed char s, u; + signed char filter_value, Filter1, Filter2; + signed char ps2 = (signed char)*op2 ^ 0x80; + signed char ps1 = (signed char)*op1 ^ 0x80; + signed char ps0 = (signed char)*op0 ^ 0x80; + signed char qs0 = (signed char)*oq0 ^ 0x80; + signed char qs1 = (signed char)*oq1 ^ 0x80; + signed char qs2 = (signed char)*oq2 ^ 0x80; + + /* add outer taps if we have high edge variance */ + filter_value = vp8_signed_char_clamp(ps1 - qs1); + filter_value = vp8_signed_char_clamp(filter_value + 3 * (qs0 - ps0)); + filter_value &= mask; + + Filter2 = filter_value; + Filter2 &= hev; + + /* save bottom 3 bits so that we round one side +4 and the other +3 */ + Filter1 = vp8_signed_char_clamp(Filter2 + 4); + Filter2 = vp8_signed_char_clamp(Filter2 + 3); + Filter1 >>= 3; + Filter2 >>= 3; + qs0 = vp8_signed_char_clamp(qs0 - Filter1); + ps0 = vp8_signed_char_clamp(ps0 + Filter2); + + /* only apply wider filter if not high edge variance */ + filter_value &= ~hev; + Filter2 = filter_value; + + /* roughly 3/7th difference across boundary */ + u = vp8_signed_char_clamp((63 + Filter2 * 27) >> 7); + s = vp8_signed_char_clamp(qs0 - u); + *oq0 = s ^ 0x80; + s = vp8_signed_char_clamp(ps0 + u); + *op0 = s ^ 0x80; + + /* roughly 2/7th difference across boundary */ + u = vp8_signed_char_clamp((63 + Filter2 * 18) >> 7); + s = vp8_signed_char_clamp(qs1 - u); + *oq1 = s ^ 0x80; + s = vp8_signed_char_clamp(ps1 + u); + *op1 = s ^ 0x80; + + /* roughly 1/7th difference across boundary */ + u = vp8_signed_char_clamp((63 + Filter2 * 9) >> 7); + s = vp8_signed_char_clamp(qs2 - u); + *oq2 = s ^ 0x80; + s = vp8_signed_char_clamp(ps2 + u); + *op2 = s ^ 0x80; +} + +static void mbloop_filter_horizontal_edge_c(unsigned char *s, int p, + const unsigned char *blimit, + const unsigned char *limit, + const unsigned char *thresh, + int count) { + signed char hev = 0; /* high edge variance */ + signed char mask = 0; + int i = 0; + + /* loop filter designed to work using chars so that we can make maximum use + * of 8 bit simd instructions. + */ + do { + mask = vp8_filter_mask(limit[0], blimit[0], s[-4 * p], s[-3 * p], s[-2 * p], + s[-1 * p], s[0 * p], s[1 * p], s[2 * p], s[3 * p]); + + hev = vp8_hevmask(thresh[0], s[-2 * p], s[-1 * p], s[0 * p], s[1 * p]); + + vp8_mbfilter(mask, hev, s - 3 * p, s - 2 * p, s - 1 * p, s, s + 1 * p, + s + 2 * p); + + ++s; + } while (++i < count * 8); +} + +static void mbloop_filter_vertical_edge_c(unsigned char *s, int p, + const unsigned char *blimit, + const unsigned char *limit, + const unsigned char *thresh, + int count) { + signed char hev = 0; /* high edge variance */ + signed char mask = 0; + int i = 0; + + do { + mask = vp8_filter_mask(limit[0], blimit[0], s[-4], s[-3], s[-2], s[-1], + s[0], s[1], s[2], s[3]); + + hev = vp8_hevmask(thresh[0], s[-2], s[-1], s[0], s[1]); + + vp8_mbfilter(mask, hev, s - 3, s - 2, s - 1, s, s + 1, s + 2); + + s += p; + } while (++i < count * 8); +} + +/* should we apply any filter at all ( 11111111 yes, 00000000 no) */ +static signed char vp8_simple_filter_mask(uc blimit, uc p1, uc p0, uc q0, + uc q1) { + /* Why does this cause problems for win32? + * error C2143: syntax error : missing ';' before 'type' + * (void) limit; + */ + signed char mask = (abs(p0 - q0) * 2 + abs(p1 - q1) / 2 <= blimit) * -1; + return mask; +} + +static void vp8_simple_filter(signed char mask, uc *op1, uc *op0, uc *oq0, + uc *oq1) { + signed char filter_value, Filter1, Filter2; + signed char p1 = (signed char)*op1 ^ 0x80; + signed char p0 = (signed char)*op0 ^ 0x80; + signed char q0 = (signed char)*oq0 ^ 0x80; + signed char q1 = (signed char)*oq1 ^ 0x80; + signed char u; + + filter_value = vp8_signed_char_clamp(p1 - q1); + filter_value = vp8_signed_char_clamp(filter_value + 3 * (q0 - p0)); + filter_value &= mask; + + /* save bottom 3 bits so that we round one side +4 and the other +3 */ + Filter1 = vp8_signed_char_clamp(filter_value + 4); + Filter1 >>= 3; + u = vp8_signed_char_clamp(q0 - Filter1); + *oq0 = u ^ 0x80; + + Filter2 = vp8_signed_char_clamp(filter_value + 3); + Filter2 >>= 3; + u = vp8_signed_char_clamp(p0 + Filter2); + *op0 = u ^ 0x80; +} + +void vp8_loop_filter_simple_horizontal_edge_c(unsigned char *s, int p, + const unsigned char *blimit) { + signed char mask = 0; + int i = 0; + + do { + mask = vp8_simple_filter_mask(blimit[0], s[-2 * p], s[-1 * p], s[0 * p], + s[1 * p]); + vp8_simple_filter(mask, s - 2 * p, s - 1 * p, s, s + 1 * p); + ++s; + } while (++i < 16); +} + +void vp8_loop_filter_simple_vertical_edge_c(unsigned char *s, int p, + const unsigned char *blimit) { + signed char mask = 0; + int i = 0; + + do { + mask = vp8_simple_filter_mask(blimit[0], s[-2], s[-1], s[0], s[1]); + vp8_simple_filter(mask, s - 2, s - 1, s, s + 1); + s += p; + } while (++i < 16); +} + +/* Horizontal MB filtering */ +void vp8_loop_filter_mbh_c(unsigned char *y_ptr, unsigned char *u_ptr, + unsigned char *v_ptr, int y_stride, int uv_stride, + loop_filter_info *lfi) { + mbloop_filter_horizontal_edge_c(y_ptr, y_stride, lfi->mblim, lfi->lim, + lfi->hev_thr, 2); + + if (u_ptr) { + mbloop_filter_horizontal_edge_c(u_ptr, uv_stride, lfi->mblim, lfi->lim, + lfi->hev_thr, 1); + } + + if (v_ptr) { + mbloop_filter_horizontal_edge_c(v_ptr, uv_stride, lfi->mblim, lfi->lim, + lfi->hev_thr, 1); + } +} + +/* Vertical MB Filtering */ +void vp8_loop_filter_mbv_c(unsigned char *y_ptr, unsigned char *u_ptr, + unsigned char *v_ptr, int y_stride, int uv_stride, + loop_filter_info *lfi) { + mbloop_filter_vertical_edge_c(y_ptr, y_stride, lfi->mblim, lfi->lim, + lfi->hev_thr, 2); + + if (u_ptr) { + mbloop_filter_vertical_edge_c(u_ptr, uv_stride, lfi->mblim, lfi->lim, + lfi->hev_thr, 1); + } + + if (v_ptr) { + mbloop_filter_vertical_edge_c(v_ptr, uv_stride, lfi->mblim, lfi->lim, + lfi->hev_thr, 1); + } +} + +/* Horizontal B Filtering */ +void vp8_loop_filter_bh_c(unsigned char *y_ptr, unsigned char *u_ptr, + unsigned char *v_ptr, int y_stride, int uv_stride, + loop_filter_info *lfi) { + loop_filter_horizontal_edge_c(y_ptr + 4 * y_stride, y_stride, lfi->blim, + lfi->lim, lfi->hev_thr, 2); + loop_filter_horizontal_edge_c(y_ptr + 8 * y_stride, y_stride, lfi->blim, + lfi->lim, lfi->hev_thr, 2); + loop_filter_horizontal_edge_c(y_ptr + 12 * y_stride, y_stride, lfi->blim, + lfi->lim, lfi->hev_thr, 2); + + if (u_ptr) { + loop_filter_horizontal_edge_c(u_ptr + 4 * uv_stride, uv_stride, lfi->blim, + lfi->lim, lfi->hev_thr, 1); + } + + if (v_ptr) { + loop_filter_horizontal_edge_c(v_ptr + 4 * uv_stride, uv_stride, lfi->blim, + lfi->lim, lfi->hev_thr, 1); + } +} + +void vp8_loop_filter_bhs_c(unsigned char *y_ptr, int y_stride, + const unsigned char *blimit) { + vp8_loop_filter_simple_horizontal_edge_c(y_ptr + 4 * y_stride, y_stride, + blimit); + vp8_loop_filter_simple_horizontal_edge_c(y_ptr + 8 * y_stride, y_stride, + blimit); + vp8_loop_filter_simple_horizontal_edge_c(y_ptr + 12 * y_stride, y_stride, + blimit); +} + +/* Vertical B Filtering */ +void vp8_loop_filter_bv_c(unsigned char *y_ptr, unsigned char *u_ptr, + unsigned char *v_ptr, int y_stride, int uv_stride, + loop_filter_info *lfi) { + loop_filter_vertical_edge_c(y_ptr + 4, y_stride, lfi->blim, lfi->lim, + lfi->hev_thr, 2); + loop_filter_vertical_edge_c(y_ptr + 8, y_stride, lfi->blim, lfi->lim, + lfi->hev_thr, 2); + loop_filter_vertical_edge_c(y_ptr + 12, y_stride, lfi->blim, lfi->lim, + lfi->hev_thr, 2); + + if (u_ptr) { + loop_filter_vertical_edge_c(u_ptr + 4, uv_stride, lfi->blim, lfi->lim, + lfi->hev_thr, 1); + } + + if (v_ptr) { + loop_filter_vertical_edge_c(v_ptr + 4, uv_stride, lfi->blim, lfi->lim, + lfi->hev_thr, 1); + } +} + +void vp8_loop_filter_bvs_c(unsigned char *y_ptr, int y_stride, + const unsigned char *blimit) { + vp8_loop_filter_simple_vertical_edge_c(y_ptr + 4, y_stride, blimit); + vp8_loop_filter_simple_vertical_edge_c(y_ptr + 8, y_stride, blimit); + vp8_loop_filter_simple_vertical_edge_c(y_ptr + 12, y_stride, blimit); +} diff --git a/vp8/common/mbpitch.c b/vp8/common/mbpitch.c new file mode 100644 index 0000000..188b57f --- /dev/null +++ b/vp8/common/mbpitch.c @@ -0,0 +1,57 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "blockd.h" + +void vp8_setup_block_dptrs(MACROBLOCKD *x) { + int r, c; + + for (r = 0; r < 4; ++r) { + for (c = 0; c < 4; ++c) { + x->block[r * 4 + c].predictor = x->predictor + r * 4 * 16 + c * 4; + } + } + + for (r = 0; r < 2; ++r) { + for (c = 0; c < 2; ++c) { + x->block[16 + r * 2 + c].predictor = + x->predictor + 256 + r * 4 * 8 + c * 4; + } + } + + for (r = 0; r < 2; ++r) { + for (c = 0; c < 2; ++c) { + x->block[20 + r * 2 + c].predictor = + x->predictor + 320 + r * 4 * 8 + c * 4; + } + } + + for (r = 0; r < 25; ++r) { + x->block[r].qcoeff = x->qcoeff + r * 16; + x->block[r].dqcoeff = x->dqcoeff + r * 16; + x->block[r].eob = x->eobs + r; + } +} + +void vp8_build_block_doffsets(MACROBLOCKD *x) { + int block; + + for (block = 0; block < 16; ++block) /* y blocks */ + { + x->block[block].offset = + (block >> 2) * 4 * x->dst.y_stride + (block & 3) * 4; + } + + for (block = 16; block < 20; ++block) /* U and V blocks */ + { + x->block[block + 4].offset = x->block[block].offset = + ((block - 16) >> 1) * 4 * x->dst.uv_stride + (block & 1) * 4; + } +} diff --git a/vp8/common/mfqe.c b/vp8/common/mfqe.c new file mode 100644 index 0000000..b6f8146 --- /dev/null +++ b/vp8/common/mfqe.c @@ -0,0 +1,325 @@ +/* + * Copyright (c) 2012 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +/* MFQE: Multiframe Quality Enhancement + * In rate limited situations keyframes may cause significant visual artifacts + * commonly referred to as "popping." This file implements a postproccesing + * algorithm which blends data from the preceeding frame when there is no + * motion and the q from the previous frame is lower which indicates that it is + * higher quality. + */ + +#include "./vp8_rtcd.h" +#include "./vpx_dsp_rtcd.h" +#include "vp8/common/postproc.h" +#include "vpx_dsp/variance.h" +#include "vpx_mem/vpx_mem.h" +#include "vpx_scale/yv12config.h" + +#include +#include + +static void filter_by_weight(unsigned char *src, int src_stride, + unsigned char *dst, int dst_stride, int block_size, + int src_weight) { + int dst_weight = (1 << MFQE_PRECISION) - src_weight; + int rounding_bit = 1 << (MFQE_PRECISION - 1); + int r, c; + + for (r = 0; r < block_size; ++r) { + for (c = 0; c < block_size; ++c) { + dst[c] = (src[c] * src_weight + dst[c] * dst_weight + rounding_bit) >> + MFQE_PRECISION; + } + src += src_stride; + dst += dst_stride; + } +} + +void vp8_filter_by_weight16x16_c(unsigned char *src, int src_stride, + unsigned char *dst, int dst_stride, + int src_weight) { + filter_by_weight(src, src_stride, dst, dst_stride, 16, src_weight); +} + +void vp8_filter_by_weight8x8_c(unsigned char *src, int src_stride, + unsigned char *dst, int dst_stride, + int src_weight) { + filter_by_weight(src, src_stride, dst, dst_stride, 8, src_weight); +} + +void vp8_filter_by_weight4x4_c(unsigned char *src, int src_stride, + unsigned char *dst, int dst_stride, + int src_weight) { + filter_by_weight(src, src_stride, dst, dst_stride, 4, src_weight); +} + +static void apply_ifactor(unsigned char *y_src, int y_src_stride, + unsigned char *y_dst, int y_dst_stride, + unsigned char *u_src, unsigned char *v_src, + int uv_src_stride, unsigned char *u_dst, + unsigned char *v_dst, int uv_dst_stride, + int block_size, int src_weight) { + if (block_size == 16) { + vp8_filter_by_weight16x16(y_src, y_src_stride, y_dst, y_dst_stride, + src_weight); + vp8_filter_by_weight8x8(u_src, uv_src_stride, u_dst, uv_dst_stride, + src_weight); + vp8_filter_by_weight8x8(v_src, uv_src_stride, v_dst, uv_dst_stride, + src_weight); + } else { + vp8_filter_by_weight8x8(y_src, y_src_stride, y_dst, y_dst_stride, + src_weight); + vp8_filter_by_weight4x4(u_src, uv_src_stride, u_dst, uv_dst_stride, + src_weight); + vp8_filter_by_weight4x4(v_src, uv_src_stride, v_dst, uv_dst_stride, + src_weight); + } +} + +static unsigned int int_sqrt(unsigned int x) { + unsigned int y = x; + unsigned int guess; + int p = 1; + while (y >>= 1) p++; + p >>= 1; + + guess = 0; + while (p >= 0) { + guess |= (1 << p); + if (x < guess * guess) guess -= (1 << p); + p--; + } + /* choose between guess or guess+1 */ + return guess + (guess * guess + guess + 1 <= x); +} + +#define USE_SSD +static void multiframe_quality_enhance_block( + int blksize, /* Currently only values supported are 16, 8 */ + int qcurr, int qprev, unsigned char *y, unsigned char *u, unsigned char *v, + int y_stride, int uv_stride, unsigned char *yd, unsigned char *ud, + unsigned char *vd, int yd_stride, int uvd_stride) { + static const unsigned char VP8_ZEROS[16] = { 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0 }; + int uvblksize = blksize >> 1; + int qdiff = qcurr - qprev; + + int i; + unsigned char *up; + unsigned char *udp; + unsigned char *vp; + unsigned char *vdp; + + unsigned int act, actd, sad, usad, vsad, sse, thr, thrsq, actrisk; + + if (blksize == 16) { + actd = (vpx_variance16x16(yd, yd_stride, VP8_ZEROS, 0, &sse) + 128) >> 8; + act = (vpx_variance16x16(y, y_stride, VP8_ZEROS, 0, &sse) + 128) >> 8; +#ifdef USE_SSD + vpx_variance16x16(y, y_stride, yd, yd_stride, &sse); + sad = (sse + 128) >> 8; + vpx_variance8x8(u, uv_stride, ud, uvd_stride, &sse); + usad = (sse + 32) >> 6; + vpx_variance8x8(v, uv_stride, vd, uvd_stride, &sse); + vsad = (sse + 32) >> 6; +#else + sad = (vpx_sad16x16(y, y_stride, yd, yd_stride) + 128) >> 8; + usad = (vpx_sad8x8(u, uv_stride, ud, uvd_stride) + 32) >> 6; + vsad = (vpx_sad8x8(v, uv_stride, vd, uvd_stride) + 32) >> 6; +#endif + } else { + actd = (vpx_variance8x8(yd, yd_stride, VP8_ZEROS, 0, &sse) + 32) >> 6; + act = (vpx_variance8x8(y, y_stride, VP8_ZEROS, 0, &sse) + 32) >> 6; +#ifdef USE_SSD + vpx_variance8x8(y, y_stride, yd, yd_stride, &sse); + sad = (sse + 32) >> 6; + vpx_variance4x4(u, uv_stride, ud, uvd_stride, &sse); + usad = (sse + 8) >> 4; + vpx_variance4x4(v, uv_stride, vd, uvd_stride, &sse); + vsad = (sse + 8) >> 4; +#else + sad = (vpx_sad8x8(y, y_stride, yd, yd_stride) + 32) >> 6; + usad = (vpx_sad4x4(u, uv_stride, ud, uvd_stride) + 8) >> 4; + vsad = (vpx_sad4x4(v, uv_stride, vd, uvd_stride) + 8) >> 4; +#endif + } + + actrisk = (actd > act * 5); + + /* thr = qdiff/16 + log2(act) + log4(qprev) */ + thr = (qdiff >> 4); + while (actd >>= 1) thr++; + while (qprev >>= 2) thr++; + +#ifdef USE_SSD + thrsq = thr * thr; + if (sad < thrsq && + /* additional checks for color mismatch and excessive addition of + * high-frequencies */ + 4 * usad < thrsq && 4 * vsad < thrsq && !actrisk) +#else + if (sad < thr && + /* additional checks for color mismatch and excessive addition of + * high-frequencies */ + 2 * usad < thr && 2 * vsad < thr && !actrisk) +#endif + { + int ifactor; +#ifdef USE_SSD + /* TODO: optimize this later to not need sqr root */ + sad = int_sqrt(sad); +#endif + ifactor = (sad << MFQE_PRECISION) / thr; + ifactor >>= (qdiff >> 5); + + if (ifactor) { + apply_ifactor(y, y_stride, yd, yd_stride, u, v, uv_stride, ud, vd, + uvd_stride, blksize, ifactor); + } + } else { /* else implicitly copy from previous frame */ + if (blksize == 16) { + vp8_copy_mem16x16(y, y_stride, yd, yd_stride); + vp8_copy_mem8x8(u, uv_stride, ud, uvd_stride); + vp8_copy_mem8x8(v, uv_stride, vd, uvd_stride); + } else { + vp8_copy_mem8x8(y, y_stride, yd, yd_stride); + for (up = u, udp = ud, i = 0; i < uvblksize; + ++i, up += uv_stride, udp += uvd_stride) { + memcpy(udp, up, uvblksize); + } + for (vp = v, vdp = vd, i = 0; i < uvblksize; + ++i, vp += uv_stride, vdp += uvd_stride) { + memcpy(vdp, vp, uvblksize); + } + } + } +} + +static int qualify_inter_mb(const MODE_INFO *mode_info_context, int *map) { + if (mode_info_context->mbmi.mb_skip_coeff) { + map[0] = map[1] = map[2] = map[3] = 1; + } else if (mode_info_context->mbmi.mode == SPLITMV) { + static int ndx[4][4] = { + { 0, 1, 4, 5 }, { 2, 3, 6, 7 }, { 8, 9, 12, 13 }, { 10, 11, 14, 15 } + }; + int i, j; + for (i = 0; i < 4; ++i) { + map[i] = 1; + for (j = 0; j < 4 && map[j]; ++j) { + map[i] &= (mode_info_context->bmi[ndx[i][j]].mv.as_mv.row <= 2 && + mode_info_context->bmi[ndx[i][j]].mv.as_mv.col <= 2); + } + } + } else { + map[0] = map[1] = map[2] = map[3] = + (mode_info_context->mbmi.mode > B_PRED && + abs(mode_info_context->mbmi.mv.as_mv.row) <= 2 && + abs(mode_info_context->mbmi.mv.as_mv.col) <= 2); + } + return (map[0] + map[1] + map[2] + map[3]); +} + +void vp8_multiframe_quality_enhance(VP8_COMMON *cm) { + YV12_BUFFER_CONFIG *show = cm->frame_to_show; + YV12_BUFFER_CONFIG *dest = &cm->post_proc_buffer; + + FRAME_TYPE frame_type = cm->frame_type; + /* Point at base of Mb MODE_INFO list has motion vectors etc */ + const MODE_INFO *mode_info_context = cm->show_frame_mi; + int mb_row; + int mb_col; + int totmap, map[4]; + int qcurr = cm->base_qindex; + int qprev = cm->postproc_state.last_base_qindex; + + unsigned char *y_ptr, *u_ptr, *v_ptr; + unsigned char *yd_ptr, *ud_ptr, *vd_ptr; + + /* Set up the buffer pointers */ + y_ptr = show->y_buffer; + u_ptr = show->u_buffer; + v_ptr = show->v_buffer; + yd_ptr = dest->y_buffer; + ud_ptr = dest->u_buffer; + vd_ptr = dest->v_buffer; + + /* postprocess each macro block */ + for (mb_row = 0; mb_row < cm->mb_rows; ++mb_row) { + for (mb_col = 0; mb_col < cm->mb_cols; ++mb_col) { + /* if motion is high there will likely be no benefit */ + if (frame_type == INTER_FRAME) { + totmap = qualify_inter_mb(mode_info_context, map); + } else { + totmap = (frame_type == KEY_FRAME ? 4 : 0); + } + if (totmap) { + if (totmap < 4) { + int i, j; + for (i = 0; i < 2; ++i) { + for (j = 0; j < 2; ++j) { + if (map[i * 2 + j]) { + multiframe_quality_enhance_block( + 8, qcurr, qprev, y_ptr + 8 * (i * show->y_stride + j), + u_ptr + 4 * (i * show->uv_stride + j), + v_ptr + 4 * (i * show->uv_stride + j), show->y_stride, + show->uv_stride, yd_ptr + 8 * (i * dest->y_stride + j), + ud_ptr + 4 * (i * dest->uv_stride + j), + vd_ptr + 4 * (i * dest->uv_stride + j), dest->y_stride, + dest->uv_stride); + } else { + /* copy a 8x8 block */ + int k; + unsigned char *up = u_ptr + 4 * (i * show->uv_stride + j); + unsigned char *udp = ud_ptr + 4 * (i * dest->uv_stride + j); + unsigned char *vp = v_ptr + 4 * (i * show->uv_stride + j); + unsigned char *vdp = vd_ptr + 4 * (i * dest->uv_stride + j); + vp8_copy_mem8x8( + y_ptr + 8 * (i * show->y_stride + j), show->y_stride, + yd_ptr + 8 * (i * dest->y_stride + j), dest->y_stride); + for (k = 0; k < 4; ++k, up += show->uv_stride, + udp += dest->uv_stride, vp += show->uv_stride, + vdp += dest->uv_stride) { + memcpy(udp, up, 4); + memcpy(vdp, vp, 4); + } + } + } + } + } else { /* totmap = 4 */ + multiframe_quality_enhance_block( + 16, qcurr, qprev, y_ptr, u_ptr, v_ptr, show->y_stride, + show->uv_stride, yd_ptr, ud_ptr, vd_ptr, dest->y_stride, + dest->uv_stride); + } + } else { + vp8_copy_mem16x16(y_ptr, show->y_stride, yd_ptr, dest->y_stride); + vp8_copy_mem8x8(u_ptr, show->uv_stride, ud_ptr, dest->uv_stride); + vp8_copy_mem8x8(v_ptr, show->uv_stride, vd_ptr, dest->uv_stride); + } + y_ptr += 16; + u_ptr += 8; + v_ptr += 8; + yd_ptr += 16; + ud_ptr += 8; + vd_ptr += 8; + mode_info_context++; /* step to next MB */ + } + + y_ptr += show->y_stride * 16 - 16 * cm->mb_cols; + u_ptr += show->uv_stride * 8 - 8 * cm->mb_cols; + v_ptr += show->uv_stride * 8 - 8 * cm->mb_cols; + yd_ptr += dest->y_stride * 16 - 16 * cm->mb_cols; + ud_ptr += dest->uv_stride * 8 - 8 * cm->mb_cols; + vd_ptr += dest->uv_stride * 8 - 8 * cm->mb_cols; + + mode_info_context++; /* Skip border mb */ + } +} diff --git a/vp8/common/mips/dspr2/dequantize_dspr2.c b/vp8/common/mips/dspr2/dequantize_dspr2.c new file mode 100644 index 0000000..1cfd146 --- /dev/null +++ b/vp8/common/mips/dspr2/dequantize_dspr2.c @@ -0,0 +1,29 @@ +/* + * Copyright (c) 2012 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "vpx_config.h" +#include "vp8_rtcd.h" +#include "vpx_mem/vpx_mem.h" + +#if HAVE_DSPR2 +void vp8_dequant_idct_add_dspr2(short *input, short *dq, unsigned char *dest, + int stride) { + int i; + + for (i = 0; i < 16; ++i) { + input[i] = dq[i] * input[i]; + } + + vp8_short_idct4x4llm_dspr2(input, dest, stride, dest, stride); + + memset(input, 0, 32); +} + +#endif diff --git a/vp8/common/mips/dspr2/filter_dspr2.c b/vp8/common/mips/dspr2/filter_dspr2.c new file mode 100644 index 0000000..e46827b --- /dev/null +++ b/vp8/common/mips/dspr2/filter_dspr2.c @@ -0,0 +1,2767 @@ +/* + * Copyright (c) 2012 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include "vp8_rtcd.h" +#include "vpx_ports/mem.h" + +#if HAVE_DSPR2 +#define CROP_WIDTH 256 +unsigned char ff_cropTbl[256 + 2 * CROP_WIDTH]; + +static const unsigned short sub_pel_filterss[8][3] = { + { 0, 0, 0 }, + { 0, 0x0601, 0x7b0c }, + { 0x0201, 0x0b08, 0x6c24 }, + { 0, 0x0906, 0x5d32 }, + { 0x0303, 0x1010, 0x4d4d }, + { 0, 0x0609, 0x325d }, + { 0x0102, 0x080b, 0x246c }, + { 0, 0x0106, 0x0c7b }, +}; + +static const int sub_pel_filters_int[8][3] = { + { 0, 0, 0 }, + { 0x0000fffa, 0x007b000c, 0xffff0000 }, + { 0x0002fff5, 0x006c0024, 0xfff80001 }, + { 0x0000fff7, 0x005d0032, 0xfffa0000 }, + { 0x0003fff0, 0x004d004d, 0xfff00003 }, + { 0x0000fffa, 0x0032005d, 0xfff70000 }, + { 0x0001fff8, 0x0024006c, 0xfff50002 }, + { 0x0000ffff, 0x000c007b, 0xfffa0000 }, +}; + +static const int sub_pel_filters_inv[8][3] = { + { 0, 0, 0 }, + { 0xfffa0000, 0x000c007b, 0x0000ffff }, + { 0xfff50002, 0x0024006c, 0x0001fff8 }, + { 0xfff70000, 0x0032005d, 0x0000fffa }, + { 0xfff00003, 0x004d004d, 0x0003fff0 }, + { 0xfffa0000, 0x005d0032, 0x0000fff7 }, + { 0xfff80001, 0x006c0024, 0x0002fff5 }, + { 0xffff0000, 0x007b000c, 0x0000fffa }, +}; + +/* clang-format off */ +static const int sub_pel_filters_int_tap_4[8][2] = { + { 0, 0}, + { 0xfffa007b, 0x000cffff}, + { 0, 0}, + { 0xfff7005d, 0x0032fffa}, + { 0, 0}, + { 0xfffa0032, 0x005dfff7}, + { 0, 0}, + { 0xffff000c, 0x007bfffa}, +}; + + +static const int sub_pel_filters_inv_tap_4[8][2] = { + { 0, 0}, + { 0x007bfffa, 0xffff000c}, + { 0, 0}, + { 0x005dfff7, 0xfffa0032}, + { 0, 0}, + { 0x0032fffa, 0xfff7005d}, + { 0, 0}, + { 0x000cffff, 0xfffa007b}, +}; +/* clang-format on */ + +inline void prefetch_load(unsigned char *src) { + __asm__ __volatile__("pref 0, 0(%[src]) \n\t" : : [src] "r"(src)); +} + +inline void prefetch_store(unsigned char *dst) { + __asm__ __volatile__("pref 1, 0(%[dst]) \n\t" : : [dst] "r"(dst)); +} + +void dsputil_static_init(void) { + int i; + + for (i = 0; i < 256; ++i) ff_cropTbl[i + CROP_WIDTH] = i; + + for (i = 0; i < CROP_WIDTH; ++i) { + ff_cropTbl[i] = 0; + ff_cropTbl[i + CROP_WIDTH + 256] = 255; + } +} + +void vp8_filter_block2d_first_pass_4(unsigned char *RESTRICT src_ptr, + unsigned char *RESTRICT dst_ptr, + unsigned int src_pixels_per_line, + unsigned int output_height, int xoffset, + int pitch) { + unsigned int i; + int Temp1, Temp2, Temp3, Temp4; + + unsigned int vector4a = 64; + int vector1b, vector2b, vector3b; + unsigned int tp1, tp2, tn1, tn2; + unsigned int p1, p2, p3; + unsigned int n1, n2, n3; + unsigned char *cm = ff_cropTbl + CROP_WIDTH; + + vector3b = sub_pel_filters_inv[xoffset][2]; + + /* if (xoffset == 0) we don't need any filtering */ + if (vector3b == 0) { + for (i = 0; i < output_height; ++i) { + /* prefetch src_ptr data to cache memory */ + prefetch_load(src_ptr + src_pixels_per_line); + dst_ptr[0] = src_ptr[0]; + dst_ptr[1] = src_ptr[1]; + dst_ptr[2] = src_ptr[2]; + dst_ptr[3] = src_ptr[3]; + + /* next row... */ + src_ptr += src_pixels_per_line; + dst_ptr += 4; + } + } else { + if (vector3b > 65536) { + /* 6 tap filter */ + + vector1b = sub_pel_filters_inv[xoffset][0]; + vector2b = sub_pel_filters_inv[xoffset][1]; + + /* prefetch src_ptr data to cache memory */ + prefetch_load(src_ptr + src_pixels_per_line); + + for (i = output_height; i--;) { + /* apply filter with vectors pairs */ + __asm__ __volatile__( + "ulw %[tp1], -2(%[src_ptr]) \n\t" + "ulw %[tp2], 2(%[src_ptr]) \n\t" + + /* even 1. pixel */ + "mtlo %[vector4a], $ac3 \n\t" + "preceu.ph.qbr %[p1], %[tp1] \n\t" + "preceu.ph.qbl %[p2], %[tp1] \n\t" + "preceu.ph.qbr %[p3], %[tp2] \n\t" + "dpa.w.ph $ac3, %[p1], %[vector1b] \n\t" + "dpa.w.ph $ac3, %[p2], %[vector2b] \n\t" + "dpa.w.ph $ac3, %[p3], %[vector3b] \n\t" + + /* even 2. pixel */ + "mtlo %[vector4a], $ac2 \n\t" + "preceu.ph.qbl %[p1], %[tp2] \n\t" + "balign %[tp2], %[tp1], 3 \n\t" + "extp %[Temp1], $ac3, 9 \n\t" + "dpa.w.ph $ac2, %[p2], %[vector1b] \n\t" + "dpa.w.ph $ac2, %[p3], %[vector2b] \n\t" + "dpa.w.ph $ac2, %[p1], %[vector3b] \n\t" + + /* odd 1. pixel */ + "ulw %[tn2], 3(%[src_ptr]) \n\t" + "mtlo %[vector4a], $ac3 \n\t" + "preceu.ph.qbr %[n1], %[tp2] \n\t" + "preceu.ph.qbl %[n2], %[tp2] \n\t" + "preceu.ph.qbr %[n3], %[tn2] \n\t" + "extp %[Temp3], $ac2, 9 \n\t" + "dpa.w.ph $ac3, %[n1], %[vector1b] \n\t" + "dpa.w.ph $ac3, %[n2], %[vector2b] \n\t" + "dpa.w.ph $ac3, %[n3], %[vector3b] \n\t" + + /* even 2. pixel */ + "mtlo %[vector4a], $ac2 \n\t" + "preceu.ph.qbl %[n1], %[tn2] \n\t" + "extp %[Temp2], $ac3, 9 \n\t" + "dpa.w.ph $ac2, %[n2], %[vector1b] \n\t" + "dpa.w.ph $ac2, %[n3], %[vector2b] \n\t" + "dpa.w.ph $ac2, %[n1], %[vector3b] \n\t" + "extp %[Temp4], $ac2, 9 \n\t" + + /* clamp */ + "lbux %[tp1], %[Temp1](%[cm]) \n\t" + "lbux %[tn1], %[Temp2](%[cm]) \n\t" + "lbux %[tp2], %[Temp3](%[cm]) \n\t" + "lbux %[n2], %[Temp4](%[cm]) \n\t" + + /* store bytes */ + "sb %[tp1], 0(%[dst_ptr]) \n\t" + "sb %[tn1], 1(%[dst_ptr]) \n\t" + "sb %[tp2], 2(%[dst_ptr]) \n\t" + "sb %[n2], 3(%[dst_ptr]) \n\t" + + : [tp1] "=&r"(tp1), [tp2] "=&r"(tp2), [tn1] "=&r"(tn1), + [tn2] "=&r"(tn2), [p1] "=&r"(p1), [p2] "=&r"(p2), [p3] "=&r"(p3), + [n1] "=&r"(n1), [n2] "=&r"(n2), [n3] "=&r"(n3), + [Temp1] "=&r"(Temp1), [Temp2] "=&r"(Temp2), [Temp3] "=&r"(Temp3), + [Temp4] "=&r"(Temp4) + : [vector1b] "r"(vector1b), [vector2b] "r"(vector2b), + [vector4a] "r"(vector4a), [cm] "r"(cm), [dst_ptr] "r"(dst_ptr), + [vector3b] "r"(vector3b), [src_ptr] "r"(src_ptr)); + + /* Next row... */ + src_ptr += src_pixels_per_line; + dst_ptr += pitch; + } + } else { + /* 4 tap filter */ + + vector1b = sub_pel_filters_inv_tap_4[xoffset][0]; + vector2b = sub_pel_filters_inv_tap_4[xoffset][1]; + + for (i = output_height; i--;) { + /* apply filter with vectors pairs */ + __asm__ __volatile__( + "ulw %[tp1], -1(%[src_ptr]) \n\t" + "ulw %[tp2], 3(%[src_ptr]) \n\t" + + /* even 1. pixel */ + "mtlo %[vector4a], $ac3 \n\t" + "preceu.ph.qbr %[p1], %[tp1] \n\t" + "preceu.ph.qbl %[p2], %[tp1] \n\t" + "preceu.ph.qbr %[p3], %[tp2] \n\t" + "dpa.w.ph $ac3, %[p1], %[vector1b] \n\t" + "dpa.w.ph $ac3, %[p2], %[vector2b] \n\t" + + /* even 2. pixel */ + "mtlo %[vector4a], $ac2 \n\t" + "dpa.w.ph $ac2, %[p2], %[vector1b] \n\t" + "dpa.w.ph $ac2, %[p3], %[vector2b] \n\t" + "extp %[Temp1], $ac3, 9 \n\t" + + /* odd 1. pixel */ + "srl %[tn1], %[tp2], 8 \n\t" + "balign %[tp2], %[tp1], 3 \n\t" + "mtlo %[vector4a], $ac3 \n\t" + "preceu.ph.qbr %[n1], %[tp2] \n\t" + "preceu.ph.qbl %[n2], %[tp2] \n\t" + "preceu.ph.qbr %[n3], %[tn1] \n\t" + "extp %[Temp3], $ac2, 9 \n\t" + "dpa.w.ph $ac3, %[n1], %[vector1b] \n\t" + "dpa.w.ph $ac3, %[n2], %[vector2b] \n\t" + + /* odd 2. pixel */ + "mtlo %[vector4a], $ac2 \n\t" + "extp %[Temp2], $ac3, 9 \n\t" + "dpa.w.ph $ac2, %[n2], %[vector1b] \n\t" + "dpa.w.ph $ac2, %[n3], %[vector2b] \n\t" + "extp %[Temp4], $ac2, 9 \n\t" + + /* clamp and store results */ + "lbux %[tp1], %[Temp1](%[cm]) \n\t" + "lbux %[tn1], %[Temp2](%[cm]) \n\t" + "lbux %[tp2], %[Temp3](%[cm]) \n\t" + "sb %[tp1], 0(%[dst_ptr]) \n\t" + "sb %[tn1], 1(%[dst_ptr]) \n\t" + "lbux %[n2], %[Temp4](%[cm]) \n\t" + "sb %[tp2], 2(%[dst_ptr]) \n\t" + "sb %[n2], 3(%[dst_ptr]) \n\t" + + : [tp1] "=&r"(tp1), [tp2] "=&r"(tp2), [tn1] "=&r"(tn1), + [p1] "=&r"(p1), [p2] "=&r"(p2), [p3] "=&r"(p3), [n1] "=&r"(n1), + [n2] "=&r"(n2), [n3] "=&r"(n3), [Temp1] "=&r"(Temp1), + [Temp2] "=&r"(Temp2), [Temp3] "=&r"(Temp3), [Temp4] "=&r"(Temp4) + : [vector1b] "r"(vector1b), [vector2b] "r"(vector2b), + [vector4a] "r"(vector4a), [cm] "r"(cm), [dst_ptr] "r"(dst_ptr), + [src_ptr] "r"(src_ptr)); + /* Next row... */ + src_ptr += src_pixels_per_line; + dst_ptr += pitch; + } + } + } +} + +void vp8_filter_block2d_first_pass_8_all(unsigned char *RESTRICT src_ptr, + unsigned char *RESTRICT dst_ptr, + unsigned int src_pixels_per_line, + unsigned int output_height, + int xoffset, int pitch) { + unsigned int i; + int Temp1, Temp2, Temp3, Temp4; + + unsigned int vector4a = 64; + unsigned int vector1b, vector2b, vector3b; + unsigned int tp1, tp2, tn1, tn2; + unsigned int p1, p2, p3, p4; + unsigned int n1, n2, n3, n4; + + unsigned char *cm = ff_cropTbl + CROP_WIDTH; + + /* if (xoffset == 0) we don't need any filtering */ + if (xoffset == 0) { + for (i = 0; i < output_height; ++i) { + /* prefetch src_ptr data to cache memory */ + prefetch_load(src_ptr + src_pixels_per_line); + + dst_ptr[0] = src_ptr[0]; + dst_ptr[1] = src_ptr[1]; + dst_ptr[2] = src_ptr[2]; + dst_ptr[3] = src_ptr[3]; + dst_ptr[4] = src_ptr[4]; + dst_ptr[5] = src_ptr[5]; + dst_ptr[6] = src_ptr[6]; + dst_ptr[7] = src_ptr[7]; + + /* next row... */ + src_ptr += src_pixels_per_line; + dst_ptr += 8; + } + } else { + vector3b = sub_pel_filters_inv[xoffset][2]; + + if (vector3b > 65536) { + /* 6 tap filter */ + + vector1b = sub_pel_filters_inv[xoffset][0]; + vector2b = sub_pel_filters_inv[xoffset][1]; + + for (i = output_height; i--;) { + /* prefetch src_ptr data to cache memory */ + prefetch_load(src_ptr + src_pixels_per_line); + + /* apply filter with vectors pairs */ + __asm__ __volatile__( + "ulw %[tp1], -2(%[src_ptr]) \n\t" + "ulw %[tp2], 2(%[src_ptr]) \n\t" + + /* even 1. pixel */ + "mtlo %[vector4a], $ac3 \n\t" + "preceu.ph.qbr %[p1], %[tp1] \n\t" + "preceu.ph.qbl %[p2], %[tp1] \n\t" + "preceu.ph.qbr %[p3], %[tp2] \n\t" + "dpa.w.ph $ac3, %[p1], %[vector1b] \n\t" + "dpa.w.ph $ac3, %[p2], %[vector2b] \n\t" + "dpa.w.ph $ac3, %[p3], %[vector3b] \n\t" + + /* even 2. pixel */ + "mtlo %[vector4a], $ac2 \n\t" + "preceu.ph.qbl %[p1], %[tp2] \n\t" + "dpa.w.ph $ac2, %[p2], %[vector1b] \n\t" + "dpa.w.ph $ac2, %[p3], %[vector2b] \n\t" + "dpa.w.ph $ac2, %[p1], %[vector3b] \n\t" + + "balign %[tp2], %[tp1], 3 \n\t" + "extp %[Temp1], $ac3, 9 \n\t" + "ulw %[tn2], 3(%[src_ptr]) \n\t" + + /* odd 1. pixel */ + "mtlo %[vector4a], $ac3 \n\t" + "preceu.ph.qbr %[n1], %[tp2] \n\t" + "preceu.ph.qbl %[n2], %[tp2] \n\t" + "preceu.ph.qbr %[n3], %[tn2] \n\t" + "extp %[Temp3], $ac2, 9 \n\t" + "dpa.w.ph $ac3, %[n1], %[vector1b] \n\t" + "dpa.w.ph $ac3, %[n2], %[vector2b] \n\t" + "dpa.w.ph $ac3, %[n3], %[vector3b] \n\t" + + /* odd 2. pixel */ + "mtlo %[vector4a], $ac2 \n\t" + "preceu.ph.qbl %[n1], %[tn2] \n\t" + "dpa.w.ph $ac2, %[n2], %[vector1b] \n\t" + "dpa.w.ph $ac2, %[n3], %[vector2b] \n\t" + "dpa.w.ph $ac2, %[n1], %[vector3b] \n\t" + "ulw %[tp1], 6(%[src_ptr]) \n\t" + "extp %[Temp2], $ac3, 9 \n\t" + "mtlo %[vector4a], $ac3 \n\t" + "preceu.ph.qbr %[p2], %[tp1] \n\t" + "extp %[Temp4], $ac2, 9 \n\t" + + : [tp1] "=&r"(tp1), [tp2] "=&r"(tp2), [tn2] "=&r"(tn2), + [p1] "=&r"(p1), [p2] "=&r"(p2), [p3] "=&r"(p3), [n1] "=&r"(n1), + [n2] "=&r"(n2), [n3] "=&r"(n3), [Temp1] "=&r"(Temp1), + [Temp2] "=&r"(Temp2), [Temp3] "=&r"(Temp3), [Temp4] "=r"(Temp4) + : [vector1b] "r"(vector1b), [vector2b] "r"(vector2b), + [vector4a] "r"(vector4a), [vector3b] "r"(vector3b), + [src_ptr] "r"(src_ptr)); + + /* clamp and store results */ + dst_ptr[0] = cm[Temp1]; + dst_ptr[1] = cm[Temp2]; + dst_ptr[2] = cm[Temp3]; + dst_ptr[3] = cm[Temp4]; + + /* next 4 pixels */ + __asm__ __volatile__( + /* even 3. pixel */ + "dpa.w.ph $ac3, %[p3], %[vector1b] \n\t" + "dpa.w.ph $ac3, %[p1], %[vector2b] \n\t" + "dpa.w.ph $ac3, %[p2], %[vector3b] \n\t" + + /* even 4. pixel */ + "mtlo %[vector4a], $ac2 \n\t" + "preceu.ph.qbl %[p4], %[tp1] \n\t" + "dpa.w.ph $ac2, %[p1], %[vector1b] \n\t" + "dpa.w.ph $ac2, %[p2], %[vector2b] \n\t" + "dpa.w.ph $ac2, %[p4], %[vector3b] \n\t" + + "ulw %[tn1], 7(%[src_ptr]) \n\t" + "extp %[Temp1], $ac3, 9 \n\t" + + /* odd 3. pixel */ + "mtlo %[vector4a], $ac3 \n\t" + "preceu.ph.qbr %[n2], %[tn1] \n\t" + "dpa.w.ph $ac3, %[n3], %[vector1b] \n\t" + "dpa.w.ph $ac3, %[n1], %[vector2b] \n\t" + "dpa.w.ph $ac3, %[n2], %[vector3b] \n\t" + "extp %[Temp3], $ac2, 9 \n\t" + + /* odd 4. pixel */ + "mtlo %[vector4a], $ac2 \n\t" + "preceu.ph.qbl %[n4], %[tn1] \n\t" + "dpa.w.ph $ac2, %[n1], %[vector1b] \n\t" + "dpa.w.ph $ac2, %[n2], %[vector2b] \n\t" + "dpa.w.ph $ac2, %[n4], %[vector3b] \n\t" + "extp %[Temp2], $ac3, 9 \n\t" + "extp %[Temp4], $ac2, 9 \n\t" + + : [tn1] "=&r"(tn1), [n2] "=&r"(n2), [p4] "=&r"(p4), [n4] "=&r"(n4), + [Temp1] "=&r"(Temp1), [Temp2] "=&r"(Temp2), [Temp3] "=&r"(Temp3), + [Temp4] "=r"(Temp4) + : [tp1] "r"(tp1), [vector1b] "r"(vector1b), [p2] "r"(p2), + [vector2b] "r"(vector2b), [n1] "r"(n1), [p1] "r"(p1), + [vector4a] "r"(vector4a), [vector3b] "r"(vector3b), [p3] "r"(p3), + [n3] "r"(n3), [src_ptr] "r"(src_ptr)); + + /* clamp and store results */ + dst_ptr[4] = cm[Temp1]; + dst_ptr[5] = cm[Temp2]; + dst_ptr[6] = cm[Temp3]; + dst_ptr[7] = cm[Temp4]; + + src_ptr += src_pixels_per_line; + dst_ptr += pitch; + } + } else { + /* 4 tap filter */ + + vector1b = sub_pel_filters_inv_tap_4[xoffset][0]; + vector2b = sub_pel_filters_inv_tap_4[xoffset][1]; + + for (i = output_height; i--;) { + /* prefetch src_ptr data to cache memory */ + prefetch_load(src_ptr + src_pixels_per_line); + + /* apply filter with vectors pairs */ + __asm__ __volatile__( + "ulw %[tp1], -1(%[src_ptr]) \n\t" + + /* even 1. pixel */ + "mtlo %[vector4a], $ac3 \n\t" + "preceu.ph.qbr %[p1], %[tp1] \n\t" + "preceu.ph.qbl %[p2], %[tp1] \n\t" + "dpa.w.ph $ac3, %[p1], %[vector1b] \n\t" + "dpa.w.ph $ac3, %[p2], %[vector2b] \n\t" + + "ulw %[tp2], 3(%[src_ptr]) \n\t" + + /* even 2. pixel */ + "mtlo %[vector4a], $ac2 \n\t" + "preceu.ph.qbr %[p3], %[tp2] \n\t" + "preceu.ph.qbl %[p4], %[tp2] \n\t" + "dpa.w.ph $ac2, %[p2], %[vector1b] \n\t" + "dpa.w.ph $ac2, %[p3], %[vector2b] \n\t" + "extp %[Temp1], $ac3, 9 \n\t" + + "balign %[tp2], %[tp1], 3 \n\t" + + /* odd 1. pixel */ + "mtlo %[vector4a], $ac3 \n\t" + "preceu.ph.qbr %[n1], %[tp2] \n\t" + "preceu.ph.qbl %[n2], %[tp2] \n\t" + "dpa.w.ph $ac3, %[n1], %[vector1b] \n\t" + "dpa.w.ph $ac3, %[n2], %[vector2b] \n\t" + "extp %[Temp3], $ac2, 9 \n\t" + + "ulw %[tn2], 4(%[src_ptr]) \n\t" + + /* odd 2. pixel */ + "mtlo %[vector4a], $ac2 \n\t" + "preceu.ph.qbr %[n3], %[tn2] \n\t" + "preceu.ph.qbl %[n4], %[tn2] \n\t" + "dpa.w.ph $ac2, %[n2], %[vector1b] \n\t" + "dpa.w.ph $ac2, %[n3], %[vector2b] \n\t" + "ulw %[tp1], 7(%[src_ptr]) \n\t" + "extp %[Temp2], $ac3, 9 \n\t" + "mtlo %[vector4a], $ac3 \n\t" + "extp %[Temp4], $ac2, 9 \n\t" + + : [tp1] "=&r"(tp1), [tp2] "=&r"(tp2), [tn2] "=&r"(tn2), + [p1] "=&r"(p1), [p2] "=&r"(p2), [p3] "=&r"(p3), [p4] "=&r"(p4), + [n1] "=&r"(n1), [n2] "=&r"(n2), [n3] "=&r"(n3), [n4] "=&r"(n4), + [Temp1] "=&r"(Temp1), [Temp2] "=&r"(Temp2), [Temp3] "=&r"(Temp3), + [Temp4] "=r"(Temp4) + : [vector1b] "r"(vector1b), [vector2b] "r"(vector2b), + [vector4a] "r"(vector4a), [src_ptr] "r"(src_ptr)); + + /* clamp and store results */ + dst_ptr[0] = cm[Temp1]; + dst_ptr[1] = cm[Temp2]; + dst_ptr[2] = cm[Temp3]; + dst_ptr[3] = cm[Temp4]; + + /* next 4 pixels */ + __asm__ __volatile__( + /* even 3. pixel */ + "dpa.w.ph $ac3, %[p3], %[vector1b] \n\t" + "dpa.w.ph $ac3, %[p4], %[vector2b] \n\t" + + /* even 4. pixel */ + "mtlo %[vector4a], $ac2 \n\t" + "preceu.ph.qbr %[p2], %[tp1] \n\t" + "dpa.w.ph $ac2, %[p4], %[vector1b] \n\t" + "dpa.w.ph $ac2, %[p2], %[vector2b] \n\t" + "extp %[Temp1], $ac3, 9 \n\t" + + /* odd 3. pixel */ + "mtlo %[vector4a], $ac3 \n\t" + "dpa.w.ph $ac3, %[n3], %[vector1b] \n\t" + "dpa.w.ph $ac3, %[n4], %[vector2b] \n\t" + "ulw %[tn1], 8(%[src_ptr]) \n\t" + "extp %[Temp3], $ac2, 9 \n\t" + + /* odd 4. pixel */ + "mtlo %[vector4a], $ac2 \n\t" + "preceu.ph.qbr %[n2], %[tn1] \n\t" + "dpa.w.ph $ac2, %[n4], %[vector1b] \n\t" + "dpa.w.ph $ac2, %[n2], %[vector2b] \n\t" + "extp %[Temp2], $ac3, 9 \n\t" + "extp %[Temp4], $ac2, 9 \n\t" + + : [tn1] "=&r"(tn1), [p2] "=&r"(p2), [n2] "=&r"(n2), + [Temp1] "=&r"(Temp1), [Temp2] "=&r"(Temp2), [Temp3] "=&r"(Temp3), + [Temp4] "=r"(Temp4) + : [tp1] "r"(tp1), [p3] "r"(p3), [p4] "r"(p4), + [vector1b] "r"(vector1b), [vector2b] "r"(vector2b), + [vector4a] "r"(vector4a), [src_ptr] "r"(src_ptr), [n3] "r"(n3), + [n4] "r"(n4)); + + /* clamp and store results */ + dst_ptr[4] = cm[Temp1]; + dst_ptr[5] = cm[Temp2]; + dst_ptr[6] = cm[Temp3]; + dst_ptr[7] = cm[Temp4]; + + /* next row... */ + src_ptr += src_pixels_per_line; + dst_ptr += pitch; + } + } + } +} + +void vp8_filter_block2d_first_pass16_6tap(unsigned char *RESTRICT src_ptr, + unsigned char *RESTRICT dst_ptr, + unsigned int src_pixels_per_line, + unsigned int output_height, + int xoffset, int pitch) { + unsigned int i; + int Temp1, Temp2, Temp3, Temp4; + + unsigned int vector4a; + unsigned int vector1b, vector2b, vector3b; + unsigned int tp1, tp2, tn1, tn2; + unsigned int p1, p2, p3, p4; + unsigned int n1, n2, n3, n4; + unsigned char *cm = ff_cropTbl + CROP_WIDTH; + + vector1b = sub_pel_filters_inv[xoffset][0]; + vector2b = sub_pel_filters_inv[xoffset][1]; + vector3b = sub_pel_filters_inv[xoffset][2]; + vector4a = 64; + + for (i = output_height; i--;) { + /* prefetch src_ptr data to cache memory */ + prefetch_load(src_ptr + src_pixels_per_line); + + /* apply filter with vectors pairs */ + __asm__ __volatile__( + "ulw %[tp1], -2(%[src_ptr]) \n\t" + "ulw %[tp2], 2(%[src_ptr]) \n\t" + + /* even 1. pixel */ + "mtlo %[vector4a], $ac3 \n\t" + "preceu.ph.qbr %[p1], %[tp1] \n\t" + "preceu.ph.qbl %[p2], %[tp1] \n\t" + "preceu.ph.qbr %[p3], %[tp2] \n\t" + "dpa.w.ph $ac3, %[p1], %[vector1b] \n\t" + "dpa.w.ph $ac3, %[p2], %[vector2b] \n\t" + "dpa.w.ph $ac3, %[p3], %[vector3b] \n\t" + + /* even 2. pixel */ + "mtlo %[vector4a], $ac2 \n\t" + "preceu.ph.qbl %[p1], %[tp2] \n\t" + "dpa.w.ph $ac2, %[p2], %[vector1b] \n\t" + "dpa.w.ph $ac2, %[p3], %[vector2b] \n\t" + "dpa.w.ph $ac2, %[p1], %[vector3b] \n\t" + + "balign %[tp2], %[tp1], 3 \n\t" + "ulw %[tn2], 3(%[src_ptr]) \n\t" + "extp %[Temp1], $ac3, 9 \n\t" + + /* odd 1. pixel */ + "mtlo %[vector4a], $ac3 \n\t" + "preceu.ph.qbr %[n1], %[tp2] \n\t" + "preceu.ph.qbl %[n2], %[tp2] \n\t" + "preceu.ph.qbr %[n3], %[tn2] \n\t" + "extp %[Temp3], $ac2, 9 \n\t" + "dpa.w.ph $ac3, %[n1], %[vector1b] \n\t" + "dpa.w.ph $ac3, %[n2], %[vector2b] \n\t" + "dpa.w.ph $ac3, %[n3], %[vector3b] \n\t" + + /* odd 2. pixel */ + "mtlo %[vector4a], $ac2 \n\t" + "preceu.ph.qbl %[n1], %[tn2] \n\t" + "dpa.w.ph $ac2, %[n2], %[vector1b] \n\t" + "dpa.w.ph $ac2, %[n3], %[vector2b] \n\t" + "dpa.w.ph $ac2, %[n1], %[vector3b] \n\t" + "ulw %[tp1], 6(%[src_ptr]) \n\t" + "extp %[Temp2], $ac3, 9 \n\t" + "mtlo %[vector4a], $ac3 \n\t" + "preceu.ph.qbr %[p2], %[tp1] \n\t" + "extp %[Temp4], $ac2, 9 \n\t" + + : [tp1] "=&r"(tp1), [tp2] "=&r"(tp2), [tn2] "=&r"(tn2), [p1] "=&r"(p1), + [p2] "=&r"(p2), [p3] "=&r"(p3), [n1] "=&r"(n1), [n2] "=&r"(n2), + [n3] "=&r"(n3), [Temp1] "=&r"(Temp1), [Temp2] "=&r"(Temp2), + [Temp3] "=&r"(Temp3), [Temp4] "=r"(Temp4) + : [vector1b] "r"(vector1b), [vector2b] "r"(vector2b), + [vector4a] "r"(vector4a), [vector3b] "r"(vector3b), + [src_ptr] "r"(src_ptr)); + + /* clamp and store results */ + dst_ptr[0] = cm[Temp1]; + dst_ptr[1] = cm[Temp2]; + dst_ptr[2] = cm[Temp3]; + dst_ptr[3] = cm[Temp4]; + + /* next 4 pixels */ + __asm__ __volatile__( + /* even 3. pixel */ + "dpa.w.ph $ac3, %[p3], %[vector1b] \n\t" + "dpa.w.ph $ac3, %[p1], %[vector2b] \n\t" + "dpa.w.ph $ac3, %[p2], %[vector3b] \n\t" + + /* even 4. pixel */ + "mtlo %[vector4a], $ac2 \n\t" + "preceu.ph.qbl %[p4], %[tp1] \n\t" + "dpa.w.ph $ac2, %[p1], %[vector1b] \n\t" + "dpa.w.ph $ac2, %[p2], %[vector2b] \n\t" + "dpa.w.ph $ac2, %[p4], %[vector3b] \n\t" + "ulw %[tn1], 7(%[src_ptr]) \n\t" + "extp %[Temp1], $ac3, 9 \n\t" + + /* odd 3. pixel */ + "mtlo %[vector4a], $ac3 \n\t" + "preceu.ph.qbr %[n2], %[tn1] \n\t" + "dpa.w.ph $ac3, %[n3], %[vector1b] \n\t" + "dpa.w.ph $ac3, %[n1], %[vector2b] \n\t" + "dpa.w.ph $ac3, %[n2], %[vector3b] \n\t" + "extp %[Temp3], $ac2, 9 \n\t" + + /* odd 4. pixel */ + "mtlo %[vector4a], $ac2 \n\t" + "preceu.ph.qbl %[n4], %[tn1] \n\t" + "dpa.w.ph $ac2, %[n1], %[vector1b] \n\t" + "dpa.w.ph $ac2, %[n2], %[vector2b] \n\t" + "dpa.w.ph $ac2, %[n4], %[vector3b] \n\t" + "ulw %[tp2], 10(%[src_ptr]) \n\t" + "extp %[Temp2], $ac3, 9 \n\t" + "mtlo %[vector4a], $ac3 \n\t" + "preceu.ph.qbr %[p1], %[tp2] \n\t" + "extp %[Temp4], $ac2, 9 \n\t" + + : [tn1] "=&r"(tn1), [tp2] "=&r"(tp2), [n2] "=&r"(n2), [p4] "=&r"(p4), + [n4] "=&r"(n4), [Temp1] "=&r"(Temp1), [Temp2] "=&r"(Temp2), + [Temp3] "=&r"(Temp3), [Temp4] "=r"(Temp4), [p1] "+r"(p1) + : [vector1b] "r"(vector1b), [vector2b] "r"(vector2b), [tp1] "r"(tp1), + [n1] "r"(n1), [vector4a] "r"(vector4a), [p2] "r"(p2), + [vector3b] "r"(vector3b), [p3] "r"(p3), [n3] "r"(n3), + [src_ptr] "r"(src_ptr)); + + /* clamp and store results */ + dst_ptr[4] = cm[Temp1]; + dst_ptr[5] = cm[Temp2]; + dst_ptr[6] = cm[Temp3]; + dst_ptr[7] = cm[Temp4]; + + /* next 4 pixels */ + __asm__ __volatile__( + /* even 5. pixel */ + "dpa.w.ph $ac3, %[p2], %[vector1b] \n\t" + "dpa.w.ph $ac3, %[p4], %[vector2b] \n\t" + "dpa.w.ph $ac3, %[p1], %[vector3b] \n\t" + + /* even 6. pixel */ + "mtlo %[vector4a], $ac2 \n\t" + "preceu.ph.qbl %[p3], %[tp2] \n\t" + "dpa.w.ph $ac2, %[p4], %[vector1b] \n\t" + "dpa.w.ph $ac2, %[p1], %[vector2b] \n\t" + "dpa.w.ph $ac2, %[p3], %[vector3b] \n\t" + + "ulw %[tn1], 11(%[src_ptr]) \n\t" + "extp %[Temp1], $ac3, 9 \n\t" + + /* odd 5. pixel */ + "mtlo %[vector4a], $ac3 \n\t" + "preceu.ph.qbr %[n1], %[tn1] \n\t" + "dpa.w.ph $ac3, %[n2], %[vector1b] \n\t" + "dpa.w.ph $ac3, %[n4], %[vector2b] \n\t" + "dpa.w.ph $ac3, %[n1], %[vector3b] \n\t" + "extp %[Temp3], $ac2, 9 \n\t" + + /* odd 6. pixel */ + "mtlo %[vector4a], $ac2 \n\t" + "preceu.ph.qbl %[n3], %[tn1] \n\t" + "dpa.w.ph $ac2, %[n4], %[vector1b] \n\t" + "dpa.w.ph $ac2, %[n1], %[vector2b] \n\t" + "dpa.w.ph $ac2, %[n3], %[vector3b] \n\t" + "ulw %[tp1], 14(%[src_ptr]) \n\t" + "extp %[Temp2], $ac3, 9 \n\t" + "mtlo %[vector4a], $ac3 \n\t" + "preceu.ph.qbr %[p4], %[tp1] \n\t" + "extp %[Temp4], $ac2, 9 \n\t" + + : [tn1] "=&r"(tn1), [tp1] "=&r"(tp1), [n1] "=&r"(n1), [p3] "=&r"(p3), + [n3] "=&r"(n3), [Temp1] "=&r"(Temp1), [Temp2] "=&r"(Temp2), + [Temp3] "=&r"(Temp3), [Temp4] "=r"(Temp4), [p4] "+r"(p4) + : [vector1b] "r"(vector1b), [vector2b] "r"(vector2b), [tp2] "r"(tp2), + [p2] "r"(p2), [n2] "r"(n2), [n4] "r"(n4), [p1] "r"(p1), + [src_ptr] "r"(src_ptr), [vector4a] "r"(vector4a), + [vector3b] "r"(vector3b)); + + /* clamp and store results */ + dst_ptr[8] = cm[Temp1]; + dst_ptr[9] = cm[Temp2]; + dst_ptr[10] = cm[Temp3]; + dst_ptr[11] = cm[Temp4]; + + /* next 4 pixels */ + __asm__ __volatile__( + /* even 7. pixel */ + "dpa.w.ph $ac3, %[p1], %[vector1b] \n\t" + "dpa.w.ph $ac3, %[p3], %[vector2b] \n\t" + "dpa.w.ph $ac3, %[p4], %[vector3b] \n\t" + + /* even 8. pixel */ + "mtlo %[vector4a], $ac2 \n\t" + "preceu.ph.qbl %[p2], %[tp1] \n\t" + "dpa.w.ph $ac2, %[p3], %[vector1b] \n\t" + "dpa.w.ph $ac2, %[p4], %[vector2b] \n\t" + "dpa.w.ph $ac2, %[p2], %[vector3b] \n\t" + "ulw %[tn1], 15(%[src_ptr]) \n\t" + "extp %[Temp1], $ac3, 9 \n\t" + + /* odd 7. pixel */ + "mtlo %[vector4a], $ac3 \n\t" + "preceu.ph.qbr %[n4], %[tn1] \n\t" + "dpa.w.ph $ac3, %[n1], %[vector1b] \n\t" + "dpa.w.ph $ac3, %[n3], %[vector2b] \n\t" + "dpa.w.ph $ac3, %[n4], %[vector3b] \n\t" + "extp %[Temp3], $ac2, 9 \n\t" + + /* odd 8. pixel */ + "mtlo %[vector4a], $ac2 \n\t" + "preceu.ph.qbl %[n2], %[tn1] \n\t" + "dpa.w.ph $ac2, %[n3], %[vector1b] \n\t" + "dpa.w.ph $ac2, %[n4], %[vector2b] \n\t" + "dpa.w.ph $ac2, %[n2], %[vector3b] \n\t" + "extp %[Temp2], $ac3, 9 \n\t" + "extp %[Temp4], $ac2, 9 \n\t" + + /* clamp and store results */ + "lbux %[tp1], %[Temp1](%[cm]) \n\t" + "lbux %[tn1], %[Temp2](%[cm]) \n\t" + "lbux %[p2], %[Temp3](%[cm]) \n\t" + "sb %[tp1], 12(%[dst_ptr]) \n\t" + "sb %[tn1], 13(%[dst_ptr]) \n\t" + "lbux %[n2], %[Temp4](%[cm]) \n\t" + "sb %[p2], 14(%[dst_ptr]) \n\t" + "sb %[n2], 15(%[dst_ptr]) \n\t" + + : [tn1] "=&r"(tn1), [p2] "=&r"(p2), [n2] "=&r"(n2), [n4] "=&r"(n4), + [Temp1] "=&r"(Temp1), [Temp2] "=&r"(Temp2), [Temp3] "=&r"(Temp3), + [Temp4] "=r"(Temp4), [tp1] "+r"(tp1) + : [vector1b] "r"(vector1b), [vector2b] "r"(vector2b), [p4] "r"(p4), + [n1] "r"(n1), [p1] "r"(p1), [vector4a] "r"(vector4a), + [vector3b] "r"(vector3b), [p3] "r"(p3), [n3] "r"(n3), + [src_ptr] "r"(src_ptr), [cm] "r"(cm), [dst_ptr] "r"(dst_ptr)); + + src_ptr += src_pixels_per_line; + dst_ptr += pitch; + } +} + +void vp8_filter_block2d_first_pass16_0(unsigned char *RESTRICT src_ptr, + unsigned char *RESTRICT output_ptr, + unsigned int src_pixels_per_line) { + int Temp1, Temp2, Temp3, Temp4; + int i; + + /* prefetch src_ptr data to cache memory */ + prefetch_store(output_ptr + 32); + + /* copy memory from src buffer to dst buffer */ + for (i = 0; i < 7; ++i) { + __asm__ __volatile__( + "ulw %[Temp1], 0(%[src_ptr]) \n\t" + "ulw %[Temp2], 4(%[src_ptr]) \n\t" + "ulw %[Temp3], 8(%[src_ptr]) \n\t" + "ulw %[Temp4], 12(%[src_ptr]) \n\t" + "sw %[Temp1], 0(%[output_ptr]) \n\t" + "sw %[Temp2], 4(%[output_ptr]) \n\t" + "sw %[Temp3], 8(%[output_ptr]) \n\t" + "sw %[Temp4], 12(%[output_ptr]) \n\t" + "addu %[src_ptr], %[src_ptr], %[src_pixels_per_line] \n\t" + + : [Temp1] "=&r"(Temp1), [Temp2] "=&r"(Temp2), [Temp3] "=&r"(Temp3), + [Temp4] "=&r"(Temp4), [src_ptr] "+r"(src_ptr) + : [src_pixels_per_line] "r"(src_pixels_per_line), + [output_ptr] "r"(output_ptr)); + + __asm__ __volatile__( + "ulw %[Temp1], 0(%[src_ptr]) \n\t" + "ulw %[Temp2], 4(%[src_ptr]) \n\t" + "ulw %[Temp3], 8(%[src_ptr]) \n\t" + "ulw %[Temp4], 12(%[src_ptr]) \n\t" + "sw %[Temp1], 16(%[output_ptr]) \n\t" + "sw %[Temp2], 20(%[output_ptr]) \n\t" + "sw %[Temp3], 24(%[output_ptr]) \n\t" + "sw %[Temp4], 28(%[output_ptr]) \n\t" + "addu %[src_ptr], %[src_ptr], %[src_pixels_per_line] \n\t" + + : [Temp1] "=&r"(Temp1), [Temp2] "=&r"(Temp2), [Temp3] "=&r"(Temp3), + [Temp4] "=&r"(Temp4), [src_ptr] "+r"(src_ptr) + : [src_pixels_per_line] "r"(src_pixels_per_line), + [output_ptr] "r"(output_ptr)); + + __asm__ __volatile__( + "ulw %[Temp1], 0(%[src_ptr]) \n\t" + "ulw %[Temp2], 4(%[src_ptr]) \n\t" + "ulw %[Temp3], 8(%[src_ptr]) \n\t" + "ulw %[Temp4], 12(%[src_ptr]) \n\t" + "sw %[Temp1], 32(%[output_ptr]) \n\t" + "sw %[Temp2], 36(%[output_ptr]) \n\t" + "sw %[Temp3], 40(%[output_ptr]) \n\t" + "sw %[Temp4], 44(%[output_ptr]) \n\t" + "addu %[src_ptr], %[src_ptr], %[src_pixels_per_line] \n\t" + + : [Temp1] "=&r"(Temp1), [Temp2] "=&r"(Temp2), [Temp3] "=&r"(Temp3), + [Temp4] "=&r"(Temp4), [src_ptr] "+r"(src_ptr) + : [src_pixels_per_line] "r"(src_pixels_per_line), + [output_ptr] "r"(output_ptr)); + + output_ptr += 48; + } +} + +void vp8_filter_block2d_first_pass16_4tap( + unsigned char *RESTRICT src_ptr, unsigned char *RESTRICT output_ptr, + unsigned int src_pixels_per_line, unsigned int output_width, + unsigned int output_height, int xoffset, int yoffset, + unsigned char *RESTRICT dst_ptr, int pitch) { + unsigned int i, j; + int Temp1, Temp2, Temp3, Temp4; + + unsigned int vector4a; + int vector1b, vector2b; + unsigned int tp1, tp2, tp3, tn1; + unsigned int p1, p2, p3; + unsigned int n1, n2, n3; + unsigned char *cm = ff_cropTbl + CROP_WIDTH; + + vector4a = 64; + + vector1b = sub_pel_filters_inv_tap_4[xoffset][0]; + vector2b = sub_pel_filters_inv_tap_4[xoffset][1]; + + /* if (yoffset == 0) don't need temp buffer, data will be stored in dst_ptr */ + if (yoffset == 0) { + output_height -= 5; + src_ptr += (src_pixels_per_line + src_pixels_per_line); + + for (i = output_height; i--;) { + __asm__ __volatile__("ulw %[tp3], -1(%[src_ptr]) \n\t" + : [tp3] "=&r"(tp3) + : [src_ptr] "r"(src_ptr)); + + /* processing 4 adjacent pixels */ + for (j = 0; j < 16; j += 4) { + /* apply filter with vectors pairs */ + __asm__ __volatile__( + "ulw %[tp2], 3(%[src_ptr]) " + "\n\t" + "move %[tp1], %[tp3] " + "\n\t" + + /* even 1. pixel */ + "mtlo %[vector4a], $ac3 " + "\n\t" + "mthi $0, $ac3 " + "\n\t" + "move %[tp3], %[tp2] " + "\n\t" + "preceu.ph.qbr %[p1], %[tp1] " + "\n\t" + "preceu.ph.qbl %[p2], %[tp1] " + "\n\t" + "preceu.ph.qbr %[p3], %[tp2] " + "\n\t" + "dpa.w.ph $ac3, %[p1], %[vector1b] " + "\n\t" + "dpa.w.ph $ac3, %[p2], %[vector2b] " + "\n\t" + + /* even 2. pixel */ + "mtlo %[vector4a], $ac2 " + "\n\t" + "mthi $0, $ac2 " + "\n\t" + "dpa.w.ph $ac2, %[p2], %[vector1b] " + "\n\t" + "dpa.w.ph $ac2, %[p3], %[vector2b] " + "\n\t" + "extr.w %[Temp1], $ac3, 7 " + "\n\t" + + /* odd 1. pixel */ + "ulw %[tn1], 4(%[src_ptr]) " + "\n\t" + "balign %[tp2], %[tp1], 3 " + "\n\t" + "mtlo %[vector4a], $ac3 " + "\n\t" + "mthi $0, $ac3 " + "\n\t" + "preceu.ph.qbr %[n1], %[tp2] " + "\n\t" + "preceu.ph.qbl %[n2], %[tp2] " + "\n\t" + "preceu.ph.qbr %[n3], %[tn1] " + "\n\t" + "extr.w %[Temp3], $ac2, 7 " + "\n\t" + "dpa.w.ph $ac3, %[n1], %[vector1b] " + "\n\t" + "dpa.w.ph $ac3, %[n2], %[vector2b] " + "\n\t" + + /* odd 2. pixel */ + "mtlo %[vector4a], $ac2 " + "\n\t" + "mthi $0, $ac2 " + "\n\t" + "extr.w %[Temp2], $ac3, 7 " + "\n\t" + "dpa.w.ph $ac2, %[n2], %[vector1b] " + "\n\t" + "dpa.w.ph $ac2, %[n3], %[vector2b] " + "\n\t" + "extr.w %[Temp4], $ac2, 7 " + "\n\t" + + /* clamp and store results */ + "lbux %[tp1], %[Temp1](%[cm]) " + "\n\t" + "lbux %[tn1], %[Temp2](%[cm]) " + "\n\t" + "lbux %[tp2], %[Temp3](%[cm]) " + "\n\t" + "sb %[tp1], 0(%[dst_ptr]) " + "\n\t" + "sb %[tn1], 1(%[dst_ptr]) " + "\n\t" + "lbux %[n2], %[Temp4](%[cm]) " + "\n\t" + "sb %[tp2], 2(%[dst_ptr]) " + "\n\t" + "sb %[n2], 3(%[dst_ptr]) " + "\n\t" + + : [tp1] "=&r"(tp1), [tp2] "=&r"(tp2), [tp3] "=&r"(tp3), + [tn1] "=&r"(tn1), [p1] "=&r"(p1), [p2] "=&r"(p2), [n1] "=&r"(n1), + [n2] "=&r"(n2), [n3] "=&r"(n3), [Temp1] "=&r"(Temp1), + [Temp2] "=&r"(Temp2), [p3] "=&r"(p3), [Temp3] "=&r"(Temp3), + [Temp4] "=&r"(Temp4) + : [vector1b] "r"(vector1b), [vector2b] "r"(vector2b), + [vector4a] "r"(vector4a), [cm] "r"(cm), [dst_ptr] "r"(dst_ptr), + [src_ptr] "r"(src_ptr)); + + src_ptr += 4; + } + + /* Next row... */ + src_ptr += src_pixels_per_line - 16; + dst_ptr += pitch; + } + } else { + for (i = output_height; i--;) { + /* processing 4 adjacent pixels */ + for (j = 0; j < 16; j += 4) { + /* apply filter with vectors pairs */ + __asm__ __volatile__( + "ulw %[tp1], -1(%[src_ptr]) " + "\n\t" + "ulw %[tp2], 3(%[src_ptr]) " + "\n\t" + + /* even 1. pixel */ + "mtlo %[vector4a], $ac3 " + "\n\t" + "mthi $0, $ac3 " + "\n\t" + "preceu.ph.qbr %[p1], %[tp1] " + "\n\t" + "preceu.ph.qbl %[p2], %[tp1] " + "\n\t" + "preceu.ph.qbr %[p3], %[tp2] " + "\n\t" + "dpa.w.ph $ac3, %[p1], %[vector1b] " + "\n\t" + "dpa.w.ph $ac3, %[p2], %[vector2b] " + "\n\t" + + /* even 2. pixel */ + "mtlo %[vector4a], $ac2 " + "\n\t" + "mthi $0, $ac2 " + "\n\t" + "dpa.w.ph $ac2, %[p2], %[vector1b] " + "\n\t" + "dpa.w.ph $ac2, %[p3], %[vector2b] " + "\n\t" + "extr.w %[Temp1], $ac3, 7 " + "\n\t" + + /* odd 1. pixel */ + "ulw %[tn1], 4(%[src_ptr]) " + "\n\t" + "balign %[tp2], %[tp1], 3 " + "\n\t" + "mtlo %[vector4a], $ac3 " + "\n\t" + "mthi $0, $ac3 " + "\n\t" + "preceu.ph.qbr %[n1], %[tp2] " + "\n\t" + "preceu.ph.qbl %[n2], %[tp2] " + "\n\t" + "preceu.ph.qbr %[n3], %[tn1] " + "\n\t" + "extr.w %[Temp3], $ac2, 7 " + "\n\t" + "dpa.w.ph $ac3, %[n1], %[vector1b] " + "\n\t" + "dpa.w.ph $ac3, %[n2], %[vector2b] " + "\n\t" + + /* odd 2. pixel */ + "mtlo %[vector4a], $ac2 " + "\n\t" + "mthi $0, $ac2 " + "\n\t" + "extr.w %[Temp2], $ac3, 7 " + "\n\t" + "dpa.w.ph $ac2, %[n2], %[vector1b] " + "\n\t" + "dpa.w.ph $ac2, %[n3], %[vector2b] " + "\n\t" + "extr.w %[Temp4], $ac2, 7 " + "\n\t" + + /* clamp and store results */ + "lbux %[tp1], %[Temp1](%[cm]) " + "\n\t" + "lbux %[tn1], %[Temp2](%[cm]) " + "\n\t" + "lbux %[tp2], %[Temp3](%[cm]) " + "\n\t" + "sb %[tp1], 0(%[output_ptr]) " + "\n\t" + "sb %[tn1], 1(%[output_ptr]) " + "\n\t" + "lbux %[n2], %[Temp4](%[cm]) " + "\n\t" + "sb %[tp2], 2(%[output_ptr]) " + "\n\t" + "sb %[n2], 3(%[output_ptr]) " + "\n\t" + + : [tp1] "=&r"(tp1), [tp2] "=&r"(tp2), [tn1] "=&r"(tn1), + [p1] "=&r"(p1), [p2] "=&r"(p2), [p3] "=&r"(p3), [n1] "=&r"(n1), + [n2] "=&r"(n2), [n3] "=&r"(n3), [Temp1] "=&r"(Temp1), + [Temp2] "=&r"(Temp2), [Temp3] "=&r"(Temp3), [Temp4] "=&r"(Temp4) + : [vector1b] "r"(vector1b), [vector2b] "r"(vector2b), + [vector4a] "r"(vector4a), [cm] "r"(cm), + [output_ptr] "r"(output_ptr), [src_ptr] "r"(src_ptr)); + + src_ptr += 4; + } + + /* next row... */ + src_ptr += src_pixels_per_line; + output_ptr += output_width; + } + } +} + +void vp8_filter_block2d_second_pass4(unsigned char *RESTRICT src_ptr, + unsigned char *RESTRICT output_ptr, + int output_pitch, int yoffset) { + unsigned int i; + + int Temp1, Temp2, Temp3, Temp4; + unsigned int vector1b, vector2b, vector3b, vector4a; + + unsigned char src_ptr_l2; + unsigned char src_ptr_l1; + unsigned char src_ptr_0; + unsigned char src_ptr_r1; + unsigned char src_ptr_r2; + unsigned char src_ptr_r3; + + unsigned char *cm = ff_cropTbl + CROP_WIDTH; + + vector4a = 64; + + /* load filter coefficients */ + vector1b = sub_pel_filterss[yoffset][0]; + vector2b = sub_pel_filterss[yoffset][2]; + vector3b = sub_pel_filterss[yoffset][1]; + + if (vector1b) { + /* 6 tap filter */ + + for (i = 2; i--;) { + /* prefetch src_ptr data to cache memory */ + prefetch_load(src_ptr); + + /* do not allow compiler to reorder instructions */ + __asm__ __volatile__( + ".set noreorder \n\t" + : + :); + + /* apply filter with vectors pairs */ + __asm__ __volatile__( + "lbu %[src_ptr_l2], -8(%[src_ptr]) \n\t" + "lbu %[src_ptr_l1], -4(%[src_ptr]) \n\t" + "lbu %[src_ptr_0], 0(%[src_ptr]) \n\t" + "lbu %[src_ptr_r1], 4(%[src_ptr]) \n\t" + "lbu %[src_ptr_r2], 8(%[src_ptr]) \n\t" + "lbu %[src_ptr_r3], 12(%[src_ptr]) \n\t" + "mtlo %[vector4a], $ac2 \n\t" + + "append %[src_ptr_l2], %[src_ptr_r3], 8 \n\t" + "append %[src_ptr_0], %[src_ptr_r1], 8 \n\t" + "append %[src_ptr_l1], %[src_ptr_r2], 8 \n\t" + "dpau.h.qbr $ac2, %[src_ptr_l2], %[vector1b] \n\t" + "dpau.h.qbr $ac2, %[src_ptr_0], %[vector2b] \n\t" + "dpsu.h.qbr $ac2, %[src_ptr_l1], %[vector3b] \n\t" + + "lbu %[src_ptr_l2], -7(%[src_ptr]) \n\t" + "lbu %[src_ptr_l1], -3(%[src_ptr]) \n\t" + "lbu %[src_ptr_0], 1(%[src_ptr]) \n\t" + "lbu %[src_ptr_r1], 5(%[src_ptr]) \n\t" + "lbu %[src_ptr_r2], 9(%[src_ptr]) \n\t" + "lbu %[src_ptr_r3], 13(%[src_ptr]) \n\t" + "mtlo %[vector4a], $ac3 \n\t" + "extp %[Temp1], $ac2, 9 \n\t" + + "append %[src_ptr_l2], %[src_ptr_r3], 8 \n\t" + "append %[src_ptr_0], %[src_ptr_r1], 8 \n\t" + "append %[src_ptr_l1], %[src_ptr_r2], 8 \n\t" + "dpau.h.qbr $ac3, %[src_ptr_l2], %[vector1b] \n\t" + "dpau.h.qbr $ac3, %[src_ptr_0], %[vector2b] \n\t" + "dpsu.h.qbr $ac3, %[src_ptr_l1], %[vector3b] \n\t" + + "lbu %[src_ptr_l2], -6(%[src_ptr]) \n\t" + "lbu %[src_ptr_l1], -2(%[src_ptr]) \n\t" + "lbu %[src_ptr_0], 2(%[src_ptr]) \n\t" + "lbu %[src_ptr_r1], 6(%[src_ptr]) \n\t" + "lbu %[src_ptr_r2], 10(%[src_ptr]) \n\t" + "lbu %[src_ptr_r3], 14(%[src_ptr]) \n\t" + "mtlo %[vector4a], $ac0 \n\t" + "extp %[Temp2], $ac3, 9 \n\t" + + "append %[src_ptr_l2], %[src_ptr_r3], 8 \n\t" + "append %[src_ptr_0], %[src_ptr_r1], 8 \n\t" + "append %[src_ptr_l1], %[src_ptr_r2], 8 \n\t" + "dpau.h.qbr $ac0, %[src_ptr_l2], %[vector1b] \n\t" + "dpau.h.qbr $ac0, %[src_ptr_0], %[vector2b] \n\t" + "dpsu.h.qbr $ac0, %[src_ptr_l1], %[vector3b] \n\t" + + "lbu %[src_ptr_l2], -5(%[src_ptr]) \n\t" + "lbu %[src_ptr_l1], -1(%[src_ptr]) \n\t" + "lbu %[src_ptr_0], 3(%[src_ptr]) \n\t" + "lbu %[src_ptr_r1], 7(%[src_ptr]) \n\t" + "lbu %[src_ptr_r2], 11(%[src_ptr]) \n\t" + "lbu %[src_ptr_r3], 15(%[src_ptr]) \n\t" + "mtlo %[vector4a], $ac1 \n\t" + "extp %[Temp3], $ac0, 9 \n\t" + + "append %[src_ptr_l2], %[src_ptr_r3], 8 \n\t" + "append %[src_ptr_0], %[src_ptr_r1], 8 \n\t" + "append %[src_ptr_l1], %[src_ptr_r2], 8 \n\t" + "dpau.h.qbr $ac1, %[src_ptr_l2], %[vector1b] \n\t" + "dpau.h.qbr $ac1, %[src_ptr_0], %[vector2b] \n\t" + "dpsu.h.qbr $ac1, %[src_ptr_l1], %[vector3b] \n\t" + "extp %[Temp4], $ac1, 9 \n\t" + + : [Temp1] "=&r"(Temp1), [Temp2] "=&r"(Temp2), [Temp3] "=&r"(Temp3), + [Temp4] "=r"(Temp4), [src_ptr_l1] "=&r"(src_ptr_l1), + [src_ptr_0] "=&r"(src_ptr_0), [src_ptr_r1] "=&r"(src_ptr_r1), + [src_ptr_r2] "=&r"(src_ptr_r2), [src_ptr_l2] "=&r"(src_ptr_l2), + [src_ptr_r3] "=&r"(src_ptr_r3) + : [vector1b] "r"(vector1b), [vector2b] "r"(vector2b), + [vector3b] "r"(vector3b), [vector4a] "r"(vector4a), + [src_ptr] "r"(src_ptr)); + + /* clamp and store results */ + output_ptr[0] = cm[Temp1]; + output_ptr[1] = cm[Temp2]; + output_ptr[2] = cm[Temp3]; + output_ptr[3] = cm[Temp4]; + + output_ptr += output_pitch; + + /* apply filter with vectors pairs */ + __asm__ __volatile__( + "lbu %[src_ptr_l2], -4(%[src_ptr]) \n\t" + "lbu %[src_ptr_l1], 0(%[src_ptr]) \n\t" + "lbu %[src_ptr_0], 4(%[src_ptr]) \n\t" + "lbu %[src_ptr_r1], 8(%[src_ptr]) \n\t" + "lbu %[src_ptr_r2], 12(%[src_ptr]) \n\t" + "lbu %[src_ptr_r3], 16(%[src_ptr]) \n\t" + "mtlo %[vector4a], $ac2 \n\t" + "append %[src_ptr_l2], %[src_ptr_r3], 8 \n\t" + "append %[src_ptr_0], %[src_ptr_r1], 8 \n\t" + "append %[src_ptr_l1], %[src_ptr_r2], 8 \n\t" + "dpau.h.qbr $ac2, %[src_ptr_l2], %[vector1b] \n\t" + "dpau.h.qbr $ac2, %[src_ptr_0], %[vector2b] \n\t" + "dpsu.h.qbr $ac2, %[src_ptr_l1], %[vector3b] \n\t" + + "lbu %[src_ptr_l2], -3(%[src_ptr]) \n\t" + "lbu %[src_ptr_l1], 1(%[src_ptr]) \n\t" + "lbu %[src_ptr_0], 5(%[src_ptr]) \n\t" + "lbu %[src_ptr_r1], 9(%[src_ptr]) \n\t" + "lbu %[src_ptr_r2], 13(%[src_ptr]) \n\t" + "lbu %[src_ptr_r3], 17(%[src_ptr]) \n\t" + "mtlo %[vector4a], $ac3 \n\t" + "extp %[Temp1], $ac2, 9 \n\t" + + "append %[src_ptr_l2], %[src_ptr_r3], 8 \n\t" + "append %[src_ptr_0], %[src_ptr_r1], 8 \n\t" + "append %[src_ptr_l1], %[src_ptr_r2], 8 \n\t" + "dpau.h.qbr $ac3, %[src_ptr_l2], %[vector1b] \n\t" + "dpau.h.qbr $ac3, %[src_ptr_0], %[vector2b] \n\t" + "dpsu.h.qbr $ac3, %[src_ptr_l1], %[vector3b] \n\t" + + "lbu %[src_ptr_l2], -2(%[src_ptr]) \n\t" + "lbu %[src_ptr_l1], 2(%[src_ptr]) \n\t" + "lbu %[src_ptr_0], 6(%[src_ptr]) \n\t" + "lbu %[src_ptr_r1], 10(%[src_ptr]) \n\t" + "lbu %[src_ptr_r2], 14(%[src_ptr]) \n\t" + "lbu %[src_ptr_r3], 18(%[src_ptr]) \n\t" + "mtlo %[vector4a], $ac0 \n\t" + "extp %[Temp2], $ac3, 9 \n\t" + + "append %[src_ptr_l2], %[src_ptr_r3], 8 \n\t" + "append %[src_ptr_0], %[src_ptr_r1], 8 \n\t" + "append %[src_ptr_l1], %[src_ptr_r2], 8 \n\t" + "dpau.h.qbr $ac0, %[src_ptr_l2], %[vector1b] \n\t" + "dpau.h.qbr $ac0, %[src_ptr_0], %[vector2b] \n\t" + "dpsu.h.qbr $ac0, %[src_ptr_l1], %[vector3b] \n\t" + + "lbu %[src_ptr_l2], -1(%[src_ptr]) \n\t" + "lbu %[src_ptr_l1], 3(%[src_ptr]) \n\t" + "lbu %[src_ptr_0], 7(%[src_ptr]) \n\t" + "lbu %[src_ptr_r1], 11(%[src_ptr]) \n\t" + "lbu %[src_ptr_r2], 15(%[src_ptr]) \n\t" + "lbu %[src_ptr_r3], 19(%[src_ptr]) \n\t" + "mtlo %[vector4a], $ac1 \n\t" + "extp %[Temp3], $ac0, 9 \n\t" + + "append %[src_ptr_l2], %[src_ptr_r3], 8 \n\t" + "append %[src_ptr_0], %[src_ptr_r1], 8 \n\t" + "append %[src_ptr_l1], %[src_ptr_r2], 8 \n\t" + "dpau.h.qbr $ac1, %[src_ptr_l2], %[vector1b] \n\t" + "dpau.h.qbr $ac1, %[src_ptr_0], %[vector2b] \n\t" + "dpsu.h.qbr $ac1, %[src_ptr_l1], %[vector3b] \n\t" + "extp %[Temp4], $ac1, 9 \n\t" + + : [Temp1] "=&r"(Temp1), [Temp2] "=&r"(Temp2), [Temp3] "=&r"(Temp3), + [Temp4] "=r"(Temp4), [src_ptr_l1] "=&r"(src_ptr_l1), + [src_ptr_0] "=&r"(src_ptr_0), [src_ptr_r1] "=&r"(src_ptr_r1), + [src_ptr_r2] "=&r"(src_ptr_r2), [src_ptr_l2] "=&r"(src_ptr_l2), + [src_ptr_r3] "=&r"(src_ptr_r3) + : [vector1b] "r"(vector1b), [vector2b] "r"(vector2b), + [vector3b] "r"(vector3b), [vector4a] "r"(vector4a), + [src_ptr] "r"(src_ptr)); + + /* clamp and store results */ + output_ptr[0] = cm[Temp1]; + output_ptr[1] = cm[Temp2]; + output_ptr[2] = cm[Temp3]; + output_ptr[3] = cm[Temp4]; + + src_ptr += 8; + output_ptr += output_pitch; + } + } else { + /* 4 tap filter */ + + /* prefetch src_ptr data to cache memory */ + prefetch_load(src_ptr); + + for (i = 2; i--;) { + /* do not allow compiler to reorder instructions */ + __asm__ __volatile__( + ".set noreorder \n\t" + : + :); + + /* apply filter with vectors pairs */ + __asm__ __volatile__( + "lbu %[src_ptr_l1], -4(%[src_ptr]) \n\t" + "lbu %[src_ptr_0], 0(%[src_ptr]) \n\t" + "lbu %[src_ptr_r1], 4(%[src_ptr]) \n\t" + "lbu %[src_ptr_r2], 8(%[src_ptr]) \n\t" + "mtlo %[vector4a], $ac2 \n\t" + "append %[src_ptr_0], %[src_ptr_r1], 8 \n\t" + "append %[src_ptr_l1], %[src_ptr_r2], 8 \n\t" + "dpau.h.qbr $ac2, %[src_ptr_0], %[vector2b] \n\t" + "dpsu.h.qbr $ac2, %[src_ptr_l1], %[vector3b] \n\t" + + "lbu %[src_ptr_l1], -3(%[src_ptr]) \n\t" + "lbu %[src_ptr_0], 1(%[src_ptr]) \n\t" + "lbu %[src_ptr_r1], 5(%[src_ptr]) \n\t" + "lbu %[src_ptr_r2], 9(%[src_ptr]) \n\t" + "mtlo %[vector4a], $ac3 \n\t" + "extp %[Temp1], $ac2, 9 \n\t" + + "append %[src_ptr_0], %[src_ptr_r1], 8 \n\t" + "append %[src_ptr_l1], %[src_ptr_r2], 8 \n\t" + "dpau.h.qbr $ac3, %[src_ptr_0], %[vector2b] \n\t" + "dpsu.h.qbr $ac3, %[src_ptr_l1], %[vector3b] \n\t" + + "lbu %[src_ptr_l1], -2(%[src_ptr]) \n\t" + "lbu %[src_ptr_0], 2(%[src_ptr]) \n\t" + "lbu %[src_ptr_r1], 6(%[src_ptr]) \n\t" + "lbu %[src_ptr_r2], 10(%[src_ptr]) \n\t" + "mtlo %[vector4a], $ac0 \n\t" + "extp %[Temp2], $ac3, 9 \n\t" + + "append %[src_ptr_0], %[src_ptr_r1], 8 \n\t" + "append %[src_ptr_l1], %[src_ptr_r2], 8 \n\t" + "dpau.h.qbr $ac0, %[src_ptr_0], %[vector2b] \n\t" + "dpsu.h.qbr $ac0, %[src_ptr_l1], %[vector3b] \n\t" + + "lbu %[src_ptr_l1], -1(%[src_ptr]) \n\t" + "lbu %[src_ptr_0], 3(%[src_ptr]) \n\t" + "lbu %[src_ptr_r1], 7(%[src_ptr]) \n\t" + "lbu %[src_ptr_r2], 11(%[src_ptr]) \n\t" + "mtlo %[vector4a], $ac1 \n\t" + "extp %[Temp3], $ac0, 9 \n\t" + "append %[src_ptr_0], %[src_ptr_r1], 8 \n\t" + "append %[src_ptr_l1], %[src_ptr_r2], 8 \n\t" + "dpau.h.qbr $ac1, %[src_ptr_0], %[vector2b] \n\t" + "dpsu.h.qbr $ac1, %[src_ptr_l1], %[vector3b] \n\t" + "extp %[Temp4], $ac1, 9 \n\t" + + : [Temp1] "=&r"(Temp1), [Temp2] "=&r"(Temp2), [Temp3] "=&r"(Temp3), + [Temp4] "=r"(Temp4), [src_ptr_l1] "=&r"(src_ptr_l1), + [src_ptr_0] "=&r"(src_ptr_0), [src_ptr_r1] "=&r"(src_ptr_r1), + [src_ptr_r2] "=&r"(src_ptr_r2) + : [vector2b] "r"(vector2b), [vector3b] "r"(vector3b), + [vector4a] "r"(vector4a), [src_ptr] "r"(src_ptr)); + + /* clamp and store results */ + output_ptr[0] = cm[Temp1]; + output_ptr[1] = cm[Temp2]; + output_ptr[2] = cm[Temp3]; + output_ptr[3] = cm[Temp4]; + + output_ptr += output_pitch; + + /* apply filter with vectors pairs */ + __asm__ __volatile__( + "lbu %[src_ptr_l1], 0(%[src_ptr]) \n\t" + "lbu %[src_ptr_0], 4(%[src_ptr]) \n\t" + "lbu %[src_ptr_r1], 8(%[src_ptr]) \n\t" + "lbu %[src_ptr_r2], 12(%[src_ptr]) \n\t" + "mtlo %[vector4a], $ac2 \n\t" + "append %[src_ptr_0], %[src_ptr_r1], 8 \n\t" + "append %[src_ptr_l1], %[src_ptr_r2], 8 \n\t" + "dpau.h.qbr $ac2, %[src_ptr_0], %[vector2b] \n\t" + "dpsu.h.qbr $ac2, %[src_ptr_l1], %[vector3b] \n\t" + + "lbu %[src_ptr_l1], 1(%[src_ptr]) \n\t" + "lbu %[src_ptr_0], 5(%[src_ptr]) \n\t" + "lbu %[src_ptr_r1], 9(%[src_ptr]) \n\t" + "lbu %[src_ptr_r2], 13(%[src_ptr]) \n\t" + "mtlo %[vector4a], $ac3 \n\t" + "extp %[Temp1], $ac2, 9 \n\t" + + "append %[src_ptr_0], %[src_ptr_r1], 8 \n\t" + "append %[src_ptr_l1], %[src_ptr_r2], 8 \n\t" + "dpau.h.qbr $ac3, %[src_ptr_0], %[vector2b] \n\t" + "dpsu.h.qbr $ac3, %[src_ptr_l1], %[vector3b] \n\t" + + "lbu %[src_ptr_l1], 2(%[src_ptr]) \n\t" + "lbu %[src_ptr_0], 6(%[src_ptr]) \n\t" + "lbu %[src_ptr_r1], 10(%[src_ptr]) \n\t" + "lbu %[src_ptr_r2], 14(%[src_ptr]) \n\t" + "mtlo %[vector4a], $ac0 \n\t" + "extp %[Temp2], $ac3, 9 \n\t" + + "append %[src_ptr_0], %[src_ptr_r1], 8 \n\t" + "append %[src_ptr_l1], %[src_ptr_r2], 8 \n\t" + "dpau.h.qbr $ac0, %[src_ptr_0], %[vector2b] \n\t" + "dpsu.h.qbr $ac0, %[src_ptr_l1], %[vector3b] \n\t" + + "lbu %[src_ptr_l1], 3(%[src_ptr]) \n\t" + "lbu %[src_ptr_0], 7(%[src_ptr]) \n\t" + "lbu %[src_ptr_r1], 11(%[src_ptr]) \n\t" + "lbu %[src_ptr_r2], 15(%[src_ptr]) \n\t" + "mtlo %[vector4a], $ac1 \n\t" + "extp %[Temp3], $ac0, 9 \n\t" + "append %[src_ptr_0], %[src_ptr_r1], 8 \n\t" + "append %[src_ptr_l1], %[src_ptr_r2], 8 \n\t" + "dpau.h.qbr $ac1, %[src_ptr_0], %[vector2b] \n\t" + "dpsu.h.qbr $ac1, %[src_ptr_l1], %[vector3b] \n\t" + "extp %[Temp4], $ac1, 9 \n\t" + + : [Temp1] "=&r"(Temp1), [Temp2] "=&r"(Temp2), [Temp3] "=&r"(Temp3), + [Temp4] "=r"(Temp4), [src_ptr_l1] "=&r"(src_ptr_l1), + [src_ptr_0] "=&r"(src_ptr_0), [src_ptr_r1] "=&r"(src_ptr_r1), + [src_ptr_r2] "=&r"(src_ptr_r2) + : [vector2b] "r"(vector2b), [vector3b] "r"(vector3b), + [vector4a] "r"(vector4a), [src_ptr] "r"(src_ptr)); + + /* clamp and store results */ + output_ptr[0] = cm[Temp1]; + output_ptr[1] = cm[Temp2]; + output_ptr[2] = cm[Temp3]; + output_ptr[3] = cm[Temp4]; + + src_ptr += 8; + output_ptr += output_pitch; + } + } +} + +void vp8_filter_block2d_second_pass_8(unsigned char *RESTRICT src_ptr, + unsigned char *RESTRICT output_ptr, + int output_pitch, + unsigned int output_height, + unsigned int output_width, + unsigned int yoffset) { + unsigned int i; + + int Temp1, Temp2, Temp3, Temp4, Temp5, Temp6, Temp7, Temp8; + unsigned int vector1b, vector2b, vector3b, vector4a; + + unsigned char src_ptr_l2; + unsigned char src_ptr_l1; + unsigned char src_ptr_0; + unsigned char src_ptr_r1; + unsigned char src_ptr_r2; + unsigned char src_ptr_r3; + unsigned char *cm = ff_cropTbl + CROP_WIDTH; + (void)output_width; + + vector4a = 64; + + vector1b = sub_pel_filterss[yoffset][0]; + vector2b = sub_pel_filterss[yoffset][2]; + vector3b = sub_pel_filterss[yoffset][1]; + + if (vector1b) { + /* 6 tap filter */ + + /* prefetch src_ptr data to cache memory */ + prefetch_load(src_ptr); + + for (i = output_height; i--;) { + /* apply filter with vectors pairs */ + __asm__ __volatile__( + "lbu %[src_ptr_l2], -16(%[src_ptr]) \n\t" + "lbu %[src_ptr_l1], -8(%[src_ptr]) \n\t" + "lbu %[src_ptr_0], 0(%[src_ptr]) \n\t" + "lbu %[src_ptr_r1], 8(%[src_ptr]) \n\t" + "lbu %[src_ptr_r2], 16(%[src_ptr]) \n\t" + "lbu %[src_ptr_r3], 24(%[src_ptr]) \n\t" + "mtlo %[vector4a], $ac2 \n\t" + + "append %[src_ptr_0], %[src_ptr_r1], 8 \n\t" + "append %[src_ptr_l1], %[src_ptr_r2], 8 \n\t" + "append %[src_ptr_l2], %[src_ptr_r3], 8 \n\t" + "dpau.h.qbr $ac2, %[src_ptr_l2], %[vector1b] \n\t" + "dpau.h.qbr $ac2, %[src_ptr_0], %[vector2b] \n\t" + "dpsu.h.qbr $ac2, %[src_ptr_l1], %[vector3b] \n\t" + + "lbu %[src_ptr_l2], -15(%[src_ptr]) \n\t" + "lbu %[src_ptr_l1], -7(%[src_ptr]) \n\t" + "lbu %[src_ptr_0], 1(%[src_ptr]) \n\t" + "lbu %[src_ptr_r1], 9(%[src_ptr]) \n\t" + "lbu %[src_ptr_r2], 17(%[src_ptr]) \n\t" + "lbu %[src_ptr_r3], 25(%[src_ptr]) \n\t" + "mtlo %[vector4a], $ac3 \n\t" + "extp %[Temp1], $ac2, 9 \n\t" + + "append %[src_ptr_l2], %[src_ptr_r3], 8 \n\t" + "append %[src_ptr_0], %[src_ptr_r1], 8 \n\t" + "append %[src_ptr_l1], %[src_ptr_r2], 8 \n\t" + "dpau.h.qbr $ac3, %[src_ptr_l2], %[vector1b] \n\t" + "dpau.h.qbr $ac3, %[src_ptr_0], %[vector2b] \n\t" + "dpsu.h.qbr $ac3, %[src_ptr_l1], %[vector3b] \n\t" + + "lbu %[src_ptr_l2], -14(%[src_ptr]) \n\t" + "lbu %[src_ptr_l1], -6(%[src_ptr]) \n\t" + "lbu %[src_ptr_0], 2(%[src_ptr]) \n\t" + "lbu %[src_ptr_r1], 10(%[src_ptr]) \n\t" + "lbu %[src_ptr_r2], 18(%[src_ptr]) \n\t" + "lbu %[src_ptr_r3], 26(%[src_ptr]) \n\t" + "mtlo %[vector4a], $ac0 \n\t" + "extp %[Temp2], $ac3, 9 \n\t" + + "append %[src_ptr_l2], %[src_ptr_r3], 8 \n\t" + "append %[src_ptr_0], %[src_ptr_r1], 8 \n\t" + "append %[src_ptr_l1], %[src_ptr_r2], 8 \n\t" + "dpau.h.qbr $ac0, %[src_ptr_l2], %[vector1b] \n\t" + "dpau.h.qbr $ac0, %[src_ptr_0], %[vector2b] \n\t" + "dpsu.h.qbr $ac0, %[src_ptr_l1], %[vector3b] \n\t" + + "lbu %[src_ptr_l2], -13(%[src_ptr]) \n\t" + "lbu %[src_ptr_l1], -5(%[src_ptr]) \n\t" + "lbu %[src_ptr_0], 3(%[src_ptr]) \n\t" + "lbu %[src_ptr_r1], 11(%[src_ptr]) \n\t" + "lbu %[src_ptr_r2], 19(%[src_ptr]) \n\t" + "lbu %[src_ptr_r3], 27(%[src_ptr]) \n\t" + "mtlo %[vector4a], $ac1 \n\t" + "extp %[Temp3], $ac0, 9 \n\t" + + "append %[src_ptr_l2], %[src_ptr_r3], 8 \n\t" + "append %[src_ptr_0], %[src_ptr_r1], 8 \n\t" + "append %[src_ptr_l1], %[src_ptr_r2], 8 \n\t" + "dpau.h.qbr $ac1, %[src_ptr_l2], %[vector1b] \n\t" + "dpau.h.qbr $ac1, %[src_ptr_0], %[vector2b] \n\t" + "dpsu.h.qbr $ac1, %[src_ptr_l1], %[vector3b] \n\t" + + : [Temp1] "=&r"(Temp1), [Temp2] "=&r"(Temp2), [Temp3] "=&r"(Temp3), + [src_ptr_l1] "=&r"(src_ptr_l1), [src_ptr_0] "=&r"(src_ptr_0), + [src_ptr_r1] "=&r"(src_ptr_r1), [src_ptr_r2] "=&r"(src_ptr_r2), + [src_ptr_l2] "=&r"(src_ptr_l2), [src_ptr_r3] "=&r"(src_ptr_r3) + : [vector1b] "r"(vector1b), [vector2b] "r"(vector2b), + [vector3b] "r"(vector3b), [vector4a] "r"(vector4a), + [src_ptr] "r"(src_ptr)); + + /* apply filter with vectors pairs */ + __asm__ __volatile__( + "lbu %[src_ptr_l2], -12(%[src_ptr]) \n\t" + "lbu %[src_ptr_l1], -4(%[src_ptr]) \n\t" + "lbu %[src_ptr_0], 4(%[src_ptr]) \n\t" + "lbu %[src_ptr_r1], 12(%[src_ptr]) \n\t" + "lbu %[src_ptr_r2], 20(%[src_ptr]) \n\t" + "lbu %[src_ptr_r3], 28(%[src_ptr]) \n\t" + "mtlo %[vector4a], $ac2 \n\t" + + "append %[src_ptr_l2], %[src_ptr_r3], 8 \n\t" + "append %[src_ptr_0], %[src_ptr_r1], 8 \n\t" + "append %[src_ptr_l1], %[src_ptr_r2], 8 \n\t" + "dpau.h.qbr $ac2, %[src_ptr_l2], %[vector1b] \n\t" + "dpau.h.qbr $ac2, %[src_ptr_0], %[vector2b] \n\t" + "dpsu.h.qbr $ac2, %[src_ptr_l1], %[vector3b] \n\t" + "extp %[Temp4], $ac1, 9 \n\t" + + "lbu %[src_ptr_l2], -11(%[src_ptr]) \n\t" + "lbu %[src_ptr_l1], -3(%[src_ptr]) \n\t" + "lbu %[src_ptr_0], 5(%[src_ptr]) \n\t" + "lbu %[src_ptr_r1], 13(%[src_ptr]) \n\t" + "lbu %[src_ptr_r2], 21(%[src_ptr]) \n\t" + "lbu %[src_ptr_r3], 29(%[src_ptr]) \n\t" + "mtlo %[vector4a], $ac3 \n\t" + "extp %[Temp5], $ac2, 9 \n\t" + + "append %[src_ptr_l2], %[src_ptr_r3], 8 \n\t" + "append %[src_ptr_0], %[src_ptr_r1], 8 \n\t" + "append %[src_ptr_l1], %[src_ptr_r2], 8 \n\t" + "dpau.h.qbr $ac3, %[src_ptr_l2], %[vector1b] \n\t" + "dpau.h.qbr $ac3, %[src_ptr_0], %[vector2b] \n\t" + "dpsu.h.qbr $ac3, %[src_ptr_l1], %[vector3b] \n\t" + + "lbu %[src_ptr_l2], -10(%[src_ptr]) \n\t" + "lbu %[src_ptr_l1], -2(%[src_ptr]) \n\t" + "lbu %[src_ptr_0], 6(%[src_ptr]) \n\t" + "lbu %[src_ptr_r1], 14(%[src_ptr]) \n\t" + "lbu %[src_ptr_r2], 22(%[src_ptr]) \n\t" + "lbu %[src_ptr_r3], 30(%[src_ptr]) \n\t" + "mtlo %[vector4a], $ac0 \n\t" + "extp %[Temp6], $ac3, 9 \n\t" + + "append %[src_ptr_l2], %[src_ptr_r3], 8 \n\t" + "append %[src_ptr_0], %[src_ptr_r1], 8 \n\t" + "append %[src_ptr_l1], %[src_ptr_r2], 8 \n\t" + "dpau.h.qbr $ac0, %[src_ptr_l2], %[vector1b] \n\t" + "dpau.h.qbr $ac0, %[src_ptr_0], %[vector2b] \n\t" + "dpsu.h.qbr $ac0, %[src_ptr_l1], %[vector3b] \n\t" + + "lbu %[src_ptr_l2], -9(%[src_ptr]) \n\t" + "lbu %[src_ptr_l1], -1(%[src_ptr]) \n\t" + "lbu %[src_ptr_0], 7(%[src_ptr]) \n\t" + "lbu %[src_ptr_r1], 15(%[src_ptr]) \n\t" + "lbu %[src_ptr_r2], 23(%[src_ptr]) \n\t" + "lbu %[src_ptr_r3], 31(%[src_ptr]) \n\t" + "mtlo %[vector4a], $ac1 \n\t" + "extp %[Temp7], $ac0, 9 \n\t" + + "append %[src_ptr_l2], %[src_ptr_r3], 8 \n\t" + "append %[src_ptr_0], %[src_ptr_r1], 8 \n\t" + "append %[src_ptr_l1], %[src_ptr_r2], 8 \n\t" + "dpau.h.qbr $ac1, %[src_ptr_l2], %[vector1b] \n\t" + "dpau.h.qbr $ac1, %[src_ptr_0], %[vector2b] \n\t" + "dpsu.h.qbr $ac1, %[src_ptr_l1], %[vector3b] \n\t" + "extp %[Temp8], $ac1, 9 \n\t" + + : [Temp4] "=&r"(Temp4), [Temp5] "=&r"(Temp5), [Temp6] "=&r"(Temp6), + [Temp7] "=&r"(Temp7), [Temp8] "=r"(Temp8), + [src_ptr_l1] "=&r"(src_ptr_l1), [src_ptr_0] "=&r"(src_ptr_0), + [src_ptr_r1] "=&r"(src_ptr_r1), [src_ptr_r2] "=&r"(src_ptr_r2), + [src_ptr_l2] "=&r"(src_ptr_l2), [src_ptr_r3] "=&r"(src_ptr_r3) + : [vector1b] "r"(vector1b), [vector2b] "r"(vector2b), + [vector3b] "r"(vector3b), [vector4a] "r"(vector4a), + [src_ptr] "r"(src_ptr)); + + /* clamp and store results */ + output_ptr[0] = cm[Temp1]; + output_ptr[1] = cm[Temp2]; + output_ptr[2] = cm[Temp3]; + output_ptr[3] = cm[Temp4]; + output_ptr[4] = cm[Temp5]; + output_ptr[5] = cm[Temp6]; + output_ptr[6] = cm[Temp7]; + output_ptr[7] = cm[Temp8]; + + src_ptr += 8; + output_ptr += output_pitch; + } + } else { + /* 4 tap filter */ + + /* prefetch src_ptr data to cache memory */ + prefetch_load(src_ptr); + + for (i = output_height; i--;) { + __asm__ __volatile__( + "lbu %[src_ptr_l1], -8(%[src_ptr]) \n\t" + "lbu %[src_ptr_0], 0(%[src_ptr]) \n\t" + "lbu %[src_ptr_r1], 8(%[src_ptr]) \n\t" + "lbu %[src_ptr_r2], 16(%[src_ptr]) \n\t" + "mtlo %[vector4a], $ac2 \n\t" + "append %[src_ptr_0], %[src_ptr_r1], 8 \n\t" + "append %[src_ptr_l1], %[src_ptr_r2], 8 \n\t" + "dpau.h.qbr $ac2, %[src_ptr_0], %[vector2b] \n\t" + "dpsu.h.qbr $ac2, %[src_ptr_l1], %[vector3b] \n\t" + + : [src_ptr_l1] "=&r"(src_ptr_l1), [src_ptr_0] "=&r"(src_ptr_0), + [src_ptr_r1] "=&r"(src_ptr_r1), [src_ptr_r2] "=&r"(src_ptr_r2) + : [vector2b] "r"(vector2b), [vector3b] "r"(vector3b), + [vector4a] "r"(vector4a), [src_ptr] "r"(src_ptr)); + + __asm__ __volatile__( + "lbu %[src_ptr_l1], -7(%[src_ptr]) \n\t" + "lbu %[src_ptr_0], 1(%[src_ptr]) \n\t" + "lbu %[src_ptr_r1], 9(%[src_ptr]) \n\t" + "lbu %[src_ptr_r2], 17(%[src_ptr]) \n\t" + "mtlo %[vector4a], $ac3 \n\t" + "append %[src_ptr_0], %[src_ptr_r1], 8 \n\t" + "append %[src_ptr_l1], %[src_ptr_r2], 8 \n\t" + "dpau.h.qbr $ac3, %[src_ptr_0], %[vector2b] \n\t" + "dpsu.h.qbr $ac3, %[src_ptr_l1], %[vector3b] \n\t" + "extp %[Temp1], $ac2, 9 \n\t" + + : [Temp1] "=r"(Temp1), [src_ptr_l1] "=&r"(src_ptr_l1), + [src_ptr_0] "=&r"(src_ptr_0), [src_ptr_r1] "=&r"(src_ptr_r1), + [src_ptr_r2] "=&r"(src_ptr_r2) + : [vector2b] "r"(vector2b), [vector3b] "r"(vector3b), + [vector4a] "r"(vector4a), [src_ptr] "r"(src_ptr)); + + src_ptr_l1 = src_ptr[-6]; + src_ptr_0 = src_ptr[2]; + src_ptr_r1 = src_ptr[10]; + src_ptr_r2 = src_ptr[18]; + + __asm__ __volatile__( + "mtlo %[vector4a], $ac0 \n\t" + "append %[src_ptr_0], %[src_ptr_r1], 8 \n\t" + "append %[src_ptr_l1], %[src_ptr_r2], 8 \n\t" + "dpau.h.qbr $ac0, %[src_ptr_0], %[vector2b] \n\t" + "dpsu.h.qbr $ac0, %[src_ptr_l1], %[vector3b] \n\t" + "extp %[Temp2], $ac3, 9 \n\t" + + : [Temp2] "=r"(Temp2) + : [vector2b] "r"(vector2b), [vector3b] "r"(vector3b), + [src_ptr_l1] "r"(src_ptr_l1), [src_ptr_0] "r"(src_ptr_0), + [src_ptr_r1] "r"(src_ptr_r1), [src_ptr_r2] "r"(src_ptr_r2), + [vector4a] "r"(vector4a)); + + src_ptr_l1 = src_ptr[-5]; + src_ptr_0 = src_ptr[3]; + src_ptr_r1 = src_ptr[11]; + src_ptr_r2 = src_ptr[19]; + + __asm__ __volatile__( + "mtlo %[vector4a], $ac1 \n\t" + "append %[src_ptr_0], %[src_ptr_r1], 8 \n\t" + "append %[src_ptr_l1], %[src_ptr_r2], 8 \n\t" + "dpau.h.qbr $ac1, %[src_ptr_0], %[vector2b] \n\t" + "dpsu.h.qbr $ac1, %[src_ptr_l1], %[vector3b] \n\t" + "extp %[Temp3], $ac0, 9 \n\t" + + : [Temp3] "=r"(Temp3) + : [vector2b] "r"(vector2b), [vector3b] "r"(vector3b), + [src_ptr_l1] "r"(src_ptr_l1), [src_ptr_0] "r"(src_ptr_0), + [src_ptr_r1] "r"(src_ptr_r1), [src_ptr_r2] "r"(src_ptr_r2), + [vector4a] "r"(vector4a)); + + src_ptr_l1 = src_ptr[-4]; + src_ptr_0 = src_ptr[4]; + src_ptr_r1 = src_ptr[12]; + src_ptr_r2 = src_ptr[20]; + + __asm__ __volatile__( + "mtlo %[vector4a], $ac2 \n\t" + "append %[src_ptr_0], %[src_ptr_r1], 8 \n\t" + "append %[src_ptr_l1], %[src_ptr_r2], 8 \n\t" + "dpau.h.qbr $ac2, %[src_ptr_0], %[vector2b] \n\t" + "dpsu.h.qbr $ac2, %[src_ptr_l1], %[vector3b] \n\t" + "extp %[Temp4], $ac1, 9 \n\t" + + : [Temp4] "=r"(Temp4) + : [vector2b] "r"(vector2b), [vector3b] "r"(vector3b), + [src_ptr_l1] "r"(src_ptr_l1), [src_ptr_0] "r"(src_ptr_0), + [src_ptr_r1] "r"(src_ptr_r1), [src_ptr_r2] "r"(src_ptr_r2), + [vector4a] "r"(vector4a)); + + src_ptr_l1 = src_ptr[-3]; + src_ptr_0 = src_ptr[5]; + src_ptr_r1 = src_ptr[13]; + src_ptr_r2 = src_ptr[21]; + + __asm__ __volatile__( + "mtlo %[vector4a], $ac3 \n\t" + "append %[src_ptr_0], %[src_ptr_r1], 8 \n\t" + "append %[src_ptr_l1], %[src_ptr_r2], 8 \n\t" + "dpau.h.qbr $ac3, %[src_ptr_0], %[vector2b] \n\t" + "dpsu.h.qbr $ac3, %[src_ptr_l1], %[vector3b] \n\t" + "extp %[Temp5], $ac2, 9 \n\t" + + : [Temp5] "=&r"(Temp5) + : [vector2b] "r"(vector2b), [vector3b] "r"(vector3b), + [src_ptr_l1] "r"(src_ptr_l1), [src_ptr_0] "r"(src_ptr_0), + [src_ptr_r1] "r"(src_ptr_r1), [src_ptr_r2] "r"(src_ptr_r2), + [vector4a] "r"(vector4a)); + + src_ptr_l1 = src_ptr[-2]; + src_ptr_0 = src_ptr[6]; + src_ptr_r1 = src_ptr[14]; + src_ptr_r2 = src_ptr[22]; + + __asm__ __volatile__( + "mtlo %[vector4a], $ac0 \n\t" + "append %[src_ptr_0], %[src_ptr_r1], 8 \n\t" + "append %[src_ptr_l1], %[src_ptr_r2], 8 \n\t" + "dpau.h.qbr $ac0, %[src_ptr_0], %[vector2b] \n\t" + "dpsu.h.qbr $ac0, %[src_ptr_l1], %[vector3b] \n\t" + "extp %[Temp6], $ac3, 9 \n\t" + + : [Temp6] "=r"(Temp6) + : [vector2b] "r"(vector2b), [vector3b] "r"(vector3b), + [src_ptr_l1] "r"(src_ptr_l1), [src_ptr_0] "r"(src_ptr_0), + [src_ptr_r1] "r"(src_ptr_r1), [src_ptr_r2] "r"(src_ptr_r2), + [vector4a] "r"(vector4a)); + + src_ptr_l1 = src_ptr[-1]; + src_ptr_0 = src_ptr[7]; + src_ptr_r1 = src_ptr[15]; + src_ptr_r2 = src_ptr[23]; + + __asm__ __volatile__( + "mtlo %[vector4a], $ac1 \n\t" + "append %[src_ptr_0], %[src_ptr_r1], 8 \n\t" + "append %[src_ptr_l1], %[src_ptr_r2], 8 \n\t" + "dpau.h.qbr $ac1, %[src_ptr_0], %[vector2b] \n\t" + "dpsu.h.qbr $ac1, %[src_ptr_l1], %[vector3b] \n\t" + "extp %[Temp7], $ac0, 9 \n\t" + "extp %[Temp8], $ac1, 9 \n\t" + + : [Temp7] "=&r"(Temp7), [Temp8] "=r"(Temp8) + : [vector2b] "r"(vector2b), [vector3b] "r"(vector3b), + [src_ptr_l1] "r"(src_ptr_l1), [src_ptr_0] "r"(src_ptr_0), + [src_ptr_r1] "r"(src_ptr_r1), [src_ptr_r2] "r"(src_ptr_r2), + [vector4a] "r"(vector4a)); + + /* clamp and store results */ + output_ptr[0] = cm[Temp1]; + output_ptr[1] = cm[Temp2]; + output_ptr[2] = cm[Temp3]; + output_ptr[3] = cm[Temp4]; + output_ptr[4] = cm[Temp5]; + output_ptr[5] = cm[Temp6]; + output_ptr[6] = cm[Temp7]; + output_ptr[7] = cm[Temp8]; + + src_ptr += 8; + output_ptr += output_pitch; + } + } +} + +void vp8_filter_block2d_second_pass161(unsigned char *RESTRICT src_ptr, + unsigned char *RESTRICT output_ptr, + int output_pitch, + const unsigned short *vp8_filter) { + unsigned int i, j; + + int Temp1, Temp2, Temp3, Temp4, Temp5, Temp6, Temp7, Temp8; + unsigned int vector4a; + unsigned int vector1b, vector2b, vector3b; + + unsigned char src_ptr_l2; + unsigned char src_ptr_l1; + unsigned char src_ptr_0; + unsigned char src_ptr_r1; + unsigned char src_ptr_r2; + unsigned char src_ptr_r3; + unsigned char *cm = ff_cropTbl + CROP_WIDTH; + + vector4a = 64; + + vector1b = vp8_filter[0]; + vector2b = vp8_filter[2]; + vector3b = vp8_filter[1]; + + if (vector1b == 0) { + /* 4 tap filter */ + + /* prefetch src_ptr data to cache memory */ + prefetch_load(src_ptr + 16); + + for (i = 16; i--;) { + /* unrolling for loop */ + for (j = 0; j < 16; j += 8) { + /* apply filter with vectors pairs */ + __asm__ __volatile__( + "lbu %[src_ptr_l1], -16(%[src_ptr]) " + "\n\t" + "lbu %[src_ptr_0], 0(%[src_ptr]) " + "\n\t" + "lbu %[src_ptr_r1], 16(%[src_ptr]) " + "\n\t" + "lbu %[src_ptr_r2], 32(%[src_ptr]) " + "\n\t" + "mtlo %[vector4a], $ac2 " + "\n\t" + "append %[src_ptr_0], %[src_ptr_r1], 8 " + "\n\t" + "append %[src_ptr_l1], %[src_ptr_r2], 8 " + "\n\t" + "dpau.h.qbr $ac2, %[src_ptr_0], %[vector2b] " + "\n\t" + "dpsu.h.qbr $ac2, %[src_ptr_l1], %[vector3b] " + "\n\t" + + "lbu %[src_ptr_l1], -15(%[src_ptr]) " + "\n\t" + "lbu %[src_ptr_0], 1(%[src_ptr]) " + "\n\t" + "lbu %[src_ptr_r1], 17(%[src_ptr]) " + "\n\t" + "lbu %[src_ptr_r2], 33(%[src_ptr]) " + "\n\t" + "mtlo %[vector4a], $ac3 " + "\n\t" + "extp %[Temp1], $ac2, 9 " + "\n\t" + + "append %[src_ptr_0], %[src_ptr_r1], 8 " + "\n\t" + "append %[src_ptr_l1], %[src_ptr_r2], 8 " + "\n\t" + "dpau.h.qbr $ac3, %[src_ptr_0], %[vector2b] " + "\n\t" + "dpsu.h.qbr $ac3, %[src_ptr_l1], %[vector3b] " + "\n\t" + + "lbu %[src_ptr_l1], -14(%[src_ptr]) " + "\n\t" + "lbu %[src_ptr_0], 2(%[src_ptr]) " + "\n\t" + "lbu %[src_ptr_r1], 18(%[src_ptr]) " + "\n\t" + "lbu %[src_ptr_r2], 34(%[src_ptr]) " + "\n\t" + "mtlo %[vector4a], $ac1 " + "\n\t" + "extp %[Temp2], $ac3, 9 " + "\n\t" + + "append %[src_ptr_0], %[src_ptr_r1], 8 " + "\n\t" + "append %[src_ptr_l1], %[src_ptr_r2], 8 " + "\n\t" + "dpau.h.qbr $ac1, %[src_ptr_0], %[vector2b] " + "\n\t" + "dpsu.h.qbr $ac1, %[src_ptr_l1], %[vector3b] " + "\n\t" + + "lbu %[src_ptr_l1], -13(%[src_ptr]) " + "\n\t" + "lbu %[src_ptr_0], 3(%[src_ptr]) " + "\n\t" + "lbu %[src_ptr_r1], 19(%[src_ptr]) " + "\n\t" + "lbu %[src_ptr_r2], 35(%[src_ptr]) " + "\n\t" + "mtlo %[vector4a], $ac3 " + "\n\t" + "extp %[Temp3], $ac1, 9 " + "\n\t" + + "append %[src_ptr_0], %[src_ptr_r1], 8 " + "\n\t" + "append %[src_ptr_l1], %[src_ptr_r2], 8 " + "\n\t" + "dpau.h.qbr $ac3, %[src_ptr_0], %[vector2b] " + "\n\t" + "dpsu.h.qbr $ac3, %[src_ptr_l1], %[vector3b] " + "\n\t" + + "lbu %[src_ptr_l1], -12(%[src_ptr]) " + "\n\t" + "lbu %[src_ptr_0], 4(%[src_ptr]) " + "\n\t" + "lbu %[src_ptr_r1], 20(%[src_ptr]) " + "\n\t" + "lbu %[src_ptr_r2], 36(%[src_ptr]) " + "\n\t" + "mtlo %[vector4a], $ac2 " + "\n\t" + "extp %[Temp4], $ac3, 9 " + "\n\t" + + "append %[src_ptr_0], %[src_ptr_r1], 8 " + "\n\t" + "append %[src_ptr_l1], %[src_ptr_r2], 8 " + "\n\t" + "dpau.h.qbr $ac2, %[src_ptr_0], %[vector2b] " + "\n\t" + "dpsu.h.qbr $ac2, %[src_ptr_l1], %[vector3b] " + "\n\t" + + "lbu %[src_ptr_l1], -11(%[src_ptr]) " + "\n\t" + "lbu %[src_ptr_0], 5(%[src_ptr]) " + "\n\t" + "lbu %[src_ptr_r1], 21(%[src_ptr]) " + "\n\t" + "lbu %[src_ptr_r2], 37(%[src_ptr]) " + "\n\t" + "mtlo %[vector4a], $ac3 " + "\n\t" + "extp %[Temp5], $ac2, 9 " + "\n\t" + + "append %[src_ptr_0], %[src_ptr_r1], 8 " + "\n\t" + "append %[src_ptr_l1], %[src_ptr_r2], 8 " + "\n\t" + "dpau.h.qbr $ac3, %[src_ptr_0], %[vector2b] " + "\n\t" + "dpsu.h.qbr $ac3, %[src_ptr_l1], %[vector3b] " + "\n\t" + + "lbu %[src_ptr_l1], -10(%[src_ptr]) " + "\n\t" + "lbu %[src_ptr_0], 6(%[src_ptr]) " + "\n\t" + "lbu %[src_ptr_r1], 22(%[src_ptr]) " + "\n\t" + "lbu %[src_ptr_r2], 38(%[src_ptr]) " + "\n\t" + "mtlo %[vector4a], $ac1 " + "\n\t" + "extp %[Temp6], $ac3, 9 " + "\n\t" + + "append %[src_ptr_0], %[src_ptr_r1], 8 " + "\n\t" + "append %[src_ptr_l1], %[src_ptr_r2], 8 " + "\n\t" + "dpau.h.qbr $ac1, %[src_ptr_0], %[vector2b] " + "\n\t" + "dpsu.h.qbr $ac1, %[src_ptr_l1], %[vector3b] " + "\n\t" + + "lbu %[src_ptr_l1], -9(%[src_ptr]) " + "\n\t" + "lbu %[src_ptr_0], 7(%[src_ptr]) " + "\n\t" + "lbu %[src_ptr_r1], 23(%[src_ptr]) " + "\n\t" + "lbu %[src_ptr_r2], 39(%[src_ptr]) " + "\n\t" + "mtlo %[vector4a], $ac3 " + "\n\t" + "extp %[Temp7], $ac1, 9 " + "\n\t" + + "append %[src_ptr_0], %[src_ptr_r1], 8 " + "\n\t" + "append %[src_ptr_l1], %[src_ptr_r2], 8 " + "\n\t" + "dpau.h.qbr $ac3, %[src_ptr_0], %[vector2b] " + "\n\t" + "dpsu.h.qbr $ac3, %[src_ptr_l1], %[vector3b] " + "\n\t" + "extp %[Temp8], $ac3, 9 " + "\n\t" + + : [Temp1] "=&r"(Temp1), [Temp2] "=&r"(Temp2), [Temp3] "=&r"(Temp3), + [Temp4] "=&r"(Temp4), [Temp5] "=&r"(Temp5), [Temp6] "=&r"(Temp6), + [Temp7] "=&r"(Temp7), [Temp8] "=r"(Temp8), + [src_ptr_l1] "=&r"(src_ptr_l1), [src_ptr_0] "=&r"(src_ptr_0), + [src_ptr_r1] "=&r"(src_ptr_r1), [src_ptr_r2] "=&r"(src_ptr_r2) + : [vector2b] "r"(vector2b), [vector3b] "r"(vector3b), + [vector4a] "r"(vector4a), [src_ptr] "r"(src_ptr)); + + /* clamp and store results */ + output_ptr[j] = cm[Temp1]; + output_ptr[j + 1] = cm[Temp2]; + output_ptr[j + 2] = cm[Temp3]; + output_ptr[j + 3] = cm[Temp4]; + output_ptr[j + 4] = cm[Temp5]; + output_ptr[j + 5] = cm[Temp6]; + output_ptr[j + 6] = cm[Temp7]; + output_ptr[j + 7] = cm[Temp8]; + + src_ptr += 8; + } + + output_ptr += output_pitch; + } + } else { + /* 4 tap filter */ + + /* prefetch src_ptr data to cache memory */ + prefetch_load(src_ptr + 16); + + /* unroll for loop */ + for (i = 16; i--;) { + /* apply filter with vectors pairs */ + __asm__ __volatile__( + "lbu %[src_ptr_l2], -32(%[src_ptr]) \n\t" + "lbu %[src_ptr_l1], -16(%[src_ptr]) \n\t" + "lbu %[src_ptr_0], 0(%[src_ptr]) \n\t" + "lbu %[src_ptr_r1], 16(%[src_ptr]) \n\t" + "lbu %[src_ptr_r2], 32(%[src_ptr]) \n\t" + "lbu %[src_ptr_r3], 48(%[src_ptr]) \n\t" + "mtlo %[vector4a], $ac2 \n\t" + + "append %[src_ptr_l2], %[src_ptr_r3], 8 \n\t" + "append %[src_ptr_0], %[src_ptr_r1], 8 \n\t" + "append %[src_ptr_l1], %[src_ptr_r2], 8 \n\t" + "dpau.h.qbr $ac2, %[src_ptr_l2], %[vector1b] \n\t" + "dpau.h.qbr $ac2, %[src_ptr_0], %[vector2b] \n\t" + "dpsu.h.qbr $ac2, %[src_ptr_l1], %[vector3b] \n\t" + + "lbu %[src_ptr_l2], -31(%[src_ptr]) \n\t" + "lbu %[src_ptr_l1], -15(%[src_ptr]) \n\t" + "lbu %[src_ptr_0], 1(%[src_ptr]) \n\t" + "lbu %[src_ptr_r1], 17(%[src_ptr]) \n\t" + "lbu %[src_ptr_r2], 33(%[src_ptr]) \n\t" + "lbu %[src_ptr_r3], 49(%[src_ptr]) \n\t" + "mtlo %[vector4a], $ac0 \n\t" + "extp %[Temp1], $ac2, 9 \n\t" + + "append %[src_ptr_l2], %[src_ptr_r3], 8 \n\t" + "append %[src_ptr_0], %[src_ptr_r1], 8 \n\t" + "append %[src_ptr_l1], %[src_ptr_r2], 8 \n\t" + "dpau.h.qbr $ac0, %[src_ptr_l2], %[vector1b] \n\t" + "dpau.h.qbr $ac0, %[src_ptr_0], %[vector2b] \n\t" + "dpsu.h.qbr $ac0, %[src_ptr_l1], %[vector3b] \n\t" + + "lbu %[src_ptr_l2], -30(%[src_ptr]) \n\t" + "lbu %[src_ptr_l1], -14(%[src_ptr]) \n\t" + "lbu %[src_ptr_0], 2(%[src_ptr]) \n\t" + "lbu %[src_ptr_r1], 18(%[src_ptr]) \n\t" + "lbu %[src_ptr_r2], 34(%[src_ptr]) \n\t" + "lbu %[src_ptr_r3], 50(%[src_ptr]) \n\t" + "mtlo %[vector4a], $ac1 \n\t" + "extp %[Temp2], $ac0, 9 \n\t" + + "append %[src_ptr_l2], %[src_ptr_r3], 8 \n\t" + "append %[src_ptr_0], %[src_ptr_r1], 8 \n\t" + "append %[src_ptr_l1], %[src_ptr_r2], 8 \n\t" + "dpau.h.qbr $ac1, %[src_ptr_l2], %[vector1b] \n\t" + "dpau.h.qbr $ac1, %[src_ptr_0], %[vector2b] \n\t" + "dpsu.h.qbr $ac1, %[src_ptr_l1], %[vector3b] \n\t" + + "lbu %[src_ptr_l2], -29(%[src_ptr]) \n\t" + "lbu %[src_ptr_l1], -13(%[src_ptr]) \n\t" + "lbu %[src_ptr_0], 3(%[src_ptr]) \n\t" + "lbu %[src_ptr_r1], 19(%[src_ptr]) \n\t" + "lbu %[src_ptr_r2], 35(%[src_ptr]) \n\t" + "lbu %[src_ptr_r3], 51(%[src_ptr]) \n\t" + "mtlo %[vector4a], $ac3 \n\t" + "extp %[Temp3], $ac1, 9 \n\t" + + "append %[src_ptr_l2], %[src_ptr_r3], 8 \n\t" + "append %[src_ptr_0], %[src_ptr_r1], 8 \n\t" + "append %[src_ptr_l1], %[src_ptr_r2], 8 \n\t" + "dpau.h.qbr $ac3, %[src_ptr_l2], %[vector1b] \n\t" + "dpau.h.qbr $ac3, %[src_ptr_0], %[vector2b] \n\t" + "dpsu.h.qbr $ac3, %[src_ptr_l1], %[vector3b] \n\t" + + "lbu %[src_ptr_l2], -28(%[src_ptr]) \n\t" + "lbu %[src_ptr_l1], -12(%[src_ptr]) \n\t" + "lbu %[src_ptr_0], 4(%[src_ptr]) \n\t" + "lbu %[src_ptr_r1], 20(%[src_ptr]) \n\t" + "lbu %[src_ptr_r2], 36(%[src_ptr]) \n\t" + "lbu %[src_ptr_r3], 52(%[src_ptr]) \n\t" + "mtlo %[vector4a], $ac2 \n\t" + "extp %[Temp4], $ac3, 9 \n\t" + + "append %[src_ptr_l2], %[src_ptr_r3], 8 \n\t" + "append %[src_ptr_0], %[src_ptr_r1], 8 \n\t" + "append %[src_ptr_l1], %[src_ptr_r2], 8 \n\t" + "dpau.h.qbr $ac2, %[src_ptr_l2], %[vector1b] \n\t" + "dpau.h.qbr $ac2, %[src_ptr_0], %[vector2b] \n\t" + "dpsu.h.qbr $ac2, %[src_ptr_l1], %[vector3b] \n\t" + + "lbu %[src_ptr_l2], -27(%[src_ptr]) \n\t" + "lbu %[src_ptr_l1], -11(%[src_ptr]) \n\t" + "lbu %[src_ptr_0], 5(%[src_ptr]) \n\t" + "lbu %[src_ptr_r1], 21(%[src_ptr]) \n\t" + "lbu %[src_ptr_r2], 37(%[src_ptr]) \n\t" + "lbu %[src_ptr_r3], 53(%[src_ptr]) \n\t" + "mtlo %[vector4a], $ac0 \n\t" + "extp %[Temp5], $ac2, 9 \n\t" + + "append %[src_ptr_l2], %[src_ptr_r3], 8 \n\t" + "append %[src_ptr_0], %[src_ptr_r1], 8 \n\t" + "append %[src_ptr_l1], %[src_ptr_r2], 8 \n\t" + "dpau.h.qbr $ac0, %[src_ptr_l2], %[vector1b] \n\t" + "dpau.h.qbr $ac0, %[src_ptr_0], %[vector2b] \n\t" + "dpsu.h.qbr $ac0, %[src_ptr_l1], %[vector3b] \n\t" + + "lbu %[src_ptr_l2], -26(%[src_ptr]) \n\t" + "lbu %[src_ptr_l1], -10(%[src_ptr]) \n\t" + "lbu %[src_ptr_0], 6(%[src_ptr]) \n\t" + "lbu %[src_ptr_r1], 22(%[src_ptr]) \n\t" + "lbu %[src_ptr_r2], 38(%[src_ptr]) \n\t" + "lbu %[src_ptr_r3], 54(%[src_ptr]) \n\t" + "mtlo %[vector4a], $ac1 \n\t" + "extp %[Temp6], $ac0, 9 \n\t" + + "append %[src_ptr_l2], %[src_ptr_r3], 8 \n\t" + "append %[src_ptr_0], %[src_ptr_r1], 8 \n\t" + "append %[src_ptr_l1], %[src_ptr_r2], 8 \n\t" + "dpau.h.qbr $ac1, %[src_ptr_l2], %[vector1b] \n\t" + "dpau.h.qbr $ac1, %[src_ptr_0], %[vector2b] \n\t" + "dpsu.h.qbr $ac1, %[src_ptr_l1], %[vector3b] \n\t" + + "lbu %[src_ptr_l2], -25(%[src_ptr]) \n\t" + "lbu %[src_ptr_l1], -9(%[src_ptr]) \n\t" + "lbu %[src_ptr_0], 7(%[src_ptr]) \n\t" + "lbu %[src_ptr_r1], 23(%[src_ptr]) \n\t" + "lbu %[src_ptr_r2], 39(%[src_ptr]) \n\t" + "lbu %[src_ptr_r3], 55(%[src_ptr]) \n\t" + "mtlo %[vector4a], $ac3 \n\t" + "extp %[Temp7], $ac1, 9 \n\t" + + "append %[src_ptr_l2], %[src_ptr_r3], 8 \n\t" + "append %[src_ptr_0], %[src_ptr_r1], 8 \n\t" + "append %[src_ptr_l1], %[src_ptr_r2], 8 \n\t" + "dpau.h.qbr $ac3, %[src_ptr_l2], %[vector1b] \n\t" + "dpau.h.qbr $ac3, %[src_ptr_0], %[vector2b] \n\t" + "dpsu.h.qbr $ac3, %[src_ptr_l1], %[vector3b] \n\t" + "extp %[Temp8], $ac3, 9 \n\t" + + : [Temp1] "=&r"(Temp1), [Temp2] "=&r"(Temp2), [Temp3] "=&r"(Temp3), + [Temp4] "=&r"(Temp4), [Temp5] "=&r"(Temp5), [Temp6] "=&r"(Temp6), + [Temp7] "=&r"(Temp7), [Temp8] "=r"(Temp8), + [src_ptr_l1] "=&r"(src_ptr_l1), [src_ptr_0] "=&r"(src_ptr_0), + [src_ptr_r1] "=&r"(src_ptr_r1), [src_ptr_r2] "=&r"(src_ptr_r2), + [src_ptr_l2] "=&r"(src_ptr_l2), [src_ptr_r3] "=&r"(src_ptr_r3) + : [vector1b] "r"(vector1b), [vector2b] "r"(vector2b), + [vector3b] "r"(vector3b), [vector4a] "r"(vector4a), + [src_ptr] "r"(src_ptr)); + + /* clamp and store results */ + output_ptr[0] = cm[Temp1]; + output_ptr[1] = cm[Temp2]; + output_ptr[2] = cm[Temp3]; + output_ptr[3] = cm[Temp4]; + output_ptr[4] = cm[Temp5]; + output_ptr[5] = cm[Temp6]; + output_ptr[6] = cm[Temp7]; + output_ptr[7] = cm[Temp8]; + + /* apply filter with vectors pairs */ + __asm__ __volatile__( + "lbu %[src_ptr_l2], -24(%[src_ptr]) \n\t" + "lbu %[src_ptr_l1], -8(%[src_ptr]) \n\t" + "lbu %[src_ptr_0], 8(%[src_ptr]) \n\t" + "lbu %[src_ptr_r1], 24(%[src_ptr]) \n\t" + "lbu %[src_ptr_r2], 40(%[src_ptr]) \n\t" + "lbu %[src_ptr_r3], 56(%[src_ptr]) \n\t" + "mtlo %[vector4a], $ac2 \n\t" + + "append %[src_ptr_l2], %[src_ptr_r3], 8 \n\t" + "append %[src_ptr_0], %[src_ptr_r1], 8 \n\t" + "append %[src_ptr_l1], %[src_ptr_r2], 8 \n\t" + "dpau.h.qbr $ac2, %[src_ptr_l2], %[vector1b] \n\t" + "dpau.h.qbr $ac2, %[src_ptr_0], %[vector2b] \n\t" + "dpsu.h.qbr $ac2, %[src_ptr_l1], %[vector3b] \n\t" + + "lbu %[src_ptr_l2], -23(%[src_ptr]) \n\t" + "lbu %[src_ptr_l1], -7(%[src_ptr]) \n\t" + "lbu %[src_ptr_0], 9(%[src_ptr]) \n\t" + "lbu %[src_ptr_r1], 25(%[src_ptr]) \n\t" + "lbu %[src_ptr_r2], 41(%[src_ptr]) \n\t" + "lbu %[src_ptr_r3], 57(%[src_ptr]) \n\t" + "mtlo %[vector4a], $ac0 \n\t" + "extp %[Temp1], $ac2, 9 \n\t" + + "append %[src_ptr_l2], %[src_ptr_r3], 8 \n\t" + "append %[src_ptr_0], %[src_ptr_r1], 8 \n\t" + "append %[src_ptr_l1], %[src_ptr_r2], 8 \n\t" + "dpau.h.qbr $ac0, %[src_ptr_l2], %[vector1b] \n\t" + "dpau.h.qbr $ac0, %[src_ptr_0], %[vector2b] \n\t" + "dpsu.h.qbr $ac0, %[src_ptr_l1], %[vector3b] \n\t" + + "lbu %[src_ptr_l2], -22(%[src_ptr]) \n\t" + "lbu %[src_ptr_l1], -6(%[src_ptr]) \n\t" + "lbu %[src_ptr_0], 10(%[src_ptr]) \n\t" + "lbu %[src_ptr_r1], 26(%[src_ptr]) \n\t" + "lbu %[src_ptr_r2], 42(%[src_ptr]) \n\t" + "lbu %[src_ptr_r3], 58(%[src_ptr]) \n\t" + "mtlo %[vector4a], $ac1 \n\t" + "extp %[Temp2], $ac0, 9 \n\t" + + "append %[src_ptr_l2], %[src_ptr_r3], 8 \n\t" + "append %[src_ptr_0], %[src_ptr_r1], 8 \n\t" + "append %[src_ptr_l1], %[src_ptr_r2], 8 \n\t" + "dpau.h.qbr $ac1, %[src_ptr_l2], %[vector1b] \n\t" + "dpau.h.qbr $ac1, %[src_ptr_0], %[vector2b] \n\t" + "dpsu.h.qbr $ac1, %[src_ptr_l1], %[vector3b] \n\t" + + "lbu %[src_ptr_l2], -21(%[src_ptr]) \n\t" + "lbu %[src_ptr_l1], -5(%[src_ptr]) \n\t" + "lbu %[src_ptr_0], 11(%[src_ptr]) \n\t" + "lbu %[src_ptr_r1], 27(%[src_ptr]) \n\t" + "lbu %[src_ptr_r2], 43(%[src_ptr]) \n\t" + "lbu %[src_ptr_r3], 59(%[src_ptr]) \n\t" + "mtlo %[vector4a], $ac3 \n\t" + "extp %[Temp3], $ac1, 9 \n\t" + + "append %[src_ptr_l2], %[src_ptr_r3], 8 \n\t" + "append %[src_ptr_0], %[src_ptr_r1], 8 \n\t" + "append %[src_ptr_l1], %[src_ptr_r2], 8 \n\t" + "dpau.h.qbr $ac3, %[src_ptr_l2], %[vector1b] \n\t" + "dpau.h.qbr $ac3, %[src_ptr_0], %[vector2b] \n\t" + "dpsu.h.qbr $ac3, %[src_ptr_l1], %[vector3b] \n\t" + + "lbu %[src_ptr_l2], -20(%[src_ptr]) \n\t" + "lbu %[src_ptr_l1], -4(%[src_ptr]) \n\t" + "lbu %[src_ptr_0], 12(%[src_ptr]) \n\t" + "lbu %[src_ptr_r1], 28(%[src_ptr]) \n\t" + "lbu %[src_ptr_r2], 44(%[src_ptr]) \n\t" + "lbu %[src_ptr_r3], 60(%[src_ptr]) \n\t" + "mtlo %[vector4a], $ac2 \n\t" + "extp %[Temp4], $ac3, 9 \n\t" + + "append %[src_ptr_l2], %[src_ptr_r3], 8 \n\t" + "append %[src_ptr_0], %[src_ptr_r1], 8 \n\t" + "append %[src_ptr_l1], %[src_ptr_r2], 8 \n\t" + "dpau.h.qbr $ac2, %[src_ptr_l2], %[vector1b] \n\t" + "dpau.h.qbr $ac2, %[src_ptr_0], %[vector2b] \n\t" + "dpsu.h.qbr $ac2, %[src_ptr_l1], %[vector3b] \n\t" + + "lbu %[src_ptr_l2], -19(%[src_ptr]) \n\t" + "lbu %[src_ptr_l1], -3(%[src_ptr]) \n\t" + "lbu %[src_ptr_0], 13(%[src_ptr]) \n\t" + "lbu %[src_ptr_r1], 29(%[src_ptr]) \n\t" + "lbu %[src_ptr_r2], 45(%[src_ptr]) \n\t" + "lbu %[src_ptr_r3], 61(%[src_ptr]) \n\t" + "mtlo %[vector4a], $ac0 \n\t" + "extp %[Temp5], $ac2, 9 \n\t" + + "append %[src_ptr_l2], %[src_ptr_r3], 8 \n\t" + "append %[src_ptr_0], %[src_ptr_r1], 8 \n\t" + "append %[src_ptr_l1], %[src_ptr_r2], 8 \n\t" + "dpau.h.qbr $ac0, %[src_ptr_l2], %[vector1b] \n\t" + "dpau.h.qbr $ac0, %[src_ptr_0], %[vector2b] \n\t" + "dpsu.h.qbr $ac0, %[src_ptr_l1], %[vector3b] \n\t" + + "lbu %[src_ptr_l2], -18(%[src_ptr]) \n\t" + "lbu %[src_ptr_l1], -2(%[src_ptr]) \n\t" + "lbu %[src_ptr_0], 14(%[src_ptr]) \n\t" + "lbu %[src_ptr_r1], 30(%[src_ptr]) \n\t" + "lbu %[src_ptr_r2], 46(%[src_ptr]) \n\t" + "lbu %[src_ptr_r3], 62(%[src_ptr]) \n\t" + "mtlo %[vector4a], $ac1 \n\t" + "extp %[Temp6], $ac0, 9 \n\t" + + "append %[src_ptr_l2], %[src_ptr_r3], 8 \n\t" + "append %[src_ptr_0], %[src_ptr_r1], 8 \n\t" + "append %[src_ptr_l1], %[src_ptr_r2], 8 \n\t" + "dpau.h.qbr $ac1, %[src_ptr_l2], %[vector1b] \n\t" + "dpau.h.qbr $ac1, %[src_ptr_0], %[vector2b] \n\t" + "dpsu.h.qbr $ac1, %[src_ptr_l1], %[vector3b] \n\t" + + "lbu %[src_ptr_l2], -17(%[src_ptr]) \n\t" + "lbu %[src_ptr_l1], -1(%[src_ptr]) \n\t" + "lbu %[src_ptr_0], 15(%[src_ptr]) \n\t" + "lbu %[src_ptr_r1], 31(%[src_ptr]) \n\t" + "lbu %[src_ptr_r2], 47(%[src_ptr]) \n\t" + "lbu %[src_ptr_r3], 63(%[src_ptr]) \n\t" + "mtlo %[vector4a], $ac3 \n\t" + "extp %[Temp7], $ac1, 9 \n\t" + + "append %[src_ptr_l2], %[src_ptr_r3], 8 \n\t" + "append %[src_ptr_0], %[src_ptr_r1], 8 \n\t" + "append %[src_ptr_l1], %[src_ptr_r2], 8 \n\t" + "dpau.h.qbr $ac3, %[src_ptr_l2], %[vector1b] \n\t" + "dpau.h.qbr $ac3, %[src_ptr_0], %[vector2b] \n\t" + "dpsu.h.qbr $ac3, %[src_ptr_l1], %[vector3b] \n\t" + "extp %[Temp8], $ac3, 9 \n\t" + + : [Temp1] "=&r"(Temp1), [Temp2] "=&r"(Temp2), [Temp3] "=&r"(Temp3), + [Temp4] "=&r"(Temp4), [Temp5] "=&r"(Temp5), [Temp6] "=&r"(Temp6), + [Temp7] "=&r"(Temp7), [Temp8] "=r"(Temp8), + [src_ptr_l1] "=&r"(src_ptr_l1), [src_ptr_0] "=&r"(src_ptr_0), + [src_ptr_r1] "=&r"(src_ptr_r1), [src_ptr_r2] "=&r"(src_ptr_r2), + [src_ptr_l2] "=&r"(src_ptr_l2), [src_ptr_r3] "=&r"(src_ptr_r3) + : [vector1b] "r"(vector1b), [vector2b] "r"(vector2b), + [vector3b] "r"(vector3b), [vector4a] "r"(vector4a), + [src_ptr] "r"(src_ptr)); + + src_ptr += 16; + output_ptr[8] = cm[Temp1]; + output_ptr[9] = cm[Temp2]; + output_ptr[10] = cm[Temp3]; + output_ptr[11] = cm[Temp4]; + output_ptr[12] = cm[Temp5]; + output_ptr[13] = cm[Temp6]; + output_ptr[14] = cm[Temp7]; + output_ptr[15] = cm[Temp8]; + + output_ptr += output_pitch; + } + } +} + +void vp8_sixtap_predict4x4_dspr2(unsigned char *RESTRICT src_ptr, + int src_pixels_per_line, int xoffset, + int yoffset, unsigned char *RESTRICT dst_ptr, + int dst_pitch) { + unsigned char FData[9 * 4]; /* Temp data bufffer used in filtering */ + unsigned int pos = 16; + + /* bit positon for extract from acc */ + __asm__ __volatile__("wrdsp %[pos], 1 \n\t" + : + : [pos] "r"(pos)); + + if (yoffset) { + /* First filter 1-D horizontally... */ + vp8_filter_block2d_first_pass_4(src_ptr - (2 * src_pixels_per_line), FData, + src_pixels_per_line, 9, xoffset, 4); + /* then filter verticaly... */ + vp8_filter_block2d_second_pass4(FData + 8, dst_ptr, dst_pitch, yoffset); + } else + /* if (yoffsset == 0) vp8_filter_block2d_first_pass save data to dst_ptr */ + vp8_filter_block2d_first_pass_4(src_ptr, dst_ptr, src_pixels_per_line, 4, + xoffset, dst_pitch); +} + +void vp8_sixtap_predict8x8_dspr2(unsigned char *RESTRICT src_ptr, + int src_pixels_per_line, int xoffset, + int yoffset, unsigned char *RESTRICT dst_ptr, + int dst_pitch) { + unsigned char FData[13 * 8]; /* Temp data bufffer used in filtering */ + unsigned int pos, Temp1, Temp2; + + pos = 16; + + /* bit positon for extract from acc */ + __asm__ __volatile__("wrdsp %[pos], 1 \n\t" + : + : [pos] "r"(pos)); + + if (yoffset) { + src_ptr = src_ptr - (2 * src_pixels_per_line); + + if (xoffset) /* filter 1-D horizontally... */ + vp8_filter_block2d_first_pass_8_all(src_ptr, FData, src_pixels_per_line, + 13, xoffset, 8); + + else { + /* prefetch src_ptr data to cache memory */ + prefetch_load(src_ptr + 2 * src_pixels_per_line); + + __asm__ __volatile__( + "ulw %[Temp1], 0(%[src_ptr]) \n\t" + "ulw %[Temp2], 4(%[src_ptr]) \n\t" + "sw %[Temp1], 0(%[FData]) \n\t" + "sw %[Temp2], 4(%[FData]) \n\t" + "addu %[src_ptr], %[src_ptr], %[src_pixels_per_line] \n\t" + + "ulw %[Temp1], 0(%[src_ptr]) \n\t" + "ulw %[Temp2], 4(%[src_ptr]) \n\t" + "sw %[Temp1], 8(%[FData]) \n\t" + "sw %[Temp2], 12(%[FData]) \n\t" + "addu %[src_ptr], %[src_ptr], %[src_pixels_per_line] \n\t" + + "ulw %[Temp1], 0(%[src_ptr]) \n\t" + "ulw %[Temp2], 4(%[src_ptr]) \n\t" + "sw %[Temp1], 16(%[FData]) \n\t" + "sw %[Temp2], 20(%[FData]) \n\t" + "addu %[src_ptr], %[src_ptr], %[src_pixels_per_line] \n\t" + + "ulw %[Temp1], 0(%[src_ptr]) \n\t" + "ulw %[Temp2], 4(%[src_ptr]) \n\t" + "sw %[Temp1], 24(%[FData]) \n\t" + "sw %[Temp2], 28(%[FData]) \n\t" + "addu %[src_ptr], %[src_ptr], %[src_pixels_per_line] \n\t" + + "ulw %[Temp1], 0(%[src_ptr]) \n\t" + "ulw %[Temp2], 4(%[src_ptr]) \n\t" + "sw %[Temp1], 32(%[FData]) \n\t" + "sw %[Temp2], 36(%[FData]) \n\t" + "addu %[src_ptr], %[src_ptr], %[src_pixels_per_line] \n\t" + + "ulw %[Temp1], 0(%[src_ptr]) \n\t" + "ulw %[Temp2], 4(%[src_ptr]) \n\t" + "sw %[Temp1], 40(%[FData]) \n\t" + "sw %[Temp2], 44(%[FData]) \n\t" + "addu %[src_ptr], %[src_ptr], %[src_pixels_per_line] \n\t" + + "ulw %[Temp1], 0(%[src_ptr]) \n\t" + "ulw %[Temp2], 4(%[src_ptr]) \n\t" + "sw %[Temp1], 48(%[FData]) \n\t" + "sw %[Temp2], 52(%[FData]) \n\t" + "addu %[src_ptr], %[src_ptr], %[src_pixels_per_line] \n\t" + + "ulw %[Temp1], 0(%[src_ptr]) \n\t" + "ulw %[Temp2], 4(%[src_ptr]) \n\t" + "sw %[Temp1], 56(%[FData]) \n\t" + "sw %[Temp2], 60(%[FData]) \n\t" + "addu %[src_ptr], %[src_ptr], %[src_pixels_per_line] \n\t" + + "ulw %[Temp1], 0(%[src_ptr]) \n\t" + "ulw %[Temp2], 4(%[src_ptr]) \n\t" + "sw %[Temp1], 64(%[FData]) \n\t" + "sw %[Temp2], 68(%[FData]) \n\t" + "addu %[src_ptr], %[src_ptr], %[src_pixels_per_line] \n\t" + + "ulw %[Temp1], 0(%[src_ptr]) \n\t" + "ulw %[Temp2], 4(%[src_ptr]) \n\t" + "sw %[Temp1], 72(%[FData]) \n\t" + "sw %[Temp2], 76(%[FData]) \n\t" + "addu %[src_ptr], %[src_ptr], %[src_pixels_per_line] \n\t" + + "ulw %[Temp1], 0(%[src_ptr]) \n\t" + "ulw %[Temp2], 4(%[src_ptr]) \n\t" + "sw %[Temp1], 80(%[FData]) \n\t" + "sw %[Temp2], 84(%[FData]) \n\t" + "addu %[src_ptr], %[src_ptr], %[src_pixels_per_line] \n\t" + + "ulw %[Temp1], 0(%[src_ptr]) \n\t" + "ulw %[Temp2], 4(%[src_ptr]) \n\t" + "sw %[Temp1], 88(%[FData]) \n\t" + "sw %[Temp2], 92(%[FData]) \n\t" + "addu %[src_ptr], %[src_ptr], %[src_pixels_per_line] \n\t" + + "ulw %[Temp1], 0(%[src_ptr]) \n\t" + "ulw %[Temp2], 4(%[src_ptr]) \n\t" + "sw %[Temp1], 96(%[FData]) \n\t" + "sw %[Temp2], 100(%[FData]) \n\t" + + : [Temp1] "=&r"(Temp1), [Temp2] "=&r"(Temp2) + : [FData] "r"(FData), [src_ptr] "r"(src_ptr), + [src_pixels_per_line] "r"(src_pixels_per_line)); + } + + /* filter verticaly... */ + vp8_filter_block2d_second_pass_8(FData + 16, dst_ptr, dst_pitch, 8, 8, + yoffset); + } + + /* if (yoffsset == 0) vp8_filter_block2d_first_pass save data to dst_ptr */ + else { + if (xoffset) + vp8_filter_block2d_first_pass_8_all(src_ptr, dst_ptr, src_pixels_per_line, + 8, xoffset, dst_pitch); + + else { + /* copy from src buffer to dst buffer */ + __asm__ __volatile__( + "ulw %[Temp1], 0(%[src_ptr]) \n\t" + "ulw %[Temp2], 4(%[src_ptr]) \n\t" + "sw %[Temp1], 0(%[dst_ptr]) \n\t" + "sw %[Temp2], 4(%[dst_ptr]) \n\t" + "addu %[src_ptr], %[src_ptr], %[src_pixels_per_line] \n\t" + + "ulw %[Temp1], 0(%[src_ptr]) \n\t" + "ulw %[Temp2], 4(%[src_ptr]) \n\t" + "sw %[Temp1], 8(%[dst_ptr]) \n\t" + "sw %[Temp2], 12(%[dst_ptr]) \n\t" + "addu %[src_ptr], %[src_ptr], %[src_pixels_per_line] \n\t" + + "ulw %[Temp1], 0(%[src_ptr]) \n\t" + "ulw %[Temp2], 4(%[src_ptr]) \n\t" + "sw %[Temp1], 16(%[dst_ptr]) \n\t" + "sw %[Temp2], 20(%[dst_ptr]) \n\t" + "addu %[src_ptr], %[src_ptr], %[src_pixels_per_line] \n\t" + + "ulw %[Temp1], 0(%[src_ptr]) \n\t" + "ulw %[Temp2], 4(%[src_ptr]) \n\t" + "sw %[Temp1], 24(%[dst_ptr]) \n\t" + "sw %[Temp2], 28(%[dst_ptr]) \n\t" + "addu %[src_ptr], %[src_ptr], %[src_pixels_per_line] \n\t" + + "ulw %[Temp1], 0(%[src_ptr]) \n\t" + "ulw %[Temp2], 4(%[src_ptr]) \n\t" + "sw %[Temp1], 32(%[dst_ptr]) \n\t" + "sw %[Temp2], 36(%[dst_ptr]) \n\t" + "addu %[src_ptr], %[src_ptr], %[src_pixels_per_line] \n\t" + + "ulw %[Temp1], 0(%[src_ptr]) \n\t" + "ulw %[Temp2], 4(%[src_ptr]) \n\t" + "sw %[Temp1], 40(%[dst_ptr]) \n\t" + "sw %[Temp2], 44(%[dst_ptr]) \n\t" + "addu %[src_ptr], %[src_ptr], %[src_pixels_per_line] \n\t" + + "ulw %[Temp1], 0(%[src_ptr]) \n\t" + "ulw %[Temp2], 4(%[src_ptr]) \n\t" + "sw %[Temp1], 48(%[dst_ptr]) \n\t" + "sw %[Temp2], 52(%[dst_ptr]) \n\t" + "addu %[src_ptr], %[src_ptr], %[src_pixels_per_line] \n\t" + + "ulw %[Temp1], 0(%[src_ptr]) \n\t" + "ulw %[Temp2], 4(%[src_ptr]) \n\t" + "sw %[Temp1], 56(%[dst_ptr]) \n\t" + "sw %[Temp2], 60(%[dst_ptr]) \n\t" + + : [Temp1] "=&r"(Temp1), [Temp2] "=&r"(Temp2) + : [dst_ptr] "r"(dst_ptr), [src_ptr] "r"(src_ptr), + [src_pixels_per_line] "r"(src_pixels_per_line)); + } + } +} + +void vp8_sixtap_predict8x4_dspr2(unsigned char *RESTRICT src_ptr, + int src_pixels_per_line, int xoffset, + int yoffset, unsigned char *RESTRICT dst_ptr, + int dst_pitch) { + unsigned char FData[9 * 8]; /* Temp data bufffer used in filtering */ + unsigned int pos, Temp1, Temp2; + + pos = 16; + + /* bit positon for extract from acc */ + __asm__ __volatile__("wrdsp %[pos], 1 \n\t" + : + : [pos] "r"(pos)); + + if (yoffset) { + src_ptr = src_ptr - (2 * src_pixels_per_line); + + if (xoffset) /* filter 1-D horizontally... */ + vp8_filter_block2d_first_pass_8_all(src_ptr, FData, src_pixels_per_line, + 9, xoffset, 8); + + else { + /* prefetch src_ptr data to cache memory */ + prefetch_load(src_ptr + 2 * src_pixels_per_line); + + __asm__ __volatile__( + "ulw %[Temp1], 0(%[src_ptr]) \n\t" + "ulw %[Temp2], 4(%[src_ptr]) \n\t" + "sw %[Temp1], 0(%[FData]) \n\t" + "sw %[Temp2], 4(%[FData]) \n\t" + "addu %[src_ptr], %[src_ptr], %[src_pixels_per_line] \n\t" + + "ulw %[Temp1], 0(%[src_ptr]) \n\t" + "ulw %[Temp2], 4(%[src_ptr]) \n\t" + "sw %[Temp1], 8(%[FData]) \n\t" + "sw %[Temp2], 12(%[FData]) \n\t" + "addu %[src_ptr], %[src_ptr], %[src_pixels_per_line] \n\t" + + "ulw %[Temp1], 0(%[src_ptr]) \n\t" + "ulw %[Temp2], 4(%[src_ptr]) \n\t" + "sw %[Temp1], 16(%[FData]) \n\t" + "sw %[Temp2], 20(%[FData]) \n\t" + "addu %[src_ptr], %[src_ptr], %[src_pixels_per_line] \n\t" + + "ulw %[Temp1], 0(%[src_ptr]) \n\t" + "ulw %[Temp2], 4(%[src_ptr]) \n\t" + "sw %[Temp1], 24(%[FData]) \n\t" + "sw %[Temp2], 28(%[FData]) \n\t" + "addu %[src_ptr], %[src_ptr], %[src_pixels_per_line] \n\t" + + "ulw %[Temp1], 0(%[src_ptr]) \n\t" + "ulw %[Temp2], 4(%[src_ptr]) \n\t" + "sw %[Temp1], 32(%[FData]) \n\t" + "sw %[Temp2], 36(%[FData]) \n\t" + "addu %[src_ptr], %[src_ptr], %[src_pixels_per_line] \n\t" + + "ulw %[Temp1], 0(%[src_ptr]) \n\t" + "ulw %[Temp2], 4(%[src_ptr]) \n\t" + "sw %[Temp1], 40(%[FData]) \n\t" + "sw %[Temp2], 44(%[FData]) \n\t" + "addu %[src_ptr], %[src_ptr], %[src_pixels_per_line] \n\t" + + "ulw %[Temp1], 0(%[src_ptr]) \n\t" + "ulw %[Temp2], 4(%[src_ptr]) \n\t" + "sw %[Temp1], 48(%[FData]) \n\t" + "sw %[Temp2], 52(%[FData]) \n\t" + "addu %[src_ptr], %[src_ptr], %[src_pixels_per_line] \n\t" + + "ulw %[Temp1], 0(%[src_ptr]) \n\t" + "ulw %[Temp2], 4(%[src_ptr]) \n\t" + "sw %[Temp1], 56(%[FData]) \n\t" + "sw %[Temp2], 60(%[FData]) \n\t" + "addu %[src_ptr], %[src_ptr], %[src_pixels_per_line] \n\t" + + "ulw %[Temp1], 0(%[src_ptr]) \n\t" + "ulw %[Temp2], 4(%[src_ptr]) \n\t" + "sw %[Temp1], 64(%[FData]) \n\t" + "sw %[Temp2], 68(%[FData]) \n\t" + + : [Temp1] "=&r"(Temp1), [Temp2] "=&r"(Temp2) + : [FData] "r"(FData), [src_ptr] "r"(src_ptr), + [src_pixels_per_line] "r"(src_pixels_per_line)); + } + + /* filter verticaly... */ + vp8_filter_block2d_second_pass_8(FData + 16, dst_ptr, dst_pitch, 4, 8, + yoffset); + } + + /* if (yoffsset == 0) vp8_filter_block2d_first_pass save data to dst_ptr */ + else { + if (xoffset) + vp8_filter_block2d_first_pass_8_all(src_ptr, dst_ptr, src_pixels_per_line, + 4, xoffset, dst_pitch); + + else { + /* copy from src buffer to dst buffer */ + __asm__ __volatile__( + "ulw %[Temp1], 0(%[src_ptr]) \n\t" + "ulw %[Temp2], 4(%[src_ptr]) \n\t" + "sw %[Temp1], 0(%[dst_ptr]) \n\t" + "sw %[Temp2], 4(%[dst_ptr]) \n\t" + "addu %[src_ptr], %[src_ptr], %[src_pixels_per_line] \n\t" + + "ulw %[Temp1], 0(%[src_ptr]) \n\t" + "ulw %[Temp2], 4(%[src_ptr]) \n\t" + "sw %[Temp1], 8(%[dst_ptr]) \n\t" + "sw %[Temp2], 12(%[dst_ptr]) \n\t" + "addu %[src_ptr], %[src_ptr], %[src_pixels_per_line] \n\t" + + "ulw %[Temp1], 0(%[src_ptr]) \n\t" + "ulw %[Temp2], 4(%[src_ptr]) \n\t" + "sw %[Temp1], 16(%[dst_ptr]) \n\t" + "sw %[Temp2], 20(%[dst_ptr]) \n\t" + "addu %[src_ptr], %[src_ptr], %[src_pixels_per_line] \n\t" + + "ulw %[Temp1], 0(%[src_ptr]) \n\t" + "ulw %[Temp2], 4(%[src_ptr]) \n\t" + "sw %[Temp1], 24(%[dst_ptr]) \n\t" + "sw %[Temp2], 28(%[dst_ptr]) \n\t" + + : [Temp1] "=&r"(Temp1), [Temp2] "=&r"(Temp2) + : [dst_ptr] "r"(dst_ptr), [src_ptr] "r"(src_ptr), + [src_pixels_per_line] "r"(src_pixels_per_line)); + } + } +} + +void vp8_sixtap_predict16x16_dspr2(unsigned char *RESTRICT src_ptr, + int src_pixels_per_line, int xoffset, + int yoffset, unsigned char *RESTRICT dst_ptr, + int dst_pitch) { + const unsigned short *VFilter; + unsigned char FData[21 * 16]; /* Temp data bufffer used in filtering */ + unsigned int pos; + + VFilter = sub_pel_filterss[yoffset]; + + pos = 16; + + /* bit positon for extract from acc */ + __asm__ __volatile__("wrdsp %[pos], 1 \n\t" + : + : [pos] "r"(pos)); + + if (yoffset) { + src_ptr = src_ptr - (2 * src_pixels_per_line); + + switch (xoffset) { + /* filter 1-D horizontally... */ + case 2: + case 4: + case 6: + /* 6 tap filter */ + vp8_filter_block2d_first_pass16_6tap( + src_ptr, FData, src_pixels_per_line, 21, xoffset, 16); + break; + + case 0: + /* only copy buffer */ + vp8_filter_block2d_first_pass16_0(src_ptr, FData, src_pixels_per_line); + break; + + case 1: + case 3: + case 5: + case 7: + /* 4 tap filter */ + vp8_filter_block2d_first_pass16_4tap( + src_ptr, FData, src_pixels_per_line, 16, 21, xoffset, yoffset, + dst_ptr, dst_pitch); + break; + } + + /* filter verticaly... */ + vp8_filter_block2d_second_pass161(FData + 32, dst_ptr, dst_pitch, VFilter); + } else { + /* if (yoffsset == 0) vp8_filter_block2d_first_pass save data to dst_ptr */ + switch (xoffset) { + case 2: + case 4: + case 6: + /* 6 tap filter */ + vp8_filter_block2d_first_pass16_6tap( + src_ptr, dst_ptr, src_pixels_per_line, 16, xoffset, dst_pitch); + break; + + case 1: + case 3: + case 5: + case 7: + /* 4 tap filter */ + vp8_filter_block2d_first_pass16_4tap( + src_ptr, dst_ptr, src_pixels_per_line, 16, 21, xoffset, yoffset, + dst_ptr, dst_pitch); + break; + } + } +} + +#endif diff --git a/vp8/common/mips/dspr2/idct_blk_dspr2.c b/vp8/common/mips/dspr2/idct_blk_dspr2.c new file mode 100644 index 0000000..899dc10 --- /dev/null +++ b/vp8/common/mips/dspr2/idct_blk_dspr2.c @@ -0,0 +1,76 @@ +/* + * Copyright (c) 2012 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "vpx_config.h" +#include "vp8_rtcd.h" + +#if HAVE_DSPR2 + +void vp8_dequant_idct_add_y_block_dspr2(short *q, short *dq, unsigned char *dst, + int stride, char *eobs) { + int i, j; + + for (i = 0; i < 4; ++i) { + for (j = 0; j < 4; ++j) { + if (*eobs++ > 1) + vp8_dequant_idct_add_dspr2(q, dq, dst, stride); + else { + vp8_dc_only_idct_add_dspr2(q[0] * dq[0], dst, stride, dst, stride); + ((int *)q)[0] = 0; + } + + q += 16; + dst += 4; + } + + dst += 4 * stride - 16; + } +} + +void vp8_dequant_idct_add_uv_block_dspr2(short *q, short *dq, + unsigned char *dstu, + unsigned char *dstv, int stride, + char *eobs) { + int i, j; + + for (i = 0; i < 2; ++i) { + for (j = 0; j < 2; ++j) { + if (*eobs++ > 1) + vp8_dequant_idct_add_dspr2(q, dq, dstu, stride); + else { + vp8_dc_only_idct_add_dspr2(q[0] * dq[0], dstu, stride, dstu, stride); + ((int *)q)[0] = 0; + } + + q += 16; + dstu += 4; + } + + dstu += 4 * stride - 8; + } + + for (i = 0; i < 2; ++i) { + for (j = 0; j < 2; ++j) { + if (*eobs++ > 1) + vp8_dequant_idct_add_dspr2(q, dq, dstv, stride); + else { + vp8_dc_only_idct_add_dspr2(q[0] * dq[0], dstv, stride, dstv, stride); + ((int *)q)[0] = 0; + } + + q += 16; + dstv += 4; + } + + dstv += 4 * stride - 8; + } +} + +#endif diff --git a/vp8/common/mips/dspr2/idctllm_dspr2.c b/vp8/common/mips/dspr2/idctllm_dspr2.c new file mode 100644 index 0000000..9163ffa --- /dev/null +++ b/vp8/common/mips/dspr2/idctllm_dspr2.c @@ -0,0 +1,346 @@ +/* + * Copyright (c) 2012 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "vp8_rtcd.h" + +#if HAVE_DSPR2 +#define CROP_WIDTH 256 + +/****************************************************************************** + * Notes: + * + * This implementation makes use of 16 bit fixed point version of two multiply + * constants: + * 1. sqrt(2) * cos (pi/8) + * 2. sqrt(2) * sin (pi/8) + * Since the first constant is bigger than 1, to maintain the same 16 bit + * fixed point precision as the second one, we use a trick of + * x * a = x + x*(a-1) + * so + * x * sqrt(2) * cos (pi/8) = x + x * (sqrt(2) *cos(pi/8)-1). + ****************************************************************************/ +extern unsigned char ff_cropTbl[256 + 2 * CROP_WIDTH]; +static const int cospi8sqrt2minus1 = 20091; +static const int sinpi8sqrt2 = 35468; + +inline void prefetch_load_short(short *src) { + __asm__ __volatile__("pref 0, 0(%[src]) \n\t" : : [src] "r"(src)); +} + +void vp8_short_idct4x4llm_dspr2(short *input, unsigned char *pred_ptr, + int pred_stride, unsigned char *dst_ptr, + int dst_stride) { + int r, c; + int a1, b1, c1, d1; + short output[16]; + short *ip = input; + short *op = output; + int temp1, temp2; + int shortpitch = 4; + + int c2, d2; + int temp3, temp4; + unsigned char *cm = ff_cropTbl + CROP_WIDTH; + + /* prepare data for load */ + prefetch_load_short(ip + 8); + + /* first loop is unrolled */ + a1 = ip[0] + ip[8]; + b1 = ip[0] - ip[8]; + + temp1 = (ip[4] * sinpi8sqrt2) >> 16; + temp2 = ip[12] + ((ip[12] * cospi8sqrt2minus1) >> 16); + c1 = temp1 - temp2; + + temp1 = ip[4] + ((ip[4] * cospi8sqrt2minus1) >> 16); + temp2 = (ip[12] * sinpi8sqrt2) >> 16; + d1 = temp1 + temp2; + + temp3 = (ip[5] * sinpi8sqrt2) >> 16; + temp4 = ip[13] + ((ip[13] * cospi8sqrt2minus1) >> 16); + c2 = temp3 - temp4; + + temp3 = ip[5] + ((ip[5] * cospi8sqrt2minus1) >> 16); + temp4 = (ip[13] * sinpi8sqrt2) >> 16; + d2 = temp3 + temp4; + + op[0] = a1 + d1; + op[12] = a1 - d1; + op[4] = b1 + c1; + op[8] = b1 - c1; + + a1 = ip[1] + ip[9]; + b1 = ip[1] - ip[9]; + + op[1] = a1 + d2; + op[13] = a1 - d2; + op[5] = b1 + c2; + op[9] = b1 - c2; + + a1 = ip[2] + ip[10]; + b1 = ip[2] - ip[10]; + + temp1 = (ip[6] * sinpi8sqrt2) >> 16; + temp2 = ip[14] + ((ip[14] * cospi8sqrt2minus1) >> 16); + c1 = temp1 - temp2; + + temp1 = ip[6] + ((ip[6] * cospi8sqrt2minus1) >> 16); + temp2 = (ip[14] * sinpi8sqrt2) >> 16; + d1 = temp1 + temp2; + + temp3 = (ip[7] * sinpi8sqrt2) >> 16; + temp4 = ip[15] + ((ip[15] * cospi8sqrt2minus1) >> 16); + c2 = temp3 - temp4; + + temp3 = ip[7] + ((ip[7] * cospi8sqrt2minus1) >> 16); + temp4 = (ip[15] * sinpi8sqrt2) >> 16; + d2 = temp3 + temp4; + + op[2] = a1 + d1; + op[14] = a1 - d1; + op[6] = b1 + c1; + op[10] = b1 - c1; + + a1 = ip[3] + ip[11]; + b1 = ip[3] - ip[11]; + + op[3] = a1 + d2; + op[15] = a1 - d2; + op[7] = b1 + c2; + op[11] = b1 - c2; + + ip = output; + + /* prepare data for load */ + prefetch_load_short(ip + shortpitch); + + /* second loop is unrolled */ + a1 = ip[0] + ip[2]; + b1 = ip[0] - ip[2]; + + temp1 = (ip[1] * sinpi8sqrt2) >> 16; + temp2 = ip[3] + ((ip[3] * cospi8sqrt2minus1) >> 16); + c1 = temp1 - temp2; + + temp1 = ip[1] + ((ip[1] * cospi8sqrt2minus1) >> 16); + temp2 = (ip[3] * sinpi8sqrt2) >> 16; + d1 = temp1 + temp2; + + temp3 = (ip[5] * sinpi8sqrt2) >> 16; + temp4 = ip[7] + ((ip[7] * cospi8sqrt2minus1) >> 16); + c2 = temp3 - temp4; + + temp3 = ip[5] + ((ip[5] * cospi8sqrt2minus1) >> 16); + temp4 = (ip[7] * sinpi8sqrt2) >> 16; + d2 = temp3 + temp4; + + op[0] = (a1 + d1 + 4) >> 3; + op[3] = (a1 - d1 + 4) >> 3; + op[1] = (b1 + c1 + 4) >> 3; + op[2] = (b1 - c1 + 4) >> 3; + + a1 = ip[4] + ip[6]; + b1 = ip[4] - ip[6]; + + op[4] = (a1 + d2 + 4) >> 3; + op[7] = (a1 - d2 + 4) >> 3; + op[5] = (b1 + c2 + 4) >> 3; + op[6] = (b1 - c2 + 4) >> 3; + + a1 = ip[8] + ip[10]; + b1 = ip[8] - ip[10]; + + temp1 = (ip[9] * sinpi8sqrt2) >> 16; + temp2 = ip[11] + ((ip[11] * cospi8sqrt2minus1) >> 16); + c1 = temp1 - temp2; + + temp1 = ip[9] + ((ip[9] * cospi8sqrt2minus1) >> 16); + temp2 = (ip[11] * sinpi8sqrt2) >> 16; + d1 = temp1 + temp2; + + temp3 = (ip[13] * sinpi8sqrt2) >> 16; + temp4 = ip[15] + ((ip[15] * cospi8sqrt2minus1) >> 16); + c2 = temp3 - temp4; + + temp3 = ip[13] + ((ip[13] * cospi8sqrt2minus1) >> 16); + temp4 = (ip[15] * sinpi8sqrt2) >> 16; + d2 = temp3 + temp4; + + op[8] = (a1 + d1 + 4) >> 3; + op[11] = (a1 - d1 + 4) >> 3; + op[9] = (b1 + c1 + 4) >> 3; + op[10] = (b1 - c1 + 4) >> 3; + + a1 = ip[12] + ip[14]; + b1 = ip[12] - ip[14]; + + op[12] = (a1 + d2 + 4) >> 3; + op[15] = (a1 - d2 + 4) >> 3; + op[13] = (b1 + c2 + 4) >> 3; + op[14] = (b1 - c2 + 4) >> 3; + + ip = output; + + for (r = 0; r < 4; ++r) { + for (c = 0; c < 4; ++c) { + short a = ip[c] + pred_ptr[c]; + dst_ptr[c] = cm[a]; + } + + ip += 4; + dst_ptr += dst_stride; + pred_ptr += pred_stride; + } +} + +void vp8_dc_only_idct_add_dspr2(short input_dc, unsigned char *pred_ptr, + int pred_stride, unsigned char *dst_ptr, + int dst_stride) { + int a1; + int i, absa1; + int t2, vector_a1, vector_a; + + /* a1 = ((input_dc + 4) >> 3); */ + __asm__ __volatile__( + "addi %[a1], %[input_dc], 4 \n\t" + "sra %[a1], %[a1], 3 \n\t" + : [a1] "=r"(a1) + : [input_dc] "r"(input_dc)); + + if (a1 < 0) { + /* use quad-byte + * input and output memory are four byte aligned + */ + __asm__ __volatile__( + "abs %[absa1], %[a1] \n\t" + "replv.qb %[vector_a1], %[absa1] \n\t" + : [absa1] "=r"(absa1), [vector_a1] "=r"(vector_a1) + : [a1] "r"(a1)); + + /* use (a1 - predptr[c]) instead a1 + predptr[c] */ + for (i = 4; i--;) { + __asm__ __volatile__( + "lw %[t2], 0(%[pred_ptr]) \n\t" + "add %[pred_ptr], %[pred_ptr], %[pred_stride] \n\t" + "subu_s.qb %[vector_a], %[t2], %[vector_a1] \n\t" + "sw %[vector_a], 0(%[dst_ptr]) \n\t" + "add %[dst_ptr], %[dst_ptr], %[dst_stride] \n\t" + : [t2] "=&r"(t2), [vector_a] "=&r"(vector_a), + [dst_ptr] "+&r"(dst_ptr), [pred_ptr] "+&r"(pred_ptr) + : [dst_stride] "r"(dst_stride), [pred_stride] "r"(pred_stride), + [vector_a1] "r"(vector_a1)); + } + } else { + /* use quad-byte + * input and output memory are four byte aligned + */ + __asm__ __volatile__("replv.qb %[vector_a1], %[a1] \n\t" + : [vector_a1] "=r"(vector_a1) + : [a1] "r"(a1)); + + for (i = 4; i--;) { + __asm__ __volatile__( + "lw %[t2], 0(%[pred_ptr]) \n\t" + "add %[pred_ptr], %[pred_ptr], %[pred_stride] \n\t" + "addu_s.qb %[vector_a], %[vector_a1], %[t2] \n\t" + "sw %[vector_a], 0(%[dst_ptr]) \n\t" + "add %[dst_ptr], %[dst_ptr], %[dst_stride] \n\t" + : [t2] "=&r"(t2), [vector_a] "=&r"(vector_a), + [dst_ptr] "+&r"(dst_ptr), [pred_ptr] "+&r"(pred_ptr) + : [dst_stride] "r"(dst_stride), [pred_stride] "r"(pred_stride), + [vector_a1] "r"(vector_a1)); + } + } +} + +void vp8_short_inv_walsh4x4_dspr2(short *input, short *mb_dqcoeff) { + short output[16]; + int i; + int a1, b1, c1, d1; + int a2, b2, c2, d2; + short *ip = input; + short *op = output; + + prefetch_load_short(ip); + + for (i = 4; i--;) { + a1 = ip[0] + ip[12]; + b1 = ip[4] + ip[8]; + c1 = ip[4] - ip[8]; + d1 = ip[0] - ip[12]; + + op[0] = a1 + b1; + op[4] = c1 + d1; + op[8] = a1 - b1; + op[12] = d1 - c1; + + ip++; + op++; + } + + ip = output; + op = output; + + prefetch_load_short(ip); + + for (i = 4; i--;) { + a1 = ip[0] + ip[3] + 3; + b1 = ip[1] + ip[2]; + c1 = ip[1] - ip[2]; + d1 = ip[0] - ip[3] + 3; + + a2 = a1 + b1; + b2 = d1 + c1; + c2 = a1 - b1; + d2 = d1 - c1; + + op[0] = a2 >> 3; + op[1] = b2 >> 3; + op[2] = c2 >> 3; + op[3] = d2 >> 3; + + ip += 4; + op += 4; + } + + for (i = 0; i < 16; ++i) { + mb_dqcoeff[i * 16] = output[i]; + } +} + +void vp8_short_inv_walsh4x4_1_dspr2(short *input, short *mb_dqcoeff) { + int a1; + + a1 = ((input[0] + 3) >> 3); + + __asm__ __volatile__( + "sh %[a1], 0(%[mb_dqcoeff]) \n\t" + "sh %[a1], 32(%[mb_dqcoeff]) \n\t" + "sh %[a1], 64(%[mb_dqcoeff]) \n\t" + "sh %[a1], 96(%[mb_dqcoeff]) \n\t" + "sh %[a1], 128(%[mb_dqcoeff]) \n\t" + "sh %[a1], 160(%[mb_dqcoeff]) \n\t" + "sh %[a1], 192(%[mb_dqcoeff]) \n\t" + "sh %[a1], 224(%[mb_dqcoeff]) \n\t" + "sh %[a1], 256(%[mb_dqcoeff]) \n\t" + "sh %[a1], 288(%[mb_dqcoeff]) \n\t" + "sh %[a1], 320(%[mb_dqcoeff]) \n\t" + "sh %[a1], 352(%[mb_dqcoeff]) \n\t" + "sh %[a1], 384(%[mb_dqcoeff]) \n\t" + "sh %[a1], 416(%[mb_dqcoeff]) \n\t" + "sh %[a1], 448(%[mb_dqcoeff]) \n\t" + "sh %[a1], 480(%[mb_dqcoeff]) \n\t" + + : + : [a1] "r"(a1), [mb_dqcoeff] "r"(mb_dqcoeff)); +} + +#endif diff --git a/vp8/common/mips/dspr2/reconinter_dspr2.c b/vp8/common/mips/dspr2/reconinter_dspr2.c new file mode 100644 index 0000000..e44ae29 --- /dev/null +++ b/vp8/common/mips/dspr2/reconinter_dspr2.c @@ -0,0 +1,97 @@ +/* + * Copyright (c) 2012 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "vpx_config.h" +#include "vp8_rtcd.h" +#include "vpx/vpx_integer.h" + +#if HAVE_DSPR2 +inline void prefetch_load_int(unsigned char *src) { + __asm__ __volatile__("pref 0, 0(%[src]) \n\t" : : [src] "r"(src)); +} + +__inline void vp8_copy_mem16x16_dspr2(unsigned char *RESTRICT src, + int src_stride, + unsigned char *RESTRICT dst, + int dst_stride) { + int r; + unsigned int a0, a1, a2, a3; + + for (r = 16; r--;) { + /* load src data in cache memory */ + prefetch_load_int(src + src_stride); + + /* use unaligned memory load and store */ + __asm__ __volatile__( + "ulw %[a0], 0(%[src]) \n\t" + "ulw %[a1], 4(%[src]) \n\t" + "ulw %[a2], 8(%[src]) \n\t" + "ulw %[a3], 12(%[src]) \n\t" + "sw %[a0], 0(%[dst]) \n\t" + "sw %[a1], 4(%[dst]) \n\t" + "sw %[a2], 8(%[dst]) \n\t" + "sw %[a3], 12(%[dst]) \n\t" + : [a0] "=&r"(a0), [a1] "=&r"(a1), [a2] "=&r"(a2), [a3] "=&r"(a3) + : [src] "r"(src), [dst] "r"(dst)); + + src += src_stride; + dst += dst_stride; + } +} + +__inline void vp8_copy_mem8x8_dspr2(unsigned char *RESTRICT src, int src_stride, + unsigned char *RESTRICT dst, + int dst_stride) { + int r; + unsigned int a0, a1; + + /* load src data in cache memory */ + prefetch_load_int(src + src_stride); + + for (r = 8; r--;) { + /* use unaligned memory load and store */ + __asm__ __volatile__( + "ulw %[a0], 0(%[src]) \n\t" + "ulw %[a1], 4(%[src]) \n\t" + "sw %[a0], 0(%[dst]) \n\t" + "sw %[a1], 4(%[dst]) \n\t" + : [a0] "=&r"(a0), [a1] "=&r"(a1) + : [src] "r"(src), [dst] "r"(dst)); + + src += src_stride; + dst += dst_stride; + } +} + +__inline void vp8_copy_mem8x4_dspr2(unsigned char *RESTRICT src, int src_stride, + unsigned char *RESTRICT dst, + int dst_stride) { + int r; + unsigned int a0, a1; + + /* load src data in cache memory */ + prefetch_load_int(src + src_stride); + + for (r = 4; r--;) { + /* use unaligned memory load and store */ + __asm__ __volatile__( + "ulw %[a0], 0(%[src]) \n\t" + "ulw %[a1], 4(%[src]) \n\t" + "sw %[a0], 0(%[dst]) \n\t" + "sw %[a1], 4(%[dst]) \n\t" + : [a0] "=&r"(a0), [a1] "=&r"(a1) + : [src] "r"(src), [dst] "r"(dst)); + + src += src_stride; + dst += dst_stride; + } +} + +#endif diff --git a/vp8/common/mips/dspr2/vp8_loopfilter_filters_dspr2.c b/vp8/common/mips/dspr2/vp8_loopfilter_filters_dspr2.c new file mode 100644 index 0000000..d2c3442 --- /dev/null +++ b/vp8/common/mips/dspr2/vp8_loopfilter_filters_dspr2.c @@ -0,0 +1,2401 @@ +/* + * Copyright (c) 2012 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include "vp8_rtcd.h" +#include "vp8/common/onyxc_int.h" + +#if HAVE_DSPR2 +typedef unsigned char uc; + +/* prefetch data for load */ +inline void prefetch_load_lf(unsigned char *src) { + __asm__ __volatile__("pref 0, 0(%[src]) \n\t" : : [src] "r"(src)); +} + +/* prefetch data for store */ +inline void prefetch_store_lf(unsigned char *dst) { + __asm__ __volatile__("pref 1, 0(%[dst]) \n\t" : : [dst] "r"(dst)); +} + +/* processing 4 pixels at the same time + * compute hev and mask in the same function + */ +static __inline void vp8_filter_mask_vec_mips( + uint32_t limit, uint32_t flimit, uint32_t p1, uint32_t p0, uint32_t p3, + uint32_t p2, uint32_t q0, uint32_t q1, uint32_t q2, uint32_t q3, + uint32_t thresh, uint32_t *hev, uint32_t *mask) { + uint32_t c, r, r3, r_k; + uint32_t s1, s2, s3; + uint32_t ones = 0xFFFFFFFF; + uint32_t hev1; + + __asm__ __volatile__( + /* mask |= (abs(p3 - p2) > limit) */ + "subu_s.qb %[c], %[p3], %[p2] \n\t" + "subu_s.qb %[r_k], %[p2], %[p3] \n\t" + "or %[r_k], %[r_k], %[c] \n\t" + "cmpgu.lt.qb %[c], %[limit], %[r_k] \n\t" + "or %[r], $0, %[c] \n\t" + + /* mask |= (abs(p2 - p1) > limit) */ + "subu_s.qb %[c], %[p2], %[p1] \n\t" + "subu_s.qb %[r_k], %[p1], %[p2] \n\t" + "or %[r_k], %[r_k], %[c] \n\t" + "cmpgu.lt.qb %[c], %[limit], %[r_k] \n\t" + "or %[r], %[r], %[c] \n\t" + + /* mask |= (abs(p1 - p0) > limit) + * hev |= (abs(p1 - p0) > thresh) + */ + "subu_s.qb %[c], %[p1], %[p0] \n\t" + "subu_s.qb %[r_k], %[p0], %[p1] \n\t" + "or %[r_k], %[r_k], %[c] \n\t" + "cmpgu.lt.qb %[c], %[thresh], %[r_k] \n\t" + "or %[r3], $0, %[c] \n\t" + "cmpgu.lt.qb %[c], %[limit], %[r_k] \n\t" + "or %[r], %[r], %[c] \n\t" + + /* mask |= (abs(q1 - q0) > limit) + * hev |= (abs(q1 - q0) > thresh) + */ + "subu_s.qb %[c], %[q1], %[q0] \n\t" + "subu_s.qb %[r_k], %[q0], %[q1] \n\t" + "or %[r_k], %[r_k], %[c] \n\t" + "cmpgu.lt.qb %[c], %[thresh], %[r_k] \n\t" + "or %[r3], %[r3], %[c] \n\t" + "cmpgu.lt.qb %[c], %[limit], %[r_k] \n\t" + "or %[r], %[r], %[c] \n\t" + + /* mask |= (abs(q2 - q1) > limit) */ + "subu_s.qb %[c], %[q2], %[q1] \n\t" + "subu_s.qb %[r_k], %[q1], %[q2] \n\t" + "or %[r_k], %[r_k], %[c] \n\t" + "cmpgu.lt.qb %[c], %[limit], %[r_k] \n\t" + "or %[r], %[r], %[c] \n\t" + "sll %[r3], %[r3], 24 \n\t" + + /* mask |= (abs(q3 - q2) > limit) */ + "subu_s.qb %[c], %[q3], %[q2] \n\t" + "subu_s.qb %[r_k], %[q2], %[q3] \n\t" + "or %[r_k], %[r_k], %[c] \n\t" + "cmpgu.lt.qb %[c], %[limit], %[r_k] \n\t" + "or %[r], %[r], %[c] \n\t" + + : [c] "=&r"(c), [r_k] "=&r"(r_k), [r] "=&r"(r), [r3] "=&r"(r3) + : [limit] "r"(limit), [p3] "r"(p3), [p2] "r"(p2), [p1] "r"(p1), + [p0] "r"(p0), [q1] "r"(q1), [q0] "r"(q0), [q2] "r"(q2), [q3] "r"(q3), + [thresh] "r"(thresh)); + + __asm__ __volatile__( + /* abs(p0 - q0) */ + "subu_s.qb %[c], %[p0], %[q0] \n\t" + "subu_s.qb %[r_k], %[q0], %[p0] \n\t" + "wrdsp %[r3] \n\t" + "or %[s1], %[r_k], %[c] \n\t" + + /* abs(p1 - q1) */ + "subu_s.qb %[c], %[p1], %[q1] \n\t" + "addu_s.qb %[s3], %[s1], %[s1] \n\t" + "pick.qb %[hev1], %[ones], $0 \n\t" + "subu_s.qb %[r_k], %[q1], %[p1] \n\t" + "or %[s2], %[r_k], %[c] \n\t" + + /* abs(p0 - q0) * 2 + abs(p1 - q1) / 2 > flimit * 2 + limit */ + "shrl.qb %[s2], %[s2], 1 \n\t" + "addu_s.qb %[s1], %[s2], %[s3] \n\t" + "cmpgu.lt.qb %[c], %[flimit], %[s1] \n\t" + "or %[r], %[r], %[c] \n\t" + "sll %[r], %[r], 24 \n\t" + + "wrdsp %[r] \n\t" + "pick.qb %[s2], $0, %[ones] \n\t" + + : [c] "=&r"(c), [r_k] "=&r"(r_k), [s1] "=&r"(s1), [hev1] "=&r"(hev1), + [s2] "=&r"(s2), [r] "+r"(r), [s3] "=&r"(s3) + : [p0] "r"(p0), [q0] "r"(q0), [p1] "r"(p1), [r3] "r"(r3), [q1] "r"(q1), + [ones] "r"(ones), [flimit] "r"(flimit)); + + *hev = hev1; + *mask = s2; +} + +/* inputs & outputs are quad-byte vectors */ +static __inline void vp8_filter_mips(uint32_t mask, uint32_t hev, uint32_t *ps1, + uint32_t *ps0, uint32_t *qs0, + uint32_t *qs1) { + int32_t vp8_filter_l, vp8_filter_r; + int32_t Filter1_l, Filter1_r, Filter2_l, Filter2_r; + int32_t subr_r, subr_l; + uint32_t t1, t2, HWM, t3; + uint32_t hev_l, hev_r, mask_l, mask_r, invhev_l, invhev_r; + + int32_t vps1, vps0, vqs0, vqs1; + int32_t vps1_l, vps1_r, vps0_l, vps0_r, vqs0_l, vqs0_r, vqs1_l, vqs1_r; + uint32_t N128; + + N128 = 0x80808080; + t1 = 0x03000300; + t2 = 0x04000400; + t3 = 0x01000100; + HWM = 0xFF00FF00; + + vps0 = (*ps0) ^ N128; + vps1 = (*ps1) ^ N128; + vqs0 = (*qs0) ^ N128; + vqs1 = (*qs1) ^ N128; + + /* use halfword pairs instead quad-bytes because of accuracy */ + vps0_l = vps0 & HWM; + vps0_r = vps0 << 8; + vps0_r = vps0_r & HWM; + + vps1_l = vps1 & HWM; + vps1_r = vps1 << 8; + vps1_r = vps1_r & HWM; + + vqs0_l = vqs0 & HWM; + vqs0_r = vqs0 << 8; + vqs0_r = vqs0_r & HWM; + + vqs1_l = vqs1 & HWM; + vqs1_r = vqs1 << 8; + vqs1_r = vqs1_r & HWM; + + mask_l = mask & HWM; + mask_r = mask << 8; + mask_r = mask_r & HWM; + + hev_l = hev & HWM; + hev_r = hev << 8; + hev_r = hev_r & HWM; + + __asm__ __volatile__( + /* vp8_filter = vp8_signed_char_clamp(ps1 - qs1); */ + "subq_s.ph %[vp8_filter_l], %[vps1_l], %[vqs1_l] \n\t" + "subq_s.ph %[vp8_filter_r], %[vps1_r], %[vqs1_r] \n\t" + + /* qs0 - ps0 */ + "subq_s.ph %[subr_l], %[vqs0_l], %[vps0_l] \n\t" + "subq_s.ph %[subr_r], %[vqs0_r], %[vps0_r] \n\t" + + /* vp8_filter &= hev; */ + "and %[vp8_filter_l], %[vp8_filter_l], %[hev_l] \n\t" + "and %[vp8_filter_r], %[vp8_filter_r], %[hev_r] \n\t" + + /* vp8_filter = vp8_signed_char_clamp(vp8_filter + 3 * (qs0 - ps0)); */ + "addq_s.ph %[vp8_filter_l], %[vp8_filter_l], %[subr_l] \n\t" + "addq_s.ph %[vp8_filter_r], %[vp8_filter_r], %[subr_r] \n\t" + "xor %[invhev_l], %[hev_l], %[HWM] \n\t" + "addq_s.ph %[vp8_filter_l], %[vp8_filter_l], %[subr_l] \n\t" + "addq_s.ph %[vp8_filter_r], %[vp8_filter_r], %[subr_r] \n\t" + "xor %[invhev_r], %[hev_r], %[HWM] \n\t" + "addq_s.ph %[vp8_filter_l], %[vp8_filter_l], %[subr_l] \n\t" + "addq_s.ph %[vp8_filter_r], %[vp8_filter_r], %[subr_r] \n\t" + + /* vp8_filter &= mask; */ + "and %[vp8_filter_l], %[vp8_filter_l], %[mask_l] \n\t" + "and %[vp8_filter_r], %[vp8_filter_r], %[mask_r] \n\t" + + : [vp8_filter_l] "=&r"(vp8_filter_l), [vp8_filter_r] "=&r"(vp8_filter_r), + [subr_l] "=&r"(subr_l), [subr_r] "=&r"(subr_r), + [invhev_l] "=&r"(invhev_l), [invhev_r] "=&r"(invhev_r) + + : [vps0_l] "r"(vps0_l), [vps0_r] "r"(vps0_r), [vps1_l] "r"(vps1_l), + [vps1_r] "r"(vps1_r), [vqs0_l] "r"(vqs0_l), [vqs0_r] "r"(vqs0_r), + [vqs1_l] "r"(vqs1_l), [vqs1_r] "r"(vqs1_r), [mask_l] "r"(mask_l), + [mask_r] "r"(mask_r), [hev_l] "r"(hev_l), [hev_r] "r"(hev_r), + [HWM] "r"(HWM)); + + /* save bottom 3 bits so that we round one side +4 and the other +3 */ + __asm__ __volatile__( + /* Filter2 = vp8_signed_char_clamp(vp8_filter + 3) >>= 3; */ + "addq_s.ph %[Filter1_l], %[vp8_filter_l], %[t2] \n\t" + "addq_s.ph %[Filter1_r], %[vp8_filter_r], %[t2] \n\t" + + /* Filter1 = vp8_signed_char_clamp(vp8_filter + 4) >>= 3; */ + "addq_s.ph %[Filter2_l], %[vp8_filter_l], %[t1] \n\t" + "addq_s.ph %[Filter2_r], %[vp8_filter_r], %[t1] \n\t" + "shra.ph %[Filter1_r], %[Filter1_r], 3 \n\t" + "shra.ph %[Filter1_l], %[Filter1_l], 3 \n\t" + + "shra.ph %[Filter2_l], %[Filter2_l], 3 \n\t" + "shra.ph %[Filter2_r], %[Filter2_r], 3 \n\t" + + "and %[Filter1_l], %[Filter1_l], %[HWM] \n\t" + "and %[Filter1_r], %[Filter1_r], %[HWM] \n\t" + + /* vps0 = vp8_signed_char_clamp(ps0 + Filter2); */ + "addq_s.ph %[vps0_l], %[vps0_l], %[Filter2_l] \n\t" + "addq_s.ph %[vps0_r], %[vps0_r], %[Filter2_r] \n\t" + + /* vqs0 = vp8_signed_char_clamp(qs0 - Filter1); */ + "subq_s.ph %[vqs0_l], %[vqs0_l], %[Filter1_l] \n\t" + "subq_s.ph %[vqs0_r], %[vqs0_r], %[Filter1_r] \n\t" + + : [Filter1_l] "=&r"(Filter1_l), [Filter1_r] "=&r"(Filter1_r), + [Filter2_l] "=&r"(Filter2_l), [Filter2_r] "=&r"(Filter2_r), + [vps0_l] "+r"(vps0_l), [vps0_r] "+r"(vps0_r), [vqs0_l] "+r"(vqs0_l), + [vqs0_r] "+r"(vqs0_r) + + : [t1] "r"(t1), [t2] "r"(t2), [vp8_filter_l] "r"(vp8_filter_l), + [vp8_filter_r] "r"(vp8_filter_r), [HWM] "r"(HWM)); + + __asm__ __volatile__( + /* (vp8_filter += 1) >>= 1 */ + "addqh.ph %[Filter1_l], %[Filter1_l], %[t3] \n\t" + "addqh.ph %[Filter1_r], %[Filter1_r], %[t3] \n\t" + + /* vp8_filter &= ~hev; */ + "and %[Filter1_l], %[Filter1_l], %[invhev_l] \n\t" + "and %[Filter1_r], %[Filter1_r], %[invhev_r] \n\t" + + /* vps1 = vp8_signed_char_clamp(ps1 + vp8_filter); */ + "addq_s.ph %[vps1_l], %[vps1_l], %[Filter1_l] \n\t" + "addq_s.ph %[vps1_r], %[vps1_r], %[Filter1_r] \n\t" + + /* vqs1 = vp8_signed_char_clamp(qs1 - vp8_filter); */ + "subq_s.ph %[vqs1_l], %[vqs1_l], %[Filter1_l] \n\t" + "subq_s.ph %[vqs1_r], %[vqs1_r], %[Filter1_r] \n\t" + + : [Filter1_l] "+r"(Filter1_l), [Filter1_r] "+r"(Filter1_r), + [vps1_l] "+r"(vps1_l), [vps1_r] "+r"(vps1_r), [vqs1_l] "+r"(vqs1_l), + [vqs1_r] "+r"(vqs1_r) + + : [t3] "r"(t3), [invhev_l] "r"(invhev_l), [invhev_r] "r"(invhev_r)); + + /* Create quad-bytes from halfword pairs */ + vqs0_l = vqs0_l & HWM; + vqs1_l = vqs1_l & HWM; + vps0_l = vps0_l & HWM; + vps1_l = vps1_l & HWM; + + __asm__ __volatile__( + "shrl.ph %[vqs0_r], %[vqs0_r], 8 \n\t" + "shrl.ph %[vps0_r], %[vps0_r], 8 \n\t" + "shrl.ph %[vqs1_r], %[vqs1_r], 8 \n\t" + "shrl.ph %[vps1_r], %[vps1_r], 8 \n\t" + + : [vps1_r] "+r"(vps1_r), [vqs1_r] "+r"(vqs1_r), [vps0_r] "+r"(vps0_r), + [vqs0_r] "+r"(vqs0_r) + :); + + vqs0 = vqs0_l | vqs0_r; + vqs1 = vqs1_l | vqs1_r; + vps0 = vps0_l | vps0_r; + vps1 = vps1_l | vps1_r; + + *ps0 = vps0 ^ N128; + *ps1 = vps1 ^ N128; + *qs0 = vqs0 ^ N128; + *qs1 = vqs1 ^ N128; +} + +void vp8_loop_filter_horizontal_edge_mips(unsigned char *s, int p, + unsigned int flimit, + unsigned int limit, + unsigned int thresh, int count) { + uint32_t mask; + uint32_t hev; + uint32_t pm1, p0, p1, p2, p3, p4, p5, p6; + unsigned char *sm1, *s0, *s1, *s2, *s3, *s4, *s5, *s6; + (void)count; + + mask = 0; + hev = 0; + p1 = 0; + p2 = 0; + p3 = 0; + p4 = 0; + + /* prefetch data for store */ + prefetch_store_lf(s); + + /* loop filter designed to work using chars so that we can make maximum use + * of 8 bit simd instructions. + */ + + sm1 = s - (p << 2); + s0 = s - p - p - p; + s1 = s - p - p; + s2 = s - p; + s3 = s; + s4 = s + p; + s5 = s + p + p; + s6 = s + p + p + p; + + /* load quad-byte vectors + * memory is 4 byte aligned + */ + p1 = *((uint32_t *)(s1)); + p2 = *((uint32_t *)(s2)); + p3 = *((uint32_t *)(s3)); + p4 = *((uint32_t *)(s4)); + + /* if (p1 - p4 == 0) and (p2 - p3 == 0) + * mask will be zero and filtering is not needed + */ + if (!(((p1 - p4) == 0) && ((p2 - p3) == 0))) { + pm1 = *((uint32_t *)(sm1)); + p0 = *((uint32_t *)(s0)); + p5 = *((uint32_t *)(s5)); + p6 = *((uint32_t *)(s6)); + + vp8_filter_mask_vec_mips(limit, flimit, p1, p2, pm1, p0, p3, p4, p5, p6, + thresh, &hev, &mask); + + /* if mask == 0 do filtering is not needed */ + if (mask) { + /* filtering */ + vp8_filter_mips(mask, hev, &p1, &p2, &p3, &p4); + + /* unpack processed 4x4 neighborhood */ + *((uint32_t *)s1) = p1; + *((uint32_t *)s2) = p2; + *((uint32_t *)s3) = p3; + *((uint32_t *)s4) = p4; + } + } + + sm1 += 4; + s0 += 4; + s1 += 4; + s2 += 4; + s3 += 4; + s4 += 4; + s5 += 4; + s6 += 4; + + /* load quad-byte vectors + * memory is 4 byte aligned + */ + p1 = *((uint32_t *)(s1)); + p2 = *((uint32_t *)(s2)); + p3 = *((uint32_t *)(s3)); + p4 = *((uint32_t *)(s4)); + + /* if (p1 - p4 == 0) and (p2 - p3 == 0) + * mask will be zero and filtering is not needed + */ + if (!(((p1 - p4) == 0) && ((p2 - p3) == 0))) { + pm1 = *((uint32_t *)(sm1)); + p0 = *((uint32_t *)(s0)); + p5 = *((uint32_t *)(s5)); + p6 = *((uint32_t *)(s6)); + + vp8_filter_mask_vec_mips(limit, flimit, p1, p2, pm1, p0, p3, p4, p5, p6, + thresh, &hev, &mask); + + /* if mask == 0 do filtering is not needed */ + if (mask) { + /* filtering */ + vp8_filter_mips(mask, hev, &p1, &p2, &p3, &p4); + + /* unpack processed 4x4 neighborhood */ + *((uint32_t *)s1) = p1; + *((uint32_t *)s2) = p2; + *((uint32_t *)s3) = p3; + *((uint32_t *)s4) = p4; + } + } + + sm1 += 4; + s0 += 4; + s1 += 4; + s2 += 4; + s3 += 4; + s4 += 4; + s5 += 4; + s6 += 4; + + /* load quad-byte vectors + * memory is 4 byte aligned + */ + p1 = *((uint32_t *)(s1)); + p2 = *((uint32_t *)(s2)); + p3 = *((uint32_t *)(s3)); + p4 = *((uint32_t *)(s4)); + + /* if (p1 - p4 == 0) and (p2 - p3 == 0) + * mask will be zero and filtering is not needed + */ + if (!(((p1 - p4) == 0) && ((p2 - p3) == 0))) { + pm1 = *((uint32_t *)(sm1)); + p0 = *((uint32_t *)(s0)); + p5 = *((uint32_t *)(s5)); + p6 = *((uint32_t *)(s6)); + + vp8_filter_mask_vec_mips(limit, flimit, p1, p2, pm1, p0, p3, p4, p5, p6, + thresh, &hev, &mask); + + /* if mask == 0 do filtering is not needed */ + if (mask) { + /* filtering */ + vp8_filter_mips(mask, hev, &p1, &p2, &p3, &p4); + + /* unpack processed 4x4 neighborhood */ + *((uint32_t *)s1) = p1; + *((uint32_t *)s2) = p2; + *((uint32_t *)s3) = p3; + *((uint32_t *)s4) = p4; + } + } + + sm1 += 4; + s0 += 4; + s1 += 4; + s2 += 4; + s3 += 4; + s4 += 4; + s5 += 4; + s6 += 4; + + /* load quad-byte vectors + * memory is 4 byte aligned + */ + p1 = *((uint32_t *)(s1)); + p2 = *((uint32_t *)(s2)); + p3 = *((uint32_t *)(s3)); + p4 = *((uint32_t *)(s4)); + + /* if (p1 - p4 == 0) and (p2 - p3 == 0) + * mask will be zero and filtering is not needed + */ + if (!(((p1 - p4) == 0) && ((p2 - p3) == 0))) { + pm1 = *((uint32_t *)(sm1)); + p0 = *((uint32_t *)(s0)); + p5 = *((uint32_t *)(s5)); + p6 = *((uint32_t *)(s6)); + + vp8_filter_mask_vec_mips(limit, flimit, p1, p2, pm1, p0, p3, p4, p5, p6, + thresh, &hev, &mask); + + /* if mask == 0 do filtering is not needed */ + if (mask) { + /* filtering */ + vp8_filter_mips(mask, hev, &p1, &p2, &p3, &p4); + + /* unpack processed 4x4 neighborhood */ + *((uint32_t *)s1) = p1; + *((uint32_t *)s2) = p2; + *((uint32_t *)s3) = p3; + *((uint32_t *)s4) = p4; + } + } +} + +void vp8_loop_filter_uvhorizontal_edge_mips(unsigned char *s, int p, + unsigned int flimit, + unsigned int limit, + unsigned int thresh, int count) { + uint32_t mask; + uint32_t hev; + uint32_t pm1, p0, p1, p2, p3, p4, p5, p6; + unsigned char *sm1, *s0, *s1, *s2, *s3, *s4, *s5, *s6; + (void)count; + + mask = 0; + hev = 0; + p1 = 0; + p2 = 0; + p3 = 0; + p4 = 0; + + /* loop filter designed to work using chars so that we can make maximum use + * of 8 bit simd instructions. + */ + + sm1 = s - (p << 2); + s0 = s - p - p - p; + s1 = s - p - p; + s2 = s - p; + s3 = s; + s4 = s + p; + s5 = s + p + p; + s6 = s + p + p + p; + + /* load quad-byte vectors + * memory is 4 byte aligned + */ + p1 = *((uint32_t *)(s1)); + p2 = *((uint32_t *)(s2)); + p3 = *((uint32_t *)(s3)); + p4 = *((uint32_t *)(s4)); + + /* if (p1 - p4 == 0) and (p2 - p3 == 0) + * mask will be zero and filtering is not needed + */ + if (!(((p1 - p4) == 0) && ((p2 - p3) == 0))) { + pm1 = *((uint32_t *)(sm1)); + p0 = *((uint32_t *)(s0)); + p5 = *((uint32_t *)(s5)); + p6 = *((uint32_t *)(s6)); + + vp8_filter_mask_vec_mips(limit, flimit, p1, p2, pm1, p0, p3, p4, p5, p6, + thresh, &hev, &mask); + + /* if mask == 0 do filtering is not needed */ + if (mask) { + /* filtering */ + vp8_filter_mips(mask, hev, &p1, &p2, &p3, &p4); + + /* unpack processed 4x4 neighborhood */ + *((uint32_t *)s1) = p1; + *((uint32_t *)s2) = p2; + *((uint32_t *)s3) = p3; + *((uint32_t *)s4) = p4; + } + } + + sm1 += 4; + s0 += 4; + s1 += 4; + s2 += 4; + s3 += 4; + s4 += 4; + s5 += 4; + s6 += 4; + + /* load quad-byte vectors + * memory is 4 byte aligned + */ + p1 = *((uint32_t *)(s1)); + p2 = *((uint32_t *)(s2)); + p3 = *((uint32_t *)(s3)); + p4 = *((uint32_t *)(s4)); + + /* if (p1 - p4 == 0) and (p2 - p3 == 0) + * mask will be zero and filtering is not needed + */ + if (!(((p1 - p4) == 0) && ((p2 - p3) == 0))) { + pm1 = *((uint32_t *)(sm1)); + p0 = *((uint32_t *)(s0)); + p5 = *((uint32_t *)(s5)); + p6 = *((uint32_t *)(s6)); + + vp8_filter_mask_vec_mips(limit, flimit, p1, p2, pm1, p0, p3, p4, p5, p6, + thresh, &hev, &mask); + + /* if mask == 0 do filtering is not needed */ + if (mask) { + /* filtering */ + vp8_filter_mips(mask, hev, &p1, &p2, &p3, &p4); + + /* unpack processed 4x4 neighborhood */ + *((uint32_t *)s1) = p1; + *((uint32_t *)s2) = p2; + *((uint32_t *)s3) = p3; + *((uint32_t *)s4) = p4; + } + } +} + +void vp8_loop_filter_vertical_edge_mips(unsigned char *s, int p, + const unsigned int flimit, + const unsigned int limit, + const unsigned int thresh, int count) { + int i; + uint32_t mask, hev; + uint32_t pm1, p0, p1, p2, p3, p4, p5, p6; + unsigned char *s1, *s2, *s3, *s4; + uint32_t prim1, prim2, sec3, sec4, prim3, prim4; + + hev = 0; + mask = 0; + i = 0; + pm1 = 0; + p0 = 0; + p1 = 0; + p2 = 0; + p3 = 0; + p4 = 0; + p5 = 0; + p6 = 0; + + /* loop filter designed to work using chars so that we can make maximum use + * of 8 bit simd instructions. + */ + + /* apply filter on 4 pixesl at the same time */ + do { + /* prefetch data for store */ + prefetch_store_lf(s + p); + + s1 = s; + s2 = s + p; + s3 = s2 + p; + s4 = s3 + p; + s = s4 + p; + + /* load quad-byte vectors + * memory is 4 byte aligned + */ + p2 = *((uint32_t *)(s1 - 4)); + p6 = *((uint32_t *)(s1)); + p1 = *((uint32_t *)(s2 - 4)); + p5 = *((uint32_t *)(s2)); + p0 = *((uint32_t *)(s3 - 4)); + p4 = *((uint32_t *)(s3)); + pm1 = *((uint32_t *)(s4 - 4)); + p3 = *((uint32_t *)(s4)); + + /* transpose pm1, p0, p1, p2 */ + __asm__ __volatile__( + "precrq.qb.ph %[prim1], %[p2], %[p1] \n\t" + "precr.qb.ph %[prim2], %[p2], %[p1] \n\t" + "precrq.qb.ph %[prim3], %[p0], %[pm1] \n\t" + "precr.qb.ph %[prim4], %[p0], %[pm1] \n\t" + + "precrq.qb.ph %[p1], %[prim1], %[prim2] \n\t" + "precr.qb.ph %[pm1], %[prim1], %[prim2] \n\t" + "precrq.qb.ph %[sec3], %[prim3], %[prim4] \n\t" + "precr.qb.ph %[sec4], %[prim3], %[prim4] \n\t" + + "precrq.ph.w %[p2], %[p1], %[sec3] \n\t" + "precrq.ph.w %[p0], %[pm1], %[sec4] \n\t" + "append %[p1], %[sec3], 16 \n\t" + "append %[pm1], %[sec4], 16 \n\t" + + : [prim1] "=&r"(prim1), [prim2] "=&r"(prim2), [prim3] "=&r"(prim3), + [prim4] "=&r"(prim4), [p2] "+r"(p2), [p1] "+r"(p1), [p0] "+r"(p0), + [pm1] "+r"(pm1), [sec3] "=&r"(sec3), [sec4] "=&r"(sec4) + :); + + /* transpose p3, p4, p5, p6 */ + __asm__ __volatile__( + "precrq.qb.ph %[prim1], %[p6], %[p5] \n\t" + "precr.qb.ph %[prim2], %[p6], %[p5] \n\t" + "precrq.qb.ph %[prim3], %[p4], %[p3] \n\t" + "precr.qb.ph %[prim4], %[p4], %[p3] \n\t" + + "precrq.qb.ph %[p5], %[prim1], %[prim2] \n\t" + "precr.qb.ph %[p3], %[prim1], %[prim2] \n\t" + "precrq.qb.ph %[sec3], %[prim3], %[prim4] \n\t" + "precr.qb.ph %[sec4], %[prim3], %[prim4] \n\t" + + "precrq.ph.w %[p6], %[p5], %[sec3] \n\t" + "precrq.ph.w %[p4], %[p3], %[sec4] \n\t" + "append %[p5], %[sec3], 16 \n\t" + "append %[p3], %[sec4], 16 \n\t" + + : [prim1] "=&r"(prim1), [prim2] "=&r"(prim2), [prim3] "=&r"(prim3), + [prim4] "=&r"(prim4), [p6] "+r"(p6), [p5] "+r"(p5), [p4] "+r"(p4), + [p3] "+r"(p3), [sec3] "=&r"(sec3), [sec4] "=&r"(sec4) + :); + + /* if (p1 - p4 == 0) and (p2 - p3 == 0) + * mask will be zero and filtering is not needed + */ + if (!(((p1 - p4) == 0) && ((p2 - p3) == 0))) { + vp8_filter_mask_vec_mips(limit, flimit, p1, p2, pm1, p0, p3, p4, p5, p6, + thresh, &hev, &mask); + + /* if mask == 0 do filtering is not needed */ + if (mask) { + /* filtering */ + vp8_filter_mips(mask, hev, &p1, &p2, &p3, &p4); + + /* unpack processed 4x4 neighborhood + * don't use transpose on output data + * because memory isn't aligned + */ + __asm__ __volatile__( + "sb %[p4], 1(%[s4]) \n\t" + "sb %[p3], 0(%[s4]) \n\t" + "sb %[p2], -1(%[s4]) \n\t" + "sb %[p1], -2(%[s4]) \n\t" + : + : [p4] "r"(p4), [p3] "r"(p3), [s4] "r"(s4), [p2] "r"(p2), + [p1] "r"(p1)); + + __asm__ __volatile__( + "srl %[p4], %[p4], 8 \n\t" + "srl %[p3], %[p3], 8 \n\t" + "srl %[p2], %[p2], 8 \n\t" + "srl %[p1], %[p1], 8 \n\t" + : [p4] "+r"(p4), [p3] "+r"(p3), [p2] "+r"(p2), [p1] "+r"(p1) + :); + + __asm__ __volatile__( + "sb %[p4], 1(%[s3]) \n\t" + "sb %[p3], 0(%[s3]) \n\t" + "sb %[p2], -1(%[s3]) \n\t" + "sb %[p1], -2(%[s3]) \n\t" + : [p1] "+r"(p1) + : [p4] "r"(p4), [p3] "r"(p3), [s3] "r"(s3), [p2] "r"(p2)); + + __asm__ __volatile__( + "srl %[p4], %[p4], 8 \n\t" + "srl %[p3], %[p3], 8 \n\t" + "srl %[p2], %[p2], 8 \n\t" + "srl %[p1], %[p1], 8 \n\t" + : [p4] "+r"(p4), [p3] "+r"(p3), [p2] "+r"(p2), [p1] "+r"(p1) + :); + + __asm__ __volatile__( + "sb %[p4], 1(%[s2]) \n\t" + "sb %[p3], 0(%[s2]) \n\t" + "sb %[p2], -1(%[s2]) \n\t" + "sb %[p1], -2(%[s2]) \n\t" + : + : [p4] "r"(p4), [p3] "r"(p3), [s2] "r"(s2), [p2] "r"(p2), + [p1] "r"(p1)); + + __asm__ __volatile__( + "srl %[p4], %[p4], 8 \n\t" + "srl %[p3], %[p3], 8 \n\t" + "srl %[p2], %[p2], 8 \n\t" + "srl %[p1], %[p1], 8 \n\t" + : [p4] "+r"(p4), [p3] "+r"(p3), [p2] "+r"(p2), [p1] "+r"(p1) + :); + + __asm__ __volatile__( + "sb %[p4], 1(%[s1]) \n\t" + "sb %[p3], 0(%[s1]) \n\t" + "sb %[p2], -1(%[s1]) \n\t" + "sb %[p1], -2(%[s1]) \n\t" + : + : [p4] "r"(p4), [p3] "r"(p3), [s1] "r"(s1), [p2] "r"(p2), + [p1] "r"(p1)); + } + } + + s1 = s; + s2 = s + p; + s3 = s2 + p; + s4 = s3 + p; + s = s4 + p; + + /* load quad-byte vectors + * memory is 4 byte aligned + */ + p2 = *((uint32_t *)(s1 - 4)); + p6 = *((uint32_t *)(s1)); + p1 = *((uint32_t *)(s2 - 4)); + p5 = *((uint32_t *)(s2)); + p0 = *((uint32_t *)(s3 - 4)); + p4 = *((uint32_t *)(s3)); + pm1 = *((uint32_t *)(s4 - 4)); + p3 = *((uint32_t *)(s4)); + + /* transpose pm1, p0, p1, p2 */ + __asm__ __volatile__( + "precrq.qb.ph %[prim1], %[p2], %[p1] \n\t" + "precr.qb.ph %[prim2], %[p2], %[p1] \n\t" + "precrq.qb.ph %[prim3], %[p0], %[pm1] \n\t" + "precr.qb.ph %[prim4], %[p0], %[pm1] \n\t" + + "precrq.qb.ph %[p1], %[prim1], %[prim2] \n\t" + "precr.qb.ph %[pm1], %[prim1], %[prim2] \n\t" + "precrq.qb.ph %[sec3], %[prim3], %[prim4] \n\t" + "precr.qb.ph %[sec4], %[prim3], %[prim4] \n\t" + + "precrq.ph.w %[p2], %[p1], %[sec3] \n\t" + "precrq.ph.w %[p0], %[pm1], %[sec4] \n\t" + "append %[p1], %[sec3], 16 \n\t" + "append %[pm1], %[sec4], 16 \n\t" + + : [prim1] "=&r"(prim1), [prim2] "=&r"(prim2), [prim3] "=&r"(prim3), + [prim4] "=&r"(prim4), [p2] "+r"(p2), [p1] "+r"(p1), [p0] "+r"(p0), + [pm1] "+r"(pm1), [sec3] "=&r"(sec3), [sec4] "=&r"(sec4) + :); + + /* transpose p3, p4, p5, p6 */ + __asm__ __volatile__( + "precrq.qb.ph %[prim1], %[p6], %[p5] \n\t" + "precr.qb.ph %[prim2], %[p6], %[p5] \n\t" + "precrq.qb.ph %[prim3], %[p4], %[p3] \n\t" + "precr.qb.ph %[prim4], %[p4], %[p3] \n\t" + + "precrq.qb.ph %[p5], %[prim1], %[prim2] \n\t" + "precr.qb.ph %[p3], %[prim1], %[prim2] \n\t" + "precrq.qb.ph %[sec3], %[prim3], %[prim4] \n\t" + "precr.qb.ph %[sec4], %[prim3], %[prim4] \n\t" + + "precrq.ph.w %[p6], %[p5], %[sec3] \n\t" + "precrq.ph.w %[p4], %[p3], %[sec4] \n\t" + "append %[p5], %[sec3], 16 \n\t" + "append %[p3], %[sec4], 16 \n\t" + + : [prim1] "=&r"(prim1), [prim2] "=&r"(prim2), [prim3] "=&r"(prim3), + [prim4] "=&r"(prim4), [p6] "+r"(p6), [p5] "+r"(p5), [p4] "+r"(p4), + [p3] "+r"(p3), [sec3] "=&r"(sec3), [sec4] "=&r"(sec4) + :); + + /* if (p1 - p4 == 0) and (p2 - p3 == 0) + * mask will be zero and filtering is not needed + */ + if (!(((p1 - p4) == 0) && ((p2 - p3) == 0))) { + vp8_filter_mask_vec_mips(limit, flimit, p1, p2, pm1, p0, p3, p4, p5, p6, + thresh, &hev, &mask); + + /* if mask == 0 do filtering is not needed */ + if (mask) { + /* filtering */ + vp8_filter_mips(mask, hev, &p1, &p2, &p3, &p4); + + /* unpack processed 4x4 neighborhood + * don't use transpose on output data + * because memory isn't aligned + */ + __asm__ __volatile__( + "sb %[p4], 1(%[s4]) \n\t" + "sb %[p3], 0(%[s4]) \n\t" + "sb %[p2], -1(%[s4]) \n\t" + "sb %[p1], -2(%[s4]) \n\t" + : + : [p4] "r"(p4), [p3] "r"(p3), [s4] "r"(s4), [p2] "r"(p2), + [p1] "r"(p1)); + + __asm__ __volatile__( + "srl %[p4], %[p4], 8 \n\t" + "srl %[p3], %[p3], 8 \n\t" + "srl %[p2], %[p2], 8 \n\t" + "srl %[p1], %[p1], 8 \n\t" + : [p4] "+r"(p4), [p3] "+r"(p3), [p2] "+r"(p2), [p1] "+r"(p1) + :); + + __asm__ __volatile__( + "sb %[p4], 1(%[s3]) \n\t" + "sb %[p3], 0(%[s3]) \n\t" + "sb %[p2], -1(%[s3]) \n\t" + "sb %[p1], -2(%[s3]) \n\t" + : [p1] "+r"(p1) + : [p4] "r"(p4), [p3] "r"(p3), [s3] "r"(s3), [p2] "r"(p2)); + + __asm__ __volatile__( + "srl %[p4], %[p4], 8 \n\t" + "srl %[p3], %[p3], 8 \n\t" + "srl %[p2], %[p2], 8 \n\t" + "srl %[p1], %[p1], 8 \n\t" + : [p4] "+r"(p4), [p3] "+r"(p3), [p2] "+r"(p2), [p1] "+r"(p1) + :); + + __asm__ __volatile__( + "sb %[p4], 1(%[s2]) \n\t" + "sb %[p3], 0(%[s2]) \n\t" + "sb %[p2], -1(%[s2]) \n\t" + "sb %[p1], -2(%[s2]) \n\t" + : + : [p4] "r"(p4), [p3] "r"(p3), [s2] "r"(s2), [p2] "r"(p2), + [p1] "r"(p1)); + + __asm__ __volatile__( + "srl %[p4], %[p4], 8 \n\t" + "srl %[p3], %[p3], 8 \n\t" + "srl %[p2], %[p2], 8 \n\t" + "srl %[p1], %[p1], 8 \n\t" + : [p4] "+r"(p4), [p3] "+r"(p3), [p2] "+r"(p2), [p1] "+r"(p1) + :); + + __asm__ __volatile__( + "sb %[p4], 1(%[s1]) \n\t" + "sb %[p3], 0(%[s1]) \n\t" + "sb %[p2], -1(%[s1]) \n\t" + "sb %[p1], -2(%[s1]) \n\t" + : + : [p4] "r"(p4), [p3] "r"(p3), [s1] "r"(s1), [p2] "r"(p2), + [p1] "r"(p1)); + } + } + + i += 8; + } + + while (i < count); +} + +void vp8_loop_filter_uvvertical_edge_mips(unsigned char *s, int p, + unsigned int flimit, + unsigned int limit, + unsigned int thresh, int count) { + uint32_t mask, hev; + uint32_t pm1, p0, p1, p2, p3, p4, p5, p6; + unsigned char *s1, *s2, *s3, *s4; + uint32_t prim1, prim2, sec3, sec4, prim3, prim4; + (void)count; + + /* loop filter designed to work using chars so that we can make maximum use + * of 8 bit simd instructions. + */ + + /* apply filter on 4 pixesl at the same time */ + + s1 = s; + s2 = s + p; + s3 = s2 + p; + s4 = s3 + p; + + /* load quad-byte vectors + * memory is 4 byte aligned + */ + p2 = *((uint32_t *)(s1 - 4)); + p6 = *((uint32_t *)(s1)); + p1 = *((uint32_t *)(s2 - 4)); + p5 = *((uint32_t *)(s2)); + p0 = *((uint32_t *)(s3 - 4)); + p4 = *((uint32_t *)(s3)); + pm1 = *((uint32_t *)(s4 - 4)); + p3 = *((uint32_t *)(s4)); + + /* transpose pm1, p0, p1, p2 */ + __asm__ __volatile__( + "precrq.qb.ph %[prim1], %[p2], %[p1] \n\t" + "precr.qb.ph %[prim2], %[p2], %[p1] \n\t" + "precrq.qb.ph %[prim3], %[p0], %[pm1] \n\t" + "precr.qb.ph %[prim4], %[p0], %[pm1] \n\t" + + "precrq.qb.ph %[p1], %[prim1], %[prim2] \n\t" + "precr.qb.ph %[pm1], %[prim1], %[prim2] \n\t" + "precrq.qb.ph %[sec3], %[prim3], %[prim4] \n\t" + "precr.qb.ph %[sec4], %[prim3], %[prim4] \n\t" + + "precrq.ph.w %[p2], %[p1], %[sec3] \n\t" + "precrq.ph.w %[p0], %[pm1], %[sec4] \n\t" + "append %[p1], %[sec3], 16 \n\t" + "append %[pm1], %[sec4], 16 \n\t" + + : [prim1] "=&r"(prim1), [prim2] "=&r"(prim2), [prim3] "=&r"(prim3), + [prim4] "=&r"(prim4), [p2] "+r"(p2), [p1] "+r"(p1), [p0] "+r"(p0), + [pm1] "+r"(pm1), [sec3] "=&r"(sec3), [sec4] "=&r"(sec4) + :); + + /* transpose p3, p4, p5, p6 */ + __asm__ __volatile__( + "precrq.qb.ph %[prim1], %[p6], %[p5] \n\t" + "precr.qb.ph %[prim2], %[p6], %[p5] \n\t" + "precrq.qb.ph %[prim3], %[p4], %[p3] \n\t" + "precr.qb.ph %[prim4], %[p4], %[p3] \n\t" + + "precrq.qb.ph %[p5], %[prim1], %[prim2] \n\t" + "precr.qb.ph %[p3], %[prim1], %[prim2] \n\t" + "precrq.qb.ph %[sec3], %[prim3], %[prim4] \n\t" + "precr.qb.ph %[sec4], %[prim3], %[prim4] \n\t" + + "precrq.ph.w %[p6], %[p5], %[sec3] \n\t" + "precrq.ph.w %[p4], %[p3], %[sec4] \n\t" + "append %[p5], %[sec3], 16 \n\t" + "append %[p3], %[sec4], 16 \n\t" + + : [prim1] "=&r"(prim1), [prim2] "=&r"(prim2), [prim3] "=&r"(prim3), + [prim4] "=&r"(prim4), [p6] "+r"(p6), [p5] "+r"(p5), [p4] "+r"(p4), + [p3] "+r"(p3), [sec3] "=&r"(sec3), [sec4] "=&r"(sec4) + :); + + /* if (p1 - p4 == 0) and (p2 - p3 == 0) + * mask will be zero and filtering is not needed + */ + if (!(((p1 - p4) == 0) && ((p2 - p3) == 0))) { + vp8_filter_mask_vec_mips(limit, flimit, p1, p2, pm1, p0, p3, p4, p5, p6, + thresh, &hev, &mask); + + /* if mask == 0 do filtering is not needed */ + if (mask) { + /* filtering */ + vp8_filter_mips(mask, hev, &p1, &p2, &p3, &p4); + + /* unpack processed 4x4 neighborhood + * don't use transpose on output data + * because memory isn't aligned + */ + __asm__ __volatile__( + "sb %[p4], 1(%[s4]) \n\t" + "sb %[p3], 0(%[s4]) \n\t" + "sb %[p2], -1(%[s4]) \n\t" + "sb %[p1], -2(%[s4]) \n\t" + : + : + [p4] "r"(p4), [p3] "r"(p3), [s4] "r"(s4), [p2] "r"(p2), [p1] "r"(p1)); + + __asm__ __volatile__( + "srl %[p4], %[p4], 8 \n\t" + "srl %[p3], %[p3], 8 \n\t" + "srl %[p2], %[p2], 8 \n\t" + "srl %[p1], %[p1], 8 \n\t" + : [p4] "+r"(p4), [p3] "+r"(p3), [p2] "+r"(p2), [p1] "+r"(p1) + :); + + __asm__ __volatile__( + "sb %[p4], 1(%[s3]) \n\t" + "sb %[p3], 0(%[s3]) \n\t" + "sb %[p2], -1(%[s3]) \n\t" + "sb %[p1], -2(%[s3]) \n\t" + : [p1] "+r"(p1) + : [p4] "r"(p4), [p3] "r"(p3), [s3] "r"(s3), [p2] "r"(p2)); + + __asm__ __volatile__( + "srl %[p4], %[p4], 8 \n\t" + "srl %[p3], %[p3], 8 \n\t" + "srl %[p2], %[p2], 8 \n\t" + "srl %[p1], %[p1], 8 \n\t" + : [p4] "+r"(p4), [p3] "+r"(p3), [p2] "+r"(p2), [p1] "+r"(p1) + :); + + __asm__ __volatile__( + "sb %[p4], 1(%[s2]) \n\t" + "sb %[p3], 0(%[s2]) \n\t" + "sb %[p2], -1(%[s2]) \n\t" + "sb %[p1], -2(%[s2]) \n\t" + : + : + [p4] "r"(p4), [p3] "r"(p3), [s2] "r"(s2), [p2] "r"(p2), [p1] "r"(p1)); + + __asm__ __volatile__( + "srl %[p4], %[p4], 8 \n\t" + "srl %[p3], %[p3], 8 \n\t" + "srl %[p2], %[p2], 8 \n\t" + "srl %[p1], %[p1], 8 \n\t" + : [p4] "+r"(p4), [p3] "+r"(p3), [p2] "+r"(p2), [p1] "+r"(p1) + :); + + __asm__ __volatile__( + "sb %[p4], 1(%[s1]) \n\t" + "sb %[p3], 0(%[s1]) \n\t" + "sb %[p2], -1(%[s1]) \n\t" + "sb %[p1], -2(%[s1]) \n\t" + : + : + [p4] "r"(p4), [p3] "r"(p3), [s1] "r"(s1), [p2] "r"(p2), [p1] "r"(p1)); + } + } + + s1 = s4 + p; + s2 = s1 + p; + s3 = s2 + p; + s4 = s3 + p; + + /* load quad-byte vectors + * memory is 4 byte aligned + */ + p2 = *((uint32_t *)(s1 - 4)); + p6 = *((uint32_t *)(s1)); + p1 = *((uint32_t *)(s2 - 4)); + p5 = *((uint32_t *)(s2)); + p0 = *((uint32_t *)(s3 - 4)); + p4 = *((uint32_t *)(s3)); + pm1 = *((uint32_t *)(s4 - 4)); + p3 = *((uint32_t *)(s4)); + + /* transpose pm1, p0, p1, p2 */ + __asm__ __volatile__( + "precrq.qb.ph %[prim1], %[p2], %[p1] \n\t" + "precr.qb.ph %[prim2], %[p2], %[p1] \n\t" + "precrq.qb.ph %[prim3], %[p0], %[pm1] \n\t" + "precr.qb.ph %[prim4], %[p0], %[pm1] \n\t" + + "precrq.qb.ph %[p1], %[prim1], %[prim2] \n\t" + "precr.qb.ph %[pm1], %[prim1], %[prim2] \n\t" + "precrq.qb.ph %[sec3], %[prim3], %[prim4] \n\t" + "precr.qb.ph %[sec4], %[prim3], %[prim4] \n\t" + + "precrq.ph.w %[p2], %[p1], %[sec3] \n\t" + "precrq.ph.w %[p0], %[pm1], %[sec4] \n\t" + "append %[p1], %[sec3], 16 \n\t" + "append %[pm1], %[sec4], 16 \n\t" + + : [prim1] "=&r"(prim1), [prim2] "=&r"(prim2), [prim3] "=&r"(prim3), + [prim4] "=&r"(prim4), [p2] "+r"(p2), [p1] "+r"(p1), [p0] "+r"(p0), + [pm1] "+r"(pm1), [sec3] "=&r"(sec3), [sec4] "=&r"(sec4) + :); + + /* transpose p3, p4, p5, p6 */ + __asm__ __volatile__( + "precrq.qb.ph %[prim1], %[p6], %[p5] \n\t" + "precr.qb.ph %[prim2], %[p6], %[p5] \n\t" + "precrq.qb.ph %[prim3], %[p4], %[p3] \n\t" + "precr.qb.ph %[prim4], %[p4], %[p3] \n\t" + + "precrq.qb.ph %[p5], %[prim1], %[prim2] \n\t" + "precr.qb.ph %[p3], %[prim1], %[prim2] \n\t" + "precrq.qb.ph %[sec3], %[prim3], %[prim4] \n\t" + "precr.qb.ph %[sec4], %[prim3], %[prim4] \n\t" + + "precrq.ph.w %[p6], %[p5], %[sec3] \n\t" + "precrq.ph.w %[p4], %[p3], %[sec4] \n\t" + "append %[p5], %[sec3], 16 \n\t" + "append %[p3], %[sec4], 16 \n\t" + + : [prim1] "=&r"(prim1), [prim2] "=&r"(prim2), [prim3] "=&r"(prim3), + [prim4] "=&r"(prim4), [p6] "+r"(p6), [p5] "+r"(p5), [p4] "+r"(p4), + [p3] "+r"(p3), [sec3] "=&r"(sec3), [sec4] "=&r"(sec4) + :); + + /* if (p1 - p4 == 0) and (p2 - p3 == 0) + * mask will be zero and filtering is not needed + */ + if (!(((p1 - p4) == 0) && ((p2 - p3) == 0))) { + vp8_filter_mask_vec_mips(limit, flimit, p1, p2, pm1, p0, p3, p4, p5, p6, + thresh, &hev, &mask); + + /* if mask == 0 do filtering is not needed */ + if (mask) { + /* filtering */ + vp8_filter_mips(mask, hev, &p1, &p2, &p3, &p4); + + /* unpack processed 4x4 neighborhood + * don't use transpose on output data + * because memory isn't aligned + */ + __asm__ __volatile__( + "sb %[p4], 1(%[s4]) \n\t" + "sb %[p3], 0(%[s4]) \n\t" + "sb %[p2], -1(%[s4]) \n\t" + "sb %[p1], -2(%[s4]) \n\t" + : + : + [p4] "r"(p4), [p3] "r"(p3), [s4] "r"(s4), [p2] "r"(p2), [p1] "r"(p1)); + + __asm__ __volatile__( + "srl %[p4], %[p4], 8 \n\t" + "srl %[p3], %[p3], 8 \n\t" + "srl %[p2], %[p2], 8 \n\t" + "srl %[p1], %[p1], 8 \n\t" + : [p4] "+r"(p4), [p3] "+r"(p3), [p2] "+r"(p2), [p1] "+r"(p1) + :); + + __asm__ __volatile__( + "sb %[p4], 1(%[s3]) \n\t" + "sb %[p3], 0(%[s3]) \n\t" + "sb %[p2], -1(%[s3]) \n\t" + "sb %[p1], -2(%[s3]) \n\t" + : [p1] "+r"(p1) + : [p4] "r"(p4), [p3] "r"(p3), [s3] "r"(s3), [p2] "r"(p2)); + + __asm__ __volatile__( + "srl %[p4], %[p4], 8 \n\t" + "srl %[p3], %[p3], 8 \n\t" + "srl %[p2], %[p2], 8 \n\t" + "srl %[p1], %[p1], 8 \n\t" + : [p4] "+r"(p4), [p3] "+r"(p3), [p2] "+r"(p2), [p1] "+r"(p1) + :); + + __asm__ __volatile__( + "sb %[p4], 1(%[s2]) \n\t" + "sb %[p3], 0(%[s2]) \n\t" + "sb %[p2], -1(%[s2]) \n\t" + "sb %[p1], -2(%[s2]) \n\t" + : + : + [p4] "r"(p4), [p3] "r"(p3), [s2] "r"(s2), [p2] "r"(p2), [p1] "r"(p1)); + + __asm__ __volatile__( + "srl %[p4], %[p4], 8 \n\t" + "srl %[p3], %[p3], 8 \n\t" + "srl %[p2], %[p2], 8 \n\t" + "srl %[p1], %[p1], 8 \n\t" + : [p4] "+r"(p4), [p3] "+r"(p3), [p2] "+r"(p2), [p1] "+r"(p1) + :); + + __asm__ __volatile__( + "sb %[p4], 1(%[s1]) \n\t" + "sb %[p3], 0(%[s1]) \n\t" + "sb %[p2], -1(%[s1]) \n\t" + "sb %[p1], -2(%[s1]) \n\t" + : + : + [p4] "r"(p4), [p3] "r"(p3), [s1] "r"(s1), [p2] "r"(p2), [p1] "r"(p1)); + } + } +} + +/* inputs & outputs are quad-byte vectors */ +static __inline void vp8_mbfilter_mips(uint32_t mask, uint32_t hev, + uint32_t *ps2, uint32_t *ps1, + uint32_t *ps0, uint32_t *qs0, + uint32_t *qs1, uint32_t *qs2) { + int32_t vps2, vps1, vps0, vqs0, vqs1, vqs2; + int32_t vps2_l, vps1_l, vps0_l, vqs0_l, vqs1_l, vqs2_l; + int32_t vps2_r, vps1_r, vps0_r, vqs0_r, vqs1_r, vqs2_r; + uint32_t HWM, vp8_filter_l, vp8_filter_r, mask_l, mask_r, hev_l, hev_r, + subr_r, subr_l; + uint32_t Filter2_l, Filter2_r, t1, t2, Filter1_l, Filter1_r, invhev_l, + invhev_r; + uint32_t N128, R63; + uint32_t u1_l, u1_r, u2_l, u2_r, u3_l, u3_r; + + R63 = 0x003F003F; + HWM = 0xFF00FF00; + N128 = 0x80808080; + t1 = 0x03000300; + t2 = 0x04000400; + + vps0 = (*ps0) ^ N128; + vps1 = (*ps1) ^ N128; + vps2 = (*ps2) ^ N128; + vqs0 = (*qs0) ^ N128; + vqs1 = (*qs1) ^ N128; + vqs2 = (*qs2) ^ N128; + + /* use halfword pairs instead quad-bytes because of accuracy */ + vps0_l = vps0 & HWM; + vps0_r = vps0 << 8; + vps0_r = vps0_r & HWM; + + vqs0_l = vqs0 & HWM; + vqs0_r = vqs0 << 8; + vqs0_r = vqs0_r & HWM; + + vps1_l = vps1 & HWM; + vps1_r = vps1 << 8; + vps1_r = vps1_r & HWM; + + vqs1_l = vqs1 & HWM; + vqs1_r = vqs1 << 8; + vqs1_r = vqs1_r & HWM; + + vqs2_l = vqs2 & HWM; + vqs2_r = vqs2 << 8; + vqs2_r = vqs2_r & HWM; + + __asm__ __volatile__( + /* qs0 - ps0 */ + "subq_s.ph %[subr_l], %[vqs0_l], %[vps0_l] \n\t" + "subq_s.ph %[subr_r], %[vqs0_r], %[vps0_r] \n\t" + + /* vp8_filter = vp8_signed_char_clamp(ps1 - qs1); */ + "subq_s.ph %[vp8_filter_l], %[vps1_l], %[vqs1_l] \n\t" + "subq_s.ph %[vp8_filter_r], %[vps1_r], %[vqs1_r] \n\t" + + : [vp8_filter_l] "=&r"(vp8_filter_l), [vp8_filter_r] "=r"(vp8_filter_r), + [subr_l] "=&r"(subr_l), [subr_r] "=&r"(subr_r) + : [vps0_l] "r"(vps0_l), [vps0_r] "r"(vps0_r), [vps1_l] "r"(vps1_l), + [vps1_r] "r"(vps1_r), [vqs0_l] "r"(vqs0_l), [vqs0_r] "r"(vqs0_r), + [vqs1_l] "r"(vqs1_l), [vqs1_r] "r"(vqs1_r)); + + vps2_l = vps2 & HWM; + vps2_r = vps2 << 8; + vps2_r = vps2_r & HWM; + + /* add outer taps if we have high edge variance */ + __asm__ __volatile__( + /* vp8_filter = vp8_signed_char_clamp(vp8_filter + 3 * (qs0 - ps0)); */ + "addq_s.ph %[vp8_filter_l], %[vp8_filter_l], %[subr_l] \n\t" + "addq_s.ph %[vp8_filter_r], %[vp8_filter_r], %[subr_r] \n\t" + "and %[mask_l], %[HWM], %[mask] \n\t" + "sll %[mask_r], %[mask], 8 \n\t" + "and %[mask_r], %[HWM], %[mask_r] \n\t" + "addq_s.ph %[vp8_filter_l], %[vp8_filter_l], %[subr_l] \n\t" + "addq_s.ph %[vp8_filter_r], %[vp8_filter_r], %[subr_r] \n\t" + "and %[hev_l], %[HWM], %[hev] \n\t" + "sll %[hev_r], %[hev], 8 \n\t" + "and %[hev_r], %[HWM], %[hev_r] \n\t" + "addq_s.ph %[vp8_filter_l], %[vp8_filter_l], %[subr_l] \n\t" + "addq_s.ph %[vp8_filter_r], %[vp8_filter_r], %[subr_r] \n\t" + + /* vp8_filter &= mask; */ + "and %[vp8_filter_l], %[vp8_filter_l], %[mask_l] \n\t" + "and %[vp8_filter_r], %[vp8_filter_r], %[mask_r] \n\t" + + /* Filter2 = vp8_filter & hev; */ + "and %[Filter2_l], %[vp8_filter_l], %[hev_l] \n\t" + "and %[Filter2_r], %[vp8_filter_r], %[hev_r] \n\t" + + : [vp8_filter_l] "+r"(vp8_filter_l), [vp8_filter_r] "+r"(vp8_filter_r), + [hev_l] "=&r"(hev_l), [hev_r] "=&r"(hev_r), [mask_l] "=&r"(mask_l), + [mask_r] "=&r"(mask_r), [Filter2_l] "=&r"(Filter2_l), + [Filter2_r] "=&r"(Filter2_r) + : [subr_l] "r"(subr_l), [subr_r] "r"(subr_r), [HWM] "r"(HWM), + [hev] "r"(hev), [mask] "r"(mask)); + + /* save bottom 3 bits so that we round one side +4 and the other +3 */ + __asm__ __volatile__( + /* Filter1 = vp8_signed_char_clamp(Filter2 + 4) >>= 3; */ + "addq_s.ph %[Filter1_l], %[Filter2_l], %[t2] \n\t" + "xor %[invhev_l], %[hev_l], %[HWM] \n\t" + "addq_s.ph %[Filter1_r], %[Filter2_r], %[t2] \n\t" + + /* Filter2 = vp8_signed_char_clamp(Filter2 + 3) >>= 3; */ + "addq_s.ph %[Filter2_l], %[Filter2_l], %[t1] \n\t" + "addq_s.ph %[Filter2_r], %[Filter2_r], %[t1] \n\t" + + "shra.ph %[Filter1_l], %[Filter1_l], 3 \n\t" + "shra.ph %[Filter1_r], %[Filter1_r], 3 \n\t" + + "shra.ph %[Filter2_l], %[Filter2_l], 3 \n\t" + "shra.ph %[Filter2_r], %[Filter2_r], 3 \n\t" + "and %[Filter1_l], %[Filter1_l], %[HWM] \n\t" + "and %[Filter1_r], %[Filter1_r], %[HWM] \n\t" + "xor %[invhev_r], %[hev_r], %[HWM] \n\t" + + /* qs0 = vp8_signed_char_clamp(qs0 - Filter1); */ + "subq_s.ph %[vqs0_l], %[vqs0_l], %[Filter1_l] \n\t" + "subq_s.ph %[vqs0_r], %[vqs0_r], %[Filter1_r] \n\t" + + /* ps0 = vp8_signed_char_clamp(ps0 + Filter2); */ + "addq_s.ph %[vps0_l], %[vps0_l], %[Filter2_l] \n\t" + "addq_s.ph %[vps0_r], %[vps0_r], %[Filter2_r] \n\t" + + : [invhev_l] "=&r"(invhev_l), [invhev_r] "=&r"(invhev_r), + [Filter1_l] "=&r"(Filter1_l), [Filter1_r] "=&r"(Filter1_r), + [Filter2_l] "+r"(Filter2_l), [Filter2_r] "+r"(Filter2_r), + [vps0_l] "+r"(vps0_l), [vps0_r] "+r"(vps0_r), [vqs0_l] "+r"(vqs0_l), + [vqs0_r] "+r"(vqs0_r) + : [t1] "r"(t1), [t2] "r"(t2), [HWM] "r"(HWM), [hev_l] "r"(hev_l), + [hev_r] "r"(hev_r)); + + /* only apply wider filter if not high edge variance */ + __asm__ __volatile__( + /* vp8_filter &= ~hev; */ + "and %[Filter2_l], %[vp8_filter_l], %[invhev_l] \n\t" + "and %[Filter2_r], %[vp8_filter_r], %[invhev_r] \n\t" + + "shra.ph %[Filter2_l], %[Filter2_l], 8 \n\t" + "shra.ph %[Filter2_r], %[Filter2_r], 8 \n\t" + + : [Filter2_l] "=&r"(Filter2_l), [Filter2_r] "=&r"(Filter2_r) + : [vp8_filter_l] "r"(vp8_filter_l), [vp8_filter_r] "r"(vp8_filter_r), + [invhev_l] "r"(invhev_l), [invhev_r] "r"(invhev_r)); + + /* roughly 3/7th difference across boundary */ + __asm__ __volatile__( + "shll.ph %[u3_l], %[Filter2_l], 3 \n\t" + "shll.ph %[u3_r], %[Filter2_r], 3 \n\t" + + "addq.ph %[u3_l], %[u3_l], %[Filter2_l] \n\t" + "addq.ph %[u3_r], %[u3_r], %[Filter2_r] \n\t" + + "shll.ph %[u2_l], %[u3_l], 1 \n\t" + "shll.ph %[u2_r], %[u3_r], 1 \n\t" + + "addq.ph %[u1_l], %[u3_l], %[u2_l] \n\t" + "addq.ph %[u1_r], %[u3_r], %[u2_r] \n\t" + + "addq.ph %[u2_l], %[u2_l], %[R63] \n\t" + "addq.ph %[u2_r], %[u2_r], %[R63] \n\t" + + "addq.ph %[u3_l], %[u3_l], %[R63] \n\t" + "addq.ph %[u3_r], %[u3_r], %[R63] \n\t" + + /* vp8_signed_char_clamp((63 + Filter2 * 27) >> 7) + * vp8_signed_char_clamp((63 + Filter2 * 18) >> 7) + */ + "addq.ph %[u1_l], %[u1_l], %[R63] \n\t" + "addq.ph %[u1_r], %[u1_r], %[R63] \n\t" + "shra.ph %[u1_l], %[u1_l], 7 \n\t" + "shra.ph %[u1_r], %[u1_r], 7 \n\t" + "shra.ph %[u2_l], %[u2_l], 7 \n\t" + "shra.ph %[u2_r], %[u2_r], 7 \n\t" + "shll.ph %[u1_l], %[u1_l], 8 \n\t" + "shll.ph %[u1_r], %[u1_r], 8 \n\t" + "shll.ph %[u2_l], %[u2_l], 8 \n\t" + "shll.ph %[u2_r], %[u2_r], 8 \n\t" + + /* vqs0 = vp8_signed_char_clamp(qs0 - u); */ + "subq_s.ph %[vqs0_l], %[vqs0_l], %[u1_l] \n\t" + "subq_s.ph %[vqs0_r], %[vqs0_r], %[u1_r] \n\t" + + /* vps0 = vp8_signed_char_clamp(ps0 + u); */ + "addq_s.ph %[vps0_l], %[vps0_l], %[u1_l] \n\t" + "addq_s.ph %[vps0_r], %[vps0_r], %[u1_r] \n\t" + + : [u1_l] "=&r"(u1_l), [u1_r] "=&r"(u1_r), [u2_l] "=&r"(u2_l), + [u2_r] "=&r"(u2_r), [u3_l] "=&r"(u3_l), [u3_r] "=&r"(u3_r), + [vps0_l] "+r"(vps0_l), [vps0_r] "+r"(vps0_r), [vqs0_l] "+r"(vqs0_l), + [vqs0_r] "+r"(vqs0_r) + : [R63] "r"(R63), [Filter2_l] "r"(Filter2_l), [Filter2_r] "r"(Filter2_r)); + + __asm__ __volatile__( + /* vqs1 = vp8_signed_char_clamp(qs1 - u); */ + "subq_s.ph %[vqs1_l], %[vqs1_l], %[u2_l] \n\t" + "addq_s.ph %[vps1_l], %[vps1_l], %[u2_l] \n\t" + + /* vps1 = vp8_signed_char_clamp(ps1 + u); */ + "addq_s.ph %[vps1_r], %[vps1_r], %[u2_r] \n\t" + "subq_s.ph %[vqs1_r], %[vqs1_r], %[u2_r] \n\t" + + : [vps1_l] "+r"(vps1_l), [vps1_r] "+r"(vps1_r), [vqs1_l] "+r"(vqs1_l), + [vqs1_r] "+r"(vqs1_r) + : [u2_l] "r"(u2_l), [u2_r] "r"(u2_r)); + + /* roughly 1/7th difference across boundary */ + __asm__ __volatile__( + /* u = vp8_signed_char_clamp((63 + Filter2 * 9) >> 7); */ + "shra.ph %[u3_l], %[u3_l], 7 \n\t" + "shra.ph %[u3_r], %[u3_r], 7 \n\t" + "shll.ph %[u3_l], %[u3_l], 8 \n\t" + "shll.ph %[u3_r], %[u3_r], 8 \n\t" + + /* vqs2 = vp8_signed_char_clamp(qs2 - u); */ + "subq_s.ph %[vqs2_l], %[vqs2_l], %[u3_l] \n\t" + "subq_s.ph %[vqs2_r], %[vqs2_r], %[u3_r] \n\t" + + /* vps2 = vp8_signed_char_clamp(ps2 + u); */ + "addq_s.ph %[vps2_l], %[vps2_l], %[u3_l] \n\t" + "addq_s.ph %[vps2_r], %[vps2_r], %[u3_r] \n\t" + + : [u3_l] "+r"(u3_l), [u3_r] "+r"(u3_r), [vps2_l] "+r"(vps2_l), + [vps2_r] "+r"(vps2_r), [vqs2_l] "+r"(vqs2_l), [vqs2_r] "+r"(vqs2_r) + :); + + /* Create quad-bytes from halfword pairs */ + __asm__ __volatile__( + "and %[vqs0_l], %[vqs0_l], %[HWM] \n\t" + "shrl.ph %[vqs0_r], %[vqs0_r], 8 \n\t" + + "and %[vps0_l], %[vps0_l], %[HWM] \n\t" + "shrl.ph %[vps0_r], %[vps0_r], 8 \n\t" + + "and %[vqs1_l], %[vqs1_l], %[HWM] \n\t" + "shrl.ph %[vqs1_r], %[vqs1_r], 8 \n\t" + + "and %[vps1_l], %[vps1_l], %[HWM] \n\t" + "shrl.ph %[vps1_r], %[vps1_r], 8 \n\t" + + "and %[vqs2_l], %[vqs2_l], %[HWM] \n\t" + "shrl.ph %[vqs2_r], %[vqs2_r], 8 \n\t" + + "and %[vps2_l], %[vps2_l], %[HWM] \n\t" + "shrl.ph %[vps2_r], %[vps2_r], 8 \n\t" + + "or %[vqs0_r], %[vqs0_l], %[vqs0_r] \n\t" + "or %[vps0_r], %[vps0_l], %[vps0_r] \n\t" + "or %[vqs1_r], %[vqs1_l], %[vqs1_r] \n\t" + "or %[vps1_r], %[vps1_l], %[vps1_r] \n\t" + "or %[vqs2_r], %[vqs2_l], %[vqs2_r] \n\t" + "or %[vps2_r], %[vps2_l], %[vps2_r] \n\t" + + : [vps1_l] "+r"(vps1_l), [vps1_r] "+r"(vps1_r), [vqs1_l] "+r"(vqs1_l), + [vqs1_r] "+r"(vqs1_r), [vps0_l] "+r"(vps0_l), [vps0_r] "+r"(vps0_r), + [vqs0_l] "+r"(vqs0_l), [vqs0_r] "+r"(vqs0_r), [vqs2_l] "+r"(vqs2_l), + [vqs2_r] "+r"(vqs2_r), [vps2_r] "+r"(vps2_r), [vps2_l] "+r"(vps2_l) + : [HWM] "r"(HWM)); + + *ps0 = vps0_r ^ N128; + *ps1 = vps1_r ^ N128; + *ps2 = vps2_r ^ N128; + *qs0 = vqs0_r ^ N128; + *qs1 = vqs1_r ^ N128; + *qs2 = vqs2_r ^ N128; +} + +void vp8_mbloop_filter_horizontal_edge_mips(unsigned char *s, int p, + unsigned int flimit, + unsigned int limit, + unsigned int thresh, int count) { + int i; + uint32_t mask, hev; + uint32_t pm1, p0, p1, p2, p3, p4, p5, p6; + unsigned char *sm1, *s0, *s1, *s2, *s3, *s4, *s5, *s6; + + mask = 0; + hev = 0; + i = 0; + p1 = 0; + p2 = 0; + p3 = 0; + p4 = 0; + + /* loop filter designed to work using chars so that we can make maximum use + * of 8 bit simd instructions. + */ + + sm1 = s - (p << 2); + s0 = s - p - p - p; + s1 = s - p - p; + s2 = s - p; + s3 = s; + s4 = s + p; + s5 = s + p + p; + s6 = s + p + p + p; + + /* prefetch data for load */ + prefetch_load_lf(s + p); + + /* apply filter on 4 pixesl at the same time */ + do { + /* load quad-byte vectors + * memory is 4 byte aligned + */ + p1 = *((uint32_t *)(s1)); + p2 = *((uint32_t *)(s2)); + p3 = *((uint32_t *)(s3)); + p4 = *((uint32_t *)(s4)); + + /* if (p1 - p4 == 0) and (p2 - p3 == 0) + * mask will be zero and filtering is not needed + */ + if (!(((p1 - p4) == 0) && ((p2 - p3) == 0))) { + pm1 = *((uint32_t *)(sm1)); + p0 = *((uint32_t *)(s0)); + p5 = *((uint32_t *)(s5)); + p6 = *((uint32_t *)(s6)); + + vp8_filter_mask_vec_mips(limit, flimit, p1, p2, pm1, p0, p3, p4, p5, p6, + thresh, &hev, &mask); + + /* if mask == 0 do filtering is not needed */ + if (mask) { + /* filtering */ + vp8_mbfilter_mips(mask, hev, &p0, &p1, &p2, &p3, &p4, &p5); + + /* unpack processed 4x4 neighborhood + * memory is 4 byte aligned + */ + *((uint32_t *)s0) = p0; + *((uint32_t *)s1) = p1; + *((uint32_t *)s2) = p2; + *((uint32_t *)s3) = p3; + *((uint32_t *)s4) = p4; + *((uint32_t *)s5) = p5; + } + } + + sm1 += 4; + s0 += 4; + s1 += 4; + s2 += 4; + s3 += 4; + s4 += 4; + s5 += 4; + s6 += 4; + + /* load quad-byte vectors + * memory is 4 byte aligned + */ + p1 = *((uint32_t *)(s1)); + p2 = *((uint32_t *)(s2)); + p3 = *((uint32_t *)(s3)); + p4 = *((uint32_t *)(s4)); + + /* if (p1 - p4 == 0) and (p2 - p3 == 0) + * mask will be zero and filtering is not needed + */ + if (!(((p1 - p4) == 0) && ((p2 - p3) == 0))) { + pm1 = *((uint32_t *)(sm1)); + p0 = *((uint32_t *)(s0)); + p5 = *((uint32_t *)(s5)); + p6 = *((uint32_t *)(s6)); + + vp8_filter_mask_vec_mips(limit, flimit, p1, p2, pm1, p0, p3, p4, p5, p6, + thresh, &hev, &mask); + + /* if mask == 0 do filtering is not needed */ + if (mask) { + /* filtering */ + vp8_mbfilter_mips(mask, hev, &p0, &p1, &p2, &p3, &p4, &p5); + + /* unpack processed 4x4 neighborhood + * memory is 4 byte aligned + */ + *((uint32_t *)s0) = p0; + *((uint32_t *)s1) = p1; + *((uint32_t *)s2) = p2; + *((uint32_t *)s3) = p3; + *((uint32_t *)s4) = p4; + *((uint32_t *)s5) = p5; + } + } + + sm1 += 4; + s0 += 4; + s1 += 4; + s2 += 4; + s3 += 4; + s4 += 4; + s5 += 4; + s6 += 4; + + i += 8; + } + + while (i < count); +} + +void vp8_mbloop_filter_uvhorizontal_edge_mips(unsigned char *s, int p, + unsigned int flimit, + unsigned int limit, + unsigned int thresh, int count) { + uint32_t mask, hev; + uint32_t pm1, p0, p1, p2, p3, p4, p5, p6; + unsigned char *sm1, *s0, *s1, *s2, *s3, *s4, *s5, *s6; + (void)count; + + mask = 0; + hev = 0; + p1 = 0; + p2 = 0; + p3 = 0; + p4 = 0; + + /* loop filter designed to work using chars so that we can make maximum use + * of 8 bit simd instructions. + */ + + sm1 = s - (p << 2); + s0 = s - p - p - p; + s1 = s - p - p; + s2 = s - p; + s3 = s; + s4 = s + p; + s5 = s + p + p; + s6 = s + p + p + p; + + /* load quad-byte vectors + * memory is 4 byte aligned + */ + p1 = *((uint32_t *)(s1)); + p2 = *((uint32_t *)(s2)); + p3 = *((uint32_t *)(s3)); + p4 = *((uint32_t *)(s4)); + + /* if (p1 - p4 == 0) and (p2 - p3 == 0) + * mask will be zero and filtering is not needed + */ + if (!(((p1 - p4) == 0) && ((p2 - p3) == 0))) { + pm1 = *((uint32_t *)(sm1)); + p0 = *((uint32_t *)(s0)); + p5 = *((uint32_t *)(s5)); + p6 = *((uint32_t *)(s6)); + + /* if mask == 0 do filtering is not needed */ + vp8_filter_mask_vec_mips(limit, flimit, p1, p2, pm1, p0, p3, p4, p5, p6, + thresh, &hev, &mask); + + if (mask) { + /* filtering */ + vp8_mbfilter_mips(mask, hev, &p0, &p1, &p2, &p3, &p4, &p5); + + /* unpack processed 4x4 neighborhood + * memory is 4 byte aligned + */ + *((uint32_t *)s0) = p0; + *((uint32_t *)s1) = p1; + *((uint32_t *)s2) = p2; + *((uint32_t *)s3) = p3; + *((uint32_t *)s4) = p4; + *((uint32_t *)s5) = p5; + } + } + + sm1 += 4; + s0 += 4; + s1 += 4; + s2 += 4; + s3 += 4; + s4 += 4; + s5 += 4; + s6 += 4; + + /* load quad-byte vectors + * memory is 4 byte aligned + */ + p1 = *((uint32_t *)(s1)); + p2 = *((uint32_t *)(s2)); + p3 = *((uint32_t *)(s3)); + p4 = *((uint32_t *)(s4)); + + /* if (p1 - p4 == 0) and (p2 - p3 == 0) + * mask will be zero and filtering is not needed + */ + if (!(((p1 - p4) == 0) && ((p2 - p3) == 0))) { + pm1 = *((uint32_t *)(sm1)); + p0 = *((uint32_t *)(s0)); + p5 = *((uint32_t *)(s5)); + p6 = *((uint32_t *)(s6)); + + vp8_filter_mask_vec_mips(limit, flimit, p1, p2, pm1, p0, p3, p4, p5, p6, + thresh, &hev, &mask); + + /* if mask == 0 do filtering is not needed */ + if (mask) { + /* filtering */ + vp8_mbfilter_mips(mask, hev, &p0, &p1, &p2, &p3, &p4, &p5); + + /* unpack processed 4x4 neighborhood + * memory is 4 byte aligned + */ + *((uint32_t *)s0) = p0; + *((uint32_t *)s1) = p1; + *((uint32_t *)s2) = p2; + *((uint32_t *)s3) = p3; + *((uint32_t *)s4) = p4; + *((uint32_t *)s5) = p5; + } + } +} + +void vp8_mbloop_filter_vertical_edge_mips(unsigned char *s, int p, + unsigned int flimit, + unsigned int limit, + unsigned int thresh, int count) { + int i; + uint32_t mask, hev; + uint32_t pm1, p0, p1, p2, p3, p4, p5, p6; + unsigned char *s1, *s2, *s3, *s4; + uint32_t prim1, prim2, sec3, sec4, prim3, prim4; + + mask = 0; + hev = 0; + i = 0; + pm1 = 0; + p0 = 0; + p1 = 0; + p2 = 0; + p3 = 0; + p4 = 0; + p5 = 0; + p6 = 0; + + /* loop filter designed to work using chars so that we can make maximum use + * of 8 bit simd instructions. + */ + + /* apply filter on 4 pixesl at the same time */ + do { + s1 = s; + s2 = s + p; + s3 = s2 + p; + s4 = s3 + p; + s = s4 + p; + + /* load quad-byte vectors + * memory is 4 byte aligned + */ + p2 = *((uint32_t *)(s1 - 4)); + p6 = *((uint32_t *)(s1)); + p1 = *((uint32_t *)(s2 - 4)); + p5 = *((uint32_t *)(s2)); + p0 = *((uint32_t *)(s3 - 4)); + p4 = *((uint32_t *)(s3)); + pm1 = *((uint32_t *)(s4 - 4)); + p3 = *((uint32_t *)(s4)); + + /* transpose pm1, p0, p1, p2 */ + __asm__ __volatile__( + "precrq.qb.ph %[prim1], %[p2], %[p1] \n\t" + "precr.qb.ph %[prim2], %[p2], %[p1] \n\t" + "precrq.qb.ph %[prim3], %[p0], %[pm1] \n\t" + "precr.qb.ph %[prim4], %[p0], %[pm1] \n\t" + + "precrq.qb.ph %[p1], %[prim1], %[prim2] \n\t" + "precr.qb.ph %[pm1], %[prim1], %[prim2] \n\t" + "precrq.qb.ph %[sec3], %[prim3], %[prim4] \n\t" + "precr.qb.ph %[sec4], %[prim3], %[prim4] \n\t" + + "precrq.ph.w %[p2], %[p1], %[sec3] \n\t" + "precrq.ph.w %[p0], %[pm1], %[sec4] \n\t" + "append %[p1], %[sec3], 16 \n\t" + "append %[pm1], %[sec4], 16 \n\t" + + : [prim1] "=&r"(prim1), [prim2] "=&r"(prim2), [prim3] "=&r"(prim3), + [prim4] "=&r"(prim4), [p2] "+r"(p2), [p1] "+r"(p1), [p0] "+r"(p0), + [pm1] "+r"(pm1), [sec3] "=&r"(sec3), [sec4] "=&r"(sec4) + :); + + /* transpose p3, p4, p5, p6 */ + __asm__ __volatile__( + "precrq.qb.ph %[prim1], %[p6], %[p5] \n\t" + "precr.qb.ph %[prim2], %[p6], %[p5] \n\t" + "precrq.qb.ph %[prim3], %[p4], %[p3] \n\t" + "precr.qb.ph %[prim4], %[p4], %[p3] \n\t" + + "precrq.qb.ph %[p5], %[prim1], %[prim2] \n\t" + "precr.qb.ph %[p3], %[prim1], %[prim2] \n\t" + "precrq.qb.ph %[sec3], %[prim3], %[prim4] \n\t" + "precr.qb.ph %[sec4], %[prim3], %[prim4] \n\t" + + "precrq.ph.w %[p6], %[p5], %[sec3] \n\t" + "precrq.ph.w %[p4], %[p3], %[sec4] \n\t" + "append %[p5], %[sec3], 16 \n\t" + "append %[p3], %[sec4], 16 \n\t" + + : [prim1] "=&r"(prim1), [prim2] "=&r"(prim2), [prim3] "=&r"(prim3), + [prim4] "=&r"(prim4), [p6] "+r"(p6), [p5] "+r"(p5), [p4] "+r"(p4), + [p3] "+r"(p3), [sec3] "=&r"(sec3), [sec4] "=&r"(sec4) + :); + + /* if (p1 - p4 == 0) and (p2 - p3 == 0) + * mask will be zero and filtering is not needed + */ + if (!(((p1 - p4) == 0) && ((p2 - p3) == 0))) { + vp8_filter_mask_vec_mips(limit, flimit, p1, p2, pm1, p0, p3, p4, p5, p6, + thresh, &hev, &mask); + + /* if mask == 0 do filtering is not needed */ + if (mask) { + /* filtering */ + vp8_mbfilter_mips(mask, hev, &p0, &p1, &p2, &p3, &p4, &p5); + + /* don't use transpose on output data + * because memory isn't aligned + */ + __asm__ __volatile__( + "sb %[p5], 2(%[s4]) \n\t" + "sb %[p4], 1(%[s4]) \n\t" + "sb %[p3], 0(%[s4]) \n\t" + "sb %[p2], -1(%[s4]) \n\t" + "sb %[p1], -2(%[s4]) \n\t" + "sb %[p0], -3(%[s4]) \n\t" + : + : [p5] "r"(p5), [p4] "r"(p4), [p3] "r"(p3), [s4] "r"(s4), + [p2] "r"(p2), [p1] "r"(p1), [p0] "r"(p0)); + + __asm__ __volatile__( + "srl %[p5], %[p5], 8 \n\t" + "srl %[p4], %[p4], 8 \n\t" + "srl %[p3], %[p3], 8 \n\t" + "srl %[p2], %[p2], 8 \n\t" + "srl %[p1], %[p1], 8 \n\t" + "srl %[p0], %[p0], 8 \n\t" + : [p5] "+r"(p5), [p4] "+r"(p4), [p3] "+r"(p3), [p2] "+r"(p2), + [p1] "+r"(p1), [p0] "+r"(p0) + :); + + __asm__ __volatile__( + "sb %[p5], 2(%[s3]) \n\t" + "sb %[p4], 1(%[s3]) \n\t" + "sb %[p3], 0(%[s3]) \n\t" + "sb %[p2], -1(%[s3]) \n\t" + "sb %[p1], -2(%[s3]) \n\t" + "sb %[p0], -3(%[s3]) \n\t" + : + : [p5] "r"(p5), [p4] "r"(p4), [p3] "r"(p3), [s3] "r"(s3), + [p2] "r"(p2), [p1] "r"(p1), [p0] "r"(p0)); + + __asm__ __volatile__( + "srl %[p5], %[p5], 8 \n\t" + "srl %[p4], %[p4], 8 \n\t" + "srl %[p3], %[p3], 8 \n\t" + "srl %[p2], %[p2], 8 \n\t" + "srl %[p1], %[p1], 8 \n\t" + "srl %[p0], %[p0], 8 \n\t" + : [p5] "+r"(p5), [p4] "+r"(p4), [p3] "+r"(p3), [p2] "+r"(p2), + [p1] "+r"(p1), [p0] "+r"(p0) + :); + + __asm__ __volatile__( + "sb %[p5], 2(%[s2]) \n\t" + "sb %[p4], 1(%[s2]) \n\t" + "sb %[p3], 0(%[s2]) \n\t" + "sb %[p2], -1(%[s2]) \n\t" + "sb %[p1], -2(%[s2]) \n\t" + "sb %[p0], -3(%[s2]) \n\t" + : + : [p5] "r"(p5), [p4] "r"(p4), [p3] "r"(p3), [s2] "r"(s2), + [p2] "r"(p2), [p1] "r"(p1), [p0] "r"(p0)); + + __asm__ __volatile__( + "srl %[p5], %[p5], 8 \n\t" + "srl %[p4], %[p4], 8 \n\t" + "srl %[p3], %[p3], 8 \n\t" + "srl %[p2], %[p2], 8 \n\t" + "srl %[p1], %[p1], 8 \n\t" + "srl %[p0], %[p0], 8 \n\t" + : [p5] "+r"(p5), [p4] "+r"(p4), [p3] "+r"(p3), [p2] "+r"(p2), + [p1] "+r"(p1), [p0] "+r"(p0) + :); + + __asm__ __volatile__( + "sb %[p5], 2(%[s1]) \n\t" + "sb %[p4], 1(%[s1]) \n\t" + "sb %[p3], 0(%[s1]) \n\t" + "sb %[p2], -1(%[s1]) \n\t" + "sb %[p1], -2(%[s1]) \n\t" + "sb %[p0], -3(%[s1]) \n\t" + : + : [p5] "r"(p5), [p4] "r"(p4), [p3] "r"(p3), [s1] "r"(s1), + [p2] "r"(p2), [p1] "r"(p1), [p0] "r"(p0)); + } + } + + i += 4; + } + + while (i < count); +} + +void vp8_mbloop_filter_uvvertical_edge_mips(unsigned char *s, int p, + unsigned int flimit, + unsigned int limit, + unsigned int thresh, int count) { + uint32_t mask, hev; + uint32_t pm1, p0, p1, p2, p3, p4, p5, p6; + unsigned char *s1, *s2, *s3, *s4; + uint32_t prim1, prim2, sec3, sec4, prim3, prim4; + (void)count; + + mask = 0; + hev = 0; + pm1 = 0; + p0 = 0; + p1 = 0; + p2 = 0; + p3 = 0; + p4 = 0; + p5 = 0; + p6 = 0; + + /* loop filter designed to work using chars so that we can make maximum use + * of 8 bit simd instructions. + */ + + /* apply filter on 4 pixesl at the same time */ + + s1 = s; + s2 = s + p; + s3 = s2 + p; + s4 = s3 + p; + + /* prefetch data for load */ + prefetch_load_lf(s + 2 * p); + + /* load quad-byte vectors + * memory is 4 byte aligned + */ + p2 = *((uint32_t *)(s1 - 4)); + p6 = *((uint32_t *)(s1)); + p1 = *((uint32_t *)(s2 - 4)); + p5 = *((uint32_t *)(s2)); + p0 = *((uint32_t *)(s3 - 4)); + p4 = *((uint32_t *)(s3)); + pm1 = *((uint32_t *)(s4 - 4)); + p3 = *((uint32_t *)(s4)); + + /* transpose pm1, p0, p1, p2 */ + __asm__ __volatile__( + "precrq.qb.ph %[prim1], %[p2], %[p1] \n\t" + "precr.qb.ph %[prim2], %[p2], %[p1] \n\t" + "precrq.qb.ph %[prim3], %[p0], %[pm1] \n\t" + "precr.qb.ph %[prim4], %[p0], %[pm1] \n\t" + + "precrq.qb.ph %[p1], %[prim1], %[prim2] \n\t" + "precr.qb.ph %[pm1], %[prim1], %[prim2] \n\t" + "precrq.qb.ph %[sec3], %[prim3], %[prim4] \n\t" + "precr.qb.ph %[sec4], %[prim3], %[prim4] \n\t" + + "precrq.ph.w %[p2], %[p1], %[sec3] \n\t" + "precrq.ph.w %[p0], %[pm1], %[sec4] \n\t" + "append %[p1], %[sec3], 16 \n\t" + "append %[pm1], %[sec4], 16 \n\t" + + : [prim1] "=&r"(prim1), [prim2] "=&r"(prim2), [prim3] "=&r"(prim3), + [prim4] "=&r"(prim4), [p2] "+r"(p2), [p1] "+r"(p1), [p0] "+r"(p0), + [pm1] "+r"(pm1), [sec3] "=&r"(sec3), [sec4] "=&r"(sec4) + :); + + /* transpose p3, p4, p5, p6 */ + __asm__ __volatile__( + "precrq.qb.ph %[prim1], %[p6], %[p5] \n\t" + "precr.qb.ph %[prim2], %[p6], %[p5] \n\t" + "precrq.qb.ph %[prim3], %[p4], %[p3] \n\t" + "precr.qb.ph %[prim4], %[p4], %[p3] \n\t" + + "precrq.qb.ph %[p5], %[prim1], %[prim2] \n\t" + "precr.qb.ph %[p3], %[prim1], %[prim2] \n\t" + "precrq.qb.ph %[sec3], %[prim3], %[prim4] \n\t" + "precr.qb.ph %[sec4], %[prim3], %[prim4] \n\t" + + "precrq.ph.w %[p6], %[p5], %[sec3] \n\t" + "precrq.ph.w %[p4], %[p3], %[sec4] \n\t" + "append %[p5], %[sec3], 16 \n\t" + "append %[p3], %[sec4], 16 \n\t" + + : [prim1] "=&r"(prim1), [prim2] "=&r"(prim2), [prim3] "=&r"(prim3), + [prim4] "=&r"(prim4), [p6] "+r"(p6), [p5] "+r"(p5), [p4] "+r"(p4), + [p3] "+r"(p3), [sec3] "=&r"(sec3), [sec4] "=&r"(sec4) + :); + + /* if (p1 - p4 == 0) and (p2 - p3 == 0) + * mask will be zero and filtering is not needed + */ + if (!(((p1 - p4) == 0) && ((p2 - p3) == 0))) { + vp8_filter_mask_vec_mips(limit, flimit, p1, p2, pm1, p0, p3, p4, p5, p6, + thresh, &hev, &mask); + + /* if mask == 0 do filtering is not needed */ + if (mask) { + /* filtering */ + vp8_mbfilter_mips(mask, hev, &p0, &p1, &p2, &p3, &p4, &p5); + + /* don't use transpose on output data + * because memory isn't aligned + */ + __asm__ __volatile__( + "sb %[p5], 2(%[s4]) \n\t" + "sb %[p4], 1(%[s4]) \n\t" + "sb %[p3], 0(%[s4]) \n\t" + "sb %[p2], -1(%[s4]) \n\t" + "sb %[p1], -2(%[s4]) \n\t" + "sb %[p0], -3(%[s4]) \n\t" + : + : [p5] "r"(p5), [p4] "r"(p4), [p3] "r"(p3), [s4] "r"(s4), + [p2] "r"(p2), [p1] "r"(p1), [p0] "r"(p0)); + + __asm__ __volatile__( + "srl %[p5], %[p5], 8 \n\t" + "srl %[p4], %[p4], 8 \n\t" + "srl %[p3], %[p3], 8 \n\t" + "srl %[p2], %[p2], 8 \n\t" + "srl %[p1], %[p1], 8 \n\t" + "srl %[p0], %[p0], 8 \n\t" + : [p5] "+r"(p5), [p4] "+r"(p4), [p3] "+r"(p3), [p2] "+r"(p2), + [p1] "+r"(p1), [p0] "+r"(p0) + :); + + __asm__ __volatile__( + "sb %[p5], 2(%[s3]) \n\t" + "sb %[p4], 1(%[s3]) \n\t" + "sb %[p3], 0(%[s3]) \n\t" + "sb %[p2], -1(%[s3]) \n\t" + "sb %[p1], -2(%[s3]) \n\t" + "sb %[p0], -3(%[s3]) \n\t" + : + : [p5] "r"(p5), [p4] "r"(p4), [p3] "r"(p3), [s3] "r"(s3), + [p2] "r"(p2), [p1] "r"(p1), [p0] "r"(p0)); + + __asm__ __volatile__( + "srl %[p5], %[p5], 8 \n\t" + "srl %[p4], %[p4], 8 \n\t" + "srl %[p3], %[p3], 8 \n\t" + "srl %[p2], %[p2], 8 \n\t" + "srl %[p1], %[p1], 8 \n\t" + "srl %[p0], %[p0], 8 \n\t" + : [p5] "+r"(p5), [p4] "+r"(p4), [p3] "+r"(p3), [p2] "+r"(p2), + [p1] "+r"(p1), [p0] "+r"(p0) + :); + + __asm__ __volatile__( + "sb %[p5], 2(%[s2]) \n\t" + "sb %[p4], 1(%[s2]) \n\t" + "sb %[p3], 0(%[s2]) \n\t" + "sb %[p2], -1(%[s2]) \n\t" + "sb %[p1], -2(%[s2]) \n\t" + "sb %[p0], -3(%[s2]) \n\t" + : + : [p5] "r"(p5), [p4] "r"(p4), [p3] "r"(p3), [s2] "r"(s2), + [p2] "r"(p2), [p1] "r"(p1), [p0] "r"(p0)); + + __asm__ __volatile__( + "srl %[p5], %[p5], 8 \n\t" + "srl %[p4], %[p4], 8 \n\t" + "srl %[p3], %[p3], 8 \n\t" + "srl %[p2], %[p2], 8 \n\t" + "srl %[p1], %[p1], 8 \n\t" + "srl %[p0], %[p0], 8 \n\t" + : [p5] "+r"(p5), [p4] "+r"(p4), [p3] "+r"(p3), [p2] "+r"(p2), + [p1] "+r"(p1), [p0] "+r"(p0) + :); + + __asm__ __volatile__( + "sb %[p5], 2(%[s1]) \n\t" + "sb %[p4], 1(%[s1]) \n\t" + "sb %[p3], 0(%[s1]) \n\t" + "sb %[p2], -1(%[s1]) \n\t" + "sb %[p1], -2(%[s1]) \n\t" + "sb %[p0], -3(%[s1]) \n\t" + : + : [p5] "r"(p5), [p4] "r"(p4), [p3] "r"(p3), [s1] "r"(s1), + [p2] "r"(p2), [p1] "r"(p1), [p0] "r"(p0)); + } + } + + s1 = s4 + p; + s2 = s1 + p; + s3 = s2 + p; + s4 = s3 + p; + + /* load quad-byte vectors + * memory is 4 byte aligned + */ + p2 = *((uint32_t *)(s1 - 4)); + p6 = *((uint32_t *)(s1)); + p1 = *((uint32_t *)(s2 - 4)); + p5 = *((uint32_t *)(s2)); + p0 = *((uint32_t *)(s3 - 4)); + p4 = *((uint32_t *)(s3)); + pm1 = *((uint32_t *)(s4 - 4)); + p3 = *((uint32_t *)(s4)); + + /* transpose pm1, p0, p1, p2 */ + __asm__ __volatile__( + "precrq.qb.ph %[prim1], %[p2], %[p1] \n\t" + "precr.qb.ph %[prim2], %[p2], %[p1] \n\t" + "precrq.qb.ph %[prim3], %[p0], %[pm1] \n\t" + "precr.qb.ph %[prim4], %[p0], %[pm1] \n\t" + + "precrq.qb.ph %[p1], %[prim1], %[prim2] \n\t" + "precr.qb.ph %[pm1], %[prim1], %[prim2] \n\t" + "precrq.qb.ph %[sec3], %[prim3], %[prim4] \n\t" + "precr.qb.ph %[sec4], %[prim3], %[prim4] \n\t" + + "precrq.ph.w %[p2], %[p1], %[sec3] \n\t" + "precrq.ph.w %[p0], %[pm1], %[sec4] \n\t" + "append %[p1], %[sec3], 16 \n\t" + "append %[pm1], %[sec4], 16 \n\t" + + : [prim1] "=&r"(prim1), [prim2] "=&r"(prim2), [prim3] "=&r"(prim3), + [prim4] "=&r"(prim4), [p2] "+r"(p2), [p1] "+r"(p1), [p0] "+r"(p0), + [pm1] "+r"(pm1), [sec3] "=&r"(sec3), [sec4] "=&r"(sec4) + :); + + /* transpose p3, p4, p5, p6 */ + __asm__ __volatile__( + "precrq.qb.ph %[prim1], %[p6], %[p5] \n\t" + "precr.qb.ph %[prim2], %[p6], %[p5] \n\t" + "precrq.qb.ph %[prim3], %[p4], %[p3] \n\t" + "precr.qb.ph %[prim4], %[p4], %[p3] \n\t" + + "precrq.qb.ph %[p5], %[prim1], %[prim2] \n\t" + "precr.qb.ph %[p3], %[prim1], %[prim2] \n\t" + "precrq.qb.ph %[sec3], %[prim3], %[prim4] \n\t" + "precr.qb.ph %[sec4], %[prim3], %[prim4] \n\t" + + "precrq.ph.w %[p6], %[p5], %[sec3] \n\t" + "precrq.ph.w %[p4], %[p3], %[sec4] \n\t" + "append %[p5], %[sec3], 16 \n\t" + "append %[p3], %[sec4], 16 \n\t" + + : [prim1] "=&r"(prim1), [prim2] "=&r"(prim2), [prim3] "=&r"(prim3), + [prim4] "=&r"(prim4), [p6] "+r"(p6), [p5] "+r"(p5), [p4] "+r"(p4), + [p3] "+r"(p3), [sec3] "=&r"(sec3), [sec4] "=&r"(sec4) + :); + + /* if (p1 - p4 == 0) and (p2 - p3 == 0) + * mask will be zero and filtering is not needed + */ + if (!(((p1 - p4) == 0) && ((p2 - p3) == 0))) { + vp8_filter_mask_vec_mips(limit, flimit, p1, p2, pm1, p0, p3, p4, p5, p6, + thresh, &hev, &mask); + + /* if mask == 0 do filtering is not needed */ + if (mask) { + /* filtering */ + vp8_mbfilter_mips(mask, hev, &p0, &p1, &p2, &p3, &p4, &p5); + + /* don't use transpose on output data + * because memory isn't aligned + */ + __asm__ __volatile__( + "sb %[p5], 2(%[s4]) \n\t" + "sb %[p4], 1(%[s4]) \n\t" + "sb %[p3], 0(%[s4]) \n\t" + "sb %[p2], -1(%[s4]) \n\t" + "sb %[p1], -2(%[s4]) \n\t" + "sb %[p0], -3(%[s4]) \n\t" + : + : [p5] "r"(p5), [p4] "r"(p4), [p3] "r"(p3), [s4] "r"(s4), + [p2] "r"(p2), [p1] "r"(p1), [p0] "r"(p0)); + + __asm__ __volatile__( + "srl %[p5], %[p5], 8 \n\t" + "srl %[p4], %[p4], 8 \n\t" + "srl %[p3], %[p3], 8 \n\t" + "srl %[p2], %[p2], 8 \n\t" + "srl %[p1], %[p1], 8 \n\t" + "srl %[p0], %[p0], 8 \n\t" + : [p5] "+r"(p5), [p4] "+r"(p4), [p3] "+r"(p3), [p2] "+r"(p2), + [p1] "+r"(p1), [p0] "+r"(p0) + :); + + __asm__ __volatile__( + "sb %[p5], 2(%[s3]) \n\t" + "sb %[p4], 1(%[s3]) \n\t" + "sb %[p3], 0(%[s3]) \n\t" + "sb %[p2], -1(%[s3]) \n\t" + "sb %[p1], -2(%[s3]) \n\t" + "sb %[p0], -3(%[s3]) \n\t" + : + : [p5] "r"(p5), [p4] "r"(p4), [p3] "r"(p3), [s3] "r"(s3), + [p2] "r"(p2), [p1] "r"(p1), [p0] "r"(p0)); + + __asm__ __volatile__( + "srl %[p5], %[p5], 8 \n\t" + "srl %[p4], %[p4], 8 \n\t" + "srl %[p3], %[p3], 8 \n\t" + "srl %[p2], %[p2], 8 \n\t" + "srl %[p1], %[p1], 8 \n\t" + "srl %[p0], %[p0], 8 \n\t" + : [p5] "+r"(p5), [p4] "+r"(p4), [p3] "+r"(p3), [p2] "+r"(p2), + [p1] "+r"(p1), [p0] "+r"(p0) + :); + + __asm__ __volatile__( + "sb %[p5], 2(%[s2]) \n\t" + "sb %[p4], 1(%[s2]) \n\t" + "sb %[p3], 0(%[s2]) \n\t" + "sb %[p2], -1(%[s2]) \n\t" + "sb %[p1], -2(%[s2]) \n\t" + "sb %[p0], -3(%[s2]) \n\t" + : + : [p5] "r"(p5), [p4] "r"(p4), [p3] "r"(p3), [s2] "r"(s2), + [p2] "r"(p2), [p1] "r"(p1), [p0] "r"(p0)); + + __asm__ __volatile__( + "srl %[p5], %[p5], 8 \n\t" + "srl %[p4], %[p4], 8 \n\t" + "srl %[p3], %[p3], 8 \n\t" + "srl %[p2], %[p2], 8 \n\t" + "srl %[p1], %[p1], 8 \n\t" + "srl %[p0], %[p0], 8 \n\t" + : [p5] "+r"(p5), [p4] "+r"(p4), [p3] "+r"(p3), [p2] "+r"(p2), + [p1] "+r"(p1), [p0] "+r"(p0) + :); + + __asm__ __volatile__( + "sb %[p5], 2(%[s1]) \n\t" + "sb %[p4], 1(%[s1]) \n\t" + "sb %[p3], 0(%[s1]) \n\t" + "sb %[p2], -1(%[s1]) \n\t" + "sb %[p1], -2(%[s1]) \n\t" + "sb %[p0], -3(%[s1]) \n\t" + : + : [p5] "r"(p5), [p4] "r"(p4), [p3] "r"(p3), [s1] "r"(s1), + [p2] "r"(p2), [p1] "r"(p1), [p0] "r"(p0)); + } + } +} + +/* Horizontal MB filtering */ +void vp8_loop_filter_mbh_dspr2(unsigned char *y_ptr, unsigned char *u_ptr, + unsigned char *v_ptr, int y_stride, + int uv_stride, loop_filter_info *lfi) { + unsigned int thresh_vec, flimit_vec, limit_vec; + unsigned char thresh, flimit, limit, flimit_temp; + + /* use direct value instead pointers */ + limit = *(lfi->lim); + flimit_temp = *(lfi->mblim); + thresh = *(lfi->hev_thr); + flimit = flimit_temp; + + /* create quad-byte */ + __asm__ __volatile__( + "replv.qb %[thresh_vec], %[thresh] \n\t" + "replv.qb %[flimit_vec], %[flimit] \n\t" + "replv.qb %[limit_vec], %[limit] \n\t" + : [thresh_vec] "=&r"(thresh_vec), [flimit_vec] "=&r"(flimit_vec), + [limit_vec] "=r"(limit_vec) + : [thresh] "r"(thresh), [flimit] "r"(flimit), [limit] "r"(limit)); + + vp8_mbloop_filter_horizontal_edge_mips(y_ptr, y_stride, flimit_vec, limit_vec, + thresh_vec, 16); + + if (u_ptr) { + vp8_mbloop_filter_uvhorizontal_edge_mips(u_ptr, uv_stride, flimit_vec, + limit_vec, thresh_vec, 0); + } + + if (v_ptr) { + vp8_mbloop_filter_uvhorizontal_edge_mips(v_ptr, uv_stride, flimit_vec, + limit_vec, thresh_vec, 0); + } +} + +/* Vertical MB Filtering */ +void vp8_loop_filter_mbv_dspr2(unsigned char *y_ptr, unsigned char *u_ptr, + unsigned char *v_ptr, int y_stride, + int uv_stride, loop_filter_info *lfi) { + unsigned int thresh_vec, flimit_vec, limit_vec; + unsigned char thresh, flimit, limit, flimit_temp; + + /* use direct value instead pointers */ + limit = *(lfi->lim); + flimit_temp = *(lfi->mblim); + thresh = *(lfi->hev_thr); + flimit = flimit_temp; + + /* create quad-byte */ + __asm__ __volatile__( + "replv.qb %[thresh_vec], %[thresh] \n\t" + "replv.qb %[flimit_vec], %[flimit] \n\t" + "replv.qb %[limit_vec], %[limit] \n\t" + : [thresh_vec] "=&r"(thresh_vec), [flimit_vec] "=&r"(flimit_vec), + [limit_vec] "=r"(limit_vec) + : [thresh] "r"(thresh), [flimit] "r"(flimit), [limit] "r"(limit)); + + vp8_mbloop_filter_vertical_edge_mips(y_ptr, y_stride, flimit_vec, limit_vec, + thresh_vec, 16); + + if (u_ptr) + vp8_mbloop_filter_uvvertical_edge_mips(u_ptr, uv_stride, flimit_vec, + limit_vec, thresh_vec, 0); + + if (v_ptr) + vp8_mbloop_filter_uvvertical_edge_mips(v_ptr, uv_stride, flimit_vec, + limit_vec, thresh_vec, 0); +} + +/* Horizontal B Filtering */ +void vp8_loop_filter_bh_dspr2(unsigned char *y_ptr, unsigned char *u_ptr, + unsigned char *v_ptr, int y_stride, int uv_stride, + loop_filter_info *lfi) { + unsigned int thresh_vec, flimit_vec, limit_vec; + unsigned char thresh, flimit, limit, flimit_temp; + + /* use direct value instead pointers */ + limit = *(lfi->lim); + flimit_temp = *(lfi->blim); + thresh = *(lfi->hev_thr); + flimit = flimit_temp; + + /* create quad-byte */ + __asm__ __volatile__( + "replv.qb %[thresh_vec], %[thresh] \n\t" + "replv.qb %[flimit_vec], %[flimit] \n\t" + "replv.qb %[limit_vec], %[limit] \n\t" + : [thresh_vec] "=&r"(thresh_vec), [flimit_vec] "=&r"(flimit_vec), + [limit_vec] "=r"(limit_vec) + : [thresh] "r"(thresh), [flimit] "r"(flimit), [limit] "r"(limit)); + + vp8_loop_filter_horizontal_edge_mips(y_ptr + 4 * y_stride, y_stride, + flimit_vec, limit_vec, thresh_vec, 16); + vp8_loop_filter_horizontal_edge_mips(y_ptr + 8 * y_stride, y_stride, + flimit_vec, limit_vec, thresh_vec, 16); + vp8_loop_filter_horizontal_edge_mips(y_ptr + 12 * y_stride, y_stride, + flimit_vec, limit_vec, thresh_vec, 16); + + if (u_ptr) + vp8_loop_filter_uvhorizontal_edge_mips( + u_ptr + 4 * uv_stride, uv_stride, flimit_vec, limit_vec, thresh_vec, 0); + + if (v_ptr) + vp8_loop_filter_uvhorizontal_edge_mips( + v_ptr + 4 * uv_stride, uv_stride, flimit_vec, limit_vec, thresh_vec, 0); +} + +/* Vertical B Filtering */ +void vp8_loop_filter_bv_dspr2(unsigned char *y_ptr, unsigned char *u_ptr, + unsigned char *v_ptr, int y_stride, int uv_stride, + loop_filter_info *lfi) { + unsigned int thresh_vec, flimit_vec, limit_vec; + unsigned char thresh, flimit, limit, flimit_temp; + + /* use direct value instead pointers */ + limit = *(lfi->lim); + flimit_temp = *(lfi->blim); + thresh = *(lfi->hev_thr); + flimit = flimit_temp; + + /* create quad-byte */ + __asm__ __volatile__( + "replv.qb %[thresh_vec], %[thresh] \n\t" + "replv.qb %[flimit_vec], %[flimit] \n\t" + "replv.qb %[limit_vec], %[limit] \n\t" + : [thresh_vec] "=&r"(thresh_vec), [flimit_vec] "=&r"(flimit_vec), + [limit_vec] "=r"(limit_vec) + : [thresh] "r"(thresh), [flimit] "r"(flimit), [limit] "r"(limit)); + + vp8_loop_filter_vertical_edge_mips(y_ptr + 4, y_stride, flimit_vec, limit_vec, + thresh_vec, 16); + vp8_loop_filter_vertical_edge_mips(y_ptr + 8, y_stride, flimit_vec, limit_vec, + thresh_vec, 16); + vp8_loop_filter_vertical_edge_mips(y_ptr + 12, y_stride, flimit_vec, + limit_vec, thresh_vec, 16); + + if (u_ptr) + vp8_loop_filter_uvvertical_edge_mips(u_ptr + 4, uv_stride, flimit_vec, + limit_vec, thresh_vec, 0); + + if (v_ptr) + vp8_loop_filter_uvvertical_edge_mips(v_ptr + 4, uv_stride, flimit_vec, + limit_vec, thresh_vec, 0); +} + +#endif diff --git a/vp8/common/mips/mmi/copymem_mmi.c b/vp8/common/mips/mmi/copymem_mmi.c new file mode 100644 index 0000000..86a32aa --- /dev/null +++ b/vp8/common/mips/mmi/copymem_mmi.c @@ -0,0 +1,114 @@ +/* + * Copyright (c) 2017 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "./vp8_rtcd.h" +#include "vpx_ports/asmdefs_mmi.h" + +#define COPY_MEM_16X2 \ + "gsldlc1 %[ftmp0], 0x07(%[src]) \n\t" \ + "gsldrc1 %[ftmp0], 0x00(%[src]) \n\t" \ + "ldl %[tmp0], 0x0f(%[src]) \n\t" \ + "ldr %[tmp0], 0x08(%[src]) \n\t" \ + MMI_ADDU(%[src], %[src], %[src_stride]) \ + "gssdlc1 %[ftmp0], 0x07(%[dst]) \n\t" \ + "gssdrc1 %[ftmp0], 0x00(%[dst]) \n\t" \ + "sdl %[tmp0], 0x0f(%[dst]) \n\t" \ + "sdr %[tmp0], 0x08(%[dst]) \n\t" \ + MMI_ADDU(%[dst], %[dst], %[dst_stride]) \ + "gsldlc1 %[ftmp1], 0x07(%[src]) \n\t" \ + "gsldrc1 %[ftmp1], 0x00(%[src]) \n\t" \ + "ldl %[tmp1], 0x0f(%[src]) \n\t" \ + "ldr %[tmp1], 0x08(%[src]) \n\t" \ + MMI_ADDU(%[src], %[src], %[src_stride]) \ + "gssdlc1 %[ftmp1], 0x07(%[dst]) \n\t" \ + "gssdrc1 %[ftmp1], 0x00(%[dst]) \n\t" \ + "sdl %[tmp1], 0x0f(%[dst]) \n\t" \ + "sdr %[tmp1], 0x08(%[dst]) \n\t" \ + MMI_ADDU(%[dst], %[dst], %[dst_stride]) + +#define COPY_MEM_8X2 \ + "gsldlc1 %[ftmp0], 0x07(%[src]) \n\t" \ + "gsldrc1 %[ftmp0], 0x00(%[src]) \n\t" \ + MMI_ADDU(%[src], %[src], %[src_stride]) \ + "ldl %[tmp0], 0x07(%[src]) \n\t" \ + "ldr %[tmp0], 0x00(%[src]) \n\t" \ + MMI_ADDU(%[src], %[src], %[src_stride]) \ + \ + "gssdlc1 %[ftmp0], 0x07(%[dst]) \n\t" \ + "gssdrc1 %[ftmp0], 0x00(%[dst]) \n\t" \ + MMI_ADDU(%[dst], %[dst], %[dst_stride]) \ + "sdl %[tmp0], 0x07(%[dst]) \n\t" \ + "sdr %[tmp0], 0x00(%[dst]) \n\t" \ + MMI_ADDU(%[dst], %[dst], %[dst_stride]) + +void vp8_copy_mem16x16_mmi(unsigned char *src, int src_stride, + unsigned char *dst, int dst_stride) { + double ftmp[2]; + uint64_t tmp[2]; + uint8_t loop_count = 4; + + /* clang-format off */ + __asm__ volatile ( + "1: \n\t" + COPY_MEM_16X2 + COPY_MEM_16X2 + MMI_ADDIU(%[loop_count], %[loop_count], -0x01) + "bnez %[loop_count], 1b \n\t" + : [ftmp0]"=&f"(ftmp[0]), [ftmp1]"=&f"(ftmp[1]), + [tmp0]"=&r"(tmp[0]), [tmp1]"=&r"(tmp[1]), + [loop_count]"+&r"(loop_count), + [dst]"+&r"(dst), [src]"+&r"(src) + : [src_stride]"r"((mips_reg)src_stride), + [dst_stride]"r"((mips_reg)dst_stride) + : "memory" + ); + /* clang-format on */ +} + +void vp8_copy_mem8x8_mmi(unsigned char *src, int src_stride, unsigned char *dst, + int dst_stride) { + double ftmp[2]; + uint64_t tmp[1]; + uint8_t loop_count = 4; + + /* clang-format off */ + __asm__ volatile ( + "1: \n\t" + COPY_MEM_8X2 + MMI_ADDIU(%[loop_count], %[loop_count], -0x01) + "bnez %[loop_count], 1b \n\t" + : [ftmp0]"=&f"(ftmp[0]), [ftmp1]"=&f"(ftmp[1]), + [tmp0]"=&r"(tmp[0]), [loop_count]"+&r"(loop_count), + [dst]"+&r"(dst), [src]"+&r"(src) + : [src_stride]"r"((mips_reg)src_stride), + [dst_stride]"r"((mips_reg)dst_stride) + : "memory" + ); + /* clang-format on */ +} + +void vp8_copy_mem8x4_mmi(unsigned char *src, int src_stride, unsigned char *dst, + int dst_stride) { + double ftmp[2]; + uint64_t tmp[1]; + + /* clang-format off */ + __asm__ volatile ( + COPY_MEM_8X2 + COPY_MEM_8X2 + : [ftmp0]"=&f"(ftmp[0]), [ftmp1]"=&f"(ftmp[1]), + [tmp0]"=&r"(tmp[0]), + [dst]"+&r"(dst), [src]"+&r"(src) + : [src_stride]"r"((mips_reg)src_stride), + [dst_stride]"r"((mips_reg)dst_stride) + : "memory" + ); + /* clang-format on */ +} diff --git a/vp8/common/mips/mmi/dequantize_mmi.c b/vp8/common/mips/mmi/dequantize_mmi.c new file mode 100644 index 0000000..b3f8084 --- /dev/null +++ b/vp8/common/mips/mmi/dequantize_mmi.c @@ -0,0 +1,115 @@ +/* + * Copyright (c) 2017 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "./vp8_rtcd.h" +#include "vp8/common/blockd.h" +#include "vpx_mem/vpx_mem.h" +#include "vpx_ports/asmdefs_mmi.h" + +void vp8_dequantize_b_mmi(BLOCKD *d, int16_t *DQC) { + double ftmp[8]; + + __asm__ volatile( + "gsldlc1 %[ftmp0], 0x07(%[qcoeff]) \n\t" + "gsldrc1 %[ftmp0], 0x00(%[qcoeff]) \n\t" + "gsldlc1 %[ftmp1], 0x0f(%[qcoeff]) \n\t" + "gsldrc1 %[ftmp1], 0x08(%[qcoeff]) \n\t" + "gsldlc1 %[ftmp2], 0x17(%[qcoeff]) \n\t" + "gsldrc1 %[ftmp2], 0x10(%[qcoeff]) \n\t" + "gsldlc1 %[ftmp3], 0x1f(%[qcoeff]) \n\t" + "gsldrc1 %[ftmp3], 0x18(%[qcoeff]) \n\t" + + "gsldlc1 %[ftmp4], 0x07(%[DQC]) \n\t" + "gsldrc1 %[ftmp4], 0x00(%[DQC]) \n\t" + "gsldlc1 %[ftmp5], 0x0f(%[DQC]) \n\t" + "gsldrc1 %[ftmp5], 0x08(%[DQC]) \n\t" + "gsldlc1 %[ftmp6], 0x17(%[DQC]) \n\t" + "gsldrc1 %[ftmp6], 0x10(%[DQC]) \n\t" + "gsldlc1 %[ftmp7], 0x1f(%[DQC]) \n\t" + "gsldrc1 %[ftmp7], 0x18(%[DQC]) \n\t" + + "pmullh %[ftmp0], %[ftmp0], %[ftmp4] \n\t" + "pmullh %[ftmp1], %[ftmp1], %[ftmp5] \n\t" + "pmullh %[ftmp2], %[ftmp2], %[ftmp6] \n\t" + "pmullh %[ftmp3], %[ftmp3], %[ftmp7] \n\t" + + "gssdlc1 %[ftmp0], 0x07(%[dqcoeff]) \n\t" + "gssdrc1 %[ftmp0], 0x00(%[dqcoeff]) \n\t" + "gssdlc1 %[ftmp1], 0x0f(%[dqcoeff]) \n\t" + "gssdrc1 %[ftmp1], 0x08(%[dqcoeff]) \n\t" + "gssdlc1 %[ftmp2], 0x17(%[dqcoeff]) \n\t" + "gssdrc1 %[ftmp2], 0x10(%[dqcoeff]) \n\t" + "gssdlc1 %[ftmp3], 0x1f(%[dqcoeff]) \n\t" + "gssdrc1 %[ftmp3], 0x18(%[dqcoeff]) \n\t" + : [ftmp0] "=&f"(ftmp[0]), [ftmp1] "=&f"(ftmp[1]), [ftmp2] "=&f"(ftmp[2]), + [ftmp3] "=&f"(ftmp[3]), [ftmp4] "=&f"(ftmp[4]), [ftmp5] "=&f"(ftmp[5]), + [ftmp6] "=&f"(ftmp[6]), [ftmp7] "=&f"(ftmp[7]) + : [dqcoeff] "r"(d->dqcoeff), [qcoeff] "r"(d->qcoeff), [DQC] "r"(DQC) + : "memory"); +} + +void vp8_dequant_idct_add_mmi(int16_t *input, int16_t *dq, unsigned char *dest, + int stride) { + double ftmp[8]; + + __asm__ volatile( + "gsldlc1 %[ftmp0], 0x07(%[dq]) \n\t" + "gsldrc1 %[ftmp0], 0x00(%[dq]) \n\t" + "gsldlc1 %[ftmp1], 0x0f(%[dq]) \n\t" + "gsldrc1 %[ftmp1], 0x08(%[dq]) \n\t" + "gsldlc1 %[ftmp2], 0x17(%[dq]) \n\t" + "gsldrc1 %[ftmp2], 0x10(%[dq]) \n\t" + "gsldlc1 %[ftmp3], 0x1f(%[dq]) \n\t" + "gsldrc1 %[ftmp3], 0x18(%[dq]) \n\t" + + "gsldlc1 %[ftmp4], 0x07(%[input]) \n\t" + "gsldrc1 %[ftmp4], 0x00(%[input]) \n\t" + "gsldlc1 %[ftmp5], 0x0f(%[input]) \n\t" + "gsldrc1 %[ftmp5], 0x08(%[input]) \n\t" + "gsldlc1 %[ftmp6], 0x17(%[input]) \n\t" + "gsldrc1 %[ftmp6], 0x10(%[input]) \n\t" + "gsldlc1 %[ftmp7], 0x1f(%[input]) \n\t" + "gsldrc1 %[ftmp7], 0x18(%[input]) \n\t" + + "pmullh %[ftmp0], %[ftmp0], %[ftmp4] \n\t" + "pmullh %[ftmp1], %[ftmp1], %[ftmp5] \n\t" + "pmullh %[ftmp2], %[ftmp2], %[ftmp6] \n\t" + "pmullh %[ftmp3], %[ftmp3], %[ftmp7] \n\t" + + "gssdlc1 %[ftmp0], 0x07(%[input]) \n\t" + "gssdrc1 %[ftmp0], 0x00(%[input]) \n\t" + "gssdlc1 %[ftmp1], 0x0f(%[input]) \n\t" + "gssdrc1 %[ftmp1], 0x08(%[input]) \n\t" + "gssdlc1 %[ftmp2], 0x17(%[input]) \n\t" + "gssdrc1 %[ftmp2], 0x10(%[input]) \n\t" + "gssdlc1 %[ftmp3], 0x1f(%[input]) \n\t" + "gssdrc1 %[ftmp3], 0x18(%[input]) \n\t" + : [ftmp0] "=&f"(ftmp[0]), [ftmp1] "=&f"(ftmp[1]), [ftmp2] "=&f"(ftmp[2]), + [ftmp3] "=&f"(ftmp[3]), [ftmp4] "=&f"(ftmp[4]), [ftmp5] "=&f"(ftmp[5]), + [ftmp6] "=&f"(ftmp[6]), [ftmp7] "=&f"(ftmp[7]) + : [dq] "r"(dq), [input] "r"(input) + : "memory"); + + vp8_short_idct4x4llm_mmi(input, dest, stride, dest, stride); + + __asm__ volatile( + "xor %[ftmp0], %[ftmp0], %[ftmp0] \n\t" + "gssdlc1 %[ftmp0], 0x07(%[input]) \n\t" + "gssdrc1 %[ftmp0], 0x00(%[input]) \n\t" + "sdl $0, 0x0f(%[input]) \n\t" + "sdr $0, 0x08(%[input]) \n\t" + "gssdlc1 %[ftmp0], 0x17(%[input]) \n\t" + "gssdrc1 %[ftmp0], 0x10(%[input]) \n\t" + "sdl $0, 0x1f(%[input]) \n\t" + "sdr $0, 0x18(%[input]) \n\t" + : [ftmp0] "=&f"(ftmp[0]) + : [input] "r"(input) + : "memory"); +} diff --git a/vp8/common/mips/mmi/idct_blk_mmi.c b/vp8/common/mips/mmi/idct_blk_mmi.c new file mode 100644 index 0000000..f6020ab --- /dev/null +++ b/vp8/common/mips/mmi/idct_blk_mmi.c @@ -0,0 +1,71 @@ +/* + * Copyright (c) 2017 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "./vp8_rtcd.h" +#include "vpx_mem/vpx_mem.h" + +void vp8_dequant_idct_add_y_block_mmi(int16_t *q, int16_t *dq, uint8_t *dst, + int stride, int8_t *eobs) { + int i, j; + + for (i = 0; i < 4; i++) { + for (j = 0; j < 4; j++) { + if (*eobs++ > 1) { + vp8_dequant_idct_add_mmi(q, dq, dst, stride); + } else { + vp8_dc_only_idct_add_mmi(q[0] * dq[0], dst, stride, dst, stride); + memset(q, 0, 2 * sizeof(q[0])); + } + + q += 16; + dst += 4; + } + + dst += 4 * stride - 16; + } +} + +void vp8_dequant_idct_add_uv_block_mmi(int16_t *q, int16_t *dq, uint8_t *dstu, + uint8_t *dstv, int stride, + int8_t *eobs) { + int i, j; + + for (i = 0; i < 2; i++) { + for (j = 0; j < 2; j++) { + if (*eobs++ > 1) { + vp8_dequant_idct_add_mmi(q, dq, dstu, stride); + } else { + vp8_dc_only_idct_add_mmi(q[0] * dq[0], dstu, stride, dstu, stride); + memset(q, 0, 2 * sizeof(q[0])); + } + + q += 16; + dstu += 4; + } + + dstu += 4 * stride - 8; + } + + for (i = 0; i < 2; i++) { + for (j = 0; j < 2; j++) { + if (*eobs++ > 1) { + vp8_dequant_idct_add_mmi(q, dq, dstv, stride); + } else { + vp8_dc_only_idct_add_mmi(q[0] * dq[0], dstv, stride, dstv, stride); + memset(q, 0, 2 * sizeof(q[0])); + } + + q += 16; + dstv += 4; + } + + dstv += 4 * stride - 8; + } +} diff --git a/vp8/common/mips/mmi/idctllm_mmi.c b/vp8/common/mips/mmi/idctllm_mmi.c new file mode 100644 index 0000000..5e48f59 --- /dev/null +++ b/vp8/common/mips/mmi/idctllm_mmi.c @@ -0,0 +1,328 @@ +/* + * Copyright (c) 2017 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "./vp8_rtcd.h" +#include "vpx_ports/mem.h" +#include "vpx_ports/asmdefs_mmi.h" + +#define TRANSPOSE_4H \ + "xor %[ftmp0], %[ftmp0], %[ftmp0] \n\t" \ + MMI_LI(%[tmp0], 0x93) \ + "mtc1 %[tmp0], %[ftmp10] \n\t" \ + "punpcklhw %[ftmp5], %[ftmp1], %[ftmp0] \n\t" \ + "punpcklhw %[ftmp9], %[ftmp2], %[ftmp0] \n\t" \ + "pshufh %[ftmp9], %[ftmp9], %[ftmp10] \n\t" \ + "or %[ftmp5], %[ftmp5], %[ftmp9] \n\t" \ + "punpckhhw %[ftmp6], %[ftmp1], %[ftmp0] \n\t" \ + "punpckhhw %[ftmp9], %[ftmp2], %[ftmp0] \n\t" \ + "pshufh %[ftmp9], %[ftmp9], %[ftmp10] \n\t" \ + "or %[ftmp6], %[ftmp6], %[ftmp9] \n\t" \ + "punpcklhw %[ftmp7], %[ftmp3], %[ftmp0] \n\t" \ + "punpcklhw %[ftmp9], %[ftmp4], %[ftmp0] \n\t" \ + "pshufh %[ftmp9], %[ftmp9], %[ftmp10] \n\t" \ + "or %[ftmp7], %[ftmp7], %[ftmp9] \n\t" \ + "punpckhhw %[ftmp8], %[ftmp3], %[ftmp0] \n\t" \ + "punpckhhw %[ftmp9], %[ftmp4], %[ftmp0] \n\t" \ + "pshufh %[ftmp9], %[ftmp9], %[ftmp10] \n\t" \ + "or %[ftmp8], %[ftmp8], %[ftmp9] \n\t" \ + "punpcklwd %[ftmp1], %[ftmp5], %[ftmp7] \n\t" \ + "punpckhwd %[ftmp2], %[ftmp5], %[ftmp7] \n\t" \ + "punpcklwd %[ftmp3], %[ftmp6], %[ftmp8] \n\t" \ + "punpckhwd %[ftmp4], %[ftmp6], %[ftmp8] \n\t" + +void vp8_short_idct4x4llm_mmi(int16_t *input, unsigned char *pred_ptr, + int pred_stride, unsigned char *dst_ptr, + int dst_stride) { + double ftmp[12]; + uint32_t tmp[0]; + DECLARE_ALIGNED(8, const uint64_t, ff_ph_04) = { 0x0004000400040004ULL }; + DECLARE_ALIGNED(8, const uint64_t, ff_ph_4e7b) = { 0x4e7b4e7b4e7b4e7bULL }; + DECLARE_ALIGNED(8, const uint64_t, ff_ph_22a3) = { 0x22a322a322a322a3ULL }; + + __asm__ volatile ( + MMI_LI(%[tmp0], 0x02) + "mtc1 %[tmp0], %[ftmp11] \n\t" + "xor %[ftmp0], %[ftmp0], %[ftmp0] \n\t" + + "gsldlc1 %[ftmp1], 0x07(%[ip]) \n\t" + "gsldrc1 %[ftmp1], 0x00(%[ip]) \n\t" + "gsldlc1 %[ftmp2], 0x0f(%[ip]) \n\t" + "gsldrc1 %[ftmp2], 0x08(%[ip]) \n\t" + "gsldlc1 %[ftmp3], 0x17(%[ip]) \n\t" + "gsldrc1 %[ftmp3], 0x10(%[ip]) \n\t" + "gsldlc1 %[ftmp4], 0x1f(%[ip]) \n\t" + "gsldrc1 %[ftmp4], 0x18(%[ip]) \n\t" + + // ip[0...3] + ip[8...11] + "paddh %[ftmp5], %[ftmp1], %[ftmp3] \n\t" + // ip[0...3] - ip[8...11] + "psubh %[ftmp6], %[ftmp1], %[ftmp3] \n\t" + // (ip[12...15] * sinpi8sqrt2) >> 16 + "psllh %[ftmp9], %[ftmp4], %[ftmp11] \n\t" + "pmulhh %[ftmp7], %[ftmp9], %[ff_ph_22a3] \n\t" + // (ip[ 4... 7] * sinpi8sqrt2) >> 16 + "psllh %[ftmp9], %[ftmp2], %[ftmp11] \n\t" + "pmulhh %[ftmp8], %[ftmp9], %[ff_ph_22a3] \n\t" + // ip[ 4... 7] + ((ip[ 4... 7] * cospi8sqrt2minus1) >> 16) + "pmulhh %[ftmp9], %[ftmp2], %[ff_ph_4e7b] \n\t" + "paddh %[ftmp9], %[ftmp9], %[ftmp2] \n\t" + // ip[12...15] + ((ip[12...15] * cospi8sqrt2minus1) >> 16) + "pmulhh %[ftmp10], %[ftmp4], %[ff_ph_4e7b] \n\t" + "paddh %[ftmp10], %[ftmp10], %[ftmp4] \n\t" + + "paddh %[ftmp1], %[ftmp5], %[ftmp7] \n\t" + "paddh %[ftmp1], %[ftmp1], %[ftmp9] \n\t" + "paddh %[ftmp2], %[ftmp6], %[ftmp8] \n\t" + "psubh %[ftmp2], %[ftmp2], %[ftmp10] \n\t" + "psubh %[ftmp3], %[ftmp6], %[ftmp8] \n\t" + "paddh %[ftmp3], %[ftmp3], %[ftmp10] \n\t" + "psubh %[ftmp4], %[ftmp5], %[ftmp7] \n\t" + "psubh %[ftmp4], %[ftmp4], %[ftmp9] \n\t" + + TRANSPOSE_4H + // a + "paddh %[ftmp5], %[ftmp1], %[ftmp3] \n\t" + // b + "psubh %[ftmp6], %[ftmp1], %[ftmp3] \n\t" + // c + "psllh %[ftmp9], %[ftmp2], %[ftmp11] \n\t" + "pmulhh %[ftmp9], %[ftmp9], %[ff_ph_22a3] \n\t" + "psubh %[ftmp7], %[ftmp9], %[ftmp4] \n\t" + "pmulhh %[ftmp10], %[ftmp4], %[ff_ph_4e7b] \n\t" + "psubh %[ftmp7], %[ftmp7], %[ftmp10] \n\t" + // d + "psllh %[ftmp9], %[ftmp4], %[ftmp11] \n\t" + "pmulhh %[ftmp9], %[ftmp9], %[ff_ph_22a3] \n\t" + "paddh %[ftmp8], %[ftmp9], %[ftmp2] \n\t" + "pmulhh %[ftmp10], %[ftmp2], %[ff_ph_4e7b] \n\t" + "paddh %[ftmp8], %[ftmp8], %[ftmp10] \n\t" + + MMI_LI(%[tmp0], 0x03) + "mtc1 %[tmp0], %[ftmp11] \n\t" + // a + d + "paddh %[ftmp1], %[ftmp5], %[ftmp8] \n\t" + "paddh %[ftmp1], %[ftmp1], %[ff_ph_04] \n\t" + "psrah %[ftmp1], %[ftmp1], %[ftmp11] \n\t" + // b + c + "paddh %[ftmp2], %[ftmp6], %[ftmp7] \n\t" + "paddh %[ftmp2], %[ftmp2], %[ff_ph_04] \n\t" + "psrah %[ftmp2], %[ftmp2], %[ftmp11] \n\t" + // b - c + "psubh %[ftmp3], %[ftmp6], %[ftmp7] \n\t" + "paddh %[ftmp3], %[ftmp3], %[ff_ph_04] \n\t" + "psrah %[ftmp3], %[ftmp3], %[ftmp11] \n\t" + // a - d + "psubh %[ftmp4], %[ftmp5], %[ftmp8] \n\t" + "paddh %[ftmp4], %[ftmp4], %[ff_ph_04] \n\t" + "psrah %[ftmp4], %[ftmp4], %[ftmp11] \n\t" + + TRANSPOSE_4H +#if _MIPS_SIM == _ABIO32 + "ulw %[tmp0], 0x00(%[pred_prt]) \n\t" + "mtc1 %[tmp0], %[ftmp5] \n\t" +#else + "gslwlc1 %[ftmp5], 0x03(%[pred_ptr]) \n\t" + "gslwrc1 %[ftmp5], 0x00(%[pred_ptr]) \n\t" +#endif + "punpcklbh %[ftmp5], %[ftmp5], %[ftmp0] \n\t" + "paddh %[ftmp1], %[ftmp1], %[ftmp5] \n\t" + "packushb %[ftmp1], %[ftmp1], %[ftmp0] \n\t" + "gsswlc1 %[ftmp1], 0x03(%[dst_ptr]) \n\t" + "gsswrc1 %[ftmp1], 0x00(%[dst_ptr]) \n\t" + MMI_ADDU(%[pred_ptr], %[pred_ptr], %[pred_stride]) + MMI_ADDU(%[dst_ptr], %[dst_ptr], %[dst_stride]) + +#if _MIPS_SIM == _ABIO32 + "ulw %[tmp0], 0x00(%[pred_prt]) \n\t" + "mtc1 %[tmp0], %[ftmp6] \n\t" +#else + "gslwlc1 %[ftmp6], 0x03(%[pred_ptr]) \n\t" + "gslwrc1 %[ftmp6], 0x00(%[pred_ptr]) \n\t" +#endif + "punpcklbh %[ftmp6], %[ftmp6], %[ftmp0] \n\t" + "paddh %[ftmp2], %[ftmp2], %[ftmp6] \n\t" + "packushb %[ftmp2], %[ftmp2], %[ftmp0] \n\t" + "gsswlc1 %[ftmp2], 0x03(%[dst_ptr]) \n\t" + "gsswrc1 %[ftmp2], 0x00(%[dst_ptr]) \n\t" + MMI_ADDU(%[pred_ptr], %[pred_ptr], %[pred_stride]) + MMI_ADDU(%[dst_ptr], %[dst_ptr], %[dst_stride]) + +#if _MIPS_SIM == _ABIO32 + "ulw %[tmp0], 0x00(%[pred_prt]) \n\t" + "mtc1 %[tmp0], %[ftmp7] \n\t" +#else + "gslwlc1 %[ftmp7], 0x03(%[pred_ptr]) \n\t" + "gslwrc1 %[ftmp7], 0x00(%[pred_ptr]) \n\t" +#endif + "punpcklbh %[ftmp7], %[ftmp7], %[ftmp0] \n\t" + "paddh %[ftmp3], %[ftmp3], %[ftmp7] \n\t" + "packushb %[ftmp3], %[ftmp3], %[ftmp0] \n\t" + "gsswlc1 %[ftmp3], 0x03(%[dst_ptr]) \n\t" + "gsswrc1 %[ftmp3], 0x00(%[dst_ptr]) \n\t" + MMI_ADDU(%[pred_ptr], %[pred_ptr], %[pred_stride]) + MMI_ADDU(%[dst_ptr], %[dst_ptr], %[dst_stride]) + +#if _MIPS_SIM == _ABIO32 + "ulw %[tmp0], 0x00(%[pred_prt]) \n\t" + "mtc1 %[tmp0], %[ftmp8] \n\t" +#else + "gslwlc1 %[ftmp8], 0x03(%[pred_ptr]) \n\t" + "gslwrc1 %[ftmp8], 0x00(%[pred_ptr]) \n\t" +#endif + "punpcklbh %[ftmp8], %[ftmp8], %[ftmp0] \n\t" + "paddh %[ftmp4], %[ftmp4], %[ftmp8] \n\t" + "packushb %[ftmp4], %[ftmp4], %[ftmp0] \n\t" + "gsswlc1 %[ftmp4], 0x03(%[dst_ptr]) \n\t" + "gsswrc1 %[ftmp4], 0x00(%[dst_ptr]) \n\t" + : [ftmp0]"=&f"(ftmp[0]), [ftmp1]"=&f"(ftmp[1]), [ftmp2]"=&f"(ftmp[2]), + [ftmp3]"=&f"(ftmp[3]), [ftmp4]"=&f"(ftmp[4]), [ftmp5]"=&f"(ftmp[5]), + [ftmp6]"=&f"(ftmp[6]), [ftmp7]"=&f"(ftmp[7]), [ftmp8]"=&f"(ftmp[8]), + [ftmp9]"=&f"(ftmp[9]), [ftmp10]"=&f"(ftmp[10]), + [ftmp11]"=&f"(ftmp[11]), [tmp0]"=&r"(tmp[0]), + [pred_ptr]"+&r"(pred_ptr), [dst_ptr]"+&r"(dst_ptr) + : [ip]"r"(input), [ff_ph_22a3]"f"(ff_ph_22a3), + [ff_ph_4e7b]"f"(ff_ph_4e7b), [ff_ph_04]"f"(ff_ph_04), + [pred_stride]"r"((mips_reg)pred_stride), + [dst_stride]"r"((mips_reg)dst_stride) + : "memory" + ); +} + +void vp8_dc_only_idct_add_mmi(int16_t input_dc, unsigned char *pred_ptr, + int pred_stride, unsigned char *dst_ptr, + int dst_stride) { + int a1 = ((input_dc + 4) >> 3); + double ftmp[5]; + int low32; + + __asm__ volatile ( + "xor %[ftmp0], %[ftmp0], %[ftmp0] \n\t" + "pshufh %[a1], %[a1], %[ftmp0] \n\t" + "ulw %[low32], 0x00(%[pred_ptr]) \n\t" + "mtc1 %[low32], %[ftmp1] \n\t" + "punpcklbh %[ftmp2], %[ftmp1], %[ftmp0] \n\t" + "paddsh %[ftmp2], %[ftmp2], %[a1] \n\t" + "packushb %[ftmp1], %[ftmp2], %[ftmp0] \n\t" + "gsswlc1 %[ftmp1], 0x03(%[dst_ptr]) \n\t" + "gsswrc1 %[ftmp1], 0x00(%[dst_ptr]) \n\t" + + MMI_ADDU(%[pred_ptr], %[pred_ptr], %[pred_stride]) + MMI_ADDU(%[dst_ptr], %[dst_ptr], %[dst_stride]) + "ulw %[low32], 0x00(%[pred_ptr]) \n\t" + "mtc1 %[low32], %[ftmp1] \n\t" + "punpcklbh %[ftmp2], %[ftmp1], %[ftmp0] \n\t" + "paddsh %[ftmp2], %[ftmp2], %[a1] \n\t" + "packushb %[ftmp1], %[ftmp2], %[ftmp0] \n\t" + "gsswlc1 %[ftmp1], 0x03(%[dst_ptr]) \n\t" + "gsswrc1 %[ftmp1], 0x00(%[dst_ptr]) \n\t" + + MMI_ADDU(%[pred_ptr], %[pred_ptr], %[pred_stride]) + MMI_ADDU(%[dst_ptr], %[dst_ptr], %[dst_stride]) + "ulw %[low32], 0x00(%[pred_ptr]) \n\t" + "mtc1 %[low32], %[ftmp1] \n\t" + "punpcklbh %[ftmp2], %[ftmp1], %[ftmp0] \n\t" + "paddsh %[ftmp2], %[ftmp2], %[a1] \n\t" + "packushb %[ftmp1], %[ftmp2], %[ftmp0] \n\t" + "gsswlc1 %[ftmp1], 0x03(%[dst_ptr]) \n\t" + "gsswrc1 %[ftmp1], 0x00(%[dst_ptr]) \n\t" + + MMI_ADDU(%[pred_ptr], %[pred_ptr], %[pred_stride]) + MMI_ADDU(%[dst_ptr], %[dst_ptr], %[dst_stride]) + "ulw %[low32], 0x00(%[pred_ptr]) \n\t" + "mtc1 %[low32], %[ftmp1] \n\t" + "punpcklbh %[ftmp2], %[ftmp1], %[ftmp0] \n\t" + "paddsh %[ftmp2], %[ftmp2], %[a1] \n\t" + "packushb %[ftmp1], %[ftmp2], %[ftmp0] \n\t" + "gsswlc1 %[ftmp1], 0x03(%[dst_ptr]) \n\t" + "gsswrc1 %[ftmp1], 0x00(%[dst_ptr]) \n\t" + : [ftmp0]"=&f"(ftmp[0]), [ftmp1]"=&f"(ftmp[1]), [ftmp2]"=&f"(ftmp[2]), + [ftmp3]"=&f"(ftmp[3]), [ftmp4]"=&f"(ftmp[4]), [low32]"=&r"(low32), + [dst_ptr]"+&r"(dst_ptr), [pred_ptr]"+&r"(pred_ptr) + : [dst_stride]"r"((mips_reg)dst_stride), + [pred_stride]"r"((mips_reg)pred_stride), [a1]"f"(a1) + : "memory" + ); +} + +void vp8_short_inv_walsh4x4_mmi(int16_t *input, int16_t *mb_dqcoeff) { + int i; + int16_t output[16]; + double ftmp[12]; + uint32_t tmp[1]; + DECLARE_ALIGNED(8, const uint64_t, ff_ph_03) = { 0x0003000300030003ULL }; + + __asm__ volatile ( + MMI_LI(%[tmp0], 0x03) + "xor %[ftmp0], %[ftmp0], %[ftmp0] \n\t" + "mtc1 %[tmp0], %[ftmp11] \n\t" + "gsldlc1 %[ftmp1], 0x07(%[ip]) \n\t" + "gsldrc1 %[ftmp1], 0x00(%[ip]) \n\t" + "gsldlc1 %[ftmp2], 0x0f(%[ip]) \n\t" + "gsldrc1 %[ftmp2], 0x08(%[ip]) \n\t" + "gsldlc1 %[ftmp3], 0x17(%[ip]) \n\t" + "gsldrc1 %[ftmp3], 0x10(%[ip]) \n\t" + "gsldlc1 %[ftmp4], 0x1f(%[ip]) \n\t" + "gsldrc1 %[ftmp4], 0x18(%[ip]) \n\t" + "paddh %[ftmp5], %[ftmp1], %[ftmp2] \n\t" + "psubh %[ftmp6], %[ftmp1], %[ftmp2] \n\t" + "paddh %[ftmp7], %[ftmp3], %[ftmp4] \n\t" + "psubh %[ftmp8], %[ftmp3], %[ftmp4] \n\t" + + "paddh %[ftmp1], %[ftmp5], %[ftmp7] \n\t" + "psubh %[ftmp2], %[ftmp5], %[ftmp7] \n\t" + "psubh %[ftmp3], %[ftmp6], %[ftmp8] \n\t" + "paddh %[ftmp4], %[ftmp6], %[ftmp8] \n\t" + + TRANSPOSE_4H + // a + "paddh %[ftmp5], %[ftmp1], %[ftmp4] \n\t" + // d + "psubh %[ftmp6], %[ftmp1], %[ftmp4] \n\t" + // b + "paddh %[ftmp7], %[ftmp2], %[ftmp3] \n\t" + // c + "psubh %[ftmp8], %[ftmp2], %[ftmp3] \n\t" + + "paddh %[ftmp1], %[ftmp5], %[ftmp7] \n\t" + "paddh %[ftmp2], %[ftmp6], %[ftmp8] \n\t" + "psubh %[ftmp3], %[ftmp5], %[ftmp7] \n\t" + "psubh %[ftmp4], %[ftmp6], %[ftmp8] \n\t" + + "paddh %[ftmp1], %[ftmp1], %[ff_ph_03] \n\t" + "psrah %[ftmp1], %[ftmp1], %[ftmp11] \n\t" + "paddh %[ftmp2], %[ftmp2], %[ff_ph_03] \n\t" + "psrah %[ftmp2], %[ftmp2], %[ftmp11] \n\t" + "paddh %[ftmp3], %[ftmp3], %[ff_ph_03] \n\t" + "psrah %[ftmp3], %[ftmp3], %[ftmp11] \n\t" + "paddh %[ftmp4], %[ftmp4], %[ff_ph_03] \n\t" + "psrah %[ftmp4], %[ftmp4], %[ftmp11] \n\t" + + TRANSPOSE_4H + "gssdlc1 %[ftmp1], 0x07(%[op]) \n\t" + "gssdrc1 %[ftmp1], 0x00(%[op]) \n\t" + "gssdlc1 %[ftmp2], 0x0f(%[op]) \n\t" + "gssdrc1 %[ftmp2], 0x08(%[op]) \n\t" + "gssdlc1 %[ftmp3], 0x17(%[op]) \n\t" + "gssdrc1 %[ftmp3], 0x10(%[op]) \n\t" + "gssdlc1 %[ftmp4], 0x1f(%[op]) \n\t" + "gssdrc1 %[ftmp4], 0x18(%[op]) \n\t" + : [ftmp0]"=&f"(ftmp[0]), [ftmp1]"=&f"(ftmp[1]), [ftmp2]"=&f"(ftmp[2]), + [ftmp3]"=&f"(ftmp[3]), [ftmp4]"=&f"(ftmp[4]), [ftmp5]"=&f"(ftmp[5]), + [ftmp6]"=&f"(ftmp[6]), [ftmp7]"=&f"(ftmp[7]), [ftmp8]"=&f"(ftmp[8]), + [ftmp9]"=&f"(ftmp[9]), [ftmp10]"=&f"(ftmp[10]), + [ftmp11]"=&f"(ftmp[11]), [tmp0]"=&r"(tmp[0]) + : [ip]"r"(input), [op]"r"(output), [ff_ph_03]"f"(ff_ph_03) + : "memory" + ); + + for (i = 0; i < 16; i++) { + mb_dqcoeff[i * 16] = output[i]; + } +} diff --git a/vp8/common/mips/mmi/loopfilter_filters_mmi.c b/vp8/common/mips/mmi/loopfilter_filters_mmi.c new file mode 100644 index 0000000..f2182f9 --- /dev/null +++ b/vp8/common/mips/mmi/loopfilter_filters_mmi.c @@ -0,0 +1,1337 @@ +/* + * Copyright (c) 2017 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "./vpx_dsp_rtcd.h" +#include "vp8/common/loopfilter.h" +#include "vp8/common/onyxc_int.h" +#include "vpx_ports/asmdefs_mmi.h" + +DECLARE_ALIGNED(8, static const uint64_t, ff_ph_01) = { 0x0001000100010001ULL }; +DECLARE_ALIGNED(8, static const uint64_t, + ff_ph_003f) = { 0x003f003f003f003fULL }; +DECLARE_ALIGNED(8, static const uint64_t, + ff_ph_0900) = { 0x0900090009000900ULL }; +DECLARE_ALIGNED(8, static const uint64_t, + ff_ph_1200) = { 0x1200120012001200ULL }; +DECLARE_ALIGNED(8, static const uint64_t, + ff_ph_1b00) = { 0x1b001b001b001b00ULL }; +DECLARE_ALIGNED(8, static const uint64_t, ff_pb_fe) = { 0xfefefefefefefefeULL }; +DECLARE_ALIGNED(8, static const uint64_t, ff_pb_80) = { 0x8080808080808080ULL }; +DECLARE_ALIGNED(8, static const uint64_t, ff_pb_04) = { 0x0404040404040404ULL }; +DECLARE_ALIGNED(8, static const uint64_t, ff_pb_03) = { 0x0303030303030303ULL }; +DECLARE_ALIGNED(8, static const uint64_t, ff_pb_01) = { 0x0101010101010101ULL }; + +void vp8_loop_filter_horizontal_edge_mmi( + unsigned char *src_ptr, int src_pixel_step, const unsigned char *blimit, + const unsigned char *limit, const unsigned char *thresh, int count) { + uint32_t tmp[1]; + mips_reg addr[2]; + double ftmp[12]; + __asm__ volatile ( + "1: \n\t" + "gsldlc1 %[ftmp10], 0x07(%[limit]) \n\t" + "gsldrc1 %[ftmp10], 0x00(%[limit]) \n\t" + + MMI_ADDU(%[addr0], %[src_ptr], %[src_pixel_step]) + + MMI_SUBU(%[addr1], %[src_ptr], %[src_pixel_step_x4]) + "gsldlc1 %[ftmp1], 0x07(%[addr1]) \n\t" + "gsldrc1 %[ftmp1], 0x00(%[addr1]) \n\t" + + MMI_SUBU(%[addr1], %[addr0], %[src_pixel_step_x4]) + "gsldlc1 %[ftmp3], 0x07(%[addr1]) \n\t" + "gsldrc1 %[ftmp3], 0x00(%[addr1]) \n\t" + "pasubub %[ftmp0], %[ftmp1], %[ftmp3] \n\t" + "psubusb %[ftmp0], %[ftmp0], %[ftmp10] \n\t" + + MMI_SUBU(%[addr1], %[src_ptr], %[src_pixel_step_x2]) + "gsldlc1 %[ftmp4], 0x07(%[addr1]) \n\t" + "gsldrc1 %[ftmp4], 0x00(%[addr1]) \n\t" + "pasubub %[ftmp1], %[ftmp3], %[ftmp4] \n\t" + "psubusb %[ftmp1], %[ftmp1], %[ftmp10] \n\t" + "or %[ftmp0], %[ftmp0], %[ftmp1] \n\t" + + MMI_SUBU(%[addr1], %[src_ptr], %[src_pixel_step]) + "gsldlc1 %[ftmp5], 0x07(%[addr1]) \n\t" + "gsldrc1 %[ftmp5], 0x00(%[addr1]) \n\t" + "pasubub %[ftmp9], %[ftmp4], %[ftmp5] \n\t" + "psubusb %[ftmp1], %[ftmp9], %[ftmp10] \n\t" + "or %[ftmp0], %[ftmp0], %[ftmp1] \n\t" + + "gsldlc1 %[ftmp6], 0x07(%[src_ptr]) \n\t" + "gsldrc1 %[ftmp6], 0x00(%[src_ptr]) \n\t" + + "gsldlc1 %[ftmp7], 0x07(%[addr0]) \n\t" + "gsldrc1 %[ftmp7], 0x00(%[addr0]) \n\t" + "pasubub %[ftmp11], %[ftmp7], %[ftmp6] \n\t" + "psubusb %[ftmp1], %[ftmp11], %[ftmp10] \n\t" + "or %[ftmp0], %[ftmp0], %[ftmp1] \n\t" + + MMI_ADDU(%[addr1], %[src_ptr], %[src_pixel_step_x2]) + "gsldlc1 %[ftmp8], 0x07(%[addr1]) \n\t" + "gsldrc1 %[ftmp8], 0x00(%[addr1]) \n\t" + "pasubub %[ftmp1], %[ftmp8], %[ftmp7] \n\t" + "psubusb %[ftmp1], %[ftmp1], %[ftmp10] \n\t" + "or %[ftmp0], %[ftmp0], %[ftmp1] \n\t" + + MMI_ADDU(%[addr1], %[addr0], %[src_pixel_step_x2]) + "gsldlc1 %[ftmp2], 0x07(%[addr1]) \n\t" + "gsldrc1 %[ftmp2], 0x00(%[addr1]) \n\t" + "pasubub %[ftmp1], %[ftmp2], %[ftmp8] \n\t" + "psubusb %[ftmp1], %[ftmp1], %[ftmp10] \n\t" + "or %[ftmp0], %[ftmp0], %[ftmp1] \n\t" + + "pasubub %[ftmp1], %[ftmp5], %[ftmp6] \n\t" + "paddusb %[ftmp1], %[ftmp1], %[ftmp1] \n\t" + "pasubub %[ftmp2], %[ftmp4], %[ftmp7] \n\t" + "and %[ftmp2], %[ftmp2], %[ff_pb_fe] \n\t" + "li %[tmp0], 0x01 \n\t" + "mtc1 %[tmp0], %[ftmp10] \n\t" + "psrlh %[ftmp2], %[ftmp2], %[ftmp10] \n\t" + "paddusb %[ftmp1], %[ftmp1], %[ftmp2] \n\t" + "gsldlc1 %[ftmp10], 0x07(%[blimit]) \n\t" + "gsldrc1 %[ftmp10], 0x00(%[blimit]) \n\t" + "psubusb %[ftmp1], %[ftmp1], %[ftmp10] \n\t" + "or %[ftmp0], %[ftmp0], %[ftmp1] \n\t" + "xor %[ftmp10], %[ftmp10], %[ftmp10] \n\t" + "pcmpeqb %[ftmp0], %[ftmp0], %[ftmp10] \n\t" + + "gsldlc1 %[ftmp10], 0x07(%[thresh]) \n\t" + "gsldrc1 %[ftmp10], 0x00(%[thresh]) \n\t" + "psubusb %[ftmp1], %[ftmp9], %[ftmp10] \n\t" + "psubusb %[ftmp2], %[ftmp11], %[ftmp10] \n\t" + "paddb %[ftmp1], %[ftmp1], %[ftmp2] \n\t" + "xor %[ftmp2], %[ftmp2], %[ftmp2] \n\t" + "pcmpeqb %[ftmp1], %[ftmp1], %[ftmp2] \n\t" + "pcmpeqb %[ftmp2], %[ftmp2], %[ftmp2] \n\t" + "xor %[ftmp1], %[ftmp1], %[ftmp2] \n\t" + + "xor %[ftmp4], %[ftmp4], %[ff_pb_80] \n\t" + "xor %[ftmp5], %[ftmp5], %[ff_pb_80] \n\t" + "xor %[ftmp6], %[ftmp6], %[ff_pb_80] \n\t" + "xor %[ftmp7], %[ftmp7], %[ff_pb_80] \n\t" + + "psubsb %[ftmp2], %[ftmp4], %[ftmp7] \n\t" + "and %[ftmp2], %[ftmp2], %[ftmp1] \n\t" + "psubsb %[ftmp3], %[ftmp6], %[ftmp5] \n\t" + "paddsb %[ftmp2], %[ftmp2], %[ftmp3] \n\t" + "paddsb %[ftmp2], %[ftmp2], %[ftmp3] \n\t" + "paddsb %[ftmp2], %[ftmp2], %[ftmp3] \n\t" + "and %[ftmp2], %[ftmp2], %[ftmp0] \n\t" + + "paddsb %[ftmp8], %[ftmp2], %[ff_pb_03] \n\t" + "paddsb %[ftmp9], %[ftmp2], %[ff_pb_04] \n\t" + + "xor %[ftmp0], %[ftmp0], %[ftmp0] \n\t" + "xor %[ftmp11], %[ftmp11], %[ftmp11] \n\t" + "punpcklbh %[ftmp0], %[ftmp0], %[ftmp8] \n\t" + "punpckhbh %[ftmp11], %[ftmp11], %[ftmp8] \n\t" + + "li %[tmp0], 0x0b \n\t" + "mtc1 %[tmp0], %[ftmp10] \n\t" + "psrah %[ftmp0], %[ftmp0], %[ftmp10] \n\t" + "psrah %[ftmp11], %[ftmp11], %[ftmp10] \n\t" + "packsshb %[ftmp8], %[ftmp0], %[ftmp11] \n\t" + "xor %[ftmp0], %[ftmp0], %[ftmp0] \n\t" + "punpcklbh %[ftmp0], %[ftmp0], %[ftmp9] \n\t" + "psrah %[ftmp0], %[ftmp0], %[ftmp10] \n\t" + "xor %[ftmp11], %[ftmp11], %[ftmp11] \n\t" + "punpckhbh %[ftmp9], %[ftmp11], %[ftmp9] \n\t" + "psrah %[ftmp9], %[ftmp9], %[ftmp10] \n\t" + "paddsh %[ftmp11], %[ftmp0], %[ff_ph_01] \n\t" + "packsshb %[ftmp0], %[ftmp0], %[ftmp9] \n\t" + "paddsh %[ftmp9], %[ftmp9], %[ff_ph_01] \n\t" + + "li %[tmp0], 0x01 \n\t" + "mtc1 %[tmp0], %[ftmp10] \n\t" + "psrah %[ftmp11], %[ftmp11], %[ftmp10] \n\t" + "psrah %[ftmp9], %[ftmp9], %[ftmp10] \n\t" + "packsshb %[ftmp11], %[ftmp11], %[ftmp9] \n\t" + "pandn %[ftmp1], %[ftmp1], %[ftmp11] \n\t" + "paddsb %[ftmp5], %[ftmp5], %[ftmp8] \n\t" + "xor %[ftmp5], %[ftmp5], %[ff_pb_80] \n\t" + + MMI_SUBU(%[addr1], %[src_ptr], %[src_pixel_step]) + "gssdlc1 %[ftmp5], 0x07(%[addr1]) \n\t" + "gssdrc1 %[ftmp5], 0x00(%[addr1]) \n\t" + MMI_SUBU(%[addr1], %[src_ptr], %[src_pixel_step_x2]) + "paddsb %[ftmp4], %[ftmp4], %[ftmp1] \n\t" + "xor %[ftmp4], %[ftmp4], %[ff_pb_80] \n\t" + "gssdlc1 %[ftmp4], 0x07(%[addr1]) \n\t" + "gssdrc1 %[ftmp4], 0x00(%[addr1]) \n\t" + + "psubsb %[ftmp6], %[ftmp6], %[ftmp0] \n\t" + "xor %[ftmp6], %[ftmp6], %[ff_pb_80] \n\t" + "gssdlc1 %[ftmp6], 0x07(%[src_ptr]) \n\t" + "gssdrc1 %[ftmp6], 0x00(%[src_ptr]) \n\t" + + "psubsb %[ftmp7], %[ftmp7], %[ftmp1] \n\t" + "xor %[ftmp7], %[ftmp7], %[ff_pb_80] \n\t" + "gssdlc1 %[ftmp7], 0x07(%[addr0]) \n\t" + "gssdrc1 %[ftmp7], 0x00(%[addr0]) \n\t" + + "addiu %[count], %[count], -0x01 \n\t" + MMI_ADDIU(%[src_ptr], %[src_ptr], 0x08) + "bnez %[count], 1b \n\t" + : [ftmp0]"=&f"(ftmp[0]), [ftmp1]"=&f"(ftmp[1]), + [ftmp2]"=&f"(ftmp[2]), [ftmp3]"=&f"(ftmp[3]), + [ftmp4]"=&f"(ftmp[4]), [ftmp5]"=&f"(ftmp[5]), + [ftmp6]"=&f"(ftmp[6]), [ftmp7]"=&f"(ftmp[7]), + [ftmp8]"=&f"(ftmp[8]), [ftmp9]"=&f"(ftmp[9]), + [ftmp10]"=&f"(ftmp[10]), [ftmp11]"=&f"(ftmp[11]), + [tmp0]"=&r"(tmp[0]), + [addr0]"=&r"(addr[0]), [addr1]"=&r"(addr[1]), + [src_ptr]"+&r"(src_ptr), [count]"+&r"(count) + : [limit]"r"(limit), [blimit]"r"(blimit), + [thresh]"r"(thresh), + [src_pixel_step]"r"((mips_reg)src_pixel_step), + [src_pixel_step_x2]"r"((mips_reg)(src_pixel_step<<1)), + [src_pixel_step_x4]"r"((mips_reg)(src_pixel_step<<2)), + [ff_ph_01]"f"(ff_ph_01), [ff_pb_fe]"f"(ff_pb_fe), + [ff_pb_80]"f"(ff_pb_80), [ff_pb_04]"f"(ff_pb_04), + [ff_pb_03]"f"(ff_pb_03) + : "memory" + ); +} + +void vp8_loop_filter_vertical_edge_mmi(unsigned char *src_ptr, + int src_pixel_step, + const unsigned char *blimit, + const unsigned char *limit, + const unsigned char *thresh, int count) { + uint32_t tmp[1]; + mips_reg addr[2]; + double ftmp[13]; + + __asm__ volatile ( + MMI_SLL(%[tmp0], %[src_pixel_step], 0x02) + MMI_ADDU(%[src_ptr], %[src_ptr], %[tmp0]) + MMI_SUBU(%[src_ptr], %[src_ptr], 0x04) + + "1: \n\t" + MMI_ADDU(%[addr0], %[src_ptr], %[src_pixel_step]) + + MMI_SLL (%[tmp0], %[src_pixel_step], 0x01) + MMI_ADDU(%[addr1], %[src_ptr], %[tmp0]) + "gsldlc1 %[ftmp11], 0x07(%[addr1]) \n\t" + "gsldrc1 %[ftmp11], 0x00(%[addr1]) \n\t" + MMI_ADDU(%[addr1], %[addr0], %[tmp0]) + "gsldlc1 %[ftmp12], 0x07(%[addr1]) \n\t" + "gsldrc1 %[ftmp12], 0x00(%[addr1]) \n\t" + "punpcklbh %[ftmp1], %[ftmp11], %[ftmp12] \n\t" + "punpckhbh %[ftmp2], %[ftmp11], %[ftmp12] \n\t" + + "gsldlc1 %[ftmp11], 0x07(%[src_ptr]) \n\t" + "gsldrc1 %[ftmp11], 0x00(%[src_ptr]) \n\t" + "gsldlc1 %[ftmp12], 0x07(%[addr0]) \n\t" + "gsldrc1 %[ftmp12], 0x00(%[addr0]) \n\t" + "punpcklbh %[ftmp3], %[ftmp11], %[ftmp12] \n\t" + "punpckhbh %[ftmp4], %[ftmp11], %[ftmp12] \n\t" + + "punpcklhw %[ftmp5], %[ftmp4], %[ftmp2] \n\t" + "punpckhhw %[ftmp6], %[ftmp4], %[ftmp2] \n\t" + "punpcklhw %[ftmp7], %[ftmp3], %[ftmp1] \n\t" + "punpckhhw %[ftmp8], %[ftmp3], %[ftmp1] \n\t" + + MMI_SLL(%[tmp0], %[src_pixel_step], 0x01) + MMI_SUBU(%[addr1], %[src_ptr], %[tmp0]) + "gsldlc1 %[ftmp11], 0x07(%[addr1]) \n\t" + "gsldrc1 %[ftmp11], 0x00(%[addr1]) \n\t" + MMI_SUBU(%[addr1], %[src_ptr], %[src_pixel_step]) + "gsldlc1 %[ftmp12], 0x07(%[addr1]) \n\t" + "gsldrc1 %[ftmp12], 0x00(%[addr1]) \n\t" + "punpcklbh %[ftmp9], %[ftmp11], %[ftmp12] \n\t" + "punpckhbh %[ftmp10], %[ftmp11], %[ftmp12] \n\t" + + MMI_SLL(%[tmp0], %[src_pixel_step], 0x02) + MMI_SUBU(%[addr1], %[src_ptr], %[tmp0]) + "gsldlc1 %[ftmp11], 0x07(%[addr1]) \n\t" + "gsldrc1 %[ftmp11], 0x00(%[addr1]) \n\t" + MMI_SLL(%[tmp0], %[src_pixel_step], 0x02) + MMI_SUBU(%[addr1], %[addr0], %[tmp0]) + "gsldlc1 %[ftmp12], 0x07(%[addr1]) \n\t" + "gsldrc1 %[ftmp12], 0x00(%[addr1]) \n\t" + "punpcklbh %[ftmp0], %[ftmp11], %[ftmp12] \n\t" + "punpckhbh %[ftmp11], %[ftmp11], %[ftmp12] \n\t" + + "punpcklhw %[ftmp1], %[ftmp11], %[ftmp10] \n\t" + "punpckhhw %[ftmp2], %[ftmp11], %[ftmp10] \n\t" + "punpcklhw %[ftmp3], %[ftmp0], %[ftmp9] \n\t" + "punpckhhw %[ftmp4], %[ftmp0], %[ftmp9] \n\t" + + /* ftmp9:q0 ftmp10:q1 */ + "punpcklwd %[ftmp9], %[ftmp1], %[ftmp5] \n\t" + "punpckhwd %[ftmp10], %[ftmp1], %[ftmp5] \n\t" + /* ftmp11:q2 ftmp12:q3 */ + "punpcklwd %[ftmp11], %[ftmp2], %[ftmp6] \n\t" + "punpckhwd %[ftmp12], %[ftmp2], %[ftmp6] \n\t" + /* ftmp1:p3 ftmp2:p2 */ + "punpcklwd %[ftmp1], %[ftmp3], %[ftmp7] \n\t" + "punpckhwd %[ftmp2], %[ftmp3], %[ftmp7] \n\t" + /* ftmp5:p1 ftmp6:p0 */ + "punpcklwd %[ftmp5], %[ftmp4], %[ftmp8] \n\t" + "punpckhwd %[ftmp6], %[ftmp4], %[ftmp8] \n\t" + + "gsldlc1 %[ftmp8], 0x07(%[limit]) \n\t" + "gsldrc1 %[ftmp8], 0x00(%[limit]) \n\t" + + /* abs (q3-q2) */ + "pasubub %[ftmp7], %[ftmp12], %[ftmp11] \n\t" + "psubusb %[ftmp0], %[ftmp7], %[ftmp8] \n\t" + /* abs (q2-q1) */ + "pasubub %[ftmp7], %[ftmp11], %[ftmp10] \n\t" + "psubusb %[ftmp7], %[ftmp7], %[ftmp8] \n\t" + "or %[ftmp0], %[ftmp0], %[ftmp7] \n\t" + /* ftmp3: abs(q1-q0) */ + "pasubub %[ftmp3], %[ftmp10], %[ftmp9] \n\t" + "psubusb %[ftmp7], %[ftmp3], %[ftmp8] \n\t" + "or %[ftmp0], %[ftmp0], %[ftmp7] \n\t" + /* ftmp4: abs(p1-p0) */ + "pasubub %[ftmp4], %[ftmp5], %[ftmp6] \n\t" + "psubusb %[ftmp7], %[ftmp4], %[ftmp8] \n\t" + "or %[ftmp0], %[ftmp0], %[ftmp7] \n\t" + /* abs (p2-p1) */ + "pasubub %[ftmp7], %[ftmp2], %[ftmp5] \n\t" + "psubusb %[ftmp7], %[ftmp7], %[ftmp8] \n\t" + "or %[ftmp0], %[ftmp0], %[ftmp7] \n\t" + /* abs (p3-p2) */ + "pasubub %[ftmp7], %[ftmp1], %[ftmp2] \n\t" + "psubusb %[ftmp7], %[ftmp7], %[ftmp8] \n\t" + "or %[ftmp0], %[ftmp0], %[ftmp7] \n\t" + + "gsldlc1 %[ftmp8], 0x07(%[blimit]) \n\t" + "gsldrc1 %[ftmp8], 0x00(%[blimit]) \n\t" + + /* abs (p0-q0) */ + "pasubub %[ftmp11], %[ftmp9], %[ftmp6] \n\t" + "paddusb %[ftmp11], %[ftmp11], %[ftmp11] \n\t" + /* abs (p1-q1) */ + "pasubub %[ftmp12], %[ftmp10], %[ftmp5] \n\t" + "and %[ftmp12], %[ftmp12], %[ff_pb_fe] \n\t" + "li %[tmp0], 0x01 \n\t" + "mtc1 %[tmp0], %[ftmp1] \n\t" + "psrlh %[ftmp12], %[ftmp12], %[ftmp1] \n\t" + "paddusb %[ftmp1], %[ftmp11], %[ftmp12] \n\t" + "psubusb %[ftmp1], %[ftmp1], %[ftmp8] \n\t" + "or %[ftmp0], %[ftmp0], %[ftmp1] \n\t" + "xor %[ftmp1], %[ftmp1], %[ftmp1] \n\t" + /* ftmp0:mask */ + "pcmpeqb %[ftmp0], %[ftmp0], %[ftmp1] \n\t" + + "gsldlc1 %[ftmp8], 0x07(%[thresh]) \n\t" + "gsldrc1 %[ftmp8], 0x00(%[thresh]) \n\t" + + /* ftmp3: abs(q1-q0) ftmp4: abs(p1-p0) */ + "psubusb %[ftmp4], %[ftmp4], %[ftmp8] \n\t" + "psubusb %[ftmp3], %[ftmp3], %[ftmp8] \n\t" + "or %[ftmp2], %[ftmp4], %[ftmp3] \n\t" + "pcmpeqb %[ftmp2], %[ftmp2], %[ftmp1] \n\t" + "pcmpeqb %[ftmp1], %[ftmp1], %[ftmp1] \n\t" + /* ftmp1:hev */ + "xor %[ftmp1], %[ftmp2], %[ftmp1] \n\t" + + "xor %[ftmp10], %[ftmp10], %[ff_pb_80] \n\t" + "xor %[ftmp9], %[ftmp9], %[ff_pb_80] \n\t" + "xor %[ftmp6], %[ftmp6], %[ff_pb_80] \n\t" + "xor %[ftmp5], %[ftmp5], %[ff_pb_80] \n\t" + + "psubsb %[ftmp2], %[ftmp5], %[ftmp10] \n\t" + "and %[ftmp2], %[ftmp2], %[ftmp1] \n\t" + "psubsb %[ftmp3], %[ftmp9], %[ftmp6] \n\t" + "paddsb %[ftmp2], %[ftmp2], %[ftmp3] \n\t" + "paddsb %[ftmp2], %[ftmp2], %[ftmp3] \n\t" + "paddsb %[ftmp2], %[ftmp2], %[ftmp3] \n\t" + /* ftmp2:filter_value */ + "and %[ftmp2], %[ftmp2], %[ftmp0] \n\t" + + "paddsb %[ftmp11], %[ftmp2], %[ff_pb_04] \n\t" + "paddsb %[ftmp12], %[ftmp2], %[ff_pb_03] \n\t" + + "li %[tmp0], 0x0b \n\t" + "mtc1 %[tmp0], %[ftmp7] \n\t" + "xor %[ftmp0], %[ftmp0], %[ftmp0] \n\t" + "xor %[ftmp8], %[ftmp8], %[ftmp8] \n\t" + "punpcklbh %[ftmp0], %[ftmp0], %[ftmp12] \n\t" + "punpckhbh %[ftmp8], %[ftmp8], %[ftmp12] \n\t" + "psrah %[ftmp0], %[ftmp0], %[ftmp7] \n\t" + "psrah %[ftmp8], %[ftmp8], %[ftmp7] \n\t" + "packsshb %[ftmp12], %[ftmp0], %[ftmp8] \n\t" + + "xor %[ftmp0], %[ftmp0], %[ftmp0] \n\t" + "xor %[ftmp8], %[ftmp8], %[ftmp8] \n\t" + "punpcklbh %[ftmp0], %[ftmp0], %[ftmp11] \n\t" + "punpckhbh %[ftmp8], %[ftmp8], %[ftmp11] \n\t" + "psrah %[ftmp0], %[ftmp0], %[ftmp7] \n\t" + "psrah %[ftmp8], %[ftmp8], %[ftmp7] \n\t" + "packsshb %[ftmp11], %[ftmp0], %[ftmp8] \n\t" + + "psubsb %[ftmp9], %[ftmp9], %[ftmp11] \n\t" + "xor %[ftmp9], %[ftmp9], %[ff_pb_80] \n\t" + "paddsb %[ftmp6], %[ftmp6], %[ftmp12] \n\t" + "xor %[ftmp6], %[ftmp6], %[ff_pb_80] \n\t" + "paddsh %[ftmp0], %[ftmp0], %[ff_ph_01] \n\t" + "paddsh %[ftmp8], %[ftmp8], %[ff_ph_01] \n\t" + + "li %[tmp0], 0x01 \n\t" + "mtc1 %[tmp0], %[ftmp7] \n\t" + "psrah %[ftmp0], %[ftmp0], %[ftmp7] \n\t" + "psrah %[ftmp8], %[ftmp8], %[ftmp7] \n\t" + "packsshb %[ftmp2], %[ftmp0], %[ftmp8] \n\t" + "pandn %[ftmp2], %[ftmp1], %[ftmp2] \n\t" + "psubsb %[ftmp10], %[ftmp10], %[ftmp2] \n\t" + "xor %[ftmp10], %[ftmp10], %[ff_pb_80] \n\t" + "paddsb %[ftmp5], %[ftmp5], %[ftmp2] \n\t" + "xor %[ftmp5], %[ftmp5], %[ff_pb_80] \n\t" + + /* ftmp5: *op1 ; ftmp6: *op0 */ + "punpcklbh %[ftmp2], %[ftmp5], %[ftmp6] \n\t" + "punpckhbh %[ftmp1], %[ftmp5], %[ftmp6] \n\t" + /* ftmp9: *oq0 ; ftmp10: *oq1 */ + "punpcklbh %[ftmp4], %[ftmp9], %[ftmp10] \n\t" + "punpckhbh %[ftmp3], %[ftmp9], %[ftmp10] \n\t" + "punpckhhw %[ftmp6], %[ftmp2], %[ftmp4] \n\t" + "punpcklhw %[ftmp2], %[ftmp2], %[ftmp4] \n\t" + "punpckhhw %[ftmp5], %[ftmp1], %[ftmp3] \n\t" + "punpcklhw %[ftmp1], %[ftmp1], %[ftmp3] \n\t" + + MMI_SLL(%[tmp0], %[src_pixel_step], 0x02) + MMI_SUBU(%[addr1], %[src_ptr], %[tmp0]) + "gsswlc1 %[ftmp2], 0x05(%[addr1]) \n\t" + "gsswrc1 %[ftmp2], 0x02(%[addr1]) \n\t" + + "li %[tmp0], 0x20 \n\t" + "mtc1 %[tmp0], %[ftmp9] \n\t" + "dsrl %[ftmp2], %[ftmp2], %[ftmp9] \n\t" + MMI_SLL(%[tmp0], %[src_pixel_step], 0x02) + MMI_SUBU(%[addr1], %[addr0], %[tmp0]) + "gsswlc1 %[ftmp2], 0x05(%[addr1]) \n\t" + "gsswrc1 %[ftmp2], 0x02(%[addr1]) \n\t" + + MMI_SLL(%[tmp0], %[src_pixel_step], 0x01) + MMI_SUBU(%[addr1], %[src_ptr], %[tmp0]) + "gsswlc1 %[ftmp6], 0x05(%[addr1]) \n\t" + "gsswrc1 %[ftmp6], 0x02(%[addr1]) \n\t" + + "dsrl %[ftmp6], %[ftmp6], %[ftmp9] \n\t" + MMI_SUBU(%[addr1], %[src_ptr], %[src_pixel_step]) + "gsswlc1 %[ftmp6], 0x05(%[addr1]) \n\t" + "gsswrc1 %[ftmp6], 0x02(%[addr1]) \n\t" + "gsswlc1 %[ftmp1], 0x05(%[src_ptr]) \n\t" + "gsswrc1 %[ftmp1], 0x02(%[src_ptr]) \n\t" + + "dsrl %[ftmp1], %[ftmp1], %[ftmp9] \n\t" + "gsswlc1 %[ftmp1], 0x05(%[addr0]) \n\t" + "gsswrc1 %[ftmp1], 0x02(%[addr0]) \n\t" + MMI_ADDU(%[addr1], %[addr0], %[src_pixel_step]) + "gsswlc1 %[ftmp5], 0x05(%[addr1]) \n\t" + "gsswrc1 %[ftmp5], 0x02(%[addr1]) \n\t" + + "dsrl %[ftmp5], %[ftmp5], %[ftmp9] \n\t" + MMI_ADDU(%[addr1], %[addr0], %[tmp0]) + "gsswlc1 %[ftmp5], 0x05(%[addr1]) \n\t" + "gsswrc1 %[ftmp5], 0x02(%[addr1]) \n\t" + + MMI_ADDIU(%[count], %[count], -0x01) + MMI_SLL(%[tmp0], %[src_pixel_step], 0x03) + MMI_ADDU(%[src_ptr], %[src_ptr], %[tmp0]) + "bnez %[count], 1b \n\t" + : [ftmp0]"=&f"(ftmp[0]), [ftmp1]"=&f"(ftmp[1]), + [ftmp2]"=&f"(ftmp[2]), [ftmp3]"=&f"(ftmp[3]), + [ftmp4]"=&f"(ftmp[4]), [ftmp5]"=&f"(ftmp[5]), + [ftmp6]"=&f"(ftmp[6]), [ftmp7]"=&f"(ftmp[7]), + [ftmp8]"=&f"(ftmp[8]), [ftmp9]"=&f"(ftmp[9]), + [ftmp10]"=&f"(ftmp[10]), [ftmp11]"=&f"(ftmp[11]), + [ftmp12]"=&f"(ftmp[12]), [tmp0]"=&r"(tmp[0]), + [addr0]"=&r"(addr[0]), [addr1]"=&r"(addr[1]), + [src_ptr]"+&r"(src_ptr), [count]"+&r"(count) + : [limit]"r"(limit), [blimit]"r"(blimit), + [thresh]"r"(thresh), + [src_pixel_step]"r"((mips_reg)src_pixel_step), + [ff_ph_01]"f"(ff_ph_01), [ff_pb_03]"f"(ff_pb_03), + [ff_pb_04]"f"(ff_pb_04), [ff_pb_80]"f"(ff_pb_80), + [ff_pb_fe]"f"(ff_pb_fe) + : "memory" + ); +} + +/* clang-format off */ +#define VP8_MBLOOP_HPSRAB \ + "punpcklbh %[ftmp10], %[ftmp10], %[ftmp0] \n\t" \ + "punpckhbh %[ftmp11], %[ftmp11], %[ftmp0] \n\t" \ + "psrah %[ftmp10], %[ftmp10], %[ftmp9] \n\t" \ + "psrah %[ftmp11], %[ftmp11], %[ftmp9] \n\t" \ + "packsshb %[ftmp0], %[ftmp10], %[ftmp11] \n\t" + +#define VP8_MBLOOP_HPSRAB_ADD(reg) \ + "punpcklbh %[ftmp1], %[ftmp0], %[ftmp12] \n\t" \ + "punpckhbh %[ftmp2], %[ftmp0], %[ftmp12] \n\t" \ + "pmulhh %[ftmp1], %[ftmp1], " #reg " \n\t" \ + "pmulhh %[ftmp2], %[ftmp2], " #reg " \n\t" \ + "paddh %[ftmp1], %[ftmp1], %[ff_ph_003f] \n\t" \ + "paddh %[ftmp2], %[ftmp2], %[ff_ph_003f] \n\t" \ + "psrah %[ftmp1], %[ftmp1], %[ftmp9] \n\t" \ + "psrah %[ftmp2], %[ftmp2], %[ftmp9] \n\t" \ + "packsshb %[ftmp1], %[ftmp1], %[ftmp2] \n\t" +/* clang-format on */ + +void vp8_mbloop_filter_horizontal_edge_mmi( + unsigned char *src_ptr, int src_pixel_step, const unsigned char *blimit, + const unsigned char *limit, const unsigned char *thresh, int count) { + uint32_t tmp[1]; + double ftmp[13]; + + __asm__ volatile ( + MMI_SLL(%[tmp0], %[src_pixel_step], 0x02) + MMI_SUBU(%[src_ptr], %[src_ptr], %[tmp0]) + "1: \n\t" + "gsldlc1 %[ftmp9], 0x07(%[limit]) \n\t" + "gsldrc1 %[ftmp9], 0x00(%[limit]) \n\t" + /* ftmp1: p3 */ + "gsldlc1 %[ftmp1], 0x07(%[src_ptr]) \n\t" + "gsldrc1 %[ftmp1], 0x00(%[src_ptr]) \n\t" + /* ftmp3: p2 */ + MMI_ADDU(%[src_ptr], %[src_ptr], %[src_pixel_step]) + "gsldlc1 %[ftmp3], 0x07(%[src_ptr]) \n\t" + "gsldrc1 %[ftmp3], 0x00(%[src_ptr]) \n\t" + /* ftmp4: p1 */ + MMI_ADDU(%[src_ptr], %[src_ptr], %[src_pixel_step]) + "gsldlc1 %[ftmp4], 0x07(%[src_ptr]) \n\t" + "gsldrc1 %[ftmp4], 0x00(%[src_ptr]) \n\t" + /* ftmp5: p0 */ + MMI_ADDU(%[src_ptr], %[src_ptr], %[src_pixel_step]) + "gsldlc1 %[ftmp5], 0x07(%[src_ptr]) \n\t" + "gsldrc1 %[ftmp5], 0x00(%[src_ptr]) \n\t" + /* ftmp6: q0 */ + MMI_ADDU(%[src_ptr], %[src_ptr], %[src_pixel_step]) + "gsldlc1 %[ftmp6], 0x07(%[src_ptr]) \n\t" + "gsldrc1 %[ftmp6], 0x00(%[src_ptr]) \n\t" + /* ftmp7: q1 */ + MMI_ADDU(%[src_ptr], %[src_ptr], %[src_pixel_step]) + "gsldlc1 %[ftmp7], 0x07(%[src_ptr]) \n\t" + "gsldrc1 %[ftmp7], 0x00(%[src_ptr]) \n\t" + /* ftmp8: q2 */ + MMI_ADDU(%[src_ptr], %[src_ptr], %[src_pixel_step]) + "gsldlc1 %[ftmp8], 0x07(%[src_ptr]) \n\t" + "gsldrc1 %[ftmp8], 0x00(%[src_ptr]) \n\t" + /* ftmp2: q3 */ + MMI_ADDU(%[src_ptr], %[src_ptr], %[src_pixel_step]) + "gsldlc1 %[ftmp2], 0x07(%[src_ptr]) \n\t" + "gsldrc1 %[ftmp2], 0x00(%[src_ptr]) \n\t" + + "gsldlc1 %[ftmp12], 0x07(%[blimit]) \n\t" + "gsldrc1 %[ftmp12], 0x00(%[blimit]) \n\t" + + "pasubub %[ftmp0], %[ftmp1], %[ftmp3] \n\t" + "psubusb %[ftmp0], %[ftmp0], %[ftmp9] \n\t" + "pasubub %[ftmp1], %[ftmp3], %[ftmp4] \n\t" + "psubusb %[ftmp1], %[ftmp1], %[ftmp9] \n\t" + "or %[ftmp0], %[ftmp0], %[ftmp1] \n\t" + "pasubub %[ftmp10], %[ftmp4], %[ftmp5] \n\t" + "psubusb %[ftmp1], %[ftmp10], %[ftmp9] \n\t" + "or %[ftmp0], %[ftmp0], %[ftmp1] \n\t" + "pasubub %[ftmp11], %[ftmp7], %[ftmp6] \n\t" + "psubusb %[ftmp1], %[ftmp11], %[ftmp9] \n\t" + "or %[ftmp0], %[ftmp0], %[ftmp1] \n\t" + "pasubub %[ftmp1], %[ftmp8], %[ftmp7] \n\t" + "psubusb %[ftmp1], %[ftmp1], %[ftmp9] \n\t" + "or %[ftmp0], %[ftmp0], %[ftmp1] \n\t" + "pasubub %[ftmp1], %[ftmp2], %[ftmp8] \n\t" + "psubusb %[ftmp1], %[ftmp1], %[ftmp9] \n\t" + "or %[ftmp0], %[ftmp0], %[ftmp1] \n\t" + + "pasubub %[ftmp1], %[ftmp5], %[ftmp6] \n\t" + "paddusb %[ftmp1], %[ftmp1], %[ftmp1] \n\t" + "pasubub %[ftmp2], %[ftmp4], %[ftmp7] \n\t" + "and %[ftmp2], %[ftmp2], %[ff_pb_fe] \n\t" + "li %[tmp0], 0x01 \n\t" + "mtc1 %[tmp0], %[ftmp9] \n\t" + "psrlh %[ftmp2], %[ftmp2], %[ftmp9] \n\t" + "paddusb %[ftmp1], %[ftmp1], %[ftmp2] \n\t" + "psubusb %[ftmp1], %[ftmp1], %[ftmp12] \n\t" + "or %[ftmp0], %[ftmp0], %[ftmp1] \n\t" + "xor %[ftmp9], %[ftmp9], %[ftmp9] \n\t" + /* ftmp0: mask */ + "pcmpeqb %[ftmp0], %[ftmp0], %[ftmp9] \n\t" + + "gsldlc1 %[ftmp9], 0x07(%[thresh]) \n\t" + "gsldrc1 %[ftmp9], 0x00(%[thresh]) \n\t" + "psubusb %[ftmp1], %[ftmp10], %[ftmp9] \n\t" + "psubusb %[ftmp2], %[ftmp11], %[ftmp9] \n\t" + "paddb %[ftmp1], %[ftmp1], %[ftmp2] \n\t" + "xor %[ftmp2], %[ftmp2], %[ftmp2] \n\t" + "pcmpeqb %[ftmp1], %[ftmp1], %[ftmp2] \n\t" + "pcmpeqb %[ftmp2], %[ftmp2], %[ftmp2] \n\t" + /* ftmp1: hev */ + "xor %[ftmp1], %[ftmp1], %[ftmp2] \n\t" + + "xor %[ftmp4], %[ftmp4], %[ff_pb_80] \n\t" + "xor %[ftmp5], %[ftmp5], %[ff_pb_80] \n\t" + "xor %[ftmp6], %[ftmp6], %[ff_pb_80] \n\t" + "xor %[ftmp7], %[ftmp7], %[ff_pb_80] \n\t" + "psubsb %[ftmp2], %[ftmp4], %[ftmp7] \n\t" + "psubsb %[ftmp9], %[ftmp6], %[ftmp5] \n\t" + "paddsb %[ftmp2], %[ftmp2], %[ftmp9] \n\t" + "paddsb %[ftmp2], %[ftmp2], %[ftmp9] \n\t" + "paddsb %[ftmp2], %[ftmp2], %[ftmp9] \n\t" + "and %[ftmp2], %[ftmp2], %[ftmp0] \n\t" + "pandn %[ftmp12], %[ftmp1], %[ftmp2] \n\t" + "and %[ftmp2], %[ftmp2], %[ftmp1] \n\t" + + "li %[tmp0], 0x0b \n\t" + "mtc1 %[tmp0], %[ftmp9] \n\t" + "paddsb %[ftmp0], %[ftmp2], %[ff_pb_03] \n\t" + VP8_MBLOOP_HPSRAB + "paddsb %[ftmp5], %[ftmp5], %[ftmp0] \n\t" + "paddsb %[ftmp0], %[ftmp2], %[ff_pb_04] \n\t" + VP8_MBLOOP_HPSRAB + "psubsb %[ftmp6], %[ftmp6], %[ftmp0] \n\t" + + "li %[tmp0], 0x07 \n\t" + "mtc1 %[tmp0], %[ftmp9] \n\t" + "xor %[ftmp0], %[ftmp0], %[ftmp0] \n\t" + + VP8_MBLOOP_HPSRAB_ADD(%[ff_ph_1b00]) + "psubsb %[ftmp6], %[ftmp6], %[ftmp1] \n\t" + "paddsb %[ftmp5], %[ftmp5], %[ftmp1] \n\t" + "xor %[ftmp6], %[ftmp6], %[ff_pb_80] \n\t" + "xor %[ftmp5], %[ftmp5], %[ff_pb_80] \n\t" + MMI_SLL(%[tmp0], %[src_pixel_step], 0x02) + MMI_SUBU(%[src_ptr], %[src_ptr], %[tmp0]) + "gssdlc1 %[ftmp5], 0x07(%[src_ptr]) \n\t" + "gssdrc1 %[ftmp5], 0x00(%[src_ptr]) \n\t" + MMI_ADDU(%[src_ptr], %[src_ptr], %[src_pixel_step]) + "gssdlc1 %[ftmp6], 0x07(%[src_ptr]) \n\t" + "gssdrc1 %[ftmp6], 0x00(%[src_ptr]) \n\t" + + VP8_MBLOOP_HPSRAB_ADD(%[ff_ph_1200]) + "paddsb %[ftmp4], %[ftmp4], %[ftmp1] \n\t" + "psubsb %[ftmp7], %[ftmp7], %[ftmp1] \n\t" + "xor %[ftmp4], %[ftmp4], %[ff_pb_80] \n\t" + "xor %[ftmp7], %[ftmp7], %[ff_pb_80] \n\t" + MMI_ADDU(%[src_ptr], %[src_ptr], %[src_pixel_step]) + "gssdlc1 %[ftmp7], 0x07(%[src_ptr]) \n\t" + "gssdrc1 %[ftmp7], 0x00(%[src_ptr]) \n\t" + MMI_SUBU(%[src_ptr], %[src_ptr], %[tmp0]) + MMI_ADDU(%[src_ptr], %[src_ptr], %[src_pixel_step]) + "gssdlc1 %[ftmp4], 0x07(%[src_ptr]) \n\t" + "gssdrc1 %[ftmp4], 0x00(%[src_ptr]) \n\t" + + VP8_MBLOOP_HPSRAB_ADD(%[ff_ph_0900]) + "xor %[ftmp3], %[ftmp3], %[ff_pb_80] \n\t" + "xor %[ftmp8], %[ftmp8], %[ff_pb_80] \n\t" + "paddsb %[ftmp3], %[ftmp3], %[ftmp1] \n\t" + "psubsb %[ftmp8], %[ftmp8], %[ftmp1] \n\t" + "xor %[ftmp3], %[ftmp3], %[ff_pb_80] \n\t" + "xor %[ftmp8], %[ftmp8], %[ff_pb_80] \n\t" + MMI_ADDU(%[src_ptr], %[src_ptr], %[tmp0]) + "gssdlc1 %[ftmp8], 0x07(%[src_ptr]) \n\t" + "gssdrc1 %[ftmp8], 0x00(%[src_ptr]) \n\t" + MMI_SUBU(%[src_ptr], %[src_ptr], %[tmp0]) + MMI_SUBU(%[src_ptr], %[src_ptr], %[src_pixel_step]) + "gssdlc1 %[ftmp3], 0x07(%[src_ptr]) \n\t" + "gssdrc1 %[ftmp3], 0x00(%[src_ptr]) \n\t" + + MMI_SUBU(%[src_ptr], %[src_ptr], %[src_pixel_step]) + MMI_ADDIU(%[src_ptr], %[src_ptr], 0x08) + "addiu %[count], %[count], -0x01 \n\t" + "bnez %[count], 1b \n\t" + : [ftmp0]"=&f"(ftmp[0]), [ftmp1]"=&f"(ftmp[1]), + [ftmp2]"=&f"(ftmp[2]), [ftmp3]"=&f"(ftmp[3]), + [ftmp4]"=&f"(ftmp[4]), [ftmp5]"=&f"(ftmp[5]), + [ftmp6]"=&f"(ftmp[6]), [ftmp7]"=&f"(ftmp[7]), + [ftmp8]"=&f"(ftmp[8]), [ftmp9]"=&f"(ftmp[9]), + [ftmp10]"=&f"(ftmp[10]), [ftmp11]"=&f"(ftmp[11]), + [ftmp12]"=&f"(ftmp[12]), [tmp0]"=&r"(tmp[0]), + [src_ptr]"+&r"(src_ptr), [count]"+&r"(count) + : [limit]"r"(limit), [blimit]"r"(blimit), + [thresh]"r"(thresh), + [src_pixel_step]"r"((mips_reg)src_pixel_step), + [ff_pb_fe]"f"(ff_pb_fe), [ff_pb_80]"f"(ff_pb_80), + [ff_pb_04]"f"(ff_pb_04), [ff_pb_03]"f"(ff_pb_03), + [ff_ph_0900]"f"(ff_ph_0900), [ff_ph_1b00]"f"(ff_ph_1b00), + [ff_ph_1200]"f"(ff_ph_1200), [ff_ph_003f]"f"(ff_ph_003f) + : "memory" + ); +} + +#define VP8_MBLOOP_VPSRAB_ADDH \ + "xor %[ftmp7], %[ftmp7], %[ftmp7] \n\t" \ + "xor %[ftmp8], %[ftmp8], %[ftmp8] \n\t" \ + "punpcklbh %[ftmp7], %[ftmp7], %[ftmp0] \n\t" \ + "punpckhbh %[ftmp8], %[ftmp8], %[ftmp0] \n\t" + +#define VP8_MBLOOP_VPSRAB_ADDT \ + "paddh %[ftmp7], %[ftmp7], %[ff_ph_003f] \n\t" \ + "paddh %[ftmp8], %[ftmp8], %[ff_ph_003f] \n\t" \ + "psrah %[ftmp7], %[ftmp7], %[ftmp12] \n\t" \ + "psrah %[ftmp8], %[ftmp8], %[ftmp12] \n\t" \ + "packsshb %[ftmp3], %[ftmp7], %[ftmp8] \n\t" + +void vp8_mbloop_filter_vertical_edge_mmi( + unsigned char *src_ptr, int src_pixel_step, const unsigned char *blimit, + const unsigned char *limit, const unsigned char *thresh, int count) { + mips_reg tmp[1]; + DECLARE_ALIGNED(8, const uint64_t, srct[1]); + double ftmp[14]; + + __asm__ volatile ( + MMI_SUBU(%[src_ptr], %[src_ptr], 0x04) + + "1: \n\t" + "gsldlc1 %[ftmp5], 0x07(%[src_ptr]) \n\t" + "gsldrc1 %[ftmp5], 0x00(%[src_ptr]) \n\t" + MMI_ADDU(%[src_ptr], %[src_ptr], %[src_pixel_step]) + "gsldlc1 %[ftmp6], 0x07(%[src_ptr]) \n\t" + "gsldrc1 %[ftmp6], 0x00(%[src_ptr]) \n\t" + MMI_ADDU(%[src_ptr], %[src_ptr], %[src_pixel_step]) + "gsldlc1 %[ftmp7], 0x07(%[src_ptr]) \n\t" + "gsldrc1 %[ftmp7], 0x00(%[src_ptr]) \n\t" + MMI_ADDU(%[src_ptr], %[src_ptr], %[src_pixel_step]) + "gsldlc1 %[ftmp8], 0x07(%[src_ptr]) \n\t" + "gsldrc1 %[ftmp8], 0x00(%[src_ptr]) \n\t" + + "punpcklbh %[ftmp11], %[ftmp5], %[ftmp6] \n\t" + "punpckhbh %[ftmp12], %[ftmp5], %[ftmp6] \n\t" + "punpcklbh %[ftmp9], %[ftmp7], %[ftmp8] \n\t" + "punpckhbh %[ftmp10], %[ftmp7], %[ftmp8] \n\t" + + "punpcklhw %[ftmp1], %[ftmp12], %[ftmp10] \n\t" + "punpckhhw %[ftmp2], %[ftmp12], %[ftmp10] \n\t" + "punpcklhw %[ftmp3], %[ftmp11], %[ftmp9] \n\t" + "punpckhhw %[ftmp4], %[ftmp11], %[ftmp9] \n\t" + + MMI_ADDU(%[src_ptr], %[src_ptr], %[src_pixel_step]) + "gsldlc1 %[ftmp5], 0x07(%[src_ptr]) \n\t" + "gsldrc1 %[ftmp5], 0x00(%[src_ptr]) \n\t" + MMI_ADDU(%[src_ptr], %[src_ptr], %[src_pixel_step]) + "gsldlc1 %[ftmp6], 0x07(%[src_ptr]) \n\t" + "gsldrc1 %[ftmp6], 0x00(%[src_ptr]) \n\t" + MMI_ADDU(%[src_ptr], %[src_ptr], %[src_pixel_step]) + "gsldlc1 %[ftmp7], 0x07(%[src_ptr]) \n\t" + "gsldrc1 %[ftmp7], 0x00(%[src_ptr]) \n\t" + MMI_ADDU(%[src_ptr], %[src_ptr], %[src_pixel_step]) + "gsldlc1 %[ftmp8], 0x07(%[src_ptr]) \n\t" + "gsldrc1 %[ftmp8], 0x00(%[src_ptr]) \n\t" + + "punpcklbh %[ftmp11], %[ftmp5], %[ftmp6] \n\t" + "punpckhbh %[ftmp12], %[ftmp5], %[ftmp6] \n\t" + "punpcklbh %[ftmp9], %[ftmp7], %[ftmp8] \n\t" + "punpckhbh %[ftmp10], %[ftmp7], %[ftmp8] \n\t" + + "punpcklhw %[ftmp5], %[ftmp12], %[ftmp10] \n\t" + "punpckhhw %[ftmp6], %[ftmp12], %[ftmp10] \n\t" + "punpcklhw %[ftmp7], %[ftmp11], %[ftmp9] \n\t" + "punpckhhw %[ftmp8], %[ftmp11], %[ftmp9] \n\t" + + "gsldlc1 %[ftmp13], 0x07(%[limit]) \n\t" + "gsldrc1 %[ftmp13], 0x00(%[limit]) \n\t" + /* ftmp9:q0 ftmp10:q1 */ + "punpcklwd %[ftmp9], %[ftmp1], %[ftmp5] \n\t" + "punpckhwd %[ftmp10], %[ftmp1], %[ftmp5] \n\t" + /* ftmp11:q2 ftmp12:q3 */ + "punpcklwd %[ftmp11], %[ftmp2], %[ftmp6] \n\t" + "punpckhwd %[ftmp12], %[ftmp2], %[ftmp6] \n\t" + /* srct[0x00]: q3 */ + "sdc1 %[ftmp12], 0x00(%[srct]) \n\t" + /* ftmp1:p3 ftmp2:p2 */ + "punpcklwd %[ftmp1], %[ftmp3], %[ftmp7] \n\t" + "punpckhwd %[ftmp2], %[ftmp3], %[ftmp7] \n\t" + /* srct[0x08]: p3 */ + "sdc1 %[ftmp1], 0x08(%[srct]) \n\t" + /* ftmp5:p1 ftmp6:p0 */ + "punpcklwd %[ftmp5], %[ftmp4], %[ftmp8] \n\t" + "punpckhwd %[ftmp6], %[ftmp4], %[ftmp8] \n\t" + + /* abs (q3-q2) */ + "pasubub %[ftmp7], %[ftmp12], %[ftmp11] \n\t" + "psubusb %[ftmp0], %[ftmp7], %[ftmp13] \n\t" + /* abs (q2-q1) */ + "pasubub %[ftmp7], %[ftmp11], %[ftmp10] \n\t" + "psubusb %[ftmp7], %[ftmp7], %[ftmp13] \n\t" + "or %[ftmp0], %[ftmp0], %[ftmp7] \n\t" + /* ftmp3: abs(q1-q0) */ + "pasubub %[ftmp3], %[ftmp10], %[ftmp9] \n\t" + "psubusb %[ftmp7], %[ftmp3], %[ftmp13] \n\t" + "or %[ftmp0], %[ftmp0], %[ftmp7] \n\t" + /* ftmp4: abs(p1-p0) */ + "pasubub %[ftmp4], %[ftmp5], %[ftmp6] \n\t" + "psubusb %[ftmp7], %[ftmp4], %[ftmp13] \n\t" + "or %[ftmp0], %[ftmp0], %[ftmp7] \n\t" + /* abs (p2-p1) */ + "pasubub %[ftmp7], %[ftmp2], %[ftmp5] \n\t" + "psubusb %[ftmp7], %[ftmp7], %[ftmp13] \n\t" + "or %[ftmp0], %[ftmp0], %[ftmp7] \n\t" + /* abs (p3-p2) */ + "pasubub %[ftmp7], %[ftmp1], %[ftmp2] \n\t" + "psubusb %[ftmp7], %[ftmp7], %[ftmp13] \n\t" + "or %[ftmp0], %[ftmp0], %[ftmp7] \n\t" + + "gsldlc1 %[ftmp13], 0x07(%[blimit]) \n\t" + "gsldrc1 %[ftmp13], 0x00(%[blimit]) \n\t" + "gsldlc1 %[ftmp7], 0x07(%[thresh]) \n\t" + "gsldrc1 %[ftmp7], 0x00(%[thresh]) \n\t" + /* abs (p0-q0) * 2 */ + "pasubub %[ftmp1], %[ftmp9], %[ftmp6] \n\t" + "paddusb %[ftmp1], %[ftmp1], %[ftmp1] \n\t" + /* abs (p1-q1) / 2 */ + "pasubub %[ftmp12], %[ftmp10], %[ftmp5] \n\t" + "and %[ftmp12], %[ftmp12], %[ff_pb_fe] \n\t" + "li %[tmp0], 0x01 \n\t" + "mtc1 %[tmp0], %[ftmp8] \n\t" + "psrlh %[ftmp12], %[ftmp12], %[ftmp8] \n\t" + "paddusb %[ftmp12], %[ftmp1], %[ftmp12] \n\t" + "psubusb %[ftmp12], %[ftmp12], %[ftmp13] \n\t" + "or %[ftmp0], %[ftmp0], %[ftmp12] \n\t" + "xor %[ftmp12], %[ftmp12], %[ftmp12] \n\t" + /* ftmp0: mask */ + "pcmpeqb %[ftmp0], %[ftmp0], %[ftmp12] \n\t" + + /* abs(p1-p0) - thresh */ + "psubusb %[ftmp4], %[ftmp4], %[ftmp7] \n\t" + /* abs(q1-q0) - thresh */ + "psubusb %[ftmp3], %[ftmp3], %[ftmp7] \n\t" + "or %[ftmp3], %[ftmp4], %[ftmp3] \n\t" + "pcmpeqb %[ftmp3], %[ftmp3], %[ftmp12] \n\t" + "pcmpeqb %[ftmp1], %[ftmp1], %[ftmp1] \n\t" + /* ftmp1: hev */ + "xor %[ftmp1], %[ftmp3], %[ftmp1] \n\t" + + /* ftmp2:ps2, ftmp5:ps1, ftmp6:ps0, ftmp9:qs0, ftmp10:qs1, ftmp11:qs2 */ + "xor %[ftmp11], %[ftmp11], %[ff_pb_80] \n\t" + "xor %[ftmp10], %[ftmp10], %[ff_pb_80] \n\t" + "xor %[ftmp9], %[ftmp9], %[ff_pb_80] \n\t" + "xor %[ftmp6], %[ftmp6], %[ff_pb_80] \n\t" + "xor %[ftmp5], %[ftmp5], %[ff_pb_80] \n\t" + "xor %[ftmp2], %[ftmp2], %[ff_pb_80] \n\t" + + "psubsb %[ftmp3], %[ftmp5], %[ftmp10] \n\t" + "psubsb %[ftmp4], %[ftmp9], %[ftmp6] \n\t" + "paddsb %[ftmp3], %[ftmp3], %[ftmp4] \n\t" + "paddsb %[ftmp3], %[ftmp3], %[ftmp4] \n\t" + "paddsb %[ftmp3], %[ftmp3], %[ftmp4] \n\t" + /* filter_value &= mask */ + "and %[ftmp0], %[ftmp0], %[ftmp3] \n\t" + /* Filter2 = filter_value & hev */ + "and %[ftmp3], %[ftmp1], %[ftmp0] \n\t" + /* filter_value &= ~hev */ + "pandn %[ftmp0], %[ftmp1], %[ftmp0] \n\t" + + "paddsb %[ftmp4], %[ftmp3], %[ff_pb_04] \n\t" + "li %[tmp0], 0x0b \n\t" + "mtc1 %[tmp0], %[ftmp12] \n\t" + "punpcklbh %[ftmp7], %[ftmp7], %[ftmp4] \n\t" + "punpckhbh %[ftmp8], %[ftmp8], %[ftmp4] \n\t" + "psrah %[ftmp7], %[ftmp7], %[ftmp12] \n\t" + "psrah %[ftmp8], %[ftmp8], %[ftmp12] \n\t" + "packsshb %[ftmp4], %[ftmp7], %[ftmp8] \n\t" + /* ftmp9: qs0 */ + "psubsb %[ftmp9], %[ftmp9], %[ftmp4] \n\t" + "paddsb %[ftmp3], %[ftmp3], %[ff_pb_03] \n\t" + "punpcklbh %[ftmp7], %[ftmp7], %[ftmp3] \n\t" + "punpckhbh %[ftmp8], %[ftmp8], %[ftmp3] \n\t" + "psrah %[ftmp7], %[ftmp7], %[ftmp12] \n\t" + "psrah %[ftmp8], %[ftmp8], %[ftmp12] \n\t" + "packsshb %[ftmp3], %[ftmp7], %[ftmp8] \n\t" + /* ftmp6: ps0 */ + "paddsb %[ftmp6], %[ftmp6], %[ftmp3] \n\t" + + "li %[tmp0], 0x07 \n\t" + "mtc1 %[tmp0], %[ftmp12] \n\t" + VP8_MBLOOP_VPSRAB_ADDH + "paddh %[ftmp1], %[ff_ph_0900], %[ff_ph_0900] \n\t" + "paddh %[ftmp1], %[ftmp1], %[ff_ph_0900] \n\t" + "pmulhh %[ftmp7], %[ftmp7], %[ftmp1] \n\t" + "pmulhh %[ftmp8], %[ftmp8], %[ftmp1] \n\t" + VP8_MBLOOP_VPSRAB_ADDT + "psubsb %[ftmp4], %[ftmp9], %[ftmp3] \n\t" + /* ftmp9: oq0 */ + "xor %[ftmp9], %[ftmp4], %[ff_pb_80] \n\t" + "paddsb %[ftmp4], %[ftmp6], %[ftmp3] \n\t" + /* ftmp6: op0 */ + "xor %[ftmp6], %[ftmp4], %[ff_pb_80] \n\t" + + VP8_MBLOOP_VPSRAB_ADDH + "paddh %[ftmp1], %[ff_ph_0900], %[ff_ph_0900] \n\t" + "pmulhh %[ftmp7], %[ftmp7], %[ftmp1] \n\t" + "pmulhh %[ftmp8], %[ftmp8], %[ftmp1] \n\t" + VP8_MBLOOP_VPSRAB_ADDT + "psubsb %[ftmp4], %[ftmp10], %[ftmp3] \n\t" + /* ftmp10: oq1 */ + "xor %[ftmp10], %[ftmp4], %[ff_pb_80] \n\t" + "paddsb %[ftmp4], %[ftmp5], %[ftmp3] \n\t" + /* ftmp5: op1 */ + "xor %[ftmp5], %[ftmp4], %[ff_pb_80] \n\t" + + VP8_MBLOOP_VPSRAB_ADDH + "pmulhh %[ftmp7], %[ftmp7], %[ff_ph_0900] \n\t" + "pmulhh %[ftmp8], %[ftmp8], %[ff_ph_0900] \n\t" + VP8_MBLOOP_VPSRAB_ADDT + "psubsb %[ftmp4], %[ftmp11], %[ftmp3] \n\t" + /* ftmp11: oq2 */ + "xor %[ftmp11], %[ftmp4], %[ff_pb_80] \n\t" + "paddsb %[ftmp4], %[ftmp2], %[ftmp3] \n\t" + /* ftmp2: op2 */ + "xor %[ftmp2], %[ftmp4], %[ff_pb_80] \n\t" + + "ldc1 %[ftmp12], 0x00(%[srct]) \n\t" + "ldc1 %[ftmp8], 0x08(%[srct]) \n\t" + + "punpcklbh %[ftmp0], %[ftmp8], %[ftmp2] \n\t" + "punpckhbh %[ftmp1], %[ftmp8], %[ftmp2] \n\t" + "punpcklbh %[ftmp2], %[ftmp5], %[ftmp6] \n\t" + "punpckhbh %[ftmp3], %[ftmp5], %[ftmp6] \n\t" + "punpcklhw %[ftmp4], %[ftmp0], %[ftmp2] \n\t" + "punpckhhw %[ftmp5], %[ftmp0], %[ftmp2] \n\t" + "punpcklhw %[ftmp6], %[ftmp1], %[ftmp3] \n\t" + "punpckhhw %[ftmp7], %[ftmp1], %[ftmp3] \n\t" + + "punpcklbh %[ftmp0], %[ftmp9], %[ftmp10] \n\t" + "punpckhbh %[ftmp1], %[ftmp9], %[ftmp10] \n\t" + "punpcklbh %[ftmp2], %[ftmp11], %[ftmp12] \n\t" + "punpckhbh %[ftmp3], %[ftmp11], %[ftmp12] \n\t" + "punpcklhw %[ftmp8], %[ftmp0], %[ftmp2] \n\t" + "punpckhhw %[ftmp9], %[ftmp0], %[ftmp2] \n\t" + "punpcklhw %[ftmp10], %[ftmp1], %[ftmp3] \n\t" + "punpckhhw %[ftmp11], %[ftmp1], %[ftmp3] \n\t" + + "punpcklwd %[ftmp0], %[ftmp7], %[ftmp11] \n\t" + "punpckhwd %[ftmp1], %[ftmp7], %[ftmp11] \n\t" + "gssdlc1 %[ftmp1], 0x07(%[src_ptr]) \n\t" + "gssdrc1 %[ftmp1], 0x00(%[src_ptr]) \n\t" + MMI_SUBU(%[src_ptr], %[src_ptr], %[src_pixel_step]) + "gssdlc1 %[ftmp0], 0x07(%[src_ptr]) \n\t" + "gssdrc1 %[ftmp0], 0x00(%[src_ptr]) \n\t" + + "punpcklwd %[ftmp0], %[ftmp6], %[ftmp10] \n\t" + "punpckhwd %[ftmp1], %[ftmp6], %[ftmp10] \n\t" + MMI_SUBU(%[src_ptr], %[src_ptr], %[src_pixel_step]) + "gssdlc1 %[ftmp1], 0x07(%[src_ptr]) \n\t" + "gssdrc1 %[ftmp1], 0x00(%[src_ptr]) \n\t" + MMI_SUBU(%[src_ptr], %[src_ptr], %[src_pixel_step]) + "gssdlc1 %[ftmp0], 0x07(%[src_ptr]) \n\t" + "gssdrc1 %[ftmp0], 0x00(%[src_ptr]) \n\t" + + "punpcklwd %[ftmp1], %[ftmp5], %[ftmp9] \n\t" + "punpckhwd %[ftmp0], %[ftmp5], %[ftmp9] \n\t" + MMI_SUBU(%[src_ptr], %[src_ptr], %[src_pixel_step]) + "gssdlc1 %[ftmp0], 0x07(%[src_ptr]) \n\t" + "gssdrc1 %[ftmp0], 0x00(%[src_ptr]) \n\t" + MMI_SUBU(%[src_ptr], %[src_ptr], %[src_pixel_step]) + "gssdlc1 %[ftmp1], 0x07(%[src_ptr]) \n\t" + "gssdrc1 %[ftmp1], 0x00(%[src_ptr]) \n\t" + + "punpcklwd %[ftmp1], %[ftmp4], %[ftmp8] \n\t" + "punpckhwd %[ftmp0], %[ftmp4], %[ftmp8] \n\t" + MMI_SUBU(%[src_ptr], %[src_ptr], %[src_pixel_step]) + "gssdlc1 %[ftmp0], 0x07(%[src_ptr]) \n\t" + "gssdrc1 %[ftmp0], 0x00(%[src_ptr]) \n\t" + MMI_SUBU(%[src_ptr], %[src_ptr], %[src_pixel_step]) + "gssdlc1 %[ftmp1], 0x07(%[src_ptr]) \n\t" + "gssdrc1 %[ftmp1], 0x00(%[src_ptr]) \n\t" + "addiu %[count], %[count], -0x01 \n\t" + + MMI_SLL(%[tmp0], %[src_pixel_step], 0x03) + MMI_ADDU(%[src_ptr], %[src_ptr], %[tmp0]) + "bnez %[count], 1b \n\t" + : [ftmp0]"=&f"(ftmp[0]), [ftmp1]"=&f"(ftmp[1]), + [ftmp2]"=&f"(ftmp[2]), [ftmp3]"=&f"(ftmp[3]), + [ftmp4]"=&f"(ftmp[4]), [ftmp5]"=&f"(ftmp[5]), + [ftmp6]"=&f"(ftmp[6]), [ftmp7]"=&f"(ftmp[7]), + [ftmp8]"=&f"(ftmp[8]), [ftmp9]"=&f"(ftmp[9]), + [ftmp10]"=&f"(ftmp[10]), [ftmp11]"=&f"(ftmp[11]), + [ftmp12]"=&f"(ftmp[12]), [ftmp13]"=&f"(ftmp[13]), + [tmp0]"=&r"(tmp[0]), [src_ptr]"+&r"(src_ptr), + [count]"+&r"(count) + : [limit]"r"(limit), [blimit]"r"(blimit), + [srct]"r"(srct), [thresh]"r"(thresh), + [src_pixel_step]"r"((mips_reg)src_pixel_step), + [ff_ph_003f]"f"(ff_ph_003f), [ff_ph_0900]"f"(ff_ph_0900), + [ff_pb_03]"f"(ff_pb_03), [ff_pb_04]"f"(ff_pb_04), + [ff_pb_80]"f"(ff_pb_80), [ff_pb_fe]"f"(ff_pb_fe) + : "memory" + ); +} + +#define VP8_SIMPLE_HPSRAB \ + "psllh %[ftmp0], %[ftmp5], %[ftmp8] \n\t" \ + "psrah %[ftmp0], %[ftmp0], %[ftmp9] \n\t" \ + "psrlh %[ftmp0], %[ftmp0], %[ftmp8] \n\t" \ + "psrah %[ftmp1], %[ftmp5], %[ftmp10] \n\t" \ + "psllh %[ftmp1], %[ftmp1], %[ftmp8] \n\t" \ + "or %[ftmp0], %[ftmp0], %[ftmp1] \n\t" + +void vp8_loop_filter_simple_horizontal_edge_mmi(unsigned char *src_ptr, + int src_pixel_step, + const unsigned char *blimit) { + uint32_t tmp[1], count = 2; + mips_reg addr[2]; + double ftmp[12]; + + __asm__ volatile ( + "li %[tmp0], 0x08 \n\t" + "mtc1 %[tmp0], %[ftmp8] \n\t" + "li %[tmp0], 0x03 \n\t" + "mtc1 %[tmp0], %[ftmp9] \n\t" + "li %[tmp0], 0x0b \n\t" + "mtc1 %[tmp0], %[ftmp10] \n\t" + "li %[tmp0], 0x01 \n\t" + "mtc1 %[tmp0], %[ftmp11] \n\t" + + "1: \n\t" + "gsldlc1 %[ftmp3], 0x07(%[blimit]) \n\t" + "gsldrc1 %[ftmp3], 0x00(%[blimit]) \n\t" + + MMI_ADDU(%[addr0], %[src_ptr], %[src_pixel_step]) + + MMI_SUBU(%[addr1], %[src_ptr], %[src_pixel_step_x2]) + "gsldlc1 %[ftmp2], 0x07(%[addr1]) \n\t" + "gsldrc1 %[ftmp2], 0x00(%[addr1]) \n\t" + "gsldlc1 %[ftmp7], 0x07(%[addr0]) \n\t" + "gsldrc1 %[ftmp7], 0x00(%[addr0]) \n\t" + "pasubub %[ftmp1], %[ftmp7], %[ftmp2] \n\t" + "and %[ftmp1], %[ftmp1], %[ff_pb_fe] \n\t" + "psrlh %[ftmp1], %[ftmp1], %[ftmp11] \n\t" + + MMI_SUBU(%[addr1], %[src_ptr], %[src_pixel_step]) + "gsldlc1 %[ftmp6], 0x07(%[addr1]) \n\t" + "gsldrc1 %[ftmp6], 0x00(%[addr1]) \n\t" + "gsldlc1 %[ftmp0], 0x07(%[src_ptr]) \n\t" + "gsldrc1 %[ftmp0], 0x00(%[src_ptr]) \n\t" + "pasubub %[ftmp5], %[ftmp6], %[ftmp0] \n\t" + "paddusb %[ftmp5], %[ftmp5], %[ftmp5] \n\t" + "paddusb %[ftmp5], %[ftmp5], %[ftmp1] \n\t" + "psubusb %[ftmp5], %[ftmp5], %[ftmp3] \n\t" + "xor %[ftmp3], %[ftmp3], %[ftmp3] \n\t" + "pcmpeqb %[ftmp5], %[ftmp5], %[ftmp3] \n\t" + + "xor %[ftmp2], %[ftmp2], %[ff_pb_80] \n\t" + "xor %[ftmp7], %[ftmp7], %[ff_pb_80] \n\t" + "psubsb %[ftmp2], %[ftmp2], %[ftmp7] \n\t" + "xor %[ftmp6], %[ftmp6], %[ff_pb_80] \n\t" + "xor %[ftmp3], %[ftmp0], %[ff_pb_80] \n\t" + "psubsb %[ftmp0], %[ftmp3], %[ftmp6] \n\t" + "paddsb %[ftmp2], %[ftmp2], %[ftmp0] \n\t" + "paddsb %[ftmp2], %[ftmp2], %[ftmp0] \n\t" + "paddsb %[ftmp2], %[ftmp2], %[ftmp0] \n\t" + "and %[ftmp5], %[ftmp5], %[ftmp2] \n\t" + + "paddsb %[ftmp5], %[ftmp5], %[ff_pb_04] \n\t" + VP8_SIMPLE_HPSRAB + "psubsb %[ftmp3], %[ftmp3], %[ftmp0] \n\t" + "xor %[ftmp3], %[ftmp3], %[ff_pb_80] \n\t" + "gssdlc1 %[ftmp3], 0x07(%[src_ptr]) \n\t" + "gssdrc1 %[ftmp3], 0x00(%[src_ptr]) \n\t" + + "psubsb %[ftmp5], %[ftmp5], %[ff_pb_01] \n\t" + VP8_SIMPLE_HPSRAB + "paddsb %[ftmp6], %[ftmp6], %[ftmp0] \n\t" + "xor %[ftmp6], %[ftmp6], %[ff_pb_80] \n\t" + MMI_SUBU(%[addr1], %[src_ptr], %[src_pixel_step]) + "gssdlc1 %[ftmp6], 0x07(%[addr1]) \n\t" + "gssdrc1 %[ftmp6], 0x00(%[addr1]) \n\t" + + "addiu %[count], %[count], -0x01 \n\t" + MMI_ADDIU(%[src_ptr], %[src_ptr], 0x08) + "bnez %[count], 1b \n\t" + : [ftmp0]"=&f"(ftmp[0]), [ftmp1]"=&f"(ftmp[1]), + [ftmp2]"=&f"(ftmp[2]), [ftmp3]"=&f"(ftmp[3]), + [ftmp4]"=&f"(ftmp[4]), [ftmp5]"=&f"(ftmp[5]), + [ftmp6]"=&f"(ftmp[6]), [ftmp7]"=&f"(ftmp[7]), + [ftmp8]"=&f"(ftmp[8]), [ftmp9]"=&f"(ftmp[9]), + [ftmp10]"=&f"(ftmp[10]), [ftmp11]"=&f"(ftmp[11]), + [tmp0]"=&r"(tmp[0]), + [addr0]"=&r"(addr[0]), [addr1]"=&r"(addr[1]), + [src_ptr]"+&r"(src_ptr), [count]"+&r"(count) + : [blimit]"r"(blimit), + [src_pixel_step]"r"((mips_reg)src_pixel_step), + [src_pixel_step_x2]"r"((mips_reg)(src_pixel_step<<1)), + [ff_pb_fe]"f"(ff_pb_fe), [ff_pb_80]"f"(ff_pb_80), + [ff_pb_04]"f"(ff_pb_04), [ff_pb_01]"f"(ff_pb_01) + : "memory" + ); +} + +void vp8_loop_filter_simple_vertical_edge_mmi(unsigned char *src_ptr, + int src_pixel_step, + const unsigned char *blimit) { + uint32_t tmp[1], count = 2; + mips_reg addr[2]; + DECLARE_ALIGNED(8, const uint64_t, srct[1]); + double ftmp[12]; + + __asm__ volatile ( + "li %[tmp0], 0x08 \n\t" + "mtc1 %[tmp0], %[ftmp8] \n\t" + "li %[tmp0], 0x20 \n\t" + "mtc1 %[tmp0], %[ftmp10] \n\t" + + MMI_ADDU(%[src_ptr], %[src_ptr], %[src_pixel_step_x4]) + MMI_SUBU(%[src_ptr], %[src_ptr], 0x02) + + "1: \n\t" + MMI_ADDU(%[addr0], %[src_ptr], %[src_pixel_step]) + MMI_ADDU(%[addr1], %[addr0], %[src_pixel_step_x2]) + "gslwlc1 %[ftmp0], 0x03(%[addr1]) \n\t" + "gslwrc1 %[ftmp0], 0x00(%[addr1]) \n\t" + MMI_ADDU(%[addr1], %[src_ptr], %[src_pixel_step_x2]) + "gslwlc1 %[ftmp6], 0x03(%[addr1]) \n\t" + "gslwrc1 %[ftmp6], 0x00(%[addr1]) \n\t" + "punpcklbh %[ftmp6], %[ftmp6], %[ftmp0] \n\t" + + MMI_ADDU(%[addr1], %[src_ptr], %[src_pixel_step]) + "gslwlc1 %[ftmp0], 0x03(%[addr1]) \n\t" + "gslwrc1 %[ftmp0], 0x00(%[addr1]) \n\t" + "gslwlc1 %[ftmp4], 0x03(%[src_ptr]) \n\t" + "gslwrc1 %[ftmp4], 0x00(%[src_ptr]) \n\t" + + "punpcklbh %[ftmp4], %[ftmp4], %[ftmp0] \n\t" + "punpckhhw %[ftmp5], %[ftmp4], %[ftmp6] \n\t" + "punpcklhw %[ftmp4], %[ftmp4], %[ftmp6] \n\t" + + MMI_SUBU(%[addr1], %[src_ptr], %[src_pixel_step]) + "gslwlc1 %[ftmp7], 0x03(%[addr1]) \n\t" + "gslwrc1 %[ftmp7], 0x00(%[addr1]) \n\t" + MMI_SUBU(%[addr1], %[src_ptr], %[src_pixel_step_x2]) + "gslwlc1 %[ftmp6], 0x03(%[addr1]) \n\t" + "gslwrc1 %[ftmp6], 0x00(%[addr1]) \n\t" + "punpcklbh %[ftmp6], %[ftmp6], %[ftmp7] \n\t" + + MMI_SUBU(%[addr1], %[addr0], %[src_pixel_step_x4]) + "gslwlc1 %[ftmp1], 0x03(%[addr1]) \n\t" + "gslwrc1 %[ftmp1], 0x00(%[addr1]) \n\t" + MMI_SUBU(%[addr1], %[src_ptr], %[src_pixel_step_x4]) + "gslwlc1 %[ftmp0], 0x03(%[addr1]) \n\t" + "gslwrc1 %[ftmp0], 0x00(%[addr1]) \n\t" + "punpcklbh %[ftmp0], %[ftmp0], %[ftmp1] \n\t" + + "punpckhhw %[ftmp2], %[ftmp0], %[ftmp6] \n\t" + "punpcklhw %[ftmp0], %[ftmp0], %[ftmp6] \n\t" + "punpckhwd %[ftmp1], %[ftmp0], %[ftmp4] \n\t" + "punpcklwd %[ftmp0], %[ftmp0], %[ftmp4] \n\t" + "punpckhwd %[ftmp3], %[ftmp2], %[ftmp5] \n\t" + "punpcklwd %[ftmp2], %[ftmp2], %[ftmp5] \n\t" + + "li %[tmp0], 0x01 \n\t" + "mtc1 %[tmp0], %[ftmp9] \n\t" + "pasubub %[ftmp6], %[ftmp3], %[ftmp0] \n\t" + "and %[ftmp6], %[ftmp6], %[ff_pb_fe] \n\t" + "psrlh %[ftmp6], %[ftmp6], %[ftmp9] \n\t" + "pasubub %[ftmp5], %[ftmp1], %[ftmp2] \n\t" + "paddusb %[ftmp5], %[ftmp5], %[ftmp5] \n\t" + "paddusb %[ftmp5], %[ftmp5], %[ftmp6] \n\t" + + "gsldlc1 %[ftmp7], 0x07(%[blimit]) \n\t" + "gsldrc1 %[ftmp7], 0x00(%[blimit]) \n\t" + "psubusb %[ftmp5], %[ftmp5], %[ftmp7] \n\t" + "xor %[ftmp7], %[ftmp7], %[ftmp7] \n\t" + "pcmpeqb %[ftmp5], %[ftmp5], %[ftmp7] \n\t" + + "sdc1 %[ftmp0], 0x00(%[srct]) \n\t" + "sdc1 %[ftmp3], 0x08(%[srct]) \n\t" + + "xor %[ftmp0], %[ftmp0], %[ff_pb_80] \n\t" + "xor %[ftmp3], %[ftmp3], %[ff_pb_80] \n\t" + "psubsb %[ftmp0], %[ftmp0], %[ftmp3] \n\t" + + "xor %[ftmp6], %[ftmp1], %[ff_pb_80] \n\t" + "xor %[ftmp3], %[ftmp2], %[ff_pb_80] \n\t" + "psubsb %[ftmp7], %[ftmp3], %[ftmp6] \n\t" + "paddsb %[ftmp0], %[ftmp0], %[ftmp7] \n\t" + "paddsb %[ftmp0], %[ftmp0], %[ftmp7] \n\t" + "paddsb %[ftmp0], %[ftmp0], %[ftmp7] \n\t" + "and %[ftmp5], %[ftmp5], %[ftmp0] \n\t" + "paddsb %[ftmp5], %[ftmp5], %[ff_pb_04] \n\t" + + "li %[tmp0], 0x03 \n\t" + "mtc1 %[tmp0], %[ftmp9] \n\t" + "psllh %[ftmp0], %[ftmp5], %[ftmp8] \n\t" + "psrah %[ftmp0], %[ftmp0], %[ftmp9] \n\t" + "psrlh %[ftmp0], %[ftmp0], %[ftmp8] \n\t" + + "li %[tmp0], 0x0b \n\t" + "mtc1 %[tmp0], %[ftmp9] \n\t" + "psrah %[ftmp7], %[ftmp5], %[ftmp9] \n\t" + "psllh %[ftmp7], %[ftmp7], %[ftmp8] \n\t" + "or %[ftmp0], %[ftmp0], %[ftmp7] \n\t" + "psubsb %[ftmp3], %[ftmp3], %[ftmp0] \n\t" + "xor %[ftmp3], %[ftmp3], %[ff_pb_80] \n\t" + "psubsb %[ftmp5], %[ftmp5], %[ff_pb_01] \n\t" + + "li %[tmp0], 0x03 \n\t" + "mtc1 %[tmp0], %[ftmp9] \n\t" + "psllh %[ftmp0], %[ftmp5], %[ftmp8] \n\t" + "psrah %[ftmp0], %[ftmp0], %[ftmp9] \n\t" + "psrlh %[ftmp0], %[ftmp0], %[ftmp8] \n\t" + + "li %[tmp0], 0x0b \n\t" + "mtc1 %[tmp0], %[ftmp9] \n\t" + "psrah %[ftmp5], %[ftmp5], %[ftmp9] \n\t" + "psllh %[ftmp5], %[ftmp5], %[ftmp8] \n\t" + "or %[ftmp0], %[ftmp0], %[ftmp5] \n\t" + "paddsb %[ftmp6], %[ftmp6], %[ftmp0] \n\t" + "xor %[ftmp6], %[ftmp6], %[ff_pb_80] \n\t" + + "ldc1 %[ftmp0], 0x00(%[srct]) \n\t" + "ldc1 %[ftmp4], 0x08(%[srct]) \n\t" + + "punpckhbh %[ftmp1], %[ftmp0], %[ftmp6] \n\t" + "punpcklbh %[ftmp0], %[ftmp0], %[ftmp6] \n\t" + "punpcklbh %[ftmp2], %[ftmp3], %[ftmp4] \n\t" + "punpckhbh %[ftmp3], %[ftmp3], %[ftmp4] \n\t" + + "punpckhhw %[ftmp6], %[ftmp0], %[ftmp2] \n\t" + "punpcklhw %[ftmp0], %[ftmp0], %[ftmp2] \n\t" + + MMI_SUBU(%[addr1], %[src_ptr], %[src_pixel_step_x4]) + "gsswlc1 %[ftmp0], 0x03(%[addr1]) \n\t" + "gsswrc1 %[ftmp0], 0x00(%[addr1]) \n\t" + "punpckhhw %[ftmp5], %[ftmp1], %[ftmp3] \n\t" + "punpcklhw %[ftmp1], %[ftmp1], %[ftmp3] \n\t" + + "dsrl %[ftmp0], %[ftmp0], %[ftmp10] \n\t" + MMI_SUBU(%[addr1], %[addr0], %[src_pixel_step_x4]) + "gsswlc1 %[ftmp0], 0x03(%[addr1]) \n\t" + "gsswrc1 %[ftmp0], 0x00(%[addr1]) \n\t" + MMI_SUBU(%[addr1], %[src_ptr], %[src_pixel_step_x2]) + "gsswlc1 %[ftmp6], 0x03(%[addr1]) \n\t" + "gsswrc1 %[ftmp6], 0x00(%[addr1]) \n\t" + + "dsrl %[ftmp6], %[ftmp6], %[ftmp10] \n\t" + "gsswlc1 %[ftmp1], 0x03(%[src_ptr]) \n\t" + "gsswrc1 %[ftmp1], 0x00(%[src_ptr]) \n\t" + + MMI_SUBU(%[addr1], %[src_ptr], %[src_pixel_step]) + "gsswlc1 %[ftmp6], 0x03(%[addr1]) \n\t" + "gsswrc1 %[ftmp6], 0x00(%[addr1]) \n\t" + + MMI_ADDU(%[addr1], %[src_ptr], %[src_pixel_step_x2]) + "gsswlc1 %[ftmp5], 0x03(%[addr1]) \n\t" + "gsswrc1 %[ftmp5], 0x00(%[addr1]) \n\t" + + "dsrl %[ftmp1], %[ftmp1], %[ftmp10] \n\t" + "gsswlc1 %[ftmp1], 0x03(%[addr0]) \n\t" + "gsswrc1 %[ftmp1], 0x00(%[addr0]) \n\t" + + "dsrl %[ftmp5], %[ftmp5], %[ftmp10] \n\t" + MMI_ADDU(%[addr1], %[addr0], %[src_pixel_step_x2]) + "gsswlc1 %[ftmp5], 0x03(%[addr1]) \n\t" + "gsswrc1 %[ftmp5], 0x00(%[addr1]) \n\t" + + MMI_ADDU(%[src_ptr], %[src_ptr], %[src_pixel_step_x8]) + "addiu %[count], %[count], -0x01 \n\t" + "bnez %[count], 1b \n\t" + : [ftmp0]"=&f"(ftmp[0]), [ftmp1]"=&f"(ftmp[1]), + [ftmp2]"=&f"(ftmp[2]), [ftmp3]"=&f"(ftmp[3]), + [ftmp4]"=&f"(ftmp[4]), [ftmp5]"=&f"(ftmp[5]), + [ftmp6]"=&f"(ftmp[6]), [ftmp7]"=&f"(ftmp[7]), + [ftmp8]"=&f"(ftmp[8]), [ftmp9]"=&f"(ftmp[9]), + [ftmp10]"=&f"(ftmp[10]), [ftmp11]"=&f"(ftmp[11]), + [tmp0]"=&r"(tmp[0]), + [addr0]"=&r"(addr[0]), [addr1]"=&r"(addr[1]), + [src_ptr]"+&r"(src_ptr), [count]"+&r"(count) + : [blimit]"r"(blimit), [srct]"r"(srct), + [src_pixel_step]"r"((mips_reg)src_pixel_step), + [src_pixel_step_x2]"r"((mips_reg)(src_pixel_step<<1)), + [src_pixel_step_x4]"r"((mips_reg)(src_pixel_step<<2)), + [src_pixel_step_x8]"r"((mips_reg)(src_pixel_step<<3)), + [ff_pb_fe]"f"(ff_pb_fe), [ff_pb_80]"f"(ff_pb_80), + [ff_pb_04]"f"(ff_pb_04), [ff_pb_01]"f"(ff_pb_01) + : "memory" + ); +} + +/* Horizontal MB filtering */ +void vp8_loop_filter_mbh_mmi(unsigned char *y_ptr, unsigned char *u_ptr, + unsigned char *v_ptr, int y_stride, int uv_stride, + loop_filter_info *lfi) { + vp8_mbloop_filter_horizontal_edge_mmi(y_ptr, y_stride, lfi->mblim, lfi->lim, + lfi->hev_thr, 2); + + if (u_ptr) + vp8_mbloop_filter_horizontal_edge_mmi(u_ptr, uv_stride, lfi->mblim, + lfi->lim, lfi->hev_thr, 1); + + if (v_ptr) + vp8_mbloop_filter_horizontal_edge_mmi(v_ptr, uv_stride, lfi->mblim, + lfi->lim, lfi->hev_thr, 1); +} + +/* Vertical MB Filtering */ +void vp8_loop_filter_mbv_mmi(unsigned char *y_ptr, unsigned char *u_ptr, + unsigned char *v_ptr, int y_stride, int uv_stride, + loop_filter_info *lfi) { + vp8_mbloop_filter_vertical_edge_mmi(y_ptr, y_stride, lfi->mblim, lfi->lim, + lfi->hev_thr, 2); + + if (u_ptr) + vp8_mbloop_filter_vertical_edge_mmi(u_ptr, uv_stride, lfi->mblim, lfi->lim, + lfi->hev_thr, 1); + + if (v_ptr) + vp8_mbloop_filter_vertical_edge_mmi(v_ptr, uv_stride, lfi->mblim, lfi->lim, + lfi->hev_thr, 1); +} + +/* Horizontal B Filtering */ +void vp8_loop_filter_bh_mmi(unsigned char *y_ptr, unsigned char *u_ptr, + unsigned char *v_ptr, int y_stride, int uv_stride, + loop_filter_info *lfi) { + vp8_loop_filter_horizontal_edge_mmi(y_ptr + 4 * y_stride, y_stride, lfi->blim, + lfi->lim, lfi->hev_thr, 2); + vp8_loop_filter_horizontal_edge_mmi(y_ptr + 8 * y_stride, y_stride, lfi->blim, + lfi->lim, lfi->hev_thr, 2); + vp8_loop_filter_horizontal_edge_mmi(y_ptr + 12 * y_stride, y_stride, + lfi->blim, lfi->lim, lfi->hev_thr, 2); + + if (u_ptr) + vp8_loop_filter_horizontal_edge_mmi(u_ptr + 4 * uv_stride, uv_stride, + lfi->blim, lfi->lim, lfi->hev_thr, 1); + + if (v_ptr) + vp8_loop_filter_horizontal_edge_mmi(v_ptr + 4 * uv_stride, uv_stride, + lfi->blim, lfi->lim, lfi->hev_thr, 1); +} + +/* Vertical B Filtering */ +void vp8_loop_filter_bv_mmi(unsigned char *y_ptr, unsigned char *u_ptr, + unsigned char *v_ptr, int y_stride, int uv_stride, + loop_filter_info *lfi) { + vp8_loop_filter_vertical_edge_mmi(y_ptr + 4, y_stride, lfi->blim, lfi->lim, + lfi->hev_thr, 2); + vp8_loop_filter_vertical_edge_mmi(y_ptr + 8, y_stride, lfi->blim, lfi->lim, + lfi->hev_thr, 2); + vp8_loop_filter_vertical_edge_mmi(y_ptr + 12, y_stride, lfi->blim, lfi->lim, + lfi->hev_thr, 2); + + if (u_ptr) + vp8_loop_filter_vertical_edge_mmi(u_ptr + 4, uv_stride, lfi->blim, lfi->lim, + lfi->hev_thr, 1); + + if (v_ptr) + vp8_loop_filter_vertical_edge_mmi(v_ptr + 4, uv_stride, lfi->blim, lfi->lim, + lfi->hev_thr, 1); +} + +void vp8_loop_filter_bhs_mmi(unsigned char *y_ptr, int y_stride, + const unsigned char *blimit) { + vp8_loop_filter_simple_horizontal_edge_mmi(y_ptr + 4 * y_stride, y_stride, + blimit); + vp8_loop_filter_simple_horizontal_edge_mmi(y_ptr + 8 * y_stride, y_stride, + blimit); + vp8_loop_filter_simple_horizontal_edge_mmi(y_ptr + 12 * y_stride, y_stride, + blimit); +} + +void vp8_loop_filter_bvs_mmi(unsigned char *y_ptr, int y_stride, + const unsigned char *blimit) { + vp8_loop_filter_simple_vertical_edge_mmi(y_ptr + 4, y_stride, blimit); + vp8_loop_filter_simple_vertical_edge_mmi(y_ptr + 8, y_stride, blimit); + vp8_loop_filter_simple_vertical_edge_mmi(y_ptr + 12, y_stride, blimit); +} diff --git a/vp8/common/mips/mmi/sixtap_filter_mmi.c b/vp8/common/mips/mmi/sixtap_filter_mmi.c new file mode 100644 index 0000000..77d665d --- /dev/null +++ b/vp8/common/mips/mmi/sixtap_filter_mmi.c @@ -0,0 +1,416 @@ +/* + * Copyright (c) 2017 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "vp8/common/filter.h" +#include "vpx_ports/asmdefs_mmi.h" + +DECLARE_ALIGNED(8, static const int16_t, vp8_six_tap_mmi[8][6 * 8]) = { + { 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, + 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, + 0x0080, 0x0080, 0x0080, 0x0080, 0x0080, 0x0080, 0x0080, 0x0080, + 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, + 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, + 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000 }, + { 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, + 0xfffa, 0xfffa, 0xfffa, 0xfffa, 0xfffa, 0xfffa, 0xfffa, 0xfffa, + 0x007b, 0x007b, 0x007b, 0x007b, 0x007b, 0x007b, 0x007b, 0x007b, + 0x000c, 0x000c, 0x000c, 0x000c, 0x000c, 0x000c, 0x000c, 0x000c, + 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, + 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000 }, + { 0x0002, 0x0002, 0x0002, 0x0002, 0x0002, 0x0002, 0x0002, 0x0002, + 0xfff5, 0xfff5, 0xfff5, 0xfff5, 0xfff5, 0xfff5, 0xfff5, 0xfff5, + 0x006c, 0x006c, 0x006c, 0x006c, 0x006c, 0x006c, 0x006c, 0x006c, + 0x0024, 0x0024, 0x0024, 0x0024, 0x0024, 0x0024, 0x0024, 0x0024, + 0xfff8, 0xfff8, 0xfff8, 0xfff8, 0xfff8, 0xfff8, 0xfff8, 0xfff8, + 0x0001, 0x0001, 0x0001, 0x0001, 0x0001, 0x0001, 0x0001, 0x0001 }, + { 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, + 0xfff7, 0xfff7, 0xfff7, 0xfff7, 0xfff7, 0xfff7, 0xfff7, 0xfff7, + 0x005d, 0x005d, 0x005d, 0x005d, 0x005d, 0x005d, 0x005d, 0x005d, + 0x0032, 0x0032, 0x0032, 0x0032, 0x0032, 0x0032, 0x0032, 0x0032, + 0xfffa, 0xfffa, 0xfffa, 0xfffa, 0xfffa, 0xfffa, 0xfffa, 0xfffa, + 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000 }, + { 0x0003, 0x0003, 0x0003, 0x0003, 0x0003, 0x0003, 0x0003, 0x0003, + 0xfff0, 0xfff0, 0xfff0, 0xfff0, 0xfff0, 0xfff0, 0xfff0, 0xfff0, + 0x004d, 0x004d, 0x004d, 0x004d, 0x004d, 0x004d, 0x004d, 0x004d, + 0x004d, 0x004d, 0x004d, 0x004d, 0x004d, 0x004d, 0x004d, 0x004d, + 0xfff0, 0xfff0, 0xfff0, 0xfff0, 0xfff0, 0xfff0, 0xfff0, 0xfff0, + 0x0003, 0x0003, 0x0003, 0x0003, 0x0003, 0x0003, 0x0003, 0x0003 }, + { 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, + 0xfffa, 0xfffa, 0xfffa, 0xfffa, 0xfffa, 0xfffa, 0xfffa, 0xfffa, + 0x0032, 0x0032, 0x0032, 0x0032, 0x0032, 0x0032, 0x0032, 0x0032, + 0x005d, 0x005d, 0x005d, 0x005d, 0x005d, 0x005d, 0x005d, 0x005d, + 0xfff7, 0xfff7, 0xfff7, 0xfff7, 0xfff7, 0xfff7, 0xfff7, 0xfff7, + 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000 }, + { 0x0001, 0x0001, 0x0001, 0x0001, 0x0001, 0x0001, 0x0001, 0x0001, + 0xfff8, 0xfff8, 0xfff8, 0xfff8, 0xfff8, 0xfff8, 0xfff8, 0xfff8, + 0x0024, 0x0024, 0x0024, 0x0024, 0x0024, 0x0024, 0x0024, 0x0024, + 0x006c, 0x006c, 0x006c, 0x006c, 0x006c, 0x006c, 0x006c, 0x006c, + 0xfff5, 0xfff5, 0xfff5, 0xfff5, 0xfff5, 0xfff5, 0xfff5, 0xfff5, + 0x0002, 0x0002, 0x0002, 0x0002, 0x0002, 0x0002, 0x0002, 0x0002 }, + { 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, + 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, + 0x000c, 0x000c, 0x000c, 0x000c, 0x000c, 0x000c, 0x000c, 0x000c, + 0x007b, 0x007b, 0x007b, 0x007b, 0x007b, 0x007b, 0x007b, 0x007b, + 0xfffa, 0xfffa, 0xfffa, 0xfffa, 0xfffa, 0xfffa, 0xfffa, 0xfffa, + 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000 } +}; + +/* Horizontal filter: pixel_step is 1, output_height and output_width are + the size of horizontal filtering output, output_height is always H + 5 */ +static INLINE void vp8_filter_block1d_h6_mmi(unsigned char *src_ptr, + uint16_t *output_ptr, + unsigned int src_pixels_per_line, + unsigned int output_height, + unsigned int output_width, + const int16_t *vp8_filter) { + uint32_t tmp[1]; + DECLARE_ALIGNED(8, const uint64_t, ff_ph_40) = { 0x0040004000400040ULL }; + +#if _MIPS_SIM == _ABIO32 + register double fzero asm("$f0"); + register double ftmp0 asm("$f2"); + register double ftmp1 asm("$f4"); + register double ftmp2 asm("$f6"); + register double ftmp3 asm("$f8"); + register double ftmp4 asm("$f10"); + register double ftmp5 asm("$f12"); + register double ftmp6 asm("$f14"); + register double ftmp7 asm("$f16"); + register double ftmp8 asm("$f18"); + register double ftmp9 asm("$f20"); + register double ftmp10 asm("$f22"); + register double ftmp11 asm("$f24"); +#else + register double fzero asm("$f0"); + register double ftmp0 asm("$f1"); + register double ftmp1 asm("$f2"); + register double ftmp2 asm("$f3"); + register double ftmp3 asm("$f4"); + register double ftmp4 asm("$f5"); + register double ftmp5 asm("$f6"); + register double ftmp6 asm("$f7"); + register double ftmp7 asm("$f8"); + register double ftmp8 asm("$f9"); + register double ftmp9 asm("$f10"); + register double ftmp10 asm("$f11"); + register double ftmp11 asm("$f12"); +#endif // _MIPS_SIM == _ABIO32 + + __asm__ volatile ( + "ldc1 %[ftmp0], 0x00(%[vp8_filter]) \n\t" + "ldc1 %[ftmp1], 0x10(%[vp8_filter]) \n\t" + "ldc1 %[ftmp2], 0x20(%[vp8_filter]) \n\t" + "ldc1 %[ftmp3], 0x30(%[vp8_filter]) \n\t" + "ldc1 %[ftmp4], 0x40(%[vp8_filter]) \n\t" + "ldc1 %[ftmp5], 0x50(%[vp8_filter]) \n\t" + "xor %[fzero], %[fzero], %[fzero] \n\t" + "li %[tmp0], 0x07 \n\t" + "mtc1 %[tmp0], %[ftmp7] \n\t" + "li %[tmp0], 0x08 \n\t" + "mtc1 %[tmp0], %[ftmp11] \n\t" + + "1: \n\t" + "gsldlc1 %[ftmp9], 0x05(%[src_ptr]) \n\t" + "gsldrc1 %[ftmp9], -0x02(%[src_ptr]) \n\t" + "gsldlc1 %[ftmp10], 0x06(%[src_ptr]) \n\t" + "gsldrc1 %[ftmp10], -0x01(%[src_ptr]) \n\t" + + "punpcklbh %[ftmp6], %[ftmp9], %[fzero] \n\t" + "pmullh %[ftmp8], %[ftmp6], %[ftmp0] \n\t" + + "punpckhbh %[ftmp6], %[ftmp9], %[fzero] \n\t" + "pmullh %[ftmp6], %[ftmp6], %[ftmp4] \n\t" + "paddsh %[ftmp8], %[ftmp8], %[ftmp6] \n\t" + + "punpcklbh %[ftmp6], %[ftmp10], %[fzero] \n\t" + "pmullh %[ftmp6], %[ftmp6], %[ftmp1] \n\t" + "paddsh %[ftmp8], %[ftmp8], %[ftmp6] \n\t" + + "punpckhbh %[ftmp6], %[ftmp10], %[fzero] \n\t" + "pmullh %[ftmp6], %[ftmp6], %[ftmp5] \n\t" + "paddsh %[ftmp8], %[ftmp8], %[ftmp6] \n\t" + + "dsrl %[ftmp10], %[ftmp10], %[ftmp11] \n\t" + "punpcklbh %[ftmp6], %[ftmp10], %[fzero] \n\t" + "pmullh %[ftmp6], %[ftmp6], %[ftmp2] \n\t" + "paddsh %[ftmp8], %[ftmp8], %[ftmp6] \n\t" + + "dsrl %[ftmp10], %[ftmp10], %[ftmp11] \n\t" + "punpcklbh %[ftmp6], %[ftmp10], %[fzero] \n\t" + "pmullh %[ftmp6], %[ftmp6], %[ftmp3] \n\t" + "paddsh %[ftmp8], %[ftmp8], %[ftmp6] \n\t" + + "paddsh %[ftmp8], %[ftmp8], %[ff_ph_40] \n\t" + "psrah %[ftmp8], %[ftmp8], %[ftmp7] \n\t" + "packushb %[ftmp8], %[ftmp8], %[fzero] \n\t" + "punpcklbh %[ftmp8], %[ftmp8], %[fzero] \n\t" + "gssdlc1 %[ftmp8], 0x07(%[output_ptr]) \n\t" + "gssdrc1 %[ftmp8], 0x00(%[output_ptr]) \n\t" + + "addiu %[output_height], %[output_height], -0x01 \n\t" + MMI_ADDU(%[output_ptr], %[output_ptr], %[output_width]) + MMI_ADDU(%[src_ptr], %[src_ptr], %[src_pixels_per_line]) + "bnez %[output_height], 1b \n\t" + : [fzero]"=&f"(fzero), [ftmp0]"=&f"(ftmp0), + [ftmp1]"=&f"(ftmp1), [ftmp2]"=&f"(ftmp2), + [ftmp3]"=&f"(ftmp3), [ftmp4]"=&f"(ftmp4), + [ftmp5]"=&f"(ftmp5), [ftmp6]"=&f"(ftmp6), + [ftmp7]"=&f"(ftmp7), [ftmp8]"=&f"(ftmp8), + [ftmp9]"=&f"(ftmp9), [ftmp10]"=&f"(ftmp10), + [ftmp11]"=&f"(ftmp11), [tmp0]"=&r"(tmp[0]), + [output_ptr]"+&r"(output_ptr), [output_height]"+&r"(output_height), + [src_ptr]"+&r"(src_ptr) + : [src_pixels_per_line]"r"((mips_reg)src_pixels_per_line), + [vp8_filter]"r"(vp8_filter), [output_width]"r"(output_width), + [ff_ph_40]"f"(ff_ph_40) + : "memory" + ); +} + +/* Horizontal filter: pixel_step is always W */ +static INLINE void vp8_filter_block1dc_v6_mmi( + uint16_t *src_ptr, unsigned char *output_ptr, unsigned int output_height, + int output_pitch, unsigned int pixels_per_line, const int16_t *vp8_filter) { + DECLARE_ALIGNED(8, const uint64_t, ff_ph_40) = { 0x0040004000400040ULL }; + uint32_t tmp[1]; + mips_reg addr[1]; +#if _MIPS_SIM == _ABIO32 + register double fzero asm("$f0"); + register double ftmp0 asm("$f2"); + register double ftmp1 asm("$f4"); + register double ftmp2 asm("$f6"); + register double ftmp3 asm("$f8"); + register double ftmp4 asm("$f10"); + register double ftmp5 asm("$f12"); + register double ftmp6 asm("$f14"); + register double ftmp7 asm("$f16"); + register double ftmp8 asm("$f18"); + register double ftmp9 asm("$f20"); + register double ftmp10 asm("$f22"); + register double ftmp11 asm("$f24"); + register double ftmp12 asm("$f26"); + register double ftmp13 asm("$f28"); +#else + register double fzero asm("$f0"); + register double ftmp0 asm("$f1"); + register double ftmp1 asm("$f2"); + register double ftmp2 asm("$f3"); + register double ftmp3 asm("$f4"); + register double ftmp4 asm("$f5"); + register double ftmp5 asm("$f6"); + register double ftmp6 asm("$f7"); + register double ftmp7 asm("$f8"); + register double ftmp8 asm("$f9"); + register double ftmp9 asm("$f10"); + register double ftmp10 asm("$f11"); + register double ftmp11 asm("$f12"); + register double ftmp12 asm("$f13"); + register double ftmp13 asm("$f14"); +#endif // _MIPS_SIM == _ABIO32 + + __asm__ volatile ( + "ldc1 %[ftmp0], 0x00(%[vp8_filter]) \n\t" + "ldc1 %[ftmp1], 0x10(%[vp8_filter]) \n\t" + "ldc1 %[ftmp2], 0x20(%[vp8_filter]) \n\t" + "ldc1 %[ftmp3], 0x30(%[vp8_filter]) \n\t" + "ldc1 %[ftmp4], 0x40(%[vp8_filter]) \n\t" + "ldc1 %[ftmp5], 0x50(%[vp8_filter]) \n\t" + "xor %[fzero], %[fzero], %[fzero] \n\t" + "li %[tmp0], 0x07 \n\t" + "mtc1 %[tmp0], %[ftmp13] \n\t" + + /* In order to make full use of memory load delay slot, + * Operation of memory loading and calculating has been rearranged. + */ + "1: \n\t" + "gsldlc1 %[ftmp6], 0x07(%[src_ptr]) \n\t" + "gsldrc1 %[ftmp6], 0x00(%[src_ptr]) \n\t" + MMI_ADDU(%[addr0], %[src_ptr], %[pixels_per_line]) + "gsldlc1 %[ftmp7], 0x07(%[addr0]) \n\t" + "gsldrc1 %[ftmp7], 0x00(%[addr0]) \n\t" + MMI_ADDU(%[addr0], %[src_ptr], %[pixels_per_line_x2]) + "gsldlc1 %[ftmp8], 0x07(%[addr0]) \n\t" + "gsldrc1 %[ftmp8], 0x00(%[addr0]) \n\t" + + MMI_ADDU(%[addr0], %[src_ptr], %[pixels_per_line_x4]) + "gsldlc1 %[ftmp9], 0x07(%[addr0]) \n\t" + "gsldrc1 %[ftmp9], 0x00(%[addr0]) \n\t" + MMI_ADDU(%[src_ptr], %[src_ptr], %[pixels_per_line]) + MMI_ADDU(%[addr0], %[src_ptr], %[pixels_per_line_x2]) + "gsldlc1 %[ftmp10], 0x07(%[addr0]) \n\t" + "gsldrc1 %[ftmp10], 0x00(%[addr0]) \n\t" + MMI_ADDU(%[addr0], %[src_ptr], %[pixels_per_line_x4]) + "gsldlc1 %[ftmp11], 0x07(%[addr0]) \n\t" + "gsldrc1 %[ftmp11], 0x00(%[addr0]) \n\t" + + "pmullh %[ftmp12], %[ftmp6], %[ftmp0] \n\t" + + "pmullh %[ftmp7], %[ftmp7], %[ftmp1] \n\t" + "paddsh %[ftmp12], %[ftmp12], %[ftmp7] \n\t" + + "pmullh %[ftmp8], %[ftmp8], %[ftmp2] \n\t" + "paddsh %[ftmp12], %[ftmp12], %[ftmp8] \n\t" + + "pmullh %[ftmp9], %[ftmp9], %[ftmp4] \n\t" + "paddsh %[ftmp12], %[ftmp12], %[ftmp9] \n\t" + + "pmullh %[ftmp10], %[ftmp10], %[ftmp3] \n\t" + "paddsh %[ftmp12], %[ftmp12], %[ftmp10] \n\t" + + "pmullh %[ftmp11], %[ftmp11], %[ftmp5] \n\t" + "paddsh %[ftmp12], %[ftmp12], %[ftmp11] \n\t" + + "paddsh %[ftmp12], %[ftmp12], %[ff_ph_40] \n\t" + "psrah %[ftmp12], %[ftmp12], %[ftmp13] \n\t" + "packushb %[ftmp12], %[ftmp12], %[fzero] \n\t" + "gsswlc1 %[ftmp12], 0x03(%[output_ptr]) \n\t" + "gsswrc1 %[ftmp12], 0x00(%[output_ptr]) \n\t" + + MMI_ADDIU(%[output_height], %[output_height], -0x01) + MMI_ADDU(%[output_ptr], %[output_ptr], %[output_pitch]) + "bnez %[output_height], 1b \n\t" + : [fzero]"=&f"(fzero), [ftmp0]"=&f"(ftmp0), + [ftmp1]"=&f"(ftmp1), [ftmp2]"=&f"(ftmp2), + [ftmp3]"=&f"(ftmp3), [ftmp4]"=&f"(ftmp4), + [ftmp5]"=&f"(ftmp5), [ftmp6]"=&f"(ftmp6), + [ftmp7]"=&f"(ftmp7), [ftmp8]"=&f"(ftmp8), + [ftmp9]"=&f"(ftmp9), [ftmp10]"=&f"(ftmp10), + [ftmp11]"=&f"(ftmp11), [ftmp12]"=&f"(ftmp12), + [ftmp13]"=&f"(ftmp13), [tmp0]"=&r"(tmp[0]), + [addr0]"=&r"(addr[0]), [src_ptr]"+&r"(src_ptr), + [output_ptr]"+&r"(output_ptr), [output_height]"+&r"(output_height) + : [pixels_per_line]"r"((mips_reg)pixels_per_line), + [pixels_per_line_x2]"r"((mips_reg)(pixels_per_line<<1)), + [pixels_per_line_x4]"r"((mips_reg)(pixels_per_line<<2)), + [vp8_filter]"r"(vp8_filter), + [output_pitch]"r"((mips_reg)output_pitch), + [ff_ph_40]"f"(ff_ph_40) + : "memory" + ); +} + +/* When xoffset == 0, vp8_filter= {0,0,128,0,0,0}, + function vp8_filter_block1d_h6_mmi and vp8_filter_block1d_v6_mmi can + be simplified */ +static INLINE void vp8_filter_block1d_h6_filter0_mmi( + unsigned char *src_ptr, uint16_t *output_ptr, + unsigned int src_pixels_per_line, unsigned int output_height, + unsigned int output_width) { +#if _MIPS_SIM == _ABIO32 + register double fzero asm("$f0"); + register double ftmp0 asm("$f2"); + register double ftmp1 asm("$f4"); +#else + register double fzero asm("$f0"); + register double ftmp0 asm("$f1"); + register double ftmp1 asm("$f2"); +#endif // _MIPS_SIM == _ABIO32 + + __asm__ volatile ( + "xor %[fzero], %[fzero], %[fzero] \n\t" + + "1: \n\t" + "gsldlc1 %[ftmp0], 0x07(%[src_ptr]) \n\t" + "gsldrc1 %[ftmp0], 0x00(%[src_ptr]) \n\t" + MMI_ADDU(%[src_ptr], %[src_ptr], %[src_pixels_per_line]) + + "punpcklbh %[ftmp1], %[ftmp0], %[fzero] \n\t" + "gssdlc1 %[ftmp1], 0x07(%[output_ptr]) \n\t" + "gssdrc1 %[ftmp1], 0x00(%[output_ptr]) \n\t" + + "addiu %[output_height], %[output_height], -0x01 \n\t" + MMI_ADDU(%[output_ptr], %[output_ptr], %[output_width]) + "bnez %[output_height], 1b \n\t" + : [fzero]"=&f"(fzero), [ftmp0]"=&f"(ftmp0), + [ftmp1]"=&f"(ftmp1), [src_ptr]"+&r"(src_ptr), + [output_ptr]"+&r"(output_ptr), [output_height]"+&r"(output_height) + : [src_pixels_per_line]"r"((mips_reg)src_pixels_per_line), + [output_width]"r"(output_width) + : "memory" + ); +} + +static INLINE void vp8_filter_block1dc_v6_filter0_mmi( + uint16_t *src_ptr, unsigned char *output_ptr, unsigned int output_height, + int output_pitch, unsigned int pixels_per_line) { +#if _MIPS_SIM == _ABIO32 + register double fzero asm("$f0"); + register double ftmp0 asm("$f2"); + register double ftmp1 asm("$f4"); +#else + register double fzero asm("$f0"); + register double ftmp0 asm("$f1"); + register double ftmp1 asm("$f2"); +#endif // _MIPS_SIM == _ABIO32 + + __asm__ volatile ( + "xor %[fzero], %[fzero], %[fzero] \n\t" + + "1: \n\t" + "gsldlc1 %[ftmp0], 0x07(%[src_ptr]) \n\t" + "gsldrc1 %[ftmp0], 0x00(%[src_ptr]) \n\t" + MMI_ADDU(%[src_ptr], %[src_ptr], %[pixels_per_line]) + MMI_ADDIU(%[output_height], %[output_height], -0x01) + "packushb %[ftmp1], %[ftmp0], %[fzero] \n\t" + "gsswlc1 %[ftmp1], 0x03(%[output_ptr]) \n\t" + "gsswrc1 %[ftmp1], 0x00(%[output_ptr]) \n\t" + + MMI_ADDU(%[output_ptr], %[output_ptr], %[output_pitch]) + "bnez %[output_height], 1b \n\t" + : [fzero]"=&f"(fzero), [ftmp0]"=&f"(ftmp0), + [ftmp1]"=&f"(ftmp1), [src_ptr]"+&r"(src_ptr), + [output_ptr]"+&r"(output_ptr), [output_height]"+&r"(output_height) + : [pixels_per_line]"r"((mips_reg)pixels_per_line), + [output_pitch]"r"((mips_reg)output_pitch) + : "memory" + ); +} + +#define sixtapNxM(n, m) \ + void vp8_sixtap_predict##n##x##m##_mmi( \ + unsigned char *src_ptr, int src_pixels_per_line, int xoffset, \ + int yoffset, unsigned char *dst_ptr, int dst_pitch) { \ + DECLARE_ALIGNED(16, uint16_t, \ + FData2[(n + 5) * (n == 16 ? 24 : (n == 8 ? 16 : n))]); \ + const int16_t *HFilter, *VFilter; \ + int i, loop = n / 4; \ + HFilter = vp8_six_tap_mmi[xoffset]; \ + VFilter = vp8_six_tap_mmi[yoffset]; \ + \ + if (xoffset == 0) { \ + for (i = 0; i < loop; ++i) { \ + vp8_filter_block1d_h6_filter0_mmi( \ + src_ptr - (2 * src_pixels_per_line) + i * 4, FData2 + i * 4, \ + src_pixels_per_line, m + 5, n * 2); \ + } \ + } else { \ + for (i = 0; i < loop; ++i) { \ + vp8_filter_block1d_h6_mmi(src_ptr - (2 * src_pixels_per_line) + i * 4, \ + FData2 + i * 4, src_pixels_per_line, m + 5, \ + n * 2, HFilter); \ + } \ + } \ + if (yoffset == 0) { \ + for (i = 0; i < loop; ++i) { \ + vp8_filter_block1dc_v6_filter0_mmi( \ + FData2 + n * 2 + i * 4, dst_ptr + i * 4, m, dst_pitch, n * 2); \ + } \ + } else { \ + for (i = 0; i < loop; ++i) { \ + vp8_filter_block1dc_v6_mmi(FData2 + i * 4, dst_ptr + i * 4, m, \ + dst_pitch, n * 2, VFilter); \ + } \ + } \ + } + +sixtapNxM(4, 4); +sixtapNxM(8, 8); +sixtapNxM(8, 4); +sixtapNxM(16, 16); diff --git a/vp8/common/mips/msa/bilinear_filter_msa.c b/vp8/common/mips/msa/bilinear_filter_msa.c new file mode 100644 index 0000000..c7fb1ed --- /dev/null +++ b/vp8/common/mips/msa/bilinear_filter_msa.c @@ -0,0 +1,797 @@ +/* + * Copyright (c) 2015 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "./vp8_rtcd.h" +#include "vpx_ports/mem.h" +#include "vp8/common/filter.h" +#include "vp8/common/mips/msa/vp8_macros_msa.h" + +DECLARE_ALIGNED(16, static const int8_t, vp8_bilinear_filters_msa[7][2]) = { + { 112, 16 }, { 96, 32 }, { 80, 48 }, { 64, 64 }, + { 48, 80 }, { 32, 96 }, { 16, 112 } +}; + +static const uint8_t vp8_mc_filt_mask_arr[16 * 3] = { + /* 8 width cases */ + 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, + /* 4 width cases */ + 0, 1, 1, 2, 2, 3, 3, 4, 16, 17, 17, 18, 18, 19, 19, 20, + /* 4 width cases */ + 8, 9, 9, 10, 10, 11, 11, 12, 24, 25, 25, 26, 26, 27, 27, 28 +}; + +static void common_hz_2t_4x4_msa(uint8_t *RESTRICT src, int32_t src_stride, + uint8_t *RESTRICT dst, int32_t dst_stride, + const int8_t *filter) { + v16i8 src0, src1, src2, src3, mask; + v16u8 filt0, vec0, vec1, res0, res1; + v8u16 vec2, vec3, filt; + + mask = LD_SB(&vp8_mc_filt_mask_arr[16]); + + filt = LD_UH(filter); + filt0 = (v16u8)__msa_splati_h((v8i16)filt, 0); + + LD_SB4(src, src_stride, src0, src1, src2, src3); + VSHF_B2_UB(src0, src1, src2, src3, mask, mask, vec0, vec1); + DOTP_UB2_UH(vec0, vec1, filt0, filt0, vec2, vec3); + SRARI_H2_UH(vec2, vec3, VP8_FILTER_SHIFT); + PCKEV_B2_UB(vec2, vec2, vec3, vec3, res0, res1); + ST4x4_UB(res0, res1, 0, 1, 0, 1, dst, dst_stride); +} + +static void common_hz_2t_4x8_msa(uint8_t *RESTRICT src, int32_t src_stride, + uint8_t *RESTRICT dst, int32_t dst_stride, + const int8_t *filter) { + v16u8 vec0, vec1, vec2, vec3, filt0; + v16i8 src0, src1, src2, src3, src4, src5, src6, src7, mask; + v16i8 res0, res1, res2, res3; + v8u16 vec4, vec5, vec6, vec7, filt; + + mask = LD_SB(&vp8_mc_filt_mask_arr[16]); + + filt = LD_UH(filter); + filt0 = (v16u8)__msa_splati_h((v8i16)filt, 0); + + LD_SB8(src, src_stride, src0, src1, src2, src3, src4, src5, src6, src7); + VSHF_B2_UB(src0, src1, src2, src3, mask, mask, vec0, vec1); + VSHF_B2_UB(src4, src5, src6, src7, mask, mask, vec2, vec3); + DOTP_UB4_UH(vec0, vec1, vec2, vec3, filt0, filt0, filt0, filt0, vec4, vec5, + vec6, vec7); + SRARI_H4_UH(vec4, vec5, vec6, vec7, VP8_FILTER_SHIFT); + PCKEV_B4_SB(vec4, vec4, vec5, vec5, vec6, vec6, vec7, vec7, res0, res1, res2, + res3); + ST4x4_UB(res0, res1, 0, 1, 0, 1, dst, dst_stride); + dst += (4 * dst_stride); + ST4x4_UB(res2, res3, 0, 1, 0, 1, dst, dst_stride); +} + +static void common_hz_2t_4w_msa(uint8_t *RESTRICT src, int32_t src_stride, + uint8_t *RESTRICT dst, int32_t dst_stride, + const int8_t *filter, int32_t height) { + if (4 == height) { + common_hz_2t_4x4_msa(src, src_stride, dst, dst_stride, filter); + } else if (8 == height) { + common_hz_2t_4x8_msa(src, src_stride, dst, dst_stride, filter); + } +} + +static void common_hz_2t_8x4_msa(uint8_t *RESTRICT src, int32_t src_stride, + uint8_t *RESTRICT dst, int32_t dst_stride, + const int8_t *filter) { + v16u8 filt0; + v16i8 src0, src1, src2, src3, mask; + v8u16 vec0, vec1, vec2, vec3, filt; + + mask = LD_SB(&vp8_mc_filt_mask_arr[0]); + + filt = LD_UH(filter); + filt0 = (v16u8)__msa_splati_h((v8i16)filt, 0); + + LD_SB4(src, src_stride, src0, src1, src2, src3); + VSHF_B2_UH(src0, src0, src1, src1, mask, mask, vec0, vec1); + VSHF_B2_UH(src2, src2, src3, src3, mask, mask, vec2, vec3); + DOTP_UB4_UH(vec0, vec1, vec2, vec3, filt0, filt0, filt0, filt0, vec0, vec1, + vec2, vec3); + SRARI_H4_UH(vec0, vec1, vec2, vec3, VP8_FILTER_SHIFT); + PCKEV_B2_SB(vec1, vec0, vec3, vec2, src0, src1); + ST8x4_UB(src0, src1, dst, dst_stride); +} + +static void common_hz_2t_8x8mult_msa(uint8_t *RESTRICT src, int32_t src_stride, + uint8_t *RESTRICT dst, int32_t dst_stride, + const int8_t *filter, int32_t height) { + v16u8 filt0; + v16i8 src0, src1, src2, src3, mask, out0, out1; + v8u16 vec0, vec1, vec2, vec3, filt; + + mask = LD_SB(&vp8_mc_filt_mask_arr[0]); + + filt = LD_UH(filter); + filt0 = (v16u8)__msa_splati_h((v8i16)filt, 0); + + LD_SB4(src, src_stride, src0, src1, src2, src3); + src += (4 * src_stride); + + VSHF_B2_UH(src0, src0, src1, src1, mask, mask, vec0, vec1); + VSHF_B2_UH(src2, src2, src3, src3, mask, mask, vec2, vec3); + DOTP_UB4_UH(vec0, vec1, vec2, vec3, filt0, filt0, filt0, filt0, vec0, vec1, + vec2, vec3); + SRARI_H4_UH(vec0, vec1, vec2, vec3, VP8_FILTER_SHIFT); + + LD_SB4(src, src_stride, src0, src1, src2, src3); + src += (4 * src_stride); + + PCKEV_B2_SB(vec1, vec0, vec3, vec2, out0, out1); + ST8x4_UB(out0, out1, dst, dst_stride); + dst += (4 * dst_stride); + + VSHF_B2_UH(src0, src0, src1, src1, mask, mask, vec0, vec1); + VSHF_B2_UH(src2, src2, src3, src3, mask, mask, vec2, vec3); + DOTP_UB4_UH(vec0, vec1, vec2, vec3, filt0, filt0, filt0, filt0, vec0, vec1, + vec2, vec3); + SRARI_H4_UH(vec0, vec1, vec2, vec3, VP8_FILTER_SHIFT); + PCKEV_B2_SB(vec1, vec0, vec3, vec2, out0, out1); + ST8x4_UB(out0, out1, dst, dst_stride); + dst += (4 * dst_stride); + + if (16 == height) { + LD_SB4(src, src_stride, src0, src1, src2, src3); + src += (4 * src_stride); + + VSHF_B2_UH(src0, src0, src1, src1, mask, mask, vec0, vec1); + VSHF_B2_UH(src2, src2, src3, src3, mask, mask, vec2, vec3); + DOTP_UB4_UH(vec0, vec1, vec2, vec3, filt0, filt0, filt0, filt0, vec0, vec1, + vec2, vec3); + SRARI_H4_UH(vec0, vec1, vec2, vec3, VP8_FILTER_SHIFT); + LD_SB4(src, src_stride, src0, src1, src2, src3); + src += (4 * src_stride); + + PCKEV_B2_SB(vec1, vec0, vec3, vec2, out0, out1); + ST8x4_UB(out0, out1, dst, dst_stride); + + VSHF_B2_UH(src0, src0, src1, src1, mask, mask, vec0, vec1); + VSHF_B2_UH(src2, src2, src3, src3, mask, mask, vec2, vec3); + DOTP_UB4_UH(vec0, vec1, vec2, vec3, filt0, filt0, filt0, filt0, vec0, vec1, + vec2, vec3); + SRARI_H4_UH(vec0, vec1, vec2, vec3, VP8_FILTER_SHIFT); + PCKEV_B2_SB(vec1, vec0, vec3, vec2, out0, out1); + ST8x4_UB(out0, out1, dst + 4 * dst_stride, dst_stride); + } +} + +static void common_hz_2t_8w_msa(uint8_t *RESTRICT src, int32_t src_stride, + uint8_t *RESTRICT dst, int32_t dst_stride, + const int8_t *filter, int32_t height) { + if (4 == height) { + common_hz_2t_8x4_msa(src, src_stride, dst, dst_stride, filter); + } else { + common_hz_2t_8x8mult_msa(src, src_stride, dst, dst_stride, filter, height); + } +} + +static void common_hz_2t_16w_msa(uint8_t *RESTRICT src, int32_t src_stride, + uint8_t *RESTRICT dst, int32_t dst_stride, + const int8_t *filter, int32_t height) { + uint32_t loop_cnt; + v16i8 src0, src1, src2, src3, src4, src5, src6, src7, mask; + v16u8 filt0, vec0, vec1, vec2, vec3, vec4, vec5, vec6, vec7; + v8u16 out0, out1, out2, out3, out4, out5, out6, out7, filt; + + mask = LD_SB(&vp8_mc_filt_mask_arr[0]); + + loop_cnt = (height >> 2) - 1; + + filt = LD_UH(filter); + filt0 = (v16u8)__msa_splati_h((v8i16)filt, 0); + + LD_SB4(src, src_stride, src0, src2, src4, src6); + LD_SB4(src + 8, src_stride, src1, src3, src5, src7); + src += (4 * src_stride); + + VSHF_B2_UB(src0, src0, src1, src1, mask, mask, vec0, vec1); + VSHF_B2_UB(src2, src2, src3, src3, mask, mask, vec2, vec3); + VSHF_B2_UB(src4, src4, src5, src5, mask, mask, vec4, vec5); + VSHF_B2_UB(src6, src6, src7, src7, mask, mask, vec6, vec7); + DOTP_UB4_UH(vec0, vec1, vec2, vec3, filt0, filt0, filt0, filt0, out0, out1, + out2, out3); + DOTP_UB4_UH(vec4, vec5, vec6, vec7, filt0, filt0, filt0, filt0, out4, out5, + out6, out7); + SRARI_H4_UH(out0, out1, out2, out3, VP8_FILTER_SHIFT); + SRARI_H4_UH(out4, out5, out6, out7, VP8_FILTER_SHIFT); + PCKEV_ST_SB(out0, out1, dst); + dst += dst_stride; + PCKEV_ST_SB(out2, out3, dst); + dst += dst_stride; + PCKEV_ST_SB(out4, out5, dst); + dst += dst_stride; + PCKEV_ST_SB(out6, out7, dst); + dst += dst_stride; + + for (; loop_cnt--;) { + LD_SB4(src, src_stride, src0, src2, src4, src6); + LD_SB4(src + 8, src_stride, src1, src3, src5, src7); + src += (4 * src_stride); + + VSHF_B2_UB(src0, src0, src1, src1, mask, mask, vec0, vec1); + VSHF_B2_UB(src2, src2, src3, src3, mask, mask, vec2, vec3); + VSHF_B2_UB(src4, src4, src5, src5, mask, mask, vec4, vec5); + VSHF_B2_UB(src6, src6, src7, src7, mask, mask, vec6, vec7); + DOTP_UB4_UH(vec0, vec1, vec2, vec3, filt0, filt0, filt0, filt0, out0, out1, + out2, out3); + DOTP_UB4_UH(vec4, vec5, vec6, vec7, filt0, filt0, filt0, filt0, out4, out5, + out6, out7); + SRARI_H4_UH(out0, out1, out2, out3, VP8_FILTER_SHIFT); + SRARI_H4_UH(out4, out5, out6, out7, VP8_FILTER_SHIFT); + PCKEV_ST_SB(out0, out1, dst); + dst += dst_stride; + PCKEV_ST_SB(out2, out3, dst); + dst += dst_stride; + PCKEV_ST_SB(out4, out5, dst); + dst += dst_stride; + PCKEV_ST_SB(out6, out7, dst); + dst += dst_stride; + } +} + +static void common_vt_2t_4x4_msa(uint8_t *RESTRICT src, int32_t src_stride, + uint8_t *RESTRICT dst, int32_t dst_stride, + const int8_t *filter) { + v16i8 src0, src1, src2, src3, src4; + v16i8 src10_r, src32_r, src21_r, src43_r, src2110, src4332; + v16u8 filt0; + v8i16 filt; + v8u16 tmp0, tmp1; + + filt = LD_SH(filter); + filt0 = (v16u8)__msa_splati_h(filt, 0); + + LD_SB5(src, src_stride, src0, src1, src2, src3, src4); + src += (5 * src_stride); + + ILVR_B4_SB(src1, src0, src2, src1, src3, src2, src4, src3, src10_r, src21_r, + src32_r, src43_r); + ILVR_D2_SB(src21_r, src10_r, src43_r, src32_r, src2110, src4332); + DOTP_UB2_UH(src2110, src4332, filt0, filt0, tmp0, tmp1); + SRARI_H2_UH(tmp0, tmp1, VP8_FILTER_SHIFT); + src2110 = __msa_pckev_b((v16i8)tmp1, (v16i8)tmp0); + ST4x4_UB(src2110, src2110, 0, 1, 2, 3, dst, dst_stride); +} + +static void common_vt_2t_4x8_msa(uint8_t *RESTRICT src, int32_t src_stride, + uint8_t *RESTRICT dst, int32_t dst_stride, + const int8_t *filter) { + v16i8 src0, src1, src2, src3, src4, src5, src6, src7, src8; + v16i8 src10_r, src32_r, src54_r, src76_r, src21_r, src43_r; + v16i8 src65_r, src87_r, src2110, src4332, src6554, src8776; + v8u16 tmp0, tmp1, tmp2, tmp3; + v16u8 filt0; + v8i16 filt; + + filt = LD_SH(filter); + filt0 = (v16u8)__msa_splati_h(filt, 0); + + LD_SB8(src, src_stride, src0, src1, src2, src3, src4, src5, src6, src7); + src += (8 * src_stride); + + src8 = LD_SB(src); + src += src_stride; + + ILVR_B4_SB(src1, src0, src2, src1, src3, src2, src4, src3, src10_r, src21_r, + src32_r, src43_r); + ILVR_B4_SB(src5, src4, src6, src5, src7, src6, src8, src7, src54_r, src65_r, + src76_r, src87_r); + ILVR_D4_SB(src21_r, src10_r, src43_r, src32_r, src65_r, src54_r, src87_r, + src76_r, src2110, src4332, src6554, src8776); + DOTP_UB4_UH(src2110, src4332, src6554, src8776, filt0, filt0, filt0, filt0, + tmp0, tmp1, tmp2, tmp3); + SRARI_H4_UH(tmp0, tmp1, tmp2, tmp3, VP8_FILTER_SHIFT); + PCKEV_B2_SB(tmp1, tmp0, tmp3, tmp2, src2110, src4332); + ST4x4_UB(src2110, src2110, 0, 1, 2, 3, dst, dst_stride); + ST4x4_UB(src4332, src4332, 0, 1, 2, 3, dst + 4 * dst_stride, dst_stride); +} + +static void common_vt_2t_4w_msa(uint8_t *RESTRICT src, int32_t src_stride, + uint8_t *RESTRICT dst, int32_t dst_stride, + const int8_t *filter, int32_t height) { + if (4 == height) { + common_vt_2t_4x4_msa(src, src_stride, dst, dst_stride, filter); + } else if (8 == height) { + common_vt_2t_4x8_msa(src, src_stride, dst, dst_stride, filter); + } +} + +static void common_vt_2t_8x4_msa(uint8_t *RESTRICT src, int32_t src_stride, + uint8_t *RESTRICT dst, int32_t dst_stride, + const int8_t *filter) { + v16u8 src0, src1, src2, src3, src4, vec0, vec1, vec2, vec3, filt0; + v16i8 out0, out1; + v8u16 tmp0, tmp1, tmp2, tmp3; + v8i16 filt; + + filt = LD_SH(filter); + filt0 = (v16u8)__msa_splati_h(filt, 0); + + LD_UB5(src, src_stride, src0, src1, src2, src3, src4); + ILVR_B2_UB(src1, src0, src2, src1, vec0, vec1); + ILVR_B2_UB(src3, src2, src4, src3, vec2, vec3); + DOTP_UB4_UH(vec0, vec1, vec2, vec3, filt0, filt0, filt0, filt0, tmp0, tmp1, + tmp2, tmp3); + SRARI_H4_UH(tmp0, tmp1, tmp2, tmp3, VP8_FILTER_SHIFT); + PCKEV_B2_SB(tmp1, tmp0, tmp3, tmp2, out0, out1); + ST8x4_UB(out0, out1, dst, dst_stride); +} + +static void common_vt_2t_8x8mult_msa(uint8_t *RESTRICT src, int32_t src_stride, + uint8_t *RESTRICT dst, int32_t dst_stride, + const int8_t *filter, int32_t height) { + uint32_t loop_cnt; + v16u8 src0, src1, src2, src3, src4, src5, src6, src7, src8; + v16u8 vec0, vec1, vec2, vec3, vec4, vec5, vec6, vec7, filt0; + v16i8 out0, out1; + v8u16 tmp0, tmp1, tmp2, tmp3; + v8i16 filt; + + filt = LD_SH(filter); + filt0 = (v16u8)__msa_splati_h(filt, 0); + + src0 = LD_UB(src); + src += src_stride; + + for (loop_cnt = (height >> 3); loop_cnt--;) { + LD_UB8(src, src_stride, src1, src2, src3, src4, src5, src6, src7, src8); + src += (8 * src_stride); + + ILVR_B4_UB(src1, src0, src2, src1, src3, src2, src4, src3, vec0, vec1, vec2, + vec3); + ILVR_B4_UB(src5, src4, src6, src5, src7, src6, src8, src7, vec4, vec5, vec6, + vec7); + DOTP_UB4_UH(vec0, vec1, vec2, vec3, filt0, filt0, filt0, filt0, tmp0, tmp1, + tmp2, tmp3); + SRARI_H4_UH(tmp0, tmp1, tmp2, tmp3, VP8_FILTER_SHIFT); + PCKEV_B2_SB(tmp1, tmp0, tmp3, tmp2, out0, out1); + ST8x4_UB(out0, out1, dst, dst_stride); + dst += (4 * dst_stride); + + DOTP_UB4_UH(vec4, vec5, vec6, vec7, filt0, filt0, filt0, filt0, tmp0, tmp1, + tmp2, tmp3); + SRARI_H4_UH(tmp0, tmp1, tmp2, tmp3, VP8_FILTER_SHIFT); + PCKEV_B2_SB(tmp1, tmp0, tmp3, tmp2, out0, out1); + ST8x4_UB(out0, out1, dst, dst_stride); + dst += (4 * dst_stride); + + src0 = src8; + } +} + +static void common_vt_2t_8w_msa(uint8_t *RESTRICT src, int32_t src_stride, + uint8_t *RESTRICT dst, int32_t dst_stride, + const int8_t *filter, int32_t height) { + if (4 == height) { + common_vt_2t_8x4_msa(src, src_stride, dst, dst_stride, filter); + } else { + common_vt_2t_8x8mult_msa(src, src_stride, dst, dst_stride, filter, height); + } +} + +static void common_vt_2t_16w_msa(uint8_t *RESTRICT src, int32_t src_stride, + uint8_t *RESTRICT dst, int32_t dst_stride, + const int8_t *filter, int32_t height) { + uint32_t loop_cnt; + v16u8 src0, src1, src2, src3, src4; + v16u8 vec0, vec1, vec2, vec3, vec4, vec5, vec6, vec7, filt0; + v8u16 tmp0, tmp1, tmp2, tmp3; + v8i16 filt; + + filt = LD_SH(filter); + filt0 = (v16u8)__msa_splati_h(filt, 0); + + src0 = LD_UB(src); + src += src_stride; + + for (loop_cnt = (height >> 2); loop_cnt--;) { + LD_UB4(src, src_stride, src1, src2, src3, src4); + src += (4 * src_stride); + + ILVR_B2_UB(src1, src0, src2, src1, vec0, vec2); + ILVL_B2_UB(src1, src0, src2, src1, vec1, vec3); + DOTP_UB2_UH(vec0, vec1, filt0, filt0, tmp0, tmp1); + SRARI_H2_UH(tmp0, tmp1, VP8_FILTER_SHIFT); + PCKEV_ST_SB(tmp0, tmp1, dst); + dst += dst_stride; + + ILVR_B2_UB(src3, src2, src4, src3, vec4, vec6); + ILVL_B2_UB(src3, src2, src4, src3, vec5, vec7); + DOTP_UB2_UH(vec2, vec3, filt0, filt0, tmp2, tmp3); + SRARI_H2_UH(tmp2, tmp3, VP8_FILTER_SHIFT); + PCKEV_ST_SB(tmp2, tmp3, dst); + dst += dst_stride; + + DOTP_UB2_UH(vec4, vec5, filt0, filt0, tmp0, tmp1); + SRARI_H2_UH(tmp0, tmp1, VP8_FILTER_SHIFT); + PCKEV_ST_SB(tmp0, tmp1, dst); + dst += dst_stride; + + DOTP_UB2_UH(vec6, vec7, filt0, filt0, tmp2, tmp3); + SRARI_H2_UH(tmp2, tmp3, VP8_FILTER_SHIFT); + PCKEV_ST_SB(tmp2, tmp3, dst); + dst += dst_stride; + + src0 = src4; + } +} + +static void common_hv_2ht_2vt_4x4_msa(uint8_t *RESTRICT src, int32_t src_stride, + uint8_t *RESTRICT dst, int32_t dst_stride, + const int8_t *filter_horiz, + const int8_t *filter_vert) { + v16i8 src0, src1, src2, src3, src4, mask; + v16u8 filt_vt, filt_hz, vec0, vec1, res0, res1; + v8u16 hz_out0, hz_out1, hz_out2, hz_out3, hz_out4, filt, tmp0, tmp1; + + mask = LD_SB(&vp8_mc_filt_mask_arr[16]); + + filt = LD_UH(filter_horiz); + filt_hz = (v16u8)__msa_splati_h((v8i16)filt, 0); + filt = LD_UH(filter_vert); + filt_vt = (v16u8)__msa_splati_h((v8i16)filt, 0); + + LD_SB5(src, src_stride, src0, src1, src2, src3, src4); + hz_out0 = HORIZ_2TAP_FILT_UH(src0, src1, mask, filt_hz, VP8_FILTER_SHIFT); + hz_out2 = HORIZ_2TAP_FILT_UH(src2, src3, mask, filt_hz, VP8_FILTER_SHIFT); + hz_out4 = HORIZ_2TAP_FILT_UH(src4, src4, mask, filt_hz, VP8_FILTER_SHIFT); + hz_out1 = (v8u16)__msa_sldi_b((v16i8)hz_out2, (v16i8)hz_out0, 8); + hz_out3 = (v8u16)__msa_pckod_d((v2i64)hz_out4, (v2i64)hz_out2); + + ILVEV_B2_UB(hz_out0, hz_out1, hz_out2, hz_out3, vec0, vec1); + DOTP_UB2_UH(vec0, vec1, filt_vt, filt_vt, tmp0, tmp1); + SRARI_H2_UH(tmp0, tmp1, VP8_FILTER_SHIFT); + PCKEV_B2_UB(tmp0, tmp0, tmp1, tmp1, res0, res1); + ST4x4_UB(res0, res1, 0, 1, 0, 1, dst, dst_stride); +} + +static void common_hv_2ht_2vt_4x8_msa(uint8_t *RESTRICT src, int32_t src_stride, + uint8_t *RESTRICT dst, int32_t dst_stride, + const int8_t *filter_horiz, + const int8_t *filter_vert) { + v16i8 src0, src1, src2, src3, src4, src5, src6, src7, src8, mask; + v16i8 res0, res1, res2, res3; + v16u8 filt_hz, filt_vt, vec0, vec1, vec2, vec3; + v8u16 hz_out0, hz_out1, hz_out2, hz_out3, hz_out4, hz_out5, hz_out6; + v8u16 hz_out7, hz_out8, vec4, vec5, vec6, vec7, filt; + + mask = LD_SB(&vp8_mc_filt_mask_arr[16]); + + filt = LD_UH(filter_horiz); + filt_hz = (v16u8)__msa_splati_h((v8i16)filt, 0); + filt = LD_UH(filter_vert); + filt_vt = (v16u8)__msa_splati_h((v8i16)filt, 0); + + LD_SB8(src, src_stride, src0, src1, src2, src3, src4, src5, src6, src7); + src += (8 * src_stride); + src8 = LD_SB(src); + + hz_out0 = HORIZ_2TAP_FILT_UH(src0, src1, mask, filt_hz, VP8_FILTER_SHIFT); + hz_out2 = HORIZ_2TAP_FILT_UH(src2, src3, mask, filt_hz, VP8_FILTER_SHIFT); + hz_out4 = HORIZ_2TAP_FILT_UH(src4, src5, mask, filt_hz, VP8_FILTER_SHIFT); + hz_out6 = HORIZ_2TAP_FILT_UH(src6, src7, mask, filt_hz, VP8_FILTER_SHIFT); + hz_out8 = HORIZ_2TAP_FILT_UH(src8, src8, mask, filt_hz, VP8_FILTER_SHIFT); + SLDI_B3_UH(hz_out2, hz_out4, hz_out6, hz_out0, hz_out2, hz_out4, hz_out1, + hz_out3, hz_out5, 8); + hz_out7 = (v8u16)__msa_pckod_d((v2i64)hz_out8, (v2i64)hz_out6); + + ILVEV_B2_UB(hz_out0, hz_out1, hz_out2, hz_out3, vec0, vec1); + ILVEV_B2_UB(hz_out4, hz_out5, hz_out6, hz_out7, vec2, vec3); + DOTP_UB4_UH(vec0, vec1, vec2, vec3, filt_vt, filt_vt, filt_vt, filt_vt, vec4, + vec5, vec6, vec7); + SRARI_H4_UH(vec4, vec5, vec6, vec7, VP8_FILTER_SHIFT); + PCKEV_B4_SB(vec4, vec4, vec5, vec5, vec6, vec6, vec7, vec7, res0, res1, res2, + res3); + ST4x4_UB(res0, res1, 0, 1, 0, 1, dst, dst_stride); + dst += (4 * dst_stride); + ST4x4_UB(res2, res3, 0, 1, 0, 1, dst, dst_stride); +} + +static void common_hv_2ht_2vt_4w_msa(uint8_t *RESTRICT src, int32_t src_stride, + uint8_t *RESTRICT dst, int32_t dst_stride, + const int8_t *filter_horiz, + const int8_t *filter_vert, + int32_t height) { + if (4 == height) { + common_hv_2ht_2vt_4x4_msa(src, src_stride, dst, dst_stride, filter_horiz, + filter_vert); + } else if (8 == height) { + common_hv_2ht_2vt_4x8_msa(src, src_stride, dst, dst_stride, filter_horiz, + filter_vert); + } +} + +static void common_hv_2ht_2vt_8x4_msa(uint8_t *RESTRICT src, int32_t src_stride, + uint8_t *RESTRICT dst, int32_t dst_stride, + const int8_t *filter_horiz, + const int8_t *filter_vert) { + v16i8 src0, src1, src2, src3, src4, mask, out0, out1; + v16u8 filt_hz, filt_vt, vec0, vec1, vec2, vec3; + v8u16 hz_out0, hz_out1, tmp0, tmp1, tmp2, tmp3; + v8i16 filt; + + mask = LD_SB(&vp8_mc_filt_mask_arr[0]); + + filt = LD_SH(filter_horiz); + filt_hz = (v16u8)__msa_splati_h(filt, 0); + filt = LD_SH(filter_vert); + filt_vt = (v16u8)__msa_splati_h(filt, 0); + + LD_SB5(src, src_stride, src0, src1, src2, src3, src4); + + hz_out0 = HORIZ_2TAP_FILT_UH(src0, src0, mask, filt_hz, VP8_FILTER_SHIFT); + hz_out1 = HORIZ_2TAP_FILT_UH(src1, src1, mask, filt_hz, VP8_FILTER_SHIFT); + vec0 = (v16u8)__msa_ilvev_b((v16i8)hz_out1, (v16i8)hz_out0); + tmp0 = __msa_dotp_u_h(vec0, filt_vt); + + hz_out0 = HORIZ_2TAP_FILT_UH(src2, src2, mask, filt_hz, VP8_FILTER_SHIFT); + vec1 = (v16u8)__msa_ilvev_b((v16i8)hz_out0, (v16i8)hz_out1); + tmp1 = __msa_dotp_u_h(vec1, filt_vt); + + hz_out1 = HORIZ_2TAP_FILT_UH(src3, src3, mask, filt_hz, VP8_FILTER_SHIFT); + vec2 = (v16u8)__msa_ilvev_b((v16i8)hz_out1, (v16i8)hz_out0); + tmp2 = __msa_dotp_u_h(vec2, filt_vt); + + hz_out0 = HORIZ_2TAP_FILT_UH(src4, src4, mask, filt_hz, VP8_FILTER_SHIFT); + vec3 = (v16u8)__msa_ilvev_b((v16i8)hz_out0, (v16i8)hz_out1); + tmp3 = __msa_dotp_u_h(vec3, filt_vt); + + SRARI_H4_UH(tmp0, tmp1, tmp2, tmp3, VP8_FILTER_SHIFT); + PCKEV_B2_SB(tmp1, tmp0, tmp3, tmp2, out0, out1); + ST8x4_UB(out0, out1, dst, dst_stride); +} + +static void common_hv_2ht_2vt_8x8mult_msa( + uint8_t *RESTRICT src, int32_t src_stride, uint8_t *RESTRICT dst, + int32_t dst_stride, const int8_t *filter_horiz, const int8_t *filter_vert, + int32_t height) { + uint32_t loop_cnt; + v16i8 src0, src1, src2, src3, src4, mask, out0, out1; + v16u8 filt_hz, filt_vt, vec0; + v8u16 hz_out0, hz_out1, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7, tmp8; + v8i16 filt; + + mask = LD_SB(&vp8_mc_filt_mask_arr[0]); + + filt = LD_SH(filter_horiz); + filt_hz = (v16u8)__msa_splati_h(filt, 0); + filt = LD_SH(filter_vert); + filt_vt = (v16u8)__msa_splati_h(filt, 0); + + src0 = LD_SB(src); + src += src_stride; + + hz_out0 = HORIZ_2TAP_FILT_UH(src0, src0, mask, filt_hz, VP8_FILTER_SHIFT); + + for (loop_cnt = (height >> 3); loop_cnt--;) { + LD_SB4(src, src_stride, src1, src2, src3, src4); + src += (4 * src_stride); + + hz_out1 = HORIZ_2TAP_FILT_UH(src1, src1, mask, filt_hz, VP8_FILTER_SHIFT); + vec0 = (v16u8)__msa_ilvev_b((v16i8)hz_out1, (v16i8)hz_out0); + tmp1 = __msa_dotp_u_h(vec0, filt_vt); + + hz_out0 = HORIZ_2TAP_FILT_UH(src2, src2, mask, filt_hz, VP8_FILTER_SHIFT); + vec0 = (v16u8)__msa_ilvev_b((v16i8)hz_out0, (v16i8)hz_out1); + tmp2 = __msa_dotp_u_h(vec0, filt_vt); + + SRARI_H2_UH(tmp1, tmp2, VP8_FILTER_SHIFT); + + hz_out1 = HORIZ_2TAP_FILT_UH(src3, src3, mask, filt_hz, VP8_FILTER_SHIFT); + vec0 = (v16u8)__msa_ilvev_b((v16i8)hz_out1, (v16i8)hz_out0); + tmp3 = __msa_dotp_u_h(vec0, filt_vt); + + hz_out0 = HORIZ_2TAP_FILT_UH(src4, src4, mask, filt_hz, VP8_FILTER_SHIFT); + LD_SB4(src, src_stride, src1, src2, src3, src4); + src += (4 * src_stride); + vec0 = (v16u8)__msa_ilvev_b((v16i8)hz_out0, (v16i8)hz_out1); + tmp4 = __msa_dotp_u_h(vec0, filt_vt); + + SRARI_H2_UH(tmp3, tmp4, VP8_FILTER_SHIFT); + PCKEV_B2_SB(tmp2, tmp1, tmp4, tmp3, out0, out1); + ST8x4_UB(out0, out1, dst, dst_stride); + dst += (4 * dst_stride); + + hz_out1 = HORIZ_2TAP_FILT_UH(src1, src1, mask, filt_hz, VP8_FILTER_SHIFT); + vec0 = (v16u8)__msa_ilvev_b((v16i8)hz_out1, (v16i8)hz_out0); + tmp5 = __msa_dotp_u_h(vec0, filt_vt); + + hz_out0 = HORIZ_2TAP_FILT_UH(src2, src2, mask, filt_hz, VP8_FILTER_SHIFT); + vec0 = (v16u8)__msa_ilvev_b((v16i8)hz_out0, (v16i8)hz_out1); + tmp6 = __msa_dotp_u_h(vec0, filt_vt); + + hz_out1 = HORIZ_2TAP_FILT_UH(src3, src3, mask, filt_hz, VP8_FILTER_SHIFT); + vec0 = (v16u8)__msa_ilvev_b((v16i8)hz_out1, (v16i8)hz_out0); + tmp7 = __msa_dotp_u_h(vec0, filt_vt); + + hz_out0 = HORIZ_2TAP_FILT_UH(src4, src4, mask, filt_hz, VP8_FILTER_SHIFT); + vec0 = (v16u8)__msa_ilvev_b((v16i8)hz_out0, (v16i8)hz_out1); + tmp8 = __msa_dotp_u_h(vec0, filt_vt); + + SRARI_H4_UH(tmp5, tmp6, tmp7, tmp8, VP8_FILTER_SHIFT); + PCKEV_B2_SB(tmp6, tmp5, tmp8, tmp7, out0, out1); + ST8x4_UB(out0, out1, dst, dst_stride); + dst += (4 * dst_stride); + } +} + +static void common_hv_2ht_2vt_8w_msa(uint8_t *RESTRICT src, int32_t src_stride, + uint8_t *RESTRICT dst, int32_t dst_stride, + const int8_t *filter_horiz, + const int8_t *filter_vert, + int32_t height) { + if (4 == height) { + common_hv_2ht_2vt_8x4_msa(src, src_stride, dst, dst_stride, filter_horiz, + filter_vert); + } else { + common_hv_2ht_2vt_8x8mult_msa(src, src_stride, dst, dst_stride, + filter_horiz, filter_vert, height); + } +} + +static void common_hv_2ht_2vt_16w_msa(uint8_t *RESTRICT src, int32_t src_stride, + uint8_t *RESTRICT dst, int32_t dst_stride, + const int8_t *filter_horiz, + const int8_t *filter_vert, + int32_t height) { + uint32_t loop_cnt; + v16i8 src0, src1, src2, src3, src4, src5, src6, src7, mask; + v16u8 filt_hz, filt_vt, vec0, vec1; + v8u16 tmp1, tmp2, hz_out0, hz_out1, hz_out2, hz_out3; + v8i16 filt; + + mask = LD_SB(&vp8_mc_filt_mask_arr[0]); + + /* rearranging filter */ + filt = LD_SH(filter_horiz); + filt_hz = (v16u8)__msa_splati_h(filt, 0); + filt = LD_SH(filter_vert); + filt_vt = (v16u8)__msa_splati_h(filt, 0); + + LD_SB2(src, 8, src0, src1); + src += src_stride; + + hz_out0 = HORIZ_2TAP_FILT_UH(src0, src0, mask, filt_hz, VP8_FILTER_SHIFT); + hz_out2 = HORIZ_2TAP_FILT_UH(src1, src1, mask, filt_hz, VP8_FILTER_SHIFT); + + for (loop_cnt = (height >> 2); loop_cnt--;) { + LD_SB4(src, src_stride, src0, src2, src4, src6); + LD_SB4(src + 8, src_stride, src1, src3, src5, src7); + src += (4 * src_stride); + + hz_out1 = HORIZ_2TAP_FILT_UH(src0, src0, mask, filt_hz, VP8_FILTER_SHIFT); + hz_out3 = HORIZ_2TAP_FILT_UH(src1, src1, mask, filt_hz, VP8_FILTER_SHIFT); + ILVEV_B2_UB(hz_out0, hz_out1, hz_out2, hz_out3, vec0, vec1); + DOTP_UB2_UH(vec0, vec1, filt_vt, filt_vt, tmp1, tmp2); + SRARI_H2_UH(tmp1, tmp2, VP8_FILTER_SHIFT); + PCKEV_ST_SB(tmp1, tmp2, dst); + dst += dst_stride; + + hz_out0 = HORIZ_2TAP_FILT_UH(src2, src2, mask, filt_hz, VP8_FILTER_SHIFT); + hz_out2 = HORIZ_2TAP_FILT_UH(src3, src3, mask, filt_hz, VP8_FILTER_SHIFT); + ILVEV_B2_UB(hz_out1, hz_out0, hz_out3, hz_out2, vec0, vec1); + DOTP_UB2_UH(vec0, vec1, filt_vt, filt_vt, tmp1, tmp2); + SRARI_H2_UH(tmp1, tmp2, VP8_FILTER_SHIFT); + PCKEV_ST_SB(tmp1, tmp2, dst); + dst += dst_stride; + + hz_out1 = HORIZ_2TAP_FILT_UH(src4, src4, mask, filt_hz, VP8_FILTER_SHIFT); + hz_out3 = HORIZ_2TAP_FILT_UH(src5, src5, mask, filt_hz, VP8_FILTER_SHIFT); + ILVEV_B2_UB(hz_out0, hz_out1, hz_out2, hz_out3, vec0, vec1); + DOTP_UB2_UH(vec0, vec1, filt_vt, filt_vt, tmp1, tmp2); + SRARI_H2_UH(tmp1, tmp2, VP8_FILTER_SHIFT); + PCKEV_ST_SB(tmp1, tmp2, dst); + dst += dst_stride; + + hz_out0 = HORIZ_2TAP_FILT_UH(src6, src6, mask, filt_hz, VP8_FILTER_SHIFT); + hz_out2 = HORIZ_2TAP_FILT_UH(src7, src7, mask, filt_hz, VP8_FILTER_SHIFT); + ILVEV_B2_UB(hz_out1, hz_out0, hz_out3, hz_out2, vec0, vec1); + DOTP_UB2_UH(vec0, vec1, filt_vt, filt_vt, tmp1, tmp2); + SRARI_H2_UH(tmp1, tmp2, VP8_FILTER_SHIFT); + PCKEV_ST_SB(tmp1, tmp2, dst); + dst += dst_stride; + } +} + +void vp8_bilinear_predict4x4_msa(uint8_t *RESTRICT src, int32_t src_stride, + int32_t xoffset, int32_t yoffset, + uint8_t *RESTRICT dst, int32_t dst_stride) { + const int8_t *h_filter = vp8_bilinear_filters_msa[xoffset - 1]; + const int8_t *v_filter = vp8_bilinear_filters_msa[yoffset - 1]; + + if (yoffset) { + if (xoffset) { + common_hv_2ht_2vt_4w_msa(src, src_stride, dst, dst_stride, h_filter, + v_filter, 4); + } else { + common_vt_2t_4w_msa(src, src_stride, dst, dst_stride, v_filter, 4); + } + } else { + if (xoffset) { + common_hz_2t_4w_msa(src, src_stride, dst, dst_stride, h_filter, 4); + } else { + uint32_t tp0, tp1, tp2, tp3; + + LW4(src, src_stride, tp0, tp1, tp2, tp3); + SW4(tp0, tp1, tp2, tp3, dst, dst_stride); + } + } +} + +void vp8_bilinear_predict8x4_msa(uint8_t *RESTRICT src, int32_t src_stride, + int32_t xoffset, int32_t yoffset, + uint8_t *RESTRICT dst, int32_t dst_stride) { + const int8_t *h_filter = vp8_bilinear_filters_msa[xoffset - 1]; + const int8_t *v_filter = vp8_bilinear_filters_msa[yoffset - 1]; + + if (yoffset) { + if (xoffset) { + common_hv_2ht_2vt_8w_msa(src, src_stride, dst, dst_stride, h_filter, + v_filter, 4); + } else { + common_vt_2t_8w_msa(src, src_stride, dst, dst_stride, v_filter, 4); + } + } else { + if (xoffset) { + common_hz_2t_8w_msa(src, src_stride, dst, dst_stride, h_filter, 4); + } else { + vp8_copy_mem8x4(src, src_stride, dst, dst_stride); + } + } +} + +void vp8_bilinear_predict8x8_msa(uint8_t *RESTRICT src, int32_t src_stride, + int32_t xoffset, int32_t yoffset, + uint8_t *RESTRICT dst, int32_t dst_stride) { + const int8_t *h_filter = vp8_bilinear_filters_msa[xoffset - 1]; + const int8_t *v_filter = vp8_bilinear_filters_msa[yoffset - 1]; + + if (yoffset) { + if (xoffset) { + common_hv_2ht_2vt_8w_msa(src, src_stride, dst, dst_stride, h_filter, + v_filter, 8); + } else { + common_vt_2t_8w_msa(src, src_stride, dst, dst_stride, v_filter, 8); + } + } else { + if (xoffset) { + common_hz_2t_8w_msa(src, src_stride, dst, dst_stride, h_filter, 8); + } else { + vp8_copy_mem8x8(src, src_stride, dst, dst_stride); + } + } +} + +void vp8_bilinear_predict16x16_msa(uint8_t *RESTRICT src, int32_t src_stride, + int32_t xoffset, int32_t yoffset, + uint8_t *RESTRICT dst, int32_t dst_stride) { + const int8_t *h_filter = vp8_bilinear_filters_msa[xoffset - 1]; + const int8_t *v_filter = vp8_bilinear_filters_msa[yoffset - 1]; + + if (yoffset) { + if (xoffset) { + common_hv_2ht_2vt_16w_msa(src, src_stride, dst, dst_stride, h_filter, + v_filter, 16); + } else { + common_vt_2t_16w_msa(src, src_stride, dst, dst_stride, v_filter, 16); + } + } else { + if (xoffset) { + common_hz_2t_16w_msa(src, src_stride, dst, dst_stride, h_filter, 16); + } else { + vp8_copy_mem16x16(src, src_stride, dst, dst_stride); + } + } +} diff --git a/vp8/common/mips/msa/copymem_msa.c b/vp8/common/mips/msa/copymem_msa.c new file mode 100644 index 0000000..357c99b --- /dev/null +++ b/vp8/common/mips/msa/copymem_msa.c @@ -0,0 +1,62 @@ +/* + * Copyright (c) 2015 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "./vp8_rtcd.h" +#include "vp8/common/mips/msa/vp8_macros_msa.h" + +static void copy_8x4_msa(uint8_t *src, int32_t src_stride, uint8_t *dst, + int32_t dst_stride) { + uint64_t src0, src1, src2, src3; + + LD4(src, src_stride, src0, src1, src2, src3); + SD4(src0, src1, src2, src3, dst, dst_stride); +} + +static void copy_8x8_msa(uint8_t *src, int32_t src_stride, uint8_t *dst, + int32_t dst_stride) { + uint64_t src0, src1, src2, src3; + + LD4(src, src_stride, src0, src1, src2, src3); + src += (4 * src_stride); + SD4(src0, src1, src2, src3, dst, dst_stride); + dst += (4 * dst_stride); + + LD4(src, src_stride, src0, src1, src2, src3); + SD4(src0, src1, src2, src3, dst, dst_stride); +} + +static void copy_16x16_msa(uint8_t *src, int32_t src_stride, uint8_t *dst, + int32_t dst_stride) { + v16u8 src0, src1, src2, src3, src4, src5, src6, src7; + v16u8 src8, src9, src10, src11, src12, src13, src14, src15; + + LD_UB8(src, src_stride, src0, src1, src2, src3, src4, src5, src6, src7); + src += (8 * src_stride); + LD_UB8(src, src_stride, src8, src9, src10, src11, src12, src13, src14, src15); + + ST_UB8(src0, src1, src2, src3, src4, src5, src6, src7, dst, dst_stride); + dst += (8 * dst_stride); + ST_UB8(src8, src9, src10, src11, src12, src13, src14, src15, dst, dst_stride); +} + +void vp8_copy_mem16x16_msa(uint8_t *src, int32_t src_stride, uint8_t *dst, + int32_t dst_stride) { + copy_16x16_msa(src, src_stride, dst, dst_stride); +} + +void vp8_copy_mem8x8_msa(uint8_t *src, int32_t src_stride, uint8_t *dst, + int32_t dst_stride) { + copy_8x8_msa(src, src_stride, dst, dst_stride); +} + +void vp8_copy_mem8x4_msa(uint8_t *src, int32_t src_stride, uint8_t *dst, + int32_t dst_stride) { + copy_8x4_msa(src, src_stride, dst, dst_stride); +} diff --git a/vp8/common/mips/msa/idct_msa.c b/vp8/common/mips/msa/idct_msa.c new file mode 100644 index 0000000..3d516d0 --- /dev/null +++ b/vp8/common/mips/msa/idct_msa.c @@ -0,0 +1,406 @@ +/* + * Copyright (c) 2015 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "./vp8_rtcd.h" +#include "vp8/common/blockd.h" +#include "vp8/common/mips/msa/vp8_macros_msa.h" + +static const int32_t cospi8sqrt2minus1 = 20091; +static const int32_t sinpi8sqrt2 = 35468; + +#define TRANSPOSE_TWO_4x4_H(in0, in1, in2, in3, out0, out1, out2, out3) \ + { \ + v8i16 s4_m, s5_m, s6_m, s7_m; \ + \ + TRANSPOSE8X4_SH_SH(in0, in1, in2, in3, s4_m, s5_m, s6_m, s7_m); \ + ILVR_D2_SH(s6_m, s4_m, s7_m, s5_m, out0, out2); \ + out1 = (v8i16)__msa_ilvl_d((v2i64)s6_m, (v2i64)s4_m); \ + out3 = (v8i16)__msa_ilvl_d((v2i64)s7_m, (v2i64)s5_m); \ + } + +#define EXPAND_TO_H_MULTIPLY_SINPI8SQRT2_PCK_TO_W(in) \ + ({ \ + v8i16 out_m; \ + v8i16 zero_m = { 0 }; \ + v4i32 tmp1_m, tmp2_m; \ + v4i32 sinpi8_sqrt2_m = __msa_fill_w(sinpi8sqrt2); \ + \ + ILVRL_H2_SW(in, zero_m, tmp1_m, tmp2_m); \ + tmp1_m >>= 16; \ + tmp2_m >>= 16; \ + tmp1_m = (tmp1_m * sinpi8_sqrt2_m) >> 16; \ + tmp2_m = (tmp2_m * sinpi8_sqrt2_m) >> 16; \ + out_m = __msa_pckev_h((v8i16)tmp2_m, (v8i16)tmp1_m); \ + \ + out_m; \ + }) + +#define VP8_IDCT_1D_H(in0, in1, in2, in3, out0, out1, out2, out3) \ + { \ + v8i16 a1_m, b1_m, c1_m, d1_m; \ + v8i16 c_tmp1_m, c_tmp2_m, d_tmp1_m, d_tmp2_m; \ + v8i16 const_cospi8sqrt2minus1_m; \ + \ + const_cospi8sqrt2minus1_m = __msa_fill_h(cospi8sqrt2minus1); \ + a1_m = in0 + in2; \ + b1_m = in0 - in2; \ + c_tmp1_m = EXPAND_TO_H_MULTIPLY_SINPI8SQRT2_PCK_TO_W(in1); \ + c_tmp2_m = __msa_mul_q_h(in3, const_cospi8sqrt2minus1_m); \ + c_tmp2_m = c_tmp2_m >> 1; \ + c_tmp2_m = in3 + c_tmp2_m; \ + c1_m = c_tmp1_m - c_tmp2_m; \ + d_tmp1_m = __msa_mul_q_h(in1, const_cospi8sqrt2minus1_m); \ + d_tmp1_m = d_tmp1_m >> 1; \ + d_tmp1_m = in1 + d_tmp1_m; \ + d_tmp2_m = EXPAND_TO_H_MULTIPLY_SINPI8SQRT2_PCK_TO_W(in3); \ + d1_m = d_tmp1_m + d_tmp2_m; \ + BUTTERFLY_4(a1_m, b1_m, c1_m, d1_m, out0, out1, out2, out3); \ + } + +#define VP8_IDCT_1D_W(in0, in1, in2, in3, out0, out1, out2, out3) \ + { \ + v4i32 a1_m, b1_m, c1_m, d1_m; \ + v4i32 c_tmp1_m, c_tmp2_m, d_tmp1_m, d_tmp2_m; \ + v4i32 const_cospi8sqrt2minus1_m, sinpi8_sqrt2_m; \ + \ + const_cospi8sqrt2minus1_m = __msa_fill_w(cospi8sqrt2minus1); \ + sinpi8_sqrt2_m = __msa_fill_w(sinpi8sqrt2); \ + a1_m = in0 + in2; \ + b1_m = in0 - in2; \ + c_tmp1_m = (in1 * sinpi8_sqrt2_m) >> 16; \ + c_tmp2_m = in3 + ((in3 * const_cospi8sqrt2minus1_m) >> 16); \ + c1_m = c_tmp1_m - c_tmp2_m; \ + d_tmp1_m = in1 + ((in1 * const_cospi8sqrt2minus1_m) >> 16); \ + d_tmp2_m = (in3 * sinpi8_sqrt2_m) >> 16; \ + d1_m = d_tmp1_m + d_tmp2_m; \ + BUTTERFLY_4(a1_m, b1_m, c1_m, d1_m, out0, out1, out2, out3); \ + } + +static void idct4x4_addblk_msa(int16_t *input, uint8_t *pred, + int32_t pred_stride, uint8_t *dest, + int32_t dest_stride) { + v8i16 input0, input1; + v4i32 in0, in1, in2, in3, hz0, hz1, hz2, hz3, vt0, vt1, vt2, vt3; + v4i32 res0, res1, res2, res3; + v16i8 zero = { 0 }; + v16i8 pred0, pred1, pred2, pred3; + + LD_SH2(input, 8, input0, input1); + UNPCK_SH_SW(input0, in0, in1); + UNPCK_SH_SW(input1, in2, in3); + VP8_IDCT_1D_W(in0, in1, in2, in3, hz0, hz1, hz2, hz3); + TRANSPOSE4x4_SW_SW(hz0, hz1, hz2, hz3, hz0, hz1, hz2, hz3); + VP8_IDCT_1D_W(hz0, hz1, hz2, hz3, vt0, vt1, vt2, vt3); + SRARI_W4_SW(vt0, vt1, vt2, vt3, 3); + TRANSPOSE4x4_SW_SW(vt0, vt1, vt2, vt3, vt0, vt1, vt2, vt3); + LD_SB4(pred, pred_stride, pred0, pred1, pred2, pred3); + ILVR_B4_SW(zero, pred0, zero, pred1, zero, pred2, zero, pred3, res0, res1, + res2, res3); + ILVR_H4_SW(zero, res0, zero, res1, zero, res2, zero, res3, res0, res1, res2, + res3); + ADD4(res0, vt0, res1, vt1, res2, vt2, res3, vt3, res0, res1, res2, res3); + res0 = CLIP_SW_0_255(res0); + res1 = CLIP_SW_0_255(res1); + res2 = CLIP_SW_0_255(res2); + res3 = CLIP_SW_0_255(res3); + PCKEV_B2_SW(res0, res1, res2, res3, vt0, vt1); + res0 = (v4i32)__msa_pckev_b((v16i8)vt0, (v16i8)vt1); + ST4x4_UB(res0, res0, 3, 2, 1, 0, dest, dest_stride); +} + +static void idct4x4_addconst_msa(int16_t in_dc, uint8_t *pred, + int32_t pred_stride, uint8_t *dest, + int32_t dest_stride) { + v8i16 vec, res0, res1, res2, res3, dst0, dst1; + v16i8 zero = { 0 }; + v16i8 pred0, pred1, pred2, pred3; + + vec = __msa_fill_h(in_dc); + vec = __msa_srari_h(vec, 3); + LD_SB4(pred, pred_stride, pred0, pred1, pred2, pred3); + ILVR_B4_SH(zero, pred0, zero, pred1, zero, pred2, zero, pred3, res0, res1, + res2, res3); + ADD4(res0, vec, res1, vec, res2, vec, res3, vec, res0, res1, res2, res3); + CLIP_SH4_0_255(res0, res1, res2, res3); + PCKEV_B2_SH(res1, res0, res3, res2, dst0, dst1); + dst0 = (v8i16)__msa_pckev_w((v4i32)dst1, (v4i32)dst0); + ST4x4_UB(dst0, dst0, 0, 1, 2, 3, dest, dest_stride); +} + +void vp8_short_inv_walsh4x4_msa(int16_t *input, int16_t *mb_dq_coeff) { + v8i16 input0, input1, tmp0, tmp1, tmp2, tmp3, out0, out1; + const v8i16 mask0 = { 0, 1, 2, 3, 8, 9, 10, 11 }; + const v8i16 mask1 = { 4, 5, 6, 7, 12, 13, 14, 15 }; + const v8i16 mask2 = { 0, 4, 8, 12, 1, 5, 9, 13 }; + const v8i16 mask3 = { 3, 7, 11, 15, 2, 6, 10, 14 }; + + LD_SH2(input, 8, input0, input1); + input1 = (v8i16)__msa_sldi_b((v16i8)input1, (v16i8)input1, 8); + tmp0 = input0 + input1; + tmp1 = input0 - input1; + VSHF_H2_SH(tmp0, tmp1, tmp0, tmp1, mask0, mask1, tmp2, tmp3); + out0 = tmp2 + tmp3; + out1 = tmp2 - tmp3; + VSHF_H2_SH(out0, out1, out0, out1, mask2, mask3, input0, input1); + tmp0 = input0 + input1; + tmp1 = input0 - input1; + VSHF_H2_SH(tmp0, tmp1, tmp0, tmp1, mask0, mask1, tmp2, tmp3); + tmp0 = tmp2 + tmp3; + tmp1 = tmp2 - tmp3; + ADD2(tmp0, 3, tmp1, 3, out0, out1); + out0 >>= 3; + out1 >>= 3; + mb_dq_coeff[0] = __msa_copy_s_h(out0, 0); + mb_dq_coeff[16] = __msa_copy_s_h(out0, 4); + mb_dq_coeff[32] = __msa_copy_s_h(out1, 0); + mb_dq_coeff[48] = __msa_copy_s_h(out1, 4); + mb_dq_coeff[64] = __msa_copy_s_h(out0, 1); + mb_dq_coeff[80] = __msa_copy_s_h(out0, 5); + mb_dq_coeff[96] = __msa_copy_s_h(out1, 1); + mb_dq_coeff[112] = __msa_copy_s_h(out1, 5); + mb_dq_coeff[128] = __msa_copy_s_h(out0, 2); + mb_dq_coeff[144] = __msa_copy_s_h(out0, 6); + mb_dq_coeff[160] = __msa_copy_s_h(out1, 2); + mb_dq_coeff[176] = __msa_copy_s_h(out1, 6); + mb_dq_coeff[192] = __msa_copy_s_h(out0, 3); + mb_dq_coeff[208] = __msa_copy_s_h(out0, 7); + mb_dq_coeff[224] = __msa_copy_s_h(out1, 3); + mb_dq_coeff[240] = __msa_copy_s_h(out1, 7); +} + +static void dequant_idct4x4_addblk_msa(int16_t *input, int16_t *dequant_input, + uint8_t *dest, int32_t dest_stride) { + v8i16 input0, input1, dequant_in0, dequant_in1, mul0, mul1; + v8i16 in0, in1, in2, in3, hz0_h, hz1_h, hz2_h, hz3_h; + v16u8 dest0, dest1, dest2, dest3; + v4i32 hz0_w, hz1_w, hz2_w, hz3_w, vt0, vt1, vt2, vt3, res0, res1, res2, res3; + v2i64 zero = { 0 }; + + LD_SH2(input, 8, input0, input1); + LD_SH2(dequant_input, 8, dequant_in0, dequant_in1); + MUL2(input0, dequant_in0, input1, dequant_in1, mul0, mul1); + PCKEV_D2_SH(zero, mul0, zero, mul1, in0, in2); + PCKOD_D2_SH(zero, mul0, zero, mul1, in1, in3); + VP8_IDCT_1D_H(in0, in1, in2, in3, hz0_h, hz1_h, hz2_h, hz3_h); + PCKEV_D2_SH(hz1_h, hz0_h, hz3_h, hz2_h, mul0, mul1); + UNPCK_SH_SW(mul0, hz0_w, hz1_w); + UNPCK_SH_SW(mul1, hz2_w, hz3_w); + TRANSPOSE4x4_SW_SW(hz0_w, hz1_w, hz2_w, hz3_w, hz0_w, hz1_w, hz2_w, hz3_w); + VP8_IDCT_1D_W(hz0_w, hz1_w, hz2_w, hz3_w, vt0, vt1, vt2, vt3); + SRARI_W4_SW(vt0, vt1, vt2, vt3, 3); + TRANSPOSE4x4_SW_SW(vt0, vt1, vt2, vt3, vt0, vt1, vt2, vt3); + LD_UB4(dest, dest_stride, dest0, dest1, dest2, dest3); + ILVR_B4_SW(zero, dest0, zero, dest1, zero, dest2, zero, dest3, res0, res1, + res2, res3); + ILVR_H4_SW(zero, res0, zero, res1, zero, res2, zero, res3, res0, res1, res2, + res3); + ADD4(res0, vt0, res1, vt1, res2, vt2, res3, vt3, res0, res1, res2, res3); + res0 = CLIP_SW_0_255(res0); + res1 = CLIP_SW_0_255(res1); + res2 = CLIP_SW_0_255(res2); + res3 = CLIP_SW_0_255(res3); + PCKEV_B2_SW(res0, res1, res2, res3, vt0, vt1); + res0 = (v4i32)__msa_pckev_b((v16i8)vt0, (v16i8)vt1); + ST4x4_UB(res0, res0, 3, 2, 1, 0, dest, dest_stride); +} + +static void dequant_idct4x4_addblk_2x_msa(int16_t *input, + int16_t *dequant_input, uint8_t *dest, + int32_t dest_stride) { + v16u8 dest0, dest1, dest2, dest3; + v8i16 in0, in1, in2, in3, mul0, mul1, mul2, mul3, dequant_in0, dequant_in1; + v8i16 hz0, hz1, hz2, hz3, vt0, vt1, vt2, vt3, res0, res1, res2, res3; + v4i32 hz0l, hz1l, hz2l, hz3l, hz0r, hz1r, hz2r, hz3r; + v4i32 vt0l, vt1l, vt2l, vt3l, vt0r, vt1r, vt2r, vt3r; + v16i8 zero = { 0 }; + + LD_SH4(input, 8, in0, in1, in2, in3); + LD_SH2(dequant_input, 8, dequant_in0, dequant_in1); + MUL4(in0, dequant_in0, in1, dequant_in1, in2, dequant_in0, in3, dequant_in1, + mul0, mul1, mul2, mul3); + PCKEV_D2_SH(mul2, mul0, mul3, mul1, in0, in2); + PCKOD_D2_SH(mul2, mul0, mul3, mul1, in1, in3); + VP8_IDCT_1D_H(in0, in1, in2, in3, hz0, hz1, hz2, hz3); + TRANSPOSE_TWO_4x4_H(hz0, hz1, hz2, hz3, hz0, hz1, hz2, hz3); + UNPCK_SH_SW(hz0, hz0r, hz0l); + UNPCK_SH_SW(hz1, hz1r, hz1l); + UNPCK_SH_SW(hz2, hz2r, hz2l); + UNPCK_SH_SW(hz3, hz3r, hz3l); + VP8_IDCT_1D_W(hz0l, hz1l, hz2l, hz3l, vt0l, vt1l, vt2l, vt3l); + SRARI_W4_SW(vt0l, vt1l, vt2l, vt3l, 3); + VP8_IDCT_1D_W(hz0r, hz1r, hz2r, hz3r, vt0r, vt1r, vt2r, vt3r); + SRARI_W4_SW(vt0r, vt1r, vt2r, vt3r, 3); + PCKEV_H4_SH(vt0l, vt0r, vt1l, vt1r, vt2l, vt2r, vt3l, vt3r, vt0, vt1, vt2, + vt3); + TRANSPOSE_TWO_4x4_H(vt0, vt1, vt2, vt3, vt0, vt1, vt2, vt3); + LD_UB4(dest, dest_stride, dest0, dest1, dest2, dest3); + ILVR_B4_SH(zero, dest0, zero, dest1, zero, dest2, zero, dest3, res0, res1, + res2, res3); + ADD4(res0, vt0, res1, vt1, res2, vt2, res3, vt3, res0, res1, res2, res3); + CLIP_SH4_0_255(res0, res1, res2, res3); + PCKEV_B2_SW(res1, res0, res3, res2, vt0l, vt1l); + ST8x4_UB(vt0l, vt1l, dest, dest_stride); + + __asm__ __volatile__( + "sw $zero, 0(%[input]) \n\t" + "sw $zero, 4(%[input]) \n\t" + "sw $zero, 8(%[input]) \n\t" + "sw $zero, 12(%[input]) \n\t" + "sw $zero, 16(%[input]) \n\t" + "sw $zero, 20(%[input]) \n\t" + "sw $zero, 24(%[input]) \n\t" + "sw $zero, 28(%[input]) \n\t" + "sw $zero, 32(%[input]) \n\t" + "sw $zero, 36(%[input]) \n\t" + "sw $zero, 40(%[input]) \n\t" + "sw $zero, 44(%[input]) \n\t" + "sw $zero, 48(%[input]) \n\t" + "sw $zero, 52(%[input]) \n\t" + "sw $zero, 56(%[input]) \n\t" + "sw $zero, 60(%[input]) \n\t" :: + + [input] "r"(input)); +} + +static void dequant_idct_addconst_2x_msa(int16_t *input, int16_t *dequant_input, + uint8_t *dest, int32_t dest_stride) { + v8i16 input_dc0, input_dc1, vec, res0, res1, res2, res3; + v16u8 dest0, dest1, dest2, dest3; + v16i8 zero = { 0 }; + + input_dc0 = __msa_fill_h(input[0] * dequant_input[0]); + input_dc1 = __msa_fill_h(input[16] * dequant_input[0]); + SRARI_H2_SH(input_dc0, input_dc1, 3); + vec = (v8i16)__msa_pckev_d((v2i64)input_dc1, (v2i64)input_dc0); + input[0] = 0; + input[16] = 0; + LD_UB4(dest, dest_stride, dest0, dest1, dest2, dest3); + ILVR_B4_SH(zero, dest0, zero, dest1, zero, dest2, zero, dest3, res0, res1, + res2, res3); + ADD4(res0, vec, res1, vec, res2, vec, res3, vec, res0, res1, res2, res3); + CLIP_SH4_0_255(res0, res1, res2, res3); + PCKEV_B2_SH(res1, res0, res3, res2, res0, res1); + ST8x4_UB(res0, res1, dest, dest_stride); +} + +void vp8_short_idct4x4llm_msa(int16_t *input, uint8_t *pred_ptr, + int32_t pred_stride, uint8_t *dst_ptr, + int32_t dst_stride) { + idct4x4_addblk_msa(input, pred_ptr, pred_stride, dst_ptr, dst_stride); +} + +void vp8_dc_only_idct_add_msa(int16_t input_dc, uint8_t *pred_ptr, + int32_t pred_stride, uint8_t *dst_ptr, + int32_t dst_stride) { + idct4x4_addconst_msa(input_dc, pred_ptr, pred_stride, dst_ptr, dst_stride); +} + +void vp8_dequantize_b_msa(BLOCKD *d, int16_t *DQC) { + v8i16 dqc0, dqc1, q0, q1, dq0, dq1; + + LD_SH2(DQC, 8, dqc0, dqc1); + LD_SH2(d->qcoeff, 8, q0, q1); + MUL2(dqc0, q0, dqc1, q1, dq0, dq1); + ST_SH2(dq0, dq1, d->dqcoeff, 8); +} + +void vp8_dequant_idct_add_msa(int16_t *input, int16_t *dq, uint8_t *dest, + int32_t stride) { + dequant_idct4x4_addblk_msa(input, dq, dest, stride); + + __asm__ __volatile__( + "sw $zero, 0(%[input]) \n\t" + "sw $zero, 4(%[input]) \n\t" + "sw $zero, 8(%[input]) \n\t" + "sw $zero, 12(%[input]) \n\t" + "sw $zero, 16(%[input]) \n\t" + "sw $zero, 20(%[input]) \n\t" + "sw $zero, 24(%[input]) \n\t" + "sw $zero, 28(%[input]) \n\t" + + : + : [input] "r"(input)); +} + +void vp8_dequant_idct_add_y_block_msa(int16_t *q, int16_t *dq, uint8_t *dst, + int32_t stride, char *eobs) { + int16_t *eobs_h = (int16_t *)eobs; + uint8_t i; + + for (i = 4; i--;) { + if (eobs_h[0]) { + if (eobs_h[0] & 0xfefe) { + dequant_idct4x4_addblk_2x_msa(q, dq, dst, stride); + } else { + dequant_idct_addconst_2x_msa(q, dq, dst, stride); + } + } + + q += 32; + + if (eobs_h[1]) { + if (eobs_h[1] & 0xfefe) { + dequant_idct4x4_addblk_2x_msa(q, dq, dst + 8, stride); + } else { + dequant_idct_addconst_2x_msa(q, dq, dst + 8, stride); + } + } + + q += 32; + dst += (4 * stride); + eobs_h += 2; + } +} + +void vp8_dequant_idct_add_uv_block_msa(int16_t *q, int16_t *dq, uint8_t *dstu, + uint8_t *dstv, int32_t stride, + char *eobs) { + int16_t *eobs_h = (int16_t *)eobs; + + if (eobs_h[0]) { + if (eobs_h[0] & 0xfefe) { + dequant_idct4x4_addblk_2x_msa(q, dq, dstu, stride); + } else { + dequant_idct_addconst_2x_msa(q, dq, dstu, stride); + } + } + + q += 32; + dstu += (stride * 4); + + if (eobs_h[1]) { + if (eobs_h[1] & 0xfefe) { + dequant_idct4x4_addblk_2x_msa(q, dq, dstu, stride); + } else { + dequant_idct_addconst_2x_msa(q, dq, dstu, stride); + } + } + + q += 32; + + if (eobs_h[2]) { + if (eobs_h[2] & 0xfefe) { + dequant_idct4x4_addblk_2x_msa(q, dq, dstv, stride); + } else { + dequant_idct_addconst_2x_msa(q, dq, dstv, stride); + } + } + + q += 32; + dstv += (stride * 4); + + if (eobs_h[3]) { + if (eobs_h[3] & 0xfefe) { + dequant_idct4x4_addblk_2x_msa(q, dq, dstv, stride); + } else { + dequant_idct_addconst_2x_msa(q, dq, dstv, stride); + } + } +} diff --git a/vp8/common/mips/msa/loopfilter_filters_msa.c b/vp8/common/mips/msa/loopfilter_filters_msa.c new file mode 100644 index 0000000..98a4fc0 --- /dev/null +++ b/vp8/common/mips/msa/loopfilter_filters_msa.c @@ -0,0 +1,709 @@ +/* + * Copyright (c) 2015 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "./vp8_rtcd.h" +#include "vp8/common/loopfilter.h" +#include "vp8/common/mips/msa/vp8_macros_msa.h" + +#define VP8_SIMPLE_MASK(p1, p0, q0, q1, b_limit, mask) \ + { \ + v16u8 p1_a_sub_q1, p0_a_sub_q0; \ + \ + p0_a_sub_q0 = __msa_asub_u_b(p0, q0); \ + p1_a_sub_q1 = __msa_asub_u_b(p1, q1); \ + p1_a_sub_q1 = (v16u8)__msa_srli_b((v16i8)p1_a_sub_q1, 1); \ + p0_a_sub_q0 = __msa_adds_u_b(p0_a_sub_q0, p0_a_sub_q0); \ + mask = __msa_adds_u_b(p0_a_sub_q0, p1_a_sub_q1); \ + mask = ((v16u8)mask <= b_limit); \ + } + +#define VP8_LPF_FILTER4_4W(p1, p0, q0, q1, mask, hev) \ + { \ + v16i8 p1_m, p0_m, q0_m, q1_m, filt, q0_sub_p0, t1, t2; \ + const v16i8 cnst4b = __msa_ldi_b(4); \ + const v16i8 cnst3b = __msa_ldi_b(3); \ + \ + p1_m = (v16i8)__msa_xori_b(p1, 0x80); \ + p0_m = (v16i8)__msa_xori_b(p0, 0x80); \ + q0_m = (v16i8)__msa_xori_b(q0, 0x80); \ + q1_m = (v16i8)__msa_xori_b(q1, 0x80); \ + \ + filt = __msa_subs_s_b(p1_m, q1_m); \ + filt &= hev; \ + q0_sub_p0 = __msa_subs_s_b(q0_m, p0_m); \ + filt = __msa_adds_s_b(filt, q0_sub_p0); \ + filt = __msa_adds_s_b(filt, q0_sub_p0); \ + filt = __msa_adds_s_b(filt, q0_sub_p0); \ + filt &= mask; \ + t1 = __msa_adds_s_b(filt, cnst4b); \ + t1 >>= cnst3b; \ + t2 = __msa_adds_s_b(filt, cnst3b); \ + t2 >>= cnst3b; \ + q0_m = __msa_subs_s_b(q0_m, t1); \ + q0 = __msa_xori_b((v16u8)q0_m, 0x80); \ + p0_m = __msa_adds_s_b(p0_m, t2); \ + p0 = __msa_xori_b((v16u8)p0_m, 0x80); \ + filt = __msa_srari_b(t1, 1); \ + hev = __msa_xori_b(hev, 0xff); \ + filt &= hev; \ + q1_m = __msa_subs_s_b(q1_m, filt); \ + q1 = __msa_xori_b((v16u8)q1_m, 0x80); \ + p1_m = __msa_adds_s_b(p1_m, filt); \ + p1 = __msa_xori_b((v16u8)p1_m, 0x80); \ + } + +#define VP8_SIMPLE_FILT(p1_in, p0_in, q0_in, q1_in, mask) \ + { \ + v16i8 p1_m, p0_m, q0_m, q1_m, filt, filt1, filt2; \ + v16i8 q0_sub_p0; \ + const v16i8 cnst4b = __msa_ldi_b(4); \ + const v16i8 cnst3b = __msa_ldi_b(3); \ + \ + p1_m = (v16i8)__msa_xori_b(p1_in, 0x80); \ + p0_m = (v16i8)__msa_xori_b(p0_in, 0x80); \ + q0_m = (v16i8)__msa_xori_b(q0_in, 0x80); \ + q1_m = (v16i8)__msa_xori_b(q1_in, 0x80); \ + \ + filt = __msa_subs_s_b(p1_m, q1_m); \ + q0_sub_p0 = __msa_subs_s_b(q0_m, p0_m); \ + filt = __msa_adds_s_b(filt, q0_sub_p0); \ + filt = __msa_adds_s_b(filt, q0_sub_p0); \ + filt = __msa_adds_s_b(filt, q0_sub_p0); \ + filt &= mask; \ + filt1 = __msa_adds_s_b(filt, cnst4b); \ + filt1 >>= cnst3b; \ + filt2 = __msa_adds_s_b(filt, cnst3b); \ + filt2 >>= cnst3b; \ + q0_m = __msa_subs_s_b(q0_m, filt1); \ + p0_m = __msa_adds_s_b(p0_m, filt2); \ + q0_in = __msa_xori_b((v16u8)q0_m, 0x80); \ + p0_in = __msa_xori_b((v16u8)p0_m, 0x80); \ + } + +#define VP8_MBFILTER(p2, p1, p0, q0, q1, q2, mask, hev) \ + { \ + v16i8 p2_m, p1_m, p0_m, q2_m, q1_m, q0_m; \ + v16i8 u, filt, t1, t2, filt_sign, q0_sub_p0; \ + v8i16 filt_r, filt_l, u_r, u_l; \ + v8i16 temp0, temp1, temp2, temp3; \ + const v16i8 cnst4b = __msa_ldi_b(4); \ + const v16i8 cnst3b = __msa_ldi_b(3); \ + const v8i16 cnst9h = __msa_ldi_h(9); \ + const v8i16 cnst63h = __msa_ldi_h(63); \ + \ + p2_m = (v16i8)__msa_xori_b(p2, 0x80); \ + p1_m = (v16i8)__msa_xori_b(p1, 0x80); \ + p0_m = (v16i8)__msa_xori_b(p0, 0x80); \ + q0_m = (v16i8)__msa_xori_b(q0, 0x80); \ + q1_m = (v16i8)__msa_xori_b(q1, 0x80); \ + q2_m = (v16i8)__msa_xori_b(q2, 0x80); \ + \ + filt = __msa_subs_s_b(p1_m, q1_m); \ + q0_sub_p0 = __msa_subs_s_b(q0_m, p0_m); \ + filt = __msa_adds_s_b(filt, q0_sub_p0); \ + filt = __msa_adds_s_b(filt, q0_sub_p0); \ + filt = __msa_adds_s_b(filt, q0_sub_p0); \ + filt &= mask; \ + \ + t2 = filt & hev; \ + hev = __msa_xori_b(hev, 0xff); \ + filt &= hev; \ + t1 = __msa_adds_s_b(t2, cnst4b); \ + t1 >>= cnst3b; \ + t2 = __msa_adds_s_b(t2, cnst3b); \ + t2 >>= cnst3b; \ + q0_m = __msa_subs_s_b(q0_m, t1); \ + p0_m = __msa_adds_s_b(p0_m, t2); \ + filt_sign = __msa_clti_s_b(filt, 0); \ + ILVRL_B2_SH(filt_sign, filt, filt_r, filt_l); \ + temp0 = filt_r * cnst9h; \ + temp1 = temp0 + cnst63h; \ + temp2 = filt_l * cnst9h; \ + temp3 = temp2 + cnst63h; \ + \ + u_r = temp1 >> 7; \ + u_r = __msa_sat_s_h(u_r, 7); \ + u_l = temp3 >> 7; \ + u_l = __msa_sat_s_h(u_l, 7); \ + u = __msa_pckev_b((v16i8)u_l, (v16i8)u_r); \ + q2_m = __msa_subs_s_b(q2_m, u); \ + p2_m = __msa_adds_s_b(p2_m, u); \ + q2 = __msa_xori_b((v16u8)q2_m, 0x80); \ + p2 = __msa_xori_b((v16u8)p2_m, 0x80); \ + \ + temp1 += temp0; \ + temp3 += temp2; \ + \ + u_r = temp1 >> 7; \ + u_r = __msa_sat_s_h(u_r, 7); \ + u_l = temp3 >> 7; \ + u_l = __msa_sat_s_h(u_l, 7); \ + u = __msa_pckev_b((v16i8)u_l, (v16i8)u_r); \ + q1_m = __msa_subs_s_b(q1_m, u); \ + p1_m = __msa_adds_s_b(p1_m, u); \ + q1 = __msa_xori_b((v16u8)q1_m, 0x80); \ + p1 = __msa_xori_b((v16u8)p1_m, 0x80); \ + \ + temp1 += temp0; \ + temp3 += temp2; \ + \ + u_r = temp1 >> 7; \ + u_r = __msa_sat_s_h(u_r, 7); \ + u_l = temp3 >> 7; \ + u_l = __msa_sat_s_h(u_l, 7); \ + u = __msa_pckev_b((v16i8)u_l, (v16i8)u_r); \ + q0_m = __msa_subs_s_b(q0_m, u); \ + p0_m = __msa_adds_s_b(p0_m, u); \ + q0 = __msa_xori_b((v16u8)q0_m, 0x80); \ + p0 = __msa_xori_b((v16u8)p0_m, 0x80); \ + } + +#define LPF_MASK_HEV(p3_in, p2_in, p1_in, p0_in, q0_in, q1_in, q2_in, q3_in, \ + limit_in, b_limit_in, thresh_in, hev_out, mask_out, \ + flat_out) \ + { \ + v16u8 p3_asub_p2_m, p2_asub_p1_m, p1_asub_p0_m, q1_asub_q0_m; \ + v16u8 p1_asub_q1_m, p0_asub_q0_m, q3_asub_q2_m, q2_asub_q1_m; \ + \ + p3_asub_p2_m = __msa_asub_u_b((p3_in), (p2_in)); \ + p2_asub_p1_m = __msa_asub_u_b((p2_in), (p1_in)); \ + p1_asub_p0_m = __msa_asub_u_b((p1_in), (p0_in)); \ + q1_asub_q0_m = __msa_asub_u_b((q1_in), (q0_in)); \ + q2_asub_q1_m = __msa_asub_u_b((q2_in), (q1_in)); \ + q3_asub_q2_m = __msa_asub_u_b((q3_in), (q2_in)); \ + p0_asub_q0_m = __msa_asub_u_b((p0_in), (q0_in)); \ + p1_asub_q1_m = __msa_asub_u_b((p1_in), (q1_in)); \ + flat_out = __msa_max_u_b(p1_asub_p0_m, q1_asub_q0_m); \ + hev_out = (thresh_in) < (v16u8)flat_out; \ + p0_asub_q0_m = __msa_adds_u_b(p0_asub_q0_m, p0_asub_q0_m); \ + p1_asub_q1_m >>= 1; \ + p0_asub_q0_m = __msa_adds_u_b(p0_asub_q0_m, p1_asub_q1_m); \ + mask_out = (b_limit_in) < p0_asub_q0_m; \ + mask_out = __msa_max_u_b(flat_out, mask_out); \ + p3_asub_p2_m = __msa_max_u_b(p3_asub_p2_m, p2_asub_p1_m); \ + mask_out = __msa_max_u_b(p3_asub_p2_m, mask_out); \ + q2_asub_q1_m = __msa_max_u_b(q2_asub_q1_m, q3_asub_q2_m); \ + mask_out = __msa_max_u_b(q2_asub_q1_m, mask_out); \ + mask_out = (limit_in) < (v16u8)mask_out; \ + mask_out = __msa_xori_b(mask_out, 0xff); \ + } + +#define VP8_ST6x1_UB(in0, in0_idx, in1, in1_idx, pdst, stride) \ + { \ + uint16_t tmp0_h; \ + uint32_t tmp0_w; \ + \ + tmp0_w = __msa_copy_u_w((v4i32)in0, in0_idx); \ + tmp0_h = __msa_copy_u_h((v8i16)in1, in1_idx); \ + SW(tmp0_w, pdst); \ + SH(tmp0_h, pdst + stride); \ + } + +static void loop_filter_horizontal_4_dual_msa(uint8_t *src, int32_t pitch, + const uint8_t *b_limit0_ptr, + const uint8_t *limit0_ptr, + const uint8_t *thresh0_ptr, + const uint8_t *b_limit1_ptr, + const uint8_t *limit1_ptr, + const uint8_t *thresh1_ptr) { + v16u8 mask, hev, flat; + v16u8 thresh0, b_limit0, limit0, thresh1, b_limit1, limit1; + v16u8 p3, p2, p1, p0, q3, q2, q1, q0; + + LD_UB8((src - 4 * pitch), pitch, p3, p2, p1, p0, q0, q1, q2, q3); + thresh0 = (v16u8)__msa_fill_b(*thresh0_ptr); + thresh1 = (v16u8)__msa_fill_b(*thresh1_ptr); + thresh0 = (v16u8)__msa_ilvr_d((v2i64)thresh1, (v2i64)thresh0); + + b_limit0 = (v16u8)__msa_fill_b(*b_limit0_ptr); + b_limit1 = (v16u8)__msa_fill_b(*b_limit1_ptr); + b_limit0 = (v16u8)__msa_ilvr_d((v2i64)b_limit1, (v2i64)b_limit0); + + limit0 = (v16u8)__msa_fill_b(*limit0_ptr); + limit1 = (v16u8)__msa_fill_b(*limit1_ptr); + limit0 = (v16u8)__msa_ilvr_d((v2i64)limit1, (v2i64)limit0); + + LPF_MASK_HEV(p3, p2, p1, p0, q0, q1, q2, q3, limit0, b_limit0, thresh0, hev, + mask, flat); + VP8_LPF_FILTER4_4W(p1, p0, q0, q1, mask, hev); + + ST_UB4(p1, p0, q0, q1, (src - 2 * pitch), pitch); +} + +static void loop_filter_vertical_4_dual_msa(uint8_t *src, int32_t pitch, + const uint8_t *b_limit0_ptr, + const uint8_t *limit0_ptr, + const uint8_t *thresh0_ptr, + const uint8_t *b_limit1_ptr, + const uint8_t *limit1_ptr, + const uint8_t *thresh1_ptr) { + v16u8 mask, hev, flat; + v16u8 thresh0, b_limit0, limit0, thresh1, b_limit1, limit1; + v16u8 p3, p2, p1, p0, q3, q2, q1, q0; + v16u8 row0, row1, row2, row3, row4, row5, row6, row7; + v16u8 row8, row9, row10, row11, row12, row13, row14, row15; + v8i16 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5; + + LD_UB8(src - 4, pitch, row0, row1, row2, row3, row4, row5, row6, row7); + LD_UB8(src - 4 + (8 * pitch), pitch, row8, row9, row10, row11, row12, row13, + row14, row15); + TRANSPOSE16x8_UB_UB(row0, row1, row2, row3, row4, row5, row6, row7, row8, + row9, row10, row11, row12, row13, row14, row15, p3, p2, + p1, p0, q0, q1, q2, q3); + + thresh0 = (v16u8)__msa_fill_b(*thresh0_ptr); + thresh1 = (v16u8)__msa_fill_b(*thresh1_ptr); + thresh0 = (v16u8)__msa_ilvr_d((v2i64)thresh1, (v2i64)thresh0); + + b_limit0 = (v16u8)__msa_fill_b(*b_limit0_ptr); + b_limit1 = (v16u8)__msa_fill_b(*b_limit1_ptr); + b_limit0 = (v16u8)__msa_ilvr_d((v2i64)b_limit1, (v2i64)b_limit0); + + limit0 = (v16u8)__msa_fill_b(*limit0_ptr); + limit1 = (v16u8)__msa_fill_b(*limit1_ptr); + limit0 = (v16u8)__msa_ilvr_d((v2i64)limit1, (v2i64)limit0); + + LPF_MASK_HEV(p3, p2, p1, p0, q0, q1, q2, q3, limit0, b_limit0, thresh0, hev, + mask, flat); + VP8_LPF_FILTER4_4W(p1, p0, q0, q1, mask, hev); + ILVR_B2_SH(p0, p1, q1, q0, tmp0, tmp1); + ILVRL_H2_SH(tmp1, tmp0, tmp2, tmp3); + ILVL_B2_SH(p0, p1, q1, q0, tmp0, tmp1); + ILVRL_H2_SH(tmp1, tmp0, tmp4, tmp5); + + src -= 2; + ST4x8_UB(tmp2, tmp3, src, pitch); + src += (8 * pitch); + ST4x8_UB(tmp4, tmp5, src, pitch); +} + +static void mbloop_filter_horizontal_edge_y_msa(uint8_t *src, int32_t pitch, + const uint8_t b_limit_in, + const uint8_t limit_in, + const uint8_t thresh_in) { + uint8_t *temp_src; + v16u8 p3, p2, p1, p0, q3, q2, q1, q0; + v16u8 mask, hev, flat, thresh, limit, b_limit; + + b_limit = (v16u8)__msa_fill_b(b_limit_in); + limit = (v16u8)__msa_fill_b(limit_in); + thresh = (v16u8)__msa_fill_b(thresh_in); + temp_src = src - (pitch << 2); + LD_UB8(temp_src, pitch, p3, p2, p1, p0, q0, q1, q2, q3); + LPF_MASK_HEV(p3, p2, p1, p0, q0, q1, q2, q3, limit, b_limit, thresh, hev, + mask, flat); + VP8_MBFILTER(p2, p1, p0, q0, q1, q2, mask, hev); + temp_src = src - 3 * pitch; + ST_UB4(p2, p1, p0, q0, temp_src, pitch); + temp_src += (4 * pitch); + ST_UB2(q1, q2, temp_src, pitch); +} + +static void mbloop_filter_horizontal_edge_uv_msa(uint8_t *src_u, uint8_t *src_v, + int32_t pitch, + const uint8_t b_limit_in, + const uint8_t limit_in, + const uint8_t thresh_in) { + uint8_t *temp_src; + uint64_t p2_d, p1_d, p0_d, q0_d, q1_d, q2_d; + v16u8 p3, p2, p1, p0, q3, q2, q1, q0; + v16u8 mask, hev, flat, thresh, limit, b_limit; + v16u8 p3_u, p2_u, p1_u, p0_u, q3_u, q2_u, q1_u, q0_u; + v16u8 p3_v, p2_v, p1_v, p0_v, q3_v, q2_v, q1_v, q0_v; + + b_limit = (v16u8)__msa_fill_b(b_limit_in); + limit = (v16u8)__msa_fill_b(limit_in); + thresh = (v16u8)__msa_fill_b(thresh_in); + + temp_src = src_u - (pitch << 2); + LD_UB8(temp_src, pitch, p3_u, p2_u, p1_u, p0_u, q0_u, q1_u, q2_u, q3_u); + temp_src = src_v - (pitch << 2); + LD_UB8(temp_src, pitch, p3_v, p2_v, p1_v, p0_v, q0_v, q1_v, q2_v, q3_v); + + ILVR_D4_UB(p3_v, p3_u, p2_v, p2_u, p1_v, p1_u, p0_v, p0_u, p3, p2, p1, p0); + ILVR_D4_UB(q0_v, q0_u, q1_v, q1_u, q2_v, q2_u, q3_v, q3_u, q0, q1, q2, q3); + LPF_MASK_HEV(p3, p2, p1, p0, q0, q1, q2, q3, limit, b_limit, thresh, hev, + mask, flat); + VP8_MBFILTER(p2, p1, p0, q0, q1, q2, mask, hev); + + p2_d = __msa_copy_u_d((v2i64)p2, 0); + p1_d = __msa_copy_u_d((v2i64)p1, 0); + p0_d = __msa_copy_u_d((v2i64)p0, 0); + q0_d = __msa_copy_u_d((v2i64)q0, 0); + q1_d = __msa_copy_u_d((v2i64)q1, 0); + q2_d = __msa_copy_u_d((v2i64)q2, 0); + src_u -= (pitch * 3); + SD4(p2_d, p1_d, p0_d, q0_d, src_u, pitch); + src_u += 4 * pitch; + SD(q1_d, src_u); + src_u += pitch; + SD(q2_d, src_u); + + p2_d = __msa_copy_u_d((v2i64)p2, 1); + p1_d = __msa_copy_u_d((v2i64)p1, 1); + p0_d = __msa_copy_u_d((v2i64)p0, 1); + q0_d = __msa_copy_u_d((v2i64)q0, 1); + q1_d = __msa_copy_u_d((v2i64)q1, 1); + q2_d = __msa_copy_u_d((v2i64)q2, 1); + src_v -= (pitch * 3); + SD4(p2_d, p1_d, p0_d, q0_d, src_v, pitch); + src_v += 4 * pitch; + SD(q1_d, src_v); + src_v += pitch; + SD(q2_d, src_v); +} + +static void mbloop_filter_vertical_edge_y_msa(uint8_t *src, int32_t pitch, + const uint8_t b_limit_in, + const uint8_t limit_in, + const uint8_t thresh_in) { + uint8_t *temp_src; + v16u8 p3, p2, p1, p0, q3, q2, q1, q0; + v16u8 mask, hev, flat, thresh, limit, b_limit; + v16u8 row0, row1, row2, row3, row4, row5, row6, row7, row8; + v16u8 row9, row10, row11, row12, row13, row14, row15; + v8i16 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; + + b_limit = (v16u8)__msa_fill_b(b_limit_in); + limit = (v16u8)__msa_fill_b(limit_in); + thresh = (v16u8)__msa_fill_b(thresh_in); + temp_src = src - 4; + LD_UB8(temp_src, pitch, row0, row1, row2, row3, row4, row5, row6, row7); + temp_src += (8 * pitch); + LD_UB8(temp_src, pitch, row8, row9, row10, row11, row12, row13, row14, row15); + TRANSPOSE16x8_UB_UB(row0, row1, row2, row3, row4, row5, row6, row7, row8, + row9, row10, row11, row12, row13, row14, row15, p3, p2, + p1, p0, q0, q1, q2, q3); + + LPF_MASK_HEV(p3, p2, p1, p0, q0, q1, q2, q3, limit, b_limit, thresh, hev, + mask, flat); + VP8_MBFILTER(p2, p1, p0, q0, q1, q2, mask, hev); + ILVR_B2_SH(p1, p2, q0, p0, tmp0, tmp1); + ILVRL_H2_SH(tmp1, tmp0, tmp3, tmp4); + ILVL_B2_SH(p1, p2, q0, p0, tmp0, tmp1); + ILVRL_H2_SH(tmp1, tmp0, tmp6, tmp7); + ILVRL_B2_SH(q2, q1, tmp2, tmp5); + + temp_src = src - 3; + VP8_ST6x1_UB(tmp3, 0, tmp2, 0, temp_src, 4); + temp_src += pitch; + VP8_ST6x1_UB(tmp3, 1, tmp2, 1, temp_src, 4); + temp_src += pitch; + VP8_ST6x1_UB(tmp3, 2, tmp2, 2, temp_src, 4); + temp_src += pitch; + VP8_ST6x1_UB(tmp3, 3, tmp2, 3, temp_src, 4); + temp_src += pitch; + VP8_ST6x1_UB(tmp4, 0, tmp2, 4, temp_src, 4); + temp_src += pitch; + VP8_ST6x1_UB(tmp4, 1, tmp2, 5, temp_src, 4); + temp_src += pitch; + VP8_ST6x1_UB(tmp4, 2, tmp2, 6, temp_src, 4); + temp_src += pitch; + VP8_ST6x1_UB(tmp4, 3, tmp2, 7, temp_src, 4); + temp_src += pitch; + VP8_ST6x1_UB(tmp6, 0, tmp5, 0, temp_src, 4); + temp_src += pitch; + VP8_ST6x1_UB(tmp6, 1, tmp5, 1, temp_src, 4); + temp_src += pitch; + VP8_ST6x1_UB(tmp6, 2, tmp5, 2, temp_src, 4); + temp_src += pitch; + VP8_ST6x1_UB(tmp6, 3, tmp5, 3, temp_src, 4); + temp_src += pitch; + VP8_ST6x1_UB(tmp7, 0, tmp5, 4, temp_src, 4); + temp_src += pitch; + VP8_ST6x1_UB(tmp7, 1, tmp5, 5, temp_src, 4); + temp_src += pitch; + VP8_ST6x1_UB(tmp7, 2, tmp5, 6, temp_src, 4); + temp_src += pitch; + VP8_ST6x1_UB(tmp7, 3, tmp5, 7, temp_src, 4); +} + +static void mbloop_filter_vertical_edge_uv_msa(uint8_t *src_u, uint8_t *src_v, + int32_t pitch, + const uint8_t b_limit_in, + const uint8_t limit_in, + const uint8_t thresh_in) { + v16u8 p3, p2, p1, p0, q3, q2, q1, q0; + v16u8 mask, hev, flat, thresh, limit, b_limit; + v16u8 row0, row1, row2, row3, row4, row5, row6, row7, row8; + v16u8 row9, row10, row11, row12, row13, row14, row15; + v8i16 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; + + b_limit = (v16u8)__msa_fill_b(b_limit_in); + limit = (v16u8)__msa_fill_b(limit_in); + thresh = (v16u8)__msa_fill_b(thresh_in); + + LD_UB8(src_u - 4, pitch, row0, row1, row2, row3, row4, row5, row6, row7); + LD_UB8(src_v - 4, pitch, row8, row9, row10, row11, row12, row13, row14, + row15); + TRANSPOSE16x8_UB_UB(row0, row1, row2, row3, row4, row5, row6, row7, row8, + row9, row10, row11, row12, row13, row14, row15, p3, p2, + p1, p0, q0, q1, q2, q3); + + LPF_MASK_HEV(p3, p2, p1, p0, q0, q1, q2, q3, limit, b_limit, thresh, hev, + mask, flat); + VP8_MBFILTER(p2, p1, p0, q0, q1, q2, mask, hev); + + ILVR_B2_SH(p1, p2, q0, p0, tmp0, tmp1); + ILVRL_H2_SH(tmp1, tmp0, tmp3, tmp4); + ILVL_B2_SH(p1, p2, q0, p0, tmp0, tmp1); + ILVRL_H2_SH(tmp1, tmp0, tmp6, tmp7); + ILVRL_B2_SH(q2, q1, tmp2, tmp5); + + src_u -= 3; + VP8_ST6x1_UB(tmp3, 0, tmp2, 0, src_u, 4); + src_u += pitch; + VP8_ST6x1_UB(tmp3, 1, tmp2, 1, src_u, 4); + src_u += pitch; + VP8_ST6x1_UB(tmp3, 2, tmp2, 2, src_u, 4); + src_u += pitch; + VP8_ST6x1_UB(tmp3, 3, tmp2, 3, src_u, 4); + src_u += pitch; + VP8_ST6x1_UB(tmp4, 0, tmp2, 4, src_u, 4); + src_u += pitch; + VP8_ST6x1_UB(tmp4, 1, tmp2, 5, src_u, 4); + src_u += pitch; + VP8_ST6x1_UB(tmp4, 2, tmp2, 6, src_u, 4); + src_u += pitch; + VP8_ST6x1_UB(tmp4, 3, tmp2, 7, src_u, 4); + + src_v -= 3; + VP8_ST6x1_UB(tmp6, 0, tmp5, 0, src_v, 4); + src_v += pitch; + VP8_ST6x1_UB(tmp6, 1, tmp5, 1, src_v, 4); + src_v += pitch; + VP8_ST6x1_UB(tmp6, 2, tmp5, 2, src_v, 4); + src_v += pitch; + VP8_ST6x1_UB(tmp6, 3, tmp5, 3, src_v, 4); + src_v += pitch; + VP8_ST6x1_UB(tmp7, 0, tmp5, 4, src_v, 4); + src_v += pitch; + VP8_ST6x1_UB(tmp7, 1, tmp5, 5, src_v, 4); + src_v += pitch; + VP8_ST6x1_UB(tmp7, 2, tmp5, 6, src_v, 4); + src_v += pitch; + VP8_ST6x1_UB(tmp7, 3, tmp5, 7, src_v, 4); +} + +void vp8_loop_filter_simple_horizontal_edge_msa(uint8_t *src, int32_t pitch, + const uint8_t *b_limit_ptr) { + v16u8 p1, p0, q1, q0; + v16u8 mask, b_limit; + + b_limit = (v16u8)__msa_fill_b(*b_limit_ptr); + LD_UB4(src - (pitch << 1), pitch, p1, p0, q0, q1); + VP8_SIMPLE_MASK(p1, p0, q0, q1, b_limit, mask); + VP8_SIMPLE_FILT(p1, p0, q0, q1, mask); + ST_UB2(p0, q0, (src - pitch), pitch); +} + +void vp8_loop_filter_simple_vertical_edge_msa(uint8_t *src, int32_t pitch, + const uint8_t *b_limit_ptr) { + uint8_t *temp_src; + v16u8 p1, p0, q1, q0; + v16u8 mask, b_limit; + v16u8 row0, row1, row2, row3, row4, row5, row6, row7, row8; + v16u8 row9, row10, row11, row12, row13, row14, row15; + v8i16 tmp0, tmp1; + + b_limit = (v16u8)__msa_fill_b(*b_limit_ptr); + temp_src = src - 2; + LD_UB8(temp_src, pitch, row0, row1, row2, row3, row4, row5, row6, row7); + temp_src += (8 * pitch); + LD_UB8(temp_src, pitch, row8, row9, row10, row11, row12, row13, row14, row15); + TRANSPOSE16x4_UB_UB(row0, row1, row2, row3, row4, row5, row6, row7, row8, + row9, row10, row11, row12, row13, row14, row15, p1, p0, + q0, q1); + VP8_SIMPLE_MASK(p1, p0, q0, q1, b_limit, mask); + VP8_SIMPLE_FILT(p1, p0, q0, q1, mask); + ILVRL_B2_SH(q0, p0, tmp1, tmp0); + + src -= 1; + ST2x4_UB(tmp1, 0, src, pitch); + src += 4 * pitch; + ST2x4_UB(tmp1, 4, src, pitch); + src += 4 * pitch; + ST2x4_UB(tmp0, 0, src, pitch); + src += 4 * pitch; + ST2x4_UB(tmp0, 4, src, pitch); + src += 4 * pitch; +} + +static void loop_filter_horizontal_edge_uv_msa(uint8_t *src_u, uint8_t *src_v, + int32_t pitch, + const uint8_t b_limit_in, + const uint8_t limit_in, + const uint8_t thresh_in) { + uint64_t p1_d, p0_d, q0_d, q1_d; + v16u8 p3, p2, p1, p0, q3, q2, q1, q0; + v16u8 mask, hev, flat, thresh, limit, b_limit; + v16u8 p3_u, p2_u, p1_u, p0_u, q3_u, q2_u, q1_u, q0_u; + v16u8 p3_v, p2_v, p1_v, p0_v, q3_v, q2_v, q1_v, q0_v; + + thresh = (v16u8)__msa_fill_b(thresh_in); + limit = (v16u8)__msa_fill_b(limit_in); + b_limit = (v16u8)__msa_fill_b(b_limit_in); + + src_u = src_u - (pitch << 2); + LD_UB8(src_u, pitch, p3_u, p2_u, p1_u, p0_u, q0_u, q1_u, q2_u, q3_u); + src_u += (5 * pitch); + src_v = src_v - (pitch << 2); + LD_UB8(src_v, pitch, p3_v, p2_v, p1_v, p0_v, q0_v, q1_v, q2_v, q3_v); + src_v += (5 * pitch); + + /* right 8 element of p3 are u pixel and + left 8 element of p3 are v pixel */ + ILVR_D4_UB(p3_v, p3_u, p2_v, p2_u, p1_v, p1_u, p0_v, p0_u, p3, p2, p1, p0); + ILVR_D4_UB(q0_v, q0_u, q1_v, q1_u, q2_v, q2_u, q3_v, q3_u, q0, q1, q2, q3); + LPF_MASK_HEV(p3, p2, p1, p0, q0, q1, q2, q3, limit, b_limit, thresh, hev, + mask, flat); + VP8_LPF_FILTER4_4W(p1, p0, q0, q1, mask, hev); + + p1_d = __msa_copy_u_d((v2i64)p1, 0); + p0_d = __msa_copy_u_d((v2i64)p0, 0); + q0_d = __msa_copy_u_d((v2i64)q0, 0); + q1_d = __msa_copy_u_d((v2i64)q1, 0); + SD4(q1_d, q0_d, p0_d, p1_d, src_u, (-pitch)); + + p1_d = __msa_copy_u_d((v2i64)p1, 1); + p0_d = __msa_copy_u_d((v2i64)p0, 1); + q0_d = __msa_copy_u_d((v2i64)q0, 1); + q1_d = __msa_copy_u_d((v2i64)q1, 1); + SD4(q1_d, q0_d, p0_d, p1_d, src_v, (-pitch)); +} + +static void loop_filter_vertical_edge_uv_msa(uint8_t *src_u, uint8_t *src_v, + int32_t pitch, + const uint8_t b_limit_in, + const uint8_t limit_in, + const uint8_t thresh_in) { + uint8_t *temp_src_u, *temp_src_v; + v16u8 p3, p2, p1, p0, q3, q2, q1, q0; + v16u8 mask, hev, flat, thresh, limit, b_limit; + v16u8 row0, row1, row2, row3, row4, row5, row6, row7, row8; + v16u8 row9, row10, row11, row12, row13, row14, row15; + v4i32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5; + + thresh = (v16u8)__msa_fill_b(thresh_in); + limit = (v16u8)__msa_fill_b(limit_in); + b_limit = (v16u8)__msa_fill_b(b_limit_in); + + LD_UB8(src_u - 4, pitch, row0, row1, row2, row3, row4, row5, row6, row7); + LD_UB8(src_v - 4, pitch, row8, row9, row10, row11, row12, row13, row14, + row15); + TRANSPOSE16x8_UB_UB(row0, row1, row2, row3, row4, row5, row6, row7, row8, + row9, row10, row11, row12, row13, row14, row15, p3, p2, + p1, p0, q0, q1, q2, q3); + + LPF_MASK_HEV(p3, p2, p1, p0, q0, q1, q2, q3, limit, b_limit, thresh, hev, + mask, flat); + VP8_LPF_FILTER4_4W(p1, p0, q0, q1, mask, hev); + ILVR_B2_SW(p0, p1, q1, q0, tmp0, tmp1); + ILVRL_H2_SW(tmp1, tmp0, tmp2, tmp3); + tmp0 = (v4i32)__msa_ilvl_b((v16i8)p0, (v16i8)p1); + tmp1 = (v4i32)__msa_ilvl_b((v16i8)q1, (v16i8)q0); + ILVRL_H2_SW(tmp1, tmp0, tmp4, tmp5); + + temp_src_u = src_u - 2; + ST4x4_UB(tmp2, tmp2, 0, 1, 2, 3, temp_src_u, pitch); + temp_src_u += 4 * pitch; + ST4x4_UB(tmp3, tmp3, 0, 1, 2, 3, temp_src_u, pitch); + + temp_src_v = src_v - 2; + ST4x4_UB(tmp4, tmp4, 0, 1, 2, 3, temp_src_v, pitch); + temp_src_v += 4 * pitch; + ST4x4_UB(tmp5, tmp5, 0, 1, 2, 3, temp_src_v, pitch); +} + +void vp8_loop_filter_mbh_msa(uint8_t *src_y, uint8_t *src_u, uint8_t *src_v, + int32_t pitch_y, int32_t pitch_u_v, + loop_filter_info *lpf_info_ptr) { + mbloop_filter_horizontal_edge_y_msa(src_y, pitch_y, *lpf_info_ptr->mblim, + *lpf_info_ptr->lim, + *lpf_info_ptr->hev_thr); + if (src_u) { + mbloop_filter_horizontal_edge_uv_msa( + src_u, src_v, pitch_u_v, *lpf_info_ptr->mblim, *lpf_info_ptr->lim, + *lpf_info_ptr->hev_thr); + } +} + +void vp8_loop_filter_mbv_msa(uint8_t *src_y, uint8_t *src_u, uint8_t *src_v, + int32_t pitch_y, int32_t pitch_u_v, + loop_filter_info *lpf_info_ptr) { + mbloop_filter_vertical_edge_y_msa(src_y, pitch_y, *lpf_info_ptr->mblim, + *lpf_info_ptr->lim, *lpf_info_ptr->hev_thr); + if (src_u) { + mbloop_filter_vertical_edge_uv_msa(src_u, src_v, pitch_u_v, + *lpf_info_ptr->mblim, *lpf_info_ptr->lim, + *lpf_info_ptr->hev_thr); + } +} + +void vp8_loop_filter_bh_msa(uint8_t *src_y, uint8_t *src_u, uint8_t *src_v, + int32_t pitch_y, int32_t pitch_u_v, + loop_filter_info *lpf_info_ptr) { + loop_filter_horizontal_4_dual_msa(src_y + 4 * pitch_y, pitch_y, + lpf_info_ptr->blim, lpf_info_ptr->lim, + lpf_info_ptr->hev_thr, lpf_info_ptr->blim, + lpf_info_ptr->lim, lpf_info_ptr->hev_thr); + loop_filter_horizontal_4_dual_msa(src_y + 8 * pitch_y, pitch_y, + lpf_info_ptr->blim, lpf_info_ptr->lim, + lpf_info_ptr->hev_thr, lpf_info_ptr->blim, + lpf_info_ptr->lim, lpf_info_ptr->hev_thr); + loop_filter_horizontal_4_dual_msa(src_y + 12 * pitch_y, pitch_y, + lpf_info_ptr->blim, lpf_info_ptr->lim, + lpf_info_ptr->hev_thr, lpf_info_ptr->blim, + lpf_info_ptr->lim, lpf_info_ptr->hev_thr); + if (src_u) { + loop_filter_horizontal_edge_uv_msa( + src_u + (4 * pitch_u_v), src_v + (4 * pitch_u_v), pitch_u_v, + *lpf_info_ptr->blim, *lpf_info_ptr->lim, *lpf_info_ptr->hev_thr); + } +} + +void vp8_loop_filter_bv_msa(uint8_t *src_y, uint8_t *src_u, uint8_t *src_v, + int32_t pitch_y, int32_t pitch_u_v, + loop_filter_info *lpf_info_ptr) { + loop_filter_vertical_4_dual_msa(src_y + 4, pitch_y, lpf_info_ptr->blim, + lpf_info_ptr->lim, lpf_info_ptr->hev_thr, + lpf_info_ptr->blim, lpf_info_ptr->lim, + lpf_info_ptr->hev_thr); + loop_filter_vertical_4_dual_msa(src_y + 8, pitch_y, lpf_info_ptr->blim, + lpf_info_ptr->lim, lpf_info_ptr->hev_thr, + lpf_info_ptr->blim, lpf_info_ptr->lim, + lpf_info_ptr->hev_thr); + loop_filter_vertical_4_dual_msa(src_y + 12, pitch_y, lpf_info_ptr->blim, + lpf_info_ptr->lim, lpf_info_ptr->hev_thr, + lpf_info_ptr->blim, lpf_info_ptr->lim, + lpf_info_ptr->hev_thr); + if (src_u) { + loop_filter_vertical_edge_uv_msa(src_u + 4, src_v + 4, pitch_u_v, + *lpf_info_ptr->blim, *lpf_info_ptr->lim, + *lpf_info_ptr->hev_thr); + } +} + +void vp8_loop_filter_bhs_msa(uint8_t *src_y, int32_t pitch_y, + const uint8_t *b_limit_ptr) { + vp8_loop_filter_simple_horizontal_edge_msa(src_y + (4 * pitch_y), pitch_y, + b_limit_ptr); + vp8_loop_filter_simple_horizontal_edge_msa(src_y + (8 * pitch_y), pitch_y, + b_limit_ptr); + vp8_loop_filter_simple_horizontal_edge_msa(src_y + (12 * pitch_y), pitch_y, + b_limit_ptr); +} + +void vp8_loop_filter_bvs_msa(uint8_t *src_y, int32_t pitch_y, + const uint8_t *b_limit_ptr) { + vp8_loop_filter_simple_vertical_edge_msa(src_y + 4, pitch_y, b_limit_ptr); + vp8_loop_filter_simple_vertical_edge_msa(src_y + 8, pitch_y, b_limit_ptr); + vp8_loop_filter_simple_vertical_edge_msa(src_y + 12, pitch_y, b_limit_ptr); +} diff --git a/vp8/common/mips/msa/mfqe_msa.c b/vp8/common/mips/msa/mfqe_msa.c new file mode 100644 index 0000000..9aac95b --- /dev/null +++ b/vp8/common/mips/msa/mfqe_msa.c @@ -0,0 +1,139 @@ +/* + * Copyright (c) 2015 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "./vp8_rtcd.h" +#include "vp8/common/postproc.h" +#include "vp8/common/mips/msa/vp8_macros_msa.h" + +static void filter_by_weight8x8_msa(uint8_t *src_ptr, int32_t src_stride, + uint8_t *dst_ptr, int32_t dst_stride, + int32_t src_weight) { + int32_t dst_weight = (1 << MFQE_PRECISION) - src_weight; + int32_t row; + uint64_t src0_d, src1_d, dst0_d, dst1_d; + v16i8 src0 = { 0 }; + v16i8 src1 = { 0 }; + v16i8 dst0 = { 0 }; + v16i8 dst1 = { 0 }; + v8i16 src_wt, dst_wt, res_h_r, res_h_l, src_r, src_l, dst_r, dst_l; + + src_wt = __msa_fill_h(src_weight); + dst_wt = __msa_fill_h(dst_weight); + + for (row = 2; row--;) { + LD2(src_ptr, src_stride, src0_d, src1_d); + src_ptr += (2 * src_stride); + LD2(dst_ptr, dst_stride, dst0_d, dst1_d); + INSERT_D2_SB(src0_d, src1_d, src0); + INSERT_D2_SB(dst0_d, dst1_d, dst0); + + LD2(src_ptr, src_stride, src0_d, src1_d); + src_ptr += (2 * src_stride); + LD2((dst_ptr + 2 * dst_stride), dst_stride, dst0_d, dst1_d); + INSERT_D2_SB(src0_d, src1_d, src1); + INSERT_D2_SB(dst0_d, dst1_d, dst1); + + UNPCK_UB_SH(src0, src_r, src_l); + UNPCK_UB_SH(dst0, dst_r, dst_l); + res_h_r = (src_r * src_wt); + res_h_r += (dst_r * dst_wt); + res_h_l = (src_l * src_wt); + res_h_l += (dst_l * dst_wt); + SRARI_H2_SH(res_h_r, res_h_l, MFQE_PRECISION); + dst0 = (v16i8)__msa_pckev_b((v16i8)res_h_l, (v16i8)res_h_r); + ST8x2_UB(dst0, dst_ptr, dst_stride); + dst_ptr += (2 * dst_stride); + + UNPCK_UB_SH(src1, src_r, src_l); + UNPCK_UB_SH(dst1, dst_r, dst_l); + res_h_r = (src_r * src_wt); + res_h_r += (dst_r * dst_wt); + res_h_l = (src_l * src_wt); + res_h_l += (dst_l * dst_wt); + SRARI_H2_SH(res_h_r, res_h_l, MFQE_PRECISION); + dst1 = (v16i8)__msa_pckev_b((v16i8)res_h_l, (v16i8)res_h_r); + ST8x2_UB(dst1, dst_ptr, dst_stride); + dst_ptr += (2 * dst_stride); + } +} + +static void filter_by_weight16x16_msa(uint8_t *src_ptr, int32_t src_stride, + uint8_t *dst_ptr, int32_t dst_stride, + int32_t src_weight) { + int32_t dst_weight = (1 << MFQE_PRECISION) - src_weight; + int32_t row; + v16i8 src0, src1, src2, src3; + v16i8 dst0, dst1, dst2, dst3; + v8i16 src_wt, dst_wt; + v8i16 res_h_r, res_h_l; + v8i16 src_r, src_l, dst_r, dst_l; + + src_wt = __msa_fill_h(src_weight); + dst_wt = __msa_fill_h(dst_weight); + + for (row = 4; row--;) { + LD_SB4(src_ptr, src_stride, src0, src1, src2, src3); + src_ptr += (4 * src_stride); + LD_SB4(dst_ptr, dst_stride, dst0, dst1, dst2, dst3); + + UNPCK_UB_SH(src0, src_r, src_l); + UNPCK_UB_SH(dst0, dst_r, dst_l); + res_h_r = (src_r * src_wt); + res_h_r += (dst_r * dst_wt); + res_h_l = (src_l * src_wt); + res_h_l += (dst_l * dst_wt); + SRARI_H2_SH(res_h_r, res_h_l, MFQE_PRECISION); + PCKEV_ST_SB(res_h_r, res_h_l, dst_ptr); + dst_ptr += dst_stride; + + UNPCK_UB_SH(src1, src_r, src_l); + UNPCK_UB_SH(dst1, dst_r, dst_l); + res_h_r = (src_r * src_wt); + res_h_r += (dst_r * dst_wt); + res_h_l = (src_l * src_wt); + res_h_l += (dst_l * dst_wt); + SRARI_H2_SH(res_h_r, res_h_l, MFQE_PRECISION); + PCKEV_ST_SB(res_h_r, res_h_l, dst_ptr); + dst_ptr += dst_stride; + + UNPCK_UB_SH(src2, src_r, src_l); + UNPCK_UB_SH(dst2, dst_r, dst_l); + res_h_r = (src_r * src_wt); + res_h_r += (dst_r * dst_wt); + res_h_l = (src_l * src_wt); + res_h_l += (dst_l * dst_wt); + SRARI_H2_SH(res_h_r, res_h_l, MFQE_PRECISION); + PCKEV_ST_SB(res_h_r, res_h_l, dst_ptr); + dst_ptr += dst_stride; + + UNPCK_UB_SH(src3, src_r, src_l); + UNPCK_UB_SH(dst3, dst_r, dst_l); + res_h_r = (src_r * src_wt); + res_h_r += (dst_r * dst_wt); + res_h_l = (src_l * src_wt); + res_h_l += (dst_l * dst_wt); + SRARI_H2_SH(res_h_r, res_h_l, MFQE_PRECISION); + PCKEV_ST_SB(res_h_r, res_h_l, dst_ptr); + dst_ptr += dst_stride; + } +} + +void vp8_filter_by_weight16x16_msa(uint8_t *src_ptr, int32_t src_stride, + uint8_t *dst_ptr, int32_t dst_stride, + int32_t src_weight) { + filter_by_weight16x16_msa(src_ptr, src_stride, dst_ptr, dst_stride, + src_weight); +} + +void vp8_filter_by_weight8x8_msa(uint8_t *src_ptr, int32_t src_stride, + uint8_t *dst_ptr, int32_t dst_stride, + int32_t src_weight) { + filter_by_weight8x8_msa(src_ptr, src_stride, dst_ptr, dst_stride, src_weight); +} diff --git a/vp8/common/mips/msa/sixtap_filter_msa.c b/vp8/common/mips/msa/sixtap_filter_msa.c new file mode 100644 index 0000000..b0affcf --- /dev/null +++ b/vp8/common/mips/msa/sixtap_filter_msa.c @@ -0,0 +1,1705 @@ +/* + * Copyright (c) 2015 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "./vp8_rtcd.h" +#include "vpx_ports/mem.h" +#include "vp8/common/filter.h" +#include "vp8/common/mips/msa/vp8_macros_msa.h" + +DECLARE_ALIGNED(16, static const int8_t, vp8_subpel_filters_msa[7][8]) = { + { 0, -6, 123, 12, -1, 0, 0, 0 }, + { 2, -11, 108, 36, -8, 1, 0, 0 }, /* New 1/4 pel 6 tap filter */ + { 0, -9, 93, 50, -6, 0, 0, 0 }, + { 3, -16, 77, 77, -16, 3, 0, 0 }, /* New 1/2 pel 6 tap filter */ + { 0, -6, 50, 93, -9, 0, 0, 0 }, + { 1, -8, 36, 108, -11, 2, 0, 0 }, /* New 1/4 pel 6 tap filter */ + { 0, -1, 12, 123, -6, 0, 0, 0 }, +}; + +static const uint8_t vp8_mc_filt_mask_arr[16 * 3] = { + /* 8 width cases */ + 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, + /* 4 width cases */ + 0, 1, 1, 2, 2, 3, 3, 4, 16, 17, 17, 18, 18, 19, 19, 20, + /* 4 width cases */ + 8, 9, 9, 10, 10, 11, 11, 12, 24, 25, 25, 26, 26, 27, 27, 28 +}; + +#define HORIZ_6TAP_FILT(src0, src1, mask0, mask1, mask2, filt_h0, filt_h1, \ + filt_h2) \ + ({ \ + v16i8 vec0_m, vec1_m, vec2_m; \ + v8i16 hz_out_m; \ + \ + VSHF_B3_SB(src0, src1, src0, src1, src0, src1, mask0, mask1, mask2, \ + vec0_m, vec1_m, vec2_m); \ + hz_out_m = \ + DPADD_SH3_SH(vec0_m, vec1_m, vec2_m, filt_h0, filt_h1, filt_h2); \ + \ + hz_out_m = __msa_srari_h(hz_out_m, VP8_FILTER_SHIFT); \ + hz_out_m = __msa_sat_s_h(hz_out_m, 7); \ + \ + hz_out_m; \ + }) + +#define HORIZ_6TAP_4WID_4VECS_FILT(src0, src1, src2, src3, mask0, mask1, \ + mask2, filt0, filt1, filt2, out0, out1) \ + { \ + v16i8 vec0_m, vec1_m, vec2_m, vec3_m, vec4_m, vec5_m; \ + \ + VSHF_B2_SB(src0, src1, src2, src3, mask0, mask0, vec0_m, vec1_m); \ + DOTP_SB2_SH(vec0_m, vec1_m, filt0, filt0, out0, out1); \ + VSHF_B2_SB(src0, src1, src2, src3, mask1, mask1, vec2_m, vec3_m); \ + DPADD_SB2_SH(vec2_m, vec3_m, filt1, filt1, out0, out1); \ + VSHF_B2_SB(src0, src1, src2, src3, mask2, mask2, vec4_m, vec5_m); \ + DPADD_SB2_SH(vec4_m, vec5_m, filt2, filt2, out0, out1); \ + } + +#define HORIZ_6TAP_8WID_4VECS_FILT(src0, src1, src2, src3, mask0, mask1, \ + mask2, filt0, filt1, filt2, out0, out1, \ + out2, out3) \ + { \ + v16i8 vec0_m, vec1_m, vec2_m, vec3_m, vec4_m, vec5_m, vec6_m, vec7_m; \ + \ + VSHF_B2_SB(src0, src0, src1, src1, mask0, mask0, vec0_m, vec1_m); \ + VSHF_B2_SB(src2, src2, src3, src3, mask0, mask0, vec2_m, vec3_m); \ + DOTP_SB4_SH(vec0_m, vec1_m, vec2_m, vec3_m, filt0, filt0, filt0, filt0, \ + out0, out1, out2, out3); \ + VSHF_B2_SB(src0, src0, src1, src1, mask1, mask1, vec0_m, vec1_m); \ + VSHF_B2_SB(src2, src2, src3, src3, mask1, mask1, vec2_m, vec3_m); \ + VSHF_B2_SB(src0, src0, src1, src1, mask2, mask2, vec4_m, vec5_m); \ + VSHF_B2_SB(src2, src2, src3, src3, mask2, mask2, vec6_m, vec7_m); \ + DPADD_SB4_SH(vec0_m, vec1_m, vec2_m, vec3_m, filt1, filt1, filt1, filt1, \ + out0, out1, out2, out3); \ + DPADD_SB4_SH(vec4_m, vec5_m, vec6_m, vec7_m, filt2, filt2, filt2, filt2, \ + out0, out1, out2, out3); \ + } + +#define FILT_4TAP_DPADD_S_H(vec0, vec1, filt0, filt1) \ + ({ \ + v8i16 tmp0; \ + \ + tmp0 = __msa_dotp_s_h((v16i8)vec0, (v16i8)filt0); \ + tmp0 = __msa_dpadd_s_h(tmp0, (v16i8)vec1, (v16i8)filt1); \ + \ + tmp0; \ + }) + +#define HORIZ_4TAP_FILT(src0, src1, mask0, mask1, filt_h0, filt_h1) \ + ({ \ + v16i8 vec0_m, vec1_m; \ + v8i16 hz_out_m; \ + \ + VSHF_B2_SB(src0, src1, src0, src1, mask0, mask1, vec0_m, vec1_m); \ + hz_out_m = FILT_4TAP_DPADD_S_H(vec0_m, vec1_m, filt_h0, filt_h1); \ + \ + hz_out_m = __msa_srari_h(hz_out_m, VP8_FILTER_SHIFT); \ + hz_out_m = __msa_sat_s_h(hz_out_m, 7); \ + \ + hz_out_m; \ + }) + +#define HORIZ_4TAP_4WID_4VECS_FILT(src0, src1, src2, src3, mask0, mask1, \ + filt0, filt1, out0, out1) \ + { \ + v16i8 vec0_m, vec1_m, vec2_m, vec3_m; \ + \ + VSHF_B2_SB(src0, src1, src2, src3, mask0, mask0, vec0_m, vec1_m); \ + DOTP_SB2_SH(vec0_m, vec1_m, filt0, filt0, out0, out1); \ + VSHF_B2_SB(src0, src1, src2, src3, mask1, mask1, vec2_m, vec3_m); \ + DPADD_SB2_SH(vec2_m, vec3_m, filt1, filt1, out0, out1); \ + } + +#define HORIZ_4TAP_8WID_4VECS_FILT(src0, src1, src2, src3, mask0, mask1, \ + filt0, filt1, out0, out1, out2, out3) \ + { \ + v16i8 vec0_m, vec1_m, vec2_m, vec3_m; \ + \ + VSHF_B2_SB(src0, src0, src1, src1, mask0, mask0, vec0_m, vec1_m); \ + VSHF_B2_SB(src2, src2, src3, src3, mask0, mask0, vec2_m, vec3_m); \ + DOTP_SB4_SH(vec0_m, vec1_m, vec2_m, vec3_m, filt0, filt0, filt0, filt0, \ + out0, out1, out2, out3); \ + VSHF_B2_SB(src0, src0, src1, src1, mask1, mask1, vec0_m, vec1_m); \ + VSHF_B2_SB(src2, src2, src3, src3, mask1, mask1, vec2_m, vec3_m); \ + DPADD_SB4_SH(vec0_m, vec1_m, vec2_m, vec3_m, filt1, filt1, filt1, filt1, \ + out0, out1, out2, out3); \ + } + +static void common_hz_6t_4x4_msa(uint8_t *RESTRICT src, int32_t src_stride, + uint8_t *RESTRICT dst, int32_t dst_stride, + const int8_t *filter) { + v16i8 src0, src1, src2, src3, filt0, filt1, filt2; + v16u8 mask0, mask1, mask2, out; + v8i16 filt, out0, out1; + + mask0 = LD_UB(&vp8_mc_filt_mask_arr[16]); + src -= 2; + + filt = LD_SH(filter); + SPLATI_H3_SB(filt, 0, 1, 2, filt0, filt1, filt2); + + mask1 = mask0 + 2; + mask2 = mask0 + 4; + + LD_SB4(src, src_stride, src0, src1, src2, src3); + XORI_B4_128_SB(src0, src1, src2, src3); + HORIZ_6TAP_4WID_4VECS_FILT(src0, src1, src2, src3, mask0, mask1, mask2, filt0, + filt1, filt2, out0, out1); + SRARI_H2_SH(out0, out1, VP8_FILTER_SHIFT); + SAT_SH2_SH(out0, out1, 7); + out = PCKEV_XORI128_UB(out0, out1); + ST4x4_UB(out, out, 0, 1, 2, 3, dst, dst_stride); +} + +static void common_hz_6t_4x8_msa(uint8_t *RESTRICT src, int32_t src_stride, + uint8_t *RESTRICT dst, int32_t dst_stride, + const int8_t *filter) { + v16i8 src0, src1, src2, src3, filt0, filt1, filt2; + v16u8 mask0, mask1, mask2, out; + v8i16 filt, out0, out1, out2, out3; + + mask0 = LD_UB(&vp8_mc_filt_mask_arr[16]); + src -= 2; + + filt = LD_SH(filter); + SPLATI_H3_SB(filt, 0, 1, 2, filt0, filt1, filt2); + + mask1 = mask0 + 2; + mask2 = mask0 + 4; + + LD_SB4(src, src_stride, src0, src1, src2, src3); + XORI_B4_128_SB(src0, src1, src2, src3); + src += (4 * src_stride); + HORIZ_6TAP_4WID_4VECS_FILT(src0, src1, src2, src3, mask0, mask1, mask2, filt0, + filt1, filt2, out0, out1); + LD_SB4(src, src_stride, src0, src1, src2, src3); + XORI_B4_128_SB(src0, src1, src2, src3); + HORIZ_6TAP_4WID_4VECS_FILT(src0, src1, src2, src3, mask0, mask1, mask2, filt0, + filt1, filt2, out2, out3); + SRARI_H4_SH(out0, out1, out2, out3, VP8_FILTER_SHIFT); + SAT_SH4_SH(out0, out1, out2, out3, 7); + out = PCKEV_XORI128_UB(out0, out1); + ST4x4_UB(out, out, 0, 1, 2, 3, dst, dst_stride); + dst += (4 * dst_stride); + out = PCKEV_XORI128_UB(out2, out3); + ST4x4_UB(out, out, 0, 1, 2, 3, dst, dst_stride); +} + +static void common_hz_6t_4w_msa(uint8_t *RESTRICT src, int32_t src_stride, + uint8_t *RESTRICT dst, int32_t dst_stride, + const int8_t *filter, int32_t height) { + if (4 == height) { + common_hz_6t_4x4_msa(src, src_stride, dst, dst_stride, filter); + } else if (8 == height) { + common_hz_6t_4x8_msa(src, src_stride, dst, dst_stride, filter); + } +} + +static void common_hz_6t_8w_msa(uint8_t *RESTRICT src, int32_t src_stride, + uint8_t *RESTRICT dst, int32_t dst_stride, + const int8_t *filter, int32_t height) { + uint32_t loop_cnt; + v16i8 src0, src1, src2, src3, filt0, filt1, filt2; + v16u8 mask0, mask1, mask2, tmp0, tmp1; + v8i16 filt, out0, out1, out2, out3; + + mask0 = LD_UB(&vp8_mc_filt_mask_arr[0]); + src -= 2; + + filt = LD_SH(filter); + SPLATI_H3_SB(filt, 0, 1, 2, filt0, filt1, filt2); + + mask1 = mask0 + 2; + mask2 = mask0 + 4; + + LD_SB4(src, src_stride, src0, src1, src2, src3); + XORI_B4_128_SB(src0, src1, src2, src3); + src += (4 * src_stride); + HORIZ_6TAP_8WID_4VECS_FILT(src0, src1, src2, src3, mask0, mask1, mask2, filt0, + filt1, filt2, out0, out1, out2, out3); + SRARI_H4_SH(out0, out1, out2, out3, VP8_FILTER_SHIFT); + SAT_SH4_SH(out0, out1, out2, out3, 7); + tmp0 = PCKEV_XORI128_UB(out0, out1); + tmp1 = PCKEV_XORI128_UB(out2, out3); + ST8x4_UB(tmp0, tmp1, dst, dst_stride); + dst += (4 * dst_stride); + + for (loop_cnt = (height >> 2) - 1; loop_cnt--;) { + LD_SB4(src, src_stride, src0, src1, src2, src3); + XORI_B4_128_SB(src0, src1, src2, src3); + src += (4 * src_stride); + HORIZ_6TAP_8WID_4VECS_FILT(src0, src1, src2, src3, mask0, mask1, mask2, + filt0, filt1, filt2, out0, out1, out2, out3); + SRARI_H4_SH(out0, out1, out2, out3, VP8_FILTER_SHIFT); + SAT_SH4_SH(out0, out1, out2, out3, 7); + tmp0 = PCKEV_XORI128_UB(out0, out1); + tmp1 = PCKEV_XORI128_UB(out2, out3); + ST8x4_UB(tmp0, tmp1, dst, dst_stride); + dst += (4 * dst_stride); + } +} + +static void common_hz_6t_16w_msa(uint8_t *RESTRICT src, int32_t src_stride, + uint8_t *RESTRICT dst, int32_t dst_stride, + const int8_t *filter, int32_t height) { + uint32_t loop_cnt; + v16i8 src0, src1, src2, src3, src4, src5, src6, src7, filt0, filt1, filt2; + v16u8 mask0, mask1, mask2, out; + v8i16 filt, out0, out1, out2, out3, out4, out5, out6, out7; + + mask0 = LD_UB(&vp8_mc_filt_mask_arr[0]); + src -= 2; + + filt = LD_SH(filter); + SPLATI_H3_SB(filt, 0, 1, 2, filt0, filt1, filt2); + + mask1 = mask0 + 2; + mask2 = mask0 + 4; + + for (loop_cnt = (height >> 2); loop_cnt--;) { + LD_SB4(src, src_stride, src0, src2, src4, src6); + LD_SB4(src + 8, src_stride, src1, src3, src5, src7); + XORI_B8_128_SB(src0, src1, src2, src3, src4, src5, src6, src7); + src += (4 * src_stride); + + HORIZ_6TAP_8WID_4VECS_FILT(src0, src1, src2, src3, mask0, mask1, mask2, + filt0, filt1, filt2, out0, out1, out2, out3); + HORIZ_6TAP_8WID_4VECS_FILT(src4, src5, src6, src7, mask0, mask1, mask2, + filt0, filt1, filt2, out4, out5, out6, out7); + SRARI_H4_SH(out0, out1, out2, out3, VP8_FILTER_SHIFT); + SRARI_H4_SH(out4, out5, out6, out7, VP8_FILTER_SHIFT); + SAT_SH4_SH(out0, out1, out2, out3, 7); + SAT_SH4_SH(out4, out5, out6, out7, 7); + out = PCKEV_XORI128_UB(out0, out1); + ST_UB(out, dst); + dst += dst_stride; + out = PCKEV_XORI128_UB(out2, out3); + ST_UB(out, dst); + dst += dst_stride; + out = PCKEV_XORI128_UB(out4, out5); + ST_UB(out, dst); + dst += dst_stride; + out = PCKEV_XORI128_UB(out6, out7); + ST_UB(out, dst); + dst += dst_stride; + } +} + +static void common_vt_6t_4w_msa(uint8_t *RESTRICT src, int32_t src_stride, + uint8_t *RESTRICT dst, int32_t dst_stride, + const int8_t *filter, int32_t height) { + uint32_t loop_cnt; + v16i8 src0, src1, src2, src3, src4, src5, src6, src7, src8; + v16i8 src10_r, src32_r, src54_r, src76_r, src21_r, src43_r, src65_r; + v16i8 src87_r, src2110, src4332, src6554, src8776, filt0, filt1, filt2; + v16u8 out; + v8i16 filt, out10, out32; + + src -= (2 * src_stride); + + filt = LD_SH(filter); + SPLATI_H3_SB(filt, 0, 1, 2, filt0, filt1, filt2); + + LD_SB5(src, src_stride, src0, src1, src2, src3, src4); + src += (5 * src_stride); + + ILVR_B4_SB(src1, src0, src2, src1, src3, src2, src4, src3, src10_r, src21_r, + src32_r, src43_r); + ILVR_D2_SB(src21_r, src10_r, src43_r, src32_r, src2110, src4332); + XORI_B2_128_SB(src2110, src4332); + + for (loop_cnt = (height >> 2); loop_cnt--;) { + LD_SB4(src, src_stride, src5, src6, src7, src8); + src += (4 * src_stride); + + ILVR_B4_SB(src5, src4, src6, src5, src7, src6, src8, src7, src54_r, src65_r, + src76_r, src87_r); + ILVR_D2_SB(src65_r, src54_r, src87_r, src76_r, src6554, src8776); + XORI_B2_128_SB(src6554, src8776); + out10 = DPADD_SH3_SH(src2110, src4332, src6554, filt0, filt1, filt2); + out32 = DPADD_SH3_SH(src4332, src6554, src8776, filt0, filt1, filt2); + SRARI_H2_SH(out10, out32, VP8_FILTER_SHIFT); + SAT_SH2_SH(out10, out32, 7); + out = PCKEV_XORI128_UB(out10, out32); + ST4x4_UB(out, out, 0, 1, 2, 3, dst, dst_stride); + dst += (4 * dst_stride); + + src2110 = src6554; + src4332 = src8776; + src4 = src8; + } +} + +static void common_vt_6t_8w_msa(uint8_t *RESTRICT src, int32_t src_stride, + uint8_t *RESTRICT dst, int32_t dst_stride, + const int8_t *filter, int32_t height) { + uint32_t loop_cnt; + v16i8 src0, src1, src2, src3, src4, src7, src8, src9, src10; + v16i8 src10_r, src32_r, src76_r, src98_r, src21_r, src43_r, src87_r; + v16i8 src109_r, filt0, filt1, filt2; + v16u8 tmp0, tmp1; + v8i16 filt, out0_r, out1_r, out2_r, out3_r; + + src -= (2 * src_stride); + + filt = LD_SH(filter); + SPLATI_H3_SB(filt, 0, 1, 2, filt0, filt1, filt2); + + LD_SB5(src, src_stride, src0, src1, src2, src3, src4); + src += (5 * src_stride); + + XORI_B5_128_SB(src0, src1, src2, src3, src4); + ILVR_B4_SB(src1, src0, src3, src2, src2, src1, src4, src3, src10_r, src32_r, + src21_r, src43_r); + + for (loop_cnt = (height >> 2); loop_cnt--;) { + LD_SB4(src, src_stride, src7, src8, src9, src10); + XORI_B4_128_SB(src7, src8, src9, src10); + src += (4 * src_stride); + + ILVR_B4_SB(src7, src4, src8, src7, src9, src8, src10, src9, src76_r, + src87_r, src98_r, src109_r); + out0_r = DPADD_SH3_SH(src10_r, src32_r, src76_r, filt0, filt1, filt2); + out1_r = DPADD_SH3_SH(src21_r, src43_r, src87_r, filt0, filt1, filt2); + out2_r = DPADD_SH3_SH(src32_r, src76_r, src98_r, filt0, filt1, filt2); + out3_r = DPADD_SH3_SH(src43_r, src87_r, src109_r, filt0, filt1, filt2); + SRARI_H4_SH(out0_r, out1_r, out2_r, out3_r, VP8_FILTER_SHIFT); + SAT_SH4_SH(out0_r, out1_r, out2_r, out3_r, 7); + tmp0 = PCKEV_XORI128_UB(out0_r, out1_r); + tmp1 = PCKEV_XORI128_UB(out2_r, out3_r); + ST8x4_UB(tmp0, tmp1, dst, dst_stride); + dst += (4 * dst_stride); + + src10_r = src76_r; + src32_r = src98_r; + src21_r = src87_r; + src43_r = src109_r; + src4 = src10; + } +} + +static void common_vt_6t_16w_msa(uint8_t *RESTRICT src, int32_t src_stride, + uint8_t *RESTRICT dst, int32_t dst_stride, + const int8_t *filter, int32_t height) { + uint32_t loop_cnt; + v16i8 src0, src1, src2, src3, src4, src5, src6, src7, src8; + v16i8 src10_r, src32_r, src54_r, src76_r, src21_r, src43_r, src65_r; + v16i8 src87_r, src10_l, src32_l, src54_l, src76_l, src21_l, src43_l; + v16i8 src65_l, src87_l, filt0, filt1, filt2; + v16u8 tmp0, tmp1, tmp2, tmp3; + v8i16 out0_r, out1_r, out2_r, out3_r, out0_l, out1_l, out2_l, out3_l, filt; + + src -= (2 * src_stride); + + filt = LD_SH(filter); + SPLATI_H3_SB(filt, 0, 1, 2, filt0, filt1, filt2); + + LD_SB5(src, src_stride, src0, src1, src2, src3, src4); + src += (5 * src_stride); + + XORI_B5_128_SB(src0, src1, src2, src3, src4); + ILVR_B4_SB(src1, src0, src3, src2, src4, src3, src2, src1, src10_r, src32_r, + src43_r, src21_r); + ILVL_B4_SB(src1, src0, src3, src2, src4, src3, src2, src1, src10_l, src32_l, + src43_l, src21_l); + + for (loop_cnt = (height >> 2); loop_cnt--;) { + LD_SB4(src, src_stride, src5, src6, src7, src8); + src += (4 * src_stride); + + XORI_B4_128_SB(src5, src6, src7, src8); + ILVR_B4_SB(src5, src4, src6, src5, src7, src6, src8, src7, src54_r, src65_r, + src76_r, src87_r); + ILVL_B4_SB(src5, src4, src6, src5, src7, src6, src8, src7, src54_l, src65_l, + src76_l, src87_l); + out0_r = DPADD_SH3_SH(src10_r, src32_r, src54_r, filt0, filt1, filt2); + out1_r = DPADD_SH3_SH(src21_r, src43_r, src65_r, filt0, filt1, filt2); + out2_r = DPADD_SH3_SH(src32_r, src54_r, src76_r, filt0, filt1, filt2); + out3_r = DPADD_SH3_SH(src43_r, src65_r, src87_r, filt0, filt1, filt2); + out0_l = DPADD_SH3_SH(src10_l, src32_l, src54_l, filt0, filt1, filt2); + out1_l = DPADD_SH3_SH(src21_l, src43_l, src65_l, filt0, filt1, filt2); + out2_l = DPADD_SH3_SH(src32_l, src54_l, src76_l, filt0, filt1, filt2); + out3_l = DPADD_SH3_SH(src43_l, src65_l, src87_l, filt0, filt1, filt2); + SRARI_H4_SH(out0_r, out1_r, out2_r, out3_r, VP8_FILTER_SHIFT); + SRARI_H4_SH(out0_l, out1_l, out2_l, out3_l, VP8_FILTER_SHIFT); + SAT_SH4_SH(out0_r, out1_r, out2_r, out3_r, 7); + SAT_SH4_SH(out0_l, out1_l, out2_l, out3_l, 7); + PCKEV_B4_UB(out0_l, out0_r, out1_l, out1_r, out2_l, out2_r, out3_l, out3_r, + tmp0, tmp1, tmp2, tmp3); + XORI_B4_128_UB(tmp0, tmp1, tmp2, tmp3); + ST_UB4(tmp0, tmp1, tmp2, tmp3, dst, dst_stride); + dst += (4 * dst_stride); + + src10_r = src54_r; + src32_r = src76_r; + src21_r = src65_r; + src43_r = src87_r; + src10_l = src54_l; + src32_l = src76_l; + src21_l = src65_l; + src43_l = src87_l; + src4 = src8; + } +} + +static void common_hv_6ht_6vt_4w_msa(uint8_t *RESTRICT src, int32_t src_stride, + uint8_t *RESTRICT dst, int32_t dst_stride, + const int8_t *filter_horiz, + const int8_t *filter_vert, + int32_t height) { + uint32_t loop_cnt; + v16i8 src0, src1, src2, src3, src4, src5, src6, src7, src8; + v16i8 filt_hz0, filt_hz1, filt_hz2; + v16u8 mask0, mask1, mask2, out; + v8i16 tmp0, tmp1; + v8i16 hz_out0, hz_out1, hz_out2, hz_out3, hz_out4, hz_out5, hz_out6; + v8i16 hz_out7, filt, filt_vt0, filt_vt1, filt_vt2, out0, out1, out2, out3; + + mask0 = LD_UB(&vp8_mc_filt_mask_arr[16]); + src -= (2 + 2 * src_stride); + + filt = LD_SH(filter_horiz); + SPLATI_H3_SB(filt, 0, 1, 2, filt_hz0, filt_hz1, filt_hz2); + filt = LD_SH(filter_vert); + SPLATI_H3_SH(filt, 0, 1, 2, filt_vt0, filt_vt1, filt_vt2); + + mask1 = mask0 + 2; + mask2 = mask0 + 4; + + LD_SB5(src, src_stride, src0, src1, src2, src3, src4); + src += (5 * src_stride); + + XORI_B5_128_SB(src0, src1, src2, src3, src4); + hz_out0 = HORIZ_6TAP_FILT(src0, src1, mask0, mask1, mask2, filt_hz0, filt_hz1, + filt_hz2); + hz_out2 = HORIZ_6TAP_FILT(src2, src3, mask0, mask1, mask2, filt_hz0, filt_hz1, + filt_hz2); + hz_out1 = (v8i16)__msa_sldi_b((v16i8)hz_out2, (v16i8)hz_out0, 8); + hz_out3 = HORIZ_6TAP_FILT(src3, src4, mask0, mask1, mask2, filt_hz0, filt_hz1, + filt_hz2); + ILVEV_B2_SH(hz_out0, hz_out1, hz_out2, hz_out3, out0, out1); + + for (loop_cnt = (height >> 2); loop_cnt--;) { + LD_SB2(src, src_stride, src5, src6); + src += (2 * src_stride); + + XORI_B2_128_SB(src5, src6); + hz_out5 = HORIZ_6TAP_FILT(src5, src6, mask0, mask1, mask2, filt_hz0, + filt_hz1, filt_hz2); + hz_out4 = (v8i16)__msa_sldi_b((v16i8)hz_out5, (v16i8)hz_out3, 8); + + LD_SB2(src, src_stride, src7, src8); + src += (2 * src_stride); + + XORI_B2_128_SB(src7, src8); + hz_out7 = HORIZ_6TAP_FILT(src7, src8, mask0, mask1, mask2, filt_hz0, + filt_hz1, filt_hz2); + hz_out6 = (v8i16)__msa_sldi_b((v16i8)hz_out7, (v16i8)hz_out5, 8); + + out2 = (v8i16)__msa_ilvev_b((v16i8)hz_out5, (v16i8)hz_out4); + tmp0 = DPADD_SH3_SH(out0, out1, out2, filt_vt0, filt_vt1, filt_vt2); + + out3 = (v8i16)__msa_ilvev_b((v16i8)hz_out7, (v16i8)hz_out6); + tmp1 = DPADD_SH3_SH(out1, out2, out3, filt_vt0, filt_vt1, filt_vt2); + + SRARI_H2_SH(tmp0, tmp1, 7); + SAT_SH2_SH(tmp0, tmp1, 7); + out = PCKEV_XORI128_UB(tmp0, tmp1); + ST4x4_UB(out, out, 0, 1, 2, 3, dst, dst_stride); + dst += (4 * dst_stride); + + hz_out3 = hz_out7; + out0 = out2; + out1 = out3; + } +} + +static void common_hv_6ht_6vt_8w_msa(uint8_t *RESTRICT src, int32_t src_stride, + uint8_t *RESTRICT dst, int32_t dst_stride, + const int8_t *filter_horiz, + const int8_t *filter_vert, + int32_t height) { + uint32_t loop_cnt; + v16i8 src0, src1, src2, src3, src4, src5, src6, src7, src8; + v16i8 filt_hz0, filt_hz1, filt_hz2; + v16u8 mask0, mask1, mask2, vec0, vec1; + v8i16 filt, filt_vt0, filt_vt1, filt_vt2; + v8i16 hz_out0, hz_out1, hz_out2, hz_out3, hz_out4, hz_out5, hz_out6; + v8i16 hz_out7, hz_out8, out0, out1, out2, out3, out4, out5, out6, out7; + v8i16 tmp0, tmp1, tmp2, tmp3; + + mask0 = LD_UB(&vp8_mc_filt_mask_arr[0]); + src -= (2 + 2 * src_stride); + + filt = LD_SH(filter_horiz); + SPLATI_H3_SB(filt, 0, 1, 2, filt_hz0, filt_hz1, filt_hz2); + + mask1 = mask0 + 2; + mask2 = mask0 + 4; + + LD_SB5(src, src_stride, src0, src1, src2, src3, src4); + src += (5 * src_stride); + + XORI_B5_128_SB(src0, src1, src2, src3, src4); + hz_out0 = HORIZ_6TAP_FILT(src0, src0, mask0, mask1, mask2, filt_hz0, filt_hz1, + filt_hz2); + hz_out1 = HORIZ_6TAP_FILT(src1, src1, mask0, mask1, mask2, filt_hz0, filt_hz1, + filt_hz2); + hz_out2 = HORIZ_6TAP_FILT(src2, src2, mask0, mask1, mask2, filt_hz0, filt_hz1, + filt_hz2); + hz_out3 = HORIZ_6TAP_FILT(src3, src3, mask0, mask1, mask2, filt_hz0, filt_hz1, + filt_hz2); + hz_out4 = HORIZ_6TAP_FILT(src4, src4, mask0, mask1, mask2, filt_hz0, filt_hz1, + filt_hz2); + + filt = LD_SH(filter_vert); + SPLATI_H3_SH(filt, 0, 1, 2, filt_vt0, filt_vt1, filt_vt2); + + ILVEV_B2_SH(hz_out0, hz_out1, hz_out2, hz_out3, out0, out1); + ILVEV_B2_SH(hz_out1, hz_out2, hz_out3, hz_out4, out3, out4); + + for (loop_cnt = (height >> 2); loop_cnt--;) { + LD_SB4(src, src_stride, src5, src6, src7, src8); + src += (4 * src_stride); + + XORI_B4_128_SB(src5, src6, src7, src8); + hz_out5 = HORIZ_6TAP_FILT(src5, src5, mask0, mask1, mask2, filt_hz0, + filt_hz1, filt_hz2); + out2 = (v8i16)__msa_ilvev_b((v16i8)hz_out5, (v16i8)hz_out4); + tmp0 = DPADD_SH3_SH(out0, out1, out2, filt_vt0, filt_vt1, filt_vt2); + + hz_out6 = HORIZ_6TAP_FILT(src6, src6, mask0, mask1, mask2, filt_hz0, + filt_hz1, filt_hz2); + out5 = (v8i16)__msa_ilvev_b((v16i8)hz_out6, (v16i8)hz_out5); + tmp1 = DPADD_SH3_SH(out3, out4, out5, filt_vt0, filt_vt1, filt_vt2); + + hz_out7 = HORIZ_6TAP_FILT(src7, src7, mask0, mask1, mask2, filt_hz0, + filt_hz1, filt_hz2); + out7 = (v8i16)__msa_ilvev_b((v16i8)hz_out7, (v16i8)hz_out6); + tmp2 = DPADD_SH3_SH(out1, out2, out7, filt_vt0, filt_vt1, filt_vt2); + + hz_out8 = HORIZ_6TAP_FILT(src8, src8, mask0, mask1, mask2, filt_hz0, + filt_hz1, filt_hz2); + out6 = (v8i16)__msa_ilvev_b((v16i8)hz_out8, (v16i8)hz_out7); + tmp3 = DPADD_SH3_SH(out4, out5, out6, filt_vt0, filt_vt1, filt_vt2); + + SRARI_H4_SH(tmp0, tmp1, tmp2, tmp3, 7); + SAT_SH4_SH(tmp0, tmp1, tmp2, tmp3, 7); + vec0 = PCKEV_XORI128_UB(tmp0, tmp1); + vec1 = PCKEV_XORI128_UB(tmp2, tmp3); + ST8x4_UB(vec0, vec1, dst, dst_stride); + dst += (4 * dst_stride); + + hz_out4 = hz_out8; + out0 = out2; + out1 = out7; + out3 = out5; + out4 = out6; + } +} + +static void common_hv_6ht_6vt_16w_msa(uint8_t *RESTRICT src, int32_t src_stride, + uint8_t *RESTRICT dst, int32_t dst_stride, + const int8_t *filter_horiz, + const int8_t *filter_vert, + int32_t height) { + int32_t multiple8_cnt; + for (multiple8_cnt = 2; multiple8_cnt--;) { + common_hv_6ht_6vt_8w_msa(src, src_stride, dst, dst_stride, filter_horiz, + filter_vert, height); + src += 8; + dst += 8; + } +} + +static void common_hz_4t_4x4_msa(uint8_t *RESTRICT src, int32_t src_stride, + uint8_t *RESTRICT dst, int32_t dst_stride, + const int8_t *filter) { + v16i8 src0, src1, src2, src3, filt0, filt1, mask0, mask1; + v8i16 filt, out0, out1; + v16u8 out; + + mask0 = LD_SB(&vp8_mc_filt_mask_arr[16]); + src -= 1; + + filt = LD_SH(filter); + SPLATI_H2_SB(filt, 0, 1, filt0, filt1); + + mask1 = mask0 + 2; + + LD_SB4(src, src_stride, src0, src1, src2, src3); + XORI_B4_128_SB(src0, src1, src2, src3); + HORIZ_4TAP_4WID_4VECS_FILT(src0, src1, src2, src3, mask0, mask1, filt0, filt1, + out0, out1); + SRARI_H2_SH(out0, out1, VP8_FILTER_SHIFT); + SAT_SH2_SH(out0, out1, 7); + out = PCKEV_XORI128_UB(out0, out1); + ST4x4_UB(out, out, 0, 1, 2, 3, dst, dst_stride); +} + +static void common_hz_4t_4x8_msa(uint8_t *RESTRICT src, int32_t src_stride, + uint8_t *RESTRICT dst, int32_t dst_stride, + const int8_t *filter) { + v16i8 src0, src1, src2, src3, filt0, filt1, mask0, mask1; + v16u8 out; + v8i16 filt, out0, out1, out2, out3; + + mask0 = LD_SB(&vp8_mc_filt_mask_arr[16]); + src -= 1; + + filt = LD_SH(filter); + SPLATI_H2_SB(filt, 0, 1, filt0, filt1); + + mask1 = mask0 + 2; + + LD_SB4(src, src_stride, src0, src1, src2, src3); + src += (4 * src_stride); + + XORI_B4_128_SB(src0, src1, src2, src3); + HORIZ_4TAP_4WID_4VECS_FILT(src0, src1, src2, src3, mask0, mask1, filt0, filt1, + out0, out1); + LD_SB4(src, src_stride, src0, src1, src2, src3); + XORI_B4_128_SB(src0, src1, src2, src3); + HORIZ_4TAP_4WID_4VECS_FILT(src0, src1, src2, src3, mask0, mask1, filt0, filt1, + out2, out3); + SRARI_H4_SH(out0, out1, out2, out3, VP8_FILTER_SHIFT); + SAT_SH4_SH(out0, out1, out2, out3, 7); + out = PCKEV_XORI128_UB(out0, out1); + ST4x4_UB(out, out, 0, 1, 2, 3, dst, dst_stride); + dst += (4 * dst_stride); + out = PCKEV_XORI128_UB(out2, out3); + ST4x4_UB(out, out, 0, 1, 2, 3, dst, dst_stride); +} + +static void common_hz_4t_4w_msa(uint8_t *RESTRICT src, int32_t src_stride, + uint8_t *RESTRICT dst, int32_t dst_stride, + const int8_t *filter, int32_t height) { + if (4 == height) { + common_hz_4t_4x4_msa(src, src_stride, dst, dst_stride, filter); + } else if (8 == height) { + common_hz_4t_4x8_msa(src, src_stride, dst, dst_stride, filter); + } +} + +static void common_hz_4t_8w_msa(uint8_t *RESTRICT src, int32_t src_stride, + uint8_t *RESTRICT dst, int32_t dst_stride, + const int8_t *filter, int32_t height) { + uint32_t loop_cnt; + v16i8 src0, src1, src2, src3, filt0, filt1, mask0, mask1; + v16u8 tmp0, tmp1; + v8i16 filt, out0, out1, out2, out3; + + mask0 = LD_SB(&vp8_mc_filt_mask_arr[0]); + src -= 1; + + filt = LD_SH(filter); + SPLATI_H2_SB(filt, 0, 1, filt0, filt1); + + mask1 = mask0 + 2; + + for (loop_cnt = (height >> 2); loop_cnt--;) { + LD_SB4(src, src_stride, src0, src1, src2, src3); + src += (4 * src_stride); + + XORI_B4_128_SB(src0, src1, src2, src3); + HORIZ_4TAP_8WID_4VECS_FILT(src0, src1, src2, src3, mask0, mask1, filt0, + filt1, out0, out1, out2, out3); + SRARI_H4_SH(out0, out1, out2, out3, VP8_FILTER_SHIFT); + SAT_SH4_SH(out0, out1, out2, out3, 7); + tmp0 = PCKEV_XORI128_UB(out0, out1); + tmp1 = PCKEV_XORI128_UB(out2, out3); + ST8x4_UB(tmp0, tmp1, dst, dst_stride); + dst += (4 * dst_stride); + } +} + +static void common_hz_4t_16w_msa(uint8_t *RESTRICT src, int32_t src_stride, + uint8_t *RESTRICT dst, int32_t dst_stride, + const int8_t *filter, int32_t height) { + uint32_t loop_cnt; + v16i8 src0, src1, src2, src3, src4, src5, src6, src7; + v16i8 filt0, filt1, mask0, mask1; + v8i16 filt, out0, out1, out2, out3, out4, out5, out6, out7; + v16u8 out; + + mask0 = LD_SB(&vp8_mc_filt_mask_arr[0]); + src -= 1; + + filt = LD_SH(filter); + SPLATI_H2_SB(filt, 0, 1, filt0, filt1); + + mask1 = mask0 + 2; + + for (loop_cnt = (height >> 2); loop_cnt--;) { + LD_SB4(src, src_stride, src0, src2, src4, src6); + LD_SB4(src + 8, src_stride, src1, src3, src5, src7); + src += (4 * src_stride); + + XORI_B8_128_SB(src0, src1, src2, src3, src4, src5, src6, src7); + HORIZ_4TAP_8WID_4VECS_FILT(src0, src1, src2, src3, mask0, mask1, filt0, + filt1, out0, out1, out2, out3); + HORIZ_4TAP_8WID_4VECS_FILT(src4, src5, src6, src7, mask0, mask1, filt0, + filt1, out4, out5, out6, out7); + SRARI_H4_SH(out0, out1, out2, out3, VP8_FILTER_SHIFT); + SRARI_H4_SH(out4, out5, out6, out7, VP8_FILTER_SHIFT); + SAT_SH4_SH(out0, out1, out2, out3, 7); + SAT_SH4_SH(out4, out5, out6, out7, 7); + out = PCKEV_XORI128_UB(out0, out1); + ST_UB(out, dst); + dst += dst_stride; + out = PCKEV_XORI128_UB(out2, out3); + ST_UB(out, dst); + dst += dst_stride; + out = PCKEV_XORI128_UB(out4, out5); + ST_UB(out, dst); + dst += dst_stride; + out = PCKEV_XORI128_UB(out6, out7); + ST_UB(out, dst); + dst += dst_stride; + } +} + +static void common_vt_4t_4w_msa(uint8_t *RESTRICT src, int32_t src_stride, + uint8_t *RESTRICT dst, int32_t dst_stride, + const int8_t *filter, int32_t height) { + uint32_t loop_cnt; + v16i8 src0, src1, src2, src3, src4, src5; + v16i8 src10_r, src32_r, src54_r, src21_r, src43_r, src65_r; + v16i8 src2110, src4332, filt0, filt1; + v8i16 filt, out10, out32; + v16u8 out; + + src -= src_stride; + + filt = LD_SH(filter); + SPLATI_H2_SB(filt, 0, 1, filt0, filt1); + + LD_SB3(src, src_stride, src0, src1, src2); + src += (3 * src_stride); + + ILVR_B2_SB(src1, src0, src2, src1, src10_r, src21_r); + + src2110 = (v16i8)__msa_ilvr_d((v2i64)src21_r, (v2i64)src10_r); + src2110 = (v16i8)__msa_xori_b((v16u8)src2110, 128); + + for (loop_cnt = (height >> 2); loop_cnt--;) { + LD_SB3(src, src_stride, src3, src4, src5); + src += (3 * src_stride); + ILVR_B2_SB(src3, src2, src4, src3, src32_r, src43_r); + src4332 = (v16i8)__msa_ilvr_d((v2i64)src43_r, (v2i64)src32_r); + src4332 = (v16i8)__msa_xori_b((v16u8)src4332, 128); + out10 = FILT_4TAP_DPADD_S_H(src2110, src4332, filt0, filt1); + + src2 = LD_SB(src); + src += (src_stride); + ILVR_B2_SB(src5, src4, src2, src5, src54_r, src65_r); + src2110 = (v16i8)__msa_ilvr_d((v2i64)src65_r, (v2i64)src54_r); + src2110 = (v16i8)__msa_xori_b((v16u8)src2110, 128); + out32 = FILT_4TAP_DPADD_S_H(src4332, src2110, filt0, filt1); + SRARI_H2_SH(out10, out32, VP8_FILTER_SHIFT); + SAT_SH2_SH(out10, out32, 7); + out = PCKEV_XORI128_UB(out10, out32); + ST4x4_UB(out, out, 0, 1, 2, 3, dst, dst_stride); + dst += (4 * dst_stride); + } +} + +static void common_vt_4t_8w_msa(uint8_t *RESTRICT src, int32_t src_stride, + uint8_t *RESTRICT dst, int32_t dst_stride, + const int8_t *filter, int32_t height) { + uint32_t loop_cnt; + v16i8 src0, src1, src2, src7, src8, src9, src10; + v16i8 src10_r, src72_r, src98_r, src21_r, src87_r, src109_r, filt0, filt1; + v16u8 tmp0, tmp1; + v8i16 filt, out0_r, out1_r, out2_r, out3_r; + + src -= src_stride; + + filt = LD_SH(filter); + SPLATI_H2_SB(filt, 0, 1, filt0, filt1); + + LD_SB3(src, src_stride, src0, src1, src2); + src += (3 * src_stride); + + XORI_B3_128_SB(src0, src1, src2); + ILVR_B2_SB(src1, src0, src2, src1, src10_r, src21_r); + + for (loop_cnt = (height >> 2); loop_cnt--;) { + LD_SB4(src, src_stride, src7, src8, src9, src10); + src += (4 * src_stride); + + XORI_B4_128_SB(src7, src8, src9, src10); + ILVR_B4_SB(src7, src2, src8, src7, src9, src8, src10, src9, src72_r, + src87_r, src98_r, src109_r); + out0_r = FILT_4TAP_DPADD_S_H(src10_r, src72_r, filt0, filt1); + out1_r = FILT_4TAP_DPADD_S_H(src21_r, src87_r, filt0, filt1); + out2_r = FILT_4TAP_DPADD_S_H(src72_r, src98_r, filt0, filt1); + out3_r = FILT_4TAP_DPADD_S_H(src87_r, src109_r, filt0, filt1); + SRARI_H4_SH(out0_r, out1_r, out2_r, out3_r, VP8_FILTER_SHIFT); + SAT_SH4_SH(out0_r, out1_r, out2_r, out3_r, 7); + tmp0 = PCKEV_XORI128_UB(out0_r, out1_r); + tmp1 = PCKEV_XORI128_UB(out2_r, out3_r); + ST8x4_UB(tmp0, tmp1, dst, dst_stride); + dst += (4 * dst_stride); + + src10_r = src98_r; + src21_r = src109_r; + src2 = src10; + } +} + +static void common_vt_4t_16w_msa(uint8_t *RESTRICT src, int32_t src_stride, + uint8_t *RESTRICT dst, int32_t dst_stride, + const int8_t *filter, int32_t height) { + uint32_t loop_cnt; + v16i8 src0, src1, src2, src3, src4, src5, src6; + v16i8 src10_r, src32_r, src54_r, src21_r, src43_r, src65_r, src10_l; + v16i8 src32_l, src54_l, src21_l, src43_l, src65_l, filt0, filt1; + v16u8 tmp0, tmp1, tmp2, tmp3; + v8i16 filt, out0_r, out1_r, out2_r, out3_r, out0_l, out1_l, out2_l, out3_l; + + src -= src_stride; + + filt = LD_SH(filter); + SPLATI_H2_SB(filt, 0, 1, filt0, filt1); + + LD_SB3(src, src_stride, src0, src1, src2); + src += (3 * src_stride); + + XORI_B3_128_SB(src0, src1, src2); + ILVR_B2_SB(src1, src0, src2, src1, src10_r, src21_r); + ILVL_B2_SB(src1, src0, src2, src1, src10_l, src21_l); + + for (loop_cnt = (height >> 2); loop_cnt--;) { + LD_SB4(src, src_stride, src3, src4, src5, src6); + src += (4 * src_stride); + + XORI_B4_128_SB(src3, src4, src5, src6); + ILVR_B4_SB(src3, src2, src4, src3, src5, src4, src6, src5, src32_r, src43_r, + src54_r, src65_r); + ILVL_B4_SB(src3, src2, src4, src3, src5, src4, src6, src5, src32_l, src43_l, + src54_l, src65_l); + out0_r = FILT_4TAP_DPADD_S_H(src10_r, src32_r, filt0, filt1); + out1_r = FILT_4TAP_DPADD_S_H(src21_r, src43_r, filt0, filt1); + out2_r = FILT_4TAP_DPADD_S_H(src32_r, src54_r, filt0, filt1); + out3_r = FILT_4TAP_DPADD_S_H(src43_r, src65_r, filt0, filt1); + out0_l = FILT_4TAP_DPADD_S_H(src10_l, src32_l, filt0, filt1); + out1_l = FILT_4TAP_DPADD_S_H(src21_l, src43_l, filt0, filt1); + out2_l = FILT_4TAP_DPADD_S_H(src32_l, src54_l, filt0, filt1); + out3_l = FILT_4TAP_DPADD_S_H(src43_l, src65_l, filt0, filt1); + SRARI_H4_SH(out0_r, out1_r, out2_r, out3_r, VP8_FILTER_SHIFT); + SRARI_H4_SH(out0_l, out1_l, out2_l, out3_l, VP8_FILTER_SHIFT); + SAT_SH4_SH(out0_r, out1_r, out2_r, out3_r, 7); + SAT_SH4_SH(out0_l, out1_l, out2_l, out3_l, 7); + PCKEV_B4_UB(out0_l, out0_r, out1_l, out1_r, out2_l, out2_r, out3_l, out3_r, + tmp0, tmp1, tmp2, tmp3); + XORI_B4_128_UB(tmp0, tmp1, tmp2, tmp3); + ST_UB4(tmp0, tmp1, tmp2, tmp3, dst, dst_stride); + dst += (4 * dst_stride); + + src10_r = src54_r; + src21_r = src65_r; + src10_l = src54_l; + src21_l = src65_l; + src2 = src6; + } +} + +static void common_hv_4ht_4vt_4w_msa(uint8_t *RESTRICT src, int32_t src_stride, + uint8_t *RESTRICT dst, int32_t dst_stride, + const int8_t *filter_horiz, + const int8_t *filter_vert, + int32_t height) { + uint32_t loop_cnt; + v16i8 src0, src1, src2, src3, src4, src5, src6, filt_hz0, filt_hz1; + v16u8 mask0, mask1, out; + v8i16 filt, filt_vt0, filt_vt1, tmp0, tmp1, vec0, vec1, vec2; + v8i16 hz_out0, hz_out1, hz_out2, hz_out3, hz_out4, hz_out5; + + mask0 = LD_UB(&vp8_mc_filt_mask_arr[16]); + src -= (1 + 1 * src_stride); + + filt = LD_SH(filter_horiz); + SPLATI_H2_SB(filt, 0, 1, filt_hz0, filt_hz1); + + mask1 = mask0 + 2; + + LD_SB3(src, src_stride, src0, src1, src2); + src += (3 * src_stride); + + XORI_B3_128_SB(src0, src1, src2); + hz_out0 = HORIZ_4TAP_FILT(src0, src1, mask0, mask1, filt_hz0, filt_hz1); + hz_out1 = HORIZ_4TAP_FILT(src1, src2, mask0, mask1, filt_hz0, filt_hz1); + vec0 = (v8i16)__msa_ilvev_b((v16i8)hz_out1, (v16i8)hz_out0); + + filt = LD_SH(filter_vert); + SPLATI_H2_SH(filt, 0, 1, filt_vt0, filt_vt1); + + for (loop_cnt = (height >> 2); loop_cnt--;) { + LD_SB4(src, src_stride, src3, src4, src5, src6); + src += (4 * src_stride); + + XORI_B2_128_SB(src3, src4); + hz_out3 = HORIZ_4TAP_FILT(src3, src4, mask0, mask1, filt_hz0, filt_hz1); + hz_out2 = (v8i16)__msa_sldi_b((v16i8)hz_out3, (v16i8)hz_out1, 8); + vec1 = (v8i16)__msa_ilvev_b((v16i8)hz_out3, (v16i8)hz_out2); + tmp0 = FILT_4TAP_DPADD_S_H(vec0, vec1, filt_vt0, filt_vt1); + + XORI_B2_128_SB(src5, src6); + hz_out5 = HORIZ_4TAP_FILT(src5, src6, mask0, mask1, filt_hz0, filt_hz1); + hz_out4 = (v8i16)__msa_sldi_b((v16i8)hz_out5, (v16i8)hz_out3, 8); + vec2 = (v8i16)__msa_ilvev_b((v16i8)hz_out5, (v16i8)hz_out4); + tmp1 = FILT_4TAP_DPADD_S_H(vec1, vec2, filt_vt0, filt_vt1); + + SRARI_H2_SH(tmp0, tmp1, 7); + SAT_SH2_SH(tmp0, tmp1, 7); + out = PCKEV_XORI128_UB(tmp0, tmp1); + ST4x4_UB(out, out, 0, 1, 2, 3, dst, dst_stride); + dst += (4 * dst_stride); + + hz_out1 = hz_out5; + vec0 = vec2; + } +} + +static void common_hv_4ht_4vt_8w_msa(uint8_t *RESTRICT src, int32_t src_stride, + uint8_t *RESTRICT dst, int32_t dst_stride, + const int8_t *filter_horiz, + const int8_t *filter_vert, + int32_t height) { + uint32_t loop_cnt; + v16i8 src0, src1, src2, src3, src4, src5, src6, filt_hz0, filt_hz1; + v16u8 mask0, mask1, out0, out1; + v8i16 filt, filt_vt0, filt_vt1, tmp0, tmp1, tmp2, tmp3; + v8i16 hz_out0, hz_out1, hz_out2, hz_out3; + v8i16 vec0, vec1, vec2, vec3, vec4; + + mask0 = LD_UB(&vp8_mc_filt_mask_arr[0]); + src -= (1 + 1 * src_stride); + + filt = LD_SH(filter_horiz); + SPLATI_H2_SB(filt, 0, 1, filt_hz0, filt_hz1); + + mask1 = mask0 + 2; + + LD_SB3(src, src_stride, src0, src1, src2); + src += (3 * src_stride); + + XORI_B3_128_SB(src0, src1, src2); + hz_out0 = HORIZ_4TAP_FILT(src0, src0, mask0, mask1, filt_hz0, filt_hz1); + hz_out1 = HORIZ_4TAP_FILT(src1, src1, mask0, mask1, filt_hz0, filt_hz1); + hz_out2 = HORIZ_4TAP_FILT(src2, src2, mask0, mask1, filt_hz0, filt_hz1); + ILVEV_B2_SH(hz_out0, hz_out1, hz_out1, hz_out2, vec0, vec2); + + filt = LD_SH(filter_vert); + SPLATI_H2_SH(filt, 0, 1, filt_vt0, filt_vt1); + + for (loop_cnt = (height >> 2); loop_cnt--;) { + LD_SB4(src, src_stride, src3, src4, src5, src6); + src += (4 * src_stride); + + XORI_B4_128_SB(src3, src4, src5, src6); + hz_out3 = HORIZ_4TAP_FILT(src3, src3, mask0, mask1, filt_hz0, filt_hz1); + vec1 = (v8i16)__msa_ilvev_b((v16i8)hz_out3, (v16i8)hz_out2); + tmp0 = FILT_4TAP_DPADD_S_H(vec0, vec1, filt_vt0, filt_vt1); + + hz_out0 = HORIZ_4TAP_FILT(src4, src4, mask0, mask1, filt_hz0, filt_hz1); + vec3 = (v8i16)__msa_ilvev_b((v16i8)hz_out0, (v16i8)hz_out3); + tmp1 = FILT_4TAP_DPADD_S_H(vec2, vec3, filt_vt0, filt_vt1); + + hz_out1 = HORIZ_4TAP_FILT(src5, src5, mask0, mask1, filt_hz0, filt_hz1); + vec4 = (v8i16)__msa_ilvev_b((v16i8)hz_out1, (v16i8)hz_out0); + tmp2 = FILT_4TAP_DPADD_S_H(vec1, vec4, filt_vt0, filt_vt1); + + hz_out2 = HORIZ_4TAP_FILT(src6, src6, mask0, mask1, filt_hz0, filt_hz1); + ILVEV_B2_SH(hz_out3, hz_out0, hz_out1, hz_out2, vec0, vec1); + tmp3 = FILT_4TAP_DPADD_S_H(vec0, vec1, filt_vt0, filt_vt1); + + SRARI_H4_SH(tmp0, tmp1, tmp2, tmp3, 7); + SAT_SH4_SH(tmp0, tmp1, tmp2, tmp3, 7); + out0 = PCKEV_XORI128_UB(tmp0, tmp1); + out1 = PCKEV_XORI128_UB(tmp2, tmp3); + ST8x4_UB(out0, out1, dst, dst_stride); + dst += (4 * dst_stride); + + vec0 = vec4; + vec2 = vec1; + } +} + +static void common_hv_4ht_4vt_16w_msa(uint8_t *RESTRICT src, int32_t src_stride, + uint8_t *RESTRICT dst, int32_t dst_stride, + const int8_t *filter_horiz, + const int8_t *filter_vert, + int32_t height) { + int32_t multiple8_cnt; + for (multiple8_cnt = 2; multiple8_cnt--;) { + common_hv_4ht_4vt_8w_msa(src, src_stride, dst, dst_stride, filter_horiz, + filter_vert, height); + src += 8; + dst += 8; + } +} + +static void common_hv_6ht_4vt_4w_msa(uint8_t *RESTRICT src, int32_t src_stride, + uint8_t *RESTRICT dst, int32_t dst_stride, + const int8_t *filter_horiz, + const int8_t *filter_vert, + int32_t height) { + uint32_t loop_cnt; + v16i8 src0, src1, src2, src3, src4, src5, src6; + v16i8 filt_hz0, filt_hz1, filt_hz2; + v16u8 res0, res1, mask0, mask1, mask2; + v8i16 filt, filt_vt0, filt_vt1, tmp0, tmp1, vec0, vec1, vec2; + v8i16 hz_out0, hz_out1, hz_out2, hz_out3, hz_out4, hz_out5; + + mask0 = LD_UB(&vp8_mc_filt_mask_arr[16]); + src -= (2 + 1 * src_stride); + + filt = LD_SH(filter_horiz); + SPLATI_H3_SB(filt, 0, 1, 2, filt_hz0, filt_hz1, filt_hz2); + + mask1 = mask0 + 2; + mask2 = mask0 + 4; + + LD_SB3(src, src_stride, src0, src1, src2); + src += (3 * src_stride); + + XORI_B3_128_SB(src0, src1, src2); + hz_out0 = HORIZ_6TAP_FILT(src0, src1, mask0, mask1, mask2, filt_hz0, filt_hz1, + filt_hz2); + hz_out1 = HORIZ_6TAP_FILT(src1, src2, mask0, mask1, mask2, filt_hz0, filt_hz1, + filt_hz2); + vec0 = (v8i16)__msa_ilvev_b((v16i8)hz_out1, (v16i8)hz_out0); + + filt = LD_SH(filter_vert); + SPLATI_H2_SH(filt, 0, 1, filt_vt0, filt_vt1); + + for (loop_cnt = (height >> 2); loop_cnt--;) { + LD_SB4(src, src_stride, src3, src4, src5, src6); + src += (4 * src_stride); + + XORI_B4_128_SB(src3, src4, src5, src6); + hz_out3 = HORIZ_6TAP_FILT(src3, src4, mask0, mask1, mask2, filt_hz0, + filt_hz1, filt_hz2); + hz_out2 = (v8i16)__msa_sldi_b((v16i8)hz_out3, (v16i8)hz_out1, 8); + vec1 = (v8i16)__msa_ilvev_b((v16i8)hz_out3, (v16i8)hz_out2); + tmp0 = FILT_4TAP_DPADD_S_H(vec0, vec1, filt_vt0, filt_vt1); + + hz_out5 = HORIZ_6TAP_FILT(src5, src6, mask0, mask1, mask2, filt_hz0, + filt_hz1, filt_hz2); + hz_out4 = (v8i16)__msa_sldi_b((v16i8)hz_out5, (v16i8)hz_out3, 8); + vec2 = (v8i16)__msa_ilvev_b((v16i8)hz_out5, (v16i8)hz_out4); + tmp1 = FILT_4TAP_DPADD_S_H(vec1, vec2, filt_vt0, filt_vt1); + + SRARI_H2_SH(tmp0, tmp1, 7); + SAT_SH2_SH(tmp0, tmp1, 7); + PCKEV_B2_UB(tmp0, tmp0, tmp1, tmp1, res0, res1); + XORI_B2_128_UB(res0, res1); + ST4x4_UB(res0, res1, 0, 1, 0, 1, dst, dst_stride); + dst += (4 * dst_stride); + + hz_out1 = hz_out5; + vec0 = vec2; + } +} + +static void common_hv_6ht_4vt_8w_msa(uint8_t *RESTRICT src, int32_t src_stride, + uint8_t *RESTRICT dst, int32_t dst_stride, + const int8_t *filter_horiz, + const int8_t *filter_vert, + int32_t height) { + uint32_t loop_cnt; + v16i8 src0, src1, src2, src3, src4, src5, src6; + v16i8 filt_hz0, filt_hz1, filt_hz2, mask0, mask1, mask2; + v8i16 filt, filt_vt0, filt_vt1, hz_out0, hz_out1, hz_out2, hz_out3; + v8i16 tmp0, tmp1, tmp2, tmp3, vec0, vec1, vec2, vec3; + v16u8 out0, out1; + + mask0 = LD_SB(&vp8_mc_filt_mask_arr[0]); + src -= (2 + src_stride); + + filt = LD_SH(filter_horiz); + SPLATI_H3_SB(filt, 0, 1, 2, filt_hz0, filt_hz1, filt_hz2); + + mask1 = mask0 + 2; + mask2 = mask0 + 4; + + LD_SB3(src, src_stride, src0, src1, src2); + src += (3 * src_stride); + + XORI_B3_128_SB(src0, src1, src2); + hz_out0 = HORIZ_6TAP_FILT(src0, src0, mask0, mask1, mask2, filt_hz0, filt_hz1, + filt_hz2); + hz_out1 = HORIZ_6TAP_FILT(src1, src1, mask0, mask1, mask2, filt_hz0, filt_hz1, + filt_hz2); + hz_out2 = HORIZ_6TAP_FILT(src2, src2, mask0, mask1, mask2, filt_hz0, filt_hz1, + filt_hz2); + ILVEV_B2_SH(hz_out0, hz_out1, hz_out1, hz_out2, vec0, vec2); + + filt = LD_SH(filter_vert); + SPLATI_H2_SH(filt, 0, 1, filt_vt0, filt_vt1); + + for (loop_cnt = (height >> 2); loop_cnt--;) { + LD_SB4(src, src_stride, src3, src4, src5, src6); + src += (4 * src_stride); + + XORI_B4_128_SB(src3, src4, src5, src6); + + hz_out3 = HORIZ_6TAP_FILT(src3, src3, mask0, mask1, mask2, filt_hz0, + filt_hz1, filt_hz2); + vec1 = (v8i16)__msa_ilvev_b((v16i8)hz_out3, (v16i8)hz_out2); + tmp0 = FILT_4TAP_DPADD_S_H(vec0, vec1, filt_vt0, filt_vt1); + + hz_out0 = HORIZ_6TAP_FILT(src4, src4, mask0, mask1, mask2, filt_hz0, + filt_hz1, filt_hz2); + vec3 = (v8i16)__msa_ilvev_b((v16i8)hz_out0, (v16i8)hz_out3); + tmp1 = FILT_4TAP_DPADD_S_H(vec2, vec3, filt_vt0, filt_vt1); + + hz_out1 = HORIZ_6TAP_FILT(src5, src5, mask0, mask1, mask2, filt_hz0, + filt_hz1, filt_hz2); + vec0 = (v8i16)__msa_ilvev_b((v16i8)hz_out1, (v16i8)hz_out0); + tmp2 = FILT_4TAP_DPADD_S_H(vec1, vec0, filt_vt0, filt_vt1); + + hz_out2 = HORIZ_6TAP_FILT(src6, src6, mask0, mask1, mask2, filt_hz0, + filt_hz1, filt_hz2); + ILVEV_B2_SH(hz_out3, hz_out0, hz_out1, hz_out2, vec1, vec2); + tmp3 = FILT_4TAP_DPADD_S_H(vec1, vec2, filt_vt0, filt_vt1); + + SRARI_H4_SH(tmp0, tmp1, tmp2, tmp3, 7); + SAT_SH4_SH(tmp0, tmp1, tmp2, tmp3, 7); + out0 = PCKEV_XORI128_UB(tmp0, tmp1); + out1 = PCKEV_XORI128_UB(tmp2, tmp3); + ST8x4_UB(out0, out1, dst, dst_stride); + dst += (4 * dst_stride); + } +} + +static void common_hv_6ht_4vt_16w_msa(uint8_t *RESTRICT src, int32_t src_stride, + uint8_t *RESTRICT dst, int32_t dst_stride, + const int8_t *filter_horiz, + const int8_t *filter_vert, + int32_t height) { + int32_t multiple8_cnt; + for (multiple8_cnt = 2; multiple8_cnt--;) { + common_hv_6ht_4vt_8w_msa(src, src_stride, dst, dst_stride, filter_horiz, + filter_vert, height); + src += 8; + dst += 8; + } +} + +static void common_hv_4ht_6vt_4w_msa(uint8_t *RESTRICT src, int32_t src_stride, + uint8_t *RESTRICT dst, int32_t dst_stride, + const int8_t *filter_horiz, + const int8_t *filter_vert, + int32_t height) { + uint32_t loop_cnt; + v16i8 src0, src1, src2, src3, src4, src5, src6, src7, src8; + v16i8 filt_hz0, filt_hz1, mask0, mask1; + v16u8 out; + v8i16 hz_out0, hz_out1, hz_out2, hz_out3, hz_out4, hz_out5, hz_out6; + v8i16 hz_out7, tmp0, tmp1, out0, out1, out2, out3; + v8i16 filt, filt_vt0, filt_vt1, filt_vt2; + + mask0 = LD_SB(&vp8_mc_filt_mask_arr[16]); + + src -= (1 + 2 * src_stride); + + filt = LD_SH(filter_horiz); + SPLATI_H2_SB(filt, 0, 1, filt_hz0, filt_hz1); + + mask1 = mask0 + 2; + + LD_SB5(src, src_stride, src0, src1, src2, src3, src4); + src += (5 * src_stride); + + XORI_B5_128_SB(src0, src1, src2, src3, src4); + hz_out0 = HORIZ_4TAP_FILT(src0, src1, mask0, mask1, filt_hz0, filt_hz1); + hz_out2 = HORIZ_4TAP_FILT(src2, src3, mask0, mask1, filt_hz0, filt_hz1); + hz_out3 = HORIZ_4TAP_FILT(src3, src4, mask0, mask1, filt_hz0, filt_hz1); + hz_out1 = (v8i16)__msa_sldi_b((v16i8)hz_out2, (v16i8)hz_out0, 8); + ILVEV_B2_SH(hz_out0, hz_out1, hz_out2, hz_out3, out0, out1); + + filt = LD_SH(filter_vert); + SPLATI_H3_SH(filt, 0, 1, 2, filt_vt0, filt_vt1, filt_vt2); + + for (loop_cnt = (height >> 2); loop_cnt--;) { + LD_SB4(src, src_stride, src5, src6, src7, src8); + XORI_B4_128_SB(src5, src6, src7, src8); + src += (4 * src_stride); + + hz_out5 = HORIZ_4TAP_FILT(src5, src6, mask0, mask1, filt_hz0, filt_hz1); + hz_out4 = (v8i16)__msa_sldi_b((v16i8)hz_out5, (v16i8)hz_out3, 8); + out2 = (v8i16)__msa_ilvev_b((v16i8)hz_out5, (v16i8)hz_out4); + tmp0 = DPADD_SH3_SH(out0, out1, out2, filt_vt0, filt_vt1, filt_vt2); + + hz_out7 = HORIZ_4TAP_FILT(src7, src8, mask0, mask1, filt_hz0, filt_hz1); + hz_out6 = (v8i16)__msa_sldi_b((v16i8)hz_out7, (v16i8)hz_out5, 8); + out3 = (v8i16)__msa_ilvev_b((v16i8)hz_out7, (v16i8)hz_out6); + tmp1 = DPADD_SH3_SH(out1, out2, out3, filt_vt0, filt_vt1, filt_vt2); + + SRARI_H2_SH(tmp0, tmp1, 7); + SAT_SH2_SH(tmp0, tmp1, 7); + out = PCKEV_XORI128_UB(tmp0, tmp1); + ST4x4_UB(out, out, 0, 1, 2, 3, dst, dst_stride); + dst += (4 * dst_stride); + + hz_out3 = hz_out7; + out0 = out2; + out1 = out3; + } +} + +static void common_hv_4ht_6vt_8w_msa(uint8_t *RESTRICT src, int32_t src_stride, + uint8_t *RESTRICT dst, int32_t dst_stride, + const int8_t *filter_horiz, + const int8_t *filter_vert, + int32_t height) { + uint32_t loop_cnt; + v16i8 src0, src1, src2, src3, src4, src5, src6, src7, src8; + v16i8 filt_hz0, filt_hz1, mask0, mask1; + v8i16 filt, filt_vt0, filt_vt1, filt_vt2, tmp0, tmp1, tmp2, tmp3; + v8i16 hz_out0, hz_out1, hz_out2, hz_out3, hz_out4, hz_out5, hz_out6; + v8i16 hz_out7, hz_out8, out0, out1, out2, out3, out4, out5, out6, out7; + v16u8 vec0, vec1; + + mask0 = LD_SB(&vp8_mc_filt_mask_arr[0]); + src -= (1 + 2 * src_stride); + + filt = LD_SH(filter_horiz); + SPLATI_H2_SB(filt, 0, 1, filt_hz0, filt_hz1); + + mask1 = mask0 + 2; + + LD_SB5(src, src_stride, src0, src1, src2, src3, src4); + src += (5 * src_stride); + + XORI_B5_128_SB(src0, src1, src2, src3, src4); + hz_out0 = HORIZ_4TAP_FILT(src0, src0, mask0, mask1, filt_hz0, filt_hz1); + hz_out1 = HORIZ_4TAP_FILT(src1, src1, mask0, mask1, filt_hz0, filt_hz1); + hz_out2 = HORIZ_4TAP_FILT(src2, src2, mask0, mask1, filt_hz0, filt_hz1); + hz_out3 = HORIZ_4TAP_FILT(src3, src3, mask0, mask1, filt_hz0, filt_hz1); + hz_out4 = HORIZ_4TAP_FILT(src4, src4, mask0, mask1, filt_hz0, filt_hz1); + ILVEV_B2_SH(hz_out0, hz_out1, hz_out2, hz_out3, out0, out1); + ILVEV_B2_SH(hz_out1, hz_out2, hz_out3, hz_out4, out3, out4); + + filt = LD_SH(filter_vert); + SPLATI_H3_SH(filt, 0, 1, 2, filt_vt0, filt_vt1, filt_vt2); + + for (loop_cnt = (height >> 2); loop_cnt--;) { + LD_SB4(src, src_stride, src5, src6, src7, src8); + src += (4 * src_stride); + + XORI_B4_128_SB(src5, src6, src7, src8); + + hz_out5 = HORIZ_4TAP_FILT(src5, src5, mask0, mask1, filt_hz0, filt_hz1); + out2 = (v8i16)__msa_ilvev_b((v16i8)hz_out5, (v16i8)hz_out4); + tmp0 = DPADD_SH3_SH(out0, out1, out2, filt_vt0, filt_vt1, filt_vt2); + + hz_out6 = HORIZ_4TAP_FILT(src6, src6, mask0, mask1, filt_hz0, filt_hz1); + out5 = (v8i16)__msa_ilvev_b((v16i8)hz_out6, (v16i8)hz_out5); + tmp1 = DPADD_SH3_SH(out3, out4, out5, filt_vt0, filt_vt1, filt_vt2); + + hz_out7 = HORIZ_4TAP_FILT(src7, src7, mask0, mask1, filt_hz0, filt_hz1); + out6 = (v8i16)__msa_ilvev_b((v16i8)hz_out7, (v16i8)hz_out6); + tmp2 = DPADD_SH3_SH(out1, out2, out6, filt_vt0, filt_vt1, filt_vt2); + + hz_out8 = HORIZ_4TAP_FILT(src8, src8, mask0, mask1, filt_hz0, filt_hz1); + out7 = (v8i16)__msa_ilvev_b((v16i8)hz_out8, (v16i8)hz_out7); + tmp3 = DPADD_SH3_SH(out4, out5, out7, filt_vt0, filt_vt1, filt_vt2); + + SRARI_H4_SH(tmp0, tmp1, tmp2, tmp3, 7); + SAT_SH4_SH(tmp0, tmp1, tmp2, tmp3, 7); + vec0 = PCKEV_XORI128_UB(tmp0, tmp1); + vec1 = PCKEV_XORI128_UB(tmp2, tmp3); + ST8x4_UB(vec0, vec1, dst, dst_stride); + dst += (4 * dst_stride); + + hz_out4 = hz_out8; + out0 = out2; + out1 = out6; + out3 = out5; + out4 = out7; + } +} + +static void common_hv_4ht_6vt_16w_msa(uint8_t *RESTRICT src, int32_t src_stride, + uint8_t *RESTRICT dst, int32_t dst_stride, + const int8_t *filter_horiz, + const int8_t *filter_vert, + int32_t height) { + int32_t multiple8_cnt; + for (multiple8_cnt = 2; multiple8_cnt--;) { + common_hv_4ht_6vt_8w_msa(src, src_stride, dst, dst_stride, filter_horiz, + filter_vert, height); + src += 8; + dst += 8; + } +} + +void vp8_sixtap_predict4x4_msa(uint8_t *RESTRICT src, int32_t src_stride, + int32_t xoffset, int32_t yoffset, + uint8_t *RESTRICT dst, int32_t dst_stride) { + const int8_t *h_filter = vp8_subpel_filters_msa[xoffset - 1]; + const int8_t *v_filter = vp8_subpel_filters_msa[yoffset - 1]; + + if (yoffset) { + if (xoffset) { + switch (xoffset) { + case 2: + case 4: + case 6: + switch (yoffset) { + case 2: + case 4: + case 6: + common_hv_6ht_6vt_4w_msa(src, src_stride, dst, dst_stride, + h_filter, v_filter, 4); + break; + + case 1: + case 3: + case 5: + case 7: + common_hv_6ht_4vt_4w_msa(src, src_stride, dst, dst_stride, + h_filter, v_filter + 1, 4); + break; + } + break; + + case 1: + case 3: + case 5: + case 7: + switch (yoffset) { + case 2: + case 4: + case 6: + common_hv_4ht_6vt_4w_msa(src, src_stride, dst, dst_stride, + h_filter + 1, v_filter, 4); + break; + + case 1: + case 3: + case 5: + case 7: + common_hv_4ht_4vt_4w_msa(src, src_stride, dst, dst_stride, + h_filter + 1, v_filter + 1, 4); + break; + } + break; + } + } else { + switch (yoffset) { + case 2: + case 4: + case 6: + common_vt_6t_4w_msa(src, src_stride, dst, dst_stride, v_filter, 4); + break; + + case 1: + case 3: + case 5: + case 7: + common_vt_4t_4w_msa(src, src_stride, dst, dst_stride, v_filter + 1, + 4); + break; + } + } + } else { + switch (xoffset) { + case 0: { + uint32_t tp0, tp1, tp2, tp3; + + LW4(src, src_stride, tp0, tp1, tp2, tp3); + SW4(tp0, tp1, tp2, tp3, dst, dst_stride); + break; + } + case 2: + case 4: + case 6: + common_hz_6t_4w_msa(src, src_stride, dst, dst_stride, h_filter, 4); + break; + + case 1: + case 3: + case 5: + case 7: + common_hz_4t_4w_msa(src, src_stride, dst, dst_stride, h_filter + 1, 4); + break; + } + } +} + +void vp8_sixtap_predict8x4_msa(uint8_t *RESTRICT src, int32_t src_stride, + int32_t xoffset, int32_t yoffset, + uint8_t *RESTRICT dst, int32_t dst_stride) { + const int8_t *h_filter = vp8_subpel_filters_msa[xoffset - 1]; + const int8_t *v_filter = vp8_subpel_filters_msa[yoffset - 1]; + + if (yoffset) { + if (xoffset) { + switch (xoffset) { + case 2: + case 4: + case 6: + switch (yoffset) { + case 2: + case 4: + case 6: + common_hv_6ht_6vt_8w_msa(src, src_stride, dst, dst_stride, + h_filter, v_filter, 4); + break; + + case 1: + case 3: + case 5: + case 7: + common_hv_6ht_4vt_8w_msa(src, src_stride, dst, dst_stride, + h_filter, v_filter + 1, 4); + break; + } + break; + + case 1: + case 3: + case 5: + case 7: + switch (yoffset) { + case 2: + case 4: + case 6: + common_hv_4ht_6vt_8w_msa(src, src_stride, dst, dst_stride, + h_filter + 1, v_filter, 4); + break; + + case 1: + case 3: + case 5: + case 7: + common_hv_4ht_4vt_8w_msa(src, src_stride, dst, dst_stride, + h_filter + 1, v_filter + 1, 4); + break; + } + break; + } + } else { + switch (yoffset) { + case 2: + case 4: + case 6: + common_vt_6t_8w_msa(src, src_stride, dst, dst_stride, v_filter, 4); + break; + + case 1: + case 3: + case 5: + case 7: + common_vt_4t_8w_msa(src, src_stride, dst, dst_stride, v_filter + 1, + 4); + break; + } + } + } else { + switch (xoffset) { + case 0: vp8_copy_mem8x4(src, src_stride, dst, dst_stride); break; + case 2: + case 4: + case 6: + common_hz_6t_8w_msa(src, src_stride, dst, dst_stride, h_filter, 4); + break; + + case 1: + case 3: + case 5: + case 7: + common_hz_4t_8w_msa(src, src_stride, dst, dst_stride, h_filter + 1, 4); + break; + } + } +} + +void vp8_sixtap_predict8x8_msa(uint8_t *RESTRICT src, int32_t src_stride, + int32_t xoffset, int32_t yoffset, + uint8_t *RESTRICT dst, int32_t dst_stride) { + const int8_t *h_filter = vp8_subpel_filters_msa[xoffset - 1]; + const int8_t *v_filter = vp8_subpel_filters_msa[yoffset - 1]; + + if (yoffset) { + if (xoffset) { + switch (xoffset) { + case 2: + case 4: + case 6: + switch (yoffset) { + case 2: + case 4: + case 6: + common_hv_6ht_6vt_8w_msa(src, src_stride, dst, dst_stride, + h_filter, v_filter, 8); + break; + + case 1: + case 3: + case 5: + case 7: + common_hv_6ht_4vt_8w_msa(src, src_stride, dst, dst_stride, + h_filter, v_filter + 1, 8); + break; + } + break; + + case 1: + case 3: + case 5: + case 7: + switch (yoffset) { + case 2: + case 4: + case 6: + common_hv_4ht_6vt_8w_msa(src, src_stride, dst, dst_stride, + h_filter + 1, v_filter, 8); + break; + + case 1: + case 3: + case 5: + case 7: + common_hv_4ht_4vt_8w_msa(src, src_stride, dst, dst_stride, + h_filter + 1, v_filter + 1, 8); + break; + } + break; + } + } else { + switch (yoffset) { + case 2: + case 4: + case 6: + common_vt_6t_8w_msa(src, src_stride, dst, dst_stride, v_filter, 8); + break; + + case 1: + case 3: + case 5: + case 7: + common_vt_4t_8w_msa(src, src_stride, dst, dst_stride, v_filter + 1, + 8); + break; + } + } + } else { + switch (xoffset) { + case 0: vp8_copy_mem8x8(src, src_stride, dst, dst_stride); break; + case 2: + case 4: + case 6: + common_hz_6t_8w_msa(src, src_stride, dst, dst_stride, h_filter, 8); + break; + + case 1: + case 3: + case 5: + case 7: + common_hz_4t_8w_msa(src, src_stride, dst, dst_stride, h_filter + 1, 8); + break; + } + } +} + +void vp8_sixtap_predict16x16_msa(uint8_t *RESTRICT src, int32_t src_stride, + int32_t xoffset, int32_t yoffset, + uint8_t *RESTRICT dst, int32_t dst_stride) { + const int8_t *h_filter = vp8_subpel_filters_msa[xoffset - 1]; + const int8_t *v_filter = vp8_subpel_filters_msa[yoffset - 1]; + + if (yoffset) { + if (xoffset) { + switch (xoffset) { + case 2: + case 4: + case 6: + switch (yoffset) { + case 2: + case 4: + case 6: + common_hv_6ht_6vt_16w_msa(src, src_stride, dst, dst_stride, + h_filter, v_filter, 16); + break; + + case 1: + case 3: + case 5: + case 7: + common_hv_6ht_4vt_16w_msa(src, src_stride, dst, dst_stride, + h_filter, v_filter + 1, 16); + break; + } + break; + + case 1: + case 3: + case 5: + case 7: + switch (yoffset) { + case 2: + case 4: + case 6: + common_hv_4ht_6vt_16w_msa(src, src_stride, dst, dst_stride, + h_filter + 1, v_filter, 16); + break; + + case 1: + case 3: + case 5: + case 7: + common_hv_4ht_4vt_16w_msa(src, src_stride, dst, dst_stride, + h_filter + 1, v_filter + 1, 16); + break; + } + break; + } + } else { + switch (yoffset) { + case 2: + case 4: + case 6: + common_vt_6t_16w_msa(src, src_stride, dst, dst_stride, v_filter, 16); + break; + + case 1: + case 3: + case 5: + case 7: + common_vt_4t_16w_msa(src, src_stride, dst, dst_stride, v_filter + 1, + 16); + break; + } + } + } else { + switch (xoffset) { + case 0: vp8_copy_mem16x16(src, src_stride, dst, dst_stride); break; + case 2: + case 4: + case 6: + common_hz_6t_16w_msa(src, src_stride, dst, dst_stride, h_filter, 16); + break; + + case 1: + case 3: + case 5: + case 7: + common_hz_4t_16w_msa(src, src_stride, dst, dst_stride, h_filter + 1, + 16); + break; + } + } +} diff --git a/vp8/common/mips/msa/vp8_macros_msa.h b/vp8/common/mips/msa/vp8_macros_msa.h new file mode 100644 index 0000000..6bec3ad --- /dev/null +++ b/vp8/common/mips/msa/vp8_macros_msa.h @@ -0,0 +1,1760 @@ +/* + * Copyright (c) 2015 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP8_COMMON_MIPS_MSA_VP8_MACROS_MSA_H_ +#define VP8_COMMON_MIPS_MSA_VP8_MACROS_MSA_H_ + +#include + +#include "./vpx_config.h" +#include "vpx/vpx_integer.h" + +#define LD_B(RTYPE, psrc) *((const RTYPE *)(psrc)) +#define LD_UB(...) LD_B(v16u8, __VA_ARGS__) +#define LD_SB(...) LD_B(v16i8, __VA_ARGS__) + +#define LD_H(RTYPE, psrc) *((const RTYPE *)(psrc)) +#define LD_UH(...) LD_H(v8u16, __VA_ARGS__) +#define LD_SH(...) LD_H(v8i16, __VA_ARGS__) + +#define LD_W(RTYPE, psrc) *((const RTYPE *)(psrc)) +#define LD_UW(...) LD_W(v4u32, __VA_ARGS__) +#define LD_SW(...) LD_W(v4i32, __VA_ARGS__) + +#define ST_B(RTYPE, in, pdst) *((RTYPE *)(pdst)) = (in) +#define ST_UB(...) ST_B(v16u8, __VA_ARGS__) +#define ST_SB(...) ST_B(v16i8, __VA_ARGS__) + +#define ST_H(RTYPE, in, pdst) *((RTYPE *)(pdst)) = (in) +#define ST_UH(...) ST_H(v8u16, __VA_ARGS__) +#define ST_SH(...) ST_H(v8i16, __VA_ARGS__) + +#define ST_W(RTYPE, in, pdst) *((RTYPE *)(pdst)) = (in) +#define ST_SW(...) ST_W(v4i32, __VA_ARGS__) + +#if (__mips_isa_rev >= 6) +#define LW(psrc) \ + ({ \ + const uint8_t *psrc_m = (const uint8_t *)(psrc); \ + uint32_t val_m; \ + \ + asm volatile("lw %[val_m], %[psrc_m] \n\t" \ + \ + : [val_m] "=r"(val_m) \ + : [psrc_m] "m"(*psrc_m)); \ + \ + val_m; \ + }) + +#if (__mips == 64) +#define LD(psrc) \ + ({ \ + const uint8_t *psrc_m = (const uint8_t *)(psrc); \ + uint64_t val_m = 0; \ + \ + asm volatile("ld %[val_m], %[psrc_m] \n\t" \ + \ + : [val_m] "=r"(val_m) \ + : [psrc_m] "m"(*psrc_m)); \ + \ + val_m; \ + }) +#else // !(__mips == 64) +#define LD(psrc) \ + ({ \ + const uint8_t *psrc_m = (const uint8_t *)(psrc); \ + uint32_t val0_m, val1_m; \ + uint64_t val_m = 0; \ + \ + val0_m = LW(psrc_m); \ + val1_m = LW(psrc_m + 4); \ + \ + val_m = (uint64_t)(val1_m); \ + val_m = (uint64_t)((val_m << 32) & 0xFFFFFFFF00000000); \ + val_m = (uint64_t)(val_m | (uint64_t)val0_m); \ + \ + val_m; \ + }) +#endif // (__mips == 64) + +#define SH(val, pdst) \ + { \ + uint8_t *pdst_m = (uint8_t *)(pdst); \ + const uint16_t val_m = (val); \ + \ + asm volatile("sh %[val_m], %[pdst_m] \n\t" \ + \ + : [pdst_m] "=m"(*pdst_m) \ + : [val_m] "r"(val_m)); \ + } + +#define SW(val, pdst) \ + { \ + uint8_t *pdst_m = (uint8_t *)(pdst); \ + const uint32_t val_m = (val); \ + \ + asm volatile("sw %[val_m], %[pdst_m] \n\t" \ + \ + : [pdst_m] "=m"(*pdst_m) \ + : [val_m] "r"(val_m)); \ + } + +#define SD(val, pdst) \ + { \ + uint8_t *pdst_m = (uint8_t *)(pdst); \ + const uint64_t val_m = (val); \ + \ + asm volatile("sd %[val_m], %[pdst_m] \n\t" \ + \ + : [pdst_m] "=m"(*pdst_m) \ + : [val_m] "r"(val_m)); \ + } +#else // !(__mips_isa_rev >= 6) +#define LW(psrc) \ + ({ \ + const uint8_t *psrc_m = (const uint8_t *)(psrc); \ + uint32_t val_m; \ + \ + asm volatile("ulw %[val_m], %[psrc_m] \n\t" \ + \ + : [val_m] "=r"(val_m) \ + : [psrc_m] "m"(*psrc_m)); \ + \ + val_m; \ + }) + +#if (__mips == 64) +#define LD(psrc) \ + ({ \ + const uint8_t *psrc_m = (const uint8_t *)(psrc); \ + uint64_t val_m = 0; \ + \ + asm volatile("uld %[val_m], %[psrc_m] \n\t" \ + \ + : [val_m] "=r"(val_m) \ + : [psrc_m] "m"(*psrc_m)); \ + \ + val_m; \ + }) +#else // !(__mips == 64) +#define LD(psrc) \ + ({ \ + const uint8_t *psrc_m1 = (const uint8_t *)(psrc); \ + uint32_t val0_m, val1_m; \ + uint64_t val_m = 0; \ + \ + val0_m = LW(psrc_m1); \ + val1_m = LW(psrc_m1 + 4); \ + \ + val_m = (uint64_t)(val1_m); \ + val_m = (uint64_t)((val_m << 32) & 0xFFFFFFFF00000000); \ + val_m = (uint64_t)(val_m | (uint64_t)val0_m); \ + \ + val_m; \ + }) +#endif // (__mips == 64) +#define SH(val, pdst) \ + { \ + uint8_t *pdst_m = (uint8_t *)(pdst); \ + const uint16_t val_m = (val); \ + \ + asm volatile("ush %[val_m], %[pdst_m] \n\t" \ + \ + : [pdst_m] "=m"(*pdst_m) \ + : [val_m] "r"(val_m)); \ + } + +#define SW(val, pdst) \ + { \ + uint8_t *pdst_m = (uint8_t *)(pdst); \ + const uint32_t val_m = (val); \ + \ + asm volatile("usw %[val_m], %[pdst_m] \n\t" \ + \ + : [pdst_m] "=m"(*pdst_m) \ + : [val_m] "r"(val_m)); \ + } + +#define SD(val, pdst) \ + { \ + uint8_t *pdst_m1 = (uint8_t *)(pdst); \ + uint32_t val0_m, val1_m; \ + \ + val0_m = (uint32_t)((val)&0x00000000FFFFFFFF); \ + val1_m = (uint32_t)(((val) >> 32) & 0x00000000FFFFFFFF); \ + \ + SW(val0_m, pdst_m1); \ + SW(val1_m, pdst_m1 + 4); \ + } +#endif // (__mips_isa_rev >= 6) + +/* Description : Load 4 words with stride + Arguments : Inputs - psrc, stride + Outputs - out0, out1, out2, out3 + Details : Load word in 'out0' from (psrc) + Load word in 'out1' from (psrc + stride) + Load word in 'out2' from (psrc + 2 * stride) + Load word in 'out3' from (psrc + 3 * stride) +*/ +#define LW4(psrc, stride, out0, out1, out2, out3) \ + { \ + out0 = LW((psrc)); \ + out1 = LW((psrc) + stride); \ + out2 = LW((psrc) + 2 * stride); \ + out3 = LW((psrc) + 3 * stride); \ + } + +/* Description : Load double words with stride + Arguments : Inputs - psrc, stride + Outputs - out0, out1 + Details : Load double word in 'out0' from (psrc) + Load double word in 'out1' from (psrc + stride) +*/ +#define LD2(psrc, stride, out0, out1) \ + { \ + out0 = LD((psrc)); \ + out1 = LD((psrc) + stride); \ + } +#define LD4(psrc, stride, out0, out1, out2, out3) \ + { \ + LD2((psrc), stride, out0, out1); \ + LD2((psrc) + 2 * stride, stride, out2, out3); \ + } + +/* Description : Store 4 words with stride + Arguments : Inputs - in0, in1, in2, in3, pdst, stride + Details : Store word from 'in0' to (pdst) + Store word from 'in1' to (pdst + stride) + Store word from 'in2' to (pdst + 2 * stride) + Store word from 'in3' to (pdst + 3 * stride) +*/ +#define SW4(in0, in1, in2, in3, pdst, stride) \ + { \ + SW(in0, (pdst)); \ + SW(in1, (pdst) + stride); \ + SW(in2, (pdst) + 2 * stride); \ + SW(in3, (pdst) + 3 * stride); \ + } + +/* Description : Store 4 double words with stride + Arguments : Inputs - in0, in1, in2, in3, pdst, stride + Details : Store double word from 'in0' to (pdst) + Store double word from 'in1' to (pdst + stride) + Store double word from 'in2' to (pdst + 2 * stride) + Store double word from 'in3' to (pdst + 3 * stride) +*/ +#define SD4(in0, in1, in2, in3, pdst, stride) \ + { \ + SD(in0, (pdst)); \ + SD(in1, (pdst) + stride); \ + SD(in2, (pdst) + 2 * stride); \ + SD(in3, (pdst) + 3 * stride); \ + } + +/* Description : Load vectors with 16 byte elements with stride + Arguments : Inputs - psrc, stride + Outputs - out0, out1 + Return Type - as per RTYPE + Details : Load 16 byte elements in 'out0' from (psrc) + Load 16 byte elements in 'out1' from (psrc + stride) +*/ +#define LD_B2(RTYPE, psrc, stride, out0, out1) \ + { \ + out0 = LD_B(RTYPE, (psrc)); \ + out1 = LD_B(RTYPE, (psrc) + stride); \ + } +#define LD_UB2(...) LD_B2(v16u8, __VA_ARGS__) +#define LD_SB2(...) LD_B2(v16i8, __VA_ARGS__) + +#define LD_B3(RTYPE, psrc, stride, out0, out1, out2) \ + { \ + LD_B2(RTYPE, (psrc), stride, out0, out1); \ + out2 = LD_B(RTYPE, (psrc) + 2 * stride); \ + } +#define LD_UB3(...) LD_B3(v16u8, __VA_ARGS__) +#define LD_SB3(...) LD_B3(v16i8, __VA_ARGS__) + +#define LD_B4(RTYPE, psrc, stride, out0, out1, out2, out3) \ + { \ + LD_B2(RTYPE, (psrc), stride, out0, out1); \ + LD_B2(RTYPE, (psrc) + 2 * stride, stride, out2, out3); \ + } +#define LD_UB4(...) LD_B4(v16u8, __VA_ARGS__) +#define LD_SB4(...) LD_B4(v16i8, __VA_ARGS__) + +#define LD_B5(RTYPE, psrc, stride, out0, out1, out2, out3, out4) \ + { \ + LD_B4(RTYPE, (psrc), stride, out0, out1, out2, out3); \ + out4 = LD_B(RTYPE, (psrc) + 4 * stride); \ + } +#define LD_UB5(...) LD_B5(v16u8, __VA_ARGS__) +#define LD_SB5(...) LD_B5(v16i8, __VA_ARGS__) + +#define LD_B8(RTYPE, psrc, stride, out0, out1, out2, out3, out4, out5, out6, \ + out7) \ + { \ + LD_B4(RTYPE, (psrc), stride, out0, out1, out2, out3); \ + LD_B4(RTYPE, (psrc) + 4 * stride, stride, out4, out5, out6, out7); \ + } +#define LD_UB8(...) LD_B8(v16u8, __VA_ARGS__) +#define LD_SB8(...) LD_B8(v16i8, __VA_ARGS__) + +/* Description : Load vectors with 8 halfword elements with stride + Arguments : Inputs - psrc, stride + Outputs - out0, out1 + Details : Load 8 halfword elements in 'out0' from (psrc) + Load 8 halfword elements in 'out1' from (psrc + stride) +*/ +#define LD_H2(RTYPE, psrc, stride, out0, out1) \ + { \ + out0 = LD_H(RTYPE, (psrc)); \ + out1 = LD_H(RTYPE, (psrc) + (stride)); \ + } +#define LD_SH2(...) LD_H2(v8i16, __VA_ARGS__) + +#define LD_H4(RTYPE, psrc, stride, out0, out1, out2, out3) \ + { \ + LD_H2(RTYPE, (psrc), stride, out0, out1); \ + LD_H2(RTYPE, (psrc) + 2 * stride, stride, out2, out3); \ + } +#define LD_SH4(...) LD_H4(v8i16, __VA_ARGS__) + +/* Description : Load 2 vectors of signed word elements with stride + Arguments : Inputs - psrc, stride + Outputs - out0, out1 + Return Type - signed word +*/ +#define LD_SW2(psrc, stride, out0, out1) \ + { \ + out0 = LD_SW((psrc)); \ + out1 = LD_SW((psrc) + stride); \ + } + +/* Description : Store vectors of 16 byte elements with stride + Arguments : Inputs - in0, in1, pdst, stride + Details : Store 16 byte elements from 'in0' to (pdst) + Store 16 byte elements from 'in1' to (pdst + stride) +*/ +#define ST_B2(RTYPE, in0, in1, pdst, stride) \ + { \ + ST_B(RTYPE, in0, (pdst)); \ + ST_B(RTYPE, in1, (pdst) + stride); \ + } +#define ST_UB2(...) ST_B2(v16u8, __VA_ARGS__) + +#define ST_B4(RTYPE, in0, in1, in2, in3, pdst, stride) \ + { \ + ST_B2(RTYPE, in0, in1, (pdst), stride); \ + ST_B2(RTYPE, in2, in3, (pdst) + 2 * stride, stride); \ + } +#define ST_UB4(...) ST_B4(v16u8, __VA_ARGS__) +#define ST_SB4(...) ST_B4(v16i8, __VA_ARGS__) + +#define ST_B8(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, pdst, stride) \ + { \ + ST_B4(RTYPE, in0, in1, in2, in3, pdst, stride); \ + ST_B4(RTYPE, in4, in5, in6, in7, (pdst) + 4 * stride, stride); \ + } +#define ST_UB8(...) ST_B8(v16u8, __VA_ARGS__) + +/* Description : Store vectors of 8 halfword elements with stride + Arguments : Inputs - in0, in1, pdst, stride + Details : Store 8 halfword elements from 'in0' to (pdst) + Store 8 halfword elements from 'in1' to (pdst + stride) +*/ +#define ST_H2(RTYPE, in0, in1, pdst, stride) \ + { \ + ST_H(RTYPE, in0, (pdst)); \ + ST_H(RTYPE, in1, (pdst) + stride); \ + } +#define ST_SH2(...) ST_H2(v8i16, __VA_ARGS__) + +/* Description : Store vectors of word elements with stride + Arguments : Inputs - in0, in1, pdst, stride + Details : Store 4 word elements from 'in0' to (pdst) + Store 4 word elements from 'in1' to (pdst + stride) +*/ +#define ST_SW2(in0, in1, pdst, stride) \ + { \ + ST_SW(in0, (pdst)); \ + ST_SW(in1, (pdst) + stride); \ + } + +/* Description : Store 2x4 byte block to destination memory from input vector + Arguments : Inputs - in, stidx, pdst, stride + Details : Index 'stidx' halfword element from 'in' vector is copied to + the GP register and stored to (pdst) + Index 'stidx+1' halfword element from 'in' vector is copied to + the GP register and stored to (pdst + stride) + Index 'stidx+2' halfword element from 'in' vector is copied to + the GP register and stored to (pdst + 2 * stride) + Index 'stidx+3' halfword element from 'in' vector is copied to + the GP register and stored to (pdst + 3 * stride) +*/ +#define ST2x4_UB(in, stidx, pdst, stride) \ + { \ + uint16_t out0_m, out1_m, out2_m, out3_m; \ + uint8_t *pblk_2x4_m = (uint8_t *)(pdst); \ + \ + out0_m = __msa_copy_u_h((v8i16)in, (stidx)); \ + out1_m = __msa_copy_u_h((v8i16)in, (stidx + 1)); \ + out2_m = __msa_copy_u_h((v8i16)in, (stidx + 2)); \ + out3_m = __msa_copy_u_h((v8i16)in, (stidx + 3)); \ + \ + SH(out0_m, pblk_2x4_m); \ + SH(out1_m, pblk_2x4_m + stride); \ + SH(out2_m, pblk_2x4_m + 2 * stride); \ + SH(out3_m, pblk_2x4_m + 3 * stride); \ + } + +/* Description : Store 4x4 byte block to destination memory from input vector + Arguments : Inputs - in0, in1, pdst, stride + Details : 'Idx0' word element from input vector 'in0' is copied to the + GP register and stored to (pdst) + 'Idx1' word element from input vector 'in0' is copied to the + GP register and stored to (pdst + stride) + 'Idx2' word element from input vector 'in0' is copied to the + GP register and stored to (pdst + 2 * stride) + 'Idx3' word element from input vector 'in0' is copied to the + GP register and stored to (pdst + 3 * stride) +*/ +#define ST4x4_UB(in0, in1, idx0, idx1, idx2, idx3, pdst, stride) \ + { \ + uint32_t out0_m, out1_m, out2_m, out3_m; \ + uint8_t *pblk_4x4_m = (uint8_t *)(pdst); \ + \ + out0_m = __msa_copy_u_w((v4i32)in0, idx0); \ + out1_m = __msa_copy_u_w((v4i32)in0, idx1); \ + out2_m = __msa_copy_u_w((v4i32)in1, idx2); \ + out3_m = __msa_copy_u_w((v4i32)in1, idx3); \ + \ + SW4(out0_m, out1_m, out2_m, out3_m, pblk_4x4_m, stride); \ + } +#define ST4x8_UB(in0, in1, pdst, stride) \ + { \ + uint8_t *pblk_4x8 = (uint8_t *)(pdst); \ + \ + ST4x4_UB(in0, in0, 0, 1, 2, 3, pblk_4x8, stride); \ + ST4x4_UB(in1, in1, 0, 1, 2, 3, pblk_4x8 + 4 * stride, stride); \ + } + +/* Description : Store 8x1 byte block to destination memory from input vector + Arguments : Inputs - in, pdst + Details : Index 0 double word element from 'in' vector is copied to the + GP register and stored to (pdst) +*/ +#define ST8x1_UB(in, pdst) \ + { \ + uint64_t out0_m; \ + \ + out0_m = __msa_copy_u_d((v2i64)in, 0); \ + SD(out0_m, pdst); \ + } + +/* Description : Store 8x2 byte block to destination memory from input vector + Arguments : Inputs - in, pdst, stride + Details : Index 0 double word element from 'in' vector is copied to the + GP register and stored to (pdst) + Index 1 double word element from 'in' vector is copied to the + GP register and stored to (pdst + stride) +*/ +#define ST8x2_UB(in, pdst, stride) \ + { \ + uint64_t out0_m, out1_m; \ + uint8_t *pblk_8x2_m = (uint8_t *)(pdst); \ + \ + out0_m = __msa_copy_u_d((v2i64)in, 0); \ + out1_m = __msa_copy_u_d((v2i64)in, 1); \ + \ + SD(out0_m, pblk_8x2_m); \ + SD(out1_m, pblk_8x2_m + stride); \ + } + +/* Description : Store 8x4 byte block to destination memory from input + vectors + Arguments : Inputs - in0, in1, pdst, stride + Details : Index 0 double word element from 'in0' vector is copied to the + GP register and stored to (pdst) + Index 1 double word element from 'in0' vector is copied to the + GP register and stored to (pdst + stride) + Index 0 double word element from 'in1' vector is copied to the + GP register and stored to (pdst + 2 * stride) + Index 1 double word element from 'in1' vector is copied to the + GP register and stored to (pdst + 3 * stride) +*/ +#define ST8x4_UB(in0, in1, pdst, stride) \ + { \ + uint64_t out0_m, out1_m, out2_m, out3_m; \ + uint8_t *pblk_8x4_m = (uint8_t *)(pdst); \ + \ + out0_m = __msa_copy_u_d((v2i64)in0, 0); \ + out1_m = __msa_copy_u_d((v2i64)in0, 1); \ + out2_m = __msa_copy_u_d((v2i64)in1, 0); \ + out3_m = __msa_copy_u_d((v2i64)in1, 1); \ + \ + SD4(out0_m, out1_m, out2_m, out3_m, pblk_8x4_m, stride); \ + } + +/* Description : Immediate number of elements to slide with zero + Arguments : Inputs - in0, in1, slide_val + Outputs - out0, out1 + Return Type - as per RTYPE + Details : Byte elements from 'zero_m' vector are slid into 'in0' by + value specified in the 'slide_val' +*/ +#define SLDI_B2_0(RTYPE, in0, in1, out0, out1, slide_val) \ + { \ + v16i8 zero_m = { 0 }; \ + \ + out0 = (RTYPE)__msa_sldi_b((v16i8)zero_m, (v16i8)in0, slide_val); \ + out1 = (RTYPE)__msa_sldi_b((v16i8)zero_m, (v16i8)in1, slide_val); \ + } +#define SLDI_B2_0_UB(...) SLDI_B2_0(v16u8, __VA_ARGS__) + +/* Description : Immediate number of elements to slide + Arguments : Inputs - in0_0, in0_1, in1_0, in1_1, slide_val + Outputs - out0, out1 + Return Type - as per RTYPE + Details : Byte elements from 'in0_0' vector are slid into 'in1_0' by + value specified in the 'slide_val' +*/ +#define SLDI_B2(RTYPE, in0_0, in0_1, in1_0, in1_1, out0, out1, slide_val) \ + { \ + out0 = (RTYPE)__msa_sldi_b((v16i8)in0_0, (v16i8)in1_0, slide_val); \ + out1 = (RTYPE)__msa_sldi_b((v16i8)in0_1, (v16i8)in1_1, slide_val); \ + } + +#define SLDI_B3(RTYPE, in0_0, in0_1, in0_2, in1_0, in1_1, in1_2, out0, out1, \ + out2, slide_val) \ + { \ + SLDI_B2(RTYPE, in0_0, in0_1, in1_0, in1_1, out0, out1, slide_val); \ + out2 = (RTYPE)__msa_sldi_b((v16i8)in0_2, (v16i8)in1_2, slide_val); \ + } +#define SLDI_B3_UH(...) SLDI_B3(v8u16, __VA_ARGS__) + +/* Description : Shuffle byte vector elements as per mask vector + Arguments : Inputs - in0, in1, in2, in3, mask0, mask1 + Outputs - out0, out1 + Return Type - as per RTYPE + Details : Byte elements from 'in0' & 'in1' are copied selectively to + 'out0' as per control vector 'mask0' +*/ +#define VSHF_B2(RTYPE, in0, in1, in2, in3, mask0, mask1, out0, out1) \ + { \ + out0 = (RTYPE)__msa_vshf_b((v16i8)mask0, (v16i8)in1, (v16i8)in0); \ + out1 = (RTYPE)__msa_vshf_b((v16i8)mask1, (v16i8)in3, (v16i8)in2); \ + } +#define VSHF_B2_UB(...) VSHF_B2(v16u8, __VA_ARGS__) +#define VSHF_B2_SB(...) VSHF_B2(v16i8, __VA_ARGS__) +#define VSHF_B2_UH(...) VSHF_B2(v8u16, __VA_ARGS__) + +#define VSHF_B3(RTYPE, in0, in1, in2, in3, in4, in5, mask0, mask1, mask2, \ + out0, out1, out2) \ + { \ + VSHF_B2(RTYPE, in0, in1, in2, in3, mask0, mask1, out0, out1); \ + out2 = (RTYPE)__msa_vshf_b((v16i8)mask2, (v16i8)in5, (v16i8)in4); \ + } +#define VSHF_B3_SB(...) VSHF_B3(v16i8, __VA_ARGS__) + +/* Description : Shuffle halfword vector elements as per mask vector + Arguments : Inputs - in0, in1, in2, in3, mask0, mask1 + Outputs - out0, out1 + Return Type - as per RTYPE + Details : halfword elements from 'in0' & 'in1' are copied selectively to + 'out0' as per control vector 'mask0' +*/ +#define VSHF_H2(RTYPE, in0, in1, in2, in3, mask0, mask1, out0, out1) \ + { \ + out0 = (RTYPE)__msa_vshf_h((v8i16)mask0, (v8i16)in1, (v8i16)in0); \ + out1 = (RTYPE)__msa_vshf_h((v8i16)mask1, (v8i16)in3, (v8i16)in2); \ + } +#define VSHF_H2_SH(...) VSHF_H2(v8i16, __VA_ARGS__) + +/* Description : Dot product of byte vector elements + Arguments : Inputs - mult0, mult1, cnst0, cnst1 + Outputs - out0, out1 + Return Type - as per RTYPE + Details : Unsigned byte elements from 'mult0' are multiplied with + unsigned byte elements from 'cnst0' producing a result + twice the size of input i.e. unsigned halfword. + The multiplication result of adjacent odd-even elements + are added together and written to the 'out0' vector +*/ +#define DOTP_UB2(RTYPE, mult0, mult1, cnst0, cnst1, out0, out1) \ + { \ + out0 = (RTYPE)__msa_dotp_u_h((v16u8)mult0, (v16u8)cnst0); \ + out1 = (RTYPE)__msa_dotp_u_h((v16u8)mult1, (v16u8)cnst1); \ + } +#define DOTP_UB2_UH(...) DOTP_UB2(v8u16, __VA_ARGS__) + +#define DOTP_UB4(RTYPE, mult0, mult1, mult2, mult3, cnst0, cnst1, cnst2, \ + cnst3, out0, out1, out2, out3) \ + { \ + DOTP_UB2(RTYPE, mult0, mult1, cnst0, cnst1, out0, out1); \ + DOTP_UB2(RTYPE, mult2, mult3, cnst2, cnst3, out2, out3); \ + } +#define DOTP_UB4_UH(...) DOTP_UB4(v8u16, __VA_ARGS__) + +/* Description : Dot product of byte vector elements + Arguments : Inputs - mult0, mult1, cnst0, cnst1 + Outputs - out0, out1 + Return Type - as per RTYPE + Details : Signed byte elements from 'mult0' are multiplied with + signed byte elements from 'cnst0' producing a result + twice the size of input i.e. signed halfword. + The multiplication result of adjacent odd-even elements + are added together and written to the 'out0' vector +*/ +#define DOTP_SB2(RTYPE, mult0, mult1, cnst0, cnst1, out0, out1) \ + { \ + out0 = (RTYPE)__msa_dotp_s_h((v16i8)mult0, (v16i8)cnst0); \ + out1 = (RTYPE)__msa_dotp_s_h((v16i8)mult1, (v16i8)cnst1); \ + } +#define DOTP_SB2_SH(...) DOTP_SB2(v8i16, __VA_ARGS__) + +#define DOTP_SB4(RTYPE, mult0, mult1, mult2, mult3, cnst0, cnst1, cnst2, \ + cnst3, out0, out1, out2, out3) \ + { \ + DOTP_SB2(RTYPE, mult0, mult1, cnst0, cnst1, out0, out1); \ + DOTP_SB2(RTYPE, mult2, mult3, cnst2, cnst3, out2, out3); \ + } +#define DOTP_SB4_SH(...) DOTP_SB4(v8i16, __VA_ARGS__) + +/* Description : Dot product of halfword vector elements + Arguments : Inputs - mult0, mult1, cnst0, cnst1 + Outputs - out0, out1 + Return Type - as per RTYPE + Details : Signed halfword elements from 'mult0' are multiplied with + signed halfword elements from 'cnst0' producing a result + twice the size of input i.e. signed word. + The multiplication result of adjacent odd-even elements + are added together and written to the 'out0' vector +*/ +#define DOTP_SH2(RTYPE, mult0, mult1, cnst0, cnst1, out0, out1) \ + { \ + out0 = (RTYPE)__msa_dotp_s_w((v8i16)mult0, (v8i16)cnst0); \ + out1 = (RTYPE)__msa_dotp_s_w((v8i16)mult1, (v8i16)cnst1); \ + } + +#define DOTP_SH4(RTYPE, mult0, mult1, mult2, mult3, cnst0, cnst1, cnst2, \ + cnst3, out0, out1, out2, out3) \ + { \ + DOTP_SH2(RTYPE, mult0, mult1, cnst0, cnst1, out0, out1); \ + DOTP_SH2(RTYPE, mult2, mult3, cnst2, cnst3, out2, out3); \ + } +#define DOTP_SH4_SW(...) DOTP_SH4(v4i32, __VA_ARGS__) + +/* Description : Dot product of word vector elements + Arguments : Inputs - mult0, mult1, cnst0, cnst1 + Outputs - out0, out1 + Return Type - as per RTYPE + Details : Signed word elements from 'mult0' are multiplied with + signed word elements from 'cnst0' producing a result + twice the size of input i.e. signed double word. + The multiplication result of adjacent odd-even elements + are added together and written to the 'out0' vector +*/ +#define DOTP_SW2(RTYPE, mult0, mult1, cnst0, cnst1, out0, out1) \ + { \ + out0 = (RTYPE)__msa_dotp_s_d((v4i32)mult0, (v4i32)cnst0); \ + out1 = (RTYPE)__msa_dotp_s_d((v4i32)mult1, (v4i32)cnst1); \ + } +#define DOTP_SW2_SD(...) DOTP_SW2(v2i64, __VA_ARGS__) + +/* Description : Dot product & addition of byte vector elements + Arguments : Inputs - mult0, mult1, cnst0, cnst1 + Outputs - out0, out1 + Return Type - as per RTYPE + Details : Signed byte elements from 'mult0' are multiplied with + signed byte elements from 'cnst0' producing a result + twice the size of input i.e. signed halfword. + The multiplication result of adjacent odd-even elements + are added to the 'out0' vector +*/ +#define DPADD_SB2(RTYPE, mult0, mult1, cnst0, cnst1, out0, out1) \ + { \ + out0 = (RTYPE)__msa_dpadd_s_h((v8i16)out0, (v16i8)mult0, (v16i8)cnst0); \ + out1 = (RTYPE)__msa_dpadd_s_h((v8i16)out1, (v16i8)mult1, (v16i8)cnst1); \ + } +#define DPADD_SB2_SH(...) DPADD_SB2(v8i16, __VA_ARGS__) + +#define DPADD_SB4(RTYPE, mult0, mult1, mult2, mult3, cnst0, cnst1, cnst2, \ + cnst3, out0, out1, out2, out3) \ + { \ + DPADD_SB2(RTYPE, mult0, mult1, cnst0, cnst1, out0, out1); \ + DPADD_SB2(RTYPE, mult2, mult3, cnst2, cnst3, out2, out3); \ + } +#define DPADD_SB4_SH(...) DPADD_SB4(v8i16, __VA_ARGS__) + +/* Description : Dot product & addition of halfword vector elements + Arguments : Inputs - mult0, mult1, cnst0, cnst1 + Outputs - out0, out1 + Return Type - as per RTYPE + Details : Signed halfword elements from 'mult0' are multiplied with + signed halfword elements from 'cnst0' producing a result + twice the size of input i.e. signed word. + The multiplication result of adjacent odd-even elements + are added to the 'out0' vector +*/ +#define DPADD_SH2(RTYPE, mult0, mult1, cnst0, cnst1, out0, out1) \ + { \ + out0 = (RTYPE)__msa_dpadd_s_w((v4i32)out0, (v8i16)mult0, (v8i16)cnst0); \ + out1 = (RTYPE)__msa_dpadd_s_w((v4i32)out1, (v8i16)mult1, (v8i16)cnst1); \ + } +#define DPADD_SH2_SW(...) DPADD_SH2(v4i32, __VA_ARGS__) + +#define DPADD_SH4(RTYPE, mult0, mult1, mult2, mult3, cnst0, cnst1, cnst2, \ + cnst3, out0, out1, out2, out3) \ + { \ + DPADD_SH2(RTYPE, mult0, mult1, cnst0, cnst1, out0, out1); \ + DPADD_SH2(RTYPE, mult2, mult3, cnst2, cnst3, out2, out3); \ + } +#define DPADD_SH4_SW(...) DPADD_SH4(v4i32, __VA_ARGS__) + +/* Description : Dot product & addition of double word vector elements + Arguments : Inputs - mult0, mult1 + Outputs - out0, out1 + Return Type - as per RTYPE + Details : Each signed word element from 'mult0' is multiplied with itself + producing an intermediate result twice the size of it + i.e. signed double word + The multiplication result of adjacent odd-even elements + are added to the 'out0' vector +*/ +#define DPADD_SD2(RTYPE, mult0, mult1, out0, out1) \ + { \ + out0 = (RTYPE)__msa_dpadd_s_d((v2i64)out0, (v4i32)mult0, (v4i32)mult0); \ + out1 = (RTYPE)__msa_dpadd_s_d((v2i64)out1, (v4i32)mult1, (v4i32)mult1); \ + } +#define DPADD_SD2_SD(...) DPADD_SD2(v2i64, __VA_ARGS__) + +/* Description : Clips all signed halfword elements of input vector + between 0 & 255 + Arguments : Input - in + Output - out_m + Return Type - signed halfword +*/ +#define CLIP_SH_0_255(in) \ + ({ \ + v8i16 max_m = __msa_ldi_h(255); \ + v8i16 out_m; \ + \ + out_m = __msa_maxi_s_h((v8i16)in, 0); \ + out_m = __msa_min_s_h((v8i16)max_m, (v8i16)out_m); \ + out_m; \ + }) +#define CLIP_SH2_0_255(in0, in1) \ + { \ + in0 = CLIP_SH_0_255(in0); \ + in1 = CLIP_SH_0_255(in1); \ + } +#define CLIP_SH4_0_255(in0, in1, in2, in3) \ + { \ + CLIP_SH2_0_255(in0, in1); \ + CLIP_SH2_0_255(in2, in3); \ + } + +/* Description : Clips all signed word elements of input vector + between 0 & 255 + Arguments : Input - in + Output - out_m + Return Type - signed word +*/ +#define CLIP_SW_0_255(in) \ + ({ \ + v4i32 max_m = __msa_ldi_w(255); \ + v4i32 out_m; \ + \ + out_m = __msa_maxi_s_w((v4i32)in, 0); \ + out_m = __msa_min_s_w((v4i32)max_m, (v4i32)out_m); \ + out_m; \ + }) + +/* Description : Horizontal addition of 4 signed word elements of input vector + Arguments : Input - in (signed word vector) + Output - sum_m (i32 sum) + Return Type - signed word (GP) + Details : 4 signed word elements of 'in' vector are added together and + the resulting integer sum is returned +*/ +#define HADD_SW_S32(in) \ + ({ \ + v2i64 res0_m, res1_m; \ + int32_t sum_m; \ + \ + res0_m = __msa_hadd_s_d((v4i32)in, (v4i32)in); \ + res1_m = __msa_splati_d(res0_m, 1); \ + res0_m = res0_m + res1_m; \ + sum_m = __msa_copy_s_w((v4i32)res0_m, 0); \ + sum_m; \ + }) + +/* Description : Horizontal addition of 8 unsigned halfword elements + Arguments : Inputs - in (unsigned halfword vector) + Outputs - sum_m (u32 sum) + Return Type - unsigned word + Details : 8 unsigned halfword elements of input vector are added + together and the resulting integer sum is returned +*/ +#define HADD_UH_U32(in) \ + ({ \ + v4u32 res_m; \ + v2u64 res0_m, res1_m; \ + uint32_t sum_m; \ + \ + res_m = __msa_hadd_u_w((v8u16)in, (v8u16)in); \ + res0_m = __msa_hadd_u_d(res_m, res_m); \ + res1_m = (v2u64)__msa_splati_d((v2i64)res0_m, 1); \ + res0_m = res0_m + res1_m; \ + sum_m = __msa_copy_u_w((v4i32)res0_m, 0); \ + sum_m; \ + }) + +/* Description : Horizontal addition of unsigned byte vector elements + Arguments : Inputs - in0, in1 + Outputs - out0, out1 + Return Type - as per RTYPE + Details : Each unsigned odd byte element from 'in0' is added to + even unsigned byte element from 'in0' (pairwise) and the + halfword result is written to 'out0' +*/ +#define HADD_UB2(RTYPE, in0, in1, out0, out1) \ + { \ + out0 = (RTYPE)__msa_hadd_u_h((v16u8)in0, (v16u8)in0); \ + out1 = (RTYPE)__msa_hadd_u_h((v16u8)in1, (v16u8)in1); \ + } +#define HADD_UB2_UH(...) HADD_UB2(v8u16, __VA_ARGS__) + +/* Description : Horizontal subtraction of unsigned byte vector elements + Arguments : Inputs - in0, in1 + Outputs - out0, out1 + Return Type - as per RTYPE + Details : Each unsigned odd byte element from 'in0' is subtracted from + even unsigned byte element from 'in0' (pairwise) and the + halfword result is written to 'out0' +*/ +#define HSUB_UB2(RTYPE, in0, in1, out0, out1) \ + { \ + out0 = (RTYPE)__msa_hsub_u_h((v16u8)in0, (v16u8)in0); \ + out1 = (RTYPE)__msa_hsub_u_h((v16u8)in1, (v16u8)in1); \ + } +#define HSUB_UB2_SH(...) HSUB_UB2(v8i16, __VA_ARGS__) + +/* Description : Horizontal subtraction of signed halfword vector elements + Arguments : Inputs - in0, in1 + Outputs - out0, out1 + Return Type - as per RTYPE + Details : Each signed odd halfword element from 'in0' is subtracted from + even signed halfword element from 'in0' (pairwise) and the + word result is written to 'out0' +*/ +#define HSUB_UH2(RTYPE, in0, in1, out0, out1) \ + { \ + out0 = (RTYPE)__msa_hsub_s_w((v8i16)in0, (v8i16)in0); \ + out1 = (RTYPE)__msa_hsub_s_w((v8i16)in1, (v8i16)in1); \ + } +#define HSUB_UH2_SW(...) HSUB_UH2(v4i32, __VA_ARGS__) + +/* Description : Set element n input vector to GPR value + Arguments : Inputs - in0, in1, in2, in3 + Output - out + Return Type - as per RTYPE + Details : Set element 0 in vector 'out' to value specified in 'in0' +*/ +#define INSERT_D2(RTYPE, in0, in1, out) \ + { \ + out = (RTYPE)__msa_insert_d((v2i64)out, 0, in0); \ + out = (RTYPE)__msa_insert_d((v2i64)out, 1, in1); \ + } +#define INSERT_D2_SB(...) INSERT_D2(v16i8, __VA_ARGS__) + +/* Description : Interleave even byte elements from vectors + Arguments : Inputs - in0, in1, in2, in3 + Outputs - out0, out1 + Return Type - as per RTYPE + Details : Even byte elements of 'in0' and 'in1' are interleaved + and written to 'out0' +*/ +#define ILVEV_B2(RTYPE, in0, in1, in2, in3, out0, out1) \ + { \ + out0 = (RTYPE)__msa_ilvev_b((v16i8)in1, (v16i8)in0); \ + out1 = (RTYPE)__msa_ilvev_b((v16i8)in3, (v16i8)in2); \ + } +#define ILVEV_B2_UB(...) ILVEV_B2(v16u8, __VA_ARGS__) +#define ILVEV_B2_SH(...) ILVEV_B2(v8i16, __VA_ARGS__) +#define ILVEV_B2_SD(...) ILVEV_B2(v2i64, __VA_ARGS__) + +/* Description : Interleave even halfword elements from vectors + Arguments : Inputs - in0, in1, in2, in3 + Outputs - out0, out1 + Return Type - as per RTYPE + Details : Even halfword elements of 'in0' and 'in1' are interleaved + and written to 'out0' +*/ +#define ILVEV_H2(RTYPE, in0, in1, in2, in3, out0, out1) \ + { \ + out0 = (RTYPE)__msa_ilvev_h((v8i16)in1, (v8i16)in0); \ + out1 = (RTYPE)__msa_ilvev_h((v8i16)in3, (v8i16)in2); \ + } +#define ILVEV_H2_UB(...) ILVEV_H2(v16u8, __VA_ARGS__) +#define ILVEV_H2_SH(...) ILVEV_H2(v8i16, __VA_ARGS__) + +/* Description : Interleave even word elements from vectors + Arguments : Inputs - in0, in1, in2, in3 + Outputs - out0, out1 + Return Type - as per RTYPE + Details : Even word elements of 'in0' and 'in1' are interleaved + and written to 'out0' +*/ +#define ILVEV_W2(RTYPE, in0, in1, in2, in3, out0, out1) \ + { \ + out0 = (RTYPE)__msa_ilvev_w((v4i32)in1, (v4i32)in0); \ + out1 = (RTYPE)__msa_ilvev_w((v4i32)in3, (v4i32)in2); \ + } +#define ILVEV_W2_SD(...) ILVEV_W2(v2i64, __VA_ARGS__) + +/* Description : Interleave even double word elements from vectors + Arguments : Inputs - in0, in1, in2, in3 + Outputs - out0, out1 + Return Type - as per RTYPE + Details : Even double word elements of 'in0' and 'in1' are interleaved + and written to 'out0' +*/ +#define ILVEV_D2(RTYPE, in0, in1, in2, in3, out0, out1) \ + { \ + out0 = (RTYPE)__msa_ilvev_d((v2i64)in1, (v2i64)in0); \ + out1 = (RTYPE)__msa_ilvev_d((v2i64)in3, (v2i64)in2); \ + } +#define ILVEV_D2_UB(...) ILVEV_D2(v16u8, __VA_ARGS__) + +/* Description : Interleave left half of byte elements from vectors + Arguments : Inputs - in0, in1, in2, in3 + Outputs - out0, out1 + Return Type - as per RTYPE + Details : Left half of byte elements of 'in0' and 'in1' are interleaved + and written to 'out0'. +*/ +#define ILVL_B2(RTYPE, in0, in1, in2, in3, out0, out1) \ + { \ + out0 = (RTYPE)__msa_ilvl_b((v16i8)in0, (v16i8)in1); \ + out1 = (RTYPE)__msa_ilvl_b((v16i8)in2, (v16i8)in3); \ + } +#define ILVL_B2_UB(...) ILVL_B2(v16u8, __VA_ARGS__) +#define ILVL_B2_SB(...) ILVL_B2(v16i8, __VA_ARGS__) +#define ILVL_B2_SH(...) ILVL_B2(v8i16, __VA_ARGS__) + +#define ILVL_B4(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, out0, out1, \ + out2, out3) \ + { \ + ILVL_B2(RTYPE, in0, in1, in2, in3, out0, out1); \ + ILVL_B2(RTYPE, in4, in5, in6, in7, out2, out3); \ + } +#define ILVL_B4_SB(...) ILVL_B4(v16i8, __VA_ARGS__) +#define ILVL_B4_SH(...) ILVL_B4(v8i16, __VA_ARGS__) + +/* Description : Interleave left half of halfword elements from vectors + Arguments : Inputs - in0, in1, in2, in3 + Outputs - out0, out1 + Return Type - as per RTYPE + Details : Left half of halfword elements of 'in0' and 'in1' are + interleaved and written to 'out0'. +*/ +#define ILVL_H2(RTYPE, in0, in1, in2, in3, out0, out1) \ + { \ + out0 = (RTYPE)__msa_ilvl_h((v8i16)in0, (v8i16)in1); \ + out1 = (RTYPE)__msa_ilvl_h((v8i16)in2, (v8i16)in3); \ + } +#define ILVL_H2_SH(...) ILVL_H2(v8i16, __VA_ARGS__) +#define ILVL_H2_SW(...) ILVL_H2(v4i32, __VA_ARGS__) + +/* Description : Interleave left half of word elements from vectors + Arguments : Inputs - in0, in1, in2, in3 + Outputs - out0, out1 + Return Type - as per RTYPE + Details : Left half of word elements of 'in0' and 'in1' are interleaved + and written to 'out0'. +*/ +#define ILVL_W2(RTYPE, in0, in1, in2, in3, out0, out1) \ + { \ + out0 = (RTYPE)__msa_ilvl_w((v4i32)in0, (v4i32)in1); \ + out1 = (RTYPE)__msa_ilvl_w((v4i32)in2, (v4i32)in3); \ + } +#define ILVL_W2_SH(...) ILVL_W2(v8i16, __VA_ARGS__) + +/* Description : Interleave right half of byte elements from vectors + Arguments : Inputs - in0, in1, in2, in3 + Outputs - out0, out1 + Return Type - as per RTYPE + Details : Right half of byte elements of 'in0' and 'in1' are interleaved + and written to out0. +*/ +#define ILVR_B2(RTYPE, in0, in1, in2, in3, out0, out1) \ + { \ + out0 = (RTYPE)__msa_ilvr_b((v16i8)in0, (v16i8)in1); \ + out1 = (RTYPE)__msa_ilvr_b((v16i8)in2, (v16i8)in3); \ + } +#define ILVR_B2_UB(...) ILVR_B2(v16u8, __VA_ARGS__) +#define ILVR_B2_SB(...) ILVR_B2(v16i8, __VA_ARGS__) +#define ILVR_B2_SH(...) ILVR_B2(v8i16, __VA_ARGS__) +#define ILVR_B2_SW(...) ILVR_B2(v4i32, __VA_ARGS__) + +#define ILVR_B4(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, out0, out1, \ + out2, out3) \ + { \ + ILVR_B2(RTYPE, in0, in1, in2, in3, out0, out1); \ + ILVR_B2(RTYPE, in4, in5, in6, in7, out2, out3); \ + } +#define ILVR_B4_UB(...) ILVR_B4(v16u8, __VA_ARGS__) +#define ILVR_B4_SB(...) ILVR_B4(v16i8, __VA_ARGS__) +#define ILVR_B4_UH(...) ILVR_B4(v8u16, __VA_ARGS__) +#define ILVR_B4_SH(...) ILVR_B4(v8i16, __VA_ARGS__) +#define ILVR_B4_SW(...) ILVR_B4(v4i32, __VA_ARGS__) + +/* Description : Interleave right half of halfword elements from vectors + Arguments : Inputs - in0, in1, in2, in3 + Outputs - out0, out1 + Return Type - as per RTYPE + Details : Right half of halfword elements of 'in0' and 'in1' are + interleaved and written to 'out0'. +*/ +#define ILVR_H2(RTYPE, in0, in1, in2, in3, out0, out1) \ + { \ + out0 = (RTYPE)__msa_ilvr_h((v8i16)in0, (v8i16)in1); \ + out1 = (RTYPE)__msa_ilvr_h((v8i16)in2, (v8i16)in3); \ + } +#define ILVR_H2_SH(...) ILVR_H2(v8i16, __VA_ARGS__) +#define ILVR_H2_SW(...) ILVR_H2(v4i32, __VA_ARGS__) + +#define ILVR_H4(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, out0, out1, \ + out2, out3) \ + { \ + ILVR_H2(RTYPE, in0, in1, in2, in3, out0, out1); \ + ILVR_H2(RTYPE, in4, in5, in6, in7, out2, out3); \ + } +#define ILVR_H4_SH(...) ILVR_H4(v8i16, __VA_ARGS__) +#define ILVR_H4_SW(...) ILVR_H4(v4i32, __VA_ARGS__) + +#define ILVR_W2(RTYPE, in0, in1, in2, in3, out0, out1) \ + { \ + out0 = (RTYPE)__msa_ilvr_w((v4i32)in0, (v4i32)in1); \ + out1 = (RTYPE)__msa_ilvr_w((v4i32)in2, (v4i32)in3); \ + } +#define ILVR_W2_SH(...) ILVR_W2(v8i16, __VA_ARGS__) + +/* Description : Interleave right half of double word elements from vectors + Arguments : Inputs - in0, in1, in2, in3 + Outputs - out0, out1 + Return Type - as per RTYPE + Details : Right half of double word elements of 'in0' and 'in1' are + interleaved and written to 'out0'. +*/ +#define ILVR_D2(RTYPE, in0, in1, in2, in3, out0, out1) \ + { \ + out0 = (RTYPE)__msa_ilvr_d((v2i64)(in0), (v2i64)(in1)); \ + out1 = (RTYPE)__msa_ilvr_d((v2i64)(in2), (v2i64)(in3)); \ + } +#define ILVR_D2_UB(...) ILVR_D2(v16u8, __VA_ARGS__) +#define ILVR_D2_SB(...) ILVR_D2(v16i8, __VA_ARGS__) +#define ILVR_D2_SH(...) ILVR_D2(v8i16, __VA_ARGS__) + +#define ILVR_D4(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, out0, out1, \ + out2, out3) \ + { \ + ILVR_D2(RTYPE, in0, in1, in2, in3, out0, out1); \ + ILVR_D2(RTYPE, in4, in5, in6, in7, out2, out3); \ + } +#define ILVR_D4_SB(...) ILVR_D4(v16i8, __VA_ARGS__) +#define ILVR_D4_UB(...) ILVR_D4(v16u8, __VA_ARGS__) + +/* Description : Interleave both left and right half of input vectors + Arguments : Inputs - in0, in1 + Outputs - out0, out1 + Return Type - as per RTYPE + Details : Right half of byte elements from 'in0' and 'in1' are + interleaved and written to 'out0' +*/ +#define ILVRL_B2(RTYPE, in0, in1, out0, out1) \ + { \ + out0 = (RTYPE)__msa_ilvr_b((v16i8)in0, (v16i8)in1); \ + out1 = (RTYPE)__msa_ilvl_b((v16i8)in0, (v16i8)in1); \ + } +#define ILVRL_B2_UB(...) ILVRL_B2(v16u8, __VA_ARGS__) +#define ILVRL_B2_SB(...) ILVRL_B2(v16i8, __VA_ARGS__) +#define ILVRL_B2_UH(...) ILVRL_B2(v8u16, __VA_ARGS__) +#define ILVRL_B2_SH(...) ILVRL_B2(v8i16, __VA_ARGS__) + +#define ILVRL_H2(RTYPE, in0, in1, out0, out1) \ + { \ + out0 = (RTYPE)__msa_ilvr_h((v8i16)in0, (v8i16)in1); \ + out1 = (RTYPE)__msa_ilvl_h((v8i16)in0, (v8i16)in1); \ + } +#define ILVRL_H2_SH(...) ILVRL_H2(v8i16, __VA_ARGS__) +#define ILVRL_H2_SW(...) ILVRL_H2(v4i32, __VA_ARGS__) + +#define ILVRL_W2(RTYPE, in0, in1, out0, out1) \ + { \ + out0 = (RTYPE)__msa_ilvr_w((v4i32)in0, (v4i32)in1); \ + out1 = (RTYPE)__msa_ilvl_w((v4i32)in0, (v4i32)in1); \ + } +#define ILVRL_W2_UB(...) ILVRL_W2(v16u8, __VA_ARGS__) +#define ILVRL_W2_SH(...) ILVRL_W2(v8i16, __VA_ARGS__) +#define ILVRL_W2_SW(...) ILVRL_W2(v4i32, __VA_ARGS__) + +/* Description : Maximum values between signed elements of vector and + 5-bit signed immediate value are copied to the output vector + Arguments : Inputs - in0, in1, in2, in3, max_val + Outputs - in place operation + Return Type - unsigned halfword + Details : Maximum of signed halfword element values from 'in0' and + 'max_val' are written in place +*/ +#define MAXI_SH2(RTYPE, in0, in1, max_val) \ + { \ + in0 = (RTYPE)__msa_maxi_s_h((v8i16)in0, (max_val)); \ + in1 = (RTYPE)__msa_maxi_s_h((v8i16)in1, (max_val)); \ + } +#define MAXI_SH2_SH(...) MAXI_SH2(v8i16, __VA_ARGS__) + +/* Description : Saturate the halfword element values to the max + unsigned value of (sat_val + 1) bits + The element data width remains unchanged + Arguments : Inputs - in0, in1, sat_val + Outputs - in place operation + Return Type - as per RTYPE + Details : Each unsigned halfword element from 'in0' is saturated to the + value generated with (sat_val + 1) bit range. + The results are written in place +*/ +#define SAT_UH2(RTYPE, in0, in1, sat_val) \ + { \ + in0 = (RTYPE)__msa_sat_u_h((v8u16)in0, sat_val); \ + in1 = (RTYPE)__msa_sat_u_h((v8u16)in1, sat_val); \ + } +#define SAT_UH2_SH(...) SAT_UH2(v8i16, __VA_ARGS__) + +/* Description : Saturate the halfword element values to the max + unsigned value of (sat_val + 1) bits + The element data width remains unchanged + Arguments : Inputs - in0, in1, sat_val + Outputs - in place operation + Return Type - as per RTYPE + Details : Each unsigned halfword element from 'in0' is saturated to the + value generated with (sat_val + 1) bit range + The results are written in place +*/ +#define SAT_SH2(RTYPE, in0, in1, sat_val) \ + { \ + in0 = (RTYPE)__msa_sat_s_h((v8i16)in0, sat_val); \ + in1 = (RTYPE)__msa_sat_s_h((v8i16)in1, sat_val); \ + } +#define SAT_SH2_SH(...) SAT_SH2(v8i16, __VA_ARGS__) + +#define SAT_SH4(RTYPE, in0, in1, in2, in3, sat_val) \ + { \ + SAT_SH2(RTYPE, in0, in1, sat_val); \ + SAT_SH2(RTYPE, in2, in3, sat_val); \ + } +#define SAT_SH4_SH(...) SAT_SH4(v8i16, __VA_ARGS__) + +/* Description : Indexed halfword element values are replicated to all + elements in output vector + Arguments : Inputs - in, idx0, idx1 + Outputs - out0, out1 + Return Type - as per RTYPE + Details : 'idx0' element value from 'in' vector is replicated to all + elements in 'out0' vector + Valid index range for halfword operation is 0-7 +*/ +#define SPLATI_H2(RTYPE, in, idx0, idx1, out0, out1) \ + { \ + out0 = (RTYPE)__msa_splati_h((v8i16)in, idx0); \ + out1 = (RTYPE)__msa_splati_h((v8i16)in, idx1); \ + } +#define SPLATI_H2_SB(...) SPLATI_H2(v16i8, __VA_ARGS__) +#define SPLATI_H2_SH(...) SPLATI_H2(v8i16, __VA_ARGS__) + +#define SPLATI_H3(RTYPE, in, idx0, idx1, idx2, out0, out1, out2) \ + { \ + SPLATI_H2(RTYPE, in, idx0, idx1, out0, out1); \ + out2 = (RTYPE)__msa_splati_h((v8i16)in, idx2); \ + } +#define SPLATI_H3_SB(...) SPLATI_H3(v16i8, __VA_ARGS__) +#define SPLATI_H3_SH(...) SPLATI_H3(v8i16, __VA_ARGS__) + +/* Description : Indexed word element values are replicated to all + elements in output vector + Arguments : Inputs - in, stidx + Outputs - out0, out1 + Return Type - as per RTYPE + Details : 'stidx' element value from 'in' vector is replicated to all + elements in 'out0' vector + 'stidx + 1' element value from 'in' vector is replicated to all + elements in 'out1' vector + Valid index range for word operation is 0-3 +*/ +#define SPLATI_W2(RTYPE, in, stidx, out0, out1) \ + { \ + out0 = (RTYPE)__msa_splati_w((v4i32)in, stidx); \ + out1 = (RTYPE)__msa_splati_w((v4i32)in, (stidx + 1)); \ + } +#define SPLATI_W2_SW(...) SPLATI_W2(v4i32, __VA_ARGS__) + +/* Description : Pack even byte elements of vector pairs + Arguments : Inputs - in0, in1, in2, in3 + Outputs - out0, out1 + Return Type - as per RTYPE + Details : Even byte elements of 'in0' are copied to the left half of + 'out0' & even byte elements of 'in1' are copied to the right + half of 'out0'. +*/ +#define PCKEV_B2(RTYPE, in0, in1, in2, in3, out0, out1) \ + { \ + out0 = (RTYPE)__msa_pckev_b((v16i8)in0, (v16i8)in1); \ + out1 = (RTYPE)__msa_pckev_b((v16i8)in2, (v16i8)in3); \ + } +#define PCKEV_B2_SB(...) PCKEV_B2(v16i8, __VA_ARGS__) +#define PCKEV_B2_UB(...) PCKEV_B2(v16u8, __VA_ARGS__) +#define PCKEV_B2_SH(...) PCKEV_B2(v8i16, __VA_ARGS__) +#define PCKEV_B2_SW(...) PCKEV_B2(v4i32, __VA_ARGS__) + +#define PCKEV_B4(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, out0, out1, \ + out2, out3) \ + { \ + PCKEV_B2(RTYPE, in0, in1, in2, in3, out0, out1); \ + PCKEV_B2(RTYPE, in4, in5, in6, in7, out2, out3); \ + } +#define PCKEV_B4_SB(...) PCKEV_B4(v16i8, __VA_ARGS__) +#define PCKEV_B4_UB(...) PCKEV_B4(v16u8, __VA_ARGS__) +#define PCKEV_B4_SH(...) PCKEV_B4(v8i16, __VA_ARGS__) + +/* Description : Pack even halfword elements of vector pairs + Arguments : Inputs - in0, in1, in2, in3 + Outputs - out0, out1 + Return Type - as per RTYPE + Details : Even halfword elements of 'in0' are copied to the left half of + 'out0' & even halfword elements of 'in1' are copied to the + right half of 'out0'. +*/ +#define PCKEV_H2(RTYPE, in0, in1, in2, in3, out0, out1) \ + { \ + out0 = (RTYPE)__msa_pckev_h((v8i16)in0, (v8i16)in1); \ + out1 = (RTYPE)__msa_pckev_h((v8i16)in2, (v8i16)in3); \ + } +#define PCKEV_H2_SH(...) PCKEV_H2(v8i16, __VA_ARGS__) + +#define PCKEV_H4(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, out0, out1, \ + out2, out3) \ + { \ + PCKEV_H2(RTYPE, in0, in1, in2, in3, out0, out1); \ + PCKEV_H2(RTYPE, in4, in5, in6, in7, out2, out3); \ + } +#define PCKEV_H4_SH(...) PCKEV_H4(v8i16, __VA_ARGS__) + +/* Description : Pack even double word elements of vector pairs + Arguments : Inputs - in0, in1, in2, in3 + Outputs - out0, out1 + Return Type - as per RTYPE + Details : Even double elements of 'in0' are copied to the left half of + 'out0' & even double elements of 'in1' are copied to the right + half of 'out0'. +*/ +#define PCKEV_D2(RTYPE, in0, in1, in2, in3, out0, out1) \ + { \ + out0 = (RTYPE)__msa_pckev_d((v2i64)in0, (v2i64)in1); \ + out1 = (RTYPE)__msa_pckev_d((v2i64)in2, (v2i64)in3); \ + } +#define PCKEV_D2_UB(...) PCKEV_D2(v16u8, __VA_ARGS__) +#define PCKEV_D2_SH(...) PCKEV_D2(v8i16, __VA_ARGS__) + +/* Description : Pack odd double word elements of vector pairs + Arguments : Inputs - in0, in1, in2, in3 + Outputs - out0, out1 + Return Type - as per RTYPE + Details : Odd double word elements of 'in0' are copied to the left half + of 'out0' & odd double word elements of 'in1' are copied to + the right half of 'out0'. +*/ +#define PCKOD_D2(RTYPE, in0, in1, in2, in3, out0, out1) \ + { \ + out0 = (RTYPE)__msa_pckod_d((v2i64)in0, (v2i64)in1); \ + out1 = (RTYPE)__msa_pckod_d((v2i64)in2, (v2i64)in3); \ + } +#define PCKOD_D2_UB(...) PCKOD_D2(v16u8, __VA_ARGS__) +#define PCKOD_D2_SH(...) PCKOD_D2(v8i16, __VA_ARGS__) + +/* Description : Each byte element is logically xor'ed with immediate 128 + Arguments : Inputs - in0, in1 + Outputs - in place operation + Return Type - as per RTYPE + Details : Each unsigned byte element from input vector 'in0' is + logically xor'ed with 128 and the result is stored in-place. +*/ +#define XORI_B2_128(RTYPE, in0, in1) \ + { \ + in0 = (RTYPE)__msa_xori_b((v16u8)in0, 128); \ + in1 = (RTYPE)__msa_xori_b((v16u8)in1, 128); \ + } +#define XORI_B2_128_UB(...) XORI_B2_128(v16u8, __VA_ARGS__) +#define XORI_B2_128_SB(...) XORI_B2_128(v16i8, __VA_ARGS__) + +#define XORI_B3_128(RTYPE, in0, in1, in2) \ + { \ + XORI_B2_128(RTYPE, in0, in1); \ + in2 = (RTYPE)__msa_xori_b((v16u8)in2, 128); \ + } +#define XORI_B3_128_SB(...) XORI_B3_128(v16i8, __VA_ARGS__) + +#define XORI_B4_128(RTYPE, in0, in1, in2, in3) \ + { \ + XORI_B2_128(RTYPE, in0, in1); \ + XORI_B2_128(RTYPE, in2, in3); \ + } +#define XORI_B4_128_UB(...) XORI_B4_128(v16u8, __VA_ARGS__) +#define XORI_B4_128_SB(...) XORI_B4_128(v16i8, __VA_ARGS__) + +#define XORI_B5_128(RTYPE, in0, in1, in2, in3, in4) \ + { \ + XORI_B3_128(RTYPE, in0, in1, in2); \ + XORI_B2_128(RTYPE, in3, in4); \ + } +#define XORI_B5_128_SB(...) XORI_B5_128(v16i8, __VA_ARGS__) + +#define XORI_B8_128(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7) \ + { \ + XORI_B4_128(RTYPE, in0, in1, in2, in3); \ + XORI_B4_128(RTYPE, in4, in5, in6, in7); \ + } +#define XORI_B8_128_SB(...) XORI_B8_128(v16i8, __VA_ARGS__) + +/* Description : Shift left all elements of vector (generic for all data types) + Arguments : Inputs - in0, in1, in2, in3, shift + Outputs - in place operation + Return Type - as per input vector RTYPE + Details : Each element of vector 'in0' is left shifted by 'shift' and + the result is written in-place. +*/ +#define SLLI_4V(in0, in1, in2, in3, shift) \ + { \ + in0 = in0 << shift; \ + in1 = in1 << shift; \ + in2 = in2 << shift; \ + in3 = in3 << shift; \ + } + +/* Description : Arithmetic shift right all elements of vector + (generic for all data types) + Arguments : Inputs - in0, in1, in2, in3, shift + Outputs - in place operation + Return Type - as per input vector RTYPE + Details : Each element of vector 'in0' is right shifted by 'shift' and + the result is written in-place. 'shift' is a GP variable. +*/ +#define SRA_4V(in0, in1, in2, in3, shift) \ + { \ + in0 = in0 >> shift; \ + in1 = in1 >> shift; \ + in2 = in2 >> shift; \ + in3 = in3 >> shift; \ + } + +/* Description : Shift right arithmetic rounded words + Arguments : Inputs - in0, in1, shift + Outputs - in place operation + Return Type - as per RTYPE + Details : Each element of vector 'in0' is shifted right arithmetically by + the number of bits in the corresponding element in the vector + 'shift'. The last discarded bit is added to shifted value for + rounding and the result is written in-place. + 'shift' is a vector. +*/ +#define SRAR_W2(RTYPE, in0, in1, shift) \ + { \ + in0 = (RTYPE)__msa_srar_w((v4i32)in0, (v4i32)shift); \ + in1 = (RTYPE)__msa_srar_w((v4i32)in1, (v4i32)shift); \ + } + +#define SRAR_W4(RTYPE, in0, in1, in2, in3, shift) \ + { \ + SRAR_W2(RTYPE, in0, in1, shift); \ + SRAR_W2(RTYPE, in2, in3, shift); \ + } +#define SRAR_W4_SW(...) SRAR_W4(v4i32, __VA_ARGS__) + +/* Description : Shift right arithmetic rounded (immediate) + Arguments : Inputs - in0, in1, shift + Outputs - in place operation + Return Type - as per RTYPE + Details : Each element of vector 'in0' is shifted right arithmetically by + the value in 'shift'. The last discarded bit is added to the + shifted value for rounding and the result is written in-place. + 'shift' is an immediate value. +*/ +#define SRARI_H2(RTYPE, in0, in1, shift) \ + { \ + in0 = (RTYPE)__msa_srari_h((v8i16)in0, shift); \ + in1 = (RTYPE)__msa_srari_h((v8i16)in1, shift); \ + } +#define SRARI_H2_UH(...) SRARI_H2(v8u16, __VA_ARGS__) +#define SRARI_H2_SH(...) SRARI_H2(v8i16, __VA_ARGS__) + +#define SRARI_H4(RTYPE, in0, in1, in2, in3, shift) \ + { \ + SRARI_H2(RTYPE, in0, in1, shift); \ + SRARI_H2(RTYPE, in2, in3, shift); \ + } +#define SRARI_H4_UH(...) SRARI_H4(v8u16, __VA_ARGS__) +#define SRARI_H4_SH(...) SRARI_H4(v8i16, __VA_ARGS__) + +#define SRARI_W2(RTYPE, in0, in1, shift) \ + { \ + in0 = (RTYPE)__msa_srari_w((v4i32)in0, shift); \ + in1 = (RTYPE)__msa_srari_w((v4i32)in1, shift); \ + } + +#define SRARI_W4(RTYPE, in0, in1, in2, in3, shift) \ + { \ + SRARI_W2(RTYPE, in0, in1, shift); \ + SRARI_W2(RTYPE, in2, in3, shift); \ + } +#define SRARI_W4_SW(...) SRARI_W4(v4i32, __VA_ARGS__) + +/* Description : Multiplication of pairs of vectors + Arguments : Inputs - in0, in1, in2, in3 + Outputs - out0, out1 + Details : Each element from 'in0' is multiplied with elements from 'in1' + and the result is written to 'out0' +*/ +#define MUL2(in0, in1, in2, in3, out0, out1) \ + { \ + out0 = in0 * in1; \ + out1 = in2 * in3; \ + } +#define MUL4(in0, in1, in2, in3, in4, in5, in6, in7, out0, out1, out2, out3) \ + { \ + MUL2(in0, in1, in2, in3, out0, out1); \ + MUL2(in4, in5, in6, in7, out2, out3); \ + } + +/* Description : Addition of 2 pairs of vectors + Arguments : Inputs - in0, in1, in2, in3 + Outputs - out0, out1 + Details : Each element in 'in0' is added to 'in1' and result is written + to 'out0'. +*/ +#define ADD2(in0, in1, in2, in3, out0, out1) \ + { \ + out0 = in0 + in1; \ + out1 = in2 + in3; \ + } +#define ADD4(in0, in1, in2, in3, in4, in5, in6, in7, out0, out1, out2, out3) \ + { \ + ADD2(in0, in1, in2, in3, out0, out1); \ + ADD2(in4, in5, in6, in7, out2, out3); \ + } + +/* Description : Subtraction of 2 pairs of vectors + Arguments : Inputs - in0, in1, in2, in3 + Outputs - out0, out1 + Details : Each element in 'in1' is subtracted from 'in0' and result is + written to 'out0'. +*/ +#define SUB2(in0, in1, in2, in3, out0, out1) \ + { \ + out0 = in0 - in1; \ + out1 = in2 - in3; \ + } +#define SUB4(in0, in1, in2, in3, in4, in5, in6, in7, out0, out1, out2, out3) \ + { \ + out0 = in0 - in1; \ + out1 = in2 - in3; \ + out2 = in4 - in5; \ + out3 = in6 - in7; \ + } + +/* Description : Sign extend halfword elements from right half of the vector + Arguments : Input - in (halfword vector) + Output - out (sign extended word vector) + Return Type - signed word + Details : Sign bit of halfword elements from input vector 'in' is + extracted and interleaved with same vector 'in0' to generate + 4 word elements keeping sign intact +*/ +#define UNPCK_R_SH_SW(in, out) \ + { \ + v8i16 sign_m; \ + \ + sign_m = __msa_clti_s_h((v8i16)in, 0); \ + out = (v4i32)__msa_ilvr_h(sign_m, (v8i16)in); \ + } + +/* Description : Zero extend unsigned byte elements to halfword elements + Arguments : Input - in (unsigned byte vector) + Outputs - out0, out1 (unsigned halfword vectors) + Return Type - signed halfword + Details : Zero extended right half of vector is returned in 'out0' + Zero extended left half of vector is returned in 'out1' +*/ +#define UNPCK_UB_SH(in, out0, out1) \ + { \ + v16i8 zero_m = { 0 }; \ + \ + ILVRL_B2_SH(zero_m, in, out0, out1); \ + } + +/* Description : Sign extend halfword elements from input vector and return + the result in pair of vectors + Arguments : Input - in (halfword vector) + Outputs - out0, out1 (sign extended word vectors) + Return Type - signed word + Details : Sign bit of halfword elements from input vector 'in' is + extracted and interleaved right with same vector 'in0' to + generate 4 signed word elements in 'out0' + Then interleaved left with same vector 'in0' to + generate 4 signed word elements in 'out1' +*/ +#define UNPCK_SH_SW(in, out0, out1) \ + { \ + v8i16 tmp_m; \ + \ + tmp_m = __msa_clti_s_h((v8i16)in, 0); \ + ILVRL_H2_SW(tmp_m, in, out0, out1); \ + } + +/* Description : Butterfly of 4 input vectors + Arguments : Inputs - in0, in1, in2, in3 + Outputs - out0, out1, out2, out3 + Details : Butterfly operation +*/ +#define BUTTERFLY_4(in0, in1, in2, in3, out0, out1, out2, out3) \ + { \ + out0 = in0 + in3; \ + out1 = in1 + in2; \ + \ + out2 = in1 - in2; \ + out3 = in0 - in3; \ + } + +/* Description : Transpose input 8x8 byte block + Arguments : Inputs - in0, in1, in2, in3, in4, in5, in6, in7 + Outputs - out0, out1, out2, out3, out4, out5, out6, out7 + Return Type - as per RTYPE +*/ +#define TRANSPOSE8x8_UB(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, out0, \ + out1, out2, out3, out4, out5, out6, out7) \ + { \ + v16i8 tmp0_m, tmp1_m, tmp2_m, tmp3_m; \ + v16i8 tmp4_m, tmp5_m, tmp6_m, tmp7_m; \ + \ + ILVR_B4_SB(in2, in0, in3, in1, in6, in4, in7, in5, tmp0_m, tmp1_m, tmp2_m, \ + tmp3_m); \ + ILVRL_B2_SB(tmp1_m, tmp0_m, tmp4_m, tmp5_m); \ + ILVRL_B2_SB(tmp3_m, tmp2_m, tmp6_m, tmp7_m); \ + ILVRL_W2(RTYPE, tmp6_m, tmp4_m, out0, out2); \ + ILVRL_W2(RTYPE, tmp7_m, tmp5_m, out4, out6); \ + SLDI_B2_0(RTYPE, out0, out2, out1, out3, 8); \ + SLDI_B2_0(RTYPE, out4, out6, out5, out7, 8); \ + } +#define TRANSPOSE8x8_UB_UB(...) TRANSPOSE8x8_UB(v16u8, __VA_ARGS__) + +/* Description : Transpose 16x4 block into 4x16 with byte elements in vectors + Arguments : Inputs - in0, in1, in2, in3, in4, in5, in6, in7, + in8, in9, in10, in11, in12, in13, in14, in15 + Outputs - out0, out1, out2, out3 + Return Type - unsigned byte +*/ +#define TRANSPOSE16x4_UB_UB(in0, in1, in2, in3, in4, in5, in6, in7, in8, in9, \ + in10, in11, in12, in13, in14, in15, out0, out1, \ + out2, out3) \ + { \ + v2i64 tmp0_m, tmp1_m, tmp2_m, tmp3_m; \ + \ + ILVEV_W2_SD(in0, in4, in8, in12, tmp0_m, tmp1_m); \ + out1 = (v16u8)__msa_ilvev_d(tmp1_m, tmp0_m); \ + \ + ILVEV_W2_SD(in1, in5, in9, in13, tmp0_m, tmp1_m); \ + out3 = (v16u8)__msa_ilvev_d(tmp1_m, tmp0_m); \ + \ + ILVEV_W2_SD(in2, in6, in10, in14, tmp0_m, tmp1_m); \ + \ + tmp2_m = __msa_ilvev_d(tmp1_m, tmp0_m); \ + ILVEV_W2_SD(in3, in7, in11, in15, tmp0_m, tmp1_m); \ + \ + tmp3_m = __msa_ilvev_d(tmp1_m, tmp0_m); \ + ILVEV_B2_SD(out1, out3, tmp2_m, tmp3_m, tmp0_m, tmp1_m); \ + out0 = (v16u8)__msa_ilvev_h((v8i16)tmp1_m, (v8i16)tmp0_m); \ + out2 = (v16u8)__msa_ilvod_h((v8i16)tmp1_m, (v8i16)tmp0_m); \ + \ + tmp0_m = (v2i64)__msa_ilvod_b((v16i8)out3, (v16i8)out1); \ + tmp1_m = (v2i64)__msa_ilvod_b((v16i8)tmp3_m, (v16i8)tmp2_m); \ + out1 = (v16u8)__msa_ilvev_h((v8i16)tmp1_m, (v8i16)tmp0_m); \ + out3 = (v16u8)__msa_ilvod_h((v8i16)tmp1_m, (v8i16)tmp0_m); \ + } + +/* Description : Transpose 16x8 block into 8x16 with byte elements in vectors + Arguments : Inputs - in0, in1, in2, in3, in4, in5, in6, in7, + in8, in9, in10, in11, in12, in13, in14, in15 + Outputs - out0, out1, out2, out3, out4, out5, out6, out7 + Return Type - unsigned byte +*/ +#define TRANSPOSE16x8_UB_UB(in0, in1, in2, in3, in4, in5, in6, in7, in8, in9, \ + in10, in11, in12, in13, in14, in15, out0, out1, \ + out2, out3, out4, out5, out6, out7) \ + { \ + v16u8 tmp0_m, tmp1_m, tmp2_m, tmp3_m; \ + v16u8 tmp4_m, tmp5_m, tmp6_m, tmp7_m; \ + \ + ILVEV_D2_UB(in0, in8, in1, in9, out7, out6); \ + ILVEV_D2_UB(in2, in10, in3, in11, out5, out4); \ + ILVEV_D2_UB(in4, in12, in5, in13, out3, out2); \ + ILVEV_D2_UB(in6, in14, in7, in15, out1, out0); \ + \ + tmp0_m = (v16u8)__msa_ilvev_b((v16i8)out6, (v16i8)out7); \ + tmp4_m = (v16u8)__msa_ilvod_b((v16i8)out6, (v16i8)out7); \ + tmp1_m = (v16u8)__msa_ilvev_b((v16i8)out4, (v16i8)out5); \ + tmp5_m = (v16u8)__msa_ilvod_b((v16i8)out4, (v16i8)out5); \ + out5 = (v16u8)__msa_ilvev_b((v16i8)out2, (v16i8)out3); \ + tmp6_m = (v16u8)__msa_ilvod_b((v16i8)out2, (v16i8)out3); \ + out7 = (v16u8)__msa_ilvev_b((v16i8)out0, (v16i8)out1); \ + tmp7_m = (v16u8)__msa_ilvod_b((v16i8)out0, (v16i8)out1); \ + \ + ILVEV_H2_UB(tmp0_m, tmp1_m, out5, out7, tmp2_m, tmp3_m); \ + out0 = (v16u8)__msa_ilvev_w((v4i32)tmp3_m, (v4i32)tmp2_m); \ + out4 = (v16u8)__msa_ilvod_w((v4i32)tmp3_m, (v4i32)tmp2_m); \ + \ + tmp2_m = (v16u8)__msa_ilvod_h((v8i16)tmp1_m, (v8i16)tmp0_m); \ + tmp3_m = (v16u8)__msa_ilvod_h((v8i16)out7, (v8i16)out5); \ + out2 = (v16u8)__msa_ilvev_w((v4i32)tmp3_m, (v4i32)tmp2_m); \ + out6 = (v16u8)__msa_ilvod_w((v4i32)tmp3_m, (v4i32)tmp2_m); \ + \ + ILVEV_H2_UB(tmp4_m, tmp5_m, tmp6_m, tmp7_m, tmp2_m, tmp3_m); \ + out1 = (v16u8)__msa_ilvev_w((v4i32)tmp3_m, (v4i32)tmp2_m); \ + out5 = (v16u8)__msa_ilvod_w((v4i32)tmp3_m, (v4i32)tmp2_m); \ + \ + tmp2_m = (v16u8)__msa_ilvod_h((v8i16)tmp5_m, (v8i16)tmp4_m); \ + tmp2_m = (v16u8)__msa_ilvod_h((v8i16)tmp5_m, (v8i16)tmp4_m); \ + tmp3_m = (v16u8)__msa_ilvod_h((v8i16)tmp7_m, (v8i16)tmp6_m); \ + tmp3_m = (v16u8)__msa_ilvod_h((v8i16)tmp7_m, (v8i16)tmp6_m); \ + out3 = (v16u8)__msa_ilvev_w((v4i32)tmp3_m, (v4i32)tmp2_m); \ + out7 = (v16u8)__msa_ilvod_w((v4i32)tmp3_m, (v4i32)tmp2_m); \ + } + +/* Description : Transpose 4x4 block with half word elements in vectors + Arguments : Inputs - in0, in1, in2, in3 + Outputs - out0, out1, out2, out3 + Return Type - signed halfword +*/ +#define TRANSPOSE4x4_SH_SH(in0, in1, in2, in3, out0, out1, out2, out3) \ + { \ + v8i16 s0_m, s1_m; \ + \ + ILVR_H2_SH(in1, in0, in3, in2, s0_m, s1_m); \ + ILVRL_W2_SH(s1_m, s0_m, out0, out2); \ + out1 = (v8i16)__msa_ilvl_d((v2i64)out0, (v2i64)out0); \ + out3 = (v8i16)__msa_ilvl_d((v2i64)out0, (v2i64)out2); \ + } + +/* Description : Transpose 8x4 block with half word elements in vectors + Arguments : Inputs - in0, in1, in2, in3, in4, in5, in6, in7 + Outputs - out0, out1, out2, out3, out4, out5, out6, out7 + Return Type - signed halfword +*/ +#define TRANSPOSE8X4_SH_SH(in0, in1, in2, in3, out0, out1, out2, out3) \ + { \ + v8i16 tmp0_m, tmp1_m, tmp2_m, tmp3_m; \ + \ + ILVR_H2_SH(in1, in0, in3, in2, tmp0_m, tmp1_m); \ + ILVL_H2_SH(in1, in0, in3, in2, tmp2_m, tmp3_m); \ + ILVR_W2_SH(tmp1_m, tmp0_m, tmp3_m, tmp2_m, out0, out2); \ + ILVL_W2_SH(tmp1_m, tmp0_m, tmp3_m, tmp2_m, out1, out3); \ + } + +/* Description : Transpose 4x4 block with word elements in vectors + Arguments : Inputs - in0, in1, in2, in3 + Outputs - out0, out1, out2, out3 + Return Type - signed word +*/ +#define TRANSPOSE4x4_SW_SW(in0, in1, in2, in3, out0, out1, out2, out3) \ + { \ + v4i32 s0_m, s1_m, s2_m, s3_m; \ + \ + ILVRL_W2_SW(in1, in0, s0_m, s1_m); \ + ILVRL_W2_SW(in3, in2, s2_m, s3_m); \ + \ + out0 = (v4i32)__msa_ilvr_d((v2i64)s2_m, (v2i64)s0_m); \ + out1 = (v4i32)__msa_ilvl_d((v2i64)s2_m, (v2i64)s0_m); \ + out2 = (v4i32)__msa_ilvr_d((v2i64)s3_m, (v2i64)s1_m); \ + out3 = (v4i32)__msa_ilvl_d((v2i64)s3_m, (v2i64)s1_m); \ + } + +/* Description : Dot product and addition of 3 signed halfword input vectors + Arguments : Inputs - in0, in1, in2, coeff0, coeff1, coeff2 + Output - out0_m + Return Type - signed halfword + Details : Dot product of 'in0' with 'coeff0' + Dot product of 'in1' with 'coeff1' + Dot product of 'in2' with 'coeff2' + Addition of all the 3 vector results + out0_m = (in0 * coeff0) + (in1 * coeff1) + (in2 * coeff2) +*/ +#define DPADD_SH3_SH(in0, in1, in2, coeff0, coeff1, coeff2) \ + ({ \ + v8i16 tmp1_m; \ + v8i16 out0_m; \ + \ + out0_m = __msa_dotp_s_h((v16i8)in0, (v16i8)coeff0); \ + out0_m = __msa_dpadd_s_h(out0_m, (v16i8)in1, (v16i8)coeff1); \ + tmp1_m = __msa_dotp_s_h((v16i8)in2, (v16i8)coeff2); \ + out0_m = __msa_adds_s_h(out0_m, tmp1_m); \ + \ + out0_m; \ + }) + +/* Description : Pack even elements of input vectors & xor with 128 + Arguments : Inputs - in0, in1 + Output - out_m + Return Type - unsigned byte + Details : Signed byte even elements from 'in0' and 'in1' are packed + together in one vector and the resulting vector is xor'ed with + 128 to shift the range from signed to unsigned byte +*/ +#define PCKEV_XORI128_UB(in0, in1) \ + ({ \ + v16u8 out_m; \ + out_m = (v16u8)__msa_pckev_b((v16i8)in1, (v16i8)in0); \ + out_m = (v16u8)__msa_xori_b((v16u8)out_m, 128); \ + out_m; \ + }) + +/* Description : Pack even byte elements and store byte vector in destination + memory + Arguments : Inputs - in0, in1, pdst +*/ +#define PCKEV_ST_SB(in0, in1, pdst) \ + { \ + v16i8 tmp_m; \ + tmp_m = __msa_pckev_b((v16i8)in1, (v16i8)in0); \ + ST_SB(tmp_m, (pdst)); \ + } + +/* Description : Horizontal 2 tap filter kernel code + Arguments : Inputs - in0, in1, mask, coeff, shift +*/ +#define HORIZ_2TAP_FILT_UH(in0, in1, mask, coeff, shift) \ + ({ \ + v16i8 tmp0_m; \ + v8u16 tmp1_m; \ + \ + tmp0_m = __msa_vshf_b((v16i8)mask, (v16i8)in1, (v16i8)in0); \ + tmp1_m = __msa_dotp_u_h((v16u8)tmp0_m, (v16u8)coeff); \ + tmp1_m = (v8u16)__msa_srari_h((v8i16)tmp1_m, shift); \ + \ + tmp1_m; \ + }) +#endif /* VP8_COMMON_MIPS_MSA_VP8_MACROS_MSA_H_ */ diff --git a/vp8/common/modecont.c b/vp8/common/modecont.c new file mode 100644 index 0000000..d6ad9bb --- /dev/null +++ b/vp8/common/modecont.c @@ -0,0 +1,38 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "entropy.h" + +const int vp8_mode_contexts[6][4] = { + { + /* 0 */ + 7, 1, 1, 143, + }, + { + /* 1 */ + 14, 18, 14, 107, + }, + { + /* 2 */ + 135, 64, 57, 68, + }, + { + /* 3 */ + 60, 56, 128, 65, + }, + { + /* 4 */ + 159, 134, 128, 34, + }, + { + /* 5 */ + 234, 188, 128, 28, + }, +}; diff --git a/vp8/common/modecont.h b/vp8/common/modecont.h new file mode 100644 index 0000000..b58c7dc --- /dev/null +++ b/vp8/common/modecont.h @@ -0,0 +1,24 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP8_COMMON_MODECONT_H_ +#define VP8_COMMON_MODECONT_H_ + +#ifdef __cplusplus +extern "C" { +#endif + +extern const int vp8_mode_contexts[6][4]; + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP8_COMMON_MODECONT_H_ diff --git a/vp8/common/mv.h b/vp8/common/mv.h new file mode 100644 index 0000000..b6d2147 --- /dev/null +++ b/vp8/common/mv.h @@ -0,0 +1,33 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP8_COMMON_MV_H_ +#define VP8_COMMON_MV_H_ +#include "vpx/vpx_integer.h" + +#ifdef __cplusplus +extern "C" { +#endif + +typedef struct { + short row; + short col; +} MV; + +typedef union int_mv { + uint32_t as_int; + MV as_mv; +} int_mv; /* facilitates faster equality tests and copies */ + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP8_COMMON_MV_H_ diff --git a/vp8/common/onyx.h b/vp8/common/onyx.h new file mode 100644 index 0000000..72fba2e --- /dev/null +++ b/vp8/common/onyx.h @@ -0,0 +1,284 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP8_COMMON_ONYX_H_ +#define VP8_COMMON_ONYX_H_ + +#ifdef __cplusplus +extern "C" { +#endif + +#include "vpx_config.h" +#include "vpx/internal/vpx_codec_internal.h" +#include "vpx/vp8cx.h" +#include "vpx/vpx_encoder.h" +#include "vpx_scale/yv12config.h" +#include "ppflags.h" + +struct VP8_COMP; + +/* Create/destroy static data structures. */ + +typedef enum { + NORMAL = 0, + FOURFIVE = 1, + THREEFIVE = 2, + ONETWO = 3 +} VPX_SCALING; + +typedef enum { + USAGE_LOCAL_FILE_PLAYBACK = 0x0, + USAGE_STREAM_FROM_SERVER = 0x1, + USAGE_CONSTRAINED_QUALITY = 0x2, + USAGE_CONSTANT_QUALITY = 0x3 +} END_USAGE; + +typedef enum { + MODE_REALTIME = 0x0, + MODE_GOODQUALITY = 0x1, + MODE_BESTQUALITY = 0x2, + MODE_FIRSTPASS = 0x3, + MODE_SECONDPASS = 0x4, + MODE_SECONDPASS_BEST = 0x5 +} MODE; + +typedef enum { + FRAMEFLAGS_KEY = 1, + FRAMEFLAGS_GOLDEN = 2, + FRAMEFLAGS_ALTREF = 4 +} FRAMETYPE_FLAGS; + +#include +static INLINE void Scale2Ratio(int mode, int *hr, int *hs) { + switch (mode) { + case NORMAL: + *hr = 1; + *hs = 1; + break; + case FOURFIVE: + *hr = 4; + *hs = 5; + break; + case THREEFIVE: + *hr = 3; + *hs = 5; + break; + case ONETWO: + *hr = 1; + *hs = 2; + break; + default: + *hr = 1; + *hs = 1; + assert(0); + break; + } +} + +typedef struct { + /* 4 versions of bitstream defined: + * 0 best quality/slowest decode, 3 lowest quality/fastest decode + */ + int Version; + int Width; + int Height; + struct vpx_rational timebase; + unsigned int target_bandwidth; /* kilobits per second */ + + /* Parameter used for applying denoiser. + * For temporal denoiser: noise_sensitivity = 0 means off, + * noise_sensitivity = 1 means temporal denoiser on for Y channel only, + * noise_sensitivity = 2 means temporal denoiser on for all channels. + * noise_sensitivity = 3 means aggressive denoising mode. + * noise_sensitivity >= 4 means adaptive denoising mode. + * Temporal denoiser is enabled via the configuration option: + * CONFIG_TEMPORAL_DENOISING. + * For spatial denoiser: noise_sensitivity controls the amount of + * pre-processing blur: noise_sensitivity = 0 means off. + * Spatial denoiser invoked under !CONFIG_TEMPORAL_DENOISING. + */ + int noise_sensitivity; + + /* parameter used for sharpening output: recommendation 0: */ + int Sharpness; + int cpu_used; + unsigned int rc_max_intra_bitrate_pct; + /* percent of rate boost for golden frame in CBR mode. */ + unsigned int gf_cbr_boost_pct; + unsigned int screen_content_mode; + + /* mode -> + *(0)=Realtime/Live Encoding. This mode is optimized for realtim + * encoding (for example, capturing a television signal or feed + * from a live camera). ( speed setting controls how fast ) + *(1)=Good Quality Fast Encoding. The encoder balances quality with + * the amount of time it takes to encode the output. ( speed + * setting controls how fast ) + *(2)=One Pass - Best Quality. The encoder places priority on the + * quality of the output over encoding speed. The output is + * compressed at the highest possible quality. This option takes + * the longest amount of time to encode. ( speed setting ignored + * ) + *(3)=Two Pass - First Pass. The encoder generates a file of + * statistics for use in the second encoding pass. ( speed + * setting controls how fast ) + *(4)=Two Pass - Second Pass. The encoder uses the statistics that + * were generated in the first encoding pass to create the + * compressed output. ( speed setting controls how fast ) + *(5)=Two Pass - Second Pass Best. The encoder uses the statistics + * that were generated in the first encoding pass to create the + * compressed output using the highest possible quality, and + * taking a longer amount of time to encode.. ( speed setting + * ignored ) + */ + int Mode; + + /* Key Framing Operations */ + int auto_key; /* automatically detect cut scenes */ + int key_freq; /* maximum distance to key frame. */ + + /* lagged compression (if allow_lag == 0 lag_in_frames is ignored) */ + int allow_lag; + int lag_in_frames; /* how many frames lag before we start encoding */ + + /* + * DATARATE CONTROL OPTIONS + */ + + int end_usage; /* vbr or cbr */ + + /* buffer targeting aggressiveness */ + int under_shoot_pct; + int over_shoot_pct; + + /* buffering parameters */ + int64_t starting_buffer_level; + int64_t optimal_buffer_level; + int64_t maximum_buffer_size; + + int64_t starting_buffer_level_in_ms; + int64_t optimal_buffer_level_in_ms; + int64_t maximum_buffer_size_in_ms; + + /* controlling quality */ + int fixed_q; + int worst_allowed_q; + int best_allowed_q; + int cq_level; + + /* allow internal resizing */ + int allow_spatial_resampling; + int resample_down_water_mark; + int resample_up_water_mark; + + /* allow internal frame rate alterations */ + int allow_df; + int drop_frames_water_mark; + + /* two pass datarate control */ + int two_pass_vbrbias; + int two_pass_vbrmin_section; + int two_pass_vbrmax_section; + + /* + * END DATARATE CONTROL OPTIONS + */ + + /* these parameters aren't to be used in final build don't use!!! */ + int play_alternate; + int alt_freq; + int alt_q; + int key_q; + int gold_q; + + int multi_threaded; /* how many threads to run the encoder on */ + int token_partitions; /* how many token partitions to create */ + + /* early breakout threshold: for video conf recommend 800 */ + int encode_breakout; + + /* Bitfield defining the error resiliency features to enable. + * Can provide decodable frames after losses in previous + * frames and decodable partitions after losses in the same frame. + */ + unsigned int error_resilient_mode; + + int arnr_max_frames; + int arnr_strength; + int arnr_type; + + vpx_fixed_buf_t two_pass_stats_in; + struct vpx_codec_pkt_list *output_pkt_list; + + vp8e_tuning tuning; + + /* Temporal scaling parameters */ + unsigned int number_of_layers; + unsigned int target_bitrate[VPX_TS_MAX_PERIODICITY]; + unsigned int rate_decimator[VPX_TS_MAX_PERIODICITY]; + unsigned int periodicity; + unsigned int layer_id[VPX_TS_MAX_PERIODICITY]; + +#if CONFIG_MULTI_RES_ENCODING + /* Number of total resolutions encoded */ + unsigned int mr_total_resolutions; + + /* Current encoder ID */ + unsigned int mr_encoder_id; + + /* Down-sampling factor */ + vpx_rational_t mr_down_sampling_factor; + + /* Memory location to store low-resolution encoder's mode info */ + void *mr_low_res_mode_info; +#endif +} VP8_CONFIG; + +void vp8_initialize(); + +struct VP8_COMP *vp8_create_compressor(VP8_CONFIG *oxcf); +void vp8_remove_compressor(struct VP8_COMP **comp); + +void vp8_init_config(struct VP8_COMP *onyx, VP8_CONFIG *oxcf); +void vp8_change_config(struct VP8_COMP *onyx, VP8_CONFIG *oxcf); + +int vp8_receive_raw_frame(struct VP8_COMP *comp, unsigned int frame_flags, + YV12_BUFFER_CONFIG *sd, int64_t time_stamp, + int64_t end_time_stamp); +int vp8_get_compressed_data(struct VP8_COMP *comp, unsigned int *frame_flags, + size_t *size, unsigned char *dest, + unsigned char *dest_end, int64_t *time_stamp, + int64_t *time_end, int flush); +int vp8_get_preview_raw_frame(struct VP8_COMP *comp, YV12_BUFFER_CONFIG *dest, + vp8_ppflags_t *flags); + +int vp8_use_as_reference(struct VP8_COMP *comp, int ref_frame_flags); +int vp8_update_reference(struct VP8_COMP *comp, int ref_frame_flags); +int vp8_get_reference(struct VP8_COMP *comp, + enum vpx_ref_frame_type ref_frame_flag, + YV12_BUFFER_CONFIG *sd); +int vp8_set_reference(struct VP8_COMP *comp, + enum vpx_ref_frame_type ref_frame_flag, + YV12_BUFFER_CONFIG *sd); +int vp8_update_entropy(struct VP8_COMP *comp, int update); +int vp8_set_roimap(struct VP8_COMP *comp, unsigned char *map, unsigned int rows, + unsigned int cols, int delta_q[4], int delta_lf[4], + unsigned int threshold[4]); +int vp8_set_active_map(struct VP8_COMP *comp, unsigned char *map, + unsigned int rows, unsigned int cols); +int vp8_set_internal_size(struct VP8_COMP *comp, VPX_SCALING horiz_mode, + VPX_SCALING vert_mode); +int vp8_get_quantizer(struct VP8_COMP *c); + +#ifdef __cplusplus +} +#endif + +#endif // VP8_COMMON_ONYX_H_ diff --git a/vp8/common/onyxc_int.h b/vp8/common/onyxc_int.h new file mode 100644 index 0000000..9a12c7f --- /dev/null +++ b/vp8/common/onyxc_int.h @@ -0,0 +1,177 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP8_COMMON_ONYXC_INT_H_ +#define VP8_COMMON_ONYXC_INT_H_ + +#include "vpx_config.h" +#include "vp8_rtcd.h" +#include "vpx/internal/vpx_codec_internal.h" +#include "loopfilter.h" +#include "entropymv.h" +#include "entropy.h" +#if CONFIG_POSTPROC +#include "postproc.h" +#endif + +/*#ifdef PACKET_TESTING*/ +#include "header.h" +/*#endif*/ + +#ifdef __cplusplus +extern "C" { +#endif + +#define MINQ 0 +#define MAXQ 127 +#define QINDEX_RANGE (MAXQ + 1) + +#define NUM_YV12_BUFFERS 4 + +#define MAX_PARTITIONS 9 + +typedef struct frame_contexts { + vp8_prob bmode_prob[VP8_BINTRAMODES - 1]; + vp8_prob ymode_prob[VP8_YMODES - 1]; /* interframe intra mode probs */ + vp8_prob uv_mode_prob[VP8_UV_MODES - 1]; + vp8_prob sub_mv_ref_prob[VP8_SUBMVREFS - 1]; + vp8_prob coef_probs[BLOCK_TYPES][COEF_BANDS][PREV_COEF_CONTEXTS] + [ENTROPY_NODES]; + MV_CONTEXT mvc[2]; +} FRAME_CONTEXT; + +typedef enum { + ONE_PARTITION = 0, + TWO_PARTITION = 1, + FOUR_PARTITION = 2, + EIGHT_PARTITION = 3 +} TOKEN_PARTITION; + +typedef enum { + RECON_CLAMP_REQUIRED = 0, + RECON_CLAMP_NOTREQUIRED = 1 +} CLAMP_TYPE; + +typedef struct VP8Common { + struct vpx_internal_error_info error; + + DECLARE_ALIGNED(16, short, Y1dequant[QINDEX_RANGE][2]); + DECLARE_ALIGNED(16, short, Y2dequant[QINDEX_RANGE][2]); + DECLARE_ALIGNED(16, short, UVdequant[QINDEX_RANGE][2]); + + int Width; + int Height; + int horiz_scale; + int vert_scale; + + CLAMP_TYPE clamp_type; + + YV12_BUFFER_CONFIG *frame_to_show; + + YV12_BUFFER_CONFIG yv12_fb[NUM_YV12_BUFFERS]; + int fb_idx_ref_cnt[NUM_YV12_BUFFERS]; + int new_fb_idx, lst_fb_idx, gld_fb_idx, alt_fb_idx; + + YV12_BUFFER_CONFIG temp_scale_frame; + +#if CONFIG_POSTPROC + YV12_BUFFER_CONFIG post_proc_buffer; + YV12_BUFFER_CONFIG post_proc_buffer_int; + int post_proc_buffer_int_used; + unsigned char *pp_limits_buffer; /* post-processing filter coefficients */ +#endif + + FRAME_TYPE + last_frame_type; /* Save last frame's frame type for motion search. */ + FRAME_TYPE frame_type; + + int show_frame; + + int frame_flags; + int MBs; + int mb_rows; + int mb_cols; + int mode_info_stride; + + /* profile settings */ + int mb_no_coeff_skip; + int no_lpf; + int use_bilinear_mc_filter; + int full_pixel; + + int base_qindex; + + int y1dc_delta_q; + int y2dc_delta_q; + int y2ac_delta_q; + int uvdc_delta_q; + int uvac_delta_q; + + /* We allocate a MODE_INFO struct for each macroblock, together with + an extra row on top and column on the left to simplify prediction. */ + + MODE_INFO *mip; /* Base of allocated array */ + MODE_INFO *mi; /* Corresponds to upper left visible macroblock */ +#if CONFIG_ERROR_CONCEALMENT + MODE_INFO *prev_mip; /* MODE_INFO array 'mip' from last decoded frame */ + MODE_INFO *prev_mi; /* 'mi' from last frame (points into prev_mip) */ +#endif + /* MODE_INFO for the last decoded frame to show */ + MODE_INFO *show_frame_mi; + LOOPFILTERTYPE filter_type; + + loop_filter_info_n lf_info; + + int filter_level; + int last_sharpness_level; + int sharpness_level; + + int refresh_last_frame; /* Two state 0 = NO, 1 = YES */ + int refresh_golden_frame; /* Two state 0 = NO, 1 = YES */ + int refresh_alt_ref_frame; /* Two state 0 = NO, 1 = YES */ + + int copy_buffer_to_gf; /* 0 none, 1 Last to GF, 2 ARF to GF */ + int copy_buffer_to_arf; /* 0 none, 1 Last to ARF, 2 GF to ARF */ + + int refresh_entropy_probs; /* Two state 0 = NO, 1 = YES */ + + int ref_frame_sign_bias[MAX_REF_FRAMES]; /* Two state 0, 1 */ + + /* Y,U,V,Y2 */ + ENTROPY_CONTEXT_PLANES *above_context; /* row of context for each plane */ + ENTROPY_CONTEXT_PLANES left_context; /* (up to) 4 contexts "" */ + + FRAME_CONTEXT lfc; /* last frame entropy */ + FRAME_CONTEXT fc; /* this frame entropy */ + + unsigned int current_video_frame; + + int version; + + TOKEN_PARTITION multi_token_partition; + +#ifdef PACKET_TESTING + VP8_HEADER oh; +#endif + +#if CONFIG_MULTITHREAD + int processor_core_count; +#endif +#if CONFIG_POSTPROC + struct postproc_state postproc_state; +#endif + int cpu_caps; +} VP8_COMMON; + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP8_COMMON_ONYXC_INT_H_ diff --git a/vp8/common/onyxd.h b/vp8/common/onyxd.h new file mode 100644 index 0000000..d3c1b0e --- /dev/null +++ b/vp8/common/onyxd.h @@ -0,0 +1,63 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP8_COMMON_ONYXD_H_ +#define VP8_COMMON_ONYXD_H_ + +/* Create/destroy static data structures. */ +#ifdef __cplusplus +extern "C" { +#endif +#include "vpx_scale/yv12config.h" +#include "ppflags.h" +#include "vpx_ports/mem.h" +#include "vpx/vpx_codec.h" +#include "vpx/vp8.h" + +struct VP8D_COMP; +struct VP8Common; + +typedef struct { + int Width; + int Height; + int Version; + int postprocess; + int max_threads; + int error_concealment; +} VP8D_CONFIG; + +typedef enum { VP8D_OK = 0 } VP8D_SETTING; + +void vp8dx_initialize(void); + +void vp8dx_set_setting(struct VP8D_COMP *comp, VP8D_SETTING oxst, int x); + +int vp8dx_get_setting(struct VP8D_COMP *comp, VP8D_SETTING oxst); + +int vp8dx_receive_compressed_data(struct VP8D_COMP *comp, size_t size, + const uint8_t *dest, int64_t time_stamp); +int vp8dx_get_raw_frame(struct VP8D_COMP *comp, YV12_BUFFER_CONFIG *sd, + int64_t *time_stamp, int64_t *time_end_stamp, + vp8_ppflags_t *flags); +int vp8dx_references_buffer(struct VP8Common *oci, int ref_frame); + +vpx_codec_err_t vp8dx_get_reference(struct VP8D_COMP *comp, + enum vpx_ref_frame_type ref_frame_flag, + YV12_BUFFER_CONFIG *sd); +vpx_codec_err_t vp8dx_set_reference(struct VP8D_COMP *comp, + enum vpx_ref_frame_type ref_frame_flag, + YV12_BUFFER_CONFIG *sd); +int vp8dx_get_quantizer(const struct VP8D_COMP *c); + +#ifdef __cplusplus +} +#endif + +#endif // VP8_COMMON_ONYXD_H_ diff --git a/vp8/common/postproc.c b/vp8/common/postproc.c new file mode 100644 index 0000000..d67ee8a --- /dev/null +++ b/vp8/common/postproc.c @@ -0,0 +1,390 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "vpx_config.h" +#include "vpx_dsp_rtcd.h" +#include "vp8_rtcd.h" +#include "vpx_dsp/postproc.h" +#include "vpx_ports/system_state.h" +#include "vpx_scale_rtcd.h" +#include "vpx_scale/yv12config.h" +#include "postproc.h" +#include "common.h" +#include "vpx_scale/vpx_scale.h" +#include "systemdependent.h" + +#include +#include +#include +#include + +/* clang-format off */ +#define RGB_TO_YUV(t) \ + (unsigned char)((0.257 * (float)(t >> 16)) + \ + (0.504 * (float)(t >> 8 & 0xff)) + \ + (0.098 * (float)(t & 0xff)) + 16), \ + (unsigned char)(-(0.148 * (float)(t >> 16)) - \ + (0.291 * (float)(t >> 8 & 0xff)) + \ + (0.439 * (float)(t & 0xff)) + 128), \ + (unsigned char)((0.439 * (float)(t >> 16)) - \ + (0.368 * (float)(t >> 8 & 0xff)) - \ + (0.071 * (float)(t & 0xff)) + 128) +/* clang-format on */ + +extern void vp8_blit_text(const char *msg, unsigned char *address, + const int pitch); +extern void vp8_blit_line(int x0, int x1, int y0, int y1, unsigned char *image, + const int pitch); +/*********************************************************************************************************** + */ +#if CONFIG_POSTPROC +static int q2mbl(int x) { + if (x < 20) x = 20; + + x = 50 + (x - 50) * 10 / 8; + return x * x / 3; +} + +static void vp8_de_mblock(YV12_BUFFER_CONFIG *post, int q) { + vpx_mbpost_proc_across_ip(post->y_buffer, post->y_stride, post->y_height, + post->y_width, q2mbl(q)); + vpx_mbpost_proc_down(post->y_buffer, post->y_stride, post->y_height, + post->y_width, q2mbl(q)); +} + +void vp8_deblock(VP8_COMMON *cm, YV12_BUFFER_CONFIG *source, + YV12_BUFFER_CONFIG *post, int q, int low_var_thresh, + int flag) { + double level = 6.0e-05 * q * q * q - .0067 * q * q + .306 * q + .0065; + int ppl = (int)(level + .5); + + const MODE_INFO *mode_info_context = cm->show_frame_mi; + int mbr, mbc; + + /* The pixel thresholds are adjusted according to if or not the macroblock + * is a skipped block. */ + unsigned char *ylimits = cm->pp_limits_buffer; + unsigned char *uvlimits = cm->pp_limits_buffer + 16 * cm->mb_cols; + (void)low_var_thresh; + (void)flag; + + if (ppl > 0) { + for (mbr = 0; mbr < cm->mb_rows; ++mbr) { + unsigned char *ylptr = ylimits; + unsigned char *uvlptr = uvlimits; + for (mbc = 0; mbc < cm->mb_cols; ++mbc) { + unsigned char mb_ppl; + + if (mode_info_context->mbmi.mb_skip_coeff) { + mb_ppl = (unsigned char)ppl >> 1; + } else { + mb_ppl = (unsigned char)ppl; + } + + memset(ylptr, mb_ppl, 16); + memset(uvlptr, mb_ppl, 8); + + ylptr += 16; + uvlptr += 8; + mode_info_context++; + } + mode_info_context++; + + vpx_post_proc_down_and_across_mb_row( + source->y_buffer + 16 * mbr * source->y_stride, + post->y_buffer + 16 * mbr * post->y_stride, source->y_stride, + post->y_stride, source->y_width, ylimits, 16); + + vpx_post_proc_down_and_across_mb_row( + source->u_buffer + 8 * mbr * source->uv_stride, + post->u_buffer + 8 * mbr * post->uv_stride, source->uv_stride, + post->uv_stride, source->uv_width, uvlimits, 8); + vpx_post_proc_down_and_across_mb_row( + source->v_buffer + 8 * mbr * source->uv_stride, + post->v_buffer + 8 * mbr * post->uv_stride, source->uv_stride, + post->uv_stride, source->uv_width, uvlimits, 8); + } + } else { + vp8_yv12_copy_frame(source, post); + } +} + +void vp8_de_noise(VP8_COMMON *cm, YV12_BUFFER_CONFIG *source, + YV12_BUFFER_CONFIG *post, int q, int low_var_thresh, int flag, + int uvfilter) { + int mbr; + double level = 6.0e-05 * q * q * q - .0067 * q * q + .306 * q + .0065; + int ppl = (int)(level + .5); + int mb_rows = cm->mb_rows; + int mb_cols = cm->mb_cols; + unsigned char *limits = cm->pp_limits_buffer; + (void)post; + (void)low_var_thresh; + (void)flag; + + memset(limits, (unsigned char)ppl, 16 * mb_cols); + + /* TODO: The original code don't filter the 2 outer rows and columns. */ + for (mbr = 0; mbr < mb_rows; ++mbr) { + vpx_post_proc_down_and_across_mb_row( + source->y_buffer + 16 * mbr * source->y_stride, + source->y_buffer + 16 * mbr * source->y_stride, source->y_stride, + source->y_stride, source->y_width, limits, 16); + if (uvfilter == 1) { + vpx_post_proc_down_and_across_mb_row( + source->u_buffer + 8 * mbr * source->uv_stride, + source->u_buffer + 8 * mbr * source->uv_stride, source->uv_stride, + source->uv_stride, source->uv_width, limits, 8); + vpx_post_proc_down_and_across_mb_row( + source->v_buffer + 8 * mbr * source->uv_stride, + source->v_buffer + 8 * mbr * source->uv_stride, source->uv_stride, + source->uv_stride, source->uv_width, limits, 8); + } + } +} +#endif // CONFIG_POSTPROC + +/* Blend the macro block with a solid colored square. Leave the + * edges unblended to give distinction to macro blocks in areas + * filled with the same color block. + */ +void vp8_blend_mb_inner_c(unsigned char *y, unsigned char *u, unsigned char *v, + int y_1, int u_1, int v_1, int alpha, int stride) { + int i, j; + int y1_const = y_1 * ((1 << 16) - alpha); + int u1_const = u_1 * ((1 << 16) - alpha); + int v1_const = v_1 * ((1 << 16) - alpha); + + y += 2 * stride + 2; + for (i = 0; i < 12; ++i) { + for (j = 0; j < 12; ++j) { + y[j] = (y[j] * alpha + y1_const) >> 16; + } + y += stride; + } + + stride >>= 1; + + u += stride + 1; + v += stride + 1; + + for (i = 0; i < 6; ++i) { + for (j = 0; j < 6; ++j) { + u[j] = (u[j] * alpha + u1_const) >> 16; + v[j] = (v[j] * alpha + v1_const) >> 16; + } + u += stride; + v += stride; + } +} + +/* Blend only the edge of the macro block. Leave center + * unblended to allow for other visualizations to be layered. + */ +void vp8_blend_mb_outer_c(unsigned char *y, unsigned char *u, unsigned char *v, + int y_1, int u_1, int v_1, int alpha, int stride) { + int i, j; + int y1_const = y_1 * ((1 << 16) - alpha); + int u1_const = u_1 * ((1 << 16) - alpha); + int v1_const = v_1 * ((1 << 16) - alpha); + + for (i = 0; i < 2; ++i) { + for (j = 0; j < 16; ++j) { + y[j] = (y[j] * alpha + y1_const) >> 16; + } + y += stride; + } + + for (i = 0; i < 12; ++i) { + y[0] = (y[0] * alpha + y1_const) >> 16; + y[1] = (y[1] * alpha + y1_const) >> 16; + y[14] = (y[14] * alpha + y1_const) >> 16; + y[15] = (y[15] * alpha + y1_const) >> 16; + y += stride; + } + + for (i = 0; i < 2; ++i) { + for (j = 0; j < 16; ++j) { + y[j] = (y[j] * alpha + y1_const) >> 16; + } + y += stride; + } + + stride >>= 1; + + for (j = 0; j < 8; ++j) { + u[j] = (u[j] * alpha + u1_const) >> 16; + v[j] = (v[j] * alpha + v1_const) >> 16; + } + u += stride; + v += stride; + + for (i = 0; i < 6; ++i) { + u[0] = (u[0] * alpha + u1_const) >> 16; + v[0] = (v[0] * alpha + v1_const) >> 16; + + u[7] = (u[7] * alpha + u1_const) >> 16; + v[7] = (v[7] * alpha + v1_const) >> 16; + + u += stride; + v += stride; + } + + for (j = 0; j < 8; ++j) { + u[j] = (u[j] * alpha + u1_const) >> 16; + v[j] = (v[j] * alpha + v1_const) >> 16; + } +} + +void vp8_blend_b_c(unsigned char *y, unsigned char *u, unsigned char *v, + int y_1, int u_1, int v_1, int alpha, int stride) { + int i, j; + int y1_const = y_1 * ((1 << 16) - alpha); + int u1_const = u_1 * ((1 << 16) - alpha); + int v1_const = v_1 * ((1 << 16) - alpha); + + for (i = 0; i < 4; ++i) { + for (j = 0; j < 4; ++j) { + y[j] = (y[j] * alpha + y1_const) >> 16; + } + y += stride; + } + + stride >>= 1; + + for (i = 0; i < 2; ++i) { + for (j = 0; j < 2; ++j) { + u[j] = (u[j] * alpha + u1_const) >> 16; + v[j] = (v[j] * alpha + v1_const) >> 16; + } + u += stride; + v += stride; + } +} + +#if CONFIG_POSTPROC +int vp8_post_proc_frame(VP8_COMMON *oci, YV12_BUFFER_CONFIG *dest, + vp8_ppflags_t *ppflags) { + int q = oci->filter_level * 10 / 6; + int flags = ppflags->post_proc_flag; + int deblock_level = ppflags->deblocking_level; + int noise_level = ppflags->noise_level; + + if (!oci->frame_to_show) return -1; + + if (q > 63) q = 63; + + if (!flags) { + *dest = *oci->frame_to_show; + + /* handle problem with extending borders */ + dest->y_width = oci->Width; + dest->y_height = oci->Height; + dest->uv_height = dest->y_height / 2; + oci->postproc_state.last_base_qindex = oci->base_qindex; + oci->postproc_state.last_frame_valid = 1; + return 0; + } + if (flags & VP8D_ADDNOISE) { + if (!oci->postproc_state.generated_noise) { + oci->postproc_state.generated_noise = vpx_calloc( + oci->Width + 256, sizeof(*oci->postproc_state.generated_noise)); + if (!oci->postproc_state.generated_noise) return 1; + } + } + + /* Allocate post_proc_buffer_int if needed */ + if ((flags & VP8D_MFQE) && !oci->post_proc_buffer_int_used) { + if ((flags & VP8D_DEBLOCK) || (flags & VP8D_DEMACROBLOCK)) { + int width = (oci->Width + 15) & ~15; + int height = (oci->Height + 15) & ~15; + + if (vp8_yv12_alloc_frame_buffer(&oci->post_proc_buffer_int, width, height, + VP8BORDERINPIXELS)) { + vpx_internal_error(&oci->error, VPX_CODEC_MEM_ERROR, + "Failed to allocate MFQE framebuffer"); + } + + oci->post_proc_buffer_int_used = 1; + + /* insure that postproc is set to all 0's so that post proc + * doesn't pull random data in from edge + */ + memset((&oci->post_proc_buffer_int)->buffer_alloc, 128, + (&oci->post_proc_buffer)->frame_size); + } + } + + vpx_clear_system_state(); + + if ((flags & VP8D_MFQE) && oci->postproc_state.last_frame_valid && + oci->current_video_frame >= 2 && + oci->postproc_state.last_base_qindex < 60 && + oci->base_qindex - oci->postproc_state.last_base_qindex >= 20) { + vp8_multiframe_quality_enhance(oci); + if (((flags & VP8D_DEBLOCK) || (flags & VP8D_DEMACROBLOCK)) && + oci->post_proc_buffer_int_used) { + vp8_yv12_copy_frame(&oci->post_proc_buffer, &oci->post_proc_buffer_int); + if (flags & VP8D_DEMACROBLOCK) { + vp8_deblock(oci, &oci->post_proc_buffer_int, &oci->post_proc_buffer, + q + (deblock_level - 5) * 10, 1, 0); + vp8_de_mblock(&oci->post_proc_buffer, q + (deblock_level - 5) * 10); + } else if (flags & VP8D_DEBLOCK) { + vp8_deblock(oci, &oci->post_proc_buffer_int, &oci->post_proc_buffer, q, + 1, 0); + } + } + /* Move partially towards the base q of the previous frame */ + oci->postproc_state.last_base_qindex = + (3 * oci->postproc_state.last_base_qindex + oci->base_qindex) >> 2; + } else if (flags & VP8D_DEMACROBLOCK) { + vp8_deblock(oci, oci->frame_to_show, &oci->post_proc_buffer, + q + (deblock_level - 5) * 10, 1, 0); + vp8_de_mblock(&oci->post_proc_buffer, q + (deblock_level - 5) * 10); + + oci->postproc_state.last_base_qindex = oci->base_qindex; + } else if (flags & VP8D_DEBLOCK) { + vp8_deblock(oci, oci->frame_to_show, &oci->post_proc_buffer, q, 1, 0); + oci->postproc_state.last_base_qindex = oci->base_qindex; + } else { + vp8_yv12_copy_frame(oci->frame_to_show, &oci->post_proc_buffer); + oci->postproc_state.last_base_qindex = oci->base_qindex; + } + oci->postproc_state.last_frame_valid = 1; + + if (flags & VP8D_ADDNOISE) { + if (oci->postproc_state.last_q != q || + oci->postproc_state.last_noise != noise_level) { + double sigma; + struct postproc_state *ppstate = &oci->postproc_state; + vpx_clear_system_state(); + sigma = noise_level + .5 + .6 * q / 63.0; + ppstate->clamp = + vpx_setup_noise(sigma, ppstate->generated_noise, oci->Width + 256); + ppstate->last_q = q; + ppstate->last_noise = noise_level; + } + + vpx_plane_add_noise( + oci->post_proc_buffer.y_buffer, oci->postproc_state.generated_noise, + oci->postproc_state.clamp, oci->postproc_state.clamp, + oci->post_proc_buffer.y_width, oci->post_proc_buffer.y_height, + oci->post_proc_buffer.y_stride); + } + + *dest = oci->post_proc_buffer; + + /* handle problem with extending borders */ + dest->y_width = oci->Width; + dest->y_height = oci->Height; + dest->uv_height = dest->y_height / 2; + return 0; +} +#endif diff --git a/vp8/common/postproc.h b/vp8/common/postproc.h new file mode 100644 index 0000000..7be112b --- /dev/null +++ b/vp8/common/postproc.h @@ -0,0 +1,46 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP8_COMMON_POSTPROC_H_ +#define VP8_COMMON_POSTPROC_H_ + +#include "vpx_ports/mem.h" +struct postproc_state { + int last_q; + int last_noise; + int last_base_qindex; + int last_frame_valid; + int clamp; + int8_t *generated_noise; +}; +#include "onyxc_int.h" +#include "ppflags.h" + +#ifdef __cplusplus +extern "C" { +#endif +int vp8_post_proc_frame(struct VP8Common *oci, YV12_BUFFER_CONFIG *dest, + vp8_ppflags_t *flags); + +void vp8_de_noise(struct VP8Common *oci, YV12_BUFFER_CONFIG *source, + YV12_BUFFER_CONFIG *post, int q, int low_var_thresh, int flag, + int uvfilter); + +void vp8_deblock(struct VP8Common *oci, YV12_BUFFER_CONFIG *source, + YV12_BUFFER_CONFIG *post, int q, int low_var_thresh, int flag); + +#define MFQE_PRECISION 4 + +void vp8_multiframe_quality_enhance(struct VP8Common *cm); +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP8_COMMON_POSTPROC_H_ diff --git a/vp8/common/ppflags.h b/vp8/common/ppflags.h new file mode 100644 index 0000000..96e3af6 --- /dev/null +++ b/vp8/common/ppflags.h @@ -0,0 +1,39 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP8_COMMON_PPFLAGS_H_ +#define VP8_COMMON_PPFLAGS_H_ + +#ifdef __cplusplus +extern "C" { +#endif +enum { + VP8D_NOFILTERING = 0, + VP8D_DEBLOCK = 1 << 0, + VP8D_DEMACROBLOCK = 1 << 1, + VP8D_ADDNOISE = 1 << 2, + VP8D_MFQE = 1 << 3 +}; + +typedef struct { + int post_proc_flag; + int deblocking_level; + int noise_level; + int display_ref_frame_flag; + int display_mb_modes_flag; + int display_b_modes_flag; + int display_mv_flag; +} vp8_ppflags_t; + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP8_COMMON_PPFLAGS_H_ diff --git a/vp8/common/quant_common.c b/vp8/common/quant_common.c new file mode 100644 index 0000000..e290eec --- /dev/null +++ b/vp8/common/quant_common.c @@ -0,0 +1,130 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "quant_common.h" + +static const int dc_qlookup[QINDEX_RANGE] = { + 4, 5, 6, 7, 8, 9, 10, 10, 11, 12, 13, 14, 15, 16, 17, + 17, 18, 19, 20, 20, 21, 21, 22, 22, 23, 23, 24, 25, 25, 26, + 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40, + 41, 42, 43, 44, 45, 46, 46, 47, 48, 49, 50, 51, 52, 53, 54, + 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, + 70, 71, 72, 73, 74, 75, 76, 76, 77, 78, 79, 80, 81, 82, 83, + 84, 85, 86, 87, 88, 89, 91, 93, 95, 96, 98, 100, 101, 102, 104, + 106, 108, 110, 112, 114, 116, 118, 122, 124, 126, 128, 130, 132, 134, 136, + 138, 140, 143, 145, 148, 151, 154, 157, +}; + +static const int ac_qlookup[QINDEX_RANGE] = { + 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, + 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, + 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, + 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 60, 62, 64, 66, 68, + 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, + 100, 102, 104, 106, 108, 110, 112, 114, 116, 119, 122, 125, 128, 131, 134, + 137, 140, 143, 146, 149, 152, 155, 158, 161, 164, 167, 170, 173, 177, 181, + 185, 189, 193, 197, 201, 205, 209, 213, 217, 221, 225, 229, 234, 239, 245, + 249, 254, 259, 264, 269, 274, 279, 284, +}; + +int vp8_dc_quant(int QIndex, int Delta) { + int retval; + + QIndex = QIndex + Delta; + + if (QIndex > 127) { + QIndex = 127; + } else if (QIndex < 0) { + QIndex = 0; + } + + retval = dc_qlookup[QIndex]; + return retval; +} + +int vp8_dc2quant(int QIndex, int Delta) { + int retval; + + QIndex = QIndex + Delta; + + if (QIndex > 127) { + QIndex = 127; + } else if (QIndex < 0) { + QIndex = 0; + } + + retval = dc_qlookup[QIndex] * 2; + return retval; +} +int vp8_dc_uv_quant(int QIndex, int Delta) { + int retval; + + QIndex = QIndex + Delta; + + if (QIndex > 127) { + QIndex = 127; + } else if (QIndex < 0) { + QIndex = 0; + } + + retval = dc_qlookup[QIndex]; + + if (retval > 132) retval = 132; + + return retval; +} + +int vp8_ac_yquant(int QIndex) { + int retval; + + if (QIndex > 127) { + QIndex = 127; + } else if (QIndex < 0) { + QIndex = 0; + } + + retval = ac_qlookup[QIndex]; + return retval; +} + +int vp8_ac2quant(int QIndex, int Delta) { + int retval; + + QIndex = QIndex + Delta; + + if (QIndex > 127) { + QIndex = 127; + } else if (QIndex < 0) { + QIndex = 0; + } + + /* For all x in [0..284], x*155/100 is bitwise equal to (x*101581) >> 16. + * The smallest precision for that is '(x*6349) >> 12' but 16 is a good + * word size. */ + retval = (ac_qlookup[QIndex] * 101581) >> 16; + + if (retval < 8) retval = 8; + + return retval; +} +int vp8_ac_uv_quant(int QIndex, int Delta) { + int retval; + + QIndex = QIndex + Delta; + + if (QIndex > 127) { + QIndex = 127; + } else if (QIndex < 0) { + QIndex = 0; + } + + retval = ac_qlookup[QIndex]; + return retval; +} diff --git a/vp8/common/quant_common.h b/vp8/common/quant_common.h new file mode 100644 index 0000000..ff4203d --- /dev/null +++ b/vp8/common/quant_common.h @@ -0,0 +1,33 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP8_COMMON_QUANT_COMMON_H_ +#define VP8_COMMON_QUANT_COMMON_H_ + +#include "string.h" +#include "blockd.h" +#include "onyxc_int.h" + +#ifdef __cplusplus +extern "C" { +#endif + +extern int vp8_ac_yquant(int QIndex); +extern int vp8_dc_quant(int QIndex, int Delta); +extern int vp8_dc2quant(int QIndex, int Delta); +extern int vp8_ac2quant(int QIndex, int Delta); +extern int vp8_dc_uv_quant(int QIndex, int Delta); +extern int vp8_ac_uv_quant(int QIndex, int Delta); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP8_COMMON_QUANT_COMMON_H_ diff --git a/vp8/common/reconinter.c b/vp8/common/reconinter.c new file mode 100644 index 0000000..48892c9 --- /dev/null +++ b/vp8/common/reconinter.c @@ -0,0 +1,496 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include + +#include "vpx_config.h" +#include "vp8_rtcd.h" +#include "vpx/vpx_integer.h" +#include "blockd.h" +#include "reconinter.h" +#if CONFIG_RUNTIME_CPU_DETECT +#include "onyxc_int.h" +#endif + +void vp8_copy_mem16x16_c(unsigned char *src, int src_stride, unsigned char *dst, + int dst_stride) { + int r; + + for (r = 0; r < 16; ++r) { + memcpy(dst, src, 16); + + src += src_stride; + dst += dst_stride; + } +} + +void vp8_copy_mem8x8_c(unsigned char *src, int src_stride, unsigned char *dst, + int dst_stride) { + int r; + + for (r = 0; r < 8; ++r) { + memcpy(dst, src, 8); + + src += src_stride; + dst += dst_stride; + } +} + +void vp8_copy_mem8x4_c(unsigned char *src, int src_stride, unsigned char *dst, + int dst_stride) { + int r; + + for (r = 0; r < 4; ++r) { + memcpy(dst, src, 8); + + src += src_stride; + dst += dst_stride; + } +} + +void vp8_build_inter_predictors_b(BLOCKD *d, int pitch, unsigned char *base_pre, + int pre_stride, vp8_subpix_fn_t sppf) { + int r; + unsigned char *pred_ptr = d->predictor; + unsigned char *ptr; + ptr = base_pre + d->offset + (d->bmi.mv.as_mv.row >> 3) * pre_stride + + (d->bmi.mv.as_mv.col >> 3); + + if (d->bmi.mv.as_mv.row & 7 || d->bmi.mv.as_mv.col & 7) { + sppf(ptr, pre_stride, d->bmi.mv.as_mv.col & 7, d->bmi.mv.as_mv.row & 7, + pred_ptr, pitch); + } else { + for (r = 0; r < 4; ++r) { + pred_ptr[0] = ptr[0]; + pred_ptr[1] = ptr[1]; + pred_ptr[2] = ptr[2]; + pred_ptr[3] = ptr[3]; + pred_ptr += pitch; + ptr += pre_stride; + } + } +} + +static void build_inter_predictors4b(MACROBLOCKD *x, BLOCKD *d, + unsigned char *dst, int dst_stride, + unsigned char *base_pre, int pre_stride) { + unsigned char *ptr; + ptr = base_pre + d->offset + (d->bmi.mv.as_mv.row >> 3) * pre_stride + + (d->bmi.mv.as_mv.col >> 3); + + if (d->bmi.mv.as_mv.row & 7 || d->bmi.mv.as_mv.col & 7) { + x->subpixel_predict8x8(ptr, pre_stride, d->bmi.mv.as_mv.col & 7, + d->bmi.mv.as_mv.row & 7, dst, dst_stride); + } else { + vp8_copy_mem8x8(ptr, pre_stride, dst, dst_stride); + } +} + +static void build_inter_predictors2b(MACROBLOCKD *x, BLOCKD *d, + unsigned char *dst, int dst_stride, + unsigned char *base_pre, int pre_stride) { + unsigned char *ptr; + ptr = base_pre + d->offset + (d->bmi.mv.as_mv.row >> 3) * pre_stride + + (d->bmi.mv.as_mv.col >> 3); + + if (d->bmi.mv.as_mv.row & 7 || d->bmi.mv.as_mv.col & 7) { + x->subpixel_predict8x4(ptr, pre_stride, d->bmi.mv.as_mv.col & 7, + d->bmi.mv.as_mv.row & 7, dst, dst_stride); + } else { + vp8_copy_mem8x4(ptr, pre_stride, dst, dst_stride); + } +} + +static void build_inter_predictors_b(BLOCKD *d, unsigned char *dst, + int dst_stride, unsigned char *base_pre, + int pre_stride, vp8_subpix_fn_t sppf) { + int r; + unsigned char *ptr; + ptr = base_pre + d->offset + (d->bmi.mv.as_mv.row >> 3) * pre_stride + + (d->bmi.mv.as_mv.col >> 3); + + if (d->bmi.mv.as_mv.row & 7 || d->bmi.mv.as_mv.col & 7) { + sppf(ptr, pre_stride, d->bmi.mv.as_mv.col & 7, d->bmi.mv.as_mv.row & 7, dst, + dst_stride); + } else { + for (r = 0; r < 4; ++r) { + dst[0] = ptr[0]; + dst[1] = ptr[1]; + dst[2] = ptr[2]; + dst[3] = ptr[3]; + dst += dst_stride; + ptr += pre_stride; + } + } +} + +/*encoder only*/ +void vp8_build_inter16x16_predictors_mbuv(MACROBLOCKD *x) { + unsigned char *uptr, *vptr; + unsigned char *upred_ptr = &x->predictor[256]; + unsigned char *vpred_ptr = &x->predictor[320]; + + int mv_row = x->mode_info_context->mbmi.mv.as_mv.row; + int mv_col = x->mode_info_context->mbmi.mv.as_mv.col; + int offset; + int pre_stride = x->pre.uv_stride; + + /* calc uv motion vectors */ + mv_row += 1 | (mv_row >> (sizeof(int) * CHAR_BIT - 1)); + mv_col += 1 | (mv_col >> (sizeof(int) * CHAR_BIT - 1)); + mv_row /= 2; + mv_col /= 2; + mv_row &= x->fullpixel_mask; + mv_col &= x->fullpixel_mask; + + offset = (mv_row >> 3) * pre_stride + (mv_col >> 3); + uptr = x->pre.u_buffer + offset; + vptr = x->pre.v_buffer + offset; + + if ((mv_row | mv_col) & 7) { + x->subpixel_predict8x8(uptr, pre_stride, mv_col & 7, mv_row & 7, upred_ptr, + 8); + x->subpixel_predict8x8(vptr, pre_stride, mv_col & 7, mv_row & 7, vpred_ptr, + 8); + } else { + vp8_copy_mem8x8(uptr, pre_stride, upred_ptr, 8); + vp8_copy_mem8x8(vptr, pre_stride, vpred_ptr, 8); + } +} + +/*encoder only*/ +void vp8_build_inter4x4_predictors_mbuv(MACROBLOCKD *x) { + int i, j; + int pre_stride = x->pre.uv_stride; + unsigned char *base_pre; + + /* build uv mvs */ + for (i = 0; i < 2; ++i) { + for (j = 0; j < 2; ++j) { + int yoffset = i * 8 + j * 2; + int uoffset = 16 + i * 2 + j; + int voffset = 20 + i * 2 + j; + + int temp; + + temp = x->block[yoffset].bmi.mv.as_mv.row + + x->block[yoffset + 1].bmi.mv.as_mv.row + + x->block[yoffset + 4].bmi.mv.as_mv.row + + x->block[yoffset + 5].bmi.mv.as_mv.row; + + temp += 4 + ((temp >> (sizeof(temp) * CHAR_BIT - 1)) * 8); + + x->block[uoffset].bmi.mv.as_mv.row = (temp / 8) & x->fullpixel_mask; + + temp = x->block[yoffset].bmi.mv.as_mv.col + + x->block[yoffset + 1].bmi.mv.as_mv.col + + x->block[yoffset + 4].bmi.mv.as_mv.col + + x->block[yoffset + 5].bmi.mv.as_mv.col; + + temp += 4 + ((temp >> (sizeof(temp) * CHAR_BIT - 1)) * 8); + + x->block[uoffset].bmi.mv.as_mv.col = (temp / 8) & x->fullpixel_mask; + + x->block[voffset].bmi.mv.as_int = x->block[uoffset].bmi.mv.as_int; + } + } + + base_pre = x->pre.u_buffer; + for (i = 16; i < 20; i += 2) { + BLOCKD *d0 = &x->block[i]; + BLOCKD *d1 = &x->block[i + 1]; + + if (d0->bmi.mv.as_int == d1->bmi.mv.as_int) { + build_inter_predictors2b(x, d0, d0->predictor, 8, base_pre, pre_stride); + } else { + vp8_build_inter_predictors_b(d0, 8, base_pre, pre_stride, + x->subpixel_predict); + vp8_build_inter_predictors_b(d1, 8, base_pre, pre_stride, + x->subpixel_predict); + } + } + + base_pre = x->pre.v_buffer; + for (i = 20; i < 24; i += 2) { + BLOCKD *d0 = &x->block[i]; + BLOCKD *d1 = &x->block[i + 1]; + + if (d0->bmi.mv.as_int == d1->bmi.mv.as_int) { + build_inter_predictors2b(x, d0, d0->predictor, 8, base_pre, pre_stride); + } else { + vp8_build_inter_predictors_b(d0, 8, base_pre, pre_stride, + x->subpixel_predict); + vp8_build_inter_predictors_b(d1, 8, base_pre, pre_stride, + x->subpixel_predict); + } + } +} + +/*encoder only*/ +void vp8_build_inter16x16_predictors_mby(MACROBLOCKD *x, unsigned char *dst_y, + int dst_ystride) { + unsigned char *ptr_base; + unsigned char *ptr; + int mv_row = x->mode_info_context->mbmi.mv.as_mv.row; + int mv_col = x->mode_info_context->mbmi.mv.as_mv.col; + int pre_stride = x->pre.y_stride; + + ptr_base = x->pre.y_buffer; + ptr = ptr_base + (mv_row >> 3) * pre_stride + (mv_col >> 3); + + if ((mv_row | mv_col) & 7) { + x->subpixel_predict16x16(ptr, pre_stride, mv_col & 7, mv_row & 7, dst_y, + dst_ystride); + } else { + vp8_copy_mem16x16(ptr, pre_stride, dst_y, dst_ystride); + } +} + +static void clamp_mv_to_umv_border(MV *mv, const MACROBLOCKD *xd) { + /* If the MV points so far into the UMV border that no visible pixels + * are used for reconstruction, the subpel part of the MV can be + * discarded and the MV limited to 16 pixels with equivalent results. + * + * This limit kicks in at 19 pixels for the top and left edges, for + * the 16 pixels plus 3 taps right of the central pixel when subpel + * filtering. The bottom and right edges use 16 pixels plus 2 pixels + * left of the central pixel when filtering. + */ + if (mv->col < (xd->mb_to_left_edge - (19 << 3))) { + mv->col = xd->mb_to_left_edge - (16 << 3); + } else if (mv->col > xd->mb_to_right_edge + (18 << 3)) { + mv->col = xd->mb_to_right_edge + (16 << 3); + } + + if (mv->row < (xd->mb_to_top_edge - (19 << 3))) { + mv->row = xd->mb_to_top_edge - (16 << 3); + } else if (mv->row > xd->mb_to_bottom_edge + (18 << 3)) { + mv->row = xd->mb_to_bottom_edge + (16 << 3); + } +} + +/* A version of the above function for chroma block MVs.*/ +static void clamp_uvmv_to_umv_border(MV *mv, const MACROBLOCKD *xd) { + mv->col = (2 * mv->col < (xd->mb_to_left_edge - (19 << 3))) + ? (xd->mb_to_left_edge - (16 << 3)) >> 1 + : mv->col; + mv->col = (2 * mv->col > xd->mb_to_right_edge + (18 << 3)) + ? (xd->mb_to_right_edge + (16 << 3)) >> 1 + : mv->col; + + mv->row = (2 * mv->row < (xd->mb_to_top_edge - (19 << 3))) + ? (xd->mb_to_top_edge - (16 << 3)) >> 1 + : mv->row; + mv->row = (2 * mv->row > xd->mb_to_bottom_edge + (18 << 3)) + ? (xd->mb_to_bottom_edge + (16 << 3)) >> 1 + : mv->row; +} + +void vp8_build_inter16x16_predictors_mb(MACROBLOCKD *x, unsigned char *dst_y, + unsigned char *dst_u, + unsigned char *dst_v, int dst_ystride, + int dst_uvstride) { + int offset; + unsigned char *ptr; + unsigned char *uptr, *vptr; + + int_mv _16x16mv; + + unsigned char *ptr_base = x->pre.y_buffer; + int pre_stride = x->pre.y_stride; + + _16x16mv.as_int = x->mode_info_context->mbmi.mv.as_int; + + if (x->mode_info_context->mbmi.need_to_clamp_mvs) { + clamp_mv_to_umv_border(&_16x16mv.as_mv, x); + } + + ptr = ptr_base + (_16x16mv.as_mv.row >> 3) * pre_stride + + (_16x16mv.as_mv.col >> 3); + + if (_16x16mv.as_int & 0x00070007) { + x->subpixel_predict16x16(ptr, pre_stride, _16x16mv.as_mv.col & 7, + _16x16mv.as_mv.row & 7, dst_y, dst_ystride); + } else { + vp8_copy_mem16x16(ptr, pre_stride, dst_y, dst_ystride); + } + + /* calc uv motion vectors */ + _16x16mv.as_mv.row += + 1 | (_16x16mv.as_mv.row >> (sizeof(int) * CHAR_BIT - 1)); + _16x16mv.as_mv.col += + 1 | (_16x16mv.as_mv.col >> (sizeof(int) * CHAR_BIT - 1)); + _16x16mv.as_mv.row /= 2; + _16x16mv.as_mv.col /= 2; + _16x16mv.as_mv.row &= x->fullpixel_mask; + _16x16mv.as_mv.col &= x->fullpixel_mask; + + pre_stride >>= 1; + offset = (_16x16mv.as_mv.row >> 3) * pre_stride + (_16x16mv.as_mv.col >> 3); + uptr = x->pre.u_buffer + offset; + vptr = x->pre.v_buffer + offset; + + if (_16x16mv.as_int & 0x00070007) { + x->subpixel_predict8x8(uptr, pre_stride, _16x16mv.as_mv.col & 7, + _16x16mv.as_mv.row & 7, dst_u, dst_uvstride); + x->subpixel_predict8x8(vptr, pre_stride, _16x16mv.as_mv.col & 7, + _16x16mv.as_mv.row & 7, dst_v, dst_uvstride); + } else { + vp8_copy_mem8x8(uptr, pre_stride, dst_u, dst_uvstride); + vp8_copy_mem8x8(vptr, pre_stride, dst_v, dst_uvstride); + } +} + +static void build_inter4x4_predictors_mb(MACROBLOCKD *x) { + int i; + unsigned char *base_dst = x->dst.y_buffer; + unsigned char *base_pre = x->pre.y_buffer; + + if (x->mode_info_context->mbmi.partitioning < 3) { + BLOCKD *b; + int dst_stride = x->dst.y_stride; + + x->block[0].bmi = x->mode_info_context->bmi[0]; + x->block[2].bmi = x->mode_info_context->bmi[2]; + x->block[8].bmi = x->mode_info_context->bmi[8]; + x->block[10].bmi = x->mode_info_context->bmi[10]; + if (x->mode_info_context->mbmi.need_to_clamp_mvs) { + clamp_mv_to_umv_border(&x->block[0].bmi.mv.as_mv, x); + clamp_mv_to_umv_border(&x->block[2].bmi.mv.as_mv, x); + clamp_mv_to_umv_border(&x->block[8].bmi.mv.as_mv, x); + clamp_mv_to_umv_border(&x->block[10].bmi.mv.as_mv, x); + } + + b = &x->block[0]; + build_inter_predictors4b(x, b, base_dst + b->offset, dst_stride, base_pre, + dst_stride); + b = &x->block[2]; + build_inter_predictors4b(x, b, base_dst + b->offset, dst_stride, base_pre, + dst_stride); + b = &x->block[8]; + build_inter_predictors4b(x, b, base_dst + b->offset, dst_stride, base_pre, + dst_stride); + b = &x->block[10]; + build_inter_predictors4b(x, b, base_dst + b->offset, dst_stride, base_pre, + dst_stride); + } else { + for (i = 0; i < 16; i += 2) { + BLOCKD *d0 = &x->block[i]; + BLOCKD *d1 = &x->block[i + 1]; + int dst_stride = x->dst.y_stride; + + x->block[i + 0].bmi = x->mode_info_context->bmi[i + 0]; + x->block[i + 1].bmi = x->mode_info_context->bmi[i + 1]; + if (x->mode_info_context->mbmi.need_to_clamp_mvs) { + clamp_mv_to_umv_border(&x->block[i + 0].bmi.mv.as_mv, x); + clamp_mv_to_umv_border(&x->block[i + 1].bmi.mv.as_mv, x); + } + + if (d0->bmi.mv.as_int == d1->bmi.mv.as_int) { + build_inter_predictors2b(x, d0, base_dst + d0->offset, dst_stride, + base_pre, dst_stride); + } else { + build_inter_predictors_b(d0, base_dst + d0->offset, dst_stride, + base_pre, dst_stride, x->subpixel_predict); + build_inter_predictors_b(d1, base_dst + d1->offset, dst_stride, + base_pre, dst_stride, x->subpixel_predict); + } + } + } + base_dst = x->dst.u_buffer; + base_pre = x->pre.u_buffer; + for (i = 16; i < 20; i += 2) { + BLOCKD *d0 = &x->block[i]; + BLOCKD *d1 = &x->block[i + 1]; + int dst_stride = x->dst.uv_stride; + + /* Note: uv mvs already clamped in build_4x4uvmvs() */ + + if (d0->bmi.mv.as_int == d1->bmi.mv.as_int) { + build_inter_predictors2b(x, d0, base_dst + d0->offset, dst_stride, + base_pre, dst_stride); + } else { + build_inter_predictors_b(d0, base_dst + d0->offset, dst_stride, base_pre, + dst_stride, x->subpixel_predict); + build_inter_predictors_b(d1, base_dst + d1->offset, dst_stride, base_pre, + dst_stride, x->subpixel_predict); + } + } + + base_dst = x->dst.v_buffer; + base_pre = x->pre.v_buffer; + for (i = 20; i < 24; i += 2) { + BLOCKD *d0 = &x->block[i]; + BLOCKD *d1 = &x->block[i + 1]; + int dst_stride = x->dst.uv_stride; + + /* Note: uv mvs already clamped in build_4x4uvmvs() */ + + if (d0->bmi.mv.as_int == d1->bmi.mv.as_int) { + build_inter_predictors2b(x, d0, base_dst + d0->offset, dst_stride, + base_pre, dst_stride); + } else { + build_inter_predictors_b(d0, base_dst + d0->offset, dst_stride, base_pre, + dst_stride, x->subpixel_predict); + build_inter_predictors_b(d1, base_dst + d1->offset, dst_stride, base_pre, + dst_stride, x->subpixel_predict); + } + } +} + +static void build_4x4uvmvs(MACROBLOCKD *x) { + int i, j; + + for (i = 0; i < 2; ++i) { + for (j = 0; j < 2; ++j) { + int yoffset = i * 8 + j * 2; + int uoffset = 16 + i * 2 + j; + int voffset = 20 + i * 2 + j; + + int temp; + + temp = x->mode_info_context->bmi[yoffset + 0].mv.as_mv.row + + x->mode_info_context->bmi[yoffset + 1].mv.as_mv.row + + x->mode_info_context->bmi[yoffset + 4].mv.as_mv.row + + x->mode_info_context->bmi[yoffset + 5].mv.as_mv.row; + + temp += 4 + ((temp >> (sizeof(temp) * CHAR_BIT - 1)) * 8); + + x->block[uoffset].bmi.mv.as_mv.row = (temp / 8) & x->fullpixel_mask; + + temp = x->mode_info_context->bmi[yoffset + 0].mv.as_mv.col + + x->mode_info_context->bmi[yoffset + 1].mv.as_mv.col + + x->mode_info_context->bmi[yoffset + 4].mv.as_mv.col + + x->mode_info_context->bmi[yoffset + 5].mv.as_mv.col; + + temp += 4 + ((temp >> (sizeof(temp) * CHAR_BIT - 1)) * 8); + + x->block[uoffset].bmi.mv.as_mv.col = (temp / 8) & x->fullpixel_mask; + + if (x->mode_info_context->mbmi.need_to_clamp_mvs) { + clamp_uvmv_to_umv_border(&x->block[uoffset].bmi.mv.as_mv, x); + } + + x->block[voffset].bmi.mv.as_int = x->block[uoffset].bmi.mv.as_int; + } + } +} + +void vp8_build_inter_predictors_mb(MACROBLOCKD *xd) { + if (xd->mode_info_context->mbmi.mode != SPLITMV) { + vp8_build_inter16x16_predictors_mb(xd, xd->dst.y_buffer, xd->dst.u_buffer, + xd->dst.v_buffer, xd->dst.y_stride, + xd->dst.uv_stride); + } else { + build_4x4uvmvs(xd); + build_inter4x4_predictors_mb(xd); + } +} diff --git a/vp8/common/reconinter.h b/vp8/common/reconinter.h new file mode 100644 index 0000000..4cdd4fe --- /dev/null +++ b/vp8/common/reconinter.h @@ -0,0 +1,37 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP8_COMMON_RECONINTER_H_ +#define VP8_COMMON_RECONINTER_H_ + +#ifdef __cplusplus +extern "C" { +#endif + +extern void vp8_build_inter_predictors_mb(MACROBLOCKD *x); +extern void vp8_build_inter16x16_predictors_mb( + MACROBLOCKD *x, unsigned char *dst_y, unsigned char *dst_u, + unsigned char *dst_v, int dst_ystride, int dst_uvstride); + +extern void vp8_build_inter16x16_predictors_mby(MACROBLOCKD *x, + unsigned char *dst_y, + int dst_ystride); +extern void vp8_build_inter_predictors_b(BLOCKD *d, int pitch, + unsigned char *base_pre, + int pre_stride, vp8_subpix_fn_t sppf); + +extern void vp8_build_inter16x16_predictors_mbuv(MACROBLOCKD *x); +extern void vp8_build_inter4x4_predictors_mbuv(MACROBLOCKD *x); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP8_COMMON_RECONINTER_H_ diff --git a/vp8/common/reconintra.c b/vp8/common/reconintra.c new file mode 100644 index 0000000..8e2094d --- /dev/null +++ b/vp8/common/reconintra.c @@ -0,0 +1,104 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "./vpx_config.h" +#include "./vpx_dsp_rtcd.h" +#include "./vp8_rtcd.h" +#include "vpx_mem/vpx_mem.h" +#include "vpx_ports/vpx_once.h" +#include "blockd.h" +#include "vp8/common/reconintra.h" +#include "vp8/common/reconintra4x4.h" + +enum { + SIZE_16, + SIZE_8, + NUM_SIZES, +}; + +typedef void (*intra_pred_fn)(uint8_t *dst, ptrdiff_t stride, + const uint8_t *above, const uint8_t *left); + +static intra_pred_fn pred[4][NUM_SIZES]; +static intra_pred_fn dc_pred[2][2][NUM_SIZES]; + +static void vp8_init_intra_predictors_internal(void) { +#define INIT_SIZE(sz) \ + pred[V_PRED][SIZE_##sz] = vpx_v_predictor_##sz##x##sz; \ + pred[H_PRED][SIZE_##sz] = vpx_h_predictor_##sz##x##sz; \ + pred[TM_PRED][SIZE_##sz] = vpx_tm_predictor_##sz##x##sz; \ + \ + dc_pred[0][0][SIZE_##sz] = vpx_dc_128_predictor_##sz##x##sz; \ + dc_pred[0][1][SIZE_##sz] = vpx_dc_top_predictor_##sz##x##sz; \ + dc_pred[1][0][SIZE_##sz] = vpx_dc_left_predictor_##sz##x##sz; \ + dc_pred[1][1][SIZE_##sz] = vpx_dc_predictor_##sz##x##sz + + INIT_SIZE(16); + INIT_SIZE(8); + vp8_init_intra4x4_predictors_internal(); +} + +void vp8_build_intra_predictors_mby_s(MACROBLOCKD *x, unsigned char *yabove_row, + unsigned char *yleft, int left_stride, + unsigned char *ypred_ptr, int y_stride) { + MB_PREDICTION_MODE mode = x->mode_info_context->mbmi.mode; + DECLARE_ALIGNED(16, uint8_t, yleft_col[16]); + int i; + intra_pred_fn fn; + + for (i = 0; i < 16; ++i) { + yleft_col[i] = yleft[i * left_stride]; + } + + if (mode == DC_PRED) { + fn = dc_pred[x->left_available][x->up_available][SIZE_16]; + } else { + fn = pred[mode][SIZE_16]; + } + + fn(ypred_ptr, y_stride, yabove_row, yleft_col); +} + +void vp8_build_intra_predictors_mbuv_s( + MACROBLOCKD *x, unsigned char *uabove_row, unsigned char *vabove_row, + unsigned char *uleft, unsigned char *vleft, int left_stride, + unsigned char *upred_ptr, unsigned char *vpred_ptr, int pred_stride) { + MB_PREDICTION_MODE uvmode = x->mode_info_context->mbmi.uv_mode; +#if HAVE_VSX + /* Power PC implementation uses "vec_vsx_ld" to read 16 bytes from + uleft_col and vleft_col. Play it safe by reserving enough stack + space here. */ + unsigned char uleft_col[16]; + unsigned char vleft_col[16]; +#else + unsigned char uleft_col[8]; + unsigned char vleft_col[8]; +#endif + int i; + intra_pred_fn fn; + + for (i = 0; i < 8; ++i) { + uleft_col[i] = uleft[i * left_stride]; + vleft_col[i] = vleft[i * left_stride]; + } + + if (uvmode == DC_PRED) { + fn = dc_pred[x->left_available][x->up_available][SIZE_8]; + } else { + fn = pred[uvmode][SIZE_8]; + } + + fn(upred_ptr, pred_stride, uabove_row, uleft_col); + fn(vpred_ptr, pred_stride, vabove_row, vleft_col); +} + +void vp8_init_intra_predictors(void) { + once(vp8_init_intra_predictors_internal); +} diff --git a/vp8/common/reconintra.h b/vp8/common/reconintra.h new file mode 100644 index 0000000..fd7c725 --- /dev/null +++ b/vp8/common/reconintra.h @@ -0,0 +1,35 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP8_COMMON_RECONINTRA_H_ +#define VP8_COMMON_RECONINTRA_H_ + +#include "vp8/common/blockd.h" + +#ifdef __cplusplus +extern "C" { +#endif + +void vp8_build_intra_predictors_mby_s(MACROBLOCKD *x, unsigned char *yabove_row, + unsigned char *yleft, int left_stride, + unsigned char *ypred_ptr, int y_stride); + +void vp8_build_intra_predictors_mbuv_s( + MACROBLOCKD *x, unsigned char *uabove_row, unsigned char *vabove_row, + unsigned char *uleft, unsigned char *vleft, int left_stride, + unsigned char *upred_ptr, unsigned char *vpred_ptr, int pred_stride); + +void vp8_init_intra_predictors(void); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP8_COMMON_RECONINTRA_H_ diff --git a/vp8/common/reconintra4x4.c b/vp8/common/reconintra4x4.c new file mode 100644 index 0000000..64d33a2 --- /dev/null +++ b/vp8/common/reconintra4x4.c @@ -0,0 +1,75 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include + +#include "vpx_config.h" +#include "./vpx_dsp_rtcd.h" +#include "vp8_rtcd.h" +#include "blockd.h" +#include "reconintra4x4.h" +#include "vp8/common/common.h" +#include "vpx_ports/mem.h" + +typedef void (*intra_pred_fn)(uint8_t *dst, ptrdiff_t stride, + const uint8_t *above, const uint8_t *left); + +static intra_pred_fn pred[10]; + +void vp8_init_intra4x4_predictors_internal(void) { + pred[B_DC_PRED] = vpx_dc_predictor_4x4; + pred[B_TM_PRED] = vpx_tm_predictor_4x4; + pred[B_VE_PRED] = vpx_ve_predictor_4x4; + pred[B_HE_PRED] = vpx_he_predictor_4x4; + pred[B_LD_PRED] = vpx_d45e_predictor_4x4; + pred[B_RD_PRED] = vpx_d135_predictor_4x4; + pred[B_VR_PRED] = vpx_d117_predictor_4x4; + pred[B_VL_PRED] = vpx_d63e_predictor_4x4; + pred[B_HD_PRED] = vpx_d153_predictor_4x4; + pred[B_HU_PRED] = vpx_d207_predictor_4x4; +} + +void vp8_intra4x4_predict(unsigned char *above, unsigned char *yleft, + int left_stride, B_PREDICTION_MODE b_mode, + unsigned char *dst, int dst_stride, + unsigned char top_left) { +/* Power PC implementation uses "vec_vsx_ld" to read 16 bytes from + Above (aka, Aboveb + 4). Play it safe by reserving enough stack + space here. Similary for "Left". */ +#if HAVE_VSX + unsigned char Aboveb[20]; +#else + unsigned char Aboveb[12]; +#endif + unsigned char *Above = Aboveb + 4; +#if HAVE_NEON + // Neon intrinsics are unable to load 32 bits, or 4 8 bit values. Instead, it + // over reads but does not use the extra 4 values. + unsigned char Left[8]; +#if VPX_WITH_ASAN + // Silence an 'uninitialized read' warning. Although uninitialized values are + // indeed read, they are not used. + vp8_zero_array(Left, 8); +#endif // VPX_WITH_ASAN +#elif HAVE_VSX + unsigned char Left[16]; +#else + unsigned char Left[4]; +#endif // HAVE_NEON + + Left[0] = yleft[0]; + Left[1] = yleft[left_stride]; + Left[2] = yleft[2 * left_stride]; + Left[3] = yleft[3 * left_stride]; + memcpy(Above, above, 8); + Above[-1] = top_left; + + pred[b_mode](dst, dst_stride, Above, Left); +} diff --git a/vp8/common/reconintra4x4.h b/vp8/common/reconintra4x4.h new file mode 100644 index 0000000..e17fc58 --- /dev/null +++ b/vp8/common/reconintra4x4.h @@ -0,0 +1,45 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP8_COMMON_RECONINTRA4X4_H_ +#define VP8_COMMON_RECONINTRA4X4_H_ +#include "vp8/common/blockd.h" + +#ifdef __cplusplus +extern "C" { +#endif + +static INLINE void intra_prediction_down_copy(MACROBLOCKD *xd, + unsigned char *above_right_src) { + int dst_stride = xd->dst.y_stride; + unsigned char *above_right_dst = xd->dst.y_buffer - dst_stride + 16; + + unsigned int *src_ptr = (unsigned int *)above_right_src; + unsigned int *dst_ptr0 = (unsigned int *)(above_right_dst + 4 * dst_stride); + unsigned int *dst_ptr1 = (unsigned int *)(above_right_dst + 8 * dst_stride); + unsigned int *dst_ptr2 = (unsigned int *)(above_right_dst + 12 * dst_stride); + + *dst_ptr0 = *src_ptr; + *dst_ptr1 = *src_ptr; + *dst_ptr2 = *src_ptr; +} + +void vp8_intra4x4_predict(unsigned char *Above, unsigned char *yleft, + int left_stride, B_PREDICTION_MODE b_mode, + unsigned char *dst, int dst_stride, + unsigned char top_left); + +void vp8_init_intra4x4_predictors_internal(void); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP8_COMMON_RECONINTRA4X4_H_ diff --git a/vp8/common/rtcd.c b/vp8/common/rtcd.c new file mode 100644 index 0000000..09a0e2b --- /dev/null +++ b/vp8/common/rtcd.c @@ -0,0 +1,15 @@ +/* + * Copyright (c) 2011 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ +#include "./vpx_config.h" +#define RTCD_C +#include "./vp8_rtcd.h" +#include "vpx_ports/vpx_once.h" + +void vp8_rtcd() { once(setup_rtcd_internal); } diff --git a/vp8/common/rtcd_defs.pl b/vp8/common/rtcd_defs.pl new file mode 100644 index 0000000..3df745f --- /dev/null +++ b/vp8/common/rtcd_defs.pl @@ -0,0 +1,256 @@ +## +## Copyright (c) 2017 The WebM project authors. All Rights Reserved. +## +## Use of this source code is governed by a BSD-style license +## that can be found in the LICENSE file in the root of the source +## tree. An additional intellectual property rights grant can be found +## in the file PATENTS. All contributing project authors may +## be found in the AUTHORS file in the root of the source tree. +## + +sub vp8_common_forward_decls() { +print <y_buffer - 1 - ybf->y_stride, 127, ybf->y_width + 5); + for (i = 0; i < ybf->y_height; ++i) { + ybf->y_buffer[ybf->y_stride * i - 1] = (unsigned char)129; + } + + memset(ybf->u_buffer - 1 - ybf->uv_stride, 127, ybf->uv_width + 5); + for (i = 0; i < ybf->uv_height; ++i) { + ybf->u_buffer[ybf->uv_stride * i - 1] = (unsigned char)129; + } + + memset(ybf->v_buffer - 1 - ybf->uv_stride, 127, ybf->uv_width + 5); + for (i = 0; i < ybf->uv_height; ++i) { + ybf->v_buffer[ybf->uv_stride * i - 1] = (unsigned char)129; + } +} + +void vp8_setup_intra_recon_top_line(YV12_BUFFER_CONFIG *ybf) { + memset(ybf->y_buffer - 1 - ybf->y_stride, 127, ybf->y_width + 5); + memset(ybf->u_buffer - 1 - ybf->uv_stride, 127, ybf->uv_width + 5); + memset(ybf->v_buffer - 1 - ybf->uv_stride, 127, ybf->uv_width + 5); +} diff --git a/vp8/common/setupintrarecon.h b/vp8/common/setupintrarecon.h new file mode 100644 index 0000000..f3ffa16 --- /dev/null +++ b/vp8/common/setupintrarecon.h @@ -0,0 +1,40 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP8_COMMON_SETUPINTRARECON_H_ +#define VP8_COMMON_SETUPINTRARECON_H_ + +#include "./vpx_config.h" +#include "vpx_scale/yv12config.h" + +#ifdef __cplusplus +extern "C" { +#endif +extern void vp8_setup_intra_recon(YV12_BUFFER_CONFIG *ybf); +extern void vp8_setup_intra_recon_top_line(YV12_BUFFER_CONFIG *ybf); + +static INLINE void setup_intra_recon_left(unsigned char *y_buffer, + unsigned char *u_buffer, + unsigned char *v_buffer, int y_stride, + int uv_stride) { + int i; + + for (i = 0; i < 16; ++i) y_buffer[y_stride * i] = (unsigned char)129; + + for (i = 0; i < 8; ++i) u_buffer[uv_stride * i] = (unsigned char)129; + + for (i = 0; i < 8; ++i) v_buffer[uv_stride * i] = (unsigned char)129; +} + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP8_COMMON_SETUPINTRARECON_H_ diff --git a/vp8/common/swapyv12buffer.c b/vp8/common/swapyv12buffer.c new file mode 100644 index 0000000..5ff21e9 --- /dev/null +++ b/vp8/common/swapyv12buffer.c @@ -0,0 +1,32 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "swapyv12buffer.h" + +void vp8_swap_yv12_buffer(YV12_BUFFER_CONFIG *new_frame, + YV12_BUFFER_CONFIG *last_frame) { + unsigned char *temp; + + temp = last_frame->buffer_alloc; + last_frame->buffer_alloc = new_frame->buffer_alloc; + new_frame->buffer_alloc = temp; + + temp = last_frame->y_buffer; + last_frame->y_buffer = new_frame->y_buffer; + new_frame->y_buffer = temp; + + temp = last_frame->u_buffer; + last_frame->u_buffer = new_frame->u_buffer; + new_frame->u_buffer = temp; + + temp = last_frame->v_buffer; + last_frame->v_buffer = new_frame->v_buffer; + new_frame->v_buffer = temp; +} diff --git a/vp8/common/swapyv12buffer.h b/vp8/common/swapyv12buffer.h new file mode 100644 index 0000000..0ee9a52 --- /dev/null +++ b/vp8/common/swapyv12buffer.h @@ -0,0 +1,27 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP8_COMMON_SWAPYV12BUFFER_H_ +#define VP8_COMMON_SWAPYV12BUFFER_H_ + +#include "vpx_scale/yv12config.h" + +#ifdef __cplusplus +extern "C" { +#endif + +void vp8_swap_yv12_buffer(YV12_BUFFER_CONFIG *new_frame, + YV12_BUFFER_CONFIG *last_frame); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP8_COMMON_SWAPYV12BUFFER_H_ diff --git a/vp8/common/systemdependent.h b/vp8/common/systemdependent.h new file mode 100644 index 0000000..3d44e37 --- /dev/null +++ b/vp8/common/systemdependent.h @@ -0,0 +1,27 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP8_COMMON_SYSTEMDEPENDENT_H_ +#define VP8_COMMON_SYSTEMDEPENDENT_H_ + +#include "vpx_config.h" + +#ifdef __cplusplus +extern "C" { +#endif + +struct VP8Common; +void vp8_machine_specific_config(struct VP8Common *); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP8_COMMON_SYSTEMDEPENDENT_H_ diff --git a/vp8/common/threading.h b/vp8/common/threading.h new file mode 100644 index 0000000..b082bf1 --- /dev/null +++ b/vp8/common/threading.h @@ -0,0 +1,212 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP8_COMMON_THREADING_H_ +#define VP8_COMMON_THREADING_H_ + +#include "./vpx_config.h" + +#ifdef __cplusplus +extern "C" { +#endif + +#if CONFIG_OS_SUPPORT && CONFIG_MULTITHREAD + +/* Thread management macros */ +#if defined(_WIN32) && !HAVE_PTHREAD_H +/* Win32 */ +#include +#include +#if defined(__GNUC__) && \ + (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 2)) +#define THREAD_FUNCTION \ + __attribute__((force_align_arg_pointer)) unsigned int __stdcall +#else +#define THREAD_FUNCTION unsigned int __stdcall +#endif +#define THREAD_FUNCTION_RETURN DWORD +#define THREAD_SPECIFIC_INDEX DWORD +#define pthread_t HANDLE +#define pthread_attr_t DWORD +#define pthread_detach(thread) \ + if (thread != NULL) CloseHandle(thread) +#define thread_sleep(nms) Sleep(nms) +#define pthread_cancel(thread) terminate_thread(thread, 0) +#define ts_key_create(ts_key, destructor) \ + { ts_key = TlsAlloc(); }; +#define pthread_getspecific(ts_key) TlsGetValue(ts_key) +#define pthread_setspecific(ts_key, value) TlsSetValue(ts_key, (void *)value) +#define pthread_self() GetCurrentThreadId() + +#elif defined(__OS2__) +/* OS/2 */ +#define INCL_DOS +#include + +#include +#define THREAD_FUNCTION void * +#define THREAD_FUNCTION_RETURN void * +#define THREAD_SPECIFIC_INDEX PULONG +#define pthread_t TID +#define pthread_attr_t ULONG +#define pthread_detach(thread) 0 +#define thread_sleep(nms) DosSleep(nms) +#define pthread_cancel(thread) DosKillThread(thread) +#define ts_key_create(ts_key, destructor) \ + DosAllocThreadLocalMemory(1, &(ts_key)); +#define pthread_getspecific(ts_key) ((void *)(*(ts_key))) +#define pthread_setspecific(ts_key, value) (*(ts_key) = (ULONG)(value)) +#define pthread_self() _gettid() +#else +#ifdef __APPLE__ +#include +#include +#include +#include +#include + +#else +#include +#endif + +#include +/* pthreads */ +/* Nearly everything is already defined */ +#define THREAD_FUNCTION void * +#define THREAD_FUNCTION_RETURN void * +#define THREAD_SPECIFIC_INDEX pthread_key_t +#define ts_key_create(ts_key, destructor) \ + pthread_key_create(&(ts_key), destructor); +#endif + +/* Synchronization macros: Win32 and Pthreads */ +#if defined(_WIN32) && !HAVE_PTHREAD_H +#define sem_t HANDLE +#define pause(voidpara) __asm PAUSE +#define sem_init(sem, sem_attr1, sem_init_value) \ + (int)((*sem = CreateSemaphore(NULL, 0, 32768, NULL)) == NULL) +#define sem_wait(sem) \ + (int)(WAIT_OBJECT_0 != WaitForSingleObject(*sem, INFINITE)) +#define sem_post(sem) ReleaseSemaphore(*sem, 1, NULL) +#define sem_destroy(sem) \ + if (*sem) ((int)(CloseHandle(*sem)) == TRUE) +#define thread_sleep(nms) Sleep(nms) + +#elif defined(__OS2__) +typedef struct { + HEV event; + HMTX wait_mutex; + HMTX count_mutex; + int count; +} sem_t; + +static inline int sem_init(sem_t *sem, int pshared, unsigned int value) { + DosCreateEventSem(NULL, &sem->event, pshared ? DC_SEM_SHARED : 0, + value > 0 ? TRUE : FALSE); + DosCreateMutexSem(NULL, &sem->wait_mutex, 0, FALSE); + DosCreateMutexSem(NULL, &sem->count_mutex, 0, FALSE); + + sem->count = value; + + return 0; +} + +static inline int sem_wait(sem_t *sem) { + DosRequestMutexSem(sem->wait_mutex, -1); + + DosWaitEventSem(sem->event, -1); + + DosRequestMutexSem(sem->count_mutex, -1); + + sem->count--; + if (sem->count == 0) { + ULONG post_count; + + DosResetEventSem(sem->event, &post_count); + } + + DosReleaseMutexSem(sem->count_mutex); + + DosReleaseMutexSem(sem->wait_mutex); + + return 0; +} + +static inline int sem_post(sem_t *sem) { + DosRequestMutexSem(sem->count_mutex, -1); + + if (sem->count < 32768) { + sem->count++; + DosPostEventSem(sem->event); + } + + DosReleaseMutexSem(sem->count_mutex); + + return 0; +} + +static inline int sem_destroy(sem_t *sem) { + DosCloseEventSem(sem->event); + DosCloseMutexSem(sem->wait_mutex); + DosCloseMutexSem(sem->count_mutex); + + return 0; +} + +#define thread_sleep(nms) DosSleep(nms) + +#else + +#ifdef __APPLE__ +#define sem_t semaphore_t +#define sem_init(X, Y, Z) \ + semaphore_create(mach_task_self(), X, SYNC_POLICY_FIFO, Z) +#define sem_wait(sem) (semaphore_wait(*sem)) +#define sem_post(sem) semaphore_signal(*sem) +#define sem_destroy(sem) semaphore_destroy(mach_task_self(), *sem) +#define thread_sleep(nms) +/* { struct timespec ts;ts.tv_sec=0; ts.tv_nsec = + 1000*nms;nanosleep(&ts, NULL);} */ +#else +#include +#include +#define thread_sleep(nms) sched_yield(); +/* {struct timespec ts;ts.tv_sec=0; + ts.tv_nsec = 1000*nms;nanosleep(&ts, NULL);} */ +#endif +/* Not Windows. Assume pthreads */ + +#endif + +#if ARCH_X86 || ARCH_X86_64 +#include "vpx_ports/x86.h" +#else +#define x86_pause_hint() +#endif + +#include "vpx_util/vpx_thread.h" +#include "vpx_util/vpx_atomics.h" + +static INLINE void vp8_atomic_spin_wait( + int mb_col, const vpx_atomic_int *last_row_current_mb_col, + const int nsync) { + while (mb_col > (vpx_atomic_load_acquire(last_row_current_mb_col) - nsync)) { + x86_pause_hint(); + thread_sleep(0); + } +} + +#endif /* CONFIG_OS_SUPPORT && CONFIG_MULTITHREAD */ + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP8_COMMON_THREADING_H_ diff --git a/vp8/common/treecoder.c b/vp8/common/treecoder.c new file mode 100644 index 0000000..9feb40a --- /dev/null +++ b/vp8/common/treecoder.c @@ -0,0 +1,101 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include + +#include "vp8/common/treecoder.h" + +static void tree2tok(struct vp8_token_struct *const p, vp8_tree t, int i, int v, + int L) { + v += v; + ++L; + + do { + const vp8_tree_index j = t[i++]; + + if (j <= 0) { + p[-j].value = v; + p[-j].Len = L; + } else { + tree2tok(p, t, j, v, L); + } + } while (++v & 1); +} + +void vp8_tokens_from_tree(struct vp8_token_struct *p, vp8_tree t) { + tree2tok(p, t, 0, 0, 0); +} + +void vp8_tokens_from_tree_offset(struct vp8_token_struct *p, vp8_tree t, + int offset) { + tree2tok(p - offset, t, 0, 0, 0); +} + +static void branch_counts(int n, /* n = size of alphabet */ + vp8_token tok[/* n */], vp8_tree tree, + unsigned int branch_ct[/* n-1 */][2], + const unsigned int num_events[/* n */]) { + const int tree_len = n - 1; + int t = 0; + + assert(tree_len); + + do { + branch_ct[t][0] = branch_ct[t][1] = 0; + } while (++t < tree_len); + + t = 0; + + do { + int L = tok[t].Len; + const int enc = tok[t].value; + const unsigned int ct = num_events[t]; + + vp8_tree_index i = 0; + + do { + const int b = (enc >> --L) & 1; + const int j = i >> 1; + assert(j < tree_len && 0 <= L); + + branch_ct[j][b] += ct; + i = tree[i + b]; + } while (i > 0); + + assert(!L); + } while (++t < n); +} + +void vp8_tree_probs_from_distribution(int n, /* n = size of alphabet */ + vp8_token tok[/* n */], vp8_tree tree, + vp8_prob probs[/* n-1 */], + unsigned int branch_ct[/* n-1 */][2], + const unsigned int num_events[/* n */], + unsigned int Pfac, int rd) { + const int tree_len = n - 1; + int t = 0; + + branch_counts(n, tok, tree, branch_ct, num_events); + + do { + const unsigned int *const c = branch_ct[t]; + const unsigned int tot = c[0] + c[1]; + + assert(tot < (1 << 24)); /* no overflow below */ + + if (tot) { + const unsigned int p = ((c[0] * Pfac) + (rd ? tot >> 1 : 0)) / tot; + probs[t] = p < 256 ? (p ? p : 1) : 255; /* agree w/old version for now */ + } else { + probs[t] = vp8_prob_half; + } + } while (++t < tree_len); +} diff --git a/vp8/common/treecoder.h b/vp8/common/treecoder.h new file mode 100644 index 0000000..d8503cf --- /dev/null +++ b/vp8/common/treecoder.h @@ -0,0 +1,82 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP8_COMMON_TREECODER_H_ +#define VP8_COMMON_TREECODER_H_ + +#ifdef __cplusplus +extern "C" { +#endif + +typedef unsigned char vp8bc_index_t; /* probability index */ + +typedef unsigned char vp8_prob; + +#define vp8_prob_half ((vp8_prob)128) + +typedef signed char vp8_tree_index; +struct bool_coder_spec; + +typedef struct bool_coder_spec bool_coder_spec; +typedef struct bool_writer bool_writer; +typedef struct bool_reader bool_reader; + +typedef const bool_coder_spec c_bool_coder_spec; +typedef const bool_writer c_bool_writer; +typedef const bool_reader c_bool_reader; + +#define vp8_complement(x) (255 - x) + +/* We build coding trees compactly in arrays. + Each node of the tree is a pair of vp8_tree_indices. + Array index often references a corresponding probability table. + Index <= 0 means done encoding/decoding and value = -Index, + Index > 0 means need another bit, specification at index. + Nonnegative indices are always even; processing begins at node 0. */ + +typedef const vp8_tree_index vp8_tree[], *vp8_tree_p; + +typedef const struct vp8_token_struct { + int value; + int Len; +} vp8_token; + +/* Construct encoding array from tree. */ + +void vp8_tokens_from_tree(struct vp8_token_struct *, vp8_tree); +void vp8_tokens_from_tree_offset(struct vp8_token_struct *, vp8_tree, + int offset); + +/* Convert array of token occurrence counts into a table of probabilities + for the associated binary encoding tree. Also writes count of branches + taken for each node on the tree; this facilitiates decisions as to + probability updates. */ + +void vp8_tree_probs_from_distribution(int n, /* n = size of alphabet */ + vp8_token tok[/* n */], vp8_tree tree, + vp8_prob probs[/* n-1 */], + unsigned int branch_ct[/* n-1 */][2], + const unsigned int num_events[/* n */], + unsigned int Pfactor, int Round); + +/* Variant of above using coder spec rather than hardwired 8-bit probs. */ + +void vp8bc_tree_probs_from_distribution(int n, /* n = size of alphabet */ + vp8_token tok[/* n */], vp8_tree tree, + vp8_prob probs[/* n-1 */], + unsigned int branch_ct[/* n-1 */][2], + const unsigned int num_events[/* n */], + c_bool_coder_spec *s); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP8_COMMON_TREECODER_H_ diff --git a/vp8/common/vp8_entropymodedata.h b/vp8/common/vp8_entropymodedata.h new file mode 100644 index 0000000..9a81ebf --- /dev/null +++ b/vp8/common/vp8_entropymodedata.h @@ -0,0 +1,172 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. +*/ + +#ifndef VP8_COMMON_VP8_ENTROPYMODEDATA_H_ +#define VP8_COMMON_VP8_ENTROPYMODEDATA_H_ + +#ifdef __cplusplus +extern "C" { +#endif + +/*Generated file, included by entropymode.c*/ + +const struct vp8_token_struct vp8_bmode_encodings[VP8_BINTRAMODES] = { + { 0, 1 }, { 2, 2 }, { 6, 3 }, { 28, 5 }, { 30, 5 }, + { 58, 6 }, { 59, 6 }, { 62, 6 }, { 126, 7 }, { 127, 7 } +}; + +const struct vp8_token_struct vp8_ymode_encodings[VP8_YMODES] = { + { 0, 1 }, { 4, 3 }, { 5, 3 }, { 6, 3 }, { 7, 3 } +}; + +const struct vp8_token_struct vp8_kf_ymode_encodings[VP8_YMODES] = { + { 4, 3 }, { 5, 3 }, { 6, 3 }, { 7, 3 }, { 0, 1 } +}; + +const struct vp8_token_struct vp8_uv_mode_encodings[VP8_UV_MODES] = { + { 0, 1 }, { 2, 2 }, { 6, 3 }, { 7, 3 } +}; + +const struct vp8_token_struct vp8_mbsplit_encodings[VP8_NUMMBSPLITS] = { + { 6, 3 }, { 7, 3 }, { 2, 2 }, { 0, 1 } +}; + +const struct vp8_token_struct vp8_mv_ref_encoding_array[VP8_MVREFS] = { + { 2, 2 }, { 6, 3 }, { 0, 1 }, { 14, 4 }, { 15, 4 } +}; + +const struct vp8_token_struct vp8_sub_mv_ref_encoding_array[VP8_SUBMVREFS] = { + { 0, 1 }, { 2, 2 }, { 6, 3 }, { 7, 3 } +}; + +const struct vp8_token_struct vp8_small_mvencodings[8] = { + { 0, 3 }, { 1, 3 }, { 2, 3 }, { 3, 3 }, { 4, 3 }, { 5, 3 }, { 6, 3 }, { 7, 3 } +}; + +const vp8_prob vp8_ymode_prob[VP8_YMODES - 1] = { 112, 86, 140, 37 }; + +const vp8_prob vp8_kf_ymode_prob[VP8_YMODES - 1] = { 145, 156, 163, 128 }; + +const vp8_prob vp8_uv_mode_prob[VP8_UV_MODES - 1] = { 162, 101, 204 }; + +const vp8_prob vp8_kf_uv_mode_prob[VP8_UV_MODES - 1] = { 142, 114, 183 }; + +const vp8_prob vp8_bmode_prob[VP8_BINTRAMODES - 1] = { 120, 90, 79, 133, 87, + 85, 80, 111, 151 }; + +const vp8_prob + vp8_kf_bmode_prob[VP8_BINTRAMODES][VP8_BINTRAMODES][VP8_BINTRAMODES - 1] = { + { { 231, 120, 48, 89, 115, 113, 120, 152, 112 }, + { 152, 179, 64, 126, 170, 118, 46, 70, 95 }, + { 175, 69, 143, 80, 85, 82, 72, 155, 103 }, + { 56, 58, 10, 171, 218, 189, 17, 13, 152 }, + { 144, 71, 10, 38, 171, 213, 144, 34, 26 }, + { 114, 26, 17, 163, 44, 195, 21, 10, 173 }, + { 121, 24, 80, 195, 26, 62, 44, 64, 85 }, + { 170, 46, 55, 19, 136, 160, 33, 206, 71 }, + { 63, 20, 8, 114, 114, 208, 12, 9, 226 }, + { 81, 40, 11, 96, 182, 84, 29, 16, 36 } }, + { { 134, 183, 89, 137, 98, 101, 106, 165, 148 }, + { 72, 187, 100, 130, 157, 111, 32, 75, 80 }, + { 66, 102, 167, 99, 74, 62, 40, 234, 128 }, + { 41, 53, 9, 178, 241, 141, 26, 8, 107 }, + { 104, 79, 12, 27, 217, 255, 87, 17, 7 }, + { 74, 43, 26, 146, 73, 166, 49, 23, 157 }, + { 65, 38, 105, 160, 51, 52, 31, 115, 128 }, + { 87, 68, 71, 44, 114, 51, 15, 186, 23 }, + { 47, 41, 14, 110, 182, 183, 21, 17, 194 }, + { 66, 45, 25, 102, 197, 189, 23, 18, 22 } }, + { { 88, 88, 147, 150, 42, 46, 45, 196, 205 }, + { 43, 97, 183, 117, 85, 38, 35, 179, 61 }, + { 39, 53, 200, 87, 26, 21, 43, 232, 171 }, + { 56, 34, 51, 104, 114, 102, 29, 93, 77 }, + { 107, 54, 32, 26, 51, 1, 81, 43, 31 }, + { 39, 28, 85, 171, 58, 165, 90, 98, 64 }, + { 34, 22, 116, 206, 23, 34, 43, 166, 73 }, + { 68, 25, 106, 22, 64, 171, 36, 225, 114 }, + { 34, 19, 21, 102, 132, 188, 16, 76, 124 }, + { 62, 18, 78, 95, 85, 57, 50, 48, 51 } }, + { { 193, 101, 35, 159, 215, 111, 89, 46, 111 }, + { 60, 148, 31, 172, 219, 228, 21, 18, 111 }, + { 112, 113, 77, 85, 179, 255, 38, 120, 114 }, + { 40, 42, 1, 196, 245, 209, 10, 25, 109 }, + { 100, 80, 8, 43, 154, 1, 51, 26, 71 }, + { 88, 43, 29, 140, 166, 213, 37, 43, 154 }, + { 61, 63, 30, 155, 67, 45, 68, 1, 209 }, + { 142, 78, 78, 16, 255, 128, 34, 197, 171 }, + { 41, 40, 5, 102, 211, 183, 4, 1, 221 }, + { 51, 50, 17, 168, 209, 192, 23, 25, 82 } }, + { { 125, 98, 42, 88, 104, 85, 117, 175, 82 }, + { 95, 84, 53, 89, 128, 100, 113, 101, 45 }, + { 75, 79, 123, 47, 51, 128, 81, 171, 1 }, + { 57, 17, 5, 71, 102, 57, 53, 41, 49 }, + { 115, 21, 2, 10, 102, 255, 166, 23, 6 }, + { 38, 33, 13, 121, 57, 73, 26, 1, 85 }, + { 41, 10, 67, 138, 77, 110, 90, 47, 114 }, + { 101, 29, 16, 10, 85, 128, 101, 196, 26 }, + { 57, 18, 10, 102, 102, 213, 34, 20, 43 }, + { 117, 20, 15, 36, 163, 128, 68, 1, 26 } }, + { { 138, 31, 36, 171, 27, 166, 38, 44, 229 }, + { 67, 87, 58, 169, 82, 115, 26, 59, 179 }, + { 63, 59, 90, 180, 59, 166, 93, 73, 154 }, + { 40, 40, 21, 116, 143, 209, 34, 39, 175 }, + { 57, 46, 22, 24, 128, 1, 54, 17, 37 }, + { 47, 15, 16, 183, 34, 223, 49, 45, 183 }, + { 46, 17, 33, 183, 6, 98, 15, 32, 183 }, + { 65, 32, 73, 115, 28, 128, 23, 128, 205 }, + { 40, 3, 9, 115, 51, 192, 18, 6, 223 }, + { 87, 37, 9, 115, 59, 77, 64, 21, 47 } }, + { { 104, 55, 44, 218, 9, 54, 53, 130, 226 }, + { 64, 90, 70, 205, 40, 41, 23, 26, 57 }, + { 54, 57, 112, 184, 5, 41, 38, 166, 213 }, + { 30, 34, 26, 133, 152, 116, 10, 32, 134 }, + { 75, 32, 12, 51, 192, 255, 160, 43, 51 }, + { 39, 19, 53, 221, 26, 114, 32, 73, 255 }, + { 31, 9, 65, 234, 2, 15, 1, 118, 73 }, + { 88, 31, 35, 67, 102, 85, 55, 186, 85 }, + { 56, 21, 23, 111, 59, 205, 45, 37, 192 }, + { 55, 38, 70, 124, 73, 102, 1, 34, 98 } }, + { { 102, 61, 71, 37, 34, 53, 31, 243, 192 }, + { 69, 60, 71, 38, 73, 119, 28, 222, 37 }, + { 68, 45, 128, 34, 1, 47, 11, 245, 171 }, + { 62, 17, 19, 70, 146, 85, 55, 62, 70 }, + { 75, 15, 9, 9, 64, 255, 184, 119, 16 }, + { 37, 43, 37, 154, 100, 163, 85, 160, 1 }, + { 63, 9, 92, 136, 28, 64, 32, 201, 85 }, + { 86, 6, 28, 5, 64, 255, 25, 248, 1 }, + { 56, 8, 17, 132, 137, 255, 55, 116, 128 }, + { 58, 15, 20, 82, 135, 57, 26, 121, 40 } }, + { { 164, 50, 31, 137, 154, 133, 25, 35, 218 }, + { 51, 103, 44, 131, 131, 123, 31, 6, 158 }, + { 86, 40, 64, 135, 148, 224, 45, 183, 128 }, + { 22, 26, 17, 131, 240, 154, 14, 1, 209 }, + { 83, 12, 13, 54, 192, 255, 68, 47, 28 }, + { 45, 16, 21, 91, 64, 222, 7, 1, 197 }, + { 56, 21, 39, 155, 60, 138, 23, 102, 213 }, + { 85, 26, 85, 85, 128, 128, 32, 146, 171 }, + { 18, 11, 7, 63, 144, 171, 4, 4, 246 }, + { 35, 27, 10, 146, 174, 171, 12, 26, 128 } }, + { { 190, 80, 35, 99, 180, 80, 126, 54, 45 }, + { 85, 126, 47, 87, 176, 51, 41, 20, 32 }, + { 101, 75, 128, 139, 118, 146, 116, 128, 85 }, + { 56, 41, 15, 176, 236, 85, 37, 9, 62 }, + { 146, 36, 19, 30, 171, 255, 97, 27, 20 }, + { 71, 30, 17, 119, 118, 255, 17, 18, 138 }, + { 101, 38, 60, 138, 55, 70, 43, 26, 142 }, + { 138, 45, 61, 62, 219, 1, 81, 188, 64 }, + { 32, 41, 20, 117, 151, 142, 20, 21, 163 }, + { 112, 19, 12, 61, 195, 128, 48, 4, 24 } } + }; + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP8_COMMON_VP8_ENTROPYMODEDATA_H_ diff --git a/vp8/common/vp8_loopfilter.c b/vp8/common/vp8_loopfilter.c new file mode 100644 index 0000000..9fb1250 --- /dev/null +++ b/vp8/common/vp8_loopfilter.c @@ -0,0 +1,570 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "vpx_config.h" +#include "vp8_rtcd.h" +#include "loopfilter.h" +#include "onyxc_int.h" +#include "vpx_mem/vpx_mem.h" + +static void lf_init_lut(loop_filter_info_n *lfi) { + int filt_lvl; + + for (filt_lvl = 0; filt_lvl <= MAX_LOOP_FILTER; ++filt_lvl) { + if (filt_lvl >= 40) { + lfi->hev_thr_lut[KEY_FRAME][filt_lvl] = 2; + lfi->hev_thr_lut[INTER_FRAME][filt_lvl] = 3; + } else if (filt_lvl >= 20) { + lfi->hev_thr_lut[KEY_FRAME][filt_lvl] = 1; + lfi->hev_thr_lut[INTER_FRAME][filt_lvl] = 2; + } else if (filt_lvl >= 15) { + lfi->hev_thr_lut[KEY_FRAME][filt_lvl] = 1; + lfi->hev_thr_lut[INTER_FRAME][filt_lvl] = 1; + } else { + lfi->hev_thr_lut[KEY_FRAME][filt_lvl] = 0; + lfi->hev_thr_lut[INTER_FRAME][filt_lvl] = 0; + } + } + + lfi->mode_lf_lut[DC_PRED] = 1; + lfi->mode_lf_lut[V_PRED] = 1; + lfi->mode_lf_lut[H_PRED] = 1; + lfi->mode_lf_lut[TM_PRED] = 1; + lfi->mode_lf_lut[B_PRED] = 0; + + lfi->mode_lf_lut[ZEROMV] = 1; + lfi->mode_lf_lut[NEARESTMV] = 2; + lfi->mode_lf_lut[NEARMV] = 2; + lfi->mode_lf_lut[NEWMV] = 2; + lfi->mode_lf_lut[SPLITMV] = 3; +} + +void vp8_loop_filter_update_sharpness(loop_filter_info_n *lfi, + int sharpness_lvl) { + int i; + + /* For each possible value for the loop filter fill out limits */ + for (i = 0; i <= MAX_LOOP_FILTER; ++i) { + int filt_lvl = i; + int block_inside_limit = 0; + + /* Set loop filter paramaeters that control sharpness. */ + block_inside_limit = filt_lvl >> (sharpness_lvl > 0); + block_inside_limit = block_inside_limit >> (sharpness_lvl > 4); + + if (sharpness_lvl > 0) { + if (block_inside_limit > (9 - sharpness_lvl)) { + block_inside_limit = (9 - sharpness_lvl); + } + } + + if (block_inside_limit < 1) block_inside_limit = 1; + + memset(lfi->lim[i], block_inside_limit, SIMD_WIDTH); + memset(lfi->blim[i], (2 * filt_lvl + block_inside_limit), SIMD_WIDTH); + memset(lfi->mblim[i], (2 * (filt_lvl + 2) + block_inside_limit), + SIMD_WIDTH); + } +} + +void vp8_loop_filter_init(VP8_COMMON *cm) { + loop_filter_info_n *lfi = &cm->lf_info; + int i; + + /* init limits for given sharpness*/ + vp8_loop_filter_update_sharpness(lfi, cm->sharpness_level); + cm->last_sharpness_level = cm->sharpness_level; + + /* init LUT for lvl and hev thr picking */ + lf_init_lut(lfi); + + /* init hev threshold const vectors */ + for (i = 0; i < 4; ++i) { + memset(lfi->hev_thr[i], i, SIMD_WIDTH); + } +} + +void vp8_loop_filter_frame_init(VP8_COMMON *cm, MACROBLOCKD *mbd, + int default_filt_lvl) { + int seg, /* segment number */ + ref, /* index in ref_lf_deltas */ + mode; /* index in mode_lf_deltas */ + + loop_filter_info_n *lfi = &cm->lf_info; + + /* update limits if sharpness has changed */ + if (cm->last_sharpness_level != cm->sharpness_level) { + vp8_loop_filter_update_sharpness(lfi, cm->sharpness_level); + cm->last_sharpness_level = cm->sharpness_level; + } + + for (seg = 0; seg < MAX_MB_SEGMENTS; ++seg) { + int lvl_seg = default_filt_lvl; + int lvl_ref, lvl_mode; + + /* Note the baseline filter values for each segment */ + if (mbd->segmentation_enabled) { + if (mbd->mb_segement_abs_delta == SEGMENT_ABSDATA) { + lvl_seg = mbd->segment_feature_data[MB_LVL_ALT_LF][seg]; + } else { /* Delta Value */ + lvl_seg += mbd->segment_feature_data[MB_LVL_ALT_LF][seg]; + } + lvl_seg = (lvl_seg > 0) ? ((lvl_seg > 63) ? 63 : lvl_seg) : 0; + } + + if (!mbd->mode_ref_lf_delta_enabled) { + /* we could get rid of this if we assume that deltas are set to + * zero when not in use; encoder always uses deltas + */ + memset(lfi->lvl[seg][0], lvl_seg, 4 * 4); + continue; + } + + /* INTRA_FRAME */ + ref = INTRA_FRAME; + + /* Apply delta for reference frame */ + lvl_ref = lvl_seg + mbd->ref_lf_deltas[ref]; + + /* Apply delta for Intra modes */ + mode = 0; /* B_PRED */ + /* Only the split mode BPRED has a further special case */ + lvl_mode = lvl_ref + mbd->mode_lf_deltas[mode]; + /* clamp */ + lvl_mode = (lvl_mode > 0) ? (lvl_mode > 63 ? 63 : lvl_mode) : 0; + + lfi->lvl[seg][ref][mode] = lvl_mode; + + mode = 1; /* all the rest of Intra modes */ + /* clamp */ + lvl_mode = (lvl_ref > 0) ? (lvl_ref > 63 ? 63 : lvl_ref) : 0; + lfi->lvl[seg][ref][mode] = lvl_mode; + + /* LAST, GOLDEN, ALT */ + for (ref = 1; ref < MAX_REF_FRAMES; ++ref) { + /* Apply delta for reference frame */ + lvl_ref = lvl_seg + mbd->ref_lf_deltas[ref]; + + /* Apply delta for Inter modes */ + for (mode = 1; mode < 4; ++mode) { + lvl_mode = lvl_ref + mbd->mode_lf_deltas[mode]; + /* clamp */ + lvl_mode = (lvl_mode > 0) ? (lvl_mode > 63 ? 63 : lvl_mode) : 0; + + lfi->lvl[seg][ref][mode] = lvl_mode; + } + } + } +} + +void vp8_loop_filter_row_normal(VP8_COMMON *cm, MODE_INFO *mode_info_context, + int mb_row, int post_ystride, int post_uvstride, + unsigned char *y_ptr, unsigned char *u_ptr, + unsigned char *v_ptr) { + int mb_col; + int filter_level; + loop_filter_info_n *lfi_n = &cm->lf_info; + loop_filter_info lfi; + FRAME_TYPE frame_type = cm->frame_type; + + for (mb_col = 0; mb_col < cm->mb_cols; ++mb_col) { + int skip_lf = (mode_info_context->mbmi.mode != B_PRED && + mode_info_context->mbmi.mode != SPLITMV && + mode_info_context->mbmi.mb_skip_coeff); + + const int mode_index = lfi_n->mode_lf_lut[mode_info_context->mbmi.mode]; + const int seg = mode_info_context->mbmi.segment_id; + const int ref_frame = mode_info_context->mbmi.ref_frame; + + filter_level = lfi_n->lvl[seg][ref_frame][mode_index]; + + if (filter_level) { + const int hev_index = lfi_n->hev_thr_lut[frame_type][filter_level]; + lfi.mblim = lfi_n->mblim[filter_level]; + lfi.blim = lfi_n->blim[filter_level]; + lfi.lim = lfi_n->lim[filter_level]; + lfi.hev_thr = lfi_n->hev_thr[hev_index]; + + if (mb_col > 0) + vp8_loop_filter_mbv(y_ptr, u_ptr, v_ptr, post_ystride, post_uvstride, + &lfi); + + if (!skip_lf) + vp8_loop_filter_bv(y_ptr, u_ptr, v_ptr, post_ystride, post_uvstride, + &lfi); + + /* don't apply across umv border */ + if (mb_row > 0) + vp8_loop_filter_mbh(y_ptr, u_ptr, v_ptr, post_ystride, post_uvstride, + &lfi); + + if (!skip_lf) + vp8_loop_filter_bh(y_ptr, u_ptr, v_ptr, post_ystride, post_uvstride, + &lfi); + } + + y_ptr += 16; + u_ptr += 8; + v_ptr += 8; + + mode_info_context++; /* step to next MB */ + } +} + +void vp8_loop_filter_row_simple(VP8_COMMON *cm, MODE_INFO *mode_info_context, + int mb_row, int post_ystride, int post_uvstride, + unsigned char *y_ptr, unsigned char *u_ptr, + unsigned char *v_ptr) { + int mb_col; + int filter_level; + loop_filter_info_n *lfi_n = &cm->lf_info; + (void)post_uvstride; + + for (mb_col = 0; mb_col < cm->mb_cols; ++mb_col) { + int skip_lf = (mode_info_context->mbmi.mode != B_PRED && + mode_info_context->mbmi.mode != SPLITMV && + mode_info_context->mbmi.mb_skip_coeff); + + const int mode_index = lfi_n->mode_lf_lut[mode_info_context->mbmi.mode]; + const int seg = mode_info_context->mbmi.segment_id; + const int ref_frame = mode_info_context->mbmi.ref_frame; + + filter_level = lfi_n->lvl[seg][ref_frame][mode_index]; + + if (filter_level) { + if (mb_col > 0) + vp8_loop_filter_simple_mbv(y_ptr, post_ystride, + lfi_n->mblim[filter_level]); + + if (!skip_lf) + vp8_loop_filter_simple_bv(y_ptr, post_ystride, + lfi_n->blim[filter_level]); + + /* don't apply across umv border */ + if (mb_row > 0) + vp8_loop_filter_simple_mbh(y_ptr, post_ystride, + lfi_n->mblim[filter_level]); + + if (!skip_lf) + vp8_loop_filter_simple_bh(y_ptr, post_ystride, + lfi_n->blim[filter_level]); + } + + y_ptr += 16; + u_ptr += 8; + v_ptr += 8; + + mode_info_context++; /* step to next MB */ + } +} +void vp8_loop_filter_frame(VP8_COMMON *cm, MACROBLOCKD *mbd, int frame_type) { + YV12_BUFFER_CONFIG *post = cm->frame_to_show; + loop_filter_info_n *lfi_n = &cm->lf_info; + loop_filter_info lfi; + + int mb_row; + int mb_col; + int mb_rows = cm->mb_rows; + int mb_cols = cm->mb_cols; + + int filter_level; + + unsigned char *y_ptr, *u_ptr, *v_ptr; + + /* Point at base of Mb MODE_INFO list */ + const MODE_INFO *mode_info_context = cm->mi; + int post_y_stride = post->y_stride; + int post_uv_stride = post->uv_stride; + + /* Initialize the loop filter for this frame. */ + vp8_loop_filter_frame_init(cm, mbd, cm->filter_level); + + /* Set up the buffer pointers */ + y_ptr = post->y_buffer; + u_ptr = post->u_buffer; + v_ptr = post->v_buffer; + + /* vp8_filter each macro block */ + if (cm->filter_type == NORMAL_LOOPFILTER) { + for (mb_row = 0; mb_row < mb_rows; ++mb_row) { + for (mb_col = 0; mb_col < mb_cols; ++mb_col) { + int skip_lf = (mode_info_context->mbmi.mode != B_PRED && + mode_info_context->mbmi.mode != SPLITMV && + mode_info_context->mbmi.mb_skip_coeff); + + const int mode_index = lfi_n->mode_lf_lut[mode_info_context->mbmi.mode]; + const int seg = mode_info_context->mbmi.segment_id; + const int ref_frame = mode_info_context->mbmi.ref_frame; + + filter_level = lfi_n->lvl[seg][ref_frame][mode_index]; + + if (filter_level) { + const int hev_index = lfi_n->hev_thr_lut[frame_type][filter_level]; + lfi.mblim = lfi_n->mblim[filter_level]; + lfi.blim = lfi_n->blim[filter_level]; + lfi.lim = lfi_n->lim[filter_level]; + lfi.hev_thr = lfi_n->hev_thr[hev_index]; + + if (mb_col > 0) + vp8_loop_filter_mbv(y_ptr, u_ptr, v_ptr, post_y_stride, + post_uv_stride, &lfi); + + if (!skip_lf) + vp8_loop_filter_bv(y_ptr, u_ptr, v_ptr, post_y_stride, + post_uv_stride, &lfi); + + /* don't apply across umv border */ + if (mb_row > 0) + vp8_loop_filter_mbh(y_ptr, u_ptr, v_ptr, post_y_stride, + post_uv_stride, &lfi); + + if (!skip_lf) + vp8_loop_filter_bh(y_ptr, u_ptr, v_ptr, post_y_stride, + post_uv_stride, &lfi); + } + + y_ptr += 16; + u_ptr += 8; + v_ptr += 8; + + mode_info_context++; /* step to next MB */ + } + y_ptr += post_y_stride * 16 - post->y_width; + u_ptr += post_uv_stride * 8 - post->uv_width; + v_ptr += post_uv_stride * 8 - post->uv_width; + + mode_info_context++; /* Skip border mb */ + } + } else { /* SIMPLE_LOOPFILTER */ + for (mb_row = 0; mb_row < mb_rows; ++mb_row) { + for (mb_col = 0; mb_col < mb_cols; ++mb_col) { + int skip_lf = (mode_info_context->mbmi.mode != B_PRED && + mode_info_context->mbmi.mode != SPLITMV && + mode_info_context->mbmi.mb_skip_coeff); + + const int mode_index = lfi_n->mode_lf_lut[mode_info_context->mbmi.mode]; + const int seg = mode_info_context->mbmi.segment_id; + const int ref_frame = mode_info_context->mbmi.ref_frame; + + filter_level = lfi_n->lvl[seg][ref_frame][mode_index]; + if (filter_level) { + const unsigned char *mblim = lfi_n->mblim[filter_level]; + const unsigned char *blim = lfi_n->blim[filter_level]; + + if (mb_col > 0) + vp8_loop_filter_simple_mbv(y_ptr, post_y_stride, mblim); + + if (!skip_lf) vp8_loop_filter_simple_bv(y_ptr, post_y_stride, blim); + + /* don't apply across umv border */ + if (mb_row > 0) + vp8_loop_filter_simple_mbh(y_ptr, post_y_stride, mblim); + + if (!skip_lf) vp8_loop_filter_simple_bh(y_ptr, post_y_stride, blim); + } + + y_ptr += 16; + u_ptr += 8; + v_ptr += 8; + + mode_info_context++; /* step to next MB */ + } + y_ptr += post_y_stride * 16 - post->y_width; + u_ptr += post_uv_stride * 8 - post->uv_width; + v_ptr += post_uv_stride * 8 - post->uv_width; + + mode_info_context++; /* Skip border mb */ + } + } +} + +void vp8_loop_filter_frame_yonly(VP8_COMMON *cm, MACROBLOCKD *mbd, + int default_filt_lvl) { + YV12_BUFFER_CONFIG *post = cm->frame_to_show; + + unsigned char *y_ptr; + int mb_row; + int mb_col; + + loop_filter_info_n *lfi_n = &cm->lf_info; + loop_filter_info lfi; + + int filter_level; + FRAME_TYPE frame_type = cm->frame_type; + + /* Point at base of Mb MODE_INFO list */ + const MODE_INFO *mode_info_context = cm->mi; + +#if 0 + if(default_filt_lvl == 0) /* no filter applied */ + return; +#endif + + /* Initialize the loop filter for this frame. */ + vp8_loop_filter_frame_init(cm, mbd, default_filt_lvl); + + /* Set up the buffer pointers */ + y_ptr = post->y_buffer; + + /* vp8_filter each macro block */ + for (mb_row = 0; mb_row < cm->mb_rows; ++mb_row) { + for (mb_col = 0; mb_col < cm->mb_cols; ++mb_col) { + int skip_lf = (mode_info_context->mbmi.mode != B_PRED && + mode_info_context->mbmi.mode != SPLITMV && + mode_info_context->mbmi.mb_skip_coeff); + + const int mode_index = lfi_n->mode_lf_lut[mode_info_context->mbmi.mode]; + const int seg = mode_info_context->mbmi.segment_id; + const int ref_frame = mode_info_context->mbmi.ref_frame; + + filter_level = lfi_n->lvl[seg][ref_frame][mode_index]; + + if (filter_level) { + if (cm->filter_type == NORMAL_LOOPFILTER) { + const int hev_index = lfi_n->hev_thr_lut[frame_type][filter_level]; + lfi.mblim = lfi_n->mblim[filter_level]; + lfi.blim = lfi_n->blim[filter_level]; + lfi.lim = lfi_n->lim[filter_level]; + lfi.hev_thr = lfi_n->hev_thr[hev_index]; + + if (mb_col > 0) + vp8_loop_filter_mbv(y_ptr, 0, 0, post->y_stride, 0, &lfi); + + if (!skip_lf) + vp8_loop_filter_bv(y_ptr, 0, 0, post->y_stride, 0, &lfi); + + /* don't apply across umv border */ + if (mb_row > 0) + vp8_loop_filter_mbh(y_ptr, 0, 0, post->y_stride, 0, &lfi); + + if (!skip_lf) + vp8_loop_filter_bh(y_ptr, 0, 0, post->y_stride, 0, &lfi); + } else { + if (mb_col > 0) + vp8_loop_filter_simple_mbv(y_ptr, post->y_stride, + lfi_n->mblim[filter_level]); + + if (!skip_lf) + vp8_loop_filter_simple_bv(y_ptr, post->y_stride, + lfi_n->blim[filter_level]); + + /* don't apply across umv border */ + if (mb_row > 0) + vp8_loop_filter_simple_mbh(y_ptr, post->y_stride, + lfi_n->mblim[filter_level]); + + if (!skip_lf) + vp8_loop_filter_simple_bh(y_ptr, post->y_stride, + lfi_n->blim[filter_level]); + } + } + + y_ptr += 16; + mode_info_context++; /* step to next MB */ + } + + y_ptr += post->y_stride * 16 - post->y_width; + mode_info_context++; /* Skip border mb */ + } +} + +void vp8_loop_filter_partial_frame(VP8_COMMON *cm, MACROBLOCKD *mbd, + int default_filt_lvl) { + YV12_BUFFER_CONFIG *post = cm->frame_to_show; + + unsigned char *y_ptr; + int mb_row; + int mb_col; + int mb_cols = post->y_width >> 4; + int mb_rows = post->y_height >> 4; + + int linestocopy; + + loop_filter_info_n *lfi_n = &cm->lf_info; + loop_filter_info lfi; + + int filter_level; + FRAME_TYPE frame_type = cm->frame_type; + + const MODE_INFO *mode_info_context; + +#if 0 + if(default_filt_lvl == 0) /* no filter applied */ + return; +#endif + + /* Initialize the loop filter for this frame. */ + vp8_loop_filter_frame_init(cm, mbd, default_filt_lvl); + + /* number of MB rows to use in partial filtering */ + linestocopy = mb_rows / PARTIAL_FRAME_FRACTION; + linestocopy = linestocopy ? linestocopy << 4 : 16; /* 16 lines per MB */ + + /* Set up the buffer pointers; partial image starts at ~middle of frame */ + y_ptr = post->y_buffer + ((post->y_height >> 5) * 16) * post->y_stride; + mode_info_context = cm->mi + (post->y_height >> 5) * (mb_cols + 1); + + /* vp8_filter each macro block */ + for (mb_row = 0; mb_row < (linestocopy >> 4); ++mb_row) { + for (mb_col = 0; mb_col < mb_cols; ++mb_col) { + int skip_lf = (mode_info_context->mbmi.mode != B_PRED && + mode_info_context->mbmi.mode != SPLITMV && + mode_info_context->mbmi.mb_skip_coeff); + + const int mode_index = lfi_n->mode_lf_lut[mode_info_context->mbmi.mode]; + const int seg = mode_info_context->mbmi.segment_id; + const int ref_frame = mode_info_context->mbmi.ref_frame; + + filter_level = lfi_n->lvl[seg][ref_frame][mode_index]; + + if (filter_level) { + if (cm->filter_type == NORMAL_LOOPFILTER) { + const int hev_index = lfi_n->hev_thr_lut[frame_type][filter_level]; + lfi.mblim = lfi_n->mblim[filter_level]; + lfi.blim = lfi_n->blim[filter_level]; + lfi.lim = lfi_n->lim[filter_level]; + lfi.hev_thr = lfi_n->hev_thr[hev_index]; + + if (mb_col > 0) + vp8_loop_filter_mbv(y_ptr, 0, 0, post->y_stride, 0, &lfi); + + if (!skip_lf) + vp8_loop_filter_bv(y_ptr, 0, 0, post->y_stride, 0, &lfi); + + vp8_loop_filter_mbh(y_ptr, 0, 0, post->y_stride, 0, &lfi); + + if (!skip_lf) + vp8_loop_filter_bh(y_ptr, 0, 0, post->y_stride, 0, &lfi); + } else { + if (mb_col > 0) + vp8_loop_filter_simple_mbv(y_ptr, post->y_stride, + lfi_n->mblim[filter_level]); + + if (!skip_lf) + vp8_loop_filter_simple_bv(y_ptr, post->y_stride, + lfi_n->blim[filter_level]); + + vp8_loop_filter_simple_mbh(y_ptr, post->y_stride, + lfi_n->mblim[filter_level]); + + if (!skip_lf) + vp8_loop_filter_simple_bh(y_ptr, post->y_stride, + lfi_n->blim[filter_level]); + } + } + + y_ptr += 16; + mode_info_context += 1; /* step to next MB */ + } + + y_ptr += post->y_stride * 16 - post->y_width; + mode_info_context += 1; /* Skip border mb */ + } +} diff --git a/vp8/common/vp8_skin_detection.c b/vp8/common/vp8_skin_detection.c new file mode 100644 index 0000000..6739efa --- /dev/null +++ b/vp8/common/vp8_skin_detection.c @@ -0,0 +1,109 @@ +/* + * Copyright (c) 2015 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "vp8/common/alloccommon.h" +#include "vp8/common/vp8_skin_detection.h" +#include "vpx_dsp/vpx_dsp_common.h" +#include "vpx_mem/vpx_mem.h" +#include "vpx_util/vpx_write_yuv_frame.h" + +static int avg_2x2(const uint8_t *s, int p) { + int i, j; + int sum = 0; + for (i = 0; i < 2; ++i, s += p) { + for (j = 0; j < 2; ++j) { + sum += s[j]; + } + } + return (sum + 2) >> 2; +} + +int vp8_compute_skin_block(const uint8_t *y, const uint8_t *u, const uint8_t *v, + int stride, int strideuv, + SKIN_DETECTION_BLOCK_SIZE bsize, int consec_zeromv, + int curr_motion_magn) { + // No skin if block has been zero/small motion for long consecutive time. + if (consec_zeromv > 60 && curr_motion_magn == 0) { + return 0; + } else { + int motion = 1; + if (consec_zeromv > 25 && curr_motion_magn == 0) motion = 0; + if (bsize == SKIN_16X16) { + // Take the average of center 2x2 pixels. + const int ysource = avg_2x2(y + 7 * stride + 7, stride); + const int usource = avg_2x2(u + 3 * strideuv + 3, strideuv); + const int vsource = avg_2x2(v + 3 * strideuv + 3, strideuv); + return vpx_skin_pixel(ysource, usource, vsource, motion); + } else { + int num_skin = 0; + int i, j; + for (i = 0; i < 2; i++) { + for (j = 0; j < 2; j++) { + // Take the average of center 2x2 pixels. + const int ysource = avg_2x2(y + 3 * stride + 3, stride); + const int usource = avg_2x2(u + strideuv + 1, strideuv); + const int vsource = avg_2x2(v + strideuv + 1, strideuv); + num_skin += vpx_skin_pixel(ysource, usource, vsource, motion); + if (num_skin >= 2) return 1; + y += 8; + u += 4; + v += 4; + } + y += (stride << 3) - 16; + u += (strideuv << 2) - 8; + v += (strideuv << 2) - 8; + } + + return 0; + } + } +} + +#ifdef OUTPUT_YUV_SKINMAP +// For viewing skin map on input source. +void vp8_compute_skin_map(VP8_COMP *const cpi, FILE *yuv_skinmap_file) { + int i, j, mb_row, mb_col, num_bl; + VP8_COMMON *const cm = &cpi->common; + uint8_t *y; + const uint8_t *src_y = cpi->Source->y_buffer; + const int src_ystride = cpi->Source->y_stride; + int offset = 0; + + YV12_BUFFER_CONFIG skinmap; + memset(&skinmap, 0, sizeof(skinmap)); + if (vp8_yv12_alloc_frame_buffer(&skinmap, cm->Width, cm->Height, + VP8BORDERINPIXELS) < 0) { + vpx_free_frame_buffer(&skinmap); + return; + } + memset(skinmap.buffer_alloc, 128, skinmap.frame_size); + y = skinmap.y_buffer; + // Loop through blocks and set skin map based on center pixel of block. + // Set y to white for skin block, otherwise set to source with gray scale. + for (mb_row = 0; mb_row < cm->mb_rows; mb_row += 1) { + num_bl = 0; + for (mb_col = 0; mb_col < cm->mb_cols; mb_col += 1) { + const int is_skin = cpi->skin_map[offset++]; + for (i = 0; i < 16; i++) { + for (j = 0; j < 16; j++) { + y[i * src_ystride + j] = is_skin ? 255 : src_y[i * src_ystride + j]; + } + } + num_bl++; + y += 16; + src_y += 16; + } + y += (src_ystride << 4) - (num_bl << 4); + src_y += (src_ystride << 4) - (num_bl << 4); + } + vpx_write_yuv_frame(yuv_skinmap_file, &skinmap); + vpx_free_frame_buffer(&skinmap); +} +#endif // OUTPUT_YUV_SKINMAP diff --git a/vp8/common/vp8_skin_detection.h b/vp8/common/vp8_skin_detection.h new file mode 100644 index 0000000..4d27f5e --- /dev/null +++ b/vp8/common/vp8_skin_detection.h @@ -0,0 +1,47 @@ +/* + * Copyright (c) 2015 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP8_COMMON_SKIN_DETECTION_H_ +#define VP8_COMMON_SKIN_DETECTION_H_ + +#include "vp8/encoder/onyx_int.h" +#include "vpx/vpx_integer.h" +#include "vpx_dsp/skin_detection.h" +#include "vpx_scale/yv12config.h" + +#ifdef __cplusplus +extern "C" { +#endif + +struct VP8_COMP; + +typedef enum { + // Skin detection based on 8x8 block. If two of them are identified as skin, + // the macroblock is marked as skin. + SKIN_8X8, + // Skin detection based on 16x16 block. + SKIN_16X16 +} SKIN_DETECTION_BLOCK_SIZE; + +int vp8_compute_skin_block(const uint8_t *y, const uint8_t *u, const uint8_t *v, + int stride, int strideuv, + SKIN_DETECTION_BLOCK_SIZE bsize, int consec_zeromv, + int curr_motion_magn); + +#ifdef OUTPUT_YUV_SKINMAP +// For viewing skin map on input source. +void vp8_compute_skin_map(struct VP8_COMP *const cpi, FILE *yuv_skinmap_file); +#endif + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP8_COMMON_SKIN_DETECTION_H_ diff --git a/vp8/common/x86/copy_sse2.asm b/vp8/common/x86/copy_sse2.asm new file mode 100644 index 0000000..480faa2 --- /dev/null +++ b/vp8/common/x86/copy_sse2.asm @@ -0,0 +1,94 @@ +; +; Copyright (c) 2010 The WebM project authors. All Rights Reserved. +; +; Use of this source code is governed by a BSD-style license +; that can be found in the LICENSE file in the root of the source +; tree. An additional intellectual property rights grant can be found +; in the file PATENTS. All contributing project authors may +; be found in the AUTHORS file in the root of the source tree. +; + + +%include "vpx_ports/x86_abi_support.asm" + +SECTION .text + +;void vp8_copy32xn_sse2( +; unsigned char *src_ptr, +; int src_stride, +; unsigned char *dst_ptr, +; int dst_stride, +; int height); +global sym(vp8_copy32xn_sse2) PRIVATE +sym(vp8_copy32xn_sse2): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 5 + SAVE_XMM 7 + push rsi + push rdi + ; end prolog + + mov rsi, arg(0) ;src_ptr + mov rdi, arg(2) ;dst_ptr + + movsxd rax, dword ptr arg(1) ;src_stride + movsxd rdx, dword ptr arg(3) ;dst_stride + movsxd rcx, dword ptr arg(4) ;height + +.block_copy_sse2_loopx4: + movdqu xmm0, XMMWORD PTR [rsi] + movdqu xmm1, XMMWORD PTR [rsi + 16] + movdqu xmm2, XMMWORD PTR [rsi + rax] + movdqu xmm3, XMMWORD PTR [rsi + rax + 16] + + lea rsi, [rsi+rax*2] + + movdqu xmm4, XMMWORD PTR [rsi] + movdqu xmm5, XMMWORD PTR [rsi + 16] + movdqu xmm6, XMMWORD PTR [rsi + rax] + movdqu xmm7, XMMWORD PTR [rsi + rax + 16] + + lea rsi, [rsi+rax*2] + + movdqa XMMWORD PTR [rdi], xmm0 + movdqa XMMWORD PTR [rdi + 16], xmm1 + movdqa XMMWORD PTR [rdi + rdx], xmm2 + movdqa XMMWORD PTR [rdi + rdx + 16], xmm3 + + lea rdi, [rdi+rdx*2] + + movdqa XMMWORD PTR [rdi], xmm4 + movdqa XMMWORD PTR [rdi + 16], xmm5 + movdqa XMMWORD PTR [rdi + rdx], xmm6 + movdqa XMMWORD PTR [rdi + rdx + 16], xmm7 + + lea rdi, [rdi+rdx*2] + + sub rcx, 4 + cmp rcx, 4 + jge .block_copy_sse2_loopx4 + + cmp rcx, 0 + je .copy_is_done + +.block_copy_sse2_loop: + movdqu xmm0, XMMWORD PTR [rsi] + movdqu xmm1, XMMWORD PTR [rsi + 16] + lea rsi, [rsi+rax] + + movdqa XMMWORD PTR [rdi], xmm0 + movdqa XMMWORD PTR [rdi + 16], xmm1 + lea rdi, [rdi+rdx] + + sub rcx, 1 + jne .block_copy_sse2_loop + +.copy_is_done: + ; begin epilog + pop rdi + pop rsi + RESTORE_XMM + UNSHADOW_ARGS + pop rbp + ret diff --git a/vp8/common/x86/copy_sse3.asm b/vp8/common/x86/copy_sse3.asm new file mode 100644 index 0000000..31ea898 --- /dev/null +++ b/vp8/common/x86/copy_sse3.asm @@ -0,0 +1,147 @@ +; +; Copyright (c) 2010 The WebM project authors. All Rights Reserved. +; +; Use of this source code is governed by a BSD-style license +; that can be found in the LICENSE file in the root of the source +; tree. An additional intellectual property rights grant can be found +; in the file PATENTS. All contributing project authors may +; be found in the AUTHORS file in the root of the source tree. +; + +%include "vpx_ports/x86_abi_support.asm" + +%macro STACK_FRAME_CREATE_X3 0 +%if ABI_IS_32BIT + %define src_ptr rsi + %define src_stride rax + %define ref_ptr rdi + %define ref_stride rdx + %define end_ptr rcx + %define ret_var rbx + %define result_ptr arg(4) + %define max_sad arg(4) + %define height dword ptr arg(4) + push rbp + mov rbp, rsp + push rsi + push rdi + push rbx + + mov rsi, arg(0) ; src_ptr + mov rdi, arg(2) ; ref_ptr + + movsxd rax, dword ptr arg(1) ; src_stride + movsxd rdx, dword ptr arg(3) ; ref_stride +%else + %if LIBVPX_YASM_WIN64 + SAVE_XMM 7, u + %define src_ptr rcx + %define src_stride rdx + %define ref_ptr r8 + %define ref_stride r9 + %define end_ptr r10 + %define ret_var r11 + %define result_ptr [rsp+xmm_stack_space+8+4*8] + %define max_sad [rsp+xmm_stack_space+8+4*8] + %define height dword ptr [rsp+xmm_stack_space+8+4*8] + %else + %define src_ptr rdi + %define src_stride rsi + %define ref_ptr rdx + %define ref_stride rcx + %define end_ptr r9 + %define ret_var r10 + %define result_ptr r8 + %define max_sad r8 + %define height r8 + %endif +%endif + +%endmacro + +%macro STACK_FRAME_DESTROY_X3 0 + %define src_ptr + %define src_stride + %define ref_ptr + %define ref_stride + %define end_ptr + %define ret_var + %define result_ptr + %define max_sad + %define height + +%if ABI_IS_32BIT + pop rbx + pop rdi + pop rsi + pop rbp +%else + %if LIBVPX_YASM_WIN64 + RESTORE_XMM + %endif +%endif + ret +%endmacro + +SECTION .text + +;void vp8_copy32xn_sse3( +; unsigned char *src_ptr, +; int src_stride, +; unsigned char *dst_ptr, +; int dst_stride, +; int height); +global sym(vp8_copy32xn_sse3) PRIVATE +sym(vp8_copy32xn_sse3): + + STACK_FRAME_CREATE_X3 + +.block_copy_sse3_loopx4: + lea end_ptr, [src_ptr+src_stride*2] + + movdqu xmm0, XMMWORD PTR [src_ptr] + movdqu xmm1, XMMWORD PTR [src_ptr + 16] + movdqu xmm2, XMMWORD PTR [src_ptr + src_stride] + movdqu xmm3, XMMWORD PTR [src_ptr + src_stride + 16] + movdqu xmm4, XMMWORD PTR [end_ptr] + movdqu xmm5, XMMWORD PTR [end_ptr + 16] + movdqu xmm6, XMMWORD PTR [end_ptr + src_stride] + movdqu xmm7, XMMWORD PTR [end_ptr + src_stride + 16] + + lea src_ptr, [src_ptr+src_stride*4] + + lea end_ptr, [ref_ptr+ref_stride*2] + + movdqa XMMWORD PTR [ref_ptr], xmm0 + movdqa XMMWORD PTR [ref_ptr + 16], xmm1 + movdqa XMMWORD PTR [ref_ptr + ref_stride], xmm2 + movdqa XMMWORD PTR [ref_ptr + ref_stride + 16], xmm3 + movdqa XMMWORD PTR [end_ptr], xmm4 + movdqa XMMWORD PTR [end_ptr + 16], xmm5 + movdqa XMMWORD PTR [end_ptr + ref_stride], xmm6 + movdqa XMMWORD PTR [end_ptr + ref_stride + 16], xmm7 + + lea ref_ptr, [ref_ptr+ref_stride*4] + + sub height, 4 + cmp height, 4 + jge .block_copy_sse3_loopx4 + + ;Check to see if there is more rows need to be copied. + cmp height, 0 + je .copy_is_done + +.block_copy_sse3_loop: + movdqu xmm0, XMMWORD PTR [src_ptr] + movdqu xmm1, XMMWORD PTR [src_ptr + 16] + lea src_ptr, [src_ptr+src_stride] + + movdqa XMMWORD PTR [ref_ptr], xmm0 + movdqa XMMWORD PTR [ref_ptr + 16], xmm1 + lea ref_ptr, [ref_ptr+ref_stride] + + sub height, 1 + jne .block_copy_sse3_loop + +.copy_is_done: + STACK_FRAME_DESTROY_X3 diff --git a/vp8/common/x86/dequantize_mmx.asm b/vp8/common/x86/dequantize_mmx.asm new file mode 100644 index 0000000..bfdd997 --- /dev/null +++ b/vp8/common/x86/dequantize_mmx.asm @@ -0,0 +1,259 @@ +; +; Copyright (c) 2010 The WebM project authors. All Rights Reserved. +; +; Use of this source code is governed by a BSD-style license +; that can be found in the LICENSE file in the root of the source +; tree. An additional intellectual property rights grant can be found +; in the file PATENTS. All contributing project authors may +; be found in the AUTHORS file in the root of the source tree. +; + + +%include "vpx_ports/x86_abi_support.asm" + +SECTION .text + +;void vp8_dequantize_b_impl_mmx(short *sq, short *dq, short *q) +global sym(vp8_dequantize_b_impl_mmx) PRIVATE +sym(vp8_dequantize_b_impl_mmx): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 3 + push rsi + push rdi + ; end prolog + + mov rsi, arg(0) ;sq + mov rdi, arg(1) ;dq + mov rax, arg(2) ;q + + movq mm1, [rsi] + pmullw mm1, [rax+0] ; mm4 *= kernel 0 modifiers. + movq [rdi], mm1 + + movq mm1, [rsi+8] + pmullw mm1, [rax+8] ; mm4 *= kernel 0 modifiers. + movq [rdi+8], mm1 + + movq mm1, [rsi+16] + pmullw mm1, [rax+16] ; mm4 *= kernel 0 modifiers. + movq [rdi+16], mm1 + + movq mm1, [rsi+24] + pmullw mm1, [rax+24] ; mm4 *= kernel 0 modifiers. + movq [rdi+24], mm1 + + ; begin epilog + pop rdi + pop rsi + UNSHADOW_ARGS + pop rbp + ret + + +;void dequant_idct_add_mmx( +;short *input, 0 +;short *dq, 1 +;unsigned char *dest, 2 +;int stride) 3 +global sym(vp8_dequant_idct_add_mmx) PRIVATE +sym(vp8_dequant_idct_add_mmx): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 4 + GET_GOT rbx + push rdi + ; end prolog + + mov rax, arg(0) ;input + mov rdx, arg(1) ;dq + + + movq mm0, [rax ] + pmullw mm0, [rdx] + + movq mm1, [rax +8] + pmullw mm1, [rdx +8] + + movq mm2, [rax+16] + pmullw mm2, [rdx+16] + + movq mm3, [rax+24] + pmullw mm3, [rdx+24] + + mov rdx, arg(2) ;dest + + pxor mm7, mm7 + + + movq [rax], mm7 + movq [rax+8], mm7 + + movq [rax+16],mm7 + movq [rax+24],mm7 + + + movsxd rdi, dword ptr arg(3) ;stride + + psubw mm0, mm2 ; b1= 0-2 + paddw mm2, mm2 ; + + movq mm5, mm1 + paddw mm2, mm0 ; a1 =0+2 + + pmulhw mm5, [GLOBAL(x_s1sqr2)]; + paddw mm5, mm1 ; ip1 * sin(pi/8) * sqrt(2) + + movq mm7, mm3 ; + pmulhw mm7, [GLOBAL(x_c1sqr2less1)]; + + paddw mm7, mm3 ; ip3 * cos(pi/8) * sqrt(2) + psubw mm7, mm5 ; c1 + + movq mm5, mm1 + movq mm4, mm3 + + pmulhw mm5, [GLOBAL(x_c1sqr2less1)] + paddw mm5, mm1 + + pmulhw mm3, [GLOBAL(x_s1sqr2)] + paddw mm3, mm4 + + paddw mm3, mm5 ; d1 + movq mm6, mm2 ; a1 + + movq mm4, mm0 ; b1 + paddw mm2, mm3 ;0 + + paddw mm4, mm7 ;1 + psubw mm0, mm7 ;2 + + psubw mm6, mm3 ;3 + + movq mm1, mm2 ; 03 02 01 00 + movq mm3, mm4 ; 23 22 21 20 + + punpcklwd mm1, mm0 ; 11 01 10 00 + punpckhwd mm2, mm0 ; 13 03 12 02 + + punpcklwd mm3, mm6 ; 31 21 30 20 + punpckhwd mm4, mm6 ; 33 23 32 22 + + movq mm0, mm1 ; 11 01 10 00 + movq mm5, mm2 ; 13 03 12 02 + + punpckldq mm0, mm3 ; 30 20 10 00 + punpckhdq mm1, mm3 ; 31 21 11 01 + + punpckldq mm2, mm4 ; 32 22 12 02 + punpckhdq mm5, mm4 ; 33 23 13 03 + + movq mm3, mm5 ; 33 23 13 03 + + psubw mm0, mm2 ; b1= 0-2 + paddw mm2, mm2 ; + + movq mm5, mm1 + paddw mm2, mm0 ; a1 =0+2 + + pmulhw mm5, [GLOBAL(x_s1sqr2)]; + paddw mm5, mm1 ; ip1 * sin(pi/8) * sqrt(2) + + movq mm7, mm3 ; + pmulhw mm7, [GLOBAL(x_c1sqr2less1)]; + + paddw mm7, mm3 ; ip3 * cos(pi/8) * sqrt(2) + psubw mm7, mm5 ; c1 + + movq mm5, mm1 + movq mm4, mm3 + + pmulhw mm5, [GLOBAL(x_c1sqr2less1)] + paddw mm5, mm1 + + pmulhw mm3, [GLOBAL(x_s1sqr2)] + paddw mm3, mm4 + + paddw mm3, mm5 ; d1 + paddw mm0, [GLOBAL(fours)] + + paddw mm2, [GLOBAL(fours)] + movq mm6, mm2 ; a1 + + movq mm4, mm0 ; b1 + paddw mm2, mm3 ;0 + + paddw mm4, mm7 ;1 + psubw mm0, mm7 ;2 + + psubw mm6, mm3 ;3 + psraw mm2, 3 + + psraw mm0, 3 + psraw mm4, 3 + + psraw mm6, 3 + + movq mm1, mm2 ; 03 02 01 00 + movq mm3, mm4 ; 23 22 21 20 + + punpcklwd mm1, mm0 ; 11 01 10 00 + punpckhwd mm2, mm0 ; 13 03 12 02 + + punpcklwd mm3, mm6 ; 31 21 30 20 + punpckhwd mm4, mm6 ; 33 23 32 22 + + movq mm0, mm1 ; 11 01 10 00 + movq mm5, mm2 ; 13 03 12 02 + + punpckldq mm0, mm3 ; 30 20 10 00 + punpckhdq mm1, mm3 ; 31 21 11 01 + + punpckldq mm2, mm4 ; 32 22 12 02 + punpckhdq mm5, mm4 ; 33 23 13 03 + + pxor mm7, mm7 + + movd mm4, [rdx] + punpcklbw mm4, mm7 + paddsw mm0, mm4 + packuswb mm0, mm7 + movd [rdx], mm0 + + movd mm4, [rdx+rdi] + punpcklbw mm4, mm7 + paddsw mm1, mm4 + packuswb mm1, mm7 + movd [rdx+rdi], mm1 + + movd mm4, [rdx+2*rdi] + punpcklbw mm4, mm7 + paddsw mm2, mm4 + packuswb mm2, mm7 + movd [rdx+rdi*2], mm2 + + add rdx, rdi + + movd mm4, [rdx+2*rdi] + punpcklbw mm4, mm7 + paddsw mm5, mm4 + packuswb mm5, mm7 + movd [rdx+rdi*2], mm5 + + ; begin epilog + pop rdi + RESTORE_GOT + UNSHADOW_ARGS + pop rbp + ret + +SECTION_RODATA +align 16 +x_s1sqr2: + times 4 dw 0x8A8C +align 16 +x_c1sqr2less1: + times 4 dw 0x4E7B +align 16 +fours: + times 4 dw 0x0004 diff --git a/vp8/common/x86/filter_x86.c b/vp8/common/x86/filter_x86.c new file mode 100644 index 0000000..2405342 --- /dev/null +++ b/vp8/common/x86/filter_x86.c @@ -0,0 +1,29 @@ +/* + * Copyright (c) 2011 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "vp8/common/x86/filter_x86.h" + +DECLARE_ALIGNED(16, const short, vp8_bilinear_filters_x86_4[8][8]) = { + { 128, 128, 128, 128, 0, 0, 0, 0 }, { 112, 112, 112, 112, 16, 16, 16, 16 }, + { 96, 96, 96, 96, 32, 32, 32, 32 }, { 80, 80, 80, 80, 48, 48, 48, 48 }, + { 64, 64, 64, 64, 64, 64, 64, 64 }, { 48, 48, 48, 48, 80, 80, 80, 80 }, + { 32, 32, 32, 32, 96, 96, 96, 96 }, { 16, 16, 16, 16, 112, 112, 112, 112 } +}; + +DECLARE_ALIGNED(16, const short, vp8_bilinear_filters_x86_8[8][16]) = { + { 128, 128, 128, 128, 128, 128, 128, 128, 0, 0, 0, 0, 0, 0, 0, 0 }, + { 112, 112, 112, 112, 112, 112, 112, 112, 16, 16, 16, 16, 16, 16, 16, 16 }, + { 96, 96, 96, 96, 96, 96, 96, 96, 32, 32, 32, 32, 32, 32, 32, 32 }, + { 80, 80, 80, 80, 80, 80, 80, 80, 48, 48, 48, 48, 48, 48, 48, 48 }, + { 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64 }, + { 48, 48, 48, 48, 48, 48, 48, 48, 80, 80, 80, 80, 80, 80, 80, 80 }, + { 32, 32, 32, 32, 32, 32, 32, 32, 96, 96, 96, 96, 96, 96, 96, 96 }, + { 16, 16, 16, 16, 16, 16, 16, 16, 112, 112, 112, 112, 112, 112, 112, 112 } +}; diff --git a/vp8/common/x86/filter_x86.h b/vp8/common/x86/filter_x86.h new file mode 100644 index 0000000..d282841 --- /dev/null +++ b/vp8/common/x86/filter_x86.h @@ -0,0 +1,33 @@ +/* + * Copyright (c) 2011 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP8_COMMON_X86_FILTER_X86_H_ +#define VP8_COMMON_X86_FILTER_X86_H_ + +#include "vpx_ports/mem.h" + +#ifdef __cplusplus +extern "C" { +#endif + +/* x86 assembly specific copy of vp8/common/filter.c:vp8_bilinear_filters with + * duplicated values */ + +/* duplicated 4x */ +extern DECLARE_ALIGNED(16, const short, vp8_bilinear_filters_x86_4[8][8]); + +/* duplicated 8x */ +extern DECLARE_ALIGNED(16, const short, vp8_bilinear_filters_x86_8[8][16]); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP8_COMMON_X86_FILTER_X86_H_ diff --git a/vp8/common/x86/idct_blk_mmx.c b/vp8/common/x86/idct_blk_mmx.c new file mode 100644 index 0000000..fd804b1 --- /dev/null +++ b/vp8/common/x86/idct_blk_mmx.c @@ -0,0 +1,23 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "vpx_config.h" +#include "vp8_rtcd.h" +#include "vp8/common/blockd.h" +#include "vpx_mem/vpx_mem.h" + +extern void vp8_dequantize_b_impl_mmx(short *sq, short *dq, short *q); + +void vp8_dequantize_b_mmx(BLOCKD *d, short *DQC) { + short *sq = (short *)d->qcoeff; + short *dq = (short *)d->dqcoeff; + + vp8_dequantize_b_impl_mmx(sq, dq, DQC); +} diff --git a/vp8/common/x86/idct_blk_sse2.c b/vp8/common/x86/idct_blk_sse2.c new file mode 100644 index 0000000..8aefb27 --- /dev/null +++ b/vp8/common/x86/idct_blk_sse2.c @@ -0,0 +1,84 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "vpx_config.h" +#include "vp8_rtcd.h" + +void vp8_idct_dequant_0_2x_sse2(short *q, short *dq, unsigned char *dst, + int dst_stride); +void vp8_idct_dequant_full_2x_sse2(short *q, short *dq, unsigned char *dst, + int dst_stride); + +void vp8_dequant_idct_add_y_block_sse2(short *q, short *dq, unsigned char *dst, + int stride, char *eobs) { + int i; + + for (i = 0; i < 4; ++i) { + if (((short *)(eobs))[0]) { + if (((short *)(eobs))[0] & 0xfefe) { + vp8_idct_dequant_full_2x_sse2(q, dq, dst, stride); + } else { + vp8_idct_dequant_0_2x_sse2(q, dq, dst, stride); + } + } + if (((short *)(eobs))[1]) { + if (((short *)(eobs))[1] & 0xfefe) { + vp8_idct_dequant_full_2x_sse2(q + 32, dq, dst + 8, stride); + } else { + vp8_idct_dequant_0_2x_sse2(q + 32, dq, dst + 8, stride); + } + } + q += 64; + dst += stride * 4; + eobs += 4; + } +} + +void vp8_dequant_idct_add_uv_block_sse2(short *q, short *dq, + unsigned char *dstu, + unsigned char *dstv, int stride, + char *eobs) { + if (((short *)(eobs))[0]) { + if (((short *)(eobs))[0] & 0xfefe) { + vp8_idct_dequant_full_2x_sse2(q, dq, dstu, stride); + } else { + vp8_idct_dequant_0_2x_sse2(q, dq, dstu, stride); + } + } + q += 32; + dstu += stride * 4; + + if (((short *)(eobs))[1]) { + if (((short *)(eobs))[1] & 0xfefe) { + vp8_idct_dequant_full_2x_sse2(q, dq, dstu, stride); + } else { + vp8_idct_dequant_0_2x_sse2(q, dq, dstu, stride); + } + } + q += 32; + + if (((short *)(eobs))[2]) { + if (((short *)(eobs))[2] & 0xfefe) { + vp8_idct_dequant_full_2x_sse2(q, dq, dstv, stride); + } else { + vp8_idct_dequant_0_2x_sse2(q, dq, dstv, stride); + } + } + q += 32; + dstv += stride * 4; + + if (((short *)(eobs))[3]) { + if (((short *)(eobs))[3] & 0xfefe) { + vp8_idct_dequant_full_2x_sse2(q, dq, dstv, stride); + } else { + vp8_idct_dequant_0_2x_sse2(q, dq, dstv, stride); + } + } +} diff --git a/vp8/common/x86/idctllm_mmx.asm b/vp8/common/x86/idctllm_mmx.asm new file mode 100644 index 0000000..5773d9d --- /dev/null +++ b/vp8/common/x86/idctllm_mmx.asm @@ -0,0 +1,296 @@ +; +; Copyright (c) 2010 The WebM project authors. All Rights Reserved. +; +; Use of this source code is governed by a BSD-style license +; that can be found in the LICENSE file in the root of the source +; tree. An additional intellectual property rights grant can be found +; in the file PATENTS. All contributing project authors may +; be found in the AUTHORS file in the root of the source tree. +; + + +%include "vpx_ports/x86_abi_support.asm" + +; /**************************************************************************** +; * Notes: +; * +; * This implementation makes use of 16 bit fixed point version of two multiply +; * constants: +; * 1. sqrt(2) * cos (pi/8) +; * 2. sqrt(2) * sin (pi/8) +; * Because the first constant is bigger than 1, to maintain the same 16 bit +; * fixed point precision as the second one, we use a trick of +; * x * a = x + x*(a-1) +; * so +; * x * sqrt(2) * cos (pi/8) = x + x * (sqrt(2) *cos(pi/8)-1). +; * +; * For the second constant, because of the 16bit version is 35468, which +; * is bigger than 32768, in signed 16 bit multiply, it becomes a negative +; * number. +; * (x * (unsigned)35468 >> 16) = x * (signed)35468 >> 16 + x +; * +; **************************************************************************/ + +SECTION .text + +;void vp8_short_idct4x4llm_mmx(short *input, unsigned char *pred, +;int pitch, unsigned char *dest,int stride) +global sym(vp8_short_idct4x4llm_mmx) PRIVATE +sym(vp8_short_idct4x4llm_mmx): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 5 + GET_GOT rbx + push rsi + push rdi + ; end prolog + + mov rax, arg(0) ;input + mov rsi, arg(1) ;pred + + movq mm0, [rax ] + movq mm1, [rax+ 8] + movq mm2, [rax+16] + movq mm3, [rax+24] + +%if 0 + pxor mm7, mm7 + movq [rax], mm7 + movq [rax+8], mm7 + movq [rax+16],mm7 + movq [rax+24],mm7 +%endif + movsxd rax, dword ptr arg(2) ;pitch + mov rdx, arg(3) ;dest + movsxd rdi, dword ptr arg(4) ;stride + + + psubw mm0, mm2 ; b1= 0-2 + paddw mm2, mm2 ; + + movq mm5, mm1 + paddw mm2, mm0 ; a1 =0+2 + + pmulhw mm5, [GLOBAL(x_s1sqr2)]; + paddw mm5, mm1 ; ip1 * sin(pi/8) * sqrt(2) + + movq mm7, mm3 ; + pmulhw mm7, [GLOBAL(x_c1sqr2less1)]; + + paddw mm7, mm3 ; ip3 * cos(pi/8) * sqrt(2) + psubw mm7, mm5 ; c1 + + movq mm5, mm1 + movq mm4, mm3 + + pmulhw mm5, [GLOBAL(x_c1sqr2less1)] + paddw mm5, mm1 + + pmulhw mm3, [GLOBAL(x_s1sqr2)] + paddw mm3, mm4 + + paddw mm3, mm5 ; d1 + movq mm6, mm2 ; a1 + + movq mm4, mm0 ; b1 + paddw mm2, mm3 ;0 + + paddw mm4, mm7 ;1 + psubw mm0, mm7 ;2 + + psubw mm6, mm3 ;3 + + movq mm1, mm2 ; 03 02 01 00 + movq mm3, mm4 ; 23 22 21 20 + + punpcklwd mm1, mm0 ; 11 01 10 00 + punpckhwd mm2, mm0 ; 13 03 12 02 + + punpcklwd mm3, mm6 ; 31 21 30 20 + punpckhwd mm4, mm6 ; 33 23 32 22 + + movq mm0, mm1 ; 11 01 10 00 + movq mm5, mm2 ; 13 03 12 02 + + punpckldq mm0, mm3 ; 30 20 10 00 + punpckhdq mm1, mm3 ; 31 21 11 01 + + punpckldq mm2, mm4 ; 32 22 12 02 + punpckhdq mm5, mm4 ; 33 23 13 03 + + movq mm3, mm5 ; 33 23 13 03 + + psubw mm0, mm2 ; b1= 0-2 + paddw mm2, mm2 ; + + movq mm5, mm1 + paddw mm2, mm0 ; a1 =0+2 + + pmulhw mm5, [GLOBAL(x_s1sqr2)]; + paddw mm5, mm1 ; ip1 * sin(pi/8) * sqrt(2) + + movq mm7, mm3 ; + pmulhw mm7, [GLOBAL(x_c1sqr2less1)]; + + paddw mm7, mm3 ; ip3 * cos(pi/8) * sqrt(2) + psubw mm7, mm5 ; c1 + + movq mm5, mm1 + movq mm4, mm3 + + pmulhw mm5, [GLOBAL(x_c1sqr2less1)] + paddw mm5, mm1 + + pmulhw mm3, [GLOBAL(x_s1sqr2)] + paddw mm3, mm4 + + paddw mm3, mm5 ; d1 + paddw mm0, [GLOBAL(fours)] + + paddw mm2, [GLOBAL(fours)] + movq mm6, mm2 ; a1 + + movq mm4, mm0 ; b1 + paddw mm2, mm3 ;0 + + paddw mm4, mm7 ;1 + psubw mm0, mm7 ;2 + + psubw mm6, mm3 ;3 + psraw mm2, 3 + + psraw mm0, 3 + psraw mm4, 3 + + psraw mm6, 3 + + movq mm1, mm2 ; 03 02 01 00 + movq mm3, mm4 ; 23 22 21 20 + + punpcklwd mm1, mm0 ; 11 01 10 00 + punpckhwd mm2, mm0 ; 13 03 12 02 + + punpcklwd mm3, mm6 ; 31 21 30 20 + punpckhwd mm4, mm6 ; 33 23 32 22 + + movq mm0, mm1 ; 11 01 10 00 + movq mm5, mm2 ; 13 03 12 02 + + punpckldq mm0, mm3 ; 30 20 10 00 + punpckhdq mm1, mm3 ; 31 21 11 01 + + punpckldq mm2, mm4 ; 32 22 12 02 + punpckhdq mm5, mm4 ; 33 23 13 03 + + pxor mm7, mm7 + + movd mm4, [rsi] + punpcklbw mm4, mm7 + paddsw mm0, mm4 + packuswb mm0, mm7 + movd [rdx], mm0 + + movd mm4, [rsi+rax] + punpcklbw mm4, mm7 + paddsw mm1, mm4 + packuswb mm1, mm7 + movd [rdx+rdi], mm1 + + movd mm4, [rsi+2*rax] + punpcklbw mm4, mm7 + paddsw mm2, mm4 + packuswb mm2, mm7 + movd [rdx+rdi*2], mm2 + + add rdx, rdi + add rsi, rax + + movd mm4, [rsi+2*rax] + punpcklbw mm4, mm7 + paddsw mm5, mm4 + packuswb mm5, mm7 + movd [rdx+rdi*2], mm5 + + ; begin epilog + pop rdi + pop rsi + RESTORE_GOT + UNSHADOW_ARGS + pop rbp + ret + +;void vp8_dc_only_idct_add_mmx( +;short input_dc, +;unsigned char *pred_ptr, +;int pred_stride, +;unsigned char *dst_ptr, +;int stride) +global sym(vp8_dc_only_idct_add_mmx) PRIVATE +sym(vp8_dc_only_idct_add_mmx): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 5 + GET_GOT rbx + ; end prolog + + movd mm5, arg(0) ;input_dc + mov rax, arg(1) ;pred_ptr + movsxd rdx, dword ptr arg(2) ;pred_stride + + pxor mm0, mm0 + + paddw mm5, [GLOBAL(fours)] + lea rcx, [rdx + rdx*2] + + psraw mm5, 3 + + punpcklwd mm5, mm5 + + punpckldq mm5, mm5 + + movd mm1, [rax] + movd mm2, [rax+rdx] + movd mm3, [rax+2*rdx] + movd mm4, [rax+rcx] + + mov rax, arg(3) ;d -- destination + movsxd rdx, dword ptr arg(4) ;dst_stride + + punpcklbw mm1, mm0 + paddsw mm1, mm5 + packuswb mm1, mm0 ; pack and unpack to saturate + lea rcx, [rdx + rdx*2] + + punpcklbw mm2, mm0 + paddsw mm2, mm5 + packuswb mm2, mm0 ; pack and unpack to saturate + + punpcklbw mm3, mm0 + paddsw mm3, mm5 + packuswb mm3, mm0 ; pack and unpack to saturate + + punpcklbw mm4, mm0 + paddsw mm4, mm5 + packuswb mm4, mm0 ; pack and unpack to saturate + + movd [rax], mm1 + movd [rax+rdx], mm2 + movd [rax+2*rdx], mm3 + movd [rax+rcx], mm4 + + ; begin epilog + RESTORE_GOT + UNSHADOW_ARGS + pop rbp + ret + +SECTION_RODATA +align 16 +x_s1sqr2: + times 4 dw 0x8A8C +align 16 +x_c1sqr2less1: + times 4 dw 0x4E7B +align 16 +fours: + times 4 dw 0x0004 diff --git a/vp8/common/x86/idctllm_sse2.asm b/vp8/common/x86/idctllm_sse2.asm new file mode 100644 index 0000000..560faba --- /dev/null +++ b/vp8/common/x86/idctllm_sse2.asm @@ -0,0 +1,710 @@ +; +; Copyright (c) 2010 The WebM project authors. All Rights Reserved. +; +; Use of this source code is governed by a BSD-style license +; that can be found in the LICENSE file in the root of the source +; tree. An additional intellectual property rights grant can be found +; in the file PATENTS. All contributing project authors may +; be found in the AUTHORS file in the root of the source tree. +; + + +%include "vpx_ports/x86_abi_support.asm" + +;void vp8_idct_dequant_0_2x_sse2 +; ( +; short *qcoeff - 0 +; short *dequant - 1 +; unsigned char *dst - 2 +; int dst_stride - 3 +; ) + +SECTION .text + +global sym(vp8_idct_dequant_0_2x_sse2) PRIVATE +sym(vp8_idct_dequant_0_2x_sse2): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 4 + GET_GOT rbx + ; end prolog + + mov rdx, arg(1) ; dequant + mov rax, arg(0) ; qcoeff + + movd xmm4, [rax] + movd xmm5, [rdx] + + pinsrw xmm4, [rax+32], 4 + pinsrw xmm5, [rdx], 4 + + pmullw xmm4, xmm5 + + ; Zero out xmm5, for use unpacking + pxor xmm5, xmm5 + + ; clear coeffs + movd [rax], xmm5 + movd [rax+32], xmm5 +;pshufb + mov rax, arg(2) ; dst + movsxd rdx, dword ptr arg(3) ; dst_stride + + pshuflw xmm4, xmm4, 00000000b + pshufhw xmm4, xmm4, 00000000b + + lea rcx, [rdx + rdx*2] + paddw xmm4, [GLOBAL(fours)] + + psraw xmm4, 3 + + movq xmm0, [rax] + movq xmm1, [rax+rdx] + movq xmm2, [rax+2*rdx] + movq xmm3, [rax+rcx] + + punpcklbw xmm0, xmm5 + punpcklbw xmm1, xmm5 + punpcklbw xmm2, xmm5 + punpcklbw xmm3, xmm5 + + + ; Add to predict buffer + paddw xmm0, xmm4 + paddw xmm1, xmm4 + paddw xmm2, xmm4 + paddw xmm3, xmm4 + + ; pack up before storing + packuswb xmm0, xmm5 + packuswb xmm1, xmm5 + packuswb xmm2, xmm5 + packuswb xmm3, xmm5 + + ; store blocks back out + movq [rax], xmm0 + movq [rax + rdx], xmm1 + + lea rax, [rax + 2*rdx] + + movq [rax], xmm2 + movq [rax + rdx], xmm3 + + ; begin epilog + RESTORE_GOT + UNSHADOW_ARGS + pop rbp + ret + +;void vp8_idct_dequant_full_2x_sse2 +; ( +; short *qcoeff - 0 +; short *dequant - 1 +; unsigned char *dst - 2 +; int dst_stride - 3 +; ) +global sym(vp8_idct_dequant_full_2x_sse2) PRIVATE +sym(vp8_idct_dequant_full_2x_sse2): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 4 + SAVE_XMM 7 + GET_GOT rbx + push rsi + push rdi + ; end prolog + + ; special case when 2 blocks have 0 or 1 coeffs + ; dc is set as first coeff, so no need to load qcoeff + mov rax, arg(0) ; qcoeff + mov rdx, arg(1) ; dequant + mov rdi, arg(2) ; dst + + + ; Zero out xmm7, for use unpacking + pxor xmm7, xmm7 + + + ; note the transpose of xmm1 and xmm2, necessary for shuffle + ; to spit out sensicle data + movdqa xmm0, [rax] + movdqa xmm2, [rax+16] + movdqa xmm1, [rax+32] + movdqa xmm3, [rax+48] + + ; Clear out coeffs + movdqa [rax], xmm7 + movdqa [rax+16], xmm7 + movdqa [rax+32], xmm7 + movdqa [rax+48], xmm7 + + ; dequantize qcoeff buffer + pmullw xmm0, [rdx] + pmullw xmm2, [rdx+16] + pmullw xmm1, [rdx] + pmullw xmm3, [rdx+16] + movsxd rdx, dword ptr arg(3) ; dst_stride + + ; repack so block 0 row x and block 1 row x are together + movdqa xmm4, xmm0 + punpckldq xmm0, xmm1 + punpckhdq xmm4, xmm1 + + pshufd xmm0, xmm0, 11011000b + pshufd xmm1, xmm4, 11011000b + + movdqa xmm4, xmm2 + punpckldq xmm2, xmm3 + punpckhdq xmm4, xmm3 + + pshufd xmm2, xmm2, 11011000b + pshufd xmm3, xmm4, 11011000b + + ; first pass + psubw xmm0, xmm2 ; b1 = 0-2 + paddw xmm2, xmm2 ; + + movdqa xmm5, xmm1 + paddw xmm2, xmm0 ; a1 = 0+2 + + pmulhw xmm5, [GLOBAL(x_s1sqr2)] + lea rcx, [rdx + rdx*2] ;dst_stride * 3 + paddw xmm5, xmm1 ; ip1 * sin(pi/8) * sqrt(2) + + movdqa xmm7, xmm3 + pmulhw xmm7, [GLOBAL(x_c1sqr2less1)] + + paddw xmm7, xmm3 ; ip3 * cos(pi/8) * sqrt(2) + psubw xmm7, xmm5 ; c1 + + movdqa xmm5, xmm1 + movdqa xmm4, xmm3 + + pmulhw xmm5, [GLOBAL(x_c1sqr2less1)] + paddw xmm5, xmm1 + + pmulhw xmm3, [GLOBAL(x_s1sqr2)] + paddw xmm3, xmm4 + + paddw xmm3, xmm5 ; d1 + movdqa xmm6, xmm2 ; a1 + + movdqa xmm4, xmm0 ; b1 + paddw xmm2, xmm3 ;0 + + paddw xmm4, xmm7 ;1 + psubw xmm0, xmm7 ;2 + + psubw xmm6, xmm3 ;3 + + ; transpose for the second pass + movdqa xmm7, xmm2 ; 103 102 101 100 003 002 001 000 + punpcklwd xmm2, xmm0 ; 007 003 006 002 005 001 004 000 + punpckhwd xmm7, xmm0 ; 107 103 106 102 105 101 104 100 + + movdqa xmm5, xmm4 ; 111 110 109 108 011 010 009 008 + punpcklwd xmm4, xmm6 ; 015 011 014 010 013 009 012 008 + punpckhwd xmm5, xmm6 ; 115 111 114 110 113 109 112 108 + + + movdqa xmm1, xmm2 ; 007 003 006 002 005 001 004 000 + punpckldq xmm2, xmm4 ; 013 009 005 001 012 008 004 000 + punpckhdq xmm1, xmm4 ; 015 011 007 003 014 010 006 002 + + movdqa xmm6, xmm7 ; 107 103 106 102 105 101 104 100 + punpckldq xmm7, xmm5 ; 113 109 105 101 112 108 104 100 + punpckhdq xmm6, xmm5 ; 115 111 107 103 114 110 106 102 + + + movdqa xmm5, xmm2 ; 013 009 005 001 012 008 004 000 + punpckldq xmm2, xmm7 ; 112 108 012 008 104 100 004 000 + punpckhdq xmm5, xmm7 ; 113 109 013 009 105 101 005 001 + + movdqa xmm7, xmm1 ; 015 011 007 003 014 010 006 002 + punpckldq xmm1, xmm6 ; 114 110 014 010 106 102 006 002 + punpckhdq xmm7, xmm6 ; 115 111 015 011 107 103 007 003 + + pshufd xmm0, xmm2, 11011000b + pshufd xmm2, xmm1, 11011000b + + pshufd xmm1, xmm5, 11011000b + pshufd xmm3, xmm7, 11011000b + + ; second pass + psubw xmm0, xmm2 ; b1 = 0-2 + paddw xmm2, xmm2 + + movdqa xmm5, xmm1 + paddw xmm2, xmm0 ; a1 = 0+2 + + pmulhw xmm5, [GLOBAL(x_s1sqr2)] + paddw xmm5, xmm1 ; ip1 * sin(pi/8) * sqrt(2) + + movdqa xmm7, xmm3 + pmulhw xmm7, [GLOBAL(x_c1sqr2less1)] + + paddw xmm7, xmm3 ; ip3 * cos(pi/8) * sqrt(2) + psubw xmm7, xmm5 ; c1 + + movdqa xmm5, xmm1 + movdqa xmm4, xmm3 + + pmulhw xmm5, [GLOBAL(x_c1sqr2less1)] + paddw xmm5, xmm1 + + pmulhw xmm3, [GLOBAL(x_s1sqr2)] + paddw xmm3, xmm4 + + paddw xmm3, xmm5 ; d1 + paddw xmm0, [GLOBAL(fours)] + + paddw xmm2, [GLOBAL(fours)] + movdqa xmm6, xmm2 ; a1 + + movdqa xmm4, xmm0 ; b1 + paddw xmm2, xmm3 ;0 + + paddw xmm4, xmm7 ;1 + psubw xmm0, xmm7 ;2 + + psubw xmm6, xmm3 ;3 + psraw xmm2, 3 + + psraw xmm0, 3 + psraw xmm4, 3 + + psraw xmm6, 3 + + ; transpose to save + movdqa xmm7, xmm2 ; 103 102 101 100 003 002 001 000 + punpcklwd xmm2, xmm0 ; 007 003 006 002 005 001 004 000 + punpckhwd xmm7, xmm0 ; 107 103 106 102 105 101 104 100 + + movdqa xmm5, xmm4 ; 111 110 109 108 011 010 009 008 + punpcklwd xmm4, xmm6 ; 015 011 014 010 013 009 012 008 + punpckhwd xmm5, xmm6 ; 115 111 114 110 113 109 112 108 + + + movdqa xmm1, xmm2 ; 007 003 006 002 005 001 004 000 + punpckldq xmm2, xmm4 ; 013 009 005 001 012 008 004 000 + punpckhdq xmm1, xmm4 ; 015 011 007 003 014 010 006 002 + + movdqa xmm6, xmm7 ; 107 103 106 102 105 101 104 100 + punpckldq xmm7, xmm5 ; 113 109 105 101 112 108 104 100 + punpckhdq xmm6, xmm5 ; 115 111 107 103 114 110 106 102 + + + movdqa xmm5, xmm2 ; 013 009 005 001 012 008 004 000 + punpckldq xmm2, xmm7 ; 112 108 012 008 104 100 004 000 + punpckhdq xmm5, xmm7 ; 113 109 013 009 105 101 005 001 + + movdqa xmm7, xmm1 ; 015 011 007 003 014 010 006 002 + punpckldq xmm1, xmm6 ; 114 110 014 010 106 102 006 002 + punpckhdq xmm7, xmm6 ; 115 111 015 011 107 103 007 003 + + pshufd xmm0, xmm2, 11011000b + pshufd xmm2, xmm1, 11011000b + + pshufd xmm1, xmm5, 11011000b + pshufd xmm3, xmm7, 11011000b + + pxor xmm7, xmm7 + + ; Load up predict blocks + movq xmm4, [rdi] + movq xmm5, [rdi+rdx] + + punpcklbw xmm4, xmm7 + punpcklbw xmm5, xmm7 + + paddw xmm0, xmm4 + paddw xmm1, xmm5 + + movq xmm4, [rdi+2*rdx] + movq xmm5, [rdi+rcx] + + punpcklbw xmm4, xmm7 + punpcklbw xmm5, xmm7 + + paddw xmm2, xmm4 + paddw xmm3, xmm5 + +.finish: + + ; pack up before storing + packuswb xmm0, xmm7 + packuswb xmm1, xmm7 + packuswb xmm2, xmm7 + packuswb xmm3, xmm7 + + ; store blocks back out + movq [rdi], xmm0 + movq [rdi + rdx], xmm1 + movq [rdi + rdx*2], xmm2 + movq [rdi + rcx], xmm3 + + ; begin epilog + pop rdi + pop rsi + RESTORE_GOT + RESTORE_XMM + UNSHADOW_ARGS + pop rbp + ret + +;void vp8_idct_dequant_dc_0_2x_sse2 +; ( +; short *qcoeff - 0 +; short *dequant - 1 +; unsigned char *dst - 2 +; int dst_stride - 3 +; short *dc - 4 +; ) +global sym(vp8_idct_dequant_dc_0_2x_sse2) PRIVATE +sym(vp8_idct_dequant_dc_0_2x_sse2): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 5 + GET_GOT rbx + push rdi + ; end prolog + + ; special case when 2 blocks have 0 or 1 coeffs + ; dc is set as first coeff, so no need to load qcoeff + mov rax, arg(0) ; qcoeff + + mov rdi, arg(2) ; dst + mov rdx, arg(4) ; dc + + ; Zero out xmm5, for use unpacking + pxor xmm5, xmm5 + + ; load up 2 dc words here == 2*16 = doubleword + movd xmm4, [rdx] + + movsxd rdx, dword ptr arg(3) ; dst_stride + lea rcx, [rdx + rdx*2] + ; Load up predict blocks + movq xmm0, [rdi] + movq xmm1, [rdi+rdx*1] + movq xmm2, [rdi+rdx*2] + movq xmm3, [rdi+rcx] + + ; Duplicate and expand dc across + punpcklwd xmm4, xmm4 + punpckldq xmm4, xmm4 + + ; Rounding to dequant and downshift + paddw xmm4, [GLOBAL(fours)] + psraw xmm4, 3 + + ; Predict buffer needs to be expanded from bytes to words + punpcklbw xmm0, xmm5 + punpcklbw xmm1, xmm5 + punpcklbw xmm2, xmm5 + punpcklbw xmm3, xmm5 + + ; Add to predict buffer + paddw xmm0, xmm4 + paddw xmm1, xmm4 + paddw xmm2, xmm4 + paddw xmm3, xmm4 + + ; pack up before storing + packuswb xmm0, xmm5 + packuswb xmm1, xmm5 + packuswb xmm2, xmm5 + packuswb xmm3, xmm5 + + ; store blocks back out + movq [rdi], xmm0 + movq [rdi + rdx], xmm1 + movq [rdi + rdx*2], xmm2 + movq [rdi + rcx], xmm3 + + ; begin epilog + pop rdi + RESTORE_GOT + UNSHADOW_ARGS + pop rbp + ret +;void vp8_idct_dequant_dc_full_2x_sse2 +; ( +; short *qcoeff - 0 +; short *dequant - 1 +; unsigned char *dst - 2 +; int dst_stride - 3 +; short *dc - 4 +; ) +global sym(vp8_idct_dequant_dc_full_2x_sse2) PRIVATE +sym(vp8_idct_dequant_dc_full_2x_sse2): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 5 + SAVE_XMM 7 + GET_GOT rbx + push rdi + ; end prolog + + ; special case when 2 blocks have 0 or 1 coeffs + ; dc is set as first coeff, so no need to load qcoeff + mov rax, arg(0) ; qcoeff + mov rdx, arg(1) ; dequant + + mov rdi, arg(2) ; dst + + ; Zero out xmm7, for use unpacking + pxor xmm7, xmm7 + + + ; note the transpose of xmm1 and xmm2, necessary for shuffle + ; to spit out sensicle data + movdqa xmm0, [rax] + movdqa xmm2, [rax+16] + movdqa xmm1, [rax+32] + movdqa xmm3, [rax+48] + + ; Clear out coeffs + movdqa [rax], xmm7 + movdqa [rax+16], xmm7 + movdqa [rax+32], xmm7 + movdqa [rax+48], xmm7 + + ; dequantize qcoeff buffer + pmullw xmm0, [rdx] + pmullw xmm2, [rdx+16] + pmullw xmm1, [rdx] + pmullw xmm3, [rdx+16] + + ; DC component + mov rdx, arg(4) + + ; repack so block 0 row x and block 1 row x are together + movdqa xmm4, xmm0 + punpckldq xmm0, xmm1 + punpckhdq xmm4, xmm1 + + pshufd xmm0, xmm0, 11011000b + pshufd xmm1, xmm4, 11011000b + + movdqa xmm4, xmm2 + punpckldq xmm2, xmm3 + punpckhdq xmm4, xmm3 + + pshufd xmm2, xmm2, 11011000b + pshufd xmm3, xmm4, 11011000b + + ; insert DC component + pinsrw xmm0, [rdx], 0 + pinsrw xmm0, [rdx+2], 4 + + ; first pass + psubw xmm0, xmm2 ; b1 = 0-2 + paddw xmm2, xmm2 ; + + movdqa xmm5, xmm1 + paddw xmm2, xmm0 ; a1 = 0+2 + + pmulhw xmm5, [GLOBAL(x_s1sqr2)] + paddw xmm5, xmm1 ; ip1 * sin(pi/8) * sqrt(2) + + movdqa xmm7, xmm3 + pmulhw xmm7, [GLOBAL(x_c1sqr2less1)] + + paddw xmm7, xmm3 ; ip3 * cos(pi/8) * sqrt(2) + psubw xmm7, xmm5 ; c1 + + movdqa xmm5, xmm1 + movdqa xmm4, xmm3 + + pmulhw xmm5, [GLOBAL(x_c1sqr2less1)] + paddw xmm5, xmm1 + + pmulhw xmm3, [GLOBAL(x_s1sqr2)] + paddw xmm3, xmm4 + + paddw xmm3, xmm5 ; d1 + movdqa xmm6, xmm2 ; a1 + + movdqa xmm4, xmm0 ; b1 + paddw xmm2, xmm3 ;0 + + paddw xmm4, xmm7 ;1 + psubw xmm0, xmm7 ;2 + + psubw xmm6, xmm3 ;3 + + ; transpose for the second pass + movdqa xmm7, xmm2 ; 103 102 101 100 003 002 001 000 + punpcklwd xmm2, xmm0 ; 007 003 006 002 005 001 004 000 + punpckhwd xmm7, xmm0 ; 107 103 106 102 105 101 104 100 + + movdqa xmm5, xmm4 ; 111 110 109 108 011 010 009 008 + punpcklwd xmm4, xmm6 ; 015 011 014 010 013 009 012 008 + punpckhwd xmm5, xmm6 ; 115 111 114 110 113 109 112 108 + + + movdqa xmm1, xmm2 ; 007 003 006 002 005 001 004 000 + punpckldq xmm2, xmm4 ; 013 009 005 001 012 008 004 000 + punpckhdq xmm1, xmm4 ; 015 011 007 003 014 010 006 002 + + movdqa xmm6, xmm7 ; 107 103 106 102 105 101 104 100 + punpckldq xmm7, xmm5 ; 113 109 105 101 112 108 104 100 + punpckhdq xmm6, xmm5 ; 115 111 107 103 114 110 106 102 + + + movdqa xmm5, xmm2 ; 013 009 005 001 012 008 004 000 + punpckldq xmm2, xmm7 ; 112 108 012 008 104 100 004 000 + punpckhdq xmm5, xmm7 ; 113 109 013 009 105 101 005 001 + + movdqa xmm7, xmm1 ; 015 011 007 003 014 010 006 002 + punpckldq xmm1, xmm6 ; 114 110 014 010 106 102 006 002 + punpckhdq xmm7, xmm6 ; 115 111 015 011 107 103 007 003 + + pshufd xmm0, xmm2, 11011000b + pshufd xmm2, xmm1, 11011000b + + pshufd xmm1, xmm5, 11011000b + pshufd xmm3, xmm7, 11011000b + + ; second pass + psubw xmm0, xmm2 ; b1 = 0-2 + paddw xmm2, xmm2 + + movdqa xmm5, xmm1 + paddw xmm2, xmm0 ; a1 = 0+2 + + pmulhw xmm5, [GLOBAL(x_s1sqr2)] + paddw xmm5, xmm1 ; ip1 * sin(pi/8) * sqrt(2) + + movdqa xmm7, xmm3 + pmulhw xmm7, [GLOBAL(x_c1sqr2less1)] + + paddw xmm7, xmm3 ; ip3 * cos(pi/8) * sqrt(2) + psubw xmm7, xmm5 ; c1 + + movdqa xmm5, xmm1 + movdqa xmm4, xmm3 + + pmulhw xmm5, [GLOBAL(x_c1sqr2less1)] + paddw xmm5, xmm1 + + pmulhw xmm3, [GLOBAL(x_s1sqr2)] + paddw xmm3, xmm4 + + paddw xmm3, xmm5 ; d1 + paddw xmm0, [GLOBAL(fours)] + + paddw xmm2, [GLOBAL(fours)] + movdqa xmm6, xmm2 ; a1 + + movdqa xmm4, xmm0 ; b1 + paddw xmm2, xmm3 ;0 + + paddw xmm4, xmm7 ;1 + psubw xmm0, xmm7 ;2 + + psubw xmm6, xmm3 ;3 + psraw xmm2, 3 + + psraw xmm0, 3 + psraw xmm4, 3 + + psraw xmm6, 3 + + ; transpose to save + movdqa xmm7, xmm2 ; 103 102 101 100 003 002 001 000 + punpcklwd xmm2, xmm0 ; 007 003 006 002 005 001 004 000 + punpckhwd xmm7, xmm0 ; 107 103 106 102 105 101 104 100 + + movdqa xmm5, xmm4 ; 111 110 109 108 011 010 009 008 + punpcklwd xmm4, xmm6 ; 015 011 014 010 013 009 012 008 + punpckhwd xmm5, xmm6 ; 115 111 114 110 113 109 112 108 + + + movdqa xmm1, xmm2 ; 007 003 006 002 005 001 004 000 + punpckldq xmm2, xmm4 ; 013 009 005 001 012 008 004 000 + punpckhdq xmm1, xmm4 ; 015 011 007 003 014 010 006 002 + + movdqa xmm6, xmm7 ; 107 103 106 102 105 101 104 100 + punpckldq xmm7, xmm5 ; 113 109 105 101 112 108 104 100 + punpckhdq xmm6, xmm5 ; 115 111 107 103 114 110 106 102 + + + movdqa xmm5, xmm2 ; 013 009 005 001 012 008 004 000 + punpckldq xmm2, xmm7 ; 112 108 012 008 104 100 004 000 + punpckhdq xmm5, xmm7 ; 113 109 013 009 105 101 005 001 + + movdqa xmm7, xmm1 ; 015 011 007 003 014 010 006 002 + punpckldq xmm1, xmm6 ; 114 110 014 010 106 102 006 002 + punpckhdq xmm7, xmm6 ; 115 111 015 011 107 103 007 003 + + pshufd xmm0, xmm2, 11011000b + pshufd xmm2, xmm1, 11011000b + + pshufd xmm1, xmm5, 11011000b + pshufd xmm3, xmm7, 11011000b + + pxor xmm7, xmm7 + + ; Load up predict blocks + movsxd rdx, dword ptr arg(3) ; dst_stride + movq xmm4, [rdi] + movq xmm5, [rdi+rdx] + lea rcx, [rdx + rdx*2] + + punpcklbw xmm4, xmm7 + punpcklbw xmm5, xmm7 + + paddw xmm0, xmm4 + paddw xmm1, xmm5 + + movq xmm4, [rdi+rdx*2] + movq xmm5, [rdi+rcx] + + punpcklbw xmm4, xmm7 + punpcklbw xmm5, xmm7 + + paddw xmm2, xmm4 + paddw xmm3, xmm5 + +.finish: + + ; pack up before storing + packuswb xmm0, xmm7 + packuswb xmm1, xmm7 + packuswb xmm2, xmm7 + packuswb xmm3, xmm7 + + ; Load destination stride before writing out, + ; doesn't need to persist + movsxd rdx, dword ptr arg(3) ; dst_stride + + ; store blocks back out + movq [rdi], xmm0 + movq [rdi + rdx], xmm1 + + lea rdi, [rdi + 2*rdx] + + movq [rdi], xmm2 + movq [rdi + rdx], xmm3 + + + ; begin epilog + pop rdi + RESTORE_GOT + RESTORE_XMM + UNSHADOW_ARGS + pop rbp + ret + +SECTION_RODATA +align 16 +fours: + times 8 dw 0x0004 +align 16 +x_s1sqr2: + times 8 dw 0x8A8C +align 16 +x_c1sqr2less1: + times 8 dw 0x4E7B diff --git a/vp8/common/x86/iwalsh_sse2.asm b/vp8/common/x86/iwalsh_sse2.asm new file mode 100644 index 0000000..82d7bf9 --- /dev/null +++ b/vp8/common/x86/iwalsh_sse2.asm @@ -0,0 +1,123 @@ +; +; Copyright (c) 2010 The WebM project authors. All Rights Reserved. +; +; Use of this source code is governed by a BSD-style license +; that can be found in the LICENSE file in the root of the source +; tree. An additional intellectual property rights grant can be found +; in the file PATENTS. All contributing project authors may +; be found in the AUTHORS file in the root of the source tree. +; + + +%include "vpx_ports/x86_abi_support.asm" + +SECTION .text + +;void vp8_short_inv_walsh4x4_sse2(short *input, short *output) +global sym(vp8_short_inv_walsh4x4_sse2) PRIVATE +sym(vp8_short_inv_walsh4x4_sse2): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 2 + ; end prolog + + mov rcx, arg(0) + mov rdx, arg(1) + mov rax, 30003h + + movdqa xmm0, [rcx + 0] ;ip[4] ip[0] + movdqa xmm1, [rcx + 16] ;ip[12] ip[8] + + + pshufd xmm2, xmm1, 4eh ;ip[8] ip[12] + movdqa xmm3, xmm0 ;ip[4] ip[0] + + paddw xmm0, xmm2 ;ip[4]+ip[8] ip[0]+ip[12] aka b1 a1 + psubw xmm3, xmm2 ;ip[4]-ip[8] ip[0]-ip[12] aka c1 d1 + + movdqa xmm4, xmm0 + punpcklqdq xmm0, xmm3 ;d1 a1 + punpckhqdq xmm4, xmm3 ;c1 b1 + + movdqa xmm1, xmm4 ;c1 b1 + paddw xmm4, xmm0 ;dl+cl a1+b1 aka op[4] op[0] + psubw xmm0, xmm1 ;d1-c1 a1-b1 aka op[12] op[8] + + ;~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + ; 13 12 11 10 03 02 01 00 + ; + ; 33 32 31 30 23 22 21 20 + ; + movdqa xmm3, xmm4 ; 13 12 11 10 03 02 01 00 + punpcklwd xmm4, xmm0 ; 23 03 22 02 21 01 20 00 + punpckhwd xmm3, xmm0 ; 33 13 32 12 31 11 30 10 + movdqa xmm1, xmm4 ; 23 03 22 02 21 01 20 00 + punpcklwd xmm4, xmm3 ; 31 21 11 01 30 20 10 00 + punpckhwd xmm1, xmm3 ; 33 23 13 03 32 22 12 02 + ;~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + movd xmm0, eax + pshufd xmm2, xmm1, 4eh ;ip[8] ip[12] + movdqa xmm3, xmm4 ;ip[4] ip[0] + + pshufd xmm0, xmm0, 0 ;03 03 03 03 03 03 03 03 + + paddw xmm4, xmm2 ;ip[4]+ip[8] ip[0]+ip[12] aka b1 a1 + psubw xmm3, xmm2 ;ip[4]-ip[8] ip[0]-ip[12] aka c1 d1 + + movdqa xmm5, xmm4 + punpcklqdq xmm4, xmm3 ;d1 a1 + punpckhqdq xmm5, xmm3 ;c1 b1 + + movdqa xmm1, xmm5 ;c1 b1 + paddw xmm5, xmm4 ;dl+cl a1+b1 aka op[4] op[0] + psubw xmm4, xmm1 ;d1-c1 a1-b1 aka op[12] op[8] + + paddw xmm5, xmm0 + paddw xmm4, xmm0 + psraw xmm5, 3 + psraw xmm4, 3 + + movd eax, xmm5 + movd ecx, xmm4 + psrldq xmm5, 4 + psrldq xmm4, 4 + mov word ptr[rdx+32*0], ax + mov word ptr[rdx+32*2], cx + shr eax, 16 + shr ecx, 16 + mov word ptr[rdx+32*4], ax + mov word ptr[rdx+32*6], cx + movd eax, xmm5 + movd ecx, xmm4 + psrldq xmm5, 4 + psrldq xmm4, 4 + mov word ptr[rdx+32*8], ax + mov word ptr[rdx+32*10], cx + shr eax, 16 + shr ecx, 16 + mov word ptr[rdx+32*12], ax + mov word ptr[rdx+32*14], cx + + movd eax, xmm5 + movd ecx, xmm4 + psrldq xmm5, 4 + psrldq xmm4, 4 + mov word ptr[rdx+32*1], ax + mov word ptr[rdx+32*3], cx + shr eax, 16 + shr ecx, 16 + mov word ptr[rdx+32*5], ax + mov word ptr[rdx+32*7], cx + movd eax, xmm5 + movd ecx, xmm4 + mov word ptr[rdx+32*9], ax + mov word ptr[rdx+32*11], cx + shr eax, 16 + shr ecx, 16 + mov word ptr[rdx+32*13], ax + mov word ptr[rdx+32*15], cx + + ; begin epilog + UNSHADOW_ARGS + pop rbp + ret diff --git a/vp8/common/x86/loopfilter_block_sse2_x86_64.asm b/vp8/common/x86/loopfilter_block_sse2_x86_64.asm new file mode 100644 index 0000000..6a3d052 --- /dev/null +++ b/vp8/common/x86/loopfilter_block_sse2_x86_64.asm @@ -0,0 +1,817 @@ +; +; Copyright (c) 2010 The WebM project authors. All Rights Reserved. +; +; Use of this source code is governed by a BSD-style license +; that can be found in the LICENSE file in the root of the source +; tree. An additional intellectual property rights grant can be found +; in the file PATENTS. All contributing project authors may +; be found in the AUTHORS file in the root of the source tree. +; + + +%include "vpx_ports/x86_abi_support.asm" + +%macro LF_ABS 2 + ; %1 value not preserved + ; %2 value preserved + ; output in %1 + movdqa scratch1, %2 ; v2 + + psubusb scratch1, %1 ; v2 - v1 + psubusb %1, %2 ; v1 - v2 + por %1, scratch1 ; abs(v2 - v1) +%endmacro + +%macro LF_FILTER_HEV_MASK 8-9 + + LF_ABS %1, %2 ; abs(p3 - p2) + LF_ABS %2, %3 ; abs(p2 - p1) + pmaxub %1, %2 ; accumulate mask +%if %0 == 8 + movdqa scratch2, %3 ; save p1 + LF_ABS scratch2, %4 ; abs(p1 - p0) +%endif + LF_ABS %4, %5 ; abs(p0 - q0) + LF_ABS %5, %6 ; abs(q0 - q1) +%if %0 == 8 + pmaxub %5, scratch2 ; accumulate hev +%else + pmaxub %5, %9 +%endif + pmaxub %1, %5 ; accumulate mask + + LF_ABS %3, %6 ; abs(p1 - q1) + LF_ABS %6, %7 ; abs(q1 - q2) + pmaxub %1, %6 ; accumulate mask + LF_ABS %7, %8 ; abs(q2 - q3) + pmaxub %1, %7 ; accumulate mask + + paddusb %4, %4 ; 2 * abs(p0 - q0) + pand %3, [GLOBAL(tfe)] + psrlw %3, 1 ; abs(p1 - q1) / 2 + paddusb %4, %3 ; abs(p0 - q0) * 2 + abs(p1 - q1) / 2 + + psubusb %1, [limit] + psubusb %4, [blimit] + por %1, %4 + pcmpeqb %1, zero ; mask + + psubusb %5, [thresh] + pcmpeqb %5, zero ; ~hev +%endmacro + +%macro LF_FILTER 6 + ; %1-%4: p1-q1 + ; %5: mask + ; %6: hev + + movdqa scratch2, %6 ; save hev + + pxor %1, [GLOBAL(t80)] ; ps1 + pxor %4, [GLOBAL(t80)] ; qs1 + movdqa scratch1, %1 + psubsb scratch1, %4 ; signed_char_clamp(ps1 - qs1) + pandn scratch2, scratch1 ; vp8_filter &= hev + + pxor %2, [GLOBAL(t80)] ; ps0 + pxor %3, [GLOBAL(t80)] ; qs0 + movdqa scratch1, %3 + psubsb scratch1, %2 ; qs0 - ps0 + paddsb scratch2, scratch1 ; vp8_filter += (qs0 - ps0) + paddsb scratch2, scratch1 ; vp8_filter += (qs0 - ps0) + paddsb scratch2, scratch1 ; vp8_filter += (qs0 - ps0) + pand %5, scratch2 ; &= mask + + movdqa scratch2, %5 + paddsb %5, [GLOBAL(t4)] ; Filter1 + paddsb scratch2, [GLOBAL(t3)] ; Filter2 + + ; Filter1 >> 3 + movdqa scratch1, zero + pcmpgtb scratch1, %5 + psrlw %5, 3 + pand scratch1, [GLOBAL(te0)] + pand %5, [GLOBAL(t1f)] + por %5, scratch1 + + psubsb %3, %5 ; qs0 - Filter1 + pxor %3, [GLOBAL(t80)] + + ; Filter2 >> 3 + movdqa scratch1, zero + pcmpgtb scratch1, scratch2 + psrlw scratch2, 3 + pand scratch1, [GLOBAL(te0)] + pand scratch2, [GLOBAL(t1f)] + por scratch2, scratch1 + + paddsb %2, scratch2 ; ps0 + Filter2 + pxor %2, [GLOBAL(t80)] + + ; outer tap adjustments + paddsb %5, [GLOBAL(t1)] + movdqa scratch1, zero + pcmpgtb scratch1, %5 + psrlw %5, 1 + pand scratch1, [GLOBAL(t80)] + pand %5, [GLOBAL(t7f)] + por %5, scratch1 + pand %5, %6 ; vp8_filter &= ~hev + + psubsb %4, %5 ; qs1 - vp8_filter + pxor %4, [GLOBAL(t80)] + + paddsb %1, %5 ; ps1 + vp8_filter + pxor %1, [GLOBAL(t80)] +%endmacro + +SECTION .text + +;void vp8_loop_filter_bh_y_sse2 +;( +; unsigned char *src_ptr, +; int src_pixel_step, +; const char *blimit, +; const char *limit, +; const char *thresh +;) +global sym(vp8_loop_filter_bh_y_sse2) PRIVATE +sym(vp8_loop_filter_bh_y_sse2): + +%if LIBVPX_YASM_WIN64 + %define src rcx ; src_ptr + %define stride rdx ; src_pixel_step + %define blimit r8 + %define limit r9 + %define thresh r10 + + %define spp rax + %define stride3 r11 + %define stride5 r12 + %define stride7 r13 + + push rbp + mov rbp, rsp + SAVE_XMM 11 + push r12 + push r13 + mov thresh, arg(4) +%else + %define src rdi ; src_ptr + %define stride rsi ; src_pixel_step + %define blimit rdx + %define limit rcx + %define thresh r8 + + %define spp rax + %define stride3 r9 + %define stride5 r10 + %define stride7 r11 +%endif + + %define scratch1 xmm5 + %define scratch2 xmm6 + %define zero xmm7 + + %define i0 [src] + %define i1 [spp] + %define i2 [src + 2 * stride] + %define i3 [spp + 2 * stride] + %define i4 [src + 4 * stride] + %define i5 [spp + 4 * stride] + %define i6 [src + 2 * stride3] + %define i7 [spp + 2 * stride3] + %define i8 [src + 8 * stride] + %define i9 [spp + 8 * stride] + %define i10 [src + 2 * stride5] + %define i11 [spp + 2 * stride5] + %define i12 [src + 4 * stride3] + %define i13 [spp + 4 * stride3] + %define i14 [src + 2 * stride7] + %define i15 [spp + 2 * stride7] + + ; prep work + lea spp, [src + stride] + lea stride3, [stride + 2 * stride] + lea stride5, [stride3 + 2 * stride] + lea stride7, [stride3 + 4 * stride] + pxor zero, zero + + ; load the first set into registers + movdqa xmm0, i0 + movdqa xmm1, i1 + movdqa xmm2, i2 + movdqa xmm3, i3 + movdqa xmm4, i4 + movdqa xmm8, i5 + movdqa xmm9, i6 ; q2, will contain abs(p1-p0) + movdqa xmm10, i7 +LF_FILTER_HEV_MASK xmm0, xmm1, xmm2, xmm3, xmm4, xmm8, xmm9, xmm10 + + movdqa xmm1, i2 + movdqa xmm2, i3 + movdqa xmm3, i4 + movdqa xmm8, i5 +LF_FILTER xmm1, xmm2, xmm3, xmm8, xmm0, xmm4 + movdqa i2, xmm1 + movdqa i3, xmm2 + +; second set + movdqa i4, xmm3 + movdqa i5, xmm8 + + movdqa xmm0, i6 + movdqa xmm1, i7 + movdqa xmm2, i8 + movdqa xmm4, i9 + movdqa xmm10, i10 ; q2, will contain abs(p1-p0) + movdqa xmm11, i11 +LF_FILTER_HEV_MASK xmm3, xmm8, xmm0, xmm1, xmm2, xmm4, xmm10, xmm11, xmm9 + + movdqa xmm0, i6 + movdqa xmm1, i7 + movdqa xmm4, i8 + movdqa xmm8, i9 +LF_FILTER xmm0, xmm1, xmm4, xmm8, xmm3, xmm2 + movdqa i6, xmm0 + movdqa i7, xmm1 + +; last set + movdqa i8, xmm4 + movdqa i9, xmm8 + + movdqa xmm0, i10 + movdqa xmm1, i11 + movdqa xmm2, i12 + movdqa xmm3, i13 + movdqa xmm9, i14 ; q2, will contain abs(p1-p0) + movdqa xmm11, i15 +LF_FILTER_HEV_MASK xmm4, xmm8, xmm0, xmm1, xmm2, xmm3, xmm9, xmm11, xmm10 + + movdqa xmm0, i10 + movdqa xmm1, i11 + movdqa xmm3, i12 + movdqa xmm8, i13 +LF_FILTER xmm0, xmm1, xmm3, xmm8, xmm4, xmm2 + movdqa i10, xmm0 + movdqa i11, xmm1 + movdqa i12, xmm3 + movdqa i13, xmm8 + +%if LIBVPX_YASM_WIN64 + pop r13 + pop r12 + RESTORE_XMM + pop rbp +%endif + + ret + + +;void vp8_loop_filter_bv_y_sse2 +;( +; unsigned char *src_ptr, +; int src_pixel_step, +; const char *blimit, +; const char *limit, +; const char *thresh +;) + +global sym(vp8_loop_filter_bv_y_sse2) PRIVATE +sym(vp8_loop_filter_bv_y_sse2): + +%if LIBVPX_YASM_WIN64 + %define src rcx ; src_ptr + %define stride rdx ; src_pixel_step + %define blimit r8 + %define limit r9 + %define thresh r10 + + %define spp rax + %define stride3 r11 + %define stride5 r12 + %define stride7 r13 + + push rbp + mov rbp, rsp + SAVE_XMM 15 + push r12 + push r13 + mov thresh, arg(4) +%else + %define src rdi + %define stride rsi + %define blimit rdx + %define limit rcx + %define thresh r8 + + %define spp rax + %define stride3 r9 + %define stride5 r10 + %define stride7 r11 +%endif + + %define scratch1 xmm5 + %define scratch2 xmm6 + %define zero xmm7 + + %define s0 [src] + %define s1 [spp] + %define s2 [src + 2 * stride] + %define s3 [spp + 2 * stride] + %define s4 [src + 4 * stride] + %define s5 [spp + 4 * stride] + %define s6 [src + 2 * stride3] + %define s7 [spp + 2 * stride3] + %define s8 [src + 8 * stride] + %define s9 [spp + 8 * stride] + %define s10 [src + 2 * stride5] + %define s11 [spp + 2 * stride5] + %define s12 [src + 4 * stride3] + %define s13 [spp + 4 * stride3] + %define s14 [src + 2 * stride7] + %define s15 [spp + 2 * stride7] + + %define i0 [rsp] + %define i1 [rsp + 16] + %define i2 [rsp + 32] + %define i3 [rsp + 48] + %define i4 [rsp + 64] + %define i5 [rsp + 80] + %define i6 [rsp + 96] + %define i7 [rsp + 112] + %define i8 [rsp + 128] + %define i9 [rsp + 144] + %define i10 [rsp + 160] + %define i11 [rsp + 176] + %define i12 [rsp + 192] + %define i13 [rsp + 208] + %define i14 [rsp + 224] + %define i15 [rsp + 240] + + ALIGN_STACK 16, rax + + ; reserve stack space + %define temp_storage 0 ; size is 256 (16*16) + %define stack_size 256 + sub rsp, stack_size + + ; prep work + lea spp, [src + stride] + lea stride3, [stride + 2 * stride] + lea stride5, [stride3 + 2 * stride] + lea stride7, [stride3 + 4 * stride] + + ; 8-f + movdqa xmm0, s8 + movdqa xmm1, xmm0 + punpcklbw xmm0, s9 ; 80 90 + punpckhbw xmm1, s9 ; 88 98 + + movdqa xmm2, s10 + movdqa xmm3, xmm2 + punpcklbw xmm2, s11 ; a0 b0 + punpckhbw xmm3, s11 ; a8 b8 + + movdqa xmm4, xmm0 + punpcklwd xmm0, xmm2 ; 80 90 a0 b0 + punpckhwd xmm4, xmm2 ; 84 94 a4 b4 + + movdqa xmm2, xmm1 + punpcklwd xmm1, xmm3 ; 88 98 a8 b8 + punpckhwd xmm2, xmm3 ; 8c 9c ac bc + + ; using xmm[0124] + ; work on next 4 rows + + movdqa xmm3, s12 + movdqa xmm5, xmm3 + punpcklbw xmm3, s13 ; c0 d0 + punpckhbw xmm5, s13 ; c8 d8 + + movdqa xmm6, s14 + movdqa xmm7, xmm6 + punpcklbw xmm6, s15 ; e0 f0 + punpckhbw xmm7, s15 ; e8 f8 + + movdqa xmm8, xmm3 + punpcklwd xmm3, xmm6 ; c0 d0 e0 f0 + punpckhwd xmm8, xmm6 ; c4 d4 e4 f4 + + movdqa xmm6, xmm5 + punpcklwd xmm5, xmm7 ; c8 d8 e8 f8 + punpckhwd xmm6, xmm7 ; cc dc ec fc + + ; pull the third and fourth sets together + + movdqa xmm7, xmm0 + punpckldq xmm0, xmm3 ; 80 90 a0 b0 c0 d0 e0 f0 + punpckhdq xmm7, xmm3 ; 82 92 a2 b2 c2 d2 e2 f2 + + movdqa xmm3, xmm4 + punpckldq xmm4, xmm8 ; 84 94 a4 b4 c4 d4 e4 f4 + punpckhdq xmm3, xmm8 ; 86 96 a6 b6 c6 d6 e6 f6 + + movdqa xmm8, xmm1 + punpckldq xmm1, xmm5 ; 88 88 a8 b8 c8 d8 e8 f8 + punpckhdq xmm8, xmm5 ; 8a 9a aa ba ca da ea fa + + movdqa xmm5, xmm2 + punpckldq xmm2, xmm6 ; 8c 9c ac bc cc dc ec fc + punpckhdq xmm5, xmm6 ; 8e 9e ae be ce de ee fe + + ; save the calculations. we only have 15 registers ... + movdqa i0, xmm0 + movdqa i1, xmm7 + movdqa i2, xmm4 + movdqa i3, xmm3 + movdqa i4, xmm1 + movdqa i5, xmm8 + movdqa i6, xmm2 + movdqa i7, xmm5 + + ; 0-7 + movdqa xmm0, s0 + movdqa xmm1, xmm0 + punpcklbw xmm0, s1 ; 00 10 + punpckhbw xmm1, s1 ; 08 18 + + movdqa xmm2, s2 + movdqa xmm3, xmm2 + punpcklbw xmm2, s3 ; 20 30 + punpckhbw xmm3, s3 ; 28 38 + + movdqa xmm4, xmm0 + punpcklwd xmm0, xmm2 ; 00 10 20 30 + punpckhwd xmm4, xmm2 ; 04 14 24 34 + + movdqa xmm2, xmm1 + punpcklwd xmm1, xmm3 ; 08 18 28 38 + punpckhwd xmm2, xmm3 ; 0c 1c 2c 3c + + ; using xmm[0124] + ; work on next 4 rows + + movdqa xmm3, s4 + movdqa xmm5, xmm3 + punpcklbw xmm3, s5 ; 40 50 + punpckhbw xmm5, s5 ; 48 58 + + movdqa xmm6, s6 + movdqa xmm7, xmm6 + punpcklbw xmm6, s7 ; 60 70 + punpckhbw xmm7, s7 ; 68 78 + + movdqa xmm8, xmm3 + punpcklwd xmm3, xmm6 ; 40 50 60 70 + punpckhwd xmm8, xmm6 ; 44 54 64 74 + + movdqa xmm6, xmm5 + punpcklwd xmm5, xmm7 ; 48 58 68 78 + punpckhwd xmm6, xmm7 ; 4c 5c 6c 7c + + ; pull the first two sets together + + movdqa xmm7, xmm0 + punpckldq xmm0, xmm3 ; 00 10 20 30 40 50 60 70 + punpckhdq xmm7, xmm3 ; 02 12 22 32 42 52 62 72 + + movdqa xmm3, xmm4 + punpckldq xmm4, xmm8 ; 04 14 24 34 44 54 64 74 + punpckhdq xmm3, xmm8 ; 06 16 26 36 46 56 66 76 + + movdqa xmm8, xmm1 + punpckldq xmm1, xmm5 ; 08 18 28 38 48 58 68 78 + punpckhdq xmm8, xmm5 ; 0a 1a 2a 3a 4a 5a 6a 7a + + movdqa xmm5, xmm2 + punpckldq xmm2, xmm6 ; 0c 1c 2c 3c 4c 5c 6c 7c + punpckhdq xmm5, xmm6 ; 0e 1e 2e 3e 4e 5e 6e 7e + ; final combination + + movdqa xmm6, xmm0 + punpcklqdq xmm0, i0 + punpckhqdq xmm6, i0 + + movdqa xmm9, xmm7 + punpcklqdq xmm7, i1 + punpckhqdq xmm9, i1 + + movdqa xmm10, xmm4 + punpcklqdq xmm4, i2 + punpckhqdq xmm10, i2 + + movdqa xmm11, xmm3 + punpcklqdq xmm3, i3 + punpckhqdq xmm11, i3 + + movdqa xmm12, xmm1 + punpcklqdq xmm1, i4 + punpckhqdq xmm12, i4 + + movdqa xmm13, xmm8 + punpcklqdq xmm8, i5 + punpckhqdq xmm13, i5 + + movdqa xmm14, xmm2 + punpcklqdq xmm2, i6 + punpckhqdq xmm14, i6 + + movdqa xmm15, xmm5 + punpcklqdq xmm5, i7 + punpckhqdq xmm15, i7 + + movdqa i0, xmm0 + movdqa i1, xmm6 + movdqa i2, xmm7 + movdqa i3, xmm9 + movdqa i4, xmm4 + movdqa i5, xmm10 + movdqa i6, xmm3 + movdqa i7, xmm11 + movdqa i8, xmm1 + movdqa i9, xmm12 + movdqa i10, xmm8 + movdqa i11, xmm13 + movdqa i12, xmm2 + movdqa i13, xmm14 + movdqa i14, xmm5 + movdqa i15, xmm15 + +; TRANSPOSED DATA AVAILABLE ON THE STACK + + movdqa xmm12, xmm6 + movdqa xmm13, xmm7 + + pxor zero, zero + +LF_FILTER_HEV_MASK xmm0, xmm12, xmm13, xmm9, xmm4, xmm10, xmm3, xmm11 + + movdqa xmm1, i2 + movdqa xmm2, i3 + movdqa xmm8, i4 + movdqa xmm9, i5 +LF_FILTER xmm1, xmm2, xmm8, xmm9, xmm0, xmm4 + movdqa i2, xmm1 + movdqa i3, xmm2 + +; second set + movdqa i4, xmm8 + movdqa i5, xmm9 + + movdqa xmm0, i6 + movdqa xmm1, i7 + movdqa xmm2, i8 + movdqa xmm4, i9 + movdqa xmm10, i10 ; q2, will contain abs(p1-p0) + movdqa xmm11, i11 +LF_FILTER_HEV_MASK xmm8, xmm9, xmm0, xmm1, xmm2, xmm4, xmm10, xmm11, xmm3 + + movdqa xmm0, i6 + movdqa xmm1, i7 + movdqa xmm3, i8 + movdqa xmm4, i9 +LF_FILTER xmm0, xmm1, xmm3, xmm4, xmm8, xmm2 + movdqa i6, xmm0 + movdqa i7, xmm1 + +; last set + movdqa i8, xmm3 + movdqa i9, xmm4 + + movdqa xmm0, i10 + movdqa xmm1, i11 + movdqa xmm2, i12 + movdqa xmm8, i13 + movdqa xmm9, i14 ; q2, will contain abs(p1-p0) + movdqa xmm11, i15 +LF_FILTER_HEV_MASK xmm3, xmm4, xmm0, xmm1, xmm2, xmm8, xmm9, xmm11, xmm10 + + movdqa xmm0, i10 + movdqa xmm1, i11 + movdqa xmm4, i12 + movdqa xmm8, i13 +LF_FILTER xmm0, xmm1, xmm4, xmm8, xmm3, xmm2 + movdqa i10, xmm0 + movdqa i11, xmm1 + movdqa i12, xmm4 + movdqa i13, xmm8 + + +; RESHUFFLE AND WRITE OUT + ; 8-f + movdqa xmm0, i8 + movdqa xmm1, xmm0 + punpcklbw xmm0, i9 ; 80 90 + punpckhbw xmm1, i9 ; 88 98 + + movdqa xmm2, i10 + movdqa xmm3, xmm2 + punpcklbw xmm2, i11 ; a0 b0 + punpckhbw xmm3, i11 ; a8 b8 + + movdqa xmm4, xmm0 + punpcklwd xmm0, xmm2 ; 80 90 a0 b0 + punpckhwd xmm4, xmm2 ; 84 94 a4 b4 + + movdqa xmm2, xmm1 + punpcklwd xmm1, xmm3 ; 88 98 a8 b8 + punpckhwd xmm2, xmm3 ; 8c 9c ac bc + + ; using xmm[0124] + ; work on next 4 rows + + movdqa xmm3, i12 + movdqa xmm5, xmm3 + punpcklbw xmm3, i13 ; c0 d0 + punpckhbw xmm5, i13 ; c8 d8 + + movdqa xmm6, i14 + movdqa xmm7, xmm6 + punpcklbw xmm6, i15 ; e0 f0 + punpckhbw xmm7, i15 ; e8 f8 + + movdqa xmm8, xmm3 + punpcklwd xmm3, xmm6 ; c0 d0 e0 f0 + punpckhwd xmm8, xmm6 ; c4 d4 e4 f4 + + movdqa xmm6, xmm5 + punpcklwd xmm5, xmm7 ; c8 d8 e8 f8 + punpckhwd xmm6, xmm7 ; cc dc ec fc + + ; pull the third and fourth sets together + + movdqa xmm7, xmm0 + punpckldq xmm0, xmm3 ; 80 90 a0 b0 c0 d0 e0 f0 + punpckhdq xmm7, xmm3 ; 82 92 a2 b2 c2 d2 e2 f2 + + movdqa xmm3, xmm4 + punpckldq xmm4, xmm8 ; 84 94 a4 b4 c4 d4 e4 f4 + punpckhdq xmm3, xmm8 ; 86 96 a6 b6 c6 d6 e6 f6 + + movdqa xmm8, xmm1 + punpckldq xmm1, xmm5 ; 88 88 a8 b8 c8 d8 e8 f8 + punpckhdq xmm8, xmm5 ; 8a 9a aa ba ca da ea fa + + movdqa xmm5, xmm2 + punpckldq xmm2, xmm6 ; 8c 9c ac bc cc dc ec fc + punpckhdq xmm5, xmm6 ; 8e 9e ae be ce de ee fe + + ; save the calculations. we only have 15 registers ... + movdqa i8, xmm0 + movdqa i9, xmm7 + movdqa i10, xmm4 + movdqa i11, xmm3 + movdqa i12, xmm1 + movdqa i13, xmm8 + movdqa i14, xmm2 + movdqa i15, xmm5 + + ; 0-7 + movdqa xmm0, i0 + movdqa xmm1, xmm0 + punpcklbw xmm0, i1 ; 00 10 + punpckhbw xmm1, i1 ; 08 18 + + movdqa xmm2, i2 + movdqa xmm3, xmm2 + punpcklbw xmm2, i3 ; 20 30 + punpckhbw xmm3, i3 ; 28 38 + + movdqa xmm4, xmm0 + punpcklwd xmm0, xmm2 ; 00 10 20 30 + punpckhwd xmm4, xmm2 ; 04 14 24 34 + + movdqa xmm2, xmm1 + punpcklwd xmm1, xmm3 ; 08 18 28 38 + punpckhwd xmm2, xmm3 ; 0c 1c 2c 3c + + ; using xmm[0124] + ; work on next 4 rows + + movdqa xmm3, i4 + movdqa xmm5, xmm3 + punpcklbw xmm3, i5 ; 40 50 + punpckhbw xmm5, i5 ; 48 58 + + movdqa xmm6, i6 + movdqa xmm7, xmm6 + punpcklbw xmm6, i7 ; 60 70 + punpckhbw xmm7, i7 ; 68 78 + + movdqa xmm8, xmm3 + punpcklwd xmm3, xmm6 ; 40 50 60 70 + punpckhwd xmm8, xmm6 ; 44 54 64 74 + + movdqa xmm6, xmm5 + punpcklwd xmm5, xmm7 ; 48 58 68 78 + punpckhwd xmm6, xmm7 ; 4c 5c 6c 7c + + ; pull the first two sets together + + movdqa xmm7, xmm0 + punpckldq xmm0, xmm3 ; 00 10 20 30 40 50 60 70 + punpckhdq xmm7, xmm3 ; 02 12 22 32 42 52 62 72 + + movdqa xmm3, xmm4 + punpckldq xmm4, xmm8 ; 04 14 24 34 44 54 64 74 + punpckhdq xmm3, xmm8 ; 06 16 26 36 46 56 66 76 + + movdqa xmm8, xmm1 + punpckldq xmm1, xmm5 ; 08 18 28 38 48 58 68 78 + punpckhdq xmm8, xmm5 ; 0a 1a 2a 3a 4a 5a 6a 7a + + movdqa xmm5, xmm2 + punpckldq xmm2, xmm6 ; 0c 1c 2c 3c 4c 5c 6c 7c + punpckhdq xmm5, xmm6 ; 0e 1e 2e 3e 4e 5e 6e 7e + ; final combination + + movdqa xmm6, xmm0 + punpcklqdq xmm0, i8 + punpckhqdq xmm6, i8 + + movdqa xmm9, xmm7 + punpcklqdq xmm7, i9 + punpckhqdq xmm9, i9 + + movdqa xmm10, xmm4 + punpcklqdq xmm4, i10 + punpckhqdq xmm10, i10 + + movdqa xmm11, xmm3 + punpcklqdq xmm3, i11 + punpckhqdq xmm11, i11 + + movdqa xmm12, xmm1 + punpcklqdq xmm1, i12 + punpckhqdq xmm12, i12 + + movdqa xmm13, xmm8 + punpcklqdq xmm8, i13 + punpckhqdq xmm13, i13 + + movdqa xmm14, xmm2 + punpcklqdq xmm2, i14 + punpckhqdq xmm14, i14 + + movdqa xmm15, xmm5 + punpcklqdq xmm5, i15 + punpckhqdq xmm15, i15 + + movdqa s0, xmm0 + movdqa s1, xmm6 + movdqa s2, xmm7 + movdqa s3, xmm9 + movdqa s4, xmm4 + movdqa s5, xmm10 + movdqa s6, xmm3 + movdqa s7, xmm11 + movdqa s8, xmm1 + movdqa s9, xmm12 + movdqa s10, xmm8 + movdqa s11, xmm13 + movdqa s12, xmm2 + movdqa s13, xmm14 + movdqa s14, xmm5 + movdqa s15, xmm15 + + ; free stack space + add rsp, stack_size + + ; un-ALIGN_STACK + pop rsp + +%if LIBVPX_YASM_WIN64 + pop r13 + pop r12 + RESTORE_XMM + pop rbp +%endif + + ret + +SECTION_RODATA +align 16 +te0: + times 16 db 0xe0 +align 16 +t7f: + times 16 db 0x7f +align 16 +tfe: + times 16 db 0xfe +align 16 +t1f: + times 16 db 0x1f +align 16 +t80: + times 16 db 0x80 +align 16 +t1: + times 16 db 0x01 +align 16 +t3: + times 16 db 0x03 +align 16 +t4: + times 16 db 0x04 diff --git a/vp8/common/x86/loopfilter_sse2.asm b/vp8/common/x86/loopfilter_sse2.asm new file mode 100644 index 0000000..2ae028f --- /dev/null +++ b/vp8/common/x86/loopfilter_sse2.asm @@ -0,0 +1,1642 @@ +; +; Copyright (c) 2010 The WebM project authors. All Rights Reserved. +; +; Use of this source code is governed by a BSD-style license +; that can be found in the LICENSE file in the root of the source +; tree. An additional intellectual property rights grant can be found +; in the file PATENTS. All contributing project authors may +; be found in the AUTHORS file in the root of the source tree. +; + + +%include "vpx_ports/x86_abi_support.asm" +%define _t0 0 +%define _t1 _t0 + 16 +%define _p3 _t1 + 16 +%define _p2 _p3 + 16 +%define _p1 _p2 + 16 +%define _p0 _p1 + 16 +%define _q0 _p0 + 16 +%define _q1 _q0 + 16 +%define _q2 _q1 + 16 +%define _q3 _q2 + 16 +%define lf_var_size 160 + +; Use of pmaxub instead of psubusb to compute filter mask was seen +; in ffvp8 + +%macro LFH_FILTER_AND_HEV_MASK 1 +%if %1 + movdqa xmm2, [rdi+2*rax] ; q3 + movdqa xmm1, [rsi+2*rax] ; q2 + movdqa xmm4, [rsi+rax] ; q1 + movdqa xmm5, [rsi] ; q0 + neg rax ; negate pitch to deal with above border +%else + movlps xmm2, [rsi + rcx*2] ; q3 + movlps xmm1, [rsi + rcx] ; q2 + movlps xmm4, [rsi] ; q1 + movlps xmm5, [rsi + rax] ; q0 + + movhps xmm2, [rdi + rcx*2] + movhps xmm1, [rdi + rcx] + movhps xmm4, [rdi] + movhps xmm5, [rdi + rax] + + lea rsi, [rsi + rax*4] + lea rdi, [rdi + rax*4] + + movdqa [rsp+_q2], xmm1 ; store q2 + movdqa [rsp+_q1], xmm4 ; store q1 +%endif + movdqa xmm7, [rdx] ;limit + + movdqa xmm6, xmm1 ; q2 + movdqa xmm3, xmm4 ; q1 + + psubusb xmm1, xmm2 ; q2-=q3 + psubusb xmm2, xmm6 ; q3-=q2 + + psubusb xmm4, xmm6 ; q1-=q2 + psubusb xmm6, xmm3 ; q2-=q1 + + por xmm4, xmm6 ; abs(q2-q1) + por xmm1, xmm2 ; abs(q3-q2) + + movdqa xmm0, xmm5 ; q0 + pmaxub xmm1, xmm4 + + psubusb xmm5, xmm3 ; q0-=q1 + psubusb xmm3, xmm0 ; q1-=q0 + + por xmm5, xmm3 ; abs(q0-q1) + movdqa [rsp+_t0], xmm5 ; save to t0 + + pmaxub xmm1, xmm5 + +%if %1 + movdqa xmm2, [rsi+4*rax] ; p3 + movdqa xmm4, [rdi+4*rax] ; p2 + movdqa xmm6, [rsi+2*rax] ; p1 +%else + movlps xmm2, [rsi + rax] ; p3 + movlps xmm4, [rsi] ; p2 + movlps xmm6, [rsi + rcx] ; p1 + + movhps xmm2, [rdi + rax] + movhps xmm4, [rdi] + movhps xmm6, [rdi + rcx] + + movdqa [rsp+_p2], xmm4 ; store p2 + movdqa [rsp+_p1], xmm6 ; store p1 +%endif + + movdqa xmm5, xmm4 ; p2 + movdqa xmm3, xmm6 ; p1 + + psubusb xmm4, xmm2 ; p2-=p3 + psubusb xmm2, xmm5 ; p3-=p2 + + psubusb xmm3, xmm5 ; p1-=p2 + pmaxub xmm1, xmm4 ; abs(p3 - p2) + + psubusb xmm5, xmm6 ; p2-=p1 + pmaxub xmm1, xmm2 ; abs(p3 - p2) + + pmaxub xmm1, xmm5 ; abs(p2 - p1) + movdqa xmm2, xmm6 ; p1 + + pmaxub xmm1, xmm3 ; abs(p2 - p1) +%if %1 + movdqa xmm4, [rsi+rax] ; p0 + movdqa xmm3, [rdi] ; q1 +%else + movlps xmm4, [rsi + rcx*2] ; p0 + movhps xmm4, [rdi + rcx*2] + movdqa xmm3, [rsp+_q1] ; q1 +%endif + + movdqa xmm5, xmm4 ; p0 + psubusb xmm4, xmm6 ; p0-=p1 + + psubusb xmm6, xmm5 ; p1-=p0 + + por xmm6, xmm4 ; abs(p1 - p0) + mov rdx, arg(2) ; get blimit + + movdqa [rsp+_t1], xmm6 ; save to t1 + + movdqa xmm4, xmm3 ; q1 + pmaxub xmm1, xmm6 + + psubusb xmm3, xmm2 ; q1-=p1 + psubusb xmm2, xmm4 ; p1-=q1 + + psubusb xmm1, xmm7 + por xmm2, xmm3 ; abs(p1-q1) + + movdqa xmm7, [rdx] ; blimit + mov rdx, arg(4) ; hev get thresh + + movdqa xmm3, xmm0 ; q0 + pand xmm2, [GLOBAL(tfe)] ; set lsb of each byte to zero + + movdqa xmm6, xmm5 ; p0 + psrlw xmm2, 1 ; abs(p1-q1)/2 + + psubusb xmm5, xmm3 ; p0-=q0 + psubusb xmm3, xmm6 ; q0-=p0 + por xmm5, xmm3 ; abs(p0 - q0) + + paddusb xmm5, xmm5 ; abs(p0-q0)*2 + + movdqa xmm4, [rsp+_t0] ; hev get abs (q1 - q0) + movdqa xmm3, [rsp+_t1] ; get abs (p1 - p0) + + paddusb xmm5, xmm2 ; abs (p0 - q0) *2 + abs(p1-q1)/2 + + movdqa xmm2, [rdx] ; hev + + psubusb xmm5, xmm7 ; abs (p0 - q0) *2 + abs(p1-q1)/2 > blimit + psubusb xmm4, xmm2 ; hev + + psubusb xmm3, xmm2 ; hev + por xmm1, xmm5 + + pxor xmm7, xmm7 + paddb xmm4, xmm3 ; hev abs(q1 - q0) > thresh || abs(p1 - p0) > thresh + + pcmpeqb xmm4, xmm5 ; hev + pcmpeqb xmm3, xmm3 ; hev + + pcmpeqb xmm1, xmm7 ; mask xmm1 + pxor xmm4, xmm3 ; hev +%endmacro + +%macro B_FILTER 1 + movdqa xmm3, [GLOBAL(t80)] +%if %1 == 0 + movdqa xmm2, [rsp+_p1] ; p1 + movdqa xmm7, [rsp+_q1] ; q1 +%elif %1 == 1 + movdqa xmm2, [rsi+2*rax] ; p1 + movdqa xmm7, [rdi] ; q1 +%elif %1 == 2 + movdqa xmm2, [rsp+_p1] ; p1 + movdqa xmm6, [rsp+_p0] ; p0 + movdqa xmm0, [rsp+_q0] ; q0 + movdqa xmm7, [rsp+_q1] ; q1 +%endif + + pxor xmm2, xmm3 ; p1 offset to convert to signed values + pxor xmm7, xmm3 ; q1 offset to convert to signed values + + psubsb xmm2, xmm7 ; p1 - q1 + pxor xmm6, xmm3 ; offset to convert to signed values + + pand xmm2, xmm4 ; high var mask (hvm)(p1 - q1) + pxor xmm0, xmm3 ; offset to convert to signed values + + movdqa xmm3, xmm0 ; q0 + psubsb xmm0, xmm6 ; q0 - p0 + paddsb xmm2, xmm0 ; 1 * (q0 - p0) + hvm(p1 - q1) + paddsb xmm2, xmm0 ; 2 * (q0 - p0) + hvm(p1 - q1) + paddsb xmm2, xmm0 ; 3 * (q0 - p0) + hvm(p1 - q1) + pand xmm1, xmm2 ; mask filter values we don't care about + + movdqa xmm2, xmm1 + paddsb xmm1, [GLOBAL(t4)] ; 3* (q0 - p0) + hvm(p1 - q1) + 4 + paddsb xmm2, [GLOBAL(t3)] ; 3* (q0 - p0) + hvm(p1 - q1) + 3 + + punpckhbw xmm5, xmm2 ; axbxcxdx + punpcklbw xmm2, xmm2 ; exfxgxhx + + punpcklbw xmm0, xmm1 ; exfxgxhx + psraw xmm5, 11 ; sign extended shift right by 3 + + punpckhbw xmm1, xmm1 ; axbxcxdx + psraw xmm2, 11 ; sign extended shift right by 3 + + packsswb xmm2, xmm5 ; (3* (q0 - p0) + hvm(p1 - q1) + 3) >> 3; + psraw xmm0, 11 ; sign extended shift right by 3 + + psraw xmm1, 11 ; sign extended shift right by 3 + movdqa xmm5, xmm0 ; save results + + packsswb xmm0, xmm1 ; (3* (q0 - p0) + hvm(p1 - q1) + 4) >>3 + + paddsb xmm6, xmm2 ; p0+= p0 add + + movdqa xmm2, [GLOBAL(ones)] + paddsw xmm5, xmm2 + paddsw xmm1, xmm2 + psraw xmm5, 1 ; partial shifted one more time for 2nd tap + psraw xmm1, 1 ; partial shifted one more time for 2nd tap + packsswb xmm5, xmm1 ; (3* (q0 - p0) + hvm(p1 - q1) + 4) >>4 + movdqa xmm2, [GLOBAL(t80)] + +%if %1 == 0 + movdqa xmm1, [rsp+_p1] ; p1 + lea rsi, [rsi + rcx*2] + lea rdi, [rdi + rcx*2] +%elif %1 == 1 + movdqa xmm1, [rsi+2*rax] ; p1 +%elif %1 == 2 + movdqa xmm1, [rsp+_p1] ; p1 +%endif + + pandn xmm4, xmm5 ; high edge variance additive + pxor xmm6, xmm2 ; unoffset + + pxor xmm1, xmm2 ; reoffset + psubsb xmm3, xmm0 ; q0-= q0 add + + paddsb xmm1, xmm4 ; p1+= p1 add + pxor xmm3, xmm2 ; unoffset + + pxor xmm1, xmm2 ; unoffset + psubsb xmm7, xmm4 ; q1-= q1 add + + pxor xmm7, xmm2 ; unoffset +%if %1 == 0 + movq [rsi], xmm6 ; p0 + movhps [rdi], xmm6 + movq [rsi + rax], xmm1 ; p1 + movhps [rdi + rax], xmm1 + movq [rsi + rcx], xmm3 ; q0 + movhps [rdi + rcx], xmm3 + movq [rsi + rcx*2], xmm7 ; q1 + movhps [rdi + rcx*2], xmm7 +%elif %1 == 1 + movdqa [rsi+rax], xmm6 ; write back + movdqa [rsi+2*rax], xmm1 ; write back + movdqa [rsi], xmm3 ; write back + movdqa [rdi], xmm7 ; write back +%endif + +%endmacro + +SECTION .text + +%if ABI_IS_32BIT + +;void vp8_loop_filter_horizontal_edge_sse2 +;( +; unsigned char *src_ptr, +; int src_pixel_step, +; const char *blimit, +; const char *limit, +; const char *thresh, +;) +global sym(vp8_loop_filter_horizontal_edge_sse2) PRIVATE +sym(vp8_loop_filter_horizontal_edge_sse2): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 5 + SAVE_XMM 7 + GET_GOT rbx + push rsi + push rdi + ; end prolog + + ALIGN_STACK 16, rax + sub rsp, lf_var_size + + mov rsi, arg(0) ;src_ptr + movsxd rax, dword ptr arg(1) ;src_pixel_step + + mov rdx, arg(3) ;limit + + lea rdi, [rsi+rax] ; rdi points to row +1 for indirect addressing + + ; calculate breakout conditions and high edge variance + LFH_FILTER_AND_HEV_MASK 1 + ; filter and write back the result + B_FILTER 1 + + add rsp, lf_var_size + pop rsp + ; begin epilog + pop rdi + pop rsi + RESTORE_GOT + RESTORE_XMM + UNSHADOW_ARGS + pop rbp + ret + +%endif + +;void vp8_loop_filter_horizontal_edge_uv_sse2 +;( +; unsigned char *src_ptr, +; int src_pixel_step, +; const char *blimit, +; const char *limit, +; const char *thresh, +; int count +;) +global sym(vp8_loop_filter_horizontal_edge_uv_sse2) PRIVATE +sym(vp8_loop_filter_horizontal_edge_uv_sse2): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 6 + SAVE_XMM 7 + GET_GOT rbx + push rsi + push rdi + ; end prolog + + ALIGN_STACK 16, rax + sub rsp, lf_var_size + + mov rsi, arg(0) ; u + mov rdi, arg(5) ; v + movsxd rax, dword ptr arg(1) ; src_pixel_step + mov rcx, rax + neg rax ; negate pitch to deal with above border + + mov rdx, arg(3) ;limit + + lea rsi, [rsi + rcx] + lea rdi, [rdi + rcx] + + ; calculate breakout conditions and high edge variance + LFH_FILTER_AND_HEV_MASK 0 + ; filter and write back the result + B_FILTER 0 + + add rsp, lf_var_size + pop rsp + ; begin epilog + pop rdi + pop rsi + RESTORE_GOT + RESTORE_XMM + UNSHADOW_ARGS + pop rbp + ret + + +%macro MB_FILTER_AND_WRITEBACK 1 + movdqa xmm3, [GLOBAL(t80)] +%if %1 == 0 + movdqa xmm2, [rsp+_p1] ; p1 + movdqa xmm7, [rsp+_q1] ; q1 +%elif %1 == 1 + movdqa xmm2, [rsi+2*rax] ; p1 + movdqa xmm7, [rdi] ; q1 + + mov rcx, rax + neg rcx +%elif %1 == 2 + movdqa xmm2, [rsp+_p1] ; p1 + movdqa xmm6, [rsp+_p0] ; p0 + movdqa xmm0, [rsp+_q0] ; q0 + movdqa xmm7, [rsp+_q1] ; q1 +%endif + + pxor xmm2, xmm3 ; p1 offset to convert to signed values + pxor xmm7, xmm3 ; q1 offset to convert to signed values + pxor xmm6, xmm3 ; offset to convert to signed values + pxor xmm0, xmm3 ; offset to convert to signed values + + psubsb xmm2, xmm7 ; p1 - q1 + + movdqa xmm3, xmm0 ; q0 + psubsb xmm0, xmm6 ; q0 - p0 + paddsb xmm2, xmm0 ; 1 * (q0 - p0) + (p1 - q1) + paddsb xmm2, xmm0 ; 2 * (q0 - p0) + paddsb xmm2, xmm0 ; 3 * (q0 - p0) + (p1 - q1) + pand xmm1, xmm2 ; mask filter values we don't care about + + movdqa xmm2, xmm1 ; vp8_filter + + pand xmm2, xmm4 ; Filter2 = vp8_filter & hev + pxor xmm0, xmm0 + + pandn xmm4, xmm1 ; vp8_filter&=~hev + pxor xmm1, xmm1 + + punpcklbw xmm0, xmm4 ; Filter 2 (hi) + punpckhbw xmm1, xmm4 ; Filter 2 (lo) + + movdqa xmm5, xmm2 + + movdqa xmm4, [GLOBAL(s9)] + paddsb xmm5, [GLOBAL(t3)] ; vp8_signed_char_clamp(Filter2 + 3) + paddsb xmm2, [GLOBAL(t4)] ; vp8_signed_char_clamp(Filter2 + 4) + + pmulhw xmm1, xmm4 ; Filter 2 (lo) * 9 + pmulhw xmm0, xmm4 ; Filter 2 (hi) * 9 + + punpckhbw xmm7, xmm5 ; axbxcxdx + punpcklbw xmm5, xmm5 ; exfxgxhx + + psraw xmm7, 11 ; sign extended shift right by 3 + + psraw xmm5, 11 ; sign extended shift right by 3 + punpckhbw xmm4, xmm2 ; axbxcxdx + + punpcklbw xmm2, xmm2 ; exfxgxhx + psraw xmm4, 11 ; sign extended shift right by 3 + + packsswb xmm5, xmm7 ; Filter2 >>=3; + psraw xmm2, 11 ; sign extended shift right by 3 + + packsswb xmm2, xmm4 ; Filter1 >>=3; + + paddsb xmm6, xmm5 ; ps0 =ps0 + Fitler2 + + psubsb xmm3, xmm2 ; qs0 =qs0 - Filter1 + movdqa xmm7, xmm1 + + movdqa xmm4, [GLOBAL(s63)] + movdqa xmm5, xmm0 + movdqa xmm2, xmm5 + paddw xmm0, xmm4 ; Filter 2 (hi) * 9 + 63 + paddw xmm1, xmm4 ; Filter 2 (lo) * 9 + 63 + movdqa xmm4, xmm7 + + paddw xmm5, xmm5 ; Filter 2 (hi) * 18 + + paddw xmm7, xmm7 ; Filter 2 (lo) * 18 + paddw xmm5, xmm0 ; Filter 2 (hi) * 27 + 63 + + paddw xmm7, xmm1 ; Filter 2 (lo) * 27 + 63 + paddw xmm2, xmm0 ; Filter 2 (hi) * 18 + 63 + psraw xmm0, 7 ; (Filter 2 (hi) * 9 + 63) >> 7 + + paddw xmm4, xmm1 ; Filter 2 (lo) * 18 + 63 + psraw xmm1, 7 ; (Filter 2 (lo) * 9 + 63) >> 7 + psraw xmm2, 7 ; (Filter 2 (hi) * 18 + 63) >> 7 + + packsswb xmm0, xmm1 ; u1 = vp8_signed_char_clamp((63 + Filter2 * 9)>>7) + + psraw xmm4, 7 ; (Filter 2 (lo) * 18 + 63) >> 7 + psraw xmm5, 7 ; (Filter 2 (hi) * 27 + 63) >> 7 + psraw xmm7, 7 ; (Filter 2 (lo) * 27 + 63) >> 7 + + packsswb xmm5, xmm7 ; u3 = vp8_signed_char_clamp((63 + Filter2 * 27)>>7) + packsswb xmm2, xmm4 ; u2 = vp8_signed_char_clamp((63 + Filter2 * 18)>>7) + movdqa xmm7, [GLOBAL(t80)] + +%if %1 == 0 + movdqa xmm1, [rsp+_q1] ; q1 + movdqa xmm4, [rsp+_p1] ; p1 + lea rsi, [rsi+rcx*2] + lea rdi, [rdi+rcx*2] + +%elif %1 == 1 + movdqa xmm1, [rdi] ; q1 + movdqa xmm4, [rsi+rax*2] ; p1 +%elif %1 == 2 + movdqa xmm4, [rsp+_p1] ; p1 + movdqa xmm1, [rsp+_q1] ; q1 +%endif + + pxor xmm1, xmm7 + pxor xmm4, xmm7 + + psubsb xmm3, xmm5 ; sq = vp8_signed_char_clamp(qs0 - u3) + paddsb xmm6, xmm5 ; sp = vp8_signed_char_clamp(ps0 - u3) + psubsb xmm1, xmm2 ; sq = vp8_signed_char_clamp(qs1 - u2) + paddsb xmm4, xmm2 ; sp = vp8_signed_char_clamp(ps1 - u2) + +%if %1 == 1 + movdqa xmm2, [rdi+rax*4] ; p2 + movdqa xmm5, [rdi+rcx] ; q2 +%else + movdqa xmm2, [rsp+_p2] ; p2 + movdqa xmm5, [rsp+_q2] ; q2 +%endif + + pxor xmm1, xmm7 ; *oq1 = sq^0x80; + pxor xmm4, xmm7 ; *op1 = sp^0x80; + pxor xmm2, xmm7 + pxor xmm5, xmm7 + paddsb xmm2, xmm0 ; sp = vp8_signed_char_clamp(ps2 - u) + psubsb xmm5, xmm0 ; sq = vp8_signed_char_clamp(qs2 - u) + pxor xmm2, xmm7 ; *op2 = sp^0x80; + pxor xmm5, xmm7 ; *oq2 = sq^0x80; + pxor xmm3, xmm7 ; *oq0 = sq^0x80 + pxor xmm6, xmm7 ; *oq0 = sp^0x80 +%if %1 == 0 + movq [rsi], xmm6 ; p0 + movhps [rdi], xmm6 + movq [rsi + rcx], xmm3 ; q0 + movhps [rdi + rcx], xmm3 + lea rdx, [rcx + rcx*2] + movq [rsi+rcx*2], xmm1 ; q1 + movhps [rdi+rcx*2], xmm1 + + movq [rsi + rax], xmm4 ; p1 + movhps [rdi + rax], xmm4 + + movq [rsi+rax*2], xmm2 ; p2 + movhps [rdi+rax*2], xmm2 + + movq [rsi+rdx], xmm5 ; q2 + movhps [rdi+rdx], xmm5 +%elif %1 == 1 + movdqa [rdi+rcx], xmm5 ; q2 + movdqa [rdi], xmm1 ; q1 + movdqa [rsi], xmm3 ; q0 + movdqa [rsi+rax ], xmm6 ; p0 + movdqa [rsi+rax*2], xmm4 ; p1 + movdqa [rdi+rax*4], xmm2 ; p2 +%elif %1 == 2 + movdqa [rsp+_p1], xmm4 ; p1 + movdqa [rsp+_p0], xmm6 ; p0 + movdqa [rsp+_q0], xmm3 ; q0 + movdqa [rsp+_q1], xmm1 ; q1 +%endif + +%endmacro + + +;void vp8_mbloop_filter_horizontal_edge_sse2 +;( +; unsigned char *src_ptr, +; int src_pixel_step, +; const char *blimit, +; const char *limit, +; const char *thresh, +;) +global sym(vp8_mbloop_filter_horizontal_edge_sse2) PRIVATE +sym(vp8_mbloop_filter_horizontal_edge_sse2): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 5 + SAVE_XMM 7 + GET_GOT rbx + push rsi + push rdi + ; end prolog + + ALIGN_STACK 16, rax + sub rsp, lf_var_size + + mov rsi, arg(0) ;src_ptr + movsxd rax, dword ptr arg(1) ;src_pixel_step + mov rdx, arg(3) ;limit + + lea rdi, [rsi+rax] ; rdi points to row +1 for indirect addressing + + ; calculate breakout conditions and high edge variance + LFH_FILTER_AND_HEV_MASK 1 + ; filter and write back the results + MB_FILTER_AND_WRITEBACK 1 + + add rsp, lf_var_size + pop rsp + ; begin epilog + pop rdi + pop rsi + RESTORE_GOT + RESTORE_XMM + UNSHADOW_ARGS + pop rbp + ret + + +;void vp8_mbloop_filter_horizontal_edge_uv_sse2 +;( +; unsigned char *u, +; int src_pixel_step, +; const char *blimit, +; const char *limit, +; const char *thresh, +; unsigned char *v +;) +global sym(vp8_mbloop_filter_horizontal_edge_uv_sse2) PRIVATE +sym(vp8_mbloop_filter_horizontal_edge_uv_sse2): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 6 + SAVE_XMM 7 + GET_GOT rbx + push rsi + push rdi + ; end prolog + + ALIGN_STACK 16, rax + sub rsp, lf_var_size + + mov rsi, arg(0) ; u + mov rdi, arg(5) ; v + movsxd rax, dword ptr arg(1) ; src_pixel_step + mov rcx, rax + neg rax ; negate pitch to deal with above border + mov rdx, arg(3) ;limit + + lea rsi, [rsi + rcx] + lea rdi, [rdi + rcx] + + ; calculate breakout conditions and high edge variance + LFH_FILTER_AND_HEV_MASK 0 + ; filter and write back the results + MB_FILTER_AND_WRITEBACK 0 + + add rsp, lf_var_size + pop rsp + ; begin epilog + pop rdi + pop rsi + RESTORE_GOT + RESTORE_XMM + UNSHADOW_ARGS + pop rbp + ret + + +%macro TRANSPOSE_16X8 2 + movq xmm4, [rsi] ; xx xx xx xx xx xx xx xx 07 06 05 04 03 02 01 00 + movq xmm1, [rdi] ; xx xx xx xx xx xx xx xx 17 16 15 14 13 12 11 10 + movq xmm0, [rsi+2*rax] ; xx xx xx xx xx xx xx xx 27 26 25 24 23 22 21 20 + movq xmm7, [rdi+2*rax] ; xx xx xx xx xx xx xx xx 37 36 35 34 33 32 31 30 + movq xmm5, [rsi+4*rax] ; xx xx xx xx xx xx xx xx 47 46 45 44 43 42 41 40 + movq xmm2, [rdi+4*rax] ; xx xx xx xx xx xx xx xx 57 56 55 54 53 52 51 50 + + punpcklbw xmm4, xmm1 ; 17 07 16 06 15 05 14 04 13 03 12 02 11 01 10 00 + + movq xmm1, [rdi+2*rcx] ; xx xx xx xx xx xx xx xx 77 76 75 74 73 72 71 70 + + movdqa xmm3, xmm4 ; 17 07 16 06 15 05 14 04 13 03 12 02 11 01 10 00 + punpcklbw xmm0, xmm7 ; 37 27 36 36 35 25 34 24 33 23 32 22 31 21 30 20 + + movq xmm7, [rsi+2*rcx] ; xx xx xx xx xx xx xx xx 67 66 65 64 63 62 61 60 + + punpcklbw xmm5, xmm2 ; 57 47 56 46 55 45 54 44 53 43 52 42 51 41 50 40 +%if %1 + lea rsi, [rsi+rax*8] + lea rdi, [rdi+rax*8] +%else + mov rsi, arg(5) ; v_ptr +%endif + + movdqa xmm6, xmm5 ; 57 47 56 46 55 45 54 44 53 43 52 42 51 41 50 40 + punpcklbw xmm7, xmm1 ; 77 67 76 66 75 65 74 64 73 63 72 62 71 61 70 60 + punpcklwd xmm5, xmm7 ; 73 63 53 43 72 62 52 42 71 61 51 41 70 60 50 40 + punpckhwd xmm6, xmm7 ; 77 67 57 47 76 66 56 46 75 65 55 45 74 64 54 44 + punpcklwd xmm3, xmm0 ; 33 23 13 03 32 22 12 02 31 21 11 01 30 20 10 00 + +%if %1 == 0 + lea rdi, [rsi + rax - 4] ; rdi points to row +1 for indirect addressing + lea rsi, [rsi - 4] +%endif + + movdqa xmm2, xmm3 ; 33 23 13 03 32 22 12 02 31 21 11 01 30 20 10 00 + punpckhwd xmm4, xmm0 ; 37 27 17 07 36 26 16 06 35 25 15 05 34 24 14 04 + + movdqa xmm7, xmm4 ; 37 27 17 07 36 26 16 06 35 25 15 05 34 24 14 04 + punpckhdq xmm3, xmm5 ; 73 63 53 43 33 23 13 03 72 62 52 42 32 22 12 02 + + punpckhdq xmm7, xmm6 ; 77 67 57 47 37 27 17 07 76 66 56 46 36 26 16 06 + + punpckldq xmm4, xmm6 ; 75 65 55 45 35 25 15 05 74 64 54 44 34 24 14 04 + + punpckldq xmm2, xmm5 ; 71 61 51 41 31 21 11 01 70 60 50 40 30 20 10 00 + + movdqa [rsp+_t0], xmm2 ; save to free XMM2 + + movq xmm2, [rsi] ; xx xx xx xx xx xx xx xx 87 86 85 84 83 82 81 80 + movq xmm6, [rdi] ; xx xx xx xx xx xx xx xx 97 96 95 94 93 92 91 90 + movq xmm0, [rsi+2*rax] ; xx xx xx xx xx xx xx xx a7 a6 a5 a4 a3 a2 a1 a0 + movq xmm5, [rdi+2*rax] ; xx xx xx xx xx xx xx xx b7 b6 b5 b4 b3 b2 b1 b0 + movq xmm1, [rsi+4*rax] ; xx xx xx xx xx xx xx xx c7 c6 c5 c4 c3 c2 c1 c0 + + punpcklbw xmm2, xmm6 ; 97 87 96 86 95 85 94 84 93 83 92 82 91 81 90 80 + + movq xmm6, [rdi+4*rax] ; xx xx xx xx xx xx xx xx d7 d6 d5 d4 d3 d2 d1 d0 + + punpcklbw xmm0, xmm5 ; b7 a7 b6 a6 b5 a5 b4 a4 b3 a3 b2 a2 b1 a1 b0 a0 + + movq xmm5, [rsi+2*rcx] ; xx xx xx xx xx xx xx xx e7 e6 e5 e4 e3 e2 e1 e0 + + punpcklbw xmm1, xmm6 ; d7 c7 d6 c6 d5 c5 d4 c4 d3 c3 d2 c2 d1 e1 d0 c0 + + movq xmm6, [rdi+2*rcx] ; xx xx xx xx xx xx xx xx f7 f6 f5 f4 f3 f2 f1 f0 + + punpcklbw xmm5, xmm6 ; f7 e7 f6 e6 f5 e5 f4 e4 f3 e3 f2 e2 f1 e1 f0 e0 + + movdqa xmm6, xmm1 ; + punpckhwd xmm6, xmm5 ; f7 e7 d7 c7 f6 e6 d6 c6 f5 e5 d5 c5 f4 e4 d4 c4 + + punpcklwd xmm1, xmm5 ; f3 e3 d3 c3 f2 e2 d2 c2 f1 e1 d1 c1 f0 e0 d0 c0 + movdqa xmm5, xmm2 ; 97 87 96 86 95 85 94 84 93 83 92 82 91 81 90 80 + + punpcklwd xmm5, xmm0 ; b3 a3 93 83 b2 a2 92 82 b1 a1 91 81 b0 a0 90 80 + + punpckhwd xmm2, xmm0 ; b7 a7 97 87 b6 a6 96 86 b5 a5 95 85 b4 a4 94 84 + + movdqa xmm0, xmm5 + punpckldq xmm0, xmm1 ; f1 e1 d1 c1 b1 a1 91 81 f0 e0 d0 c0 b0 a0 90 80 + + punpckhdq xmm5, xmm1 ; f3 e3 d3 c3 b3 a3 93 83 f2 e2 d2 c2 b2 a2 92 82 + movdqa xmm1, xmm2 ; b7 a7 97 87 b6 a6 96 86 b5 a5 95 85 b4 a4 94 84 + + punpckldq xmm1, xmm6 ; f5 e5 d5 c5 b5 a5 95 85 f4 e4 d4 c4 b4 a4 94 84 + + punpckhdq xmm2, xmm6 ; f7 e7 d7 c7 b7 a7 97 87 f6 e6 d6 c6 b6 a6 96 86 + movdqa xmm6, xmm7 ; 77 67 57 47 37 27 17 07 76 66 56 46 36 26 16 06 + + punpcklqdq xmm6, xmm2 ; f6 e6 d6 c6 b6 a6 96 86 76 66 56 46 36 26 16 06 + + punpckhqdq xmm7, xmm2 ; f7 e7 d7 c7 b7 a7 97 87 77 67 57 47 37 27 17 07 + +%if %2 == 0 + movdqa [rsp+_q3], xmm7 ; save 7 + movdqa [rsp+_q2], xmm6 ; save 6 +%endif + movdqa xmm2, xmm3 ; 73 63 53 43 33 23 13 03 72 62 52 42 32 22 12 02 + punpckhqdq xmm3, xmm5 ; f3 e3 d3 c3 b3 a3 93 83 73 63 53 43 33 23 13 03 + punpcklqdq xmm2, xmm5 ; f2 e2 d2 c2 b2 a2 92 82 72 62 52 42 32 22 12 02 + movdqa [rsp+_p1], xmm2 ; save 2 + + movdqa xmm5, xmm4 ; 75 65 55 45 35 25 15 05 74 64 54 44 34 24 14 04 + punpcklqdq xmm4, xmm1 ; f4 e4 d4 c4 b4 a4 94 84 74 64 54 44 34 24 14 04 + movdqa [rsp+_p0], xmm3 ; save 3 + + punpckhqdq xmm5, xmm1 ; f5 e5 d5 c5 b5 a5 95 85 75 65 55 45 35 25 15 05 + + movdqa [rsp+_q0], xmm4 ; save 4 + movdqa [rsp+_q1], xmm5 ; save 5 + movdqa xmm1, [rsp+_t0] + + movdqa xmm2, xmm1 ; + punpckhqdq xmm1, xmm0 ; f1 e1 d1 c1 b1 a1 91 81 71 61 51 41 31 21 11 01 + punpcklqdq xmm2, xmm0 ; f0 e0 d0 c0 b0 a0 90 80 70 60 50 40 30 20 10 00 + +%if %2 == 0 + movdqa [rsp+_p2], xmm1 + movdqa [rsp+_p3], xmm2 +%endif + +%endmacro + +%macro LFV_FILTER_MASK_HEV_MASK 0 + movdqa xmm0, xmm6 ; q2 + psubusb xmm0, xmm7 ; q2-q3 + + psubusb xmm7, xmm6 ; q3-q2 + movdqa xmm4, xmm5 ; q1 + + por xmm7, xmm0 ; abs (q3-q2) + psubusb xmm4, xmm6 ; q1-q2 + + movdqa xmm0, xmm1 + psubusb xmm6, xmm5 ; q2-q1 + + por xmm6, xmm4 ; abs (q2-q1) + psubusb xmm0, xmm2 ; p2 - p3; + + psubusb xmm2, xmm1 ; p3 - p2; + por xmm0, xmm2 ; abs(p2-p3) + + movdqa xmm5, [rsp+_p1] ; p1 + pmaxub xmm0, xmm7 + + movdqa xmm2, xmm5 ; p1 + psubusb xmm5, xmm1 ; p1-p2 + psubusb xmm1, xmm2 ; p2-p1 + + movdqa xmm7, xmm3 ; p0 + psubusb xmm7, xmm2 ; p0-p1 + + por xmm1, xmm5 ; abs(p2-p1) + pmaxub xmm0, xmm6 + + pmaxub xmm0, xmm1 + movdqa xmm1, xmm2 ; p1 + + psubusb xmm2, xmm3 ; p1-p0 + + por xmm2, xmm7 ; abs(p1-p0) + + pmaxub xmm0, xmm2 + + movdqa xmm5, [rsp+_q0] ; q0 + movdqa xmm7, [rsp+_q1] ; q1 + + mov rdx, arg(3) ; limit + + movdqa xmm6, xmm5 ; q0 + movdqa xmm4, xmm7 ; q1 + + psubusb xmm5, xmm7 ; q0-q1 + psubusb xmm7, xmm6 ; q1-q0 + + por xmm7, xmm5 ; abs(q1-q0) + + pmaxub xmm0, xmm7 + + psubusb xmm0, [rdx] ; limit + + mov rdx, arg(2) ; blimit + movdqa xmm5, xmm4 ; q1 + + psubusb xmm5, xmm1 ; q1-=p1 + psubusb xmm1, xmm4 ; p1-=q1 + + por xmm5, xmm1 ; abs(p1-q1) + movdqa xmm1, xmm3 ; p0 + + pand xmm5, [GLOBAL(tfe)] ; set lsb of each byte to zero + psubusb xmm1, xmm6 ; p0-q0 + + movdqa xmm4, [rdx] ; blimit + mov rdx, arg(4) ; get thresh + + psrlw xmm5, 1 ; abs(p1-q1)/2 + psubusb xmm6, xmm3 ; q0-p0 + + por xmm1, xmm6 ; abs(q0-p0) + paddusb xmm1, xmm1 ; abs(q0-p0)*2 + movdqa xmm3, [rdx] + + paddusb xmm1, xmm5 ; abs (p0 - q0) *2 + abs(p1-q1)/2 + psubusb xmm2, xmm3 ; abs(q1 - q0) > thresh + + psubusb xmm7, xmm3 ; abs(p1 - p0)> thresh + + psubusb xmm1, xmm4 ; abs (p0 - q0) *2 + abs(p1-q1)/2 > blimit + por xmm2, xmm7 ; abs(q1 - q0) > thresh || abs(p1 - p0) > thresh + + por xmm1, xmm0 ; mask + pcmpeqb xmm2, xmm0 + + pxor xmm0, xmm0 + pcmpeqb xmm4, xmm4 + + pcmpeqb xmm1, xmm0 + pxor xmm4, xmm2 +%endmacro + +%macro BV_TRANSPOSE 0 + ; xmm1 = f2 e2 d2 c2 b2 a2 92 82 72 62 52 42 32 22 12 02 + ; xmm6 = f3 e3 d3 c3 b3 a3 93 83 73 63 53 43 33 23 13 03 + ; xmm3 = f4 e4 d4 c4 b4 a4 94 84 74 64 54 44 34 24 14 04 + ; xmm7 = f5 e5 d5 c5 b5 a5 95 85 75 65 55 45 35 25 15 05 + movdqa xmm2, xmm1 ; f2 e2 d2 c2 b2 a2 92 82 72 62 52 42 32 22 12 02 + punpcklbw xmm2, xmm6 ; 73 72 63 62 53 52 43 42 33 32 23 22 13 12 03 02 + + movdqa xmm4, xmm3 ; f4 e4 d4 c4 b4 a4 94 84 74 64 54 44 34 24 14 04 + punpckhbw xmm1, xmm6 ; f3 f2 e3 e2 d3 d2 c3 c2 b3 b2 a3 a2 93 92 83 82 + + punpcklbw xmm4, xmm7 ; 75 74 65 64 55 54 45 44 35 34 25 24 15 14 05 04 + + punpckhbw xmm3, xmm7 ; f5 f4 e5 e4 d5 d4 c5 c4 b5 b4 a5 a4 95 94 85 84 + + movdqa xmm6, xmm2 ; 73 72 63 62 53 52 43 42 33 32 23 22 13 12 03 02 + punpcklwd xmm2, xmm4 ; 35 34 33 32 25 24 23 22 15 14 13 12 05 04 03 02 + + punpckhwd xmm6, xmm4 ; 75 74 73 72 65 64 63 62 55 54 53 52 45 44 43 42 + movdqa xmm5, xmm1 ; f3 f2 e3 e2 d3 d2 c3 c2 b3 b2 a3 a2 93 92 83 82 + + punpcklwd xmm1, xmm3 ; b5 b4 b3 b2 a5 a4 a3 a2 95 94 93 92 85 84 83 82 + + punpckhwd xmm5, xmm3 ; f5 f4 f3 f2 e5 e4 e3 e2 d5 d4 d3 d2 c5 c4 c3 c2 + ; xmm2 = 35 34 33 32 25 24 23 22 15 14 13 12 05 04 03 02 + ; xmm6 = 75 74 73 72 65 64 63 62 55 54 53 52 45 44 43 42 + ; xmm1 = b5 b4 b3 b2 a5 a4 a3 a2 95 94 93 92 85 84 83 82 + ; xmm5 = f5 f4 f3 f2 e5 e4 e3 e2 d5 d4 d3 d2 c5 c4 c3 c2 +%endmacro + +%macro BV_WRITEBACK 2 + movd [rsi+2], %1 + movd [rsi+4*rax+2], %2 + psrldq %1, 4 + psrldq %2, 4 + movd [rdi+2], %1 + movd [rdi+4*rax+2], %2 + psrldq %1, 4 + psrldq %2, 4 + movd [rsi+2*rax+2], %1 + movd [rsi+2*rcx+2], %2 + psrldq %1, 4 + psrldq %2, 4 + movd [rdi+2*rax+2], %1 + movd [rdi+2*rcx+2], %2 +%endmacro + +%if ABI_IS_32BIT + +;void vp8_loop_filter_vertical_edge_sse2 +;( +; unsigned char *src_ptr, +; int src_pixel_step, +; const char *blimit, +; const char *limit, +; const char *thresh, +;) +global sym(vp8_loop_filter_vertical_edge_sse2) PRIVATE +sym(vp8_loop_filter_vertical_edge_sse2): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 5 + SAVE_XMM 7 + GET_GOT rbx + push rsi + push rdi + ; end prolog + + ALIGN_STACK 16, rax + sub rsp, lf_var_size + + mov rsi, arg(0) ; src_ptr + movsxd rax, dword ptr arg(1) ; src_pixel_step + + lea rsi, [rsi - 4] + lea rdi, [rsi + rax] ; rdi points to row +1 for indirect addressing + lea rcx, [rax*2+rax] + + ;transpose 16x8 to 8x16, and store the 8-line result on stack. + TRANSPOSE_16X8 1, 1 + + ; calculate filter mask and high edge variance + LFV_FILTER_MASK_HEV_MASK + + ; start work on filters + B_FILTER 2 + + ; transpose and write back - only work on q1, q0, p0, p1 + BV_TRANSPOSE + ; store 16-line result + + lea rdx, [rax] + neg rdx + + BV_WRITEBACK xmm1, xmm5 + + lea rsi, [rsi+rdx*8] + lea rdi, [rdi+rdx*8] + BV_WRITEBACK xmm2, xmm6 + + add rsp, lf_var_size + pop rsp + ; begin epilog + pop rdi + pop rsi + RESTORE_GOT + RESTORE_XMM + UNSHADOW_ARGS + pop rbp + ret + +%endif + +;void vp8_loop_filter_vertical_edge_uv_sse2 +;( +; unsigned char *u, +; int src_pixel_step, +; const char *blimit, +; const char *limit, +; const char *thresh, +; unsigned char *v +;) +global sym(vp8_loop_filter_vertical_edge_uv_sse2) PRIVATE +sym(vp8_loop_filter_vertical_edge_uv_sse2): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 6 + SAVE_XMM 7 + GET_GOT rbx + push rsi + push rdi + ; end prolog + + ALIGN_STACK 16, rax + sub rsp, lf_var_size + + mov rsi, arg(0) ; u_ptr + movsxd rax, dword ptr arg(1) ; src_pixel_step + + lea rsi, [rsi - 4] + lea rdi, [rsi + rax] ; rdi points to row +1 for indirect addressing + lea rcx, [rax+2*rax] + + ;transpose 16x8 to 8x16, and store the 8-line result on stack. + TRANSPOSE_16X8 0, 1 + + ; calculate filter mask and high edge variance + LFV_FILTER_MASK_HEV_MASK + + ; start work on filters + B_FILTER 2 + + ; transpose and write back - only work on q1, q0, p0, p1 + BV_TRANSPOSE + + lea rdi, [rsi + rax] ; rdi points to row +1 for indirect addressing + + ; store 16-line result + BV_WRITEBACK xmm1, xmm5 + + mov rsi, arg(0) ; u_ptr + lea rsi, [rsi - 4] + lea rdi, [rsi + rax] ; rdi points to row +1 for indirect addressing + BV_WRITEBACK xmm2, xmm6 + + add rsp, lf_var_size + pop rsp + ; begin epilog + pop rdi + pop rsi + RESTORE_GOT + RESTORE_XMM + UNSHADOW_ARGS + pop rbp + ret + +%macro MBV_TRANSPOSE 0 + movdqa xmm0, [rsp+_p3] ; f0 e0 d0 c0 b0 a0 90 80 70 60 50 40 30 20 10 00 + movdqa xmm1, xmm0 ; f0 e0 d0 c0 b0 a0 90 80 70 60 50 40 30 20 10 00 + + punpcklbw xmm0, xmm2 ; 71 70 61 60 51 50 41 40 31 30 21 20 11 10 01 00 + punpckhbw xmm1, xmm2 ; f1 f0 e1 e0 d1 d0 c1 c0 b1 b0 a1 a0 91 90 81 80 + + movdqa xmm7, [rsp+_p1] ; f2 e2 d2 c2 b2 a2 92 82 72 62 52 42 32 22 12 02 + movdqa xmm6, xmm7 ; f2 e2 d2 c2 b2 a2 92 82 72 62 52 42 32 22 12 02 + + punpcklbw xmm7, [rsp+_p0] ; 73 72 63 62 53 52 43 42 33 32 23 22 13 12 03 02 + punpckhbw xmm6, [rsp+_p0] ; f3 f2 e3 e2 d3 d2 c3 c2 b3 b2 a3 a2 93 92 83 82 + + movdqa xmm3, xmm0 ; 71 70 61 60 51 50 41 40 31 30 21 20 11 10 01 00 + punpcklwd xmm0, xmm7 ; 33 32 31 30 23 22 21 20 13 12 11 10 03 02 01 00 + + punpckhwd xmm3, xmm7 ; 73 72 71 70 63 62 61 60 53 52 51 50 43 42 41 40 + movdqa xmm4, xmm1 ; f1 f0 e1 e0 d1 d0 c1 c0 b1 b0 a1 a0 91 90 81 80 + + punpcklwd xmm1, xmm6 ; b3 b2 b1 b0 a3 a2 a1 a0 93 92 91 90 83 82 81 80 + punpckhwd xmm4, xmm6 ; f3 f2 f1 f0 e3 e2 e1 e0 d3 d2 d1 d0 c3 c2 c1 c0 + + movdqa xmm7, [rsp+_q0] ; f4 e4 d4 c4 b4 a4 94 84 74 64 54 44 34 24 14 04 + punpcklbw xmm7, [rsp+_q1] ; 75 74 65 64 55 54 45 44 35 34 25 24 15 14 05 04 + + movdqa xmm6, xmm5 ; f6 e6 d6 c6 b6 a6 96 86 76 66 56 46 36 26 16 06 + punpcklbw xmm6, [rsp+_q3] ; 77 76 67 66 57 56 47 46 37 36 27 26 17 16 07 06 + + movdqa xmm2, xmm7 ; 75 74 65 64 55 54 45 44 35 34 25 24 15 14 05 04 + punpcklwd xmm7, xmm6 ; 37 36 35 34 27 26 25 24 17 16 15 14 07 06 05 04 + + punpckhwd xmm2, xmm6 ; 77 76 75 74 67 66 65 64 57 56 55 54 47 46 45 44 + movdqa xmm6, xmm0 ; 33 32 31 30 23 22 21 20 13 12 11 10 03 02 01 00 + + punpckldq xmm0, xmm7 ; 17 16 15 14 13 12 11 10 07 06 05 04 03 02 01 00 + punpckhdq xmm6, xmm7 ; 37 36 35 34 33 32 31 30 27 26 25 24 23 22 21 20 +%endmacro + +%macro MBV_WRITEBACK_1 0 + movq [rsi], xmm0 + movhps [rdi], xmm0 + + movq [rsi+2*rax], xmm6 + movhps [rdi+2*rax], xmm6 + + movdqa xmm0, xmm3 ; 73 72 71 70 63 62 61 60 53 52 51 50 43 42 41 40 + punpckldq xmm0, xmm2 ; 57 56 55 54 53 52 51 50 47 46 45 44 43 42 41 40 + punpckhdq xmm3, xmm2 ; 77 76 75 74 73 72 71 70 67 66 65 64 63 62 61 60 + + movq [rsi+4*rax], xmm0 + movhps [rdi+4*rax], xmm0 + + movq [rsi+2*rcx], xmm3 + movhps [rdi+2*rcx], xmm3 + + movdqa xmm7, [rsp+_q0] ; f4 e4 d4 c4 b4 a4 94 84 74 64 54 44 34 24 14 04 + punpckhbw xmm7, [rsp+_q1] ; f5 f4 e5 e4 d5 d4 c5 c4 b5 b4 a5 a4 95 94 85 84 + punpckhbw xmm5, [rsp+_q3] ; f7 f6 e7 e6 d7 d6 c7 c6 b7 b6 a7 a6 97 96 87 86 + + movdqa xmm0, xmm7 + punpcklwd xmm0, xmm5 ; b7 b6 b4 b4 a7 a6 a5 a4 97 96 95 94 87 86 85 84 + punpckhwd xmm7, xmm5 ; f7 f6 f5 f4 e7 e6 e5 e4 d7 d6 d5 d4 c7 c6 c5 c4 + + movdqa xmm5, xmm1 ; b3 b2 b1 b0 a3 a2 a1 a0 93 92 91 90 83 82 81 80 + punpckldq xmm1, xmm0 ; 97 96 95 94 93 92 91 90 87 86 85 83 84 82 81 80 + punpckhdq xmm5, xmm0 ; b7 b6 b5 b4 b3 b2 b1 b0 a7 a6 a5 a4 a3 a2 a1 a0 +%endmacro + +%macro MBV_WRITEBACK_2 0 + movq [rsi], xmm1 + movhps [rdi], xmm1 + + movq [rsi+2*rax], xmm5 + movhps [rdi+2*rax], xmm5 + + movdqa xmm1, xmm4 ; f3 f2 f1 f0 e3 e2 e1 e0 d3 d2 d1 d0 c3 c2 c1 c0 + punpckldq xmm1, xmm7 ; d7 d6 d5 d4 d3 d2 d1 d0 c7 c6 c5 c4 c3 c2 c1 c0 + punpckhdq xmm4, xmm7 ; f7 f6 f4 f4 f3 f2 f1 f0 e7 e6 e5 e4 e3 e2 e1 e0 + + movq [rsi+4*rax], xmm1 + movhps [rdi+4*rax], xmm1 + + movq [rsi+2*rcx], xmm4 + movhps [rdi+2*rcx], xmm4 +%endmacro + + +;void vp8_mbloop_filter_vertical_edge_sse2 +;( +; unsigned char *src_ptr, +; int src_pixel_step, +; const char *blimit, +; const char *limit, +; const char *thresh, +;) +global sym(vp8_mbloop_filter_vertical_edge_sse2) PRIVATE +sym(vp8_mbloop_filter_vertical_edge_sse2): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 5 + SAVE_XMM 7 + GET_GOT rbx + push rsi + push rdi + ; end prolog + + ALIGN_STACK 16, rax + sub rsp, lf_var_size + + mov rsi, arg(0) ; src_ptr + movsxd rax, dword ptr arg(1) ; src_pixel_step + + lea rsi, [rsi - 4] + lea rdi, [rsi + rax] ; rdi points to row +1 for indirect addressing + lea rcx, [rax*2+rax] + + ; Transpose + TRANSPOSE_16X8 1, 0 + + ; calculate filter mask and high edge variance + LFV_FILTER_MASK_HEV_MASK + + neg rax + ; start work on filters + MB_FILTER_AND_WRITEBACK 2 + + lea rsi, [rsi+rax*8] + lea rdi, [rdi+rax*8] + + ; transpose and write back + MBV_TRANSPOSE + + neg rax + + MBV_WRITEBACK_1 + + + lea rsi, [rsi+rax*8] + lea rdi, [rdi+rax*8] + MBV_WRITEBACK_2 + + add rsp, lf_var_size + pop rsp + ; begin epilog + pop rdi + pop rsi + RESTORE_GOT + RESTORE_XMM + UNSHADOW_ARGS + pop rbp + ret + + +;void vp8_mbloop_filter_vertical_edge_uv_sse2 +;( +; unsigned char *u, +; int src_pixel_step, +; const char *blimit, +; const char *limit, +; const char *thresh, +; unsigned char *v +;) +global sym(vp8_mbloop_filter_vertical_edge_uv_sse2) PRIVATE +sym(vp8_mbloop_filter_vertical_edge_uv_sse2): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 6 + SAVE_XMM 7 + GET_GOT rbx + push rsi + push rdi + ; end prolog + + ALIGN_STACK 16, rax + sub rsp, lf_var_size + + mov rsi, arg(0) ; u_ptr + movsxd rax, dword ptr arg(1) ; src_pixel_step + + lea rsi, [rsi - 4] + lea rdi, [rsi + rax] ; rdi points to row +1 for indirect addressing + lea rcx, [rax+2*rax] + + ; Transpose + TRANSPOSE_16X8 0, 0 + + ; calculate filter mask and high edge variance + LFV_FILTER_MASK_HEV_MASK + + ; start work on filters + MB_FILTER_AND_WRITEBACK 2 + + ; transpose and write back + MBV_TRANSPOSE + + mov rsi, arg(0) ;u_ptr + lea rsi, [rsi - 4] + lea rdi, [rsi + rax] + MBV_WRITEBACK_1 + mov rsi, arg(5) ;v_ptr + lea rsi, [rsi - 4] + lea rdi, [rsi + rax] + MBV_WRITEBACK_2 + + add rsp, lf_var_size + pop rsp + ; begin epilog + pop rdi + pop rsi + RESTORE_GOT + RESTORE_XMM + UNSHADOW_ARGS + pop rbp + ret + + +;void vp8_loop_filter_simple_horizontal_edge_sse2 +;( +; unsigned char *src_ptr, +; int src_pixel_step, +; const char *blimit, +;) +global sym(vp8_loop_filter_simple_horizontal_edge_sse2) PRIVATE +sym(vp8_loop_filter_simple_horizontal_edge_sse2): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 3 + SAVE_XMM 7 + GET_GOT rbx + ; end prolog + + mov rcx, arg(0) ;src_ptr + movsxd rax, dword ptr arg(1) ;src_pixel_step ; destination pitch? + movdqa xmm6, [GLOBAL(tfe)] + lea rdx, [rcx + rax] + neg rax + + ; calculate mask + movdqa xmm0, [rdx] ; q1 + mov rdx, arg(2) ;blimit + movdqa xmm1, [rcx+2*rax] ; p1 + + movdqa xmm2, xmm1 + movdqa xmm3, xmm0 + + psubusb xmm0, xmm1 ; q1-=p1 + psubusb xmm1, xmm3 ; p1-=q1 + por xmm1, xmm0 ; abs(p1-q1) + pand xmm1, xmm6 ; set lsb of each byte to zero + psrlw xmm1, 1 ; abs(p1-q1)/2 + + movdqa xmm7, XMMWORD PTR [rdx] + + movdqa xmm5, [rcx+rax] ; p0 + movdqa xmm4, [rcx] ; q0 + movdqa xmm0, xmm4 ; q0 + movdqa xmm6, xmm5 ; p0 + psubusb xmm5, xmm4 ; p0-=q0 + psubusb xmm4, xmm6 ; q0-=p0 + por xmm5, xmm4 ; abs(p0 - q0) + + movdqa xmm4, [GLOBAL(t80)] + + paddusb xmm5, xmm5 ; abs(p0-q0)*2 + paddusb xmm5, xmm1 ; abs (p0 - q0) *2 + abs(p1-q1)/2 + psubusb xmm5, xmm7 ; abs(p0 - q0) *2 + abs(p1-q1)/2 > blimit + pxor xmm7, xmm7 + pcmpeqb xmm5, xmm7 + + + ; start work on filters + pxor xmm2, xmm4 ; p1 offset to convert to signed values + pxor xmm3, xmm4 ; q1 offset to convert to signed values + psubsb xmm2, xmm3 ; p1 - q1 + + pxor xmm6, xmm4 ; offset to convert to signed values + pxor xmm0, xmm4 ; offset to convert to signed values + movdqa xmm3, xmm0 ; q0 + psubsb xmm0, xmm6 ; q0 - p0 + paddsb xmm2, xmm0 ; p1 - q1 + 1 * (q0 - p0) + paddsb xmm2, xmm0 ; p1 - q1 + 2 * (q0 - p0) + paddsb xmm2, xmm0 ; p1 - q1 + 3 * (q0 - p0) + pand xmm5, xmm2 ; mask filter values we don't care about + + movdqa xmm0, xmm5 + paddsb xmm5, [GLOBAL(t3)] ; 3* (q0 - p0) + (p1 - q1) + 4 + paddsb xmm0, [GLOBAL(t4)] ; +3 instead of +4 + + movdqa xmm1, [GLOBAL(te0)] + movdqa xmm2, [GLOBAL(t1f)] + +; pxor xmm7, xmm7 + pcmpgtb xmm7, xmm0 ;save sign + pand xmm7, xmm1 ;preserve the upper 3 bits + psrlw xmm0, 3 + pand xmm0, xmm2 ;clear out upper 3 bits + por xmm0, xmm7 ;add sign + psubsb xmm3, xmm0 ; q0-= q0sz add + + pxor xmm7, xmm7 + pcmpgtb xmm7, xmm5 ;save sign + pand xmm7, xmm1 ;preserve the upper 3 bits + psrlw xmm5, 3 + pand xmm5, xmm2 ;clear out upper 3 bits + por xmm5, xmm7 ;add sign + paddsb xmm6, xmm5 ; p0+= p0 add + + pxor xmm3, xmm4 ; unoffset + movdqa [rcx], xmm3 ; write back + + pxor xmm6, xmm4 ; unoffset + movdqa [rcx+rax], xmm6 ; write back + + ; begin epilog + RESTORE_GOT + RESTORE_XMM + UNSHADOW_ARGS + pop rbp + ret + + +;void vp8_loop_filter_simple_vertical_edge_sse2 +;( +; unsigned char *src_ptr, +; int src_pixel_step, +; const char *blimit, +;) +global sym(vp8_loop_filter_simple_vertical_edge_sse2) PRIVATE +sym(vp8_loop_filter_simple_vertical_edge_sse2): + push rbp ; save old base pointer value. + mov rbp, rsp ; set new base pointer value. + SHADOW_ARGS_TO_STACK 3 + SAVE_XMM 7 + GET_GOT rbx ; save callee-saved reg + push rsi + push rdi + ; end prolog + + ALIGN_STACK 16, rax + sub rsp, 32 ; reserve 32 bytes + %define t0 [rsp + 0] ;__declspec(align(16)) char t0[16]; + %define t1 [rsp + 16] ;__declspec(align(16)) char t1[16]; + + mov rsi, arg(0) ;src_ptr + movsxd rax, dword ptr arg(1) ;src_pixel_step ; destination pitch? + + lea rsi, [rsi - 2 ] + lea rdi, [rsi + rax] + lea rdx, [rsi + rax*4] + lea rcx, [rdx + rax] + + movd xmm0, [rsi] ; (high 96 bits unused) 03 02 01 00 + movd xmm1, [rdx] ; (high 96 bits unused) 43 42 41 40 + movd xmm2, [rdi] ; 13 12 11 10 + movd xmm3, [rcx] ; 53 52 51 50 + punpckldq xmm0, xmm1 ; (high 64 bits unused) 43 42 41 40 03 02 01 00 + punpckldq xmm2, xmm3 ; 53 52 51 50 13 12 11 10 + + movd xmm4, [rsi + rax*2] ; 23 22 21 20 + movd xmm5, [rdx + rax*2] ; 63 62 61 60 + movd xmm6, [rdi + rax*2] ; 33 32 31 30 + movd xmm7, [rcx + rax*2] ; 73 72 71 70 + punpckldq xmm4, xmm5 ; 63 62 61 60 23 22 21 20 + punpckldq xmm6, xmm7 ; 73 72 71 70 33 32 31 30 + + punpcklbw xmm0, xmm2 ; 53 43 52 42 51 41 50 40 13 03 12 02 11 01 10 00 + punpcklbw xmm4, xmm6 ; 73 63 72 62 71 61 70 60 33 23 32 22 31 21 30 20 + + movdqa xmm1, xmm0 + punpcklwd xmm0, xmm4 ; 33 23 13 03 32 22 12 02 31 21 11 01 30 20 10 00 + punpckhwd xmm1, xmm4 ; 73 63 53 43 72 62 52 42 71 61 51 41 70 60 50 40 + + movdqa xmm2, xmm0 + punpckldq xmm0, xmm1 ; 71 61 51 41 31 21 11 01 70 60 50 40 30 20 10 00 + punpckhdq xmm2, xmm1 ; 73 63 53 43 33 23 13 03 72 62 52 42 32 22 12 02 + + lea rsi, [rsi + rax*8] + lea rdi, [rsi + rax] + lea rdx, [rsi + rax*4] + lea rcx, [rdx + rax] + + movd xmm4, [rsi] ; 83 82 81 80 + movd xmm1, [rdx] ; c3 c2 c1 c0 + movd xmm6, [rdi] ; 93 92 91 90 + movd xmm3, [rcx] ; d3 d2 d1 d0 + punpckldq xmm4, xmm1 ; c3 c2 c1 c0 83 82 81 80 + punpckldq xmm6, xmm3 ; d3 d2 d1 d0 93 92 91 90 + + movd xmm1, [rsi + rax*2] ; a3 a2 a1 a0 + movd xmm5, [rdx + rax*2] ; e3 e2 e1 e0 + movd xmm3, [rdi + rax*2] ; b3 b2 b1 b0 + movd xmm7, [rcx + rax*2] ; f3 f2 f1 f0 + punpckldq xmm1, xmm5 ; e3 e2 e1 e0 a3 a2 a1 a0 + punpckldq xmm3, xmm7 ; f3 f2 f1 f0 b3 b2 b1 b0 + + punpcklbw xmm4, xmm6 ; d3 c3 d2 c2 d1 c1 d0 c0 93 83 92 82 91 81 90 80 + punpcklbw xmm1, xmm3 ; f3 e3 f2 e2 f1 e1 f0 e0 b3 a3 b2 a2 b1 a1 b0 a0 + + movdqa xmm7, xmm4 + punpcklwd xmm4, xmm1 ; b3 a3 93 83 b2 a2 92 82 b1 a1 91 81 b0 a0 90 80 + punpckhwd xmm7, xmm1 ; f3 e3 d3 c3 f2 e2 d2 c2 f1 e1 d1 c1 f0 e0 d0 c0 + + movdqa xmm6, xmm4 + punpckldq xmm4, xmm7 ; f1 e1 d1 c1 b1 a1 91 81 f0 e0 d0 c0 b0 a0 90 80 + punpckhdq xmm6, xmm7 ; f3 e3 d3 c3 b3 a3 93 83 f2 e2 d2 c2 b2 a2 92 82 + + movdqa xmm1, xmm0 + movdqa xmm3, xmm2 + + punpcklqdq xmm0, xmm4 ; p1 f0 e0 d0 c0 b0 a0 90 80 70 60 50 40 30 20 10 00 + punpckhqdq xmm1, xmm4 ; p0 f1 e1 d1 c1 b1 a1 91 81 71 61 51 41 31 21 11 01 + punpcklqdq xmm2, xmm6 ; q0 f2 e2 d2 c2 b2 a2 92 82 72 62 52 42 32 22 12 02 + punpckhqdq xmm3, xmm6 ; q1 f3 e3 d3 c3 b3 a3 93 83 73 63 53 43 33 23 13 03 + + mov rdx, arg(2) ;blimit + + ; calculate mask + movdqa xmm6, xmm0 ; p1 + movdqa xmm7, xmm3 ; q1 + psubusb xmm7, xmm0 ; q1-=p1 + psubusb xmm6, xmm3 ; p1-=q1 + por xmm6, xmm7 ; abs(p1-q1) + pand xmm6, [GLOBAL(tfe)] ; set lsb of each byte to zero + psrlw xmm6, 1 ; abs(p1-q1)/2 + + movdqa xmm7, [rdx] + + movdqa xmm5, xmm1 ; p0 + movdqa xmm4, xmm2 ; q0 + psubusb xmm5, xmm2 ; p0-=q0 + psubusb xmm4, xmm1 ; q0-=p0 + por xmm5, xmm4 ; abs(p0 - q0) + paddusb xmm5, xmm5 ; abs(p0-q0)*2 + paddusb xmm5, xmm6 ; abs (p0 - q0) *2 + abs(p1-q1)/2 + + movdqa xmm4, [GLOBAL(t80)] + + psubusb xmm5, xmm7 ; abs(p0 - q0) *2 + abs(p1-q1)/2 > blimit + pxor xmm7, xmm7 + pcmpeqb xmm5, xmm7 ; mm5 = mask + + ; start work on filters + movdqa t0, xmm0 + movdqa t1, xmm3 + + pxor xmm0, xmm4 ; p1 offset to convert to signed values + pxor xmm3, xmm4 ; q1 offset to convert to signed values + psubsb xmm0, xmm3 ; p1 - q1 + + pxor xmm1, xmm4 ; offset to convert to signed values + pxor xmm2, xmm4 ; offset to convert to signed values + + movdqa xmm3, xmm2 ; offseted ; q0 + psubsb xmm2, xmm1 ; q0 - p0 + paddsb xmm0, xmm2 ; p1 - q1 + 1 * (q0 - p0) + paddsb xmm0, xmm2 ; p1 - q1 + 2 * (q0 - p0) + paddsb xmm0, xmm2 ; p1 - q1 + 3 * (q0 - p0) + pand xmm5, xmm0 ; mask filter values we don't care about + + movdqa xmm0, xmm5 + paddsb xmm5, [GLOBAL(t3)] ; 3* (q0 - p0) + (p1 - q1) + 4 + paddsb xmm0, [GLOBAL(t4)] ; +3 instead of +4 + + movdqa xmm6, [GLOBAL(te0)] + movdqa xmm2, [GLOBAL(t1f)] + +; pxor xmm7, xmm7 + pcmpgtb xmm7, xmm0 ;save sign + pand xmm7, xmm6 ;preserve the upper 3 bits + psrlw xmm0, 3 + pand xmm0, xmm2 ;clear out upper 3 bits + por xmm0, xmm7 ;add sign + psubsb xmm3, xmm0 ; q0-= q0sz add + + pxor xmm7, xmm7 + pcmpgtb xmm7, xmm5 ;save sign + pand xmm7, xmm6 ;preserve the upper 3 bits + psrlw xmm5, 3 + pand xmm5, xmm2 ;clear out upper 3 bits + por xmm5, xmm7 ;add sign + paddsb xmm1, xmm5 ; p0+= p0 add + + pxor xmm3, xmm4 ; unoffset q0 + pxor xmm1, xmm4 ; unoffset p0 + + movdqa xmm0, t0 ; p1 + movdqa xmm4, t1 ; q1 + + ; write out order: xmm0 xmm2 xmm1 xmm3 + lea rdx, [rsi + rax*4] + + ; transpose back to write out + ; p1 f0 e0 d0 c0 b0 a0 90 80 70 60 50 40 30 20 10 00 + ; p0 f1 e1 d1 c1 b1 a1 91 81 71 61 51 41 31 21 11 01 + ; q0 f2 e2 d2 c2 b2 a2 92 82 72 62 52 42 32 22 12 02 + ; q1 f3 e3 d3 c3 b3 a3 93 83 73 63 53 43 33 23 13 03 + movdqa xmm6, xmm0 + punpcklbw xmm0, xmm1 ; 71 70 61 60 51 50 41 40 31 30 21 20 11 10 01 00 + punpckhbw xmm6, xmm1 ; f1 f0 e1 e0 d1 d0 c1 c0 b1 b0 a1 a0 91 90 81 80 + + movdqa xmm5, xmm3 + punpcklbw xmm3, xmm4 ; 73 72 63 62 53 52 43 42 33 32 23 22 13 12 03 02 + punpckhbw xmm5, xmm4 ; f3 f2 e3 e2 d3 d2 c3 c2 b3 b2 a3 a2 93 92 83 82 + + movdqa xmm2, xmm0 + punpcklwd xmm0, xmm3 ; 33 32 31 30 23 22 21 20 13 12 11 10 03 02 01 00 + punpckhwd xmm2, xmm3 ; 73 72 71 70 63 62 61 60 53 52 51 50 43 42 41 40 + + movdqa xmm3, xmm6 + punpcklwd xmm6, xmm5 ; b3 b2 b1 b0 a3 a2 a1 a0 93 92 91 90 83 82 81 80 + punpckhwd xmm3, xmm5 ; f3 f2 f1 f0 e3 e2 e1 e0 d3 d2 d1 d0 c3 c2 c1 c0 + + movd [rsi], xmm6 ; write the second 8-line result + movd [rdx], xmm3 + psrldq xmm6, 4 + psrldq xmm3, 4 + movd [rdi], xmm6 + movd [rcx], xmm3 + psrldq xmm6, 4 + psrldq xmm3, 4 + movd [rsi + rax*2], xmm6 + movd [rdx + rax*2], xmm3 + psrldq xmm6, 4 + psrldq xmm3, 4 + movd [rdi + rax*2], xmm6 + movd [rcx + rax*2], xmm3 + + neg rax + lea rsi, [rsi + rax*8] + neg rax + lea rdi, [rsi + rax] + lea rdx, [rsi + rax*4] + lea rcx, [rdx + rax] + + movd [rsi], xmm0 ; write the first 8-line result + movd [rdx], xmm2 + psrldq xmm0, 4 + psrldq xmm2, 4 + movd [rdi], xmm0 + movd [rcx], xmm2 + psrldq xmm0, 4 + psrldq xmm2, 4 + movd [rsi + rax*2], xmm0 + movd [rdx + rax*2], xmm2 + psrldq xmm0, 4 + psrldq xmm2, 4 + movd [rdi + rax*2], xmm0 + movd [rcx + rax*2], xmm2 + + add rsp, 32 + pop rsp + ; begin epilog + pop rdi + pop rsi + RESTORE_GOT + RESTORE_XMM + UNSHADOW_ARGS + pop rbp + ret + +SECTION_RODATA +align 16 +tfe: + times 16 db 0xfe +align 16 +t80: + times 16 db 0x80 +align 16 +t1s: + times 16 db 0x01 +align 16 +t3: + times 16 db 0x03 +align 16 +t4: + times 16 db 0x04 +align 16 +ones: + times 8 dw 0x0001 +align 16 +s9: + times 8 dw 0x0900 +align 16 +s63: + times 8 dw 0x003f +align 16 +te0: + times 16 db 0xe0 +align 16 +t1f: + times 16 db 0x1f diff --git a/vp8/common/x86/loopfilter_x86.c b/vp8/common/x86/loopfilter_x86.c new file mode 100644 index 0000000..a187d51 --- /dev/null +++ b/vp8/common/x86/loopfilter_x86.c @@ -0,0 +1,129 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "vpx_config.h" +#include "vp8/common/loopfilter.h" + +#define prototype_loopfilter(sym) \ + void sym(unsigned char *src, int pitch, const unsigned char *blimit, \ + const unsigned char *limit, const unsigned char *thresh, int count) + +#define prototype_loopfilter_nc(sym) \ + void sym(unsigned char *src, int pitch, const unsigned char *blimit, \ + const unsigned char *limit, const unsigned char *thresh) + +#define prototype_simple_loopfilter(sym) \ + void sym(unsigned char *y, int ystride, const unsigned char *blimit) + +#if HAVE_SSE2 && ARCH_X86_64 +prototype_loopfilter(vp8_loop_filter_bv_y_sse2); +prototype_loopfilter(vp8_loop_filter_bh_y_sse2); +#else +prototype_loopfilter_nc(vp8_loop_filter_vertical_edge_sse2); +prototype_loopfilter_nc(vp8_loop_filter_horizontal_edge_sse2); +#endif +prototype_loopfilter_nc(vp8_mbloop_filter_vertical_edge_sse2); +prototype_loopfilter_nc(vp8_mbloop_filter_horizontal_edge_sse2); + +extern loop_filter_uvfunction vp8_loop_filter_horizontal_edge_uv_sse2; +extern loop_filter_uvfunction vp8_loop_filter_vertical_edge_uv_sse2; +extern loop_filter_uvfunction vp8_mbloop_filter_horizontal_edge_uv_sse2; +extern loop_filter_uvfunction vp8_mbloop_filter_vertical_edge_uv_sse2; + +/* Horizontal MB filtering */ +#if HAVE_SSE2 +void vp8_loop_filter_mbh_sse2(unsigned char *y_ptr, unsigned char *u_ptr, + unsigned char *v_ptr, int y_stride, int uv_stride, + loop_filter_info *lfi) { + vp8_mbloop_filter_horizontal_edge_sse2(y_ptr, y_stride, lfi->mblim, lfi->lim, + lfi->hev_thr); + + if (u_ptr) { + vp8_mbloop_filter_horizontal_edge_uv_sse2(u_ptr, uv_stride, lfi->mblim, + lfi->lim, lfi->hev_thr, v_ptr); + } +} + +/* Vertical MB Filtering */ +void vp8_loop_filter_mbv_sse2(unsigned char *y_ptr, unsigned char *u_ptr, + unsigned char *v_ptr, int y_stride, int uv_stride, + loop_filter_info *lfi) { + vp8_mbloop_filter_vertical_edge_sse2(y_ptr, y_stride, lfi->mblim, lfi->lim, + lfi->hev_thr); + + if (u_ptr) { + vp8_mbloop_filter_vertical_edge_uv_sse2(u_ptr, uv_stride, lfi->mblim, + lfi->lim, lfi->hev_thr, v_ptr); + } +} + +/* Horizontal B Filtering */ +void vp8_loop_filter_bh_sse2(unsigned char *y_ptr, unsigned char *u_ptr, + unsigned char *v_ptr, int y_stride, int uv_stride, + loop_filter_info *lfi) { +#if ARCH_X86_64 + vp8_loop_filter_bh_y_sse2(y_ptr, y_stride, lfi->blim, lfi->lim, lfi->hev_thr, + 2); +#else + vp8_loop_filter_horizontal_edge_sse2(y_ptr + 4 * y_stride, y_stride, + lfi->blim, lfi->lim, lfi->hev_thr); + vp8_loop_filter_horizontal_edge_sse2(y_ptr + 8 * y_stride, y_stride, + lfi->blim, lfi->lim, lfi->hev_thr); + vp8_loop_filter_horizontal_edge_sse2(y_ptr + 12 * y_stride, y_stride, + lfi->blim, lfi->lim, lfi->hev_thr); +#endif + + if (u_ptr) { + vp8_loop_filter_horizontal_edge_uv_sse2(u_ptr + 4 * uv_stride, uv_stride, + lfi->blim, lfi->lim, lfi->hev_thr, + v_ptr + 4 * uv_stride); + } +} + +void vp8_loop_filter_bhs_sse2(unsigned char *y_ptr, int y_stride, + const unsigned char *blimit) { + vp8_loop_filter_simple_horizontal_edge_sse2(y_ptr + 4 * y_stride, y_stride, + blimit); + vp8_loop_filter_simple_horizontal_edge_sse2(y_ptr + 8 * y_stride, y_stride, + blimit); + vp8_loop_filter_simple_horizontal_edge_sse2(y_ptr + 12 * y_stride, y_stride, + blimit); +} + +/* Vertical B Filtering */ +void vp8_loop_filter_bv_sse2(unsigned char *y_ptr, unsigned char *u_ptr, + unsigned char *v_ptr, int y_stride, int uv_stride, + loop_filter_info *lfi) { +#if ARCH_X86_64 + vp8_loop_filter_bv_y_sse2(y_ptr, y_stride, lfi->blim, lfi->lim, lfi->hev_thr, + 2); +#else + vp8_loop_filter_vertical_edge_sse2(y_ptr + 4, y_stride, lfi->blim, lfi->lim, + lfi->hev_thr); + vp8_loop_filter_vertical_edge_sse2(y_ptr + 8, y_stride, lfi->blim, lfi->lim, + lfi->hev_thr); + vp8_loop_filter_vertical_edge_sse2(y_ptr + 12, y_stride, lfi->blim, lfi->lim, + lfi->hev_thr); +#endif + + if (u_ptr) { + vp8_loop_filter_vertical_edge_uv_sse2(u_ptr + 4, uv_stride, lfi->blim, + lfi->lim, lfi->hev_thr, v_ptr + 4); + } +} + +void vp8_loop_filter_bvs_sse2(unsigned char *y_ptr, int y_stride, + const unsigned char *blimit) { + vp8_loop_filter_simple_vertical_edge_sse2(y_ptr + 4, y_stride, blimit); + vp8_loop_filter_simple_vertical_edge_sse2(y_ptr + 8, y_stride, blimit); + vp8_loop_filter_simple_vertical_edge_sse2(y_ptr + 12, y_stride, blimit); +} + +#endif diff --git a/vp8/common/x86/mfqe_sse2.asm b/vp8/common/x86/mfqe_sse2.asm new file mode 100644 index 0000000..3fde973 --- /dev/null +++ b/vp8/common/x86/mfqe_sse2.asm @@ -0,0 +1,289 @@ +; +; Copyright (c) 2012 The WebM project authors. All Rights Reserved. +; +; Use of this source code is governed by a BSD-style license +; that can be found in the LICENSE file in the root of the source +; tree. An additional intellectual property rights grant can be found +; in the file PATENTS. All contributing project authors may +; be found in the AUTHORS file in the root of the source tree. +; + + +%include "vpx_ports/x86_abi_support.asm" + +SECTION .text + +;void vp8_filter_by_weight16x16_sse2 +;( +; unsigned char *src, +; int src_stride, +; unsigned char *dst, +; int dst_stride, +; int src_weight +;) +global sym(vp8_filter_by_weight16x16_sse2) PRIVATE +sym(vp8_filter_by_weight16x16_sse2): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 5 + SAVE_XMM 6 + GET_GOT rbx + push rsi + push rdi + ; end prolog + + movd xmm0, arg(4) ; src_weight + pshuflw xmm0, xmm0, 0x0 ; replicate to all low words + punpcklqdq xmm0, xmm0 ; replicate to all hi words + + movdqa xmm1, [GLOBAL(tMFQE)] + psubw xmm1, xmm0 ; dst_weight + + mov rax, arg(0) ; src + mov rsi, arg(1) ; src_stride + mov rdx, arg(2) ; dst + mov rdi, arg(3) ; dst_stride + + mov rcx, 16 ; loop count + pxor xmm6, xmm6 + +.combine: + movdqa xmm2, [rax] + movdqa xmm4, [rdx] + add rax, rsi + + ; src * src_weight + movdqa xmm3, xmm2 + punpcklbw xmm2, xmm6 + punpckhbw xmm3, xmm6 + pmullw xmm2, xmm0 + pmullw xmm3, xmm0 + + ; dst * dst_weight + movdqa xmm5, xmm4 + punpcklbw xmm4, xmm6 + punpckhbw xmm5, xmm6 + pmullw xmm4, xmm1 + pmullw xmm5, xmm1 + + ; sum, round and shift + paddw xmm2, xmm4 + paddw xmm3, xmm5 + paddw xmm2, [GLOBAL(tMFQE_round)] + paddw xmm3, [GLOBAL(tMFQE_round)] + psrlw xmm2, 4 + psrlw xmm3, 4 + + packuswb xmm2, xmm3 + movdqa [rdx], xmm2 + add rdx, rdi + + dec rcx + jnz .combine + + ; begin epilog + pop rdi + pop rsi + RESTORE_GOT + RESTORE_XMM + UNSHADOW_ARGS + pop rbp + + ret + +;void vp8_filter_by_weight8x8_sse2 +;( +; unsigned char *src, +; int src_stride, +; unsigned char *dst, +; int dst_stride, +; int src_weight +;) +global sym(vp8_filter_by_weight8x8_sse2) PRIVATE +sym(vp8_filter_by_weight8x8_sse2): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 5 + GET_GOT rbx + push rsi + push rdi + ; end prolog + + movd xmm0, arg(4) ; src_weight + pshuflw xmm0, xmm0, 0x0 ; replicate to all low words + punpcklqdq xmm0, xmm0 ; replicate to all hi words + + movdqa xmm1, [GLOBAL(tMFQE)] + psubw xmm1, xmm0 ; dst_weight + + mov rax, arg(0) ; src + mov rsi, arg(1) ; src_stride + mov rdx, arg(2) ; dst + mov rdi, arg(3) ; dst_stride + + mov rcx, 8 ; loop count + pxor xmm4, xmm4 + +.combine: + movq xmm2, [rax] + movq xmm3, [rdx] + add rax, rsi + + ; src * src_weight + punpcklbw xmm2, xmm4 + pmullw xmm2, xmm0 + + ; dst * dst_weight + punpcklbw xmm3, xmm4 + pmullw xmm3, xmm1 + + ; sum, round and shift + paddw xmm2, xmm3 + paddw xmm2, [GLOBAL(tMFQE_round)] + psrlw xmm2, 4 + + packuswb xmm2, xmm4 + movq [rdx], xmm2 + add rdx, rdi + + dec rcx + jnz .combine + + ; begin epilog + pop rdi + pop rsi + RESTORE_GOT + UNSHADOW_ARGS + pop rbp + + ret + +;void vp8_variance_and_sad_16x16_sse2 | arg +;( +; unsigned char *src1, 0 +; int stride1, 1 +; unsigned char *src2, 2 +; int stride2, 3 +; unsigned int *variance, 4 +; unsigned int *sad, 5 +;) +global sym(vp8_variance_and_sad_16x16_sse2) PRIVATE +sym(vp8_variance_and_sad_16x16_sse2): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 6 + GET_GOT rbx + push rsi + push rdi + ; end prolog + + mov rax, arg(0) ; src1 + mov rcx, arg(1) ; stride1 + mov rdx, arg(2) ; src2 + mov rdi, arg(3) ; stride2 + + mov rsi, 16 ; block height + + ; Prep accumulator registers + pxor xmm3, xmm3 ; SAD + pxor xmm4, xmm4 ; sum of src2 + pxor xmm5, xmm5 ; sum of src2^2 + + ; Because we're working with the actual output frames + ; we can't depend on any kind of data alignment. +.accumulate: + movdqa xmm0, [rax] ; src1 + movdqa xmm1, [rdx] ; src2 + add rax, rcx ; src1 + stride1 + add rdx, rdi ; src2 + stride2 + + ; SAD(src1, src2) + psadbw xmm0, xmm1 + paddusw xmm3, xmm0 + + ; SUM(src2) + pxor xmm2, xmm2 + psadbw xmm2, xmm1 ; sum src2 by misusing SAD against 0 + paddusw xmm4, xmm2 + + ; pmaddubsw would be ideal if it took two unsigned values. instead, + ; it expects a signed and an unsigned value. so instead we zero extend + ; and operate on words. + pxor xmm2, xmm2 + movdqa xmm0, xmm1 + punpcklbw xmm0, xmm2 + punpckhbw xmm1, xmm2 + pmaddwd xmm0, xmm0 + pmaddwd xmm1, xmm1 + paddd xmm5, xmm0 + paddd xmm5, xmm1 + + sub rsi, 1 + jnz .accumulate + + ; phaddd only operates on adjacent double words. + ; Finalize SAD and store + movdqa xmm0, xmm3 + psrldq xmm0, 8 + paddusw xmm0, xmm3 + paddd xmm0, [GLOBAL(t128)] + psrld xmm0, 8 + + mov rax, arg(5) + movd [rax], xmm0 + + ; Accumulate sum of src2 + movdqa xmm0, xmm4 + psrldq xmm0, 8 + paddusw xmm0, xmm4 + ; Square src2. Ignore high value + pmuludq xmm0, xmm0 + psrld xmm0, 8 + + ; phaddw could be used to sum adjacent values but we want + ; all the values summed. promote to doubles, accumulate, + ; shift and sum + pxor xmm2, xmm2 + movdqa xmm1, xmm5 + punpckldq xmm1, xmm2 + punpckhdq xmm5, xmm2 + paddd xmm1, xmm5 + movdqa xmm2, xmm1 + psrldq xmm1, 8 + paddd xmm1, xmm2 + + psubd xmm1, xmm0 + + ; (variance + 128) >> 8 + paddd xmm1, [GLOBAL(t128)] + psrld xmm1, 8 + mov rax, arg(4) + + movd [rax], xmm1 + + + ; begin epilog + pop rdi + pop rsi + RESTORE_GOT + UNSHADOW_ARGS + pop rbp + ret + +SECTION_RODATA +align 16 +t128: +%ifndef __NASM_VER__ + ddq 128 +%elif CONFIG_BIG_ENDIAN + dq 0, 128 +%else + dq 128, 0 +%endif +align 16 +tMFQE: ; 1 << MFQE_PRECISION + times 8 dw 0x10 +align 16 +tMFQE_round: ; 1 << (MFQE_PRECISION - 1) + times 8 dw 0x08 + diff --git a/vp8/common/x86/recon_mmx.asm b/vp8/common/x86/recon_mmx.asm new file mode 100644 index 0000000..e6a48f6 --- /dev/null +++ b/vp8/common/x86/recon_mmx.asm @@ -0,0 +1,120 @@ +; +; Copyright (c) 2010 The WebM project authors. All Rights Reserved. +; +; Use of this source code is governed by a BSD-style license +; that can be found in the LICENSE file in the root of the source +; tree. An additional intellectual property rights grant can be found +; in the file PATENTS. All contributing project authors may +; be found in the AUTHORS file in the root of the source tree. +; + + +%include "vpx_ports/x86_abi_support.asm" + +SECTION .text + +;void copy_mem8x8_mmx( +; unsigned char *src, +; int src_stride, +; unsigned char *dst, +; int dst_stride +; ) +global sym(vp8_copy_mem8x8_mmx) PRIVATE +sym(vp8_copy_mem8x8_mmx): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 4 + push rsi + push rdi + ; end prolog + + mov rsi, arg(0) ;src; + movq mm0, [rsi] + + movsxd rax, dword ptr arg(1) ;src_stride; + mov rdi, arg(2) ;dst; + + movq mm1, [rsi+rax] + movq mm2, [rsi+rax*2] + + movsxd rcx, dword ptr arg(3) ;dst_stride + lea rsi, [rsi+rax*2] + + movq [rdi], mm0 + add rsi, rax + + movq [rdi+rcx], mm1 + movq [rdi+rcx*2], mm2 + + + lea rdi, [rdi+rcx*2] + movq mm3, [rsi] + + add rdi, rcx + movq mm4, [rsi+rax] + + movq mm5, [rsi+rax*2] + movq [rdi], mm3 + + lea rsi, [rsi+rax*2] + movq [rdi+rcx], mm4 + + movq [rdi+rcx*2], mm5 + lea rdi, [rdi+rcx*2] + + movq mm0, [rsi+rax] + movq mm1, [rsi+rax*2] + + movq [rdi+rcx], mm0 + movq [rdi+rcx*2],mm1 + + ; begin epilog + pop rdi + pop rsi + UNSHADOW_ARGS + pop rbp + ret + + +;void copy_mem8x4_mmx( +; unsigned char *src, +; int src_stride, +; unsigned char *dst, +; int dst_stride +; ) +global sym(vp8_copy_mem8x4_mmx) PRIVATE +sym(vp8_copy_mem8x4_mmx): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 4 + push rsi + push rdi + ; end prolog + + mov rsi, arg(0) ;src; + movq mm0, [rsi] + + movsxd rax, dword ptr arg(1) ;src_stride; + mov rdi, arg(2) ;dst; + + movq mm1, [rsi+rax] + movq mm2, [rsi+rax*2] + + movsxd rcx, dword ptr arg(3) ;dst_stride + lea rsi, [rsi+rax*2] + + movq [rdi], mm0 + movq [rdi+rcx], mm1 + + movq [rdi+rcx*2], mm2 + lea rdi, [rdi+rcx*2] + + movq mm3, [rsi+rax] + movq [rdi+rcx], mm3 + + ; begin epilog + pop rdi + pop rsi + UNSHADOW_ARGS + pop rbp + ret diff --git a/vp8/common/x86/recon_sse2.asm b/vp8/common/x86/recon_sse2.asm new file mode 100644 index 0000000..57f8899 --- /dev/null +++ b/vp8/common/x86/recon_sse2.asm @@ -0,0 +1,118 @@ +; +; Copyright (c) 2010 The WebM project authors. All Rights Reserved. +; +; Use of this source code is governed by a BSD-style license +; that can be found in the LICENSE file in the root of the source +; tree. An additional intellectual property rights grant can be found +; in the file PATENTS. All contributing project authors may +; be found in the AUTHORS file in the root of the source tree. +; + + +%include "vpx_ports/x86_abi_support.asm" + +SECTION .text + +;void copy_mem16x16_sse2( +; unsigned char *src, +; int src_stride, +; unsigned char *dst, +; int dst_stride +; ) +global sym(vp8_copy_mem16x16_sse2) PRIVATE +sym(vp8_copy_mem16x16_sse2): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 4 + push rsi + push rdi + ; end prolog + + mov rsi, arg(0) ;src; + movdqu xmm0, [rsi] + + movsxd rax, dword ptr arg(1) ;src_stride; + mov rdi, arg(2) ;dst; + + movdqu xmm1, [rsi+rax] + movdqu xmm2, [rsi+rax*2] + + movsxd rcx, dword ptr arg(3) ;dst_stride + lea rsi, [rsi+rax*2] + + movdqa [rdi], xmm0 + add rsi, rax + + movdqa [rdi+rcx], xmm1 + movdqa [rdi+rcx*2],xmm2 + + lea rdi, [rdi+rcx*2] + movdqu xmm3, [rsi] + + add rdi, rcx + movdqu xmm4, [rsi+rax] + + movdqu xmm5, [rsi+rax*2] + lea rsi, [rsi+rax*2] + + movdqa [rdi], xmm3 + add rsi, rax + + movdqa [rdi+rcx], xmm4 + movdqa [rdi+rcx*2],xmm5 + + lea rdi, [rdi+rcx*2] + movdqu xmm0, [rsi] + + add rdi, rcx + movdqu xmm1, [rsi+rax] + + movdqu xmm2, [rsi+rax*2] + lea rsi, [rsi+rax*2] + + movdqa [rdi], xmm0 + add rsi, rax + + movdqa [rdi+rcx], xmm1 + + movdqa [rdi+rcx*2], xmm2 + movdqu xmm3, [rsi] + + movdqu xmm4, [rsi+rax] + lea rdi, [rdi+rcx*2] + + add rdi, rcx + movdqu xmm5, [rsi+rax*2] + + lea rsi, [rsi+rax*2] + movdqa [rdi], xmm3 + + add rsi, rax + movdqa [rdi+rcx], xmm4 + + movdqa [rdi+rcx*2],xmm5 + movdqu xmm0, [rsi] + + lea rdi, [rdi+rcx*2] + movdqu xmm1, [rsi+rax] + + add rdi, rcx + movdqu xmm2, [rsi+rax*2] + + lea rsi, [rsi+rax*2] + movdqa [rdi], xmm0 + + movdqa [rdi+rcx], xmm1 + movdqa [rdi+rcx*2],xmm2 + + movdqu xmm3, [rsi+rax] + lea rdi, [rdi+rcx*2] + + movdqa [rdi+rcx], xmm3 + + ; begin epilog + pop rdi + pop rsi + UNSHADOW_ARGS + pop rbp + ret diff --git a/vp8/common/x86/subpixel_mmx.asm b/vp8/common/x86/subpixel_mmx.asm new file mode 100644 index 0000000..1f3a2ba --- /dev/null +++ b/vp8/common/x86/subpixel_mmx.asm @@ -0,0 +1,546 @@ +; +; Copyright (c) 2010 The WebM project authors. All Rights Reserved. +; +; Use of this source code is governed by a BSD-style license +; that can be found in the LICENSE file in the root of the source +; tree. An additional intellectual property rights grant can be found +; in the file PATENTS. All contributing project authors may +; be found in the AUTHORS file in the root of the source tree. +; + + +%include "vpx_ports/x86_abi_support.asm" +extern sym(vp8_bilinear_filters_x86_8) + + +%define BLOCK_HEIGHT_WIDTH 4 +%define vp8_filter_weight 128 +%define VP8_FILTER_SHIFT 7 + +SECTION .text + +;void vp8_filter_block1d_h6_mmx +;( +; unsigned char *src_ptr, +; unsigned short *output_ptr, +; unsigned int src_pixels_per_line, +; unsigned int pixel_step, +; unsigned int output_height, +; unsigned int output_width, +; short * vp8_filter +;) +global sym(vp8_filter_block1d_h6_mmx) PRIVATE +sym(vp8_filter_block1d_h6_mmx): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 7 + GET_GOT rbx + push rsi + push rdi + ; end prolog + + mov rdx, arg(6) ;vp8_filter + + movq mm1, [rdx + 16] ; do both the negative taps first!!! + movq mm2, [rdx + 32] ; + movq mm6, [rdx + 48] ; + movq mm7, [rdx + 64] ; + + mov rdi, arg(1) ;output_ptr + mov rsi, arg(0) ;src_ptr + movsxd rcx, dword ptr arg(4) ;output_height + movsxd rax, dword ptr arg(5) ;output_width ; destination pitch? + pxor mm0, mm0 ; mm0 = 00000000 + +.nextrow: + movq mm3, [rsi-2] ; mm3 = p-2..p5 + movq mm4, mm3 ; mm4 = p-2..p5 + psrlq mm3, 8 ; mm3 = p-1..p5 + punpcklbw mm3, mm0 ; mm3 = p-1..p2 + pmullw mm3, mm1 ; mm3 *= kernel 1 modifiers. + + movq mm5, mm4 ; mm5 = p-2..p5 + punpckhbw mm4, mm0 ; mm5 = p2..p5 + pmullw mm4, mm7 ; mm5 *= kernel 4 modifiers + paddsw mm3, mm4 ; mm3 += mm5 + + movq mm4, mm5 ; mm4 = p-2..p5; + psrlq mm5, 16 ; mm5 = p0..p5; + punpcklbw mm5, mm0 ; mm5 = p0..p3 + pmullw mm5, mm2 ; mm5 *= kernel 2 modifiers + paddsw mm3, mm5 ; mm3 += mm5 + + movq mm5, mm4 ; mm5 = p-2..p5 + psrlq mm4, 24 ; mm4 = p1..p5 + punpcklbw mm4, mm0 ; mm4 = p1..p4 + pmullw mm4, mm6 ; mm5 *= kernel 3 modifiers + paddsw mm3, mm4 ; mm3 += mm5 + + ; do outer positive taps + movd mm4, [rsi+3] + punpcklbw mm4, mm0 ; mm5 = p3..p6 + pmullw mm4, [rdx+80] ; mm5 *= kernel 0 modifiers + paddsw mm3, mm4 ; mm3 += mm5 + + punpcklbw mm5, mm0 ; mm5 = p-2..p1 + pmullw mm5, [rdx] ; mm5 *= kernel 5 modifiers + paddsw mm3, mm5 ; mm3 += mm5 + + paddsw mm3, [GLOBAL(rd)] ; mm3 += round value + psraw mm3, VP8_FILTER_SHIFT ; mm3 /= 128 + packuswb mm3, mm0 ; pack and unpack to saturate + punpcklbw mm3, mm0 ; + + movq [rdi], mm3 ; store the results in the destination + +%if ABI_IS_32BIT + add rsi, dword ptr arg(2) ;src_pixels_per_line ; next line + add rdi, rax; +%else + movsxd r8, dword ptr arg(2) ;src_pixels_per_line + add rdi, rax; + + add rsi, r8 ; next line +%endif + + dec rcx ; decrement count + jnz .nextrow ; next row + + ; begin epilog + pop rdi + pop rsi + RESTORE_GOT + UNSHADOW_ARGS + pop rbp + ret + + +;void vp8_filter_block1dc_v6_mmx +;( +; short *src_ptr, +; unsigned char *output_ptr, +; int output_pitch, +; unsigned int pixels_per_line, +; unsigned int pixel_step, +; unsigned int output_height, +; unsigned int output_width, +; short * vp8_filter +;) +global sym(vp8_filter_block1dc_v6_mmx) PRIVATE +sym(vp8_filter_block1dc_v6_mmx): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 8 + GET_GOT rbx + push rsi + push rdi + ; end prolog + + movq mm5, [GLOBAL(rd)] + push rbx + mov rbx, arg(7) ;vp8_filter + movq mm1, [rbx + 16] ; do both the negative taps first!!! + movq mm2, [rbx + 32] ; + movq mm6, [rbx + 48] ; + movq mm7, [rbx + 64] ; + + movsxd rdx, dword ptr arg(3) ;pixels_per_line + mov rdi, arg(1) ;output_ptr + mov rsi, arg(0) ;src_ptr + sub rsi, rdx + sub rsi, rdx + movsxd rcx, DWORD PTR arg(5) ;output_height + movsxd rax, DWORD PTR arg(2) ;output_pitch ; destination pitch? + pxor mm0, mm0 ; mm0 = 00000000 + + +.nextrow_cv: + movq mm3, [rsi+rdx] ; mm3 = p0..p8 = row -1 + pmullw mm3, mm1 ; mm3 *= kernel 1 modifiers. + + + movq mm4, [rsi + 4*rdx] ; mm4 = p0..p3 = row 2 + pmullw mm4, mm7 ; mm4 *= kernel 4 modifiers. + paddsw mm3, mm4 ; mm3 += mm4 + + movq mm4, [rsi + 2*rdx] ; mm4 = p0..p3 = row 0 + pmullw mm4, mm2 ; mm4 *= kernel 2 modifiers. + paddsw mm3, mm4 ; mm3 += mm4 + + movq mm4, [rsi] ; mm4 = p0..p3 = row -2 + pmullw mm4, [rbx] ; mm4 *= kernel 0 modifiers. + paddsw mm3, mm4 ; mm3 += mm4 + + + add rsi, rdx ; move source forward 1 line to avoid 3 * pitch + movq mm4, [rsi + 2*rdx] ; mm4 = p0..p3 = row 1 + pmullw mm4, mm6 ; mm4 *= kernel 3 modifiers. + paddsw mm3, mm4 ; mm3 += mm4 + + movq mm4, [rsi + 4*rdx] ; mm4 = p0..p3 = row 3 + pmullw mm4, [rbx +80] ; mm4 *= kernel 3 modifiers. + paddsw mm3, mm4 ; mm3 += mm4 + + + paddsw mm3, mm5 ; mm3 += round value + psraw mm3, VP8_FILTER_SHIFT ; mm3 /= 128 + packuswb mm3, mm0 ; pack and saturate + + movd [rdi],mm3 ; store the results in the destination + ; the subsequent iterations repeat 3 out of 4 of these reads. Since the + ; recon block should be in cache this shouldn't cost much. Its obviously + ; avoidable!!!. + lea rdi, [rdi+rax] ; + dec rcx ; decrement count + jnz .nextrow_cv ; next row + + pop rbx + + ; begin epilog + pop rdi + pop rsi + RESTORE_GOT + UNSHADOW_ARGS + pop rbp + ret + + +;void bilinear_predict8x4_mmx +;( +; unsigned char *src_ptr, +; int src_pixels_per_line, +; int xoffset, +; int yoffset, +; unsigned char *dst_ptr, +; int dst_pitch +;) +global sym(vp8_bilinear_predict8x4_mmx) PRIVATE +sym(vp8_bilinear_predict8x4_mmx): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 6 + GET_GOT rbx + push rsi + push rdi + ; end prolog + + ;const short *HFilter = vp8_bilinear_filters_x86_8[xoffset]; + ;const short *VFilter = vp8_bilinear_filters_x86_8[yoffset]; + + movsxd rax, dword ptr arg(2) ;xoffset + mov rdi, arg(4) ;dst_ptr ; + + lea rcx, [GLOBAL(sym(vp8_bilinear_filters_x86_8))] + shl rax, 5 + + mov rsi, arg(0) ;src_ptr ; + add rax, rcx + + movsxd rdx, dword ptr arg(5) ;dst_pitch + movq mm1, [rax] ; + + movq mm2, [rax+16] ; + movsxd rax, dword ptr arg(3) ;yoffset + + pxor mm0, mm0 ; + shl rax, 5 + + add rax, rcx + lea rcx, [rdi+rdx*4] ; + + movsxd rdx, dword ptr arg(1) ;src_pixels_per_line ; + + ; get the first horizontal line done ; + movq mm3, [rsi] ; xx 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 + movq mm4, mm3 ; make a copy of current line + + punpcklbw mm3, mm0 ; xx 00 01 02 03 04 05 06 + punpckhbw mm4, mm0 ; + + pmullw mm3, mm1 ; + pmullw mm4, mm1 ; + + movq mm5, [rsi+1] ; + movq mm6, mm5 ; + + punpcklbw mm5, mm0 ; + punpckhbw mm6, mm0 ; + + pmullw mm5, mm2 ; + pmullw mm6, mm2 ; + + paddw mm3, mm5 ; + paddw mm4, mm6 ; + + paddw mm3, [GLOBAL(rd)] ; xmm3 += round value + psraw mm3, VP8_FILTER_SHIFT ; xmm3 /= 128 + + paddw mm4, [GLOBAL(rd)] ; + psraw mm4, VP8_FILTER_SHIFT ; + + movq mm7, mm3 ; + packuswb mm7, mm4 ; + + add rsi, rdx ; next line +.next_row_8x4: + movq mm3, [rsi] ; xx 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 + movq mm4, mm3 ; make a copy of current line + + punpcklbw mm3, mm0 ; xx 00 01 02 03 04 05 06 + punpckhbw mm4, mm0 ; + + pmullw mm3, mm1 ; + pmullw mm4, mm1 ; + + movq mm5, [rsi+1] ; + movq mm6, mm5 ; + + punpcklbw mm5, mm0 ; + punpckhbw mm6, mm0 ; + + pmullw mm5, mm2 ; + pmullw mm6, mm2 ; + + paddw mm3, mm5 ; + paddw mm4, mm6 ; + + movq mm5, mm7 ; + movq mm6, mm7 ; + + punpcklbw mm5, mm0 ; + punpckhbw mm6, mm0 + + pmullw mm5, [rax] ; + pmullw mm6, [rax] ; + + paddw mm3, [GLOBAL(rd)] ; xmm3 += round value + psraw mm3, VP8_FILTER_SHIFT ; xmm3 /= 128 + + paddw mm4, [GLOBAL(rd)] ; + psraw mm4, VP8_FILTER_SHIFT ; + + movq mm7, mm3 ; + packuswb mm7, mm4 ; + + + pmullw mm3, [rax+16] ; + pmullw mm4, [rax+16] ; + + paddw mm3, mm5 ; + paddw mm4, mm6 ; + + + paddw mm3, [GLOBAL(rd)] ; xmm3 += round value + psraw mm3, VP8_FILTER_SHIFT ; xmm3 /= 128 + + paddw mm4, [GLOBAL(rd)] ; + psraw mm4, VP8_FILTER_SHIFT ; + + packuswb mm3, mm4 + + movq [rdi], mm3 ; store the results in the destination + +%if ABI_IS_32BIT + add rsi, rdx ; next line + add rdi, dword ptr arg(5) ;dst_pitch ; +%else + movsxd r8, dword ptr arg(5) ;dst_pitch + add rsi, rdx ; next line + add rdi, r8 +%endif + cmp rdi, rcx ; + jne .next_row_8x4 + + ; begin epilog + pop rdi + pop rsi + RESTORE_GOT + UNSHADOW_ARGS + pop rbp + ret + + +;void bilinear_predict4x4_mmx +;( +; unsigned char *src_ptr, +; int src_pixels_per_line, +; int xoffset, +; int yoffset, +; unsigned char *dst_ptr, +; int dst_pitch +;) +global sym(vp8_bilinear_predict4x4_mmx) PRIVATE +sym(vp8_bilinear_predict4x4_mmx): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 6 + GET_GOT rbx + push rsi + push rdi + ; end prolog + + ;const short *HFilter = vp8_bilinear_filters_x86_8[xoffset]; + ;const short *VFilter = vp8_bilinear_filters_x86_8[yoffset]; + + movsxd rax, dword ptr arg(2) ;xoffset + mov rdi, arg(4) ;dst_ptr ; + + lea rcx, [GLOBAL(sym(vp8_bilinear_filters_x86_8))] + shl rax, 5 + + add rax, rcx ; HFilter + mov rsi, arg(0) ;src_ptr ; + + movsxd rdx, dword ptr arg(5) ;ldst_pitch + movq mm1, [rax] ; + + movq mm2, [rax+16] ; + movsxd rax, dword ptr arg(3) ;yoffset + + pxor mm0, mm0 ; + shl rax, 5 + + add rax, rcx + lea rcx, [rdi+rdx*4] ; + + movsxd rdx, dword ptr arg(1) ;src_pixels_per_line ; + + ; get the first horizontal line done ; + movd mm3, [rsi] ; xx 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 + punpcklbw mm3, mm0 ; xx 00 01 02 03 04 05 06 + + pmullw mm3, mm1 ; + movd mm5, [rsi+1] ; + + punpcklbw mm5, mm0 ; + pmullw mm5, mm2 ; + + paddw mm3, mm5 ; + paddw mm3, [GLOBAL(rd)] ; xmm3 += round value + + psraw mm3, VP8_FILTER_SHIFT ; xmm3 /= 128 + + movq mm7, mm3 ; + packuswb mm7, mm0 ; + + add rsi, rdx ; next line +.next_row_4x4: + movd mm3, [rsi] ; xx 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 + punpcklbw mm3, mm0 ; xx 00 01 02 03 04 05 06 + + pmullw mm3, mm1 ; + movd mm5, [rsi+1] ; + + punpcklbw mm5, mm0 ; + pmullw mm5, mm2 ; + + paddw mm3, mm5 ; + + movq mm5, mm7 ; + punpcklbw mm5, mm0 ; + + pmullw mm5, [rax] ; + paddw mm3, [GLOBAL(rd)] ; xmm3 += round value + + psraw mm3, VP8_FILTER_SHIFT ; xmm3 /= 128 + movq mm7, mm3 ; + + packuswb mm7, mm0 ; + + pmullw mm3, [rax+16] ; + paddw mm3, mm5 ; + + + paddw mm3, [GLOBAL(rd)] ; xmm3 += round value + psraw mm3, VP8_FILTER_SHIFT ; xmm3 /= 128 + + packuswb mm3, mm0 + movd [rdi], mm3 ; store the results in the destination + +%if ABI_IS_32BIT + add rsi, rdx ; next line + add rdi, dword ptr arg(5) ;dst_pitch ; +%else + movsxd r8, dword ptr arg(5) ;dst_pitch ; + add rsi, rdx ; next line + add rdi, r8 +%endif + + cmp rdi, rcx ; + jne .next_row_4x4 + + ; begin epilog + pop rdi + pop rsi + RESTORE_GOT + UNSHADOW_ARGS + pop rbp + ret + + + +SECTION_RODATA +align 16 +rd: + times 4 dw 0x40 + +align 16 +global HIDDEN_DATA(sym(vp8_six_tap_x86)) +sym(vp8_six_tap_x86): + times 8 dw 0 + times 8 dw 0 + times 8 dw 128 + times 8 dw 0 + times 8 dw 0 + times 8 dw 0 + + times 8 dw 0 + times 8 dw -6 + times 8 dw 123 + times 8 dw 12 + times 8 dw -1 + times 8 dw 0 + + times 8 dw 2 + times 8 dw -11 + times 8 dw 108 + times 8 dw 36 + times 8 dw -8 + times 8 dw 1 + + times 8 dw 0 + times 8 dw -9 + times 8 dw 93 + times 8 dw 50 + times 8 dw -6 + times 8 dw 0 + + times 8 dw 3 + times 8 dw -16 + times 8 dw 77 + times 8 dw 77 + times 8 dw -16 + times 8 dw 3 + + times 8 dw 0 + times 8 dw -6 + times 8 dw 50 + times 8 dw 93 + times 8 dw -9 + times 8 dw 0 + + times 8 dw 1 + times 8 dw -8 + times 8 dw 36 + times 8 dw 108 + times 8 dw -11 + times 8 dw 2 + + times 8 dw 0 + times 8 dw -1 + times 8 dw 12 + times 8 dw 123 + times 8 dw -6 + times 8 dw 0 + + diff --git a/vp8/common/x86/subpixel_sse2.asm b/vp8/common/x86/subpixel_sse2.asm new file mode 100644 index 0000000..6e70f6d --- /dev/null +++ b/vp8/common/x86/subpixel_sse2.asm @@ -0,0 +1,1377 @@ +; +; Copyright (c) 2010 The WebM project authors. All Rights Reserved. +; +; Use of this source code is governed by a BSD-style license +; that can be found in the LICENSE file in the root of the source +; tree. An additional intellectual property rights grant can be found +; in the file PATENTS. All contributing project authors may +; be found in the AUTHORS file in the root of the source tree. +; + + +%include "vpx_ports/x86_abi_support.asm" +extern sym(vp8_bilinear_filters_x86_8) + +%define BLOCK_HEIGHT_WIDTH 4 +%define VP8_FILTER_WEIGHT 128 +%define VP8_FILTER_SHIFT 7 + +SECTION .text + +;/************************************************************************************ +; Notes: filter_block1d_h6 applies a 6 tap filter horizontally to the input pixels. The +; input pixel array has output_height rows. This routine assumes that output_height is an +; even number. This function handles 8 pixels in horizontal direction, calculating ONE +; rows each iteration to take advantage of the 128 bits operations. +;*************************************************************************************/ +;void vp8_filter_block1d8_h6_sse2 +;( +; unsigned char *src_ptr, +; unsigned short *output_ptr, +; unsigned int src_pixels_per_line, +; unsigned int pixel_step, +; unsigned int output_height, +; unsigned int output_width, +; short *vp8_filter +;) +global sym(vp8_filter_block1d8_h6_sse2) PRIVATE +sym(vp8_filter_block1d8_h6_sse2): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 7 + SAVE_XMM 7 + GET_GOT rbx + push rsi + push rdi + ; end prolog + + mov rdx, arg(6) ;vp8_filter + mov rsi, arg(0) ;src_ptr + + mov rdi, arg(1) ;output_ptr + + movsxd rcx, dword ptr arg(4) ;output_height + movsxd rax, dword ptr arg(2) ;src_pixels_per_line ; Pitch for Source +%if ABI_IS_32BIT=0 + movsxd r8, dword ptr arg(5) ;output_width +%endif + pxor xmm0, xmm0 ; clear xmm0 for unpack + +.filter_block1d8_h6_rowloop: + movq xmm3, MMWORD PTR [rsi - 2] + movq xmm1, MMWORD PTR [rsi + 6] + + prefetcht2 [rsi+rax-2] + + pslldq xmm1, 8 + por xmm1, xmm3 + + movdqa xmm4, xmm1 + movdqa xmm5, xmm1 + + movdqa xmm6, xmm1 + movdqa xmm7, xmm1 + + punpcklbw xmm3, xmm0 ; xx05 xx04 xx03 xx02 xx01 xx01 xx-1 xx-2 + psrldq xmm4, 1 ; xx 0d 0c 0b 0a 09 08 07 06 05 04 03 02 01 00 -1 + + pmullw xmm3, XMMWORD PTR [rdx] ; x[-2] * H[-2]; Tap 1 + punpcklbw xmm4, xmm0 ; xx06 xx05 xx04 xx03 xx02 xx01 xx00 xx-1 + + psrldq xmm5, 2 ; xx xx 0d 0c 0b 0a 09 08 07 06 05 04 03 02 01 00 + pmullw xmm4, XMMWORD PTR [rdx+16] ; x[-1] * H[-1]; Tap 2 + + + punpcklbw xmm5, xmm0 ; xx07 xx06 xx05 xx04 xx03 xx02 xx01 xx00 + psrldq xmm6, 3 ; xx xx xx 0d 0c 0b 0a 09 08 07 06 05 04 03 02 01 + + pmullw xmm5, [rdx+32] ; x[ 0] * H[ 0]; Tap 3 + + punpcklbw xmm6, xmm0 ; xx08 xx07 xx06 xx05 xx04 xx03 xx02 xx01 + psrldq xmm7, 4 ; xx xx xx xx 0d 0c 0b 0a 09 08 07 06 05 04 03 02 + + pmullw xmm6, [rdx+48] ; x[ 1] * h[ 1] ; Tap 4 + + punpcklbw xmm7, xmm0 ; xx09 xx08 xx07 xx06 xx05 xx04 xx03 xx02 + psrldq xmm1, 5 ; xx xx xx xx xx 0d 0c 0b 0a 09 08 07 06 05 04 03 + + + pmullw xmm7, [rdx+64] ; x[ 2] * h[ 2] ; Tap 5 + + punpcklbw xmm1, xmm0 ; xx0a xx09 xx08 xx07 xx06 xx05 xx04 xx03 + pmullw xmm1, [rdx+80] ; x[ 3] * h[ 3] ; Tap 6 + + + paddsw xmm4, xmm7 + paddsw xmm4, xmm5 + + paddsw xmm4, xmm3 + paddsw xmm4, xmm6 + + paddsw xmm4, xmm1 + paddsw xmm4, [GLOBAL(rd)] + + psraw xmm4, 7 + + packuswb xmm4, xmm0 + punpcklbw xmm4, xmm0 + + movdqa XMMWORD Ptr [rdi], xmm4 + lea rsi, [rsi + rax] + +%if ABI_IS_32BIT + add rdi, DWORD Ptr arg(5) ;[output_width] +%else + add rdi, r8 +%endif + dec rcx + + jnz .filter_block1d8_h6_rowloop ; next row + + ; begin epilog + pop rdi + pop rsi + RESTORE_GOT + RESTORE_XMM + UNSHADOW_ARGS + pop rbp + ret + + +;void vp8_filter_block1d16_h6_sse2 +;( +; unsigned char *src_ptr, +; unsigned short *output_ptr, +; unsigned int src_pixels_per_line, +; unsigned int pixel_step, +; unsigned int output_height, +; unsigned int output_width, +; short *vp8_filter +;) +;/************************************************************************************ +; Notes: filter_block1d_h6 applies a 6 tap filter horizontally to the input pixels. The +; input pixel array has output_height rows. This routine assumes that output_height is an +; even number. This function handles 8 pixels in horizontal direction, calculating ONE +; rows each iteration to take advantage of the 128 bits operations. +;*************************************************************************************/ +global sym(vp8_filter_block1d16_h6_sse2) PRIVATE +sym(vp8_filter_block1d16_h6_sse2): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 7 + SAVE_XMM 7 + GET_GOT rbx + push rsi + push rdi + ; end prolog + + mov rdx, arg(6) ;vp8_filter + mov rsi, arg(0) ;src_ptr + + mov rdi, arg(1) ;output_ptr + + movsxd rcx, dword ptr arg(4) ;output_height + movsxd rax, dword ptr arg(2) ;src_pixels_per_line ; Pitch for Source +%if ABI_IS_32BIT=0 + movsxd r8, dword ptr arg(5) ;output_width +%endif + + pxor xmm0, xmm0 ; clear xmm0 for unpack + +.filter_block1d16_h6_sse2_rowloop: + movq xmm3, MMWORD PTR [rsi - 2] + movq xmm1, MMWORD PTR [rsi + 6] + + ; Load from 11 to avoid reading out of bounds. + movq xmm2, MMWORD PTR [rsi +11] + ; The lower bits are not cleared before 'or'ing with xmm1, + ; but that is OK because the values in the overlapping positions + ; are already equal to the ones in xmm1. + pslldq xmm2, 5 + + por xmm2, xmm1 + prefetcht2 [rsi+rax-2] + + pslldq xmm1, 8 + por xmm1, xmm3 + + movdqa xmm4, xmm1 + movdqa xmm5, xmm1 + + movdqa xmm6, xmm1 + movdqa xmm7, xmm1 + + punpcklbw xmm3, xmm0 ; xx05 xx04 xx03 xx02 xx01 xx01 xx-1 xx-2 + psrldq xmm4, 1 ; xx 0d 0c 0b 0a 09 08 07 06 05 04 03 02 01 00 -1 + + pmullw xmm3, XMMWORD PTR [rdx] ; x[-2] * H[-2]; Tap 1 + punpcklbw xmm4, xmm0 ; xx06 xx05 xx04 xx03 xx02 xx01 xx00 xx-1 + + psrldq xmm5, 2 ; xx xx 0d 0c 0b 0a 09 08 07 06 05 04 03 02 01 00 + pmullw xmm4, XMMWORD PTR [rdx+16] ; x[-1] * H[-1]; Tap 2 + + + punpcklbw xmm5, xmm0 ; xx07 xx06 xx05 xx04 xx03 xx02 xx01 xx00 + psrldq xmm6, 3 ; xx xx xx 0d 0c 0b 0a 09 08 07 06 05 04 03 02 01 + + pmullw xmm5, [rdx+32] ; x[ 0] * H[ 0]; Tap 3 + + punpcklbw xmm6, xmm0 ; xx08 xx07 xx06 xx05 xx04 xx03 xx02 xx01 + psrldq xmm7, 4 ; xx xx xx xx 0d 0c 0b 0a 09 08 07 06 05 04 03 02 + + pmullw xmm6, [rdx+48] ; x[ 1] * h[ 1] ; Tap 4 + + punpcklbw xmm7, xmm0 ; xx09 xx08 xx07 xx06 xx05 xx04 xx03 xx02 + psrldq xmm1, 5 ; xx xx xx xx xx 0d 0c 0b 0a 09 08 07 06 05 04 03 + + + pmullw xmm7, [rdx+64] ; x[ 2] * h[ 2] ; Tap 5 + + punpcklbw xmm1, xmm0 ; xx0a xx09 xx08 xx07 xx06 xx05 xx04 xx03 + pmullw xmm1, [rdx+80] ; x[ 3] * h[ 3] ; Tap 6 + + paddsw xmm4, xmm7 + paddsw xmm4, xmm5 + + paddsw xmm4, xmm3 + paddsw xmm4, xmm6 + + paddsw xmm4, xmm1 + paddsw xmm4, [GLOBAL(rd)] + + psraw xmm4, 7 + + packuswb xmm4, xmm0 + punpcklbw xmm4, xmm0 + + movdqa XMMWORD Ptr [rdi], xmm4 + + movdqa xmm3, xmm2 + movdqa xmm4, xmm2 + + movdqa xmm5, xmm2 + movdqa xmm6, xmm2 + + movdqa xmm7, xmm2 + + punpcklbw xmm3, xmm0 ; xx05 xx04 xx03 xx02 xx01 xx01 xx-1 xx-2 + psrldq xmm4, 1 ; xx 0d 0c 0b 0a 09 08 07 06 05 04 03 02 01 00 -1 + + pmullw xmm3, XMMWORD PTR [rdx] ; x[-2] * H[-2]; Tap 1 + punpcklbw xmm4, xmm0 ; xx06 xx05 xx04 xx03 xx02 xx01 xx00 xx-1 + + psrldq xmm5, 2 ; xx xx 0d 0c 0b 0a 09 08 07 06 05 04 03 02 01 00 + pmullw xmm4, XMMWORD PTR [rdx+16] ; x[-1] * H[-1]; Tap 2 + + + punpcklbw xmm5, xmm0 ; xx07 xx06 xx05 xx04 xx03 xx02 xx01 xx00 + psrldq xmm6, 3 ; xx xx xx 0d 0c 0b 0a 09 08 07 06 05 04 03 02 01 + + pmullw xmm5, [rdx+32] ; x[ 0] * H[ 0]; Tap 3 + + punpcklbw xmm6, xmm0 ; xx08 xx07 xx06 xx05 xx04 xx03 xx02 xx01 + psrldq xmm7, 4 ; xx xx xx xx 0d 0c 0b 0a 09 08 07 06 05 04 03 02 + + pmullw xmm6, [rdx+48] ; x[ 1] * h[ 1] ; Tap 4 + + punpcklbw xmm7, xmm0 ; xx09 xx08 xx07 xx06 xx05 xx04 xx03 xx02 + psrldq xmm2, 5 ; xx xx xx xx xx 0d 0c 0b 0a 09 08 07 06 05 04 03 + + pmullw xmm7, [rdx+64] ; x[ 2] * h[ 2] ; Tap 5 + + punpcklbw xmm2, xmm0 ; xx0a xx09 xx08 xx07 xx06 xx05 xx04 xx03 + pmullw xmm2, [rdx+80] ; x[ 3] * h[ 3] ; Tap 6 + + + paddsw xmm4, xmm7 + paddsw xmm4, xmm5 + + paddsw xmm4, xmm3 + paddsw xmm4, xmm6 + + paddsw xmm4, xmm2 + paddsw xmm4, [GLOBAL(rd)] + + psraw xmm4, 7 + + packuswb xmm4, xmm0 + punpcklbw xmm4, xmm0 + + movdqa XMMWORD Ptr [rdi+16], xmm4 + + lea rsi, [rsi + rax] +%if ABI_IS_32BIT + add rdi, DWORD Ptr arg(5) ;[output_width] +%else + add rdi, r8 +%endif + + dec rcx + jnz .filter_block1d16_h6_sse2_rowloop ; next row + + ; begin epilog + pop rdi + pop rsi + RESTORE_GOT + RESTORE_XMM + UNSHADOW_ARGS + pop rbp + ret + + +;void vp8_filter_block1d8_v6_sse2 +;( +; short *src_ptr, +; unsigned char *output_ptr, +; int dst_ptich, +; unsigned int pixels_per_line, +; unsigned int pixel_step, +; unsigned int output_height, +; unsigned int output_width, +; short * vp8_filter +;) +;/************************************************************************************ +; Notes: filter_block1d8_v6 applies a 6 tap filter vertically to the input pixels. The +; input pixel array has output_height rows. +;*************************************************************************************/ +global sym(vp8_filter_block1d8_v6_sse2) PRIVATE +sym(vp8_filter_block1d8_v6_sse2): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 8 + SAVE_XMM 7 + GET_GOT rbx + push rsi + push rdi + ; end prolog + + mov rax, arg(7) ;vp8_filter + movsxd rdx, dword ptr arg(3) ;pixels_per_line + + mov rdi, arg(1) ;output_ptr + mov rsi, arg(0) ;src_ptr + + sub rsi, rdx + sub rsi, rdx + + movsxd rcx, DWORD PTR arg(5) ;[output_height] + pxor xmm0, xmm0 ; clear xmm0 + + movdqa xmm7, XMMWORD PTR [GLOBAL(rd)] +%if ABI_IS_32BIT=0 + movsxd r8, dword ptr arg(2) ; dst_ptich +%endif + +.vp8_filter_block1d8_v6_sse2_loop: + movdqa xmm1, XMMWORD PTR [rsi] + pmullw xmm1, [rax] + + movdqa xmm2, XMMWORD PTR [rsi + rdx] + pmullw xmm2, [rax + 16] + + movdqa xmm3, XMMWORD PTR [rsi + rdx * 2] + pmullw xmm3, [rax + 32] + + movdqa xmm5, XMMWORD PTR [rsi + rdx * 4] + pmullw xmm5, [rax + 64] + + add rsi, rdx + movdqa xmm4, XMMWORD PTR [rsi + rdx * 2] + + pmullw xmm4, [rax + 48] + movdqa xmm6, XMMWORD PTR [rsi + rdx * 4] + + pmullw xmm6, [rax + 80] + + paddsw xmm2, xmm5 + paddsw xmm2, xmm3 + + paddsw xmm2, xmm1 + paddsw xmm2, xmm4 + + paddsw xmm2, xmm6 + paddsw xmm2, xmm7 + + psraw xmm2, 7 + packuswb xmm2, xmm0 ; pack and saturate + + movq QWORD PTR [rdi], xmm2 ; store the results in the destination +%if ABI_IS_32BIT + add rdi, DWORD PTR arg(2) ;[dst_ptich] +%else + add rdi, r8 +%endif + dec rcx ; decrement count + jnz .vp8_filter_block1d8_v6_sse2_loop ; next row + + ; begin epilog + pop rdi + pop rsi + RESTORE_GOT + RESTORE_XMM + UNSHADOW_ARGS + pop rbp + ret + + +;void vp8_filter_block1d16_v6_sse2 +;( +; unsigned short *src_ptr, +; unsigned char *output_ptr, +; int dst_ptich, +; unsigned int pixels_per_line, +; unsigned int pixel_step, +; unsigned int output_height, +; unsigned int output_width, +; const short *vp8_filter +;) +;/************************************************************************************ +; Notes: filter_block1d16_v6 applies a 6 tap filter vertically to the input pixels. The +; input pixel array has output_height rows. +;*************************************************************************************/ +global sym(vp8_filter_block1d16_v6_sse2) PRIVATE +sym(vp8_filter_block1d16_v6_sse2): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 8 + SAVE_XMM 7 + GET_GOT rbx + push rsi + push rdi + ; end prolog + + mov rax, arg(7) ;vp8_filter + movsxd rdx, dword ptr arg(3) ;pixels_per_line + + mov rdi, arg(1) ;output_ptr + mov rsi, arg(0) ;src_ptr + + sub rsi, rdx + sub rsi, rdx + + movsxd rcx, DWORD PTR arg(5) ;[output_height] +%if ABI_IS_32BIT=0 + movsxd r8, dword ptr arg(2) ; dst_ptich +%endif + +.vp8_filter_block1d16_v6_sse2_loop: +; The order for adding 6-tap is 2 5 3 1 4 6. Read in data in that order. + movdqa xmm1, XMMWORD PTR [rsi + rdx] ; line 2 + movdqa xmm2, XMMWORD PTR [rsi + rdx + 16] + pmullw xmm1, [rax + 16] + pmullw xmm2, [rax + 16] + + movdqa xmm3, XMMWORD PTR [rsi + rdx * 4] ; line 5 + movdqa xmm4, XMMWORD PTR [rsi + rdx * 4 + 16] + pmullw xmm3, [rax + 64] + pmullw xmm4, [rax + 64] + + movdqa xmm5, XMMWORD PTR [rsi + rdx * 2] ; line 3 + movdqa xmm6, XMMWORD PTR [rsi + rdx * 2 + 16] + pmullw xmm5, [rax + 32] + pmullw xmm6, [rax + 32] + + movdqa xmm7, XMMWORD PTR [rsi] ; line 1 + movdqa xmm0, XMMWORD PTR [rsi + 16] + pmullw xmm7, [rax] + pmullw xmm0, [rax] + + paddsw xmm1, xmm3 + paddsw xmm2, xmm4 + paddsw xmm1, xmm5 + paddsw xmm2, xmm6 + paddsw xmm1, xmm7 + paddsw xmm2, xmm0 + + add rsi, rdx + + movdqa xmm3, XMMWORD PTR [rsi + rdx * 2] ; line 4 + movdqa xmm4, XMMWORD PTR [rsi + rdx * 2 + 16] + pmullw xmm3, [rax + 48] + pmullw xmm4, [rax + 48] + + movdqa xmm5, XMMWORD PTR [rsi + rdx * 4] ; line 6 + movdqa xmm6, XMMWORD PTR [rsi + rdx * 4 + 16] + pmullw xmm5, [rax + 80] + pmullw xmm6, [rax + 80] + + movdqa xmm7, XMMWORD PTR [GLOBAL(rd)] + pxor xmm0, xmm0 ; clear xmm0 + + paddsw xmm1, xmm3 + paddsw xmm2, xmm4 + paddsw xmm1, xmm5 + paddsw xmm2, xmm6 + + paddsw xmm1, xmm7 + paddsw xmm2, xmm7 + + psraw xmm1, 7 + psraw xmm2, 7 + + packuswb xmm1, xmm2 ; pack and saturate + movdqa XMMWORD PTR [rdi], xmm1 ; store the results in the destination +%if ABI_IS_32BIT + add rdi, DWORD PTR arg(2) ;[dst_ptich] +%else + add rdi, r8 +%endif + dec rcx ; decrement count + jnz .vp8_filter_block1d16_v6_sse2_loop ; next row + + ; begin epilog + pop rdi + pop rsi + RESTORE_GOT + RESTORE_XMM + UNSHADOW_ARGS + pop rbp + ret + + +;void vp8_filter_block1d8_h6_only_sse2 +;( +; unsigned char *src_ptr, +; unsigned int src_pixels_per_line, +; unsigned char *output_ptr, +; int dst_ptich, +; unsigned int output_height, +; const short *vp8_filter +;) +; First-pass filter only when yoffset==0 +global sym(vp8_filter_block1d8_h6_only_sse2) PRIVATE +sym(vp8_filter_block1d8_h6_only_sse2): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 6 + SAVE_XMM 7 + GET_GOT rbx + push rsi + push rdi + ; end prolog + + mov rdx, arg(5) ;vp8_filter + mov rsi, arg(0) ;src_ptr + + mov rdi, arg(2) ;output_ptr + + movsxd rcx, dword ptr arg(4) ;output_height + movsxd rax, dword ptr arg(1) ;src_pixels_per_line ; Pitch for Source +%if ABI_IS_32BIT=0 + movsxd r8, dword ptr arg(3) ;dst_ptich +%endif + pxor xmm0, xmm0 ; clear xmm0 for unpack + +.filter_block1d8_h6_only_rowloop: + movq xmm3, MMWORD PTR [rsi - 2] + movq xmm1, MMWORD PTR [rsi + 6] + + prefetcht2 [rsi+rax-2] + + pslldq xmm1, 8 + por xmm1, xmm3 + + movdqa xmm4, xmm1 + movdqa xmm5, xmm1 + + movdqa xmm6, xmm1 + movdqa xmm7, xmm1 + + punpcklbw xmm3, xmm0 ; xx05 xx04 xx03 xx02 xx01 xx01 xx-1 xx-2 + psrldq xmm4, 1 ; xx 0d 0c 0b 0a 09 08 07 06 05 04 03 02 01 00 -1 + + pmullw xmm3, XMMWORD PTR [rdx] ; x[-2] * H[-2]; Tap 1 + punpcklbw xmm4, xmm0 ; xx06 xx05 xx04 xx03 xx02 xx01 xx00 xx-1 + + psrldq xmm5, 2 ; xx xx 0d 0c 0b 0a 09 08 07 06 05 04 03 02 01 00 + pmullw xmm4, XMMWORD PTR [rdx+16] ; x[-1] * H[-1]; Tap 2 + + + punpcklbw xmm5, xmm0 ; xx07 xx06 xx05 xx04 xx03 xx02 xx01 xx00 + psrldq xmm6, 3 ; xx xx xx 0d 0c 0b 0a 09 08 07 06 05 04 03 02 01 + + pmullw xmm5, [rdx+32] ; x[ 0] * H[ 0]; Tap 3 + + punpcklbw xmm6, xmm0 ; xx08 xx07 xx06 xx05 xx04 xx03 xx02 xx01 + psrldq xmm7, 4 ; xx xx xx xx 0d 0c 0b 0a 09 08 07 06 05 04 03 02 + + pmullw xmm6, [rdx+48] ; x[ 1] * h[ 1] ; Tap 4 + + punpcklbw xmm7, xmm0 ; xx09 xx08 xx07 xx06 xx05 xx04 xx03 xx02 + psrldq xmm1, 5 ; xx xx xx xx xx 0d 0c 0b 0a 09 08 07 06 05 04 03 + + + pmullw xmm7, [rdx+64] ; x[ 2] * h[ 2] ; Tap 5 + + punpcklbw xmm1, xmm0 ; xx0a xx09 xx08 xx07 xx06 xx05 xx04 xx03 + pmullw xmm1, [rdx+80] ; x[ 3] * h[ 3] ; Tap 6 + + + paddsw xmm4, xmm7 + paddsw xmm4, xmm5 + + paddsw xmm4, xmm3 + paddsw xmm4, xmm6 + + paddsw xmm4, xmm1 + paddsw xmm4, [GLOBAL(rd)] + + psraw xmm4, 7 + + packuswb xmm4, xmm0 + + movq QWORD PTR [rdi], xmm4 ; store the results in the destination + lea rsi, [rsi + rax] + +%if ABI_IS_32BIT + add rdi, DWORD Ptr arg(3) ;dst_ptich +%else + add rdi, r8 +%endif + dec rcx + + jnz .filter_block1d8_h6_only_rowloop ; next row + + ; begin epilog + pop rdi + pop rsi + RESTORE_GOT + RESTORE_XMM + UNSHADOW_ARGS + pop rbp + ret + + +;void vp8_filter_block1d16_h6_only_sse2 +;( +; unsigned char *src_ptr, +; unsigned int src_pixels_per_line, +; unsigned char *output_ptr, +; int dst_ptich, +; unsigned int output_height, +; const short *vp8_filter +;) +; First-pass filter only when yoffset==0 +global sym(vp8_filter_block1d16_h6_only_sse2) PRIVATE +sym(vp8_filter_block1d16_h6_only_sse2): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 6 + SAVE_XMM 7 + GET_GOT rbx + push rsi + push rdi + ; end prolog + + mov rdx, arg(5) ;vp8_filter + mov rsi, arg(0) ;src_ptr + + mov rdi, arg(2) ;output_ptr + + movsxd rcx, dword ptr arg(4) ;output_height + movsxd rax, dword ptr arg(1) ;src_pixels_per_line ; Pitch for Source +%if ABI_IS_32BIT=0 + movsxd r8, dword ptr arg(3) ;dst_ptich +%endif + + pxor xmm0, xmm0 ; clear xmm0 for unpack + +.filter_block1d16_h6_only_sse2_rowloop: + movq xmm3, MMWORD PTR [rsi - 2] + movq xmm1, MMWORD PTR [rsi + 6] + + movq xmm2, MMWORD PTR [rsi +14] + pslldq xmm2, 8 + + por xmm2, xmm1 + prefetcht2 [rsi+rax-2] + + pslldq xmm1, 8 + por xmm1, xmm3 + + movdqa xmm4, xmm1 + movdqa xmm5, xmm1 + + movdqa xmm6, xmm1 + movdqa xmm7, xmm1 + + punpcklbw xmm3, xmm0 ; xx05 xx04 xx03 xx02 xx01 xx01 xx-1 xx-2 + psrldq xmm4, 1 ; xx 0d 0c 0b 0a 09 08 07 06 05 04 03 02 01 00 -1 + + pmullw xmm3, XMMWORD PTR [rdx] ; x[-2] * H[-2]; Tap 1 + punpcklbw xmm4, xmm0 ; xx06 xx05 xx04 xx03 xx02 xx01 xx00 xx-1 + + psrldq xmm5, 2 ; xx xx 0d 0c 0b 0a 09 08 07 06 05 04 03 02 01 00 + pmullw xmm4, XMMWORD PTR [rdx+16] ; x[-1] * H[-1]; Tap 2 + + punpcklbw xmm5, xmm0 ; xx07 xx06 xx05 xx04 xx03 xx02 xx01 xx00 + psrldq xmm6, 3 ; xx xx xx 0d 0c 0b 0a 09 08 07 06 05 04 03 02 01 + + pmullw xmm5, [rdx+32] ; x[ 0] * H[ 0]; Tap 3 + + punpcklbw xmm6, xmm0 ; xx08 xx07 xx06 xx05 xx04 xx03 xx02 xx01 + psrldq xmm7, 4 ; xx xx xx xx 0d 0c 0b 0a 09 08 07 06 05 04 03 02 + + pmullw xmm6, [rdx+48] ; x[ 1] * h[ 1] ; Tap 4 + + punpcklbw xmm7, xmm0 ; xx09 xx08 xx07 xx06 xx05 xx04 xx03 xx02 + psrldq xmm1, 5 ; xx xx xx xx xx 0d 0c 0b 0a 09 08 07 06 05 04 03 + + pmullw xmm7, [rdx+64] ; x[ 2] * h[ 2] ; Tap 5 + + punpcklbw xmm1, xmm0 ; xx0a xx09 xx08 xx07 xx06 xx05 xx04 xx03 + pmullw xmm1, [rdx+80] ; x[ 3] * h[ 3] ; Tap 6 + + paddsw xmm4, xmm7 + paddsw xmm4, xmm5 + + paddsw xmm4, xmm3 + paddsw xmm4, xmm6 + + paddsw xmm4, xmm1 + paddsw xmm4, [GLOBAL(rd)] + + psraw xmm4, 7 + + packuswb xmm4, xmm0 ; lower 8 bytes + + movq QWORD Ptr [rdi], xmm4 ; store the results in the destination + + movdqa xmm3, xmm2 + movdqa xmm4, xmm2 + + movdqa xmm5, xmm2 + movdqa xmm6, xmm2 + + movdqa xmm7, xmm2 + + punpcklbw xmm3, xmm0 ; xx05 xx04 xx03 xx02 xx01 xx01 xx-1 xx-2 + psrldq xmm4, 1 ; xx 0d 0c 0b 0a 09 08 07 06 05 04 03 02 01 00 -1 + + pmullw xmm3, XMMWORD PTR [rdx] ; x[-2] * H[-2]; Tap 1 + punpcklbw xmm4, xmm0 ; xx06 xx05 xx04 xx03 xx02 xx01 xx00 xx-1 + + psrldq xmm5, 2 ; xx xx 0d 0c 0b 0a 09 08 07 06 05 04 03 02 01 00 + pmullw xmm4, XMMWORD PTR [rdx+16] ; x[-1] * H[-1]; Tap 2 + + punpcklbw xmm5, xmm0 ; xx07 xx06 xx05 xx04 xx03 xx02 xx01 xx00 + psrldq xmm6, 3 ; xx xx xx 0d 0c 0b 0a 09 08 07 06 05 04 03 02 01 + + pmullw xmm5, [rdx+32] ; x[ 0] * H[ 0]; Tap 3 + + punpcklbw xmm6, xmm0 ; xx08 xx07 xx06 xx05 xx04 xx03 xx02 xx01 + psrldq xmm7, 4 ; xx xx xx xx 0d 0c 0b 0a 09 08 07 06 05 04 03 02 + + pmullw xmm6, [rdx+48] ; x[ 1] * h[ 1] ; Tap 4 + + punpcklbw xmm7, xmm0 ; xx09 xx08 xx07 xx06 xx05 xx04 xx03 xx02 + psrldq xmm2, 5 ; xx xx xx xx xx 0d 0c 0b 0a 09 08 07 06 05 04 03 + + pmullw xmm7, [rdx+64] ; x[ 2] * h[ 2] ; Tap 5 + + punpcklbw xmm2, xmm0 ; xx0a xx09 xx08 xx07 xx06 xx05 xx04 xx03 + pmullw xmm2, [rdx+80] ; x[ 3] * h[ 3] ; Tap 6 + + paddsw xmm4, xmm7 + paddsw xmm4, xmm5 + + paddsw xmm4, xmm3 + paddsw xmm4, xmm6 + + paddsw xmm4, xmm2 + paddsw xmm4, [GLOBAL(rd)] + + psraw xmm4, 7 + + packuswb xmm4, xmm0 ; higher 8 bytes + + movq QWORD Ptr [rdi+8], xmm4 ; store the results in the destination + + lea rsi, [rsi + rax] +%if ABI_IS_32BIT + add rdi, DWORD Ptr arg(3) ;dst_ptich +%else + add rdi, r8 +%endif + + dec rcx + jnz .filter_block1d16_h6_only_sse2_rowloop ; next row + + ; begin epilog + pop rdi + pop rsi + RESTORE_GOT + RESTORE_XMM + UNSHADOW_ARGS + pop rbp + ret + + +;void vp8_filter_block1d8_v6_only_sse2 +;( +; unsigned char *src_ptr, +; unsigned int src_pixels_per_line, +; unsigned char *output_ptr, +; int dst_ptich, +; unsigned int output_height, +; const short *vp8_filter +;) +; Second-pass filter only when xoffset==0 +global sym(vp8_filter_block1d8_v6_only_sse2) PRIVATE +sym(vp8_filter_block1d8_v6_only_sse2): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 6 + SAVE_XMM 7 + GET_GOT rbx + push rsi + push rdi + ; end prolog + + mov rsi, arg(0) ;src_ptr + mov rdi, arg(2) ;output_ptr + + movsxd rcx, dword ptr arg(4) ;output_height + movsxd rdx, dword ptr arg(1) ;src_pixels_per_line + + mov rax, arg(5) ;vp8_filter + + pxor xmm0, xmm0 ; clear xmm0 + + movdqa xmm7, XMMWORD PTR [GLOBAL(rd)] +%if ABI_IS_32BIT=0 + movsxd r8, dword ptr arg(3) ; dst_ptich +%endif + +.vp8_filter_block1d8_v6_only_sse2_loop: + movq xmm1, MMWORD PTR [rsi] + movq xmm2, MMWORD PTR [rsi + rdx] + movq xmm3, MMWORD PTR [rsi + rdx * 2] + movq xmm5, MMWORD PTR [rsi + rdx * 4] + add rsi, rdx + movq xmm4, MMWORD PTR [rsi + rdx * 2] + movq xmm6, MMWORD PTR [rsi + rdx * 4] + + punpcklbw xmm1, xmm0 + pmullw xmm1, [rax] + + punpcklbw xmm2, xmm0 + pmullw xmm2, [rax + 16] + + punpcklbw xmm3, xmm0 + pmullw xmm3, [rax + 32] + + punpcklbw xmm5, xmm0 + pmullw xmm5, [rax + 64] + + punpcklbw xmm4, xmm0 + pmullw xmm4, [rax + 48] + + punpcklbw xmm6, xmm0 + pmullw xmm6, [rax + 80] + + paddsw xmm2, xmm5 + paddsw xmm2, xmm3 + + paddsw xmm2, xmm1 + paddsw xmm2, xmm4 + + paddsw xmm2, xmm6 + paddsw xmm2, xmm7 + + psraw xmm2, 7 + packuswb xmm2, xmm0 ; pack and saturate + + movq QWORD PTR [rdi], xmm2 ; store the results in the destination +%if ABI_IS_32BIT + add rdi, DWORD PTR arg(3) ;[dst_ptich] +%else + add rdi, r8 +%endif + dec rcx ; decrement count + jnz .vp8_filter_block1d8_v6_only_sse2_loop ; next row + + ; begin epilog + pop rdi + pop rsi + RESTORE_GOT + RESTORE_XMM + UNSHADOW_ARGS + pop rbp + ret + + +;void vp8_unpack_block1d16_h6_sse2 +;( +; unsigned char *src_ptr, +; unsigned short *output_ptr, +; unsigned int src_pixels_per_line, +; unsigned int output_height, +; unsigned int output_width +;) +global sym(vp8_unpack_block1d16_h6_sse2) PRIVATE +sym(vp8_unpack_block1d16_h6_sse2): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 5 + GET_GOT rbx + push rsi + push rdi + ; end prolog + + mov rsi, arg(0) ;src_ptr + mov rdi, arg(1) ;output_ptr + + movsxd rcx, dword ptr arg(3) ;output_height + movsxd rax, dword ptr arg(2) ;src_pixels_per_line ; Pitch for Source + + pxor xmm0, xmm0 ; clear xmm0 for unpack +%if ABI_IS_32BIT=0 + movsxd r8, dword ptr arg(4) ;output_width ; Pitch for Source +%endif + +.unpack_block1d16_h6_sse2_rowloop: + movq xmm1, MMWORD PTR [rsi] ; 0d 0c 0b 0a 09 08 07 06 05 04 03 02 01 00 -1 -2 + movq xmm3, MMWORD PTR [rsi+8] ; make copy of xmm1 + + punpcklbw xmm3, xmm0 ; xx05 xx04 xx03 xx02 xx01 xx01 xx-1 xx-2 + punpcklbw xmm1, xmm0 + + movdqa XMMWORD Ptr [rdi], xmm1 + movdqa XMMWORD Ptr [rdi + 16], xmm3 + + lea rsi, [rsi + rax] +%if ABI_IS_32BIT + add rdi, DWORD Ptr arg(4) ;[output_width] +%else + add rdi, r8 +%endif + dec rcx + jnz .unpack_block1d16_h6_sse2_rowloop ; next row + + ; begin epilog + pop rdi + pop rsi + RESTORE_GOT + UNSHADOW_ARGS + pop rbp + ret + + +;void vp8_bilinear_predict16x16_sse2 +;( +; unsigned char *src_ptr, +; int src_pixels_per_line, +; int xoffset, +; int yoffset, +; unsigned char *dst_ptr, +; int dst_pitch +;) +extern sym(vp8_bilinear_filters_x86_8) +global sym(vp8_bilinear_predict16x16_sse2) PRIVATE +sym(vp8_bilinear_predict16x16_sse2): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 6 + SAVE_XMM 7 + GET_GOT rbx + push rsi + push rdi + ; end prolog + + ;const short *HFilter = vp8_bilinear_filters_x86_8[xoffset] + ;const short *VFilter = vp8_bilinear_filters_x86_8[yoffset] + + lea rcx, [GLOBAL(sym(vp8_bilinear_filters_x86_8))] + movsxd rax, dword ptr arg(2) ;xoffset + + cmp rax, 0 ;skip first_pass filter if xoffset=0 + je .b16x16_sp_only + + shl rax, 5 + add rax, rcx ;HFilter + + mov rdi, arg(4) ;dst_ptr + mov rsi, arg(0) ;src_ptr + movsxd rdx, dword ptr arg(5) ;dst_pitch + + movdqa xmm1, [rax] + movdqa xmm2, [rax+16] + + movsxd rax, dword ptr arg(3) ;yoffset + + cmp rax, 0 ;skip second_pass filter if yoffset=0 + je .b16x16_fp_only + + shl rax, 5 + add rax, rcx ;VFilter + + lea rcx, [rdi+rdx*8] + lea rcx, [rcx+rdx*8] + movsxd rdx, dword ptr arg(1) ;src_pixels_per_line + + pxor xmm0, xmm0 + +%if ABI_IS_32BIT=0 + movsxd r8, dword ptr arg(5) ;dst_pitch +%endif + ; get the first horizontal line done + movdqu xmm3, [rsi] ; xx 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 + movdqa xmm4, xmm3 ; make a copy of current line + + punpcklbw xmm3, xmm0 ; xx 00 01 02 03 04 05 06 + punpckhbw xmm4, xmm0 + + pmullw xmm3, xmm1 + pmullw xmm4, xmm1 + + movdqu xmm5, [rsi+1] + movdqa xmm6, xmm5 + + punpcklbw xmm5, xmm0 + punpckhbw xmm6, xmm0 + + pmullw xmm5, xmm2 + pmullw xmm6, xmm2 + + paddw xmm3, xmm5 + paddw xmm4, xmm6 + + paddw xmm3, [GLOBAL(rd)] ; xmm3 += round value + psraw xmm3, VP8_FILTER_SHIFT ; xmm3 /= 128 + + paddw xmm4, [GLOBAL(rd)] + psraw xmm4, VP8_FILTER_SHIFT + + movdqa xmm7, xmm3 + packuswb xmm7, xmm4 + + add rsi, rdx ; next line +.next_row: + movdqu xmm3, [rsi] ; xx 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 + movdqa xmm4, xmm3 ; make a copy of current line + + punpcklbw xmm3, xmm0 ; xx 00 01 02 03 04 05 06 + punpckhbw xmm4, xmm0 + + pmullw xmm3, xmm1 + pmullw xmm4, xmm1 + + movdqu xmm5, [rsi+1] + movdqa xmm6, xmm5 + + punpcklbw xmm5, xmm0 + punpckhbw xmm6, xmm0 + + pmullw xmm5, xmm2 + pmullw xmm6, xmm2 + + paddw xmm3, xmm5 + paddw xmm4, xmm6 + + movdqa xmm5, xmm7 + movdqa xmm6, xmm7 + + punpcklbw xmm5, xmm0 + punpckhbw xmm6, xmm0 + + pmullw xmm5, [rax] + pmullw xmm6, [rax] + + paddw xmm3, [GLOBAL(rd)] ; xmm3 += round value + psraw xmm3, VP8_FILTER_SHIFT ; xmm3 /= 128 + + paddw xmm4, [GLOBAL(rd)] + psraw xmm4, VP8_FILTER_SHIFT + + movdqa xmm7, xmm3 + packuswb xmm7, xmm4 + + pmullw xmm3, [rax+16] + pmullw xmm4, [rax+16] + + paddw xmm3, xmm5 + paddw xmm4, xmm6 + + paddw xmm3, [GLOBAL(rd)] ; xmm3 += round value + psraw xmm3, VP8_FILTER_SHIFT ; xmm3 /= 128 + + paddw xmm4, [GLOBAL(rd)] + psraw xmm4, VP8_FILTER_SHIFT + + packuswb xmm3, xmm4 + movdqa [rdi], xmm3 ; store the results in the destination + + add rsi, rdx ; next line +%if ABI_IS_32BIT + add rdi, DWORD PTR arg(5) ;dst_pitch +%else + add rdi, r8 +%endif + + cmp rdi, rcx + jne .next_row + + jmp .done + +.b16x16_sp_only: + movsxd rax, dword ptr arg(3) ;yoffset + shl rax, 5 + add rax, rcx ;VFilter + + mov rdi, arg(4) ;dst_ptr + mov rsi, arg(0) ;src_ptr + movsxd rdx, dword ptr arg(5) ;dst_pitch + + movdqa xmm1, [rax] + movdqa xmm2, [rax+16] + + lea rcx, [rdi+rdx*8] + lea rcx, [rcx+rdx*8] + movsxd rax, dword ptr arg(1) ;src_pixels_per_line + + pxor xmm0, xmm0 + + ; get the first horizontal line done + movdqu xmm7, [rsi] ; xx 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 + + add rsi, rax ; next line +.next_row_spo: + movdqu xmm3, [rsi] ; xx 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 + + movdqa xmm5, xmm7 + movdqa xmm6, xmm7 + + movdqa xmm4, xmm3 ; make a copy of current line + movdqa xmm7, xmm3 + + punpcklbw xmm5, xmm0 + punpckhbw xmm6, xmm0 + punpcklbw xmm3, xmm0 ; xx 00 01 02 03 04 05 06 + punpckhbw xmm4, xmm0 + + pmullw xmm5, xmm1 + pmullw xmm6, xmm1 + pmullw xmm3, xmm2 + pmullw xmm4, xmm2 + + paddw xmm3, xmm5 + paddw xmm4, xmm6 + + paddw xmm3, [GLOBAL(rd)] ; xmm3 += round value + psraw xmm3, VP8_FILTER_SHIFT ; xmm3 /= 128 + + paddw xmm4, [GLOBAL(rd)] + psraw xmm4, VP8_FILTER_SHIFT + + packuswb xmm3, xmm4 + movdqa [rdi], xmm3 ; store the results in the destination + + add rsi, rax ; next line + add rdi, rdx ;dst_pitch + cmp rdi, rcx + jne .next_row_spo + + jmp .done + +.b16x16_fp_only: + lea rcx, [rdi+rdx*8] + lea rcx, [rcx+rdx*8] + movsxd rax, dword ptr arg(1) ;src_pixels_per_line + pxor xmm0, xmm0 + +.next_row_fpo: + movdqu xmm3, [rsi] ; xx 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 + movdqa xmm4, xmm3 ; make a copy of current line + + punpcklbw xmm3, xmm0 ; xx 00 01 02 03 04 05 06 + punpckhbw xmm4, xmm0 + + pmullw xmm3, xmm1 + pmullw xmm4, xmm1 + + movdqu xmm5, [rsi+1] + movdqa xmm6, xmm5 + + punpcklbw xmm5, xmm0 + punpckhbw xmm6, xmm0 + + pmullw xmm5, xmm2 + pmullw xmm6, xmm2 + + paddw xmm3, xmm5 + paddw xmm4, xmm6 + + paddw xmm3, [GLOBAL(rd)] ; xmm3 += round value + psraw xmm3, VP8_FILTER_SHIFT ; xmm3 /= 128 + + paddw xmm4, [GLOBAL(rd)] + psraw xmm4, VP8_FILTER_SHIFT + + packuswb xmm3, xmm4 + movdqa [rdi], xmm3 ; store the results in the destination + + add rsi, rax ; next line + add rdi, rdx ; dst_pitch + cmp rdi, rcx + jne .next_row_fpo + +.done: + ; begin epilog + pop rdi + pop rsi + RESTORE_GOT + RESTORE_XMM + UNSHADOW_ARGS + pop rbp + ret + + +;void vp8_bilinear_predict8x8_sse2 +;( +; unsigned char *src_ptr, +; int src_pixels_per_line, +; int xoffset, +; int yoffset, +; unsigned char *dst_ptr, +; int dst_pitch +;) +global sym(vp8_bilinear_predict8x8_sse2) PRIVATE +sym(vp8_bilinear_predict8x8_sse2): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 6 + SAVE_XMM 7 + GET_GOT rbx + push rsi + push rdi + ; end prolog + + ALIGN_STACK 16, rax + sub rsp, 144 ; reserve 144 bytes + + ;const short *HFilter = vp8_bilinear_filters_x86_8[xoffset] + ;const short *VFilter = vp8_bilinear_filters_x86_8[yoffset] + lea rcx, [GLOBAL(sym(vp8_bilinear_filters_x86_8))] + + mov rsi, arg(0) ;src_ptr + movsxd rdx, dword ptr arg(1) ;src_pixels_per_line + + ;Read 9-line unaligned data in and put them on stack. This gives a big + ;performance boost. + movdqu xmm0, [rsi] + lea rax, [rdx + rdx*2] + movdqu xmm1, [rsi+rdx] + movdqu xmm2, [rsi+rdx*2] + add rsi, rax + movdqu xmm3, [rsi] + movdqu xmm4, [rsi+rdx] + movdqu xmm5, [rsi+rdx*2] + add rsi, rax + movdqu xmm6, [rsi] + movdqu xmm7, [rsi+rdx] + + movdqa XMMWORD PTR [rsp], xmm0 + + movdqu xmm0, [rsi+rdx*2] + + movdqa XMMWORD PTR [rsp+16], xmm1 + movdqa XMMWORD PTR [rsp+32], xmm2 + movdqa XMMWORD PTR [rsp+48], xmm3 + movdqa XMMWORD PTR [rsp+64], xmm4 + movdqa XMMWORD PTR [rsp+80], xmm5 + movdqa XMMWORD PTR [rsp+96], xmm6 + movdqa XMMWORD PTR [rsp+112], xmm7 + movdqa XMMWORD PTR [rsp+128], xmm0 + + movsxd rax, dword ptr arg(2) ;xoffset + shl rax, 5 + add rax, rcx ;HFilter + + mov rdi, arg(4) ;dst_ptr + movsxd rdx, dword ptr arg(5) ;dst_pitch + + movdqa xmm1, [rax] + movdqa xmm2, [rax+16] + + movsxd rax, dword ptr arg(3) ;yoffset + shl rax, 5 + add rax, rcx ;VFilter + + lea rcx, [rdi+rdx*8] + + movdqa xmm5, [rax] + movdqa xmm6, [rax+16] + + pxor xmm0, xmm0 + + ; get the first horizontal line done + movdqa xmm3, XMMWORD PTR [rsp] + movdqa xmm4, xmm3 ; make a copy of current line + psrldq xmm4, 1 + + punpcklbw xmm3, xmm0 ; 00 01 02 03 04 05 06 07 + punpcklbw xmm4, xmm0 ; 01 02 03 04 05 06 07 08 + + pmullw xmm3, xmm1 + pmullw xmm4, xmm2 + + paddw xmm3, xmm4 + + paddw xmm3, [GLOBAL(rd)] ; xmm3 += round value + psraw xmm3, VP8_FILTER_SHIFT ; xmm3 /= 128 + + movdqa xmm7, xmm3 + add rsp, 16 ; next line +.next_row8x8: + movdqa xmm3, XMMWORD PTR [rsp] ; 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 + movdqa xmm4, xmm3 ; make a copy of current line + psrldq xmm4, 1 + + punpcklbw xmm3, xmm0 ; 00 01 02 03 04 05 06 07 + punpcklbw xmm4, xmm0 ; 01 02 03 04 05 06 07 08 + + pmullw xmm3, xmm1 + pmullw xmm4, xmm2 + + paddw xmm3, xmm4 + pmullw xmm7, xmm5 + + paddw xmm3, [GLOBAL(rd)] ; xmm3 += round value + psraw xmm3, VP8_FILTER_SHIFT ; xmm3 /= 128 + + movdqa xmm4, xmm3 + + pmullw xmm3, xmm6 + paddw xmm3, xmm7 + + movdqa xmm7, xmm4 + + paddw xmm3, [GLOBAL(rd)] ; xmm3 += round value + psraw xmm3, VP8_FILTER_SHIFT ; xmm3 /= 128 + + packuswb xmm3, xmm0 + movq [rdi], xmm3 ; store the results in the destination + + add rsp, 16 ; next line + add rdi, rdx + + cmp rdi, rcx + jne .next_row8x8 + + ;add rsp, 144 + pop rsp + ; begin epilog + pop rdi + pop rsi + RESTORE_GOT + RESTORE_XMM + UNSHADOW_ARGS + pop rbp + ret + + +SECTION_RODATA +align 16 +rd: + times 8 dw 0x40 diff --git a/vp8/common/x86/subpixel_ssse3.asm b/vp8/common/x86/subpixel_ssse3.asm new file mode 100644 index 0000000..8d55c93 --- /dev/null +++ b/vp8/common/x86/subpixel_ssse3.asm @@ -0,0 +1,1515 @@ +; +; Copyright (c) 2010 The WebM project authors. All Rights Reserved. +; +; Use of this source code is governed by a BSD-style license +; that can be found in the LICENSE file in the root of the source +; tree. An additional intellectual property rights grant can be found +; in the file PATENTS. All contributing project authors may +; be found in the AUTHORS file in the root of the source tree. +; + + +%include "vpx_ports/x86_abi_support.asm" + +%define BLOCK_HEIGHT_WIDTH 4 +%define VP8_FILTER_WEIGHT 128 +%define VP8_FILTER_SHIFT 7 + +SECTION .text + +;/************************************************************************************ +; Notes: filter_block1d_h6 applies a 6 tap filter horizontally to the input pixels. The +; input pixel array has output_height rows. This routine assumes that output_height is an +; even number. This function handles 8 pixels in horizontal direction, calculating ONE +; rows each iteration to take advantage of the 128 bits operations. +; +; This is an implementation of some of the SSE optimizations first seen in ffvp8 +; +;*************************************************************************************/ +;void vp8_filter_block1d8_h6_ssse3 +;( +; unsigned char *src_ptr, +; unsigned int src_pixels_per_line, +; unsigned char *output_ptr, +; unsigned int output_pitch, +; unsigned int output_height, +; unsigned int vp8_filter_index +;) +global sym(vp8_filter_block1d8_h6_ssse3) PRIVATE +sym(vp8_filter_block1d8_h6_ssse3): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 6 + SAVE_XMM 7 + GET_GOT rbx + push rsi + push rdi + ; end prolog + + movsxd rdx, DWORD PTR arg(5) ;table index + xor rsi, rsi + shl rdx, 4 + + movdqa xmm7, [GLOBAL(rd)] + + lea rax, [GLOBAL(k0_k5)] + add rax, rdx + mov rdi, arg(2) ;output_ptr + + cmp esi, DWORD PTR [rax] + je vp8_filter_block1d8_h4_ssse3 + + movdqa xmm4, XMMWORD PTR [rax] ;k0_k5 + movdqa xmm5, XMMWORD PTR [rax+256] ;k2_k4 + movdqa xmm6, XMMWORD PTR [rax+128] ;k1_k3 + + mov rsi, arg(0) ;src_ptr + movsxd rax, dword ptr arg(1) ;src_pixels_per_line + movsxd rcx, dword ptr arg(4) ;output_height + + movsxd rdx, dword ptr arg(3) ;output_pitch + + sub rdi, rdx +;xmm3 free +.filter_block1d8_h6_rowloop_ssse3: + movq xmm0, MMWORD PTR [rsi - 2] ; -2 -1 0 1 2 3 4 5 + + movq xmm2, MMWORD PTR [rsi + 3] ; 3 4 5 6 7 8 9 10 + + punpcklbw xmm0, xmm2 ; -2 3 -1 4 0 5 1 6 2 7 3 8 4 9 5 10 + + movdqa xmm1, xmm0 + pmaddubsw xmm0, xmm4 + + movdqa xmm2, xmm1 + pshufb xmm1, [GLOBAL(shuf2bfrom1)] + + pshufb xmm2, [GLOBAL(shuf3bfrom1)] + pmaddubsw xmm1, xmm5 + + lea rdi, [rdi + rdx] + pmaddubsw xmm2, xmm6 + + lea rsi, [rsi + rax] + dec rcx + + paddsw xmm0, xmm1 + paddsw xmm2, xmm7 + + paddsw xmm0, xmm2 + + psraw xmm0, 7 + + packuswb xmm0, xmm0 + + movq MMWORD Ptr [rdi], xmm0 + jnz .filter_block1d8_h6_rowloop_ssse3 + + ; begin epilog + pop rdi + pop rsi + RESTORE_GOT + RESTORE_XMM + UNSHADOW_ARGS + pop rbp + ret + +vp8_filter_block1d8_h4_ssse3: + movdqa xmm5, XMMWORD PTR [rax+256] ;k2_k4 + movdqa xmm6, XMMWORD PTR [rax+128] ;k1_k3 + + movdqa xmm3, XMMWORD PTR [GLOBAL(shuf2bfrom1)] + movdqa xmm4, XMMWORD PTR [GLOBAL(shuf3bfrom1)] + + mov rsi, arg(0) ;src_ptr + + movsxd rax, dword ptr arg(1) ;src_pixels_per_line + movsxd rcx, dword ptr arg(4) ;output_height + + movsxd rdx, dword ptr arg(3) ;output_pitch + + sub rdi, rdx + +.filter_block1d8_h4_rowloop_ssse3: + movq xmm0, MMWORD PTR [rsi - 2] ; -2 -1 0 1 2 3 4 5 + + movq xmm1, MMWORD PTR [rsi + 3] ; 3 4 5 6 7 8 9 10 + + punpcklbw xmm0, xmm1 ; -2 3 -1 4 0 5 1 6 2 7 3 8 4 9 5 10 + + movdqa xmm2, xmm0 + pshufb xmm0, xmm3 + + pshufb xmm2, xmm4 + pmaddubsw xmm0, xmm5 + + lea rdi, [rdi + rdx] + pmaddubsw xmm2, xmm6 + + lea rsi, [rsi + rax] + dec rcx + + paddsw xmm0, xmm7 + + paddsw xmm0, xmm2 + + psraw xmm0, 7 + + packuswb xmm0, xmm0 + + movq MMWORD Ptr [rdi], xmm0 + + jnz .filter_block1d8_h4_rowloop_ssse3 + + ; begin epilog + pop rdi + pop rsi + RESTORE_GOT + RESTORE_XMM + UNSHADOW_ARGS + pop rbp + ret +;void vp8_filter_block1d16_h6_ssse3 +;( +; unsigned char *src_ptr, +; unsigned int src_pixels_per_line, +; unsigned char *output_ptr, +; unsigned int output_pitch, +; unsigned int output_height, +; unsigned int vp8_filter_index +;) +global sym(vp8_filter_block1d16_h6_ssse3) PRIVATE +sym(vp8_filter_block1d16_h6_ssse3): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 6 + SAVE_XMM 7 + GET_GOT rbx + push rsi + push rdi + ; end prolog + + movsxd rdx, DWORD PTR arg(5) ;table index + xor rsi, rsi + shl rdx, 4 ; + + lea rax, [GLOBAL(k0_k5)] + add rax, rdx + + mov rdi, arg(2) ;output_ptr + + mov rsi, arg(0) ;src_ptr + + movdqa xmm4, XMMWORD PTR [rax] ;k0_k5 + movdqa xmm5, XMMWORD PTR [rax+256] ;k2_k4 + movdqa xmm6, XMMWORD PTR [rax+128] ;k1_k3 + + movsxd rax, dword ptr arg(1) ;src_pixels_per_line + movsxd rcx, dword ptr arg(4) ;output_height + movsxd rdx, dword ptr arg(3) ;output_pitch + +.filter_block1d16_h6_rowloop_ssse3: + movq xmm0, MMWORD PTR [rsi - 2] ; -2 -1 0 1 2 3 4 5 + + movq xmm3, MMWORD PTR [rsi + 3] ; 3 4 5 6 7 8 9 10 + + punpcklbw xmm0, xmm3 ; -2 3 -1 4 0 5 1 6 2 7 3 8 4 9 5 10 + + movdqa xmm1, xmm0 + pmaddubsw xmm0, xmm4 + + movdqa xmm2, xmm1 + pshufb xmm1, [GLOBAL(shuf2bfrom1)] + + pshufb xmm2, [GLOBAL(shuf3bfrom1)] + movq xmm3, MMWORD PTR [rsi + 6] + + pmaddubsw xmm1, xmm5 + movq xmm7, MMWORD PTR [rsi + 11] + + pmaddubsw xmm2, xmm6 + punpcklbw xmm3, xmm7 + + paddsw xmm0, xmm1 + movdqa xmm1, xmm3 + + pmaddubsw xmm3, xmm4 + paddsw xmm0, xmm2 + + movdqa xmm2, xmm1 + paddsw xmm0, [GLOBAL(rd)] + + pshufb xmm1, [GLOBAL(shuf2bfrom1)] + pshufb xmm2, [GLOBAL(shuf3bfrom1)] + + psraw xmm0, 7 + pmaddubsw xmm1, xmm5 + + pmaddubsw xmm2, xmm6 + packuswb xmm0, xmm0 + + lea rsi, [rsi + rax] + paddsw xmm3, xmm1 + + paddsw xmm3, xmm2 + + paddsw xmm3, [GLOBAL(rd)] + + psraw xmm3, 7 + + packuswb xmm3, xmm3 + + punpcklqdq xmm0, xmm3 + + movdqa XMMWORD Ptr [rdi], xmm0 + + lea rdi, [rdi + rdx] + dec rcx + jnz .filter_block1d16_h6_rowloop_ssse3 + + ; begin epilog + pop rdi + pop rsi + RESTORE_GOT + RESTORE_XMM + UNSHADOW_ARGS + pop rbp + ret + +;void vp8_filter_block1d4_h6_ssse3 +;( +; unsigned char *src_ptr, +; unsigned int src_pixels_per_line, +; unsigned char *output_ptr, +; unsigned int output_pitch, +; unsigned int output_height, +; unsigned int vp8_filter_index +;) +global sym(vp8_filter_block1d4_h6_ssse3) PRIVATE +sym(vp8_filter_block1d4_h6_ssse3): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 6 + SAVE_XMM 7 + GET_GOT rbx + push rsi + push rdi + ; end prolog + + movsxd rdx, DWORD PTR arg(5) ;table index + xor rsi, rsi + shl rdx, 4 ; + + lea rax, [GLOBAL(k0_k5)] + add rax, rdx + movdqa xmm7, [GLOBAL(rd)] + + cmp esi, DWORD PTR [rax] + je .vp8_filter_block1d4_h4_ssse3 + + movdqa xmm4, XMMWORD PTR [rax] ;k0_k5 + movdqa xmm5, XMMWORD PTR [rax+256] ;k2_k4 + movdqa xmm6, XMMWORD PTR [rax+128] ;k1_k3 + + mov rsi, arg(0) ;src_ptr + mov rdi, arg(2) ;output_ptr + movsxd rax, dword ptr arg(1) ;src_pixels_per_line + movsxd rcx, dword ptr arg(4) ;output_height + + movsxd rdx, dword ptr arg(3) ;output_pitch + +;xmm3 free +.filter_block1d4_h6_rowloop_ssse3: + movdqu xmm0, XMMWORD PTR [rsi - 2] + + movdqa xmm1, xmm0 + pshufb xmm0, [GLOBAL(shuf1b)] + + movdqa xmm2, xmm1 + pshufb xmm1, [GLOBAL(shuf2b)] + pmaddubsw xmm0, xmm4 + pshufb xmm2, [GLOBAL(shuf3b)] + pmaddubsw xmm1, xmm5 + +;-- + pmaddubsw xmm2, xmm6 + + lea rsi, [rsi + rax] +;-- + paddsw xmm0, xmm1 + paddsw xmm0, xmm7 + pxor xmm1, xmm1 + paddsw xmm0, xmm2 + psraw xmm0, 7 + packuswb xmm0, xmm0 + + movd DWORD PTR [rdi], xmm0 + + add rdi, rdx + dec rcx + jnz .filter_block1d4_h6_rowloop_ssse3 + + ; begin epilog + pop rdi + pop rsi + RESTORE_GOT + RESTORE_XMM + UNSHADOW_ARGS + pop rbp + ret + +.vp8_filter_block1d4_h4_ssse3: + movdqa xmm5, XMMWORD PTR [rax+256] ;k2_k4 + movdqa xmm6, XMMWORD PTR [rax+128] ;k1_k3 + movdqa xmm0, XMMWORD PTR [GLOBAL(shuf2b)] + movdqa xmm3, XMMWORD PTR [GLOBAL(shuf3b)] + + mov rsi, arg(0) ;src_ptr + mov rdi, arg(2) ;output_ptr + movsxd rax, dword ptr arg(1) ;src_pixels_per_line + movsxd rcx, dword ptr arg(4) ;output_height + + movsxd rdx, dword ptr arg(3) ;output_pitch + +.filter_block1d4_h4_rowloop_ssse3: + movdqu xmm1, XMMWORD PTR [rsi - 2] + + movdqa xmm2, xmm1 + pshufb xmm1, xmm0 ;;[GLOBAL(shuf2b)] + pshufb xmm2, xmm3 ;;[GLOBAL(shuf3b)] + pmaddubsw xmm1, xmm5 + +;-- + pmaddubsw xmm2, xmm6 + + lea rsi, [rsi + rax] +;-- + paddsw xmm1, xmm7 + paddsw xmm1, xmm2 + psraw xmm1, 7 + packuswb xmm1, xmm1 + + movd DWORD PTR [rdi], xmm1 + + add rdi, rdx + dec rcx + jnz .filter_block1d4_h4_rowloop_ssse3 + + ; begin epilog + pop rdi + pop rsi + RESTORE_GOT + RESTORE_XMM + UNSHADOW_ARGS + pop rbp + ret + + + +;void vp8_filter_block1d16_v6_ssse3 +;( +; unsigned char *src_ptr, +; unsigned int src_pitch, +; unsigned char *output_ptr, +; unsigned int out_pitch, +; unsigned int output_height, +; unsigned int vp8_filter_index +;) +global sym(vp8_filter_block1d16_v6_ssse3) PRIVATE +sym(vp8_filter_block1d16_v6_ssse3): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 6 + SAVE_XMM 7 + GET_GOT rbx + push rsi + push rdi + ; end prolog + + movsxd rdx, DWORD PTR arg(5) ;table index + xor rsi, rsi + shl rdx, 4 ; + + lea rax, [GLOBAL(k0_k5)] + add rax, rdx + + cmp esi, DWORD PTR [rax] + je .vp8_filter_block1d16_v4_ssse3 + + movdqa xmm5, XMMWORD PTR [rax] ;k0_k5 + movdqa xmm6, XMMWORD PTR [rax+256] ;k2_k4 + movdqa xmm7, XMMWORD PTR [rax+128] ;k1_k3 + + mov rsi, arg(0) ;src_ptr + movsxd rdx, DWORD PTR arg(1) ;pixels_per_line + mov rdi, arg(2) ;output_ptr + +%if ABI_IS_32BIT=0 + movsxd r8, DWORD PTR arg(3) ;out_pitch +%endif + mov rax, rsi + movsxd rcx, DWORD PTR arg(4) ;output_height + add rax, rdx + + +.vp8_filter_block1d16_v6_ssse3_loop: + movq xmm1, MMWORD PTR [rsi] ;A + movq xmm2, MMWORD PTR [rsi + rdx] ;B + movq xmm3, MMWORD PTR [rsi + rdx * 2] ;C + movq xmm4, MMWORD PTR [rax + rdx * 2] ;D + movq xmm0, MMWORD PTR [rsi + rdx * 4] ;E + + punpcklbw xmm2, xmm4 ;B D + punpcklbw xmm3, xmm0 ;C E + + movq xmm0, MMWORD PTR [rax + rdx * 4] ;F + + pmaddubsw xmm3, xmm6 + punpcklbw xmm1, xmm0 ;A F + pmaddubsw xmm2, xmm7 + pmaddubsw xmm1, xmm5 + + paddsw xmm2, xmm3 + paddsw xmm2, xmm1 + paddsw xmm2, [GLOBAL(rd)] + psraw xmm2, 7 + packuswb xmm2, xmm2 + + movq MMWORD PTR [rdi], xmm2 ;store the results + + movq xmm1, MMWORD PTR [rsi + 8] ;A + movq xmm2, MMWORD PTR [rsi + rdx + 8] ;B + movq xmm3, MMWORD PTR [rsi + rdx * 2 + 8] ;C + movq xmm4, MMWORD PTR [rax + rdx * 2 + 8] ;D + movq xmm0, MMWORD PTR [rsi + rdx * 4 + 8] ;E + + punpcklbw xmm2, xmm4 ;B D + punpcklbw xmm3, xmm0 ;C E + + movq xmm0, MMWORD PTR [rax + rdx * 4 + 8] ;F + pmaddubsw xmm3, xmm6 + punpcklbw xmm1, xmm0 ;A F + pmaddubsw xmm2, xmm7 + pmaddubsw xmm1, xmm5 + + add rsi, rdx + add rax, rdx +;-- +;-- + paddsw xmm2, xmm3 + paddsw xmm2, xmm1 + paddsw xmm2, [GLOBAL(rd)] + psraw xmm2, 7 + packuswb xmm2, xmm2 + + movq MMWORD PTR [rdi+8], xmm2 + +%if ABI_IS_32BIT + add rdi, DWORD PTR arg(3) ;out_pitch +%else + add rdi, r8 +%endif + dec rcx + jnz .vp8_filter_block1d16_v6_ssse3_loop + + ; begin epilog + pop rdi + pop rsi + RESTORE_GOT + RESTORE_XMM + UNSHADOW_ARGS + pop rbp + ret + +.vp8_filter_block1d16_v4_ssse3: + movdqa xmm6, XMMWORD PTR [rax+256] ;k2_k4 + movdqa xmm7, XMMWORD PTR [rax+128] ;k1_k3 + + mov rsi, arg(0) ;src_ptr + movsxd rdx, DWORD PTR arg(1) ;pixels_per_line + mov rdi, arg(2) ;output_ptr + +%if ABI_IS_32BIT=0 + movsxd r8, DWORD PTR arg(3) ;out_pitch +%endif + mov rax, rsi + movsxd rcx, DWORD PTR arg(4) ;output_height + add rax, rdx + +.vp8_filter_block1d16_v4_ssse3_loop: + movq xmm2, MMWORD PTR [rsi + rdx] ;B + movq xmm3, MMWORD PTR [rsi + rdx * 2] ;C + movq xmm4, MMWORD PTR [rax + rdx * 2] ;D + movq xmm0, MMWORD PTR [rsi + rdx * 4] ;E + + punpcklbw xmm2, xmm4 ;B D + punpcklbw xmm3, xmm0 ;C E + + pmaddubsw xmm3, xmm6 + pmaddubsw xmm2, xmm7 + movq xmm5, MMWORD PTR [rsi + rdx + 8] ;B + movq xmm1, MMWORD PTR [rsi + rdx * 2 + 8] ;C + movq xmm4, MMWORD PTR [rax + rdx * 2 + 8] ;D + movq xmm0, MMWORD PTR [rsi + rdx * 4 + 8] ;E + + paddsw xmm2, [GLOBAL(rd)] + paddsw xmm2, xmm3 + psraw xmm2, 7 + packuswb xmm2, xmm2 + + punpcklbw xmm5, xmm4 ;B D + punpcklbw xmm1, xmm0 ;C E + + pmaddubsw xmm1, xmm6 + pmaddubsw xmm5, xmm7 + + movdqa xmm4, [GLOBAL(rd)] + add rsi, rdx + add rax, rdx +;-- +;-- + paddsw xmm5, xmm1 + paddsw xmm5, xmm4 + psraw xmm5, 7 + packuswb xmm5, xmm5 + + punpcklqdq xmm2, xmm5 + + movdqa XMMWORD PTR [rdi], xmm2 + +%if ABI_IS_32BIT + add rdi, DWORD PTR arg(3) ;out_pitch +%else + add rdi, r8 +%endif + dec rcx + jnz .vp8_filter_block1d16_v4_ssse3_loop + + ; begin epilog + pop rdi + pop rsi + RESTORE_GOT + RESTORE_XMM + UNSHADOW_ARGS + pop rbp + ret + +;void vp8_filter_block1d8_v6_ssse3 +;( +; unsigned char *src_ptr, +; unsigned int src_pitch, +; unsigned char *output_ptr, +; unsigned int out_pitch, +; unsigned int output_height, +; unsigned int vp8_filter_index +;) +global sym(vp8_filter_block1d8_v6_ssse3) PRIVATE +sym(vp8_filter_block1d8_v6_ssse3): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 6 + SAVE_XMM 7 + GET_GOT rbx + push rsi + push rdi + ; end prolog + + movsxd rdx, DWORD PTR arg(5) ;table index + xor rsi, rsi + shl rdx, 4 ; + + lea rax, [GLOBAL(k0_k5)] + add rax, rdx + + movsxd rdx, DWORD PTR arg(1) ;pixels_per_line + mov rdi, arg(2) ;output_ptr +%if ABI_IS_32BIT=0 + movsxd r8, DWORD PTR arg(3) ; out_pitch +%endif + movsxd rcx, DWORD PTR arg(4) ;[output_height] + + cmp esi, DWORD PTR [rax] + je .vp8_filter_block1d8_v4_ssse3 + + movdqa xmm5, XMMWORD PTR [rax] ;k0_k5 + movdqa xmm6, XMMWORD PTR [rax+256] ;k2_k4 + movdqa xmm7, XMMWORD PTR [rax+128] ;k1_k3 + + mov rsi, arg(0) ;src_ptr + + mov rax, rsi + add rax, rdx + +.vp8_filter_block1d8_v6_ssse3_loop: + movq xmm1, MMWORD PTR [rsi] ;A + movq xmm2, MMWORD PTR [rsi + rdx] ;B + movq xmm3, MMWORD PTR [rsi + rdx * 2] ;C + movq xmm4, MMWORD PTR [rax + rdx * 2] ;D + movq xmm0, MMWORD PTR [rsi + rdx * 4] ;E + + punpcklbw xmm2, xmm4 ;B D + punpcklbw xmm3, xmm0 ;C E + + movq xmm0, MMWORD PTR [rax + rdx * 4] ;F + movdqa xmm4, [GLOBAL(rd)] + + pmaddubsw xmm3, xmm6 + punpcklbw xmm1, xmm0 ;A F + pmaddubsw xmm2, xmm7 + pmaddubsw xmm1, xmm5 + add rsi, rdx + add rax, rdx +;-- +;-- + paddsw xmm2, xmm3 + paddsw xmm2, xmm1 + paddsw xmm2, xmm4 + psraw xmm2, 7 + packuswb xmm2, xmm2 + + movq MMWORD PTR [rdi], xmm2 + +%if ABI_IS_32BIT + add rdi, DWORD PTR arg(3) ;[out_pitch] +%else + add rdi, r8 +%endif + dec rcx + jnz .vp8_filter_block1d8_v6_ssse3_loop + + ; begin epilog + pop rdi + pop rsi + RESTORE_GOT + RESTORE_XMM + UNSHADOW_ARGS + pop rbp + ret + +.vp8_filter_block1d8_v4_ssse3: + movdqa xmm6, XMMWORD PTR [rax+256] ;k2_k4 + movdqa xmm7, XMMWORD PTR [rax+128] ;k1_k3 + movdqa xmm5, [GLOBAL(rd)] + + mov rsi, arg(0) ;src_ptr + + mov rax, rsi + add rax, rdx + +.vp8_filter_block1d8_v4_ssse3_loop: + movq xmm2, MMWORD PTR [rsi + rdx] ;B + movq xmm3, MMWORD PTR [rsi + rdx * 2] ;C + movq xmm4, MMWORD PTR [rax + rdx * 2] ;D + movq xmm0, MMWORD PTR [rsi + rdx * 4] ;E + + punpcklbw xmm2, xmm4 ;B D + punpcklbw xmm3, xmm0 ;C E + + pmaddubsw xmm3, xmm6 + pmaddubsw xmm2, xmm7 + add rsi, rdx + add rax, rdx +;-- +;-- + paddsw xmm2, xmm3 + paddsw xmm2, xmm5 + psraw xmm2, 7 + packuswb xmm2, xmm2 + + movq MMWORD PTR [rdi], xmm2 + +%if ABI_IS_32BIT + add rdi, DWORD PTR arg(3) ;[out_pitch] +%else + add rdi, r8 +%endif + dec rcx + jnz .vp8_filter_block1d8_v4_ssse3_loop + + ; begin epilog + pop rdi + pop rsi + RESTORE_GOT + RESTORE_XMM + UNSHADOW_ARGS + pop rbp + ret +;void vp8_filter_block1d4_v6_ssse3 +;( +; unsigned char *src_ptr, +; unsigned int src_pitch, +; unsigned char *output_ptr, +; unsigned int out_pitch, +; unsigned int output_height, +; unsigned int vp8_filter_index +;) +global sym(vp8_filter_block1d4_v6_ssse3) PRIVATE +sym(vp8_filter_block1d4_v6_ssse3): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 6 + GET_GOT rbx + push rsi + push rdi + ; end prolog + + movsxd rdx, DWORD PTR arg(5) ;table index + xor rsi, rsi + shl rdx, 4 ; + + lea rax, [GLOBAL(k0_k5)] + add rax, rdx + + movsxd rdx, DWORD PTR arg(1) ;pixels_per_line + mov rdi, arg(2) ;output_ptr +%if ABI_IS_32BIT=0 + movsxd r8, DWORD PTR arg(3) ; out_pitch +%endif + movsxd rcx, DWORD PTR arg(4) ;[output_height] + + cmp esi, DWORD PTR [rax] + je .vp8_filter_block1d4_v4_ssse3 + + movq mm5, MMWORD PTR [rax] ;k0_k5 + movq mm6, MMWORD PTR [rax+256] ;k2_k4 + movq mm7, MMWORD PTR [rax+128] ;k1_k3 + + mov rsi, arg(0) ;src_ptr + + mov rax, rsi + add rax, rdx + +.vp8_filter_block1d4_v6_ssse3_loop: + movd mm1, DWORD PTR [rsi] ;A + movd mm2, DWORD PTR [rsi + rdx] ;B + movd mm3, DWORD PTR [rsi + rdx * 2] ;C + movd mm4, DWORD PTR [rax + rdx * 2] ;D + movd mm0, DWORD PTR [rsi + rdx * 4] ;E + + punpcklbw mm2, mm4 ;B D + punpcklbw mm3, mm0 ;C E + + movd mm0, DWORD PTR [rax + rdx * 4] ;F + + movq mm4, [GLOBAL(rd)] + + pmaddubsw mm3, mm6 + punpcklbw mm1, mm0 ;A F + pmaddubsw mm2, mm7 + pmaddubsw mm1, mm5 + add rsi, rdx + add rax, rdx +;-- +;-- + paddsw mm2, mm3 + paddsw mm2, mm1 + paddsw mm2, mm4 + psraw mm2, 7 + packuswb mm2, mm2 + + movd DWORD PTR [rdi], mm2 + +%if ABI_IS_32BIT + add rdi, DWORD PTR arg(3) ;[out_pitch] +%else + add rdi, r8 +%endif + dec rcx + jnz .vp8_filter_block1d4_v6_ssse3_loop + + ; begin epilog + pop rdi + pop rsi + RESTORE_GOT + UNSHADOW_ARGS + pop rbp + ret + +.vp8_filter_block1d4_v4_ssse3: + movq mm6, MMWORD PTR [rax+256] ;k2_k4 + movq mm7, MMWORD PTR [rax+128] ;k1_k3 + movq mm5, MMWORD PTR [GLOBAL(rd)] + + mov rsi, arg(0) ;src_ptr + + mov rax, rsi + add rax, rdx + +.vp8_filter_block1d4_v4_ssse3_loop: + movd mm2, DWORD PTR [rsi + rdx] ;B + movd mm3, DWORD PTR [rsi + rdx * 2] ;C + movd mm4, DWORD PTR [rax + rdx * 2] ;D + movd mm0, DWORD PTR [rsi + rdx * 4] ;E + + punpcklbw mm2, mm4 ;B D + punpcklbw mm3, mm0 ;C E + + pmaddubsw mm3, mm6 + pmaddubsw mm2, mm7 + add rsi, rdx + add rax, rdx +;-- +;-- + paddsw mm2, mm3 + paddsw mm2, mm5 + psraw mm2, 7 + packuswb mm2, mm2 + + movd DWORD PTR [rdi], mm2 + +%if ABI_IS_32BIT + add rdi, DWORD PTR arg(3) ;[out_pitch] +%else + add rdi, r8 +%endif + dec rcx + jnz .vp8_filter_block1d4_v4_ssse3_loop + + ; begin epilog + pop rdi + pop rsi + RESTORE_GOT + UNSHADOW_ARGS + pop rbp + ret + +;void vp8_bilinear_predict16x16_ssse3 +;( +; unsigned char *src_ptr, +; int src_pixels_per_line, +; int xoffset, +; int yoffset, +; unsigned char *dst_ptr, +; int dst_pitch +;) +global sym(vp8_bilinear_predict16x16_ssse3) PRIVATE +sym(vp8_bilinear_predict16x16_ssse3): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 6 + SAVE_XMM 7 + GET_GOT rbx + push rsi + push rdi + ; end prolog + + lea rcx, [GLOBAL(vp8_bilinear_filters_ssse3)] + movsxd rax, dword ptr arg(2) ; xoffset + + cmp rax, 0 ; skip first_pass filter if xoffset=0 + je .b16x16_sp_only + + shl rax, 4 + lea rax, [rax + rcx] ; HFilter + + mov rdi, arg(4) ; dst_ptr + mov rsi, arg(0) ; src_ptr + movsxd rdx, dword ptr arg(5) ; dst_pitch + + movdqa xmm1, [rax] + + movsxd rax, dword ptr arg(3) ; yoffset + + cmp rax, 0 ; skip second_pass filter if yoffset=0 + je .b16x16_fp_only + + shl rax, 4 + lea rax, [rax + rcx] ; VFilter + + lea rcx, [rdi+rdx*8] + lea rcx, [rcx+rdx*8] + movsxd rdx, dword ptr arg(1) ; src_pixels_per_line + + movdqa xmm2, [rax] + +%if ABI_IS_32BIT=0 + movsxd r8, dword ptr arg(5) ; dst_pitch +%endif + movq xmm3, [rsi] ; 00 01 02 03 04 05 06 07 + movq xmm5, [rsi+1] ; 01 02 03 04 05 06 07 08 + + punpcklbw xmm3, xmm5 ; 00 01 01 02 02 03 03 04 04 05 05 06 06 07 07 08 + movq xmm4, [rsi+8] ; 08 09 10 11 12 13 14 15 + + movq xmm5, [rsi+9] ; 09 10 11 12 13 14 15 16 + + lea rsi, [rsi + rdx] ; next line + + pmaddubsw xmm3, xmm1 ; 00 02 04 06 08 10 12 14 + + punpcklbw xmm4, xmm5 ; 08 09 09 10 10 11 11 12 12 13 13 14 14 15 15 16 + pmaddubsw xmm4, xmm1 ; 01 03 05 07 09 11 13 15 + + paddw xmm3, [GLOBAL(rd)] ; xmm3 += round value + psraw xmm3, VP8_FILTER_SHIFT ; xmm3 /= 128 + + paddw xmm4, [GLOBAL(rd)] ; xmm4 += round value + psraw xmm4, VP8_FILTER_SHIFT ; xmm4 /= 128 + + movdqa xmm7, xmm3 + packuswb xmm7, xmm4 ; 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 + +.next_row: + movq xmm6, [rsi] ; 00 01 02 03 04 05 06 07 + movq xmm5, [rsi+1] ; 01 02 03 04 05 06 07 08 + + punpcklbw xmm6, xmm5 + movq xmm4, [rsi+8] ; 08 09 10 11 12 13 14 15 + + movq xmm5, [rsi+9] ; 09 10 11 12 13 14 15 16 + lea rsi, [rsi + rdx] ; next line + + pmaddubsw xmm6, xmm1 + + punpcklbw xmm4, xmm5 + pmaddubsw xmm4, xmm1 + + paddw xmm6, [GLOBAL(rd)] ; xmm6 += round value + psraw xmm6, VP8_FILTER_SHIFT ; xmm6 /= 128 + + paddw xmm4, [GLOBAL(rd)] ; xmm4 += round value + psraw xmm4, VP8_FILTER_SHIFT ; xmm4 /= 128 + + packuswb xmm6, xmm4 + movdqa xmm5, xmm7 + + punpcklbw xmm5, xmm6 + pmaddubsw xmm5, xmm2 + + punpckhbw xmm7, xmm6 + pmaddubsw xmm7, xmm2 + + paddw xmm5, [GLOBAL(rd)] ; xmm5 += round value + psraw xmm5, VP8_FILTER_SHIFT ; xmm5 /= 128 + + paddw xmm7, [GLOBAL(rd)] ; xmm7 += round value + psraw xmm7, VP8_FILTER_SHIFT ; xmm7 /= 128 + + packuswb xmm5, xmm7 + movdqa xmm7, xmm6 + + movdqa [rdi], xmm5 ; store the results in the destination +%if ABI_IS_32BIT + add rdi, DWORD PTR arg(5) ; dst_pitch +%else + add rdi, r8 +%endif + + cmp rdi, rcx + jne .next_row + + jmp .done + +.b16x16_sp_only: + movsxd rax, dword ptr arg(3) ; yoffset + shl rax, 4 + lea rax, [rax + rcx] ; VFilter + + mov rdi, arg(4) ; dst_ptr + mov rsi, arg(0) ; src_ptr + movsxd rdx, dword ptr arg(5) ; dst_pitch + + movdqa xmm1, [rax] ; VFilter + + lea rcx, [rdi+rdx*8] + lea rcx, [rcx+rdx*8] + movsxd rax, dword ptr arg(1) ; src_pixels_per_line + + ; get the first horizontal line done + movq xmm4, [rsi] ; load row 0 + movq xmm2, [rsi + 8] ; load row 0 + + lea rsi, [rsi + rax] ; next line +.next_row_sp: + movq xmm3, [rsi] ; load row + 1 + movq xmm5, [rsi + 8] ; load row + 1 + + punpcklbw xmm4, xmm3 + punpcklbw xmm2, xmm5 + + pmaddubsw xmm4, xmm1 + movq xmm7, [rsi + rax] ; load row + 2 + + pmaddubsw xmm2, xmm1 + movq xmm6, [rsi + rax + 8] ; load row + 2 + + punpcklbw xmm3, xmm7 + punpcklbw xmm5, xmm6 + + pmaddubsw xmm3, xmm1 + paddw xmm4, [GLOBAL(rd)] + + pmaddubsw xmm5, xmm1 + paddw xmm2, [GLOBAL(rd)] + + psraw xmm4, VP8_FILTER_SHIFT + psraw xmm2, VP8_FILTER_SHIFT + + packuswb xmm4, xmm2 + paddw xmm3, [GLOBAL(rd)] + + movdqa [rdi], xmm4 ; store row 0 + paddw xmm5, [GLOBAL(rd)] + + psraw xmm3, VP8_FILTER_SHIFT + psraw xmm5, VP8_FILTER_SHIFT + + packuswb xmm3, xmm5 + movdqa xmm4, xmm7 + + movdqa [rdi + rdx],xmm3 ; store row 1 + lea rsi, [rsi + 2*rax] + + movdqa xmm2, xmm6 + lea rdi, [rdi + 2*rdx] + + cmp rdi, rcx + jne .next_row_sp + + jmp .done + +.b16x16_fp_only: + lea rcx, [rdi+rdx*8] + lea rcx, [rcx+rdx*8] + movsxd rax, dword ptr arg(1) ; src_pixels_per_line + +.next_row_fp: + movq xmm2, [rsi] ; 00 01 02 03 04 05 06 07 + movq xmm4, [rsi+1] ; 01 02 03 04 05 06 07 08 + + punpcklbw xmm2, xmm4 + movq xmm3, [rsi+8] ; 08 09 10 11 12 13 14 15 + + pmaddubsw xmm2, xmm1 + movq xmm4, [rsi+9] ; 09 10 11 12 13 14 15 16 + + lea rsi, [rsi + rax] ; next line + punpcklbw xmm3, xmm4 + + pmaddubsw xmm3, xmm1 + movq xmm5, [rsi] + + paddw xmm2, [GLOBAL(rd)] + movq xmm7, [rsi+1] + + movq xmm6, [rsi+8] + psraw xmm2, VP8_FILTER_SHIFT + + punpcklbw xmm5, xmm7 + movq xmm7, [rsi+9] + + paddw xmm3, [GLOBAL(rd)] + pmaddubsw xmm5, xmm1 + + psraw xmm3, VP8_FILTER_SHIFT + punpcklbw xmm6, xmm7 + + packuswb xmm2, xmm3 + pmaddubsw xmm6, xmm1 + + movdqa [rdi], xmm2 ; store the results in the destination + paddw xmm5, [GLOBAL(rd)] + + lea rdi, [rdi + rdx] ; dst_pitch + psraw xmm5, VP8_FILTER_SHIFT + + paddw xmm6, [GLOBAL(rd)] + psraw xmm6, VP8_FILTER_SHIFT + + packuswb xmm5, xmm6 + lea rsi, [rsi + rax] ; next line + + movdqa [rdi], xmm5 ; store the results in the destination + lea rdi, [rdi + rdx] ; dst_pitch + + cmp rdi, rcx + + jne .next_row_fp + +.done: + ; begin epilog + pop rdi + pop rsi + RESTORE_GOT + RESTORE_XMM + UNSHADOW_ARGS + pop rbp + ret + +;void vp8_bilinear_predict8x8_ssse3 +;( +; unsigned char *src_ptr, +; int src_pixels_per_line, +; int xoffset, +; int yoffset, +; unsigned char *dst_ptr, +; int dst_pitch +;) +global sym(vp8_bilinear_predict8x8_ssse3) PRIVATE +sym(vp8_bilinear_predict8x8_ssse3): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 6 + SAVE_XMM 7 + GET_GOT rbx + push rsi + push rdi + ; end prolog + + ALIGN_STACK 16, rax + sub rsp, 144 ; reserve 144 bytes + + lea rcx, [GLOBAL(vp8_bilinear_filters_ssse3)] + + mov rsi, arg(0) ;src_ptr + movsxd rdx, dword ptr arg(1) ;src_pixels_per_line + + ;Read 9-line unaligned data in and put them on stack. This gives a big + ;performance boost. + movdqu xmm0, [rsi] + lea rax, [rdx + rdx*2] + movdqu xmm1, [rsi+rdx] + movdqu xmm2, [rsi+rdx*2] + add rsi, rax + movdqu xmm3, [rsi] + movdqu xmm4, [rsi+rdx] + movdqu xmm5, [rsi+rdx*2] + add rsi, rax + movdqu xmm6, [rsi] + movdqu xmm7, [rsi+rdx] + + movdqa XMMWORD PTR [rsp], xmm0 + + movdqu xmm0, [rsi+rdx*2] + + movdqa XMMWORD PTR [rsp+16], xmm1 + movdqa XMMWORD PTR [rsp+32], xmm2 + movdqa XMMWORD PTR [rsp+48], xmm3 + movdqa XMMWORD PTR [rsp+64], xmm4 + movdqa XMMWORD PTR [rsp+80], xmm5 + movdqa XMMWORD PTR [rsp+96], xmm6 + movdqa XMMWORD PTR [rsp+112], xmm7 + movdqa XMMWORD PTR [rsp+128], xmm0 + + movsxd rax, dword ptr arg(2) ; xoffset + cmp rax, 0 ; skip first_pass filter if xoffset=0 + je .b8x8_sp_only + + shl rax, 4 + add rax, rcx ; HFilter + + mov rdi, arg(4) ; dst_ptr + movsxd rdx, dword ptr arg(5) ; dst_pitch + + movdqa xmm0, [rax] + + movsxd rax, dword ptr arg(3) ; yoffset + cmp rax, 0 ; skip second_pass filter if yoffset=0 + je .b8x8_fp_only + + shl rax, 4 + lea rax, [rax + rcx] ; VFilter + + lea rcx, [rdi+rdx*8] + + movdqa xmm1, [rax] + + ; get the first horizontal line done + movdqa xmm3, [rsp] ; 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 + movdqa xmm5, xmm3 ; 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 xx + + psrldq xmm5, 1 + lea rsp, [rsp + 16] ; next line + + punpcklbw xmm3, xmm5 ; 00 01 01 02 02 03 03 04 04 05 05 06 06 07 07 08 + pmaddubsw xmm3, xmm0 ; 00 02 04 06 08 10 12 14 + + paddw xmm3, [GLOBAL(rd)] ; xmm3 += round value + psraw xmm3, VP8_FILTER_SHIFT ; xmm3 /= 128 + + movdqa xmm7, xmm3 + packuswb xmm7, xmm7 ; 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 + +.next_row: + movdqa xmm6, [rsp] ; 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 + lea rsp, [rsp + 16] ; next line + + movdqa xmm5, xmm6 + + psrldq xmm5, 1 + + punpcklbw xmm6, xmm5 + pmaddubsw xmm6, xmm0 + + paddw xmm6, [GLOBAL(rd)] ; xmm6 += round value + psraw xmm6, VP8_FILTER_SHIFT ; xmm6 /= 128 + + packuswb xmm6, xmm6 + + punpcklbw xmm7, xmm6 + pmaddubsw xmm7, xmm1 + + paddw xmm7, [GLOBAL(rd)] ; xmm7 += round value + psraw xmm7, VP8_FILTER_SHIFT ; xmm7 /= 128 + + packuswb xmm7, xmm7 + + movq [rdi], xmm7 ; store the results in the destination + lea rdi, [rdi + rdx] + + movdqa xmm7, xmm6 + + cmp rdi, rcx + jne .next_row + + jmp .done8x8 + +.b8x8_sp_only: + movsxd rax, dword ptr arg(3) ; yoffset + shl rax, 4 + lea rax, [rax + rcx] ; VFilter + + mov rdi, arg(4) ;dst_ptr + movsxd rdx, dword ptr arg(5) ; dst_pitch + + movdqa xmm0, [rax] ; VFilter + + movq xmm1, XMMWORD PTR [rsp] + movq xmm2, XMMWORD PTR [rsp+16] + + movq xmm3, XMMWORD PTR [rsp+32] + punpcklbw xmm1, xmm2 + + movq xmm4, XMMWORD PTR [rsp+48] + punpcklbw xmm2, xmm3 + + movq xmm5, XMMWORD PTR [rsp+64] + punpcklbw xmm3, xmm4 + + movq xmm6, XMMWORD PTR [rsp+80] + punpcklbw xmm4, xmm5 + + movq xmm7, XMMWORD PTR [rsp+96] + punpcklbw xmm5, xmm6 + + ; Because the source register (xmm0) is always treated as signed by + ; pmaddubsw, the constant '128' is treated as '-128'. + pmaddubsw xmm1, xmm0 + pmaddubsw xmm2, xmm0 + + pmaddubsw xmm3, xmm0 + pmaddubsw xmm4, xmm0 + + pmaddubsw xmm5, xmm0 + punpcklbw xmm6, xmm7 + + pmaddubsw xmm6, xmm0 + paddw xmm1, [GLOBAL(rd)] + + paddw xmm2, [GLOBAL(rd)] + psraw xmm1, VP8_FILTER_SHIFT + + paddw xmm3, [GLOBAL(rd)] + psraw xmm2, VP8_FILTER_SHIFT + + paddw xmm4, [GLOBAL(rd)] + psraw xmm3, VP8_FILTER_SHIFT + + paddw xmm5, [GLOBAL(rd)] + psraw xmm4, VP8_FILTER_SHIFT + + paddw xmm6, [GLOBAL(rd)] + psraw xmm5, VP8_FILTER_SHIFT + + psraw xmm6, VP8_FILTER_SHIFT + + ; Having multiplied everything by '-128' and obtained negative + ; numbers, the unsigned saturation truncates those values to 0, + ; resulting in incorrect handling of xoffset == 0 && yoffset == 0 + packuswb xmm1, xmm1 + + packuswb xmm2, xmm2 + movq [rdi], xmm1 + + packuswb xmm3, xmm3 + movq [rdi+rdx], xmm2 + + packuswb xmm4, xmm4 + movq xmm1, XMMWORD PTR [rsp+112] + + lea rdi, [rdi + 2*rdx] + movq xmm2, XMMWORD PTR [rsp+128] + + packuswb xmm5, xmm5 + movq [rdi], xmm3 + + packuswb xmm6, xmm6 + movq [rdi+rdx], xmm4 + + lea rdi, [rdi + 2*rdx] + punpcklbw xmm7, xmm1 + + movq [rdi], xmm5 + pmaddubsw xmm7, xmm0 + + movq [rdi+rdx], xmm6 + punpcklbw xmm1, xmm2 + + pmaddubsw xmm1, xmm0 + paddw xmm7, [GLOBAL(rd)] + + psraw xmm7, VP8_FILTER_SHIFT + paddw xmm1, [GLOBAL(rd)] + + psraw xmm1, VP8_FILTER_SHIFT + packuswb xmm7, xmm7 + + packuswb xmm1, xmm1 + lea rdi, [rdi + 2*rdx] + + movq [rdi], xmm7 + + movq [rdi+rdx], xmm1 + lea rsp, [rsp + 144] + + jmp .done8x8 + +.b8x8_fp_only: + lea rcx, [rdi+rdx*8] + +.next_row_fp: + movdqa xmm1, XMMWORD PTR [rsp] + movdqa xmm3, XMMWORD PTR [rsp+16] + + movdqa xmm2, xmm1 + movdqa xmm5, XMMWORD PTR [rsp+32] + + psrldq xmm2, 1 + movdqa xmm7, XMMWORD PTR [rsp+48] + + movdqa xmm4, xmm3 + psrldq xmm4, 1 + + movdqa xmm6, xmm5 + psrldq xmm6, 1 + + punpcklbw xmm1, xmm2 + pmaddubsw xmm1, xmm0 + + punpcklbw xmm3, xmm4 + pmaddubsw xmm3, xmm0 + + punpcklbw xmm5, xmm6 + pmaddubsw xmm5, xmm0 + + movdqa xmm2, xmm7 + psrldq xmm2, 1 + + punpcklbw xmm7, xmm2 + pmaddubsw xmm7, xmm0 + + paddw xmm1, [GLOBAL(rd)] + psraw xmm1, VP8_FILTER_SHIFT + + paddw xmm3, [GLOBAL(rd)] + psraw xmm3, VP8_FILTER_SHIFT + + paddw xmm5, [GLOBAL(rd)] + psraw xmm5, VP8_FILTER_SHIFT + + paddw xmm7, [GLOBAL(rd)] + psraw xmm7, VP8_FILTER_SHIFT + + packuswb xmm1, xmm1 + packuswb xmm3, xmm3 + + packuswb xmm5, xmm5 + movq [rdi], xmm1 + + packuswb xmm7, xmm7 + movq [rdi+rdx], xmm3 + + lea rdi, [rdi + 2*rdx] + movq [rdi], xmm5 + + lea rsp, [rsp + 4*16] + movq [rdi+rdx], xmm7 + + lea rdi, [rdi + 2*rdx] + cmp rdi, rcx + + jne .next_row_fp + + lea rsp, [rsp + 16] + +.done8x8: + ;add rsp, 144 + pop rsp + ; begin epilog + pop rdi + pop rsi + RESTORE_GOT + RESTORE_XMM + UNSHADOW_ARGS + pop rbp + ret + +SECTION_RODATA +align 16 +shuf1b: + db 0, 5, 1, 6, 2, 7, 3, 8, 4, 9, 5, 10, 6, 11, 7, 12 +shuf2b: + db 2, 4, 3, 5, 4, 6, 5, 7, 6, 8, 7, 9, 8, 10, 9, 11 +shuf3b: + db 1, 3, 2, 4, 3, 5, 4, 6, 5, 7, 6, 8, 7, 9, 8, 10 + +align 16 +shuf2bfrom1: + db 4, 8, 6, 1, 8, 3, 1, 5, 3, 7, 5, 9, 7,11, 9,13 +align 16 +shuf3bfrom1: + db 2, 6, 4, 8, 6, 1, 8, 3, 1, 5, 3, 7, 5, 9, 7,11 + +align 16 +rd: + times 8 dw 0x40 + +align 16 +k0_k5: + times 8 db 0, 0 ;placeholder + times 8 db 0, 0 + times 8 db 2, 1 + times 8 db 0, 0 + times 8 db 3, 3 + times 8 db 0, 0 + times 8 db 1, 2 + times 8 db 0, 0 +k1_k3: + times 8 db 0, 0 ;placeholder + times 8 db -6, 12 + times 8 db -11, 36 + times 8 db -9, 50 + times 8 db -16, 77 + times 8 db -6, 93 + times 8 db -8, 108 + times 8 db -1, 123 +k2_k4: + times 8 db 128, 0 ;placeholder + times 8 db 123, -1 + times 8 db 108, -8 + times 8 db 93, -6 + times 8 db 77, -16 + times 8 db 50, -9 + times 8 db 36, -11 + times 8 db 12, -6 +align 16 +vp8_bilinear_filters_ssse3: + times 8 db 128, 0 + times 8 db 112, 16 + times 8 db 96, 32 + times 8 db 80, 48 + times 8 db 64, 64 + times 8 db 48, 80 + times 8 db 32, 96 + times 8 db 16, 112 + diff --git a/vp8/common/x86/vp8_asm_stubs.c b/vp8/common/x86/vp8_asm_stubs.c new file mode 100644 index 0000000..b9d087e --- /dev/null +++ b/vp8/common/x86/vp8_asm_stubs.c @@ -0,0 +1,370 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "vpx_config.h" +#include "vp8_rtcd.h" +#include "vpx_ports/mem.h" +#include "filter_x86.h" + +extern const short vp8_six_tap_x86[8][6 * 8]; + +extern void vp8_filter_block1d_h6_mmx(unsigned char *src_ptr, + unsigned short *output_ptr, + unsigned int src_pixels_per_line, + unsigned int pixel_step, + unsigned int output_height, + unsigned int output_width, + const short *vp8_filter); +extern void vp8_filter_block1dc_v6_mmx( + unsigned short *src_ptr, unsigned char *output_ptr, int output_pitch, + unsigned int pixels_per_line, unsigned int pixel_step, + unsigned int output_height, unsigned int output_width, + const short *vp8_filter); +extern void vp8_filter_block1d8_h6_sse2(unsigned char *src_ptr, + unsigned short *output_ptr, + unsigned int src_pixels_per_line, + unsigned int pixel_step, + unsigned int output_height, + unsigned int output_width, + const short *vp8_filter); +extern void vp8_filter_block1d16_h6_sse2(unsigned char *src_ptr, + unsigned short *output_ptr, + unsigned int src_pixels_per_line, + unsigned int pixel_step, + unsigned int output_height, + unsigned int output_width, + const short *vp8_filter); +extern void vp8_filter_block1d8_v6_sse2( + unsigned short *src_ptr, unsigned char *output_ptr, int dst_ptich, + unsigned int pixels_per_line, unsigned int pixel_step, + unsigned int output_height, unsigned int output_width, + const short *vp8_filter); +extern void vp8_filter_block1d16_v6_sse2( + unsigned short *src_ptr, unsigned char *output_ptr, int dst_ptich, + unsigned int pixels_per_line, unsigned int pixel_step, + unsigned int output_height, unsigned int output_width, + const short *vp8_filter); +extern void vp8_unpack_block1d16_h6_sse2(unsigned char *src_ptr, + unsigned short *output_ptr, + unsigned int src_pixels_per_line, + unsigned int output_height, + unsigned int output_width); +extern void vp8_filter_block1d8_h6_only_sse2(unsigned char *src_ptr, + unsigned int src_pixels_per_line, + unsigned char *output_ptr, + int dst_ptich, + unsigned int output_height, + const short *vp8_filter); +extern void vp8_filter_block1d16_h6_only_sse2(unsigned char *src_ptr, + unsigned int src_pixels_per_line, + unsigned char *output_ptr, + int dst_ptich, + unsigned int output_height, + const short *vp8_filter); +extern void vp8_filter_block1d8_v6_only_sse2(unsigned char *src_ptr, + unsigned int src_pixels_per_line, + unsigned char *output_ptr, + int dst_ptich, + unsigned int output_height, + const short *vp8_filter); + +#if HAVE_MMX +void vp8_sixtap_predict4x4_mmx(unsigned char *src_ptr, int src_pixels_per_line, + int xoffset, int yoffset, unsigned char *dst_ptr, + int dst_pitch) { + DECLARE_ALIGNED(16, unsigned short, + FData2[16 * 16]); /* Temp data bufffer used in filtering */ + const short *HFilter, *VFilter; + HFilter = vp8_six_tap_x86[xoffset]; + vp8_filter_block1d_h6_mmx(src_ptr - (2 * src_pixels_per_line), FData2, + src_pixels_per_line, 1, 9, 8, HFilter); + VFilter = vp8_six_tap_x86[yoffset]; + vp8_filter_block1dc_v6_mmx(FData2 + 8, dst_ptr, dst_pitch, 8, 4, 4, 4, + VFilter); +} +#endif + +#if HAVE_SSE2 +void vp8_sixtap_predict16x16_sse2(unsigned char *src_ptr, + int src_pixels_per_line, int xoffset, + int yoffset, unsigned char *dst_ptr, + int dst_pitch + + ) { + DECLARE_ALIGNED(16, unsigned short, + FData2[24 * 24]); /* Temp data bufffer used in filtering */ + + const short *HFilter, *VFilter; + + if (xoffset) { + if (yoffset) { + HFilter = vp8_six_tap_x86[xoffset]; + vp8_filter_block1d16_h6_sse2(src_ptr - (2 * src_pixels_per_line), FData2, + src_pixels_per_line, 1, 21, 32, HFilter); + VFilter = vp8_six_tap_x86[yoffset]; + vp8_filter_block1d16_v6_sse2(FData2 + 32, dst_ptr, dst_pitch, 32, 16, 16, + dst_pitch, VFilter); + } else { + /* First-pass only */ + HFilter = vp8_six_tap_x86[xoffset]; + vp8_filter_block1d16_h6_only_sse2(src_ptr, src_pixels_per_line, dst_ptr, + dst_pitch, 16, HFilter); + } + } else { + /* Second-pass only */ + VFilter = vp8_six_tap_x86[yoffset]; + vp8_unpack_block1d16_h6_sse2(src_ptr - (2 * src_pixels_per_line), FData2, + src_pixels_per_line, 21, 32); + vp8_filter_block1d16_v6_sse2(FData2 + 32, dst_ptr, dst_pitch, 32, 16, 16, + dst_pitch, VFilter); + } +} + +void vp8_sixtap_predict8x8_sse2(unsigned char *src_ptr, int src_pixels_per_line, + int xoffset, int yoffset, + unsigned char *dst_ptr, int dst_pitch) { + DECLARE_ALIGNED(16, unsigned short, + FData2[256]); /* Temp data bufffer used in filtering */ + const short *HFilter, *VFilter; + + if (xoffset) { + if (yoffset) { + HFilter = vp8_six_tap_x86[xoffset]; + vp8_filter_block1d8_h6_sse2(src_ptr - (2 * src_pixels_per_line), FData2, + src_pixels_per_line, 1, 13, 16, HFilter); + VFilter = vp8_six_tap_x86[yoffset]; + vp8_filter_block1d8_v6_sse2(FData2 + 16, dst_ptr, dst_pitch, 16, 8, 8, + dst_pitch, VFilter); + } else { + /* First-pass only */ + HFilter = vp8_six_tap_x86[xoffset]; + vp8_filter_block1d8_h6_only_sse2(src_ptr, src_pixels_per_line, dst_ptr, + dst_pitch, 8, HFilter); + } + } else { + /* Second-pass only */ + VFilter = vp8_six_tap_x86[yoffset]; + vp8_filter_block1d8_v6_only_sse2(src_ptr - (2 * src_pixels_per_line), + src_pixels_per_line, dst_ptr, dst_pitch, 8, + VFilter); + } +} + +void vp8_sixtap_predict8x4_sse2(unsigned char *src_ptr, int src_pixels_per_line, + int xoffset, int yoffset, + unsigned char *dst_ptr, int dst_pitch) { + DECLARE_ALIGNED(16, unsigned short, + FData2[256]); /* Temp data bufffer used in filtering */ + const short *HFilter, *VFilter; + + if (xoffset) { + if (yoffset) { + HFilter = vp8_six_tap_x86[xoffset]; + vp8_filter_block1d8_h6_sse2(src_ptr - (2 * src_pixels_per_line), FData2, + src_pixels_per_line, 1, 9, 16, HFilter); + VFilter = vp8_six_tap_x86[yoffset]; + vp8_filter_block1d8_v6_sse2(FData2 + 16, dst_ptr, dst_pitch, 16, 8, 4, + dst_pitch, VFilter); + } else { + /* First-pass only */ + HFilter = vp8_six_tap_x86[xoffset]; + vp8_filter_block1d8_h6_only_sse2(src_ptr, src_pixels_per_line, dst_ptr, + dst_pitch, 4, HFilter); + } + } else { + /* Second-pass only */ + VFilter = vp8_six_tap_x86[yoffset]; + vp8_filter_block1d8_v6_only_sse2(src_ptr - (2 * src_pixels_per_line), + src_pixels_per_line, dst_ptr, dst_pitch, 4, + VFilter); + } +} + +#endif + +#if HAVE_SSSE3 + +extern void vp8_filter_block1d8_h6_ssse3(unsigned char *src_ptr, + unsigned int src_pixels_per_line, + unsigned char *output_ptr, + unsigned int output_pitch, + unsigned int output_height, + unsigned int vp8_filter_index); + +extern void vp8_filter_block1d16_h6_ssse3(unsigned char *src_ptr, + unsigned int src_pixels_per_line, + unsigned char *output_ptr, + unsigned int output_pitch, + unsigned int output_height, + unsigned int vp8_filter_index); + +extern void vp8_filter_block1d16_v6_ssse3(unsigned char *src_ptr, + unsigned int src_pitch, + unsigned char *output_ptr, + unsigned int out_pitch, + unsigned int output_height, + unsigned int vp8_filter_index); + +extern void vp8_filter_block1d8_v6_ssse3(unsigned char *src_ptr, + unsigned int src_pitch, + unsigned char *output_ptr, + unsigned int out_pitch, + unsigned int output_height, + unsigned int vp8_filter_index); + +extern void vp8_filter_block1d4_h6_ssse3(unsigned char *src_ptr, + unsigned int src_pixels_per_line, + unsigned char *output_ptr, + unsigned int output_pitch, + unsigned int output_height, + unsigned int vp8_filter_index); + +extern void vp8_filter_block1d4_v6_ssse3(unsigned char *src_ptr, + unsigned int src_pitch, + unsigned char *output_ptr, + unsigned int out_pitch, + unsigned int output_height, + unsigned int vp8_filter_index); + +void vp8_sixtap_predict16x16_ssse3(unsigned char *src_ptr, + int src_pixels_per_line, int xoffset, + int yoffset, unsigned char *dst_ptr, + int dst_pitch + + ) { + DECLARE_ALIGNED(16, unsigned char, FData2[24 * 24]); + + if (xoffset) { + if (yoffset) { + vp8_filter_block1d16_h6_ssse3(src_ptr - (2 * src_pixels_per_line), + src_pixels_per_line, FData2, 16, 21, + xoffset); + vp8_filter_block1d16_v6_ssse3(FData2, 16, dst_ptr, dst_pitch, 16, + yoffset); + } else { + /* First-pass only */ + vp8_filter_block1d16_h6_ssse3(src_ptr, src_pixels_per_line, dst_ptr, + dst_pitch, 16, xoffset); + } + } else { + if (yoffset) { + /* Second-pass only */ + vp8_filter_block1d16_v6_ssse3(src_ptr - (2 * src_pixels_per_line), + src_pixels_per_line, dst_ptr, dst_pitch, 16, + yoffset); + } else { + /* ssse3 second-pass only function couldn't handle (xoffset==0 && + * yoffset==0) case correctly. Add copy function here to guarantee + * six-tap function handles all possible offsets. */ + vp8_copy_mem16x16(src_ptr, src_pixels_per_line, dst_ptr, dst_pitch); + } + } +} + +void vp8_sixtap_predict8x8_ssse3(unsigned char *src_ptr, + int src_pixels_per_line, int xoffset, + int yoffset, unsigned char *dst_ptr, + int dst_pitch) { + DECLARE_ALIGNED(16, unsigned char, FData2[256]); + + if (xoffset) { + if (yoffset) { + vp8_filter_block1d8_h6_ssse3(src_ptr - (2 * src_pixels_per_line), + src_pixels_per_line, FData2, 8, 13, xoffset); + vp8_filter_block1d8_v6_ssse3(FData2, 8, dst_ptr, dst_pitch, 8, yoffset); + } else { + vp8_filter_block1d8_h6_ssse3(src_ptr, src_pixels_per_line, dst_ptr, + dst_pitch, 8, xoffset); + } + } else { + if (yoffset) { + /* Second-pass only */ + vp8_filter_block1d8_v6_ssse3(src_ptr - (2 * src_pixels_per_line), + src_pixels_per_line, dst_ptr, dst_pitch, 8, + yoffset); + } else { + /* ssse3 second-pass only function couldn't handle (xoffset==0 && + * yoffset==0) case correctly. Add copy function here to guarantee + * six-tap function handles all possible offsets. */ + vp8_copy_mem8x8(src_ptr, src_pixels_per_line, dst_ptr, dst_pitch); + } + } +} + +void vp8_sixtap_predict8x4_ssse3(unsigned char *src_ptr, + int src_pixels_per_line, int xoffset, + int yoffset, unsigned char *dst_ptr, + int dst_pitch) { + DECLARE_ALIGNED(16, unsigned char, FData2[256]); + + if (xoffset) { + if (yoffset) { + vp8_filter_block1d8_h6_ssse3(src_ptr - (2 * src_pixels_per_line), + src_pixels_per_line, FData2, 8, 9, xoffset); + vp8_filter_block1d8_v6_ssse3(FData2, 8, dst_ptr, dst_pitch, 4, yoffset); + } else { + /* First-pass only */ + vp8_filter_block1d8_h6_ssse3(src_ptr, src_pixels_per_line, dst_ptr, + dst_pitch, 4, xoffset); + } + } else { + if (yoffset) { + /* Second-pass only */ + vp8_filter_block1d8_v6_ssse3(src_ptr - (2 * src_pixels_per_line), + src_pixels_per_line, dst_ptr, dst_pitch, 4, + yoffset); + } else { + /* ssse3 second-pass only function couldn't handle (xoffset==0 && + * yoffset==0) case correctly. Add copy function here to guarantee + * six-tap function handles all possible offsets. */ + vp8_copy_mem8x4(src_ptr, src_pixels_per_line, dst_ptr, dst_pitch); + } + } +} + +void vp8_sixtap_predict4x4_ssse3(unsigned char *src_ptr, + int src_pixels_per_line, int xoffset, + int yoffset, unsigned char *dst_ptr, + int dst_pitch) { + DECLARE_ALIGNED(16, unsigned char, FData2[4 * 9]); + + if (xoffset) { + if (yoffset) { + vp8_filter_block1d4_h6_ssse3(src_ptr - (2 * src_pixels_per_line), + src_pixels_per_line, FData2, 4, 9, xoffset); + vp8_filter_block1d4_v6_ssse3(FData2, 4, dst_ptr, dst_pitch, 4, yoffset); + } else { + vp8_filter_block1d4_h6_ssse3(src_ptr, src_pixels_per_line, dst_ptr, + dst_pitch, 4, xoffset); + } + } else { + if (yoffset) { + vp8_filter_block1d4_v6_ssse3(src_ptr - (2 * src_pixels_per_line), + src_pixels_per_line, dst_ptr, dst_pitch, 4, + yoffset); + } else { + /* ssse3 second-pass only function couldn't handle (xoffset==0 && + * yoffset==0) case correctly. Add copy function here to guarantee + * six-tap function handles all possible offsets. */ + int r; + + for (r = 0; r < 4; ++r) { + dst_ptr[0] = src_ptr[0]; + dst_ptr[1] = src_ptr[1]; + dst_ptr[2] = src_ptr[2]; + dst_ptr[3] = src_ptr[3]; + dst_ptr += dst_pitch; + src_ptr += src_pixels_per_line; + } + } + } +} + +#endif diff --git a/vp8/decoder/dboolhuff.c b/vp8/decoder/dboolhuff.c new file mode 100644 index 0000000..9cf74bf --- /dev/null +++ b/vp8/decoder/dboolhuff.c @@ -0,0 +1,68 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "dboolhuff.h" +#include "vp8/common/common.h" +#include "vpx_dsp/vpx_dsp_common.h" + +int vp8dx_start_decode(BOOL_DECODER *br, const unsigned char *source, + unsigned int source_sz, vpx_decrypt_cb decrypt_cb, + void *decrypt_state) { + br->user_buffer_end = source + source_sz; + br->user_buffer = source; + br->value = 0; + br->count = -8; + br->range = 255; + br->decrypt_cb = decrypt_cb; + br->decrypt_state = decrypt_state; + + if (source_sz && !source) return 1; + + /* Populate the buffer */ + vp8dx_bool_decoder_fill(br); + + return 0; +} + +void vp8dx_bool_decoder_fill(BOOL_DECODER *br) { + const unsigned char *bufptr = br->user_buffer; + VP8_BD_VALUE value = br->value; + int count = br->count; + int shift = VP8_BD_VALUE_SIZE - CHAR_BIT - (count + CHAR_BIT); + size_t bytes_left = br->user_buffer_end - bufptr; + size_t bits_left = bytes_left * CHAR_BIT; + int x = shift + CHAR_BIT - (int)bits_left; + int loop_end = 0; + unsigned char decrypted[sizeof(VP8_BD_VALUE) + 1]; + + if (br->decrypt_cb) { + size_t n = VPXMIN(sizeof(decrypted), bytes_left); + br->decrypt_cb(br->decrypt_state, bufptr, decrypted, (int)n); + bufptr = decrypted; + } + + if (x >= 0) { + count += VP8_LOTS_OF_BITS; + loop_end = x; + } + + if (x < 0 || bits_left) { + while (shift >= loop_end) { + count += CHAR_BIT; + value |= (VP8_BD_VALUE)*bufptr << shift; + ++bufptr; + ++br->user_buffer; + shift -= CHAR_BIT; + } + } + + br->value = value; + br->count = count; +} diff --git a/vp8/decoder/dboolhuff.h b/vp8/decoder/dboolhuff.h new file mode 100644 index 0000000..04c027c --- /dev/null +++ b/vp8/decoder/dboolhuff.h @@ -0,0 +1,130 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP8_DECODER_DBOOLHUFF_H_ +#define VP8_DECODER_DBOOLHUFF_H_ + +#include +#include + +#include "./vpx_config.h" +#include "vpx_ports/mem.h" +#include "vpx/vp8dx.h" +#include "vpx/vpx_integer.h" + +#ifdef __cplusplus +extern "C" { +#endif + +typedef size_t VP8_BD_VALUE; + +#define VP8_BD_VALUE_SIZE ((int)sizeof(VP8_BD_VALUE) * CHAR_BIT) + +/*This is meant to be a large, positive constant that can still be efficiently + loaded as an immediate (on platforms like ARM, for example). + Even relatively modest values like 100 would work fine.*/ +#define VP8_LOTS_OF_BITS (0x40000000) + +typedef struct { + const unsigned char *user_buffer_end; + const unsigned char *user_buffer; + VP8_BD_VALUE value; + int count; + unsigned int range; + vpx_decrypt_cb decrypt_cb; + void *decrypt_state; +} BOOL_DECODER; + +DECLARE_ALIGNED(16, extern const unsigned char, vp8_norm[256]); + +int vp8dx_start_decode(BOOL_DECODER *br, const unsigned char *source, + unsigned int source_sz, vpx_decrypt_cb decrypt_cb, + void *decrypt_state); + +void vp8dx_bool_decoder_fill(BOOL_DECODER *br); + +static int vp8dx_decode_bool(BOOL_DECODER *br, int probability) { + unsigned int bit = 0; + VP8_BD_VALUE value; + unsigned int split; + VP8_BD_VALUE bigsplit; + int count; + unsigned int range; + + split = 1 + (((br->range - 1) * probability) >> 8); + + if (br->count < 0) vp8dx_bool_decoder_fill(br); + + value = br->value; + count = br->count; + + bigsplit = (VP8_BD_VALUE)split << (VP8_BD_VALUE_SIZE - 8); + + range = split; + + if (value >= bigsplit) { + range = br->range - split; + value = value - bigsplit; + bit = 1; + } + + { + register int shift = vp8_norm[range]; + range <<= shift; + value <<= shift; + count -= shift; + } + br->value = value; + br->count = count; + br->range = range; + + return bit; +} + +static INLINE int vp8_decode_value(BOOL_DECODER *br, int bits) { + int z = 0; + int bit; + + for (bit = bits - 1; bit >= 0; bit--) { + z |= (vp8dx_decode_bool(br, 0x80) << bit); + } + + return z; +} + +static INLINE int vp8dx_bool_error(BOOL_DECODER *br) { + /* Check if we have reached the end of the buffer. + * + * Variable 'count' stores the number of bits in the 'value' buffer, minus + * 8. The top byte is part of the algorithm, and the remainder is buffered + * to be shifted into it. So if count == 8, the top 16 bits of 'value' are + * occupied, 8 for the algorithm and 8 in the buffer. + * + * When reading a byte from the user's buffer, count is filled with 8 and + * one byte is filled into the value buffer. When we reach the end of the + * data, count is additionally filled with VP8_LOTS_OF_BITS. So when + * count == VP8_LOTS_OF_BITS - 1, the user's data has been exhausted. + */ + if ((br->count > VP8_BD_VALUE_SIZE) && (br->count < VP8_LOTS_OF_BITS)) { + /* We have tried to decode bits after the end of + * stream was encountered. + */ + return 1; + } + + /* No error. */ + return 0; +} + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP8_DECODER_DBOOLHUFF_H_ diff --git a/vp8/decoder/decodeframe.c b/vp8/decoder/decodeframe.c new file mode 100644 index 0000000..077bd3d --- /dev/null +++ b/vp8/decoder/decodeframe.c @@ -0,0 +1,1257 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "vpx_config.h" +#include "vp8_rtcd.h" +#include "./vpx_scale_rtcd.h" +#include "onyxd_int.h" +#include "vp8/common/header.h" +#include "vp8/common/reconintra4x4.h" +#include "vp8/common/reconinter.h" +#include "detokenize.h" +#include "vp8/common/common.h" +#include "vp8/common/invtrans.h" +#include "vp8/common/alloccommon.h" +#include "vp8/common/entropymode.h" +#include "vp8/common/quant_common.h" +#include "vpx_scale/vpx_scale.h" +#include "vp8/common/reconintra.h" +#include "vp8/common/setupintrarecon.h" + +#include "decodemv.h" +#include "vp8/common/extend.h" +#if CONFIG_ERROR_CONCEALMENT +#include "error_concealment.h" +#endif +#include "vpx_mem/vpx_mem.h" +#include "vp8/common/threading.h" +#include "decoderthreading.h" +#include "dboolhuff.h" +#include "vpx_dsp/vpx_dsp_common.h" + +#include +#include + +void vp8cx_init_de_quantizer(VP8D_COMP *pbi) { + int Q; + VP8_COMMON *const pc = &pbi->common; + + for (Q = 0; Q < QINDEX_RANGE; ++Q) { + pc->Y1dequant[Q][0] = (short)vp8_dc_quant(Q, pc->y1dc_delta_q); + pc->Y2dequant[Q][0] = (short)vp8_dc2quant(Q, pc->y2dc_delta_q); + pc->UVdequant[Q][0] = (short)vp8_dc_uv_quant(Q, pc->uvdc_delta_q); + + pc->Y1dequant[Q][1] = (short)vp8_ac_yquant(Q); + pc->Y2dequant[Q][1] = (short)vp8_ac2quant(Q, pc->y2ac_delta_q); + pc->UVdequant[Q][1] = (short)vp8_ac_uv_quant(Q, pc->uvac_delta_q); + } +} + +void vp8_mb_init_dequantizer(VP8D_COMP *pbi, MACROBLOCKD *xd) { + int i; + int QIndex; + MB_MODE_INFO *mbmi = &xd->mode_info_context->mbmi; + VP8_COMMON *const pc = &pbi->common; + + /* Decide whether to use the default or alternate baseline Q value. */ + if (xd->segmentation_enabled) { + /* Abs Value */ + if (xd->mb_segement_abs_delta == SEGMENT_ABSDATA) { + QIndex = xd->segment_feature_data[MB_LVL_ALT_Q][mbmi->segment_id]; + + /* Delta Value */ + } else { + QIndex = pc->base_qindex + + xd->segment_feature_data[MB_LVL_ALT_Q][mbmi->segment_id]; + } + + QIndex = (QIndex >= 0) ? ((QIndex <= MAXQ) ? QIndex : MAXQ) + : 0; /* Clamp to valid range */ + } else { + QIndex = pc->base_qindex; + } + + /* Set up the macroblock dequant constants */ + xd->dequant_y1_dc[0] = 1; + xd->dequant_y1[0] = pc->Y1dequant[QIndex][0]; + xd->dequant_y2[0] = pc->Y2dequant[QIndex][0]; + xd->dequant_uv[0] = pc->UVdequant[QIndex][0]; + + for (i = 1; i < 16; ++i) { + xd->dequant_y1_dc[i] = xd->dequant_y1[i] = pc->Y1dequant[QIndex][1]; + xd->dequant_y2[i] = pc->Y2dequant[QIndex][1]; + xd->dequant_uv[i] = pc->UVdequant[QIndex][1]; + } +} + +static void decode_macroblock(VP8D_COMP *pbi, MACROBLOCKD *xd, + unsigned int mb_idx) { + MB_PREDICTION_MODE mode; + int i; +#if CONFIG_ERROR_CONCEALMENT + int corruption_detected = 0; +#else + (void)mb_idx; +#endif + + if (xd->mode_info_context->mbmi.mb_skip_coeff) { + vp8_reset_mb_tokens_context(xd); + } else if (!vp8dx_bool_error(xd->current_bc)) { + int eobtotal; + eobtotal = vp8_decode_mb_tokens(pbi, xd); + + /* Special case: Force the loopfilter to skip when eobtotal is zero */ + xd->mode_info_context->mbmi.mb_skip_coeff = (eobtotal == 0); + } + + mode = xd->mode_info_context->mbmi.mode; + + if (xd->segmentation_enabled) vp8_mb_init_dequantizer(pbi, xd); + +#if CONFIG_ERROR_CONCEALMENT + + if (pbi->ec_active) { + int throw_residual; + /* When we have independent partitions we can apply residual even + * though other partitions within the frame are corrupt. + */ + throw_residual = + (!pbi->independent_partitions && pbi->frame_corrupt_residual); + throw_residual = (throw_residual || vp8dx_bool_error(xd->current_bc)); + + if ((mb_idx >= pbi->mvs_corrupt_from_mb || throw_residual)) { + /* MB with corrupt residuals or corrupt mode/motion vectors. + * Better to use the predictor as reconstruction. + */ + pbi->frame_corrupt_residual = 1; + memset(xd->qcoeff, 0, sizeof(xd->qcoeff)); + + corruption_detected = 1; + + /* force idct to be skipped for B_PRED and use the + * prediction only for reconstruction + * */ + memset(xd->eobs, 0, 25); + } + } +#endif + + /* do prediction */ + if (xd->mode_info_context->mbmi.ref_frame == INTRA_FRAME) { + vp8_build_intra_predictors_mbuv_s( + xd, xd->recon_above[1], xd->recon_above[2], xd->recon_left[1], + xd->recon_left[2], xd->recon_left_stride[1], xd->dst.u_buffer, + xd->dst.v_buffer, xd->dst.uv_stride); + + if (mode != B_PRED) { + vp8_build_intra_predictors_mby_s( + xd, xd->recon_above[0], xd->recon_left[0], xd->recon_left_stride[0], + xd->dst.y_buffer, xd->dst.y_stride); + } else { + short *DQC = xd->dequant_y1; + int dst_stride = xd->dst.y_stride; + + /* clear out residual eob info */ + if (xd->mode_info_context->mbmi.mb_skip_coeff) memset(xd->eobs, 0, 25); + + intra_prediction_down_copy(xd, xd->recon_above[0] + 16); + + for (i = 0; i < 16; ++i) { + BLOCKD *b = &xd->block[i]; + unsigned char *dst = xd->dst.y_buffer + b->offset; + B_PREDICTION_MODE b_mode = xd->mode_info_context->bmi[i].as_mode; + unsigned char *Above = dst - dst_stride; + unsigned char *yleft = dst - 1; + int left_stride = dst_stride; + unsigned char top_left = Above[-1]; + + vp8_intra4x4_predict(Above, yleft, left_stride, b_mode, dst, dst_stride, + top_left); + + if (xd->eobs[i]) { + if (xd->eobs[i] > 1) { + vp8_dequant_idct_add(b->qcoeff, DQC, dst, dst_stride); + } else { + vp8_dc_only_idct_add(b->qcoeff[0] * DQC[0], dst, dst_stride, dst, + dst_stride); + memset(b->qcoeff, 0, 2 * sizeof(b->qcoeff[0])); + } + } + } + } + } else { + vp8_build_inter_predictors_mb(xd); + } + +#if CONFIG_ERROR_CONCEALMENT + if (corruption_detected) { + return; + } +#endif + + if (!xd->mode_info_context->mbmi.mb_skip_coeff) { + /* dequantization and idct */ + if (mode != B_PRED) { + short *DQC = xd->dequant_y1; + + if (mode != SPLITMV) { + BLOCKD *b = &xd->block[24]; + + /* do 2nd order transform on the dc block */ + if (xd->eobs[24] > 1) { + vp8_dequantize_b(b, xd->dequant_y2); + + vp8_short_inv_walsh4x4(&b->dqcoeff[0], xd->qcoeff); + memset(b->qcoeff, 0, 16 * sizeof(b->qcoeff[0])); + } else { + b->dqcoeff[0] = b->qcoeff[0] * xd->dequant_y2[0]; + vp8_short_inv_walsh4x4_1(&b->dqcoeff[0], xd->qcoeff); + memset(b->qcoeff, 0, 2 * sizeof(b->qcoeff[0])); + } + + /* override the dc dequant constant in order to preserve the + * dc components + */ + DQC = xd->dequant_y1_dc; + } + + vp8_dequant_idct_add_y_block(xd->qcoeff, DQC, xd->dst.y_buffer, + xd->dst.y_stride, xd->eobs); + } + + vp8_dequant_idct_add_uv_block(xd->qcoeff + 16 * 16, xd->dequant_uv, + xd->dst.u_buffer, xd->dst.v_buffer, + xd->dst.uv_stride, xd->eobs + 16); + } +} + +static int get_delta_q(vp8_reader *bc, int prev, int *q_update) { + int ret_val = 0; + + if (vp8_read_bit(bc)) { + ret_val = vp8_read_literal(bc, 4); + + if (vp8_read_bit(bc)) ret_val = -ret_val; + } + + /* Trigger a quantizer update if the delta-q value has changed */ + if (ret_val != prev) *q_update = 1; + + return ret_val; +} + +#ifdef PACKET_TESTING +#include +FILE *vpxlog = 0; +#endif + +static void yv12_extend_frame_top_c(YV12_BUFFER_CONFIG *ybf) { + int i; + unsigned char *src_ptr1; + unsigned char *dest_ptr1; + + unsigned int Border; + int plane_stride; + + /***********/ + /* Y Plane */ + /***********/ + Border = ybf->border; + plane_stride = ybf->y_stride; + src_ptr1 = ybf->y_buffer - Border; + dest_ptr1 = src_ptr1 - (Border * plane_stride); + + for (i = 0; i < (int)Border; ++i) { + memcpy(dest_ptr1, src_ptr1, plane_stride); + dest_ptr1 += plane_stride; + } + + /***********/ + /* U Plane */ + /***********/ + plane_stride = ybf->uv_stride; + Border /= 2; + src_ptr1 = ybf->u_buffer - Border; + dest_ptr1 = src_ptr1 - (Border * plane_stride); + + for (i = 0; i < (int)(Border); ++i) { + memcpy(dest_ptr1, src_ptr1, plane_stride); + dest_ptr1 += plane_stride; + } + + /***********/ + /* V Plane */ + /***********/ + + src_ptr1 = ybf->v_buffer - Border; + dest_ptr1 = src_ptr1 - (Border * plane_stride); + + for (i = 0; i < (int)(Border); ++i) { + memcpy(dest_ptr1, src_ptr1, plane_stride); + dest_ptr1 += plane_stride; + } +} + +static void yv12_extend_frame_bottom_c(YV12_BUFFER_CONFIG *ybf) { + int i; + unsigned char *src_ptr1, *src_ptr2; + unsigned char *dest_ptr2; + + unsigned int Border; + int plane_stride; + int plane_height; + + /***********/ + /* Y Plane */ + /***********/ + Border = ybf->border; + plane_stride = ybf->y_stride; + plane_height = ybf->y_height; + + src_ptr1 = ybf->y_buffer - Border; + src_ptr2 = src_ptr1 + (plane_height * plane_stride) - plane_stride; + dest_ptr2 = src_ptr2 + plane_stride; + + for (i = 0; i < (int)Border; ++i) { + memcpy(dest_ptr2, src_ptr2, plane_stride); + dest_ptr2 += plane_stride; + } + + /***********/ + /* U Plane */ + /***********/ + plane_stride = ybf->uv_stride; + plane_height = ybf->uv_height; + Border /= 2; + + src_ptr1 = ybf->u_buffer - Border; + src_ptr2 = src_ptr1 + (plane_height * plane_stride) - plane_stride; + dest_ptr2 = src_ptr2 + plane_stride; + + for (i = 0; i < (int)(Border); ++i) { + memcpy(dest_ptr2, src_ptr2, plane_stride); + dest_ptr2 += plane_stride; + } + + /***********/ + /* V Plane */ + /***********/ + + src_ptr1 = ybf->v_buffer - Border; + src_ptr2 = src_ptr1 + (plane_height * plane_stride) - plane_stride; + dest_ptr2 = src_ptr2 + plane_stride; + + for (i = 0; i < (int)(Border); ++i) { + memcpy(dest_ptr2, src_ptr2, plane_stride); + dest_ptr2 += plane_stride; + } +} + +static void yv12_extend_frame_left_right_c(YV12_BUFFER_CONFIG *ybf, + unsigned char *y_src, + unsigned char *u_src, + unsigned char *v_src) { + int i; + unsigned char *src_ptr1, *src_ptr2; + unsigned char *dest_ptr1, *dest_ptr2; + + unsigned int Border; + int plane_stride; + int plane_height; + int plane_width; + + /***********/ + /* Y Plane */ + /***********/ + Border = ybf->border; + plane_stride = ybf->y_stride; + plane_height = 16; + plane_width = ybf->y_width; + + /* copy the left and right most columns out */ + src_ptr1 = y_src; + src_ptr2 = src_ptr1 + plane_width - 1; + dest_ptr1 = src_ptr1 - Border; + dest_ptr2 = src_ptr2 + 1; + + for (i = 0; i < plane_height; ++i) { + memset(dest_ptr1, src_ptr1[0], Border); + memset(dest_ptr2, src_ptr2[0], Border); + src_ptr1 += plane_stride; + src_ptr2 += plane_stride; + dest_ptr1 += plane_stride; + dest_ptr2 += plane_stride; + } + + /***********/ + /* U Plane */ + /***********/ + plane_stride = ybf->uv_stride; + plane_height = 8; + plane_width = ybf->uv_width; + Border /= 2; + + /* copy the left and right most columns out */ + src_ptr1 = u_src; + src_ptr2 = src_ptr1 + plane_width - 1; + dest_ptr1 = src_ptr1 - Border; + dest_ptr2 = src_ptr2 + 1; + + for (i = 0; i < plane_height; ++i) { + memset(dest_ptr1, src_ptr1[0], Border); + memset(dest_ptr2, src_ptr2[0], Border); + src_ptr1 += plane_stride; + src_ptr2 += plane_stride; + dest_ptr1 += plane_stride; + dest_ptr2 += plane_stride; + } + + /***********/ + /* V Plane */ + /***********/ + + /* copy the left and right most columns out */ + src_ptr1 = v_src; + src_ptr2 = src_ptr1 + plane_width - 1; + dest_ptr1 = src_ptr1 - Border; + dest_ptr2 = src_ptr2 + 1; + + for (i = 0; i < plane_height; ++i) { + memset(dest_ptr1, src_ptr1[0], Border); + memset(dest_ptr2, src_ptr2[0], Border); + src_ptr1 += plane_stride; + src_ptr2 += plane_stride; + dest_ptr1 += plane_stride; + dest_ptr2 += plane_stride; + } +} + +static void decode_mb_rows(VP8D_COMP *pbi) { + VP8_COMMON *const pc = &pbi->common; + MACROBLOCKD *const xd = &pbi->mb; + + MODE_INFO *lf_mic = xd->mode_info_context; + + int ibc = 0; + int num_part = 1 << pc->multi_token_partition; + + int recon_yoffset, recon_uvoffset; + int mb_row, mb_col; + int mb_idx = 0; + + YV12_BUFFER_CONFIG *yv12_fb_new = pbi->dec_fb_ref[INTRA_FRAME]; + + int recon_y_stride = yv12_fb_new->y_stride; + int recon_uv_stride = yv12_fb_new->uv_stride; + + unsigned char *ref_buffer[MAX_REF_FRAMES][3]; + unsigned char *dst_buffer[3]; + unsigned char *lf_dst[3]; + unsigned char *eb_dst[3]; + int i; + int ref_fb_corrupted[MAX_REF_FRAMES]; + + ref_fb_corrupted[INTRA_FRAME] = 0; + + for (i = 1; i < MAX_REF_FRAMES; ++i) { + YV12_BUFFER_CONFIG *this_fb = pbi->dec_fb_ref[i]; + + ref_buffer[i][0] = this_fb->y_buffer; + ref_buffer[i][1] = this_fb->u_buffer; + ref_buffer[i][2] = this_fb->v_buffer; + + ref_fb_corrupted[i] = this_fb->corrupted; + } + + /* Set up the buffer pointers */ + eb_dst[0] = lf_dst[0] = dst_buffer[0] = yv12_fb_new->y_buffer; + eb_dst[1] = lf_dst[1] = dst_buffer[1] = yv12_fb_new->u_buffer; + eb_dst[2] = lf_dst[2] = dst_buffer[2] = yv12_fb_new->v_buffer; + + xd->up_available = 0; + + /* Initialize the loop filter for this frame. */ + if (pc->filter_level) vp8_loop_filter_frame_init(pc, xd, pc->filter_level); + + vp8_setup_intra_recon_top_line(yv12_fb_new); + + /* Decode the individual macro block */ + for (mb_row = 0; mb_row < pc->mb_rows; ++mb_row) { + if (num_part > 1) { + xd->current_bc = &pbi->mbc[ibc]; + ibc++; + + if (ibc == num_part) ibc = 0; + } + + recon_yoffset = mb_row * recon_y_stride * 16; + recon_uvoffset = mb_row * recon_uv_stride * 8; + + /* reset contexts */ + xd->above_context = pc->above_context; + memset(xd->left_context, 0, sizeof(ENTROPY_CONTEXT_PLANES)); + + xd->left_available = 0; + + xd->mb_to_top_edge = -((mb_row * 16) << 3); + xd->mb_to_bottom_edge = ((pc->mb_rows - 1 - mb_row) * 16) << 3; + + xd->recon_above[0] = dst_buffer[0] + recon_yoffset; + xd->recon_above[1] = dst_buffer[1] + recon_uvoffset; + xd->recon_above[2] = dst_buffer[2] + recon_uvoffset; + + xd->recon_left[0] = xd->recon_above[0] - 1; + xd->recon_left[1] = xd->recon_above[1] - 1; + xd->recon_left[2] = xd->recon_above[2] - 1; + + xd->recon_above[0] -= xd->dst.y_stride; + xd->recon_above[1] -= xd->dst.uv_stride; + xd->recon_above[2] -= xd->dst.uv_stride; + + /* TODO: move to outside row loop */ + xd->recon_left_stride[0] = xd->dst.y_stride; + xd->recon_left_stride[1] = xd->dst.uv_stride; + + setup_intra_recon_left(xd->recon_left[0], xd->recon_left[1], + xd->recon_left[2], xd->dst.y_stride, + xd->dst.uv_stride); + + for (mb_col = 0; mb_col < pc->mb_cols; ++mb_col) { + /* Distance of Mb to the various image edges. + * These are specified to 8th pel as they are always compared to values + * that are in 1/8th pel units + */ + xd->mb_to_left_edge = -((mb_col * 16) << 3); + xd->mb_to_right_edge = ((pc->mb_cols - 1 - mb_col) * 16) << 3; + +#if CONFIG_ERROR_CONCEALMENT + { + int corrupt_residual = + (!pbi->independent_partitions && pbi->frame_corrupt_residual) || + vp8dx_bool_error(xd->current_bc); + if (pbi->ec_active && + xd->mode_info_context->mbmi.ref_frame == INTRA_FRAME && + corrupt_residual) { + /* We have an intra block with corrupt coefficients, better to + * conceal with an inter block. Interpolate MVs from neighboring + * MBs. + * + * Note that for the first mb with corrupt residual in a frame, + * we might not discover that before decoding the residual. That + * happens after this check, and therefore no inter concealment + * will be done. + */ + vp8_interpolate_motion(xd, mb_row, mb_col, pc->mb_rows, pc->mb_cols); + } + } +#endif + + xd->dst.y_buffer = dst_buffer[0] + recon_yoffset; + xd->dst.u_buffer = dst_buffer[1] + recon_uvoffset; + xd->dst.v_buffer = dst_buffer[2] + recon_uvoffset; + + if (xd->mode_info_context->mbmi.ref_frame >= LAST_FRAME) { + const MV_REFERENCE_FRAME ref = xd->mode_info_context->mbmi.ref_frame; + xd->pre.y_buffer = ref_buffer[ref][0] + recon_yoffset; + xd->pre.u_buffer = ref_buffer[ref][1] + recon_uvoffset; + xd->pre.v_buffer = ref_buffer[ref][2] + recon_uvoffset; + } else { + // ref_frame is INTRA_FRAME, pre buffer should not be used. + xd->pre.y_buffer = 0; + xd->pre.u_buffer = 0; + xd->pre.v_buffer = 0; + } + + /* propagate errors from reference frames */ + xd->corrupted |= ref_fb_corrupted[xd->mode_info_context->mbmi.ref_frame]; + + decode_macroblock(pbi, xd, mb_idx); + + mb_idx++; + xd->left_available = 1; + + /* check if the boolean decoder has suffered an error */ + xd->corrupted |= vp8dx_bool_error(xd->current_bc); + + xd->recon_above[0] += 16; + xd->recon_above[1] += 8; + xd->recon_above[2] += 8; + xd->recon_left[0] += 16; + xd->recon_left[1] += 8; + xd->recon_left[2] += 8; + + recon_yoffset += 16; + recon_uvoffset += 8; + + ++xd->mode_info_context; /* next mb */ + + xd->above_context++; + } + + /* adjust to the next row of mbs */ + vp8_extend_mb_row(yv12_fb_new, xd->dst.y_buffer + 16, xd->dst.u_buffer + 8, + xd->dst.v_buffer + 8); + + ++xd->mode_info_context; /* skip prediction column */ + xd->up_available = 1; + + if (pc->filter_level) { + if (mb_row > 0) { + if (pc->filter_type == NORMAL_LOOPFILTER) { + vp8_loop_filter_row_normal(pc, lf_mic, mb_row - 1, recon_y_stride, + recon_uv_stride, lf_dst[0], lf_dst[1], + lf_dst[2]); + } else { + vp8_loop_filter_row_simple(pc, lf_mic, mb_row - 1, recon_y_stride, + recon_uv_stride, lf_dst[0], lf_dst[1], + lf_dst[2]); + } + if (mb_row > 1) { + yv12_extend_frame_left_right_c(yv12_fb_new, eb_dst[0], eb_dst[1], + eb_dst[2]); + + eb_dst[0] += recon_y_stride * 16; + eb_dst[1] += recon_uv_stride * 8; + eb_dst[2] += recon_uv_stride * 8; + } + + lf_dst[0] += recon_y_stride * 16; + lf_dst[1] += recon_uv_stride * 8; + lf_dst[2] += recon_uv_stride * 8; + lf_mic += pc->mb_cols; + lf_mic++; /* Skip border mb */ + } + } else { + if (mb_row > 0) { + /**/ + yv12_extend_frame_left_right_c(yv12_fb_new, eb_dst[0], eb_dst[1], + eb_dst[2]); + eb_dst[0] += recon_y_stride * 16; + eb_dst[1] += recon_uv_stride * 8; + eb_dst[2] += recon_uv_stride * 8; + } + } + } + + if (pc->filter_level) { + if (pc->filter_type == NORMAL_LOOPFILTER) { + vp8_loop_filter_row_normal(pc, lf_mic, mb_row - 1, recon_y_stride, + recon_uv_stride, lf_dst[0], lf_dst[1], + lf_dst[2]); + } else { + vp8_loop_filter_row_simple(pc, lf_mic, mb_row - 1, recon_y_stride, + recon_uv_stride, lf_dst[0], lf_dst[1], + lf_dst[2]); + } + + yv12_extend_frame_left_right_c(yv12_fb_new, eb_dst[0], eb_dst[1], + eb_dst[2]); + eb_dst[0] += recon_y_stride * 16; + eb_dst[1] += recon_uv_stride * 8; + eb_dst[2] += recon_uv_stride * 8; + } + yv12_extend_frame_left_right_c(yv12_fb_new, eb_dst[0], eb_dst[1], eb_dst[2]); + yv12_extend_frame_top_c(yv12_fb_new); + yv12_extend_frame_bottom_c(yv12_fb_new); +} + +static unsigned int read_partition_size(VP8D_COMP *pbi, + const unsigned char *cx_size) { + unsigned char temp[3]; + if (pbi->decrypt_cb) { + pbi->decrypt_cb(pbi->decrypt_state, cx_size, temp, 3); + cx_size = temp; + } + return cx_size[0] + (cx_size[1] << 8) + (cx_size[2] << 16); +} + +static int read_is_valid(const unsigned char *start, size_t len, + const unsigned char *end) { + return (start + len > start && start + len <= end); +} + +static unsigned int read_available_partition_size( + VP8D_COMP *pbi, const unsigned char *token_part_sizes, + const unsigned char *fragment_start, + const unsigned char *first_fragment_end, const unsigned char *fragment_end, + int i, int num_part) { + VP8_COMMON *pc = &pbi->common; + const unsigned char *partition_size_ptr = token_part_sizes + i * 3; + unsigned int partition_size = 0; + ptrdiff_t bytes_left = fragment_end - fragment_start; + /* Calculate the length of this partition. The last partition + * size is implicit. If the partition size can't be read, then + * either use the remaining data in the buffer (for EC mode) + * or throw an error. + */ + if (i < num_part - 1) { + if (read_is_valid(partition_size_ptr, 3, first_fragment_end)) { + partition_size = read_partition_size(pbi, partition_size_ptr); + } else if (pbi->ec_active) { + partition_size = (unsigned int)bytes_left; + } else { + vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME, + "Truncated partition size data"); + } + } else { + partition_size = (unsigned int)bytes_left; + } + + /* Validate the calculated partition length. If the buffer + * described by the partition can't be fully read, then restrict + * it to the portion that can be (for EC mode) or throw an error. + */ + if (!read_is_valid(fragment_start, partition_size, fragment_end)) { + if (pbi->ec_active) { + partition_size = (unsigned int)bytes_left; + } else { + vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME, + "Truncated packet or corrupt partition " + "%d length", + i + 1); + } + } + return partition_size; +} + +static void setup_token_decoder(VP8D_COMP *pbi, + const unsigned char *token_part_sizes) { + vp8_reader *bool_decoder = &pbi->mbc[0]; + unsigned int partition_idx; + unsigned int fragment_idx; + unsigned int num_token_partitions; + const unsigned char *first_fragment_end = + pbi->fragments.ptrs[0] + pbi->fragments.sizes[0]; + + TOKEN_PARTITION multi_token_partition = + (TOKEN_PARTITION)vp8_read_literal(&pbi->mbc[8], 2); + if (!vp8dx_bool_error(&pbi->mbc[8])) { + pbi->common.multi_token_partition = multi_token_partition; + } + num_token_partitions = 1 << pbi->common.multi_token_partition; + + /* Check for partitions within the fragments and unpack the fragments + * so that each fragment pointer points to its corresponding partition. */ + for (fragment_idx = 0; fragment_idx < pbi->fragments.count; ++fragment_idx) { + unsigned int fragment_size = pbi->fragments.sizes[fragment_idx]; + const unsigned char *fragment_end = + pbi->fragments.ptrs[fragment_idx] + fragment_size; + /* Special case for handling the first partition since we have already + * read its size. */ + if (fragment_idx == 0) { + /* Size of first partition + token partition sizes element */ + ptrdiff_t ext_first_part_size = token_part_sizes - + pbi->fragments.ptrs[0] + + 3 * (num_token_partitions - 1); + fragment_size -= (unsigned int)ext_first_part_size; + if (fragment_size > 0) { + pbi->fragments.sizes[0] = (unsigned int)ext_first_part_size; + /* The fragment contains an additional partition. Move to + * next. */ + fragment_idx++; + pbi->fragments.ptrs[fragment_idx] = + pbi->fragments.ptrs[0] + pbi->fragments.sizes[0]; + } + } + /* Split the chunk into partitions read from the bitstream */ + while (fragment_size > 0) { + ptrdiff_t partition_size = read_available_partition_size( + pbi, token_part_sizes, pbi->fragments.ptrs[fragment_idx], + first_fragment_end, fragment_end, fragment_idx - 1, + num_token_partitions); + pbi->fragments.sizes[fragment_idx] = (unsigned int)partition_size; + fragment_size -= (unsigned int)partition_size; + assert(fragment_idx <= num_token_partitions); + if (fragment_size > 0) { + /* The fragment contains an additional partition. + * Move to next. */ + fragment_idx++; + pbi->fragments.ptrs[fragment_idx] = + pbi->fragments.ptrs[fragment_idx - 1] + partition_size; + } + } + } + + pbi->fragments.count = num_token_partitions + 1; + + for (partition_idx = 1; partition_idx < pbi->fragments.count; + ++partition_idx) { + if (vp8dx_start_decode(bool_decoder, pbi->fragments.ptrs[partition_idx], + pbi->fragments.sizes[partition_idx], pbi->decrypt_cb, + pbi->decrypt_state)) { + vpx_internal_error(&pbi->common.error, VPX_CODEC_MEM_ERROR, + "Failed to allocate bool decoder %d", partition_idx); + } + + bool_decoder++; + } + +#if CONFIG_MULTITHREAD + /* Clamp number of decoder threads */ + if (pbi->decoding_thread_count > num_token_partitions - 1) { + pbi->decoding_thread_count = num_token_partitions - 1; + } + if ((int)pbi->decoding_thread_count > pbi->common.mb_rows - 1) { + assert(pbi->common.mb_rows > 0); + pbi->decoding_thread_count = pbi->common.mb_rows - 1; + } +#endif +} + +static void init_frame(VP8D_COMP *pbi) { + VP8_COMMON *const pc = &pbi->common; + MACROBLOCKD *const xd = &pbi->mb; + + if (pc->frame_type == KEY_FRAME) { + /* Various keyframe initializations */ + memcpy(pc->fc.mvc, vp8_default_mv_context, sizeof(vp8_default_mv_context)); + + vp8_init_mbmode_probs(pc); + + vp8_default_coef_probs(pc); + + /* reset the segment feature data to 0 with delta coding (Default state). */ + memset(xd->segment_feature_data, 0, sizeof(xd->segment_feature_data)); + xd->mb_segement_abs_delta = SEGMENT_DELTADATA; + + /* reset the mode ref deltasa for loop filter */ + memset(xd->ref_lf_deltas, 0, sizeof(xd->ref_lf_deltas)); + memset(xd->mode_lf_deltas, 0, sizeof(xd->mode_lf_deltas)); + + /* All buffers are implicitly updated on key frames. */ + pc->refresh_golden_frame = 1; + pc->refresh_alt_ref_frame = 1; + pc->copy_buffer_to_gf = 0; + pc->copy_buffer_to_arf = 0; + + /* Note that Golden and Altref modes cannot be used on a key frame so + * ref_frame_sign_bias[] is undefined and meaningless + */ + pc->ref_frame_sign_bias[GOLDEN_FRAME] = 0; + pc->ref_frame_sign_bias[ALTREF_FRAME] = 0; + } else { + /* To enable choice of different interploation filters */ + if (!pc->use_bilinear_mc_filter) { + xd->subpixel_predict = vp8_sixtap_predict4x4; + xd->subpixel_predict8x4 = vp8_sixtap_predict8x4; + xd->subpixel_predict8x8 = vp8_sixtap_predict8x8; + xd->subpixel_predict16x16 = vp8_sixtap_predict16x16; + } else { + xd->subpixel_predict = vp8_bilinear_predict4x4; + xd->subpixel_predict8x4 = vp8_bilinear_predict8x4; + xd->subpixel_predict8x8 = vp8_bilinear_predict8x8; + xd->subpixel_predict16x16 = vp8_bilinear_predict16x16; + } + + if (pbi->decoded_key_frame && pbi->ec_enabled && !pbi->ec_active) { + pbi->ec_active = 1; + } + } + + xd->left_context = &pc->left_context; + xd->mode_info_context = pc->mi; + xd->frame_type = pc->frame_type; + xd->mode_info_context->mbmi.mode = DC_PRED; + xd->mode_info_stride = pc->mode_info_stride; + xd->corrupted = 0; /* init without corruption */ + + xd->fullpixel_mask = 0xffffffff; + if (pc->full_pixel) xd->fullpixel_mask = 0xfffffff8; +} + +int vp8_decode_frame(VP8D_COMP *pbi) { + vp8_reader *const bc = &pbi->mbc[8]; + VP8_COMMON *const pc = &pbi->common; + MACROBLOCKD *const xd = &pbi->mb; + const unsigned char *data = pbi->fragments.ptrs[0]; + const unsigned int data_sz = pbi->fragments.sizes[0]; + const unsigned char *data_end = data + data_sz; + ptrdiff_t first_partition_length_in_bytes; + + int i, j, k, l; + const int *const mb_feature_data_bits = vp8_mb_feature_data_bits; + int corrupt_tokens = 0; + int prev_independent_partitions = pbi->independent_partitions; + + YV12_BUFFER_CONFIG *yv12_fb_new = pbi->dec_fb_ref[INTRA_FRAME]; + + /* start with no corruption of current frame */ + xd->corrupted = 0; + yv12_fb_new->corrupted = 0; + + if (data_end - data < 3) { + if (!pbi->ec_active) { + vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME, + "Truncated packet"); + } + + /* Declare the missing frame as an inter frame since it will + be handled as an inter frame when we have estimated its + motion vectors. */ + pc->frame_type = INTER_FRAME; + pc->version = 0; + pc->show_frame = 1; + first_partition_length_in_bytes = 0; + } else { + unsigned char clear_buffer[10]; + const unsigned char *clear = data; + if (pbi->decrypt_cb) { + int n = (int)VPXMIN(sizeof(clear_buffer), data_sz); + pbi->decrypt_cb(pbi->decrypt_state, data, clear_buffer, n); + clear = clear_buffer; + } + + pc->frame_type = (FRAME_TYPE)(clear[0] & 1); + pc->version = (clear[0] >> 1) & 7; + pc->show_frame = (clear[0] >> 4) & 1; + first_partition_length_in_bytes = + (clear[0] | (clear[1] << 8) | (clear[2] << 16)) >> 5; + + if (!pbi->ec_active && (data + first_partition_length_in_bytes > data_end || + data + first_partition_length_in_bytes < data)) { + vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME, + "Truncated packet or corrupt partition 0 length"); + } + + data += 3; + clear += 3; + + vp8_setup_version(pc); + + if (pc->frame_type == KEY_FRAME) { + /* vet via sync code */ + /* When error concealment is enabled we should only check the sync + * code if we have enough bits available + */ + if (data + 3 < data_end) { + if (clear[0] != 0x9d || clear[1] != 0x01 || clear[2] != 0x2a) { + vpx_internal_error(&pc->error, VPX_CODEC_UNSUP_BITSTREAM, + "Invalid frame sync code"); + } + } + + /* If error concealment is enabled we should only parse the new size + * if we have enough data. Otherwise we will end up with the wrong + * size. + */ + if (data + 6 < data_end) { + pc->Width = (clear[3] | (clear[4] << 8)) & 0x3fff; + pc->horiz_scale = clear[4] >> 6; + pc->Height = (clear[5] | (clear[6] << 8)) & 0x3fff; + pc->vert_scale = clear[6] >> 6; + data += 7; + } else if (!pbi->ec_active) { + vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME, + "Truncated key frame header"); + } else { + /* Error concealment is active, clear the frame. */ + data = data_end; + } + } else { + memcpy(&xd->pre, yv12_fb_new, sizeof(YV12_BUFFER_CONFIG)); + memcpy(&xd->dst, yv12_fb_new, sizeof(YV12_BUFFER_CONFIG)); + } + } + if ((!pbi->decoded_key_frame && pc->frame_type != KEY_FRAME)) { + return -1; + } + + init_frame(pbi); + + if (vp8dx_start_decode(bc, data, (unsigned int)(data_end - data), + pbi->decrypt_cb, pbi->decrypt_state)) { + vpx_internal_error(&pc->error, VPX_CODEC_MEM_ERROR, + "Failed to allocate bool decoder 0"); + } + if (pc->frame_type == KEY_FRAME) { + (void)vp8_read_bit(bc); // colorspace + pc->clamp_type = (CLAMP_TYPE)vp8_read_bit(bc); + } + + /* Is segmentation enabled */ + xd->segmentation_enabled = (unsigned char)vp8_read_bit(bc); + + if (xd->segmentation_enabled) { + /* Signal whether or not the segmentation map is being explicitly updated + * this frame. */ + xd->update_mb_segmentation_map = (unsigned char)vp8_read_bit(bc); + xd->update_mb_segmentation_data = (unsigned char)vp8_read_bit(bc); + + if (xd->update_mb_segmentation_data) { + xd->mb_segement_abs_delta = (unsigned char)vp8_read_bit(bc); + + memset(xd->segment_feature_data, 0, sizeof(xd->segment_feature_data)); + + /* For each segmentation feature (Quant and loop filter level) */ + for (i = 0; i < MB_LVL_MAX; ++i) { + for (j = 0; j < MAX_MB_SEGMENTS; ++j) { + /* Frame level data */ + if (vp8_read_bit(bc)) { + xd->segment_feature_data[i][j] = + (signed char)vp8_read_literal(bc, mb_feature_data_bits[i]); + + if (vp8_read_bit(bc)) { + xd->segment_feature_data[i][j] = -xd->segment_feature_data[i][j]; + } + } else { + xd->segment_feature_data[i][j] = 0; + } + } + } + } + + if (xd->update_mb_segmentation_map) { + /* Which macro block level features are enabled */ + memset(xd->mb_segment_tree_probs, 255, sizeof(xd->mb_segment_tree_probs)); + + /* Read the probs used to decode the segment id for each macro block. */ + for (i = 0; i < MB_FEATURE_TREE_PROBS; ++i) { + /* If not explicitly set value is defaulted to 255 by memset above */ + if (vp8_read_bit(bc)) { + xd->mb_segment_tree_probs[i] = (vp8_prob)vp8_read_literal(bc, 8); + } + } + } + } else { + /* No segmentation updates on this frame */ + xd->update_mb_segmentation_map = 0; + xd->update_mb_segmentation_data = 0; + } + + /* Read the loop filter level and type */ + pc->filter_type = (LOOPFILTERTYPE)vp8_read_bit(bc); + pc->filter_level = vp8_read_literal(bc, 6); + pc->sharpness_level = vp8_read_literal(bc, 3); + + /* Read in loop filter deltas applied at the MB level based on mode or ref + * frame. */ + xd->mode_ref_lf_delta_update = 0; + xd->mode_ref_lf_delta_enabled = (unsigned char)vp8_read_bit(bc); + + if (xd->mode_ref_lf_delta_enabled) { + /* Do the deltas need to be updated */ + xd->mode_ref_lf_delta_update = (unsigned char)vp8_read_bit(bc); + + if (xd->mode_ref_lf_delta_update) { + /* Send update */ + for (i = 0; i < MAX_REF_LF_DELTAS; ++i) { + if (vp8_read_bit(bc)) { + /*sign = vp8_read_bit( bc );*/ + xd->ref_lf_deltas[i] = (signed char)vp8_read_literal(bc, 6); + + if (vp8_read_bit(bc)) { /* Apply sign */ + xd->ref_lf_deltas[i] = xd->ref_lf_deltas[i] * -1; + } + } + } + + /* Send update */ + for (i = 0; i < MAX_MODE_LF_DELTAS; ++i) { + if (vp8_read_bit(bc)) { + /*sign = vp8_read_bit( bc );*/ + xd->mode_lf_deltas[i] = (signed char)vp8_read_literal(bc, 6); + + if (vp8_read_bit(bc)) { /* Apply sign */ + xd->mode_lf_deltas[i] = xd->mode_lf_deltas[i] * -1; + } + } + } + } + } + + setup_token_decoder(pbi, data + first_partition_length_in_bytes); + + xd->current_bc = &pbi->mbc[0]; + + /* Read the default quantizers. */ + { + int Q, q_update; + + Q = vp8_read_literal(bc, 7); /* AC 1st order Q = default */ + pc->base_qindex = Q; + q_update = 0; + pc->y1dc_delta_q = get_delta_q(bc, pc->y1dc_delta_q, &q_update); + pc->y2dc_delta_q = get_delta_q(bc, pc->y2dc_delta_q, &q_update); + pc->y2ac_delta_q = get_delta_q(bc, pc->y2ac_delta_q, &q_update); + pc->uvdc_delta_q = get_delta_q(bc, pc->uvdc_delta_q, &q_update); + pc->uvac_delta_q = get_delta_q(bc, pc->uvac_delta_q, &q_update); + + if (q_update) vp8cx_init_de_quantizer(pbi); + + /* MB level dequantizer setup */ + vp8_mb_init_dequantizer(pbi, &pbi->mb); + } + + /* Determine if the golden frame or ARF buffer should be updated and how. + * For all non key frames the GF and ARF refresh flags and sign bias + * flags must be set explicitly. + */ + if (pc->frame_type != KEY_FRAME) { + /* Should the GF or ARF be updated from the current frame */ + pc->refresh_golden_frame = vp8_read_bit(bc); +#if CONFIG_ERROR_CONCEALMENT + /* Assume we shouldn't refresh golden if the bit is missing */ + xd->corrupted |= vp8dx_bool_error(bc); + if (pbi->ec_active && xd->corrupted) pc->refresh_golden_frame = 0; +#endif + + pc->refresh_alt_ref_frame = vp8_read_bit(bc); +#if CONFIG_ERROR_CONCEALMENT + /* Assume we shouldn't refresh altref if the bit is missing */ + xd->corrupted |= vp8dx_bool_error(bc); + if (pbi->ec_active && xd->corrupted) pc->refresh_alt_ref_frame = 0; +#endif + + /* Buffer to buffer copy flags. */ + pc->copy_buffer_to_gf = 0; + + if (!pc->refresh_golden_frame) { + pc->copy_buffer_to_gf = vp8_read_literal(bc, 2); + } + +#if CONFIG_ERROR_CONCEALMENT + /* Assume we shouldn't copy to the golden if the bit is missing */ + xd->corrupted |= vp8dx_bool_error(bc); + if (pbi->ec_active && xd->corrupted) pc->copy_buffer_to_gf = 0; +#endif + + pc->copy_buffer_to_arf = 0; + + if (!pc->refresh_alt_ref_frame) { + pc->copy_buffer_to_arf = vp8_read_literal(bc, 2); + } + +#if CONFIG_ERROR_CONCEALMENT + /* Assume we shouldn't copy to the alt-ref if the bit is missing */ + xd->corrupted |= vp8dx_bool_error(bc); + if (pbi->ec_active && xd->corrupted) pc->copy_buffer_to_arf = 0; +#endif + + pc->ref_frame_sign_bias[GOLDEN_FRAME] = vp8_read_bit(bc); + pc->ref_frame_sign_bias[ALTREF_FRAME] = vp8_read_bit(bc); + } + + pc->refresh_entropy_probs = vp8_read_bit(bc); +#if CONFIG_ERROR_CONCEALMENT + /* Assume we shouldn't refresh the probabilities if the bit is + * missing */ + xd->corrupted |= vp8dx_bool_error(bc); + if (pbi->ec_active && xd->corrupted) pc->refresh_entropy_probs = 0; +#endif + if (pc->refresh_entropy_probs == 0) { + memcpy(&pc->lfc, &pc->fc, sizeof(pc->fc)); + } + + pc->refresh_last_frame = pc->frame_type == KEY_FRAME || vp8_read_bit(bc); + +#if CONFIG_ERROR_CONCEALMENT + /* Assume we should refresh the last frame if the bit is missing */ + xd->corrupted |= vp8dx_bool_error(bc); + if (pbi->ec_active && xd->corrupted) pc->refresh_last_frame = 1; +#endif + + if (0) { + FILE *z = fopen("decodestats.stt", "a"); + fprintf(z, "%6d F:%d,G:%d,A:%d,L:%d,Q:%d\n", pc->current_video_frame, + pc->frame_type, pc->refresh_golden_frame, pc->refresh_alt_ref_frame, + pc->refresh_last_frame, pc->base_qindex); + fclose(z); + } + + { + pbi->independent_partitions = 1; + + /* read coef probability tree */ + for (i = 0; i < BLOCK_TYPES; ++i) { + for (j = 0; j < COEF_BANDS; ++j) { + for (k = 0; k < PREV_COEF_CONTEXTS; ++k) { + for (l = 0; l < ENTROPY_NODES; ++l) { + vp8_prob *const p = pc->fc.coef_probs[i][j][k] + l; + + if (vp8_read(bc, vp8_coef_update_probs[i][j][k][l])) { + *p = (vp8_prob)vp8_read_literal(bc, 8); + } + if (k > 0 && *p != pc->fc.coef_probs[i][j][k - 1][l]) { + pbi->independent_partitions = 0; + } + } + } + } + } + } + + /* clear out the coeff buffer */ + memset(xd->qcoeff, 0, sizeof(xd->qcoeff)); + + vp8_decode_mode_mvs(pbi); + +#if CONFIG_ERROR_CONCEALMENT + if (pbi->ec_active && + pbi->mvs_corrupt_from_mb < (unsigned int)pc->mb_cols * pc->mb_rows) { + /* Motion vectors are missing in this frame. We will try to estimate + * them and then continue decoding the frame as usual */ + vp8_estimate_missing_mvs(pbi); + } +#endif + + memset(pc->above_context, 0, sizeof(ENTROPY_CONTEXT_PLANES) * pc->mb_cols); + pbi->frame_corrupt_residual = 0; + +#if CONFIG_MULTITHREAD + if (vpx_atomic_load_acquire(&pbi->b_multithreaded_rd) && + pc->multi_token_partition != ONE_PARTITION) { + unsigned int thread; + vp8mt_decode_mb_rows(pbi, xd); + vp8_yv12_extend_frame_borders(yv12_fb_new); + for (thread = 0; thread < pbi->decoding_thread_count; ++thread) { + corrupt_tokens |= pbi->mb_row_di[thread].mbd.corrupted; + } + } else +#endif + { + decode_mb_rows(pbi); + corrupt_tokens |= xd->corrupted; + } + + /* Collect information about decoder corruption. */ + /* 1. Check first boolean decoder for errors. */ + yv12_fb_new->corrupted = vp8dx_bool_error(bc); + /* 2. Check the macroblock information */ + yv12_fb_new->corrupted |= corrupt_tokens; + + if (!pbi->decoded_key_frame) { + if (pc->frame_type == KEY_FRAME && !yv12_fb_new->corrupted) { + pbi->decoded_key_frame = 1; + } else { + vpx_internal_error(&pbi->common.error, VPX_CODEC_CORRUPT_FRAME, + "A stream must start with a complete key frame"); + } + } + + /* vpx_log("Decoder: Frame Decoded, Size Roughly:%d bytes + * \n",bc->pos+pbi->bc2.pos); */ + + if (pc->refresh_entropy_probs == 0) { + memcpy(&pc->fc, &pc->lfc, sizeof(pc->fc)); + pbi->independent_partitions = prev_independent_partitions; + } + +#ifdef PACKET_TESTING + { + FILE *f = fopen("decompressor.VP8", "ab"); + unsigned int size = pbi->bc2.pos + pbi->bc.pos + 8; + fwrite((void *)&size, 4, 1, f); + fwrite((void *)pbi->Source, size, 1, f); + fclose(f); + } +#endif + + return 0; +} diff --git a/vp8/decoder/decodemv.c b/vp8/decoder/decodemv.c new file mode 100644 index 0000000..8e9600c --- /dev/null +++ b/vp8/decoder/decodemv.c @@ -0,0 +1,564 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "decodemv.h" +#include "treereader.h" +#include "vp8/common/entropymv.h" +#include "vp8/common/entropymode.h" +#include "onyxd_int.h" +#include "vp8/common/findnearmv.h" + +static B_PREDICTION_MODE read_bmode(vp8_reader *bc, const vp8_prob *p) { + const int i = vp8_treed_read(bc, vp8_bmode_tree, p); + + return (B_PREDICTION_MODE)i; +} + +static MB_PREDICTION_MODE read_ymode(vp8_reader *bc, const vp8_prob *p) { + const int i = vp8_treed_read(bc, vp8_ymode_tree, p); + + return (MB_PREDICTION_MODE)i; +} + +static MB_PREDICTION_MODE read_kf_ymode(vp8_reader *bc, const vp8_prob *p) { + const int i = vp8_treed_read(bc, vp8_kf_ymode_tree, p); + + return (MB_PREDICTION_MODE)i; +} + +static MB_PREDICTION_MODE read_uv_mode(vp8_reader *bc, const vp8_prob *p) { + const int i = vp8_treed_read(bc, vp8_uv_mode_tree, p); + + return (MB_PREDICTION_MODE)i; +} + +static void read_kf_modes(VP8D_COMP *pbi, MODE_INFO *mi) { + vp8_reader *const bc = &pbi->mbc[8]; + const int mis = pbi->common.mode_info_stride; + + mi->mbmi.ref_frame = INTRA_FRAME; + mi->mbmi.mode = read_kf_ymode(bc, vp8_kf_ymode_prob); + + if (mi->mbmi.mode == B_PRED) { + int i = 0; + mi->mbmi.is_4x4 = 1; + + do { + const B_PREDICTION_MODE A = above_block_mode(mi, i, mis); + const B_PREDICTION_MODE L = left_block_mode(mi, i); + + mi->bmi[i].as_mode = read_bmode(bc, vp8_kf_bmode_prob[A][L]); + } while (++i < 16); + } + + mi->mbmi.uv_mode = read_uv_mode(bc, vp8_kf_uv_mode_prob); +} + +static int read_mvcomponent(vp8_reader *r, const MV_CONTEXT *mvc) { + const vp8_prob *const p = (const vp8_prob *)mvc; + int x = 0; + + if (vp8_read(r, p[mvpis_short])) { /* Large */ + int i = 0; + + do { + x += vp8_read(r, p[MVPbits + i]) << i; + } while (++i < 3); + + i = mvlong_width - 1; /* Skip bit 3, which is sometimes implicit */ + + do { + x += vp8_read(r, p[MVPbits + i]) << i; + } while (--i > 3); + + if (!(x & 0xFFF0) || vp8_read(r, p[MVPbits + 3])) x += 8; + } else { /* small */ + x = vp8_treed_read(r, vp8_small_mvtree, p + MVPshort); + } + + if (x && vp8_read(r, p[MVPsign])) x = -x; + + return x; +} + +static void read_mv(vp8_reader *r, MV *mv, const MV_CONTEXT *mvc) { + mv->row = (short)(read_mvcomponent(r, mvc) * 2); + mv->col = (short)(read_mvcomponent(r, ++mvc) * 2); +} + +static void read_mvcontexts(vp8_reader *bc, MV_CONTEXT *mvc) { + int i = 0; + + do { + const vp8_prob *up = vp8_mv_update_probs[i].prob; + vp8_prob *p = (vp8_prob *)(mvc + i); + vp8_prob *const pstop = p + MVPcount; + + do { + if (vp8_read(bc, *up++)) { + const vp8_prob x = (vp8_prob)vp8_read_literal(bc, 7); + + *p = x ? x << 1 : 1; + } + } while (++p < pstop); + } while (++i < 2); +} + +static const unsigned char mbsplit_fill_count[4] = { 8, 8, 4, 1 }; +static const unsigned char mbsplit_fill_offset[4][16] = { + { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 }, + { 0, 1, 4, 5, 8, 9, 12, 13, 2, 3, 6, 7, 10, 11, 14, 15 }, + { 0, 1, 4, 5, 2, 3, 6, 7, 8, 9, 12, 13, 10, 11, 14, 15 }, + { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 } +}; + +static void mb_mode_mv_init(VP8D_COMP *pbi) { + vp8_reader *const bc = &pbi->mbc[8]; + MV_CONTEXT *const mvc = pbi->common.fc.mvc; + +#if CONFIG_ERROR_CONCEALMENT + /* Default is that no macroblock is corrupt, therefore we initialize + * mvs_corrupt_from_mb to something very big, which we can be sure is + * outside the frame. */ + pbi->mvs_corrupt_from_mb = UINT_MAX; +#endif + /* Read the mb_no_coeff_skip flag */ + pbi->common.mb_no_coeff_skip = (int)vp8_read_bit(bc); + + pbi->prob_skip_false = 0; + if (pbi->common.mb_no_coeff_skip) { + pbi->prob_skip_false = (vp8_prob)vp8_read_literal(bc, 8); + } + + if (pbi->common.frame_type != KEY_FRAME) { + pbi->prob_intra = (vp8_prob)vp8_read_literal(bc, 8); + pbi->prob_last = (vp8_prob)vp8_read_literal(bc, 8); + pbi->prob_gf = (vp8_prob)vp8_read_literal(bc, 8); + + if (vp8_read_bit(bc)) { + int i = 0; + + do { + pbi->common.fc.ymode_prob[i] = (vp8_prob)vp8_read_literal(bc, 8); + } while (++i < 4); + } + + if (vp8_read_bit(bc)) { + int i = 0; + + do { + pbi->common.fc.uv_mode_prob[i] = (vp8_prob)vp8_read_literal(bc, 8); + } while (++i < 3); + } + + read_mvcontexts(bc, mvc); + } +} + +const vp8_prob vp8_sub_mv_ref_prob3[8][VP8_SUBMVREFS - 1] = { + { 147, 136, 18 }, /* SUBMVREF_NORMAL */ + { 223, 1, 34 }, /* SUBMVREF_LEFT_ABOVE_SAME */ + { 106, 145, 1 }, /* SUBMVREF_LEFT_ZED */ + { 208, 1, 1 }, /* SUBMVREF_LEFT_ABOVE_ZED */ + { 179, 121, 1 }, /* SUBMVREF_ABOVE_ZED */ + { 223, 1, 34 }, /* SUBMVREF_LEFT_ABOVE_SAME */ + { 179, 121, 1 }, /* SUBMVREF_ABOVE_ZED */ + { 208, 1, 1 } /* SUBMVREF_LEFT_ABOVE_ZED */ +}; + +static const vp8_prob *get_sub_mv_ref_prob(const int left, const int above) { + int lez = (left == 0); + int aez = (above == 0); + int lea = (left == above); + const vp8_prob *prob; + + prob = vp8_sub_mv_ref_prob3[(aez << 2) | (lez << 1) | (lea)]; + + return prob; +} + +static void decode_split_mv(vp8_reader *const bc, MODE_INFO *mi, + const MODE_INFO *left_mb, const MODE_INFO *above_mb, + MB_MODE_INFO *mbmi, int_mv best_mv, + MV_CONTEXT *const mvc, int mb_to_left_edge, + int mb_to_right_edge, int mb_to_top_edge, + int mb_to_bottom_edge) { + int s; /* split configuration (16x8, 8x16, 8x8, 4x4) */ + /* number of partitions in the split configuration (see vp8_mbsplit_count) */ + int num_p; + int j = 0; + + s = 3; + num_p = 16; + if (vp8_read(bc, 110)) { + s = 2; + num_p = 4; + if (vp8_read(bc, 111)) { + s = vp8_read(bc, 150); + num_p = 2; + } + } + + do /* for each subset j */ + { + int_mv leftmv, abovemv; + int_mv blockmv; + int k; /* first block in subset j */ + + const vp8_prob *prob; + k = vp8_mbsplit_offset[s][j]; + + if (!(k & 3)) { + /* On L edge, get from MB to left of us */ + if (left_mb->mbmi.mode != SPLITMV) { + leftmv.as_int = left_mb->mbmi.mv.as_int; + } else { + leftmv.as_int = (left_mb->bmi + k + 4 - 1)->mv.as_int; + } + } else { + leftmv.as_int = (mi->bmi + k - 1)->mv.as_int; + } + + if (!(k >> 2)) { + /* On top edge, get from MB above us */ + if (above_mb->mbmi.mode != SPLITMV) { + abovemv.as_int = above_mb->mbmi.mv.as_int; + } else { + abovemv.as_int = (above_mb->bmi + k + 16 - 4)->mv.as_int; + } + } else { + abovemv.as_int = (mi->bmi + k - 4)->mv.as_int; + } + + prob = get_sub_mv_ref_prob(leftmv.as_int, abovemv.as_int); + + if (vp8_read(bc, prob[0])) { + if (vp8_read(bc, prob[1])) { + blockmv.as_int = 0; + if (vp8_read(bc, prob[2])) { + blockmv.as_mv.row = read_mvcomponent(bc, &mvc[0]) * 2; + blockmv.as_mv.row += best_mv.as_mv.row; + blockmv.as_mv.col = read_mvcomponent(bc, &mvc[1]) * 2; + blockmv.as_mv.col += best_mv.as_mv.col; + } + } else { + blockmv.as_int = abovemv.as_int; + } + } else { + blockmv.as_int = leftmv.as_int; + } + + mbmi->need_to_clamp_mvs |= + vp8_check_mv_bounds(&blockmv, mb_to_left_edge, mb_to_right_edge, + mb_to_top_edge, mb_to_bottom_edge); + + { + /* Fill (uniform) modes, mvs of jth subset. + Must do it here because ensuing subsets can + refer back to us via "left" or "above". */ + const unsigned char *fill_offset; + unsigned int fill_count = mbsplit_fill_count[s]; + + fill_offset = + &mbsplit_fill_offset[s][(unsigned char)j * mbsplit_fill_count[s]]; + + do { + mi->bmi[*fill_offset].mv.as_int = blockmv.as_int; + fill_offset++; + } while (--fill_count); + } + + } while (++j < num_p); + + mbmi->partitioning = s; +} + +static void read_mb_modes_mv(VP8D_COMP *pbi, MODE_INFO *mi, + MB_MODE_INFO *mbmi) { + vp8_reader *const bc = &pbi->mbc[8]; + mbmi->ref_frame = (MV_REFERENCE_FRAME)vp8_read(bc, pbi->prob_intra); + if (mbmi->ref_frame) { /* inter MB */ + enum { CNT_INTRA, CNT_NEAREST, CNT_NEAR, CNT_SPLITMV }; + int cnt[4]; + int *cntx = cnt; + int_mv near_mvs[4]; + int_mv *nmv = near_mvs; + const int mis = pbi->mb.mode_info_stride; + const MODE_INFO *above = mi - mis; + const MODE_INFO *left = mi - 1; + const MODE_INFO *aboveleft = above - 1; + int *ref_frame_sign_bias = pbi->common.ref_frame_sign_bias; + + mbmi->need_to_clamp_mvs = 0; + + if (vp8_read(bc, pbi->prob_last)) { + mbmi->ref_frame = + (MV_REFERENCE_FRAME)((int)(2 + vp8_read(bc, pbi->prob_gf))); + } + + /* Zero accumulators */ + nmv[0].as_int = nmv[1].as_int = nmv[2].as_int = 0; + cnt[0] = cnt[1] = cnt[2] = cnt[3] = 0; + + /* Process above */ + if (above->mbmi.ref_frame != INTRA_FRAME) { + if (above->mbmi.mv.as_int) { + (++nmv)->as_int = above->mbmi.mv.as_int; + mv_bias(ref_frame_sign_bias[above->mbmi.ref_frame], mbmi->ref_frame, + nmv, ref_frame_sign_bias); + ++cntx; + } + + *cntx += 2; + } + + /* Process left */ + if (left->mbmi.ref_frame != INTRA_FRAME) { + if (left->mbmi.mv.as_int) { + int_mv this_mv; + + this_mv.as_int = left->mbmi.mv.as_int; + mv_bias(ref_frame_sign_bias[left->mbmi.ref_frame], mbmi->ref_frame, + &this_mv, ref_frame_sign_bias); + + if (this_mv.as_int != nmv->as_int) { + (++nmv)->as_int = this_mv.as_int; + ++cntx; + } + + *cntx += 2; + } else { + cnt[CNT_INTRA] += 2; + } + } + + /* Process above left */ + if (aboveleft->mbmi.ref_frame != INTRA_FRAME) { + if (aboveleft->mbmi.mv.as_int) { + int_mv this_mv; + + this_mv.as_int = aboveleft->mbmi.mv.as_int; + mv_bias(ref_frame_sign_bias[aboveleft->mbmi.ref_frame], mbmi->ref_frame, + &this_mv, ref_frame_sign_bias); + + if (this_mv.as_int != nmv->as_int) { + (++nmv)->as_int = this_mv.as_int; + ++cntx; + } + + *cntx += 1; + } else { + cnt[CNT_INTRA] += 1; + } + } + + if (vp8_read(bc, vp8_mode_contexts[cnt[CNT_INTRA]][0])) { + /* If we have three distinct MV's ... */ + /* See if above-left MV can be merged with NEAREST */ + cnt[CNT_NEAREST] += ((cnt[CNT_SPLITMV] > 0) & + (nmv->as_int == near_mvs[CNT_NEAREST].as_int)); + + /* Swap near and nearest if necessary */ + if (cnt[CNT_NEAR] > cnt[CNT_NEAREST]) { + int tmp; + tmp = cnt[CNT_NEAREST]; + cnt[CNT_NEAREST] = cnt[CNT_NEAR]; + cnt[CNT_NEAR] = tmp; + tmp = near_mvs[CNT_NEAREST].as_int; + near_mvs[CNT_NEAREST].as_int = near_mvs[CNT_NEAR].as_int; + near_mvs[CNT_NEAR].as_int = tmp; + } + + if (vp8_read(bc, vp8_mode_contexts[cnt[CNT_NEAREST]][1])) { + if (vp8_read(bc, vp8_mode_contexts[cnt[CNT_NEAR]][2])) { + int mb_to_top_edge; + int mb_to_bottom_edge; + int mb_to_left_edge; + int mb_to_right_edge; + MV_CONTEXT *const mvc = pbi->common.fc.mvc; + int near_index; + + mb_to_top_edge = pbi->mb.mb_to_top_edge; + mb_to_bottom_edge = pbi->mb.mb_to_bottom_edge; + mb_to_top_edge -= LEFT_TOP_MARGIN; + mb_to_bottom_edge += RIGHT_BOTTOM_MARGIN; + mb_to_right_edge = pbi->mb.mb_to_right_edge; + mb_to_right_edge += RIGHT_BOTTOM_MARGIN; + mb_to_left_edge = pbi->mb.mb_to_left_edge; + mb_to_left_edge -= LEFT_TOP_MARGIN; + + /* Use near_mvs[0] to store the "best" MV */ + near_index = CNT_INTRA + (cnt[CNT_NEAREST] >= cnt[CNT_INTRA]); + + vp8_clamp_mv2(&near_mvs[near_index], &pbi->mb); + + cnt[CNT_SPLITMV] = + ((above->mbmi.mode == SPLITMV) + (left->mbmi.mode == SPLITMV)) * + 2 + + (aboveleft->mbmi.mode == SPLITMV); + + if (vp8_read(bc, vp8_mode_contexts[cnt[CNT_SPLITMV]][3])) { + decode_split_mv(bc, mi, left, above, mbmi, near_mvs[near_index], + mvc, mb_to_left_edge, mb_to_right_edge, + mb_to_top_edge, mb_to_bottom_edge); + mbmi->mv.as_int = mi->bmi[15].mv.as_int; + mbmi->mode = SPLITMV; + mbmi->is_4x4 = 1; + } else { + int_mv *const mbmi_mv = &mbmi->mv; + read_mv(bc, &mbmi_mv->as_mv, (const MV_CONTEXT *)mvc); + mbmi_mv->as_mv.row += near_mvs[near_index].as_mv.row; + mbmi_mv->as_mv.col += near_mvs[near_index].as_mv.col; + + /* Don't need to check this on NEARMV and NEARESTMV + * modes since those modes clamp the MV. The NEWMV mode + * does not, so signal to the prediction stage whether + * special handling may be required. + */ + mbmi->need_to_clamp_mvs = + vp8_check_mv_bounds(mbmi_mv, mb_to_left_edge, mb_to_right_edge, + mb_to_top_edge, mb_to_bottom_edge); + mbmi->mode = NEWMV; + } + } else { + mbmi->mode = NEARMV; + mbmi->mv.as_int = near_mvs[CNT_NEAR].as_int; + vp8_clamp_mv2(&mbmi->mv, &pbi->mb); + } + } else { + mbmi->mode = NEARESTMV; + mbmi->mv.as_int = near_mvs[CNT_NEAREST].as_int; + vp8_clamp_mv2(&mbmi->mv, &pbi->mb); + } + } else { + mbmi->mode = ZEROMV; + mbmi->mv.as_int = 0; + } + +#if CONFIG_ERROR_CONCEALMENT + if (pbi->ec_enabled && (mbmi->mode != SPLITMV)) { + mi->bmi[0].mv.as_int = mi->bmi[1].mv.as_int = mi->bmi[2].mv.as_int = + mi->bmi[3].mv.as_int = mi->bmi[4].mv.as_int = mi->bmi[5].mv.as_int = + mi->bmi[6].mv.as_int = mi->bmi[7].mv.as_int = + mi->bmi[8].mv.as_int = mi->bmi[9].mv.as_int = + mi->bmi[10].mv.as_int = mi->bmi[11].mv.as_int = + mi->bmi[12].mv.as_int = mi->bmi[13].mv.as_int = + mi->bmi[14].mv.as_int = mi->bmi[15].mv.as_int = + mbmi->mv.as_int; + } +#endif + } else { + /* required for left and above block mv */ + mbmi->mv.as_int = 0; + + /* MB is intra coded */ + if ((mbmi->mode = read_ymode(bc, pbi->common.fc.ymode_prob)) == B_PRED) { + int j = 0; + mbmi->is_4x4 = 1; + do { + mi->bmi[j].as_mode = read_bmode(bc, pbi->common.fc.bmode_prob); + } while (++j < 16); + } + + mbmi->uv_mode = read_uv_mode(bc, pbi->common.fc.uv_mode_prob); + } +} + +static void read_mb_features(vp8_reader *r, MB_MODE_INFO *mi, MACROBLOCKD *x) { + /* Is segmentation enabled */ + if (x->segmentation_enabled && x->update_mb_segmentation_map) { + /* If so then read the segment id. */ + if (vp8_read(r, x->mb_segment_tree_probs[0])) { + mi->segment_id = + (unsigned char)(2 + vp8_read(r, x->mb_segment_tree_probs[2])); + } else { + mi->segment_id = + (unsigned char)(vp8_read(r, x->mb_segment_tree_probs[1])); + } + } +} + +static void decode_mb_mode_mvs(VP8D_COMP *pbi, MODE_INFO *mi, + MB_MODE_INFO *mbmi) { + (void)mbmi; + + /* Read the Macroblock segmentation map if it is being updated explicitly + * this frame (reset to 0 above by default) + * By default on a key frame reset all MBs to segment 0 + */ + if (pbi->mb.update_mb_segmentation_map) { + read_mb_features(&pbi->mbc[8], &mi->mbmi, &pbi->mb); + } else if (pbi->common.frame_type == KEY_FRAME) { + mi->mbmi.segment_id = 0; + } + + /* Read the macroblock coeff skip flag if this feature is in use, + * else default to 0 */ + if (pbi->common.mb_no_coeff_skip) { + mi->mbmi.mb_skip_coeff = vp8_read(&pbi->mbc[8], pbi->prob_skip_false); + } else { + mi->mbmi.mb_skip_coeff = 0; + } + + mi->mbmi.is_4x4 = 0; + if (pbi->common.frame_type == KEY_FRAME) { + read_kf_modes(pbi, mi); + } else { + read_mb_modes_mv(pbi, mi, &mi->mbmi); + } +} + +void vp8_decode_mode_mvs(VP8D_COMP *pbi) { + MODE_INFO *mi = pbi->common.mi; + int mb_row = -1; + int mb_to_right_edge_start; + + mb_mode_mv_init(pbi); + + pbi->mb.mb_to_top_edge = 0; + pbi->mb.mb_to_bottom_edge = ((pbi->common.mb_rows - 1) * 16) << 3; + mb_to_right_edge_start = ((pbi->common.mb_cols - 1) * 16) << 3; + + while (++mb_row < pbi->common.mb_rows) { + int mb_col = -1; + + pbi->mb.mb_to_left_edge = 0; + pbi->mb.mb_to_right_edge = mb_to_right_edge_start; + + while (++mb_col < pbi->common.mb_cols) { +#if CONFIG_ERROR_CONCEALMENT + int mb_num = mb_row * pbi->common.mb_cols + mb_col; +#endif + + decode_mb_mode_mvs(pbi, mi, &mi->mbmi); + +#if CONFIG_ERROR_CONCEALMENT + /* look for corruption. set mvs_corrupt_from_mb to the current + * mb_num if the frame is corrupt from this macroblock. */ + if (vp8dx_bool_error(&pbi->mbc[8]) && + mb_num < (int)pbi->mvs_corrupt_from_mb) { + pbi->mvs_corrupt_from_mb = mb_num; + /* no need to continue since the partition is corrupt from + * here on. + */ + return; + } +#endif + + pbi->mb.mb_to_left_edge -= (16 << 3); + pbi->mb.mb_to_right_edge -= (16 << 3); + mi++; /* next macroblock */ + } + pbi->mb.mb_to_top_edge -= (16 << 3); + pbi->mb.mb_to_bottom_edge -= (16 << 3); + + mi++; /* skip left predictor each row */ + } +} diff --git a/vp8/decoder/decodemv.h b/vp8/decoder/decodemv.h new file mode 100644 index 0000000..f33b073 --- /dev/null +++ b/vp8/decoder/decodemv.h @@ -0,0 +1,26 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP8_DECODER_DECODEMV_H_ +#define VP8_DECODER_DECODEMV_H_ + +#include "onyxd_int.h" + +#ifdef __cplusplus +extern "C" { +#endif + +void vp8_decode_mode_mvs(VP8D_COMP *); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP8_DECODER_DECODEMV_H_ diff --git a/vp8/decoder/decoderthreading.h b/vp8/decoder/decoderthreading.h new file mode 100644 index 0000000..c563cf6 --- /dev/null +++ b/vp8/decoder/decoderthreading.h @@ -0,0 +1,30 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP8_DECODER_DECODERTHREADING_H_ +#define VP8_DECODER_DECODERTHREADING_H_ + +#ifdef __cplusplus +extern "C" { +#endif + +#if CONFIG_MULTITHREAD +void vp8mt_decode_mb_rows(VP8D_COMP *pbi, MACROBLOCKD *xd); +void vp8_decoder_remove_threads(VP8D_COMP *pbi); +void vp8_decoder_create_threads(VP8D_COMP *pbi); +void vp8mt_alloc_temp_buffers(VP8D_COMP *pbi, int width, int prev_mb_rows); +void vp8mt_de_alloc_temp_buffers(VP8D_COMP *pbi, int mb_rows); +#endif + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP8_DECODER_DECODERTHREADING_H_ diff --git a/vp8/decoder/detokenize.c b/vp8/decoder/detokenize.c new file mode 100644 index 0000000..b350baf --- /dev/null +++ b/vp8/decoder/detokenize.c @@ -0,0 +1,206 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "vp8/common/blockd.h" +#include "onyxd_int.h" +#include "vpx_mem/vpx_mem.h" +#include "vpx_ports/mem.h" +#include "detokenize.h" + +void vp8_reset_mb_tokens_context(MACROBLOCKD *x) { + ENTROPY_CONTEXT *a_ctx = ((ENTROPY_CONTEXT *)x->above_context); + ENTROPY_CONTEXT *l_ctx = ((ENTROPY_CONTEXT *)x->left_context); + + memset(a_ctx, 0, sizeof(ENTROPY_CONTEXT_PLANES) - 1); + memset(l_ctx, 0, sizeof(ENTROPY_CONTEXT_PLANES) - 1); + + /* Clear entropy contexts for Y2 blocks */ + if (!x->mode_info_context->mbmi.is_4x4) { + a_ctx[8] = l_ctx[8] = 0; + } +} + +/* + ------------------------------------------------------------------------------ + Residual decoding (Paragraph 13.2 / 13.3) +*/ +static const uint8_t kBands[16 + 1] = { + 0, 1, 2, 3, 6, 4, 5, 6, 6, + 6, 6, 6, 6, 6, 6, 7, 0 /* extra entry as sentinel */ +}; + +static const uint8_t kCat3[] = { 173, 148, 140, 0 }; +static const uint8_t kCat4[] = { 176, 155, 140, 135, 0 }; +static const uint8_t kCat5[] = { 180, 157, 141, 134, 130, 0 }; +static const uint8_t kCat6[] = { 254, 254, 243, 230, 196, 177, + 153, 140, 133, 130, 129, 0 }; +static const uint8_t *const kCat3456[] = { kCat3, kCat4, kCat5, kCat6 }; +static const uint8_t kZigzag[16] = { 0, 1, 4, 8, 5, 2, 3, 6, + 9, 12, 13, 10, 7, 11, 14, 15 }; + +#define VP8GetBit vp8dx_decode_bool +#define NUM_PROBAS 11 +#define NUM_CTX 3 + +/* for const-casting */ +typedef const uint8_t (*ProbaArray)[NUM_CTX][NUM_PROBAS]; + +static int GetSigned(BOOL_DECODER *br, int value_to_sign) { + int split = (br->range + 1) >> 1; + VP8_BD_VALUE bigsplit = (VP8_BD_VALUE)split << (VP8_BD_VALUE_SIZE - 8); + int v; + + if (br->count < 0) vp8dx_bool_decoder_fill(br); + + if (br->value < bigsplit) { + br->range = split; + v = value_to_sign; + } else { + br->range = br->range - split; + br->value = br->value - bigsplit; + v = -value_to_sign; + } + br->range += br->range; + br->value += br->value; + br->count--; + + return v; +} +/* + Returns the position of the last non-zero coeff plus one + (and 0 if there's no coeff at all) +*/ +static int GetCoeffs(BOOL_DECODER *br, ProbaArray prob, int ctx, int n, + int16_t *out) { + const uint8_t *p = prob[n][ctx]; + if (!VP8GetBit(br, p[0])) { /* first EOB is more a 'CBP' bit. */ + return 0; + } + while (1) { + ++n; + if (!VP8GetBit(br, p[1])) { + p = prob[kBands[n]][0]; + } else { /* non zero coeff */ + int v, j; + if (!VP8GetBit(br, p[2])) { + p = prob[kBands[n]][1]; + v = 1; + } else { + if (!VP8GetBit(br, p[3])) { + if (!VP8GetBit(br, p[4])) { + v = 2; + } else { + v = 3 + VP8GetBit(br, p[5]); + } + } else { + if (!VP8GetBit(br, p[6])) { + if (!VP8GetBit(br, p[7])) { + v = 5 + VP8GetBit(br, 159); + } else { + v = 7 + 2 * VP8GetBit(br, 165); + v += VP8GetBit(br, 145); + } + } else { + const uint8_t *tab; + const int bit1 = VP8GetBit(br, p[8]); + const int bit0 = VP8GetBit(br, p[9 + bit1]); + const int cat = 2 * bit1 + bit0; + v = 0; + for (tab = kCat3456[cat]; *tab; ++tab) { + v += v + VP8GetBit(br, *tab); + } + v += 3 + (8 << cat); + } + } + p = prob[kBands[n]][2]; + } + j = kZigzag[n - 1]; + + out[j] = GetSigned(br, v); + + if (n == 16 || !VP8GetBit(br, p[0])) { /* EOB */ + return n; + } + } + if (n == 16) { + return 16; + } + } +} + +int vp8_decode_mb_tokens(VP8D_COMP *dx, MACROBLOCKD *x) { + BOOL_DECODER *bc = x->current_bc; + const FRAME_CONTEXT *const fc = &dx->common.fc; + char *eobs = x->eobs; + + int i; + int nonzeros; + int eobtotal = 0; + + short *qcoeff_ptr; + ProbaArray coef_probs; + ENTROPY_CONTEXT *a_ctx = ((ENTROPY_CONTEXT *)x->above_context); + ENTROPY_CONTEXT *l_ctx = ((ENTROPY_CONTEXT *)x->left_context); + ENTROPY_CONTEXT *a; + ENTROPY_CONTEXT *l; + int skip_dc = 0; + + qcoeff_ptr = &x->qcoeff[0]; + + if (!x->mode_info_context->mbmi.is_4x4) { + a = a_ctx + 8; + l = l_ctx + 8; + + coef_probs = fc->coef_probs[1]; + + nonzeros = GetCoeffs(bc, coef_probs, (*a + *l), 0, qcoeff_ptr + 24 * 16); + *a = *l = (nonzeros > 0); + + eobs[24] = nonzeros; + eobtotal += nonzeros - 16; + + coef_probs = fc->coef_probs[0]; + skip_dc = 1; + } else { + coef_probs = fc->coef_probs[3]; + skip_dc = 0; + } + + for (i = 0; i < 16; ++i) { + a = a_ctx + (i & 3); + l = l_ctx + ((i & 0xc) >> 2); + + nonzeros = GetCoeffs(bc, coef_probs, (*a + *l), skip_dc, qcoeff_ptr); + *a = *l = (nonzeros > 0); + + nonzeros += skip_dc; + eobs[i] = nonzeros; + eobtotal += nonzeros; + qcoeff_ptr += 16; + } + + coef_probs = fc->coef_probs[2]; + + a_ctx += 4; + l_ctx += 4; + for (i = 16; i < 24; ++i) { + a = a_ctx + ((i > 19) << 1) + (i & 1); + l = l_ctx + ((i > 19) << 1) + ((i & 3) > 1); + + nonzeros = GetCoeffs(bc, coef_probs, (*a + *l), 0, qcoeff_ptr); + *a = *l = (nonzeros > 0); + + eobs[i] = nonzeros; + eobtotal += nonzeros; + qcoeff_ptr += 16; + } + + return eobtotal; +} diff --git a/vp8/decoder/detokenize.h b/vp8/decoder/detokenize.h new file mode 100644 index 0000000..f0b1254 --- /dev/null +++ b/vp8/decoder/detokenize.h @@ -0,0 +1,27 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP8_DECODER_DETOKENIZE_H_ +#define VP8_DECODER_DETOKENIZE_H_ + +#include "onyxd_int.h" + +#ifdef __cplusplus +extern "C" { +#endif + +void vp8_reset_mb_tokens_context(MACROBLOCKD *x); +int vp8_decode_mb_tokens(VP8D_COMP *, MACROBLOCKD *); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP8_DECODER_DETOKENIZE_H_ diff --git a/vp8/decoder/ec_types.h b/vp8/decoder/ec_types.h new file mode 100644 index 0000000..0ab08b6 --- /dev/null +++ b/vp8/decoder/ec_types.h @@ -0,0 +1,51 @@ +/* + * Copyright (c) 2011 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP8_DECODER_EC_TYPES_H_ +#define VP8_DECODER_EC_TYPES_H_ + +#ifdef __cplusplus +extern "C" { +#endif + +#define MAX_OVERLAPS 16 + +/* The area (pixel area in Q6) the block pointed to by bmi overlaps + * another block with. + */ +typedef struct { + int overlap; + union b_mode_info *bmi; +} OVERLAP_NODE; + +/* Structure to keep track of overlapping blocks on a block level. */ +typedef struct { + /* TODO(holmer): This array should be exchanged for a linked list */ + OVERLAP_NODE overlaps[MAX_OVERLAPS]; +} B_OVERLAP; + +/* Structure used to hold all the overlaps of a macroblock. The overlaps of a + * macroblock is further divided into block overlaps. + */ +typedef struct { B_OVERLAP overlaps[16]; } MB_OVERLAP; + +/* Structure for keeping track of motion vectors and which reference frame they + * refer to. Used for motion vector interpolation. + */ +typedef struct { + MV mv; + MV_REFERENCE_FRAME ref_frame; +} EC_BLOCK; + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP8_DECODER_EC_TYPES_H_ diff --git a/vp8/decoder/error_concealment.c b/vp8/decoder/error_concealment.c new file mode 100644 index 0000000..e221414 --- /dev/null +++ b/vp8/decoder/error_concealment.c @@ -0,0 +1,482 @@ +/* + * Copyright (c) 2011 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include + +#include "error_concealment.h" +#include "onyxd_int.h" +#include "decodemv.h" +#include "vpx_mem/vpx_mem.h" +#include "vp8/common/findnearmv.h" +#include "vp8/common/common.h" +#include "vpx_dsp/vpx_dsp_common.h" + +#define FLOOR(x, q) ((x) & -(1 << (q))) + +#define NUM_NEIGHBORS 20 + +typedef struct ec_position { + int row; + int col; +} EC_POS; + +/* + * Regenerate the table in Matlab with: + * x = meshgrid((1:4), (1:4)); + * y = meshgrid((1:4), (1:4))'; + * W = round((1./(sqrt(x.^2 + y.^2))*2^7)); + * W(1,1) = 0; + */ +static const int weights_q7[5][5] = { { 0, 128, 64, 43, 32 }, + { 128, 91, 57, 40, 31 }, + { 64, 57, 45, 36, 29 }, + { 43, 40, 36, 30, 26 }, + { 32, 31, 29, 26, 23 } }; + +int vp8_alloc_overlap_lists(VP8D_COMP *pbi) { + if (pbi->overlaps != NULL) { + vpx_free(pbi->overlaps); + pbi->overlaps = NULL; + } + + pbi->overlaps = + vpx_calloc(pbi->common.mb_rows * pbi->common.mb_cols, sizeof(MB_OVERLAP)); + + if (pbi->overlaps == NULL) return -1; + + return 0; +} + +void vp8_de_alloc_overlap_lists(VP8D_COMP *pbi) { + vpx_free(pbi->overlaps); + pbi->overlaps = NULL; +} + +/* Inserts a new overlap area value to the list of overlaps of a block */ +static void assign_overlap(OVERLAP_NODE *overlaps, union b_mode_info *bmi, + int overlap) { + int i; + if (overlap <= 0) return; + /* Find and assign to the next empty overlap node in the list of overlaps. + * Empty is defined as bmi == NULL */ + for (i = 0; i < MAX_OVERLAPS; ++i) { + if (overlaps[i].bmi == NULL) { + overlaps[i].bmi = bmi; + overlaps[i].overlap = overlap; + break; + } + } +} + +/* Calculates the overlap area between two 4x4 squares, where the first + * square has its upper-left corner at (b1_row, b1_col) and the second + * square has its upper-left corner at (b2_row, b2_col). Doesn't + * properly handle squares which do not overlap. + */ +static int block_overlap(int b1_row, int b1_col, int b2_row, int b2_col) { + const int int_top = VPXMAX(b1_row, b2_row); // top + const int int_left = VPXMAX(b1_col, b2_col); // left + /* Since each block is 4x4 pixels, adding 4 (Q3) to the left/top edge + * gives us the right/bottom edge. + */ + const int int_right = VPXMIN(b1_col + (4 << 3), b2_col + (4 << 3)); // right + const int int_bottom = + VPXMIN(b1_row + (4 << 3), b2_row + (4 << 3)); // bottom + return (int_bottom - int_top) * (int_right - int_left); +} + +/* Calculates the overlap area for all blocks in a macroblock at position + * (mb_row, mb_col) in macroblocks, which are being overlapped by a given + * overlapping block at position (new_row, new_col) (in pixels, Q3). The + * first block being overlapped in the macroblock has position (first_blk_row, + * first_blk_col) in blocks relative the upper-left corner of the image. + */ +static void calculate_overlaps_mb(B_OVERLAP *b_overlaps, union b_mode_info *bmi, + int new_row, int new_col, int mb_row, + int mb_col, int first_blk_row, + int first_blk_col) { + /* Find the blocks within this MB (defined by mb_row, mb_col) which are + * overlapped by bmi and calculate and assign overlap for each of those + * blocks. */ + + /* Block coordinates relative the upper-left block */ + const int rel_ol_blk_row = first_blk_row - mb_row * 4; + const int rel_ol_blk_col = first_blk_col - mb_col * 4; + /* If the block partly overlaps any previous MB, these coordinates + * can be < 0. We don't want to access blocks in previous MBs. + */ + const int blk_idx = VPXMAX(rel_ol_blk_row, 0) * 4 + VPXMAX(rel_ol_blk_col, 0); + /* Upper left overlapping block */ + B_OVERLAP *b_ol_ul = &(b_overlaps[blk_idx]); + + /* Calculate and assign overlaps for all blocks in this MB + * which the motion compensated block overlaps + */ + /* Avoid calculating overlaps for blocks in later MBs */ + int end_row = VPXMIN(4 + mb_row * 4 - first_blk_row, 2); + int end_col = VPXMIN(4 + mb_col * 4 - first_blk_col, 2); + int row, col; + + /* Check if new_row and new_col are evenly divisible by 4 (Q3), + * and if so we shouldn't check neighboring blocks + */ + if (new_row >= 0 && (new_row & 0x1F) == 0) end_row = 1; + if (new_col >= 0 && (new_col & 0x1F) == 0) end_col = 1; + + /* Check if the overlapping block partly overlaps a previous MB + * and if so, we're overlapping fewer blocks in this MB. + */ + if (new_row < (mb_row * 16) << 3) end_row = 1; + if (new_col < (mb_col * 16) << 3) end_col = 1; + + for (row = 0; row < end_row; ++row) { + for (col = 0; col < end_col; ++col) { + /* input in Q3, result in Q6 */ + const int overlap = + block_overlap(new_row, new_col, (((first_blk_row + row) * 4) << 3), + (((first_blk_col + col) * 4) << 3)); + assign_overlap(b_ol_ul[row * 4 + col].overlaps, bmi, overlap); + } + } +} + +void vp8_calculate_overlaps(MB_OVERLAP *overlap_ul, int mb_rows, int mb_cols, + union b_mode_info *bmi, int b_row, int b_col) { + MB_OVERLAP *mb_overlap; + int row, col, rel_row, rel_col; + int new_row, new_col; + int end_row, end_col; + int overlap_b_row, overlap_b_col; + int overlap_mb_row, overlap_mb_col; + + /* mb subpixel position */ + row = (4 * b_row) << 3; /* Q3 */ + col = (4 * b_col) << 3; /* Q3 */ + + /* reverse compensate for motion */ + new_row = row - bmi->mv.as_mv.row; + new_col = col - bmi->mv.as_mv.col; + + if (new_row >= ((16 * mb_rows) << 3) || new_col >= ((16 * mb_cols) << 3)) { + /* the new block ended up outside the frame */ + return; + } + + if (new_row <= -32 || new_col <= -32) { + /* outside the frame */ + return; + } + /* overlapping block's position in blocks */ + overlap_b_row = FLOOR(new_row / 4, 3) >> 3; + overlap_b_col = FLOOR(new_col / 4, 3) >> 3; + + /* overlapping block's MB position in MBs + * operations are done in Q3 + */ + overlap_mb_row = FLOOR((overlap_b_row << 3) / 4, 3) >> 3; + overlap_mb_col = FLOOR((overlap_b_col << 3) / 4, 3) >> 3; + + end_row = VPXMIN(mb_rows - overlap_mb_row, 2); + end_col = VPXMIN(mb_cols - overlap_mb_col, 2); + + /* Don't calculate overlap for MBs we don't overlap */ + /* Check if the new block row starts at the last block row of the MB */ + if (abs(new_row - ((16 * overlap_mb_row) << 3)) < ((3 * 4) << 3)) end_row = 1; + /* Check if the new block col starts at the last block col of the MB */ + if (abs(new_col - ((16 * overlap_mb_col) << 3)) < ((3 * 4) << 3)) end_col = 1; + + /* find the MB(s) this block is overlapping */ + for (rel_row = 0; rel_row < end_row; ++rel_row) { + for (rel_col = 0; rel_col < end_col; ++rel_col) { + if (overlap_mb_row + rel_row < 0 || overlap_mb_col + rel_col < 0) + continue; + mb_overlap = overlap_ul + (overlap_mb_row + rel_row) * mb_cols + + overlap_mb_col + rel_col; + + calculate_overlaps_mb(mb_overlap->overlaps, bmi, new_row, new_col, + overlap_mb_row + rel_row, overlap_mb_col + rel_col, + overlap_b_row + rel_row, overlap_b_col + rel_col); + } + } +} + +/* Estimates a motion vector given the overlapping blocks' motion vectors. + * Filters out all overlapping blocks which do not refer to the correct + * reference frame type. + */ +static void estimate_mv(const OVERLAP_NODE *overlaps, union b_mode_info *bmi) { + int i; + int overlap_sum = 0; + int row_acc = 0; + int col_acc = 0; + + bmi->mv.as_int = 0; + for (i = 0; i < MAX_OVERLAPS; ++i) { + if (overlaps[i].bmi == NULL) break; + col_acc += overlaps[i].overlap * overlaps[i].bmi->mv.as_mv.col; + row_acc += overlaps[i].overlap * overlaps[i].bmi->mv.as_mv.row; + overlap_sum += overlaps[i].overlap; + } + if (overlap_sum > 0) { + /* Q9 / Q6 = Q3 */ + bmi->mv.as_mv.col = col_acc / overlap_sum; + bmi->mv.as_mv.row = row_acc / overlap_sum; + } else { + bmi->mv.as_mv.col = 0; + bmi->mv.as_mv.row = 0; + } +} + +/* Estimates all motion vectors for a macroblock given the lists of + * overlaps for each block. Decides whether or not the MVs must be clamped. + */ +static void estimate_mb_mvs(const B_OVERLAP *block_overlaps, MODE_INFO *mi, + int mb_to_left_edge, int mb_to_right_edge, + int mb_to_top_edge, int mb_to_bottom_edge) { + int row, col; + int non_zero_count = 0; + MV *const filtered_mv = &(mi->mbmi.mv.as_mv); + union b_mode_info *const bmi = mi->bmi; + filtered_mv->col = 0; + filtered_mv->row = 0; + mi->mbmi.need_to_clamp_mvs = 0; + for (row = 0; row < 4; ++row) { + int this_b_to_top_edge = mb_to_top_edge + ((row * 4) << 3); + int this_b_to_bottom_edge = mb_to_bottom_edge - ((row * 4) << 3); + for (col = 0; col < 4; ++col) { + int i = row * 4 + col; + int this_b_to_left_edge = mb_to_left_edge + ((col * 4) << 3); + int this_b_to_right_edge = mb_to_right_edge - ((col * 4) << 3); + /* Estimate vectors for all blocks which are overlapped by this */ + /* type. Interpolate/extrapolate the rest of the block's MVs */ + estimate_mv(block_overlaps[i].overlaps, &(bmi[i])); + mi->mbmi.need_to_clamp_mvs |= vp8_check_mv_bounds( + &bmi[i].mv, this_b_to_left_edge, this_b_to_right_edge, + this_b_to_top_edge, this_b_to_bottom_edge); + if (bmi[i].mv.as_int != 0) { + ++non_zero_count; + filtered_mv->col += bmi[i].mv.as_mv.col; + filtered_mv->row += bmi[i].mv.as_mv.row; + } + } + } + if (non_zero_count > 0) { + filtered_mv->col /= non_zero_count; + filtered_mv->row /= non_zero_count; + } +} + +static void calc_prev_mb_overlaps(MB_OVERLAP *overlaps, MODE_INFO *prev_mi, + int mb_row, int mb_col, int mb_rows, + int mb_cols) { + int sub_row; + int sub_col; + for (sub_row = 0; sub_row < 4; ++sub_row) { + for (sub_col = 0; sub_col < 4; ++sub_col) { + vp8_calculate_overlaps(overlaps, mb_rows, mb_cols, + &(prev_mi->bmi[sub_row * 4 + sub_col]), + 4 * mb_row + sub_row, 4 * mb_col + sub_col); + } + } +} + +/* Estimate all missing motion vectors. This function does the same as the one + * above, but has different input arguments. */ +static void estimate_missing_mvs(MB_OVERLAP *overlaps, MODE_INFO *mi, + MODE_INFO *prev_mi, int mb_rows, int mb_cols, + unsigned int first_corrupt) { + int mb_row, mb_col; + memset(overlaps, 0, sizeof(MB_OVERLAP) * mb_rows * mb_cols); + /* First calculate the overlaps for all blocks */ + for (mb_row = 0; mb_row < mb_rows; ++mb_row) { + for (mb_col = 0; mb_col < mb_cols; ++mb_col) { + /* We're only able to use blocks referring to the last frame + * when extrapolating new vectors. + */ + if (prev_mi->mbmi.ref_frame == LAST_FRAME) { + calc_prev_mb_overlaps(overlaps, prev_mi, mb_row, mb_col, mb_rows, + mb_cols); + } + ++prev_mi; + } + ++prev_mi; + } + + mb_row = first_corrupt / mb_cols; + mb_col = first_corrupt - mb_row * mb_cols; + mi += mb_row * (mb_cols + 1) + mb_col; + /* Go through all macroblocks in the current image with missing MVs + * and calculate new MVs using the overlaps. + */ + for (; mb_row < mb_rows; ++mb_row) { + int mb_to_top_edge = -((mb_row * 16)) << 3; + int mb_to_bottom_edge = ((mb_rows - 1 - mb_row) * 16) << 3; + for (; mb_col < mb_cols; ++mb_col) { + int mb_to_left_edge = -((mb_col * 16) << 3); + int mb_to_right_edge = ((mb_cols - 1 - mb_col) * 16) << 3; + const B_OVERLAP *block_overlaps = + overlaps[mb_row * mb_cols + mb_col].overlaps; + mi->mbmi.ref_frame = LAST_FRAME; + mi->mbmi.mode = SPLITMV; + mi->mbmi.uv_mode = DC_PRED; + mi->mbmi.partitioning = 3; + mi->mbmi.segment_id = 0; + estimate_mb_mvs(block_overlaps, mi, mb_to_left_edge, mb_to_right_edge, + mb_to_top_edge, mb_to_bottom_edge); + ++mi; + } + mb_col = 0; + ++mi; + } +} + +void vp8_estimate_missing_mvs(VP8D_COMP *pbi) { + VP8_COMMON *const pc = &pbi->common; + estimate_missing_mvs(pbi->overlaps, pc->mi, pc->prev_mi, pc->mb_rows, + pc->mb_cols, pbi->mvs_corrupt_from_mb); +} + +static void assign_neighbor(EC_BLOCK *neighbor, MODE_INFO *mi, int block_idx) { + assert(mi->mbmi.ref_frame < MAX_REF_FRAMES); + neighbor->ref_frame = mi->mbmi.ref_frame; + neighbor->mv = mi->bmi[block_idx].mv.as_mv; +} + +/* Finds the neighboring blocks of a macroblocks. In the general case + * 20 blocks are found. If a fewer number of blocks are found due to + * image boundaries, those positions in the EC_BLOCK array are left "empty". + * The neighbors are enumerated with the upper-left neighbor as the first + * element, the second element refers to the neighbor to right of the previous + * neighbor, and so on. The last element refers to the neighbor below the first + * neighbor. + */ +static void find_neighboring_blocks(MODE_INFO *mi, EC_BLOCK *neighbors, + int mb_row, int mb_col, int mb_rows, + int mb_cols, int mi_stride) { + int i = 0; + int j; + if (mb_row > 0) { + /* upper left */ + if (mb_col > 0) assign_neighbor(&neighbors[i], mi - mi_stride - 1, 15); + ++i; + /* above */ + for (j = 12; j < 16; ++j, ++i) + assign_neighbor(&neighbors[i], mi - mi_stride, j); + } else + i += 5; + if (mb_col < mb_cols - 1) { + /* upper right */ + if (mb_row > 0) assign_neighbor(&neighbors[i], mi - mi_stride + 1, 12); + ++i; + /* right */ + for (j = 0; j <= 12; j += 4, ++i) assign_neighbor(&neighbors[i], mi + 1, j); + } else + i += 5; + if (mb_row < mb_rows - 1) { + /* lower right */ + if (mb_col < mb_cols - 1) + assign_neighbor(&neighbors[i], mi + mi_stride + 1, 0); + ++i; + /* below */ + for (j = 0; j < 4; ++j, ++i) + assign_neighbor(&neighbors[i], mi + mi_stride, j); + } else + i += 5; + if (mb_col > 0) { + /* lower left */ + if (mb_row < mb_rows - 1) + assign_neighbor(&neighbors[i], mi + mi_stride - 1, 4); + ++i; + /* left */ + for (j = 3; j < 16; j += 4, ++i) { + assign_neighbor(&neighbors[i], mi - 1, j); + } + } else + i += 5; + assert(i == 20); +} + +/* Interpolates all motion vectors for a macroblock from the neighboring blocks' + * motion vectors. + */ +static void interpolate_mvs(MACROBLOCKD *mb, EC_BLOCK *neighbors, + MV_REFERENCE_FRAME dom_ref_frame) { + int row, col, i; + MODE_INFO *const mi = mb->mode_info_context; + /* Table with the position of the neighboring blocks relative the position + * of the upper left block of the current MB. Starting with the upper left + * neighbor and going to the right. + */ + const EC_POS neigh_pos[NUM_NEIGHBORS] = { + { -1, -1 }, { -1, 0 }, { -1, 1 }, { -1, 2 }, { -1, 3 }, { -1, 4 }, { 0, 4 }, + { 1, 4 }, { 2, 4 }, { 3, 4 }, { 4, 4 }, { 4, 3 }, { 4, 2 }, { 4, 1 }, + { 4, 0 }, { 4, -1 }, { 3, -1 }, { 2, -1 }, { 1, -1 }, { 0, -1 } + }; + mi->mbmi.need_to_clamp_mvs = 0; + for (row = 0; row < 4; ++row) { + int mb_to_top_edge = mb->mb_to_top_edge + ((row * 4) << 3); + int mb_to_bottom_edge = mb->mb_to_bottom_edge - ((row * 4) << 3); + for (col = 0; col < 4; ++col) { + int mb_to_left_edge = mb->mb_to_left_edge + ((col * 4) << 3); + int mb_to_right_edge = mb->mb_to_right_edge - ((col * 4) << 3); + int w_sum = 0; + int mv_row_sum = 0; + int mv_col_sum = 0; + int_mv *const mv = &(mi->bmi[row * 4 + col].mv); + mv->as_int = 0; + for (i = 0; i < NUM_NEIGHBORS; ++i) { + /* Calculate the weighted sum of neighboring MVs referring + * to the dominant frame type. + */ + const int w = weights_q7[abs(row - neigh_pos[i].row)] + [abs(col - neigh_pos[i].col)]; + if (neighbors[i].ref_frame != dom_ref_frame) continue; + w_sum += w; + /* Q7 * Q3 = Q10 */ + mv_row_sum += w * neighbors[i].mv.row; + mv_col_sum += w * neighbors[i].mv.col; + } + if (w_sum > 0) { + /* Avoid division by zero. + * Normalize with the sum of the coefficients + * Q3 = Q10 / Q7 + */ + mv->as_mv.row = mv_row_sum / w_sum; + mv->as_mv.col = mv_col_sum / w_sum; + mi->mbmi.need_to_clamp_mvs |= + vp8_check_mv_bounds(mv, mb_to_left_edge, mb_to_right_edge, + mb_to_top_edge, mb_to_bottom_edge); + } + } + } +} + +void vp8_interpolate_motion(MACROBLOCKD *mb, int mb_row, int mb_col, + int mb_rows, int mb_cols) { + /* Find relevant neighboring blocks */ + EC_BLOCK neighbors[NUM_NEIGHBORS]; + int i; + /* Initialize the array. MAX_REF_FRAMES is interpreted as "doesn't exist" */ + for (i = 0; i < NUM_NEIGHBORS; ++i) { + neighbors[i].ref_frame = MAX_REF_FRAMES; + neighbors[i].mv.row = neighbors[i].mv.col = 0; + } + find_neighboring_blocks(mb->mode_info_context, neighbors, mb_row, mb_col, + mb_rows, mb_cols, mb->mode_info_stride); + /* Interpolate MVs for the missing blocks from the surrounding + * blocks which refer to the last frame. */ + interpolate_mvs(mb, neighbors, LAST_FRAME); + + mb->mode_info_context->mbmi.ref_frame = LAST_FRAME; + mb->mode_info_context->mbmi.mode = SPLITMV; + mb->mode_info_context->mbmi.uv_mode = DC_PRED; + mb->mode_info_context->mbmi.partitioning = 3; + mb->mode_info_context->mbmi.segment_id = 0; +} diff --git a/vp8/decoder/error_concealment.h b/vp8/decoder/error_concealment.h new file mode 100644 index 0000000..89c78c1 --- /dev/null +++ b/vp8/decoder/error_concealment.h @@ -0,0 +1,41 @@ +/* + * Copyright (c) 2011 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP8_DECODER_ERROR_CONCEALMENT_H_ +#define VP8_DECODER_ERROR_CONCEALMENT_H_ + +#include "onyxd_int.h" +#include "ec_types.h" + +#ifdef __cplusplus +extern "C" { +#endif + +/* Allocate memory for the overlap lists */ +int vp8_alloc_overlap_lists(VP8D_COMP *pbi); + +/* Deallocate the overlap lists */ +void vp8_de_alloc_overlap_lists(VP8D_COMP *pbi); + +/* Estimate all missing motion vectors. */ +void vp8_estimate_missing_mvs(VP8D_COMP *pbi); + +/* Functions for spatial MV interpolation */ + +/* Interpolates all motion vectors for a macroblock mb at position + * (mb_row, mb_col). */ +void vp8_interpolate_motion(MACROBLOCKD *mb, int mb_row, int mb_col, + int mb_rows, int mb_cols); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP8_DECODER_ERROR_CONCEALMENT_H_ diff --git a/vp8/decoder/onyxd_if.c b/vp8/decoder/onyxd_if.c new file mode 100644 index 0000000..f516eb0 --- /dev/null +++ b/vp8/decoder/onyxd_if.c @@ -0,0 +1,476 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "vp8/common/onyxc_int.h" +#if CONFIG_POSTPROC +#include "vp8/common/postproc.h" +#endif +#include "vp8/common/onyxd.h" +#include "onyxd_int.h" +#include "vpx_mem/vpx_mem.h" +#include "vp8/common/alloccommon.h" +#include "vp8/common/loopfilter.h" +#include "vp8/common/swapyv12buffer.h" +#include "vp8/common/threading.h" +#include "decoderthreading.h" +#include +#include + +#include "vp8/common/quant_common.h" +#include "vp8/common/reconintra.h" +#include "./vpx_dsp_rtcd.h" +#include "./vpx_scale_rtcd.h" +#include "vpx_scale/vpx_scale.h" +#include "vp8/common/systemdependent.h" +#include "vpx_ports/system_state.h" +#include "vpx_ports/vpx_once.h" +#include "vpx_ports/vpx_timer.h" +#include "detokenize.h" +#if CONFIG_ERROR_CONCEALMENT +#include "error_concealment.h" +#endif +#if ARCH_ARM +#include "vpx_ports/arm.h" +#endif + +extern void vp8_init_loop_filter(VP8_COMMON *cm); +static int get_free_fb(VP8_COMMON *cm); +static void ref_cnt_fb(int *buf, int *idx, int new_idx); + +static void initialize_dec(void) { + static volatile int init_done = 0; + + if (!init_done) { + vpx_dsp_rtcd(); + vp8_init_intra_predictors(); + init_done = 1; + } +} + +static void remove_decompressor(VP8D_COMP *pbi) { +#if CONFIG_ERROR_CONCEALMENT + vp8_de_alloc_overlap_lists(pbi); +#endif + vp8_remove_common(&pbi->common); + vpx_free(pbi); +} + +static struct VP8D_COMP *create_decompressor(VP8D_CONFIG *oxcf) { + VP8D_COMP *pbi = vpx_memalign(32, sizeof(VP8D_COMP)); + + if (!pbi) return NULL; + + memset(pbi, 0, sizeof(VP8D_COMP)); + + if (setjmp(pbi->common.error.jmp)) { + pbi->common.error.setjmp = 0; + remove_decompressor(pbi); + return 0; + } + + pbi->common.error.setjmp = 1; + + vp8_create_common(&pbi->common); + + pbi->common.current_video_frame = 0; + pbi->ready_for_new_data = 1; + + /* vp8cx_init_de_quantizer() is first called here. Add check in + * frame_init_dequantizer() to avoid + * unnecessary calling of vp8cx_init_de_quantizer() for every frame. + */ + vp8cx_init_de_quantizer(pbi); + + vp8_loop_filter_init(&pbi->common); + + pbi->common.error.setjmp = 0; + +#if CONFIG_ERROR_CONCEALMENT + pbi->ec_enabled = oxcf->error_concealment; + pbi->overlaps = NULL; +#else + (void)oxcf; + pbi->ec_enabled = 0; +#endif + /* Error concealment is activated after a key frame has been + * decoded without errors when error concealment is enabled. + */ + pbi->ec_active = 0; + + pbi->decoded_key_frame = 0; + + /* Independent partitions is activated when a frame updates the + * token probability table to have equal probabilities over the + * PREV_COEF context. + */ + pbi->independent_partitions = 0; + + vp8_setup_block_dptrs(&pbi->mb); + + once(initialize_dec); + + return pbi; +} + +vpx_codec_err_t vp8dx_get_reference(VP8D_COMP *pbi, + enum vpx_ref_frame_type ref_frame_flag, + YV12_BUFFER_CONFIG *sd) { + VP8_COMMON *cm = &pbi->common; + int ref_fb_idx; + + if (ref_frame_flag == VP8_LAST_FRAME) { + ref_fb_idx = cm->lst_fb_idx; + } else if (ref_frame_flag == VP8_GOLD_FRAME) { + ref_fb_idx = cm->gld_fb_idx; + } else if (ref_frame_flag == VP8_ALTR_FRAME) { + ref_fb_idx = cm->alt_fb_idx; + } else { + vpx_internal_error(&pbi->common.error, VPX_CODEC_ERROR, + "Invalid reference frame"); + return pbi->common.error.error_code; + } + + if (cm->yv12_fb[ref_fb_idx].y_height != sd->y_height || + cm->yv12_fb[ref_fb_idx].y_width != sd->y_width || + cm->yv12_fb[ref_fb_idx].uv_height != sd->uv_height || + cm->yv12_fb[ref_fb_idx].uv_width != sd->uv_width) { + vpx_internal_error(&pbi->common.error, VPX_CODEC_ERROR, + "Incorrect buffer dimensions"); + } else + vp8_yv12_copy_frame(&cm->yv12_fb[ref_fb_idx], sd); + + return pbi->common.error.error_code; +} + +vpx_codec_err_t vp8dx_set_reference(VP8D_COMP *pbi, + enum vpx_ref_frame_type ref_frame_flag, + YV12_BUFFER_CONFIG *sd) { + VP8_COMMON *cm = &pbi->common; + int *ref_fb_ptr = NULL; + int free_fb; + + if (ref_frame_flag == VP8_LAST_FRAME) { + ref_fb_ptr = &cm->lst_fb_idx; + } else if (ref_frame_flag == VP8_GOLD_FRAME) { + ref_fb_ptr = &cm->gld_fb_idx; + } else if (ref_frame_flag == VP8_ALTR_FRAME) { + ref_fb_ptr = &cm->alt_fb_idx; + } else { + vpx_internal_error(&pbi->common.error, VPX_CODEC_ERROR, + "Invalid reference frame"); + return pbi->common.error.error_code; + } + + if (cm->yv12_fb[*ref_fb_ptr].y_height != sd->y_height || + cm->yv12_fb[*ref_fb_ptr].y_width != sd->y_width || + cm->yv12_fb[*ref_fb_ptr].uv_height != sd->uv_height || + cm->yv12_fb[*ref_fb_ptr].uv_width != sd->uv_width) { + vpx_internal_error(&pbi->common.error, VPX_CODEC_ERROR, + "Incorrect buffer dimensions"); + } else { + /* Find an empty frame buffer. */ + free_fb = get_free_fb(cm); + /* Decrease fb_idx_ref_cnt since it will be increased again in + * ref_cnt_fb() below. */ + cm->fb_idx_ref_cnt[free_fb]--; + + /* Manage the reference counters and copy image. */ + ref_cnt_fb(cm->fb_idx_ref_cnt, ref_fb_ptr, free_fb); + vp8_yv12_copy_frame(sd, &cm->yv12_fb[*ref_fb_ptr]); + } + + return pbi->common.error.error_code; +} + +static int get_free_fb(VP8_COMMON *cm) { + int i; + for (i = 0; i < NUM_YV12_BUFFERS; ++i) { + if (cm->fb_idx_ref_cnt[i] == 0) break; + } + + assert(i < NUM_YV12_BUFFERS); + cm->fb_idx_ref_cnt[i] = 1; + return i; +} + +static void ref_cnt_fb(int *buf, int *idx, int new_idx) { + if (buf[*idx] > 0) buf[*idx]--; + + *idx = new_idx; + + buf[new_idx]++; +} + +/* If any buffer copy / swapping is signalled it should be done here. */ +static int swap_frame_buffers(VP8_COMMON *cm) { + int err = 0; + + /* The alternate reference frame or golden frame can be updated + * using the new, last, or golden/alt ref frame. If it + * is updated using the newly decoded frame it is a refresh. + * An update using the last or golden/alt ref frame is a copy. + */ + if (cm->copy_buffer_to_arf) { + int new_fb = 0; + + if (cm->copy_buffer_to_arf == 1) { + new_fb = cm->lst_fb_idx; + } else if (cm->copy_buffer_to_arf == 2) { + new_fb = cm->gld_fb_idx; + } else { + err = -1; + } + + ref_cnt_fb(cm->fb_idx_ref_cnt, &cm->alt_fb_idx, new_fb); + } + + if (cm->copy_buffer_to_gf) { + int new_fb = 0; + + if (cm->copy_buffer_to_gf == 1) { + new_fb = cm->lst_fb_idx; + } else if (cm->copy_buffer_to_gf == 2) { + new_fb = cm->alt_fb_idx; + } else { + err = -1; + } + + ref_cnt_fb(cm->fb_idx_ref_cnt, &cm->gld_fb_idx, new_fb); + } + + if (cm->refresh_golden_frame) { + ref_cnt_fb(cm->fb_idx_ref_cnt, &cm->gld_fb_idx, cm->new_fb_idx); + } + + if (cm->refresh_alt_ref_frame) { + ref_cnt_fb(cm->fb_idx_ref_cnt, &cm->alt_fb_idx, cm->new_fb_idx); + } + + if (cm->refresh_last_frame) { + ref_cnt_fb(cm->fb_idx_ref_cnt, &cm->lst_fb_idx, cm->new_fb_idx); + + cm->frame_to_show = &cm->yv12_fb[cm->lst_fb_idx]; + } else { + cm->frame_to_show = &cm->yv12_fb[cm->new_fb_idx]; + } + + cm->fb_idx_ref_cnt[cm->new_fb_idx]--; + + return err; +} + +static int check_fragments_for_errors(VP8D_COMP *pbi) { + if (!pbi->ec_active && pbi->fragments.count <= 1 && + pbi->fragments.sizes[0] == 0) { + VP8_COMMON *cm = &pbi->common; + + /* If error concealment is disabled we won't signal missing frames + * to the decoder. + */ + if (cm->fb_idx_ref_cnt[cm->lst_fb_idx] > 1) { + /* The last reference shares buffer with another reference + * buffer. Move it to its own buffer before setting it as + * corrupt, otherwise we will make multiple buffers corrupt. + */ + const int prev_idx = cm->lst_fb_idx; + cm->fb_idx_ref_cnt[prev_idx]--; + cm->lst_fb_idx = get_free_fb(cm); + vp8_yv12_copy_frame(&cm->yv12_fb[prev_idx], &cm->yv12_fb[cm->lst_fb_idx]); + } + /* This is used to signal that we are missing frames. + * We do not know if the missing frame(s) was supposed to update + * any of the reference buffers, but we act conservative and + * mark only the last buffer as corrupted. + */ + cm->yv12_fb[cm->lst_fb_idx].corrupted = 1; + + /* Signal that we have no frame to show. */ + cm->show_frame = 0; + + /* Nothing more to do. */ + return 0; + } + + return 1; +} + +int vp8dx_receive_compressed_data(VP8D_COMP *pbi, size_t size, + const uint8_t *source, int64_t time_stamp) { + VP8_COMMON *cm = &pbi->common; + int retcode = -1; + (void)size; + (void)source; + + pbi->common.error.error_code = VPX_CODEC_OK; + + retcode = check_fragments_for_errors(pbi); + if (retcode <= 0) return retcode; + + cm->new_fb_idx = get_free_fb(cm); + + /* setup reference frames for vp8_decode_frame */ + pbi->dec_fb_ref[INTRA_FRAME] = &cm->yv12_fb[cm->new_fb_idx]; + pbi->dec_fb_ref[LAST_FRAME] = &cm->yv12_fb[cm->lst_fb_idx]; + pbi->dec_fb_ref[GOLDEN_FRAME] = &cm->yv12_fb[cm->gld_fb_idx]; + pbi->dec_fb_ref[ALTREF_FRAME] = &cm->yv12_fb[cm->alt_fb_idx]; + + if (setjmp(pbi->common.error.jmp)) { + /* We do not know if the missing frame(s) was supposed to update + * any of the reference buffers, but we act conservative and + * mark only the last buffer as corrupted. + */ + cm->yv12_fb[cm->lst_fb_idx].corrupted = 1; + + if (cm->fb_idx_ref_cnt[cm->new_fb_idx] > 0) { + cm->fb_idx_ref_cnt[cm->new_fb_idx]--; + } + goto decode_exit; + } + + pbi->common.error.setjmp = 1; + + retcode = vp8_decode_frame(pbi); + + if (retcode < 0) { + if (cm->fb_idx_ref_cnt[cm->new_fb_idx] > 0) { + cm->fb_idx_ref_cnt[cm->new_fb_idx]--; + } + + pbi->common.error.error_code = VPX_CODEC_ERROR; + goto decode_exit; + } + + if (swap_frame_buffers(cm)) { + pbi->common.error.error_code = VPX_CODEC_ERROR; + goto decode_exit; + } + + vpx_clear_system_state(); + + if (cm->show_frame) { + cm->current_video_frame++; + cm->show_frame_mi = cm->mi; + } + +#if CONFIG_ERROR_CONCEALMENT + /* swap the mode infos to storage for future error concealment */ + if (pbi->ec_enabled && pbi->common.prev_mi) { + MODE_INFO *tmp = pbi->common.prev_mi; + int row, col; + pbi->common.prev_mi = pbi->common.mi; + pbi->common.mi = tmp; + + /* Propagate the segment_ids to the next frame */ + for (row = 0; row < pbi->common.mb_rows; ++row) { + for (col = 0; col < pbi->common.mb_cols; ++col) { + const int i = row * pbi->common.mode_info_stride + col; + pbi->common.mi[i].mbmi.segment_id = + pbi->common.prev_mi[i].mbmi.segment_id; + } + } + } +#endif + + pbi->ready_for_new_data = 0; + pbi->last_time_stamp = time_stamp; + +decode_exit: + pbi->common.error.setjmp = 0; + vpx_clear_system_state(); + return retcode; +} +int vp8dx_get_raw_frame(VP8D_COMP *pbi, YV12_BUFFER_CONFIG *sd, + int64_t *time_stamp, int64_t *time_end_stamp, + vp8_ppflags_t *flags) { + int ret = -1; + + if (pbi->ready_for_new_data == 1) return ret; + + /* ie no raw frame to show!!! */ + if (pbi->common.show_frame == 0) return ret; + + pbi->ready_for_new_data = 1; + *time_stamp = pbi->last_time_stamp; + *time_end_stamp = 0; + +#if CONFIG_POSTPROC + ret = vp8_post_proc_frame(&pbi->common, sd, flags); +#else + (void)flags; + + if (pbi->common.frame_to_show) { + *sd = *pbi->common.frame_to_show; + sd->y_width = pbi->common.Width; + sd->y_height = pbi->common.Height; + sd->uv_height = pbi->common.Height / 2; + ret = 0; + } else { + ret = -1; + } + +#endif /*!CONFIG_POSTPROC*/ + vpx_clear_system_state(); + return ret; +} + +/* This function as written isn't decoder specific, but the encoder has + * much faster ways of computing this, so it's ok for it to live in a + * decode specific file. + */ +int vp8dx_references_buffer(VP8_COMMON *oci, int ref_frame) { + const MODE_INFO *mi = oci->mi; + int mb_row, mb_col; + + for (mb_row = 0; mb_row < oci->mb_rows; ++mb_row) { + for (mb_col = 0; mb_col < oci->mb_cols; mb_col++, mi++) { + if (mi->mbmi.ref_frame == ref_frame) return 1; + } + mi++; + } + return 0; +} + +int vp8_create_decoder_instances(struct frame_buffers *fb, VP8D_CONFIG *oxcf) { + /* decoder instance for single thread mode */ + fb->pbi[0] = create_decompressor(oxcf); + if (!fb->pbi[0]) return VPX_CODEC_ERROR; + +#if CONFIG_MULTITHREAD + if (setjmp(fb->pbi[0]->common.error.jmp)) { + vp8_remove_decoder_instances(fb); + memset(fb->pbi, 0, sizeof(fb->pbi)); + vpx_clear_system_state(); + return VPX_CODEC_ERROR; + } + + fb->pbi[0]->common.error.setjmp = 1; + fb->pbi[0]->max_threads = oxcf->max_threads; + vp8_decoder_create_threads(fb->pbi[0]); + fb->pbi[0]->common.error.setjmp = 0; +#endif + return VPX_CODEC_OK; +} + +int vp8_remove_decoder_instances(struct frame_buffers *fb) { + VP8D_COMP *pbi = fb->pbi[0]; + + if (!pbi) return VPX_CODEC_ERROR; +#if CONFIG_MULTITHREAD + vp8_decoder_remove_threads(pbi); +#endif + + /* decoder instance for single thread mode */ + remove_decompressor(pbi); + return VPX_CODEC_OK; +} + +int vp8dx_get_quantizer(const VP8D_COMP *cpi) { + return cpi->common.base_qindex; +} diff --git a/vp8/decoder/onyxd_int.h b/vp8/decoder/onyxd_int.h new file mode 100644 index 0000000..5ecacdb --- /dev/null +++ b/vp8/decoder/onyxd_int.h @@ -0,0 +1,151 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP8_DECODER_ONYXD_INT_H_ +#define VP8_DECODER_ONYXD_INT_H_ + +#include "vpx_config.h" +#include "vp8/common/onyxd.h" +#include "treereader.h" +#include "vp8/common/onyxc_int.h" +#include "vp8/common/threading.h" + +#if CONFIG_ERROR_CONCEALMENT +#include "ec_types.h" +#endif + +#ifdef __cplusplus +extern "C" { +#endif + +typedef struct { + int ithread; + void *ptr1; + void *ptr2; +} DECODETHREAD_DATA; + +typedef struct { MACROBLOCKD mbd; } MB_ROW_DEC; + +typedef struct { + int enabled; + unsigned int count; + const unsigned char *ptrs[MAX_PARTITIONS]; + unsigned int sizes[MAX_PARTITIONS]; +} FRAGMENT_DATA; + +#define MAX_FB_MT_DEC 32 + +struct frame_buffers { + /* + * this struct will be populated with frame buffer management + * info in future commits. */ + + /* decoder instances */ + struct VP8D_COMP *pbi[MAX_FB_MT_DEC]; +}; + +typedef struct VP8D_COMP { + DECLARE_ALIGNED(16, MACROBLOCKD, mb); + + YV12_BUFFER_CONFIG *dec_fb_ref[NUM_YV12_BUFFERS]; + + DECLARE_ALIGNED(16, VP8_COMMON, common); + + /* the last partition will be used for the modes/mvs */ + vp8_reader mbc[MAX_PARTITIONS]; + + VP8D_CONFIG oxcf; + + FRAGMENT_DATA fragments; + +#if CONFIG_MULTITHREAD + /* variable for threading */ + + vpx_atomic_int b_multithreaded_rd; + int max_threads; + int current_mb_col_main; + unsigned int decoding_thread_count; + int allocated_decoding_thread_count; + + int mt_baseline_filter_level[MAX_MB_SEGMENTS]; + int sync_range; + /* Each row remembers its already decoded column. */ + vpx_atomic_int *mt_current_mb_col; + + unsigned char **mt_yabove_row; /* mb_rows x width */ + unsigned char **mt_uabove_row; + unsigned char **mt_vabove_row; + unsigned char **mt_yleft_col; /* mb_rows x 16 */ + unsigned char **mt_uleft_col; /* mb_rows x 8 */ + unsigned char **mt_vleft_col; /* mb_rows x 8 */ + + MB_ROW_DEC *mb_row_di; + DECODETHREAD_DATA *de_thread_data; + + pthread_t *h_decoding_thread; + sem_t *h_event_start_decoding; + sem_t h_event_end_decoding; +/* end of threading data */ +#endif + + int64_t last_time_stamp; + int ready_for_new_data; + + vp8_prob prob_intra; + vp8_prob prob_last; + vp8_prob prob_gf; + vp8_prob prob_skip_false; + +#if CONFIG_ERROR_CONCEALMENT + MB_OVERLAP *overlaps; + /* the mb num from which modes and mvs (first partition) are corrupt */ + unsigned int mvs_corrupt_from_mb; +#endif + int ec_enabled; + int ec_active; + int decoded_key_frame; + int independent_partitions; + int frame_corrupt_residual; + + vpx_decrypt_cb decrypt_cb; + void *decrypt_state; +} VP8D_COMP; + +void vp8cx_init_de_quantizer(VP8D_COMP *pbi); +void vp8_mb_init_dequantizer(VP8D_COMP *pbi, MACROBLOCKD *xd); +int vp8_decode_frame(VP8D_COMP *cpi); + +int vp8_create_decoder_instances(struct frame_buffers *fb, VP8D_CONFIG *oxcf); +int vp8_remove_decoder_instances(struct frame_buffers *fb); + +#if CONFIG_DEBUG +#define CHECK_MEM_ERROR(lval, expr) \ + do { \ + lval = (expr); \ + if (!lval) \ + vpx_internal_error(&pbi->common.error, VPX_CODEC_MEM_ERROR, \ + "Failed to allocate " #lval " at %s:%d", __FILE__, \ + __LINE__); \ + } while (0) +#else +#define CHECK_MEM_ERROR(lval, expr) \ + do { \ + lval = (expr); \ + if (!lval) \ + vpx_internal_error(&pbi->common.error, VPX_CODEC_MEM_ERROR, \ + "Failed to allocate " #lval); \ + } while (0) +#endif + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP8_DECODER_ONYXD_INT_H_ diff --git a/vp8/decoder/threading.c b/vp8/decoder/threading.c new file mode 100644 index 0000000..d0213f7 --- /dev/null +++ b/vp8/decoder/threading.c @@ -0,0 +1,864 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "vpx_config.h" +#include "vp8_rtcd.h" +#if !defined(WIN32) && CONFIG_OS_SUPPORT == 1 +#include +#endif +#include "onyxd_int.h" +#include "vpx_mem/vpx_mem.h" +#include "vp8/common/threading.h" + +#include "vp8/common/loopfilter.h" +#include "vp8/common/extend.h" +#include "vpx_ports/vpx_timer.h" +#include "decoderthreading.h" +#include "detokenize.h" +#include "vp8/common/reconintra4x4.h" +#include "vp8/common/reconinter.h" +#include "vp8/common/reconintra.h" +#include "vp8/common/setupintrarecon.h" +#if CONFIG_ERROR_CONCEALMENT +#include "error_concealment.h" +#endif + +#define CALLOC_ARRAY(p, n) CHECK_MEM_ERROR((p), vpx_calloc(sizeof(*(p)), (n))) +#define CALLOC_ARRAY_ALIGNED(p, n, algn) \ + do { \ + CHECK_MEM_ERROR((p), vpx_memalign((algn), sizeof(*(p)) * (n))); \ + memset((p), 0, (n) * sizeof(*(p))); \ + } while (0) + +static void setup_decoding_thread_data(VP8D_COMP *pbi, MACROBLOCKD *xd, + MB_ROW_DEC *mbrd, int count) { + VP8_COMMON *const pc = &pbi->common; + int i; + + for (i = 0; i < count; ++i) { + MACROBLOCKD *mbd = &mbrd[i].mbd; + mbd->subpixel_predict = xd->subpixel_predict; + mbd->subpixel_predict8x4 = xd->subpixel_predict8x4; + mbd->subpixel_predict8x8 = xd->subpixel_predict8x8; + mbd->subpixel_predict16x16 = xd->subpixel_predict16x16; + + mbd->frame_type = pc->frame_type; + mbd->pre = xd->pre; + mbd->dst = xd->dst; + + mbd->segmentation_enabled = xd->segmentation_enabled; + mbd->mb_segement_abs_delta = xd->mb_segement_abs_delta; + memcpy(mbd->segment_feature_data, xd->segment_feature_data, + sizeof(xd->segment_feature_data)); + + /*signed char ref_lf_deltas[MAX_REF_LF_DELTAS];*/ + memcpy(mbd->ref_lf_deltas, xd->ref_lf_deltas, sizeof(xd->ref_lf_deltas)); + /*signed char mode_lf_deltas[MAX_MODE_LF_DELTAS];*/ + memcpy(mbd->mode_lf_deltas, xd->mode_lf_deltas, sizeof(xd->mode_lf_deltas)); + /*unsigned char mode_ref_lf_delta_enabled; + unsigned char mode_ref_lf_delta_update;*/ + mbd->mode_ref_lf_delta_enabled = xd->mode_ref_lf_delta_enabled; + mbd->mode_ref_lf_delta_update = xd->mode_ref_lf_delta_update; + + mbd->current_bc = &pbi->mbc[0]; + + memcpy(mbd->dequant_y1_dc, xd->dequant_y1_dc, sizeof(xd->dequant_y1_dc)); + memcpy(mbd->dequant_y1, xd->dequant_y1, sizeof(xd->dequant_y1)); + memcpy(mbd->dequant_y2, xd->dequant_y2, sizeof(xd->dequant_y2)); + memcpy(mbd->dequant_uv, xd->dequant_uv, sizeof(xd->dequant_uv)); + + mbd->fullpixel_mask = 0xffffffff; + + if (pc->full_pixel) mbd->fullpixel_mask = 0xfffffff8; + } + + for (i = 0; i < pc->mb_rows; ++i) + vpx_atomic_store_release(&pbi->mt_current_mb_col[i], -1); +} + +static void mt_decode_macroblock(VP8D_COMP *pbi, MACROBLOCKD *xd, + unsigned int mb_idx) { + MB_PREDICTION_MODE mode; + int i; +#if CONFIG_ERROR_CONCEALMENT + int corruption_detected = 0; +#else + (void)mb_idx; +#endif + + if (xd->mode_info_context->mbmi.mb_skip_coeff) { + vp8_reset_mb_tokens_context(xd); + } else if (!vp8dx_bool_error(xd->current_bc)) { + int eobtotal; + eobtotal = vp8_decode_mb_tokens(pbi, xd); + + /* Special case: Force the loopfilter to skip when eobtotal is zero */ + xd->mode_info_context->mbmi.mb_skip_coeff = (eobtotal == 0); + } + + mode = xd->mode_info_context->mbmi.mode; + + if (xd->segmentation_enabled) vp8_mb_init_dequantizer(pbi, xd); + +#if CONFIG_ERROR_CONCEALMENT + + if (pbi->ec_active) { + int throw_residual; + /* When we have independent partitions we can apply residual even + * though other partitions within the frame are corrupt. + */ + throw_residual = + (!pbi->independent_partitions && pbi->frame_corrupt_residual); + throw_residual = (throw_residual || vp8dx_bool_error(xd->current_bc)); + + if ((mb_idx >= pbi->mvs_corrupt_from_mb || throw_residual)) { + /* MB with corrupt residuals or corrupt mode/motion vectors. + * Better to use the predictor as reconstruction. + */ + pbi->frame_corrupt_residual = 1; + memset(xd->qcoeff, 0, sizeof(xd->qcoeff)); + + corruption_detected = 1; + + /* force idct to be skipped for B_PRED and use the + * prediction only for reconstruction + * */ + memset(xd->eobs, 0, 25); + } + } +#endif + + /* do prediction */ + if (xd->mode_info_context->mbmi.ref_frame == INTRA_FRAME) { + vp8_build_intra_predictors_mbuv_s( + xd, xd->recon_above[1], xd->recon_above[2], xd->recon_left[1], + xd->recon_left[2], xd->recon_left_stride[1], xd->dst.u_buffer, + xd->dst.v_buffer, xd->dst.uv_stride); + + if (mode != B_PRED) { + vp8_build_intra_predictors_mby_s( + xd, xd->recon_above[0], xd->recon_left[0], xd->recon_left_stride[0], + xd->dst.y_buffer, xd->dst.y_stride); + } else { + short *DQC = xd->dequant_y1; + int dst_stride = xd->dst.y_stride; + + /* clear out residual eob info */ + if (xd->mode_info_context->mbmi.mb_skip_coeff) memset(xd->eobs, 0, 25); + + intra_prediction_down_copy(xd, xd->recon_above[0] + 16); + + for (i = 0; i < 16; ++i) { + BLOCKD *b = &xd->block[i]; + unsigned char *dst = xd->dst.y_buffer + b->offset; + B_PREDICTION_MODE b_mode = xd->mode_info_context->bmi[i].as_mode; + unsigned char *Above; + unsigned char *yleft; + int left_stride; + unsigned char top_left; + + /*Caution: For some b_mode, it needs 8 pixels (4 above + 4 + * above-right).*/ + if (i < 4 && pbi->common.filter_level) { + Above = xd->recon_above[0] + b->offset; + } else { + Above = dst - dst_stride; + } + + if (i % 4 == 0 && pbi->common.filter_level) { + yleft = xd->recon_left[0] + i; + left_stride = 1; + } else { + yleft = dst - 1; + left_stride = dst_stride; + } + + if ((i == 4 || i == 8 || i == 12) && pbi->common.filter_level) { + top_left = *(xd->recon_left[0] + i - 1); + } else { + top_left = Above[-1]; + } + + vp8_intra4x4_predict(Above, yleft, left_stride, b_mode, dst, dst_stride, + top_left); + + if (xd->eobs[i]) { + if (xd->eobs[i] > 1) { + vp8_dequant_idct_add(b->qcoeff, DQC, dst, dst_stride); + } else { + vp8_dc_only_idct_add(b->qcoeff[0] * DQC[0], dst, dst_stride, dst, + dst_stride); + memset(b->qcoeff, 0, 2 * sizeof(b->qcoeff[0])); + } + } + } + } + } else { + vp8_build_inter_predictors_mb(xd); + } + +#if CONFIG_ERROR_CONCEALMENT + if (corruption_detected) { + return; + } +#endif + + if (!xd->mode_info_context->mbmi.mb_skip_coeff) { + /* dequantization and idct */ + if (mode != B_PRED) { + short *DQC = xd->dequant_y1; + + if (mode != SPLITMV) { + BLOCKD *b = &xd->block[24]; + + /* do 2nd order transform on the dc block */ + if (xd->eobs[24] > 1) { + vp8_dequantize_b(b, xd->dequant_y2); + + vp8_short_inv_walsh4x4(&b->dqcoeff[0], xd->qcoeff); + memset(b->qcoeff, 0, 16 * sizeof(b->qcoeff[0])); + } else { + b->dqcoeff[0] = b->qcoeff[0] * xd->dequant_y2[0]; + vp8_short_inv_walsh4x4_1(&b->dqcoeff[0], xd->qcoeff); + memset(b->qcoeff, 0, 2 * sizeof(b->qcoeff[0])); + } + + /* override the dc dequant constant in order to preserve the + * dc components + */ + DQC = xd->dequant_y1_dc; + } + + vp8_dequant_idct_add_y_block(xd->qcoeff, DQC, xd->dst.y_buffer, + xd->dst.y_stride, xd->eobs); + } + + vp8_dequant_idct_add_uv_block(xd->qcoeff + 16 * 16, xd->dequant_uv, + xd->dst.u_buffer, xd->dst.v_buffer, + xd->dst.uv_stride, xd->eobs + 16); + } +} + +static void mt_decode_mb_rows(VP8D_COMP *pbi, MACROBLOCKD *xd, + int start_mb_row) { + const vpx_atomic_int *last_row_current_mb_col; + vpx_atomic_int *current_mb_col; + int mb_row; + VP8_COMMON *pc = &pbi->common; + const int nsync = pbi->sync_range; + const vpx_atomic_int first_row_no_sync_above = + VPX_ATOMIC_INIT(pc->mb_cols + nsync); + int num_part = 1 << pbi->common.multi_token_partition; + int last_mb_row = start_mb_row; + + YV12_BUFFER_CONFIG *yv12_fb_new = pbi->dec_fb_ref[INTRA_FRAME]; + YV12_BUFFER_CONFIG *yv12_fb_lst = pbi->dec_fb_ref[LAST_FRAME]; + + int recon_y_stride = yv12_fb_new->y_stride; + int recon_uv_stride = yv12_fb_new->uv_stride; + + unsigned char *ref_buffer[MAX_REF_FRAMES][3]; + unsigned char *dst_buffer[3]; + int i; + int ref_fb_corrupted[MAX_REF_FRAMES]; + + ref_fb_corrupted[INTRA_FRAME] = 0; + + for (i = 1; i < MAX_REF_FRAMES; ++i) { + YV12_BUFFER_CONFIG *this_fb = pbi->dec_fb_ref[i]; + + ref_buffer[i][0] = this_fb->y_buffer; + ref_buffer[i][1] = this_fb->u_buffer; + ref_buffer[i][2] = this_fb->v_buffer; + + ref_fb_corrupted[i] = this_fb->corrupted; + } + + dst_buffer[0] = yv12_fb_new->y_buffer; + dst_buffer[1] = yv12_fb_new->u_buffer; + dst_buffer[2] = yv12_fb_new->v_buffer; + + xd->up_available = (start_mb_row != 0); + + xd->mode_info_context = pc->mi + pc->mode_info_stride * start_mb_row; + xd->mode_info_stride = pc->mode_info_stride; + + for (mb_row = start_mb_row; mb_row < pc->mb_rows; + mb_row += (pbi->decoding_thread_count + 1)) { + int recon_yoffset, recon_uvoffset; + int mb_col; + int filter_level; + loop_filter_info_n *lfi_n = &pc->lf_info; + + /* save last row processed by this thread */ + last_mb_row = mb_row; + /* select bool coder for current partition */ + xd->current_bc = &pbi->mbc[mb_row % num_part]; + + if (mb_row > 0) { + last_row_current_mb_col = &pbi->mt_current_mb_col[mb_row - 1]; + } else { + last_row_current_mb_col = &first_row_no_sync_above; + } + + current_mb_col = &pbi->mt_current_mb_col[mb_row]; + + recon_yoffset = mb_row * recon_y_stride * 16; + recon_uvoffset = mb_row * recon_uv_stride * 8; + + /* reset contexts */ + xd->above_context = pc->above_context; + memset(xd->left_context, 0, sizeof(ENTROPY_CONTEXT_PLANES)); + + xd->left_available = 0; + + xd->mb_to_top_edge = -((mb_row * 16) << 3); + xd->mb_to_bottom_edge = ((pc->mb_rows - 1 - mb_row) * 16) << 3; + + if (pbi->common.filter_level) { + xd->recon_above[0] = pbi->mt_yabove_row[mb_row] + 0 * 16 + 32; + xd->recon_above[1] = pbi->mt_uabove_row[mb_row] + 0 * 8 + 16; + xd->recon_above[2] = pbi->mt_vabove_row[mb_row] + 0 * 8 + 16; + + xd->recon_left[0] = pbi->mt_yleft_col[mb_row]; + xd->recon_left[1] = pbi->mt_uleft_col[mb_row]; + xd->recon_left[2] = pbi->mt_vleft_col[mb_row]; + + /* TODO: move to outside row loop */ + xd->recon_left_stride[0] = 1; + xd->recon_left_stride[1] = 1; + } else { + xd->recon_above[0] = dst_buffer[0] + recon_yoffset; + xd->recon_above[1] = dst_buffer[1] + recon_uvoffset; + xd->recon_above[2] = dst_buffer[2] + recon_uvoffset; + + xd->recon_left[0] = xd->recon_above[0] - 1; + xd->recon_left[1] = xd->recon_above[1] - 1; + xd->recon_left[2] = xd->recon_above[2] - 1; + + xd->recon_above[0] -= xd->dst.y_stride; + xd->recon_above[1] -= xd->dst.uv_stride; + xd->recon_above[2] -= xd->dst.uv_stride; + + /* TODO: move to outside row loop */ + xd->recon_left_stride[0] = xd->dst.y_stride; + xd->recon_left_stride[1] = xd->dst.uv_stride; + + setup_intra_recon_left(xd->recon_left[0], xd->recon_left[1], + xd->recon_left[2], xd->dst.y_stride, + xd->dst.uv_stride); + } + + for (mb_col = 0; mb_col < pc->mb_cols; ++mb_col) { + if (((mb_col - 1) % nsync) == 0) { + vpx_atomic_store_release(current_mb_col, mb_col - 1); + } + + if (mb_row && !(mb_col & (nsync - 1))) { + vp8_atomic_spin_wait(mb_col, last_row_current_mb_col, nsync); + } + + /* Distance of MB to the various image edges. + * These are specified to 8th pel as they are always + * compared to values that are in 1/8th pel units. + */ + xd->mb_to_left_edge = -((mb_col * 16) << 3); + xd->mb_to_right_edge = ((pc->mb_cols - 1 - mb_col) * 16) << 3; + +#if CONFIG_ERROR_CONCEALMENT + { + int corrupt_residual = + (!pbi->independent_partitions && pbi->frame_corrupt_residual) || + vp8dx_bool_error(xd->current_bc); + if (pbi->ec_active && + (xd->mode_info_context->mbmi.ref_frame == INTRA_FRAME) && + corrupt_residual) { + /* We have an intra block with corrupt + * coefficients, better to conceal with an inter + * block. + * Interpolate MVs from neighboring MBs + * + * Note that for the first mb with corrupt + * residual in a frame, we might not discover + * that before decoding the residual. That + * happens after this check, and therefore no + * inter concealment will be done. + */ + vp8_interpolate_motion(xd, mb_row, mb_col, pc->mb_rows, pc->mb_cols); + } + } +#endif + + xd->dst.y_buffer = dst_buffer[0] + recon_yoffset; + xd->dst.u_buffer = dst_buffer[1] + recon_uvoffset; + xd->dst.v_buffer = dst_buffer[2] + recon_uvoffset; + + xd->pre.y_buffer = + ref_buffer[xd->mode_info_context->mbmi.ref_frame][0] + recon_yoffset; + xd->pre.u_buffer = + ref_buffer[xd->mode_info_context->mbmi.ref_frame][1] + recon_uvoffset; + xd->pre.v_buffer = + ref_buffer[xd->mode_info_context->mbmi.ref_frame][2] + recon_uvoffset; + + /* propagate errors from reference frames */ + xd->corrupted |= ref_fb_corrupted[xd->mode_info_context->mbmi.ref_frame]; + + mt_decode_macroblock(pbi, xd, 0); + + xd->left_available = 1; + + /* check if the boolean decoder has suffered an error */ + xd->corrupted |= vp8dx_bool_error(xd->current_bc); + + xd->recon_above[0] += 16; + xd->recon_above[1] += 8; + xd->recon_above[2] += 8; + + if (!pbi->common.filter_level) { + xd->recon_left[0] += 16; + xd->recon_left[1] += 8; + xd->recon_left[2] += 8; + } + + if (pbi->common.filter_level) { + int skip_lf = (xd->mode_info_context->mbmi.mode != B_PRED && + xd->mode_info_context->mbmi.mode != SPLITMV && + xd->mode_info_context->mbmi.mb_skip_coeff); + + const int mode_index = + lfi_n->mode_lf_lut[xd->mode_info_context->mbmi.mode]; + const int seg = xd->mode_info_context->mbmi.segment_id; + const int ref_frame = xd->mode_info_context->mbmi.ref_frame; + + filter_level = lfi_n->lvl[seg][ref_frame][mode_index]; + + if (mb_row != pc->mb_rows - 1) { + /* Save decoded MB last row data for next-row decoding */ + memcpy((pbi->mt_yabove_row[mb_row + 1] + 32 + mb_col * 16), + (xd->dst.y_buffer + 15 * recon_y_stride), 16); + memcpy((pbi->mt_uabove_row[mb_row + 1] + 16 + mb_col * 8), + (xd->dst.u_buffer + 7 * recon_uv_stride), 8); + memcpy((pbi->mt_vabove_row[mb_row + 1] + 16 + mb_col * 8), + (xd->dst.v_buffer + 7 * recon_uv_stride), 8); + } + + /* save left_col for next MB decoding */ + if (mb_col != pc->mb_cols - 1) { + MODE_INFO *next = xd->mode_info_context + 1; + + if (next->mbmi.ref_frame == INTRA_FRAME) { + for (i = 0; i < 16; ++i) { + pbi->mt_yleft_col[mb_row][i] = + xd->dst.y_buffer[i * recon_y_stride + 15]; + } + for (i = 0; i < 8; ++i) { + pbi->mt_uleft_col[mb_row][i] = + xd->dst.u_buffer[i * recon_uv_stride + 7]; + pbi->mt_vleft_col[mb_row][i] = + xd->dst.v_buffer[i * recon_uv_stride + 7]; + } + } + } + + /* loopfilter on this macroblock. */ + if (filter_level) { + if (pc->filter_type == NORMAL_LOOPFILTER) { + loop_filter_info lfi; + FRAME_TYPE frame_type = pc->frame_type; + const int hev_index = lfi_n->hev_thr_lut[frame_type][filter_level]; + lfi.mblim = lfi_n->mblim[filter_level]; + lfi.blim = lfi_n->blim[filter_level]; + lfi.lim = lfi_n->lim[filter_level]; + lfi.hev_thr = lfi_n->hev_thr[hev_index]; + + if (mb_col > 0) + vp8_loop_filter_mbv(xd->dst.y_buffer, xd->dst.u_buffer, + xd->dst.v_buffer, recon_y_stride, + recon_uv_stride, &lfi); + + if (!skip_lf) + vp8_loop_filter_bv(xd->dst.y_buffer, xd->dst.u_buffer, + xd->dst.v_buffer, recon_y_stride, + recon_uv_stride, &lfi); + + /* don't apply across umv border */ + if (mb_row > 0) + vp8_loop_filter_mbh(xd->dst.y_buffer, xd->dst.u_buffer, + xd->dst.v_buffer, recon_y_stride, + recon_uv_stride, &lfi); + + if (!skip_lf) + vp8_loop_filter_bh(xd->dst.y_buffer, xd->dst.u_buffer, + xd->dst.v_buffer, recon_y_stride, + recon_uv_stride, &lfi); + } else { + if (mb_col > 0) + vp8_loop_filter_simple_mbv(xd->dst.y_buffer, recon_y_stride, + lfi_n->mblim[filter_level]); + + if (!skip_lf) + vp8_loop_filter_simple_bv(xd->dst.y_buffer, recon_y_stride, + lfi_n->blim[filter_level]); + + /* don't apply across umv border */ + if (mb_row > 0) + vp8_loop_filter_simple_mbh(xd->dst.y_buffer, recon_y_stride, + lfi_n->mblim[filter_level]); + + if (!skip_lf) + vp8_loop_filter_simple_bh(xd->dst.y_buffer, recon_y_stride, + lfi_n->blim[filter_level]); + } + } + } + + recon_yoffset += 16; + recon_uvoffset += 8; + + ++xd->mode_info_context; /* next mb */ + + xd->above_context++; + } + + /* adjust to the next row of mbs */ + if (pbi->common.filter_level) { + if (mb_row != pc->mb_rows - 1) { + int lasty = yv12_fb_lst->y_width + VP8BORDERINPIXELS; + int lastuv = (yv12_fb_lst->y_width >> 1) + (VP8BORDERINPIXELS >> 1); + + for (i = 0; i < 4; ++i) { + pbi->mt_yabove_row[mb_row + 1][lasty + i] = + pbi->mt_yabove_row[mb_row + 1][lasty - 1]; + pbi->mt_uabove_row[mb_row + 1][lastuv + i] = + pbi->mt_uabove_row[mb_row + 1][lastuv - 1]; + pbi->mt_vabove_row[mb_row + 1][lastuv + i] = + pbi->mt_vabove_row[mb_row + 1][lastuv - 1]; + } + } + } else { + vp8_extend_mb_row(yv12_fb_new, xd->dst.y_buffer + 16, + xd->dst.u_buffer + 8, xd->dst.v_buffer + 8); + } + + /* last MB of row is ready just after extension is done */ + vpx_atomic_store_release(current_mb_col, mb_col + nsync); + + ++xd->mode_info_context; /* skip prediction column */ + xd->up_available = 1; + + /* since we have multithread */ + xd->mode_info_context += xd->mode_info_stride * pbi->decoding_thread_count; + } + + /* signal end of frame decoding if this thread processed the last mb_row */ + if (last_mb_row == (pc->mb_rows - 1)) sem_post(&pbi->h_event_end_decoding); +} + +static THREAD_FUNCTION thread_decoding_proc(void *p_data) { + int ithread = ((DECODETHREAD_DATA *)p_data)->ithread; + VP8D_COMP *pbi = (VP8D_COMP *)(((DECODETHREAD_DATA *)p_data)->ptr1); + MB_ROW_DEC *mbrd = (MB_ROW_DEC *)(((DECODETHREAD_DATA *)p_data)->ptr2); + ENTROPY_CONTEXT_PLANES mb_row_left_context; + + while (1) { + if (vpx_atomic_load_acquire(&pbi->b_multithreaded_rd) == 0) break; + + if (sem_wait(&pbi->h_event_start_decoding[ithread]) == 0) { + if (vpx_atomic_load_acquire(&pbi->b_multithreaded_rd) == 0) { + break; + } else { + MACROBLOCKD *xd = &mbrd->mbd; + xd->left_context = &mb_row_left_context; + + mt_decode_mb_rows(pbi, xd, ithread + 1); + } + } + } + + return 0; +} + +void vp8_decoder_create_threads(VP8D_COMP *pbi) { + int core_count = 0; + unsigned int ithread; + + vpx_atomic_init(&pbi->b_multithreaded_rd, 0); + pbi->allocated_decoding_thread_count = 0; + + /* limit decoding threads to the max number of token partitions */ + core_count = (pbi->max_threads > 8) ? 8 : pbi->max_threads; + + /* limit decoding threads to the available cores */ + if (core_count > pbi->common.processor_core_count) { + core_count = pbi->common.processor_core_count; + } + + if (core_count > 1) { + vpx_atomic_init(&pbi->b_multithreaded_rd, 1); + pbi->decoding_thread_count = core_count - 1; + + CALLOC_ARRAY(pbi->h_decoding_thread, pbi->decoding_thread_count); + CALLOC_ARRAY(pbi->h_event_start_decoding, pbi->decoding_thread_count); + CALLOC_ARRAY_ALIGNED(pbi->mb_row_di, pbi->decoding_thread_count, 32); + CALLOC_ARRAY(pbi->de_thread_data, pbi->decoding_thread_count); + + if (sem_init(&pbi->h_event_end_decoding, 0, 0)) { + vpx_internal_error(&pbi->common.error, VPX_CODEC_MEM_ERROR, + "Failed to initialize semaphore"); + } + + for (ithread = 0; ithread < pbi->decoding_thread_count; ++ithread) { + if (sem_init(&pbi->h_event_start_decoding[ithread], 0, 0)) break; + + vp8_setup_block_dptrs(&pbi->mb_row_di[ithread].mbd); + + pbi->de_thread_data[ithread].ithread = ithread; + pbi->de_thread_data[ithread].ptr1 = (void *)pbi; + pbi->de_thread_data[ithread].ptr2 = (void *)&pbi->mb_row_di[ithread]; + + if (pthread_create(&pbi->h_decoding_thread[ithread], 0, + thread_decoding_proc, &pbi->de_thread_data[ithread])) { + sem_destroy(&pbi->h_event_start_decoding[ithread]); + break; + } + } + + pbi->allocated_decoding_thread_count = ithread; + if (pbi->allocated_decoding_thread_count != + (int)pbi->decoding_thread_count) { + /* the remainder of cleanup cases will be handled in + * vp8_decoder_remove_threads(). */ + if (pbi->allocated_decoding_thread_count == 0) { + sem_destroy(&pbi->h_event_end_decoding); + } + vpx_internal_error(&pbi->common.error, VPX_CODEC_MEM_ERROR, + "Failed to create threads"); + } + } +} + +void vp8mt_de_alloc_temp_buffers(VP8D_COMP *pbi, int mb_rows) { + int i; + + vpx_free(pbi->mt_current_mb_col); + pbi->mt_current_mb_col = NULL; + + /* Free above_row buffers. */ + if (pbi->mt_yabove_row) { + for (i = 0; i < mb_rows; ++i) { + vpx_free(pbi->mt_yabove_row[i]); + pbi->mt_yabove_row[i] = NULL; + } + vpx_free(pbi->mt_yabove_row); + pbi->mt_yabove_row = NULL; + } + + if (pbi->mt_uabove_row) { + for (i = 0; i < mb_rows; ++i) { + vpx_free(pbi->mt_uabove_row[i]); + pbi->mt_uabove_row[i] = NULL; + } + vpx_free(pbi->mt_uabove_row); + pbi->mt_uabove_row = NULL; + } + + if (pbi->mt_vabove_row) { + for (i = 0; i < mb_rows; ++i) { + vpx_free(pbi->mt_vabove_row[i]); + pbi->mt_vabove_row[i] = NULL; + } + vpx_free(pbi->mt_vabove_row); + pbi->mt_vabove_row = NULL; + } + + /* Free left_col buffers. */ + if (pbi->mt_yleft_col) { + for (i = 0; i < mb_rows; ++i) { + vpx_free(pbi->mt_yleft_col[i]); + pbi->mt_yleft_col[i] = NULL; + } + vpx_free(pbi->mt_yleft_col); + pbi->mt_yleft_col = NULL; + } + + if (pbi->mt_uleft_col) { + for (i = 0; i < mb_rows; ++i) { + vpx_free(pbi->mt_uleft_col[i]); + pbi->mt_uleft_col[i] = NULL; + } + vpx_free(pbi->mt_uleft_col); + pbi->mt_uleft_col = NULL; + } + + if (pbi->mt_vleft_col) { + for (i = 0; i < mb_rows; ++i) { + vpx_free(pbi->mt_vleft_col[i]); + pbi->mt_vleft_col[i] = NULL; + } + vpx_free(pbi->mt_vleft_col); + pbi->mt_vleft_col = NULL; + } +} + +void vp8mt_alloc_temp_buffers(VP8D_COMP *pbi, int width, int prev_mb_rows) { + VP8_COMMON *const pc = &pbi->common; + int i; + int uv_width; + + if (vpx_atomic_load_acquire(&pbi->b_multithreaded_rd)) { + vp8mt_de_alloc_temp_buffers(pbi, prev_mb_rows); + + /* our internal buffers are always multiples of 16 */ + if ((width & 0xf) != 0) width += 16 - (width & 0xf); + + if (width < 640) { + pbi->sync_range = 1; + } else if (width <= 1280) { + pbi->sync_range = 8; + } else if (width <= 2560) { + pbi->sync_range = 16; + } else { + pbi->sync_range = 32; + } + + uv_width = width >> 1; + + /* Allocate a vpx_atomic_int for each mb row. */ + CHECK_MEM_ERROR(pbi->mt_current_mb_col, + vpx_malloc(sizeof(*pbi->mt_current_mb_col) * pc->mb_rows)); + for (i = 0; i < pc->mb_rows; ++i) + vpx_atomic_init(&pbi->mt_current_mb_col[i], 0); + + /* Allocate memory for above_row buffers. */ + CALLOC_ARRAY(pbi->mt_yabove_row, pc->mb_rows); + for (i = 0; i < pc->mb_rows; ++i) + CHECK_MEM_ERROR( + pbi->mt_yabove_row[i], + vpx_memalign( + 16, sizeof(unsigned char) * (width + (VP8BORDERINPIXELS << 1)))); + + CALLOC_ARRAY(pbi->mt_uabove_row, pc->mb_rows); + for (i = 0; i < pc->mb_rows; ++i) + CHECK_MEM_ERROR( + pbi->mt_uabove_row[i], + vpx_memalign(16, + sizeof(unsigned char) * (uv_width + VP8BORDERINPIXELS))); + + CALLOC_ARRAY(pbi->mt_vabove_row, pc->mb_rows); + for (i = 0; i < pc->mb_rows; ++i) + CHECK_MEM_ERROR( + pbi->mt_vabove_row[i], + vpx_memalign(16, + sizeof(unsigned char) * (uv_width + VP8BORDERINPIXELS))); + + /* Allocate memory for left_col buffers. */ + CALLOC_ARRAY(pbi->mt_yleft_col, pc->mb_rows); + for (i = 0; i < pc->mb_rows; ++i) + CHECK_MEM_ERROR(pbi->mt_yleft_col[i], + vpx_calloc(sizeof(unsigned char) * 16, 1)); + + CALLOC_ARRAY(pbi->mt_uleft_col, pc->mb_rows); + for (i = 0; i < pc->mb_rows; ++i) + CHECK_MEM_ERROR(pbi->mt_uleft_col[i], + vpx_calloc(sizeof(unsigned char) * 8, 1)); + + CALLOC_ARRAY(pbi->mt_vleft_col, pc->mb_rows); + for (i = 0; i < pc->mb_rows; ++i) + CHECK_MEM_ERROR(pbi->mt_vleft_col[i], + vpx_calloc(sizeof(unsigned char) * 8, 1)); + } +} + +void vp8_decoder_remove_threads(VP8D_COMP *pbi) { + /* shutdown MB Decoding thread; */ + if (vpx_atomic_load_acquire(&pbi->b_multithreaded_rd)) { + int i; + vpx_atomic_store_release(&pbi->b_multithreaded_rd, 0); + + /* allow all threads to exit */ + for (i = 0; i < pbi->allocated_decoding_thread_count; ++i) { + sem_post(&pbi->h_event_start_decoding[i]); + pthread_join(pbi->h_decoding_thread[i], NULL); + } + + for (i = 0; i < pbi->allocated_decoding_thread_count; ++i) { + sem_destroy(&pbi->h_event_start_decoding[i]); + } + + if (pbi->allocated_decoding_thread_count) { + sem_destroy(&pbi->h_event_end_decoding); + } + + vpx_free(pbi->h_decoding_thread); + pbi->h_decoding_thread = NULL; + + vpx_free(pbi->h_event_start_decoding); + pbi->h_event_start_decoding = NULL; + + vpx_free(pbi->mb_row_di); + pbi->mb_row_di = NULL; + + vpx_free(pbi->de_thread_data); + pbi->de_thread_data = NULL; + + vp8mt_de_alloc_temp_buffers(pbi, pbi->common.mb_rows); + } +} + +void vp8mt_decode_mb_rows(VP8D_COMP *pbi, MACROBLOCKD *xd) { + VP8_COMMON *pc = &pbi->common; + unsigned int i; + int j; + + int filter_level = pc->filter_level; + YV12_BUFFER_CONFIG *yv12_fb_new = pbi->dec_fb_ref[INTRA_FRAME]; + + if (filter_level) { + /* Set above_row buffer to 127 for decoding first MB row */ + memset(pbi->mt_yabove_row[0] + VP8BORDERINPIXELS - 1, 127, + yv12_fb_new->y_width + 5); + memset(pbi->mt_uabove_row[0] + (VP8BORDERINPIXELS >> 1) - 1, 127, + (yv12_fb_new->y_width >> 1) + 5); + memset(pbi->mt_vabove_row[0] + (VP8BORDERINPIXELS >> 1) - 1, 127, + (yv12_fb_new->y_width >> 1) + 5); + + for (j = 1; j < pc->mb_rows; ++j) { + memset(pbi->mt_yabove_row[j] + VP8BORDERINPIXELS - 1, (unsigned char)129, + 1); + memset(pbi->mt_uabove_row[j] + (VP8BORDERINPIXELS >> 1) - 1, + (unsigned char)129, 1); + memset(pbi->mt_vabove_row[j] + (VP8BORDERINPIXELS >> 1) - 1, + (unsigned char)129, 1); + } + + /* Set left_col to 129 initially */ + for (j = 0; j < pc->mb_rows; ++j) { + memset(pbi->mt_yleft_col[j], (unsigned char)129, 16); + memset(pbi->mt_uleft_col[j], (unsigned char)129, 8); + memset(pbi->mt_vleft_col[j], (unsigned char)129, 8); + } + + /* Initialize the loop filter for this frame. */ + vp8_loop_filter_frame_init(pc, &pbi->mb, filter_level); + } else { + vp8_setup_intra_recon_top_line(yv12_fb_new); + } + + setup_decoding_thread_data(pbi, xd, pbi->mb_row_di, + pbi->decoding_thread_count); + + for (i = 0; i < pbi->decoding_thread_count; ++i) { + sem_post(&pbi->h_event_start_decoding[i]); + } + + mt_decode_mb_rows(pbi, xd, 0); + + sem_wait(&pbi->h_event_end_decoding); /* add back for each frame */ +} diff --git a/vp8/decoder/treereader.h b/vp8/decoder/treereader.h new file mode 100644 index 0000000..dd0f098 --- /dev/null +++ b/vp8/decoder/treereader.h @@ -0,0 +1,45 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP8_DECODER_TREEREADER_H_ +#define VP8_DECODER_TREEREADER_H_ + +#include "./vpx_config.h" +#include "vp8/common/treecoder.h" +#include "dboolhuff.h" + +#ifdef __cplusplus +extern "C" { +#endif + +typedef BOOL_DECODER vp8_reader; + +#define vp8_read vp8dx_decode_bool +#define vp8_read_literal vp8_decode_value +#define vp8_read_bit(R) vp8_read(R, vp8_prob_half) + +/* Intent of tree data structure is to make decoding trivial. */ + +static INLINE int vp8_treed_read( + vp8_reader *const r, /* !!! must return a 0 or 1 !!! */ + vp8_tree t, const vp8_prob *const p) { + register vp8_tree_index i = 0; + + while ((i = t[i + vp8_read(r, p[i >> 1])]) > 0) { + } + + return -i; +} + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP8_DECODER_TREEREADER_H_ diff --git a/vp8/encoder/arm/neon/denoising_neon.c b/vp8/encoder/arm/neon/denoising_neon.c new file mode 100644 index 0000000..67267b8 --- /dev/null +++ b/vp8/encoder/arm/neon/denoising_neon.c @@ -0,0 +1,460 @@ +/* + * Copyright (c) 2012 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include + +#include "vp8/encoder/denoising.h" +#include "vpx_mem/vpx_mem.h" +#include "./vp8_rtcd.h" + +/* + * The filter function was modified to reduce the computational complexity. + * + * Step 1: + * Instead of applying tap coefficients for each pixel, we calculated the + * pixel adjustments vs. pixel diff value ahead of time. + * adjustment = filtered_value - current_raw + * = (filter_coefficient * diff + 128) >> 8 + * where + * filter_coefficient = (255 << 8) / (256 + ((abs_diff * 330) >> 3)); + * filter_coefficient += filter_coefficient / + * (3 + motion_magnitude_adjustment); + * filter_coefficient is clamped to 0 ~ 255. + * + * Step 2: + * The adjustment vs. diff curve becomes flat very quick when diff increases. + * This allowed us to use only several levels to approximate the curve without + * changing the filtering algorithm too much. + * The adjustments were further corrected by checking the motion magnitude. + * The levels used are: + * diff level adjustment w/o adjustment w/ + * motion correction motion correction + * [-255, -16] 3 -6 -7 + * [-15, -8] 2 -4 -5 + * [-7, -4] 1 -3 -4 + * [-3, 3] 0 diff diff + * [4, 7] 1 3 4 + * [8, 15] 2 4 5 + * [16, 255] 3 6 7 + */ + +int vp8_denoiser_filter_neon(unsigned char *mc_running_avg_y, + int mc_running_avg_y_stride, + unsigned char *running_avg_y, + int running_avg_y_stride, unsigned char *sig, + int sig_stride, unsigned int motion_magnitude, + int increase_denoising) { + /* If motion_magnitude is small, making the denoiser more aggressive by + * increasing the adjustment for each level, level1 adjustment is + * increased, the deltas stay the same. + */ + int shift_inc = + (increase_denoising && motion_magnitude <= MOTION_MAGNITUDE_THRESHOLD) + ? 1 + : 0; + const uint8x16_t v_level1_adjustment = vmovq_n_u8( + (motion_magnitude <= MOTION_MAGNITUDE_THRESHOLD) ? 4 + shift_inc : 3); + const uint8x16_t v_delta_level_1_and_2 = vdupq_n_u8(1); + const uint8x16_t v_delta_level_2_and_3 = vdupq_n_u8(2); + const uint8x16_t v_level1_threshold = vmovq_n_u8(4 + shift_inc); + const uint8x16_t v_level2_threshold = vdupq_n_u8(8); + const uint8x16_t v_level3_threshold = vdupq_n_u8(16); + int64x2_t v_sum_diff_total = vdupq_n_s64(0); + + /* Go over lines. */ + int r; + for (r = 0; r < 16; ++r) { + /* Load inputs. */ + const uint8x16_t v_sig = vld1q_u8(sig); + const uint8x16_t v_mc_running_avg_y = vld1q_u8(mc_running_avg_y); + + /* Calculate absolute difference and sign masks. */ + const uint8x16_t v_abs_diff = vabdq_u8(v_sig, v_mc_running_avg_y); + const uint8x16_t v_diff_pos_mask = vcltq_u8(v_sig, v_mc_running_avg_y); + const uint8x16_t v_diff_neg_mask = vcgtq_u8(v_sig, v_mc_running_avg_y); + + /* Figure out which level that put us in. */ + const uint8x16_t v_level1_mask = vcleq_u8(v_level1_threshold, v_abs_diff); + const uint8x16_t v_level2_mask = vcleq_u8(v_level2_threshold, v_abs_diff); + const uint8x16_t v_level3_mask = vcleq_u8(v_level3_threshold, v_abs_diff); + + /* Calculate absolute adjustments for level 1, 2 and 3. */ + const uint8x16_t v_level2_adjustment = + vandq_u8(v_level2_mask, v_delta_level_1_and_2); + const uint8x16_t v_level3_adjustment = + vandq_u8(v_level3_mask, v_delta_level_2_and_3); + const uint8x16_t v_level1and2_adjustment = + vaddq_u8(v_level1_adjustment, v_level2_adjustment); + const uint8x16_t v_level1and2and3_adjustment = + vaddq_u8(v_level1and2_adjustment, v_level3_adjustment); + + /* Figure adjustment absolute value by selecting between the absolute + * difference if in level0 or the value for level 1, 2 and 3. + */ + const uint8x16_t v_abs_adjustment = + vbslq_u8(v_level1_mask, v_level1and2and3_adjustment, v_abs_diff); + + /* Calculate positive and negative adjustments. Apply them to the signal + * and accumulate them. Adjustments are less than eight and the maximum + * sum of them (7 * 16) can fit in a signed char. + */ + const uint8x16_t v_pos_adjustment = + vandq_u8(v_diff_pos_mask, v_abs_adjustment); + const uint8x16_t v_neg_adjustment = + vandq_u8(v_diff_neg_mask, v_abs_adjustment); + + uint8x16_t v_running_avg_y = vqaddq_u8(v_sig, v_pos_adjustment); + v_running_avg_y = vqsubq_u8(v_running_avg_y, v_neg_adjustment); + + /* Store results. */ + vst1q_u8(running_avg_y, v_running_avg_y); + + /* Sum all the accumulators to have the sum of all pixel differences + * for this macroblock. + */ + { + const int8x16_t v_sum_diff = + vqsubq_s8(vreinterpretq_s8_u8(v_pos_adjustment), + vreinterpretq_s8_u8(v_neg_adjustment)); + + const int16x8_t fe_dc_ba_98_76_54_32_10 = vpaddlq_s8(v_sum_diff); + + const int32x4_t fedc_ba98_7654_3210 = + vpaddlq_s16(fe_dc_ba_98_76_54_32_10); + + const int64x2_t fedcba98_76543210 = vpaddlq_s32(fedc_ba98_7654_3210); + + v_sum_diff_total = vqaddq_s64(v_sum_diff_total, fedcba98_76543210); + } + + /* Update pointers for next iteration. */ + sig += sig_stride; + mc_running_avg_y += mc_running_avg_y_stride; + running_avg_y += running_avg_y_stride; + } + + /* Too much adjustments => copy block. */ + { + int64x1_t x = vqadd_s64(vget_high_s64(v_sum_diff_total), + vget_low_s64(v_sum_diff_total)); + int sum_diff = vget_lane_s32(vabs_s32(vreinterpret_s32_s64(x)), 0); + int sum_diff_thresh = SUM_DIFF_THRESHOLD; + + if (increase_denoising) sum_diff_thresh = SUM_DIFF_THRESHOLD_HIGH; + if (sum_diff > sum_diff_thresh) { + // Before returning to copy the block (i.e., apply no denoising), + // checK if we can still apply some (weaker) temporal filtering to + // this block, that would otherwise not be denoised at all. Simplest + // is to apply an additional adjustment to running_avg_y to bring it + // closer to sig. The adjustment is capped by a maximum delta, and + // chosen such that in most cases the resulting sum_diff will be + // within the accceptable range given by sum_diff_thresh. + + // The delta is set by the excess of absolute pixel diff over the + // threshold. + int delta = ((sum_diff - sum_diff_thresh) >> 8) + 1; + // Only apply the adjustment for max delta up to 3. + if (delta < 4) { + const uint8x16_t k_delta = vmovq_n_u8(delta); + sig -= sig_stride * 16; + mc_running_avg_y -= mc_running_avg_y_stride * 16; + running_avg_y -= running_avg_y_stride * 16; + for (r = 0; r < 16; ++r) { + uint8x16_t v_running_avg_y = vld1q_u8(running_avg_y); + const uint8x16_t v_sig = vld1q_u8(sig); + const uint8x16_t v_mc_running_avg_y = vld1q_u8(mc_running_avg_y); + + /* Calculate absolute difference and sign masks. */ + const uint8x16_t v_abs_diff = vabdq_u8(v_sig, v_mc_running_avg_y); + const uint8x16_t v_diff_pos_mask = + vcltq_u8(v_sig, v_mc_running_avg_y); + const uint8x16_t v_diff_neg_mask = + vcgtq_u8(v_sig, v_mc_running_avg_y); + // Clamp absolute difference to delta to get the adjustment. + const uint8x16_t v_abs_adjustment = vminq_u8(v_abs_diff, (k_delta)); + + const uint8x16_t v_pos_adjustment = + vandq_u8(v_diff_pos_mask, v_abs_adjustment); + const uint8x16_t v_neg_adjustment = + vandq_u8(v_diff_neg_mask, v_abs_adjustment); + + v_running_avg_y = vqsubq_u8(v_running_avg_y, v_pos_adjustment); + v_running_avg_y = vqaddq_u8(v_running_avg_y, v_neg_adjustment); + + /* Store results. */ + vst1q_u8(running_avg_y, v_running_avg_y); + + { + const int8x16_t v_sum_diff = + vqsubq_s8(vreinterpretq_s8_u8(v_neg_adjustment), + vreinterpretq_s8_u8(v_pos_adjustment)); + + const int16x8_t fe_dc_ba_98_76_54_32_10 = vpaddlq_s8(v_sum_diff); + const int32x4_t fedc_ba98_7654_3210 = + vpaddlq_s16(fe_dc_ba_98_76_54_32_10); + const int64x2_t fedcba98_76543210 = + vpaddlq_s32(fedc_ba98_7654_3210); + + v_sum_diff_total = vqaddq_s64(v_sum_diff_total, fedcba98_76543210); + } + /* Update pointers for next iteration. */ + sig += sig_stride; + mc_running_avg_y += mc_running_avg_y_stride; + running_avg_y += running_avg_y_stride; + } + { + // Update the sum of all pixel differences of this MB. + x = vqadd_s64(vget_high_s64(v_sum_diff_total), + vget_low_s64(v_sum_diff_total)); + sum_diff = vget_lane_s32(vabs_s32(vreinterpret_s32_s64(x)), 0); + + if (sum_diff > sum_diff_thresh) { + return COPY_BLOCK; + } + } + } else { + return COPY_BLOCK; + } + } + } + + /* Tell above level that block was filtered. */ + running_avg_y -= running_avg_y_stride * 16; + sig -= sig_stride * 16; + + vp8_copy_mem16x16(running_avg_y, running_avg_y_stride, sig, sig_stride); + + return FILTER_BLOCK; +} + +int vp8_denoiser_filter_uv_neon(unsigned char *mc_running_avg, + int mc_running_avg_stride, + unsigned char *running_avg, + int running_avg_stride, unsigned char *sig, + int sig_stride, unsigned int motion_magnitude, + int increase_denoising) { + /* If motion_magnitude is small, making the denoiser more aggressive by + * increasing the adjustment for each level, level1 adjustment is + * increased, the deltas stay the same. + */ + int shift_inc = + (increase_denoising && motion_magnitude <= MOTION_MAGNITUDE_THRESHOLD_UV) + ? 1 + : 0; + const uint8x16_t v_level1_adjustment = vmovq_n_u8( + (motion_magnitude <= MOTION_MAGNITUDE_THRESHOLD_UV) ? 4 + shift_inc : 3); + + const uint8x16_t v_delta_level_1_and_2 = vdupq_n_u8(1); + const uint8x16_t v_delta_level_2_and_3 = vdupq_n_u8(2); + const uint8x16_t v_level1_threshold = vmovq_n_u8(4 + shift_inc); + const uint8x16_t v_level2_threshold = vdupq_n_u8(8); + const uint8x16_t v_level3_threshold = vdupq_n_u8(16); + int64x2_t v_sum_diff_total = vdupq_n_s64(0); + int r; + + { + uint16x4_t v_sum_block = vdup_n_u16(0); + + // Avoid denoising color signal if its close to average level. + for (r = 0; r < 8; ++r) { + const uint8x8_t v_sig = vld1_u8(sig); + const uint16x4_t _76_54_32_10 = vpaddl_u8(v_sig); + v_sum_block = vqadd_u16(v_sum_block, _76_54_32_10); + sig += sig_stride; + } + sig -= sig_stride * 8; + { + const uint32x2_t _7654_3210 = vpaddl_u16(v_sum_block); + const uint64x1_t _76543210 = vpaddl_u32(_7654_3210); + const int sum_block = vget_lane_s32(vreinterpret_s32_u64(_76543210), 0); + if (abs(sum_block - (128 * 8 * 8)) < SUM_DIFF_FROM_AVG_THRESH_UV) { + return COPY_BLOCK; + } + } + } + + /* Go over lines. */ + for (r = 0; r < 4; ++r) { + /* Load inputs. */ + const uint8x8_t v_sig_lo = vld1_u8(sig); + const uint8x8_t v_sig_hi = vld1_u8(&sig[sig_stride]); + const uint8x16_t v_sig = vcombine_u8(v_sig_lo, v_sig_hi); + const uint8x8_t v_mc_running_avg_lo = vld1_u8(mc_running_avg); + const uint8x8_t v_mc_running_avg_hi = + vld1_u8(&mc_running_avg[mc_running_avg_stride]); + const uint8x16_t v_mc_running_avg = + vcombine_u8(v_mc_running_avg_lo, v_mc_running_avg_hi); + /* Calculate absolute difference and sign masks. */ + const uint8x16_t v_abs_diff = vabdq_u8(v_sig, v_mc_running_avg); + const uint8x16_t v_diff_pos_mask = vcltq_u8(v_sig, v_mc_running_avg); + const uint8x16_t v_diff_neg_mask = vcgtq_u8(v_sig, v_mc_running_avg); + + /* Figure out which level that put us in. */ + const uint8x16_t v_level1_mask = vcleq_u8(v_level1_threshold, v_abs_diff); + const uint8x16_t v_level2_mask = vcleq_u8(v_level2_threshold, v_abs_diff); + const uint8x16_t v_level3_mask = vcleq_u8(v_level3_threshold, v_abs_diff); + + /* Calculate absolute adjustments for level 1, 2 and 3. */ + const uint8x16_t v_level2_adjustment = + vandq_u8(v_level2_mask, v_delta_level_1_and_2); + const uint8x16_t v_level3_adjustment = + vandq_u8(v_level3_mask, v_delta_level_2_and_3); + const uint8x16_t v_level1and2_adjustment = + vaddq_u8(v_level1_adjustment, v_level2_adjustment); + const uint8x16_t v_level1and2and3_adjustment = + vaddq_u8(v_level1and2_adjustment, v_level3_adjustment); + + /* Figure adjustment absolute value by selecting between the absolute + * difference if in level0 or the value for level 1, 2 and 3. + */ + const uint8x16_t v_abs_adjustment = + vbslq_u8(v_level1_mask, v_level1and2and3_adjustment, v_abs_diff); + + /* Calculate positive and negative adjustments. Apply them to the signal + * and accumulate them. Adjustments are less than eight and the maximum + * sum of them (7 * 16) can fit in a signed char. + */ + const uint8x16_t v_pos_adjustment = + vandq_u8(v_diff_pos_mask, v_abs_adjustment); + const uint8x16_t v_neg_adjustment = + vandq_u8(v_diff_neg_mask, v_abs_adjustment); + + uint8x16_t v_running_avg = vqaddq_u8(v_sig, v_pos_adjustment); + v_running_avg = vqsubq_u8(v_running_avg, v_neg_adjustment); + + /* Store results. */ + vst1_u8(running_avg, vget_low_u8(v_running_avg)); + vst1_u8(&running_avg[running_avg_stride], vget_high_u8(v_running_avg)); + + /* Sum all the accumulators to have the sum of all pixel differences + * for this macroblock. + */ + { + const int8x16_t v_sum_diff = + vqsubq_s8(vreinterpretq_s8_u8(v_pos_adjustment), + vreinterpretq_s8_u8(v_neg_adjustment)); + + const int16x8_t fe_dc_ba_98_76_54_32_10 = vpaddlq_s8(v_sum_diff); + + const int32x4_t fedc_ba98_7654_3210 = + vpaddlq_s16(fe_dc_ba_98_76_54_32_10); + + const int64x2_t fedcba98_76543210 = vpaddlq_s32(fedc_ba98_7654_3210); + + v_sum_diff_total = vqaddq_s64(v_sum_diff_total, fedcba98_76543210); + } + + /* Update pointers for next iteration. */ + sig += sig_stride * 2; + mc_running_avg += mc_running_avg_stride * 2; + running_avg += running_avg_stride * 2; + } + + /* Too much adjustments => copy block. */ + { + int64x1_t x = vqadd_s64(vget_high_s64(v_sum_diff_total), + vget_low_s64(v_sum_diff_total)); + int sum_diff = vget_lane_s32(vabs_s32(vreinterpret_s32_s64(x)), 0); + int sum_diff_thresh = SUM_DIFF_THRESHOLD_UV; + if (increase_denoising) sum_diff_thresh = SUM_DIFF_THRESHOLD_HIGH_UV; + if (sum_diff > sum_diff_thresh) { + // Before returning to copy the block (i.e., apply no denoising), + // checK if we can still apply some (weaker) temporal filtering to + // this block, that would otherwise not be denoised at all. Simplest + // is to apply an additional adjustment to running_avg_y to bring it + // closer to sig. The adjustment is capped by a maximum delta, and + // chosen such that in most cases the resulting sum_diff will be + // within the accceptable range given by sum_diff_thresh. + + // The delta is set by the excess of absolute pixel diff over the + // threshold. + int delta = ((sum_diff - sum_diff_thresh) >> 8) + 1; + // Only apply the adjustment for max delta up to 3. + if (delta < 4) { + const uint8x16_t k_delta = vmovq_n_u8(delta); + sig -= sig_stride * 8; + mc_running_avg -= mc_running_avg_stride * 8; + running_avg -= running_avg_stride * 8; + for (r = 0; r < 4; ++r) { + const uint8x8_t v_sig_lo = vld1_u8(sig); + const uint8x8_t v_sig_hi = vld1_u8(&sig[sig_stride]); + const uint8x16_t v_sig = vcombine_u8(v_sig_lo, v_sig_hi); + const uint8x8_t v_mc_running_avg_lo = vld1_u8(mc_running_avg); + const uint8x8_t v_mc_running_avg_hi = + vld1_u8(&mc_running_avg[mc_running_avg_stride]); + const uint8x16_t v_mc_running_avg = + vcombine_u8(v_mc_running_avg_lo, v_mc_running_avg_hi); + /* Calculate absolute difference and sign masks. */ + const uint8x16_t v_abs_diff = vabdq_u8(v_sig, v_mc_running_avg); + const uint8x16_t v_diff_pos_mask = vcltq_u8(v_sig, v_mc_running_avg); + const uint8x16_t v_diff_neg_mask = vcgtq_u8(v_sig, v_mc_running_avg); + // Clamp absolute difference to delta to get the adjustment. + const uint8x16_t v_abs_adjustment = vminq_u8(v_abs_diff, (k_delta)); + + const uint8x16_t v_pos_adjustment = + vandq_u8(v_diff_pos_mask, v_abs_adjustment); + const uint8x16_t v_neg_adjustment = + vandq_u8(v_diff_neg_mask, v_abs_adjustment); + const uint8x8_t v_running_avg_lo = vld1_u8(running_avg); + const uint8x8_t v_running_avg_hi = + vld1_u8(&running_avg[running_avg_stride]); + uint8x16_t v_running_avg = + vcombine_u8(v_running_avg_lo, v_running_avg_hi); + + v_running_avg = vqsubq_u8(v_running_avg, v_pos_adjustment); + v_running_avg = vqaddq_u8(v_running_avg, v_neg_adjustment); + + /* Store results. */ + vst1_u8(running_avg, vget_low_u8(v_running_avg)); + vst1_u8(&running_avg[running_avg_stride], + vget_high_u8(v_running_avg)); + + { + const int8x16_t v_sum_diff = + vqsubq_s8(vreinterpretq_s8_u8(v_neg_adjustment), + vreinterpretq_s8_u8(v_pos_adjustment)); + + const int16x8_t fe_dc_ba_98_76_54_32_10 = vpaddlq_s8(v_sum_diff); + const int32x4_t fedc_ba98_7654_3210 = + vpaddlq_s16(fe_dc_ba_98_76_54_32_10); + const int64x2_t fedcba98_76543210 = + vpaddlq_s32(fedc_ba98_7654_3210); + + v_sum_diff_total = vqaddq_s64(v_sum_diff_total, fedcba98_76543210); + } + /* Update pointers for next iteration. */ + sig += sig_stride * 2; + mc_running_avg += mc_running_avg_stride * 2; + running_avg += running_avg_stride * 2; + } + { + // Update the sum of all pixel differences of this MB. + x = vqadd_s64(vget_high_s64(v_sum_diff_total), + vget_low_s64(v_sum_diff_total)); + sum_diff = vget_lane_s32(vabs_s32(vreinterpret_s32_s64(x)), 0); + + if (sum_diff > sum_diff_thresh) { + return COPY_BLOCK; + } + } + } else { + return COPY_BLOCK; + } + } + } + + /* Tell above level that block was filtered. */ + running_avg -= running_avg_stride * 8; + sig -= sig_stride * 8; + + vp8_copy_mem8x8(running_avg, running_avg_stride, sig, sig_stride); + + return FILTER_BLOCK; +} diff --git a/vp8/encoder/arm/neon/fastquantizeb_neon.c b/vp8/encoder/arm/neon/fastquantizeb_neon.c new file mode 100644 index 0000000..c42005d --- /dev/null +++ b/vp8/encoder/arm/neon/fastquantizeb_neon.c @@ -0,0 +1,83 @@ +/* + * Copyright (c) 2014 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include "vp8/encoder/block.h" + +static const uint16_t inv_zig_zag[16] = { 1, 2, 6, 7, 3, 5, 8, 13, + 4, 9, 12, 14, 10, 11, 15, 16 }; + +void vp8_fast_quantize_b_neon(BLOCK *b, BLOCKD *d) { + const int16x8_t one_q = vdupq_n_s16(-1), z0 = vld1q_s16(b->coeff), + z1 = vld1q_s16(b->coeff + 8), round0 = vld1q_s16(b->round), + round1 = vld1q_s16(b->round + 8), + quant0 = vld1q_s16(b->quant_fast), + quant1 = vld1q_s16(b->quant_fast + 8), + dequant0 = vld1q_s16(d->dequant), + dequant1 = vld1q_s16(d->dequant + 8); + const uint16x8_t zig_zag0 = vld1q_u16(inv_zig_zag), + zig_zag1 = vld1q_u16(inv_zig_zag + 8); + int16x8_t x0, x1, sz0, sz1, y0, y1; + uint16x8_t eob0, eob1; + uint16x4_t eob_d16; + uint32x2_t eob_d32; + uint32x4_t eob_q32; + + /* sign of z: z >> 15 */ + sz0 = vshrq_n_s16(z0, 15); + sz1 = vshrq_n_s16(z1, 15); + + /* x = abs(z) */ + x0 = vabsq_s16(z0); + x1 = vabsq_s16(z1); + + /* x += round */ + x0 = vaddq_s16(x0, round0); + x1 = vaddq_s16(x1, round1); + + /* y = 2 * (x * quant) >> 16 */ + y0 = vqdmulhq_s16(x0, quant0); + y1 = vqdmulhq_s16(x1, quant1); + + /* Compensate for doubling in vqdmulhq */ + y0 = vshrq_n_s16(y0, 1); + y1 = vshrq_n_s16(y1, 1); + + /* Restore sign bit */ + y0 = veorq_s16(y0, sz0); + y1 = veorq_s16(y1, sz1); + x0 = vsubq_s16(y0, sz0); + x1 = vsubq_s16(y1, sz1); + + /* find non-zero elements */ + eob0 = vtstq_s16(x0, one_q); + eob1 = vtstq_s16(x1, one_q); + + /* mask zig zag */ + eob0 = vandq_u16(eob0, zig_zag0); + eob1 = vandq_u16(eob1, zig_zag1); + + /* select the largest value */ + eob0 = vmaxq_u16(eob0, eob1); + eob_d16 = vmax_u16(vget_low_u16(eob0), vget_high_u16(eob0)); + eob_q32 = vmovl_u16(eob_d16); + eob_d32 = vmax_u32(vget_low_u32(eob_q32), vget_high_u32(eob_q32)); + eob_d32 = vpmax_u32(eob_d32, eob_d32); + + /* qcoeff = x */ + vst1q_s16(d->qcoeff, x0); + vst1q_s16(d->qcoeff + 8, x1); + + /* dqcoeff = x * dequant */ + vst1q_s16(d->dqcoeff, vmulq_s16(dequant0, x0)); + vst1q_s16(d->dqcoeff + 8, vmulq_s16(dequant1, x1)); + + vst1_lane_s8((int8_t *)d->eob, vreinterpret_s8_u32(eob_d32), 0); +} diff --git a/vp8/encoder/arm/neon/shortfdct_neon.c b/vp8/encoder/arm/neon/shortfdct_neon.c new file mode 100644 index 0000000..76853e6 --- /dev/null +++ b/vp8/encoder/arm/neon/shortfdct_neon.c @@ -0,0 +1,259 @@ +/* + * Copyright (c) 2014 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include + +void vp8_short_fdct4x4_neon(int16_t *input, int16_t *output, int pitch) { + int16x4_t d0s16, d1s16, d2s16, d3s16, d4s16, d5s16, d6s16, d7s16; + int16x4_t d16s16, d17s16, d26s16, dEmptys16; + uint16x4_t d4u16; + int16x8_t q0s16, q1s16; + int32x4_t q9s32, q10s32, q11s32, q12s32; + int16x4x2_t v2tmp0, v2tmp1; + int32x2x2_t v2tmp2, v2tmp3; + + d16s16 = vdup_n_s16(5352); + d17s16 = vdup_n_s16(2217); + q9s32 = vdupq_n_s32(14500); + q10s32 = vdupq_n_s32(7500); + q11s32 = vdupq_n_s32(12000); + q12s32 = vdupq_n_s32(51000); + + // Part one + pitch >>= 1; + d0s16 = vld1_s16(input); + input += pitch; + d1s16 = vld1_s16(input); + input += pitch; + d2s16 = vld1_s16(input); + input += pitch; + d3s16 = vld1_s16(input); + + v2tmp2 = vtrn_s32(vreinterpret_s32_s16(d0s16), vreinterpret_s32_s16(d2s16)); + v2tmp3 = vtrn_s32(vreinterpret_s32_s16(d1s16), vreinterpret_s32_s16(d3s16)); + v2tmp0 = vtrn_s16(vreinterpret_s16_s32(v2tmp2.val[0]), // d0 + vreinterpret_s16_s32(v2tmp3.val[0])); // d1 + v2tmp1 = vtrn_s16(vreinterpret_s16_s32(v2tmp2.val[1]), // d2 + vreinterpret_s16_s32(v2tmp3.val[1])); // d3 + + d4s16 = vadd_s16(v2tmp0.val[0], v2tmp1.val[1]); + d5s16 = vadd_s16(v2tmp0.val[1], v2tmp1.val[0]); + d6s16 = vsub_s16(v2tmp0.val[1], v2tmp1.val[0]); + d7s16 = vsub_s16(v2tmp0.val[0], v2tmp1.val[1]); + + d4s16 = vshl_n_s16(d4s16, 3); + d5s16 = vshl_n_s16(d5s16, 3); + d6s16 = vshl_n_s16(d6s16, 3); + d7s16 = vshl_n_s16(d7s16, 3); + + d0s16 = vadd_s16(d4s16, d5s16); + d2s16 = vsub_s16(d4s16, d5s16); + + q9s32 = vmlal_s16(q9s32, d7s16, d16s16); + q10s32 = vmlal_s16(q10s32, d7s16, d17s16); + q9s32 = vmlal_s16(q9s32, d6s16, d17s16); + q10s32 = vmlsl_s16(q10s32, d6s16, d16s16); + + d1s16 = vshrn_n_s32(q9s32, 12); + d3s16 = vshrn_n_s32(q10s32, 12); + + // Part two + v2tmp2 = vtrn_s32(vreinterpret_s32_s16(d0s16), vreinterpret_s32_s16(d2s16)); + v2tmp3 = vtrn_s32(vreinterpret_s32_s16(d1s16), vreinterpret_s32_s16(d3s16)); + v2tmp0 = vtrn_s16(vreinterpret_s16_s32(v2tmp2.val[0]), // d0 + vreinterpret_s16_s32(v2tmp3.val[0])); // d1 + v2tmp1 = vtrn_s16(vreinterpret_s16_s32(v2tmp2.val[1]), // d2 + vreinterpret_s16_s32(v2tmp3.val[1])); // d3 + + d4s16 = vadd_s16(v2tmp0.val[0], v2tmp1.val[1]); + d5s16 = vadd_s16(v2tmp0.val[1], v2tmp1.val[0]); + d6s16 = vsub_s16(v2tmp0.val[1], v2tmp1.val[0]); + d7s16 = vsub_s16(v2tmp0.val[0], v2tmp1.val[1]); + + d26s16 = vdup_n_s16(7); + d4s16 = vadd_s16(d4s16, d26s16); + + d0s16 = vadd_s16(d4s16, d5s16); + d2s16 = vsub_s16(d4s16, d5s16); + + q11s32 = vmlal_s16(q11s32, d7s16, d16s16); + q12s32 = vmlal_s16(q12s32, d7s16, d17s16); + + dEmptys16 = vdup_n_s16(0); + d4u16 = vceq_s16(d7s16, dEmptys16); + + d0s16 = vshr_n_s16(d0s16, 4); + d2s16 = vshr_n_s16(d2s16, 4); + + q11s32 = vmlal_s16(q11s32, d6s16, d17s16); + q12s32 = vmlsl_s16(q12s32, d6s16, d16s16); + + d4u16 = vmvn_u16(d4u16); + d1s16 = vshrn_n_s32(q11s32, 16); + d1s16 = vsub_s16(d1s16, vreinterpret_s16_u16(d4u16)); + d3s16 = vshrn_n_s32(q12s32, 16); + + q0s16 = vcombine_s16(d0s16, d1s16); + q1s16 = vcombine_s16(d2s16, d3s16); + + vst1q_s16(output, q0s16); + vst1q_s16(output + 8, q1s16); + return; +} + +void vp8_short_fdct8x4_neon(int16_t *input, int16_t *output, int pitch) { + int16x4_t d0s16, d1s16, d2s16, d3s16, d4s16, d5s16, d6s16, d7s16; + int16x4_t d16s16, d17s16, d26s16, d27s16, d28s16, d29s16; + uint16x4_t d28u16, d29u16; + uint16x8_t q14u16; + int16x8_t q0s16, q1s16, q2s16, q3s16; + int16x8_t q11s16, q12s16, q13s16, q14s16, q15s16, qEmptys16; + int32x4_t q9s32, q10s32, q11s32, q12s32; + int16x8x2_t v2tmp0, v2tmp1; + int32x4x2_t v2tmp2, v2tmp3; + + d16s16 = vdup_n_s16(5352); + d17s16 = vdup_n_s16(2217); + q9s32 = vdupq_n_s32(14500); + q10s32 = vdupq_n_s32(7500); + + // Part one + pitch >>= 1; + q0s16 = vld1q_s16(input); + input += pitch; + q1s16 = vld1q_s16(input); + input += pitch; + q2s16 = vld1q_s16(input); + input += pitch; + q3s16 = vld1q_s16(input); + + v2tmp2 = + vtrnq_s32(vreinterpretq_s32_s16(q0s16), vreinterpretq_s32_s16(q2s16)); + v2tmp3 = + vtrnq_s32(vreinterpretq_s32_s16(q1s16), vreinterpretq_s32_s16(q3s16)); + v2tmp0 = vtrnq_s16(vreinterpretq_s16_s32(v2tmp2.val[0]), // q0 + vreinterpretq_s16_s32(v2tmp3.val[0])); // q1 + v2tmp1 = vtrnq_s16(vreinterpretq_s16_s32(v2tmp2.val[1]), // q2 + vreinterpretq_s16_s32(v2tmp3.val[1])); // q3 + + q11s16 = vaddq_s16(v2tmp0.val[0], v2tmp1.val[1]); + q12s16 = vaddq_s16(v2tmp0.val[1], v2tmp1.val[0]); + q13s16 = vsubq_s16(v2tmp0.val[1], v2tmp1.val[0]); + q14s16 = vsubq_s16(v2tmp0.val[0], v2tmp1.val[1]); + + q11s16 = vshlq_n_s16(q11s16, 3); + q12s16 = vshlq_n_s16(q12s16, 3); + q13s16 = vshlq_n_s16(q13s16, 3); + q14s16 = vshlq_n_s16(q14s16, 3); + + q0s16 = vaddq_s16(q11s16, q12s16); + q2s16 = vsubq_s16(q11s16, q12s16); + + q11s32 = q9s32; + q12s32 = q10s32; + + d26s16 = vget_low_s16(q13s16); + d27s16 = vget_high_s16(q13s16); + d28s16 = vget_low_s16(q14s16); + d29s16 = vget_high_s16(q14s16); + + q9s32 = vmlal_s16(q9s32, d28s16, d16s16); + q10s32 = vmlal_s16(q10s32, d28s16, d17s16); + q11s32 = vmlal_s16(q11s32, d29s16, d16s16); + q12s32 = vmlal_s16(q12s32, d29s16, d17s16); + + q9s32 = vmlal_s16(q9s32, d26s16, d17s16); + q10s32 = vmlsl_s16(q10s32, d26s16, d16s16); + q11s32 = vmlal_s16(q11s32, d27s16, d17s16); + q12s32 = vmlsl_s16(q12s32, d27s16, d16s16); + + d2s16 = vshrn_n_s32(q9s32, 12); + d6s16 = vshrn_n_s32(q10s32, 12); + d3s16 = vshrn_n_s32(q11s32, 12); + d7s16 = vshrn_n_s32(q12s32, 12); + q1s16 = vcombine_s16(d2s16, d3s16); + q3s16 = vcombine_s16(d6s16, d7s16); + + // Part two + q9s32 = vdupq_n_s32(12000); + q10s32 = vdupq_n_s32(51000); + + v2tmp2 = + vtrnq_s32(vreinterpretq_s32_s16(q0s16), vreinterpretq_s32_s16(q2s16)); + v2tmp3 = + vtrnq_s32(vreinterpretq_s32_s16(q1s16), vreinterpretq_s32_s16(q3s16)); + v2tmp0 = vtrnq_s16(vreinterpretq_s16_s32(v2tmp2.val[0]), // q0 + vreinterpretq_s16_s32(v2tmp3.val[0])); // q1 + v2tmp1 = vtrnq_s16(vreinterpretq_s16_s32(v2tmp2.val[1]), // q2 + vreinterpretq_s16_s32(v2tmp3.val[1])); // q3 + + q11s16 = vaddq_s16(v2tmp0.val[0], v2tmp1.val[1]); + q12s16 = vaddq_s16(v2tmp0.val[1], v2tmp1.val[0]); + q13s16 = vsubq_s16(v2tmp0.val[1], v2tmp1.val[0]); + q14s16 = vsubq_s16(v2tmp0.val[0], v2tmp1.val[1]); + + q15s16 = vdupq_n_s16(7); + q11s16 = vaddq_s16(q11s16, q15s16); + q0s16 = vaddq_s16(q11s16, q12s16); + q1s16 = vsubq_s16(q11s16, q12s16); + + q11s32 = q9s32; + q12s32 = q10s32; + + d0s16 = vget_low_s16(q0s16); + d1s16 = vget_high_s16(q0s16); + d2s16 = vget_low_s16(q1s16); + d3s16 = vget_high_s16(q1s16); + + d0s16 = vshr_n_s16(d0s16, 4); + d4s16 = vshr_n_s16(d1s16, 4); + d2s16 = vshr_n_s16(d2s16, 4); + d6s16 = vshr_n_s16(d3s16, 4); + + d26s16 = vget_low_s16(q13s16); + d27s16 = vget_high_s16(q13s16); + d28s16 = vget_low_s16(q14s16); + d29s16 = vget_high_s16(q14s16); + + q9s32 = vmlal_s16(q9s32, d28s16, d16s16); + q10s32 = vmlal_s16(q10s32, d28s16, d17s16); + q11s32 = vmlal_s16(q11s32, d29s16, d16s16); + q12s32 = vmlal_s16(q12s32, d29s16, d17s16); + + q9s32 = vmlal_s16(q9s32, d26s16, d17s16); + q10s32 = vmlsl_s16(q10s32, d26s16, d16s16); + q11s32 = vmlal_s16(q11s32, d27s16, d17s16); + q12s32 = vmlsl_s16(q12s32, d27s16, d16s16); + + d1s16 = vshrn_n_s32(q9s32, 16); + d3s16 = vshrn_n_s32(q10s32, 16); + d5s16 = vshrn_n_s32(q11s32, 16); + d7s16 = vshrn_n_s32(q12s32, 16); + + qEmptys16 = vdupq_n_s16(0); + q14u16 = vceqq_s16(q14s16, qEmptys16); + q14u16 = vmvnq_u16(q14u16); + + d28u16 = vget_low_u16(q14u16); + d29u16 = vget_high_u16(q14u16); + d1s16 = vsub_s16(d1s16, vreinterpret_s16_u16(d28u16)); + d5s16 = vsub_s16(d5s16, vreinterpret_s16_u16(d29u16)); + + q0s16 = vcombine_s16(d0s16, d1s16); + q1s16 = vcombine_s16(d2s16, d3s16); + q2s16 = vcombine_s16(d4s16, d5s16); + q3s16 = vcombine_s16(d6s16, d7s16); + + vst1q_s16(output, q0s16); + vst1q_s16(output + 8, q1s16); + vst1q_s16(output + 16, q2s16); + vst1q_s16(output + 24, q3s16); + return; +} diff --git a/vp8/encoder/arm/neon/vp8_shortwalsh4x4_neon.c b/vp8/encoder/arm/neon/vp8_shortwalsh4x4_neon.c new file mode 100644 index 0000000..8d6ea4c --- /dev/null +++ b/vp8/encoder/arm/neon/vp8_shortwalsh4x4_neon.c @@ -0,0 +1,119 @@ +/* + * Copyright (c) 2014 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include "vpx_ports/arm.h" + +#ifdef VPX_INCOMPATIBLE_GCC +#include "./vp8_rtcd.h" +void vp8_short_walsh4x4_neon(int16_t *input, int16_t *output, int pitch) { + vp8_short_walsh4x4_c(input, output, pitch); +} +#else +void vp8_short_walsh4x4_neon(int16_t *input, int16_t *output, int pitch) { + uint16x4_t d16u16; + int16x8_t q0s16, q1s16; + int16x4_t dEmptys16, d0s16, d1s16, d2s16, d3s16, d4s16, d5s16, d6s16, d7s16; + int32x4_t qEmptys32, q0s32, q1s32, q2s32, q3s32, q8s32; + int32x4_t q9s32, q10s32, q11s32, q15s32; + uint32x4_t q8u32, q9u32, q10u32, q11u32; + int16x4x2_t v2tmp0, v2tmp1; + int32x2x2_t v2tmp2, v2tmp3; + + dEmptys16 = vdup_n_s16(0); + qEmptys32 = vdupq_n_s32(0); + q15s32 = vdupq_n_s32(3); + + d0s16 = vld1_s16(input); + input += pitch / 2; + d1s16 = vld1_s16(input); + input += pitch / 2; + d2s16 = vld1_s16(input); + input += pitch / 2; + d3s16 = vld1_s16(input); + + v2tmp2 = vtrn_s32(vreinterpret_s32_s16(d0s16), vreinterpret_s32_s16(d2s16)); + v2tmp3 = vtrn_s32(vreinterpret_s32_s16(d1s16), vreinterpret_s32_s16(d3s16)); + v2tmp0 = vtrn_s16(vreinterpret_s16_s32(v2tmp2.val[0]), // d0 + vreinterpret_s16_s32(v2tmp3.val[0])); // d1 + v2tmp1 = vtrn_s16(vreinterpret_s16_s32(v2tmp2.val[1]), // d2 + vreinterpret_s16_s32(v2tmp3.val[1])); // d3 + + d4s16 = vadd_s16(v2tmp0.val[0], v2tmp1.val[0]); + d5s16 = vadd_s16(v2tmp0.val[1], v2tmp1.val[1]); + d6s16 = vsub_s16(v2tmp0.val[1], v2tmp1.val[1]); + d7s16 = vsub_s16(v2tmp0.val[0], v2tmp1.val[0]); + + d4s16 = vshl_n_s16(d4s16, 2); + d5s16 = vshl_n_s16(d5s16, 2); + d6s16 = vshl_n_s16(d6s16, 2); + d7s16 = vshl_n_s16(d7s16, 2); + + d16u16 = vceq_s16(d4s16, dEmptys16); + d16u16 = vmvn_u16(d16u16); + + d0s16 = vadd_s16(d4s16, d5s16); + d3s16 = vsub_s16(d4s16, d5s16); + d1s16 = vadd_s16(d7s16, d6s16); + d2s16 = vsub_s16(d7s16, d6s16); + + d0s16 = vsub_s16(d0s16, vreinterpret_s16_u16(d16u16)); + + // Second for-loop + v2tmp2 = vtrn_s32(vreinterpret_s32_s16(d1s16), vreinterpret_s32_s16(d3s16)); + v2tmp3 = vtrn_s32(vreinterpret_s32_s16(d0s16), vreinterpret_s32_s16(d2s16)); + v2tmp0 = vtrn_s16(vreinterpret_s16_s32(v2tmp3.val[1]), // d2 + vreinterpret_s16_s32(v2tmp2.val[1])); // d3 + v2tmp1 = vtrn_s16(vreinterpret_s16_s32(v2tmp3.val[0]), // d0 + vreinterpret_s16_s32(v2tmp2.val[0])); // d1 + + q8s32 = vaddl_s16(v2tmp1.val[0], v2tmp0.val[0]); + q9s32 = vaddl_s16(v2tmp1.val[1], v2tmp0.val[1]); + q10s32 = vsubl_s16(v2tmp1.val[1], v2tmp0.val[1]); + q11s32 = vsubl_s16(v2tmp1.val[0], v2tmp0.val[0]); + + q0s32 = vaddq_s32(q8s32, q9s32); + q1s32 = vaddq_s32(q11s32, q10s32); + q2s32 = vsubq_s32(q11s32, q10s32); + q3s32 = vsubq_s32(q8s32, q9s32); + + q8u32 = vcltq_s32(q0s32, qEmptys32); + q9u32 = vcltq_s32(q1s32, qEmptys32); + q10u32 = vcltq_s32(q2s32, qEmptys32); + q11u32 = vcltq_s32(q3s32, qEmptys32); + + q8s32 = vreinterpretq_s32_u32(q8u32); + q9s32 = vreinterpretq_s32_u32(q9u32); + q10s32 = vreinterpretq_s32_u32(q10u32); + q11s32 = vreinterpretq_s32_u32(q11u32); + + q0s32 = vsubq_s32(q0s32, q8s32); + q1s32 = vsubq_s32(q1s32, q9s32); + q2s32 = vsubq_s32(q2s32, q10s32); + q3s32 = vsubq_s32(q3s32, q11s32); + + q8s32 = vaddq_s32(q0s32, q15s32); + q9s32 = vaddq_s32(q1s32, q15s32); + q10s32 = vaddq_s32(q2s32, q15s32); + q11s32 = vaddq_s32(q3s32, q15s32); + + d0s16 = vshrn_n_s32(q8s32, 3); + d1s16 = vshrn_n_s32(q9s32, 3); + d2s16 = vshrn_n_s32(q10s32, 3); + d3s16 = vshrn_n_s32(q11s32, 3); + + q0s16 = vcombine_s16(d0s16, d1s16); + q1s16 = vcombine_s16(d2s16, d3s16); + + vst1q_s16(output, q0s16); + vst1q_s16(output + 8, q1s16); + return; +} +#endif // VPX_INCOMPATIBLE_GCC diff --git a/vp8/encoder/bitstream.c b/vp8/encoder/bitstream.c new file mode 100644 index 0000000..8cacb64 --- /dev/null +++ b/vp8/encoder/bitstream.c @@ -0,0 +1,1480 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "vp8/common/header.h" +#include "encodemv.h" +#include "vp8/common/entropymode.h" +#include "vp8/common/findnearmv.h" +#include "mcomp.h" +#include "vp8/common/systemdependent.h" +#include +#include +#include +#include "vpx/vpx_encoder.h" +#include "vpx_mem/vpx_mem.h" +#include "vpx_ports/system_state.h" +#include "bitstream.h" + +#include "defaultcoefcounts.h" +#include "vp8/common/common.h" + +const int vp8cx_base_skip_false_prob[128] = { + 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, + 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, + 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, + 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 251, 248, 244, 240, + 236, 232, 229, 225, 221, 217, 213, 208, 204, 199, 194, 190, 187, 183, 179, + 175, 172, 168, 164, 160, 157, 153, 149, 145, 142, 138, 134, 130, 127, 124, + 120, 117, 114, 110, 107, 104, 101, 98, 95, 92, 89, 86, 83, 80, 77, + 74, 71, 68, 65, 62, 59, 56, 53, 50, 47, 44, 41, 38, 35, 32, + 30, 28, 26, 24, 22, 20, 18, 16, +}; + +#if defined(SECTIONBITS_OUTPUT) +unsigned __int64 Sectionbits[500]; +#endif + +#ifdef VP8_ENTROPY_STATS +int intra_mode_stats[10][10][10]; +static unsigned int tree_update_hist[BLOCK_TYPES][COEF_BANDS] + [PREV_COEF_CONTEXTS][ENTROPY_NODES][2]; +extern unsigned int active_section; +#endif + +#ifdef MODE_STATS +int count_mb_seg[4] = { 0, 0, 0, 0 }; +#endif + +static void update_mode(vp8_writer *const w, int n, vp8_token tok[/* n */], + vp8_tree tree, vp8_prob Pnew[/* n-1 */], + vp8_prob Pcur[/* n-1 */], + unsigned int bct[/* n-1 */][2], + const unsigned int num_events[/* n */]) { + unsigned int new_b = 0, old_b = 0; + int i = 0; + + vp8_tree_probs_from_distribution(n--, tok, tree, Pnew, bct, num_events, 256, + 1); + + do { + new_b += vp8_cost_branch(bct[i], Pnew[i]); + old_b += vp8_cost_branch(bct[i], Pcur[i]); + } while (++i < n); + + if (new_b + (n << 8) < old_b) { + int j = 0; + + vp8_write_bit(w, 1); + + do { + const vp8_prob p = Pnew[j]; + + vp8_write_literal(w, Pcur[j] = p ? p : 1, 8); + } while (++j < n); + } else + vp8_write_bit(w, 0); +} + +static void update_mbintra_mode_probs(VP8_COMP *cpi) { + VP8_COMMON *const x = &cpi->common; + + vp8_writer *const w = cpi->bc; + + { + vp8_prob Pnew[VP8_YMODES - 1]; + unsigned int bct[VP8_YMODES - 1][2]; + + update_mode(w, VP8_YMODES, vp8_ymode_encodings, vp8_ymode_tree, Pnew, + x->fc.ymode_prob, bct, (unsigned int *)cpi->mb.ymode_count); + } + { + vp8_prob Pnew[VP8_UV_MODES - 1]; + unsigned int bct[VP8_UV_MODES - 1][2]; + + update_mode(w, VP8_UV_MODES, vp8_uv_mode_encodings, vp8_uv_mode_tree, Pnew, + x->fc.uv_mode_prob, bct, (unsigned int *)cpi->mb.uv_mode_count); + } +} + +static void write_ymode(vp8_writer *bc, int m, const vp8_prob *p) { + vp8_write_token(bc, vp8_ymode_tree, p, vp8_ymode_encodings + m); +} + +static void kfwrite_ymode(vp8_writer *bc, int m, const vp8_prob *p) { + vp8_write_token(bc, vp8_kf_ymode_tree, p, vp8_kf_ymode_encodings + m); +} + +static void write_uv_mode(vp8_writer *bc, int m, const vp8_prob *p) { + vp8_write_token(bc, vp8_uv_mode_tree, p, vp8_uv_mode_encodings + m); +} + +static void write_bmode(vp8_writer *bc, int m, const vp8_prob *p) { + vp8_write_token(bc, vp8_bmode_tree, p, vp8_bmode_encodings + m); +} + +static void write_split(vp8_writer *bc, int x) { + vp8_write_token(bc, vp8_mbsplit_tree, vp8_mbsplit_probs, + vp8_mbsplit_encodings + x); +} + +void vp8_pack_tokens(vp8_writer *w, const TOKENEXTRA *p, int xcount) { + const TOKENEXTRA *stop = p + xcount; + unsigned int split; + int shift; + int count = w->count; + unsigned int range = w->range; + unsigned int lowvalue = w->lowvalue; + + while (p < stop) { + const int t = p->Token; + vp8_token *a = vp8_coef_encodings + t; + const vp8_extra_bit_struct *b = vp8_extra_bits + t; + int i = 0; + const unsigned char *pp = p->context_tree; + int v = a->value; + int n = a->Len; + + if (p->skip_eob_node) { + n--; + i = 2; + } + + do { + const int bb = (v >> --n) & 1; + split = 1 + (((range - 1) * pp[i >> 1]) >> 8); + i = vp8_coef_tree[i + bb]; + + if (bb) { + lowvalue += split; + range = range - split; + } else { + range = split; + } + + shift = vp8_norm[range]; + range <<= shift; + count += shift; + + if (count >= 0) { + int offset = shift - count; + + if ((lowvalue << (offset - 1)) & 0x80000000) { + int x = w->pos - 1; + + while (x >= 0 && w->buffer[x] == 0xff) { + w->buffer[x] = (unsigned char)0; + x--; + } + + w->buffer[x] += 1; + } + + validate_buffer(w->buffer + w->pos, 1, w->buffer_end, w->error); + + w->buffer[w->pos++] = (lowvalue >> (24 - offset)); + lowvalue <<= offset; + shift = count; + lowvalue &= 0xffffff; + count -= 8; + } + + lowvalue <<= shift; + } while (n); + + if (b->base_val) { + const int e = p->Extra, L = b->Len; + + if (L) { + const unsigned char *proba = b->prob; + const int v2 = e >> 1; + int n2 = L; /* number of bits in v2, assumed nonzero */ + i = 0; + + do { + const int bb = (v2 >> --n2) & 1; + split = 1 + (((range - 1) * proba[i >> 1]) >> 8); + i = b->tree[i + bb]; + + if (bb) { + lowvalue += split; + range = range - split; + } else { + range = split; + } + + shift = vp8_norm[range]; + range <<= shift; + count += shift; + + if (count >= 0) { + int offset = shift - count; + + if ((lowvalue << (offset - 1)) & 0x80000000) { + int x = w->pos - 1; + + while (x >= 0 && w->buffer[x] == 0xff) { + w->buffer[x] = (unsigned char)0; + x--; + } + + w->buffer[x] += 1; + } + + validate_buffer(w->buffer + w->pos, 1, w->buffer_end, w->error); + + w->buffer[w->pos++] = (lowvalue >> (24 - offset)); + lowvalue <<= offset; + shift = count; + lowvalue &= 0xffffff; + count -= 8; + } + + lowvalue <<= shift; + } while (n2); + } + + { + split = (range + 1) >> 1; + + if (e & 1) { + lowvalue += split; + range = range - split; + } else { + range = split; + } + + range <<= 1; + + if ((lowvalue & 0x80000000)) { + int x = w->pos - 1; + + while (x >= 0 && w->buffer[x] == 0xff) { + w->buffer[x] = (unsigned char)0; + x--; + } + + w->buffer[x] += 1; + } + + lowvalue <<= 1; + + if (!++count) { + count = -8; + + validate_buffer(w->buffer + w->pos, 1, w->buffer_end, w->error); + + w->buffer[w->pos++] = (lowvalue >> 24); + lowvalue &= 0xffffff; + } + } + } + + ++p; + } + + w->count = count; + w->lowvalue = lowvalue; + w->range = range; +} + +static void write_partition_size(unsigned char *cx_data, int size) { + signed char csize; + + csize = size & 0xff; + *cx_data = csize; + csize = (size >> 8) & 0xff; + *(cx_data + 1) = csize; + csize = (size >> 16) & 0xff; + *(cx_data + 2) = csize; +} + +static void pack_tokens_into_partitions(VP8_COMP *cpi, unsigned char *cx_data, + unsigned char *cx_data_end, + int num_part) { + int i; + unsigned char *ptr = cx_data; + unsigned char *ptr_end = cx_data_end; + vp8_writer *w; + + for (i = 0; i < num_part; ++i) { + int mb_row; + + w = cpi->bc + i + 1; + + vp8_start_encode(w, ptr, ptr_end); + + for (mb_row = i; mb_row < cpi->common.mb_rows; mb_row += num_part) { + const TOKENEXTRA *p = cpi->tplist[mb_row].start; + const TOKENEXTRA *stop = cpi->tplist[mb_row].stop; + int tokens = (int)(stop - p); + + vp8_pack_tokens(w, p, tokens); + } + + vp8_stop_encode(w); + ptr += w->pos; + } +} + +#if CONFIG_MULTITHREAD +static void pack_mb_row_tokens(VP8_COMP *cpi, vp8_writer *w) { + int mb_row; + + for (mb_row = 0; mb_row < cpi->common.mb_rows; ++mb_row) { + const TOKENEXTRA *p = cpi->tplist[mb_row].start; + const TOKENEXTRA *stop = cpi->tplist[mb_row].stop; + int tokens = (int)(stop - p); + + vp8_pack_tokens(w, p, tokens); + } +} +#endif // CONFIG_MULTITHREAD + +static void write_mv_ref(vp8_writer *w, MB_PREDICTION_MODE m, + const vp8_prob *p) { + assert(NEARESTMV <= m && m <= SPLITMV); + vp8_write_token(w, vp8_mv_ref_tree, p, + vp8_mv_ref_encoding_array + (m - NEARESTMV)); +} + +static void write_sub_mv_ref(vp8_writer *w, B_PREDICTION_MODE m, + const vp8_prob *p) { + assert(LEFT4X4 <= m && m <= NEW4X4); + vp8_write_token(w, vp8_sub_mv_ref_tree, p, + vp8_sub_mv_ref_encoding_array + (m - LEFT4X4)); +} + +static void write_mv(vp8_writer *w, const MV *mv, const int_mv *ref, + const MV_CONTEXT *mvc) { + MV e; + e.row = mv->row - ref->as_mv.row; + e.col = mv->col - ref->as_mv.col; + + vp8_encode_motion_vector(w, &e, mvc); +} + +static void write_mb_features(vp8_writer *w, const MB_MODE_INFO *mi, + const MACROBLOCKD *x) { + /* Encode the MB segment id. */ + if (x->segmentation_enabled && x->update_mb_segmentation_map) { + switch (mi->segment_id) { + case 0: + vp8_write(w, 0, x->mb_segment_tree_probs[0]); + vp8_write(w, 0, x->mb_segment_tree_probs[1]); + break; + case 1: + vp8_write(w, 0, x->mb_segment_tree_probs[0]); + vp8_write(w, 1, x->mb_segment_tree_probs[1]); + break; + case 2: + vp8_write(w, 1, x->mb_segment_tree_probs[0]); + vp8_write(w, 0, x->mb_segment_tree_probs[2]); + break; + case 3: + vp8_write(w, 1, x->mb_segment_tree_probs[0]); + vp8_write(w, 1, x->mb_segment_tree_probs[2]); + break; + + /* TRAP.. This should not happen */ + default: + vp8_write(w, 0, x->mb_segment_tree_probs[0]); + vp8_write(w, 0, x->mb_segment_tree_probs[1]); + break; + } + } +} +void vp8_convert_rfct_to_prob(VP8_COMP *const cpi) { + const int *const rfct = cpi->mb.count_mb_ref_frame_usage; + const int rf_intra = rfct[INTRA_FRAME]; + const int rf_inter = + rfct[LAST_FRAME] + rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME]; + + /* Calculate the probabilities used to code the ref frame based on usage */ + if (!(cpi->prob_intra_coded = rf_intra * 255 / (rf_intra + rf_inter))) { + cpi->prob_intra_coded = 1; + } + + cpi->prob_last_coded = rf_inter ? (rfct[LAST_FRAME] * 255) / rf_inter : 128; + + if (!cpi->prob_last_coded) cpi->prob_last_coded = 1; + + cpi->prob_gf_coded = (rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME]) + ? (rfct[GOLDEN_FRAME] * 255) / + (rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME]) + : 128; + + if (!cpi->prob_gf_coded) cpi->prob_gf_coded = 1; +} + +static void pack_inter_mode_mvs(VP8_COMP *const cpi) { + VP8_COMMON *const pc = &cpi->common; + vp8_writer *const w = cpi->bc; + const MV_CONTEXT *mvc = pc->fc.mvc; + + MODE_INFO *m = pc->mi; + const int mis = pc->mode_info_stride; + int mb_row = -1; + + int prob_skip_false = 0; + + cpi->mb.partition_info = cpi->mb.pi; + + vp8_convert_rfct_to_prob(cpi); + +#ifdef VP8_ENTROPY_STATS + active_section = 1; +#endif + + if (pc->mb_no_coeff_skip) { + int total_mbs = pc->mb_rows * pc->mb_cols; + + prob_skip_false = (total_mbs - cpi->mb.skip_true_count) * 256 / total_mbs; + + if (prob_skip_false <= 1) prob_skip_false = 1; + + if (prob_skip_false > 255) prob_skip_false = 255; + + cpi->prob_skip_false = prob_skip_false; + vp8_write_literal(w, prob_skip_false, 8); + } + + vp8_write_literal(w, cpi->prob_intra_coded, 8); + vp8_write_literal(w, cpi->prob_last_coded, 8); + vp8_write_literal(w, cpi->prob_gf_coded, 8); + + update_mbintra_mode_probs(cpi); + + vp8_write_mvprobs(cpi); + + while (++mb_row < pc->mb_rows) { + int mb_col = -1; + + while (++mb_col < pc->mb_cols) { + const MB_MODE_INFO *const mi = &m->mbmi; + const MV_REFERENCE_FRAME rf = mi->ref_frame; + const MB_PREDICTION_MODE mode = mi->mode; + + MACROBLOCKD *xd = &cpi->mb.e_mbd; + + /* Distance of Mb to the various image edges. + * These specified to 8th pel as they are always compared to MV + * values that are in 1/8th pel units + */ + xd->mb_to_left_edge = -((mb_col * 16) << 3); + xd->mb_to_right_edge = ((pc->mb_cols - 1 - mb_col) * 16) << 3; + xd->mb_to_top_edge = -((mb_row * 16) << 3); + xd->mb_to_bottom_edge = ((pc->mb_rows - 1 - mb_row) * 16) << 3; + +#ifdef VP8_ENTROPY_STATS + active_section = 9; +#endif + + if (cpi->mb.e_mbd.update_mb_segmentation_map) { + write_mb_features(w, mi, &cpi->mb.e_mbd); + } + + if (pc->mb_no_coeff_skip) { + vp8_encode_bool(w, m->mbmi.mb_skip_coeff, prob_skip_false); + } + + if (rf == INTRA_FRAME) { + vp8_write(w, 0, cpi->prob_intra_coded); +#ifdef VP8_ENTROPY_STATS + active_section = 6; +#endif + write_ymode(w, mode, pc->fc.ymode_prob); + + if (mode == B_PRED) { + int j = 0; + + do { + write_bmode(w, m->bmi[j].as_mode, pc->fc.bmode_prob); + } while (++j < 16); + } + + write_uv_mode(w, mi->uv_mode, pc->fc.uv_mode_prob); + } else { /* inter coded */ + int_mv best_mv; + vp8_prob mv_ref_p[VP8_MVREFS - 1]; + + vp8_write(w, 1, cpi->prob_intra_coded); + + if (rf == LAST_FRAME) + vp8_write(w, 0, cpi->prob_last_coded); + else { + vp8_write(w, 1, cpi->prob_last_coded); + vp8_write(w, (rf == GOLDEN_FRAME) ? 0 : 1, cpi->prob_gf_coded); + } + + { + int_mv n1, n2; + int ct[4]; + + vp8_find_near_mvs(xd, m, &n1, &n2, &best_mv, ct, rf, + cpi->common.ref_frame_sign_bias); + vp8_clamp_mv2(&best_mv, xd); + + vp8_mv_ref_probs(mv_ref_p, ct); + +#ifdef VP8_ENTROPY_STATS + accum_mv_refs(mode, ct); +#endif + } + +#ifdef VP8_ENTROPY_STATS + active_section = 3; +#endif + + write_mv_ref(w, mode, mv_ref_p); + + switch (mode) /* new, split require MVs */ + { + case NEWMV: + +#ifdef VP8_ENTROPY_STATS + active_section = 5; +#endif + + write_mv(w, &mi->mv.as_mv, &best_mv, mvc); + break; + + case SPLITMV: { + int j = 0; + +#ifdef MODE_STATS + ++count_mb_seg[mi->partitioning]; +#endif + + write_split(w, mi->partitioning); + + do { + B_PREDICTION_MODE blockmode; + int_mv blockmv; + const int *const L = vp8_mbsplits[mi->partitioning]; + int k = -1; /* first block in subset j */ + int mv_contz; + int_mv leftmv, abovemv; + + blockmode = cpi->mb.partition_info->bmi[j].mode; + blockmv = cpi->mb.partition_info->bmi[j].mv; + while (j != L[++k]) { + assert(k < 16); + } + leftmv.as_int = left_block_mv(m, k); + abovemv.as_int = above_block_mv(m, k, mis); + mv_contz = vp8_mv_cont(&leftmv, &abovemv); + + write_sub_mv_ref(w, blockmode, vp8_sub_mv_ref_prob2[mv_contz]); + + if (blockmode == NEW4X4) { +#ifdef VP8_ENTROPY_STATS + active_section = 11; +#endif + write_mv(w, &blockmv.as_mv, &best_mv, (const MV_CONTEXT *)mvc); + } + } while (++j < cpi->mb.partition_info->count); + break; + } + default: break; + } + } + + ++m; + cpi->mb.partition_info++; + } + + ++m; /* skip L prediction border */ + cpi->mb.partition_info++; + } +} + +static void write_kfmodes(VP8_COMP *cpi) { + vp8_writer *const bc = cpi->bc; + const VP8_COMMON *const c = &cpi->common; + /* const */ + MODE_INFO *m = c->mi; + + int mb_row = -1; + int prob_skip_false = 0; + + if (c->mb_no_coeff_skip) { + int total_mbs = c->mb_rows * c->mb_cols; + + prob_skip_false = (total_mbs - cpi->mb.skip_true_count) * 256 / total_mbs; + + if (prob_skip_false <= 1) prob_skip_false = 1; + + if (prob_skip_false >= 255) prob_skip_false = 255; + + cpi->prob_skip_false = prob_skip_false; + vp8_write_literal(bc, prob_skip_false, 8); + } + + while (++mb_row < c->mb_rows) { + int mb_col = -1; + + while (++mb_col < c->mb_cols) { + const int ym = m->mbmi.mode; + + if (cpi->mb.e_mbd.update_mb_segmentation_map) { + write_mb_features(bc, &m->mbmi, &cpi->mb.e_mbd); + } + + if (c->mb_no_coeff_skip) { + vp8_encode_bool(bc, m->mbmi.mb_skip_coeff, prob_skip_false); + } + + kfwrite_ymode(bc, ym, vp8_kf_ymode_prob); + + if (ym == B_PRED) { + const int mis = c->mode_info_stride; + int i = 0; + + do { + const B_PREDICTION_MODE A = above_block_mode(m, i, mis); + const B_PREDICTION_MODE L = left_block_mode(m, i); + const int bm = m->bmi[i].as_mode; + +#ifdef VP8_ENTROPY_STATS + ++intra_mode_stats[A][L][bm]; +#endif + + write_bmode(bc, bm, vp8_kf_bmode_prob[A][L]); + } while (++i < 16); + } + + write_uv_mode(bc, (m++)->mbmi.uv_mode, vp8_kf_uv_mode_prob); + } + + m++; /* skip L prediction border */ + } +} + +#if 0 +/* This function is used for debugging probability trees. */ +static void print_prob_tree(vp8_prob + coef_probs[BLOCK_TYPES][COEF_BANDS][PREV_COEF_CONTEXTS][ENTROPY_NODES]) +{ + /* print coef probability tree */ + int i,j,k,l; + FILE* f = fopen("enc_tree_probs.txt", "a"); + fprintf(f, "{\n"); + for (i = 0; i < BLOCK_TYPES; ++i) + { + fprintf(f, " {\n"); + for (j = 0; j < COEF_BANDS; ++j) + { + fprintf(f, " {\n"); + for (k = 0; k < PREV_COEF_CONTEXTS; ++k) + { + fprintf(f, " {"); + for (l = 0; l < ENTROPY_NODES; ++l) + { + fprintf(f, "%3u, ", + (unsigned int)(coef_probs [i][j][k][l])); + } + fprintf(f, " }\n"); + } + fprintf(f, " }\n"); + } + fprintf(f, " }\n"); + } + fprintf(f, "}\n"); + fclose(f); +} +#endif + +static void sum_probs_over_prev_coef_context( + const unsigned int probs[PREV_COEF_CONTEXTS][MAX_ENTROPY_TOKENS], + unsigned int *out) { + int i, j; + for (i = 0; i < MAX_ENTROPY_TOKENS; ++i) { + for (j = 0; j < PREV_COEF_CONTEXTS; ++j) { + const unsigned int tmp = out[i]; + out[i] += probs[j][i]; + /* check for wrap */ + if (out[i] < tmp) out[i] = UINT_MAX; + } + } +} + +static int prob_update_savings(const unsigned int *ct, const vp8_prob oldp, + const vp8_prob newp, const vp8_prob upd) { + const int old_b = vp8_cost_branch(ct, oldp); + const int new_b = vp8_cost_branch(ct, newp); + const int update_b = 8 + ((vp8_cost_one(upd) - vp8_cost_zero(upd)) >> 8); + + return old_b - new_b - update_b; +} + +static int independent_coef_context_savings(VP8_COMP *cpi) { + MACROBLOCK *const x = &cpi->mb; + int savings = 0; + int i = 0; + do { + int j = 0; + do { + int k = 0; + unsigned int prev_coef_count_sum[MAX_ENTROPY_TOKENS] = { 0 }; + int prev_coef_savings[MAX_ENTROPY_TOKENS] = { 0 }; + const unsigned int(*probs)[MAX_ENTROPY_TOKENS]; + /* Calculate new probabilities given the constraint that + * they must be equal over the prev coef contexts + */ + + probs = (const unsigned int(*)[MAX_ENTROPY_TOKENS])x->coef_counts[i][j]; + + /* Reset to default probabilities at key frames */ + if (cpi->common.frame_type == KEY_FRAME) { + probs = default_coef_counts[i][j]; + } + + sum_probs_over_prev_coef_context(probs, prev_coef_count_sum); + + do { + /* at every context */ + + /* calc probs and branch cts for this frame only */ + int t = 0; /* token/prob index */ + + vp8_tree_probs_from_distribution( + MAX_ENTROPY_TOKENS, vp8_coef_encodings, vp8_coef_tree, + cpi->frame_coef_probs[i][j][k], cpi->frame_branch_ct[i][j][k], + prev_coef_count_sum, 256, 1); + + do { + const unsigned int *ct = cpi->frame_branch_ct[i][j][k][t]; + const vp8_prob newp = cpi->frame_coef_probs[i][j][k][t]; + const vp8_prob oldp = cpi->common.fc.coef_probs[i][j][k][t]; + const vp8_prob upd = vp8_coef_update_probs[i][j][k][t]; + const int s = prob_update_savings(ct, oldp, newp, upd); + + if (cpi->common.frame_type != KEY_FRAME || + (cpi->common.frame_type == KEY_FRAME && newp != oldp)) { + prev_coef_savings[t] += s; + } + } while (++t < ENTROPY_NODES); + } while (++k < PREV_COEF_CONTEXTS); + k = 0; + do { + /* We only update probabilities if we can save bits, except + * for key frames where we have to update all probabilities + * to get the equal probabilities across the prev coef + * contexts. + */ + if (prev_coef_savings[k] > 0 || cpi->common.frame_type == KEY_FRAME) { + savings += prev_coef_savings[k]; + } + } while (++k < ENTROPY_NODES); + } while (++j < COEF_BANDS); + } while (++i < BLOCK_TYPES); + return savings; +} + +static int default_coef_context_savings(VP8_COMP *cpi) { + MACROBLOCK *const x = &cpi->mb; + int savings = 0; + int i = 0; + do { + int j = 0; + do { + int k = 0; + do { + /* at every context */ + + /* calc probs and branch cts for this frame only */ + int t = 0; /* token/prob index */ + + vp8_tree_probs_from_distribution( + MAX_ENTROPY_TOKENS, vp8_coef_encodings, vp8_coef_tree, + cpi->frame_coef_probs[i][j][k], cpi->frame_branch_ct[i][j][k], + x->coef_counts[i][j][k], 256, 1); + + do { + const unsigned int *ct = cpi->frame_branch_ct[i][j][k][t]; + const vp8_prob newp = cpi->frame_coef_probs[i][j][k][t]; + const vp8_prob oldp = cpi->common.fc.coef_probs[i][j][k][t]; + const vp8_prob upd = vp8_coef_update_probs[i][j][k][t]; + const int s = prob_update_savings(ct, oldp, newp, upd); + + if (s > 0) { + savings += s; + } + } while (++t < ENTROPY_NODES); + } while (++k < PREV_COEF_CONTEXTS); + } while (++j < COEF_BANDS); + } while (++i < BLOCK_TYPES); + return savings; +} + +void vp8_calc_ref_frame_costs(int *ref_frame_cost, int prob_intra, + int prob_last, int prob_garf) { + assert(prob_intra >= 0); + assert(prob_intra <= 255); + assert(prob_last >= 0); + assert(prob_last <= 255); + assert(prob_garf >= 0); + assert(prob_garf <= 255); + ref_frame_cost[INTRA_FRAME] = vp8_cost_zero(prob_intra); + ref_frame_cost[LAST_FRAME] = + vp8_cost_one(prob_intra) + vp8_cost_zero(prob_last); + ref_frame_cost[GOLDEN_FRAME] = vp8_cost_one(prob_intra) + + vp8_cost_one(prob_last) + + vp8_cost_zero(prob_garf); + ref_frame_cost[ALTREF_FRAME] = vp8_cost_one(prob_intra) + + vp8_cost_one(prob_last) + + vp8_cost_one(prob_garf); +} + +int vp8_estimate_entropy_savings(VP8_COMP *cpi) { + int savings = 0; + + const int *const rfct = cpi->mb.count_mb_ref_frame_usage; + const int rf_intra = rfct[INTRA_FRAME]; + const int rf_inter = + rfct[LAST_FRAME] + rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME]; + int new_intra, new_last, new_garf, oldtotal, newtotal; + int ref_frame_cost[MAX_REF_FRAMES]; + + vpx_clear_system_state(); + + if (cpi->common.frame_type != KEY_FRAME) { + if (!(new_intra = rf_intra * 255 / (rf_intra + rf_inter))) new_intra = 1; + + new_last = rf_inter ? (rfct[LAST_FRAME] * 255) / rf_inter : 128; + + new_garf = (rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME]) + ? (rfct[GOLDEN_FRAME] * 255) / + (rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME]) + : 128; + + vp8_calc_ref_frame_costs(ref_frame_cost, new_intra, new_last, new_garf); + + newtotal = rfct[INTRA_FRAME] * ref_frame_cost[INTRA_FRAME] + + rfct[LAST_FRAME] * ref_frame_cost[LAST_FRAME] + + rfct[GOLDEN_FRAME] * ref_frame_cost[GOLDEN_FRAME] + + rfct[ALTREF_FRAME] * ref_frame_cost[ALTREF_FRAME]; + + /* old costs */ + vp8_calc_ref_frame_costs(ref_frame_cost, cpi->prob_intra_coded, + cpi->prob_last_coded, cpi->prob_gf_coded); + + oldtotal = rfct[INTRA_FRAME] * ref_frame_cost[INTRA_FRAME] + + rfct[LAST_FRAME] * ref_frame_cost[LAST_FRAME] + + rfct[GOLDEN_FRAME] * ref_frame_cost[GOLDEN_FRAME] + + rfct[ALTREF_FRAME] * ref_frame_cost[ALTREF_FRAME]; + + savings += (oldtotal - newtotal) / 256; + } + + if (cpi->oxcf.error_resilient_mode & VPX_ERROR_RESILIENT_PARTITIONS) { + savings += independent_coef_context_savings(cpi); + } else { + savings += default_coef_context_savings(cpi); + } + + return savings; +} + +#if CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING +int vp8_update_coef_context(VP8_COMP *cpi) { + int savings = 0; + + if (cpi->common.frame_type == KEY_FRAME) { + /* Reset to default counts/probabilities at key frames */ + vp8_copy(cpi->mb.coef_counts, default_coef_counts); + } + + if (cpi->oxcf.error_resilient_mode & VPX_ERROR_RESILIENT_PARTITIONS) + savings += independent_coef_context_savings(cpi); + else + savings += default_coef_context_savings(cpi); + + return savings; +} +#endif + +void vp8_update_coef_probs(VP8_COMP *cpi) { + int i = 0; +#if !(CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING) + vp8_writer *const w = cpi->bc; +#endif + int savings = 0; + + vpx_clear_system_state(); + + do { + int j = 0; + + do { + int k = 0; + int prev_coef_savings[ENTROPY_NODES] = { 0 }; + if (cpi->oxcf.error_resilient_mode & VPX_ERROR_RESILIENT_PARTITIONS) { + for (k = 0; k < PREV_COEF_CONTEXTS; ++k) { + int t; /* token/prob index */ + for (t = 0; t < ENTROPY_NODES; ++t) { + const unsigned int *ct = cpi->frame_branch_ct[i][j][k][t]; + const vp8_prob newp = cpi->frame_coef_probs[i][j][k][t]; + const vp8_prob oldp = cpi->common.fc.coef_probs[i][j][k][t]; + const vp8_prob upd = vp8_coef_update_probs[i][j][k][t]; + + prev_coef_savings[t] += prob_update_savings(ct, oldp, newp, upd); + } + } + k = 0; + } + do { + /* note: use result from vp8_estimate_entropy_savings, so no + * need to call vp8_tree_probs_from_distribution here. + */ + + /* at every context */ + + /* calc probs and branch cts for this frame only */ + int t = 0; /* token/prob index */ + + do { + const vp8_prob newp = cpi->frame_coef_probs[i][j][k][t]; + + vp8_prob *Pold = cpi->common.fc.coef_probs[i][j][k] + t; + const vp8_prob upd = vp8_coef_update_probs[i][j][k][t]; + + int s = prev_coef_savings[t]; + int u = 0; + + if (!(cpi->oxcf.error_resilient_mode & + VPX_ERROR_RESILIENT_PARTITIONS)) { + s = prob_update_savings(cpi->frame_branch_ct[i][j][k][t], *Pold, + newp, upd); + } + + if (s > 0) u = 1; + + /* Force updates on key frames if the new is different, + * so that we can be sure we end up with equal probabilities + * over the prev coef contexts. + */ + if ((cpi->oxcf.error_resilient_mode & + VPX_ERROR_RESILIENT_PARTITIONS) && + cpi->common.frame_type == KEY_FRAME && newp != *Pold) { + u = 1; + } + +#if CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING + cpi->update_probs[i][j][k][t] = u; +#else + vp8_write(w, u, upd); +#endif + +#ifdef VP8_ENTROPY_STATS + ++tree_update_hist[i][j][k][t][u]; +#endif + + if (u) { + /* send/use new probability */ + + *Pold = newp; +#if !(CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING) + vp8_write_literal(w, newp, 8); +#endif + + savings += s; + } + + } while (++t < ENTROPY_NODES); + +/* Accum token counts for generation of default statistics */ +#ifdef VP8_ENTROPY_STATS + t = 0; + + do { + context_counters[i][j][k][t] += cpi->coef_counts[i][j][k][t]; + } while (++t < MAX_ENTROPY_TOKENS); + +#endif + + } while (++k < PREV_COEF_CONTEXTS); + } while (++j < COEF_BANDS); + } while (++i < BLOCK_TYPES); +} + +#if CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING +static void pack_coef_probs(VP8_COMP *cpi) { + int i = 0; + vp8_writer *const w = cpi->bc; + + do { + int j = 0; + + do { + int k = 0; + + do { + int t = 0; /* token/prob index */ + + do { + const vp8_prob newp = cpi->common.fc.coef_probs[i][j][k][t]; + const vp8_prob upd = vp8_coef_update_probs[i][j][k][t]; + + const char u = cpi->update_probs[i][j][k][t]; + + vp8_write(w, u, upd); + + if (u) { + /* send/use new probability */ + vp8_write_literal(w, newp, 8); + } + } while (++t < ENTROPY_NODES); + } while (++k < PREV_COEF_CONTEXTS); + } while (++j < COEF_BANDS); + } while (++i < BLOCK_TYPES); +} +#endif + +#ifdef PACKET_TESTING +FILE *vpxlogc = 0; +#endif + +static void put_delta_q(vp8_writer *bc, int delta_q) { + if (delta_q != 0) { + vp8_write_bit(bc, 1); + vp8_write_literal(bc, abs(delta_q), 4); + + if (delta_q < 0) + vp8_write_bit(bc, 1); + else + vp8_write_bit(bc, 0); + } else + vp8_write_bit(bc, 0); +} + +void vp8_pack_bitstream(VP8_COMP *cpi, unsigned char *dest, + unsigned char *dest_end, size_t *size) { + int i, j; + VP8_HEADER oh; + VP8_COMMON *const pc = &cpi->common; + vp8_writer *const bc = cpi->bc; + MACROBLOCKD *const xd = &cpi->mb.e_mbd; + int extra_bytes_packed = 0; + + unsigned char *cx_data = dest; + unsigned char *cx_data_end = dest_end; + const int *mb_feature_data_bits; + + oh.show_frame = (int)pc->show_frame; + oh.type = (int)pc->frame_type; + oh.version = pc->version; + oh.first_partition_length_in_bytes = 0; + + mb_feature_data_bits = vp8_mb_feature_data_bits; + + bc[0].error = &pc->error; + + validate_buffer(cx_data, 3, cx_data_end, &cpi->common.error); + cx_data += 3; + +#if defined(SECTIONBITS_OUTPUT) + Sectionbits[active_section = 1] += sizeof(VP8_HEADER) * 8 * 256; +#endif + + /* every keyframe send startcode, width, height, scale factor, clamp + * and color type + */ + if (oh.type == KEY_FRAME) { + int v; + + validate_buffer(cx_data, 7, cx_data_end, &cpi->common.error); + + /* Start / synch code */ + cx_data[0] = 0x9D; + cx_data[1] = 0x01; + cx_data[2] = 0x2a; + + v = (pc->horiz_scale << 14) | pc->Width; + cx_data[3] = v; + cx_data[4] = v >> 8; + + v = (pc->vert_scale << 14) | pc->Height; + cx_data[5] = v; + cx_data[6] = v >> 8; + + extra_bytes_packed = 7; + cx_data += extra_bytes_packed; + + vp8_start_encode(bc, cx_data, cx_data_end); + + /* signal clr type */ + vp8_write_bit(bc, 0); + vp8_write_bit(bc, pc->clamp_type); + + } else { + vp8_start_encode(bc, cx_data, cx_data_end); + } + + /* Signal whether or not Segmentation is enabled */ + vp8_write_bit(bc, xd->segmentation_enabled); + + /* Indicate which features are enabled */ + if (xd->segmentation_enabled) { + /* Signal whether or not the segmentation map is being updated. */ + vp8_write_bit(bc, xd->update_mb_segmentation_map); + vp8_write_bit(bc, xd->update_mb_segmentation_data); + + if (xd->update_mb_segmentation_data) { + signed char Data; + + vp8_write_bit(bc, xd->mb_segement_abs_delta); + + /* For each segmentation feature (Quant and loop filter level) */ + for (i = 0; i < MB_LVL_MAX; ++i) { + /* For each of the segments */ + for (j = 0; j < MAX_MB_SEGMENTS; ++j) { + Data = xd->segment_feature_data[i][j]; + + /* Frame level data */ + if (Data) { + vp8_write_bit(bc, 1); + + if (Data < 0) { + Data = -Data; + vp8_write_literal(bc, Data, mb_feature_data_bits[i]); + vp8_write_bit(bc, 1); + } else { + vp8_write_literal(bc, Data, mb_feature_data_bits[i]); + vp8_write_bit(bc, 0); + } + } else + vp8_write_bit(bc, 0); + } + } + } + + if (xd->update_mb_segmentation_map) { + /* Write the probs used to decode the segment id for each mb */ + for (i = 0; i < MB_FEATURE_TREE_PROBS; ++i) { + int Data = xd->mb_segment_tree_probs[i]; + + if (Data != 255) { + vp8_write_bit(bc, 1); + vp8_write_literal(bc, Data, 8); + } else + vp8_write_bit(bc, 0); + } + } + } + + vp8_write_bit(bc, pc->filter_type); + vp8_write_literal(bc, pc->filter_level, 6); + vp8_write_literal(bc, pc->sharpness_level, 3); + + /* Write out loop filter deltas applied at the MB level based on mode + * or ref frame (if they are enabled). + */ + vp8_write_bit(bc, xd->mode_ref_lf_delta_enabled); + + if (xd->mode_ref_lf_delta_enabled) { + /* Do the deltas need to be updated */ + int send_update = + xd->mode_ref_lf_delta_update || cpi->oxcf.error_resilient_mode; + + vp8_write_bit(bc, send_update); + if (send_update) { + int Data; + + /* Send update */ + for (i = 0; i < MAX_REF_LF_DELTAS; ++i) { + Data = xd->ref_lf_deltas[i]; + + /* Frame level data */ + if (xd->ref_lf_deltas[i] != xd->last_ref_lf_deltas[i] || + cpi->oxcf.error_resilient_mode) { + xd->last_ref_lf_deltas[i] = xd->ref_lf_deltas[i]; + vp8_write_bit(bc, 1); + + if (Data > 0) { + vp8_write_literal(bc, (Data & 0x3F), 6); + vp8_write_bit(bc, 0); /* sign */ + } else { + Data = -Data; + vp8_write_literal(bc, (Data & 0x3F), 6); + vp8_write_bit(bc, 1); /* sign */ + } + } else + vp8_write_bit(bc, 0); + } + + /* Send update */ + for (i = 0; i < MAX_MODE_LF_DELTAS; ++i) { + Data = xd->mode_lf_deltas[i]; + + if (xd->mode_lf_deltas[i] != xd->last_mode_lf_deltas[i] || + cpi->oxcf.error_resilient_mode) { + xd->last_mode_lf_deltas[i] = xd->mode_lf_deltas[i]; + vp8_write_bit(bc, 1); + + if (Data > 0) { + vp8_write_literal(bc, (Data & 0x3F), 6); + vp8_write_bit(bc, 0); /* sign */ + } else { + Data = -Data; + vp8_write_literal(bc, (Data & 0x3F), 6); + vp8_write_bit(bc, 1); /* sign */ + } + } else + vp8_write_bit(bc, 0); + } + } + } + + /* signal here is multi token partition is enabled */ + vp8_write_literal(bc, pc->multi_token_partition, 2); + + /* Frame Qbaseline quantizer index */ + vp8_write_literal(bc, pc->base_qindex, 7); + + /* Transmit Dc, Second order and Uv quantizer delta information */ + put_delta_q(bc, pc->y1dc_delta_q); + put_delta_q(bc, pc->y2dc_delta_q); + put_delta_q(bc, pc->y2ac_delta_q); + put_delta_q(bc, pc->uvdc_delta_q); + put_delta_q(bc, pc->uvac_delta_q); + + /* When there is a key frame all reference buffers are updated using + * the new key frame + */ + if (pc->frame_type != KEY_FRAME) { + /* Should the GF or ARF be updated using the transmitted frame + * or buffer + */ + vp8_write_bit(bc, pc->refresh_golden_frame); + vp8_write_bit(bc, pc->refresh_alt_ref_frame); + + /* If not being updated from current frame should either GF or ARF + * be updated from another buffer + */ + if (!pc->refresh_golden_frame) + vp8_write_literal(bc, pc->copy_buffer_to_gf, 2); + + if (!pc->refresh_alt_ref_frame) + vp8_write_literal(bc, pc->copy_buffer_to_arf, 2); + + /* Indicate reference frame sign bias for Golden and ARF frames + * (always 0 for last frame buffer) + */ + vp8_write_bit(bc, pc->ref_frame_sign_bias[GOLDEN_FRAME]); + vp8_write_bit(bc, pc->ref_frame_sign_bias[ALTREF_FRAME]); + } + +#if !(CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING) + if (cpi->oxcf.error_resilient_mode & VPX_ERROR_RESILIENT_PARTITIONS) { + if (pc->frame_type == KEY_FRAME) { + pc->refresh_entropy_probs = 1; + } else { + pc->refresh_entropy_probs = 0; + } + } +#endif + + vp8_write_bit(bc, pc->refresh_entropy_probs); + + if (pc->frame_type != KEY_FRAME) vp8_write_bit(bc, pc->refresh_last_frame); + +#ifdef VP8_ENTROPY_STATS + + if (pc->frame_type == INTER_FRAME) + active_section = 0; + else + active_section = 7; + +#endif + + vpx_clear_system_state(); + +#if CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING + pack_coef_probs(cpi); +#else + if (pc->refresh_entropy_probs == 0) { + /* save a copy for later refresh */ + memcpy(&cpi->common.lfc, &cpi->common.fc, sizeof(cpi->common.fc)); + } + + vp8_update_coef_probs(cpi); +#endif + +#ifdef VP8_ENTROPY_STATS + active_section = 2; +#endif + + /* Write out the mb_no_coeff_skip flag */ + vp8_write_bit(bc, pc->mb_no_coeff_skip); + + if (pc->frame_type == KEY_FRAME) { + write_kfmodes(cpi); + +#ifdef VP8_ENTROPY_STATS + active_section = 8; +#endif + } else { + pack_inter_mode_mvs(cpi); + +#ifdef VP8_ENTROPY_STATS + active_section = 1; +#endif + } + + vp8_stop_encode(bc); + + cx_data += bc->pos; + + oh.first_partition_length_in_bytes = cpi->bc->pos; + + /* update frame tag */ + { + int v = (oh.first_partition_length_in_bytes << 5) | (oh.show_frame << 4) | + (oh.version << 1) | oh.type; + + dest[0] = v; + dest[1] = v >> 8; + dest[2] = v >> 16; + } + + *size = VP8_HEADER_SIZE + extra_bytes_packed + cpi->bc->pos; + + cpi->partition_sz[0] = (unsigned int)*size; + +#if CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING + { + const int num_part = (1 << pc->multi_token_partition); + unsigned char *dp = cpi->partition_d[0] + cpi->partition_sz[0]; + + if (num_part > 1) { + /* write token part sizes (all but last) if more than 1 */ + validate_buffer(dp, 3 * (num_part - 1), cpi->partition_d_end[0], + &pc->error); + + cpi->partition_sz[0] += 3 * (num_part - 1); + + for (i = 1; i < num_part; ++i) { + write_partition_size(dp, cpi->partition_sz[i]); + dp += 3; + } + } + + if (!cpi->output_partition) { + /* concatenate partition buffers */ + for (i = 0; i < num_part; ++i) { + memmove(dp, cpi->partition_d[i + 1], cpi->partition_sz[i + 1]); + cpi->partition_d[i + 1] = dp; + dp += cpi->partition_sz[i + 1]; + } + } + + /* update total size */ + *size = 0; + for (i = 0; i < num_part + 1; ++i) { + *size += cpi->partition_sz[i]; + } + } +#else + if (pc->multi_token_partition != ONE_PARTITION) { + int num_part = 1 << pc->multi_token_partition; + + /* partition size table at the end of first partition */ + cpi->partition_sz[0] += 3 * (num_part - 1); + *size += 3 * (num_part - 1); + + validate_buffer(cx_data, 3 * (num_part - 1), cx_data_end, &pc->error); + + for (i = 1; i < num_part + 1; ++i) { + cpi->bc[i].error = &pc->error; + } + + pack_tokens_into_partitions(cpi, cx_data + 3 * (num_part - 1), cx_data_end, + num_part); + + for (i = 1; i < num_part; ++i) { + cpi->partition_sz[i] = cpi->bc[i].pos; + write_partition_size(cx_data, cpi->partition_sz[i]); + cx_data += 3; + *size += cpi->partition_sz[i]; /* add to total */ + } + + /* add last partition to total size */ + cpi->partition_sz[i] = cpi->bc[i].pos; + *size += cpi->partition_sz[i]; + } else { + bc[1].error = &pc->error; + + vp8_start_encode(&cpi->bc[1], cx_data, cx_data_end); + +#if CONFIG_MULTITHREAD + if (vpx_atomic_load_acquire(&cpi->b_multi_threaded)) { + pack_mb_row_tokens(cpi, &cpi->bc[1]); + } else { + vp8_pack_tokens(&cpi->bc[1], cpi->tok, cpi->tok_count); + } +#else + vp8_pack_tokens(&cpi->bc[1], cpi->tok, cpi->tok_count); +#endif // CONFIG_MULTITHREAD + + vp8_stop_encode(&cpi->bc[1]); + + *size += cpi->bc[1].pos; + cpi->partition_sz[1] = cpi->bc[1].pos; + } +#endif +} + +#ifdef VP8_ENTROPY_STATS +void print_tree_update_probs() { + int i, j, k, l; + FILE *f = fopen("context.c", "a"); + int Sum; + fprintf(f, "\n/* Update probabilities for token entropy tree. */\n\n"); + fprintf(f, + "const vp8_prob tree_update_probs[BLOCK_TYPES] [COEF_BANDS] " + "[PREV_COEF_CONTEXTS] [ENTROPY_NODES] = {\n"); + + for (i = 0; i < BLOCK_TYPES; ++i) { + fprintf(f, " { \n"); + + for (j = 0; j < COEF_BANDS; ++j) { + fprintf(f, " {\n"); + + for (k = 0; k < PREV_COEF_CONTEXTS; ++k) { + fprintf(f, " {"); + + for (l = 0; l < ENTROPY_NODES; ++l) { + Sum = + tree_update_hist[i][j][k][l][0] + tree_update_hist[i][j][k][l][1]; + + if (Sum > 0) { + if (((tree_update_hist[i][j][k][l][0] * 255) / Sum) > 0) + fprintf(f, "%3ld, ", + (tree_update_hist[i][j][k][l][0] * 255) / Sum); + else + fprintf(f, "%3ld, ", 1); + } else + fprintf(f, "%3ld, ", 128); + } + + fprintf(f, "},\n"); + } + + fprintf(f, " },\n"); + } + + fprintf(f, " },\n"); + } + + fprintf(f, "};\n"); + fclose(f); +} +#endif diff --git a/vp8/encoder/bitstream.h b/vp8/encoder/bitstream.h new file mode 100644 index 0000000..ed45bff --- /dev/null +++ b/vp8/encoder/bitstream.h @@ -0,0 +1,32 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP8_ENCODER_BITSTREAM_H_ +#define VP8_ENCODER_BITSTREAM_H_ + +#ifdef __cplusplus +extern "C" { +#endif + +#include "vp8/encoder/treewriter.h" +#include "vp8/encoder/tokenize.h" + +void vp8_pack_tokens(vp8_writer *w, const TOKENEXTRA *p, int xcount); +void vp8_convert_rfct_to_prob(struct VP8_COMP *const cpi); +void vp8_calc_ref_frame_costs(int *ref_frame_cost, int prob_intra, + int prob_last, int prob_garf); +int vp8_estimate_entropy_savings(struct VP8_COMP *cpi); +void vp8_update_coef_probs(struct VP8_COMP *cpi); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP8_ENCODER_BITSTREAM_H_ diff --git a/vp8/encoder/block.h b/vp8/encoder/block.h new file mode 100644 index 0000000..492af0e --- /dev/null +++ b/vp8/encoder/block.h @@ -0,0 +1,168 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP8_ENCODER_BLOCK_H_ +#define VP8_ENCODER_BLOCK_H_ + +#include "vp8/common/onyx.h" +#include "vp8/common/blockd.h" +#include "vp8/common/entropymv.h" +#include "vp8/common/entropy.h" +#include "vpx_ports/mem.h" + +#ifdef __cplusplus +extern "C" { +#endif + +#define MAX_MODES 20 +#define MAX_ERROR_BINS 1024 + +/* motion search site */ +typedef struct { + MV mv; + int offset; +} search_site; + +typedef struct block { + /* 16 Y blocks, 4 U blocks, 4 V blocks each with 16 entries */ + short *src_diff; + short *coeff; + + /* 16 Y blocks, 4 U blocks, 4 V blocks each with 16 entries */ + short *quant; + short *quant_fast; + short *quant_shift; + short *zbin; + short *zrun_zbin_boost; + short *round; + + /* Zbin Over Quant value */ + short zbin_extra; + + unsigned char **base_src; + int src; + int src_stride; +} BLOCK; + +typedef struct { + int count; + struct { + B_PREDICTION_MODE mode; + int_mv mv; + } bmi[16]; +} PARTITION_INFO; + +typedef struct macroblock { + DECLARE_ALIGNED(16, short, src_diff[400]); /* 25 blocks Y,U,V,Y2 */ + DECLARE_ALIGNED(16, short, coeff[400]); /* 25 blocks Y,U,V,Y2 */ + DECLARE_ALIGNED(16, unsigned char, thismb[256]); + + unsigned char *thismb_ptr; + /* 16 Y, 4 U, 4 V, 1 DC 2nd order block */ + BLOCK block[25]; + + YV12_BUFFER_CONFIG src; + + MACROBLOCKD e_mbd; + PARTITION_INFO *partition_info; /* work pointer */ + PARTITION_INFO *pi; /* Corresponds to upper left visible macroblock */ + PARTITION_INFO *pip; /* Base of allocated array */ + + int ref_frame_cost[MAX_REF_FRAMES]; + + search_site *ss; + int ss_count; + int searches_per_step; + + int errorperbit; + int sadperbit16; + int sadperbit4; + int rddiv; + int rdmult; + unsigned int *mb_activity_ptr; + int *mb_norm_activity_ptr; + signed int act_zbin_adj; + signed int last_act_zbin_adj; + + int *mvcost[2]; + int *mvsadcost[2]; + int (*mbmode_cost)[MB_MODE_COUNT]; + int (*intra_uv_mode_cost)[MB_MODE_COUNT]; + int (*bmode_costs)[10][10]; + int *inter_bmode_costs; + int (*token_costs)[COEF_BANDS][PREV_COEF_CONTEXTS][MAX_ENTROPY_TOKENS]; + + /* These define limits to motion vector components to prevent + * them from extending outside the UMV borders. + */ + int mv_col_min; + int mv_col_max; + int mv_row_min; + int mv_row_max; + + int skip; + + unsigned int encode_breakout; + + signed char *gf_active_ptr; + + unsigned char *active_ptr; + MV_CONTEXT *mvc; + + int optimize; + int q_index; + int is_skin; + int denoise_zeromv; + +#if CONFIG_TEMPORAL_DENOISING + int increase_denoising; + MB_PREDICTION_MODE best_sse_inter_mode; + int_mv best_sse_mv; + MV_REFERENCE_FRAME best_reference_frame; + MV_REFERENCE_FRAME best_zeromv_reference_frame; + unsigned char need_to_clamp_best_mvs; +#endif + + int skip_true_count; + unsigned int coef_counts[BLOCK_TYPES][COEF_BANDS][PREV_COEF_CONTEXTS] + [MAX_ENTROPY_TOKENS]; + unsigned int MVcount[2][MVvals]; /* (row,col) MV cts this frame */ + int ymode_count[VP8_YMODES]; /* intra MB type cts this frame */ + int uv_mode_count[VP8_UV_MODES]; /* intra MB type cts this frame */ + int64_t prediction_error; + int64_t intra_error; + int count_mb_ref_frame_usage[MAX_REF_FRAMES]; + + int rd_thresh_mult[MAX_MODES]; + int rd_threshes[MAX_MODES]; + unsigned int mbs_tested_so_far; + unsigned int mode_test_hit_counts[MAX_MODES]; + int zbin_mode_boost_enabled; + int zbin_mode_boost; + int last_zbin_mode_boost; + + int last_zbin_over_quant; + int zbin_over_quant; + int error_bins[MAX_ERROR_BINS]; + + void (*short_fdct4x4)(short *input, short *output, int pitch); + void (*short_fdct8x4)(short *input, short *output, int pitch); + void (*short_walsh4x4)(short *input, short *output, int pitch); + void (*quantize_b)(BLOCK *b, BLOCKD *d); + + unsigned int mbs_zero_last_dot_suppress; + int zero_last_dot_suppress; +} MACROBLOCK; + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP8_ENCODER_BLOCK_H_ diff --git a/vp8/encoder/boolhuff.c b/vp8/encoder/boolhuff.c new file mode 100644 index 0000000..04f8db9 --- /dev/null +++ b/vp8/encoder/boolhuff.c @@ -0,0 +1,67 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "boolhuff.h" + +#if defined(SECTIONBITS_OUTPUT) +unsigned __int64 Sectionbits[500]; + +#endif + +#ifdef VP8_ENTROPY_STATS +unsigned int active_section = 0; +#endif + +const unsigned int vp8_prob_cost[256] = { + 2047, 2047, 1791, 1641, 1535, 1452, 1385, 1328, 1279, 1235, 1196, 1161, 1129, + 1099, 1072, 1046, 1023, 1000, 979, 959, 940, 922, 905, 889, 873, 858, + 843, 829, 816, 803, 790, 778, 767, 755, 744, 733, 723, 713, 703, + 693, 684, 675, 666, 657, 649, 641, 633, 625, 617, 609, 602, 594, + 587, 580, 573, 567, 560, 553, 547, 541, 534, 528, 522, 516, 511, + 505, 499, 494, 488, 483, 477, 472, 467, 462, 457, 452, 447, 442, + 437, 433, 428, 424, 419, 415, 410, 406, 401, 397, 393, 389, 385, + 381, 377, 373, 369, 365, 361, 357, 353, 349, 346, 342, 338, 335, + 331, 328, 324, 321, 317, 314, 311, 307, 304, 301, 297, 294, 291, + 288, 285, 281, 278, 275, 272, 269, 266, 263, 260, 257, 255, 252, + 249, 246, 243, 240, 238, 235, 232, 229, 227, 224, 221, 219, 216, + 214, 211, 208, 206, 203, 201, 198, 196, 194, 191, 189, 186, 184, + 181, 179, 177, 174, 172, 170, 168, 165, 163, 161, 159, 156, 154, + 152, 150, 148, 145, 143, 141, 139, 137, 135, 133, 131, 129, 127, + 125, 123, 121, 119, 117, 115, 113, 111, 109, 107, 105, 103, 101, + 99, 97, 95, 93, 92, 90, 88, 86, 84, 82, 81, 79, 77, + 75, 73, 72, 70, 68, 66, 65, 63, 61, 60, 58, 56, 55, + 53, 51, 50, 48, 46, 45, 43, 41, 40, 38, 37, 35, 33, + 32, 30, 29, 27, 25, 24, 22, 21, 19, 18, 16, 15, 13, + 12, 10, 9, 7, 6, 4, 3, 1, 1 +}; + +void vp8_start_encode(BOOL_CODER *br, unsigned char *source, + unsigned char *source_end) { + br->lowvalue = 0; + br->range = 255; + br->count = -24; + br->buffer = source; + br->buffer_end = source_end; + br->pos = 0; +} + +void vp8_stop_encode(BOOL_CODER *br) { + int i; + + for (i = 0; i < 32; ++i) vp8_encode_bool(br, 0, 128); +} + +void vp8_encode_value(BOOL_CODER *br, int data, int bits) { + int bit; + + for (bit = bits - 1; bit >= 0; bit--) { + vp8_encode_bool(br, (1 & (data >> bit)), 0x80); + } +} diff --git a/vp8/encoder/boolhuff.h b/vp8/encoder/boolhuff.h new file mode 100644 index 0000000..d001eea --- /dev/null +++ b/vp8/encoder/boolhuff.h @@ -0,0 +1,124 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +/**************************************************************************** +* +* Module Title : boolhuff.h +* +* Description : Bool Coder header file. +* +****************************************************************************/ +#ifndef VP8_ENCODER_BOOLHUFF_H_ +#define VP8_ENCODER_BOOLHUFF_H_ + +#include "vpx_ports/mem.h" +#include "vpx/internal/vpx_codec_internal.h" + +#ifdef __cplusplus +extern "C" { +#endif + +typedef struct { + unsigned int lowvalue; + unsigned int range; + int count; + unsigned int pos; + unsigned char *buffer; + unsigned char *buffer_end; + struct vpx_internal_error_info *error; +} BOOL_CODER; + +extern void vp8_start_encode(BOOL_CODER *bc, unsigned char *buffer, + unsigned char *buffer_end); + +extern void vp8_encode_value(BOOL_CODER *br, int data, int bits); +extern void vp8_stop_encode(BOOL_CODER *bc); +extern const unsigned int vp8_prob_cost[256]; + +DECLARE_ALIGNED(16, extern const unsigned char, vp8_norm[256]); + +static int validate_buffer(const unsigned char *start, size_t len, + const unsigned char *end, + struct vpx_internal_error_info *error) { + if (start + len > start && start + len < end) { + return 1; + } else { + vpx_internal_error(error, VPX_CODEC_CORRUPT_FRAME, + "Truncated packet or corrupt partition "); + } + + return 0; +} +static void vp8_encode_bool(BOOL_CODER *br, int bit, int probability) { + unsigned int split; + int count = br->count; + unsigned int range = br->range; + unsigned int lowvalue = br->lowvalue; + register int shift; + +#ifdef VP8_ENTROPY_STATS +#if defined(SECTIONBITS_OUTPUT) + + if (bit) + Sectionbits[active_section] += vp8_prob_cost[255 - probability]; + else + Sectionbits[active_section] += vp8_prob_cost[probability]; + +#endif +#endif + + split = 1 + (((range - 1) * probability) >> 8); + + range = split; + + if (bit) { + lowvalue += split; + range = br->range - split; + } + + shift = vp8_norm[range]; + + range <<= shift; + count += shift; + + if (count >= 0) { + int offset = shift - count; + + if ((lowvalue << (offset - 1)) & 0x80000000) { + int x = br->pos - 1; + + while (x >= 0 && br->buffer[x] == 0xff) { + br->buffer[x] = (unsigned char)0; + x--; + } + + br->buffer[x] += 1; + } + + validate_buffer(br->buffer + br->pos, 1, br->buffer_end, br->error); + br->buffer[br->pos++] = (lowvalue >> (24 - offset)); + + lowvalue <<= offset; + shift = count; + lowvalue &= 0xffffff; + count -= 8; + } + + lowvalue <<= shift; + br->count = count; + br->lowvalue = lowvalue; + br->range = range; +} + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP8_ENCODER_BOOLHUFF_H_ diff --git a/vp8/encoder/dct.c b/vp8/encoder/dct.c new file mode 100644 index 0000000..7d214ea --- /dev/null +++ b/vp8/encoder/dct.c @@ -0,0 +1,108 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include + +#include "./vp8_rtcd.h" + +void vp8_short_fdct4x4_c(short *input, short *output, int pitch) { + int i; + int a1, b1, c1, d1; + short *ip = input; + short *op = output; + + for (i = 0; i < 4; ++i) { + a1 = ((ip[0] + ip[3]) * 8); + b1 = ((ip[1] + ip[2]) * 8); + c1 = ((ip[1] - ip[2]) * 8); + d1 = ((ip[0] - ip[3]) * 8); + + op[0] = a1 + b1; + op[2] = a1 - b1; + + op[1] = (c1 * 2217 + d1 * 5352 + 14500) >> 12; + op[3] = (d1 * 2217 - c1 * 5352 + 7500) >> 12; + + ip += pitch / 2; + op += 4; + } + ip = output; + op = output; + for (i = 0; i < 4; ++i) { + a1 = ip[0] + ip[12]; + b1 = ip[4] + ip[8]; + c1 = ip[4] - ip[8]; + d1 = ip[0] - ip[12]; + + op[0] = (a1 + b1 + 7) >> 4; + op[8] = (a1 - b1 + 7) >> 4; + + op[4] = ((c1 * 2217 + d1 * 5352 + 12000) >> 16) + (d1 != 0); + op[12] = (d1 * 2217 - c1 * 5352 + 51000) >> 16; + + ip++; + op++; + } +} + +void vp8_short_fdct8x4_c(short *input, short *output, int pitch) { + vp8_short_fdct4x4_c(input, output, pitch); + vp8_short_fdct4x4_c(input + 4, output + 16, pitch); +} + +void vp8_short_walsh4x4_c(short *input, short *output, int pitch) { + int i; + int a1, b1, c1, d1; + int a2, b2, c2, d2; + short *ip = input; + short *op = output; + + for (i = 0; i < 4; ++i) { + a1 = ((ip[0] + ip[2]) * 4); + d1 = ((ip[1] + ip[3]) * 4); + c1 = ((ip[1] - ip[3]) * 4); + b1 = ((ip[0] - ip[2]) * 4); + + op[0] = a1 + d1 + (a1 != 0); + op[1] = b1 + c1; + op[2] = b1 - c1; + op[3] = a1 - d1; + ip += pitch / 2; + op += 4; + } + + ip = output; + op = output; + + for (i = 0; i < 4; ++i) { + a1 = ip[0] + ip[8]; + d1 = ip[4] + ip[12]; + c1 = ip[4] - ip[12]; + b1 = ip[0] - ip[8]; + + a2 = a1 + d1; + b2 = b1 + c1; + c2 = b1 - c1; + d2 = a1 - d1; + + a2 += a2 < 0; + b2 += b2 < 0; + c2 += c2 < 0; + d2 += d2 < 0; + + op[0] = (a2 + 3) >> 3; + op[4] = (b2 + 3) >> 3; + op[8] = (c2 + 3) >> 3; + op[12] = (d2 + 3) >> 3; + + ip++; + op++; + } +} diff --git a/vp8/encoder/dct_value_cost.h b/vp8/encoder/dct_value_cost.h new file mode 100644 index 0000000..278dce7 --- /dev/null +++ b/vp8/encoder/dct_value_cost.h @@ -0,0 +1,344 @@ +/* + * Copyright (c) 2012 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP8_ENCODER_DCT_VALUE_COST_H_ +#define VP8_ENCODER_DCT_VALUE_COST_H_ + +#ifdef __cplusplus +extern "C" { +#endif + +/* Generated file, included by tokenize.c */ +/* Values generated by fill_value_tokens() */ + +static const short dct_value_cost[2048 * 2] = { + 8285, 8277, 8267, 8259, 8253, 8245, 8226, 8218, 8212, 8204, 8194, 8186, 8180, + 8172, 8150, 8142, 8136, 8128, 8118, 8110, 8104, 8096, 8077, 8069, 8063, 8055, + 8045, 8037, 8031, 8023, 7997, 7989, 7983, 7975, 7965, 7957, 7951, 7943, 7924, + 7916, 7910, 7902, 7892, 7884, 7878, 7870, 7848, 7840, 7834, 7826, 7816, 7808, + 7802, 7794, 7775, 7767, 7761, 7753, 7743, 7735, 7729, 7721, 7923, 7915, 7909, + 7901, 7891, 7883, 7877, 7869, 7850, 7842, 7836, 7828, 7818, 7810, 7804, 7796, + 7774, 7766, 7760, 7752, 7742, 7734, 7728, 7720, 7701, 7693, 7687, 7679, 7669, + 7661, 7655, 7647, 7621, 7613, 7607, 7599, 7589, 7581, 7575, 7567, 7548, 7540, + 7534, 7526, 7516, 7508, 7502, 7494, 7472, 7464, 7458, 7450, 7440, 7432, 7426, + 7418, 7399, 7391, 7385, 7377, 7367, 7359, 7353, 7345, 7479, 7471, 7465, 7457, + 7447, 7439, 7433, 7425, 7406, 7398, 7392, 7384, 7374, 7366, 7360, 7352, 7330, + 7322, 7316, 7308, 7298, 7290, 7284, 7276, 7257, 7249, 7243, 7235, 7225, 7217, + 7211, 7203, 7177, 7169, 7163, 7155, 7145, 7137, 7131, 7123, 7104, 7096, 7090, + 7082, 7072, 7064, 7058, 7050, 7028, 7020, 7014, 7006, 6996, 6988, 6982, 6974, + 6955, 6947, 6941, 6933, 6923, 6915, 6909, 6901, 7632, 7624, 7618, 7610, 7600, + 7592, 7586, 7578, 7559, 7551, 7545, 7537, 7527, 7519, 7513, 7505, 7483, 7475, + 7469, 7461, 7451, 7443, 7437, 7429, 7410, 7402, 7396, 7388, 7378, 7370, 7364, + 7356, 7330, 7322, 7316, 7308, 7298, 7290, 7284, 7276, 7257, 7249, 7243, 7235, + 7225, 7217, 7211, 7203, 7181, 7173, 7167, 7159, 7149, 7141, 7135, 7127, 7108, + 7100, 7094, 7086, 7076, 7068, 7062, 7054, 7188, 7180, 7174, 7166, 7156, 7148, + 7142, 7134, 7115, 7107, 7101, 7093, 7083, 7075, 7069, 7061, 7039, 7031, 7025, + 7017, 7007, 6999, 6993, 6985, 6966, 6958, 6952, 6944, 6934, 6926, 6920, 6912, + 6886, 6878, 6872, 6864, 6854, 6846, 6840, 6832, 6813, 6805, 6799, 6791, 6781, + 6773, 6767, 6759, 6737, 6729, 6723, 6715, 6705, 6697, 6691, 6683, 6664, 6656, + 6650, 6642, 6632, 6624, 6618, 6610, 6812, 6804, 6798, 6790, 6780, 6772, 6766, + 6758, 6739, 6731, 6725, 6717, 6707, 6699, 6693, 6685, 6663, 6655, 6649, 6641, + 6631, 6623, 6617, 6609, 6590, 6582, 6576, 6568, 6558, 6550, 6544, 6536, 6510, + 6502, 6496, 6488, 6478, 6470, 6464, 6456, 6437, 6429, 6423, 6415, 6405, 6397, + 6391, 6383, 6361, 6353, 6347, 6339, 6329, 6321, 6315, 6307, 6288, 6280, 6274, + 6266, 6256, 6248, 6242, 6234, 6368, 6360, 6354, 6346, 6336, 6328, 6322, 6314, + 6295, 6287, 6281, 6273, 6263, 6255, 6249, 6241, 6219, 6211, 6205, 6197, 6187, + 6179, 6173, 6165, 6146, 6138, 6132, 6124, 6114, 6106, 6100, 6092, 6066, 6058, + 6052, 6044, 6034, 6026, 6020, 6012, 5993, 5985, 5979, 5971, 5961, 5953, 5947, + 5939, 5917, 5909, 5903, 5895, 5885, 5877, 5871, 5863, 5844, 5836, 5830, 5822, + 5812, 5804, 5798, 5790, 6697, 6689, 6683, 6675, 6665, 6657, 6651, 6643, 6624, + 6616, 6610, 6602, 6592, 6584, 6578, 6570, 6548, 6540, 6534, 6526, 6516, 6508, + 6502, 6494, 6475, 6467, 6461, 6453, 6443, 6435, 6429, 6421, 6395, 6387, 6381, + 6373, 6363, 6355, 6349, 6341, 6322, 6314, 6308, 6300, 6290, 6282, 6276, 6268, + 6246, 6238, 6232, 6224, 6214, 6206, 6200, 6192, 6173, 6165, 6159, 6151, 6141, + 6133, 6127, 6119, 6253, 6245, 6239, 6231, 6221, 6213, 6207, 6199, 6180, 6172, + 6166, 6158, 6148, 6140, 6134, 6126, 6104, 6096, 6090, 6082, 6072, 6064, 6058, + 6050, 6031, 6023, 6017, 6009, 5999, 5991, 5985, 5977, 5951, 5943, 5937, 5929, + 5919, 5911, 5905, 5897, 5878, 5870, 5864, 5856, 5846, 5838, 5832, 5824, 5802, + 5794, 5788, 5780, 5770, 5762, 5756, 5748, 5729, 5721, 5715, 5707, 5697, 5689, + 5683, 5675, 5877, 5869, 5863, 5855, 5845, 5837, 5831, 5823, 5804, 5796, 5790, + 5782, 5772, 5764, 5758, 5750, 5728, 5720, 5714, 5706, 5696, 5688, 5682, 5674, + 5655, 5647, 5641, 5633, 5623, 5615, 5609, 5601, 5575, 5567, 5561, 5553, 5543, + 5535, 5529, 5521, 5502, 5494, 5488, 5480, 5470, 5462, 5456, 5448, 5426, 5418, + 5412, 5404, 5394, 5386, 5380, 5372, 5353, 5345, 5339, 5331, 5321, 5313, 5307, + 5299, 5433, 5425, 5419, 5411, 5401, 5393, 5387, 5379, 5360, 5352, 5346, 5338, + 5328, 5320, 5314, 5306, 5284, 5276, 5270, 5262, 5252, 5244, 5238, 5230, 5211, + 5203, 5197, 5189, 5179, 5171, 5165, 5157, 5131, 5123, 5117, 5109, 5099, 5091, + 5085, 5077, 5058, 5050, 5044, 5036, 5026, 5018, 5012, 5004, 4982, 4974, 4968, + 4960, 4950, 4942, 4936, 4928, 4909, 4901, 4895, 4887, 4877, 4869, 4863, 4855, + 5586, 5578, 5572, 5564, 5554, 5546, 5540, 5532, 5513, 5505, 5499, 5491, 5481, + 5473, 5467, 5459, 5437, 5429, 5423, 5415, 5405, 5397, 5391, 5383, 5364, 5356, + 5350, 5342, 5332, 5324, 5318, 5310, 5284, 5276, 5270, 5262, 5252, 5244, 5238, + 5230, 5211, 5203, 5197, 5189, 5179, 5171, 5165, 5157, 5135, 5127, 5121, 5113, + 5103, 5095, 5089, 5081, 5062, 5054, 5048, 5040, 5030, 5022, 5016, 5008, 5142, + 5134, 5128, 5120, 5110, 5102, 5096, 5088, 5069, 5061, 5055, 5047, 5037, 5029, + 5023, 5015, 4993, 4985, 4979, 4971, 4961, 4953, 4947, 4939, 4920, 4912, 4906, + 4898, 4888, 4880, 4874, 4866, 4840, 4832, 4826, 4818, 4808, 4800, 4794, 4786, + 4767, 4759, 4753, 4745, 4735, 4727, 4721, 4713, 4691, 4683, 4677, 4669, 4659, + 4651, 4645, 4637, 4618, 4610, 4604, 4596, 4586, 4578, 4572, 4564, 4766, 4758, + 4752, 4744, 4734, 4726, 4720, 4712, 4693, 4685, 4679, 4671, 4661, 4653, 4647, + 4639, 4617, 4609, 4603, 4595, 4585, 4577, 4571, 4563, 4544, 4536, 4530, 4522, + 4512, 4504, 4498, 4490, 4464, 4456, 4450, 4442, 4432, 4424, 4418, 4410, 4391, + 4383, 4377, 4369, 4359, 4351, 4345, 4337, 4315, 4307, 4301, 4293, 4283, 4275, + 4269, 4261, 4242, 4234, 4228, 4220, 4210, 4202, 4196, 4188, 4322, 4314, 4308, + 4300, 4290, 4282, 4276, 4268, 4249, 4241, 4235, 4227, 4217, 4209, 4203, 4195, + 4173, 4165, 4159, 4151, 4141, 4133, 4127, 4119, 4100, 4092, 4086, 4078, 4068, + 4060, 4054, 4046, 4020, 4012, 4006, 3998, 3988, 3980, 3974, 3966, 3947, 3939, + 3933, 3925, 3915, 3907, 3901, 3893, 3871, 3863, 3857, 3849, 3839, 3831, 3825, + 3817, 3798, 3790, 3784, 3776, 3766, 3758, 3752, 3744, 6697, 6689, 6683, 6675, + 6665, 6657, 6651, 6643, 6624, 6616, 6610, 6602, 6592, 6584, 6578, 6570, 6548, + 6540, 6534, 6526, 6516, 6508, 6502, 6494, 6475, 6467, 6461, 6453, 6443, 6435, + 6429, 6421, 6395, 6387, 6381, 6373, 6363, 6355, 6349, 6341, 6322, 6314, 6308, + 6300, 6290, 6282, 6276, 6268, 6246, 6238, 6232, 6224, 6214, 6206, 6200, 6192, + 6173, 6165, 6159, 6151, 6141, 6133, 6127, 6119, 6253, 6245, 6239, 6231, 6221, + 6213, 6207, 6199, 6180, 6172, 6166, 6158, 6148, 6140, 6134, 6126, 6104, 6096, + 6090, 6082, 6072, 6064, 6058, 6050, 6031, 6023, 6017, 6009, 5999, 5991, 5985, + 5977, 5951, 5943, 5937, 5929, 5919, 5911, 5905, 5897, 5878, 5870, 5864, 5856, + 5846, 5838, 5832, 5824, 5802, 5794, 5788, 5780, 5770, 5762, 5756, 5748, 5729, + 5721, 5715, 5707, 5697, 5689, 5683, 5675, 5877, 5869, 5863, 5855, 5845, 5837, + 5831, 5823, 5804, 5796, 5790, 5782, 5772, 5764, 5758, 5750, 5728, 5720, 5714, + 5706, 5696, 5688, 5682, 5674, 5655, 5647, 5641, 5633, 5623, 5615, 5609, 5601, + 5575, 5567, 5561, 5553, 5543, 5535, 5529, 5521, 5502, 5494, 5488, 5480, 5470, + 5462, 5456, 5448, 5426, 5418, 5412, 5404, 5394, 5386, 5380, 5372, 5353, 5345, + 5339, 5331, 5321, 5313, 5307, 5299, 5433, 5425, 5419, 5411, 5401, 5393, 5387, + 5379, 5360, 5352, 5346, 5338, 5328, 5320, 5314, 5306, 5284, 5276, 5270, 5262, + 5252, 5244, 5238, 5230, 5211, 5203, 5197, 5189, 5179, 5171, 5165, 5157, 5131, + 5123, 5117, 5109, 5099, 5091, 5085, 5077, 5058, 5050, 5044, 5036, 5026, 5018, + 5012, 5004, 4982, 4974, 4968, 4960, 4950, 4942, 4936, 4928, 4909, 4901, 4895, + 4887, 4877, 4869, 4863, 4855, 5586, 5578, 5572, 5564, 5554, 5546, 5540, 5532, + 5513, 5505, 5499, 5491, 5481, 5473, 5467, 5459, 5437, 5429, 5423, 5415, 5405, + 5397, 5391, 5383, 5364, 5356, 5350, 5342, 5332, 5324, 5318, 5310, 5284, 5276, + 5270, 5262, 5252, 5244, 5238, 5230, 5211, 5203, 5197, 5189, 5179, 5171, 5165, + 5157, 5135, 5127, 5121, 5113, 5103, 5095, 5089, 5081, 5062, 5054, 5048, 5040, + 5030, 5022, 5016, 5008, 5142, 5134, 5128, 5120, 5110, 5102, 5096, 5088, 5069, + 5061, 5055, 5047, 5037, 5029, 5023, 5015, 4993, 4985, 4979, 4971, 4961, 4953, + 4947, 4939, 4920, 4912, 4906, 4898, 4888, 4880, 4874, 4866, 4840, 4832, 4826, + 4818, 4808, 4800, 4794, 4786, 4767, 4759, 4753, 4745, 4735, 4727, 4721, 4713, + 4691, 4683, 4677, 4669, 4659, 4651, 4645, 4637, 4618, 4610, 4604, 4596, 4586, + 4578, 4572, 4564, 4766, 4758, 4752, 4744, 4734, 4726, 4720, 4712, 4693, 4685, + 4679, 4671, 4661, 4653, 4647, 4639, 4617, 4609, 4603, 4595, 4585, 4577, 4571, + 4563, 4544, 4536, 4530, 4522, 4512, 4504, 4498, 4490, 4464, 4456, 4450, 4442, + 4432, 4424, 4418, 4410, 4391, 4383, 4377, 4369, 4359, 4351, 4345, 4337, 4315, + 4307, 4301, 4293, 4283, 4275, 4269, 4261, 4242, 4234, 4228, 4220, 4210, 4202, + 4196, 4188, 4322, 4314, 4308, 4300, 4290, 4282, 4276, 4268, 4249, 4241, 4235, + 4227, 4217, 4209, 4203, 4195, 4173, 4165, 4159, 4151, 4141, 4133, 4127, 4119, + 4100, 4092, 4086, 4078, 4068, 4060, 4054, 4046, 4020, 4012, 4006, 3998, 3988, + 3980, 3974, 3966, 3947, 3939, 3933, 3925, 3915, 3907, 3901, 3893, 3871, 3863, + 3857, 3849, 3839, 3831, 3825, 3817, 3798, 3790, 3784, 3776, 3766, 3758, 3752, + 3744, 4651, 4643, 4637, 4629, 4619, 4611, 4605, 4597, 4578, 4570, 4564, 4556, + 4546, 4538, 4532, 4524, 4502, 4494, 4488, 4480, 4470, 4462, 4456, 4448, 4429, + 4421, 4415, 4407, 4397, 4389, 4383, 4375, 4349, 4341, 4335, 4327, 4317, 4309, + 4303, 4295, 4276, 4268, 4262, 4254, 4244, 4236, 4230, 4222, 4200, 4192, 4186, + 4178, 4168, 4160, 4154, 4146, 4127, 4119, 4113, 4105, 4095, 4087, 4081, 4073, + 4207, 4199, 4193, 4185, 4175, 4167, 4161, 4153, 4134, 4126, 4120, 4112, 4102, + 4094, 4088, 4080, 4058, 4050, 4044, 4036, 4026, 4018, 4012, 4004, 3985, 3977, + 3971, 3963, 3953, 3945, 3939, 3931, 3905, 3897, 3891, 3883, 3873, 3865, 3859, + 3851, 3832, 3824, 3818, 3810, 3800, 3792, 3786, 3778, 3756, 3748, 3742, 3734, + 3724, 3716, 3710, 3702, 3683, 3675, 3669, 3661, 3651, 3643, 3637, 3629, 3831, + 3823, 3817, 3809, 3799, 3791, 3785, 3777, 3758, 3750, 3744, 3736, 3726, 3718, + 3712, 3704, 3682, 3674, 3668, 3660, 3650, 3642, 3636, 3628, 3609, 3601, 3595, + 3587, 3577, 3569, 3563, 3555, 3529, 3521, 3515, 3507, 3497, 3489, 3483, 3475, + 3456, 3448, 3442, 3434, 3424, 3416, 3410, 3402, 3380, 3372, 3366, 3358, 3348, + 3340, 3334, 3326, 3307, 3299, 3293, 3285, 3275, 3267, 3261, 3253, 3387, 3379, + 3373, 3365, 3355, 3347, 3341, 3333, 3314, 3306, 3300, 3292, 3282, 3274, 3268, + 3260, 3238, 3230, 3224, 3216, 3206, 3198, 3192, 3184, 3165, 3157, 3151, 3143, + 3133, 3125, 3119, 3111, 3085, 3077, 3071, 3063, 3053, 3045, 3039, 3031, 3012, + 3004, 2998, 2990, 2980, 2972, 2966, 2958, 2936, 2928, 2922, 2914, 2904, 2896, + 2890, 2882, 2863, 2855, 2849, 2841, 2831, 2823, 2817, 2809, 3540, 3532, 3526, + 3518, 3508, 3500, 3494, 3486, 3467, 3459, 3453, 3445, 3435, 3427, 3421, 3413, + 3391, 3383, 3377, 3369, 3359, 3351, 3345, 3337, 3318, 3310, 3304, 3296, 3286, + 3278, 3272, 3264, 3238, 3230, 3224, 3216, 3206, 3198, 3192, 3184, 3165, 3157, + 3151, 3143, 3133, 3125, 3119, 3111, 3089, 3081, 3075, 3067, 3057, 3049, 3043, + 3035, 3016, 3008, 3002, 2994, 2984, 2976, 2970, 2962, 3096, 3088, 3082, 3074, + 3064, 3056, 3050, 3042, 3023, 3015, 3009, 3001, 2991, 2983, 2977, 2969, 2947, + 2939, 2933, 2925, 2915, 2907, 2901, 2893, 2874, 2866, 2860, 2852, 2842, 2834, + 2828, 2820, 2794, 2786, 2780, 2772, 2762, 2754, 2748, 2740, 2721, 2713, 2707, + 2699, 2689, 2681, 2675, 2667, 2645, 2637, 2631, 2623, 2613, 2605, 2599, 2591, + 2572, 2564, 2558, 2550, 2540, 2532, 2526, 2518, 2720, 2712, 2706, 2698, 2688, + 2680, 2674, 2666, 2647, 2639, 2633, 2625, 2615, 2607, 2601, 2593, 2571, 2563, + 2557, 2549, 2539, 2531, 2525, 2517, 2498, 2490, 2484, 2476, 2466, 2458, 2452, + 2444, 2418, 2410, 2404, 2396, 2386, 2378, 2372, 2364, 2345, 2337, 2331, 2323, + 2313, 2305, 2299, 2291, 2269, 2261, 2255, 2247, 2237, 2229, 2223, 2215, 2196, + 2188, 2182, 2174, 2164, 2156, 2150, 2142, 2276, 2268, 2262, 2254, 2244, 2236, + 2230, 2222, 2203, 2195, 2189, 2181, 2171, 2163, 2157, 2149, 2127, 2119, 2113, + 2105, 2095, 2087, 2081, 2073, 2054, 2046, 2040, 2032, 2022, 2014, 2008, 2000, + 1974, 1966, 1960, 1952, 1942, 1934, 1928, 1920, 1901, 1893, 1887, 1879, 1869, + 1861, 1855, 1847, 1825, 1817, 1811, 1803, 1793, 1785, 1779, 1771, 1752, 1744, + 1738, 1730, 1720, 1712, 1706, 1698, 1897, 1883, 1860, 1846, 1819, 1805, 1782, + 1768, 1723, 1709, 1686, 1672, 1645, 1631, 1608, 1594, 1574, 1560, 1537, 1523, + 1496, 1482, 1459, 1445, 1400, 1386, 1363, 1349, 1322, 1308, 1285, 1271, 1608, + 1565, 1535, 1492, 1446, 1403, 1373, 1330, 1312, 1269, 1239, 1196, 1150, 1107, + 1077, 1034, 1291, 1218, 1171, 1098, 1015, 942, 895, 822, 953, 850, 729, + 626, 618, 431, 257, 257, 257, 257, 0, 255, 255, 255, 255, 429, + 616, 624, 727, 848, 951, 820, 893, 940, 1013, 1096, 1169, 1216, 1289, + 1032, 1075, 1105, 1148, 1194, 1237, 1267, 1310, 1328, 1371, 1401, 1444, 1490, + 1533, 1563, 1606, 1269, 1283, 1306, 1320, 1347, 1361, 1384, 1398, 1443, 1457, + 1480, 1494, 1521, 1535, 1558, 1572, 1592, 1606, 1629, 1643, 1670, 1684, 1707, + 1721, 1766, 1780, 1803, 1817, 1844, 1858, 1881, 1895, 1696, 1704, 1710, 1718, + 1728, 1736, 1742, 1750, 1769, 1777, 1783, 1791, 1801, 1809, 1815, 1823, 1845, + 1853, 1859, 1867, 1877, 1885, 1891, 1899, 1918, 1926, 1932, 1940, 1950, 1958, + 1964, 1972, 1998, 2006, 2012, 2020, 2030, 2038, 2044, 2052, 2071, 2079, 2085, + 2093, 2103, 2111, 2117, 2125, 2147, 2155, 2161, 2169, 2179, 2187, 2193, 2201, + 2220, 2228, 2234, 2242, 2252, 2260, 2266, 2274, 2140, 2148, 2154, 2162, 2172, + 2180, 2186, 2194, 2213, 2221, 2227, 2235, 2245, 2253, 2259, 2267, 2289, 2297, + 2303, 2311, 2321, 2329, 2335, 2343, 2362, 2370, 2376, 2384, 2394, 2402, 2408, + 2416, 2442, 2450, 2456, 2464, 2474, 2482, 2488, 2496, 2515, 2523, 2529, 2537, + 2547, 2555, 2561, 2569, 2591, 2599, 2605, 2613, 2623, 2631, 2637, 2645, 2664, + 2672, 2678, 2686, 2696, 2704, 2710, 2718, 2516, 2524, 2530, 2538, 2548, 2556, + 2562, 2570, 2589, 2597, 2603, 2611, 2621, 2629, 2635, 2643, 2665, 2673, 2679, + 2687, 2697, 2705, 2711, 2719, 2738, 2746, 2752, 2760, 2770, 2778, 2784, 2792, + 2818, 2826, 2832, 2840, 2850, 2858, 2864, 2872, 2891, 2899, 2905, 2913, 2923, + 2931, 2937, 2945, 2967, 2975, 2981, 2989, 2999, 3007, 3013, 3021, 3040, 3048, + 3054, 3062, 3072, 3080, 3086, 3094, 2960, 2968, 2974, 2982, 2992, 3000, 3006, + 3014, 3033, 3041, 3047, 3055, 3065, 3073, 3079, 3087, 3109, 3117, 3123, 3131, + 3141, 3149, 3155, 3163, 3182, 3190, 3196, 3204, 3214, 3222, 3228, 3236, 3262, + 3270, 3276, 3284, 3294, 3302, 3308, 3316, 3335, 3343, 3349, 3357, 3367, 3375, + 3381, 3389, 3411, 3419, 3425, 3433, 3443, 3451, 3457, 3465, 3484, 3492, 3498, + 3506, 3516, 3524, 3530, 3538, 2807, 2815, 2821, 2829, 2839, 2847, 2853, 2861, + 2880, 2888, 2894, 2902, 2912, 2920, 2926, 2934, 2956, 2964, 2970, 2978, 2988, + 2996, 3002, 3010, 3029, 3037, 3043, 3051, 3061, 3069, 3075, 3083, 3109, 3117, + 3123, 3131, 3141, 3149, 3155, 3163, 3182, 3190, 3196, 3204, 3214, 3222, 3228, + 3236, 3258, 3266, 3272, 3280, 3290, 3298, 3304, 3312, 3331, 3339, 3345, 3353, + 3363, 3371, 3377, 3385, 3251, 3259, 3265, 3273, 3283, 3291, 3297, 3305, 3324, + 3332, 3338, 3346, 3356, 3364, 3370, 3378, 3400, 3408, 3414, 3422, 3432, 3440, + 3446, 3454, 3473, 3481, 3487, 3495, 3505, 3513, 3519, 3527, 3553, 3561, 3567, + 3575, 3585, 3593, 3599, 3607, 3626, 3634, 3640, 3648, 3658, 3666, 3672, 3680, + 3702, 3710, 3716, 3724, 3734, 3742, 3748, 3756, 3775, 3783, 3789, 3797, 3807, + 3815, 3821, 3829, 3627, 3635, 3641, 3649, 3659, 3667, 3673, 3681, 3700, 3708, + 3714, 3722, 3732, 3740, 3746, 3754, 3776, 3784, 3790, 3798, 3808, 3816, 3822, + 3830, 3849, 3857, 3863, 3871, 3881, 3889, 3895, 3903, 3929, 3937, 3943, 3951, + 3961, 3969, 3975, 3983, 4002, 4010, 4016, 4024, 4034, 4042, 4048, 4056, 4078, + 4086, 4092, 4100, 4110, 4118, 4124, 4132, 4151, 4159, 4165, 4173, 4183, 4191, + 4197, 4205, 4071, 4079, 4085, 4093, 4103, 4111, 4117, 4125, 4144, 4152, 4158, + 4166, 4176, 4184, 4190, 4198, 4220, 4228, 4234, 4242, 4252, 4260, 4266, 4274, + 4293, 4301, 4307, 4315, 4325, 4333, 4339, 4347, 4373, 4381, 4387, 4395, 4405, + 4413, 4419, 4427, 4446, 4454, 4460, 4468, 4478, 4486, 4492, 4500, 4522, 4530, + 4536, 4544, 4554, 4562, 4568, 4576, 4595, 4603, 4609, 4617, 4627, 4635, 4641, + 4649, 3742, 3750, 3756, 3764, 3774, 3782, 3788, 3796, 3815, 3823, 3829, 3837, + 3847, 3855, 3861, 3869, 3891, 3899, 3905, 3913, 3923, 3931, 3937, 3945, 3964, + 3972, 3978, 3986, 3996, 4004, 4010, 4018, 4044, 4052, 4058, 4066, 4076, 4084, + 4090, 4098, 4117, 4125, 4131, 4139, 4149, 4157, 4163, 4171, 4193, 4201, 4207, + 4215, 4225, 4233, 4239, 4247, 4266, 4274, 4280, 4288, 4298, 4306, 4312, 4320, + 4186, 4194, 4200, 4208, 4218, 4226, 4232, 4240, 4259, 4267, 4273, 4281, 4291, + 4299, 4305, 4313, 4335, 4343, 4349, 4357, 4367, 4375, 4381, 4389, 4408, 4416, + 4422, 4430, 4440, 4448, 4454, 4462, 4488, 4496, 4502, 4510, 4520, 4528, 4534, + 4542, 4561, 4569, 4575, 4583, 4593, 4601, 4607, 4615, 4637, 4645, 4651, 4659, + 4669, 4677, 4683, 4691, 4710, 4718, 4724, 4732, 4742, 4750, 4756, 4764, 4562, + 4570, 4576, 4584, 4594, 4602, 4608, 4616, 4635, 4643, 4649, 4657, 4667, 4675, + 4681, 4689, 4711, 4719, 4725, 4733, 4743, 4751, 4757, 4765, 4784, 4792, 4798, + 4806, 4816, 4824, 4830, 4838, 4864, 4872, 4878, 4886, 4896, 4904, 4910, 4918, + 4937, 4945, 4951, 4959, 4969, 4977, 4983, 4991, 5013, 5021, 5027, 5035, 5045, + 5053, 5059, 5067, 5086, 5094, 5100, 5108, 5118, 5126, 5132, 5140, 5006, 5014, + 5020, 5028, 5038, 5046, 5052, 5060, 5079, 5087, 5093, 5101, 5111, 5119, 5125, + 5133, 5155, 5163, 5169, 5177, 5187, 5195, 5201, 5209, 5228, 5236, 5242, 5250, + 5260, 5268, 5274, 5282, 5308, 5316, 5322, 5330, 5340, 5348, 5354, 5362, 5381, + 5389, 5395, 5403, 5413, 5421, 5427, 5435, 5457, 5465, 5471, 5479, 5489, 5497, + 5503, 5511, 5530, 5538, 5544, 5552, 5562, 5570, 5576, 5584, 4853, 4861, 4867, + 4875, 4885, 4893, 4899, 4907, 4926, 4934, 4940, 4948, 4958, 4966, 4972, 4980, + 5002, 5010, 5016, 5024, 5034, 5042, 5048, 5056, 5075, 5083, 5089, 5097, 5107, + 5115, 5121, 5129, 5155, 5163, 5169, 5177, 5187, 5195, 5201, 5209, 5228, 5236, + 5242, 5250, 5260, 5268, 5274, 5282, 5304, 5312, 5318, 5326, 5336, 5344, 5350, + 5358, 5377, 5385, 5391, 5399, 5409, 5417, 5423, 5431, 5297, 5305, 5311, 5319, + 5329, 5337, 5343, 5351, 5370, 5378, 5384, 5392, 5402, 5410, 5416, 5424, 5446, + 5454, 5460, 5468, 5478, 5486, 5492, 5500, 5519, 5527, 5533, 5541, 5551, 5559, + 5565, 5573, 5599, 5607, 5613, 5621, 5631, 5639, 5645, 5653, 5672, 5680, 5686, + 5694, 5704, 5712, 5718, 5726, 5748, 5756, 5762, 5770, 5780, 5788, 5794, 5802, + 5821, 5829, 5835, 5843, 5853, 5861, 5867, 5875, 5673, 5681, 5687, 5695, 5705, + 5713, 5719, 5727, 5746, 5754, 5760, 5768, 5778, 5786, 5792, 5800, 5822, 5830, + 5836, 5844, 5854, 5862, 5868, 5876, 5895, 5903, 5909, 5917, 5927, 5935, 5941, + 5949, 5975, 5983, 5989, 5997, 6007, 6015, 6021, 6029, 6048, 6056, 6062, 6070, + 6080, 6088, 6094, 6102, 6124, 6132, 6138, 6146, 6156, 6164, 6170, 6178, 6197, + 6205, 6211, 6219, 6229, 6237, 6243, 6251, 6117, 6125, 6131, 6139, 6149, 6157, + 6163, 6171, 6190, 6198, 6204, 6212, 6222, 6230, 6236, 6244, 6266, 6274, 6280, + 6288, 6298, 6306, 6312, 6320, 6339, 6347, 6353, 6361, 6371, 6379, 6385, 6393, + 6419, 6427, 6433, 6441, 6451, 6459, 6465, 6473, 6492, 6500, 6506, 6514, 6524, + 6532, 6538, 6546, 6568, 6576, 6582, 6590, 6600, 6608, 6614, 6622, 6641, 6649, + 6655, 6663, 6673, 6681, 6687, 6695, 3742, 3750, 3756, 3764, 3774, 3782, 3788, + 3796, 3815, 3823, 3829, 3837, 3847, 3855, 3861, 3869, 3891, 3899, 3905, 3913, + 3923, 3931, 3937, 3945, 3964, 3972, 3978, 3986, 3996, 4004, 4010, 4018, 4044, + 4052, 4058, 4066, 4076, 4084, 4090, 4098, 4117, 4125, 4131, 4139, 4149, 4157, + 4163, 4171, 4193, 4201, 4207, 4215, 4225, 4233, 4239, 4247, 4266, 4274, 4280, + 4288, 4298, 4306, 4312, 4320, 4186, 4194, 4200, 4208, 4218, 4226, 4232, 4240, + 4259, 4267, 4273, 4281, 4291, 4299, 4305, 4313, 4335, 4343, 4349, 4357, 4367, + 4375, 4381, 4389, 4408, 4416, 4422, 4430, 4440, 4448, 4454, 4462, 4488, 4496, + 4502, 4510, 4520, 4528, 4534, 4542, 4561, 4569, 4575, 4583, 4593, 4601, 4607, + 4615, 4637, 4645, 4651, 4659, 4669, 4677, 4683, 4691, 4710, 4718, 4724, 4732, + 4742, 4750, 4756, 4764, 4562, 4570, 4576, 4584, 4594, 4602, 4608, 4616, 4635, + 4643, 4649, 4657, 4667, 4675, 4681, 4689, 4711, 4719, 4725, 4733, 4743, 4751, + 4757, 4765, 4784, 4792, 4798, 4806, 4816, 4824, 4830, 4838, 4864, 4872, 4878, + 4886, 4896, 4904, 4910, 4918, 4937, 4945, 4951, 4959, 4969, 4977, 4983, 4991, + 5013, 5021, 5027, 5035, 5045, 5053, 5059, 5067, 5086, 5094, 5100, 5108, 5118, + 5126, 5132, 5140, 5006, 5014, 5020, 5028, 5038, 5046, 5052, 5060, 5079, 5087, + 5093, 5101, 5111, 5119, 5125, 5133, 5155, 5163, 5169, 5177, 5187, 5195, 5201, + 5209, 5228, 5236, 5242, 5250, 5260, 5268, 5274, 5282, 5308, 5316, 5322, 5330, + 5340, 5348, 5354, 5362, 5381, 5389, 5395, 5403, 5413, 5421, 5427, 5435, 5457, + 5465, 5471, 5479, 5489, 5497, 5503, 5511, 5530, 5538, 5544, 5552, 5562, 5570, + 5576, 5584, 4853, 4861, 4867, 4875, 4885, 4893, 4899, 4907, 4926, 4934, 4940, + 4948, 4958, 4966, 4972, 4980, 5002, 5010, 5016, 5024, 5034, 5042, 5048, 5056, + 5075, 5083, 5089, 5097, 5107, 5115, 5121, 5129, 5155, 5163, 5169, 5177, 5187, + 5195, 5201, 5209, 5228, 5236, 5242, 5250, 5260, 5268, 5274, 5282, 5304, 5312, + 5318, 5326, 5336, 5344, 5350, 5358, 5377, 5385, 5391, 5399, 5409, 5417, 5423, + 5431, 5297, 5305, 5311, 5319, 5329, 5337, 5343, 5351, 5370, 5378, 5384, 5392, + 5402, 5410, 5416, 5424, 5446, 5454, 5460, 5468, 5478, 5486, 5492, 5500, 5519, + 5527, 5533, 5541, 5551, 5559, 5565, 5573, 5599, 5607, 5613, 5621, 5631, 5639, + 5645, 5653, 5672, 5680, 5686, 5694, 5704, 5712, 5718, 5726, 5748, 5756, 5762, + 5770, 5780, 5788, 5794, 5802, 5821, 5829, 5835, 5843, 5853, 5861, 5867, 5875, + 5673, 5681, 5687, 5695, 5705, 5713, 5719, 5727, 5746, 5754, 5760, 5768, 5778, + 5786, 5792, 5800, 5822, 5830, 5836, 5844, 5854, 5862, 5868, 5876, 5895, 5903, + 5909, 5917, 5927, 5935, 5941, 5949, 5975, 5983, 5989, 5997, 6007, 6015, 6021, + 6029, 6048, 6056, 6062, 6070, 6080, 6088, 6094, 6102, 6124, 6132, 6138, 6146, + 6156, 6164, 6170, 6178, 6197, 6205, 6211, 6219, 6229, 6237, 6243, 6251, 6117, + 6125, 6131, 6139, 6149, 6157, 6163, 6171, 6190, 6198, 6204, 6212, 6222, 6230, + 6236, 6244, 6266, 6274, 6280, 6288, 6298, 6306, 6312, 6320, 6339, 6347, 6353, + 6361, 6371, 6379, 6385, 6393, 6419, 6427, 6433, 6441, 6451, 6459, 6465, 6473, + 6492, 6500, 6506, 6514, 6524, 6532, 6538, 6546, 6568, 6576, 6582, 6590, 6600, + 6608, 6614, 6622, 6641, 6649, 6655, 6663, 6673, 6681, 6687, 6695, 5788, 5796, + 5802, 5810, 5820, 5828, 5834, 5842, 5861, 5869, 5875, 5883, 5893, 5901, 5907, + 5915, 5937, 5945, 5951, 5959, 5969, 5977, 5983, 5991, 6010, 6018, 6024, 6032, + 6042, 6050, 6056, 6064, 6090, 6098, 6104, 6112, 6122, 6130, 6136, 6144, 6163, + 6171, 6177, 6185, 6195, 6203, 6209, 6217, 6239, 6247, 6253, 6261, 6271, 6279, + 6285, 6293, 6312, 6320, 6326, 6334, 6344, 6352, 6358, 6366, 6232, 6240, 6246, + 6254, 6264, 6272, 6278, 6286, 6305, 6313, 6319, 6327, 6337, 6345, 6351, 6359, + 6381, 6389, 6395, 6403, 6413, 6421, 6427, 6435, 6454, 6462, 6468, 6476, 6486, + 6494, 6500, 6508, 6534, 6542, 6548, 6556, 6566, 6574, 6580, 6588, 6607, 6615, + 6621, 6629, 6639, 6647, 6653, 6661, 6683, 6691, 6697, 6705, 6715, 6723, 6729, + 6737, 6756, 6764, 6770, 6778, 6788, 6796, 6802, 6810, 6608, 6616, 6622, 6630, + 6640, 6648, 6654, 6662, 6681, 6689, 6695, 6703, 6713, 6721, 6727, 6735, 6757, + 6765, 6771, 6779, 6789, 6797, 6803, 6811, 6830, 6838, 6844, 6852, 6862, 6870, + 6876, 6884, 6910, 6918, 6924, 6932, 6942, 6950, 6956, 6964, 6983, 6991, 6997, + 7005, 7015, 7023, 7029, 7037, 7059, 7067, 7073, 7081, 7091, 7099, 7105, 7113, + 7132, 7140, 7146, 7154, 7164, 7172, 7178, 7186, 7052, 7060, 7066, 7074, 7084, + 7092, 7098, 7106, 7125, 7133, 7139, 7147, 7157, 7165, 7171, 7179, 7201, 7209, + 7215, 7223, 7233, 7241, 7247, 7255, 7274, 7282, 7288, 7296, 7306, 7314, 7320, + 7328, 7354, 7362, 7368, 7376, 7386, 7394, 7400, 7408, 7427, 7435, 7441, 7449, + 7459, 7467, 7473, 7481, 7503, 7511, 7517, 7525, 7535, 7543, 7549, 7557, 7576, + 7584, 7590, 7598, 7608, 7616, 7622, 7630, 6899, 6907, 6913, 6921, 6931, 6939, + 6945, 6953, 6972, 6980, 6986, 6994, 7004, 7012, 7018, 7026, 7048, 7056, 7062, + 7070, 7080, 7088, 7094, 7102, 7121, 7129, 7135, 7143, 7153, 7161, 7167, 7175, + 7201, 7209, 7215, 7223, 7233, 7241, 7247, 7255, 7274, 7282, 7288, 7296, 7306, + 7314, 7320, 7328, 7350, 7358, 7364, 7372, 7382, 7390, 7396, 7404, 7423, 7431, + 7437, 7445, 7455, 7463, 7469, 7477, 7343, 7351, 7357, 7365, 7375, 7383, 7389, + 7397, 7416, 7424, 7430, 7438, 7448, 7456, 7462, 7470, 7492, 7500, 7506, 7514, + 7524, 7532, 7538, 7546, 7565, 7573, 7579, 7587, 7597, 7605, 7611, 7619, 7645, + 7653, 7659, 7667, 7677, 7685, 7691, 7699, 7718, 7726, 7732, 7740, 7750, 7758, + 7764, 7772, 7794, 7802, 7808, 7816, 7826, 7834, 7840, 7848, 7867, 7875, 7881, + 7889, 7899, 7907, 7913, 7921, 7719, 7727, 7733, 7741, 7751, 7759, 7765, 7773, + 7792, 7800, 7806, 7814, 7824, 7832, 7838, 7846, 7868, 7876, 7882, 7890, 7900, + 7908, 7914, 7922, 7941, 7949, 7955, 7963, 7973, 7981, 7987, 7995, 8021, 8029, + 8035, 8043, 8053, 8061, 8067, 8075, 8094, 8102, 8108, 8116, 8126, 8134, 8140, + 8148, 8170, 8178, 8184, 8192, 8202, 8210, 8216, 8224, 8243, 8251, 8257, 8265, + 8275 +}; + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP8_ENCODER_DCT_VALUE_COST_H_ diff --git a/vp8/encoder/dct_value_tokens.h b/vp8/encoder/dct_value_tokens.h new file mode 100644 index 0000000..0597dea --- /dev/null +++ b/vp8/encoder/dct_value_tokens.h @@ -0,0 +1,848 @@ +/* + * Copyright (c) 2012 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP8_ENCODER_DCT_VALUE_TOKENS_H_ +#define VP8_ENCODER_DCT_VALUE_TOKENS_H_ + +#ifdef __cplusplus +extern "C" { +#endif + +/* Generated file, included by tokenize.c */ +/* Values generated by fill_value_tokens() */ + +static const TOKENVALUE dct_value_tokens[2048 * 2] = { + { 10, 3963 }, { 10, 3961 }, { 10, 3959 }, { 10, 3957 }, { 10, 3955 }, + { 10, 3953 }, { 10, 3951 }, { 10, 3949 }, { 10, 3947 }, { 10, 3945 }, + { 10, 3943 }, { 10, 3941 }, { 10, 3939 }, { 10, 3937 }, { 10, 3935 }, + { 10, 3933 }, { 10, 3931 }, { 10, 3929 }, { 10, 3927 }, { 10, 3925 }, + { 10, 3923 }, { 10, 3921 }, { 10, 3919 }, { 10, 3917 }, { 10, 3915 }, + { 10, 3913 }, { 10, 3911 }, { 10, 3909 }, { 10, 3907 }, { 10, 3905 }, + { 10, 3903 }, { 10, 3901 }, { 10, 3899 }, { 10, 3897 }, { 10, 3895 }, + { 10, 3893 }, { 10, 3891 }, { 10, 3889 }, { 10, 3887 }, { 10, 3885 }, + { 10, 3883 }, { 10, 3881 }, { 10, 3879 }, { 10, 3877 }, { 10, 3875 }, + { 10, 3873 }, { 10, 3871 }, { 10, 3869 }, { 10, 3867 }, { 10, 3865 }, + { 10, 3863 }, { 10, 3861 }, { 10, 3859 }, { 10, 3857 }, { 10, 3855 }, + { 10, 3853 }, { 10, 3851 }, { 10, 3849 }, { 10, 3847 }, { 10, 3845 }, + { 10, 3843 }, { 10, 3841 }, { 10, 3839 }, { 10, 3837 }, { 10, 3835 }, + { 10, 3833 }, { 10, 3831 }, { 10, 3829 }, { 10, 3827 }, { 10, 3825 }, + { 10, 3823 }, { 10, 3821 }, { 10, 3819 }, { 10, 3817 }, { 10, 3815 }, + { 10, 3813 }, { 10, 3811 }, { 10, 3809 }, { 10, 3807 }, { 10, 3805 }, + { 10, 3803 }, { 10, 3801 }, { 10, 3799 }, { 10, 3797 }, { 10, 3795 }, + { 10, 3793 }, { 10, 3791 }, { 10, 3789 }, { 10, 3787 }, { 10, 3785 }, + { 10, 3783 }, { 10, 3781 }, { 10, 3779 }, { 10, 3777 }, { 10, 3775 }, + { 10, 3773 }, { 10, 3771 }, { 10, 3769 }, { 10, 3767 }, { 10, 3765 }, + { 10, 3763 }, { 10, 3761 }, { 10, 3759 }, { 10, 3757 }, { 10, 3755 }, + { 10, 3753 }, { 10, 3751 }, { 10, 3749 }, { 10, 3747 }, { 10, 3745 }, + { 10, 3743 }, { 10, 3741 }, { 10, 3739 }, { 10, 3737 }, { 10, 3735 }, + { 10, 3733 }, { 10, 3731 }, { 10, 3729 }, { 10, 3727 }, { 10, 3725 }, + { 10, 3723 }, { 10, 3721 }, { 10, 3719 }, { 10, 3717 }, { 10, 3715 }, + { 10, 3713 }, { 10, 3711 }, { 10, 3709 }, { 10, 3707 }, { 10, 3705 }, + { 10, 3703 }, { 10, 3701 }, { 10, 3699 }, { 10, 3697 }, { 10, 3695 }, + { 10, 3693 }, { 10, 3691 }, { 10, 3689 }, { 10, 3687 }, { 10, 3685 }, + { 10, 3683 }, { 10, 3681 }, { 10, 3679 }, { 10, 3677 }, { 10, 3675 }, + { 10, 3673 }, { 10, 3671 }, { 10, 3669 }, { 10, 3667 }, { 10, 3665 }, + { 10, 3663 }, { 10, 3661 }, { 10, 3659 }, { 10, 3657 }, { 10, 3655 }, + { 10, 3653 }, { 10, 3651 }, { 10, 3649 }, { 10, 3647 }, { 10, 3645 }, + { 10, 3643 }, { 10, 3641 }, { 10, 3639 }, { 10, 3637 }, { 10, 3635 }, + { 10, 3633 }, { 10, 3631 }, { 10, 3629 }, { 10, 3627 }, { 10, 3625 }, + { 10, 3623 }, { 10, 3621 }, { 10, 3619 }, { 10, 3617 }, { 10, 3615 }, + { 10, 3613 }, { 10, 3611 }, { 10, 3609 }, { 10, 3607 }, { 10, 3605 }, + { 10, 3603 }, { 10, 3601 }, { 10, 3599 }, { 10, 3597 }, { 10, 3595 }, + { 10, 3593 }, { 10, 3591 }, { 10, 3589 }, { 10, 3587 }, { 10, 3585 }, + { 10, 3583 }, { 10, 3581 }, { 10, 3579 }, { 10, 3577 }, { 10, 3575 }, + { 10, 3573 }, { 10, 3571 }, { 10, 3569 }, { 10, 3567 }, { 10, 3565 }, + { 10, 3563 }, { 10, 3561 }, { 10, 3559 }, { 10, 3557 }, { 10, 3555 }, + { 10, 3553 }, { 10, 3551 }, { 10, 3549 }, { 10, 3547 }, { 10, 3545 }, + { 10, 3543 }, { 10, 3541 }, { 10, 3539 }, { 10, 3537 }, { 10, 3535 }, + { 10, 3533 }, { 10, 3531 }, { 10, 3529 }, { 10, 3527 }, { 10, 3525 }, + { 10, 3523 }, { 10, 3521 }, { 10, 3519 }, { 10, 3517 }, { 10, 3515 }, + { 10, 3513 }, { 10, 3511 }, { 10, 3509 }, { 10, 3507 }, { 10, 3505 }, + { 10, 3503 }, { 10, 3501 }, { 10, 3499 }, { 10, 3497 }, { 10, 3495 }, + { 10, 3493 }, { 10, 3491 }, { 10, 3489 }, { 10, 3487 }, { 10, 3485 }, + { 10, 3483 }, { 10, 3481 }, { 10, 3479 }, { 10, 3477 }, { 10, 3475 }, + { 10, 3473 }, { 10, 3471 }, { 10, 3469 }, { 10, 3467 }, { 10, 3465 }, + { 10, 3463 }, { 10, 3461 }, { 10, 3459 }, { 10, 3457 }, { 10, 3455 }, + { 10, 3453 }, { 10, 3451 }, { 10, 3449 }, { 10, 3447 }, { 10, 3445 }, + { 10, 3443 }, { 10, 3441 }, { 10, 3439 }, { 10, 3437 }, { 10, 3435 }, + { 10, 3433 }, { 10, 3431 }, { 10, 3429 }, { 10, 3427 }, { 10, 3425 }, + { 10, 3423 }, { 10, 3421 }, { 10, 3419 }, { 10, 3417 }, { 10, 3415 }, + { 10, 3413 }, { 10, 3411 }, { 10, 3409 }, { 10, 3407 }, { 10, 3405 }, + { 10, 3403 }, { 10, 3401 }, { 10, 3399 }, { 10, 3397 }, { 10, 3395 }, + { 10, 3393 }, { 10, 3391 }, { 10, 3389 }, { 10, 3387 }, { 10, 3385 }, + { 10, 3383 }, { 10, 3381 }, { 10, 3379 }, { 10, 3377 }, { 10, 3375 }, + { 10, 3373 }, { 10, 3371 }, { 10, 3369 }, { 10, 3367 }, { 10, 3365 }, + { 10, 3363 }, { 10, 3361 }, { 10, 3359 }, { 10, 3357 }, { 10, 3355 }, + { 10, 3353 }, { 10, 3351 }, { 10, 3349 }, { 10, 3347 }, { 10, 3345 }, + { 10, 3343 }, { 10, 3341 }, { 10, 3339 }, { 10, 3337 }, { 10, 3335 }, + { 10, 3333 }, { 10, 3331 }, { 10, 3329 }, { 10, 3327 }, { 10, 3325 }, + { 10, 3323 }, { 10, 3321 }, { 10, 3319 }, { 10, 3317 }, { 10, 3315 }, + { 10, 3313 }, { 10, 3311 }, { 10, 3309 }, { 10, 3307 }, { 10, 3305 }, + { 10, 3303 }, { 10, 3301 }, { 10, 3299 }, { 10, 3297 }, { 10, 3295 }, + { 10, 3293 }, { 10, 3291 }, { 10, 3289 }, { 10, 3287 }, { 10, 3285 }, + { 10, 3283 }, { 10, 3281 }, { 10, 3279 }, { 10, 3277 }, { 10, 3275 }, + { 10, 3273 }, { 10, 3271 }, { 10, 3269 }, { 10, 3267 }, { 10, 3265 }, + { 10, 3263 }, { 10, 3261 }, { 10, 3259 }, { 10, 3257 }, { 10, 3255 }, + { 10, 3253 }, { 10, 3251 }, { 10, 3249 }, { 10, 3247 }, { 10, 3245 }, + { 10, 3243 }, { 10, 3241 }, { 10, 3239 }, { 10, 3237 }, { 10, 3235 }, + { 10, 3233 }, { 10, 3231 }, { 10, 3229 }, { 10, 3227 }, { 10, 3225 }, + { 10, 3223 }, { 10, 3221 }, { 10, 3219 }, { 10, 3217 }, { 10, 3215 }, + { 10, 3213 }, { 10, 3211 }, { 10, 3209 }, { 10, 3207 }, { 10, 3205 }, + { 10, 3203 }, { 10, 3201 }, { 10, 3199 }, { 10, 3197 }, { 10, 3195 }, + { 10, 3193 }, { 10, 3191 }, { 10, 3189 }, { 10, 3187 }, { 10, 3185 }, + { 10, 3183 }, { 10, 3181 }, { 10, 3179 }, { 10, 3177 }, { 10, 3175 }, + { 10, 3173 }, { 10, 3171 }, { 10, 3169 }, { 10, 3167 }, { 10, 3165 }, + { 10, 3163 }, { 10, 3161 }, { 10, 3159 }, { 10, 3157 }, { 10, 3155 }, + { 10, 3153 }, { 10, 3151 }, { 10, 3149 }, { 10, 3147 }, { 10, 3145 }, + { 10, 3143 }, { 10, 3141 }, { 10, 3139 }, { 10, 3137 }, { 10, 3135 }, + { 10, 3133 }, { 10, 3131 }, { 10, 3129 }, { 10, 3127 }, { 10, 3125 }, + { 10, 3123 }, { 10, 3121 }, { 10, 3119 }, { 10, 3117 }, { 10, 3115 }, + { 10, 3113 }, { 10, 3111 }, { 10, 3109 }, { 10, 3107 }, { 10, 3105 }, + { 10, 3103 }, { 10, 3101 }, { 10, 3099 }, { 10, 3097 }, { 10, 3095 }, + { 10, 3093 }, { 10, 3091 }, { 10, 3089 }, { 10, 3087 }, { 10, 3085 }, + { 10, 3083 }, { 10, 3081 }, { 10, 3079 }, { 10, 3077 }, { 10, 3075 }, + { 10, 3073 }, { 10, 3071 }, { 10, 3069 }, { 10, 3067 }, { 10, 3065 }, + { 10, 3063 }, { 10, 3061 }, { 10, 3059 }, { 10, 3057 }, { 10, 3055 }, + { 10, 3053 }, { 10, 3051 }, { 10, 3049 }, { 10, 3047 }, { 10, 3045 }, + { 10, 3043 }, { 10, 3041 }, { 10, 3039 }, { 10, 3037 }, { 10, 3035 }, + { 10, 3033 }, { 10, 3031 }, { 10, 3029 }, { 10, 3027 }, { 10, 3025 }, + { 10, 3023 }, { 10, 3021 }, { 10, 3019 }, { 10, 3017 }, { 10, 3015 }, + { 10, 3013 }, { 10, 3011 }, { 10, 3009 }, { 10, 3007 }, { 10, 3005 }, + { 10, 3003 }, { 10, 3001 }, { 10, 2999 }, { 10, 2997 }, { 10, 2995 }, + { 10, 2993 }, { 10, 2991 }, { 10, 2989 }, { 10, 2987 }, { 10, 2985 }, + { 10, 2983 }, { 10, 2981 }, { 10, 2979 }, { 10, 2977 }, { 10, 2975 }, + { 10, 2973 }, { 10, 2971 }, { 10, 2969 }, { 10, 2967 }, { 10, 2965 }, + { 10, 2963 }, { 10, 2961 }, { 10, 2959 }, { 10, 2957 }, { 10, 2955 }, + { 10, 2953 }, { 10, 2951 }, { 10, 2949 }, { 10, 2947 }, { 10, 2945 }, + { 10, 2943 }, { 10, 2941 }, { 10, 2939 }, { 10, 2937 }, { 10, 2935 }, + { 10, 2933 }, { 10, 2931 }, { 10, 2929 }, { 10, 2927 }, { 10, 2925 }, + { 10, 2923 }, { 10, 2921 }, { 10, 2919 }, { 10, 2917 }, { 10, 2915 }, + { 10, 2913 }, { 10, 2911 }, { 10, 2909 }, { 10, 2907 }, { 10, 2905 }, + { 10, 2903 }, { 10, 2901 }, { 10, 2899 }, { 10, 2897 }, { 10, 2895 }, + { 10, 2893 }, { 10, 2891 }, { 10, 2889 }, { 10, 2887 }, { 10, 2885 }, + { 10, 2883 }, { 10, 2881 }, { 10, 2879 }, { 10, 2877 }, { 10, 2875 }, + { 10, 2873 }, { 10, 2871 }, { 10, 2869 }, { 10, 2867 }, { 10, 2865 }, + { 10, 2863 }, { 10, 2861 }, { 10, 2859 }, { 10, 2857 }, { 10, 2855 }, + { 10, 2853 }, { 10, 2851 }, { 10, 2849 }, { 10, 2847 }, { 10, 2845 }, + { 10, 2843 }, { 10, 2841 }, { 10, 2839 }, { 10, 2837 }, { 10, 2835 }, + { 10, 2833 }, { 10, 2831 }, { 10, 2829 }, { 10, 2827 }, { 10, 2825 }, + { 10, 2823 }, { 10, 2821 }, { 10, 2819 }, { 10, 2817 }, { 10, 2815 }, + { 10, 2813 }, { 10, 2811 }, { 10, 2809 }, { 10, 2807 }, { 10, 2805 }, + { 10, 2803 }, { 10, 2801 }, { 10, 2799 }, { 10, 2797 }, { 10, 2795 }, + { 10, 2793 }, { 10, 2791 }, { 10, 2789 }, { 10, 2787 }, { 10, 2785 }, + { 10, 2783 }, { 10, 2781 }, { 10, 2779 }, { 10, 2777 }, { 10, 2775 }, + { 10, 2773 }, { 10, 2771 }, { 10, 2769 }, { 10, 2767 }, { 10, 2765 }, + { 10, 2763 }, { 10, 2761 }, { 10, 2759 }, { 10, 2757 }, { 10, 2755 }, + { 10, 2753 }, { 10, 2751 }, { 10, 2749 }, { 10, 2747 }, { 10, 2745 }, + { 10, 2743 }, { 10, 2741 }, { 10, 2739 }, { 10, 2737 }, { 10, 2735 }, + { 10, 2733 }, { 10, 2731 }, { 10, 2729 }, { 10, 2727 }, { 10, 2725 }, + { 10, 2723 }, { 10, 2721 }, { 10, 2719 }, { 10, 2717 }, { 10, 2715 }, + { 10, 2713 }, { 10, 2711 }, { 10, 2709 }, { 10, 2707 }, { 10, 2705 }, + { 10, 2703 }, { 10, 2701 }, { 10, 2699 }, { 10, 2697 }, { 10, 2695 }, + { 10, 2693 }, { 10, 2691 }, { 10, 2689 }, { 10, 2687 }, { 10, 2685 }, + { 10, 2683 }, { 10, 2681 }, { 10, 2679 }, { 10, 2677 }, { 10, 2675 }, + { 10, 2673 }, { 10, 2671 }, { 10, 2669 }, { 10, 2667 }, { 10, 2665 }, + { 10, 2663 }, { 10, 2661 }, { 10, 2659 }, { 10, 2657 }, { 10, 2655 }, + { 10, 2653 }, { 10, 2651 }, { 10, 2649 }, { 10, 2647 }, { 10, 2645 }, + { 10, 2643 }, { 10, 2641 }, { 10, 2639 }, { 10, 2637 }, { 10, 2635 }, + { 10, 2633 }, { 10, 2631 }, { 10, 2629 }, { 10, 2627 }, { 10, 2625 }, + { 10, 2623 }, { 10, 2621 }, { 10, 2619 }, { 10, 2617 }, { 10, 2615 }, + { 10, 2613 }, { 10, 2611 }, { 10, 2609 }, { 10, 2607 }, { 10, 2605 }, + { 10, 2603 }, { 10, 2601 }, { 10, 2599 }, { 10, 2597 }, { 10, 2595 }, + { 10, 2593 }, { 10, 2591 }, { 10, 2589 }, { 10, 2587 }, { 10, 2585 }, + { 10, 2583 }, { 10, 2581 }, { 10, 2579 }, { 10, 2577 }, { 10, 2575 }, + { 10, 2573 }, { 10, 2571 }, { 10, 2569 }, { 10, 2567 }, { 10, 2565 }, + { 10, 2563 }, { 10, 2561 }, { 10, 2559 }, { 10, 2557 }, { 10, 2555 }, + { 10, 2553 }, { 10, 2551 }, { 10, 2549 }, { 10, 2547 }, { 10, 2545 }, + { 10, 2543 }, { 10, 2541 }, { 10, 2539 }, { 10, 2537 }, { 10, 2535 }, + { 10, 2533 }, { 10, 2531 }, { 10, 2529 }, { 10, 2527 }, { 10, 2525 }, + { 10, 2523 }, { 10, 2521 }, { 10, 2519 }, { 10, 2517 }, { 10, 2515 }, + { 10, 2513 }, { 10, 2511 }, { 10, 2509 }, { 10, 2507 }, { 10, 2505 }, + { 10, 2503 }, { 10, 2501 }, { 10, 2499 }, { 10, 2497 }, { 10, 2495 }, + { 10, 2493 }, { 10, 2491 }, { 10, 2489 }, { 10, 2487 }, { 10, 2485 }, + { 10, 2483 }, { 10, 2481 }, { 10, 2479 }, { 10, 2477 }, { 10, 2475 }, + { 10, 2473 }, { 10, 2471 }, { 10, 2469 }, { 10, 2467 }, { 10, 2465 }, + { 10, 2463 }, { 10, 2461 }, { 10, 2459 }, { 10, 2457 }, { 10, 2455 }, + { 10, 2453 }, { 10, 2451 }, { 10, 2449 }, { 10, 2447 }, { 10, 2445 }, + { 10, 2443 }, { 10, 2441 }, { 10, 2439 }, { 10, 2437 }, { 10, 2435 }, + { 10, 2433 }, { 10, 2431 }, { 10, 2429 }, { 10, 2427 }, { 10, 2425 }, + { 10, 2423 }, { 10, 2421 }, { 10, 2419 }, { 10, 2417 }, { 10, 2415 }, + { 10, 2413 }, { 10, 2411 }, { 10, 2409 }, { 10, 2407 }, { 10, 2405 }, + { 10, 2403 }, { 10, 2401 }, { 10, 2399 }, { 10, 2397 }, { 10, 2395 }, + { 10, 2393 }, { 10, 2391 }, { 10, 2389 }, { 10, 2387 }, { 10, 2385 }, + { 10, 2383 }, { 10, 2381 }, { 10, 2379 }, { 10, 2377 }, { 10, 2375 }, + { 10, 2373 }, { 10, 2371 }, { 10, 2369 }, { 10, 2367 }, { 10, 2365 }, + { 10, 2363 }, { 10, 2361 }, { 10, 2359 }, { 10, 2357 }, { 10, 2355 }, + { 10, 2353 }, { 10, 2351 }, { 10, 2349 }, { 10, 2347 }, { 10, 2345 }, + { 10, 2343 }, { 10, 2341 }, { 10, 2339 }, { 10, 2337 }, { 10, 2335 }, + { 10, 2333 }, { 10, 2331 }, { 10, 2329 }, { 10, 2327 }, { 10, 2325 }, + { 10, 2323 }, { 10, 2321 }, { 10, 2319 }, { 10, 2317 }, { 10, 2315 }, + { 10, 2313 }, { 10, 2311 }, { 10, 2309 }, { 10, 2307 }, { 10, 2305 }, + { 10, 2303 }, { 10, 2301 }, { 10, 2299 }, { 10, 2297 }, { 10, 2295 }, + { 10, 2293 }, { 10, 2291 }, { 10, 2289 }, { 10, 2287 }, { 10, 2285 }, + { 10, 2283 }, { 10, 2281 }, { 10, 2279 }, { 10, 2277 }, { 10, 2275 }, + { 10, 2273 }, { 10, 2271 }, { 10, 2269 }, { 10, 2267 }, { 10, 2265 }, + { 10, 2263 }, { 10, 2261 }, { 10, 2259 }, { 10, 2257 }, { 10, 2255 }, + { 10, 2253 }, { 10, 2251 }, { 10, 2249 }, { 10, 2247 }, { 10, 2245 }, + { 10, 2243 }, { 10, 2241 }, { 10, 2239 }, { 10, 2237 }, { 10, 2235 }, + { 10, 2233 }, { 10, 2231 }, { 10, 2229 }, { 10, 2227 }, { 10, 2225 }, + { 10, 2223 }, { 10, 2221 }, { 10, 2219 }, { 10, 2217 }, { 10, 2215 }, + { 10, 2213 }, { 10, 2211 }, { 10, 2209 }, { 10, 2207 }, { 10, 2205 }, + { 10, 2203 }, { 10, 2201 }, { 10, 2199 }, { 10, 2197 }, { 10, 2195 }, + { 10, 2193 }, { 10, 2191 }, { 10, 2189 }, { 10, 2187 }, { 10, 2185 }, + { 10, 2183 }, { 10, 2181 }, { 10, 2179 }, { 10, 2177 }, { 10, 2175 }, + { 10, 2173 }, { 10, 2171 }, { 10, 2169 }, { 10, 2167 }, { 10, 2165 }, + { 10, 2163 }, { 10, 2161 }, { 10, 2159 }, { 10, 2157 }, { 10, 2155 }, + { 10, 2153 }, { 10, 2151 }, { 10, 2149 }, { 10, 2147 }, { 10, 2145 }, + { 10, 2143 }, { 10, 2141 }, { 10, 2139 }, { 10, 2137 }, { 10, 2135 }, + { 10, 2133 }, { 10, 2131 }, { 10, 2129 }, { 10, 2127 }, { 10, 2125 }, + { 10, 2123 }, { 10, 2121 }, { 10, 2119 }, { 10, 2117 }, { 10, 2115 }, + { 10, 2113 }, { 10, 2111 }, { 10, 2109 }, { 10, 2107 }, { 10, 2105 }, + { 10, 2103 }, { 10, 2101 }, { 10, 2099 }, { 10, 2097 }, { 10, 2095 }, + { 10, 2093 }, { 10, 2091 }, { 10, 2089 }, { 10, 2087 }, { 10, 2085 }, + { 10, 2083 }, { 10, 2081 }, { 10, 2079 }, { 10, 2077 }, { 10, 2075 }, + { 10, 2073 }, { 10, 2071 }, { 10, 2069 }, { 10, 2067 }, { 10, 2065 }, + { 10, 2063 }, { 10, 2061 }, { 10, 2059 }, { 10, 2057 }, { 10, 2055 }, + { 10, 2053 }, { 10, 2051 }, { 10, 2049 }, { 10, 2047 }, { 10, 2045 }, + { 10, 2043 }, { 10, 2041 }, { 10, 2039 }, { 10, 2037 }, { 10, 2035 }, + { 10, 2033 }, { 10, 2031 }, { 10, 2029 }, { 10, 2027 }, { 10, 2025 }, + { 10, 2023 }, { 10, 2021 }, { 10, 2019 }, { 10, 2017 }, { 10, 2015 }, + { 10, 2013 }, { 10, 2011 }, { 10, 2009 }, { 10, 2007 }, { 10, 2005 }, + { 10, 2003 }, { 10, 2001 }, { 10, 1999 }, { 10, 1997 }, { 10, 1995 }, + { 10, 1993 }, { 10, 1991 }, { 10, 1989 }, { 10, 1987 }, { 10, 1985 }, + { 10, 1983 }, { 10, 1981 }, { 10, 1979 }, { 10, 1977 }, { 10, 1975 }, + { 10, 1973 }, { 10, 1971 }, { 10, 1969 }, { 10, 1967 }, { 10, 1965 }, + { 10, 1963 }, { 10, 1961 }, { 10, 1959 }, { 10, 1957 }, { 10, 1955 }, + { 10, 1953 }, { 10, 1951 }, { 10, 1949 }, { 10, 1947 }, { 10, 1945 }, + { 10, 1943 }, { 10, 1941 }, { 10, 1939 }, { 10, 1937 }, { 10, 1935 }, + { 10, 1933 }, { 10, 1931 }, { 10, 1929 }, { 10, 1927 }, { 10, 1925 }, + { 10, 1923 }, { 10, 1921 }, { 10, 1919 }, { 10, 1917 }, { 10, 1915 }, + { 10, 1913 }, { 10, 1911 }, { 10, 1909 }, { 10, 1907 }, { 10, 1905 }, + { 10, 1903 }, { 10, 1901 }, { 10, 1899 }, { 10, 1897 }, { 10, 1895 }, + { 10, 1893 }, { 10, 1891 }, { 10, 1889 }, { 10, 1887 }, { 10, 1885 }, + { 10, 1883 }, { 10, 1881 }, { 10, 1879 }, { 10, 1877 }, { 10, 1875 }, + { 10, 1873 }, { 10, 1871 }, { 10, 1869 }, { 10, 1867 }, { 10, 1865 }, + { 10, 1863 }, { 10, 1861 }, { 10, 1859 }, { 10, 1857 }, { 10, 1855 }, + { 10, 1853 }, { 10, 1851 }, { 10, 1849 }, { 10, 1847 }, { 10, 1845 }, + { 10, 1843 }, { 10, 1841 }, { 10, 1839 }, { 10, 1837 }, { 10, 1835 }, + { 10, 1833 }, { 10, 1831 }, { 10, 1829 }, { 10, 1827 }, { 10, 1825 }, + { 10, 1823 }, { 10, 1821 }, { 10, 1819 }, { 10, 1817 }, { 10, 1815 }, + { 10, 1813 }, { 10, 1811 }, { 10, 1809 }, { 10, 1807 }, { 10, 1805 }, + { 10, 1803 }, { 10, 1801 }, { 10, 1799 }, { 10, 1797 }, { 10, 1795 }, + { 10, 1793 }, { 10, 1791 }, { 10, 1789 }, { 10, 1787 }, { 10, 1785 }, + { 10, 1783 }, { 10, 1781 }, { 10, 1779 }, { 10, 1777 }, { 10, 1775 }, + { 10, 1773 }, { 10, 1771 }, { 10, 1769 }, { 10, 1767 }, { 10, 1765 }, + { 10, 1763 }, { 10, 1761 }, { 10, 1759 }, { 10, 1757 }, { 10, 1755 }, + { 10, 1753 }, { 10, 1751 }, { 10, 1749 }, { 10, 1747 }, { 10, 1745 }, + { 10, 1743 }, { 10, 1741 }, { 10, 1739 }, { 10, 1737 }, { 10, 1735 }, + { 10, 1733 }, { 10, 1731 }, { 10, 1729 }, { 10, 1727 }, { 10, 1725 }, + { 10, 1723 }, { 10, 1721 }, { 10, 1719 }, { 10, 1717 }, { 10, 1715 }, + { 10, 1713 }, { 10, 1711 }, { 10, 1709 }, { 10, 1707 }, { 10, 1705 }, + { 10, 1703 }, { 10, 1701 }, { 10, 1699 }, { 10, 1697 }, { 10, 1695 }, + { 10, 1693 }, { 10, 1691 }, { 10, 1689 }, { 10, 1687 }, { 10, 1685 }, + { 10, 1683 }, { 10, 1681 }, { 10, 1679 }, { 10, 1677 }, { 10, 1675 }, + { 10, 1673 }, { 10, 1671 }, { 10, 1669 }, { 10, 1667 }, { 10, 1665 }, + { 10, 1663 }, { 10, 1661 }, { 10, 1659 }, { 10, 1657 }, { 10, 1655 }, + { 10, 1653 }, { 10, 1651 }, { 10, 1649 }, { 10, 1647 }, { 10, 1645 }, + { 10, 1643 }, { 10, 1641 }, { 10, 1639 }, { 10, 1637 }, { 10, 1635 }, + { 10, 1633 }, { 10, 1631 }, { 10, 1629 }, { 10, 1627 }, { 10, 1625 }, + { 10, 1623 }, { 10, 1621 }, { 10, 1619 }, { 10, 1617 }, { 10, 1615 }, + { 10, 1613 }, { 10, 1611 }, { 10, 1609 }, { 10, 1607 }, { 10, 1605 }, + { 10, 1603 }, { 10, 1601 }, { 10, 1599 }, { 10, 1597 }, { 10, 1595 }, + { 10, 1593 }, { 10, 1591 }, { 10, 1589 }, { 10, 1587 }, { 10, 1585 }, + { 10, 1583 }, { 10, 1581 }, { 10, 1579 }, { 10, 1577 }, { 10, 1575 }, + { 10, 1573 }, { 10, 1571 }, { 10, 1569 }, { 10, 1567 }, { 10, 1565 }, + { 10, 1563 }, { 10, 1561 }, { 10, 1559 }, { 10, 1557 }, { 10, 1555 }, + { 10, 1553 }, { 10, 1551 }, { 10, 1549 }, { 10, 1547 }, { 10, 1545 }, + { 10, 1543 }, { 10, 1541 }, { 10, 1539 }, { 10, 1537 }, { 10, 1535 }, + { 10, 1533 }, { 10, 1531 }, { 10, 1529 }, { 10, 1527 }, { 10, 1525 }, + { 10, 1523 }, { 10, 1521 }, { 10, 1519 }, { 10, 1517 }, { 10, 1515 }, + { 10, 1513 }, { 10, 1511 }, { 10, 1509 }, { 10, 1507 }, { 10, 1505 }, + { 10, 1503 }, { 10, 1501 }, { 10, 1499 }, { 10, 1497 }, { 10, 1495 }, + { 10, 1493 }, { 10, 1491 }, { 10, 1489 }, { 10, 1487 }, { 10, 1485 }, + { 10, 1483 }, { 10, 1481 }, { 10, 1479 }, { 10, 1477 }, { 10, 1475 }, + { 10, 1473 }, { 10, 1471 }, { 10, 1469 }, { 10, 1467 }, { 10, 1465 }, + { 10, 1463 }, { 10, 1461 }, { 10, 1459 }, { 10, 1457 }, { 10, 1455 }, + { 10, 1453 }, { 10, 1451 }, { 10, 1449 }, { 10, 1447 }, { 10, 1445 }, + { 10, 1443 }, { 10, 1441 }, { 10, 1439 }, { 10, 1437 }, { 10, 1435 }, + { 10, 1433 }, { 10, 1431 }, { 10, 1429 }, { 10, 1427 }, { 10, 1425 }, + { 10, 1423 }, { 10, 1421 }, { 10, 1419 }, { 10, 1417 }, { 10, 1415 }, + { 10, 1413 }, { 10, 1411 }, { 10, 1409 }, { 10, 1407 }, { 10, 1405 }, + { 10, 1403 }, { 10, 1401 }, { 10, 1399 }, { 10, 1397 }, { 10, 1395 }, + { 10, 1393 }, { 10, 1391 }, { 10, 1389 }, { 10, 1387 }, { 10, 1385 }, + { 10, 1383 }, { 10, 1381 }, { 10, 1379 }, { 10, 1377 }, { 10, 1375 }, + { 10, 1373 }, { 10, 1371 }, { 10, 1369 }, { 10, 1367 }, { 10, 1365 }, + { 10, 1363 }, { 10, 1361 }, { 10, 1359 }, { 10, 1357 }, { 10, 1355 }, + { 10, 1353 }, { 10, 1351 }, { 10, 1349 }, { 10, 1347 }, { 10, 1345 }, + { 10, 1343 }, { 10, 1341 }, { 10, 1339 }, { 10, 1337 }, { 10, 1335 }, + { 10, 1333 }, { 10, 1331 }, { 10, 1329 }, { 10, 1327 }, { 10, 1325 }, + { 10, 1323 }, { 10, 1321 }, { 10, 1319 }, { 10, 1317 }, { 10, 1315 }, + { 10, 1313 }, { 10, 1311 }, { 10, 1309 }, { 10, 1307 }, { 10, 1305 }, + { 10, 1303 }, { 10, 1301 }, { 10, 1299 }, { 10, 1297 }, { 10, 1295 }, + { 10, 1293 }, { 10, 1291 }, { 10, 1289 }, { 10, 1287 }, { 10, 1285 }, + { 10, 1283 }, { 10, 1281 }, { 10, 1279 }, { 10, 1277 }, { 10, 1275 }, + { 10, 1273 }, { 10, 1271 }, { 10, 1269 }, { 10, 1267 }, { 10, 1265 }, + { 10, 1263 }, { 10, 1261 }, { 10, 1259 }, { 10, 1257 }, { 10, 1255 }, + { 10, 1253 }, { 10, 1251 }, { 10, 1249 }, { 10, 1247 }, { 10, 1245 }, + { 10, 1243 }, { 10, 1241 }, { 10, 1239 }, { 10, 1237 }, { 10, 1235 }, + { 10, 1233 }, { 10, 1231 }, { 10, 1229 }, { 10, 1227 }, { 10, 1225 }, + { 10, 1223 }, { 10, 1221 }, { 10, 1219 }, { 10, 1217 }, { 10, 1215 }, + { 10, 1213 }, { 10, 1211 }, { 10, 1209 }, { 10, 1207 }, { 10, 1205 }, + { 10, 1203 }, { 10, 1201 }, { 10, 1199 }, { 10, 1197 }, { 10, 1195 }, + { 10, 1193 }, { 10, 1191 }, { 10, 1189 }, { 10, 1187 }, { 10, 1185 }, + { 10, 1183 }, { 10, 1181 }, { 10, 1179 }, { 10, 1177 }, { 10, 1175 }, + { 10, 1173 }, { 10, 1171 }, { 10, 1169 }, { 10, 1167 }, { 10, 1165 }, + { 10, 1163 }, { 10, 1161 }, { 10, 1159 }, { 10, 1157 }, { 10, 1155 }, + { 10, 1153 }, { 10, 1151 }, { 10, 1149 }, { 10, 1147 }, { 10, 1145 }, + { 10, 1143 }, { 10, 1141 }, { 10, 1139 }, { 10, 1137 }, { 10, 1135 }, + { 10, 1133 }, { 10, 1131 }, { 10, 1129 }, { 10, 1127 }, { 10, 1125 }, + { 10, 1123 }, { 10, 1121 }, { 10, 1119 }, { 10, 1117 }, { 10, 1115 }, + { 10, 1113 }, { 10, 1111 }, { 10, 1109 }, { 10, 1107 }, { 10, 1105 }, + { 10, 1103 }, { 10, 1101 }, { 10, 1099 }, { 10, 1097 }, { 10, 1095 }, + { 10, 1093 }, { 10, 1091 }, { 10, 1089 }, { 10, 1087 }, { 10, 1085 }, + { 10, 1083 }, { 10, 1081 }, { 10, 1079 }, { 10, 1077 }, { 10, 1075 }, + { 10, 1073 }, { 10, 1071 }, { 10, 1069 }, { 10, 1067 }, { 10, 1065 }, + { 10, 1063 }, { 10, 1061 }, { 10, 1059 }, { 10, 1057 }, { 10, 1055 }, + { 10, 1053 }, { 10, 1051 }, { 10, 1049 }, { 10, 1047 }, { 10, 1045 }, + { 10, 1043 }, { 10, 1041 }, { 10, 1039 }, { 10, 1037 }, { 10, 1035 }, + { 10, 1033 }, { 10, 1031 }, { 10, 1029 }, { 10, 1027 }, { 10, 1025 }, + { 10, 1023 }, { 10, 1021 }, { 10, 1019 }, { 10, 1017 }, { 10, 1015 }, + { 10, 1013 }, { 10, 1011 }, { 10, 1009 }, { 10, 1007 }, { 10, 1005 }, + { 10, 1003 }, { 10, 1001 }, { 10, 999 }, { 10, 997 }, { 10, 995 }, + { 10, 993 }, { 10, 991 }, { 10, 989 }, { 10, 987 }, { 10, 985 }, + { 10, 983 }, { 10, 981 }, { 10, 979 }, { 10, 977 }, { 10, 975 }, + { 10, 973 }, { 10, 971 }, { 10, 969 }, { 10, 967 }, { 10, 965 }, + { 10, 963 }, { 10, 961 }, { 10, 959 }, { 10, 957 }, { 10, 955 }, + { 10, 953 }, { 10, 951 }, { 10, 949 }, { 10, 947 }, { 10, 945 }, + { 10, 943 }, { 10, 941 }, { 10, 939 }, { 10, 937 }, { 10, 935 }, + { 10, 933 }, { 10, 931 }, { 10, 929 }, { 10, 927 }, { 10, 925 }, + { 10, 923 }, { 10, 921 }, { 10, 919 }, { 10, 917 }, { 10, 915 }, + { 10, 913 }, { 10, 911 }, { 10, 909 }, { 10, 907 }, { 10, 905 }, + { 10, 903 }, { 10, 901 }, { 10, 899 }, { 10, 897 }, { 10, 895 }, + { 10, 893 }, { 10, 891 }, { 10, 889 }, { 10, 887 }, { 10, 885 }, + { 10, 883 }, { 10, 881 }, { 10, 879 }, { 10, 877 }, { 10, 875 }, + { 10, 873 }, { 10, 871 }, { 10, 869 }, { 10, 867 }, { 10, 865 }, + { 10, 863 }, { 10, 861 }, { 10, 859 }, { 10, 857 }, { 10, 855 }, + { 10, 853 }, { 10, 851 }, { 10, 849 }, { 10, 847 }, { 10, 845 }, + { 10, 843 }, { 10, 841 }, { 10, 839 }, { 10, 837 }, { 10, 835 }, + { 10, 833 }, { 10, 831 }, { 10, 829 }, { 10, 827 }, { 10, 825 }, + { 10, 823 }, { 10, 821 }, { 10, 819 }, { 10, 817 }, { 10, 815 }, + { 10, 813 }, { 10, 811 }, { 10, 809 }, { 10, 807 }, { 10, 805 }, + { 10, 803 }, { 10, 801 }, { 10, 799 }, { 10, 797 }, { 10, 795 }, + { 10, 793 }, { 10, 791 }, { 10, 789 }, { 10, 787 }, { 10, 785 }, + { 10, 783 }, { 10, 781 }, { 10, 779 }, { 10, 777 }, { 10, 775 }, + { 10, 773 }, { 10, 771 }, { 10, 769 }, { 10, 767 }, { 10, 765 }, + { 10, 763 }, { 10, 761 }, { 10, 759 }, { 10, 757 }, { 10, 755 }, + { 10, 753 }, { 10, 751 }, { 10, 749 }, { 10, 747 }, { 10, 745 }, + { 10, 743 }, { 10, 741 }, { 10, 739 }, { 10, 737 }, { 10, 735 }, + { 10, 733 }, { 10, 731 }, { 10, 729 }, { 10, 727 }, { 10, 725 }, + { 10, 723 }, { 10, 721 }, { 10, 719 }, { 10, 717 }, { 10, 715 }, + { 10, 713 }, { 10, 711 }, { 10, 709 }, { 10, 707 }, { 10, 705 }, + { 10, 703 }, { 10, 701 }, { 10, 699 }, { 10, 697 }, { 10, 695 }, + { 10, 693 }, { 10, 691 }, { 10, 689 }, { 10, 687 }, { 10, 685 }, + { 10, 683 }, { 10, 681 }, { 10, 679 }, { 10, 677 }, { 10, 675 }, + { 10, 673 }, { 10, 671 }, { 10, 669 }, { 10, 667 }, { 10, 665 }, + { 10, 663 }, { 10, 661 }, { 10, 659 }, { 10, 657 }, { 10, 655 }, + { 10, 653 }, { 10, 651 }, { 10, 649 }, { 10, 647 }, { 10, 645 }, + { 10, 643 }, { 10, 641 }, { 10, 639 }, { 10, 637 }, { 10, 635 }, + { 10, 633 }, { 10, 631 }, { 10, 629 }, { 10, 627 }, { 10, 625 }, + { 10, 623 }, { 10, 621 }, { 10, 619 }, { 10, 617 }, { 10, 615 }, + { 10, 613 }, { 10, 611 }, { 10, 609 }, { 10, 607 }, { 10, 605 }, + { 10, 603 }, { 10, 601 }, { 10, 599 }, { 10, 597 }, { 10, 595 }, + { 10, 593 }, { 10, 591 }, { 10, 589 }, { 10, 587 }, { 10, 585 }, + { 10, 583 }, { 10, 581 }, { 10, 579 }, { 10, 577 }, { 10, 575 }, + { 10, 573 }, { 10, 571 }, { 10, 569 }, { 10, 567 }, { 10, 565 }, + { 10, 563 }, { 10, 561 }, { 10, 559 }, { 10, 557 }, { 10, 555 }, + { 10, 553 }, { 10, 551 }, { 10, 549 }, { 10, 547 }, { 10, 545 }, + { 10, 543 }, { 10, 541 }, { 10, 539 }, { 10, 537 }, { 10, 535 }, + { 10, 533 }, { 10, 531 }, { 10, 529 }, { 10, 527 }, { 10, 525 }, + { 10, 523 }, { 10, 521 }, { 10, 519 }, { 10, 517 }, { 10, 515 }, + { 10, 513 }, { 10, 511 }, { 10, 509 }, { 10, 507 }, { 10, 505 }, + { 10, 503 }, { 10, 501 }, { 10, 499 }, { 10, 497 }, { 10, 495 }, + { 10, 493 }, { 10, 491 }, { 10, 489 }, { 10, 487 }, { 10, 485 }, + { 10, 483 }, { 10, 481 }, { 10, 479 }, { 10, 477 }, { 10, 475 }, + { 10, 473 }, { 10, 471 }, { 10, 469 }, { 10, 467 }, { 10, 465 }, + { 10, 463 }, { 10, 461 }, { 10, 459 }, { 10, 457 }, { 10, 455 }, + { 10, 453 }, { 10, 451 }, { 10, 449 }, { 10, 447 }, { 10, 445 }, + { 10, 443 }, { 10, 441 }, { 10, 439 }, { 10, 437 }, { 10, 435 }, + { 10, 433 }, { 10, 431 }, { 10, 429 }, { 10, 427 }, { 10, 425 }, + { 10, 423 }, { 10, 421 }, { 10, 419 }, { 10, 417 }, { 10, 415 }, + { 10, 413 }, { 10, 411 }, { 10, 409 }, { 10, 407 }, { 10, 405 }, + { 10, 403 }, { 10, 401 }, { 10, 399 }, { 10, 397 }, { 10, 395 }, + { 10, 393 }, { 10, 391 }, { 10, 389 }, { 10, 387 }, { 10, 385 }, + { 10, 383 }, { 10, 381 }, { 10, 379 }, { 10, 377 }, { 10, 375 }, + { 10, 373 }, { 10, 371 }, { 10, 369 }, { 10, 367 }, { 10, 365 }, + { 10, 363 }, { 10, 361 }, { 10, 359 }, { 10, 357 }, { 10, 355 }, + { 10, 353 }, { 10, 351 }, { 10, 349 }, { 10, 347 }, { 10, 345 }, + { 10, 343 }, { 10, 341 }, { 10, 339 }, { 10, 337 }, { 10, 335 }, + { 10, 333 }, { 10, 331 }, { 10, 329 }, { 10, 327 }, { 10, 325 }, + { 10, 323 }, { 10, 321 }, { 10, 319 }, { 10, 317 }, { 10, 315 }, + { 10, 313 }, { 10, 311 }, { 10, 309 }, { 10, 307 }, { 10, 305 }, + { 10, 303 }, { 10, 301 }, { 10, 299 }, { 10, 297 }, { 10, 295 }, + { 10, 293 }, { 10, 291 }, { 10, 289 }, { 10, 287 }, { 10, 285 }, + { 10, 283 }, { 10, 281 }, { 10, 279 }, { 10, 277 }, { 10, 275 }, + { 10, 273 }, { 10, 271 }, { 10, 269 }, { 10, 267 }, { 10, 265 }, + { 10, 263 }, { 10, 261 }, { 10, 259 }, { 10, 257 }, { 10, 255 }, + { 10, 253 }, { 10, 251 }, { 10, 249 }, { 10, 247 }, { 10, 245 }, + { 10, 243 }, { 10, 241 }, { 10, 239 }, { 10, 237 }, { 10, 235 }, + { 10, 233 }, { 10, 231 }, { 10, 229 }, { 10, 227 }, { 10, 225 }, + { 10, 223 }, { 10, 221 }, { 10, 219 }, { 10, 217 }, { 10, 215 }, + { 10, 213 }, { 10, 211 }, { 10, 209 }, { 10, 207 }, { 10, 205 }, + { 10, 203 }, { 10, 201 }, { 10, 199 }, { 10, 197 }, { 10, 195 }, + { 10, 193 }, { 10, 191 }, { 10, 189 }, { 10, 187 }, { 10, 185 }, + { 10, 183 }, { 10, 181 }, { 10, 179 }, { 10, 177 }, { 10, 175 }, + { 10, 173 }, { 10, 171 }, { 10, 169 }, { 10, 167 }, { 10, 165 }, + { 10, 163 }, { 10, 161 }, { 10, 159 }, { 10, 157 }, { 10, 155 }, + { 10, 153 }, { 10, 151 }, { 10, 149 }, { 10, 147 }, { 10, 145 }, + { 10, 143 }, { 10, 141 }, { 10, 139 }, { 10, 137 }, { 10, 135 }, + { 10, 133 }, { 10, 131 }, { 10, 129 }, { 10, 127 }, { 10, 125 }, + { 10, 123 }, { 10, 121 }, { 10, 119 }, { 10, 117 }, { 10, 115 }, + { 10, 113 }, { 10, 111 }, { 10, 109 }, { 10, 107 }, { 10, 105 }, + { 10, 103 }, { 10, 101 }, { 10, 99 }, { 10, 97 }, { 10, 95 }, + { 10, 93 }, { 10, 91 }, { 10, 89 }, { 10, 87 }, { 10, 85 }, + { 10, 83 }, { 10, 81 }, { 10, 79 }, { 10, 77 }, { 10, 75 }, + { 10, 73 }, { 10, 71 }, { 10, 69 }, { 10, 67 }, { 10, 65 }, + { 10, 63 }, { 10, 61 }, { 10, 59 }, { 10, 57 }, { 10, 55 }, + { 10, 53 }, { 10, 51 }, { 10, 49 }, { 10, 47 }, { 10, 45 }, + { 10, 43 }, { 10, 41 }, { 10, 39 }, { 10, 37 }, { 10, 35 }, + { 10, 33 }, { 10, 31 }, { 10, 29 }, { 10, 27 }, { 10, 25 }, + { 10, 23 }, { 10, 21 }, { 10, 19 }, { 10, 17 }, { 10, 15 }, + { 10, 13 }, { 10, 11 }, { 10, 9 }, { 10, 7 }, { 10, 5 }, + { 10, 3 }, { 10, 1 }, { 9, 63 }, { 9, 61 }, { 9, 59 }, + { 9, 57 }, { 9, 55 }, { 9, 53 }, { 9, 51 }, { 9, 49 }, + { 9, 47 }, { 9, 45 }, { 9, 43 }, { 9, 41 }, { 9, 39 }, + { 9, 37 }, { 9, 35 }, { 9, 33 }, { 9, 31 }, { 9, 29 }, + { 9, 27 }, { 9, 25 }, { 9, 23 }, { 9, 21 }, { 9, 19 }, + { 9, 17 }, { 9, 15 }, { 9, 13 }, { 9, 11 }, { 9, 9 }, + { 9, 7 }, { 9, 5 }, { 9, 3 }, { 9, 1 }, { 8, 31 }, + { 8, 29 }, { 8, 27 }, { 8, 25 }, { 8, 23 }, { 8, 21 }, + { 8, 19 }, { 8, 17 }, { 8, 15 }, { 8, 13 }, { 8, 11 }, + { 8, 9 }, { 8, 7 }, { 8, 5 }, { 8, 3 }, { 8, 1 }, + { 7, 15 }, { 7, 13 }, { 7, 11 }, { 7, 9 }, { 7, 7 }, + { 7, 5 }, { 7, 3 }, { 7, 1 }, { 6, 7 }, { 6, 5 }, + { 6, 3 }, { 6, 1 }, { 5, 3 }, { 5, 1 }, { 4, 1 }, + { 3, 1 }, { 2, 1 }, { 1, 1 }, { 0, 0 }, { 1, 0 }, + { 2, 0 }, { 3, 0 }, { 4, 0 }, { 5, 0 }, { 5, 2 }, + { 6, 0 }, { 6, 2 }, { 6, 4 }, { 6, 6 }, { 7, 0 }, + { 7, 2 }, { 7, 4 }, { 7, 6 }, { 7, 8 }, { 7, 10 }, + { 7, 12 }, { 7, 14 }, { 8, 0 }, { 8, 2 }, { 8, 4 }, + { 8, 6 }, { 8, 8 }, { 8, 10 }, { 8, 12 }, { 8, 14 }, + { 8, 16 }, { 8, 18 }, { 8, 20 }, { 8, 22 }, { 8, 24 }, + { 8, 26 }, { 8, 28 }, { 8, 30 }, { 9, 0 }, { 9, 2 }, + { 9, 4 }, { 9, 6 }, { 9, 8 }, { 9, 10 }, { 9, 12 }, + { 9, 14 }, { 9, 16 }, { 9, 18 }, { 9, 20 }, { 9, 22 }, + { 9, 24 }, { 9, 26 }, { 9, 28 }, { 9, 30 }, { 9, 32 }, + { 9, 34 }, { 9, 36 }, { 9, 38 }, { 9, 40 }, { 9, 42 }, + { 9, 44 }, { 9, 46 }, { 9, 48 }, { 9, 50 }, { 9, 52 }, + { 9, 54 }, { 9, 56 }, { 9, 58 }, { 9, 60 }, { 9, 62 }, + { 10, 0 }, { 10, 2 }, { 10, 4 }, { 10, 6 }, { 10, 8 }, + { 10, 10 }, { 10, 12 }, { 10, 14 }, { 10, 16 }, { 10, 18 }, + { 10, 20 }, { 10, 22 }, { 10, 24 }, { 10, 26 }, { 10, 28 }, + { 10, 30 }, { 10, 32 }, { 10, 34 }, { 10, 36 }, { 10, 38 }, + { 10, 40 }, { 10, 42 }, { 10, 44 }, { 10, 46 }, { 10, 48 }, + { 10, 50 }, { 10, 52 }, { 10, 54 }, { 10, 56 }, { 10, 58 }, + { 10, 60 }, { 10, 62 }, { 10, 64 }, { 10, 66 }, { 10, 68 }, + { 10, 70 }, { 10, 72 }, { 10, 74 }, { 10, 76 }, { 10, 78 }, + { 10, 80 }, { 10, 82 }, { 10, 84 }, { 10, 86 }, { 10, 88 }, + { 10, 90 }, { 10, 92 }, { 10, 94 }, { 10, 96 }, { 10, 98 }, + { 10, 100 }, { 10, 102 }, { 10, 104 }, { 10, 106 }, { 10, 108 }, + { 10, 110 }, { 10, 112 }, { 10, 114 }, { 10, 116 }, { 10, 118 }, + { 10, 120 }, { 10, 122 }, { 10, 124 }, { 10, 126 }, { 10, 128 }, + { 10, 130 }, { 10, 132 }, { 10, 134 }, { 10, 136 }, { 10, 138 }, + { 10, 140 }, { 10, 142 }, { 10, 144 }, { 10, 146 }, { 10, 148 }, + { 10, 150 }, { 10, 152 }, { 10, 154 }, { 10, 156 }, { 10, 158 }, + { 10, 160 }, { 10, 162 }, { 10, 164 }, { 10, 166 }, { 10, 168 }, + { 10, 170 }, { 10, 172 }, { 10, 174 }, { 10, 176 }, { 10, 178 }, + { 10, 180 }, { 10, 182 }, { 10, 184 }, { 10, 186 }, { 10, 188 }, + { 10, 190 }, { 10, 192 }, { 10, 194 }, { 10, 196 }, { 10, 198 }, + { 10, 200 }, { 10, 202 }, { 10, 204 }, { 10, 206 }, { 10, 208 }, + { 10, 210 }, { 10, 212 }, { 10, 214 }, { 10, 216 }, { 10, 218 }, + { 10, 220 }, { 10, 222 }, { 10, 224 }, { 10, 226 }, { 10, 228 }, + { 10, 230 }, { 10, 232 }, { 10, 234 }, { 10, 236 }, { 10, 238 }, + { 10, 240 }, { 10, 242 }, { 10, 244 }, { 10, 246 }, { 10, 248 }, + { 10, 250 }, { 10, 252 }, { 10, 254 }, { 10, 256 }, { 10, 258 }, + { 10, 260 }, { 10, 262 }, { 10, 264 }, { 10, 266 }, { 10, 268 }, + { 10, 270 }, { 10, 272 }, { 10, 274 }, { 10, 276 }, { 10, 278 }, + { 10, 280 }, { 10, 282 }, { 10, 284 }, { 10, 286 }, { 10, 288 }, + { 10, 290 }, { 10, 292 }, { 10, 294 }, { 10, 296 }, { 10, 298 }, + { 10, 300 }, { 10, 302 }, { 10, 304 }, { 10, 306 }, { 10, 308 }, + { 10, 310 }, { 10, 312 }, { 10, 314 }, { 10, 316 }, { 10, 318 }, + { 10, 320 }, { 10, 322 }, { 10, 324 }, { 10, 326 }, { 10, 328 }, + { 10, 330 }, { 10, 332 }, { 10, 334 }, { 10, 336 }, { 10, 338 }, + { 10, 340 }, { 10, 342 }, { 10, 344 }, { 10, 346 }, { 10, 348 }, + { 10, 350 }, { 10, 352 }, { 10, 354 }, { 10, 356 }, { 10, 358 }, + { 10, 360 }, { 10, 362 }, { 10, 364 }, { 10, 366 }, { 10, 368 }, + { 10, 370 }, { 10, 372 }, { 10, 374 }, { 10, 376 }, { 10, 378 }, + { 10, 380 }, { 10, 382 }, { 10, 384 }, { 10, 386 }, { 10, 388 }, + { 10, 390 }, { 10, 392 }, { 10, 394 }, { 10, 396 }, { 10, 398 }, + { 10, 400 }, { 10, 402 }, { 10, 404 }, { 10, 406 }, { 10, 408 }, + { 10, 410 }, { 10, 412 }, { 10, 414 }, { 10, 416 }, { 10, 418 }, + { 10, 420 }, { 10, 422 }, { 10, 424 }, { 10, 426 }, { 10, 428 }, + { 10, 430 }, { 10, 432 }, { 10, 434 }, { 10, 436 }, { 10, 438 }, + { 10, 440 }, { 10, 442 }, { 10, 444 }, { 10, 446 }, { 10, 448 }, + { 10, 450 }, { 10, 452 }, { 10, 454 }, { 10, 456 }, { 10, 458 }, + { 10, 460 }, { 10, 462 }, { 10, 464 }, { 10, 466 }, { 10, 468 }, + { 10, 470 }, { 10, 472 }, { 10, 474 }, { 10, 476 }, { 10, 478 }, + { 10, 480 }, { 10, 482 }, { 10, 484 }, { 10, 486 }, { 10, 488 }, + { 10, 490 }, { 10, 492 }, { 10, 494 }, { 10, 496 }, { 10, 498 }, + { 10, 500 }, { 10, 502 }, { 10, 504 }, { 10, 506 }, { 10, 508 }, + { 10, 510 }, { 10, 512 }, { 10, 514 }, { 10, 516 }, { 10, 518 }, + { 10, 520 }, { 10, 522 }, { 10, 524 }, { 10, 526 }, { 10, 528 }, + { 10, 530 }, { 10, 532 }, { 10, 534 }, { 10, 536 }, { 10, 538 }, + { 10, 540 }, { 10, 542 }, { 10, 544 }, { 10, 546 }, { 10, 548 }, + { 10, 550 }, { 10, 552 }, { 10, 554 }, { 10, 556 }, { 10, 558 }, + { 10, 560 }, { 10, 562 }, { 10, 564 }, { 10, 566 }, { 10, 568 }, + { 10, 570 }, { 10, 572 }, { 10, 574 }, { 10, 576 }, { 10, 578 }, + { 10, 580 }, { 10, 582 }, { 10, 584 }, { 10, 586 }, { 10, 588 }, + { 10, 590 }, { 10, 592 }, { 10, 594 }, { 10, 596 }, { 10, 598 }, + { 10, 600 }, { 10, 602 }, { 10, 604 }, { 10, 606 }, { 10, 608 }, + { 10, 610 }, { 10, 612 }, { 10, 614 }, { 10, 616 }, { 10, 618 }, + { 10, 620 }, { 10, 622 }, { 10, 624 }, { 10, 626 }, { 10, 628 }, + { 10, 630 }, { 10, 632 }, { 10, 634 }, { 10, 636 }, { 10, 638 }, + { 10, 640 }, { 10, 642 }, { 10, 644 }, { 10, 646 }, { 10, 648 }, + { 10, 650 }, { 10, 652 }, { 10, 654 }, { 10, 656 }, { 10, 658 }, + { 10, 660 }, { 10, 662 }, { 10, 664 }, { 10, 666 }, { 10, 668 }, + { 10, 670 }, { 10, 672 }, { 10, 674 }, { 10, 676 }, { 10, 678 }, + { 10, 680 }, { 10, 682 }, { 10, 684 }, { 10, 686 }, { 10, 688 }, + { 10, 690 }, { 10, 692 }, { 10, 694 }, { 10, 696 }, { 10, 698 }, + { 10, 700 }, { 10, 702 }, { 10, 704 }, { 10, 706 }, { 10, 708 }, + { 10, 710 }, { 10, 712 }, { 10, 714 }, { 10, 716 }, { 10, 718 }, + { 10, 720 }, { 10, 722 }, { 10, 724 }, { 10, 726 }, { 10, 728 }, + { 10, 730 }, { 10, 732 }, { 10, 734 }, { 10, 736 }, { 10, 738 }, + { 10, 740 }, { 10, 742 }, { 10, 744 }, { 10, 746 }, { 10, 748 }, + { 10, 750 }, { 10, 752 }, { 10, 754 }, { 10, 756 }, { 10, 758 }, + { 10, 760 }, { 10, 762 }, { 10, 764 }, { 10, 766 }, { 10, 768 }, + { 10, 770 }, { 10, 772 }, { 10, 774 }, { 10, 776 }, { 10, 778 }, + { 10, 780 }, { 10, 782 }, { 10, 784 }, { 10, 786 }, { 10, 788 }, + { 10, 790 }, { 10, 792 }, { 10, 794 }, { 10, 796 }, { 10, 798 }, + { 10, 800 }, { 10, 802 }, { 10, 804 }, { 10, 806 }, { 10, 808 }, + { 10, 810 }, { 10, 812 }, { 10, 814 }, { 10, 816 }, { 10, 818 }, + { 10, 820 }, { 10, 822 }, { 10, 824 }, { 10, 826 }, { 10, 828 }, + { 10, 830 }, { 10, 832 }, { 10, 834 }, { 10, 836 }, { 10, 838 }, + { 10, 840 }, { 10, 842 }, { 10, 844 }, { 10, 846 }, { 10, 848 }, + { 10, 850 }, { 10, 852 }, { 10, 854 }, { 10, 856 }, { 10, 858 }, + { 10, 860 }, { 10, 862 }, { 10, 864 }, { 10, 866 }, { 10, 868 }, + { 10, 870 }, { 10, 872 }, { 10, 874 }, { 10, 876 }, { 10, 878 }, + { 10, 880 }, { 10, 882 }, { 10, 884 }, { 10, 886 }, { 10, 888 }, + { 10, 890 }, { 10, 892 }, { 10, 894 }, { 10, 896 }, { 10, 898 }, + { 10, 900 }, { 10, 902 }, { 10, 904 }, { 10, 906 }, { 10, 908 }, + { 10, 910 }, { 10, 912 }, { 10, 914 }, { 10, 916 }, { 10, 918 }, + { 10, 920 }, { 10, 922 }, { 10, 924 }, { 10, 926 }, { 10, 928 }, + { 10, 930 }, { 10, 932 }, { 10, 934 }, { 10, 936 }, { 10, 938 }, + { 10, 940 }, { 10, 942 }, { 10, 944 }, { 10, 946 }, { 10, 948 }, + { 10, 950 }, { 10, 952 }, { 10, 954 }, { 10, 956 }, { 10, 958 }, + { 10, 960 }, { 10, 962 }, { 10, 964 }, { 10, 966 }, { 10, 968 }, + { 10, 970 }, { 10, 972 }, { 10, 974 }, { 10, 976 }, { 10, 978 }, + { 10, 980 }, { 10, 982 }, { 10, 984 }, { 10, 986 }, { 10, 988 }, + { 10, 990 }, { 10, 992 }, { 10, 994 }, { 10, 996 }, { 10, 998 }, + { 10, 1000 }, { 10, 1002 }, { 10, 1004 }, { 10, 1006 }, { 10, 1008 }, + { 10, 1010 }, { 10, 1012 }, { 10, 1014 }, { 10, 1016 }, { 10, 1018 }, + { 10, 1020 }, { 10, 1022 }, { 10, 1024 }, { 10, 1026 }, { 10, 1028 }, + { 10, 1030 }, { 10, 1032 }, { 10, 1034 }, { 10, 1036 }, { 10, 1038 }, + { 10, 1040 }, { 10, 1042 }, { 10, 1044 }, { 10, 1046 }, { 10, 1048 }, + { 10, 1050 }, { 10, 1052 }, { 10, 1054 }, { 10, 1056 }, { 10, 1058 }, + { 10, 1060 }, { 10, 1062 }, { 10, 1064 }, { 10, 1066 }, { 10, 1068 }, + { 10, 1070 }, { 10, 1072 }, { 10, 1074 }, { 10, 1076 }, { 10, 1078 }, + { 10, 1080 }, { 10, 1082 }, { 10, 1084 }, { 10, 1086 }, { 10, 1088 }, + { 10, 1090 }, { 10, 1092 }, { 10, 1094 }, { 10, 1096 }, { 10, 1098 }, + { 10, 1100 }, { 10, 1102 }, { 10, 1104 }, { 10, 1106 }, { 10, 1108 }, + { 10, 1110 }, { 10, 1112 }, { 10, 1114 }, { 10, 1116 }, { 10, 1118 }, + { 10, 1120 }, { 10, 1122 }, { 10, 1124 }, { 10, 1126 }, { 10, 1128 }, + { 10, 1130 }, { 10, 1132 }, { 10, 1134 }, { 10, 1136 }, { 10, 1138 }, + { 10, 1140 }, { 10, 1142 }, { 10, 1144 }, { 10, 1146 }, { 10, 1148 }, + { 10, 1150 }, { 10, 1152 }, { 10, 1154 }, { 10, 1156 }, { 10, 1158 }, + { 10, 1160 }, { 10, 1162 }, { 10, 1164 }, { 10, 1166 }, { 10, 1168 }, + { 10, 1170 }, { 10, 1172 }, { 10, 1174 }, { 10, 1176 }, { 10, 1178 }, + { 10, 1180 }, { 10, 1182 }, { 10, 1184 }, { 10, 1186 }, { 10, 1188 }, + { 10, 1190 }, { 10, 1192 }, { 10, 1194 }, { 10, 1196 }, { 10, 1198 }, + { 10, 1200 }, { 10, 1202 }, { 10, 1204 }, { 10, 1206 }, { 10, 1208 }, + { 10, 1210 }, { 10, 1212 }, { 10, 1214 }, { 10, 1216 }, { 10, 1218 }, + { 10, 1220 }, { 10, 1222 }, { 10, 1224 }, { 10, 1226 }, { 10, 1228 }, + { 10, 1230 }, { 10, 1232 }, { 10, 1234 }, { 10, 1236 }, { 10, 1238 }, + { 10, 1240 }, { 10, 1242 }, { 10, 1244 }, { 10, 1246 }, { 10, 1248 }, + { 10, 1250 }, { 10, 1252 }, { 10, 1254 }, { 10, 1256 }, { 10, 1258 }, + { 10, 1260 }, { 10, 1262 }, { 10, 1264 }, { 10, 1266 }, { 10, 1268 }, + { 10, 1270 }, { 10, 1272 }, { 10, 1274 }, { 10, 1276 }, { 10, 1278 }, + { 10, 1280 }, { 10, 1282 }, { 10, 1284 }, { 10, 1286 }, { 10, 1288 }, + { 10, 1290 }, { 10, 1292 }, { 10, 1294 }, { 10, 1296 }, { 10, 1298 }, + { 10, 1300 }, { 10, 1302 }, { 10, 1304 }, { 10, 1306 }, { 10, 1308 }, + { 10, 1310 }, { 10, 1312 }, { 10, 1314 }, { 10, 1316 }, { 10, 1318 }, + { 10, 1320 }, { 10, 1322 }, { 10, 1324 }, { 10, 1326 }, { 10, 1328 }, + { 10, 1330 }, { 10, 1332 }, { 10, 1334 }, { 10, 1336 }, { 10, 1338 }, + { 10, 1340 }, { 10, 1342 }, { 10, 1344 }, { 10, 1346 }, { 10, 1348 }, + { 10, 1350 }, { 10, 1352 }, { 10, 1354 }, { 10, 1356 }, { 10, 1358 }, + { 10, 1360 }, { 10, 1362 }, { 10, 1364 }, { 10, 1366 }, { 10, 1368 }, + { 10, 1370 }, { 10, 1372 }, { 10, 1374 }, { 10, 1376 }, { 10, 1378 }, + { 10, 1380 }, { 10, 1382 }, { 10, 1384 }, { 10, 1386 }, { 10, 1388 }, + { 10, 1390 }, { 10, 1392 }, { 10, 1394 }, { 10, 1396 }, { 10, 1398 }, + { 10, 1400 }, { 10, 1402 }, { 10, 1404 }, { 10, 1406 }, { 10, 1408 }, + { 10, 1410 }, { 10, 1412 }, { 10, 1414 }, { 10, 1416 }, { 10, 1418 }, + { 10, 1420 }, { 10, 1422 }, { 10, 1424 }, { 10, 1426 }, { 10, 1428 }, + { 10, 1430 }, { 10, 1432 }, { 10, 1434 }, { 10, 1436 }, { 10, 1438 }, + { 10, 1440 }, { 10, 1442 }, { 10, 1444 }, { 10, 1446 }, { 10, 1448 }, + { 10, 1450 }, { 10, 1452 }, { 10, 1454 }, { 10, 1456 }, { 10, 1458 }, + { 10, 1460 }, { 10, 1462 }, { 10, 1464 }, { 10, 1466 }, { 10, 1468 }, + { 10, 1470 }, { 10, 1472 }, { 10, 1474 }, { 10, 1476 }, { 10, 1478 }, + { 10, 1480 }, { 10, 1482 }, { 10, 1484 }, { 10, 1486 }, { 10, 1488 }, + { 10, 1490 }, { 10, 1492 }, { 10, 1494 }, { 10, 1496 }, { 10, 1498 }, + { 10, 1500 }, { 10, 1502 }, { 10, 1504 }, { 10, 1506 }, { 10, 1508 }, + { 10, 1510 }, { 10, 1512 }, { 10, 1514 }, { 10, 1516 }, { 10, 1518 }, + { 10, 1520 }, { 10, 1522 }, { 10, 1524 }, { 10, 1526 }, { 10, 1528 }, + { 10, 1530 }, { 10, 1532 }, { 10, 1534 }, { 10, 1536 }, { 10, 1538 }, + { 10, 1540 }, { 10, 1542 }, { 10, 1544 }, { 10, 1546 }, { 10, 1548 }, + { 10, 1550 }, { 10, 1552 }, { 10, 1554 }, { 10, 1556 }, { 10, 1558 }, + { 10, 1560 }, { 10, 1562 }, { 10, 1564 }, { 10, 1566 }, { 10, 1568 }, + { 10, 1570 }, { 10, 1572 }, { 10, 1574 }, { 10, 1576 }, { 10, 1578 }, + { 10, 1580 }, { 10, 1582 }, { 10, 1584 }, { 10, 1586 }, { 10, 1588 }, + { 10, 1590 }, { 10, 1592 }, { 10, 1594 }, { 10, 1596 }, { 10, 1598 }, + { 10, 1600 }, { 10, 1602 }, { 10, 1604 }, { 10, 1606 }, { 10, 1608 }, + { 10, 1610 }, { 10, 1612 }, { 10, 1614 }, { 10, 1616 }, { 10, 1618 }, + { 10, 1620 }, { 10, 1622 }, { 10, 1624 }, { 10, 1626 }, { 10, 1628 }, + { 10, 1630 }, { 10, 1632 }, { 10, 1634 }, { 10, 1636 }, { 10, 1638 }, + { 10, 1640 }, { 10, 1642 }, { 10, 1644 }, { 10, 1646 }, { 10, 1648 }, + { 10, 1650 }, { 10, 1652 }, { 10, 1654 }, { 10, 1656 }, { 10, 1658 }, + { 10, 1660 }, { 10, 1662 }, { 10, 1664 }, { 10, 1666 }, { 10, 1668 }, + { 10, 1670 }, { 10, 1672 }, { 10, 1674 }, { 10, 1676 }, { 10, 1678 }, + { 10, 1680 }, { 10, 1682 }, { 10, 1684 }, { 10, 1686 }, { 10, 1688 }, + { 10, 1690 }, { 10, 1692 }, { 10, 1694 }, { 10, 1696 }, { 10, 1698 }, + { 10, 1700 }, { 10, 1702 }, { 10, 1704 }, { 10, 1706 }, { 10, 1708 }, + { 10, 1710 }, { 10, 1712 }, { 10, 1714 }, { 10, 1716 }, { 10, 1718 }, + { 10, 1720 }, { 10, 1722 }, { 10, 1724 }, { 10, 1726 }, { 10, 1728 }, + { 10, 1730 }, { 10, 1732 }, { 10, 1734 }, { 10, 1736 }, { 10, 1738 }, + { 10, 1740 }, { 10, 1742 }, { 10, 1744 }, { 10, 1746 }, { 10, 1748 }, + { 10, 1750 }, { 10, 1752 }, { 10, 1754 }, { 10, 1756 }, { 10, 1758 }, + { 10, 1760 }, { 10, 1762 }, { 10, 1764 }, { 10, 1766 }, { 10, 1768 }, + { 10, 1770 }, { 10, 1772 }, { 10, 1774 }, { 10, 1776 }, { 10, 1778 }, + { 10, 1780 }, { 10, 1782 }, { 10, 1784 }, { 10, 1786 }, { 10, 1788 }, + { 10, 1790 }, { 10, 1792 }, { 10, 1794 }, { 10, 1796 }, { 10, 1798 }, + { 10, 1800 }, { 10, 1802 }, { 10, 1804 }, { 10, 1806 }, { 10, 1808 }, + { 10, 1810 }, { 10, 1812 }, { 10, 1814 }, { 10, 1816 }, { 10, 1818 }, + { 10, 1820 }, { 10, 1822 }, { 10, 1824 }, { 10, 1826 }, { 10, 1828 }, + { 10, 1830 }, { 10, 1832 }, { 10, 1834 }, { 10, 1836 }, { 10, 1838 }, + { 10, 1840 }, { 10, 1842 }, { 10, 1844 }, { 10, 1846 }, { 10, 1848 }, + { 10, 1850 }, { 10, 1852 }, { 10, 1854 }, { 10, 1856 }, { 10, 1858 }, + { 10, 1860 }, { 10, 1862 }, { 10, 1864 }, { 10, 1866 }, { 10, 1868 }, + { 10, 1870 }, { 10, 1872 }, { 10, 1874 }, { 10, 1876 }, { 10, 1878 }, + { 10, 1880 }, { 10, 1882 }, { 10, 1884 }, { 10, 1886 }, { 10, 1888 }, + { 10, 1890 }, { 10, 1892 }, { 10, 1894 }, { 10, 1896 }, { 10, 1898 }, + { 10, 1900 }, { 10, 1902 }, { 10, 1904 }, { 10, 1906 }, { 10, 1908 }, + { 10, 1910 }, { 10, 1912 }, { 10, 1914 }, { 10, 1916 }, { 10, 1918 }, + { 10, 1920 }, { 10, 1922 }, { 10, 1924 }, { 10, 1926 }, { 10, 1928 }, + { 10, 1930 }, { 10, 1932 }, { 10, 1934 }, { 10, 1936 }, { 10, 1938 }, + { 10, 1940 }, { 10, 1942 }, { 10, 1944 }, { 10, 1946 }, { 10, 1948 }, + { 10, 1950 }, { 10, 1952 }, { 10, 1954 }, { 10, 1956 }, { 10, 1958 }, + { 10, 1960 }, { 10, 1962 }, { 10, 1964 }, { 10, 1966 }, { 10, 1968 }, + { 10, 1970 }, { 10, 1972 }, { 10, 1974 }, { 10, 1976 }, { 10, 1978 }, + { 10, 1980 }, { 10, 1982 }, { 10, 1984 }, { 10, 1986 }, { 10, 1988 }, + { 10, 1990 }, { 10, 1992 }, { 10, 1994 }, { 10, 1996 }, { 10, 1998 }, + { 10, 2000 }, { 10, 2002 }, { 10, 2004 }, { 10, 2006 }, { 10, 2008 }, + { 10, 2010 }, { 10, 2012 }, { 10, 2014 }, { 10, 2016 }, { 10, 2018 }, + { 10, 2020 }, { 10, 2022 }, { 10, 2024 }, { 10, 2026 }, { 10, 2028 }, + { 10, 2030 }, { 10, 2032 }, { 10, 2034 }, { 10, 2036 }, { 10, 2038 }, + { 10, 2040 }, { 10, 2042 }, { 10, 2044 }, { 10, 2046 }, { 10, 2048 }, + { 10, 2050 }, { 10, 2052 }, { 10, 2054 }, { 10, 2056 }, { 10, 2058 }, + { 10, 2060 }, { 10, 2062 }, { 10, 2064 }, { 10, 2066 }, { 10, 2068 }, + { 10, 2070 }, { 10, 2072 }, { 10, 2074 }, { 10, 2076 }, { 10, 2078 }, + { 10, 2080 }, { 10, 2082 }, { 10, 2084 }, { 10, 2086 }, { 10, 2088 }, + { 10, 2090 }, { 10, 2092 }, { 10, 2094 }, { 10, 2096 }, { 10, 2098 }, + { 10, 2100 }, { 10, 2102 }, { 10, 2104 }, { 10, 2106 }, { 10, 2108 }, + { 10, 2110 }, { 10, 2112 }, { 10, 2114 }, { 10, 2116 }, { 10, 2118 }, + { 10, 2120 }, { 10, 2122 }, { 10, 2124 }, { 10, 2126 }, { 10, 2128 }, + { 10, 2130 }, { 10, 2132 }, { 10, 2134 }, { 10, 2136 }, { 10, 2138 }, + { 10, 2140 }, { 10, 2142 }, { 10, 2144 }, { 10, 2146 }, { 10, 2148 }, + { 10, 2150 }, { 10, 2152 }, { 10, 2154 }, { 10, 2156 }, { 10, 2158 }, + { 10, 2160 }, { 10, 2162 }, { 10, 2164 }, { 10, 2166 }, { 10, 2168 }, + { 10, 2170 }, { 10, 2172 }, { 10, 2174 }, { 10, 2176 }, { 10, 2178 }, + { 10, 2180 }, { 10, 2182 }, { 10, 2184 }, { 10, 2186 }, { 10, 2188 }, + { 10, 2190 }, { 10, 2192 }, { 10, 2194 }, { 10, 2196 }, { 10, 2198 }, + { 10, 2200 }, { 10, 2202 }, { 10, 2204 }, { 10, 2206 }, { 10, 2208 }, + { 10, 2210 }, { 10, 2212 }, { 10, 2214 }, { 10, 2216 }, { 10, 2218 }, + { 10, 2220 }, { 10, 2222 }, { 10, 2224 }, { 10, 2226 }, { 10, 2228 }, + { 10, 2230 }, { 10, 2232 }, { 10, 2234 }, { 10, 2236 }, { 10, 2238 }, + { 10, 2240 }, { 10, 2242 }, { 10, 2244 }, { 10, 2246 }, { 10, 2248 }, + { 10, 2250 }, { 10, 2252 }, { 10, 2254 }, { 10, 2256 }, { 10, 2258 }, + { 10, 2260 }, { 10, 2262 }, { 10, 2264 }, { 10, 2266 }, { 10, 2268 }, + { 10, 2270 }, { 10, 2272 }, { 10, 2274 }, { 10, 2276 }, { 10, 2278 }, + { 10, 2280 }, { 10, 2282 }, { 10, 2284 }, { 10, 2286 }, { 10, 2288 }, + { 10, 2290 }, { 10, 2292 }, { 10, 2294 }, { 10, 2296 }, { 10, 2298 }, + { 10, 2300 }, { 10, 2302 }, { 10, 2304 }, { 10, 2306 }, { 10, 2308 }, + { 10, 2310 }, { 10, 2312 }, { 10, 2314 }, { 10, 2316 }, { 10, 2318 }, + { 10, 2320 }, { 10, 2322 }, { 10, 2324 }, { 10, 2326 }, { 10, 2328 }, + { 10, 2330 }, { 10, 2332 }, { 10, 2334 }, { 10, 2336 }, { 10, 2338 }, + { 10, 2340 }, { 10, 2342 }, { 10, 2344 }, { 10, 2346 }, { 10, 2348 }, + { 10, 2350 }, { 10, 2352 }, { 10, 2354 }, { 10, 2356 }, { 10, 2358 }, + { 10, 2360 }, { 10, 2362 }, { 10, 2364 }, { 10, 2366 }, { 10, 2368 }, + { 10, 2370 }, { 10, 2372 }, { 10, 2374 }, { 10, 2376 }, { 10, 2378 }, + { 10, 2380 }, { 10, 2382 }, { 10, 2384 }, { 10, 2386 }, { 10, 2388 }, + { 10, 2390 }, { 10, 2392 }, { 10, 2394 }, { 10, 2396 }, { 10, 2398 }, + { 10, 2400 }, { 10, 2402 }, { 10, 2404 }, { 10, 2406 }, { 10, 2408 }, + { 10, 2410 }, { 10, 2412 }, { 10, 2414 }, { 10, 2416 }, { 10, 2418 }, + { 10, 2420 }, { 10, 2422 }, { 10, 2424 }, { 10, 2426 }, { 10, 2428 }, + { 10, 2430 }, { 10, 2432 }, { 10, 2434 }, { 10, 2436 }, { 10, 2438 }, + { 10, 2440 }, { 10, 2442 }, { 10, 2444 }, { 10, 2446 }, { 10, 2448 }, + { 10, 2450 }, { 10, 2452 }, { 10, 2454 }, { 10, 2456 }, { 10, 2458 }, + { 10, 2460 }, { 10, 2462 }, { 10, 2464 }, { 10, 2466 }, { 10, 2468 }, + { 10, 2470 }, { 10, 2472 }, { 10, 2474 }, { 10, 2476 }, { 10, 2478 }, + { 10, 2480 }, { 10, 2482 }, { 10, 2484 }, { 10, 2486 }, { 10, 2488 }, + { 10, 2490 }, { 10, 2492 }, { 10, 2494 }, { 10, 2496 }, { 10, 2498 }, + { 10, 2500 }, { 10, 2502 }, { 10, 2504 }, { 10, 2506 }, { 10, 2508 }, + { 10, 2510 }, { 10, 2512 }, { 10, 2514 }, { 10, 2516 }, { 10, 2518 }, + { 10, 2520 }, { 10, 2522 }, { 10, 2524 }, { 10, 2526 }, { 10, 2528 }, + { 10, 2530 }, { 10, 2532 }, { 10, 2534 }, { 10, 2536 }, { 10, 2538 }, + { 10, 2540 }, { 10, 2542 }, { 10, 2544 }, { 10, 2546 }, { 10, 2548 }, + { 10, 2550 }, { 10, 2552 }, { 10, 2554 }, { 10, 2556 }, { 10, 2558 }, + { 10, 2560 }, { 10, 2562 }, { 10, 2564 }, { 10, 2566 }, { 10, 2568 }, + { 10, 2570 }, { 10, 2572 }, { 10, 2574 }, { 10, 2576 }, { 10, 2578 }, + { 10, 2580 }, { 10, 2582 }, { 10, 2584 }, { 10, 2586 }, { 10, 2588 }, + { 10, 2590 }, { 10, 2592 }, { 10, 2594 }, { 10, 2596 }, { 10, 2598 }, + { 10, 2600 }, { 10, 2602 }, { 10, 2604 }, { 10, 2606 }, { 10, 2608 }, + { 10, 2610 }, { 10, 2612 }, { 10, 2614 }, { 10, 2616 }, { 10, 2618 }, + { 10, 2620 }, { 10, 2622 }, { 10, 2624 }, { 10, 2626 }, { 10, 2628 }, + { 10, 2630 }, { 10, 2632 }, { 10, 2634 }, { 10, 2636 }, { 10, 2638 }, + { 10, 2640 }, { 10, 2642 }, { 10, 2644 }, { 10, 2646 }, { 10, 2648 }, + { 10, 2650 }, { 10, 2652 }, { 10, 2654 }, { 10, 2656 }, { 10, 2658 }, + { 10, 2660 }, { 10, 2662 }, { 10, 2664 }, { 10, 2666 }, { 10, 2668 }, + { 10, 2670 }, { 10, 2672 }, { 10, 2674 }, { 10, 2676 }, { 10, 2678 }, + { 10, 2680 }, { 10, 2682 }, { 10, 2684 }, { 10, 2686 }, { 10, 2688 }, + { 10, 2690 }, { 10, 2692 }, { 10, 2694 }, { 10, 2696 }, { 10, 2698 }, + { 10, 2700 }, { 10, 2702 }, { 10, 2704 }, { 10, 2706 }, { 10, 2708 }, + { 10, 2710 }, { 10, 2712 }, { 10, 2714 }, { 10, 2716 }, { 10, 2718 }, + { 10, 2720 }, { 10, 2722 }, { 10, 2724 }, { 10, 2726 }, { 10, 2728 }, + { 10, 2730 }, { 10, 2732 }, { 10, 2734 }, { 10, 2736 }, { 10, 2738 }, + { 10, 2740 }, { 10, 2742 }, { 10, 2744 }, { 10, 2746 }, { 10, 2748 }, + { 10, 2750 }, { 10, 2752 }, { 10, 2754 }, { 10, 2756 }, { 10, 2758 }, + { 10, 2760 }, { 10, 2762 }, { 10, 2764 }, { 10, 2766 }, { 10, 2768 }, + { 10, 2770 }, { 10, 2772 }, { 10, 2774 }, { 10, 2776 }, { 10, 2778 }, + { 10, 2780 }, { 10, 2782 }, { 10, 2784 }, { 10, 2786 }, { 10, 2788 }, + { 10, 2790 }, { 10, 2792 }, { 10, 2794 }, { 10, 2796 }, { 10, 2798 }, + { 10, 2800 }, { 10, 2802 }, { 10, 2804 }, { 10, 2806 }, { 10, 2808 }, + { 10, 2810 }, { 10, 2812 }, { 10, 2814 }, { 10, 2816 }, { 10, 2818 }, + { 10, 2820 }, { 10, 2822 }, { 10, 2824 }, { 10, 2826 }, { 10, 2828 }, + { 10, 2830 }, { 10, 2832 }, { 10, 2834 }, { 10, 2836 }, { 10, 2838 }, + { 10, 2840 }, { 10, 2842 }, { 10, 2844 }, { 10, 2846 }, { 10, 2848 }, + { 10, 2850 }, { 10, 2852 }, { 10, 2854 }, { 10, 2856 }, { 10, 2858 }, + { 10, 2860 }, { 10, 2862 }, { 10, 2864 }, { 10, 2866 }, { 10, 2868 }, + { 10, 2870 }, { 10, 2872 }, { 10, 2874 }, { 10, 2876 }, { 10, 2878 }, + { 10, 2880 }, { 10, 2882 }, { 10, 2884 }, { 10, 2886 }, { 10, 2888 }, + { 10, 2890 }, { 10, 2892 }, { 10, 2894 }, { 10, 2896 }, { 10, 2898 }, + { 10, 2900 }, { 10, 2902 }, { 10, 2904 }, { 10, 2906 }, { 10, 2908 }, + { 10, 2910 }, { 10, 2912 }, { 10, 2914 }, { 10, 2916 }, { 10, 2918 }, + { 10, 2920 }, { 10, 2922 }, { 10, 2924 }, { 10, 2926 }, { 10, 2928 }, + { 10, 2930 }, { 10, 2932 }, { 10, 2934 }, { 10, 2936 }, { 10, 2938 }, + { 10, 2940 }, { 10, 2942 }, { 10, 2944 }, { 10, 2946 }, { 10, 2948 }, + { 10, 2950 }, { 10, 2952 }, { 10, 2954 }, { 10, 2956 }, { 10, 2958 }, + { 10, 2960 }, { 10, 2962 }, { 10, 2964 }, { 10, 2966 }, { 10, 2968 }, + { 10, 2970 }, { 10, 2972 }, { 10, 2974 }, { 10, 2976 }, { 10, 2978 }, + { 10, 2980 }, { 10, 2982 }, { 10, 2984 }, { 10, 2986 }, { 10, 2988 }, + { 10, 2990 }, { 10, 2992 }, { 10, 2994 }, { 10, 2996 }, { 10, 2998 }, + { 10, 3000 }, { 10, 3002 }, { 10, 3004 }, { 10, 3006 }, { 10, 3008 }, + { 10, 3010 }, { 10, 3012 }, { 10, 3014 }, { 10, 3016 }, { 10, 3018 }, + { 10, 3020 }, { 10, 3022 }, { 10, 3024 }, { 10, 3026 }, { 10, 3028 }, + { 10, 3030 }, { 10, 3032 }, { 10, 3034 }, { 10, 3036 }, { 10, 3038 }, + { 10, 3040 }, { 10, 3042 }, { 10, 3044 }, { 10, 3046 }, { 10, 3048 }, + { 10, 3050 }, { 10, 3052 }, { 10, 3054 }, { 10, 3056 }, { 10, 3058 }, + { 10, 3060 }, { 10, 3062 }, { 10, 3064 }, { 10, 3066 }, { 10, 3068 }, + { 10, 3070 }, { 10, 3072 }, { 10, 3074 }, { 10, 3076 }, { 10, 3078 }, + { 10, 3080 }, { 10, 3082 }, { 10, 3084 }, { 10, 3086 }, { 10, 3088 }, + { 10, 3090 }, { 10, 3092 }, { 10, 3094 }, { 10, 3096 }, { 10, 3098 }, + { 10, 3100 }, { 10, 3102 }, { 10, 3104 }, { 10, 3106 }, { 10, 3108 }, + { 10, 3110 }, { 10, 3112 }, { 10, 3114 }, { 10, 3116 }, { 10, 3118 }, + { 10, 3120 }, { 10, 3122 }, { 10, 3124 }, { 10, 3126 }, { 10, 3128 }, + { 10, 3130 }, { 10, 3132 }, { 10, 3134 }, { 10, 3136 }, { 10, 3138 }, + { 10, 3140 }, { 10, 3142 }, { 10, 3144 }, { 10, 3146 }, { 10, 3148 }, + { 10, 3150 }, { 10, 3152 }, { 10, 3154 }, { 10, 3156 }, { 10, 3158 }, + { 10, 3160 }, { 10, 3162 }, { 10, 3164 }, { 10, 3166 }, { 10, 3168 }, + { 10, 3170 }, { 10, 3172 }, { 10, 3174 }, { 10, 3176 }, { 10, 3178 }, + { 10, 3180 }, { 10, 3182 }, { 10, 3184 }, { 10, 3186 }, { 10, 3188 }, + { 10, 3190 }, { 10, 3192 }, { 10, 3194 }, { 10, 3196 }, { 10, 3198 }, + { 10, 3200 }, { 10, 3202 }, { 10, 3204 }, { 10, 3206 }, { 10, 3208 }, + { 10, 3210 }, { 10, 3212 }, { 10, 3214 }, { 10, 3216 }, { 10, 3218 }, + { 10, 3220 }, { 10, 3222 }, { 10, 3224 }, { 10, 3226 }, { 10, 3228 }, + { 10, 3230 }, { 10, 3232 }, { 10, 3234 }, { 10, 3236 }, { 10, 3238 }, + { 10, 3240 }, { 10, 3242 }, { 10, 3244 }, { 10, 3246 }, { 10, 3248 }, + { 10, 3250 }, { 10, 3252 }, { 10, 3254 }, { 10, 3256 }, { 10, 3258 }, + { 10, 3260 }, { 10, 3262 }, { 10, 3264 }, { 10, 3266 }, { 10, 3268 }, + { 10, 3270 }, { 10, 3272 }, { 10, 3274 }, { 10, 3276 }, { 10, 3278 }, + { 10, 3280 }, { 10, 3282 }, { 10, 3284 }, { 10, 3286 }, { 10, 3288 }, + { 10, 3290 }, { 10, 3292 }, { 10, 3294 }, { 10, 3296 }, { 10, 3298 }, + { 10, 3300 }, { 10, 3302 }, { 10, 3304 }, { 10, 3306 }, { 10, 3308 }, + { 10, 3310 }, { 10, 3312 }, { 10, 3314 }, { 10, 3316 }, { 10, 3318 }, + { 10, 3320 }, { 10, 3322 }, { 10, 3324 }, { 10, 3326 }, { 10, 3328 }, + { 10, 3330 }, { 10, 3332 }, { 10, 3334 }, { 10, 3336 }, { 10, 3338 }, + { 10, 3340 }, { 10, 3342 }, { 10, 3344 }, { 10, 3346 }, { 10, 3348 }, + { 10, 3350 }, { 10, 3352 }, { 10, 3354 }, { 10, 3356 }, { 10, 3358 }, + { 10, 3360 }, { 10, 3362 }, { 10, 3364 }, { 10, 3366 }, { 10, 3368 }, + { 10, 3370 }, { 10, 3372 }, { 10, 3374 }, { 10, 3376 }, { 10, 3378 }, + { 10, 3380 }, { 10, 3382 }, { 10, 3384 }, { 10, 3386 }, { 10, 3388 }, + { 10, 3390 }, { 10, 3392 }, { 10, 3394 }, { 10, 3396 }, { 10, 3398 }, + { 10, 3400 }, { 10, 3402 }, { 10, 3404 }, { 10, 3406 }, { 10, 3408 }, + { 10, 3410 }, { 10, 3412 }, { 10, 3414 }, { 10, 3416 }, { 10, 3418 }, + { 10, 3420 }, { 10, 3422 }, { 10, 3424 }, { 10, 3426 }, { 10, 3428 }, + { 10, 3430 }, { 10, 3432 }, { 10, 3434 }, { 10, 3436 }, { 10, 3438 }, + { 10, 3440 }, { 10, 3442 }, { 10, 3444 }, { 10, 3446 }, { 10, 3448 }, + { 10, 3450 }, { 10, 3452 }, { 10, 3454 }, { 10, 3456 }, { 10, 3458 }, + { 10, 3460 }, { 10, 3462 }, { 10, 3464 }, { 10, 3466 }, { 10, 3468 }, + { 10, 3470 }, { 10, 3472 }, { 10, 3474 }, { 10, 3476 }, { 10, 3478 }, + { 10, 3480 }, { 10, 3482 }, { 10, 3484 }, { 10, 3486 }, { 10, 3488 }, + { 10, 3490 }, { 10, 3492 }, { 10, 3494 }, { 10, 3496 }, { 10, 3498 }, + { 10, 3500 }, { 10, 3502 }, { 10, 3504 }, { 10, 3506 }, { 10, 3508 }, + { 10, 3510 }, { 10, 3512 }, { 10, 3514 }, { 10, 3516 }, { 10, 3518 }, + { 10, 3520 }, { 10, 3522 }, { 10, 3524 }, { 10, 3526 }, { 10, 3528 }, + { 10, 3530 }, { 10, 3532 }, { 10, 3534 }, { 10, 3536 }, { 10, 3538 }, + { 10, 3540 }, { 10, 3542 }, { 10, 3544 }, { 10, 3546 }, { 10, 3548 }, + { 10, 3550 }, { 10, 3552 }, { 10, 3554 }, { 10, 3556 }, { 10, 3558 }, + { 10, 3560 }, { 10, 3562 }, { 10, 3564 }, { 10, 3566 }, { 10, 3568 }, + { 10, 3570 }, { 10, 3572 }, { 10, 3574 }, { 10, 3576 }, { 10, 3578 }, + { 10, 3580 }, { 10, 3582 }, { 10, 3584 }, { 10, 3586 }, { 10, 3588 }, + { 10, 3590 }, { 10, 3592 }, { 10, 3594 }, { 10, 3596 }, { 10, 3598 }, + { 10, 3600 }, { 10, 3602 }, { 10, 3604 }, { 10, 3606 }, { 10, 3608 }, + { 10, 3610 }, { 10, 3612 }, { 10, 3614 }, { 10, 3616 }, { 10, 3618 }, + { 10, 3620 }, { 10, 3622 }, { 10, 3624 }, { 10, 3626 }, { 10, 3628 }, + { 10, 3630 }, { 10, 3632 }, { 10, 3634 }, { 10, 3636 }, { 10, 3638 }, + { 10, 3640 }, { 10, 3642 }, { 10, 3644 }, { 10, 3646 }, { 10, 3648 }, + { 10, 3650 }, { 10, 3652 }, { 10, 3654 }, { 10, 3656 }, { 10, 3658 }, + { 10, 3660 }, { 10, 3662 }, { 10, 3664 }, { 10, 3666 }, { 10, 3668 }, + { 10, 3670 }, { 10, 3672 }, { 10, 3674 }, { 10, 3676 }, { 10, 3678 }, + { 10, 3680 }, { 10, 3682 }, { 10, 3684 }, { 10, 3686 }, { 10, 3688 }, + { 10, 3690 }, { 10, 3692 }, { 10, 3694 }, { 10, 3696 }, { 10, 3698 }, + { 10, 3700 }, { 10, 3702 }, { 10, 3704 }, { 10, 3706 }, { 10, 3708 }, + { 10, 3710 }, { 10, 3712 }, { 10, 3714 }, { 10, 3716 }, { 10, 3718 }, + { 10, 3720 }, { 10, 3722 }, { 10, 3724 }, { 10, 3726 }, { 10, 3728 }, + { 10, 3730 }, { 10, 3732 }, { 10, 3734 }, { 10, 3736 }, { 10, 3738 }, + { 10, 3740 }, { 10, 3742 }, { 10, 3744 }, { 10, 3746 }, { 10, 3748 }, + { 10, 3750 }, { 10, 3752 }, { 10, 3754 }, { 10, 3756 }, { 10, 3758 }, + { 10, 3760 }, { 10, 3762 }, { 10, 3764 }, { 10, 3766 }, { 10, 3768 }, + { 10, 3770 }, { 10, 3772 }, { 10, 3774 }, { 10, 3776 }, { 10, 3778 }, + { 10, 3780 }, { 10, 3782 }, { 10, 3784 }, { 10, 3786 }, { 10, 3788 }, + { 10, 3790 }, { 10, 3792 }, { 10, 3794 }, { 10, 3796 }, { 10, 3798 }, + { 10, 3800 }, { 10, 3802 }, { 10, 3804 }, { 10, 3806 }, { 10, 3808 }, + { 10, 3810 }, { 10, 3812 }, { 10, 3814 }, { 10, 3816 }, { 10, 3818 }, + { 10, 3820 }, { 10, 3822 }, { 10, 3824 }, { 10, 3826 }, { 10, 3828 }, + { 10, 3830 }, { 10, 3832 }, { 10, 3834 }, { 10, 3836 }, { 10, 3838 }, + { 10, 3840 }, { 10, 3842 }, { 10, 3844 }, { 10, 3846 }, { 10, 3848 }, + { 10, 3850 }, { 10, 3852 }, { 10, 3854 }, { 10, 3856 }, { 10, 3858 }, + { 10, 3860 }, { 10, 3862 }, { 10, 3864 }, { 10, 3866 }, { 10, 3868 }, + { 10, 3870 }, { 10, 3872 }, { 10, 3874 }, { 10, 3876 }, { 10, 3878 }, + { 10, 3880 }, { 10, 3882 }, { 10, 3884 }, { 10, 3886 }, { 10, 3888 }, + { 10, 3890 }, { 10, 3892 }, { 10, 3894 }, { 10, 3896 }, { 10, 3898 }, + { 10, 3900 }, { 10, 3902 }, { 10, 3904 }, { 10, 3906 }, { 10, 3908 }, + { 10, 3910 }, { 10, 3912 }, { 10, 3914 }, { 10, 3916 }, { 10, 3918 }, + { 10, 3920 }, { 10, 3922 }, { 10, 3924 }, { 10, 3926 }, { 10, 3928 }, + { 10, 3930 }, { 10, 3932 }, { 10, 3934 }, { 10, 3936 }, { 10, 3938 }, + { 10, 3940 }, { 10, 3942 }, { 10, 3944 }, { 10, 3946 }, { 10, 3948 }, + { 10, 3950 }, { 10, 3952 }, { 10, 3954 }, { 10, 3956 }, { 10, 3958 }, + { 10, 3960 } +}; + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP8_ENCODER_DCT_VALUE_TOKENS_H_ diff --git a/vp8/encoder/defaultcoefcounts.h b/vp8/encoder/defaultcoefcounts.h new file mode 100644 index 0000000..2976325 --- /dev/null +++ b/vp8/encoder/defaultcoefcounts.h @@ -0,0 +1,235 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP8_ENCODER_DEFAULTCOEFCOUNTS_H_ +#define VP8_ENCODER_DEFAULTCOEFCOUNTS_H_ + +#ifdef __cplusplus +extern "C" { +#endif + +/* Generated file, included by entropy.c */ + +static const unsigned int default_coef_counts + [BLOCK_TYPES][COEF_BANDS][PREV_COEF_CONTEXTS][MAX_ENTROPY_TOKENS] = { + + { + /* Block Type ( 0 ) */ + { + /* Coeff Band ( 0 ) */ + { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, + { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, + { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, + }, + { + /* Coeff Band ( 1 ) */ + { 30190, 26544, 225, 24, 4, 0, 0, 0, 0, 0, 0, 4171593 }, + { 26846, 25157, 1241, 130, 26, 6, 1, 0, 0, 0, 0, 149987 }, + { 10484, 9538, 1006, 160, 36, 18, 0, 0, 0, 0, 0, 15104 }, + }, + { + /* Coeff Band ( 2 ) */ + { 25842, 40456, 1126, 83, 11, 2, 0, 0, 0, 0, 0, 0 }, + { 9338, 8010, 512, 73, 7, 3, 2, 0, 0, 0, 0, 43294 }, + { 1047, 751, 149, 31, 13, 6, 1, 0, 0, 0, 0, 879 }, + }, + { + /* Coeff Band ( 3 ) */ + { 26136, 9826, 252, 13, 0, 0, 0, 0, 0, 0, 0, 0 }, + { 8134, 5574, 191, 14, 2, 0, 0, 0, 0, 0, 0, 35302 }, + { 605, 677, 116, 9, 1, 0, 0, 0, 0, 0, 0, 611 }, + }, + { + /* Coeff Band ( 4 ) */ + { 10263, 15463, 283, 17, 0, 0, 0, 0, 0, 0, 0, 0 }, + { 2773, 2191, 128, 9, 2, 2, 0, 0, 0, 0, 0, 10073 }, + { 134, 125, 32, 4, 0, 2, 0, 0, 0, 0, 0, 50 }, + }, + { + /* Coeff Band ( 5 ) */ + { 10483, 2663, 23, 1, 0, 0, 0, 0, 0, 0, 0, 0 }, + { 2137, 1251, 27, 1, 1, 0, 0, 0, 0, 0, 0, 14362 }, + { 116, 156, 14, 2, 1, 0, 0, 0, 0, 0, 0, 190 }, + }, + { + /* Coeff Band ( 6 ) */ + { 40977, 27614, 412, 28, 0, 0, 0, 0, 0, 0, 0, 0 }, + { 6113, 5213, 261, 22, 3, 0, 0, 0, 0, 0, 0, 26164 }, + { 382, 312, 50, 14, 2, 0, 0, 0, 0, 0, 0, 345 }, + }, + { + /* Coeff Band ( 7 ) */ + { 0, 26, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, + { 0, 13, 0, 0, 0, 0, 0, 0, 0, 0, 0, 319 }, + { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8 }, + }, + }, + { + /* Block Type ( 1 ) */ + { + /* Coeff Band ( 0 ) */ + { 3268, 19382, 1043, 250, 93, 82, 49, 26, 17, 8, 25, 82289 }, + { 8758, 32110, 5436, 1832, 827, 668, 420, 153, 24, 0, 3, 52914 }, + { 9337, 23725, 8487, 3954, 2107, 1836, 1069, 399, 59, 0, 0, + 18620 }, + }, + { + /* Coeff Band ( 1 ) */ + { 12419, 8420, 452, 62, 9, 1, 0, 0, 0, 0, 0, 0 }, + { 11715, 8705, 693, 92, 15, 7, 2, 0, 0, 0, 0, 53988 }, + { 7603, 8585, 2306, 778, 270, 145, 39, 5, 0, 0, 0, 9136 }, + }, + { + /* Coeff Band ( 2 ) */ + { 15938, 14335, 1207, 184, 55, 13, 4, 1, 0, 0, 0, 0 }, + { 7415, 6829, 1138, 244, 71, 26, 7, 0, 0, 0, 0, 9980 }, + { 1580, 1824, 655, 241, 89, 46, 10, 2, 0, 0, 0, 429 }, + }, + { + /* Coeff Band ( 3 ) */ + { 19453, 5260, 201, 19, 0, 0, 0, 0, 0, 0, 0, 0 }, + { 9173, 3758, 213, 22, 1, 1, 0, 0, 0, 0, 0, 9820 }, + { 1689, 1277, 276, 51, 17, 4, 0, 0, 0, 0, 0, 679 }, + }, + { + /* Coeff Band ( 4 ) */ + { 12076, 10667, 620, 85, 19, 9, 5, 0, 0, 0, 0, 0 }, + { 4665, 3625, 423, 55, 19, 9, 0, 0, 0, 0, 0, 5127 }, + { 415, 440, 143, 34, 20, 7, 2, 0, 0, 0, 0, 101 }, + }, + { + /* Coeff Band ( 5 ) */ + { 12183, 4846, 115, 11, 1, 0, 0, 0, 0, 0, 0, 0 }, + { 4226, 3149, 177, 21, 2, 0, 0, 0, 0, 0, 0, 7157 }, + { 375, 621, 189, 51, 11, 4, 1, 0, 0, 0, 0, 198 }, + }, + { + /* Coeff Band ( 6 ) */ + { 61658, 37743, 1203, 94, 10, 3, 0, 0, 0, 0, 0, 0 }, + { 15514, 11563, 903, 111, 14, 5, 0, 0, 0, 0, 0, 25195 }, + { 929, 1077, 291, 78, 14, 7, 1, 0, 0, 0, 0, 507 }, + }, + { + /* Coeff Band ( 7 ) */ + { 0, 990, 15, 3, 0, 0, 0, 0, 0, 0, 0, 0 }, + { 0, 412, 13, 0, 0, 0, 0, 0, 0, 0, 0, 1641 }, + { 0, 18, 7, 1, 0, 0, 0, 0, 0, 0, 0, 30 }, + }, + }, + { + /* Block Type ( 2 ) */ + { + /* Coeff Band ( 0 ) */ + { 953, 24519, 628, 120, 28, 12, 4, 0, 0, 0, 0, 2248798 }, + { 1525, 25654, 2647, 617, 239, 143, 42, 5, 0, 0, 0, 66837 }, + { 1180, 11011, 3001, 1237, 532, 448, 239, 54, 5, 0, 0, 7122 }, + }, + { + /* Coeff Band ( 1 ) */ + { 1356, 2220, 67, 10, 4, 1, 0, 0, 0, 0, 0, 0 }, + { 1450, 2544, 102, 18, 4, 3, 0, 0, 0, 0, 0, 57063 }, + { 1182, 2110, 470, 130, 41, 21, 0, 0, 0, 0, 0, 6047 }, + }, + { + /* Coeff Band ( 2 ) */ + { 370, 3378, 200, 30, 5, 4, 1, 0, 0, 0, 0, 0 }, + { 293, 1006, 131, 29, 11, 0, 0, 0, 0, 0, 0, 5404 }, + { 114, 387, 98, 23, 4, 8, 1, 0, 0, 0, 0, 236 }, + }, + { + /* Coeff Band ( 3 ) */ + { 579, 194, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, + { 395, 213, 5, 1, 0, 0, 0, 0, 0, 0, 0, 4157 }, + { 119, 122, 4, 0, 0, 0, 0, 0, 0, 0, 0, 300 }, + }, + { + /* Coeff Band ( 4 ) */ + { 38, 557, 19, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, + { 21, 114, 12, 1, 0, 0, 0, 0, 0, 0, 0, 427 }, + { 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7 }, + }, + { + /* Coeff Band ( 5 ) */ + { 52, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, + { 18, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 652 }, + { 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 30 }, + }, + { + /* Coeff Band ( 6 ) */ + { 640, 569, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, + { 25, 77, 2, 0, 0, 0, 0, 0, 0, 0, 0, 517 }, + { 4, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3 }, + }, + { + /* Coeff Band ( 7 ) */ + { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, + { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, + { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, + }, + }, + { + /* Block Type ( 3 ) */ + { + /* Coeff Band ( 0 ) */ + { 2506, 20161, 2707, 767, 261, 178, 107, 30, 14, 3, 0, 100694 }, + { 8806, 36478, 8817, 3268, 1280, 850, 401, 114, 42, 0, 0, 58572 }, + { 11003, 27214, 11798, 5716, 2482, 2072, 1048, 175, 32, 0, 0, + 19284 }, + }, + { + /* Coeff Band ( 1 ) */ + { 9738, 11313, 959, 205, 70, 18, 11, 1, 0, 0, 0, 0 }, + { 12628, 15085, 1507, 273, 52, 19, 9, 0, 0, 0, 0, 54280 }, + { 10701, 15846, 5561, 1926, 813, 570, 249, 36, 0, 0, 0, 6460 }, + }, + { + /* Coeff Band ( 2 ) */ + { 6781, 22539, 2784, 634, 182, 123, 20, 4, 0, 0, 0, 0 }, + { 6263, 11544, 2649, 790, 259, 168, 27, 5, 0, 0, 0, 20539 }, + { 3109, 4075, 2031, 896, 457, 386, 158, 29, 0, 0, 0, 1138 }, + }, + { + /* Coeff Band ( 3 ) */ + { 11515, 4079, 465, 73, 5, 14, 2, 0, 0, 0, 0, 0 }, + { 9361, 5834, 650, 96, 24, 8, 4, 0, 0, 0, 0, 22181 }, + { 4343, 3974, 1360, 415, 132, 96, 14, 1, 0, 0, 0, 1267 }, + }, + { + /* Coeff Band ( 4 ) */ + { 4787, 9297, 823, 168, 44, 12, 4, 0, 0, 0, 0, 0 }, + { 3619, 4472, 719, 198, 60, 31, 3, 0, 0, 0, 0, 8401 }, + { 1157, 1175, 483, 182, 88, 31, 8, 0, 0, 0, 0, 268 }, + }, + { + /* Coeff Band ( 5 ) */ + { 8299, 1226, 32, 5, 1, 0, 0, 0, 0, 0, 0, 0 }, + { 3502, 1568, 57, 4, 1, 1, 0, 0, 0, 0, 0, 9811 }, + { 1055, 1070, 166, 29, 6, 1, 0, 0, 0, 0, 0, 527 }, + }, + { + /* Coeff Band ( 6 ) */ + { 27414, 27927, 1989, 347, 69, 26, 0, 0, 0, 0, 0, 0 }, + { 5876, 10074, 1574, 341, 91, 24, 4, 0, 0, 0, 0, 21954 }, + { 1571, 2171, 778, 324, 124, 65, 16, 0, 0, 0, 0, 979 }, + }, + { + /* Coeff Band ( 7 ) */ + { 0, 29, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, + { 0, 23, 0, 0, 0, 0, 0, 0, 0, 0, 0, 459 }, + { 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 13 }, + }, + }, + }; + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP8_ENCODER_DEFAULTCOEFCOUNTS_H_ diff --git a/vp8/encoder/denoising.c b/vp8/encoder/denoising.c new file mode 100644 index 0000000..eb963b9 --- /dev/null +++ b/vp8/encoder/denoising.c @@ -0,0 +1,726 @@ +/* + * Copyright (c) 2012 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include + +#include "denoising.h" + +#include "vp8/common/reconinter.h" +#include "vpx/vpx_integer.h" +#include "vpx_mem/vpx_mem.h" +#include "vp8_rtcd.h" + +static const unsigned int NOISE_MOTION_THRESHOLD = 25 * 25; +/* SSE_DIFF_THRESHOLD is selected as ~95% confidence assuming + * var(noise) ~= 100. + */ +static const unsigned int SSE_DIFF_THRESHOLD = 16 * 16 * 20; +static const unsigned int SSE_THRESHOLD = 16 * 16 * 40; +static const unsigned int SSE_THRESHOLD_HIGH = 16 * 16 * 80; + +/* + * The filter function was modified to reduce the computational complexity. + * Step 1: + * Instead of applying tap coefficients for each pixel, we calculated the + * pixel adjustments vs. pixel diff value ahead of time. + * adjustment = filtered_value - current_raw + * = (filter_coefficient * diff + 128) >> 8 + * where + * filter_coefficient = (255 << 8) / (256 + ((absdiff * 330) >> 3)); + * filter_coefficient += filter_coefficient / + * (3 + motion_magnitude_adjustment); + * filter_coefficient is clamped to 0 ~ 255. + * + * Step 2: + * The adjustment vs. diff curve becomes flat very quick when diff increases. + * This allowed us to use only several levels to approximate the curve without + * changing the filtering algorithm too much. + * The adjustments were further corrected by checking the motion magnitude. + * The levels used are: + * diff adjustment w/o motion correction adjustment w/ motion correction + * [-255, -16] -6 -7 + * [-15, -8] -4 -5 + * [-7, -4] -3 -4 + * [-3, 3] diff diff + * [4, 7] 3 4 + * [8, 15] 4 5 + * [16, 255] 6 7 + */ + +int vp8_denoiser_filter_c(unsigned char *mc_running_avg_y, int mc_avg_y_stride, + unsigned char *running_avg_y, int avg_y_stride, + unsigned char *sig, int sig_stride, + unsigned int motion_magnitude, + int increase_denoising) { + unsigned char *running_avg_y_start = running_avg_y; + unsigned char *sig_start = sig; + int sum_diff_thresh; + int r, c; + int sum_diff = 0; + int adj_val[3] = { 3, 4, 6 }; + int shift_inc1 = 0; + int shift_inc2 = 1; + int col_sum[16] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; + /* If motion_magnitude is small, making the denoiser more aggressive by + * increasing the adjustment for each level. Add another increment for + * blocks that are labeled for increase denoising. */ + if (motion_magnitude <= MOTION_MAGNITUDE_THRESHOLD) { + if (increase_denoising) { + shift_inc1 = 1; + shift_inc2 = 2; + } + adj_val[0] += shift_inc2; + adj_val[1] += shift_inc2; + adj_val[2] += shift_inc2; + } + + for (r = 0; r < 16; ++r) { + for (c = 0; c < 16; ++c) { + int diff = 0; + int adjustment = 0; + int absdiff = 0; + + diff = mc_running_avg_y[c] - sig[c]; + absdiff = abs(diff); + + // When |diff| <= |3 + shift_inc1|, use pixel value from + // last denoised raw. + if (absdiff <= 3 + shift_inc1) { + running_avg_y[c] = mc_running_avg_y[c]; + col_sum[c] += diff; + } else { + if (absdiff >= 4 + shift_inc1 && absdiff <= 7) { + adjustment = adj_val[0]; + } else if (absdiff >= 8 && absdiff <= 15) { + adjustment = adj_val[1]; + } else { + adjustment = adj_val[2]; + } + + if (diff > 0) { + if ((sig[c] + adjustment) > 255) { + running_avg_y[c] = 255; + } else { + running_avg_y[c] = sig[c] + adjustment; + } + + col_sum[c] += adjustment; + } else { + if ((sig[c] - adjustment) < 0) { + running_avg_y[c] = 0; + } else { + running_avg_y[c] = sig[c] - adjustment; + } + + col_sum[c] -= adjustment; + } + } + } + + /* Update pointers for next iteration. */ + sig += sig_stride; + mc_running_avg_y += mc_avg_y_stride; + running_avg_y += avg_y_stride; + } + + for (c = 0; c < 16; ++c) { + // Below we clip the value in the same way which SSE code use. + // When adopting aggressive denoiser, the adj_val for each pixel + // could be at most 8 (this is current max adjustment of the map). + // In SSE code, we calculate the sum of adj_val for + // the columns, so the sum could be upto 128(16 rows). However, + // the range of the value is -128 ~ 127 in SSE code, that's why + // we do this change in C code. + // We don't do this for UV denoiser, since there are only 8 rows, + // and max adjustments <= 8, so the sum of the columns will not + // exceed 64. + if (col_sum[c] >= 128) { + col_sum[c] = 127; + } + sum_diff += col_sum[c]; + } + + sum_diff_thresh = SUM_DIFF_THRESHOLD; + if (increase_denoising) sum_diff_thresh = SUM_DIFF_THRESHOLD_HIGH; + if (abs(sum_diff) > sum_diff_thresh) { + // Before returning to copy the block (i.e., apply no denoising), check + // if we can still apply some (weaker) temporal filtering to this block, + // that would otherwise not be denoised at all. Simplest is to apply + // an additional adjustment to running_avg_y to bring it closer to sig. + // The adjustment is capped by a maximum delta, and chosen such that + // in most cases the resulting sum_diff will be within the + // accceptable range given by sum_diff_thresh. + + // The delta is set by the excess of absolute pixel diff over threshold. + int delta = ((abs(sum_diff) - sum_diff_thresh) >> 8) + 1; + // Only apply the adjustment for max delta up to 3. + if (delta < 4) { + sig -= sig_stride * 16; + mc_running_avg_y -= mc_avg_y_stride * 16; + running_avg_y -= avg_y_stride * 16; + for (r = 0; r < 16; ++r) { + for (c = 0; c < 16; ++c) { + int diff = mc_running_avg_y[c] - sig[c]; + int adjustment = abs(diff); + if (adjustment > delta) adjustment = delta; + if (diff > 0) { + // Bring denoised signal down. + if (running_avg_y[c] - adjustment < 0) { + running_avg_y[c] = 0; + } else { + running_avg_y[c] = running_avg_y[c] - adjustment; + } + col_sum[c] -= adjustment; + } else if (diff < 0) { + // Bring denoised signal up. + if (running_avg_y[c] + adjustment > 255) { + running_avg_y[c] = 255; + } else { + running_avg_y[c] = running_avg_y[c] + adjustment; + } + col_sum[c] += adjustment; + } + } + // TODO(marpan): Check here if abs(sum_diff) has gone below the + // threshold sum_diff_thresh, and if so, we can exit the row loop. + sig += sig_stride; + mc_running_avg_y += mc_avg_y_stride; + running_avg_y += avg_y_stride; + } + + sum_diff = 0; + for (c = 0; c < 16; ++c) { + if (col_sum[c] >= 128) { + col_sum[c] = 127; + } + sum_diff += col_sum[c]; + } + + if (abs(sum_diff) > sum_diff_thresh) return COPY_BLOCK; + } else { + return COPY_BLOCK; + } + } + + vp8_copy_mem16x16(running_avg_y_start, avg_y_stride, sig_start, sig_stride); + return FILTER_BLOCK; +} + +int vp8_denoiser_filter_uv_c(unsigned char *mc_running_avg_uv, + int mc_avg_uv_stride, + unsigned char *running_avg_uv, int avg_uv_stride, + unsigned char *sig, int sig_stride, + unsigned int motion_magnitude, + int increase_denoising) { + unsigned char *running_avg_uv_start = running_avg_uv; + unsigned char *sig_start = sig; + int sum_diff_thresh; + int r, c; + int sum_diff = 0; + int sum_block = 0; + int adj_val[3] = { 3, 4, 6 }; + int shift_inc1 = 0; + int shift_inc2 = 1; + /* If motion_magnitude is small, making the denoiser more aggressive by + * increasing the adjustment for each level. Add another increment for + * blocks that are labeled for increase denoising. */ + if (motion_magnitude <= MOTION_MAGNITUDE_THRESHOLD_UV) { + if (increase_denoising) { + shift_inc1 = 1; + shift_inc2 = 2; + } + adj_val[0] += shift_inc2; + adj_val[1] += shift_inc2; + adj_val[2] += shift_inc2; + } + + // Avoid denoising color signal if its close to average level. + for (r = 0; r < 8; ++r) { + for (c = 0; c < 8; ++c) { + sum_block += sig[c]; + } + sig += sig_stride; + } + if (abs(sum_block - (128 * 8 * 8)) < SUM_DIFF_FROM_AVG_THRESH_UV) { + return COPY_BLOCK; + } + + sig -= sig_stride * 8; + for (r = 0; r < 8; ++r) { + for (c = 0; c < 8; ++c) { + int diff = 0; + int adjustment = 0; + int absdiff = 0; + + diff = mc_running_avg_uv[c] - sig[c]; + absdiff = abs(diff); + + // When |diff| <= |3 + shift_inc1|, use pixel value from + // last denoised raw. + if (absdiff <= 3 + shift_inc1) { + running_avg_uv[c] = mc_running_avg_uv[c]; + sum_diff += diff; + } else { + if (absdiff >= 4 && absdiff <= 7) { + adjustment = adj_val[0]; + } else if (absdiff >= 8 && absdiff <= 15) { + adjustment = adj_val[1]; + } else { + adjustment = adj_val[2]; + } + if (diff > 0) { + if ((sig[c] + adjustment) > 255) { + running_avg_uv[c] = 255; + } else { + running_avg_uv[c] = sig[c] + adjustment; + } + sum_diff += adjustment; + } else { + if ((sig[c] - adjustment) < 0) { + running_avg_uv[c] = 0; + } else { + running_avg_uv[c] = sig[c] - adjustment; + } + sum_diff -= adjustment; + } + } + } + /* Update pointers for next iteration. */ + sig += sig_stride; + mc_running_avg_uv += mc_avg_uv_stride; + running_avg_uv += avg_uv_stride; + } + + sum_diff_thresh = SUM_DIFF_THRESHOLD_UV; + if (increase_denoising) sum_diff_thresh = SUM_DIFF_THRESHOLD_HIGH_UV; + if (abs(sum_diff) > sum_diff_thresh) { + // Before returning to copy the block (i.e., apply no denoising), check + // if we can still apply some (weaker) temporal filtering to this block, + // that would otherwise not be denoised at all. Simplest is to apply + // an additional adjustment to running_avg_y to bring it closer to sig. + // The adjustment is capped by a maximum delta, and chosen such that + // in most cases the resulting sum_diff will be within the + // accceptable range given by sum_diff_thresh. + + // The delta is set by the excess of absolute pixel diff over threshold. + int delta = ((abs(sum_diff) - sum_diff_thresh) >> 8) + 1; + // Only apply the adjustment for max delta up to 3. + if (delta < 4) { + sig -= sig_stride * 8; + mc_running_avg_uv -= mc_avg_uv_stride * 8; + running_avg_uv -= avg_uv_stride * 8; + for (r = 0; r < 8; ++r) { + for (c = 0; c < 8; ++c) { + int diff = mc_running_avg_uv[c] - sig[c]; + int adjustment = abs(diff); + if (adjustment > delta) adjustment = delta; + if (diff > 0) { + // Bring denoised signal down. + if (running_avg_uv[c] - adjustment < 0) { + running_avg_uv[c] = 0; + } else { + running_avg_uv[c] = running_avg_uv[c] - adjustment; + } + sum_diff -= adjustment; + } else if (diff < 0) { + // Bring denoised signal up. + if (running_avg_uv[c] + adjustment > 255) { + running_avg_uv[c] = 255; + } else { + running_avg_uv[c] = running_avg_uv[c] + adjustment; + } + sum_diff += adjustment; + } + } + // TODO(marpan): Check here if abs(sum_diff) has gone below the + // threshold sum_diff_thresh, and if so, we can exit the row loop. + sig += sig_stride; + mc_running_avg_uv += mc_avg_uv_stride; + running_avg_uv += avg_uv_stride; + } + if (abs(sum_diff) > sum_diff_thresh) return COPY_BLOCK; + } else { + return COPY_BLOCK; + } + } + + vp8_copy_mem8x8(running_avg_uv_start, avg_uv_stride, sig_start, sig_stride); + return FILTER_BLOCK; +} + +void vp8_denoiser_set_parameters(VP8_DENOISER *denoiser, int mode) { + assert(mode > 0); // Denoiser is allocated only if mode > 0. + if (mode == 1) { + denoiser->denoiser_mode = kDenoiserOnYOnly; + } else if (mode == 2) { + denoiser->denoiser_mode = kDenoiserOnYUV; + } else if (mode == 3) { + denoiser->denoiser_mode = kDenoiserOnYUVAggressive; + } else { + denoiser->denoiser_mode = kDenoiserOnYUV; + } + if (denoiser->denoiser_mode != kDenoiserOnYUVAggressive) { + denoiser->denoise_pars.scale_sse_thresh = 1; + denoiser->denoise_pars.scale_motion_thresh = 8; + denoiser->denoise_pars.scale_increase_filter = 0; + denoiser->denoise_pars.denoise_mv_bias = 95; + denoiser->denoise_pars.pickmode_mv_bias = 100; + denoiser->denoise_pars.qp_thresh = 0; + denoiser->denoise_pars.consec_zerolast = UINT_MAX; + denoiser->denoise_pars.spatial_blur = 0; + } else { + denoiser->denoise_pars.scale_sse_thresh = 2; + denoiser->denoise_pars.scale_motion_thresh = 16; + denoiser->denoise_pars.scale_increase_filter = 1; + denoiser->denoise_pars.denoise_mv_bias = 60; + denoiser->denoise_pars.pickmode_mv_bias = 75; + denoiser->denoise_pars.qp_thresh = 80; + denoiser->denoise_pars.consec_zerolast = 15; + denoiser->denoise_pars.spatial_blur = 0; + } +} + +int vp8_denoiser_allocate(VP8_DENOISER *denoiser, int width, int height, + int num_mb_rows, int num_mb_cols, int mode) { + int i; + assert(denoiser); + denoiser->num_mb_cols = num_mb_cols; + + for (i = 0; i < MAX_REF_FRAMES; ++i) { + denoiser->yv12_running_avg[i].flags = 0; + + if (vp8_yv12_alloc_frame_buffer(&(denoiser->yv12_running_avg[i]), width, + height, VP8BORDERINPIXELS) < 0) { + vp8_denoiser_free(denoiser); + return 1; + } + memset(denoiser->yv12_running_avg[i].buffer_alloc, 0, + denoiser->yv12_running_avg[i].frame_size); + } + denoiser->yv12_mc_running_avg.flags = 0; + + if (vp8_yv12_alloc_frame_buffer(&(denoiser->yv12_mc_running_avg), width, + height, VP8BORDERINPIXELS) < 0) { + vp8_denoiser_free(denoiser); + return 1; + } + + memset(denoiser->yv12_mc_running_avg.buffer_alloc, 0, + denoiser->yv12_mc_running_avg.frame_size); + + if (vp8_yv12_alloc_frame_buffer(&denoiser->yv12_last_source, width, height, + VP8BORDERINPIXELS) < 0) { + vp8_denoiser_free(denoiser); + return 1; + } + memset(denoiser->yv12_last_source.buffer_alloc, 0, + denoiser->yv12_last_source.frame_size); + + denoiser->denoise_state = vpx_calloc((num_mb_rows * num_mb_cols), 1); + if (!denoiser->denoise_state) { + vp8_denoiser_free(denoiser); + return 1; + } + memset(denoiser->denoise_state, 0, (num_mb_rows * num_mb_cols)); + vp8_denoiser_set_parameters(denoiser, mode); + denoiser->nmse_source_diff = 0; + denoiser->nmse_source_diff_count = 0; + denoiser->qp_avg = 0; + // QP threshold below which we can go up to aggressive mode. + denoiser->qp_threshold_up = 80; + // QP threshold above which we can go back down to normal mode. + // For now keep this second threshold high, so not used currently. + denoiser->qp_threshold_down = 128; + // Bitrate thresholds and noise metric (nmse) thresholds for switching to + // aggressive mode. + // TODO(marpan): Adjust thresholds, including effect on resolution. + denoiser->bitrate_threshold = 400000; // (bits/sec). + denoiser->threshold_aggressive_mode = 80; + if (width * height > 1280 * 720) { + denoiser->bitrate_threshold = 3000000; + denoiser->threshold_aggressive_mode = 200; + } else if (width * height > 960 * 540) { + denoiser->bitrate_threshold = 1200000; + denoiser->threshold_aggressive_mode = 120; + } else if (width * height > 640 * 480) { + denoiser->bitrate_threshold = 600000; + denoiser->threshold_aggressive_mode = 100; + } + return 0; +} + +void vp8_denoiser_free(VP8_DENOISER *denoiser) { + int i; + assert(denoiser); + + for (i = 0; i < MAX_REF_FRAMES; ++i) { + vp8_yv12_de_alloc_frame_buffer(&denoiser->yv12_running_avg[i]); + } + vp8_yv12_de_alloc_frame_buffer(&denoiser->yv12_mc_running_avg); + vp8_yv12_de_alloc_frame_buffer(&denoiser->yv12_last_source); + vpx_free(denoiser->denoise_state); +} + +void vp8_denoiser_denoise_mb(VP8_DENOISER *denoiser, MACROBLOCK *x, + unsigned int best_sse, unsigned int zero_mv_sse, + int recon_yoffset, int recon_uvoffset, + loop_filter_info_n *lfi_n, int mb_row, int mb_col, + int block_index, int consec_zero_last) + +{ + int mv_row; + int mv_col; + unsigned int motion_threshold; + unsigned int motion_magnitude2; + unsigned int sse_thresh; + int sse_diff_thresh = 0; + // Spatial loop filter: only applied selectively based on + // temporal filter state of block relative to top/left neighbors. + int apply_spatial_loop_filter = 1; + MV_REFERENCE_FRAME frame = x->best_reference_frame; + MV_REFERENCE_FRAME zero_frame = x->best_zeromv_reference_frame; + + enum vp8_denoiser_decision decision = FILTER_BLOCK; + enum vp8_denoiser_decision decision_u = COPY_BLOCK; + enum vp8_denoiser_decision decision_v = COPY_BLOCK; + + if (zero_frame) { + YV12_BUFFER_CONFIG *src = &denoiser->yv12_running_avg[frame]; + YV12_BUFFER_CONFIG *dst = &denoiser->yv12_mc_running_avg; + YV12_BUFFER_CONFIG saved_pre, saved_dst; + MB_MODE_INFO saved_mbmi; + MACROBLOCKD *filter_xd = &x->e_mbd; + MB_MODE_INFO *mbmi = &filter_xd->mode_info_context->mbmi; + int sse_diff = 0; + // Bias on zero motion vector sse. + const int zero_bias = denoiser->denoise_pars.denoise_mv_bias; + zero_mv_sse = (unsigned int)((int64_t)zero_mv_sse * zero_bias / 100); + sse_diff = (int)zero_mv_sse - (int)best_sse; + + saved_mbmi = *mbmi; + + /* Use the best MV for the compensation. */ + mbmi->ref_frame = x->best_reference_frame; + mbmi->mode = x->best_sse_inter_mode; + mbmi->mv = x->best_sse_mv; + mbmi->need_to_clamp_mvs = x->need_to_clamp_best_mvs; + mv_col = x->best_sse_mv.as_mv.col; + mv_row = x->best_sse_mv.as_mv.row; + // Bias to zero_mv if small amount of motion. + // Note sse_diff_thresh is intialized to zero, so this ensures + // we will always choose zero_mv for denoising if + // zero_mv_see <= best_sse (i.e., sse_diff <= 0). + if ((unsigned int)(mv_row * mv_row + mv_col * mv_col) <= + NOISE_MOTION_THRESHOLD) { + sse_diff_thresh = (int)SSE_DIFF_THRESHOLD; + } + + if (frame == INTRA_FRAME || sse_diff <= sse_diff_thresh) { + /* + * Handle intra blocks as referring to last frame with zero motion + * and let the absolute pixel difference affect the filter factor. + * Also consider small amount of motion as being random walk due + * to noise, if it doesn't mean that we get a much bigger error. + * Note that any changes to the mode info only affects the + * denoising. + */ + x->denoise_zeromv = 1; + mbmi->ref_frame = x->best_zeromv_reference_frame; + + src = &denoiser->yv12_running_avg[zero_frame]; + + mbmi->mode = ZEROMV; + mbmi->mv.as_int = 0; + x->best_sse_inter_mode = ZEROMV; + x->best_sse_mv.as_int = 0; + best_sse = zero_mv_sse; + } + + mv_row = x->best_sse_mv.as_mv.row; + mv_col = x->best_sse_mv.as_mv.col; + motion_magnitude2 = mv_row * mv_row + mv_col * mv_col; + motion_threshold = + denoiser->denoise_pars.scale_motion_thresh * NOISE_MOTION_THRESHOLD; + + if (motion_magnitude2 < + denoiser->denoise_pars.scale_increase_filter * NOISE_MOTION_THRESHOLD) { + x->increase_denoising = 1; + } + + sse_thresh = denoiser->denoise_pars.scale_sse_thresh * SSE_THRESHOLD; + if (x->increase_denoising) { + sse_thresh = denoiser->denoise_pars.scale_sse_thresh * SSE_THRESHOLD_HIGH; + } + + if (best_sse > sse_thresh || motion_magnitude2 > motion_threshold) { + decision = COPY_BLOCK; + } + + // If block is considered skin, don't denoise if the block + // (1) is selected as non-zero motion for current frame, or + // (2) has not been selected as ZERO_LAST mode at least x past frames + // in a row. + // TODO(marpan): Parameter "x" should be varied with framerate. + // In particualar, should be reduced for layers (base layer/LAST). + if (x->is_skin && (consec_zero_last < 2 || motion_magnitude2 > 0)) { + decision = COPY_BLOCK; + } + + if (decision == FILTER_BLOCK) { + saved_pre = filter_xd->pre; + saved_dst = filter_xd->dst; + + /* Compensate the running average. */ + filter_xd->pre.y_buffer = src->y_buffer + recon_yoffset; + filter_xd->pre.u_buffer = src->u_buffer + recon_uvoffset; + filter_xd->pre.v_buffer = src->v_buffer + recon_uvoffset; + /* Write the compensated running average to the destination buffer. */ + filter_xd->dst.y_buffer = dst->y_buffer + recon_yoffset; + filter_xd->dst.u_buffer = dst->u_buffer + recon_uvoffset; + filter_xd->dst.v_buffer = dst->v_buffer + recon_uvoffset; + + if (!x->skip) { + vp8_build_inter_predictors_mb(filter_xd); + } else { + vp8_build_inter16x16_predictors_mb( + filter_xd, filter_xd->dst.y_buffer, filter_xd->dst.u_buffer, + filter_xd->dst.v_buffer, filter_xd->dst.y_stride, + filter_xd->dst.uv_stride); + } + filter_xd->pre = saved_pre; + filter_xd->dst = saved_dst; + *mbmi = saved_mbmi; + } + } else { + // zero_frame should always be 1 for real-time mode, as the + // ZEROMV mode is always checked, so we should never go into this branch. + // If case ZEROMV is not checked, then we will force no denoise (COPY). + decision = COPY_BLOCK; + } + + if (decision == FILTER_BLOCK) { + unsigned char *mc_running_avg_y = + denoiser->yv12_mc_running_avg.y_buffer + recon_yoffset; + int mc_avg_y_stride = denoiser->yv12_mc_running_avg.y_stride; + unsigned char *running_avg_y = + denoiser->yv12_running_avg[INTRA_FRAME].y_buffer + recon_yoffset; + int avg_y_stride = denoiser->yv12_running_avg[INTRA_FRAME].y_stride; + + /* Filter. */ + decision = vp8_denoiser_filter(mc_running_avg_y, mc_avg_y_stride, + running_avg_y, avg_y_stride, x->thismb, 16, + motion_magnitude2, x->increase_denoising); + denoiser->denoise_state[block_index] = + motion_magnitude2 > 0 ? kFilterNonZeroMV : kFilterZeroMV; + // Only denoise UV for zero motion, and if y channel was denoised. + if (denoiser->denoiser_mode != kDenoiserOnYOnly && motion_magnitude2 == 0 && + decision == FILTER_BLOCK) { + unsigned char *mc_running_avg_u = + denoiser->yv12_mc_running_avg.u_buffer + recon_uvoffset; + unsigned char *running_avg_u = + denoiser->yv12_running_avg[INTRA_FRAME].u_buffer + recon_uvoffset; + unsigned char *mc_running_avg_v = + denoiser->yv12_mc_running_avg.v_buffer + recon_uvoffset; + unsigned char *running_avg_v = + denoiser->yv12_running_avg[INTRA_FRAME].v_buffer + recon_uvoffset; + int mc_avg_uv_stride = denoiser->yv12_mc_running_avg.uv_stride; + int avg_uv_stride = denoiser->yv12_running_avg[INTRA_FRAME].uv_stride; + int signal_stride = x->block[16].src_stride; + decision_u = vp8_denoiser_filter_uv( + mc_running_avg_u, mc_avg_uv_stride, running_avg_u, avg_uv_stride, + x->block[16].src + *x->block[16].base_src, signal_stride, + motion_magnitude2, 0); + decision_v = vp8_denoiser_filter_uv( + mc_running_avg_v, mc_avg_uv_stride, running_avg_v, avg_uv_stride, + x->block[20].src + *x->block[20].base_src, signal_stride, + motion_magnitude2, 0); + } + } + if (decision == COPY_BLOCK) { + /* No filtering of this block; it differs too much from the predictor, + * or the motion vector magnitude is considered too big. + */ + x->denoise_zeromv = 0; + vp8_copy_mem16x16( + x->thismb, 16, + denoiser->yv12_running_avg[INTRA_FRAME].y_buffer + recon_yoffset, + denoiser->yv12_running_avg[INTRA_FRAME].y_stride); + denoiser->denoise_state[block_index] = kNoFilter; + } + if (denoiser->denoiser_mode != kDenoiserOnYOnly) { + if (decision_u == COPY_BLOCK) { + vp8_copy_mem8x8( + x->block[16].src + *x->block[16].base_src, x->block[16].src_stride, + denoiser->yv12_running_avg[INTRA_FRAME].u_buffer + recon_uvoffset, + denoiser->yv12_running_avg[INTRA_FRAME].uv_stride); + } + if (decision_v == COPY_BLOCK) { + vp8_copy_mem8x8( + x->block[20].src + *x->block[20].base_src, x->block[16].src_stride, + denoiser->yv12_running_avg[INTRA_FRAME].v_buffer + recon_uvoffset, + denoiser->yv12_running_avg[INTRA_FRAME].uv_stride); + } + } + // Option to selectively deblock the denoised signal, for y channel only. + if (apply_spatial_loop_filter) { + loop_filter_info lfi; + int apply_filter_col = 0; + int apply_filter_row = 0; + int apply_filter = 0; + int y_stride = denoiser->yv12_running_avg[INTRA_FRAME].y_stride; + int uv_stride = denoiser->yv12_running_avg[INTRA_FRAME].uv_stride; + + // Fix filter level to some nominal value for now. + int filter_level = 48; + + int hev_index = lfi_n->hev_thr_lut[INTER_FRAME][filter_level]; + lfi.mblim = lfi_n->mblim[filter_level]; + lfi.blim = lfi_n->blim[filter_level]; + lfi.lim = lfi_n->lim[filter_level]; + lfi.hev_thr = lfi_n->hev_thr[hev_index]; + + // Apply filter if there is a difference in the denoiser filter state + // between the current and left/top block, or if non-zero motion vector + // is used for the motion-compensated filtering. + if (mb_col > 0) { + apply_filter_col = + !((denoiser->denoise_state[block_index] == + denoiser->denoise_state[block_index - 1]) && + denoiser->denoise_state[block_index] != kFilterNonZeroMV); + if (apply_filter_col) { + // Filter left vertical edge. + apply_filter = 1; + vp8_loop_filter_mbv( + denoiser->yv12_running_avg[INTRA_FRAME].y_buffer + recon_yoffset, + NULL, NULL, y_stride, uv_stride, &lfi); + } + } + if (mb_row > 0) { + apply_filter_row = + !((denoiser->denoise_state[block_index] == + denoiser->denoise_state[block_index - denoiser->num_mb_cols]) && + denoiser->denoise_state[block_index] != kFilterNonZeroMV); + if (apply_filter_row) { + // Filter top horizontal edge. + apply_filter = 1; + vp8_loop_filter_mbh( + denoiser->yv12_running_avg[INTRA_FRAME].y_buffer + recon_yoffset, + NULL, NULL, y_stride, uv_stride, &lfi); + } + } + if (apply_filter) { + // Update the signal block |x|. Pixel changes are only to top and/or + // left boundary pixels: can we avoid full block copy here. + vp8_copy_mem16x16( + denoiser->yv12_running_avg[INTRA_FRAME].y_buffer + recon_yoffset, + y_stride, x->thismb, 16); + } + } +} diff --git a/vp8/encoder/denoising.h b/vp8/encoder/denoising.h new file mode 100644 index 0000000..91d87b3 --- /dev/null +++ b/vp8/encoder/denoising.h @@ -0,0 +1,103 @@ +/* + * Copyright (c) 2012 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP8_ENCODER_DENOISING_H_ +#define VP8_ENCODER_DENOISING_H_ + +#include "block.h" +#include "vp8/common/loopfilter.h" + +#ifdef __cplusplus +extern "C" { +#endif + +#define SUM_DIFF_THRESHOLD 512 +#define SUM_DIFF_THRESHOLD_HIGH 600 +#define MOTION_MAGNITUDE_THRESHOLD (8 * 3) + +#define SUM_DIFF_THRESHOLD_UV (96) // (8 * 8 * 1.5) +#define SUM_DIFF_THRESHOLD_HIGH_UV (8 * 8 * 2) +#define SUM_DIFF_FROM_AVG_THRESH_UV (8 * 8 * 8) +#define MOTION_MAGNITUDE_THRESHOLD_UV (8 * 3) + +#define MAX_GF_ARF_DENOISE_RANGE (8) + +enum vp8_denoiser_decision { COPY_BLOCK, FILTER_BLOCK }; + +enum vp8_denoiser_filter_state { kNoFilter, kFilterZeroMV, kFilterNonZeroMV }; + +enum vp8_denoiser_mode { + kDenoiserOff, + kDenoiserOnYOnly, + kDenoiserOnYUV, + kDenoiserOnYUVAggressive, + kDenoiserOnAdaptive +}; + +typedef struct { + // Scale factor on sse threshold above which no denoising is done. + unsigned int scale_sse_thresh; + // Scale factor on motion magnitude threshold above which no + // denoising is done. + unsigned int scale_motion_thresh; + // Scale factor on motion magnitude below which we increase the strength of + // the temporal filter (in function vp8_denoiser_filter). + unsigned int scale_increase_filter; + // Scale factor to bias to ZEROMV for denoising. + unsigned int denoise_mv_bias; + // Scale factor to bias to ZEROMV for coding mode selection. + unsigned int pickmode_mv_bias; + // Quantizer threshold below which we use the segmentation map to switch off + // loop filter for blocks that have been coded as ZEROMV-LAST a certain number + // (consec_zerolast) of consecutive frames. Note that the delta-QP is set to + // 0 when segmentation map is used for shutting off loop filter. + unsigned int qp_thresh; + // Threshold for number of consecutive frames for blocks coded as ZEROMV-LAST. + unsigned int consec_zerolast; + // Threshold for amount of spatial blur on Y channel. 0 means no spatial blur. + unsigned int spatial_blur; +} denoise_params; + +typedef struct vp8_denoiser { + YV12_BUFFER_CONFIG yv12_running_avg[MAX_REF_FRAMES]; + YV12_BUFFER_CONFIG yv12_mc_running_avg; + // TODO(marpan): Should remove yv12_last_source and use vp8_lookahead_peak. + YV12_BUFFER_CONFIG yv12_last_source; + unsigned char *denoise_state; + int num_mb_cols; + int denoiser_mode; + int threshold_aggressive_mode; + int nmse_source_diff; + int nmse_source_diff_count; + int qp_avg; + int qp_threshold_up; + int qp_threshold_down; + int bitrate_threshold; + denoise_params denoise_pars; +} VP8_DENOISER; + +int vp8_denoiser_allocate(VP8_DENOISER *denoiser, int width, int height, + int num_mb_rows, int num_mb_cols, int mode); + +void vp8_denoiser_free(VP8_DENOISER *denoiser); + +void vp8_denoiser_set_parameters(VP8_DENOISER *denoiser, int mode); + +void vp8_denoiser_denoise_mb(VP8_DENOISER *denoiser, MACROBLOCK *x, + unsigned int best_sse, unsigned int zero_mv_sse, + int recon_yoffset, int recon_uvoffset, + loop_filter_info_n *lfi_n, int mb_row, int mb_col, + int block_index, int consec_zero_last); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP8_ENCODER_DENOISING_H_ diff --git a/vp8/encoder/encodeframe.c b/vp8/encoder/encodeframe.c new file mode 100644 index 0000000..9bb0df7 --- /dev/null +++ b/vp8/encoder/encodeframe.c @@ -0,0 +1,1291 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "vpx_config.h" +#include "vp8_rtcd.h" +#include "./vpx_dsp_rtcd.h" +#include "bitstream.h" +#include "encodemb.h" +#include "encodemv.h" +#if CONFIG_MULTITHREAD +#include "ethreading.h" +#endif +#include "vp8/common/common.h" +#include "onyx_int.h" +#include "vp8/common/extend.h" +#include "vp8/common/entropymode.h" +#include "vp8/common/quant_common.h" +#include "segmentation.h" +#include "vp8/common/setupintrarecon.h" +#include "encodeintra.h" +#include "vp8/common/reconinter.h" +#include "rdopt.h" +#include "pickinter.h" +#include "vp8/common/findnearmv.h" +#include +#include +#include "vp8/common/invtrans.h" +#include "vpx_ports/vpx_timer.h" +#if CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING +#include "bitstream.h" +#endif +#include "encodeframe.h" + +extern void vp8_stuff_mb(VP8_COMP *cpi, MACROBLOCK *x, TOKENEXTRA **t); +static void adjust_act_zbin(VP8_COMP *cpi, MACROBLOCK *x); + +#ifdef MODE_STATS +unsigned int inter_y_modes[10] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; +unsigned int inter_uv_modes[4] = { 0, 0, 0, 0 }; +unsigned int inter_b_modes[15] = { + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 +}; +unsigned int y_modes[5] = { 0, 0, 0, 0, 0 }; +unsigned int uv_modes[4] = { 0, 0, 0, 0 }; +unsigned int b_modes[14] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; +#endif + +/* activity_avg must be positive, or flat regions could get a zero weight + * (infinite lambda), which confounds analysis. + * This also avoids the need for divide by zero checks in + * vp8_activity_masking(). + */ +#define VP8_ACTIVITY_AVG_MIN (64) + +/* This is used as a reference when computing the source variance for the + * purposes of activity masking. + * Eventually this should be replaced by custom no-reference routines, + * which will be faster. + */ +static const unsigned char VP8_VAR_OFFS[16] = { + 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128 +}; + +/* Original activity measure from Tim T's code. */ +static unsigned int tt_activity_measure(VP8_COMP *cpi, MACROBLOCK *x) { + unsigned int act; + unsigned int sse; + (void)cpi; + /* TODO: This could also be done over smaller areas (8x8), but that would + * require extensive changes elsewhere, as lambda is assumed to be fixed + * over an entire MB in most of the code. + * Another option is to compute four 8x8 variances, and pick a single + * lambda using a non-linear combination (e.g., the smallest, or second + * smallest, etc.). + */ + act = vpx_variance16x16(x->src.y_buffer, x->src.y_stride, VP8_VAR_OFFS, 0, + &sse); + act = act << 4; + + /* If the region is flat, lower the activity some more. */ + if (act < 8 << 12) act = act < 5 << 12 ? act : 5 << 12; + + return act; +} + +/* Stub for alternative experimental activity measures. */ +static unsigned int alt_activity_measure(VP8_COMP *cpi, MACROBLOCK *x, + int use_dc_pred) { + return vp8_encode_intra(cpi, x, use_dc_pred); +} + +/* Measure the activity of the current macroblock + * What we measure here is TBD so abstracted to this function + */ +#define ALT_ACT_MEASURE 1 +static unsigned int mb_activity_measure(VP8_COMP *cpi, MACROBLOCK *x, + int mb_row, int mb_col) { + unsigned int mb_activity; + + if (ALT_ACT_MEASURE) { + int use_dc_pred = (mb_col || mb_row) && (!mb_col || !mb_row); + + /* Or use and alternative. */ + mb_activity = alt_activity_measure(cpi, x, use_dc_pred); + } else { + /* Original activity measure from Tim T's code. */ + mb_activity = tt_activity_measure(cpi, x); + } + + if (mb_activity < VP8_ACTIVITY_AVG_MIN) mb_activity = VP8_ACTIVITY_AVG_MIN; + + return mb_activity; +} + +/* Calculate an "average" mb activity value for the frame */ +#define ACT_MEDIAN 0 +static void calc_av_activity(VP8_COMP *cpi, int64_t activity_sum) { +#if ACT_MEDIAN + /* Find median: Simple n^2 algorithm for experimentation */ + { + unsigned int median; + unsigned int i, j; + unsigned int *sortlist; + unsigned int tmp; + + /* Create a list to sort to */ + CHECK_MEM_ERROR(sortlist, + vpx_calloc(sizeof(unsigned int), cpi->common.MBs)); + + /* Copy map to sort list */ + memcpy(sortlist, cpi->mb_activity_map, + sizeof(unsigned int) * cpi->common.MBs); + + /* Ripple each value down to its correct position */ + for (i = 1; i < cpi->common.MBs; ++i) { + for (j = i; j > 0; j--) { + if (sortlist[j] < sortlist[j - 1]) { + /* Swap values */ + tmp = sortlist[j - 1]; + sortlist[j - 1] = sortlist[j]; + sortlist[j] = tmp; + } else + break; + } + } + + /* Even number MBs so estimate median as mean of two either side. */ + median = (1 + sortlist[cpi->common.MBs >> 1] + + sortlist[(cpi->common.MBs >> 1) + 1]) >> + 1; + + cpi->activity_avg = median; + + vpx_free(sortlist); + } +#else + /* Simple mean for now */ + cpi->activity_avg = (unsigned int)(activity_sum / cpi->common.MBs); +#endif + + if (cpi->activity_avg < VP8_ACTIVITY_AVG_MIN) { + cpi->activity_avg = VP8_ACTIVITY_AVG_MIN; + } + + /* Experimental code: return fixed value normalized for several clips */ + if (ALT_ACT_MEASURE) cpi->activity_avg = 100000; +} + +#define USE_ACT_INDEX 0 +#define OUTPUT_NORM_ACT_STATS 0 + +#if USE_ACT_INDEX +/* Calculate and activity index for each mb */ +static void calc_activity_index(VP8_COMP *cpi, MACROBLOCK *x) { + VP8_COMMON *const cm = &cpi->common; + int mb_row, mb_col; + + int64_t act; + int64_t a; + int64_t b; + +#if OUTPUT_NORM_ACT_STATS + FILE *f = fopen("norm_act.stt", "a"); + fprintf(f, "\n%12d\n", cpi->activity_avg); +#endif + + /* Reset pointers to start of activity map */ + x->mb_activity_ptr = cpi->mb_activity_map; + + /* Calculate normalized mb activity number. */ + for (mb_row = 0; mb_row < cm->mb_rows; ++mb_row) { + /* for each macroblock col in image */ + for (mb_col = 0; mb_col < cm->mb_cols; ++mb_col) { + /* Read activity from the map */ + act = *(x->mb_activity_ptr); + + /* Calculate a normalized activity number */ + a = act + 4 * cpi->activity_avg; + b = 4 * act + cpi->activity_avg; + + if (b >= a) + *(x->activity_ptr) = (int)((b + (a >> 1)) / a) - 1; + else + *(x->activity_ptr) = 1 - (int)((a + (b >> 1)) / b); + +#if OUTPUT_NORM_ACT_STATS + fprintf(f, " %6d", *(x->mb_activity_ptr)); +#endif + /* Increment activity map pointers */ + x->mb_activity_ptr++; + } + +#if OUTPUT_NORM_ACT_STATS + fprintf(f, "\n"); +#endif + } + +#if OUTPUT_NORM_ACT_STATS + fclose(f); +#endif +} +#endif + +/* Loop through all MBs. Note activity of each, average activity and + * calculate a normalized activity for each + */ +static void build_activity_map(VP8_COMP *cpi) { + MACROBLOCK *const x = &cpi->mb; + MACROBLOCKD *xd = &x->e_mbd; + VP8_COMMON *const cm = &cpi->common; + +#if ALT_ACT_MEASURE + YV12_BUFFER_CONFIG *new_yv12 = &cm->yv12_fb[cm->new_fb_idx]; + int recon_yoffset; + int recon_y_stride = new_yv12->y_stride; +#endif + + int mb_row, mb_col; + unsigned int mb_activity; + int64_t activity_sum = 0; + + /* for each macroblock row in image */ + for (mb_row = 0; mb_row < cm->mb_rows; ++mb_row) { +#if ALT_ACT_MEASURE + /* reset above block coeffs */ + xd->up_available = (mb_row != 0); + recon_yoffset = (mb_row * recon_y_stride * 16); +#endif + /* for each macroblock col in image */ + for (mb_col = 0; mb_col < cm->mb_cols; ++mb_col) { +#if ALT_ACT_MEASURE + xd->dst.y_buffer = new_yv12->y_buffer + recon_yoffset; + xd->left_available = (mb_col != 0); + recon_yoffset += 16; +#endif + /* Copy current mb to a buffer */ + vp8_copy_mem16x16(x->src.y_buffer, x->src.y_stride, x->thismb, 16); + + /* measure activity */ + mb_activity = mb_activity_measure(cpi, x, mb_row, mb_col); + + /* Keep frame sum */ + activity_sum += mb_activity; + + /* Store MB level activity details. */ + *x->mb_activity_ptr = mb_activity; + + /* Increment activity map pointer */ + x->mb_activity_ptr++; + + /* adjust to the next column of source macroblocks */ + x->src.y_buffer += 16; + } + + /* adjust to the next row of mbs */ + x->src.y_buffer += 16 * x->src.y_stride - 16 * cm->mb_cols; + +#if ALT_ACT_MEASURE + /* extend the recon for intra prediction */ + vp8_extend_mb_row(new_yv12, xd->dst.y_buffer + 16, xd->dst.u_buffer + 8, + xd->dst.v_buffer + 8); +#endif + } + + /* Calculate an "average" MB activity */ + calc_av_activity(cpi, activity_sum); + +#if USE_ACT_INDEX + /* Calculate an activity index number of each mb */ + calc_activity_index(cpi, x); +#endif +} + +/* Macroblock activity masking */ +void vp8_activity_masking(VP8_COMP *cpi, MACROBLOCK *x) { +#if USE_ACT_INDEX + x->rdmult += *(x->mb_activity_ptr) * (x->rdmult >> 2); + x->errorperbit = x->rdmult * 100 / (110 * x->rddiv); + x->errorperbit += (x->errorperbit == 0); +#else + int64_t a; + int64_t b; + int64_t act = *(x->mb_activity_ptr); + + /* Apply the masking to the RD multiplier. */ + a = act + (2 * cpi->activity_avg); + b = (2 * act) + cpi->activity_avg; + + x->rdmult = (unsigned int)(((int64_t)x->rdmult * b + (a >> 1)) / a); + x->errorperbit = x->rdmult * 100 / (110 * x->rddiv); + x->errorperbit += (x->errorperbit == 0); +#endif + + /* Activity based Zbin adjustment */ + adjust_act_zbin(cpi, x); +} + +static void encode_mb_row(VP8_COMP *cpi, VP8_COMMON *cm, int mb_row, + MACROBLOCK *x, MACROBLOCKD *xd, TOKENEXTRA **tp, + int *segment_counts, int *totalrate) { + int recon_yoffset, recon_uvoffset; + int mb_col; + int ref_fb_idx = cm->lst_fb_idx; + int dst_fb_idx = cm->new_fb_idx; + int recon_y_stride = cm->yv12_fb[ref_fb_idx].y_stride; + int recon_uv_stride = cm->yv12_fb[ref_fb_idx].uv_stride; + int map_index = (mb_row * cpi->common.mb_cols); + +#if (CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING) + const int num_part = (1 << cm->multi_token_partition); + TOKENEXTRA *tp_start = cpi->tok; + vp8_writer *w; +#endif + +#if CONFIG_MULTITHREAD + const int nsync = cpi->mt_sync_range; + vpx_atomic_int rightmost_col = VPX_ATOMIC_INIT(cm->mb_cols + nsync); + const vpx_atomic_int *last_row_current_mb_col; + vpx_atomic_int *current_mb_col = &cpi->mt_current_mb_col[mb_row]; + + if (vpx_atomic_load_acquire(&cpi->b_multi_threaded) != 0 && mb_row != 0) { + last_row_current_mb_col = &cpi->mt_current_mb_col[mb_row - 1]; + } else { + last_row_current_mb_col = &rightmost_col; + } +#endif + +#if (CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING) + if (num_part > 1) + w = &cpi->bc[1 + (mb_row % num_part)]; + else + w = &cpi->bc[1]; +#endif + + /* reset above block coeffs */ + xd->above_context = cm->above_context; + + xd->up_available = (mb_row != 0); + recon_yoffset = (mb_row * recon_y_stride * 16); + recon_uvoffset = (mb_row * recon_uv_stride * 8); + + cpi->tplist[mb_row].start = *tp; + /* printf("Main mb_row = %d\n", mb_row); */ + + /* Distance of Mb to the top & bottom edges, specified in 1/8th pel + * units as they are always compared to values that are in 1/8th pel + */ + xd->mb_to_top_edge = -((mb_row * 16) << 3); + xd->mb_to_bottom_edge = ((cm->mb_rows - 1 - mb_row) * 16) << 3; + + /* Set up limit values for vertical motion vector components + * to prevent them extending beyond the UMV borders + */ + x->mv_row_min = -((mb_row * 16) + (VP8BORDERINPIXELS - 16)); + x->mv_row_max = ((cm->mb_rows - 1 - mb_row) * 16) + (VP8BORDERINPIXELS - 16); + + /* Set the mb activity pointer to the start of the row. */ + x->mb_activity_ptr = &cpi->mb_activity_map[map_index]; + + /* for each macroblock col in image */ + for (mb_col = 0; mb_col < cm->mb_cols; ++mb_col) { +#if (CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING) + *tp = cpi->tok; +#endif + /* Distance of Mb to the left & right edges, specified in + * 1/8th pel units as they are always compared to values + * that are in 1/8th pel units + */ + xd->mb_to_left_edge = -((mb_col * 16) << 3); + xd->mb_to_right_edge = ((cm->mb_cols - 1 - mb_col) * 16) << 3; + + /* Set up limit values for horizontal motion vector components + * to prevent them extending beyond the UMV borders + */ + x->mv_col_min = -((mb_col * 16) + (VP8BORDERINPIXELS - 16)); + x->mv_col_max = + ((cm->mb_cols - 1 - mb_col) * 16) + (VP8BORDERINPIXELS - 16); + + xd->dst.y_buffer = cm->yv12_fb[dst_fb_idx].y_buffer + recon_yoffset; + xd->dst.u_buffer = cm->yv12_fb[dst_fb_idx].u_buffer + recon_uvoffset; + xd->dst.v_buffer = cm->yv12_fb[dst_fb_idx].v_buffer + recon_uvoffset; + xd->left_available = (mb_col != 0); + + x->rddiv = cpi->RDDIV; + x->rdmult = cpi->RDMULT; + + /* Copy current mb to a buffer */ + vp8_copy_mem16x16(x->src.y_buffer, x->src.y_stride, x->thismb, 16); + +#if CONFIG_MULTITHREAD + if (vpx_atomic_load_acquire(&cpi->b_multi_threaded) != 0) { + if (((mb_col - 1) % nsync) == 0) { + vpx_atomic_store_release(current_mb_col, mb_col - 1); + } + + if (mb_row && !(mb_col & (nsync - 1))) { + vp8_atomic_spin_wait(mb_col, last_row_current_mb_col, nsync); + } + } +#endif + + if (cpi->oxcf.tuning == VP8_TUNE_SSIM) vp8_activity_masking(cpi, x); + + /* Is segmentation enabled */ + /* MB level adjustment to quantizer */ + if (xd->segmentation_enabled) { + /* Code to set segment id in xd->mbmi.segment_id for current MB + * (with range checking) + */ + if (cpi->segmentation_map[map_index + mb_col] <= 3) { + xd->mode_info_context->mbmi.segment_id = + cpi->segmentation_map[map_index + mb_col]; + } else { + xd->mode_info_context->mbmi.segment_id = 0; + } + + vp8cx_mb_init_quantizer(cpi, x, 1); + } else { + /* Set to Segment 0 by default */ + xd->mode_info_context->mbmi.segment_id = 0; + } + + x->active_ptr = cpi->active_map + map_index + mb_col; + + if (cm->frame_type == KEY_FRAME) { + *totalrate += vp8cx_encode_intra_macroblock(cpi, x, tp); +#ifdef MODE_STATS + y_modes[xd->mbmi.mode]++; +#endif + } else { + *totalrate += vp8cx_encode_inter_macroblock( + cpi, x, tp, recon_yoffset, recon_uvoffset, mb_row, mb_col); + +#ifdef MODE_STATS + inter_y_modes[xd->mbmi.mode]++; + + if (xd->mbmi.mode == SPLITMV) { + int b; + + for (b = 0; b < xd->mbmi.partition_count; ++b) { + inter_b_modes[x->partition->bmi[b].mode]++; + } + } + +#endif + + // Keep track of how many (consecutive) times a block is coded + // as ZEROMV_LASTREF, for base layer frames. + // Reset to 0 if its coded as anything else. + if (cpi->current_layer == 0) { + if (xd->mode_info_context->mbmi.mode == ZEROMV && + xd->mode_info_context->mbmi.ref_frame == LAST_FRAME) { + // Increment, check for wrap-around. + if (cpi->consec_zero_last[map_index + mb_col] < 255) { + cpi->consec_zero_last[map_index + mb_col] += 1; + } + if (cpi->consec_zero_last_mvbias[map_index + mb_col] < 255) { + cpi->consec_zero_last_mvbias[map_index + mb_col] += 1; + } + } else { + cpi->consec_zero_last[map_index + mb_col] = 0; + cpi->consec_zero_last_mvbias[map_index + mb_col] = 0; + } + if (x->zero_last_dot_suppress) { + cpi->consec_zero_last_mvbias[map_index + mb_col] = 0; + } + } + + /* Special case code for cyclic refresh + * If cyclic update enabled then copy xd->mbmi.segment_id; (which + * may have been updated based on mode during + * vp8cx_encode_inter_macroblock()) back into the global + * segmentation map + */ + if ((cpi->current_layer == 0) && + (cpi->cyclic_refresh_mode_enabled && xd->segmentation_enabled)) { + cpi->segmentation_map[map_index + mb_col] = + xd->mode_info_context->mbmi.segment_id; + + /* If the block has been refreshed mark it as clean (the + * magnitude of the -ve influences how long it will be before + * we consider another refresh): + * Else if it was coded (last frame 0,0) and has not already + * been refreshed then mark it as a candidate for cleanup + * next time (marked 0) else mark it as dirty (1). + */ + if (xd->mode_info_context->mbmi.segment_id) { + cpi->cyclic_refresh_map[map_index + mb_col] = -1; + } else if ((xd->mode_info_context->mbmi.mode == ZEROMV) && + (xd->mode_info_context->mbmi.ref_frame == LAST_FRAME)) { + if (cpi->cyclic_refresh_map[map_index + mb_col] == 1) { + cpi->cyclic_refresh_map[map_index + mb_col] = 0; + } + } else { + cpi->cyclic_refresh_map[map_index + mb_col] = 1; + } + } + } + + cpi->tplist[mb_row].stop = *tp; + +#if CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING + /* pack tokens for this MB */ + { + int tok_count = *tp - tp_start; + vp8_pack_tokens(w, tp_start, tok_count); + } +#endif + /* Increment pointer into gf usage flags structure. */ + x->gf_active_ptr++; + + /* Increment the activity mask pointers. */ + x->mb_activity_ptr++; + + /* adjust to the next column of macroblocks */ + x->src.y_buffer += 16; + x->src.u_buffer += 8; + x->src.v_buffer += 8; + + recon_yoffset += 16; + recon_uvoffset += 8; + + /* Keep track of segment usage */ + segment_counts[xd->mode_info_context->mbmi.segment_id]++; + + /* skip to next mb */ + xd->mode_info_context++; + x->partition_info++; + xd->above_context++; + } + + /* extend the recon for intra prediction */ + vp8_extend_mb_row(&cm->yv12_fb[dst_fb_idx], xd->dst.y_buffer + 16, + xd->dst.u_buffer + 8, xd->dst.v_buffer + 8); + +#if CONFIG_MULTITHREAD + if (vpx_atomic_load_acquire(&cpi->b_multi_threaded) != 0) { + vpx_atomic_store_release(current_mb_col, + vpx_atomic_load_acquire(&rightmost_col)); + } +#endif + + /* this is to account for the border */ + xd->mode_info_context++; + x->partition_info++; +} + +static void init_encode_frame_mb_context(VP8_COMP *cpi) { + MACROBLOCK *const x = &cpi->mb; + VP8_COMMON *const cm = &cpi->common; + MACROBLOCKD *const xd = &x->e_mbd; + + /* GF active flags data structure */ + x->gf_active_ptr = (signed char *)cpi->gf_active_flags; + + /* Activity map pointer */ + x->mb_activity_ptr = cpi->mb_activity_map; + + x->act_zbin_adj = 0; + + x->partition_info = x->pi; + + xd->mode_info_context = cm->mi; + xd->mode_info_stride = cm->mode_info_stride; + + xd->frame_type = cm->frame_type; + + /* reset intra mode contexts */ + if (cm->frame_type == KEY_FRAME) vp8_init_mbmode_probs(cm); + + /* Copy data over into macro block data structures. */ + x->src = *cpi->Source; + xd->pre = cm->yv12_fb[cm->lst_fb_idx]; + xd->dst = cm->yv12_fb[cm->new_fb_idx]; + + /* set up frame for intra coded blocks */ + vp8_setup_intra_recon(&cm->yv12_fb[cm->new_fb_idx]); + + vp8_build_block_offsets(x); + + xd->mode_info_context->mbmi.mode = DC_PRED; + xd->mode_info_context->mbmi.uv_mode = DC_PRED; + + xd->left_context = &cm->left_context; + + x->mvc = cm->fc.mvc; + + memset(cm->above_context, 0, sizeof(ENTROPY_CONTEXT_PLANES) * cm->mb_cols); + + /* Special case treatment when GF and ARF are not sensible options + * for reference + */ + if (cpi->ref_frame_flags == VP8_LAST_FRAME) { + vp8_calc_ref_frame_costs(x->ref_frame_cost, cpi->prob_intra_coded, 255, + 128); + } else if ((cpi->oxcf.number_of_layers > 1) && + (cpi->ref_frame_flags == VP8_GOLD_FRAME)) { + vp8_calc_ref_frame_costs(x->ref_frame_cost, cpi->prob_intra_coded, 1, 255); + } else if ((cpi->oxcf.number_of_layers > 1) && + (cpi->ref_frame_flags == VP8_ALTR_FRAME)) { + vp8_calc_ref_frame_costs(x->ref_frame_cost, cpi->prob_intra_coded, 1, 1); + } else { + vp8_calc_ref_frame_costs(x->ref_frame_cost, cpi->prob_intra_coded, + cpi->prob_last_coded, cpi->prob_gf_coded); + } + + xd->fullpixel_mask = 0xffffffff; + if (cm->full_pixel) xd->fullpixel_mask = 0xfffffff8; + + vp8_zero(x->coef_counts); + vp8_zero(x->ymode_count); + vp8_zero(x->uv_mode_count) x->prediction_error = 0; + x->intra_error = 0; + vp8_zero(x->count_mb_ref_frame_usage); +} + +#if CONFIG_MULTITHREAD +static void sum_coef_counts(MACROBLOCK *x, MACROBLOCK *x_thread) { + int i = 0; + do { + int j = 0; + do { + int k = 0; + do { + /* at every context */ + + /* calc probs and branch cts for this frame only */ + int t = 0; /* token/prob index */ + + do { + x->coef_counts[i][j][k][t] += x_thread->coef_counts[i][j][k][t]; + } while (++t < ENTROPY_NODES); + } while (++k < PREV_COEF_CONTEXTS); + } while (++j < COEF_BANDS); + } while (++i < BLOCK_TYPES); +} +#endif // CONFIG_MULTITHREAD + +void vp8_encode_frame(VP8_COMP *cpi) { + int mb_row; + MACROBLOCK *const x = &cpi->mb; + VP8_COMMON *const cm = &cpi->common; + MACROBLOCKD *const xd = &x->e_mbd; + TOKENEXTRA *tp = cpi->tok; + int segment_counts[MAX_MB_SEGMENTS]; + int totalrate; +#if CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING + BOOL_CODER *bc = &cpi->bc[1]; /* bc[0] is for control partition */ + const int num_part = (1 << cm->multi_token_partition); +#endif + + memset(segment_counts, 0, sizeof(segment_counts)); + totalrate = 0; + + if (cpi->compressor_speed == 2) { + if (cpi->oxcf.cpu_used < 0) { + cpi->Speed = -(cpi->oxcf.cpu_used); + } else { + vp8_auto_select_speed(cpi); + } + } + + /* Functions setup for all frame types so we can use MC in AltRef */ + if (!cm->use_bilinear_mc_filter) { + xd->subpixel_predict = vp8_sixtap_predict4x4; + xd->subpixel_predict8x4 = vp8_sixtap_predict8x4; + xd->subpixel_predict8x8 = vp8_sixtap_predict8x8; + xd->subpixel_predict16x16 = vp8_sixtap_predict16x16; + } else { + xd->subpixel_predict = vp8_bilinear_predict4x4; + xd->subpixel_predict8x4 = vp8_bilinear_predict8x4; + xd->subpixel_predict8x8 = vp8_bilinear_predict8x8; + xd->subpixel_predict16x16 = vp8_bilinear_predict16x16; + } + + cpi->mb.skip_true_count = 0; + cpi->tok_count = 0; + +#if 0 + /* Experimental code */ + cpi->frame_distortion = 0; + cpi->last_mb_distortion = 0; +#endif + + xd->mode_info_context = cm->mi; + + vp8_zero(cpi->mb.MVcount); + + vp8cx_frame_init_quantizer(cpi); + + vp8_initialize_rd_consts(cpi, x, + vp8_dc_quant(cm->base_qindex, cm->y1dc_delta_q)); + + vp8cx_initialize_me_consts(cpi, cm->base_qindex); + + if (cpi->oxcf.tuning == VP8_TUNE_SSIM) { + /* Initialize encode frame context. */ + init_encode_frame_mb_context(cpi); + + /* Build a frame level activity map */ + build_activity_map(cpi); + } + + /* re-init encode frame context. */ + init_encode_frame_mb_context(cpi); + +#if CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING + { + int i; + for (i = 0; i < num_part; ++i) { + vp8_start_encode(&bc[i], cpi->partition_d[i + 1], + cpi->partition_d_end[i + 1]); + bc[i].error = &cm->error; + } + } + +#endif + + { + struct vpx_usec_timer emr_timer; + vpx_usec_timer_start(&emr_timer); + +#if CONFIG_MULTITHREAD + if (vpx_atomic_load_acquire(&cpi->b_multi_threaded)) { + int i; + + vp8cx_init_mbrthread_data(cpi, x, cpi->mb_row_ei, + cpi->encoding_thread_count); + + for (i = 0; i < cm->mb_rows; ++i) + vpx_atomic_store_release(&cpi->mt_current_mb_col[i], -1); + + for (i = 0; i < cpi->encoding_thread_count; ++i) { + sem_post(&cpi->h_event_start_encoding[i]); + } + + for (mb_row = 0; mb_row < cm->mb_rows; + mb_row += (cpi->encoding_thread_count + 1)) { + vp8_zero(cm->left_context) + +#if CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING + tp = cpi->tok; +#else + tp = cpi->tok + mb_row * (cm->mb_cols * 16 * 24); +#endif + + encode_mb_row(cpi, cm, mb_row, x, xd, &tp, segment_counts, &totalrate); + + /* adjust to the next row of mbs */ + x->src.y_buffer += + 16 * x->src.y_stride * (cpi->encoding_thread_count + 1) - + 16 * cm->mb_cols; + x->src.u_buffer += + 8 * x->src.uv_stride * (cpi->encoding_thread_count + 1) - + 8 * cm->mb_cols; + x->src.v_buffer += + 8 * x->src.uv_stride * (cpi->encoding_thread_count + 1) - + 8 * cm->mb_cols; + + xd->mode_info_context += + xd->mode_info_stride * cpi->encoding_thread_count; + x->partition_info += xd->mode_info_stride * cpi->encoding_thread_count; + x->gf_active_ptr += cm->mb_cols * cpi->encoding_thread_count; + } + /* Wait for all the threads to finish. */ + for (i = 0; i < cpi->encoding_thread_count; ++i) { + sem_wait(&cpi->h_event_end_encoding[i]); + } + + for (mb_row = 0; mb_row < cm->mb_rows; ++mb_row) { + cpi->tok_count += (unsigned int)(cpi->tplist[mb_row].stop - + cpi->tplist[mb_row].start); + } + + if (xd->segmentation_enabled) { + int j; + + if (xd->segmentation_enabled) { + for (i = 0; i < cpi->encoding_thread_count; ++i) { + for (j = 0; j < 4; ++j) { + segment_counts[j] += cpi->mb_row_ei[i].segment_counts[j]; + } + } + } + } + + for (i = 0; i < cpi->encoding_thread_count; ++i) { + int mode_count; + int c_idx; + totalrate += cpi->mb_row_ei[i].totalrate; + + cpi->mb.skip_true_count += cpi->mb_row_ei[i].mb.skip_true_count; + + for (mode_count = 0; mode_count < VP8_YMODES; ++mode_count) { + cpi->mb.ymode_count[mode_count] += + cpi->mb_row_ei[i].mb.ymode_count[mode_count]; + } + + for (mode_count = 0; mode_count < VP8_UV_MODES; ++mode_count) { + cpi->mb.uv_mode_count[mode_count] += + cpi->mb_row_ei[i].mb.uv_mode_count[mode_count]; + } + + for (c_idx = 0; c_idx < MVvals; ++c_idx) { + cpi->mb.MVcount[0][c_idx] += cpi->mb_row_ei[i].mb.MVcount[0][c_idx]; + cpi->mb.MVcount[1][c_idx] += cpi->mb_row_ei[i].mb.MVcount[1][c_idx]; + } + + cpi->mb.prediction_error += cpi->mb_row_ei[i].mb.prediction_error; + cpi->mb.intra_error += cpi->mb_row_ei[i].mb.intra_error; + + for (c_idx = 0; c_idx < MAX_REF_FRAMES; ++c_idx) { + cpi->mb.count_mb_ref_frame_usage[c_idx] += + cpi->mb_row_ei[i].mb.count_mb_ref_frame_usage[c_idx]; + } + + for (c_idx = 0; c_idx < MAX_ERROR_BINS; ++c_idx) { + cpi->mb.error_bins[c_idx] += cpi->mb_row_ei[i].mb.error_bins[c_idx]; + } + + /* add up counts for each thread */ + sum_coef_counts(x, &cpi->mb_row_ei[i].mb); + } + + } else +#endif // CONFIG_MULTITHREAD + { + + /* for each macroblock row in image */ + for (mb_row = 0; mb_row < cm->mb_rows; ++mb_row) { + vp8_zero(cm->left_context) + +#if CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING + tp = cpi->tok; +#endif + + encode_mb_row(cpi, cm, mb_row, x, xd, &tp, segment_counts, &totalrate); + + /* adjust to the next row of mbs */ + x->src.y_buffer += 16 * x->src.y_stride - 16 * cm->mb_cols; + x->src.u_buffer += 8 * x->src.uv_stride - 8 * cm->mb_cols; + x->src.v_buffer += 8 * x->src.uv_stride - 8 * cm->mb_cols; + } + + cpi->tok_count = (unsigned int)(tp - cpi->tok); + } + +#if CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING + { + int i; + for (i = 0; i < num_part; ++i) { + vp8_stop_encode(&bc[i]); + cpi->partition_sz[i + 1] = bc[i].pos; + } + } +#endif + + vpx_usec_timer_mark(&emr_timer); + cpi->time_encode_mb_row += vpx_usec_timer_elapsed(&emr_timer); + } + + // Work out the segment probabilities if segmentation is enabled + // and needs to be updated + if (xd->segmentation_enabled && xd->update_mb_segmentation_map) { + int tot_count; + int i; + + /* Set to defaults */ + memset(xd->mb_segment_tree_probs, 255, sizeof(xd->mb_segment_tree_probs)); + + tot_count = segment_counts[0] + segment_counts[1] + segment_counts[2] + + segment_counts[3]; + + if (tot_count) { + xd->mb_segment_tree_probs[0] = + ((segment_counts[0] + segment_counts[1]) * 255) / tot_count; + + tot_count = segment_counts[0] + segment_counts[1]; + + if (tot_count > 0) { + xd->mb_segment_tree_probs[1] = (segment_counts[0] * 255) / tot_count; + } + + tot_count = segment_counts[2] + segment_counts[3]; + + if (tot_count > 0) { + xd->mb_segment_tree_probs[2] = (segment_counts[2] * 255) / tot_count; + } + + /* Zero probabilities not allowed */ + for (i = 0; i < MB_FEATURE_TREE_PROBS; ++i) { + if (xd->mb_segment_tree_probs[i] == 0) xd->mb_segment_tree_probs[i] = 1; + } + } + } + + /* projected_frame_size in units of BYTES */ + cpi->projected_frame_size = totalrate >> 8; + + /* Make a note of the percentage MBs coded Intra. */ + if (cm->frame_type == KEY_FRAME) { + cpi->this_frame_percent_intra = 100; + } else { + int tot_modes; + + tot_modes = cpi->mb.count_mb_ref_frame_usage[INTRA_FRAME] + + cpi->mb.count_mb_ref_frame_usage[LAST_FRAME] + + cpi->mb.count_mb_ref_frame_usage[GOLDEN_FRAME] + + cpi->mb.count_mb_ref_frame_usage[ALTREF_FRAME]; + + if (tot_modes) { + cpi->this_frame_percent_intra = + cpi->mb.count_mb_ref_frame_usage[INTRA_FRAME] * 100 / tot_modes; + } + } + +#if !CONFIG_REALTIME_ONLY + /* Adjust the projected reference frame usage probability numbers to + * reflect what we have just seen. This may be useful when we make + * multiple iterations of the recode loop rather than continuing to use + * values from the previous frame. + */ + if ((cm->frame_type != KEY_FRAME) && + ((cpi->oxcf.number_of_layers > 1) || + (!cm->refresh_alt_ref_frame && !cm->refresh_golden_frame))) { + vp8_convert_rfct_to_prob(cpi); + } +#endif +} +void vp8_setup_block_ptrs(MACROBLOCK *x) { + int r, c; + int i; + + for (r = 0; r < 4; ++r) { + for (c = 0; c < 4; ++c) { + x->block[r * 4 + c].src_diff = x->src_diff + r * 4 * 16 + c * 4; + } + } + + for (r = 0; r < 2; ++r) { + for (c = 0; c < 2; ++c) { + x->block[16 + r * 2 + c].src_diff = x->src_diff + 256 + r * 4 * 8 + c * 4; + } + } + + for (r = 0; r < 2; ++r) { + for (c = 0; c < 2; ++c) { + x->block[20 + r * 2 + c].src_diff = x->src_diff + 320 + r * 4 * 8 + c * 4; + } + } + + x->block[24].src_diff = x->src_diff + 384; + + for (i = 0; i < 25; ++i) { + x->block[i].coeff = x->coeff + i * 16; + } +} + +void vp8_build_block_offsets(MACROBLOCK *x) { + int block = 0; + int br, bc; + + vp8_build_block_doffsets(&x->e_mbd); + + /* y blocks */ + x->thismb_ptr = &x->thismb[0]; + for (br = 0; br < 4; ++br) { + for (bc = 0; bc < 4; ++bc) { + BLOCK *this_block = &x->block[block]; + this_block->base_src = &x->thismb_ptr; + this_block->src_stride = 16; + this_block->src = 4 * br * 16 + 4 * bc; + ++block; + } + } + + /* u blocks */ + for (br = 0; br < 2; ++br) { + for (bc = 0; bc < 2; ++bc) { + BLOCK *this_block = &x->block[block]; + this_block->base_src = &x->src.u_buffer; + this_block->src_stride = x->src.uv_stride; + this_block->src = 4 * br * this_block->src_stride + 4 * bc; + ++block; + } + } + + /* v blocks */ + for (br = 0; br < 2; ++br) { + for (bc = 0; bc < 2; ++bc) { + BLOCK *this_block = &x->block[block]; + this_block->base_src = &x->src.v_buffer; + this_block->src_stride = x->src.uv_stride; + this_block->src = 4 * br * this_block->src_stride + 4 * bc; + ++block; + } + } +} + +static void sum_intra_stats(VP8_COMP *cpi, MACROBLOCK *x) { + const MACROBLOCKD *xd = &x->e_mbd; + const MB_PREDICTION_MODE m = xd->mode_info_context->mbmi.mode; + const MB_PREDICTION_MODE uvm = xd->mode_info_context->mbmi.uv_mode; + +#ifdef MODE_STATS + const int is_key = cpi->common.frame_type == KEY_FRAME; + + ++(is_key ? uv_modes : inter_uv_modes)[uvm]; + + if (m == B_PRED) { + unsigned int *const bct = is_key ? b_modes : inter_b_modes; + + int b = 0; + + do { + ++bct[xd->block[b].bmi.mode]; + } while (++b < 16); + } + +#else + (void)cpi; +#endif + + ++x->ymode_count[m]; + ++x->uv_mode_count[uvm]; +} + +/* Experimental stub function to create a per MB zbin adjustment based on + * some previously calculated measure of MB activity. + */ +static void adjust_act_zbin(VP8_COMP *cpi, MACROBLOCK *x) { +#if USE_ACT_INDEX + x->act_zbin_adj = *(x->mb_activity_ptr); +#else + int64_t a; + int64_t b; + int64_t act = *(x->mb_activity_ptr); + + /* Apply the masking to the RD multiplier. */ + a = act + 4 * cpi->activity_avg; + b = 4 * act + cpi->activity_avg; + + if (act > cpi->activity_avg) { + x->act_zbin_adj = (int)(((int64_t)b + (a >> 1)) / a) - 1; + } else { + x->act_zbin_adj = 1 - (int)(((int64_t)a + (b >> 1)) / b); + } +#endif +} + +int vp8cx_encode_intra_macroblock(VP8_COMP *cpi, MACROBLOCK *x, + TOKENEXTRA **t) { + MACROBLOCKD *xd = &x->e_mbd; + int rate; + + if (cpi->sf.RD && cpi->compressor_speed != 2) { + vp8_rd_pick_intra_mode(x, &rate); + } else { + vp8_pick_intra_mode(x, &rate); + } + + if (cpi->oxcf.tuning == VP8_TUNE_SSIM) { + adjust_act_zbin(cpi, x); + vp8_update_zbin_extra(cpi, x); + } + + if (x->e_mbd.mode_info_context->mbmi.mode == B_PRED) { + vp8_encode_intra4x4mby(x); + } else { + vp8_encode_intra16x16mby(x); + } + + vp8_encode_intra16x16mbuv(x); + + sum_intra_stats(cpi, x); + + vp8_tokenize_mb(cpi, x, t); + + if (xd->mode_info_context->mbmi.mode != B_PRED) vp8_inverse_transform_mby(xd); + + vp8_dequant_idct_add_uv_block(xd->qcoeff + 16 * 16, xd->dequant_uv, + xd->dst.u_buffer, xd->dst.v_buffer, + xd->dst.uv_stride, xd->eobs + 16); + return rate; +} +#ifdef SPEEDSTATS +extern int cnt_pm; +#endif + +extern void vp8_fix_contexts(MACROBLOCKD *x); + +int vp8cx_encode_inter_macroblock(VP8_COMP *cpi, MACROBLOCK *x, TOKENEXTRA **t, + int recon_yoffset, int recon_uvoffset, + int mb_row, int mb_col) { + MACROBLOCKD *const xd = &x->e_mbd; + int intra_error = 0; + int rate; + int distortion; + + x->skip = 0; + + if (xd->segmentation_enabled) { + x->encode_breakout = + cpi->segment_encode_breakout[xd->mode_info_context->mbmi.segment_id]; + } else { + x->encode_breakout = cpi->oxcf.encode_breakout; + } + +#if CONFIG_TEMPORAL_DENOISING + /* Reset the best sse mode/mv for each macroblock. */ + x->best_reference_frame = INTRA_FRAME; + x->best_zeromv_reference_frame = INTRA_FRAME; + x->best_sse_inter_mode = 0; + x->best_sse_mv.as_int = 0; + x->need_to_clamp_best_mvs = 0; +#endif + + if (cpi->sf.RD) { + int zbin_mode_boost_enabled = x->zbin_mode_boost_enabled; + + /* Are we using the fast quantizer for the mode selection? */ + if (cpi->sf.use_fastquant_for_pick) { + x->quantize_b = vp8_fast_quantize_b; + + /* the fast quantizer does not use zbin_extra, so + * do not recalculate */ + x->zbin_mode_boost_enabled = 0; + } + vp8_rd_pick_inter_mode(cpi, x, recon_yoffset, recon_uvoffset, &rate, + &distortion, &intra_error, mb_row, mb_col); + + /* switch back to the regular quantizer for the encode */ + if (cpi->sf.improved_quant) { + x->quantize_b = vp8_regular_quantize_b; + } + + /* restore cpi->zbin_mode_boost_enabled */ + x->zbin_mode_boost_enabled = zbin_mode_boost_enabled; + + } else { + vp8_pick_inter_mode(cpi, x, recon_yoffset, recon_uvoffset, &rate, + &distortion, &intra_error, mb_row, mb_col); + } + + x->prediction_error += distortion; + x->intra_error += intra_error; + + if (cpi->oxcf.tuning == VP8_TUNE_SSIM) { + /* Adjust the zbin based on this MB rate. */ + adjust_act_zbin(cpi, x); + } + +#if 0 + /* Experimental RD code */ + cpi->frame_distortion += distortion; + cpi->last_mb_distortion = distortion; +#endif + + /* MB level adjutment to quantizer setup */ + if (xd->segmentation_enabled) { + /* If cyclic update enabled */ + if (cpi->current_layer == 0 && cpi->cyclic_refresh_mode_enabled) { + /* Clear segment_id back to 0 if not coded (last frame 0,0) */ + if ((xd->mode_info_context->mbmi.segment_id == 1) && + ((xd->mode_info_context->mbmi.ref_frame != LAST_FRAME) || + (xd->mode_info_context->mbmi.mode != ZEROMV))) { + xd->mode_info_context->mbmi.segment_id = 0; + + /* segment_id changed, so update */ + vp8cx_mb_init_quantizer(cpi, x, 1); + } + } + } + + { + /* Experimental code. + * Special case for gf and arf zeromv modes, for 1 temporal layer. + * Increase zbin size to supress noise. + */ + x->zbin_mode_boost = 0; + if (x->zbin_mode_boost_enabled) { + if (xd->mode_info_context->mbmi.ref_frame != INTRA_FRAME) { + if (xd->mode_info_context->mbmi.mode == ZEROMV) { + if (xd->mode_info_context->mbmi.ref_frame != LAST_FRAME && + cpi->oxcf.number_of_layers == 1) { + x->zbin_mode_boost = GF_ZEROMV_ZBIN_BOOST; + } else { + x->zbin_mode_boost = LF_ZEROMV_ZBIN_BOOST; + } + } else if (xd->mode_info_context->mbmi.mode == SPLITMV) { + x->zbin_mode_boost = 0; + } else { + x->zbin_mode_boost = MV_ZBIN_BOOST; + } + } + } + + /* The fast quantizer doesn't use zbin_extra, only do so with + * the regular quantizer. */ + if (cpi->sf.improved_quant) vp8_update_zbin_extra(cpi, x); + } + + x->count_mb_ref_frame_usage[xd->mode_info_context->mbmi.ref_frame]++; + + if (xd->mode_info_context->mbmi.ref_frame == INTRA_FRAME) { + vp8_encode_intra16x16mbuv(x); + + if (xd->mode_info_context->mbmi.mode == B_PRED) { + vp8_encode_intra4x4mby(x); + } else { + vp8_encode_intra16x16mby(x); + } + + sum_intra_stats(cpi, x); + } else { + int ref_fb_idx; + + if (xd->mode_info_context->mbmi.ref_frame == LAST_FRAME) { + ref_fb_idx = cpi->common.lst_fb_idx; + } else if (xd->mode_info_context->mbmi.ref_frame == GOLDEN_FRAME) { + ref_fb_idx = cpi->common.gld_fb_idx; + } else { + ref_fb_idx = cpi->common.alt_fb_idx; + } + + xd->pre.y_buffer = cpi->common.yv12_fb[ref_fb_idx].y_buffer + recon_yoffset; + xd->pre.u_buffer = + cpi->common.yv12_fb[ref_fb_idx].u_buffer + recon_uvoffset; + xd->pre.v_buffer = + cpi->common.yv12_fb[ref_fb_idx].v_buffer + recon_uvoffset; + + if (!x->skip) { + vp8_encode_inter16x16(x); + } else { + vp8_build_inter16x16_predictors_mb(xd, xd->dst.y_buffer, xd->dst.u_buffer, + xd->dst.v_buffer, xd->dst.y_stride, + xd->dst.uv_stride); + } + } + + if (!x->skip) { + vp8_tokenize_mb(cpi, x, t); + + if (xd->mode_info_context->mbmi.mode != B_PRED) { + vp8_inverse_transform_mby(xd); + } + + vp8_dequant_idct_add_uv_block(xd->qcoeff + 16 * 16, xd->dequant_uv, + xd->dst.u_buffer, xd->dst.v_buffer, + xd->dst.uv_stride, xd->eobs + 16); + } else { + /* always set mb_skip_coeff as it is needed by the loopfilter */ + xd->mode_info_context->mbmi.mb_skip_coeff = 1; + + if (cpi->common.mb_no_coeff_skip) { + x->skip_true_count++; + vp8_fix_contexts(xd); + } else { + vp8_stuff_mb(cpi, x, t); + } + } + + return rate; +} diff --git a/vp8/encoder/encodeframe.h b/vp8/encoder/encodeframe.h new file mode 100644 index 0000000..5274aba --- /dev/null +++ b/vp8/encoder/encodeframe.h @@ -0,0 +1,40 @@ +/* + * Copyright (c) 2012 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ +#ifndef VP8_ENCODER_ENCODEFRAME_H_ +#define VP8_ENCODER_ENCODEFRAME_H_ + +#include "vp8/encoder/tokenize.h" + +#ifdef __cplusplus +extern "C" { +#endif + +struct VP8_COMP; +struct macroblock; + +void vp8_activity_masking(struct VP8_COMP *cpi, MACROBLOCK *x); + +void vp8_build_block_offsets(struct macroblock *x); + +void vp8_setup_block_ptrs(struct macroblock *x); + +void vp8_encode_frame(struct VP8_COMP *cpi); + +int vp8cx_encode_inter_macroblock(struct VP8_COMP *cpi, struct macroblock *x, + TOKENEXTRA **t, int recon_yoffset, + int recon_uvoffset, int mb_row, int mb_col); + +int vp8cx_encode_intra_macroblock(struct VP8_COMP *cpi, struct macroblock *x, + TOKENEXTRA **t); +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP8_ENCODER_ENCODEFRAME_H_ diff --git a/vp8/encoder/encodeintra.c b/vp8/encoder/encodeintra.c new file mode 100644 index 0000000..f89e7cb --- /dev/null +++ b/vp8/encoder/encodeintra.c @@ -0,0 +1,117 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "vpx_config.h" +#include "vp8_rtcd.h" +#include "./vpx_dsp_rtcd.h" +#include "vp8/encoder/quantize.h" +#include "vp8/common/reconintra.h" +#include "vp8/common/reconintra4x4.h" +#include "encodemb.h" +#include "vp8/common/invtrans.h" +#include "encodeintra.h" + +int vp8_encode_intra(VP8_COMP *cpi, MACROBLOCK *x, int use_dc_pred) { + int i; + int intra_pred_var = 0; + (void)cpi; + + if (use_dc_pred) { + x->e_mbd.mode_info_context->mbmi.mode = DC_PRED; + x->e_mbd.mode_info_context->mbmi.uv_mode = DC_PRED; + x->e_mbd.mode_info_context->mbmi.ref_frame = INTRA_FRAME; + + vp8_encode_intra16x16mby(x); + + vp8_inverse_transform_mby(&x->e_mbd); + } else { + for (i = 0; i < 16; ++i) { + x->e_mbd.block[i].bmi.as_mode = B_DC_PRED; + vp8_encode_intra4x4block(x, i); + } + } + + intra_pred_var = vpx_get_mb_ss(x->src_diff); + + return intra_pred_var; +} + +void vp8_encode_intra4x4block(MACROBLOCK *x, int ib) { + BLOCKD *b = &x->e_mbd.block[ib]; + BLOCK *be = &x->block[ib]; + int dst_stride = x->e_mbd.dst.y_stride; + unsigned char *dst = x->e_mbd.dst.y_buffer + b->offset; + unsigned char *Above = dst - dst_stride; + unsigned char *yleft = dst - 1; + unsigned char top_left = Above[-1]; + + vp8_intra4x4_predict(Above, yleft, dst_stride, b->bmi.as_mode, b->predictor, + 16, top_left); + + vp8_subtract_b(be, b, 16); + + x->short_fdct4x4(be->src_diff, be->coeff, 32); + + x->quantize_b(be, b); + + if (*b->eob > 1) { + vp8_short_idct4x4llm(b->dqcoeff, b->predictor, 16, dst, dst_stride); + } else { + vp8_dc_only_idct_add(b->dqcoeff[0], b->predictor, 16, dst, dst_stride); + } +} + +void vp8_encode_intra4x4mby(MACROBLOCK *mb) { + int i; + + MACROBLOCKD *xd = &mb->e_mbd; + intra_prediction_down_copy(xd, xd->dst.y_buffer - xd->dst.y_stride + 16); + + for (i = 0; i < 16; ++i) vp8_encode_intra4x4block(mb, i); + return; +} + +void vp8_encode_intra16x16mby(MACROBLOCK *x) { + BLOCK *b = &x->block[0]; + MACROBLOCKD *xd = &x->e_mbd; + + vp8_build_intra_predictors_mby_s(xd, xd->dst.y_buffer - xd->dst.y_stride, + xd->dst.y_buffer - 1, xd->dst.y_stride, + xd->dst.y_buffer, xd->dst.y_stride); + + vp8_subtract_mby(x->src_diff, *(b->base_src), b->src_stride, xd->dst.y_buffer, + xd->dst.y_stride); + + vp8_transform_intra_mby(x); + + vp8_quantize_mby(x); + + if (x->optimize) vp8_optimize_mby(x); +} + +void vp8_encode_intra16x16mbuv(MACROBLOCK *x) { + MACROBLOCKD *xd = &x->e_mbd; + + vp8_build_intra_predictors_mbuv_s(xd, xd->dst.u_buffer - xd->dst.uv_stride, + xd->dst.v_buffer - xd->dst.uv_stride, + xd->dst.u_buffer - 1, xd->dst.v_buffer - 1, + xd->dst.uv_stride, xd->dst.u_buffer, + xd->dst.v_buffer, xd->dst.uv_stride); + + vp8_subtract_mbuv(x->src_diff, x->src.u_buffer, x->src.v_buffer, + x->src.uv_stride, xd->dst.u_buffer, xd->dst.v_buffer, + xd->dst.uv_stride); + + vp8_transform_mbuv(x); + + vp8_quantize_mbuv(x); + + if (x->optimize) vp8_optimize_mbuv(x); +} diff --git a/vp8/encoder/encodeintra.h b/vp8/encoder/encodeintra.h new file mode 100644 index 0000000..3956cf5 --- /dev/null +++ b/vp8/encoder/encodeintra.h @@ -0,0 +1,28 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP8_ENCODER_ENCODEINTRA_H_ +#define VP8_ENCODER_ENCODEINTRA_H_ +#include "onyx_int.h" + +#ifdef __cplusplus +extern "C" { +#endif + +int vp8_encode_intra(VP8_COMP *cpi, MACROBLOCK *x, int use_dc_pred); +void vp8_encode_intra16x16mby(MACROBLOCK *x); +void vp8_encode_intra16x16mbuv(MACROBLOCK *x); +void vp8_encode_intra4x4mby(MACROBLOCK *mb); +void vp8_encode_intra4x4block(MACROBLOCK *x, int ib); +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP8_ENCODER_ENCODEINTRA_H_ diff --git a/vp8/encoder/encodemb.c b/vp8/encoder/encodemb.c new file mode 100644 index 0000000..3fd8d5f --- /dev/null +++ b/vp8/encoder/encodemb.c @@ -0,0 +1,512 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "./vpx_dsp_rtcd.h" + +#include "vpx_config.h" +#include "vp8_rtcd.h" +#include "encodemb.h" +#include "vp8/common/reconinter.h" +#include "vp8/encoder/quantize.h" +#include "tokenize.h" +#include "vp8/common/invtrans.h" +#include "vpx_mem/vpx_mem.h" +#include "rdopt.h" + +void vp8_subtract_b(BLOCK *be, BLOCKD *bd, int pitch) { + unsigned char *src_ptr = (*(be->base_src) + be->src); + short *diff_ptr = be->src_diff; + unsigned char *pred_ptr = bd->predictor; + int src_stride = be->src_stride; + + vpx_subtract_block(4, 4, diff_ptr, pitch, src_ptr, src_stride, pred_ptr, + pitch); +} + +void vp8_subtract_mbuv(short *diff, unsigned char *usrc, unsigned char *vsrc, + int src_stride, unsigned char *upred, + unsigned char *vpred, int pred_stride) { + short *udiff = diff + 256; + short *vdiff = diff + 320; + + vpx_subtract_block(8, 8, udiff, 8, usrc, src_stride, upred, pred_stride); + vpx_subtract_block(8, 8, vdiff, 8, vsrc, src_stride, vpred, pred_stride); +} + +void vp8_subtract_mby(short *diff, unsigned char *src, int src_stride, + unsigned char *pred, int pred_stride) { + vpx_subtract_block(16, 16, diff, 16, src, src_stride, pred, pred_stride); +} + +static void vp8_subtract_mb(MACROBLOCK *x) { + BLOCK *b = &x->block[0]; + + vp8_subtract_mby(x->src_diff, *(b->base_src), b->src_stride, + x->e_mbd.dst.y_buffer, x->e_mbd.dst.y_stride); + vp8_subtract_mbuv(x->src_diff, x->src.u_buffer, x->src.v_buffer, + x->src.uv_stride, x->e_mbd.dst.u_buffer, + x->e_mbd.dst.v_buffer, x->e_mbd.dst.uv_stride); +} + +static void build_dcblock(MACROBLOCK *x) { + short *src_diff_ptr = &x->src_diff[384]; + int i; + + for (i = 0; i < 16; ++i) { + src_diff_ptr[i] = x->coeff[i * 16]; + } +} + +void vp8_transform_mbuv(MACROBLOCK *x) { + int i; + + for (i = 16; i < 24; i += 2) { + x->short_fdct8x4(&x->block[i].src_diff[0], &x->block[i].coeff[0], 16); + } +} + +void vp8_transform_intra_mby(MACROBLOCK *x) { + int i; + + for (i = 0; i < 16; i += 2) { + x->short_fdct8x4(&x->block[i].src_diff[0], &x->block[i].coeff[0], 32); + } + + /* build dc block from 16 y dc values */ + build_dcblock(x); + + /* do 2nd order transform on the dc block */ + x->short_walsh4x4(&x->block[24].src_diff[0], &x->block[24].coeff[0], 8); +} + +static void transform_mb(MACROBLOCK *x) { + int i; + + for (i = 0; i < 16; i += 2) { + x->short_fdct8x4(&x->block[i].src_diff[0], &x->block[i].coeff[0], 32); + } + + /* build dc block from 16 y dc values */ + if (x->e_mbd.mode_info_context->mbmi.mode != SPLITMV) build_dcblock(x); + + for (i = 16; i < 24; i += 2) { + x->short_fdct8x4(&x->block[i].src_diff[0], &x->block[i].coeff[0], 16); + } + + /* do 2nd order transform on the dc block */ + if (x->e_mbd.mode_info_context->mbmi.mode != SPLITMV) { + x->short_walsh4x4(&x->block[24].src_diff[0], &x->block[24].coeff[0], 8); + } +} + +static void transform_mby(MACROBLOCK *x) { + int i; + + for (i = 0; i < 16; i += 2) { + x->short_fdct8x4(&x->block[i].src_diff[0], &x->block[i].coeff[0], 32); + } + + /* build dc block from 16 y dc values */ + if (x->e_mbd.mode_info_context->mbmi.mode != SPLITMV) { + build_dcblock(x); + x->short_walsh4x4(&x->block[24].src_diff[0], &x->block[24].coeff[0], 8); + } +} + +#define RDTRUNC(RM, DM, R, D) ((128 + (R) * (RM)) & 0xFF) + +typedef struct vp8_token_state vp8_token_state; + +struct vp8_token_state { + int rate; + int error; + signed char next; + signed char token; + short qc; +}; + +/* TODO: experiments to find optimal multiple numbers */ +#define Y1_RD_MULT 4 +#define UV_RD_MULT 2 +#define Y2_RD_MULT 16 + +static const int plane_rd_mult[4] = { Y1_RD_MULT, Y2_RD_MULT, UV_RD_MULT, + Y1_RD_MULT }; + +static void optimize_b(MACROBLOCK *mb, int ib, int type, ENTROPY_CONTEXT *a, + ENTROPY_CONTEXT *l) { + BLOCK *b; + BLOCKD *d; + vp8_token_state tokens[17][2]; + unsigned best_mask[2]; + const short *dequant_ptr; + const short *coeff_ptr; + short *qcoeff_ptr; + short *dqcoeff_ptr; + int eob; + int i0; + int rc; + int x; + int sz = 0; + int next; + int rdmult; + int rddiv; + int final_eob; + int rd_cost0; + int rd_cost1; + int rate0; + int rate1; + int error0; + int error1; + int t0; + int t1; + int best; + int band; + int pt; + int i; + int err_mult = plane_rd_mult[type]; + + b = &mb->block[ib]; + d = &mb->e_mbd.block[ib]; + + dequant_ptr = d->dequant; + coeff_ptr = b->coeff; + qcoeff_ptr = d->qcoeff; + dqcoeff_ptr = d->dqcoeff; + i0 = !type; + eob = *d->eob; + + /* Now set up a Viterbi trellis to evaluate alternative roundings. */ + rdmult = mb->rdmult * err_mult; + if (mb->e_mbd.mode_info_context->mbmi.ref_frame == INTRA_FRAME) { + rdmult = (rdmult * 9) >> 4; + } + + rddiv = mb->rddiv; + best_mask[0] = best_mask[1] = 0; + /* Initialize the sentinel node of the trellis. */ + tokens[eob][0].rate = 0; + tokens[eob][0].error = 0; + tokens[eob][0].next = 16; + tokens[eob][0].token = DCT_EOB_TOKEN; + tokens[eob][0].qc = 0; + *(tokens[eob] + 1) = *(tokens[eob] + 0); + next = eob; + for (i = eob; i-- > i0;) { + int base_bits; + int d2; + int dx; + + rc = vp8_default_zig_zag1d[i]; + x = qcoeff_ptr[rc]; + /* Only add a trellis state for non-zero coefficients. */ + if (x) { + int shortcut = 0; + error0 = tokens[next][0].error; + error1 = tokens[next][1].error; + /* Evaluate the first possibility for this state. */ + rate0 = tokens[next][0].rate; + rate1 = tokens[next][1].rate; + t0 = (vp8_dct_value_tokens_ptr + x)->Token; + /* Consider both possible successor states. */ + if (next < 16) { + band = vp8_coef_bands[i + 1]; + pt = vp8_prev_token_class[t0]; + rate0 += mb->token_costs[type][band][pt][tokens[next][0].token]; + rate1 += mb->token_costs[type][band][pt][tokens[next][1].token]; + } + rd_cost0 = RDCOST(rdmult, rddiv, rate0, error0); + rd_cost1 = RDCOST(rdmult, rddiv, rate1, error1); + if (rd_cost0 == rd_cost1) { + rd_cost0 = RDTRUNC(rdmult, rddiv, rate0, error0); + rd_cost1 = RDTRUNC(rdmult, rddiv, rate1, error1); + } + /* And pick the best. */ + best = rd_cost1 < rd_cost0; + base_bits = *(vp8_dct_value_cost_ptr + x); + dx = dqcoeff_ptr[rc] - coeff_ptr[rc]; + d2 = dx * dx; + tokens[i][0].rate = base_bits + (best ? rate1 : rate0); + tokens[i][0].error = d2 + (best ? error1 : error0); + tokens[i][0].next = next; + tokens[i][0].token = t0; + tokens[i][0].qc = x; + best_mask[0] |= best << i; + /* Evaluate the second possibility for this state. */ + rate0 = tokens[next][0].rate; + rate1 = tokens[next][1].rate; + + if ((abs(x) * dequant_ptr[rc] > abs(coeff_ptr[rc])) && + (abs(x) * dequant_ptr[rc] < abs(coeff_ptr[rc]) + dequant_ptr[rc])) { + shortcut = 1; + } else { + shortcut = 0; + } + + if (shortcut) { + sz = -(x < 0); + x -= 2 * sz + 1; + } + + /* Consider both possible successor states. */ + if (!x) { + /* If we reduced this coefficient to zero, check to see if + * we need to move the EOB back here. + */ + t0 = + tokens[next][0].token == DCT_EOB_TOKEN ? DCT_EOB_TOKEN : ZERO_TOKEN; + t1 = + tokens[next][1].token == DCT_EOB_TOKEN ? DCT_EOB_TOKEN : ZERO_TOKEN; + } else { + t0 = t1 = (vp8_dct_value_tokens_ptr + x)->Token; + } + if (next < 16) { + band = vp8_coef_bands[i + 1]; + if (t0 != DCT_EOB_TOKEN) { + pt = vp8_prev_token_class[t0]; + rate0 += mb->token_costs[type][band][pt][tokens[next][0].token]; + } + if (t1 != DCT_EOB_TOKEN) { + pt = vp8_prev_token_class[t1]; + rate1 += mb->token_costs[type][band][pt][tokens[next][1].token]; + } + } + + rd_cost0 = RDCOST(rdmult, rddiv, rate0, error0); + rd_cost1 = RDCOST(rdmult, rddiv, rate1, error1); + if (rd_cost0 == rd_cost1) { + rd_cost0 = RDTRUNC(rdmult, rddiv, rate0, error0); + rd_cost1 = RDTRUNC(rdmult, rddiv, rate1, error1); + } + /* And pick the best. */ + best = rd_cost1 < rd_cost0; + base_bits = *(vp8_dct_value_cost_ptr + x); + + if (shortcut) { + dx -= (dequant_ptr[rc] + sz) ^ sz; + d2 = dx * dx; + } + tokens[i][1].rate = base_bits + (best ? rate1 : rate0); + tokens[i][1].error = d2 + (best ? error1 : error0); + tokens[i][1].next = next; + tokens[i][1].token = best ? t1 : t0; + tokens[i][1].qc = x; + best_mask[1] |= best << i; + /* Finally, make this the new head of the trellis. */ + next = i; + } + /* There's no choice to make for a zero coefficient, so we don't + * add a new trellis node, but we do need to update the costs. + */ + else { + band = vp8_coef_bands[i + 1]; + t0 = tokens[next][0].token; + t1 = tokens[next][1].token; + /* Update the cost of each path if we're past the EOB token. */ + if (t0 != DCT_EOB_TOKEN) { + tokens[next][0].rate += mb->token_costs[type][band][0][t0]; + tokens[next][0].token = ZERO_TOKEN; + } + if (t1 != DCT_EOB_TOKEN) { + tokens[next][1].rate += mb->token_costs[type][band][0][t1]; + tokens[next][1].token = ZERO_TOKEN; + } + /* Don't update next, because we didn't add a new node. */ + } + } + + /* Now pick the best path through the whole trellis. */ + band = vp8_coef_bands[i + 1]; + VP8_COMBINEENTROPYCONTEXTS(pt, *a, *l); + rate0 = tokens[next][0].rate; + rate1 = tokens[next][1].rate; + error0 = tokens[next][0].error; + error1 = tokens[next][1].error; + t0 = tokens[next][0].token; + t1 = tokens[next][1].token; + rate0 += mb->token_costs[type][band][pt][t0]; + rate1 += mb->token_costs[type][band][pt][t1]; + rd_cost0 = RDCOST(rdmult, rddiv, rate0, error0); + rd_cost1 = RDCOST(rdmult, rddiv, rate1, error1); + if (rd_cost0 == rd_cost1) { + rd_cost0 = RDTRUNC(rdmult, rddiv, rate0, error0); + rd_cost1 = RDTRUNC(rdmult, rddiv, rate1, error1); + } + best = rd_cost1 < rd_cost0; + final_eob = i0 - 1; + for (i = next; i < eob; i = next) { + x = tokens[i][best].qc; + if (x) final_eob = i; + rc = vp8_default_zig_zag1d[i]; + qcoeff_ptr[rc] = x; + dqcoeff_ptr[rc] = x * dequant_ptr[rc]; + next = tokens[i][best].next; + best = (best_mask[best] >> i) & 1; + } + final_eob++; + + *a = *l = (final_eob != !type); + *d->eob = (char)final_eob; +} +static void check_reset_2nd_coeffs(MACROBLOCKD *x, int type, ENTROPY_CONTEXT *a, + ENTROPY_CONTEXT *l) { + int sum = 0; + int i; + BLOCKD *bd = &x->block[24]; + + if (bd->dequant[0] >= 35 && bd->dequant[1] >= 35) return; + + for (i = 0; i < (*bd->eob); ++i) { + int coef = bd->dqcoeff[vp8_default_zig_zag1d[i]]; + sum += (coef >= 0) ? coef : -coef; + if (sum >= 35) return; + } + /************************************************************************** + our inverse hadamard transform effectively is weighted sum of all 16 inputs + with weight either 1 or -1. It has a last stage scaling of (sum+3)>>3. And + dc only idct is (dc+4)>>3. So if all the sums are between -35 and 29, the + output after inverse wht and idct will be all zero. A sum of absolute value + smaller than 35 guarantees all 16 different (+1/-1) weighted sums in wht + fall between -35 and +35. + **************************************************************************/ + if (sum < 35) { + for (i = 0; i < (*bd->eob); ++i) { + int rc = vp8_default_zig_zag1d[i]; + bd->qcoeff[rc] = 0; + bd->dqcoeff[rc] = 0; + } + *bd->eob = 0; + *a = *l = (*bd->eob != !type); + } +} + +static void optimize_mb(MACROBLOCK *x) { + int b; + int type; + int has_2nd_order; + + ENTROPY_CONTEXT_PLANES t_above, t_left; + ENTROPY_CONTEXT *ta; + ENTROPY_CONTEXT *tl; + + memcpy(&t_above, x->e_mbd.above_context, sizeof(ENTROPY_CONTEXT_PLANES)); + memcpy(&t_left, x->e_mbd.left_context, sizeof(ENTROPY_CONTEXT_PLANES)); + + ta = (ENTROPY_CONTEXT *)&t_above; + tl = (ENTROPY_CONTEXT *)&t_left; + + has_2nd_order = (x->e_mbd.mode_info_context->mbmi.mode != B_PRED && + x->e_mbd.mode_info_context->mbmi.mode != SPLITMV); + type = has_2nd_order ? PLANE_TYPE_Y_NO_DC : PLANE_TYPE_Y_WITH_DC; + + for (b = 0; b < 16; ++b) { + optimize_b(x, b, type, ta + vp8_block2above[b], tl + vp8_block2left[b]); + } + + for (b = 16; b < 24; ++b) { + optimize_b(x, b, PLANE_TYPE_UV, ta + vp8_block2above[b], + tl + vp8_block2left[b]); + } + + if (has_2nd_order) { + b = 24; + optimize_b(x, b, PLANE_TYPE_Y2, ta + vp8_block2above[b], + tl + vp8_block2left[b]); + check_reset_2nd_coeffs(&x->e_mbd, PLANE_TYPE_Y2, ta + vp8_block2above[b], + tl + vp8_block2left[b]); + } +} + +void vp8_optimize_mby(MACROBLOCK *x) { + int b; + int type; + int has_2nd_order; + + ENTROPY_CONTEXT_PLANES t_above, t_left; + ENTROPY_CONTEXT *ta; + ENTROPY_CONTEXT *tl; + + if (!x->e_mbd.above_context) return; + + if (!x->e_mbd.left_context) return; + + memcpy(&t_above, x->e_mbd.above_context, sizeof(ENTROPY_CONTEXT_PLANES)); + memcpy(&t_left, x->e_mbd.left_context, sizeof(ENTROPY_CONTEXT_PLANES)); + + ta = (ENTROPY_CONTEXT *)&t_above; + tl = (ENTROPY_CONTEXT *)&t_left; + + has_2nd_order = (x->e_mbd.mode_info_context->mbmi.mode != B_PRED && + x->e_mbd.mode_info_context->mbmi.mode != SPLITMV); + type = has_2nd_order ? PLANE_TYPE_Y_NO_DC : PLANE_TYPE_Y_WITH_DC; + + for (b = 0; b < 16; ++b) { + optimize_b(x, b, type, ta + vp8_block2above[b], tl + vp8_block2left[b]); + } + + if (has_2nd_order) { + b = 24; + optimize_b(x, b, PLANE_TYPE_Y2, ta + vp8_block2above[b], + tl + vp8_block2left[b]); + check_reset_2nd_coeffs(&x->e_mbd, PLANE_TYPE_Y2, ta + vp8_block2above[b], + tl + vp8_block2left[b]); + } +} + +void vp8_optimize_mbuv(MACROBLOCK *x) { + int b; + ENTROPY_CONTEXT_PLANES t_above, t_left; + ENTROPY_CONTEXT *ta; + ENTROPY_CONTEXT *tl; + + if (!x->e_mbd.above_context) return; + + if (!x->e_mbd.left_context) return; + + memcpy(&t_above, x->e_mbd.above_context, sizeof(ENTROPY_CONTEXT_PLANES)); + memcpy(&t_left, x->e_mbd.left_context, sizeof(ENTROPY_CONTEXT_PLANES)); + + ta = (ENTROPY_CONTEXT *)&t_above; + tl = (ENTROPY_CONTEXT *)&t_left; + + for (b = 16; b < 24; ++b) { + optimize_b(x, b, PLANE_TYPE_UV, ta + vp8_block2above[b], + tl + vp8_block2left[b]); + } +} + +void vp8_encode_inter16x16(MACROBLOCK *x) { + vp8_build_inter_predictors_mb(&x->e_mbd); + + vp8_subtract_mb(x); + + transform_mb(x); + + vp8_quantize_mb(x); + + if (x->optimize) optimize_mb(x); +} + +/* this funciton is used by first pass only */ +void vp8_encode_inter16x16y(MACROBLOCK *x) { + BLOCK *b = &x->block[0]; + + vp8_build_inter16x16_predictors_mby(&x->e_mbd, x->e_mbd.dst.y_buffer, + x->e_mbd.dst.y_stride); + + vp8_subtract_mby(x->src_diff, *(b->base_src), b->src_stride, + x->e_mbd.dst.y_buffer, x->e_mbd.dst.y_stride); + + transform_mby(x); + + vp8_quantize_mby(x); + + vp8_inverse_transform_mby(&x->e_mbd); +} diff --git a/vp8/encoder/encodemb.h b/vp8/encoder/encodemb.h new file mode 100644 index 0000000..b55ba3a --- /dev/null +++ b/vp8/encoder/encodemb.h @@ -0,0 +1,40 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP8_ENCODER_ENCODEMB_H_ +#define VP8_ENCODER_ENCODEMB_H_ + +#include "onyx_int.h" + +#ifdef __cplusplus +extern "C" { +#endif +void vp8_encode_inter16x16(MACROBLOCK *x); + +void vp8_subtract_b(BLOCK *be, BLOCKD *bd, int pitch); +void vp8_subtract_mbuv(short *diff, unsigned char *usrc, unsigned char *vsrc, + int src_stride, unsigned char *upred, + unsigned char *vpred, int pred_stride); +void vp8_subtract_mby(short *diff, unsigned char *src, int src_stride, + unsigned char *pred, int pred_stride); + +void vp8_build_dcblock(MACROBLOCK *b); +void vp8_transform_mb(MACROBLOCK *mb); +void vp8_transform_mbuv(MACROBLOCK *x); +void vp8_transform_intra_mby(MACROBLOCK *x); + +void vp8_optimize_mby(MACROBLOCK *x); +void vp8_optimize_mbuv(MACROBLOCK *x); +void vp8_encode_inter16x16y(MACROBLOCK *x); +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP8_ENCODER_ENCODEMB_H_ diff --git a/vp8/encoder/encodemv.c b/vp8/encoder/encodemv.c new file mode 100644 index 0000000..ea93ccd --- /dev/null +++ b/vp8/encoder/encodemv.c @@ -0,0 +1,330 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "vp8/common/common.h" +#include "encodemv.h" +#include "vp8/common/entropymode.h" +#include "vp8/common/systemdependent.h" +#include "vpx_ports/system_state.h" + +#include + +#ifdef VP8_ENTROPY_STATS +extern unsigned int active_section; +#endif + +static void encode_mvcomponent(vp8_writer *const w, const int v, + const struct mv_context *mvc) { + const vp8_prob *p = mvc->prob; + const int x = v < 0 ? -v : v; + + if (x < mvnum_short) { /* Small */ + vp8_write(w, 0, p[mvpis_short]); + vp8_treed_write(w, vp8_small_mvtree, p + MVPshort, x, 3); + + if (!x) return; /* no sign bit */ + } else { /* Large */ + int i = 0; + + vp8_write(w, 1, p[mvpis_short]); + + do + vp8_write(w, (x >> i) & 1, p[MVPbits + i]); + + while (++i < 3); + + i = mvlong_width - 1; /* Skip bit 3, which is sometimes implicit */ + + do + vp8_write(w, (x >> i) & 1, p[MVPbits + i]); + + while (--i > 3); + + if (x & 0xFFF0) vp8_write(w, (x >> 3) & 1, p[MVPbits + 3]); + } + + vp8_write(w, v < 0, p[MVPsign]); +} +#if 0 +static int max_mv_r = 0; +static int max_mv_c = 0; +#endif +void vp8_encode_motion_vector(vp8_writer *w, const MV *mv, + const MV_CONTEXT *mvc) { +#if 0 + { + if (abs(mv->row >> 1) > max_mv_r) + { + FILE *f = fopen("maxmv.stt", "a"); + max_mv_r = abs(mv->row >> 1); + fprintf(f, "New Mv Row Max %6d\n", (mv->row >> 1)); + + if ((abs(mv->row) / 2) != max_mv_r) + fprintf(f, "MV Row conversion error %6d\n", abs(mv->row) / 2); + + fclose(f); + } + + if (abs(mv->col >> 1) > max_mv_c) + { + FILE *f = fopen("maxmv.stt", "a"); + fprintf(f, "New Mv Col Max %6d\n", (mv->col >> 1)); + max_mv_c = abs(mv->col >> 1); + fclose(f); + } + } +#endif + + encode_mvcomponent(w, mv->row >> 1, &mvc[0]); + encode_mvcomponent(w, mv->col >> 1, &mvc[1]); +} + +static unsigned int cost_mvcomponent(const int v, + const struct mv_context *mvc) { + const vp8_prob *p = mvc->prob; + const int x = v; + unsigned int cost; + + if (x < mvnum_short) { + cost = vp8_cost_zero(p[mvpis_short]) + + vp8_treed_cost(vp8_small_mvtree, p + MVPshort, x, 3); + + if (!x) return cost; + } else { + int i = 0; + cost = vp8_cost_one(p[mvpis_short]); + + do { + cost += vp8_cost_bit(p[MVPbits + i], (x >> i) & 1); + + } while (++i < 3); + + i = mvlong_width - 1; /* Skip bit 3, which is sometimes implicit */ + + do { + cost += vp8_cost_bit(p[MVPbits + i], (x >> i) & 1); + + } while (--i > 3); + + if (x & 0xFFF0) cost += vp8_cost_bit(p[MVPbits + 3], (x >> 3) & 1); + } + + return cost; /* + vp8_cost_bit( p [MVPsign], v < 0); */ +} + +void vp8_build_component_cost_table(int *mvcost[2], const MV_CONTEXT *mvc, + int mvc_flag[2]) { + int i = 1; + unsigned int cost0 = 0; + unsigned int cost1 = 0; + + vpx_clear_system_state(); + + i = 1; + + if (mvc_flag[0]) { + mvcost[0][0] = cost_mvcomponent(0, &mvc[0]); + + do { + cost0 = cost_mvcomponent(i, &mvc[0]); + + mvcost[0][i] = cost0 + vp8_cost_zero(mvc[0].prob[MVPsign]); + mvcost[0][-i] = cost0 + vp8_cost_one(mvc[0].prob[MVPsign]); + } while (++i <= mv_max); + } + + i = 1; + + if (mvc_flag[1]) { + mvcost[1][0] = cost_mvcomponent(0, &mvc[1]); + + do { + cost1 = cost_mvcomponent(i, &mvc[1]); + + mvcost[1][i] = cost1 + vp8_cost_zero(mvc[1].prob[MVPsign]); + mvcost[1][-i] = cost1 + vp8_cost_one(mvc[1].prob[MVPsign]); + } while (++i <= mv_max); + } +} + +/* Motion vector probability table update depends on benefit. + * Small correction allows for the fact that an update to an MV probability + * may have benefit in subsequent frames as well as the current one. + */ +#define MV_PROB_UPDATE_CORRECTION -1 + +static void calc_prob(vp8_prob *p, const unsigned int ct[2]) { + const unsigned int tot = ct[0] + ct[1]; + + if (tot) { + const vp8_prob x = ((ct[0] * 255) / tot) & -2; + *p = x ? x : 1; + } +} + +static void update(vp8_writer *const w, const unsigned int ct[2], + vp8_prob *const cur_p, const vp8_prob new_p, + const vp8_prob update_p, int *updated) { + const int cur_b = vp8_cost_branch(ct, *cur_p); + const int new_b = vp8_cost_branch(ct, new_p); + const int cost = + 7 + MV_PROB_UPDATE_CORRECTION + + ((vp8_cost_one(update_p) - vp8_cost_zero(update_p) + 128) >> 8); + + if (cur_b - new_b > cost) { + *cur_p = new_p; + vp8_write(w, 1, update_p); + vp8_write_literal(w, new_p >> 1, 7); + *updated = 1; + + } else + vp8_write(w, 0, update_p); +} + +static void write_component_probs(vp8_writer *const w, + struct mv_context *cur_mvc, + const struct mv_context *default_mvc_, + const struct mv_context *update_mvc, + const unsigned int events[MVvals], + unsigned int rc, int *updated) { + vp8_prob *Pcur = cur_mvc->prob; + const vp8_prob *default_mvc = default_mvc_->prob; + const vp8_prob *Pupdate = update_mvc->prob; + unsigned int is_short_ct[2], sign_ct[2]; + + unsigned int bit_ct[mvlong_width][2]; + + unsigned int short_ct[mvnum_short]; + unsigned int short_bct[mvnum_short - 1][2]; + + vp8_prob Pnew[MVPcount]; + + (void)rc; + vp8_copy_array(Pnew, default_mvc, MVPcount); + + vp8_zero(is_short_ct) vp8_zero(sign_ct) vp8_zero(bit_ct) vp8_zero(short_ct) + vp8_zero(short_bct) + + /* j=0 */ + { + const int c = events[mv_max]; + + is_short_ct[0] += c; /* Short vector */ + short_ct[0] += c; /* Magnitude distribution */ + } + + /* j: 1 ~ mv_max (1023) */ + { + int j = 1; + + do { + const int c1 = events[mv_max + j]; /* positive */ + const int c2 = events[mv_max - j]; /* negative */ + const int c = c1 + c2; + int a = j; + + sign_ct[0] += c1; + sign_ct[1] += c2; + + if (a < mvnum_short) { + is_short_ct[0] += c; /* Short vector */ + short_ct[a] += c; /* Magnitude distribution */ + } else { + int k = mvlong_width - 1; + is_short_ct[1] += c; /* Long vector */ + + /* bit 3 not always encoded. */ + do { + bit_ct[k][(a >> k) & 1] += c; + + } while (--k >= 0); + } + } while (++j <= mv_max); + } + + calc_prob(Pnew + mvpis_short, is_short_ct); + + calc_prob(Pnew + MVPsign, sign_ct); + + { + vp8_prob p[mvnum_short - 1]; /* actually only need branch ct */ + int j = 0; + + vp8_tree_probs_from_distribution(8, vp8_small_mvencodings, vp8_small_mvtree, + p, short_bct, short_ct, 256, 1); + + do { + calc_prob(Pnew + MVPshort + j, short_bct[j]); + + } while (++j < mvnum_short - 1); + } + + { + int j = 0; + + do { + calc_prob(Pnew + MVPbits + j, bit_ct[j]); + + } while (++j < mvlong_width); + } + + update(w, is_short_ct, Pcur + mvpis_short, Pnew[mvpis_short], *Pupdate++, + updated); + + update(w, sign_ct, Pcur + MVPsign, Pnew[MVPsign], *Pupdate++, updated); + + { + const vp8_prob *const new_p = Pnew + MVPshort; + vp8_prob *const cur_p = Pcur + MVPshort; + + int j = 0; + + do { + update(w, short_bct[j], cur_p + j, new_p[j], *Pupdate++, updated); + + } while (++j < mvnum_short - 1); + } + + { + const vp8_prob *const new_p = Pnew + MVPbits; + vp8_prob *const cur_p = Pcur + MVPbits; + + int j = 0; + + do { + update(w, bit_ct[j], cur_p + j, new_p[j], *Pupdate++, updated); + + } while (++j < mvlong_width); + } +} + +void vp8_write_mvprobs(VP8_COMP *cpi) { + vp8_writer *const w = cpi->bc; + MV_CONTEXT *mvc = cpi->common.fc.mvc; + int flags[2] = { 0, 0 }; +#ifdef VP8_ENTROPY_STATS + active_section = 4; +#endif + write_component_probs(w, &mvc[0], &vp8_default_mv_context[0], + &vp8_mv_update_probs[0], cpi->mb.MVcount[0], 0, + &flags[0]); + write_component_probs(w, &mvc[1], &vp8_default_mv_context[1], + &vp8_mv_update_probs[1], cpi->mb.MVcount[1], 1, + &flags[1]); + + if (flags[0] || flags[1]) { + vp8_build_component_cost_table( + cpi->mb.mvcost, (const MV_CONTEXT *)cpi->common.fc.mvc, flags); + } + +#ifdef VP8_ENTROPY_STATS + active_section = 5; +#endif +} diff --git a/vp8/encoder/encodemv.h b/vp8/encoder/encodemv.h new file mode 100644 index 0000000..87db30f --- /dev/null +++ b/vp8/encoder/encodemv.h @@ -0,0 +1,29 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP8_ENCODER_ENCODEMV_H_ +#define VP8_ENCODER_ENCODEMV_H_ + +#include "onyx_int.h" + +#ifdef __cplusplus +extern "C" { +#endif + +void vp8_write_mvprobs(VP8_COMP *); +void vp8_encode_motion_vector(vp8_writer *, const MV *, const MV_CONTEXT *); +void vp8_build_component_cost_table(int *mvcost[2], const MV_CONTEXT *mvc, + int mvc_flag[2]); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP8_ENCODER_ENCODEMV_H_ diff --git a/vp8/encoder/ethreading.c b/vp8/encoder/ethreading.c new file mode 100644 index 0000000..55a1528 --- /dev/null +++ b/vp8/encoder/ethreading.c @@ -0,0 +1,639 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "onyx_int.h" +#include "vp8/common/threading.h" +#include "vp8/common/common.h" +#include "vp8/common/extend.h" +#include "bitstream.h" +#include "encodeframe.h" +#include "ethreading.h" + +#if CONFIG_MULTITHREAD + +extern void vp8cx_mb_init_quantizer(VP8_COMP *cpi, MACROBLOCK *x, + int ok_to_skip); + +static THREAD_FUNCTION thread_loopfilter(void *p_data) { + VP8_COMP *cpi = (VP8_COMP *)(((LPFTHREAD_DATA *)p_data)->ptr1); + VP8_COMMON *cm = &cpi->common; + + while (1) { + if (vpx_atomic_load_acquire(&cpi->b_multi_threaded) == 0) break; + + if (sem_wait(&cpi->h_event_start_lpf) == 0) { + /* we're shutting down */ + if (vpx_atomic_load_acquire(&cpi->b_multi_threaded) == 0) break; + + vp8_loopfilter_frame(cpi, cm); + + sem_post(&cpi->h_event_end_lpf); + } + } + + return 0; +} + +static THREAD_FUNCTION thread_encoding_proc(void *p_data) { + int ithread = ((ENCODETHREAD_DATA *)p_data)->ithread; + VP8_COMP *cpi = (VP8_COMP *)(((ENCODETHREAD_DATA *)p_data)->ptr1); + MB_ROW_COMP *mbri = (MB_ROW_COMP *)(((ENCODETHREAD_DATA *)p_data)->ptr2); + ENTROPY_CONTEXT_PLANES mb_row_left_context; + + while (1) { + if (vpx_atomic_load_acquire(&cpi->b_multi_threaded) == 0) break; + + if (sem_wait(&cpi->h_event_start_encoding[ithread]) == 0) { + const int nsync = cpi->mt_sync_range; + VP8_COMMON *cm = &cpi->common; + int mb_row; + MACROBLOCK *x = &mbri->mb; + MACROBLOCKD *xd = &x->e_mbd; + TOKENEXTRA *tp; +#if CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING + TOKENEXTRA *tp_start = cpi->tok + (1 + ithread) * (16 * 24); + const int num_part = (1 << cm->multi_token_partition); +#endif + + int *segment_counts = mbri->segment_counts; + int *totalrate = &mbri->totalrate; + + /* we're shutting down */ + if (vpx_atomic_load_acquire(&cpi->b_multi_threaded) == 0) break; + + xd->mode_info_context = cm->mi + cm->mode_info_stride * (ithread + 1); + xd->mode_info_stride = cm->mode_info_stride; + + for (mb_row = ithread + 1; mb_row < cm->mb_rows; + mb_row += (cpi->encoding_thread_count + 1)) { + int recon_yoffset, recon_uvoffset; + int mb_col; + int ref_fb_idx = cm->lst_fb_idx; + int dst_fb_idx = cm->new_fb_idx; + int recon_y_stride = cm->yv12_fb[ref_fb_idx].y_stride; + int recon_uv_stride = cm->yv12_fb[ref_fb_idx].uv_stride; + int map_index = (mb_row * cm->mb_cols); + const vpx_atomic_int *last_row_current_mb_col; + vpx_atomic_int *current_mb_col = &cpi->mt_current_mb_col[mb_row]; + +#if (CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING) + vp8_writer *w = &cpi->bc[1 + (mb_row % num_part)]; +#else + tp = cpi->tok + (mb_row * (cm->mb_cols * 16 * 24)); + cpi->tplist[mb_row].start = tp; +#endif + + last_row_current_mb_col = &cpi->mt_current_mb_col[mb_row - 1]; + + /* reset above block coeffs */ + xd->above_context = cm->above_context; + xd->left_context = &mb_row_left_context; + + vp8_zero(mb_row_left_context); + + xd->up_available = (mb_row != 0); + recon_yoffset = (mb_row * recon_y_stride * 16); + recon_uvoffset = (mb_row * recon_uv_stride * 8); + + /* Set the mb activity pointer to the start of the row. */ + x->mb_activity_ptr = &cpi->mb_activity_map[map_index]; + + /* for each macroblock col in image */ + for (mb_col = 0; mb_col < cm->mb_cols; ++mb_col) { + if (((mb_col - 1) % nsync) == 0) { + vpx_atomic_store_release(current_mb_col, mb_col - 1); + } + + if (mb_row && !(mb_col & (nsync - 1))) { + vp8_atomic_spin_wait(mb_col, last_row_current_mb_col, nsync); + } + +#if CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING + tp = tp_start; +#endif + + /* Distance of Mb to the various image edges. + * These specified to 8th pel as they are always compared + * to values that are in 1/8th pel units + */ + xd->mb_to_left_edge = -((mb_col * 16) << 3); + xd->mb_to_right_edge = ((cm->mb_cols - 1 - mb_col) * 16) << 3; + xd->mb_to_top_edge = -((mb_row * 16) << 3); + xd->mb_to_bottom_edge = ((cm->mb_rows - 1 - mb_row) * 16) << 3; + + /* Set up limit values for motion vectors used to prevent + * them extending outside the UMV borders + */ + x->mv_col_min = -((mb_col * 16) + (VP8BORDERINPIXELS - 16)); + x->mv_col_max = + ((cm->mb_cols - 1 - mb_col) * 16) + (VP8BORDERINPIXELS - 16); + x->mv_row_min = -((mb_row * 16) + (VP8BORDERINPIXELS - 16)); + x->mv_row_max = + ((cm->mb_rows - 1 - mb_row) * 16) + (VP8BORDERINPIXELS - 16); + + xd->dst.y_buffer = cm->yv12_fb[dst_fb_idx].y_buffer + recon_yoffset; + xd->dst.u_buffer = cm->yv12_fb[dst_fb_idx].u_buffer + recon_uvoffset; + xd->dst.v_buffer = cm->yv12_fb[dst_fb_idx].v_buffer + recon_uvoffset; + xd->left_available = (mb_col != 0); + + x->rddiv = cpi->RDDIV; + x->rdmult = cpi->RDMULT; + + /* Copy current mb to a buffer */ + vp8_copy_mem16x16(x->src.y_buffer, x->src.y_stride, x->thismb, 16); + + if (cpi->oxcf.tuning == VP8_TUNE_SSIM) vp8_activity_masking(cpi, x); + + /* Is segmentation enabled */ + /* MB level adjustment to quantizer */ + if (xd->segmentation_enabled) { + /* Code to set segment id in xd->mbmi.segment_id for + * current MB (with range checking) + */ + if (cpi->segmentation_map[map_index + mb_col] <= 3) { + xd->mode_info_context->mbmi.segment_id = + cpi->segmentation_map[map_index + mb_col]; + } else { + xd->mode_info_context->mbmi.segment_id = 0; + } + + vp8cx_mb_init_quantizer(cpi, x, 1); + } else { + /* Set to Segment 0 by default */ + xd->mode_info_context->mbmi.segment_id = 0; + } + + x->active_ptr = cpi->active_map + map_index + mb_col; + + if (cm->frame_type == KEY_FRAME) { + *totalrate += vp8cx_encode_intra_macroblock(cpi, x, &tp); +#ifdef MODE_STATS + y_modes[xd->mbmi.mode]++; +#endif + } else { + *totalrate += vp8cx_encode_inter_macroblock( + cpi, x, &tp, recon_yoffset, recon_uvoffset, mb_row, mb_col); + +#ifdef MODE_STATS + inter_y_modes[xd->mbmi.mode]++; + + if (xd->mbmi.mode == SPLITMV) { + int b; + + for (b = 0; b < xd->mbmi.partition_count; ++b) { + inter_b_modes[x->partition->bmi[b].mode]++; + } + } + +#endif + // Keep track of how many (consecutive) times a block + // is coded as ZEROMV_LASTREF, for base layer frames. + // Reset to 0 if its coded as anything else. + if (cpi->current_layer == 0) { + if (xd->mode_info_context->mbmi.mode == ZEROMV && + xd->mode_info_context->mbmi.ref_frame == LAST_FRAME) { + // Increment, check for wrap-around. + if (cpi->consec_zero_last[map_index + mb_col] < 255) { + cpi->consec_zero_last[map_index + mb_col] += 1; + } + if (cpi->consec_zero_last_mvbias[map_index + mb_col] < 255) { + cpi->consec_zero_last_mvbias[map_index + mb_col] += 1; + } + } else { + cpi->consec_zero_last[map_index + mb_col] = 0; + cpi->consec_zero_last_mvbias[map_index + mb_col] = 0; + } + if (x->zero_last_dot_suppress) { + cpi->consec_zero_last_mvbias[map_index + mb_col] = 0; + } + } + + /* Special case code for cyclic refresh + * If cyclic update enabled then copy + * xd->mbmi.segment_id; (which may have been updated + * based on mode during + * vp8cx_encode_inter_macroblock()) back into the + * global segmentation map + */ + if ((cpi->current_layer == 0) && + (cpi->cyclic_refresh_mode_enabled && + xd->segmentation_enabled)) { + const MB_MODE_INFO *mbmi = &xd->mode_info_context->mbmi; + cpi->segmentation_map[map_index + mb_col] = mbmi->segment_id; + + /* If the block has been refreshed mark it as clean + * (the magnitude of the -ve influences how long it + * will be before we consider another refresh): + * Else if it was coded (last frame 0,0) and has + * not already been refreshed then mark it as a + * candidate for cleanup next time (marked 0) else + * mark it as dirty (1). + */ + if (mbmi->segment_id) { + cpi->cyclic_refresh_map[map_index + mb_col] = -1; + } else if ((mbmi->mode == ZEROMV) && + (mbmi->ref_frame == LAST_FRAME)) { + if (cpi->cyclic_refresh_map[map_index + mb_col] == 1) { + cpi->cyclic_refresh_map[map_index + mb_col] = 0; + } + } else { + cpi->cyclic_refresh_map[map_index + mb_col] = 1; + } + } + } + +#if CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING + /* pack tokens for this MB */ + { + int tok_count = tp - tp_start; + vp8_pack_tokens(w, tp_start, tok_count); + } +#else + cpi->tplist[mb_row].stop = tp; +#endif + /* Increment pointer into gf usage flags structure. */ + x->gf_active_ptr++; + + /* Increment the activity mask pointers. */ + x->mb_activity_ptr++; + + /* adjust to the next column of macroblocks */ + x->src.y_buffer += 16; + x->src.u_buffer += 8; + x->src.v_buffer += 8; + + recon_yoffset += 16; + recon_uvoffset += 8; + + /* Keep track of segment usage */ + segment_counts[xd->mode_info_context->mbmi.segment_id]++; + + /* skip to next mb */ + xd->mode_info_context++; + x->partition_info++; + xd->above_context++; + } + + vp8_extend_mb_row(&cm->yv12_fb[dst_fb_idx], xd->dst.y_buffer + 16, + xd->dst.u_buffer + 8, xd->dst.v_buffer + 8); + + vpx_atomic_store_release(current_mb_col, mb_col + nsync); + + /* this is to account for the border */ + xd->mode_info_context++; + x->partition_info++; + + x->src.y_buffer += + 16 * x->src.y_stride * (cpi->encoding_thread_count + 1) - + 16 * cm->mb_cols; + x->src.u_buffer += + 8 * x->src.uv_stride * (cpi->encoding_thread_count + 1) - + 8 * cm->mb_cols; + x->src.v_buffer += + 8 * x->src.uv_stride * (cpi->encoding_thread_count + 1) - + 8 * cm->mb_cols; + + xd->mode_info_context += + xd->mode_info_stride * cpi->encoding_thread_count; + x->partition_info += xd->mode_info_stride * cpi->encoding_thread_count; + x->gf_active_ptr += cm->mb_cols * cpi->encoding_thread_count; + } + /* Signal that this thread has completed processing its rows. */ + sem_post(&cpi->h_event_end_encoding[ithread]); + } + } + + /* printf("exit thread %d\n", ithread); */ + return 0; +} + +static void setup_mbby_copy(MACROBLOCK *mbdst, MACROBLOCK *mbsrc) { + MACROBLOCK *x = mbsrc; + MACROBLOCK *z = mbdst; + int i; + + z->ss = x->ss; + z->ss_count = x->ss_count; + z->searches_per_step = x->searches_per_step; + z->errorperbit = x->errorperbit; + + z->sadperbit16 = x->sadperbit16; + z->sadperbit4 = x->sadperbit4; + + /* + z->mv_col_min = x->mv_col_min; + z->mv_col_max = x->mv_col_max; + z->mv_row_min = x->mv_row_min; + z->mv_row_max = x->mv_row_max; + */ + + z->short_fdct4x4 = x->short_fdct4x4; + z->short_fdct8x4 = x->short_fdct8x4; + z->short_walsh4x4 = x->short_walsh4x4; + z->quantize_b = x->quantize_b; + z->optimize = x->optimize; + + /* + z->mvc = x->mvc; + z->src.y_buffer = x->src.y_buffer; + z->src.u_buffer = x->src.u_buffer; + z->src.v_buffer = x->src.v_buffer; + */ + + z->mvcost[0] = x->mvcost[0]; + z->mvcost[1] = x->mvcost[1]; + z->mvsadcost[0] = x->mvsadcost[0]; + z->mvsadcost[1] = x->mvsadcost[1]; + + z->token_costs = x->token_costs; + z->inter_bmode_costs = x->inter_bmode_costs; + z->mbmode_cost = x->mbmode_cost; + z->intra_uv_mode_cost = x->intra_uv_mode_cost; + z->bmode_costs = x->bmode_costs; + + for (i = 0; i < 25; ++i) { + z->block[i].quant = x->block[i].quant; + z->block[i].quant_fast = x->block[i].quant_fast; + z->block[i].quant_shift = x->block[i].quant_shift; + z->block[i].zbin = x->block[i].zbin; + z->block[i].zrun_zbin_boost = x->block[i].zrun_zbin_boost; + z->block[i].round = x->block[i].round; + z->block[i].src_stride = x->block[i].src_stride; + } + + z->q_index = x->q_index; + z->act_zbin_adj = x->act_zbin_adj; + z->last_act_zbin_adj = x->last_act_zbin_adj; + + { + MACROBLOCKD *xd = &x->e_mbd; + MACROBLOCKD *zd = &z->e_mbd; + + /* + zd->mode_info_context = xd->mode_info_context; + zd->mode_info = xd->mode_info; + + zd->mode_info_stride = xd->mode_info_stride; + zd->frame_type = xd->frame_type; + zd->up_available = xd->up_available ; + zd->left_available = xd->left_available; + zd->left_context = xd->left_context; + zd->last_frame_dc = xd->last_frame_dc; + zd->last_frame_dccons = xd->last_frame_dccons; + zd->gold_frame_dc = xd->gold_frame_dc; + zd->gold_frame_dccons = xd->gold_frame_dccons; + zd->mb_to_left_edge = xd->mb_to_left_edge; + zd->mb_to_right_edge = xd->mb_to_right_edge; + zd->mb_to_top_edge = xd->mb_to_top_edge ; + zd->mb_to_bottom_edge = xd->mb_to_bottom_edge; + zd->gf_active_ptr = xd->gf_active_ptr; + zd->frames_since_golden = xd->frames_since_golden; + zd->frames_till_alt_ref_frame = xd->frames_till_alt_ref_frame; + */ + zd->subpixel_predict = xd->subpixel_predict; + zd->subpixel_predict8x4 = xd->subpixel_predict8x4; + zd->subpixel_predict8x8 = xd->subpixel_predict8x8; + zd->subpixel_predict16x16 = xd->subpixel_predict16x16; + zd->segmentation_enabled = xd->segmentation_enabled; + zd->mb_segement_abs_delta = xd->mb_segement_abs_delta; + memcpy(zd->segment_feature_data, xd->segment_feature_data, + sizeof(xd->segment_feature_data)); + + memcpy(zd->dequant_y1_dc, xd->dequant_y1_dc, sizeof(xd->dequant_y1_dc)); + memcpy(zd->dequant_y1, xd->dequant_y1, sizeof(xd->dequant_y1)); + memcpy(zd->dequant_y2, xd->dequant_y2, sizeof(xd->dequant_y2)); + memcpy(zd->dequant_uv, xd->dequant_uv, sizeof(xd->dequant_uv)); + +#if 1 + /*TODO: Remove dequant from BLOCKD. This is a temporary solution until + * the quantizer code uses a passed in pointer to the dequant constants. + * This will also require modifications to the x86 and neon assembly. + * */ + for (i = 0; i < 16; ++i) zd->block[i].dequant = zd->dequant_y1; + for (i = 16; i < 24; ++i) zd->block[i].dequant = zd->dequant_uv; + zd->block[24].dequant = zd->dequant_y2; +#endif + + memcpy(z->rd_threshes, x->rd_threshes, sizeof(x->rd_threshes)); + memcpy(z->rd_thresh_mult, x->rd_thresh_mult, sizeof(x->rd_thresh_mult)); + + z->zbin_over_quant = x->zbin_over_quant; + z->zbin_mode_boost_enabled = x->zbin_mode_boost_enabled; + z->zbin_mode_boost = x->zbin_mode_boost; + + memset(z->error_bins, 0, sizeof(z->error_bins)); + } +} + +void vp8cx_init_mbrthread_data(VP8_COMP *cpi, MACROBLOCK *x, + MB_ROW_COMP *mbr_ei, int count) { + VP8_COMMON *const cm = &cpi->common; + MACROBLOCKD *const xd = &x->e_mbd; + int i; + + for (i = 0; i < count; ++i) { + MACROBLOCK *mb = &mbr_ei[i].mb; + MACROBLOCKD *mbd = &mb->e_mbd; + + mbd->subpixel_predict = xd->subpixel_predict; + mbd->subpixel_predict8x4 = xd->subpixel_predict8x4; + mbd->subpixel_predict8x8 = xd->subpixel_predict8x8; + mbd->subpixel_predict16x16 = xd->subpixel_predict16x16; + mb->gf_active_ptr = x->gf_active_ptr; + + memset(mbr_ei[i].segment_counts, 0, sizeof(mbr_ei[i].segment_counts)); + mbr_ei[i].totalrate = 0; + + mb->partition_info = x->pi + x->e_mbd.mode_info_stride * (i + 1); + + mbd->frame_type = cm->frame_type; + + mb->src = *cpi->Source; + mbd->pre = cm->yv12_fb[cm->lst_fb_idx]; + mbd->dst = cm->yv12_fb[cm->new_fb_idx]; + + mb->src.y_buffer += 16 * x->src.y_stride * (i + 1); + mb->src.u_buffer += 8 * x->src.uv_stride * (i + 1); + mb->src.v_buffer += 8 * x->src.uv_stride * (i + 1); + + vp8_build_block_offsets(mb); + + mbd->left_context = &cm->left_context; + mb->mvc = cm->fc.mvc; + + setup_mbby_copy(&mbr_ei[i].mb, x); + + mbd->fullpixel_mask = 0xffffffff; + if (cm->full_pixel) mbd->fullpixel_mask = 0xfffffff8; + + vp8_zero(mb->coef_counts); + vp8_zero(x->ymode_count); + mb->skip_true_count = 0; + vp8_zero(mb->MVcount); + mb->prediction_error = 0; + mb->intra_error = 0; + vp8_zero(mb->count_mb_ref_frame_usage); + mb->mbs_tested_so_far = 0; + mb->mbs_zero_last_dot_suppress = 0; + } +} + +int vp8cx_create_encoder_threads(VP8_COMP *cpi) { + const VP8_COMMON *cm = &cpi->common; + + vpx_atomic_init(&cpi->b_multi_threaded, 0); + cpi->encoding_thread_count = 0; + cpi->b_lpf_running = 0; + + if (cm->processor_core_count > 1 && cpi->oxcf.multi_threaded > 1) { + int ithread; + int th_count = cpi->oxcf.multi_threaded - 1; + int rc = 0; + + /* don't allocate more threads than cores available */ + if (cpi->oxcf.multi_threaded > cm->processor_core_count) { + th_count = cm->processor_core_count - 1; + } + + /* we have th_count + 1 (main) threads processing one row each */ + /* no point to have more threads than the sync range allows */ + if (th_count > ((cm->mb_cols / cpi->mt_sync_range) - 1)) { + th_count = (cm->mb_cols / cpi->mt_sync_range) - 1; + } + + if (th_count == 0) return 0; + + CHECK_MEM_ERROR(cpi->h_encoding_thread, + vpx_malloc(sizeof(pthread_t) * th_count)); + CHECK_MEM_ERROR(cpi->h_event_start_encoding, + vpx_malloc(sizeof(sem_t) * th_count)); + CHECK_MEM_ERROR(cpi->h_event_end_encoding, + vpx_malloc(sizeof(sem_t) * th_count)); + CHECK_MEM_ERROR(cpi->mb_row_ei, + vpx_memalign(32, sizeof(MB_ROW_COMP) * th_count)); + memset(cpi->mb_row_ei, 0, sizeof(MB_ROW_COMP) * th_count); + CHECK_MEM_ERROR(cpi->en_thread_data, + vpx_malloc(sizeof(ENCODETHREAD_DATA) * th_count)); + + vpx_atomic_store_release(&cpi->b_multi_threaded, 1); + cpi->encoding_thread_count = th_count; + + /* + printf("[VP8:] multi_threaded encoding is enabled with %d threads\n\n", + (cpi->encoding_thread_count +1)); + */ + + for (ithread = 0; ithread < th_count; ++ithread) { + ENCODETHREAD_DATA *ethd = &cpi->en_thread_data[ithread]; + + /* Setup block ptrs and offsets */ + vp8_setup_block_ptrs(&cpi->mb_row_ei[ithread].mb); + vp8_setup_block_dptrs(&cpi->mb_row_ei[ithread].mb.e_mbd); + + sem_init(&cpi->h_event_start_encoding[ithread], 0, 0); + sem_init(&cpi->h_event_end_encoding[ithread], 0, 0); + + ethd->ithread = ithread; + ethd->ptr1 = (void *)cpi; + ethd->ptr2 = (void *)&cpi->mb_row_ei[ithread]; + + rc = pthread_create(&cpi->h_encoding_thread[ithread], 0, + thread_encoding_proc, ethd); + if (rc) break; + } + + if (rc) { + /* shutdown other threads */ + vpx_atomic_store_release(&cpi->b_multi_threaded, 0); + for (--ithread; ithread >= 0; ithread--) { + pthread_join(cpi->h_encoding_thread[ithread], 0); + sem_destroy(&cpi->h_event_start_encoding[ithread]); + sem_destroy(&cpi->h_event_end_encoding[ithread]); + } + + /* free thread related resources */ + vpx_free(cpi->h_event_start_encoding); + vpx_free(cpi->h_event_end_encoding); + vpx_free(cpi->h_encoding_thread); + vpx_free(cpi->mb_row_ei); + vpx_free(cpi->en_thread_data); + + return -1; + } + + { + LPFTHREAD_DATA *lpfthd = &cpi->lpf_thread_data; + + sem_init(&cpi->h_event_start_lpf, 0, 0); + sem_init(&cpi->h_event_end_lpf, 0, 0); + + lpfthd->ptr1 = (void *)cpi; + rc = pthread_create(&cpi->h_filter_thread, 0, thread_loopfilter, lpfthd); + + if (rc) { + /* shutdown other threads */ + vpx_atomic_store_release(&cpi->b_multi_threaded, 0); + for (--ithread; ithread >= 0; ithread--) { + sem_post(&cpi->h_event_start_encoding[ithread]); + sem_post(&cpi->h_event_end_encoding[ithread]); + pthread_join(cpi->h_encoding_thread[ithread], 0); + sem_destroy(&cpi->h_event_start_encoding[ithread]); + sem_destroy(&cpi->h_event_end_encoding[ithread]); + } + sem_destroy(&cpi->h_event_end_lpf); + sem_destroy(&cpi->h_event_start_lpf); + + /* free thread related resources */ + vpx_free(cpi->h_event_start_encoding); + vpx_free(cpi->h_event_end_encoding); + vpx_free(cpi->h_encoding_thread); + vpx_free(cpi->mb_row_ei); + vpx_free(cpi->en_thread_data); + + return -2; + } + } + } + return 0; +} + +void vp8cx_remove_encoder_threads(VP8_COMP *cpi) { + if (vpx_atomic_load_acquire(&cpi->b_multi_threaded)) { + /* shutdown other threads */ + vpx_atomic_store_release(&cpi->b_multi_threaded, 0); + { + int i; + + for (i = 0; i < cpi->encoding_thread_count; ++i) { + sem_post(&cpi->h_event_start_encoding[i]); + sem_post(&cpi->h_event_end_encoding[i]); + + pthread_join(cpi->h_encoding_thread[i], 0); + + sem_destroy(&cpi->h_event_start_encoding[i]); + sem_destroy(&cpi->h_event_end_encoding[i]); + } + + sem_post(&cpi->h_event_start_lpf); + pthread_join(cpi->h_filter_thread, 0); + } + + sem_destroy(&cpi->h_event_end_lpf); + sem_destroy(&cpi->h_event_start_lpf); + + /* free thread related resources */ + vpx_free(cpi->h_event_start_encoding); + vpx_free(cpi->h_event_end_encoding); + vpx_free(cpi->h_encoding_thread); + vpx_free(cpi->mb_row_ei); + vpx_free(cpi->en_thread_data); + } +} +#endif diff --git a/vp8/encoder/ethreading.h b/vp8/encoder/ethreading.h new file mode 100644 index 0000000..95bf73d --- /dev/null +++ b/vp8/encoder/ethreading.h @@ -0,0 +1,32 @@ +/* + * Copyright (c) 2017 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP8_ENCODER_ETHREADING_H_ +#define VP8_ENCODER_ETHREADING_H_ + +#include "vp8/encoder/onyx_int.h" + +#ifdef __cplusplus +extern "C" { +#endif + +struct VP8_COMP; +struct macroblock; + +void vp8cx_init_mbrthread_data(struct VP8_COMP *cpi, struct macroblock *x, + MB_ROW_COMP *mbr_ei, int count); +int vp8cx_create_encoder_threads(struct VP8_COMP *cpi); +void vp8cx_remove_encoder_threads(struct VP8_COMP *cpi); + +#ifdef __cplusplus +} +#endif + +#endif // VP8_ENCODER_ETHREADING_H_ diff --git a/vp8/encoder/firstpass.c b/vp8/encoder/firstpass.c new file mode 100644 index 0000000..70f9243 --- /dev/null +++ b/vp8/encoder/firstpass.c @@ -0,0 +1,3159 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include +#include + +#include "./vpx_dsp_rtcd.h" +#include "./vpx_scale_rtcd.h" +#include "block.h" +#include "onyx_int.h" +#include "vpx_dsp/variance.h" +#include "encodeintra.h" +#include "vp8/common/common.h" +#include "vp8/common/setupintrarecon.h" +#include "vp8/common/systemdependent.h" +#include "mcomp.h" +#include "firstpass.h" +#include "vpx_scale/vpx_scale.h" +#include "encodemb.h" +#include "vp8/common/extend.h" +#include "vpx_ports/system_state.h" +#include "vpx_mem/vpx_mem.h" +#include "vp8/common/swapyv12buffer.h" +#include "rdopt.h" +#include "vp8/common/quant_common.h" +#include "encodemv.h" +#include "encodeframe.h" + +#define OUTPUT_FPF 0 + +extern void vp8cx_frame_init_quantizer(VP8_COMP *cpi); + +#define GFQ_ADJUSTMENT vp8_gf_boost_qadjustment[Q] +extern int vp8_kf_boost_qadjustment[QINDEX_RANGE]; + +extern const int vp8_gf_boost_qadjustment[QINDEX_RANGE]; + +#define IIFACTOR 1.5 +#define IIKFACTOR1 1.40 +#define IIKFACTOR2 1.5 +#define RMAX 14.0 +#define GF_RMAX 48.0 + +#define KF_MB_INTRA_MIN 300 +#define GF_MB_INTRA_MIN 200 + +#define DOUBLE_DIVIDE_CHECK(X) ((X) < 0 ? (X)-.000001 : (X) + .000001) + +#define POW1 (double)cpi->oxcf.two_pass_vbrbias / 100.0 +#define POW2 (double)cpi->oxcf.two_pass_vbrbias / 100.0 + +#define NEW_BOOST 1 + +static int vscale_lookup[7] = { 0, 1, 1, 2, 2, 3, 3 }; +static int hscale_lookup[7] = { 0, 0, 1, 1, 2, 2, 3 }; + +static const int cq_level[QINDEX_RANGE] = { + 0, 0, 1, 1, 2, 3, 3, 4, 4, 5, 6, 6, 7, 8, 8, 9, 9, 10, 11, + 11, 12, 13, 13, 14, 15, 15, 16, 17, 17, 18, 19, 20, 20, 21, 22, 22, 23, 24, + 24, 25, 26, 27, 27, 28, 29, 30, 30, 31, 32, 33, 33, 34, 35, 36, 36, 37, 38, + 39, 39, 40, 41, 42, 42, 43, 44, 45, 46, 46, 47, 48, 49, 50, 50, 51, 52, 53, + 54, 55, 55, 56, 57, 58, 59, 60, 60, 61, 62, 63, 64, 65, 66, 67, 67, 68, 69, + 70, 71, 72, 73, 74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 86, + 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100 +}; + +static void find_next_key_frame(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame); + +/* Resets the first pass file to the given position using a relative seek + * from the current position + */ +static void reset_fpf_position(VP8_COMP *cpi, FIRSTPASS_STATS *Position) { + cpi->twopass.stats_in = Position; +} + +static int lookup_next_frame_stats(VP8_COMP *cpi, FIRSTPASS_STATS *next_frame) { + if (cpi->twopass.stats_in >= cpi->twopass.stats_in_end) return EOF; + + *next_frame = *cpi->twopass.stats_in; + return 1; +} + +/* Read frame stats at an offset from the current position */ +static int read_frame_stats(VP8_COMP *cpi, FIRSTPASS_STATS *frame_stats, + int offset) { + FIRSTPASS_STATS *fps_ptr = cpi->twopass.stats_in; + + /* Check legality of offset */ + if (offset >= 0) { + if (&fps_ptr[offset] >= cpi->twopass.stats_in_end) return EOF; + } else if (offset < 0) { + if (&fps_ptr[offset] < cpi->twopass.stats_in_start) return EOF; + } + + *frame_stats = fps_ptr[offset]; + return 1; +} + +static int input_stats(VP8_COMP *cpi, FIRSTPASS_STATS *fps) { + if (cpi->twopass.stats_in >= cpi->twopass.stats_in_end) return EOF; + + *fps = *cpi->twopass.stats_in; + cpi->twopass.stats_in = + (void *)((char *)cpi->twopass.stats_in + sizeof(FIRSTPASS_STATS)); + return 1; +} + +static void output_stats(const VP8_COMP *cpi, + struct vpx_codec_pkt_list *pktlist, + FIRSTPASS_STATS *stats) { + struct vpx_codec_cx_pkt pkt; + (void)cpi; + pkt.kind = VPX_CODEC_STATS_PKT; + pkt.data.twopass_stats.buf = stats; + pkt.data.twopass_stats.sz = sizeof(FIRSTPASS_STATS); + vpx_codec_pkt_list_add(pktlist, &pkt); + +/* TEMP debug code */ +#if OUTPUT_FPF + + { + FILE *fpfile; + fpfile = fopen("firstpass.stt", "a"); + + fprintf(fpfile, + "%12.0f %12.0f %12.0f %12.4f %12.4f %12.4f %12.4f" + " %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f" + " %12.0f %12.0f %12.4f\n", + stats->frame, stats->intra_error, stats->coded_error, + stats->ssim_weighted_pred_err, stats->pcnt_inter, + stats->pcnt_motion, stats->pcnt_second_ref, stats->pcnt_neutral, + stats->MVr, stats->mvr_abs, stats->MVc, stats->mvc_abs, stats->MVrv, + stats->MVcv, stats->mv_in_out_count, stats->new_mv_count, + stats->count, stats->duration); + fclose(fpfile); + } +#endif +} + +static void zero_stats(FIRSTPASS_STATS *section) { + section->frame = 0.0; + section->intra_error = 0.0; + section->coded_error = 0.0; + section->ssim_weighted_pred_err = 0.0; + section->pcnt_inter = 0.0; + section->pcnt_motion = 0.0; + section->pcnt_second_ref = 0.0; + section->pcnt_neutral = 0.0; + section->MVr = 0.0; + section->mvr_abs = 0.0; + section->MVc = 0.0; + section->mvc_abs = 0.0; + section->MVrv = 0.0; + section->MVcv = 0.0; + section->mv_in_out_count = 0.0; + section->new_mv_count = 0.0; + section->count = 0.0; + section->duration = 1.0; +} + +static void accumulate_stats(FIRSTPASS_STATS *section, FIRSTPASS_STATS *frame) { + section->frame += frame->frame; + section->intra_error += frame->intra_error; + section->coded_error += frame->coded_error; + section->ssim_weighted_pred_err += frame->ssim_weighted_pred_err; + section->pcnt_inter += frame->pcnt_inter; + section->pcnt_motion += frame->pcnt_motion; + section->pcnt_second_ref += frame->pcnt_second_ref; + section->pcnt_neutral += frame->pcnt_neutral; + section->MVr += frame->MVr; + section->mvr_abs += frame->mvr_abs; + section->MVc += frame->MVc; + section->mvc_abs += frame->mvc_abs; + section->MVrv += frame->MVrv; + section->MVcv += frame->MVcv; + section->mv_in_out_count += frame->mv_in_out_count; + section->new_mv_count += frame->new_mv_count; + section->count += frame->count; + section->duration += frame->duration; +} + +static void subtract_stats(FIRSTPASS_STATS *section, FIRSTPASS_STATS *frame) { + section->frame -= frame->frame; + section->intra_error -= frame->intra_error; + section->coded_error -= frame->coded_error; + section->ssim_weighted_pred_err -= frame->ssim_weighted_pred_err; + section->pcnt_inter -= frame->pcnt_inter; + section->pcnt_motion -= frame->pcnt_motion; + section->pcnt_second_ref -= frame->pcnt_second_ref; + section->pcnt_neutral -= frame->pcnt_neutral; + section->MVr -= frame->MVr; + section->mvr_abs -= frame->mvr_abs; + section->MVc -= frame->MVc; + section->mvc_abs -= frame->mvc_abs; + section->MVrv -= frame->MVrv; + section->MVcv -= frame->MVcv; + section->mv_in_out_count -= frame->mv_in_out_count; + section->new_mv_count -= frame->new_mv_count; + section->count -= frame->count; + section->duration -= frame->duration; +} + +static void avg_stats(FIRSTPASS_STATS *section) { + if (section->count < 1.0) return; + + section->intra_error /= section->count; + section->coded_error /= section->count; + section->ssim_weighted_pred_err /= section->count; + section->pcnt_inter /= section->count; + section->pcnt_second_ref /= section->count; + section->pcnt_neutral /= section->count; + section->pcnt_motion /= section->count; + section->MVr /= section->count; + section->mvr_abs /= section->count; + section->MVc /= section->count; + section->mvc_abs /= section->count; + section->MVrv /= section->count; + section->MVcv /= section->count; + section->mv_in_out_count /= section->count; + section->duration /= section->count; +} + +/* Calculate a modified Error used in distributing bits between easier + * and harder frames + */ +static double calculate_modified_err(VP8_COMP *cpi, + FIRSTPASS_STATS *this_frame) { + double av_err = (cpi->twopass.total_stats.ssim_weighted_pred_err / + cpi->twopass.total_stats.count); + double this_err = this_frame->ssim_weighted_pred_err; + double modified_err; + + if (this_err > av_err) { + modified_err = av_err * pow((this_err / DOUBLE_DIVIDE_CHECK(av_err)), POW1); + } else { + modified_err = av_err * pow((this_err / DOUBLE_DIVIDE_CHECK(av_err)), POW2); + } + + return modified_err; +} + +static const double weight_table[256] = { + 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, + 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, + 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, + 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, + 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.031250, 0.062500, + 0.093750, 0.125000, 0.156250, 0.187500, 0.218750, 0.250000, 0.281250, + 0.312500, 0.343750, 0.375000, 0.406250, 0.437500, 0.468750, 0.500000, + 0.531250, 0.562500, 0.593750, 0.625000, 0.656250, 0.687500, 0.718750, + 0.750000, 0.781250, 0.812500, 0.843750, 0.875000, 0.906250, 0.937500, + 0.968750, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, + 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, + 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, + 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, + 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, + 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, + 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, + 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, + 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, + 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, + 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, + 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, + 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, + 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, + 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, + 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, + 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, + 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, + 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, + 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, + 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, + 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, + 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, + 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, + 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, + 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, + 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, + 1.000000, 1.000000, 1.000000, 1.000000 +}; + +static double simple_weight(YV12_BUFFER_CONFIG *source) { + int i, j; + + unsigned char *src = source->y_buffer; + double sum_weights = 0.0; + + /* Loop throught the Y plane raw examining levels and creating a weight + * for the image + */ + i = source->y_height; + do { + j = source->y_width; + do { + sum_weights += weight_table[*src]; + src++; + } while (--j); + src -= source->y_width; + src += source->y_stride; + } while (--i); + + sum_weights /= (source->y_height * source->y_width); + + return sum_weights; +} + +/* This function returns the current per frame maximum bitrate target */ +static int frame_max_bits(VP8_COMP *cpi) { + /* Max allocation for a single frame based on the max section guidelines + * passed in and how many bits are left + */ + int max_bits; + + /* For CBR we need to also consider buffer fullness. + * If we are running below the optimal level then we need to gradually + * tighten up on max_bits. + */ + if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) { + double buffer_fullness_ratio = + (double)cpi->buffer_level / + DOUBLE_DIVIDE_CHECK((double)cpi->oxcf.optimal_buffer_level); + + /* For CBR base this on the target average bits per frame plus the + * maximum sedction rate passed in by the user + */ + max_bits = (int)(cpi->av_per_frame_bandwidth * + ((double)cpi->oxcf.two_pass_vbrmax_section / 100.0)); + + /* If our buffer is below the optimum level */ + if (buffer_fullness_ratio < 1.0) { + /* The lower of max_bits / 4 or cpi->av_per_frame_bandwidth / 4. */ + int min_max_bits = ((cpi->av_per_frame_bandwidth >> 2) < (max_bits >> 2)) + ? cpi->av_per_frame_bandwidth >> 2 + : max_bits >> 2; + + max_bits = (int)(max_bits * buffer_fullness_ratio); + + /* Lowest value we will set ... which should allow the buffer to + * refill. + */ + if (max_bits < min_max_bits) max_bits = min_max_bits; + } + } + /* VBR */ + else { + /* For VBR base this on the bits and frames left plus the + * two_pass_vbrmax_section rate passed in by the user + */ + max_bits = (int)(((double)cpi->twopass.bits_left / + (cpi->twopass.total_stats.count - + (double)cpi->common.current_video_frame)) * + ((double)cpi->oxcf.two_pass_vbrmax_section / 100.0)); + } + + /* Trap case where we are out of bits */ + if (max_bits < 0) max_bits = 0; + + return max_bits; +} + +void vp8_init_first_pass(VP8_COMP *cpi) { + zero_stats(&cpi->twopass.total_stats); +} + +void vp8_end_first_pass(VP8_COMP *cpi) { + output_stats(cpi, cpi->output_pkt_list, &cpi->twopass.total_stats); +} + +static void zz_motion_search(VP8_COMP *cpi, MACROBLOCK *x, + YV12_BUFFER_CONFIG *raw_buffer, + int *raw_motion_err, + YV12_BUFFER_CONFIG *recon_buffer, + int *best_motion_err, int recon_yoffset) { + MACROBLOCKD *const xd = &x->e_mbd; + BLOCK *b = &x->block[0]; + BLOCKD *d = &x->e_mbd.block[0]; + + unsigned char *src_ptr = (*(b->base_src) + b->src); + int src_stride = b->src_stride; + unsigned char *raw_ptr; + int raw_stride = raw_buffer->y_stride; + unsigned char *ref_ptr; + int ref_stride = x->e_mbd.pre.y_stride; + (void)cpi; + + /* Set up pointers for this macro block raw buffer */ + raw_ptr = (unsigned char *)(raw_buffer->y_buffer + recon_yoffset + d->offset); + vpx_mse16x16(src_ptr, src_stride, raw_ptr, raw_stride, + (unsigned int *)(raw_motion_err)); + + /* Set up pointers for this macro block recon buffer */ + xd->pre.y_buffer = recon_buffer->y_buffer + recon_yoffset; + ref_ptr = (unsigned char *)(xd->pre.y_buffer + d->offset); + vpx_mse16x16(src_ptr, src_stride, ref_ptr, ref_stride, + (unsigned int *)(best_motion_err)); +} + +static void first_pass_motion_search(VP8_COMP *cpi, MACROBLOCK *x, + int_mv *ref_mv, MV *best_mv, + YV12_BUFFER_CONFIG *recon_buffer, + int *best_motion_err, int recon_yoffset) { + MACROBLOCKD *const xd = &x->e_mbd; + BLOCK *b = &x->block[0]; + BLOCKD *d = &x->e_mbd.block[0]; + int num00; + + int_mv tmp_mv; + int_mv ref_mv_full; + + int tmp_err; + int step_param = 3; /* Dont search over full range for first pass */ + int further_steps = (MAX_MVSEARCH_STEPS - 1) - step_param; + int n; + vp8_variance_fn_ptr_t v_fn_ptr = cpi->fn_ptr[BLOCK_16X16]; + int new_mv_mode_penalty = 256; + + /* override the default variance function to use MSE */ + v_fn_ptr.vf = vpx_mse16x16; + + /* Set up pointers for this macro block recon buffer */ + xd->pre.y_buffer = recon_buffer->y_buffer + recon_yoffset; + + /* Initial step/diamond search centred on best mv */ + tmp_mv.as_int = 0; + ref_mv_full.as_mv.col = ref_mv->as_mv.col >> 3; + ref_mv_full.as_mv.row = ref_mv->as_mv.row >> 3; + tmp_err = cpi->diamond_search_sad(x, b, d, &ref_mv_full, &tmp_mv, step_param, + x->sadperbit16, &num00, &v_fn_ptr, + x->mvcost, ref_mv); + if (tmp_err < INT_MAX - new_mv_mode_penalty) tmp_err += new_mv_mode_penalty; + + if (tmp_err < *best_motion_err) { + *best_motion_err = tmp_err; + best_mv->row = tmp_mv.as_mv.row; + best_mv->col = tmp_mv.as_mv.col; + } + + /* Further step/diamond searches as necessary */ + n = num00; + num00 = 0; + + while (n < further_steps) { + n++; + + if (num00) { + num00--; + } else { + tmp_err = cpi->diamond_search_sad(x, b, d, &ref_mv_full, &tmp_mv, + step_param + n, x->sadperbit16, &num00, + &v_fn_ptr, x->mvcost, ref_mv); + if (tmp_err < INT_MAX - new_mv_mode_penalty) { + tmp_err += new_mv_mode_penalty; + } + + if (tmp_err < *best_motion_err) { + *best_motion_err = tmp_err; + best_mv->row = tmp_mv.as_mv.row; + best_mv->col = tmp_mv.as_mv.col; + } + } + } +} + +void vp8_first_pass(VP8_COMP *cpi) { + int mb_row, mb_col; + MACROBLOCK *const x = &cpi->mb; + VP8_COMMON *const cm = &cpi->common; + MACROBLOCKD *const xd = &x->e_mbd; + + int recon_yoffset, recon_uvoffset; + YV12_BUFFER_CONFIG *lst_yv12 = &cm->yv12_fb[cm->lst_fb_idx]; + YV12_BUFFER_CONFIG *new_yv12 = &cm->yv12_fb[cm->new_fb_idx]; + YV12_BUFFER_CONFIG *gld_yv12 = &cm->yv12_fb[cm->gld_fb_idx]; + int recon_y_stride = lst_yv12->y_stride; + int recon_uv_stride = lst_yv12->uv_stride; + int64_t intra_error = 0; + int64_t coded_error = 0; + + int sum_mvr = 0, sum_mvc = 0; + int sum_mvr_abs = 0, sum_mvc_abs = 0; + int sum_mvrs = 0, sum_mvcs = 0; + int mvcount = 0; + int intercount = 0; + int second_ref_count = 0; + int intrapenalty = 256; + int neutral_count = 0; + int new_mv_count = 0; + int sum_in_vectors = 0; + uint32_t lastmv_as_int = 0; + + int_mv zero_ref_mv; + + zero_ref_mv.as_int = 0; + + vpx_clear_system_state(); + + x->src = *cpi->Source; + xd->pre = *lst_yv12; + xd->dst = *new_yv12; + + x->partition_info = x->pi; + + xd->mode_info_context = cm->mi; + + if (!cm->use_bilinear_mc_filter) { + xd->subpixel_predict = vp8_sixtap_predict4x4; + xd->subpixel_predict8x4 = vp8_sixtap_predict8x4; + xd->subpixel_predict8x8 = vp8_sixtap_predict8x8; + xd->subpixel_predict16x16 = vp8_sixtap_predict16x16; + } else { + xd->subpixel_predict = vp8_bilinear_predict4x4; + xd->subpixel_predict8x4 = vp8_bilinear_predict8x4; + xd->subpixel_predict8x8 = vp8_bilinear_predict8x8; + xd->subpixel_predict16x16 = vp8_bilinear_predict16x16; + } + + vp8_build_block_offsets(x); + + /* set up frame new frame for intra coded blocks */ + vp8_setup_intra_recon(new_yv12); + vp8cx_frame_init_quantizer(cpi); + + /* Initialise the MV cost table to the defaults */ + { + int flag[2] = { 1, 1 }; + vp8_initialize_rd_consts(cpi, x, + vp8_dc_quant(cm->base_qindex, cm->y1dc_delta_q)); + memcpy(cm->fc.mvc, vp8_default_mv_context, sizeof(vp8_default_mv_context)); + vp8_build_component_cost_table(cpi->mb.mvcost, + (const MV_CONTEXT *)cm->fc.mvc, flag); + } + + /* for each macroblock row in image */ + for (mb_row = 0; mb_row < cm->mb_rows; ++mb_row) { + int_mv best_ref_mv; + + best_ref_mv.as_int = 0; + + /* reset above block coeffs */ + xd->up_available = (mb_row != 0); + recon_yoffset = (mb_row * recon_y_stride * 16); + recon_uvoffset = (mb_row * recon_uv_stride * 8); + + /* Set up limit values for motion vectors to prevent them extending + * outside the UMV borders + */ + x->mv_row_min = -((mb_row * 16) + (VP8BORDERINPIXELS - 16)); + x->mv_row_max = + ((cm->mb_rows - 1 - mb_row) * 16) + (VP8BORDERINPIXELS - 16); + + /* for each macroblock col in image */ + for (mb_col = 0; mb_col < cm->mb_cols; ++mb_col) { + int this_error; + int gf_motion_error = INT_MAX; + int use_dc_pred = (mb_col || mb_row) && (!mb_col || !mb_row); + + xd->dst.y_buffer = new_yv12->y_buffer + recon_yoffset; + xd->dst.u_buffer = new_yv12->u_buffer + recon_uvoffset; + xd->dst.v_buffer = new_yv12->v_buffer + recon_uvoffset; + xd->left_available = (mb_col != 0); + + /* Copy current mb to a buffer */ + vp8_copy_mem16x16(x->src.y_buffer, x->src.y_stride, x->thismb, 16); + + /* do intra 16x16 prediction */ + this_error = vp8_encode_intra(cpi, x, use_dc_pred); + + /* "intrapenalty" below deals with situations where the intra + * and inter error scores are very low (eg a plain black frame) + * We do not have special cases in first pass for 0,0 and + * nearest etc so all inter modes carry an overhead cost + * estimate fot the mv. When the error score is very low this + * causes us to pick all or lots of INTRA modes and throw lots + * of key frames. This penalty adds a cost matching that of a + * 0,0 mv to the intra case. + */ + this_error += intrapenalty; + + /* Cumulative intra error total */ + intra_error += (int64_t)this_error; + + /* Set up limit values for motion vectors to prevent them + * extending outside the UMV borders + */ + x->mv_col_min = -((mb_col * 16) + (VP8BORDERINPIXELS - 16)); + x->mv_col_max = + ((cm->mb_cols - 1 - mb_col) * 16) + (VP8BORDERINPIXELS - 16); + + /* Other than for the first frame do a motion search */ + if (cm->current_video_frame > 0) { + BLOCKD *d = &x->e_mbd.block[0]; + MV tmp_mv = { 0, 0 }; + int tmp_err; + int motion_error = INT_MAX; + int raw_motion_error = INT_MAX; + + /* Simple 0,0 motion with no mv overhead */ + zz_motion_search(cpi, x, cpi->last_frame_unscaled_source, + &raw_motion_error, lst_yv12, &motion_error, + recon_yoffset); + d->bmi.mv.as_mv.row = 0; + d->bmi.mv.as_mv.col = 0; + + if (raw_motion_error < cpi->oxcf.encode_breakout) { + goto skip_motion_search; + } + + /* Test last reference frame using the previous best mv as the + * starting point (best reference) for the search + */ + first_pass_motion_search(cpi, x, &best_ref_mv, &d->bmi.mv.as_mv, + lst_yv12, &motion_error, recon_yoffset); + + /* If the current best reference mv is not centred on 0,0 + * then do a 0,0 based search as well + */ + if (best_ref_mv.as_int) { + tmp_err = INT_MAX; + first_pass_motion_search(cpi, x, &zero_ref_mv, &tmp_mv, lst_yv12, + &tmp_err, recon_yoffset); + + if (tmp_err < motion_error) { + motion_error = tmp_err; + d->bmi.mv.as_mv.row = tmp_mv.row; + d->bmi.mv.as_mv.col = tmp_mv.col; + } + } + + /* Experimental search in a second reference frame ((0,0) + * based only) + */ + if (cm->current_video_frame > 1) { + first_pass_motion_search(cpi, x, &zero_ref_mv, &tmp_mv, gld_yv12, + &gf_motion_error, recon_yoffset); + + if ((gf_motion_error < motion_error) && + (gf_motion_error < this_error)) { + second_ref_count++; + } + + /* Reset to last frame as reference buffer */ + xd->pre.y_buffer = lst_yv12->y_buffer + recon_yoffset; + xd->pre.u_buffer = lst_yv12->u_buffer + recon_uvoffset; + xd->pre.v_buffer = lst_yv12->v_buffer + recon_uvoffset; + } + + skip_motion_search: + /* Intra assumed best */ + best_ref_mv.as_int = 0; + + if (motion_error <= this_error) { + /* Keep a count of cases where the inter and intra were + * very close and very low. This helps with scene cut + * detection for example in cropped clips with black bars + * at the sides or top and bottom. + */ + if ((((this_error - intrapenalty) * 9) <= (motion_error * 10)) && + (this_error < (2 * intrapenalty))) { + neutral_count++; + } + + d->bmi.mv.as_mv.row *= 8; + d->bmi.mv.as_mv.col *= 8; + this_error = motion_error; + vp8_set_mbmode_and_mvs(x, NEWMV, &d->bmi.mv); + vp8_encode_inter16x16y(x); + sum_mvr += d->bmi.mv.as_mv.row; + sum_mvr_abs += abs(d->bmi.mv.as_mv.row); + sum_mvc += d->bmi.mv.as_mv.col; + sum_mvc_abs += abs(d->bmi.mv.as_mv.col); + sum_mvrs += d->bmi.mv.as_mv.row * d->bmi.mv.as_mv.row; + sum_mvcs += d->bmi.mv.as_mv.col * d->bmi.mv.as_mv.col; + intercount++; + + best_ref_mv.as_int = d->bmi.mv.as_int; + + /* Was the vector non-zero */ + if (d->bmi.mv.as_int) { + mvcount++; + + /* Was it different from the last non zero vector */ + if (d->bmi.mv.as_int != lastmv_as_int) new_mv_count++; + lastmv_as_int = d->bmi.mv.as_int; + + /* Does the Row vector point inwards or outwards */ + if (mb_row < cm->mb_rows / 2) { + if (d->bmi.mv.as_mv.row > 0) { + sum_in_vectors--; + } else if (d->bmi.mv.as_mv.row < 0) { + sum_in_vectors++; + } + } else if (mb_row > cm->mb_rows / 2) { + if (d->bmi.mv.as_mv.row > 0) { + sum_in_vectors++; + } else if (d->bmi.mv.as_mv.row < 0) { + sum_in_vectors--; + } + } + + /* Does the Row vector point inwards or outwards */ + if (mb_col < cm->mb_cols / 2) { + if (d->bmi.mv.as_mv.col > 0) { + sum_in_vectors--; + } else if (d->bmi.mv.as_mv.col < 0) { + sum_in_vectors++; + } + } else if (mb_col > cm->mb_cols / 2) { + if (d->bmi.mv.as_mv.col > 0) { + sum_in_vectors++; + } else if (d->bmi.mv.as_mv.col < 0) { + sum_in_vectors--; + } + } + } + } + } + + coded_error += (int64_t)this_error; + + /* adjust to the next column of macroblocks */ + x->src.y_buffer += 16; + x->src.u_buffer += 8; + x->src.v_buffer += 8; + + recon_yoffset += 16; + recon_uvoffset += 8; + } + + /* adjust to the next row of mbs */ + x->src.y_buffer += 16 * x->src.y_stride - 16 * cm->mb_cols; + x->src.u_buffer += 8 * x->src.uv_stride - 8 * cm->mb_cols; + x->src.v_buffer += 8 * x->src.uv_stride - 8 * cm->mb_cols; + + /* extend the recon for intra prediction */ + vp8_extend_mb_row(new_yv12, xd->dst.y_buffer + 16, xd->dst.u_buffer + 8, + xd->dst.v_buffer + 8); + vpx_clear_system_state(); + } + + vpx_clear_system_state(); + { + double weight = 0.0; + + FIRSTPASS_STATS fps; + + fps.frame = cm->current_video_frame; + fps.intra_error = (double)(intra_error >> 8); + fps.coded_error = (double)(coded_error >> 8); + weight = simple_weight(cpi->Source); + + if (weight < 0.1) weight = 0.1; + + fps.ssim_weighted_pred_err = fps.coded_error * weight; + + fps.pcnt_inter = 0.0; + fps.pcnt_motion = 0.0; + fps.MVr = 0.0; + fps.mvr_abs = 0.0; + fps.MVc = 0.0; + fps.mvc_abs = 0.0; + fps.MVrv = 0.0; + fps.MVcv = 0.0; + fps.mv_in_out_count = 0.0; + fps.new_mv_count = 0.0; + fps.count = 1.0; + + fps.pcnt_inter = 1.0 * (double)intercount / cm->MBs; + fps.pcnt_second_ref = 1.0 * (double)second_ref_count / cm->MBs; + fps.pcnt_neutral = 1.0 * (double)neutral_count / cm->MBs; + + if (mvcount > 0) { + fps.MVr = (double)sum_mvr / (double)mvcount; + fps.mvr_abs = (double)sum_mvr_abs / (double)mvcount; + fps.MVc = (double)sum_mvc / (double)mvcount; + fps.mvc_abs = (double)sum_mvc_abs / (double)mvcount; + fps.MVrv = ((double)sum_mvrs - (fps.MVr * fps.MVr / (double)mvcount)) / + (double)mvcount; + fps.MVcv = ((double)sum_mvcs - (fps.MVc * fps.MVc / (double)mvcount)) / + (double)mvcount; + fps.mv_in_out_count = (double)sum_in_vectors / (double)(mvcount * 2); + fps.new_mv_count = new_mv_count; + + fps.pcnt_motion = 1.0 * (double)mvcount / cpi->common.MBs; + } + + /* TODO: handle the case when duration is set to 0, or something less + * than the full time between subsequent cpi->source_time_stamps + */ + fps.duration = (double)(cpi->source->ts_end - cpi->source->ts_start); + + /* don't want to do output stats with a stack variable! */ + memcpy(&cpi->twopass.this_frame_stats, &fps, sizeof(FIRSTPASS_STATS)); + output_stats(cpi, cpi->output_pkt_list, &cpi->twopass.this_frame_stats); + accumulate_stats(&cpi->twopass.total_stats, &fps); + } + + /* Copy the previous Last Frame into the GF buffer if specific + * conditions for doing so are met + */ + if ((cm->current_video_frame > 0) && + (cpi->twopass.this_frame_stats.pcnt_inter > 0.20) && + ((cpi->twopass.this_frame_stats.intra_error / + DOUBLE_DIVIDE_CHECK(cpi->twopass.this_frame_stats.coded_error)) > + 2.0)) { + vp8_yv12_copy_frame(lst_yv12, gld_yv12); + } + + /* swap frame pointers so last frame refers to the frame we just + * compressed + */ + vp8_swap_yv12_buffer(lst_yv12, new_yv12); + vp8_yv12_extend_frame_borders(lst_yv12); + + /* Special case for the first frame. Copy into the GF buffer as a + * second reference. + */ + if (cm->current_video_frame == 0) { + vp8_yv12_copy_frame(lst_yv12, gld_yv12); + } + + /* use this to see what the first pass reconstruction looks like */ + if (0) { + char filename[512]; + FILE *recon_file; + sprintf(filename, "enc%04d.yuv", (int)cm->current_video_frame); + + if (cm->current_video_frame == 0) { + recon_file = fopen(filename, "wb"); + } else { + recon_file = fopen(filename, "ab"); + } + + (void)fwrite(lst_yv12->buffer_alloc, lst_yv12->frame_size, 1, recon_file); + fclose(recon_file); + } + + cm->current_video_frame++; +} +extern const int vp8_bits_per_mb[2][QINDEX_RANGE]; + +/* Estimate a cost per mb attributable to overheads such as the coding of + * modes and motion vectors. + * Currently simplistic in its assumptions for testing. + */ + +static double bitcost(double prob) { + if (prob > 0.000122) { + return -log(prob) / log(2.0); + } else { + return 13.0; + } +} +static int64_t estimate_modemvcost(VP8_COMP *cpi, FIRSTPASS_STATS *fpstats) { + int mv_cost; + int64_t mode_cost; + + double av_pct_inter = fpstats->pcnt_inter / fpstats->count; + double av_pct_motion = fpstats->pcnt_motion / fpstats->count; + double av_intra = (1.0 - av_pct_inter); + + double zz_cost; + double motion_cost; + double intra_cost; + + zz_cost = bitcost(av_pct_inter - av_pct_motion); + motion_cost = bitcost(av_pct_motion); + intra_cost = bitcost(av_intra); + + /* Estimate of extra bits per mv overhead for mbs + * << 9 is the normalization to the (bits * 512) used in vp8_bits_per_mb + */ + mv_cost = ((int)(fpstats->new_mv_count / fpstats->count) * 8) << 9; + + /* Crude estimate of overhead cost from modes + * << 9 is the normalization to (bits * 512) used in vp8_bits_per_mb + */ + mode_cost = + (int64_t)((((av_pct_inter - av_pct_motion) * zz_cost) + + (av_pct_motion * motion_cost) + (av_intra * intra_cost)) * + cpi->common.MBs) * + 512; + + return mv_cost + mode_cost; +} + +static double calc_correction_factor(double err_per_mb, double err_devisor, + double pt_low, double pt_high, int Q) { + double power_term; + double error_term = err_per_mb / err_devisor; + double correction_factor; + + /* Adjustment based on Q to power term. */ + power_term = pt_low + (Q * 0.01); + power_term = (power_term > pt_high) ? pt_high : power_term; + + /* Adjustments to error term */ + /* TBD */ + + /* Calculate correction factor */ + correction_factor = pow(error_term, power_term); + + /* Clip range */ + correction_factor = (correction_factor < 0.05) + ? 0.05 + : (correction_factor > 5.0) ? 5.0 : correction_factor; + + return correction_factor; +} + +static int estimate_max_q(VP8_COMP *cpi, FIRSTPASS_STATS *fpstats, + int section_target_bandwitdh, int overhead_bits) { + int Q; + int num_mbs = cpi->common.MBs; + int target_norm_bits_per_mb; + + double section_err = (fpstats->coded_error / fpstats->count); + double err_per_mb = section_err / num_mbs; + double err_correction_factor; + double speed_correction = 1.0; + int overhead_bits_per_mb; + + if (section_target_bandwitdh <= 0) { + return cpi->twopass.maxq_max_limit; /* Highest value allowed */ + } + + target_norm_bits_per_mb = (section_target_bandwitdh < (1 << 20)) + ? (512 * section_target_bandwitdh) / num_mbs + : 512 * (section_target_bandwitdh / num_mbs); + + /* Calculate a corrective factor based on a rolling ratio of bits spent + * vs target bits + */ + if ((cpi->rolling_target_bits > 0) && + (cpi->active_worst_quality < cpi->worst_quality)) { + double rolling_ratio; + + rolling_ratio = + (double)cpi->rolling_actual_bits / (double)cpi->rolling_target_bits; + + if (rolling_ratio < 0.95) { + cpi->twopass.est_max_qcorrection_factor -= 0.005; + } else if (rolling_ratio > 1.05) { + cpi->twopass.est_max_qcorrection_factor += 0.005; + } + + cpi->twopass.est_max_qcorrection_factor = + (cpi->twopass.est_max_qcorrection_factor < 0.1) + ? 0.1 + : (cpi->twopass.est_max_qcorrection_factor > 10.0) + ? 10.0 + : cpi->twopass.est_max_qcorrection_factor; + } + + /* Corrections for higher compression speed settings + * (reduced compression expected) + */ + if ((cpi->compressor_speed == 3) || (cpi->compressor_speed == 1)) { + if (cpi->oxcf.cpu_used <= 5) { + speed_correction = 1.04 + (cpi->oxcf.cpu_used * 0.04); + } else { + speed_correction = 1.25; + } + } + + /* Estimate of overhead bits per mb */ + /* Correction to overhead bits for min allowed Q. */ + overhead_bits_per_mb = overhead_bits / num_mbs; + overhead_bits_per_mb = (int)(overhead_bits_per_mb * + pow(0.98, (double)cpi->twopass.maxq_min_limit)); + + /* Try and pick a max Q that will be high enough to encode the + * content at the given rate. + */ + for (Q = cpi->twopass.maxq_min_limit; Q < cpi->twopass.maxq_max_limit; ++Q) { + int bits_per_mb_at_this_q; + + /* Error per MB based correction factor */ + err_correction_factor = + calc_correction_factor(err_per_mb, 150.0, 0.40, 0.90, Q); + + bits_per_mb_at_this_q = + vp8_bits_per_mb[INTER_FRAME][Q] + overhead_bits_per_mb; + + bits_per_mb_at_this_q = (int)(.5 + + err_correction_factor * speed_correction * + cpi->twopass.est_max_qcorrection_factor * + cpi->twopass.section_max_qfactor * + (double)bits_per_mb_at_this_q); + + /* Mode and motion overhead */ + /* As Q rises in real encode loop rd code will force overhead down + * We make a crude adjustment for this here as *.98 per Q step. + */ + overhead_bits_per_mb = (int)((double)overhead_bits_per_mb * 0.98); + + if (bits_per_mb_at_this_q <= target_norm_bits_per_mb) break; + } + + /* Restriction on active max q for constrained quality mode. */ + if ((cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) && + (Q < cpi->cq_target_quality)) { + Q = cpi->cq_target_quality; + } + + /* Adjust maxq_min_limit and maxq_max_limit limits based on + * average q observed in clip for non kf/gf.arf frames + * Give average a chance to settle though. + */ + if ((cpi->ni_frames > ((int)cpi->twopass.total_stats.count >> 8)) && + (cpi->ni_frames > 150)) { + cpi->twopass.maxq_max_limit = ((cpi->ni_av_qi + 32) < cpi->worst_quality) + ? (cpi->ni_av_qi + 32) + : cpi->worst_quality; + cpi->twopass.maxq_min_limit = ((cpi->ni_av_qi - 32) > cpi->best_quality) + ? (cpi->ni_av_qi - 32) + : cpi->best_quality; + } + + return Q; +} + +/* For cq mode estimate a cq level that matches the observed + * complexity and data rate. + */ +static int estimate_cq(VP8_COMP *cpi, FIRSTPASS_STATS *fpstats, + int section_target_bandwitdh, int overhead_bits) { + int Q; + int num_mbs = cpi->common.MBs; + int target_norm_bits_per_mb; + + double section_err = (fpstats->coded_error / fpstats->count); + double err_per_mb = section_err / num_mbs; + double err_correction_factor; + double speed_correction = 1.0; + double clip_iiratio; + double clip_iifactor; + int overhead_bits_per_mb; + + if (0) { + FILE *f = fopen("epmp.stt", "a"); + fprintf(f, "%10.2f\n", err_per_mb); + fclose(f); + } + + target_norm_bits_per_mb = (section_target_bandwitdh < (1 << 20)) + ? (512 * section_target_bandwitdh) / num_mbs + : 512 * (section_target_bandwitdh / num_mbs); + + /* Estimate of overhead bits per mb */ + overhead_bits_per_mb = overhead_bits / num_mbs; + + /* Corrections for higher compression speed settings + * (reduced compression expected) + */ + if ((cpi->compressor_speed == 3) || (cpi->compressor_speed == 1)) { + if (cpi->oxcf.cpu_used <= 5) { + speed_correction = 1.04 + (cpi->oxcf.cpu_used * 0.04); + } else { + speed_correction = 1.25; + } + } + + /* II ratio correction factor for clip as a whole */ + clip_iiratio = cpi->twopass.total_stats.intra_error / + DOUBLE_DIVIDE_CHECK(cpi->twopass.total_stats.coded_error); + clip_iifactor = 1.0 - ((clip_iiratio - 10.0) * 0.025); + if (clip_iifactor < 0.80) clip_iifactor = 0.80; + + /* Try and pick a Q that can encode the content at the given rate. */ + for (Q = 0; Q < MAXQ; ++Q) { + int bits_per_mb_at_this_q; + + /* Error per MB based correction factor */ + err_correction_factor = + calc_correction_factor(err_per_mb, 100.0, 0.40, 0.90, Q); + + bits_per_mb_at_this_q = + vp8_bits_per_mb[INTER_FRAME][Q] + overhead_bits_per_mb; + + bits_per_mb_at_this_q = + (int)(.5 + + err_correction_factor * speed_correction * clip_iifactor * + (double)bits_per_mb_at_this_q); + + /* Mode and motion overhead */ + /* As Q rises in real encode loop rd code will force overhead down + * We make a crude adjustment for this here as *.98 per Q step. + */ + overhead_bits_per_mb = (int)((double)overhead_bits_per_mb * 0.98); + + if (bits_per_mb_at_this_q <= target_norm_bits_per_mb) break; + } + + /* Clip value to range "best allowed to (worst allowed - 1)" */ + Q = cq_level[Q]; + if (Q >= cpi->worst_quality) Q = cpi->worst_quality - 1; + if (Q < cpi->best_quality) Q = cpi->best_quality; + + return Q; +} + +static int estimate_q(VP8_COMP *cpi, double section_err, + int section_target_bandwitdh) { + int Q; + int num_mbs = cpi->common.MBs; + int target_norm_bits_per_mb; + + double err_per_mb = section_err / num_mbs; + double err_correction_factor; + double speed_correction = 1.0; + + target_norm_bits_per_mb = (section_target_bandwitdh < (1 << 20)) + ? (512 * section_target_bandwitdh) / num_mbs + : 512 * (section_target_bandwitdh / num_mbs); + + /* Corrections for higher compression speed settings + * (reduced compression expected) + */ + if ((cpi->compressor_speed == 3) || (cpi->compressor_speed == 1)) { + if (cpi->oxcf.cpu_used <= 5) { + speed_correction = 1.04 + (cpi->oxcf.cpu_used * 0.04); + } else { + speed_correction = 1.25; + } + } + + /* Try and pick a Q that can encode the content at the given rate. */ + for (Q = 0; Q < MAXQ; ++Q) { + int bits_per_mb_at_this_q; + + /* Error per MB based correction factor */ + err_correction_factor = + calc_correction_factor(err_per_mb, 150.0, 0.40, 0.90, Q); + + bits_per_mb_at_this_q = + (int)(.5 + (err_correction_factor * speed_correction * + cpi->twopass.est_max_qcorrection_factor * + (double)vp8_bits_per_mb[INTER_FRAME][Q] / 1.0)); + + if (bits_per_mb_at_this_q <= target_norm_bits_per_mb) break; + } + + return Q; +} + +/* Estimate a worst case Q for a KF group */ +static int estimate_kf_group_q(VP8_COMP *cpi, double section_err, + int section_target_bandwitdh, + double group_iiratio) { + int Q; + int num_mbs = cpi->common.MBs; + int target_norm_bits_per_mb = (512 * section_target_bandwitdh) / num_mbs; + int bits_per_mb_at_this_q; + + double err_per_mb = section_err / num_mbs; + double err_correction_factor; + double speed_correction = 1.0; + double current_spend_ratio = 1.0; + + double pow_highq = (POW1 < 0.6) ? POW1 + 0.3 : 0.90; + double pow_lowq = (POW1 < 0.7) ? POW1 + 0.1 : 0.80; + + double iiratio_correction_factor = 1.0; + + double combined_correction_factor; + + /* Trap special case where the target is <= 0 */ + if (target_norm_bits_per_mb <= 0) return MAXQ * 2; + + /* Calculate a corrective factor based on a rolling ratio of bits spent + * vs target bits + * This is clamped to the range 0.1 to 10.0 + */ + if (cpi->long_rolling_target_bits <= 0) { + current_spend_ratio = 10.0; + } else { + current_spend_ratio = (double)cpi->long_rolling_actual_bits / + (double)cpi->long_rolling_target_bits; + current_spend_ratio = + (current_spend_ratio > 10.0) + ? 10.0 + : (current_spend_ratio < 0.1) ? 0.1 : current_spend_ratio; + } + + /* Calculate a correction factor based on the quality of prediction in + * the sequence as indicated by intra_inter error score ratio (IIRatio) + * The idea here is to favour subsampling in the hardest sections vs + * the easyest. + */ + iiratio_correction_factor = 1.0 - ((group_iiratio - 6.0) * 0.1); + + if (iiratio_correction_factor < 0.5) iiratio_correction_factor = 0.5; + + /* Corrections for higher compression speed settings + * (reduced compression expected) + */ + if ((cpi->compressor_speed == 3) || (cpi->compressor_speed == 1)) { + if (cpi->oxcf.cpu_used <= 5) { + speed_correction = 1.04 + (cpi->oxcf.cpu_used * 0.04); + } else { + speed_correction = 1.25; + } + } + + /* Combine the various factors calculated above */ + combined_correction_factor = + speed_correction * iiratio_correction_factor * current_spend_ratio; + + /* Try and pick a Q that should be high enough to encode the content at + * the given rate. + */ + for (Q = 0; Q < MAXQ; ++Q) { + /* Error per MB based correction factor */ + err_correction_factor = + calc_correction_factor(err_per_mb, 150.0, pow_lowq, pow_highq, Q); + + bits_per_mb_at_this_q = + (int)(.5 + (err_correction_factor * combined_correction_factor * + (double)vp8_bits_per_mb[INTER_FRAME][Q])); + + if (bits_per_mb_at_this_q <= target_norm_bits_per_mb) break; + } + + /* If we could not hit the target even at Max Q then estimate what Q + * would have been required + */ + while ((bits_per_mb_at_this_q > target_norm_bits_per_mb) && + (Q < (MAXQ * 2))) { + bits_per_mb_at_this_q = (int)(0.96 * bits_per_mb_at_this_q); + Q++; + } + + if (0) { + FILE *f = fopen("estkf_q.stt", "a"); + fprintf(f, "%8d %8d %8d %8.2f %8.3f %8.2f %8.3f %8.3f %8.3f %8d\n", + cpi->common.current_video_frame, bits_per_mb_at_this_q, + target_norm_bits_per_mb, err_per_mb, err_correction_factor, + current_spend_ratio, group_iiratio, iiratio_correction_factor, + (double)cpi->buffer_level / (double)cpi->oxcf.optimal_buffer_level, + Q); + fclose(f); + } + + return Q; +} + +void vp8_init_second_pass(VP8_COMP *cpi) { + FIRSTPASS_STATS this_frame; + FIRSTPASS_STATS *start_pos; + + double two_pass_min_rate = (double)(cpi->oxcf.target_bandwidth * + cpi->oxcf.two_pass_vbrmin_section / 100); + + zero_stats(&cpi->twopass.total_stats); + zero_stats(&cpi->twopass.total_left_stats); + + if (!cpi->twopass.stats_in_end) return; + + cpi->twopass.total_stats = *cpi->twopass.stats_in_end; + cpi->twopass.total_left_stats = cpi->twopass.total_stats; + + /* each frame can have a different duration, as the frame rate in the + * source isn't guaranteed to be constant. The frame rate prior to + * the first frame encoded in the second pass is a guess. However the + * sum duration is not. Its calculated based on the actual durations of + * all frames from the first pass. + */ + vp8_new_framerate(cpi, + 10000000.0 * cpi->twopass.total_stats.count / + cpi->twopass.total_stats.duration); + + cpi->output_framerate = cpi->framerate; + cpi->twopass.bits_left = (int64_t)(cpi->twopass.total_stats.duration * + cpi->oxcf.target_bandwidth / 10000000.0); + cpi->twopass.bits_left -= (int64_t)(cpi->twopass.total_stats.duration * + two_pass_min_rate / 10000000.0); + + /* Calculate a minimum intra value to be used in determining the IIratio + * scores used in the second pass. We have this minimum to make sure + * that clips that are static but "low complexity" in the intra domain + * are still boosted appropriately for KF/GF/ARF + */ + cpi->twopass.kf_intra_err_min = KF_MB_INTRA_MIN * cpi->common.MBs; + cpi->twopass.gf_intra_err_min = GF_MB_INTRA_MIN * cpi->common.MBs; + + /* Scan the first pass file and calculate an average Intra / Inter error + * score ratio for the sequence + */ + { + double sum_iiratio = 0.0; + double IIRatio; + + start_pos = cpi->twopass.stats_in; /* Note starting "file" position */ + + while (input_stats(cpi, &this_frame) != EOF) { + IIRatio = + this_frame.intra_error / DOUBLE_DIVIDE_CHECK(this_frame.coded_error); + IIRatio = (IIRatio < 1.0) ? 1.0 : (IIRatio > 20.0) ? 20.0 : IIRatio; + sum_iiratio += IIRatio; + } + + cpi->twopass.avg_iiratio = + sum_iiratio / + DOUBLE_DIVIDE_CHECK((double)cpi->twopass.total_stats.count); + + /* Reset file position */ + reset_fpf_position(cpi, start_pos); + } + + /* Scan the first pass file and calculate a modified total error based + * upon the bias/power function used to allocate bits + */ + { + start_pos = cpi->twopass.stats_in; /* Note starting "file" position */ + + cpi->twopass.modified_error_total = 0.0; + cpi->twopass.modified_error_used = 0.0; + + while (input_stats(cpi, &this_frame) != EOF) { + cpi->twopass.modified_error_total += + calculate_modified_err(cpi, &this_frame); + } + cpi->twopass.modified_error_left = cpi->twopass.modified_error_total; + + reset_fpf_position(cpi, start_pos); /* Reset file position */ + } +} + +void vp8_end_second_pass(VP8_COMP *cpi) { (void)cpi; } + +/* This function gives and estimate of how badly we believe the prediction + * quality is decaying from frame to frame. + */ +static double get_prediction_decay_rate(VP8_COMP *cpi, + FIRSTPASS_STATS *next_frame) { + double prediction_decay_rate; + double motion_decay; + double motion_pct = next_frame->pcnt_motion; + (void)cpi; + + /* Initial basis is the % mbs inter coded */ + prediction_decay_rate = next_frame->pcnt_inter; + + /* High % motion -> somewhat higher decay rate */ + motion_decay = (1.0 - (motion_pct / 20.0)); + if (motion_decay < prediction_decay_rate) { + prediction_decay_rate = motion_decay; + } + + /* Adjustment to decay rate based on speed of motion */ + { + double this_mv_rabs; + double this_mv_cabs; + double distance_factor; + + this_mv_rabs = fabs(next_frame->mvr_abs * motion_pct); + this_mv_cabs = fabs(next_frame->mvc_abs * motion_pct); + + distance_factor = + sqrt((this_mv_rabs * this_mv_rabs) + (this_mv_cabs * this_mv_cabs)) / + 250.0; + distance_factor = ((distance_factor > 1.0) ? 0.0 : (1.0 - distance_factor)); + if (distance_factor < prediction_decay_rate) { + prediction_decay_rate = distance_factor; + } + } + + return prediction_decay_rate; +} + +/* Function to test for a condition where a complex transition is followed + * by a static section. For example in slide shows where there is a fade + * between slides. This is to help with more optimal kf and gf positioning. + */ +static int detect_transition_to_still(VP8_COMP *cpi, int frame_interval, + int still_interval, + double loop_decay_rate, + double decay_accumulator) { + int trans_to_still = 0; + + /* Break clause to detect very still sections after motion + * For example a static image after a fade or other transition + * instead of a clean scene cut. + */ + if ((frame_interval > MIN_GF_INTERVAL) && (loop_decay_rate >= 0.999) && + (decay_accumulator < 0.9)) { + int j; + FIRSTPASS_STATS *position = cpi->twopass.stats_in; + FIRSTPASS_STATS tmp_next_frame; + double decay_rate; + + /* Look ahead a few frames to see if static condition persists... */ + for (j = 0; j < still_interval; ++j) { + if (EOF == input_stats(cpi, &tmp_next_frame)) break; + + decay_rate = get_prediction_decay_rate(cpi, &tmp_next_frame); + if (decay_rate < 0.999) break; + } + /* Reset file position */ + reset_fpf_position(cpi, position); + + /* Only if it does do we signal a transition to still */ + if (j == still_interval) trans_to_still = 1; + } + + return trans_to_still; +} + +/* This function detects a flash through the high relative pcnt_second_ref + * score in the frame following a flash frame. The offset passed in should + * reflect this + */ +static int detect_flash(VP8_COMP *cpi, int offset) { + FIRSTPASS_STATS next_frame; + + int flash_detected = 0; + + /* Read the frame data. */ + /* The return is 0 (no flash detected) if not a valid frame */ + if (read_frame_stats(cpi, &next_frame, offset) != EOF) { + /* What we are looking for here is a situation where there is a + * brief break in prediction (such as a flash) but subsequent frames + * are reasonably well predicted by an earlier (pre flash) frame. + * The recovery after a flash is indicated by a high pcnt_second_ref + * comapred to pcnt_inter. + */ + if ((next_frame.pcnt_second_ref > next_frame.pcnt_inter) && + (next_frame.pcnt_second_ref >= 0.5)) { + flash_detected = 1; + + /*if (1) + { + FILE *f = fopen("flash.stt", "a"); + fprintf(f, "%8.0f %6.2f %6.2f\n", + next_frame.frame, + next_frame.pcnt_inter, + next_frame.pcnt_second_ref); + fclose(f); + }*/ + } + } + + return flash_detected; +} + +/* Update the motion related elements to the GF arf boost calculation */ +static void accumulate_frame_motion_stats(VP8_COMP *cpi, + FIRSTPASS_STATS *this_frame, + double *this_frame_mv_in_out, + double *mv_in_out_accumulator, + double *abs_mv_in_out_accumulator, + double *mv_ratio_accumulator) { + double this_frame_mvr_ratio; + double this_frame_mvc_ratio; + double motion_pct; + (void)cpi; + + /* Accumulate motion stats. */ + motion_pct = this_frame->pcnt_motion; + + /* Accumulate Motion In/Out of frame stats */ + *this_frame_mv_in_out = this_frame->mv_in_out_count * motion_pct; + *mv_in_out_accumulator += this_frame->mv_in_out_count * motion_pct; + *abs_mv_in_out_accumulator += fabs(this_frame->mv_in_out_count * motion_pct); + + /* Accumulate a measure of how uniform (or conversely how random) + * the motion field is. (A ratio of absmv / mv) + */ + if (motion_pct > 0.05) { + this_frame_mvr_ratio = + fabs(this_frame->mvr_abs) / DOUBLE_DIVIDE_CHECK(fabs(this_frame->MVr)); + + this_frame_mvc_ratio = + fabs(this_frame->mvc_abs) / DOUBLE_DIVIDE_CHECK(fabs(this_frame->MVc)); + + *mv_ratio_accumulator += (this_frame_mvr_ratio < this_frame->mvr_abs) + ? (this_frame_mvr_ratio * motion_pct) + : this_frame->mvr_abs * motion_pct; + + *mv_ratio_accumulator += (this_frame_mvc_ratio < this_frame->mvc_abs) + ? (this_frame_mvc_ratio * motion_pct) + : this_frame->mvc_abs * motion_pct; + } +} + +/* Calculate a baseline boost number for the current frame. */ +static double calc_frame_boost(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame, + double this_frame_mv_in_out) { + double frame_boost; + + /* Underlying boost factor is based on inter intra error ratio */ + if (this_frame->intra_error > cpi->twopass.gf_intra_err_min) { + frame_boost = (IIFACTOR * this_frame->intra_error / + DOUBLE_DIVIDE_CHECK(this_frame->coded_error)); + } else { + frame_boost = (IIFACTOR * cpi->twopass.gf_intra_err_min / + DOUBLE_DIVIDE_CHECK(this_frame->coded_error)); + } + + /* Increase boost for frames where new data coming into frame + * (eg zoom out). Slightly reduce boost if there is a net balance + * of motion out of the frame (zoom in). + * The range for this_frame_mv_in_out is -1.0 to +1.0 + */ + if (this_frame_mv_in_out > 0.0) { + frame_boost += frame_boost * (this_frame_mv_in_out * 2.0); + /* In extreme case boost is halved */ + } else { + frame_boost += frame_boost * (this_frame_mv_in_out / 2.0); + } + + /* Clip to maximum */ + if (frame_boost > GF_RMAX) frame_boost = GF_RMAX; + + return frame_boost; +} + +#if NEW_BOOST +static int calc_arf_boost(VP8_COMP *cpi, int offset, int f_frames, int b_frames, + int *f_boost, int *b_boost) { + FIRSTPASS_STATS this_frame; + + int i; + double boost_score = 0.0; + double mv_ratio_accumulator = 0.0; + double decay_accumulator = 1.0; + double this_frame_mv_in_out = 0.0; + double mv_in_out_accumulator = 0.0; + double abs_mv_in_out_accumulator = 0.0; + double r; + int flash_detected = 0; + + /* Search forward from the proposed arf/next gf position */ + for (i = 0; i < f_frames; ++i) { + if (read_frame_stats(cpi, &this_frame, (i + offset)) == EOF) break; + + /* Update the motion related elements to the boost calculation */ + accumulate_frame_motion_stats( + cpi, &this_frame, &this_frame_mv_in_out, &mv_in_out_accumulator, + &abs_mv_in_out_accumulator, &mv_ratio_accumulator); + + /* Calculate the baseline boost number for this frame */ + r = calc_frame_boost(cpi, &this_frame, this_frame_mv_in_out); + + /* We want to discount the the flash frame itself and the recovery + * frame that follows as both will have poor scores. + */ + flash_detected = + detect_flash(cpi, (i + offset)) || detect_flash(cpi, (i + offset + 1)); + + /* Cumulative effect of prediction quality decay */ + if (!flash_detected) { + decay_accumulator = + decay_accumulator * get_prediction_decay_rate(cpi, &this_frame); + decay_accumulator = decay_accumulator < 0.1 ? 0.1 : decay_accumulator; + } + boost_score += (decay_accumulator * r); + + /* Break out conditions. */ + if ((!flash_detected) && + ((mv_ratio_accumulator > 100.0) || (abs_mv_in_out_accumulator > 3.0) || + (mv_in_out_accumulator < -2.0))) { + break; + } + } + + *f_boost = (int)(boost_score * 100.0) >> 4; + + /* Reset for backward looking loop */ + boost_score = 0.0; + mv_ratio_accumulator = 0.0; + decay_accumulator = 1.0; + this_frame_mv_in_out = 0.0; + mv_in_out_accumulator = 0.0; + abs_mv_in_out_accumulator = 0.0; + + /* Search forward from the proposed arf/next gf position */ + for (i = -1; i >= -b_frames; i--) { + if (read_frame_stats(cpi, &this_frame, (i + offset)) == EOF) break; + + /* Update the motion related elements to the boost calculation */ + accumulate_frame_motion_stats( + cpi, &this_frame, &this_frame_mv_in_out, &mv_in_out_accumulator, + &abs_mv_in_out_accumulator, &mv_ratio_accumulator); + + /* Calculate the baseline boost number for this frame */ + r = calc_frame_boost(cpi, &this_frame, this_frame_mv_in_out); + + /* We want to discount the the flash frame itself and the recovery + * frame that follows as both will have poor scores. + */ + flash_detected = + detect_flash(cpi, (i + offset)) || detect_flash(cpi, (i + offset + 1)); + + /* Cumulative effect of prediction quality decay */ + if (!flash_detected) { + decay_accumulator = + decay_accumulator * get_prediction_decay_rate(cpi, &this_frame); + decay_accumulator = decay_accumulator < 0.1 ? 0.1 : decay_accumulator; + } + + boost_score += (decay_accumulator * r); + + /* Break out conditions. */ + if ((!flash_detected) && + ((mv_ratio_accumulator > 100.0) || (abs_mv_in_out_accumulator > 3.0) || + (mv_in_out_accumulator < -2.0))) { + break; + } + } + *b_boost = (int)(boost_score * 100.0) >> 4; + + return (*f_boost + *b_boost); +} +#endif + +/* Analyse and define a gf/arf group . */ +static void define_gf_group(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame) { + FIRSTPASS_STATS next_frame; + FIRSTPASS_STATS *start_pos; + int i; + double r; + double boost_score = 0.0; + double old_boost_score = 0.0; + double gf_group_err = 0.0; + double gf_first_frame_err = 0.0; + double mod_frame_err = 0.0; + + double mv_ratio_accumulator = 0.0; + double decay_accumulator = 1.0; + + double loop_decay_rate = 1.00; /* Starting decay rate */ + + double this_frame_mv_in_out = 0.0; + double mv_in_out_accumulator = 0.0; + double abs_mv_in_out_accumulator = 0.0; + double mod_err_per_mb_accumulator = 0.0; + + int max_bits = frame_max_bits(cpi); /* Max for a single frame */ + + unsigned int allow_alt_ref = + cpi->oxcf.play_alternate && cpi->oxcf.lag_in_frames; + + int alt_boost = 0; + int f_boost = 0; + int b_boost = 0; + int flash_detected; + + cpi->twopass.gf_group_bits = 0; + cpi->twopass.gf_decay_rate = 0; + + vpx_clear_system_state(); + + start_pos = cpi->twopass.stats_in; + + memset(&next_frame, 0, sizeof(next_frame)); /* assure clean */ + + /* Load stats for the current frame. */ + mod_frame_err = calculate_modified_err(cpi, this_frame); + + /* Note the error of the frame at the start of the group (this will be + * the GF frame error if we code a normal gf + */ + gf_first_frame_err = mod_frame_err; + + /* Special treatment if the current frame is a key frame (which is also + * a gf). If it is then its error score (and hence bit allocation) need + * to be subtracted out from the calculation for the GF group + */ + if (cpi->common.frame_type == KEY_FRAME) gf_group_err -= gf_first_frame_err; + + /* Scan forward to try and work out how many frames the next gf group + * should contain and what level of boost is appropriate for the GF + * or ARF that will be coded with the group + */ + i = 0; + + while (((i < cpi->twopass.static_scene_max_gf_interval) || + ((cpi->twopass.frames_to_key - i) < MIN_GF_INTERVAL)) && + (i < cpi->twopass.frames_to_key)) { + i++; + + /* Accumulate error score of frames in this gf group */ + mod_frame_err = calculate_modified_err(cpi, this_frame); + + gf_group_err += mod_frame_err; + + mod_err_per_mb_accumulator += + mod_frame_err / DOUBLE_DIVIDE_CHECK((double)cpi->common.MBs); + + if (EOF == input_stats(cpi, &next_frame)) break; + + /* Test for the case where there is a brief flash but the prediction + * quality back to an earlier frame is then restored. + */ + flash_detected = detect_flash(cpi, 0); + + /* Update the motion related elements to the boost calculation */ + accumulate_frame_motion_stats( + cpi, &next_frame, &this_frame_mv_in_out, &mv_in_out_accumulator, + &abs_mv_in_out_accumulator, &mv_ratio_accumulator); + + /* Calculate a baseline boost number for this frame */ + r = calc_frame_boost(cpi, &next_frame, this_frame_mv_in_out); + + /* Cumulative effect of prediction quality decay */ + if (!flash_detected) { + loop_decay_rate = get_prediction_decay_rate(cpi, &next_frame); + decay_accumulator = decay_accumulator * loop_decay_rate; + decay_accumulator = decay_accumulator < 0.1 ? 0.1 : decay_accumulator; + } + boost_score += (decay_accumulator * r); + + /* Break clause to detect very still sections after motion + * For example a staic image after a fade or other transition. + */ + if (detect_transition_to_still(cpi, i, 5, loop_decay_rate, + decay_accumulator)) { + allow_alt_ref = 0; + boost_score = old_boost_score; + break; + } + + /* Break out conditions. */ + if ( + /* Break at cpi->max_gf_interval unless almost totally static */ + (i >= cpi->max_gf_interval && (decay_accumulator < 0.995)) || + ( + /* Dont break out with a very short interval */ + (i > MIN_GF_INTERVAL) && + /* Dont break out very close to a key frame */ + ((cpi->twopass.frames_to_key - i) >= MIN_GF_INTERVAL) && + ((boost_score > 20.0) || (next_frame.pcnt_inter < 0.75)) && + (!flash_detected) && ((mv_ratio_accumulator > 100.0) || + (abs_mv_in_out_accumulator > 3.0) || + (mv_in_out_accumulator < -2.0) || + ((boost_score - old_boost_score) < 2.0)))) { + boost_score = old_boost_score; + break; + } + + memcpy(this_frame, &next_frame, sizeof(*this_frame)); + + old_boost_score = boost_score; + } + + cpi->twopass.gf_decay_rate = + (i > 0) ? (int)(100.0 * (1.0 - decay_accumulator)) / i : 0; + + /* When using CBR apply additional buffer related upper limits */ + if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) { + double max_boost; + + /* For cbr apply buffer related limits */ + if (cpi->drop_frames_allowed) { + int64_t df_buffer_level = cpi->oxcf.drop_frames_water_mark * + (cpi->oxcf.optimal_buffer_level / 100); + + if (cpi->buffer_level > df_buffer_level) { + max_boost = + ((double)((cpi->buffer_level - df_buffer_level) * 2 / 3) * 16.0) / + DOUBLE_DIVIDE_CHECK((double)cpi->av_per_frame_bandwidth); + } else { + max_boost = 0.0; + } + } else if (cpi->buffer_level > 0) { + max_boost = ((double)(cpi->buffer_level * 2 / 3) * 16.0) / + DOUBLE_DIVIDE_CHECK((double)cpi->av_per_frame_bandwidth); + } else { + max_boost = 0.0; + } + + if (boost_score > max_boost) boost_score = max_boost; + } + + /* Dont allow conventional gf too near the next kf */ + if ((cpi->twopass.frames_to_key - i) < MIN_GF_INTERVAL) { + while (i < cpi->twopass.frames_to_key) { + i++; + + if (EOF == input_stats(cpi, this_frame)) break; + + if (i < cpi->twopass.frames_to_key) { + mod_frame_err = calculate_modified_err(cpi, this_frame); + gf_group_err += mod_frame_err; + } + } + } + + cpi->gfu_boost = (int)(boost_score * 100.0) >> 4; + +#if NEW_BOOST + /* Alterrnative boost calculation for alt ref */ + alt_boost = calc_arf_boost(cpi, 0, (i - 1), (i - 1), &f_boost, &b_boost); +#endif + + /* Should we use the alternate refernce frame */ + if (allow_alt_ref && (i >= MIN_GF_INTERVAL) && + /* dont use ARF very near next kf */ + (i <= (cpi->twopass.frames_to_key - MIN_GF_INTERVAL)) && +#if NEW_BOOST + ((next_frame.pcnt_inter > 0.75) || (next_frame.pcnt_second_ref > 0.5)) && + ((mv_in_out_accumulator / (double)i > -0.2) || + (mv_in_out_accumulator > -2.0)) && + (b_boost > 100) && (f_boost > 100)) +#else + (next_frame.pcnt_inter > 0.75) && + ((mv_in_out_accumulator / (double)i > -0.2) || + (mv_in_out_accumulator > -2.0)) && + (cpi->gfu_boost > 100) && (cpi->twopass.gf_decay_rate <= + (ARF_DECAY_THRESH + (cpi->gfu_boost / 200)))) +#endif + { + int Boost; + int allocation_chunks; + int Q = + (cpi->oxcf.fixed_q < 0) ? cpi->last_q[INTER_FRAME] : cpi->oxcf.fixed_q; + int tmp_q; + int arf_frame_bits = 0; + int group_bits; + +#if NEW_BOOST + cpi->gfu_boost = alt_boost; +#endif + + /* Estimate the bits to be allocated to the group as a whole */ + if ((cpi->twopass.kf_group_bits > 0) && + (cpi->twopass.kf_group_error_left > 0)) { + group_bits = + (int)((double)cpi->twopass.kf_group_bits * + (gf_group_err / (double)cpi->twopass.kf_group_error_left)); + } else { + group_bits = 0; + } + +/* Boost for arf frame */ +#if NEW_BOOST + Boost = (alt_boost * GFQ_ADJUSTMENT) / 100; +#else + Boost = (cpi->gfu_boost * 3 * GFQ_ADJUSTMENT) / (2 * 100); +#endif + Boost += (i * 50); + + /* Set max and minimum boost and hence minimum allocation */ + if (Boost > ((cpi->baseline_gf_interval + 1) * 200)) { + Boost = ((cpi->baseline_gf_interval + 1) * 200); + } else if (Boost < 125) { + Boost = 125; + } + + allocation_chunks = (i * 100) + Boost; + + /* Normalize Altboost and allocations chunck down to prevent overflow */ + while (Boost > 1000) { + Boost /= 2; + allocation_chunks /= 2; + } + + /* Calculate the number of bits to be spent on the arf based on the + * boost number + */ + arf_frame_bits = + (int)((double)Boost * (group_bits / (double)allocation_chunks)); + + /* Estimate if there are enough bits available to make worthwhile use + * of an arf. + */ + tmp_q = estimate_q(cpi, mod_frame_err, (int)arf_frame_bits); + + /* Only use an arf if it is likely we will be able to code + * it at a lower Q than the surrounding frames. + */ + if (tmp_q < cpi->worst_quality) { + int half_gf_int; + int frames_after_arf; + int frames_bwd = cpi->oxcf.arnr_max_frames - 1; + int frames_fwd = cpi->oxcf.arnr_max_frames - 1; + + cpi->source_alt_ref_pending = 1; + + /* + * For alt ref frames the error score for the end frame of the + * group (the alt ref frame) should not contribute to the group + * total and hence the number of bit allocated to the group. + * Rather it forms part of the next group (it is the GF at the + * start of the next group) + * gf_group_err -= mod_frame_err; + * + * For alt ref frames alt ref frame is technically part of the + * GF frame for the next group but we always base the error + * calculation and bit allocation on the current group of frames. + * + * Set the interval till the next gf or arf. + * For ARFs this is the number of frames to be coded before the + * future frame that is coded as an ARF. + * The future frame itself is part of the next group + */ + cpi->baseline_gf_interval = i; + + /* + * Define the arnr filter width for this group of frames: + * We only filter frames that lie within a distance of half + * the GF interval from the ARF frame. We also have to trap + * cases where the filter extends beyond the end of clip. + * Note: this_frame->frame has been updated in the loop + * so it now points at the ARF frame. + */ + half_gf_int = cpi->baseline_gf_interval >> 1; + frames_after_arf = + (int)(cpi->twopass.total_stats.count - this_frame->frame - 1); + + switch (cpi->oxcf.arnr_type) { + case 1: /* Backward filter */ + frames_fwd = 0; + if (frames_bwd > half_gf_int) frames_bwd = half_gf_int; + break; + + case 2: /* Forward filter */ + if (frames_fwd > half_gf_int) frames_fwd = half_gf_int; + if (frames_fwd > frames_after_arf) frames_fwd = frames_after_arf; + frames_bwd = 0; + break; + + case 3: /* Centered filter */ + default: + frames_fwd >>= 1; + if (frames_fwd > frames_after_arf) frames_fwd = frames_after_arf; + if (frames_fwd > half_gf_int) frames_fwd = half_gf_int; + + frames_bwd = frames_fwd; + + /* For even length filter there is one more frame backward + * than forward: e.g. len=6 ==> bbbAff, len=7 ==> bbbAfff. + */ + if (frames_bwd < half_gf_int) { + frames_bwd += (cpi->oxcf.arnr_max_frames + 1) & 0x1; + } + break; + } + + cpi->active_arnr_frames = frames_bwd + 1 + frames_fwd; + } else { + cpi->source_alt_ref_pending = 0; + cpi->baseline_gf_interval = i; + } + } else { + cpi->source_alt_ref_pending = 0; + cpi->baseline_gf_interval = i; + } + + /* + * Now decide how many bits should be allocated to the GF group as a + * proportion of those remaining in the kf group. + * The final key frame group in the clip is treated as a special case + * where cpi->twopass.kf_group_bits is tied to cpi->twopass.bits_left. + * This is also important for short clips where there may only be one + * key frame. + */ + if (cpi->twopass.frames_to_key >= + (int)(cpi->twopass.total_stats.count - cpi->common.current_video_frame)) { + cpi->twopass.kf_group_bits = + (cpi->twopass.bits_left > 0) ? cpi->twopass.bits_left : 0; + } + + /* Calculate the bits to be allocated to the group as a whole */ + if ((cpi->twopass.kf_group_bits > 0) && + (cpi->twopass.kf_group_error_left > 0)) { + cpi->twopass.gf_group_bits = + (int64_t)(cpi->twopass.kf_group_bits * + (gf_group_err / cpi->twopass.kf_group_error_left)); + } else { + cpi->twopass.gf_group_bits = 0; + } + + cpi->twopass.gf_group_bits = + (cpi->twopass.gf_group_bits < 0) + ? 0 + : (cpi->twopass.gf_group_bits > cpi->twopass.kf_group_bits) + ? cpi->twopass.kf_group_bits + : cpi->twopass.gf_group_bits; + + /* Clip cpi->twopass.gf_group_bits based on user supplied data rate + * variability limit (cpi->oxcf.two_pass_vbrmax_section) + */ + if (cpi->twopass.gf_group_bits > + (int64_t)max_bits * cpi->baseline_gf_interval) { + cpi->twopass.gf_group_bits = (int64_t)max_bits * cpi->baseline_gf_interval; + } + + /* Reset the file position */ + reset_fpf_position(cpi, start_pos); + + /* Update the record of error used so far (only done once per gf group) */ + cpi->twopass.modified_error_used += gf_group_err; + + /* Assign bits to the arf or gf. */ + for (i = 0; i <= (cpi->source_alt_ref_pending && + cpi->common.frame_type != KEY_FRAME); + i++) { + int Boost; + int allocation_chunks; + int Q = + (cpi->oxcf.fixed_q < 0) ? cpi->last_q[INTER_FRAME] : cpi->oxcf.fixed_q; + int gf_bits; + + /* For ARF frames */ + if (cpi->source_alt_ref_pending && i == 0) { +#if NEW_BOOST + Boost = (alt_boost * GFQ_ADJUSTMENT) / 100; +#else + Boost = (cpi->gfu_boost * 3 * GFQ_ADJUSTMENT) / (2 * 100); +#endif + Boost += (cpi->baseline_gf_interval * 50); + + /* Set max and minimum boost and hence minimum allocation */ + if (Boost > ((cpi->baseline_gf_interval + 1) * 200)) { + Boost = ((cpi->baseline_gf_interval + 1) * 200); + } else if (Boost < 125) { + Boost = 125; + } + + allocation_chunks = ((cpi->baseline_gf_interval + 1) * 100) + Boost; + } + /* Else for standard golden frames */ + else { + /* boost based on inter / intra ratio of subsequent frames */ + Boost = (cpi->gfu_boost * GFQ_ADJUSTMENT) / 100; + + /* Set max and minimum boost and hence minimum allocation */ + if (Boost > (cpi->baseline_gf_interval * 150)) { + Boost = (cpi->baseline_gf_interval * 150); + } else if (Boost < 125) { + Boost = 125; + } + + allocation_chunks = (cpi->baseline_gf_interval * 100) + (Boost - 100); + } + + /* Normalize Altboost and allocations chunck down to prevent overflow */ + while (Boost > 1000) { + Boost /= 2; + allocation_chunks /= 2; + } + + /* Calculate the number of bits to be spent on the gf or arf based on + * the boost number + */ + gf_bits = (int)((double)Boost * + (cpi->twopass.gf_group_bits / (double)allocation_chunks)); + + /* If the frame that is to be boosted is simpler than the average for + * the gf/arf group then use an alternative calculation + * based on the error score of the frame itself + */ + if (mod_frame_err < gf_group_err / (double)cpi->baseline_gf_interval) { + double alt_gf_grp_bits; + int alt_gf_bits; + + alt_gf_grp_bits = + (double)cpi->twopass.kf_group_bits * + (mod_frame_err * (double)cpi->baseline_gf_interval) / + DOUBLE_DIVIDE_CHECK((double)cpi->twopass.kf_group_error_left); + + alt_gf_bits = + (int)((double)Boost * (alt_gf_grp_bits / (double)allocation_chunks)); + + if (gf_bits > alt_gf_bits) { + gf_bits = alt_gf_bits; + } + } + /* Else if it is harder than other frames in the group make sure it at + * least receives an allocation in keeping with its relative error + * score, otherwise it may be worse off than an "un-boosted" frame + */ + else { + int alt_gf_bits = + (int)((double)cpi->twopass.kf_group_bits * mod_frame_err / + DOUBLE_DIVIDE_CHECK((double)cpi->twopass.kf_group_error_left)); + + if (alt_gf_bits > gf_bits) { + gf_bits = alt_gf_bits; + } + } + + /* Apply an additional limit for CBR */ + if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) { + if (cpi->twopass.gf_bits > (int)(cpi->buffer_level >> 1)) { + cpi->twopass.gf_bits = (int)(cpi->buffer_level >> 1); + } + } + + /* Dont allow a negative value for gf_bits */ + if (gf_bits < 0) gf_bits = 0; + + /* Add in minimum for a frame */ + gf_bits += cpi->min_frame_bandwidth; + + if (i == 0) { + cpi->twopass.gf_bits = gf_bits; + } + if (i == 1 || (!cpi->source_alt_ref_pending && + (cpi->common.frame_type != KEY_FRAME))) { + /* Per frame bit target for this frame */ + cpi->per_frame_bandwidth = gf_bits; + } + } + + { + /* Adjust KF group bits and error remainin */ + cpi->twopass.kf_group_error_left -= (int64_t)gf_group_err; + cpi->twopass.kf_group_bits -= cpi->twopass.gf_group_bits; + + if (cpi->twopass.kf_group_bits < 0) cpi->twopass.kf_group_bits = 0; + + /* Note the error score left in the remaining frames of the group. + * For normal GFs we want to remove the error score for the first + * frame of the group (except in Key frame case where this has + * already happened) + */ + if (!cpi->source_alt_ref_pending && cpi->common.frame_type != KEY_FRAME) { + cpi->twopass.gf_group_error_left = + (int)(gf_group_err - gf_first_frame_err); + } else { + cpi->twopass.gf_group_error_left = (int)gf_group_err; + } + + cpi->twopass.gf_group_bits -= + cpi->twopass.gf_bits - cpi->min_frame_bandwidth; + + if (cpi->twopass.gf_group_bits < 0) cpi->twopass.gf_group_bits = 0; + + /* This condition could fail if there are two kfs very close together + * despite (MIN_GF_INTERVAL) and would cause a devide by 0 in the + * calculation of cpi->twopass.alt_extra_bits. + */ + if (cpi->baseline_gf_interval >= 3) { +#if NEW_BOOST + int boost = (cpi->source_alt_ref_pending) ? b_boost : cpi->gfu_boost; +#else + int boost = cpi->gfu_boost; +#endif + if (boost >= 150) { + int pct_extra; + + pct_extra = (boost - 100) / 50; + pct_extra = (pct_extra > 20) ? 20 : pct_extra; + + cpi->twopass.alt_extra_bits = + (int)(cpi->twopass.gf_group_bits * pct_extra) / 100; + cpi->twopass.gf_group_bits -= cpi->twopass.alt_extra_bits; + cpi->twopass.alt_extra_bits /= ((cpi->baseline_gf_interval - 1) >> 1); + } else { + cpi->twopass.alt_extra_bits = 0; + } + } else { + cpi->twopass.alt_extra_bits = 0; + } + } + + /* Adjustments based on a measure of complexity of the section */ + if (cpi->common.frame_type != KEY_FRAME) { + FIRSTPASS_STATS sectionstats; + double Ratio; + + zero_stats(§ionstats); + reset_fpf_position(cpi, start_pos); + + for (i = 0; i < cpi->baseline_gf_interval; ++i) { + input_stats(cpi, &next_frame); + accumulate_stats(§ionstats, &next_frame); + } + + avg_stats(§ionstats); + + cpi->twopass.section_intra_rating = + (unsigned int)(sectionstats.intra_error / + DOUBLE_DIVIDE_CHECK(sectionstats.coded_error)); + + Ratio = sectionstats.intra_error / + DOUBLE_DIVIDE_CHECK(sectionstats.coded_error); + cpi->twopass.section_max_qfactor = 1.0 - ((Ratio - 10.0) * 0.025); + + if (cpi->twopass.section_max_qfactor < 0.80) { + cpi->twopass.section_max_qfactor = 0.80; + } + + reset_fpf_position(cpi, start_pos); + } +} + +/* Allocate bits to a normal frame that is neither a gf an arf or a key frame. + */ +static void assign_std_frame_bits(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame) { + int target_frame_size; + + double modified_err; + double err_fraction; + + int max_bits = frame_max_bits(cpi); /* Max for a single frame */ + + /* Calculate modified prediction error used in bit allocation */ + modified_err = calculate_modified_err(cpi, this_frame); + + /* What portion of the remaining GF group error is used by this frame */ + if (cpi->twopass.gf_group_error_left > 0) { + err_fraction = modified_err / cpi->twopass.gf_group_error_left; + } else { + err_fraction = 0.0; + } + + /* How many of those bits available for allocation should we give it? */ + target_frame_size = (int)((double)cpi->twopass.gf_group_bits * err_fraction); + + /* Clip to target size to 0 - max_bits (or cpi->twopass.gf_group_bits) + * at the top end. + */ + if (target_frame_size < 0) { + target_frame_size = 0; + } else { + if (target_frame_size > max_bits) target_frame_size = max_bits; + + if (target_frame_size > cpi->twopass.gf_group_bits) { + target_frame_size = (int)cpi->twopass.gf_group_bits; + } + } + + /* Adjust error and bits remaining */ + cpi->twopass.gf_group_error_left -= (int)modified_err; + cpi->twopass.gf_group_bits -= target_frame_size; + + if (cpi->twopass.gf_group_bits < 0) cpi->twopass.gf_group_bits = 0; + + /* Add in the minimum number of bits that is set aside for every frame. */ + target_frame_size += cpi->min_frame_bandwidth; + + /* Every other frame gets a few extra bits */ + if ((cpi->frames_since_golden & 0x01) && + (cpi->frames_till_gf_update_due > 0)) { + target_frame_size += cpi->twopass.alt_extra_bits; + } + + /* Per frame bit target for this frame */ + cpi->per_frame_bandwidth = target_frame_size; +} + +void vp8_second_pass(VP8_COMP *cpi) { + int tmp_q; + int frames_left = + (int)(cpi->twopass.total_stats.count - cpi->common.current_video_frame); + + FIRSTPASS_STATS this_frame; + FIRSTPASS_STATS this_frame_copy; + + double this_frame_intra_error; + double this_frame_coded_error; + + int overhead_bits; + + vp8_zero(this_frame); + + if (!cpi->twopass.stats_in) { + return; + } + + vpx_clear_system_state(); + + if (EOF == input_stats(cpi, &this_frame)) return; + + this_frame_intra_error = this_frame.intra_error; + this_frame_coded_error = this_frame.coded_error; + + /* keyframe and section processing ! */ + if (cpi->twopass.frames_to_key == 0) { + /* Define next KF group and assign bits to it */ + memcpy(&this_frame_copy, &this_frame, sizeof(this_frame)); + find_next_key_frame(cpi, &this_frame_copy); + + /* Special case: Error error_resilient_mode mode does not make much + * sense for two pass but with its current meaning this code is + * designed to stop outlandish behaviour if someone does set it when + * using two pass. It effectively disables GF groups. This is + * temporary code until we decide what should really happen in this + * case. + */ + if (cpi->oxcf.error_resilient_mode) { + cpi->twopass.gf_group_bits = cpi->twopass.kf_group_bits; + cpi->twopass.gf_group_error_left = (int)cpi->twopass.kf_group_error_left; + cpi->baseline_gf_interval = cpi->twopass.frames_to_key; + cpi->frames_till_gf_update_due = cpi->baseline_gf_interval; + cpi->source_alt_ref_pending = 0; + } + } + + /* Is this a GF / ARF (Note that a KF is always also a GF) */ + if (cpi->frames_till_gf_update_due == 0) { + /* Define next gf group and assign bits to it */ + memcpy(&this_frame_copy, &this_frame, sizeof(this_frame)); + define_gf_group(cpi, &this_frame_copy); + + /* If we are going to code an altref frame at the end of the group + * and the current frame is not a key frame.... If the previous + * group used an arf this frame has already benefited from that arf + * boost and it should not be given extra bits If the previous + * group was NOT coded using arf we may want to apply some boost to + * this GF as well + */ + if (cpi->source_alt_ref_pending && (cpi->common.frame_type != KEY_FRAME)) { + /* Assign a standard frames worth of bits from those allocated + * to the GF group + */ + int bak = cpi->per_frame_bandwidth; + memcpy(&this_frame_copy, &this_frame, sizeof(this_frame)); + assign_std_frame_bits(cpi, &this_frame_copy); + cpi->per_frame_bandwidth = bak; + } + } + + /* Otherwise this is an ordinary frame */ + else { + /* Special case: Error error_resilient_mode mode does not make much + * sense for two pass but with its current meaning but this code is + * designed to stop outlandish behaviour if someone does set it + * when using two pass. It effectively disables GF groups. This is + * temporary code till we decide what should really happen in this + * case. + */ + if (cpi->oxcf.error_resilient_mode) { + cpi->frames_till_gf_update_due = cpi->twopass.frames_to_key; + + if (cpi->common.frame_type != KEY_FRAME) { + /* Assign bits from those allocated to the GF group */ + memcpy(&this_frame_copy, &this_frame, sizeof(this_frame)); + assign_std_frame_bits(cpi, &this_frame_copy); + } + } else { + /* Assign bits from those allocated to the GF group */ + memcpy(&this_frame_copy, &this_frame, sizeof(this_frame)); + assign_std_frame_bits(cpi, &this_frame_copy); + } + } + + /* Keep a globally available copy of this and the next frame's iiratio. */ + cpi->twopass.this_iiratio = + (unsigned int)(this_frame_intra_error / + DOUBLE_DIVIDE_CHECK(this_frame_coded_error)); + { + FIRSTPASS_STATS next_frame; + if (lookup_next_frame_stats(cpi, &next_frame) != EOF) { + cpi->twopass.next_iiratio = + (unsigned int)(next_frame.intra_error / + DOUBLE_DIVIDE_CHECK(next_frame.coded_error)); + } + } + + /* Set nominal per second bandwidth for this frame */ + cpi->target_bandwidth = + (int)(cpi->per_frame_bandwidth * cpi->output_framerate); + if (cpi->target_bandwidth < 0) cpi->target_bandwidth = 0; + + /* Account for mv, mode and other overheads. */ + overhead_bits = (int)estimate_modemvcost(cpi, &cpi->twopass.total_left_stats); + + /* Special case code for first frame. */ + if (cpi->common.current_video_frame == 0) { + cpi->twopass.est_max_qcorrection_factor = 1.0; + + /* Set a cq_level in constrained quality mode. */ + if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) { + int est_cq; + + est_cq = estimate_cq(cpi, &cpi->twopass.total_left_stats, + (int)(cpi->twopass.bits_left / frames_left), + overhead_bits); + + cpi->cq_target_quality = cpi->oxcf.cq_level; + if (est_cq > cpi->cq_target_quality) cpi->cq_target_quality = est_cq; + } + + /* guess at maxq needed in 2nd pass */ + cpi->twopass.maxq_max_limit = cpi->worst_quality; + cpi->twopass.maxq_min_limit = cpi->best_quality; + + tmp_q = estimate_max_q(cpi, &cpi->twopass.total_left_stats, + (int)(cpi->twopass.bits_left / frames_left), + overhead_bits); + + /* Limit the maxq value returned subsequently. + * This increases the risk of overspend or underspend if the initial + * estimate for the clip is bad, but helps prevent excessive + * variation in Q, especially near the end of a clip + * where for example a small overspend may cause Q to crash + */ + cpi->twopass.maxq_max_limit = + ((tmp_q + 32) < cpi->worst_quality) ? (tmp_q + 32) : cpi->worst_quality; + cpi->twopass.maxq_min_limit = + ((tmp_q - 32) > cpi->best_quality) ? (tmp_q - 32) : cpi->best_quality; + + cpi->active_worst_quality = tmp_q; + cpi->ni_av_qi = tmp_q; + } + + /* The last few frames of a clip almost always have to few or too many + * bits and for the sake of over exact rate control we dont want to make + * radical adjustments to the allowed quantizer range just to use up a + * few surplus bits or get beneath the target rate. + */ + else if ((cpi->common.current_video_frame < + (((unsigned int)cpi->twopass.total_stats.count * 255) >> 8)) && + ((cpi->common.current_video_frame + cpi->baseline_gf_interval) < + (unsigned int)cpi->twopass.total_stats.count)) { + if (frames_left < 1) frames_left = 1; + + tmp_q = estimate_max_q(cpi, &cpi->twopass.total_left_stats, + (int)(cpi->twopass.bits_left / frames_left), + overhead_bits); + + /* Move active_worst_quality but in a damped way */ + if (tmp_q > cpi->active_worst_quality) { + cpi->active_worst_quality++; + } else if (tmp_q < cpi->active_worst_quality) { + cpi->active_worst_quality--; + } + + cpi->active_worst_quality = + ((cpi->active_worst_quality * 3) + tmp_q + 2) / 4; + } + + cpi->twopass.frames_to_key--; + + /* Update the total stats remaining sturcture */ + subtract_stats(&cpi->twopass.total_left_stats, &this_frame); +} + +static int test_candidate_kf(VP8_COMP *cpi, FIRSTPASS_STATS *last_frame, + FIRSTPASS_STATS *this_frame, + FIRSTPASS_STATS *next_frame) { + int is_viable_kf = 0; + + /* Does the frame satisfy the primary criteria of a key frame + * If so, then examine how well it predicts subsequent frames + */ + if ((this_frame->pcnt_second_ref < 0.10) && + (next_frame->pcnt_second_ref < 0.10) && + ((this_frame->pcnt_inter < 0.05) || + (((this_frame->pcnt_inter - this_frame->pcnt_neutral) < .25) && + ((this_frame->intra_error / + DOUBLE_DIVIDE_CHECK(this_frame->coded_error)) < 2.5) && + ((fabs(last_frame->coded_error - this_frame->coded_error) / + DOUBLE_DIVIDE_CHECK(this_frame->coded_error) > + .40) || + (fabs(last_frame->intra_error - this_frame->intra_error) / + DOUBLE_DIVIDE_CHECK(this_frame->intra_error) > + .40) || + ((next_frame->intra_error / + DOUBLE_DIVIDE_CHECK(next_frame->coded_error)) > 3.5))))) { + int i; + FIRSTPASS_STATS *start_pos; + + FIRSTPASS_STATS local_next_frame; + + double boost_score = 0.0; + double old_boost_score = 0.0; + double decay_accumulator = 1.0; + double next_iiratio; + + memcpy(&local_next_frame, next_frame, sizeof(*next_frame)); + + /* Note the starting file position so we can reset to it */ + start_pos = cpi->twopass.stats_in; + + /* Examine how well the key frame predicts subsequent frames */ + for (i = 0; i < 16; ++i) { + next_iiratio = (IIKFACTOR1 * local_next_frame.intra_error / + DOUBLE_DIVIDE_CHECK(local_next_frame.coded_error)); + + if (next_iiratio > RMAX) next_iiratio = RMAX; + + /* Cumulative effect of decay in prediction quality */ + if (local_next_frame.pcnt_inter > 0.85) { + decay_accumulator = decay_accumulator * local_next_frame.pcnt_inter; + } else { + decay_accumulator = + decay_accumulator * ((0.85 + local_next_frame.pcnt_inter) / 2.0); + } + + /* Keep a running total */ + boost_score += (decay_accumulator * next_iiratio); + + /* Test various breakout clauses */ + if ((local_next_frame.pcnt_inter < 0.05) || (next_iiratio < 1.5) || + (((local_next_frame.pcnt_inter - local_next_frame.pcnt_neutral) < + 0.20) && + (next_iiratio < 3.0)) || + ((boost_score - old_boost_score) < 0.5) || + (local_next_frame.intra_error < 200)) { + break; + } + + old_boost_score = boost_score; + + /* Get the next frame details */ + if (EOF == input_stats(cpi, &local_next_frame)) break; + } + + /* If there is tolerable prediction for at least the next 3 frames + * then break out else discard this pottential key frame and move on + */ + if (boost_score > 5.0 && (i > 3)) { + is_viable_kf = 1; + } else { + /* Reset the file position */ + reset_fpf_position(cpi, start_pos); + + is_viable_kf = 0; + } + } + + return is_viable_kf; +} +static void find_next_key_frame(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame) { + int i, j; + FIRSTPASS_STATS last_frame; + FIRSTPASS_STATS first_frame; + FIRSTPASS_STATS next_frame; + FIRSTPASS_STATS *start_position; + + double decay_accumulator = 1.0; + double boost_score = 0; + double old_boost_score = 0.0; + double loop_decay_rate; + + double kf_mod_err = 0.0; + double kf_group_err = 0.0; + double kf_group_intra_err = 0.0; + double kf_group_coded_err = 0.0; + double recent_loop_decay[8] = { 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0 }; + + memset(&next_frame, 0, sizeof(next_frame)); + + vpx_clear_system_state(); + start_position = cpi->twopass.stats_in; + + cpi->common.frame_type = KEY_FRAME; + + /* is this a forced key frame by interval */ + cpi->this_key_frame_forced = cpi->next_key_frame_forced; + + /* Clear the alt ref active flag as this can never be active on a key + * frame + */ + cpi->source_alt_ref_active = 0; + + /* Kf is always a gf so clear frames till next gf counter */ + cpi->frames_till_gf_update_due = 0; + + cpi->twopass.frames_to_key = 1; + + /* Take a copy of the initial frame details */ + memcpy(&first_frame, this_frame, sizeof(*this_frame)); + + cpi->twopass.kf_group_bits = 0; + cpi->twopass.kf_group_error_left = 0; + + kf_mod_err = calculate_modified_err(cpi, this_frame); + + /* find the next keyframe */ + i = 0; + while (cpi->twopass.stats_in < cpi->twopass.stats_in_end) { + /* Accumulate kf group error */ + kf_group_err += calculate_modified_err(cpi, this_frame); + + /* These figures keep intra and coded error counts for all frames + * including key frames in the group. The effect of the key frame + * itself can be subtracted out using the first_frame data + * collected above + */ + kf_group_intra_err += this_frame->intra_error; + kf_group_coded_err += this_frame->coded_error; + + /* Load the next frame's stats. */ + memcpy(&last_frame, this_frame, sizeof(*this_frame)); + input_stats(cpi, this_frame); + + /* Provided that we are not at the end of the file... */ + if (cpi->oxcf.auto_key && + lookup_next_frame_stats(cpi, &next_frame) != EOF) { + /* Normal scene cut check */ + if ((i >= MIN_GF_INTERVAL) && + test_candidate_kf(cpi, &last_frame, this_frame, &next_frame)) { + break; + } + + /* How fast is prediction quality decaying */ + loop_decay_rate = get_prediction_decay_rate(cpi, &next_frame); + + /* We want to know something about the recent past... rather than + * as used elsewhere where we are concened with decay in prediction + * quality since the last GF or KF. + */ + recent_loop_decay[i % 8] = loop_decay_rate; + decay_accumulator = 1.0; + for (j = 0; j < 8; ++j) { + decay_accumulator = decay_accumulator * recent_loop_decay[j]; + } + + /* Special check for transition or high motion followed by a + * static scene. + */ + if (detect_transition_to_still(cpi, i, + ((int)(cpi->key_frame_frequency) - (int)i), + loop_decay_rate, decay_accumulator)) { + break; + } + + /* Step on to the next frame */ + cpi->twopass.frames_to_key++; + + /* If we don't have a real key frame within the next two + * forcekeyframeevery intervals then break out of the loop. + */ + if (cpi->twopass.frames_to_key >= 2 * (int)cpi->key_frame_frequency) { + break; + } + } else { + cpi->twopass.frames_to_key++; + } + + i++; + } + + /* If there is a max kf interval set by the user we must obey it. + * We already breakout of the loop above at 2x max. + * This code centers the extra kf if the actual natural + * interval is between 1x and 2x + */ + if (cpi->oxcf.auto_key && + cpi->twopass.frames_to_key > (int)cpi->key_frame_frequency) { + FIRSTPASS_STATS *current_pos = cpi->twopass.stats_in; + FIRSTPASS_STATS tmp_frame; + + cpi->twopass.frames_to_key /= 2; + + /* Copy first frame details */ + memcpy(&tmp_frame, &first_frame, sizeof(first_frame)); + + /* Reset to the start of the group */ + reset_fpf_position(cpi, start_position); + + kf_group_err = 0; + kf_group_intra_err = 0; + kf_group_coded_err = 0; + + /* Rescan to get the correct error data for the forced kf group */ + for (i = 0; i < cpi->twopass.frames_to_key; ++i) { + /* Accumulate kf group errors */ + kf_group_err += calculate_modified_err(cpi, &tmp_frame); + kf_group_intra_err += tmp_frame.intra_error; + kf_group_coded_err += tmp_frame.coded_error; + + /* Load a the next frame's stats */ + input_stats(cpi, &tmp_frame); + } + + /* Reset to the start of the group */ + reset_fpf_position(cpi, current_pos); + + cpi->next_key_frame_forced = 1; + } else { + cpi->next_key_frame_forced = 0; + } + + /* Special case for the last frame of the file */ + if (cpi->twopass.stats_in >= cpi->twopass.stats_in_end) { + /* Accumulate kf group error */ + kf_group_err += calculate_modified_err(cpi, this_frame); + + /* These figures keep intra and coded error counts for all frames + * including key frames in the group. The effect of the key frame + * itself can be subtracted out using the first_frame data + * collected above + */ + kf_group_intra_err += this_frame->intra_error; + kf_group_coded_err += this_frame->coded_error; + } + + /* Calculate the number of bits that should be assigned to the kf group. */ + if ((cpi->twopass.bits_left > 0) && + (cpi->twopass.modified_error_left > 0.0)) { + /* Max for a single normal frame (not key frame) */ + int max_bits = frame_max_bits(cpi); + + /* Maximum bits for the kf group */ + int64_t max_grp_bits; + + /* Default allocation based on bits left and relative + * complexity of the section + */ + cpi->twopass.kf_group_bits = + (int64_t)(cpi->twopass.bits_left * + (kf_group_err / cpi->twopass.modified_error_left)); + + /* Clip based on maximum per frame rate defined by the user. */ + max_grp_bits = (int64_t)max_bits * (int64_t)cpi->twopass.frames_to_key; + if (cpi->twopass.kf_group_bits > max_grp_bits) { + cpi->twopass.kf_group_bits = max_grp_bits; + } + + /* Additional special case for CBR if buffer is getting full. */ + if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) { + int64_t opt_buffer_lvl = cpi->oxcf.optimal_buffer_level; + int64_t buffer_lvl = cpi->buffer_level; + + /* If the buffer is near or above the optimal and this kf group is + * not being allocated much then increase the allocation a bit. + */ + if (buffer_lvl >= opt_buffer_lvl) { + int64_t high_water_mark = + (opt_buffer_lvl + cpi->oxcf.maximum_buffer_size) >> 1; + + int64_t av_group_bits; + + /* Av bits per frame * number of frames */ + av_group_bits = (int64_t)cpi->av_per_frame_bandwidth * + (int64_t)cpi->twopass.frames_to_key; + + /* We are at or above the maximum. */ + if (cpi->buffer_level >= high_water_mark) { + int64_t min_group_bits; + + min_group_bits = + av_group_bits + (int64_t)(buffer_lvl - high_water_mark); + + if (cpi->twopass.kf_group_bits < min_group_bits) { + cpi->twopass.kf_group_bits = min_group_bits; + } + } + /* We are above optimal but below the maximum */ + else if (cpi->twopass.kf_group_bits < av_group_bits) { + int64_t bits_below_av = av_group_bits - cpi->twopass.kf_group_bits; + + cpi->twopass.kf_group_bits += (int64_t)( + (double)bits_below_av * (double)(buffer_lvl - opt_buffer_lvl) / + (double)(high_water_mark - opt_buffer_lvl)); + } + } + } + } else { + cpi->twopass.kf_group_bits = 0; + } + + /* Reset the first pass file position */ + reset_fpf_position(cpi, start_position); + + /* determine how big to make this keyframe based on how well the + * subsequent frames use inter blocks + */ + decay_accumulator = 1.0; + boost_score = 0.0; + + for (i = 0; i < cpi->twopass.frames_to_key; ++i) { + double r; + + if (EOF == input_stats(cpi, &next_frame)) break; + + if (next_frame.intra_error > cpi->twopass.kf_intra_err_min) { + r = (IIKFACTOR2 * next_frame.intra_error / + DOUBLE_DIVIDE_CHECK(next_frame.coded_error)); + } else { + r = (IIKFACTOR2 * cpi->twopass.kf_intra_err_min / + DOUBLE_DIVIDE_CHECK(next_frame.coded_error)); + } + + if (r > RMAX) r = RMAX; + + /* How fast is prediction quality decaying */ + loop_decay_rate = get_prediction_decay_rate(cpi, &next_frame); + + decay_accumulator = decay_accumulator * loop_decay_rate; + decay_accumulator = decay_accumulator < 0.1 ? 0.1 : decay_accumulator; + + boost_score += (decay_accumulator * r); + + if ((i > MIN_GF_INTERVAL) && ((boost_score - old_boost_score) < 1.0)) { + break; + } + + old_boost_score = boost_score; + } + + if (1) { + FIRSTPASS_STATS sectionstats; + double Ratio; + + zero_stats(§ionstats); + reset_fpf_position(cpi, start_position); + + for (i = 0; i < cpi->twopass.frames_to_key; ++i) { + input_stats(cpi, &next_frame); + accumulate_stats(§ionstats, &next_frame); + } + + avg_stats(§ionstats); + + cpi->twopass.section_intra_rating = + (unsigned int)(sectionstats.intra_error / + DOUBLE_DIVIDE_CHECK(sectionstats.coded_error)); + + Ratio = sectionstats.intra_error / + DOUBLE_DIVIDE_CHECK(sectionstats.coded_error); + cpi->twopass.section_max_qfactor = 1.0 - ((Ratio - 10.0) * 0.025); + + if (cpi->twopass.section_max_qfactor < 0.80) { + cpi->twopass.section_max_qfactor = 0.80; + } + } + + /* When using CBR apply additional buffer fullness related upper limits */ + if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) { + double max_boost; + + if (cpi->drop_frames_allowed) { + int df_buffer_level = (int)(cpi->oxcf.drop_frames_water_mark * + (cpi->oxcf.optimal_buffer_level / 100)); + + if (cpi->buffer_level > df_buffer_level) { + max_boost = + ((double)((cpi->buffer_level - df_buffer_level) * 2 / 3) * 16.0) / + DOUBLE_DIVIDE_CHECK((double)cpi->av_per_frame_bandwidth); + } else { + max_boost = 0.0; + } + } else if (cpi->buffer_level > 0) { + max_boost = ((double)(cpi->buffer_level * 2 / 3) * 16.0) / + DOUBLE_DIVIDE_CHECK((double)cpi->av_per_frame_bandwidth); + } else { + max_boost = 0.0; + } + + if (boost_score > max_boost) boost_score = max_boost; + } + + /* Reset the first pass file position */ + reset_fpf_position(cpi, start_position); + + /* Work out how many bits to allocate for the key frame itself */ + if (1) { + int kf_boost = (int)boost_score; + int allocation_chunks; + int Counter = cpi->twopass.frames_to_key; + int alt_kf_bits; + YV12_BUFFER_CONFIG *lst_yv12 = &cpi->common.yv12_fb[cpi->common.lst_fb_idx]; +/* Min boost based on kf interval */ +#if 0 + + while ((kf_boost < 48) && (Counter > 0)) + { + Counter -= 2; + kf_boost ++; + } + +#endif + + if (kf_boost < 48) { + kf_boost += ((Counter + 1) >> 1); + + if (kf_boost > 48) kf_boost = 48; + } + + /* bigger frame sizes need larger kf boosts, smaller frames smaller + * boosts... + */ + if ((lst_yv12->y_width * lst_yv12->y_height) > (320 * 240)) { + kf_boost += 2 * (lst_yv12->y_width * lst_yv12->y_height) / (320 * 240); + } else if ((lst_yv12->y_width * lst_yv12->y_height) < (320 * 240)) { + kf_boost -= 4 * (320 * 240) / (lst_yv12->y_width * lst_yv12->y_height); + } + + /* Min KF boost */ + kf_boost = (int)((double)kf_boost * 100.0) >> 4; /* Scale 16 to 100 */ + if (kf_boost < 250) kf_boost = 250; + + /* + * We do three calculations for kf size. + * The first is based on the error score for the whole kf group. + * The second (optionaly) on the key frames own error if this is + * smaller than the average for the group. + * The final one insures that the frame receives at least the + * allocation it would have received based on its own error score vs + * the error score remaining + * Special case if the sequence appears almost totaly static + * as measured by the decay accumulator. In this case we want to + * spend almost all of the bits on the key frame. + * cpi->twopass.frames_to_key-1 because key frame itself is taken + * care of by kf_boost. + */ + if (decay_accumulator >= 0.99) { + allocation_chunks = ((cpi->twopass.frames_to_key - 1) * 10) + kf_boost; + } else { + allocation_chunks = ((cpi->twopass.frames_to_key - 1) * 100) + kf_boost; + } + + /* Normalize Altboost and allocations chunck down to prevent overflow */ + while (kf_boost > 1000) { + kf_boost /= 2; + allocation_chunks /= 2; + } + + cpi->twopass.kf_group_bits = + (cpi->twopass.kf_group_bits < 0) ? 0 : cpi->twopass.kf_group_bits; + + /* Calculate the number of bits to be spent on the key frame */ + cpi->twopass.kf_bits = + (int)((double)kf_boost * + ((double)cpi->twopass.kf_group_bits / (double)allocation_chunks)); + + /* Apply an additional limit for CBR */ + if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) { + if (cpi->twopass.kf_bits > (int)((3 * cpi->buffer_level) >> 2)) { + cpi->twopass.kf_bits = (int)((3 * cpi->buffer_level) >> 2); + } + } + + /* If the key frame is actually easier than the average for the + * kf group (which does sometimes happen... eg a blank intro frame) + * Then use an alternate calculation based on the kf error score + * which should give a smaller key frame. + */ + if (kf_mod_err < kf_group_err / cpi->twopass.frames_to_key) { + double alt_kf_grp_bits = + ((double)cpi->twopass.bits_left * + (kf_mod_err * (double)cpi->twopass.frames_to_key) / + DOUBLE_DIVIDE_CHECK(cpi->twopass.modified_error_left)); + + alt_kf_bits = (int)((double)kf_boost * + (alt_kf_grp_bits / (double)allocation_chunks)); + + if (cpi->twopass.kf_bits > alt_kf_bits) { + cpi->twopass.kf_bits = alt_kf_bits; + } + } + /* Else if it is much harder than other frames in the group make sure + * it at least receives an allocation in keeping with its relative + * error score + */ + else { + alt_kf_bits = (int)((double)cpi->twopass.bits_left * + (kf_mod_err / DOUBLE_DIVIDE_CHECK( + cpi->twopass.modified_error_left))); + + if (alt_kf_bits > cpi->twopass.kf_bits) { + cpi->twopass.kf_bits = alt_kf_bits; + } + } + + cpi->twopass.kf_group_bits -= cpi->twopass.kf_bits; + /* Add in the minimum frame allowance */ + cpi->twopass.kf_bits += cpi->min_frame_bandwidth; + + /* Peer frame bit target for this frame */ + cpi->per_frame_bandwidth = cpi->twopass.kf_bits; + + /* Convert to a per second bitrate */ + cpi->target_bandwidth = (int)(cpi->twopass.kf_bits * cpi->output_framerate); + } + + /* Note the total error score of the kf group minus the key frame itself */ + cpi->twopass.kf_group_error_left = (int)(kf_group_err - kf_mod_err); + + /* Adjust the count of total modified error left. The count of bits left + * is adjusted elsewhere based on real coded frame sizes + */ + cpi->twopass.modified_error_left -= kf_group_err; + + if (cpi->oxcf.allow_spatial_resampling) { + int resample_trigger = 0; + int last_kf_resampled = 0; + int kf_q; + int scale_val = 0; + int hr, hs, vr, vs; + int new_width = cpi->oxcf.Width; + int new_height = cpi->oxcf.Height; + + int projected_buffer_level; + int tmp_q; + + double projected_bits_perframe; + double group_iiratio = (kf_group_intra_err - first_frame.intra_error) / + (kf_group_coded_err - first_frame.coded_error); + double err_per_frame = kf_group_err / cpi->twopass.frames_to_key; + double bits_per_frame; + double av_bits_per_frame; + double effective_size_ratio; + + if ((cpi->common.Width != cpi->oxcf.Width) || + (cpi->common.Height != cpi->oxcf.Height)) { + last_kf_resampled = 1; + } + + /* Set back to unscaled by defaults */ + cpi->common.horiz_scale = NORMAL; + cpi->common.vert_scale = NORMAL; + + /* Calculate Average bits per frame. */ + av_bits_per_frame = cpi->oxcf.target_bandwidth / + DOUBLE_DIVIDE_CHECK((double)cpi->framerate); + + /* CBR... Use the clip average as the target for deciding resample */ + if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) { + bits_per_frame = av_bits_per_frame; + } + + /* In VBR we want to avoid downsampling in easy section unless we + * are under extreme pressure So use the larger of target bitrate + * for this section or average bitrate for sequence + */ + else { + /* This accounts for how hard the section is... */ + bits_per_frame = + (double)(cpi->twopass.kf_group_bits / cpi->twopass.frames_to_key); + + /* Dont turn to resampling in easy sections just because they + * have been assigned a small number of bits + */ + if (bits_per_frame < av_bits_per_frame) { + bits_per_frame = av_bits_per_frame; + } + } + + /* bits_per_frame should comply with our minimum */ + if (bits_per_frame < (cpi->oxcf.target_bandwidth * + cpi->oxcf.two_pass_vbrmin_section / 100)) { + bits_per_frame = (cpi->oxcf.target_bandwidth * + cpi->oxcf.two_pass_vbrmin_section / 100); + } + + /* Work out if spatial resampling is necessary */ + kf_q = estimate_kf_group_q(cpi, err_per_frame, (int)bits_per_frame, + group_iiratio); + + /* If we project a required Q higher than the maximum allowed Q then + * make a guess at the actual size of frames in this section + */ + projected_bits_perframe = bits_per_frame; + tmp_q = kf_q; + + while (tmp_q > cpi->worst_quality) { + projected_bits_perframe *= 1.04; + tmp_q--; + } + + /* Guess at buffer level at the end of the section */ + projected_buffer_level = + (int)(cpi->buffer_level - + (int)((projected_bits_perframe - av_bits_per_frame) * + cpi->twopass.frames_to_key)); + + if (0) { + FILE *f = fopen("Subsamle.stt", "a"); + fprintf(f, " %8d %8d %8d %8d %12.0f %8d %8d %8d\n", + cpi->common.current_video_frame, kf_q, cpi->common.horiz_scale, + cpi->common.vert_scale, kf_group_err / cpi->twopass.frames_to_key, + (int)(cpi->twopass.kf_group_bits / cpi->twopass.frames_to_key), + new_height, new_width); + fclose(f); + } + + /* The trigger for spatial resampling depends on the various + * parameters such as whether we are streaming (CBR) or VBR. + */ + if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) { + /* Trigger resample if we are projected to fall below down + * sample level or resampled last time and are projected to + * remain below the up sample level + */ + if ((projected_buffer_level < (cpi->oxcf.resample_down_water_mark * + cpi->oxcf.optimal_buffer_level / 100)) || + (last_kf_resampled && + (projected_buffer_level < (cpi->oxcf.resample_up_water_mark * + cpi->oxcf.optimal_buffer_level / 100)))) { + resample_trigger = 1; + } else { + resample_trigger = 0; + } + } else { + int64_t clip_bits = (int64_t)( + cpi->twopass.total_stats.count * cpi->oxcf.target_bandwidth / + DOUBLE_DIVIDE_CHECK((double)cpi->framerate)); + int64_t over_spend = cpi->oxcf.starting_buffer_level - cpi->buffer_level; + + /* If triggered last time the threshold for triggering again is + * reduced: + * + * Projected Q higher than allowed and Overspend > 5% of total + * bits + */ + if ((last_kf_resampled && (kf_q > cpi->worst_quality)) || + ((kf_q > cpi->worst_quality) && (over_spend > clip_bits / 20))) { + resample_trigger = 1; + } else { + resample_trigger = 0; + } + } + + if (resample_trigger) { + while ((kf_q >= cpi->worst_quality) && (scale_val < 6)) { + scale_val++; + + cpi->common.vert_scale = vscale_lookup[scale_val]; + cpi->common.horiz_scale = hscale_lookup[scale_val]; + + Scale2Ratio(cpi->common.horiz_scale, &hr, &hs); + Scale2Ratio(cpi->common.vert_scale, &vr, &vs); + + new_width = ((hs - 1) + (cpi->oxcf.Width * hr)) / hs; + new_height = ((vs - 1) + (cpi->oxcf.Height * vr)) / vs; + + /* Reducing the area to 1/4 does not reduce the complexity + * (err_per_frame) to 1/4... effective_sizeratio attempts + * to provide a crude correction for this + */ + effective_size_ratio = (double)(new_width * new_height) / + (double)(cpi->oxcf.Width * cpi->oxcf.Height); + effective_size_ratio = (1.0 + (3.0 * effective_size_ratio)) / 4.0; + + /* Now try again and see what Q we get with the smaller + * image size + */ + kf_q = estimate_kf_group_q(cpi, err_per_frame * effective_size_ratio, + (int)bits_per_frame, group_iiratio); + + if (0) { + FILE *f = fopen("Subsamle.stt", "a"); + fprintf( + f, "******** %8d %8d %8d %12.0f %8d %8d %8d\n", kf_q, + cpi->common.horiz_scale, cpi->common.vert_scale, + kf_group_err / cpi->twopass.frames_to_key, + (int)(cpi->twopass.kf_group_bits / cpi->twopass.frames_to_key), + new_height, new_width); + fclose(f); + } + } + } + + if ((cpi->common.Width != new_width) || + (cpi->common.Height != new_height)) { + cpi->common.Width = new_width; + cpi->common.Height = new_height; + vp8_alloc_compressor_data(cpi); + } + } +} diff --git a/vp8/encoder/firstpass.h b/vp8/encoder/firstpass.h new file mode 100644 index 0000000..ac8a7b1 --- /dev/null +++ b/vp8/encoder/firstpass.h @@ -0,0 +1,31 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP8_ENCODER_FIRSTPASS_H_ +#define VP8_ENCODER_FIRSTPASS_H_ + +#ifdef __cplusplus +extern "C" { +#endif + +extern void vp8_init_first_pass(VP8_COMP *cpi); +extern void vp8_first_pass(VP8_COMP *cpi); +extern void vp8_end_first_pass(VP8_COMP *cpi); + +extern void vp8_init_second_pass(VP8_COMP *cpi); +extern void vp8_second_pass(VP8_COMP *cpi); +extern void vp8_end_second_pass(VP8_COMP *cpi); + +extern size_t vp8_firstpass_stats_sz(unsigned int mb_count); +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP8_ENCODER_FIRSTPASS_H_ diff --git a/vp8/encoder/lookahead.c b/vp8/encoder/lookahead.c new file mode 100644 index 0000000..37aa9ee --- /dev/null +++ b/vp8/encoder/lookahead.c @@ -0,0 +1,184 @@ +/* + * Copyright (c) 2011 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ +#include +#include +#include "vpx_config.h" +#include "lookahead.h" +#include "vp8/common/extend.h" + +#define MAX_LAG_BUFFERS (CONFIG_REALTIME_ONLY ? 1 : 25) + +struct lookahead_ctx { + unsigned int max_sz; /* Absolute size of the queue */ + unsigned int sz; /* Number of buffers currently in the queue */ + unsigned int read_idx; /* Read index */ + unsigned int write_idx; /* Write index */ + struct lookahead_entry *buf; /* Buffer list */ +}; + +/* Return the buffer at the given absolute index and increment the index */ +static struct lookahead_entry *pop(struct lookahead_ctx *ctx, + unsigned int *idx) { + unsigned int index = *idx; + struct lookahead_entry *buf = ctx->buf + index; + + assert(index < ctx->max_sz); + if (++index >= ctx->max_sz) index -= ctx->max_sz; + *idx = index; + return buf; +} + +void vp8_lookahead_destroy(struct lookahead_ctx *ctx) { + if (ctx) { + if (ctx->buf) { + unsigned int i; + + for (i = 0; i < ctx->max_sz; ++i) { + vp8_yv12_de_alloc_frame_buffer(&ctx->buf[i].img); + } + free(ctx->buf); + } + free(ctx); + } +} + +struct lookahead_ctx *vp8_lookahead_init(unsigned int width, + unsigned int height, + unsigned int depth) { + struct lookahead_ctx *ctx = NULL; + unsigned int i; + + /* Clamp the lookahead queue depth */ + if (depth < 1) { + depth = 1; + } else if (depth > MAX_LAG_BUFFERS) { + depth = MAX_LAG_BUFFERS; + } + + /* Keep last frame in lookahead buffer by increasing depth by 1.*/ + depth += 1; + + /* Align the buffer dimensions */ + width = (width + 15) & ~15; + height = (height + 15) & ~15; + + /* Allocate the lookahead structures */ + ctx = calloc(1, sizeof(*ctx)); + if (ctx) { + ctx->max_sz = depth; + ctx->buf = calloc(depth, sizeof(*ctx->buf)); + if (!ctx->buf) goto bail; + for (i = 0; i < depth; ++i) { + if (vp8_yv12_alloc_frame_buffer(&ctx->buf[i].img, width, height, + VP8BORDERINPIXELS)) { + goto bail; + } + } + } + return ctx; +bail: + vp8_lookahead_destroy(ctx); + return NULL; +} + +int vp8_lookahead_push(struct lookahead_ctx *ctx, YV12_BUFFER_CONFIG *src, + int64_t ts_start, int64_t ts_end, unsigned int flags, + unsigned char *active_map) { + struct lookahead_entry *buf; + int row, col, active_end; + int mb_rows = (src->y_height + 15) >> 4; + int mb_cols = (src->y_width + 15) >> 4; + + if (ctx->sz + 2 > ctx->max_sz) return 1; + ctx->sz++; + buf = pop(ctx, &ctx->write_idx); + + /* Only do this partial copy if the following conditions are all met: + * 1. Lookahead queue has has size of 1. + * 2. Active map is provided. + * 3. This is not a key frame, golden nor altref frame. + */ + if (ctx->max_sz == 1 && active_map && !flags) { + for (row = 0; row < mb_rows; ++row) { + col = 0; + + while (1) { + /* Find the first active macroblock in this row. */ + for (; col < mb_cols; ++col) { + if (active_map[col]) break; + } + + /* No more active macroblock in this row. */ + if (col == mb_cols) break; + + /* Find the end of active region in this row. */ + active_end = col; + + for (; active_end < mb_cols; ++active_end) { + if (!active_map[active_end]) break; + } + + /* Only copy this active region. */ + vp8_copy_and_extend_frame_with_rect(src, &buf->img, row << 4, col << 4, + 16, (active_end - col) << 4); + + /* Start again from the end of this active region. */ + col = active_end; + } + + active_map += mb_cols; + } + } else { + vp8_copy_and_extend_frame(src, &buf->img); + } + buf->ts_start = ts_start; + buf->ts_end = ts_end; + buf->flags = flags; + return 0; +} + +struct lookahead_entry *vp8_lookahead_pop(struct lookahead_ctx *ctx, + int drain) { + struct lookahead_entry *buf = NULL; + + assert(ctx != NULL); + if (ctx->sz && (drain || ctx->sz == ctx->max_sz - 1)) { + buf = pop(ctx, &ctx->read_idx); + ctx->sz--; + } + return buf; +} + +struct lookahead_entry *vp8_lookahead_peek(struct lookahead_ctx *ctx, + unsigned int index, int direction) { + struct lookahead_entry *buf = NULL; + + if (direction == PEEK_FORWARD) { + assert(index < ctx->max_sz - 1); + if (index < ctx->sz) { + index += ctx->read_idx; + if (index >= ctx->max_sz) index -= ctx->max_sz; + buf = ctx->buf + index; + } + } else if (direction == PEEK_BACKWARD) { + assert(index == 1); + + if (ctx->read_idx == 0) { + index = ctx->max_sz - 1; + } else { + index = ctx->read_idx - index; + } + buf = ctx->buf + index; + } + + return buf; +} + +unsigned int vp8_lookahead_depth(struct lookahead_ctx *ctx) { return ctx->sz; } diff --git a/vp8/encoder/lookahead.h b/vp8/encoder/lookahead.h new file mode 100644 index 0000000..a67f226 --- /dev/null +++ b/vp8/encoder/lookahead.h @@ -0,0 +1,99 @@ +/* + * Copyright (c) 2011 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ +#ifndef VP8_ENCODER_LOOKAHEAD_H_ +#define VP8_ENCODER_LOOKAHEAD_H_ +#include "vpx_scale/yv12config.h" +#include "vpx/vpx_integer.h" + +#ifdef __cplusplus +extern "C" { +#endif + +struct lookahead_entry { + YV12_BUFFER_CONFIG img; + int64_t ts_start; + int64_t ts_end; + unsigned int flags; +}; + +struct lookahead_ctx; + +/**\brief Initializes the lookahead stage + * + * The lookahead stage is a queue of frame buffers on which some analysis + * may be done when buffers are enqueued. + * + * + */ +struct lookahead_ctx *vp8_lookahead_init(unsigned int width, + unsigned int height, + unsigned int depth); + +/**\brief Destroys the lookahead stage + * + */ +void vp8_lookahead_destroy(struct lookahead_ctx *ctx); + +/**\brief Enqueue a source buffer + * + * This function will copy the source image into a new framebuffer with + * the expected stride/border. + * + * If active_map is non-NULL and there is only one frame in the queue, then copy + * only active macroblocks. + * + * \param[in] ctx Pointer to the lookahead context + * \param[in] src Pointer to the image to enqueue + * \param[in] ts_start Timestamp for the start of this frame + * \param[in] ts_end Timestamp for the end of this frame + * \param[in] flags Flags set on this frame + * \param[in] active_map Map that specifies which macroblock is active + */ +int vp8_lookahead_push(struct lookahead_ctx *ctx, YV12_BUFFER_CONFIG *src, + int64_t ts_start, int64_t ts_end, unsigned int flags, + unsigned char *active_map); + +/**\brief Get the next source buffer to encode + * + * + * \param[in] ctx Pointer to the lookahead context + * \param[in] drain Flag indicating the buffer should be drained + * (return a buffer regardless of the current queue depth) + * + * \retval NULL, if drain set and queue is empty + * \retval NULL, if drain not set and queue not of the configured depth + * + */ +struct lookahead_entry *vp8_lookahead_pop(struct lookahead_ctx *ctx, int drain); + +#define PEEK_FORWARD 1 +#define PEEK_BACKWARD -1 +/**\brief Get a future source buffer to encode + * + * \param[in] ctx Pointer to the lookahead context + * \param[in] index Index of the frame to be returned, 0 == next frame + * + * \retval NULL, if no buffer exists at the specified index + * + */ +struct lookahead_entry *vp8_lookahead_peek(struct lookahead_ctx *ctx, + unsigned int index, int direction); + +/**\brief Get the number of frames currently in the lookahead queue + * + * \param[in] ctx Pointer to the lookahead context + */ +unsigned int vp8_lookahead_depth(struct lookahead_ctx *ctx); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP8_ENCODER_LOOKAHEAD_H_ diff --git a/vp8/encoder/mcomp.c b/vp8/encoder/mcomp.c new file mode 100644 index 0000000..970120f --- /dev/null +++ b/vp8/encoder/mcomp.c @@ -0,0 +1,1913 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "./vp8_rtcd.h" +#include "./vpx_dsp_rtcd.h" +#include "onyx_int.h" +#include "mcomp.h" +#include "vpx_mem/vpx_mem.h" +#include "vpx_config.h" +#include +#include +#include +#include "vp8/common/findnearmv.h" +#include "vp8/common/common.h" +#include "vpx_dsp/vpx_dsp_common.h" + +#ifdef VP8_ENTROPY_STATS +static int mv_ref_ct[31][4][2]; +static int mv_mode_cts[4][2]; +#endif + +int vp8_mv_bit_cost(int_mv *mv, int_mv *ref, int *mvcost[2], int Weight) { + /* MV costing is based on the distribution of vectors in the previous + * frame and as such will tend to over state the cost of vectors. In + * addition coding a new vector can have a knock on effect on the cost + * of subsequent vectors and the quality of prediction from NEAR and + * NEAREST for subsequent blocks. The "Weight" parameter allows, to a + * limited extent, for some account to be taken of these factors. + */ + return ((mvcost[0][(mv->as_mv.row - ref->as_mv.row) >> 1] + + mvcost[1][(mv->as_mv.col - ref->as_mv.col) >> 1]) * + Weight) >> + 7; +} + +static int mv_err_cost(int_mv *mv, int_mv *ref, int *mvcost[2], + int error_per_bit) { + /* Ignore mv costing if mvcost is NULL */ + if (mvcost) { + return ((mvcost[0][(mv->as_mv.row - ref->as_mv.row) >> 1] + + mvcost[1][(mv->as_mv.col - ref->as_mv.col) >> 1]) * + error_per_bit + + 128) >> + 8; + } + return 0; +} + +static int mvsad_err_cost(int_mv *mv, int_mv *ref, int *mvsadcost[2], + int error_per_bit) { + /* Calculate sad error cost on full pixel basis. */ + /* Ignore mv costing if mvsadcost is NULL */ + if (mvsadcost) { + return ((mvsadcost[0][(mv->as_mv.row - ref->as_mv.row)] + + mvsadcost[1][(mv->as_mv.col - ref->as_mv.col)]) * + error_per_bit + + 128) >> + 8; + } + return 0; +} + +void vp8_init_dsmotion_compensation(MACROBLOCK *x, int stride) { + int Len; + int search_site_count = 0; + + /* Generate offsets for 4 search sites per step. */ + Len = MAX_FIRST_STEP; + x->ss[search_site_count].mv.col = 0; + x->ss[search_site_count].mv.row = 0; + x->ss[search_site_count].offset = 0; + search_site_count++; + + while (Len > 0) { + /* Compute offsets for search sites. */ + x->ss[search_site_count].mv.col = 0; + x->ss[search_site_count].mv.row = -Len; + x->ss[search_site_count].offset = -Len * stride; + search_site_count++; + + /* Compute offsets for search sites. */ + x->ss[search_site_count].mv.col = 0; + x->ss[search_site_count].mv.row = Len; + x->ss[search_site_count].offset = Len * stride; + search_site_count++; + + /* Compute offsets for search sites. */ + x->ss[search_site_count].mv.col = -Len; + x->ss[search_site_count].mv.row = 0; + x->ss[search_site_count].offset = -Len; + search_site_count++; + + /* Compute offsets for search sites. */ + x->ss[search_site_count].mv.col = Len; + x->ss[search_site_count].mv.row = 0; + x->ss[search_site_count].offset = Len; + search_site_count++; + + /* Contract. */ + Len /= 2; + } + + x->ss_count = search_site_count; + x->searches_per_step = 4; +} + +void vp8_init3smotion_compensation(MACROBLOCK *x, int stride) { + int Len; + int search_site_count = 0; + + /* Generate offsets for 8 search sites per step. */ + Len = MAX_FIRST_STEP; + x->ss[search_site_count].mv.col = 0; + x->ss[search_site_count].mv.row = 0; + x->ss[search_site_count].offset = 0; + search_site_count++; + + while (Len > 0) { + /* Compute offsets for search sites. */ + x->ss[search_site_count].mv.col = 0; + x->ss[search_site_count].mv.row = -Len; + x->ss[search_site_count].offset = -Len * stride; + search_site_count++; + + /* Compute offsets for search sites. */ + x->ss[search_site_count].mv.col = 0; + x->ss[search_site_count].mv.row = Len; + x->ss[search_site_count].offset = Len * stride; + search_site_count++; + + /* Compute offsets for search sites. */ + x->ss[search_site_count].mv.col = -Len; + x->ss[search_site_count].mv.row = 0; + x->ss[search_site_count].offset = -Len; + search_site_count++; + + /* Compute offsets for search sites. */ + x->ss[search_site_count].mv.col = Len; + x->ss[search_site_count].mv.row = 0; + x->ss[search_site_count].offset = Len; + search_site_count++; + + /* Compute offsets for search sites. */ + x->ss[search_site_count].mv.col = -Len; + x->ss[search_site_count].mv.row = -Len; + x->ss[search_site_count].offset = -Len * stride - Len; + search_site_count++; + + /* Compute offsets for search sites. */ + x->ss[search_site_count].mv.col = Len; + x->ss[search_site_count].mv.row = -Len; + x->ss[search_site_count].offset = -Len * stride + Len; + search_site_count++; + + /* Compute offsets for search sites. */ + x->ss[search_site_count].mv.col = -Len; + x->ss[search_site_count].mv.row = Len; + x->ss[search_site_count].offset = Len * stride - Len; + search_site_count++; + + /* Compute offsets for search sites. */ + x->ss[search_site_count].mv.col = Len; + x->ss[search_site_count].mv.row = Len; + x->ss[search_site_count].offset = Len * stride + Len; + search_site_count++; + + /* Contract. */ + Len /= 2; + } + + x->ss_count = search_site_count; + x->searches_per_step = 8; +} + +/* + * To avoid the penalty for crossing cache-line read, preload the reference + * area in a small buffer, which is aligned to make sure there won't be crossing + * cache-line read while reading from this buffer. This reduced the cpu + * cycles spent on reading ref data in sub-pixel filter functions. + * TODO: Currently, since sub-pixel search range here is -3 ~ 3, copy 22 rows x + * 32 cols area that is enough for 16x16 macroblock. Later, for SPLITMV, we + * could reduce the area. + */ + +/* estimated cost of a motion vector (r,c) */ +#define MVC(r, c) \ + (mvcost \ + ? ((mvcost[0][(r)-rr] + mvcost[1][(c)-rc]) * error_per_bit + 128) >> 8 \ + : 0) +/* pointer to predictor base of a motionvector */ +#define PRE(r, c) (y + (((r) >> 2) * y_stride + ((c) >> 2) - (offset))) +/* convert motion vector component to offset for svf calc */ +#define SP(x) (((x)&3) << 1) +/* returns subpixel variance error function. */ +#define DIST(r, c) \ + vfp->svf(PRE(r, c), y_stride, SP(c), SP(r), z, b->src_stride, &sse) +#define IFMVCV(r, c, s, e) \ + if (c >= minc && c <= maxc && r >= minr && r <= maxr) s else e; +/* returns distortion + motion vector cost */ +#define ERR(r, c) (MVC(r, c) + DIST(r, c)) +/* checks if (r,c) has better score than previous best */ +#define CHECK_BETTER(v, r, c) \ + IFMVCV(r, c, \ + { \ + thismse = DIST(r, c); \ + if ((v = (MVC(r, c) + thismse)) < besterr) { \ + besterr = v; \ + br = r; \ + bc = c; \ + *distortion = thismse; \ + *sse1 = sse; \ + } \ + }, \ + v = UINT_MAX;) + +int vp8_find_best_sub_pixel_step_iteratively(MACROBLOCK *x, BLOCK *b, BLOCKD *d, + int_mv *bestmv, int_mv *ref_mv, + int error_per_bit, + const vp8_variance_fn_ptr_t *vfp, + int *mvcost[2], int *distortion, + unsigned int *sse1) { + unsigned char *z = (*(b->base_src) + b->src); + + int rr = ref_mv->as_mv.row >> 1, rc = ref_mv->as_mv.col >> 1; + int br = bestmv->as_mv.row * 4, bc = bestmv->as_mv.col * 4; + int tr = br, tc = bc; + unsigned int besterr; + unsigned int left, right, up, down, diag; + unsigned int sse; + unsigned int whichdir; + unsigned int halfiters = 4; + unsigned int quarteriters = 4; + int thismse; + + int minc = VPXMAX(x->mv_col_min * 4, + (ref_mv->as_mv.col >> 1) - ((1 << mvlong_width) - 1)); + int maxc = VPXMIN(x->mv_col_max * 4, + (ref_mv->as_mv.col >> 1) + ((1 << mvlong_width) - 1)); + int minr = VPXMAX(x->mv_row_min * 4, + (ref_mv->as_mv.row >> 1) - ((1 << mvlong_width) - 1)); + int maxr = VPXMIN(x->mv_row_max * 4, + (ref_mv->as_mv.row >> 1) + ((1 << mvlong_width) - 1)); + + int y_stride; + int offset; + int pre_stride = x->e_mbd.pre.y_stride; + unsigned char *base_pre = x->e_mbd.pre.y_buffer; + +#if ARCH_X86 || ARCH_X86_64 + MACROBLOCKD *xd = &x->e_mbd; + unsigned char *y_0 = base_pre + d->offset + (bestmv->as_mv.row) * pre_stride + + bestmv->as_mv.col; + unsigned char *y; + int buf_r1, buf_r2, buf_c1; + + /* Clamping to avoid out-of-range data access */ + buf_r1 = ((bestmv->as_mv.row - 3) < x->mv_row_min) + ? (bestmv->as_mv.row - x->mv_row_min) + : 3; + buf_r2 = ((bestmv->as_mv.row + 3) > x->mv_row_max) + ? (x->mv_row_max - bestmv->as_mv.row) + : 3; + buf_c1 = ((bestmv->as_mv.col - 3) < x->mv_col_min) + ? (bestmv->as_mv.col - x->mv_col_min) + : 3; + y_stride = 32; + + /* Copy to intermediate buffer before searching. */ + vfp->copymem(y_0 - buf_c1 - pre_stride * buf_r1, pre_stride, xd->y_buf, + y_stride, 16 + buf_r1 + buf_r2); + y = xd->y_buf + y_stride * buf_r1 + buf_c1; +#else + unsigned char *y = base_pre + d->offset + (bestmv->as_mv.row) * pre_stride + + bestmv->as_mv.col; + y_stride = pre_stride; +#endif + + offset = (bestmv->as_mv.row) * y_stride + bestmv->as_mv.col; + + /* central mv */ + bestmv->as_mv.row *= 8; + bestmv->as_mv.col *= 8; + + /* calculate central point error */ + besterr = vfp->vf(y, y_stride, z, b->src_stride, sse1); + *distortion = besterr; + besterr += mv_err_cost(bestmv, ref_mv, mvcost, error_per_bit); + + /* TODO: Each subsequent iteration checks at least one point in common + * with the last iteration could be 2 ( if diag selected) + */ + while (--halfiters) { + /* 1/2 pel */ + CHECK_BETTER(left, tr, tc - 2); + CHECK_BETTER(right, tr, tc + 2); + CHECK_BETTER(up, tr - 2, tc); + CHECK_BETTER(down, tr + 2, tc); + + whichdir = (left < right ? 0 : 1) + (up < down ? 0 : 2); + + switch (whichdir) { + case 0: CHECK_BETTER(diag, tr - 2, tc - 2); break; + case 1: CHECK_BETTER(diag, tr - 2, tc + 2); break; + case 2: CHECK_BETTER(diag, tr + 2, tc - 2); break; + case 3: CHECK_BETTER(diag, tr + 2, tc + 2); break; + } + + /* no reason to check the same one again. */ + if (tr == br && tc == bc) break; + + tr = br; + tc = bc; + } + + /* TODO: Each subsequent iteration checks at least one point in common + * with the last iteration could be 2 ( if diag selected) + */ + + /* 1/4 pel */ + while (--quarteriters) { + CHECK_BETTER(left, tr, tc - 1); + CHECK_BETTER(right, tr, tc + 1); + CHECK_BETTER(up, tr - 1, tc); + CHECK_BETTER(down, tr + 1, tc); + + whichdir = (left < right ? 0 : 1) + (up < down ? 0 : 2); + + switch (whichdir) { + case 0: CHECK_BETTER(diag, tr - 1, tc - 1); break; + case 1: CHECK_BETTER(diag, tr - 1, tc + 1); break; + case 2: CHECK_BETTER(diag, tr + 1, tc - 1); break; + case 3: CHECK_BETTER(diag, tr + 1, tc + 1); break; + } + + /* no reason to check the same one again. */ + if (tr == br && tc == bc) break; + + tr = br; + tc = bc; + } + + bestmv->as_mv.row = br * 2; + bestmv->as_mv.col = bc * 2; + + if ((abs(bestmv->as_mv.col - ref_mv->as_mv.col) > (MAX_FULL_PEL_VAL << 3)) || + (abs(bestmv->as_mv.row - ref_mv->as_mv.row) > (MAX_FULL_PEL_VAL << 3))) { + return INT_MAX; + } + + return besterr; +} +#undef MVC +#undef PRE +#undef SP +#undef DIST +#undef IFMVCV +#undef ERR +#undef CHECK_BETTER + +int vp8_find_best_sub_pixel_step(MACROBLOCK *x, BLOCK *b, BLOCKD *d, + int_mv *bestmv, int_mv *ref_mv, + int error_per_bit, + const vp8_variance_fn_ptr_t *vfp, + int *mvcost[2], int *distortion, + unsigned int *sse1) { + int bestmse = INT_MAX; + int_mv startmv; + int_mv this_mv; + unsigned char *z = (*(b->base_src) + b->src); + int left, right, up, down, diag; + unsigned int sse; + int whichdir; + int thismse; + int y_stride; + int pre_stride = x->e_mbd.pre.y_stride; + unsigned char *base_pre = x->e_mbd.pre.y_buffer; + +#if ARCH_X86 || ARCH_X86_64 + MACROBLOCKD *xd = &x->e_mbd; + unsigned char *y_0 = base_pre + d->offset + (bestmv->as_mv.row) * pre_stride + + bestmv->as_mv.col; + unsigned char *y; + + y_stride = 32; + /* Copy 18 rows x 32 cols area to intermediate buffer before searching. */ + vfp->copymem(y_0 - 1 - pre_stride, pre_stride, xd->y_buf, y_stride, 18); + y = xd->y_buf + y_stride + 1; +#else + unsigned char *y = base_pre + d->offset + (bestmv->as_mv.row) * pre_stride + + bestmv->as_mv.col; + y_stride = pre_stride; +#endif + + /* central mv */ + bestmv->as_mv.row *= 8; + bestmv->as_mv.col *= 8; + startmv = *bestmv; + + /* calculate central point error */ + bestmse = vfp->vf(y, y_stride, z, b->src_stride, sse1); + *distortion = bestmse; + bestmse += mv_err_cost(bestmv, ref_mv, mvcost, error_per_bit); + + /* go left then right and check error */ + this_mv.as_mv.row = startmv.as_mv.row; + this_mv.as_mv.col = ((startmv.as_mv.col - 8) | 4); + /* "halfpix" horizontal variance */ + thismse = vfp->svf(y - 1, y_stride, 4, 0, z, b->src_stride, &sse); + left = thismse + mv_err_cost(&this_mv, ref_mv, mvcost, error_per_bit); + + if (left < bestmse) { + *bestmv = this_mv; + bestmse = left; + *distortion = thismse; + *sse1 = sse; + } + + this_mv.as_mv.col += 8; + /* "halfpix" horizontal variance */ + thismse = vfp->svf(y, y_stride, 4, 0, z, b->src_stride, &sse); + right = thismse + mv_err_cost(&this_mv, ref_mv, mvcost, error_per_bit); + + if (right < bestmse) { + *bestmv = this_mv; + bestmse = right; + *distortion = thismse; + *sse1 = sse; + } + + /* go up then down and check error */ + this_mv.as_mv.col = startmv.as_mv.col; + this_mv.as_mv.row = ((startmv.as_mv.row - 8) | 4); + /* "halfpix" vertical variance */ + thismse = vfp->svf(y - y_stride, y_stride, 0, 4, z, b->src_stride, &sse); + up = thismse + mv_err_cost(&this_mv, ref_mv, mvcost, error_per_bit); + + if (up < bestmse) { + *bestmv = this_mv; + bestmse = up; + *distortion = thismse; + *sse1 = sse; + } + + this_mv.as_mv.row += 8; + /* "halfpix" vertical variance */ + thismse = vfp->svf(y, y_stride, 0, 4, z, b->src_stride, &sse); + down = thismse + mv_err_cost(&this_mv, ref_mv, mvcost, error_per_bit); + + if (down < bestmse) { + *bestmv = this_mv; + bestmse = down; + *distortion = thismse; + *sse1 = sse; + } + + /* now check 1 more diagonal */ + whichdir = (left < right ? 0 : 1) + (up < down ? 0 : 2); + this_mv = startmv; + + switch (whichdir) { + case 0: + this_mv.as_mv.col = (this_mv.as_mv.col - 8) | 4; + this_mv.as_mv.row = (this_mv.as_mv.row - 8) | 4; + /* "halfpix" horizontal/vertical variance */ + thismse = + vfp->svf(y - 1 - y_stride, y_stride, 4, 4, z, b->src_stride, &sse); + break; + case 1: + this_mv.as_mv.col += 4; + this_mv.as_mv.row = (this_mv.as_mv.row - 8) | 4; + /* "halfpix" horizontal/vertical variance */ + thismse = vfp->svf(y - y_stride, y_stride, 4, 4, z, b->src_stride, &sse); + break; + case 2: + this_mv.as_mv.col = (this_mv.as_mv.col - 8) | 4; + this_mv.as_mv.row += 4; + /* "halfpix" horizontal/vertical variance */ + thismse = vfp->svf(y - 1, y_stride, 4, 4, z, b->src_stride, &sse); + break; + case 3: + default: + this_mv.as_mv.col += 4; + this_mv.as_mv.row += 4; + /* "halfpix" horizontal/vertical variance */ + thismse = vfp->svf(y, y_stride, 4, 4, z, b->src_stride, &sse); + break; + } + + diag = thismse + mv_err_cost(&this_mv, ref_mv, mvcost, error_per_bit); + + if (diag < bestmse) { + *bestmv = this_mv; + bestmse = diag; + *distortion = thismse; + *sse1 = sse; + } + + /* time to check quarter pels. */ + if (bestmv->as_mv.row < startmv.as_mv.row) y -= y_stride; + + if (bestmv->as_mv.col < startmv.as_mv.col) y--; + + startmv = *bestmv; + + /* go left then right and check error */ + this_mv.as_mv.row = startmv.as_mv.row; + + if (startmv.as_mv.col & 7) { + this_mv.as_mv.col = startmv.as_mv.col - 2; + thismse = vfp->svf(y, y_stride, this_mv.as_mv.col & 7, + this_mv.as_mv.row & 7, z, b->src_stride, &sse); + } else { + this_mv.as_mv.col = (startmv.as_mv.col - 8) | 6; + thismse = vfp->svf(y - 1, y_stride, 6, this_mv.as_mv.row & 7, z, + b->src_stride, &sse); + } + + left = thismse + mv_err_cost(&this_mv, ref_mv, mvcost, error_per_bit); + + if (left < bestmse) { + *bestmv = this_mv; + bestmse = left; + *distortion = thismse; + *sse1 = sse; + } + + this_mv.as_mv.col += 4; + thismse = vfp->svf(y, y_stride, this_mv.as_mv.col & 7, this_mv.as_mv.row & 7, + z, b->src_stride, &sse); + right = thismse + mv_err_cost(&this_mv, ref_mv, mvcost, error_per_bit); + + if (right < bestmse) { + *bestmv = this_mv; + bestmse = right; + *distortion = thismse; + *sse1 = sse; + } + + /* go up then down and check error */ + this_mv.as_mv.col = startmv.as_mv.col; + + if (startmv.as_mv.row & 7) { + this_mv.as_mv.row = startmv.as_mv.row - 2; + thismse = vfp->svf(y, y_stride, this_mv.as_mv.col & 7, + this_mv.as_mv.row & 7, z, b->src_stride, &sse); + } else { + this_mv.as_mv.row = (startmv.as_mv.row - 8) | 6; + thismse = vfp->svf(y - y_stride, y_stride, this_mv.as_mv.col & 7, 6, z, + b->src_stride, &sse); + } + + up = thismse + mv_err_cost(&this_mv, ref_mv, mvcost, error_per_bit); + + if (up < bestmse) { + *bestmv = this_mv; + bestmse = up; + *distortion = thismse; + *sse1 = sse; + } + + this_mv.as_mv.row += 4; + thismse = vfp->svf(y, y_stride, this_mv.as_mv.col & 7, this_mv.as_mv.row & 7, + z, b->src_stride, &sse); + down = thismse + mv_err_cost(&this_mv, ref_mv, mvcost, error_per_bit); + + if (down < bestmse) { + *bestmv = this_mv; + bestmse = down; + *distortion = thismse; + *sse1 = sse; + } + + /* now check 1 more diagonal */ + whichdir = (left < right ? 0 : 1) + (up < down ? 0 : 2); + + this_mv = startmv; + + switch (whichdir) { + case 0: + + if (startmv.as_mv.row & 7) { + this_mv.as_mv.row -= 2; + + if (startmv.as_mv.col & 7) { + this_mv.as_mv.col -= 2; + thismse = vfp->svf(y, y_stride, this_mv.as_mv.col & 7, + this_mv.as_mv.row & 7, z, b->src_stride, &sse); + } else { + this_mv.as_mv.col = (startmv.as_mv.col - 8) | 6; + thismse = vfp->svf(y - 1, y_stride, 6, this_mv.as_mv.row & 7, z, + b->src_stride, &sse); + } + } else { + this_mv.as_mv.row = (startmv.as_mv.row - 8) | 6; + + if (startmv.as_mv.col & 7) { + this_mv.as_mv.col -= 2; + thismse = vfp->svf(y - y_stride, y_stride, this_mv.as_mv.col & 7, 6, + z, b->src_stride, &sse); + } else { + this_mv.as_mv.col = (startmv.as_mv.col - 8) | 6; + thismse = vfp->svf(y - y_stride - 1, y_stride, 6, 6, z, b->src_stride, + &sse); + } + } + + break; + case 1: + this_mv.as_mv.col += 2; + + if (startmv.as_mv.row & 7) { + this_mv.as_mv.row -= 2; + thismse = vfp->svf(y, y_stride, this_mv.as_mv.col & 7, + this_mv.as_mv.row & 7, z, b->src_stride, &sse); + } else { + this_mv.as_mv.row = (startmv.as_mv.row - 8) | 6; + thismse = vfp->svf(y - y_stride, y_stride, this_mv.as_mv.col & 7, 6, z, + b->src_stride, &sse); + } + + break; + case 2: + this_mv.as_mv.row += 2; + + if (startmv.as_mv.col & 7) { + this_mv.as_mv.col -= 2; + thismse = vfp->svf(y, y_stride, this_mv.as_mv.col & 7, + this_mv.as_mv.row & 7, z, b->src_stride, &sse); + } else { + this_mv.as_mv.col = (startmv.as_mv.col - 8) | 6; + thismse = vfp->svf(y - 1, y_stride, 6, this_mv.as_mv.row & 7, z, + b->src_stride, &sse); + } + + break; + case 3: + this_mv.as_mv.col += 2; + this_mv.as_mv.row += 2; + thismse = vfp->svf(y, y_stride, this_mv.as_mv.col & 7, + this_mv.as_mv.row & 7, z, b->src_stride, &sse); + break; + } + + diag = thismse + mv_err_cost(&this_mv, ref_mv, mvcost, error_per_bit); + + if (diag < bestmse) { + *bestmv = this_mv; + bestmse = diag; + *distortion = thismse; + *sse1 = sse; + } + + return bestmse; +} + +int vp8_find_best_half_pixel_step(MACROBLOCK *x, BLOCK *b, BLOCKD *d, + int_mv *bestmv, int_mv *ref_mv, + int error_per_bit, + const vp8_variance_fn_ptr_t *vfp, + int *mvcost[2], int *distortion, + unsigned int *sse1) { + int bestmse = INT_MAX; + int_mv startmv; + int_mv this_mv; + unsigned char *z = (*(b->base_src) + b->src); + int left, right, up, down, diag; + unsigned int sse; + int whichdir; + int thismse; + int y_stride; + int pre_stride = x->e_mbd.pre.y_stride; + unsigned char *base_pre = x->e_mbd.pre.y_buffer; + +#if ARCH_X86 || ARCH_X86_64 + MACROBLOCKD *xd = &x->e_mbd; + unsigned char *y_0 = base_pre + d->offset + (bestmv->as_mv.row) * pre_stride + + bestmv->as_mv.col; + unsigned char *y; + + y_stride = 32; + /* Copy 18 rows x 32 cols area to intermediate buffer before searching. */ + vfp->copymem(y_0 - 1 - pre_stride, pre_stride, xd->y_buf, y_stride, 18); + y = xd->y_buf + y_stride + 1; +#else + unsigned char *y = base_pre + d->offset + (bestmv->as_mv.row) * pre_stride + + bestmv->as_mv.col; + y_stride = pre_stride; +#endif + + /* central mv */ + bestmv->as_mv.row *= 8; + bestmv->as_mv.col *= 8; + startmv = *bestmv; + + /* calculate central point error */ + bestmse = vfp->vf(y, y_stride, z, b->src_stride, sse1); + *distortion = bestmse; + bestmse += mv_err_cost(bestmv, ref_mv, mvcost, error_per_bit); + + /* go left then right and check error */ + this_mv.as_mv.row = startmv.as_mv.row; + this_mv.as_mv.col = ((startmv.as_mv.col - 8) | 4); + /* "halfpix" horizontal variance */ + thismse = vfp->svf(y - 1, y_stride, 4, 0, z, b->src_stride, &sse); + left = thismse + mv_err_cost(&this_mv, ref_mv, mvcost, error_per_bit); + + if (left < bestmse) { + *bestmv = this_mv; + bestmse = left; + *distortion = thismse; + *sse1 = sse; + } + + this_mv.as_mv.col += 8; + /* "halfpix" horizontal variance */ + thismse = vfp->svf(y, y_stride, 4, 0, z, b->src_stride, &sse); + right = thismse + mv_err_cost(&this_mv, ref_mv, mvcost, error_per_bit); + + if (right < bestmse) { + *bestmv = this_mv; + bestmse = right; + *distortion = thismse; + *sse1 = sse; + } + + /* go up then down and check error */ + this_mv.as_mv.col = startmv.as_mv.col; + this_mv.as_mv.row = ((startmv.as_mv.row - 8) | 4); + /* "halfpix" vertical variance */ + thismse = vfp->svf(y - y_stride, y_stride, 0, 4, z, b->src_stride, &sse); + up = thismse + mv_err_cost(&this_mv, ref_mv, mvcost, error_per_bit); + + if (up < bestmse) { + *bestmv = this_mv; + bestmse = up; + *distortion = thismse; + *sse1 = sse; + } + + this_mv.as_mv.row += 8; + /* "halfpix" vertical variance */ + thismse = vfp->svf(y, y_stride, 0, 4, z, b->src_stride, &sse); + down = thismse + mv_err_cost(&this_mv, ref_mv, mvcost, error_per_bit); + + if (down < bestmse) { + *bestmv = this_mv; + bestmse = down; + *distortion = thismse; + *sse1 = sse; + } + + /* now check 1 more diagonal - */ + whichdir = (left < right ? 0 : 1) + (up < down ? 0 : 2); + this_mv = startmv; + + switch (whichdir) { + case 0: + this_mv.as_mv.col = (this_mv.as_mv.col - 8) | 4; + this_mv.as_mv.row = (this_mv.as_mv.row - 8) | 4; + /* "halfpix" horizontal/vertical variance */ + thismse = + vfp->svf(y - 1 - y_stride, y_stride, 4, 4, z, b->src_stride, &sse); + break; + case 1: + this_mv.as_mv.col += 4; + this_mv.as_mv.row = (this_mv.as_mv.row - 8) | 4; + /* "halfpix" horizontal/vertical variance */ + thismse = vfp->svf(y - y_stride, y_stride, 4, 4, z, b->src_stride, &sse); + break; + case 2: + this_mv.as_mv.col = (this_mv.as_mv.col - 8) | 4; + this_mv.as_mv.row += 4; + /* "halfpix" horizontal/vertical variance */ + thismse = vfp->svf(y - 1, y_stride, 4, 4, z, b->src_stride, &sse); + break; + case 3: + default: + this_mv.as_mv.col += 4; + this_mv.as_mv.row += 4; + /* "halfpix" horizontal/vertical variance */ + thismse = vfp->svf(y, y_stride, 4, 4, z, b->src_stride, &sse); + break; + } + + diag = thismse + mv_err_cost(&this_mv, ref_mv, mvcost, error_per_bit); + + if (diag < bestmse) { + *bestmv = this_mv; + bestmse = diag; + *distortion = thismse; + *sse1 = sse; + } + + return bestmse; +} + +#define CHECK_BOUNDS(range) \ + { \ + all_in = 1; \ + all_in &= ((br - range) >= x->mv_row_min); \ + all_in &= ((br + range) <= x->mv_row_max); \ + all_in &= ((bc - range) >= x->mv_col_min); \ + all_in &= ((bc + range) <= x->mv_col_max); \ + } + +#define CHECK_POINT \ + { \ + if (this_mv.as_mv.col < x->mv_col_min) continue; \ + if (this_mv.as_mv.col > x->mv_col_max) continue; \ + if (this_mv.as_mv.row < x->mv_row_min) continue; \ + if (this_mv.as_mv.row > x->mv_row_max) continue; \ + } + +#define CHECK_BETTER \ + { \ + if (thissad < bestsad) { \ + thissad += \ + mvsad_err_cost(&this_mv, &fcenter_mv, mvsadcost, sad_per_bit); \ + if (thissad < bestsad) { \ + bestsad = thissad; \ + best_site = i; \ + } \ + } \ + } + +static const MV next_chkpts[6][3] = { + { { -2, 0 }, { -1, -2 }, { 1, -2 } }, { { -1, -2 }, { 1, -2 }, { 2, 0 } }, + { { 1, -2 }, { 2, 0 }, { 1, 2 } }, { { 2, 0 }, { 1, 2 }, { -1, 2 } }, + { { 1, 2 }, { -1, 2 }, { -2, 0 } }, { { -1, 2 }, { -2, 0 }, { -1, -2 } } +}; + +int vp8_hex_search(MACROBLOCK *x, BLOCK *b, BLOCKD *d, int_mv *ref_mv, + int_mv *best_mv, int search_param, int sad_per_bit, + const vp8_variance_fn_ptr_t *vfp, int *mvsadcost[2], + int *mvcost[2], int_mv *center_mv) { + MV hex[6] = { + { -1, -2 }, { 1, -2 }, { 2, 0 }, { 1, 2 }, { -1, 2 }, { -2, 0 } + }; + MV neighbors[4] = { { 0, -1 }, { -1, 0 }, { 1, 0 }, { 0, 1 } }; + int i, j; + + unsigned char *what = (*(b->base_src) + b->src); + int what_stride = b->src_stride; + int pre_stride = x->e_mbd.pre.y_stride; + unsigned char *base_pre = x->e_mbd.pre.y_buffer; + + int in_what_stride = pre_stride; + int br, bc; + int_mv this_mv; + unsigned int bestsad; + unsigned int thissad; + unsigned char *base_offset; + unsigned char *this_offset; + int k = -1; + int all_in; + int best_site = -1; + int hex_range = 127; + int dia_range = 8; + + int_mv fcenter_mv; + fcenter_mv.as_mv.row = center_mv->as_mv.row >> 3; + fcenter_mv.as_mv.col = center_mv->as_mv.col >> 3; + + (void)mvcost; + + /* adjust ref_mv to make sure it is within MV range */ + vp8_clamp_mv(ref_mv, x->mv_col_min, x->mv_col_max, x->mv_row_min, + x->mv_row_max); + br = ref_mv->as_mv.row; + bc = ref_mv->as_mv.col; + + /* Work out the start point for the search */ + base_offset = (unsigned char *)(base_pre + d->offset); + this_offset = base_offset + (br * (pre_stride)) + bc; + this_mv.as_mv.row = br; + this_mv.as_mv.col = bc; + bestsad = vfp->sdf(what, what_stride, this_offset, in_what_stride) + + mvsad_err_cost(&this_mv, &fcenter_mv, mvsadcost, sad_per_bit); + +#if CONFIG_MULTI_RES_ENCODING + /* Lower search range based on prediction info */ + if (search_param >= 6) + goto cal_neighbors; + else if (search_param >= 5) + hex_range = 4; + else if (search_param >= 4) + hex_range = 6; + else if (search_param >= 3) + hex_range = 15; + else if (search_param >= 2) + hex_range = 31; + else if (search_param >= 1) + hex_range = 63; + + dia_range = 8; +#else + (void)search_param; +#endif + + /* hex search */ + CHECK_BOUNDS(2) + + if (all_in) { + for (i = 0; i < 6; ++i) { + this_mv.as_mv.row = br + hex[i].row; + this_mv.as_mv.col = bc + hex[i].col; + this_offset = base_offset + (this_mv.as_mv.row * in_what_stride) + + this_mv.as_mv.col; + thissad = vfp->sdf(what, what_stride, this_offset, in_what_stride); + CHECK_BETTER + } + } else { + for (i = 0; i < 6; ++i) { + this_mv.as_mv.row = br + hex[i].row; + this_mv.as_mv.col = bc + hex[i].col; + CHECK_POINT + this_offset = base_offset + (this_mv.as_mv.row * in_what_stride) + + this_mv.as_mv.col; + thissad = vfp->sdf(what, what_stride, this_offset, in_what_stride); + CHECK_BETTER + } + } + + if (best_site == -1) { + goto cal_neighbors; + } else { + br += hex[best_site].row; + bc += hex[best_site].col; + k = best_site; + } + + for (j = 1; j < hex_range; ++j) { + best_site = -1; + CHECK_BOUNDS(2) + + if (all_in) { + for (i = 0; i < 3; ++i) { + this_mv.as_mv.row = br + next_chkpts[k][i].row; + this_mv.as_mv.col = bc + next_chkpts[k][i].col; + this_offset = base_offset + (this_mv.as_mv.row * (in_what_stride)) + + this_mv.as_mv.col; + thissad = vfp->sdf(what, what_stride, this_offset, in_what_stride); + CHECK_BETTER + } + } else { + for (i = 0; i < 3; ++i) { + this_mv.as_mv.row = br + next_chkpts[k][i].row; + this_mv.as_mv.col = bc + next_chkpts[k][i].col; + CHECK_POINT + this_offset = base_offset + (this_mv.as_mv.row * (in_what_stride)) + + this_mv.as_mv.col; + thissad = vfp->sdf(what, what_stride, this_offset, in_what_stride); + CHECK_BETTER + } + } + + if (best_site == -1) { + break; + } else { + br += next_chkpts[k][best_site].row; + bc += next_chkpts[k][best_site].col; + k += 5 + best_site; + if (k >= 12) { + k -= 12; + } else if (k >= 6) { + k -= 6; + } + } + } + +/* check 4 1-away neighbors */ +cal_neighbors: + for (j = 0; j < dia_range; ++j) { + best_site = -1; + CHECK_BOUNDS(1) + + if (all_in) { + for (i = 0; i < 4; ++i) { + this_mv.as_mv.row = br + neighbors[i].row; + this_mv.as_mv.col = bc + neighbors[i].col; + this_offset = base_offset + (this_mv.as_mv.row * (in_what_stride)) + + this_mv.as_mv.col; + thissad = vfp->sdf(what, what_stride, this_offset, in_what_stride); + CHECK_BETTER + } + } else { + for (i = 0; i < 4; ++i) { + this_mv.as_mv.row = br + neighbors[i].row; + this_mv.as_mv.col = bc + neighbors[i].col; + CHECK_POINT + this_offset = base_offset + (this_mv.as_mv.row * (in_what_stride)) + + this_mv.as_mv.col; + thissad = vfp->sdf(what, what_stride, this_offset, in_what_stride); + CHECK_BETTER + } + } + + if (best_site == -1) { + break; + } else { + br += neighbors[best_site].row; + bc += neighbors[best_site].col; + } + } + + best_mv->as_mv.row = br; + best_mv->as_mv.col = bc; + + return bestsad; +} +#undef CHECK_BOUNDS +#undef CHECK_POINT +#undef CHECK_BETTER + +int vp8_diamond_search_sad_c(MACROBLOCK *x, BLOCK *b, BLOCKD *d, int_mv *ref_mv, + int_mv *best_mv, int search_param, int sad_per_bit, + int *num00, vp8_variance_fn_ptr_t *fn_ptr, + int *mvcost[2], int_mv *center_mv) { + int i, j, step; + + unsigned char *what = (*(b->base_src) + b->src); + int what_stride = b->src_stride; + unsigned char *in_what; + int pre_stride = x->e_mbd.pre.y_stride; + unsigned char *base_pre = x->e_mbd.pre.y_buffer; + int in_what_stride = pre_stride; + unsigned char *best_address; + + int tot_steps; + int_mv this_mv; + + unsigned int bestsad; + unsigned int thissad; + int best_site = 0; + int last_site = 0; + + int ref_row; + int ref_col; + int this_row_offset; + int this_col_offset; + search_site *ss; + + unsigned char *check_here; + + int *mvsadcost[2]; + int_mv fcenter_mv; + + mvsadcost[0] = x->mvsadcost[0]; + mvsadcost[1] = x->mvsadcost[1]; + fcenter_mv.as_mv.row = center_mv->as_mv.row >> 3; + fcenter_mv.as_mv.col = center_mv->as_mv.col >> 3; + + vp8_clamp_mv(ref_mv, x->mv_col_min, x->mv_col_max, x->mv_row_min, + x->mv_row_max); + ref_row = ref_mv->as_mv.row; + ref_col = ref_mv->as_mv.col; + *num00 = 0; + best_mv->as_mv.row = ref_row; + best_mv->as_mv.col = ref_col; + + /* Work out the start point for the search */ + in_what = (unsigned char *)(base_pre + d->offset + (ref_row * pre_stride) + + ref_col); + best_address = in_what; + + /* Check the starting position */ + bestsad = fn_ptr->sdf(what, what_stride, in_what, in_what_stride) + + mvsad_err_cost(best_mv, &fcenter_mv, mvsadcost, sad_per_bit); + + /* search_param determines the length of the initial step and hence + * the number of iterations 0 = initial step (MAX_FIRST_STEP) pel : + * 1 = (MAX_FIRST_STEP/2) pel, 2 = (MAX_FIRST_STEP/4) pel... etc. + */ + ss = &x->ss[search_param * x->searches_per_step]; + tot_steps = (x->ss_count / x->searches_per_step) - search_param; + + i = 1; + + for (step = 0; step < tot_steps; ++step) { + for (j = 0; j < x->searches_per_step; ++j) { + /* Trap illegal vectors */ + this_row_offset = best_mv->as_mv.row + ss[i].mv.row; + this_col_offset = best_mv->as_mv.col + ss[i].mv.col; + + if ((this_col_offset > x->mv_col_min) && + (this_col_offset < x->mv_col_max) && + (this_row_offset > x->mv_row_min) && + (this_row_offset < x->mv_row_max)) + + { + check_here = ss[i].offset + best_address; + thissad = fn_ptr->sdf(what, what_stride, check_here, in_what_stride); + + if (thissad < bestsad) { + this_mv.as_mv.row = this_row_offset; + this_mv.as_mv.col = this_col_offset; + thissad += + mvsad_err_cost(&this_mv, &fcenter_mv, mvsadcost, sad_per_bit); + + if (thissad < bestsad) { + bestsad = thissad; + best_site = i; + } + } + } + + i++; + } + + if (best_site != last_site) { + best_mv->as_mv.row += ss[best_site].mv.row; + best_mv->as_mv.col += ss[best_site].mv.col; + best_address += ss[best_site].offset; + last_site = best_site; + } else if (best_address == in_what) { + (*num00)++; + } + } + + this_mv.as_mv.row = best_mv->as_mv.row << 3; + this_mv.as_mv.col = best_mv->as_mv.col << 3; + + return fn_ptr->vf(what, what_stride, best_address, in_what_stride, &thissad) + + mv_err_cost(&this_mv, center_mv, mvcost, x->errorperbit); +} + +int vp8_diamond_search_sadx4(MACROBLOCK *x, BLOCK *b, BLOCKD *d, int_mv *ref_mv, + int_mv *best_mv, int search_param, int sad_per_bit, + int *num00, vp8_variance_fn_ptr_t *fn_ptr, + int *mvcost[2], int_mv *center_mv) { + int i, j, step; + + unsigned char *what = (*(b->base_src) + b->src); + int what_stride = b->src_stride; + unsigned char *in_what; + int pre_stride = x->e_mbd.pre.y_stride; + unsigned char *base_pre = x->e_mbd.pre.y_buffer; + int in_what_stride = pre_stride; + unsigned char *best_address; + + int tot_steps; + int_mv this_mv; + + unsigned int bestsad; + unsigned int thissad; + int best_site = 0; + int last_site = 0; + + int ref_row; + int ref_col; + int this_row_offset; + int this_col_offset; + search_site *ss; + + unsigned char *check_here; + + int *mvsadcost[2]; + int_mv fcenter_mv; + + mvsadcost[0] = x->mvsadcost[0]; + mvsadcost[1] = x->mvsadcost[1]; + fcenter_mv.as_mv.row = center_mv->as_mv.row >> 3; + fcenter_mv.as_mv.col = center_mv->as_mv.col >> 3; + + vp8_clamp_mv(ref_mv, x->mv_col_min, x->mv_col_max, x->mv_row_min, + x->mv_row_max); + ref_row = ref_mv->as_mv.row; + ref_col = ref_mv->as_mv.col; + *num00 = 0; + best_mv->as_mv.row = ref_row; + best_mv->as_mv.col = ref_col; + + /* Work out the start point for the search */ + in_what = (unsigned char *)(base_pre + d->offset + (ref_row * pre_stride) + + ref_col); + best_address = in_what; + + /* Check the starting position */ + bestsad = fn_ptr->sdf(what, what_stride, in_what, in_what_stride) + + mvsad_err_cost(best_mv, &fcenter_mv, mvsadcost, sad_per_bit); + + /* search_param determines the length of the initial step and hence the + * number of iterations 0 = initial step (MAX_FIRST_STEP) pel : 1 = + * (MAX_FIRST_STEP/2) pel, 2 = (MAX_FIRST_STEP/4) pel... etc. + */ + ss = &x->ss[search_param * x->searches_per_step]; + tot_steps = (x->ss_count / x->searches_per_step) - search_param; + + i = 1; + + for (step = 0; step < tot_steps; ++step) { + int all_in = 1, t; + + /* To know if all neighbor points are within the bounds, 4 bounds + * checking are enough instead of checking 4 bounds for each + * points. + */ + all_in &= ((best_mv->as_mv.row + ss[i].mv.row) > x->mv_row_min); + all_in &= ((best_mv->as_mv.row + ss[i + 1].mv.row) < x->mv_row_max); + all_in &= ((best_mv->as_mv.col + ss[i + 2].mv.col) > x->mv_col_min); + all_in &= ((best_mv->as_mv.col + ss[i + 3].mv.col) < x->mv_col_max); + + if (all_in) { + unsigned int sad_array[4]; + + for (j = 0; j < x->searches_per_step; j += 4) { + const unsigned char *block_offset[4]; + + for (t = 0; t < 4; ++t) { + block_offset[t] = ss[i + t].offset + best_address; + } + + fn_ptr->sdx4df(what, what_stride, block_offset, in_what_stride, + sad_array); + + for (t = 0; t < 4; t++, i++) { + if (sad_array[t] < bestsad) { + this_mv.as_mv.row = best_mv->as_mv.row + ss[i].mv.row; + this_mv.as_mv.col = best_mv->as_mv.col + ss[i].mv.col; + sad_array[t] += + mvsad_err_cost(&this_mv, &fcenter_mv, mvsadcost, sad_per_bit); + + if (sad_array[t] < bestsad) { + bestsad = sad_array[t]; + best_site = i; + } + } + } + } + } else { + for (j = 0; j < x->searches_per_step; ++j) { + /* Trap illegal vectors */ + this_row_offset = best_mv->as_mv.row + ss[i].mv.row; + this_col_offset = best_mv->as_mv.col + ss[i].mv.col; + + if ((this_col_offset > x->mv_col_min) && + (this_col_offset < x->mv_col_max) && + (this_row_offset > x->mv_row_min) && + (this_row_offset < x->mv_row_max)) { + check_here = ss[i].offset + best_address; + thissad = fn_ptr->sdf(what, what_stride, check_here, in_what_stride); + + if (thissad < bestsad) { + this_mv.as_mv.row = this_row_offset; + this_mv.as_mv.col = this_col_offset; + thissad += + mvsad_err_cost(&this_mv, &fcenter_mv, mvsadcost, sad_per_bit); + + if (thissad < bestsad) { + bestsad = thissad; + best_site = i; + } + } + } + i++; + } + } + + if (best_site != last_site) { + best_mv->as_mv.row += ss[best_site].mv.row; + best_mv->as_mv.col += ss[best_site].mv.col; + best_address += ss[best_site].offset; + last_site = best_site; + } else if (best_address == in_what) { + (*num00)++; + } + } + + this_mv.as_mv.row = best_mv->as_mv.row * 8; + this_mv.as_mv.col = best_mv->as_mv.col * 8; + + return fn_ptr->vf(what, what_stride, best_address, in_what_stride, &thissad) + + mv_err_cost(&this_mv, center_mv, mvcost, x->errorperbit); +} + +int vp8_full_search_sad_c(MACROBLOCK *x, BLOCK *b, BLOCKD *d, int_mv *ref_mv, + int sad_per_bit, int distance, + vp8_variance_fn_ptr_t *fn_ptr, int *mvcost[2], + int_mv *center_mv) { + unsigned char *what = (*(b->base_src) + b->src); + int what_stride = b->src_stride; + unsigned char *in_what; + int pre_stride = x->e_mbd.pre.y_stride; + unsigned char *base_pre = x->e_mbd.pre.y_buffer; + int in_what_stride = pre_stride; + int mv_stride = pre_stride; + unsigned char *bestaddress; + int_mv *best_mv = &d->bmi.mv; + int_mv this_mv; + unsigned int bestsad; + unsigned int thissad; + int r, c; + + unsigned char *check_here; + + int ref_row = ref_mv->as_mv.row; + int ref_col = ref_mv->as_mv.col; + + int row_min = ref_row - distance; + int row_max = ref_row + distance; + int col_min = ref_col - distance; + int col_max = ref_col + distance; + + int *mvsadcost[2]; + int_mv fcenter_mv; + + mvsadcost[0] = x->mvsadcost[0]; + mvsadcost[1] = x->mvsadcost[1]; + fcenter_mv.as_mv.row = center_mv->as_mv.row >> 3; + fcenter_mv.as_mv.col = center_mv->as_mv.col >> 3; + + /* Work out the mid point for the search */ + in_what = base_pre + d->offset; + bestaddress = in_what + (ref_row * pre_stride) + ref_col; + + best_mv->as_mv.row = ref_row; + best_mv->as_mv.col = ref_col; + + /* Baseline value at the centre */ + bestsad = fn_ptr->sdf(what, what_stride, bestaddress, in_what_stride) + + mvsad_err_cost(best_mv, &fcenter_mv, mvsadcost, sad_per_bit); + + /* Apply further limits to prevent us looking using vectors that + * stretch beyiond the UMV border + */ + if (col_min < x->mv_col_min) col_min = x->mv_col_min; + + if (col_max > x->mv_col_max) col_max = x->mv_col_max; + + if (row_min < x->mv_row_min) row_min = x->mv_row_min; + + if (row_max > x->mv_row_max) row_max = x->mv_row_max; + + for (r = row_min; r < row_max; ++r) { + this_mv.as_mv.row = r; + check_here = r * mv_stride + in_what + col_min; + + for (c = col_min; c < col_max; ++c) { + thissad = fn_ptr->sdf(what, what_stride, check_here, in_what_stride); + + this_mv.as_mv.col = c; + thissad += mvsad_err_cost(&this_mv, &fcenter_mv, mvsadcost, sad_per_bit); + + if (thissad < bestsad) { + bestsad = thissad; + best_mv->as_mv.row = r; + best_mv->as_mv.col = c; + bestaddress = check_here; + } + + check_here++; + } + } + + this_mv.as_mv.row = best_mv->as_mv.row << 3; + this_mv.as_mv.col = best_mv->as_mv.col << 3; + + return fn_ptr->vf(what, what_stride, bestaddress, in_what_stride, &thissad) + + mv_err_cost(&this_mv, center_mv, mvcost, x->errorperbit); +} + +int vp8_full_search_sadx3(MACROBLOCK *x, BLOCK *b, BLOCKD *d, int_mv *ref_mv, + int sad_per_bit, int distance, + vp8_variance_fn_ptr_t *fn_ptr, int *mvcost[2], + int_mv *center_mv) { + unsigned char *what = (*(b->base_src) + b->src); + int what_stride = b->src_stride; + unsigned char *in_what; + int pre_stride = x->e_mbd.pre.y_stride; + unsigned char *base_pre = x->e_mbd.pre.y_buffer; + int in_what_stride = pre_stride; + int mv_stride = pre_stride; + unsigned char *bestaddress; + int_mv *best_mv = &d->bmi.mv; + int_mv this_mv; + unsigned int bestsad; + unsigned int thissad; + int r, c; + + unsigned char *check_here; + + int ref_row = ref_mv->as_mv.row; + int ref_col = ref_mv->as_mv.col; + + int row_min = ref_row - distance; + int row_max = ref_row + distance; + int col_min = ref_col - distance; + int col_max = ref_col + distance; + + unsigned int sad_array[3]; + + int *mvsadcost[2]; + int_mv fcenter_mv; + + mvsadcost[0] = x->mvsadcost[0]; + mvsadcost[1] = x->mvsadcost[1]; + fcenter_mv.as_mv.row = center_mv->as_mv.row >> 3; + fcenter_mv.as_mv.col = center_mv->as_mv.col >> 3; + + /* Work out the mid point for the search */ + in_what = base_pre + d->offset; + bestaddress = in_what + (ref_row * pre_stride) + ref_col; + + best_mv->as_mv.row = ref_row; + best_mv->as_mv.col = ref_col; + + /* Baseline value at the centre */ + bestsad = fn_ptr->sdf(what, what_stride, bestaddress, in_what_stride) + + mvsad_err_cost(best_mv, &fcenter_mv, mvsadcost, sad_per_bit); + + /* Apply further limits to prevent us looking using vectors that stretch + * beyond the UMV border + */ + if (col_min < x->mv_col_min) col_min = x->mv_col_min; + + if (col_max > x->mv_col_max) col_max = x->mv_col_max; + + if (row_min < x->mv_row_min) row_min = x->mv_row_min; + + if (row_max > x->mv_row_max) row_max = x->mv_row_max; + + for (r = row_min; r < row_max; ++r) { + this_mv.as_mv.row = r; + check_here = r * mv_stride + in_what + col_min; + c = col_min; + + while ((c + 2) < col_max) { + int i; + + fn_ptr->sdx3f(what, what_stride, check_here, in_what_stride, sad_array); + + for (i = 0; i < 3; ++i) { + thissad = sad_array[i]; + + if (thissad < bestsad) { + this_mv.as_mv.col = c; + thissad += + mvsad_err_cost(&this_mv, &fcenter_mv, mvsadcost, sad_per_bit); + + if (thissad < bestsad) { + bestsad = thissad; + best_mv->as_mv.row = r; + best_mv->as_mv.col = c; + bestaddress = check_here; + } + } + + check_here++; + c++; + } + } + + while (c < col_max) { + thissad = fn_ptr->sdf(what, what_stride, check_here, in_what_stride); + + if (thissad < bestsad) { + this_mv.as_mv.col = c; + thissad += + mvsad_err_cost(&this_mv, &fcenter_mv, mvsadcost, sad_per_bit); + + if (thissad < bestsad) { + bestsad = thissad; + best_mv->as_mv.row = r; + best_mv->as_mv.col = c; + bestaddress = check_here; + } + } + + check_here++; + c++; + } + } + + this_mv.as_mv.row = best_mv->as_mv.row << 3; + this_mv.as_mv.col = best_mv->as_mv.col << 3; + + return fn_ptr->vf(what, what_stride, bestaddress, in_what_stride, &thissad) + + mv_err_cost(&this_mv, center_mv, mvcost, x->errorperbit); +} + +int vp8_full_search_sadx8(MACROBLOCK *x, BLOCK *b, BLOCKD *d, int_mv *ref_mv, + int sad_per_bit, int distance, + vp8_variance_fn_ptr_t *fn_ptr, int *mvcost[2], + int_mv *center_mv) { + unsigned char *what = (*(b->base_src) + b->src); + int what_stride = b->src_stride; + int pre_stride = x->e_mbd.pre.y_stride; + unsigned char *base_pre = x->e_mbd.pre.y_buffer; + unsigned char *in_what; + int in_what_stride = pre_stride; + int mv_stride = pre_stride; + unsigned char *bestaddress; + int_mv *best_mv = &d->bmi.mv; + int_mv this_mv; + unsigned int bestsad; + unsigned int thissad; + int r, c; + + unsigned char *check_here; + + int ref_row = ref_mv->as_mv.row; + int ref_col = ref_mv->as_mv.col; + + int row_min = ref_row - distance; + int row_max = ref_row + distance; + int col_min = ref_col - distance; + int col_max = ref_col + distance; + + DECLARE_ALIGNED(16, unsigned int, sad_array8[8]); + unsigned int sad_array[3]; + + int *mvsadcost[2]; + int_mv fcenter_mv; + + mvsadcost[0] = x->mvsadcost[0]; + mvsadcost[1] = x->mvsadcost[1]; + fcenter_mv.as_mv.row = center_mv->as_mv.row >> 3; + fcenter_mv.as_mv.col = center_mv->as_mv.col >> 3; + + /* Work out the mid point for the search */ + in_what = base_pre + d->offset; + bestaddress = in_what + (ref_row * pre_stride) + ref_col; + + best_mv->as_mv.row = ref_row; + best_mv->as_mv.col = ref_col; + + /* Baseline value at the centre */ + bestsad = fn_ptr->sdf(what, what_stride, bestaddress, in_what_stride) + + mvsad_err_cost(best_mv, &fcenter_mv, mvsadcost, sad_per_bit); + + /* Apply further limits to prevent us looking using vectors that stretch + * beyond the UMV border + */ + if (col_min < x->mv_col_min) col_min = x->mv_col_min; + + if (col_max > x->mv_col_max) col_max = x->mv_col_max; + + if (row_min < x->mv_row_min) row_min = x->mv_row_min; + + if (row_max > x->mv_row_max) row_max = x->mv_row_max; + + for (r = row_min; r < row_max; ++r) { + this_mv.as_mv.row = r; + check_here = r * mv_stride + in_what + col_min; + c = col_min; + + while ((c + 7) < col_max) { + int i; + + fn_ptr->sdx8f(what, what_stride, check_here, in_what_stride, sad_array8); + + for (i = 0; i < 8; ++i) { + thissad = sad_array8[i]; + + if (thissad < bestsad) { + this_mv.as_mv.col = c; + thissad += + mvsad_err_cost(&this_mv, &fcenter_mv, mvsadcost, sad_per_bit); + + if (thissad < bestsad) { + bestsad = thissad; + best_mv->as_mv.row = r; + best_mv->as_mv.col = c; + bestaddress = check_here; + } + } + + check_here++; + c++; + } + } + + while ((c + 2) < col_max) { + int i; + + fn_ptr->sdx3f(what, what_stride, check_here, in_what_stride, sad_array); + + for (i = 0; i < 3; ++i) { + thissad = sad_array[i]; + + if (thissad < bestsad) { + this_mv.as_mv.col = c; + thissad += + mvsad_err_cost(&this_mv, &fcenter_mv, mvsadcost, sad_per_bit); + + if (thissad < bestsad) { + bestsad = thissad; + best_mv->as_mv.row = r; + best_mv->as_mv.col = c; + bestaddress = check_here; + } + } + + check_here++; + c++; + } + } + + while (c < col_max) { + thissad = fn_ptr->sdf(what, what_stride, check_here, in_what_stride); + + if (thissad < bestsad) { + this_mv.as_mv.col = c; + thissad += + mvsad_err_cost(&this_mv, &fcenter_mv, mvsadcost, sad_per_bit); + + if (thissad < bestsad) { + bestsad = thissad; + best_mv->as_mv.row = r; + best_mv->as_mv.col = c; + bestaddress = check_here; + } + } + + check_here++; + c++; + } + } + + this_mv.as_mv.row = best_mv->as_mv.row * 8; + this_mv.as_mv.col = best_mv->as_mv.col * 8; + + return fn_ptr->vf(what, what_stride, bestaddress, in_what_stride, &thissad) + + mv_err_cost(&this_mv, center_mv, mvcost, x->errorperbit); +} + +int vp8_refining_search_sad_c(MACROBLOCK *x, BLOCK *b, BLOCKD *d, + int_mv *ref_mv, int error_per_bit, + int search_range, vp8_variance_fn_ptr_t *fn_ptr, + int *mvcost[2], int_mv *center_mv) { + MV neighbors[4] = { { -1, 0 }, { 0, -1 }, { 0, 1 }, { 1, 0 } }; + int i, j; + short this_row_offset, this_col_offset; + + int what_stride = b->src_stride; + int pre_stride = x->e_mbd.pre.y_stride; + unsigned char *base_pre = x->e_mbd.pre.y_buffer; + int in_what_stride = pre_stride; + unsigned char *what = (*(b->base_src) + b->src); + unsigned char *best_address = + (unsigned char *)(base_pre + d->offset + + (ref_mv->as_mv.row * pre_stride) + ref_mv->as_mv.col); + unsigned char *check_here; + int_mv this_mv; + unsigned int bestsad; + unsigned int thissad; + + int *mvsadcost[2]; + int_mv fcenter_mv; + + mvsadcost[0] = x->mvsadcost[0]; + mvsadcost[1] = x->mvsadcost[1]; + fcenter_mv.as_mv.row = center_mv->as_mv.row >> 3; + fcenter_mv.as_mv.col = center_mv->as_mv.col >> 3; + + bestsad = fn_ptr->sdf(what, what_stride, best_address, in_what_stride) + + mvsad_err_cost(ref_mv, &fcenter_mv, mvsadcost, error_per_bit); + + for (i = 0; i < search_range; ++i) { + int best_site = -1; + + for (j = 0; j < 4; ++j) { + this_row_offset = ref_mv->as_mv.row + neighbors[j].row; + this_col_offset = ref_mv->as_mv.col + neighbors[j].col; + + if ((this_col_offset > x->mv_col_min) && + (this_col_offset < x->mv_col_max) && + (this_row_offset > x->mv_row_min) && + (this_row_offset < x->mv_row_max)) { + check_here = (neighbors[j].row) * in_what_stride + neighbors[j].col + + best_address; + thissad = fn_ptr->sdf(what, what_stride, check_here, in_what_stride); + + if (thissad < bestsad) { + this_mv.as_mv.row = this_row_offset; + this_mv.as_mv.col = this_col_offset; + thissad += + mvsad_err_cost(&this_mv, &fcenter_mv, mvsadcost, error_per_bit); + + if (thissad < bestsad) { + bestsad = thissad; + best_site = j; + } + } + } + } + + if (best_site == -1) { + break; + } else { + ref_mv->as_mv.row += neighbors[best_site].row; + ref_mv->as_mv.col += neighbors[best_site].col; + best_address += (neighbors[best_site].row) * in_what_stride + + neighbors[best_site].col; + } + } + + this_mv.as_mv.row = ref_mv->as_mv.row << 3; + this_mv.as_mv.col = ref_mv->as_mv.col << 3; + + return fn_ptr->vf(what, what_stride, best_address, in_what_stride, &thissad) + + mv_err_cost(&this_mv, center_mv, mvcost, x->errorperbit); +} + +int vp8_refining_search_sadx4(MACROBLOCK *x, BLOCK *b, BLOCKD *d, + int_mv *ref_mv, int error_per_bit, + int search_range, vp8_variance_fn_ptr_t *fn_ptr, + int *mvcost[2], int_mv *center_mv) { + MV neighbors[4] = { { -1, 0 }, { 0, -1 }, { 0, 1 }, { 1, 0 } }; + int i, j; + short this_row_offset, this_col_offset; + + int what_stride = b->src_stride; + int pre_stride = x->e_mbd.pre.y_stride; + unsigned char *base_pre = x->e_mbd.pre.y_buffer; + int in_what_stride = pre_stride; + unsigned char *what = (*(b->base_src) + b->src); + unsigned char *best_address = + (unsigned char *)(base_pre + d->offset + + (ref_mv->as_mv.row * pre_stride) + ref_mv->as_mv.col); + unsigned char *check_here; + int_mv this_mv; + unsigned int bestsad; + unsigned int thissad; + + int *mvsadcost[2]; + int_mv fcenter_mv; + + mvsadcost[0] = x->mvsadcost[0]; + mvsadcost[1] = x->mvsadcost[1]; + fcenter_mv.as_mv.row = center_mv->as_mv.row >> 3; + fcenter_mv.as_mv.col = center_mv->as_mv.col >> 3; + + bestsad = fn_ptr->sdf(what, what_stride, best_address, in_what_stride) + + mvsad_err_cost(ref_mv, &fcenter_mv, mvsadcost, error_per_bit); + + for (i = 0; i < search_range; ++i) { + int best_site = -1; + int all_in = 1; + + all_in &= ((ref_mv->as_mv.row - 1) > x->mv_row_min); + all_in &= ((ref_mv->as_mv.row + 1) < x->mv_row_max); + all_in &= ((ref_mv->as_mv.col - 1) > x->mv_col_min); + all_in &= ((ref_mv->as_mv.col + 1) < x->mv_col_max); + + if (all_in) { + unsigned int sad_array[4]; + const unsigned char *block_offset[4]; + block_offset[0] = best_address - in_what_stride; + block_offset[1] = best_address - 1; + block_offset[2] = best_address + 1; + block_offset[3] = best_address + in_what_stride; + + fn_ptr->sdx4df(what, what_stride, block_offset, in_what_stride, + sad_array); + + for (j = 0; j < 4; ++j) { + if (sad_array[j] < bestsad) { + this_mv.as_mv.row = ref_mv->as_mv.row + neighbors[j].row; + this_mv.as_mv.col = ref_mv->as_mv.col + neighbors[j].col; + sad_array[j] += + mvsad_err_cost(&this_mv, &fcenter_mv, mvsadcost, error_per_bit); + + if (sad_array[j] < bestsad) { + bestsad = sad_array[j]; + best_site = j; + } + } + } + } else { + for (j = 0; j < 4; ++j) { + this_row_offset = ref_mv->as_mv.row + neighbors[j].row; + this_col_offset = ref_mv->as_mv.col + neighbors[j].col; + + if ((this_col_offset > x->mv_col_min) && + (this_col_offset < x->mv_col_max) && + (this_row_offset > x->mv_row_min) && + (this_row_offset < x->mv_row_max)) { + check_here = (neighbors[j].row) * in_what_stride + neighbors[j].col + + best_address; + thissad = fn_ptr->sdf(what, what_stride, check_here, in_what_stride); + + if (thissad < bestsad) { + this_mv.as_mv.row = this_row_offset; + this_mv.as_mv.col = this_col_offset; + thissad += + mvsad_err_cost(&this_mv, &fcenter_mv, mvsadcost, error_per_bit); + + if (thissad < bestsad) { + bestsad = thissad; + best_site = j; + } + } + } + } + } + + if (best_site == -1) { + break; + } else { + ref_mv->as_mv.row += neighbors[best_site].row; + ref_mv->as_mv.col += neighbors[best_site].col; + best_address += (neighbors[best_site].row) * in_what_stride + + neighbors[best_site].col; + } + } + + this_mv.as_mv.row = ref_mv->as_mv.row * 8; + this_mv.as_mv.col = ref_mv->as_mv.col * 8; + + return fn_ptr->vf(what, what_stride, best_address, in_what_stride, &thissad) + + mv_err_cost(&this_mv, center_mv, mvcost, x->errorperbit); +} + +#ifdef VP8_ENTROPY_STATS +void print_mode_context(void) { + FILE *f = fopen("modecont.c", "w"); + int i, j; + + fprintf(f, "#include \"entropy.h\"\n"); + fprintf(f, "const int vp8_mode_contexts[6][4] =\n"); + fprintf(f, "{\n"); + + for (j = 0; j < 6; ++j) { + fprintf(f, " { /* %d */\n", j); + fprintf(f, " "); + + for (i = 0; i < 4; ++i) { + int overal_prob; + int this_prob; + int count; + + /* Overall probs */ + count = mv_mode_cts[i][0] + mv_mode_cts[i][1]; + + if (count) + overal_prob = 256 * mv_mode_cts[i][0] / count; + else + overal_prob = 128; + + if (overal_prob == 0) overal_prob = 1; + + /* context probs */ + count = mv_ref_ct[j][i][0] + mv_ref_ct[j][i][1]; + + if (count) + this_prob = 256 * mv_ref_ct[j][i][0] / count; + else + this_prob = 128; + + if (this_prob == 0) this_prob = 1; + + fprintf(f, "%5d, ", this_prob); + } + + fprintf(f, " },\n"); + } + + fprintf(f, "};\n"); + fclose(f); +} + +/* MV ref count VP8_ENTROPY_STATS stats code */ +#ifdef VP8_ENTROPY_STATS +void init_mv_ref_counts() { + memset(mv_ref_ct, 0, sizeof(mv_ref_ct)); + memset(mv_mode_cts, 0, sizeof(mv_mode_cts)); +} + +void accum_mv_refs(MB_PREDICTION_MODE m, const int ct[4]) { + if (m == ZEROMV) { + ++mv_ref_ct[ct[0]][0][0]; + ++mv_mode_cts[0][0]; + } else { + ++mv_ref_ct[ct[0]][0][1]; + ++mv_mode_cts[0][1]; + + if (m == NEARESTMV) { + ++mv_ref_ct[ct[1]][1][0]; + ++mv_mode_cts[1][0]; + } else { + ++mv_ref_ct[ct[1]][1][1]; + ++mv_mode_cts[1][1]; + + if (m == NEARMV) { + ++mv_ref_ct[ct[2]][2][0]; + ++mv_mode_cts[2][0]; + } else { + ++mv_ref_ct[ct[2]][2][1]; + ++mv_mode_cts[2][1]; + + if (m == NEWMV) { + ++mv_ref_ct[ct[3]][3][0]; + ++mv_mode_cts[3][0]; + } else { + ++mv_ref_ct[ct[3]][3][1]; + ++mv_mode_cts[3][1]; + } + } + } + } +} + +#endif /* END MV ref count VP8_ENTROPY_STATS stats code */ + +#endif diff --git a/vp8/encoder/mcomp.h b/vp8/encoder/mcomp.h new file mode 100644 index 0000000..b622879 --- /dev/null +++ b/vp8/encoder/mcomp.h @@ -0,0 +1,81 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP8_ENCODER_MCOMP_H_ +#define VP8_ENCODER_MCOMP_H_ + +#include "block.h" +#include "vpx_dsp/variance.h" + +#ifdef __cplusplus +extern "C" { +#endif + +#ifdef VP8_ENTROPY_STATS +extern void init_mv_ref_counts(); +extern void accum_mv_refs(MB_PREDICTION_MODE, const int near_mv_ref_cts[4]); +#endif + +/* The maximum number of steps in a step search given the largest allowed + * initial step + */ +#define MAX_MVSEARCH_STEPS 8 + +/* Max full pel mv specified in 1 pel units */ +#define MAX_FULL_PEL_VAL ((1 << (MAX_MVSEARCH_STEPS)) - 1) + +/* Maximum size of the first step in full pel units */ +#define MAX_FIRST_STEP (1 << (MAX_MVSEARCH_STEPS - 1)) + +extern void print_mode_context(void); +extern int vp8_mv_bit_cost(int_mv *mv, int_mv *ref, int *mvcost[2], int Weight); +extern void vp8_init_dsmotion_compensation(MACROBLOCK *x, int stride); +extern void vp8_init3smotion_compensation(MACROBLOCK *x, int stride); + +extern int vp8_hex_search(MACROBLOCK *x, BLOCK *b, BLOCKD *d, int_mv *ref_mv, + int_mv *best_mv, int search_param, int error_per_bit, + const vp8_variance_fn_ptr_t *vf, int *mvsadcost[2], + int *mvcost[2], int_mv *center_mv); + +typedef int(fractional_mv_step_fp)(MACROBLOCK *x, BLOCK *b, BLOCKD *d, + int_mv *bestmv, int_mv *ref_mv, + int error_per_bit, + const vp8_variance_fn_ptr_t *vfp, + int *mvcost[2], int *distortion, + unsigned int *sse); + +extern fractional_mv_step_fp vp8_find_best_sub_pixel_step_iteratively; +extern fractional_mv_step_fp vp8_find_best_sub_pixel_step; +extern fractional_mv_step_fp vp8_find_best_half_pixel_step; +extern fractional_mv_step_fp vp8_skip_fractional_mv_step; + +typedef int (*vp8_full_search_fn_t)(MACROBLOCK *x, BLOCK *b, BLOCKD *d, + int_mv *ref_mv, int sad_per_bit, + int distance, vp8_variance_fn_ptr_t *fn_ptr, + int *mvcost[2], int_mv *center_mv); + +typedef int (*vp8_refining_search_fn_t)(MACROBLOCK *x, BLOCK *b, BLOCKD *d, + int_mv *ref_mv, int sad_per_bit, + int distance, + vp8_variance_fn_ptr_t *fn_ptr, + int *mvcost[2], int_mv *center_mv); + +typedef int (*vp8_diamond_search_fn_t)(MACROBLOCK *x, BLOCK *b, BLOCKD *d, + int_mv *ref_mv, int_mv *best_mv, + int search_param, int sad_per_bit, + int *num00, + vp8_variance_fn_ptr_t *fn_ptr, + int *mvcost[2], int_mv *center_mv); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP8_ENCODER_MCOMP_H_ diff --git a/vp8/encoder/mips/mmi/dct_mmi.c b/vp8/encoder/mips/mmi/dct_mmi.c new file mode 100644 index 0000000..1f60a69 --- /dev/null +++ b/vp8/encoder/mips/mmi/dct_mmi.c @@ -0,0 +1,425 @@ +/* + * Copyright (c) 2017 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "./vp8_rtcd.h" +#include "vpx_ports/mem.h" +#include "vpx_ports/asmdefs_mmi.h" + +/* clang-format off */ +/* TRANSPOSE_4H: transpose 4x4 matrix. + Input: ftmp1,ftmp2,ftmp3,ftmp4 + Output: ftmp1,ftmp2,ftmp3,ftmp4 + Note: ftmp0 always be 0, ftmp5~9 used for temporary value. + */ +#define TRANSPOSE_4H \ + MMI_LI(%[tmp0], 0x93) \ + "mtc1 %[tmp0], %[ftmp10] \n\t" \ + "punpcklhw %[ftmp5], %[ftmp1], %[ftmp0] \n\t" \ + "punpcklhw %[ftmp9], %[ftmp2], %[ftmp0] \n\t" \ + "pshufh %[ftmp9], %[ftmp9], %[ftmp10] \n\t" \ + "or %[ftmp5], %[ftmp5], %[ftmp9] \n\t" \ + "punpckhhw %[ftmp6], %[ftmp1], %[ftmp0] \n\t" \ + "punpckhhw %[ftmp9], %[ftmp2], %[ftmp0] \n\t" \ + "pshufh %[ftmp9], %[ftmp9], %[ftmp10] \n\t" \ + "or %[ftmp6], %[ftmp6], %[ftmp9] \n\t" \ + "punpcklhw %[ftmp7], %[ftmp3], %[ftmp0] \n\t" \ + "punpcklhw %[ftmp9], %[ftmp4], %[ftmp0] \n\t" \ + "pshufh %[ftmp9], %[ftmp9], %[ftmp10] \n\t" \ + "or %[ftmp7], %[ftmp7], %[ftmp9] \n\t" \ + "punpckhhw %[ftmp8], %[ftmp3], %[ftmp0] \n\t" \ + "punpckhhw %[ftmp9], %[ftmp4], %[ftmp0] \n\t" \ + "pshufh %[ftmp9], %[ftmp9], %[ftmp10] \n\t" \ + "or %[ftmp8], %[ftmp8], %[ftmp9] \n\t" \ + "punpcklwd %[ftmp1], %[ftmp5], %[ftmp7] \n\t" \ + "punpckhwd %[ftmp2], %[ftmp5], %[ftmp7] \n\t" \ + "punpcklwd %[ftmp3], %[ftmp6], %[ftmp8] \n\t" \ + "punpckhwd %[ftmp4], %[ftmp6], %[ftmp8] \n\t" +/* clang-format on */ + +void vp8_short_fdct4x4_mmi(int16_t *input, int16_t *output, int pitch) { + uint64_t tmp[1]; + int16_t *ip = input; + +#if _MIPS_SIM == _ABIO32 + register double ftmp0 asm("$f0"); + register double ftmp1 asm("$f2"); + register double ftmp2 asm("$f4"); + register double ftmp3 asm("$f6"); + register double ftmp4 asm("$f8"); + register double ftmp5 asm("$f10"); + register double ftmp6 asm("$f12"); + register double ftmp7 asm("$f14"); + register double ftmp8 asm("$f16"); + register double ftmp9 asm("$f18"); + register double ftmp10 asm("$f20"); + register double ftmp11 asm("$f22"); + register double ftmp12 asm("$f24"); +#else + register double ftmp0 asm("$f0"); + register double ftmp1 asm("$f1"); + register double ftmp2 asm("$f2"); + register double ftmp3 asm("$f3"); + register double ftmp4 asm("$f4"); + register double ftmp5 asm("$f5"); + register double ftmp6 asm("$f6"); + register double ftmp7 asm("$f7"); + register double ftmp8 asm("$f8"); + register double ftmp9 asm("$f9"); + register double ftmp10 asm("$f10"); + register double ftmp11 asm("$f11"); + register double ftmp12 asm("$f12"); +#endif // _MIPS_SIM == _ABIO32 + + DECLARE_ALIGNED(8, const uint64_t, ff_ph_01) = { 0x0001000100010001ULL }; + DECLARE_ALIGNED(8, const uint64_t, ff_ph_07) = { 0x0007000700070007ULL }; + DECLARE_ALIGNED(8, const uint64_t, ff_pw_12000) = { 0x00002ee000002ee0ULL }; + DECLARE_ALIGNED(8, const uint64_t, ff_pw_51000) = { 0x0000c7380000c738ULL }; + DECLARE_ALIGNED(8, const uint64_t, ff_pw_14500) = { 0x000038a4000038a4ULL }; + DECLARE_ALIGNED(8, const uint64_t, ff_pw_7500) = { 0x00001d4c00001d4cULL }; + DECLARE_ALIGNED(8, const uint64_t, ff_ph_op1) = { 0x14e808a914e808a9ULL }; + DECLARE_ALIGNED(8, const uint64_t, ff_ph_op3) = { 0xeb1808a9eb1808a9ULL }; + DECLARE_ALIGNED(8, const uint64_t, ff_pw_5352) = { 0x000014e8000014e8ULL }; + DECLARE_ALIGNED(8, const uint64_t, ff_pw_2217) = { 0x000008a9000008a9ULL }; + DECLARE_ALIGNED(8, const uint64_t, ff_ph_8) = { 0x0008000800080008ULL }; + + __asm__ volatile ( + "xor %[ftmp0], %[ftmp0], %[ftmp0] \n\t" + "gsldlc1 %[ftmp1], 0x07(%[ip]) \n\t" + "gsldrc1 %[ftmp1], 0x00(%[ip]) \n\t" + MMI_ADDU(%[ip], %[ip], %[pitch]) + "gsldlc1 %[ftmp2], 0x07(%[ip]) \n\t" + "gsldrc1 %[ftmp2], 0x00(%[ip]) \n\t" + MMI_ADDU(%[ip], %[ip], %[pitch]) + "gsldlc1 %[ftmp3], 0x07(%[ip]) \n\t" + "gsldrc1 %[ftmp3], 0x00(%[ip]) \n\t" + MMI_ADDU(%[ip], %[ip], %[pitch]) + "gsldlc1 %[ftmp4], 0x07(%[ip]) \n\t" + "gsldrc1 %[ftmp4], 0x00(%[ip]) \n\t" + MMI_ADDU(%[ip], %[ip], %[pitch]) + TRANSPOSE_4H + + "ldc1 %[ftmp11], %[ff_ph_8] \n\t" + // f1 + f4 + "paddh %[ftmp5], %[ftmp1], %[ftmp4] \n\t" + // a1 + "pmullh %[ftmp5], %[ftmp5], %[ftmp11] \n\t" + // f2 + f3 + "paddh %[ftmp6], %[ftmp2], %[ftmp3] \n\t" + // b1 + "pmullh %[ftmp6], %[ftmp6], %[ftmp11] \n\t" + // f2 - f3 + "psubh %[ftmp7], %[ftmp2], %[ftmp3] \n\t" + // c1 + "pmullh %[ftmp7], %[ftmp7], %[ftmp11] \n\t" + // f1 - f4 + "psubh %[ftmp8], %[ftmp1], %[ftmp4] \n\t" + // d1 + "pmullh %[ftmp8], %[ftmp8], %[ftmp11] \n\t" + // op[0] = a1 + b1 + "paddh %[ftmp1], %[ftmp5], %[ftmp6] \n\t" + // op[2] = a1 - b1 + "psubh %[ftmp3], %[ftmp5], %[ftmp6] \n\t" + + // op[1] = (c1 * 2217 + d1 * 5352 + 14500) >> 12 + MMI_LI(%[tmp0], 0x0c) + "mtc1 %[tmp0], %[ftmp11] \n\t" + "ldc1 %[ftmp12], %[ff_pw_14500] \n\t" + "punpcklhw %[ftmp9], %[ftmp7], %[ftmp8] \n\t" + "pmaddhw %[ftmp5], %[ftmp9], %[ff_ph_op1] \n\t" + "punpckhhw %[ftmp9], %[ftmp7], %[ftmp8] \n\t" + "pmaddhw %[ftmp6], %[ftmp9], %[ff_ph_op1] \n\t" + "paddw %[ftmp5], %[ftmp5], %[ftmp12] \n\t" + "paddw %[ftmp6], %[ftmp6], %[ftmp12] \n\t" + "psraw %[ftmp5], %[ftmp5], %[ftmp11] \n\t" + "psraw %[ftmp6], %[ftmp6], %[ftmp11] \n\t" + "packsswh %[ftmp2], %[ftmp5], %[ftmp6] \n\t" + + // op[3] = (d1 * 2217 - c1 * 5352 + 7500) >> 12 + "ldc1 %[ftmp12], %[ff_pw_7500] \n\t" + "punpcklhw %[ftmp9], %[ftmp8], %[ftmp7] \n\t" + "pmaddhw %[ftmp5], %[ftmp9], %[ff_ph_op3] \n\t" + "punpckhhw %[ftmp9], %[ftmp8], %[ftmp7] \n\t" + "pmaddhw %[ftmp6], %[ftmp9], %[ff_ph_op3] \n\t" + "paddw %[ftmp5], %[ftmp5], %[ftmp12] \n\t" + "paddw %[ftmp6], %[ftmp6], %[ftmp12] \n\t" + "psraw %[ftmp5], %[ftmp5], %[ftmp11] \n\t" + "psraw %[ftmp6], %[ftmp6], %[ftmp11] \n\t" + "packsswh %[ftmp4], %[ftmp5], %[ftmp6] \n\t" + TRANSPOSE_4H + + "paddh %[ftmp5], %[ftmp1], %[ftmp4] \n\t" + "paddh %[ftmp6], %[ftmp2], %[ftmp3] \n\t" + "psubh %[ftmp7], %[ftmp2], %[ftmp3] \n\t" + "psubh %[ftmp8], %[ftmp1], %[ftmp4] \n\t" + + "pcmpeqh %[ftmp0], %[ftmp8], %[ftmp0] \n\t" + "ldc1 %[ftmp9], %[ff_ph_01] \n\t" + "paddh %[ftmp0], %[ftmp0], %[ftmp9] \n\t" + + "paddh %[ftmp1], %[ftmp5], %[ftmp6] \n\t" + "psubh %[ftmp2], %[ftmp5], %[ftmp6] \n\t" + "ldc1 %[ftmp9], %[ff_ph_07] \n\t" + "paddh %[ftmp1], %[ftmp1], %[ftmp9] \n\t" + "paddh %[ftmp2], %[ftmp2], %[ftmp9] \n\t" + MMI_LI(%[tmp0], 0x04) + "mtc1 %[tmp0], %[ftmp9] \n\t" + "psrah %[ftmp1], %[ftmp1], %[ftmp9] \n\t" + "psrah %[ftmp2], %[ftmp2], %[ftmp9] \n\t" + + MMI_LI(%[tmp0], 0x10) + "mtc1 %[tmp0], %[ftmp9] \n\t" + "ldc1 %[ftmp12], %[ff_pw_12000] \n\t" + "punpcklhw %[ftmp5], %[ftmp7], %[ftmp8] \n\t" + "pmaddhw %[ftmp10], %[ftmp5], %[ff_ph_op1] \n\t" + "punpckhhw %[ftmp5], %[ftmp7], %[ftmp8] \n\t" + "pmaddhw %[ftmp11], %[ftmp5], %[ff_ph_op1] \n\t" + "paddw %[ftmp10], %[ftmp10], %[ftmp12] \n\t" + "paddw %[ftmp11], %[ftmp11], %[ftmp12] \n\t" + "psraw %[ftmp10], %[ftmp10], %[ftmp9] \n\t" + "psraw %[ftmp11], %[ftmp11], %[ftmp9] \n\t" + "packsswh %[ftmp3], %[ftmp10], %[ftmp11] \n\t" + "paddh %[ftmp3], %[ftmp3], %[ftmp0] \n\t" + + "ldc1 %[ftmp12], %[ff_pw_51000] \n\t" + "punpcklhw %[ftmp5], %[ftmp8], %[ftmp7] \n\t" + "pmaddhw %[ftmp10], %[ftmp5], %[ff_ph_op3] \n\t" + "punpckhhw %[ftmp5], %[ftmp8], %[ftmp7] \n\t" + "pmaddhw %[ftmp11], %[ftmp5], %[ff_ph_op3] \n\t" + "paddw %[ftmp10], %[ftmp10], %[ftmp12] \n\t" + "paddw %[ftmp11], %[ftmp11], %[ftmp12] \n\t" + "psraw %[ftmp10], %[ftmp10], %[ftmp9] \n\t" + "psraw %[ftmp11], %[ftmp11], %[ftmp9] \n\t" + "packsswh %[ftmp4], %[ftmp10], %[ftmp11] \n\t" + + "gssdlc1 %[ftmp1], 0x07(%[output]) \n\t" + "gssdrc1 %[ftmp1], 0x00(%[output]) \n\t" + "gssdlc1 %[ftmp3], 0x0f(%[output]) \n\t" + "gssdrc1 %[ftmp3], 0x08(%[output]) \n\t" + "gssdlc1 %[ftmp2], 0x17(%[output]) \n\t" + "gssdrc1 %[ftmp2], 0x10(%[output]) \n\t" + "gssdlc1 %[ftmp4], 0x1f(%[output]) \n\t" + "gssdrc1 %[ftmp4], 0x18(%[output]) \n\t" + + : [ftmp0] "=&f"(ftmp0), [ftmp1] "=&f"(ftmp1), [ftmp2] "=&f"(ftmp2), + [ftmp3] "=&f"(ftmp3), [ftmp4] "=&f"(ftmp4), [ftmp5] "=&f"(ftmp5), + [ftmp6] "=&f"(ftmp6), [ftmp7] "=&f"(ftmp7), [ftmp8] "=&f"(ftmp8), + [ftmp9] "=&f"(ftmp9), [ftmp10] "=&f"(ftmp10), [ftmp11] "=&f"(ftmp11), + [ftmp12] "=&f"(ftmp12), [tmp0] "=&r"(tmp[0]), [ip]"+&r"(ip) + : [ff_ph_01] "m"(ff_ph_01), [ff_ph_07] "m"(ff_ph_07), + [ff_ph_op1] "f"(ff_ph_op1), [ff_ph_op3] "f"(ff_ph_op3), + [ff_pw_14500] "m"(ff_pw_14500), [ff_pw_7500] "m"(ff_pw_7500), + [ff_pw_12000] "m"(ff_pw_12000), [ff_pw_51000] "m"(ff_pw_51000), + [ff_pw_5352]"m"(ff_pw_5352), [ff_pw_2217]"m"(ff_pw_2217), + [ff_ph_8]"m"(ff_ph_8), [pitch]"r"(pitch), [output] "r"(output) + : "memory" + ); +} + +void vp8_short_fdct8x4_mmi(int16_t *input, int16_t *output, int pitch) { + vp8_short_fdct4x4_mmi(input, output, pitch); + vp8_short_fdct4x4_mmi(input + 4, output + 16, pitch); +} + +void vp8_short_walsh4x4_mmi(int16_t *input, int16_t *output, int pitch) { + double ftmp[13]; + uint32_t tmp[1]; + DECLARE_ALIGNED(8, const uint64_t, ff_ph_01) = { 0x0001000100010001ULL }; + DECLARE_ALIGNED(8, const uint64_t, ff_pw_01) = { 0x0000000100000001ULL }; + DECLARE_ALIGNED(8, const uint64_t, ff_pw_03) = { 0x0000000300000003ULL }; + DECLARE_ALIGNED(8, const uint64_t, ff_pw_mask) = { 0x0001000000010000ULL }; + + __asm__ volatile ( + MMI_LI(%[tmp0], 0x02) + "xor %[ftmp0], %[ftmp0], %[ftmp0] \n\t" + "mtc1 %[tmp0], %[ftmp11] \n\t" + + "gsldlc1 %[ftmp1], 0x07(%[ip]) \n\t" + "gsldrc1 %[ftmp1], 0x00(%[ip]) \n\t" + MMI_ADDU(%[ip], %[ip], %[pitch]) + "gsldlc1 %[ftmp2], 0x07(%[ip]) \n\t" + "gsldrc1 %[ftmp2], 0x00(%[ip]) \n\t" + MMI_ADDU(%[ip], %[ip], %[pitch]) + "gsldlc1 %[ftmp3], 0x07(%[ip]) \n\t" + "gsldrc1 %[ftmp3], 0x00(%[ip]) \n\t" + MMI_ADDU(%[ip], %[ip], %[pitch]) + "gsldlc1 %[ftmp4], 0x07(%[ip]) \n\t" + "gsldrc1 %[ftmp4], 0x00(%[ip]) \n\t" + TRANSPOSE_4H + + "psllh %[ftmp1], %[ftmp1], %[ftmp11] \n\t" + "psllh %[ftmp2], %[ftmp2], %[ftmp11] \n\t" + "psllh %[ftmp3], %[ftmp3], %[ftmp11] \n\t" + "psllh %[ftmp4], %[ftmp4], %[ftmp11] \n\t" + // a + "paddh %[ftmp5], %[ftmp1], %[ftmp3] \n\t" + // d + "paddh %[ftmp6], %[ftmp2], %[ftmp4] \n\t" + // c + "psubh %[ftmp7], %[ftmp2], %[ftmp4] \n\t" + // b + "psubh %[ftmp8], %[ftmp1], %[ftmp3] \n\t" + + // a + d + "paddh %[ftmp1], %[ftmp5], %[ftmp6] \n\t" + // b + c + "paddh %[ftmp2], %[ftmp8], %[ftmp7] \n\t" + // b - c + "psubh %[ftmp3], %[ftmp8], %[ftmp7] \n\t" + // a - d + "psubh %[ftmp4], %[ftmp5], %[ftmp6] \n\t" + + "pcmpeqh %[ftmp6], %[ftmp5], %[ftmp0] \n\t" + "paddh %[ftmp6], %[ftmp6], %[ff_ph_01] \n\t" + "paddh %[ftmp1], %[ftmp1], %[ftmp6] \n\t" + TRANSPOSE_4H + + // op[2], op[0] + "pmaddhw %[ftmp5], %[ftmp1], %[ff_pw_01] \n\t" + // op[3], op[1] + "pmaddhw %[ftmp1], %[ftmp1], %[ff_pw_mask] \n\t" + + // op[6], op[4] + "pmaddhw %[ftmp6], %[ftmp2], %[ff_pw_01] \n\t" + // op[7], op[5] + "pmaddhw %[ftmp2], %[ftmp2], %[ff_pw_mask] \n\t" + + // op[10], op[8] + "pmaddhw %[ftmp7], %[ftmp3], %[ff_pw_01] \n\t" + // op[11], op[9] + "pmaddhw %[ftmp3], %[ftmp3], %[ff_pw_mask] \n\t" + + // op[14], op[12] + "pmaddhw %[ftmp8], %[ftmp4], %[ff_pw_01] \n\t" + // op[15], op[13] + "pmaddhw %[ftmp4], %[ftmp4], %[ff_pw_mask] \n\t" + + // a1, a3 + "paddw %[ftmp9], %[ftmp5], %[ftmp7] \n\t" + // d1, d3 + "paddw %[ftmp10], %[ftmp6], %[ftmp8] \n\t" + // c1, c3 + "psubw %[ftmp11], %[ftmp6], %[ftmp8] \n\t" + // b1, b3 + "psubw %[ftmp12], %[ftmp5], %[ftmp7] \n\t" + + // a1 + d1, a3 + d3 + "paddw %[ftmp5], %[ftmp9], %[ftmp10] \n\t" + // b1 + c1, b3 + c3 + "paddw %[ftmp6], %[ftmp12], %[ftmp11] \n\t" + // b1 - c1, b3 - c3 + "psubw %[ftmp7], %[ftmp12], %[ftmp11] \n\t" + // a1 - d1, a3 - d3 + "psubw %[ftmp8], %[ftmp9], %[ftmp10] \n\t" + + // a2, a4 + "paddw %[ftmp9], %[ftmp1], %[ftmp3] \n\t" + // d2, d4 + "paddw %[ftmp10], %[ftmp2], %[ftmp4] \n\t" + // c2, c4 + "psubw %[ftmp11], %[ftmp2], %[ftmp4] \n\t" + // b2, b4 + "psubw %[ftmp12], %[ftmp1], %[ftmp3] \n\t" + + // a2 + d2, a4 + d4 + "paddw %[ftmp1], %[ftmp9], %[ftmp10] \n\t" + // b2 + c2, b4 + c4 + "paddw %[ftmp2], %[ftmp12], %[ftmp11] \n\t" + // b2 - c2, b4 - c4 + "psubw %[ftmp3], %[ftmp12], %[ftmp11] \n\t" + // a2 - d2, a4 - d4 + "psubw %[ftmp4], %[ftmp9], %[ftmp10] \n\t" + + MMI_LI(%[tmp0], 0x03) + "mtc1 %[tmp0], %[ftmp11] \n\t" + + "pcmpgtw %[ftmp9], %[ftmp0], %[ftmp1] \n\t" + "and %[ftmp9], %[ftmp9], %[ff_pw_01] \n\t" + "paddw %[ftmp1], %[ftmp1], %[ftmp9] \n\t" + "paddw %[ftmp1], %[ftmp1], %[ff_pw_03] \n\t" + "psraw %[ftmp1], %[ftmp1], %[ftmp11] \n\t" + + "pcmpgtw %[ftmp9], %[ftmp0], %[ftmp2] \n\t" + "and %[ftmp9], %[ftmp9], %[ff_pw_01] \n\t" + "paddw %[ftmp2], %[ftmp2], %[ftmp9] \n\t" + "paddw %[ftmp2], %[ftmp2], %[ff_pw_03] \n\t" + "psraw %[ftmp2], %[ftmp2], %[ftmp11] \n\t" + + "pcmpgtw %[ftmp9], %[ftmp0], %[ftmp3] \n\t" + "and %[ftmp9], %[ftmp9], %[ff_pw_01] \n\t" + "paddw %[ftmp3], %[ftmp3], %[ftmp9] \n\t" + "paddw %[ftmp3], %[ftmp3], %[ff_pw_03] \n\t" + "psraw %[ftmp3], %[ftmp3], %[ftmp11] \n\t" + + "pcmpgtw %[ftmp9], %[ftmp0], %[ftmp4] \n\t" + "and %[ftmp9], %[ftmp9], %[ff_pw_01] \n\t" + "paddw %[ftmp4], %[ftmp4], %[ftmp9] \n\t" + "paddw %[ftmp4], %[ftmp4], %[ff_pw_03] \n\t" + "psraw %[ftmp4], %[ftmp4], %[ftmp11] \n\t" + + "pcmpgtw %[ftmp9], %[ftmp0], %[ftmp5] \n\t" + "and %[ftmp9], %[ftmp9], %[ff_pw_01] \n\t" + "paddw %[ftmp5], %[ftmp5], %[ftmp9] \n\t" + "paddw %[ftmp5], %[ftmp5], %[ff_pw_03] \n\t" + "psraw %[ftmp5], %[ftmp5], %[ftmp11] \n\t" + + "pcmpgtw %[ftmp9], %[ftmp0], %[ftmp6] \n\t" + "and %[ftmp9], %[ftmp9], %[ff_pw_01] \n\t" + "paddw %[ftmp6], %[ftmp6], %[ftmp9] \n\t" + "paddw %[ftmp6], %[ftmp6], %[ff_pw_03] \n\t" + "psraw %[ftmp6], %[ftmp6], %[ftmp11] \n\t" + + "pcmpgtw %[ftmp9], %[ftmp0], %[ftmp7] \n\t" + "and %[ftmp9], %[ftmp9], %[ff_pw_01] \n\t" + "paddw %[ftmp7], %[ftmp7], %[ftmp9] \n\t" + "paddw %[ftmp7], %[ftmp7], %[ff_pw_03] \n\t" + "psraw %[ftmp7], %[ftmp7], %[ftmp11] \n\t" + + "pcmpgtw %[ftmp9], %[ftmp0], %[ftmp8] \n\t" + "and %[ftmp9], %[ftmp9], %[ff_pw_01] \n\t" + "paddw %[ftmp8], %[ftmp8], %[ftmp9] \n\t" + "paddw %[ftmp8], %[ftmp8], %[ff_pw_03] \n\t" + "psraw %[ftmp8], %[ftmp8], %[ftmp11] \n\t" + + "packsswh %[ftmp1], %[ftmp1], %[ftmp5] \n\t" + "packsswh %[ftmp2], %[ftmp2], %[ftmp6] \n\t" + "packsswh %[ftmp3], %[ftmp3], %[ftmp7] \n\t" + "packsswh %[ftmp4], %[ftmp4], %[ftmp8] \n\t" + + MMI_LI(%[tmp0], 0x72) + "mtc1 %[tmp0], %[ftmp11] \n\t" + "pshufh %[ftmp1], %[ftmp1], %[ftmp11] \n\t" + "pshufh %[ftmp2], %[ftmp2], %[ftmp11] \n\t" + "pshufh %[ftmp3], %[ftmp3], %[ftmp11] \n\t" + "pshufh %[ftmp4], %[ftmp4], %[ftmp11] \n\t" + + "gssdlc1 %[ftmp1], 0x07(%[op]) \n\t" + "gssdrc1 %[ftmp1], 0x00(%[op]) \n\t" + "gssdlc1 %[ftmp2], 0x0f(%[op]) \n\t" + "gssdrc1 %[ftmp2], 0x08(%[op]) \n\t" + "gssdlc1 %[ftmp3], 0x17(%[op]) \n\t" + "gssdrc1 %[ftmp3], 0x10(%[op]) \n\t" + "gssdlc1 %[ftmp4], 0x1f(%[op]) \n\t" + "gssdrc1 %[ftmp4], 0x18(%[op]) \n\t" + : [ftmp0]"=&f"(ftmp[0]), [ftmp1]"=&f"(ftmp[1]), + [ftmp2]"=&f"(ftmp[2]), [ftmp3]"=&f"(ftmp[3]), + [ftmp4]"=&f"(ftmp[4]), [ftmp5]"=&f"(ftmp[5]), + [ftmp6]"=&f"(ftmp[6]), [ftmp7]"=&f"(ftmp[7]), + [ftmp8]"=&f"(ftmp[8]), [ftmp9]"=&f"(ftmp[9]), + [ftmp10]"=&f"(ftmp[10]), [ftmp11]"=&f"(ftmp[11]), + [ftmp12]"=&f"(ftmp[12]), + [tmp0]"=&r"(tmp[0]), + [ip]"+&r"(input) + : [op]"r"(output), + [ff_pw_01]"f"(ff_pw_01), [pitch]"r"((mips_reg)pitch), + [ff_pw_03]"f"(ff_pw_03), [ff_pw_mask]"f"(ff_pw_mask), + [ff_ph_01]"f"(ff_ph_01) + : "memory" + ); +} diff --git a/vp8/encoder/mips/mmi/vp8_quantize_mmi.c b/vp8/encoder/mips/mmi/vp8_quantize_mmi.c new file mode 100644 index 0000000..3ccb196 --- /dev/null +++ b/vp8/encoder/mips/mmi/vp8_quantize_mmi.c @@ -0,0 +1,262 @@ +/* + * Copyright (c) 2017 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "vpx_mem/vpx_mem.h" +#include "vpx_ports/asmdefs_mmi.h" +#include "vp8/encoder/onyx_int.h" +#include "vp8/encoder/quantize.h" +#include "vp8/common/quant_common.h" + +#define REGULAR_SELECT_EOB(i, rc) \ + z = coeff_ptr[rc]; \ + sz = (z >> 31); \ + x = (z ^ sz) - sz; \ + zbin = zbin_ptr[rc] + *(zbin_boost_ptr++) + zbin_oq_value; \ + if (x >= zbin) { \ + x += round_ptr[rc]; \ + y = ((((x * quant_ptr[rc]) >> 16) + x) * quant_shift_ptr[rc]) >> 16; \ + if (y) { \ + x = (y ^ sz) - sz; \ + qcoeff_ptr[rc] = x; \ + dqcoeff_ptr[rc] = x * dequant_ptr[rc]; \ + eob = i; \ + zbin_boost_ptr = b->zrun_zbin_boost; \ + } \ + } + +void vp8_fast_quantize_b_mmi(BLOCK *b, BLOCKD *d) { + const int16_t *coeff_ptr = b->coeff; + const int16_t *round_ptr = b->round; + const int16_t *quant_ptr = b->quant_fast; + int16_t *qcoeff_ptr = d->qcoeff; + int16_t *dqcoeff_ptr = d->dqcoeff; + const int16_t *dequant_ptr = d->dequant; + const int16_t *inv_zig_zag = vp8_default_inv_zig_zag; + + double ftmp[13]; + uint64_t tmp[1]; + DECLARE_ALIGNED(8, const uint64_t, ones) = { 0xffffffffffffffffULL }; + int eob = 0; + + __asm__ volatile( + // loop 0 ~ 7 + "xor %[ftmp0], %[ftmp0], %[ftmp0] \n\t" + "gsldlc1 %[ftmp1], 0x07(%[coeff_ptr]) \n\t" + "gsldrc1 %[ftmp1], 0x00(%[coeff_ptr]) \n\t" + "li %[tmp0], 0x0f \n\t" + "mtc1 %[tmp0], %[ftmp9] \n\t" + "gsldlc1 %[ftmp2], 0x0f(%[coeff_ptr]) \n\t" + "gsldrc1 %[ftmp2], 0x08(%[coeff_ptr]) \n\t" + + "psrah %[ftmp3], %[ftmp1], %[ftmp9] \n\t" + "xor %[ftmp1], %[ftmp3], %[ftmp1] \n\t" + "psubh %[ftmp1], %[ftmp1], %[ftmp3] \n\t" + "psrah %[ftmp4], %[ftmp2], %[ftmp9] \n\t" + "xor %[ftmp2], %[ftmp4], %[ftmp2] \n\t" + "psubh %[ftmp2], %[ftmp2], %[ftmp4] \n\t" + + "gsldlc1 %[ftmp5], 0x07(%[round_ptr]) \n\t" + "gsldrc1 %[ftmp5], 0x00(%[round_ptr]) \n\t" + "gsldlc1 %[ftmp6], 0x0f(%[round_ptr]) \n\t" + "gsldrc1 %[ftmp6], 0x08(%[round_ptr]) \n\t" + "paddh %[ftmp5], %[ftmp5], %[ftmp1] \n\t" + "paddh %[ftmp6], %[ftmp6], %[ftmp2] \n\t" + "gsldlc1 %[ftmp7], 0x07(%[quant_ptr]) \n\t" + "gsldrc1 %[ftmp7], 0x00(%[quant_ptr]) \n\t" + "gsldlc1 %[ftmp8], 0x0f(%[quant_ptr]) \n\t" + "gsldrc1 %[ftmp8], 0x08(%[quant_ptr]) \n\t" + "pmulhuh %[ftmp5], %[ftmp5], %[ftmp7] \n\t" + "pmulhuh %[ftmp6], %[ftmp6], %[ftmp8] \n\t" + + "xor %[ftmp7], %[ftmp5], %[ftmp3] \n\t" + "xor %[ftmp8], %[ftmp6], %[ftmp4] \n\t" + "psubh %[ftmp7], %[ftmp7], %[ftmp3] \n\t" + "psubh %[ftmp8], %[ftmp8], %[ftmp4] \n\t" + "gssdlc1 %[ftmp7], 0x07(%[qcoeff_ptr]) \n\t" + "gssdrc1 %[ftmp7], 0x00(%[qcoeff_ptr]) \n\t" + "gssdlc1 %[ftmp8], 0x0f(%[qcoeff_ptr]) \n\t" + "gssdrc1 %[ftmp8], 0x08(%[qcoeff_ptr]) \n\t" + + "gsldlc1 %[ftmp1], 0x07(%[inv_zig_zag]) \n\t" + "gsldrc1 %[ftmp1], 0x00(%[inv_zig_zag]) \n\t" + "gsldlc1 %[ftmp2], 0x0f(%[inv_zig_zag]) \n\t" + "gsldrc1 %[ftmp2], 0x08(%[inv_zig_zag]) \n\t" + "pcmpeqh %[ftmp5], %[ftmp5], %[ftmp0] \n\t" + "pcmpeqh %[ftmp6], %[ftmp6], %[ftmp0] \n\t" + "xor %[ftmp5], %[ftmp5], %[ones] \n\t" + "xor %[ftmp6], %[ftmp6], %[ones] \n\t" + "and %[ftmp5], %[ftmp5], %[ftmp1] \n\t" + "and %[ftmp6], %[ftmp6], %[ftmp2] \n\t" + "pmaxsh %[ftmp10], %[ftmp5], %[ftmp6] \n\t" + + "gsldlc1 %[ftmp5], 0x07(%[dequant_ptr]) \n\t" + "gsldrc1 %[ftmp5], 0x00(%[dequant_ptr]) \n\t" + "gsldlc1 %[ftmp6], 0x0f(%[dequant_ptr]) \n\t" + "gsldrc1 %[ftmp6], 0x08(%[dequant_ptr]) \n\t" + "pmullh %[ftmp5], %[ftmp5], %[ftmp7] \n\t" + "pmullh %[ftmp6], %[ftmp6], %[ftmp8] \n\t" + "gssdlc1 %[ftmp5], 0x07(%[dqcoeff_ptr]) \n\t" + "gssdrc1 %[ftmp5], 0x00(%[dqcoeff_ptr]) \n\t" + "gssdlc1 %[ftmp6], 0x0f(%[dqcoeff_ptr]) \n\t" + "gssdrc1 %[ftmp6], 0x08(%[dqcoeff_ptr]) \n\t" + + // loop 8 ~ 15 + "gsldlc1 %[ftmp1], 0x17(%[coeff_ptr]) \n\t" + "gsldrc1 %[ftmp1], 0x10(%[coeff_ptr]) \n\t" + "gsldlc1 %[ftmp2], 0x1f(%[coeff_ptr]) \n\t" + "gsldrc1 %[ftmp2], 0x18(%[coeff_ptr]) \n\t" + + "psrah %[ftmp3], %[ftmp1], %[ftmp9] \n\t" + "xor %[ftmp1], %[ftmp3], %[ftmp1] \n\t" + "psubh %[ftmp1], %[ftmp1], %[ftmp3] \n\t" + "psrah %[ftmp4], %[ftmp2], %[ftmp9] \n\t" + "xor %[ftmp2], %[ftmp4], %[ftmp2] \n\t" + "psubh %[ftmp2], %[ftmp2], %[ftmp4] \n\t" + + "gsldlc1 %[ftmp5], 0x17(%[round_ptr]) \n\t" + "gsldrc1 %[ftmp5], 0x10(%[round_ptr]) \n\t" + "gsldlc1 %[ftmp6], 0x1f(%[round_ptr]) \n\t" + "gsldrc1 %[ftmp6], 0x18(%[round_ptr]) \n\t" + "paddh %[ftmp5], %[ftmp5], %[ftmp1] \n\t" + "paddh %[ftmp6], %[ftmp6], %[ftmp2] \n\t" + "gsldlc1 %[ftmp7], 0x17(%[quant_ptr]) \n\t" + "gsldrc1 %[ftmp7], 0x10(%[quant_ptr]) \n\t" + "gsldlc1 %[ftmp8], 0x1f(%[quant_ptr]) \n\t" + "gsldrc1 %[ftmp8], 0x18(%[quant_ptr]) \n\t" + "pmulhuh %[ftmp5], %[ftmp5], %[ftmp7] \n\t" + "pmulhuh %[ftmp6], %[ftmp6], %[ftmp8] \n\t" + + "xor %[ftmp7], %[ftmp5], %[ftmp3] \n\t" + "xor %[ftmp8], %[ftmp6], %[ftmp4] \n\t" + "psubh %[ftmp7], %[ftmp7], %[ftmp3] \n\t" + "psubh %[ftmp8], %[ftmp8], %[ftmp4] \n\t" + "gssdlc1 %[ftmp7], 0x17(%[qcoeff_ptr]) \n\t" + "gssdrc1 %[ftmp7], 0x10(%[qcoeff_ptr]) \n\t" + "gssdlc1 %[ftmp8], 0x1f(%[qcoeff_ptr]) \n\t" + "gssdrc1 %[ftmp8], 0x18(%[qcoeff_ptr]) \n\t" + + "gsldlc1 %[ftmp1], 0x17(%[inv_zig_zag]) \n\t" + "gsldrc1 %[ftmp1], 0x10(%[inv_zig_zag]) \n\t" + "gsldlc1 %[ftmp2], 0x1f(%[inv_zig_zag]) \n\t" + "gsldrc1 %[ftmp2], 0x18(%[inv_zig_zag]) \n\t" + "pcmpeqh %[ftmp5], %[ftmp5], %[ftmp0] \n\t" + "pcmpeqh %[ftmp6], %[ftmp6], %[ftmp0] \n\t" + "xor %[ftmp5], %[ftmp5], %[ones] \n\t" + "xor %[ftmp6], %[ftmp6], %[ones] \n\t" + "and %[ftmp5], %[ftmp5], %[ftmp1] \n\t" + "and %[ftmp6], %[ftmp6], %[ftmp2] \n\t" + "pmaxsh %[ftmp11], %[ftmp5], %[ftmp6] \n\t" + + "gsldlc1 %[ftmp5], 0x17(%[dequant_ptr]) \n\t" + "gsldrc1 %[ftmp5], 0x10(%[dequant_ptr]) \n\t" + "gsldlc1 %[ftmp6], 0x1f(%[dequant_ptr]) \n\t" + "gsldrc1 %[ftmp6], 0x18(%[dequant_ptr]) \n\t" + "pmullh %[ftmp5], %[ftmp5], %[ftmp7] \n\t" + "pmullh %[ftmp6], %[ftmp6], %[ftmp8] \n\t" + "gssdlc1 %[ftmp5], 0x17(%[dqcoeff_ptr]) \n\t" + "gssdrc1 %[ftmp5], 0x10(%[dqcoeff_ptr]) \n\t" + "gssdlc1 %[ftmp6], 0x1f(%[dqcoeff_ptr]) \n\t" + "gssdrc1 %[ftmp6], 0x18(%[dqcoeff_ptr]) \n\t" + + "li %[tmp0], 0x10 \n\t" + "mtc1 %[tmp0], %[ftmp9] \n\t" + + "pmaxsh %[ftmp10], %[ftmp10], %[ftmp11] \n\t" + "psrlw %[ftmp11], %[ftmp10], %[ftmp9] \n\t" + "pmaxsh %[ftmp10], %[ftmp10], %[ftmp11] \n\t" + "li %[tmp0], 0xaa \n\t" + "mtc1 %[tmp0], %[ftmp9] \n\t" + "pshufh %[ftmp11], %[ftmp10], %[ftmp9] \n\t" + "pmaxsh %[ftmp10], %[ftmp10], %[ftmp11] \n\t" + "li %[tmp0], 0xffff \n\t" + "mtc1 %[tmp0], %[ftmp9] \n\t" + "and %[ftmp10], %[ftmp10], %[ftmp9] \n\t" + "gssdlc1 %[ftmp10], 0x07(%[eob]) \n\t" + "gssdrc1 %[ftmp10], 0x00(%[eob]) \n\t" + : [ftmp0] "=&f"(ftmp[0]), [ftmp1] "=&f"(ftmp[1]), [ftmp2] "=&f"(ftmp[2]), + [ftmp3] "=&f"(ftmp[3]), [ftmp4] "=&f"(ftmp[4]), [ftmp5] "=&f"(ftmp[5]), + [ftmp6] "=&f"(ftmp[6]), [ftmp7] "=&f"(ftmp[7]), [ftmp8] "=&f"(ftmp[8]), + [ftmp9] "=&f"(ftmp[9]), [ftmp10] "=&f"(ftmp[10]), + [ftmp11] "=&f"(ftmp[11]), [ftmp12] "=&f"(ftmp[12]), [tmp0] "=&r"(tmp[0]) + : [coeff_ptr] "r"((mips_reg)coeff_ptr), + [qcoeff_ptr] "r"((mips_reg)qcoeff_ptr), + [dequant_ptr] "r"((mips_reg)dequant_ptr), + [round_ptr] "r"((mips_reg)round_ptr), + [quant_ptr] "r"((mips_reg)quant_ptr), + [dqcoeff_ptr] "r"((mips_reg)dqcoeff_ptr), + [inv_zig_zag] "r"((mips_reg)inv_zig_zag), [eob] "r"((mips_reg)&eob), + [ones] "f"(ones) + : "memory"); + + *d->eob = eob; +} + +void vp8_regular_quantize_b_mmi(BLOCK *b, BLOCKD *d) { + int eob = 0; + int x, y, z, sz, zbin; + const int16_t *zbin_boost_ptr = b->zrun_zbin_boost; + const int16_t *coeff_ptr = b->coeff; + const int16_t *zbin_ptr = b->zbin; + const int16_t *round_ptr = b->round; + const int16_t *quant_ptr = b->quant; + const int16_t *quant_shift_ptr = b->quant_shift; + int16_t *qcoeff_ptr = d->qcoeff; + int16_t *dqcoeff_ptr = d->dqcoeff; + const int16_t *dequant_ptr = d->dequant; + const int16_t zbin_oq_value = b->zbin_extra; + register double ftmp0 asm("$f0"); + + // memset(qcoeff_ptr, 0, 32); + // memset(dqcoeff_ptr, 0, 32); + /* clang-format off */ + __asm__ volatile ( + "xor %[ftmp0], %[ftmp0], %[ftmp0] \n\t" + "gssdlc1 %[ftmp0], 0x07(%[qcoeff_ptr]) \n\t" + "gssdrc1 %[ftmp0], 0x00(%[qcoeff_ptr]) \n\t" + "gssdlc1 %[ftmp0], 0x0f(%[qcoeff_ptr]) \n\t" + "gssdrc1 %[ftmp0], 0x08(%[qcoeff_ptr]) \n\t" + "gssdlc1 %[ftmp0], 0x17(%[qcoeff_ptr]) \n\t" + "gssdrc1 %[ftmp0], 0x10(%[qcoeff_ptr]) \n\t" + "gssdlc1 %[ftmp0], 0x1f(%[qcoeff_ptr]) \n\t" + "gssdrc1 %[ftmp0], 0x18(%[qcoeff_ptr]) \n\t" + + "gssdlc1 %[ftmp0], 0x07(%[dqcoeff_ptr]) \n\t" + "gssdrc1 %[ftmp0], 0x00(%[dqcoeff_ptr]) \n\t" + "gssdlc1 %[ftmp0], 0x0f(%[dqcoeff_ptr]) \n\t" + "gssdrc1 %[ftmp0], 0x08(%[dqcoeff_ptr]) \n\t" + "gssdlc1 %[ftmp0], 0x17(%[dqcoeff_ptr]) \n\t" + "gssdrc1 %[ftmp0], 0x10(%[dqcoeff_ptr]) \n\t" + "gssdlc1 %[ftmp0], 0x1f(%[dqcoeff_ptr]) \n\t" + "gssdrc1 %[ftmp0], 0x18(%[dqcoeff_ptr]) \n\t" + : [ftmp0]"=&f"(ftmp0) + : [qcoeff_ptr]"r"(qcoeff_ptr), [dqcoeff_ptr]"r"(dqcoeff_ptr) + : "memory" + ); + /* clang-format on */ + + REGULAR_SELECT_EOB(1, 0); + REGULAR_SELECT_EOB(2, 1); + REGULAR_SELECT_EOB(3, 4); + REGULAR_SELECT_EOB(4, 8); + REGULAR_SELECT_EOB(5, 5); + REGULAR_SELECT_EOB(6, 2); + REGULAR_SELECT_EOB(7, 3); + REGULAR_SELECT_EOB(8, 6); + REGULAR_SELECT_EOB(9, 9); + REGULAR_SELECT_EOB(10, 12); + REGULAR_SELECT_EOB(11, 13); + REGULAR_SELECT_EOB(12, 10); + REGULAR_SELECT_EOB(13, 7); + REGULAR_SELECT_EOB(14, 11); + REGULAR_SELECT_EOB(15, 14); + REGULAR_SELECT_EOB(16, 15); + + *d->eob = (char)eob; +} diff --git a/vp8/encoder/mips/msa/dct_msa.c b/vp8/encoder/mips/msa/dct_msa.c new file mode 100644 index 0000000..3084667 --- /dev/null +++ b/vp8/encoder/mips/msa/dct_msa.c @@ -0,0 +1,196 @@ +/* + * Copyright (c) 2015 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "./vp8_rtcd.h" +#include "vp8/common/mips/msa/vp8_macros_msa.h" + +#define TRANSPOSE4x4_H(in0, in1, in2, in3, out0, out1, out2, out3) \ + { \ + v8i16 s0_m, s1_m, tp0_m, tp1_m, tp2_m, tp3_m; \ + \ + ILVR_H2_SH(in2, in0, in3, in1, s0_m, s1_m); \ + ILVRL_H2_SH(s1_m, s0_m, tp0_m, tp1_m); \ + ILVL_H2_SH(in2, in0, in3, in1, s0_m, s1_m); \ + ILVRL_H2_SH(s1_m, s0_m, tp2_m, tp3_m); \ + PCKEV_D2_SH(tp2_m, tp0_m, tp3_m, tp1_m, out0, out2); \ + PCKOD_D2_SH(tp2_m, tp0_m, tp3_m, tp1_m, out1, out3); \ + } + +#define SET_DOTP_VALUES(coeff, val0, val1, val2, const1, const2) \ + { \ + v8i16 tmp0_m; \ + \ + SPLATI_H3_SH(coeff, val0, val1, val2, tmp0_m, const1, const2); \ + ILVEV_H2_SH(tmp0_m, const1, const2, tmp0_m, const1, const2); \ + } + +#define RET_1_IF_NZERO_H(in0) \ + ({ \ + v8i16 tmp0_m; \ + v8i16 one_m = __msa_ldi_h(1); \ + \ + tmp0_m = __msa_ceqi_h(in0, 0); \ + tmp0_m = tmp0_m ^ 255; \ + tmp0_m = one_m & tmp0_m; \ + \ + tmp0_m; \ + }) + +#define RET_1_IF_NZERO_W(in0) \ + ({ \ + v4i32 tmp0_m; \ + v4i32 one_m = __msa_ldi_w(1); \ + \ + tmp0_m = __msa_ceqi_w(in0, 0); \ + tmp0_m = tmp0_m ^ 255; \ + tmp0_m = one_m & tmp0_m; \ + \ + tmp0_m; \ + }) + +#define RET_1_IF_NEG_W(in0) \ + ({ \ + v4i32 tmp0_m; \ + \ + v4i32 one_m = __msa_ldi_w(1); \ + tmp0_m = __msa_clti_s_w(in0, 0); \ + tmp0_m = one_m & tmp0_m; \ + \ + tmp0_m; \ + }) + +void vp8_short_fdct4x4_msa(int16_t *input, int16_t *output, int32_t pitch) { + v8i16 in0, in1, in2, in3; + v8i16 temp0, temp1; + v8i16 const0, const1; + v8i16 coeff = { 2217, 5352, -5352, 14500, 7500, 12000, 25000, 26000 }; + v4i32 out0, out1, out2, out3; + v8i16 zero = { 0 }; + + LD_SH4(input, pitch / 2, in0, in1, in2, in3); + TRANSPOSE4x4_SH_SH(in0, in1, in2, in3, in0, in1, in2, in3); + + BUTTERFLY_4(in0, in1, in2, in3, temp0, temp1, in1, in3); + SLLI_4V(temp0, temp1, in1, in3, 3); + in0 = temp0 + temp1; + in2 = temp0 - temp1; + SET_DOTP_VALUES(coeff, 0, 1, 2, const0, const1); + temp0 = __msa_ilvr_h(in3, in1); + in1 = __msa_splati_h(coeff, 3); + out0 = (v4i32)__msa_ilvev_h(zero, in1); + coeff = __msa_ilvl_h(zero, coeff); + out1 = __msa_splati_w((v4i32)coeff, 0); + DPADD_SH2_SW(temp0, temp0, const0, const1, out0, out1); + out0 >>= 12; + out1 >>= 12; + PCKEV_H2_SH(out0, out0, out1, out1, in1, in3); + TRANSPOSE4x4_SH_SH(in0, in1, in2, in3, in0, in1, in2, in3); + + BUTTERFLY_4(in0, in1, in2, in3, temp0, temp1, in1, in3); + in0 = temp0 + temp1 + 7; + in2 = temp0 - temp1 + 7; + in0 >>= 4; + in2 >>= 4; + ILVR_H2_SW(zero, in0, zero, in2, out0, out2); + temp1 = RET_1_IF_NZERO_H(in3); + ILVR_H2_SH(zero, temp1, in3, in1, temp1, temp0); + SPLATI_W2_SW(coeff, 2, out3, out1); + out3 += out1; + out1 = __msa_splati_w((v4i32)coeff, 1); + DPADD_SH2_SW(temp0, temp0, const0, const1, out1, out3); + out1 >>= 16; + out3 >>= 16; + out1 += (v4i32)temp1; + PCKEV_H2_SH(out1, out0, out3, out2, in0, in2); + ST_SH2(in0, in2, output, 8); +} + +void vp8_short_fdct8x4_msa(int16_t *input, int16_t *output, int32_t pitch) { + v8i16 in0, in1, in2, in3; + v8i16 temp0, temp1, tmp0, tmp1; + v8i16 const0, const1, const2; + v8i16 coeff = { 2217, 5352, -5352, 14500, 7500, 12000, 25000, 26000 }; + v8i16 zero = { 0 }; + v4i32 vec0_w, vec1_w, vec2_w, vec3_w; + + LD_SH4(input, pitch / 2, in0, in1, in2, in3); + TRANSPOSE4x4_H(in0, in1, in2, in3, in0, in1, in2, in3); + + BUTTERFLY_4(in0, in1, in2, in3, temp0, temp1, in1, in3); + SLLI_4V(temp0, temp1, in1, in3, 3); + in0 = temp0 + temp1; + in2 = temp0 - temp1; + SET_DOTP_VALUES(coeff, 0, 1, 2, const1, const2); + temp0 = __msa_splati_h(coeff, 3); + vec1_w = (v4i32)__msa_ilvev_h(zero, temp0); + coeff = __msa_ilvl_h(zero, coeff); + vec3_w = __msa_splati_w((v4i32)coeff, 0); + ILVRL_H2_SH(in3, in1, tmp1, tmp0); + vec0_w = vec1_w; + vec2_w = vec3_w; + DPADD_SH4_SW(tmp1, tmp0, tmp1, tmp0, const1, const1, const2, const2, vec0_w, + vec1_w, vec2_w, vec3_w); + SRA_4V(vec1_w, vec0_w, vec3_w, vec2_w, 12); + PCKEV_H2_SH(vec1_w, vec0_w, vec3_w, vec2_w, in1, in3); + TRANSPOSE4x4_H(in0, in1, in2, in3, in0, in1, in2, in3); + + BUTTERFLY_4(in0, in1, in2, in3, temp0, temp1, in1, in3); + in0 = temp0 + temp1 + 7; + in2 = temp0 - temp1 + 7; + in0 >>= 4; + in2 >>= 4; + SPLATI_W2_SW(coeff, 2, vec3_w, vec1_w); + vec3_w += vec1_w; + vec1_w = __msa_splati_w((v4i32)coeff, 1); + const0 = RET_1_IF_NZERO_H(in3); + ILVRL_H2_SH(in3, in1, tmp1, tmp0); + vec0_w = vec1_w; + vec2_w = vec3_w; + DPADD_SH4_SW(tmp1, tmp0, tmp1, tmp0, const1, const1, const2, const2, vec0_w, + vec1_w, vec2_w, vec3_w); + SRA_4V(vec1_w, vec0_w, vec3_w, vec2_w, 16); + PCKEV_H2_SH(vec1_w, vec0_w, vec3_w, vec2_w, in1, in3); + in1 += const0; + PCKEV_D2_SH(in1, in0, in3, in2, temp0, temp1); + ST_SH2(temp0, temp1, output, 8); + + PCKOD_D2_SH(in1, in0, in3, in2, in0, in2); + ST_SH2(in0, in2, output + 16, 8); +} + +void vp8_short_walsh4x4_msa(int16_t *input, int16_t *output, int32_t pitch) { + v8i16 in0_h, in1_h, in2_h, in3_h; + v4i32 in0_w, in1_w, in2_w, in3_w, temp0, temp1, temp2, temp3; + + LD_SH4(input, pitch / 2, in0_h, in1_h, in2_h, in3_h); + TRANSPOSE4x4_SH_SH(in0_h, in1_h, in2_h, in3_h, in0_h, in1_h, in2_h, in3_h); + + UNPCK_R_SH_SW(in0_h, in0_w); + UNPCK_R_SH_SW(in1_h, in1_w); + UNPCK_R_SH_SW(in2_h, in2_w); + UNPCK_R_SH_SW(in3_h, in3_w); + BUTTERFLY_4(in0_w, in1_w, in3_w, in2_w, temp0, temp3, temp2, temp1); + SLLI_4V(temp0, temp1, temp2, temp3, 2); + BUTTERFLY_4(temp0, temp1, temp2, temp3, in0_w, in1_w, in2_w, in3_w); + temp0 = RET_1_IF_NZERO_W(temp0); + in0_w += temp0; + TRANSPOSE4x4_SW_SW(in0_w, in1_w, in2_w, in3_w, in0_w, in1_w, in2_w, in3_w); + + BUTTERFLY_4(in0_w, in1_w, in3_w, in2_w, temp0, temp3, temp2, temp1); + BUTTERFLY_4(temp0, temp1, temp2, temp3, in0_w, in1_w, in2_w, in3_w); + in0_w += RET_1_IF_NEG_W(in0_w); + in1_w += RET_1_IF_NEG_W(in1_w); + in2_w += RET_1_IF_NEG_W(in2_w); + in3_w += RET_1_IF_NEG_W(in3_w); + ADD4(in0_w, 3, in1_w, 3, in2_w, 3, in3_w, 3, in0_w, in1_w, in2_w, in3_w); + SRA_4V(in0_w, in1_w, in2_w, in3_w, 3); + PCKEV_H2_SH(in1_w, in0_w, in3_w, in2_w, in0_h, in1_h); + ST_SH2(in0_h, in1_h, output, 8); +} diff --git a/vp8/encoder/mips/msa/denoising_msa.c b/vp8/encoder/mips/msa/denoising_msa.c new file mode 100644 index 0000000..f8b653a --- /dev/null +++ b/vp8/encoder/mips/msa/denoising_msa.c @@ -0,0 +1,568 @@ +/* + * Copyright (c) 2015 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include "./vp8_rtcd.h" +#include "vp8/common/mips/msa/vp8_macros_msa.h" +#include "vp8/encoder/denoising.h" + +int32_t vp8_denoiser_filter_msa(uint8_t *mc_running_avg_y_ptr, + int32_t mc_avg_y_stride, + uint8_t *running_avg_y_ptr, + int32_t avg_y_stride, uint8_t *sig_ptr, + int32_t sig_stride, uint32_t motion_magnitude, + int32_t increase_denoising) { + uint8_t *running_avg_y_start = running_avg_y_ptr; + uint8_t *sig_start = sig_ptr; + int32_t cnt = 0; + int32_t sum_diff = 0; + int32_t shift_inc1 = 3; + int32_t delta = 0; + int32_t sum_diff_thresh; + v16u8 src0, src1, src2, src3, src4, src5, src6, src7; + v16u8 src8, src9, src10, src11, src12, src13, src14, src15; + v16u8 mc_running_avg_y0, running_avg_y, sig0; + v16u8 mc_running_avg_y1, running_avg_y1, sig1; + v16u8 coeff0, coeff1; + v8i16 diff0, diff1, abs_diff0, abs_diff1, abs_diff_neg0, abs_diff_neg1; + v8i16 adjust0, adjust1, adjust2, adjust3; + v8i16 shift_inc1_vec = { 0 }; + v8i16 col_sum0 = { 0 }; + v8i16 col_sum1 = { 0 }; + v8i16 col_sum2 = { 0 }; + v8i16 col_sum3 = { 0 }; + v8i16 temp0_h, temp1_h, temp2_h, temp3_h, cmp, delta_vec; + v4i32 temp0_w; + v2i64 temp0_d, temp1_d; + v8i16 zero = { 0 }; + v8i16 one = __msa_ldi_h(1); + v8i16 four = __msa_ldi_h(4); + v8i16 val_127 = __msa_ldi_h(127); + v8i16 adj_val = { 6, 4, 3, 0, -6, -4, -3, 0 }; + + if (motion_magnitude <= MOTION_MAGNITUDE_THRESHOLD) { + adj_val = __msa_add_a_h(adj_val, one); + if (increase_denoising) { + adj_val = __msa_add_a_h(adj_val, one); + shift_inc1 = 4; + } + + temp0_h = zero - adj_val; + adj_val = (v8i16)__msa_ilvev_d((v2i64)temp0_h, (v2i64)adj_val); + } + + adj_val = __msa_insert_h(adj_val, 3, cnt); + adj_val = __msa_insert_h(adj_val, 7, cnt); + shift_inc1_vec = __msa_fill_h(shift_inc1); + + for (cnt = 8; cnt--;) { + v8i16 mask0 = { 0 }; + v8i16 mask1 = { 0 }; + + mc_running_avg_y0 = LD_UB(mc_running_avg_y_ptr); + sig0 = LD_UB(sig_ptr); + sig_ptr += sig_stride; + mc_running_avg_y_ptr += mc_avg_y_stride; + + mc_running_avg_y1 = LD_UB(mc_running_avg_y_ptr); + sig1 = LD_UB(sig_ptr); + + ILVRL_B2_UB(mc_running_avg_y0, sig0, coeff0, coeff1); + HSUB_UB2_SH(coeff0, coeff1, diff0, diff1); + abs_diff0 = __msa_add_a_h(diff0, zero); + abs_diff1 = __msa_add_a_h(diff1, zero); + cmp = __msa_clei_s_h(abs_diff0, 15); + cmp = cmp & one; + mask0 += cmp; + cmp = __msa_clei_s_h(abs_diff0, 7); + cmp = cmp & one; + mask0 += cmp; + cmp = abs_diff0 < shift_inc1_vec; + cmp = cmp & one; + mask0 += cmp; + cmp = __msa_clei_s_h(abs_diff1, 15); + cmp = cmp & one; + mask1 += cmp; + cmp = __msa_clei_s_h(abs_diff1, 7); + cmp = cmp & one; + mask1 += cmp; + cmp = abs_diff1 < shift_inc1_vec; + cmp = cmp & one; + mask1 += cmp; + temp0_h = __msa_clei_s_h(diff0, 0); + temp0_h = temp0_h & four; + mask0 += temp0_h; + temp1_h = __msa_clei_s_h(diff1, 0); + temp1_h = temp1_h & four; + mask1 += temp1_h; + VSHF_H2_SH(adj_val, adj_val, adj_val, adj_val, mask0, mask1, adjust0, + adjust1); + temp2_h = __msa_ceqi_h(adjust0, 0); + temp3_h = __msa_ceqi_h(adjust1, 0); + adjust0 = (v8i16)__msa_bmnz_v((v16u8)adjust0, (v16u8)diff0, (v16u8)temp2_h); + adjust1 = (v8i16)__msa_bmnz_v((v16u8)adjust1, (v16u8)diff1, (v16u8)temp3_h); + ADD2(col_sum0, adjust0, col_sum1, adjust1, col_sum0, col_sum1); + UNPCK_UB_SH(sig0, temp0_h, temp1_h); + ADD2(temp0_h, adjust0, temp1_h, adjust1, temp0_h, temp1_h); + MAXI_SH2_SH(temp0_h, temp1_h, 0); + SAT_UH2_SH(temp0_h, temp1_h, 7); + temp2_h = (v8i16)__msa_pckev_b((v16i8)temp3_h, (v16i8)temp2_h); + running_avg_y = (v16u8)__msa_pckev_b((v16i8)temp1_h, (v16i8)temp0_h); + running_avg_y = + __msa_bmnz_v(running_avg_y, mc_running_avg_y0, (v16u8)temp2_h); + ST_UB(running_avg_y, running_avg_y_ptr); + running_avg_y_ptr += avg_y_stride; + + mask0 = zero; + mask1 = zero; + ILVRL_B2_UB(mc_running_avg_y1, sig1, coeff0, coeff1); + HSUB_UB2_SH(coeff0, coeff1, diff0, diff1); + abs_diff0 = __msa_add_a_h(diff0, zero); + abs_diff1 = __msa_add_a_h(diff1, zero); + cmp = __msa_clei_s_h(abs_diff0, 15); + cmp = cmp & one; + mask0 += cmp; + cmp = __msa_clei_s_h(abs_diff0, 7); + cmp = cmp & one; + mask0 += cmp; + cmp = abs_diff0 < shift_inc1_vec; + cmp = cmp & one; + mask0 += cmp; + cmp = __msa_clei_s_h(abs_diff1, 15); + cmp = cmp & one; + mask1 += cmp; + cmp = __msa_clei_s_h(abs_diff1, 7); + cmp = cmp & one; + mask1 += cmp; + cmp = abs_diff1 < shift_inc1_vec; + cmp = cmp & one; + mask1 += cmp; + temp0_h = __msa_clei_s_h(diff0, 0); + temp0_h = temp0_h & four; + mask0 += temp0_h; + temp1_h = __msa_clei_s_h(diff1, 0); + temp1_h = temp1_h & four; + mask1 += temp1_h; + VSHF_H2_SH(adj_val, adj_val, adj_val, adj_val, mask0, mask1, adjust0, + adjust1); + temp2_h = __msa_ceqi_h(adjust0, 0); + temp3_h = __msa_ceqi_h(adjust1, 0); + adjust0 = (v8i16)__msa_bmnz_v((v16u8)adjust0, (v16u8)diff0, (v16u8)temp2_h); + adjust1 = (v8i16)__msa_bmnz_v((v16u8)adjust1, (v16u8)diff1, (v16u8)temp3_h); + ADD2(col_sum0, adjust0, col_sum1, adjust1, col_sum0, col_sum1); + UNPCK_UB_SH(sig1, temp0_h, temp1_h); + ADD2(temp0_h, adjust0, temp1_h, adjust1, temp0_h, temp1_h); + MAXI_SH2_SH(temp0_h, temp1_h, 0); + SAT_UH2_SH(temp0_h, temp1_h, 7); + temp2_h = (v8i16)__msa_pckev_b((v16i8)temp3_h, (v16i8)temp2_h); + running_avg_y = (v16u8)__msa_pckev_b((v16i8)temp1_h, (v16i8)temp0_h); + running_avg_y = + __msa_bmnz_v(running_avg_y, mc_running_avg_y1, (v16u8)temp2_h); + ST_UB(running_avg_y, running_avg_y_ptr); + sig_ptr += sig_stride; + mc_running_avg_y_ptr += mc_avg_y_stride; + running_avg_y_ptr += avg_y_stride; + } + + col_sum0 = __msa_min_s_h(col_sum0, val_127); + col_sum1 = __msa_min_s_h(col_sum1, val_127); + temp0_h = col_sum0 + col_sum1; + temp0_w = __msa_hadd_s_w(temp0_h, temp0_h); + temp0_d = __msa_hadd_s_d(temp0_w, temp0_w); + temp1_d = __msa_splati_d(temp0_d, 1); + temp0_d += temp1_d; + sum_diff = __msa_copy_s_w((v4i32)temp0_d, 0); + sig_ptr -= sig_stride * 16; + mc_running_avg_y_ptr -= mc_avg_y_stride * 16; + running_avg_y_ptr -= avg_y_stride * 16; + + if (increase_denoising) { + sum_diff_thresh = SUM_DIFF_THRESHOLD_HIGH; + } + + if (abs(sum_diff) > sum_diff_thresh) { + delta = ((abs(sum_diff) - sum_diff_thresh) >> 8) + 1; + delta_vec = __msa_fill_h(delta); + if (delta < 4) { + for (cnt = 8; cnt--;) { + running_avg_y = LD_UB(running_avg_y_ptr); + mc_running_avg_y0 = LD_UB(mc_running_avg_y_ptr); + sig0 = LD_UB(sig_ptr); + sig_ptr += sig_stride; + mc_running_avg_y_ptr += mc_avg_y_stride; + running_avg_y_ptr += avg_y_stride; + mc_running_avg_y1 = LD_UB(mc_running_avg_y_ptr); + sig1 = LD_UB(sig_ptr); + running_avg_y1 = LD_UB(running_avg_y_ptr); + ILVRL_B2_UB(mc_running_avg_y0, sig0, coeff0, coeff1); + HSUB_UB2_SH(coeff0, coeff1, diff0, diff1); + abs_diff0 = __msa_add_a_h(diff0, zero); + abs_diff1 = __msa_add_a_h(diff1, zero); + temp0_h = abs_diff0 < delta_vec; + temp1_h = abs_diff1 < delta_vec; + abs_diff0 = (v8i16)__msa_bmz_v((v16u8)abs_diff0, (v16u8)delta_vec, + (v16u8)temp0_h); + abs_diff1 = (v8i16)__msa_bmz_v((v16u8)abs_diff1, (v16u8)delta_vec, + (v16u8)temp1_h); + SUB2(zero, abs_diff0, zero, abs_diff1, abs_diff_neg0, abs_diff_neg1); + abs_diff_neg0 = zero - abs_diff0; + abs_diff_neg1 = zero - abs_diff1; + temp0_h = __msa_clei_s_h(diff0, 0); + temp1_h = __msa_clei_s_h(diff1, 0); + adjust0 = (v8i16)__msa_bmnz_v((v16u8)abs_diff0, (v16u8)abs_diff_neg0, + (v16u8)temp0_h); + adjust1 = (v8i16)__msa_bmnz_v((v16u8)abs_diff1, (v16u8)abs_diff_neg1, + (v16u8)temp1_h); + ILVRL_B2_SH(zero, running_avg_y, temp2_h, temp3_h); + ADD2(temp2_h, adjust0, temp3_h, adjust1, adjust2, adjust3); + MAXI_SH2_SH(adjust2, adjust3, 0); + SAT_UH2_SH(adjust2, adjust3, 7); + temp0_h = __msa_ceqi_h(diff0, 0); + temp1_h = __msa_ceqi_h(diff1, 0); + adjust2 = + (v8i16)__msa_bmz_v((v16u8)adjust2, (v16u8)temp2_h, (v16u8)temp0_h); + adjust3 = + (v8i16)__msa_bmz_v((v16u8)adjust3, (v16u8)temp3_h, (v16u8)temp1_h); + adjust0 = + (v8i16)__msa_bmnz_v((v16u8)adjust0, (v16u8)zero, (v16u8)temp0_h); + adjust1 = + (v8i16)__msa_bmnz_v((v16u8)adjust1, (v16u8)zero, (v16u8)temp1_h); + ADD2(col_sum2, adjust0, col_sum3, adjust1, col_sum2, col_sum3); + running_avg_y = (v16u8)__msa_pckev_b((v16i8)adjust3, (v16i8)adjust2); + ST_UB(running_avg_y, running_avg_y_ptr - avg_y_stride); + ILVRL_B2_UB(mc_running_avg_y1, sig1, coeff0, coeff1); + HSUB_UB2_SH(coeff0, coeff1, diff0, diff1); + abs_diff0 = __msa_add_a_h(diff0, zero); + abs_diff1 = __msa_add_a_h(diff1, zero); + temp0_h = abs_diff0 < delta_vec; + temp1_h = abs_diff1 < delta_vec; + abs_diff0 = (v8i16)__msa_bmz_v((v16u8)abs_diff0, (v16u8)delta_vec, + (v16u8)temp0_h); + abs_diff1 = (v8i16)__msa_bmz_v((v16u8)abs_diff1, (v16u8)delta_vec, + (v16u8)temp1_h); + SUB2(zero, abs_diff0, zero, abs_diff1, abs_diff_neg0, abs_diff_neg1); + temp0_h = __msa_clei_s_h(diff0, 0); + temp1_h = __msa_clei_s_h(diff1, 0); + adjust0 = (v8i16)__msa_bmnz_v((v16u8)abs_diff0, (v16u8)abs_diff_neg0, + (v16u8)temp0_h); + adjust1 = (v8i16)__msa_bmnz_v((v16u8)abs_diff1, (v16u8)abs_diff_neg1, + (v16u8)temp1_h); + ILVRL_H2_SH(zero, running_avg_y1, temp2_h, temp3_h); + ADD2(temp2_h, adjust0, temp3_h, adjust1, adjust2, adjust3); + MAXI_SH2_SH(adjust2, adjust3, 0); + SAT_UH2_SH(adjust2, adjust3, 7); + temp0_h = __msa_ceqi_h(diff0, 0); + temp1_h = __msa_ceqi_h(diff1, 0); + adjust2 = + (v8i16)__msa_bmz_v((v16u8)adjust2, (v16u8)temp2_h, (v16u8)temp0_h); + adjust3 = + (v8i16)__msa_bmz_v((v16u8)adjust3, (v16u8)temp3_h, (v16u8)temp1_h); + adjust0 = + (v8i16)__msa_bmz_v((v16u8)adjust0, (v16u8)zero, (v16u8)temp0_h); + adjust1 = + (v8i16)__msa_bmz_v((v16u8)adjust1, (v16u8)zero, (v16u8)temp1_h); + ADD2(col_sum2, adjust0, col_sum3, adjust1, col_sum2, col_sum3); + running_avg_y = (v16u8)__msa_pckev_b((v16i8)adjust3, (v16i8)adjust2); + ST_UB(running_avg_y, running_avg_y_ptr); + running_avg_y_ptr += avg_y_stride; + } + + col_sum2 = __msa_min_s_h(col_sum2, val_127); + col_sum3 = __msa_min_s_h(col_sum3, val_127); + temp0_h = col_sum2 + col_sum3; + temp0_w = __msa_hadd_s_w(temp0_h, temp0_h); + temp0_d = __msa_hadd_s_d(temp0_w, temp0_w); + temp1_d = __msa_splati_d(temp0_d, 1); + temp0_d += (v2i64)temp1_d; + sum_diff = __msa_copy_s_w((v4i32)temp0_d, 0); + if (abs(sum_diff) > SUM_DIFF_THRESHOLD) { + return COPY_BLOCK; + } + } else { + return COPY_BLOCK; + } + } + + LD_UB8(sig_start, sig_stride, src0, src1, src2, src3, src4, src5, src6, src7); + sig_start += (8 * sig_stride); + LD_UB8(sig_start, sig_stride, src8, src9, src10, src11, src12, src13, src14, + src15); + + ST_UB8(src0, src1, src2, src3, src4, src5, src6, src7, running_avg_y_start, + avg_y_stride); + running_avg_y_start += (8 * avg_y_stride); + ST_UB8(src8, src9, src10, src11, src12, src13, src14, src15, + running_avg_y_start, avg_y_stride); + + return FILTER_BLOCK; +} + +int32_t vp8_denoiser_filter_uv_msa( + uint8_t *mc_running_avg_y_ptr, int32_t mc_avg_y_stride, + uint8_t *running_avg_y_ptr, int32_t avg_y_stride, uint8_t *sig_ptr, + int32_t sig_stride, uint32_t motion_magnitude, int32_t increase_denoising) { + uint8_t *running_avg_y_start = running_avg_y_ptr; + uint8_t *sig_start = sig_ptr; + int32_t cnt = 0; + int32_t sum_diff = 0; + int32_t shift_inc1 = 3; + int32_t delta = 0; + int32_t sum_block = 0; + int32_t sum_diff_thresh; + int64_t dst0, dst1, src0, src1, src2, src3; + v16u8 mc_running_avg_y0, running_avg_y, sig0; + v16u8 mc_running_avg_y1, running_avg_y1, sig1; + v16u8 sig2, sig3, sig4, sig5, sig6, sig7; + v16u8 coeff0; + v8i16 diff0, abs_diff0, abs_diff_neg0; + v8i16 adjust0, adjust2; + v8i16 shift_inc1_vec = { 0 }; + v8i16 col_sum0 = { 0 }; + v8i16 temp0_h, temp2_h, cmp, delta_vec; + v4i32 temp0_w; + v2i64 temp0_d, temp1_d; + v16i8 zero = { 0 }; + v8i16 one = __msa_ldi_h(1); + v8i16 four = __msa_ldi_h(4); + v8i16 adj_val = { 6, 4, 3, 0, -6, -4, -3, 0 }; + + sig0 = LD_UB(sig_ptr); + sig_ptr += sig_stride; + temp0_h = (v8i16)__msa_ilvr_b(zero, (v16i8)sig0); + sig1 = LD_UB(sig_ptr); + sig_ptr += sig_stride; + temp0_h += (v8i16)__msa_ilvr_b(zero, (v16i8)sig1); + sig2 = LD_UB(sig_ptr); + sig_ptr += sig_stride; + temp0_h += (v8i16)__msa_ilvr_b(zero, (v16i8)sig2); + sig3 = LD_UB(sig_ptr); + sig_ptr += sig_stride; + temp0_h += (v8i16)__msa_ilvr_b(zero, (v16i8)sig3); + sig4 = LD_UB(sig_ptr); + sig_ptr += sig_stride; + temp0_h += (v8i16)__msa_ilvr_b(zero, (v16i8)sig4); + sig5 = LD_UB(sig_ptr); + sig_ptr += sig_stride; + temp0_h += (v8i16)__msa_ilvr_b(zero, (v16i8)sig5); + sig6 = LD_UB(sig_ptr); + sig_ptr += sig_stride; + temp0_h += (v8i16)__msa_ilvr_b(zero, (v16i8)sig6); + sig7 = LD_UB(sig_ptr); + sig_ptr += sig_stride; + temp0_h += (v8i16)__msa_ilvr_b(zero, (v16i8)sig7); + temp0_w = __msa_hadd_s_w(temp0_h, temp0_h); + temp0_d = __msa_hadd_s_d(temp0_w, temp0_w); + temp1_d = __msa_splati_d(temp0_d, 1); + temp0_d += temp1_d; + sum_block = __msa_copy_s_w((v4i32)temp0_d, 0); + sig_ptr -= sig_stride * 8; + + if (abs(sum_block - (128 * 8 * 8)) < SUM_DIFF_FROM_AVG_THRESH_UV) { + return COPY_BLOCK; + } + + if (motion_magnitude <= MOTION_MAGNITUDE_THRESHOLD) { + adj_val = __msa_add_a_h(adj_val, one); + + if (increase_denoising) { + adj_val = __msa_add_a_h(adj_val, one); + shift_inc1 = 4; + } + + temp0_h = (v8i16)zero - adj_val; + adj_val = (v8i16)__msa_ilvev_d((v2i64)temp0_h, (v2i64)adj_val); + } + + adj_val = __msa_insert_h(adj_val, 3, cnt); + adj_val = __msa_insert_h(adj_val, 7, cnt); + shift_inc1_vec = __msa_fill_h(shift_inc1); + for (cnt = 4; cnt--;) { + v8i16 mask0 = { 0 }; + mc_running_avg_y0 = LD_UB(mc_running_avg_y_ptr); + sig0 = LD_UB(sig_ptr); + sig_ptr += sig_stride; + mc_running_avg_y_ptr += mc_avg_y_stride; + mc_running_avg_y1 = LD_UB(mc_running_avg_y_ptr); + sig1 = LD_UB(sig_ptr); + coeff0 = (v16u8)__msa_ilvr_b((v16i8)mc_running_avg_y0, (v16i8)sig0); + diff0 = __msa_hsub_u_h(coeff0, coeff0); + abs_diff0 = __msa_add_a_h(diff0, (v8i16)zero); + cmp = __msa_clei_s_h(abs_diff0, 15); + cmp = cmp & one; + mask0 += cmp; + cmp = __msa_clei_s_h(abs_diff0, 7); + cmp = cmp & one; + mask0 += cmp; + cmp = abs_diff0 < shift_inc1_vec; + cmp = cmp & one; + mask0 += cmp; + temp0_h = __msa_clei_s_h(diff0, 0); + temp0_h = temp0_h & four; + mask0 += temp0_h; + adjust0 = __msa_vshf_h(mask0, adj_val, adj_val); + temp2_h = __msa_ceqi_h(adjust0, 0); + adjust0 = (v8i16)__msa_bmnz_v((v16u8)adjust0, (v16u8)diff0, (v16u8)temp2_h); + col_sum0 += adjust0; + temp0_h = (v8i16)__msa_ilvr_b(zero, (v16i8)sig0); + temp0_h += adjust0; + temp0_h = __msa_maxi_s_h(temp0_h, 0); + temp0_h = (v8i16)__msa_sat_u_h((v8u16)temp0_h, 7); + temp2_h = (v8i16)__msa_pckev_b((v16i8)temp2_h, (v16i8)temp2_h); + running_avg_y = (v16u8)__msa_pckev_b((v16i8)temp0_h, (v16i8)temp0_h); + running_avg_y = + __msa_bmnz_v(running_avg_y, mc_running_avg_y0, (v16u8)temp2_h); + dst0 = __msa_copy_s_d((v2i64)running_avg_y, 0); + SD(dst0, running_avg_y_ptr); + running_avg_y_ptr += avg_y_stride; + + mask0 = __msa_ldi_h(0); + coeff0 = (v16u8)__msa_ilvr_b((v16i8)mc_running_avg_y1, (v16i8)sig1); + diff0 = __msa_hsub_u_h(coeff0, coeff0); + abs_diff0 = __msa_add_a_h(diff0, (v8i16)zero); + cmp = __msa_clei_s_h(abs_diff0, 15); + cmp = cmp & one; + mask0 += cmp; + cmp = __msa_clei_s_h(abs_diff0, 7); + cmp = cmp & one; + mask0 += cmp; + cmp = abs_diff0 < shift_inc1_vec; + cmp = cmp & one; + mask0 += cmp; + temp0_h = __msa_clei_s_h(diff0, 0); + temp0_h = temp0_h & four; + mask0 += temp0_h; + adjust0 = __msa_vshf_h(mask0, adj_val, adj_val); + temp2_h = __msa_ceqi_h(adjust0, 0); + adjust0 = (v8i16)__msa_bmnz_v((v16u8)adjust0, (v16u8)diff0, (v16u8)temp2_h); + col_sum0 += adjust0; + temp0_h = (v8i16)__msa_ilvr_b(zero, (v16i8)sig1); + temp0_h += adjust0; + temp0_h = __msa_maxi_s_h(temp0_h, 0); + temp0_h = (v8i16)__msa_sat_u_h((v8u16)temp0_h, 7); + + temp2_h = (v8i16)__msa_pckev_b((v16i8)temp2_h, (v16i8)temp2_h); + running_avg_y = (v16u8)__msa_pckev_b((v16i8)temp0_h, (v16i8)temp0_h); + running_avg_y = + __msa_bmnz_v(running_avg_y, mc_running_avg_y1, (v16u8)temp2_h); + dst1 = __msa_copy_s_d((v2i64)running_avg_y, 0); + SD(dst1, running_avg_y_ptr); + + sig_ptr += sig_stride; + mc_running_avg_y_ptr += mc_avg_y_stride; + running_avg_y_ptr += avg_y_stride; + } + + temp0_h = col_sum0; + temp0_w = __msa_hadd_s_w(temp0_h, temp0_h); + temp0_d = __msa_hadd_s_d(temp0_w, temp0_w); + temp1_d = __msa_splati_d(temp0_d, 1); + temp0_d += temp1_d; + sum_diff = __msa_copy_s_w((v4i32)temp0_d, 0); + sig_ptr -= sig_stride * 8; + mc_running_avg_y_ptr -= mc_avg_y_stride * 8; + running_avg_y_ptr -= avg_y_stride * 8; + sum_diff_thresh = SUM_DIFF_THRESHOLD_UV; + + if (increase_denoising) { + sum_diff_thresh = SUM_DIFF_THRESHOLD_HIGH_UV; + } + + if (abs(sum_diff) > sum_diff_thresh) { + delta = ((abs(sum_diff) - sum_diff_thresh) >> 8) + 1; + delta_vec = __msa_fill_h(delta); + if (delta < 4) { + for (cnt = 4; cnt--;) { + running_avg_y = LD_UB(running_avg_y_ptr); + mc_running_avg_y0 = LD_UB(mc_running_avg_y_ptr); + sig0 = LD_UB(sig_ptr); + /* Update pointers for next iteration. */ + sig_ptr += sig_stride; + mc_running_avg_y_ptr += mc_avg_y_stride; + running_avg_y_ptr += avg_y_stride; + + mc_running_avg_y1 = LD_UB(mc_running_avg_y_ptr); + sig1 = LD_UB(sig_ptr); + running_avg_y1 = LD_UB(running_avg_y_ptr); + + coeff0 = (v16u8)__msa_ilvr_b((v16i8)mc_running_avg_y0, (v16i8)sig0); + diff0 = __msa_hsub_u_h(coeff0, coeff0); + abs_diff0 = __msa_add_a_h(diff0, (v8i16)zero); + temp0_h = delta_vec < abs_diff0; + abs_diff0 = (v8i16)__msa_bmnz_v((v16u8)abs_diff0, (v16u8)delta_vec, + (v16u8)temp0_h); + abs_diff_neg0 = (v8i16)zero - abs_diff0; + temp0_h = __msa_clei_s_h(diff0, 0); + adjust0 = (v8i16)__msa_bmz_v((v16u8)abs_diff0, (v16u8)abs_diff_neg0, + (v16u8)temp0_h); + temp2_h = (v8i16)__msa_ilvr_b(zero, (v16i8)running_avg_y); + adjust2 = temp2_h + adjust0; + adjust2 = __msa_maxi_s_h(adjust2, 0); + adjust2 = (v8i16)__msa_sat_u_h((v8u16)adjust2, 7); + temp0_h = __msa_ceqi_h(diff0, 0); + adjust2 = + (v8i16)__msa_bmnz_v((v16u8)adjust2, (v16u8)temp2_h, (v16u8)temp0_h); + adjust0 = + (v8i16)__msa_bmnz_v((v16u8)adjust0, (v16u8)zero, (v16u8)temp0_h); + col_sum0 += adjust0; + running_avg_y = (v16u8)__msa_pckev_b((v16i8)adjust2, (v16i8)adjust2); + dst0 = __msa_copy_s_d((v2i64)running_avg_y, 0); + SD(dst0, running_avg_y_ptr - avg_y_stride); + + coeff0 = (v16u8)__msa_ilvr_b((v16i8)mc_running_avg_y1, (v16i8)sig1); + diff0 = __msa_hsub_u_h(coeff0, coeff0); + abs_diff0 = __msa_add_a_h(diff0, (v8i16)zero); + temp0_h = delta_vec < abs_diff0; + abs_diff0 = (v8i16)__msa_bmnz_v((v16u8)abs_diff0, (v16u8)delta_vec, + (v16u8)temp0_h); + abs_diff_neg0 = (v8i16)zero - abs_diff0; + temp0_h = __msa_clei_s_h(diff0, 0); + adjust0 = (v8i16)__msa_bmz_v((v16u8)abs_diff0, (v16u8)abs_diff_neg0, + (v16u8)temp0_h); + temp2_h = (v8i16)__msa_ilvr_b(zero, (v16i8)running_avg_y1); + adjust2 = temp2_h + adjust0; + adjust2 = __msa_maxi_s_h(adjust2, 0); + adjust2 = (v8i16)__msa_sat_u_h((v8u16)adjust2, 7); + temp0_h = __msa_ceqi_h(diff0, 0); + adjust2 = + (v8i16)__msa_bmnz_v((v16u8)adjust2, (v16u8)temp2_h, (v16u8)temp0_h); + adjust0 = + (v8i16)__msa_bmnz_v((v16u8)adjust0, (v16u8)zero, (v16u8)temp0_h); + col_sum0 += adjust0; + running_avg_y = (v16u8)__msa_pckev_b((v16i8)adjust2, (v16i8)adjust2); + dst1 = __msa_copy_s_d((v2i64)running_avg_y, 0); + SD(dst1, running_avg_y_ptr); + running_avg_y_ptr += avg_y_stride; + } + + temp0_h = col_sum0; + temp0_w = __msa_hadd_s_w(temp0_h, temp0_h); + temp0_d = __msa_hadd_s_d(temp0_w, temp0_w); + temp1_d = __msa_splati_d(temp0_d, 1); + temp0_d += temp1_d; + sum_diff = __msa_copy_s_w((v4i32)temp0_d, 0); + + if (abs(sum_diff) > sum_diff_thresh) { + return COPY_BLOCK; + } + } else { + return COPY_BLOCK; + } + } + + LD4(sig_start, sig_stride, src0, src1, src2, src3); + sig_start += (4 * sig_stride); + SD4(src0, src1, src2, src3, running_avg_y_start, avg_y_stride); + running_avg_y_start += (4 * avg_y_stride); + + LD4(sig_start, sig_stride, src0, src1, src2, src3); + SD4(src0, src1, src2, src3, running_avg_y_start, avg_y_stride); + + return FILTER_BLOCK; +} diff --git a/vp8/encoder/mips/msa/encodeopt_msa.c b/vp8/encoder/mips/msa/encodeopt_msa.c new file mode 100644 index 0000000..2bcddb6 --- /dev/null +++ b/vp8/encoder/mips/msa/encodeopt_msa.c @@ -0,0 +1,167 @@ +/* + * Copyright (c) 2015 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "./vp8_rtcd.h" +#include "vp8/common/mips/msa/vp8_macros_msa.h" +#include "vp8/encoder/block.h" + +int32_t vp8_block_error_msa(int16_t *coeff_ptr, int16_t *dq_coeff_ptr) { + int32_t err = 0; + uint32_t loop_cnt; + v8i16 coeff, dq_coeff, coeff0, coeff1; + v4i32 diff0, diff1; + v2i64 err0 = { 0 }; + v2i64 err1 = { 0 }; + + for (loop_cnt = 2; loop_cnt--;) { + coeff = LD_SH(coeff_ptr); + dq_coeff = LD_SH(dq_coeff_ptr); + ILVRL_H2_SH(coeff, dq_coeff, coeff0, coeff1); + HSUB_UH2_SW(coeff0, coeff1, diff0, diff1); + DPADD_SD2_SD(diff0, diff1, err0, err1); + coeff_ptr += 8; + dq_coeff_ptr += 8; + } + + err0 += __msa_splati_d(err0, 1); + err1 += __msa_splati_d(err1, 1); + err = __msa_copy_s_d(err0, 0); + err += __msa_copy_s_d(err1, 0); + + return err; +} + +int32_t vp8_mbblock_error_msa(MACROBLOCK *mb, int32_t dc) { + BLOCK *be; + BLOCKD *bd; + int16_t *coeff_ptr, *dq_coeff_ptr; + int32_t err = 0; + uint32_t loop_cnt; + v8i16 coeff, coeff0, coeff1, coeff2, coeff3, coeff4; + v8i16 dq_coeff, dq_coeff2, dq_coeff3, dq_coeff4; + v4i32 diff0, diff1; + v2i64 err0, err1; + v16u8 zero = { 0 }; + v16u8 mask0 = (v16u8)__msa_ldi_b(255); + + if (1 == dc) { + mask0 = (v16u8)__msa_insve_w((v4i32)mask0, 0, (v4i32)zero); + } + + for (loop_cnt = 0; loop_cnt < 8; ++loop_cnt) { + be = &mb->block[2 * loop_cnt]; + bd = &mb->e_mbd.block[2 * loop_cnt]; + coeff_ptr = be->coeff; + dq_coeff_ptr = bd->dqcoeff; + coeff = LD_SH(coeff_ptr); + dq_coeff = LD_SH(dq_coeff_ptr); + coeff_ptr += 8; + dq_coeff_ptr += 8; + coeff2 = LD_SH(coeff_ptr); + dq_coeff2 = LD_SH(dq_coeff_ptr); + be = &mb->block[2 * loop_cnt + 1]; + bd = &mb->e_mbd.block[2 * loop_cnt + 1]; + coeff_ptr = be->coeff; + dq_coeff_ptr = bd->dqcoeff; + coeff3 = LD_SH(coeff_ptr); + dq_coeff3 = LD_SH(dq_coeff_ptr); + coeff_ptr += 8; + dq_coeff_ptr += 8; + coeff4 = LD_SH(coeff_ptr); + dq_coeff4 = LD_SH(dq_coeff_ptr); + ILVRL_H2_SH(coeff, dq_coeff, coeff0, coeff1); + HSUB_UH2_SW(coeff0, coeff1, diff0, diff1); + diff0 = (v4i32)__msa_bmnz_v(zero, (v16u8)diff0, mask0); + DOTP_SW2_SD(diff0, diff1, diff0, diff1, err0, err1); + ILVRL_H2_SH(coeff2, dq_coeff2, coeff0, coeff1); + HSUB_UH2_SW(coeff0, coeff1, diff0, diff1); + DPADD_SD2_SD(diff0, diff1, err0, err1); + err0 += __msa_splati_d(err0, 1); + err1 += __msa_splati_d(err1, 1); + err += __msa_copy_s_d(err0, 0); + err += __msa_copy_s_d(err1, 0); + + ILVRL_H2_SH(coeff3, dq_coeff3, coeff0, coeff1); + HSUB_UH2_SW(coeff0, coeff1, diff0, diff1); + diff0 = (v4i32)__msa_bmnz_v(zero, (v16u8)diff0, mask0); + DOTP_SW2_SD(diff0, diff1, diff0, diff1, err0, err1); + ILVRL_H2_SH(coeff4, dq_coeff4, coeff0, coeff1); + HSUB_UH2_SW(coeff0, coeff1, diff0, diff1); + DPADD_SD2_SD(diff0, diff1, err0, err1); + err0 += __msa_splati_d(err0, 1); + err1 += __msa_splati_d(err1, 1); + err += __msa_copy_s_d(err0, 0); + err += __msa_copy_s_d(err1, 0); + } + + return err; +} + +int32_t vp8_mbuverror_msa(MACROBLOCK *mb) { + BLOCK *be; + BLOCKD *bd; + int16_t *coeff_ptr, *dq_coeff_ptr; + int32_t err = 0; + uint32_t loop_cnt; + v8i16 coeff, coeff0, coeff1, coeff2, coeff3, coeff4; + v8i16 dq_coeff, dq_coeff2, dq_coeff3, dq_coeff4; + v4i32 diff0, diff1; + v2i64 err0, err1, err_dup0, err_dup1; + + for (loop_cnt = 16; loop_cnt < 24; loop_cnt += 2) { + be = &mb->block[loop_cnt]; + bd = &mb->e_mbd.block[loop_cnt]; + coeff_ptr = be->coeff; + dq_coeff_ptr = bd->dqcoeff; + coeff = LD_SH(coeff_ptr); + dq_coeff = LD_SH(dq_coeff_ptr); + coeff_ptr += 8; + dq_coeff_ptr += 8; + coeff2 = LD_SH(coeff_ptr); + dq_coeff2 = LD_SH(dq_coeff_ptr); + be = &mb->block[loop_cnt + 1]; + bd = &mb->e_mbd.block[loop_cnt + 1]; + coeff_ptr = be->coeff; + dq_coeff_ptr = bd->dqcoeff; + coeff3 = LD_SH(coeff_ptr); + dq_coeff3 = LD_SH(dq_coeff_ptr); + coeff_ptr += 8; + dq_coeff_ptr += 8; + coeff4 = LD_SH(coeff_ptr); + dq_coeff4 = LD_SH(dq_coeff_ptr); + + ILVRL_H2_SH(coeff, dq_coeff, coeff0, coeff1); + HSUB_UH2_SW(coeff0, coeff1, diff0, diff1); + DOTP_SW2_SD(diff0, diff1, diff0, diff1, err0, err1); + + ILVRL_H2_SH(coeff2, dq_coeff2, coeff0, coeff1); + HSUB_UH2_SW(coeff0, coeff1, diff0, diff1); + DPADD_SD2_SD(diff0, diff1, err0, err1); + err_dup0 = __msa_splati_d(err0, 1); + err_dup1 = __msa_splati_d(err1, 1); + ADD2(err0, err_dup0, err1, err_dup1, err0, err1); + err += __msa_copy_s_d(err0, 0); + err += __msa_copy_s_d(err1, 0); + + ILVRL_H2_SH(coeff3, dq_coeff3, coeff0, coeff1); + HSUB_UH2_SW(coeff0, coeff1, diff0, diff1); + DOTP_SW2_SD(diff0, diff1, diff0, diff1, err0, err1); + ILVRL_H2_SH(coeff4, dq_coeff4, coeff0, coeff1); + HSUB_UH2_SW(coeff0, coeff1, diff0, diff1); + DPADD_SD2_SD(diff0, diff1, err0, err1); + err_dup0 = __msa_splati_d(err0, 1); + err_dup1 = __msa_splati_d(err1, 1); + ADD2(err0, err_dup0, err1, err_dup1, err0, err1); + err += __msa_copy_s_d(err0, 0); + err += __msa_copy_s_d(err1, 0); + } + + return err; +} diff --git a/vp8/encoder/mips/msa/quantize_msa.c b/vp8/encoder/mips/msa/quantize_msa.c new file mode 100644 index 0000000..9f5fbd3 --- /dev/null +++ b/vp8/encoder/mips/msa/quantize_msa.c @@ -0,0 +1,211 @@ +/* + * Copyright (c) 2015 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "./vp8_rtcd.h" +#include "vp8/common/mips/msa/vp8_macros_msa.h" +#include "vp8/encoder/block.h" + +static int8_t fast_quantize_b_msa(int16_t *coeff_ptr, int16_t *round, + int16_t *quant, int16_t *de_quant, + int16_t *q_coeff, int16_t *dq_coeff) { + int32_t cnt, eob; + v16i8 inv_zig_zag = { 0, 1, 5, 6, 2, 4, 7, 12, 3, 8, 11, 13, 9, 10, 14, 15 }; + v8i16 round0, round1; + v8i16 sign_z0, sign_z1; + v8i16 q_coeff0, q_coeff1; + v8i16 x0, x1, de_quant0, de_quant1; + v8i16 coeff0, coeff1, z0, z1; + v8i16 quant0, quant1, quant2, quant3; + v8i16 zero = { 0 }; + v8i16 inv_zig_zag0, inv_zig_zag1; + v8i16 zigzag_mask0 = { 0, 1, 4, 8, 5, 2, 3, 6 }; + v8i16 zigzag_mask1 = { 9, 12, 13, 10, 7, 11, 14, 15 }; + v8i16 temp0_h, temp1_h, temp2_h, temp3_h; + v4i32 temp0_w, temp1_w, temp2_w, temp3_w; + + ILVRL_B2_SH(zero, inv_zig_zag, inv_zig_zag0, inv_zig_zag1); + eob = -1; + LD_SH2(coeff_ptr, 8, coeff0, coeff1); + VSHF_H2_SH(coeff0, coeff1, coeff0, coeff1, zigzag_mask0, zigzag_mask1, z0, + z1); + LD_SH2(round, 8, coeff0, coeff1); + VSHF_H2_SH(coeff0, coeff1, coeff0, coeff1, zigzag_mask0, zigzag_mask1, round0, + round1); + LD_SH2(quant, 8, coeff0, coeff1); + VSHF_H2_SH(coeff0, coeff1, coeff0, coeff1, zigzag_mask0, zigzag_mask1, quant0, + quant2); + sign_z0 = z0 >> 15; + sign_z1 = z1 >> 15; + x0 = __msa_add_a_h(z0, zero); + x1 = __msa_add_a_h(z1, zero); + ILVL_H2_SH(quant0, quant0, quant2, quant2, quant1, quant3); + ILVR_H2_SH(quant0, quant0, quant2, quant2, quant0, quant2); + ILVL_H2_SH(round0, x0, round1, x1, temp1_h, temp3_h); + ILVR_H2_SH(round0, x0, round1, x1, temp0_h, temp2_h); + DOTP_SH4_SW(temp0_h, temp1_h, temp2_h, temp3_h, quant0, quant1, quant2, + quant3, temp0_w, temp1_w, temp2_w, temp3_w); + SRA_4V(temp0_w, temp1_w, temp2_w, temp3_w, 16); + PCKEV_H2_SH(temp1_w, temp0_w, temp3_w, temp2_w, x0, x1); + x0 = x0 ^ sign_z0; + x1 = x1 ^ sign_z1; + SUB2(x0, sign_z0, x1, sign_z1, x0, x1); + VSHF_H2_SH(x0, x1, x0, x1, inv_zig_zag0, inv_zig_zag1, q_coeff0, q_coeff1); + ST_SH2(q_coeff0, q_coeff1, q_coeff, 8); + LD_SH2(de_quant, 8, de_quant0, de_quant1); + q_coeff0 *= de_quant0; + q_coeff1 *= de_quant1; + ST_SH2(q_coeff0, q_coeff1, dq_coeff, 8); + + for (cnt = 0; cnt < 16; ++cnt) { + if ((cnt <= 7) && (x1[7 - cnt] != 0)) { + eob = (15 - cnt); + break; + } + + if ((cnt > 7) && (x0[7 - (cnt - 8)] != 0)) { + eob = (7 - (cnt - 8)); + break; + } + } + + return (int8_t)(eob + 1); +} + +static int8_t exact_regular_quantize_b_msa( + int16_t *zbin_boost, int16_t *coeff_ptr, int16_t *zbin, int16_t *round, + int16_t *quant, int16_t *quant_shift, int16_t *de_quant, int16_t zbin_oq_in, + int16_t *q_coeff, int16_t *dq_coeff) { + int32_t cnt, eob; + int16_t *boost_temp = zbin_boost; + v16i8 inv_zig_zag = { 0, 1, 5, 6, 2, 4, 7, 12, 3, 8, 11, 13, 9, 10, 14, 15 }; + v8i16 round0, round1; + v8i16 sign_z0, sign_z1; + v8i16 q_coeff0, q_coeff1; + v8i16 z_bin0, z_bin1, zbin_o_q; + v8i16 x0, x1, sign_x0, sign_x1, de_quant0, de_quant1; + v8i16 coeff0, coeff1, z0, z1; + v8i16 quant0, quant1, quant2, quant3; + v8i16 zero = { 0 }; + v8i16 inv_zig_zag0, inv_zig_zag1; + v8i16 zigzag_mask0 = { 0, 1, 4, 8, 5, 2, 3, 6 }; + v8i16 zigzag_mask1 = { 9, 12, 13, 10, 7, 11, 14, 15 }; + v8i16 temp0_h, temp1_h, temp2_h, temp3_h; + v4i32 temp0_w, temp1_w, temp2_w, temp3_w; + + ILVRL_B2_SH(zero, inv_zig_zag, inv_zig_zag0, inv_zig_zag1); + zbin_o_q = __msa_fill_h(zbin_oq_in); + eob = -1; + LD_SH2(coeff_ptr, 8, coeff0, coeff1); + VSHF_H2_SH(coeff0, coeff1, coeff0, coeff1, zigzag_mask0, zigzag_mask1, z0, + z1); + LD_SH2(round, 8, coeff0, coeff1); + VSHF_H2_SH(coeff0, coeff1, coeff0, coeff1, zigzag_mask0, zigzag_mask1, round0, + round1); + LD_SH2(quant, 8, coeff0, coeff1); + VSHF_H2_SH(coeff0, coeff1, coeff0, coeff1, zigzag_mask0, zigzag_mask1, quant0, + quant2); + LD_SH2(zbin, 8, coeff0, coeff1); + VSHF_H2_SH(coeff0, coeff1, coeff0, coeff1, zigzag_mask0, zigzag_mask1, z_bin0, + z_bin1); + sign_z0 = z0 >> 15; + sign_z1 = z1 >> 15; + x0 = __msa_add_a_h(z0, zero); + x1 = __msa_add_a_h(z1, zero); + SUB2(x0, z_bin0, x1, z_bin1, z_bin0, z_bin1); + SUB2(z_bin0, zbin_o_q, z_bin1, zbin_o_q, z_bin0, z_bin1); + ILVL_H2_SH(quant0, quant0, quant2, quant2, quant1, quant3); + ILVR_H2_SH(quant0, quant0, quant2, quant2, quant0, quant2); + ILVL_H2_SH(round0, x0, round1, x1, temp1_h, temp3_h); + ILVR_H2_SH(round0, x0, round1, x1, temp0_h, temp2_h); + DOTP_SH4_SW(temp0_h, temp1_h, temp2_h, temp3_h, quant0, quant1, quant2, + quant3, temp0_w, temp1_w, temp2_w, temp3_w); + SRA_4V(temp0_w, temp1_w, temp2_w, temp3_w, 16); + PCKEV_H2_SH(temp1_w, temp0_w, temp3_w, temp2_w, temp0_h, temp2_h); + LD_SH2(quant_shift, 8, coeff0, coeff1); + VSHF_H2_SH(coeff0, coeff1, coeff0, coeff1, zigzag_mask0, zigzag_mask1, quant0, + quant2); + ILVL_H2_SH(quant0, quant0, quant2, quant2, quant1, quant3); + ILVR_H2_SH(quant0, quant0, quant2, quant2, quant0, quant2); + ADD2(x0, round0, x1, round1, x0, x1); + ILVL_H2_SH(temp0_h, x0, temp2_h, x1, temp1_h, temp3_h); + ILVR_H2_SH(temp0_h, x0, temp2_h, x1, temp0_h, temp2_h); + DOTP_SH4_SW(temp0_h, temp1_h, temp2_h, temp3_h, quant0, quant1, quant2, + quant3, temp0_w, temp1_w, temp2_w, temp3_w); + SRA_4V(temp0_w, temp1_w, temp2_w, temp3_w, 16); + PCKEV_H2_SH(temp1_w, temp0_w, temp3_w, temp2_w, x0, x1); + sign_x0 = x0 ^ sign_z0; + sign_x1 = x1 ^ sign_z1; + SUB2(sign_x0, sign_z0, sign_x1, sign_z1, sign_x0, sign_x1); + for (cnt = 0; cnt < 16; ++cnt) { + if (cnt <= 7) { + if (boost_temp[0] <= z_bin0[cnt]) { + if (x0[cnt]) { + eob = cnt; + boost_temp = zbin_boost; + } else { + boost_temp++; + } + } else { + sign_x0[cnt] = 0; + boost_temp++; + } + } else { + if (boost_temp[0] <= z_bin1[cnt - 8]) { + if (x1[cnt - 8]) { + eob = cnt; + boost_temp = zbin_boost; + } else { + boost_temp++; + } + } else { + sign_x1[cnt - 8] = 0; + boost_temp++; + } + } + } + + VSHF_H2_SH(sign_x0, sign_x1, sign_x0, sign_x1, inv_zig_zag0, inv_zig_zag1, + q_coeff0, q_coeff1); + ST_SH2(q_coeff0, q_coeff1, q_coeff, 8); + LD_SH2(de_quant, 8, de_quant0, de_quant1); + MUL2(de_quant0, q_coeff0, de_quant1, q_coeff1, de_quant0, de_quant1); + ST_SH2(de_quant0, de_quant1, dq_coeff, 8); + + return (int8_t)(eob + 1); +} + +void vp8_fast_quantize_b_msa(BLOCK *b, BLOCKD *d) { + int16_t *coeff_ptr = b->coeff; + int16_t *round_ptr = b->round; + int16_t *quant_ptr = b->quant_fast; + int16_t *qcoeff_ptr = d->qcoeff; + int16_t *dqcoeff_ptr = d->dqcoeff; + int16_t *dequant_ptr = d->dequant; + + *d->eob = fast_quantize_b_msa(coeff_ptr, round_ptr, quant_ptr, dequant_ptr, + qcoeff_ptr, dqcoeff_ptr); +} + +void vp8_regular_quantize_b_msa(BLOCK *b, BLOCKD *d) { + int16_t *zbin_boost_ptr = b->zrun_zbin_boost; + int16_t *coeff_ptr = b->coeff; + int16_t *zbin_ptr = b->zbin; + int16_t *round_ptr = b->round; + int16_t *quant_ptr = b->quant; + int16_t *quant_shift_ptr = b->quant_shift; + int16_t *qcoeff_ptr = d->qcoeff; + int16_t *dqcoeff_ptr = d->dqcoeff; + int16_t *dequant_ptr = d->dequant; + int16_t zbin_oq_value = b->zbin_extra; + + *d->eob = exact_regular_quantize_b_msa( + zbin_boost_ptr, coeff_ptr, zbin_ptr, round_ptr, quant_ptr, + quant_shift_ptr, dequant_ptr, zbin_oq_value, qcoeff_ptr, dqcoeff_ptr); +} diff --git a/vp8/encoder/mips/msa/temporal_filter_msa.c b/vp8/encoder/mips/msa/temporal_filter_msa.c new file mode 100644 index 0000000..fb83f07 --- /dev/null +++ b/vp8/encoder/mips/msa/temporal_filter_msa.c @@ -0,0 +1,284 @@ +/* + * Copyright (c) 2015 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "./vp8_rtcd.h" +#include "vp8/common/mips/msa/vp8_macros_msa.h" + +static void temporal_filter_apply_16size_msa( + uint8_t *frame1_ptr, uint32_t stride, uint8_t *frame2_ptr, + int32_t strength_in, int32_t filter_wt_in, uint32_t *acc, uint16_t *cnt) { + uint32_t row; + v16i8 frame1_0_b, frame1_1_b, frame2_0_b, frame2_1_b; + v16u8 frame_l, frame_h; + v16i8 zero = { 0 }; + v8i16 frame2_0_h, frame2_1_h, mod0_h, mod1_h; + v8i16 diff0, diff1, cnt0, cnt1; + v4i32 const3, const16, filter_wt, strength; + v4i32 mod0_w, mod1_w, mod2_w, mod3_w; + v4i32 diff0_r, diff0_l, diff1_r, diff1_l; + v4i32 frame2_0, frame2_1, frame2_2, frame2_3; + v4i32 acc0, acc1, acc2, acc3; + + filter_wt = __msa_fill_w(filter_wt_in); + strength = __msa_fill_w(strength_in); + const3 = __msa_ldi_w(3); + const16 = __msa_ldi_w(16); + + for (row = 8; row--;) { + frame1_0_b = LD_SB(frame1_ptr); + frame2_0_b = LD_SB(frame2_ptr); + frame1_ptr += stride; + frame2_ptr += 16; + frame1_1_b = LD_SB(frame1_ptr); + frame2_1_b = LD_SB(frame2_ptr); + LD_SW2(acc, 4, acc0, acc1); + LD_SW2(acc + 8, 4, acc2, acc3); + LD_SH2(cnt, 8, cnt0, cnt1); + ILVRL_B2_UB(frame1_0_b, frame2_0_b, frame_l, frame_h); + HSUB_UB2_SH(frame_l, frame_h, diff0, diff1); + UNPCK_SH_SW(diff0, diff0_r, diff0_l); + UNPCK_SH_SW(diff1, diff1_r, diff1_l); + MUL4(diff0_r, diff0_r, diff0_l, diff0_l, diff1_r, diff1_r, diff1_l, diff1_l, + mod0_w, mod1_w, mod2_w, mod3_w); + MUL4(mod0_w, const3, mod1_w, const3, mod2_w, const3, mod3_w, const3, mod0_w, + mod1_w, mod2_w, mod3_w); + SRAR_W4_SW(mod0_w, mod1_w, mod2_w, mod3_w, strength); + diff0_r = (mod0_w < const16); + diff0_l = (mod1_w < const16); + diff1_r = (mod2_w < const16); + diff1_l = (mod3_w < const16); + SUB4(const16, mod0_w, const16, mod1_w, const16, mod2_w, const16, mod3_w, + mod0_w, mod1_w, mod2_w, mod3_w); + mod0_w = diff0_r & mod0_w; + mod1_w = diff0_l & mod1_w; + mod2_w = diff1_r & mod2_w; + mod3_w = diff1_l & mod3_w; + MUL4(mod0_w, filter_wt, mod1_w, filter_wt, mod2_w, filter_wt, mod3_w, + filter_wt, mod0_w, mod1_w, mod2_w, mod3_w); + PCKEV_H2_SH(mod1_w, mod0_w, mod3_w, mod2_w, mod0_h, mod1_h) + ADD2(mod0_h, cnt0, mod1_h, cnt1, mod0_h, mod1_h); + ST_SH2(mod0_h, mod1_h, cnt, 8); + cnt += 16; + ILVRL_B2_SH(zero, frame2_0_b, frame2_0_h, frame2_1_h); + UNPCK_SH_SW(frame2_0_h, frame2_0, frame2_1); + UNPCK_SH_SW(frame2_1_h, frame2_2, frame2_3); + MUL4(mod0_w, frame2_0, mod1_w, frame2_1, mod2_w, frame2_2, mod3_w, frame2_3, + mod0_w, mod1_w, mod2_w, mod3_w); + ADD4(mod0_w, acc0, mod1_w, acc1, mod2_w, acc2, mod3_w, acc3, mod0_w, mod1_w, + mod2_w, mod3_w); + ST_SW2(mod0_w, mod1_w, acc, 4); + ST_SW2(mod2_w, mod3_w, acc + 8, 4); + acc += 16; + LD_SW2(acc, 4, acc0, acc1); + LD_SW2(acc + 8, 4, acc2, acc3); + LD_SH2(cnt, 8, cnt0, cnt1); + ILVRL_B2_UB(frame1_1_b, frame2_1_b, frame_l, frame_h); + HSUB_UB2_SH(frame_l, frame_h, diff0, diff1); + UNPCK_SH_SW(diff0, diff0_r, diff0_l); + UNPCK_SH_SW(diff1, diff1_r, diff1_l); + MUL4(diff0_r, diff0_r, diff0_l, diff0_l, diff1_r, diff1_r, diff1_l, diff1_l, + mod0_w, mod1_w, mod2_w, mod3_w); + MUL4(mod0_w, const3, mod1_w, const3, mod2_w, const3, mod3_w, const3, mod0_w, + mod1_w, mod2_w, mod3_w); + SRAR_W4_SW(mod0_w, mod1_w, mod2_w, mod3_w, strength); + diff0_r = (mod0_w < const16); + diff0_l = (mod1_w < const16); + diff1_r = (mod2_w < const16); + diff1_l = (mod3_w < const16); + SUB4(const16, mod0_w, const16, mod1_w, const16, mod2_w, const16, mod3_w, + mod0_w, mod1_w, mod2_w, mod3_w); + mod0_w = diff0_r & mod0_w; + mod1_w = diff0_l & mod1_w; + mod2_w = diff1_r & mod2_w; + mod3_w = diff1_l & mod3_w; + MUL4(mod0_w, filter_wt, mod1_w, filter_wt, mod2_w, filter_wt, mod3_w, + filter_wt, mod0_w, mod1_w, mod2_w, mod3_w); + PCKEV_H2_SH(mod1_w, mod0_w, mod3_w, mod2_w, mod0_h, mod1_h); + ADD2(mod0_h, cnt0, mod1_h, cnt1, mod0_h, mod1_h); + ST_SH2(mod0_h, mod1_h, cnt, 8); + cnt += 16; + + UNPCK_UB_SH(frame2_1_b, frame2_0_h, frame2_1_h); + UNPCK_SH_SW(frame2_0_h, frame2_0, frame2_1); + UNPCK_SH_SW(frame2_1_h, frame2_2, frame2_3); + MUL4(mod0_w, frame2_0, mod1_w, frame2_1, mod2_w, frame2_2, mod3_w, frame2_3, + mod0_w, mod1_w, mod2_w, mod3_w); + ADD4(mod0_w, acc0, mod1_w, acc1, mod2_w, acc2, mod3_w, acc3, mod0_w, mod1_w, + mod2_w, mod3_w); + ST_SW2(mod0_w, mod1_w, acc, 4); + ST_SW2(mod2_w, mod3_w, acc + 8, 4); + acc += 16; + frame1_ptr += stride; + frame2_ptr += 16; + } +} + +static void temporal_filter_apply_8size_msa( + uint8_t *frame1_ptr, uint32_t stride, uint8_t *frame2_ptr, + int32_t strength_in, int32_t filter_wt_in, uint32_t *acc, uint16_t *cnt) { + uint32_t row; + uint64_t f0, f1, f2, f3, f4, f5, f6, f7; + v16i8 frame1 = { 0 }; + v16i8 frame2 = { 0 }; + v16i8 frame3 = { 0 }; + v16i8 frame4 = { 0 }; + v16u8 frame_l, frame_h; + v8i16 frame2_0_h, frame2_1_h, mod0_h, mod1_h; + v8i16 diff0, diff1, cnt0, cnt1; + v4i32 const3, const16; + v4i32 filter_wt, strength; + v4i32 mod0_w, mod1_w, mod2_w, mod3_w; + v4i32 diff0_r, diff0_l, diff1_r, diff1_l; + v4i32 frame2_0, frame2_1, frame2_2, frame2_3; + v4i32 acc0, acc1, acc2, acc3; + + filter_wt = __msa_fill_w(filter_wt_in); + strength = __msa_fill_w(strength_in); + const3 = __msa_ldi_w(3); + const16 = __msa_ldi_w(16); + + for (row = 2; row--;) { + LD2(frame1_ptr, stride, f0, f1); + frame1_ptr += (2 * stride); + LD2(frame2_ptr, 8, f2, f3); + frame2_ptr += 16; + LD2(frame1_ptr, stride, f4, f5); + frame1_ptr += (2 * stride); + LD2(frame2_ptr, 8, f6, f7); + frame2_ptr += 16; + + LD_SW2(acc, 4, acc0, acc1); + LD_SW2(acc + 8, 4, acc2, acc3); + LD_SH2(cnt, 8, cnt0, cnt1); + INSERT_D2_SB(f0, f1, frame1); + INSERT_D2_SB(f2, f3, frame2); + INSERT_D2_SB(f4, f5, frame3); + INSERT_D2_SB(f6, f7, frame4); + ILVRL_B2_UB(frame1, frame2, frame_l, frame_h); + HSUB_UB2_SH(frame_l, frame_h, diff0, diff1); + UNPCK_SH_SW(diff0, diff0_r, diff0_l); + UNPCK_SH_SW(diff1, diff1_r, diff1_l); + MUL4(diff0_r, diff0_r, diff0_l, diff0_l, diff1_r, diff1_r, diff1_l, diff1_l, + mod0_w, mod1_w, mod2_w, mod3_w); + MUL4(mod0_w, const3, mod1_w, const3, mod2_w, const3, mod3_w, const3, mod0_w, + mod1_w, mod2_w, mod3_w); + SRAR_W4_SW(mod0_w, mod1_w, mod2_w, mod3_w, strength); + diff0_r = (mod0_w < const16); + diff0_l = (mod1_w < const16); + diff1_r = (mod2_w < const16); + diff1_l = (mod3_w < const16); + SUB4(const16, mod0_w, const16, mod1_w, const16, mod2_w, const16, mod3_w, + mod0_w, mod1_w, mod2_w, mod3_w); + mod0_w = diff0_r & mod0_w; + mod1_w = diff0_l & mod1_w; + mod2_w = diff1_r & mod2_w; + mod3_w = diff1_l & mod3_w; + MUL4(mod0_w, filter_wt, mod1_w, filter_wt, mod2_w, filter_wt, mod3_w, + filter_wt, mod0_w, mod1_w, mod2_w, mod3_w); + PCKEV_H2_SH(mod1_w, mod0_w, mod3_w, mod2_w, mod0_h, mod1_h); + ADD2(mod0_h, cnt0, mod1_h, cnt1, mod0_h, mod1_h); + ST_SH2(mod0_h, mod1_h, cnt, 8); + cnt += 16; + + UNPCK_UB_SH(frame2, frame2_0_h, frame2_1_h); + UNPCK_SH_SW(frame2_0_h, frame2_0, frame2_1); + UNPCK_SH_SW(frame2_1_h, frame2_2, frame2_3); + MUL4(mod0_w, frame2_0, mod1_w, frame2_1, mod2_w, frame2_2, mod3_w, frame2_3, + mod0_w, mod1_w, mod2_w, mod3_w); + ADD4(mod0_w, acc0, mod1_w, acc1, mod2_w, acc2, mod3_w, acc3, mod0_w, mod1_w, + mod2_w, mod3_w); + ST_SW2(mod0_w, mod1_w, acc, 4); + ST_SW2(mod2_w, mod3_w, acc + 8, 4); + acc += 16; + + LD_SW2(acc, 4, acc0, acc1); + LD_SW2(acc + 8, 4, acc2, acc3); + LD_SH2(cnt, 8, cnt0, cnt1); + ILVRL_B2_UB(frame3, frame4, frame_l, frame_h); + HSUB_UB2_SH(frame_l, frame_h, diff0, diff1); + UNPCK_SH_SW(diff0, diff0_r, diff0_l); + UNPCK_SH_SW(diff1, diff1_r, diff1_l); + MUL4(diff0_r, diff0_r, diff0_l, diff0_l, diff1_r, diff1_r, diff1_l, diff1_l, + mod0_w, mod1_w, mod2_w, mod3_w); + MUL4(mod0_w, const3, mod1_w, const3, mod2_w, const3, mod3_w, const3, mod0_w, + mod1_w, mod2_w, mod3_w); + SRAR_W4_SW(mod0_w, mod1_w, mod2_w, mod3_w, strength); + diff0_r = (mod0_w < const16); + diff0_l = (mod1_w < const16); + diff1_r = (mod2_w < const16); + diff1_l = (mod3_w < const16); + SUB4(const16, mod0_w, const16, mod1_w, const16, mod2_w, const16, mod3_w, + mod0_w, mod1_w, mod2_w, mod3_w); + mod0_w = diff0_r & mod0_w; + mod1_w = diff0_l & mod1_w; + mod2_w = diff1_r & mod2_w; + mod3_w = diff1_l & mod3_w; + MUL4(mod0_w, filter_wt, mod1_w, filter_wt, mod2_w, filter_wt, mod3_w, + filter_wt, mod0_w, mod1_w, mod2_w, mod3_w); + PCKEV_H2_SH(mod1_w, mod0_w, mod3_w, mod2_w, mod0_h, mod1_h); + ADD2(mod0_h, cnt0, mod1_h, cnt1, mod0_h, mod1_h); + ST_SH2(mod0_h, mod1_h, cnt, 8); + cnt += 16; + + UNPCK_UB_SH(frame4, frame2_0_h, frame2_1_h); + UNPCK_SH_SW(frame2_0_h, frame2_0, frame2_1); + UNPCK_SH_SW(frame2_1_h, frame2_2, frame2_3); + MUL4(mod0_w, frame2_0, mod1_w, frame2_1, mod2_w, frame2_2, mod3_w, frame2_3, + mod0_w, mod1_w, mod2_w, mod3_w); + ADD4(mod0_w, acc0, mod1_w, acc1, mod2_w, acc2, mod3_w, acc3, mod0_w, mod1_w, + mod2_w, mod3_w); + ST_SW2(mod0_w, mod1_w, acc, 4); + ST_SW2(mod2_w, mod3_w, acc + 8, 4); + acc += 16; + } +} + +void vp8_temporal_filter_apply_msa(uint8_t *frame1, uint32_t stride, + uint8_t *frame2, uint32_t block_size, + int32_t strength, int32_t filter_weight, + uint32_t *accumulator, uint16_t *count) { + if (8 == block_size) { + temporal_filter_apply_8size_msa(frame1, stride, frame2, strength, + filter_weight, accumulator, count); + } else if (16 == block_size) { + temporal_filter_apply_16size_msa(frame1, stride, frame2, strength, + filter_weight, accumulator, count); + } else { + uint32_t i, j, k; + int32_t modifier; + int32_t byte = 0; + const int32_t rounding = strength > 0 ? 1 << (strength - 1) : 0; + + for (i = 0, k = 0; i < block_size; ++i) { + for (j = 0; j < block_size; ++j, ++k) { + int src_byte = frame1[byte]; + int pixel_value = *frame2++; + + modifier = src_byte - pixel_value; + modifier *= modifier; + modifier *= 3; + modifier += rounding; + modifier >>= strength; + + if (modifier > 16) modifier = 16; + + modifier = 16 - modifier; + modifier *= filter_weight; + + count[k] += modifier; + accumulator[k] += modifier * pixel_value; + + byte++; + } + + byte += stride - block_size; + } + } +} diff --git a/vp8/encoder/modecosts.c b/vp8/encoder/modecosts.c new file mode 100644 index 0000000..b1c3120 --- /dev/null +++ b/vp8/encoder/modecosts.c @@ -0,0 +1,48 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "vp8/common/blockd.h" +#include "modecosts.h" +#include "onyx_int.h" +#include "treewriter.h" +#include "vp8/common/entropymode.h" + +void vp8_init_mode_costs(VP8_COMP *c) { + VP8_COMMON *x = &c->common; + struct rd_costs_struct *rd_costs = &c->rd_costs; + + { + const vp8_tree_p T = vp8_bmode_tree; + + int i = 0; + + do { + int j = 0; + + do { + vp8_cost_tokens(rd_costs->bmode_costs[i][j], vp8_kf_bmode_prob[i][j], + T); + } while (++j < VP8_BINTRAMODES); + } while (++i < VP8_BINTRAMODES); + + vp8_cost_tokens(rd_costs->inter_bmode_costs, x->fc.bmode_prob, T); + } + vp8_cost_tokens(rd_costs->inter_bmode_costs, x->fc.sub_mv_ref_prob, + vp8_sub_mv_ref_tree); + + vp8_cost_tokens(rd_costs->mbmode_cost[1], x->fc.ymode_prob, vp8_ymode_tree); + vp8_cost_tokens(rd_costs->mbmode_cost[0], vp8_kf_ymode_prob, + vp8_kf_ymode_tree); + + vp8_cost_tokens(rd_costs->intra_uv_mode_cost[1], x->fc.uv_mode_prob, + vp8_uv_mode_tree); + vp8_cost_tokens(rd_costs->intra_uv_mode_cost[0], vp8_kf_uv_mode_prob, + vp8_uv_mode_tree); +} diff --git a/vp8/encoder/modecosts.h b/vp8/encoder/modecosts.h new file mode 100644 index 0000000..dfb8989 --- /dev/null +++ b/vp8/encoder/modecosts.h @@ -0,0 +1,26 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP8_ENCODER_MODECOSTS_H_ +#define VP8_ENCODER_MODECOSTS_H_ + +#ifdef __cplusplus +extern "C" { +#endif + +struct VP8_COMP; + +void vp8_init_mode_costs(struct VP8_COMP *x); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP8_ENCODER_MODECOSTS_H_ diff --git a/vp8/encoder/mr_dissim.c b/vp8/encoder/mr_dissim.c new file mode 100644 index 0000000..011b62a --- /dev/null +++ b/vp8/encoder/mr_dissim.c @@ -0,0 +1,215 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include "vpx_config.h" +#include "onyx_int.h" +#include "mr_dissim.h" +#include "vpx_dsp/vpx_dsp_common.h" +#include "vpx_mem/vpx_mem.h" +#include "rdopt.h" +#include "vp8/common/common.h" + +void vp8_cal_low_res_mb_cols(VP8_COMP *cpi) { + int low_res_w; + + /* Support arbitrary down-sampling factor */ + unsigned int iw = cpi->oxcf.Width * cpi->oxcf.mr_down_sampling_factor.den + + cpi->oxcf.mr_down_sampling_factor.num - 1; + + low_res_w = iw / cpi->oxcf.mr_down_sampling_factor.num; + cpi->mr_low_res_mb_cols = ((low_res_w + 15) >> 4); +} + +#define GET_MV(x) \ + if (x->mbmi.ref_frame != INTRA_FRAME) { \ + mvx[cnt] = x->mbmi.mv.as_mv.row; \ + mvy[cnt] = x->mbmi.mv.as_mv.col; \ + cnt++; \ + } + +#define GET_MV_SIGN(x) \ + if (x->mbmi.ref_frame != INTRA_FRAME) { \ + mvx[cnt] = x->mbmi.mv.as_mv.row; \ + mvy[cnt] = x->mbmi.mv.as_mv.col; \ + if (cm->ref_frame_sign_bias[x->mbmi.ref_frame] != \ + cm->ref_frame_sign_bias[tmp->mbmi.ref_frame]) { \ + mvx[cnt] *= -1; \ + mvy[cnt] *= -1; \ + } \ + cnt++; \ + } + +void vp8_cal_dissimilarity(VP8_COMP *cpi) { + VP8_COMMON *cm = &cpi->common; + int i; + + /* Note: The first row & first column in mip are outside the frame, which + * were initialized to all 0.(ref_frame, mode, mv...) + * Their ref_frame = 0 means they won't be counted in the following + * calculation. + */ + if (cpi->oxcf.mr_total_resolutions > 1 && + cpi->oxcf.mr_encoder_id < (cpi->oxcf.mr_total_resolutions - 1)) { + /* Store info for show/no-show frames for supporting alt_ref. + * If parent frame is alt_ref, child has one too. + */ + LOWER_RES_FRAME_INFO *store_info = + (LOWER_RES_FRAME_INFO *)cpi->oxcf.mr_low_res_mode_info; + + store_info->frame_type = cm->frame_type; + + if (cm->frame_type != KEY_FRAME) { + store_info->is_frame_dropped = 0; + for (i = 1; i < MAX_REF_FRAMES; ++i) + store_info->low_res_ref_frames[i] = cpi->current_ref_frames[i]; + } + + if (cm->frame_type != KEY_FRAME) { + int mb_row; + int mb_col; + /* Point to beginning of allocated MODE_INFO arrays. */ + MODE_INFO *tmp = cm->mip + cm->mode_info_stride; + LOWER_RES_MB_INFO *store_mode_info = store_info->mb_info; + + for (mb_row = 0; mb_row < cm->mb_rows; ++mb_row) { + tmp++; + for (mb_col = 0; mb_col < cm->mb_cols; ++mb_col) { + int dissim = INT_MAX; + + if (tmp->mbmi.ref_frame != INTRA_FRAME) { + int mvx[8]; + int mvy[8]; + int mmvx; + int mmvy; + int cnt = 0; + const MODE_INFO *here = tmp; + const MODE_INFO *above = here - cm->mode_info_stride; + const MODE_INFO *left = here - 1; + const MODE_INFO *aboveleft = above - 1; + const MODE_INFO *aboveright = NULL; + const MODE_INFO *right = NULL; + const MODE_INFO *belowleft = NULL; + const MODE_INFO *below = NULL; + const MODE_INFO *belowright = NULL; + + /* If alternate reference frame is used, we have to + * check sign of MV. */ + if (cpi->oxcf.play_alternate) { + /* Gather mv of neighboring MBs */ + GET_MV_SIGN(above) + GET_MV_SIGN(left) + GET_MV_SIGN(aboveleft) + + if (mb_col < (cm->mb_cols - 1)) { + right = here + 1; + aboveright = above + 1; + GET_MV_SIGN(right) + GET_MV_SIGN(aboveright) + } + + if (mb_row < (cm->mb_rows - 1)) { + below = here + cm->mode_info_stride; + belowleft = below - 1; + GET_MV_SIGN(below) + GET_MV_SIGN(belowleft) + } + + if (mb_col < (cm->mb_cols - 1) && mb_row < (cm->mb_rows - 1)) { + belowright = below + 1; + GET_MV_SIGN(belowright) + } + } else { + /* No alt_ref and gather mv of neighboring MBs */ + GET_MV(above) + GET_MV(left) + GET_MV(aboveleft) + + if (mb_col < (cm->mb_cols - 1)) { + right = here + 1; + aboveright = above + 1; + GET_MV(right) + GET_MV(aboveright) + } + + if (mb_row < (cm->mb_rows - 1)) { + below = here + cm->mode_info_stride; + belowleft = below - 1; + GET_MV(below) + GET_MV(belowleft) + } + + if (mb_col < (cm->mb_cols - 1) && mb_row < (cm->mb_rows - 1)) { + belowright = below + 1; + GET_MV(belowright) + } + } + + if (cnt > 0) { + int max_mvx = mvx[0]; + int min_mvx = mvx[0]; + int max_mvy = mvy[0]; + int min_mvy = mvy[0]; + int i; + + if (cnt > 1) { + for (i = 1; i < cnt; ++i) { + if (mvx[i] > max_mvx) + max_mvx = mvx[i]; + else if (mvx[i] < min_mvx) + min_mvx = mvx[i]; + if (mvy[i] > max_mvy) + max_mvy = mvy[i]; + else if (mvy[i] < min_mvy) + min_mvy = mvy[i]; + } + } + + mmvx = VPXMAX(abs(min_mvx - here->mbmi.mv.as_mv.row), + abs(max_mvx - here->mbmi.mv.as_mv.row)); + mmvy = VPXMAX(abs(min_mvy - here->mbmi.mv.as_mv.col), + abs(max_mvy - here->mbmi.mv.as_mv.col)); + dissim = VPXMAX(mmvx, mmvy); + } + } + + /* Store mode info for next resolution encoding */ + store_mode_info->mode = tmp->mbmi.mode; + store_mode_info->ref_frame = tmp->mbmi.ref_frame; + store_mode_info->mv.as_int = tmp->mbmi.mv.as_int; + store_mode_info->dissim = dissim; + tmp++; + store_mode_info++; + } + } + } + } +} + +/* This function is called only when this frame is dropped at current + resolution level. */ +void vp8_store_drop_frame_info(VP8_COMP *cpi) { + /* If the frame is dropped in lower-resolution encoding, this information + is passed to higher resolution level so that the encoder knows there + is no mode & motion info available. + */ + if (cpi->oxcf.mr_total_resolutions > 1 && + cpi->oxcf.mr_encoder_id < (cpi->oxcf.mr_total_resolutions - 1)) { + /* Store info for show/no-show frames for supporting alt_ref. + * If parent frame is alt_ref, child has one too. + */ + LOWER_RES_FRAME_INFO *store_info = + (LOWER_RES_FRAME_INFO *)cpi->oxcf.mr_low_res_mode_info; + + /* Set frame_type to be INTER_FRAME since we won't drop key frame. */ + store_info->frame_type = INTER_FRAME; + store_info->is_frame_dropped = 1; + } +} diff --git a/vp8/encoder/mr_dissim.h b/vp8/encoder/mr_dissim.h new file mode 100644 index 0000000..da36628 --- /dev/null +++ b/vp8/encoder/mr_dissim.h @@ -0,0 +1,27 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP8_ENCODER_MR_DISSIM_H_ +#define VP8_ENCODER_MR_DISSIM_H_ +#include "vpx_config.h" + +#ifdef __cplusplus +extern "C" { +#endif + +extern void vp8_cal_low_res_mb_cols(VP8_COMP *cpi); +extern void vp8_cal_dissimilarity(VP8_COMP *cpi); +extern void vp8_store_drop_frame_info(VP8_COMP *cpi); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP8_ENCODER_MR_DISSIM_H_ diff --git a/vp8/encoder/onyx_if.c b/vp8/encoder/onyx_if.c new file mode 100644 index 0000000..2243182 --- /dev/null +++ b/vp8/encoder/onyx_if.c @@ -0,0 +1,5478 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "vpx_config.h" +#include "./vpx_scale_rtcd.h" +#include "./vpx_dsp_rtcd.h" +#include "./vp8_rtcd.h" +#include "bitstream.h" +#include "vp8/common/onyxc_int.h" +#include "vp8/common/blockd.h" +#include "onyx_int.h" +#include "vp8/common/systemdependent.h" +#include "vp8/common/vp8_skin_detection.h" +#include "vp8/encoder/quantize.h" +#include "vp8/common/alloccommon.h" +#include "mcomp.h" +#include "firstpass.h" +#include "vpx_dsp/psnr.h" +#include "vpx_scale/vpx_scale.h" +#include "vp8/common/extend.h" +#include "ratectrl.h" +#include "vp8/common/quant_common.h" +#include "segmentation.h" +#if CONFIG_POSTPROC +#include "vp8/common/postproc.h" +#endif +#include "vpx_mem/vpx_mem.h" +#include "vp8/common/reconintra.h" +#include "vp8/common/swapyv12buffer.h" +#include "vp8/common/threading.h" +#include "vpx_ports/system_state.h" +#include "vpx_ports/vpx_timer.h" +#include "vpx_util/vpx_write_yuv_frame.h" +#if ARCH_ARM +#include "vpx_ports/arm.h" +#endif +#if CONFIG_MULTI_RES_ENCODING +#include "mr_dissim.h" +#endif +#include "encodeframe.h" +#if CONFIG_MULTITHREAD +#include "ethreading.h" +#endif +#include "picklpf.h" +#if !CONFIG_REALTIME_ONLY +#include "temporal_filter.h" +#endif + +#include +#include +#include +#include + +#if CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING +extern int vp8_update_coef_context(VP8_COMP *cpi); +#endif + +extern void vp8_deblock_frame(YV12_BUFFER_CONFIG *source, + YV12_BUFFER_CONFIG *post, int filt_lvl, + int low_var_thresh, int flag); +extern void print_parms(VP8_CONFIG *ocf, char *filenam); +extern unsigned int vp8_get_processor_freq(); +extern void print_tree_update_probs(); + +int vp8_calc_ss_err(YV12_BUFFER_CONFIG *source, YV12_BUFFER_CONFIG *dest); + +static void set_default_lf_deltas(VP8_COMP *cpi); + +extern const int vp8_gf_interval_table[101]; + +#if CONFIG_INTERNAL_STATS +#include "math.h" +#include "vpx_dsp/ssim.h" +#endif + +#ifdef OUTPUT_YUV_SRC +FILE *yuv_file; +#endif +#ifdef OUTPUT_YUV_DENOISED +FILE *yuv_denoised_file; +#endif +#ifdef OUTPUT_YUV_SKINMAP +static FILE *yuv_skinmap_file = NULL; +#endif + +#if 0 +FILE *framepsnr; +FILE *kf_list; +FILE *keyfile; +#endif + +#if 0 +extern int skip_true_count; +extern int skip_false_count; +#endif + +#ifdef VP8_ENTROPY_STATS +extern int intra_mode_stats[10][10][10]; +#endif + +#ifdef SPEEDSTATS +unsigned int frames_at_speed[16] = { 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0 }; +unsigned int tot_pm = 0; +unsigned int cnt_pm = 0; +unsigned int tot_ef = 0; +unsigned int cnt_ef = 0; +#endif + +#ifdef MODE_STATS +extern unsigned __int64 Sectionbits[50]; +extern int y_modes[5]; +extern int uv_modes[4]; +extern int b_modes[10]; + +extern int inter_y_modes[10]; +extern int inter_uv_modes[4]; +extern unsigned int inter_b_modes[15]; +#endif + +extern const int vp8_bits_per_mb[2][QINDEX_RANGE]; + +extern const int qrounding_factors[129]; +extern const int qzbin_factors[129]; +extern void vp8cx_init_quantizer(VP8_COMP *cpi); +extern const int vp8cx_base_skip_false_prob[128]; + +/* Tables relating active max Q to active min Q */ +static const unsigned char kf_low_motion_minq[QINDEX_RANGE] = { + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, + 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 5, 5, 5, + 5, 5, 6, 6, 6, 6, 7, 7, 8, 8, 8, 8, 9, 9, 10, 10, 10, 10, 11, + 11, 11, 11, 12, 12, 13, 13, 13, 13, 14, 14, 15, 15, 15, 15, 16, 16, 16, 16, + 17, 17, 18, 18, 18, 18, 19, 20, 20, 21, 21, 22, 23, 23 +}; +static const unsigned char kf_high_motion_minq[QINDEX_RANGE] = { + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, + 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 5, + 5, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 8, 8, 8, 8, 9, 9, 10, 10, + 10, 10, 11, 11, 11, 11, 12, 12, 13, 13, 13, 13, 14, 14, 15, 15, 15, 15, 16, + 16, 16, 16, 17, 17, 18, 18, 18, 18, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21, + 22, 22, 23, 23, 24, 25, 25, 26, 26, 27, 28, 28, 29, 30 +}; +static const unsigned char gf_low_motion_minq[QINDEX_RANGE] = { + 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, + 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, + 8, 8, 9, 9, 9, 9, 10, 10, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15, + 15, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 23, 24, 24, + 25, 25, 26, 26, 27, 27, 28, 28, 29, 29, 30, 30, 31, 31, 32, 32, 33, 33, 34, + 34, 35, 35, 36, 36, 37, 37, 38, 38, 39, 39, 40, 40, 41, 41, 42, 42, 43, 44, + 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58 +}; +static const unsigned char gf_mid_motion_minq[QINDEX_RANGE] = { + 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 3, 4, 4, 4, 5, + 5, 5, 6, 6, 6, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 10, 10, 11, + 11, 11, 12, 12, 12, 12, 13, 13, 13, 14, 14, 14, 15, 15, 16, 16, 17, 17, 18, + 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 23, 24, 24, 25, 25, 26, 26, 27, 27, + 28, 28, 29, 29, 30, 30, 31, 31, 32, 32, 33, 33, 34, 34, 35, 35, 36, 36, 37, + 37, 38, 39, 39, 40, 40, 41, 41, 42, 42, 43, 43, 44, 45, 46, 47, 48, 49, 50, + 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64 +}; +static const unsigned char gf_high_motion_minq[QINDEX_RANGE] = { + 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, + 5, 5, 6, 6, 6, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 10, 11, 11, + 12, 12, 13, 13, 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, + 21, 22, 22, 23, 23, 24, 24, 25, 25, 26, 26, 27, 27, 28, 28, 29, 29, 30, 30, + 31, 31, 32, 32, 33, 33, 34, 34, 35, 35, 36, 36, 37, 37, 38, 38, 39, 39, 40, + 40, 41, 41, 42, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, + 57, 58, 59, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80 +}; +static const unsigned char inter_minq[QINDEX_RANGE] = { + 0, 0, 1, 1, 2, 3, 3, 4, 4, 5, 6, 6, 7, 8, 8, 9, 9, 10, 11, + 11, 12, 13, 13, 14, 15, 15, 16, 17, 17, 18, 19, 20, 20, 21, 22, 22, 23, 24, + 24, 25, 26, 27, 27, 28, 29, 30, 30, 31, 32, 33, 33, 34, 35, 36, 36, 37, 38, + 39, 39, 40, 41, 42, 42, 43, 44, 45, 46, 46, 47, 48, 49, 50, 50, 51, 52, 53, + 54, 55, 55, 56, 57, 58, 59, 60, 60, 61, 62, 63, 64, 65, 66, 67, 67, 68, 69, + 70, 71, 72, 73, 74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 86, + 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100 +}; + +#ifdef PACKET_TESTING +extern FILE *vpxlogc; +#endif + +static void save_layer_context(VP8_COMP *cpi) { + LAYER_CONTEXT *lc = &cpi->layer_context[cpi->current_layer]; + + /* Save layer dependent coding state */ + lc->target_bandwidth = cpi->target_bandwidth; + lc->starting_buffer_level = cpi->oxcf.starting_buffer_level; + lc->optimal_buffer_level = cpi->oxcf.optimal_buffer_level; + lc->maximum_buffer_size = cpi->oxcf.maximum_buffer_size; + lc->starting_buffer_level_in_ms = cpi->oxcf.starting_buffer_level_in_ms; + lc->optimal_buffer_level_in_ms = cpi->oxcf.optimal_buffer_level_in_ms; + lc->maximum_buffer_size_in_ms = cpi->oxcf.maximum_buffer_size_in_ms; + lc->buffer_level = cpi->buffer_level; + lc->bits_off_target = cpi->bits_off_target; + lc->total_actual_bits = cpi->total_actual_bits; + lc->worst_quality = cpi->worst_quality; + lc->active_worst_quality = cpi->active_worst_quality; + lc->best_quality = cpi->best_quality; + lc->active_best_quality = cpi->active_best_quality; + lc->ni_av_qi = cpi->ni_av_qi; + lc->ni_tot_qi = cpi->ni_tot_qi; + lc->ni_frames = cpi->ni_frames; + lc->avg_frame_qindex = cpi->avg_frame_qindex; + lc->rate_correction_factor = cpi->rate_correction_factor; + lc->key_frame_rate_correction_factor = cpi->key_frame_rate_correction_factor; + lc->gf_rate_correction_factor = cpi->gf_rate_correction_factor; + lc->zbin_over_quant = cpi->mb.zbin_over_quant; + lc->inter_frame_target = cpi->inter_frame_target; + lc->total_byte_count = cpi->total_byte_count; + lc->filter_level = cpi->common.filter_level; + lc->frames_since_last_drop_overshoot = cpi->frames_since_last_drop_overshoot; + lc->force_maxqp = cpi->force_maxqp; + lc->last_frame_percent_intra = cpi->last_frame_percent_intra; + + memcpy(lc->count_mb_ref_frame_usage, cpi->mb.count_mb_ref_frame_usage, + sizeof(cpi->mb.count_mb_ref_frame_usage)); +} + +static void restore_layer_context(VP8_COMP *cpi, const int layer) { + LAYER_CONTEXT *lc = &cpi->layer_context[layer]; + + /* Restore layer dependent coding state */ + cpi->current_layer = layer; + cpi->target_bandwidth = lc->target_bandwidth; + cpi->oxcf.target_bandwidth = lc->target_bandwidth; + cpi->oxcf.starting_buffer_level = lc->starting_buffer_level; + cpi->oxcf.optimal_buffer_level = lc->optimal_buffer_level; + cpi->oxcf.maximum_buffer_size = lc->maximum_buffer_size; + cpi->oxcf.starting_buffer_level_in_ms = lc->starting_buffer_level_in_ms; + cpi->oxcf.optimal_buffer_level_in_ms = lc->optimal_buffer_level_in_ms; + cpi->oxcf.maximum_buffer_size_in_ms = lc->maximum_buffer_size_in_ms; + cpi->buffer_level = lc->buffer_level; + cpi->bits_off_target = lc->bits_off_target; + cpi->total_actual_bits = lc->total_actual_bits; + cpi->active_worst_quality = lc->active_worst_quality; + cpi->active_best_quality = lc->active_best_quality; + cpi->ni_av_qi = lc->ni_av_qi; + cpi->ni_tot_qi = lc->ni_tot_qi; + cpi->ni_frames = lc->ni_frames; + cpi->avg_frame_qindex = lc->avg_frame_qindex; + cpi->rate_correction_factor = lc->rate_correction_factor; + cpi->key_frame_rate_correction_factor = lc->key_frame_rate_correction_factor; + cpi->gf_rate_correction_factor = lc->gf_rate_correction_factor; + cpi->mb.zbin_over_quant = lc->zbin_over_quant; + cpi->inter_frame_target = lc->inter_frame_target; + cpi->total_byte_count = lc->total_byte_count; + cpi->common.filter_level = lc->filter_level; + cpi->frames_since_last_drop_overshoot = lc->frames_since_last_drop_overshoot; + cpi->force_maxqp = lc->force_maxqp; + cpi->last_frame_percent_intra = lc->last_frame_percent_intra; + + memcpy(cpi->mb.count_mb_ref_frame_usage, lc->count_mb_ref_frame_usage, + sizeof(cpi->mb.count_mb_ref_frame_usage)); +} + +static int rescale(int val, int num, int denom) { + int64_t llnum = num; + int64_t llden = denom; + int64_t llval = val; + + return (int)(llval * llnum / llden); +} + +static void init_temporal_layer_context(VP8_COMP *cpi, VP8_CONFIG *oxcf, + const int layer, + double prev_layer_framerate) { + LAYER_CONTEXT *lc = &cpi->layer_context[layer]; + + lc->framerate = cpi->output_framerate / cpi->oxcf.rate_decimator[layer]; + lc->target_bandwidth = cpi->oxcf.target_bitrate[layer] * 1000; + + lc->starting_buffer_level_in_ms = oxcf->starting_buffer_level; + lc->optimal_buffer_level_in_ms = oxcf->optimal_buffer_level; + lc->maximum_buffer_size_in_ms = oxcf->maximum_buffer_size; + + lc->starting_buffer_level = + rescale((int)(oxcf->starting_buffer_level), lc->target_bandwidth, 1000); + + if (oxcf->optimal_buffer_level == 0) { + lc->optimal_buffer_level = lc->target_bandwidth / 8; + } else { + lc->optimal_buffer_level = + rescale((int)(oxcf->optimal_buffer_level), lc->target_bandwidth, 1000); + } + + if (oxcf->maximum_buffer_size == 0) { + lc->maximum_buffer_size = lc->target_bandwidth / 8; + } else { + lc->maximum_buffer_size = + rescale((int)(oxcf->maximum_buffer_size), lc->target_bandwidth, 1000); + } + + /* Work out the average size of a frame within this layer */ + if (layer > 0) { + lc->avg_frame_size_for_layer = + (int)((cpi->oxcf.target_bitrate[layer] - + cpi->oxcf.target_bitrate[layer - 1]) * + 1000 / (lc->framerate - prev_layer_framerate)); + } + + lc->active_worst_quality = cpi->oxcf.worst_allowed_q; + lc->active_best_quality = cpi->oxcf.best_allowed_q; + lc->avg_frame_qindex = cpi->oxcf.worst_allowed_q; + + lc->buffer_level = lc->starting_buffer_level; + lc->bits_off_target = lc->starting_buffer_level; + + lc->total_actual_bits = 0; + lc->ni_av_qi = 0; + lc->ni_tot_qi = 0; + lc->ni_frames = 0; + lc->rate_correction_factor = 1.0; + lc->key_frame_rate_correction_factor = 1.0; + lc->gf_rate_correction_factor = 1.0; + lc->inter_frame_target = 0; +} + +// Upon a run-time change in temporal layers, reset the layer context parameters +// for any "new" layers. For "existing" layers, let them inherit the parameters +// from the previous layer state (at the same layer #). In future we may want +// to better map the previous layer state(s) to the "new" ones. +static void reset_temporal_layer_change(VP8_COMP *cpi, VP8_CONFIG *oxcf, + const int prev_num_layers) { + int i; + double prev_layer_framerate = 0; + const int curr_num_layers = cpi->oxcf.number_of_layers; + // If the previous state was 1 layer, get current layer context from cpi. + // We need this to set the layer context for the new layers below. + if (prev_num_layers == 1) { + cpi->current_layer = 0; + save_layer_context(cpi); + } + for (i = 0; i < curr_num_layers; ++i) { + LAYER_CONTEXT *lc = &cpi->layer_context[i]; + if (i >= prev_num_layers) { + init_temporal_layer_context(cpi, oxcf, i, prev_layer_framerate); + } + // The initial buffer levels are set based on their starting levels. + // We could set the buffer levels based on the previous state (normalized + // properly by the layer bandwidths) but we would need to keep track of + // the previous set of layer bandwidths (i.e., target_bitrate[i]) + // before the layer change. For now, reset to the starting levels. + lc->buffer_level = + cpi->oxcf.starting_buffer_level_in_ms * cpi->oxcf.target_bitrate[i]; + lc->bits_off_target = lc->buffer_level; + // TDOD(marpan): Should we set the rate_correction_factor and + // active_worst/best_quality to values derived from the previous layer + // state (to smooth-out quality dips/rate fluctuation at transition)? + + // We need to treat the 1 layer case separately: oxcf.target_bitrate[i] + // is not set for 1 layer, and the restore_layer_context/save_context() + // are not called in the encoding loop, so we need to call it here to + // pass the layer context state to |cpi|. + if (curr_num_layers == 1) { + lc->target_bandwidth = cpi->oxcf.target_bandwidth; + lc->buffer_level = + cpi->oxcf.starting_buffer_level_in_ms * lc->target_bandwidth / 1000; + lc->bits_off_target = lc->buffer_level; + restore_layer_context(cpi, 0); + } + prev_layer_framerate = cpi->output_framerate / cpi->oxcf.rate_decimator[i]; + } +} + +static void setup_features(VP8_COMP *cpi) { + // If segmentation enabled set the update flags + if (cpi->mb.e_mbd.segmentation_enabled) { + cpi->mb.e_mbd.update_mb_segmentation_map = 1; + cpi->mb.e_mbd.update_mb_segmentation_data = 1; + } else { + cpi->mb.e_mbd.update_mb_segmentation_map = 0; + cpi->mb.e_mbd.update_mb_segmentation_data = 0; + } + + cpi->mb.e_mbd.mode_ref_lf_delta_enabled = 0; + cpi->mb.e_mbd.mode_ref_lf_delta_update = 0; + memset(cpi->mb.e_mbd.ref_lf_deltas, 0, sizeof(cpi->mb.e_mbd.ref_lf_deltas)); + memset(cpi->mb.e_mbd.mode_lf_deltas, 0, sizeof(cpi->mb.e_mbd.mode_lf_deltas)); + memset(cpi->mb.e_mbd.last_ref_lf_deltas, 0, + sizeof(cpi->mb.e_mbd.ref_lf_deltas)); + memset(cpi->mb.e_mbd.last_mode_lf_deltas, 0, + sizeof(cpi->mb.e_mbd.mode_lf_deltas)); + + set_default_lf_deltas(cpi); +} + +static void dealloc_raw_frame_buffers(VP8_COMP *cpi); + +void vp8_initialize_enc(void) { + static volatile int init_done = 0; + + if (!init_done) { + vpx_dsp_rtcd(); + vp8_init_intra_predictors(); + init_done = 1; + } +} + +static void dealloc_compressor_data(VP8_COMP *cpi) { + vpx_free(cpi->tplist); + cpi->tplist = NULL; + + /* Delete last frame MV storage buffers */ + vpx_free(cpi->lfmv); + cpi->lfmv = 0; + + vpx_free(cpi->lf_ref_frame_sign_bias); + cpi->lf_ref_frame_sign_bias = 0; + + vpx_free(cpi->lf_ref_frame); + cpi->lf_ref_frame = 0; + + /* Delete sementation map */ + vpx_free(cpi->segmentation_map); + cpi->segmentation_map = 0; + + vpx_free(cpi->active_map); + cpi->active_map = 0; + + vp8_de_alloc_frame_buffers(&cpi->common); + + vp8_yv12_de_alloc_frame_buffer(&cpi->pick_lf_lvl_frame); + vp8_yv12_de_alloc_frame_buffer(&cpi->scaled_source); + dealloc_raw_frame_buffers(cpi); + + vpx_free(cpi->tok); + cpi->tok = 0; + + /* Structure used to monitor GF usage */ + vpx_free(cpi->gf_active_flags); + cpi->gf_active_flags = 0; + + /* Activity mask based per mb zbin adjustments */ + vpx_free(cpi->mb_activity_map); + cpi->mb_activity_map = 0; + + vpx_free(cpi->mb.pip); + cpi->mb.pip = 0; + +#if CONFIG_MULTITHREAD + vpx_free(cpi->mt_current_mb_col); + cpi->mt_current_mb_col = NULL; +#endif +} + +static void enable_segmentation(VP8_COMP *cpi) { + /* Set the appropriate feature bit */ + cpi->mb.e_mbd.segmentation_enabled = 1; + cpi->mb.e_mbd.update_mb_segmentation_map = 1; + cpi->mb.e_mbd.update_mb_segmentation_data = 1; +} +static void disable_segmentation(VP8_COMP *cpi) { + /* Clear the appropriate feature bit */ + cpi->mb.e_mbd.segmentation_enabled = 0; +} + +/* Valid values for a segment are 0 to 3 + * Segmentation map is arrange as [Rows][Columns] + */ +static void set_segmentation_map(VP8_COMP *cpi, + unsigned char *segmentation_map) { + /* Copy in the new segmentation map */ + memcpy(cpi->segmentation_map, segmentation_map, + (cpi->common.mb_rows * cpi->common.mb_cols)); + + /* Signal that the map should be updated. */ + cpi->mb.e_mbd.update_mb_segmentation_map = 1; + cpi->mb.e_mbd.update_mb_segmentation_data = 1; +} + +/* The values given for each segment can be either deltas (from the default + * value chosen for the frame) or absolute values. + * + * Valid range for abs values is: + * (0-127 for MB_LVL_ALT_Q), (0-63 for SEGMENT_ALT_LF) + * Valid range for delta values are: + * (+/-127 for MB_LVL_ALT_Q), (+/-63 for SEGMENT_ALT_LF) + * + * abs_delta = SEGMENT_DELTADATA (deltas) + * abs_delta = SEGMENT_ABSDATA (use the absolute values given). + * + */ +static void set_segment_data(VP8_COMP *cpi, signed char *feature_data, + unsigned char abs_delta) { + cpi->mb.e_mbd.mb_segement_abs_delta = abs_delta; + memcpy(cpi->segment_feature_data, feature_data, + sizeof(cpi->segment_feature_data)); +} + +/* A simple function to cyclically refresh the background at a lower Q */ +static void cyclic_background_refresh(VP8_COMP *cpi, int Q, int lf_adjustment) { + unsigned char *seg_map = cpi->segmentation_map; + signed char feature_data[MB_LVL_MAX][MAX_MB_SEGMENTS]; + int i; + int block_count = cpi->cyclic_refresh_mode_max_mbs_perframe; + int mbs_in_frame = cpi->common.mb_rows * cpi->common.mb_cols; + + cpi->cyclic_refresh_q = Q / 2; + + if (cpi->oxcf.screen_content_mode) { + // Modify quality ramp-up based on Q. Above some Q level, increase the + // number of blocks to be refreshed, and reduce it below the thredhold. + // Turn-off under certain conditions (i.e., away from key frame, and if + // we are at good quality (low Q) and most of the blocks were + // skipped-encoded + // in previous frame. + int qp_thresh = (cpi->oxcf.screen_content_mode == 2) ? 80 : 100; + if (Q >= qp_thresh) { + cpi->cyclic_refresh_mode_max_mbs_perframe = + (cpi->common.mb_rows * cpi->common.mb_cols) / 10; + } else if (cpi->frames_since_key > 250 && Q < 20 && + cpi->mb.skip_true_count > (int)(0.95 * mbs_in_frame)) { + cpi->cyclic_refresh_mode_max_mbs_perframe = 0; + } else { + cpi->cyclic_refresh_mode_max_mbs_perframe = + (cpi->common.mb_rows * cpi->common.mb_cols) / 20; + } + block_count = cpi->cyclic_refresh_mode_max_mbs_perframe; + } + + // Set every macroblock to be eligible for update. + // For key frame this will reset seg map to 0. + memset(cpi->segmentation_map, 0, mbs_in_frame); + + if (cpi->common.frame_type != KEY_FRAME && block_count > 0) { + /* Cycle through the macro_block rows */ + /* MB loop to set local segmentation map */ + i = cpi->cyclic_refresh_mode_index; + assert(i < mbs_in_frame); + do { + /* If the MB is as a candidate for clean up then mark it for + * possible boost/refresh (segment 1) The segment id may get + * reset to 0 later if the MB gets coded anything other than + * last frame 0,0 as only (last frame 0,0) MBs are eligable for + * refresh : that is to say Mbs likely to be background blocks. + */ + if (cpi->cyclic_refresh_map[i] == 0) { + seg_map[i] = 1; + block_count--; + } else if (cpi->cyclic_refresh_map[i] < 0) { + cpi->cyclic_refresh_map[i]++; + } + + i++; + if (i == mbs_in_frame) i = 0; + + } while (block_count && i != cpi->cyclic_refresh_mode_index); + + cpi->cyclic_refresh_mode_index = i; + +#if CONFIG_TEMPORAL_DENOISING + if (cpi->oxcf.noise_sensitivity > 0) { + if (cpi->denoiser.denoiser_mode == kDenoiserOnYUVAggressive && + Q < (int)cpi->denoiser.denoise_pars.qp_thresh && + (cpi->frames_since_key > + 2 * cpi->denoiser.denoise_pars.consec_zerolast)) { + // Under aggressive denoising, use segmentation to turn off loop + // filter below some qp thresh. The filter is reduced for all + // blocks that have been encoded as ZEROMV LAST x frames in a row, + // where x is set by cpi->denoiser.denoise_pars.consec_zerolast. + // This is to avoid "dot" artifacts that can occur from repeated + // loop filtering on noisy input source. + cpi->cyclic_refresh_q = Q; + // lf_adjustment = -MAX_LOOP_FILTER; + lf_adjustment = -40; + for (i = 0; i < mbs_in_frame; ++i) { + seg_map[i] = (cpi->consec_zero_last[i] > + cpi->denoiser.denoise_pars.consec_zerolast) + ? 1 + : 0; + } + } + } +#endif + } + + /* Activate segmentation. */ + cpi->mb.e_mbd.update_mb_segmentation_map = 1; + cpi->mb.e_mbd.update_mb_segmentation_data = 1; + enable_segmentation(cpi); + + /* Set up the quant segment data */ + feature_data[MB_LVL_ALT_Q][0] = 0; + feature_data[MB_LVL_ALT_Q][1] = (cpi->cyclic_refresh_q - Q); + feature_data[MB_LVL_ALT_Q][2] = 0; + feature_data[MB_LVL_ALT_Q][3] = 0; + + /* Set up the loop segment data */ + feature_data[MB_LVL_ALT_LF][0] = 0; + feature_data[MB_LVL_ALT_LF][1] = lf_adjustment; + feature_data[MB_LVL_ALT_LF][2] = 0; + feature_data[MB_LVL_ALT_LF][3] = 0; + + /* Initialise the feature data structure */ + set_segment_data(cpi, &feature_data[0][0], SEGMENT_DELTADATA); +} + +static void compute_skin_map(VP8_COMP *cpi) { + int mb_row, mb_col, num_bl; + VP8_COMMON *cm = &cpi->common; + const uint8_t *src_y = cpi->Source->y_buffer; + const uint8_t *src_u = cpi->Source->u_buffer; + const uint8_t *src_v = cpi->Source->v_buffer; + const int src_ystride = cpi->Source->y_stride; + const int src_uvstride = cpi->Source->uv_stride; + + const SKIN_DETECTION_BLOCK_SIZE bsize = + (cm->Width * cm->Height <= 352 * 288) ? SKIN_8X8 : SKIN_16X16; + + for (mb_row = 0; mb_row < cm->mb_rows; mb_row++) { + num_bl = 0; + for (mb_col = 0; mb_col < cm->mb_cols; mb_col++) { + const int bl_index = mb_row * cm->mb_cols + mb_col; + cpi->skin_map[bl_index] = + vp8_compute_skin_block(src_y, src_u, src_v, src_ystride, src_uvstride, + bsize, cpi->consec_zero_last[bl_index], 0); + num_bl++; + src_y += 16; + src_u += 8; + src_v += 8; + } + src_y += (src_ystride << 4) - (num_bl << 4); + src_u += (src_uvstride << 3) - (num_bl << 3); + src_v += (src_uvstride << 3) - (num_bl << 3); + } + + // Remove isolated skin blocks (none of its neighbors are skin) and isolated + // non-skin blocks (all of its neighbors are skin). Skip the boundary. + for (mb_row = 1; mb_row < cm->mb_rows - 1; mb_row++) { + for (mb_col = 1; mb_col < cm->mb_cols - 1; mb_col++) { + const int bl_index = mb_row * cm->mb_cols + mb_col; + int num_neighbor = 0; + int mi, mj; + int non_skin_threshold = 8; + + for (mi = -1; mi <= 1; mi += 1) { + for (mj = -1; mj <= 1; mj += 1) { + int bl_neighbor_index = (mb_row + mi) * cm->mb_cols + mb_col + mj; + if (cpi->skin_map[bl_neighbor_index]) num_neighbor++; + } + } + + if (cpi->skin_map[bl_index] && num_neighbor < 2) + cpi->skin_map[bl_index] = 0; + if (!cpi->skin_map[bl_index] && num_neighbor == non_skin_threshold) + cpi->skin_map[bl_index] = 1; + } + } +} + +static void set_default_lf_deltas(VP8_COMP *cpi) { + cpi->mb.e_mbd.mode_ref_lf_delta_enabled = 1; + cpi->mb.e_mbd.mode_ref_lf_delta_update = 1; + + memset(cpi->mb.e_mbd.ref_lf_deltas, 0, sizeof(cpi->mb.e_mbd.ref_lf_deltas)); + memset(cpi->mb.e_mbd.mode_lf_deltas, 0, sizeof(cpi->mb.e_mbd.mode_lf_deltas)); + + /* Test of ref frame deltas */ + cpi->mb.e_mbd.ref_lf_deltas[INTRA_FRAME] = 2; + cpi->mb.e_mbd.ref_lf_deltas[LAST_FRAME] = 0; + cpi->mb.e_mbd.ref_lf_deltas[GOLDEN_FRAME] = -2; + cpi->mb.e_mbd.ref_lf_deltas[ALTREF_FRAME] = -2; + + cpi->mb.e_mbd.mode_lf_deltas[0] = 4; /* BPRED */ + + if (cpi->oxcf.Mode == MODE_REALTIME) { + cpi->mb.e_mbd.mode_lf_deltas[1] = -12; /* Zero */ + } else { + cpi->mb.e_mbd.mode_lf_deltas[1] = -2; /* Zero */ + } + + cpi->mb.e_mbd.mode_lf_deltas[2] = 2; /* New mv */ + cpi->mb.e_mbd.mode_lf_deltas[3] = 4; /* Split mv */ +} + +/* Convenience macros for mapping speed and mode into a continuous + * range + */ +#define GOOD(x) (x + 1) +#define RT(x) (x + 7) + +static int speed_map(int speed, const int *map) { + int res; + + do { + res = *map++; + } while (speed >= *map++); + return res; +} + +static const int thresh_mult_map_znn[] = { + /* map common to zero, nearest, and near */ + 0, GOOD(2), 1500, GOOD(3), 2000, RT(0), 1000, RT(2), 2000, INT_MAX +}; + +static const int thresh_mult_map_vhpred[] = { 1000, GOOD(2), 1500, GOOD(3), + 2000, RT(0), 1000, RT(1), + 2000, RT(7), INT_MAX, INT_MAX }; + +static const int thresh_mult_map_bpred[] = { 2000, GOOD(0), 2500, GOOD(2), + 5000, GOOD(3), 7500, RT(0), + 2500, RT(1), 5000, RT(6), + INT_MAX, INT_MAX }; + +static const int thresh_mult_map_tm[] = { 1000, GOOD(2), 1500, GOOD(3), + 2000, RT(0), 0, RT(1), + 1000, RT(2), 2000, RT(7), + INT_MAX, INT_MAX }; + +static const int thresh_mult_map_new1[] = { 1000, GOOD(2), 2000, + RT(0), 2000, INT_MAX }; + +static const int thresh_mult_map_new2[] = { 1000, GOOD(2), 2000, GOOD(3), + 2500, GOOD(5), 4000, RT(0), + 2000, RT(2), 2500, RT(5), + 4000, INT_MAX }; + +static const int thresh_mult_map_split1[] = { + 2500, GOOD(0), 1700, GOOD(2), 10000, GOOD(3), 25000, GOOD(4), INT_MAX, + RT(0), 5000, RT(1), 10000, RT(2), 25000, RT(3), INT_MAX, INT_MAX +}; + +static const int thresh_mult_map_split2[] = { + 5000, GOOD(0), 4500, GOOD(2), 20000, GOOD(3), 50000, GOOD(4), INT_MAX, + RT(0), 10000, RT(1), 20000, RT(2), 50000, RT(3), INT_MAX, INT_MAX +}; + +static const int mode_check_freq_map_zn2[] = { + /* {zero,nearest}{2,3} */ + 0, RT(10), 1 << 1, RT(11), 1 << 2, RT(12), 1 << 3, INT_MAX +}; + +static const int mode_check_freq_map_vhbpred[] = { + 0, GOOD(5), 2, RT(0), 0, RT(3), 2, RT(5), 4, INT_MAX +}; + +static const int mode_check_freq_map_near2[] = { + 0, GOOD(5), 2, RT(0), 0, RT(3), 2, + RT(10), 1 << 2, RT(11), 1 << 3, RT(12), 1 << 4, INT_MAX +}; + +static const int mode_check_freq_map_new1[] = { + 0, RT(10), 1 << 1, RT(11), 1 << 2, RT(12), 1 << 3, INT_MAX +}; + +static const int mode_check_freq_map_new2[] = { 0, GOOD(5), 4, RT(0), + 0, RT(3), 4, RT(10), + 1 << 3, RT(11), 1 << 4, RT(12), + 1 << 5, INT_MAX }; + +static const int mode_check_freq_map_split1[] = { + 0, GOOD(2), 2, GOOD(3), 7, RT(1), 2, RT(2), 7, INT_MAX +}; + +static const int mode_check_freq_map_split2[] = { + 0, GOOD(1), 2, GOOD(2), 4, GOOD(3), 15, RT(1), 4, RT(2), 15, INT_MAX +}; + +void vp8_set_speed_features(VP8_COMP *cpi) { + SPEED_FEATURES *sf = &cpi->sf; + int Mode = cpi->compressor_speed; + int Speed = cpi->Speed; + int Speed2; + int i; + VP8_COMMON *cm = &cpi->common; + int last_improved_quant = sf->improved_quant; + int ref_frames; + + /* Initialise default mode frequency sampling variables */ + for (i = 0; i < MAX_MODES; ++i) { + cpi->mode_check_freq[i] = 0; + } + + cpi->mb.mbs_tested_so_far = 0; + cpi->mb.mbs_zero_last_dot_suppress = 0; + + /* best quality defaults */ + sf->RD = 1; + sf->search_method = NSTEP; + sf->improved_quant = 1; + sf->improved_dct = 1; + sf->auto_filter = 1; + sf->recode_loop = 1; + sf->quarter_pixel_search = 1; + sf->half_pixel_search = 1; + sf->iterative_sub_pixel = 1; + sf->optimize_coefficients = 1; + sf->use_fastquant_for_pick = 0; + sf->no_skip_block4x4_search = 1; + + sf->first_step = 0; + sf->max_step_search_steps = MAX_MVSEARCH_STEPS; + sf->improved_mv_pred = 1; + + /* default thresholds to 0 */ + for (i = 0; i < MAX_MODES; ++i) sf->thresh_mult[i] = 0; + + /* Count enabled references */ + ref_frames = 1; + if (cpi->ref_frame_flags & VP8_LAST_FRAME) ref_frames++; + if (cpi->ref_frame_flags & VP8_GOLD_FRAME) ref_frames++; + if (cpi->ref_frame_flags & VP8_ALTR_FRAME) ref_frames++; + + /* Convert speed to continuous range, with clamping */ + if (Mode == 0) { + Speed = 0; + } else if (Mode == 2) { + Speed = RT(Speed); + } else { + if (Speed > 5) Speed = 5; + Speed = GOOD(Speed); + } + + sf->thresh_mult[THR_ZERO1] = sf->thresh_mult[THR_NEAREST1] = + sf->thresh_mult[THR_NEAR1] = sf->thresh_mult[THR_DC] = 0; /* always */ + + sf->thresh_mult[THR_ZERO2] = sf->thresh_mult[THR_ZERO3] = + sf->thresh_mult[THR_NEAREST2] = sf->thresh_mult[THR_NEAREST3] = + sf->thresh_mult[THR_NEAR2] = sf->thresh_mult[THR_NEAR3] = + speed_map(Speed, thresh_mult_map_znn); + + sf->thresh_mult[THR_V_PRED] = sf->thresh_mult[THR_H_PRED] = + speed_map(Speed, thresh_mult_map_vhpred); + sf->thresh_mult[THR_B_PRED] = speed_map(Speed, thresh_mult_map_bpred); + sf->thresh_mult[THR_TM] = speed_map(Speed, thresh_mult_map_tm); + sf->thresh_mult[THR_NEW1] = speed_map(Speed, thresh_mult_map_new1); + sf->thresh_mult[THR_NEW2] = sf->thresh_mult[THR_NEW3] = + speed_map(Speed, thresh_mult_map_new2); + sf->thresh_mult[THR_SPLIT1] = speed_map(Speed, thresh_mult_map_split1); + sf->thresh_mult[THR_SPLIT2] = sf->thresh_mult[THR_SPLIT3] = + speed_map(Speed, thresh_mult_map_split2); + + // Special case for temporal layers. + // Reduce the thresholds for zero/nearest/near for GOLDEN, if GOLDEN is + // used as second reference. We don't modify thresholds for ALTREF case + // since ALTREF is usually used as long-term reference in temporal layers. + if ((cpi->Speed <= 6) && (cpi->oxcf.number_of_layers > 1) && + (cpi->ref_frame_flags & VP8_LAST_FRAME) && + (cpi->ref_frame_flags & VP8_GOLD_FRAME)) { + if (cpi->closest_reference_frame == GOLDEN_FRAME) { + sf->thresh_mult[THR_ZERO2] = sf->thresh_mult[THR_ZERO2] >> 3; + sf->thresh_mult[THR_NEAREST2] = sf->thresh_mult[THR_NEAREST2] >> 3; + sf->thresh_mult[THR_NEAR2] = sf->thresh_mult[THR_NEAR2] >> 3; + } else { + sf->thresh_mult[THR_ZERO2] = sf->thresh_mult[THR_ZERO2] >> 1; + sf->thresh_mult[THR_NEAREST2] = sf->thresh_mult[THR_NEAREST2] >> 1; + sf->thresh_mult[THR_NEAR2] = sf->thresh_mult[THR_NEAR2] >> 1; + } + } + + cpi->mode_check_freq[THR_ZERO1] = cpi->mode_check_freq[THR_NEAREST1] = + cpi->mode_check_freq[THR_NEAR1] = cpi->mode_check_freq[THR_TM] = + cpi->mode_check_freq[THR_DC] = 0; /* always */ + + cpi->mode_check_freq[THR_ZERO2] = cpi->mode_check_freq[THR_ZERO3] = + cpi->mode_check_freq[THR_NEAREST2] = cpi->mode_check_freq[THR_NEAREST3] = + speed_map(Speed, mode_check_freq_map_zn2); + + cpi->mode_check_freq[THR_NEAR2] = cpi->mode_check_freq[THR_NEAR3] = + speed_map(Speed, mode_check_freq_map_near2); + + cpi->mode_check_freq[THR_V_PRED] = cpi->mode_check_freq[THR_H_PRED] = + cpi->mode_check_freq[THR_B_PRED] = + speed_map(Speed, mode_check_freq_map_vhbpred); + + // For real-time mode at speed 10 keep the mode_check_freq threshold + // for NEW1 similar to that of speed 9. + Speed2 = Speed; + if (cpi->Speed == 10 && Mode == 2) Speed2 = RT(9); + cpi->mode_check_freq[THR_NEW1] = speed_map(Speed2, mode_check_freq_map_new1); + + cpi->mode_check_freq[THR_NEW2] = cpi->mode_check_freq[THR_NEW3] = + speed_map(Speed, mode_check_freq_map_new2); + + cpi->mode_check_freq[THR_SPLIT1] = + speed_map(Speed, mode_check_freq_map_split1); + cpi->mode_check_freq[THR_SPLIT2] = cpi->mode_check_freq[THR_SPLIT3] = + speed_map(Speed, mode_check_freq_map_split2); + Speed = cpi->Speed; + switch (Mode) { +#if !CONFIG_REALTIME_ONLY + case 0: /* best quality mode */ + sf->first_step = 0; + sf->max_step_search_steps = MAX_MVSEARCH_STEPS; + break; + case 1: + case 3: + if (Speed > 0) { + /* Disable coefficient optimization above speed 0 */ + sf->optimize_coefficients = 0; + sf->use_fastquant_for_pick = 1; + sf->no_skip_block4x4_search = 0; + + sf->first_step = 1; + } + + if (Speed > 2) { + sf->improved_quant = 0; + sf->improved_dct = 0; + + /* Only do recode loop on key frames, golden frames and + * alt ref frames + */ + sf->recode_loop = 2; + } + + if (Speed > 3) { + sf->auto_filter = 1; + sf->recode_loop = 0; /* recode loop off */ + sf->RD = 0; /* Turn rd off */ + } + + if (Speed > 4) { + sf->auto_filter = 0; /* Faster selection of loop filter */ + } + + break; +#endif + case 2: + sf->optimize_coefficients = 0; + sf->recode_loop = 0; + sf->auto_filter = 1; + sf->iterative_sub_pixel = 1; + sf->search_method = NSTEP; + + if (Speed > 0) { + sf->improved_quant = 0; + sf->improved_dct = 0; + + sf->use_fastquant_for_pick = 1; + sf->no_skip_block4x4_search = 0; + sf->first_step = 1; + } + + if (Speed > 2) sf->auto_filter = 0; /* Faster selection of loop filter */ + + if (Speed > 3) { + sf->RD = 0; + sf->auto_filter = 1; + } + + if (Speed > 4) { + sf->auto_filter = 0; /* Faster selection of loop filter */ + sf->search_method = HEX; + sf->iterative_sub_pixel = 0; + } + + if (Speed > 6) { + unsigned int sum = 0; + unsigned int total_mbs = cm->MBs; + int thresh; + unsigned int total_skip; + + int min = 2000; + + if (cpi->oxcf.encode_breakout > 2000) min = cpi->oxcf.encode_breakout; + + min >>= 7; + + for (i = 0; i < min; ++i) { + sum += cpi->mb.error_bins[i]; + } + + total_skip = sum; + sum = 0; + + /* i starts from 2 to make sure thresh started from 2048 */ + for (; i < 1024; ++i) { + sum += cpi->mb.error_bins[i]; + + if (10 * sum >= + (unsigned int)(cpi->Speed - 6) * (total_mbs - total_skip)) { + break; + } + } + + i--; + thresh = (i << 7); + + if (thresh < 2000) thresh = 2000; + + if (ref_frames > 1) { + sf->thresh_mult[THR_NEW1] = thresh; + sf->thresh_mult[THR_NEAREST1] = thresh >> 1; + sf->thresh_mult[THR_NEAR1] = thresh >> 1; + } + + if (ref_frames > 2) { + sf->thresh_mult[THR_NEW2] = thresh << 1; + sf->thresh_mult[THR_NEAREST2] = thresh; + sf->thresh_mult[THR_NEAR2] = thresh; + } + + if (ref_frames > 3) { + sf->thresh_mult[THR_NEW3] = thresh << 1; + sf->thresh_mult[THR_NEAREST3] = thresh; + sf->thresh_mult[THR_NEAR3] = thresh; + } + + sf->improved_mv_pred = 0; + } + + if (Speed > 8) sf->quarter_pixel_search = 0; + + if (cm->version == 0) { + cm->filter_type = NORMAL_LOOPFILTER; + + if (Speed >= 14) cm->filter_type = SIMPLE_LOOPFILTER; + } else { + cm->filter_type = SIMPLE_LOOPFILTER; + } + + /* This has a big hit on quality. Last resort */ + if (Speed >= 15) sf->half_pixel_search = 0; + + memset(cpi->mb.error_bins, 0, sizeof(cpi->mb.error_bins)); + + }; /* switch */ + + /* Slow quant, dct and trellis not worthwhile for first pass + * so make sure they are always turned off. + */ + if (cpi->pass == 1) { + sf->improved_quant = 0; + sf->optimize_coefficients = 0; + sf->improved_dct = 0; + } + + if (cpi->sf.search_method == NSTEP) { + vp8_init3smotion_compensation(&cpi->mb, + cm->yv12_fb[cm->lst_fb_idx].y_stride); + } else if (cpi->sf.search_method == DIAMOND) { + vp8_init_dsmotion_compensation(&cpi->mb, + cm->yv12_fb[cm->lst_fb_idx].y_stride); + } + + if (cpi->sf.improved_dct) { + cpi->mb.short_fdct8x4 = vp8_short_fdct8x4; + cpi->mb.short_fdct4x4 = vp8_short_fdct4x4; + } else { + /* No fast FDCT defined for any platform at this time. */ + cpi->mb.short_fdct8x4 = vp8_short_fdct8x4; + cpi->mb.short_fdct4x4 = vp8_short_fdct4x4; + } + + cpi->mb.short_walsh4x4 = vp8_short_walsh4x4; + + if (cpi->sf.improved_quant) { + cpi->mb.quantize_b = vp8_regular_quantize_b; + } else { + cpi->mb.quantize_b = vp8_fast_quantize_b; + } + if (cpi->sf.improved_quant != last_improved_quant) vp8cx_init_quantizer(cpi); + + if (cpi->sf.iterative_sub_pixel == 1) { + cpi->find_fractional_mv_step = vp8_find_best_sub_pixel_step_iteratively; + } else if (cpi->sf.quarter_pixel_search) { + cpi->find_fractional_mv_step = vp8_find_best_sub_pixel_step; + } else if (cpi->sf.half_pixel_search) { + cpi->find_fractional_mv_step = vp8_find_best_half_pixel_step; + } else { + cpi->find_fractional_mv_step = vp8_skip_fractional_mv_step; + } + + if (cpi->sf.optimize_coefficients == 1 && cpi->pass != 1) { + cpi->mb.optimize = 1; + } else { + cpi->mb.optimize = 0; + } + + if (cpi->common.full_pixel) { + cpi->find_fractional_mv_step = vp8_skip_fractional_mv_step; + } + +#ifdef SPEEDSTATS + frames_at_speed[cpi->Speed]++; +#endif +} +#undef GOOD +#undef RT + +static void alloc_raw_frame_buffers(VP8_COMP *cpi) { +#if VP8_TEMPORAL_ALT_REF + int width = (cpi->oxcf.Width + 15) & ~15; + int height = (cpi->oxcf.Height + 15) & ~15; +#endif + + cpi->lookahead = vp8_lookahead_init(cpi->oxcf.Width, cpi->oxcf.Height, + cpi->oxcf.lag_in_frames); + if (!cpi->lookahead) { + vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR, + "Failed to allocate lag buffers"); + } + +#if VP8_TEMPORAL_ALT_REF + + if (vp8_yv12_alloc_frame_buffer(&cpi->alt_ref_buffer, width, height, + VP8BORDERINPIXELS)) { + vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR, + "Failed to allocate altref buffer"); + } + +#endif +} + +static void dealloc_raw_frame_buffers(VP8_COMP *cpi) { +#if VP8_TEMPORAL_ALT_REF + vp8_yv12_de_alloc_frame_buffer(&cpi->alt_ref_buffer); +#endif + vp8_lookahead_destroy(cpi->lookahead); +} + +static int vp8_alloc_partition_data(VP8_COMP *cpi) { + vpx_free(cpi->mb.pip); + + cpi->mb.pip = + vpx_calloc((cpi->common.mb_cols + 1) * (cpi->common.mb_rows + 1), + sizeof(PARTITION_INFO)); + if (!cpi->mb.pip) return 1; + + cpi->mb.pi = cpi->mb.pip + cpi->common.mode_info_stride + 1; + + return 0; +} + +void vp8_alloc_compressor_data(VP8_COMP *cpi) { + VP8_COMMON *cm = &cpi->common; + + int width = cm->Width; + int height = cm->Height; + + if (vp8_alloc_frame_buffers(cm, width, height)) { + vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR, + "Failed to allocate frame buffers"); + } + + if (vp8_alloc_partition_data(cpi)) { + vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR, + "Failed to allocate partition data"); + } + + if ((width & 0xf) != 0) width += 16 - (width & 0xf); + + if ((height & 0xf) != 0) height += 16 - (height & 0xf); + + if (vp8_yv12_alloc_frame_buffer(&cpi->pick_lf_lvl_frame, width, height, + VP8BORDERINPIXELS)) { + vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR, + "Failed to allocate last frame buffer"); + } + + if (vp8_yv12_alloc_frame_buffer(&cpi->scaled_source, width, height, + VP8BORDERINPIXELS)) { + vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR, + "Failed to allocate scaled source buffer"); + } + + vpx_free(cpi->tok); + + { +#if CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING + unsigned int tokens = 8 * 24 * 16; /* one MB for each thread */ +#else + unsigned int tokens = cm->mb_rows * cm->mb_cols * 24 * 16; +#endif + CHECK_MEM_ERROR(cpi->tok, vpx_calloc(tokens, sizeof(*cpi->tok))); + } + + /* Data used for real time vc mode to see if gf needs refreshing */ + cpi->zeromv_count = 0; + + /* Structures used to monitor GF usage */ + vpx_free(cpi->gf_active_flags); + CHECK_MEM_ERROR( + cpi->gf_active_flags, + vpx_calloc(sizeof(*cpi->gf_active_flags), cm->mb_rows * cm->mb_cols)); + cpi->gf_active_count = cm->mb_rows * cm->mb_cols; + + vpx_free(cpi->mb_activity_map); + CHECK_MEM_ERROR( + cpi->mb_activity_map, + vpx_calloc(sizeof(*cpi->mb_activity_map), cm->mb_rows * cm->mb_cols)); + + /* allocate memory for storing last frame's MVs for MV prediction. */ + vpx_free(cpi->lfmv); + CHECK_MEM_ERROR(cpi->lfmv, vpx_calloc((cm->mb_rows + 2) * (cm->mb_cols + 2), + sizeof(*cpi->lfmv))); + vpx_free(cpi->lf_ref_frame_sign_bias); + CHECK_MEM_ERROR(cpi->lf_ref_frame_sign_bias, + vpx_calloc((cm->mb_rows + 2) * (cm->mb_cols + 2), + sizeof(*cpi->lf_ref_frame_sign_bias))); + vpx_free(cpi->lf_ref_frame); + CHECK_MEM_ERROR(cpi->lf_ref_frame, + vpx_calloc((cm->mb_rows + 2) * (cm->mb_cols + 2), + sizeof(*cpi->lf_ref_frame))); + + /* Create the encoder segmentation map and set all entries to 0 */ + vpx_free(cpi->segmentation_map); + CHECK_MEM_ERROR( + cpi->segmentation_map, + vpx_calloc(cm->mb_rows * cm->mb_cols, sizeof(*cpi->segmentation_map))); + cpi->cyclic_refresh_mode_index = 0; + vpx_free(cpi->active_map); + CHECK_MEM_ERROR(cpi->active_map, vpx_calloc(cm->mb_rows * cm->mb_cols, + sizeof(*cpi->active_map))); + memset(cpi->active_map, 1, (cm->mb_rows * cm->mb_cols)); + +#if CONFIG_MULTITHREAD + if (width < 640) { + cpi->mt_sync_range = 1; + } else if (width <= 1280) { + cpi->mt_sync_range = 4; + } else if (width <= 2560) { + cpi->mt_sync_range = 8; + } else { + cpi->mt_sync_range = 16; + } + + if (cpi->oxcf.multi_threaded > 1) { + int i; + + vpx_free(cpi->mt_current_mb_col); + CHECK_MEM_ERROR(cpi->mt_current_mb_col, + vpx_malloc(sizeof(*cpi->mt_current_mb_col) * cm->mb_rows)); + for (i = 0; i < cm->mb_rows; ++i) + vpx_atomic_init(&cpi->mt_current_mb_col[i], 0); + } + +#endif + + vpx_free(cpi->tplist); + CHECK_MEM_ERROR(cpi->tplist, vpx_malloc(sizeof(TOKENLIST) * cm->mb_rows)); + +#if CONFIG_TEMPORAL_DENOISING + if (cpi->oxcf.noise_sensitivity > 0) { + vp8_denoiser_free(&cpi->denoiser); + if (vp8_denoiser_allocate(&cpi->denoiser, width, height, cm->mb_rows, + cm->mb_cols, cpi->oxcf.noise_sensitivity)) { + vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR, + "Failed to allocate denoiser"); + } + } +#endif +} + +/* Quant MOD */ +static const int q_trans[] = { + 0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 15, 17, 18, 19, + 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 35, 37, 39, 41, + 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 64, 67, 70, 73, 76, 79, + 82, 85, 88, 91, 94, 97, 100, 103, 106, 109, 112, 115, 118, 121, 124, 127, +}; + +int vp8_reverse_trans(int x) { + int i; + + for (i = 0; i < 64; ++i) { + if (q_trans[i] >= x) return i; + } + + return 63; +} +void vp8_new_framerate(VP8_COMP *cpi, double framerate) { + if (framerate < .1) framerate = 30; + + cpi->framerate = framerate; + cpi->output_framerate = framerate; + cpi->per_frame_bandwidth = + (int)(cpi->oxcf.target_bandwidth / cpi->output_framerate); + cpi->av_per_frame_bandwidth = cpi->per_frame_bandwidth; + cpi->min_frame_bandwidth = (int)(cpi->av_per_frame_bandwidth * + cpi->oxcf.two_pass_vbrmin_section / 100); + + /* Set Maximum gf/arf interval */ + cpi->max_gf_interval = ((int)(cpi->output_framerate / 2.0) + 2); + + if (cpi->max_gf_interval < 12) cpi->max_gf_interval = 12; + + /* Extended interval for genuinely static scenes */ + cpi->twopass.static_scene_max_gf_interval = cpi->key_frame_frequency >> 1; + + /* Special conditions when altr ref frame enabled in lagged compress mode */ + if (cpi->oxcf.play_alternate && cpi->oxcf.lag_in_frames) { + if (cpi->max_gf_interval > cpi->oxcf.lag_in_frames - 1) { + cpi->max_gf_interval = cpi->oxcf.lag_in_frames - 1; + } + + if (cpi->twopass.static_scene_max_gf_interval > + cpi->oxcf.lag_in_frames - 1) { + cpi->twopass.static_scene_max_gf_interval = cpi->oxcf.lag_in_frames - 1; + } + } + + if (cpi->max_gf_interval > cpi->twopass.static_scene_max_gf_interval) { + cpi->max_gf_interval = cpi->twopass.static_scene_max_gf_interval; + } +} + +static void init_config(VP8_COMP *cpi, VP8_CONFIG *oxcf) { + VP8_COMMON *cm = &cpi->common; + + cpi->oxcf = *oxcf; + + cpi->auto_gold = 1; + cpi->auto_adjust_gold_quantizer = 1; + + cm->version = oxcf->Version; + vp8_setup_version(cm); + + /* Frame rate is not available on the first frame, as it's derived from + * the observed timestamps. The actual value used here doesn't matter + * too much, as it will adapt quickly. + */ + if (oxcf->timebase.num > 0) { + cpi->framerate = + (double)(oxcf->timebase.den) / (double)(oxcf->timebase.num); + } else { + cpi->framerate = 30; + } + + /* If the reciprocal of the timebase seems like a reasonable framerate, + * then use that as a guess, otherwise use 30. + */ + if (cpi->framerate > 180) cpi->framerate = 30; + + cpi->ref_framerate = cpi->framerate; + + cpi->ref_frame_flags = VP8_ALTR_FRAME | VP8_GOLD_FRAME | VP8_LAST_FRAME; + + cm->refresh_golden_frame = 0; + cm->refresh_last_frame = 1; + cm->refresh_entropy_probs = 1; + + /* change includes all joint functionality */ + vp8_change_config(cpi, oxcf); + + /* Initialize active best and worst q and average q values. */ + cpi->active_worst_quality = cpi->oxcf.worst_allowed_q; + cpi->active_best_quality = cpi->oxcf.best_allowed_q; + cpi->avg_frame_qindex = cpi->oxcf.worst_allowed_q; + + /* Initialise the starting buffer levels */ + cpi->buffer_level = cpi->oxcf.starting_buffer_level; + cpi->bits_off_target = cpi->oxcf.starting_buffer_level; + + cpi->rolling_target_bits = cpi->av_per_frame_bandwidth; + cpi->rolling_actual_bits = cpi->av_per_frame_bandwidth; + cpi->long_rolling_target_bits = cpi->av_per_frame_bandwidth; + cpi->long_rolling_actual_bits = cpi->av_per_frame_bandwidth; + + cpi->total_actual_bits = 0; + cpi->total_target_vs_actual = 0; + + /* Temporal scalabilty */ + if (cpi->oxcf.number_of_layers > 1) { + unsigned int i; + double prev_layer_framerate = 0; + + for (i = 0; i < cpi->oxcf.number_of_layers; ++i) { + init_temporal_layer_context(cpi, oxcf, i, prev_layer_framerate); + prev_layer_framerate = + cpi->output_framerate / cpi->oxcf.rate_decimator[i]; + } + } + +#if VP8_TEMPORAL_ALT_REF + { + int i; + + cpi->fixed_divide[0] = 0; + + for (i = 1; i < 512; ++i) cpi->fixed_divide[i] = 0x80000 / i; + } +#endif +} + +static void update_layer_contexts(VP8_COMP *cpi) { + VP8_CONFIG *oxcf = &cpi->oxcf; + + /* Update snapshots of the layer contexts to reflect new parameters */ + if (oxcf->number_of_layers > 1) { + unsigned int i; + double prev_layer_framerate = 0; + + assert(oxcf->number_of_layers <= VPX_TS_MAX_LAYERS); + for (i = 0; i < oxcf->number_of_layers && i < VPX_TS_MAX_LAYERS; ++i) { + LAYER_CONTEXT *lc = &cpi->layer_context[i]; + + lc->framerate = cpi->ref_framerate / oxcf->rate_decimator[i]; + lc->target_bandwidth = oxcf->target_bitrate[i] * 1000; + + lc->starting_buffer_level = rescale( + (int)oxcf->starting_buffer_level_in_ms, lc->target_bandwidth, 1000); + + if (oxcf->optimal_buffer_level == 0) { + lc->optimal_buffer_level = lc->target_bandwidth / 8; + } else { + lc->optimal_buffer_level = rescale( + (int)oxcf->optimal_buffer_level_in_ms, lc->target_bandwidth, 1000); + } + + if (oxcf->maximum_buffer_size == 0) { + lc->maximum_buffer_size = lc->target_bandwidth / 8; + } else { + lc->maximum_buffer_size = rescale((int)oxcf->maximum_buffer_size_in_ms, + lc->target_bandwidth, 1000); + } + + /* Work out the average size of a frame within this layer */ + if (i > 0) { + lc->avg_frame_size_for_layer = + (int)((oxcf->target_bitrate[i] - oxcf->target_bitrate[i - 1]) * + 1000 / (lc->framerate - prev_layer_framerate)); + } + + prev_layer_framerate = lc->framerate; + } + } +} + +void vp8_change_config(VP8_COMP *cpi, VP8_CONFIG *oxcf) { + VP8_COMMON *cm = &cpi->common; + int last_w, last_h; + unsigned int prev_number_of_layers; + + if (!cpi) return; + + if (!oxcf) return; + + if (cm->version != oxcf->Version) { + cm->version = oxcf->Version; + vp8_setup_version(cm); + } + + last_w = cpi->oxcf.Width; + last_h = cpi->oxcf.Height; + prev_number_of_layers = cpi->oxcf.number_of_layers; + + cpi->oxcf = *oxcf; + + switch (cpi->oxcf.Mode) { + case MODE_REALTIME: + cpi->pass = 0; + cpi->compressor_speed = 2; + + if (cpi->oxcf.cpu_used < -16) { + cpi->oxcf.cpu_used = -16; + } + + if (cpi->oxcf.cpu_used > 16) cpi->oxcf.cpu_used = 16; + + break; + + case MODE_GOODQUALITY: + cpi->pass = 0; + cpi->compressor_speed = 1; + + if (cpi->oxcf.cpu_used < -5) { + cpi->oxcf.cpu_used = -5; + } + + if (cpi->oxcf.cpu_used > 5) cpi->oxcf.cpu_used = 5; + + break; + + case MODE_BESTQUALITY: + cpi->pass = 0; + cpi->compressor_speed = 0; + break; + + case MODE_FIRSTPASS: + cpi->pass = 1; + cpi->compressor_speed = 1; + break; + case MODE_SECONDPASS: + cpi->pass = 2; + cpi->compressor_speed = 1; + + if (cpi->oxcf.cpu_used < -5) { + cpi->oxcf.cpu_used = -5; + } + + if (cpi->oxcf.cpu_used > 5) cpi->oxcf.cpu_used = 5; + + break; + case MODE_SECONDPASS_BEST: + cpi->pass = 2; + cpi->compressor_speed = 0; + break; + } + + if (cpi->pass == 0) cpi->auto_worst_q = 1; + + cpi->oxcf.worst_allowed_q = q_trans[oxcf->worst_allowed_q]; + cpi->oxcf.best_allowed_q = q_trans[oxcf->best_allowed_q]; + cpi->oxcf.cq_level = q_trans[cpi->oxcf.cq_level]; + + if (oxcf->fixed_q >= 0) { + if (oxcf->worst_allowed_q < 0) { + cpi->oxcf.fixed_q = q_trans[0]; + } else { + cpi->oxcf.fixed_q = q_trans[oxcf->worst_allowed_q]; + } + + if (oxcf->alt_q < 0) { + cpi->oxcf.alt_q = q_trans[0]; + } else { + cpi->oxcf.alt_q = q_trans[oxcf->alt_q]; + } + + if (oxcf->key_q < 0) { + cpi->oxcf.key_q = q_trans[0]; + } else { + cpi->oxcf.key_q = q_trans[oxcf->key_q]; + } + + if (oxcf->gold_q < 0) { + cpi->oxcf.gold_q = q_trans[0]; + } else { + cpi->oxcf.gold_q = q_trans[oxcf->gold_q]; + } + } + + cpi->baseline_gf_interval = + cpi->oxcf.alt_freq ? cpi->oxcf.alt_freq : DEFAULT_GF_INTERVAL; + + // GF behavior for 1 pass CBR, used when error_resilience is off. + if (!cpi->oxcf.error_resilient_mode && + cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER && + cpi->oxcf.Mode == MODE_REALTIME) + cpi->baseline_gf_interval = cpi->gf_interval_onepass_cbr; + +#if (CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING) + cpi->oxcf.token_partitions = 3; +#endif + + if (cpi->oxcf.token_partitions >= 0 && cpi->oxcf.token_partitions <= 3) { + cm->multi_token_partition = (TOKEN_PARTITION)cpi->oxcf.token_partitions; + } + + setup_features(cpi); + + if (!cpi->use_roi_static_threshold) { + int i; + for (i = 0; i < MAX_MB_SEGMENTS; ++i) { + cpi->segment_encode_breakout[i] = cpi->oxcf.encode_breakout; + } + } + + /* At the moment the first order values may not be > MAXQ */ + if (cpi->oxcf.fixed_q > MAXQ) cpi->oxcf.fixed_q = MAXQ; + + /* local file playback mode == really big buffer */ + if (cpi->oxcf.end_usage == USAGE_LOCAL_FILE_PLAYBACK) { + cpi->oxcf.starting_buffer_level = 60000; + cpi->oxcf.optimal_buffer_level = 60000; + cpi->oxcf.maximum_buffer_size = 240000; + cpi->oxcf.starting_buffer_level_in_ms = 60000; + cpi->oxcf.optimal_buffer_level_in_ms = 60000; + cpi->oxcf.maximum_buffer_size_in_ms = 240000; + } + + /* Convert target bandwidth from Kbit/s to Bit/s */ + cpi->oxcf.target_bandwidth *= 1000; + + cpi->oxcf.starting_buffer_level = rescale( + (int)cpi->oxcf.starting_buffer_level, cpi->oxcf.target_bandwidth, 1000); + + /* Set or reset optimal and maximum buffer levels. */ + if (cpi->oxcf.optimal_buffer_level == 0) { + cpi->oxcf.optimal_buffer_level = cpi->oxcf.target_bandwidth / 8; + } else { + cpi->oxcf.optimal_buffer_level = rescale( + (int)cpi->oxcf.optimal_buffer_level, cpi->oxcf.target_bandwidth, 1000); + } + + if (cpi->oxcf.maximum_buffer_size == 0) { + cpi->oxcf.maximum_buffer_size = cpi->oxcf.target_bandwidth / 8; + } else { + cpi->oxcf.maximum_buffer_size = rescale((int)cpi->oxcf.maximum_buffer_size, + cpi->oxcf.target_bandwidth, 1000); + } + // Under a configuration change, where maximum_buffer_size may change, + // keep buffer level clipped to the maximum allowed buffer size. + if (cpi->bits_off_target > cpi->oxcf.maximum_buffer_size) { + cpi->bits_off_target = cpi->oxcf.maximum_buffer_size; + cpi->buffer_level = cpi->bits_off_target; + } + + /* Set up frame rate and related parameters rate control values. */ + vp8_new_framerate(cpi, cpi->framerate); + + /* Set absolute upper and lower quality limits */ + cpi->worst_quality = cpi->oxcf.worst_allowed_q; + cpi->best_quality = cpi->oxcf.best_allowed_q; + + /* active values should only be modified if out of new range */ + if (cpi->active_worst_quality > cpi->oxcf.worst_allowed_q) { + cpi->active_worst_quality = cpi->oxcf.worst_allowed_q; + } + /* less likely */ + else if (cpi->active_worst_quality < cpi->oxcf.best_allowed_q) { + cpi->active_worst_quality = cpi->oxcf.best_allowed_q; + } + if (cpi->active_best_quality < cpi->oxcf.best_allowed_q) { + cpi->active_best_quality = cpi->oxcf.best_allowed_q; + } + /* less likely */ + else if (cpi->active_best_quality > cpi->oxcf.worst_allowed_q) { + cpi->active_best_quality = cpi->oxcf.worst_allowed_q; + } + + cpi->buffered_mode = cpi->oxcf.optimal_buffer_level > 0; + + cpi->cq_target_quality = cpi->oxcf.cq_level; + + /* Only allow dropped frames in buffered mode */ + cpi->drop_frames_allowed = cpi->oxcf.allow_df && cpi->buffered_mode; + + cpi->target_bandwidth = cpi->oxcf.target_bandwidth; + + // Check if the number of temporal layers has changed, and if so reset the + // pattern counter and set/initialize the temporal layer context for the + // new layer configuration. + if (cpi->oxcf.number_of_layers != prev_number_of_layers) { + // If the number of temporal layers are changed we must start at the + // base of the pattern cycle, so set the layer id to 0 and reset + // the temporal pattern counter. + if (cpi->temporal_layer_id > 0) { + cpi->temporal_layer_id = 0; + } + cpi->temporal_pattern_counter = 0; + reset_temporal_layer_change(cpi, oxcf, prev_number_of_layers); + } + + if (!cpi->initial_width) { + cpi->initial_width = cpi->oxcf.Width; + cpi->initial_height = cpi->oxcf.Height; + } + + cm->Width = cpi->oxcf.Width; + cm->Height = cpi->oxcf.Height; + assert(cm->Width <= cpi->initial_width); + assert(cm->Height <= cpi->initial_height); + + /* TODO(jkoleszar): if an internal spatial resampling is active, + * and we downsize the input image, maybe we should clear the + * internal scale immediately rather than waiting for it to + * correct. + */ + + /* VP8 sharpness level mapping 0-7 (vs 0-10 in general VPx dialogs) */ + if (cpi->oxcf.Sharpness > 7) cpi->oxcf.Sharpness = 7; + + cm->sharpness_level = cpi->oxcf.Sharpness; + + if (cm->horiz_scale != NORMAL || cm->vert_scale != NORMAL) { + int hr, hs, vr, vs; + + Scale2Ratio(cm->horiz_scale, &hr, &hs); + Scale2Ratio(cm->vert_scale, &vr, &vs); + + /* always go to the next whole number */ + cm->Width = (hs - 1 + cpi->oxcf.Width * hr) / hs; + cm->Height = (vs - 1 + cpi->oxcf.Height * vr) / vs; + } + + if (last_w != cpi->oxcf.Width || last_h != cpi->oxcf.Height) { + cpi->force_next_frame_intra = 1; + } + + if (((cm->Width + 15) & ~15) != cm->yv12_fb[cm->lst_fb_idx].y_width || + ((cm->Height + 15) & ~15) != cm->yv12_fb[cm->lst_fb_idx].y_height || + cm->yv12_fb[cm->lst_fb_idx].y_width == 0) { + dealloc_raw_frame_buffers(cpi); + alloc_raw_frame_buffers(cpi); + vp8_alloc_compressor_data(cpi); + } + + if (cpi->oxcf.fixed_q >= 0) { + cpi->last_q[0] = cpi->oxcf.fixed_q; + cpi->last_q[1] = cpi->oxcf.fixed_q; + } + + cpi->Speed = cpi->oxcf.cpu_used; + + /* force to allowlag to 0 if lag_in_frames is 0; */ + if (cpi->oxcf.lag_in_frames == 0) { + cpi->oxcf.allow_lag = 0; + } + /* Limit on lag buffers as these are not currently dynamically allocated */ + else if (cpi->oxcf.lag_in_frames > MAX_LAG_BUFFERS) { + cpi->oxcf.lag_in_frames = MAX_LAG_BUFFERS; + } + + /* YX Temp */ + cpi->alt_ref_source = NULL; + cpi->is_src_frame_alt_ref = 0; + +#if CONFIG_TEMPORAL_DENOISING + if (cpi->oxcf.noise_sensitivity) { + if (!cpi->denoiser.yv12_mc_running_avg.buffer_alloc) { + int width = (cpi->oxcf.Width + 15) & ~15; + int height = (cpi->oxcf.Height + 15) & ~15; + if (vp8_denoiser_allocate(&cpi->denoiser, width, height, cm->mb_rows, + cm->mb_cols, cpi->oxcf.noise_sensitivity)) { + vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR, + "Failed to allocate denoiser"); + } + } + } +#endif + +#if 0 + /* Experimental RD Code */ + cpi->frame_distortion = 0; + cpi->last_frame_distortion = 0; +#endif +} + +#ifndef M_LOG2_E +#define M_LOG2_E 0.693147180559945309417 +#endif +#define log2f(x) (log(x) / (float)M_LOG2_E) + +static void cal_mvsadcosts(int *mvsadcost[2]) { + int i = 1; + + mvsadcost[0][0] = 300; + mvsadcost[1][0] = 300; + + do { + double z = 256 * (2 * (log2f(8 * i) + .6)); + mvsadcost[0][i] = (int)z; + mvsadcost[1][i] = (int)z; + mvsadcost[0][-i] = (int)z; + mvsadcost[1][-i] = (int)z; + } while (++i <= mvfp_max); +} + +struct VP8_COMP *vp8_create_compressor(VP8_CONFIG *oxcf) { + int i; + + VP8_COMP *cpi; + VP8_COMMON *cm; + + cpi = vpx_memalign(32, sizeof(VP8_COMP)); + /* Check that the CPI instance is valid */ + if (!cpi) return 0; + + cm = &cpi->common; + + memset(cpi, 0, sizeof(VP8_COMP)); + + if (setjmp(cm->error.jmp)) { + cpi->common.error.setjmp = 0; + vp8_remove_compressor(&cpi); + return 0; + } + + cpi->common.error.setjmp = 1; + + CHECK_MEM_ERROR(cpi->mb.ss, vpx_calloc(sizeof(search_site), + (MAX_MVSEARCH_STEPS * 8) + 1)); + + vp8_create_common(&cpi->common); + + init_config(cpi, oxcf); + + memcpy(cpi->base_skip_false_prob, vp8cx_base_skip_false_prob, + sizeof(vp8cx_base_skip_false_prob)); + cpi->common.current_video_frame = 0; + cpi->temporal_pattern_counter = 0; + cpi->temporal_layer_id = -1; + cpi->kf_overspend_bits = 0; + cpi->kf_bitrate_adjustment = 0; + cpi->frames_till_gf_update_due = 0; + cpi->gf_overspend_bits = 0; + cpi->non_gf_bitrate_adjustment = 0; + cpi->prob_last_coded = 128; + cpi->prob_gf_coded = 128; + cpi->prob_intra_coded = 63; + + /* Prime the recent reference frame usage counters. + * Hereafter they will be maintained as a sort of moving average + */ + cpi->recent_ref_frame_usage[INTRA_FRAME] = 1; + cpi->recent_ref_frame_usage[LAST_FRAME] = 1; + cpi->recent_ref_frame_usage[GOLDEN_FRAME] = 1; + cpi->recent_ref_frame_usage[ALTREF_FRAME] = 1; + + /* Set reference frame sign bias for ALTREF frame to 1 (for now) */ + cpi->common.ref_frame_sign_bias[ALTREF_FRAME] = 1; + + cpi->twopass.gf_decay_rate = 0; + cpi->baseline_gf_interval = DEFAULT_GF_INTERVAL; + + cpi->gold_is_last = 0; + cpi->alt_is_last = 0; + cpi->gold_is_alt = 0; + + cpi->active_map_enabled = 0; + + cpi->use_roi_static_threshold = 0; + +#if 0 + /* Experimental code for lagged and one pass */ + /* Initialise one_pass GF frames stats */ + /* Update stats used for GF selection */ + if (cpi->pass == 0) + { + cpi->one_pass_frame_index = 0; + + for (i = 0; i < MAX_LAG_BUFFERS; ++i) + { + cpi->one_pass_frame_stats[i].frames_so_far = 0; + cpi->one_pass_frame_stats[i].frame_intra_error = 0.0; + cpi->one_pass_frame_stats[i].frame_coded_error = 0.0; + cpi->one_pass_frame_stats[i].frame_pcnt_inter = 0.0; + cpi->one_pass_frame_stats[i].frame_pcnt_motion = 0.0; + cpi->one_pass_frame_stats[i].frame_mvr = 0.0; + cpi->one_pass_frame_stats[i].frame_mvr_abs = 0.0; + cpi->one_pass_frame_stats[i].frame_mvc = 0.0; + cpi->one_pass_frame_stats[i].frame_mvc_abs = 0.0; + } + } +#endif + + cpi->mse_source_denoised = 0; + + /* Should we use the cyclic refresh method. + * Currently there is no external control for this. + * Enable it for error_resilient_mode, or for 1 pass CBR mode. + */ + cpi->cyclic_refresh_mode_enabled = + (cpi->oxcf.error_resilient_mode || + (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER && + cpi->oxcf.Mode <= 2)); + cpi->cyclic_refresh_mode_max_mbs_perframe = + (cpi->common.mb_rows * cpi->common.mb_cols) / 7; + if (cpi->oxcf.number_of_layers == 1) { + cpi->cyclic_refresh_mode_max_mbs_perframe = + (cpi->common.mb_rows * cpi->common.mb_cols) / 20; + } else if (cpi->oxcf.number_of_layers == 2) { + cpi->cyclic_refresh_mode_max_mbs_perframe = + (cpi->common.mb_rows * cpi->common.mb_cols) / 10; + } + cpi->cyclic_refresh_mode_index = 0; + cpi->cyclic_refresh_q = 32; + + // GF behavior for 1 pass CBR, used when error_resilience is off. + cpi->gf_update_onepass_cbr = 0; + cpi->gf_noboost_onepass_cbr = 0; + if (!cpi->oxcf.error_resilient_mode && + cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER && cpi->oxcf.Mode <= 2) { + cpi->gf_update_onepass_cbr = 1; + cpi->gf_noboost_onepass_cbr = 1; + cpi->gf_interval_onepass_cbr = + cpi->cyclic_refresh_mode_max_mbs_perframe > 0 + ? (2 * (cpi->common.mb_rows * cpi->common.mb_cols) / + cpi->cyclic_refresh_mode_max_mbs_perframe) + : 10; + cpi->gf_interval_onepass_cbr = + VPXMIN(40, VPXMAX(6, cpi->gf_interval_onepass_cbr)); + cpi->baseline_gf_interval = cpi->gf_interval_onepass_cbr; + } + + if (cpi->cyclic_refresh_mode_enabled) { + CHECK_MEM_ERROR(cpi->cyclic_refresh_map, + vpx_calloc((cpi->common.mb_rows * cpi->common.mb_cols), 1)); + } else { + cpi->cyclic_refresh_map = (signed char *)NULL; + } + + CHECK_MEM_ERROR(cpi->skin_map, vpx_calloc(cm->mb_rows * cm->mb_cols, + sizeof(cpi->skin_map[0]))); + + CHECK_MEM_ERROR(cpi->consec_zero_last, + vpx_calloc(cm->mb_rows * cm->mb_cols, 1)); + CHECK_MEM_ERROR(cpi->consec_zero_last_mvbias, + vpx_calloc((cpi->common.mb_rows * cpi->common.mb_cols), 1)); + +#ifdef VP8_ENTROPY_STATS + init_context_counters(); +#endif + + /*Initialize the feed-forward activity masking.*/ + cpi->activity_avg = 90 << 12; + + /* Give a sensible default for the first frame. */ + cpi->frames_since_key = 8; + cpi->key_frame_frequency = cpi->oxcf.key_freq; + cpi->this_key_frame_forced = 0; + cpi->next_key_frame_forced = 0; + + cpi->source_alt_ref_pending = 0; + cpi->source_alt_ref_active = 0; + cpi->common.refresh_alt_ref_frame = 0; + + cpi->force_maxqp = 0; + cpi->frames_since_last_drop_overshoot = 0; + + cpi->b_calculate_psnr = CONFIG_INTERNAL_STATS; +#if CONFIG_INTERNAL_STATS + cpi->b_calculate_ssimg = 0; + + cpi->count = 0; + cpi->bytes = 0; + + if (cpi->b_calculate_psnr) { + cpi->total_sq_error = 0.0; + cpi->total_sq_error2 = 0.0; + cpi->total_y = 0.0; + cpi->total_u = 0.0; + cpi->total_v = 0.0; + cpi->total = 0.0; + cpi->totalp_y = 0.0; + cpi->totalp_u = 0.0; + cpi->totalp_v = 0.0; + cpi->totalp = 0.0; + cpi->tot_recode_hits = 0; + cpi->summed_quality = 0; + cpi->summed_weights = 0; + } + +#endif + + cpi->first_time_stamp_ever = 0x7FFFFFFF; + + cpi->frames_till_gf_update_due = 0; + cpi->key_frame_count = 1; + + cpi->ni_av_qi = cpi->oxcf.worst_allowed_q; + cpi->ni_tot_qi = 0; + cpi->ni_frames = 0; + cpi->total_byte_count = 0; + + cpi->drop_frame = 0; + + cpi->rate_correction_factor = 1.0; + cpi->key_frame_rate_correction_factor = 1.0; + cpi->gf_rate_correction_factor = 1.0; + cpi->twopass.est_max_qcorrection_factor = 1.0; + + for (i = 0; i < KEY_FRAME_CONTEXT; ++i) { + cpi->prior_key_frame_distance[i] = (int)cpi->output_framerate; + } + +#ifdef OUTPUT_YUV_SRC + yuv_file = fopen("bd.yuv", "ab"); +#endif +#ifdef OUTPUT_YUV_DENOISED + yuv_denoised_file = fopen("denoised.yuv", "ab"); +#endif +#ifdef OUTPUT_YUV_SKINMAP + yuv_skinmap_file = fopen("skinmap.yuv", "wb"); +#endif + +#if 0 + framepsnr = fopen("framepsnr.stt", "a"); + kf_list = fopen("kf_list.stt", "w"); +#endif + + cpi->output_pkt_list = oxcf->output_pkt_list; + +#if !CONFIG_REALTIME_ONLY + + if (cpi->pass == 1) { + vp8_init_first_pass(cpi); + } else if (cpi->pass == 2) { + size_t packet_sz = sizeof(FIRSTPASS_STATS); + int packets = (int)(oxcf->two_pass_stats_in.sz / packet_sz); + + cpi->twopass.stats_in_start = oxcf->two_pass_stats_in.buf; + cpi->twopass.stats_in = cpi->twopass.stats_in_start; + cpi->twopass.stats_in_end = + (void *)((char *)cpi->twopass.stats_in + (packets - 1) * packet_sz); + vp8_init_second_pass(cpi); + } + +#endif + + if (cpi->compressor_speed == 2) { + cpi->avg_encode_time = 0; + cpi->avg_pick_mode_time = 0; + } + + vp8_set_speed_features(cpi); + + /* Set starting values of RD threshold multipliers (128 = *1) */ + for (i = 0; i < MAX_MODES; ++i) { + cpi->mb.rd_thresh_mult[i] = 128; + } + +#ifdef VP8_ENTROPY_STATS + init_mv_ref_counts(); +#endif + +#if CONFIG_MULTITHREAD + if (vp8cx_create_encoder_threads(cpi)) { + vp8_remove_compressor(&cpi); + return 0; + } +#endif + + cpi->fn_ptr[BLOCK_16X16].sdf = vpx_sad16x16; + cpi->fn_ptr[BLOCK_16X16].vf = vpx_variance16x16; + cpi->fn_ptr[BLOCK_16X16].svf = vpx_sub_pixel_variance16x16; + cpi->fn_ptr[BLOCK_16X16].sdx3f = vpx_sad16x16x3; + cpi->fn_ptr[BLOCK_16X16].sdx8f = vpx_sad16x16x8; + cpi->fn_ptr[BLOCK_16X16].sdx4df = vpx_sad16x16x4d; + + cpi->fn_ptr[BLOCK_16X8].sdf = vpx_sad16x8; + cpi->fn_ptr[BLOCK_16X8].vf = vpx_variance16x8; + cpi->fn_ptr[BLOCK_16X8].svf = vpx_sub_pixel_variance16x8; + cpi->fn_ptr[BLOCK_16X8].sdx3f = vpx_sad16x8x3; + cpi->fn_ptr[BLOCK_16X8].sdx8f = vpx_sad16x8x8; + cpi->fn_ptr[BLOCK_16X8].sdx4df = vpx_sad16x8x4d; + + cpi->fn_ptr[BLOCK_8X16].sdf = vpx_sad8x16; + cpi->fn_ptr[BLOCK_8X16].vf = vpx_variance8x16; + cpi->fn_ptr[BLOCK_8X16].svf = vpx_sub_pixel_variance8x16; + cpi->fn_ptr[BLOCK_8X16].sdx3f = vpx_sad8x16x3; + cpi->fn_ptr[BLOCK_8X16].sdx8f = vpx_sad8x16x8; + cpi->fn_ptr[BLOCK_8X16].sdx4df = vpx_sad8x16x4d; + + cpi->fn_ptr[BLOCK_8X8].sdf = vpx_sad8x8; + cpi->fn_ptr[BLOCK_8X8].vf = vpx_variance8x8; + cpi->fn_ptr[BLOCK_8X8].svf = vpx_sub_pixel_variance8x8; + cpi->fn_ptr[BLOCK_8X8].sdx3f = vpx_sad8x8x3; + cpi->fn_ptr[BLOCK_8X8].sdx8f = vpx_sad8x8x8; + cpi->fn_ptr[BLOCK_8X8].sdx4df = vpx_sad8x8x4d; + + cpi->fn_ptr[BLOCK_4X4].sdf = vpx_sad4x4; + cpi->fn_ptr[BLOCK_4X4].vf = vpx_variance4x4; + cpi->fn_ptr[BLOCK_4X4].svf = vpx_sub_pixel_variance4x4; + cpi->fn_ptr[BLOCK_4X4].sdx3f = vpx_sad4x4x3; + cpi->fn_ptr[BLOCK_4X4].sdx8f = vpx_sad4x4x8; + cpi->fn_ptr[BLOCK_4X4].sdx4df = vpx_sad4x4x4d; + +#if ARCH_X86 || ARCH_X86_64 + cpi->fn_ptr[BLOCK_16X16].copymem = vp8_copy32xn; + cpi->fn_ptr[BLOCK_16X8].copymem = vp8_copy32xn; + cpi->fn_ptr[BLOCK_8X16].copymem = vp8_copy32xn; + cpi->fn_ptr[BLOCK_8X8].copymem = vp8_copy32xn; + cpi->fn_ptr[BLOCK_4X4].copymem = vp8_copy32xn; +#endif + + cpi->full_search_sad = vp8_full_search_sad; + cpi->diamond_search_sad = vp8_diamond_search_sad; + cpi->refining_search_sad = vp8_refining_search_sad; + + /* make sure frame 1 is okay */ + cpi->mb.error_bins[0] = cpi->common.MBs; + + /* vp8cx_init_quantizer() is first called here. Add check in + * vp8cx_frame_init_quantizer() so that vp8cx_init_quantizer is only + * called later when needed. This will avoid unnecessary calls of + * vp8cx_init_quantizer() for every frame. + */ + vp8cx_init_quantizer(cpi); + + vp8_loop_filter_init(cm); + + cpi->common.error.setjmp = 0; + +#if CONFIG_MULTI_RES_ENCODING + + /* Calculate # of MBs in a row in lower-resolution level image. */ + if (cpi->oxcf.mr_encoder_id > 0) vp8_cal_low_res_mb_cols(cpi); + +#endif + + /* setup RD costs to MACROBLOCK struct */ + + cpi->mb.mvcost[0] = &cpi->rd_costs.mvcosts[0][mv_max + 1]; + cpi->mb.mvcost[1] = &cpi->rd_costs.mvcosts[1][mv_max + 1]; + cpi->mb.mvsadcost[0] = &cpi->rd_costs.mvsadcosts[0][mvfp_max + 1]; + cpi->mb.mvsadcost[1] = &cpi->rd_costs.mvsadcosts[1][mvfp_max + 1]; + + cal_mvsadcosts(cpi->mb.mvsadcost); + + cpi->mb.mbmode_cost = cpi->rd_costs.mbmode_cost; + cpi->mb.intra_uv_mode_cost = cpi->rd_costs.intra_uv_mode_cost; + cpi->mb.bmode_costs = cpi->rd_costs.bmode_costs; + cpi->mb.inter_bmode_costs = cpi->rd_costs.inter_bmode_costs; + cpi->mb.token_costs = cpi->rd_costs.token_costs; + + /* setup block ptrs & offsets */ + vp8_setup_block_ptrs(&cpi->mb); + vp8_setup_block_dptrs(&cpi->mb.e_mbd); + + return cpi; +} + +void vp8_remove_compressor(VP8_COMP **ptr) { + VP8_COMP *cpi = *ptr; + + if (!cpi) return; + + if (cpi && (cpi->common.current_video_frame > 0)) { +#if !CONFIG_REALTIME_ONLY + + if (cpi->pass == 2) { + vp8_end_second_pass(cpi); + } + +#endif + +#ifdef VP8_ENTROPY_STATS + print_context_counters(); + print_tree_update_probs(); + print_mode_context(); +#endif + +#if CONFIG_INTERNAL_STATS + + if (cpi->pass != 1) { + FILE *f = fopen("opsnr.stt", "a"); + double time_encoded = + (cpi->last_end_time_stamp_seen - cpi->first_time_stamp_ever) / + 10000000.000; + double dr = (double)cpi->bytes * 8.0 / 1000.0 / time_encoded; + + if (cpi->b_calculate_psnr) { + if (cpi->oxcf.number_of_layers > 1) { + int i; + + fprintf(f, + "Layer\tBitrate\tAVGPsnr\tGLBPsnr\tAVPsnrP\t" + "GLPsnrP\tVPXSSIM\n"); + for (i = 0; i < (int)cpi->oxcf.number_of_layers; ++i) { + double dr = + (double)cpi->bytes_in_layer[i] * 8.0 / 1000.0 / time_encoded; + double samples = 3.0 / 2 * cpi->frames_in_layer[i] * + cpi->common.Width * cpi->common.Height; + double total_psnr = + vpx_sse_to_psnr(samples, 255.0, cpi->total_error2[i]); + double total_psnr2 = + vpx_sse_to_psnr(samples, 255.0, cpi->total_error2_p[i]); + double total_ssim = + 100 * pow(cpi->sum_ssim[i] / cpi->sum_weights[i], 8.0); + + fprintf(f, + "%5d\t%7.3f\t%7.3f\t%7.3f\t%7.3f\t" + "%7.3f\t%7.3f\n", + i, dr, cpi->sum_psnr[i] / cpi->frames_in_layer[i], + total_psnr, cpi->sum_psnr_p[i] / cpi->frames_in_layer[i], + total_psnr2, total_ssim); + } + } else { + double samples = + 3.0 / 2 * cpi->count * cpi->common.Width * cpi->common.Height; + double total_psnr = + vpx_sse_to_psnr(samples, 255.0, cpi->total_sq_error); + double total_psnr2 = + vpx_sse_to_psnr(samples, 255.0, cpi->total_sq_error2); + double total_ssim = + 100 * pow(cpi->summed_quality / cpi->summed_weights, 8.0); + + fprintf(f, + "Bitrate\tAVGPsnr\tGLBPsnr\tAVPsnrP\t" + "GLPsnrP\tVPXSSIM\n"); + fprintf(f, + "%7.3f\t%7.3f\t%7.3f\t%7.3f\t%7.3f\t" + "%7.3f\n", + dr, cpi->total / cpi->count, total_psnr, + cpi->totalp / cpi->count, total_psnr2, total_ssim); + } + } + fclose(f); +#if 0 + f = fopen("qskip.stt", "a"); + fprintf(f, "minq:%d -maxq:%d skiptrue:skipfalse = %d:%d\n", cpi->oxcf.best_allowed_q, cpi->oxcf.worst_allowed_q, skiptruecount, skipfalsecount); + fclose(f); +#endif + } + +#endif + +#ifdef SPEEDSTATS + + if (cpi->compressor_speed == 2) { + int i; + FILE *f = fopen("cxspeed.stt", "a"); + cnt_pm /= cpi->common.MBs; + + for (i = 0; i < 16; ++i) fprintf(f, "%5d", frames_at_speed[i]); + + fprintf(f, "\n"); + fclose(f); + } + +#endif + +#ifdef MODE_STATS + { + extern int count_mb_seg[4]; + FILE *f = fopen("modes.stt", "a"); + double dr = (double)cpi->framerate * (double)bytes * (double)8 / + (double)count / (double)1000; + fprintf(f, "intra_mode in Intra Frames:\n"); + fprintf(f, "Y: %8d, %8d, %8d, %8d, %8d\n", y_modes[0], y_modes[1], + y_modes[2], y_modes[3], y_modes[4]); + fprintf(f, "UV:%8d, %8d, %8d, %8d\n", uv_modes[0], uv_modes[1], + uv_modes[2], uv_modes[3]); + fprintf(f, "B: "); + { + int i; + + for (i = 0; i < 10; ++i) fprintf(f, "%8d, ", b_modes[i]); + + fprintf(f, "\n"); + } + + fprintf(f, "Modes in Inter Frames:\n"); + fprintf(f, "Y: %8d, %8d, %8d, %8d, %8d, %8d, %8d, %8d, %8d, %8d\n", + inter_y_modes[0], inter_y_modes[1], inter_y_modes[2], + inter_y_modes[3], inter_y_modes[4], inter_y_modes[5], + inter_y_modes[6], inter_y_modes[7], inter_y_modes[8], + inter_y_modes[9]); + fprintf(f, "UV:%8d, %8d, %8d, %8d\n", inter_uv_modes[0], + inter_uv_modes[1], inter_uv_modes[2], inter_uv_modes[3]); + fprintf(f, "B: "); + { + int i; + + for (i = 0; i < 15; ++i) fprintf(f, "%8d, ", inter_b_modes[i]); + + fprintf(f, "\n"); + } + fprintf(f, "P:%8d, %8d, %8d, %8d\n", count_mb_seg[0], count_mb_seg[1], + count_mb_seg[2], count_mb_seg[3]); + fprintf(f, "PB:%8d, %8d, %8d, %8d\n", inter_b_modes[LEFT4X4], + inter_b_modes[ABOVE4X4], inter_b_modes[ZERO4X4], + inter_b_modes[NEW4X4]); + + fclose(f); + } +#endif + +#ifdef VP8_ENTROPY_STATS + { + int i, j, k; + FILE *fmode = fopen("modecontext.c", "w"); + + fprintf(fmode, "\n#include \"entropymode.h\"\n\n"); + fprintf(fmode, "const unsigned int vp8_kf_default_bmode_counts "); + fprintf(fmode, + "[VP8_BINTRAMODES] [VP8_BINTRAMODES] [VP8_BINTRAMODES] =\n{\n"); + + for (i = 0; i < 10; ++i) { + fprintf(fmode, " { /* Above Mode : %d */\n", i); + + for (j = 0; j < 10; ++j) { + fprintf(fmode, " {"); + + for (k = 0; k < 10; ++k) { + if (!intra_mode_stats[i][j][k]) + fprintf(fmode, " %5d, ", 1); + else + fprintf(fmode, " %5d, ", intra_mode_stats[i][j][k]); + } + + fprintf(fmode, "}, /* left_mode %d */\n", j); + } + + fprintf(fmode, " },\n"); + } + + fprintf(fmode, "};\n"); + fclose(fmode); + } +#endif + +#if defined(SECTIONBITS_OUTPUT) + + if (0) { + int i; + FILE *f = fopen("tokenbits.stt", "a"); + + for (i = 0; i < 28; ++i) fprintf(f, "%8d", (int)(Sectionbits[i] / 256)); + + fprintf(f, "\n"); + fclose(f); + } + +#endif + +#if 0 + { + printf("\n_pick_loop_filter_level:%d\n", cpi->time_pick_lpf / 1000); + printf("\n_frames recive_data encod_mb_row compress_frame Total\n"); + printf("%6d %10ld %10ld %10ld %10ld\n", cpi->common.current_video_frame, cpi->time_receive_data / 1000, cpi->time_encode_mb_row / 1000, cpi->time_compress_data / 1000, (cpi->time_receive_data + cpi->time_compress_data) / 1000); + } +#endif + } + +#if CONFIG_MULTITHREAD + vp8cx_remove_encoder_threads(cpi); +#endif + +#if CONFIG_TEMPORAL_DENOISING + vp8_denoiser_free(&cpi->denoiser); +#endif + dealloc_compressor_data(cpi); + vpx_free(cpi->mb.ss); + vpx_free(cpi->tok); + vpx_free(cpi->skin_map); + vpx_free(cpi->cyclic_refresh_map); + vpx_free(cpi->consec_zero_last); + vpx_free(cpi->consec_zero_last_mvbias); + + vp8_remove_common(&cpi->common); + vpx_free(cpi); + *ptr = 0; + +#ifdef OUTPUT_YUV_SRC + fclose(yuv_file); +#endif +#ifdef OUTPUT_YUV_DENOISED + fclose(yuv_denoised_file); +#endif +#ifdef OUTPUT_YUV_SKINMAP + fclose(yuv_skinmap_file); +#endif + +#if 0 + + if (keyfile) + fclose(keyfile); + + if (framepsnr) + fclose(framepsnr); + + if (kf_list) + fclose(kf_list); + +#endif +} + +static uint64_t calc_plane_error(unsigned char *orig, int orig_stride, + unsigned char *recon, int recon_stride, + unsigned int cols, unsigned int rows) { + unsigned int row, col; + uint64_t total_sse = 0; + int diff; + + for (row = 0; row + 16 <= rows; row += 16) { + for (col = 0; col + 16 <= cols; col += 16) { + unsigned int sse; + + vpx_mse16x16(orig + col, orig_stride, recon + col, recon_stride, &sse); + total_sse += sse; + } + + /* Handle odd-sized width */ + if (col < cols) { + unsigned int border_row, border_col; + unsigned char *border_orig = orig; + unsigned char *border_recon = recon; + + for (border_row = 0; border_row < 16; ++border_row) { + for (border_col = col; border_col < cols; ++border_col) { + diff = border_orig[border_col] - border_recon[border_col]; + total_sse += diff * diff; + } + + border_orig += orig_stride; + border_recon += recon_stride; + } + } + + orig += orig_stride * 16; + recon += recon_stride * 16; + } + + /* Handle odd-sized height */ + for (; row < rows; ++row) { + for (col = 0; col < cols; ++col) { + diff = orig[col] - recon[col]; + total_sse += diff * diff; + } + + orig += orig_stride; + recon += recon_stride; + } + + vpx_clear_system_state(); + return total_sse; +} + +static void generate_psnr_packet(VP8_COMP *cpi) { + YV12_BUFFER_CONFIG *orig = cpi->Source; + YV12_BUFFER_CONFIG *recon = cpi->common.frame_to_show; + struct vpx_codec_cx_pkt pkt; + uint64_t sse; + int i; + unsigned int width = cpi->common.Width; + unsigned int height = cpi->common.Height; + + pkt.kind = VPX_CODEC_PSNR_PKT; + sse = calc_plane_error(orig->y_buffer, orig->y_stride, recon->y_buffer, + recon->y_stride, width, height); + pkt.data.psnr.sse[0] = sse; + pkt.data.psnr.sse[1] = sse; + pkt.data.psnr.samples[0] = width * height; + pkt.data.psnr.samples[1] = width * height; + + width = (width + 1) / 2; + height = (height + 1) / 2; + + sse = calc_plane_error(orig->u_buffer, orig->uv_stride, recon->u_buffer, + recon->uv_stride, width, height); + pkt.data.psnr.sse[0] += sse; + pkt.data.psnr.sse[2] = sse; + pkt.data.psnr.samples[0] += width * height; + pkt.data.psnr.samples[2] = width * height; + + sse = calc_plane_error(orig->v_buffer, orig->uv_stride, recon->v_buffer, + recon->uv_stride, width, height); + pkt.data.psnr.sse[0] += sse; + pkt.data.psnr.sse[3] = sse; + pkt.data.psnr.samples[0] += width * height; + pkt.data.psnr.samples[3] = width * height; + + for (i = 0; i < 4; ++i) { + pkt.data.psnr.psnr[i] = vpx_sse_to_psnr(pkt.data.psnr.samples[i], 255.0, + (double)(pkt.data.psnr.sse[i])); + } + + vpx_codec_pkt_list_add(cpi->output_pkt_list, &pkt); +} + +int vp8_use_as_reference(VP8_COMP *cpi, int ref_frame_flags) { + if (ref_frame_flags > 7) return -1; + + cpi->ref_frame_flags = ref_frame_flags; + return 0; +} +int vp8_update_reference(VP8_COMP *cpi, int ref_frame_flags) { + if (ref_frame_flags > 7) return -1; + + cpi->common.refresh_golden_frame = 0; + cpi->common.refresh_alt_ref_frame = 0; + cpi->common.refresh_last_frame = 0; + + if (ref_frame_flags & VP8_LAST_FRAME) cpi->common.refresh_last_frame = 1; + + if (ref_frame_flags & VP8_GOLD_FRAME) cpi->common.refresh_golden_frame = 1; + + if (ref_frame_flags & VP8_ALTR_FRAME) cpi->common.refresh_alt_ref_frame = 1; + + return 0; +} + +int vp8_get_reference(VP8_COMP *cpi, enum vpx_ref_frame_type ref_frame_flag, + YV12_BUFFER_CONFIG *sd) { + VP8_COMMON *cm = &cpi->common; + int ref_fb_idx; + + if (ref_frame_flag == VP8_LAST_FRAME) { + ref_fb_idx = cm->lst_fb_idx; + } else if (ref_frame_flag == VP8_GOLD_FRAME) { + ref_fb_idx = cm->gld_fb_idx; + } else if (ref_frame_flag == VP8_ALTR_FRAME) { + ref_fb_idx = cm->alt_fb_idx; + } else { + return -1; + } + + vp8_yv12_copy_frame(&cm->yv12_fb[ref_fb_idx], sd); + + return 0; +} +int vp8_set_reference(VP8_COMP *cpi, enum vpx_ref_frame_type ref_frame_flag, + YV12_BUFFER_CONFIG *sd) { + VP8_COMMON *cm = &cpi->common; + + int ref_fb_idx; + + if (ref_frame_flag == VP8_LAST_FRAME) { + ref_fb_idx = cm->lst_fb_idx; + } else if (ref_frame_flag == VP8_GOLD_FRAME) { + ref_fb_idx = cm->gld_fb_idx; + } else if (ref_frame_flag == VP8_ALTR_FRAME) { + ref_fb_idx = cm->alt_fb_idx; + } else { + return -1; + } + + vp8_yv12_copy_frame(sd, &cm->yv12_fb[ref_fb_idx]); + + return 0; +} +int vp8_update_entropy(VP8_COMP *cpi, int update) { + VP8_COMMON *cm = &cpi->common; + cm->refresh_entropy_probs = update; + + return 0; +} + +static void scale_and_extend_source(YV12_BUFFER_CONFIG *sd, VP8_COMP *cpi) { + VP8_COMMON *cm = &cpi->common; + + /* are we resizing the image */ + if (cm->horiz_scale != 0 || cm->vert_scale != 0) { +#if CONFIG_SPATIAL_RESAMPLING + int hr, hs, vr, vs; + int tmp_height; + + if (cm->vert_scale == 3) { + tmp_height = 9; + } else { + tmp_height = 11; + } + + Scale2Ratio(cm->horiz_scale, &hr, &hs); + Scale2Ratio(cm->vert_scale, &vr, &vs); + + vpx_scale_frame(sd, &cpi->scaled_source, cm->temp_scale_frame.y_buffer, + tmp_height, hs, hr, vs, vr, 0); + + vp8_yv12_extend_frame_borders(&cpi->scaled_source); + cpi->Source = &cpi->scaled_source; +#endif + } else { + cpi->Source = sd; + } +} + +static int resize_key_frame(VP8_COMP *cpi) { +#if CONFIG_SPATIAL_RESAMPLING + VP8_COMMON *cm = &cpi->common; + + /* Do we need to apply resampling for one pass cbr. + * In one pass this is more limited than in two pass cbr. + * The test and any change is only made once per key frame sequence. + */ + if (cpi->oxcf.allow_spatial_resampling && + (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER)) { + int hr, hs, vr, vs; + int new_width, new_height; + + /* If we are below the resample DOWN watermark then scale down a + * notch. + */ + if (cpi->buffer_level < (cpi->oxcf.resample_down_water_mark * + cpi->oxcf.optimal_buffer_level / 100)) { + cm->horiz_scale = + (cm->horiz_scale < ONETWO) ? cm->horiz_scale + 1 : ONETWO; + cm->vert_scale = (cm->vert_scale < ONETWO) ? cm->vert_scale + 1 : ONETWO; + } + /* Should we now start scaling back up */ + else if (cpi->buffer_level > (cpi->oxcf.resample_up_water_mark * + cpi->oxcf.optimal_buffer_level / 100)) { + cm->horiz_scale = + (cm->horiz_scale > NORMAL) ? cm->horiz_scale - 1 : NORMAL; + cm->vert_scale = (cm->vert_scale > NORMAL) ? cm->vert_scale - 1 : NORMAL; + } + + /* Get the new height and width */ + Scale2Ratio(cm->horiz_scale, &hr, &hs); + Scale2Ratio(cm->vert_scale, &vr, &vs); + new_width = ((hs - 1) + (cpi->oxcf.Width * hr)) / hs; + new_height = ((vs - 1) + (cpi->oxcf.Height * vr)) / vs; + + /* If the image size has changed we need to reallocate the buffers + * and resample the source image + */ + if ((cm->Width != new_width) || (cm->Height != new_height)) { + cm->Width = new_width; + cm->Height = new_height; + vp8_alloc_compressor_data(cpi); + scale_and_extend_source(cpi->un_scaled_source, cpi); + return 1; + } + } + +#endif + return 0; +} + +static void update_alt_ref_frame_stats(VP8_COMP *cpi) { + VP8_COMMON *cm = &cpi->common; + + /* Select an interval before next GF or altref */ + if (!cpi->auto_gold) cpi->frames_till_gf_update_due = DEFAULT_GF_INTERVAL; + + if ((cpi->pass != 2) && cpi->frames_till_gf_update_due) { + cpi->current_gf_interval = cpi->frames_till_gf_update_due; + + /* Set the bits per frame that we should try and recover in + * subsequent inter frames to account for the extra GF spend... + * note that his does not apply for GF updates that occur + * coincident with a key frame as the extra cost of key frames is + * dealt with elsewhere. + */ + cpi->gf_overspend_bits += cpi->projected_frame_size; + cpi->non_gf_bitrate_adjustment = + cpi->gf_overspend_bits / cpi->frames_till_gf_update_due; + } + + /* Update data structure that monitors level of reference to last GF */ + memset(cpi->gf_active_flags, 1, (cm->mb_rows * cm->mb_cols)); + cpi->gf_active_count = cm->mb_rows * cm->mb_cols; + + /* this frame refreshes means next frames don't unless specified by user */ + cpi->frames_since_golden = 0; + + /* Clear the alternate reference update pending flag. */ + cpi->source_alt_ref_pending = 0; + + /* Set the alternate reference frame active flag */ + cpi->source_alt_ref_active = 1; +} +static void update_golden_frame_stats(VP8_COMP *cpi) { + VP8_COMMON *cm = &cpi->common; + + /* Update the Golden frame usage counts. */ + if (cm->refresh_golden_frame) { + /* Select an interval before next GF */ + if (!cpi->auto_gold) cpi->frames_till_gf_update_due = DEFAULT_GF_INTERVAL; + + if ((cpi->pass != 2) && (cpi->frames_till_gf_update_due > 0)) { + cpi->current_gf_interval = cpi->frames_till_gf_update_due; + + /* Set the bits per frame that we should try and recover in + * subsequent inter frames to account for the extra GF spend... + * note that his does not apply for GF updates that occur + * coincident with a key frame as the extra cost of key frames + * is dealt with elsewhere. + */ + if ((cm->frame_type != KEY_FRAME) && !cpi->source_alt_ref_active) { + /* Calcluate GF bits to be recovered + * Projected size - av frame bits available for inter + * frames for clip as a whole + */ + cpi->gf_overspend_bits += + (cpi->projected_frame_size - cpi->inter_frame_target); + } + + cpi->non_gf_bitrate_adjustment = + cpi->gf_overspend_bits / cpi->frames_till_gf_update_due; + } + + /* Update data structure that monitors level of reference to last GF */ + memset(cpi->gf_active_flags, 1, (cm->mb_rows * cm->mb_cols)); + cpi->gf_active_count = cm->mb_rows * cm->mb_cols; + + /* this frame refreshes means next frames don't unless specified by + * user + */ + cm->refresh_golden_frame = 0; + cpi->frames_since_golden = 0; + + cpi->recent_ref_frame_usage[INTRA_FRAME] = 1; + cpi->recent_ref_frame_usage[LAST_FRAME] = 1; + cpi->recent_ref_frame_usage[GOLDEN_FRAME] = 1; + cpi->recent_ref_frame_usage[ALTREF_FRAME] = 1; + + /* ******** Fixed Q test code only ************ */ + /* If we are going to use the ALT reference for the next group of + * frames set a flag to say so. + */ + if (cpi->oxcf.fixed_q >= 0 && cpi->oxcf.play_alternate && + !cpi->common.refresh_alt_ref_frame) { + cpi->source_alt_ref_pending = 1; + cpi->frames_till_gf_update_due = cpi->baseline_gf_interval; + } + + if (!cpi->source_alt_ref_pending) cpi->source_alt_ref_active = 0; + + /* Decrement count down till next gf */ + if (cpi->frames_till_gf_update_due > 0) cpi->frames_till_gf_update_due--; + + } else if (!cpi->common.refresh_alt_ref_frame) { + /* Decrement count down till next gf */ + if (cpi->frames_till_gf_update_due > 0) cpi->frames_till_gf_update_due--; + + if (cpi->frames_till_alt_ref_frame) cpi->frames_till_alt_ref_frame--; + + cpi->frames_since_golden++; + + if (cpi->frames_since_golden > 1) { + cpi->recent_ref_frame_usage[INTRA_FRAME] += + cpi->mb.count_mb_ref_frame_usage[INTRA_FRAME]; + cpi->recent_ref_frame_usage[LAST_FRAME] += + cpi->mb.count_mb_ref_frame_usage[LAST_FRAME]; + cpi->recent_ref_frame_usage[GOLDEN_FRAME] += + cpi->mb.count_mb_ref_frame_usage[GOLDEN_FRAME]; + cpi->recent_ref_frame_usage[ALTREF_FRAME] += + cpi->mb.count_mb_ref_frame_usage[ALTREF_FRAME]; + } + } +} + +/* This function updates the reference frame probability estimates that + * will be used during mode selection + */ +static void update_rd_ref_frame_probs(VP8_COMP *cpi) { + VP8_COMMON *cm = &cpi->common; + + const int *const rfct = cpi->mb.count_mb_ref_frame_usage; + const int rf_intra = rfct[INTRA_FRAME]; + const int rf_inter = + rfct[LAST_FRAME] + rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME]; + + if (cm->frame_type == KEY_FRAME) { + cpi->prob_intra_coded = 255; + cpi->prob_last_coded = 128; + cpi->prob_gf_coded = 128; + } else if (!(rf_intra + rf_inter)) { + cpi->prob_intra_coded = 63; + cpi->prob_last_coded = 128; + cpi->prob_gf_coded = 128; + } + + /* update reference frame costs since we can do better than what we got + * last frame. + */ + if (cpi->oxcf.number_of_layers == 1) { + if (cpi->common.refresh_alt_ref_frame) { + cpi->prob_intra_coded += 40; + if (cpi->prob_intra_coded > 255) cpi->prob_intra_coded = 255; + cpi->prob_last_coded = 200; + cpi->prob_gf_coded = 1; + } else if (cpi->frames_since_golden == 0) { + cpi->prob_last_coded = 214; + } else if (cpi->frames_since_golden == 1) { + cpi->prob_last_coded = 192; + cpi->prob_gf_coded = 220; + } else if (cpi->source_alt_ref_active) { + cpi->prob_gf_coded -= 20; + + if (cpi->prob_gf_coded < 10) cpi->prob_gf_coded = 10; + } + if (!cpi->source_alt_ref_active) cpi->prob_gf_coded = 255; + } +} + +#if !CONFIG_REALTIME_ONLY +/* 1 = key, 0 = inter */ +static int decide_key_frame(VP8_COMP *cpi) { + VP8_COMMON *cm = &cpi->common; + + int code_key_frame = 0; + + cpi->kf_boost = 0; + + if (cpi->Speed > 11) return 0; + + /* Clear down mmx registers */ + vpx_clear_system_state(); + + if ((cpi->compressor_speed == 2) && (cpi->Speed >= 5) && (cpi->sf.RD == 0)) { + double change = 1.0 * + abs((int)(cpi->mb.intra_error - cpi->last_intra_error)) / + (1 + cpi->last_intra_error); + double change2 = + 1.0 * + abs((int)(cpi->mb.prediction_error - cpi->last_prediction_error)) / + (1 + cpi->last_prediction_error); + double minerror = cm->MBs * 256; + + cpi->last_intra_error = cpi->mb.intra_error; + cpi->last_prediction_error = cpi->mb.prediction_error; + + if (10 * cpi->mb.intra_error / (1 + cpi->mb.prediction_error) < 15 && + cpi->mb.prediction_error > minerror && + (change > .25 || change2 > .25)) { + /*(change > 1.4 || change < .75)&& cpi->this_frame_percent_intra > + * cpi->last_frame_percent_intra + 3*/ + return 1; + } + + return 0; + } + + /* If the following are true we might as well code a key frame */ + if (((cpi->this_frame_percent_intra == 100) && + (cpi->this_frame_percent_intra > (cpi->last_frame_percent_intra + 2))) || + ((cpi->this_frame_percent_intra > 95) && + (cpi->this_frame_percent_intra >= + (cpi->last_frame_percent_intra + 5)))) { + code_key_frame = 1; + } + /* in addition if the following are true and this is not a golden frame + * then code a key frame Note that on golden frames there often seems + * to be a pop in intra useage anyway hence this restriction is + * designed to prevent spurious key frames. The Intra pop needs to be + * investigated. + */ + else if (((cpi->this_frame_percent_intra > 60) && + (cpi->this_frame_percent_intra > + (cpi->last_frame_percent_intra * 2))) || + ((cpi->this_frame_percent_intra > 75) && + (cpi->this_frame_percent_intra > + (cpi->last_frame_percent_intra * 3 / 2))) || + ((cpi->this_frame_percent_intra > 90) && + (cpi->this_frame_percent_intra > + (cpi->last_frame_percent_intra + 10)))) { + if (!cm->refresh_golden_frame) code_key_frame = 1; + } + + return code_key_frame; +} + +static void Pass1Encode(VP8_COMP *cpi, size_t *size, unsigned char *dest, + unsigned int *frame_flags) { + (void)size; + (void)dest; + (void)frame_flags; + vp8_set_quantizer(cpi, 26); + + vp8_first_pass(cpi); +} +#endif + +#if 0 +void write_cx_frame_to_file(YV12_BUFFER_CONFIG *frame, int this_frame) +{ + + /* write the frame */ + FILE *yframe; + int i; + char filename[255]; + + sprintf(filename, "cx\\y%04d.raw", this_frame); + yframe = fopen(filename, "wb"); + + for (i = 0; i < frame->y_height; ++i) + fwrite(frame->y_buffer + i * frame->y_stride, frame->y_width, 1, yframe); + + fclose(yframe); + sprintf(filename, "cx\\u%04d.raw", this_frame); + yframe = fopen(filename, "wb"); + + for (i = 0; i < frame->uv_height; ++i) + fwrite(frame->u_buffer + i * frame->uv_stride, frame->uv_width, 1, yframe); + + fclose(yframe); + sprintf(filename, "cx\\v%04d.raw", this_frame); + yframe = fopen(filename, "wb"); + + for (i = 0; i < frame->uv_height; ++i) + fwrite(frame->v_buffer + i * frame->uv_stride, frame->uv_width, 1, yframe); + + fclose(yframe); +} +#endif +/* return of 0 means drop frame */ + +#if !CONFIG_REALTIME_ONLY +/* Function to test for conditions that indeicate we should loop + * back and recode a frame. + */ +static int recode_loop_test(VP8_COMP *cpi, int high_limit, int low_limit, int q, + int maxq, int minq) { + int force_recode = 0; + VP8_COMMON *cm = &cpi->common; + + /* Is frame recode allowed at all + * Yes if either recode mode 1 is selected or mode two is selcted + * and the frame is a key frame. golden frame or alt_ref_frame + */ + if ((cpi->sf.recode_loop == 1) || + ((cpi->sf.recode_loop == 2) && + ((cm->frame_type == KEY_FRAME) || cm->refresh_golden_frame || + cm->refresh_alt_ref_frame))) { + /* General over and under shoot tests */ + if (((cpi->projected_frame_size > high_limit) && (q < maxq)) || + ((cpi->projected_frame_size < low_limit) && (q > minq))) { + force_recode = 1; + } + /* Special Constrained quality tests */ + else if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) { + /* Undershoot and below auto cq level */ + if ((q > cpi->cq_target_quality) && + (cpi->projected_frame_size < ((cpi->this_frame_target * 7) >> 3))) { + force_recode = 1; + } + /* Severe undershoot and between auto and user cq level */ + else if ((q > cpi->oxcf.cq_level) && + (cpi->projected_frame_size < cpi->min_frame_bandwidth) && + (cpi->active_best_quality > cpi->oxcf.cq_level)) { + force_recode = 1; + cpi->active_best_quality = cpi->oxcf.cq_level; + } + } + } + + return force_recode; +} +#endif // !CONFIG_REALTIME_ONLY + +static void update_reference_frames(VP8_COMP *cpi) { + VP8_COMMON *cm = &cpi->common; + YV12_BUFFER_CONFIG *yv12_fb = cm->yv12_fb; + + /* At this point the new frame has been encoded. + * If any buffer copy / swapping is signaled it should be done here. + */ + + if (cm->frame_type == KEY_FRAME) { + yv12_fb[cm->new_fb_idx].flags |= VP8_GOLD_FRAME | VP8_ALTR_FRAME; + + yv12_fb[cm->gld_fb_idx].flags &= ~VP8_GOLD_FRAME; + yv12_fb[cm->alt_fb_idx].flags &= ~VP8_ALTR_FRAME; + + cm->alt_fb_idx = cm->gld_fb_idx = cm->new_fb_idx; + + cpi->current_ref_frames[GOLDEN_FRAME] = cm->current_video_frame; + cpi->current_ref_frames[ALTREF_FRAME] = cm->current_video_frame; + } else { + if (cm->refresh_alt_ref_frame) { + assert(!cm->copy_buffer_to_arf); + + cm->yv12_fb[cm->new_fb_idx].flags |= VP8_ALTR_FRAME; + cm->yv12_fb[cm->alt_fb_idx].flags &= ~VP8_ALTR_FRAME; + cm->alt_fb_idx = cm->new_fb_idx; + + cpi->current_ref_frames[ALTREF_FRAME] = cm->current_video_frame; + } else if (cm->copy_buffer_to_arf) { + assert(!(cm->copy_buffer_to_arf & ~0x3)); + + if (cm->copy_buffer_to_arf == 1) { + if (cm->alt_fb_idx != cm->lst_fb_idx) { + yv12_fb[cm->lst_fb_idx].flags |= VP8_ALTR_FRAME; + yv12_fb[cm->alt_fb_idx].flags &= ~VP8_ALTR_FRAME; + cm->alt_fb_idx = cm->lst_fb_idx; + + cpi->current_ref_frames[ALTREF_FRAME] = + cpi->current_ref_frames[LAST_FRAME]; + } + } else { + if (cm->alt_fb_idx != cm->gld_fb_idx) { + yv12_fb[cm->gld_fb_idx].flags |= VP8_ALTR_FRAME; + yv12_fb[cm->alt_fb_idx].flags &= ~VP8_ALTR_FRAME; + cm->alt_fb_idx = cm->gld_fb_idx; + + cpi->current_ref_frames[ALTREF_FRAME] = + cpi->current_ref_frames[GOLDEN_FRAME]; + } + } + } + + if (cm->refresh_golden_frame) { + assert(!cm->copy_buffer_to_gf); + + cm->yv12_fb[cm->new_fb_idx].flags |= VP8_GOLD_FRAME; + cm->yv12_fb[cm->gld_fb_idx].flags &= ~VP8_GOLD_FRAME; + cm->gld_fb_idx = cm->new_fb_idx; + + cpi->current_ref_frames[GOLDEN_FRAME] = cm->current_video_frame; + } else if (cm->copy_buffer_to_gf) { + assert(!(cm->copy_buffer_to_arf & ~0x3)); + + if (cm->copy_buffer_to_gf == 1) { + if (cm->gld_fb_idx != cm->lst_fb_idx) { + yv12_fb[cm->lst_fb_idx].flags |= VP8_GOLD_FRAME; + yv12_fb[cm->gld_fb_idx].flags &= ~VP8_GOLD_FRAME; + cm->gld_fb_idx = cm->lst_fb_idx; + + cpi->current_ref_frames[GOLDEN_FRAME] = + cpi->current_ref_frames[LAST_FRAME]; + } + } else { + if (cm->alt_fb_idx != cm->gld_fb_idx) { + yv12_fb[cm->alt_fb_idx].flags |= VP8_GOLD_FRAME; + yv12_fb[cm->gld_fb_idx].flags &= ~VP8_GOLD_FRAME; + cm->gld_fb_idx = cm->alt_fb_idx; + + cpi->current_ref_frames[GOLDEN_FRAME] = + cpi->current_ref_frames[ALTREF_FRAME]; + } + } + } + } + + if (cm->refresh_last_frame) { + cm->yv12_fb[cm->new_fb_idx].flags |= VP8_LAST_FRAME; + cm->yv12_fb[cm->lst_fb_idx].flags &= ~VP8_LAST_FRAME; + cm->lst_fb_idx = cm->new_fb_idx; + + cpi->current_ref_frames[LAST_FRAME] = cm->current_video_frame; + } + +#if CONFIG_TEMPORAL_DENOISING + if (cpi->oxcf.noise_sensitivity) { + /* we shouldn't have to keep multiple copies as we know in advance which + * buffer we should start - for now to get something up and running + * I've chosen to copy the buffers + */ + if (cm->frame_type == KEY_FRAME) { + int i; + for (i = LAST_FRAME; i < MAX_REF_FRAMES; ++i) + vp8_yv12_copy_frame(cpi->Source, &cpi->denoiser.yv12_running_avg[i]); + } else { + vp8_yv12_extend_frame_borders( + &cpi->denoiser.yv12_running_avg[INTRA_FRAME]); + + if (cm->refresh_alt_ref_frame || cm->copy_buffer_to_arf) { + vp8_yv12_copy_frame(&cpi->denoiser.yv12_running_avg[INTRA_FRAME], + &cpi->denoiser.yv12_running_avg[ALTREF_FRAME]); + } + if (cm->refresh_golden_frame || cm->copy_buffer_to_gf) { + vp8_yv12_copy_frame(&cpi->denoiser.yv12_running_avg[INTRA_FRAME], + &cpi->denoiser.yv12_running_avg[GOLDEN_FRAME]); + } + if (cm->refresh_last_frame) { + vp8_yv12_copy_frame(&cpi->denoiser.yv12_running_avg[INTRA_FRAME], + &cpi->denoiser.yv12_running_avg[LAST_FRAME]); + } + } + if (cpi->oxcf.noise_sensitivity == 4) + vp8_yv12_copy_frame(cpi->Source, &cpi->denoiser.yv12_last_source); + } +#endif +} + +static int measure_square_diff_partial(YV12_BUFFER_CONFIG *source, + YV12_BUFFER_CONFIG *dest, + VP8_COMP *cpi) { + int i, j; + int Total = 0; + int num_blocks = 0; + int skip = 2; + int min_consec_zero_last = 10; + int tot_num_blocks = (source->y_height * source->y_width) >> 8; + unsigned char *src = source->y_buffer; + unsigned char *dst = dest->y_buffer; + + /* Loop through the Y plane, every |skip| blocks along rows and colmumns, + * summing the square differences, and only for blocks that have been + * zero_last mode at least |x| frames in a row. + */ + for (i = 0; i < source->y_height; i += 16 * skip) { + int block_index_row = (i >> 4) * cpi->common.mb_cols; + for (j = 0; j < source->y_width; j += 16 * skip) { + int index = block_index_row + (j >> 4); + if (cpi->consec_zero_last[index] >= min_consec_zero_last) { + unsigned int sse; + Total += vpx_mse16x16(src + j, source->y_stride, dst + j, + dest->y_stride, &sse); + num_blocks++; + } + } + src += 16 * skip * source->y_stride; + dst += 16 * skip * dest->y_stride; + } + // Only return non-zero if we have at least ~1/16 samples for estimate. + if (num_blocks > (tot_num_blocks >> 4)) { + assert(num_blocks != 0); + return (Total / num_blocks); + } else { + return 0; + } +} + +#if CONFIG_TEMPORAL_DENOISING +static void process_denoiser_mode_change(VP8_COMP *cpi) { + const VP8_COMMON *const cm = &cpi->common; + int i, j; + int total = 0; + int num_blocks = 0; + // Number of blocks skipped along row/column in computing the + // nmse (normalized mean square error) of source. + int skip = 2; + // Only select blocks for computing nmse that have been encoded + // as ZERO LAST min_consec_zero_last frames in a row. + // Scale with number of temporal layers. + int min_consec_zero_last = 12 / cpi->oxcf.number_of_layers; + // Decision is tested for changing the denoising mode every + // num_mode_change times this function is called. Note that this + // function called every 8 frames, so (8 * num_mode_change) is number + // of frames where denoising mode change is tested for switch. + int num_mode_change = 20; + // Framerate factor, to compensate for larger mse at lower framerates. + // Use ref_framerate, which is full source framerate for temporal layers. + // TODO(marpan): Adjust this factor. + int fac_framerate = cpi->ref_framerate < 25.0f ? 80 : 100; + int tot_num_blocks = cm->mb_rows * cm->mb_cols; + int ystride = cpi->Source->y_stride; + unsigned char *src = cpi->Source->y_buffer; + unsigned char *dst = cpi->denoiser.yv12_last_source.y_buffer; + static const unsigned char const_source[16] = { 128, 128, 128, 128, 128, 128, + 128, 128, 128, 128, 128, 128, + 128, 128, 128, 128 }; + int bandwidth = (int)(cpi->target_bandwidth); + // For temporal layers, use full bandwidth (top layer). + if (cpi->oxcf.number_of_layers > 1) { + LAYER_CONTEXT *lc = &cpi->layer_context[cpi->oxcf.number_of_layers - 1]; + bandwidth = (int)(lc->target_bandwidth); + } + // Loop through the Y plane, every skip blocks along rows and columns, + // summing the normalized mean square error, only for blocks that have + // been encoded as ZEROMV LAST at least min_consec_zero_last least frames in + // a row and have small sum difference between current and previous frame. + // Normalization here is by the contrast of the current frame block. + for (i = 0; i < cm->Height; i += 16 * skip) { + int block_index_row = (i >> 4) * cm->mb_cols; + for (j = 0; j < cm->Width; j += 16 * skip) { + int index = block_index_row + (j >> 4); + if (cpi->consec_zero_last[index] >= min_consec_zero_last) { + unsigned int sse; + const unsigned int var = + vpx_variance16x16(src + j, ystride, dst + j, ystride, &sse); + // Only consider this block as valid for noise measurement + // if the sum_diff average of the current and previous frame + // is small (to avoid effects from lighting change). + if ((sse - var) < 128) { + unsigned int sse2; + const unsigned int act = + vpx_variance16x16(src + j, ystride, const_source, 0, &sse2); + if (act > 0) total += sse / act; + num_blocks++; + } + } + } + src += 16 * skip * ystride; + dst += 16 * skip * ystride; + } + total = total * fac_framerate / 100; + + // Only consider this frame as valid sample if we have computed nmse over + // at least ~1/16 blocks, and Total > 0 (Total == 0 can happen if the + // application inputs duplicate frames, or contrast is all zero). + if (total > 0 && (num_blocks > (tot_num_blocks >> 4))) { + // Update the recursive mean square source_diff. + total = (total << 8) / num_blocks; + if (cpi->denoiser.nmse_source_diff_count == 0) { + // First sample in new interval. + cpi->denoiser.nmse_source_diff = total; + cpi->denoiser.qp_avg = cm->base_qindex; + } else { + // For subsequent samples, use average with weight ~1/4 for new sample. + cpi->denoiser.nmse_source_diff = + (int)((total + 3 * cpi->denoiser.nmse_source_diff) >> 2); + cpi->denoiser.qp_avg = + (int)((cm->base_qindex + 3 * cpi->denoiser.qp_avg) >> 2); + } + cpi->denoiser.nmse_source_diff_count++; + } + // Check for changing the denoiser mode, when we have obtained #samples = + // num_mode_change. Condition the change also on the bitrate and QP. + if (cpi->denoiser.nmse_source_diff_count == num_mode_change) { + // Check for going up: from normal to aggressive mode. + if ((cpi->denoiser.denoiser_mode == kDenoiserOnYUV) && + (cpi->denoiser.nmse_source_diff > + cpi->denoiser.threshold_aggressive_mode) && + (cpi->denoiser.qp_avg < cpi->denoiser.qp_threshold_up && + bandwidth > cpi->denoiser.bitrate_threshold)) { + vp8_denoiser_set_parameters(&cpi->denoiser, kDenoiserOnYUVAggressive); + } else { + // Check for going down: from aggressive to normal mode. + if (((cpi->denoiser.denoiser_mode == kDenoiserOnYUVAggressive) && + (cpi->denoiser.nmse_source_diff < + cpi->denoiser.threshold_aggressive_mode)) || + ((cpi->denoiser.denoiser_mode == kDenoiserOnYUVAggressive) && + (cpi->denoiser.qp_avg > cpi->denoiser.qp_threshold_down || + bandwidth < cpi->denoiser.bitrate_threshold))) { + vp8_denoiser_set_parameters(&cpi->denoiser, kDenoiserOnYUV); + } + } + // Reset metric and counter for next interval. + cpi->denoiser.nmse_source_diff = 0; + cpi->denoiser.qp_avg = 0; + cpi->denoiser.nmse_source_diff_count = 0; + } +} +#endif + +void vp8_loopfilter_frame(VP8_COMP *cpi, VP8_COMMON *cm) { + const FRAME_TYPE frame_type = cm->frame_type; + + int update_any_ref_buffers = 1; + if (cpi->common.refresh_last_frame == 0 && + cpi->common.refresh_golden_frame == 0 && + cpi->common.refresh_alt_ref_frame == 0) { + update_any_ref_buffers = 0; + } + + if (cm->no_lpf) { + cm->filter_level = 0; + } else { + struct vpx_usec_timer timer; + + vpx_clear_system_state(); + + vpx_usec_timer_start(&timer); + if (cpi->sf.auto_filter == 0) { +#if CONFIG_TEMPORAL_DENOISING + if (cpi->oxcf.noise_sensitivity && cm->frame_type != KEY_FRAME) { + // Use the denoised buffer for selecting base loop filter level. + // Denoised signal for current frame is stored in INTRA_FRAME. + // No denoising on key frames. + vp8cx_pick_filter_level_fast( + &cpi->denoiser.yv12_running_avg[INTRA_FRAME], cpi); + } else { + vp8cx_pick_filter_level_fast(cpi->Source, cpi); + } +#else + vp8cx_pick_filter_level_fast(cpi->Source, cpi); +#endif + } else { +#if CONFIG_TEMPORAL_DENOISING + if (cpi->oxcf.noise_sensitivity && cm->frame_type != KEY_FRAME) { + // Use the denoised buffer for selecting base loop filter level. + // Denoised signal for current frame is stored in INTRA_FRAME. + // No denoising on key frames. + vp8cx_pick_filter_level(&cpi->denoiser.yv12_running_avg[INTRA_FRAME], + cpi); + } else { + vp8cx_pick_filter_level(cpi->Source, cpi); + } +#else + vp8cx_pick_filter_level(cpi->Source, cpi); +#endif + } + + if (cm->filter_level > 0) { + vp8cx_set_alt_lf_level(cpi, cm->filter_level); + } + + vpx_usec_timer_mark(&timer); + cpi->time_pick_lpf += vpx_usec_timer_elapsed(&timer); + } + +#if CONFIG_MULTITHREAD + if (vpx_atomic_load_acquire(&cpi->b_multi_threaded)) { + sem_post(&cpi->h_event_end_lpf); /* signal that we have set filter_level */ + } +#endif + + // No need to apply loop-filter if the encoded frame does not update + // any reference buffers. + if (cm->filter_level > 0 && update_any_ref_buffers) { + vp8_loop_filter_frame(cm, &cpi->mb.e_mbd, frame_type); + } + + vp8_yv12_extend_frame_borders(cm->frame_to_show); +} + +static void encode_frame_to_data_rate(VP8_COMP *cpi, size_t *size, + unsigned char *dest, + unsigned char *dest_end, + unsigned int *frame_flags) { + int Q; + int frame_over_shoot_limit; + int frame_under_shoot_limit; + + int Loop = 0; + int loop_count; + + VP8_COMMON *cm = &cpi->common; + int active_worst_qchanged = 0; + +#if !CONFIG_REALTIME_ONLY + int q_low; + int q_high; + int zbin_oq_high; + int zbin_oq_low = 0; + int top_index; + int bottom_index; + int overshoot_seen = 0; + int undershoot_seen = 0; +#endif + + int drop_mark = (int)(cpi->oxcf.drop_frames_water_mark * + cpi->oxcf.optimal_buffer_level / 100); + int drop_mark75 = drop_mark * 2 / 3; + int drop_mark50 = drop_mark / 4; + int drop_mark25 = drop_mark / 8; + + /* Clear down mmx registers to allow floating point in what follows */ + vpx_clear_system_state(); + + if (cpi->force_next_frame_intra) { + cm->frame_type = KEY_FRAME; /* delayed intra frame */ + cpi->force_next_frame_intra = 0; + } + + /* For an alt ref frame in 2 pass we skip the call to the second pass + * function that sets the target bandwidth + */ + switch (cpi->pass) { +#if !CONFIG_REALTIME_ONLY + case 2: + if (cpi->common.refresh_alt_ref_frame) { + /* Per frame bit target for the alt ref frame */ + cpi->per_frame_bandwidth = cpi->twopass.gf_bits; + /* per second target bitrate */ + cpi->target_bandwidth = + (int)(cpi->twopass.gf_bits * cpi->output_framerate); + } + break; +#endif // !CONFIG_REALTIME_ONLY + default: + cpi->per_frame_bandwidth = + (int)(cpi->target_bandwidth / cpi->output_framerate); + break; + } + + /* Default turn off buffer to buffer copying */ + cm->copy_buffer_to_gf = 0; + cm->copy_buffer_to_arf = 0; + + /* Clear zbin over-quant value and mode boost values. */ + cpi->mb.zbin_over_quant = 0; + cpi->mb.zbin_mode_boost = 0; + + /* Enable or disable mode based tweaking of the zbin + * For 2 Pass Only used where GF/ARF prediction quality + * is above a threshold + */ + cpi->mb.zbin_mode_boost_enabled = 1; + if (cpi->pass == 2) { + if (cpi->gfu_boost <= 400) { + cpi->mb.zbin_mode_boost_enabled = 0; + } + } + + /* Current default encoder behaviour for the altref sign bias */ + if (cpi->source_alt_ref_active) { + cpi->common.ref_frame_sign_bias[ALTREF_FRAME] = 1; + } else { + cpi->common.ref_frame_sign_bias[ALTREF_FRAME] = 0; + } + + /* Check to see if a key frame is signaled + * For two pass with auto key frame enabled cm->frame_type may already + * be set, but not for one pass. + */ + if ((cm->current_video_frame == 0) || (cm->frame_flags & FRAMEFLAGS_KEY) || + (cpi->oxcf.auto_key && + (cpi->frames_since_key % cpi->key_frame_frequency == 0))) { + /* Key frame from VFW/auto-keyframe/first frame */ + cm->frame_type = KEY_FRAME; +#if CONFIG_TEMPORAL_DENOISING + if (cpi->oxcf.noise_sensitivity == 4) { + // For adaptive mode, reset denoiser to normal mode on key frame. + vp8_denoiser_set_parameters(&cpi->denoiser, kDenoiserOnYUV); + } +#endif + } + +#if CONFIG_MULTI_RES_ENCODING + if (cpi->oxcf.mr_total_resolutions > 1) { + LOWER_RES_FRAME_INFO *low_res_frame_info = + (LOWER_RES_FRAME_INFO *)cpi->oxcf.mr_low_res_mode_info; + + if (cpi->oxcf.mr_encoder_id) { + // TODO(marpan): This constraint shouldn't be needed, as we would like + // to allow for key frame setting (forced or periodic) defined per + // spatial layer. For now, keep this in. + cm->frame_type = low_res_frame_info->frame_type; + + // Check if lower resolution is available for motion vector reuse. + if (cm->frame_type != KEY_FRAME) { + cpi->mr_low_res_mv_avail = 1; + cpi->mr_low_res_mv_avail &= !(low_res_frame_info->is_frame_dropped); + + if (cpi->ref_frame_flags & VP8_LAST_FRAME) + cpi->mr_low_res_mv_avail &= + (cpi->current_ref_frames[LAST_FRAME] == + low_res_frame_info->low_res_ref_frames[LAST_FRAME]); + + if (cpi->ref_frame_flags & VP8_GOLD_FRAME) + cpi->mr_low_res_mv_avail &= + (cpi->current_ref_frames[GOLDEN_FRAME] == + low_res_frame_info->low_res_ref_frames[GOLDEN_FRAME]); + + // Don't use altref to determine whether low res is available. + // TODO (marpan): Should we make this type of condition on a + // per-reference frame basis? + /* + if (cpi->ref_frame_flags & VP8_ALTR_FRAME) + cpi->mr_low_res_mv_avail &= (cpi->current_ref_frames[ALTREF_FRAME] + == low_res_frame_info->low_res_ref_frames[ALTREF_FRAME]); + */ + } + } + + // On a key frame: For the lowest resolution, keep track of the key frame + // counter value. For the higher resolutions, reset the current video + // frame counter to that of the lowest resolution. + // This is done to the handle the case where we may stop/start encoding + // higher layer(s). The restart-encoding of higher layer is only signaled + // by a key frame for now. + // TODO (marpan): Add flag to indicate restart-encoding of higher layer. + if (cm->frame_type == KEY_FRAME) { + if (cpi->oxcf.mr_encoder_id) { + // If the initial starting value of the buffer level is zero (this can + // happen because we may have not started encoding this higher stream), + // then reset it to non-zero value based on |starting_buffer_level|. + if (cpi->common.current_video_frame == 0 && cpi->buffer_level == 0) { + unsigned int i; + cpi->bits_off_target = cpi->oxcf.starting_buffer_level; + cpi->buffer_level = cpi->oxcf.starting_buffer_level; + for (i = 0; i < cpi->oxcf.number_of_layers; ++i) { + LAYER_CONTEXT *lc = &cpi->layer_context[i]; + lc->bits_off_target = lc->starting_buffer_level; + lc->buffer_level = lc->starting_buffer_level; + } + } + cpi->common.current_video_frame = + low_res_frame_info->key_frame_counter_value; + } else { + low_res_frame_info->key_frame_counter_value = + cpi->common.current_video_frame; + } + } + } +#endif + + // Find the reference frame closest to the current frame. + cpi->closest_reference_frame = LAST_FRAME; + if (cm->frame_type != KEY_FRAME) { + int i; + MV_REFERENCE_FRAME closest_ref = INTRA_FRAME; + if (cpi->ref_frame_flags & VP8_LAST_FRAME) { + closest_ref = LAST_FRAME; + } else if (cpi->ref_frame_flags & VP8_GOLD_FRAME) { + closest_ref = GOLDEN_FRAME; + } else if (cpi->ref_frame_flags & VP8_ALTR_FRAME) { + closest_ref = ALTREF_FRAME; + } + for (i = 1; i <= 3; ++i) { + vpx_ref_frame_type_t ref_frame_type = + (vpx_ref_frame_type_t)((i == 3) ? 4 : i); + if (cpi->ref_frame_flags & ref_frame_type) { + if ((cm->current_video_frame - cpi->current_ref_frames[i]) < + (cm->current_video_frame - cpi->current_ref_frames[closest_ref])) { + closest_ref = i; + } + } + } + cpi->closest_reference_frame = closest_ref; + } + + /* Set various flags etc to special state if it is a key frame */ + if (cm->frame_type == KEY_FRAME) { + int i; + + // Set the loop filter deltas and segmentation map update + setup_features(cpi); + + /* The alternate reference frame cannot be active for a key frame */ + cpi->source_alt_ref_active = 0; + + /* Reset the RD threshold multipliers to default of * 1 (128) */ + for (i = 0; i < MAX_MODES; ++i) { + cpi->mb.rd_thresh_mult[i] = 128; + } + + // Reset the zero_last counter to 0 on key frame. + memset(cpi->consec_zero_last, 0, cm->mb_rows * cm->mb_cols); + memset(cpi->consec_zero_last_mvbias, 0, + (cpi->common.mb_rows * cpi->common.mb_cols)); + } + +#if 0 + /* Experimental code for lagged compress and one pass + * Initialise one_pass GF frames stats + * Update stats used for GF selection + */ + { + cpi->one_pass_frame_index = cm->current_video_frame % MAX_LAG_BUFFERS; + + cpi->one_pass_frame_stats[cpi->one_pass_frame_index ].frames_so_far = 0; + cpi->one_pass_frame_stats[cpi->one_pass_frame_index ].frame_intra_error = 0.0; + cpi->one_pass_frame_stats[cpi->one_pass_frame_index ].frame_coded_error = 0.0; + cpi->one_pass_frame_stats[cpi->one_pass_frame_index ].frame_pcnt_inter = 0.0; + cpi->one_pass_frame_stats[cpi->one_pass_frame_index ].frame_pcnt_motion = 0.0; + cpi->one_pass_frame_stats[cpi->one_pass_frame_index ].frame_mvr = 0.0; + cpi->one_pass_frame_stats[cpi->one_pass_frame_index ].frame_mvr_abs = 0.0; + cpi->one_pass_frame_stats[cpi->one_pass_frame_index ].frame_mvc = 0.0; + cpi->one_pass_frame_stats[cpi->one_pass_frame_index ].frame_mvc_abs = 0.0; + } +#endif + + update_rd_ref_frame_probs(cpi); + + if (cpi->drop_frames_allowed) { + /* The reset to decimation 0 is only done here for one pass. + * Once it is set two pass leaves decimation on till the next kf. + */ + if ((cpi->buffer_level > drop_mark) && (cpi->decimation_factor > 0)) { + cpi->decimation_factor--; + } + + if (cpi->buffer_level > drop_mark75 && cpi->decimation_factor > 0) { + cpi->decimation_factor = 1; + + } else if (cpi->buffer_level < drop_mark25 && + (cpi->decimation_factor == 2 || cpi->decimation_factor == 3)) { + cpi->decimation_factor = 3; + } else if (cpi->buffer_level < drop_mark50 && + (cpi->decimation_factor == 1 || cpi->decimation_factor == 2)) { + cpi->decimation_factor = 2; + } else if (cpi->buffer_level < drop_mark75 && + (cpi->decimation_factor == 0 || cpi->decimation_factor == 1)) { + cpi->decimation_factor = 1; + } + } + + /* The following decimates the frame rate according to a regular + * pattern (i.e. to 1/2 or 2/3 frame rate) This can be used to help + * prevent buffer under-run in CBR mode. Alternatively it might be + * desirable in some situations to drop frame rate but throw more bits + * at each frame. + * + * Note that dropping a key frame can be problematic if spatial + * resampling is also active + */ + if (cpi->decimation_factor > 0) { + switch (cpi->decimation_factor) { + case 1: + cpi->per_frame_bandwidth = cpi->per_frame_bandwidth * 3 / 2; + break; + case 2: + cpi->per_frame_bandwidth = cpi->per_frame_bandwidth * 5 / 4; + break; + case 3: + cpi->per_frame_bandwidth = cpi->per_frame_bandwidth * 5 / 4; + break; + } + + /* Note that we should not throw out a key frame (especially when + * spatial resampling is enabled). + */ + if (cm->frame_type == KEY_FRAME) { + cpi->decimation_count = cpi->decimation_factor; + } else if (cpi->decimation_count > 0) { + cpi->decimation_count--; + + cpi->bits_off_target += cpi->av_per_frame_bandwidth; + if (cpi->bits_off_target > cpi->oxcf.maximum_buffer_size) { + cpi->bits_off_target = cpi->oxcf.maximum_buffer_size; + } + +#if CONFIG_MULTI_RES_ENCODING + vp8_store_drop_frame_info(cpi); +#endif + + cm->current_video_frame++; + cpi->frames_since_key++; + // We advance the temporal pattern for dropped frames. + cpi->temporal_pattern_counter++; + +#if CONFIG_INTERNAL_STATS + cpi->count++; +#endif + + cpi->buffer_level = cpi->bits_off_target; + + if (cpi->oxcf.number_of_layers > 1) { + unsigned int i; + + /* Propagate bits saved by dropping the frame to higher + * layers + */ + for (i = cpi->current_layer + 1; i < cpi->oxcf.number_of_layers; ++i) { + LAYER_CONTEXT *lc = &cpi->layer_context[i]; + lc->bits_off_target += (int)(lc->target_bandwidth / lc->framerate); + if (lc->bits_off_target > lc->maximum_buffer_size) { + lc->bits_off_target = lc->maximum_buffer_size; + } + lc->buffer_level = lc->bits_off_target; + } + } + + return; + } else { + cpi->decimation_count = cpi->decimation_factor; + } + } else { + cpi->decimation_count = 0; + } + + /* Decide how big to make the frame */ + if (!vp8_pick_frame_size(cpi)) { +/*TODO: 2 drop_frame and return code could be put together. */ +#if CONFIG_MULTI_RES_ENCODING + vp8_store_drop_frame_info(cpi); +#endif + cm->current_video_frame++; + cpi->frames_since_key++; + // We advance the temporal pattern for dropped frames. + cpi->temporal_pattern_counter++; + return; + } + + /* Reduce active_worst_allowed_q for CBR if our buffer is getting too full. + * This has a knock on effect on active best quality as well. + * For CBR if the buffer reaches its maximum level then we can no longer + * save up bits for later frames so we might as well use them up + * on the current frame. + */ + if ((cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) && + (cpi->buffer_level >= cpi->oxcf.optimal_buffer_level) && + cpi->buffered_mode) { + /* Max adjustment is 1/4 */ + int Adjustment = cpi->active_worst_quality / 4; + + if (Adjustment) { + int buff_lvl_step; + + if (cpi->buffer_level < cpi->oxcf.maximum_buffer_size) { + buff_lvl_step = (int)((cpi->oxcf.maximum_buffer_size - + cpi->oxcf.optimal_buffer_level) / + Adjustment); + + if (buff_lvl_step) { + Adjustment = + (int)((cpi->buffer_level - cpi->oxcf.optimal_buffer_level) / + buff_lvl_step); + } else { + Adjustment = 0; + } + } + + cpi->active_worst_quality -= Adjustment; + + if (cpi->active_worst_quality < cpi->active_best_quality) { + cpi->active_worst_quality = cpi->active_best_quality; + } + } + } + + /* Set an active best quality and if necessary active worst quality + * There is some odd behavior for one pass here that needs attention. + */ + if ((cpi->pass == 2) || (cpi->ni_frames > 150)) { + vpx_clear_system_state(); + + Q = cpi->active_worst_quality; + + if (cm->frame_type == KEY_FRAME) { + if (cpi->pass == 2) { + if (cpi->gfu_boost > 600) { + cpi->active_best_quality = kf_low_motion_minq[Q]; + } else { + cpi->active_best_quality = kf_high_motion_minq[Q]; + } + + /* Special case for key frames forced because we have reached + * the maximum key frame interval. Here force the Q to a range + * based on the ambient Q to reduce the risk of popping + */ + if (cpi->this_key_frame_forced) { + if (cpi->active_best_quality > cpi->avg_frame_qindex * 7 / 8) { + cpi->active_best_quality = cpi->avg_frame_qindex * 7 / 8; + } else if (cpi->active_best_qualityavg_frame_qindex>> 2) { + cpi->active_best_quality = cpi->avg_frame_qindex >> 2; + } + } + } + /* One pass more conservative */ + else { + cpi->active_best_quality = kf_high_motion_minq[Q]; + } + } + + else if (cpi->oxcf.number_of_layers == 1 && + (cm->refresh_golden_frame || cpi->common.refresh_alt_ref_frame)) { + /* Use the lower of cpi->active_worst_quality and recent + * average Q as basis for GF/ARF Q limit unless last frame was + * a key frame. + */ + if ((cpi->frames_since_key > 1) && + (cpi->avg_frame_qindex < cpi->active_worst_quality)) { + Q = cpi->avg_frame_qindex; + } + + /* For constrained quality dont allow Q less than the cq level */ + if ((cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) && + (Q < cpi->cq_target_quality)) { + Q = cpi->cq_target_quality; + } + + if (cpi->pass == 2) { + if (cpi->gfu_boost > 1000) { + cpi->active_best_quality = gf_low_motion_minq[Q]; + } else if (cpi->gfu_boost < 400) { + cpi->active_best_quality = gf_high_motion_minq[Q]; + } else { + cpi->active_best_quality = gf_mid_motion_minq[Q]; + } + + /* Constrained quality use slightly lower active best. */ + if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) { + cpi->active_best_quality = cpi->active_best_quality * 15 / 16; + } + } + /* One pass more conservative */ + else { + cpi->active_best_quality = gf_high_motion_minq[Q]; + } + } else { + cpi->active_best_quality = inter_minq[Q]; + + /* For the constant/constrained quality mode we dont want + * q to fall below the cq level. + */ + if ((cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) && + (cpi->active_best_quality < cpi->cq_target_quality)) { + /* If we are strongly undershooting the target rate in the last + * frames then use the user passed in cq value not the auto + * cq value. + */ + if (cpi->rolling_actual_bits < cpi->min_frame_bandwidth) { + cpi->active_best_quality = cpi->oxcf.cq_level; + } else { + cpi->active_best_quality = cpi->cq_target_quality; + } + } + } + + /* If CBR and the buffer is as full then it is reasonable to allow + * higher quality on the frames to prevent bits just going to waste. + */ + if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) { + /* Note that the use of >= here elliminates the risk of a devide + * by 0 error in the else if clause + */ + if (cpi->buffer_level >= cpi->oxcf.maximum_buffer_size) { + cpi->active_best_quality = cpi->best_quality; + + } else if (cpi->buffer_level > cpi->oxcf.optimal_buffer_level) { + int Fraction = + (int)(((cpi->buffer_level - cpi->oxcf.optimal_buffer_level) * 128) / + (cpi->oxcf.maximum_buffer_size - + cpi->oxcf.optimal_buffer_level)); + int min_qadjustment = + ((cpi->active_best_quality - cpi->best_quality) * Fraction) / 128; + + cpi->active_best_quality -= min_qadjustment; + } + } + } + /* Make sure constrained quality mode limits are adhered to for the first + * few frames of one pass encodes + */ + else if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) { + if ((cm->frame_type == KEY_FRAME) || cm->refresh_golden_frame || + cpi->common.refresh_alt_ref_frame) { + cpi->active_best_quality = cpi->best_quality; + } else if (cpi->active_best_quality < cpi->cq_target_quality) { + cpi->active_best_quality = cpi->cq_target_quality; + } + } + + /* Clip the active best and worst quality values to limits */ + if (cpi->active_worst_quality > cpi->worst_quality) { + cpi->active_worst_quality = cpi->worst_quality; + } + + if (cpi->active_best_quality < cpi->best_quality) { + cpi->active_best_quality = cpi->best_quality; + } + + if (cpi->active_worst_quality < cpi->active_best_quality) { + cpi->active_worst_quality = cpi->active_best_quality; + } + + /* Determine initial Q to try */ + Q = vp8_regulate_q(cpi, cpi->this_frame_target); + +#if !CONFIG_REALTIME_ONLY + + /* Set highest allowed value for Zbin over quant */ + if (cm->frame_type == KEY_FRAME) { + zbin_oq_high = 0; + } else if ((cpi->oxcf.number_of_layers == 1) && + ((cm->refresh_alt_ref_frame || + (cm->refresh_golden_frame && !cpi->source_alt_ref_active)))) { + zbin_oq_high = 16; + } else { + zbin_oq_high = ZBIN_OQ_MAX; + } +#endif + + compute_skin_map(cpi); + + /* Setup background Q adjustment for error resilient mode. + * For multi-layer encodes only enable this for the base layer. + */ + if (cpi->cyclic_refresh_mode_enabled) { + // Special case for screen_content_mode with golden frame updates. + int disable_cr_gf = + (cpi->oxcf.screen_content_mode == 2 && cm->refresh_golden_frame); + if (cpi->current_layer == 0 && cpi->force_maxqp == 0 && !disable_cr_gf) { + cyclic_background_refresh(cpi, Q, 0); + } else { + disable_segmentation(cpi); + } + } + + vp8_compute_frame_size_bounds(cpi, &frame_under_shoot_limit, + &frame_over_shoot_limit); + +#if !CONFIG_REALTIME_ONLY + /* Limit Q range for the adaptive loop. */ + bottom_index = cpi->active_best_quality; + top_index = cpi->active_worst_quality; + q_low = cpi->active_best_quality; + q_high = cpi->active_worst_quality; +#endif + + vp8_save_coding_context(cpi); + + loop_count = 0; + + scale_and_extend_source(cpi->un_scaled_source, cpi); + +#if CONFIG_TEMPORAL_DENOISING && CONFIG_POSTPROC + // Option to apply spatial blur under the aggressive or adaptive + // (temporal denoising) mode. + if (cpi->oxcf.noise_sensitivity >= 3) { + if (cpi->denoiser.denoise_pars.spatial_blur != 0) { + vp8_de_noise(cm, cpi->Source, cpi->Source, + cpi->denoiser.denoise_pars.spatial_blur, 1, 0, 0); + } + } +#endif + +#if !(CONFIG_REALTIME_ONLY) && CONFIG_POSTPROC && !(CONFIG_TEMPORAL_DENOISING) + + if (cpi->oxcf.noise_sensitivity > 0) { + unsigned char *src; + int l = 0; + + switch (cpi->oxcf.noise_sensitivity) { + case 1: l = 20; break; + case 2: l = 40; break; + case 3: l = 60; break; + case 4: l = 80; break; + case 5: l = 100; break; + case 6: l = 150; break; + } + + if (cm->frame_type == KEY_FRAME) { + vp8_de_noise(cm, cpi->Source, cpi->Source, l, 1, 0, 1); + } else { + vp8_de_noise(cm, cpi->Source, cpi->Source, l, 1, 0, 1); + + src = cpi->Source->y_buffer; + + if (cpi->Source->y_stride < 0) { + src += cpi->Source->y_stride * (cpi->Source->y_height - 1); + } + } + } + +#endif + +#ifdef OUTPUT_YUV_SRC + vpx_write_yuv_frame(yuv_file, cpi->Source); +#endif + + do { + vpx_clear_system_state(); + + vp8_set_quantizer(cpi, Q); + + /* setup skip prob for costing in mode/mv decision */ + if (cpi->common.mb_no_coeff_skip) { + cpi->prob_skip_false = cpi->base_skip_false_prob[Q]; + + if (cm->frame_type != KEY_FRAME) { + if (cpi->common.refresh_alt_ref_frame) { + if (cpi->last_skip_false_probs[2] != 0) { + cpi->prob_skip_false = cpi->last_skip_false_probs[2]; + } + + /* + if(cpi->last_skip_false_probs[2]!=0 && abs(Q- + cpi->last_skip_probs_q[2])<=16 ) + cpi->prob_skip_false = cpi->last_skip_false_probs[2]; + else if (cpi->last_skip_false_probs[2]!=0) + cpi->prob_skip_false = (cpi->last_skip_false_probs[2] + + cpi->prob_skip_false ) / 2; + */ + } else if (cpi->common.refresh_golden_frame) { + if (cpi->last_skip_false_probs[1] != 0) { + cpi->prob_skip_false = cpi->last_skip_false_probs[1]; + } + + /* + if(cpi->last_skip_false_probs[1]!=0 && abs(Q- + cpi->last_skip_probs_q[1])<=16 ) + cpi->prob_skip_false = cpi->last_skip_false_probs[1]; + else if (cpi->last_skip_false_probs[1]!=0) + cpi->prob_skip_false = (cpi->last_skip_false_probs[1] + + cpi->prob_skip_false ) / 2; + */ + } else { + if (cpi->last_skip_false_probs[0] != 0) { + cpi->prob_skip_false = cpi->last_skip_false_probs[0]; + } + + /* + if(cpi->last_skip_false_probs[0]!=0 && abs(Q- + cpi->last_skip_probs_q[0])<=16 ) + cpi->prob_skip_false = cpi->last_skip_false_probs[0]; + else if(cpi->last_skip_false_probs[0]!=0) + cpi->prob_skip_false = (cpi->last_skip_false_probs[0] + + cpi->prob_skip_false ) / 2; + */ + } + + /* as this is for cost estimate, let's make sure it does not + * go extreme eitehr way + */ + if (cpi->prob_skip_false < 5) cpi->prob_skip_false = 5; + + if (cpi->prob_skip_false > 250) cpi->prob_skip_false = 250; + + if (cpi->oxcf.number_of_layers == 1 && cpi->is_src_frame_alt_ref) { + cpi->prob_skip_false = 1; + } + } + +#if 0 + + if (cpi->pass != 1) + { + FILE *f = fopen("skip.stt", "a"); + fprintf(f, "%d, %d, %4d ", cpi->common.refresh_golden_frame, cpi->common.refresh_alt_ref_frame, cpi->prob_skip_false); + fclose(f); + } + +#endif + } + + if (cm->frame_type == KEY_FRAME) { + if (resize_key_frame(cpi)) { + /* If the frame size has changed, need to reset Q, quantizer, + * and background refresh. + */ + Q = vp8_regulate_q(cpi, cpi->this_frame_target); + if (cpi->cyclic_refresh_mode_enabled) { + if (cpi->current_layer == 0) { + cyclic_background_refresh(cpi, Q, 0); + } else { + disable_segmentation(cpi); + } + } + // Reset the zero_last counter to 0 on key frame. + memset(cpi->consec_zero_last, 0, cm->mb_rows * cm->mb_cols); + memset(cpi->consec_zero_last_mvbias, 0, + (cpi->common.mb_rows * cpi->common.mb_cols)); + vp8_set_quantizer(cpi, Q); + } + + vp8_setup_key_frame(cpi); + } + +#if CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING + { + if (cpi->oxcf.error_resilient_mode) cm->refresh_entropy_probs = 0; + + if (cpi->oxcf.error_resilient_mode & VPX_ERROR_RESILIENT_PARTITIONS) { + if (cm->frame_type == KEY_FRAME) cm->refresh_entropy_probs = 1; + } + + if (cm->refresh_entropy_probs == 0) { + /* save a copy for later refresh */ + memcpy(&cm->lfc, &cm->fc, sizeof(cm->fc)); + } + + vp8_update_coef_context(cpi); + + vp8_update_coef_probs(cpi); + + /* transform / motion compensation build reconstruction frame + * +pack coef partitions + */ + vp8_encode_frame(cpi); + + /* cpi->projected_frame_size is not needed for RT mode */ + } +#else + /* transform / motion compensation build reconstruction frame */ + vp8_encode_frame(cpi); + + if (cpi->pass == 0 && cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) { + if (vp8_drop_encodedframe_overshoot(cpi, Q)) return; + } + + cpi->projected_frame_size -= vp8_estimate_entropy_savings(cpi); + cpi->projected_frame_size = + (cpi->projected_frame_size > 0) ? cpi->projected_frame_size : 0; +#endif + vpx_clear_system_state(); + + /* Test to see if the stats generated for this frame indicate that + * we should have coded a key frame (assuming that we didn't)! + */ + + if (cpi->pass != 2 && cpi->oxcf.auto_key && cm->frame_type != KEY_FRAME && + cpi->compressor_speed != 2) { +#if !CONFIG_REALTIME_ONLY + if (decide_key_frame(cpi)) { + /* Reset all our sizing numbers and recode */ + cm->frame_type = KEY_FRAME; + + vp8_pick_frame_size(cpi); + + /* Clear the Alt reference frame active flag when we have + * a key frame + */ + cpi->source_alt_ref_active = 0; + + // Set the loop filter deltas and segmentation map update + setup_features(cpi); + + vp8_restore_coding_context(cpi); + + Q = vp8_regulate_q(cpi, cpi->this_frame_target); + + vp8_compute_frame_size_bounds(cpi, &frame_under_shoot_limit, + &frame_over_shoot_limit); + + /* Limit Q range for the adaptive loop. */ + bottom_index = cpi->active_best_quality; + top_index = cpi->active_worst_quality; + q_low = cpi->active_best_quality; + q_high = cpi->active_worst_quality; + + loop_count++; + Loop = 1; + + continue; + } +#endif + } + + vpx_clear_system_state(); + + if (frame_over_shoot_limit == 0) frame_over_shoot_limit = 1; + + /* Are we are overshooting and up against the limit of active max Q. */ + if (((cpi->pass != 2) || + (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER)) && + (Q == cpi->active_worst_quality) && + (cpi->active_worst_quality < cpi->worst_quality) && + (cpi->projected_frame_size > frame_over_shoot_limit)) { + int over_size_percent = + ((cpi->projected_frame_size - frame_over_shoot_limit) * 100) / + frame_over_shoot_limit; + + /* If so is there any scope for relaxing it */ + while ((cpi->active_worst_quality < cpi->worst_quality) && + (over_size_percent > 0)) { + cpi->active_worst_quality++; + /* Assume 1 qstep = about 4% on frame size. */ + over_size_percent = (int)(over_size_percent * 0.96); + } +#if !CONFIG_REALTIME_ONLY + top_index = cpi->active_worst_quality; +#endif // !CONFIG_REALTIME_ONLY + /* If we have updated the active max Q do not call + * vp8_update_rate_correction_factors() this loop. + */ + active_worst_qchanged = 1; + } else { + active_worst_qchanged = 0; + } + +#if CONFIG_REALTIME_ONLY + Loop = 0; +#else + /* Special case handling for forced key frames */ + if ((cm->frame_type == KEY_FRAME) && cpi->this_key_frame_forced) { + int last_q = Q; + int kf_err = vp8_calc_ss_err(cpi->Source, &cm->yv12_fb[cm->new_fb_idx]); + + /* The key frame is not good enough */ + if (kf_err > ((cpi->ambient_err * 7) >> 3)) { + /* Lower q_high */ + q_high = (Q > q_low) ? (Q - 1) : q_low; + + /* Adjust Q */ + Q = (q_high + q_low) >> 1; + } + /* The key frame is much better than the previous frame */ + else if (kf_err < (cpi->ambient_err >> 1)) { + /* Raise q_low */ + q_low = (Q < q_high) ? (Q + 1) : q_high; + + /* Adjust Q */ + Q = (q_high + q_low + 1) >> 1; + } + + /* Clamp Q to upper and lower limits: */ + if (Q > q_high) { + Q = q_high; + } else if (Q < q_low) { + Q = q_low; + } + + Loop = Q != last_q; + } + + /* Is the projected frame size out of range and are we allowed + * to attempt to recode. + */ + else if (recode_loop_test(cpi, frame_over_shoot_limit, + frame_under_shoot_limit, Q, top_index, + bottom_index)) { + int last_q = Q; + int Retries = 0; + + /* Frame size out of permitted range. Update correction factor + * & compute new Q to try... + */ + + /* Frame is too large */ + if (cpi->projected_frame_size > cpi->this_frame_target) { + /* Raise Qlow as to at least the current value */ + q_low = (Q < q_high) ? (Q + 1) : q_high; + + /* If we are using over quant do the same for zbin_oq_low */ + if (cpi->mb.zbin_over_quant > 0) { + zbin_oq_low = (cpi->mb.zbin_over_quant < zbin_oq_high) + ? (cpi->mb.zbin_over_quant + 1) + : zbin_oq_high; + } + + if (undershoot_seen) { + /* Update rate_correction_factor unless + * cpi->active_worst_quality has changed. + */ + if (!active_worst_qchanged) { + vp8_update_rate_correction_factors(cpi, 1); + } + + Q = (q_high + q_low + 1) / 2; + + /* Adjust cpi->zbin_over_quant (only allowed when Q + * is max) + */ + if (Q < MAXQ) { + cpi->mb.zbin_over_quant = 0; + } else { + zbin_oq_low = (cpi->mb.zbin_over_quant < zbin_oq_high) + ? (cpi->mb.zbin_over_quant + 1) + : zbin_oq_high; + cpi->mb.zbin_over_quant = (zbin_oq_high + zbin_oq_low) / 2; + } + } else { + /* Update rate_correction_factor unless + * cpi->active_worst_quality has changed. + */ + if (!active_worst_qchanged) { + vp8_update_rate_correction_factors(cpi, 0); + } + + Q = vp8_regulate_q(cpi, cpi->this_frame_target); + + while (((Q < q_low) || (cpi->mb.zbin_over_quant < zbin_oq_low)) && + (Retries < 10)) { + vp8_update_rate_correction_factors(cpi, 0); + Q = vp8_regulate_q(cpi, cpi->this_frame_target); + Retries++; + } + } + + overshoot_seen = 1; + } + /* Frame is too small */ + else { + if (cpi->mb.zbin_over_quant == 0) { + /* Lower q_high if not using over quant */ + q_high = (Q > q_low) ? (Q - 1) : q_low; + } else { + /* else lower zbin_oq_high */ + zbin_oq_high = (cpi->mb.zbin_over_quant > zbin_oq_low) + ? (cpi->mb.zbin_over_quant - 1) + : zbin_oq_low; + } + + if (overshoot_seen) { + /* Update rate_correction_factor unless + * cpi->active_worst_quality has changed. + */ + if (!active_worst_qchanged) { + vp8_update_rate_correction_factors(cpi, 1); + } + + Q = (q_high + q_low) / 2; + + /* Adjust cpi->zbin_over_quant (only allowed when Q + * is max) + */ + if (Q < MAXQ) { + cpi->mb.zbin_over_quant = 0; + } else { + cpi->mb.zbin_over_quant = (zbin_oq_high + zbin_oq_low) / 2; + } + } else { + /* Update rate_correction_factor unless + * cpi->active_worst_quality has changed. + */ + if (!active_worst_qchanged) { + vp8_update_rate_correction_factors(cpi, 0); + } + + Q = vp8_regulate_q(cpi, cpi->this_frame_target); + + /* Special case reset for qlow for constrained quality. + * This should only trigger where there is very substantial + * undershoot on a frame and the auto cq level is above + * the user passsed in value. + */ + if ((cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) && + (Q < q_low)) { + q_low = Q; + } + + while (((Q > q_high) || (cpi->mb.zbin_over_quant > zbin_oq_high)) && + (Retries < 10)) { + vp8_update_rate_correction_factors(cpi, 0); + Q = vp8_regulate_q(cpi, cpi->this_frame_target); + Retries++; + } + } + + undershoot_seen = 1; + } + + /* Clamp Q to upper and lower limits: */ + if (Q > q_high) { + Q = q_high; + } else if (Q < q_low) { + Q = q_low; + } + + /* Clamp cpi->zbin_over_quant */ + cpi->mb.zbin_over_quant = (cpi->mb.zbin_over_quant < zbin_oq_low) + ? zbin_oq_low + : (cpi->mb.zbin_over_quant > zbin_oq_high) + ? zbin_oq_high + : cpi->mb.zbin_over_quant; + + Loop = Q != last_q; + } else { + Loop = 0; + } +#endif // CONFIG_REALTIME_ONLY + + if (cpi->is_src_frame_alt_ref) Loop = 0; + + if (Loop == 1) { + vp8_restore_coding_context(cpi); + loop_count++; +#if CONFIG_INTERNAL_STATS + cpi->tot_recode_hits++; +#endif + } + } while (Loop == 1); + +#if defined(DROP_UNCODED_FRAMES) + /* if there are no coded macroblocks at all drop this frame */ + if (cpi->common.MBs == cpi->mb.skip_true_count && + (cpi->drop_frame_count & 7) != 7 && cm->frame_type != KEY_FRAME) { + cpi->common.current_video_frame++; + cpi->frames_since_key++; + cpi->drop_frame_count++; + // We advance the temporal pattern for dropped frames. + cpi->temporal_pattern_counter++; + return; + } + cpi->drop_frame_count = 0; +#endif + +#if 0 + /* Experimental code for lagged and one pass + * Update stats used for one pass GF selection + */ + { + cpi->one_pass_frame_stats[cpi->one_pass_frame_index].frame_coded_error = (double)cpi->prediction_error; + cpi->one_pass_frame_stats[cpi->one_pass_frame_index].frame_intra_error = (double)cpi->intra_error; + cpi->one_pass_frame_stats[cpi->one_pass_frame_index].frame_pcnt_inter = (double)(100 - cpi->this_frame_percent_intra) / 100.0; + } +#endif + + /* Special case code to reduce pulsing when key frames are forced at a + * fixed interval. Note the reconstruction error if it is the frame before + * the force key frame + */ + if (cpi->next_key_frame_forced && (cpi->twopass.frames_to_key == 0)) { + cpi->ambient_err = + vp8_calc_ss_err(cpi->Source, &cm->yv12_fb[cm->new_fb_idx]); + } + +/* This frame's MVs are saved and will be used in next frame's MV predictor. + * Last frame has one more line(add to bottom) and one more column(add to + * right) than cm->mip. The edge elements are initialized to 0. + */ +#if CONFIG_MULTI_RES_ENCODING + if (!cpi->oxcf.mr_encoder_id && cm->show_frame) +#else + if (cm->show_frame) /* do not save for altref frame */ +#endif + { + int mb_row; + int mb_col; + /* Point to beginning of allocated MODE_INFO arrays. */ + MODE_INFO *tmp = cm->mip; + + if (cm->frame_type != KEY_FRAME) { + for (mb_row = 0; mb_row < cm->mb_rows + 1; ++mb_row) { + for (mb_col = 0; mb_col < cm->mb_cols + 1; ++mb_col) { + if (tmp->mbmi.ref_frame != INTRA_FRAME) { + cpi->lfmv[mb_col + mb_row * (cm->mode_info_stride + 1)].as_int = + tmp->mbmi.mv.as_int; + } + + cpi->lf_ref_frame_sign_bias[mb_col + + mb_row * (cm->mode_info_stride + 1)] = + cm->ref_frame_sign_bias[tmp->mbmi.ref_frame]; + cpi->lf_ref_frame[mb_col + mb_row * (cm->mode_info_stride + 1)] = + tmp->mbmi.ref_frame; + tmp++; + } + } + } + } + + /* Count last ref frame 0,0 usage on current encoded frame. */ + { + int mb_row; + int mb_col; + /* Point to beginning of MODE_INFO arrays. */ + MODE_INFO *tmp = cm->mi; + + cpi->zeromv_count = 0; + + if (cm->frame_type != KEY_FRAME) { + for (mb_row = 0; mb_row < cm->mb_rows; ++mb_row) { + for (mb_col = 0; mb_col < cm->mb_cols; ++mb_col) { + if (tmp->mbmi.mode == ZEROMV && tmp->mbmi.ref_frame == LAST_FRAME) { + cpi->zeromv_count++; + } + tmp++; + } + tmp++; + } + } + } + +#if CONFIG_MULTI_RES_ENCODING + vp8_cal_dissimilarity(cpi); +#endif + + /* Update the GF useage maps. + * This is done after completing the compression of a frame when all + * modes etc. are finalized but before loop filter + */ + if (cpi->oxcf.number_of_layers == 1) { + vp8_update_gf_useage_maps(cpi, cm, &cpi->mb); + } + + if (cm->frame_type == KEY_FRAME) cm->refresh_last_frame = 1; + +#if 0 + { + FILE *f = fopen("gfactive.stt", "a"); + fprintf(f, "%8d %8d %8d %8d %8d\n", cm->current_video_frame, (100 * cpi->gf_active_count) / (cpi->common.mb_rows * cpi->common.mb_cols), cpi->this_iiratio, cpi->next_iiratio, cm->refresh_golden_frame); + fclose(f); + } +#endif + + /* For inter frames the current default behavior is that when + * cm->refresh_golden_frame is set we copy the old GF over to the ARF buffer + * This is purely an encoder decision at present. + */ + if (!cpi->oxcf.error_resilient_mode && cm->refresh_golden_frame) { + cm->copy_buffer_to_arf = 2; + } else { + cm->copy_buffer_to_arf = 0; + } + + cm->frame_to_show = &cm->yv12_fb[cm->new_fb_idx]; + +#if CONFIG_TEMPORAL_DENOISING + // Get some measure of the amount of noise, by measuring the (partial) mse + // between source and denoised buffer, for y channel. Partial refers to + // computing the sse for a sub-sample of the frame (i.e., skip x blocks along + // row/column), + // and only for blocks in that set that are consecutive ZEROMV_LAST mode. + // Do this every ~8 frames, to further reduce complexity. + // TODO(marpan): Keep this for now for the case cpi->oxcf.noise_sensitivity < + // 4, + // should be removed in favor of the process_denoiser_mode_change() function + // below. + if (cpi->oxcf.noise_sensitivity > 0 && cpi->oxcf.noise_sensitivity < 4 && + !cpi->oxcf.screen_content_mode && cpi->frames_since_key % 8 == 0 && + cm->frame_type != KEY_FRAME) { + cpi->mse_source_denoised = measure_square_diff_partial( + &cpi->denoiser.yv12_running_avg[INTRA_FRAME], cpi->Source, cpi); + } + + // For the adaptive denoising mode (noise_sensitivity == 4), sample the mse + // of source diff (between current and previous frame), and determine if we + // should switch the denoiser mode. Sampling refers to computing the mse for + // a sub-sample of the frame (i.e., skip x blocks along row/column), and + // only for blocks in that set that have used ZEROMV LAST, along with some + // constraint on the sum diff between blocks. This process is called every + // ~8 frames, to further reduce complexity. + if (cpi->oxcf.noise_sensitivity == 4 && !cpi->oxcf.screen_content_mode && + cpi->frames_since_key % 8 == 0 && cm->frame_type != KEY_FRAME) { + process_denoiser_mode_change(cpi); + } +#endif + +#ifdef OUTPUT_YUV_SKINMAP + if (cpi->common.current_video_frame > 1) { + vp8_compute_skin_map(cpi, yuv_skinmap_file); + } +#endif + +#if CONFIG_MULTITHREAD + if (vpx_atomic_load_acquire(&cpi->b_multi_threaded)) { + /* start loopfilter in separate thread */ + sem_post(&cpi->h_event_start_lpf); + cpi->b_lpf_running = 1; + /* wait for the filter_level to be picked so that we can continue with + * stream packing */ + sem_wait(&cpi->h_event_end_lpf); + } else +#endif + { + vp8_loopfilter_frame(cpi, cm); + } + + update_reference_frames(cpi); + +#ifdef OUTPUT_YUV_DENOISED + vpx_write_yuv_frame(yuv_denoised_file, + &cpi->denoiser.yv12_running_avg[INTRA_FRAME]); +#endif + +#if !(CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING) + if (cpi->oxcf.error_resilient_mode) { + cm->refresh_entropy_probs = 0; + } +#endif + + /* build the bitstream */ + vp8_pack_bitstream(cpi, dest, dest_end, size); + + /* Move storing frame_type out of the above loop since it is also + * needed in motion search besides loopfilter */ + cm->last_frame_type = cm->frame_type; + + /* Update rate control heuristics */ + cpi->total_byte_count += (*size); + cpi->projected_frame_size = (int)(*size) << 3; + + if (cpi->oxcf.number_of_layers > 1) { + unsigned int i; + for (i = cpi->current_layer + 1; i < cpi->oxcf.number_of_layers; ++i) { + cpi->layer_context[i].total_byte_count += (*size); + } + } + + if (!active_worst_qchanged) vp8_update_rate_correction_factors(cpi, 2); + + cpi->last_q[cm->frame_type] = cm->base_qindex; + + if (cm->frame_type == KEY_FRAME) { + vp8_adjust_key_frame_context(cpi); + } + + /* Keep a record of ambient average Q. */ + if (cm->frame_type != KEY_FRAME) { + cpi->avg_frame_qindex = + (2 + 3 * cpi->avg_frame_qindex + cm->base_qindex) >> 2; + } + + /* Keep a record from which we can calculate the average Q excluding + * GF updates and key frames + */ + if ((cm->frame_type != KEY_FRAME) && + ((cpi->oxcf.number_of_layers > 1) || + (!cm->refresh_golden_frame && !cm->refresh_alt_ref_frame))) { + cpi->ni_frames++; + + /* Calculate the average Q for normal inter frames (not key or GFU + * frames). + */ + if (cpi->pass == 2) { + cpi->ni_tot_qi += Q; + cpi->ni_av_qi = (cpi->ni_tot_qi / cpi->ni_frames); + } else { + /* Damp value for first few frames */ + if (cpi->ni_frames > 150) { + cpi->ni_tot_qi += Q; + cpi->ni_av_qi = (cpi->ni_tot_qi / cpi->ni_frames); + } + /* For one pass, early in the clip ... average the current frame Q + * value with the worstq entered by the user as a dampening measure + */ + else { + cpi->ni_tot_qi += Q; + cpi->ni_av_qi = + ((cpi->ni_tot_qi / cpi->ni_frames) + cpi->worst_quality + 1) / 2; + } + + /* If the average Q is higher than what was used in the last + * frame (after going through the recode loop to keep the frame + * size within range) then use the last frame value - 1. The -1 + * is designed to stop Q and hence the data rate, from + * progressively falling away during difficult sections, but at + * the same time reduce the number of itterations around the + * recode loop. + */ + if (Q > cpi->ni_av_qi) cpi->ni_av_qi = Q - 1; + } + } + + /* Update the buffer level variable. */ + /* Non-viewable frames are a special case and are treated as pure overhead. */ + if (!cm->show_frame) { + cpi->bits_off_target -= cpi->projected_frame_size; + } else { + cpi->bits_off_target += + cpi->av_per_frame_bandwidth - cpi->projected_frame_size; + } + + /* Clip the buffer level to the maximum specified buffer size */ + if (cpi->bits_off_target > cpi->oxcf.maximum_buffer_size) { + cpi->bits_off_target = cpi->oxcf.maximum_buffer_size; + } + + // If the frame dropper is not enabled, don't let the buffer level go below + // some threshold, given here by -|maximum_buffer_size|. For now we only do + // this for screen content input. + if (cpi->drop_frames_allowed == 0 && cpi->oxcf.screen_content_mode && + cpi->bits_off_target < -cpi->oxcf.maximum_buffer_size) { + cpi->bits_off_target = -cpi->oxcf.maximum_buffer_size; + } + + /* Rolling monitors of whether we are over or underspending used to + * help regulate min and Max Q in two pass. + */ + cpi->rolling_target_bits = + ((cpi->rolling_target_bits * 3) + cpi->this_frame_target + 2) / 4; + cpi->rolling_actual_bits = + ((cpi->rolling_actual_bits * 3) + cpi->projected_frame_size + 2) / 4; + cpi->long_rolling_target_bits = + ((cpi->long_rolling_target_bits * 31) + cpi->this_frame_target + 16) / 32; + cpi->long_rolling_actual_bits = + ((cpi->long_rolling_actual_bits * 31) + cpi->projected_frame_size + 16) / + 32; + + /* Actual bits spent */ + cpi->total_actual_bits += cpi->projected_frame_size; + + /* Debug stats */ + cpi->total_target_vs_actual += + (cpi->this_frame_target - cpi->projected_frame_size); + + cpi->buffer_level = cpi->bits_off_target; + + /* Propagate values to higher temporal layers */ + if (cpi->oxcf.number_of_layers > 1) { + unsigned int i; + + for (i = cpi->current_layer + 1; i < cpi->oxcf.number_of_layers; ++i) { + LAYER_CONTEXT *lc = &cpi->layer_context[i]; + int bits_off_for_this_layer = (int)(lc->target_bandwidth / lc->framerate - + cpi->projected_frame_size); + + lc->bits_off_target += bits_off_for_this_layer; + + /* Clip buffer level to maximum buffer size for the layer */ + if (lc->bits_off_target > lc->maximum_buffer_size) { + lc->bits_off_target = lc->maximum_buffer_size; + } + + lc->total_actual_bits += cpi->projected_frame_size; + lc->total_target_vs_actual += bits_off_for_this_layer; + lc->buffer_level = lc->bits_off_target; + } + } + + /* Update bits left to the kf and gf groups to account for overshoot + * or undershoot on these frames + */ + if (cm->frame_type == KEY_FRAME) { + cpi->twopass.kf_group_bits += + cpi->this_frame_target - cpi->projected_frame_size; + + if (cpi->twopass.kf_group_bits < 0) cpi->twopass.kf_group_bits = 0; + } else if (cm->refresh_golden_frame || cm->refresh_alt_ref_frame) { + cpi->twopass.gf_group_bits += + cpi->this_frame_target - cpi->projected_frame_size; + + if (cpi->twopass.gf_group_bits < 0) cpi->twopass.gf_group_bits = 0; + } + + if (cm->frame_type != KEY_FRAME) { + if (cpi->common.refresh_alt_ref_frame) { + cpi->last_skip_false_probs[2] = cpi->prob_skip_false; + cpi->last_skip_probs_q[2] = cm->base_qindex; + } else if (cpi->common.refresh_golden_frame) { + cpi->last_skip_false_probs[1] = cpi->prob_skip_false; + cpi->last_skip_probs_q[1] = cm->base_qindex; + } else { + cpi->last_skip_false_probs[0] = cpi->prob_skip_false; + cpi->last_skip_probs_q[0] = cm->base_qindex; + + /* update the baseline */ + cpi->base_skip_false_prob[cm->base_qindex] = cpi->prob_skip_false; + } + } + +#if 0 && CONFIG_INTERNAL_STATS + { + FILE *f = fopen("tmp.stt", "a"); + + vpx_clear_system_state(); + + if (cpi->twopass.total_left_stats.coded_error != 0.0) + fprintf(f, "%10d %10d %10d %10d %10d %10"PRId64" %10"PRId64 + "%10"PRId64" %10d %6d %6d %6d %6d %5d %5d %5d %8d " + "%8.2lf %"PRId64" %10.3lf %10"PRId64" %8d\n", + cpi->common.current_video_frame, cpi->this_frame_target, + cpi->projected_frame_size, + (cpi->projected_frame_size - cpi->this_frame_target), + cpi->total_target_vs_actual, + cpi->buffer_level, + (cpi->oxcf.starting_buffer_level-cpi->bits_off_target), + cpi->total_actual_bits, cm->base_qindex, + cpi->active_best_quality, cpi->active_worst_quality, + cpi->ni_av_qi, cpi->cq_target_quality, + cm->refresh_golden_frame, cm->refresh_alt_ref_frame, + cm->frame_type, cpi->gfu_boost, + cpi->twopass.est_max_qcorrection_factor, + cpi->twopass.bits_left, + cpi->twopass.total_left_stats.coded_error, + (double)cpi->twopass.bits_left / + cpi->twopass.total_left_stats.coded_error, + cpi->tot_recode_hits); + else + fprintf(f, "%10d %10d %10d %10d %10d %10"PRId64" %10"PRId64 + "%10"PRId64" %10d %6d %6d %6d %6d %5d %5d %5d %8d " + "%8.2lf %"PRId64" %10.3lf %8d\n", + cpi->common.current_video_frame, cpi->this_frame_target, + cpi->projected_frame_size, + (cpi->projected_frame_size - cpi->this_frame_target), + cpi->total_target_vs_actual, + cpi->buffer_level, + (cpi->oxcf.starting_buffer_level-cpi->bits_off_target), + cpi->total_actual_bits, cm->base_qindex, + cpi->active_best_quality, cpi->active_worst_quality, + cpi->ni_av_qi, cpi->cq_target_quality, + cm->refresh_golden_frame, cm->refresh_alt_ref_frame, + cm->frame_type, cpi->gfu_boost, + cpi->twopass.est_max_qcorrection_factor, + cpi->twopass.bits_left, + cpi->twopass.total_left_stats.coded_error, + cpi->tot_recode_hits); + + fclose(f); + + { + FILE *fmodes = fopen("Modes.stt", "a"); + + fprintf(fmodes, "%6d:%1d:%1d:%1d ", + cpi->common.current_video_frame, + cm->frame_type, cm->refresh_golden_frame, + cm->refresh_alt_ref_frame); + + fprintf(fmodes, "\n"); + + fclose(fmodes); + } + } + +#endif + + if (cm->refresh_golden_frame == 1) { + cm->frame_flags = cm->frame_flags | FRAMEFLAGS_GOLDEN; + } else { + cm->frame_flags = cm->frame_flags & ~FRAMEFLAGS_GOLDEN; + } + + if (cm->refresh_alt_ref_frame == 1) { + cm->frame_flags = cm->frame_flags | FRAMEFLAGS_ALTREF; + } else { + cm->frame_flags = cm->frame_flags & ~FRAMEFLAGS_ALTREF; + } + + if (cm->refresh_last_frame & cm->refresh_golden_frame) { /* both refreshed */ + cpi->gold_is_last = 1; + } else if (cm->refresh_last_frame ^ cm->refresh_golden_frame) { + /* 1 refreshed but not the other */ + cpi->gold_is_last = 0; + } + + if (cm->refresh_last_frame & cm->refresh_alt_ref_frame) { /* both refreshed */ + cpi->alt_is_last = 1; + } else if (cm->refresh_last_frame ^ cm->refresh_alt_ref_frame) { + /* 1 refreshed but not the other */ + cpi->alt_is_last = 0; + } + + if (cm->refresh_alt_ref_frame & + cm->refresh_golden_frame) { /* both refreshed */ + cpi->gold_is_alt = 1; + } else if (cm->refresh_alt_ref_frame ^ cm->refresh_golden_frame) { + /* 1 refreshed but not the other */ + cpi->gold_is_alt = 0; + } + + cpi->ref_frame_flags = VP8_ALTR_FRAME | VP8_GOLD_FRAME | VP8_LAST_FRAME; + + if (cpi->gold_is_last) cpi->ref_frame_flags &= ~VP8_GOLD_FRAME; + + if (cpi->alt_is_last) cpi->ref_frame_flags &= ~VP8_ALTR_FRAME; + + if (cpi->gold_is_alt) cpi->ref_frame_flags &= ~VP8_ALTR_FRAME; + + if (!cpi->oxcf.error_resilient_mode) { + if (cpi->oxcf.play_alternate && cm->refresh_alt_ref_frame && + (cm->frame_type != KEY_FRAME)) { + /* Update the alternate reference frame stats as appropriate. */ + update_alt_ref_frame_stats(cpi); + } else { + /* Update the Golden frame stats as appropriate. */ + update_golden_frame_stats(cpi); + } + } + + if (cm->frame_type == KEY_FRAME) { + /* Tell the caller that the frame was coded as a key frame */ + *frame_flags = cm->frame_flags | FRAMEFLAGS_KEY; + + /* As this frame is a key frame the next defaults to an inter frame. */ + cm->frame_type = INTER_FRAME; + + cpi->last_frame_percent_intra = 100; + } else { + *frame_flags = cm->frame_flags & ~FRAMEFLAGS_KEY; + + cpi->last_frame_percent_intra = cpi->this_frame_percent_intra; + } + + /* Clear the one shot update flags for segmentation map and mode/ref + * loop filter deltas. + */ + cpi->mb.e_mbd.update_mb_segmentation_map = 0; + cpi->mb.e_mbd.update_mb_segmentation_data = 0; + cpi->mb.e_mbd.mode_ref_lf_delta_update = 0; + + /* Dont increment frame counters if this was an altref buffer update + * not a real frame + */ + if (cm->show_frame) { + cm->current_video_frame++; + cpi->frames_since_key++; + cpi->temporal_pattern_counter++; + } + +/* reset to normal state now that we are done. */ + +#if 0 + { + char filename[512]; + FILE *recon_file; + sprintf(filename, "enc%04d.yuv", (int) cm->current_video_frame); + recon_file = fopen(filename, "wb"); + fwrite(cm->yv12_fb[cm->lst_fb_idx].buffer_alloc, + cm->yv12_fb[cm->lst_fb_idx].frame_size, 1, recon_file); + fclose(recon_file); + } +#endif + + /* DEBUG */ + /* vpx_write_yuv_frame("encoder_recon.yuv", cm->frame_to_show); */ +} +#if !CONFIG_REALTIME_ONLY +static void Pass2Encode(VP8_COMP *cpi, size_t *size, unsigned char *dest, + unsigned char *dest_end, unsigned int *frame_flags) { + if (!cpi->common.refresh_alt_ref_frame) vp8_second_pass(cpi); + + encode_frame_to_data_rate(cpi, size, dest, dest_end, frame_flags); + cpi->twopass.bits_left -= 8 * (int)(*size); + + if (!cpi->common.refresh_alt_ref_frame) { + double two_pass_min_rate = + (double)(cpi->oxcf.target_bandwidth * + cpi->oxcf.two_pass_vbrmin_section / 100); + cpi->twopass.bits_left += (int64_t)(two_pass_min_rate / cpi->framerate); + } +} +#endif + +int vp8_receive_raw_frame(VP8_COMP *cpi, unsigned int frame_flags, + YV12_BUFFER_CONFIG *sd, int64_t time_stamp, + int64_t end_time) { + struct vpx_usec_timer timer; + int res = 0; + + vpx_usec_timer_start(&timer); + + /* Reinit the lookahead buffer if the frame size changes */ + if (sd->y_width != cpi->oxcf.Width || sd->y_height != cpi->oxcf.Height) { + assert(cpi->oxcf.lag_in_frames < 2); + dealloc_raw_frame_buffers(cpi); + alloc_raw_frame_buffers(cpi); + } + + if (vp8_lookahead_push(cpi->lookahead, sd, time_stamp, end_time, frame_flags, + cpi->active_map_enabled ? cpi->active_map : NULL)) { + res = -1; + } + vpx_usec_timer_mark(&timer); + cpi->time_receive_data += vpx_usec_timer_elapsed(&timer); + + return res; +} + +static int frame_is_reference(const VP8_COMP *cpi) { + const VP8_COMMON *cm = &cpi->common; + const MACROBLOCKD *xd = &cpi->mb.e_mbd; + + return cm->frame_type == KEY_FRAME || cm->refresh_last_frame || + cm->refresh_golden_frame || cm->refresh_alt_ref_frame || + cm->copy_buffer_to_gf || cm->copy_buffer_to_arf || + cm->refresh_entropy_probs || xd->mode_ref_lf_delta_update || + xd->update_mb_segmentation_map || xd->update_mb_segmentation_data; +} + +int vp8_get_compressed_data(VP8_COMP *cpi, unsigned int *frame_flags, + size_t *size, unsigned char *dest, + unsigned char *dest_end, int64_t *time_stamp, + int64_t *time_end, int flush) { + VP8_COMMON *cm; + struct vpx_usec_timer tsctimer; + struct vpx_usec_timer ticktimer; + struct vpx_usec_timer cmptimer; + YV12_BUFFER_CONFIG *force_src_buffer = NULL; + + if (!cpi) return -1; + + cm = &cpi->common; + + if (setjmp(cpi->common.error.jmp)) { + cpi->common.error.setjmp = 0; + vpx_clear_system_state(); + return VPX_CODEC_CORRUPT_FRAME; + } + + cpi->common.error.setjmp = 1; + + vpx_usec_timer_start(&cmptimer); + + cpi->source = NULL; + +#if !CONFIG_REALTIME_ONLY + /* Should we code an alternate reference frame */ + if (cpi->oxcf.error_resilient_mode == 0 && cpi->oxcf.play_alternate && + cpi->source_alt_ref_pending) { + if ((cpi->source = vp8_lookahead_peek( + cpi->lookahead, cpi->frames_till_gf_update_due, PEEK_FORWARD))) { + cpi->alt_ref_source = cpi->source; + if (cpi->oxcf.arnr_max_frames > 0) { + vp8_temporal_filter_prepare_c(cpi, cpi->frames_till_gf_update_due); + force_src_buffer = &cpi->alt_ref_buffer; + } + cpi->frames_till_alt_ref_frame = cpi->frames_till_gf_update_due; + cm->refresh_alt_ref_frame = 1; + cm->refresh_golden_frame = 0; + cm->refresh_last_frame = 0; + cm->show_frame = 0; + /* Clear Pending alt Ref flag. */ + cpi->source_alt_ref_pending = 0; + cpi->is_src_frame_alt_ref = 0; + } + } +#endif + + if (!cpi->source) { + /* Read last frame source if we are encoding first pass. */ + if (cpi->pass == 1 && cm->current_video_frame > 0) { + if ((cpi->last_source = + vp8_lookahead_peek(cpi->lookahead, 1, PEEK_BACKWARD)) == NULL) { + return -1; + } + } + + if ((cpi->source = vp8_lookahead_pop(cpi->lookahead, flush))) { + cm->show_frame = 1; + + cpi->is_src_frame_alt_ref = + cpi->alt_ref_source && (cpi->source == cpi->alt_ref_source); + + if (cpi->is_src_frame_alt_ref) cpi->alt_ref_source = NULL; + } + } + + if (cpi->source) { + cpi->Source = force_src_buffer ? force_src_buffer : &cpi->source->img; + cpi->un_scaled_source = cpi->Source; + *time_stamp = cpi->source->ts_start; + *time_end = cpi->source->ts_end; + *frame_flags = cpi->source->flags; + + if (cpi->pass == 1 && cm->current_video_frame > 0) { + cpi->last_frame_unscaled_source = &cpi->last_source->img; + } + } else { + *size = 0; +#if !CONFIG_REALTIME_ONLY + + if (flush && cpi->pass == 1 && !cpi->twopass.first_pass_done) { + vp8_end_first_pass(cpi); /* get last stats packet */ + cpi->twopass.first_pass_done = 1; + } + +#endif + + return -1; + } + + if (cpi->source->ts_start < cpi->first_time_stamp_ever) { + cpi->first_time_stamp_ever = cpi->source->ts_start; + cpi->last_end_time_stamp_seen = cpi->source->ts_start; + } + + /* adjust frame rates based on timestamps given */ + if (cm->show_frame) { + int64_t this_duration; + int step = 0; + + if (cpi->source->ts_start == cpi->first_time_stamp_ever) { + this_duration = cpi->source->ts_end - cpi->source->ts_start; + step = 1; + } else { + int64_t last_duration; + + this_duration = cpi->source->ts_end - cpi->last_end_time_stamp_seen; + last_duration = cpi->last_end_time_stamp_seen - cpi->last_time_stamp_seen; + /* do a step update if the duration changes by 10% */ + if (last_duration) { + step = (int)(((this_duration - last_duration) * 10 / last_duration)); + } + } + + if (this_duration) { + if (step) { + cpi->ref_framerate = 10000000.0 / this_duration; + } else { + double avg_duration, interval; + + /* Average this frame's rate into the last second's average + * frame rate. If we haven't seen 1 second yet, then average + * over the whole interval seen. + */ + interval = (double)(cpi->source->ts_end - cpi->first_time_stamp_ever); + if (interval > 10000000.0) interval = 10000000; + + avg_duration = 10000000.0 / cpi->ref_framerate; + avg_duration *= (interval - avg_duration + this_duration); + avg_duration /= interval; + + cpi->ref_framerate = 10000000.0 / avg_duration; + } +#if CONFIG_MULTI_RES_ENCODING + if (cpi->oxcf.mr_total_resolutions > 1) { + LOWER_RES_FRAME_INFO *low_res_frame_info = + (LOWER_RES_FRAME_INFO *)cpi->oxcf.mr_low_res_mode_info; + // Frame rate should be the same for all spatial layers in + // multi-res-encoding (simulcast), so we constrain the frame for + // higher layers to be that of lowest resolution. This is needed + // as he application may decide to skip encoding a high layer and + // then start again, in which case a big jump in time-stamps will + // be received for that high layer, which will yield an incorrect + // frame rate (from time-stamp adjustment in above calculation). + if (cpi->oxcf.mr_encoder_id) { + cpi->ref_framerate = low_res_frame_info->low_res_framerate; + } else { + // Keep track of frame rate for lowest resolution. + low_res_frame_info->low_res_framerate = cpi->ref_framerate; + } + } +#endif + if (cpi->oxcf.number_of_layers > 1) { + unsigned int i; + + /* Update frame rates for each layer */ + assert(cpi->oxcf.number_of_layers <= VPX_TS_MAX_LAYERS); + for (i = 0; i < cpi->oxcf.number_of_layers && i < VPX_TS_MAX_LAYERS; + ++i) { + LAYER_CONTEXT *lc = &cpi->layer_context[i]; + lc->framerate = cpi->ref_framerate / cpi->oxcf.rate_decimator[i]; + } + } else { + vp8_new_framerate(cpi, cpi->ref_framerate); + } + } + + cpi->last_time_stamp_seen = cpi->source->ts_start; + cpi->last_end_time_stamp_seen = cpi->source->ts_end; + } + + if (cpi->oxcf.number_of_layers > 1) { + int layer; + + update_layer_contexts(cpi); + + /* Restore layer specific context & set frame rate */ + if (cpi->temporal_layer_id >= 0) { + layer = cpi->temporal_layer_id; + } else { + layer = + cpi->oxcf + .layer_id[cpi->temporal_pattern_counter % cpi->oxcf.periodicity]; + } + restore_layer_context(cpi, layer); + vp8_new_framerate(cpi, cpi->layer_context[layer].framerate); + } + + if (cpi->compressor_speed == 2) { + vpx_usec_timer_start(&tsctimer); + vpx_usec_timer_start(&ticktimer); + } + + cpi->lf_zeromv_pct = (cpi->zeromv_count * 100) / cm->MBs; + +#if CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING + { + int i; + const int num_part = (1 << cm->multi_token_partition); + /* the available bytes in dest */ + const unsigned long dest_size = dest_end - dest; + const int tok_part_buff_size = (dest_size * 9) / (10 * num_part); + + unsigned char *dp = dest; + + cpi->partition_d[0] = dp; + dp += dest_size / 10; /* reserve 1/10 for control partition */ + cpi->partition_d_end[0] = dp; + + for (i = 0; i < num_part; ++i) { + cpi->partition_d[i + 1] = dp; + dp += tok_part_buff_size; + cpi->partition_d_end[i + 1] = dp; + } + } +#endif + + /* start with a 0 size frame */ + *size = 0; + + /* Clear down mmx registers */ + vpx_clear_system_state(); + + cm->frame_type = INTER_FRAME; + cm->frame_flags = *frame_flags; + +#if 0 + + if (cm->refresh_alt_ref_frame) + { + cm->refresh_golden_frame = 0; + cm->refresh_last_frame = 0; + } + else + { + cm->refresh_golden_frame = 0; + cm->refresh_last_frame = 1; + } + +#endif + /* find a free buffer for the new frame */ + { + int i = 0; + for (; i < NUM_YV12_BUFFERS; ++i) { + if (!cm->yv12_fb[i].flags) { + cm->new_fb_idx = i; + break; + } + } + + assert(i < NUM_YV12_BUFFERS); + } + switch (cpi->pass) { +#if !CONFIG_REALTIME_ONLY + case 1: Pass1Encode(cpi, size, dest, frame_flags); break; + case 2: Pass2Encode(cpi, size, dest, dest_end, frame_flags); break; +#endif // !CONFIG_REALTIME_ONLY + default: + encode_frame_to_data_rate(cpi, size, dest, dest_end, frame_flags); + break; + } + + if (cpi->compressor_speed == 2) { + unsigned int duration, duration2; + vpx_usec_timer_mark(&tsctimer); + vpx_usec_timer_mark(&ticktimer); + + duration = (int)(vpx_usec_timer_elapsed(&ticktimer)); + duration2 = (unsigned int)((double)duration / 2); + + if (cm->frame_type != KEY_FRAME) { + if (cpi->avg_encode_time == 0) { + cpi->avg_encode_time = duration; + } else { + cpi->avg_encode_time = (7 * cpi->avg_encode_time + duration) >> 3; + } + } + + if (duration2) { + { + if (cpi->avg_pick_mode_time == 0) { + cpi->avg_pick_mode_time = duration2; + } else { + cpi->avg_pick_mode_time = + (7 * cpi->avg_pick_mode_time + duration2) >> 3; + } + } + } + } + + if (cm->refresh_entropy_probs == 0) { + memcpy(&cm->fc, &cm->lfc, sizeof(cm->fc)); + } + + /* Save the contexts separately for alt ref, gold and last. */ + /* (TODO jbb -> Optimize this with pointers to avoid extra copies. ) */ + if (cm->refresh_alt_ref_frame) memcpy(&cpi->lfc_a, &cm->fc, sizeof(cm->fc)); + + if (cm->refresh_golden_frame) memcpy(&cpi->lfc_g, &cm->fc, sizeof(cm->fc)); + + if (cm->refresh_last_frame) memcpy(&cpi->lfc_n, &cm->fc, sizeof(cm->fc)); + + /* if its a dropped frame honor the requests on subsequent frames */ + if (*size > 0) { + cpi->droppable = !frame_is_reference(cpi); + + /* return to normal state */ + cm->refresh_entropy_probs = 1; + cm->refresh_alt_ref_frame = 0; + cm->refresh_golden_frame = 0; + cm->refresh_last_frame = 1; + cm->frame_type = INTER_FRAME; + } + + /* Save layer specific state */ + if (cpi->oxcf.number_of_layers > 1) save_layer_context(cpi); + + vpx_usec_timer_mark(&cmptimer); + cpi->time_compress_data += vpx_usec_timer_elapsed(&cmptimer); + + if (cpi->b_calculate_psnr && cpi->pass != 1 && cm->show_frame) { + generate_psnr_packet(cpi); + } + +#if CONFIG_INTERNAL_STATS + + if (cpi->pass != 1) { + cpi->bytes += *size; + + if (cm->show_frame) { + cpi->common.show_frame_mi = cpi->common.mi; + cpi->count++; + + if (cpi->b_calculate_psnr) { + uint64_t ye, ue, ve; + double frame_psnr; + YV12_BUFFER_CONFIG *orig = cpi->Source; + YV12_BUFFER_CONFIG *recon = cpi->common.frame_to_show; + unsigned int y_width = cpi->common.Width; + unsigned int y_height = cpi->common.Height; + unsigned int uv_width = (y_width + 1) / 2; + unsigned int uv_height = (y_height + 1) / 2; + int y_samples = y_height * y_width; + int uv_samples = uv_height * uv_width; + int t_samples = y_samples + 2 * uv_samples; + double sq_error; + + ye = calc_plane_error(orig->y_buffer, orig->y_stride, recon->y_buffer, + recon->y_stride, y_width, y_height); + + ue = calc_plane_error(orig->u_buffer, orig->uv_stride, recon->u_buffer, + recon->uv_stride, uv_width, uv_height); + + ve = calc_plane_error(orig->v_buffer, orig->uv_stride, recon->v_buffer, + recon->uv_stride, uv_width, uv_height); + + sq_error = (double)(ye + ue + ve); + + frame_psnr = vpx_sse_to_psnr(t_samples, 255.0, sq_error); + + cpi->total_y += vpx_sse_to_psnr(y_samples, 255.0, (double)ye); + cpi->total_u += vpx_sse_to_psnr(uv_samples, 255.0, (double)ue); + cpi->total_v += vpx_sse_to_psnr(uv_samples, 255.0, (double)ve); + cpi->total_sq_error += sq_error; + cpi->total += frame_psnr; +#if CONFIG_POSTPROC + { + YV12_BUFFER_CONFIG *pp = &cm->post_proc_buffer; + double sq_error2; + double frame_psnr2, frame_ssim2 = 0; + double weight = 0; + + vp8_deblock(cm, cm->frame_to_show, &cm->post_proc_buffer, + cm->filter_level * 10 / 6, 1, 0); + vpx_clear_system_state(); + + ye = calc_plane_error(orig->y_buffer, orig->y_stride, pp->y_buffer, + pp->y_stride, y_width, y_height); + + ue = calc_plane_error(orig->u_buffer, orig->uv_stride, pp->u_buffer, + pp->uv_stride, uv_width, uv_height); + + ve = calc_plane_error(orig->v_buffer, orig->uv_stride, pp->v_buffer, + pp->uv_stride, uv_width, uv_height); + + sq_error2 = (double)(ye + ue + ve); + + frame_psnr2 = vpx_sse_to_psnr(t_samples, 255.0, sq_error2); + + cpi->totalp_y += vpx_sse_to_psnr(y_samples, 255.0, (double)ye); + cpi->totalp_u += vpx_sse_to_psnr(uv_samples, 255.0, (double)ue); + cpi->totalp_v += vpx_sse_to_psnr(uv_samples, 255.0, (double)ve); + cpi->total_sq_error2 += sq_error2; + cpi->totalp += frame_psnr2; + + frame_ssim2 = + vpx_calc_ssim(cpi->Source, &cm->post_proc_buffer, &weight); + + cpi->summed_quality += frame_ssim2 * weight; + cpi->summed_weights += weight; + + if (cpi->oxcf.number_of_layers > 1) { + unsigned int i; + + for (i = cpi->current_layer; i < cpi->oxcf.number_of_layers; ++i) { + cpi->frames_in_layer[i]++; + + cpi->bytes_in_layer[i] += *size; + cpi->sum_psnr[i] += frame_psnr; + cpi->sum_psnr_p[i] += frame_psnr2; + cpi->total_error2[i] += sq_error; + cpi->total_error2_p[i] += sq_error2; + cpi->sum_ssim[i] += frame_ssim2 * weight; + cpi->sum_weights[i] += weight; + } + } + } +#endif + } + } + } + +#if 0 + + if (cpi->common.frame_type != 0 && cpi->common.base_qindex == cpi->oxcf.worst_allowed_q) + { + skiptruecount += cpi->skip_true_count; + skipfalsecount += cpi->skip_false_count; + } + +#endif +#if 0 + + if (cpi->pass != 1) + { + FILE *f = fopen("skip.stt", "a"); + fprintf(f, "frame:%4d flags:%4x Q:%4d P:%4d Size:%5d\n", cpi->common.current_video_frame, *frame_flags, cpi->common.base_qindex, cpi->prob_skip_false, *size); + + if (cpi->is_src_frame_alt_ref == 1) + fprintf(f, "skipcount: %4d framesize: %d\n", cpi->skip_true_count , *size); + + fclose(f); + } + +#endif +#endif + + cpi->common.error.setjmp = 0; + +#if CONFIG_MULTITHREAD + /* wait for the lpf thread done */ + if (vpx_atomic_load_acquire(&cpi->b_multi_threaded) && cpi->b_lpf_running) { + sem_wait(&cpi->h_event_end_lpf); + cpi->b_lpf_running = 0; + } +#endif + + return 0; +} + +int vp8_get_preview_raw_frame(VP8_COMP *cpi, YV12_BUFFER_CONFIG *dest, + vp8_ppflags_t *flags) { + if (cpi->common.refresh_alt_ref_frame) { + return -1; + } else { + int ret; + +#if CONFIG_POSTPROC + cpi->common.show_frame_mi = cpi->common.mi; + ret = vp8_post_proc_frame(&cpi->common, dest, flags); +#else + (void)flags; + + if (cpi->common.frame_to_show) { + *dest = *cpi->common.frame_to_show; + dest->y_width = cpi->common.Width; + dest->y_height = cpi->common.Height; + dest->uv_height = cpi->common.Height / 2; + ret = 0; + } else { + ret = -1; + } + +#endif + vpx_clear_system_state(); + return ret; + } +} + +int vp8_set_roimap(VP8_COMP *cpi, unsigned char *map, unsigned int rows, + unsigned int cols, int delta_q[4], int delta_lf[4], + unsigned int threshold[4]) { + signed char feature_data[MB_LVL_MAX][MAX_MB_SEGMENTS]; + int internal_delta_q[MAX_MB_SEGMENTS]; + const int range = 63; + int i; + + // Check number of rows and columns match + if (cpi->common.mb_rows != (int)rows || cpi->common.mb_cols != (int)cols) { + return -1; + } + + // Range check the delta Q values and convert the external Q range values + // to internal ones. + if ((abs(delta_q[0]) > range) || (abs(delta_q[1]) > range) || + (abs(delta_q[2]) > range) || (abs(delta_q[3]) > range)) { + return -1; + } + + // Range check the delta lf values + if ((abs(delta_lf[0]) > range) || (abs(delta_lf[1]) > range) || + (abs(delta_lf[2]) > range) || (abs(delta_lf[3]) > range)) { + return -1; + } + + // Also disable segmentation if no deltas are specified. + if (!map || (delta_q[0] == 0 && delta_q[1] == 0 && delta_q[2] == 0 && + delta_q[3] == 0 && delta_lf[0] == 0 && delta_lf[1] == 0 && + delta_lf[2] == 0 && delta_lf[3] == 0 && threshold[0] == 0 && + threshold[1] == 0 && threshold[2] == 0 && threshold[3] == 0)) { + disable_segmentation(cpi); + return 0; + } + + // Translate the external delta q values to internal values. + for (i = 0; i < MAX_MB_SEGMENTS; ++i) { + internal_delta_q[i] = + (delta_q[i] >= 0) ? q_trans[delta_q[i]] : -q_trans[-delta_q[i]]; + } + + /* Set the segmentation Map */ + set_segmentation_map(cpi, map); + + /* Activate segmentation. */ + enable_segmentation(cpi); + + /* Set up the quant segment data */ + feature_data[MB_LVL_ALT_Q][0] = internal_delta_q[0]; + feature_data[MB_LVL_ALT_Q][1] = internal_delta_q[1]; + feature_data[MB_LVL_ALT_Q][2] = internal_delta_q[2]; + feature_data[MB_LVL_ALT_Q][3] = internal_delta_q[3]; + + /* Set up the loop segment data s */ + feature_data[MB_LVL_ALT_LF][0] = delta_lf[0]; + feature_data[MB_LVL_ALT_LF][1] = delta_lf[1]; + feature_data[MB_LVL_ALT_LF][2] = delta_lf[2]; + feature_data[MB_LVL_ALT_LF][3] = delta_lf[3]; + + cpi->segment_encode_breakout[0] = threshold[0]; + cpi->segment_encode_breakout[1] = threshold[1]; + cpi->segment_encode_breakout[2] = threshold[2]; + cpi->segment_encode_breakout[3] = threshold[3]; + + /* Initialise the feature data structure */ + set_segment_data(cpi, &feature_data[0][0], SEGMENT_DELTADATA); + + if (threshold[0] != 0 || threshold[1] != 0 || threshold[2] != 0 || + threshold[3] != 0) + cpi->use_roi_static_threshold = 1; + cpi->cyclic_refresh_mode_enabled = 0; + + return 0; +} + +int vp8_set_active_map(VP8_COMP *cpi, unsigned char *map, unsigned int rows, + unsigned int cols) { + if ((int)rows == cpi->common.mb_rows && (int)cols == cpi->common.mb_cols) { + if (map) { + memcpy(cpi->active_map, map, rows * cols); + cpi->active_map_enabled = 1; + } else { + cpi->active_map_enabled = 0; + } + + return 0; + } else { + return -1; + } +} + +int vp8_set_internal_size(VP8_COMP *cpi, VPX_SCALING horiz_mode, + VPX_SCALING vert_mode) { + if (horiz_mode <= ONETWO) { + cpi->common.horiz_scale = horiz_mode; + } else { + return -1; + } + + if (vert_mode <= ONETWO) { + cpi->common.vert_scale = vert_mode; + } else { + return -1; + } + + return 0; +} + +int vp8_calc_ss_err(YV12_BUFFER_CONFIG *source, YV12_BUFFER_CONFIG *dest) { + int i, j; + int Total = 0; + + unsigned char *src = source->y_buffer; + unsigned char *dst = dest->y_buffer; + + /* Loop through the Y plane raw and reconstruction data summing + * (square differences) + */ + for (i = 0; i < source->y_height; i += 16) { + for (j = 0; j < source->y_width; j += 16) { + unsigned int sse; + Total += vpx_mse16x16(src + j, source->y_stride, dst + j, dest->y_stride, + &sse); + } + + src += 16 * source->y_stride; + dst += 16 * dest->y_stride; + } + + return Total; +} + +int vp8_get_quantizer(VP8_COMP *cpi) { return cpi->common.base_qindex; } diff --git a/vp8/encoder/onyx_int.h b/vp8/encoder/onyx_int.h new file mode 100644 index 0000000..c489b46 --- /dev/null +++ b/vp8/encoder/onyx_int.h @@ -0,0 +1,736 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP8_ENCODER_ONYX_INT_H_ +#define VP8_ENCODER_ONYX_INT_H_ + +#include +#include "vpx_config.h" +#include "vp8/common/onyx.h" +#include "treewriter.h" +#include "tokenize.h" +#include "vp8/common/onyxc_int.h" +#include "vpx_dsp/variance.h" +#include "encodemb.h" +#include "vp8/encoder/quantize.h" +#include "vp8/common/entropy.h" +#include "vp8/common/threading.h" +#include "vpx_ports/mem.h" +#include "vpx/internal/vpx_codec_internal.h" +#include "vpx/vp8.h" +#include "mcomp.h" +#include "vp8/common/findnearmv.h" +#include "lookahead.h" +#if CONFIG_TEMPORAL_DENOISING +#include "vp8/encoder/denoising.h" +#endif + +#ifdef __cplusplus +extern "C" { +#endif + +#define MIN_GF_INTERVAL 4 +#define DEFAULT_GF_INTERVAL 7 + +#define KEY_FRAME_CONTEXT 5 + +#define MAX_LAG_BUFFERS (CONFIG_REALTIME_ONLY ? 1 : 25) + +#define AF_THRESH 25 +#define AF_THRESH2 100 +#define ARF_DECAY_THRESH 12 + +#define MIN_THRESHMULT 32 +#define MAX_THRESHMULT 512 + +#define GF_ZEROMV_ZBIN_BOOST 12 +#define LF_ZEROMV_ZBIN_BOOST 6 +#define MV_ZBIN_BOOST 4 +#define ZBIN_OQ_MAX 192 + +#define VP8_TEMPORAL_ALT_REF !CONFIG_REALTIME_ONLY + +typedef struct { + int kf_indicated; + unsigned int frames_since_key; + unsigned int frames_since_golden; + int filter_level; + int frames_till_gf_update_due; + int recent_ref_frame_usage[MAX_REF_FRAMES]; + + MV_CONTEXT mvc[2]; + int mvcosts[2][MVvals + 1]; + +#ifdef MODE_STATS + int y_modes[5]; + int uv_modes[4]; + int b_modes[10]; + int inter_y_modes[10]; + int inter_uv_modes[4]; + int inter_b_modes[10]; +#endif + + vp8_prob ymode_prob[4], uv_mode_prob[3]; /* interframe intra mode probs */ + vp8_prob kf_ymode_prob[4], kf_uv_mode_prob[3]; /* keyframe "" */ + + int ymode_count[5], uv_mode_count[4]; /* intra MB type cts this frame */ + + int count_mb_ref_frame_usage[MAX_REF_FRAMES]; + + int this_frame_percent_intra; + int last_frame_percent_intra; + +} CODING_CONTEXT; + +typedef struct { + double frame; + double intra_error; + double coded_error; + double ssim_weighted_pred_err; + double pcnt_inter; + double pcnt_motion; + double pcnt_second_ref; + double pcnt_neutral; + double MVr; + double mvr_abs; + double MVc; + double mvc_abs; + double MVrv; + double MVcv; + double mv_in_out_count; + double new_mv_count; + double duration; + double count; +} FIRSTPASS_STATS; + +typedef struct { + int frames_so_far; + double frame_intra_error; + double frame_coded_error; + double frame_pcnt_inter; + double frame_pcnt_motion; + double frame_mvr; + double frame_mvr_abs; + double frame_mvc; + double frame_mvc_abs; + +} ONEPASS_FRAMESTATS; + +typedef enum { + THR_ZERO1 = 0, + THR_DC = 1, + + THR_NEAREST1 = 2, + THR_NEAR1 = 3, + + THR_ZERO2 = 4, + THR_NEAREST2 = 5, + + THR_ZERO3 = 6, + THR_NEAREST3 = 7, + + THR_NEAR2 = 8, + THR_NEAR3 = 9, + + THR_V_PRED = 10, + THR_H_PRED = 11, + THR_TM = 12, + + THR_NEW1 = 13, + THR_NEW2 = 14, + THR_NEW3 = 15, + + THR_SPLIT1 = 16, + THR_SPLIT2 = 17, + THR_SPLIT3 = 18, + + THR_B_PRED = 19 +} THR_MODES; + +typedef enum { DIAMOND = 0, NSTEP = 1, HEX = 2 } SEARCH_METHODS; + +typedef struct { + int RD; + SEARCH_METHODS search_method; + int improved_quant; + int improved_dct; + int auto_filter; + int recode_loop; + int iterative_sub_pixel; + int half_pixel_search; + int quarter_pixel_search; + int thresh_mult[MAX_MODES]; + int max_step_search_steps; + int first_step; + int optimize_coefficients; + + int use_fastquant_for_pick; + int no_skip_block4x4_search; + int improved_mv_pred; + +} SPEED_FEATURES; + +typedef struct { + MACROBLOCK mb; + int segment_counts[MAX_MB_SEGMENTS]; + int totalrate; +} MB_ROW_COMP; + +typedef struct { + TOKENEXTRA *start; + TOKENEXTRA *stop; +} TOKENLIST; + +typedef struct { + int ithread; + void *ptr1; + void *ptr2; +} ENCODETHREAD_DATA; +typedef struct { + int ithread; + void *ptr1; +} LPFTHREAD_DATA; + +enum { + BLOCK_16X8, + BLOCK_8X16, + BLOCK_8X8, + BLOCK_4X4, + BLOCK_16X16, + BLOCK_MAX_SEGMENTS +}; + +typedef struct { + /* Layer configuration */ + double framerate; + int target_bandwidth; + + /* Layer specific coding parameters */ + int64_t starting_buffer_level; + int64_t optimal_buffer_level; + int64_t maximum_buffer_size; + int64_t starting_buffer_level_in_ms; + int64_t optimal_buffer_level_in_ms; + int64_t maximum_buffer_size_in_ms; + + int avg_frame_size_for_layer; + + int64_t buffer_level; + int64_t bits_off_target; + + int64_t total_actual_bits; + int total_target_vs_actual; + + int worst_quality; + int active_worst_quality; + int best_quality; + int active_best_quality; + + int ni_av_qi; + int ni_tot_qi; + int ni_frames; + int avg_frame_qindex; + + double rate_correction_factor; + double key_frame_rate_correction_factor; + double gf_rate_correction_factor; + + int zbin_over_quant; + + int inter_frame_target; + int64_t total_byte_count; + + int filter_level; + + int frames_since_last_drop_overshoot; + + int force_maxqp; + + int last_frame_percent_intra; + + int count_mb_ref_frame_usage[MAX_REF_FRAMES]; + +} LAYER_CONTEXT; + +typedef struct VP8_COMP { + DECLARE_ALIGNED(16, short, Y1quant[QINDEX_RANGE][16]); + DECLARE_ALIGNED(16, short, Y1quant_shift[QINDEX_RANGE][16]); + DECLARE_ALIGNED(16, short, Y1zbin[QINDEX_RANGE][16]); + DECLARE_ALIGNED(16, short, Y1round[QINDEX_RANGE][16]); + + DECLARE_ALIGNED(16, short, Y2quant[QINDEX_RANGE][16]); + DECLARE_ALIGNED(16, short, Y2quant_shift[QINDEX_RANGE][16]); + DECLARE_ALIGNED(16, short, Y2zbin[QINDEX_RANGE][16]); + DECLARE_ALIGNED(16, short, Y2round[QINDEX_RANGE][16]); + + DECLARE_ALIGNED(16, short, UVquant[QINDEX_RANGE][16]); + DECLARE_ALIGNED(16, short, UVquant_shift[QINDEX_RANGE][16]); + DECLARE_ALIGNED(16, short, UVzbin[QINDEX_RANGE][16]); + DECLARE_ALIGNED(16, short, UVround[QINDEX_RANGE][16]); + + DECLARE_ALIGNED(16, short, zrun_zbin_boost_y1[QINDEX_RANGE][16]); + DECLARE_ALIGNED(16, short, zrun_zbin_boost_y2[QINDEX_RANGE][16]); + DECLARE_ALIGNED(16, short, zrun_zbin_boost_uv[QINDEX_RANGE][16]); + DECLARE_ALIGNED(16, short, Y1quant_fast[QINDEX_RANGE][16]); + DECLARE_ALIGNED(16, short, Y2quant_fast[QINDEX_RANGE][16]); + DECLARE_ALIGNED(16, short, UVquant_fast[QINDEX_RANGE][16]); + + MACROBLOCK mb; + VP8_COMMON common; + vp8_writer bc[9]; /* one boolcoder for each partition */ + + VP8_CONFIG oxcf; + + struct lookahead_ctx *lookahead; + struct lookahead_entry *source; + struct lookahead_entry *alt_ref_source; + struct lookahead_entry *last_source; + + YV12_BUFFER_CONFIG *Source; + YV12_BUFFER_CONFIG *un_scaled_source; + YV12_BUFFER_CONFIG scaled_source; + YV12_BUFFER_CONFIG *last_frame_unscaled_source; + + unsigned int frames_till_alt_ref_frame; + /* frame in src_buffers has been identified to be encoded as an alt ref */ + int source_alt_ref_pending; + /* an alt ref frame has been encoded and is usable */ + int source_alt_ref_active; + /* source of frame to encode is an exact copy of an alt ref frame */ + int is_src_frame_alt_ref; + + /* golden frame same as last frame ( short circuit gold searches) */ + int gold_is_last; + /* Alt reference frame same as last ( short circuit altref search) */ + int alt_is_last; + /* don't do both alt and gold search ( just do gold). */ + int gold_is_alt; + + YV12_BUFFER_CONFIG pick_lf_lvl_frame; + + TOKENEXTRA *tok; + unsigned int tok_count; + + unsigned int frames_since_key; + unsigned int key_frame_frequency; + unsigned int this_key_frame_forced; + unsigned int next_key_frame_forced; + + /* Ambient reconstruction err target for force key frames */ + int ambient_err; + + unsigned int mode_check_freq[MAX_MODES]; + + int rd_baseline_thresh[MAX_MODES]; + + int RDMULT; + int RDDIV; + + CODING_CONTEXT coding_context; + + /* Rate targetting variables */ + int64_t last_prediction_error; + int64_t last_intra_error; + + int this_frame_target; + int projected_frame_size; + int last_q[2]; /* Separate values for Intra/Inter */ + + double rate_correction_factor; + double key_frame_rate_correction_factor; + double gf_rate_correction_factor; + + int frames_since_golden; + /* Count down till next GF */ + int frames_till_gf_update_due; + + /* GF interval chosen when we coded the last GF */ + int current_gf_interval; + + /* Total bits overspent becasue of GF boost (cumulative) */ + int gf_overspend_bits; + + /* Used in the few frames following a GF to recover the extra bits + * spent in that GF + */ + int non_gf_bitrate_adjustment; + + /* Extra bits spent on key frames that need to be recovered */ + int kf_overspend_bits; + + /* Current number of bit s to try and recover on each inter frame. */ + int kf_bitrate_adjustment; + int max_gf_interval; + int baseline_gf_interval; + int active_arnr_frames; + + int64_t key_frame_count; + int prior_key_frame_distance[KEY_FRAME_CONTEXT]; + /* Current section per frame bandwidth target */ + int per_frame_bandwidth; + /* Average frame size target for clip */ + int av_per_frame_bandwidth; + /* Minimum allocation that should be used for any frame */ + int min_frame_bandwidth; + int inter_frame_target; + double output_framerate; + int64_t last_time_stamp_seen; + int64_t last_end_time_stamp_seen; + int64_t first_time_stamp_ever; + + int ni_av_qi; + int ni_tot_qi; + int ni_frames; + int avg_frame_qindex; + + int64_t total_byte_count; + + int buffered_mode; + + double framerate; + double ref_framerate; + int64_t buffer_level; + int64_t bits_off_target; + + int rolling_target_bits; + int rolling_actual_bits; + + int long_rolling_target_bits; + int long_rolling_actual_bits; + + int64_t total_actual_bits; + int total_target_vs_actual; /* debug stats */ + + int worst_quality; + int active_worst_quality; + int best_quality; + int active_best_quality; + + int cq_target_quality; + + int drop_frames_allowed; /* Are we permitted to drop frames? */ + int drop_frame; /* Drop this frame? */ +#if defined(DROP_UNCODED_FRAMES) + int drop_frame_count; +#endif + + vp8_prob frame_coef_probs[BLOCK_TYPES][COEF_BANDS][PREV_COEF_CONTEXTS] + [ENTROPY_NODES]; + char update_probs[BLOCK_TYPES][COEF_BANDS][PREV_COEF_CONTEXTS][ENTROPY_NODES]; + + unsigned int frame_branch_ct[BLOCK_TYPES][COEF_BANDS][PREV_COEF_CONTEXTS] + [ENTROPY_NODES][2]; + + int gfu_boost; + int kf_boost; + int last_boost; + + int target_bandwidth; + struct vpx_codec_pkt_list *output_pkt_list; + +#if 0 + /* Experimental code for lagged and one pass */ + ONEPASS_FRAMESTATS one_pass_frame_stats[MAX_LAG_BUFFERS]; + int one_pass_frame_index; +#endif + + int decimation_factor; + int decimation_count; + + /* for real time encoding */ + int avg_encode_time; /* microsecond */ + int avg_pick_mode_time; /* microsecond */ + int Speed; + int compressor_speed; + + int auto_gold; + int auto_adjust_gold_quantizer; + int auto_worst_q; + int cpu_used; + int pass; + + int prob_intra_coded; + int prob_last_coded; + int prob_gf_coded; + int prob_skip_false; + int last_skip_false_probs[3]; + int last_skip_probs_q[3]; + int recent_ref_frame_usage[MAX_REF_FRAMES]; + + int this_frame_percent_intra; + int last_frame_percent_intra; + + int ref_frame_flags; + + SPEED_FEATURES sf; + + /* Count ZEROMV on all reference frames. */ + int zeromv_count; + int lf_zeromv_pct; + + unsigned char *skin_map; + + unsigned char *segmentation_map; + signed char segment_feature_data[MB_LVL_MAX][MAX_MB_SEGMENTS]; + int segment_encode_breakout[MAX_MB_SEGMENTS]; + + unsigned char *active_map; + unsigned int active_map_enabled; + + /* Video conferencing cyclic refresh mode flags. This is a mode + * designed to clean up the background over time in live encoding + * scenarious. It uses segmentation. + */ + int cyclic_refresh_mode_enabled; + int cyclic_refresh_mode_max_mbs_perframe; + int cyclic_refresh_mode_index; + int cyclic_refresh_q; + signed char *cyclic_refresh_map; + // Count on how many (consecutive) times a macroblock uses ZER0MV_LAST. + unsigned char *consec_zero_last; + // Counter that is reset when a block is checked for a mode-bias against + // ZEROMV_LASTREF. + unsigned char *consec_zero_last_mvbias; + + // Frame counter for the temporal pattern. Counter is rest when the temporal + // layers are changed dynamically (run-time change). + unsigned int temporal_pattern_counter; + // Temporal layer id. + int temporal_layer_id; + + // Measure of average squared difference between source and denoised signal. + int mse_source_denoised; + + int force_maxqp; + int frames_since_last_drop_overshoot; + + // GF update for 1 pass cbr. + int gf_update_onepass_cbr; + int gf_interval_onepass_cbr; + int gf_noboost_onepass_cbr; + +#if CONFIG_MULTITHREAD + /* multithread data */ + vpx_atomic_int *mt_current_mb_col; + int mt_sync_range; + vpx_atomic_int b_multi_threaded; + int encoding_thread_count; + int b_lpf_running; + + pthread_t *h_encoding_thread; + pthread_t h_filter_thread; + + MB_ROW_COMP *mb_row_ei; + ENCODETHREAD_DATA *en_thread_data; + LPFTHREAD_DATA lpf_thread_data; + + /* events */ + sem_t *h_event_start_encoding; + sem_t *h_event_end_encoding; + sem_t h_event_start_lpf; + sem_t h_event_end_lpf; +#endif + + TOKENLIST *tplist; + unsigned int partition_sz[MAX_PARTITIONS]; + unsigned char *partition_d[MAX_PARTITIONS]; + unsigned char *partition_d_end[MAX_PARTITIONS]; + + fractional_mv_step_fp *find_fractional_mv_step; + vp8_full_search_fn_t full_search_sad; + vp8_refining_search_fn_t refining_search_sad; + vp8_diamond_search_fn_t diamond_search_sad; + vp8_variance_fn_ptr_t fn_ptr[BLOCK_MAX_SEGMENTS]; + uint64_t time_receive_data; + uint64_t time_compress_data; + uint64_t time_pick_lpf; + uint64_t time_encode_mb_row; + + int base_skip_false_prob[128]; + + FRAME_CONTEXT lfc_n; /* last frame entropy */ + FRAME_CONTEXT lfc_a; /* last alt ref entropy */ + FRAME_CONTEXT lfc_g; /* last gold ref entropy */ + + struct twopass_rc { + unsigned int section_intra_rating; + double section_max_qfactor; + unsigned int next_iiratio; + unsigned int this_iiratio; + FIRSTPASS_STATS total_stats; + FIRSTPASS_STATS this_frame_stats; + FIRSTPASS_STATS *stats_in, *stats_in_end, *stats_in_start; + FIRSTPASS_STATS total_left_stats; + int first_pass_done; + int64_t bits_left; + int64_t clip_bits_total; + double avg_iiratio; + double modified_error_total; + double modified_error_used; + double modified_error_left; + double kf_intra_err_min; + double gf_intra_err_min; + int frames_to_key; + int maxq_max_limit; + int maxq_min_limit; + int gf_decay_rate; + int static_scene_max_gf_interval; + int kf_bits; + /* Remaining error from uncoded frames in a gf group. */ + int gf_group_error_left; + /* Projected total bits available for a key frame group of frames */ + int64_t kf_group_bits; + /* Error score of frames still to be coded in kf group */ + int64_t kf_group_error_left; + /* Projected Bits available for a group including 1 GF or ARF */ + int64_t gf_group_bits; + /* Bits for the golden frame or ARF */ + int gf_bits; + int alt_extra_bits; + double est_max_qcorrection_factor; + } twopass; + +#if VP8_TEMPORAL_ALT_REF + YV12_BUFFER_CONFIG alt_ref_buffer; + YV12_BUFFER_CONFIG *frames[MAX_LAG_BUFFERS]; + int fixed_divide[512]; +#endif + +#if CONFIG_INTERNAL_STATS + int count; + double total_y; + double total_u; + double total_v; + double total; + double total_sq_error; + double totalp_y; + double totalp_u; + double totalp_v; + double totalp; + double total_sq_error2; + int bytes; + double summed_quality; + double summed_weights; + unsigned int tot_recode_hits; + + int b_calculate_ssimg; +#endif + int b_calculate_psnr; + + /* Per MB activity measurement */ + unsigned int activity_avg; + unsigned int *mb_activity_map; + + /* Record of which MBs still refer to last golden frame either + * directly or through 0,0 + */ + unsigned char *gf_active_flags; + int gf_active_count; + + int output_partition; + + /* Store last frame's MV info for next frame MV prediction */ + int_mv *lfmv; + int *lf_ref_frame_sign_bias; + int *lf_ref_frame; + + /* force next frame to intra when kf_auto says so */ + int force_next_frame_intra; + + int droppable; + + int initial_width; + int initial_height; + +#if CONFIG_TEMPORAL_DENOISING + VP8_DENOISER denoiser; +#endif + + /* Coding layer state variables */ + unsigned int current_layer; + LAYER_CONTEXT layer_context[VPX_TS_MAX_LAYERS]; + + int64_t frames_in_layer[VPX_TS_MAX_LAYERS]; + int64_t bytes_in_layer[VPX_TS_MAX_LAYERS]; + double sum_psnr[VPX_TS_MAX_LAYERS]; + double sum_psnr_p[VPX_TS_MAX_LAYERS]; + double total_error2[VPX_TS_MAX_LAYERS]; + double total_error2_p[VPX_TS_MAX_LAYERS]; + double sum_ssim[VPX_TS_MAX_LAYERS]; + double sum_weights[VPX_TS_MAX_LAYERS]; + + double total_ssimg_y_in_layer[VPX_TS_MAX_LAYERS]; + double total_ssimg_u_in_layer[VPX_TS_MAX_LAYERS]; + double total_ssimg_v_in_layer[VPX_TS_MAX_LAYERS]; + double total_ssimg_all_in_layer[VPX_TS_MAX_LAYERS]; + +#if CONFIG_MULTI_RES_ENCODING + /* Number of MBs per row at lower-resolution level */ + int mr_low_res_mb_cols; + /* Indicate if lower-res mv info is available */ + unsigned char mr_low_res_mv_avail; +#endif + /* The frame number of each reference frames */ + unsigned int current_ref_frames[MAX_REF_FRAMES]; + // Closest reference frame to current frame. + MV_REFERENCE_FRAME closest_reference_frame; + + struct rd_costs_struct { + int mvcosts[2][MVvals + 1]; + int mvsadcosts[2][MVfpvals + 1]; + int mbmode_cost[2][MB_MODE_COUNT]; + int intra_uv_mode_cost[2][MB_MODE_COUNT]; + int bmode_costs[10][10][10]; + int inter_bmode_costs[B_MODE_COUNT]; + int token_costs[BLOCK_TYPES][COEF_BANDS][PREV_COEF_CONTEXTS] + [MAX_ENTROPY_TOKENS]; + } rd_costs; + + // Use the static threshold from ROI settings. + int use_roi_static_threshold; +} VP8_COMP; + +void vp8_initialize_enc(void); + +void vp8_alloc_compressor_data(VP8_COMP *cpi); +int vp8_reverse_trans(int x); +void vp8_new_framerate(VP8_COMP *cpi, double framerate); +void vp8_loopfilter_frame(VP8_COMP *cpi, VP8_COMMON *cm); + +void vp8_pack_bitstream(VP8_COMP *cpi, unsigned char *dest, + unsigned char *dest_end, size_t *size); + +void vp8_tokenize_mb(VP8_COMP *, MACROBLOCK *, TOKENEXTRA **); + +void vp8_set_speed_features(VP8_COMP *cpi); + +#if CONFIG_DEBUG +#define CHECK_MEM_ERROR(lval, expr) \ + do { \ + lval = (expr); \ + if (!lval) \ + vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR, \ + "Failed to allocate " #lval " at %s:%d", __FILE__, \ + __LINE__); \ + } while (0) +#else +#define CHECK_MEM_ERROR(lval, expr) \ + do { \ + lval = (expr); \ + if (!lval) \ + vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR, \ + "Failed to allocate " #lval); \ + } while (0) +#endif +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP8_ENCODER_ONYX_INT_H_ diff --git a/vp8/encoder/pickinter.c b/vp8/encoder/pickinter.c new file mode 100644 index 0000000..a9943eb --- /dev/null +++ b/vp8/encoder/pickinter.c @@ -0,0 +1,1343 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include +#include "vpx_config.h" +#include "./vpx_dsp_rtcd.h" +#include "onyx_int.h" +#include "modecosts.h" +#include "encodeintra.h" +#include "vp8/common/common.h" +#include "vp8/common/entropymode.h" +#include "pickinter.h" +#include "vp8/common/findnearmv.h" +#include "encodemb.h" +#include "vp8/common/reconinter.h" +#include "vp8/common/reconintra.h" +#include "vp8/common/reconintra4x4.h" +#include "vpx_dsp/variance.h" +#include "mcomp.h" +#include "vp8/common/vp8_skin_detection.h" +#include "rdopt.h" +#include "vpx_dsp/vpx_dsp_common.h" +#include "vpx_mem/vpx_mem.h" +#if CONFIG_TEMPORAL_DENOISING +#include "denoising.h" +#endif + +#ifdef SPEEDSTATS +extern unsigned int cnt_pm; +#endif + +extern const int vp8_ref_frame_order[MAX_MODES]; +extern const MB_PREDICTION_MODE vp8_mode_order[MAX_MODES]; + +static int macroblock_corner_grad(unsigned char *signal, int stride, + int offsetx, int offsety, int sgnx, + int sgny) { + int y1 = signal[offsetx * stride + offsety]; + int y2 = signal[offsetx * stride + offsety + sgny]; + int y3 = signal[(offsetx + sgnx) * stride + offsety]; + int y4 = signal[(offsetx + sgnx) * stride + offsety + sgny]; + return VPXMAX(VPXMAX(abs(y1 - y2), abs(y1 - y3)), abs(y1 - y4)); +} + +static int check_dot_artifact_candidate(VP8_COMP *cpi, MACROBLOCK *x, + unsigned char *target_last, int stride, + unsigned char *last_ref, int mb_row, + int mb_col, int channel) { + int threshold1 = 6; + int threshold2 = 3; + unsigned int max_num = (cpi->common.MBs) / 10; + int grad_last = 0; + int grad_source = 0; + int index = mb_row * cpi->common.mb_cols + mb_col; + // Threshold for #consecutive (base layer) frames using zero_last mode. + int num_frames = 30; + int shift = 15; + if (channel > 0) { + shift = 7; + } + if (cpi->oxcf.number_of_layers > 1) { + num_frames = 20; + } + x->zero_last_dot_suppress = 0; + // Blocks on base layer frames that have been using ZEROMV_LAST repeatedly + // (i.e, at least |x| consecutive frames are candidates for increasing the + // rd adjustment for zero_last mode. + // Only allow this for at most |max_num| blocks per frame. + // Don't allow this for screen content input. + if (cpi->current_layer == 0 && + cpi->consec_zero_last_mvbias[index] > num_frames && + x->mbs_zero_last_dot_suppress < max_num && + !cpi->oxcf.screen_content_mode) { + // If this block is checked here, label it so we don't check it again until + // ~|x| framaes later. + x->zero_last_dot_suppress = 1; + // Dot artifact is noticeable as strong gradient at corners of macroblock, + // for flat areas. As a simple detector for now, we look for a high + // corner gradient on last ref, and a smaller gradient on source. + // Check 4 corners, return if any satisfy condition. + // Top-left: + grad_last = macroblock_corner_grad(last_ref, stride, 0, 0, 1, 1); + grad_source = macroblock_corner_grad(target_last, stride, 0, 0, 1, 1); + if (grad_last >= threshold1 && grad_source <= threshold2) { + x->mbs_zero_last_dot_suppress++; + return 1; + } + // Top-right: + grad_last = macroblock_corner_grad(last_ref, stride, 0, shift, 1, -1); + grad_source = macroblock_corner_grad(target_last, stride, 0, shift, 1, -1); + if (grad_last >= threshold1 && grad_source <= threshold2) { + x->mbs_zero_last_dot_suppress++; + return 1; + } + // Bottom-left: + grad_last = macroblock_corner_grad(last_ref, stride, shift, 0, -1, 1); + grad_source = macroblock_corner_grad(target_last, stride, shift, 0, -1, 1); + if (grad_last >= threshold1 && grad_source <= threshold2) { + x->mbs_zero_last_dot_suppress++; + return 1; + } + // Bottom-right: + grad_last = macroblock_corner_grad(last_ref, stride, shift, shift, -1, -1); + grad_source = + macroblock_corner_grad(target_last, stride, shift, shift, -1, -1); + if (grad_last >= threshold1 && grad_source <= threshold2) { + x->mbs_zero_last_dot_suppress++; + return 1; + } + return 0; + } + return 0; +} + +int vp8_skip_fractional_mv_step(MACROBLOCK *mb, BLOCK *b, BLOCKD *d, + int_mv *bestmv, int_mv *ref_mv, + int error_per_bit, + const vp8_variance_fn_ptr_t *vfp, + int *mvcost[2], int *distortion, + unsigned int *sse) { + (void)b; + (void)d; + (void)ref_mv; + (void)error_per_bit; + (void)vfp; + (void)mb; + (void)mvcost; + (void)distortion; + (void)sse; + bestmv->as_mv.row *= 8; + bestmv->as_mv.col *= 8; + return 0; +} + +int vp8_get_inter_mbpred_error(MACROBLOCK *mb, const vp8_variance_fn_ptr_t *vfp, + unsigned int *sse, int_mv this_mv) { + BLOCK *b = &mb->block[0]; + BLOCKD *d = &mb->e_mbd.block[0]; + unsigned char *what = (*(b->base_src) + b->src); + int what_stride = b->src_stride; + int pre_stride = mb->e_mbd.pre.y_stride; + unsigned char *in_what = mb->e_mbd.pre.y_buffer + d->offset; + int in_what_stride = pre_stride; + int xoffset = this_mv.as_mv.col & 7; + int yoffset = this_mv.as_mv.row & 7; + + in_what += (this_mv.as_mv.row >> 3) * pre_stride + (this_mv.as_mv.col >> 3); + + if (xoffset | yoffset) { + return vfp->svf(in_what, in_what_stride, xoffset, yoffset, what, + what_stride, sse); + } else { + return vfp->vf(what, what_stride, in_what, in_what_stride, sse); + } +} + +static int get_prediction_error(BLOCK *be, BLOCKD *b) { + unsigned char *sptr; + unsigned char *dptr; + sptr = (*(be->base_src) + be->src); + dptr = b->predictor; + + return vpx_get4x4sse_cs(sptr, be->src_stride, dptr, 16); +} + +static int pick_intra4x4block(MACROBLOCK *x, int ib, + B_PREDICTION_MODE *best_mode, + const int *mode_costs, + + int *bestrate, int *bestdistortion) { + BLOCKD *b = &x->e_mbd.block[ib]; + BLOCK *be = &x->block[ib]; + int dst_stride = x->e_mbd.dst.y_stride; + unsigned char *dst = x->e_mbd.dst.y_buffer + b->offset; + B_PREDICTION_MODE mode; + int best_rd = INT_MAX; + int rate; + int distortion; + + unsigned char *Above = dst - dst_stride; + unsigned char *yleft = dst - 1; + unsigned char top_left = Above[-1]; + + for (mode = B_DC_PRED; mode <= B_HE_PRED; ++mode) { + int this_rd; + + rate = mode_costs[mode]; + + vp8_intra4x4_predict(Above, yleft, dst_stride, mode, b->predictor, 16, + top_left); + distortion = get_prediction_error(be, b); + this_rd = RDCOST(x->rdmult, x->rddiv, rate, distortion); + + if (this_rd < best_rd) { + *bestrate = rate; + *bestdistortion = distortion; + best_rd = this_rd; + *best_mode = mode; + } + } + + b->bmi.as_mode = *best_mode; + vp8_encode_intra4x4block(x, ib); + return best_rd; +} + +static int pick_intra4x4mby_modes(MACROBLOCK *mb, int *Rate, int *best_dist) { + MACROBLOCKD *const xd = &mb->e_mbd; + int i; + int cost = mb->mbmode_cost[xd->frame_type][B_PRED]; + int error; + int distortion = 0; + const int *bmode_costs; + + intra_prediction_down_copy(xd, xd->dst.y_buffer - xd->dst.y_stride + 16); + + bmode_costs = mb->inter_bmode_costs; + + for (i = 0; i < 16; ++i) { + MODE_INFO *const mic = xd->mode_info_context; + const int mis = xd->mode_info_stride; + + B_PREDICTION_MODE best_mode = B_MODE_COUNT; + int r = 0, d = 0; + + if (mb->e_mbd.frame_type == KEY_FRAME) { + const B_PREDICTION_MODE A = above_block_mode(mic, i, mis); + const B_PREDICTION_MODE L = left_block_mode(mic, i); + + bmode_costs = mb->bmode_costs[A][L]; + } + + pick_intra4x4block(mb, i, &best_mode, bmode_costs, &r, &d); + + cost += r; + distortion += d; + assert(best_mode != B_MODE_COUNT); + mic->bmi[i].as_mode = best_mode; + + /* Break out case where we have already exceeded best so far value + * that was passed in + */ + if (distortion > *best_dist) break; + } + + *Rate = cost; + + if (i == 16) { + *best_dist = distortion; + error = RDCOST(mb->rdmult, mb->rddiv, cost, distortion); + } else { + *best_dist = INT_MAX; + error = INT_MAX; + } + + return error; +} + +static void pick_intra_mbuv_mode(MACROBLOCK *mb) { + MACROBLOCKD *x = &mb->e_mbd; + unsigned char *uabove_row = x->dst.u_buffer - x->dst.uv_stride; + unsigned char *vabove_row = x->dst.v_buffer - x->dst.uv_stride; + unsigned char *usrc_ptr = (mb->block[16].src + *mb->block[16].base_src); + unsigned char *vsrc_ptr = (mb->block[20].src + *mb->block[20].base_src); + int uvsrc_stride = mb->block[16].src_stride; + unsigned char uleft_col[8]; + unsigned char vleft_col[8]; + unsigned char utop_left = uabove_row[-1]; + unsigned char vtop_left = vabove_row[-1]; + int i, j; + int expected_udc; + int expected_vdc; + int shift; + int Uaverage = 0; + int Vaverage = 0; + int diff; + int pred_error[4] = { 0, 0, 0, 0 }, best_error = INT_MAX; + MB_PREDICTION_MODE best_mode = MB_MODE_COUNT; + + for (i = 0; i < 8; ++i) { + uleft_col[i] = x->dst.u_buffer[i * x->dst.uv_stride - 1]; + vleft_col[i] = x->dst.v_buffer[i * x->dst.uv_stride - 1]; + } + + if (!x->up_available && !x->left_available) { + expected_udc = 128; + expected_vdc = 128; + } else { + shift = 2; + + if (x->up_available) { + for (i = 0; i < 8; ++i) { + Uaverage += uabove_row[i]; + Vaverage += vabove_row[i]; + } + + shift++; + } + + if (x->left_available) { + for (i = 0; i < 8; ++i) { + Uaverage += uleft_col[i]; + Vaverage += vleft_col[i]; + } + + shift++; + } + + expected_udc = (Uaverage + (1 << (shift - 1))) >> shift; + expected_vdc = (Vaverage + (1 << (shift - 1))) >> shift; + } + + for (i = 0; i < 8; ++i) { + for (j = 0; j < 8; ++j) { + int predu = uleft_col[i] + uabove_row[j] - utop_left; + int predv = vleft_col[i] + vabove_row[j] - vtop_left; + int u_p, v_p; + + u_p = usrc_ptr[j]; + v_p = vsrc_ptr[j]; + + if (predu < 0) predu = 0; + + if (predu > 255) predu = 255; + + if (predv < 0) predv = 0; + + if (predv > 255) predv = 255; + + diff = u_p - expected_udc; + pred_error[DC_PRED] += diff * diff; + diff = v_p - expected_vdc; + pred_error[DC_PRED] += diff * diff; + + diff = u_p - uabove_row[j]; + pred_error[V_PRED] += diff * diff; + diff = v_p - vabove_row[j]; + pred_error[V_PRED] += diff * diff; + + diff = u_p - uleft_col[i]; + pred_error[H_PRED] += diff * diff; + diff = v_p - vleft_col[i]; + pred_error[H_PRED] += diff * diff; + + diff = u_p - predu; + pred_error[TM_PRED] += diff * diff; + diff = v_p - predv; + pred_error[TM_PRED] += diff * diff; + } + + usrc_ptr += uvsrc_stride; + vsrc_ptr += uvsrc_stride; + + if (i == 3) { + usrc_ptr = (mb->block[18].src + *mb->block[18].base_src); + vsrc_ptr = (mb->block[22].src + *mb->block[22].base_src); + } + } + + for (i = DC_PRED; i <= TM_PRED; ++i) { + if (best_error > pred_error[i]) { + best_error = pred_error[i]; + best_mode = (MB_PREDICTION_MODE)i; + } + } + + assert(best_mode != MB_MODE_COUNT); + mb->e_mbd.mode_info_context->mbmi.uv_mode = best_mode; +} + +static void update_mvcount(MACROBLOCK *x, int_mv *best_ref_mv) { + MACROBLOCKD *xd = &x->e_mbd; + /* Split MV modes currently not supported when RD is nopt enabled, + * therefore, only need to modify MVcount in NEWMV mode. */ + if (xd->mode_info_context->mbmi.mode == NEWMV) { + x->MVcount[0][mv_max + ((xd->mode_info_context->mbmi.mv.as_mv.row - + best_ref_mv->as_mv.row) >> + 1)]++; + x->MVcount[1][mv_max + ((xd->mode_info_context->mbmi.mv.as_mv.col - + best_ref_mv->as_mv.col) >> + 1)]++; + } +} + +#if CONFIG_MULTI_RES_ENCODING +static void get_lower_res_motion_info(VP8_COMP *cpi, MACROBLOCKD *xd, + int *dissim, int *parent_ref_frame, + MB_PREDICTION_MODE *parent_mode, + int_mv *parent_ref_mv, int mb_row, + int mb_col) { + LOWER_RES_MB_INFO *store_mode_info = + ((LOWER_RES_FRAME_INFO *)cpi->oxcf.mr_low_res_mode_info)->mb_info; + unsigned int parent_mb_index; + + /* Consider different down_sampling_factor. */ + { + /* TODO: Removed the loop that supports special down_sampling_factor + * such as 2, 4, 8. Will revisit it if needed. + * Should also try using a look-up table to see if it helps + * performance. */ + int parent_mb_row, parent_mb_col; + + parent_mb_row = mb_row * cpi->oxcf.mr_down_sampling_factor.den / + cpi->oxcf.mr_down_sampling_factor.num; + parent_mb_col = mb_col * cpi->oxcf.mr_down_sampling_factor.den / + cpi->oxcf.mr_down_sampling_factor.num; + parent_mb_index = parent_mb_row * cpi->mr_low_res_mb_cols + parent_mb_col; + } + + /* Read lower-resolution mode & motion result from memory.*/ + *parent_ref_frame = store_mode_info[parent_mb_index].ref_frame; + *parent_mode = store_mode_info[parent_mb_index].mode; + *dissim = store_mode_info[parent_mb_index].dissim; + + /* For highest-resolution encoder, adjust dissim value. Lower its quality + * for good performance. */ + if (cpi->oxcf.mr_encoder_id == (cpi->oxcf.mr_total_resolutions - 1)) + *dissim >>= 1; + + if (*parent_ref_frame != INTRA_FRAME) { + /* Consider different down_sampling_factor. + * The result can be rounded to be more precise, but it takes more time. + */ + (*parent_ref_mv).as_mv.row = store_mode_info[parent_mb_index].mv.as_mv.row * + cpi->oxcf.mr_down_sampling_factor.num / + cpi->oxcf.mr_down_sampling_factor.den; + (*parent_ref_mv).as_mv.col = store_mode_info[parent_mb_index].mv.as_mv.col * + cpi->oxcf.mr_down_sampling_factor.num / + cpi->oxcf.mr_down_sampling_factor.den; + + vp8_clamp_mv2(parent_ref_mv, xd); + } +} +#endif + +static void check_for_encode_breakout(unsigned int sse, MACROBLOCK *x) { + MACROBLOCKD *xd = &x->e_mbd; + + unsigned int threshold = + (xd->block[0].dequant[1] * xd->block[0].dequant[1] >> 4); + + if (threshold < x->encode_breakout) threshold = x->encode_breakout; + + if (sse < threshold) { + /* Check u and v to make sure skip is ok */ + unsigned int sse2 = 0; + + sse2 = VP8_UVSSE(x); + + if (sse2 * 2 < x->encode_breakout) { + x->skip = 1; + } else { + x->skip = 0; + } + } +} + +static int evaluate_inter_mode(unsigned int *sse, int rate2, int *distortion2, + VP8_COMP *cpi, MACROBLOCK *x, int rd_adj) { + MB_PREDICTION_MODE this_mode = x->e_mbd.mode_info_context->mbmi.mode; + int_mv mv = x->e_mbd.mode_info_context->mbmi.mv; + int this_rd; + int denoise_aggressive = 0; + /* Exit early and don't compute the distortion if this macroblock + * is marked inactive. */ + if (cpi->active_map_enabled && x->active_ptr[0] == 0) { + *sse = 0; + *distortion2 = 0; + x->skip = 1; + return INT_MAX; + } + + if ((this_mode != NEWMV) || !(cpi->sf.half_pixel_search) || + cpi->common.full_pixel == 1) { + *distortion2 = + vp8_get_inter_mbpred_error(x, &cpi->fn_ptr[BLOCK_16X16], sse, mv); + } + + this_rd = RDCOST(x->rdmult, x->rddiv, rate2, *distortion2); + +#if CONFIG_TEMPORAL_DENOISING + if (cpi->oxcf.noise_sensitivity > 0) { + denoise_aggressive = + (cpi->denoiser.denoiser_mode == kDenoiserOnYUVAggressive) ? 1 : 0; + } +#endif + + // Adjust rd for ZEROMV and LAST, if LAST is the closest reference frame. + // TODO: We should also add condition on distance of closest to current. + if (!cpi->oxcf.screen_content_mode && this_mode == ZEROMV && + x->e_mbd.mode_info_context->mbmi.ref_frame == LAST_FRAME && + (denoise_aggressive || (cpi->closest_reference_frame == LAST_FRAME))) { + // No adjustment if block is considered to be skin area. + if (x->is_skin) rd_adj = 100; + + this_rd = (int)(((int64_t)this_rd) * rd_adj / 100); + } + + check_for_encode_breakout(*sse, x); + return this_rd; +} + +static void calculate_zeromv_rd_adjustment(VP8_COMP *cpi, MACROBLOCK *x, + int *rd_adjustment) { + MODE_INFO *mic = x->e_mbd.mode_info_context; + int_mv mv_l, mv_a, mv_al; + int local_motion_check = 0; + + if (cpi->lf_zeromv_pct > 40) { + /* left mb */ + mic -= 1; + mv_l = mic->mbmi.mv; + + if (mic->mbmi.ref_frame != INTRA_FRAME) { + if (abs(mv_l.as_mv.row) < 8 && abs(mv_l.as_mv.col) < 8) { + local_motion_check++; + } + } + + /* above-left mb */ + mic -= x->e_mbd.mode_info_stride; + mv_al = mic->mbmi.mv; + + if (mic->mbmi.ref_frame != INTRA_FRAME) { + if (abs(mv_al.as_mv.row) < 8 && abs(mv_al.as_mv.col) < 8) { + local_motion_check++; + } + } + + /* above mb */ + mic += 1; + mv_a = mic->mbmi.mv; + + if (mic->mbmi.ref_frame != INTRA_FRAME) { + if (abs(mv_a.as_mv.row) < 8 && abs(mv_a.as_mv.col) < 8) { + local_motion_check++; + } + } + + if (((!x->e_mbd.mb_to_top_edge || !x->e_mbd.mb_to_left_edge) && + local_motion_check > 0) || + local_motion_check > 2) { + *rd_adjustment = 80; + } else if (local_motion_check > 0) { + *rd_adjustment = 90; + } + } +} + +void vp8_pick_inter_mode(VP8_COMP *cpi, MACROBLOCK *x, int recon_yoffset, + int recon_uvoffset, int *returnrate, + int *returndistortion, int *returnintra, int mb_row, + int mb_col) { + BLOCK *b = &x->block[0]; + BLOCKD *d = &x->e_mbd.block[0]; + MACROBLOCKD *xd = &x->e_mbd; + MB_MODE_INFO best_mbmode; + + int_mv best_ref_mv_sb[2]; + int_mv mode_mv_sb[2][MB_MODE_COUNT]; + int_mv best_ref_mv; + int_mv *mode_mv; + MB_PREDICTION_MODE this_mode; + int num00; + int mdcounts[4]; + int best_rd = INT_MAX; + int rd_adjustment = 100; + int best_intra_rd = INT_MAX; + int mode_index; + int rate; + int rate2; + int distortion2; + int bestsme = INT_MAX; + int best_mode_index = 0; + unsigned int sse = UINT_MAX, best_rd_sse = UINT_MAX; +#if CONFIG_TEMPORAL_DENOISING + unsigned int zero_mv_sse = UINT_MAX, best_sse = UINT_MAX; +#endif + + int sf_improved_mv_pred = cpi->sf.improved_mv_pred; + +#if CONFIG_MULTI_RES_ENCODING + int dissim = INT_MAX; + int parent_ref_frame = 0; + int_mv parent_ref_mv; + MB_PREDICTION_MODE parent_mode = 0; + int parent_ref_valid = 0; +#endif + + int_mv mvp; + + int near_sadidx[8] = { 0, 1, 2, 3, 4, 5, 6, 7 }; + int saddone = 0; + /* search range got from mv_pred(). It uses step_param levels. (0-7) */ + int sr = 0; + + unsigned char *plane[4][3]; + int ref_frame_map[4]; + int sign_bias = 0; + int dot_artifact_candidate = 0; + get_predictor_pointers(cpi, plane, recon_yoffset, recon_uvoffset); + + // If the current frame is using LAST as a reference, check for + // biasing the mode selection for dot artifacts. + if (cpi->ref_frame_flags & VP8_LAST_FRAME) { + unsigned char *target_y = x->src.y_buffer; + unsigned char *target_u = x->block[16].src + *x->block[16].base_src; + unsigned char *target_v = x->block[20].src + *x->block[20].base_src; + int stride = x->src.y_stride; + int stride_uv = x->block[16].src_stride; +#if CONFIG_TEMPORAL_DENOISING + if (cpi->oxcf.noise_sensitivity) { + const int uv_denoise = (cpi->oxcf.noise_sensitivity >= 2) ? 1 : 0; + target_y = + cpi->denoiser.yv12_running_avg[LAST_FRAME].y_buffer + recon_yoffset; + stride = cpi->denoiser.yv12_running_avg[LAST_FRAME].y_stride; + if (uv_denoise) { + target_u = cpi->denoiser.yv12_running_avg[LAST_FRAME].u_buffer + + recon_uvoffset; + target_v = cpi->denoiser.yv12_running_avg[LAST_FRAME].v_buffer + + recon_uvoffset; + stride_uv = cpi->denoiser.yv12_running_avg[LAST_FRAME].uv_stride; + } + } +#endif + dot_artifact_candidate = check_dot_artifact_candidate( + cpi, x, target_y, stride, plane[LAST_FRAME][0], mb_row, mb_col, 0); + // If not found in Y channel, check UV channel. + if (!dot_artifact_candidate) { + dot_artifact_candidate = check_dot_artifact_candidate( + cpi, x, target_u, stride_uv, plane[LAST_FRAME][1], mb_row, mb_col, 1); + if (!dot_artifact_candidate) { + dot_artifact_candidate = check_dot_artifact_candidate( + cpi, x, target_v, stride_uv, plane[LAST_FRAME][2], mb_row, mb_col, + 2); + } + } + } + +#if CONFIG_MULTI_RES_ENCODING + // |parent_ref_valid| will be set here if potentially we can do mv resue for + // this higher resol (|cpi->oxcf.mr_encoder_id| > 0) frame. + // |parent_ref_valid| may be reset depending on |parent_ref_frame| for + // the current macroblock below. + parent_ref_valid = cpi->oxcf.mr_encoder_id && cpi->mr_low_res_mv_avail; + if (parent_ref_valid) { + int parent_ref_flag; + + get_lower_res_motion_info(cpi, xd, &dissim, &parent_ref_frame, &parent_mode, + &parent_ref_mv, mb_row, mb_col); + + /* TODO(jkoleszar): The references available (ref_frame_flags) to the + * lower res encoder should match those available to this encoder, but + * there seems to be a situation where this mismatch can happen in the + * case of frame dropping and temporal layers. For example, + * GOLD being disallowed in ref_frame_flags, but being returned as + * parent_ref_frame. + * + * In this event, take the conservative approach of disabling the + * lower res info for this MB. + */ + + parent_ref_flag = 0; + // Note availability for mv reuse is only based on last and golden. + if (parent_ref_frame == LAST_FRAME) + parent_ref_flag = (cpi->ref_frame_flags & VP8_LAST_FRAME); + else if (parent_ref_frame == GOLDEN_FRAME) + parent_ref_flag = (cpi->ref_frame_flags & VP8_GOLD_FRAME); + + // assert(!parent_ref_frame || parent_ref_flag); + + // If |parent_ref_frame| did not match either last or golden then + // shut off mv reuse. + if (parent_ref_frame && !parent_ref_flag) parent_ref_valid = 0; + + // Don't do mv reuse since we want to allow for another mode besides + // ZEROMV_LAST to remove dot artifact. + if (dot_artifact_candidate) parent_ref_valid = 0; + } +#endif + + // Check if current macroblock is in skin area. + x->is_skin = 0; + if (!cpi->oxcf.screen_content_mode) { + int block_index = mb_row * cpi->common.mb_cols + mb_col; + x->is_skin = cpi->skin_map[block_index]; + } +#if CONFIG_TEMPORAL_DENOISING + if (cpi->oxcf.noise_sensitivity) { + // Under aggressive denoising mode, should we use skin map to reduce + // denoiser + // and ZEROMV bias? Will need to revisit the accuracy of this detection for + // very noisy input. For now keep this as is (i.e., don't turn it off). + // if (cpi->denoiser.denoiser_mode == kDenoiserOnYUVAggressive) + // x->is_skin = 0; + } +#endif + + mode_mv = mode_mv_sb[sign_bias]; + best_ref_mv.as_int = 0; + memset(mode_mv_sb, 0, sizeof(mode_mv_sb)); + memset(&best_mbmode, 0, sizeof(best_mbmode)); + +/* Setup search priorities */ +#if CONFIG_MULTI_RES_ENCODING + if (parent_ref_valid && parent_ref_frame && dissim < 8) { + ref_frame_map[0] = -1; + ref_frame_map[1] = parent_ref_frame; + ref_frame_map[2] = -1; + ref_frame_map[3] = -1; + } else +#endif + get_reference_search_order(cpi, ref_frame_map); + + /* Check to see if there is at least 1 valid reference frame that we need + * to calculate near_mvs. + */ + if (ref_frame_map[1] > 0) { + sign_bias = vp8_find_near_mvs_bias( + &x->e_mbd, x->e_mbd.mode_info_context, mode_mv_sb, best_ref_mv_sb, + mdcounts, ref_frame_map[1], cpi->common.ref_frame_sign_bias); + + mode_mv = mode_mv_sb[sign_bias]; + best_ref_mv.as_int = best_ref_mv_sb[sign_bias].as_int; + } + + /* Count of the number of MBs tested so far this frame */ + x->mbs_tested_so_far++; + + *returnintra = INT_MAX; + x->skip = 0; + + x->e_mbd.mode_info_context->mbmi.ref_frame = INTRA_FRAME; + + /* If the frame has big static background and current MB is in low + * motion area, its mode decision is biased to ZEROMV mode. + * No adjustment if cpu_used is <= -12 (i.e., cpi->Speed >= 12). + * At such speed settings, ZEROMV is already heavily favored. + */ + if (cpi->Speed < 12) { + calculate_zeromv_rd_adjustment(cpi, x, &rd_adjustment); + } + +#if CONFIG_TEMPORAL_DENOISING + if (cpi->oxcf.noise_sensitivity) { + rd_adjustment = (int)(rd_adjustment * + cpi->denoiser.denoise_pars.pickmode_mv_bias / 100); + } +#endif + + if (dot_artifact_candidate) { + // Bias against ZEROMV_LAST mode. + rd_adjustment = 150; + } + + /* if we encode a new mv this is important + * find the best new motion vector + */ + for (mode_index = 0; mode_index < MAX_MODES; ++mode_index) { + int frame_cost; + int this_rd = INT_MAX; + int this_ref_frame = ref_frame_map[vp8_ref_frame_order[mode_index]]; + + if (best_rd <= x->rd_threshes[mode_index]) continue; + + if (this_ref_frame < 0) continue; + + x->e_mbd.mode_info_context->mbmi.ref_frame = this_ref_frame; + + /* everything but intra */ + if (x->e_mbd.mode_info_context->mbmi.ref_frame) { + x->e_mbd.pre.y_buffer = plane[this_ref_frame][0]; + x->e_mbd.pre.u_buffer = plane[this_ref_frame][1]; + x->e_mbd.pre.v_buffer = plane[this_ref_frame][2]; + + if (sign_bias != cpi->common.ref_frame_sign_bias[this_ref_frame]) { + sign_bias = cpi->common.ref_frame_sign_bias[this_ref_frame]; + mode_mv = mode_mv_sb[sign_bias]; + best_ref_mv.as_int = best_ref_mv_sb[sign_bias].as_int; + } + +#if CONFIG_MULTI_RES_ENCODING + if (parent_ref_valid) { + if (vp8_mode_order[mode_index] == NEARESTMV && + mode_mv[NEARESTMV].as_int == 0) + continue; + if (vp8_mode_order[mode_index] == NEARMV && mode_mv[NEARMV].as_int == 0) + continue; + + if (vp8_mode_order[mode_index] == NEWMV && parent_mode == ZEROMV && + best_ref_mv.as_int == 0) + continue; + else if (vp8_mode_order[mode_index] == NEWMV && dissim == 0 && + best_ref_mv.as_int == parent_ref_mv.as_int) + continue; + } +#endif + } + + /* Check to see if the testing frequency for this mode is at its max + * If so then prevent it from being tested and increase the threshold + * for its testing */ + if (x->mode_test_hit_counts[mode_index] && + (cpi->mode_check_freq[mode_index] > 1)) { + if (x->mbs_tested_so_far <= (cpi->mode_check_freq[mode_index] * + x->mode_test_hit_counts[mode_index])) { + /* Increase the threshold for coding this mode to make it less + * likely to be chosen */ + x->rd_thresh_mult[mode_index] += 4; + + if (x->rd_thresh_mult[mode_index] > MAX_THRESHMULT) { + x->rd_thresh_mult[mode_index] = MAX_THRESHMULT; + } + + x->rd_threshes[mode_index] = + (cpi->rd_baseline_thresh[mode_index] >> 7) * + x->rd_thresh_mult[mode_index]; + continue; + } + } + + /* We have now reached the point where we are going to test the current + * mode so increment the counter for the number of times it has been + * tested */ + x->mode_test_hit_counts[mode_index]++; + + rate2 = 0; + distortion2 = 0; + + this_mode = vp8_mode_order[mode_index]; + + x->e_mbd.mode_info_context->mbmi.mode = this_mode; + x->e_mbd.mode_info_context->mbmi.uv_mode = DC_PRED; + + /* Work out the cost assosciated with selecting the reference frame */ + frame_cost = x->ref_frame_cost[x->e_mbd.mode_info_context->mbmi.ref_frame]; + rate2 += frame_cost; + + /* Only consider ZEROMV/ALTREF_FRAME for alt ref frame, + * unless ARNR filtering is enabled in which case we want + * an unfiltered alternative */ + if (cpi->is_src_frame_alt_ref && (cpi->oxcf.arnr_max_frames == 0)) { + if (this_mode != ZEROMV || + x->e_mbd.mode_info_context->mbmi.ref_frame != ALTREF_FRAME) { + continue; + } + } + + switch (this_mode) { + case B_PRED: + /* Pass best so far to pick_intra4x4mby_modes to use as breakout */ + distortion2 = best_rd_sse; + pick_intra4x4mby_modes(x, &rate, &distortion2); + + if (distortion2 == INT_MAX) { + this_rd = INT_MAX; + } else { + rate2 += rate; + distortion2 = vpx_variance16x16(*(b->base_src), b->src_stride, + x->e_mbd.predictor, 16, &sse); + this_rd = RDCOST(x->rdmult, x->rddiv, rate2, distortion2); + + if (this_rd < best_intra_rd) { + best_intra_rd = this_rd; + *returnintra = distortion2; + } + } + + break; + + case SPLITMV: + + /* Split MV modes currently not supported when RD is not enabled. */ + break; + + case DC_PRED: + case V_PRED: + case H_PRED: + case TM_PRED: + vp8_build_intra_predictors_mby_s( + xd, xd->dst.y_buffer - xd->dst.y_stride, xd->dst.y_buffer - 1, + xd->dst.y_stride, xd->predictor, 16); + distortion2 = vpx_variance16x16(*(b->base_src), b->src_stride, + x->e_mbd.predictor, 16, &sse); + rate2 += x->mbmode_cost[x->e_mbd.frame_type] + [x->e_mbd.mode_info_context->mbmi.mode]; + this_rd = RDCOST(x->rdmult, x->rddiv, rate2, distortion2); + + if (this_rd < best_intra_rd) { + best_intra_rd = this_rd; + *returnintra = distortion2; + } + break; + + case NEWMV: { + int thissme; + int step_param; + int further_steps; + int n = 0; + int sadpb = x->sadperbit16; + int_mv mvp_full; + + int col_min = ((best_ref_mv.as_mv.col + 7) >> 3) - MAX_FULL_PEL_VAL; + int row_min = ((best_ref_mv.as_mv.row + 7) >> 3) - MAX_FULL_PEL_VAL; + int col_max = (best_ref_mv.as_mv.col >> 3) + MAX_FULL_PEL_VAL; + int row_max = (best_ref_mv.as_mv.row >> 3) + MAX_FULL_PEL_VAL; + + int tmp_col_min = x->mv_col_min; + int tmp_col_max = x->mv_col_max; + int tmp_row_min = x->mv_row_min; + int tmp_row_max = x->mv_row_max; + + int speed_adjust = (cpi->Speed > 5) ? ((cpi->Speed >= 8) ? 3 : 2) : 1; + + /* Further step/diamond searches as necessary */ + step_param = cpi->sf.first_step + speed_adjust; + +#if CONFIG_MULTI_RES_ENCODING + /* If lower-res frame is not available for mv reuse (because of + frame dropping or different temporal layer pattern), then higher + resol encoder does motion search without any previous knowledge. + Also, since last frame motion info is not stored, then we can not + use improved_mv_pred. */ + if (cpi->oxcf.mr_encoder_id) sf_improved_mv_pred = 0; + + // Only use parent MV as predictor if this candidate reference frame + // (|this_ref_frame|) is equal to |parent_ref_frame|. + if (parent_ref_valid && (parent_ref_frame == this_ref_frame)) { + /* Use parent MV as predictor. Adjust search range + * accordingly. + */ + mvp.as_int = parent_ref_mv.as_int; + mvp_full.as_mv.col = parent_ref_mv.as_mv.col >> 3; + mvp_full.as_mv.row = parent_ref_mv.as_mv.row >> 3; + + if (dissim <= 32) + step_param += 3; + else if (dissim <= 128) + step_param += 2; + else + step_param += 1; + } else +#endif + { + if (sf_improved_mv_pred) { + if (!saddone) { + vp8_cal_sad(cpi, xd, x, recon_yoffset, &near_sadidx[0]); + saddone = 1; + } + + vp8_mv_pred(cpi, &x->e_mbd, x->e_mbd.mode_info_context, &mvp, + x->e_mbd.mode_info_context->mbmi.ref_frame, + cpi->common.ref_frame_sign_bias, &sr, &near_sadidx[0]); + + sr += speed_adjust; + /* adjust search range according to sr from mv prediction */ + if (sr > step_param) step_param = sr; + + mvp_full.as_mv.col = mvp.as_mv.col >> 3; + mvp_full.as_mv.row = mvp.as_mv.row >> 3; + } else { + mvp.as_int = best_ref_mv.as_int; + mvp_full.as_mv.col = best_ref_mv.as_mv.col >> 3; + mvp_full.as_mv.row = best_ref_mv.as_mv.row >> 3; + } + } + +#if CONFIG_MULTI_RES_ENCODING + if (parent_ref_valid && (parent_ref_frame == this_ref_frame) && + dissim <= 2 && + VPXMAX(abs(best_ref_mv.as_mv.row - parent_ref_mv.as_mv.row), + abs(best_ref_mv.as_mv.col - parent_ref_mv.as_mv.col)) <= 4) { + d->bmi.mv.as_int = mvp_full.as_int; + mode_mv[NEWMV].as_int = mvp_full.as_int; + + cpi->find_fractional_mv_step( + x, b, d, &d->bmi.mv, &best_ref_mv, x->errorperbit, + &cpi->fn_ptr[BLOCK_16X16], cpi->mb.mvcost, &distortion2, &sse); + } else +#endif + { + /* Get intersection of UMV window and valid MV window to + * reduce # of checks in diamond search. */ + if (x->mv_col_min < col_min) x->mv_col_min = col_min; + if (x->mv_col_max > col_max) x->mv_col_max = col_max; + if (x->mv_row_min < row_min) x->mv_row_min = row_min; + if (x->mv_row_max > row_max) x->mv_row_max = row_max; + + further_steps = + (cpi->Speed >= 8) + ? 0 + : (cpi->sf.max_step_search_steps - 1 - step_param); + + if (cpi->sf.search_method == HEX) { +#if CONFIG_MULTI_RES_ENCODING + /* TODO: In higher-res pick_inter_mode, step_param is used to + * modify hex search range. Here, set step_param to 0 not to + * change the behavior in lowest-resolution encoder. + * Will improve it later. + */ + /* Set step_param to 0 to ensure large-range motion search + * when mv reuse if not valid (i.e. |parent_ref_valid| = 0), + * or if this candidate reference frame (|this_ref_frame|) is + * not equal to |parent_ref_frame|. + */ + if (!parent_ref_valid || (parent_ref_frame != this_ref_frame)) + step_param = 0; +#endif + bestsme = vp8_hex_search(x, b, d, &mvp_full, &d->bmi.mv, step_param, + sadpb, &cpi->fn_ptr[BLOCK_16X16], + x->mvsadcost, x->mvcost, &best_ref_mv); + mode_mv[NEWMV].as_int = d->bmi.mv.as_int; + } else { + bestsme = cpi->diamond_search_sad( + x, b, d, &mvp_full, &d->bmi.mv, step_param, sadpb, &num00, + &cpi->fn_ptr[BLOCK_16X16], x->mvcost, &best_ref_mv); + mode_mv[NEWMV].as_int = d->bmi.mv.as_int; + + /* Further step/diamond searches as necessary */ + n = num00; + num00 = 0; + + while (n < further_steps) { + n++; + + if (num00) { + num00--; + } else { + thissme = cpi->diamond_search_sad( + x, b, d, &mvp_full, &d->bmi.mv, step_param + n, sadpb, + &num00, &cpi->fn_ptr[BLOCK_16X16], x->mvcost, &best_ref_mv); + if (thissme < bestsme) { + bestsme = thissme; + mode_mv[NEWMV].as_int = d->bmi.mv.as_int; + } else { + d->bmi.mv.as_int = mode_mv[NEWMV].as_int; + } + } + } + } + + x->mv_col_min = tmp_col_min; + x->mv_col_max = tmp_col_max; + x->mv_row_min = tmp_row_min; + x->mv_row_max = tmp_row_max; + + if (bestsme < INT_MAX) { + cpi->find_fractional_mv_step( + x, b, d, &d->bmi.mv, &best_ref_mv, x->errorperbit, + &cpi->fn_ptr[BLOCK_16X16], cpi->mb.mvcost, &distortion2, &sse); + } + } + + mode_mv[NEWMV].as_int = d->bmi.mv.as_int; + // The clamp below is not necessary from the perspective + // of VP8 bitstream, but is added to improve ChromeCast + // mirroring's robustness. Please do not remove. + vp8_clamp_mv2(&mode_mv[this_mode], xd); + /* mv cost; */ + rate2 += + vp8_mv_bit_cost(&mode_mv[NEWMV], &best_ref_mv, cpi->mb.mvcost, 128); + } + + case NEARESTMV: + case NEARMV: + if (mode_mv[this_mode].as_int == 0) continue; + + case ZEROMV: + + /* Trap vectors that reach beyond the UMV borders + * Note that ALL New MV, Nearest MV Near MV and Zero MV code drops + * through to this point because of the lack of break statements + * in the previous two cases. + */ + if (((mode_mv[this_mode].as_mv.row >> 3) < x->mv_row_min) || + ((mode_mv[this_mode].as_mv.row >> 3) > x->mv_row_max) || + ((mode_mv[this_mode].as_mv.col >> 3) < x->mv_col_min) || + ((mode_mv[this_mode].as_mv.col >> 3) > x->mv_col_max)) { + continue; + } + + rate2 += vp8_cost_mv_ref(this_mode, mdcounts); + x->e_mbd.mode_info_context->mbmi.mv.as_int = mode_mv[this_mode].as_int; + this_rd = evaluate_inter_mode(&sse, rate2, &distortion2, cpi, x, + rd_adjustment); + + break; + default: break; + } + +#if CONFIG_TEMPORAL_DENOISING + if (cpi->oxcf.noise_sensitivity) { + /* Store for later use by denoiser. */ + // Dont' denoise with GOLDEN OR ALTREF is they are old reference + // frames (greater than MAX_GF_ARF_DENOISE_RANGE frames in past). + int skip_old_reference = ((this_ref_frame != LAST_FRAME) && + (cpi->common.current_video_frame - + cpi->current_ref_frames[this_ref_frame] > + MAX_GF_ARF_DENOISE_RANGE)) + ? 1 + : 0; + if (this_mode == ZEROMV && sse < zero_mv_sse && !skip_old_reference) { + zero_mv_sse = sse; + x->best_zeromv_reference_frame = + x->e_mbd.mode_info_context->mbmi.ref_frame; + } + + // Store the best NEWMV in x for later use in the denoiser. + if (x->e_mbd.mode_info_context->mbmi.mode == NEWMV && sse < best_sse && + !skip_old_reference) { + best_sse = sse; + x->best_sse_inter_mode = NEWMV; + x->best_sse_mv = x->e_mbd.mode_info_context->mbmi.mv; + x->need_to_clamp_best_mvs = + x->e_mbd.mode_info_context->mbmi.need_to_clamp_mvs; + x->best_reference_frame = x->e_mbd.mode_info_context->mbmi.ref_frame; + } + } +#endif + + if (this_rd < best_rd || x->skip) { + /* Note index of best mode */ + best_mode_index = mode_index; + + *returnrate = rate2; + *returndistortion = distortion2; + best_rd_sse = sse; + best_rd = this_rd; + memcpy(&best_mbmode, &x->e_mbd.mode_info_context->mbmi, + sizeof(MB_MODE_INFO)); + + /* Testing this mode gave rise to an improvement in best error + * score. Lower threshold a bit for next time + */ + x->rd_thresh_mult[mode_index] = + (x->rd_thresh_mult[mode_index] >= (MIN_THRESHMULT + 2)) + ? x->rd_thresh_mult[mode_index] - 2 + : MIN_THRESHMULT; + x->rd_threshes[mode_index] = (cpi->rd_baseline_thresh[mode_index] >> 7) * + x->rd_thresh_mult[mode_index]; + } + + /* If the mode did not help improve the best error case then raise the + * threshold for testing that mode next time around. + */ + else { + x->rd_thresh_mult[mode_index] += 4; + + if (x->rd_thresh_mult[mode_index] > MAX_THRESHMULT) { + x->rd_thresh_mult[mode_index] = MAX_THRESHMULT; + } + + x->rd_threshes[mode_index] = (cpi->rd_baseline_thresh[mode_index] >> 7) * + x->rd_thresh_mult[mode_index]; + } + + if (x->skip) break; + } + + /* Reduce the activation RD thresholds for the best choice mode */ + if ((cpi->rd_baseline_thresh[best_mode_index] > 0) && + (cpi->rd_baseline_thresh[best_mode_index] < (INT_MAX >> 2))) { + int best_adjustment = (x->rd_thresh_mult[best_mode_index] >> 3); + + x->rd_thresh_mult[best_mode_index] = + (x->rd_thresh_mult[best_mode_index] >= + (MIN_THRESHMULT + best_adjustment)) + ? x->rd_thresh_mult[best_mode_index] - best_adjustment + : MIN_THRESHMULT; + x->rd_threshes[best_mode_index] = + (cpi->rd_baseline_thresh[best_mode_index] >> 7) * + x->rd_thresh_mult[best_mode_index]; + } + + { + int this_rdbin = (*returndistortion >> 7); + + if (this_rdbin >= 1024) { + this_rdbin = 1023; + } + + x->error_bins[this_rdbin]++; + } + +#if CONFIG_TEMPORAL_DENOISING + if (cpi->oxcf.noise_sensitivity) { + int block_index = mb_row * cpi->common.mb_cols + mb_col; + int reevaluate = 0; + int is_noisy = 0; + if (x->best_sse_inter_mode == DC_PRED) { + /* No best MV found. */ + x->best_sse_inter_mode = best_mbmode.mode; + x->best_sse_mv = best_mbmode.mv; + x->need_to_clamp_best_mvs = best_mbmode.need_to_clamp_mvs; + x->best_reference_frame = best_mbmode.ref_frame; + best_sse = best_rd_sse; + } + // For non-skin blocks that have selected ZEROMV for this current frame, + // and have been selecting ZEROMV_LAST (on the base layer frame) at + // least |x~20| consecutive past frames in a row, label the block for + // possible increase in denoising strength. We also condition this + // labeling on there being significant denoising in the scene + if (cpi->oxcf.noise_sensitivity == 4) { + if (cpi->denoiser.nmse_source_diff > + 70 * cpi->denoiser.threshold_aggressive_mode / 100) { + is_noisy = 1; + } + } else { + if (cpi->mse_source_denoised > 1000) is_noisy = 1; + } + x->increase_denoising = 0; + if (!x->is_skin && x->best_sse_inter_mode == ZEROMV && + (x->best_reference_frame == LAST_FRAME || + x->best_reference_frame == cpi->closest_reference_frame) && + cpi->consec_zero_last[block_index] >= 20 && is_noisy) { + x->increase_denoising = 1; + } + x->denoise_zeromv = 0; + vp8_denoiser_denoise_mb(&cpi->denoiser, x, best_sse, zero_mv_sse, + recon_yoffset, recon_uvoffset, &cpi->common.lf_info, + mb_row, mb_col, block_index, + cpi->consec_zero_last_mvbias[block_index]); + + // Reevaluate ZEROMV after denoising: for large noise content + // (i.e., cpi->mse_source_denoised is above threshold), do this for all + // blocks that did not pick ZEROMV as best mode but are using ZEROMV + // for denoising. Otherwise, always re-evaluate for blocks that picked + // INTRA mode as best mode. + // Avoid blocks that have been biased against ZERO_LAST + // (i.e., dot artifact candidate blocks). + reevaluate = (best_mbmode.ref_frame == INTRA_FRAME) || + (best_mbmode.mode != ZEROMV && x->denoise_zeromv && + cpi->mse_source_denoised > 2000); + if (!dot_artifact_candidate && reevaluate && + x->best_zeromv_reference_frame != INTRA_FRAME) { + int this_rd = 0; + int this_ref_frame = x->best_zeromv_reference_frame; + rd_adjustment = 100; + rate2 = + x->ref_frame_cost[this_ref_frame] + vp8_cost_mv_ref(ZEROMV, mdcounts); + distortion2 = 0; + + /* set up the proper prediction buffers for the frame */ + x->e_mbd.mode_info_context->mbmi.ref_frame = this_ref_frame; + x->e_mbd.pre.y_buffer = plane[this_ref_frame][0]; + x->e_mbd.pre.u_buffer = plane[this_ref_frame][1]; + x->e_mbd.pre.v_buffer = plane[this_ref_frame][2]; + + x->e_mbd.mode_info_context->mbmi.mode = ZEROMV; + x->e_mbd.mode_info_context->mbmi.uv_mode = DC_PRED; + x->e_mbd.mode_info_context->mbmi.mv.as_int = 0; + this_rd = + evaluate_inter_mode(&sse, rate2, &distortion2, cpi, x, rd_adjustment); + + if (this_rd < best_rd) { + memcpy(&best_mbmode, &x->e_mbd.mode_info_context->mbmi, + sizeof(MB_MODE_INFO)); + } + } + } +#endif + + if (cpi->is_src_frame_alt_ref && + (best_mbmode.mode != ZEROMV || best_mbmode.ref_frame != ALTREF_FRAME)) { + x->e_mbd.mode_info_context->mbmi.mode = ZEROMV; + x->e_mbd.mode_info_context->mbmi.ref_frame = ALTREF_FRAME; + x->e_mbd.mode_info_context->mbmi.mv.as_int = 0; + x->e_mbd.mode_info_context->mbmi.uv_mode = DC_PRED; + x->e_mbd.mode_info_context->mbmi.mb_skip_coeff = + (cpi->common.mb_no_coeff_skip); + x->e_mbd.mode_info_context->mbmi.partitioning = 0; + + return; + } + + /* set to the best mb mode, this copy can be skip if x->skip since it + * already has the right content */ + if (!x->skip) { + memcpy(&x->e_mbd.mode_info_context->mbmi, &best_mbmode, + sizeof(MB_MODE_INFO)); + } + + if (best_mbmode.mode <= B_PRED) { + /* set mode_info_context->mbmi.uv_mode */ + pick_intra_mbuv_mode(x); + } + + if (sign_bias != + cpi->common.ref_frame_sign_bias[xd->mode_info_context->mbmi.ref_frame]) { + best_ref_mv.as_int = best_ref_mv_sb[!sign_bias].as_int; + } + + update_mvcount(x, &best_ref_mv); +} + +void vp8_pick_intra_mode(MACROBLOCK *x, int *rate_) { + int error4x4, error16x16 = INT_MAX; + int rate, best_rate = 0, distortion, best_sse; + MB_PREDICTION_MODE mode, best_mode = DC_PRED; + int this_rd; + unsigned int sse; + BLOCK *b = &x->block[0]; + MACROBLOCKD *xd = &x->e_mbd; + + xd->mode_info_context->mbmi.ref_frame = INTRA_FRAME; + + pick_intra_mbuv_mode(x); + + for (mode = DC_PRED; mode <= TM_PRED; ++mode) { + xd->mode_info_context->mbmi.mode = mode; + vp8_build_intra_predictors_mby_s(xd, xd->dst.y_buffer - xd->dst.y_stride, + xd->dst.y_buffer - 1, xd->dst.y_stride, + xd->predictor, 16); + distortion = vpx_variance16x16(*(b->base_src), b->src_stride, xd->predictor, + 16, &sse); + rate = x->mbmode_cost[xd->frame_type][mode]; + this_rd = RDCOST(x->rdmult, x->rddiv, rate, distortion); + + if (error16x16 > this_rd) { + error16x16 = this_rd; + best_mode = mode; + best_sse = sse; + best_rate = rate; + } + } + xd->mode_info_context->mbmi.mode = best_mode; + + error4x4 = pick_intra4x4mby_modes(x, &rate, &best_sse); + if (error4x4 < error16x16) { + xd->mode_info_context->mbmi.mode = B_PRED; + best_rate = rate; + } + + *rate_ = best_rate; +} diff --git a/vp8/encoder/pickinter.h b/vp8/encoder/pickinter.h new file mode 100644 index 0000000..bf1d0c9 --- /dev/null +++ b/vp8/encoder/pickinter.h @@ -0,0 +1,33 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP8_ENCODER_PICKINTER_H_ +#define VP8_ENCODER_PICKINTER_H_ +#include "vpx_config.h" +#include "vp8/common/onyxc_int.h" + +#ifdef __cplusplus +extern "C" { +#endif + +extern void vp8_pick_inter_mode(VP8_COMP *cpi, MACROBLOCK *x, int recon_yoffset, + int recon_uvoffset, int *returnrate, + int *returndistortion, int *returnintra, + int mb_row, int mb_col); +extern void vp8_pick_intra_mode(MACROBLOCK *x, int *rate); + +extern int vp8_get_inter_mbpred_error(MACROBLOCK *mb, + const vp8_variance_fn_ptr_t *vfp, + unsigned int *sse, int_mv this_mv); +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP8_ENCODER_PICKINTER_H_ diff --git a/vp8/encoder/picklpf.c b/vp8/encoder/picklpf.c new file mode 100644 index 0000000..b1b712d --- /dev/null +++ b/vp8/encoder/picklpf.c @@ -0,0 +1,392 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "./vpx_dsp_rtcd.h" +#include "./vpx_scale_rtcd.h" +#include "vp8/common/onyxc_int.h" +#include "onyx_int.h" +#include "vp8/encoder/picklpf.h" +#include "vp8/encoder/quantize.h" +#include "vpx_mem/vpx_mem.h" +#include "vpx_scale/vpx_scale.h" +#include "vp8/common/alloccommon.h" +#include "vp8/common/loopfilter.h" +#if ARCH_ARM +#include "vpx_ports/arm.h" +#endif + +extern int vp8_calc_ss_err(YV12_BUFFER_CONFIG *source, + YV12_BUFFER_CONFIG *dest); + +static void yv12_copy_partial_frame(YV12_BUFFER_CONFIG *src_ybc, + YV12_BUFFER_CONFIG *dst_ybc) { + unsigned char *src_y, *dst_y; + int yheight; + int ystride; + int yoffset; + int linestocopy; + + yheight = src_ybc->y_height; + ystride = src_ybc->y_stride; + + /* number of MB rows to use in partial filtering */ + linestocopy = (yheight >> 4) / PARTIAL_FRAME_FRACTION; + linestocopy = linestocopy ? linestocopy << 4 : 16; /* 16 lines per MB */ + + /* Copy extra 4 so that full filter context is available if filtering done + * on the copied partial frame and not original. Partial filter does mb + * filtering for top row also, which can modify3 pixels above. + */ + linestocopy += 4; + /* partial image starts at ~middle of frame (macroblock border)*/ + yoffset = ystride * (((yheight >> 5) * 16) - 4); + src_y = src_ybc->y_buffer + yoffset; + dst_y = dst_ybc->y_buffer + yoffset; + + memcpy(dst_y, src_y, ystride * linestocopy); +} + +static int calc_partial_ssl_err(YV12_BUFFER_CONFIG *source, + YV12_BUFFER_CONFIG *dest) { + int i, j; + int Total = 0; + int srcoffset, dstoffset; + unsigned char *src = source->y_buffer; + unsigned char *dst = dest->y_buffer; + + int linestocopy; + + /* number of MB rows to use in partial filtering */ + linestocopy = (source->y_height >> 4) / PARTIAL_FRAME_FRACTION; + linestocopy = linestocopy ? linestocopy << 4 : 16; /* 16 lines per MB */ + + /* partial image starts at ~middle of frame (macroblock border)*/ + srcoffset = source->y_stride * ((dest->y_height >> 5) * 16); + dstoffset = dest->y_stride * ((dest->y_height >> 5) * 16); + + src += srcoffset; + dst += dstoffset; + + /* Loop through the Y plane raw and reconstruction data summing + * (square differences) + */ + for (i = 0; i < linestocopy; i += 16) { + for (j = 0; j < source->y_width; j += 16) { + unsigned int sse; + Total += vpx_mse16x16(src + j, source->y_stride, dst + j, dest->y_stride, + &sse); + } + + src += 16 * source->y_stride; + dst += 16 * dest->y_stride; + } + + return Total; +} + +/* Enforce a minimum filter level based upon baseline Q */ +static int get_min_filter_level(VP8_COMP *cpi, int base_qindex) { + int min_filter_level; + + if (cpi->source_alt_ref_active && cpi->common.refresh_golden_frame && + !cpi->common.refresh_alt_ref_frame) { + min_filter_level = 0; + } else { + if (base_qindex <= 6) { + min_filter_level = 0; + } else if (base_qindex <= 16) { + min_filter_level = 1; + } else { + min_filter_level = (base_qindex / 8); + } + } + + return min_filter_level; +} + +/* Enforce a maximum filter level based upon baseline Q */ +static int get_max_filter_level(VP8_COMP *cpi, int base_qindex) { + /* PGW August 2006: Highest filter values almost always a bad idea */ + + /* jbb chg: 20100118 - not so any more with this overquant stuff allow + * high values with lots of intra coming in. + */ + int max_filter_level = MAX_LOOP_FILTER; + (void)base_qindex; + + if (cpi->twopass.section_intra_rating > 8) { + max_filter_level = MAX_LOOP_FILTER * 3 / 4; + } + + return max_filter_level; +} + +void vp8cx_pick_filter_level_fast(YV12_BUFFER_CONFIG *sd, VP8_COMP *cpi) { + VP8_COMMON *cm = &cpi->common; + + int best_err = 0; + int filt_err = 0; + int min_filter_level = get_min_filter_level(cpi, cm->base_qindex); + int max_filter_level = get_max_filter_level(cpi, cm->base_qindex); + int filt_val; + int best_filt_val; + YV12_BUFFER_CONFIG *saved_frame = cm->frame_to_show; + + /* Replace unfiltered frame buffer with a new one */ + cm->frame_to_show = &cpi->pick_lf_lvl_frame; + + if (cm->frame_type == KEY_FRAME) { + cm->sharpness_level = 0; + } else { + cm->sharpness_level = cpi->oxcf.Sharpness; + } + + if (cm->sharpness_level != cm->last_sharpness_level) { + vp8_loop_filter_update_sharpness(&cm->lf_info, cm->sharpness_level); + cm->last_sharpness_level = cm->sharpness_level; + } + + /* Start the search at the previous frame filter level unless it is + * now out of range. + */ + if (cm->filter_level < min_filter_level) { + cm->filter_level = min_filter_level; + } else if (cm->filter_level > max_filter_level) { + cm->filter_level = max_filter_level; + } + + filt_val = cm->filter_level; + best_filt_val = filt_val; + + /* Get the err using the previous frame's filter value. */ + + /* Copy the unfiltered / processed recon buffer to the new buffer */ + yv12_copy_partial_frame(saved_frame, cm->frame_to_show); + vp8_loop_filter_partial_frame(cm, &cpi->mb.e_mbd, filt_val); + + best_err = calc_partial_ssl_err(sd, cm->frame_to_show); + + filt_val -= 1 + (filt_val > 10); + + /* Search lower filter levels */ + while (filt_val >= min_filter_level) { + /* Apply the loop filter */ + yv12_copy_partial_frame(saved_frame, cm->frame_to_show); + vp8_loop_filter_partial_frame(cm, &cpi->mb.e_mbd, filt_val); + + /* Get the err for filtered frame */ + filt_err = calc_partial_ssl_err(sd, cm->frame_to_show); + + /* Update the best case record or exit loop. */ + if (filt_err < best_err) { + best_err = filt_err; + best_filt_val = filt_val; + } else { + break; + } + + /* Adjust filter level */ + filt_val -= 1 + (filt_val > 10); + } + + /* Search up (note that we have already done filt_val = cm->filter_level) */ + filt_val = cm->filter_level + 1 + (filt_val > 10); + + if (best_filt_val == cm->filter_level) { + /* Resist raising filter level for very small gains */ + best_err -= (best_err >> 10); + + while (filt_val < max_filter_level) { + /* Apply the loop filter */ + yv12_copy_partial_frame(saved_frame, cm->frame_to_show); + + vp8_loop_filter_partial_frame(cm, &cpi->mb.e_mbd, filt_val); + + /* Get the err for filtered frame */ + filt_err = calc_partial_ssl_err(sd, cm->frame_to_show); + + /* Update the best case record or exit loop. */ + if (filt_err < best_err) { + /* Do not raise filter level if improvement is < 1 part + * in 4096 + */ + best_err = filt_err - (filt_err >> 10); + + best_filt_val = filt_val; + } else { + break; + } + + /* Adjust filter level */ + filt_val += 1 + (filt_val > 10); + } + } + + cm->filter_level = best_filt_val; + + if (cm->filter_level < min_filter_level) cm->filter_level = min_filter_level; + + if (cm->filter_level > max_filter_level) cm->filter_level = max_filter_level; + + /* restore unfiltered frame pointer */ + cm->frame_to_show = saved_frame; +} + +/* Stub function for now Alt LF not used */ +void vp8cx_set_alt_lf_level(VP8_COMP *cpi, int filt_val) { + MACROBLOCKD *mbd = &cpi->mb.e_mbd; + (void)filt_val; + + mbd->segment_feature_data[MB_LVL_ALT_LF][0] = + cpi->segment_feature_data[MB_LVL_ALT_LF][0]; + mbd->segment_feature_data[MB_LVL_ALT_LF][1] = + cpi->segment_feature_data[MB_LVL_ALT_LF][1]; + mbd->segment_feature_data[MB_LVL_ALT_LF][2] = + cpi->segment_feature_data[MB_LVL_ALT_LF][2]; + mbd->segment_feature_data[MB_LVL_ALT_LF][3] = + cpi->segment_feature_data[MB_LVL_ALT_LF][3]; +} + +void vp8cx_pick_filter_level(YV12_BUFFER_CONFIG *sd, VP8_COMP *cpi) { + VP8_COMMON *cm = &cpi->common; + + int best_err = 0; + int filt_err = 0; + int min_filter_level = get_min_filter_level(cpi, cm->base_qindex); + int max_filter_level = get_max_filter_level(cpi, cm->base_qindex); + + int filter_step; + int filt_high = 0; + int filt_mid; + int filt_low = 0; + int filt_best; + int filt_direction = 0; + + /* Bias against raising loop filter and in favor of lowering it */ + int Bias = 0; + + int ss_err[MAX_LOOP_FILTER + 1]; + + YV12_BUFFER_CONFIG *saved_frame = cm->frame_to_show; + + memset(ss_err, 0, sizeof(ss_err)); + + /* Replace unfiltered frame buffer with a new one */ + cm->frame_to_show = &cpi->pick_lf_lvl_frame; + + if (cm->frame_type == KEY_FRAME) { + cm->sharpness_level = 0; + } else { + cm->sharpness_level = cpi->oxcf.Sharpness; + } + + /* Start the search at the previous frame filter level unless it is + * now out of range. + */ + filt_mid = cm->filter_level; + + if (filt_mid < min_filter_level) { + filt_mid = min_filter_level; + } else if (filt_mid > max_filter_level) { + filt_mid = max_filter_level; + } + + /* Define the initial step size */ + filter_step = (filt_mid < 16) ? 4 : filt_mid / 4; + + /* Get baseline error score */ + + /* Copy the unfiltered / processed recon buffer to the new buffer */ + vpx_yv12_copy_y(saved_frame, cm->frame_to_show); + + vp8cx_set_alt_lf_level(cpi, filt_mid); + vp8_loop_filter_frame_yonly(cm, &cpi->mb.e_mbd, filt_mid); + + best_err = vp8_calc_ss_err(sd, cm->frame_to_show); + + ss_err[filt_mid] = best_err; + + filt_best = filt_mid; + + while (filter_step > 0) { + Bias = (best_err >> (15 - (filt_mid / 8))) * filter_step; + + if (cpi->twopass.section_intra_rating < 20) { + Bias = Bias * cpi->twopass.section_intra_rating / 20; + } + + filt_high = ((filt_mid + filter_step) > max_filter_level) + ? max_filter_level + : (filt_mid + filter_step); + filt_low = ((filt_mid - filter_step) < min_filter_level) + ? min_filter_level + : (filt_mid - filter_step); + + if ((filt_direction <= 0) && (filt_low != filt_mid)) { + if (ss_err[filt_low] == 0) { + /* Get Low filter error score */ + vpx_yv12_copy_y(saved_frame, cm->frame_to_show); + vp8cx_set_alt_lf_level(cpi, filt_low); + vp8_loop_filter_frame_yonly(cm, &cpi->mb.e_mbd, filt_low); + + filt_err = vp8_calc_ss_err(sd, cm->frame_to_show); + ss_err[filt_low] = filt_err; + } else { + filt_err = ss_err[filt_low]; + } + + /* If value is close to the best so far then bias towards a + * lower loop filter value. + */ + if ((filt_err - Bias) < best_err) { + /* Was it actually better than the previous best? */ + if (filt_err < best_err) best_err = filt_err; + + filt_best = filt_low; + } + } + + /* Now look at filt_high */ + if ((filt_direction >= 0) && (filt_high != filt_mid)) { + if (ss_err[filt_high] == 0) { + vpx_yv12_copy_y(saved_frame, cm->frame_to_show); + vp8cx_set_alt_lf_level(cpi, filt_high); + vp8_loop_filter_frame_yonly(cm, &cpi->mb.e_mbd, filt_high); + + filt_err = vp8_calc_ss_err(sd, cm->frame_to_show); + ss_err[filt_high] = filt_err; + } else { + filt_err = ss_err[filt_high]; + } + + /* Was it better than the previous best? */ + if (filt_err < (best_err - Bias)) { + best_err = filt_err; + filt_best = filt_high; + } + } + + /* Half the step distance if the best filter value was the same + * as last time + */ + if (filt_best == filt_mid) { + filter_step = filter_step / 2; + filt_direction = 0; + } else { + filt_direction = (filt_best < filt_mid) ? -1 : 1; + filt_mid = filt_best; + } + } + + cm->filter_level = filt_best; + + /* restore unfiltered frame pointer */ + cm->frame_to_show = saved_frame; +} diff --git a/vp8/encoder/picklpf.h b/vp8/encoder/picklpf.h new file mode 100644 index 0000000..e6ad0db --- /dev/null +++ b/vp8/encoder/picklpf.h @@ -0,0 +1,30 @@ +/* + * Copyright (c) 2017 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP8_ENCODER_PICKLPF_H_ +#define VP8_ENCODER_PICKLPF_H_ + +#ifdef __cplusplus +extern "C" { +#endif + +struct VP8_COMP; +struct yv12_buffer_config; + +void vp8cx_pick_filter_level_fast(struct yv12_buffer_config *sd, + struct VP8_COMP *cpi); +void vp8cx_set_alt_lf_level(struct VP8_COMP *cpi, int filt_val); +void vp8cx_pick_filter_level(struct yv12_buffer_config *sd, VP8_COMP *cpi); + +#ifdef __cplusplus +} +#endif + +#endif // VP8_ENCODER_PICKLPF_H_ diff --git a/vp8/encoder/quantize.h b/vp8/encoder/quantize.h new file mode 100644 index 0000000..267150f --- /dev/null +++ b/vp8/encoder/quantize.h @@ -0,0 +1,34 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP8_ENCODER_QUANTIZE_H_ +#define VP8_ENCODER_QUANTIZE_H_ + +#ifdef __cplusplus +extern "C" { +#endif + +struct VP8_COMP; +struct macroblock; +extern void vp8_quantize_mb(struct macroblock *x); +extern void vp8_quantize_mby(struct macroblock *x); +extern void vp8_quantize_mbuv(struct macroblock *x); +extern void vp8_set_quantizer(struct VP8_COMP *cpi, int Q); +extern void vp8cx_frame_init_quantizer(struct VP8_COMP *cpi); +extern void vp8_update_zbin_extra(struct VP8_COMP *cpi, struct macroblock *x); +extern void vp8cx_mb_init_quantizer(struct VP8_COMP *cpi, struct macroblock *x, + int ok_to_skip); +extern void vp8cx_init_quantizer(struct VP8_COMP *cpi); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP8_ENCODER_QUANTIZE_H_ diff --git a/vp8/encoder/ratectrl.c b/vp8/encoder/ratectrl.c new file mode 100644 index 0000000..e58c310 --- /dev/null +++ b/vp8/encoder/ratectrl.c @@ -0,0 +1,1560 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include +#include +#include +#include + +#include "math.h" +#include "vp8/common/common.h" +#include "ratectrl.h" +#include "vp8/common/entropymode.h" +#include "vpx_mem/vpx_mem.h" +#include "vp8/common/systemdependent.h" +#include "encodemv.h" +#include "vpx_dsp/vpx_dsp_common.h" +#include "vpx_ports/system_state.h" + +#define MIN_BPB_FACTOR 0.01 +#define MAX_BPB_FACTOR 50 + +extern const MB_PREDICTION_MODE vp8_mode_order[MAX_MODES]; + +#ifdef MODE_STATS +extern int y_modes[5]; +extern int uv_modes[4]; +extern int b_modes[10]; + +extern int inter_y_modes[10]; +extern int inter_uv_modes[4]; +extern int inter_b_modes[10]; +#endif + +/* Bits Per MB at different Q (Multiplied by 512) */ +#define BPER_MB_NORMBITS 9 + +/* Work in progress recalibration of baseline rate tables based on + * the assumption that bits per mb is inversely proportional to the + * quantizer value. + */ +const int vp8_bits_per_mb[2][QINDEX_RANGE] = { + /* Intra case 450000/Qintra */ + { + 1125000, 900000, 750000, 642857, 562500, 500000, 450000, 450000, 409090, + 375000, 346153, 321428, 300000, 281250, 264705, 264705, 250000, 236842, + 225000, 225000, 214285, 214285, 204545, 204545, 195652, 195652, 187500, + 180000, 180000, 173076, 166666, 160714, 155172, 150000, 145161, 140625, + 136363, 132352, 128571, 125000, 121621, 121621, 118421, 115384, 112500, + 109756, 107142, 104651, 102272, 100000, 97826, 97826, 95744, 93750, + 91836, 90000, 88235, 86538, 84905, 83333, 81818, 80357, 78947, + 77586, 76271, 75000, 73770, 72580, 71428, 70312, 69230, 68181, + 67164, 66176, 65217, 64285, 63380, 62500, 61643, 60810, 60000, + 59210, 59210, 58441, 57692, 56962, 56250, 55555, 54878, 54216, + 53571, 52941, 52325, 51724, 51136, 50561, 49450, 48387, 47368, + 46875, 45918, 45000, 44554, 44117, 43269, 42452, 41666, 40909, + 40178, 39473, 38793, 38135, 36885, 36290, 35714, 35156, 34615, + 34090, 33582, 33088, 32608, 32142, 31468, 31034, 30405, 29801, + 29220, 28662, + }, + /* Inter case 285000/Qinter */ + { + 712500, 570000, 475000, 407142, 356250, 316666, 285000, 259090, 237500, + 219230, 203571, 190000, 178125, 167647, 158333, 150000, 142500, 135714, + 129545, 123913, 118750, 114000, 109615, 105555, 101785, 98275, 95000, + 91935, 89062, 86363, 83823, 81428, 79166, 77027, 75000, 73076, + 71250, 69512, 67857, 66279, 64772, 63333, 61956, 60638, 59375, + 58163, 57000, 55882, 54807, 53773, 52777, 51818, 50892, 50000, + 49137, 47500, 45967, 44531, 43181, 41911, 40714, 39583, 38513, + 37500, 36538, 35625, 34756, 33928, 33139, 32386, 31666, 30978, + 30319, 29687, 29081, 28500, 27941, 27403, 26886, 26388, 25909, + 25446, 25000, 24568, 23949, 23360, 22800, 22265, 21755, 21268, + 20802, 20357, 19930, 19520, 19127, 18750, 18387, 18037, 17701, + 17378, 17065, 16764, 16473, 16101, 15745, 15405, 15079, 14766, + 14467, 14179, 13902, 13636, 13380, 13133, 12895, 12666, 12445, + 12179, 11924, 11632, 11445, 11220, 11003, 10795, 10594, 10401, + 10215, 10035, + } +}; + +static const int kf_boost_qadjustment[QINDEX_RANGE] = { + 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, + 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, + 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, + 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, + 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 200, 201, + 201, 202, 203, 203, 203, 204, 204, 205, 205, 206, 206, 207, 207, 208, 208, + 209, 209, 210, 210, 211, 211, 212, 212, 213, 213, 214, 214, 215, 215, 216, + 216, 217, 217, 218, 218, 219, 219, 220, 220, 220, 220, 220, 220, 220, 220, + 220, 220, 220, 220, 220, 220, 220, 220, +}; + +/* #define GFQ_ADJUSTMENT (Q+100) */ +#define GFQ_ADJUSTMENT vp8_gf_boost_qadjustment[Q] +const int vp8_gf_boost_qadjustment[QINDEX_RANGE] = { + 80, 82, 84, 86, 88, 90, 92, 94, 96, 97, 98, 99, 100, 101, 102, + 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, + 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, + 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, + 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, + 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, + 178, 179, 180, 181, 182, 183, 184, 184, 185, 185, 186, 186, 187, 187, 188, + 188, 189, 189, 190, 190, 191, 191, 192, 192, 193, 193, 194, 194, 194, 194, + 195, 195, 196, 196, 197, 197, 198, 198 +}; + +/* +const int vp8_gf_boost_qadjustment[QINDEX_RANGE] = +{ + 100,101,102,103,104,105,105,106, + 106,107,107,108,109,109,110,111, + 112,113,114,115,116,117,118,119, + 120,121,122,123,124,125,126,127, + 128,129,130,131,132,133,134,135, + 136,137,138,139,140,141,142,143, + 144,145,146,147,148,149,150,151, + 152,153,154,155,156,157,158,159, + 160,161,162,163,164,165,166,167, + 168,169,170,170,171,171,172,172, + 173,173,173,174,174,174,175,175, + 175,176,176,176,177,177,177,177, + 178,178,179,179,180,180,181,181, + 182,182,183,183,184,184,185,185, + 186,186,187,187,188,188,189,189, + 190,190,191,191,192,192,193,193, +}; +*/ + +static const int kf_gf_boost_qlimits[QINDEX_RANGE] = { + 150, 155, 160, 165, 170, 175, 180, 185, 190, 195, 200, 205, 210, 215, 220, + 225, 230, 235, 240, 245, 250, 255, 260, 265, 270, 275, 280, 285, 290, 295, + 300, 305, 310, 320, 330, 340, 350, 360, 370, 380, 390, 400, 410, 420, 430, + 440, 450, 460, 470, 480, 490, 500, 510, 520, 530, 540, 550, 560, 570, 580, + 590, 600, 600, 600, 600, 600, 600, 600, 600, 600, 600, 600, 600, 600, 600, + 600, 600, 600, 600, 600, 600, 600, 600, 600, 600, 600, 600, 600, 600, 600, + 600, 600, 600, 600, 600, 600, 600, 600, 600, 600, 600, 600, 600, 600, 600, + 600, 600, 600, 600, 600, 600, 600, 600, 600, 600, 600, 600, 600, 600, 600, + 600, 600, 600, 600, 600, 600, 600, 600, +}; + +static const int gf_adjust_table[101] = { + 100, 115, 130, 145, 160, 175, 190, 200, 210, 220, 230, 240, 260, 270, 280, + 290, 300, 310, 320, 330, 340, 350, 360, 370, 380, 390, 400, 400, 400, 400, + 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, + 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, + 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, + 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, + 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, +}; + +static const int gf_intra_usage_adjustment[20] = { + 125, 120, 115, 110, 105, 100, 95, 85, 80, 75, + 70, 65, 60, 55, 50, 50, 50, 50, 50, 50, +}; + +static const int gf_interval_table[101] = { + 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, + 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, + 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, + 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, + 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, + 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, +}; + +static const unsigned int prior_key_frame_weight[KEY_FRAME_CONTEXT] = { 1, 2, 3, + 4, 5 }; + +void vp8_save_coding_context(VP8_COMP *cpi) { + CODING_CONTEXT *const cc = &cpi->coding_context; + + /* Stores a snapshot of key state variables which can subsequently be + * restored with a call to vp8_restore_coding_context. These functions are + * intended for use in a re-code loop in vp8_compress_frame where the + * quantizer value is adjusted between loop iterations. + */ + + cc->frames_since_key = cpi->frames_since_key; + cc->filter_level = cpi->common.filter_level; + cc->frames_till_gf_update_due = cpi->frames_till_gf_update_due; + cc->frames_since_golden = cpi->frames_since_golden; + + vp8_copy(cc->mvc, cpi->common.fc.mvc); + vp8_copy(cc->mvcosts, cpi->rd_costs.mvcosts); + + vp8_copy(cc->ymode_prob, cpi->common.fc.ymode_prob); + vp8_copy(cc->uv_mode_prob, cpi->common.fc.uv_mode_prob); + + vp8_copy(cc->ymode_count, cpi->mb.ymode_count); + vp8_copy(cc->uv_mode_count, cpi->mb.uv_mode_count); + +/* Stats */ +#ifdef MODE_STATS + vp8_copy(cc->y_modes, y_modes); + vp8_copy(cc->uv_modes, uv_modes); + vp8_copy(cc->b_modes, b_modes); + vp8_copy(cc->inter_y_modes, inter_y_modes); + vp8_copy(cc->inter_uv_modes, inter_uv_modes); + vp8_copy(cc->inter_b_modes, inter_b_modes); +#endif + + cc->this_frame_percent_intra = cpi->this_frame_percent_intra; +} + +void vp8_restore_coding_context(VP8_COMP *cpi) { + CODING_CONTEXT *const cc = &cpi->coding_context; + + /* Restore key state variables to the snapshot state stored in the + * previous call to vp8_save_coding_context. + */ + + cpi->frames_since_key = cc->frames_since_key; + cpi->common.filter_level = cc->filter_level; + cpi->frames_till_gf_update_due = cc->frames_till_gf_update_due; + cpi->frames_since_golden = cc->frames_since_golden; + + vp8_copy(cpi->common.fc.mvc, cc->mvc); + + vp8_copy(cpi->rd_costs.mvcosts, cc->mvcosts); + + vp8_copy(cpi->common.fc.ymode_prob, cc->ymode_prob); + vp8_copy(cpi->common.fc.uv_mode_prob, cc->uv_mode_prob); + + vp8_copy(cpi->mb.ymode_count, cc->ymode_count); + vp8_copy(cpi->mb.uv_mode_count, cc->uv_mode_count); + +/* Stats */ +#ifdef MODE_STATS + vp8_copy(y_modes, cc->y_modes); + vp8_copy(uv_modes, cc->uv_modes); + vp8_copy(b_modes, cc->b_modes); + vp8_copy(inter_y_modes, cc->inter_y_modes); + vp8_copy(inter_uv_modes, cc->inter_uv_modes); + vp8_copy(inter_b_modes, cc->inter_b_modes); +#endif + + cpi->this_frame_percent_intra = cc->this_frame_percent_intra; +} + +void vp8_setup_key_frame(VP8_COMP *cpi) { + /* Setup for Key frame: */ + + vp8_default_coef_probs(&cpi->common); + + memcpy(cpi->common.fc.mvc, vp8_default_mv_context, + sizeof(vp8_default_mv_context)); + { + int flag[2] = { 1, 1 }; + vp8_build_component_cost_table( + cpi->mb.mvcost, (const MV_CONTEXT *)cpi->common.fc.mvc, flag); + } + + /* Make sure we initialize separate contexts for altref,gold, and normal. + * TODO shouldn't need 3 different copies of structure to do this! + */ + memcpy(&cpi->lfc_a, &cpi->common.fc, sizeof(cpi->common.fc)); + memcpy(&cpi->lfc_g, &cpi->common.fc, sizeof(cpi->common.fc)); + memcpy(&cpi->lfc_n, &cpi->common.fc, sizeof(cpi->common.fc)); + + cpi->common.filter_level = cpi->common.base_qindex * 3 / 8; + + /* Provisional interval before next GF */ + if (cpi->auto_gold) { + cpi->frames_till_gf_update_due = cpi->baseline_gf_interval; + } else { + cpi->frames_till_gf_update_due = DEFAULT_GF_INTERVAL; + } + + cpi->common.refresh_golden_frame = 1; + cpi->common.refresh_alt_ref_frame = 1; +} + +static int estimate_bits_at_q(int frame_kind, int Q, int MBs, + double correction_factor) { + int Bpm = (int)(.5 + correction_factor * vp8_bits_per_mb[frame_kind][Q]); + + /* Attempt to retain reasonable accuracy without overflow. The cutoff is + * chosen such that the maximum product of Bpm and MBs fits 31 bits. The + * largest Bpm takes 20 bits. + */ + if (MBs > (1 << 11)) { + return (Bpm >> BPER_MB_NORMBITS) * MBs; + } else { + return (Bpm * MBs) >> BPER_MB_NORMBITS; + } +} + +static void calc_iframe_target_size(VP8_COMP *cpi) { + /* boost defaults to half second */ + int kf_boost; + uint64_t target; + + /* Clear down mmx registers to allow floating point in what follows */ + vpx_clear_system_state(); + + if (cpi->oxcf.fixed_q >= 0) { + int Q = cpi->oxcf.key_q; + + target = estimate_bits_at_q(INTRA_FRAME, Q, cpi->common.MBs, + cpi->key_frame_rate_correction_factor); + } else if (cpi->pass == 2) { + /* New Two pass RC */ + target = cpi->per_frame_bandwidth; + } + /* First Frame is a special case */ + else if (cpi->common.current_video_frame == 0) { + /* 1 Pass there is no information on which to base size so use + * bandwidth per second * fraction of the initial buffer + * level + */ + target = cpi->oxcf.starting_buffer_level / 2; + + if (target > cpi->oxcf.target_bandwidth * 3 / 2) { + target = cpi->oxcf.target_bandwidth * 3 / 2; + } + } else { + /* if this keyframe was forced, use a more recent Q estimate */ + int Q = (cpi->common.frame_flags & FRAMEFLAGS_KEY) ? cpi->avg_frame_qindex + : cpi->ni_av_qi; + + int initial_boost = 32; /* |3.0 * per_frame_bandwidth| */ + /* Boost depends somewhat on frame rate: only used for 1 layer case. */ + if (cpi->oxcf.number_of_layers == 1) { + kf_boost = VPXMAX(initial_boost, (int)(2 * cpi->output_framerate - 16)); + } else { + /* Initial factor: set target size to: |3.0 * per_frame_bandwidth|. */ + kf_boost = initial_boost; + } + + /* adjustment up based on q: this factor ranges from ~1.2 to 2.2. */ + kf_boost = kf_boost * kf_boost_qadjustment[Q] / 100; + + /* frame separation adjustment ( down) */ + if (cpi->frames_since_key < cpi->output_framerate / 2) { + kf_boost = + (int)(kf_boost * cpi->frames_since_key / (cpi->output_framerate / 2)); + } + + /* Minimal target size is |2* per_frame_bandwidth|. */ + if (kf_boost < 16) kf_boost = 16; + + target = ((16 + kf_boost) * cpi->per_frame_bandwidth) >> 4; + } + + if (cpi->oxcf.rc_max_intra_bitrate_pct) { + unsigned int max_rate = + cpi->per_frame_bandwidth * cpi->oxcf.rc_max_intra_bitrate_pct / 100; + + if (target > max_rate) target = max_rate; + } + + cpi->this_frame_target = (int)target; + + /* TODO: if we separate rate targeting from Q targetting, move this. + * Reset the active worst quality to the baseline value for key frames. + */ + if (cpi->pass != 2) cpi->active_worst_quality = cpi->worst_quality; + +#if 0 + { + FILE *f; + + f = fopen("kf_boost.stt", "a"); + fprintf(f, " %8u %10d %10d %10d\n", + cpi->common.current_video_frame, cpi->gfu_boost, cpi->baseline_gf_interval, cpi->source_alt_ref_pending); + + fclose(f); + } +#endif +} + +/* Do the best we can to define the parameters for the next GF based on what + * information we have available. + */ +static void calc_gf_params(VP8_COMP *cpi) { + int Q = + (cpi->oxcf.fixed_q < 0) ? cpi->last_q[INTER_FRAME] : cpi->oxcf.fixed_q; + int Boost = 0; + + int gf_frame_useage = 0; /* Golden frame useage since last GF */ + int tot_mbs = cpi->recent_ref_frame_usage[INTRA_FRAME] + + cpi->recent_ref_frame_usage[LAST_FRAME] + + cpi->recent_ref_frame_usage[GOLDEN_FRAME] + + cpi->recent_ref_frame_usage[ALTREF_FRAME]; + + int pct_gf_active = (100 * cpi->gf_active_count) / + (cpi->common.mb_rows * cpi->common.mb_cols); + + if (tot_mbs) { + gf_frame_useage = (cpi->recent_ref_frame_usage[GOLDEN_FRAME] + + cpi->recent_ref_frame_usage[ALTREF_FRAME]) * + 100 / tot_mbs; + } + + if (pct_gf_active > gf_frame_useage) gf_frame_useage = pct_gf_active; + + /* Not two pass */ + if (cpi->pass != 2) { + /* Single Pass lagged mode: TBD */ + if (0) { + } + + /* Single Pass compression: Has to use current and historical data */ + else { +#if 0 + /* Experimental code */ + int index = cpi->one_pass_frame_index; + int frames_to_scan = (cpi->max_gf_interval <= MAX_LAG_BUFFERS) ? cpi->max_gf_interval : MAX_LAG_BUFFERS; + + /* ************** Experimental code - incomplete */ + /* + double decay_val = 1.0; + double IIAccumulator = 0.0; + double last_iiaccumulator = 0.0; + double IIRatio; + + cpi->one_pass_frame_index = cpi->common.current_video_frame%MAX_LAG_BUFFERS; + + for ( i = 0; i < (frames_to_scan - 1); i++ ) + { + if ( index < 0 ) + index = MAX_LAG_BUFFERS; + index --; + + if ( cpi->one_pass_frame_stats[index].frame_coded_error > 0.0 ) + { + IIRatio = cpi->one_pass_frame_stats[index].frame_intra_error / cpi->one_pass_frame_stats[index].frame_coded_error; + + if ( IIRatio > 30.0 ) + IIRatio = 30.0; + } + else + IIRatio = 30.0; + + IIAccumulator += IIRatio * decay_val; + + decay_val = decay_val * cpi->one_pass_frame_stats[index].frame_pcnt_inter; + + if ( (i > MIN_GF_INTERVAL) && + ((IIAccumulator - last_iiaccumulator) < 2.0) ) + { + break; + } + last_iiaccumulator = IIAccumulator; + } + + Boost = IIAccumulator*100.0/16.0; + cpi->baseline_gf_interval = i; + + */ +#else + + /*************************************************************/ + /* OLD code */ + + /* Adjust boost based upon ambient Q */ + Boost = GFQ_ADJUSTMENT; + + /* Adjust based upon most recently measure intra useage */ + Boost = Boost * + gf_intra_usage_adjustment[(cpi->this_frame_percent_intra < 15) + ? cpi->this_frame_percent_intra + : 14] / + 100; + + /* Adjust gf boost based upon GF usage since last GF */ + Boost = Boost * gf_adjust_table[gf_frame_useage] / 100; +#endif + } + + /* golden frame boost without recode loop often goes awry. be + * safe by keeping numbers down. + */ + if (!cpi->sf.recode_loop) { + if (cpi->compressor_speed == 2) Boost = Boost / 2; + } + + /* Apply an upper limit based on Q for 1 pass encodes */ + if (Boost > kf_gf_boost_qlimits[Q] && (cpi->pass == 0)) { + Boost = kf_gf_boost_qlimits[Q]; + + /* Apply lower limits to boost. */ + } else if (Boost < 110) { + Boost = 110; + } + + /* Note the boost used */ + cpi->last_boost = Boost; + } + + /* Estimate next interval + * This is updated once the real frame size/boost is known. + */ + if (cpi->oxcf.fixed_q == -1) { + if (cpi->pass == 2) { /* 2 Pass */ + cpi->frames_till_gf_update_due = cpi->baseline_gf_interval; + } else { /* 1 Pass */ + cpi->frames_till_gf_update_due = cpi->baseline_gf_interval; + + if (cpi->last_boost > 750) cpi->frames_till_gf_update_due++; + + if (cpi->last_boost > 1000) cpi->frames_till_gf_update_due++; + + if (cpi->last_boost > 1250) cpi->frames_till_gf_update_due++; + + if (cpi->last_boost >= 1500) cpi->frames_till_gf_update_due++; + + if (gf_interval_table[gf_frame_useage] > cpi->frames_till_gf_update_due) { + cpi->frames_till_gf_update_due = gf_interval_table[gf_frame_useage]; + } + + if (cpi->frames_till_gf_update_due > cpi->max_gf_interval) { + cpi->frames_till_gf_update_due = cpi->max_gf_interval; + } + } + } else { + cpi->frames_till_gf_update_due = cpi->baseline_gf_interval; + } + + /* ARF on or off */ + if (cpi->pass != 2) { + /* For now Alt ref is not allowed except in 2 pass modes. */ + cpi->source_alt_ref_pending = 0; + + /*if ( cpi->oxcf.fixed_q == -1) + { + if ( cpi->oxcf.play_alternate && (cpi->last_boost > (100 + + (AF_THRESH*cpi->frames_till_gf_update_due)) ) ) + cpi->source_alt_ref_pending = 1; + else + cpi->source_alt_ref_pending = 0; + }*/ + } +} + +static void calc_pframe_target_size(VP8_COMP *cpi) { + int min_frame_target; + int old_per_frame_bandwidth = cpi->per_frame_bandwidth; + + if (cpi->current_layer > 0) { + cpi->per_frame_bandwidth = + cpi->layer_context[cpi->current_layer].avg_frame_size_for_layer; + } + + min_frame_target = 0; + + if (cpi->pass == 2) { + min_frame_target = cpi->min_frame_bandwidth; + + if (min_frame_target < (cpi->av_per_frame_bandwidth >> 5)) { + min_frame_target = cpi->av_per_frame_bandwidth >> 5; + } + } else if (min_frame_target < cpi->per_frame_bandwidth / 4) { + min_frame_target = cpi->per_frame_bandwidth / 4; + } + + /* Special alt reference frame case */ + if ((cpi->common.refresh_alt_ref_frame) && + (cpi->oxcf.number_of_layers == 1)) { + if (cpi->pass == 2) { + /* Per frame bit target for the alt ref frame */ + cpi->per_frame_bandwidth = cpi->twopass.gf_bits; + cpi->this_frame_target = cpi->per_frame_bandwidth; + } + + /* One Pass ??? TBD */ + } + + /* Normal frames (gf,and inter) */ + else { + /* 2 pass */ + if (cpi->pass == 2) { + cpi->this_frame_target = cpi->per_frame_bandwidth; + } + /* 1 pass */ + else { + int Adjustment; + /* Make rate adjustment to recover bits spent in key frame + * Test to see if the key frame inter data rate correction + * should still be in force + */ + if (cpi->kf_overspend_bits > 0) { + Adjustment = (cpi->kf_bitrate_adjustment <= cpi->kf_overspend_bits) + ? cpi->kf_bitrate_adjustment + : cpi->kf_overspend_bits; + + if (Adjustment > (cpi->per_frame_bandwidth - min_frame_target)) { + Adjustment = (cpi->per_frame_bandwidth - min_frame_target); + } + + cpi->kf_overspend_bits -= Adjustment; + + /* Calculate an inter frame bandwidth target for the next + * few frames designed to recover any extra bits spent on + * the key frame. + */ + cpi->this_frame_target = cpi->per_frame_bandwidth - Adjustment; + + if (cpi->this_frame_target < min_frame_target) { + cpi->this_frame_target = min_frame_target; + } + } else { + cpi->this_frame_target = cpi->per_frame_bandwidth; + } + + /* If appropriate make an adjustment to recover bits spent on a + * recent GF + */ + if ((cpi->gf_overspend_bits > 0) && + (cpi->this_frame_target > min_frame_target)) { + Adjustment = (cpi->non_gf_bitrate_adjustment <= cpi->gf_overspend_bits) + ? cpi->non_gf_bitrate_adjustment + : cpi->gf_overspend_bits; + + if (Adjustment > (cpi->this_frame_target - min_frame_target)) { + Adjustment = (cpi->this_frame_target - min_frame_target); + } + + cpi->gf_overspend_bits -= Adjustment; + cpi->this_frame_target -= Adjustment; + } + + /* Apply small + and - boosts for non gf frames */ + if ((cpi->last_boost > 150) && (cpi->frames_till_gf_update_due > 0) && + (cpi->current_gf_interval >= (MIN_GF_INTERVAL << 1))) { + /* % Adjustment limited to the range 1% to 10% */ + Adjustment = (cpi->last_boost - 100) >> 5; + + if (Adjustment < 1) { + Adjustment = 1; + } else if (Adjustment > 10) { + Adjustment = 10; + } + + /* Convert to bits */ + Adjustment = (cpi->this_frame_target * Adjustment) / 100; + + if (Adjustment > (cpi->this_frame_target - min_frame_target)) { + Adjustment = (cpi->this_frame_target - min_frame_target); + } + + if (cpi->frames_since_golden == (cpi->current_gf_interval >> 1)) { + Adjustment = (cpi->current_gf_interval - 1) * Adjustment; + // Limit adjustment to 10% of current target. + if (Adjustment > (10 * cpi->this_frame_target) / 100) { + Adjustment = (10 * cpi->this_frame_target) / 100; + } + cpi->this_frame_target += Adjustment; + } else { + cpi->this_frame_target -= Adjustment; + } + } + } + } + + /* Sanity check that the total sum of adjustments is not above the + * maximum allowed That is that having allowed for KF and GF penalties + * we have not pushed the current interframe target to low. If the + * adjustment we apply here is not capable of recovering all the extra + * bits we have spent in the KF or GF then the remainder will have to + * be recovered over a longer time span via other buffer / rate control + * mechanisms. + */ + if (cpi->this_frame_target < min_frame_target) { + cpi->this_frame_target = min_frame_target; + } + + if (!cpi->common.refresh_alt_ref_frame) { + /* Note the baseline target data rate for this inter frame. */ + cpi->inter_frame_target = cpi->this_frame_target; + } + + /* One Pass specific code */ + if (cpi->pass == 0) { + /* Adapt target frame size with respect to any buffering constraints: */ + if (cpi->buffered_mode) { + int one_percent_bits = (int)(1 + cpi->oxcf.optimal_buffer_level / 100); + + if ((cpi->buffer_level < cpi->oxcf.optimal_buffer_level) || + (cpi->bits_off_target < cpi->oxcf.optimal_buffer_level)) { + int percent_low = 0; + + /* Decide whether or not we need to adjust the frame data + * rate target. + * + * If we are are below the optimal buffer fullness level + * and adherence to buffering constraints is important to + * the end usage then adjust the per frame target. + */ + if ((cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) && + (cpi->buffer_level < cpi->oxcf.optimal_buffer_level)) { + percent_low = + (int)((cpi->oxcf.optimal_buffer_level - cpi->buffer_level) / + one_percent_bits); + } + /* Are we overshooting the long term clip data rate... */ + else if (cpi->bits_off_target < 0) { + /* Adjust per frame data target downwards to compensate. */ + percent_low = + (int)(100 * -cpi->bits_off_target / (cpi->total_byte_count * 8)); + } + + if (percent_low > cpi->oxcf.under_shoot_pct) { + percent_low = cpi->oxcf.under_shoot_pct; + } else if (percent_low < 0) { + percent_low = 0; + } + + /* lower the target bandwidth for this frame. */ + cpi->this_frame_target -= (cpi->this_frame_target * percent_low) / 200; + + /* Are we using allowing control of active_worst_allowed_q + * according to buffer level. + */ + if (cpi->auto_worst_q && cpi->ni_frames > 150) { + int64_t critical_buffer_level; + + /* For streaming applications the most important factor is + * cpi->buffer_level as this takes into account the + * specified short term buffering constraints. However, + * hitting the long term clip data rate target is also + * important. + */ + if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) { + /* Take the smaller of cpi->buffer_level and + * cpi->bits_off_target + */ + critical_buffer_level = (cpi->buffer_level < cpi->bits_off_target) + ? cpi->buffer_level + : cpi->bits_off_target; + } + /* For local file playback short term buffering constraints + * are less of an issue + */ + else { + /* Consider only how we are doing for the clip as a + * whole + */ + critical_buffer_level = cpi->bits_off_target; + } + + /* Set the active worst quality based upon the selected + * buffer fullness number. + */ + if (critical_buffer_level < cpi->oxcf.optimal_buffer_level) { + if (critical_buffer_level > (cpi->oxcf.optimal_buffer_level >> 2)) { + int64_t qadjustment_range = cpi->worst_quality - cpi->ni_av_qi; + int64_t above_base = (critical_buffer_level - + (cpi->oxcf.optimal_buffer_level >> 2)); + + /* Step active worst quality down from + * cpi->ni_av_qi when (critical_buffer_level == + * cpi->optimal_buffer_level) to + * cpi->worst_quality when + * (critical_buffer_level == + * cpi->optimal_buffer_level >> 2) + */ + cpi->active_worst_quality = + cpi->worst_quality - + (int)((qadjustment_range * above_base) / + (cpi->oxcf.optimal_buffer_level * 3 >> 2)); + } else { + cpi->active_worst_quality = cpi->worst_quality; + } + } else { + cpi->active_worst_quality = cpi->ni_av_qi; + } + } else { + cpi->active_worst_quality = cpi->worst_quality; + } + } else { + int percent_high = 0; + + if ((cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) && + (cpi->buffer_level > cpi->oxcf.optimal_buffer_level)) { + percent_high = + (int)((cpi->buffer_level - cpi->oxcf.optimal_buffer_level) / + one_percent_bits); + } else if (cpi->bits_off_target > cpi->oxcf.optimal_buffer_level) { + percent_high = + (int)((100 * cpi->bits_off_target) / (cpi->total_byte_count * 8)); + } + + if (percent_high > cpi->oxcf.over_shoot_pct) { + percent_high = cpi->oxcf.over_shoot_pct; + } else if (percent_high < 0) { + percent_high = 0; + } + + cpi->this_frame_target += (cpi->this_frame_target * percent_high) / 200; + + /* Are we allowing control of active_worst_allowed_q according + * to buffer level. + */ + if (cpi->auto_worst_q && cpi->ni_frames > 150) { + /* When using the relaxed buffer model stick to the + * user specified value + */ + cpi->active_worst_quality = cpi->ni_av_qi; + } else { + cpi->active_worst_quality = cpi->worst_quality; + } + } + + /* Set active_best_quality to prevent quality rising too high */ + cpi->active_best_quality = cpi->best_quality; + + /* Worst quality obviously must not be better than best quality */ + if (cpi->active_worst_quality <= cpi->active_best_quality) { + cpi->active_worst_quality = cpi->active_best_quality + 1; + } + + if (cpi->active_worst_quality > 127) cpi->active_worst_quality = 127; + } + /* Unbuffered mode (eg. video conferencing) */ + else { + /* Set the active worst quality */ + cpi->active_worst_quality = cpi->worst_quality; + } + + /* Special trap for constrained quality mode + * "active_worst_quality" may never drop below cq level + * for any frame type. + */ + if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY && + cpi->active_worst_quality < cpi->cq_target_quality) { + cpi->active_worst_quality = cpi->cq_target_quality; + } + } + + /* Test to see if we have to drop a frame + * The auto-drop frame code is only used in buffered mode. + * In unbufferd mode (eg vide conferencing) the descision to + * code or drop a frame is made outside the codec in response to real + * world comms or buffer considerations. + */ + if (cpi->drop_frames_allowed && + (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) && + ((cpi->common.frame_type != KEY_FRAME))) { + /* Check for a buffer underun-crisis in which case we have to drop + * a frame + */ + if ((cpi->buffer_level < 0)) { +#if 0 + FILE *f = fopen("dec.stt", "a"); + fprintf(f, "%10d %10d %10d %10d ***** BUFFER EMPTY\n", + (int) cpi->common.current_video_frame, + cpi->decimation_factor, cpi->common.horiz_scale, + (cpi->buffer_level * 100) / cpi->oxcf.optimal_buffer_level); + fclose(f); +#endif + cpi->drop_frame = 1; + + /* Update the buffer level variable. */ + cpi->bits_off_target += cpi->av_per_frame_bandwidth; + if (cpi->bits_off_target > cpi->oxcf.maximum_buffer_size) { + cpi->bits_off_target = (int)cpi->oxcf.maximum_buffer_size; + } + cpi->buffer_level = cpi->bits_off_target; + + if (cpi->oxcf.number_of_layers > 1) { + unsigned int i; + + // Propagate bits saved by dropping the frame to higher layers. + for (i = cpi->current_layer + 1; i < cpi->oxcf.number_of_layers; ++i) { + LAYER_CONTEXT *lc = &cpi->layer_context[i]; + lc->bits_off_target += (int)(lc->target_bandwidth / lc->framerate); + if (lc->bits_off_target > lc->maximum_buffer_size) { + lc->bits_off_target = lc->maximum_buffer_size; + } + lc->buffer_level = lc->bits_off_target; + } + } + } + } + + /* Adjust target frame size for Golden Frames: */ + if (cpi->oxcf.error_resilient_mode == 0 && + (cpi->frames_till_gf_update_due == 0) && !cpi->drop_frame) { + if (!cpi->gf_update_onepass_cbr) { + int Q = (cpi->oxcf.fixed_q < 0) ? cpi->last_q[INTER_FRAME] + : cpi->oxcf.fixed_q; + + int gf_frame_useage = 0; /* Golden frame useage since last GF */ + int tot_mbs = cpi->recent_ref_frame_usage[INTRA_FRAME] + + cpi->recent_ref_frame_usage[LAST_FRAME] + + cpi->recent_ref_frame_usage[GOLDEN_FRAME] + + cpi->recent_ref_frame_usage[ALTREF_FRAME]; + + int pct_gf_active = (100 * cpi->gf_active_count) / + (cpi->common.mb_rows * cpi->common.mb_cols); + + if (tot_mbs) { + gf_frame_useage = (cpi->recent_ref_frame_usage[GOLDEN_FRAME] + + cpi->recent_ref_frame_usage[ALTREF_FRAME]) * + 100 / tot_mbs; + } + + if (pct_gf_active > gf_frame_useage) gf_frame_useage = pct_gf_active; + + /* Is a fixed manual GF frequency being used */ + if (cpi->auto_gold) { + /* For one pass throw a GF if recent frame intra useage is + * low or the GF useage is high + */ + if ((cpi->pass == 0) && + (cpi->this_frame_percent_intra < 15 || gf_frame_useage >= 5)) { + cpi->common.refresh_golden_frame = 1; + + /* Two pass GF descision */ + } else if (cpi->pass == 2) { + cpi->common.refresh_golden_frame = 1; + } + } + +#if 0 + + /* Debug stats */ + if (0) { + FILE *f; + + f = fopen("gf_useaget.stt", "a"); + fprintf(f, " %8ld %10ld %10ld %10ld %10ld\n", + cpi->common.current_video_frame, cpi->gfu_boost, + GFQ_ADJUSTMENT, cpi->gfu_boost, gf_frame_useage); + fclose(f); + } + +#endif + + if (cpi->common.refresh_golden_frame == 1) { +#if 0 + + if (0) { + FILE *f; + + f = fopen("GFexit.stt", "a"); + fprintf(f, "%8ld GF coded\n", cpi->common.current_video_frame); + fclose(f); + } + +#endif + + if (cpi->auto_adjust_gold_quantizer) { + calc_gf_params(cpi); + } + + /* If we are using alternate ref instead of gf then do not apply the + * boost It will instead be applied to the altref update Jims + * modified boost + */ + if (!cpi->source_alt_ref_active) { + if (cpi->oxcf.fixed_q < 0) { + if (cpi->pass == 2) { + /* The spend on the GF is defined in the two pass + * code for two pass encodes + */ + cpi->this_frame_target = cpi->per_frame_bandwidth; + } else { + int Boost = cpi->last_boost; + int frames_in_section = cpi->frames_till_gf_update_due + 1; + int allocation_chunks = (frames_in_section * 100) + (Boost - 100); + int bits_in_section = cpi->inter_frame_target * frames_in_section; + + /* Normalize Altboost and allocations chunck down to + * prevent overflow + */ + while (Boost > 1000) { + Boost /= 2; + allocation_chunks /= 2; + } + + /* Avoid loss of precision but avoid overflow */ + if ((bits_in_section >> 7) > allocation_chunks) { + cpi->this_frame_target = + Boost * (bits_in_section / allocation_chunks); + } else { + cpi->this_frame_target = + (Boost * bits_in_section) / allocation_chunks; + } + } + } else { + cpi->this_frame_target = + (estimate_bits_at_q(1, Q, cpi->common.MBs, 1.0) * + cpi->last_boost) / + 100; + } + } else { + /* If there is an active ARF at this location use the minimum + * bits on this frame even if it is a contructed arf. + * The active maximum quantizer insures that an appropriate + * number of bits will be spent if needed for contstructed ARFs. + */ + cpi->this_frame_target = 0; + } + + cpi->current_gf_interval = cpi->frames_till_gf_update_due; + } + } else { + // Special case for 1 pass CBR: fixed gf period. + // TODO(marpan): Adjust this boost/interval logic. + // If gf_cbr_boost_pct is small (below threshold) set the flag + // gf_noboost_onepass_cbr = 1, which forces the gf to use the same + // rate correction factor as last. + cpi->gf_noboost_onepass_cbr = (cpi->oxcf.gf_cbr_boost_pct <= 100); + cpi->baseline_gf_interval = cpi->gf_interval_onepass_cbr; + // Skip this update if the zero_mvcount is low. + if (cpi->zeromv_count > (cpi->common.MBs >> 1)) { + cpi->common.refresh_golden_frame = 1; + cpi->this_frame_target = + (cpi->this_frame_target * (100 + cpi->oxcf.gf_cbr_boost_pct)) / 100; + } + cpi->frames_till_gf_update_due = cpi->baseline_gf_interval; + cpi->current_gf_interval = cpi->frames_till_gf_update_due; + } + } + + cpi->per_frame_bandwidth = old_per_frame_bandwidth; +} + +void vp8_update_rate_correction_factors(VP8_COMP *cpi, int damp_var) { + int Q = cpi->common.base_qindex; + int correction_factor = 100; + double rate_correction_factor; + double adjustment_limit; + + int projected_size_based_on_q = 0; + + /* Clear down mmx registers to allow floating point in what follows */ + vpx_clear_system_state(); + + if (cpi->common.frame_type == KEY_FRAME) { + rate_correction_factor = cpi->key_frame_rate_correction_factor; + } else { + if (cpi->oxcf.number_of_layers == 1 && !cpi->gf_noboost_onepass_cbr && + (cpi->common.refresh_alt_ref_frame || + cpi->common.refresh_golden_frame)) { + rate_correction_factor = cpi->gf_rate_correction_factor; + } else { + rate_correction_factor = cpi->rate_correction_factor; + } + } + + /* Work out how big we would have expected the frame to be at this Q + * given the current correction factor. Stay in double to avoid int + * overflow when values are large + */ + projected_size_based_on_q = + (int)(((.5 + + rate_correction_factor * + vp8_bits_per_mb[cpi->common.frame_type][Q]) * + cpi->common.MBs) / + (1 << BPER_MB_NORMBITS)); + + /* Make some allowance for cpi->zbin_over_quant */ + if (cpi->mb.zbin_over_quant > 0) { + int Z = cpi->mb.zbin_over_quant; + double Factor = 0.99; + double factor_adjustment = 0.01 / 256.0; + + while (Z > 0) { + Z--; + projected_size_based_on_q = (int)(Factor * projected_size_based_on_q); + Factor += factor_adjustment; + + if (Factor >= 0.999) Factor = 0.999; + } + } + + /* Work out a size correction factor. */ + if (projected_size_based_on_q > 0) { + correction_factor = + (100 * cpi->projected_frame_size) / projected_size_based_on_q; + } + + /* More heavily damped adjustment used if we have been oscillating + * either side of target + */ + switch (damp_var) { + case 0: adjustment_limit = 0.75; break; + case 1: adjustment_limit = 0.375; break; + case 2: + default: adjustment_limit = 0.25; break; + } + + if (correction_factor > 102) { + /* We are not already at the worst allowable quality */ + correction_factor = + (int)(100.5 + ((correction_factor - 100) * adjustment_limit)); + rate_correction_factor = + ((rate_correction_factor * correction_factor) / 100); + + /* Keep rate_correction_factor within limits */ + if (rate_correction_factor > MAX_BPB_FACTOR) { + rate_correction_factor = MAX_BPB_FACTOR; + } + } else if (correction_factor < 99) { + /* We are not already at the best allowable quality */ + correction_factor = + (int)(100.5 - ((100 - correction_factor) * adjustment_limit)); + rate_correction_factor = + ((rate_correction_factor * correction_factor) / 100); + + /* Keep rate_correction_factor within limits */ + if (rate_correction_factor < MIN_BPB_FACTOR) { + rate_correction_factor = MIN_BPB_FACTOR; + } + } + + if (cpi->common.frame_type == KEY_FRAME) { + cpi->key_frame_rate_correction_factor = rate_correction_factor; + } else { + if (cpi->oxcf.number_of_layers == 1 && !cpi->gf_noboost_onepass_cbr && + (cpi->common.refresh_alt_ref_frame || + cpi->common.refresh_golden_frame)) { + cpi->gf_rate_correction_factor = rate_correction_factor; + } else { + cpi->rate_correction_factor = rate_correction_factor; + } + } +} + +int vp8_regulate_q(VP8_COMP *cpi, int target_bits_per_frame) { + int Q = cpi->active_worst_quality; + + if (cpi->force_maxqp == 1) { + cpi->active_worst_quality = cpi->worst_quality; + return cpi->worst_quality; + } + /* Reset Zbin OQ value */ + cpi->mb.zbin_over_quant = 0; + + if (cpi->oxcf.fixed_q >= 0) { + Q = cpi->oxcf.fixed_q; + + if (cpi->common.frame_type == KEY_FRAME) { + Q = cpi->oxcf.key_q; + } else if (cpi->oxcf.number_of_layers == 1 && + cpi->common.refresh_alt_ref_frame && + !cpi->gf_noboost_onepass_cbr) { + Q = cpi->oxcf.alt_q; + } else if (cpi->oxcf.number_of_layers == 1 && + cpi->common.refresh_golden_frame && + !cpi->gf_noboost_onepass_cbr) { + Q = cpi->oxcf.gold_q; + } + } else { + int i; + int last_error = INT_MAX; + int target_bits_per_mb; + int bits_per_mb_at_this_q; + double correction_factor; + + /* Select the appropriate correction factor based upon type of frame. */ + if (cpi->common.frame_type == KEY_FRAME) { + correction_factor = cpi->key_frame_rate_correction_factor; + } else { + if (cpi->oxcf.number_of_layers == 1 && !cpi->gf_noboost_onepass_cbr && + (cpi->common.refresh_alt_ref_frame || + cpi->common.refresh_golden_frame)) { + correction_factor = cpi->gf_rate_correction_factor; + } else { + correction_factor = cpi->rate_correction_factor; + } + } + + /* Calculate required scaling factor based on target frame size and + * size of frame produced using previous Q + */ + if (target_bits_per_frame >= (INT_MAX >> BPER_MB_NORMBITS)) { + /* Case where we would overflow int */ + target_bits_per_mb = (target_bits_per_frame / cpi->common.MBs) + << BPER_MB_NORMBITS; + } else { + target_bits_per_mb = + (target_bits_per_frame << BPER_MB_NORMBITS) / cpi->common.MBs; + } + + i = cpi->active_best_quality; + + do { + bits_per_mb_at_this_q = + (int)(.5 + + correction_factor * vp8_bits_per_mb[cpi->common.frame_type][i]); + + if (bits_per_mb_at_this_q <= target_bits_per_mb) { + if ((target_bits_per_mb - bits_per_mb_at_this_q) <= last_error) { + Q = i; + } else { + Q = i - 1; + } + + break; + } else { + last_error = bits_per_mb_at_this_q - target_bits_per_mb; + } + } while (++i <= cpi->active_worst_quality); + + /* If we are at MAXQ then enable Q over-run which seeks to claw + * back additional bits through things like the RD multiplier + * and zero bin size. + */ + if (Q >= MAXQ) { + int zbin_oqmax; + + double Factor = 0.99; + double factor_adjustment = 0.01 / 256.0; + + if (cpi->common.frame_type == KEY_FRAME) { + zbin_oqmax = 0; + } else if (cpi->oxcf.number_of_layers == 1 && + !cpi->gf_noboost_onepass_cbr && + (cpi->common.refresh_alt_ref_frame || + (cpi->common.refresh_golden_frame && + !cpi->source_alt_ref_active))) { + zbin_oqmax = 16; + } else { + zbin_oqmax = ZBIN_OQ_MAX; + } + + /*{ + double Factor = + (double)target_bits_per_mb/(double)bits_per_mb_at_this_q; + double Oq; + + Factor = Factor/1.2683; + + Oq = pow( Factor, (1.0/-0.165) ); + + if ( Oq > zbin_oqmax ) + Oq = zbin_oqmax; + + cpi->zbin_over_quant = (int)Oq; + }*/ + + /* Each incrment in the zbin is assumed to have a fixed effect + * on bitrate. This is not of course true. The effect will be + * highly clip dependent and may well have sudden steps. The + * idea here is to acheive higher effective quantizers than the + * normal maximum by expanding the zero bin and hence + * decreasing the number of low magnitude non zero coefficients. + */ + while (cpi->mb.zbin_over_quant < zbin_oqmax) { + cpi->mb.zbin_over_quant++; + + if (cpi->mb.zbin_over_quant > zbin_oqmax) { + cpi->mb.zbin_over_quant = zbin_oqmax; + } + + /* Adjust bits_per_mb_at_this_q estimate */ + bits_per_mb_at_this_q = (int)(Factor * bits_per_mb_at_this_q); + Factor += factor_adjustment; + + if (Factor >= 0.999) Factor = 0.999; + + /* Break out if we get down to the target rate */ + if (bits_per_mb_at_this_q <= target_bits_per_mb) break; + } + } + } + + return Q; +} + +static int estimate_keyframe_frequency(VP8_COMP *cpi) { + int i; + + /* Average key frame frequency */ + int av_key_frame_frequency = 0; + + /* First key frame at start of sequence is a special case. We have no + * frequency data. + */ + if (cpi->key_frame_count == 1) { + /* Assume a default of 1 kf every 2 seconds, or the max kf interval, + * whichever is smaller. + */ + int key_freq = cpi->oxcf.key_freq > 0 ? cpi->oxcf.key_freq : 1; + av_key_frame_frequency = 1 + (int)cpi->output_framerate * 2; + + if (cpi->oxcf.auto_key && av_key_frame_frequency > key_freq) { + av_key_frame_frequency = key_freq; + } + + cpi->prior_key_frame_distance[KEY_FRAME_CONTEXT - 1] = + av_key_frame_frequency; + } else { + unsigned int total_weight = 0; + int last_kf_interval = + (cpi->frames_since_key > 0) ? cpi->frames_since_key : 1; + + /* reset keyframe context and calculate weighted average of last + * KEY_FRAME_CONTEXT keyframes + */ + for (i = 0; i < KEY_FRAME_CONTEXT; ++i) { + if (i < KEY_FRAME_CONTEXT - 1) { + cpi->prior_key_frame_distance[i] = cpi->prior_key_frame_distance[i + 1]; + } else { + cpi->prior_key_frame_distance[i] = last_kf_interval; + } + + av_key_frame_frequency += + prior_key_frame_weight[i] * cpi->prior_key_frame_distance[i]; + total_weight += prior_key_frame_weight[i]; + } + + av_key_frame_frequency /= total_weight; + } + // TODO (marpan): Given the checks above, |av_key_frame_frequency| + // should always be above 0. But for now we keep the sanity check in. + if (av_key_frame_frequency == 0) av_key_frame_frequency = 1; + return av_key_frame_frequency; +} + +void vp8_adjust_key_frame_context(VP8_COMP *cpi) { + /* Clear down mmx registers to allow floating point in what follows */ + vpx_clear_system_state(); + + /* Do we have any key frame overspend to recover? */ + /* Two-pass overspend handled elsewhere. */ + if ((cpi->pass != 2) && + (cpi->projected_frame_size > cpi->per_frame_bandwidth)) { + int overspend; + + /* Update the count of key frame overspend to be recovered in + * subsequent frames. A portion of the KF overspend is treated as gf + * overspend (and hence recovered more quickly) as the kf is also a + * gf. Otherwise the few frames following each kf tend to get more + * bits allocated than those following other gfs. + */ + overspend = (cpi->projected_frame_size - cpi->per_frame_bandwidth); + + if (cpi->oxcf.number_of_layers > 1) { + cpi->kf_overspend_bits += overspend; + } else { + cpi->kf_overspend_bits += overspend * 7 / 8; + cpi->gf_overspend_bits += overspend * 1 / 8; + } + + /* Work out how much to try and recover per frame. */ + cpi->kf_bitrate_adjustment = + cpi->kf_overspend_bits / estimate_keyframe_frequency(cpi); + } + + cpi->frames_since_key = 0; + cpi->key_frame_count++; +} + +void vp8_compute_frame_size_bounds(VP8_COMP *cpi, int *frame_under_shoot_limit, + int *frame_over_shoot_limit) { + /* Set-up bounds on acceptable frame size: */ + if (cpi->oxcf.fixed_q >= 0) { + /* Fixed Q scenario: frame size never outranges target + * (there is no target!) + */ + *frame_under_shoot_limit = 0; + *frame_over_shoot_limit = INT_MAX; + } else { + if (cpi->common.frame_type == KEY_FRAME) { + *frame_over_shoot_limit = cpi->this_frame_target * 9 / 8; + *frame_under_shoot_limit = cpi->this_frame_target * 7 / 8; + } else { + if (cpi->oxcf.number_of_layers > 1 || cpi->common.refresh_alt_ref_frame || + cpi->common.refresh_golden_frame) { + *frame_over_shoot_limit = cpi->this_frame_target * 9 / 8; + *frame_under_shoot_limit = cpi->this_frame_target * 7 / 8; + } else { + /* For CBR take buffer fullness into account */ + if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) { + if (cpi->buffer_level >= ((cpi->oxcf.optimal_buffer_level + + cpi->oxcf.maximum_buffer_size) >> + 1)) { + /* Buffer is too full so relax overshoot and tighten + * undershoot + */ + *frame_over_shoot_limit = cpi->this_frame_target * 12 / 8; + *frame_under_shoot_limit = cpi->this_frame_target * 6 / 8; + } else if (cpi->buffer_level <= + (cpi->oxcf.optimal_buffer_level >> 1)) { + /* Buffer is too low so relax undershoot and tighten + * overshoot + */ + *frame_over_shoot_limit = cpi->this_frame_target * 10 / 8; + *frame_under_shoot_limit = cpi->this_frame_target * 4 / 8; + } else { + *frame_over_shoot_limit = cpi->this_frame_target * 11 / 8; + *frame_under_shoot_limit = cpi->this_frame_target * 5 / 8; + } + } + /* VBR and CQ mode */ + /* Note that tighter restrictions here can help quality + * but hurt encode speed + */ + else { + /* Stron overshoot limit for constrained quality */ + if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) { + *frame_over_shoot_limit = cpi->this_frame_target * 11 / 8; + *frame_under_shoot_limit = cpi->this_frame_target * 2 / 8; + } else { + *frame_over_shoot_limit = cpi->this_frame_target * 11 / 8; + *frame_under_shoot_limit = cpi->this_frame_target * 5 / 8; + } + } + } + } + + /* For very small rate targets where the fractional adjustment + * (eg * 7/8) may be tiny make sure there is at least a minimum + * range. + */ + *frame_over_shoot_limit += 200; + *frame_under_shoot_limit -= 200; + if (*frame_under_shoot_limit < 0) *frame_under_shoot_limit = 0; + } +} + +/* return of 0 means drop frame */ +int vp8_pick_frame_size(VP8_COMP *cpi) { + VP8_COMMON *cm = &cpi->common; + + if (cm->frame_type == KEY_FRAME) { + calc_iframe_target_size(cpi); + } else { + calc_pframe_target_size(cpi); + + /* Check if we're dropping the frame: */ + if (cpi->drop_frame) { + cpi->drop_frame = 0; + return 0; + } + } + return 1; +} +// If this just encoded frame (mcomp/transform/quant, but before loopfilter and +// pack_bitstream) has large overshoot, and was not being encoded close to the +// max QP, then drop this frame and force next frame to be encoded at max QP. +// Allow this for screen_content_mode = 2, or if drop frames is allowed. +// TODO(marpan): Should do this exit condition during the encode_frame +// (i.e., halfway during the encoding of the frame) to save cycles. +int vp8_drop_encodedframe_overshoot(VP8_COMP *cpi, int Q) { + int force_drop_overshoot = 0; +#if CONFIG_MULTI_RES_ENCODING + // Only check for dropping due to overshoot on the lowest stream. + // If the lowest stream of the multi-res encoding was dropped due to + // overshoot, then force dropping on all upper layer streams + // (mr_encoder_id > 0). + LOWER_RES_FRAME_INFO *low_res_frame_info = + (LOWER_RES_FRAME_INFO *)cpi->oxcf.mr_low_res_mode_info; + if (cpi->oxcf.mr_total_resolutions > 1 && cpi->oxcf.mr_encoder_id > 0) { + force_drop_overshoot = low_res_frame_info->is_frame_dropped_overshoot_maxqp; + if (!force_drop_overshoot) { + cpi->force_maxqp = 0; + cpi->frames_since_last_drop_overshoot++; + return 0; + } + } +#endif + if (cpi->common.frame_type != KEY_FRAME && + (cpi->oxcf.screen_content_mode == 2 || + (cpi->drop_frames_allowed && + (force_drop_overshoot || + (cpi->rate_correction_factor < (4.0f * MIN_BPB_FACTOR) && + cpi->frames_since_last_drop_overshoot > (int)cpi->framerate))))) { + // Note: the "projected_frame_size" from encode_frame() only gives estimate + // of mode/motion vector rate (in non-rd mode): so below we only require + // that projected_frame_size is somewhat greater than per-frame-bandwidth, + // but add additional condition with high threshold on prediction residual. + + // QP threshold: only allow dropping if we are not close to qp_max. + int thresh_qp = 3 * cpi->worst_quality >> 2; + // Rate threshold, in bytes. + int thresh_rate = 2 * (cpi->av_per_frame_bandwidth >> 3); + // Threshold for the average (over all macroblocks) of the pixel-sum + // residual error over 16x16 block. + int thresh_pred_err_mb = (200 << 4); + int pred_err_mb = (int)(cpi->mb.prediction_error / cpi->common.MBs); + // Reduce/ignore thresh_rate if pred_err_mb much larger than its threshold, + // give more weight to pred_err metric for overshoot detection. + if (cpi->drop_frames_allowed && pred_err_mb > (thresh_pred_err_mb << 4)) + thresh_rate = thresh_rate >> 3; + if ((Q < thresh_qp && cpi->projected_frame_size > thresh_rate && + pred_err_mb > thresh_pred_err_mb) || + force_drop_overshoot) { + unsigned int i; + double new_correction_factor; + int target_bits_per_mb; + const int target_size = cpi->av_per_frame_bandwidth; + // Flag to indicate we will force next frame to be encoded at max QP. + cpi->force_maxqp = 1; + // Reset the buffer levels. + cpi->buffer_level = cpi->oxcf.optimal_buffer_level; + cpi->bits_off_target = cpi->oxcf.optimal_buffer_level; + // Compute a new rate correction factor, corresponding to the current + // target frame size and max_QP, and adjust the rate correction factor + // upwards, if needed. + // This is to prevent a bad state where the re-encoded frame at max_QP + // undershoots significantly, and then we end up dropping every other + // frame because the QP/rate_correction_factor may have been too low + // before the drop and then takes too long to come up. + if (target_size >= (INT_MAX >> BPER_MB_NORMBITS)) { + target_bits_per_mb = (target_size / cpi->common.MBs) + << BPER_MB_NORMBITS; + } else { + target_bits_per_mb = + (target_size << BPER_MB_NORMBITS) / cpi->common.MBs; + } + // Rate correction factor based on target_size_per_mb and max_QP. + new_correction_factor = + (double)target_bits_per_mb / + (double)vp8_bits_per_mb[INTER_FRAME][cpi->worst_quality]; + if (new_correction_factor > cpi->rate_correction_factor) { + cpi->rate_correction_factor = + VPXMIN(2.0 * cpi->rate_correction_factor, new_correction_factor); + } + if (cpi->rate_correction_factor > MAX_BPB_FACTOR) { + cpi->rate_correction_factor = MAX_BPB_FACTOR; + } + // Drop this frame: update frame counters. + cpi->common.current_video_frame++; + cpi->frames_since_key++; + cpi->temporal_pattern_counter++; + cpi->frames_since_last_drop_overshoot = 0; + if (cpi->oxcf.number_of_layers > 1) { + // Set max_qp and rate correction for all temporal layers if overshoot + // is detected. + for (i = 0; i < cpi->oxcf.number_of_layers; ++i) { + LAYER_CONTEXT *lc = &cpi->layer_context[i]; + lc->force_maxqp = 1; + lc->frames_since_last_drop_overshoot = 0; + lc->rate_correction_factor = cpi->rate_correction_factor; + } + } +#if CONFIG_MULTI_RES_ENCODING + if (cpi->oxcf.mr_total_resolutions > 1) + low_res_frame_info->is_frame_dropped_overshoot_maxqp = 1; +#endif + return 1; + } + cpi->force_maxqp = 0; + cpi->frames_since_last_drop_overshoot++; +#if CONFIG_MULTI_RES_ENCODING + if (cpi->oxcf.mr_total_resolutions > 1) + low_res_frame_info->is_frame_dropped_overshoot_maxqp = 0; +#endif + return 0; + } + cpi->force_maxqp = 0; + cpi->frames_since_last_drop_overshoot++; +#if CONFIG_MULTI_RES_ENCODING + if (cpi->oxcf.mr_total_resolutions > 1) + low_res_frame_info->is_frame_dropped_overshoot_maxqp = 0; +#endif + return 0; +} diff --git a/vp8/encoder/ratectrl.h b/vp8/encoder/ratectrl.h new file mode 100644 index 0000000..249de4e --- /dev/null +++ b/vp8/encoder/ratectrl.h @@ -0,0 +1,40 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP8_ENCODER_RATECTRL_H_ +#define VP8_ENCODER_RATECTRL_H_ + +#include "onyx_int.h" + +#ifdef __cplusplus +extern "C" { +#endif + +extern void vp8_save_coding_context(VP8_COMP *cpi); +extern void vp8_restore_coding_context(VP8_COMP *cpi); + +extern void vp8_setup_key_frame(VP8_COMP *cpi); +extern void vp8_update_rate_correction_factors(VP8_COMP *cpi, int damp_var); +extern int vp8_regulate_q(VP8_COMP *cpi, int target_bits_per_frame); +extern void vp8_adjust_key_frame_context(VP8_COMP *cpi); +extern void vp8_compute_frame_size_bounds(VP8_COMP *cpi, + int *frame_under_shoot_limit, + int *frame_over_shoot_limit); + +/* return of 0 means drop frame */ +extern int vp8_pick_frame_size(VP8_COMP *cpi); + +extern int vp8_drop_encodedframe_overshoot(VP8_COMP *cpi, int Q); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP8_ENCODER_RATECTRL_H_ diff --git a/vp8/encoder/rdopt.c b/vp8/encoder/rdopt.c new file mode 100644 index 0000000..e210b44 --- /dev/null +++ b/vp8/encoder/rdopt.c @@ -0,0 +1,2383 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include +#include +#include +#include +#include "vpx_config.h" +#include "vp8_rtcd.h" +#include "./vpx_dsp_rtcd.h" +#include "encodeframe.h" +#include "tokenize.h" +#include "treewriter.h" +#include "onyx_int.h" +#include "modecosts.h" +#include "encodeintra.h" +#include "pickinter.h" +#include "vp8/common/common.h" +#include "vp8/common/entropymode.h" +#include "vp8/common/reconinter.h" +#include "vp8/common/reconintra.h" +#include "vp8/common/reconintra4x4.h" +#include "vp8/common/findnearmv.h" +#include "vp8/common/quant_common.h" +#include "encodemb.h" +#include "vp8/encoder/quantize.h" +#include "vpx_dsp/variance.h" +#include "vpx_ports/system_state.h" +#include "mcomp.h" +#include "rdopt.h" +#include "vpx_mem/vpx_mem.h" +#include "vp8/common/systemdependent.h" +#if CONFIG_TEMPORAL_DENOISING +#include "denoising.h" +#endif +extern void vp8_update_zbin_extra(VP8_COMP *cpi, MACROBLOCK *x); + +#define MAXF(a, b) (((a) > (b)) ? (a) : (b)) + +typedef struct rate_distortion_struct { + int rate2; + int rate_y; + int rate_uv; + int distortion2; + int distortion_uv; +} RATE_DISTORTION; + +typedef struct best_mode_struct { + int yrd; + int rd; + int intra_rd; + MB_MODE_INFO mbmode; + union b_mode_info bmodes[16]; + PARTITION_INFO partition; +} BEST_MODE; + +static const int auto_speed_thresh[17] = { 1000, 200, 150, 130, 150, 125, + 120, 115, 115, 115, 115, 115, + 115, 115, 115, 115, 105 }; + +const MB_PREDICTION_MODE vp8_mode_order[MAX_MODES] = { + ZEROMV, DC_PRED, + + NEARESTMV, NEARMV, + + ZEROMV, NEARESTMV, + + ZEROMV, NEARESTMV, + + NEARMV, NEARMV, + + V_PRED, H_PRED, TM_PRED, + + NEWMV, NEWMV, NEWMV, + + SPLITMV, SPLITMV, SPLITMV, + + B_PRED, +}; + +/* This table determines the search order in reference frame priority order, + * which may not necessarily match INTRA,LAST,GOLDEN,ARF + */ +const int vp8_ref_frame_order[MAX_MODES] = { + 1, 0, + + 1, 1, + + 2, 2, + + 3, 3, + + 2, 3, + + 0, 0, 0, + + 1, 2, 3, + + 1, 2, 3, + + 0, +}; + +static void fill_token_costs( + int c[BLOCK_TYPES][COEF_BANDS][PREV_COEF_CONTEXTS][MAX_ENTROPY_TOKENS], + const vp8_prob p[BLOCK_TYPES][COEF_BANDS][PREV_COEF_CONTEXTS] + [ENTROPY_NODES]) { + int i, j, k; + + for (i = 0; i < BLOCK_TYPES; ++i) { + for (j = 0; j < COEF_BANDS; ++j) { + for (k = 0; k < PREV_COEF_CONTEXTS; ++k) { + /* check for pt=0 and band > 1 if block type 0 + * and 0 if blocktype 1 + */ + if (k == 0 && j > (i == 0)) { + vp8_cost_tokens2(c[i][j][k], p[i][j][k], vp8_coef_tree, 2); + } else { + vp8_cost_tokens(c[i][j][k], p[i][j][k], vp8_coef_tree); + } + } + } + } +} + +static const int rd_iifactor[32] = { 4, 4, 3, 2, 1, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; + +/* values are now correlated to quantizer */ +static const int sad_per_bit16lut[QINDEX_RANGE] = { + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, + 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, + 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, + 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, + 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, + 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, + 11, 11, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 14, 14 +}; +static const int sad_per_bit4lut[QINDEX_RANGE] = { + 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, + 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, + 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, + 7, 7, 7, 7, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, + 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, + 12, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 15, 15, 15, 15, 16, 16, + 16, 16, 17, 17, 17, 18, 18, 18, 19, 19, 19, 20, 20, 20, +}; + +void vp8cx_initialize_me_consts(VP8_COMP *cpi, int QIndex) { + cpi->mb.sadperbit16 = sad_per_bit16lut[QIndex]; + cpi->mb.sadperbit4 = sad_per_bit4lut[QIndex]; +} + +void vp8_initialize_rd_consts(VP8_COMP *cpi, MACROBLOCK *x, int Qvalue) { + int q; + int i; + double capped_q = (Qvalue < 160) ? (double)Qvalue : 160.0; + double rdconst = 2.80; + + vpx_clear_system_state(); + + /* Further tests required to see if optimum is different + * for key frames, golden frames and arf frames. + */ + cpi->RDMULT = (int)(rdconst * (capped_q * capped_q)); + + /* Extend rate multiplier along side quantizer zbin increases */ + if (cpi->mb.zbin_over_quant > 0) { + double oq_factor; + double modq; + + /* Experimental code using the same basic equation as used for Q above + * The units of cpi->mb.zbin_over_quant are 1/128 of Q bin size + */ + oq_factor = 1.0 + ((double)0.0015625 * cpi->mb.zbin_over_quant); + modq = (int)((double)capped_q * oq_factor); + cpi->RDMULT = (int)(rdconst * (modq * modq)); + } + + if (cpi->pass == 2 && (cpi->common.frame_type != KEY_FRAME)) { + if (cpi->twopass.next_iiratio > 31) { + cpi->RDMULT += (cpi->RDMULT * rd_iifactor[31]) >> 4; + } else { + cpi->RDMULT += + (cpi->RDMULT * rd_iifactor[cpi->twopass.next_iiratio]) >> 4; + } + } + + cpi->mb.errorperbit = (cpi->RDMULT / 110); + cpi->mb.errorperbit += (cpi->mb.errorperbit == 0); + + vp8_set_speed_features(cpi); + + for (i = 0; i < MAX_MODES; ++i) { + x->mode_test_hit_counts[i] = 0; + } + + q = (int)pow(Qvalue, 1.25); + + if (q < 8) q = 8; + + if (cpi->RDMULT > 1000) { + cpi->RDDIV = 1; + cpi->RDMULT /= 100; + + for (i = 0; i < MAX_MODES; ++i) { + if (cpi->sf.thresh_mult[i] < INT_MAX) { + x->rd_threshes[i] = cpi->sf.thresh_mult[i] * q / 100; + } else { + x->rd_threshes[i] = INT_MAX; + } + + cpi->rd_baseline_thresh[i] = x->rd_threshes[i]; + } + } else { + cpi->RDDIV = 100; + + for (i = 0; i < MAX_MODES; ++i) { + if (cpi->sf.thresh_mult[i] < (INT_MAX / q)) { + x->rd_threshes[i] = cpi->sf.thresh_mult[i] * q; + } else { + x->rd_threshes[i] = INT_MAX; + } + + cpi->rd_baseline_thresh[i] = x->rd_threshes[i]; + } + } + + { + /* build token cost array for the type of frame we have now */ + FRAME_CONTEXT *l = &cpi->lfc_n; + + if (cpi->common.refresh_alt_ref_frame) { + l = &cpi->lfc_a; + } else if (cpi->common.refresh_golden_frame) { + l = &cpi->lfc_g; + } + + fill_token_costs(cpi->mb.token_costs, + (const vp8_prob(*)[8][3][11])l->coef_probs); + /* + fill_token_costs( + cpi->mb.token_costs, + (const vp8_prob( *)[8][3][11]) cpi->common.fc.coef_probs); + */ + + /* TODO make these mode costs depend on last,alt or gold too. (jbb) */ + vp8_init_mode_costs(cpi); + } +} + +void vp8_auto_select_speed(VP8_COMP *cpi) { + int milliseconds_for_compress = (int)(1000000 / cpi->framerate); + + milliseconds_for_compress = + milliseconds_for_compress * (16 - cpi->oxcf.cpu_used) / 16; + +#if 0 + + if (0) + { + FILE *f; + + f = fopen("speed.stt", "a"); + fprintf(f, " %8ld %10ld %10ld %10ld\n", + cpi->common.current_video_frame, cpi->Speed, milliseconds_for_compress, cpi->avg_pick_mode_time); + fclose(f); + } + +#endif + + if (cpi->avg_pick_mode_time < milliseconds_for_compress && + (cpi->avg_encode_time - cpi->avg_pick_mode_time) < + milliseconds_for_compress) { + if (cpi->avg_pick_mode_time == 0) { + cpi->Speed = 4; + } else { + if (milliseconds_for_compress * 100 < cpi->avg_encode_time * 95) { + cpi->Speed += 2; + cpi->avg_pick_mode_time = 0; + cpi->avg_encode_time = 0; + + if (cpi->Speed > 16) { + cpi->Speed = 16; + } + } + + if (milliseconds_for_compress * 100 > + cpi->avg_encode_time * auto_speed_thresh[cpi->Speed]) { + cpi->Speed -= 1; + cpi->avg_pick_mode_time = 0; + cpi->avg_encode_time = 0; + + /* In real-time mode, cpi->speed is in [4, 16]. */ + if (cpi->Speed < 4) { + cpi->Speed = 4; + } + } + } + } else { + cpi->Speed += 4; + + if (cpi->Speed > 16) cpi->Speed = 16; + + cpi->avg_pick_mode_time = 0; + cpi->avg_encode_time = 0; + } +} + +int vp8_block_error_c(short *coeff, short *dqcoeff) { + int i; + int error = 0; + + for (i = 0; i < 16; ++i) { + int this_diff = coeff[i] - dqcoeff[i]; + error += this_diff * this_diff; + } + + return error; +} + +int vp8_mbblock_error_c(MACROBLOCK *mb, int dc) { + BLOCK *be; + BLOCKD *bd; + int i, j; + int berror, error = 0; + + for (i = 0; i < 16; ++i) { + be = &mb->block[i]; + bd = &mb->e_mbd.block[i]; + + berror = 0; + + for (j = dc; j < 16; ++j) { + int this_diff = be->coeff[j] - bd->dqcoeff[j]; + berror += this_diff * this_diff; + } + + error += berror; + } + + return error; +} + +int vp8_mbuverror_c(MACROBLOCK *mb) { + BLOCK *be; + BLOCKD *bd; + + int i; + int error = 0; + + for (i = 16; i < 24; ++i) { + be = &mb->block[i]; + bd = &mb->e_mbd.block[i]; + + error += vp8_block_error_c(be->coeff, bd->dqcoeff); + } + + return error; +} + +int VP8_UVSSE(MACROBLOCK *x) { + unsigned char *uptr, *vptr; + unsigned char *upred_ptr = (*(x->block[16].base_src) + x->block[16].src); + unsigned char *vpred_ptr = (*(x->block[20].base_src) + x->block[20].src); + int uv_stride = x->block[16].src_stride; + + unsigned int sse1 = 0; + unsigned int sse2 = 0; + int mv_row = x->e_mbd.mode_info_context->mbmi.mv.as_mv.row; + int mv_col = x->e_mbd.mode_info_context->mbmi.mv.as_mv.col; + int offset; + int pre_stride = x->e_mbd.pre.uv_stride; + + if (mv_row < 0) { + mv_row -= 1; + } else { + mv_row += 1; + } + + if (mv_col < 0) { + mv_col -= 1; + } else { + mv_col += 1; + } + + mv_row /= 2; + mv_col /= 2; + + offset = (mv_row >> 3) * pre_stride + (mv_col >> 3); + uptr = x->e_mbd.pre.u_buffer + offset; + vptr = x->e_mbd.pre.v_buffer + offset; + + if ((mv_row | mv_col) & 7) { + vpx_sub_pixel_variance8x8(uptr, pre_stride, mv_col & 7, mv_row & 7, + upred_ptr, uv_stride, &sse2); + vpx_sub_pixel_variance8x8(vptr, pre_stride, mv_col & 7, mv_row & 7, + vpred_ptr, uv_stride, &sse1); + sse2 += sse1; + } else { + vpx_variance8x8(uptr, pre_stride, upred_ptr, uv_stride, &sse2); + vpx_variance8x8(vptr, pre_stride, vpred_ptr, uv_stride, &sse1); + sse2 += sse1; + } + return sse2; +} + +static int cost_coeffs(MACROBLOCK *mb, BLOCKD *b, int type, ENTROPY_CONTEXT *a, + ENTROPY_CONTEXT *l) { + int c = !type; /* start at coef 0, unless Y with Y2 */ + int eob = (int)(*b->eob); + int pt; /* surrounding block/prev coef predictor */ + int cost = 0; + short *qcoeff_ptr = b->qcoeff; + + VP8_COMBINEENTROPYCONTEXTS(pt, *a, *l); + + assert(eob <= 16); + for (; c < eob; ++c) { + const int v = qcoeff_ptr[vp8_default_zig_zag1d[c]]; + const int t = vp8_dct_value_tokens_ptr[v].Token; + cost += mb->token_costs[type][vp8_coef_bands[c]][pt][t]; + cost += vp8_dct_value_cost_ptr[v]; + pt = vp8_prev_token_class[t]; + } + + if (c < 16) { + cost += mb->token_costs[type][vp8_coef_bands[c]][pt][DCT_EOB_TOKEN]; + } + + pt = (c != !type); /* is eob first coefficient; */ + *a = *l = pt; + + return cost; +} + +static int vp8_rdcost_mby(MACROBLOCK *mb) { + int cost = 0; + int b; + MACROBLOCKD *x = &mb->e_mbd; + ENTROPY_CONTEXT_PLANES t_above, t_left; + ENTROPY_CONTEXT *ta; + ENTROPY_CONTEXT *tl; + + memcpy(&t_above, mb->e_mbd.above_context, sizeof(ENTROPY_CONTEXT_PLANES)); + memcpy(&t_left, mb->e_mbd.left_context, sizeof(ENTROPY_CONTEXT_PLANES)); + + ta = (ENTROPY_CONTEXT *)&t_above; + tl = (ENTROPY_CONTEXT *)&t_left; + + for (b = 0; b < 16; ++b) { + cost += cost_coeffs(mb, x->block + b, PLANE_TYPE_Y_NO_DC, + ta + vp8_block2above[b], tl + vp8_block2left[b]); + } + + cost += cost_coeffs(mb, x->block + 24, PLANE_TYPE_Y2, + ta + vp8_block2above[24], tl + vp8_block2left[24]); + + return cost; +} + +static void macro_block_yrd(MACROBLOCK *mb, int *Rate, int *Distortion) { + int b; + MACROBLOCKD *const x = &mb->e_mbd; + BLOCK *const mb_y2 = mb->block + 24; + BLOCKD *const x_y2 = x->block + 24; + short *Y2DCPtr = mb_y2->src_diff; + BLOCK *beptr; + int d; + + vp8_subtract_mby(mb->src_diff, *(mb->block[0].base_src), + mb->block[0].src_stride, mb->e_mbd.predictor, 16); + + /* Fdct and building the 2nd order block */ + for (beptr = mb->block; beptr < mb->block + 16; beptr += 2) { + mb->short_fdct8x4(beptr->src_diff, beptr->coeff, 32); + *Y2DCPtr++ = beptr->coeff[0]; + *Y2DCPtr++ = beptr->coeff[16]; + } + + /* 2nd order fdct */ + mb->short_walsh4x4(mb_y2->src_diff, mb_y2->coeff, 8); + + /* Quantization */ + for (b = 0; b < 16; ++b) { + mb->quantize_b(&mb->block[b], &mb->e_mbd.block[b]); + } + + /* DC predication and Quantization of 2nd Order block */ + mb->quantize_b(mb_y2, x_y2); + + /* Distortion */ + d = vp8_mbblock_error(mb, 1) << 2; + d += vp8_block_error(mb_y2->coeff, x_y2->dqcoeff); + + *Distortion = (d >> 4); + + /* rate */ + *Rate = vp8_rdcost_mby(mb); +} + +static void copy_predictor(unsigned char *dst, const unsigned char *predictor) { + const unsigned int *p = (const unsigned int *)predictor; + unsigned int *d = (unsigned int *)dst; + d[0] = p[0]; + d[4] = p[4]; + d[8] = p[8]; + d[12] = p[12]; +} +static int rd_pick_intra4x4block(MACROBLOCK *x, BLOCK *be, BLOCKD *b, + B_PREDICTION_MODE *best_mode, + const int *bmode_costs, ENTROPY_CONTEXT *a, + ENTROPY_CONTEXT *l, + + int *bestrate, int *bestratey, + int *bestdistortion) { + B_PREDICTION_MODE mode; + int best_rd = INT_MAX; + int rate = 0; + int distortion; + + ENTROPY_CONTEXT ta = *a, tempa = *a; + ENTROPY_CONTEXT tl = *l, templ = *l; + /* + * The predictor buffer is a 2d buffer with a stride of 16. Create + * a temp buffer that meets the stride requirements, but we are only + * interested in the left 4x4 block + * */ + DECLARE_ALIGNED(16, unsigned char, best_predictor[16 * 4]); + DECLARE_ALIGNED(16, short, best_dqcoeff[16]); + int dst_stride = x->e_mbd.dst.y_stride; + unsigned char *dst = x->e_mbd.dst.y_buffer + b->offset; + + unsigned char *Above = dst - dst_stride; + unsigned char *yleft = dst - 1; + unsigned char top_left = Above[-1]; + + for (mode = B_DC_PRED; mode <= B_HU_PRED; ++mode) { + int this_rd; + int ratey; + + rate = bmode_costs[mode]; + + vp8_intra4x4_predict(Above, yleft, dst_stride, mode, b->predictor, 16, + top_left); + vp8_subtract_b(be, b, 16); + x->short_fdct4x4(be->src_diff, be->coeff, 32); + x->quantize_b(be, b); + + tempa = ta; + templ = tl; + + ratey = cost_coeffs(x, b, PLANE_TYPE_Y_WITH_DC, &tempa, &templ); + rate += ratey; + distortion = vp8_block_error(be->coeff, b->dqcoeff) >> 2; + + this_rd = RDCOST(x->rdmult, x->rddiv, rate, distortion); + + if (this_rd < best_rd) { + *bestrate = rate; + *bestratey = ratey; + *bestdistortion = distortion; + best_rd = this_rd; + *best_mode = mode; + *a = tempa; + *l = templ; + copy_predictor(best_predictor, b->predictor); + memcpy(best_dqcoeff, b->dqcoeff, 32); + } + } + b->bmi.as_mode = *best_mode; + + vp8_short_idct4x4llm(best_dqcoeff, best_predictor, 16, dst, dst_stride); + + return best_rd; +} + +static int rd_pick_intra4x4mby_modes(MACROBLOCK *mb, int *Rate, int *rate_y, + int *Distortion, int best_rd) { + MACROBLOCKD *const xd = &mb->e_mbd; + int i; + int cost = mb->mbmode_cost[xd->frame_type][B_PRED]; + int distortion = 0; + int tot_rate_y = 0; + int64_t total_rd = 0; + ENTROPY_CONTEXT_PLANES t_above, t_left; + ENTROPY_CONTEXT *ta; + ENTROPY_CONTEXT *tl; + const int *bmode_costs; + + memcpy(&t_above, mb->e_mbd.above_context, sizeof(ENTROPY_CONTEXT_PLANES)); + memcpy(&t_left, mb->e_mbd.left_context, sizeof(ENTROPY_CONTEXT_PLANES)); + + ta = (ENTROPY_CONTEXT *)&t_above; + tl = (ENTROPY_CONTEXT *)&t_left; + + intra_prediction_down_copy(xd, xd->dst.y_buffer - xd->dst.y_stride + 16); + + bmode_costs = mb->inter_bmode_costs; + + for (i = 0; i < 16; ++i) { + MODE_INFO *const mic = xd->mode_info_context; + const int mis = xd->mode_info_stride; + B_PREDICTION_MODE best_mode = B_MODE_COUNT; + int r = 0, ry = 0, d = 0; + + if (mb->e_mbd.frame_type == KEY_FRAME) { + const B_PREDICTION_MODE A = above_block_mode(mic, i, mis); + const B_PREDICTION_MODE L = left_block_mode(mic, i); + + bmode_costs = mb->bmode_costs[A][L]; + } + + total_rd += rd_pick_intra4x4block( + mb, mb->block + i, xd->block + i, &best_mode, bmode_costs, + ta + vp8_block2above[i], tl + vp8_block2left[i], &r, &ry, &d); + + cost += r; + distortion += d; + tot_rate_y += ry; + + assert(best_mode != B_MODE_COUNT); + mic->bmi[i].as_mode = best_mode; + + if (total_rd >= (int64_t)best_rd) break; + } + + if (total_rd >= (int64_t)best_rd) return INT_MAX; + + *Rate = cost; + *rate_y = tot_rate_y; + *Distortion = distortion; + + return RDCOST(mb->rdmult, mb->rddiv, cost, distortion); +} + +static int rd_pick_intra16x16mby_mode(MACROBLOCK *x, int *Rate, int *rate_y, + int *Distortion) { + MB_PREDICTION_MODE mode; + MB_PREDICTION_MODE mode_selected = MB_MODE_COUNT; + int rate, ratey; + int distortion; + int best_rd = INT_MAX; + int this_rd; + MACROBLOCKD *xd = &x->e_mbd; + + /* Y Search for 16x16 intra prediction mode */ + for (mode = DC_PRED; mode <= TM_PRED; ++mode) { + xd->mode_info_context->mbmi.mode = mode; + + vp8_build_intra_predictors_mby_s(xd, xd->dst.y_buffer - xd->dst.y_stride, + xd->dst.y_buffer - 1, xd->dst.y_stride, + xd->predictor, 16); + + macro_block_yrd(x, &ratey, &distortion); + rate = ratey + + x->mbmode_cost[xd->frame_type][xd->mode_info_context->mbmi.mode]; + + this_rd = RDCOST(x->rdmult, x->rddiv, rate, distortion); + + if (this_rd < best_rd) { + mode_selected = mode; + best_rd = this_rd; + *Rate = rate; + *rate_y = ratey; + *Distortion = distortion; + } + } + + assert(mode_selected != MB_MODE_COUNT); + xd->mode_info_context->mbmi.mode = mode_selected; + return best_rd; +} + +static int rd_cost_mbuv(MACROBLOCK *mb) { + int b; + int cost = 0; + MACROBLOCKD *x = &mb->e_mbd; + ENTROPY_CONTEXT_PLANES t_above, t_left; + ENTROPY_CONTEXT *ta; + ENTROPY_CONTEXT *tl; + + memcpy(&t_above, mb->e_mbd.above_context, sizeof(ENTROPY_CONTEXT_PLANES)); + memcpy(&t_left, mb->e_mbd.left_context, sizeof(ENTROPY_CONTEXT_PLANES)); + + ta = (ENTROPY_CONTEXT *)&t_above; + tl = (ENTROPY_CONTEXT *)&t_left; + + for (b = 16; b < 24; ++b) { + cost += cost_coeffs(mb, x->block + b, PLANE_TYPE_UV, + ta + vp8_block2above[b], tl + vp8_block2left[b]); + } + + return cost; +} + +static int rd_inter16x16_uv(VP8_COMP *cpi, MACROBLOCK *x, int *rate, + int *distortion, int fullpixel) { + (void)cpi; + (void)fullpixel; + + vp8_build_inter16x16_predictors_mbuv(&x->e_mbd); + vp8_subtract_mbuv(x->src_diff, x->src.u_buffer, x->src.v_buffer, + x->src.uv_stride, &x->e_mbd.predictor[256], + &x->e_mbd.predictor[320], 8); + + vp8_transform_mbuv(x); + vp8_quantize_mbuv(x); + + *rate = rd_cost_mbuv(x); + *distortion = vp8_mbuverror(x) / 4; + + return RDCOST(x->rdmult, x->rddiv, *rate, *distortion); +} + +static int rd_inter4x4_uv(VP8_COMP *cpi, MACROBLOCK *x, int *rate, + int *distortion, int fullpixel) { + (void)cpi; + (void)fullpixel; + + vp8_build_inter4x4_predictors_mbuv(&x->e_mbd); + vp8_subtract_mbuv(x->src_diff, x->src.u_buffer, x->src.v_buffer, + x->src.uv_stride, &x->e_mbd.predictor[256], + &x->e_mbd.predictor[320], 8); + + vp8_transform_mbuv(x); + vp8_quantize_mbuv(x); + + *rate = rd_cost_mbuv(x); + *distortion = vp8_mbuverror(x) / 4; + + return RDCOST(x->rdmult, x->rddiv, *rate, *distortion); +} + +static void rd_pick_intra_mbuv_mode(MACROBLOCK *x, int *rate, + int *rate_tokenonly, int *distortion) { + MB_PREDICTION_MODE mode; + MB_PREDICTION_MODE mode_selected = MB_MODE_COUNT; + int best_rd = INT_MAX; + int d = 0, r = 0; + int rate_to; + MACROBLOCKD *xd = &x->e_mbd; + + for (mode = DC_PRED; mode <= TM_PRED; ++mode) { + int this_rate; + int this_distortion; + int this_rd; + + xd->mode_info_context->mbmi.uv_mode = mode; + + vp8_build_intra_predictors_mbuv_s( + xd, xd->dst.u_buffer - xd->dst.uv_stride, + xd->dst.v_buffer - xd->dst.uv_stride, xd->dst.u_buffer - 1, + xd->dst.v_buffer - 1, xd->dst.uv_stride, &xd->predictor[256], + &xd->predictor[320], 8); + + vp8_subtract_mbuv(x->src_diff, x->src.u_buffer, x->src.v_buffer, + x->src.uv_stride, &xd->predictor[256], + &xd->predictor[320], 8); + vp8_transform_mbuv(x); + vp8_quantize_mbuv(x); + + rate_to = rd_cost_mbuv(x); + this_rate = rate_to + + x->intra_uv_mode_cost[xd->frame_type] + [xd->mode_info_context->mbmi.uv_mode]; + + this_distortion = vp8_mbuverror(x) / 4; + + this_rd = RDCOST(x->rdmult, x->rddiv, this_rate, this_distortion); + + if (this_rd < best_rd) { + best_rd = this_rd; + d = this_distortion; + r = this_rate; + *rate_tokenonly = rate_to; + mode_selected = mode; + } + } + + *rate = r; + *distortion = d; + + assert(mode_selected != MB_MODE_COUNT); + xd->mode_info_context->mbmi.uv_mode = mode_selected; +} + +int vp8_cost_mv_ref(MB_PREDICTION_MODE m, const int near_mv_ref_ct[4]) { + vp8_prob p[VP8_MVREFS - 1]; + assert(NEARESTMV <= m && m <= SPLITMV); + vp8_mv_ref_probs(p, near_mv_ref_ct); + return vp8_cost_token(vp8_mv_ref_tree, p, + vp8_mv_ref_encoding_array + (m - NEARESTMV)); +} + +void vp8_set_mbmode_and_mvs(MACROBLOCK *x, MB_PREDICTION_MODE mb, int_mv *mv) { + x->e_mbd.mode_info_context->mbmi.mode = mb; + x->e_mbd.mode_info_context->mbmi.mv.as_int = mv->as_int; +} + +static int labels2mode(MACROBLOCK *x, int const *labelings, int which_label, + B_PREDICTION_MODE this_mode, int_mv *this_mv, + int_mv *best_ref_mv, int *mvcost[2]) { + MACROBLOCKD *const xd = &x->e_mbd; + MODE_INFO *const mic = xd->mode_info_context; + const int mis = xd->mode_info_stride; + + int cost = 0; + int thismvcost = 0; + + /* We have to be careful retrieving previously-encoded motion vectors. + Ones from this macroblock have to be pulled from the BLOCKD array + as they have not yet made it to the bmi array in our MB_MODE_INFO. */ + + int i = 0; + + do { + BLOCKD *const d = xd->block + i; + const int row = i >> 2, col = i & 3; + + B_PREDICTION_MODE m; + + if (labelings[i] != which_label) continue; + + if (col && labelings[i] == labelings[i - 1]) { + m = LEFT4X4; + } else if (row && labelings[i] == labelings[i - 4]) { + m = ABOVE4X4; + } else { + /* the only time we should do costing for new motion vector + * or mode is when we are on a new label (jbb May 08, 2007) + */ + switch (m = this_mode) { + case NEW4X4: + thismvcost = vp8_mv_bit_cost(this_mv, best_ref_mv, mvcost, 102); + break; + case LEFT4X4: + this_mv->as_int = col ? d[-1].bmi.mv.as_int : left_block_mv(mic, i); + break; + case ABOVE4X4: + this_mv->as_int = + row ? d[-4].bmi.mv.as_int : above_block_mv(mic, i, mis); + break; + case ZERO4X4: this_mv->as_int = 0; break; + default: break; + } + + if (m == ABOVE4X4) { /* replace above with left if same */ + int_mv left_mv; + + left_mv.as_int = col ? d[-1].bmi.mv.as_int : left_block_mv(mic, i); + + if (left_mv.as_int == this_mv->as_int) m = LEFT4X4; + } + + cost = x->inter_bmode_costs[m]; + } + + d->bmi.mv.as_int = this_mv->as_int; + + x->partition_info->bmi[i].mode = m; + x->partition_info->bmi[i].mv.as_int = this_mv->as_int; + + } while (++i < 16); + + cost += thismvcost; + return cost; +} + +static int rdcost_mbsegment_y(MACROBLOCK *mb, const int *labels, + int which_label, ENTROPY_CONTEXT *ta, + ENTROPY_CONTEXT *tl) { + int cost = 0; + int b; + MACROBLOCKD *x = &mb->e_mbd; + + for (b = 0; b < 16; ++b) { + if (labels[b] == which_label) { + cost += cost_coeffs(mb, x->block + b, PLANE_TYPE_Y_WITH_DC, + ta + vp8_block2above[b], tl + vp8_block2left[b]); + } + } + + return cost; +} +static unsigned int vp8_encode_inter_mb_segment(MACROBLOCK *x, + int const *labels, + int which_label) { + int i; + unsigned int distortion = 0; + int pre_stride = x->e_mbd.pre.y_stride; + unsigned char *base_pre = x->e_mbd.pre.y_buffer; + + for (i = 0; i < 16; ++i) { + if (labels[i] == which_label) { + BLOCKD *bd = &x->e_mbd.block[i]; + BLOCK *be = &x->block[i]; + + vp8_build_inter_predictors_b(bd, 16, base_pre, pre_stride, + x->e_mbd.subpixel_predict); + vp8_subtract_b(be, bd, 16); + x->short_fdct4x4(be->src_diff, be->coeff, 32); + x->quantize_b(be, bd); + + distortion += vp8_block_error(be->coeff, bd->dqcoeff); + } + } + + return distortion; +} + +static const unsigned int segmentation_to_sseshift[4] = { 3, 3, 2, 0 }; + +typedef struct { + int_mv *ref_mv; + int_mv mvp; + + int segment_rd; + int segment_num; + int r; + int d; + int segment_yrate; + B_PREDICTION_MODE modes[16]; + int_mv mvs[16]; + unsigned char eobs[16]; + + int mvthresh; + int *mdcounts; + + int_mv sv_mvp[4]; /* save 4 mvp from 8x8 */ + int sv_istep[2]; /* save 2 initial step_param for 16x8/8x16 */ + +} BEST_SEG_INFO; + +static void rd_check_segment(VP8_COMP *cpi, MACROBLOCK *x, BEST_SEG_INFO *bsi, + unsigned int segmentation) { + int i; + int const *labels; + int br = 0; + int bd = 0; + B_PREDICTION_MODE this_mode; + + int label_count; + int this_segment_rd = 0; + int label_mv_thresh; + int rate = 0; + int sbr = 0; + int sbd = 0; + int segmentyrate = 0; + + vp8_variance_fn_ptr_t *v_fn_ptr; + + ENTROPY_CONTEXT_PLANES t_above, t_left; + ENTROPY_CONTEXT_PLANES t_above_b, t_left_b; + + memcpy(&t_above, x->e_mbd.above_context, sizeof(ENTROPY_CONTEXT_PLANES)); + memcpy(&t_left, x->e_mbd.left_context, sizeof(ENTROPY_CONTEXT_PLANES)); + + vp8_zero(t_above_b); + vp8_zero(t_left_b); + + br = 0; + bd = 0; + + v_fn_ptr = &cpi->fn_ptr[segmentation]; + labels = vp8_mbsplits[segmentation]; + label_count = vp8_mbsplit_count[segmentation]; + + /* 64 makes this threshold really big effectively making it so that we + * very rarely check mvs on segments. setting this to 1 would make mv + * thresh roughly equal to what it is for macroblocks + */ + label_mv_thresh = 1 * bsi->mvthresh / label_count; + + /* Segmentation method overheads */ + rate = vp8_cost_token(vp8_mbsplit_tree, vp8_mbsplit_probs, + vp8_mbsplit_encodings + segmentation); + rate += vp8_cost_mv_ref(SPLITMV, bsi->mdcounts); + this_segment_rd += RDCOST(x->rdmult, x->rddiv, rate, 0); + br += rate; + + for (i = 0; i < label_count; ++i) { + int_mv mode_mv[B_MODE_COUNT]; + int best_label_rd = INT_MAX; + B_PREDICTION_MODE mode_selected = ZERO4X4; + int bestlabelyrate = 0; + + /* search for the best motion vector on this segment */ + for (this_mode = LEFT4X4; this_mode <= NEW4X4; ++this_mode) { + int this_rd; + int distortion; + int labelyrate; + ENTROPY_CONTEXT_PLANES t_above_s, t_left_s; + ENTROPY_CONTEXT *ta_s; + ENTROPY_CONTEXT *tl_s; + + memcpy(&t_above_s, &t_above, sizeof(ENTROPY_CONTEXT_PLANES)); + memcpy(&t_left_s, &t_left, sizeof(ENTROPY_CONTEXT_PLANES)); + + ta_s = (ENTROPY_CONTEXT *)&t_above_s; + tl_s = (ENTROPY_CONTEXT *)&t_left_s; + + if (this_mode == NEW4X4) { + int sseshift; + int num00; + int step_param = 0; + int further_steps; + int n; + int thissme; + int bestsme = INT_MAX; + int_mv temp_mv; + BLOCK *c; + BLOCKD *e; + + /* Is the best so far sufficiently good that we cant justify + * doing a new motion search. + */ + if (best_label_rd < label_mv_thresh) break; + + if (cpi->compressor_speed) { + if (segmentation == BLOCK_8X16 || segmentation == BLOCK_16X8) { + bsi->mvp.as_int = bsi->sv_mvp[i].as_int; + if (i == 1 && segmentation == BLOCK_16X8) { + bsi->mvp.as_int = bsi->sv_mvp[2].as_int; + } + + step_param = bsi->sv_istep[i]; + } + + /* use previous block's result as next block's MV + * predictor. + */ + if (segmentation == BLOCK_4X4 && i > 0) { + bsi->mvp.as_int = x->e_mbd.block[i - 1].bmi.mv.as_int; + if (i == 4 || i == 8 || i == 12) { + bsi->mvp.as_int = x->e_mbd.block[i - 4].bmi.mv.as_int; + } + step_param = 2; + } + } + + further_steps = (MAX_MVSEARCH_STEPS - 1) - step_param; + + { + int sadpb = x->sadperbit4; + int_mv mvp_full; + + mvp_full.as_mv.row = bsi->mvp.as_mv.row >> 3; + mvp_full.as_mv.col = bsi->mvp.as_mv.col >> 3; + + /* find first label */ + n = vp8_mbsplit_offset[segmentation][i]; + + c = &x->block[n]; + e = &x->e_mbd.block[n]; + + { + bestsme = cpi->diamond_search_sad( + x, c, e, &mvp_full, &mode_mv[NEW4X4], step_param, sadpb, &num00, + v_fn_ptr, x->mvcost, bsi->ref_mv); + + n = num00; + num00 = 0; + + while (n < further_steps) { + n++; + + if (num00) { + num00--; + } else { + thissme = cpi->diamond_search_sad( + x, c, e, &mvp_full, &temp_mv, step_param + n, sadpb, &num00, + v_fn_ptr, x->mvcost, bsi->ref_mv); + + if (thissme < bestsme) { + bestsme = thissme; + mode_mv[NEW4X4].as_int = temp_mv.as_int; + } + } + } + } + + sseshift = segmentation_to_sseshift[segmentation]; + + /* Should we do a full search (best quality only) */ + if ((cpi->compressor_speed == 0) && (bestsme >> sseshift) > 4000) { + /* Check if mvp_full is within the range. */ + vp8_clamp_mv(&mvp_full, x->mv_col_min, x->mv_col_max, x->mv_row_min, + x->mv_row_max); + + thissme = cpi->full_search_sad(x, c, e, &mvp_full, sadpb, 16, + v_fn_ptr, x->mvcost, bsi->ref_mv); + + if (thissme < bestsme) { + bestsme = thissme; + mode_mv[NEW4X4].as_int = e->bmi.mv.as_int; + } else { + /* The full search result is actually worse so + * re-instate the previous best vector + */ + e->bmi.mv.as_int = mode_mv[NEW4X4].as_int; + } + } + } + + if (bestsme < INT_MAX) { + int disto; + unsigned int sse; + cpi->find_fractional_mv_step(x, c, e, &mode_mv[NEW4X4], bsi->ref_mv, + x->errorperbit, v_fn_ptr, x->mvcost, + &disto, &sse); + } + } /* NEW4X4 */ + + rate = labels2mode(x, labels, i, this_mode, &mode_mv[this_mode], + bsi->ref_mv, x->mvcost); + + /* Trap vectors that reach beyond the UMV borders */ + if (((mode_mv[this_mode].as_mv.row >> 3) < x->mv_row_min) || + ((mode_mv[this_mode].as_mv.row >> 3) > x->mv_row_max) || + ((mode_mv[this_mode].as_mv.col >> 3) < x->mv_col_min) || + ((mode_mv[this_mode].as_mv.col >> 3) > x->mv_col_max)) { + continue; + } + + distortion = vp8_encode_inter_mb_segment(x, labels, i) / 4; + + labelyrate = rdcost_mbsegment_y(x, labels, i, ta_s, tl_s); + rate += labelyrate; + + this_rd = RDCOST(x->rdmult, x->rddiv, rate, distortion); + + if (this_rd < best_label_rd) { + sbr = rate; + sbd = distortion; + bestlabelyrate = labelyrate; + mode_selected = this_mode; + best_label_rd = this_rd; + + memcpy(&t_above_b, &t_above_s, sizeof(ENTROPY_CONTEXT_PLANES)); + memcpy(&t_left_b, &t_left_s, sizeof(ENTROPY_CONTEXT_PLANES)); + } + } /*for each 4x4 mode*/ + + memcpy(&t_above, &t_above_b, sizeof(ENTROPY_CONTEXT_PLANES)); + memcpy(&t_left, &t_left_b, sizeof(ENTROPY_CONTEXT_PLANES)); + + labels2mode(x, labels, i, mode_selected, &mode_mv[mode_selected], + bsi->ref_mv, x->mvcost); + + br += sbr; + bd += sbd; + segmentyrate += bestlabelyrate; + this_segment_rd += best_label_rd; + + if (this_segment_rd >= bsi->segment_rd) break; + + } /* for each label */ + + if (this_segment_rd < bsi->segment_rd) { + bsi->r = br; + bsi->d = bd; + bsi->segment_yrate = segmentyrate; + bsi->segment_rd = this_segment_rd; + bsi->segment_num = segmentation; + + /* store everything needed to come back to this!! */ + for (i = 0; i < 16; ++i) { + bsi->mvs[i].as_mv = x->partition_info->bmi[i].mv.as_mv; + bsi->modes[i] = x->partition_info->bmi[i].mode; + bsi->eobs[i] = x->e_mbd.eobs[i]; + } + } +} + +static void vp8_cal_step_param(int sr, int *sp) { + int step = 0; + + if (sr > MAX_FIRST_STEP) { + sr = MAX_FIRST_STEP; + } else if (sr < 1) { + sr = 1; + } + + while (sr >>= 1) step++; + + *sp = MAX_MVSEARCH_STEPS - 1 - step; +} + +static int vp8_rd_pick_best_mbsegmentation(VP8_COMP *cpi, MACROBLOCK *x, + int_mv *best_ref_mv, int best_rd, + int *mdcounts, int *returntotrate, + int *returnyrate, + int *returndistortion, + int mvthresh) { + int i; + BEST_SEG_INFO bsi; + + memset(&bsi, 0, sizeof(bsi)); + + bsi.segment_rd = best_rd; + bsi.ref_mv = best_ref_mv; + bsi.mvp.as_int = best_ref_mv->as_int; + bsi.mvthresh = mvthresh; + bsi.mdcounts = mdcounts; + + for (i = 0; i < 16; ++i) { + bsi.modes[i] = ZERO4X4; + } + + if (cpi->compressor_speed == 0) { + /* for now, we will keep the original segmentation order + when in best quality mode */ + rd_check_segment(cpi, x, &bsi, BLOCK_16X8); + rd_check_segment(cpi, x, &bsi, BLOCK_8X16); + rd_check_segment(cpi, x, &bsi, BLOCK_8X8); + rd_check_segment(cpi, x, &bsi, BLOCK_4X4); + } else { + int sr; + + rd_check_segment(cpi, x, &bsi, BLOCK_8X8); + + if (bsi.segment_rd < best_rd) { + int col_min = ((best_ref_mv->as_mv.col + 7) >> 3) - MAX_FULL_PEL_VAL; + int row_min = ((best_ref_mv->as_mv.row + 7) >> 3) - MAX_FULL_PEL_VAL; + int col_max = (best_ref_mv->as_mv.col >> 3) + MAX_FULL_PEL_VAL; + int row_max = (best_ref_mv->as_mv.row >> 3) + MAX_FULL_PEL_VAL; + + int tmp_col_min = x->mv_col_min; + int tmp_col_max = x->mv_col_max; + int tmp_row_min = x->mv_row_min; + int tmp_row_max = x->mv_row_max; + + /* Get intersection of UMV window and valid MV window to reduce # of + * checks in diamond search. */ + if (x->mv_col_min < col_min) x->mv_col_min = col_min; + if (x->mv_col_max > col_max) x->mv_col_max = col_max; + if (x->mv_row_min < row_min) x->mv_row_min = row_min; + if (x->mv_row_max > row_max) x->mv_row_max = row_max; + + /* Get 8x8 result */ + bsi.sv_mvp[0].as_int = bsi.mvs[0].as_int; + bsi.sv_mvp[1].as_int = bsi.mvs[2].as_int; + bsi.sv_mvp[2].as_int = bsi.mvs[8].as_int; + bsi.sv_mvp[3].as_int = bsi.mvs[10].as_int; + + /* Use 8x8 result as 16x8/8x16's predictor MV. Adjust search range + * according to the closeness of 2 MV. */ + /* block 8X16 */ + { + sr = + MAXF((abs(bsi.sv_mvp[0].as_mv.row - bsi.sv_mvp[2].as_mv.row)) >> 3, + (abs(bsi.sv_mvp[0].as_mv.col - bsi.sv_mvp[2].as_mv.col)) >> 3); + vp8_cal_step_param(sr, &bsi.sv_istep[0]); + + sr = + MAXF((abs(bsi.sv_mvp[1].as_mv.row - bsi.sv_mvp[3].as_mv.row)) >> 3, + (abs(bsi.sv_mvp[1].as_mv.col - bsi.sv_mvp[3].as_mv.col)) >> 3); + vp8_cal_step_param(sr, &bsi.sv_istep[1]); + + rd_check_segment(cpi, x, &bsi, BLOCK_8X16); + } + + /* block 16X8 */ + { + sr = + MAXF((abs(bsi.sv_mvp[0].as_mv.row - bsi.sv_mvp[1].as_mv.row)) >> 3, + (abs(bsi.sv_mvp[0].as_mv.col - bsi.sv_mvp[1].as_mv.col)) >> 3); + vp8_cal_step_param(sr, &bsi.sv_istep[0]); + + sr = + MAXF((abs(bsi.sv_mvp[2].as_mv.row - bsi.sv_mvp[3].as_mv.row)) >> 3, + (abs(bsi.sv_mvp[2].as_mv.col - bsi.sv_mvp[3].as_mv.col)) >> 3); + vp8_cal_step_param(sr, &bsi.sv_istep[1]); + + rd_check_segment(cpi, x, &bsi, BLOCK_16X8); + } + + /* If 8x8 is better than 16x8/8x16, then do 4x4 search */ + /* Not skip 4x4 if speed=0 (good quality) */ + if (cpi->sf.no_skip_block4x4_search || bsi.segment_num == BLOCK_8X8) + /* || (sv_segment_rd8x8-bsi.segment_rd) < sv_segment_rd8x8>>5) */ + { + bsi.mvp.as_int = bsi.sv_mvp[0].as_int; + rd_check_segment(cpi, x, &bsi, BLOCK_4X4); + } + + /* restore UMV window */ + x->mv_col_min = tmp_col_min; + x->mv_col_max = tmp_col_max; + x->mv_row_min = tmp_row_min; + x->mv_row_max = tmp_row_max; + } + } + + /* set it to the best */ + for (i = 0; i < 16; ++i) { + BLOCKD *bd = &x->e_mbd.block[i]; + + bd->bmi.mv.as_int = bsi.mvs[i].as_int; + *bd->eob = bsi.eobs[i]; + } + + *returntotrate = bsi.r; + *returndistortion = bsi.d; + *returnyrate = bsi.segment_yrate; + + /* save partitions */ + x->e_mbd.mode_info_context->mbmi.partitioning = bsi.segment_num; + x->partition_info->count = vp8_mbsplit_count[bsi.segment_num]; + + for (i = 0; i < x->partition_info->count; ++i) { + int j; + + j = vp8_mbsplit_offset[bsi.segment_num][i]; + + x->partition_info->bmi[i].mode = bsi.modes[j]; + x->partition_info->bmi[i].mv.as_mv = bsi.mvs[j].as_mv; + } + /* + * used to set x->e_mbd.mode_info_context->mbmi.mv.as_int + */ + x->partition_info->bmi[15].mv.as_int = bsi.mvs[15].as_int; + + return bsi.segment_rd; +} + +/* The improved MV prediction */ +void vp8_mv_pred(VP8_COMP *cpi, MACROBLOCKD *xd, const MODE_INFO *here, + int_mv *mvp, int refframe, int *ref_frame_sign_bias, int *sr, + int near_sadidx[]) { + const MODE_INFO *above = here - xd->mode_info_stride; + const MODE_INFO *left = here - 1; + const MODE_INFO *aboveleft = above - 1; + int_mv near_mvs[8]; + int near_ref[8]; + int_mv mv; + int vcnt = 0; + int find = 0; + int mb_offset; + + int mvx[8]; + int mvy[8]; + int i; + + mv.as_int = 0; + + if (here->mbmi.ref_frame != INTRA_FRAME) { + near_mvs[0].as_int = near_mvs[1].as_int = near_mvs[2].as_int = + near_mvs[3].as_int = near_mvs[4].as_int = near_mvs[5].as_int = + near_mvs[6].as_int = near_mvs[7].as_int = 0; + near_ref[0] = near_ref[1] = near_ref[2] = near_ref[3] = near_ref[4] = + near_ref[5] = near_ref[6] = near_ref[7] = 0; + + /* read in 3 nearby block's MVs from current frame as prediction + * candidates. + */ + if (above->mbmi.ref_frame != INTRA_FRAME) { + near_mvs[vcnt].as_int = above->mbmi.mv.as_int; + mv_bias(ref_frame_sign_bias[above->mbmi.ref_frame], refframe, + &near_mvs[vcnt], ref_frame_sign_bias); + near_ref[vcnt] = above->mbmi.ref_frame; + } + vcnt++; + if (left->mbmi.ref_frame != INTRA_FRAME) { + near_mvs[vcnt].as_int = left->mbmi.mv.as_int; + mv_bias(ref_frame_sign_bias[left->mbmi.ref_frame], refframe, + &near_mvs[vcnt], ref_frame_sign_bias); + near_ref[vcnt] = left->mbmi.ref_frame; + } + vcnt++; + if (aboveleft->mbmi.ref_frame != INTRA_FRAME) { + near_mvs[vcnt].as_int = aboveleft->mbmi.mv.as_int; + mv_bias(ref_frame_sign_bias[aboveleft->mbmi.ref_frame], refframe, + &near_mvs[vcnt], ref_frame_sign_bias); + near_ref[vcnt] = aboveleft->mbmi.ref_frame; + } + vcnt++; + + /* read in 5 nearby block's MVs from last frame. */ + if (cpi->common.last_frame_type != KEY_FRAME) { + mb_offset = (-xd->mb_to_top_edge / 128 + 1) * (xd->mode_info_stride + 1) + + (-xd->mb_to_left_edge / 128 + 1); + + /* current in last frame */ + if (cpi->lf_ref_frame[mb_offset] != INTRA_FRAME) { + near_mvs[vcnt].as_int = cpi->lfmv[mb_offset].as_int; + mv_bias(cpi->lf_ref_frame_sign_bias[mb_offset], refframe, + &near_mvs[vcnt], ref_frame_sign_bias); + near_ref[vcnt] = cpi->lf_ref_frame[mb_offset]; + } + vcnt++; + + /* above in last frame */ + if (cpi->lf_ref_frame[mb_offset - xd->mode_info_stride - 1] != + INTRA_FRAME) { + near_mvs[vcnt].as_int = + cpi->lfmv[mb_offset - xd->mode_info_stride - 1].as_int; + mv_bias( + cpi->lf_ref_frame_sign_bias[mb_offset - xd->mode_info_stride - 1], + refframe, &near_mvs[vcnt], ref_frame_sign_bias); + near_ref[vcnt] = + cpi->lf_ref_frame[mb_offset - xd->mode_info_stride - 1]; + } + vcnt++; + + /* left in last frame */ + if (cpi->lf_ref_frame[mb_offset - 1] != INTRA_FRAME) { + near_mvs[vcnt].as_int = cpi->lfmv[mb_offset - 1].as_int; + mv_bias(cpi->lf_ref_frame_sign_bias[mb_offset - 1], refframe, + &near_mvs[vcnt], ref_frame_sign_bias); + near_ref[vcnt] = cpi->lf_ref_frame[mb_offset - 1]; + } + vcnt++; + + /* right in last frame */ + if (cpi->lf_ref_frame[mb_offset + 1] != INTRA_FRAME) { + near_mvs[vcnt].as_int = cpi->lfmv[mb_offset + 1].as_int; + mv_bias(cpi->lf_ref_frame_sign_bias[mb_offset + 1], refframe, + &near_mvs[vcnt], ref_frame_sign_bias); + near_ref[vcnt] = cpi->lf_ref_frame[mb_offset + 1]; + } + vcnt++; + + /* below in last frame */ + if (cpi->lf_ref_frame[mb_offset + xd->mode_info_stride + 1] != + INTRA_FRAME) { + near_mvs[vcnt].as_int = + cpi->lfmv[mb_offset + xd->mode_info_stride + 1].as_int; + mv_bias( + cpi->lf_ref_frame_sign_bias[mb_offset + xd->mode_info_stride + 1], + refframe, &near_mvs[vcnt], ref_frame_sign_bias); + near_ref[vcnt] = + cpi->lf_ref_frame[mb_offset + xd->mode_info_stride + 1]; + } + vcnt++; + } + + for (i = 0; i < vcnt; ++i) { + if (near_ref[near_sadidx[i]] != INTRA_FRAME) { + if (here->mbmi.ref_frame == near_ref[near_sadidx[i]]) { + mv.as_int = near_mvs[near_sadidx[i]].as_int; + find = 1; + if (i < 3) { + *sr = 3; + } else { + *sr = 2; + } + break; + } + } + } + + if (!find) { + for (i = 0; i < vcnt; ++i) { + mvx[i] = near_mvs[i].as_mv.row; + mvy[i] = near_mvs[i].as_mv.col; + } + + insertsortmv(mvx, vcnt); + insertsortmv(mvy, vcnt); + mv.as_mv.row = mvx[vcnt / 2]; + mv.as_mv.col = mvy[vcnt / 2]; + + /* sr is set to 0 to allow calling function to decide the search + * range. + */ + *sr = 0; + } + } + + /* Set up return values */ + mvp->as_int = mv.as_int; + vp8_clamp_mv2(mvp, xd); +} + +void vp8_cal_sad(VP8_COMP *cpi, MACROBLOCKD *xd, MACROBLOCK *x, + int recon_yoffset, int near_sadidx[]) { + /* near_sad indexes: + * 0-cf above, 1-cf left, 2-cf aboveleft, + * 3-lf current, 4-lf above, 5-lf left, 6-lf right, 7-lf below + */ + int near_sad[8] = { 0 }; + BLOCK *b = &x->block[0]; + unsigned char *src_y_ptr = *(b->base_src); + + /* calculate sad for current frame 3 nearby MBs. */ + if (xd->mb_to_top_edge == 0 && xd->mb_to_left_edge == 0) { + near_sad[0] = near_sad[1] = near_sad[2] = INT_MAX; + } else if (xd->mb_to_top_edge == + 0) { /* only has left MB for sad calculation. */ + near_sad[0] = near_sad[2] = INT_MAX; + near_sad[1] = cpi->fn_ptr[BLOCK_16X16].sdf( + src_y_ptr, b->src_stride, xd->dst.y_buffer - 16, xd->dst.y_stride); + } else if (xd->mb_to_left_edge == + 0) { /* only has left MB for sad calculation. */ + near_sad[1] = near_sad[2] = INT_MAX; + near_sad[0] = cpi->fn_ptr[BLOCK_16X16].sdf( + src_y_ptr, b->src_stride, xd->dst.y_buffer - xd->dst.y_stride * 16, + xd->dst.y_stride); + } else { + near_sad[0] = cpi->fn_ptr[BLOCK_16X16].sdf( + src_y_ptr, b->src_stride, xd->dst.y_buffer - xd->dst.y_stride * 16, + xd->dst.y_stride); + near_sad[1] = cpi->fn_ptr[BLOCK_16X16].sdf( + src_y_ptr, b->src_stride, xd->dst.y_buffer - 16, xd->dst.y_stride); + near_sad[2] = cpi->fn_ptr[BLOCK_16X16].sdf( + src_y_ptr, b->src_stride, xd->dst.y_buffer - xd->dst.y_stride * 16 - 16, + xd->dst.y_stride); + } + + if (cpi->common.last_frame_type != KEY_FRAME) { + /* calculate sad for last frame 5 nearby MBs. */ + unsigned char *pre_y_buffer = + cpi->common.yv12_fb[cpi->common.lst_fb_idx].y_buffer + recon_yoffset; + int pre_y_stride = cpi->common.yv12_fb[cpi->common.lst_fb_idx].y_stride; + + if (xd->mb_to_top_edge == 0) near_sad[4] = INT_MAX; + if (xd->mb_to_left_edge == 0) near_sad[5] = INT_MAX; + if (xd->mb_to_right_edge == 0) near_sad[6] = INT_MAX; + if (xd->mb_to_bottom_edge == 0) near_sad[7] = INT_MAX; + + if (near_sad[4] != INT_MAX) { + near_sad[4] = cpi->fn_ptr[BLOCK_16X16].sdf( + src_y_ptr, b->src_stride, pre_y_buffer - pre_y_stride * 16, + pre_y_stride); + } + if (near_sad[5] != INT_MAX) { + near_sad[5] = cpi->fn_ptr[BLOCK_16X16].sdf( + src_y_ptr, b->src_stride, pre_y_buffer - 16, pre_y_stride); + } + near_sad[3] = cpi->fn_ptr[BLOCK_16X16].sdf(src_y_ptr, b->src_stride, + pre_y_buffer, pre_y_stride); + if (near_sad[6] != INT_MAX) { + near_sad[6] = cpi->fn_ptr[BLOCK_16X16].sdf( + src_y_ptr, b->src_stride, pre_y_buffer + 16, pre_y_stride); + } + if (near_sad[7] != INT_MAX) { + near_sad[7] = cpi->fn_ptr[BLOCK_16X16].sdf( + src_y_ptr, b->src_stride, pre_y_buffer + pre_y_stride * 16, + pre_y_stride); + } + } + + if (cpi->common.last_frame_type != KEY_FRAME) { + insertsortsad(near_sad, near_sadidx, 8); + } else { + insertsortsad(near_sad, near_sadidx, 3); + } +} + +static void rd_update_mvcount(MACROBLOCK *x, int_mv *best_ref_mv) { + if (x->e_mbd.mode_info_context->mbmi.mode == SPLITMV) { + int i; + + for (i = 0; i < x->partition_info->count; ++i) { + if (x->partition_info->bmi[i].mode == NEW4X4) { + x->MVcount[0][mv_max + ((x->partition_info->bmi[i].mv.as_mv.row - + best_ref_mv->as_mv.row) >> + 1)]++; + x->MVcount[1][mv_max + ((x->partition_info->bmi[i].mv.as_mv.col - + best_ref_mv->as_mv.col) >> + 1)]++; + } + } + } else if (x->e_mbd.mode_info_context->mbmi.mode == NEWMV) { + x->MVcount[0][mv_max + ((x->e_mbd.mode_info_context->mbmi.mv.as_mv.row - + best_ref_mv->as_mv.row) >> + 1)]++; + x->MVcount[1][mv_max + ((x->e_mbd.mode_info_context->mbmi.mv.as_mv.col - + best_ref_mv->as_mv.col) >> + 1)]++; + } +} + +static int evaluate_inter_mode_rd(int mdcounts[4], RATE_DISTORTION *rd, + int *disable_skip, VP8_COMP *cpi, + MACROBLOCK *x) { + MB_PREDICTION_MODE this_mode = x->e_mbd.mode_info_context->mbmi.mode; + BLOCK *b = &x->block[0]; + MACROBLOCKD *xd = &x->e_mbd; + int distortion; + vp8_build_inter16x16_predictors_mby(&x->e_mbd, x->e_mbd.predictor, 16); + + if (cpi->active_map_enabled && x->active_ptr[0] == 0) { + x->skip = 1; + } else if (x->encode_breakout) { + unsigned int sse; + unsigned int var; + unsigned int threshold = + (xd->block[0].dequant[1] * xd->block[0].dequant[1] >> 4); + + if (threshold < x->encode_breakout) threshold = x->encode_breakout; + + var = vpx_variance16x16(*(b->base_src), b->src_stride, x->e_mbd.predictor, + 16, &sse); + + if (sse < threshold) { + unsigned int q2dc = xd->block[24].dequant[0]; + /* If theres is no codeable 2nd order dc + or a very small uniform pixel change change */ + if ((sse - var> 4) || (sse / 2 > var && sse - var < 64)) { + /* Check u and v to make sure skip is ok */ + unsigned int sse2 = VP8_UVSSE(x); + if (sse2 * 2 < threshold) { + x->skip = 1; + rd->distortion2 = sse + sse2; + rd->rate2 = 500; + + /* for best_yrd calculation */ + rd->rate_uv = 0; + rd->distortion_uv = sse2; + + *disable_skip = 1; + return RDCOST(x->rdmult, x->rddiv, rd->rate2, rd->distortion2); + } + } + } + } + + /* Add in the Mv/mode cost */ + rd->rate2 += vp8_cost_mv_ref(this_mode, mdcounts); + + /* Y cost and distortion */ + macro_block_yrd(x, &rd->rate_y, &distortion); + rd->rate2 += rd->rate_y; + rd->distortion2 += distortion; + + /* UV cost and distortion */ + rd_inter16x16_uv(cpi, x, &rd->rate_uv, &rd->distortion_uv, + cpi->common.full_pixel); + rd->rate2 += rd->rate_uv; + rd->distortion2 += rd->distortion_uv; + return INT_MAX; +} + +static int calculate_final_rd_costs(int this_rd, RATE_DISTORTION *rd, + int *other_cost, int disable_skip, + int uv_intra_tteob, int intra_rd_penalty, + VP8_COMP *cpi, MACROBLOCK *x) { + MB_PREDICTION_MODE this_mode = x->e_mbd.mode_info_context->mbmi.mode; + + /* Where skip is allowable add in the default per mb cost for the no + * skip case. where we then decide to skip we have to delete this and + * replace it with the cost of signalling a skip + */ + if (cpi->common.mb_no_coeff_skip) { + *other_cost += vp8_cost_bit(cpi->prob_skip_false, 0); + rd->rate2 += *other_cost; + } + + /* Estimate the reference frame signaling cost and add it + * to the rolling cost variable. + */ + rd->rate2 += x->ref_frame_cost[x->e_mbd.mode_info_context->mbmi.ref_frame]; + + if (!disable_skip) { + /* Test for the condition where skip block will be activated + * because there are no non zero coefficients and make any + * necessary adjustment for rate + */ + if (cpi->common.mb_no_coeff_skip) { + int i; + int tteob; + int has_y2_block = (this_mode != SPLITMV && this_mode != B_PRED); + + tteob = 0; + if (has_y2_block) tteob += x->e_mbd.eobs[24]; + + for (i = 0; i < 16; ++i) tteob += (x->e_mbd.eobs[i] > has_y2_block); + + if (x->e_mbd.mode_info_context->mbmi.ref_frame) { + for (i = 16; i < 24; ++i) tteob += x->e_mbd.eobs[i]; + } else { + tteob += uv_intra_tteob; + } + + if (tteob == 0) { + rd->rate2 -= (rd->rate_y + rd->rate_uv); + /* for best_yrd calculation */ + rd->rate_uv = 0; + + /* Back out no skip flag costing and add in skip flag costing */ + if (cpi->prob_skip_false) { + int prob_skip_cost; + + prob_skip_cost = vp8_cost_bit(cpi->prob_skip_false, 1); + prob_skip_cost -= (int)vp8_cost_bit(cpi->prob_skip_false, 0); + rd->rate2 += prob_skip_cost; + *other_cost += prob_skip_cost; + } + } + } + /* Calculate the final RD estimate for this mode */ + this_rd = RDCOST(x->rdmult, x->rddiv, rd->rate2, rd->distortion2); + if (this_rd < INT_MAX && + x->e_mbd.mode_info_context->mbmi.ref_frame == INTRA_FRAME) { + this_rd += intra_rd_penalty; + } + } + return this_rd; +} + +static void update_best_mode(BEST_MODE *best_mode, int this_rd, + RATE_DISTORTION *rd, int other_cost, + MACROBLOCK *x) { + MB_PREDICTION_MODE this_mode = x->e_mbd.mode_info_context->mbmi.mode; + + other_cost += x->ref_frame_cost[x->e_mbd.mode_info_context->mbmi.ref_frame]; + + /* Calculate the final y RD estimate for this mode */ + best_mode->yrd = + RDCOST(x->rdmult, x->rddiv, (rd->rate2 - rd->rate_uv - other_cost), + (rd->distortion2 - rd->distortion_uv)); + + best_mode->rd = this_rd; + memcpy(&best_mode->mbmode, &x->e_mbd.mode_info_context->mbmi, + sizeof(MB_MODE_INFO)); + memcpy(&best_mode->partition, x->partition_info, sizeof(PARTITION_INFO)); + + if ((this_mode == B_PRED) || (this_mode == SPLITMV)) { + int i; + for (i = 0; i < 16; ++i) { + best_mode->bmodes[i] = x->e_mbd.block[i].bmi; + } + } +} + +void vp8_rd_pick_inter_mode(VP8_COMP *cpi, MACROBLOCK *x, int recon_yoffset, + int recon_uvoffset, int *returnrate, + int *returndistortion, int *returnintra, int mb_row, + int mb_col) { + BLOCK *b = &x->block[0]; + BLOCKD *d = &x->e_mbd.block[0]; + MACROBLOCKD *xd = &x->e_mbd; + int_mv best_ref_mv_sb[2]; + int_mv mode_mv_sb[2][MB_MODE_COUNT]; + int_mv best_ref_mv; + int_mv *mode_mv; + MB_PREDICTION_MODE this_mode; + int num00; + int best_mode_index = 0; + BEST_MODE best_mode; + + int i; + int mode_index; + int mdcounts[4]; + int rate; + RATE_DISTORTION rd; + int uv_intra_rate, uv_intra_distortion, uv_intra_rate_tokenonly; + int uv_intra_tteob = 0; + int uv_intra_done = 0; + + MB_PREDICTION_MODE uv_intra_mode = 0; + int_mv mvp; + int near_sadidx[8] = { 0, 1, 2, 3, 4, 5, 6, 7 }; + int saddone = 0; + /* search range got from mv_pred(). It uses step_param levels. (0-7) */ + int sr = 0; + + unsigned char *plane[4][3]; + int ref_frame_map[4]; + int sign_bias = 0; + + int intra_rd_penalty = + 10 * vp8_dc_quant(cpi->common.base_qindex, cpi->common.y1dc_delta_q); + +#if CONFIG_TEMPORAL_DENOISING + unsigned int zero_mv_sse = UINT_MAX, best_sse = UINT_MAX, + best_rd_sse = UINT_MAX; +#endif + + mode_mv = mode_mv_sb[sign_bias]; + best_ref_mv.as_int = 0; + best_mode.rd = INT_MAX; + best_mode.yrd = INT_MAX; + best_mode.intra_rd = INT_MAX; + memset(mode_mv_sb, 0, sizeof(mode_mv_sb)); + memset(&best_mode.mbmode, 0, sizeof(best_mode.mbmode)); + memset(&best_mode.bmodes, 0, sizeof(best_mode.bmodes)); + + /* Setup search priorities */ + get_reference_search_order(cpi, ref_frame_map); + + /* Check to see if there is at least 1 valid reference frame that we need + * to calculate near_mvs. + */ + if (ref_frame_map[1] > 0) { + sign_bias = vp8_find_near_mvs_bias( + &x->e_mbd, x->e_mbd.mode_info_context, mode_mv_sb, best_ref_mv_sb, + mdcounts, ref_frame_map[1], cpi->common.ref_frame_sign_bias); + + mode_mv = mode_mv_sb[sign_bias]; + best_ref_mv.as_int = best_ref_mv_sb[sign_bias].as_int; + } + + get_predictor_pointers(cpi, plane, recon_yoffset, recon_uvoffset); + + *returnintra = INT_MAX; + /* Count of the number of MBs tested so far this frame */ + x->mbs_tested_so_far++; + + x->skip = 0; + + for (mode_index = 0; mode_index < MAX_MODES; ++mode_index) { + int this_rd = INT_MAX; + int disable_skip = 0; + int other_cost = 0; + int this_ref_frame = ref_frame_map[vp8_ref_frame_order[mode_index]]; + + /* Test best rd so far against threshold for trying this mode. */ + if (best_mode.rd <= x->rd_threshes[mode_index]) continue; + + if (this_ref_frame < 0) continue; + + /* These variables hold are rolling total cost and distortion for + * this mode + */ + rd.rate2 = 0; + rd.distortion2 = 0; + + this_mode = vp8_mode_order[mode_index]; + + x->e_mbd.mode_info_context->mbmi.mode = this_mode; + x->e_mbd.mode_info_context->mbmi.ref_frame = this_ref_frame; + + /* Only consider ZEROMV/ALTREF_FRAME for alt ref frame, + * unless ARNR filtering is enabled in which case we want + * an unfiltered alternative + */ + if (cpi->is_src_frame_alt_ref && (cpi->oxcf.arnr_max_frames == 0)) { + if (this_mode != ZEROMV || + x->e_mbd.mode_info_context->mbmi.ref_frame != ALTREF_FRAME) { + continue; + } + } + + /* everything but intra */ + if (x->e_mbd.mode_info_context->mbmi.ref_frame) { + x->e_mbd.pre.y_buffer = plane[this_ref_frame][0]; + x->e_mbd.pre.u_buffer = plane[this_ref_frame][1]; + x->e_mbd.pre.v_buffer = plane[this_ref_frame][2]; + + if (sign_bias != cpi->common.ref_frame_sign_bias[this_ref_frame]) { + sign_bias = cpi->common.ref_frame_sign_bias[this_ref_frame]; + mode_mv = mode_mv_sb[sign_bias]; + best_ref_mv.as_int = best_ref_mv_sb[sign_bias].as_int; + } + } + + /* Check to see if the testing frequency for this mode is at its + * max If so then prevent it from being tested and increase the + * threshold for its testing + */ + if (x->mode_test_hit_counts[mode_index] && + (cpi->mode_check_freq[mode_index] > 1)) { + if (x->mbs_tested_so_far <= cpi->mode_check_freq[mode_index] * + x->mode_test_hit_counts[mode_index]) { + /* Increase the threshold for coding this mode to make it + * less likely to be chosen + */ + x->rd_thresh_mult[mode_index] += 4; + + if (x->rd_thresh_mult[mode_index] > MAX_THRESHMULT) { + x->rd_thresh_mult[mode_index] = MAX_THRESHMULT; + } + + x->rd_threshes[mode_index] = + (cpi->rd_baseline_thresh[mode_index] >> 7) * + x->rd_thresh_mult[mode_index]; + + continue; + } + } + + /* We have now reached the point where we are going to test the + * current mode so increment the counter for the number of times + * it has been tested + */ + x->mode_test_hit_counts[mode_index]++; + + /* Experimental code. Special case for gf and arf zeromv modes. + * Increase zbin size to supress noise + */ + if (x->zbin_mode_boost_enabled) { + if (this_ref_frame == INTRA_FRAME) { + x->zbin_mode_boost = 0; + } else { + if (vp8_mode_order[mode_index] == ZEROMV) { + if (this_ref_frame != LAST_FRAME) { + x->zbin_mode_boost = GF_ZEROMV_ZBIN_BOOST; + } else { + x->zbin_mode_boost = LF_ZEROMV_ZBIN_BOOST; + } + } else if (vp8_mode_order[mode_index] == SPLITMV) { + x->zbin_mode_boost = 0; + } else { + x->zbin_mode_boost = MV_ZBIN_BOOST; + } + } + + vp8_update_zbin_extra(cpi, x); + } + + if (!uv_intra_done && this_ref_frame == INTRA_FRAME) { + rd_pick_intra_mbuv_mode(x, &uv_intra_rate, &uv_intra_rate_tokenonly, + &uv_intra_distortion); + uv_intra_mode = x->e_mbd.mode_info_context->mbmi.uv_mode; + + /* + * Total of the eobs is used later to further adjust rate2. Since uv + * block's intra eobs will be overwritten when we check inter modes, + * we need to save uv_intra_tteob here. + */ + for (i = 16; i < 24; ++i) uv_intra_tteob += x->e_mbd.eobs[i]; + + uv_intra_done = 1; + } + + switch (this_mode) { + case B_PRED: { + int tmp_rd; + + /* Note the rate value returned here includes the cost of + * coding the BPRED mode: x->mbmode_cost[x->e_mbd.frame_type][BPRED] + */ + int distortion; + tmp_rd = rd_pick_intra4x4mby_modes(x, &rate, &rd.rate_y, &distortion, + best_mode.yrd); + rd.rate2 += rate; + rd.distortion2 += distortion; + + if (tmp_rd < best_mode.yrd) { + rd.rate2 += uv_intra_rate; + rd.rate_uv = uv_intra_rate_tokenonly; + rd.distortion2 += uv_intra_distortion; + rd.distortion_uv = uv_intra_distortion; + } else { + this_rd = INT_MAX; + disable_skip = 1; + } + break; + } + + case SPLITMV: { + int tmp_rd; + int this_rd_thresh; + int distortion; + + this_rd_thresh = (vp8_ref_frame_order[mode_index] == 1) + ? x->rd_threshes[THR_NEW1] + : x->rd_threshes[THR_NEW3]; + this_rd_thresh = (vp8_ref_frame_order[mode_index] == 2) + ? x->rd_threshes[THR_NEW2] + : this_rd_thresh; + + tmp_rd = vp8_rd_pick_best_mbsegmentation( + cpi, x, &best_ref_mv, best_mode.yrd, mdcounts, &rate, &rd.rate_y, + &distortion, this_rd_thresh); + + rd.rate2 += rate; + rd.distortion2 += distortion; + + /* If even the 'Y' rd value of split is higher than best so far + * then dont bother looking at UV + */ + if (tmp_rd < best_mode.yrd) { + /* Now work out UV cost and add it in */ + rd_inter4x4_uv(cpi, x, &rd.rate_uv, &rd.distortion_uv, + cpi->common.full_pixel); + rd.rate2 += rd.rate_uv; + rd.distortion2 += rd.distortion_uv; + } else { + this_rd = INT_MAX; + disable_skip = 1; + } + break; + } + case DC_PRED: + case V_PRED: + case H_PRED: + case TM_PRED: { + int distortion; + x->e_mbd.mode_info_context->mbmi.ref_frame = INTRA_FRAME; + + vp8_build_intra_predictors_mby_s( + xd, xd->dst.y_buffer - xd->dst.y_stride, xd->dst.y_buffer - 1, + xd->dst.y_stride, xd->predictor, 16); + macro_block_yrd(x, &rd.rate_y, &distortion); + rd.rate2 += rd.rate_y; + rd.distortion2 += distortion; + rd.rate2 += x->mbmode_cost[x->e_mbd.frame_type] + [x->e_mbd.mode_info_context->mbmi.mode]; + rd.rate2 += uv_intra_rate; + rd.rate_uv = uv_intra_rate_tokenonly; + rd.distortion2 += uv_intra_distortion; + rd.distortion_uv = uv_intra_distortion; + break; + } + + case NEWMV: { + int thissme; + int bestsme = INT_MAX; + int step_param = cpi->sf.first_step; + int further_steps; + int n; + /* If last step (1-away) of n-step search doesn't pick the center point + as the best match, we will do a final 1-away diamond refining search + */ + int do_refine = 1; + + int sadpb = x->sadperbit16; + int_mv mvp_full; + + int col_min = ((best_ref_mv.as_mv.col + 7) >> 3) - MAX_FULL_PEL_VAL; + int row_min = ((best_ref_mv.as_mv.row + 7) >> 3) - MAX_FULL_PEL_VAL; + int col_max = (best_ref_mv.as_mv.col >> 3) + MAX_FULL_PEL_VAL; + int row_max = (best_ref_mv.as_mv.row >> 3) + MAX_FULL_PEL_VAL; + + int tmp_col_min = x->mv_col_min; + int tmp_col_max = x->mv_col_max; + int tmp_row_min = x->mv_row_min; + int tmp_row_max = x->mv_row_max; + + if (!saddone) { + vp8_cal_sad(cpi, xd, x, recon_yoffset, &near_sadidx[0]); + saddone = 1; + } + + vp8_mv_pred(cpi, &x->e_mbd, x->e_mbd.mode_info_context, &mvp, + x->e_mbd.mode_info_context->mbmi.ref_frame, + cpi->common.ref_frame_sign_bias, &sr, &near_sadidx[0]); + + mvp_full.as_mv.col = mvp.as_mv.col >> 3; + mvp_full.as_mv.row = mvp.as_mv.row >> 3; + + /* Get intersection of UMV window and valid MV window to + * reduce # of checks in diamond search. + */ + if (x->mv_col_min < col_min) x->mv_col_min = col_min; + if (x->mv_col_max > col_max) x->mv_col_max = col_max; + if (x->mv_row_min < row_min) x->mv_row_min = row_min; + if (x->mv_row_max > row_max) x->mv_row_max = row_max; + + /* adjust search range according to sr from mv prediction */ + if (sr > step_param) step_param = sr; + + /* Initial step/diamond search */ + { + bestsme = cpi->diamond_search_sad( + x, b, d, &mvp_full, &d->bmi.mv, step_param, sadpb, &num00, + &cpi->fn_ptr[BLOCK_16X16], x->mvcost, &best_ref_mv); + mode_mv[NEWMV].as_int = d->bmi.mv.as_int; + + /* Further step/diamond searches as necessary */ + further_steps = (cpi->sf.max_step_search_steps - 1) - step_param; + + n = num00; + num00 = 0; + + /* If there won't be more n-step search, check to see if refining + * search is needed. */ + if (n > further_steps) do_refine = 0; + + while (n < further_steps) { + n++; + + if (num00) { + num00--; + } else { + thissme = cpi->diamond_search_sad( + x, b, d, &mvp_full, &d->bmi.mv, step_param + n, sadpb, &num00, + &cpi->fn_ptr[BLOCK_16X16], x->mvcost, &best_ref_mv); + + /* check to see if refining search is needed. */ + if (num00 > (further_steps - n)) do_refine = 0; + + if (thissme < bestsme) { + bestsme = thissme; + mode_mv[NEWMV].as_int = d->bmi.mv.as_int; + } else { + d->bmi.mv.as_int = mode_mv[NEWMV].as_int; + } + } + } + } + + /* final 1-away diamond refining search */ + if (do_refine == 1) { + int search_range; + + search_range = 8; + + thissme = cpi->refining_search_sad( + x, b, d, &d->bmi.mv, sadpb, search_range, + &cpi->fn_ptr[BLOCK_16X16], x->mvcost, &best_ref_mv); + + if (thissme < bestsme) { + bestsme = thissme; + mode_mv[NEWMV].as_int = d->bmi.mv.as_int; + } else { + d->bmi.mv.as_int = mode_mv[NEWMV].as_int; + } + } + + x->mv_col_min = tmp_col_min; + x->mv_col_max = tmp_col_max; + x->mv_row_min = tmp_row_min; + x->mv_row_max = tmp_row_max; + + if (bestsme < INT_MAX) { + int dis; /* TODO: use dis in distortion calculation later. */ + unsigned int sse; + cpi->find_fractional_mv_step( + x, b, d, &d->bmi.mv, &best_ref_mv, x->errorperbit, + &cpi->fn_ptr[BLOCK_16X16], x->mvcost, &dis, &sse); + } + + mode_mv[NEWMV].as_int = d->bmi.mv.as_int; + + /* Add the new motion vector cost to our rolling cost variable */ + rd.rate2 += + vp8_mv_bit_cost(&mode_mv[NEWMV], &best_ref_mv, x->mvcost, 96); + } + + case NEARESTMV: + case NEARMV: + /* Clip "next_nearest" so that it does not extend to far out + * of image + */ + vp8_clamp_mv2(&mode_mv[this_mode], xd); + + /* Do not bother proceeding if the vector (from newmv, nearest + * or near) is 0,0 as this should then be coded using the zeromv + * mode. + */ + if (((this_mode == NEARMV) || (this_mode == NEARESTMV)) && + (mode_mv[this_mode].as_int == 0)) { + continue; + } + + case ZEROMV: + + /* Trap vectors that reach beyond the UMV borders + * Note that ALL New MV, Nearest MV Near MV and Zero MV code + * drops through to this point because of the lack of break + * statements in the previous two cases. + */ + if (((mode_mv[this_mode].as_mv.row >> 3) < x->mv_row_min) || + ((mode_mv[this_mode].as_mv.row >> 3) > x->mv_row_max) || + ((mode_mv[this_mode].as_mv.col >> 3) < x->mv_col_min) || + ((mode_mv[this_mode].as_mv.col >> 3) > x->mv_col_max)) { + continue; + } + + vp8_set_mbmode_and_mvs(x, this_mode, &mode_mv[this_mode]); + this_rd = evaluate_inter_mode_rd(mdcounts, &rd, &disable_skip, cpi, x); + break; + + default: break; + } + + this_rd = + calculate_final_rd_costs(this_rd, &rd, &other_cost, disable_skip, + uv_intra_tteob, intra_rd_penalty, cpi, x); + + /* Keep record of best intra distortion */ + if ((x->e_mbd.mode_info_context->mbmi.ref_frame == INTRA_FRAME) && + (this_rd < best_mode.intra_rd)) { + best_mode.intra_rd = this_rd; + *returnintra = rd.distortion2; + } +#if CONFIG_TEMPORAL_DENOISING + if (cpi->oxcf.noise_sensitivity) { + unsigned int sse; + vp8_get_inter_mbpred_error(x, &cpi->fn_ptr[BLOCK_16X16], &sse, + mode_mv[this_mode]); + + if (sse < best_rd_sse) best_rd_sse = sse; + + /* Store for later use by denoiser. */ + if (this_mode == ZEROMV && sse < zero_mv_sse) { + zero_mv_sse = sse; + x->best_zeromv_reference_frame = + x->e_mbd.mode_info_context->mbmi.ref_frame; + } + + /* Store the best NEWMV in x for later use in the denoiser. */ + if (x->e_mbd.mode_info_context->mbmi.mode == NEWMV && sse < best_sse) { + best_sse = sse; + vp8_get_inter_mbpred_error(x, &cpi->fn_ptr[BLOCK_16X16], &best_sse, + mode_mv[this_mode]); + x->best_sse_inter_mode = NEWMV; + x->best_sse_mv = x->e_mbd.mode_info_context->mbmi.mv; + x->need_to_clamp_best_mvs = + x->e_mbd.mode_info_context->mbmi.need_to_clamp_mvs; + x->best_reference_frame = x->e_mbd.mode_info_context->mbmi.ref_frame; + } + } +#endif + + /* Did this mode help.. i.i is it the new best mode */ + if (this_rd < best_mode.rd || x->skip) { + /* Note index of best mode so far */ + best_mode_index = mode_index; + *returnrate = rd.rate2; + *returndistortion = rd.distortion2; + if (this_mode <= B_PRED) { + x->e_mbd.mode_info_context->mbmi.uv_mode = uv_intra_mode; + /* required for left and above block mv */ + x->e_mbd.mode_info_context->mbmi.mv.as_int = 0; + } + update_best_mode(&best_mode, this_rd, &rd, other_cost, x); + + /* Testing this mode gave rise to an improvement in best error + * score. Lower threshold a bit for next time + */ + x->rd_thresh_mult[mode_index] = + (x->rd_thresh_mult[mode_index] >= (MIN_THRESHMULT + 2)) + ? x->rd_thresh_mult[mode_index] - 2 + : MIN_THRESHMULT; + } + + /* If the mode did not help improve the best error case then raise + * the threshold for testing that mode next time around. + */ + else { + x->rd_thresh_mult[mode_index] += 4; + + if (x->rd_thresh_mult[mode_index] > MAX_THRESHMULT) { + x->rd_thresh_mult[mode_index] = MAX_THRESHMULT; + } + } + x->rd_threshes[mode_index] = (cpi->rd_baseline_thresh[mode_index] >> 7) * + x->rd_thresh_mult[mode_index]; + + if (x->skip) break; + } + + /* Reduce the activation RD thresholds for the best choice mode */ + if ((cpi->rd_baseline_thresh[best_mode_index] > 0) && + (cpi->rd_baseline_thresh[best_mode_index] < (INT_MAX >> 2))) { + int best_adjustment = (x->rd_thresh_mult[best_mode_index] >> 2); + + x->rd_thresh_mult[best_mode_index] = + (x->rd_thresh_mult[best_mode_index] >= + (MIN_THRESHMULT + best_adjustment)) + ? x->rd_thresh_mult[best_mode_index] - best_adjustment + : MIN_THRESHMULT; + x->rd_threshes[best_mode_index] = + (cpi->rd_baseline_thresh[best_mode_index] >> 7) * + x->rd_thresh_mult[best_mode_index]; + } + +#if CONFIG_TEMPORAL_DENOISING + if (cpi->oxcf.noise_sensitivity) { + int block_index = mb_row * cpi->common.mb_cols + mb_col; + if (x->best_sse_inter_mode == DC_PRED) { + /* No best MV found. */ + x->best_sse_inter_mode = best_mode.mbmode.mode; + x->best_sse_mv = best_mode.mbmode.mv; + x->need_to_clamp_best_mvs = best_mode.mbmode.need_to_clamp_mvs; + x->best_reference_frame = best_mode.mbmode.ref_frame; + best_sse = best_rd_sse; + } + vp8_denoiser_denoise_mb(&cpi->denoiser, x, best_sse, zero_mv_sse, + recon_yoffset, recon_uvoffset, &cpi->common.lf_info, + mb_row, mb_col, block_index, 0); + + /* Reevaluate ZEROMV after denoising. */ + if (best_mode.mbmode.ref_frame == INTRA_FRAME && + x->best_zeromv_reference_frame != INTRA_FRAME) { + int this_rd = INT_MAX; + int disable_skip = 0; + int other_cost = 0; + int this_ref_frame = x->best_zeromv_reference_frame; + rd.rate2 = + x->ref_frame_cost[this_ref_frame] + vp8_cost_mv_ref(ZEROMV, mdcounts); + rd.distortion2 = 0; + + /* set up the proper prediction buffers for the frame */ + x->e_mbd.mode_info_context->mbmi.ref_frame = this_ref_frame; + x->e_mbd.pre.y_buffer = plane[this_ref_frame][0]; + x->e_mbd.pre.u_buffer = plane[this_ref_frame][1]; + x->e_mbd.pre.v_buffer = plane[this_ref_frame][2]; + + x->e_mbd.mode_info_context->mbmi.mode = ZEROMV; + x->e_mbd.mode_info_context->mbmi.uv_mode = DC_PRED; + x->e_mbd.mode_info_context->mbmi.mv.as_int = 0; + + this_rd = evaluate_inter_mode_rd(mdcounts, &rd, &disable_skip, cpi, x); + this_rd = + calculate_final_rd_costs(this_rd, &rd, &other_cost, disable_skip, + uv_intra_tteob, intra_rd_penalty, cpi, x); + if (this_rd < best_mode.rd || x->skip) { + *returnrate = rd.rate2; + *returndistortion = rd.distortion2; + update_best_mode(&best_mode, this_rd, &rd, other_cost, x); + } + } + } +#endif + + if (cpi->is_src_frame_alt_ref && + (best_mode.mbmode.mode != ZEROMV || + best_mode.mbmode.ref_frame != ALTREF_FRAME)) { + x->e_mbd.mode_info_context->mbmi.mode = ZEROMV; + x->e_mbd.mode_info_context->mbmi.ref_frame = ALTREF_FRAME; + x->e_mbd.mode_info_context->mbmi.mv.as_int = 0; + x->e_mbd.mode_info_context->mbmi.uv_mode = DC_PRED; + x->e_mbd.mode_info_context->mbmi.mb_skip_coeff = + (cpi->common.mb_no_coeff_skip); + x->e_mbd.mode_info_context->mbmi.partitioning = 0; + return; + } + + /* macroblock modes */ + memcpy(&x->e_mbd.mode_info_context->mbmi, &best_mode.mbmode, + sizeof(MB_MODE_INFO)); + + if (best_mode.mbmode.mode == B_PRED) { + for (i = 0; i < 16; ++i) { + xd->mode_info_context->bmi[i].as_mode = best_mode.bmodes[i].as_mode; + } + } + + if (best_mode.mbmode.mode == SPLITMV) { + for (i = 0; i < 16; ++i) { + xd->mode_info_context->bmi[i].mv.as_int = best_mode.bmodes[i].mv.as_int; + } + + memcpy(x->partition_info, &best_mode.partition, sizeof(PARTITION_INFO)); + + x->e_mbd.mode_info_context->mbmi.mv.as_int = + x->partition_info->bmi[15].mv.as_int; + } + + if (sign_bias != + cpi->common.ref_frame_sign_bias[xd->mode_info_context->mbmi.ref_frame]) { + best_ref_mv.as_int = best_ref_mv_sb[!sign_bias].as_int; + } + + rd_update_mvcount(x, &best_ref_mv); +} + +void vp8_rd_pick_intra_mode(MACROBLOCK *x, int *rate_) { + int error4x4, error16x16; + int rate4x4, rate16x16 = 0, rateuv; + int dist4x4, dist16x16, distuv; + int rate; + int rate4x4_tokenonly = 0; + int rate16x16_tokenonly = 0; + int rateuv_tokenonly = 0; + + x->e_mbd.mode_info_context->mbmi.ref_frame = INTRA_FRAME; + + rd_pick_intra_mbuv_mode(x, &rateuv, &rateuv_tokenonly, &distuv); + rate = rateuv; + + error16x16 = rd_pick_intra16x16mby_mode(x, &rate16x16, &rate16x16_tokenonly, + &dist16x16); + + error4x4 = rd_pick_intra4x4mby_modes(x, &rate4x4, &rate4x4_tokenonly, + &dist4x4, error16x16); + + if (error4x4 < error16x16) { + x->e_mbd.mode_info_context->mbmi.mode = B_PRED; + rate += rate4x4; + } else { + rate += rate16x16; + } + + *rate_ = rate; +} diff --git a/vp8/encoder/rdopt.h b/vp8/encoder/rdopt.h new file mode 100644 index 0000000..960bd8f --- /dev/null +++ b/vp8/encoder/rdopt.h @@ -0,0 +1,126 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP8_ENCODER_RDOPT_H_ +#define VP8_ENCODER_RDOPT_H_ + +#include "./vpx_config.h" + +#ifdef __cplusplus +extern "C" { +#endif + +#define RDCOST(RM, DM, R, D) (((128 + (R) * (RM)) >> 8) + (DM) * (D)) + +void vp8cx_initialize_me_consts(VP8_COMP *cpi, int QIndex); +void vp8_auto_select_speed(VP8_COMP *cpi); + +static INLINE void insertsortmv(int arr[], int len) { + int i, j, k; + + for (i = 1; i <= len - 1; ++i) { + for (j = 0; j < i; ++j) { + if (arr[j] > arr[i]) { + int temp; + + temp = arr[i]; + + for (k = i; k > j; k--) arr[k] = arr[k - 1]; + + arr[j] = temp; + } + } + } +} + +static INLINE void insertsortsad(int arr[], int idx[], int len) { + int i, j, k; + + for (i = 1; i <= len - 1; ++i) { + for (j = 0; j < i; ++j) { + if (arr[j] > arr[i]) { + int temp, tempi; + + temp = arr[i]; + tempi = idx[i]; + + for (k = i; k > j; k--) { + arr[k] = arr[k - 1]; + idx[k] = idx[k - 1]; + } + + arr[j] = temp; + idx[j] = tempi; + } + } + } +} + +extern void vp8_initialize_rd_consts(VP8_COMP *cpi, MACROBLOCK *x, int Qvalue); +extern void vp8_rd_pick_inter_mode(VP8_COMP *cpi, MACROBLOCK *x, + int recon_yoffset, int recon_uvoffset, + int *returnrate, int *returndistortion, + int *returnintra, int mb_row, int mb_col); +extern void vp8_rd_pick_intra_mode(MACROBLOCK *x, int *rate); + +static INLINE void get_plane_pointers(const YV12_BUFFER_CONFIG *fb, + unsigned char *plane[3], + unsigned int recon_yoffset, + unsigned int recon_uvoffset) { + plane[0] = fb->y_buffer + recon_yoffset; + plane[1] = fb->u_buffer + recon_uvoffset; + plane[2] = fb->v_buffer + recon_uvoffset; +} + +static INLINE void get_predictor_pointers(const VP8_COMP *cpi, + unsigned char *plane[4][3], + unsigned int recon_yoffset, + unsigned int recon_uvoffset) { + if (cpi->ref_frame_flags & VP8_LAST_FRAME) { + get_plane_pointers(&cpi->common.yv12_fb[cpi->common.lst_fb_idx], + plane[LAST_FRAME], recon_yoffset, recon_uvoffset); + } + + if (cpi->ref_frame_flags & VP8_GOLD_FRAME) { + get_plane_pointers(&cpi->common.yv12_fb[cpi->common.gld_fb_idx], + plane[GOLDEN_FRAME], recon_yoffset, recon_uvoffset); + } + + if (cpi->ref_frame_flags & VP8_ALTR_FRAME) { + get_plane_pointers(&cpi->common.yv12_fb[cpi->common.alt_fb_idx], + plane[ALTREF_FRAME], recon_yoffset, recon_uvoffset); + } +} + +static INLINE void get_reference_search_order(const VP8_COMP *cpi, + int ref_frame_map[4]) { + int i = 0; + + ref_frame_map[i++] = INTRA_FRAME; + if (cpi->ref_frame_flags & VP8_LAST_FRAME) ref_frame_map[i++] = LAST_FRAME; + if (cpi->ref_frame_flags & VP8_GOLD_FRAME) ref_frame_map[i++] = GOLDEN_FRAME; + if (cpi->ref_frame_flags & VP8_ALTR_FRAME) ref_frame_map[i++] = ALTREF_FRAME; + for (; i < 4; ++i) ref_frame_map[i] = -1; +} + +extern void vp8_mv_pred(VP8_COMP *cpi, MACROBLOCKD *xd, const MODE_INFO *here, + int_mv *mvp, int refframe, int *ref_frame_sign_bias, + int *sr, int near_sadidx[]); +void vp8_cal_sad(VP8_COMP *cpi, MACROBLOCKD *xd, MACROBLOCK *x, + int recon_yoffset, int near_sadidx[]); +int VP8_UVSSE(MACROBLOCK *x); +int vp8_cost_mv_ref(MB_PREDICTION_MODE m, const int near_mv_ref_ct[4]); +void vp8_set_mbmode_and_mvs(MACROBLOCK *x, MB_PREDICTION_MODE mb, int_mv *mv); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP8_ENCODER_RDOPT_H_ diff --git a/vp8/encoder/segmentation.c b/vp8/encoder/segmentation.c new file mode 100644 index 0000000..dcb6811 --- /dev/null +++ b/vp8/encoder/segmentation.c @@ -0,0 +1,55 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "segmentation.h" +#include "vpx_mem/vpx_mem.h" + +void vp8_update_gf_useage_maps(VP8_COMP *cpi, VP8_COMMON *cm, MACROBLOCK *x) { + int mb_row, mb_col; + + MODE_INFO *this_mb_mode_info = cm->mi; + + x->gf_active_ptr = (signed char *)cpi->gf_active_flags; + + if ((cm->frame_type == KEY_FRAME) || (cm->refresh_golden_frame)) { + /* Reset Gf useage monitors */ + memset(cpi->gf_active_flags, 1, (cm->mb_rows * cm->mb_cols)); + cpi->gf_active_count = cm->mb_rows * cm->mb_cols; + } else { + /* for each macroblock row in image */ + for (mb_row = 0; mb_row < cm->mb_rows; ++mb_row) { + /* for each macroblock col in image */ + for (mb_col = 0; mb_col < cm->mb_cols; ++mb_col) { + /* If using golden then set GF active flag if not already set. + * If using last frame 0,0 mode then leave flag as it is + * else if using non 0,0 motion or intra modes then clear + * flag if it is currently set + */ + if ((this_mb_mode_info->mbmi.ref_frame == GOLDEN_FRAME) || + (this_mb_mode_info->mbmi.ref_frame == ALTREF_FRAME)) { + if (*(x->gf_active_ptr) == 0) { + *(x->gf_active_ptr) = 1; + cpi->gf_active_count++; + } + } else if ((this_mb_mode_info->mbmi.mode != ZEROMV) && + *(x->gf_active_ptr)) { + *(x->gf_active_ptr) = 0; + cpi->gf_active_count--; + } + + x->gf_active_ptr++; /* Step onto next entry */ + this_mb_mode_info++; /* skip to next mb */ + } + + /* this is to account for the border */ + this_mb_mode_info++; + } + } +} diff --git a/vp8/encoder/segmentation.h b/vp8/encoder/segmentation.h new file mode 100644 index 0000000..1395a34 --- /dev/null +++ b/vp8/encoder/segmentation.h @@ -0,0 +1,29 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP8_ENCODER_SEGMENTATION_H_ +#define VP8_ENCODER_SEGMENTATION_H_ + +#include "string.h" +#include "vp8/common/blockd.h" +#include "onyx_int.h" + +#ifdef __cplusplus +extern "C" { +#endif + +extern void vp8_update_gf_useage_maps(VP8_COMP *cpi, VP8_COMMON *cm, + MACROBLOCK *x); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP8_ENCODER_SEGMENTATION_H_ diff --git a/vp8/encoder/temporal_filter.c b/vp8/encoder/temporal_filter.c new file mode 100644 index 0000000..0a7d25f --- /dev/null +++ b/vp8/encoder/temporal_filter.c @@ -0,0 +1,433 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "vp8/common/onyxc_int.h" +#include "onyx_int.h" +#include "vp8/common/systemdependent.h" +#include "vp8/encoder/quantize.h" +#include "vp8/common/alloccommon.h" +#include "mcomp.h" +#include "firstpass.h" +#include "vpx_scale/vpx_scale.h" +#include "vp8/common/extend.h" +#include "ratectrl.h" +#include "vp8/common/quant_common.h" +#include "segmentation.h" +#include "temporal_filter.h" +#include "vpx_mem/vpx_mem.h" +#include "vp8/common/swapyv12buffer.h" +#include "vp8/common/threading.h" +#include "vpx_ports/vpx_timer.h" + +#include +#include + +#define ALT_REF_MC_ENABLED 1 /* toggle MC in AltRef filtering */ +#define ALT_REF_SUBPEL_ENABLED 1 /* toggle subpel in MC AltRef filtering */ + +#if VP8_TEMPORAL_ALT_REF + +static void vp8_temporal_filter_predictors_mb_c( + MACROBLOCKD *x, unsigned char *y_mb_ptr, unsigned char *u_mb_ptr, + unsigned char *v_mb_ptr, int stride, int mv_row, int mv_col, + unsigned char *pred) { + int offset; + unsigned char *yptr, *uptr, *vptr; + + /* Y */ + yptr = y_mb_ptr + (mv_row >> 3) * stride + (mv_col >> 3); + + if ((mv_row | mv_col) & 7) { + x->subpixel_predict16x16(yptr, stride, mv_col & 7, mv_row & 7, &pred[0], + 16); + } else { + vp8_copy_mem16x16(yptr, stride, &pred[0], 16); + } + + /* U & V */ + mv_row >>= 1; + mv_col >>= 1; + stride = (stride + 1) >> 1; + offset = (mv_row >> 3) * stride + (mv_col >> 3); + uptr = u_mb_ptr + offset; + vptr = v_mb_ptr + offset; + + if ((mv_row | mv_col) & 7) { + x->subpixel_predict8x8(uptr, stride, mv_col & 7, mv_row & 7, &pred[256], 8); + x->subpixel_predict8x8(vptr, stride, mv_col & 7, mv_row & 7, &pred[320], 8); + } else { + vp8_copy_mem8x8(uptr, stride, &pred[256], 8); + vp8_copy_mem8x8(vptr, stride, &pred[320], 8); + } +} +void vp8_temporal_filter_apply_c(unsigned char *frame1, unsigned int stride, + unsigned char *frame2, unsigned int block_size, + int strength, int filter_weight, + unsigned int *accumulator, + unsigned short *count) { + unsigned int i, j, k; + int modifier; + int byte = 0; + const int rounding = strength > 0 ? 1 << (strength - 1) : 0; + + for (i = 0, k = 0; i < block_size; ++i) { + for (j = 0; j < block_size; j++, k++) { + int src_byte = frame1[byte]; + int pixel_value = *frame2++; + + modifier = src_byte - pixel_value; + /* This is an integer approximation of: + * float coeff = (3.0 * modifer * modifier) / pow(2, strength); + * modifier = (int)roundf(coeff > 16 ? 0 : 16-coeff); + */ + modifier *= modifier; + modifier *= 3; + modifier += rounding; + modifier >>= strength; + + if (modifier > 16) modifier = 16; + + modifier = 16 - modifier; + modifier *= filter_weight; + + count[k] += modifier; + accumulator[k] += modifier * pixel_value; + + byte++; + } + + byte += stride - block_size; + } +} + +#if ALT_REF_MC_ENABLED + +static int vp8_temporal_filter_find_matching_mb_c(VP8_COMP *cpi, + YV12_BUFFER_CONFIG *arf_frame, + YV12_BUFFER_CONFIG *frame_ptr, + int mb_offset, + int error_thresh) { + MACROBLOCK *x = &cpi->mb; + int step_param; + int sadpb = x->sadperbit16; + int bestsme = INT_MAX; + + BLOCK *b = &x->block[0]; + BLOCKD *d = &x->e_mbd.block[0]; + int_mv best_ref_mv1; + int_mv best_ref_mv1_full; /* full-pixel value of best_ref_mv1 */ + + /* Save input state */ + unsigned char **base_src = b->base_src; + int src = b->src; + int src_stride = b->src_stride; + unsigned char *base_pre = x->e_mbd.pre.y_buffer; + int pre = d->offset; + int pre_stride = x->e_mbd.pre.y_stride; + + (void)error_thresh; + + best_ref_mv1.as_int = 0; + best_ref_mv1_full.as_mv.col = best_ref_mv1.as_mv.col >> 3; + best_ref_mv1_full.as_mv.row = best_ref_mv1.as_mv.row >> 3; + + /* Setup frame pointers */ + b->base_src = &arf_frame->y_buffer; + b->src_stride = arf_frame->y_stride; + b->src = mb_offset; + + x->e_mbd.pre.y_buffer = frame_ptr->y_buffer; + x->e_mbd.pre.y_stride = frame_ptr->y_stride; + d->offset = mb_offset; + + /* Further step/diamond searches as necessary */ + if (cpi->Speed < 8) { + step_param = cpi->sf.first_step + (cpi->Speed > 5); + } else { + step_param = cpi->sf.first_step + 2; + } + + /* TODO Check that the 16x16 vf & sdf are selected here */ + /* Ignore mv costing by sending NULL cost arrays */ + bestsme = + vp8_hex_search(x, b, d, &best_ref_mv1_full, &d->bmi.mv, step_param, sadpb, + &cpi->fn_ptr[BLOCK_16X16], NULL, NULL, &best_ref_mv1); + +#if ALT_REF_SUBPEL_ENABLED + /* Try sub-pixel MC? */ + { + int distortion; + unsigned int sse; + /* Ignore mv costing by sending NULL cost array */ + bestsme = cpi->find_fractional_mv_step( + x, b, d, &d->bmi.mv, &best_ref_mv1, x->errorperbit, + &cpi->fn_ptr[BLOCK_16X16], NULL, &distortion, &sse); + } +#endif + + /* Save input state */ + b->base_src = base_src; + b->src = src; + b->src_stride = src_stride; + x->e_mbd.pre.y_buffer = base_pre; + d->offset = pre; + x->e_mbd.pre.y_stride = pre_stride; + + return bestsme; +} +#endif + +static void vp8_temporal_filter_iterate_c(VP8_COMP *cpi, int frame_count, + int alt_ref_index, int strength) { + int byte; + int frame; + int mb_col, mb_row; + unsigned int filter_weight; + int mb_cols = cpi->common.mb_cols; + int mb_rows = cpi->common.mb_rows; + int mb_y_offset = 0; + int mb_uv_offset = 0; + DECLARE_ALIGNED(16, unsigned int, accumulator[16 * 16 + 8 * 8 + 8 * 8]); + DECLARE_ALIGNED(16, unsigned short, count[16 * 16 + 8 * 8 + 8 * 8]); + MACROBLOCKD *mbd = &cpi->mb.e_mbd; + YV12_BUFFER_CONFIG *f = cpi->frames[alt_ref_index]; + unsigned char *dst1, *dst2; + DECLARE_ALIGNED(16, unsigned char, predictor[16 * 16 + 8 * 8 + 8 * 8]); + + /* Save input state */ + unsigned char *y_buffer = mbd->pre.y_buffer; + unsigned char *u_buffer = mbd->pre.u_buffer; + unsigned char *v_buffer = mbd->pre.v_buffer; + + for (mb_row = 0; mb_row < mb_rows; ++mb_row) { +#if ALT_REF_MC_ENABLED + /* Source frames are extended to 16 pixels. This is different than + * L/A/G reference frames that have a border of 32 (VP8BORDERINPIXELS) + * A 6 tap filter is used for motion search. This requires 2 pixels + * before and 3 pixels after. So the largest Y mv on a border would + * then be 16 - 3. The UV blocks are half the size of the Y and + * therefore only extended by 8. The largest mv that a UV block + * can support is 8 - 3. A UV mv is half of a Y mv. + * (16 - 3) >> 1 == 6 which is greater than 8 - 3. + * To keep the mv in play for both Y and UV planes the max that it + * can be on a border is therefore 16 - 5. + */ + cpi->mb.mv_row_min = -((mb_row * 16) + (16 - 5)); + cpi->mb.mv_row_max = ((cpi->common.mb_rows - 1 - mb_row) * 16) + (16 - 5); +#endif + + for (mb_col = 0; mb_col < mb_cols; ++mb_col) { + int i, j, k; + int stride; + + memset(accumulator, 0, 384 * sizeof(unsigned int)); + memset(count, 0, 384 * sizeof(unsigned short)); + +#if ALT_REF_MC_ENABLED + cpi->mb.mv_col_min = -((mb_col * 16) + (16 - 5)); + cpi->mb.mv_col_max = ((cpi->common.mb_cols - 1 - mb_col) * 16) + (16 - 5); +#endif + + for (frame = 0; frame < frame_count; ++frame) { + if (cpi->frames[frame] == NULL) continue; + + mbd->block[0].bmi.mv.as_mv.row = 0; + mbd->block[0].bmi.mv.as_mv.col = 0; + + if (frame == alt_ref_index) { + filter_weight = 2; + } else { + int err = 0; +#if ALT_REF_MC_ENABLED +#define THRESH_LOW 10000 +#define THRESH_HIGH 20000 + /* Find best match in this frame by MC */ + err = vp8_temporal_filter_find_matching_mb_c( + cpi, cpi->frames[alt_ref_index], cpi->frames[frame], mb_y_offset, + THRESH_LOW); +#endif + /* Assign higher weight to matching MB if it's error + * score is lower. If not applying MC default behavior + * is to weight all MBs equal. + */ + filter_weight = err < THRESH_LOW ? 2 : err < THRESH_HIGH ? 1 : 0; + } + + if (filter_weight != 0) { + /* Construct the predictors */ + vp8_temporal_filter_predictors_mb_c( + mbd, cpi->frames[frame]->y_buffer + mb_y_offset, + cpi->frames[frame]->u_buffer + mb_uv_offset, + cpi->frames[frame]->v_buffer + mb_uv_offset, + cpi->frames[frame]->y_stride, mbd->block[0].bmi.mv.as_mv.row, + mbd->block[0].bmi.mv.as_mv.col, predictor); + + /* Apply the filter (YUV) */ + vp8_temporal_filter_apply(f->y_buffer + mb_y_offset, f->y_stride, + predictor, 16, strength, filter_weight, + accumulator, count); + + vp8_temporal_filter_apply(f->u_buffer + mb_uv_offset, f->uv_stride, + predictor + 256, 8, strength, filter_weight, + accumulator + 256, count + 256); + + vp8_temporal_filter_apply(f->v_buffer + mb_uv_offset, f->uv_stride, + predictor + 320, 8, strength, filter_weight, + accumulator + 320, count + 320); + } + } + + /* Normalize filter output to produce AltRef frame */ + dst1 = cpi->alt_ref_buffer.y_buffer; + stride = cpi->alt_ref_buffer.y_stride; + byte = mb_y_offset; + for (i = 0, k = 0; i < 16; ++i) { + for (j = 0; j < 16; j++, k++) { + unsigned int pval = accumulator[k] + (count[k] >> 1); + pval *= cpi->fixed_divide[count[k]]; + pval >>= 19; + + dst1[byte] = (unsigned char)pval; + + /* move to next pixel */ + byte++; + } + + byte += stride - 16; + } + + dst1 = cpi->alt_ref_buffer.u_buffer; + dst2 = cpi->alt_ref_buffer.v_buffer; + stride = cpi->alt_ref_buffer.uv_stride; + byte = mb_uv_offset; + for (i = 0, k = 256; i < 8; ++i) { + for (j = 0; j < 8; j++, k++) { + int m = k + 64; + + /* U */ + unsigned int pval = accumulator[k] + (count[k] >> 1); + pval *= cpi->fixed_divide[count[k]]; + pval >>= 19; + dst1[byte] = (unsigned char)pval; + + /* V */ + pval = accumulator[m] + (count[m] >> 1); + pval *= cpi->fixed_divide[count[m]]; + pval >>= 19; + dst2[byte] = (unsigned char)pval; + + /* move to next pixel */ + byte++; + } + + byte += stride - 8; + } + + mb_y_offset += 16; + mb_uv_offset += 8; + } + + mb_y_offset += 16 * (f->y_stride - mb_cols); + mb_uv_offset += 8 * (f->uv_stride - mb_cols); + } + + /* Restore input state */ + mbd->pre.y_buffer = y_buffer; + mbd->pre.u_buffer = u_buffer; + mbd->pre.v_buffer = v_buffer; +} + +void vp8_temporal_filter_prepare_c(VP8_COMP *cpi, int distance) { + int frame = 0; + + int num_frames_backward = 0; + int num_frames_forward = 0; + int frames_to_blur_backward = 0; + int frames_to_blur_forward = 0; + int frames_to_blur = 0; + int start_frame = 0; + + int strength = cpi->oxcf.arnr_strength; + + int blur_type = cpi->oxcf.arnr_type; + + int max_frames = cpi->active_arnr_frames; + + num_frames_backward = distance; + num_frames_forward = + vp8_lookahead_depth(cpi->lookahead) - (num_frames_backward + 1); + + switch (blur_type) { + case 1: + /* Backward Blur */ + + frames_to_blur_backward = num_frames_backward; + + if (frames_to_blur_backward >= max_frames) { + frames_to_blur_backward = max_frames - 1; + } + + frames_to_blur = frames_to_blur_backward + 1; + break; + + case 2: + /* Forward Blur */ + + frames_to_blur_forward = num_frames_forward; + + if (frames_to_blur_forward >= max_frames) { + frames_to_blur_forward = max_frames - 1; + } + + frames_to_blur = frames_to_blur_forward + 1; + break; + + case 3: + default: + /* Center Blur */ + frames_to_blur_forward = num_frames_forward; + frames_to_blur_backward = num_frames_backward; + + if (frames_to_blur_forward > frames_to_blur_backward) { + frames_to_blur_forward = frames_to_blur_backward; + } + + if (frames_to_blur_backward > frames_to_blur_forward) { + frames_to_blur_backward = frames_to_blur_forward; + } + + /* When max_frames is even we have 1 more frame backward than forward */ + if (frames_to_blur_forward > (max_frames - 1) / 2) { + frames_to_blur_forward = ((max_frames - 1) / 2); + } + + if (frames_to_blur_backward > (max_frames / 2)) { + frames_to_blur_backward = (max_frames / 2); + } + + frames_to_blur = frames_to_blur_backward + frames_to_blur_forward + 1; + break; + } + + start_frame = distance + frames_to_blur_forward; + + /* Setup frame pointers, NULL indicates frame not included in filter */ + memset(cpi->frames, 0, max_frames * sizeof(YV12_BUFFER_CONFIG *)); + for (frame = 0; frame < frames_to_blur; ++frame) { + int which_buffer = start_frame - frame; + struct lookahead_entry *buf = + vp8_lookahead_peek(cpi->lookahead, which_buffer, PEEK_FORWARD); + cpi->frames[frames_to_blur - 1 - frame] = &buf->img; + } + + vp8_temporal_filter_iterate_c(cpi, frames_to_blur, frames_to_blur_backward, + strength); +} +#endif diff --git a/vp8/encoder/temporal_filter.h b/vp8/encoder/temporal_filter.h new file mode 100644 index 0000000..865d909 --- /dev/null +++ b/vp8/encoder/temporal_filter.h @@ -0,0 +1,26 @@ +/* + * Copyright (c) 2017 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP8_ENCODER_TEMPORAL_FILTER_H_ +#define VP8_ENCODER_TEMPORAL_FILTER_H_ + +#ifdef __cplusplus +extern "C" { +#endif + +struct VP8_COMP; + +void vp8_temporal_filter_prepare_c(struct VP8_COMP *cpi, int distance); + +#ifdef __cplusplus +} +#endif + +#endif // VP8_ENCODER_TEMPORAL_FILTER_H_ diff --git a/vp8/encoder/tokenize.c b/vp8/encoder/tokenize.c new file mode 100644 index 0000000..ca5f0e3 --- /dev/null +++ b/vp8/encoder/tokenize.c @@ -0,0 +1,538 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include +#include +#include +#include "onyx_int.h" +#include "tokenize.h" +#include "vpx_mem/vpx_mem.h" + +/* Global event counters used for accumulating statistics across several + compressions, then generating context.c = initial stats. */ + +#ifdef VP8_ENTROPY_STATS +_int64 context_counters[BLOCK_TYPES][COEF_BANDS][PREV_COEF_CONTEXTS] + [MAX_ENTROPY_TOKENS]; +#endif +void vp8_stuff_mb(VP8_COMP *cpi, MACROBLOCK *x, TOKENEXTRA **t); +void vp8_fix_contexts(MACROBLOCKD *x); + +#include "dct_value_tokens.h" +#include "dct_value_cost.h" + +const TOKENVALUE *const vp8_dct_value_tokens_ptr = + dct_value_tokens + DCT_MAX_VALUE; +const short *const vp8_dct_value_cost_ptr = dct_value_cost + DCT_MAX_VALUE; + +#if 0 +int skip_true_count = 0; +int skip_false_count = 0; +#endif + +/* function used to generate dct_value_tokens and dct_value_cost tables */ +/* +static void fill_value_tokens() +{ + + TOKENVALUE *t = dct_value_tokens + DCT_MAX_VALUE; + const vp8_extra_bit_struct *e = vp8_extra_bits; + + int i = -DCT_MAX_VALUE; + int sign = 1; + + do + { + if (!i) + sign = 0; + + { + const int a = sign ? -i : i; + int eb = sign; + + if (a > 4) + { + int j = 4; + + while (++j < 11 && e[j].base_val <= a) {} + + t[i].Token = --j; + eb |= (a - e[j].base_val) << 1; + } + else + t[i].Token = a; + + t[i].Extra = eb; + } + + // initialize the cost for extra bits for all possible coefficient +value. + { + int cost = 0; + const vp8_extra_bit_struct *p = vp8_extra_bits + t[i].Token; + + if (p->base_val) + { + const int extra = t[i].Extra; + const int Length = p->Len; + + if (Length) + cost += vp8_treed_cost(p->tree, p->prob, extra >> 1, +Length); + + cost += vp8_cost_bit(vp8_prob_half, extra & 1); // sign + dct_value_cost[i + DCT_MAX_VALUE] = cost; + } + + } + + } + while (++i < DCT_MAX_VALUE); + + vp8_dct_value_tokens_ptr = dct_value_tokens + DCT_MAX_VALUE; + vp8_dct_value_cost_ptr = dct_value_cost + DCT_MAX_VALUE; +} +*/ + +static void tokenize2nd_order_b(MACROBLOCK *x, TOKENEXTRA **tp, VP8_COMP *cpi) { + MACROBLOCKD *xd = &x->e_mbd; + int pt; /* near block/prev token context index */ + int c; /* start at DC */ + TOKENEXTRA *t = *tp; /* store tokens starting here */ + const BLOCKD *b; + const short *qcoeff_ptr; + ENTROPY_CONTEXT *a; + ENTROPY_CONTEXT *l; + int band, rc, v, token; + int eob; + + b = xd->block + 24; + qcoeff_ptr = b->qcoeff; + a = (ENTROPY_CONTEXT *)xd->above_context + 8; + l = (ENTROPY_CONTEXT *)xd->left_context + 8; + eob = xd->eobs[24]; + VP8_COMBINEENTROPYCONTEXTS(pt, *a, *l); + + if (!eob) { + /* c = band for this case */ + t->Token = DCT_EOB_TOKEN; + t->context_tree = cpi->common.fc.coef_probs[1][0][pt]; + t->skip_eob_node = 0; + + ++x->coef_counts[1][0][pt][DCT_EOB_TOKEN]; + t++; + *tp = t; + *a = *l = 0; + return; + } + + v = qcoeff_ptr[0]; + t->Extra = vp8_dct_value_tokens_ptr[v].Extra; + token = vp8_dct_value_tokens_ptr[v].Token; + t->Token = token; + + t->context_tree = cpi->common.fc.coef_probs[1][0][pt]; + t->skip_eob_node = 0; + ++x->coef_counts[1][0][pt][token]; + pt = vp8_prev_token_class[token]; + t++; + c = 1; + + for (; c < eob; ++c) { + rc = vp8_default_zig_zag1d[c]; + band = vp8_coef_bands[c]; + v = qcoeff_ptr[rc]; + + t->Extra = vp8_dct_value_tokens_ptr[v].Extra; + token = vp8_dct_value_tokens_ptr[v].Token; + + t->Token = token; + t->context_tree = cpi->common.fc.coef_probs[1][band][pt]; + + t->skip_eob_node = ((pt == 0)); + + ++x->coef_counts[1][band][pt][token]; + + pt = vp8_prev_token_class[token]; + t++; + } + if (c < 16) { + band = vp8_coef_bands[c]; + t->Token = DCT_EOB_TOKEN; + t->context_tree = cpi->common.fc.coef_probs[1][band][pt]; + + t->skip_eob_node = 0; + + ++x->coef_counts[1][band][pt][DCT_EOB_TOKEN]; + + t++; + } + + *tp = t; + *a = *l = 1; +} + +static void tokenize1st_order_b( + MACROBLOCK *x, TOKENEXTRA **tp, + int type, /* which plane: 0=Y no DC, 1=Y2, 2=UV, 3=Y with DC */ + VP8_COMP *cpi) { + MACROBLOCKD *xd = &x->e_mbd; + unsigned int block; + const BLOCKD *b; + int pt; /* near block/prev token context index */ + int c; + int token; + TOKENEXTRA *t = *tp; /* store tokens starting here */ + const short *qcoeff_ptr; + ENTROPY_CONTEXT *a; + ENTROPY_CONTEXT *l; + int band, rc, v; + int tmp1, tmp2; + + b = xd->block; + /* Luma */ + for (block = 0; block < 16; block++, b++) { + const int eob = *b->eob; + tmp1 = vp8_block2above[block]; + tmp2 = vp8_block2left[block]; + qcoeff_ptr = b->qcoeff; + a = (ENTROPY_CONTEXT *)xd->above_context + tmp1; + l = (ENTROPY_CONTEXT *)xd->left_context + tmp2; + + VP8_COMBINEENTROPYCONTEXTS(pt, *a, *l); + + c = type ? 0 : 1; + + if (c >= eob) { + /* c = band for this case */ + t->Token = DCT_EOB_TOKEN; + t->context_tree = cpi->common.fc.coef_probs[type][c][pt]; + t->skip_eob_node = 0; + + ++x->coef_counts[type][c][pt][DCT_EOB_TOKEN]; + t++; + *tp = t; + *a = *l = 0; + continue; + } + + v = qcoeff_ptr[c]; + + t->Extra = vp8_dct_value_tokens_ptr[v].Extra; + token = vp8_dct_value_tokens_ptr[v].Token; + t->Token = token; + + t->context_tree = cpi->common.fc.coef_probs[type][c][pt]; + t->skip_eob_node = 0; + ++x->coef_counts[type][c][pt][token]; + pt = vp8_prev_token_class[token]; + t++; + c++; + + assert(eob <= 16); + for (; c < eob; ++c) { + rc = vp8_default_zig_zag1d[c]; + band = vp8_coef_bands[c]; + v = qcoeff_ptr[rc]; + + t->Extra = vp8_dct_value_tokens_ptr[v].Extra; + token = vp8_dct_value_tokens_ptr[v].Token; + + t->Token = token; + t->context_tree = cpi->common.fc.coef_probs[type][band][pt]; + + t->skip_eob_node = (pt == 0); + ++x->coef_counts[type][band][pt][token]; + + pt = vp8_prev_token_class[token]; + t++; + } + if (c < 16) { + band = vp8_coef_bands[c]; + t->Token = DCT_EOB_TOKEN; + t->context_tree = cpi->common.fc.coef_probs[type][band][pt]; + + t->skip_eob_node = 0; + ++x->coef_counts[type][band][pt][DCT_EOB_TOKEN]; + + t++; + } + *tp = t; + *a = *l = 1; + } + + /* Chroma */ + for (block = 16; block < 24; block++, b++) { + const int eob = *b->eob; + tmp1 = vp8_block2above[block]; + tmp2 = vp8_block2left[block]; + qcoeff_ptr = b->qcoeff; + a = (ENTROPY_CONTEXT *)xd->above_context + tmp1; + l = (ENTROPY_CONTEXT *)xd->left_context + tmp2; + + VP8_COMBINEENTROPYCONTEXTS(pt, *a, *l); + + if (!eob) { + /* c = band for this case */ + t->Token = DCT_EOB_TOKEN; + t->context_tree = cpi->common.fc.coef_probs[2][0][pt]; + t->skip_eob_node = 0; + + ++x->coef_counts[2][0][pt][DCT_EOB_TOKEN]; + t++; + *tp = t; + *a = *l = 0; + continue; + } + + v = qcoeff_ptr[0]; + + t->Extra = vp8_dct_value_tokens_ptr[v].Extra; + token = vp8_dct_value_tokens_ptr[v].Token; + t->Token = token; + + t->context_tree = cpi->common.fc.coef_probs[2][0][pt]; + t->skip_eob_node = 0; + ++x->coef_counts[2][0][pt][token]; + pt = vp8_prev_token_class[token]; + t++; + c = 1; + + assert(eob <= 16); + for (; c < eob; ++c) { + rc = vp8_default_zig_zag1d[c]; + band = vp8_coef_bands[c]; + v = qcoeff_ptr[rc]; + + t->Extra = vp8_dct_value_tokens_ptr[v].Extra; + token = vp8_dct_value_tokens_ptr[v].Token; + + t->Token = token; + t->context_tree = cpi->common.fc.coef_probs[2][band][pt]; + + t->skip_eob_node = (pt == 0); + + ++x->coef_counts[2][band][pt][token]; + + pt = vp8_prev_token_class[token]; + t++; + } + if (c < 16) { + band = vp8_coef_bands[c]; + t->Token = DCT_EOB_TOKEN; + t->context_tree = cpi->common.fc.coef_probs[2][band][pt]; + + t->skip_eob_node = 0; + + ++x->coef_counts[2][band][pt][DCT_EOB_TOKEN]; + + t++; + } + *tp = t; + *a = *l = 1; + } +} + +static int mb_is_skippable(MACROBLOCKD *x, int has_y2_block) { + int skip = 1; + int i = 0; + + if (has_y2_block) { + for (i = 0; i < 16; ++i) skip &= (x->eobs[i] < 2); + } + + for (; i < 24 + has_y2_block; ++i) skip &= (!x->eobs[i]); + + return skip; +} + +void vp8_tokenize_mb(VP8_COMP *cpi, MACROBLOCK *x, TOKENEXTRA **t) { + MACROBLOCKD *xd = &x->e_mbd; + int plane_type; + int has_y2_block; + + has_y2_block = (xd->mode_info_context->mbmi.mode != B_PRED && + xd->mode_info_context->mbmi.mode != SPLITMV); + + xd->mode_info_context->mbmi.mb_skip_coeff = mb_is_skippable(xd, has_y2_block); + if (xd->mode_info_context->mbmi.mb_skip_coeff) { + if (!cpi->common.mb_no_coeff_skip) { + vp8_stuff_mb(cpi, x, t); + } else { + vp8_fix_contexts(xd); + x->skip_true_count++; + } + + return; + } + + plane_type = 3; + if (has_y2_block) { + tokenize2nd_order_b(x, t, cpi); + plane_type = 0; + } + + tokenize1st_order_b(x, t, plane_type, cpi); +} + +#ifdef VP8_ENTROPY_STATS + +void init_context_counters(void) { + memset(context_counters, 0, sizeof(context_counters)); +} + +void print_context_counters() { + int type, band, pt, t; + + FILE *const f = fopen("context.c", "w"); + + fprintf(f, "#include \"entropy.h\"\n"); + + fprintf(f, "\n/* *** GENERATED FILE: DO NOT EDIT *** */\n\n"); + + fprintf(f, + "int Contexts[BLOCK_TYPES] [COEF_BANDS] [PREV_COEF_CONTEXTS] " + "[MAX_ENTROPY_TOKENS];\n\n"); + + fprintf(f, + "const int default_contexts[BLOCK_TYPES] [COEF_BANDS] " + "[PREV_COEF_CONTEXTS] [MAX_ENTROPY_TOKENS] = {"); + +#define Comma(X) (X ? "," : "") + + type = 0; + + do { + fprintf(f, "%s\n { /* block Type %d */", Comma(type), type); + + band = 0; + + do { + fprintf(f, "%s\n { /* Coeff Band %d */", Comma(band), band); + + pt = 0; + + do { + fprintf(f, "%s\n {", Comma(pt)); + + t = 0; + + do { + const _int64 x = context_counters[type][band][pt][t]; + const int y = (int)x; + + assert(x == (_int64)y); /* no overflow handling yet */ + fprintf(f, "%s %d", Comma(t), y); + + } while (++t < MAX_ENTROPY_TOKENS); + + fprintf(f, "}"); + } while (++pt < PREV_COEF_CONTEXTS); + + fprintf(f, "\n }"); + + } while (++band < COEF_BANDS); + + fprintf(f, "\n }"); + } while (++type < BLOCK_TYPES); + + fprintf(f, "\n};\n"); + fclose(f); +} +#endif + +static void stuff2nd_order_b(TOKENEXTRA **tp, ENTROPY_CONTEXT *a, + ENTROPY_CONTEXT *l, VP8_COMP *cpi, MACROBLOCK *x) { + int pt; /* near block/prev token context index */ + TOKENEXTRA *t = *tp; /* store tokens starting here */ + VP8_COMBINEENTROPYCONTEXTS(pt, *a, *l); + + t->Token = DCT_EOB_TOKEN; + t->context_tree = cpi->common.fc.coef_probs[1][0][pt]; + t->skip_eob_node = 0; + ++x->coef_counts[1][0][pt][DCT_EOB_TOKEN]; + ++t; + + *tp = t; + pt = 0; + *a = *l = pt; +} + +static void stuff1st_order_b(TOKENEXTRA **tp, ENTROPY_CONTEXT *a, + ENTROPY_CONTEXT *l, int type, VP8_COMP *cpi, + MACROBLOCK *x) { + int pt; /* near block/prev token context index */ + int band; + TOKENEXTRA *t = *tp; /* store tokens starting here */ + VP8_COMBINEENTROPYCONTEXTS(pt, *a, *l); + band = type ? 0 : 1; + t->Token = DCT_EOB_TOKEN; + t->context_tree = cpi->common.fc.coef_probs[type][band][pt]; + t->skip_eob_node = 0; + ++x->coef_counts[type][band][pt][DCT_EOB_TOKEN]; + ++t; + *tp = t; + pt = 0; /* 0 <-> all coeff data is zero */ + *a = *l = pt; +} + +static void stuff1st_order_buv(TOKENEXTRA **tp, ENTROPY_CONTEXT *a, + ENTROPY_CONTEXT *l, VP8_COMP *cpi, + MACROBLOCK *x) { + int pt; /* near block/prev token context index */ + TOKENEXTRA *t = *tp; /* store tokens starting here */ + VP8_COMBINEENTROPYCONTEXTS(pt, *a, *l); + + t->Token = DCT_EOB_TOKEN; + t->context_tree = cpi->common.fc.coef_probs[2][0][pt]; + t->skip_eob_node = 0; + ++x->coef_counts[2][0][pt][DCT_EOB_TOKEN]; + ++t; + *tp = t; + pt = 0; /* 0 <-> all coeff data is zero */ + *a = *l = pt; +} + +void vp8_stuff_mb(VP8_COMP *cpi, MACROBLOCK *x, TOKENEXTRA **t) { + MACROBLOCKD *xd = &x->e_mbd; + ENTROPY_CONTEXT *A = (ENTROPY_CONTEXT *)xd->above_context; + ENTROPY_CONTEXT *L = (ENTROPY_CONTEXT *)xd->left_context; + int plane_type; + int b; + plane_type = 3; + if ((xd->mode_info_context->mbmi.mode != B_PRED && + xd->mode_info_context->mbmi.mode != SPLITMV)) { + stuff2nd_order_b(t, A + vp8_block2above[24], L + vp8_block2left[24], cpi, + x); + plane_type = 0; + } + + for (b = 0; b < 16; ++b) { + stuff1st_order_b(t, A + vp8_block2above[b], L + vp8_block2left[b], + plane_type, cpi, x); + } + + for (b = 16; b < 24; ++b) { + stuff1st_order_buv(t, A + vp8_block2above[b], L + vp8_block2left[b], cpi, + x); + } +} +void vp8_fix_contexts(MACROBLOCKD *x) { + /* Clear entropy contexts for Y2 blocks */ + if (x->mode_info_context->mbmi.mode != B_PRED && + x->mode_info_context->mbmi.mode != SPLITMV) { + memset(x->above_context, 0, sizeof(ENTROPY_CONTEXT_PLANES)); + memset(x->left_context, 0, sizeof(ENTROPY_CONTEXT_PLANES)); + } else { + memset(x->above_context, 0, sizeof(ENTROPY_CONTEXT_PLANES) - 1); + memset(x->left_context, 0, sizeof(ENTROPY_CONTEXT_PLANES) - 1); + } +} diff --git a/vp8/encoder/tokenize.h b/vp8/encoder/tokenize.h new file mode 100644 index 0000000..e5dbdfc --- /dev/null +++ b/vp8/encoder/tokenize.h @@ -0,0 +1,56 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP8_ENCODER_TOKENIZE_H_ +#define VP8_ENCODER_TOKENIZE_H_ + +#include "vp8/common/entropy.h" +#include "block.h" + +#ifdef __cplusplus +extern "C" { +#endif + +void vp8_tokenize_initialize(); + +typedef struct { + short Token; + short Extra; +} TOKENVALUE; + +typedef struct { + const vp8_prob *context_tree; + short Extra; + unsigned char Token; + unsigned char skip_eob_node; +} TOKENEXTRA; + +int rd_cost_mby(MACROBLOCKD *); + +#ifdef VP8_ENTROPY_STATS +void init_context_counters(); +void print_context_counters(); + +extern _int64 context_counters[BLOCK_TYPES][COEF_BANDS][PREV_COEF_CONTEXTS] + [MAX_ENTROPY_TOKENS]; +#endif + +extern const short *const vp8_dct_value_cost_ptr; +/* TODO: The Token field should be broken out into a separate char array to + * improve cache locality, since it's needed for costing when the rest of the + * fields are not. + */ +extern const TOKENVALUE *const vp8_dct_value_tokens_ptr; + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP8_ENCODER_TOKENIZE_H_ diff --git a/vp8/encoder/treewriter.c b/vp8/encoder/treewriter.c new file mode 100644 index 0000000..f055f05 --- /dev/null +++ b/vp8/encoder/treewriter.c @@ -0,0 +1,33 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "treewriter.h" + +static void cost(int *const C, vp8_tree T, const vp8_prob *const P, int i, + int c) { + const vp8_prob p = P[i >> 1]; + + do { + const vp8_tree_index j = T[i]; + const int d = c + vp8_cost_bit(p, i & 1); + + if (j <= 0) { + C[-j] = d; + } else { + cost(C, T, P, j, d); + } + } while (++i & 1); +} +void vp8_cost_tokens(int *c, const vp8_prob *p, vp8_tree t) { + cost(c, t, p, 0, 0); +} +void vp8_cost_tokens2(int *c, const vp8_prob *p, vp8_tree t, int start) { + cost(c, t, p, start, 0); +} diff --git a/vp8/encoder/treewriter.h b/vp8/encoder/treewriter.h new file mode 100644 index 0000000..dadbbe3 --- /dev/null +++ b/vp8/encoder/treewriter.h @@ -0,0 +1,104 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP8_ENCODER_TREEWRITER_H_ +#define VP8_ENCODER_TREEWRITER_H_ + +/* Trees map alphabets into huffman-like codes suitable for an arithmetic + bit coder. Timothy S Murphy 11 October 2004 */ + +#include "./vpx_config.h" +#include "vp8/common/treecoder.h" + +#include "boolhuff.h" /* for now */ + +#ifdef __cplusplus +extern "C" { +#endif + +typedef BOOL_CODER vp8_writer; + +#define vp8_write vp8_encode_bool +#define vp8_write_literal vp8_encode_value +#define vp8_write_bit(W, V) vp8_write(W, V, vp8_prob_half) + +#define vp8bc_write vp8bc_write_bool +#define vp8bc_write_literal vp8bc_write_bits +#define vp8bc_write_bit(W, V) vp8bc_write_bits(W, V, 1) + +/* Approximate length of an encoded bool in 256ths of a bit at given prob */ + +#define vp8_cost_zero(x) (vp8_prob_cost[x]) +#define vp8_cost_one(x) vp8_cost_zero(vp8_complement(x)) + +#define vp8_cost_bit(x, b) vp8_cost_zero((b) ? vp8_complement(x) : (x)) + +/* VP8BC version is scaled by 2^20 rather than 2^8; see bool_coder.h */ + +/* Both of these return bits, not scaled bits. */ + +static INLINE unsigned int vp8_cost_branch(const unsigned int ct[2], + vp8_prob p) { + /* Imitate existing calculation */ + + return ((ct[0] * vp8_cost_zero(p)) + (ct[1] * vp8_cost_one(p))) >> 8; +} + +/* Small functions to write explicit values and tokens, as well as + estimate their lengths. */ + +static void vp8_treed_write(vp8_writer *const w, vp8_tree t, + const vp8_prob *const p, int v, + int n /* number of bits in v, assumed nonzero */ + ) { + vp8_tree_index i = 0; + + do { + const int b = (v >> --n) & 1; + vp8_write(w, b, p[i >> 1]); + i = t[i + b]; + } while (n); +} +static INLINE void vp8_write_token(vp8_writer *const w, vp8_tree t, + const vp8_prob *const p, + vp8_token *const x) { + vp8_treed_write(w, t, p, x->value, x->Len); +} + +static int vp8_treed_cost(vp8_tree t, const vp8_prob *const p, int v, + int n /* number of bits in v, assumed nonzero */ + ) { + int c = 0; + vp8_tree_index i = 0; + + do { + const int b = (v >> --n) & 1; + c += vp8_cost_bit(p[i >> 1], b); + i = t[i + b]; + } while (n); + + return c; +} +static INLINE int vp8_cost_token(vp8_tree t, const vp8_prob *const p, + vp8_token *const x) { + return vp8_treed_cost(t, p, x->value, x->Len); +} + +/* Fill array of costs for all possible token values. */ + +void vp8_cost_tokens(int *Costs, const vp8_prob *, vp8_tree); + +void vp8_cost_tokens2(int *Costs, const vp8_prob *, vp8_tree, int); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP8_ENCODER_TREEWRITER_H_ diff --git a/vp8/encoder/vp8_quantize.c b/vp8/encoder/vp8_quantize.c new file mode 100644 index 0000000..ff6e04e --- /dev/null +++ b/vp8/encoder/vp8_quantize.c @@ -0,0 +1,491 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include "vpx_mem/vpx_mem.h" + +#include "onyx_int.h" +#include "vp8/encoder/quantize.h" +#include "vp8/common/quant_common.h" + +void vp8_fast_quantize_b_c(BLOCK *b, BLOCKD *d) { + int i, rc, eob; + int x, y, z, sz; + short *coeff_ptr = b->coeff; + short *round_ptr = b->round; + short *quant_ptr = b->quant_fast; + short *qcoeff_ptr = d->qcoeff; + short *dqcoeff_ptr = d->dqcoeff; + short *dequant_ptr = d->dequant; + + eob = -1; + for (i = 0; i < 16; ++i) { + rc = vp8_default_zig_zag1d[i]; + z = coeff_ptr[rc]; + + sz = (z >> 31); /* sign of z */ + x = (z ^ sz) - sz; /* x = abs(z) */ + + y = ((x + round_ptr[rc]) * quant_ptr[rc]) >> 16; /* quantize (x) */ + x = (y ^ sz) - sz; /* get the sign back */ + qcoeff_ptr[rc] = x; /* write to destination */ + dqcoeff_ptr[rc] = x * dequant_ptr[rc]; /* dequantized value */ + + if (y) { + eob = i; /* last nonzero coeffs */ + } + } + *d->eob = (char)(eob + 1); +} + +void vp8_regular_quantize_b_c(BLOCK *b, BLOCKD *d) { + int i, rc, eob; + int zbin; + int x, y, z, sz; + short *zbin_boost_ptr = b->zrun_zbin_boost; + short *coeff_ptr = b->coeff; + short *zbin_ptr = b->zbin; + short *round_ptr = b->round; + short *quant_ptr = b->quant; + short *quant_shift_ptr = b->quant_shift; + short *qcoeff_ptr = d->qcoeff; + short *dqcoeff_ptr = d->dqcoeff; + short *dequant_ptr = d->dequant; + short zbin_oq_value = b->zbin_extra; + + memset(qcoeff_ptr, 0, 32); + memset(dqcoeff_ptr, 0, 32); + + eob = -1; + + for (i = 0; i < 16; ++i) { + rc = vp8_default_zig_zag1d[i]; + z = coeff_ptr[rc]; + + zbin = zbin_ptr[rc] + *zbin_boost_ptr + zbin_oq_value; + + zbin_boost_ptr++; + sz = (z >> 31); /* sign of z */ + x = (z ^ sz) - sz; /* x = abs(z) */ + + if (x >= zbin) { + x += round_ptr[rc]; + y = ((((x * quant_ptr[rc]) >> 16) + x) * quant_shift_ptr[rc]) >> + 16; /* quantize (x) */ + x = (y ^ sz) - sz; /* get the sign back */ + qcoeff_ptr[rc] = x; /* write to destination */ + dqcoeff_ptr[rc] = x * dequant_ptr[rc]; /* dequantized value */ + + if (y) { + eob = i; /* last nonzero coeffs */ + zbin_boost_ptr = b->zrun_zbin_boost; /* reset zero runlength */ + } + } + } + + *d->eob = (char)(eob + 1); +} + +void vp8_quantize_mby(MACROBLOCK *x) { + int i; + int has_2nd_order = (x->e_mbd.mode_info_context->mbmi.mode != B_PRED && + x->e_mbd.mode_info_context->mbmi.mode != SPLITMV); + + for (i = 0; i < 16; ++i) x->quantize_b(&x->block[i], &x->e_mbd.block[i]); + + if (has_2nd_order) x->quantize_b(&x->block[24], &x->e_mbd.block[24]); +} + +void vp8_quantize_mb(MACROBLOCK *x) { + int i; + int has_2nd_order = (x->e_mbd.mode_info_context->mbmi.mode != B_PRED && + x->e_mbd.mode_info_context->mbmi.mode != SPLITMV); + + for (i = 0; i < 24 + has_2nd_order; ++i) { + x->quantize_b(&x->block[i], &x->e_mbd.block[i]); + } +} + +void vp8_quantize_mbuv(MACROBLOCK *x) { + int i; + + for (i = 16; i < 24; ++i) x->quantize_b(&x->block[i], &x->e_mbd.block[i]); +} + +static const int qrounding_factors[129] = { + 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, + 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, + 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, + 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, + 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, + 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, + 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48 +}; + +static const int qzbin_factors[129] = { + 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, + 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, + 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 80, 80, 80, 80, 80, 80, 80, 80, 80, + 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, + 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, + 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, + 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80 +}; + +static const int qrounding_factors_y2[129] = { + 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, + 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, + 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, + 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, + 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, + 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, + 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48 +}; + +static const int qzbin_factors_y2[129] = { + 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, + 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, + 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 80, 80, 80, 80, 80, 80, 80, 80, 80, + 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, + 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, + 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, + 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80 +}; + +static void invert_quant(int improved_quant, short *quant, short *shift, + short d) { + if (improved_quant) { + unsigned t; + int l, m; + t = d; + for (l = 0; t > 1; ++l) t >>= 1; + m = 1 + (1 << (16 + l)) / d; + *quant = (short)(m - (1 << 16)); + *shift = l; + /* use multiplication and constant shift by 16 */ + *shift = 1 << (16 - *shift); + } else { + *quant = (1 << 16) / d; + *shift = 0; + /* use multiplication and constant shift by 16 */ + *shift = 1 << (16 - *shift); + } +} + +void vp8cx_init_quantizer(VP8_COMP *cpi) { + int i; + int quant_val; + int Q; + + int zbin_boost[16] = { 0, 0, 8, 10, 12, 14, 16, 20, + 24, 28, 32, 36, 40, 44, 44, 44 }; + + for (Q = 0; Q < QINDEX_RANGE; ++Q) { + /* dc values */ + quant_val = vp8_dc_quant(Q, cpi->common.y1dc_delta_q); + cpi->Y1quant_fast[Q][0] = (1 << 16) / quant_val; + invert_quant(cpi->sf.improved_quant, cpi->Y1quant[Q] + 0, + cpi->Y1quant_shift[Q] + 0, quant_val); + cpi->Y1zbin[Q][0] = ((qzbin_factors[Q] * quant_val) + 64) >> 7; + cpi->Y1round[Q][0] = (qrounding_factors[Q] * quant_val) >> 7; + cpi->common.Y1dequant[Q][0] = quant_val; + cpi->zrun_zbin_boost_y1[Q][0] = (quant_val * zbin_boost[0]) >> 7; + + quant_val = vp8_dc2quant(Q, cpi->common.y2dc_delta_q); + cpi->Y2quant_fast[Q][0] = (1 << 16) / quant_val; + invert_quant(cpi->sf.improved_quant, cpi->Y2quant[Q] + 0, + cpi->Y2quant_shift[Q] + 0, quant_val); + cpi->Y2zbin[Q][0] = ((qzbin_factors_y2[Q] * quant_val) + 64) >> 7; + cpi->Y2round[Q][0] = (qrounding_factors_y2[Q] * quant_val) >> 7; + cpi->common.Y2dequant[Q][0] = quant_val; + cpi->zrun_zbin_boost_y2[Q][0] = (quant_val * zbin_boost[0]) >> 7; + + quant_val = vp8_dc_uv_quant(Q, cpi->common.uvdc_delta_q); + cpi->UVquant_fast[Q][0] = (1 << 16) / quant_val; + invert_quant(cpi->sf.improved_quant, cpi->UVquant[Q] + 0, + cpi->UVquant_shift[Q] + 0, quant_val); + cpi->UVzbin[Q][0] = ((qzbin_factors[Q] * quant_val) + 64) >> 7; + cpi->UVround[Q][0] = (qrounding_factors[Q] * quant_val) >> 7; + cpi->common.UVdequant[Q][0] = quant_val; + cpi->zrun_zbin_boost_uv[Q][0] = (quant_val * zbin_boost[0]) >> 7; + + /* all the ac values = ; */ + quant_val = vp8_ac_yquant(Q); + cpi->Y1quant_fast[Q][1] = (1 << 16) / quant_val; + invert_quant(cpi->sf.improved_quant, cpi->Y1quant[Q] + 1, + cpi->Y1quant_shift[Q] + 1, quant_val); + cpi->Y1zbin[Q][1] = ((qzbin_factors[Q] * quant_val) + 64) >> 7; + cpi->Y1round[Q][1] = (qrounding_factors[Q] * quant_val) >> 7; + cpi->common.Y1dequant[Q][1] = quant_val; + cpi->zrun_zbin_boost_y1[Q][1] = (quant_val * zbin_boost[1]) >> 7; + + quant_val = vp8_ac2quant(Q, cpi->common.y2ac_delta_q); + cpi->Y2quant_fast[Q][1] = (1 << 16) / quant_val; + invert_quant(cpi->sf.improved_quant, cpi->Y2quant[Q] + 1, + cpi->Y2quant_shift[Q] + 1, quant_val); + cpi->Y2zbin[Q][1] = ((qzbin_factors_y2[Q] * quant_val) + 64) >> 7; + cpi->Y2round[Q][1] = (qrounding_factors_y2[Q] * quant_val) >> 7; + cpi->common.Y2dequant[Q][1] = quant_val; + cpi->zrun_zbin_boost_y2[Q][1] = (quant_val * zbin_boost[1]) >> 7; + + quant_val = vp8_ac_uv_quant(Q, cpi->common.uvac_delta_q); + cpi->UVquant_fast[Q][1] = (1 << 16) / quant_val; + invert_quant(cpi->sf.improved_quant, cpi->UVquant[Q] + 1, + cpi->UVquant_shift[Q] + 1, quant_val); + cpi->UVzbin[Q][1] = ((qzbin_factors[Q] * quant_val) + 64) >> 7; + cpi->UVround[Q][1] = (qrounding_factors[Q] * quant_val) >> 7; + cpi->common.UVdequant[Q][1] = quant_val; + cpi->zrun_zbin_boost_uv[Q][1] = (quant_val * zbin_boost[1]) >> 7; + + for (i = 2; i < 16; ++i) { + cpi->Y1quant_fast[Q][i] = cpi->Y1quant_fast[Q][1]; + cpi->Y1quant[Q][i] = cpi->Y1quant[Q][1]; + cpi->Y1quant_shift[Q][i] = cpi->Y1quant_shift[Q][1]; + cpi->Y1zbin[Q][i] = cpi->Y1zbin[Q][1]; + cpi->Y1round[Q][i] = cpi->Y1round[Q][1]; + cpi->zrun_zbin_boost_y1[Q][i] = + (cpi->common.Y1dequant[Q][1] * zbin_boost[i]) >> 7; + + cpi->Y2quant_fast[Q][i] = cpi->Y2quant_fast[Q][1]; + cpi->Y2quant[Q][i] = cpi->Y2quant[Q][1]; + cpi->Y2quant_shift[Q][i] = cpi->Y2quant_shift[Q][1]; + cpi->Y2zbin[Q][i] = cpi->Y2zbin[Q][1]; + cpi->Y2round[Q][i] = cpi->Y2round[Q][1]; + cpi->zrun_zbin_boost_y2[Q][i] = + (cpi->common.Y2dequant[Q][1] * zbin_boost[i]) >> 7; + + cpi->UVquant_fast[Q][i] = cpi->UVquant_fast[Q][1]; + cpi->UVquant[Q][i] = cpi->UVquant[Q][1]; + cpi->UVquant_shift[Q][i] = cpi->UVquant_shift[Q][1]; + cpi->UVzbin[Q][i] = cpi->UVzbin[Q][1]; + cpi->UVround[Q][i] = cpi->UVround[Q][1]; + cpi->zrun_zbin_boost_uv[Q][i] = + (cpi->common.UVdequant[Q][1] * zbin_boost[i]) >> 7; + } + } +} + +#define ZBIN_EXTRA_Y \ + ((cpi->common.Y1dequant[QIndex][1] * \ + (x->zbin_over_quant + x->zbin_mode_boost + x->act_zbin_adj)) >> \ + 7) + +#define ZBIN_EXTRA_UV \ + ((cpi->common.UVdequant[QIndex][1] * \ + (x->zbin_over_quant + x->zbin_mode_boost + x->act_zbin_adj)) >> \ + 7) + +#define ZBIN_EXTRA_Y2 \ + ((cpi->common.Y2dequant[QIndex][1] * \ + ((x->zbin_over_quant / 2) + x->zbin_mode_boost + x->act_zbin_adj)) >> \ + 7) + +void vp8cx_mb_init_quantizer(VP8_COMP *cpi, MACROBLOCK *x, int ok_to_skip) { + int i; + int QIndex; + MACROBLOCKD *xd = &x->e_mbd; + int zbin_extra; + + /* Select the baseline MB Q index. */ + if (xd->segmentation_enabled) { + /* Abs Value */ + if (xd->mb_segement_abs_delta == SEGMENT_ABSDATA) { + QIndex = xd->segment_feature_data[MB_LVL_ALT_Q] + [xd->mode_info_context->mbmi.segment_id]; + /* Delta Value */ + } else { + QIndex = cpi->common.base_qindex + + xd->segment_feature_data[MB_LVL_ALT_Q] + [xd->mode_info_context->mbmi.segment_id]; + /* Clamp to valid range */ + QIndex = (QIndex >= 0) ? ((QIndex <= MAXQ) ? QIndex : MAXQ) : 0; + } + } else { + QIndex = cpi->common.base_qindex; + } + + /* This initialization should be called at least once. Use ok_to_skip to + * decide if it is ok to skip. + * Before encoding a frame, this function is always called with ok_to_skip + * =0, which means no skiping of calculations. The "last" values are + * initialized at that time. + */ + if (!ok_to_skip || QIndex != x->q_index) { + xd->dequant_y1_dc[0] = 1; + xd->dequant_y1[0] = cpi->common.Y1dequant[QIndex][0]; + xd->dequant_y2[0] = cpi->common.Y2dequant[QIndex][0]; + xd->dequant_uv[0] = cpi->common.UVdequant[QIndex][0]; + + for (i = 1; i < 16; ++i) { + xd->dequant_y1_dc[i] = xd->dequant_y1[i] = + cpi->common.Y1dequant[QIndex][1]; + xd->dequant_y2[i] = cpi->common.Y2dequant[QIndex][1]; + xd->dequant_uv[i] = cpi->common.UVdequant[QIndex][1]; + } +#if 1 + /*TODO: Remove dequant from BLOCKD. This is a temporary solution until + * the quantizer code uses a passed in pointer to the dequant constants. + * This will also require modifications to the x86 and neon assembly. + * */ + for (i = 0; i < 16; ++i) x->e_mbd.block[i].dequant = xd->dequant_y1; + for (i = 16; i < 24; ++i) x->e_mbd.block[i].dequant = xd->dequant_uv; + x->e_mbd.block[24].dequant = xd->dequant_y2; +#endif + + /* Y */ + zbin_extra = ZBIN_EXTRA_Y; + + for (i = 0; i < 16; ++i) { + x->block[i].quant = cpi->Y1quant[QIndex]; + x->block[i].quant_fast = cpi->Y1quant_fast[QIndex]; + x->block[i].quant_shift = cpi->Y1quant_shift[QIndex]; + x->block[i].zbin = cpi->Y1zbin[QIndex]; + x->block[i].round = cpi->Y1round[QIndex]; + x->block[i].zrun_zbin_boost = cpi->zrun_zbin_boost_y1[QIndex]; + x->block[i].zbin_extra = (short)zbin_extra; + } + + /* UV */ + zbin_extra = ZBIN_EXTRA_UV; + + for (i = 16; i < 24; ++i) { + x->block[i].quant = cpi->UVquant[QIndex]; + x->block[i].quant_fast = cpi->UVquant_fast[QIndex]; + x->block[i].quant_shift = cpi->UVquant_shift[QIndex]; + x->block[i].zbin = cpi->UVzbin[QIndex]; + x->block[i].round = cpi->UVround[QIndex]; + x->block[i].zrun_zbin_boost = cpi->zrun_zbin_boost_uv[QIndex]; + x->block[i].zbin_extra = (short)zbin_extra; + } + + /* Y2 */ + zbin_extra = ZBIN_EXTRA_Y2; + + x->block[24].quant_fast = cpi->Y2quant_fast[QIndex]; + x->block[24].quant = cpi->Y2quant[QIndex]; + x->block[24].quant_shift = cpi->Y2quant_shift[QIndex]; + x->block[24].zbin = cpi->Y2zbin[QIndex]; + x->block[24].round = cpi->Y2round[QIndex]; + x->block[24].zrun_zbin_boost = cpi->zrun_zbin_boost_y2[QIndex]; + x->block[24].zbin_extra = (short)zbin_extra; + + /* save this macroblock QIndex for vp8_update_zbin_extra() */ + x->q_index = QIndex; + + x->last_zbin_over_quant = x->zbin_over_quant; + x->last_zbin_mode_boost = x->zbin_mode_boost; + x->last_act_zbin_adj = x->act_zbin_adj; + + } else if (x->last_zbin_over_quant != x->zbin_over_quant || + x->last_zbin_mode_boost != x->zbin_mode_boost || + x->last_act_zbin_adj != x->act_zbin_adj) { + /* Y */ + zbin_extra = ZBIN_EXTRA_Y; + + for (i = 0; i < 16; ++i) x->block[i].zbin_extra = (short)zbin_extra; + + /* UV */ + zbin_extra = ZBIN_EXTRA_UV; + + for (i = 16; i < 24; ++i) x->block[i].zbin_extra = (short)zbin_extra; + + /* Y2 */ + zbin_extra = ZBIN_EXTRA_Y2; + x->block[24].zbin_extra = (short)zbin_extra; + + x->last_zbin_over_quant = x->zbin_over_quant; + x->last_zbin_mode_boost = x->zbin_mode_boost; + x->last_act_zbin_adj = x->act_zbin_adj; + } +} + +void vp8_update_zbin_extra(VP8_COMP *cpi, MACROBLOCK *x) { + int i; + int QIndex = x->q_index; + int zbin_extra; + + /* Y */ + zbin_extra = ZBIN_EXTRA_Y; + + for (i = 0; i < 16; ++i) x->block[i].zbin_extra = (short)zbin_extra; + + /* UV */ + zbin_extra = ZBIN_EXTRA_UV; + + for (i = 16; i < 24; ++i) x->block[i].zbin_extra = (short)zbin_extra; + + /* Y2 */ + zbin_extra = ZBIN_EXTRA_Y2; + x->block[24].zbin_extra = (short)zbin_extra; +} +#undef ZBIN_EXTRA_Y +#undef ZBIN_EXTRA_UV +#undef ZBIN_EXTRA_Y2 + +void vp8cx_frame_init_quantizer(VP8_COMP *cpi) { + /* Clear Zbin mode boost for default case */ + cpi->mb.zbin_mode_boost = 0; + + /* MB level quantizer setup */ + vp8cx_mb_init_quantizer(cpi, &cpi->mb, 0); +} + +void vp8_set_quantizer(struct VP8_COMP *cpi, int Q) { + VP8_COMMON *cm = &cpi->common; + MACROBLOCKD *mbd = &cpi->mb.e_mbd; + int update = 0; + int new_delta_q; + int new_uv_delta_q; + cm->base_qindex = Q; + + /* if any of the delta_q values are changing update flag has to be set */ + /* currently only y2dc_delta_q may change */ + + cm->y1dc_delta_q = 0; + cm->y2ac_delta_q = 0; + + if (Q < 4) { + new_delta_q = 4 - Q; + } else { + new_delta_q = 0; + } + + update |= cm->y2dc_delta_q != new_delta_q; + cm->y2dc_delta_q = new_delta_q; + + new_uv_delta_q = 0; + // For screen content, lower the q value for UV channel. For now, select + // conservative delta; same delta for dc and ac, and decrease it with lower + // Q, and set to 0 below some threshold. May want to condition this in + // future on the variance/energy in UV channel. + if (cpi->oxcf.screen_content_mode && Q > 40) { + new_uv_delta_q = -(int)(0.15 * Q); + // Check range: magnitude of delta is 4 bits. + if (new_uv_delta_q < -15) { + new_uv_delta_q = -15; + } + } + update |= cm->uvdc_delta_q != new_uv_delta_q; + cm->uvdc_delta_q = new_uv_delta_q; + cm->uvac_delta_q = new_uv_delta_q; + + /* Set Segment specific quatizers */ + mbd->segment_feature_data[MB_LVL_ALT_Q][0] = + cpi->segment_feature_data[MB_LVL_ALT_Q][0]; + mbd->segment_feature_data[MB_LVL_ALT_Q][1] = + cpi->segment_feature_data[MB_LVL_ALT_Q][1]; + mbd->segment_feature_data[MB_LVL_ALT_Q][2] = + cpi->segment_feature_data[MB_LVL_ALT_Q][2]; + mbd->segment_feature_data[MB_LVL_ALT_Q][3] = + cpi->segment_feature_data[MB_LVL_ALT_Q][3]; + + /* quantizer has to be reinitialized for any delta_q changes */ + if (update) vp8cx_init_quantizer(cpi); +} diff --git a/vp8/encoder/x86/dct_sse2.asm b/vp8/encoder/x86/dct_sse2.asm new file mode 100644 index 0000000..4d92f03 --- /dev/null +++ b/vp8/encoder/x86/dct_sse2.asm @@ -0,0 +1,434 @@ +; +; Copyright (c) 2010 The WebM project authors. All Rights Reserved. +; +; Use of this source code is governed by a BSD-style license +; that can be found in the LICENSE file in the root of the source +; tree. An additional intellectual property rights grant can be found +; in the file PATENTS. All contributing project authors may +; be found in the AUTHORS file in the root of the source tree. +; + + +%include "vpx_ports/x86_abi_support.asm" + +%macro STACK_FRAME_CREATE 0 +%if ABI_IS_32BIT + %define input rsi + %define output rdi + %define pitch rax + push rbp + mov rbp, rsp + GET_GOT rbx + push rsi + push rdi + ; end prolog + + mov rsi, arg(0) + mov rdi, arg(1) + + movsxd rax, dword ptr arg(2) + lea rcx, [rsi + rax*2] +%else + %if LIBVPX_YASM_WIN64 + %define input rcx + %define output rdx + %define pitch r8 + SAVE_XMM 7, u + %else + %define input rdi + %define output rsi + %define pitch rdx + %endif +%endif +%endmacro + +%macro STACK_FRAME_DESTROY 0 + %define input + %define output + %define pitch + +%if ABI_IS_32BIT + pop rdi + pop rsi + RESTORE_GOT + pop rbp +%else + %if LIBVPX_YASM_WIN64 + RESTORE_XMM + %endif +%endif + ret +%endmacro + +SECTION .text + +;void vp8_short_fdct4x4_sse2(short *input, short *output, int pitch) +global sym(vp8_short_fdct4x4_sse2) PRIVATE +sym(vp8_short_fdct4x4_sse2): + + STACK_FRAME_CREATE + + movq xmm0, MMWORD PTR[input ] ;03 02 01 00 + movq xmm2, MMWORD PTR[input+ pitch] ;13 12 11 10 + lea input, [input+2*pitch] + movq xmm1, MMWORD PTR[input ] ;23 22 21 20 + movq xmm3, MMWORD PTR[input+ pitch] ;33 32 31 30 + + punpcklqdq xmm0, xmm2 ;13 12 11 10 03 02 01 00 + punpcklqdq xmm1, xmm3 ;33 32 31 30 23 22 21 20 + + movdqa xmm2, xmm0 + punpckldq xmm0, xmm1 ;23 22 03 02 21 20 01 00 + punpckhdq xmm2, xmm1 ;33 32 13 12 31 30 11 10 + movdqa xmm1, xmm0 + punpckldq xmm0, xmm2 ;31 21 30 20 11 10 01 00 + pshufhw xmm1, xmm1, 0b1h ;22 23 02 03 xx xx xx xx + pshufhw xmm2, xmm2, 0b1h ;32 33 12 13 xx xx xx xx + + punpckhdq xmm1, xmm2 ;32 33 22 23 12 13 02 03 + movdqa xmm3, xmm0 + paddw xmm0, xmm1 ;b1 a1 b1 a1 b1 a1 b1 a1 + psubw xmm3, xmm1 ;c1 d1 c1 d1 c1 d1 c1 d1 + psllw xmm0, 3 ;b1 <<= 3 a1 <<= 3 + psllw xmm3, 3 ;c1 <<= 3 d1 <<= 3 + + movdqa xmm1, xmm0 + pmaddwd xmm0, XMMWORD PTR[GLOBAL(_mult_add)] ;a1 + b1 + pmaddwd xmm1, XMMWORD PTR[GLOBAL(_mult_sub)] ;a1 - b1 + movdqa xmm4, xmm3 + pmaddwd xmm3, XMMWORD PTR[GLOBAL(_5352_2217)] ;c1*2217 + d1*5352 + pmaddwd xmm4, XMMWORD PTR[GLOBAL(_2217_neg5352)];d1*2217 - c1*5352 + + paddd xmm3, XMMWORD PTR[GLOBAL(_14500)] + paddd xmm4, XMMWORD PTR[GLOBAL(_7500)] + psrad xmm3, 12 ;(c1 * 2217 + d1 * 5352 + 14500)>>12 + psrad xmm4, 12 ;(d1 * 2217 - c1 * 5352 + 7500)>>12 + + packssdw xmm0, xmm1 ;op[2] op[0] + packssdw xmm3, xmm4 ;op[3] op[1] + ; 23 22 21 20 03 02 01 00 + ; + ; 33 32 31 30 13 12 11 10 + ; + movdqa xmm2, xmm0 + punpcklqdq xmm0, xmm3 ;13 12 11 10 03 02 01 00 + punpckhqdq xmm2, xmm3 ;23 22 21 20 33 32 31 30 + + movdqa xmm3, xmm0 + punpcklwd xmm0, xmm2 ;32 30 22 20 12 10 02 00 + punpckhwd xmm3, xmm2 ;33 31 23 21 13 11 03 01 + movdqa xmm2, xmm0 + punpcklwd xmm0, xmm3 ;13 12 11 10 03 02 01 00 + punpckhwd xmm2, xmm3 ;33 32 31 30 23 22 21 20 + + movdqa xmm5, XMMWORD PTR[GLOBAL(_7)] + pshufd xmm2, xmm2, 04eh + movdqa xmm3, xmm0 + paddw xmm0, xmm2 ;b1 b1 b1 b1 a1 a1 a1 a1 + psubw xmm3, xmm2 ;c1 c1 c1 c1 d1 d1 d1 d1 + + pshufd xmm0, xmm0, 0d8h ;b1 b1 a1 a1 b1 b1 a1 a1 + movdqa xmm2, xmm3 ;save d1 for compare + pshufd xmm3, xmm3, 0d8h ;c1 c1 d1 d1 c1 c1 d1 d1 + pshuflw xmm0, xmm0, 0d8h ;b1 b1 a1 a1 b1 a1 b1 a1 + pshuflw xmm3, xmm3, 0d8h ;c1 c1 d1 d1 c1 d1 c1 d1 + pshufhw xmm0, xmm0, 0d8h ;b1 a1 b1 a1 b1 a1 b1 a1 + pshufhw xmm3, xmm3, 0d8h ;c1 d1 c1 d1 c1 d1 c1 d1 + movdqa xmm1, xmm0 + pmaddwd xmm0, XMMWORD PTR[GLOBAL(_mult_add)] ;a1 + b1 + pmaddwd xmm1, XMMWORD PTR[GLOBAL(_mult_sub)] ;a1 - b1 + + pxor xmm4, xmm4 ;zero out for compare + paddd xmm0, xmm5 + paddd xmm1, xmm5 + pcmpeqw xmm2, xmm4 + psrad xmm0, 4 ;(a1 + b1 + 7)>>4 + psrad xmm1, 4 ;(a1 - b1 + 7)>>4 + pandn xmm2, XMMWORD PTR[GLOBAL(_cmp_mask)] ;clear upper, + ;and keep bit 0 of lower + + movdqa xmm4, xmm3 + pmaddwd xmm3, XMMWORD PTR[GLOBAL(_5352_2217)] ;c1*2217 + d1*5352 + pmaddwd xmm4, XMMWORD PTR[GLOBAL(_2217_neg5352)] ;d1*2217 - c1*5352 + paddd xmm3, XMMWORD PTR[GLOBAL(_12000)] + paddd xmm4, XMMWORD PTR[GLOBAL(_51000)] + packssdw xmm0, xmm1 ;op[8] op[0] + psrad xmm3, 16 ;(c1 * 2217 + d1 * 5352 + 12000)>>16 + psrad xmm4, 16 ;(d1 * 2217 - c1 * 5352 + 51000)>>16 + + packssdw xmm3, xmm4 ;op[12] op[4] + movdqa xmm1, xmm0 + paddw xmm3, xmm2 ;op[4] += (d1!=0) + punpcklqdq xmm0, xmm3 ;op[4] op[0] + punpckhqdq xmm1, xmm3 ;op[12] op[8] + + movdqa XMMWORD PTR[output + 0], xmm0 + movdqa XMMWORD PTR[output + 16], xmm1 + + STACK_FRAME_DESTROY + +;void vp8_short_fdct8x4_sse2(short *input, short *output, int pitch) +global sym(vp8_short_fdct8x4_sse2) PRIVATE +sym(vp8_short_fdct8x4_sse2): + + STACK_FRAME_CREATE + + ; read the input data + movdqa xmm0, [input ] + movdqa xmm2, [input+ pitch] + lea input, [input+2*pitch] + movdqa xmm4, [input ] + movdqa xmm3, [input+ pitch] + + ; transpose for the first stage + movdqa xmm1, xmm0 ; 00 01 02 03 04 05 06 07 + movdqa xmm5, xmm4 ; 20 21 22 23 24 25 26 27 + + punpcklwd xmm0, xmm2 ; 00 10 01 11 02 12 03 13 + punpckhwd xmm1, xmm2 ; 04 14 05 15 06 16 07 17 + + punpcklwd xmm4, xmm3 ; 20 30 21 31 22 32 23 33 + punpckhwd xmm5, xmm3 ; 24 34 25 35 26 36 27 37 + + movdqa xmm2, xmm0 ; 00 10 01 11 02 12 03 13 + punpckldq xmm0, xmm4 ; 00 10 20 30 01 11 21 31 + + punpckhdq xmm2, xmm4 ; 02 12 22 32 03 13 23 33 + + movdqa xmm4, xmm1 ; 04 14 05 15 06 16 07 17 + punpckldq xmm4, xmm5 ; 04 14 24 34 05 15 25 35 + + punpckhdq xmm1, xmm5 ; 06 16 26 36 07 17 27 37 + movdqa xmm3, xmm2 ; 02 12 22 32 03 13 23 33 + + punpckhqdq xmm3, xmm1 ; 03 13 23 33 07 17 27 37 + punpcklqdq xmm2, xmm1 ; 02 12 22 32 06 16 26 36 + + movdqa xmm1, xmm0 ; 00 10 20 30 01 11 21 31 + punpcklqdq xmm0, xmm4 ; 00 10 20 30 04 14 24 34 + + punpckhqdq xmm1, xmm4 ; 01 11 21 32 05 15 25 35 + + ; xmm0 0 + ; xmm1 1 + ; xmm2 2 + ; xmm3 3 + + ; first stage + movdqa xmm5, xmm0 + movdqa xmm4, xmm1 + + paddw xmm0, xmm3 ; a1 = 0 + 3 + paddw xmm1, xmm2 ; b1 = 1 + 2 + + psubw xmm4, xmm2 ; c1 = 1 - 2 + psubw xmm5, xmm3 ; d1 = 0 - 3 + + psllw xmm5, 3 + psllw xmm4, 3 + + psllw xmm0, 3 + psllw xmm1, 3 + + ; output 0 and 2 + movdqa xmm2, xmm0 ; a1 + + paddw xmm0, xmm1 ; op[0] = a1 + b1 + psubw xmm2, xmm1 ; op[2] = a1 - b1 + + ; output 1 and 3 + ; interleave c1, d1 + movdqa xmm1, xmm5 ; d1 + punpcklwd xmm1, xmm4 ; c1 d1 + punpckhwd xmm5, xmm4 ; c1 d1 + + movdqa xmm3, xmm1 + movdqa xmm4, xmm5 + + pmaddwd xmm1, XMMWORD PTR[GLOBAL (_5352_2217)] ; c1*2217 + d1*5352 + pmaddwd xmm4, XMMWORD PTR[GLOBAL (_5352_2217)] ; c1*2217 + d1*5352 + + pmaddwd xmm3, XMMWORD PTR[GLOBAL(_2217_neg5352)] ; d1*2217 - c1*5352 + pmaddwd xmm5, XMMWORD PTR[GLOBAL(_2217_neg5352)] ; d1*2217 - c1*5352 + + paddd xmm1, XMMWORD PTR[GLOBAL(_14500)] + paddd xmm4, XMMWORD PTR[GLOBAL(_14500)] + paddd xmm3, XMMWORD PTR[GLOBAL(_7500)] + paddd xmm5, XMMWORD PTR[GLOBAL(_7500)] + + psrad xmm1, 12 ; (c1 * 2217 + d1 * 5352 + 14500)>>12 + psrad xmm4, 12 ; (c1 * 2217 + d1 * 5352 + 14500)>>12 + psrad xmm3, 12 ; (d1 * 2217 - c1 * 5352 + 7500)>>12 + psrad xmm5, 12 ; (d1 * 2217 - c1 * 5352 + 7500)>>12 + + packssdw xmm1, xmm4 ; op[1] + packssdw xmm3, xmm5 ; op[3] + + ; done with vertical + ; transpose for the second stage + movdqa xmm4, xmm0 ; 00 10 20 30 04 14 24 34 + movdqa xmm5, xmm2 ; 02 12 22 32 06 16 26 36 + + punpcklwd xmm0, xmm1 ; 00 01 10 11 20 21 30 31 + punpckhwd xmm4, xmm1 ; 04 05 14 15 24 25 34 35 + + punpcklwd xmm2, xmm3 ; 02 03 12 13 22 23 32 33 + punpckhwd xmm5, xmm3 ; 06 07 16 17 26 27 36 37 + + movdqa xmm1, xmm0 ; 00 01 10 11 20 21 30 31 + punpckldq xmm0, xmm2 ; 00 01 02 03 10 11 12 13 + + punpckhdq xmm1, xmm2 ; 20 21 22 23 30 31 32 33 + + movdqa xmm2, xmm4 ; 04 05 14 15 24 25 34 35 + punpckldq xmm2, xmm5 ; 04 05 06 07 14 15 16 17 + + punpckhdq xmm4, xmm5 ; 24 25 26 27 34 35 36 37 + movdqa xmm3, xmm1 ; 20 21 22 23 30 31 32 33 + + punpckhqdq xmm3, xmm4 ; 30 31 32 33 34 35 36 37 + punpcklqdq xmm1, xmm4 ; 20 21 22 23 24 25 26 27 + + movdqa xmm4, xmm0 ; 00 01 02 03 10 11 12 13 + punpcklqdq xmm0, xmm2 ; 00 01 02 03 04 05 06 07 + + punpckhqdq xmm4, xmm2 ; 10 11 12 13 14 15 16 17 + + ; xmm0 0 + ; xmm1 4 + ; xmm2 1 + ; xmm3 3 + + movdqa xmm5, xmm0 + movdqa xmm2, xmm1 + + paddw xmm0, xmm3 ; a1 = 0 + 3 + paddw xmm1, xmm4 ; b1 = 1 + 2 + + psubw xmm4, xmm2 ; c1 = 1 - 2 + psubw xmm5, xmm3 ; d1 = 0 - 3 + + pxor xmm6, xmm6 ; zero out for compare + + pcmpeqw xmm6, xmm5 ; d1 != 0 + + pandn xmm6, XMMWORD PTR[GLOBAL(_cmp_mask8x4)] ; clear upper, + ; and keep bit 0 of lower + + ; output 0 and 2 + movdqa xmm2, xmm0 ; a1 + + paddw xmm0, xmm1 ; a1 + b1 + psubw xmm2, xmm1 ; a1 - b1 + + paddw xmm0, XMMWORD PTR[GLOBAL(_7w)] + paddw xmm2, XMMWORD PTR[GLOBAL(_7w)] + + psraw xmm0, 4 ; op[0] = (a1 + b1 + 7)>>4 + psraw xmm2, 4 ; op[8] = (a1 - b1 + 7)>>4 + + ; output 1 and 3 + ; interleave c1, d1 + movdqa xmm1, xmm5 ; d1 + punpcklwd xmm1, xmm4 ; c1 d1 + punpckhwd xmm5, xmm4 ; c1 d1 + + movdqa xmm3, xmm1 + movdqa xmm4, xmm5 + + pmaddwd xmm1, XMMWORD PTR[GLOBAL (_5352_2217)] ; c1*2217 + d1*5352 + pmaddwd xmm4, XMMWORD PTR[GLOBAL (_5352_2217)] ; c1*2217 + d1*5352 + + pmaddwd xmm3, XMMWORD PTR[GLOBAL(_2217_neg5352)] ; d1*2217 - c1*5352 + pmaddwd xmm5, XMMWORD PTR[GLOBAL(_2217_neg5352)] ; d1*2217 - c1*5352 + + paddd xmm1, XMMWORD PTR[GLOBAL(_12000)] + paddd xmm4, XMMWORD PTR[GLOBAL(_12000)] + paddd xmm3, XMMWORD PTR[GLOBAL(_51000)] + paddd xmm5, XMMWORD PTR[GLOBAL(_51000)] + + psrad xmm1, 16 ; (c1 * 2217 + d1 * 5352 + 14500)>>16 + psrad xmm4, 16 ; (c1 * 2217 + d1 * 5352 + 14500)>>16 + psrad xmm3, 16 ; (d1 * 2217 - c1 * 5352 + 7500)>>16 + psrad xmm5, 16 ; (d1 * 2217 - c1 * 5352 + 7500)>>16 + + packssdw xmm1, xmm4 ; op[4] + packssdw xmm3, xmm5 ; op[12] + + paddw xmm1, xmm6 ; op[4] += (d1!=0) + + movdqa xmm4, xmm0 + movdqa xmm5, xmm2 + + punpcklqdq xmm0, xmm1 + punpckhqdq xmm4, xmm1 + + punpcklqdq xmm2, xmm3 + punpckhqdq xmm5, xmm3 + + movdqa XMMWORD PTR[output + 0 ], xmm0 + movdqa XMMWORD PTR[output + 16], xmm2 + movdqa XMMWORD PTR[output + 32], xmm4 + movdqa XMMWORD PTR[output + 48], xmm5 + + STACK_FRAME_DESTROY + +SECTION_RODATA +align 16 +_5352_2217: + dw 5352 + dw 2217 + dw 5352 + dw 2217 + dw 5352 + dw 2217 + dw 5352 + dw 2217 +align 16 +_2217_neg5352: + dw 2217 + dw -5352 + dw 2217 + dw -5352 + dw 2217 + dw -5352 + dw 2217 + dw -5352 +align 16 +_mult_add: + times 8 dw 1 +align 16 +_cmp_mask: + times 4 dw 1 + times 4 dw 0 +align 16 +_cmp_mask8x4: + times 8 dw 1 +align 16 +_mult_sub: + dw 1 + dw -1 + dw 1 + dw -1 + dw 1 + dw -1 + dw 1 + dw -1 +align 16 +_7: + times 4 dd 7 +align 16 +_7w: + times 8 dw 7 +align 16 +_14500: + times 4 dd 14500 +align 16 +_7500: + times 4 dd 7500 +align 16 +_12000: + times 4 dd 12000 +align 16 +_51000: + times 4 dd 51000 diff --git a/vp8/encoder/x86/denoising_sse2.c b/vp8/encoder/x86/denoising_sse2.c new file mode 100644 index 0000000..89cad53 --- /dev/null +++ b/vp8/encoder/x86/denoising_sse2.c @@ -0,0 +1,372 @@ +/* + * Copyright (c) 2012 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "vp8/encoder/denoising.h" +#include "vp8/common/reconinter.h" +#include "vpx/vpx_integer.h" +#include "vpx_mem/vpx_mem.h" +#include "vp8_rtcd.h" + +#include +#include "vpx_ports/emmintrin_compat.h" + +/* Compute the sum of all pixel differences of this MB. */ +static INLINE unsigned int abs_sum_diff_16x1(__m128i acc_diff) { + const __m128i k_1 = _mm_set1_epi16(1); + const __m128i acc_diff_lo = + _mm_srai_epi16(_mm_unpacklo_epi8(acc_diff, acc_diff), 8); + const __m128i acc_diff_hi = + _mm_srai_epi16(_mm_unpackhi_epi8(acc_diff, acc_diff), 8); + const __m128i acc_diff_16 = _mm_add_epi16(acc_diff_lo, acc_diff_hi); + const __m128i hg_fe_dc_ba = _mm_madd_epi16(acc_diff_16, k_1); + const __m128i hgfe_dcba = + _mm_add_epi32(hg_fe_dc_ba, _mm_srli_si128(hg_fe_dc_ba, 8)); + const __m128i hgfedcba = + _mm_add_epi32(hgfe_dcba, _mm_srli_si128(hgfe_dcba, 4)); + unsigned int sum_diff = abs(_mm_cvtsi128_si32(hgfedcba)); + + return sum_diff; +} + +int vp8_denoiser_filter_sse2(unsigned char *mc_running_avg_y, + int mc_avg_y_stride, unsigned char *running_avg_y, + int avg_y_stride, unsigned char *sig, + int sig_stride, unsigned int motion_magnitude, + int increase_denoising) { + unsigned char *running_avg_y_start = running_avg_y; + unsigned char *sig_start = sig; + unsigned int sum_diff_thresh; + int r; + int shift_inc = + (increase_denoising && motion_magnitude <= MOTION_MAGNITUDE_THRESHOLD) + ? 1 + : 0; + __m128i acc_diff = _mm_setzero_si128(); + const __m128i k_0 = _mm_setzero_si128(); + const __m128i k_4 = _mm_set1_epi8(4 + shift_inc); + const __m128i k_8 = _mm_set1_epi8(8); + const __m128i k_16 = _mm_set1_epi8(16); + /* Modify each level's adjustment according to motion_magnitude. */ + const __m128i l3 = _mm_set1_epi8( + (motion_magnitude <= MOTION_MAGNITUDE_THRESHOLD) ? 7 + shift_inc : 6); + /* Difference between level 3 and level 2 is 2. */ + const __m128i l32 = _mm_set1_epi8(2); + /* Difference between level 2 and level 1 is 1. */ + const __m128i l21 = _mm_set1_epi8(1); + + for (r = 0; r < 16; ++r) { + /* Calculate differences */ + const __m128i v_sig = _mm_loadu_si128((__m128i *)(&sig[0])); + const __m128i v_mc_running_avg_y = + _mm_loadu_si128((__m128i *)(&mc_running_avg_y[0])); + __m128i v_running_avg_y; + const __m128i pdiff = _mm_subs_epu8(v_mc_running_avg_y, v_sig); + const __m128i ndiff = _mm_subs_epu8(v_sig, v_mc_running_avg_y); + /* Obtain the sign. FF if diff is negative. */ + const __m128i diff_sign = _mm_cmpeq_epi8(pdiff, k_0); + /* Clamp absolute difference to 16 to be used to get mask. Doing this + * allows us to use _mm_cmpgt_epi8, which operates on signed byte. */ + const __m128i clamped_absdiff = + _mm_min_epu8(_mm_or_si128(pdiff, ndiff), k_16); + /* Get masks for l2 l1 and l0 adjustments */ + const __m128i mask2 = _mm_cmpgt_epi8(k_16, clamped_absdiff); + const __m128i mask1 = _mm_cmpgt_epi8(k_8, clamped_absdiff); + const __m128i mask0 = _mm_cmpgt_epi8(k_4, clamped_absdiff); + /* Get adjustments for l2, l1, and l0 */ + __m128i adj2 = _mm_and_si128(mask2, l32); + const __m128i adj1 = _mm_and_si128(mask1, l21); + const __m128i adj0 = _mm_and_si128(mask0, clamped_absdiff); + __m128i adj, padj, nadj; + + /* Combine the adjustments and get absolute adjustments. */ + adj2 = _mm_add_epi8(adj2, adj1); + adj = _mm_sub_epi8(l3, adj2); + adj = _mm_andnot_si128(mask0, adj); + adj = _mm_or_si128(adj, adj0); + + /* Restore the sign and get positive and negative adjustments. */ + padj = _mm_andnot_si128(diff_sign, adj); + nadj = _mm_and_si128(diff_sign, adj); + + /* Calculate filtered value. */ + v_running_avg_y = _mm_adds_epu8(v_sig, padj); + v_running_avg_y = _mm_subs_epu8(v_running_avg_y, nadj); + _mm_storeu_si128((__m128i *)running_avg_y, v_running_avg_y); + + /* Adjustments <=7, and each element in acc_diff can fit in signed + * char. + */ + acc_diff = _mm_adds_epi8(acc_diff, padj); + acc_diff = _mm_subs_epi8(acc_diff, nadj); + + /* Update pointers for next iteration. */ + sig += sig_stride; + mc_running_avg_y += mc_avg_y_stride; + running_avg_y += avg_y_stride; + } + + { + /* Compute the sum of all pixel differences of this MB. */ + unsigned int abs_sum_diff = abs_sum_diff_16x1(acc_diff); + sum_diff_thresh = SUM_DIFF_THRESHOLD; + if (increase_denoising) sum_diff_thresh = SUM_DIFF_THRESHOLD_HIGH; + if (abs_sum_diff > sum_diff_thresh) { + // Before returning to copy the block (i.e., apply no denoising), + // check if we can still apply some (weaker) temporal filtering to + // this block, that would otherwise not be denoised at all. Simplest + // is to apply an additional adjustment to running_avg_y to bring it + // closer to sig. The adjustment is capped by a maximum delta, and + // chosen such that in most cases the resulting sum_diff will be + // within the acceptable range given by sum_diff_thresh. + + // The delta is set by the excess of absolute pixel diff over the + // threshold. + int delta = ((abs_sum_diff - sum_diff_thresh) >> 8) + 1; + // Only apply the adjustment for max delta up to 3. + if (delta < 4) { + const __m128i k_delta = _mm_set1_epi8(delta); + sig -= sig_stride * 16; + mc_running_avg_y -= mc_avg_y_stride * 16; + running_avg_y -= avg_y_stride * 16; + for (r = 0; r < 16; ++r) { + __m128i v_running_avg_y = + _mm_loadu_si128((__m128i *)(&running_avg_y[0])); + // Calculate differences. + const __m128i v_sig = _mm_loadu_si128((__m128i *)(&sig[0])); + const __m128i v_mc_running_avg_y = + _mm_loadu_si128((__m128i *)(&mc_running_avg_y[0])); + const __m128i pdiff = _mm_subs_epu8(v_mc_running_avg_y, v_sig); + const __m128i ndiff = _mm_subs_epu8(v_sig, v_mc_running_avg_y); + // Obtain the sign. FF if diff is negative. + const __m128i diff_sign = _mm_cmpeq_epi8(pdiff, k_0); + // Clamp absolute difference to delta to get the adjustment. + const __m128i adj = _mm_min_epu8(_mm_or_si128(pdiff, ndiff), k_delta); + // Restore the sign and get positive and negative adjustments. + __m128i padj, nadj; + padj = _mm_andnot_si128(diff_sign, adj); + nadj = _mm_and_si128(diff_sign, adj); + // Calculate filtered value. + v_running_avg_y = _mm_subs_epu8(v_running_avg_y, padj); + v_running_avg_y = _mm_adds_epu8(v_running_avg_y, nadj); + _mm_storeu_si128((__m128i *)running_avg_y, v_running_avg_y); + + // Accumulate the adjustments. + acc_diff = _mm_subs_epi8(acc_diff, padj); + acc_diff = _mm_adds_epi8(acc_diff, nadj); + + // Update pointers for next iteration. + sig += sig_stride; + mc_running_avg_y += mc_avg_y_stride; + running_avg_y += avg_y_stride; + } + abs_sum_diff = abs_sum_diff_16x1(acc_diff); + if (abs_sum_diff > sum_diff_thresh) { + return COPY_BLOCK; + } + } else { + return COPY_BLOCK; + } + } + } + + vp8_copy_mem16x16(running_avg_y_start, avg_y_stride, sig_start, sig_stride); + return FILTER_BLOCK; +} + +int vp8_denoiser_filter_uv_sse2(unsigned char *mc_running_avg, + int mc_avg_stride, unsigned char *running_avg, + int avg_stride, unsigned char *sig, + int sig_stride, unsigned int motion_magnitude, + int increase_denoising) { + unsigned char *running_avg_start = running_avg; + unsigned char *sig_start = sig; + unsigned int sum_diff_thresh; + int r; + int shift_inc = + (increase_denoising && motion_magnitude <= MOTION_MAGNITUDE_THRESHOLD_UV) + ? 1 + : 0; + __m128i acc_diff = _mm_setzero_si128(); + const __m128i k_0 = _mm_setzero_si128(); + const __m128i k_4 = _mm_set1_epi8(4 + shift_inc); + const __m128i k_8 = _mm_set1_epi8(8); + const __m128i k_16 = _mm_set1_epi8(16); + /* Modify each level's adjustment according to motion_magnitude. */ + const __m128i l3 = _mm_set1_epi8( + (motion_magnitude <= MOTION_MAGNITUDE_THRESHOLD_UV) ? 7 + shift_inc : 6); + /* Difference between level 3 and level 2 is 2. */ + const __m128i l32 = _mm_set1_epi8(2); + /* Difference between level 2 and level 1 is 1. */ + const __m128i l21 = _mm_set1_epi8(1); + + { + const __m128i k_1 = _mm_set1_epi16(1); + __m128i vec_sum_block = _mm_setzero_si128(); + + // Avoid denoising color signal if its close to average level. + for (r = 0; r < 8; ++r) { + const __m128i v_sig = _mm_loadl_epi64((__m128i *)(&sig[0])); + const __m128i v_sig_unpack = _mm_unpacklo_epi8(v_sig, k_0); + vec_sum_block = _mm_add_epi16(vec_sum_block, v_sig_unpack); + sig += sig_stride; + } + sig -= sig_stride * 8; + { + const __m128i hg_fe_dc_ba = _mm_madd_epi16(vec_sum_block, k_1); + const __m128i hgfe_dcba = + _mm_add_epi32(hg_fe_dc_ba, _mm_srli_si128(hg_fe_dc_ba, 8)); + const __m128i hgfedcba = + _mm_add_epi32(hgfe_dcba, _mm_srli_si128(hgfe_dcba, 4)); + const int sum_block = _mm_cvtsi128_si32(hgfedcba); + if (abs(sum_block - (128 * 8 * 8)) < SUM_DIFF_FROM_AVG_THRESH_UV) { + return COPY_BLOCK; + } + } + } + + for (r = 0; r < 4; ++r) { + /* Calculate differences */ + const __m128i v_sig_low = + _mm_castpd_si128(_mm_load_sd((double *)(&sig[0]))); + const __m128i v_sig = _mm_castpd_si128(_mm_loadh_pd( + _mm_castsi128_pd(v_sig_low), (double *)(&sig[sig_stride]))); + const __m128i v_mc_running_avg_low = + _mm_castpd_si128(_mm_load_sd((double *)(&mc_running_avg[0]))); + const __m128i v_mc_running_avg = _mm_castpd_si128( + _mm_loadh_pd(_mm_castsi128_pd(v_mc_running_avg_low), + (double *)(&mc_running_avg[mc_avg_stride]))); + const __m128i pdiff = _mm_subs_epu8(v_mc_running_avg, v_sig); + const __m128i ndiff = _mm_subs_epu8(v_sig, v_mc_running_avg); + /* Obtain the sign. FF if diff is negative. */ + const __m128i diff_sign = _mm_cmpeq_epi8(pdiff, k_0); + /* Clamp absolute difference to 16 to be used to get mask. Doing this + * allows us to use _mm_cmpgt_epi8, which operates on signed byte. */ + const __m128i clamped_absdiff = + _mm_min_epu8(_mm_or_si128(pdiff, ndiff), k_16); + /* Get masks for l2 l1 and l0 adjustments */ + const __m128i mask2 = _mm_cmpgt_epi8(k_16, clamped_absdiff); + const __m128i mask1 = _mm_cmpgt_epi8(k_8, clamped_absdiff); + const __m128i mask0 = _mm_cmpgt_epi8(k_4, clamped_absdiff); + /* Get adjustments for l2, l1, and l0 */ + __m128i adj2 = _mm_and_si128(mask2, l32); + const __m128i adj1 = _mm_and_si128(mask1, l21); + const __m128i adj0 = _mm_and_si128(mask0, clamped_absdiff); + __m128i adj, padj, nadj; + __m128i v_running_avg; + + /* Combine the adjustments and get absolute adjustments. */ + adj2 = _mm_add_epi8(adj2, adj1); + adj = _mm_sub_epi8(l3, adj2); + adj = _mm_andnot_si128(mask0, adj); + adj = _mm_or_si128(adj, adj0); + + /* Restore the sign and get positive and negative adjustments. */ + padj = _mm_andnot_si128(diff_sign, adj); + nadj = _mm_and_si128(diff_sign, adj); + + /* Calculate filtered value. */ + v_running_avg = _mm_adds_epu8(v_sig, padj); + v_running_avg = _mm_subs_epu8(v_running_avg, nadj); + + _mm_storel_pd((double *)&running_avg[0], _mm_castsi128_pd(v_running_avg)); + _mm_storeh_pd((double *)&running_avg[avg_stride], + _mm_castsi128_pd(v_running_avg)); + + /* Adjustments <=7, and each element in acc_diff can fit in signed + * char. + */ + acc_diff = _mm_adds_epi8(acc_diff, padj); + acc_diff = _mm_subs_epi8(acc_diff, nadj); + + /* Update pointers for next iteration. */ + sig += sig_stride * 2; + mc_running_avg += mc_avg_stride * 2; + running_avg += avg_stride * 2; + } + + { + unsigned int abs_sum_diff = abs_sum_diff_16x1(acc_diff); + sum_diff_thresh = SUM_DIFF_THRESHOLD_UV; + if (increase_denoising) sum_diff_thresh = SUM_DIFF_THRESHOLD_HIGH_UV; + if (abs_sum_diff > sum_diff_thresh) { + // Before returning to copy the block (i.e., apply no denoising), + // check if we can still apply some (weaker) temporal filtering to + // this block, that would otherwise not be denoised at all. Simplest + // is to apply an additional adjustment to running_avg_y to bring it + // closer to sig. The adjustment is capped by a maximum delta, and + // chosen such that in most cases the resulting sum_diff will be + // within the acceptable range given by sum_diff_thresh. + + // The delta is set by the excess of absolute pixel diff over the + // threshold. + int delta = ((abs_sum_diff - sum_diff_thresh) >> 8) + 1; + // Only apply the adjustment for max delta up to 3. + if (delta < 4) { + const __m128i k_delta = _mm_set1_epi8(delta); + sig -= sig_stride * 8; + mc_running_avg -= mc_avg_stride * 8; + running_avg -= avg_stride * 8; + for (r = 0; r < 4; ++r) { + // Calculate differences. + const __m128i v_sig_low = + _mm_castpd_si128(_mm_load_sd((double *)(&sig[0]))); + const __m128i v_sig = _mm_castpd_si128(_mm_loadh_pd( + _mm_castsi128_pd(v_sig_low), (double *)(&sig[sig_stride]))); + const __m128i v_mc_running_avg_low = + _mm_castpd_si128(_mm_load_sd((double *)(&mc_running_avg[0]))); + const __m128i v_mc_running_avg = _mm_castpd_si128( + _mm_loadh_pd(_mm_castsi128_pd(v_mc_running_avg_low), + (double *)(&mc_running_avg[mc_avg_stride]))); + const __m128i pdiff = _mm_subs_epu8(v_mc_running_avg, v_sig); + const __m128i ndiff = _mm_subs_epu8(v_sig, v_mc_running_avg); + // Obtain the sign. FF if diff is negative. + const __m128i diff_sign = _mm_cmpeq_epi8(pdiff, k_0); + // Clamp absolute difference to delta to get the adjustment. + const __m128i adj = _mm_min_epu8(_mm_or_si128(pdiff, ndiff), k_delta); + // Restore the sign and get positive and negative adjustments. + __m128i padj, nadj; + const __m128i v_running_avg_low = + _mm_castpd_si128(_mm_load_sd((double *)(&running_avg[0]))); + __m128i v_running_avg = _mm_castpd_si128( + _mm_loadh_pd(_mm_castsi128_pd(v_running_avg_low), + (double *)(&running_avg[avg_stride]))); + padj = _mm_andnot_si128(diff_sign, adj); + nadj = _mm_and_si128(diff_sign, adj); + // Calculate filtered value. + v_running_avg = _mm_subs_epu8(v_running_avg, padj); + v_running_avg = _mm_adds_epu8(v_running_avg, nadj); + + _mm_storel_pd((double *)&running_avg[0], + _mm_castsi128_pd(v_running_avg)); + _mm_storeh_pd((double *)&running_avg[avg_stride], + _mm_castsi128_pd(v_running_avg)); + + // Accumulate the adjustments. + acc_diff = _mm_subs_epi8(acc_diff, padj); + acc_diff = _mm_adds_epi8(acc_diff, nadj); + + // Update pointers for next iteration. + sig += sig_stride * 2; + mc_running_avg += mc_avg_stride * 2; + running_avg += avg_stride * 2; + } + abs_sum_diff = abs_sum_diff_16x1(acc_diff); + if (abs_sum_diff > sum_diff_thresh) { + return COPY_BLOCK; + } + } else { + return COPY_BLOCK; + } + } + } + + vp8_copy_mem8x8(running_avg_start, avg_stride, sig_start, sig_stride); + return FILTER_BLOCK; +} diff --git a/vp8/encoder/x86/encodeopt.asm b/vp8/encoder/x86/encodeopt.asm new file mode 100644 index 0000000..f6c6aea --- /dev/null +++ b/vp8/encoder/x86/encodeopt.asm @@ -0,0 +1,188 @@ +; +; Copyright (c) 2010 The WebM project authors. All Rights Reserved. +; +; Use of this source code is governed by a BSD-style license +; that can be found in the LICENSE file in the root of the source +; tree. An additional intellectual property rights grant can be found +; in the file PATENTS. All contributing project authors may +; be found in the AUTHORS file in the root of the source tree. +; + + +%include "vpx_ports/x86_abi_support.asm" + +SECTION .text + +;int vp8_block_error_sse2(short *coeff_ptr, short *dcoef_ptr) +global sym(vp8_block_error_sse2) PRIVATE +sym(vp8_block_error_sse2): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 2 + push rsi + push rdi + ; end prologue + + mov rsi, arg(0) ;coeff_ptr + mov rdi, arg(1) ;dcoef_ptr + + movdqa xmm0, [rsi] + movdqa xmm1, [rdi] + + movdqa xmm2, [rsi+16] + movdqa xmm3, [rdi+16] + + psubw xmm0, xmm1 + psubw xmm2, xmm3 + + pmaddwd xmm0, xmm0 + pmaddwd xmm2, xmm2 + + paddd xmm0, xmm2 + + pxor xmm5, xmm5 + movdqa xmm1, xmm0 + + punpckldq xmm0, xmm5 + punpckhdq xmm1, xmm5 + + paddd xmm0, xmm1 + movdqa xmm1, xmm0 + + psrldq xmm0, 8 + paddd xmm0, xmm1 + + movq rax, xmm0 + + pop rdi + pop rsi + ; begin epilog + UNSHADOW_ARGS + pop rbp + ret + +;int vp8_mbblock_error_sse2_impl(short *coeff_ptr, short *dcoef_ptr, int dc); +global sym(vp8_mbblock_error_sse2_impl) PRIVATE +sym(vp8_mbblock_error_sse2_impl): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 3 + SAVE_XMM 6 + push rsi + push rdi + ; end prolog + + + mov rsi, arg(0) ;coeff_ptr + pxor xmm6, xmm6 + + mov rdi, arg(1) ;dcoef_ptr + pxor xmm4, xmm4 + + movd xmm5, dword ptr arg(2) ;dc + por xmm5, xmm4 + + pcmpeqw xmm5, xmm6 + mov rcx, 16 + +.mberror_loop: + movdqa xmm0, [rsi] + movdqa xmm1, [rdi] + + movdqa xmm2, [rsi+16] + movdqa xmm3, [rdi+16] + + + psubw xmm2, xmm3 + pmaddwd xmm2, xmm2 + + psubw xmm0, xmm1 + pand xmm0, xmm5 + + pmaddwd xmm0, xmm0 + add rsi, 32 + + add rdi, 32 + + sub rcx, 1 + paddd xmm4, xmm2 + + paddd xmm4, xmm0 + jnz .mberror_loop + + movdqa xmm0, xmm4 + punpckldq xmm0, xmm6 + + punpckhdq xmm4, xmm6 + paddd xmm0, xmm4 + + movdqa xmm1, xmm0 + psrldq xmm0, 8 + + paddd xmm0, xmm1 + movq rax, xmm0 + + pop rdi + pop rsi + ; begin epilog + RESTORE_XMM + UNSHADOW_ARGS + pop rbp + ret + + +;int vp8_mbuverror_sse2_impl(short *s_ptr, short *d_ptr); +global sym(vp8_mbuverror_sse2_impl) PRIVATE +sym(vp8_mbuverror_sse2_impl): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 2 + push rsi + push rdi + ; end prolog + + + mov rsi, arg(0) ;s_ptr + mov rdi, arg(1) ;d_ptr + + mov rcx, 16 + pxor xmm3, xmm3 + +.mbuverror_loop: + + movdqa xmm1, [rsi] + movdqa xmm2, [rdi] + + psubw xmm1, xmm2 + pmaddwd xmm1, xmm1 + + paddd xmm3, xmm1 + + add rsi, 16 + add rdi, 16 + + dec rcx + jnz .mbuverror_loop + + pxor xmm0, xmm0 + movdqa xmm1, xmm3 + + movdqa xmm2, xmm1 + punpckldq xmm1, xmm0 + + punpckhdq xmm2, xmm0 + paddd xmm1, xmm2 + + movdqa xmm2, xmm1 + + psrldq xmm1, 8 + paddd xmm1, xmm2 + + movq rax, xmm1 + + pop rdi + pop rsi + ; begin epilog + UNSHADOW_ARGS + pop rbp + ret diff --git a/vp8/encoder/x86/fwalsh_sse2.asm b/vp8/encoder/x86/fwalsh_sse2.asm new file mode 100644 index 0000000..b5d5de4 --- /dev/null +++ b/vp8/encoder/x86/fwalsh_sse2.asm @@ -0,0 +1,166 @@ +; +; Copyright (c) 2010 The WebM project authors. All Rights Reserved. +; +; Use of this source code is governed by a BSD-style license +; that can be found in the LICENSE file in the root of the source +; tree. An additional intellectual property rights grant can be found +; in the file PATENTS. All contributing project authors may +; be found in the AUTHORS file in the root of the source tree. +; + + +%include "vpx_ports/x86_abi_support.asm" + +SECTION .text + +;void vp8_short_walsh4x4_sse2(short *input, short *output, int pitch) +global sym(vp8_short_walsh4x4_sse2) PRIVATE +sym(vp8_short_walsh4x4_sse2): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 3 + SAVE_XMM 7 + GET_GOT rbx + push rsi + push rdi + ; end prolog + + mov rsi, arg(0) ; input + mov rdi, arg(1) ; output + movsxd rdx, dword ptr arg(2) ; pitch + + ; first for loop + movq xmm0, MMWORD PTR [rsi] ; load input + movq xmm1, MMWORD PTR [rsi + rdx] + lea rsi, [rsi + rdx*2] + movq xmm2, MMWORD PTR [rsi] + movq xmm3, MMWORD PTR [rsi + rdx] + + punpcklwd xmm0, xmm1 + punpcklwd xmm2, xmm3 + + movdqa xmm1, xmm0 + punpckldq xmm0, xmm2 ; ip[1] ip[0] + punpckhdq xmm1, xmm2 ; ip[3] ip[2] + + movdqa xmm2, xmm0 + paddw xmm0, xmm1 + psubw xmm2, xmm1 + + psllw xmm0, 2 ; d1 a1 + psllw xmm2, 2 ; c1 b1 + + movdqa xmm1, xmm0 + punpcklqdq xmm0, xmm2 ; b1 a1 + punpckhqdq xmm1, xmm2 ; c1 d1 + + pxor xmm6, xmm6 + movq xmm6, xmm0 + pxor xmm7, xmm7 + pcmpeqw xmm7, xmm6 + paddw xmm7, [GLOBAL(c1)] + + movdqa xmm2, xmm0 + paddw xmm0, xmm1 ; b1+c1 a1+d1 + psubw xmm2, xmm1 ; b1-c1 a1-d1 + paddw xmm0, xmm7 ; b1+c1 a1+d1+(a1!=0) + + ; second for loop + ; input: 13 9 5 1 12 8 4 0 (xmm0) + ; 14 10 6 2 15 11 7 3 (xmm2) + ; after shuffle: + ; 13 5 9 1 12 4 8 0 (xmm0) + ; 14 6 10 2 15 7 11 3 (xmm1) + pshuflw xmm3, xmm0, 0xd8 + pshufhw xmm0, xmm3, 0xd8 + pshuflw xmm3, xmm2, 0xd8 + pshufhw xmm1, xmm3, 0xd8 + + movdqa xmm2, xmm0 + pmaddwd xmm0, [GLOBAL(c1)] ; d11 a11 d10 a10 + pmaddwd xmm2, [GLOBAL(cn1)] ; c11 b11 c10 b10 + movdqa xmm3, xmm1 + pmaddwd xmm1, [GLOBAL(c1)] ; d12 a12 d13 a13 + pmaddwd xmm3, [GLOBAL(cn1)] ; c12 b12 c13 b13 + + pshufd xmm4, xmm0, 0xd8 ; d11 d10 a11 a10 + pshufd xmm5, xmm2, 0xd8 ; c11 c10 b11 b10 + pshufd xmm6, xmm1, 0x72 ; d13 d12 a13 a12 + pshufd xmm7, xmm3, 0x72 ; c13 c12 b13 b12 + + movdqa xmm0, xmm4 + punpcklqdq xmm0, xmm5 ; b11 b10 a11 a10 + punpckhqdq xmm4, xmm5 ; c11 c10 d11 d10 + movdqa xmm1, xmm6 + punpcklqdq xmm1, xmm7 ; b13 b12 a13 a12 + punpckhqdq xmm6, xmm7 ; c13 c12 d13 d12 + + movdqa xmm2, xmm0 + paddd xmm0, xmm4 ; b21 b20 a21 a20 + psubd xmm2, xmm4 ; c21 c20 d21 d20 + movdqa xmm3, xmm1 + paddd xmm1, xmm6 ; b23 b22 a23 a22 + psubd xmm3, xmm6 ; c23 c22 d23 d22 + + pxor xmm4, xmm4 + movdqa xmm5, xmm4 + pcmpgtd xmm4, xmm0 + pcmpgtd xmm5, xmm2 + pand xmm4, [GLOBAL(cd1)] + pand xmm5, [GLOBAL(cd1)] + + pxor xmm6, xmm6 + movdqa xmm7, xmm6 + pcmpgtd xmm6, xmm1 + pcmpgtd xmm7, xmm3 + pand xmm6, [GLOBAL(cd1)] + pand xmm7, [GLOBAL(cd1)] + + paddd xmm0, xmm4 + paddd xmm2, xmm5 + paddd xmm0, [GLOBAL(cd3)] + paddd xmm2, [GLOBAL(cd3)] + paddd xmm1, xmm6 + paddd xmm3, xmm7 + paddd xmm1, [GLOBAL(cd3)] + paddd xmm3, [GLOBAL(cd3)] + + psrad xmm0, 3 + psrad xmm1, 3 + psrad xmm2, 3 + psrad xmm3, 3 + movdqa xmm4, xmm0 + punpcklqdq xmm0, xmm1 ; a23 a22 a21 a20 + punpckhqdq xmm4, xmm1 ; b23 b22 b21 b20 + movdqa xmm5, xmm2 + punpckhqdq xmm2, xmm3 ; c23 c22 c21 c20 + punpcklqdq xmm5, xmm3 ; d23 d22 d21 d20 + + packssdw xmm0, xmm4 ; b23 b22 b21 b20 a23 a22 a21 a20 + packssdw xmm2, xmm5 ; d23 d22 d21 d20 c23 c22 c21 c20 + + movdqa XMMWORD PTR [rdi], xmm0 + movdqa XMMWORD PTR [rdi + 16], xmm2 + + ; begin epilog + pop rdi + pop rsi + RESTORE_GOT + RESTORE_XMM + UNSHADOW_ARGS + pop rbp + ret + +SECTION_RODATA +align 16 +c1: + dw 0x0001, 0x0001, 0x0001, 0x0001, 0x0001, 0x0001, 0x0001, 0x0001 +align 16 +cn1: + dw 0x0001, 0xffff, 0x0001, 0xffff, 0x0001, 0xffff, 0x0001, 0xffff +align 16 +cd1: + dd 0x00000001, 0x00000001, 0x00000001, 0x00000001 +align 16 +cd3: + dd 0x00000003, 0x00000003, 0x00000003, 0x00000003 diff --git a/vp8/encoder/x86/quantize_sse4.c b/vp8/encoder/x86/quantize_sse4.c new file mode 100644 index 0000000..6f2c163 --- /dev/null +++ b/vp8/encoder/x86/quantize_sse4.c @@ -0,0 +1,126 @@ +/* + * Copyright (c) 2012 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include /* SSE4.1 */ + +#include "./vp8_rtcd.h" +#include "vp8/encoder/block.h" +#include "vp8/common/entropy.h" /* vp8_default_inv_zig_zag */ + +#define SELECT_EOB(i, z, x, y, q) \ + do { \ + short boost = *zbin_boost_ptr; \ + short x_z = _mm_extract_epi16(x, z); \ + short y_z = _mm_extract_epi16(y, z); \ + int cmp = (x_z < boost) | (y_z == 0); \ + zbin_boost_ptr++; \ + if (cmp) break; \ + q = _mm_insert_epi16(q, y_z, z); \ + eob = i; \ + zbin_boost_ptr = b->zrun_zbin_boost; \ + } while (0) + +void vp8_regular_quantize_b_sse4_1(BLOCK *b, BLOCKD *d) { + char eob = 0; + short *zbin_boost_ptr = b->zrun_zbin_boost; + + __m128i sz0, x0, sz1, x1, y0, y1, x_minus_zbin0, x_minus_zbin1, dqcoeff0, + dqcoeff1; + __m128i quant_shift0 = _mm_load_si128((__m128i *)(b->quant_shift)); + __m128i quant_shift1 = _mm_load_si128((__m128i *)(b->quant_shift + 8)); + __m128i z0 = _mm_load_si128((__m128i *)(b->coeff)); + __m128i z1 = _mm_load_si128((__m128i *)(b->coeff + 8)); + __m128i zbin_extra = _mm_cvtsi32_si128(b->zbin_extra); + __m128i zbin0 = _mm_load_si128((__m128i *)(b->zbin)); + __m128i zbin1 = _mm_load_si128((__m128i *)(b->zbin + 8)); + __m128i round0 = _mm_load_si128((__m128i *)(b->round)); + __m128i round1 = _mm_load_si128((__m128i *)(b->round + 8)); + __m128i quant0 = _mm_load_si128((__m128i *)(b->quant)); + __m128i quant1 = _mm_load_si128((__m128i *)(b->quant + 8)); + __m128i dequant0 = _mm_load_si128((__m128i *)(d->dequant)); + __m128i dequant1 = _mm_load_si128((__m128i *)(d->dequant + 8)); + __m128i qcoeff0 = _mm_setzero_si128(); + __m128i qcoeff1 = _mm_setzero_si128(); + + /* Duplicate to all lanes. */ + zbin_extra = _mm_shufflelo_epi16(zbin_extra, 0); + zbin_extra = _mm_unpacklo_epi16(zbin_extra, zbin_extra); + + /* Sign of z: z >> 15 */ + sz0 = _mm_srai_epi16(z0, 15); + sz1 = _mm_srai_epi16(z1, 15); + + /* x = abs(z): (z ^ sz) - sz */ + x0 = _mm_xor_si128(z0, sz0); + x1 = _mm_xor_si128(z1, sz1); + x0 = _mm_sub_epi16(x0, sz0); + x1 = _mm_sub_epi16(x1, sz1); + + /* zbin[] + zbin_extra */ + zbin0 = _mm_add_epi16(zbin0, zbin_extra); + zbin1 = _mm_add_epi16(zbin1, zbin_extra); + + /* In C x is compared to zbin where zbin = zbin[] + boost + extra. Rebalance + * the equation because boost is the only value which can change: + * x - (zbin[] + extra) >= boost */ + x_minus_zbin0 = _mm_sub_epi16(x0, zbin0); + x_minus_zbin1 = _mm_sub_epi16(x1, zbin1); + + /* All the remaining calculations are valid whether they are done now with + * simd or later inside the loop one at a time. */ + x0 = _mm_add_epi16(x0, round0); + x1 = _mm_add_epi16(x1, round1); + + y0 = _mm_mulhi_epi16(x0, quant0); + y1 = _mm_mulhi_epi16(x1, quant1); + + y0 = _mm_add_epi16(y0, x0); + y1 = _mm_add_epi16(y1, x1); + + /* Instead of shifting each value independently we convert the scaling + * factor with 1 << (16 - shift) so we can use multiply/return high half. */ + y0 = _mm_mulhi_epi16(y0, quant_shift0); + y1 = _mm_mulhi_epi16(y1, quant_shift1); + + /* Return the sign: (y ^ sz) - sz */ + y0 = _mm_xor_si128(y0, sz0); + y1 = _mm_xor_si128(y1, sz1); + y0 = _mm_sub_epi16(y0, sz0); + y1 = _mm_sub_epi16(y1, sz1); + + /* The loop gets unrolled anyway. Avoid the vp8_default_zig_zag1d lookup. */ + SELECT_EOB(1, 0, x_minus_zbin0, y0, qcoeff0); + SELECT_EOB(2, 1, x_minus_zbin0, y0, qcoeff0); + SELECT_EOB(3, 4, x_minus_zbin0, y0, qcoeff0); + SELECT_EOB(4, 0, x_minus_zbin1, y1, qcoeff1); + SELECT_EOB(5, 5, x_minus_zbin0, y0, qcoeff0); + SELECT_EOB(6, 2, x_minus_zbin0, y0, qcoeff0); + SELECT_EOB(7, 3, x_minus_zbin0, y0, qcoeff0); + SELECT_EOB(8, 6, x_minus_zbin0, y0, qcoeff0); + SELECT_EOB(9, 1, x_minus_zbin1, y1, qcoeff1); + SELECT_EOB(10, 4, x_minus_zbin1, y1, qcoeff1); + SELECT_EOB(11, 5, x_minus_zbin1, y1, qcoeff1); + SELECT_EOB(12, 2, x_minus_zbin1, y1, qcoeff1); + SELECT_EOB(13, 7, x_minus_zbin0, y0, qcoeff0); + SELECT_EOB(14, 3, x_minus_zbin1, y1, qcoeff1); + SELECT_EOB(15, 6, x_minus_zbin1, y1, qcoeff1); + SELECT_EOB(16, 7, x_minus_zbin1, y1, qcoeff1); + + _mm_store_si128((__m128i *)(d->qcoeff), qcoeff0); + _mm_store_si128((__m128i *)(d->qcoeff + 8), qcoeff1); + + dqcoeff0 = _mm_mullo_epi16(qcoeff0, dequant0); + dqcoeff1 = _mm_mullo_epi16(qcoeff1, dequant1); + + _mm_store_si128((__m128i *)(d->dqcoeff), dqcoeff0); + _mm_store_si128((__m128i *)(d->dqcoeff + 8), dqcoeff1); + + *d->eob = eob; +} diff --git a/vp8/encoder/x86/temporal_filter_apply_sse2.asm b/vp8/encoder/x86/temporal_filter_apply_sse2.asm new file mode 100644 index 0000000..d2b4711 --- /dev/null +++ b/vp8/encoder/x86/temporal_filter_apply_sse2.asm @@ -0,0 +1,209 @@ +; +; Copyright (c) 2010 The WebM project authors. All Rights Reserved. +; +; Use of this source code is governed by a BSD-style license +; that can be found in the LICENSE file in the root of the source +; tree. An additional intellectual property rights grant can be found +; in the file PATENTS. All contributing project authors may +; be found in the AUTHORS file in the root of the source tree. +; + + +%include "vpx_ports/x86_abi_support.asm" + +SECTION .text + +; void vp8_temporal_filter_apply_sse2 | arg +; (unsigned char *frame1, | 0 +; unsigned int stride, | 1 +; unsigned char *frame2, | 2 +; unsigned int block_size, | 3 +; int strength, | 4 +; int filter_weight, | 5 +; unsigned int *accumulator, | 6 +; unsigned short *count) | 7 +global sym(vp8_temporal_filter_apply_sse2) PRIVATE +sym(vp8_temporal_filter_apply_sse2): + + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 8 + SAVE_XMM 7 + GET_GOT rbx + push rsi + push rdi + ALIGN_STACK 16, rax + %define block_size 0 + %define strength 16 + %define filter_weight 32 + %define rounding_bit 48 + %define rbp_backup 64 + %define stack_size 80 + sub rsp, stack_size + mov [rsp + rbp_backup], rbp + ; end prolog + + mov rdx, arg(3) + mov [rsp + block_size], rdx + movd xmm6, arg(4) + movdqa [rsp + strength], xmm6 ; where strength is used, all 16 bytes are read + + ; calculate the rounding bit outside the loop + ; 0x8000 >> (16 - strength) + mov rdx, 16 + sub rdx, arg(4) ; 16 - strength + movq xmm4, rdx ; can't use rdx w/ shift + movdqa xmm5, [GLOBAL(_const_top_bit)] + psrlw xmm5, xmm4 + movdqa [rsp + rounding_bit], xmm5 + + mov rsi, arg(0) ; src/frame1 + mov rdx, arg(2) ; predictor frame + mov rdi, arg(6) ; accumulator + mov rax, arg(7) ; count + + ; dup the filter weight and store for later + movd xmm0, arg(5) ; filter_weight + pshuflw xmm0, xmm0, 0 + punpcklwd xmm0, xmm0 + movdqa [rsp + filter_weight], xmm0 + + mov rbp, arg(1) ; stride + pxor xmm7, xmm7 ; zero for extraction + + lea rcx, [rdx + 16*16*1] + cmp dword ptr [rsp + block_size], 8 + jne .temporal_filter_apply_load_16 + lea rcx, [rdx + 8*8*1] + +.temporal_filter_apply_load_8: + movq xmm0, [rsi] ; first row + lea rsi, [rsi + rbp] ; += stride + punpcklbw xmm0, xmm7 ; src[ 0- 7] + movq xmm1, [rsi] ; second row + lea rsi, [rsi + rbp] ; += stride + punpcklbw xmm1, xmm7 ; src[ 8-15] + jmp .temporal_filter_apply_load_finished + +.temporal_filter_apply_load_16: + movdqa xmm0, [rsi] ; src (frame1) + lea rsi, [rsi + rbp] ; += stride + movdqa xmm1, xmm0 + punpcklbw xmm0, xmm7 ; src[ 0- 7] + punpckhbw xmm1, xmm7 ; src[ 8-15] + +.temporal_filter_apply_load_finished: + movdqa xmm2, [rdx] ; predictor (frame2) + movdqa xmm3, xmm2 + punpcklbw xmm2, xmm7 ; pred[ 0- 7] + punpckhbw xmm3, xmm7 ; pred[ 8-15] + + ; modifier = src_byte - pixel_value + psubw xmm0, xmm2 ; src - pred[ 0- 7] + psubw xmm1, xmm3 ; src - pred[ 8-15] + + ; modifier *= modifier + pmullw xmm0, xmm0 ; modifer[ 0- 7]^2 + pmullw xmm1, xmm1 ; modifer[ 8-15]^2 + + ; modifier *= 3 + pmullw xmm0, [GLOBAL(_const_3w)] + pmullw xmm1, [GLOBAL(_const_3w)] + + ; modifer += 0x8000 >> (16 - strength) + paddw xmm0, [rsp + rounding_bit] + paddw xmm1, [rsp + rounding_bit] + + ; modifier >>= strength + psrlw xmm0, [rsp + strength] + psrlw xmm1, [rsp + strength] + + ; modifier = 16 - modifier + ; saturation takes care of modifier > 16 + movdqa xmm3, [GLOBAL(_const_16w)] + movdqa xmm2, [GLOBAL(_const_16w)] + psubusw xmm3, xmm1 + psubusw xmm2, xmm0 + + ; modifier *= filter_weight + pmullw xmm2, [rsp + filter_weight] + pmullw xmm3, [rsp + filter_weight] + + ; count + movdqa xmm4, [rax] + movdqa xmm5, [rax+16] + ; += modifier + paddw xmm4, xmm2 + paddw xmm5, xmm3 + ; write back + movdqa [rax], xmm4 + movdqa [rax+16], xmm5 + lea rax, [rax + 16*2] ; count += 16*(sizeof(short)) + + ; load and extract the predictor up to shorts + pxor xmm7, xmm7 + movdqa xmm0, [rdx] + lea rdx, [rdx + 16*1] ; pred += 16*(sizeof(char)) + movdqa xmm1, xmm0 + punpcklbw xmm0, xmm7 ; pred[ 0- 7] + punpckhbw xmm1, xmm7 ; pred[ 8-15] + + ; modifier *= pixel_value + pmullw xmm0, xmm2 + pmullw xmm1, xmm3 + + ; expand to double words + movdqa xmm2, xmm0 + punpcklwd xmm0, xmm7 ; [ 0- 3] + punpckhwd xmm2, xmm7 ; [ 4- 7] + movdqa xmm3, xmm1 + punpcklwd xmm1, xmm7 ; [ 8-11] + punpckhwd xmm3, xmm7 ; [12-15] + + ; accumulator + movdqa xmm4, [rdi] + movdqa xmm5, [rdi+16] + movdqa xmm6, [rdi+32] + movdqa xmm7, [rdi+48] + ; += modifier + paddd xmm4, xmm0 + paddd xmm5, xmm2 + paddd xmm6, xmm1 + paddd xmm7, xmm3 + ; write back + movdqa [rdi], xmm4 + movdqa [rdi+16], xmm5 + movdqa [rdi+32], xmm6 + movdqa [rdi+48], xmm7 + lea rdi, [rdi + 16*4] ; accumulator += 16*(sizeof(int)) + + cmp rdx, rcx + je .temporal_filter_apply_epilog + pxor xmm7, xmm7 ; zero for extraction + cmp dword ptr [rsp + block_size], 16 + je .temporal_filter_apply_load_16 + jmp .temporal_filter_apply_load_8 + +.temporal_filter_apply_epilog: + ; begin epilog + mov rbp, [rsp + rbp_backup] + add rsp, stack_size + pop rsp + pop rdi + pop rsi + RESTORE_GOT + RESTORE_XMM + UNSHADOW_ARGS + pop rbp + ret + +SECTION_RODATA +align 16 +_const_3w: + times 8 dw 3 +align 16 +_const_top_bit: + times 8 dw 1<<15 +align 16 +_const_16w: + times 8 dw 16 diff --git a/vp8/encoder/x86/vp8_enc_stubs_sse2.c b/vp8/encoder/x86/vp8_enc_stubs_sse2.c new file mode 100644 index 0000000..d075245 --- /dev/null +++ b/vp8/encoder/x86/vp8_enc_stubs_sse2.c @@ -0,0 +1,28 @@ +/* + * Copyright (c) 2012 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "vpx_config.h" +#include "vp8_rtcd.h" +#include "vpx_ports/x86.h" +#include "vp8/encoder/block.h" + +int vp8_mbblock_error_sse2_impl(short *coeff_ptr, short *dcoef_ptr, int dc); +int vp8_mbblock_error_sse2(MACROBLOCK *mb, int dc) { + short *coeff_ptr = mb->block[0].coeff; + short *dcoef_ptr = mb->e_mbd.block[0].dqcoeff; + return vp8_mbblock_error_sse2_impl(coeff_ptr, dcoef_ptr, dc); +} + +int vp8_mbuverror_sse2_impl(short *s_ptr, short *d_ptr); +int vp8_mbuverror_sse2(MACROBLOCK *mb) { + short *s_ptr = &mb->coeff[256]; + short *d_ptr = &mb->e_mbd.dqcoeff[256]; + return vp8_mbuverror_sse2_impl(s_ptr, d_ptr); +} diff --git a/vp8/encoder/x86/vp8_quantize_sse2.c b/vp8/encoder/x86/vp8_quantize_sse2.c new file mode 100644 index 0000000..581d256 --- /dev/null +++ b/vp8/encoder/x86/vp8_quantize_sse2.c @@ -0,0 +1,226 @@ +/* + * Copyright (c) 2012 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "vpx_config.h" +#include "vp8_rtcd.h" +#include "vpx_ports/x86.h" +#include "vpx_mem/vpx_mem.h" +#include "vp8/encoder/block.h" +#include "vp8/common/entropy.h" /* vp8_default_inv_zig_zag */ + +#include /* MMX */ +#include /* SSE */ +#include /* SSE2 */ + +#define SELECT_EOB(i, z) \ + do { \ + short boost = *zbin_boost_ptr; \ + int cmp = (x[z] < boost) | (y[z] == 0); \ + zbin_boost_ptr++; \ + if (cmp) break; \ + qcoeff_ptr[z] = y[z]; \ + eob = i; \ + zbin_boost_ptr = b->zrun_zbin_boost; \ + } while (0) + +void vp8_regular_quantize_b_sse2(BLOCK *b, BLOCKD *d) { + char eob = 0; + short *zbin_boost_ptr; + short *qcoeff_ptr = d->qcoeff; + DECLARE_ALIGNED(16, short, x[16]); + DECLARE_ALIGNED(16, short, y[16]); + + __m128i sz0, x0, sz1, x1, y0, y1, x_minus_zbin0, x_minus_zbin1; + __m128i quant_shift0 = _mm_load_si128((__m128i *)(b->quant_shift)); + __m128i quant_shift1 = _mm_load_si128((__m128i *)(b->quant_shift + 8)); + __m128i z0 = _mm_load_si128((__m128i *)(b->coeff)); + __m128i z1 = _mm_load_si128((__m128i *)(b->coeff + 8)); + __m128i zbin_extra = _mm_cvtsi32_si128(b->zbin_extra); + __m128i zbin0 = _mm_load_si128((__m128i *)(b->zbin)); + __m128i zbin1 = _mm_load_si128((__m128i *)(b->zbin + 8)); + __m128i round0 = _mm_load_si128((__m128i *)(b->round)); + __m128i round1 = _mm_load_si128((__m128i *)(b->round + 8)); + __m128i quant0 = _mm_load_si128((__m128i *)(b->quant)); + __m128i quant1 = _mm_load_si128((__m128i *)(b->quant + 8)); + __m128i dequant0 = _mm_load_si128((__m128i *)(d->dequant)); + __m128i dequant1 = _mm_load_si128((__m128i *)(d->dequant + 8)); + + memset(qcoeff_ptr, 0, 32); + + /* Duplicate to all lanes. */ + zbin_extra = _mm_shufflelo_epi16(zbin_extra, 0); + zbin_extra = _mm_unpacklo_epi16(zbin_extra, zbin_extra); + + /* Sign of z: z >> 15 */ + sz0 = _mm_srai_epi16(z0, 15); + sz1 = _mm_srai_epi16(z1, 15); + + /* x = abs(z): (z ^ sz) - sz */ + x0 = _mm_xor_si128(z0, sz0); + x1 = _mm_xor_si128(z1, sz1); + x0 = _mm_sub_epi16(x0, sz0); + x1 = _mm_sub_epi16(x1, sz1); + + /* zbin[] + zbin_extra */ + zbin0 = _mm_add_epi16(zbin0, zbin_extra); + zbin1 = _mm_add_epi16(zbin1, zbin_extra); + + /* In C x is compared to zbin where zbin = zbin[] + boost + extra. Rebalance + * the equation because boost is the only value which can change: + * x - (zbin[] + extra) >= boost */ + x_minus_zbin0 = _mm_sub_epi16(x0, zbin0); + x_minus_zbin1 = _mm_sub_epi16(x1, zbin1); + + _mm_store_si128((__m128i *)(x), x_minus_zbin0); + _mm_store_si128((__m128i *)(x + 8), x_minus_zbin1); + + /* All the remaining calculations are valid whether they are done now with + * simd or later inside the loop one at a time. */ + x0 = _mm_add_epi16(x0, round0); + x1 = _mm_add_epi16(x1, round1); + + y0 = _mm_mulhi_epi16(x0, quant0); + y1 = _mm_mulhi_epi16(x1, quant1); + + y0 = _mm_add_epi16(y0, x0); + y1 = _mm_add_epi16(y1, x1); + + /* Instead of shifting each value independently we convert the scaling + * factor with 1 << (16 - shift) so we can use multiply/return high half. */ + y0 = _mm_mulhi_epi16(y0, quant_shift0); + y1 = _mm_mulhi_epi16(y1, quant_shift1); + + /* Return the sign: (y ^ sz) - sz */ + y0 = _mm_xor_si128(y0, sz0); + y1 = _mm_xor_si128(y1, sz1); + y0 = _mm_sub_epi16(y0, sz0); + y1 = _mm_sub_epi16(y1, sz1); + + _mm_store_si128((__m128i *)(y), y0); + _mm_store_si128((__m128i *)(y + 8), y1); + + zbin_boost_ptr = b->zrun_zbin_boost; + + /* The loop gets unrolled anyway. Avoid the vp8_default_zig_zag1d lookup. */ + SELECT_EOB(1, 0); + SELECT_EOB(2, 1); + SELECT_EOB(3, 4); + SELECT_EOB(4, 8); + SELECT_EOB(5, 5); + SELECT_EOB(6, 2); + SELECT_EOB(7, 3); + SELECT_EOB(8, 6); + SELECT_EOB(9, 9); + SELECT_EOB(10, 12); + SELECT_EOB(11, 13); + SELECT_EOB(12, 10); + SELECT_EOB(13, 7); + SELECT_EOB(14, 11); + SELECT_EOB(15, 14); + SELECT_EOB(16, 15); + + y0 = _mm_load_si128((__m128i *)(d->qcoeff)); + y1 = _mm_load_si128((__m128i *)(d->qcoeff + 8)); + + /* dqcoeff = qcoeff * dequant */ + y0 = _mm_mullo_epi16(y0, dequant0); + y1 = _mm_mullo_epi16(y1, dequant1); + + _mm_store_si128((__m128i *)(d->dqcoeff), y0); + _mm_store_si128((__m128i *)(d->dqcoeff + 8), y1); + + *d->eob = eob; +} + +void vp8_fast_quantize_b_sse2(BLOCK *b, BLOCKD *d) { + __m128i z0 = _mm_load_si128((__m128i *)(b->coeff)); + __m128i z1 = _mm_load_si128((__m128i *)(b->coeff + 8)); + __m128i round0 = _mm_load_si128((__m128i *)(b->round)); + __m128i round1 = _mm_load_si128((__m128i *)(b->round + 8)); + __m128i quant_fast0 = _mm_load_si128((__m128i *)(b->quant_fast)); + __m128i quant_fast1 = _mm_load_si128((__m128i *)(b->quant_fast + 8)); + __m128i dequant0 = _mm_load_si128((__m128i *)(d->dequant)); + __m128i dequant1 = _mm_load_si128((__m128i *)(d->dequant + 8)); + __m128i inv_zig_zag0 = + _mm_load_si128((const __m128i *)(vp8_default_inv_zig_zag)); + __m128i inv_zig_zag1 = + _mm_load_si128((const __m128i *)(vp8_default_inv_zig_zag + 8)); + + __m128i sz0, sz1, x0, x1, y0, y1, xdq0, xdq1, zeros, ones; + + /* sign of z: z >> 15 */ + sz0 = _mm_srai_epi16(z0, 15); + sz1 = _mm_srai_epi16(z1, 15); + + /* x = abs(z): (z ^ sz) - sz */ + x0 = _mm_xor_si128(z0, sz0); + x1 = _mm_xor_si128(z1, sz1); + x0 = _mm_sub_epi16(x0, sz0); + x1 = _mm_sub_epi16(x1, sz1); + + /* x += round */ + x0 = _mm_add_epi16(x0, round0); + x1 = _mm_add_epi16(x1, round1); + + /* y = (x * quant) >> 16 */ + y0 = _mm_mulhi_epi16(x0, quant_fast0); + y1 = _mm_mulhi_epi16(x1, quant_fast1); + + /* x = abs(y) = (y ^ sz) - sz */ + y0 = _mm_xor_si128(y0, sz0); + y1 = _mm_xor_si128(y1, sz1); + x0 = _mm_sub_epi16(y0, sz0); + x1 = _mm_sub_epi16(y1, sz1); + + /* qcoeff = x */ + _mm_store_si128((__m128i *)(d->qcoeff), x0); + _mm_store_si128((__m128i *)(d->qcoeff + 8), x1); + + /* x * dequant */ + xdq0 = _mm_mullo_epi16(x0, dequant0); + xdq1 = _mm_mullo_epi16(x1, dequant1); + + /* dqcoeff = x * dequant */ + _mm_store_si128((__m128i *)(d->dqcoeff), xdq0); + _mm_store_si128((__m128i *)(d->dqcoeff + 8), xdq1); + + /* build a mask for the zig zag */ + zeros = _mm_setzero_si128(); + + x0 = _mm_cmpeq_epi16(x0, zeros); + x1 = _mm_cmpeq_epi16(x1, zeros); + + ones = _mm_cmpeq_epi16(zeros, zeros); + + x0 = _mm_xor_si128(x0, ones); + x1 = _mm_xor_si128(x1, ones); + + x0 = _mm_and_si128(x0, inv_zig_zag0); + x1 = _mm_and_si128(x1, inv_zig_zag1); + + x0 = _mm_max_epi16(x0, x1); + + /* now down to 8 */ + x1 = _mm_shuffle_epi32(x0, 0xE); // 0b00001110 + + x0 = _mm_max_epi16(x0, x1); + + /* only 4 left */ + x1 = _mm_shufflelo_epi16(x0, 0xE); // 0b00001110 + + x0 = _mm_max_epi16(x0, x1); + + /* okay, just 2! */ + x1 = _mm_shufflelo_epi16(x0, 0x1); // 0b00000001 + + x0 = _mm_max_epi16(x0, x1); + + *d->eob = 0xFF & _mm_cvtsi128_si32(x0); +} diff --git a/vp8/encoder/x86/vp8_quantize_ssse3.c b/vp8/encoder/x86/vp8_quantize_ssse3.c new file mode 100644 index 0000000..d547450 --- /dev/null +++ b/vp8/encoder/x86/vp8_quantize_ssse3.c @@ -0,0 +1,114 @@ +/* + * Copyright (c) 2012 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include /* SSSE3 */ + +#include "./vp8_rtcd.h" +#include "vp8/encoder/block.h" + +/* bitscan reverse (bsr) */ +#if defined(_MSC_VER) +#include +#pragma intrinsic(_BitScanReverse) +static int bsr(int mask) { + unsigned long eob; + _BitScanReverse(&eob, mask); + eob++; + if (mask == 0) eob = 0; + return eob; +} +#else +static int bsr(int mask) { + int eob; +#if defined(__GNUC__) && __GNUC__ + __asm__ __volatile__("bsr %1, %0" : "=r"(eob) : "r"(mask) : "flags"); +#elif defined(__SUNPRO_C) || defined(__SUNPRO_CC) + asm volatile("bsr %1, %0" : "=r"(eob) : "r"(mask) : "flags"); +#endif + eob++; + if (mask == 0) eob = 0; + return eob; +} +#endif + +void vp8_fast_quantize_b_ssse3(BLOCK *b, BLOCKD *d) { + int eob, mask; + + __m128i z0 = _mm_load_si128((__m128i *)(b->coeff)); + __m128i z1 = _mm_load_si128((__m128i *)(b->coeff + 8)); + __m128i round0 = _mm_load_si128((__m128i *)(b->round)); + __m128i round1 = _mm_load_si128((__m128i *)(b->round + 8)); + __m128i quant_fast0 = _mm_load_si128((__m128i *)(b->quant_fast)); + __m128i quant_fast1 = _mm_load_si128((__m128i *)(b->quant_fast + 8)); + __m128i dequant0 = _mm_load_si128((__m128i *)(d->dequant)); + __m128i dequant1 = _mm_load_si128((__m128i *)(d->dequant + 8)); + + __m128i sz0, sz1, x, x0, x1, y0, y1, zeros, abs0, abs1; + + DECLARE_ALIGNED(16, const uint8_t, pshufb_zig_zag_mask[16]) = { + 0, 1, 4, 8, 5, 2, 3, 6, 9, 12, 13, 10, 7, 11, 14, 15 + }; + __m128i zig_zag = _mm_load_si128((const __m128i *)pshufb_zig_zag_mask); + + /* sign of z: z >> 15 */ + sz0 = _mm_srai_epi16(z0, 15); + sz1 = _mm_srai_epi16(z1, 15); + + /* x = abs(z) */ + x0 = _mm_abs_epi16(z0); + x1 = _mm_abs_epi16(z1); + + /* x += round */ + x0 = _mm_add_epi16(x0, round0); + x1 = _mm_add_epi16(x1, round1); + + /* y = (x * quant) >> 16 */ + y0 = _mm_mulhi_epi16(x0, quant_fast0); + y1 = _mm_mulhi_epi16(x1, quant_fast1); + + /* ASM saves Y for EOB */ + /* I think we can ignore that because adding the sign doesn't change anything + * and multiplying 0 by dequant is OK as well */ + abs0 = y0; + abs1 = y1; + + /* Restore the sign bit. */ + y0 = _mm_xor_si128(y0, sz0); + y1 = _mm_xor_si128(y1, sz1); + x0 = _mm_sub_epi16(y0, sz0); + x1 = _mm_sub_epi16(y1, sz1); + + /* qcoeff = x */ + _mm_store_si128((__m128i *)(d->qcoeff), x0); + _mm_store_si128((__m128i *)(d->qcoeff + 8), x1); + + /* x * dequant */ + x0 = _mm_mullo_epi16(x0, dequant0); + x1 = _mm_mullo_epi16(x1, dequant1); + + /* dqcoeff = x * dequant */ + _mm_store_si128((__m128i *)(d->dqcoeff), x0); + _mm_store_si128((__m128i *)(d->dqcoeff + 8), x1); + + zeros = _mm_setzero_si128(); + + x0 = _mm_cmpgt_epi16(abs0, zeros); + x1 = _mm_cmpgt_epi16(abs1, zeros); + + x = _mm_packs_epi16(x0, x1); + + x = _mm_shuffle_epi8(x, zig_zag); + + mask = _mm_movemask_epi8(x); + + eob = bsr(mask); + + *d->eob = 0xFF & eob; +} diff --git a/vp8/exports_dec b/vp8/exports_dec new file mode 100644 index 0000000..100ac5c --- /dev/null +++ b/vp8/exports_dec @@ -0,0 +1,2 @@ +data vpx_codec_vp8_dx_algo +text vpx_codec_vp8_dx diff --git a/vp8/exports_enc b/vp8/exports_enc new file mode 100644 index 0000000..29ff35e --- /dev/null +++ b/vp8/exports_enc @@ -0,0 +1,2 @@ +data vpx_codec_vp8_cx_algo +text vpx_codec_vp8_cx diff --git a/vp8/vp8_common.mk b/vp8/vp8_common.mk new file mode 100644 index 0000000..246fe6a --- /dev/null +++ b/vp8/vp8_common.mk @@ -0,0 +1,149 @@ +## +## Copyright (c) 2010 The WebM project authors. All Rights Reserved. +## +## Use of this source code is governed by a BSD-style license +## that can be found in the LICENSE file in the root of the source +## tree. An additional intellectual property rights grant can be found +## in the file PATENTS. All contributing project authors may +## be found in the AUTHORS file in the root of the source tree. +## + +VP8_COMMON_SRCS-yes += vp8_common.mk +VP8_COMMON_SRCS-yes += common/ppflags.h +VP8_COMMON_SRCS-yes += common/onyx.h +VP8_COMMON_SRCS-yes += common/onyxd.h +VP8_COMMON_SRCS-yes += common/alloccommon.c +VP8_COMMON_SRCS-yes += common/blockd.c +VP8_COMMON_SRCS-yes += common/coefupdateprobs.h +VP8_COMMON_SRCS-yes += common/copy_c.c +# VP8_COMMON_SRCS-yes += common/debugmodes.c +VP8_COMMON_SRCS-yes += common/default_coef_probs.h +VP8_COMMON_SRCS-yes += common/dequantize.c +VP8_COMMON_SRCS-yes += common/entropy.c +VP8_COMMON_SRCS-yes += common/entropymode.c +VP8_COMMON_SRCS-yes += common/entropymv.c +VP8_COMMON_SRCS-yes += common/extend.c +VP8_COMMON_SRCS-yes += common/filter.c +VP8_COMMON_SRCS-yes += common/filter.h +VP8_COMMON_SRCS-yes += common/findnearmv.c +VP8_COMMON_SRCS-yes += common/generic/systemdependent.c +VP8_COMMON_SRCS-yes += common/idct_blk.c +VP8_COMMON_SRCS-yes += common/idctllm.c +VP8_COMMON_SRCS-yes += common/alloccommon.h +VP8_COMMON_SRCS-yes += common/blockd.h +VP8_COMMON_SRCS-yes += common/common.h +VP8_COMMON_SRCS-yes += common/entropy.h +VP8_COMMON_SRCS-yes += common/entropymode.h +VP8_COMMON_SRCS-yes += common/entropymv.h +VP8_COMMON_SRCS-yes += common/extend.h +VP8_COMMON_SRCS-yes += common/findnearmv.h +VP8_COMMON_SRCS-yes += common/header.h +VP8_COMMON_SRCS-yes += common/invtrans.h +VP8_COMMON_SRCS-yes += common/loopfilter.h +VP8_COMMON_SRCS-yes += common/modecont.h +VP8_COMMON_SRCS-yes += common/mv.h +VP8_COMMON_SRCS-yes += common/onyxc_int.h +VP8_COMMON_SRCS-yes += common/quant_common.h +VP8_COMMON_SRCS-yes += common/reconinter.h +VP8_COMMON_SRCS-yes += common/reconintra.h +VP8_COMMON_SRCS-yes += common/reconintra4x4.h +VP8_COMMON_SRCS-yes += common/rtcd.c +VP8_COMMON_SRCS-yes += common/rtcd_defs.pl +VP8_COMMON_SRCS-yes += common/setupintrarecon.h +VP8_COMMON_SRCS-yes += common/swapyv12buffer.h +VP8_COMMON_SRCS-yes += common/systemdependent.h +VP8_COMMON_SRCS-yes += common/threading.h +VP8_COMMON_SRCS-yes += common/treecoder.h +VP8_COMMON_SRCS-yes += common/vp8_loopfilter.c +VP8_COMMON_SRCS-yes += common/loopfilter_filters.c +VP8_COMMON_SRCS-yes += common/mbpitch.c +VP8_COMMON_SRCS-yes += common/modecont.c +VP8_COMMON_SRCS-yes += common/quant_common.c +VP8_COMMON_SRCS-yes += common/reconinter.c +VP8_COMMON_SRCS-yes += common/reconintra.c +VP8_COMMON_SRCS-yes += common/reconintra4x4.c +VP8_COMMON_SRCS-yes += common/setupintrarecon.c +VP8_COMMON_SRCS-yes += common/swapyv12buffer.c +VP8_COMMON_SRCS-yes += common/vp8_entropymodedata.h + + + +VP8_COMMON_SRCS-yes += common/treecoder.c + +VP8_COMMON_SRCS-$(ARCH_X86)$(ARCH_X86_64) += common/x86/filter_x86.c +VP8_COMMON_SRCS-$(ARCH_X86)$(ARCH_X86_64) += common/x86/filter_x86.h +VP8_COMMON_SRCS-$(ARCH_X86)$(ARCH_X86_64) += common/x86/vp8_asm_stubs.c +VP8_COMMON_SRCS-$(ARCH_X86)$(ARCH_X86_64) += common/x86/loopfilter_x86.c +VP8_COMMON_SRCS-$(CONFIG_POSTPROC) += common/mfqe.c +VP8_COMMON_SRCS-$(CONFIG_POSTPROC) += common/postproc.h +VP8_COMMON_SRCS-$(CONFIG_POSTPROC) += common/postproc.c +VP8_COMMON_SRCS-$(HAVE_MMX) += common/x86/dequantize_mmx.asm +VP8_COMMON_SRCS-$(HAVE_MMX) += common/x86/idct_blk_mmx.c +VP8_COMMON_SRCS-$(HAVE_MMX) += common/x86/idctllm_mmx.asm +VP8_COMMON_SRCS-$(HAVE_MMX) += common/x86/recon_mmx.asm +VP8_COMMON_SRCS-$(HAVE_MMX) += common/x86/subpixel_mmx.asm +VP8_COMMON_SRCS-$(HAVE_SSE2) += common/x86/copy_sse2.asm +VP8_COMMON_SRCS-$(HAVE_SSE2) += common/x86/idct_blk_sse2.c +VP8_COMMON_SRCS-$(HAVE_SSE2) += common/x86/idctllm_sse2.asm +VP8_COMMON_SRCS-$(HAVE_SSE2) += common/x86/recon_sse2.asm +VP8_COMMON_SRCS-$(HAVE_SSE2) += common/x86/subpixel_sse2.asm +VP8_COMMON_SRCS-$(HAVE_SSE2) += common/x86/loopfilter_sse2.asm +VP8_COMMON_SRCS-$(HAVE_SSE2) += common/x86/iwalsh_sse2.asm +VP8_COMMON_SRCS-$(HAVE_SSE3) += common/x86/copy_sse3.asm +VP8_COMMON_SRCS-$(HAVE_SSSE3) += common/x86/subpixel_ssse3.asm + +ifeq ($(CONFIG_POSTPROC),yes) +VP8_COMMON_SRCS-$(HAVE_SSE2) += common/x86/mfqe_sse2.asm +endif + +ifeq ($(ARCH_X86_64),yes) +VP8_COMMON_SRCS-$(HAVE_SSE2) += common/x86/loopfilter_block_sse2_x86_64.asm +endif + +# common (c) +VP8_COMMON_SRCS-$(HAVE_DSPR2) += common/mips/dspr2/idctllm_dspr2.c +VP8_COMMON_SRCS-$(HAVE_DSPR2) += common/mips/dspr2/filter_dspr2.c +VP8_COMMON_SRCS-$(HAVE_DSPR2) += common/mips/dspr2/vp8_loopfilter_filters_dspr2.c +VP8_COMMON_SRCS-$(HAVE_DSPR2) += common/mips/dspr2/reconinter_dspr2.c +VP8_COMMON_SRCS-$(HAVE_DSPR2) += common/mips/dspr2/idct_blk_dspr2.c +VP8_COMMON_SRCS-$(HAVE_DSPR2) += common/mips/dspr2/dequantize_dspr2.c + +# common (c) +VP8_COMMON_SRCS-$(HAVE_MSA) += common/mips/msa/bilinear_filter_msa.c +VP8_COMMON_SRCS-$(HAVE_MSA) += common/mips/msa/copymem_msa.c +VP8_COMMON_SRCS-$(HAVE_MSA) += common/mips/msa/idct_msa.c +VP8_COMMON_SRCS-$(HAVE_MSA) += common/mips/msa/loopfilter_filters_msa.c +VP8_COMMON_SRCS-$(HAVE_MSA) += common/mips/msa/sixtap_filter_msa.c +VP8_COMMON_SRCS-$(HAVE_MSA) += common/mips/msa/vp8_macros_msa.h + +# common (c) +VP8_COMMON_SRCS-$(HAVE_MMI) += common/mips/mmi/sixtap_filter_mmi.c +VP8_COMMON_SRCS-$(HAVE_MMI) += common/mips/mmi/loopfilter_filters_mmi.c +VP8_COMMON_SRCS-$(HAVE_MMI) += common/mips/mmi/idctllm_mmi.c +VP8_COMMON_SRCS-$(HAVE_MMI) += common/mips/mmi/dequantize_mmi.c +VP8_COMMON_SRCS-$(HAVE_MMI) += common/mips/mmi/copymem_mmi.c +VP8_COMMON_SRCS-$(HAVE_MMI) += common/mips/mmi/idct_blk_mmi.c + +ifeq ($(CONFIG_POSTPROC),yes) +VP8_COMMON_SRCS-$(HAVE_MSA) += common/mips/msa/mfqe_msa.c +endif + +# common (neon intrinsics) +VP8_COMMON_SRCS-$(HAVE_NEON) += common/arm/loopfilter_arm.c +VP8_COMMON_SRCS-$(HAVE_NEON) += common/arm/neon/bilinearpredict_neon.c +VP8_COMMON_SRCS-$(HAVE_NEON) += common/arm/neon/copymem_neon.c +VP8_COMMON_SRCS-$(HAVE_NEON) += common/arm/neon/dc_only_idct_add_neon.c +VP8_COMMON_SRCS-$(HAVE_NEON) += common/arm/neon/dequant_idct_neon.c +VP8_COMMON_SRCS-$(HAVE_NEON) += common/arm/neon/dequantizeb_neon.c +VP8_COMMON_SRCS-$(HAVE_NEON) += common/arm/neon/idct_blk_neon.c +VP8_COMMON_SRCS-$(HAVE_NEON) += common/arm/neon/idct_dequant_0_2x_neon.c +VP8_COMMON_SRCS-$(HAVE_NEON) += common/arm/neon/idct_dequant_full_2x_neon.c +VP8_COMMON_SRCS-$(HAVE_NEON) += common/arm/neon/iwalsh_neon.c +VP8_COMMON_SRCS-$(HAVE_NEON) += common/arm/neon/vp8_loopfilter_neon.c +VP8_COMMON_SRCS-$(HAVE_NEON) += common/arm/neon/loopfiltersimplehorizontaledge_neon.c +VP8_COMMON_SRCS-$(HAVE_NEON) += common/arm/neon/loopfiltersimpleverticaledge_neon.c +VP8_COMMON_SRCS-$(HAVE_NEON) += common/arm/neon/mbloopfilter_neon.c +VP8_COMMON_SRCS-$(HAVE_NEON) += common/arm/neon/shortidct4x4llm_neon.c +VP8_COMMON_SRCS-$(HAVE_NEON) += common/arm/neon/sixtappredict_neon.c + +$(eval $(call rtcd_h_template,vp8_rtcd,vp8/common/rtcd_defs.pl)) diff --git a/vp8/vp8_cx_iface.c b/vp8/vp8_cx_iface.c new file mode 100644 index 0000000..af6689f --- /dev/null +++ b/vp8/vp8_cx_iface.c @@ -0,0 +1,1264 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "./vpx_config.h" +#include "./vp8_rtcd.h" +#include "./vpx_dsp_rtcd.h" +#include "./vpx_scale_rtcd.h" +#include "vpx/vpx_codec.h" +#include "vpx/internal/vpx_codec_internal.h" +#include "vpx_version.h" +#include "vpx_mem/vpx_mem.h" +#include "vpx_ports/vpx_once.h" +#include "vp8/encoder/onyx_int.h" +#include "vpx/vp8cx.h" +#include "vp8/encoder/firstpass.h" +#include "vp8/common/onyx.h" +#include "vp8/common/common.h" +#include +#include + +struct vp8_extracfg { + struct vpx_codec_pkt_list *pkt_list; + int cpu_used; /** available cpu percentage in 1/16*/ + /** if encoder decides to uses alternate reference frame */ + unsigned int enable_auto_alt_ref; + unsigned int noise_sensitivity; + unsigned int Sharpness; + unsigned int static_thresh; + unsigned int token_partitions; + unsigned int arnr_max_frames; /* alt_ref Noise Reduction Max Frame Count */ + unsigned int arnr_strength; /* alt_ref Noise Reduction Strength */ + unsigned int arnr_type; /* alt_ref filter type */ + vp8e_tuning tuning; + unsigned int cq_level; /* constrained quality level */ + unsigned int rc_max_intra_bitrate_pct; + unsigned int gf_cbr_boost_pct; + unsigned int screen_content_mode; +}; + +static struct vp8_extracfg default_extracfg = { + NULL, +#if !(CONFIG_REALTIME_ONLY) + 0, /* cpu_used */ +#else + 4, /* cpu_used */ +#endif + 0, /* enable_auto_alt_ref */ + 0, /* noise_sensitivity */ + 0, /* Sharpness */ + 0, /* static_thresh */ +#if (CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING) + VP8_EIGHT_TOKENPARTITION, +#else + VP8_ONE_TOKENPARTITION, /* token_partitions */ +#endif + 0, /* arnr_max_frames */ + 3, /* arnr_strength */ + 3, /* arnr_type*/ + 0, /* tuning*/ + 10, /* cq_level */ + 0, /* rc_max_intra_bitrate_pct */ + 0, /* gf_cbr_boost_pct */ + 0, /* screen_content_mode */ +}; + +struct vpx_codec_alg_priv { + vpx_codec_priv_t base; + vpx_codec_enc_cfg_t cfg; + struct vp8_extracfg vp8_cfg; + VP8_CONFIG oxcf; + struct VP8_COMP *cpi; + unsigned char *cx_data; + unsigned int cx_data_sz; + vpx_image_t preview_img; + unsigned int next_frame_flag; + vp8_postproc_cfg_t preview_ppcfg; + /* pkt_list size depends on the maximum number of lagged frames allowed. */ + vpx_codec_pkt_list_decl(64) pkt_list; + unsigned int fixed_kf_cntr; + vpx_enc_frame_flags_t control_frame_flags; +}; + +static vpx_codec_err_t update_error_state( + vpx_codec_alg_priv_t *ctx, const struct vpx_internal_error_info *error) { + vpx_codec_err_t res; + + if ((res = error->error_code)) { + ctx->base.err_detail = error->has_detail ? error->detail : NULL; + } + + return res; +} + +#undef ERROR +#define ERROR(str) \ + do { \ + ctx->base.err_detail = str; \ + return VPX_CODEC_INVALID_PARAM; \ + } while (0) + +#define RANGE_CHECK(p, memb, lo, hi) \ + do { \ + if (!(((p)->memb == lo || (p)->memb > (lo)) && (p)->memb <= hi)) \ + ERROR(#memb " out of range [" #lo ".." #hi "]"); \ + } while (0) + +#define RANGE_CHECK_HI(p, memb, hi) \ + do { \ + if (!((p)->memb <= (hi))) ERROR(#memb " out of range [.." #hi "]"); \ + } while (0) + +#define RANGE_CHECK_LO(p, memb, lo) \ + do { \ + if (!((p)->memb >= (lo))) ERROR(#memb " out of range [" #lo "..]"); \ + } while (0) + +#define RANGE_CHECK_BOOL(p, memb) \ + do { \ + if (!!((p)->memb) != (p)->memb) ERROR(#memb " expected boolean"); \ + } while (0) + +static vpx_codec_err_t validate_config(vpx_codec_alg_priv_t *ctx, + const vpx_codec_enc_cfg_t *cfg, + const struct vp8_extracfg *vp8_cfg, + int finalize) { + RANGE_CHECK(cfg, g_w, 1, 16383); /* 14 bits available */ + RANGE_CHECK(cfg, g_h, 1, 16383); /* 14 bits available */ + RANGE_CHECK(cfg, g_timebase.den, 1, 1000000000); + RANGE_CHECK(cfg, g_timebase.num, 1, 1000000000); + RANGE_CHECK_HI(cfg, g_profile, 3); + RANGE_CHECK_HI(cfg, rc_max_quantizer, 63); + RANGE_CHECK_HI(cfg, rc_min_quantizer, cfg->rc_max_quantizer); + RANGE_CHECK_HI(cfg, g_threads, 64); +#if CONFIG_REALTIME_ONLY + RANGE_CHECK_HI(cfg, g_lag_in_frames, 0); +#elif CONFIG_MULTI_RES_ENCODING + if (ctx->base.enc.total_encoders > 1) RANGE_CHECK_HI(cfg, g_lag_in_frames, 0); +#else + RANGE_CHECK_HI(cfg, g_lag_in_frames, 25); +#endif + RANGE_CHECK(cfg, rc_end_usage, VPX_VBR, VPX_Q); + RANGE_CHECK_HI(cfg, rc_undershoot_pct, 1000); + RANGE_CHECK_HI(cfg, rc_overshoot_pct, 1000); + RANGE_CHECK_HI(cfg, rc_2pass_vbr_bias_pct, 100); + RANGE_CHECK(cfg, kf_mode, VPX_KF_DISABLED, VPX_KF_AUTO); + +/* TODO: add spatial re-sampling support and frame dropping in + * multi-res-encoder.*/ +#if CONFIG_MULTI_RES_ENCODING + if (ctx->base.enc.total_encoders > 1) + RANGE_CHECK_HI(cfg, rc_resize_allowed, 0); +#else + RANGE_CHECK_BOOL(cfg, rc_resize_allowed); +#endif + RANGE_CHECK_HI(cfg, rc_dropframe_thresh, 100); + RANGE_CHECK_HI(cfg, rc_resize_up_thresh, 100); + RANGE_CHECK_HI(cfg, rc_resize_down_thresh, 100); + +#if CONFIG_REALTIME_ONLY + RANGE_CHECK(cfg, g_pass, VPX_RC_ONE_PASS, VPX_RC_ONE_PASS); +#elif CONFIG_MULTI_RES_ENCODING + if (ctx->base.enc.total_encoders > 1) + RANGE_CHECK(cfg, g_pass, VPX_RC_ONE_PASS, VPX_RC_ONE_PASS); +#else + RANGE_CHECK(cfg, g_pass, VPX_RC_ONE_PASS, VPX_RC_LAST_PASS); +#endif + + /* VP8 does not support a lower bound on the keyframe interval in + * automatic keyframe placement mode. + */ + if (cfg->kf_mode != VPX_KF_DISABLED && cfg->kf_min_dist != cfg->kf_max_dist && + cfg->kf_min_dist > 0) + ERROR( + "kf_min_dist not supported in auto mode, use 0 " + "or kf_max_dist instead."); + + RANGE_CHECK_BOOL(vp8_cfg, enable_auto_alt_ref); + RANGE_CHECK(vp8_cfg, cpu_used, -16, 16); + +#if CONFIG_REALTIME_ONLY && !CONFIG_TEMPORAL_DENOISING + RANGE_CHECK(vp8_cfg, noise_sensitivity, 0, 0); +#else + RANGE_CHECK_HI(vp8_cfg, noise_sensitivity, 6); +#endif + + RANGE_CHECK(vp8_cfg, token_partitions, VP8_ONE_TOKENPARTITION, + VP8_EIGHT_TOKENPARTITION); + RANGE_CHECK_HI(vp8_cfg, Sharpness, 7); + RANGE_CHECK(vp8_cfg, arnr_max_frames, 0, 15); + RANGE_CHECK_HI(vp8_cfg, arnr_strength, 6); + RANGE_CHECK(vp8_cfg, arnr_type, 1, 3); + RANGE_CHECK(vp8_cfg, cq_level, 0, 63); + RANGE_CHECK_HI(vp8_cfg, screen_content_mode, 2); + if (finalize && (cfg->rc_end_usage == VPX_CQ || cfg->rc_end_usage == VPX_Q)) + RANGE_CHECK(vp8_cfg, cq_level, cfg->rc_min_quantizer, + cfg->rc_max_quantizer); + +#if !(CONFIG_REALTIME_ONLY) + if (cfg->g_pass == VPX_RC_LAST_PASS) { + size_t packet_sz = sizeof(FIRSTPASS_STATS); + int n_packets = (int)(cfg->rc_twopass_stats_in.sz / packet_sz); + FIRSTPASS_STATS *stats; + + if (!cfg->rc_twopass_stats_in.buf) + ERROR("rc_twopass_stats_in.buf not set."); + + if (cfg->rc_twopass_stats_in.sz % packet_sz) + ERROR("rc_twopass_stats_in.sz indicates truncated packet."); + + if (cfg->rc_twopass_stats_in.sz < 2 * packet_sz) + ERROR("rc_twopass_stats_in requires at least two packets."); + + stats = (void *)((char *)cfg->rc_twopass_stats_in.buf + + (n_packets - 1) * packet_sz); + + if ((int)(stats->count + 0.5) != n_packets - 1) + ERROR("rc_twopass_stats_in missing EOS stats packet"); + } +#endif + + RANGE_CHECK(cfg, ts_number_layers, 1, 5); + + if (cfg->ts_number_layers > 1) { + unsigned int i; + RANGE_CHECK_HI(cfg, ts_periodicity, 16); + + for (i = 1; i < cfg->ts_number_layers; ++i) { + if (cfg->ts_target_bitrate[i] <= cfg->ts_target_bitrate[i - 1] && + cfg->rc_target_bitrate > 0) + ERROR("ts_target_bitrate entries are not strictly increasing"); + } + + RANGE_CHECK(cfg, ts_rate_decimator[cfg->ts_number_layers - 1], 1, 1); + for (i = cfg->ts_number_layers - 2; i > 0; i--) { + if (cfg->ts_rate_decimator[i - 1] != 2 * cfg->ts_rate_decimator[i]) + ERROR("ts_rate_decimator factors are not powers of 2"); + } + + RANGE_CHECK_HI(cfg, ts_layer_id[i], cfg->ts_number_layers - 1); + } + +#if (CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING) + if (cfg->g_threads > (1 << vp8_cfg->token_partitions)) + ERROR("g_threads cannot be bigger than number of token partitions"); +#endif + + return VPX_CODEC_OK; +} + +static vpx_codec_err_t validate_img(vpx_codec_alg_priv_t *ctx, + const vpx_image_t *img) { + switch (img->fmt) { + case VPX_IMG_FMT_YV12: + case VPX_IMG_FMT_I420: + case VPX_IMG_FMT_VPXI420: + case VPX_IMG_FMT_VPXYV12: break; + default: + ERROR("Invalid image format. Only YV12 and I420 images are supported"); + } + + if ((img->d_w != ctx->cfg.g_w) || (img->d_h != ctx->cfg.g_h)) + ERROR("Image size must match encoder init configuration size"); + + return VPX_CODEC_OK; +} + +static vpx_codec_err_t set_vp8e_config(VP8_CONFIG *oxcf, + vpx_codec_enc_cfg_t cfg, + struct vp8_extracfg vp8_cfg, + vpx_codec_priv_enc_mr_cfg_t *mr_cfg) { + oxcf->multi_threaded = cfg.g_threads; + oxcf->Version = cfg.g_profile; + + oxcf->Width = cfg.g_w; + oxcf->Height = cfg.g_h; + oxcf->timebase = cfg.g_timebase; + + oxcf->error_resilient_mode = cfg.g_error_resilient; + + switch (cfg.g_pass) { + case VPX_RC_ONE_PASS: oxcf->Mode = MODE_BESTQUALITY; break; + case VPX_RC_FIRST_PASS: oxcf->Mode = MODE_FIRSTPASS; break; + case VPX_RC_LAST_PASS: oxcf->Mode = MODE_SECONDPASS_BEST; break; + } + + if (cfg.g_pass == VPX_RC_FIRST_PASS || cfg.g_pass == VPX_RC_ONE_PASS) { + oxcf->allow_lag = 0; + oxcf->lag_in_frames = 0; + } else { + oxcf->allow_lag = (cfg.g_lag_in_frames) > 0; + oxcf->lag_in_frames = cfg.g_lag_in_frames; + } + + oxcf->allow_df = (cfg.rc_dropframe_thresh > 0); + oxcf->drop_frames_water_mark = cfg.rc_dropframe_thresh; + + oxcf->allow_spatial_resampling = cfg.rc_resize_allowed; + oxcf->resample_up_water_mark = cfg.rc_resize_up_thresh; + oxcf->resample_down_water_mark = cfg.rc_resize_down_thresh; + + if (cfg.rc_end_usage == VPX_VBR) { + oxcf->end_usage = USAGE_LOCAL_FILE_PLAYBACK; + } else if (cfg.rc_end_usage == VPX_CBR) { + oxcf->end_usage = USAGE_STREAM_FROM_SERVER; + } else if (cfg.rc_end_usage == VPX_CQ) { + oxcf->end_usage = USAGE_CONSTRAINED_QUALITY; + } else if (cfg.rc_end_usage == VPX_Q) { + oxcf->end_usage = USAGE_CONSTANT_QUALITY; + } + + oxcf->target_bandwidth = cfg.rc_target_bitrate; + oxcf->rc_max_intra_bitrate_pct = vp8_cfg.rc_max_intra_bitrate_pct; + oxcf->gf_cbr_boost_pct = vp8_cfg.gf_cbr_boost_pct; + + oxcf->best_allowed_q = cfg.rc_min_quantizer; + oxcf->worst_allowed_q = cfg.rc_max_quantizer; + oxcf->cq_level = vp8_cfg.cq_level; + oxcf->fixed_q = -1; + + oxcf->under_shoot_pct = cfg.rc_undershoot_pct; + oxcf->over_shoot_pct = cfg.rc_overshoot_pct; + + oxcf->maximum_buffer_size_in_ms = cfg.rc_buf_sz; + oxcf->starting_buffer_level_in_ms = cfg.rc_buf_initial_sz; + oxcf->optimal_buffer_level_in_ms = cfg.rc_buf_optimal_sz; + + oxcf->maximum_buffer_size = cfg.rc_buf_sz; + oxcf->starting_buffer_level = cfg.rc_buf_initial_sz; + oxcf->optimal_buffer_level = cfg.rc_buf_optimal_sz; + + oxcf->two_pass_vbrbias = cfg.rc_2pass_vbr_bias_pct; + oxcf->two_pass_vbrmin_section = cfg.rc_2pass_vbr_minsection_pct; + oxcf->two_pass_vbrmax_section = cfg.rc_2pass_vbr_maxsection_pct; + + oxcf->auto_key = + cfg.kf_mode == VPX_KF_AUTO && cfg.kf_min_dist != cfg.kf_max_dist; + oxcf->key_freq = cfg.kf_max_dist; + + oxcf->number_of_layers = cfg.ts_number_layers; + oxcf->periodicity = cfg.ts_periodicity; + + if (oxcf->number_of_layers > 1) { + memcpy(oxcf->target_bitrate, cfg.ts_target_bitrate, + sizeof(cfg.ts_target_bitrate)); + memcpy(oxcf->rate_decimator, cfg.ts_rate_decimator, + sizeof(cfg.ts_rate_decimator)); + memcpy(oxcf->layer_id, cfg.ts_layer_id, sizeof(cfg.ts_layer_id)); + } + +#if CONFIG_MULTI_RES_ENCODING + /* When mr_cfg is NULL, oxcf->mr_total_resolutions and oxcf->mr_encoder_id + * are both memset to 0, which ensures the correct logic under this + * situation. + */ + if (mr_cfg) { + oxcf->mr_total_resolutions = mr_cfg->mr_total_resolutions; + oxcf->mr_encoder_id = mr_cfg->mr_encoder_id; + oxcf->mr_down_sampling_factor.num = mr_cfg->mr_down_sampling_factor.num; + oxcf->mr_down_sampling_factor.den = mr_cfg->mr_down_sampling_factor.den; + oxcf->mr_low_res_mode_info = mr_cfg->mr_low_res_mode_info; + } +#else + (void)mr_cfg; +#endif + + oxcf->cpu_used = vp8_cfg.cpu_used; + oxcf->encode_breakout = vp8_cfg.static_thresh; + oxcf->play_alternate = vp8_cfg.enable_auto_alt_ref; + oxcf->noise_sensitivity = vp8_cfg.noise_sensitivity; + oxcf->Sharpness = vp8_cfg.Sharpness; + oxcf->token_partitions = vp8_cfg.token_partitions; + + oxcf->two_pass_stats_in = cfg.rc_twopass_stats_in; + oxcf->output_pkt_list = vp8_cfg.pkt_list; + + oxcf->arnr_max_frames = vp8_cfg.arnr_max_frames; + oxcf->arnr_strength = vp8_cfg.arnr_strength; + oxcf->arnr_type = vp8_cfg.arnr_type; + + oxcf->tuning = vp8_cfg.tuning; + + oxcf->screen_content_mode = vp8_cfg.screen_content_mode; + + /* + printf("Current VP8 Settings: \n"); + printf("target_bandwidth: %d\n", oxcf->target_bandwidth); + printf("noise_sensitivity: %d\n", oxcf->noise_sensitivity); + printf("Sharpness: %d\n", oxcf->Sharpness); + printf("cpu_used: %d\n", oxcf->cpu_used); + printf("Mode: %d\n", oxcf->Mode); + printf("auto_key: %d\n", oxcf->auto_key); + printf("key_freq: %d\n", oxcf->key_freq); + printf("end_usage: %d\n", oxcf->end_usage); + printf("under_shoot_pct: %d\n", oxcf->under_shoot_pct); + printf("over_shoot_pct: %d\n", oxcf->over_shoot_pct); + printf("starting_buffer_level: %d\n", oxcf->starting_buffer_level); + printf("optimal_buffer_level: %d\n", oxcf->optimal_buffer_level); + printf("maximum_buffer_size: %d\n", oxcf->maximum_buffer_size); + printf("fixed_q: %d\n", oxcf->fixed_q); + printf("worst_allowed_q: %d\n", oxcf->worst_allowed_q); + printf("best_allowed_q: %d\n", oxcf->best_allowed_q); + printf("allow_spatial_resampling: %d\n", oxcf->allow_spatial_resampling); + printf("resample_down_water_mark: %d\n", oxcf->resample_down_water_mark); + printf("resample_up_water_mark: %d\n", oxcf->resample_up_water_mark); + printf("allow_df: %d\n", oxcf->allow_df); + printf("drop_frames_water_mark: %d\n", oxcf->drop_frames_water_mark); + printf("two_pass_vbrbias: %d\n", oxcf->two_pass_vbrbias); + printf("two_pass_vbrmin_section: %d\n", oxcf->two_pass_vbrmin_section); + printf("two_pass_vbrmax_section: %d\n", oxcf->two_pass_vbrmax_section); + printf("allow_lag: %d\n", oxcf->allow_lag); + printf("lag_in_frames: %d\n", oxcf->lag_in_frames); + printf("play_alternate: %d\n", oxcf->play_alternate); + printf("Version: %d\n", oxcf->Version); + printf("multi_threaded: %d\n", oxcf->multi_threaded); + printf("encode_breakout: %d\n", oxcf->encode_breakout); + */ + return VPX_CODEC_OK; +} + +static vpx_codec_err_t vp8e_set_config(vpx_codec_alg_priv_t *ctx, + const vpx_codec_enc_cfg_t *cfg) { + vpx_codec_err_t res; + + if (cfg->g_w != ctx->cfg.g_w || cfg->g_h != ctx->cfg.g_h) { + if (cfg->g_lag_in_frames > 1 || cfg->g_pass != VPX_RC_ONE_PASS) + ERROR("Cannot change width or height after initialization"); + if ((ctx->cpi->initial_width && (int)cfg->g_w > ctx->cpi->initial_width) || + (ctx->cpi->initial_height && (int)cfg->g_h > ctx->cpi->initial_height)) + ERROR("Cannot increase width or height larger than their initial values"); + } + + /* Prevent increasing lag_in_frames. This check is stricter than it needs + * to be -- the limit is not increasing past the first lag_in_frames + * value, but we don't track the initial config, only the last successful + * config. + */ + if ((cfg->g_lag_in_frames > ctx->cfg.g_lag_in_frames)) + ERROR("Cannot increase lag_in_frames"); + + res = validate_config(ctx, cfg, &ctx->vp8_cfg, 0); + + if (!res) { + ctx->cfg = *cfg; + set_vp8e_config(&ctx->oxcf, ctx->cfg, ctx->vp8_cfg, NULL); + vp8_change_config(ctx->cpi, &ctx->oxcf); + } + + return res; +} + +static vpx_codec_err_t get_quantizer(vpx_codec_alg_priv_t *ctx, va_list args) { + int *const arg = va_arg(args, int *); + if (arg == NULL) return VPX_CODEC_INVALID_PARAM; + *arg = vp8_get_quantizer(ctx->cpi); + return VPX_CODEC_OK; +} + +static vpx_codec_err_t get_quantizer64(vpx_codec_alg_priv_t *ctx, + va_list args) { + int *const arg = va_arg(args, int *); + if (arg == NULL) return VPX_CODEC_INVALID_PARAM; + *arg = vp8_reverse_trans(vp8_get_quantizer(ctx->cpi)); + return VPX_CODEC_OK; +} + +static vpx_codec_err_t update_extracfg(vpx_codec_alg_priv_t *ctx, + const struct vp8_extracfg *extra_cfg) { + const vpx_codec_err_t res = validate_config(ctx, &ctx->cfg, extra_cfg, 0); + if (res == VPX_CODEC_OK) { + ctx->vp8_cfg = *extra_cfg; + set_vp8e_config(&ctx->oxcf, ctx->cfg, ctx->vp8_cfg, NULL); + vp8_change_config(ctx->cpi, &ctx->oxcf); + } + return res; +} + +static vpx_codec_err_t set_cpu_used(vpx_codec_alg_priv_t *ctx, va_list args) { + struct vp8_extracfg extra_cfg = ctx->vp8_cfg; + extra_cfg.cpu_used = CAST(VP8E_SET_CPUUSED, args); + return update_extracfg(ctx, &extra_cfg); +} + +static vpx_codec_err_t set_enable_auto_alt_ref(vpx_codec_alg_priv_t *ctx, + va_list args) { + struct vp8_extracfg extra_cfg = ctx->vp8_cfg; + extra_cfg.enable_auto_alt_ref = CAST(VP8E_SET_ENABLEAUTOALTREF, args); + return update_extracfg(ctx, &extra_cfg); +} + +static vpx_codec_err_t set_noise_sensitivity(vpx_codec_alg_priv_t *ctx, + va_list args) { + struct vp8_extracfg extra_cfg = ctx->vp8_cfg; + extra_cfg.noise_sensitivity = CAST(VP8E_SET_NOISE_SENSITIVITY, args); + return update_extracfg(ctx, &extra_cfg); +} + +static vpx_codec_err_t set_sharpness(vpx_codec_alg_priv_t *ctx, va_list args) { + struct vp8_extracfg extra_cfg = ctx->vp8_cfg; + extra_cfg.Sharpness = CAST(VP8E_SET_SHARPNESS, args); + return update_extracfg(ctx, &extra_cfg); +} + +static vpx_codec_err_t set_static_thresh(vpx_codec_alg_priv_t *ctx, + va_list args) { + struct vp8_extracfg extra_cfg = ctx->vp8_cfg; + extra_cfg.static_thresh = CAST(VP8E_SET_STATIC_THRESHOLD, args); + return update_extracfg(ctx, &extra_cfg); +} + +static vpx_codec_err_t set_token_partitions(vpx_codec_alg_priv_t *ctx, + va_list args) { + struct vp8_extracfg extra_cfg = ctx->vp8_cfg; + extra_cfg.token_partitions = CAST(VP8E_SET_TOKEN_PARTITIONS, args); + return update_extracfg(ctx, &extra_cfg); +} + +static vpx_codec_err_t set_arnr_max_frames(vpx_codec_alg_priv_t *ctx, + va_list args) { + struct vp8_extracfg extra_cfg = ctx->vp8_cfg; + extra_cfg.arnr_max_frames = CAST(VP8E_SET_ARNR_MAXFRAMES, args); + return update_extracfg(ctx, &extra_cfg); +} + +static vpx_codec_err_t set_arnr_strength(vpx_codec_alg_priv_t *ctx, + va_list args) { + struct vp8_extracfg extra_cfg = ctx->vp8_cfg; + extra_cfg.arnr_strength = CAST(VP8E_SET_ARNR_STRENGTH, args); + return update_extracfg(ctx, &extra_cfg); +} + +static vpx_codec_err_t set_arnr_type(vpx_codec_alg_priv_t *ctx, va_list args) { + struct vp8_extracfg extra_cfg = ctx->vp8_cfg; + extra_cfg.arnr_type = CAST(VP8E_SET_ARNR_TYPE, args); + return update_extracfg(ctx, &extra_cfg); +} + +static vpx_codec_err_t set_tuning(vpx_codec_alg_priv_t *ctx, va_list args) { + struct vp8_extracfg extra_cfg = ctx->vp8_cfg; + extra_cfg.tuning = CAST(VP8E_SET_TUNING, args); + return update_extracfg(ctx, &extra_cfg); +} + +static vpx_codec_err_t set_cq_level(vpx_codec_alg_priv_t *ctx, va_list args) { + struct vp8_extracfg extra_cfg = ctx->vp8_cfg; + extra_cfg.cq_level = CAST(VP8E_SET_CQ_LEVEL, args); + return update_extracfg(ctx, &extra_cfg); +} + +static vpx_codec_err_t set_rc_max_intra_bitrate_pct(vpx_codec_alg_priv_t *ctx, + va_list args) { + struct vp8_extracfg extra_cfg = ctx->vp8_cfg; + extra_cfg.rc_max_intra_bitrate_pct = + CAST(VP8E_SET_MAX_INTRA_BITRATE_PCT, args); + return update_extracfg(ctx, &extra_cfg); +} + +static vpx_codec_err_t ctrl_set_rc_gf_cbr_boost_pct(vpx_codec_alg_priv_t *ctx, + va_list args) { + struct vp8_extracfg extra_cfg = ctx->vp8_cfg; + extra_cfg.gf_cbr_boost_pct = CAST(VP8E_SET_GF_CBR_BOOST_PCT, args); + return update_extracfg(ctx, &extra_cfg); +} + +static vpx_codec_err_t set_screen_content_mode(vpx_codec_alg_priv_t *ctx, + va_list args) { + struct vp8_extracfg extra_cfg = ctx->vp8_cfg; + extra_cfg.screen_content_mode = CAST(VP8E_SET_SCREEN_CONTENT_MODE, args); + return update_extracfg(ctx, &extra_cfg); +} + +static vpx_codec_err_t vp8e_mr_alloc_mem(const vpx_codec_enc_cfg_t *cfg, + void **mem_loc) { + vpx_codec_err_t res = 0; + +#if CONFIG_MULTI_RES_ENCODING + LOWER_RES_FRAME_INFO *shared_mem_loc; + int mb_rows = ((cfg->g_w + 15) >> 4); + int mb_cols = ((cfg->g_h + 15) >> 4); + + shared_mem_loc = calloc(1, sizeof(LOWER_RES_FRAME_INFO)); + if (!shared_mem_loc) { + res = VPX_CODEC_MEM_ERROR; + } + + shared_mem_loc->mb_info = + calloc(mb_rows * mb_cols, sizeof(LOWER_RES_MB_INFO)); + if (!(shared_mem_loc->mb_info)) { + res = VPX_CODEC_MEM_ERROR; + } else { + *mem_loc = (void *)shared_mem_loc; + res = VPX_CODEC_OK; + } +#else + (void)cfg; + (void)mem_loc; +#endif + return res; +} + +static vpx_codec_err_t vp8e_init(vpx_codec_ctx_t *ctx, + vpx_codec_priv_enc_mr_cfg_t *mr_cfg) { + vpx_codec_err_t res = VPX_CODEC_OK; + + vp8_rtcd(); + vpx_dsp_rtcd(); + vpx_scale_rtcd(); + + if (!ctx->priv) { + struct vpx_codec_alg_priv *priv = + (struct vpx_codec_alg_priv *)vpx_calloc(1, sizeof(*priv)); + + if (!priv) { + return VPX_CODEC_MEM_ERROR; + } + + ctx->priv = (vpx_codec_priv_t *)priv; + ctx->priv->init_flags = ctx->init_flags; + + if (ctx->config.enc) { + /* Update the reference to the config structure to an + * internal copy. + */ + priv->cfg = *ctx->config.enc; + ctx->config.enc = &priv->cfg; + } + + priv->vp8_cfg = default_extracfg; + priv->vp8_cfg.pkt_list = &priv->pkt_list.head; + + priv->cx_data_sz = priv->cfg.g_w * priv->cfg.g_h * 3 / 2 * 2; + + if (priv->cx_data_sz < 32768) priv->cx_data_sz = 32768; + + priv->cx_data = malloc(priv->cx_data_sz); + + if (!priv->cx_data) { + return VPX_CODEC_MEM_ERROR; + } + + if (mr_cfg) { + ctx->priv->enc.total_encoders = mr_cfg->mr_total_resolutions; + } else { + ctx->priv->enc.total_encoders = 1; + } + + once(vp8_initialize_enc); + + res = validate_config(priv, &priv->cfg, &priv->vp8_cfg, 0); + + if (!res) { + set_vp8e_config(&priv->oxcf, priv->cfg, priv->vp8_cfg, mr_cfg); + priv->cpi = vp8_create_compressor(&priv->oxcf); + if (!priv->cpi) res = VPX_CODEC_MEM_ERROR; + } + } + + return res; +} + +static vpx_codec_err_t vp8e_destroy(vpx_codec_alg_priv_t *ctx) { +#if CONFIG_MULTI_RES_ENCODING + /* Free multi-encoder shared memory */ + if (ctx->oxcf.mr_total_resolutions > 0 && + (ctx->oxcf.mr_encoder_id == ctx->oxcf.mr_total_resolutions - 1)) { + LOWER_RES_FRAME_INFO *shared_mem_loc = + (LOWER_RES_FRAME_INFO *)ctx->oxcf.mr_low_res_mode_info; + free(shared_mem_loc->mb_info); + free(ctx->oxcf.mr_low_res_mode_info); + } +#endif + + free(ctx->cx_data); + vp8_remove_compressor(&ctx->cpi); + vpx_free(ctx); + return VPX_CODEC_OK; +} + +static vpx_codec_err_t image2yuvconfig(const vpx_image_t *img, + YV12_BUFFER_CONFIG *yv12) { + const int y_w = img->d_w; + const int y_h = img->d_h; + const int uv_w = (img->d_w + 1) / 2; + const int uv_h = (img->d_h + 1) / 2; + vpx_codec_err_t res = VPX_CODEC_OK; + yv12->y_buffer = img->planes[VPX_PLANE_Y]; + yv12->u_buffer = img->planes[VPX_PLANE_U]; + yv12->v_buffer = img->planes[VPX_PLANE_V]; + + yv12->y_crop_width = y_w; + yv12->y_crop_height = y_h; + yv12->y_width = y_w; + yv12->y_height = y_h; + yv12->uv_crop_width = uv_w; + yv12->uv_crop_height = uv_h; + yv12->uv_width = uv_w; + yv12->uv_height = uv_h; + + yv12->y_stride = img->stride[VPX_PLANE_Y]; + yv12->uv_stride = img->stride[VPX_PLANE_U]; + + yv12->border = (img->stride[VPX_PLANE_Y] - img->w) / 2; + return res; +} + +static void pick_quickcompress_mode(vpx_codec_alg_priv_t *ctx, + unsigned long duration, + unsigned long deadline) { + int new_qc; + +#if !(CONFIG_REALTIME_ONLY) + /* Use best quality mode if no deadline is given. */ + new_qc = MODE_BESTQUALITY; + + if (deadline) { + uint64_t duration_us; + + /* Convert duration parameter from stream timebase to microseconds */ + duration_us = (uint64_t)duration * 1000000 * + (uint64_t)ctx->cfg.g_timebase.num / + (uint64_t)ctx->cfg.g_timebase.den; + + /* If the deadline is more that the duration this frame is to be shown, + * use good quality mode. Otherwise use realtime mode. + */ + new_qc = (deadline > duration_us) ? MODE_GOODQUALITY : MODE_REALTIME; + } + +#else + (void)duration; + new_qc = MODE_REALTIME; +#endif + + if (deadline == VPX_DL_REALTIME) { + new_qc = MODE_REALTIME; + } else if (ctx->cfg.g_pass == VPX_RC_FIRST_PASS) { + new_qc = MODE_FIRSTPASS; + } else if (ctx->cfg.g_pass == VPX_RC_LAST_PASS) { + new_qc = + (new_qc == MODE_BESTQUALITY) ? MODE_SECONDPASS_BEST : MODE_SECONDPASS; + } + + if (ctx->oxcf.Mode != new_qc) { + ctx->oxcf.Mode = new_qc; + vp8_change_config(ctx->cpi, &ctx->oxcf); + } +} + +static vpx_codec_err_t set_reference_and_update(vpx_codec_alg_priv_t *ctx, + vpx_enc_frame_flags_t flags) { + /* Handle Flags */ + if (((flags & VP8_EFLAG_NO_UPD_GF) && (flags & VP8_EFLAG_FORCE_GF)) || + ((flags & VP8_EFLAG_NO_UPD_ARF) && (flags & VP8_EFLAG_FORCE_ARF))) { + ctx->base.err_detail = "Conflicting flags."; + return VPX_CODEC_INVALID_PARAM; + } + + if (flags & + (VP8_EFLAG_NO_REF_LAST | VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_REF_ARF)) { + int ref = 7; + + if (flags & VP8_EFLAG_NO_REF_LAST) ref ^= VP8_LAST_FRAME; + + if (flags & VP8_EFLAG_NO_REF_GF) ref ^= VP8_GOLD_FRAME; + + if (flags & VP8_EFLAG_NO_REF_ARF) ref ^= VP8_ALTR_FRAME; + + vp8_use_as_reference(ctx->cpi, ref); + } + + if (flags & + (VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF | + VP8_EFLAG_FORCE_GF | VP8_EFLAG_FORCE_ARF)) { + int upd = 7; + + if (flags & VP8_EFLAG_NO_UPD_LAST) upd ^= VP8_LAST_FRAME; + + if (flags & VP8_EFLAG_NO_UPD_GF) upd ^= VP8_GOLD_FRAME; + + if (flags & VP8_EFLAG_NO_UPD_ARF) upd ^= VP8_ALTR_FRAME; + + vp8_update_reference(ctx->cpi, upd); + } + + if (flags & VP8_EFLAG_NO_UPD_ENTROPY) { + vp8_update_entropy(ctx->cpi, 0); + } + + return VPX_CODEC_OK; +} + +static vpx_codec_err_t vp8e_encode(vpx_codec_alg_priv_t *ctx, + const vpx_image_t *img, vpx_codec_pts_t pts, + unsigned long duration, + vpx_enc_frame_flags_t flags, + unsigned long deadline) { + vpx_codec_err_t res = VPX_CODEC_OK; + + if (!ctx->cfg.rc_target_bitrate) return res; + + if (img) res = validate_img(ctx, img); + + if (!res) res = validate_config(ctx, &ctx->cfg, &ctx->vp8_cfg, 1); + + pick_quickcompress_mode(ctx, duration, deadline); + vpx_codec_pkt_list_init(&ctx->pkt_list); + + // If no flags are set in the encode call, then use the frame flags as + // defined via the control function: vp8e_set_frame_flags. + if (!flags) { + flags = ctx->control_frame_flags; + } + ctx->control_frame_flags = 0; + + if (!res) res = set_reference_and_update(ctx, flags); + + /* Handle fixed keyframe intervals */ + if (ctx->cfg.kf_mode == VPX_KF_AUTO && + ctx->cfg.kf_min_dist == ctx->cfg.kf_max_dist) { + if (++ctx->fixed_kf_cntr > ctx->cfg.kf_min_dist) { + flags |= VPX_EFLAG_FORCE_KF; + ctx->fixed_kf_cntr = 1; + } + } + + /* Initialize the encoder instance on the first frame*/ + if (!res && ctx->cpi) { + unsigned int lib_flags; + YV12_BUFFER_CONFIG sd; + int64_t dst_time_stamp, dst_end_time_stamp; + size_t size, cx_data_sz; + unsigned char *cx_data; + unsigned char *cx_data_end; + int comp_data_state = 0; + + /* Set up internal flags */ + if (ctx->base.init_flags & VPX_CODEC_USE_PSNR) { + ((VP8_COMP *)ctx->cpi)->b_calculate_psnr = 1; + } + + if (ctx->base.init_flags & VPX_CODEC_USE_OUTPUT_PARTITION) { + ((VP8_COMP *)ctx->cpi)->output_partition = 1; + } + + /* Convert API flags to internal codec lib flags */ + lib_flags = (flags & VPX_EFLAG_FORCE_KF) ? FRAMEFLAGS_KEY : 0; + + /* vp8 use 10,000,000 ticks/second as time stamp */ + dst_time_stamp = + pts * 10000000 * ctx->cfg.g_timebase.num / ctx->cfg.g_timebase.den; + dst_end_time_stamp = (pts + duration) * 10000000 * ctx->cfg.g_timebase.num / + ctx->cfg.g_timebase.den; + + if (img != NULL) { + res = image2yuvconfig(img, &sd); + + if (vp8_receive_raw_frame(ctx->cpi, ctx->next_frame_flag | lib_flags, &sd, + dst_time_stamp, dst_end_time_stamp)) { + VP8_COMP *cpi = (VP8_COMP *)ctx->cpi; + res = update_error_state(ctx, &cpi->common.error); + } + + /* reset for next frame */ + ctx->next_frame_flag = 0; + } + + cx_data = ctx->cx_data; + cx_data_sz = ctx->cx_data_sz; + cx_data_end = ctx->cx_data + cx_data_sz; + lib_flags = 0; + + while (cx_data_sz >= ctx->cx_data_sz / 2) { + comp_data_state = vp8_get_compressed_data( + ctx->cpi, &lib_flags, &size, cx_data, cx_data_end, &dst_time_stamp, + &dst_end_time_stamp, !img); + + if (comp_data_state == VPX_CODEC_CORRUPT_FRAME) { + return VPX_CODEC_CORRUPT_FRAME; + } else if (comp_data_state == -1) { + break; + } + + if (size) { + vpx_codec_pts_t round, delta; + vpx_codec_cx_pkt_t pkt; + VP8_COMP *cpi = (VP8_COMP *)ctx->cpi; + + /* Add the frame packet to the list of returned packets. */ + round = (vpx_codec_pts_t)10000000 * ctx->cfg.g_timebase.num / 2 - 1; + delta = (dst_end_time_stamp - dst_time_stamp); + pkt.kind = VPX_CODEC_CX_FRAME_PKT; + pkt.data.frame.pts = + (dst_time_stamp * ctx->cfg.g_timebase.den + round) / + ctx->cfg.g_timebase.num / 10000000; + pkt.data.frame.duration = + (unsigned long)((delta * ctx->cfg.g_timebase.den + round) / + ctx->cfg.g_timebase.num / 10000000); + pkt.data.frame.flags = lib_flags << 16; + + if (lib_flags & FRAMEFLAGS_KEY) { + pkt.data.frame.flags |= VPX_FRAME_IS_KEY; + } + + if (!cpi->common.show_frame) { + pkt.data.frame.flags |= VPX_FRAME_IS_INVISIBLE; + + /* This timestamp should be as close as possible to the + * prior PTS so that if a decoder uses pts to schedule when + * to do this, we start right after last frame was decoded. + * Invisible frames have no duration. + */ + pkt.data.frame.pts = + ((cpi->last_time_stamp_seen * ctx->cfg.g_timebase.den + round) / + ctx->cfg.g_timebase.num / 10000000) + + 1; + pkt.data.frame.duration = 0; + } + + if (cpi->droppable) pkt.data.frame.flags |= VPX_FRAME_IS_DROPPABLE; + + if (cpi->output_partition) { + int i; + const int num_partitions = + (1 << cpi->common.multi_token_partition) + 1; + + pkt.data.frame.flags |= VPX_FRAME_IS_FRAGMENT; + + for (i = 0; i < num_partitions; ++i) { +#if CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING + pkt.data.frame.buf = cpi->partition_d[i]; +#else + pkt.data.frame.buf = cx_data; + cx_data += cpi->partition_sz[i]; + cx_data_sz -= cpi->partition_sz[i]; +#endif + pkt.data.frame.sz = cpi->partition_sz[i]; + pkt.data.frame.partition_id = i; + /* don't set the fragment bit for the last partition */ + if (i == (num_partitions - 1)) { + pkt.data.frame.flags &= ~VPX_FRAME_IS_FRAGMENT; + } + vpx_codec_pkt_list_add(&ctx->pkt_list.head, &pkt); + } +#if CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING + /* In lagged mode the encoder can buffer multiple frames. + * We don't want this in partitioned output because + * partitions are spread all over the output buffer. + * So, force an exit! + */ + cx_data_sz -= ctx->cx_data_sz / 2; +#endif + } else { + pkt.data.frame.buf = cx_data; + pkt.data.frame.sz = size; + pkt.data.frame.partition_id = -1; + vpx_codec_pkt_list_add(&ctx->pkt_list.head, &pkt); + cx_data += size; + cx_data_sz -= size; + } + } + } + } + + return res; +} + +static const vpx_codec_cx_pkt_t *vp8e_get_cxdata(vpx_codec_alg_priv_t *ctx, + vpx_codec_iter_t *iter) { + return vpx_codec_pkt_list_get(&ctx->pkt_list.head, iter); +} + +static vpx_codec_err_t vp8e_set_reference(vpx_codec_alg_priv_t *ctx, + va_list args) { + vpx_ref_frame_t *data = va_arg(args, vpx_ref_frame_t *); + + if (data) { + vpx_ref_frame_t *frame = (vpx_ref_frame_t *)data; + YV12_BUFFER_CONFIG sd; + + image2yuvconfig(&frame->img, &sd); + vp8_set_reference(ctx->cpi, frame->frame_type, &sd); + return VPX_CODEC_OK; + } else { + return VPX_CODEC_INVALID_PARAM; + } +} + +static vpx_codec_err_t vp8e_get_reference(vpx_codec_alg_priv_t *ctx, + va_list args) { + vpx_ref_frame_t *data = va_arg(args, vpx_ref_frame_t *); + + if (data) { + vpx_ref_frame_t *frame = (vpx_ref_frame_t *)data; + YV12_BUFFER_CONFIG sd; + + image2yuvconfig(&frame->img, &sd); + vp8_get_reference(ctx->cpi, frame->frame_type, &sd); + return VPX_CODEC_OK; + } else { + return VPX_CODEC_INVALID_PARAM; + } +} + +static vpx_codec_err_t vp8e_set_previewpp(vpx_codec_alg_priv_t *ctx, + va_list args) { +#if CONFIG_POSTPROC + vp8_postproc_cfg_t *data = va_arg(args, vp8_postproc_cfg_t *); + + if (data) { + ctx->preview_ppcfg = *((vp8_postproc_cfg_t *)data); + return VPX_CODEC_OK; + } else { + return VPX_CODEC_INVALID_PARAM; + } +#else + (void)ctx; + (void)args; + return VPX_CODEC_INCAPABLE; +#endif +} + +static vpx_image_t *vp8e_get_preview(vpx_codec_alg_priv_t *ctx) { + YV12_BUFFER_CONFIG sd; + vp8_ppflags_t flags; + vp8_zero(flags); + + if (ctx->preview_ppcfg.post_proc_flag) { + flags.post_proc_flag = ctx->preview_ppcfg.post_proc_flag; + flags.deblocking_level = ctx->preview_ppcfg.deblocking_level; + flags.noise_level = ctx->preview_ppcfg.noise_level; + } + + if (0 == vp8_get_preview_raw_frame(ctx->cpi, &sd, &flags)) { + /* + vpx_img_wrap(&ctx->preview_img, VPX_IMG_FMT_YV12, + sd.y_width + 2*VP8BORDERINPIXELS, + sd.y_height + 2*VP8BORDERINPIXELS, + 1, + sd.buffer_alloc); + vpx_img_set_rect(&ctx->preview_img, + VP8BORDERINPIXELS, VP8BORDERINPIXELS, + sd.y_width, sd.y_height); + */ + + ctx->preview_img.bps = 12; + ctx->preview_img.planes[VPX_PLANE_Y] = sd.y_buffer; + ctx->preview_img.planes[VPX_PLANE_U] = sd.u_buffer; + ctx->preview_img.planes[VPX_PLANE_V] = sd.v_buffer; + + ctx->preview_img.fmt = VPX_IMG_FMT_I420; + ctx->preview_img.x_chroma_shift = 1; + ctx->preview_img.y_chroma_shift = 1; + + ctx->preview_img.d_w = sd.y_width; + ctx->preview_img.d_h = sd.y_height; + ctx->preview_img.stride[VPX_PLANE_Y] = sd.y_stride; + ctx->preview_img.stride[VPX_PLANE_U] = sd.uv_stride; + ctx->preview_img.stride[VPX_PLANE_V] = sd.uv_stride; + ctx->preview_img.w = sd.y_width; + ctx->preview_img.h = sd.y_height; + + return &ctx->preview_img; + } else { + return NULL; + } +} + +static vpx_codec_err_t vp8e_set_frame_flags(vpx_codec_alg_priv_t *ctx, + va_list args) { + int frame_flags = va_arg(args, int); + ctx->control_frame_flags = frame_flags; + return set_reference_and_update(ctx, frame_flags); +} + +static vpx_codec_err_t vp8e_set_temporal_layer_id(vpx_codec_alg_priv_t *ctx, + va_list args) { + int layer_id = va_arg(args, int); + if (layer_id < 0 || layer_id >= (int)ctx->cfg.ts_number_layers) { + return VPX_CODEC_INVALID_PARAM; + } + ctx->cpi->temporal_layer_id = layer_id; + return VPX_CODEC_OK; +} + +static vpx_codec_err_t vp8e_set_roi_map(vpx_codec_alg_priv_t *ctx, + va_list args) { + vpx_roi_map_t *data = va_arg(args, vpx_roi_map_t *); + + if (data) { + vpx_roi_map_t *roi = (vpx_roi_map_t *)data; + + if (!vp8_set_roimap(ctx->cpi, roi->roi_map, roi->rows, roi->cols, + roi->delta_q, roi->delta_lf, roi->static_threshold)) { + return VPX_CODEC_OK; + } else { + return VPX_CODEC_INVALID_PARAM; + } + } else { + return VPX_CODEC_INVALID_PARAM; + } +} + +static vpx_codec_err_t vp8e_set_activemap(vpx_codec_alg_priv_t *ctx, + va_list args) { + vpx_active_map_t *data = va_arg(args, vpx_active_map_t *); + + if (data) { + vpx_active_map_t *map = (vpx_active_map_t *)data; + + if (!vp8_set_active_map(ctx->cpi, map->active_map, map->rows, map->cols)) { + return VPX_CODEC_OK; + } else { + return VPX_CODEC_INVALID_PARAM; + } + } else { + return VPX_CODEC_INVALID_PARAM; + } +} + +static vpx_codec_err_t vp8e_set_scalemode(vpx_codec_alg_priv_t *ctx, + va_list args) { + vpx_scaling_mode_t *data = va_arg(args, vpx_scaling_mode_t *); + + if (data) { + int res; + vpx_scaling_mode_t scalemode = *(vpx_scaling_mode_t *)data; + res = vp8_set_internal_size(ctx->cpi, (VPX_SCALING)scalemode.h_scaling_mode, + (VPX_SCALING)scalemode.v_scaling_mode); + + if (!res) { + /*force next frame a key frame to effect scaling mode */ + ctx->next_frame_flag |= FRAMEFLAGS_KEY; + return VPX_CODEC_OK; + } else { + return VPX_CODEC_INVALID_PARAM; + } + } else { + return VPX_CODEC_INVALID_PARAM; + } +} + +static vpx_codec_ctrl_fn_map_t vp8e_ctf_maps[] = { + { VP8_SET_REFERENCE, vp8e_set_reference }, + { VP8_COPY_REFERENCE, vp8e_get_reference }, + { VP8_SET_POSTPROC, vp8e_set_previewpp }, + { VP8E_SET_FRAME_FLAGS, vp8e_set_frame_flags }, + { VP8E_SET_TEMPORAL_LAYER_ID, vp8e_set_temporal_layer_id }, + { VP8E_SET_ROI_MAP, vp8e_set_roi_map }, + { VP8E_SET_ACTIVEMAP, vp8e_set_activemap }, + { VP8E_SET_SCALEMODE, vp8e_set_scalemode }, + { VP8E_SET_CPUUSED, set_cpu_used }, + { VP8E_SET_NOISE_SENSITIVITY, set_noise_sensitivity }, + { VP8E_SET_ENABLEAUTOALTREF, set_enable_auto_alt_ref }, + { VP8E_SET_SHARPNESS, set_sharpness }, + { VP8E_SET_STATIC_THRESHOLD, set_static_thresh }, + { VP8E_SET_TOKEN_PARTITIONS, set_token_partitions }, + { VP8E_GET_LAST_QUANTIZER, get_quantizer }, + { VP8E_GET_LAST_QUANTIZER_64, get_quantizer64 }, + { VP8E_SET_ARNR_MAXFRAMES, set_arnr_max_frames }, + { VP8E_SET_ARNR_STRENGTH, set_arnr_strength }, + { VP8E_SET_ARNR_TYPE, set_arnr_type }, + { VP8E_SET_TUNING, set_tuning }, + { VP8E_SET_CQ_LEVEL, set_cq_level }, + { VP8E_SET_MAX_INTRA_BITRATE_PCT, set_rc_max_intra_bitrate_pct }, + { VP8E_SET_SCREEN_CONTENT_MODE, set_screen_content_mode }, + { VP8E_SET_GF_CBR_BOOST_PCT, ctrl_set_rc_gf_cbr_boost_pct }, + { -1, NULL }, +}; + +static vpx_codec_enc_cfg_map_t vp8e_usage_cfg_map[] = { + { 0, + { + 0, /* g_usage */ + 0, /* g_threads */ + 0, /* g_profile */ + + 320, /* g_width */ + 240, /* g_height */ + VPX_BITS_8, /* g_bit_depth */ + 8, /* g_input_bit_depth */ + + { 1, 30 }, /* g_timebase */ + + 0, /* g_error_resilient */ + + VPX_RC_ONE_PASS, /* g_pass */ + + 0, /* g_lag_in_frames */ + + 0, /* rc_dropframe_thresh */ + 0, /* rc_resize_allowed */ + 1, /* rc_scaled_width */ + 1, /* rc_scaled_height */ + 60, /* rc_resize_down_thresold */ + 30, /* rc_resize_up_thresold */ + + VPX_VBR, /* rc_end_usage */ + { NULL, 0 }, /* rc_twopass_stats_in */ + { NULL, 0 }, /* rc_firstpass_mb_stats_in */ + 256, /* rc_target_bandwidth */ + 4, /* rc_min_quantizer */ + 63, /* rc_max_quantizer */ + 100, /* rc_undershoot_pct */ + 100, /* rc_overshoot_pct */ + + 6000, /* rc_max_buffer_size */ + 4000, /* rc_buffer_initial_size; */ + 5000, /* rc_buffer_optimal_size; */ + + 50, /* rc_two_pass_vbrbias */ + 0, /* rc_two_pass_vbrmin_section */ + 400, /* rc_two_pass_vbrmax_section */ + 0, // rc_2pass_vbr_corpus_complexity (only has meaningfull for VP9) + + /* keyframing settings (kf) */ + VPX_KF_AUTO, /* g_kfmode*/ + 0, /* kf_min_dist */ + 128, /* kf_max_dist */ + + VPX_SS_DEFAULT_LAYERS, /* ss_number_layers */ + { 0 }, + { 0 }, /* ss_target_bitrate */ + 1, /* ts_number_layers */ + { 0 }, /* ts_target_bitrate */ + { 0 }, /* ts_rate_decimator */ + 0, /* ts_periodicity */ + { 0 }, /* ts_layer_id */ + { 0 }, /* layer_target_bitrate */ + 0 /* temporal_layering_mode */ + } }, +}; + +#ifndef VERSION_STRING +#define VERSION_STRING +#endif +CODEC_INTERFACE(vpx_codec_vp8_cx) = { + "WebM Project VP8 Encoder" VERSION_STRING, + VPX_CODEC_INTERNAL_ABI_VERSION, + VPX_CODEC_CAP_ENCODER | VPX_CODEC_CAP_PSNR | VPX_CODEC_CAP_OUTPUT_PARTITION, + /* vpx_codec_caps_t caps; */ + vp8e_init, /* vpx_codec_init_fn_t init; */ + vp8e_destroy, /* vpx_codec_destroy_fn_t destroy; */ + vp8e_ctf_maps, /* vpx_codec_ctrl_fn_map_t *ctrl_maps; */ + { + NULL, /* vpx_codec_peek_si_fn_t peek_si; */ + NULL, /* vpx_codec_get_si_fn_t get_si; */ + NULL, /* vpx_codec_decode_fn_t decode; */ + NULL, /* vpx_codec_frame_get_fn_t frame_get; */ + NULL, /* vpx_codec_set_fb_fn_t set_fb_fn; */ + }, + { + 1, /* 1 cfg map */ + vp8e_usage_cfg_map, /* vpx_codec_enc_cfg_map_t cfg_maps; */ + vp8e_encode, /* vpx_codec_encode_fn_t encode; */ + vp8e_get_cxdata, /* vpx_codec_get_cx_data_fn_t get_cx_data; */ + vp8e_set_config, NULL, vp8e_get_preview, vp8e_mr_alloc_mem, + } /* encoder functions */ +}; diff --git a/vp8/vp8_dx_iface.c b/vp8/vp8_dx_iface.c new file mode 100644 index 0000000..f20283c --- /dev/null +++ b/vp8/vp8_dx_iface.c @@ -0,0 +1,671 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include +#include +#include "./vp8_rtcd.h" +#include "./vpx_dsp_rtcd.h" +#include "./vpx_scale_rtcd.h" +#include "vpx/vpx_decoder.h" +#include "vpx/vp8dx.h" +#include "vpx/internal/vpx_codec_internal.h" +#include "vpx_version.h" +#include "common/alloccommon.h" +#include "common/common.h" +#include "common/onyxd.h" +#include "decoder/onyxd_int.h" +#include "vpx_dsp/vpx_dsp_common.h" +#include "vpx_mem/vpx_mem.h" +#include "vpx_ports/system_state.h" +#if CONFIG_ERROR_CONCEALMENT +#include "decoder/error_concealment.h" +#endif +#include "decoder/decoderthreading.h" + +#define VP8_CAP_POSTPROC (CONFIG_POSTPROC ? VPX_CODEC_CAP_POSTPROC : 0) +#define VP8_CAP_ERROR_CONCEALMENT \ + (CONFIG_ERROR_CONCEALMENT ? VPX_CODEC_CAP_ERROR_CONCEALMENT : 0) + +typedef vpx_codec_stream_info_t vp8_stream_info_t; + +/* Structures for handling memory allocations */ +typedef enum { VP8_SEG_ALG_PRIV = 256, VP8_SEG_MAX } mem_seg_id_t; +#define NELEMENTS(x) ((int)(sizeof(x) / sizeof(x[0]))) + +struct vpx_codec_alg_priv { + vpx_codec_priv_t base; + vpx_codec_dec_cfg_t cfg; + vp8_stream_info_t si; + int decoder_init; + int postproc_cfg_set; + vp8_postproc_cfg_t postproc_cfg; + vpx_decrypt_cb decrypt_cb; + void *decrypt_state; + vpx_image_t img; + int img_setup; + struct frame_buffers yv12_frame_buffers; + void *user_priv; + FRAGMENT_DATA fragments; +}; + +static int vp8_init_ctx(vpx_codec_ctx_t *ctx) { + vpx_codec_alg_priv_t *priv = + (vpx_codec_alg_priv_t *)vpx_calloc(1, sizeof(*priv)); + if (!priv) return 1; + + ctx->priv = (vpx_codec_priv_t *)priv; + ctx->priv->init_flags = ctx->init_flags; + + priv->si.sz = sizeof(priv->si); + priv->decrypt_cb = NULL; + priv->decrypt_state = NULL; + + if (ctx->config.dec) { + /* Update the reference to the config structure to an internal copy. */ + priv->cfg = *ctx->config.dec; + ctx->config.dec = &priv->cfg; + } + + return 0; +} + +static vpx_codec_err_t vp8_init(vpx_codec_ctx_t *ctx, + vpx_codec_priv_enc_mr_cfg_t *data) { + vpx_codec_err_t res = VPX_CODEC_OK; + (void)data; + + vp8_rtcd(); + vpx_dsp_rtcd(); + vpx_scale_rtcd(); + + /* This function only allocates space for the vpx_codec_alg_priv_t + * structure. More memory may be required at the time the stream + * information becomes known. + */ + if (!ctx->priv) { + vpx_codec_alg_priv_t *priv; + + if (vp8_init_ctx(ctx)) return VPX_CODEC_MEM_ERROR; + + priv = (vpx_codec_alg_priv_t *)ctx->priv; + + /* initialize number of fragments to zero */ + priv->fragments.count = 0; + /* is input fragments enabled? */ + priv->fragments.enabled = + (priv->base.init_flags & VPX_CODEC_USE_INPUT_FRAGMENTS); + + /*post processing level initialized to do nothing */ + } + + return res; +} + +static vpx_codec_err_t vp8_destroy(vpx_codec_alg_priv_t *ctx) { + vp8_remove_decoder_instances(&ctx->yv12_frame_buffers); + + vpx_free(ctx); + + return VPX_CODEC_OK; +} + +static vpx_codec_err_t vp8_peek_si_internal(const uint8_t *data, + unsigned int data_sz, + vpx_codec_stream_info_t *si, + vpx_decrypt_cb decrypt_cb, + void *decrypt_state) { + vpx_codec_err_t res = VPX_CODEC_OK; + + assert(data != NULL); + + if (data + data_sz <= data) { + res = VPX_CODEC_INVALID_PARAM; + } else { + /* Parse uncompresssed part of key frame header. + * 3 bytes:- including version, frame type and an offset + * 3 bytes:- sync code (0x9d, 0x01, 0x2a) + * 4 bytes:- including image width and height in the lowest 14 bits + * of each 2-byte value. + */ + uint8_t clear_buffer[10]; + const uint8_t *clear = data; + if (decrypt_cb) { + int n = VPXMIN(sizeof(clear_buffer), data_sz); + decrypt_cb(decrypt_state, data, clear_buffer, n); + clear = clear_buffer; + } + si->is_kf = 0; + + if (data_sz >= 10 && !(clear[0] & 0x01)) { /* I-Frame */ + si->is_kf = 1; + + /* vet via sync code */ + if (clear[3] != 0x9d || clear[4] != 0x01 || clear[5] != 0x2a) { + return VPX_CODEC_UNSUP_BITSTREAM; + } + + si->w = (clear[6] | (clear[7] << 8)) & 0x3fff; + si->h = (clear[8] | (clear[9] << 8)) & 0x3fff; + + /*printf("w=%d, h=%d\n", si->w, si->h);*/ + if (!(si->h && si->w)) res = VPX_CODEC_CORRUPT_FRAME; + } else { + res = VPX_CODEC_UNSUP_BITSTREAM; + } + } + + return res; +} + +static vpx_codec_err_t vp8_peek_si(const uint8_t *data, unsigned int data_sz, + vpx_codec_stream_info_t *si) { + return vp8_peek_si_internal(data, data_sz, si, NULL, NULL); +} + +static vpx_codec_err_t vp8_get_si(vpx_codec_alg_priv_t *ctx, + vpx_codec_stream_info_t *si) { + unsigned int sz; + + if (si->sz >= sizeof(vp8_stream_info_t)) { + sz = sizeof(vp8_stream_info_t); + } else { + sz = sizeof(vpx_codec_stream_info_t); + } + + memcpy(si, &ctx->si, sz); + si->sz = sz; + + return VPX_CODEC_OK; +} + +static vpx_codec_err_t update_error_state( + vpx_codec_alg_priv_t *ctx, const struct vpx_internal_error_info *error) { + vpx_codec_err_t res; + + if ((res = error->error_code)) { + ctx->base.err_detail = error->has_detail ? error->detail : NULL; + } + + return res; +} + +static void yuvconfig2image(vpx_image_t *img, const YV12_BUFFER_CONFIG *yv12, + void *user_priv) { + /** vpx_img_wrap() doesn't allow specifying independent strides for + * the Y, U, and V planes, nor other alignment adjustments that + * might be representable by a YV12_BUFFER_CONFIG, so we just + * initialize all the fields.*/ + img->fmt = VPX_IMG_FMT_I420; + img->w = yv12->y_stride; + img->h = (yv12->y_height + 2 * VP8BORDERINPIXELS + 15) & ~15; + img->d_w = img->r_w = yv12->y_width; + img->d_h = img->r_h = yv12->y_height; + img->x_chroma_shift = 1; + img->y_chroma_shift = 1; + img->planes[VPX_PLANE_Y] = yv12->y_buffer; + img->planes[VPX_PLANE_U] = yv12->u_buffer; + img->planes[VPX_PLANE_V] = yv12->v_buffer; + img->planes[VPX_PLANE_ALPHA] = NULL; + img->stride[VPX_PLANE_Y] = yv12->y_stride; + img->stride[VPX_PLANE_U] = yv12->uv_stride; + img->stride[VPX_PLANE_V] = yv12->uv_stride; + img->stride[VPX_PLANE_ALPHA] = yv12->y_stride; + img->bit_depth = 8; + img->bps = 12; + img->user_priv = user_priv; + img->img_data = yv12->buffer_alloc; + img->img_data_owner = 0; + img->self_allocd = 0; +} + +static int update_fragments(vpx_codec_alg_priv_t *ctx, const uint8_t *data, + unsigned int data_sz, + volatile vpx_codec_err_t *res) { + *res = VPX_CODEC_OK; + + if (ctx->fragments.count == 0) { + /* New frame, reset fragment pointers and sizes */ + memset((void *)ctx->fragments.ptrs, 0, sizeof(ctx->fragments.ptrs)); + memset(ctx->fragments.sizes, 0, sizeof(ctx->fragments.sizes)); + } + if (ctx->fragments.enabled && !(data == NULL && data_sz == 0)) { + /* Store a pointer to this fragment and return. We haven't + * received the complete frame yet, so we will wait with decoding. + */ + ctx->fragments.ptrs[ctx->fragments.count] = data; + ctx->fragments.sizes[ctx->fragments.count] = data_sz; + ctx->fragments.count++; + if (ctx->fragments.count > (1 << EIGHT_PARTITION) + 1) { + ctx->fragments.count = 0; + *res = VPX_CODEC_INVALID_PARAM; + return -1; + } + return 0; + } + + if (!ctx->fragments.enabled && (data == NULL && data_sz == 0)) { + return 0; + } + + if (!ctx->fragments.enabled) { + ctx->fragments.ptrs[0] = data; + ctx->fragments.sizes[0] = data_sz; + ctx->fragments.count = 1; + } + + return 1; +} + +static vpx_codec_err_t vp8_decode(vpx_codec_alg_priv_t *ctx, + const uint8_t *data, unsigned int data_sz, + void *user_priv, long deadline) { + volatile vpx_codec_err_t res; + unsigned int resolution_change = 0; + unsigned int w, h; + + if (!ctx->fragments.enabled && (data == NULL && data_sz == 0)) { + return 0; + } + + /* Update the input fragment data */ + if (update_fragments(ctx, data, data_sz, &res) <= 0) return res; + + /* Determine the stream parameters. Note that we rely on peek_si to + * validate that we have a buffer that does not wrap around the top + * of the heap. + */ + w = ctx->si.w; + h = ctx->si.h; + + res = vp8_peek_si_internal(ctx->fragments.ptrs[0], ctx->fragments.sizes[0], + &ctx->si, ctx->decrypt_cb, ctx->decrypt_state); + + if ((res == VPX_CODEC_UNSUP_BITSTREAM) && !ctx->si.is_kf) { + /* the peek function returns an error for non keyframes, however for + * this case, it is not an error */ + res = VPX_CODEC_OK; + } + + if (!ctx->decoder_init && !ctx->si.is_kf) res = VPX_CODEC_UNSUP_BITSTREAM; + + if ((ctx->si.h != h) || (ctx->si.w != w)) resolution_change = 1; + + /* Initialize the decoder instance on the first frame*/ + if (!res && !ctx->decoder_init) { + VP8D_CONFIG oxcf; + + oxcf.Width = ctx->si.w; + oxcf.Height = ctx->si.h; + oxcf.Version = 9; + oxcf.postprocess = 0; + oxcf.max_threads = ctx->cfg.threads; + oxcf.error_concealment = + (ctx->base.init_flags & VPX_CODEC_USE_ERROR_CONCEALMENT); + + /* If postprocessing was enabled by the application and a + * configuration has not been provided, default it. + */ + if (!ctx->postproc_cfg_set && + (ctx->base.init_flags & VPX_CODEC_USE_POSTPROC)) { + ctx->postproc_cfg.post_proc_flag = + VP8_DEBLOCK | VP8_DEMACROBLOCK | VP8_MFQE; + ctx->postproc_cfg.deblocking_level = 4; + ctx->postproc_cfg.noise_level = 0; + } + + res = vp8_create_decoder_instances(&ctx->yv12_frame_buffers, &oxcf); + if (res == VPX_CODEC_OK) ctx->decoder_init = 1; + } + + /* Set these even if already initialized. The caller may have changed the + * decrypt config between frames. + */ + if (ctx->decoder_init) { + ctx->yv12_frame_buffers.pbi[0]->decrypt_cb = ctx->decrypt_cb; + ctx->yv12_frame_buffers.pbi[0]->decrypt_state = ctx->decrypt_state; + } + + if (!res) { + VP8D_COMP *pbi = ctx->yv12_frame_buffers.pbi[0]; + if (resolution_change) { + VP8_COMMON *const pc = &pbi->common; + MACROBLOCKD *const xd = &pbi->mb; +#if CONFIG_MULTITHREAD + int i; +#endif + pc->Width = ctx->si.w; + pc->Height = ctx->si.h; + { + int prev_mb_rows = pc->mb_rows; + + if (setjmp(pbi->common.error.jmp)) { + pbi->common.error.setjmp = 0; + /* on failure clear the cached resolution to ensure a full + * reallocation is attempted on resync. */ + ctx->si.w = 0; + ctx->si.h = 0; + vpx_clear_system_state(); + /* same return value as used in vp8dx_receive_compressed_data */ + return -1; + } + + pbi->common.error.setjmp = 1; + + if (pc->Width <= 0) { + pc->Width = w; + vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME, + "Invalid frame width"); + } + + if (pc->Height <= 0) { + pc->Height = h; + vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME, + "Invalid frame height"); + } + + if (vp8_alloc_frame_buffers(pc, pc->Width, pc->Height)) { + vpx_internal_error(&pc->error, VPX_CODEC_MEM_ERROR, + "Failed to allocate frame buffers"); + } + + xd->pre = pc->yv12_fb[pc->lst_fb_idx]; + xd->dst = pc->yv12_fb[pc->new_fb_idx]; + +#if CONFIG_MULTITHREAD + for (i = 0; i < pbi->allocated_decoding_thread_count; ++i) { + pbi->mb_row_di[i].mbd.dst = pc->yv12_fb[pc->new_fb_idx]; + vp8_build_block_doffsets(&pbi->mb_row_di[i].mbd); + } +#endif + vp8_build_block_doffsets(&pbi->mb); + +/* allocate memory for last frame MODE_INFO array */ +#if CONFIG_ERROR_CONCEALMENT + + if (pbi->ec_enabled) { + /* old prev_mip was released by vp8_de_alloc_frame_buffers() + * called in vp8_alloc_frame_buffers() */ + pc->prev_mip = vpx_calloc((pc->mb_cols + 1) * (pc->mb_rows + 1), + sizeof(MODE_INFO)); + + if (!pc->prev_mip) { + vp8_de_alloc_frame_buffers(pc); + vpx_internal_error(&pc->error, VPX_CODEC_MEM_ERROR, + "Failed to allocate" + "last frame MODE_INFO array"); + } + + pc->prev_mi = pc->prev_mip + pc->mode_info_stride + 1; + + if (vp8_alloc_overlap_lists(pbi)) + vpx_internal_error(&pc->error, VPX_CODEC_MEM_ERROR, + "Failed to allocate overlap lists " + "for error concealment"); + } + +#endif + +#if CONFIG_MULTITHREAD + if (vpx_atomic_load_acquire(&pbi->b_multithreaded_rd)) { + vp8mt_alloc_temp_buffers(pbi, pc->Width, prev_mb_rows); + } +#else + (void)prev_mb_rows; +#endif + } + + pbi->common.error.setjmp = 0; + + /* required to get past the first get_free_fb() call */ + pbi->common.fb_idx_ref_cnt[0] = 0; + } + + /* update the pbi fragment data */ + pbi->fragments = ctx->fragments; + + ctx->user_priv = user_priv; + if (vp8dx_receive_compressed_data(pbi, data_sz, data, deadline)) { + res = update_error_state(ctx, &pbi->common.error); + } + + /* get ready for the next series of fragments */ + ctx->fragments.count = 0; + } + + return res; +} + +static vpx_image_t *vp8_get_frame(vpx_codec_alg_priv_t *ctx, + vpx_codec_iter_t *iter) { + vpx_image_t *img = NULL; + + /* iter acts as a flip flop, so an image is only returned on the first + * call to get_frame. + */ + if (!(*iter) && ctx->yv12_frame_buffers.pbi[0]) { + YV12_BUFFER_CONFIG sd; + int64_t time_stamp = 0, time_end_stamp = 0; + vp8_ppflags_t flags; + vp8_zero(flags); + + if (ctx->base.init_flags & VPX_CODEC_USE_POSTPROC) { + flags.post_proc_flag = ctx->postproc_cfg.post_proc_flag; + flags.deblocking_level = ctx->postproc_cfg.deblocking_level; + flags.noise_level = ctx->postproc_cfg.noise_level; + } + + if (0 == vp8dx_get_raw_frame(ctx->yv12_frame_buffers.pbi[0], &sd, + &time_stamp, &time_end_stamp, &flags)) { + yuvconfig2image(&ctx->img, &sd, ctx->user_priv); + + img = &ctx->img; + *iter = img; + } + } + + return img; +} + +static vpx_codec_err_t image2yuvconfig(const vpx_image_t *img, + YV12_BUFFER_CONFIG *yv12) { + const int y_w = img->d_w; + const int y_h = img->d_h; + const int uv_w = (img->d_w + 1) / 2; + const int uv_h = (img->d_h + 1) / 2; + vpx_codec_err_t res = VPX_CODEC_OK; + yv12->y_buffer = img->planes[VPX_PLANE_Y]; + yv12->u_buffer = img->planes[VPX_PLANE_U]; + yv12->v_buffer = img->planes[VPX_PLANE_V]; + + yv12->y_crop_width = y_w; + yv12->y_crop_height = y_h; + yv12->y_width = y_w; + yv12->y_height = y_h; + yv12->uv_crop_width = uv_w; + yv12->uv_crop_height = uv_h; + yv12->uv_width = uv_w; + yv12->uv_height = uv_h; + + yv12->y_stride = img->stride[VPX_PLANE_Y]; + yv12->uv_stride = img->stride[VPX_PLANE_U]; + + yv12->border = (img->stride[VPX_PLANE_Y] - img->d_w) / 2; + return res; +} + +static vpx_codec_err_t vp8_set_reference(vpx_codec_alg_priv_t *ctx, + va_list args) { + vpx_ref_frame_t *data = va_arg(args, vpx_ref_frame_t *); + + if (data) { + vpx_ref_frame_t *frame = (vpx_ref_frame_t *)data; + YV12_BUFFER_CONFIG sd; + + image2yuvconfig(&frame->img, &sd); + + return vp8dx_set_reference(ctx->yv12_frame_buffers.pbi[0], + frame->frame_type, &sd); + } else { + return VPX_CODEC_INVALID_PARAM; + } +} + +static vpx_codec_err_t vp8_get_reference(vpx_codec_alg_priv_t *ctx, + va_list args) { + vpx_ref_frame_t *data = va_arg(args, vpx_ref_frame_t *); + + if (data) { + vpx_ref_frame_t *frame = (vpx_ref_frame_t *)data; + YV12_BUFFER_CONFIG sd; + + image2yuvconfig(&frame->img, &sd); + + return vp8dx_get_reference(ctx->yv12_frame_buffers.pbi[0], + frame->frame_type, &sd); + } else { + return VPX_CODEC_INVALID_PARAM; + } +} + +static vpx_codec_err_t vp8_get_quantizer(vpx_codec_alg_priv_t *ctx, + va_list args) { + int *const arg = va_arg(args, int *); + if (arg == NULL) return VPX_CODEC_INVALID_PARAM; + *arg = vp8dx_get_quantizer(ctx->yv12_frame_buffers.pbi[0]); + return VPX_CODEC_OK; +} + +static vpx_codec_err_t vp8_set_postproc(vpx_codec_alg_priv_t *ctx, + va_list args) { +#if CONFIG_POSTPROC + vp8_postproc_cfg_t *data = va_arg(args, vp8_postproc_cfg_t *); + + if (data) { + ctx->postproc_cfg_set = 1; + ctx->postproc_cfg = *((vp8_postproc_cfg_t *)data); + return VPX_CODEC_OK; + } else { + return VPX_CODEC_INVALID_PARAM; + } + +#else + (void)ctx; + (void)args; + return VPX_CODEC_INCAPABLE; +#endif +} + +static vpx_codec_err_t vp8_get_last_ref_updates(vpx_codec_alg_priv_t *ctx, + va_list args) { + int *update_info = va_arg(args, int *); + + if (update_info) { + VP8D_COMP *pbi = (VP8D_COMP *)ctx->yv12_frame_buffers.pbi[0]; + + *update_info = pbi->common.refresh_alt_ref_frame * (int)VP8_ALTR_FRAME + + pbi->common.refresh_golden_frame * (int)VP8_GOLD_FRAME + + pbi->common.refresh_last_frame * (int)VP8_LAST_FRAME; + + return VPX_CODEC_OK; + } else { + return VPX_CODEC_INVALID_PARAM; + } +} + +static vpx_codec_err_t vp8_get_last_ref_frame(vpx_codec_alg_priv_t *ctx, + va_list args) { + int *ref_info = va_arg(args, int *); + + if (ref_info) { + VP8D_COMP *pbi = (VP8D_COMP *)ctx->yv12_frame_buffers.pbi[0]; + VP8_COMMON *oci = &pbi->common; + *ref_info = + (vp8dx_references_buffer(oci, ALTREF_FRAME) ? VP8_ALTR_FRAME : 0) | + (vp8dx_references_buffer(oci, GOLDEN_FRAME) ? VP8_GOLD_FRAME : 0) | + (vp8dx_references_buffer(oci, LAST_FRAME) ? VP8_LAST_FRAME : 0); + + return VPX_CODEC_OK; + } else { + return VPX_CODEC_INVALID_PARAM; + } +} + +static vpx_codec_err_t vp8_get_frame_corrupted(vpx_codec_alg_priv_t *ctx, + va_list args) { + int *corrupted = va_arg(args, int *); + VP8D_COMP *pbi = (VP8D_COMP *)ctx->yv12_frame_buffers.pbi[0]; + + if (corrupted && pbi) { + const YV12_BUFFER_CONFIG *const frame = pbi->common.frame_to_show; + if (frame == NULL) return VPX_CODEC_ERROR; + *corrupted = frame->corrupted; + return VPX_CODEC_OK; + } else { + return VPX_CODEC_INVALID_PARAM; + } +} + +static vpx_codec_err_t vp8_set_decryptor(vpx_codec_alg_priv_t *ctx, + va_list args) { + vpx_decrypt_init *init = va_arg(args, vpx_decrypt_init *); + + if (init) { + ctx->decrypt_cb = init->decrypt_cb; + ctx->decrypt_state = init->decrypt_state; + } else { + ctx->decrypt_cb = NULL; + ctx->decrypt_state = NULL; + } + return VPX_CODEC_OK; +} + +vpx_codec_ctrl_fn_map_t vp8_ctf_maps[] = { + { VP8_SET_REFERENCE, vp8_set_reference }, + { VP8_COPY_REFERENCE, vp8_get_reference }, + { VP8_SET_POSTPROC, vp8_set_postproc }, + { VP8D_GET_LAST_REF_UPDATES, vp8_get_last_ref_updates }, + { VP8D_GET_FRAME_CORRUPTED, vp8_get_frame_corrupted }, + { VP8D_GET_LAST_REF_USED, vp8_get_last_ref_frame }, + { VPXD_GET_LAST_QUANTIZER, vp8_get_quantizer }, + { VPXD_SET_DECRYPTOR, vp8_set_decryptor }, + { -1, NULL }, +}; + +#ifndef VERSION_STRING +#define VERSION_STRING +#endif +CODEC_INTERFACE(vpx_codec_vp8_dx) = { + "WebM Project VP8 Decoder" VERSION_STRING, + VPX_CODEC_INTERNAL_ABI_VERSION, + VPX_CODEC_CAP_DECODER | VP8_CAP_POSTPROC | VP8_CAP_ERROR_CONCEALMENT | + VPX_CODEC_CAP_INPUT_FRAGMENTS, + /* vpx_codec_caps_t caps; */ + vp8_init, /* vpx_codec_init_fn_t init; */ + vp8_destroy, /* vpx_codec_destroy_fn_t destroy; */ + vp8_ctf_maps, /* vpx_codec_ctrl_fn_map_t *ctrl_maps; */ + { + vp8_peek_si, /* vpx_codec_peek_si_fn_t peek_si; */ + vp8_get_si, /* vpx_codec_get_si_fn_t get_si; */ + vp8_decode, /* vpx_codec_decode_fn_t decode; */ + vp8_get_frame, /* vpx_codec_frame_get_fn_t frame_get; */ + NULL, + }, + { + /* encoder functions */ + 0, NULL, /* vpx_codec_enc_cfg_map_t */ + NULL, /* vpx_codec_encode_fn_t */ + NULL, /* vpx_codec_get_cx_data_fn_t */ + NULL, /* vpx_codec_enc_config_set_fn_t */ + NULL, /* vpx_codec_get_global_headers_fn_t */ + NULL, /* vpx_codec_get_preview_frame_fn_t */ + NULL /* vpx_codec_enc_mr_get_mem_loc_fn_t */ + } +}; diff --git a/vp8/vp8cx.mk b/vp8/vp8cx.mk new file mode 100644 index 0000000..0dac016 --- /dev/null +++ b/vp8/vp8cx.mk @@ -0,0 +1,124 @@ +## +## Copyright (c) 2010 The WebM project authors. All Rights Reserved. +## +## Use of this source code is governed by a BSD-style license +## that can be found in the LICENSE file in the root of the source +## tree. An additional intellectual property rights grant can be found +## in the file PATENTS. All contributing project authors may +## be found in the AUTHORS file in the root of the source tree. +## + + +VP8_CX_EXPORTS += exports_enc + +VP8_CX_SRCS-yes += $(VP8_COMMON_SRCS-yes) +VP8_CX_SRCS-no += $(VP8_COMMON_SRCS-no) +VP8_CX_SRCS_REMOVE-yes += $(VP8_COMMON_SRCS_REMOVE-yes) +VP8_CX_SRCS_REMOVE-no += $(VP8_COMMON_SRCS_REMOVE-no) + +VP8_CX_SRCS-yes += vp8cx.mk + +VP8_CX_SRCS-yes += vp8_cx_iface.c + +VP8_CX_SRCS-yes += encoder/defaultcoefcounts.h +VP8_CX_SRCS-yes += encoder/bitstream.c +VP8_CX_SRCS-yes += encoder/boolhuff.c +VP8_CX_SRCS-yes += encoder/dct.c +VP8_CX_SRCS-yes += encoder/encodeframe.c +VP8_CX_SRCS-yes += encoder/encodeframe.h +VP8_CX_SRCS-yes += encoder/encodeintra.c +VP8_CX_SRCS-yes += encoder/encodemb.c +VP8_CX_SRCS-yes += encoder/encodemv.c +VP8_CX_SRCS-$(CONFIG_MULTITHREAD) += encoder/ethreading.c +VP8_CX_SRCS-$(CONFIG_MULTITHREAD) += encoder/ethreading.h +VP8_CX_SRCS-yes += encoder/firstpass.c +VP8_CX_SRCS-yes += encoder/block.h +VP8_CX_SRCS-yes += encoder/boolhuff.h +VP8_CX_SRCS-yes += encoder/bitstream.h +VP8_CX_SRCS-$(CONFIG_TEMPORAL_DENOISING) += encoder/denoising.h +VP8_CX_SRCS-$(CONFIG_TEMPORAL_DENOISING) += encoder/denoising.c +VP8_CX_SRCS-yes += encoder/encodeintra.h +VP8_CX_SRCS-yes += encoder/encodemb.h +VP8_CX_SRCS-yes += encoder/encodemv.h +VP8_CX_SRCS-yes += encoder/firstpass.h +VP8_CX_SRCS-yes += encoder/lookahead.c +VP8_CX_SRCS-yes += encoder/lookahead.h +VP8_CX_SRCS-yes += encoder/mcomp.h +VP8_CX_SRCS-yes += encoder/modecosts.h +VP8_CX_SRCS-yes += encoder/onyx_int.h +VP8_CX_SRCS-yes += encoder/pickinter.h +VP8_CX_SRCS-yes += encoder/quantize.h +VP8_CX_SRCS-yes += encoder/ratectrl.h +VP8_CX_SRCS-yes += encoder/rdopt.h +VP8_CX_SRCS-yes += encoder/tokenize.h +VP8_CX_SRCS-yes += encoder/treewriter.h +VP8_CX_SRCS-yes += encoder/mcomp.c +VP8_CX_SRCS-yes += encoder/modecosts.c +VP8_CX_SRCS-yes += encoder/onyx_if.c +VP8_CX_SRCS-yes += encoder/pickinter.c +VP8_CX_SRCS-yes += encoder/picklpf.c +VP8_CX_SRCS-yes += encoder/picklpf.h +VP8_CX_SRCS-yes += encoder/vp8_quantize.c +VP8_CX_SRCS-yes += encoder/ratectrl.c +VP8_CX_SRCS-yes += encoder/rdopt.c +VP8_CX_SRCS-yes += encoder/segmentation.c +VP8_CX_SRCS-yes += encoder/segmentation.h +VP8_CX_SRCS-yes += common/vp8_skin_detection.c +VP8_CX_SRCS-yes += common/vp8_skin_detection.h +VP8_CX_SRCS-yes += encoder/tokenize.c +VP8_CX_SRCS-yes += encoder/dct_value_cost.h +VP8_CX_SRCS-yes += encoder/dct_value_tokens.h +VP8_CX_SRCS-yes += encoder/treewriter.c +VP8_CX_SRCS-$(CONFIG_INTERNAL_STATS) += common/postproc.h +VP8_CX_SRCS-$(CONFIG_INTERNAL_STATS) += common/postproc.c +VP8_CX_SRCS-yes += encoder/temporal_filter.c +VP8_CX_SRCS-yes += encoder/temporal_filter.h +VP8_CX_SRCS-$(CONFIG_MULTI_RES_ENCODING) += encoder/mr_dissim.c +VP8_CX_SRCS-$(CONFIG_MULTI_RES_ENCODING) += encoder/mr_dissim.h + +ifeq ($(CONFIG_REALTIME_ONLY),yes) +VP8_CX_SRCS_REMOVE-yes += encoder/firstpass.c +VP8_CX_SRCS_REMOVE-yes += encoder/temporal_filter.c +VP8_CX_SRCS_REMOVE-yes += encoder/temporal_filter.h +endif + +VP8_CX_SRCS-$(HAVE_SSE2) += encoder/x86/dct_sse2.asm +VP8_CX_SRCS-$(HAVE_SSE2) += encoder/x86/fwalsh_sse2.asm +VP8_CX_SRCS-$(HAVE_SSE2) += encoder/x86/vp8_quantize_sse2.c +VP8_CX_SRCS-$(HAVE_SSSE3) += encoder/x86/vp8_quantize_ssse3.c +VP8_CX_SRCS-$(HAVE_SSE4_1) += encoder/x86/quantize_sse4.c + +ifeq ($(CONFIG_TEMPORAL_DENOISING),yes) +VP8_CX_SRCS-$(HAVE_SSE2) += encoder/x86/denoising_sse2.c +endif + +VP8_CX_SRCS-$(HAVE_SSE2) += encoder/x86/temporal_filter_apply_sse2.asm +VP8_CX_SRCS-$(HAVE_SSE2) += encoder/x86/vp8_enc_stubs_sse2.c +VP8_CX_SRCS-$(ARCH_X86)$(ARCH_X86_64) += encoder/x86/encodeopt.asm + +ifeq ($(CONFIG_REALTIME_ONLY),yes) +VP8_CX_SRCS_REMOVE-$(HAVE_SSE2) += encoder/x86/temporal_filter_apply_sse2.asm +endif + +VP8_CX_SRCS-$(HAVE_NEON) += encoder/arm/neon/denoising_neon.c +VP8_CX_SRCS-$(HAVE_NEON) += encoder/arm/neon/fastquantizeb_neon.c +VP8_CX_SRCS-$(HAVE_NEON) += encoder/arm/neon/shortfdct_neon.c +VP8_CX_SRCS-$(HAVE_NEON) += encoder/arm/neon/vp8_shortwalsh4x4_neon.c + +VP8_CX_SRCS-$(HAVE_MSA) += encoder/mips/msa/dct_msa.c +VP8_CX_SRCS-$(HAVE_MSA) += encoder/mips/msa/encodeopt_msa.c +VP8_CX_SRCS-$(HAVE_MSA) += encoder/mips/msa/quantize_msa.c +VP8_CX_SRCS-$(HAVE_MSA) += encoder/mips/msa/temporal_filter_msa.c + +VP8_CX_SRCS-$(HAVE_MMI) += encoder/mips/mmi/vp8_quantize_mmi.c +VP8_CX_SRCS-$(HAVE_MMI) += encoder/mips/mmi/dct_mmi.c + +ifeq ($(CONFIG_TEMPORAL_DENOISING),yes) +VP8_CX_SRCS-$(HAVE_MSA) += encoder/mips/msa/denoising_msa.c +endif + +ifeq ($(CONFIG_REALTIME_ONLY),yes) +VP8_CX_SRCS_REMOVE-$(HAVE_MSA) += encoder/mips/msa/temporal_filter_msa.c +endif + +VP8_CX_SRCS-yes := $(filter-out $(VP8_CX_SRCS_REMOVE-yes),$(VP8_CX_SRCS-yes)) diff --git a/vp8/vp8dx.mk b/vp8/vp8dx.mk new file mode 100644 index 0000000..892ed70 --- /dev/null +++ b/vp8/vp8dx.mk @@ -0,0 +1,39 @@ +## +## Copyright (c) 2010 The WebM project authors. All Rights Reserved. +## +## Use of this source code is governed by a BSD-style license +## that can be found in the LICENSE file in the root of the source +## tree. An additional intellectual property rights grant can be found +## in the file PATENTS. All contributing project authors may +## be found in the AUTHORS file in the root of the source tree. +## + + +VP8_DX_EXPORTS += exports_dec + +VP8_DX_SRCS-yes += $(VP8_COMMON_SRCS-yes) +VP8_DX_SRCS-no += $(VP8_COMMON_SRCS-no) +VP8_DX_SRCS_REMOVE-yes += $(VP8_COMMON_SRCS_REMOVE-yes) +VP8_DX_SRCS_REMOVE-no += $(VP8_COMMON_SRCS_REMOVE-no) + +VP8_DX_SRCS-yes += vp8dx.mk + +VP8_DX_SRCS-yes += vp8_dx_iface.c + +VP8_DX_SRCS-yes += decoder/dboolhuff.c +VP8_DX_SRCS-yes += decoder/decodemv.c +VP8_DX_SRCS-yes += decoder/decodeframe.c +VP8_DX_SRCS-yes += decoder/detokenize.c +VP8_DX_SRCS-$(CONFIG_ERROR_CONCEALMENT) += decoder/ec_types.h +VP8_DX_SRCS-$(CONFIG_ERROR_CONCEALMENT) += decoder/error_concealment.h +VP8_DX_SRCS-$(CONFIG_ERROR_CONCEALMENT) += decoder/error_concealment.c +VP8_DX_SRCS-yes += decoder/dboolhuff.h +VP8_DX_SRCS-yes += decoder/decodemv.h +VP8_DX_SRCS-yes += decoder/decoderthreading.h +VP8_DX_SRCS-yes += decoder/detokenize.h +VP8_DX_SRCS-yes += decoder/onyxd_int.h +VP8_DX_SRCS-yes += decoder/treereader.h +VP8_DX_SRCS-yes += decoder/onyxd_if.c +VP8_DX_SRCS-$(CONFIG_MULTITHREAD) += decoder/threading.c + +VP8_DX_SRCS-yes := $(filter-out $(VP8_DX_SRCS_REMOVE-yes),$(VP8_DX_SRCS-yes)) diff --git a/vp9/common/arm/neon/vp9_iht4x4_add_neon.c b/vp9/common/arm/neon/vp9_iht4x4_add_neon.c new file mode 100644 index 0000000..025254c --- /dev/null +++ b/vp9/common/arm/neon/vp9_iht4x4_add_neon.c @@ -0,0 +1,219 @@ +/* + * Copyright (c) 2014 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include + +#include "./vp9_rtcd.h" +#include "./vpx_config.h" +#include "vp9/common/vp9_common.h" +#include "vpx_dsp/txfm_common.h" + +static INLINE void TRANSPOSE4X4(int16x8_t *q8s16, int16x8_t *q9s16) { + int32x4_t q8s32, q9s32; + int16x4x2_t d0x2s16, d1x2s16; + int32x4x2_t q0x2s32; + + d0x2s16 = vtrn_s16(vget_low_s16(*q8s16), vget_high_s16(*q8s16)); + d1x2s16 = vtrn_s16(vget_low_s16(*q9s16), vget_high_s16(*q9s16)); + + q8s32 = vreinterpretq_s32_s16(vcombine_s16(d0x2s16.val[0], d0x2s16.val[1])); + q9s32 = vreinterpretq_s32_s16(vcombine_s16(d1x2s16.val[0], d1x2s16.val[1])); + q0x2s32 = vtrnq_s32(q8s32, q9s32); + + *q8s16 = vreinterpretq_s16_s32(q0x2s32.val[0]); + *q9s16 = vreinterpretq_s16_s32(q0x2s32.val[1]); +} + +static INLINE void GENERATE_COSINE_CONSTANTS(int16x4_t *d0s16, int16x4_t *d1s16, + int16x4_t *d2s16) { + *d0s16 = vdup_n_s16(cospi_8_64); + *d1s16 = vdup_n_s16(cospi_16_64); + *d2s16 = vdup_n_s16(cospi_24_64); +} + +static INLINE void GENERATE_SINE_CONSTANTS(int16x4_t *d3s16, int16x4_t *d4s16, + int16x4_t *d5s16, int16x8_t *q3s16) { + *d3s16 = vdup_n_s16(sinpi_1_9); + *d4s16 = vdup_n_s16(sinpi_2_9); + *q3s16 = vdupq_n_s16(sinpi_3_9); + *d5s16 = vdup_n_s16(sinpi_4_9); +} + +static INLINE void IDCT4x4_1D(int16x4_t *d0s16, int16x4_t *d1s16, + int16x4_t *d2s16, int16x8_t *q8s16, + int16x8_t *q9s16) { + int16x4_t d16s16, d17s16, d18s16, d19s16, d23s16, d24s16; + int16x4_t d26s16, d27s16, d28s16, d29s16; + int32x4_t q10s32, q13s32, q14s32, q15s32; + int16x8_t q13s16, q14s16; + + d16s16 = vget_low_s16(*q8s16); + d17s16 = vget_high_s16(*q8s16); + d18s16 = vget_low_s16(*q9s16); + d19s16 = vget_high_s16(*q9s16); + + d23s16 = vadd_s16(d16s16, d18s16); + d24s16 = vsub_s16(d16s16, d18s16); + + q15s32 = vmull_s16(d17s16, *d2s16); + q10s32 = vmull_s16(d17s16, *d0s16); + q13s32 = vmull_s16(d23s16, *d1s16); + q14s32 = vmull_s16(d24s16, *d1s16); + q15s32 = vmlsl_s16(q15s32, d19s16, *d0s16); + q10s32 = vmlal_s16(q10s32, d19s16, *d2s16); + + d26s16 = vrshrn_n_s32(q13s32, 14); + d27s16 = vrshrn_n_s32(q14s32, 14); + d29s16 = vrshrn_n_s32(q15s32, 14); + d28s16 = vrshrn_n_s32(q10s32, 14); + + q13s16 = vcombine_s16(d26s16, d27s16); + q14s16 = vcombine_s16(d28s16, d29s16); + *q8s16 = vaddq_s16(q13s16, q14s16); + *q9s16 = vsubq_s16(q13s16, q14s16); + *q9s16 = vcombine_s16(vget_high_s16(*q9s16), vget_low_s16(*q9s16)); // vswp +} + +static INLINE void IADST4x4_1D(int16x4_t *d3s16, int16x4_t *d4s16, + int16x4_t *d5s16, int16x8_t *q3s16, + int16x8_t *q8s16, int16x8_t *q9s16) { + int16x4_t d6s16, d16s16, d17s16, d18s16, d19s16; + int32x4_t q8s32, q9s32, q10s32, q11s32, q12s32, q13s32, q14s32, q15s32; + + d6s16 = vget_low_s16(*q3s16); + + d16s16 = vget_low_s16(*q8s16); + d17s16 = vget_high_s16(*q8s16); + d18s16 = vget_low_s16(*q9s16); + d19s16 = vget_high_s16(*q9s16); + + q10s32 = vmull_s16(*d3s16, d16s16); + q11s32 = vmull_s16(*d4s16, d16s16); + q12s32 = vmull_s16(d6s16, d17s16); + q13s32 = vmull_s16(*d5s16, d18s16); + q14s32 = vmull_s16(*d3s16, d18s16); + q15s32 = vmovl_s16(d16s16); + q15s32 = vaddw_s16(q15s32, d19s16); + q8s32 = vmull_s16(*d4s16, d19s16); + q15s32 = vsubw_s16(q15s32, d18s16); + q9s32 = vmull_s16(*d5s16, d19s16); + + q10s32 = vaddq_s32(q10s32, q13s32); + q10s32 = vaddq_s32(q10s32, q8s32); + q11s32 = vsubq_s32(q11s32, q14s32); + q8s32 = vdupq_n_s32(sinpi_3_9); + q11s32 = vsubq_s32(q11s32, q9s32); + q15s32 = vmulq_s32(q15s32, q8s32); + + q13s32 = vaddq_s32(q10s32, q12s32); + q10s32 = vaddq_s32(q10s32, q11s32); + q14s32 = vaddq_s32(q11s32, q12s32); + q10s32 = vsubq_s32(q10s32, q12s32); + + d16s16 = vrshrn_n_s32(q13s32, 14); + d17s16 = vrshrn_n_s32(q14s32, 14); + d18s16 = vrshrn_n_s32(q15s32, 14); + d19s16 = vrshrn_n_s32(q10s32, 14); + + *q8s16 = vcombine_s16(d16s16, d17s16); + *q9s16 = vcombine_s16(d18s16, d19s16); +} + +void vp9_iht4x4_16_add_neon(const tran_low_t *input, uint8_t *dest, int stride, + int tx_type) { + uint8x8_t d26u8, d27u8; + int16x4_t d0s16, d1s16, d2s16, d3s16, d4s16, d5s16; + uint32x2_t d26u32, d27u32; + int16x8_t q3s16, q8s16, q9s16; + uint16x8_t q8u16, q9u16; + + d26u32 = d27u32 = vdup_n_u32(0); + + q8s16 = vld1q_s16(input); + q9s16 = vld1q_s16(input + 8); + + TRANSPOSE4X4(&q8s16, &q9s16); + + switch (tx_type) { + case 0: // idct_idct is not supported. Fall back to C + vp9_iht4x4_16_add_c(input, dest, stride, tx_type); + return; + case 1: // iadst_idct + // generate constants + GENERATE_COSINE_CONSTANTS(&d0s16, &d1s16, &d2s16); + GENERATE_SINE_CONSTANTS(&d3s16, &d4s16, &d5s16, &q3s16); + + // first transform rows + IDCT4x4_1D(&d0s16, &d1s16, &d2s16, &q8s16, &q9s16); + + // transpose the matrix + TRANSPOSE4X4(&q8s16, &q9s16); + + // then transform columns + IADST4x4_1D(&d3s16, &d4s16, &d5s16, &q3s16, &q8s16, &q9s16); + break; + case 2: // idct_iadst + // generate constantsyy + GENERATE_COSINE_CONSTANTS(&d0s16, &d1s16, &d2s16); + GENERATE_SINE_CONSTANTS(&d3s16, &d4s16, &d5s16, &q3s16); + + // first transform rows + IADST4x4_1D(&d3s16, &d4s16, &d5s16, &q3s16, &q8s16, &q9s16); + + // transpose the matrix + TRANSPOSE4X4(&q8s16, &q9s16); + + // then transform columns + IDCT4x4_1D(&d0s16, &d1s16, &d2s16, &q8s16, &q9s16); + break; + case 3: // iadst_iadst + // generate constants + GENERATE_SINE_CONSTANTS(&d3s16, &d4s16, &d5s16, &q3s16); + + // first transform rows + IADST4x4_1D(&d3s16, &d4s16, &d5s16, &q3s16, &q8s16, &q9s16); + + // transpose the matrix + TRANSPOSE4X4(&q8s16, &q9s16); + + // then transform columns + IADST4x4_1D(&d3s16, &d4s16, &d5s16, &q3s16, &q8s16, &q9s16); + break; + default: // iadst_idct + assert(0); + break; + } + + q8s16 = vrshrq_n_s16(q8s16, 4); + q9s16 = vrshrq_n_s16(q9s16, 4); + + d26u32 = vld1_lane_u32((const uint32_t *)dest, d26u32, 0); + dest += stride; + d26u32 = vld1_lane_u32((const uint32_t *)dest, d26u32, 1); + dest += stride; + d27u32 = vld1_lane_u32((const uint32_t *)dest, d27u32, 0); + dest += stride; + d27u32 = vld1_lane_u32((const uint32_t *)dest, d27u32, 1); + + q8u16 = vaddw_u8(vreinterpretq_u16_s16(q8s16), vreinterpret_u8_u32(d26u32)); + q9u16 = vaddw_u8(vreinterpretq_u16_s16(q9s16), vreinterpret_u8_u32(d27u32)); + + d26u8 = vqmovun_s16(vreinterpretq_s16_u16(q8u16)); + d27u8 = vqmovun_s16(vreinterpretq_s16_u16(q9u16)); + + vst1_lane_u32((uint32_t *)dest, vreinterpret_u32_u8(d27u8), 1); + dest -= stride; + vst1_lane_u32((uint32_t *)dest, vreinterpret_u32_u8(d27u8), 0); + dest -= stride; + vst1_lane_u32((uint32_t *)dest, vreinterpret_u32_u8(d26u8), 1); + dest -= stride; + vst1_lane_u32((uint32_t *)dest, vreinterpret_u32_u8(d26u8), 0); +} diff --git a/vp9/common/arm/neon/vp9_iht8x8_add_neon.c b/vp9/common/arm/neon/vp9_iht8x8_add_neon.c new file mode 100644 index 0000000..1c73986 --- /dev/null +++ b/vp9/common/arm/neon/vp9_iht8x8_add_neon.c @@ -0,0 +1,540 @@ +/* + * Copyright (c) 2014 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include + +#include "./vp9_rtcd.h" +#include "./vpx_config.h" +#include "vp9/common/vp9_common.h" +#include "vpx_dsp/arm/transpose_neon.h" + +static int16_t cospi_2_64 = 16305; +static int16_t cospi_4_64 = 16069; +static int16_t cospi_6_64 = 15679; +static int16_t cospi_8_64 = 15137; +static int16_t cospi_10_64 = 14449; +static int16_t cospi_12_64 = 13623; +static int16_t cospi_14_64 = 12665; +static int16_t cospi_16_64 = 11585; +static int16_t cospi_18_64 = 10394; +static int16_t cospi_20_64 = 9102; +static int16_t cospi_22_64 = 7723; +static int16_t cospi_24_64 = 6270; +static int16_t cospi_26_64 = 4756; +static int16_t cospi_28_64 = 3196; +static int16_t cospi_30_64 = 1606; + +static INLINE void IDCT8x8_1D(int16x8_t *q8s16, int16x8_t *q9s16, + int16x8_t *q10s16, int16x8_t *q11s16, + int16x8_t *q12s16, int16x8_t *q13s16, + int16x8_t *q14s16, int16x8_t *q15s16) { + int16x4_t d0s16, d1s16, d2s16, d3s16; + int16x4_t d8s16, d9s16, d10s16, d11s16, d12s16, d13s16, d14s16, d15s16; + int16x4_t d16s16, d17s16, d18s16, d19s16, d20s16, d21s16, d22s16, d23s16; + int16x4_t d24s16, d25s16, d26s16, d27s16, d28s16, d29s16, d30s16, d31s16; + int16x8_t q0s16, q1s16, q2s16, q3s16, q4s16, q5s16, q6s16, q7s16; + int32x4_t q2s32, q3s32, q5s32, q6s32, q8s32, q9s32; + int32x4_t q10s32, q11s32, q12s32, q13s32, q15s32; + + d0s16 = vdup_n_s16(cospi_28_64); + d1s16 = vdup_n_s16(cospi_4_64); + d2s16 = vdup_n_s16(cospi_12_64); + d3s16 = vdup_n_s16(cospi_20_64); + + d16s16 = vget_low_s16(*q8s16); + d17s16 = vget_high_s16(*q8s16); + d18s16 = vget_low_s16(*q9s16); + d19s16 = vget_high_s16(*q9s16); + d20s16 = vget_low_s16(*q10s16); + d21s16 = vget_high_s16(*q10s16); + d22s16 = vget_low_s16(*q11s16); + d23s16 = vget_high_s16(*q11s16); + d24s16 = vget_low_s16(*q12s16); + d25s16 = vget_high_s16(*q12s16); + d26s16 = vget_low_s16(*q13s16); + d27s16 = vget_high_s16(*q13s16); + d28s16 = vget_low_s16(*q14s16); + d29s16 = vget_high_s16(*q14s16); + d30s16 = vget_low_s16(*q15s16); + d31s16 = vget_high_s16(*q15s16); + + q2s32 = vmull_s16(d18s16, d0s16); + q3s32 = vmull_s16(d19s16, d0s16); + q5s32 = vmull_s16(d26s16, d2s16); + q6s32 = vmull_s16(d27s16, d2s16); + + q2s32 = vmlsl_s16(q2s32, d30s16, d1s16); + q3s32 = vmlsl_s16(q3s32, d31s16, d1s16); + q5s32 = vmlsl_s16(q5s32, d22s16, d3s16); + q6s32 = vmlsl_s16(q6s32, d23s16, d3s16); + + d8s16 = vrshrn_n_s32(q2s32, 14); + d9s16 = vrshrn_n_s32(q3s32, 14); + d10s16 = vrshrn_n_s32(q5s32, 14); + d11s16 = vrshrn_n_s32(q6s32, 14); + q4s16 = vcombine_s16(d8s16, d9s16); + q5s16 = vcombine_s16(d10s16, d11s16); + + q2s32 = vmull_s16(d18s16, d1s16); + q3s32 = vmull_s16(d19s16, d1s16); + q9s32 = vmull_s16(d26s16, d3s16); + q13s32 = vmull_s16(d27s16, d3s16); + + q2s32 = vmlal_s16(q2s32, d30s16, d0s16); + q3s32 = vmlal_s16(q3s32, d31s16, d0s16); + q9s32 = vmlal_s16(q9s32, d22s16, d2s16); + q13s32 = vmlal_s16(q13s32, d23s16, d2s16); + + d14s16 = vrshrn_n_s32(q2s32, 14); + d15s16 = vrshrn_n_s32(q3s32, 14); + d12s16 = vrshrn_n_s32(q9s32, 14); + d13s16 = vrshrn_n_s32(q13s32, 14); + q6s16 = vcombine_s16(d12s16, d13s16); + q7s16 = vcombine_s16(d14s16, d15s16); + + d0s16 = vdup_n_s16(cospi_16_64); + + q2s32 = vmull_s16(d16s16, d0s16); + q3s32 = vmull_s16(d17s16, d0s16); + q13s32 = vmull_s16(d16s16, d0s16); + q15s32 = vmull_s16(d17s16, d0s16); + + q2s32 = vmlal_s16(q2s32, d24s16, d0s16); + q3s32 = vmlal_s16(q3s32, d25s16, d0s16); + q13s32 = vmlsl_s16(q13s32, d24s16, d0s16); + q15s32 = vmlsl_s16(q15s32, d25s16, d0s16); + + d0s16 = vdup_n_s16(cospi_24_64); + d1s16 = vdup_n_s16(cospi_8_64); + + d18s16 = vrshrn_n_s32(q2s32, 14); + d19s16 = vrshrn_n_s32(q3s32, 14); + d22s16 = vrshrn_n_s32(q13s32, 14); + d23s16 = vrshrn_n_s32(q15s32, 14); + *q9s16 = vcombine_s16(d18s16, d19s16); + *q11s16 = vcombine_s16(d22s16, d23s16); + + q2s32 = vmull_s16(d20s16, d0s16); + q3s32 = vmull_s16(d21s16, d0s16); + q8s32 = vmull_s16(d20s16, d1s16); + q12s32 = vmull_s16(d21s16, d1s16); + + q2s32 = vmlsl_s16(q2s32, d28s16, d1s16); + q3s32 = vmlsl_s16(q3s32, d29s16, d1s16); + q8s32 = vmlal_s16(q8s32, d28s16, d0s16); + q12s32 = vmlal_s16(q12s32, d29s16, d0s16); + + d26s16 = vrshrn_n_s32(q2s32, 14); + d27s16 = vrshrn_n_s32(q3s32, 14); + d30s16 = vrshrn_n_s32(q8s32, 14); + d31s16 = vrshrn_n_s32(q12s32, 14); + *q13s16 = vcombine_s16(d26s16, d27s16); + *q15s16 = vcombine_s16(d30s16, d31s16); + + q0s16 = vaddq_s16(*q9s16, *q15s16); + q1s16 = vaddq_s16(*q11s16, *q13s16); + q2s16 = vsubq_s16(*q11s16, *q13s16); + q3s16 = vsubq_s16(*q9s16, *q15s16); + + *q13s16 = vsubq_s16(q4s16, q5s16); + q4s16 = vaddq_s16(q4s16, q5s16); + *q14s16 = vsubq_s16(q7s16, q6s16); + q7s16 = vaddq_s16(q7s16, q6s16); + d26s16 = vget_low_s16(*q13s16); + d27s16 = vget_high_s16(*q13s16); + d28s16 = vget_low_s16(*q14s16); + d29s16 = vget_high_s16(*q14s16); + + d16s16 = vdup_n_s16(cospi_16_64); + + q9s32 = vmull_s16(d28s16, d16s16); + q10s32 = vmull_s16(d29s16, d16s16); + q11s32 = vmull_s16(d28s16, d16s16); + q12s32 = vmull_s16(d29s16, d16s16); + + q9s32 = vmlsl_s16(q9s32, d26s16, d16s16); + q10s32 = vmlsl_s16(q10s32, d27s16, d16s16); + q11s32 = vmlal_s16(q11s32, d26s16, d16s16); + q12s32 = vmlal_s16(q12s32, d27s16, d16s16); + + d10s16 = vrshrn_n_s32(q9s32, 14); + d11s16 = vrshrn_n_s32(q10s32, 14); + d12s16 = vrshrn_n_s32(q11s32, 14); + d13s16 = vrshrn_n_s32(q12s32, 14); + q5s16 = vcombine_s16(d10s16, d11s16); + q6s16 = vcombine_s16(d12s16, d13s16); + + *q8s16 = vaddq_s16(q0s16, q7s16); + *q9s16 = vaddq_s16(q1s16, q6s16); + *q10s16 = vaddq_s16(q2s16, q5s16); + *q11s16 = vaddq_s16(q3s16, q4s16); + *q12s16 = vsubq_s16(q3s16, q4s16); + *q13s16 = vsubq_s16(q2s16, q5s16); + *q14s16 = vsubq_s16(q1s16, q6s16); + *q15s16 = vsubq_s16(q0s16, q7s16); +} + +static INLINE void IADST8X8_1D(int16x8_t *q8s16, int16x8_t *q9s16, + int16x8_t *q10s16, int16x8_t *q11s16, + int16x8_t *q12s16, int16x8_t *q13s16, + int16x8_t *q14s16, int16x8_t *q15s16) { + int16x4_t d0s16, d1s16, d2s16, d3s16, d4s16, d5s16, d6s16, d7s16; + int16x4_t d8s16, d9s16, d10s16, d11s16, d12s16, d13s16, d14s16, d15s16; + int16x4_t d16s16, d17s16, d18s16, d19s16, d20s16, d21s16, d22s16, d23s16; + int16x4_t d24s16, d25s16, d26s16, d27s16, d28s16, d29s16, d30s16, d31s16; + int16x8_t q2s16, q4s16, q5s16, q6s16; + int32x4_t q0s32, q1s32, q2s32, q3s32, q4s32, q5s32, q6s32, q7s32, q8s32; + int32x4_t q9s32, q10s32, q11s32, q12s32, q13s32, q14s32, q15s32; + + d16s16 = vget_low_s16(*q8s16); + d17s16 = vget_high_s16(*q8s16); + d18s16 = vget_low_s16(*q9s16); + d19s16 = vget_high_s16(*q9s16); + d20s16 = vget_low_s16(*q10s16); + d21s16 = vget_high_s16(*q10s16); + d22s16 = vget_low_s16(*q11s16); + d23s16 = vget_high_s16(*q11s16); + d24s16 = vget_low_s16(*q12s16); + d25s16 = vget_high_s16(*q12s16); + d26s16 = vget_low_s16(*q13s16); + d27s16 = vget_high_s16(*q13s16); + d28s16 = vget_low_s16(*q14s16); + d29s16 = vget_high_s16(*q14s16); + d30s16 = vget_low_s16(*q15s16); + d31s16 = vget_high_s16(*q15s16); + + d14s16 = vdup_n_s16(cospi_2_64); + d15s16 = vdup_n_s16(cospi_30_64); + + q1s32 = vmull_s16(d30s16, d14s16); + q2s32 = vmull_s16(d31s16, d14s16); + q3s32 = vmull_s16(d30s16, d15s16); + q4s32 = vmull_s16(d31s16, d15s16); + + d30s16 = vdup_n_s16(cospi_18_64); + d31s16 = vdup_n_s16(cospi_14_64); + + q1s32 = vmlal_s16(q1s32, d16s16, d15s16); + q2s32 = vmlal_s16(q2s32, d17s16, d15s16); + q3s32 = vmlsl_s16(q3s32, d16s16, d14s16); + q4s32 = vmlsl_s16(q4s32, d17s16, d14s16); + + q5s32 = vmull_s16(d22s16, d30s16); + q6s32 = vmull_s16(d23s16, d30s16); + q7s32 = vmull_s16(d22s16, d31s16); + q8s32 = vmull_s16(d23s16, d31s16); + + q5s32 = vmlal_s16(q5s32, d24s16, d31s16); + q6s32 = vmlal_s16(q6s32, d25s16, d31s16); + q7s32 = vmlsl_s16(q7s32, d24s16, d30s16); + q8s32 = vmlsl_s16(q8s32, d25s16, d30s16); + + q11s32 = vaddq_s32(q1s32, q5s32); + q12s32 = vaddq_s32(q2s32, q6s32); + q1s32 = vsubq_s32(q1s32, q5s32); + q2s32 = vsubq_s32(q2s32, q6s32); + + d22s16 = vrshrn_n_s32(q11s32, 14); + d23s16 = vrshrn_n_s32(q12s32, 14); + *q11s16 = vcombine_s16(d22s16, d23s16); + + q12s32 = vaddq_s32(q3s32, q7s32); + q15s32 = vaddq_s32(q4s32, q8s32); + q3s32 = vsubq_s32(q3s32, q7s32); + q4s32 = vsubq_s32(q4s32, q8s32); + + d2s16 = vrshrn_n_s32(q1s32, 14); + d3s16 = vrshrn_n_s32(q2s32, 14); + d24s16 = vrshrn_n_s32(q12s32, 14); + d25s16 = vrshrn_n_s32(q15s32, 14); + d6s16 = vrshrn_n_s32(q3s32, 14); + d7s16 = vrshrn_n_s32(q4s32, 14); + *q12s16 = vcombine_s16(d24s16, d25s16); + + d0s16 = vdup_n_s16(cospi_10_64); + d1s16 = vdup_n_s16(cospi_22_64); + q4s32 = vmull_s16(d26s16, d0s16); + q5s32 = vmull_s16(d27s16, d0s16); + q2s32 = vmull_s16(d26s16, d1s16); + q6s32 = vmull_s16(d27s16, d1s16); + + d30s16 = vdup_n_s16(cospi_26_64); + d31s16 = vdup_n_s16(cospi_6_64); + + q4s32 = vmlal_s16(q4s32, d20s16, d1s16); + q5s32 = vmlal_s16(q5s32, d21s16, d1s16); + q2s32 = vmlsl_s16(q2s32, d20s16, d0s16); + q6s32 = vmlsl_s16(q6s32, d21s16, d0s16); + + q0s32 = vmull_s16(d18s16, d30s16); + q13s32 = vmull_s16(d19s16, d30s16); + + q0s32 = vmlal_s16(q0s32, d28s16, d31s16); + q13s32 = vmlal_s16(q13s32, d29s16, d31s16); + + q10s32 = vmull_s16(d18s16, d31s16); + q9s32 = vmull_s16(d19s16, d31s16); + + q10s32 = vmlsl_s16(q10s32, d28s16, d30s16); + q9s32 = vmlsl_s16(q9s32, d29s16, d30s16); + + q14s32 = vaddq_s32(q2s32, q10s32); + q15s32 = vaddq_s32(q6s32, q9s32); + q2s32 = vsubq_s32(q2s32, q10s32); + q6s32 = vsubq_s32(q6s32, q9s32); + + d28s16 = vrshrn_n_s32(q14s32, 14); + d29s16 = vrshrn_n_s32(q15s32, 14); + d4s16 = vrshrn_n_s32(q2s32, 14); + d5s16 = vrshrn_n_s32(q6s32, 14); + *q14s16 = vcombine_s16(d28s16, d29s16); + + q9s32 = vaddq_s32(q4s32, q0s32); + q10s32 = vaddq_s32(q5s32, q13s32); + q4s32 = vsubq_s32(q4s32, q0s32); + q5s32 = vsubq_s32(q5s32, q13s32); + + d30s16 = vdup_n_s16(cospi_8_64); + d31s16 = vdup_n_s16(cospi_24_64); + + d18s16 = vrshrn_n_s32(q9s32, 14); + d19s16 = vrshrn_n_s32(q10s32, 14); + d8s16 = vrshrn_n_s32(q4s32, 14); + d9s16 = vrshrn_n_s32(q5s32, 14); + *q9s16 = vcombine_s16(d18s16, d19s16); + + q5s32 = vmull_s16(d2s16, d30s16); + q6s32 = vmull_s16(d3s16, d30s16); + q7s32 = vmull_s16(d2s16, d31s16); + q0s32 = vmull_s16(d3s16, d31s16); + + q5s32 = vmlal_s16(q5s32, d6s16, d31s16); + q6s32 = vmlal_s16(q6s32, d7s16, d31s16); + q7s32 = vmlsl_s16(q7s32, d6s16, d30s16); + q0s32 = vmlsl_s16(q0s32, d7s16, d30s16); + + q1s32 = vmull_s16(d4s16, d30s16); + q3s32 = vmull_s16(d5s16, d30s16); + q10s32 = vmull_s16(d4s16, d31s16); + q2s32 = vmull_s16(d5s16, d31s16); + + q1s32 = vmlsl_s16(q1s32, d8s16, d31s16); + q3s32 = vmlsl_s16(q3s32, d9s16, d31s16); + q10s32 = vmlal_s16(q10s32, d8s16, d30s16); + q2s32 = vmlal_s16(q2s32, d9s16, d30s16); + + *q8s16 = vaddq_s16(*q11s16, *q9s16); + *q11s16 = vsubq_s16(*q11s16, *q9s16); + q4s16 = vaddq_s16(*q12s16, *q14s16); + *q12s16 = vsubq_s16(*q12s16, *q14s16); + + q14s32 = vaddq_s32(q5s32, q1s32); + q15s32 = vaddq_s32(q6s32, q3s32); + q5s32 = vsubq_s32(q5s32, q1s32); + q6s32 = vsubq_s32(q6s32, q3s32); + + d18s16 = vrshrn_n_s32(q14s32, 14); + d19s16 = vrshrn_n_s32(q15s32, 14); + d10s16 = vrshrn_n_s32(q5s32, 14); + d11s16 = vrshrn_n_s32(q6s32, 14); + *q9s16 = vcombine_s16(d18s16, d19s16); + + q1s32 = vaddq_s32(q7s32, q10s32); + q3s32 = vaddq_s32(q0s32, q2s32); + q7s32 = vsubq_s32(q7s32, q10s32); + q0s32 = vsubq_s32(q0s32, q2s32); + + d28s16 = vrshrn_n_s32(q1s32, 14); + d29s16 = vrshrn_n_s32(q3s32, 14); + d14s16 = vrshrn_n_s32(q7s32, 14); + d15s16 = vrshrn_n_s32(q0s32, 14); + *q14s16 = vcombine_s16(d28s16, d29s16); + + d30s16 = vdup_n_s16(cospi_16_64); + + d22s16 = vget_low_s16(*q11s16); + d23s16 = vget_high_s16(*q11s16); + q2s32 = vmull_s16(d22s16, d30s16); + q3s32 = vmull_s16(d23s16, d30s16); + q13s32 = vmull_s16(d22s16, d30s16); + q1s32 = vmull_s16(d23s16, d30s16); + + d24s16 = vget_low_s16(*q12s16); + d25s16 = vget_high_s16(*q12s16); + q2s32 = vmlal_s16(q2s32, d24s16, d30s16); + q3s32 = vmlal_s16(q3s32, d25s16, d30s16); + q13s32 = vmlsl_s16(q13s32, d24s16, d30s16); + q1s32 = vmlsl_s16(q1s32, d25s16, d30s16); + + d4s16 = vrshrn_n_s32(q2s32, 14); + d5s16 = vrshrn_n_s32(q3s32, 14); + d24s16 = vrshrn_n_s32(q13s32, 14); + d25s16 = vrshrn_n_s32(q1s32, 14); + q2s16 = vcombine_s16(d4s16, d5s16); + *q12s16 = vcombine_s16(d24s16, d25s16); + + q13s32 = vmull_s16(d10s16, d30s16); + q1s32 = vmull_s16(d11s16, d30s16); + q11s32 = vmull_s16(d10s16, d30s16); + q0s32 = vmull_s16(d11s16, d30s16); + + q13s32 = vmlal_s16(q13s32, d14s16, d30s16); + q1s32 = vmlal_s16(q1s32, d15s16, d30s16); + q11s32 = vmlsl_s16(q11s32, d14s16, d30s16); + q0s32 = vmlsl_s16(q0s32, d15s16, d30s16); + + d20s16 = vrshrn_n_s32(q13s32, 14); + d21s16 = vrshrn_n_s32(q1s32, 14); + d12s16 = vrshrn_n_s32(q11s32, 14); + d13s16 = vrshrn_n_s32(q0s32, 14); + *q10s16 = vcombine_s16(d20s16, d21s16); + q6s16 = vcombine_s16(d12s16, d13s16); + + q5s16 = vdupq_n_s16(0); + + *q9s16 = vsubq_s16(q5s16, *q9s16); + *q11s16 = vsubq_s16(q5s16, q2s16); + *q13s16 = vsubq_s16(q5s16, q6s16); + *q15s16 = vsubq_s16(q5s16, q4s16); +} + +void vp9_iht8x8_64_add_neon(const tran_low_t *input, uint8_t *dest, int stride, + int tx_type) { + int i; + uint8_t *d1, *d2; + uint8x8_t d0u8, d1u8, d2u8, d3u8; + uint64x1_t d0u64, d1u64, d2u64, d3u64; + int16x8_t q8s16, q9s16, q10s16, q11s16, q12s16, q13s16, q14s16, q15s16; + uint16x8_t q8u16, q9u16, q10u16, q11u16; + + q8s16 = vld1q_s16(input); + q9s16 = vld1q_s16(input + 8); + q10s16 = vld1q_s16(input + 8 * 2); + q11s16 = vld1q_s16(input + 8 * 3); + q12s16 = vld1q_s16(input + 8 * 4); + q13s16 = vld1q_s16(input + 8 * 5); + q14s16 = vld1q_s16(input + 8 * 6); + q15s16 = vld1q_s16(input + 8 * 7); + + transpose_s16_8x8(&q8s16, &q9s16, &q10s16, &q11s16, &q12s16, &q13s16, &q14s16, + &q15s16); + + switch (tx_type) { + case 0: // idct_idct is not supported. Fall back to C + vp9_iht8x8_64_add_c(input, dest, stride, tx_type); + return; + case 1: // iadst_idct + // generate IDCT constants + // GENERATE_IDCT_CONSTANTS + + // first transform rows + IDCT8x8_1D(&q8s16, &q9s16, &q10s16, &q11s16, &q12s16, &q13s16, &q14s16, + &q15s16); + + // transpose the matrix + transpose_s16_8x8(&q8s16, &q9s16, &q10s16, &q11s16, &q12s16, &q13s16, + &q14s16, &q15s16); + + // generate IADST constants + // GENERATE_IADST_CONSTANTS + + // then transform columns + IADST8X8_1D(&q8s16, &q9s16, &q10s16, &q11s16, &q12s16, &q13s16, &q14s16, + &q15s16); + break; + case 2: // idct_iadst + // generate IADST constants + // GENERATE_IADST_CONSTANTS + + // first transform rows + IADST8X8_1D(&q8s16, &q9s16, &q10s16, &q11s16, &q12s16, &q13s16, &q14s16, + &q15s16); + + // transpose the matrix + transpose_s16_8x8(&q8s16, &q9s16, &q10s16, &q11s16, &q12s16, &q13s16, + &q14s16, &q15s16); + + // generate IDCT constants + // GENERATE_IDCT_CONSTANTS + + // then transform columns + IDCT8x8_1D(&q8s16, &q9s16, &q10s16, &q11s16, &q12s16, &q13s16, &q14s16, + &q15s16); + break; + case 3: // iadst_iadst + // generate IADST constants + // GENERATE_IADST_CONSTANTS + + // first transform rows + IADST8X8_1D(&q8s16, &q9s16, &q10s16, &q11s16, &q12s16, &q13s16, &q14s16, + &q15s16); + + // transpose the matrix + transpose_s16_8x8(&q8s16, &q9s16, &q10s16, &q11s16, &q12s16, &q13s16, + &q14s16, &q15s16); + + // then transform columns + IADST8X8_1D(&q8s16, &q9s16, &q10s16, &q11s16, &q12s16, &q13s16, &q14s16, + &q15s16); + break; + default: // iadst_idct + assert(0); + break; + } + + q8s16 = vrshrq_n_s16(q8s16, 5); + q9s16 = vrshrq_n_s16(q9s16, 5); + q10s16 = vrshrq_n_s16(q10s16, 5); + q11s16 = vrshrq_n_s16(q11s16, 5); + q12s16 = vrshrq_n_s16(q12s16, 5); + q13s16 = vrshrq_n_s16(q13s16, 5); + q14s16 = vrshrq_n_s16(q14s16, 5); + q15s16 = vrshrq_n_s16(q15s16, 5); + + for (d1 = d2 = dest, i = 0; i < 2; i++) { + if (i != 0) { + q8s16 = q12s16; + q9s16 = q13s16; + q10s16 = q14s16; + q11s16 = q15s16; + } + + d0u64 = vld1_u64((uint64_t *)d1); + d1 += stride; + d1u64 = vld1_u64((uint64_t *)d1); + d1 += stride; + d2u64 = vld1_u64((uint64_t *)d1); + d1 += stride; + d3u64 = vld1_u64((uint64_t *)d1); + d1 += stride; + + q8u16 = vaddw_u8(vreinterpretq_u16_s16(q8s16), vreinterpret_u8_u64(d0u64)); + q9u16 = vaddw_u8(vreinterpretq_u16_s16(q9s16), vreinterpret_u8_u64(d1u64)); + q10u16 = + vaddw_u8(vreinterpretq_u16_s16(q10s16), vreinterpret_u8_u64(d2u64)); + q11u16 = + vaddw_u8(vreinterpretq_u16_s16(q11s16), vreinterpret_u8_u64(d3u64)); + + d0u8 = vqmovun_s16(vreinterpretq_s16_u16(q8u16)); + d1u8 = vqmovun_s16(vreinterpretq_s16_u16(q9u16)); + d2u8 = vqmovun_s16(vreinterpretq_s16_u16(q10u16)); + d3u8 = vqmovun_s16(vreinterpretq_s16_u16(q11u16)); + + vst1_u64((uint64_t *)d2, vreinterpret_u64_u8(d0u8)); + d2 += stride; + vst1_u64((uint64_t *)d2, vreinterpret_u64_u8(d1u8)); + d2 += stride; + vst1_u64((uint64_t *)d2, vreinterpret_u64_u8(d2u8)); + d2 += stride; + vst1_u64((uint64_t *)d2, vreinterpret_u64_u8(d3u8)); + d2 += stride; + } +} diff --git a/vp9/common/mips/dspr2/vp9_itrans16_dspr2.c b/vp9/common/mips/dspr2/vp9_itrans16_dspr2.c new file mode 100644 index 0000000..e68d01e --- /dev/null +++ b/vp9/common/mips/dspr2/vp9_itrans16_dspr2.c @@ -0,0 +1,98 @@ +/* + * Copyright (c) 2013 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include + +#include "./vpx_config.h" +#include "./vp9_rtcd.h" +#include "vp9/common/vp9_common.h" +#include "vp9/common/vp9_blockd.h" +#include "vp9/common/vp9_idct.h" +#include "vpx_dsp/mips/inv_txfm_dspr2.h" +#include "vpx_dsp/txfm_common.h" +#include "vpx_ports/mem.h" + +#if HAVE_DSPR2 +void vp9_iht16x16_256_add_dspr2(const int16_t *input, uint8_t *dest, int pitch, + int tx_type) { + int i, j; + DECLARE_ALIGNED(32, int16_t, out[16 * 16]); + int16_t *outptr = out; + int16_t temp_out[16]; + uint32_t pos = 45; + + /* bit positon for extract from acc */ + __asm__ __volatile__("wrdsp %[pos], 1 \n\t" : : [pos] "r"(pos)); + + switch (tx_type) { + case DCT_DCT: // DCT in both horizontal and vertical + idct16_rows_dspr2(input, outptr, 16); + idct16_cols_add_blk_dspr2(out, dest, pitch); + break; + case ADST_DCT: // ADST in vertical, DCT in horizontal + idct16_rows_dspr2(input, outptr, 16); + + outptr = out; + + for (i = 0; i < 16; ++i) { + iadst16_dspr2(outptr, temp_out); + + for (j = 0; j < 16; ++j) + dest[j * pitch + i] = clip_pixel(ROUND_POWER_OF_TWO(temp_out[j], 6) + + dest[j * pitch + i]); + outptr += 16; + } + break; + case DCT_ADST: // DCT in vertical, ADST in horizontal + { + int16_t temp_in[16 * 16]; + + for (i = 0; i < 16; ++i) { + /* prefetch row */ + prefetch_load((const uint8_t *)(input + 16)); + + iadst16_dspr2(input, outptr); + input += 16; + outptr += 16; + } + + for (i = 0; i < 16; ++i) + for (j = 0; j < 16; ++j) temp_in[j * 16 + i] = out[i * 16 + j]; + + idct16_cols_add_blk_dspr2(temp_in, dest, pitch); + break; + } + case ADST_ADST: // ADST in both directions + { + int16_t temp_in[16]; + + for (i = 0; i < 16; ++i) { + /* prefetch row */ + prefetch_load((const uint8_t *)(input + 16)); + + iadst16_dspr2(input, outptr); + input += 16; + outptr += 16; + } + + for (i = 0; i < 16; ++i) { + for (j = 0; j < 16; ++j) temp_in[j] = out[j * 16 + i]; + iadst16_dspr2(temp_in, temp_out); + for (j = 0; j < 16; ++j) + dest[j * pitch + i] = clip_pixel(ROUND_POWER_OF_TWO(temp_out[j], 6) + + dest[j * pitch + i]); + } + break; + } + default: printf("vp9_short_iht16x16_add_dspr2 : Invalid tx_type\n"); break; + } +} +#endif // #if HAVE_DSPR2 diff --git a/vp9/common/mips/dspr2/vp9_itrans4_dspr2.c b/vp9/common/mips/dspr2/vp9_itrans4_dspr2.c new file mode 100644 index 0000000..f6b2926 --- /dev/null +++ b/vp9/common/mips/dspr2/vp9_itrans4_dspr2.c @@ -0,0 +1,90 @@ +/* + * Copyright (c) 2013 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include + +#include "./vpx_config.h" +#include "./vp9_rtcd.h" +#include "vp9/common/vp9_common.h" +#include "vp9/common/vp9_blockd.h" +#include "vp9/common/vp9_idct.h" +#include "vpx_dsp/mips/inv_txfm_dspr2.h" +#include "vpx_dsp/txfm_common.h" +#include "vpx_ports/mem.h" + +#if HAVE_DSPR2 +void vp9_iht4x4_16_add_dspr2(const int16_t *input, uint8_t *dest, int stride, + int tx_type) { + int i, j; + DECLARE_ALIGNED(32, int16_t, out[4 * 4]); + int16_t *outptr = out; + int16_t temp_in[4 * 4], temp_out[4]; + uint32_t pos = 45; + + /* bit positon for extract from acc */ + __asm__ __volatile__("wrdsp %[pos], 1 \n\t" + : + : [pos] "r"(pos)); + + switch (tx_type) { + case DCT_DCT: // DCT in both horizontal and vertical + vpx_idct4_rows_dspr2(input, outptr); + vpx_idct4_columns_add_blk_dspr2(&out[0], dest, stride); + break; + case ADST_DCT: // ADST in vertical, DCT in horizontal + vpx_idct4_rows_dspr2(input, outptr); + + outptr = out; + + for (i = 0; i < 4; ++i) { + iadst4_dspr2(outptr, temp_out); + + for (j = 0; j < 4; ++j) + dest[j * stride + i] = clip_pixel(ROUND_POWER_OF_TWO(temp_out[j], 4) + + dest[j * stride + i]); + + outptr += 4; + } + break; + case DCT_ADST: // DCT in vertical, ADST in horizontal + for (i = 0; i < 4; ++i) { + iadst4_dspr2(input, outptr); + input += 4; + outptr += 4; + } + + for (i = 0; i < 4; ++i) { + for (j = 0; j < 4; ++j) { + temp_in[i * 4 + j] = out[j * 4 + i]; + } + } + vpx_idct4_columns_add_blk_dspr2(&temp_in[0], dest, stride); + break; + case ADST_ADST: // ADST in both directions + for (i = 0; i < 4; ++i) { + iadst4_dspr2(input, outptr); + input += 4; + outptr += 4; + } + + for (i = 0; i < 4; ++i) { + for (j = 0; j < 4; ++j) temp_in[j] = out[j * 4 + i]; + iadst4_dspr2(temp_in, temp_out); + + for (j = 0; j < 4; ++j) + dest[j * stride + i] = clip_pixel(ROUND_POWER_OF_TWO(temp_out[j], 4) + + dest[j * stride + i]); + } + break; + default: printf("vp9_short_iht4x4_add_dspr2 : Invalid tx_type\n"); break; + } +} +#endif // #if HAVE_DSPR2 diff --git a/vp9/common/mips/dspr2/vp9_itrans8_dspr2.c b/vp9/common/mips/dspr2/vp9_itrans8_dspr2.c new file mode 100644 index 0000000..b945e30 --- /dev/null +++ b/vp9/common/mips/dspr2/vp9_itrans8_dspr2.c @@ -0,0 +1,84 @@ +/* + * Copyright (c) 2013 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include + +#include "./vpx_config.h" +#include "./vp9_rtcd.h" +#include "vp9/common/vp9_common.h" +#include "vp9/common/vp9_blockd.h" +#include "vpx_dsp/mips/inv_txfm_dspr2.h" +#include "vpx_dsp/txfm_common.h" +#include "vpx_ports/mem.h" + +#if HAVE_DSPR2 +void vp9_iht8x8_64_add_dspr2(const int16_t *input, uint8_t *dest, int stride, + int tx_type) { + int i, j; + DECLARE_ALIGNED(32, int16_t, out[8 * 8]); + int16_t *outptr = out; + int16_t temp_in[8 * 8], temp_out[8]; + uint32_t pos = 45; + + /* bit positon for extract from acc */ + __asm__ __volatile__("wrdsp %[pos], 1 \n\t" : : [pos] "r"(pos)); + + switch (tx_type) { + case DCT_DCT: // DCT in both horizontal and vertical + idct8_rows_dspr2(input, outptr, 8); + idct8_columns_add_blk_dspr2(&out[0], dest, stride); + break; + case ADST_DCT: // ADST in vertical, DCT in horizontal + idct8_rows_dspr2(input, outptr, 8); + + for (i = 0; i < 8; ++i) { + iadst8_dspr2(&out[i * 8], temp_out); + + for (j = 0; j < 8; ++j) + dest[j * stride + i] = clip_pixel(ROUND_POWER_OF_TWO(temp_out[j], 5) + + dest[j * stride + i]); + } + break; + case DCT_ADST: // DCT in vertical, ADST in horizontal + for (i = 0; i < 8; ++i) { + iadst8_dspr2(input, outptr); + input += 8; + outptr += 8; + } + + for (i = 0; i < 8; ++i) { + for (j = 0; j < 8; ++j) { + temp_in[i * 8 + j] = out[j * 8 + i]; + } + } + idct8_columns_add_blk_dspr2(&temp_in[0], dest, stride); + break; + case ADST_ADST: // ADST in both directions + for (i = 0; i < 8; ++i) { + iadst8_dspr2(input, outptr); + input += 8; + outptr += 8; + } + + for (i = 0; i < 8; ++i) { + for (j = 0; j < 8; ++j) temp_in[j] = out[j * 8 + i]; + + iadst8_dspr2(temp_in, temp_out); + + for (j = 0; j < 8; ++j) + dest[j * stride + i] = clip_pixel(ROUND_POWER_OF_TWO(temp_out[j], 5) + + dest[j * stride + i]); + } + break; + default: printf("vp9_short_iht8x8_add_dspr2 : Invalid tx_type\n"); break; + } +} +#endif // #if HAVE_DSPR2 diff --git a/vp9/common/mips/msa/vp9_idct16x16_msa.c b/vp9/common/mips/msa/vp9_idct16x16_msa.c new file mode 100644 index 0000000..3e35301 --- /dev/null +++ b/vp9/common/mips/msa/vp9_idct16x16_msa.c @@ -0,0 +1,79 @@ +/* + * Copyright (c) 2015 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include + +#include "vp9/common/vp9_enums.h" +#include "vpx_dsp/mips/inv_txfm_msa.h" + +void vp9_iht16x16_256_add_msa(const int16_t *input, uint8_t *dst, + int32_t dst_stride, int32_t tx_type) { + int32_t i; + DECLARE_ALIGNED(32, int16_t, out[16 * 16]); + int16_t *out_ptr = &out[0]; + + switch (tx_type) { + case DCT_DCT: + /* transform rows */ + for (i = 0; i < 2; ++i) { + /* process 16 * 8 block */ + vpx_idct16_1d_rows_msa((input + (i << 7)), (out_ptr + (i << 7))); + } + + /* transform columns */ + for (i = 0; i < 2; ++i) { + /* process 8 * 16 block */ + vpx_idct16_1d_columns_addblk_msa((out_ptr + (i << 3)), (dst + (i << 3)), + dst_stride); + } + break; + case ADST_DCT: + /* transform rows */ + for (i = 0; i < 2; ++i) { + /* process 16 * 8 block */ + vpx_idct16_1d_rows_msa((input + (i << 7)), (out_ptr + (i << 7))); + } + + /* transform columns */ + for (i = 0; i < 2; ++i) { + vpx_iadst16_1d_columns_addblk_msa((out_ptr + (i << 3)), + (dst + (i << 3)), dst_stride); + } + break; + case DCT_ADST: + /* transform rows */ + for (i = 0; i < 2; ++i) { + /* process 16 * 8 block */ + vpx_iadst16_1d_rows_msa((input + (i << 7)), (out_ptr + (i << 7))); + } + + /* transform columns */ + for (i = 0; i < 2; ++i) { + /* process 8 * 16 block */ + vpx_idct16_1d_columns_addblk_msa((out_ptr + (i << 3)), (dst + (i << 3)), + dst_stride); + } + break; + case ADST_ADST: + /* transform rows */ + for (i = 0; i < 2; ++i) { + /* process 16 * 8 block */ + vpx_iadst16_1d_rows_msa((input + (i << 7)), (out_ptr + (i << 7))); + } + + /* transform columns */ + for (i = 0; i < 2; ++i) { + vpx_iadst16_1d_columns_addblk_msa((out_ptr + (i << 3)), + (dst + (i << 3)), dst_stride); + } + break; + default: assert(0); break; + } +} diff --git a/vp9/common/mips/msa/vp9_idct4x4_msa.c b/vp9/common/mips/msa/vp9_idct4x4_msa.c new file mode 100644 index 0000000..786fbdb --- /dev/null +++ b/vp9/common/mips/msa/vp9_idct4x4_msa.c @@ -0,0 +1,60 @@ +/* + * Copyright (c) 2015 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include + +#include "vp9/common/vp9_enums.h" +#include "vpx_dsp/mips/inv_txfm_msa.h" + +void vp9_iht4x4_16_add_msa(const int16_t *input, uint8_t *dst, + int32_t dst_stride, int32_t tx_type) { + v8i16 in0, in1, in2, in3; + + /* load vector elements of 4x4 block */ + LD4x4_SH(input, in0, in1, in2, in3); + TRANSPOSE4x4_SH_SH(in0, in1, in2, in3, in0, in1, in2, in3); + + switch (tx_type) { + case DCT_DCT: + /* DCT in horizontal */ + VP9_IDCT4x4(in0, in1, in2, in3, in0, in1, in2, in3); + /* DCT in vertical */ + TRANSPOSE4x4_SH_SH(in0, in1, in2, in3, in0, in1, in2, in3); + VP9_IDCT4x4(in0, in1, in2, in3, in0, in1, in2, in3); + break; + case ADST_DCT: + /* DCT in horizontal */ + VP9_IDCT4x4(in0, in1, in2, in3, in0, in1, in2, in3); + /* ADST in vertical */ + TRANSPOSE4x4_SH_SH(in0, in1, in2, in3, in0, in1, in2, in3); + VP9_IADST4x4(in0, in1, in2, in3, in0, in1, in2, in3); + break; + case DCT_ADST: + /* ADST in horizontal */ + VP9_IADST4x4(in0, in1, in2, in3, in0, in1, in2, in3); + /* DCT in vertical */ + TRANSPOSE4x4_SH_SH(in0, in1, in2, in3, in0, in1, in2, in3); + VP9_IDCT4x4(in0, in1, in2, in3, in0, in1, in2, in3); + break; + case ADST_ADST: + /* ADST in horizontal */ + VP9_IADST4x4(in0, in1, in2, in3, in0, in1, in2, in3); + /* ADST in vertical */ + TRANSPOSE4x4_SH_SH(in0, in1, in2, in3, in0, in1, in2, in3); + VP9_IADST4x4(in0, in1, in2, in3, in0, in1, in2, in3); + break; + default: assert(0); break; + } + + /* final rounding (add 2^3, divide by 2^4) and shift */ + SRARI_H4_SH(in0, in1, in2, in3, 4); + /* add block and store 4x4 */ + ADDBLK_ST4x4_UB(in0, in1, in2, in3, dst, dst_stride); +} diff --git a/vp9/common/mips/msa/vp9_idct8x8_msa.c b/vp9/common/mips/msa/vp9_idct8x8_msa.c new file mode 100644 index 0000000..e416677 --- /dev/null +++ b/vp9/common/mips/msa/vp9_idct8x8_msa.c @@ -0,0 +1,78 @@ +/* + * Copyright (c) 2015 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include + +#include "vp9/common/vp9_enums.h" +#include "vpx_dsp/mips/inv_txfm_msa.h" + +void vp9_iht8x8_64_add_msa(const int16_t *input, uint8_t *dst, + int32_t dst_stride, int32_t tx_type) { + v8i16 in0, in1, in2, in3, in4, in5, in6, in7; + + /* load vector elements of 8x8 block */ + LD_SH8(input, 8, in0, in1, in2, in3, in4, in5, in6, in7); + + TRANSPOSE8x8_SH_SH(in0, in1, in2, in3, in4, in5, in6, in7, in0, in1, in2, in3, + in4, in5, in6, in7); + + switch (tx_type) { + case DCT_DCT: + /* DCT in horizontal */ + VP9_IDCT8x8_1D(in0, in1, in2, in3, in4, in5, in6, in7, in0, in1, in2, in3, + in4, in5, in6, in7); + /* DCT in vertical */ + TRANSPOSE8x8_SH_SH(in0, in1, in2, in3, in4, in5, in6, in7, in0, in1, in2, + in3, in4, in5, in6, in7); + VP9_IDCT8x8_1D(in0, in1, in2, in3, in4, in5, in6, in7, in0, in1, in2, in3, + in4, in5, in6, in7); + break; + case ADST_DCT: + /* DCT in horizontal */ + VP9_IDCT8x8_1D(in0, in1, in2, in3, in4, in5, in6, in7, in0, in1, in2, in3, + in4, in5, in6, in7); + /* ADST in vertical */ + TRANSPOSE8x8_SH_SH(in0, in1, in2, in3, in4, in5, in6, in7, in0, in1, in2, + in3, in4, in5, in6, in7); + VP9_ADST8(in0, in1, in2, in3, in4, in5, in6, in7, in0, in1, in2, in3, in4, + in5, in6, in7); + break; + case DCT_ADST: + /* ADST in horizontal */ + VP9_ADST8(in0, in1, in2, in3, in4, in5, in6, in7, in0, in1, in2, in3, in4, + in5, in6, in7); + /* DCT in vertical */ + TRANSPOSE8x8_SH_SH(in0, in1, in2, in3, in4, in5, in6, in7, in0, in1, in2, + in3, in4, in5, in6, in7); + VP9_IDCT8x8_1D(in0, in1, in2, in3, in4, in5, in6, in7, in0, in1, in2, in3, + in4, in5, in6, in7); + break; + case ADST_ADST: + /* ADST in horizontal */ + VP9_ADST8(in0, in1, in2, in3, in4, in5, in6, in7, in0, in1, in2, in3, in4, + in5, in6, in7); + /* ADST in vertical */ + TRANSPOSE8x8_SH_SH(in0, in1, in2, in3, in4, in5, in6, in7, in0, in1, in2, + in3, in4, in5, in6, in7); + VP9_ADST8(in0, in1, in2, in3, in4, in5, in6, in7, in0, in1, in2, in3, in4, + in5, in6, in7); + break; + default: assert(0); break; + } + + /* final rounding (add 2^4, divide by 2^5) and shift */ + SRARI_H4_SH(in0, in1, in2, in3, 5); + SRARI_H4_SH(in4, in5, in6, in7, 5); + + /* add block and store 8x8 */ + VP9_ADDBLK_ST8x4_UB(dst, dst_stride, in0, in1, in2, in3); + dst += (4 * dst_stride); + VP9_ADDBLK_ST8x4_UB(dst, dst_stride, in4, in5, in6, in7); +} diff --git a/vp9/common/mips/msa/vp9_mfqe_msa.c b/vp9/common/mips/msa/vp9_mfqe_msa.c new file mode 100644 index 0000000..2c38409 --- /dev/null +++ b/vp9/common/mips/msa/vp9_mfqe_msa.c @@ -0,0 +1,134 @@ +/* + * Copyright (c) 2015 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "./vp9_rtcd.h" +#include "vp9/common/vp9_onyxc_int.h" +#include "vpx_dsp/mips/macros_msa.h" + +static void filter_by_weight8x8_msa(const uint8_t *src_ptr, int32_t src_stride, + uint8_t *dst_ptr, int32_t dst_stride, + int32_t src_weight) { + int32_t dst_weight = (1 << MFQE_PRECISION) - src_weight; + int32_t row; + uint64_t src0_d, src1_d, dst0_d, dst1_d; + v16i8 src0 = { 0 }; + v16i8 src1 = { 0 }; + v16i8 dst0 = { 0 }; + v16i8 dst1 = { 0 }; + v8i16 src_wt, dst_wt, res_h_r, res_h_l, src_r, src_l, dst_r, dst_l; + + src_wt = __msa_fill_h(src_weight); + dst_wt = __msa_fill_h(dst_weight); + + for (row = 2; row--;) { + LD2(src_ptr, src_stride, src0_d, src1_d); + src_ptr += (2 * src_stride); + LD2(dst_ptr, dst_stride, dst0_d, dst1_d); + INSERT_D2_SB(src0_d, src1_d, src0); + INSERT_D2_SB(dst0_d, dst1_d, dst0); + + LD2(src_ptr, src_stride, src0_d, src1_d); + src_ptr += (2 * src_stride); + LD2((dst_ptr + 2 * dst_stride), dst_stride, dst0_d, dst1_d); + INSERT_D2_SB(src0_d, src1_d, src1); + INSERT_D2_SB(dst0_d, dst1_d, dst1); + + UNPCK_UB_SH(src0, src_r, src_l); + UNPCK_UB_SH(dst0, dst_r, dst_l); + res_h_r = (src_r * src_wt); + res_h_r += (dst_r * dst_wt); + res_h_l = (src_l * src_wt); + res_h_l += (dst_l * dst_wt); + SRARI_H2_SH(res_h_r, res_h_l, MFQE_PRECISION); + dst0 = (v16i8)__msa_pckev_b((v16i8)res_h_l, (v16i8)res_h_r); + ST8x2_UB(dst0, dst_ptr, dst_stride); + dst_ptr += (2 * dst_stride); + + UNPCK_UB_SH(src1, src_r, src_l); + UNPCK_UB_SH(dst1, dst_r, dst_l); + res_h_r = (src_r * src_wt); + res_h_r += (dst_r * dst_wt); + res_h_l = (src_l * src_wt); + res_h_l += (dst_l * dst_wt); + SRARI_H2_SH(res_h_r, res_h_l, MFQE_PRECISION); + dst1 = (v16i8)__msa_pckev_b((v16i8)res_h_l, (v16i8)res_h_r); + ST8x2_UB(dst1, dst_ptr, dst_stride); + dst_ptr += (2 * dst_stride); + } +} + +static void filter_by_weight16x16_msa(const uint8_t *src_ptr, + int32_t src_stride, uint8_t *dst_ptr, + int32_t dst_stride, int32_t src_weight) { + int32_t dst_weight = (1 << MFQE_PRECISION) - src_weight; + int32_t row; + v16i8 src0, src1, src2, src3, dst0, dst1, dst2, dst3; + v8i16 src_wt, dst_wt, res_h_r, res_h_l, src_r, src_l, dst_r, dst_l; + + src_wt = __msa_fill_h(src_weight); + dst_wt = __msa_fill_h(dst_weight); + + for (row = 4; row--;) { + LD_SB4(src_ptr, src_stride, src0, src1, src2, src3); + src_ptr += (4 * src_stride); + LD_SB4(dst_ptr, dst_stride, dst0, dst1, dst2, dst3); + + UNPCK_UB_SH(src0, src_r, src_l); + UNPCK_UB_SH(dst0, dst_r, dst_l); + res_h_r = (src_r * src_wt); + res_h_r += (dst_r * dst_wt); + res_h_l = (src_l * src_wt); + res_h_l += (dst_l * dst_wt); + SRARI_H2_SH(res_h_r, res_h_l, MFQE_PRECISION); + PCKEV_ST_SB(res_h_r, res_h_l, dst_ptr); + dst_ptr += dst_stride; + + UNPCK_UB_SH(src1, src_r, src_l); + UNPCK_UB_SH(dst1, dst_r, dst_l); + res_h_r = (src_r * src_wt); + res_h_r += (dst_r * dst_wt); + res_h_l = (src_l * src_wt); + res_h_l += (dst_l * dst_wt); + SRARI_H2_SH(res_h_r, res_h_l, MFQE_PRECISION); + PCKEV_ST_SB(res_h_r, res_h_l, dst_ptr); + dst_ptr += dst_stride; + + UNPCK_UB_SH(src2, src_r, src_l); + UNPCK_UB_SH(dst2, dst_r, dst_l); + res_h_r = (src_r * src_wt); + res_h_r += (dst_r * dst_wt); + res_h_l = (src_l * src_wt); + res_h_l += (dst_l * dst_wt); + SRARI_H2_SH(res_h_r, res_h_l, MFQE_PRECISION); + PCKEV_ST_SB(res_h_r, res_h_l, dst_ptr); + dst_ptr += dst_stride; + + UNPCK_UB_SH(src3, src_r, src_l); + UNPCK_UB_SH(dst3, dst_r, dst_l); + res_h_r = (src_r * src_wt); + res_h_r += (dst_r * dst_wt); + res_h_l = (src_l * src_wt); + res_h_l += (dst_l * dst_wt); + SRARI_H2_SH(res_h_r, res_h_l, MFQE_PRECISION); + PCKEV_ST_SB(res_h_r, res_h_l, dst_ptr); + dst_ptr += dst_stride; + } +} + +void vp9_filter_by_weight8x8_msa(const uint8_t *src, int src_stride, + uint8_t *dst, int dst_stride, int src_weight) { + filter_by_weight8x8_msa(src, src_stride, dst, dst_stride, src_weight); +} + +void vp9_filter_by_weight16x16_msa(const uint8_t *src, int src_stride, + uint8_t *dst, int dst_stride, + int src_weight) { + filter_by_weight16x16_msa(src, src_stride, dst, dst_stride, src_weight); +} diff --git a/vp9/common/vp9_alloccommon.c b/vp9/common/vp9_alloccommon.c new file mode 100644 index 0000000..7345e25 --- /dev/null +++ b/vp9/common/vp9_alloccommon.c @@ -0,0 +1,183 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "./vpx_config.h" +#include "vpx_mem/vpx_mem.h" + +#include "vp9/common/vp9_alloccommon.h" +#include "vp9/common/vp9_blockd.h" +#include "vp9/common/vp9_entropymode.h" +#include "vp9/common/vp9_entropymv.h" +#include "vp9/common/vp9_onyxc_int.h" + +void vp9_set_mb_mi(VP9_COMMON *cm, int width, int height) { + const int aligned_width = ALIGN_POWER_OF_TWO(width, MI_SIZE_LOG2); + const int aligned_height = ALIGN_POWER_OF_TWO(height, MI_SIZE_LOG2); + + cm->mi_cols = aligned_width >> MI_SIZE_LOG2; + cm->mi_rows = aligned_height >> MI_SIZE_LOG2; + cm->mi_stride = calc_mi_size(cm->mi_cols); + + cm->mb_cols = (cm->mi_cols + 1) >> 1; + cm->mb_rows = (cm->mi_rows + 1) >> 1; + cm->MBs = cm->mb_rows * cm->mb_cols; +} + +static int alloc_seg_map(VP9_COMMON *cm, int seg_map_size) { + int i; + + for (i = 0; i < NUM_PING_PONG_BUFFERS; ++i) { + cm->seg_map_array[i] = (uint8_t *)vpx_calloc(seg_map_size, 1); + if (cm->seg_map_array[i] == NULL) return 1; + } + cm->seg_map_alloc_size = seg_map_size; + + // Init the index. + cm->seg_map_idx = 0; + cm->prev_seg_map_idx = 1; + + cm->current_frame_seg_map = cm->seg_map_array[cm->seg_map_idx]; + cm->last_frame_seg_map = cm->seg_map_array[cm->prev_seg_map_idx]; + + return 0; +} + +static void free_seg_map(VP9_COMMON *cm) { + int i; + + for (i = 0; i < NUM_PING_PONG_BUFFERS; ++i) { + vpx_free(cm->seg_map_array[i]); + cm->seg_map_array[i] = NULL; + } + + cm->current_frame_seg_map = NULL; + cm->last_frame_seg_map = NULL; +} + +void vp9_free_ref_frame_buffers(BufferPool *pool) { + int i; + + for (i = 0; i < FRAME_BUFFERS; ++i) { + if (!pool->frame_bufs[i].released && + pool->frame_bufs[i].raw_frame_buffer.data != NULL) { + pool->release_fb_cb(pool->cb_priv, &pool->frame_bufs[i].raw_frame_buffer); + pool->frame_bufs[i].ref_count = 0; + pool->frame_bufs[i].released = 1; + } + vpx_free(pool->frame_bufs[i].mvs); + pool->frame_bufs[i].mvs = NULL; + vpx_free_frame_buffer(&pool->frame_bufs[i].buf); + } +} + +void vp9_free_postproc_buffers(VP9_COMMON *cm) { +#if CONFIG_VP9_POSTPROC + vpx_free_frame_buffer(&cm->post_proc_buffer); + vpx_free_frame_buffer(&cm->post_proc_buffer_int); + vpx_free(cm->postproc_state.limits); + cm->postproc_state.limits = NULL; + vpx_free(cm->postproc_state.generated_noise); + cm->postproc_state.generated_noise = NULL; +#else + (void)cm; +#endif +} + +void vp9_free_context_buffers(VP9_COMMON *cm) { + cm->free_mi(cm); + free_seg_map(cm); + vpx_free(cm->above_context); + cm->above_context = NULL; + vpx_free(cm->above_seg_context); + cm->above_seg_context = NULL; + vpx_free(cm->lf.lfm); + cm->lf.lfm = NULL; +} + +int vp9_alloc_loop_filter(VP9_COMMON *cm) { + vpx_free(cm->lf.lfm); + // Each lfm holds bit masks for all the 8x8 blocks in a 64x64 region. The + // stride and rows are rounded up / truncated to a multiple of 8. + cm->lf.lfm_stride = (cm->mi_cols + (MI_BLOCK_SIZE - 1)) >> 3; + cm->lf.lfm = (LOOP_FILTER_MASK *)vpx_calloc( + ((cm->mi_rows + (MI_BLOCK_SIZE - 1)) >> 3) * cm->lf.lfm_stride, + sizeof(*cm->lf.lfm)); + if (!cm->lf.lfm) return 1; + return 0; +} + +int vp9_alloc_context_buffers(VP9_COMMON *cm, int width, int height) { + int new_mi_size; + + vp9_set_mb_mi(cm, width, height); + new_mi_size = cm->mi_stride * calc_mi_size(cm->mi_rows); + if (cm->mi_alloc_size < new_mi_size) { + cm->free_mi(cm); + if (cm->alloc_mi(cm, new_mi_size)) goto fail; + } + + if (cm->seg_map_alloc_size < cm->mi_rows * cm->mi_cols) { + // Create the segmentation map structure and set to 0. + free_seg_map(cm); + if (alloc_seg_map(cm, cm->mi_rows * cm->mi_cols)) goto fail; + } + + if (cm->above_context_alloc_cols < cm->mi_cols) { + vpx_free(cm->above_context); + cm->above_context = (ENTROPY_CONTEXT *)vpx_calloc( + 2 * mi_cols_aligned_to_sb(cm->mi_cols) * MAX_MB_PLANE, + sizeof(*cm->above_context)); + if (!cm->above_context) goto fail; + + vpx_free(cm->above_seg_context); + cm->above_seg_context = (PARTITION_CONTEXT *)vpx_calloc( + mi_cols_aligned_to_sb(cm->mi_cols), sizeof(*cm->above_seg_context)); + if (!cm->above_seg_context) goto fail; + cm->above_context_alloc_cols = cm->mi_cols; + } + + if (vp9_alloc_loop_filter(cm)) goto fail; + + return 0; + +fail: + // clear the mi_* values to force a realloc on resync + vp9_set_mb_mi(cm, 0, 0); + vp9_free_context_buffers(cm); + return 1; +} + +void vp9_remove_common(VP9_COMMON *cm) { +#if CONFIG_VP9_POSTPROC + vp9_free_postproc_buffers(cm); +#endif + vp9_free_context_buffers(cm); + + vpx_free(cm->fc); + cm->fc = NULL; + vpx_free(cm->frame_contexts); + cm->frame_contexts = NULL; +} + +void vp9_init_context_buffers(VP9_COMMON *cm) { + cm->setup_mi(cm); + if (cm->last_frame_seg_map) + memset(cm->last_frame_seg_map, 0, cm->mi_rows * cm->mi_cols); +} + +void vp9_swap_current_and_last_seg_map(VP9_COMMON *cm) { + // Swap indices. + const int tmp = cm->seg_map_idx; + cm->seg_map_idx = cm->prev_seg_map_idx; + cm->prev_seg_map_idx = tmp; + + cm->current_frame_seg_map = cm->seg_map_array[cm->seg_map_idx]; + cm->last_frame_seg_map = cm->seg_map_array[cm->prev_seg_map_idx]; +} diff --git a/vp9/common/vp9_alloccommon.h b/vp9/common/vp9_alloccommon.h new file mode 100644 index 0000000..a3a1638 --- /dev/null +++ b/vp9/common/vp9_alloccommon.h @@ -0,0 +1,44 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP9_COMMON_VP9_ALLOCCOMMON_H_ +#define VP9_COMMON_VP9_ALLOCCOMMON_H_ + +#define INVALID_IDX -1 // Invalid buffer index. + +#ifdef __cplusplus +extern "C" { +#endif + +struct VP9Common; +struct BufferPool; + +void vp9_remove_common(struct VP9Common *cm); + +int vp9_alloc_loop_filter(struct VP9Common *cm); +int vp9_alloc_context_buffers(struct VP9Common *cm, int width, int height); +void vp9_init_context_buffers(struct VP9Common *cm); +void vp9_free_context_buffers(struct VP9Common *cm); + +void vp9_free_ref_frame_buffers(struct BufferPool *pool); +void vp9_free_postproc_buffers(struct VP9Common *cm); + +int vp9_alloc_state_buffers(struct VP9Common *cm, int width, int height); +void vp9_free_state_buffers(struct VP9Common *cm); + +void vp9_set_mb_mi(struct VP9Common *cm, int width, int height); + +void vp9_swap_current_and_last_seg_map(struct VP9Common *cm); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP9_COMMON_VP9_ALLOCCOMMON_H_ diff --git a/vp9/common/vp9_blockd.c b/vp9/common/vp9_blockd.c new file mode 100644 index 0000000..4327599 --- /dev/null +++ b/vp9/common/vp9_blockd.c @@ -0,0 +1,131 @@ +/* + * Copyright (c) 2014 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "vp9/common/vp9_blockd.h" + +PREDICTION_MODE vp9_left_block_mode(const MODE_INFO *cur_mi, + const MODE_INFO *left_mi, int b) { + if (b == 0 || b == 2) { + if (!left_mi || is_inter_block(left_mi)) return DC_PRED; + + return get_y_mode(left_mi, b + 1); + } else { + assert(b == 1 || b == 3); + return cur_mi->bmi[b - 1].as_mode; + } +} + +PREDICTION_MODE vp9_above_block_mode(const MODE_INFO *cur_mi, + const MODE_INFO *above_mi, int b) { + if (b == 0 || b == 1) { + if (!above_mi || is_inter_block(above_mi)) return DC_PRED; + + return get_y_mode(above_mi, b + 2); + } else { + assert(b == 2 || b == 3); + return cur_mi->bmi[b - 2].as_mode; + } +} + +void vp9_foreach_transformed_block_in_plane( + const MACROBLOCKD *const xd, BLOCK_SIZE bsize, int plane, + foreach_transformed_block_visitor visit, void *arg) { + const struct macroblockd_plane *const pd = &xd->plane[plane]; + const MODE_INFO *mi = xd->mi[0]; + // block and transform sizes, in number of 4x4 blocks log 2 ("*_b") + // 4x4=0, 8x8=2, 16x16=4, 32x32=6, 64x64=8 + // transform size varies per plane, look it up in a common way. + const TX_SIZE tx_size = plane ? get_uv_tx_size(mi, pd) : mi->tx_size; + const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd); + const int num_4x4_w = num_4x4_blocks_wide_lookup[plane_bsize]; + const int num_4x4_h = num_4x4_blocks_high_lookup[plane_bsize]; + const int step = 1 << (tx_size << 1); + int i = 0, r, c; + + // If mb_to_right_edge is < 0 we are in a situation in which + // the current block size extends into the UMV and we won't + // visit the sub blocks that are wholly within the UMV. + const int max_blocks_wide = + num_4x4_w + (xd->mb_to_right_edge >= 0 + ? 0 + : xd->mb_to_right_edge >> (5 + pd->subsampling_x)); + const int max_blocks_high = + num_4x4_h + (xd->mb_to_bottom_edge >= 0 + ? 0 + : xd->mb_to_bottom_edge >> (5 + pd->subsampling_y)); + const int extra_step = ((num_4x4_w - max_blocks_wide) >> tx_size) * step; + + // Keep track of the row and column of the blocks we use so that we know + // if we are in the unrestricted motion border. + for (r = 0; r < max_blocks_high; r += (1 << tx_size)) { + // Skip visiting the sub blocks that are wholly within the UMV. + for (c = 0; c < max_blocks_wide; c += (1 << tx_size)) { + visit(plane, i, r, c, plane_bsize, tx_size, arg); + i += step; + } + i += extra_step; + } +} + +void vp9_foreach_transformed_block(const MACROBLOCKD *const xd, + BLOCK_SIZE bsize, + foreach_transformed_block_visitor visit, + void *arg) { + int plane; + + for (plane = 0; plane < MAX_MB_PLANE; ++plane) + vp9_foreach_transformed_block_in_plane(xd, bsize, plane, visit, arg); +} + +void vp9_set_contexts(const MACROBLOCKD *xd, struct macroblockd_plane *pd, + BLOCK_SIZE plane_bsize, TX_SIZE tx_size, int has_eob, + int aoff, int loff) { + ENTROPY_CONTEXT *const a = pd->above_context + aoff; + ENTROPY_CONTEXT *const l = pd->left_context + loff; + const int tx_size_in_blocks = 1 << tx_size; + + // above + if (has_eob && xd->mb_to_right_edge < 0) { + int i; + const int blocks_wide = num_4x4_blocks_wide_lookup[plane_bsize] + + (xd->mb_to_right_edge >> (5 + pd->subsampling_x)); + int above_contexts = tx_size_in_blocks; + if (above_contexts + aoff > blocks_wide) + above_contexts = blocks_wide - aoff; + + for (i = 0; i < above_contexts; ++i) a[i] = has_eob; + for (i = above_contexts; i < tx_size_in_blocks; ++i) a[i] = 0; + } else { + memset(a, has_eob, sizeof(ENTROPY_CONTEXT) * tx_size_in_blocks); + } + + // left + if (has_eob && xd->mb_to_bottom_edge < 0) { + int i; + const int blocks_high = num_4x4_blocks_high_lookup[plane_bsize] + + (xd->mb_to_bottom_edge >> (5 + pd->subsampling_y)); + int left_contexts = tx_size_in_blocks; + if (left_contexts + loff > blocks_high) left_contexts = blocks_high - loff; + + for (i = 0; i < left_contexts; ++i) l[i] = has_eob; + for (i = left_contexts; i < tx_size_in_blocks; ++i) l[i] = 0; + } else { + memset(l, has_eob, sizeof(ENTROPY_CONTEXT) * tx_size_in_blocks); + } +} + +void vp9_setup_block_planes(MACROBLOCKD *xd, int ss_x, int ss_y) { + int i; + + for (i = 0; i < MAX_MB_PLANE; i++) { + xd->plane[i].subsampling_x = i ? ss_x : 0; + xd->plane[i].subsampling_y = i ? ss_y : 0; + } +} diff --git a/vp9/common/vp9_blockd.h b/vp9/common/vp9_blockd.h new file mode 100644 index 0000000..780b292 --- /dev/null +++ b/vp9/common/vp9_blockd.h @@ -0,0 +1,288 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP9_COMMON_VP9_BLOCKD_H_ +#define VP9_COMMON_VP9_BLOCKD_H_ + +#include "./vpx_config.h" + +#include "vpx_dsp/vpx_dsp_common.h" +#include "vpx_ports/mem.h" +#include "vpx_scale/yv12config.h" + +#include "vp9/common/vp9_common_data.h" +#include "vp9/common/vp9_entropy.h" +#include "vp9/common/vp9_entropymode.h" +#include "vp9/common/vp9_mv.h" +#include "vp9/common/vp9_scale.h" +#include "vp9/common/vp9_seg_common.h" +#include "vp9/common/vp9_tile_common.h" + +#ifdef __cplusplus +extern "C" { +#endif + +#define MAX_MB_PLANE 3 + +typedef enum { + KEY_FRAME = 0, + INTER_FRAME = 1, + FRAME_TYPES, +} FRAME_TYPE; + +static INLINE int is_inter_mode(PREDICTION_MODE mode) { + return mode >= NEARESTMV && mode <= NEWMV; +} + +/* For keyframes, intra block modes are predicted by the (already decoded) + modes for the Y blocks to the left and above us; for interframes, there + is a single probability table. */ + +typedef struct { + PREDICTION_MODE as_mode; + int_mv as_mv[2]; // first, second inter predictor motion vectors +} b_mode_info; + +// Note that the rate-distortion optimization loop, bit-stream writer, and +// decoder implementation modules critically rely on the defined entry values +// specified herein. They should be refactored concurrently. + +#define NONE -1 +#define INTRA_FRAME 0 +#define LAST_FRAME 1 +#define GOLDEN_FRAME 2 +#define ALTREF_FRAME 3 +#define MAX_REF_FRAMES 4 +typedef int8_t MV_REFERENCE_FRAME; + +// This structure now relates to 8x8 block regions. +typedef struct MODE_INFO { + // Common for both INTER and INTRA blocks + BLOCK_SIZE sb_type; + PREDICTION_MODE mode; + TX_SIZE tx_size; + int8_t skip; + int8_t segment_id; + int8_t seg_id_predicted; // valid only when temporal_update is enabled + + // Only for INTRA blocks + PREDICTION_MODE uv_mode; + + // Only for INTER blocks + INTERP_FILTER interp_filter; + + // if ref_frame[idx] is equal to ALTREF_FRAME then + // MACROBLOCKD::block_ref[idx] is an altref + MV_REFERENCE_FRAME ref_frame[2]; + + // TODO(slavarnway): Delete and use bmi[3].as_mv[] instead. + int_mv mv[2]; + + b_mode_info bmi[4]; +} MODE_INFO; + +static INLINE PREDICTION_MODE get_y_mode(const MODE_INFO *mi, int block) { + return mi->sb_type < BLOCK_8X8 ? mi->bmi[block].as_mode : mi->mode; +} + +static INLINE int is_inter_block(const MODE_INFO *mi) { + return mi->ref_frame[0] > INTRA_FRAME; +} + +static INLINE int has_second_ref(const MODE_INFO *mi) { + return mi->ref_frame[1] > INTRA_FRAME; +} + +PREDICTION_MODE vp9_left_block_mode(const MODE_INFO *cur_mi, + const MODE_INFO *left_mi, int b); + +PREDICTION_MODE vp9_above_block_mode(const MODE_INFO *cur_mi, + const MODE_INFO *above_mi, int b); + +enum mv_precision { MV_PRECISION_Q3, MV_PRECISION_Q4 }; + +struct buf_2d { + uint8_t *buf; + int stride; +}; + +struct macroblockd_plane { + tran_low_t *dqcoeff; + int subsampling_x; + int subsampling_y; + struct buf_2d dst; + struct buf_2d pre[2]; + ENTROPY_CONTEXT *above_context; + ENTROPY_CONTEXT *left_context; + int16_t seg_dequant[MAX_SEGMENTS][2]; + + // number of 4x4s in current block + uint16_t n4_w, n4_h; + // log2 of n4_w, n4_h + uint8_t n4_wl, n4_hl; + + // encoder + const int16_t *dequant; +}; + +#define BLOCK_OFFSET(x, i) ((x) + (i)*16) + +typedef struct RefBuffer { + // TODO(dkovalev): idx is not really required and should be removed, now it + // is used in vp9_onyxd_if.c + int idx; + YV12_BUFFER_CONFIG *buf; + struct scale_factors sf; +} RefBuffer; + +typedef struct macroblockd { + struct macroblockd_plane plane[MAX_MB_PLANE]; + uint8_t bmode_blocks_wl; + uint8_t bmode_blocks_hl; + + FRAME_COUNTS *counts; + TileInfo tile; + + int mi_stride; + + // Grid of 8x8 cells is placed over the block. + // If some of them belong to the same mbtree-block + // they will just have same mi[i][j] value + MODE_INFO **mi; + MODE_INFO *left_mi; + MODE_INFO *above_mi; + + unsigned int max_blocks_wide; + unsigned int max_blocks_high; + + const vpx_prob (*partition_probs)[PARTITION_TYPES - 1]; + + /* Distance of MB away from frame edges */ + int mb_to_left_edge; + int mb_to_right_edge; + int mb_to_top_edge; + int mb_to_bottom_edge; + + FRAME_CONTEXT *fc; + + /* pointers to reference frames */ + RefBuffer *block_refs[2]; + + /* pointer to current frame */ + const YV12_BUFFER_CONFIG *cur_buf; + + ENTROPY_CONTEXT *above_context[MAX_MB_PLANE]; + ENTROPY_CONTEXT left_context[MAX_MB_PLANE][16]; + + PARTITION_CONTEXT *above_seg_context; + PARTITION_CONTEXT left_seg_context[8]; + +#if CONFIG_VP9_HIGHBITDEPTH + /* Bit depth: 8, 10, 12 */ + int bd; +#endif + + int lossless; + int corrupted; + + struct vpx_internal_error_info *error_info; +} MACROBLOCKD; + +static INLINE PLANE_TYPE get_plane_type(int plane) { + return (PLANE_TYPE)(plane > 0); +} + +static INLINE BLOCK_SIZE get_subsize(BLOCK_SIZE bsize, + PARTITION_TYPE partition) { + return subsize_lookup[partition][bsize]; +} + +extern const TX_TYPE intra_mode_to_tx_type_lookup[INTRA_MODES]; + +static INLINE TX_TYPE get_tx_type(PLANE_TYPE plane_type, + const MACROBLOCKD *xd) { + const MODE_INFO *const mi = xd->mi[0]; + + if (plane_type != PLANE_TYPE_Y || xd->lossless || is_inter_block(mi)) + return DCT_DCT; + + return intra_mode_to_tx_type_lookup[mi->mode]; +} + +static INLINE TX_TYPE get_tx_type_4x4(PLANE_TYPE plane_type, + const MACROBLOCKD *xd, int ib) { + const MODE_INFO *const mi = xd->mi[0]; + + if (plane_type != PLANE_TYPE_Y || xd->lossless || is_inter_block(mi)) + return DCT_DCT; + + return intra_mode_to_tx_type_lookup[get_y_mode(mi, ib)]; +} + +void vp9_setup_block_planes(MACROBLOCKD *xd, int ss_x, int ss_y); + +static INLINE TX_SIZE get_uv_tx_size(const MODE_INFO *mi, + const struct macroblockd_plane *pd) { + assert(mi->sb_type < BLOCK_8X8 || + ss_size_lookup[mi->sb_type][pd->subsampling_x][pd->subsampling_y] != + BLOCK_INVALID); + return uv_txsize_lookup[mi->sb_type][mi->tx_size][pd->subsampling_x] + [pd->subsampling_y]; +} + +static INLINE BLOCK_SIZE +get_plane_block_size(BLOCK_SIZE bsize, const struct macroblockd_plane *pd) { + return ss_size_lookup[bsize][pd->subsampling_x][pd->subsampling_y]; +} + +static INLINE void reset_skip_context(MACROBLOCKD *xd, BLOCK_SIZE bsize) { + int i; + for (i = 0; i < MAX_MB_PLANE; i++) { + struct macroblockd_plane *const pd = &xd->plane[i]; + const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd); + memset(pd->above_context, 0, + sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_wide_lookup[plane_bsize]); + memset(pd->left_context, 0, + sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_high_lookup[plane_bsize]); + } +} + +static INLINE const vpx_prob *get_y_mode_probs(const MODE_INFO *mi, + const MODE_INFO *above_mi, + const MODE_INFO *left_mi, + int block) { + const PREDICTION_MODE above = vp9_above_block_mode(mi, above_mi, block); + const PREDICTION_MODE left = vp9_left_block_mode(mi, left_mi, block); + return vp9_kf_y_mode_prob[above][left]; +} + +typedef void (*foreach_transformed_block_visitor)(int plane, int block, int row, + int col, + BLOCK_SIZE plane_bsize, + TX_SIZE tx_size, void *arg); + +void vp9_foreach_transformed_block_in_plane( + const MACROBLOCKD *const xd, BLOCK_SIZE bsize, int plane, + foreach_transformed_block_visitor visit, void *arg); + +void vp9_foreach_transformed_block(const MACROBLOCKD *const xd, + BLOCK_SIZE bsize, + foreach_transformed_block_visitor visit, + void *arg); + +void vp9_set_contexts(const MACROBLOCKD *xd, struct macroblockd_plane *pd, + BLOCK_SIZE plane_bsize, TX_SIZE tx_size, int has_eob, + int aoff, int loff); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP9_COMMON_VP9_BLOCKD_H_ diff --git a/vp9/common/vp9_common.h b/vp9/common/vp9_common.h new file mode 100644 index 0000000..666c3be --- /dev/null +++ b/vp9/common/vp9_common.h @@ -0,0 +1,78 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP9_COMMON_VP9_COMMON_H_ +#define VP9_COMMON_VP9_COMMON_H_ + +/* Interface header for common constant data structures and lookup tables */ + +#include + +#include "./vpx_config.h" +#include "vpx_dsp/vpx_dsp_common.h" +#include "vpx_mem/vpx_mem.h" +#include "vpx/vpx_integer.h" +#include "vpx_ports/bitops.h" + +#ifdef __cplusplus +extern "C" { +#endif + +// Only need this for fixed-size arrays, for structs just assign. +#define vp9_copy(dest, src) \ + { \ + assert(sizeof(dest) == sizeof(src)); \ + memcpy(dest, src, sizeof(src)); \ + } + +// Use this for variably-sized arrays. +#define vp9_copy_array(dest, src, n) \ + { \ + assert(sizeof(*dest) == sizeof(*src)); \ + memcpy(dest, src, n * sizeof(*src)); \ + } + +#define vp9_zero(dest) memset(&(dest), 0, sizeof(dest)) +#define vp9_zero_array(dest, n) memset(dest, 0, n * sizeof(*dest)) + +static INLINE int get_unsigned_bits(unsigned int num_values) { + return num_values > 0 ? get_msb(num_values) + 1 : 0; +} + +#if CONFIG_DEBUG +#define CHECK_MEM_ERROR(cm, lval, expr) \ + do { \ + lval = (expr); \ + if (!lval) \ + vpx_internal_error(&(cm)->error, VPX_CODEC_MEM_ERROR, \ + "Failed to allocate " #lval " at %s:%d", __FILE__, \ + __LINE__); \ + } while (0) +#else +#define CHECK_MEM_ERROR(cm, lval, expr) \ + do { \ + lval = (expr); \ + if (!lval) \ + vpx_internal_error(&(cm)->error, VPX_CODEC_MEM_ERROR, \ + "Failed to allocate " #lval); \ + } while (0) +#endif + +#define VP9_SYNC_CODE_0 0x49 +#define VP9_SYNC_CODE_1 0x83 +#define VP9_SYNC_CODE_2 0x42 + +#define VP9_FRAME_MARKER 0x2 + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP9_COMMON_VP9_COMMON_H_ diff --git a/vp9/common/vp9_common_data.c b/vp9/common/vp9_common_data.c new file mode 100644 index 0000000..4a10833 --- /dev/null +++ b/vp9/common/vp9_common_data.c @@ -0,0 +1,259 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "vp9/common/vp9_common_data.h" +#include "vpx_dsp/vpx_dsp_common.h" + +// Log 2 conversion lookup tables for block width and height +const uint8_t b_width_log2_lookup[BLOCK_SIZES] = { 0, 0, 1, 1, 1, 2, 2, + 2, 3, 3, 3, 4, 4 }; +const uint8_t b_height_log2_lookup[BLOCK_SIZES] = { 0, 1, 0, 1, 2, 1, 2, + 3, 2, 3, 4, 3, 4 }; +const uint8_t num_4x4_blocks_wide_lookup[BLOCK_SIZES] = { 1, 1, 2, 2, 2, 4, 4, + 4, 8, 8, 8, 16, 16 }; +const uint8_t num_4x4_blocks_high_lookup[BLOCK_SIZES] = { 1, 2, 1, 2, 4, 2, 4, + 8, 4, 8, 16, 8, 16 }; +// Log 2 conversion lookup tables for modeinfo width and height +const uint8_t mi_width_log2_lookup[BLOCK_SIZES] = { 0, 0, 0, 0, 0, 1, 1, + 1, 2, 2, 2, 3, 3 }; +const uint8_t num_8x8_blocks_wide_lookup[BLOCK_SIZES] = { 1, 1, 1, 1, 1, 2, 2, + 2, 4, 4, 4, 8, 8 }; +const uint8_t num_8x8_blocks_high_lookup[BLOCK_SIZES] = { 1, 1, 1, 1, 2, 1, 2, + 4, 2, 4, 8, 4, 8 }; + +// VPXMIN(3, VPXMIN(b_width_log2(bsize), b_height_log2(bsize))) +const uint8_t size_group_lookup[BLOCK_SIZES] = { 0, 0, 0, 1, 1, 1, 2, + 2, 2, 3, 3, 3, 3 }; + +const uint8_t num_pels_log2_lookup[BLOCK_SIZES] = { 4, 5, 5, 6, 7, 7, 8, + 9, 9, 10, 11, 11, 12 }; + +const PARTITION_TYPE partition_lookup[][BLOCK_SIZES] = { + { // 4X4 + // 4X4, 4X8,8X4,8X8,8X16,16X8,16X16,16X32,32X16,32X32,32X64,64X32,64X64 + PARTITION_NONE, PARTITION_INVALID, PARTITION_INVALID, PARTITION_INVALID, + PARTITION_INVALID, PARTITION_INVALID, PARTITION_INVALID, PARTITION_INVALID, + PARTITION_INVALID, PARTITION_INVALID, PARTITION_INVALID, PARTITION_INVALID, + PARTITION_INVALID }, + { // 8X8 + // 4X4, 4X8,8X4,8X8,8X16,16X8,16X16,16X32,32X16,32X32,32X64,64X32,64X64 + PARTITION_SPLIT, PARTITION_VERT, PARTITION_HORZ, PARTITION_NONE, + PARTITION_INVALID, PARTITION_INVALID, PARTITION_INVALID, PARTITION_INVALID, + PARTITION_INVALID, PARTITION_INVALID, PARTITION_INVALID, PARTITION_INVALID, + PARTITION_INVALID }, + { // 16X16 + // 4X4, 4X8,8X4,8X8,8X16,16X8,16X16,16X32,32X16,32X32,32X64,64X32,64X64 + PARTITION_SPLIT, PARTITION_SPLIT, PARTITION_SPLIT, PARTITION_SPLIT, + PARTITION_VERT, PARTITION_HORZ, PARTITION_NONE, PARTITION_INVALID, + PARTITION_INVALID, PARTITION_INVALID, PARTITION_INVALID, PARTITION_INVALID, + PARTITION_INVALID }, + { // 32X32 + // 4X4, 4X8,8X4,8X8,8X16,16X8,16X16,16X32,32X16,32X32,32X64,64X32,64X64 + PARTITION_SPLIT, PARTITION_SPLIT, PARTITION_SPLIT, PARTITION_SPLIT, + PARTITION_SPLIT, PARTITION_SPLIT, PARTITION_SPLIT, PARTITION_VERT, + PARTITION_HORZ, PARTITION_NONE, PARTITION_INVALID, PARTITION_INVALID, + PARTITION_INVALID }, + { // 64X64 + // 4X4, 4X8,8X4,8X8,8X16,16X8,16X16,16X32,32X16,32X32,32X64,64X32,64X64 + PARTITION_SPLIT, PARTITION_SPLIT, PARTITION_SPLIT, PARTITION_SPLIT, + PARTITION_SPLIT, PARTITION_SPLIT, PARTITION_SPLIT, PARTITION_SPLIT, + PARTITION_SPLIT, PARTITION_SPLIT, PARTITION_VERT, PARTITION_HORZ, + PARTITION_NONE } +}; + +const BLOCK_SIZE subsize_lookup[PARTITION_TYPES][BLOCK_SIZES] = { + { // PARTITION_NONE + BLOCK_4X4, BLOCK_4X8, BLOCK_8X4, BLOCK_8X8, BLOCK_8X16, BLOCK_16X8, + BLOCK_16X16, BLOCK_16X32, BLOCK_32X16, BLOCK_32X32, BLOCK_32X64, + BLOCK_64X32, BLOCK_64X64 }, + { // PARTITION_HORZ + BLOCK_INVALID, BLOCK_INVALID, BLOCK_INVALID, BLOCK_8X4, BLOCK_INVALID, + BLOCK_INVALID, BLOCK_16X8, BLOCK_INVALID, BLOCK_INVALID, BLOCK_32X16, + BLOCK_INVALID, BLOCK_INVALID, BLOCK_64X32 }, + { // PARTITION_VERT + BLOCK_INVALID, BLOCK_INVALID, BLOCK_INVALID, BLOCK_4X8, BLOCK_INVALID, + BLOCK_INVALID, BLOCK_8X16, BLOCK_INVALID, BLOCK_INVALID, BLOCK_16X32, + BLOCK_INVALID, BLOCK_INVALID, BLOCK_32X64 }, + { // PARTITION_SPLIT + BLOCK_INVALID, BLOCK_INVALID, BLOCK_INVALID, BLOCK_4X4, BLOCK_INVALID, + BLOCK_INVALID, BLOCK_8X8, BLOCK_INVALID, BLOCK_INVALID, BLOCK_16X16, + BLOCK_INVALID, BLOCK_INVALID, BLOCK_32X32 } +}; + +const TX_SIZE max_txsize_lookup[BLOCK_SIZES] = { + TX_4X4, TX_4X4, TX_4X4, TX_8X8, TX_8X8, TX_8X8, TX_16X16, + TX_16X16, TX_16X16, TX_32X32, TX_32X32, TX_32X32, TX_32X32 +}; + +const BLOCK_SIZE txsize_to_bsize[TX_SIZES] = { + BLOCK_4X4, // TX_4X4 + BLOCK_8X8, // TX_8X8 + BLOCK_16X16, // TX_16X16 + BLOCK_32X32, // TX_32X32 +}; + +const TX_SIZE tx_mode_to_biggest_tx_size[TX_MODES] = { + TX_4X4, // ONLY_4X4 + TX_8X8, // ALLOW_8X8 + TX_16X16, // ALLOW_16X16 + TX_32X32, // ALLOW_32X32 + TX_32X32, // TX_MODE_SELECT +}; + +const BLOCK_SIZE ss_size_lookup[BLOCK_SIZES][2][2] = { + // ss_x == 0 ss_x == 0 ss_x == 1 ss_x == 1 + // ss_y == 0 ss_y == 1 ss_y == 0 ss_y == 1 + { { BLOCK_4X4, BLOCK_INVALID }, { BLOCK_INVALID, BLOCK_INVALID } }, + { { BLOCK_4X8, BLOCK_4X4 }, { BLOCK_INVALID, BLOCK_INVALID } }, + { { BLOCK_8X4, BLOCK_INVALID }, { BLOCK_4X4, BLOCK_INVALID } }, + { { BLOCK_8X8, BLOCK_8X4 }, { BLOCK_4X8, BLOCK_4X4 } }, + { { BLOCK_8X16, BLOCK_8X8 }, { BLOCK_INVALID, BLOCK_4X8 } }, + { { BLOCK_16X8, BLOCK_INVALID }, { BLOCK_8X8, BLOCK_8X4 } }, + { { BLOCK_16X16, BLOCK_16X8 }, { BLOCK_8X16, BLOCK_8X8 } }, + { { BLOCK_16X32, BLOCK_16X16 }, { BLOCK_INVALID, BLOCK_8X16 } }, + { { BLOCK_32X16, BLOCK_INVALID }, { BLOCK_16X16, BLOCK_16X8 } }, + { { BLOCK_32X32, BLOCK_32X16 }, { BLOCK_16X32, BLOCK_16X16 } }, + { { BLOCK_32X64, BLOCK_32X32 }, { BLOCK_INVALID, BLOCK_16X32 } }, + { { BLOCK_64X32, BLOCK_INVALID }, { BLOCK_32X32, BLOCK_32X16 } }, + { { BLOCK_64X64, BLOCK_64X32 }, { BLOCK_32X64, BLOCK_32X32 } }, +}; + +const TX_SIZE uv_txsize_lookup[BLOCK_SIZES][TX_SIZES][2][2] = { + // ss_x == 0 ss_x == 0 ss_x == 1 ss_x == 1 + // ss_y == 0 ss_y == 1 ss_y == 0 ss_y == 1 + { + // BLOCK_4X4 + { { TX_4X4, TX_4X4 }, { TX_4X4, TX_4X4 } }, + { { TX_4X4, TX_4X4 }, { TX_4X4, TX_4X4 } }, + { { TX_4X4, TX_4X4 }, { TX_4X4, TX_4X4 } }, + { { TX_4X4, TX_4X4 }, { TX_4X4, TX_4X4 } }, + }, + { + // BLOCK_4X8 + { { TX_4X4, TX_4X4 }, { TX_4X4, TX_4X4 } }, + { { TX_4X4, TX_4X4 }, { TX_4X4, TX_4X4 } }, + { { TX_4X4, TX_4X4 }, { TX_4X4, TX_4X4 } }, + { { TX_4X4, TX_4X4 }, { TX_4X4, TX_4X4 } }, + }, + { + // BLOCK_8X4 + { { TX_4X4, TX_4X4 }, { TX_4X4, TX_4X4 } }, + { { TX_4X4, TX_4X4 }, { TX_4X4, TX_4X4 } }, + { { TX_4X4, TX_4X4 }, { TX_4X4, TX_4X4 } }, + { { TX_4X4, TX_4X4 }, { TX_4X4, TX_4X4 } }, + }, + { + // BLOCK_8X8 + { { TX_4X4, TX_4X4 }, { TX_4X4, TX_4X4 } }, + { { TX_8X8, TX_4X4 }, { TX_4X4, TX_4X4 } }, + { { TX_8X8, TX_4X4 }, { TX_4X4, TX_4X4 } }, + { { TX_8X8, TX_4X4 }, { TX_4X4, TX_4X4 } }, + }, + { + // BLOCK_8X16 + { { TX_4X4, TX_4X4 }, { TX_4X4, TX_4X4 } }, + { { TX_8X8, TX_8X8 }, { TX_4X4, TX_4X4 } }, + { { TX_8X8, TX_8X8 }, { TX_4X4, TX_4X4 } }, + { { TX_8X8, TX_8X8 }, { TX_4X4, TX_4X4 } }, + }, + { + // BLOCK_16X8 + { { TX_4X4, TX_4X4 }, { TX_4X4, TX_4X4 } }, + { { TX_8X8, TX_4X4 }, { TX_8X8, TX_4X4 } }, + { { TX_8X8, TX_4X4 }, { TX_8X8, TX_8X8 } }, + { { TX_8X8, TX_4X4 }, { TX_8X8, TX_8X8 } }, + }, + { + // BLOCK_16X16 + { { TX_4X4, TX_4X4 }, { TX_4X4, TX_4X4 } }, + { { TX_8X8, TX_8X8 }, { TX_8X8, TX_8X8 } }, + { { TX_16X16, TX_8X8 }, { TX_8X8, TX_8X8 } }, + { { TX_16X16, TX_8X8 }, { TX_8X8, TX_8X8 } }, + }, + { + // BLOCK_16X32 + { { TX_4X4, TX_4X4 }, { TX_4X4, TX_4X4 } }, + { { TX_8X8, TX_8X8 }, { TX_8X8, TX_8X8 } }, + { { TX_16X16, TX_16X16 }, { TX_8X8, TX_8X8 } }, + { { TX_16X16, TX_16X16 }, { TX_8X8, TX_8X8 } }, + }, + { + // BLOCK_32X16 + { { TX_4X4, TX_4X4 }, { TX_4X4, TX_4X4 } }, + { { TX_8X8, TX_8X8 }, { TX_8X8, TX_8X8 } }, + { { TX_16X16, TX_8X8 }, { TX_16X16, TX_8X8 } }, + { { TX_16X16, TX_8X8 }, { TX_16X16, TX_8X8 } }, + }, + { + // BLOCK_32X32 + { { TX_4X4, TX_4X4 }, { TX_4X4, TX_4X4 } }, + { { TX_8X8, TX_8X8 }, { TX_8X8, TX_8X8 } }, + { { TX_16X16, TX_16X16 }, { TX_16X16, TX_16X16 } }, + { { TX_32X32, TX_16X16 }, { TX_16X16, TX_16X16 } }, + }, + { + // BLOCK_32X64 + { { TX_4X4, TX_4X4 }, { TX_4X4, TX_4X4 } }, + { { TX_8X8, TX_8X8 }, { TX_8X8, TX_8X8 } }, + { { TX_16X16, TX_16X16 }, { TX_16X16, TX_16X16 } }, + { { TX_32X32, TX_32X32 }, { TX_16X16, TX_16X16 } }, + }, + { + // BLOCK_64X32 + { { TX_4X4, TX_4X4 }, { TX_4X4, TX_4X4 } }, + { { TX_8X8, TX_8X8 }, { TX_8X8, TX_8X8 } }, + { { TX_16X16, TX_16X16 }, { TX_16X16, TX_16X16 } }, + { { TX_32X32, TX_16X16 }, { TX_32X32, TX_16X16 } }, + }, + { + // BLOCK_64X64 + { { TX_4X4, TX_4X4 }, { TX_4X4, TX_4X4 } }, + { { TX_8X8, TX_8X8 }, { TX_8X8, TX_8X8 } }, + { { TX_16X16, TX_16X16 }, { TX_16X16, TX_16X16 } }, + { { TX_32X32, TX_32X32 }, { TX_32X32, TX_32X32 } }, + }, +}; + +// Generates 4 bit field in which each bit set to 1 represents +// a blocksize partition 1111 means we split 64x64, 32x32, 16x16 +// and 8x8. 1000 means we just split the 64x64 to 32x32 +const struct { + PARTITION_CONTEXT above; + PARTITION_CONTEXT left; +} partition_context_lookup[BLOCK_SIZES] = { + { 15, 15 }, // 4X4 - {0b1111, 0b1111} + { 15, 14 }, // 4X8 - {0b1111, 0b1110} + { 14, 15 }, // 8X4 - {0b1110, 0b1111} + { 14, 14 }, // 8X8 - {0b1110, 0b1110} + { 14, 12 }, // 8X16 - {0b1110, 0b1100} + { 12, 14 }, // 16X8 - {0b1100, 0b1110} + { 12, 12 }, // 16X16 - {0b1100, 0b1100} + { 12, 8 }, // 16X32 - {0b1100, 0b1000} + { 8, 12 }, // 32X16 - {0b1000, 0b1100} + { 8, 8 }, // 32X32 - {0b1000, 0b1000} + { 8, 0 }, // 32X64 - {0b1000, 0b0000} + { 0, 8 }, // 64X32 - {0b0000, 0b1000} + { 0, 0 }, // 64X64 - {0b0000, 0b0000} +}; + +#if CONFIG_BETTER_HW_COMPATIBILITY && CONFIG_VP9_HIGHBITDEPTH +const uint8_t need_top_left[INTRA_MODES] = { + 0, // DC_PRED + 0, // V_PRED + 0, // H_PRED + 0, // D45_PRED + 1, // D135_PRED + 1, // D117_PRED + 1, // D153_PRED + 0, // D207_PRED + 0, // D63_PRED + 1, // TM_PRED +}; +#endif // CONFIG_BETTER_HW_COMPATIBILITY && CONFIG_VP9_HIGHBITDEPTH diff --git a/vp9/common/vp9_common_data.h b/vp9/common/vp9_common_data.h new file mode 100644 index 0000000..5c6a7e8 --- /dev/null +++ b/vp9/common/vp9_common_data.h @@ -0,0 +1,45 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP9_COMMON_VP9_COMMON_DATA_H_ +#define VP9_COMMON_VP9_COMMON_DATA_H_ + +#include "vp9/common/vp9_enums.h" +#include "vpx/vpx_integer.h" + +#ifdef __cplusplus +extern "C" { +#endif + +extern const uint8_t b_width_log2_lookup[BLOCK_SIZES]; +extern const uint8_t b_height_log2_lookup[BLOCK_SIZES]; +extern const uint8_t mi_width_log2_lookup[BLOCK_SIZES]; +extern const uint8_t num_8x8_blocks_wide_lookup[BLOCK_SIZES]; +extern const uint8_t num_8x8_blocks_high_lookup[BLOCK_SIZES]; +extern const uint8_t num_4x4_blocks_high_lookup[BLOCK_SIZES]; +extern const uint8_t num_4x4_blocks_wide_lookup[BLOCK_SIZES]; +extern const uint8_t size_group_lookup[BLOCK_SIZES]; +extern const uint8_t num_pels_log2_lookup[BLOCK_SIZES]; +extern const PARTITION_TYPE partition_lookup[][BLOCK_SIZES]; +extern const BLOCK_SIZE subsize_lookup[PARTITION_TYPES][BLOCK_SIZES]; +extern const TX_SIZE max_txsize_lookup[BLOCK_SIZES]; +extern const BLOCK_SIZE txsize_to_bsize[TX_SIZES]; +extern const TX_SIZE tx_mode_to_biggest_tx_size[TX_MODES]; +extern const BLOCK_SIZE ss_size_lookup[BLOCK_SIZES][2][2]; +extern const TX_SIZE uv_txsize_lookup[BLOCK_SIZES][TX_SIZES][2][2]; +#if CONFIG_BETTER_HW_COMPATIBILITY && CONFIG_VP9_HIGHBITDEPTH +extern const uint8_t need_top_left[INTRA_MODES]; +#endif // CONFIG_BETTER_HW_COMPATIBILITY && CONFIG_VP9_HIGHBITDEPTH + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP9_COMMON_VP9_COMMON_DATA_H_ diff --git a/vp9/common/vp9_debugmodes.c b/vp9/common/vp9_debugmodes.c new file mode 100644 index 0000000..28cd4a1 --- /dev/null +++ b/vp9/common/vp9_debugmodes.c @@ -0,0 +1,88 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include + +#include "vp9/common/vp9_blockd.h" +#include "vp9/common/vp9_onyxc_int.h" + +static void log_frame_info(VP9_COMMON *cm, const char *str, FILE *f) { + fprintf(f, "%s", str); + fprintf(f, "(Frame %d, Show:%d, Q:%d): \n", cm->current_video_frame, + cm->show_frame, cm->base_qindex); +} +/* This function dereferences a pointer to the mbmi structure + * and uses the passed in member offset to print out the value of an integer + * for each mbmi member value in the mi structure. + */ +static void print_mi_data(VP9_COMMON *cm, FILE *file, const char *descriptor, + size_t member_offset) { + int mi_row, mi_col; + MODE_INFO **mi = cm->mi_grid_visible; + int rows = cm->mi_rows; + int cols = cm->mi_cols; + char prefix = descriptor[0]; + + log_frame_info(cm, descriptor, file); + for (mi_row = 0; mi_row < rows; mi_row++) { + fprintf(file, "%c ", prefix); + for (mi_col = 0; mi_col < cols; mi_col++) { + fprintf(file, "%2d ", *((char *)((char *)(mi[0]) + member_offset))); + mi++; + } + fprintf(file, "\n"); + mi += 8; + } + fprintf(file, "\n"); +} + +void vp9_print_modes_and_motion_vectors(VP9_COMMON *cm, const char *file) { + int mi_row; + int mi_col; + FILE *mvs = fopen(file, "a"); + MODE_INFO **mi = cm->mi_grid_visible; + int rows = cm->mi_rows; + int cols = cm->mi_cols; + + print_mi_data(cm, mvs, "Partitions:", offsetof(MODE_INFO, sb_type)); + print_mi_data(cm, mvs, "Modes:", offsetof(MODE_INFO, mode)); + print_mi_data(cm, mvs, "Ref frame:", offsetof(MODE_INFO, ref_frame[0])); + print_mi_data(cm, mvs, "Transform:", offsetof(MODE_INFO, tx_size)); + print_mi_data(cm, mvs, "UV Modes:", offsetof(MODE_INFO, uv_mode)); + + // output skip infomation. + log_frame_info(cm, "Skips:", mvs); + for (mi_row = 0; mi_row < rows; mi_row++) { + fprintf(mvs, "S "); + for (mi_col = 0; mi_col < cols; mi_col++) { + fprintf(mvs, "%2d ", mi[0]->skip); + mi++; + } + fprintf(mvs, "\n"); + mi += 8; + } + fprintf(mvs, "\n"); + + // output motion vectors. + log_frame_info(cm, "Vectors ", mvs); + mi = cm->mi_grid_visible; + for (mi_row = 0; mi_row < rows; mi_row++) { + fprintf(mvs, "V "); + for (mi_col = 0; mi_col < cols; mi_col++) { + fprintf(mvs, "%4d:%4d ", mi[0]->mv[0].as_mv.row, mi[0]->mv[0].as_mv.col); + mi++; + } + fprintf(mvs, "\n"); + mi += 8; + } + fprintf(mvs, "\n"); + + fclose(mvs); +} diff --git a/vp9/common/vp9_entropy.c b/vp9/common/vp9_entropy.c new file mode 100644 index 0000000..a575bda --- /dev/null +++ b/vp9/common/vp9_entropy.c @@ -0,0 +1,1098 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "vp9/common/vp9_entropy.h" +#include "vp9/common/vp9_blockd.h" +#include "vp9/common/vp9_onyxc_int.h" +#include "vp9/common/vp9_entropymode.h" +#include "vpx_mem/vpx_mem.h" +#include "vpx/vpx_integer.h" + +// Unconstrained Node Tree +/* clang-format off */ +const vpx_tree_index vp9_coef_con_tree[TREE_SIZE(ENTROPY_TOKENS)] = { + 2, 6, // 0 = LOW_VAL + -TWO_TOKEN, 4, // 1 = TWO + -THREE_TOKEN, -FOUR_TOKEN, // 2 = THREE + 8, 10, // 3 = HIGH_LOW + -CATEGORY1_TOKEN, -CATEGORY2_TOKEN, // 4 = CAT_ONE + 12, 14, // 5 = CAT_THREEFOUR + -CATEGORY3_TOKEN, -CATEGORY4_TOKEN, // 6 = CAT_THREE + -CATEGORY5_TOKEN, -CATEGORY6_TOKEN // 7 = CAT_FIVE +}; +/* clang-format on */ + +const vpx_prob vp9_cat1_prob[] = { 159 }; +const vpx_prob vp9_cat2_prob[] = { 165, 145 }; +const vpx_prob vp9_cat3_prob[] = { 173, 148, 140 }; +const vpx_prob vp9_cat4_prob[] = { 176, 155, 140, 135 }; +const vpx_prob vp9_cat5_prob[] = { 180, 157, 141, 134, 130 }; +const vpx_prob vp9_cat6_prob[] = { 254, 254, 254, 252, 249, 243, 230, + 196, 177, 153, 140, 133, 130, 129 }; +#if CONFIG_VP9_HIGHBITDEPTH +const vpx_prob vp9_cat6_prob_high12[] = { 255, 255, 255, 255, 254, 254, + 254, 252, 249, 243, 230, 196, + 177, 153, 140, 133, 130, 129 }; +#endif + +const uint8_t vp9_coefband_trans_8x8plus[1024] = { + 0, 1, 1, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, + // beyond MAXBAND_INDEX+1 all values are filled as 5 + 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, + 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, + 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, + 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, + 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, + 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, + 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, + 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, + 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, + 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, + 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, + 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, + 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, + 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, + 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, + 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, + 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, + 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, + 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, + 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, + 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, + 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, + 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, + 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, + 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, + 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, + 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, + 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, + 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, + 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, + 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, + 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, + 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, + 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, + 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, + 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, + 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, + 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, + 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, +}; + +const uint8_t vp9_coefband_trans_4x4[16] = { + 0, 1, 1, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 5, 5, 5, +}; + +const uint8_t vp9_pt_energy_class[ENTROPY_TOKENS] = { 0, 1, 2, 3, 3, 4, + 4, 5, 5, 5, 5, 5 }; + +// Model obtained from a 2-sided zero-centerd distribuition derived +// from a Pareto distribution. The cdf of the distribution is: +// cdf(x) = 0.5 + 0.5 * sgn(x) * [1 - {alpha/(alpha + |x|)} ^ beta] +// +// For a given beta and a given probablity of the 1-node, the alpha +// is first solved, and then the {alpha, beta} pair is used to generate +// the probabilities for the rest of the nodes. + +// beta = 8 + +// Every odd line in this table can be generated from the even lines +// by averaging : +// vp9_pareto8_full[l][node] = (vp9_pareto8_full[l-1][node] + +// vp9_pareto8_full[l+1][node] ) >> 1; +const vpx_prob vp9_pareto8_full[COEFF_PROB_MODELS][MODEL_NODES] = { + { 3, 86, 128, 6, 86, 23, 88, 29 }, + { 6, 86, 128, 11, 87, 42, 91, 52 }, + { 9, 86, 129, 17, 88, 61, 94, 76 }, + { 12, 86, 129, 22, 88, 77, 97, 93 }, + { 15, 87, 129, 28, 89, 93, 100, 110 }, + { 17, 87, 129, 33, 90, 105, 103, 123 }, + { 20, 88, 130, 38, 91, 118, 106, 136 }, + { 23, 88, 130, 43, 91, 128, 108, 146 }, + { 26, 89, 131, 48, 92, 139, 111, 156 }, + { 28, 89, 131, 53, 93, 147, 114, 163 }, + { 31, 90, 131, 58, 94, 156, 117, 171 }, + { 34, 90, 131, 62, 94, 163, 119, 177 }, + { 37, 90, 132, 66, 95, 171, 122, 184 }, + { 39, 90, 132, 70, 96, 177, 124, 189 }, + { 42, 91, 132, 75, 97, 183, 127, 194 }, + { 44, 91, 132, 79, 97, 188, 129, 198 }, + { 47, 92, 133, 83, 98, 193, 132, 202 }, + { 49, 92, 133, 86, 99, 197, 134, 205 }, + { 52, 93, 133, 90, 100, 201, 137, 208 }, + { 54, 93, 133, 94, 100, 204, 139, 211 }, + { 57, 94, 134, 98, 101, 208, 142, 214 }, + { 59, 94, 134, 101, 102, 211, 144, 216 }, + { 62, 94, 135, 105, 103, 214, 146, 218 }, + { 64, 94, 135, 108, 103, 216, 148, 220 }, + { 66, 95, 135, 111, 104, 219, 151, 222 }, + { 68, 95, 135, 114, 105, 221, 153, 223 }, + { 71, 96, 136, 117, 106, 224, 155, 225 }, + { 73, 96, 136, 120, 106, 225, 157, 226 }, + { 76, 97, 136, 123, 107, 227, 159, 228 }, + { 78, 97, 136, 126, 108, 229, 160, 229 }, + { 80, 98, 137, 129, 109, 231, 162, 231 }, + { 82, 98, 137, 131, 109, 232, 164, 232 }, + { 84, 98, 138, 134, 110, 234, 166, 233 }, + { 86, 98, 138, 137, 111, 235, 168, 234 }, + { 89, 99, 138, 140, 112, 236, 170, 235 }, + { 91, 99, 138, 142, 112, 237, 171, 235 }, + { 93, 100, 139, 145, 113, 238, 173, 236 }, + { 95, 100, 139, 147, 114, 239, 174, 237 }, + { 97, 101, 140, 149, 115, 240, 176, 238 }, + { 99, 101, 140, 151, 115, 241, 177, 238 }, + { 101, 102, 140, 154, 116, 242, 179, 239 }, + { 103, 102, 140, 156, 117, 242, 180, 239 }, + { 105, 103, 141, 158, 118, 243, 182, 240 }, + { 107, 103, 141, 160, 118, 243, 183, 240 }, + { 109, 104, 141, 162, 119, 244, 185, 241 }, + { 111, 104, 141, 164, 119, 244, 186, 241 }, + { 113, 104, 142, 166, 120, 245, 187, 242 }, + { 114, 104, 142, 168, 121, 245, 188, 242 }, + { 116, 105, 143, 170, 122, 246, 190, 243 }, + { 118, 105, 143, 171, 122, 246, 191, 243 }, + { 120, 106, 143, 173, 123, 247, 192, 244 }, + { 121, 106, 143, 175, 124, 247, 193, 244 }, + { 123, 107, 144, 177, 125, 248, 195, 244 }, + { 125, 107, 144, 178, 125, 248, 196, 244 }, + { 127, 108, 145, 180, 126, 249, 197, 245 }, + { 128, 108, 145, 181, 127, 249, 198, 245 }, + { 130, 109, 145, 183, 128, 249, 199, 245 }, + { 132, 109, 145, 184, 128, 249, 200, 245 }, + { 134, 110, 146, 186, 129, 250, 201, 246 }, + { 135, 110, 146, 187, 130, 250, 202, 246 }, + { 137, 111, 147, 189, 131, 251, 203, 246 }, + { 138, 111, 147, 190, 131, 251, 204, 246 }, + { 140, 112, 147, 192, 132, 251, 205, 247 }, + { 141, 112, 147, 193, 132, 251, 206, 247 }, + { 143, 113, 148, 194, 133, 251, 207, 247 }, + { 144, 113, 148, 195, 134, 251, 207, 247 }, + { 146, 114, 149, 197, 135, 252, 208, 248 }, + { 147, 114, 149, 198, 135, 252, 209, 248 }, + { 149, 115, 149, 199, 136, 252, 210, 248 }, + { 150, 115, 149, 200, 137, 252, 210, 248 }, + { 152, 115, 150, 201, 138, 252, 211, 248 }, + { 153, 115, 150, 202, 138, 252, 212, 248 }, + { 155, 116, 151, 204, 139, 253, 213, 249 }, + { 156, 116, 151, 205, 139, 253, 213, 249 }, + { 158, 117, 151, 206, 140, 253, 214, 249 }, + { 159, 117, 151, 207, 141, 253, 215, 249 }, + { 161, 118, 152, 208, 142, 253, 216, 249 }, + { 162, 118, 152, 209, 142, 253, 216, 249 }, + { 163, 119, 153, 210, 143, 253, 217, 249 }, + { 164, 119, 153, 211, 143, 253, 217, 249 }, + { 166, 120, 153, 212, 144, 254, 218, 250 }, + { 167, 120, 153, 212, 145, 254, 219, 250 }, + { 168, 121, 154, 213, 146, 254, 220, 250 }, + { 169, 121, 154, 214, 146, 254, 220, 250 }, + { 171, 122, 155, 215, 147, 254, 221, 250 }, + { 172, 122, 155, 216, 147, 254, 221, 250 }, + { 173, 123, 155, 217, 148, 254, 222, 250 }, + { 174, 123, 155, 217, 149, 254, 222, 250 }, + { 176, 124, 156, 218, 150, 254, 223, 250 }, + { 177, 124, 156, 219, 150, 254, 223, 250 }, + { 178, 125, 157, 220, 151, 254, 224, 251 }, + { 179, 125, 157, 220, 151, 254, 224, 251 }, + { 180, 126, 157, 221, 152, 254, 225, 251 }, + { 181, 126, 157, 221, 152, 254, 225, 251 }, + { 183, 127, 158, 222, 153, 254, 226, 251 }, + { 184, 127, 158, 223, 154, 254, 226, 251 }, + { 185, 128, 159, 224, 155, 255, 227, 251 }, + { 186, 128, 159, 224, 155, 255, 227, 251 }, + { 187, 129, 160, 225, 156, 255, 228, 251 }, + { 188, 130, 160, 225, 156, 255, 228, 251 }, + { 189, 131, 160, 226, 157, 255, 228, 251 }, + { 190, 131, 160, 226, 158, 255, 228, 251 }, + { 191, 132, 161, 227, 159, 255, 229, 251 }, + { 192, 132, 161, 227, 159, 255, 229, 251 }, + { 193, 133, 162, 228, 160, 255, 230, 252 }, + { 194, 133, 162, 229, 160, 255, 230, 252 }, + { 195, 134, 163, 230, 161, 255, 231, 252 }, + { 196, 134, 163, 230, 161, 255, 231, 252 }, + { 197, 135, 163, 231, 162, 255, 231, 252 }, + { 198, 135, 163, 231, 162, 255, 231, 252 }, + { 199, 136, 164, 232, 163, 255, 232, 252 }, + { 200, 136, 164, 232, 164, 255, 232, 252 }, + { 201, 137, 165, 233, 165, 255, 233, 252 }, + { 201, 137, 165, 233, 165, 255, 233, 252 }, + { 202, 138, 166, 233, 166, 255, 233, 252 }, + { 203, 138, 166, 233, 166, 255, 233, 252 }, + { 204, 139, 166, 234, 167, 255, 234, 252 }, + { 205, 139, 166, 234, 167, 255, 234, 252 }, + { 206, 140, 167, 235, 168, 255, 235, 252 }, + { 206, 140, 167, 235, 168, 255, 235, 252 }, + { 207, 141, 168, 236, 169, 255, 235, 252 }, + { 208, 141, 168, 236, 170, 255, 235, 252 }, + { 209, 142, 169, 237, 171, 255, 236, 252 }, + { 209, 143, 169, 237, 171, 255, 236, 252 }, + { 210, 144, 169, 237, 172, 255, 236, 252 }, + { 211, 144, 169, 237, 172, 255, 236, 252 }, + { 212, 145, 170, 238, 173, 255, 237, 252 }, + { 213, 145, 170, 238, 173, 255, 237, 252 }, + { 214, 146, 171, 239, 174, 255, 237, 253 }, + { 214, 146, 171, 239, 174, 255, 237, 253 }, + { 215, 147, 172, 240, 175, 255, 238, 253 }, + { 215, 147, 172, 240, 175, 255, 238, 253 }, + { 216, 148, 173, 240, 176, 255, 238, 253 }, + { 217, 148, 173, 240, 176, 255, 238, 253 }, + { 218, 149, 173, 241, 177, 255, 239, 253 }, + { 218, 149, 173, 241, 178, 255, 239, 253 }, + { 219, 150, 174, 241, 179, 255, 239, 253 }, + { 219, 151, 174, 241, 179, 255, 239, 253 }, + { 220, 152, 175, 242, 180, 255, 240, 253 }, + { 221, 152, 175, 242, 180, 255, 240, 253 }, + { 222, 153, 176, 242, 181, 255, 240, 253 }, + { 222, 153, 176, 242, 181, 255, 240, 253 }, + { 223, 154, 177, 243, 182, 255, 240, 253 }, + { 223, 154, 177, 243, 182, 255, 240, 253 }, + { 224, 155, 178, 244, 183, 255, 241, 253 }, + { 224, 155, 178, 244, 183, 255, 241, 253 }, + { 225, 156, 178, 244, 184, 255, 241, 253 }, + { 225, 157, 178, 244, 184, 255, 241, 253 }, + { 226, 158, 179, 244, 185, 255, 242, 253 }, + { 227, 158, 179, 244, 185, 255, 242, 253 }, + { 228, 159, 180, 245, 186, 255, 242, 253 }, + { 228, 159, 180, 245, 186, 255, 242, 253 }, + { 229, 160, 181, 245, 187, 255, 242, 253 }, + { 229, 160, 181, 245, 187, 255, 242, 253 }, + { 230, 161, 182, 246, 188, 255, 243, 253 }, + { 230, 162, 182, 246, 188, 255, 243, 253 }, + { 231, 163, 183, 246, 189, 255, 243, 253 }, + { 231, 163, 183, 246, 189, 255, 243, 253 }, + { 232, 164, 184, 247, 190, 255, 243, 253 }, + { 232, 164, 184, 247, 190, 255, 243, 253 }, + { 233, 165, 185, 247, 191, 255, 244, 253 }, + { 233, 165, 185, 247, 191, 255, 244, 253 }, + { 234, 166, 185, 247, 192, 255, 244, 253 }, + { 234, 167, 185, 247, 192, 255, 244, 253 }, + { 235, 168, 186, 248, 193, 255, 244, 253 }, + { 235, 168, 186, 248, 193, 255, 244, 253 }, + { 236, 169, 187, 248, 194, 255, 244, 253 }, + { 236, 169, 187, 248, 194, 255, 244, 253 }, + { 236, 170, 188, 248, 195, 255, 245, 253 }, + { 236, 170, 188, 248, 195, 255, 245, 253 }, + { 237, 171, 189, 249, 196, 255, 245, 254 }, + { 237, 172, 189, 249, 196, 255, 245, 254 }, + { 238, 173, 190, 249, 197, 255, 245, 254 }, + { 238, 173, 190, 249, 197, 255, 245, 254 }, + { 239, 174, 191, 249, 198, 255, 245, 254 }, + { 239, 174, 191, 249, 198, 255, 245, 254 }, + { 240, 175, 192, 249, 199, 255, 246, 254 }, + { 240, 176, 192, 249, 199, 255, 246, 254 }, + { 240, 177, 193, 250, 200, 255, 246, 254 }, + { 240, 177, 193, 250, 200, 255, 246, 254 }, + { 241, 178, 194, 250, 201, 255, 246, 254 }, + { 241, 178, 194, 250, 201, 255, 246, 254 }, + { 242, 179, 195, 250, 202, 255, 246, 254 }, + { 242, 180, 195, 250, 202, 255, 246, 254 }, + { 242, 181, 196, 250, 203, 255, 247, 254 }, + { 242, 181, 196, 250, 203, 255, 247, 254 }, + { 243, 182, 197, 251, 204, 255, 247, 254 }, + { 243, 183, 197, 251, 204, 255, 247, 254 }, + { 244, 184, 198, 251, 205, 255, 247, 254 }, + { 244, 184, 198, 251, 205, 255, 247, 254 }, + { 244, 185, 199, 251, 206, 255, 247, 254 }, + { 244, 185, 199, 251, 206, 255, 247, 254 }, + { 245, 186, 200, 251, 207, 255, 247, 254 }, + { 245, 187, 200, 251, 207, 255, 247, 254 }, + { 246, 188, 201, 252, 207, 255, 248, 254 }, + { 246, 188, 201, 252, 207, 255, 248, 254 }, + { 246, 189, 202, 252, 208, 255, 248, 254 }, + { 246, 190, 202, 252, 208, 255, 248, 254 }, + { 247, 191, 203, 252, 209, 255, 248, 254 }, + { 247, 191, 203, 252, 209, 255, 248, 254 }, + { 247, 192, 204, 252, 210, 255, 248, 254 }, + { 247, 193, 204, 252, 210, 255, 248, 254 }, + { 248, 194, 205, 252, 211, 255, 248, 254 }, + { 248, 194, 205, 252, 211, 255, 248, 254 }, + { 248, 195, 206, 252, 212, 255, 249, 254 }, + { 248, 196, 206, 252, 212, 255, 249, 254 }, + { 249, 197, 207, 253, 213, 255, 249, 254 }, + { 249, 197, 207, 253, 213, 255, 249, 254 }, + { 249, 198, 208, 253, 214, 255, 249, 254 }, + { 249, 199, 209, 253, 214, 255, 249, 254 }, + { 250, 200, 210, 253, 215, 255, 249, 254 }, + { 250, 200, 210, 253, 215, 255, 249, 254 }, + { 250, 201, 211, 253, 215, 255, 249, 254 }, + { 250, 202, 211, 253, 215, 255, 249, 254 }, + { 250, 203, 212, 253, 216, 255, 249, 254 }, + { 250, 203, 212, 253, 216, 255, 249, 254 }, + { 251, 204, 213, 253, 217, 255, 250, 254 }, + { 251, 205, 213, 253, 217, 255, 250, 254 }, + { 251, 206, 214, 254, 218, 255, 250, 254 }, + { 251, 206, 215, 254, 218, 255, 250, 254 }, + { 252, 207, 216, 254, 219, 255, 250, 254 }, + { 252, 208, 216, 254, 219, 255, 250, 254 }, + { 252, 209, 217, 254, 220, 255, 250, 254 }, + { 252, 210, 217, 254, 220, 255, 250, 254 }, + { 252, 211, 218, 254, 221, 255, 250, 254 }, + { 252, 212, 218, 254, 221, 255, 250, 254 }, + { 253, 213, 219, 254, 222, 255, 250, 254 }, + { 253, 213, 220, 254, 222, 255, 250, 254 }, + { 253, 214, 221, 254, 223, 255, 250, 254 }, + { 253, 215, 221, 254, 223, 255, 250, 254 }, + { 253, 216, 222, 254, 224, 255, 251, 254 }, + { 253, 217, 223, 254, 224, 255, 251, 254 }, + { 253, 218, 224, 254, 225, 255, 251, 254 }, + { 253, 219, 224, 254, 225, 255, 251, 254 }, + { 254, 220, 225, 254, 225, 255, 251, 254 }, + { 254, 221, 226, 254, 225, 255, 251, 254 }, + { 254, 222, 227, 255, 226, 255, 251, 254 }, + { 254, 223, 227, 255, 226, 255, 251, 254 }, + { 254, 224, 228, 255, 227, 255, 251, 254 }, + { 254, 225, 229, 255, 227, 255, 251, 254 }, + { 254, 226, 230, 255, 228, 255, 251, 254 }, + { 254, 227, 230, 255, 229, 255, 251, 254 }, + { 255, 228, 231, 255, 230, 255, 251, 254 }, + { 255, 229, 232, 255, 230, 255, 251, 254 }, + { 255, 230, 233, 255, 231, 255, 252, 254 }, + { 255, 231, 234, 255, 231, 255, 252, 254 }, + { 255, 232, 235, 255, 232, 255, 252, 254 }, + { 255, 233, 236, 255, 232, 255, 252, 254 }, + { 255, 235, 237, 255, 233, 255, 252, 254 }, + { 255, 236, 238, 255, 234, 255, 252, 254 }, + { 255, 238, 240, 255, 235, 255, 252, 255 }, + { 255, 239, 241, 255, 235, 255, 252, 254 }, + { 255, 241, 243, 255, 236, 255, 252, 254 }, + { 255, 243, 245, 255, 237, 255, 252, 254 }, + { 255, 246, 247, 255, 239, 255, 253, 255 }, +}; + +static const vp9_coeff_probs_model default_coef_probs_4x4[PLANE_TYPES] = { + { // Y plane + { // Intra + { // Band 0 + { 195, 29, 183 }, + { 84, 49, 136 }, + { 8, 42, 71 } }, + { // Band 1 + { 31, 107, 169 }, + { 35, 99, 159 }, + { 17, 82, 140 }, + { 8, 66, 114 }, + { 2, 44, 76 }, + { 1, 19, 32 } }, + { // Band 2 + { 40, 132, 201 }, + { 29, 114, 187 }, + { 13, 91, 157 }, + { 7, 75, 127 }, + { 3, 58, 95 }, + { 1, 28, 47 } }, + { // Band 3 + { 69, 142, 221 }, + { 42, 122, 201 }, + { 15, 91, 159 }, + { 6, 67, 121 }, + { 1, 42, 77 }, + { 1, 17, 31 } }, + { // Band 4 + { 102, 148, 228 }, + { 67, 117, 204 }, + { 17, 82, 154 }, + { 6, 59, 114 }, + { 2, 39, 75 }, + { 1, 15, 29 } }, + { // Band 5 + { 156, 57, 233 }, + { 119, 57, 212 }, + { 58, 48, 163 }, + { 29, 40, 124 }, + { 12, 30, 81 }, + { 3, 12, 31 } } }, + { // Inter + { // Band 0 + { 191, 107, 226 }, + { 124, 117, 204 }, + { 25, 99, 155 } }, + { // Band 1 + { 29, 148, 210 }, + { 37, 126, 194 }, + { 8, 93, 157 }, + { 2, 68, 118 }, + { 1, 39, 69 }, + { 1, 17, 33 } }, + { // Band 2 + { 41, 151, 213 }, + { 27, 123, 193 }, + { 3, 82, 144 }, + { 1, 58, 105 }, + { 1, 32, 60 }, + { 1, 13, 26 } }, + { // Band 3 + { 59, 159, 220 }, + { 23, 126, 198 }, + { 4, 88, 151 }, + { 1, 66, 114 }, + { 1, 38, 71 }, + { 1, 18, 34 } }, + { // Band 4 + { 114, 136, 232 }, + { 51, 114, 207 }, + { 11, 83, 155 }, + { 3, 56, 105 }, + { 1, 33, 65 }, + { 1, 17, 34 } }, + { // Band 5 + { 149, 65, 234 }, + { 121, 57, 215 }, + { 61, 49, 166 }, + { 28, 36, 114 }, + { 12, 25, 76 }, + { 3, 16, 42 } } } }, + { // UV plane + { // Intra + { // Band 0 + { 214, 49, 220 }, + { 132, 63, 188 }, + { 42, 65, 137 } }, + { // Band 1 + { 85, 137, 221 }, + { 104, 131, 216 }, + { 49, 111, 192 }, + { 21, 87, 155 }, + { 2, 49, 87 }, + { 1, 16, 28 } }, + { // Band 2 + { 89, 163, 230 }, + { 90, 137, 220 }, + { 29, 100, 183 }, + { 10, 70, 135 }, + { 2, 42, 81 }, + { 1, 17, 33 } }, + { // Band 3 + { 108, 167, 237 }, + { 55, 133, 222 }, + { 15, 97, 179 }, + { 4, 72, 135 }, + { 1, 45, 85 }, + { 1, 19, 38 } }, + { // Band 4 + { 124, 146, 240 }, + { 66, 124, 224 }, + { 17, 88, 175 }, + { 4, 58, 122 }, + { 1, 36, 75 }, + { 1, 18, 37 } }, + { // Band 5 + { 141, 79, 241 }, + { 126, 70, 227 }, + { 66, 58, 182 }, + { 30, 44, 136 }, + { 12, 34, 96 }, + { 2, 20, 47 } } }, + { // Inter + { // Band 0 + { 229, 99, 249 }, + { 143, 111, 235 }, + { 46, 109, 192 } }, + { // Band 1 + { 82, 158, 236 }, + { 94, 146, 224 }, + { 25, 117, 191 }, + { 9, 87, 149 }, + { 3, 56, 99 }, + { 1, 33, 57 } }, + { // Band 2 + { 83, 167, 237 }, + { 68, 145, 222 }, + { 10, 103, 177 }, + { 2, 72, 131 }, + { 1, 41, 79 }, + { 1, 20, 39 } }, + { // Band 3 + { 99, 167, 239 }, + { 47, 141, 224 }, + { 10, 104, 178 }, + { 2, 73, 133 }, + { 1, 44, 85 }, + { 1, 22, 47 } }, + { // Band 4 + { 127, 145, 243 }, + { 71, 129, 228 }, + { 17, 93, 177 }, + { 3, 61, 124 }, + { 1, 41, 84 }, + { 1, 21, 52 } }, + { // Band 5 + { 157, 78, 244 }, + { 140, 72, 231 }, + { 69, 58, 184 }, + { 31, 44, 137 }, + { 14, 38, 105 }, + { 8, 23, 61 } } } } +}; + +static const vp9_coeff_probs_model default_coef_probs_8x8[PLANE_TYPES] = { + { // Y plane + { // Intra + { // Band 0 + { 125, 34, 187 }, + { 52, 41, 133 }, + { 6, 31, 56 } }, + { // Band 1 + { 37, 109, 153 }, + { 51, 102, 147 }, + { 23, 87, 128 }, + { 8, 67, 101 }, + { 1, 41, 63 }, + { 1, 19, 29 } }, + { // Band 2 + { 31, 154, 185 }, + { 17, 127, 175 }, + { 6, 96, 145 }, + { 2, 73, 114 }, + { 1, 51, 82 }, + { 1, 28, 45 } }, + { // Band 3 + { 23, 163, 200 }, + { 10, 131, 185 }, + { 2, 93, 148 }, + { 1, 67, 111 }, + { 1, 41, 69 }, + { 1, 14, 24 } }, + { // Band 4 + { 29, 176, 217 }, + { 12, 145, 201 }, + { 3, 101, 156 }, + { 1, 69, 111 }, + { 1, 39, 63 }, + { 1, 14, 23 } }, + { // Band 5 + { 57, 192, 233 }, + { 25, 154, 215 }, + { 6, 109, 167 }, + { 3, 78, 118 }, + { 1, 48, 69 }, + { 1, 21, 29 } } }, + { // Inter + { // Band 0 + { 202, 105, 245 }, + { 108, 106, 216 }, + { 18, 90, 144 } }, + { // Band 1 + { 33, 172, 219 }, + { 64, 149, 206 }, + { 14, 117, 177 }, + { 5, 90, 141 }, + { 2, 61, 95 }, + { 1, 37, 57 } }, + { // Band 2 + { 33, 179, 220 }, + { 11, 140, 198 }, + { 1, 89, 148 }, + { 1, 60, 104 }, + { 1, 33, 57 }, + { 1, 12, 21 } }, + { // Band 3 + { 30, 181, 221 }, + { 8, 141, 198 }, + { 1, 87, 145 }, + { 1, 58, 100 }, + { 1, 31, 55 }, + { 1, 12, 20 } }, + { // Band 4 + { 32, 186, 224 }, + { 7, 142, 198 }, + { 1, 86, 143 }, + { 1, 58, 100 }, + { 1, 31, 55 }, + { 1, 12, 22 } }, + { // Band 5 + { 57, 192, 227 }, + { 20, 143, 204 }, + { 3, 96, 154 }, + { 1, 68, 112 }, + { 1, 42, 69 }, + { 1, 19, 32 } } } }, + { // UV plane + { // Intra + { // Band 0 + { 212, 35, 215 }, + { 113, 47, 169 }, + { 29, 48, 105 } }, + { // Band 1 + { 74, 129, 203 }, + { 106, 120, 203 }, + { 49, 107, 178 }, + { 19, 84, 144 }, + { 4, 50, 84 }, + { 1, 15, 25 } }, + { // Band 2 + { 71, 172, 217 }, + { 44, 141, 209 }, + { 15, 102, 173 }, + { 6, 76, 133 }, + { 2, 51, 89 }, + { 1, 24, 42 } }, + { // Band 3 + { 64, 185, 231 }, + { 31, 148, 216 }, + { 8, 103, 175 }, + { 3, 74, 131 }, + { 1, 46, 81 }, + { 1, 18, 30 } }, + { // Band 4 + { 65, 196, 235 }, + { 25, 157, 221 }, + { 5, 105, 174 }, + { 1, 67, 120 }, + { 1, 38, 69 }, + { 1, 15, 30 } }, + { // Band 5 + { 65, 204, 238 }, + { 30, 156, 224 }, + { 7, 107, 177 }, + { 2, 70, 124 }, + { 1, 42, 73 }, + { 1, 18, 34 } } }, + { // Inter + { // Band 0 + { 225, 86, 251 }, + { 144, 104, 235 }, + { 42, 99, 181 } }, + { // Band 1 + { 85, 175, 239 }, + { 112, 165, 229 }, + { 29, 136, 200 }, + { 12, 103, 162 }, + { 6, 77, 123 }, + { 2, 53, 84 } }, + { // Band 2 + { 75, 183, 239 }, + { 30, 155, 221 }, + { 3, 106, 171 }, + { 1, 74, 128 }, + { 1, 44, 76 }, + { 1, 17, 28 } }, + { // Band 3 + { 73, 185, 240 }, + { 27, 159, 222 }, + { 2, 107, 172 }, + { 1, 75, 127 }, + { 1, 42, 73 }, + { 1, 17, 29 } }, + { // Band 4 + { 62, 190, 238 }, + { 21, 159, 222 }, + { 2, 107, 172 }, + { 1, 72, 122 }, + { 1, 40, 71 }, + { 1, 18, 32 } }, + { // Band 5 + { 61, 199, 240 }, + { 27, 161, 226 }, + { 4, 113, 180 }, + { 1, 76, 129 }, + { 1, 46, 80 }, + { 1, 23, 41 } } } } +}; + +static const vp9_coeff_probs_model default_coef_probs_16x16[PLANE_TYPES] = { + { // Y plane + { // Intra + { // Band 0 + { 7, 27, 153 }, + { 5, 30, 95 }, + { 1, 16, 30 } }, + { // Band 1 + { 50, 75, 127 }, + { 57, 75, 124 }, + { 27, 67, 108 }, + { 10, 54, 86 }, + { 1, 33, 52 }, + { 1, 12, 18 } }, + { // Band 2 + { 43, 125, 151 }, + { 26, 108, 148 }, + { 7, 83, 122 }, + { 2, 59, 89 }, + { 1, 38, 60 }, + { 1, 17, 27 } }, + { // Band 3 + { 23, 144, 163 }, + { 13, 112, 154 }, + { 2, 75, 117 }, + { 1, 50, 81 }, + { 1, 31, 51 }, + { 1, 14, 23 } }, + { // Band 4 + { 18, 162, 185 }, + { 6, 123, 171 }, + { 1, 78, 125 }, + { 1, 51, 86 }, + { 1, 31, 54 }, + { 1, 14, 23 } }, + { // Band 5 + { 15, 199, 227 }, + { 3, 150, 204 }, + { 1, 91, 146 }, + { 1, 55, 95 }, + { 1, 30, 53 }, + { 1, 11, 20 } } }, + { // Inter + { // Band 0 + { 19, 55, 240 }, + { 19, 59, 196 }, + { 3, 52, 105 } }, + { // Band 1 + { 41, 166, 207 }, + { 104, 153, 199 }, + { 31, 123, 181 }, + { 14, 101, 152 }, + { 5, 72, 106 }, + { 1, 36, 52 } }, + { // Band 2 + { 35, 176, 211 }, + { 12, 131, 190 }, + { 2, 88, 144 }, + { 1, 60, 101 }, + { 1, 36, 60 }, + { 1, 16, 28 } }, + { // Band 3 + { 28, 183, 213 }, + { 8, 134, 191 }, + { 1, 86, 142 }, + { 1, 56, 96 }, + { 1, 30, 53 }, + { 1, 12, 20 } }, + { // Band 4 + { 20, 190, 215 }, + { 4, 135, 192 }, + { 1, 84, 139 }, + { 1, 53, 91 }, + { 1, 28, 49 }, + { 1, 11, 20 } }, + { // Band 5 + { 13, 196, 216 }, + { 2, 137, 192 }, + { 1, 86, 143 }, + { 1, 57, 99 }, + { 1, 32, 56 }, + { 1, 13, 24 } } } }, + { // UV plane + { // Intra + { // Band 0 + { 211, 29, 217 }, + { 96, 47, 156 }, + { 22, 43, 87 } }, + { // Band 1 + { 78, 120, 193 }, + { 111, 116, 186 }, + { 46, 102, 164 }, + { 15, 80, 128 }, + { 2, 49, 76 }, + { 1, 18, 28 } }, + { // Band 2 + { 71, 161, 203 }, + { 42, 132, 192 }, + { 10, 98, 150 }, + { 3, 69, 109 }, + { 1, 44, 70 }, + { 1, 18, 29 } }, + { // Band 3 + { 57, 186, 211 }, + { 30, 140, 196 }, + { 4, 93, 146 }, + { 1, 62, 102 }, + { 1, 38, 65 }, + { 1, 16, 27 } }, + { // Band 4 + { 47, 199, 217 }, + { 14, 145, 196 }, + { 1, 88, 142 }, + { 1, 57, 98 }, + { 1, 36, 62 }, + { 1, 15, 26 } }, + { // Band 5 + { 26, 219, 229 }, + { 5, 155, 207 }, + { 1, 94, 151 }, + { 1, 60, 104 }, + { 1, 36, 62 }, + { 1, 16, 28 } } }, + { // Inter + { // Band 0 + { 233, 29, 248 }, + { 146, 47, 220 }, + { 43, 52, 140 } }, + { // Band 1 + { 100, 163, 232 }, + { 179, 161, 222 }, + { 63, 142, 204 }, + { 37, 113, 174 }, + { 26, 89, 137 }, + { 18, 68, 97 } }, + { // Band 2 + { 85, 181, 230 }, + { 32, 146, 209 }, + { 7, 100, 164 }, + { 3, 71, 121 }, + { 1, 45, 77 }, + { 1, 18, 30 } }, + { // Band 3 + { 65, 187, 230 }, + { 20, 148, 207 }, + { 2, 97, 159 }, + { 1, 68, 116 }, + { 1, 40, 70 }, + { 1, 14, 29 } }, + { // Band 4 + { 40, 194, 227 }, + { 8, 147, 204 }, + { 1, 94, 155 }, + { 1, 65, 112 }, + { 1, 39, 66 }, + { 1, 14, 26 } }, + { // Band 5 + { 16, 208, 228 }, + { 3, 151, 207 }, + { 1, 98, 160 }, + { 1, 67, 117 }, + { 1, 41, 74 }, + { 1, 17, 31 } } } } +}; + +static const vp9_coeff_probs_model default_coef_probs_32x32[PLANE_TYPES] = { + { // Y plane + { // Intra + { // Band 0 + { 17, 38, 140 }, + { 7, 34, 80 }, + { 1, 17, 29 } }, + { // Band 1 + { 37, 75, 128 }, + { 41, 76, 128 }, + { 26, 66, 116 }, + { 12, 52, 94 }, + { 2, 32, 55 }, + { 1, 10, 16 } }, + { // Band 2 + { 50, 127, 154 }, + { 37, 109, 152 }, + { 16, 82, 121 }, + { 5, 59, 85 }, + { 1, 35, 54 }, + { 1, 13, 20 } }, + { // Band 3 + { 40, 142, 167 }, + { 17, 110, 157 }, + { 2, 71, 112 }, + { 1, 44, 72 }, + { 1, 27, 45 }, + { 1, 11, 17 } }, + { // Band 4 + { 30, 175, 188 }, + { 9, 124, 169 }, + { 1, 74, 116 }, + { 1, 48, 78 }, + { 1, 30, 49 }, + { 1, 11, 18 } }, + { // Band 5 + { 10, 222, 223 }, + { 2, 150, 194 }, + { 1, 83, 128 }, + { 1, 48, 79 }, + { 1, 27, 45 }, + { 1, 11, 17 } } }, + { // Inter + { // Band 0 + { 36, 41, 235 }, + { 29, 36, 193 }, + { 10, 27, 111 } }, + { // Band 1 + { 85, 165, 222 }, + { 177, 162, 215 }, + { 110, 135, 195 }, + { 57, 113, 168 }, + { 23, 83, 120 }, + { 10, 49, 61 } }, + { // Band 2 + { 85, 190, 223 }, + { 36, 139, 200 }, + { 5, 90, 146 }, + { 1, 60, 103 }, + { 1, 38, 65 }, + { 1, 18, 30 } }, + { // Band 3 + { 72, 202, 223 }, + { 23, 141, 199 }, + { 2, 86, 140 }, + { 1, 56, 97 }, + { 1, 36, 61 }, + { 1, 16, 27 } }, + { // Band 4 + { 55, 218, 225 }, + { 13, 145, 200 }, + { 1, 86, 141 }, + { 1, 57, 99 }, + { 1, 35, 61 }, + { 1, 13, 22 } }, + { // Band 5 + { 15, 235, 212 }, + { 1, 132, 184 }, + { 1, 84, 139 }, + { 1, 57, 97 }, + { 1, 34, 56 }, + { 1, 14, 23 } } } }, + { // UV plane + { // Intra + { // Band 0 + { 181, 21, 201 }, + { 61, 37, 123 }, + { 10, 38, 71 } }, + { // Band 1 + { 47, 106, 172 }, + { 95, 104, 173 }, + { 42, 93, 159 }, + { 18, 77, 131 }, + { 4, 50, 81 }, + { 1, 17, 23 } }, + { // Band 2 + { 62, 147, 199 }, + { 44, 130, 189 }, + { 28, 102, 154 }, + { 18, 75, 115 }, + { 2, 44, 65 }, + { 1, 12, 19 } }, + { // Band 3 + { 55, 153, 210 }, + { 24, 130, 194 }, + { 3, 93, 146 }, + { 1, 61, 97 }, + { 1, 31, 50 }, + { 1, 10, 16 } }, + { // Band 4 + { 49, 186, 223 }, + { 17, 148, 204 }, + { 1, 96, 142 }, + { 1, 53, 83 }, + { 1, 26, 44 }, + { 1, 11, 17 } }, + { // Band 5 + { 13, 217, 212 }, + { 2, 136, 180 }, + { 1, 78, 124 }, + { 1, 50, 83 }, + { 1, 29, 49 }, + { 1, 14, 23 } } }, + { // Inter + { // Band 0 + { 197, 13, 247 }, + { 82, 17, 222 }, + { 25, 17, 162 } }, + { // Band 1 + { 126, 186, 247 }, + { 234, 191, 243 }, + { 176, 177, 234 }, + { 104, 158, 220 }, + { 66, 128, 186 }, + { 55, 90, 137 } }, + { // Band 2 + { 111, 197, 242 }, + { 46, 158, 219 }, + { 9, 104, 171 }, + { 2, 65, 125 }, + { 1, 44, 80 }, + { 1, 17, 91 } }, + { // Band 3 + { 104, 208, 245 }, + { 39, 168, 224 }, + { 3, 109, 162 }, + { 1, 79, 124 }, + { 1, 50, 102 }, + { 1, 43, 102 } }, + { // Band 4 + { 84, 220, 246 }, + { 31, 177, 231 }, + { 2, 115, 180 }, + { 1, 79, 134 }, + { 1, 55, 77 }, + { 1, 60, 79 } }, + { // Band 5 + { 43, 243, 240 }, + { 8, 180, 217 }, + { 1, 115, 166 }, + { 1, 84, 121 }, + { 1, 51, 67 }, + { 1, 16, 6 } } } } +}; + +static void extend_to_full_distribution(vpx_prob *probs, vpx_prob p) { + assert(p != 0); + memcpy(probs, vp9_pareto8_full[p - 1], MODEL_NODES * sizeof(vpx_prob)); +} + +void vp9_model_to_full_probs(const vpx_prob *model, vpx_prob *full) { + if (full != model) + memcpy(full, model, sizeof(vpx_prob) * UNCONSTRAINED_NODES); + extend_to_full_distribution(&full[UNCONSTRAINED_NODES], model[PIVOT_NODE]); +} + +void vp9_default_coef_probs(VP9_COMMON *cm) { + vp9_copy(cm->fc->coef_probs[TX_4X4], default_coef_probs_4x4); + vp9_copy(cm->fc->coef_probs[TX_8X8], default_coef_probs_8x8); + vp9_copy(cm->fc->coef_probs[TX_16X16], default_coef_probs_16x16); + vp9_copy(cm->fc->coef_probs[TX_32X32], default_coef_probs_32x32); +} + +#define COEF_COUNT_SAT 24 +#define COEF_MAX_UPDATE_FACTOR 112 +#define COEF_COUNT_SAT_KEY 24 +#define COEF_MAX_UPDATE_FACTOR_KEY 112 +#define COEF_COUNT_SAT_AFTER_KEY 24 +#define COEF_MAX_UPDATE_FACTOR_AFTER_KEY 128 + +static void adapt_coef_probs(VP9_COMMON *cm, TX_SIZE tx_size, + unsigned int count_sat, + unsigned int update_factor) { + const FRAME_CONTEXT *pre_fc = &cm->frame_contexts[cm->frame_context_idx]; + vp9_coeff_probs_model *const probs = cm->fc->coef_probs[tx_size]; + const vp9_coeff_probs_model *const pre_probs = pre_fc->coef_probs[tx_size]; + vp9_coeff_count_model *counts = cm->counts.coef[tx_size]; + unsigned int(*eob_counts)[REF_TYPES][COEF_BANDS][COEFF_CONTEXTS] = + cm->counts.eob_branch[tx_size]; + int i, j, k, l, m; + + for (i = 0; i < PLANE_TYPES; ++i) + for (j = 0; j < REF_TYPES; ++j) + for (k = 0; k < COEF_BANDS; ++k) + for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) { + const int n0 = counts[i][j][k][l][ZERO_TOKEN]; + const int n1 = counts[i][j][k][l][ONE_TOKEN]; + const int n2 = counts[i][j][k][l][TWO_TOKEN]; + const int neob = counts[i][j][k][l][EOB_MODEL_TOKEN]; + const unsigned int branch_ct[UNCONSTRAINED_NODES][2] = { + { neob, eob_counts[i][j][k][l] - neob }, { n0, n1 + n2 }, { n1, n2 } + }; + for (m = 0; m < UNCONSTRAINED_NODES; ++m) + probs[i][j][k][l][m] = + merge_probs(pre_probs[i][j][k][l][m], branch_ct[m], count_sat, + update_factor); + } +} + +void vp9_adapt_coef_probs(VP9_COMMON *cm) { + TX_SIZE t; + unsigned int count_sat, update_factor; + + if (frame_is_intra_only(cm)) { + update_factor = COEF_MAX_UPDATE_FACTOR_KEY; + count_sat = COEF_COUNT_SAT_KEY; + } else if (cm->last_frame_type == KEY_FRAME) { + update_factor = COEF_MAX_UPDATE_FACTOR_AFTER_KEY; /* adapt quickly */ + count_sat = COEF_COUNT_SAT_AFTER_KEY; + } else { + update_factor = COEF_MAX_UPDATE_FACTOR; + count_sat = COEF_COUNT_SAT; + } + for (t = TX_4X4; t <= TX_32X32; t++) + adapt_coef_probs(cm, t, count_sat, update_factor); +} diff --git a/vp9/common/vp9_entropy.h b/vp9/common/vp9_entropy.h new file mode 100644 index 0000000..1da4911 --- /dev/null +++ b/vp9/common/vp9_entropy.h @@ -0,0 +1,198 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP9_COMMON_VP9_ENTROPY_H_ +#define VP9_COMMON_VP9_ENTROPY_H_ + +#include "vpx/vpx_integer.h" +#include "vpx_dsp/prob.h" + +#include "vp9/common/vp9_common.h" +#include "vp9/common/vp9_enums.h" + +#ifdef __cplusplus +extern "C" { +#endif + +#define DIFF_UPDATE_PROB 252 + +// Coefficient token alphabet +#define ZERO_TOKEN 0 // 0 Extra Bits 0+0 +#define ONE_TOKEN 1 // 1 Extra Bits 0+1 +#define TWO_TOKEN 2 // 2 Extra Bits 0+1 +#define THREE_TOKEN 3 // 3 Extra Bits 0+1 +#define FOUR_TOKEN 4 // 4 Extra Bits 0+1 +#define CATEGORY1_TOKEN 5 // 5-6 Extra Bits 1+1 +#define CATEGORY2_TOKEN 6 // 7-10 Extra Bits 2+1 +#define CATEGORY3_TOKEN 7 // 11-18 Extra Bits 3+1 +#define CATEGORY4_TOKEN 8 // 19-34 Extra Bits 4+1 +#define CATEGORY5_TOKEN 9 // 35-66 Extra Bits 5+1 +#define CATEGORY6_TOKEN 10 // 67+ Extra Bits 14+1 +#define EOB_TOKEN 11 // EOB Extra Bits 0+0 + +#define ENTROPY_TOKENS 12 + +#define ENTROPY_NODES 11 + +DECLARE_ALIGNED(16, extern const uint8_t, vp9_pt_energy_class[ENTROPY_TOKENS]); + +#define CAT1_MIN_VAL 5 +#define CAT2_MIN_VAL 7 +#define CAT3_MIN_VAL 11 +#define CAT4_MIN_VAL 19 +#define CAT5_MIN_VAL 35 +#define CAT6_MIN_VAL 67 + +// Extra bit probabilities. +DECLARE_ALIGNED(16, extern const uint8_t, vp9_cat1_prob[1]); +DECLARE_ALIGNED(16, extern const uint8_t, vp9_cat2_prob[2]); +DECLARE_ALIGNED(16, extern const uint8_t, vp9_cat3_prob[3]); +DECLARE_ALIGNED(16, extern const uint8_t, vp9_cat4_prob[4]); +DECLARE_ALIGNED(16, extern const uint8_t, vp9_cat5_prob[5]); +DECLARE_ALIGNED(16, extern const uint8_t, vp9_cat6_prob[14]); + +#if CONFIG_VP9_HIGHBITDEPTH +DECLARE_ALIGNED(16, extern const uint8_t, vp9_cat1_prob_high10[1]); +DECLARE_ALIGNED(16, extern const uint8_t, vp9_cat2_prob_high10[2]); +DECLARE_ALIGNED(16, extern const uint8_t, vp9_cat3_prob_high10[3]); +DECLARE_ALIGNED(16, extern const uint8_t, vp9_cat4_prob_high10[4]); +DECLARE_ALIGNED(16, extern const uint8_t, vp9_cat5_prob_high10[5]); +DECLARE_ALIGNED(16, extern const uint8_t, vp9_cat6_prob_high10[16]); +DECLARE_ALIGNED(16, extern const uint8_t, vp9_cat1_prob_high12[1]); +DECLARE_ALIGNED(16, extern const uint8_t, vp9_cat2_prob_high12[2]); +DECLARE_ALIGNED(16, extern const uint8_t, vp9_cat3_prob_high12[3]); +DECLARE_ALIGNED(16, extern const uint8_t, vp9_cat4_prob_high12[4]); +DECLARE_ALIGNED(16, extern const uint8_t, vp9_cat5_prob_high12[5]); +DECLARE_ALIGNED(16, extern const uint8_t, vp9_cat6_prob_high12[18]); +#endif // CONFIG_VP9_HIGHBITDEPTH + +#define EOB_MODEL_TOKEN 3 + +#define DCT_MAX_VALUE 16384 +#if CONFIG_VP9_HIGHBITDEPTH +#define DCT_MAX_VALUE_HIGH10 65536 +#define DCT_MAX_VALUE_HIGH12 262144 +#endif // CONFIG_VP9_HIGHBITDEPTH + +/* Coefficients are predicted via a 3-dimensional probability table. */ + +#define REF_TYPES 2 // intra=0, inter=1 + +/* Middle dimension reflects the coefficient position within the transform. */ +#define COEF_BANDS 6 + +/* Inside dimension is measure of nearby complexity, that reflects the energy + of nearby coefficients are nonzero. For the first coefficient (DC, unless + block type is 0), we look at the (already encoded) blocks above and to the + left of the current block. The context index is then the number (0,1,or 2) + of these blocks having nonzero coefficients. + After decoding a coefficient, the measure is determined by the size of the + most recently decoded coefficient. + Note that the intuitive meaning of this measure changes as coefficients + are decoded, e.g., prior to the first token, a zero means that my neighbors + are empty while, after the first token, because of the use of end-of-block, + a zero means we just decoded a zero and hence guarantees that a non-zero + coefficient will appear later in this block. However, this shift + in meaning is perfectly OK because our context depends also on the + coefficient band (and since zigzag positions 0, 1, and 2 are in + distinct bands). */ + +#define COEFF_CONTEXTS 6 +#define BAND_COEFF_CONTEXTS(band) ((band) == 0 ? 3 : COEFF_CONTEXTS) + +// #define ENTROPY_STATS + +typedef unsigned int vp9_coeff_count[REF_TYPES][COEF_BANDS][COEFF_CONTEXTS] + [ENTROPY_TOKENS]; +typedef unsigned int vp9_coeff_stats[REF_TYPES][COEF_BANDS][COEFF_CONTEXTS] + [ENTROPY_NODES][2]; + +#define SUBEXP_PARAM 4 /* Subexponential code parameter */ +#define MODULUS_PARAM 13 /* Modulus parameter */ + +struct VP9Common; +void vp9_default_coef_probs(struct VP9Common *cm); +void vp9_adapt_coef_probs(struct VP9Common *cm); + +// This is the index in the scan order beyond which all coefficients for +// 8x8 transform and above are in the top band. +// This macro is currently unused but may be used by certain implementations +#define MAXBAND_INDEX 21 + +DECLARE_ALIGNED(16, extern const uint8_t, vp9_coefband_trans_8x8plus[1024]); +DECLARE_ALIGNED(16, extern const uint8_t, vp9_coefband_trans_4x4[16]); + +static INLINE const uint8_t *get_band_translate(TX_SIZE tx_size) { + return tx_size == TX_4X4 ? vp9_coefband_trans_4x4 + : vp9_coefband_trans_8x8plus; +} + +// 128 lists of probabilities are stored for the following ONE node probs: +// 1, 3, 5, 7, ..., 253, 255 +// In between probabilities are interpolated linearly + +#define COEFF_PROB_MODELS 255 + +#define UNCONSTRAINED_NODES 3 + +#define PIVOT_NODE 2 // which node is pivot + +#define MODEL_NODES (ENTROPY_NODES - UNCONSTRAINED_NODES) +extern const vpx_tree_index vp9_coef_con_tree[TREE_SIZE(ENTROPY_TOKENS)]; +extern const vpx_prob vp9_pareto8_full[COEFF_PROB_MODELS][MODEL_NODES]; + +typedef vpx_prob vp9_coeff_probs_model[REF_TYPES][COEF_BANDS][COEFF_CONTEXTS] + [UNCONSTRAINED_NODES]; + +typedef unsigned int vp9_coeff_count_model[REF_TYPES][COEF_BANDS] + [COEFF_CONTEXTS] + [UNCONSTRAINED_NODES + 1]; + +void vp9_model_to_full_probs(const vpx_prob *model, vpx_prob *full); + +typedef char ENTROPY_CONTEXT; + +static INLINE int combine_entropy_contexts(ENTROPY_CONTEXT a, + ENTROPY_CONTEXT b) { + return (a != 0) + (b != 0); +} + +static INLINE int get_entropy_context(TX_SIZE tx_size, const ENTROPY_CONTEXT *a, + const ENTROPY_CONTEXT *l) { + ENTROPY_CONTEXT above_ec = 0, left_ec = 0; + + switch (tx_size) { + case TX_4X4: + above_ec = a[0] != 0; + left_ec = l[0] != 0; + break; + case TX_8X8: + above_ec = !!*(const uint16_t *)a; + left_ec = !!*(const uint16_t *)l; + break; + case TX_16X16: + above_ec = !!*(const uint32_t *)a; + left_ec = !!*(const uint32_t *)l; + break; + case TX_32X32: + above_ec = !!*(const uint64_t *)a; + left_ec = !!*(const uint64_t *)l; + break; + default: assert(0 && "Invalid transform size."); break; + } + + return combine_entropy_contexts(above_ec, left_ec); +} + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP9_COMMON_VP9_ENTROPY_H_ diff --git a/vp9/common/vp9_entropymode.c b/vp9/common/vp9_entropymode.c new file mode 100644 index 0000000..47cd63e --- /dev/null +++ b/vp9/common/vp9_entropymode.c @@ -0,0 +1,467 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "vpx_mem/vpx_mem.h" + +#include "vp9/common/vp9_onyxc_int.h" +#include "vp9/common/vp9_seg_common.h" + +const vpx_prob vp9_kf_y_mode_prob[INTRA_MODES][INTRA_MODES][INTRA_MODES - 1] = { + { + // above = dc + { 137, 30, 42, 148, 151, 207, 70, 52, 91 }, // left = dc + { 92, 45, 102, 136, 116, 180, 74, 90, 100 }, // left = v + { 73, 32, 19, 187, 222, 215, 46, 34, 100 }, // left = h + { 91, 30, 32, 116, 121, 186, 93, 86, 94 }, // left = d45 + { 72, 35, 36, 149, 68, 206, 68, 63, 105 }, // left = d135 + { 73, 31, 28, 138, 57, 124, 55, 122, 151 }, // left = d117 + { 67, 23, 21, 140, 126, 197, 40, 37, 171 }, // left = d153 + { 86, 27, 28, 128, 154, 212, 45, 43, 53 }, // left = d207 + { 74, 32, 27, 107, 86, 160, 63, 134, 102 }, // left = d63 + { 59, 67, 44, 140, 161, 202, 78, 67, 119 } // left = tm + }, + { + // above = v + { 63, 36, 126, 146, 123, 158, 60, 90, 96 }, // left = dc + { 43, 46, 168, 134, 107, 128, 69, 142, 92 }, // left = v + { 44, 29, 68, 159, 201, 177, 50, 57, 77 }, // left = h + { 58, 38, 76, 114, 97, 172, 78, 133, 92 }, // left = d45 + { 46, 41, 76, 140, 63, 184, 69, 112, 57 }, // left = d135 + { 38, 32, 85, 140, 46, 112, 54, 151, 133 }, // left = d117 + { 39, 27, 61, 131, 110, 175, 44, 75, 136 }, // left = d153 + { 52, 30, 74, 113, 130, 175, 51, 64, 58 }, // left = d207 + { 47, 35, 80, 100, 74, 143, 64, 163, 74 }, // left = d63 + { 36, 61, 116, 114, 128, 162, 80, 125, 82 } // left = tm + }, + { + // above = h + { 82, 26, 26, 171, 208, 204, 44, 32, 105 }, // left = dc + { 55, 44, 68, 166, 179, 192, 57, 57, 108 }, // left = v + { 42, 26, 11, 199, 241, 228, 23, 15, 85 }, // left = h + { 68, 42, 19, 131, 160, 199, 55, 52, 83 }, // left = d45 + { 58, 50, 25, 139, 115, 232, 39, 52, 118 }, // left = d135 + { 50, 35, 33, 153, 104, 162, 64, 59, 131 }, // left = d117 + { 44, 24, 16, 150, 177, 202, 33, 19, 156 }, // left = d153 + { 55, 27, 12, 153, 203, 218, 26, 27, 49 }, // left = d207 + { 53, 49, 21, 110, 116, 168, 59, 80, 76 }, // left = d63 + { 38, 72, 19, 168, 203, 212, 50, 50, 107 } // left = tm + }, + { + // above = d45 + { 103, 26, 36, 129, 132, 201, 83, 80, 93 }, // left = dc + { 59, 38, 83, 112, 103, 162, 98, 136, 90 }, // left = v + { 62, 30, 23, 158, 200, 207, 59, 57, 50 }, // left = h + { 67, 30, 29, 84, 86, 191, 102, 91, 59 }, // left = d45 + { 60, 32, 33, 112, 71, 220, 64, 89, 104 }, // left = d135 + { 53, 26, 34, 130, 56, 149, 84, 120, 103 }, // left = d117 + { 53, 21, 23, 133, 109, 210, 56, 77, 172 }, // left = d153 + { 77, 19, 29, 112, 142, 228, 55, 66, 36 }, // left = d207 + { 61, 29, 29, 93, 97, 165, 83, 175, 162 }, // left = d63 + { 47, 47, 43, 114, 137, 181, 100, 99, 95 } // left = tm + }, + { + // above = d135 + { 69, 23, 29, 128, 83, 199, 46, 44, 101 }, // left = dc + { 53, 40, 55, 139, 69, 183, 61, 80, 110 }, // left = v + { 40, 29, 19, 161, 180, 207, 43, 24, 91 }, // left = h + { 60, 34, 19, 105, 61, 198, 53, 64, 89 }, // left = d45 + { 52, 31, 22, 158, 40, 209, 58, 62, 89 }, // left = d135 + { 44, 31, 29, 147, 46, 158, 56, 102, 198 }, // left = d117 + { 35, 19, 12, 135, 87, 209, 41, 45, 167 }, // left = d153 + { 55, 25, 21, 118, 95, 215, 38, 39, 66 }, // left = d207 + { 51, 38, 25, 113, 58, 164, 70, 93, 97 }, // left = d63 + { 47, 54, 34, 146, 108, 203, 72, 103, 151 } // left = tm + }, + { + // above = d117 + { 64, 19, 37, 156, 66, 138, 49, 95, 133 }, // left = dc + { 46, 27, 80, 150, 55, 124, 55, 121, 135 }, // left = v + { 36, 23, 27, 165, 149, 166, 54, 64, 118 }, // left = h + { 53, 21, 36, 131, 63, 163, 60, 109, 81 }, // left = d45 + { 40, 26, 35, 154, 40, 185, 51, 97, 123 }, // left = d135 + { 35, 19, 34, 179, 19, 97, 48, 129, 124 }, // left = d117 + { 36, 20, 26, 136, 62, 164, 33, 77, 154 }, // left = d153 + { 45, 18, 32, 130, 90, 157, 40, 79, 91 }, // left = d207 + { 45, 26, 28, 129, 45, 129, 49, 147, 123 }, // left = d63 + { 38, 44, 51, 136, 74, 162, 57, 97, 121 } // left = tm + }, + { + // above = d153 + { 75, 17, 22, 136, 138, 185, 32, 34, 166 }, // left = dc + { 56, 39, 58, 133, 117, 173, 48, 53, 187 }, // left = v + { 35, 21, 12, 161, 212, 207, 20, 23, 145 }, // left = h + { 56, 29, 19, 117, 109, 181, 55, 68, 112 }, // left = d45 + { 47, 29, 17, 153, 64, 220, 59, 51, 114 }, // left = d135 + { 46, 16, 24, 136, 76, 147, 41, 64, 172 }, // left = d117 + { 34, 17, 11, 108, 152, 187, 13, 15, 209 }, // left = d153 + { 51, 24, 14, 115, 133, 209, 32, 26, 104 }, // left = d207 + { 55, 30, 18, 122, 79, 179, 44, 88, 116 }, // left = d63 + { 37, 49, 25, 129, 168, 164, 41, 54, 148 } // left = tm + }, + { + // above = d207 + { 82, 22, 32, 127, 143, 213, 39, 41, 70 }, // left = dc + { 62, 44, 61, 123, 105, 189, 48, 57, 64 }, // left = v + { 47, 25, 17, 175, 222, 220, 24, 30, 86 }, // left = h + { 68, 36, 17, 106, 102, 206, 59, 74, 74 }, // left = d45 + { 57, 39, 23, 151, 68, 216, 55, 63, 58 }, // left = d135 + { 49, 30, 35, 141, 70, 168, 82, 40, 115 }, // left = d117 + { 51, 25, 15, 136, 129, 202, 38, 35, 139 }, // left = d153 + { 68, 26, 16, 111, 141, 215, 29, 28, 28 }, // left = d207 + { 59, 39, 19, 114, 75, 180, 77, 104, 42 }, // left = d63 + { 40, 61, 26, 126, 152, 206, 61, 59, 93 } // left = tm + }, + { + // above = d63 + { 78, 23, 39, 111, 117, 170, 74, 124, 94 }, // left = dc + { 48, 34, 86, 101, 92, 146, 78, 179, 134 }, // left = v + { 47, 22, 24, 138, 187, 178, 68, 69, 59 }, // left = h + { 56, 25, 33, 105, 112, 187, 95, 177, 129 }, // left = d45 + { 48, 31, 27, 114, 63, 183, 82, 116, 56 }, // left = d135 + { 43, 28, 37, 121, 63, 123, 61, 192, 169 }, // left = d117 + { 42, 17, 24, 109, 97, 177, 56, 76, 122 }, // left = d153 + { 58, 18, 28, 105, 139, 182, 70, 92, 63 }, // left = d207 + { 46, 23, 32, 74, 86, 150, 67, 183, 88 }, // left = d63 + { 36, 38, 48, 92, 122, 165, 88, 137, 91 } // left = tm + }, + { + // above = tm + { 65, 70, 60, 155, 159, 199, 61, 60, 81 }, // left = dc + { 44, 78, 115, 132, 119, 173, 71, 112, 93 }, // left = v + { 39, 38, 21, 184, 227, 206, 42, 32, 64 }, // left = h + { 58, 47, 36, 124, 137, 193, 80, 82, 78 }, // left = d45 + { 49, 50, 35, 144, 95, 205, 63, 78, 59 }, // left = d135 + { 41, 53, 52, 148, 71, 142, 65, 128, 51 }, // left = d117 + { 40, 36, 28, 143, 143, 202, 40, 55, 137 }, // left = d153 + { 52, 34, 29, 129, 183, 227, 42, 35, 43 }, // left = d207 + { 42, 44, 44, 104, 105, 164, 64, 130, 80 }, // left = d63 + { 43, 81, 53, 140, 169, 204, 68, 84, 72 } // left = tm + } +}; + +const vpx_prob vp9_kf_uv_mode_prob[INTRA_MODES][INTRA_MODES - 1] = { + { 144, 11, 54, 157, 195, 130, 46, 58, 108 }, // y = dc + { 118, 15, 123, 148, 131, 101, 44, 93, 131 }, // y = v + { 113, 12, 23, 188, 226, 142, 26, 32, 125 }, // y = h + { 120, 11, 50, 123, 163, 135, 64, 77, 103 }, // y = d45 + { 113, 9, 36, 155, 111, 157, 32, 44, 161 }, // y = d135 + { 116, 9, 55, 176, 76, 96, 37, 61, 149 }, // y = d117 + { 115, 9, 28, 141, 161, 167, 21, 25, 193 }, // y = d153 + { 120, 12, 32, 145, 195, 142, 32, 38, 86 }, // y = d207 + { 116, 12, 64, 120, 140, 125, 49, 115, 121 }, // y = d63 + { 102, 19, 66, 162, 182, 122, 35, 59, 128 } // y = tm +}; + +static const vpx_prob default_if_y_probs[BLOCK_SIZE_GROUPS][INTRA_MODES - 1] = { + { 65, 32, 18, 144, 162, 194, 41, 51, 98 }, // block_size < 8x8 + { 132, 68, 18, 165, 217, 196, 45, 40, 78 }, // block_size < 16x16 + { 173, 80, 19, 176, 240, 193, 64, 35, 46 }, // block_size < 32x32 + { 221, 135, 38, 194, 248, 121, 96, 85, 29 } // block_size >= 32x32 +}; + +static const vpx_prob default_if_uv_probs[INTRA_MODES][INTRA_MODES - 1] = { + { 120, 7, 76, 176, 208, 126, 28, 54, 103 }, // y = dc + { 48, 12, 154, 155, 139, 90, 34, 117, 119 }, // y = v + { 67, 6, 25, 204, 243, 158, 13, 21, 96 }, // y = h + { 97, 5, 44, 131, 176, 139, 48, 68, 97 }, // y = d45 + { 83, 5, 42, 156, 111, 152, 26, 49, 152 }, // y = d135 + { 80, 5, 58, 178, 74, 83, 33, 62, 145 }, // y = d117 + { 86, 5, 32, 154, 192, 168, 14, 22, 163 }, // y = d153 + { 85, 5, 32, 156, 216, 148, 19, 29, 73 }, // y = d207 + { 77, 7, 64, 116, 132, 122, 37, 126, 120 }, // y = d63 + { 101, 21, 107, 181, 192, 103, 19, 67, 125 } // y = tm +}; + +const vpx_prob vp9_kf_partition_probs[PARTITION_CONTEXTS][PARTITION_TYPES - 1] = + { + // 8x8 -> 4x4 + { 158, 97, 94 }, // a/l both not split + { 93, 24, 99 }, // a split, l not split + { 85, 119, 44 }, // l split, a not split + { 62, 59, 67 }, // a/l both split + // 16x16 -> 8x8 + { 149, 53, 53 }, // a/l both not split + { 94, 20, 48 }, // a split, l not split + { 83, 53, 24 }, // l split, a not split + { 52, 18, 18 }, // a/l both split + // 32x32 -> 16x16 + { 150, 40, 39 }, // a/l both not split + { 78, 12, 26 }, // a split, l not split + { 67, 33, 11 }, // l split, a not split + { 24, 7, 5 }, // a/l both split + // 64x64 -> 32x32 + { 174, 35, 49 }, // a/l both not split + { 68, 11, 27 }, // a split, l not split + { 57, 15, 9 }, // l split, a not split + { 12, 3, 3 }, // a/l both split + }; + +static const vpx_prob + default_partition_probs[PARTITION_CONTEXTS][PARTITION_TYPES - 1] = { + // 8x8 -> 4x4 + { 199, 122, 141 }, // a/l both not split + { 147, 63, 159 }, // a split, l not split + { 148, 133, 118 }, // l split, a not split + { 121, 104, 114 }, // a/l both split + // 16x16 -> 8x8 + { 174, 73, 87 }, // a/l both not split + { 92, 41, 83 }, // a split, l not split + { 82, 99, 50 }, // l split, a not split + { 53, 39, 39 }, // a/l both split + // 32x32 -> 16x16 + { 177, 58, 59 }, // a/l both not split + { 68, 26, 63 }, // a split, l not split + { 52, 79, 25 }, // l split, a not split + { 17, 14, 12 }, // a/l both split + // 64x64 -> 32x32 + { 222, 34, 30 }, // a/l both not split + { 72, 16, 44 }, // a split, l not split + { 58, 32, 12 }, // l split, a not split + { 10, 7, 6 }, // a/l both split + }; + +static const vpx_prob + default_inter_mode_probs[INTER_MODE_CONTEXTS][INTER_MODES - 1] = { + { 2, 173, 34 }, // 0 = both zero mv + { 7, 145, 85 }, // 1 = one zero mv + one a predicted mv + { 7, 166, 63 }, // 2 = two predicted mvs + { 7, 94, 66 }, // 3 = one predicted/zero and one new mv + { 8, 64, 46 }, // 4 = two new mvs + { 17, 81, 31 }, // 5 = one intra neighbour + x + { 25, 29, 30 }, // 6 = two intra neighbours + }; + +/* Array indices are identical to previously-existing INTRAMODECONTEXTNODES. */ +const vpx_tree_index vp9_intra_mode_tree[TREE_SIZE(INTRA_MODES)] = { + -DC_PRED, 2, /* 0 = DC_NODE */ + -TM_PRED, 4, /* 1 = TM_NODE */ + -V_PRED, 6, /* 2 = V_NODE */ + 8, 12, /* 3 = COM_NODE */ + -H_PRED, 10, /* 4 = H_NODE */ + -D135_PRED, -D117_PRED, /* 5 = D135_NODE */ + -D45_PRED, 14, /* 6 = D45_NODE */ + -D63_PRED, 16, /* 7 = D63_NODE */ + -D153_PRED, -D207_PRED /* 8 = D153_NODE */ +}; + +const vpx_tree_index vp9_inter_mode_tree[TREE_SIZE(INTER_MODES)] = { + -INTER_OFFSET(ZEROMV), 2, -INTER_OFFSET(NEARESTMV), 4, -INTER_OFFSET(NEARMV), + -INTER_OFFSET(NEWMV) +}; + +const vpx_tree_index vp9_partition_tree[TREE_SIZE(PARTITION_TYPES)] = { + -PARTITION_NONE, 2, -PARTITION_HORZ, 4, -PARTITION_VERT, -PARTITION_SPLIT +}; + +static const vpx_prob default_intra_inter_p[INTRA_INTER_CONTEXTS] = { + 9, 102, 187, 225 +}; + +static const vpx_prob default_comp_inter_p[COMP_INTER_CONTEXTS] = { + 239, 183, 119, 96, 41 +}; + +static const vpx_prob default_comp_ref_p[REF_CONTEXTS] = { 50, 126, 123, 221, + 226 }; + +static const vpx_prob default_single_ref_p[REF_CONTEXTS][2] = { + { 33, 16 }, { 77, 74 }, { 142, 142 }, { 172, 170 }, { 238, 247 } +}; + +static const struct tx_probs default_tx_probs = { { { 3, 136, 37 }, + { 5, 52, 13 } }, + + { { 20, 152 }, { 15, 101 } }, + + { { 100 }, { 66 } } }; + +void tx_counts_to_branch_counts_32x32(const unsigned int *tx_count_32x32p, + unsigned int (*ct_32x32p)[2]) { + ct_32x32p[0][0] = tx_count_32x32p[TX_4X4]; + ct_32x32p[0][1] = tx_count_32x32p[TX_8X8] + tx_count_32x32p[TX_16X16] + + tx_count_32x32p[TX_32X32]; + ct_32x32p[1][0] = tx_count_32x32p[TX_8X8]; + ct_32x32p[1][1] = tx_count_32x32p[TX_16X16] + tx_count_32x32p[TX_32X32]; + ct_32x32p[2][0] = tx_count_32x32p[TX_16X16]; + ct_32x32p[2][1] = tx_count_32x32p[TX_32X32]; +} + +void tx_counts_to_branch_counts_16x16(const unsigned int *tx_count_16x16p, + unsigned int (*ct_16x16p)[2]) { + ct_16x16p[0][0] = tx_count_16x16p[TX_4X4]; + ct_16x16p[0][1] = tx_count_16x16p[TX_8X8] + tx_count_16x16p[TX_16X16]; + ct_16x16p[1][0] = tx_count_16x16p[TX_8X8]; + ct_16x16p[1][1] = tx_count_16x16p[TX_16X16]; +} + +void tx_counts_to_branch_counts_8x8(const unsigned int *tx_count_8x8p, + unsigned int (*ct_8x8p)[2]) { + ct_8x8p[0][0] = tx_count_8x8p[TX_4X4]; + ct_8x8p[0][1] = tx_count_8x8p[TX_8X8]; +} + +static const vpx_prob default_skip_probs[SKIP_CONTEXTS] = { 192, 128, 64 }; + +static const vpx_prob default_switchable_interp_prob[SWITCHABLE_FILTER_CONTEXTS] + [SWITCHABLE_FILTERS - 1] = { + { 235, 162 }, + { 36, 255 }, + { 34, 3 }, + { 149, 144 }, + }; + +static void init_mode_probs(FRAME_CONTEXT *fc) { + vp9_copy(fc->uv_mode_prob, default_if_uv_probs); + vp9_copy(fc->y_mode_prob, default_if_y_probs); + vp9_copy(fc->switchable_interp_prob, default_switchable_interp_prob); + vp9_copy(fc->partition_prob, default_partition_probs); + vp9_copy(fc->intra_inter_prob, default_intra_inter_p); + vp9_copy(fc->comp_inter_prob, default_comp_inter_p); + vp9_copy(fc->comp_ref_prob, default_comp_ref_p); + vp9_copy(fc->single_ref_prob, default_single_ref_p); + fc->tx_probs = default_tx_probs; + vp9_copy(fc->skip_probs, default_skip_probs); + vp9_copy(fc->inter_mode_probs, default_inter_mode_probs); +} + +const vpx_tree_index vp9_switchable_interp_tree[TREE_SIZE(SWITCHABLE_FILTERS)] = + { -EIGHTTAP, 2, -EIGHTTAP_SMOOTH, -EIGHTTAP_SHARP }; + +void vp9_adapt_mode_probs(VP9_COMMON *cm) { + int i, j; + FRAME_CONTEXT *fc = cm->fc; + const FRAME_CONTEXT *pre_fc = &cm->frame_contexts[cm->frame_context_idx]; + const FRAME_COUNTS *counts = &cm->counts; + + for (i = 0; i < INTRA_INTER_CONTEXTS; i++) + fc->intra_inter_prob[i] = mode_mv_merge_probs(pre_fc->intra_inter_prob[i], + counts->intra_inter[i]); + for (i = 0; i < COMP_INTER_CONTEXTS; i++) + fc->comp_inter_prob[i] = + mode_mv_merge_probs(pre_fc->comp_inter_prob[i], counts->comp_inter[i]); + for (i = 0; i < REF_CONTEXTS; i++) + fc->comp_ref_prob[i] = + mode_mv_merge_probs(pre_fc->comp_ref_prob[i], counts->comp_ref[i]); + for (i = 0; i < REF_CONTEXTS; i++) + for (j = 0; j < 2; j++) + fc->single_ref_prob[i][j] = mode_mv_merge_probs( + pre_fc->single_ref_prob[i][j], counts->single_ref[i][j]); + + for (i = 0; i < INTER_MODE_CONTEXTS; i++) + vpx_tree_merge_probs(vp9_inter_mode_tree, pre_fc->inter_mode_probs[i], + counts->inter_mode[i], fc->inter_mode_probs[i]); + + for (i = 0; i < BLOCK_SIZE_GROUPS; i++) + vpx_tree_merge_probs(vp9_intra_mode_tree, pre_fc->y_mode_prob[i], + counts->y_mode[i], fc->y_mode_prob[i]); + + for (i = 0; i < INTRA_MODES; ++i) + vpx_tree_merge_probs(vp9_intra_mode_tree, pre_fc->uv_mode_prob[i], + counts->uv_mode[i], fc->uv_mode_prob[i]); + + for (i = 0; i < PARTITION_CONTEXTS; i++) + vpx_tree_merge_probs(vp9_partition_tree, pre_fc->partition_prob[i], + counts->partition[i], fc->partition_prob[i]); + + if (cm->interp_filter == SWITCHABLE) { + for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++) + vpx_tree_merge_probs( + vp9_switchable_interp_tree, pre_fc->switchable_interp_prob[i], + counts->switchable_interp[i], fc->switchable_interp_prob[i]); + } + + if (cm->tx_mode == TX_MODE_SELECT) { + int j; + unsigned int branch_ct_8x8p[TX_SIZES - 3][2]; + unsigned int branch_ct_16x16p[TX_SIZES - 2][2]; + unsigned int branch_ct_32x32p[TX_SIZES - 1][2]; + + for (i = 0; i < TX_SIZE_CONTEXTS; ++i) { + tx_counts_to_branch_counts_8x8(counts->tx.p8x8[i], branch_ct_8x8p); + for (j = 0; j < TX_SIZES - 3; ++j) + fc->tx_probs.p8x8[i][j] = + mode_mv_merge_probs(pre_fc->tx_probs.p8x8[i][j], branch_ct_8x8p[j]); + + tx_counts_to_branch_counts_16x16(counts->tx.p16x16[i], branch_ct_16x16p); + for (j = 0; j < TX_SIZES - 2; ++j) + fc->tx_probs.p16x16[i][j] = mode_mv_merge_probs( + pre_fc->tx_probs.p16x16[i][j], branch_ct_16x16p[j]); + + tx_counts_to_branch_counts_32x32(counts->tx.p32x32[i], branch_ct_32x32p); + for (j = 0; j < TX_SIZES - 1; ++j) + fc->tx_probs.p32x32[i][j] = mode_mv_merge_probs( + pre_fc->tx_probs.p32x32[i][j], branch_ct_32x32p[j]); + } + } + + for (i = 0; i < SKIP_CONTEXTS; ++i) + fc->skip_probs[i] = + mode_mv_merge_probs(pre_fc->skip_probs[i], counts->skip[i]); +} + +static void set_default_lf_deltas(struct loopfilter *lf) { + lf->mode_ref_delta_enabled = 1; + lf->mode_ref_delta_update = 1; + + lf->ref_deltas[INTRA_FRAME] = 1; + lf->ref_deltas[LAST_FRAME] = 0; + lf->ref_deltas[GOLDEN_FRAME] = -1; + lf->ref_deltas[ALTREF_FRAME] = -1; + + lf->mode_deltas[0] = 0; + lf->mode_deltas[1] = 0; +} + +void vp9_setup_past_independence(VP9_COMMON *cm) { + // Reset the segment feature data to the default stats: + // Features disabled, 0, with delta coding (Default state). + struct loopfilter *const lf = &cm->lf; + + int i; + vp9_clearall_segfeatures(&cm->seg); + cm->seg.abs_delta = SEGMENT_DELTADATA; + + if (cm->last_frame_seg_map) + memset(cm->last_frame_seg_map, 0, (cm->mi_rows * cm->mi_cols)); + + if (cm->current_frame_seg_map) + memset(cm->current_frame_seg_map, 0, (cm->mi_rows * cm->mi_cols)); + + // Reset the mode ref deltas for loop filter + vp9_zero(lf->last_ref_deltas); + vp9_zero(lf->last_mode_deltas); + set_default_lf_deltas(lf); + + // To force update of the sharpness + lf->last_sharpness_level = -1; + + vp9_default_coef_probs(cm); + init_mode_probs(cm->fc); + vp9_init_mv_probs(cm); + cm->fc->initialized = 1; + + if (cm->frame_type == KEY_FRAME || cm->error_resilient_mode || + cm->reset_frame_context == 3) { + // Reset all frame contexts. + for (i = 0; i < FRAME_CONTEXTS; ++i) cm->frame_contexts[i] = *cm->fc; + } else if (cm->reset_frame_context == 2) { + // Reset only the frame context specified in the frame header. + cm->frame_contexts[cm->frame_context_idx] = *cm->fc; + } + + // prev_mip will only be allocated in encoder. + if (frame_is_intra_only(cm) && cm->prev_mip) + memset(cm->prev_mip, 0, + cm->mi_stride * (cm->mi_rows + 1) * sizeof(*cm->prev_mip)); + + vp9_zero(cm->ref_frame_sign_bias); + + cm->frame_context_idx = 0; +} diff --git a/vp9/common/vp9_entropymode.h b/vp9/common/vp9_entropymode.h new file mode 100644 index 0000000..0ee663f --- /dev/null +++ b/vp9/common/vp9_entropymode.h @@ -0,0 +1,107 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP9_COMMON_VP9_ENTROPYMODE_H_ +#define VP9_COMMON_VP9_ENTROPYMODE_H_ + +#include "vp9/common/vp9_entropy.h" +#include "vp9/common/vp9_entropymv.h" +#include "vp9/common/vp9_filter.h" +#include "vpx_dsp/vpx_filter.h" + +#ifdef __cplusplus +extern "C" { +#endif + +#define BLOCK_SIZE_GROUPS 4 + +#define TX_SIZE_CONTEXTS 2 + +#define INTER_OFFSET(mode) ((mode)-NEARESTMV) + +struct VP9Common; + +struct tx_probs { + vpx_prob p32x32[TX_SIZE_CONTEXTS][TX_SIZES - 1]; + vpx_prob p16x16[TX_SIZE_CONTEXTS][TX_SIZES - 2]; + vpx_prob p8x8[TX_SIZE_CONTEXTS][TX_SIZES - 3]; +}; + +struct tx_counts { + unsigned int p32x32[TX_SIZE_CONTEXTS][TX_SIZES]; + unsigned int p16x16[TX_SIZE_CONTEXTS][TX_SIZES - 1]; + unsigned int p8x8[TX_SIZE_CONTEXTS][TX_SIZES - 2]; + unsigned int tx_totals[TX_SIZES]; +}; + +typedef struct frame_contexts { + vpx_prob y_mode_prob[BLOCK_SIZE_GROUPS][INTRA_MODES - 1]; + vpx_prob uv_mode_prob[INTRA_MODES][INTRA_MODES - 1]; + vpx_prob partition_prob[PARTITION_CONTEXTS][PARTITION_TYPES - 1]; + vp9_coeff_probs_model coef_probs[TX_SIZES][PLANE_TYPES]; + vpx_prob switchable_interp_prob[SWITCHABLE_FILTER_CONTEXTS] + [SWITCHABLE_FILTERS - 1]; + vpx_prob inter_mode_probs[INTER_MODE_CONTEXTS][INTER_MODES - 1]; + vpx_prob intra_inter_prob[INTRA_INTER_CONTEXTS]; + vpx_prob comp_inter_prob[COMP_INTER_CONTEXTS]; + vpx_prob single_ref_prob[REF_CONTEXTS][2]; + vpx_prob comp_ref_prob[REF_CONTEXTS]; + struct tx_probs tx_probs; + vpx_prob skip_probs[SKIP_CONTEXTS]; + nmv_context nmvc; + int initialized; +} FRAME_CONTEXT; + +typedef struct FRAME_COUNTS { + unsigned int y_mode[BLOCK_SIZE_GROUPS][INTRA_MODES]; + unsigned int uv_mode[INTRA_MODES][INTRA_MODES]; + unsigned int partition[PARTITION_CONTEXTS][PARTITION_TYPES]; + vp9_coeff_count_model coef[TX_SIZES][PLANE_TYPES]; + unsigned int eob_branch[TX_SIZES][PLANE_TYPES][REF_TYPES][COEF_BANDS] + [COEFF_CONTEXTS]; + unsigned int switchable_interp[SWITCHABLE_FILTER_CONTEXTS] + [SWITCHABLE_FILTERS]; + unsigned int inter_mode[INTER_MODE_CONTEXTS][INTER_MODES]; + unsigned int intra_inter[INTRA_INTER_CONTEXTS][2]; + unsigned int comp_inter[COMP_INTER_CONTEXTS][2]; + unsigned int single_ref[REF_CONTEXTS][2][2]; + unsigned int comp_ref[REF_CONTEXTS][2]; + struct tx_counts tx; + unsigned int skip[SKIP_CONTEXTS][2]; + nmv_context_counts mv; +} FRAME_COUNTS; + +extern const vpx_prob vp9_kf_uv_mode_prob[INTRA_MODES][INTRA_MODES - 1]; +extern const vpx_prob vp9_kf_y_mode_prob[INTRA_MODES][INTRA_MODES] + [INTRA_MODES - 1]; +extern const vpx_prob vp9_kf_partition_probs[PARTITION_CONTEXTS] + [PARTITION_TYPES - 1]; +extern const vpx_tree_index vp9_intra_mode_tree[TREE_SIZE(INTRA_MODES)]; +extern const vpx_tree_index vp9_inter_mode_tree[TREE_SIZE(INTER_MODES)]; +extern const vpx_tree_index vp9_partition_tree[TREE_SIZE(PARTITION_TYPES)]; +extern const vpx_tree_index + vp9_switchable_interp_tree[TREE_SIZE(SWITCHABLE_FILTERS)]; + +void vp9_setup_past_independence(struct VP9Common *cm); + +void vp9_adapt_mode_probs(struct VP9Common *cm); + +void tx_counts_to_branch_counts_32x32(const unsigned int *tx_count_32x32p, + unsigned int (*ct_32x32p)[2]); +void tx_counts_to_branch_counts_16x16(const unsigned int *tx_count_16x16p, + unsigned int (*ct_16x16p)[2]); +void tx_counts_to_branch_counts_8x8(const unsigned int *tx_count_8x8p, + unsigned int (*ct_8x8p)[2]); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP9_COMMON_VP9_ENTROPYMODE_H_ diff --git a/vp9/common/vp9_entropymv.c b/vp9/common/vp9_entropymv.c new file mode 100644 index 0000000..a18a290 --- /dev/null +++ b/vp9/common/vp9_entropymv.c @@ -0,0 +1,193 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "vp9/common/vp9_onyxc_int.h" +#include "vp9/common/vp9_entropymv.h" + +const vpx_tree_index vp9_mv_joint_tree[TREE_SIZE(MV_JOINTS)] = { + -MV_JOINT_ZERO, 2, -MV_JOINT_HNZVZ, 4, -MV_JOINT_HZVNZ, -MV_JOINT_HNZVNZ +}; + +const vpx_tree_index vp9_mv_class_tree[TREE_SIZE(MV_CLASSES)] = { + -MV_CLASS_0, 2, -MV_CLASS_1, 4, 6, + 8, -MV_CLASS_2, -MV_CLASS_3, 10, 12, + -MV_CLASS_4, -MV_CLASS_5, -MV_CLASS_6, 14, 16, + 18, -MV_CLASS_7, -MV_CLASS_8, -MV_CLASS_9, -MV_CLASS_10, +}; + +const vpx_tree_index vp9_mv_class0_tree[TREE_SIZE(CLASS0_SIZE)] = { + -0, -1, +}; + +const vpx_tree_index vp9_mv_fp_tree[TREE_SIZE(MV_FP_SIZE)] = { -0, 2, -1, + 4, -2, -3 }; + +static const nmv_context default_nmv_context = { + { 32, 64, 96 }, + { { + // Vertical component + 128, // sign + { 224, 144, 192, 168, 192, 176, 192, 198, 198, 245 }, // class + { 216 }, // class0 + { 136, 140, 148, 160, 176, 192, 224, 234, 234, 240 }, // bits + { { 128, 128, 64 }, { 96, 112, 64 } }, // class0_fp + { 64, 96, 64 }, // fp + 160, // class0_hp bit + 128, // hp + }, + { + // Horizontal component + 128, // sign + { 216, 128, 176, 160, 176, 176, 192, 198, 198, 208 }, // class + { 208 }, // class0 + { 136, 140, 148, 160, 176, 192, 224, 234, 234, 240 }, // bits + { { 128, 128, 64 }, { 96, 112, 64 } }, // class0_fp + { 64, 96, 64 }, // fp + 160, // class0_hp bit + 128, // hp + } }, +}; + +static const uint8_t log_in_base_2[] = { + 0, 0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, + 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, + 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, + 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, + 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, + 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, + 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, + 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, + 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, + 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, + 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, + 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, + 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, + 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, + 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, + 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, + 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, + 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, + 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, + 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, + 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, + 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, + 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, + 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, + 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, + 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, + 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, + 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, + 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, + 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, + 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, + 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, + 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, + 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, + 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, + 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, + 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, + 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, + 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, + 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10 +}; + +static INLINE int mv_class_base(MV_CLASS_TYPE c) { + return c ? CLASS0_SIZE << (c + 2) : 0; +} + +MV_CLASS_TYPE vp9_get_mv_class(int z, int *offset) { + const MV_CLASS_TYPE c = (z >= CLASS0_SIZE * 4096) + ? MV_CLASS_10 + : (MV_CLASS_TYPE)log_in_base_2[z >> 3]; + if (offset) *offset = z - mv_class_base(c); + return c; +} + +static void inc_mv_component(int v, nmv_component_counts *comp_counts, int incr, + int usehp) { + int s, z, c, o, d, e, f; + assert(v != 0); /* should not be zero */ + s = v < 0; + comp_counts->sign[s] += incr; + z = (s ? -v : v) - 1; /* magnitude - 1 */ + + c = vp9_get_mv_class(z, &o); + comp_counts->classes[c] += incr; + + d = (o >> 3); /* int mv data */ + f = (o >> 1) & 3; /* fractional pel mv data */ + e = (o & 1); /* high precision mv data */ + + if (c == MV_CLASS_0) { + comp_counts->class0[d] += incr; + comp_counts->class0_fp[d][f] += incr; + comp_counts->class0_hp[e] += usehp * incr; + } else { + int i; + int b = c + CLASS0_BITS - 1; // number of bits + for (i = 0; i < b; ++i) comp_counts->bits[i][((d >> i) & 1)] += incr; + comp_counts->fp[f] += incr; + comp_counts->hp[e] += usehp * incr; + } +} + +void vp9_inc_mv(const MV *mv, nmv_context_counts *counts) { + if (counts != NULL) { + const MV_JOINT_TYPE j = vp9_get_mv_joint(mv); + ++counts->joints[j]; + + if (mv_joint_vertical(j)) { + inc_mv_component(mv->row, &counts->comps[0], 1, 1); + } + + if (mv_joint_horizontal(j)) { + inc_mv_component(mv->col, &counts->comps[1], 1, 1); + } + } +} + +void vp9_adapt_mv_probs(VP9_COMMON *cm, int allow_hp) { + int i, j; + + nmv_context *fc = &cm->fc->nmvc; + const nmv_context *pre_fc = &cm->frame_contexts[cm->frame_context_idx].nmvc; + const nmv_context_counts *counts = &cm->counts.mv; + + vpx_tree_merge_probs(vp9_mv_joint_tree, pre_fc->joints, counts->joints, + fc->joints); + + for (i = 0; i < 2; ++i) { + nmv_component *comp = &fc->comps[i]; + const nmv_component *pre_comp = &pre_fc->comps[i]; + const nmv_component_counts *c = &counts->comps[i]; + + comp->sign = mode_mv_merge_probs(pre_comp->sign, c->sign); + vpx_tree_merge_probs(vp9_mv_class_tree, pre_comp->classes, c->classes, + comp->classes); + vpx_tree_merge_probs(vp9_mv_class0_tree, pre_comp->class0, c->class0, + comp->class0); + + for (j = 0; j < MV_OFFSET_BITS; ++j) + comp->bits[j] = mode_mv_merge_probs(pre_comp->bits[j], c->bits[j]); + + for (j = 0; j < CLASS0_SIZE; ++j) + vpx_tree_merge_probs(vp9_mv_fp_tree, pre_comp->class0_fp[j], + c->class0_fp[j], comp->class0_fp[j]); + + vpx_tree_merge_probs(vp9_mv_fp_tree, pre_comp->fp, c->fp, comp->fp); + + if (allow_hp) { + comp->class0_hp = mode_mv_merge_probs(pre_comp->class0_hp, c->class0_hp); + comp->hp = mode_mv_merge_probs(pre_comp->hp, c->hp); + } + } +} + +void vp9_init_mv_probs(VP9_COMMON *cm) { cm->fc->nmvc = default_nmv_context; } diff --git a/vp9/common/vp9_entropymv.h b/vp9/common/vp9_entropymv.h new file mode 100644 index 0000000..e2fe37a --- /dev/null +++ b/vp9/common/vp9_entropymv.h @@ -0,0 +1,136 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP9_COMMON_VP9_ENTROPYMV_H_ +#define VP9_COMMON_VP9_ENTROPYMV_H_ + +#include "./vpx_config.h" + +#include "vpx_dsp/prob.h" + +#include "vp9/common/vp9_mv.h" + +#ifdef __cplusplus +extern "C" { +#endif + +struct VP9Common; + +void vp9_init_mv_probs(struct VP9Common *cm); + +void vp9_adapt_mv_probs(struct VP9Common *cm, int usehp); + +static INLINE int use_mv_hp(const MV *ref) { + const int kMvRefThresh = 64; // threshold for use of high-precision 1/8 mv + return abs(ref->row) < kMvRefThresh && abs(ref->col) < kMvRefThresh; +} + +#define MV_UPDATE_PROB 252 + +/* Symbols for coding which components are zero jointly */ +#define MV_JOINTS 4 +typedef enum { + MV_JOINT_ZERO = 0, /* Zero vector */ + MV_JOINT_HNZVZ = 1, /* Vert zero, hor nonzero */ + MV_JOINT_HZVNZ = 2, /* Hor zero, vert nonzero */ + MV_JOINT_HNZVNZ = 3, /* Both components nonzero */ +} MV_JOINT_TYPE; + +static INLINE int mv_joint_vertical(MV_JOINT_TYPE type) { + return type == MV_JOINT_HZVNZ || type == MV_JOINT_HNZVNZ; +} + +static INLINE int mv_joint_horizontal(MV_JOINT_TYPE type) { + return type == MV_JOINT_HNZVZ || type == MV_JOINT_HNZVNZ; +} + +/* Symbols for coding magnitude class of nonzero components */ +#define MV_CLASSES 11 +typedef enum { + MV_CLASS_0 = 0, /* (0, 2] integer pel */ + MV_CLASS_1 = 1, /* (2, 4] integer pel */ + MV_CLASS_2 = 2, /* (4, 8] integer pel */ + MV_CLASS_3 = 3, /* (8, 16] integer pel */ + MV_CLASS_4 = 4, /* (16, 32] integer pel */ + MV_CLASS_5 = 5, /* (32, 64] integer pel */ + MV_CLASS_6 = 6, /* (64, 128] integer pel */ + MV_CLASS_7 = 7, /* (128, 256] integer pel */ + MV_CLASS_8 = 8, /* (256, 512] integer pel */ + MV_CLASS_9 = 9, /* (512, 1024] integer pel */ + MV_CLASS_10 = 10, /* (1024,2048] integer pel */ +} MV_CLASS_TYPE; + +#define CLASS0_BITS 1 /* bits at integer precision for class 0 */ +#define CLASS0_SIZE (1 << CLASS0_BITS) +#define MV_OFFSET_BITS (MV_CLASSES + CLASS0_BITS - 2) +#define MV_FP_SIZE 4 + +#define MV_MAX_BITS (MV_CLASSES + CLASS0_BITS + 2) +#define MV_MAX ((1 << MV_MAX_BITS) - 1) +#define MV_VALS ((MV_MAX << 1) + 1) + +#define MV_IN_USE_BITS 14 +#define MV_UPP ((1 << MV_IN_USE_BITS) - 1) +#define MV_LOW (-(1 << MV_IN_USE_BITS)) + +extern const vpx_tree_index vp9_mv_joint_tree[]; +extern const vpx_tree_index vp9_mv_class_tree[]; +extern const vpx_tree_index vp9_mv_class0_tree[]; +extern const vpx_tree_index vp9_mv_fp_tree[]; + +typedef struct { + vpx_prob sign; + vpx_prob classes[MV_CLASSES - 1]; + vpx_prob class0[CLASS0_SIZE - 1]; + vpx_prob bits[MV_OFFSET_BITS]; + vpx_prob class0_fp[CLASS0_SIZE][MV_FP_SIZE - 1]; + vpx_prob fp[MV_FP_SIZE - 1]; + vpx_prob class0_hp; + vpx_prob hp; +} nmv_component; + +typedef struct { + vpx_prob joints[MV_JOINTS - 1]; + nmv_component comps[2]; +} nmv_context; + +static INLINE MV_JOINT_TYPE vp9_get_mv_joint(const MV *mv) { + if (mv->row == 0) { + return mv->col == 0 ? MV_JOINT_ZERO : MV_JOINT_HNZVZ; + } else { + return mv->col == 0 ? MV_JOINT_HZVNZ : MV_JOINT_HNZVNZ; + } +} + +MV_CLASS_TYPE vp9_get_mv_class(int z, int *offset); + +typedef struct { + unsigned int sign[2]; + unsigned int classes[MV_CLASSES]; + unsigned int class0[CLASS0_SIZE]; + unsigned int bits[MV_OFFSET_BITS][2]; + unsigned int class0_fp[CLASS0_SIZE][MV_FP_SIZE]; + unsigned int fp[MV_FP_SIZE]; + unsigned int class0_hp[2]; + unsigned int hp[2]; +} nmv_component_counts; + +typedef struct { + unsigned int joints[MV_JOINTS]; + nmv_component_counts comps[2]; +} nmv_context_counts; + +void vp9_inc_mv(const MV *mv, nmv_context_counts *mvctx); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP9_COMMON_VP9_ENTROPYMV_H_ diff --git a/vp9/common/vp9_enums.h b/vp9/common/vp9_enums.h new file mode 100644 index 0000000..056b298 --- /dev/null +++ b/vp9/common/vp9_enums.h @@ -0,0 +1,143 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP9_COMMON_VP9_ENUMS_H_ +#define VP9_COMMON_VP9_ENUMS_H_ + +#include "./vpx_config.h" +#include "vpx/vpx_integer.h" + +#ifdef __cplusplus +extern "C" { +#endif + +#define MI_SIZE_LOG2 3 +#define MI_BLOCK_SIZE_LOG2 (6 - MI_SIZE_LOG2) // 64 = 2^6 + +#define MI_SIZE (1 << MI_SIZE_LOG2) // pixels per mi-unit +#define MI_BLOCK_SIZE (1 << MI_BLOCK_SIZE_LOG2) // mi-units per max block + +#define MI_MASK (MI_BLOCK_SIZE - 1) + +// Bitstream profiles indicated by 2-3 bits in the uncompressed header. +// 00: Profile 0. 8-bit 4:2:0 only. +// 10: Profile 1. 8-bit 4:4:4, 4:2:2, and 4:4:0. +// 01: Profile 2. 10-bit and 12-bit color only, with 4:2:0 sampling. +// 110: Profile 3. 10-bit and 12-bit color only, with 4:2:2/4:4:4/4:4:0 +// sampling. +// 111: Undefined profile. +typedef enum BITSTREAM_PROFILE { + PROFILE_0, + PROFILE_1, + PROFILE_2, + PROFILE_3, + MAX_PROFILES +} BITSTREAM_PROFILE; + +#define BLOCK_4X4 0 +#define BLOCK_4X8 1 +#define BLOCK_8X4 2 +#define BLOCK_8X8 3 +#define BLOCK_8X16 4 +#define BLOCK_16X8 5 +#define BLOCK_16X16 6 +#define BLOCK_16X32 7 +#define BLOCK_32X16 8 +#define BLOCK_32X32 9 +#define BLOCK_32X64 10 +#define BLOCK_64X32 11 +#define BLOCK_64X64 12 +#define BLOCK_SIZES 13 +#define BLOCK_INVALID BLOCK_SIZES +typedef uint8_t BLOCK_SIZE; + +typedef enum PARTITION_TYPE { + PARTITION_NONE, + PARTITION_HORZ, + PARTITION_VERT, + PARTITION_SPLIT, + PARTITION_TYPES, + PARTITION_INVALID = PARTITION_TYPES +} PARTITION_TYPE; + +typedef char PARTITION_CONTEXT; +#define PARTITION_PLOFFSET 4 // number of probability models per block size +#define PARTITION_CONTEXTS (4 * PARTITION_PLOFFSET) + +// block transform size +typedef uint8_t TX_SIZE; +#define TX_4X4 ((TX_SIZE)0) // 4x4 transform +#define TX_8X8 ((TX_SIZE)1) // 8x8 transform +#define TX_16X16 ((TX_SIZE)2) // 16x16 transform +#define TX_32X32 ((TX_SIZE)3) // 32x32 transform +#define TX_SIZES ((TX_SIZE)4) + +// frame transform mode +typedef enum { + ONLY_4X4 = 0, // only 4x4 transform used + ALLOW_8X8 = 1, // allow block transform size up to 8x8 + ALLOW_16X16 = 2, // allow block transform size up to 16x16 + ALLOW_32X32 = 3, // allow block transform size up to 32x32 + TX_MODE_SELECT = 4, // transform specified for each block + TX_MODES = 5, +} TX_MODE; + +typedef enum { + DCT_DCT = 0, // DCT in both horizontal and vertical + ADST_DCT = 1, // ADST in vertical, DCT in horizontal + DCT_ADST = 2, // DCT in vertical, ADST in horizontal + ADST_ADST = 3, // ADST in both directions + TX_TYPES = 4 +} TX_TYPE; + +typedef enum { + VP9_LAST_FLAG = 1 << 0, + VP9_GOLD_FLAG = 1 << 1, + VP9_ALT_FLAG = 1 << 2, +} VP9_REFFRAME; + +typedef enum { PLANE_TYPE_Y = 0, PLANE_TYPE_UV = 1, PLANE_TYPES } PLANE_TYPE; + +#define DC_PRED 0 // Average of above and left pixels +#define V_PRED 1 // Vertical +#define H_PRED 2 // Horizontal +#define D45_PRED 3 // Directional 45 deg = round(arctan(1/1) * 180/pi) +#define D135_PRED 4 // Directional 135 deg = 180 - 45 +#define D117_PRED 5 // Directional 117 deg = 180 - 63 +#define D153_PRED 6 // Directional 153 deg = 180 - 27 +#define D207_PRED 7 // Directional 207 deg = 180 + 27 +#define D63_PRED 8 // Directional 63 deg = round(arctan(2/1) * 180/pi) +#define TM_PRED 9 // True-motion +#define NEARESTMV 10 +#define NEARMV 11 +#define ZEROMV 12 +#define NEWMV 13 +#define MB_MODE_COUNT 14 +typedef uint8_t PREDICTION_MODE; + +#define INTRA_MODES (TM_PRED + 1) + +#define INTER_MODES (1 + NEWMV - NEARESTMV) + +#define SKIP_CONTEXTS 3 +#define INTER_MODE_CONTEXTS 7 + +/* Segment Feature Masks */ +#define MAX_MV_REF_CANDIDATES 2 + +#define INTRA_INTER_CONTEXTS 4 +#define COMP_INTER_CONTEXTS 5 +#define REF_CONTEXTS 5 + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP9_COMMON_VP9_ENUMS_H_ diff --git a/vp9/common/vp9_filter.c b/vp9/common/vp9_filter.c new file mode 100644 index 0000000..6c43af8 --- /dev/null +++ b/vp9/common/vp9_filter.c @@ -0,0 +1,68 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include + +#include "vp9/common/vp9_filter.h" + +DECLARE_ALIGNED(256, static const InterpKernel, + bilinear_filters[SUBPEL_SHIFTS]) = { + { 0, 0, 0, 128, 0, 0, 0, 0 }, { 0, 0, 0, 120, 8, 0, 0, 0 }, + { 0, 0, 0, 112, 16, 0, 0, 0 }, { 0, 0, 0, 104, 24, 0, 0, 0 }, + { 0, 0, 0, 96, 32, 0, 0, 0 }, { 0, 0, 0, 88, 40, 0, 0, 0 }, + { 0, 0, 0, 80, 48, 0, 0, 0 }, { 0, 0, 0, 72, 56, 0, 0, 0 }, + { 0, 0, 0, 64, 64, 0, 0, 0 }, { 0, 0, 0, 56, 72, 0, 0, 0 }, + { 0, 0, 0, 48, 80, 0, 0, 0 }, { 0, 0, 0, 40, 88, 0, 0, 0 }, + { 0, 0, 0, 32, 96, 0, 0, 0 }, { 0, 0, 0, 24, 104, 0, 0, 0 }, + { 0, 0, 0, 16, 112, 0, 0, 0 }, { 0, 0, 0, 8, 120, 0, 0, 0 } +}; + +// Lagrangian interpolation filter +DECLARE_ALIGNED(256, static const InterpKernel, + sub_pel_filters_8[SUBPEL_SHIFTS]) = { + { 0, 0, 0, 128, 0, 0, 0, 0 }, { 0, 1, -5, 126, 8, -3, 1, 0 }, + { -1, 3, -10, 122, 18, -6, 2, 0 }, { -1, 4, -13, 118, 27, -9, 3, -1 }, + { -1, 4, -16, 112, 37, -11, 4, -1 }, { -1, 5, -18, 105, 48, -14, 4, -1 }, + { -1, 5, -19, 97, 58, -16, 5, -1 }, { -1, 6, -19, 88, 68, -18, 5, -1 }, + { -1, 6, -19, 78, 78, -19, 6, -1 }, { -1, 5, -18, 68, 88, -19, 6, -1 }, + { -1, 5, -16, 58, 97, -19, 5, -1 }, { -1, 4, -14, 48, 105, -18, 5, -1 }, + { -1, 4, -11, 37, 112, -16, 4, -1 }, { -1, 3, -9, 27, 118, -13, 4, -1 }, + { 0, 2, -6, 18, 122, -10, 3, -1 }, { 0, 1, -3, 8, 126, -5, 1, 0 } +}; + +// DCT based filter +DECLARE_ALIGNED(256, static const InterpKernel, + sub_pel_filters_8s[SUBPEL_SHIFTS]) = { + { 0, 0, 0, 128, 0, 0, 0, 0 }, { -1, 3, -7, 127, 8, -3, 1, 0 }, + { -2, 5, -13, 125, 17, -6, 3, -1 }, { -3, 7, -17, 121, 27, -10, 5, -2 }, + { -4, 9, -20, 115, 37, -13, 6, -2 }, { -4, 10, -23, 108, 48, -16, 8, -3 }, + { -4, 10, -24, 100, 59, -19, 9, -3 }, { -4, 11, -24, 90, 70, -21, 10, -4 }, + { -4, 11, -23, 80, 80, -23, 11, -4 }, { -4, 10, -21, 70, 90, -24, 11, -4 }, + { -3, 9, -19, 59, 100, -24, 10, -4 }, { -3, 8, -16, 48, 108, -23, 10, -4 }, + { -2, 6, -13, 37, 115, -20, 9, -4 }, { -2, 5, -10, 27, 121, -17, 7, -3 }, + { -1, 3, -6, 17, 125, -13, 5, -2 }, { 0, 1, -3, 8, 127, -7, 3, -1 } +}; + +// freqmultiplier = 0.5 +DECLARE_ALIGNED(256, static const InterpKernel, + sub_pel_filters_8lp[SUBPEL_SHIFTS]) = { + { 0, 0, 0, 128, 0, 0, 0, 0 }, { -3, -1, 32, 64, 38, 1, -3, 0 }, + { -2, -2, 29, 63, 41, 2, -3, 0 }, { -2, -2, 26, 63, 43, 4, -4, 0 }, + { -2, -3, 24, 62, 46, 5, -4, 0 }, { -2, -3, 21, 60, 49, 7, -4, 0 }, + { -1, -4, 18, 59, 51, 9, -4, 0 }, { -1, -4, 16, 57, 53, 12, -4, -1 }, + { -1, -4, 14, 55, 55, 14, -4, -1 }, { -1, -4, 12, 53, 57, 16, -4, -1 }, + { 0, -4, 9, 51, 59, 18, -4, -1 }, { 0, -4, 7, 49, 60, 21, -3, -2 }, + { 0, -4, 5, 46, 62, 24, -3, -2 }, { 0, -4, 4, 43, 63, 26, -2, -2 }, + { 0, -3, 2, 41, 63, 29, -2, -2 }, { 0, -3, 1, 38, 64, 32, -1, -3 } +}; + +const InterpKernel *vp9_filter_kernels[4] = { + sub_pel_filters_8, sub_pel_filters_8lp, sub_pel_filters_8s, bilinear_filters +}; diff --git a/vp9/common/vp9_filter.h b/vp9/common/vp9_filter.h new file mode 100644 index 0000000..9d2b8e1 --- /dev/null +++ b/vp9/common/vp9_filter.h @@ -0,0 +1,41 @@ +/* + * Copyright (c) 2011 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP9_COMMON_VP9_FILTER_H_ +#define VP9_COMMON_VP9_FILTER_H_ + +#include "./vpx_config.h" +#include "vpx/vpx_integer.h" +#include "vpx_dsp/vpx_filter.h" +#include "vpx_ports/mem.h" + +#ifdef __cplusplus +extern "C" { +#endif + +#define EIGHTTAP 0 +#define EIGHTTAP_SMOOTH 1 +#define EIGHTTAP_SHARP 2 +#define SWITCHABLE_FILTERS 3 /* Number of switchable filters */ +#define BILINEAR 3 +// The codec can operate in four possible inter prediction filter mode: +// 8-tap, 8-tap-smooth, 8-tap-sharp, and switching between the three. +#define SWITCHABLE_FILTER_CONTEXTS (SWITCHABLE_FILTERS + 1) +#define SWITCHABLE 4 /* should be the last one */ + +typedef uint8_t INTERP_FILTER; + +extern const InterpKernel *vp9_filter_kernels[4]; + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP9_COMMON_VP9_FILTER_H_ diff --git a/vp9/common/vp9_frame_buffers.c b/vp9/common/vp9_frame_buffers.c new file mode 100644 index 0000000..a254e79 --- /dev/null +++ b/vp9/common/vp9_frame_buffers.c @@ -0,0 +1,78 @@ +/* + * Copyright (c) 2014 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include + +#include "vp9/common/vp9_frame_buffers.h" +#include "vpx_mem/vpx_mem.h" + +int vp9_alloc_internal_frame_buffers(InternalFrameBufferList *list) { + assert(list != NULL); + vp9_free_internal_frame_buffers(list); + + list->num_internal_frame_buffers = + VP9_MAXIMUM_REF_BUFFERS + VPX_MAXIMUM_WORK_BUFFERS; + list->int_fb = (InternalFrameBuffer *)vpx_calloc( + list->num_internal_frame_buffers, sizeof(*list->int_fb)); + return (list->int_fb == NULL); +} + +void vp9_free_internal_frame_buffers(InternalFrameBufferList *list) { + int i; + + assert(list != NULL); + + for (i = 0; i < list->num_internal_frame_buffers; ++i) { + vpx_free(list->int_fb[i].data); + list->int_fb[i].data = NULL; + } + vpx_free(list->int_fb); + list->int_fb = NULL; +} + +int vp9_get_frame_buffer(void *cb_priv, size_t min_size, + vpx_codec_frame_buffer_t *fb) { + int i; + InternalFrameBufferList *const int_fb_list = + (InternalFrameBufferList *)cb_priv; + if (int_fb_list == NULL) return -1; + + // Find a free frame buffer. + for (i = 0; i < int_fb_list->num_internal_frame_buffers; ++i) { + if (!int_fb_list->int_fb[i].in_use) break; + } + + if (i == int_fb_list->num_internal_frame_buffers) return -1; + + if (int_fb_list->int_fb[i].size < min_size) { + vpx_free(int_fb_list->int_fb[i].data); + // The data must be zeroed to fix a valgrind error from the C loop filter + // due to access uninitialized memory in frame border. It could be + // skipped if border were totally removed. + int_fb_list->int_fb[i].data = (uint8_t *)vpx_calloc(1, min_size); + if (!int_fb_list->int_fb[i].data) return -1; + int_fb_list->int_fb[i].size = min_size; + } + + fb->data = int_fb_list->int_fb[i].data; + fb->size = int_fb_list->int_fb[i].size; + int_fb_list->int_fb[i].in_use = 1; + + // Set the frame buffer's private data to point at the internal frame buffer. + fb->priv = &int_fb_list->int_fb[i]; + return 0; +} + +int vp9_release_frame_buffer(void *cb_priv, vpx_codec_frame_buffer_t *fb) { + InternalFrameBuffer *const int_fb = (InternalFrameBuffer *)fb->priv; + (void)cb_priv; + if (int_fb) int_fb->in_use = 0; + return 0; +} diff --git a/vp9/common/vp9_frame_buffers.h b/vp9/common/vp9_frame_buffers.h new file mode 100644 index 0000000..e2cfe61 --- /dev/null +++ b/vp9/common/vp9_frame_buffers.h @@ -0,0 +1,53 @@ +/* + * Copyright (c) 2014 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP9_COMMON_VP9_FRAME_BUFFERS_H_ +#define VP9_COMMON_VP9_FRAME_BUFFERS_H_ + +#include "vpx/vpx_frame_buffer.h" +#include "vpx/vpx_integer.h" + +#ifdef __cplusplus +extern "C" { +#endif + +typedef struct InternalFrameBuffer { + uint8_t *data; + size_t size; + int in_use; +} InternalFrameBuffer; + +typedef struct InternalFrameBufferList { + int num_internal_frame_buffers; + InternalFrameBuffer *int_fb; +} InternalFrameBufferList; + +// Initializes |list|. Returns 0 on success. +int vp9_alloc_internal_frame_buffers(InternalFrameBufferList *list); + +// Free any data allocated to the frame buffers. +void vp9_free_internal_frame_buffers(InternalFrameBufferList *list); + +// Callback used by libvpx to request an external frame buffer. |cb_priv| +// Callback private data, which points to an InternalFrameBufferList. +// |min_size| is the minimum size in bytes needed to decode the next frame. +// |fb| pointer to the frame buffer. +int vp9_get_frame_buffer(void *cb_priv, size_t min_size, + vpx_codec_frame_buffer_t *fb); + +// Callback used by libvpx when there are no references to the frame buffer. +// |cb_priv| is not used. |fb| pointer to the frame buffer. +int vp9_release_frame_buffer(void *cb_priv, vpx_codec_frame_buffer_t *fb); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP9_COMMON_VP9_FRAME_BUFFERS_H_ diff --git a/vp9/common/vp9_idct.c b/vp9/common/vp9_idct.c new file mode 100644 index 0000000..6906904 --- /dev/null +++ b/vp9/common/vp9_idct.c @@ -0,0 +1,396 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include + +#include "./vp9_rtcd.h" +#include "./vpx_dsp_rtcd.h" +#include "vp9/common/vp9_blockd.h" +#include "vp9/common/vp9_idct.h" +#include "vpx_dsp/inv_txfm.h" +#include "vpx_ports/mem.h" + +void vp9_iht4x4_16_add_c(const tran_low_t *input, uint8_t *dest, int stride, + int tx_type) { + const transform_2d IHT_4[] = { + { idct4_c, idct4_c }, // DCT_DCT = 0 + { iadst4_c, idct4_c }, // ADST_DCT = 1 + { idct4_c, iadst4_c }, // DCT_ADST = 2 + { iadst4_c, iadst4_c } // ADST_ADST = 3 + }; + + int i, j; + tran_low_t out[4 * 4]; + tran_low_t *outptr = out; + tran_low_t temp_in[4], temp_out[4]; + + // inverse transform row vectors + for (i = 0; i < 4; ++i) { + IHT_4[tx_type].rows(input, outptr); + input += 4; + outptr += 4; + } + + // inverse transform column vectors + for (i = 0; i < 4; ++i) { + for (j = 0; j < 4; ++j) temp_in[j] = out[j * 4 + i]; + IHT_4[tx_type].cols(temp_in, temp_out); + for (j = 0; j < 4; ++j) { + dest[j * stride + i] = clip_pixel_add(dest[j * stride + i], + ROUND_POWER_OF_TWO(temp_out[j], 4)); + } + } +} + +static const transform_2d IHT_8[] = { + { idct8_c, idct8_c }, // DCT_DCT = 0 + { iadst8_c, idct8_c }, // ADST_DCT = 1 + { idct8_c, iadst8_c }, // DCT_ADST = 2 + { iadst8_c, iadst8_c } // ADST_ADST = 3 +}; + +void vp9_iht8x8_64_add_c(const tran_low_t *input, uint8_t *dest, int stride, + int tx_type) { + int i, j; + tran_low_t out[8 * 8]; + tran_low_t *outptr = out; + tran_low_t temp_in[8], temp_out[8]; + const transform_2d ht = IHT_8[tx_type]; + + // inverse transform row vectors + for (i = 0; i < 8; ++i) { + ht.rows(input, outptr); + input += 8; + outptr += 8; + } + + // inverse transform column vectors + for (i = 0; i < 8; ++i) { + for (j = 0; j < 8; ++j) temp_in[j] = out[j * 8 + i]; + ht.cols(temp_in, temp_out); + for (j = 0; j < 8; ++j) { + dest[j * stride + i] = clip_pixel_add(dest[j * stride + i], + ROUND_POWER_OF_TWO(temp_out[j], 5)); + } + } +} + +static const transform_2d IHT_16[] = { + { idct16_c, idct16_c }, // DCT_DCT = 0 + { iadst16_c, idct16_c }, // ADST_DCT = 1 + { idct16_c, iadst16_c }, // DCT_ADST = 2 + { iadst16_c, iadst16_c } // ADST_ADST = 3 +}; + +void vp9_iht16x16_256_add_c(const tran_low_t *input, uint8_t *dest, int stride, + int tx_type) { + int i, j; + tran_low_t out[16 * 16]; + tran_low_t *outptr = out; + tran_low_t temp_in[16], temp_out[16]; + const transform_2d ht = IHT_16[tx_type]; + + // Rows + for (i = 0; i < 16; ++i) { + ht.rows(input, outptr); + input += 16; + outptr += 16; + } + + // Columns + for (i = 0; i < 16; ++i) { + for (j = 0; j < 16; ++j) temp_in[j] = out[j * 16 + i]; + ht.cols(temp_in, temp_out); + for (j = 0; j < 16; ++j) { + dest[j * stride + i] = clip_pixel_add(dest[j * stride + i], + ROUND_POWER_OF_TWO(temp_out[j], 6)); + } + } +} + +// idct +void vp9_idct4x4_add(const tran_low_t *input, uint8_t *dest, int stride, + int eob) { + if (eob > 1) + vpx_idct4x4_16_add(input, dest, stride); + else + vpx_idct4x4_1_add(input, dest, stride); +} + +void vp9_iwht4x4_add(const tran_low_t *input, uint8_t *dest, int stride, + int eob) { + if (eob > 1) + vpx_iwht4x4_16_add(input, dest, stride); + else + vpx_iwht4x4_1_add(input, dest, stride); +} + +void vp9_idct8x8_add(const tran_low_t *input, uint8_t *dest, int stride, + int eob) { + // If dc is 1, then input[0] is the reconstructed value, do not need + // dequantization. Also, when dc is 1, dc is counted in eobs, namely eobs >=1. + + // The calculation can be simplified if there are not many non-zero dct + // coefficients. Use eobs to decide what to do. + if (eob == 1) + // DC only DCT coefficient + vpx_idct8x8_1_add(input, dest, stride); + else if (eob <= 12) + vpx_idct8x8_12_add(input, dest, stride); + else + vpx_idct8x8_64_add(input, dest, stride); +} + +void vp9_idct16x16_add(const tran_low_t *input, uint8_t *dest, int stride, + int eob) { + /* The calculation can be simplified if there are not many non-zero dct + * coefficients. Use eobs to separate different cases. */ + if (eob == 1) /* DC only DCT coefficient. */ + vpx_idct16x16_1_add(input, dest, stride); + else if (eob <= 10) + vpx_idct16x16_10_add(input, dest, stride); + else if (eob <= 38) + vpx_idct16x16_38_add(input, dest, stride); + else + vpx_idct16x16_256_add(input, dest, stride); +} + +void vp9_idct32x32_add(const tran_low_t *input, uint8_t *dest, int stride, + int eob) { + if (eob == 1) + vpx_idct32x32_1_add(input, dest, stride); + else if (eob <= 34) + // non-zero coeff only in upper-left 8x8 + vpx_idct32x32_34_add(input, dest, stride); + else if (eob <= 135) + // non-zero coeff only in upper-left 16x16 + vpx_idct32x32_135_add(input, dest, stride); + else + vpx_idct32x32_1024_add(input, dest, stride); +} + +// iht +void vp9_iht4x4_add(TX_TYPE tx_type, const tran_low_t *input, uint8_t *dest, + int stride, int eob) { + if (tx_type == DCT_DCT) + vp9_idct4x4_add(input, dest, stride, eob); + else + vp9_iht4x4_16_add(input, dest, stride, tx_type); +} + +void vp9_iht8x8_add(TX_TYPE tx_type, const tran_low_t *input, uint8_t *dest, + int stride, int eob) { + if (tx_type == DCT_DCT) { + vp9_idct8x8_add(input, dest, stride, eob); + } else { + vp9_iht8x8_64_add(input, dest, stride, tx_type); + } +} + +void vp9_iht16x16_add(TX_TYPE tx_type, const tran_low_t *input, uint8_t *dest, + int stride, int eob) { + if (tx_type == DCT_DCT) { + vp9_idct16x16_add(input, dest, stride, eob); + } else { + vp9_iht16x16_256_add(input, dest, stride, tx_type); + } +} + +#if CONFIG_VP9_HIGHBITDEPTH + +void vp9_highbd_iht4x4_16_add_c(const tran_low_t *input, uint16_t *dest, + int stride, int tx_type, int bd) { + const highbd_transform_2d IHT_4[] = { + { vpx_highbd_idct4_c, vpx_highbd_idct4_c }, // DCT_DCT = 0 + { vpx_highbd_iadst4_c, vpx_highbd_idct4_c }, // ADST_DCT = 1 + { vpx_highbd_idct4_c, vpx_highbd_iadst4_c }, // DCT_ADST = 2 + { vpx_highbd_iadst4_c, vpx_highbd_iadst4_c } // ADST_ADST = 3 + }; + + int i, j; + tran_low_t out[4 * 4]; + tran_low_t *outptr = out; + tran_low_t temp_in[4], temp_out[4]; + + // Inverse transform row vectors. + for (i = 0; i < 4; ++i) { + IHT_4[tx_type].rows(input, outptr, bd); + input += 4; + outptr += 4; + } + + // Inverse transform column vectors. + for (i = 0; i < 4; ++i) { + for (j = 0; j < 4; ++j) temp_in[j] = out[j * 4 + i]; + IHT_4[tx_type].cols(temp_in, temp_out, bd); + for (j = 0; j < 4; ++j) { + dest[j * stride + i] = highbd_clip_pixel_add( + dest[j * stride + i], ROUND_POWER_OF_TWO(temp_out[j], 4), bd); + } + } +} + +static const highbd_transform_2d HIGH_IHT_8[] = { + { vpx_highbd_idct8_c, vpx_highbd_idct8_c }, // DCT_DCT = 0 + { vpx_highbd_iadst8_c, vpx_highbd_idct8_c }, // ADST_DCT = 1 + { vpx_highbd_idct8_c, vpx_highbd_iadst8_c }, // DCT_ADST = 2 + { vpx_highbd_iadst8_c, vpx_highbd_iadst8_c } // ADST_ADST = 3 +}; + +void vp9_highbd_iht8x8_64_add_c(const tran_low_t *input, uint16_t *dest, + int stride, int tx_type, int bd) { + int i, j; + tran_low_t out[8 * 8]; + tran_low_t *outptr = out; + tran_low_t temp_in[8], temp_out[8]; + const highbd_transform_2d ht = HIGH_IHT_8[tx_type]; + + // Inverse transform row vectors. + for (i = 0; i < 8; ++i) { + ht.rows(input, outptr, bd); + input += 8; + outptr += 8; + } + + // Inverse transform column vectors. + for (i = 0; i < 8; ++i) { + for (j = 0; j < 8; ++j) temp_in[j] = out[j * 8 + i]; + ht.cols(temp_in, temp_out, bd); + for (j = 0; j < 8; ++j) { + dest[j * stride + i] = highbd_clip_pixel_add( + dest[j * stride + i], ROUND_POWER_OF_TWO(temp_out[j], 5), bd); + } + } +} + +static const highbd_transform_2d HIGH_IHT_16[] = { + { vpx_highbd_idct16_c, vpx_highbd_idct16_c }, // DCT_DCT = 0 + { vpx_highbd_iadst16_c, vpx_highbd_idct16_c }, // ADST_DCT = 1 + { vpx_highbd_idct16_c, vpx_highbd_iadst16_c }, // DCT_ADST = 2 + { vpx_highbd_iadst16_c, vpx_highbd_iadst16_c } // ADST_ADST = 3 +}; + +void vp9_highbd_iht16x16_256_add_c(const tran_low_t *input, uint16_t *dest, + int stride, int tx_type, int bd) { + int i, j; + tran_low_t out[16 * 16]; + tran_low_t *outptr = out; + tran_low_t temp_in[16], temp_out[16]; + const highbd_transform_2d ht = HIGH_IHT_16[tx_type]; + + // Rows + for (i = 0; i < 16; ++i) { + ht.rows(input, outptr, bd); + input += 16; + outptr += 16; + } + + // Columns + for (i = 0; i < 16; ++i) { + for (j = 0; j < 16; ++j) temp_in[j] = out[j * 16 + i]; + ht.cols(temp_in, temp_out, bd); + for (j = 0; j < 16; ++j) { + dest[j * stride + i] = highbd_clip_pixel_add( + dest[j * stride + i], ROUND_POWER_OF_TWO(temp_out[j], 6), bd); + } + } +} + +// idct +void vp9_highbd_idct4x4_add(const tran_low_t *input, uint16_t *dest, int stride, + int eob, int bd) { + if (eob > 1) + vpx_highbd_idct4x4_16_add(input, dest, stride, bd); + else + vpx_highbd_idct4x4_1_add(input, dest, stride, bd); +} + +void vp9_highbd_iwht4x4_add(const tran_low_t *input, uint16_t *dest, int stride, + int eob, int bd) { + if (eob > 1) + vpx_highbd_iwht4x4_16_add(input, dest, stride, bd); + else + vpx_highbd_iwht4x4_1_add(input, dest, stride, bd); +} + +void vp9_highbd_idct8x8_add(const tran_low_t *input, uint16_t *dest, int stride, + int eob, int bd) { + // If dc is 1, then input[0] is the reconstructed value, do not need + // dequantization. Also, when dc is 1, dc is counted in eobs, namely eobs >=1. + + // The calculation can be simplified if there are not many non-zero dct + // coefficients. Use eobs to decide what to do. + // DC only DCT coefficient + if (eob == 1) { + vpx_highbd_idct8x8_1_add(input, dest, stride, bd); + } else if (eob <= 12) { + vpx_highbd_idct8x8_12_add(input, dest, stride, bd); + } else { + vpx_highbd_idct8x8_64_add(input, dest, stride, bd); + } +} + +void vp9_highbd_idct16x16_add(const tran_low_t *input, uint16_t *dest, + int stride, int eob, int bd) { + // The calculation can be simplified if there are not many non-zero dct + // coefficients. Use eobs to separate different cases. + // DC only DCT coefficient. + if (eob == 1) { + vpx_highbd_idct16x16_1_add(input, dest, stride, bd); + } else if (eob <= 10) { + vpx_highbd_idct16x16_10_add(input, dest, stride, bd); + } else if (eob <= 38) { + vpx_highbd_idct16x16_38_add(input, dest, stride, bd); + } else { + vpx_highbd_idct16x16_256_add(input, dest, stride, bd); + } +} + +void vp9_highbd_idct32x32_add(const tran_low_t *input, uint16_t *dest, + int stride, int eob, int bd) { + // Non-zero coeff only in upper-left 8x8 + if (eob == 1) { + vpx_highbd_idct32x32_1_add(input, dest, stride, bd); + } else if (eob <= 34) { + vpx_highbd_idct32x32_34_add(input, dest, stride, bd); + } else if (eob <= 135) { + vpx_highbd_idct32x32_135_add(input, dest, stride, bd); + } else { + vpx_highbd_idct32x32_1024_add(input, dest, stride, bd); + } +} + +// iht +void vp9_highbd_iht4x4_add(TX_TYPE tx_type, const tran_low_t *input, + uint16_t *dest, int stride, int eob, int bd) { + if (tx_type == DCT_DCT) + vp9_highbd_idct4x4_add(input, dest, stride, eob, bd); + else + vp9_highbd_iht4x4_16_add(input, dest, stride, tx_type, bd); +} + +void vp9_highbd_iht8x8_add(TX_TYPE tx_type, const tran_low_t *input, + uint16_t *dest, int stride, int eob, int bd) { + if (tx_type == DCT_DCT) { + vp9_highbd_idct8x8_add(input, dest, stride, eob, bd); + } else { + vp9_highbd_iht8x8_64_add(input, dest, stride, tx_type, bd); + } +} + +void vp9_highbd_iht16x16_add(TX_TYPE tx_type, const tran_low_t *input, + uint16_t *dest, int stride, int eob, int bd) { + if (tx_type == DCT_DCT) { + vp9_highbd_idct16x16_add(input, dest, stride, eob, bd); + } else { + vp9_highbd_iht16x16_256_add(input, dest, stride, tx_type, bd); + } +} +#endif // CONFIG_VP9_HIGHBITDEPTH diff --git a/vp9/common/vp9_idct.h b/vp9/common/vp9_idct.h new file mode 100644 index 0000000..3e83b84 --- /dev/null +++ b/vp9/common/vp9_idct.h @@ -0,0 +1,81 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP9_COMMON_VP9_IDCT_H_ +#define VP9_COMMON_VP9_IDCT_H_ + +#include + +#include "./vpx_config.h" +#include "vp9/common/vp9_common.h" +#include "vp9/common/vp9_enums.h" +#include "vpx_dsp/inv_txfm.h" +#include "vpx_dsp/txfm_common.h" +#include "vpx_ports/mem.h" + +#ifdef __cplusplus +extern "C" { +#endif + +typedef void (*transform_1d)(const tran_low_t *, tran_low_t *); + +typedef struct { + transform_1d cols, rows; // vertical and horizontal +} transform_2d; + +#if CONFIG_VP9_HIGHBITDEPTH +typedef void (*highbd_transform_1d)(const tran_low_t *, tran_low_t *, int bd); + +typedef struct { + highbd_transform_1d cols, rows; // vertical and horizontal +} highbd_transform_2d; +#endif // CONFIG_VP9_HIGHBITDEPTH + +void vp9_iwht4x4_add(const tran_low_t *input, uint8_t *dest, int stride, + int eob); +void vp9_idct4x4_add(const tran_low_t *input, uint8_t *dest, int stride, + int eob); +void vp9_idct8x8_add(const tran_low_t *input, uint8_t *dest, int stride, + int eob); +void vp9_idct16x16_add(const tran_low_t *input, uint8_t *dest, int stride, + int eob); +void vp9_idct32x32_add(const tran_low_t *input, uint8_t *dest, int stride, + int eob); + +void vp9_iht4x4_add(TX_TYPE tx_type, const tran_low_t *input, uint8_t *dest, + int stride, int eob); +void vp9_iht8x8_add(TX_TYPE tx_type, const tran_low_t *input, uint8_t *dest, + int stride, int eob); +void vp9_iht16x16_add(TX_TYPE tx_type, const tran_low_t *input, uint8_t *dest, + int stride, int eob); + +#if CONFIG_VP9_HIGHBITDEPTH +void vp9_highbd_iwht4x4_add(const tran_low_t *input, uint16_t *dest, int stride, + int eob, int bd); +void vp9_highbd_idct4x4_add(const tran_low_t *input, uint16_t *dest, int stride, + int eob, int bd); +void vp9_highbd_idct8x8_add(const tran_low_t *input, uint16_t *dest, int stride, + int eob, int bd); +void vp9_highbd_idct16x16_add(const tran_low_t *input, uint16_t *dest, + int stride, int eob, int bd); +void vp9_highbd_idct32x32_add(const tran_low_t *input, uint16_t *dest, + int stride, int eob, int bd); +void vp9_highbd_iht4x4_add(TX_TYPE tx_type, const tran_low_t *input, + uint16_t *dest, int stride, int eob, int bd); +void vp9_highbd_iht8x8_add(TX_TYPE tx_type, const tran_low_t *input, + uint16_t *dest, int stride, int eob, int bd); +void vp9_highbd_iht16x16_add(TX_TYPE tx_type, const tran_low_t *input, + uint16_t *dest, int stride, int eob, int bd); +#endif // CONFIG_VP9_HIGHBITDEPTH +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP9_COMMON_VP9_IDCT_H_ diff --git a/vp9/common/vp9_loopfilter.c b/vp9/common/vp9_loopfilter.c new file mode 100644 index 0000000..c7c343a --- /dev/null +++ b/vp9/common/vp9_loopfilter.c @@ -0,0 +1,1627 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "./vpx_config.h" +#include "./vpx_dsp_rtcd.h" +#include "vp9/common/vp9_loopfilter.h" +#include "vp9/common/vp9_onyxc_int.h" +#include "vp9/common/vp9_reconinter.h" +#include "vpx_dsp/vpx_dsp_common.h" +#include "vpx_mem/vpx_mem.h" +#include "vpx_ports/mem.h" + +#include "vp9/common/vp9_seg_common.h" + +// 64 bit masks for left transform size. Each 1 represents a position where +// we should apply a loop filter across the left border of an 8x8 block +// boundary. +// +// In the case of TX_16X16-> ( in low order byte first we end up with +// a mask that looks like this +// +// 10101010 +// 10101010 +// 10101010 +// 10101010 +// 10101010 +// 10101010 +// 10101010 +// 10101010 +// +// A loopfilter should be applied to every other 8x8 horizontally. +static const uint64_t left_64x64_txform_mask[TX_SIZES] = { + 0xffffffffffffffffULL, // TX_4X4 + 0xffffffffffffffffULL, // TX_8x8 + 0x5555555555555555ULL, // TX_16x16 + 0x1111111111111111ULL, // TX_32x32 +}; + +// 64 bit masks for above transform size. Each 1 represents a position where +// we should apply a loop filter across the top border of an 8x8 block +// boundary. +// +// In the case of TX_32x32 -> ( in low order byte first we end up with +// a mask that looks like this +// +// 11111111 +// 00000000 +// 00000000 +// 00000000 +// 11111111 +// 00000000 +// 00000000 +// 00000000 +// +// A loopfilter should be applied to every other 4 the row vertically. +static const uint64_t above_64x64_txform_mask[TX_SIZES] = { + 0xffffffffffffffffULL, // TX_4X4 + 0xffffffffffffffffULL, // TX_8x8 + 0x00ff00ff00ff00ffULL, // TX_16x16 + 0x000000ff000000ffULL, // TX_32x32 +}; + +// 64 bit masks for prediction sizes (left). Each 1 represents a position +// where left border of an 8x8 block. These are aligned to the right most +// appropriate bit, and then shifted into place. +// +// In the case of TX_16x32 -> ( low order byte first ) we end up with +// a mask that looks like this : +// +// 10000000 +// 10000000 +// 10000000 +// 10000000 +// 00000000 +// 00000000 +// 00000000 +// 00000000 +static const uint64_t left_prediction_mask[BLOCK_SIZES] = { + 0x0000000000000001ULL, // BLOCK_4X4, + 0x0000000000000001ULL, // BLOCK_4X8, + 0x0000000000000001ULL, // BLOCK_8X4, + 0x0000000000000001ULL, // BLOCK_8X8, + 0x0000000000000101ULL, // BLOCK_8X16, + 0x0000000000000001ULL, // BLOCK_16X8, + 0x0000000000000101ULL, // BLOCK_16X16, + 0x0000000001010101ULL, // BLOCK_16X32, + 0x0000000000000101ULL, // BLOCK_32X16, + 0x0000000001010101ULL, // BLOCK_32X32, + 0x0101010101010101ULL, // BLOCK_32X64, + 0x0000000001010101ULL, // BLOCK_64X32, + 0x0101010101010101ULL, // BLOCK_64X64 +}; + +// 64 bit mask to shift and set for each prediction size. +static const uint64_t above_prediction_mask[BLOCK_SIZES] = { + 0x0000000000000001ULL, // BLOCK_4X4 + 0x0000000000000001ULL, // BLOCK_4X8 + 0x0000000000000001ULL, // BLOCK_8X4 + 0x0000000000000001ULL, // BLOCK_8X8 + 0x0000000000000001ULL, // BLOCK_8X16, + 0x0000000000000003ULL, // BLOCK_16X8 + 0x0000000000000003ULL, // BLOCK_16X16 + 0x0000000000000003ULL, // BLOCK_16X32, + 0x000000000000000fULL, // BLOCK_32X16, + 0x000000000000000fULL, // BLOCK_32X32, + 0x000000000000000fULL, // BLOCK_32X64, + 0x00000000000000ffULL, // BLOCK_64X32, + 0x00000000000000ffULL, // BLOCK_64X64 +}; +// 64 bit mask to shift and set for each prediction size. A bit is set for +// each 8x8 block that would be in the left most block of the given block +// size in the 64x64 block. +static const uint64_t size_mask[BLOCK_SIZES] = { + 0x0000000000000001ULL, // BLOCK_4X4 + 0x0000000000000001ULL, // BLOCK_4X8 + 0x0000000000000001ULL, // BLOCK_8X4 + 0x0000000000000001ULL, // BLOCK_8X8 + 0x0000000000000101ULL, // BLOCK_8X16, + 0x0000000000000003ULL, // BLOCK_16X8 + 0x0000000000000303ULL, // BLOCK_16X16 + 0x0000000003030303ULL, // BLOCK_16X32, + 0x0000000000000f0fULL, // BLOCK_32X16, + 0x000000000f0f0f0fULL, // BLOCK_32X32, + 0x0f0f0f0f0f0f0f0fULL, // BLOCK_32X64, + 0x00000000ffffffffULL, // BLOCK_64X32, + 0xffffffffffffffffULL, // BLOCK_64X64 +}; + +// These are used for masking the left and above borders. +static const uint64_t left_border = 0x1111111111111111ULL; +static const uint64_t above_border = 0x000000ff000000ffULL; + +// 16 bit masks for uv transform sizes. +static const uint16_t left_64x64_txform_mask_uv[TX_SIZES] = { + 0xffff, // TX_4X4 + 0xffff, // TX_8x8 + 0x5555, // TX_16x16 + 0x1111, // TX_32x32 +}; + +static const uint16_t above_64x64_txform_mask_uv[TX_SIZES] = { + 0xffff, // TX_4X4 + 0xffff, // TX_8x8 + 0x0f0f, // TX_16x16 + 0x000f, // TX_32x32 +}; + +// 16 bit left mask to shift and set for each uv prediction size. +static const uint16_t left_prediction_mask_uv[BLOCK_SIZES] = { + 0x0001, // BLOCK_4X4, + 0x0001, // BLOCK_4X8, + 0x0001, // BLOCK_8X4, + 0x0001, // BLOCK_8X8, + 0x0001, // BLOCK_8X16, + 0x0001, // BLOCK_16X8, + 0x0001, // BLOCK_16X16, + 0x0011, // BLOCK_16X32, + 0x0001, // BLOCK_32X16, + 0x0011, // BLOCK_32X32, + 0x1111, // BLOCK_32X64 + 0x0011, // BLOCK_64X32, + 0x1111, // BLOCK_64X64 +}; +// 16 bit above mask to shift and set for uv each prediction size. +static const uint16_t above_prediction_mask_uv[BLOCK_SIZES] = { + 0x0001, // BLOCK_4X4 + 0x0001, // BLOCK_4X8 + 0x0001, // BLOCK_8X4 + 0x0001, // BLOCK_8X8 + 0x0001, // BLOCK_8X16, + 0x0001, // BLOCK_16X8 + 0x0001, // BLOCK_16X16 + 0x0001, // BLOCK_16X32, + 0x0003, // BLOCK_32X16, + 0x0003, // BLOCK_32X32, + 0x0003, // BLOCK_32X64, + 0x000f, // BLOCK_64X32, + 0x000f, // BLOCK_64X64 +}; + +// 64 bit mask to shift and set for each uv prediction size +static const uint16_t size_mask_uv[BLOCK_SIZES] = { + 0x0001, // BLOCK_4X4 + 0x0001, // BLOCK_4X8 + 0x0001, // BLOCK_8X4 + 0x0001, // BLOCK_8X8 + 0x0001, // BLOCK_8X16, + 0x0001, // BLOCK_16X8 + 0x0001, // BLOCK_16X16 + 0x0011, // BLOCK_16X32, + 0x0003, // BLOCK_32X16, + 0x0033, // BLOCK_32X32, + 0x3333, // BLOCK_32X64, + 0x00ff, // BLOCK_64X32, + 0xffff, // BLOCK_64X64 +}; +static const uint16_t left_border_uv = 0x1111; +static const uint16_t above_border_uv = 0x000f; + +static const int mode_lf_lut[MB_MODE_COUNT] = { + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // INTRA_MODES + 1, 1, 0, 1 // INTER_MODES (ZEROMV == 0) +}; + +static void update_sharpness(loop_filter_info_n *lfi, int sharpness_lvl) { + int lvl; + + // For each possible value for the loop filter fill out limits + for (lvl = 0; lvl <= MAX_LOOP_FILTER; lvl++) { + // Set loop filter parameters that control sharpness. + int block_inside_limit = lvl >> ((sharpness_lvl > 0) + (sharpness_lvl > 4)); + + if (sharpness_lvl > 0) { + if (block_inside_limit > (9 - sharpness_lvl)) + block_inside_limit = (9 - sharpness_lvl); + } + + if (block_inside_limit < 1) block_inside_limit = 1; + + memset(lfi->lfthr[lvl].lim, block_inside_limit, SIMD_WIDTH); + memset(lfi->lfthr[lvl].mblim, (2 * (lvl + 2) + block_inside_limit), + SIMD_WIDTH); + } +} + +static uint8_t get_filter_level(const loop_filter_info_n *lfi_n, + const MODE_INFO *mi) { + return lfi_n->lvl[mi->segment_id][mi->ref_frame[0]][mode_lf_lut[mi->mode]]; +} + +void vp9_loop_filter_init(VP9_COMMON *cm) { + loop_filter_info_n *lfi = &cm->lf_info; + struct loopfilter *lf = &cm->lf; + int lvl; + + // init limits for given sharpness + update_sharpness(lfi, lf->sharpness_level); + lf->last_sharpness_level = lf->sharpness_level; + + // init hev threshold const vectors + for (lvl = 0; lvl <= MAX_LOOP_FILTER; lvl++) + memset(lfi->lfthr[lvl].hev_thr, (lvl >> 4), SIMD_WIDTH); +} + +void vp9_loop_filter_frame_init(VP9_COMMON *cm, int default_filt_lvl) { + int seg_id; + // n_shift is the multiplier for lf_deltas + // the multiplier is 1 for when filter_lvl is between 0 and 31; + // 2 when filter_lvl is between 32 and 63 + const int scale = 1 << (default_filt_lvl >> 5); + loop_filter_info_n *const lfi = &cm->lf_info; + struct loopfilter *const lf = &cm->lf; + const struct segmentation *const seg = &cm->seg; + + // update limits if sharpness has changed + if (lf->last_sharpness_level != lf->sharpness_level) { + update_sharpness(lfi, lf->sharpness_level); + lf->last_sharpness_level = lf->sharpness_level; + } + + for (seg_id = 0; seg_id < MAX_SEGMENTS; seg_id++) { + int lvl_seg = default_filt_lvl; + if (segfeature_active(seg, seg_id, SEG_LVL_ALT_LF)) { + const int data = get_segdata(seg, seg_id, SEG_LVL_ALT_LF); + lvl_seg = clamp( + seg->abs_delta == SEGMENT_ABSDATA ? data : default_filt_lvl + data, 0, + MAX_LOOP_FILTER); + } + + if (!lf->mode_ref_delta_enabled) { + // we could get rid of this if we assume that deltas are set to + // zero when not in use; encoder always uses deltas + memset(lfi->lvl[seg_id], lvl_seg, sizeof(lfi->lvl[seg_id])); + } else { + int ref, mode; + const int intra_lvl = lvl_seg + lf->ref_deltas[INTRA_FRAME] * scale; + lfi->lvl[seg_id][INTRA_FRAME][0] = clamp(intra_lvl, 0, MAX_LOOP_FILTER); + + for (ref = LAST_FRAME; ref < MAX_REF_FRAMES; ++ref) { + for (mode = 0; mode < MAX_MODE_LF_DELTAS; ++mode) { + const int inter_lvl = lvl_seg + lf->ref_deltas[ref] * scale + + lf->mode_deltas[mode] * scale; + lfi->lvl[seg_id][ref][mode] = clamp(inter_lvl, 0, MAX_LOOP_FILTER); + } + } + } + } +} + +static void filter_selectively_vert_row2( + int subsampling_factor, uint8_t *s, int pitch, unsigned int mask_16x16, + unsigned int mask_8x8, unsigned int mask_4x4, unsigned int mask_4x4_int, + const loop_filter_thresh *lfthr, const uint8_t *lfl) { + const int dual_mask_cutoff = subsampling_factor ? 0xff : 0xffff; + const int lfl_forward = subsampling_factor ? 4 : 8; + const unsigned int dual_one = 1 | (1 << lfl_forward); + unsigned int mask; + uint8_t *ss[2]; + ss[0] = s; + + for (mask = + (mask_16x16 | mask_8x8 | mask_4x4 | mask_4x4_int) & dual_mask_cutoff; + mask; mask = (mask & ~dual_one) >> 1) { + if (mask & dual_one) { + const loop_filter_thresh *lfis[2]; + lfis[0] = lfthr + *lfl; + lfis[1] = lfthr + *(lfl + lfl_forward); + ss[1] = ss[0] + 8 * pitch; + + if (mask_16x16 & dual_one) { + if ((mask_16x16 & dual_one) == dual_one) { + vpx_lpf_vertical_16_dual(ss[0], pitch, lfis[0]->mblim, lfis[0]->lim, + lfis[0]->hev_thr); + } else { + const loop_filter_thresh *lfi = lfis[!(mask_16x16 & 1)]; + vpx_lpf_vertical_16(ss[!(mask_16x16 & 1)], pitch, lfi->mblim, + lfi->lim, lfi->hev_thr); + } + } + + if (mask_8x8 & dual_one) { + if ((mask_8x8 & dual_one) == dual_one) { + vpx_lpf_vertical_8_dual(ss[0], pitch, lfis[0]->mblim, lfis[0]->lim, + lfis[0]->hev_thr, lfis[1]->mblim, + lfis[1]->lim, lfis[1]->hev_thr); + } else { + const loop_filter_thresh *lfi = lfis[!(mask_8x8 & 1)]; + vpx_lpf_vertical_8(ss[!(mask_8x8 & 1)], pitch, lfi->mblim, lfi->lim, + lfi->hev_thr); + } + } + + if (mask_4x4 & dual_one) { + if ((mask_4x4 & dual_one) == dual_one) { + vpx_lpf_vertical_4_dual(ss[0], pitch, lfis[0]->mblim, lfis[0]->lim, + lfis[0]->hev_thr, lfis[1]->mblim, + lfis[1]->lim, lfis[1]->hev_thr); + } else { + const loop_filter_thresh *lfi = lfis[!(mask_4x4 & 1)]; + vpx_lpf_vertical_4(ss[!(mask_4x4 & 1)], pitch, lfi->mblim, lfi->lim, + lfi->hev_thr); + } + } + + if (mask_4x4_int & dual_one) { + if ((mask_4x4_int & dual_one) == dual_one) { + vpx_lpf_vertical_4_dual( + ss[0] + 4, pitch, lfis[0]->mblim, lfis[0]->lim, lfis[0]->hev_thr, + lfis[1]->mblim, lfis[1]->lim, lfis[1]->hev_thr); + } else { + const loop_filter_thresh *lfi = lfis[!(mask_4x4_int & 1)]; + vpx_lpf_vertical_4(ss[!(mask_4x4_int & 1)] + 4, pitch, lfi->mblim, + lfi->lim, lfi->hev_thr); + } + } + } + + ss[0] += 8; + lfl += 1; + mask_16x16 >>= 1; + mask_8x8 >>= 1; + mask_4x4 >>= 1; + mask_4x4_int >>= 1; + } +} + +#if CONFIG_VP9_HIGHBITDEPTH +static void highbd_filter_selectively_vert_row2( + int subsampling_factor, uint16_t *s, int pitch, unsigned int mask_16x16, + unsigned int mask_8x8, unsigned int mask_4x4, unsigned int mask_4x4_int, + const loop_filter_thresh *lfthr, const uint8_t *lfl, int bd) { + const int dual_mask_cutoff = subsampling_factor ? 0xff : 0xffff; + const int lfl_forward = subsampling_factor ? 4 : 8; + const unsigned int dual_one = 1 | (1 << lfl_forward); + unsigned int mask; + uint16_t *ss[2]; + ss[0] = s; + + for (mask = + (mask_16x16 | mask_8x8 | mask_4x4 | mask_4x4_int) & dual_mask_cutoff; + mask; mask = (mask & ~dual_one) >> 1) { + if (mask & dual_one) { + const loop_filter_thresh *lfis[2]; + lfis[0] = lfthr + *lfl; + lfis[1] = lfthr + *(lfl + lfl_forward); + ss[1] = ss[0] + 8 * pitch; + + if (mask_16x16 & dual_one) { + if ((mask_16x16 & dual_one) == dual_one) { + vpx_highbd_lpf_vertical_16_dual(ss[0], pitch, lfis[0]->mblim, + lfis[0]->lim, lfis[0]->hev_thr, bd); + } else { + const loop_filter_thresh *lfi = lfis[!(mask_16x16 & 1)]; + vpx_highbd_lpf_vertical_16(ss[!(mask_16x16 & 1)], pitch, lfi->mblim, + lfi->lim, lfi->hev_thr, bd); + } + } + + if (mask_8x8 & dual_one) { + if ((mask_8x8 & dual_one) == dual_one) { + vpx_highbd_lpf_vertical_8_dual( + ss[0], pitch, lfis[0]->mblim, lfis[0]->lim, lfis[0]->hev_thr, + lfis[1]->mblim, lfis[1]->lim, lfis[1]->hev_thr, bd); + } else { + const loop_filter_thresh *lfi = lfis[!(mask_8x8 & 1)]; + vpx_highbd_lpf_vertical_8(ss[!(mask_8x8 & 1)], pitch, lfi->mblim, + lfi->lim, lfi->hev_thr, bd); + } + } + + if (mask_4x4 & dual_one) { + if ((mask_4x4 & dual_one) == dual_one) { + vpx_highbd_lpf_vertical_4_dual( + ss[0], pitch, lfis[0]->mblim, lfis[0]->lim, lfis[0]->hev_thr, + lfis[1]->mblim, lfis[1]->lim, lfis[1]->hev_thr, bd); + } else { + const loop_filter_thresh *lfi = lfis[!(mask_4x4 & 1)]; + vpx_highbd_lpf_vertical_4(ss[!(mask_4x4 & 1)], pitch, lfi->mblim, + lfi->lim, lfi->hev_thr, bd); + } + } + + if (mask_4x4_int & dual_one) { + if ((mask_4x4_int & dual_one) == dual_one) { + vpx_highbd_lpf_vertical_4_dual( + ss[0] + 4, pitch, lfis[0]->mblim, lfis[0]->lim, lfis[0]->hev_thr, + lfis[1]->mblim, lfis[1]->lim, lfis[1]->hev_thr, bd); + } else { + const loop_filter_thresh *lfi = lfis[!(mask_4x4_int & 1)]; + vpx_highbd_lpf_vertical_4(ss[!(mask_4x4_int & 1)] + 4, pitch, + lfi->mblim, lfi->lim, lfi->hev_thr, bd); + } + } + } + + ss[0] += 8; + lfl += 1; + mask_16x16 >>= 1; + mask_8x8 >>= 1; + mask_4x4 >>= 1; + mask_4x4_int >>= 1; + } +} +#endif // CONFIG_VP9_HIGHBITDEPTH + +static void filter_selectively_horiz( + uint8_t *s, int pitch, unsigned int mask_16x16, unsigned int mask_8x8, + unsigned int mask_4x4, unsigned int mask_4x4_int, + const loop_filter_thresh *lfthr, const uint8_t *lfl) { + unsigned int mask; + int count; + + for (mask = mask_16x16 | mask_8x8 | mask_4x4 | mask_4x4_int; mask; + mask >>= count) { + count = 1; + if (mask & 1) { + const loop_filter_thresh *lfi = lfthr + *lfl; + + if (mask_16x16 & 1) { + if ((mask_16x16 & 3) == 3) { + vpx_lpf_horizontal_16_dual(s, pitch, lfi->mblim, lfi->lim, + lfi->hev_thr); + count = 2; + } else { + vpx_lpf_horizontal_16(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr); + } + } else if (mask_8x8 & 1) { + if ((mask_8x8 & 3) == 3) { + // Next block's thresholds. + const loop_filter_thresh *lfin = lfthr + *(lfl + 1); + + vpx_lpf_horizontal_8_dual(s, pitch, lfi->mblim, lfi->lim, + lfi->hev_thr, lfin->mblim, lfin->lim, + lfin->hev_thr); + + if ((mask_4x4_int & 3) == 3) { + vpx_lpf_horizontal_4_dual(s + 4 * pitch, pitch, lfi->mblim, + lfi->lim, lfi->hev_thr, lfin->mblim, + lfin->lim, lfin->hev_thr); + } else { + if (mask_4x4_int & 1) + vpx_lpf_horizontal_4(s + 4 * pitch, pitch, lfi->mblim, lfi->lim, + lfi->hev_thr); + else if (mask_4x4_int & 2) + vpx_lpf_horizontal_4(s + 8 + 4 * pitch, pitch, lfin->mblim, + lfin->lim, lfin->hev_thr); + } + count = 2; + } else { + vpx_lpf_horizontal_8(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr); + + if (mask_4x4_int & 1) + vpx_lpf_horizontal_4(s + 4 * pitch, pitch, lfi->mblim, lfi->lim, + lfi->hev_thr); + } + } else if (mask_4x4 & 1) { + if ((mask_4x4 & 3) == 3) { + // Next block's thresholds. + const loop_filter_thresh *lfin = lfthr + *(lfl + 1); + + vpx_lpf_horizontal_4_dual(s, pitch, lfi->mblim, lfi->lim, + lfi->hev_thr, lfin->mblim, lfin->lim, + lfin->hev_thr); + if ((mask_4x4_int & 3) == 3) { + vpx_lpf_horizontal_4_dual(s + 4 * pitch, pitch, lfi->mblim, + lfi->lim, lfi->hev_thr, lfin->mblim, + lfin->lim, lfin->hev_thr); + } else { + if (mask_4x4_int & 1) + vpx_lpf_horizontal_4(s + 4 * pitch, pitch, lfi->mblim, lfi->lim, + lfi->hev_thr); + else if (mask_4x4_int & 2) + vpx_lpf_horizontal_4(s + 8 + 4 * pitch, pitch, lfin->mblim, + lfin->lim, lfin->hev_thr); + } + count = 2; + } else { + vpx_lpf_horizontal_4(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr); + + if (mask_4x4_int & 1) + vpx_lpf_horizontal_4(s + 4 * pitch, pitch, lfi->mblim, lfi->lim, + lfi->hev_thr); + } + } else { + vpx_lpf_horizontal_4(s + 4 * pitch, pitch, lfi->mblim, lfi->lim, + lfi->hev_thr); + } + } + s += 8 * count; + lfl += count; + mask_16x16 >>= count; + mask_8x8 >>= count; + mask_4x4 >>= count; + mask_4x4_int >>= count; + } +} + +#if CONFIG_VP9_HIGHBITDEPTH +static void highbd_filter_selectively_horiz( + uint16_t *s, int pitch, unsigned int mask_16x16, unsigned int mask_8x8, + unsigned int mask_4x4, unsigned int mask_4x4_int, + const loop_filter_thresh *lfthr, const uint8_t *lfl, int bd) { + unsigned int mask; + int count; + + for (mask = mask_16x16 | mask_8x8 | mask_4x4 | mask_4x4_int; mask; + mask >>= count) { + count = 1; + if (mask & 1) { + const loop_filter_thresh *lfi = lfthr + *lfl; + + if (mask_16x16 & 1) { + if ((mask_16x16 & 3) == 3) { + vpx_highbd_lpf_horizontal_16_dual(s, pitch, lfi->mblim, lfi->lim, + lfi->hev_thr, bd); + count = 2; + } else { + vpx_highbd_lpf_horizontal_16(s, pitch, lfi->mblim, lfi->lim, + lfi->hev_thr, bd); + } + } else if (mask_8x8 & 1) { + if ((mask_8x8 & 3) == 3) { + // Next block's thresholds. + const loop_filter_thresh *lfin = lfthr + *(lfl + 1); + + vpx_highbd_lpf_horizontal_8_dual(s, pitch, lfi->mblim, lfi->lim, + lfi->hev_thr, lfin->mblim, lfin->lim, + lfin->hev_thr, bd); + + if ((mask_4x4_int & 3) == 3) { + vpx_highbd_lpf_horizontal_4_dual( + s + 4 * pitch, pitch, lfi->mblim, lfi->lim, lfi->hev_thr, + lfin->mblim, lfin->lim, lfin->hev_thr, bd); + } else { + if (mask_4x4_int & 1) { + vpx_highbd_lpf_horizontal_4(s + 4 * pitch, pitch, lfi->mblim, + lfi->lim, lfi->hev_thr, bd); + } else if (mask_4x4_int & 2) { + vpx_highbd_lpf_horizontal_4(s + 8 + 4 * pitch, pitch, lfin->mblim, + lfin->lim, lfin->hev_thr, bd); + } + } + count = 2; + } else { + vpx_highbd_lpf_horizontal_8(s, pitch, lfi->mblim, lfi->lim, + lfi->hev_thr, bd); + + if (mask_4x4_int & 1) { + vpx_highbd_lpf_horizontal_4(s + 4 * pitch, pitch, lfi->mblim, + lfi->lim, lfi->hev_thr, bd); + } + } + } else if (mask_4x4 & 1) { + if ((mask_4x4 & 3) == 3) { + // Next block's thresholds. + const loop_filter_thresh *lfin = lfthr + *(lfl + 1); + + vpx_highbd_lpf_horizontal_4_dual(s, pitch, lfi->mblim, lfi->lim, + lfi->hev_thr, lfin->mblim, lfin->lim, + lfin->hev_thr, bd); + if ((mask_4x4_int & 3) == 3) { + vpx_highbd_lpf_horizontal_4_dual( + s + 4 * pitch, pitch, lfi->mblim, lfi->lim, lfi->hev_thr, + lfin->mblim, lfin->lim, lfin->hev_thr, bd); + } else { + if (mask_4x4_int & 1) { + vpx_highbd_lpf_horizontal_4(s + 4 * pitch, pitch, lfi->mblim, + lfi->lim, lfi->hev_thr, bd); + } else if (mask_4x4_int & 2) { + vpx_highbd_lpf_horizontal_4(s + 8 + 4 * pitch, pitch, lfin->mblim, + lfin->lim, lfin->hev_thr, bd); + } + } + count = 2; + } else { + vpx_highbd_lpf_horizontal_4(s, pitch, lfi->mblim, lfi->lim, + lfi->hev_thr, bd); + + if (mask_4x4_int & 1) { + vpx_highbd_lpf_horizontal_4(s + 4 * pitch, pitch, lfi->mblim, + lfi->lim, lfi->hev_thr, bd); + } + } + } else { + vpx_highbd_lpf_horizontal_4(s + 4 * pitch, pitch, lfi->mblim, lfi->lim, + lfi->hev_thr, bd); + } + } + s += 8 * count; + lfl += count; + mask_16x16 >>= count; + mask_8x8 >>= count; + mask_4x4 >>= count; + mask_4x4_int >>= count; + } +} +#endif // CONFIG_VP9_HIGHBITDEPTH + +// This function ors into the current lfm structure, where to do loop +// filters for the specific mi we are looking at. It uses information +// including the block_size_type (32x16, 32x32, etc.), the transform size, +// whether there were any coefficients encoded, and the loop filter strength +// block we are currently looking at. Shift is used to position the +// 1's we produce. +static void build_masks(const loop_filter_info_n *const lfi_n, + const MODE_INFO *mi, const int shift_y, + const int shift_uv, LOOP_FILTER_MASK *lfm) { + const BLOCK_SIZE block_size = mi->sb_type; + const TX_SIZE tx_size_y = mi->tx_size; + const TX_SIZE tx_size_uv = uv_txsize_lookup[block_size][tx_size_y][1][1]; + const int filter_level = get_filter_level(lfi_n, mi); + uint64_t *const left_y = &lfm->left_y[tx_size_y]; + uint64_t *const above_y = &lfm->above_y[tx_size_y]; + uint64_t *const int_4x4_y = &lfm->int_4x4_y; + uint16_t *const left_uv = &lfm->left_uv[tx_size_uv]; + uint16_t *const above_uv = &lfm->above_uv[tx_size_uv]; + uint16_t *const int_4x4_uv = &lfm->int_4x4_uv; + int i; + + // If filter level is 0 we don't loop filter. + if (!filter_level) { + return; + } else { + const int w = num_8x8_blocks_wide_lookup[block_size]; + const int h = num_8x8_blocks_high_lookup[block_size]; + int index = shift_y; + for (i = 0; i < h; i++) { + memset(&lfm->lfl_y[index], filter_level, w); + index += 8; + } + } + + // These set 1 in the current block size for the block size edges. + // For instance if the block size is 32x16, we'll set: + // above = 1111 + // 0000 + // and + // left = 1000 + // = 1000 + // NOTE : In this example the low bit is left most ( 1000 ) is stored as + // 1, not 8... + // + // U and V set things on a 16 bit scale. + // + *above_y |= above_prediction_mask[block_size] << shift_y; + *above_uv |= above_prediction_mask_uv[block_size] << shift_uv; + *left_y |= left_prediction_mask[block_size] << shift_y; + *left_uv |= left_prediction_mask_uv[block_size] << shift_uv; + + // If the block has no coefficients and is not intra we skip applying + // the loop filter on block edges. + if (mi->skip && is_inter_block(mi)) return; + + // Here we are adding a mask for the transform size. The transform + // size mask is set to be correct for a 64x64 prediction block size. We + // mask to match the size of the block we are working on and then shift it + // into place.. + *above_y |= (size_mask[block_size] & above_64x64_txform_mask[tx_size_y]) + << shift_y; + *above_uv |= + (size_mask_uv[block_size] & above_64x64_txform_mask_uv[tx_size_uv]) + << shift_uv; + + *left_y |= (size_mask[block_size] & left_64x64_txform_mask[tx_size_y]) + << shift_y; + *left_uv |= (size_mask_uv[block_size] & left_64x64_txform_mask_uv[tx_size_uv]) + << shift_uv; + + // Here we are trying to determine what to do with the internal 4x4 block + // boundaries. These differ from the 4x4 boundaries on the outside edge of + // an 8x8 in that the internal ones can be skipped and don't depend on + // the prediction block size. + if (tx_size_y == TX_4X4) *int_4x4_y |= size_mask[block_size] << shift_y; + + if (tx_size_uv == TX_4X4) + *int_4x4_uv |= (size_mask_uv[block_size] & 0xffff) << shift_uv; +} + +// This function does the same thing as the one above with the exception that +// it only affects the y masks. It exists because for blocks < 16x16 in size, +// we only update u and v masks on the first block. +static void build_y_mask(const loop_filter_info_n *const lfi_n, + const MODE_INFO *mi, const int shift_y, + LOOP_FILTER_MASK *lfm) { + const BLOCK_SIZE block_size = mi->sb_type; + const TX_SIZE tx_size_y = mi->tx_size; + const int filter_level = get_filter_level(lfi_n, mi); + uint64_t *const left_y = &lfm->left_y[tx_size_y]; + uint64_t *const above_y = &lfm->above_y[tx_size_y]; + uint64_t *const int_4x4_y = &lfm->int_4x4_y; + int i; + + if (!filter_level) { + return; + } else { + const int w = num_8x8_blocks_wide_lookup[block_size]; + const int h = num_8x8_blocks_high_lookup[block_size]; + int index = shift_y; + for (i = 0; i < h; i++) { + memset(&lfm->lfl_y[index], filter_level, w); + index += 8; + } + } + + *above_y |= above_prediction_mask[block_size] << shift_y; + *left_y |= left_prediction_mask[block_size] << shift_y; + + if (mi->skip && is_inter_block(mi)) return; + + *above_y |= (size_mask[block_size] & above_64x64_txform_mask[tx_size_y]) + << shift_y; + + *left_y |= (size_mask[block_size] & left_64x64_txform_mask[tx_size_y]) + << shift_y; + + if (tx_size_y == TX_4X4) *int_4x4_y |= size_mask[block_size] << shift_y; +} + +void vp9_adjust_mask(VP9_COMMON *const cm, const int mi_row, const int mi_col, + LOOP_FILTER_MASK *lfm) { + int i; + + // The largest loopfilter we have is 16x16 so we use the 16x16 mask + // for 32x32 transforms also. + lfm->left_y[TX_16X16] |= lfm->left_y[TX_32X32]; + lfm->above_y[TX_16X16] |= lfm->above_y[TX_32X32]; + lfm->left_uv[TX_16X16] |= lfm->left_uv[TX_32X32]; + lfm->above_uv[TX_16X16] |= lfm->above_uv[TX_32X32]; + + // We do at least 8 tap filter on every 32x32 even if the transform size + // is 4x4. So if the 4x4 is set on a border pixel add it to the 8x8 and + // remove it from the 4x4. + lfm->left_y[TX_8X8] |= lfm->left_y[TX_4X4] & left_border; + lfm->left_y[TX_4X4] &= ~left_border; + lfm->above_y[TX_8X8] |= lfm->above_y[TX_4X4] & above_border; + lfm->above_y[TX_4X4] &= ~above_border; + lfm->left_uv[TX_8X8] |= lfm->left_uv[TX_4X4] & left_border_uv; + lfm->left_uv[TX_4X4] &= ~left_border_uv; + lfm->above_uv[TX_8X8] |= lfm->above_uv[TX_4X4] & above_border_uv; + lfm->above_uv[TX_4X4] &= ~above_border_uv; + + // We do some special edge handling. + if (mi_row + MI_BLOCK_SIZE > cm->mi_rows) { + const uint64_t rows = cm->mi_rows - mi_row; + + // Each pixel inside the border gets a 1, + const uint64_t mask_y = (((uint64_t)1 << (rows << 3)) - 1); + const uint16_t mask_uv = (((uint16_t)1 << (((rows + 1) >> 1) << 2)) - 1); + + // Remove values completely outside our border. + for (i = 0; i < TX_32X32; i++) { + lfm->left_y[i] &= mask_y; + lfm->above_y[i] &= mask_y; + lfm->left_uv[i] &= mask_uv; + lfm->above_uv[i] &= mask_uv; + } + lfm->int_4x4_y &= mask_y; + lfm->int_4x4_uv &= mask_uv; + + // We don't apply a wide loop filter on the last uv block row. If set + // apply the shorter one instead. + if (rows == 1) { + lfm->above_uv[TX_8X8] |= lfm->above_uv[TX_16X16]; + lfm->above_uv[TX_16X16] = 0; + } + if (rows == 5) { + lfm->above_uv[TX_8X8] |= lfm->above_uv[TX_16X16] & 0xff00; + lfm->above_uv[TX_16X16] &= ~(lfm->above_uv[TX_16X16] & 0xff00); + } + } + + if (mi_col + MI_BLOCK_SIZE > cm->mi_cols) { + const uint64_t columns = cm->mi_cols - mi_col; + + // Each pixel inside the border gets a 1, the multiply copies the border + // to where we need it. + const uint64_t mask_y = (((1 << columns) - 1)) * 0x0101010101010101ULL; + const uint16_t mask_uv = ((1 << ((columns + 1) >> 1)) - 1) * 0x1111; + + // Internal edges are not applied on the last column of the image so + // we mask 1 more for the internal edges + const uint16_t mask_uv_int = ((1 << (columns >> 1)) - 1) * 0x1111; + + // Remove the bits outside the image edge. + for (i = 0; i < TX_32X32; i++) { + lfm->left_y[i] &= mask_y; + lfm->above_y[i] &= mask_y; + lfm->left_uv[i] &= mask_uv; + lfm->above_uv[i] &= mask_uv; + } + lfm->int_4x4_y &= mask_y; + lfm->int_4x4_uv &= mask_uv_int; + + // We don't apply a wide loop filter on the last uv column. If set + // apply the shorter one instead. + if (columns == 1) { + lfm->left_uv[TX_8X8] |= lfm->left_uv[TX_16X16]; + lfm->left_uv[TX_16X16] = 0; + } + if (columns == 5) { + lfm->left_uv[TX_8X8] |= (lfm->left_uv[TX_16X16] & 0xcccc); + lfm->left_uv[TX_16X16] &= ~(lfm->left_uv[TX_16X16] & 0xcccc); + } + } + // We don't apply a loop filter on the first column in the image, mask that + // out. + if (mi_col == 0) { + for (i = 0; i < TX_32X32; i++) { + lfm->left_y[i] &= 0xfefefefefefefefeULL; + lfm->left_uv[i] &= 0xeeee; + } + } + + // Assert if we try to apply 2 different loop filters at the same position. + assert(!(lfm->left_y[TX_16X16] & lfm->left_y[TX_8X8])); + assert(!(lfm->left_y[TX_16X16] & lfm->left_y[TX_4X4])); + assert(!(lfm->left_y[TX_8X8] & lfm->left_y[TX_4X4])); + assert(!(lfm->int_4x4_y & lfm->left_y[TX_16X16])); + assert(!(lfm->left_uv[TX_16X16] & lfm->left_uv[TX_8X8])); + assert(!(lfm->left_uv[TX_16X16] & lfm->left_uv[TX_4X4])); + assert(!(lfm->left_uv[TX_8X8] & lfm->left_uv[TX_4X4])); + assert(!(lfm->int_4x4_uv & lfm->left_uv[TX_16X16])); + assert(!(lfm->above_y[TX_16X16] & lfm->above_y[TX_8X8])); + assert(!(lfm->above_y[TX_16X16] & lfm->above_y[TX_4X4])); + assert(!(lfm->above_y[TX_8X8] & lfm->above_y[TX_4X4])); + assert(!(lfm->int_4x4_y & lfm->above_y[TX_16X16])); + assert(!(lfm->above_uv[TX_16X16] & lfm->above_uv[TX_8X8])); + assert(!(lfm->above_uv[TX_16X16] & lfm->above_uv[TX_4X4])); + assert(!(lfm->above_uv[TX_8X8] & lfm->above_uv[TX_4X4])); + assert(!(lfm->int_4x4_uv & lfm->above_uv[TX_16X16])); +} + +// This function sets up the bit masks for the entire 64x64 region represented +// by mi_row, mi_col. +void vp9_setup_mask(VP9_COMMON *const cm, const int mi_row, const int mi_col, + MODE_INFO **mi, const int mode_info_stride, + LOOP_FILTER_MASK *lfm) { + int idx_32, idx_16, idx_8; + const loop_filter_info_n *const lfi_n = &cm->lf_info; + MODE_INFO **mip = mi; + MODE_INFO **mip2 = mi; + + // These are offsets to the next mi in the 64x64 block. It is what gets + // added to the mi ptr as we go through each loop. It helps us to avoid + // setting up special row and column counters for each index. The last step + // brings us out back to the starting position. + const int offset_32[] = { 4, (mode_info_stride << 2) - 4, 4, + -(mode_info_stride << 2) - 4 }; + const int offset_16[] = { 2, (mode_info_stride << 1) - 2, 2, + -(mode_info_stride << 1) - 2 }; + const int offset[] = { 1, mode_info_stride - 1, 1, -mode_info_stride - 1 }; + + // Following variables represent shifts to position the current block + // mask over the appropriate block. A shift of 36 to the left will move + // the bits for the final 32 by 32 block in the 64x64 up 4 rows and left + // 4 rows to the appropriate spot. + const int shift_32_y[] = { 0, 4, 32, 36 }; + const int shift_16_y[] = { 0, 2, 16, 18 }; + const int shift_8_y[] = { 0, 1, 8, 9 }; + const int shift_32_uv[] = { 0, 2, 8, 10 }; + const int shift_16_uv[] = { 0, 1, 4, 5 }; + const int max_rows = + (mi_row + MI_BLOCK_SIZE > cm->mi_rows ? cm->mi_rows - mi_row + : MI_BLOCK_SIZE); + const int max_cols = + (mi_col + MI_BLOCK_SIZE > cm->mi_cols ? cm->mi_cols - mi_col + : MI_BLOCK_SIZE); + + vp9_zero(*lfm); + assert(mip[0] != NULL); + + switch (mip[0]->sb_type) { + case BLOCK_64X64: build_masks(lfi_n, mip[0], 0, 0, lfm); break; + case BLOCK_64X32: + build_masks(lfi_n, mip[0], 0, 0, lfm); + mip2 = mip + mode_info_stride * 4; + if (4 >= max_rows) break; + build_masks(lfi_n, mip2[0], 32, 8, lfm); + break; + case BLOCK_32X64: + build_masks(lfi_n, mip[0], 0, 0, lfm); + mip2 = mip + 4; + if (4 >= max_cols) break; + build_masks(lfi_n, mip2[0], 4, 2, lfm); + break; + default: + for (idx_32 = 0; idx_32 < 4; mip += offset_32[idx_32], ++idx_32) { + const int shift_y = shift_32_y[idx_32]; + const int shift_uv = shift_32_uv[idx_32]; + const int mi_32_col_offset = ((idx_32 & 1) << 2); + const int mi_32_row_offset = ((idx_32 >> 1) << 2); + if (mi_32_col_offset >= max_cols || mi_32_row_offset >= max_rows) + continue; + switch (mip[0]->sb_type) { + case BLOCK_32X32: + build_masks(lfi_n, mip[0], shift_y, shift_uv, lfm); + break; + case BLOCK_32X16: + build_masks(lfi_n, mip[0], shift_y, shift_uv, lfm); + if (mi_32_row_offset + 2 >= max_rows) continue; + mip2 = mip + mode_info_stride * 2; + build_masks(lfi_n, mip2[0], shift_y + 16, shift_uv + 4, lfm); + break; + case BLOCK_16X32: + build_masks(lfi_n, mip[0], shift_y, shift_uv, lfm); + if (mi_32_col_offset + 2 >= max_cols) continue; + mip2 = mip + 2; + build_masks(lfi_n, mip2[0], shift_y + 2, shift_uv + 1, lfm); + break; + default: + for (idx_16 = 0; idx_16 < 4; mip += offset_16[idx_16], ++idx_16) { + const int shift_y = shift_32_y[idx_32] + shift_16_y[idx_16]; + const int shift_uv = shift_32_uv[idx_32] + shift_16_uv[idx_16]; + const int mi_16_col_offset = + mi_32_col_offset + ((idx_16 & 1) << 1); + const int mi_16_row_offset = + mi_32_row_offset + ((idx_16 >> 1) << 1); + + if (mi_16_col_offset >= max_cols || mi_16_row_offset >= max_rows) + continue; + + switch (mip[0]->sb_type) { + case BLOCK_16X16: + build_masks(lfi_n, mip[0], shift_y, shift_uv, lfm); + break; + case BLOCK_16X8: + build_masks(lfi_n, mip[0], shift_y, shift_uv, lfm); + if (mi_16_row_offset + 1 >= max_rows) continue; + mip2 = mip + mode_info_stride; + build_y_mask(lfi_n, mip2[0], shift_y + 8, lfm); + break; + case BLOCK_8X16: + build_masks(lfi_n, mip[0], shift_y, shift_uv, lfm); + if (mi_16_col_offset + 1 >= max_cols) continue; + mip2 = mip + 1; + build_y_mask(lfi_n, mip2[0], shift_y + 1, lfm); + break; + default: { + const int shift_y = + shift_32_y[idx_32] + shift_16_y[idx_16] + shift_8_y[0]; + build_masks(lfi_n, mip[0], shift_y, shift_uv, lfm); + mip += offset[0]; + for (idx_8 = 1; idx_8 < 4; mip += offset[idx_8], ++idx_8) { + const int shift_y = shift_32_y[idx_32] + + shift_16_y[idx_16] + shift_8_y[idx_8]; + const int mi_8_col_offset = + mi_16_col_offset + ((idx_8 & 1)); + const int mi_8_row_offset = + mi_16_row_offset + ((idx_8 >> 1)); + + if (mi_8_col_offset >= max_cols || + mi_8_row_offset >= max_rows) + continue; + build_y_mask(lfi_n, mip[0], shift_y, lfm); + } + break; + } + } + } + break; + } + } + break; + } +} + +static void filter_selectively_vert( + uint8_t *s, int pitch, unsigned int mask_16x16, unsigned int mask_8x8, + unsigned int mask_4x4, unsigned int mask_4x4_int, + const loop_filter_thresh *lfthr, const uint8_t *lfl) { + unsigned int mask; + + for (mask = mask_16x16 | mask_8x8 | mask_4x4 | mask_4x4_int; mask; + mask >>= 1) { + const loop_filter_thresh *lfi = lfthr + *lfl; + + if (mask & 1) { + if (mask_16x16 & 1) { + vpx_lpf_vertical_16(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr); + } else if (mask_8x8 & 1) { + vpx_lpf_vertical_8(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr); + } else if (mask_4x4 & 1) { + vpx_lpf_vertical_4(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr); + } + } + if (mask_4x4_int & 1) + vpx_lpf_vertical_4(s + 4, pitch, lfi->mblim, lfi->lim, lfi->hev_thr); + s += 8; + lfl += 1; + mask_16x16 >>= 1; + mask_8x8 >>= 1; + mask_4x4 >>= 1; + mask_4x4_int >>= 1; + } +} + +#if CONFIG_VP9_HIGHBITDEPTH +static void highbd_filter_selectively_vert( + uint16_t *s, int pitch, unsigned int mask_16x16, unsigned int mask_8x8, + unsigned int mask_4x4, unsigned int mask_4x4_int, + const loop_filter_thresh *lfthr, const uint8_t *lfl, int bd) { + unsigned int mask; + + for (mask = mask_16x16 | mask_8x8 | mask_4x4 | mask_4x4_int; mask; + mask >>= 1) { + const loop_filter_thresh *lfi = lfthr + *lfl; + + if (mask & 1) { + if (mask_16x16 & 1) { + vpx_highbd_lpf_vertical_16(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr, + bd); + } else if (mask_8x8 & 1) { + vpx_highbd_lpf_vertical_8(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr, + bd); + } else if (mask_4x4 & 1) { + vpx_highbd_lpf_vertical_4(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr, + bd); + } + } + if (mask_4x4_int & 1) + vpx_highbd_lpf_vertical_4(s + 4, pitch, lfi->mblim, lfi->lim, + lfi->hev_thr, bd); + s += 8; + lfl += 1; + mask_16x16 >>= 1; + mask_8x8 >>= 1; + mask_4x4 >>= 1; + mask_4x4_int >>= 1; + } +} +#endif // CONFIG_VP9_HIGHBITDEPTH + +void vp9_filter_block_plane_non420(VP9_COMMON *cm, + struct macroblockd_plane *plane, + MODE_INFO **mi_8x8, int mi_row, int mi_col) { + const int ss_x = plane->subsampling_x; + const int ss_y = plane->subsampling_y; + const int row_step = 1 << ss_y; + const int col_step = 1 << ss_x; + const int row_step_stride = cm->mi_stride * row_step; + struct buf_2d *const dst = &plane->dst; + uint8_t *const dst0 = dst->buf; + unsigned int mask_16x16[MI_BLOCK_SIZE] = { 0 }; + unsigned int mask_8x8[MI_BLOCK_SIZE] = { 0 }; + unsigned int mask_4x4[MI_BLOCK_SIZE] = { 0 }; + unsigned int mask_4x4_int[MI_BLOCK_SIZE] = { 0 }; + uint8_t lfl[MI_BLOCK_SIZE * MI_BLOCK_SIZE]; + int r, c; + + for (r = 0; r < MI_BLOCK_SIZE && mi_row + r < cm->mi_rows; r += row_step) { + unsigned int mask_16x16_c = 0; + unsigned int mask_8x8_c = 0; + unsigned int mask_4x4_c = 0; + unsigned int border_mask; + + // Determine the vertical edges that need filtering + for (c = 0; c < MI_BLOCK_SIZE && mi_col + c < cm->mi_cols; c += col_step) { + const MODE_INFO *mi = mi_8x8[c]; + const BLOCK_SIZE sb_type = mi[0].sb_type; + const int skip_this = mi[0].skip && is_inter_block(mi); + // left edge of current unit is block/partition edge -> no skip + const int block_edge_left = + (num_4x4_blocks_wide_lookup[sb_type] > 1) + ? !(c & (num_8x8_blocks_wide_lookup[sb_type] - 1)) + : 1; + const int skip_this_c = skip_this && !block_edge_left; + // top edge of current unit is block/partition edge -> no skip + const int block_edge_above = + (num_4x4_blocks_high_lookup[sb_type] > 1) + ? !(r & (num_8x8_blocks_high_lookup[sb_type] - 1)) + : 1; + const int skip_this_r = skip_this && !block_edge_above; + const TX_SIZE tx_size = get_uv_tx_size(mi, plane); + const int skip_border_4x4_c = ss_x && mi_col + c == cm->mi_cols - 1; + const int skip_border_4x4_r = ss_y && mi_row + r == cm->mi_rows - 1; + + // Filter level can vary per MI + if (!(lfl[(r << 3) + (c >> ss_x)] = get_filter_level(&cm->lf_info, mi))) + continue; + + // Build masks based on the transform size of each block + if (tx_size == TX_32X32) { + if (!skip_this_c && ((c >> ss_x) & 3) == 0) { + if (!skip_border_4x4_c) + mask_16x16_c |= 1 << (c >> ss_x); + else + mask_8x8_c |= 1 << (c >> ss_x); + } + if (!skip_this_r && ((r >> ss_y) & 3) == 0) { + if (!skip_border_4x4_r) + mask_16x16[r] |= 1 << (c >> ss_x); + else + mask_8x8[r] |= 1 << (c >> ss_x); + } + } else if (tx_size == TX_16X16) { + if (!skip_this_c && ((c >> ss_x) & 1) == 0) { + if (!skip_border_4x4_c) + mask_16x16_c |= 1 << (c >> ss_x); + else + mask_8x8_c |= 1 << (c >> ss_x); + } + if (!skip_this_r && ((r >> ss_y) & 1) == 0) { + if (!skip_border_4x4_r) + mask_16x16[r] |= 1 << (c >> ss_x); + else + mask_8x8[r] |= 1 << (c >> ss_x); + } + } else { + // force 8x8 filtering on 32x32 boundaries + if (!skip_this_c) { + if (tx_size == TX_8X8 || ((c >> ss_x) & 3) == 0) + mask_8x8_c |= 1 << (c >> ss_x); + else + mask_4x4_c |= 1 << (c >> ss_x); + } + + if (!skip_this_r) { + if (tx_size == TX_8X8 || ((r >> ss_y) & 3) == 0) + mask_8x8[r] |= 1 << (c >> ss_x); + else + mask_4x4[r] |= 1 << (c >> ss_x); + } + + if (!skip_this && tx_size < TX_8X8 && !skip_border_4x4_c) + mask_4x4_int[r] |= 1 << (c >> ss_x); + } + } + + // Disable filtering on the leftmost column + border_mask = ~(mi_col == 0); +#if CONFIG_VP9_HIGHBITDEPTH + if (cm->use_highbitdepth) { + highbd_filter_selectively_vert( + CONVERT_TO_SHORTPTR(dst->buf), dst->stride, + mask_16x16_c & border_mask, mask_8x8_c & border_mask, + mask_4x4_c & border_mask, mask_4x4_int[r], cm->lf_info.lfthr, + &lfl[r << 3], (int)cm->bit_depth); + } else { +#endif // CONFIG_VP9_HIGHBITDEPTH + filter_selectively_vert(dst->buf, dst->stride, mask_16x16_c & border_mask, + mask_8x8_c & border_mask, + mask_4x4_c & border_mask, mask_4x4_int[r], + cm->lf_info.lfthr, &lfl[r << 3]); +#if CONFIG_VP9_HIGHBITDEPTH + } +#endif // CONFIG_VP9_HIGHBITDEPTH + dst->buf += 8 * dst->stride; + mi_8x8 += row_step_stride; + } + + // Now do horizontal pass + dst->buf = dst0; + for (r = 0; r < MI_BLOCK_SIZE && mi_row + r < cm->mi_rows; r += row_step) { + const int skip_border_4x4_r = ss_y && mi_row + r == cm->mi_rows - 1; + const unsigned int mask_4x4_int_r = skip_border_4x4_r ? 0 : mask_4x4_int[r]; + + unsigned int mask_16x16_r; + unsigned int mask_8x8_r; + unsigned int mask_4x4_r; + + if (mi_row + r == 0) { + mask_16x16_r = 0; + mask_8x8_r = 0; + mask_4x4_r = 0; + } else { + mask_16x16_r = mask_16x16[r]; + mask_8x8_r = mask_8x8[r]; + mask_4x4_r = mask_4x4[r]; + } +#if CONFIG_VP9_HIGHBITDEPTH + if (cm->use_highbitdepth) { + highbd_filter_selectively_horiz( + CONVERT_TO_SHORTPTR(dst->buf), dst->stride, mask_16x16_r, mask_8x8_r, + mask_4x4_r, mask_4x4_int_r, cm->lf_info.lfthr, &lfl[r << 3], + (int)cm->bit_depth); + } else { +#endif // CONFIG_VP9_HIGHBITDEPTH + filter_selectively_horiz(dst->buf, dst->stride, mask_16x16_r, mask_8x8_r, + mask_4x4_r, mask_4x4_int_r, cm->lf_info.lfthr, + &lfl[r << 3]); +#if CONFIG_VP9_HIGHBITDEPTH + } +#endif // CONFIG_VP9_HIGHBITDEPTH + dst->buf += 8 * dst->stride; + } +} + +void vp9_filter_block_plane_ss00(VP9_COMMON *const cm, + struct macroblockd_plane *const plane, + int mi_row, LOOP_FILTER_MASK *lfm) { + struct buf_2d *const dst = &plane->dst; + uint8_t *const dst0 = dst->buf; + int r; + uint64_t mask_16x16 = lfm->left_y[TX_16X16]; + uint64_t mask_8x8 = lfm->left_y[TX_8X8]; + uint64_t mask_4x4 = lfm->left_y[TX_4X4]; + uint64_t mask_4x4_int = lfm->int_4x4_y; + + assert(plane->subsampling_x == 0 && plane->subsampling_y == 0); + + // Vertical pass: do 2 rows at one time + for (r = 0; r < MI_BLOCK_SIZE && mi_row + r < cm->mi_rows; r += 2) { +#if CONFIG_VP9_HIGHBITDEPTH + if (cm->use_highbitdepth) { + // Disable filtering on the leftmost column. + highbd_filter_selectively_vert_row2( + plane->subsampling_x, CONVERT_TO_SHORTPTR(dst->buf), dst->stride, + (unsigned int)mask_16x16, (unsigned int)mask_8x8, + (unsigned int)mask_4x4, (unsigned int)mask_4x4_int, cm->lf_info.lfthr, + &lfm->lfl_y[r << 3], (int)cm->bit_depth); + } else { +#endif // CONFIG_VP9_HIGHBITDEPTH + // Disable filtering on the leftmost column. + filter_selectively_vert_row2( + plane->subsampling_x, dst->buf, dst->stride, (unsigned int)mask_16x16, + (unsigned int)mask_8x8, (unsigned int)mask_4x4, + (unsigned int)mask_4x4_int, cm->lf_info.lfthr, &lfm->lfl_y[r << 3]); +#if CONFIG_VP9_HIGHBITDEPTH + } +#endif // CONFIG_VP9_HIGHBITDEPTH + dst->buf += 16 * dst->stride; + mask_16x16 >>= 16; + mask_8x8 >>= 16; + mask_4x4 >>= 16; + mask_4x4_int >>= 16; + } + + // Horizontal pass + dst->buf = dst0; + mask_16x16 = lfm->above_y[TX_16X16]; + mask_8x8 = lfm->above_y[TX_8X8]; + mask_4x4 = lfm->above_y[TX_4X4]; + mask_4x4_int = lfm->int_4x4_y; + + for (r = 0; r < MI_BLOCK_SIZE && mi_row + r < cm->mi_rows; r++) { + unsigned int mask_16x16_r; + unsigned int mask_8x8_r; + unsigned int mask_4x4_r; + + if (mi_row + r == 0) { + mask_16x16_r = 0; + mask_8x8_r = 0; + mask_4x4_r = 0; + } else { + mask_16x16_r = mask_16x16 & 0xff; + mask_8x8_r = mask_8x8 & 0xff; + mask_4x4_r = mask_4x4 & 0xff; + } + +#if CONFIG_VP9_HIGHBITDEPTH + if (cm->use_highbitdepth) { + highbd_filter_selectively_horiz( + CONVERT_TO_SHORTPTR(dst->buf), dst->stride, mask_16x16_r, mask_8x8_r, + mask_4x4_r, mask_4x4_int & 0xff, cm->lf_info.lfthr, + &lfm->lfl_y[r << 3], (int)cm->bit_depth); + } else { +#endif // CONFIG_VP9_HIGHBITDEPTH + filter_selectively_horiz(dst->buf, dst->stride, mask_16x16_r, mask_8x8_r, + mask_4x4_r, mask_4x4_int & 0xff, + cm->lf_info.lfthr, &lfm->lfl_y[r << 3]); +#if CONFIG_VP9_HIGHBITDEPTH + } +#endif // CONFIG_VP9_HIGHBITDEPTH + + dst->buf += 8 * dst->stride; + mask_16x16 >>= 8; + mask_8x8 >>= 8; + mask_4x4 >>= 8; + mask_4x4_int >>= 8; + } +} + +void vp9_filter_block_plane_ss11(VP9_COMMON *const cm, + struct macroblockd_plane *const plane, + int mi_row, LOOP_FILTER_MASK *lfm) { + struct buf_2d *const dst = &plane->dst; + uint8_t *const dst0 = dst->buf; + int r, c; + uint8_t lfl_uv[16]; + + uint16_t mask_16x16 = lfm->left_uv[TX_16X16]; + uint16_t mask_8x8 = lfm->left_uv[TX_8X8]; + uint16_t mask_4x4 = lfm->left_uv[TX_4X4]; + uint16_t mask_4x4_int = lfm->int_4x4_uv; + + assert(plane->subsampling_x == 1 && plane->subsampling_y == 1); + + // Vertical pass: do 2 rows at one time + for (r = 0; r < MI_BLOCK_SIZE && mi_row + r < cm->mi_rows; r += 4) { + for (c = 0; c < (MI_BLOCK_SIZE >> 1); c++) { + lfl_uv[(r << 1) + c] = lfm->lfl_y[(r << 3) + (c << 1)]; + lfl_uv[((r + 2) << 1) + c] = lfm->lfl_y[((r + 2) << 3) + (c << 1)]; + } + +#if CONFIG_VP9_HIGHBITDEPTH + if (cm->use_highbitdepth) { + // Disable filtering on the leftmost column. + highbd_filter_selectively_vert_row2( + plane->subsampling_x, CONVERT_TO_SHORTPTR(dst->buf), dst->stride, + (unsigned int)mask_16x16, (unsigned int)mask_8x8, + (unsigned int)mask_4x4, (unsigned int)mask_4x4_int, cm->lf_info.lfthr, + &lfl_uv[r << 1], (int)cm->bit_depth); + } else { +#endif // CONFIG_VP9_HIGHBITDEPTH + // Disable filtering on the leftmost column. + filter_selectively_vert_row2( + plane->subsampling_x, dst->buf, dst->stride, (unsigned int)mask_16x16, + (unsigned int)mask_8x8, (unsigned int)mask_4x4, + (unsigned int)mask_4x4_int, cm->lf_info.lfthr, &lfl_uv[r << 1]); +#if CONFIG_VP9_HIGHBITDEPTH + } +#endif // CONFIG_VP9_HIGHBITDEPTH + + dst->buf += 16 * dst->stride; + mask_16x16 >>= 8; + mask_8x8 >>= 8; + mask_4x4 >>= 8; + mask_4x4_int >>= 8; + } + + // Horizontal pass + dst->buf = dst0; + mask_16x16 = lfm->above_uv[TX_16X16]; + mask_8x8 = lfm->above_uv[TX_8X8]; + mask_4x4 = lfm->above_uv[TX_4X4]; + mask_4x4_int = lfm->int_4x4_uv; + + for (r = 0; r < MI_BLOCK_SIZE && mi_row + r < cm->mi_rows; r += 2) { + const int skip_border_4x4_r = mi_row + r == cm->mi_rows - 1; + const unsigned int mask_4x4_int_r = + skip_border_4x4_r ? 0 : (mask_4x4_int & 0xf); + unsigned int mask_16x16_r; + unsigned int mask_8x8_r; + unsigned int mask_4x4_r; + + if (mi_row + r == 0) { + mask_16x16_r = 0; + mask_8x8_r = 0; + mask_4x4_r = 0; + } else { + mask_16x16_r = mask_16x16 & 0xf; + mask_8x8_r = mask_8x8 & 0xf; + mask_4x4_r = mask_4x4 & 0xf; + } + +#if CONFIG_VP9_HIGHBITDEPTH + if (cm->use_highbitdepth) { + highbd_filter_selectively_horiz( + CONVERT_TO_SHORTPTR(dst->buf), dst->stride, mask_16x16_r, mask_8x8_r, + mask_4x4_r, mask_4x4_int_r, cm->lf_info.lfthr, &lfl_uv[r << 1], + (int)cm->bit_depth); + } else { +#endif // CONFIG_VP9_HIGHBITDEPTH + filter_selectively_horiz(dst->buf, dst->stride, mask_16x16_r, mask_8x8_r, + mask_4x4_r, mask_4x4_int_r, cm->lf_info.lfthr, + &lfl_uv[r << 1]); +#if CONFIG_VP9_HIGHBITDEPTH + } +#endif // CONFIG_VP9_HIGHBITDEPTH + + dst->buf += 8 * dst->stride; + mask_16x16 >>= 4; + mask_8x8 >>= 4; + mask_4x4 >>= 4; + mask_4x4_int >>= 4; + } +} + +static void loop_filter_rows(YV12_BUFFER_CONFIG *frame_buffer, VP9_COMMON *cm, + struct macroblockd_plane planes[MAX_MB_PLANE], + int start, int stop, int y_only) { + const int num_planes = y_only ? 1 : MAX_MB_PLANE; + enum lf_path path; + int mi_row, mi_col; + + if (y_only) + path = LF_PATH_444; + else if (planes[1].subsampling_y == 1 && planes[1].subsampling_x == 1) + path = LF_PATH_420; + else if (planes[1].subsampling_y == 0 && planes[1].subsampling_x == 0) + path = LF_PATH_444; + else + path = LF_PATH_SLOW; + + for (mi_row = start; mi_row < stop; mi_row += MI_BLOCK_SIZE) { + MODE_INFO **mi = cm->mi_grid_visible + mi_row * cm->mi_stride; + LOOP_FILTER_MASK *lfm = get_lfm(&cm->lf, mi_row, 0); + + for (mi_col = 0; mi_col < cm->mi_cols; mi_col += MI_BLOCK_SIZE, ++lfm) { + int plane; + + vp9_setup_dst_planes(planes, frame_buffer, mi_row, mi_col); + + // TODO(jimbankoski): For 444 only need to do y mask. + vp9_adjust_mask(cm, mi_row, mi_col, lfm); + + vp9_filter_block_plane_ss00(cm, &planes[0], mi_row, lfm); + for (plane = 1; plane < num_planes; ++plane) { + switch (path) { + case LF_PATH_420: + vp9_filter_block_plane_ss11(cm, &planes[plane], mi_row, lfm); + break; + case LF_PATH_444: + vp9_filter_block_plane_ss00(cm, &planes[plane], mi_row, lfm); + break; + case LF_PATH_SLOW: + vp9_filter_block_plane_non420(cm, &planes[plane], mi + mi_col, + mi_row, mi_col); + break; + } + } + } + } +} + +void vp9_loop_filter_frame(YV12_BUFFER_CONFIG *frame, VP9_COMMON *cm, + MACROBLOCKD *xd, int frame_filter_level, int y_only, + int partial_frame) { + int start_mi_row, end_mi_row, mi_rows_to_filter; + if (!frame_filter_level) return; + start_mi_row = 0; + mi_rows_to_filter = cm->mi_rows; + if (partial_frame && cm->mi_rows > 8) { + start_mi_row = cm->mi_rows >> 1; + start_mi_row &= 0xfffffff8; + mi_rows_to_filter = VPXMAX(cm->mi_rows / 8, 8); + } + end_mi_row = start_mi_row + mi_rows_to_filter; + loop_filter_rows(frame, cm, xd->plane, start_mi_row, end_mi_row, y_only); +} + +// Used by the encoder to build the loopfilter masks. +// TODO(slavarnway): Do the encoder the same way the decoder does it and +// build the masks in line as part of the encode process. +void vp9_build_mask_frame(VP9_COMMON *cm, int frame_filter_level, + int partial_frame) { + int start_mi_row, end_mi_row, mi_rows_to_filter; + int mi_col, mi_row; + if (!frame_filter_level) return; + start_mi_row = 0; + mi_rows_to_filter = cm->mi_rows; + if (partial_frame && cm->mi_rows > 8) { + start_mi_row = cm->mi_rows >> 1; + start_mi_row &= 0xfffffff8; + mi_rows_to_filter = VPXMAX(cm->mi_rows / 8, 8); + } + end_mi_row = start_mi_row + mi_rows_to_filter; + + vp9_loop_filter_frame_init(cm, frame_filter_level); + + for (mi_row = start_mi_row; mi_row < end_mi_row; mi_row += MI_BLOCK_SIZE) { + MODE_INFO **mi = cm->mi_grid_visible + mi_row * cm->mi_stride; + for (mi_col = 0; mi_col < cm->mi_cols; mi_col += MI_BLOCK_SIZE) { + // vp9_setup_mask() zeros lfm + vp9_setup_mask(cm, mi_row, mi_col, mi + mi_col, cm->mi_stride, + get_lfm(&cm->lf, mi_row, mi_col)); + } + } +} + +// 8x8 blocks in a superblock. A "1" represents the first block in a 16x16 +// or greater area. +static const uint8_t first_block_in_16x16[8][8] = { + { 1, 0, 1, 0, 1, 0, 1, 0 }, { 0, 0, 0, 0, 0, 0, 0, 0 }, + { 1, 0, 1, 0, 1, 0, 1, 0 }, { 0, 0, 0, 0, 0, 0, 0, 0 }, + { 1, 0, 1, 0, 1, 0, 1, 0 }, { 0, 0, 0, 0, 0, 0, 0, 0 }, + { 1, 0, 1, 0, 1, 0, 1, 0 }, { 0, 0, 0, 0, 0, 0, 0, 0 } +}; + +// This function sets up the bit masks for a block represented +// by mi_row, mi_col in a 64x64 region. +// TODO(SJL): This function only works for yv12. +void vp9_build_mask(VP9_COMMON *cm, const MODE_INFO *mi, int mi_row, int mi_col, + int bw, int bh) { + const BLOCK_SIZE block_size = mi->sb_type; + const TX_SIZE tx_size_y = mi->tx_size; + const loop_filter_info_n *const lfi_n = &cm->lf_info; + const int filter_level = get_filter_level(lfi_n, mi); + const TX_SIZE tx_size_uv = uv_txsize_lookup[block_size][tx_size_y][1][1]; + LOOP_FILTER_MASK *const lfm = get_lfm(&cm->lf, mi_row, mi_col); + uint64_t *const left_y = &lfm->left_y[tx_size_y]; + uint64_t *const above_y = &lfm->above_y[tx_size_y]; + uint64_t *const int_4x4_y = &lfm->int_4x4_y; + uint16_t *const left_uv = &lfm->left_uv[tx_size_uv]; + uint16_t *const above_uv = &lfm->above_uv[tx_size_uv]; + uint16_t *const int_4x4_uv = &lfm->int_4x4_uv; + const int row_in_sb = (mi_row & 7); + const int col_in_sb = (mi_col & 7); + const int shift_y = col_in_sb + (row_in_sb << 3); + const int shift_uv = (col_in_sb >> 1) + ((row_in_sb >> 1) << 2); + const int build_uv = first_block_in_16x16[row_in_sb][col_in_sb]; + + if (!filter_level) { + return; + } else { + int index = shift_y; + int i; + for (i = 0; i < bh; i++) { + memset(&lfm->lfl_y[index], filter_level, bw); + index += 8; + } + } + + // These set 1 in the current block size for the block size edges. + // For instance if the block size is 32x16, we'll set: + // above = 1111 + // 0000 + // and + // left = 1000 + // = 1000 + // NOTE : In this example the low bit is left most ( 1000 ) is stored as + // 1, not 8... + // + // U and V set things on a 16 bit scale. + // + *above_y |= above_prediction_mask[block_size] << shift_y; + *left_y |= left_prediction_mask[block_size] << shift_y; + + if (build_uv) { + *above_uv |= above_prediction_mask_uv[block_size] << shift_uv; + *left_uv |= left_prediction_mask_uv[block_size] << shift_uv; + } + + // If the block has no coefficients and is not intra we skip applying + // the loop filter on block edges. + if (mi->skip && is_inter_block(mi)) return; + + // Add a mask for the transform size. The transform size mask is set to + // be correct for a 64x64 prediction block size. Mask to match the size of + // the block we are working on and then shift it into place. + *above_y |= (size_mask[block_size] & above_64x64_txform_mask[tx_size_y]) + << shift_y; + *left_y |= (size_mask[block_size] & left_64x64_txform_mask[tx_size_y]) + << shift_y; + + if (build_uv) { + *above_uv |= + (size_mask_uv[block_size] & above_64x64_txform_mask_uv[tx_size_uv]) + << shift_uv; + + *left_uv |= + (size_mask_uv[block_size] & left_64x64_txform_mask_uv[tx_size_uv]) + << shift_uv; + } + + // Try to determine what to do with the internal 4x4 block boundaries. These + // differ from the 4x4 boundaries on the outside edge of an 8x8 in that the + // internal ones can be skipped and don't depend on the prediction block size. + if (tx_size_y == TX_4X4) *int_4x4_y |= size_mask[block_size] << shift_y; + + if (build_uv && tx_size_uv == TX_4X4) + *int_4x4_uv |= (size_mask_uv[block_size] & 0xffff) << shift_uv; +} + +void vp9_loop_filter_data_reset( + LFWorkerData *lf_data, YV12_BUFFER_CONFIG *frame_buffer, + struct VP9Common *cm, const struct macroblockd_plane planes[MAX_MB_PLANE]) { + lf_data->frame_buffer = frame_buffer; + lf_data->cm = cm; + lf_data->start = 0; + lf_data->stop = 0; + lf_data->y_only = 0; + memcpy(lf_data->planes, planes, sizeof(lf_data->planes)); +} + +void vp9_reset_lfm(VP9_COMMON *const cm) { + if (cm->lf.filter_level) { + memset(cm->lf.lfm, 0, + ((cm->mi_rows + (MI_BLOCK_SIZE - 1)) >> 3) * cm->lf.lfm_stride * + sizeof(*cm->lf.lfm)); + } +} + +int vp9_loop_filter_worker(void *arg1, void *unused) { + LFWorkerData *const lf_data = (LFWorkerData *)arg1; + (void)unused; + loop_filter_rows(lf_data->frame_buffer, lf_data->cm, lf_data->planes, + lf_data->start, lf_data->stop, lf_data->y_only); + return 1; +} diff --git a/vp9/common/vp9_loopfilter.h b/vp9/common/vp9_loopfilter.h new file mode 100644 index 0000000..481a6cd --- /dev/null +++ b/vp9/common/vp9_loopfilter.h @@ -0,0 +1,160 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP9_COMMON_VP9_LOOPFILTER_H_ +#define VP9_COMMON_VP9_LOOPFILTER_H_ + +#include "vpx_ports/mem.h" +#include "./vpx_config.h" + +#include "vp9/common/vp9_blockd.h" +#include "vp9/common/vp9_seg_common.h" + +#ifdef __cplusplus +extern "C" { +#endif + +#define MAX_LOOP_FILTER 63 +#define MAX_SHARPNESS 7 + +#define SIMD_WIDTH 16 + +#define MAX_REF_LF_DELTAS 4 +#define MAX_MODE_LF_DELTAS 2 + +enum lf_path { + LF_PATH_420, + LF_PATH_444, + LF_PATH_SLOW, +}; + +// Need to align this structure so when it is declared and +// passed it can be loaded into vector registers. +typedef struct { + DECLARE_ALIGNED(SIMD_WIDTH, uint8_t, mblim[SIMD_WIDTH]); + DECLARE_ALIGNED(SIMD_WIDTH, uint8_t, lim[SIMD_WIDTH]); + DECLARE_ALIGNED(SIMD_WIDTH, uint8_t, hev_thr[SIMD_WIDTH]); +} loop_filter_thresh; + +typedef struct { + loop_filter_thresh lfthr[MAX_LOOP_FILTER + 1]; + uint8_t lvl[MAX_SEGMENTS][MAX_REF_FRAMES][MAX_MODE_LF_DELTAS]; +} loop_filter_info_n; + +// This structure holds bit masks for all 8x8 blocks in a 64x64 region. +// Each 1 bit represents a position in which we want to apply the loop filter. +// Left_ entries refer to whether we apply a filter on the border to the +// left of the block. Above_ entries refer to whether or not to apply a +// filter on the above border. Int_ entries refer to whether or not to +// apply borders on the 4x4 edges within the 8x8 block that each bit +// represents. +// Since each transform is accompanied by a potentially different type of +// loop filter there is a different entry in the array for each transform size. +typedef struct { + uint64_t left_y[TX_SIZES]; + uint64_t above_y[TX_SIZES]; + uint64_t int_4x4_y; + uint16_t left_uv[TX_SIZES]; + uint16_t above_uv[TX_SIZES]; + uint16_t int_4x4_uv; + uint8_t lfl_y[64]; +} LOOP_FILTER_MASK; + +struct loopfilter { + int filter_level; + int last_filt_level; + + int sharpness_level; + int last_sharpness_level; + + uint8_t mode_ref_delta_enabled; + uint8_t mode_ref_delta_update; + + // 0 = Intra, Last, GF, ARF + signed char ref_deltas[MAX_REF_LF_DELTAS]; + signed char last_ref_deltas[MAX_REF_LF_DELTAS]; + + // 0 = ZERO_MV, MV + signed char mode_deltas[MAX_MODE_LF_DELTAS]; + signed char last_mode_deltas[MAX_MODE_LF_DELTAS]; + + LOOP_FILTER_MASK *lfm; + int lfm_stride; +}; + +/* assorted loopfilter functions which get used elsewhere */ +struct VP9Common; +struct macroblockd; +struct VP9LfSyncData; + +// This function sets up the bit masks for the entire 64x64 region represented +// by mi_row, mi_col. +void vp9_setup_mask(struct VP9Common *const cm, const int mi_row, + const int mi_col, MODE_INFO **mi_8x8, + const int mode_info_stride, LOOP_FILTER_MASK *lfm); + +void vp9_filter_block_plane_ss00(struct VP9Common *const cm, + struct macroblockd_plane *const plane, + int mi_row, LOOP_FILTER_MASK *lfm); + +void vp9_filter_block_plane_ss11(struct VP9Common *const cm, + struct macroblockd_plane *const plane, + int mi_row, LOOP_FILTER_MASK *lfm); + +void vp9_filter_block_plane_non420(struct VP9Common *cm, + struct macroblockd_plane *plane, + MODE_INFO **mi_8x8, int mi_row, int mi_col); + +void vp9_loop_filter_init(struct VP9Common *cm); + +// Update the loop filter for the current frame. +// This should be called before vp9_loop_filter_frame(), vp9_build_mask_frame() +// calls this function directly. +void vp9_loop_filter_frame_init(struct VP9Common *cm, int default_filt_lvl); + +void vp9_loop_filter_frame(YV12_BUFFER_CONFIG *frame, struct VP9Common *cm, + struct macroblockd *mbd, int filter_level, + int y_only, int partial_frame); + +// Get the superblock lfm for a given mi_row, mi_col. +static INLINE LOOP_FILTER_MASK *get_lfm(const struct loopfilter *lf, + const int mi_row, const int mi_col) { + return &lf->lfm[(mi_col >> 3) + ((mi_row >> 3) * lf->lfm_stride)]; +} + +void vp9_build_mask(struct VP9Common *cm, const MODE_INFO *mi, int mi_row, + int mi_col, int bw, int bh); +void vp9_adjust_mask(struct VP9Common *const cm, const int mi_row, + const int mi_col, LOOP_FILTER_MASK *lfm); +void vp9_build_mask_frame(struct VP9Common *cm, int frame_filter_level, + int partial_frame); +void vp9_reset_lfm(struct VP9Common *const cm); + +typedef struct LoopFilterWorkerData { + YV12_BUFFER_CONFIG *frame_buffer; + struct VP9Common *cm; + struct macroblockd_plane planes[MAX_MB_PLANE]; + + int start; + int stop; + int y_only; +} LFWorkerData; + +void vp9_loop_filter_data_reset( + LFWorkerData *lf_data, YV12_BUFFER_CONFIG *frame_buffer, + struct VP9Common *cm, const struct macroblockd_plane planes[MAX_MB_PLANE]); + +// Operates on the rows described by 'arg1' (cast to LFWorkerData *). +int vp9_loop_filter_worker(void *arg1, void *unused); +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP9_COMMON_VP9_LOOPFILTER_H_ diff --git a/vp9/common/vp9_mfqe.c b/vp9/common/vp9_mfqe.c new file mode 100644 index 0000000..e76d771 --- /dev/null +++ b/vp9/common/vp9_mfqe.c @@ -0,0 +1,383 @@ +/* + * Copyright (c) 2014 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "./vpx_config.h" +#include "./vp9_rtcd.h" +#include "./vpx_dsp_rtcd.h" +#include "./vpx_scale_rtcd.h" + +#include "vp9/common/vp9_onyxc_int.h" +#include "vp9/common/vp9_postproc.h" + +// TODO(jackychen): Replace this function with SSE2 code. There is +// one SSE2 implementation in vp8, so will consider how to share it +// between vp8 and vp9. +static void filter_by_weight(const uint8_t *src, int src_stride, uint8_t *dst, + int dst_stride, int block_size, int src_weight) { + const int dst_weight = (1 << MFQE_PRECISION) - src_weight; + const int rounding_bit = 1 << (MFQE_PRECISION - 1); + int r, c; + + for (r = 0; r < block_size; r++) { + for (c = 0; c < block_size; c++) { + dst[c] = (src[c] * src_weight + dst[c] * dst_weight + rounding_bit) >> + MFQE_PRECISION; + } + src += src_stride; + dst += dst_stride; + } +} + +void vp9_filter_by_weight8x8_c(const uint8_t *src, int src_stride, uint8_t *dst, + int dst_stride, int src_weight) { + filter_by_weight(src, src_stride, dst, dst_stride, 8, src_weight); +} + +void vp9_filter_by_weight16x16_c(const uint8_t *src, int src_stride, + uint8_t *dst, int dst_stride, int src_weight) { + filter_by_weight(src, src_stride, dst, dst_stride, 16, src_weight); +} + +static void filter_by_weight32x32(const uint8_t *src, int src_stride, + uint8_t *dst, int dst_stride, int weight) { + vp9_filter_by_weight16x16(src, src_stride, dst, dst_stride, weight); + vp9_filter_by_weight16x16(src + 16, src_stride, dst + 16, dst_stride, weight); + vp9_filter_by_weight16x16(src + src_stride * 16, src_stride, + dst + dst_stride * 16, dst_stride, weight); + vp9_filter_by_weight16x16(src + src_stride * 16 + 16, src_stride, + dst + dst_stride * 16 + 16, dst_stride, weight); +} + +static void filter_by_weight64x64(const uint8_t *src, int src_stride, + uint8_t *dst, int dst_stride, int weight) { + filter_by_weight32x32(src, src_stride, dst, dst_stride, weight); + filter_by_weight32x32(src + 32, src_stride, dst + 32, dst_stride, weight); + filter_by_weight32x32(src + src_stride * 32, src_stride, + dst + dst_stride * 32, dst_stride, weight); + filter_by_weight32x32(src + src_stride * 32 + 32, src_stride, + dst + dst_stride * 32 + 32, dst_stride, weight); +} + +static void apply_ifactor(const uint8_t *y, int y_stride, uint8_t *yd, + int yd_stride, const uint8_t *u, const uint8_t *v, + int uv_stride, uint8_t *ud, uint8_t *vd, + int uvd_stride, BLOCK_SIZE block_size, int weight) { + if (block_size == BLOCK_16X16) { + vp9_filter_by_weight16x16(y, y_stride, yd, yd_stride, weight); + vp9_filter_by_weight8x8(u, uv_stride, ud, uvd_stride, weight); + vp9_filter_by_weight8x8(v, uv_stride, vd, uvd_stride, weight); + } else if (block_size == BLOCK_32X32) { + filter_by_weight32x32(y, y_stride, yd, yd_stride, weight); + vp9_filter_by_weight16x16(u, uv_stride, ud, uvd_stride, weight); + vp9_filter_by_weight16x16(v, uv_stride, vd, uvd_stride, weight); + } else if (block_size == BLOCK_64X64) { + filter_by_weight64x64(y, y_stride, yd, yd_stride, weight); + filter_by_weight32x32(u, uv_stride, ud, uvd_stride, weight); + filter_by_weight32x32(v, uv_stride, vd, uvd_stride, weight); + } +} + +// TODO(jackychen): Determine whether replace it with assembly code. +static void copy_mem8x8(const uint8_t *src, int src_stride, uint8_t *dst, + int dst_stride) { + int r; + for (r = 0; r < 8; r++) { + memcpy(dst, src, 8); + src += src_stride; + dst += dst_stride; + } +} + +static void copy_mem16x16(const uint8_t *src, int src_stride, uint8_t *dst, + int dst_stride) { + int r; + for (r = 0; r < 16; r++) { + memcpy(dst, src, 16); + src += src_stride; + dst += dst_stride; + } +} + +static void copy_mem32x32(const uint8_t *src, int src_stride, uint8_t *dst, + int dst_stride) { + copy_mem16x16(src, src_stride, dst, dst_stride); + copy_mem16x16(src + 16, src_stride, dst + 16, dst_stride); + copy_mem16x16(src + src_stride * 16, src_stride, dst + dst_stride * 16, + dst_stride); + copy_mem16x16(src + src_stride * 16 + 16, src_stride, + dst + dst_stride * 16 + 16, dst_stride); +} + +static void copy_mem64x64(const uint8_t *src, int src_stride, uint8_t *dst, + int dst_stride) { + copy_mem32x32(src, src_stride, dst, dst_stride); + copy_mem32x32(src + 32, src_stride, dst + 32, dst_stride); + copy_mem32x32(src + src_stride * 32, src_stride, dst + src_stride * 32, + dst_stride); + copy_mem32x32(src + src_stride * 32 + 32, src_stride, + dst + src_stride * 32 + 32, dst_stride); +} + +static void copy_block(const uint8_t *y, const uint8_t *u, const uint8_t *v, + int y_stride, int uv_stride, uint8_t *yd, uint8_t *ud, + uint8_t *vd, int yd_stride, int uvd_stride, + BLOCK_SIZE bs) { + if (bs == BLOCK_16X16) { + copy_mem16x16(y, y_stride, yd, yd_stride); + copy_mem8x8(u, uv_stride, ud, uvd_stride); + copy_mem8x8(v, uv_stride, vd, uvd_stride); + } else if (bs == BLOCK_32X32) { + copy_mem32x32(y, y_stride, yd, yd_stride); + copy_mem16x16(u, uv_stride, ud, uvd_stride); + copy_mem16x16(v, uv_stride, vd, uvd_stride); + } else { + copy_mem64x64(y, y_stride, yd, yd_stride); + copy_mem32x32(u, uv_stride, ud, uvd_stride); + copy_mem32x32(v, uv_stride, vd, uvd_stride); + } +} + +static void get_thr(BLOCK_SIZE bs, int qdiff, int *sad_thr, int *vdiff_thr) { + const int adj = qdiff >> MFQE_PRECISION; + if (bs == BLOCK_16X16) { + *sad_thr = 7 + adj; + } else if (bs == BLOCK_32X32) { + *sad_thr = 6 + adj; + } else { // BLOCK_64X64 + *sad_thr = 5 + adj; + } + *vdiff_thr = 125 + qdiff; +} + +static void mfqe_block(BLOCK_SIZE bs, const uint8_t *y, const uint8_t *u, + const uint8_t *v, int y_stride, int uv_stride, + uint8_t *yd, uint8_t *ud, uint8_t *vd, int yd_stride, + int uvd_stride, int qdiff) { + int sad, sad_thr, vdiff, vdiff_thr; + uint32_t sse; + + get_thr(bs, qdiff, &sad_thr, &vdiff_thr); + + if (bs == BLOCK_16X16) { + vdiff = (vpx_variance16x16(y, y_stride, yd, yd_stride, &sse) + 128) >> 8; + sad = (vpx_sad16x16(y, y_stride, yd, yd_stride) + 128) >> 8; + } else if (bs == BLOCK_32X32) { + vdiff = (vpx_variance32x32(y, y_stride, yd, yd_stride, &sse) + 512) >> 10; + sad = (vpx_sad32x32(y, y_stride, yd, yd_stride) + 512) >> 10; + } else /* if (bs == BLOCK_64X64) */ { + vdiff = (vpx_variance64x64(y, y_stride, yd, yd_stride, &sse) + 2048) >> 12; + sad = (vpx_sad64x64(y, y_stride, yd, yd_stride) + 2048) >> 12; + } + + // vdiff > sad * 3 means vdiff should not be too small, otherwise, + // it might be a lighting change in smooth area. When there is a + // lighting change in smooth area, it is dangerous to do MFQE. + if (sad > 1 && vdiff > sad * 3) { + const int weight = 1 << MFQE_PRECISION; + int ifactor = weight * sad * vdiff / (sad_thr * vdiff_thr); + // When ifactor equals weight, no MFQE is done. + if (ifactor > weight) { + ifactor = weight; + } + apply_ifactor(y, y_stride, yd, yd_stride, u, v, uv_stride, ud, vd, + uvd_stride, bs, ifactor); + } else { + // Copy the block from current frame (i.e., no mfqe is done). + copy_block(y, u, v, y_stride, uv_stride, yd, ud, vd, yd_stride, uvd_stride, + bs); + } +} + +static int mfqe_decision(MODE_INFO *mi, BLOCK_SIZE cur_bs) { + // Check the motion in current block(for inter frame), + // or check the motion in the correlated block in last frame (for keyframe). + const int mv_len_square = mi->mv[0].as_mv.row * mi->mv[0].as_mv.row + + mi->mv[0].as_mv.col * mi->mv[0].as_mv.col; + const int mv_threshold = 100; + return mi->mode >= NEARESTMV && // Not an intra block + cur_bs >= BLOCK_16X16 && mv_len_square <= mv_threshold; +} + +// Process each partiton in a super block, recursively. +static void mfqe_partition(VP9_COMMON *cm, MODE_INFO *mi, BLOCK_SIZE bs, + const uint8_t *y, const uint8_t *u, const uint8_t *v, + int y_stride, int uv_stride, uint8_t *yd, + uint8_t *ud, uint8_t *vd, int yd_stride, + int uvd_stride) { + int mi_offset, y_offset, uv_offset; + const BLOCK_SIZE cur_bs = mi->sb_type; + const int qdiff = cm->base_qindex - cm->postproc_state.last_base_qindex; + const int bsl = b_width_log2_lookup[bs]; + PARTITION_TYPE partition = partition_lookup[bsl][cur_bs]; + const BLOCK_SIZE subsize = get_subsize(bs, partition); + + if (cur_bs < BLOCK_8X8) { + // If there are blocks smaller than 8x8, it must be on the boundary. + return; + } + // No MFQE on blocks smaller than 16x16 + if (bs == BLOCK_16X16) { + partition = PARTITION_NONE; + } + if (bs == BLOCK_64X64) { + mi_offset = 4; + y_offset = 32; + uv_offset = 16; + } else { + mi_offset = 2; + y_offset = 16; + uv_offset = 8; + } + switch (partition) { + BLOCK_SIZE mfqe_bs, bs_tmp; + case PARTITION_HORZ: + if (bs == BLOCK_64X64) { + mfqe_bs = BLOCK_64X32; + bs_tmp = BLOCK_32X32; + } else { + mfqe_bs = BLOCK_32X16; + bs_tmp = BLOCK_16X16; + } + if (mfqe_decision(mi, mfqe_bs)) { + // Do mfqe on the first square partition. + mfqe_block(bs_tmp, y, u, v, y_stride, uv_stride, yd, ud, vd, yd_stride, + uvd_stride, qdiff); + // Do mfqe on the second square partition. + mfqe_block(bs_tmp, y + y_offset, u + uv_offset, v + uv_offset, y_stride, + uv_stride, yd + y_offset, ud + uv_offset, vd + uv_offset, + yd_stride, uvd_stride, qdiff); + } + if (mfqe_decision(mi + mi_offset * cm->mi_stride, mfqe_bs)) { + // Do mfqe on the first square partition. + mfqe_block(bs_tmp, y + y_offset * y_stride, u + uv_offset * uv_stride, + v + uv_offset * uv_stride, y_stride, uv_stride, + yd + y_offset * yd_stride, ud + uv_offset * uvd_stride, + vd + uv_offset * uvd_stride, yd_stride, uvd_stride, qdiff); + // Do mfqe on the second square partition. + mfqe_block(bs_tmp, y + y_offset * y_stride + y_offset, + u + uv_offset * uv_stride + uv_offset, + v + uv_offset * uv_stride + uv_offset, y_stride, uv_stride, + yd + y_offset * yd_stride + y_offset, + ud + uv_offset * uvd_stride + uv_offset, + vd + uv_offset * uvd_stride + uv_offset, yd_stride, + uvd_stride, qdiff); + } + break; + case PARTITION_VERT: + if (bs == BLOCK_64X64) { + mfqe_bs = BLOCK_32X64; + bs_tmp = BLOCK_32X32; + } else { + mfqe_bs = BLOCK_16X32; + bs_tmp = BLOCK_16X16; + } + if (mfqe_decision(mi, mfqe_bs)) { + // Do mfqe on the first square partition. + mfqe_block(bs_tmp, y, u, v, y_stride, uv_stride, yd, ud, vd, yd_stride, + uvd_stride, qdiff); + // Do mfqe on the second square partition. + mfqe_block(bs_tmp, y + y_offset * y_stride, u + uv_offset * uv_stride, + v + uv_offset * uv_stride, y_stride, uv_stride, + yd + y_offset * yd_stride, ud + uv_offset * uvd_stride, + vd + uv_offset * uvd_stride, yd_stride, uvd_stride, qdiff); + } + if (mfqe_decision(mi + mi_offset, mfqe_bs)) { + // Do mfqe on the first square partition. + mfqe_block(bs_tmp, y + y_offset, u + uv_offset, v + uv_offset, y_stride, + uv_stride, yd + y_offset, ud + uv_offset, vd + uv_offset, + yd_stride, uvd_stride, qdiff); + // Do mfqe on the second square partition. + mfqe_block(bs_tmp, y + y_offset * y_stride + y_offset, + u + uv_offset * uv_stride + uv_offset, + v + uv_offset * uv_stride + uv_offset, y_stride, uv_stride, + yd + y_offset * yd_stride + y_offset, + ud + uv_offset * uvd_stride + uv_offset, + vd + uv_offset * uvd_stride + uv_offset, yd_stride, + uvd_stride, qdiff); + } + break; + case PARTITION_NONE: + if (mfqe_decision(mi, cur_bs)) { + // Do mfqe on this partition. + mfqe_block(cur_bs, y, u, v, y_stride, uv_stride, yd, ud, vd, yd_stride, + uvd_stride, qdiff); + } else { + // Copy the block from current frame(i.e., no mfqe is done). + copy_block(y, u, v, y_stride, uv_stride, yd, ud, vd, yd_stride, + uvd_stride, bs); + } + break; + case PARTITION_SPLIT: + // Recursion on four square partitions, e.g. if bs is 64X64, + // then look into four 32X32 blocks in it. + mfqe_partition(cm, mi, subsize, y, u, v, y_stride, uv_stride, yd, ud, vd, + yd_stride, uvd_stride); + mfqe_partition(cm, mi + mi_offset, subsize, y + y_offset, u + uv_offset, + v + uv_offset, y_stride, uv_stride, yd + y_offset, + ud + uv_offset, vd + uv_offset, yd_stride, uvd_stride); + mfqe_partition(cm, mi + mi_offset * cm->mi_stride, subsize, + y + y_offset * y_stride, u + uv_offset * uv_stride, + v + uv_offset * uv_stride, y_stride, uv_stride, + yd + y_offset * yd_stride, ud + uv_offset * uvd_stride, + vd + uv_offset * uvd_stride, yd_stride, uvd_stride); + mfqe_partition(cm, mi + mi_offset * cm->mi_stride + mi_offset, subsize, + y + y_offset * y_stride + y_offset, + u + uv_offset * uv_stride + uv_offset, + v + uv_offset * uv_stride + uv_offset, y_stride, uv_stride, + yd + y_offset * yd_stride + y_offset, + ud + uv_offset * uvd_stride + uv_offset, + vd + uv_offset * uvd_stride + uv_offset, yd_stride, + uvd_stride); + break; + default: assert(0); + } +} + +void vp9_mfqe(VP9_COMMON *cm) { + int mi_row, mi_col; + // Current decoded frame. + const YV12_BUFFER_CONFIG *show = cm->frame_to_show; + // Last decoded frame and will store the MFQE result. + YV12_BUFFER_CONFIG *dest = &cm->post_proc_buffer; + // Loop through each super block. + for (mi_row = 0; mi_row < cm->mi_rows; mi_row += MI_BLOCK_SIZE) { + for (mi_col = 0; mi_col < cm->mi_cols; mi_col += MI_BLOCK_SIZE) { + MODE_INFO *mi; + MODE_INFO *mi_local = cm->mi + (mi_row * cm->mi_stride + mi_col); + // Motion Info in last frame. + MODE_INFO *mi_prev = + cm->postproc_state.prev_mi + (mi_row * cm->mi_stride + mi_col); + const uint32_t y_stride = show->y_stride; + const uint32_t uv_stride = show->uv_stride; + const uint32_t yd_stride = dest->y_stride; + const uint32_t uvd_stride = dest->uv_stride; + const uint32_t row_offset_y = mi_row << 3; + const uint32_t row_offset_uv = mi_row << 2; + const uint32_t col_offset_y = mi_col << 3; + const uint32_t col_offset_uv = mi_col << 2; + const uint8_t *y = + show->y_buffer + row_offset_y * y_stride + col_offset_y; + const uint8_t *u = + show->u_buffer + row_offset_uv * uv_stride + col_offset_uv; + const uint8_t *v = + show->v_buffer + row_offset_uv * uv_stride + col_offset_uv; + uint8_t *yd = dest->y_buffer + row_offset_y * yd_stride + col_offset_y; + uint8_t *ud = dest->u_buffer + row_offset_uv * uvd_stride + col_offset_uv; + uint8_t *vd = dest->v_buffer + row_offset_uv * uvd_stride + col_offset_uv; + if (frame_is_intra_only(cm)) { + mi = mi_prev; + } else { + mi = mi_local; + } + mfqe_partition(cm, mi, BLOCK_64X64, y, u, v, y_stride, uv_stride, yd, ud, + vd, yd_stride, uvd_stride); + } + } +} diff --git a/vp9/common/vp9_mfqe.h b/vp9/common/vp9_mfqe.h new file mode 100644 index 0000000..dfff8c2 --- /dev/null +++ b/vp9/common/vp9_mfqe.h @@ -0,0 +1,31 @@ +/* + * Copyright (c) 2014 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP9_COMMON_VP9_MFQE_H_ +#define VP9_COMMON_VP9_MFQE_H_ + +#ifdef __cplusplus +extern "C" { +#endif + +// Multiframe Quality Enhancement. +// The aim for MFQE is to replace pixel blocks in the current frame with +// the correlated pixel blocks (with higher quality) in the last frame. +// The replacement can only be taken in stationary blocks by checking +// the motion of the blocks and other conditions such as the SAD of +// the current block and correlated block, the variance of the block +// difference, etc. +void vp9_mfqe(struct VP9Common *cm); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP9_COMMON_VP9_MFQE_H_ diff --git a/vp9/common/vp9_mv.h b/vp9/common/vp9_mv.h new file mode 100644 index 0000000..4c8eac7 --- /dev/null +++ b/vp9/common/vp9_mv.h @@ -0,0 +1,55 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP9_COMMON_VP9_MV_H_ +#define VP9_COMMON_VP9_MV_H_ + +#include "vpx/vpx_integer.h" + +#include "vp9/common/vp9_common.h" + +#ifdef __cplusplus +extern "C" { +#endif + +typedef struct mv { + int16_t row; + int16_t col; +} MV; + +typedef union int_mv { + uint32_t as_int; + MV as_mv; +} int_mv; /* facilitates faster equality tests and copies */ + +typedef struct mv32 { + int32_t row; + int32_t col; +} MV32; + +static INLINE int is_zero_mv(const MV *mv) { + return *((const uint32_t *)mv) == 0; +} + +static INLINE int is_equal_mv(const MV *a, const MV *b) { + return *((const uint32_t *)a) == *((const uint32_t *)b); +} + +static INLINE void clamp_mv(MV *mv, int min_col, int max_col, int min_row, + int max_row) { + mv->col = clamp(mv->col, min_col, max_col); + mv->row = clamp(mv->row, min_row, max_row); +} + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP9_COMMON_VP9_MV_H_ diff --git a/vp9/common/vp9_mvref_common.c b/vp9/common/vp9_mvref_common.c new file mode 100644 index 0000000..70f77ab --- /dev/null +++ b/vp9/common/vp9_mvref_common.c @@ -0,0 +1,199 @@ + +/* + * Copyright (c) 2012 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "vp9/common/vp9_mvref_common.h" + +// This function searches the neighborhood of a given MB/SB +// to try and find candidate reference vectors. +static void find_mv_refs_idx(const VP9_COMMON *cm, const MACROBLOCKD *xd, + MODE_INFO *mi, MV_REFERENCE_FRAME ref_frame, + int_mv *mv_ref_list, int block, int mi_row, + int mi_col, uint8_t *mode_context) { + const int *ref_sign_bias = cm->ref_frame_sign_bias; + int i, refmv_count = 0; + const POSITION *const mv_ref_search = mv_ref_blocks[mi->sb_type]; + int different_ref_found = 0; + int context_counter = 0; + const MV_REF *const prev_frame_mvs = + cm->use_prev_frame_mvs + ? cm->prev_frame->mvs + mi_row * cm->mi_cols + mi_col + : NULL; + const TileInfo *const tile = &xd->tile; + + // Blank the reference vector list + memset(mv_ref_list, 0, sizeof(*mv_ref_list) * MAX_MV_REF_CANDIDATES); + + // The nearest 2 blocks are treated differently + // if the size < 8x8 we get the mv from the bmi substructure, + // and we also need to keep a mode count. + for (i = 0; i < 2; ++i) { + const POSITION *const mv_ref = &mv_ref_search[i]; + if (is_inside(tile, mi_col, mi_row, cm->mi_rows, mv_ref)) { + const MODE_INFO *const candidate_mi = + xd->mi[mv_ref->col + mv_ref->row * xd->mi_stride]; + // Keep counts for entropy encoding. + context_counter += mode_2_counter[candidate_mi->mode]; + different_ref_found = 1; + + if (candidate_mi->ref_frame[0] == ref_frame) + ADD_MV_REF_LIST(get_sub_block_mv(candidate_mi, 0, mv_ref->col, block), + refmv_count, mv_ref_list, Done); + else if (candidate_mi->ref_frame[1] == ref_frame) + ADD_MV_REF_LIST(get_sub_block_mv(candidate_mi, 1, mv_ref->col, block), + refmv_count, mv_ref_list, Done); + } + } + + // Check the rest of the neighbors in much the same way + // as before except we don't need to keep track of sub blocks or + // mode counts. + for (; i < MVREF_NEIGHBOURS; ++i) { + const POSITION *const mv_ref = &mv_ref_search[i]; + if (is_inside(tile, mi_col, mi_row, cm->mi_rows, mv_ref)) { + const MODE_INFO *const candidate_mi = + xd->mi[mv_ref->col + mv_ref->row * xd->mi_stride]; + different_ref_found = 1; + + if (candidate_mi->ref_frame[0] == ref_frame) + ADD_MV_REF_LIST(candidate_mi->mv[0], refmv_count, mv_ref_list, Done); + else if (candidate_mi->ref_frame[1] == ref_frame) + ADD_MV_REF_LIST(candidate_mi->mv[1], refmv_count, mv_ref_list, Done); + } + } + + // Check the last frame's mode and mv info. + if (cm->use_prev_frame_mvs) { + if (prev_frame_mvs->ref_frame[0] == ref_frame) { + ADD_MV_REF_LIST(prev_frame_mvs->mv[0], refmv_count, mv_ref_list, Done); + } else if (prev_frame_mvs->ref_frame[1] == ref_frame) { + ADD_MV_REF_LIST(prev_frame_mvs->mv[1], refmv_count, mv_ref_list, Done); + } + } + + // Since we couldn't find 2 mvs from the same reference frame + // go back through the neighbors and find motion vectors from + // different reference frames. + if (different_ref_found) { + for (i = 0; i < MVREF_NEIGHBOURS; ++i) { + const POSITION *mv_ref = &mv_ref_search[i]; + if (is_inside(tile, mi_col, mi_row, cm->mi_rows, mv_ref)) { + const MODE_INFO *const candidate_mi = + xd->mi[mv_ref->col + mv_ref->row * xd->mi_stride]; + + // If the candidate is INTRA we don't want to consider its mv. + IF_DIFF_REF_FRAME_ADD_MV(candidate_mi, ref_frame, ref_sign_bias, + refmv_count, mv_ref_list, Done); + } + } + } + + // Since we still don't have a candidate we'll try the last frame. + if (cm->use_prev_frame_mvs) { + if (prev_frame_mvs->ref_frame[0] != ref_frame && + prev_frame_mvs->ref_frame[0] > INTRA_FRAME) { + int_mv mv = prev_frame_mvs->mv[0]; + if (ref_sign_bias[prev_frame_mvs->ref_frame[0]] != + ref_sign_bias[ref_frame]) { + mv.as_mv.row *= -1; + mv.as_mv.col *= -1; + } + ADD_MV_REF_LIST(mv, refmv_count, mv_ref_list, Done); + } + + if (prev_frame_mvs->ref_frame[1] > INTRA_FRAME && + prev_frame_mvs->ref_frame[1] != ref_frame && + prev_frame_mvs->mv[1].as_int != prev_frame_mvs->mv[0].as_int) { + int_mv mv = prev_frame_mvs->mv[1]; + if (ref_sign_bias[prev_frame_mvs->ref_frame[1]] != + ref_sign_bias[ref_frame]) { + mv.as_mv.row *= -1; + mv.as_mv.col *= -1; + } + ADD_MV_REF_LIST(mv, refmv_count, mv_ref_list, Done); + } + } + +Done: + + mode_context[ref_frame] = counter_to_context[context_counter]; + + // Clamp vectors + for (i = 0; i < MAX_MV_REF_CANDIDATES; ++i) + clamp_mv_ref(&mv_ref_list[i].as_mv, xd); +} + +void vp9_find_mv_refs(const VP9_COMMON *cm, const MACROBLOCKD *xd, + MODE_INFO *mi, MV_REFERENCE_FRAME ref_frame, + int_mv *mv_ref_list, int mi_row, int mi_col, + uint8_t *mode_context) { + find_mv_refs_idx(cm, xd, mi, ref_frame, mv_ref_list, -1, mi_row, mi_col, + mode_context); +} + +void vp9_find_best_ref_mvs(MACROBLOCKD *xd, int allow_hp, int_mv *mvlist, + int_mv *nearest_mv, int_mv *near_mv) { + int i; + // Make sure all the candidates are properly clamped etc + for (i = 0; i < MAX_MV_REF_CANDIDATES; ++i) { + lower_mv_precision(&mvlist[i].as_mv, allow_hp); + clamp_mv2(&mvlist[i].as_mv, xd); + } + *nearest_mv = mvlist[0]; + *near_mv = mvlist[1]; +} + +void vp9_append_sub8x8_mvs_for_idx(VP9_COMMON *cm, MACROBLOCKD *xd, int block, + int ref, int mi_row, int mi_col, + int_mv *nearest_mv, int_mv *near_mv, + uint8_t *mode_context) { + int_mv mv_list[MAX_MV_REF_CANDIDATES]; + MODE_INFO *const mi = xd->mi[0]; + b_mode_info *bmi = mi->bmi; + int n; + + assert(MAX_MV_REF_CANDIDATES == 2); + + find_mv_refs_idx(cm, xd, mi, mi->ref_frame[ref], mv_list, block, mi_row, + mi_col, mode_context); + + near_mv->as_int = 0; + switch (block) { + case 0: + nearest_mv->as_int = mv_list[0].as_int; + near_mv->as_int = mv_list[1].as_int; + break; + case 1: + case 2: + nearest_mv->as_int = bmi[0].as_mv[ref].as_int; + for (n = 0; n < MAX_MV_REF_CANDIDATES; ++n) + if (nearest_mv->as_int != mv_list[n].as_int) { + near_mv->as_int = mv_list[n].as_int; + break; + } + break; + case 3: { + int_mv candidates[2 + MAX_MV_REF_CANDIDATES]; + candidates[0] = bmi[1].as_mv[ref]; + candidates[1] = bmi[0].as_mv[ref]; + candidates[2] = mv_list[0]; + candidates[3] = mv_list[1]; + + nearest_mv->as_int = bmi[2].as_mv[ref].as_int; + for (n = 0; n < 2 + MAX_MV_REF_CANDIDATES; ++n) + if (nearest_mv->as_int != candidates[n].as_int) { + near_mv->as_int = candidates[n].as_int; + break; + } + break; + } + default: assert(0 && "Invalid block index."); + } +} diff --git a/vp9/common/vp9_mvref_common.h b/vp9/common/vp9_mvref_common.h new file mode 100644 index 0000000..2b2c1ba --- /dev/null +++ b/vp9/common/vp9_mvref_common.h @@ -0,0 +1,323 @@ +/* + * Copyright (c) 2012 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ +#ifndef VP9_COMMON_VP9_MVREF_COMMON_H_ +#define VP9_COMMON_VP9_MVREF_COMMON_H_ + +#include "vp9/common/vp9_onyxc_int.h" +#include "vp9/common/vp9_blockd.h" + +#ifdef __cplusplus +extern "C" { +#endif + +#define LEFT_TOP_MARGIN ((VP9_ENC_BORDER_IN_PIXELS - VP9_INTERP_EXTEND) << 3) +#define RIGHT_BOTTOM_MARGIN \ + ((VP9_ENC_BORDER_IN_PIXELS - VP9_INTERP_EXTEND) << 3) + +#define MVREF_NEIGHBOURS 8 + +typedef struct position { + int row; + int col; +} POSITION; + +typedef enum { + BOTH_ZERO = 0, + ZERO_PLUS_PREDICTED = 1, + BOTH_PREDICTED = 2, + NEW_PLUS_NON_INTRA = 3, + BOTH_NEW = 4, + INTRA_PLUS_NON_INTRA = 5, + BOTH_INTRA = 6, + INVALID_CASE = 9 +} motion_vector_context; + +// This is used to figure out a context for the ref blocks. The code flattens +// an array that would have 3 possible counts (0, 1 & 2) for 3 choices by +// adding 9 for each intra block, 3 for each zero mv and 1 for each new +// motion vector. This single number is then converted into a context +// with a single lookup ( counter_to_context ). +static const int mode_2_counter[MB_MODE_COUNT] = { + 9, // DC_PRED + 9, // V_PRED + 9, // H_PRED + 9, // D45_PRED + 9, // D135_PRED + 9, // D117_PRED + 9, // D153_PRED + 9, // D207_PRED + 9, // D63_PRED + 9, // TM_PRED + 0, // NEARESTMV + 0, // NEARMV + 3, // ZEROMV + 1, // NEWMV +}; + +// There are 3^3 different combinations of 3 counts that can be either 0,1 or +// 2. However the actual count can never be greater than 2 so the highest +// counter we need is 18. 9 is an invalid counter that's never used. +static const int counter_to_context[19] = { + BOTH_PREDICTED, // 0 + NEW_PLUS_NON_INTRA, // 1 + BOTH_NEW, // 2 + ZERO_PLUS_PREDICTED, // 3 + NEW_PLUS_NON_INTRA, // 4 + INVALID_CASE, // 5 + BOTH_ZERO, // 6 + INVALID_CASE, // 7 + INVALID_CASE, // 8 + INTRA_PLUS_NON_INTRA, // 9 + INTRA_PLUS_NON_INTRA, // 10 + INVALID_CASE, // 11 + INTRA_PLUS_NON_INTRA, // 12 + INVALID_CASE, // 13 + INVALID_CASE, // 14 + INVALID_CASE, // 15 + INVALID_CASE, // 16 + INVALID_CASE, // 17 + BOTH_INTRA // 18 +}; + +static const POSITION mv_ref_blocks[BLOCK_SIZES][MVREF_NEIGHBOURS] = { + // 4X4 + { { -1, 0 }, + { 0, -1 }, + { -1, -1 }, + { -2, 0 }, + { 0, -2 }, + { -2, -1 }, + { -1, -2 }, + { -2, -2 } }, + // 4X8 + { { -1, 0 }, + { 0, -1 }, + { -1, -1 }, + { -2, 0 }, + { 0, -2 }, + { -2, -1 }, + { -1, -2 }, + { -2, -2 } }, + // 8X4 + { { -1, 0 }, + { 0, -1 }, + { -1, -1 }, + { -2, 0 }, + { 0, -2 }, + { -2, -1 }, + { -1, -2 }, + { -2, -2 } }, + // 8X8 + { { -1, 0 }, + { 0, -1 }, + { -1, -1 }, + { -2, 0 }, + { 0, -2 }, + { -2, -1 }, + { -1, -2 }, + { -2, -2 } }, + // 8X16 + { { 0, -1 }, + { -1, 0 }, + { 1, -1 }, + { -1, -1 }, + { 0, -2 }, + { -2, 0 }, + { -2, -1 }, + { -1, -2 } }, + // 16X8 + { { -1, 0 }, + { 0, -1 }, + { -1, 1 }, + { -1, -1 }, + { -2, 0 }, + { 0, -2 }, + { -1, -2 }, + { -2, -1 } }, + // 16X16 + { { -1, 0 }, + { 0, -1 }, + { -1, 1 }, + { 1, -1 }, + { -1, -1 }, + { -3, 0 }, + { 0, -3 }, + { -3, -3 } }, + // 16X32 + { { 0, -1 }, + { -1, 0 }, + { 2, -1 }, + { -1, -1 }, + { -1, 1 }, + { 0, -3 }, + { -3, 0 }, + { -3, -3 } }, + // 32X16 + { { -1, 0 }, + { 0, -1 }, + { -1, 2 }, + { -1, -1 }, + { 1, -1 }, + { -3, 0 }, + { 0, -3 }, + { -3, -3 } }, + // 32X32 + { { -1, 1 }, + { 1, -1 }, + { -1, 2 }, + { 2, -1 }, + { -1, -1 }, + { -3, 0 }, + { 0, -3 }, + { -3, -3 } }, + // 32X64 + { { 0, -1 }, + { -1, 0 }, + { 4, -1 }, + { -1, 2 }, + { -1, -1 }, + { 0, -3 }, + { -3, 0 }, + { 2, -1 } }, + // 64X32 + { { -1, 0 }, + { 0, -1 }, + { -1, 4 }, + { 2, -1 }, + { -1, -1 }, + { -3, 0 }, + { 0, -3 }, + { -1, 2 } }, + // 64X64 + { { -1, 3 }, + { 3, -1 }, + { -1, 4 }, + { 4, -1 }, + { -1, -1 }, + { -1, 0 }, + { 0, -1 }, + { -1, 6 } } +}; + +static const int idx_n_column_to_subblock[4][2] = { + { 1, 2 }, { 1, 3 }, { 3, 2 }, { 3, 3 } +}; + +// clamp_mv_ref +#define MV_BORDER (16 << 3) // Allow 16 pels in 1/8th pel units + +static INLINE void clamp_mv_ref(MV *mv, const MACROBLOCKD *xd) { + clamp_mv(mv, xd->mb_to_left_edge - MV_BORDER, + xd->mb_to_right_edge + MV_BORDER, xd->mb_to_top_edge - MV_BORDER, + xd->mb_to_bottom_edge + MV_BORDER); +} + +// This function returns either the appropriate sub block or block's mv +// on whether the block_size < 8x8 and we have check_sub_blocks set. +static INLINE int_mv get_sub_block_mv(const MODE_INFO *candidate, int which_mv, + int search_col, int block_idx) { + return block_idx >= 0 && candidate->sb_type < BLOCK_8X8 + ? candidate + ->bmi[idx_n_column_to_subblock[block_idx][search_col == 0]] + .as_mv[which_mv] + : candidate->mv[which_mv]; +} + +// Performs mv sign inversion if indicated by the reference frame combination. +static INLINE int_mv scale_mv(const MODE_INFO *mi, int ref, + const MV_REFERENCE_FRAME this_ref_frame, + const int *ref_sign_bias) { + int_mv mv = mi->mv[ref]; + if (ref_sign_bias[mi->ref_frame[ref]] != ref_sign_bias[this_ref_frame]) { + mv.as_mv.row *= -1; + mv.as_mv.col *= -1; + } + return mv; +} + +// This macro is used to add a motion vector mv_ref list if it isn't +// already in the list. If it's the second motion vector it will also +// skip all additional processing and jump to Done! +#define ADD_MV_REF_LIST(mv, refmv_count, mv_ref_list, Done) \ + do { \ + if (refmv_count) { \ + if ((mv).as_int != (mv_ref_list)[0].as_int) { \ + (mv_ref_list)[(refmv_count)] = (mv); \ + goto Done; \ + } \ + } else { \ + (mv_ref_list)[(refmv_count)++] = (mv); \ + } \ + } while (0) + +// If either reference frame is different, not INTRA, and they +// are different from each other scale and add the mv to our list. +#define IF_DIFF_REF_FRAME_ADD_MV(mbmi, ref_frame, ref_sign_bias, refmv_count, \ + mv_ref_list, Done) \ + do { \ + if (is_inter_block(mbmi)) { \ + if ((mbmi)->ref_frame[0] != ref_frame) \ + ADD_MV_REF_LIST(scale_mv((mbmi), 0, ref_frame, ref_sign_bias), \ + refmv_count, mv_ref_list, Done); \ + if (has_second_ref(mbmi) && (mbmi)->ref_frame[1] != ref_frame && \ + (mbmi)->mv[1].as_int != (mbmi)->mv[0].as_int) \ + ADD_MV_REF_LIST(scale_mv((mbmi), 1, ref_frame, ref_sign_bias), \ + refmv_count, mv_ref_list, Done); \ + } \ + } while (0) + +// Checks that the given mi_row, mi_col and search point +// are inside the borders of the tile. +static INLINE int is_inside(const TileInfo *const tile, int mi_col, int mi_row, + int mi_rows, const POSITION *mi_pos) { + return !(mi_row + mi_pos->row < 0 || + mi_col + mi_pos->col < tile->mi_col_start || + mi_row + mi_pos->row >= mi_rows || + mi_col + mi_pos->col >= tile->mi_col_end); +} + +// TODO(jingning): this mv clamping function should be block size dependent. +static INLINE void clamp_mv2(MV *mv, const MACROBLOCKD *xd) { + clamp_mv(mv, xd->mb_to_left_edge - LEFT_TOP_MARGIN, + xd->mb_to_right_edge + RIGHT_BOTTOM_MARGIN, + xd->mb_to_top_edge - LEFT_TOP_MARGIN, + xd->mb_to_bottom_edge + RIGHT_BOTTOM_MARGIN); +} + +static INLINE void lower_mv_precision(MV *mv, int allow_hp) { + const int use_hp = allow_hp && use_mv_hp(mv); + if (!use_hp) { + if (mv->row & 1) mv->row += (mv->row > 0 ? -1 : 1); + if (mv->col & 1) mv->col += (mv->col > 0 ? -1 : 1); + } +} + +typedef void (*find_mv_refs_sync)(void *const data, int mi_row); +void vp9_find_mv_refs(const VP9_COMMON *cm, const MACROBLOCKD *xd, + MODE_INFO *mi, MV_REFERENCE_FRAME ref_frame, + int_mv *mv_ref_list, int mi_row, int mi_col, + uint8_t *mode_context); + +// check a list of motion vectors by sad score using a number rows of pixels +// above and a number cols of pixels in the left to select the one with best +// score to use as ref motion vector +void vp9_find_best_ref_mvs(MACROBLOCKD *xd, int allow_hp, int_mv *mvlist, + int_mv *nearest_mv, int_mv *near_mv); + +void vp9_append_sub8x8_mvs_for_idx(VP9_COMMON *cm, MACROBLOCKD *xd, int block, + int ref, int mi_row, int mi_col, + int_mv *nearest_mv, int_mv *near_mv, + uint8_t *mode_context); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP9_COMMON_VP9_MVREF_COMMON_H_ diff --git a/vp9/common/vp9_onyxc_int.h b/vp9/common/vp9_onyxc_int.h new file mode 100644 index 0000000..1d96d92 --- /dev/null +++ b/vp9/common/vp9_onyxc_int.h @@ -0,0 +1,408 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP9_COMMON_VP9_ONYXC_INT_H_ +#define VP9_COMMON_VP9_ONYXC_INT_H_ + +#include "./vpx_config.h" +#include "vpx/internal/vpx_codec_internal.h" +#include "vpx_util/vpx_thread.h" +#include "./vp9_rtcd.h" +#include "vp9/common/vp9_alloccommon.h" +#include "vp9/common/vp9_loopfilter.h" +#include "vp9/common/vp9_entropymv.h" +#include "vp9/common/vp9_entropy.h" +#include "vp9/common/vp9_entropymode.h" +#include "vp9/common/vp9_frame_buffers.h" +#include "vp9/common/vp9_quant_common.h" +#include "vp9/common/vp9_tile_common.h" + +#if CONFIG_VP9_POSTPROC +#include "vp9/common/vp9_postproc.h" +#endif + +#ifdef __cplusplus +extern "C" { +#endif + +#define REFS_PER_FRAME 3 + +#define REF_FRAMES_LOG2 3 +#define REF_FRAMES (1 << REF_FRAMES_LOG2) + +// 1 scratch frame for the new frame, 3 for scaled references on the encoder. +// TODO(jkoleszar): These 3 extra references could probably come from the +// normal reference pool. +#define FRAME_BUFFERS (REF_FRAMES + 4) + +#define FRAME_CONTEXTS_LOG2 2 +#define FRAME_CONTEXTS (1 << FRAME_CONTEXTS_LOG2) + +#define NUM_PING_PONG_BUFFERS 2 + +extern const struct { + PARTITION_CONTEXT above; + PARTITION_CONTEXT left; +} partition_context_lookup[BLOCK_SIZES]; + +typedef enum { + SINGLE_REFERENCE = 0, + COMPOUND_REFERENCE = 1, + REFERENCE_MODE_SELECT = 2, + REFERENCE_MODES = 3, +} REFERENCE_MODE; + +typedef struct { + int_mv mv[2]; + MV_REFERENCE_FRAME ref_frame[2]; +} MV_REF; + +typedef struct { + int ref_count; + MV_REF *mvs; + int mi_rows; + int mi_cols; + uint8_t released; + vpx_codec_frame_buffer_t raw_frame_buffer; + YV12_BUFFER_CONFIG buf; +} RefCntBuffer; + +typedef struct BufferPool { + // Private data associated with the frame buffer callbacks. + void *cb_priv; + + vpx_get_frame_buffer_cb_fn_t get_fb_cb; + vpx_release_frame_buffer_cb_fn_t release_fb_cb; + + RefCntBuffer frame_bufs[FRAME_BUFFERS]; + + // Frame buffers allocated internally by the codec. + InternalFrameBufferList int_frame_buffers; +} BufferPool; + +typedef struct VP9Common { + struct vpx_internal_error_info error; + vpx_color_space_t color_space; + vpx_color_range_t color_range; + int width; + int height; + int render_width; + int render_height; + int last_width; + int last_height; + + // TODO(jkoleszar): this implies chroma ss right now, but could vary per + // plane. Revisit as part of the future change to YV12_BUFFER_CONFIG to + // support additional planes. + int subsampling_x; + int subsampling_y; + +#if CONFIG_VP9_HIGHBITDEPTH + int use_highbitdepth; // Marks if we need to use 16bit frame buffers. +#endif + + YV12_BUFFER_CONFIG *frame_to_show; + RefCntBuffer *prev_frame; + + // TODO(hkuang): Combine this with cur_buf in macroblockd. + RefCntBuffer *cur_frame; + + int ref_frame_map[REF_FRAMES]; /* maps fb_idx to reference slot */ + + // Prepare ref_frame_map for the next frame. + // Only used in frame parallel decode. + int next_ref_frame_map[REF_FRAMES]; + + // TODO(jkoleszar): could expand active_ref_idx to 4, with 0 as intra, and + // roll new_fb_idx into it. + + // Each frame can reference REFS_PER_FRAME buffers + RefBuffer frame_refs[REFS_PER_FRAME]; + + int new_fb_idx; + +#if CONFIG_VP9_POSTPROC + YV12_BUFFER_CONFIG post_proc_buffer; + YV12_BUFFER_CONFIG post_proc_buffer_int; +#endif + + FRAME_TYPE last_frame_type; /* last frame's frame type for motion search.*/ + FRAME_TYPE frame_type; + + int show_frame; + int last_show_frame; + int show_existing_frame; + + // Flag signaling that the frame is encoded using only INTRA modes. + uint8_t intra_only; + uint8_t last_intra_only; + + int allow_high_precision_mv; + + // Flag signaling that the frame context should be reset to default values. + // 0 or 1 implies don't reset, 2 reset just the context specified in the + // frame header, 3 reset all contexts. + int reset_frame_context; + + // MBs, mb_rows/cols is in 16-pixel units; mi_rows/cols is in + // MODE_INFO (8-pixel) units. + int MBs; + int mb_rows, mi_rows; + int mb_cols, mi_cols; + int mi_stride; + + /* profile settings */ + TX_MODE tx_mode; + + int base_qindex; + int y_dc_delta_q; + int uv_dc_delta_q; + int uv_ac_delta_q; + int16_t y_dequant[MAX_SEGMENTS][2]; + int16_t uv_dequant[MAX_SEGMENTS][2]; + + /* We allocate a MODE_INFO struct for each macroblock, together with + an extra row on top and column on the left to simplify prediction. */ + int mi_alloc_size; + MODE_INFO *mip; /* Base of allocated array */ + MODE_INFO *mi; /* Corresponds to upper left visible macroblock */ + + // TODO(agrange): Move prev_mi into encoder structure. + // prev_mip and prev_mi will only be allocated in VP9 encoder. + MODE_INFO *prev_mip; /* MODE_INFO array 'mip' from last decoded frame */ + MODE_INFO *prev_mi; /* 'mi' from last frame (points into prev_mip) */ + + // Separate mi functions between encoder and decoder. + int (*alloc_mi)(struct VP9Common *cm, int mi_size); + void (*free_mi)(struct VP9Common *cm); + void (*setup_mi)(struct VP9Common *cm); + + // Grid of pointers to 8x8 MODE_INFO structs. Any 8x8 not in the visible + // area will be NULL. + MODE_INFO **mi_grid_base; + MODE_INFO **mi_grid_visible; + MODE_INFO **prev_mi_grid_base; + MODE_INFO **prev_mi_grid_visible; + + // Whether to use previous frame's motion vectors for prediction. + int use_prev_frame_mvs; + + // Persistent mb segment id map used in prediction. + int seg_map_idx; + int prev_seg_map_idx; + + uint8_t *seg_map_array[NUM_PING_PONG_BUFFERS]; + uint8_t *last_frame_seg_map; + uint8_t *current_frame_seg_map; + int seg_map_alloc_size; + + INTERP_FILTER interp_filter; + + loop_filter_info_n lf_info; + + int refresh_frame_context; /* Two state 0 = NO, 1 = YES */ + + int ref_frame_sign_bias[MAX_REF_FRAMES]; /* Two state 0, 1 */ + + struct loopfilter lf; + struct segmentation seg; + + // Context probabilities for reference frame prediction + MV_REFERENCE_FRAME comp_fixed_ref; + MV_REFERENCE_FRAME comp_var_ref[2]; + REFERENCE_MODE reference_mode; + + FRAME_CONTEXT *fc; /* this frame entropy */ + FRAME_CONTEXT *frame_contexts; // FRAME_CONTEXTS + unsigned int frame_context_idx; /* Context to use/update */ + FRAME_COUNTS counts; + + unsigned int current_video_frame; + BITSTREAM_PROFILE profile; + + // VPX_BITS_8 in profile 0 or 1, VPX_BITS_10 or VPX_BITS_12 in profile 2 or 3. + vpx_bit_depth_t bit_depth; + vpx_bit_depth_t dequant_bit_depth; // bit_depth of current dequantizer + +#if CONFIG_VP9_POSTPROC + struct postproc_state postproc_state; +#endif + + int error_resilient_mode; + int frame_parallel_decoding_mode; + + int log2_tile_cols, log2_tile_rows; + int byte_alignment; + int skip_loop_filter; + + // Private data associated with the frame buffer callbacks. + void *cb_priv; + vpx_get_frame_buffer_cb_fn_t get_fb_cb; + vpx_release_frame_buffer_cb_fn_t release_fb_cb; + + // Handles memory for the codec. + InternalFrameBufferList int_frame_buffers; + + // External BufferPool passed from outside. + BufferPool *buffer_pool; + + PARTITION_CONTEXT *above_seg_context; + ENTROPY_CONTEXT *above_context; + int above_context_alloc_cols; +} VP9_COMMON; + +static INLINE YV12_BUFFER_CONFIG *get_ref_frame(VP9_COMMON *cm, int index) { + if (index < 0 || index >= REF_FRAMES) return NULL; + if (cm->ref_frame_map[index] < 0) return NULL; + assert(cm->ref_frame_map[index] < FRAME_BUFFERS); + return &cm->buffer_pool->frame_bufs[cm->ref_frame_map[index]].buf; +} + +static INLINE YV12_BUFFER_CONFIG *get_frame_new_buffer(VP9_COMMON *cm) { + return &cm->buffer_pool->frame_bufs[cm->new_fb_idx].buf; +} + +static INLINE int get_free_fb(VP9_COMMON *cm) { + RefCntBuffer *const frame_bufs = cm->buffer_pool->frame_bufs; + int i; + + for (i = 0; i < FRAME_BUFFERS; ++i) + if (frame_bufs[i].ref_count == 0) break; + + if (i != FRAME_BUFFERS) { + frame_bufs[i].ref_count = 1; + } else { + // Reset i to be INVALID_IDX to indicate no free buffer found. + i = INVALID_IDX; + } + + return i; +} + +static INLINE void ref_cnt_fb(RefCntBuffer *bufs, int *idx, int new_idx) { + const int ref_index = *idx; + + if (ref_index >= 0 && bufs[ref_index].ref_count > 0) + bufs[ref_index].ref_count--; + + *idx = new_idx; + + bufs[new_idx].ref_count++; +} + +static INLINE int mi_cols_aligned_to_sb(int n_mis) { + return ALIGN_POWER_OF_TWO(n_mis, MI_BLOCK_SIZE_LOG2); +} + +static INLINE int frame_is_intra_only(const VP9_COMMON *const cm) { + return cm->frame_type == KEY_FRAME || cm->intra_only; +} + +static INLINE void set_partition_probs(const VP9_COMMON *const cm, + MACROBLOCKD *const xd) { + xd->partition_probs = + frame_is_intra_only(cm) + ? &vp9_kf_partition_probs[0] + : (const vpx_prob(*)[PARTITION_TYPES - 1]) cm->fc->partition_prob; +} + +static INLINE void vp9_init_macroblockd(VP9_COMMON *cm, MACROBLOCKD *xd, + tran_low_t *dqcoeff) { + int i; + + for (i = 0; i < MAX_MB_PLANE; ++i) { + xd->plane[i].dqcoeff = dqcoeff; + xd->above_context[i] = + cm->above_context + + i * sizeof(*cm->above_context) * 2 * mi_cols_aligned_to_sb(cm->mi_cols); + + if (get_plane_type(i) == PLANE_TYPE_Y) { + memcpy(xd->plane[i].seg_dequant, cm->y_dequant, sizeof(cm->y_dequant)); + } else { + memcpy(xd->plane[i].seg_dequant, cm->uv_dequant, sizeof(cm->uv_dequant)); + } + xd->fc = cm->fc; + } + + xd->above_seg_context = cm->above_seg_context; + xd->mi_stride = cm->mi_stride; + xd->error_info = &cm->error; + + set_partition_probs(cm, xd); +} + +static INLINE const vpx_prob *get_partition_probs(const MACROBLOCKD *xd, + int ctx) { + return xd->partition_probs[ctx]; +} + +static INLINE void set_skip_context(MACROBLOCKD *xd, int mi_row, int mi_col) { + const int above_idx = mi_col * 2; + const int left_idx = (mi_row * 2) & 15; + int i; + for (i = 0; i < MAX_MB_PLANE; ++i) { + struct macroblockd_plane *const pd = &xd->plane[i]; + pd->above_context = &xd->above_context[i][above_idx >> pd->subsampling_x]; + pd->left_context = &xd->left_context[i][left_idx >> pd->subsampling_y]; + } +} + +static INLINE int calc_mi_size(int len) { + // len is in mi units. + return len + MI_BLOCK_SIZE; +} + +static INLINE void set_mi_row_col(MACROBLOCKD *xd, const TileInfo *const tile, + int mi_row, int bh, int mi_col, int bw, + int mi_rows, int mi_cols) { + xd->mb_to_top_edge = -((mi_row * MI_SIZE) * 8); + xd->mb_to_bottom_edge = ((mi_rows - bh - mi_row) * MI_SIZE) * 8; + xd->mb_to_left_edge = -((mi_col * MI_SIZE) * 8); + xd->mb_to_right_edge = ((mi_cols - bw - mi_col) * MI_SIZE) * 8; + + // Are edges available for intra prediction? + xd->above_mi = (mi_row != 0) ? xd->mi[-xd->mi_stride] : NULL; + xd->left_mi = (mi_col > tile->mi_col_start) ? xd->mi[-1] : NULL; +} + +static INLINE void update_partition_context(MACROBLOCKD *xd, int mi_row, + int mi_col, BLOCK_SIZE subsize, + BLOCK_SIZE bsize) { + PARTITION_CONTEXT *const above_ctx = xd->above_seg_context + mi_col; + PARTITION_CONTEXT *const left_ctx = xd->left_seg_context + (mi_row & MI_MASK); + + // num_4x4_blocks_wide_lookup[bsize] / 2 + const int bs = num_8x8_blocks_wide_lookup[bsize]; + + // update the partition context at the end notes. set partition bits + // of block sizes larger than the current one to be one, and partition + // bits of smaller block sizes to be zero. + memset(above_ctx, partition_context_lookup[subsize].above, bs); + memset(left_ctx, partition_context_lookup[subsize].left, bs); +} + +static INLINE int partition_plane_context(const MACROBLOCKD *xd, int mi_row, + int mi_col, BLOCK_SIZE bsize) { + const PARTITION_CONTEXT *above_ctx = xd->above_seg_context + mi_col; + const PARTITION_CONTEXT *left_ctx = xd->left_seg_context + (mi_row & MI_MASK); + const int bsl = mi_width_log2_lookup[bsize]; + int above = (*above_ctx >> bsl) & 1, left = (*left_ctx >> bsl) & 1; + + assert(b_width_log2_lookup[bsize] == b_height_log2_lookup[bsize]); + assert(bsl >= 0); + + return (left * 2 + above) + bsl * PARTITION_PLOFFSET; +} + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP9_COMMON_VP9_ONYXC_INT_H_ diff --git a/vp9/common/vp9_postproc.c b/vp9/common/vp9_postproc.c new file mode 100644 index 0000000..dfc315e --- /dev/null +++ b/vp9/common/vp9_postproc.c @@ -0,0 +1,434 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include +#include + +#include "./vpx_dsp_rtcd.h" +#include "./vpx_config.h" +#include "./vpx_scale_rtcd.h" +#include "./vp9_rtcd.h" + +#include "vpx_dsp/vpx_dsp_common.h" +#include "vpx_dsp/postproc.h" +#include "vpx_ports/mem.h" +#include "vpx_ports/system_state.h" +#include "vpx_scale/vpx_scale.h" +#include "vpx_scale/yv12config.h" + +#include "vp9/common/vp9_onyxc_int.h" +#include "vp9/common/vp9_postproc.h" + +#if CONFIG_VP9_POSTPROC + +static const uint8_t q_diff_thresh = 20; +static const uint8_t last_q_thresh = 170; +extern const int16_t vpx_rv[]; + +#if CONFIG_VP9_HIGHBITDEPTH +static const int16_t kernel5[] = { 1, 1, 4, 1, 1 }; + +void vp9_highbd_post_proc_down_and_across_c(const uint16_t *src_ptr, + uint16_t *dst_ptr, + int src_pixels_per_line, + int dst_pixels_per_line, int rows, + int cols, int flimit) { + uint16_t const *p_src; + uint16_t *p_dst; + int row, col, i, v, kernel; + int pitch = src_pixels_per_line; + uint16_t d[8]; + + for (row = 0; row < rows; row++) { + // post_proc_down for one row. + p_src = src_ptr; + p_dst = dst_ptr; + + for (col = 0; col < cols; col++) { + kernel = 4; + v = p_src[col]; + + for (i = -2; i <= 2; i++) { + if (abs(v - p_src[col + i * pitch]) > flimit) goto down_skip_convolve; + + kernel += kernel5[2 + i] * p_src[col + i * pitch]; + } + + v = (kernel >> 3); + + down_skip_convolve: + p_dst[col] = v; + } + + /* now post_proc_across */ + p_src = dst_ptr; + p_dst = dst_ptr; + + for (i = 0; i < 8; i++) d[i] = p_src[i]; + + for (col = 0; col < cols; col++) { + kernel = 4; + v = p_src[col]; + + d[col & 7] = v; + + for (i = -2; i <= 2; i++) { + if (abs(v - p_src[col + i]) > flimit) goto across_skip_convolve; + + kernel += kernel5[2 + i] * p_src[col + i]; + } + + d[col & 7] = (kernel >> 3); + + across_skip_convolve: + if (col >= 2) p_dst[col - 2] = d[(col - 2) & 7]; + } + + /* handle the last two pixels */ + p_dst[col - 2] = d[(col - 2) & 7]; + p_dst[col - 1] = d[(col - 1) & 7]; + + /* next row */ + src_ptr += pitch; + dst_ptr += dst_pixels_per_line; + } +} +#endif // CONFIG_VP9_HIGHBITDEPTH + +static int q2mbl(int x) { + if (x < 20) x = 20; + + x = 50 + (x - 50) * 10 / 8; + return x * x / 3; +} + +#if CONFIG_VP9_HIGHBITDEPTH +void vp9_highbd_mbpost_proc_across_ip_c(uint16_t *src, int pitch, int rows, + int cols, int flimit) { + int r, c, i; + + uint16_t *s = src; + uint16_t d[16]; + + for (r = 0; r < rows; r++) { + int sumsq = 0; + int sum = 0; + + for (i = -8; i <= 6; i++) { + sumsq += s[i] * s[i]; + sum += s[i]; + d[i + 8] = 0; + } + + for (c = 0; c < cols + 8; c++) { + int x = s[c + 7] - s[c - 8]; + int y = s[c + 7] + s[c - 8]; + + sum += x; + sumsq += x * y; + + d[c & 15] = s[c]; + + if (sumsq * 15 - sum * sum < flimit) { + d[c & 15] = (8 + sum + s[c]) >> 4; + } + + s[c - 8] = d[(c - 8) & 15]; + } + + s += pitch; + } +} +#endif // CONFIG_VP9_HIGHBITDEPTH + +#if CONFIG_VP9_HIGHBITDEPTH +void vp9_highbd_mbpost_proc_down_c(uint16_t *dst, int pitch, int rows, int cols, + int flimit) { + int r, c, i; + const int16_t *rv3 = &vpx_rv[63 & rand()]; // NOLINT + + for (c = 0; c < cols; c++) { + uint16_t *s = &dst[c]; + int sumsq = 0; + int sum = 0; + uint16_t d[16]; + const int16_t *rv2 = rv3 + ((c * 17) & 127); + + for (i = -8; i <= 6; i++) { + sumsq += s[i * pitch] * s[i * pitch]; + sum += s[i * pitch]; + } + + for (r = 0; r < rows + 8; r++) { + sumsq += s[7 * pitch] * s[7 * pitch] - s[-8 * pitch] * s[-8 * pitch]; + sum += s[7 * pitch] - s[-8 * pitch]; + d[r & 15] = s[0]; + + if (sumsq * 15 - sum * sum < flimit) { + d[r & 15] = (rv2[r & 127] + sum + s[0]) >> 4; + } + + s[-8 * pitch] = d[(r - 8) & 15]; + s += pitch; + } + } +} +#endif // CONFIG_VP9_HIGHBITDEPTH + +static void deblock_and_de_macro_block(YV12_BUFFER_CONFIG *source, + YV12_BUFFER_CONFIG *post, int q, + int low_var_thresh, int flag, + uint8_t *limits) { + (void)low_var_thresh; + (void)flag; +#if CONFIG_VP9_HIGHBITDEPTH + if (source->flags & YV12_FLAG_HIGHBITDEPTH) { + double level = 6.0e-05 * q * q * q - .0067 * q * q + .306 * q + .0065; + int ppl = (int)(level + .5); + vp9_highbd_post_proc_down_and_across( + CONVERT_TO_SHORTPTR(source->y_buffer), + CONVERT_TO_SHORTPTR(post->y_buffer), source->y_stride, post->y_stride, + source->y_height, source->y_width, ppl); + + vp9_highbd_mbpost_proc_across_ip(CONVERT_TO_SHORTPTR(post->y_buffer), + post->y_stride, post->y_height, + post->y_width, q2mbl(q)); + + vp9_highbd_mbpost_proc_down(CONVERT_TO_SHORTPTR(post->y_buffer), + post->y_stride, post->y_height, post->y_width, + q2mbl(q)); + + vp9_highbd_post_proc_down_and_across( + CONVERT_TO_SHORTPTR(source->u_buffer), + CONVERT_TO_SHORTPTR(post->u_buffer), source->uv_stride, post->uv_stride, + source->uv_height, source->uv_width, ppl); + vp9_highbd_post_proc_down_and_across( + CONVERT_TO_SHORTPTR(source->v_buffer), + CONVERT_TO_SHORTPTR(post->v_buffer), source->uv_stride, post->uv_stride, + source->uv_height, source->uv_width, ppl); + } else { +#endif // CONFIG_VP9_HIGHBITDEPTH + vp9_deblock(source, post, q, limits); + vpx_mbpost_proc_across_ip(post->y_buffer, post->y_stride, post->y_height, + post->y_width, q2mbl(q)); + vpx_mbpost_proc_down(post->y_buffer, post->y_stride, post->y_height, + post->y_width, q2mbl(q)); +#if CONFIG_VP9_HIGHBITDEPTH + } +#endif // CONFIG_VP9_HIGHBITDEPTH +} + +void vp9_deblock(const YV12_BUFFER_CONFIG *src, YV12_BUFFER_CONFIG *dst, int q, + uint8_t *limits) { + const int ppl = + (int)(6.0e-05 * q * q * q - 0.0067 * q * q + 0.306 * q + 0.0065 + 0.5); +#if CONFIG_VP9_HIGHBITDEPTH + if (src->flags & YV12_FLAG_HIGHBITDEPTH) { + int i; + const uint8_t *const srcs[3] = { src->y_buffer, src->u_buffer, + src->v_buffer }; + const int src_strides[3] = { src->y_stride, src->uv_stride, + src->uv_stride }; + const int src_widths[3] = { src->y_width, src->uv_width, src->uv_width }; + const int src_heights[3] = { src->y_height, src->uv_height, + src->uv_height }; + + uint8_t *const dsts[3] = { dst->y_buffer, dst->u_buffer, dst->v_buffer }; + const int dst_strides[3] = { dst->y_stride, dst->uv_stride, + dst->uv_stride }; + for (i = 0; i < MAX_MB_PLANE; ++i) { + vp9_highbd_post_proc_down_and_across( + CONVERT_TO_SHORTPTR(srcs[i]), CONVERT_TO_SHORTPTR(dsts[i]), + src_strides[i], dst_strides[i], src_heights[i], src_widths[i], ppl); + } + } else { +#endif // CONFIG_VP9_HIGHBITDEPTH + int mbr; + const int mb_rows = src->y_height / 16; + const int mb_cols = src->y_width / 16; + + memset(limits, (unsigned char)ppl, 16 * mb_cols); + + for (mbr = 0; mbr < mb_rows; mbr++) { + vpx_post_proc_down_and_across_mb_row( + src->y_buffer + 16 * mbr * src->y_stride, + dst->y_buffer + 16 * mbr * dst->y_stride, src->y_stride, + dst->y_stride, src->y_width, limits, 16); + vpx_post_proc_down_and_across_mb_row( + src->u_buffer + 8 * mbr * src->uv_stride, + dst->u_buffer + 8 * mbr * dst->uv_stride, src->uv_stride, + dst->uv_stride, src->uv_width, limits, 8); + vpx_post_proc_down_and_across_mb_row( + src->v_buffer + 8 * mbr * src->uv_stride, + dst->v_buffer + 8 * mbr * dst->uv_stride, src->uv_stride, + dst->uv_stride, src->uv_width, limits, 8); + } +#if CONFIG_VP9_HIGHBITDEPTH + } +#endif // CONFIG_VP9_HIGHBITDEPTH +} + +void vp9_denoise(const YV12_BUFFER_CONFIG *src, YV12_BUFFER_CONFIG *dst, int q, + uint8_t *limits) { + vp9_deblock(src, dst, q, limits); +} + +static void swap_mi_and_prev_mi(VP9_COMMON *cm) { + // Current mip will be the prev_mip for the next frame. + MODE_INFO *temp = cm->postproc_state.prev_mip; + cm->postproc_state.prev_mip = cm->mip; + cm->mip = temp; + + // Update the upper left visible macroblock ptrs. + cm->mi = cm->mip + cm->mi_stride + 1; + cm->postproc_state.prev_mi = cm->postproc_state.prev_mip + cm->mi_stride + 1; +} + +int vp9_post_proc_frame(struct VP9Common *cm, YV12_BUFFER_CONFIG *dest, + vp9_ppflags_t *ppflags) { + const int q = VPXMIN(105, cm->lf.filter_level * 2); + const int flags = ppflags->post_proc_flag; + YV12_BUFFER_CONFIG *const ppbuf = &cm->post_proc_buffer; + struct postproc_state *const ppstate = &cm->postproc_state; + + if (!cm->frame_to_show) return -1; + + if (!flags) { + *dest = *cm->frame_to_show; + return 0; + } + + vpx_clear_system_state(); + + // Alloc memory for prev_mip in the first frame. + if (cm->current_video_frame == 1) { + ppstate->last_base_qindex = cm->base_qindex; + ppstate->last_frame_valid = 1; + } + + if ((flags & VP9D_MFQE) && ppstate->prev_mip == NULL) { + ppstate->prev_mip = vpx_calloc(cm->mi_alloc_size, sizeof(*cm->mip)); + if (!ppstate->prev_mip) { + return 1; + } + ppstate->prev_mi = ppstate->prev_mip + cm->mi_stride + 1; + } + + // Allocate post_proc_buffer_int if needed. + if ((flags & VP9D_MFQE) && !cm->post_proc_buffer_int.buffer_alloc) { + if ((flags & VP9D_DEMACROBLOCK) || (flags & VP9D_DEBLOCK)) { + const int width = ALIGN_POWER_OF_TWO(cm->width, 4); + const int height = ALIGN_POWER_OF_TWO(cm->height, 4); + + if (vpx_alloc_frame_buffer(&cm->post_proc_buffer_int, width, height, + cm->subsampling_x, cm->subsampling_y, +#if CONFIG_VP9_HIGHBITDEPTH + cm->use_highbitdepth, +#endif // CONFIG_VP9_HIGHBITDEPTH + VP9_ENC_BORDER_IN_PIXELS, + cm->byte_alignment) < 0) { + vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR, + "Failed to allocate MFQE framebuffer"); + } + + // Ensure that postproc is set to all 0s so that post proc + // doesn't pull random data in from edge. + memset(cm->post_proc_buffer_int.buffer_alloc, 128, + cm->post_proc_buffer.frame_size); + } + } + + if (vpx_realloc_frame_buffer(&cm->post_proc_buffer, cm->width, cm->height, + cm->subsampling_x, cm->subsampling_y, +#if CONFIG_VP9_HIGHBITDEPTH + cm->use_highbitdepth, +#endif + VP9_DEC_BORDER_IN_PIXELS, cm->byte_alignment, + NULL, NULL, NULL) < 0) + vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR, + "Failed to allocate post-processing buffer"); + + if (flags & (VP9D_DEMACROBLOCK | VP9D_DEBLOCK)) { + if (!cm->postproc_state.limits) { + cm->postproc_state.limits = + vpx_calloc(cm->width, sizeof(*cm->postproc_state.limits)); + } + } + + if (flags & VP9D_ADDNOISE) { + if (!cm->postproc_state.generated_noise) { + cm->postproc_state.generated_noise = vpx_calloc( + cm->width + 256, sizeof(*cm->postproc_state.generated_noise)); + if (!cm->postproc_state.generated_noise) return 1; + } + } + + if ((flags & VP9D_MFQE) && cm->current_video_frame >= 2 && + ppstate->last_frame_valid && cm->bit_depth == 8 && + ppstate->last_base_qindex <= last_q_thresh && + cm->base_qindex - ppstate->last_base_qindex >= q_diff_thresh) { + vp9_mfqe(cm); + // TODO(jackychen): Consider whether enable deblocking by default + // if mfqe is enabled. Need to take both the quality and the speed + // into consideration. + if ((flags & VP9D_DEMACROBLOCK) || (flags & VP9D_DEBLOCK)) { + vpx_yv12_copy_frame(ppbuf, &cm->post_proc_buffer_int); + } + if ((flags & VP9D_DEMACROBLOCK) && cm->post_proc_buffer_int.buffer_alloc) { + deblock_and_de_macro_block(&cm->post_proc_buffer_int, ppbuf, + q + (ppflags->deblocking_level - 5) * 10, 1, 0, + cm->postproc_state.limits); + } else if (flags & VP9D_DEBLOCK) { + vp9_deblock(&cm->post_proc_buffer_int, ppbuf, q, + cm->postproc_state.limits); + } else { + vpx_yv12_copy_frame(&cm->post_proc_buffer_int, ppbuf); + } + } else if (flags & VP9D_DEMACROBLOCK) { + deblock_and_de_macro_block(cm->frame_to_show, ppbuf, + q + (ppflags->deblocking_level - 5) * 10, 1, 0, + cm->postproc_state.limits); + } else if (flags & VP9D_DEBLOCK) { + vp9_deblock(cm->frame_to_show, ppbuf, q, cm->postproc_state.limits); + } else { + vpx_yv12_copy_frame(cm->frame_to_show, ppbuf); + } + + ppstate->last_base_qindex = cm->base_qindex; + ppstate->last_frame_valid = 1; + if (flags & VP9D_ADDNOISE) { + const int noise_level = ppflags->noise_level; + if (ppstate->last_q != q || ppstate->last_noise != noise_level) { + double sigma; + vpx_clear_system_state(); + sigma = noise_level + .5 + .6 * q / 63.0; + ppstate->clamp = + vpx_setup_noise(sigma, ppstate->generated_noise, cm->width + 256); + ppstate->last_q = q; + ppstate->last_noise = noise_level; + } + vpx_plane_add_noise(ppbuf->y_buffer, ppstate->generated_noise, + ppstate->clamp, ppstate->clamp, ppbuf->y_width, + ppbuf->y_height, ppbuf->y_stride); + } + + *dest = *ppbuf; + + /* handle problem with extending borders */ + dest->y_width = cm->width; + dest->y_height = cm->height; + dest->uv_width = dest->y_width >> cm->subsampling_x; + dest->uv_height = dest->y_height >> cm->subsampling_y; + + if (flags & VP9D_MFQE) swap_mi_and_prev_mi(cm); + return 0; +} +#endif // CONFIG_VP9_POSTPROC diff --git a/vp9/common/vp9_postproc.h b/vp9/common/vp9_postproc.h new file mode 100644 index 0000000..6059094 --- /dev/null +++ b/vp9/common/vp9_postproc.h @@ -0,0 +1,53 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP9_COMMON_VP9_POSTPROC_H_ +#define VP9_COMMON_VP9_POSTPROC_H_ + +#include "vpx_ports/mem.h" +#include "vpx_scale/yv12config.h" +#include "vp9/common/vp9_blockd.h" +#include "vp9/common/vp9_mfqe.h" +#include "vp9/common/vp9_ppflags.h" + +#ifdef __cplusplus +extern "C" { +#endif + +struct postproc_state { + int last_q; + int last_noise; + int last_base_qindex; + int last_frame_valid; + MODE_INFO *prev_mip; + MODE_INFO *prev_mi; + int clamp; + uint8_t *limits; + int8_t *generated_noise; +}; + +struct VP9Common; + +#define MFQE_PRECISION 4 + +int vp9_post_proc_frame(struct VP9Common *cm, YV12_BUFFER_CONFIG *dest, + vp9_ppflags_t *flags); + +void vp9_denoise(const YV12_BUFFER_CONFIG *src, YV12_BUFFER_CONFIG *dst, int q, + uint8_t *limits); + +void vp9_deblock(const YV12_BUFFER_CONFIG *src, YV12_BUFFER_CONFIG *dst, int q, + uint8_t *limits); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP9_COMMON_VP9_POSTPROC_H_ diff --git a/vp9/common/vp9_ppflags.h b/vp9/common/vp9_ppflags.h new file mode 100644 index 0000000..b8b647b --- /dev/null +++ b/vp9/common/vp9_ppflags.h @@ -0,0 +1,36 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP9_COMMON_VP9_PPFLAGS_H_ +#define VP9_COMMON_VP9_PPFLAGS_H_ + +#ifdef __cplusplus +extern "C" { +#endif + +enum { + VP9D_NOFILTERING = 0, + VP9D_DEBLOCK = 1 << 0, + VP9D_DEMACROBLOCK = 1 << 1, + VP9D_ADDNOISE = 1 << 2, + VP9D_MFQE = 1 << 3 +}; + +typedef struct { + int post_proc_flag; + int deblocking_level; + int noise_level; +} vp9_ppflags_t; + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP9_COMMON_VP9_PPFLAGS_H_ diff --git a/vp9/common/vp9_pred_common.c b/vp9/common/vp9_pred_common.c new file mode 100644 index 0000000..a7ddc0b --- /dev/null +++ b/vp9/common/vp9_pred_common.c @@ -0,0 +1,291 @@ + +/* + * Copyright (c) 2012 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "vp9/common/vp9_common.h" +#include "vp9/common/vp9_pred_common.h" +#include "vp9/common/vp9_seg_common.h" + +int vp9_get_reference_mode_context(const VP9_COMMON *cm, + const MACROBLOCKD *xd) { + int ctx; + const MODE_INFO *const above_mi = xd->above_mi; + const MODE_INFO *const left_mi = xd->left_mi; + const int has_above = !!above_mi; + const int has_left = !!left_mi; + // Note: + // The mode info data structure has a one element border above and to the + // left of the entries corresponding to real macroblocks. + // The prediction flags in these dummy entries are initialized to 0. + if (has_above && has_left) { // both edges available + if (!has_second_ref(above_mi) && !has_second_ref(left_mi)) + // neither edge uses comp pred (0/1) + ctx = (above_mi->ref_frame[0] == cm->comp_fixed_ref) ^ + (left_mi->ref_frame[0] == cm->comp_fixed_ref); + else if (!has_second_ref(above_mi)) + // one of two edges uses comp pred (2/3) + ctx = 2 + (above_mi->ref_frame[0] == cm->comp_fixed_ref || + !is_inter_block(above_mi)); + else if (!has_second_ref(left_mi)) + // one of two edges uses comp pred (2/3) + ctx = 2 + (left_mi->ref_frame[0] == cm->comp_fixed_ref || + !is_inter_block(left_mi)); + else // both edges use comp pred (4) + ctx = 4; + } else if (has_above || has_left) { // one edge available + const MODE_INFO *edge_mi = has_above ? above_mi : left_mi; + + if (!has_second_ref(edge_mi)) + // edge does not use comp pred (0/1) + ctx = edge_mi->ref_frame[0] == cm->comp_fixed_ref; + else + // edge uses comp pred (3) + ctx = 3; + } else { // no edges available (1) + ctx = 1; + } + assert(ctx >= 0 && ctx < COMP_INTER_CONTEXTS); + return ctx; +} + +// Returns a context number for the given MB prediction signal +int vp9_get_pred_context_comp_ref_p(const VP9_COMMON *cm, + const MACROBLOCKD *xd) { + int pred_context; + const MODE_INFO *const above_mi = xd->above_mi; + const MODE_INFO *const left_mi = xd->left_mi; + const int above_in_image = !!above_mi; + const int left_in_image = !!left_mi; + + // Note: + // The mode info data structure has a one element border above and to the + // left of the entries corresponding to real macroblocks. + // The prediction flags in these dummy entries are initialized to 0. + const int fix_ref_idx = cm->ref_frame_sign_bias[cm->comp_fixed_ref]; + const int var_ref_idx = !fix_ref_idx; + + if (above_in_image && left_in_image) { // both edges available + const int above_intra = !is_inter_block(above_mi); + const int left_intra = !is_inter_block(left_mi); + + if (above_intra && left_intra) { // intra/intra (2) + pred_context = 2; + } else if (above_intra || left_intra) { // intra/inter + const MODE_INFO *edge_mi = above_intra ? left_mi : above_mi; + + if (!has_second_ref(edge_mi)) // single pred (1/3) + pred_context = 1 + 2 * (edge_mi->ref_frame[0] != cm->comp_var_ref[1]); + else // comp pred (1/3) + pred_context = + 1 + 2 * (edge_mi->ref_frame[var_ref_idx] != cm->comp_var_ref[1]); + } else { // inter/inter + const int l_sg = !has_second_ref(left_mi); + const int a_sg = !has_second_ref(above_mi); + const MV_REFERENCE_FRAME vrfa = + a_sg ? above_mi->ref_frame[0] : above_mi->ref_frame[var_ref_idx]; + const MV_REFERENCE_FRAME vrfl = + l_sg ? left_mi->ref_frame[0] : left_mi->ref_frame[var_ref_idx]; + + if (vrfa == vrfl && cm->comp_var_ref[1] == vrfa) { + pred_context = 0; + } else if (l_sg && a_sg) { // single/single + if ((vrfa == cm->comp_fixed_ref && vrfl == cm->comp_var_ref[0]) || + (vrfl == cm->comp_fixed_ref && vrfa == cm->comp_var_ref[0])) + pred_context = 4; + else if (vrfa == vrfl) + pred_context = 3; + else + pred_context = 1; + } else if (l_sg || a_sg) { // single/comp + const MV_REFERENCE_FRAME vrfc = l_sg ? vrfa : vrfl; + const MV_REFERENCE_FRAME rfs = a_sg ? vrfa : vrfl; + if (vrfc == cm->comp_var_ref[1] && rfs != cm->comp_var_ref[1]) + pred_context = 1; + else if (rfs == cm->comp_var_ref[1] && vrfc != cm->comp_var_ref[1]) + pred_context = 2; + else + pred_context = 4; + } else if (vrfa == vrfl) { // comp/comp + pred_context = 4; + } else { + pred_context = 2; + } + } + } else if (above_in_image || left_in_image) { // one edge available + const MODE_INFO *edge_mi = above_in_image ? above_mi : left_mi; + + if (!is_inter_block(edge_mi)) { + pred_context = 2; + } else { + if (has_second_ref(edge_mi)) + pred_context = + 4 * (edge_mi->ref_frame[var_ref_idx] != cm->comp_var_ref[1]); + else + pred_context = 3 * (edge_mi->ref_frame[0] != cm->comp_var_ref[1]); + } + } else { // no edges available (2) + pred_context = 2; + } + assert(pred_context >= 0 && pred_context < REF_CONTEXTS); + + return pred_context; +} + +int vp9_get_pred_context_single_ref_p1(const MACROBLOCKD *xd) { + int pred_context; + const MODE_INFO *const above_mi = xd->above_mi; + const MODE_INFO *const left_mi = xd->left_mi; + const int has_above = !!above_mi; + const int has_left = !!left_mi; + // Note: + // The mode info data structure has a one element border above and to the + // left of the entries corresponding to real macroblocks. + // The prediction flags in these dummy entries are initialized to 0. + if (has_above && has_left) { // both edges available + const int above_intra = !is_inter_block(above_mi); + const int left_intra = !is_inter_block(left_mi); + + if (above_intra && left_intra) { // intra/intra + pred_context = 2; + } else if (above_intra || left_intra) { // intra/inter or inter/intra + const MODE_INFO *edge_mi = above_intra ? left_mi : above_mi; + if (!has_second_ref(edge_mi)) + pred_context = 4 * (edge_mi->ref_frame[0] == LAST_FRAME); + else + pred_context = 1 + (edge_mi->ref_frame[0] == LAST_FRAME || + edge_mi->ref_frame[1] == LAST_FRAME); + } else { // inter/inter + const int above_has_second = has_second_ref(above_mi); + const int left_has_second = has_second_ref(left_mi); + const MV_REFERENCE_FRAME above0 = above_mi->ref_frame[0]; + const MV_REFERENCE_FRAME above1 = above_mi->ref_frame[1]; + const MV_REFERENCE_FRAME left0 = left_mi->ref_frame[0]; + const MV_REFERENCE_FRAME left1 = left_mi->ref_frame[1]; + + if (above_has_second && left_has_second) { + pred_context = 1 + (above0 == LAST_FRAME || above1 == LAST_FRAME || + left0 == LAST_FRAME || left1 == LAST_FRAME); + } else if (above_has_second || left_has_second) { + const MV_REFERENCE_FRAME rfs = !above_has_second ? above0 : left0; + const MV_REFERENCE_FRAME crf1 = above_has_second ? above0 : left0; + const MV_REFERENCE_FRAME crf2 = above_has_second ? above1 : left1; + + if (rfs == LAST_FRAME) + pred_context = 3 + (crf1 == LAST_FRAME || crf2 == LAST_FRAME); + else + pred_context = (crf1 == LAST_FRAME || crf2 == LAST_FRAME); + } else { + pred_context = 2 * (above0 == LAST_FRAME) + 2 * (left0 == LAST_FRAME); + } + } + } else if (has_above || has_left) { // one edge available + const MODE_INFO *edge_mi = has_above ? above_mi : left_mi; + if (!is_inter_block(edge_mi)) { // intra + pred_context = 2; + } else { // inter + if (!has_second_ref(edge_mi)) + pred_context = 4 * (edge_mi->ref_frame[0] == LAST_FRAME); + else + pred_context = 1 + (edge_mi->ref_frame[0] == LAST_FRAME || + edge_mi->ref_frame[1] == LAST_FRAME); + } + } else { // no edges available + pred_context = 2; + } + + assert(pred_context >= 0 && pred_context < REF_CONTEXTS); + return pred_context; +} + +int vp9_get_pred_context_single_ref_p2(const MACROBLOCKD *xd) { + int pred_context; + const MODE_INFO *const above_mi = xd->above_mi; + const MODE_INFO *const left_mi = xd->left_mi; + const int has_above = !!above_mi; + const int has_left = !!left_mi; + + // Note: + // The mode info data structure has a one element border above and to the + // left of the entries corresponding to real macroblocks. + // The prediction flags in these dummy entries are initialized to 0. + if (has_above && has_left) { // both edges available + const int above_intra = !is_inter_block(above_mi); + const int left_intra = !is_inter_block(left_mi); + + if (above_intra && left_intra) { // intra/intra + pred_context = 2; + } else if (above_intra || left_intra) { // intra/inter or inter/intra + const MODE_INFO *edge_mi = above_intra ? left_mi : above_mi; + if (!has_second_ref(edge_mi)) { + if (edge_mi->ref_frame[0] == LAST_FRAME) + pred_context = 3; + else + pred_context = 4 * (edge_mi->ref_frame[0] == GOLDEN_FRAME); + } else { + pred_context = 1 + + 2 * (edge_mi->ref_frame[0] == GOLDEN_FRAME || + edge_mi->ref_frame[1] == GOLDEN_FRAME); + } + } else { // inter/inter + const int above_has_second = has_second_ref(above_mi); + const int left_has_second = has_second_ref(left_mi); + const MV_REFERENCE_FRAME above0 = above_mi->ref_frame[0]; + const MV_REFERENCE_FRAME above1 = above_mi->ref_frame[1]; + const MV_REFERENCE_FRAME left0 = left_mi->ref_frame[0]; + const MV_REFERENCE_FRAME left1 = left_mi->ref_frame[1]; + + if (above_has_second && left_has_second) { + if (above0 == left0 && above1 == left1) + pred_context = + 3 * (above0 == GOLDEN_FRAME || above1 == GOLDEN_FRAME || + left0 == GOLDEN_FRAME || left1 == GOLDEN_FRAME); + else + pred_context = 2; + } else if (above_has_second || left_has_second) { + const MV_REFERENCE_FRAME rfs = !above_has_second ? above0 : left0; + const MV_REFERENCE_FRAME crf1 = above_has_second ? above0 : left0; + const MV_REFERENCE_FRAME crf2 = above_has_second ? above1 : left1; + + if (rfs == GOLDEN_FRAME) + pred_context = 3 + (crf1 == GOLDEN_FRAME || crf2 == GOLDEN_FRAME); + else if (rfs == ALTREF_FRAME) + pred_context = crf1 == GOLDEN_FRAME || crf2 == GOLDEN_FRAME; + else + pred_context = 1 + 2 * (crf1 == GOLDEN_FRAME || crf2 == GOLDEN_FRAME); + } else { + if (above0 == LAST_FRAME && left0 == LAST_FRAME) { + pred_context = 3; + } else if (above0 == LAST_FRAME || left0 == LAST_FRAME) { + const MV_REFERENCE_FRAME edge0 = + (above0 == LAST_FRAME) ? left0 : above0; + pred_context = 4 * (edge0 == GOLDEN_FRAME); + } else { + pred_context = + 2 * (above0 == GOLDEN_FRAME) + 2 * (left0 == GOLDEN_FRAME); + } + } + } + } else if (has_above || has_left) { // one edge available + const MODE_INFO *edge_mi = has_above ? above_mi : left_mi; + + if (!is_inter_block(edge_mi) || + (edge_mi->ref_frame[0] == LAST_FRAME && !has_second_ref(edge_mi))) + pred_context = 2; + else if (!has_second_ref(edge_mi)) + pred_context = 4 * (edge_mi->ref_frame[0] == GOLDEN_FRAME); + else + pred_context = 3 * (edge_mi->ref_frame[0] == GOLDEN_FRAME || + edge_mi->ref_frame[1] == GOLDEN_FRAME); + } else { // no edges available (2) + pred_context = 2; + } + assert(pred_context >= 0 && pred_context < REF_CONTEXTS); + return pred_context; +} diff --git a/vp9/common/vp9_pred_common.h b/vp9/common/vp9_pred_common.h new file mode 100644 index 0000000..8400bd7 --- /dev/null +++ b/vp9/common/vp9_pred_common.h @@ -0,0 +1,199 @@ +/* + * Copyright (c) 2012 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP9_COMMON_VP9_PRED_COMMON_H_ +#define VP9_COMMON_VP9_PRED_COMMON_H_ + +#include "vp9/common/vp9_blockd.h" +#include "vp9/common/vp9_onyxc_int.h" +#include "vpx_dsp/vpx_dsp_common.h" + +#ifdef __cplusplus +extern "C" { +#endif + +static INLINE int get_segment_id(const VP9_COMMON *cm, + const uint8_t *segment_ids, BLOCK_SIZE bsize, + int mi_row, int mi_col) { + const int mi_offset = mi_row * cm->mi_cols + mi_col; + const int bw = num_8x8_blocks_wide_lookup[bsize]; + const int bh = num_8x8_blocks_high_lookup[bsize]; + const int xmis = VPXMIN(cm->mi_cols - mi_col, bw); + const int ymis = VPXMIN(cm->mi_rows - mi_row, bh); + int x, y, segment_id = MAX_SEGMENTS; + + for (y = 0; y < ymis; ++y) + for (x = 0; x < xmis; ++x) + segment_id = + VPXMIN(segment_id, segment_ids[mi_offset + y * cm->mi_cols + x]); + + assert(segment_id >= 0 && segment_id < MAX_SEGMENTS); + return segment_id; +} + +static INLINE int vp9_get_pred_context_seg_id(const MACROBLOCKD *xd) { + const MODE_INFO *const above_mi = xd->above_mi; + const MODE_INFO *const left_mi = xd->left_mi; + const int above_sip = (above_mi != NULL) ? above_mi->seg_id_predicted : 0; + const int left_sip = (left_mi != NULL) ? left_mi->seg_id_predicted : 0; + + return above_sip + left_sip; +} + +static INLINE vpx_prob vp9_get_pred_prob_seg_id(const struct segmentation *seg, + const MACROBLOCKD *xd) { + return seg->pred_probs[vp9_get_pred_context_seg_id(xd)]; +} + +static INLINE int vp9_get_skip_context(const MACROBLOCKD *xd) { + const MODE_INFO *const above_mi = xd->above_mi; + const MODE_INFO *const left_mi = xd->left_mi; + const int above_skip = (above_mi != NULL) ? above_mi->skip : 0; + const int left_skip = (left_mi != NULL) ? left_mi->skip : 0; + return above_skip + left_skip; +} + +static INLINE vpx_prob vp9_get_skip_prob(const VP9_COMMON *cm, + const MACROBLOCKD *xd) { + return cm->fc->skip_probs[vp9_get_skip_context(xd)]; +} + +// Returns a context number for the given MB prediction signal +static INLINE int get_pred_context_switchable_interp(const MACROBLOCKD *xd) { + // Note: + // The mode info data structure has a one element border above and to the + // left of the entries corresponding to real macroblocks. + // The prediction flags in these dummy entries are initialized to 0. + const MODE_INFO *const left_mi = xd->left_mi; + const int left_type = left_mi ? left_mi->interp_filter : SWITCHABLE_FILTERS; + const MODE_INFO *const above_mi = xd->above_mi; + const int above_type = + above_mi ? above_mi->interp_filter : SWITCHABLE_FILTERS; + + if (left_type == above_type) + return left_type; + else if (left_type == SWITCHABLE_FILTERS) + return above_type; + else if (above_type == SWITCHABLE_FILTERS) + return left_type; + else + return SWITCHABLE_FILTERS; +} + +// The mode info data structure has a one element border above and to the +// left of the entries corresponding to real macroblocks. +// The prediction flags in these dummy entries are initialized to 0. +// 0 - inter/inter, inter/--, --/inter, --/-- +// 1 - intra/inter, inter/intra +// 2 - intra/--, --/intra +// 3 - intra/intra +static INLINE int get_intra_inter_context(const MACROBLOCKD *xd) { + const MODE_INFO *const above_mi = xd->above_mi; + const MODE_INFO *const left_mi = xd->left_mi; + const int has_above = !!above_mi; + const int has_left = !!left_mi; + + if (has_above && has_left) { // both edges available + const int above_intra = !is_inter_block(above_mi); + const int left_intra = !is_inter_block(left_mi); + return left_intra && above_intra ? 3 : left_intra || above_intra; + } else if (has_above || has_left) { // one edge available + return 2 * !is_inter_block(has_above ? above_mi : left_mi); + } + return 0; +} + +static INLINE vpx_prob vp9_get_intra_inter_prob(const VP9_COMMON *cm, + const MACROBLOCKD *xd) { + return cm->fc->intra_inter_prob[get_intra_inter_context(xd)]; +} + +int vp9_get_reference_mode_context(const VP9_COMMON *cm, const MACROBLOCKD *xd); + +static INLINE vpx_prob vp9_get_reference_mode_prob(const VP9_COMMON *cm, + const MACROBLOCKD *xd) { + return cm->fc->comp_inter_prob[vp9_get_reference_mode_context(cm, xd)]; +} + +int vp9_get_pred_context_comp_ref_p(const VP9_COMMON *cm, + const MACROBLOCKD *xd); + +static INLINE vpx_prob vp9_get_pred_prob_comp_ref_p(const VP9_COMMON *cm, + const MACROBLOCKD *xd) { + const int pred_context = vp9_get_pred_context_comp_ref_p(cm, xd); + return cm->fc->comp_ref_prob[pred_context]; +} + +int vp9_get_pred_context_single_ref_p1(const MACROBLOCKD *xd); + +static INLINE vpx_prob vp9_get_pred_prob_single_ref_p1(const VP9_COMMON *cm, + const MACROBLOCKD *xd) { + return cm->fc->single_ref_prob[vp9_get_pred_context_single_ref_p1(xd)][0]; +} + +int vp9_get_pred_context_single_ref_p2(const MACROBLOCKD *xd); + +static INLINE vpx_prob vp9_get_pred_prob_single_ref_p2(const VP9_COMMON *cm, + const MACROBLOCKD *xd) { + return cm->fc->single_ref_prob[vp9_get_pred_context_single_ref_p2(xd)][1]; +} + +// Returns a context number for the given MB prediction signal +// The mode info data structure has a one element border above and to the +// left of the entries corresponding to real blocks. +// The prediction flags in these dummy entries are initialized to 0. +static INLINE int get_tx_size_context(const MACROBLOCKD *xd) { + const int max_tx_size = max_txsize_lookup[xd->mi[0]->sb_type]; + const MODE_INFO *const above_mi = xd->above_mi; + const MODE_INFO *const left_mi = xd->left_mi; + const int has_above = !!above_mi; + const int has_left = !!left_mi; + int above_ctx = + (has_above && !above_mi->skip) ? (int)above_mi->tx_size : max_tx_size; + int left_ctx = + (has_left && !left_mi->skip) ? (int)left_mi->tx_size : max_tx_size; + if (!has_left) left_ctx = above_ctx; + + if (!has_above) above_ctx = left_ctx; + + return (above_ctx + left_ctx) > max_tx_size; +} + +static INLINE const vpx_prob *get_tx_probs(TX_SIZE max_tx_size, int ctx, + const struct tx_probs *tx_probs) { + switch (max_tx_size) { + case TX_8X8: return tx_probs->p8x8[ctx]; + case TX_16X16: return tx_probs->p16x16[ctx]; + case TX_32X32: return tx_probs->p32x32[ctx]; + default: assert(0 && "Invalid max_tx_size."); return NULL; + } +} + +static INLINE const vpx_prob *get_tx_probs2(TX_SIZE max_tx_size, + const MACROBLOCKD *xd, + const struct tx_probs *tx_probs) { + return get_tx_probs(max_tx_size, get_tx_size_context(xd), tx_probs); +} + +static INLINE unsigned int *get_tx_counts(TX_SIZE max_tx_size, int ctx, + struct tx_counts *tx_counts) { + switch (max_tx_size) { + case TX_8X8: return tx_counts->p8x8[ctx]; + case TX_16X16: return tx_counts->p16x16[ctx]; + case TX_32X32: return tx_counts->p32x32[ctx]; + default: assert(0 && "Invalid max_tx_size."); return NULL; + } +} + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP9_COMMON_VP9_PRED_COMMON_H_ diff --git a/vp9/common/vp9_quant_common.c b/vp9/common/vp9_quant_common.c new file mode 100644 index 0000000..1dc18dc --- /dev/null +++ b/vp9/common/vp9_quant_common.c @@ -0,0 +1,206 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "vp9/common/vp9_common.h" +#include "vp9/common/vp9_quant_common.h" +#include "vp9/common/vp9_seg_common.h" + +static const int16_t dc_qlookup[QINDEX_RANGE] = { + 4, 8, 8, 9, 10, 11, 12, 12, 13, 14, 15, 16, 17, 18, + 19, 19, 20, 21, 22, 23, 24, 25, 26, 26, 27, 28, 29, 30, + 31, 32, 32, 33, 34, 35, 36, 37, 38, 38, 39, 40, 41, 42, + 43, 43, 44, 45, 46, 47, 48, 48, 49, 50, 51, 52, 53, 53, + 54, 55, 56, 57, 57, 58, 59, 60, 61, 62, 62, 63, 64, 65, + 66, 66, 67, 68, 69, 70, 70, 71, 72, 73, 74, 74, 75, 76, + 77, 78, 78, 79, 80, 81, 81, 82, 83, 84, 85, 85, 87, 88, + 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, + 111, 113, 114, 116, 117, 118, 120, 121, 123, 125, 127, 129, 131, 134, + 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 161, 164, + 166, 169, 172, 174, 177, 180, 182, 185, 187, 190, 192, 195, 199, 202, + 205, 208, 211, 214, 217, 220, 223, 226, 230, 233, 237, 240, 243, 247, + 250, 253, 257, 261, 265, 269, 272, 276, 280, 284, 288, 292, 296, 300, + 304, 309, 313, 317, 322, 326, 330, 335, 340, 344, 349, 354, 359, 364, + 369, 374, 379, 384, 389, 395, 400, 406, 411, 417, 423, 429, 435, 441, + 447, 454, 461, 467, 475, 482, 489, 497, 505, 513, 522, 530, 539, 549, + 559, 569, 579, 590, 602, 614, 626, 640, 654, 668, 684, 700, 717, 736, + 755, 775, 796, 819, 843, 869, 896, 925, 955, 988, 1022, 1058, 1098, 1139, + 1184, 1232, 1282, 1336, +}; + +#if CONFIG_VP9_HIGHBITDEPTH +static const int16_t dc_qlookup_10[QINDEX_RANGE] = { + 4, 9, 10, 13, 15, 17, 20, 22, 25, 28, 31, 34, 37, + 40, 43, 47, 50, 53, 57, 60, 64, 68, 71, 75, 78, 82, + 86, 90, 93, 97, 101, 105, 109, 113, 116, 120, 124, 128, 132, + 136, 140, 143, 147, 151, 155, 159, 163, 166, 170, 174, 178, 182, + 185, 189, 193, 197, 200, 204, 208, 212, 215, 219, 223, 226, 230, + 233, 237, 241, 244, 248, 251, 255, 259, 262, 266, 269, 273, 276, + 280, 283, 287, 290, 293, 297, 300, 304, 307, 310, 314, 317, 321, + 324, 327, 331, 334, 337, 343, 350, 356, 362, 369, 375, 381, 387, + 394, 400, 406, 412, 418, 424, 430, 436, 442, 448, 454, 460, 466, + 472, 478, 484, 490, 499, 507, 516, 525, 533, 542, 550, 559, 567, + 576, 584, 592, 601, 609, 617, 625, 634, 644, 655, 666, 676, 687, + 698, 708, 718, 729, 739, 749, 759, 770, 782, 795, 807, 819, 831, + 844, 856, 868, 880, 891, 906, 920, 933, 947, 961, 975, 988, 1001, + 1015, 1030, 1045, 1061, 1076, 1090, 1105, 1120, 1137, 1153, 1170, 1186, 1202, + 1218, 1236, 1253, 1271, 1288, 1306, 1323, 1342, 1361, 1379, 1398, 1416, 1436, + 1456, 1476, 1496, 1516, 1537, 1559, 1580, 1601, 1624, 1647, 1670, 1692, 1717, + 1741, 1766, 1791, 1817, 1844, 1871, 1900, 1929, 1958, 1990, 2021, 2054, 2088, + 2123, 2159, 2197, 2236, 2276, 2319, 2363, 2410, 2458, 2508, 2561, 2616, 2675, + 2737, 2802, 2871, 2944, 3020, 3102, 3188, 3280, 3375, 3478, 3586, 3702, 3823, + 3953, 4089, 4236, 4394, 4559, 4737, 4929, 5130, 5347, +}; + +static const int16_t dc_qlookup_12[QINDEX_RANGE] = { + 4, 12, 18, 25, 33, 41, 50, 60, 70, 80, 91, + 103, 115, 127, 140, 153, 166, 180, 194, 208, 222, 237, + 251, 266, 281, 296, 312, 327, 343, 358, 374, 390, 405, + 421, 437, 453, 469, 484, 500, 516, 532, 548, 564, 580, + 596, 611, 627, 643, 659, 674, 690, 706, 721, 737, 752, + 768, 783, 798, 814, 829, 844, 859, 874, 889, 904, 919, + 934, 949, 964, 978, 993, 1008, 1022, 1037, 1051, 1065, 1080, + 1094, 1108, 1122, 1136, 1151, 1165, 1179, 1192, 1206, 1220, 1234, + 1248, 1261, 1275, 1288, 1302, 1315, 1329, 1342, 1368, 1393, 1419, + 1444, 1469, 1494, 1519, 1544, 1569, 1594, 1618, 1643, 1668, 1692, + 1717, 1741, 1765, 1789, 1814, 1838, 1862, 1885, 1909, 1933, 1957, + 1992, 2027, 2061, 2096, 2130, 2165, 2199, 2233, 2267, 2300, 2334, + 2367, 2400, 2434, 2467, 2499, 2532, 2575, 2618, 2661, 2704, 2746, + 2788, 2830, 2872, 2913, 2954, 2995, 3036, 3076, 3127, 3177, 3226, + 3275, 3324, 3373, 3421, 3469, 3517, 3565, 3621, 3677, 3733, 3788, + 3843, 3897, 3951, 4005, 4058, 4119, 4181, 4241, 4301, 4361, 4420, + 4479, 4546, 4612, 4677, 4742, 4807, 4871, 4942, 5013, 5083, 5153, + 5222, 5291, 5367, 5442, 5517, 5591, 5665, 5745, 5825, 5905, 5984, + 6063, 6149, 6234, 6319, 6404, 6495, 6587, 6678, 6769, 6867, 6966, + 7064, 7163, 7269, 7376, 7483, 7599, 7715, 7832, 7958, 8085, 8214, + 8352, 8492, 8635, 8788, 8945, 9104, 9275, 9450, 9639, 9832, 10031, + 10245, 10465, 10702, 10946, 11210, 11482, 11776, 12081, 12409, 12750, 13118, + 13501, 13913, 14343, 14807, 15290, 15812, 16356, 16943, 17575, 18237, 18949, + 19718, 20521, 21387, +}; +#endif + +static const int16_t ac_qlookup[QINDEX_RANGE] = { + 4, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, + 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, + 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, + 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, + 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, + 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, + 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, + 98, 99, 100, 101, 102, 104, 106, 108, 110, 112, 114, 116, 118, + 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 142, 144, + 146, 148, 150, 152, 155, 158, 161, 164, 167, 170, 173, 176, 179, + 182, 185, 188, 191, 194, 197, 200, 203, 207, 211, 215, 219, 223, + 227, 231, 235, 239, 243, 247, 251, 255, 260, 265, 270, 275, 280, + 285, 290, 295, 300, 305, 311, 317, 323, 329, 335, 341, 347, 353, + 359, 366, 373, 380, 387, 394, 401, 408, 416, 424, 432, 440, 448, + 456, 465, 474, 483, 492, 501, 510, 520, 530, 540, 550, 560, 571, + 582, 593, 604, 615, 627, 639, 651, 663, 676, 689, 702, 715, 729, + 743, 757, 771, 786, 801, 816, 832, 848, 864, 881, 898, 915, 933, + 951, 969, 988, 1007, 1026, 1046, 1066, 1087, 1108, 1129, 1151, 1173, 1196, + 1219, 1243, 1267, 1292, 1317, 1343, 1369, 1396, 1423, 1451, 1479, 1508, 1537, + 1567, 1597, 1628, 1660, 1692, 1725, 1759, 1793, 1828, +}; + +#if CONFIG_VP9_HIGHBITDEPTH +static const int16_t ac_qlookup_10[QINDEX_RANGE] = { + 4, 9, 11, 13, 16, 18, 21, 24, 27, 30, 33, 37, 40, + 44, 48, 51, 55, 59, 63, 67, 71, 75, 79, 83, 88, 92, + 96, 100, 105, 109, 114, 118, 122, 127, 131, 136, 140, 145, 149, + 154, 158, 163, 168, 172, 177, 181, 186, 190, 195, 199, 204, 208, + 213, 217, 222, 226, 231, 235, 240, 244, 249, 253, 258, 262, 267, + 271, 275, 280, 284, 289, 293, 297, 302, 306, 311, 315, 319, 324, + 328, 332, 337, 341, 345, 349, 354, 358, 362, 367, 371, 375, 379, + 384, 388, 392, 396, 401, 409, 417, 425, 433, 441, 449, 458, 466, + 474, 482, 490, 498, 506, 514, 523, 531, 539, 547, 555, 563, 571, + 579, 588, 596, 604, 616, 628, 640, 652, 664, 676, 688, 700, 713, + 725, 737, 749, 761, 773, 785, 797, 809, 825, 841, 857, 873, 889, + 905, 922, 938, 954, 970, 986, 1002, 1018, 1038, 1058, 1078, 1098, 1118, + 1138, 1158, 1178, 1198, 1218, 1242, 1266, 1290, 1314, 1338, 1362, 1386, 1411, + 1435, 1463, 1491, 1519, 1547, 1575, 1603, 1631, 1663, 1695, 1727, 1759, 1791, + 1823, 1859, 1895, 1931, 1967, 2003, 2039, 2079, 2119, 2159, 2199, 2239, 2283, + 2327, 2371, 2415, 2459, 2507, 2555, 2603, 2651, 2703, 2755, 2807, 2859, 2915, + 2971, 3027, 3083, 3143, 3203, 3263, 3327, 3391, 3455, 3523, 3591, 3659, 3731, + 3803, 3876, 3952, 4028, 4104, 4184, 4264, 4348, 4432, 4516, 4604, 4692, 4784, + 4876, 4972, 5068, 5168, 5268, 5372, 5476, 5584, 5692, 5804, 5916, 6032, 6148, + 6268, 6388, 6512, 6640, 6768, 6900, 7036, 7172, 7312, +}; + +static const int16_t ac_qlookup_12[QINDEX_RANGE] = { + 4, 13, 19, 27, 35, 44, 54, 64, 75, 87, 99, + 112, 126, 139, 154, 168, 183, 199, 214, 230, 247, 263, + 280, 297, 314, 331, 349, 366, 384, 402, 420, 438, 456, + 475, 493, 511, 530, 548, 567, 586, 604, 623, 642, 660, + 679, 698, 716, 735, 753, 772, 791, 809, 828, 846, 865, + 884, 902, 920, 939, 957, 976, 994, 1012, 1030, 1049, 1067, + 1085, 1103, 1121, 1139, 1157, 1175, 1193, 1211, 1229, 1246, 1264, + 1282, 1299, 1317, 1335, 1352, 1370, 1387, 1405, 1422, 1440, 1457, + 1474, 1491, 1509, 1526, 1543, 1560, 1577, 1595, 1627, 1660, 1693, + 1725, 1758, 1791, 1824, 1856, 1889, 1922, 1954, 1987, 2020, 2052, + 2085, 2118, 2150, 2183, 2216, 2248, 2281, 2313, 2346, 2378, 2411, + 2459, 2508, 2556, 2605, 2653, 2701, 2750, 2798, 2847, 2895, 2943, + 2992, 3040, 3088, 3137, 3185, 3234, 3298, 3362, 3426, 3491, 3555, + 3619, 3684, 3748, 3812, 3876, 3941, 4005, 4069, 4149, 4230, 4310, + 4390, 4470, 4550, 4631, 4711, 4791, 4871, 4967, 5064, 5160, 5256, + 5352, 5448, 5544, 5641, 5737, 5849, 5961, 6073, 6185, 6297, 6410, + 6522, 6650, 6778, 6906, 7034, 7162, 7290, 7435, 7579, 7723, 7867, + 8011, 8155, 8315, 8475, 8635, 8795, 8956, 9132, 9308, 9484, 9660, + 9836, 10028, 10220, 10412, 10604, 10812, 11020, 11228, 11437, 11661, 11885, + 12109, 12333, 12573, 12813, 13053, 13309, 13565, 13821, 14093, 14365, 14637, + 14925, 15213, 15502, 15806, 16110, 16414, 16734, 17054, 17390, 17726, 18062, + 18414, 18766, 19134, 19502, 19886, 20270, 20670, 21070, 21486, 21902, 22334, + 22766, 23214, 23662, 24126, 24590, 25070, 25551, 26047, 26559, 27071, 27599, + 28143, 28687, 29247, +}; +#endif + +int16_t vp9_dc_quant(int qindex, int delta, vpx_bit_depth_t bit_depth) { +#if CONFIG_VP9_HIGHBITDEPTH + switch (bit_depth) { + case VPX_BITS_8: return dc_qlookup[clamp(qindex + delta, 0, MAXQ)]; + case VPX_BITS_10: return dc_qlookup_10[clamp(qindex + delta, 0, MAXQ)]; + case VPX_BITS_12: return dc_qlookup_12[clamp(qindex + delta, 0, MAXQ)]; + default: + assert(0 && "bit_depth should be VPX_BITS_8, VPX_BITS_10 or VPX_BITS_12"); + return -1; + } +#else + (void)bit_depth; + return dc_qlookup[clamp(qindex + delta, 0, MAXQ)]; +#endif +} + +int16_t vp9_ac_quant(int qindex, int delta, vpx_bit_depth_t bit_depth) { +#if CONFIG_VP9_HIGHBITDEPTH + switch (bit_depth) { + case VPX_BITS_8: return ac_qlookup[clamp(qindex + delta, 0, MAXQ)]; + case VPX_BITS_10: return ac_qlookup_10[clamp(qindex + delta, 0, MAXQ)]; + case VPX_BITS_12: return ac_qlookup_12[clamp(qindex + delta, 0, MAXQ)]; + default: + assert(0 && "bit_depth should be VPX_BITS_8, VPX_BITS_10 or VPX_BITS_12"); + return -1; + } +#else + (void)bit_depth; + return ac_qlookup[clamp(qindex + delta, 0, MAXQ)]; +#endif +} + +int vp9_get_qindex(const struct segmentation *seg, int segment_id, + int base_qindex) { + if (segfeature_active(seg, segment_id, SEG_LVL_ALT_Q)) { + const int data = get_segdata(seg, segment_id, SEG_LVL_ALT_Q); + const int seg_qindex = + seg->abs_delta == SEGMENT_ABSDATA ? data : base_qindex + data; + return clamp(seg_qindex, 0, MAXQ); + } else { + return base_qindex; + } +} diff --git a/vp9/common/vp9_quant_common.h b/vp9/common/vp9_quant_common.h new file mode 100644 index 0000000..4bae4a8 --- /dev/null +++ b/vp9/common/vp9_quant_common.h @@ -0,0 +1,36 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP9_COMMON_VP9_QUANT_COMMON_H_ +#define VP9_COMMON_VP9_QUANT_COMMON_H_ + +#include "vpx/vpx_codec.h" +#include "vp9/common/vp9_seg_common.h" + +#ifdef __cplusplus +extern "C" { +#endif + +#define MINQ 0 +#define MAXQ 255 +#define QINDEX_RANGE (MAXQ - MINQ + 1) +#define QINDEX_BITS 8 + +int16_t vp9_dc_quant(int qindex, int delta, vpx_bit_depth_t bit_depth); +int16_t vp9_ac_quant(int qindex, int delta, vpx_bit_depth_t bit_depth); + +int vp9_get_qindex(const struct segmentation *seg, int segment_id, + int base_qindex); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP9_COMMON_VP9_QUANT_COMMON_H_ diff --git a/vp9/common/vp9_reconinter.c b/vp9/common/vp9_reconinter.c new file mode 100644 index 0000000..a108a65 --- /dev/null +++ b/vp9/common/vp9_reconinter.c @@ -0,0 +1,288 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include + +#include "./vpx_scale_rtcd.h" +#include "./vpx_config.h" + +#include "vpx/vpx_integer.h" + +#include "vp9/common/vp9_blockd.h" +#include "vp9/common/vp9_reconinter.h" +#include "vp9/common/vp9_reconintra.h" + +#if CONFIG_VP9_HIGHBITDEPTH +void vp9_highbd_build_inter_predictor( + const uint16_t *src, int src_stride, uint16_t *dst, int dst_stride, + const MV *src_mv, const struct scale_factors *sf, int w, int h, int ref, + const InterpKernel *kernel, enum mv_precision precision, int x, int y, + int bd) { + const int is_q4 = precision == MV_PRECISION_Q4; + const MV mv_q4 = { is_q4 ? src_mv->row : src_mv->row * 2, + is_q4 ? src_mv->col : src_mv->col * 2 }; + MV32 mv = vp9_scale_mv(&mv_q4, x, y, sf); + const int subpel_x = mv.col & SUBPEL_MASK; + const int subpel_y = mv.row & SUBPEL_MASK; + + src += (mv.row >> SUBPEL_BITS) * src_stride + (mv.col >> SUBPEL_BITS); + + highbd_inter_predictor(src, src_stride, dst, dst_stride, subpel_x, subpel_y, + sf, w, h, ref, kernel, sf->x_step_q4, sf->y_step_q4, + bd); +} +#endif // CONFIG_VP9_HIGHBITDEPTH + +void vp9_build_inter_predictor(const uint8_t *src, int src_stride, uint8_t *dst, + int dst_stride, const MV *src_mv, + const struct scale_factors *sf, int w, int h, + int ref, const InterpKernel *kernel, + enum mv_precision precision, int x, int y) { + const int is_q4 = precision == MV_PRECISION_Q4; + const MV mv_q4 = { is_q4 ? src_mv->row : src_mv->row * 2, + is_q4 ? src_mv->col : src_mv->col * 2 }; + MV32 mv = vp9_scale_mv(&mv_q4, x, y, sf); + const int subpel_x = mv.col & SUBPEL_MASK; + const int subpel_y = mv.row & SUBPEL_MASK; + + src += (mv.row >> SUBPEL_BITS) * src_stride + (mv.col >> SUBPEL_BITS); + + inter_predictor(src, src_stride, dst, dst_stride, subpel_x, subpel_y, sf, w, + h, ref, kernel, sf->x_step_q4, sf->y_step_q4); +} + +static INLINE int round_mv_comp_q4(int value) { + return (value < 0 ? value - 2 : value + 2) / 4; +} + +static MV mi_mv_pred_q4(const MODE_INFO *mi, int idx) { + MV res = { + round_mv_comp_q4( + mi->bmi[0].as_mv[idx].as_mv.row + mi->bmi[1].as_mv[idx].as_mv.row + + mi->bmi[2].as_mv[idx].as_mv.row + mi->bmi[3].as_mv[idx].as_mv.row), + round_mv_comp_q4( + mi->bmi[0].as_mv[idx].as_mv.col + mi->bmi[1].as_mv[idx].as_mv.col + + mi->bmi[2].as_mv[idx].as_mv.col + mi->bmi[3].as_mv[idx].as_mv.col) + }; + return res; +} + +static INLINE int round_mv_comp_q2(int value) { + return (value < 0 ? value - 1 : value + 1) / 2; +} + +static MV mi_mv_pred_q2(const MODE_INFO *mi, int idx, int block0, int block1) { + MV res = { round_mv_comp_q2(mi->bmi[block0].as_mv[idx].as_mv.row + + mi->bmi[block1].as_mv[idx].as_mv.row), + round_mv_comp_q2(mi->bmi[block0].as_mv[idx].as_mv.col + + mi->bmi[block1].as_mv[idx].as_mv.col) }; + return res; +} + +// TODO(jkoleszar): yet another mv clamping function :-( +MV clamp_mv_to_umv_border_sb(const MACROBLOCKD *xd, const MV *src_mv, int bw, + int bh, int ss_x, int ss_y) { + // If the MV points so far into the UMV border that no visible pixels + // are used for reconstruction, the subpel part of the MV can be + // discarded and the MV limited to 16 pixels with equivalent results. + const int spel_left = (VP9_INTERP_EXTEND + bw) << SUBPEL_BITS; + const int spel_right = spel_left - SUBPEL_SHIFTS; + const int spel_top = (VP9_INTERP_EXTEND + bh) << SUBPEL_BITS; + const int spel_bottom = spel_top - SUBPEL_SHIFTS; + MV clamped_mv = { src_mv->row * (1 << (1 - ss_y)), + src_mv->col * (1 << (1 - ss_x)) }; + assert(ss_x <= 1); + assert(ss_y <= 1); + + clamp_mv(&clamped_mv, xd->mb_to_left_edge * (1 << (1 - ss_x)) - spel_left, + xd->mb_to_right_edge * (1 << (1 - ss_x)) + spel_right, + xd->mb_to_top_edge * (1 << (1 - ss_y)) - spel_top, + xd->mb_to_bottom_edge * (1 << (1 - ss_y)) + spel_bottom); + + return clamped_mv; +} + +MV average_split_mvs(const struct macroblockd_plane *pd, const MODE_INFO *mi, + int ref, int block) { + const int ss_idx = ((pd->subsampling_x > 0) << 1) | (pd->subsampling_y > 0); + MV res = { 0, 0 }; + switch (ss_idx) { + case 0: res = mi->bmi[block].as_mv[ref].as_mv; break; + case 1: res = mi_mv_pred_q2(mi, ref, block, block + 2); break; + case 2: res = mi_mv_pred_q2(mi, ref, block, block + 1); break; + case 3: res = mi_mv_pred_q4(mi, ref); break; + default: assert(ss_idx <= 3 && ss_idx >= 0); + } + return res; +} + +static void build_inter_predictors(MACROBLOCKD *xd, int plane, int block, + int bw, int bh, int x, int y, int w, int h, + int mi_x, int mi_y) { + struct macroblockd_plane *const pd = &xd->plane[plane]; + const MODE_INFO *mi = xd->mi[0]; + const int is_compound = has_second_ref(mi); + const InterpKernel *kernel = vp9_filter_kernels[mi->interp_filter]; + int ref; + + for (ref = 0; ref < 1 + is_compound; ++ref) { + const struct scale_factors *const sf = &xd->block_refs[ref]->sf; + struct buf_2d *const pre_buf = &pd->pre[ref]; + struct buf_2d *const dst_buf = &pd->dst; + uint8_t *const dst = dst_buf->buf + dst_buf->stride * y + x; + const MV mv = mi->sb_type < BLOCK_8X8 + ? average_split_mvs(pd, mi, ref, block) + : mi->mv[ref].as_mv; + + // TODO(jkoleszar): This clamping is done in the incorrect place for the + // scaling case. It needs to be done on the scaled MV, not the pre-scaling + // MV. Note however that it performs the subsampling aware scaling so + // that the result is always q4. + // mv_precision precision is MV_PRECISION_Q4. + const MV mv_q4 = clamp_mv_to_umv_border_sb( + xd, &mv, bw, bh, pd->subsampling_x, pd->subsampling_y); + + uint8_t *pre; + MV32 scaled_mv; + int xs, ys, subpel_x, subpel_y; + const int is_scaled = vp9_is_scaled(sf); + + if (is_scaled) { + // Co-ordinate of containing block to pixel precision. + const int x_start = (-xd->mb_to_left_edge >> (3 + pd->subsampling_x)); + const int y_start = (-xd->mb_to_top_edge >> (3 + pd->subsampling_y)); +#if 0 // CONFIG_BETTER_HW_COMPATIBILITY + assert(xd->mi[0]->sb_type != BLOCK_4X8 && + xd->mi[0]->sb_type != BLOCK_8X4); + assert(mv_q4.row == mv.row * (1 << (1 - pd->subsampling_y)) && + mv_q4.col == mv.col * (1 << (1 - pd->subsampling_x))); +#endif + if (plane == 0) + pre_buf->buf = xd->block_refs[ref]->buf->y_buffer; + else if (plane == 1) + pre_buf->buf = xd->block_refs[ref]->buf->u_buffer; + else + pre_buf->buf = xd->block_refs[ref]->buf->v_buffer; + + pre_buf->buf += + scaled_buffer_offset(x_start + x, y_start + y, pre_buf->stride, sf); + pre = pre_buf->buf; + scaled_mv = vp9_scale_mv(&mv_q4, mi_x + x, mi_y + y, sf); + xs = sf->x_step_q4; + ys = sf->y_step_q4; + } else { + pre = pre_buf->buf + (y * pre_buf->stride + x); + scaled_mv.row = mv_q4.row; + scaled_mv.col = mv_q4.col; + xs = ys = 16; + } + subpel_x = scaled_mv.col & SUBPEL_MASK; + subpel_y = scaled_mv.row & SUBPEL_MASK; + pre += (scaled_mv.row >> SUBPEL_BITS) * pre_buf->stride + + (scaled_mv.col >> SUBPEL_BITS); + +#if CONFIG_VP9_HIGHBITDEPTH + if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { + highbd_inter_predictor(CONVERT_TO_SHORTPTR(pre), pre_buf->stride, + CONVERT_TO_SHORTPTR(dst), dst_buf->stride, + subpel_x, subpel_y, sf, w, h, ref, kernel, xs, ys, + xd->bd); + } else { + inter_predictor(pre, pre_buf->stride, dst, dst_buf->stride, subpel_x, + subpel_y, sf, w, h, ref, kernel, xs, ys); + } +#else + inter_predictor(pre, pre_buf->stride, dst, dst_buf->stride, subpel_x, + subpel_y, sf, w, h, ref, kernel, xs, ys); +#endif // CONFIG_VP9_HIGHBITDEPTH + } +} + +static void build_inter_predictors_for_planes(MACROBLOCKD *xd, BLOCK_SIZE bsize, + int mi_row, int mi_col, + int plane_from, int plane_to) { + int plane; + const int mi_x = mi_col * MI_SIZE; + const int mi_y = mi_row * MI_SIZE; + for (plane = plane_from; plane <= plane_to; ++plane) { + const BLOCK_SIZE plane_bsize = + get_plane_block_size(bsize, &xd->plane[plane]); + const int num_4x4_w = num_4x4_blocks_wide_lookup[plane_bsize]; + const int num_4x4_h = num_4x4_blocks_high_lookup[plane_bsize]; + const int bw = 4 * num_4x4_w; + const int bh = 4 * num_4x4_h; + + if (xd->mi[0]->sb_type < BLOCK_8X8) { + int i = 0, x, y; + assert(bsize == BLOCK_8X8); + for (y = 0; y < num_4x4_h; ++y) + for (x = 0; x < num_4x4_w; ++x) + build_inter_predictors(xd, plane, i++, bw, bh, 4 * x, 4 * y, 4, 4, + mi_x, mi_y); + } else { + build_inter_predictors(xd, plane, 0, bw, bh, 0, 0, bw, bh, mi_x, mi_y); + } + } +} + +void vp9_build_inter_predictors_sby(MACROBLOCKD *xd, int mi_row, int mi_col, + BLOCK_SIZE bsize) { + build_inter_predictors_for_planes(xd, bsize, mi_row, mi_col, 0, 0); +} + +void vp9_build_inter_predictors_sbp(MACROBLOCKD *xd, int mi_row, int mi_col, + BLOCK_SIZE bsize, int plane) { + build_inter_predictors_for_planes(xd, bsize, mi_row, mi_col, plane, plane); +} + +void vp9_build_inter_predictors_sbuv(MACROBLOCKD *xd, int mi_row, int mi_col, + BLOCK_SIZE bsize) { + build_inter_predictors_for_planes(xd, bsize, mi_row, mi_col, 1, + MAX_MB_PLANE - 1); +} + +void vp9_build_inter_predictors_sb(MACROBLOCKD *xd, int mi_row, int mi_col, + BLOCK_SIZE bsize) { + build_inter_predictors_for_planes(xd, bsize, mi_row, mi_col, 0, + MAX_MB_PLANE - 1); +} + +void vp9_setup_dst_planes(struct macroblockd_plane planes[MAX_MB_PLANE], + const YV12_BUFFER_CONFIG *src, int mi_row, + int mi_col) { + uint8_t *const buffers[MAX_MB_PLANE] = { src->y_buffer, src->u_buffer, + src->v_buffer }; + const int strides[MAX_MB_PLANE] = { src->y_stride, src->uv_stride, + src->uv_stride }; + int i; + + for (i = 0; i < MAX_MB_PLANE; ++i) { + struct macroblockd_plane *const pd = &planes[i]; + setup_pred_plane(&pd->dst, buffers[i], strides[i], mi_row, mi_col, NULL, + pd->subsampling_x, pd->subsampling_y); + } +} + +void vp9_setup_pre_planes(MACROBLOCKD *xd, int idx, + const YV12_BUFFER_CONFIG *src, int mi_row, int mi_col, + const struct scale_factors *sf) { + if (src != NULL) { + int i; + uint8_t *const buffers[MAX_MB_PLANE] = { src->y_buffer, src->u_buffer, + src->v_buffer }; + const int strides[MAX_MB_PLANE] = { src->y_stride, src->uv_stride, + src->uv_stride }; + for (i = 0; i < MAX_MB_PLANE; ++i) { + struct macroblockd_plane *const pd = &xd->plane[i]; + setup_pred_plane(&pd->pre[idx], buffers[i], strides[i], mi_row, mi_col, + sf, pd->subsampling_x, pd->subsampling_y); + } + } +} diff --git a/vp9/common/vp9_reconinter.h b/vp9/common/vp9_reconinter.h new file mode 100644 index 0000000..bb9291a --- /dev/null +++ b/vp9/common/vp9_reconinter.h @@ -0,0 +1,106 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP9_COMMON_VP9_RECONINTER_H_ +#define VP9_COMMON_VP9_RECONINTER_H_ + +#include "vp9/common/vp9_filter.h" +#include "vp9/common/vp9_onyxc_int.h" +#include "vpx/vpx_integer.h" +#include "vpx_dsp/vpx_filter.h" + +#ifdef __cplusplus +extern "C" { +#endif + +static INLINE void inter_predictor(const uint8_t *src, int src_stride, + uint8_t *dst, int dst_stride, + const int subpel_x, const int subpel_y, + const struct scale_factors *sf, int w, int h, + int ref, const InterpKernel *kernel, int xs, + int ys) { + sf->predict[subpel_x != 0][subpel_y != 0][ref](src, src_stride, dst, + dst_stride, kernel, subpel_x, + xs, subpel_y, ys, w, h); +} + +#if CONFIG_VP9_HIGHBITDEPTH +static INLINE void highbd_inter_predictor( + const uint16_t *src, int src_stride, uint16_t *dst, int dst_stride, + const int subpel_x, const int subpel_y, const struct scale_factors *sf, + int w, int h, int ref, const InterpKernel *kernel, int xs, int ys, int bd) { + sf->highbd_predict[subpel_x != 0][subpel_y != 0][ref]( + src, src_stride, dst, dst_stride, kernel, subpel_x, xs, subpel_y, ys, w, + h, bd); +} +#endif // CONFIG_VP9_HIGHBITDEPTH + +MV average_split_mvs(const struct macroblockd_plane *pd, const MODE_INFO *mi, + int ref, int block); + +MV clamp_mv_to_umv_border_sb(const MACROBLOCKD *xd, const MV *src_mv, int bw, + int bh, int ss_x, int ss_y); + +void vp9_build_inter_predictors_sby(MACROBLOCKD *xd, int mi_row, int mi_col, + BLOCK_SIZE bsize); + +void vp9_build_inter_predictors_sbp(MACROBLOCKD *xd, int mi_row, int mi_col, + BLOCK_SIZE bsize, int plane); + +void vp9_build_inter_predictors_sbuv(MACROBLOCKD *xd, int mi_row, int mi_col, + BLOCK_SIZE bsize); + +void vp9_build_inter_predictors_sb(MACROBLOCKD *xd, int mi_row, int mi_col, + BLOCK_SIZE bsize); + +void vp9_build_inter_predictor(const uint8_t *src, int src_stride, uint8_t *dst, + int dst_stride, const MV *mv_q3, + const struct scale_factors *sf, int w, int h, + int do_avg, const InterpKernel *kernel, + enum mv_precision precision, int x, int y); + +#if CONFIG_VP9_HIGHBITDEPTH +void vp9_highbd_build_inter_predictor( + const uint16_t *src, int src_stride, uint16_t *dst, int dst_stride, + const MV *mv_q3, const struct scale_factors *sf, int w, int h, int do_avg, + const InterpKernel *kernel, enum mv_precision precision, int x, int y, + int bd); +#endif + +static INLINE int scaled_buffer_offset(int x_offset, int y_offset, int stride, + const struct scale_factors *sf) { + const int x = sf ? sf->scale_value_x(x_offset, sf) : x_offset; + const int y = sf ? sf->scale_value_y(y_offset, sf) : y_offset; + return y * stride + x; +} + +static INLINE void setup_pred_plane(struct buf_2d *dst, uint8_t *src, + int stride, int mi_row, int mi_col, + const struct scale_factors *scale, + int subsampling_x, int subsampling_y) { + const int x = (MI_SIZE * mi_col) >> subsampling_x; + const int y = (MI_SIZE * mi_row) >> subsampling_y; + dst->buf = src + scaled_buffer_offset(x, y, stride, scale); + dst->stride = stride; +} + +void vp9_setup_dst_planes(struct macroblockd_plane planes[MAX_MB_PLANE], + const YV12_BUFFER_CONFIG *src, int mi_row, + int mi_col); + +void vp9_setup_pre_planes(MACROBLOCKD *xd, int idx, + const YV12_BUFFER_CONFIG *src, int mi_row, int mi_col, + const struct scale_factors *sf); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP9_COMMON_VP9_RECONINTER_H_ diff --git a/vp9/common/vp9_reconintra.c b/vp9/common/vp9_reconintra.c new file mode 100644 index 0000000..3e5ed61 --- /dev/null +++ b/vp9/common/vp9_reconintra.c @@ -0,0 +1,431 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "./vpx_config.h" +#include "./vpx_dsp_rtcd.h" + +#if CONFIG_VP9_HIGHBITDEPTH +#include "vpx_dsp/vpx_dsp_common.h" +#endif // CONFIG_VP9_HIGHBITDEPTH +#include "vpx_mem/vpx_mem.h" +#include "vpx_ports/mem.h" +#include "vpx_ports/vpx_once.h" + +#include "vp9/common/vp9_reconintra.h" +#include "vp9/common/vp9_onyxc_int.h" + +const TX_TYPE intra_mode_to_tx_type_lookup[INTRA_MODES] = { + DCT_DCT, // DC + ADST_DCT, // V + DCT_ADST, // H + DCT_DCT, // D45 + ADST_ADST, // D135 + ADST_DCT, // D117 + DCT_ADST, // D153 + DCT_ADST, // D207 + ADST_DCT, // D63 + ADST_ADST, // TM +}; + +enum { + NEED_LEFT = 1 << 1, + NEED_ABOVE = 1 << 2, + NEED_ABOVERIGHT = 1 << 3, +}; + +static const uint8_t extend_modes[INTRA_MODES] = { + NEED_ABOVE | NEED_LEFT, // DC + NEED_ABOVE, // V + NEED_LEFT, // H + NEED_ABOVERIGHT, // D45 + NEED_LEFT | NEED_ABOVE, // D135 + NEED_LEFT | NEED_ABOVE, // D117 + NEED_LEFT | NEED_ABOVE, // D153 + NEED_LEFT, // D207 + NEED_ABOVERIGHT, // D63 + NEED_LEFT | NEED_ABOVE, // TM +}; + +typedef void (*intra_pred_fn)(uint8_t *dst, ptrdiff_t stride, + const uint8_t *above, const uint8_t *left); + +static intra_pred_fn pred[INTRA_MODES][TX_SIZES]; +static intra_pred_fn dc_pred[2][2][TX_SIZES]; + +#if CONFIG_VP9_HIGHBITDEPTH +typedef void (*intra_high_pred_fn)(uint16_t *dst, ptrdiff_t stride, + const uint16_t *above, const uint16_t *left, + int bd); +static intra_high_pred_fn pred_high[INTRA_MODES][4]; +static intra_high_pred_fn dc_pred_high[2][2][4]; +#endif // CONFIG_VP9_HIGHBITDEPTH + +static void vp9_init_intra_predictors_internal(void) { +#define INIT_ALL_SIZES(p, type) \ + p[TX_4X4] = vpx_##type##_predictor_4x4; \ + p[TX_8X8] = vpx_##type##_predictor_8x8; \ + p[TX_16X16] = vpx_##type##_predictor_16x16; \ + p[TX_32X32] = vpx_##type##_predictor_32x32 + + INIT_ALL_SIZES(pred[V_PRED], v); + INIT_ALL_SIZES(pred[H_PRED], h); + INIT_ALL_SIZES(pred[D207_PRED], d207); + INIT_ALL_SIZES(pred[D45_PRED], d45); + INIT_ALL_SIZES(pred[D63_PRED], d63); + INIT_ALL_SIZES(pred[D117_PRED], d117); + INIT_ALL_SIZES(pred[D135_PRED], d135); + INIT_ALL_SIZES(pred[D153_PRED], d153); + INIT_ALL_SIZES(pred[TM_PRED], tm); + + INIT_ALL_SIZES(dc_pred[0][0], dc_128); + INIT_ALL_SIZES(dc_pred[0][1], dc_top); + INIT_ALL_SIZES(dc_pred[1][0], dc_left); + INIT_ALL_SIZES(dc_pred[1][1], dc); + +#if CONFIG_VP9_HIGHBITDEPTH + INIT_ALL_SIZES(pred_high[V_PRED], highbd_v); + INIT_ALL_SIZES(pred_high[H_PRED], highbd_h); + INIT_ALL_SIZES(pred_high[D207_PRED], highbd_d207); + INIT_ALL_SIZES(pred_high[D45_PRED], highbd_d45); + INIT_ALL_SIZES(pred_high[D63_PRED], highbd_d63); + INIT_ALL_SIZES(pred_high[D117_PRED], highbd_d117); + INIT_ALL_SIZES(pred_high[D135_PRED], highbd_d135); + INIT_ALL_SIZES(pred_high[D153_PRED], highbd_d153); + INIT_ALL_SIZES(pred_high[TM_PRED], highbd_tm); + + INIT_ALL_SIZES(dc_pred_high[0][0], highbd_dc_128); + INIT_ALL_SIZES(dc_pred_high[0][1], highbd_dc_top); + INIT_ALL_SIZES(dc_pred_high[1][0], highbd_dc_left); + INIT_ALL_SIZES(dc_pred_high[1][1], highbd_dc); +#endif // CONFIG_VP9_HIGHBITDEPTH + +#undef intra_pred_allsizes +} + +#if CONFIG_VP9_HIGHBITDEPTH +static void build_intra_predictors_high( + const MACROBLOCKD *xd, const uint8_t *ref8, int ref_stride, uint8_t *dst8, + int dst_stride, PREDICTION_MODE mode, TX_SIZE tx_size, int up_available, + int left_available, int right_available, int x, int y, int plane, int bd) { + int i; + uint16_t *dst = CONVERT_TO_SHORTPTR(dst8); + uint16_t *ref = CONVERT_TO_SHORTPTR(ref8); + DECLARE_ALIGNED(16, uint16_t, left_col[32]); + DECLARE_ALIGNED(16, uint16_t, above_data[64 + 16]); + uint16_t *above_row = above_data + 16; + const uint16_t *const_above_row = above_row; + const int bs = 4 << tx_size; + int frame_width, frame_height; + int x0, y0; + const struct macroblockd_plane *const pd = &xd->plane[plane]; + const int need_left = extend_modes[mode] & NEED_LEFT; + const int need_above = extend_modes[mode] & NEED_ABOVE; + const int need_aboveright = extend_modes[mode] & NEED_ABOVERIGHT; + int base = 128 << (bd - 8); + // 127 127 127 .. 127 127 127 127 127 127 + // 129 A B .. Y Z + // 129 C D .. W X + // 129 E F .. U V + // 129 G H .. S T T T T T + // For 10 bit and 12 bit, 127 and 129 are replaced by base -1 and base + 1. + + // Get current frame pointer, width and height. + if (plane == 0) { + frame_width = xd->cur_buf->y_width; + frame_height = xd->cur_buf->y_height; + } else { + frame_width = xd->cur_buf->uv_width; + frame_height = xd->cur_buf->uv_height; + } + + // Get block position in current frame. + x0 = (-xd->mb_to_left_edge >> (3 + pd->subsampling_x)) + x; + y0 = (-xd->mb_to_top_edge >> (3 + pd->subsampling_y)) + y; + + // NEED_LEFT + if (need_left) { + if (left_available) { + if (xd->mb_to_bottom_edge < 0) { + /* slower path if the block needs border extension */ + if (y0 + bs <= frame_height) { + for (i = 0; i < bs; ++i) left_col[i] = ref[i * ref_stride - 1]; + } else { + const int extend_bottom = frame_height - y0; + for (i = 0; i < extend_bottom; ++i) + left_col[i] = ref[i * ref_stride - 1]; + for (; i < bs; ++i) + left_col[i] = ref[(extend_bottom - 1) * ref_stride - 1]; + } + } else { + /* faster path if the block does not need extension */ + for (i = 0; i < bs; ++i) left_col[i] = ref[i * ref_stride - 1]; + } + } else { + vpx_memset16(left_col, base + 1, bs); + } + } + + // NEED_ABOVE + if (need_above) { + if (up_available) { + const uint16_t *above_ref = ref - ref_stride; + if (xd->mb_to_right_edge < 0) { + /* slower path if the block needs border extension */ + if (x0 + bs <= frame_width) { + memcpy(above_row, above_ref, bs * sizeof(above_row[0])); + } else if (x0 <= frame_width) { + const int r = frame_width - x0; + memcpy(above_row, above_ref, r * sizeof(above_row[0])); + vpx_memset16(above_row + r, above_row[r - 1], x0 + bs - frame_width); + } + } else { + /* faster path if the block does not need extension */ + if (bs == 4 && right_available && left_available) { + const_above_row = above_ref; + } else { + memcpy(above_row, above_ref, bs * sizeof(above_row[0])); + } + } + above_row[-1] = left_available ? above_ref[-1] : (base + 1); + } else { + vpx_memset16(above_row, base - 1, bs); + above_row[-1] = base - 1; + } + } + + // NEED_ABOVERIGHT + if (need_aboveright) { + if (up_available) { + const uint16_t *above_ref = ref - ref_stride; + if (xd->mb_to_right_edge < 0) { + /* slower path if the block needs border extension */ + if (x0 + 2 * bs <= frame_width) { + if (right_available && bs == 4) { + memcpy(above_row, above_ref, 2 * bs * sizeof(above_row[0])); + } else { + memcpy(above_row, above_ref, bs * sizeof(above_row[0])); + vpx_memset16(above_row + bs, above_row[bs - 1], bs); + } + } else if (x0 + bs <= frame_width) { + const int r = frame_width - x0; + if (right_available && bs == 4) { + memcpy(above_row, above_ref, r * sizeof(above_row[0])); + vpx_memset16(above_row + r, above_row[r - 1], + x0 + 2 * bs - frame_width); + } else { + memcpy(above_row, above_ref, bs * sizeof(above_row[0])); + vpx_memset16(above_row + bs, above_row[bs - 1], bs); + } + } else if (x0 <= frame_width) { + const int r = frame_width - x0; + memcpy(above_row, above_ref, r * sizeof(above_row[0])); + vpx_memset16(above_row + r, above_row[r - 1], + x0 + 2 * bs - frame_width); + } + above_row[-1] = left_available ? above_ref[-1] : (base + 1); + } else { + /* faster path if the block does not need extension */ + if (bs == 4 && right_available && left_available) { + const_above_row = above_ref; + } else { + memcpy(above_row, above_ref, bs * sizeof(above_row[0])); + if (bs == 4 && right_available) + memcpy(above_row + bs, above_ref + bs, bs * sizeof(above_row[0])); + else + vpx_memset16(above_row + bs, above_row[bs - 1], bs); + above_row[-1] = left_available ? above_ref[-1] : (base + 1); + } + } + } else { + vpx_memset16(above_row, base - 1, bs * 2); + above_row[-1] = base - 1; + } + } + + // predict + if (mode == DC_PRED) { + dc_pred_high[left_available][up_available][tx_size]( + dst, dst_stride, const_above_row, left_col, xd->bd); + } else { + pred_high[mode][tx_size](dst, dst_stride, const_above_row, left_col, + xd->bd); + } +} +#endif // CONFIG_VP9_HIGHBITDEPTH + +static void build_intra_predictors(const MACROBLOCKD *xd, const uint8_t *ref, + int ref_stride, uint8_t *dst, int dst_stride, + PREDICTION_MODE mode, TX_SIZE tx_size, + int up_available, int left_available, + int right_available, int x, int y, + int plane) { + int i; + DECLARE_ALIGNED(16, uint8_t, left_col[32]); + DECLARE_ALIGNED(16, uint8_t, above_data[64 + 16]); + uint8_t *above_row = above_data + 16; + const uint8_t *const_above_row = above_row; + const int bs = 4 << tx_size; + int frame_width, frame_height; + int x0, y0; + const struct macroblockd_plane *const pd = &xd->plane[plane]; + + // 127 127 127 .. 127 127 127 127 127 127 + // 129 A B .. Y Z + // 129 C D .. W X + // 129 E F .. U V + // 129 G H .. S T T T T T + // .. + + // Get current frame pointer, width and height. + if (plane == 0) { + frame_width = xd->cur_buf->y_width; + frame_height = xd->cur_buf->y_height; + } else { + frame_width = xd->cur_buf->uv_width; + frame_height = xd->cur_buf->uv_height; + } + + // Get block position in current frame. + x0 = (-xd->mb_to_left_edge >> (3 + pd->subsampling_x)) + x; + y0 = (-xd->mb_to_top_edge >> (3 + pd->subsampling_y)) + y; + + // NEED_LEFT + if (extend_modes[mode] & NEED_LEFT) { + if (left_available) { + if (xd->mb_to_bottom_edge < 0) { + /* slower path if the block needs border extension */ + if (y0 + bs <= frame_height) { + for (i = 0; i < bs; ++i) left_col[i] = ref[i * ref_stride - 1]; + } else { + const int extend_bottom = frame_height - y0; + for (i = 0; i < extend_bottom; ++i) + left_col[i] = ref[i * ref_stride - 1]; + for (; i < bs; ++i) + left_col[i] = ref[(extend_bottom - 1) * ref_stride - 1]; + } + } else { + /* faster path if the block does not need extension */ + for (i = 0; i < bs; ++i) left_col[i] = ref[i * ref_stride - 1]; + } + } else { + memset(left_col, 129, bs); + } + } + + // NEED_ABOVE + if (extend_modes[mode] & NEED_ABOVE) { + if (up_available) { + const uint8_t *above_ref = ref - ref_stride; + if (xd->mb_to_right_edge < 0) { + /* slower path if the block needs border extension */ + if (x0 + bs <= frame_width) { + memcpy(above_row, above_ref, bs); + } else if (x0 <= frame_width) { + const int r = frame_width - x0; + memcpy(above_row, above_ref, r); + memset(above_row + r, above_row[r - 1], x0 + bs - frame_width); + } + } else { + /* faster path if the block does not need extension */ + if (bs == 4 && right_available && left_available) { + const_above_row = above_ref; + } else { + memcpy(above_row, above_ref, bs); + } + } + above_row[-1] = left_available ? above_ref[-1] : 129; + } else { + memset(above_row, 127, bs); + above_row[-1] = 127; + } + } + + // NEED_ABOVERIGHT + if (extend_modes[mode] & NEED_ABOVERIGHT) { + if (up_available) { + const uint8_t *above_ref = ref - ref_stride; + if (xd->mb_to_right_edge < 0) { + /* slower path if the block needs border extension */ + if (x0 + 2 * bs <= frame_width) { + if (right_available && bs == 4) { + memcpy(above_row, above_ref, 2 * bs); + } else { + memcpy(above_row, above_ref, bs); + memset(above_row + bs, above_row[bs - 1], bs); + } + } else if (x0 + bs <= frame_width) { + const int r = frame_width - x0; + if (right_available && bs == 4) { + memcpy(above_row, above_ref, r); + memset(above_row + r, above_row[r - 1], x0 + 2 * bs - frame_width); + } else { + memcpy(above_row, above_ref, bs); + memset(above_row + bs, above_row[bs - 1], bs); + } + } else if (x0 <= frame_width) { + const int r = frame_width - x0; + memcpy(above_row, above_ref, r); + memset(above_row + r, above_row[r - 1], x0 + 2 * bs - frame_width); + } + } else { + /* faster path if the block does not need extension */ + if (bs == 4 && right_available && left_available) { + const_above_row = above_ref; + } else { + memcpy(above_row, above_ref, bs); + if (bs == 4 && right_available) + memcpy(above_row + bs, above_ref + bs, bs); + else + memset(above_row + bs, above_row[bs - 1], bs); + } + } + above_row[-1] = left_available ? above_ref[-1] : 129; + } else { + memset(above_row, 127, bs * 2); + above_row[-1] = 127; + } + } + + // predict + if (mode == DC_PRED) { + dc_pred[left_available][up_available][tx_size](dst, dst_stride, + const_above_row, left_col); + } else { + pred[mode][tx_size](dst, dst_stride, const_above_row, left_col); + } +} + +void vp9_predict_intra_block(const MACROBLOCKD *xd, int bwl_in, TX_SIZE tx_size, + PREDICTION_MODE mode, const uint8_t *ref, + int ref_stride, uint8_t *dst, int dst_stride, + int aoff, int loff, int plane) { + const int bw = (1 << bwl_in); + const int txw = (1 << tx_size); + const int have_top = loff || (xd->above_mi != NULL); + const int have_left = aoff || (xd->left_mi != NULL); + const int have_right = (aoff + txw) < bw; + const int x = aoff * 4; + const int y = loff * 4; + +#if CONFIG_VP9_HIGHBITDEPTH + if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { + build_intra_predictors_high(xd, ref, ref_stride, dst, dst_stride, mode, + tx_size, have_top, have_left, have_right, x, y, + plane, xd->bd); + return; + } +#endif + build_intra_predictors(xd, ref, ref_stride, dst, dst_stride, mode, tx_size, + have_top, have_left, have_right, x, y, plane); +} + +void vp9_init_intra_predictors(void) { + once(vp9_init_intra_predictors_internal); +} diff --git a/vp9/common/vp9_reconintra.h b/vp9/common/vp9_reconintra.h new file mode 100644 index 0000000..78e41c8 --- /dev/null +++ b/vp9/common/vp9_reconintra.h @@ -0,0 +1,31 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP9_COMMON_VP9_RECONINTRA_H_ +#define VP9_COMMON_VP9_RECONINTRA_H_ + +#include "vpx/vpx_integer.h" +#include "vp9/common/vp9_blockd.h" + +#ifdef __cplusplus +extern "C" { +#endif + +void vp9_init_intra_predictors(void); + +void vp9_predict_intra_block(const MACROBLOCKD *xd, int bwl_in, TX_SIZE tx_size, + PREDICTION_MODE mode, const uint8_t *ref, + int ref_stride, uint8_t *dst, int dst_stride, + int aoff, int loff, int plane); +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP9_COMMON_VP9_RECONINTRA_H_ diff --git a/vp9/common/vp9_rtcd.c b/vp9/common/vp9_rtcd.c new file mode 100644 index 0000000..d8c870a --- /dev/null +++ b/vp9/common/vp9_rtcd.c @@ -0,0 +1,19 @@ +/* + * Copyright (c) 2011 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ +#include "./vpx_config.h" +#define RTCD_C +#include "./vp9_rtcd.h" +#include "vpx_ports/vpx_once.h" + +void vp9_rtcd() { + // TODO(JBB): Remove this once, by insuring that both the encoder and + // decoder setup functions are protected by once(); + once(setup_rtcd_internal); +} diff --git a/vp9/common/vp9_rtcd_defs.pl b/vp9/common/vp9_rtcd_defs.pl new file mode 100644 index 0000000..22b67ec --- /dev/null +++ b/vp9/common/vp9_rtcd_defs.pl @@ -0,0 +1,215 @@ +## +## Copyright (c) 2017 The WebM project authors. All Rights Reserved. +## +## Use of this source code is governed by a BSD-style license +## that can be found in the LICENSE file in the root of the source +## tree. An additional intellectual property rights grant can be found +## in the file PATENTS. All contributing project authors may +## be found in the AUTHORS file in the root of the source tree. +## + +sub vp9_common_forward_decls() { +print <x_scale_fp >> REF_SCALE_SHIFT); +} + +static INLINE int scaled_y(int val, const struct scale_factors *sf) { + return (int)((int64_t)val * sf->y_scale_fp >> REF_SCALE_SHIFT); +} + +static int unscaled_value(int val, const struct scale_factors *sf) { + (void)sf; + return val; +} + +static int get_fixed_point_scale_factor(int other_size, int this_size) { + // Calculate scaling factor once for each reference frame + // and use fixed point scaling factors in decoding and encoding routines. + // Hardware implementations can calculate scale factor in device driver + // and use multiplication and shifting on hardware instead of division. + return (other_size << REF_SCALE_SHIFT) / this_size; +} + +MV32 vp9_scale_mv(const MV *mv, int x, int y, const struct scale_factors *sf) { + const int x_off_q4 = scaled_x(x << SUBPEL_BITS, sf) & SUBPEL_MASK; + const int y_off_q4 = scaled_y(y << SUBPEL_BITS, sf) & SUBPEL_MASK; + const MV32 res = { scaled_y(mv->row, sf) + y_off_q4, + scaled_x(mv->col, sf) + x_off_q4 }; + return res; +} + +#if CONFIG_VP9_HIGHBITDEPTH +void vp9_setup_scale_factors_for_frame(struct scale_factors *sf, int other_w, + int other_h, int this_w, int this_h, + int use_highbd) { +#else +void vp9_setup_scale_factors_for_frame(struct scale_factors *sf, int other_w, + int other_h, int this_w, int this_h) { +#endif + if (!valid_ref_frame_size(other_w, other_h, this_w, this_h)) { + sf->x_scale_fp = REF_INVALID_SCALE; + sf->y_scale_fp = REF_INVALID_SCALE; + return; + } + + sf->x_scale_fp = get_fixed_point_scale_factor(other_w, this_w); + sf->y_scale_fp = get_fixed_point_scale_factor(other_h, this_h); + sf->x_step_q4 = scaled_x(16, sf); + sf->y_step_q4 = scaled_y(16, sf); + + if (vp9_is_scaled(sf)) { + sf->scale_value_x = scaled_x; + sf->scale_value_y = scaled_y; + } else { + sf->scale_value_x = unscaled_value; + sf->scale_value_y = unscaled_value; + } + + // TODO(agrange): Investigate the best choice of functions to use here + // for EIGHTTAP_SMOOTH. Since it is not interpolating, need to choose what + // to do at full-pel offsets. The current selection, where the filter is + // applied in one direction only, and not at all for 0,0, seems to give the + // best quality, but it may be worth trying an additional mode that does + // do the filtering on full-pel. + + if (sf->x_step_q4 == 16) { + if (sf->y_step_q4 == 16) { + // No scaling in either direction. + sf->predict[0][0][0] = vpx_convolve_copy; + sf->predict[0][0][1] = vpx_convolve_avg; + sf->predict[0][1][0] = vpx_convolve8_vert; + sf->predict[0][1][1] = vpx_convolve8_avg_vert; + sf->predict[1][0][0] = vpx_convolve8_horiz; + sf->predict[1][0][1] = vpx_convolve8_avg_horiz; + } else { + // No scaling in x direction. Must always scale in the y direction. + sf->predict[0][0][0] = vpx_scaled_vert; + sf->predict[0][0][1] = vpx_scaled_avg_vert; + sf->predict[0][1][0] = vpx_scaled_vert; + sf->predict[0][1][1] = vpx_scaled_avg_vert; + sf->predict[1][0][0] = vpx_scaled_2d; + sf->predict[1][0][1] = vpx_scaled_avg_2d; + } + } else { + if (sf->y_step_q4 == 16) { + // No scaling in the y direction. Must always scale in the x direction. + sf->predict[0][0][0] = vpx_scaled_horiz; + sf->predict[0][0][1] = vpx_scaled_avg_horiz; + sf->predict[0][1][0] = vpx_scaled_2d; + sf->predict[0][1][1] = vpx_scaled_avg_2d; + sf->predict[1][0][0] = vpx_scaled_horiz; + sf->predict[1][0][1] = vpx_scaled_avg_horiz; + } else { + // Must always scale in both directions. + sf->predict[0][0][0] = vpx_scaled_2d; + sf->predict[0][0][1] = vpx_scaled_avg_2d; + sf->predict[0][1][0] = vpx_scaled_2d; + sf->predict[0][1][1] = vpx_scaled_avg_2d; + sf->predict[1][0][0] = vpx_scaled_2d; + sf->predict[1][0][1] = vpx_scaled_avg_2d; + } + } + + // 2D subpel motion always gets filtered in both directions + + if ((sf->x_step_q4 != 16) || (sf->y_step_q4 != 16)) { + sf->predict[1][1][0] = vpx_scaled_2d; + sf->predict[1][1][1] = vpx_scaled_avg_2d; + } else { + sf->predict[1][1][0] = vpx_convolve8; + sf->predict[1][1][1] = vpx_convolve8_avg; + } + +#if CONFIG_VP9_HIGHBITDEPTH + if (use_highbd) { + if (sf->x_step_q4 == 16) { + if (sf->y_step_q4 == 16) { + // No scaling in either direction. + sf->highbd_predict[0][0][0] = vpx_highbd_convolve_copy; + sf->highbd_predict[0][0][1] = vpx_highbd_convolve_avg; + sf->highbd_predict[0][1][0] = vpx_highbd_convolve8_vert; + sf->highbd_predict[0][1][1] = vpx_highbd_convolve8_avg_vert; + sf->highbd_predict[1][0][0] = vpx_highbd_convolve8_horiz; + sf->highbd_predict[1][0][1] = vpx_highbd_convolve8_avg_horiz; + } else { + // No scaling in x direction. Must always scale in the y direction. + sf->highbd_predict[0][0][0] = vpx_highbd_convolve8_vert; + sf->highbd_predict[0][0][1] = vpx_highbd_convolve8_avg_vert; + sf->highbd_predict[0][1][0] = vpx_highbd_convolve8_vert; + sf->highbd_predict[0][1][1] = vpx_highbd_convolve8_avg_vert; + sf->highbd_predict[1][0][0] = vpx_highbd_convolve8; + sf->highbd_predict[1][0][1] = vpx_highbd_convolve8_avg; + } + } else { + if (sf->y_step_q4 == 16) { + // No scaling in the y direction. Must always scale in the x direction. + sf->highbd_predict[0][0][0] = vpx_highbd_convolve8_horiz; + sf->highbd_predict[0][0][1] = vpx_highbd_convolve8_avg_horiz; + sf->highbd_predict[0][1][0] = vpx_highbd_convolve8; + sf->highbd_predict[0][1][1] = vpx_highbd_convolve8_avg; + sf->highbd_predict[1][0][0] = vpx_highbd_convolve8_horiz; + sf->highbd_predict[1][0][1] = vpx_highbd_convolve8_avg_horiz; + } else { + // Must always scale in both directions. + sf->highbd_predict[0][0][0] = vpx_highbd_convolve8; + sf->highbd_predict[0][0][1] = vpx_highbd_convolve8_avg; + sf->highbd_predict[0][1][0] = vpx_highbd_convolve8; + sf->highbd_predict[0][1][1] = vpx_highbd_convolve8_avg; + sf->highbd_predict[1][0][0] = vpx_highbd_convolve8; + sf->highbd_predict[1][0][1] = vpx_highbd_convolve8_avg; + } + } + // 2D subpel motion always gets filtered in both directions. + sf->highbd_predict[1][1][0] = vpx_highbd_convolve8; + sf->highbd_predict[1][1][1] = vpx_highbd_convolve8_avg; + } +#endif +} diff --git a/vp9/common/vp9_scale.h b/vp9/common/vp9_scale.h new file mode 100644 index 0000000..ada8dba --- /dev/null +++ b/vp9/common/vp9_scale.h @@ -0,0 +1,71 @@ +/* + * Copyright (c) 2013 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP9_COMMON_VP9_SCALE_H_ +#define VP9_COMMON_VP9_SCALE_H_ + +#include "vp9/common/vp9_mv.h" +#include "vpx_dsp/vpx_convolve.h" + +#ifdef __cplusplus +extern "C" { +#endif + +#define REF_SCALE_SHIFT 14 +#define REF_NO_SCALE (1 << REF_SCALE_SHIFT) +#define REF_INVALID_SCALE -1 + +struct scale_factors { + int x_scale_fp; // horizontal fixed point scale factor + int y_scale_fp; // vertical fixed point scale factor + int x_step_q4; + int y_step_q4; + + int (*scale_value_x)(int val, const struct scale_factors *sf); + int (*scale_value_y)(int val, const struct scale_factors *sf); + + convolve_fn_t predict[2][2][2]; // horiz, vert, avg +#if CONFIG_VP9_HIGHBITDEPTH + highbd_convolve_fn_t highbd_predict[2][2][2]; // horiz, vert, avg +#endif +}; + +MV32 vp9_scale_mv(const MV *mv, int x, int y, const struct scale_factors *sf); + +#if CONFIG_VP9_HIGHBITDEPTH +void vp9_setup_scale_factors_for_frame(struct scale_factors *sf, int other_w, + int other_h, int this_w, int this_h, + int use_high); +#else +void vp9_setup_scale_factors_for_frame(struct scale_factors *sf, int other_w, + int other_h, int this_w, int this_h); +#endif + +static INLINE int vp9_is_valid_scale(const struct scale_factors *sf) { + return sf->x_scale_fp != REF_INVALID_SCALE && + sf->y_scale_fp != REF_INVALID_SCALE; +} + +static INLINE int vp9_is_scaled(const struct scale_factors *sf) { + return vp9_is_valid_scale(sf) && + (sf->x_scale_fp != REF_NO_SCALE || sf->y_scale_fp != REF_NO_SCALE); +} + +static INLINE int valid_ref_frame_size(int ref_width, int ref_height, + int this_width, int this_height) { + return 2 * this_width >= ref_width && 2 * this_height >= ref_height && + this_width <= 16 * ref_width && this_height <= 16 * ref_height; +} + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP9_COMMON_VP9_SCALE_H_ diff --git a/vp9/common/vp9_scan.c b/vp9/common/vp9_scan.c new file mode 100644 index 0000000..0fef263 --- /dev/null +++ b/vp9/common/vp9_scan.c @@ -0,0 +1,724 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include + +#include "vp9/common/vp9_scan.h" + +DECLARE_ALIGNED(16, static const int16_t, default_scan_4x4[16]) = { + 0, 4, 1, 5, 8, 2, 12, 9, 3, 6, 13, 10, 7, 14, 11, 15, +}; + +DECLARE_ALIGNED(16, static const int16_t, col_scan_4x4[16]) = { + 0, 4, 8, 1, 12, 5, 9, 2, 13, 6, 10, 3, 7, 14, 11, 15, +}; + +DECLARE_ALIGNED(16, static const int16_t, row_scan_4x4[16]) = { + 0, 1, 4, 2, 5, 3, 6, 8, 9, 7, 12, 10, 13, 11, 14, 15, +}; + +DECLARE_ALIGNED(16, static const int16_t, default_scan_8x8[64]) = { + 0, 8, 1, 16, 9, 2, 17, 24, 10, 3, 18, 25, 32, 11, 4, 26, + 33, 19, 40, 12, 34, 27, 5, 41, 20, 48, 13, 35, 42, 28, 21, 6, + 49, 56, 36, 43, 29, 7, 14, 50, 57, 44, 22, 37, 15, 51, 58, 30, + 45, 23, 52, 59, 38, 31, 60, 53, 46, 39, 61, 54, 47, 62, 55, 63, +}; + +DECLARE_ALIGNED(16, static const int16_t, col_scan_8x8[64]) = { + 0, 8, 16, 1, 24, 9, 32, 17, 2, 40, 25, 10, 33, 18, 48, 3, + 26, 41, 11, 56, 19, 34, 4, 49, 27, 42, 12, 35, 20, 57, 50, 28, + 5, 43, 13, 36, 58, 51, 21, 44, 6, 29, 59, 37, 14, 52, 22, 7, + 45, 60, 30, 15, 38, 53, 23, 46, 31, 61, 39, 54, 47, 62, 55, 63, +}; + +DECLARE_ALIGNED(16, static const int16_t, row_scan_8x8[64]) = { + 0, 1, 2, 8, 9, 3, 16, 10, 4, 17, 11, 24, 5, 18, 25, 12, + 19, 26, 32, 6, 13, 20, 33, 27, 7, 34, 40, 21, 28, 41, 14, 35, + 48, 42, 29, 36, 49, 22, 43, 15, 56, 37, 50, 44, 30, 57, 23, 51, + 58, 45, 38, 52, 31, 59, 53, 46, 60, 39, 61, 47, 54, 55, 62, 63, +}; + +DECLARE_ALIGNED(16, static const int16_t, default_scan_16x16[256]) = { + 0, 16, 1, 32, 17, 2, 48, 33, 18, 3, 64, 34, 49, 19, 65, + 80, 50, 4, 35, 66, 20, 81, 96, 51, 5, 36, 82, 97, 67, 112, + 21, 52, 98, 37, 83, 113, 6, 68, 128, 53, 22, 99, 114, 84, 7, + 129, 38, 69, 100, 115, 144, 130, 85, 54, 23, 8, 145, 39, 70, 116, + 101, 131, 160, 146, 55, 86, 24, 71, 132, 117, 161, 40, 9, 102, 147, + 176, 162, 87, 56, 25, 133, 118, 177, 148, 72, 103, 41, 163, 10, 192, + 178, 88, 57, 134, 149, 119, 26, 164, 73, 104, 193, 42, 179, 208, 11, + 135, 89, 165, 120, 150, 58, 194, 180, 27, 74, 209, 105, 151, 136, 43, + 90, 224, 166, 195, 181, 121, 210, 59, 12, 152, 106, 167, 196, 75, 137, + 225, 211, 240, 182, 122, 91, 28, 197, 13, 226, 168, 183, 153, 44, 212, + 138, 107, 241, 60, 29, 123, 198, 184, 227, 169, 242, 76, 213, 154, 45, + 92, 14, 199, 139, 61, 228, 214, 170, 185, 243, 108, 77, 155, 30, 15, + 200, 229, 124, 215, 244, 93, 46, 186, 171, 201, 109, 140, 230, 62, 216, + 245, 31, 125, 78, 156, 231, 47, 187, 202, 217, 94, 246, 141, 63, 232, + 172, 110, 247, 157, 79, 218, 203, 126, 233, 188, 248, 95, 173, 142, 219, + 111, 249, 234, 158, 127, 189, 204, 250, 235, 143, 174, 220, 205, 159, 251, + 190, 221, 175, 236, 237, 191, 206, 252, 222, 253, 207, 238, 223, 254, 239, + 255, +}; + +DECLARE_ALIGNED(16, static const int16_t, col_scan_16x16[256]) = { + 0, 16, 32, 48, 1, 64, 17, 80, 33, 96, 49, 2, 65, 112, 18, + 81, 34, 128, 50, 97, 3, 66, 144, 19, 113, 35, 82, 160, 98, 51, + 129, 4, 67, 176, 20, 114, 145, 83, 36, 99, 130, 52, 192, 5, 161, + 68, 115, 21, 146, 84, 208, 177, 37, 131, 100, 53, 162, 224, 69, 6, + 116, 193, 147, 85, 22, 240, 132, 38, 178, 101, 163, 54, 209, 117, 70, + 7, 148, 194, 86, 179, 225, 23, 133, 39, 164, 8, 102, 210, 241, 55, + 195, 118, 149, 71, 180, 24, 87, 226, 134, 165, 211, 40, 103, 56, 72, + 150, 196, 242, 119, 9, 181, 227, 88, 166, 25, 135, 41, 104, 212, 57, + 151, 197, 120, 73, 243, 182, 136, 167, 213, 89, 10, 228, 105, 152, 198, + 26, 42, 121, 183, 244, 168, 58, 137, 229, 74, 214, 90, 153, 199, 184, + 11, 106, 245, 27, 122, 230, 169, 43, 215, 59, 200, 138, 185, 246, 75, + 12, 91, 154, 216, 231, 107, 28, 44, 201, 123, 170, 60, 247, 232, 76, + 139, 13, 92, 217, 186, 248, 155, 108, 29, 124, 45, 202, 233, 171, 61, + 14, 77, 140, 15, 249, 93, 30, 187, 156, 218, 46, 109, 125, 62, 172, + 78, 203, 31, 141, 234, 94, 47, 188, 63, 157, 110, 250, 219, 79, 126, + 204, 173, 142, 95, 189, 111, 235, 158, 220, 251, 127, 174, 143, 205, 236, + 159, 190, 221, 252, 175, 206, 237, 191, 253, 222, 238, 207, 254, 223, 239, + 255, +}; + +DECLARE_ALIGNED(16, static const int16_t, row_scan_16x16[256]) = { + 0, 1, 2, 16, 3, 17, 4, 18, 32, 5, 33, 19, 6, 34, 48, + 20, 49, 7, 35, 21, 50, 64, 8, 36, 65, 22, 51, 37, 80, 9, + 66, 52, 23, 38, 81, 67, 10, 53, 24, 82, 68, 96, 39, 11, 54, + 83, 97, 69, 25, 98, 84, 40, 112, 55, 12, 70, 99, 113, 85, 26, + 41, 56, 114, 100, 13, 71, 128, 86, 27, 115, 101, 129, 42, 57, 72, + 116, 14, 87, 130, 102, 144, 73, 131, 117, 28, 58, 15, 88, 43, 145, + 103, 132, 146, 118, 74, 160, 89, 133, 104, 29, 59, 147, 119, 44, 161, + 148, 90, 105, 134, 162, 120, 176, 75, 135, 149, 30, 60, 163, 177, 45, + 121, 91, 106, 164, 178, 150, 192, 136, 165, 179, 31, 151, 193, 76, 122, + 61, 137, 194, 107, 152, 180, 208, 46, 166, 167, 195, 92, 181, 138, 209, + 123, 153, 224, 196, 77, 168, 210, 182, 240, 108, 197, 62, 154, 225, 183, + 169, 211, 47, 139, 93, 184, 226, 212, 241, 198, 170, 124, 155, 199, 78, + 213, 185, 109, 227, 200, 63, 228, 242, 140, 214, 171, 186, 156, 229, 243, + 125, 94, 201, 244, 215, 216, 230, 141, 187, 202, 79, 172, 110, 157, 245, + 217, 231, 95, 246, 232, 126, 203, 247, 233, 173, 218, 142, 111, 158, 188, + 248, 127, 234, 219, 249, 189, 204, 143, 174, 159, 250, 235, 205, 220, 175, + 190, 251, 221, 191, 206, 236, 207, 237, 252, 222, 253, 223, 238, 239, 254, + 255, +}; + +DECLARE_ALIGNED(16, static const int16_t, default_scan_32x32[1024]) = { + 0, 32, 1, 64, 33, 2, 96, 65, 34, 128, 3, 97, 66, + 160, 129, 35, 98, 4, 67, 130, 161, 192, 36, 99, 224, 5, + 162, 193, 68, 131, 37, 100, 225, 194, 256, 163, 69, 132, 6, + 226, 257, 288, 195, 101, 164, 38, 258, 7, 227, 289, 133, 320, + 70, 196, 165, 290, 259, 228, 39, 321, 102, 352, 8, 197, 71, + 134, 322, 291, 260, 353, 384, 229, 166, 103, 40, 354, 323, 292, + 135, 385, 198, 261, 72, 9, 416, 167, 386, 355, 230, 324, 104, + 293, 41, 417, 199, 136, 262, 387, 448, 325, 356, 10, 73, 418, + 231, 168, 449, 294, 388, 105, 419, 263, 42, 200, 357, 450, 137, + 480, 74, 326, 232, 11, 389, 169, 295, 420, 106, 451, 481, 358, + 264, 327, 201, 43, 138, 512, 482, 390, 296, 233, 170, 421, 75, + 452, 359, 12, 513, 265, 483, 328, 107, 202, 514, 544, 422, 391, + 453, 139, 44, 234, 484, 297, 360, 171, 76, 515, 545, 266, 329, + 454, 13, 423, 203, 108, 546, 485, 576, 298, 235, 140, 361, 330, + 172, 547, 45, 455, 267, 577, 486, 77, 204, 362, 608, 14, 299, + 578, 109, 236, 487, 609, 331, 141, 579, 46, 15, 173, 610, 363, + 78, 205, 16, 110, 237, 611, 142, 47, 174, 79, 206, 17, 111, + 238, 48, 143, 80, 175, 112, 207, 49, 18, 239, 81, 113, 19, + 50, 82, 114, 51, 83, 115, 640, 516, 392, 268, 144, 20, 672, + 641, 548, 517, 424, 393, 300, 269, 176, 145, 52, 21, 704, 673, + 642, 580, 549, 518, 456, 425, 394, 332, 301, 270, 208, 177, 146, + 84, 53, 22, 736, 705, 674, 643, 612, 581, 550, 519, 488, 457, + 426, 395, 364, 333, 302, 271, 240, 209, 178, 147, 116, 85, 54, + 23, 737, 706, 675, 613, 582, 551, 489, 458, 427, 365, 334, 303, + 241, 210, 179, 117, 86, 55, 738, 707, 614, 583, 490, 459, 366, + 335, 242, 211, 118, 87, 739, 615, 491, 367, 243, 119, 768, 644, + 520, 396, 272, 148, 24, 800, 769, 676, 645, 552, 521, 428, 397, + 304, 273, 180, 149, 56, 25, 832, 801, 770, 708, 677, 646, 584, + 553, 522, 460, 429, 398, 336, 305, 274, 212, 181, 150, 88, 57, + 26, 864, 833, 802, 771, 740, 709, 678, 647, 616, 585, 554, 523, + 492, 461, 430, 399, 368, 337, 306, 275, 244, 213, 182, 151, 120, + 89, 58, 27, 865, 834, 803, 741, 710, 679, 617, 586, 555, 493, + 462, 431, 369, 338, 307, 245, 214, 183, 121, 90, 59, 866, 835, + 742, 711, 618, 587, 494, 463, 370, 339, 246, 215, 122, 91, 867, + 743, 619, 495, 371, 247, 123, 896, 772, 648, 524, 400, 276, 152, + 28, 928, 897, 804, 773, 680, 649, 556, 525, 432, 401, 308, 277, + 184, 153, 60, 29, 960, 929, 898, 836, 805, 774, 712, 681, 650, + 588, 557, 526, 464, 433, 402, 340, 309, 278, 216, 185, 154, 92, + 61, 30, 992, 961, 930, 899, 868, 837, 806, 775, 744, 713, 682, + 651, 620, 589, 558, 527, 496, 465, 434, 403, 372, 341, 310, 279, + 248, 217, 186, 155, 124, 93, 62, 31, 993, 962, 931, 869, 838, + 807, 745, 714, 683, 621, 590, 559, 497, 466, 435, 373, 342, 311, + 249, 218, 187, 125, 94, 63, 994, 963, 870, 839, 746, 715, 622, + 591, 498, 467, 374, 343, 250, 219, 126, 95, 995, 871, 747, 623, + 499, 375, 251, 127, 900, 776, 652, 528, 404, 280, 156, 932, 901, + 808, 777, 684, 653, 560, 529, 436, 405, 312, 281, 188, 157, 964, + 933, 902, 840, 809, 778, 716, 685, 654, 592, 561, 530, 468, 437, + 406, 344, 313, 282, 220, 189, 158, 996, 965, 934, 903, 872, 841, + 810, 779, 748, 717, 686, 655, 624, 593, 562, 531, 500, 469, 438, + 407, 376, 345, 314, 283, 252, 221, 190, 159, 997, 966, 935, 873, + 842, 811, 749, 718, 687, 625, 594, 563, 501, 470, 439, 377, 346, + 315, 253, 222, 191, 998, 967, 874, 843, 750, 719, 626, 595, 502, + 471, 378, 347, 254, 223, 999, 875, 751, 627, 503, 379, 255, 904, + 780, 656, 532, 408, 284, 936, 905, 812, 781, 688, 657, 564, 533, + 440, 409, 316, 285, 968, 937, 906, 844, 813, 782, 720, 689, 658, + 596, 565, 534, 472, 441, 410, 348, 317, 286, 1000, 969, 938, 907, + 876, 845, 814, 783, 752, 721, 690, 659, 628, 597, 566, 535, 504, + 473, 442, 411, 380, 349, 318, 287, 1001, 970, 939, 877, 846, 815, + 753, 722, 691, 629, 598, 567, 505, 474, 443, 381, 350, 319, 1002, + 971, 878, 847, 754, 723, 630, 599, 506, 475, 382, 351, 1003, 879, + 755, 631, 507, 383, 908, 784, 660, 536, 412, 940, 909, 816, 785, + 692, 661, 568, 537, 444, 413, 972, 941, 910, 848, 817, 786, 724, + 693, 662, 600, 569, 538, 476, 445, 414, 1004, 973, 942, 911, 880, + 849, 818, 787, 756, 725, 694, 663, 632, 601, 570, 539, 508, 477, + 446, 415, 1005, 974, 943, 881, 850, 819, 757, 726, 695, 633, 602, + 571, 509, 478, 447, 1006, 975, 882, 851, 758, 727, 634, 603, 510, + 479, 1007, 883, 759, 635, 511, 912, 788, 664, 540, 944, 913, 820, + 789, 696, 665, 572, 541, 976, 945, 914, 852, 821, 790, 728, 697, + 666, 604, 573, 542, 1008, 977, 946, 915, 884, 853, 822, 791, 760, + 729, 698, 667, 636, 605, 574, 543, 1009, 978, 947, 885, 854, 823, + 761, 730, 699, 637, 606, 575, 1010, 979, 886, 855, 762, 731, 638, + 607, 1011, 887, 763, 639, 916, 792, 668, 948, 917, 824, 793, 700, + 669, 980, 949, 918, 856, 825, 794, 732, 701, 670, 1012, 981, 950, + 919, 888, 857, 826, 795, 764, 733, 702, 671, 1013, 982, 951, 889, + 858, 827, 765, 734, 703, 1014, 983, 890, 859, 766, 735, 1015, 891, + 767, 920, 796, 952, 921, 828, 797, 984, 953, 922, 860, 829, 798, + 1016, 985, 954, 923, 892, 861, 830, 799, 1017, 986, 955, 893, 862, + 831, 1018, 987, 894, 863, 1019, 895, 924, 956, 925, 988, 957, 926, + 1020, 989, 958, 927, 1021, 990, 959, 1022, 991, 1023, +}; + +// Neighborhood 2-tuples for various scans and blocksizes, +// in {top, left} order for each position in corresponding scan order. +DECLARE_ALIGNED(16, static const int16_t, + default_scan_4x4_neighbors[17 * MAX_NEIGHBORS]) = { + 0, 0, 0, 0, 0, 0, 1, 4, 4, 4, 1, 1, 8, 8, 5, 8, 2, + 2, 2, 5, 9, 12, 6, 9, 3, 6, 10, 13, 7, 10, 11, 14, 0, 0, +}; + +DECLARE_ALIGNED(16, static const int16_t, + col_scan_4x4_neighbors[17 * MAX_NEIGHBORS]) = { + 0, 0, 0, 0, 4, 4, 0, 0, 8, 8, 1, 1, 5, 5, 1, 1, 9, + 9, 2, 2, 6, 6, 2, 2, 3, 3, 10, 10, 7, 7, 11, 11, 0, 0, +}; + +DECLARE_ALIGNED(16, static const int16_t, + row_scan_4x4_neighbors[17 * MAX_NEIGHBORS]) = { + 0, 0, 0, 0, 0, 0, 1, 1, 4, 4, 2, 2, 5, 5, 4, 4, 8, + 8, 6, 6, 8, 8, 9, 9, 12, 12, 10, 10, 13, 13, 14, 14, 0, 0, +}; + +DECLARE_ALIGNED(16, static const int16_t, + col_scan_8x8_neighbors[65 * MAX_NEIGHBORS]) = { + 0, 0, 0, 0, 8, 8, 0, 0, 16, 16, 1, 1, 24, 24, 9, 9, 1, 1, 32, + 32, 17, 17, 2, 2, 25, 25, 10, 10, 40, 40, 2, 2, 18, 18, 33, 33, 3, 3, + 48, 48, 11, 11, 26, 26, 3, 3, 41, 41, 19, 19, 34, 34, 4, 4, 27, 27, 12, + 12, 49, 49, 42, 42, 20, 20, 4, 4, 35, 35, 5, 5, 28, 28, 50, 50, 43, 43, + 13, 13, 36, 36, 5, 5, 21, 21, 51, 51, 29, 29, 6, 6, 44, 44, 14, 14, 6, + 6, 37, 37, 52, 52, 22, 22, 7, 7, 30, 30, 45, 45, 15, 15, 38, 38, 23, 23, + 53, 53, 31, 31, 46, 46, 39, 39, 54, 54, 47, 47, 55, 55, 0, 0, +}; + +DECLARE_ALIGNED(16, static const int16_t, + row_scan_8x8_neighbors[65 * MAX_NEIGHBORS]) = { + 0, 0, 0, 0, 1, 1, 0, 0, 8, 8, 2, 2, 8, 8, 9, 9, 3, 3, 16, + 16, 10, 10, 16, 16, 4, 4, 17, 17, 24, 24, 11, 11, 18, 18, 25, 25, 24, 24, + 5, 5, 12, 12, 19, 19, 32, 32, 26, 26, 6, 6, 33, 33, 32, 32, 20, 20, 27, + 27, 40, 40, 13, 13, 34, 34, 40, 40, 41, 41, 28, 28, 35, 35, 48, 48, 21, 21, + 42, 42, 14, 14, 48, 48, 36, 36, 49, 49, 43, 43, 29, 29, 56, 56, 22, 22, 50, + 50, 57, 57, 44, 44, 37, 37, 51, 51, 30, 30, 58, 58, 52, 52, 45, 45, 59, 59, + 38, 38, 60, 60, 46, 46, 53, 53, 54, 54, 61, 61, 62, 62, 0, 0, +}; + +DECLARE_ALIGNED(16, static const int16_t, + default_scan_8x8_neighbors[65 * MAX_NEIGHBORS]) = { + 0, 0, 0, 0, 0, 0, 8, 8, 1, 8, 1, 1, 9, 16, 16, 16, 2, 9, 2, + 2, 10, 17, 17, 24, 24, 24, 3, 10, 3, 3, 18, 25, 25, 32, 11, 18, 32, 32, + 4, 11, 26, 33, 19, 26, 4, 4, 33, 40, 12, 19, 40, 40, 5, 12, 27, 34, 34, + 41, 20, 27, 13, 20, 5, 5, 41, 48, 48, 48, 28, 35, 35, 42, 21, 28, 6, 6, + 6, 13, 42, 49, 49, 56, 36, 43, 14, 21, 29, 36, 7, 14, 43, 50, 50, 57, 22, + 29, 37, 44, 15, 22, 44, 51, 51, 58, 30, 37, 23, 30, 52, 59, 45, 52, 38, 45, + 31, 38, 53, 60, 46, 53, 39, 46, 54, 61, 47, 54, 55, 62, 0, 0, +}; + +DECLARE_ALIGNED(16, static const int16_t, + col_scan_16x16_neighbors[257 * MAX_NEIGHBORS]) = { + 0, 0, 0, 0, 16, 16, 32, 32, 0, 0, 48, 48, 1, 1, 64, + 64, 17, 17, 80, 80, 33, 33, 1, 1, 49, 49, 96, 96, 2, 2, + 65, 65, 18, 18, 112, 112, 34, 34, 81, 81, 2, 2, 50, 50, 128, + 128, 3, 3, 97, 97, 19, 19, 66, 66, 144, 144, 82, 82, 35, 35, + 113, 113, 3, 3, 51, 51, 160, 160, 4, 4, 98, 98, 129, 129, 67, + 67, 20, 20, 83, 83, 114, 114, 36, 36, 176, 176, 4, 4, 145, 145, + 52, 52, 99, 99, 5, 5, 130, 130, 68, 68, 192, 192, 161, 161, 21, + 21, 115, 115, 84, 84, 37, 37, 146, 146, 208, 208, 53, 53, 5, 5, + 100, 100, 177, 177, 131, 131, 69, 69, 6, 6, 224, 224, 116, 116, 22, + 22, 162, 162, 85, 85, 147, 147, 38, 38, 193, 193, 101, 101, 54, 54, + 6, 6, 132, 132, 178, 178, 70, 70, 163, 163, 209, 209, 7, 7, 117, + 117, 23, 23, 148, 148, 7, 7, 86, 86, 194, 194, 225, 225, 39, 39, + 179, 179, 102, 102, 133, 133, 55, 55, 164, 164, 8, 8, 71, 71, 210, + 210, 118, 118, 149, 149, 195, 195, 24, 24, 87, 87, 40, 40, 56, 56, + 134, 134, 180, 180, 226, 226, 103, 103, 8, 8, 165, 165, 211, 211, 72, + 72, 150, 150, 9, 9, 119, 119, 25, 25, 88, 88, 196, 196, 41, 41, + 135, 135, 181, 181, 104, 104, 57, 57, 227, 227, 166, 166, 120, 120, 151, + 151, 197, 197, 73, 73, 9, 9, 212, 212, 89, 89, 136, 136, 182, 182, + 10, 10, 26, 26, 105, 105, 167, 167, 228, 228, 152, 152, 42, 42, 121, + 121, 213, 213, 58, 58, 198, 198, 74, 74, 137, 137, 183, 183, 168, 168, + 10, 10, 90, 90, 229, 229, 11, 11, 106, 106, 214, 214, 153, 153, 27, + 27, 199, 199, 43, 43, 184, 184, 122, 122, 169, 169, 230, 230, 59, 59, + 11, 11, 75, 75, 138, 138, 200, 200, 215, 215, 91, 91, 12, 12, 28, + 28, 185, 185, 107, 107, 154, 154, 44, 44, 231, 231, 216, 216, 60, 60, + 123, 123, 12, 12, 76, 76, 201, 201, 170, 170, 232, 232, 139, 139, 92, + 92, 13, 13, 108, 108, 29, 29, 186, 186, 217, 217, 155, 155, 45, 45, + 13, 13, 61, 61, 124, 124, 14, 14, 233, 233, 77, 77, 14, 14, 171, + 171, 140, 140, 202, 202, 30, 30, 93, 93, 109, 109, 46, 46, 156, 156, + 62, 62, 187, 187, 15, 15, 125, 125, 218, 218, 78, 78, 31, 31, 172, + 172, 47, 47, 141, 141, 94, 94, 234, 234, 203, 203, 63, 63, 110, 110, + 188, 188, 157, 157, 126, 126, 79, 79, 173, 173, 95, 95, 219, 219, 142, + 142, 204, 204, 235, 235, 111, 111, 158, 158, 127, 127, 189, 189, 220, 220, + 143, 143, 174, 174, 205, 205, 236, 236, 159, 159, 190, 190, 221, 221, 175, + 175, 237, 237, 206, 206, 222, 222, 191, 191, 238, 238, 207, 207, 223, 223, + 239, 239, 0, 0, +}; + +DECLARE_ALIGNED(16, static const int16_t, + row_scan_16x16_neighbors[257 * MAX_NEIGHBORS]) = { + 0, 0, 0, 0, 1, 1, 0, 0, 2, 2, 16, 16, 3, 3, 17, + 17, 16, 16, 4, 4, 32, 32, 18, 18, 5, 5, 33, 33, 32, 32, + 19, 19, 48, 48, 6, 6, 34, 34, 20, 20, 49, 49, 48, 48, 7, + 7, 35, 35, 64, 64, 21, 21, 50, 50, 36, 36, 64, 64, 8, 8, + 65, 65, 51, 51, 22, 22, 37, 37, 80, 80, 66, 66, 9, 9, 52, + 52, 23, 23, 81, 81, 67, 67, 80, 80, 38, 38, 10, 10, 53, 53, + 82, 82, 96, 96, 68, 68, 24, 24, 97, 97, 83, 83, 39, 39, 96, + 96, 54, 54, 11, 11, 69, 69, 98, 98, 112, 112, 84, 84, 25, 25, + 40, 40, 55, 55, 113, 113, 99, 99, 12, 12, 70, 70, 112, 112, 85, + 85, 26, 26, 114, 114, 100, 100, 128, 128, 41, 41, 56, 56, 71, 71, + 115, 115, 13, 13, 86, 86, 129, 129, 101, 101, 128, 128, 72, 72, 130, + 130, 116, 116, 27, 27, 57, 57, 14, 14, 87, 87, 42, 42, 144, 144, + 102, 102, 131, 131, 145, 145, 117, 117, 73, 73, 144, 144, 88, 88, 132, + 132, 103, 103, 28, 28, 58, 58, 146, 146, 118, 118, 43, 43, 160, 160, + 147, 147, 89, 89, 104, 104, 133, 133, 161, 161, 119, 119, 160, 160, 74, + 74, 134, 134, 148, 148, 29, 29, 59, 59, 162, 162, 176, 176, 44, 44, + 120, 120, 90, 90, 105, 105, 163, 163, 177, 177, 149, 149, 176, 176, 135, + 135, 164, 164, 178, 178, 30, 30, 150, 150, 192, 192, 75, 75, 121, 121, + 60, 60, 136, 136, 193, 193, 106, 106, 151, 151, 179, 179, 192, 192, 45, + 45, 165, 165, 166, 166, 194, 194, 91, 91, 180, 180, 137, 137, 208, 208, + 122, 122, 152, 152, 208, 208, 195, 195, 76, 76, 167, 167, 209, 209, 181, + 181, 224, 224, 107, 107, 196, 196, 61, 61, 153, 153, 224, 224, 182, 182, + 168, 168, 210, 210, 46, 46, 138, 138, 92, 92, 183, 183, 225, 225, 211, + 211, 240, 240, 197, 197, 169, 169, 123, 123, 154, 154, 198, 198, 77, 77, + 212, 212, 184, 184, 108, 108, 226, 226, 199, 199, 62, 62, 227, 227, 241, + 241, 139, 139, 213, 213, 170, 170, 185, 185, 155, 155, 228, 228, 242, 242, + 124, 124, 93, 93, 200, 200, 243, 243, 214, 214, 215, 215, 229, 229, 140, + 140, 186, 186, 201, 201, 78, 78, 171, 171, 109, 109, 156, 156, 244, 244, + 216, 216, 230, 230, 94, 94, 245, 245, 231, 231, 125, 125, 202, 202, 246, + 246, 232, 232, 172, 172, 217, 217, 141, 141, 110, 110, 157, 157, 187, 187, + 247, 247, 126, 126, 233, 233, 218, 218, 248, 248, 188, 188, 203, 203, 142, + 142, 173, 173, 158, 158, 249, 249, 234, 234, 204, 204, 219, 219, 174, 174, + 189, 189, 250, 250, 220, 220, 190, 190, 205, 205, 235, 235, 206, 206, 236, + 236, 251, 251, 221, 221, 252, 252, 222, 222, 237, 237, 238, 238, 253, 253, + 254, 254, 0, 0, +}; + +DECLARE_ALIGNED(16, static const int16_t, + default_scan_16x16_neighbors[257 * MAX_NEIGHBORS]) = { + 0, 0, 0, 0, 0, 0, 16, 16, 1, 16, 1, 1, 32, 32, 17, + 32, 2, 17, 2, 2, 48, 48, 18, 33, 33, 48, 3, 18, 49, 64, + 64, 64, 34, 49, 3, 3, 19, 34, 50, 65, 4, 19, 65, 80, 80, + 80, 35, 50, 4, 4, 20, 35, 66, 81, 81, 96, 51, 66, 96, 96, + 5, 20, 36, 51, 82, 97, 21, 36, 67, 82, 97, 112, 5, 5, 52, + 67, 112, 112, 37, 52, 6, 21, 83, 98, 98, 113, 68, 83, 6, 6, + 113, 128, 22, 37, 53, 68, 84, 99, 99, 114, 128, 128, 114, 129, 69, + 84, 38, 53, 7, 22, 7, 7, 129, 144, 23, 38, 54, 69, 100, 115, + 85, 100, 115, 130, 144, 144, 130, 145, 39, 54, 70, 85, 8, 23, 55, + 70, 116, 131, 101, 116, 145, 160, 24, 39, 8, 8, 86, 101, 131, 146, + 160, 160, 146, 161, 71, 86, 40, 55, 9, 24, 117, 132, 102, 117, 161, + 176, 132, 147, 56, 71, 87, 102, 25, 40, 147, 162, 9, 9, 176, 176, + 162, 177, 72, 87, 41, 56, 118, 133, 133, 148, 103, 118, 10, 25, 148, + 163, 57, 72, 88, 103, 177, 192, 26, 41, 163, 178, 192, 192, 10, 10, + 119, 134, 73, 88, 149, 164, 104, 119, 134, 149, 42, 57, 178, 193, 164, + 179, 11, 26, 58, 73, 193, 208, 89, 104, 135, 150, 120, 135, 27, 42, + 74, 89, 208, 208, 150, 165, 179, 194, 165, 180, 105, 120, 194, 209, 43, + 58, 11, 11, 136, 151, 90, 105, 151, 166, 180, 195, 59, 74, 121, 136, + 209, 224, 195, 210, 224, 224, 166, 181, 106, 121, 75, 90, 12, 27, 181, + 196, 12, 12, 210, 225, 152, 167, 167, 182, 137, 152, 28, 43, 196, 211, + 122, 137, 91, 106, 225, 240, 44, 59, 13, 28, 107, 122, 182, 197, 168, + 183, 211, 226, 153, 168, 226, 241, 60, 75, 197, 212, 138, 153, 29, 44, + 76, 91, 13, 13, 183, 198, 123, 138, 45, 60, 212, 227, 198, 213, 154, + 169, 169, 184, 227, 242, 92, 107, 61, 76, 139, 154, 14, 29, 14, 14, + 184, 199, 213, 228, 108, 123, 199, 214, 228, 243, 77, 92, 30, 45, 170, + 185, 155, 170, 185, 200, 93, 108, 124, 139, 214, 229, 46, 61, 200, 215, + 229, 244, 15, 30, 109, 124, 62, 77, 140, 155, 215, 230, 31, 46, 171, + 186, 186, 201, 201, 216, 78, 93, 230, 245, 125, 140, 47, 62, 216, 231, + 156, 171, 94, 109, 231, 246, 141, 156, 63, 78, 202, 217, 187, 202, 110, + 125, 217, 232, 172, 187, 232, 247, 79, 94, 157, 172, 126, 141, 203, 218, + 95, 110, 233, 248, 218, 233, 142, 157, 111, 126, 173, 188, 188, 203, 234, + 249, 219, 234, 127, 142, 158, 173, 204, 219, 189, 204, 143, 158, 235, 250, + 174, 189, 205, 220, 159, 174, 220, 235, 221, 236, 175, 190, 190, 205, 236, + 251, 206, 221, 237, 252, 191, 206, 222, 237, 207, 222, 238, 253, 223, 238, + 239, 254, 0, 0, +}; + +DECLARE_ALIGNED(16, static const int16_t, + default_scan_32x32_neighbors[1025 * MAX_NEIGHBORS]) = { + 0, 0, 0, 0, 0, 0, 32, 32, 1, 32, 1, 1, 64, 64, + 33, 64, 2, 33, 96, 96, 2, 2, 65, 96, 34, 65, 128, 128, + 97, 128, 3, 34, 66, 97, 3, 3, 35, 66, 98, 129, 129, 160, + 160, 160, 4, 35, 67, 98, 192, 192, 4, 4, 130, 161, 161, 192, + 36, 67, 99, 130, 5, 36, 68, 99, 193, 224, 162, 193, 224, 224, + 131, 162, 37, 68, 100, 131, 5, 5, 194, 225, 225, 256, 256, 256, + 163, 194, 69, 100, 132, 163, 6, 37, 226, 257, 6, 6, 195, 226, + 257, 288, 101, 132, 288, 288, 38, 69, 164, 195, 133, 164, 258, 289, + 227, 258, 196, 227, 7, 38, 289, 320, 70, 101, 320, 320, 7, 7, + 165, 196, 39, 70, 102, 133, 290, 321, 259, 290, 228, 259, 321, 352, + 352, 352, 197, 228, 134, 165, 71, 102, 8, 39, 322, 353, 291, 322, + 260, 291, 103, 134, 353, 384, 166, 197, 229, 260, 40, 71, 8, 8, + 384, 384, 135, 166, 354, 385, 323, 354, 198, 229, 292, 323, 72, 103, + 261, 292, 9, 40, 385, 416, 167, 198, 104, 135, 230, 261, 355, 386, + 416, 416, 293, 324, 324, 355, 9, 9, 41, 72, 386, 417, 199, 230, + 136, 167, 417, 448, 262, 293, 356, 387, 73, 104, 387, 418, 231, 262, + 10, 41, 168, 199, 325, 356, 418, 449, 105, 136, 448, 448, 42, 73, + 294, 325, 200, 231, 10, 10, 357, 388, 137, 168, 263, 294, 388, 419, + 74, 105, 419, 450, 449, 480, 326, 357, 232, 263, 295, 326, 169, 200, + 11, 42, 106, 137, 480, 480, 450, 481, 358, 389, 264, 295, 201, 232, + 138, 169, 389, 420, 43, 74, 420, 451, 327, 358, 11, 11, 481, 512, + 233, 264, 451, 482, 296, 327, 75, 106, 170, 201, 482, 513, 512, 512, + 390, 421, 359, 390, 421, 452, 107, 138, 12, 43, 202, 233, 452, 483, + 265, 296, 328, 359, 139, 170, 44, 75, 483, 514, 513, 544, 234, 265, + 297, 328, 422, 453, 12, 12, 391, 422, 171, 202, 76, 107, 514, 545, + 453, 484, 544, 544, 266, 297, 203, 234, 108, 139, 329, 360, 298, 329, + 140, 171, 515, 546, 13, 44, 423, 454, 235, 266, 545, 576, 454, 485, + 45, 76, 172, 203, 330, 361, 576, 576, 13, 13, 267, 298, 546, 577, + 77, 108, 204, 235, 455, 486, 577, 608, 299, 330, 109, 140, 547, 578, + 14, 45, 14, 14, 141, 172, 578, 609, 331, 362, 46, 77, 173, 204, + 15, 15, 78, 109, 205, 236, 579, 610, 110, 141, 15, 46, 142, 173, + 47, 78, 174, 205, 16, 16, 79, 110, 206, 237, 16, 47, 111, 142, + 48, 79, 143, 174, 80, 111, 175, 206, 17, 48, 17, 17, 207, 238, + 49, 80, 81, 112, 18, 18, 18, 49, 50, 81, 82, 113, 19, 50, + 51, 82, 83, 114, 608, 608, 484, 515, 360, 391, 236, 267, 112, 143, + 19, 19, 640, 640, 609, 640, 516, 547, 485, 516, 392, 423, 361, 392, + 268, 299, 237, 268, 144, 175, 113, 144, 20, 51, 20, 20, 672, 672, + 641, 672, 610, 641, 548, 579, 517, 548, 486, 517, 424, 455, 393, 424, + 362, 393, 300, 331, 269, 300, 238, 269, 176, 207, 145, 176, 114, 145, + 52, 83, 21, 52, 21, 21, 704, 704, 673, 704, 642, 673, 611, 642, + 580, 611, 549, 580, 518, 549, 487, 518, 456, 487, 425, 456, 394, 425, + 363, 394, 332, 363, 301, 332, 270, 301, 239, 270, 208, 239, 177, 208, + 146, 177, 115, 146, 84, 115, 53, 84, 22, 53, 22, 22, 705, 736, + 674, 705, 643, 674, 581, 612, 550, 581, 519, 550, 457, 488, 426, 457, + 395, 426, 333, 364, 302, 333, 271, 302, 209, 240, 178, 209, 147, 178, + 85, 116, 54, 85, 23, 54, 706, 737, 675, 706, 582, 613, 551, 582, + 458, 489, 427, 458, 334, 365, 303, 334, 210, 241, 179, 210, 86, 117, + 55, 86, 707, 738, 583, 614, 459, 490, 335, 366, 211, 242, 87, 118, + 736, 736, 612, 643, 488, 519, 364, 395, 240, 271, 116, 147, 23, 23, + 768, 768, 737, 768, 644, 675, 613, 644, 520, 551, 489, 520, 396, 427, + 365, 396, 272, 303, 241, 272, 148, 179, 117, 148, 24, 55, 24, 24, + 800, 800, 769, 800, 738, 769, 676, 707, 645, 676, 614, 645, 552, 583, + 521, 552, 490, 521, 428, 459, 397, 428, 366, 397, 304, 335, 273, 304, + 242, 273, 180, 211, 149, 180, 118, 149, 56, 87, 25, 56, 25, 25, + 832, 832, 801, 832, 770, 801, 739, 770, 708, 739, 677, 708, 646, 677, + 615, 646, 584, 615, 553, 584, 522, 553, 491, 522, 460, 491, 429, 460, + 398, 429, 367, 398, 336, 367, 305, 336, 274, 305, 243, 274, 212, 243, + 181, 212, 150, 181, 119, 150, 88, 119, 57, 88, 26, 57, 26, 26, + 833, 864, 802, 833, 771, 802, 709, 740, 678, 709, 647, 678, 585, 616, + 554, 585, 523, 554, 461, 492, 430, 461, 399, 430, 337, 368, 306, 337, + 275, 306, 213, 244, 182, 213, 151, 182, 89, 120, 58, 89, 27, 58, + 834, 865, 803, 834, 710, 741, 679, 710, 586, 617, 555, 586, 462, 493, + 431, 462, 338, 369, 307, 338, 214, 245, 183, 214, 90, 121, 59, 90, + 835, 866, 711, 742, 587, 618, 463, 494, 339, 370, 215, 246, 91, 122, + 864, 864, 740, 771, 616, 647, 492, 523, 368, 399, 244, 275, 120, 151, + 27, 27, 896, 896, 865, 896, 772, 803, 741, 772, 648, 679, 617, 648, + 524, 555, 493, 524, 400, 431, 369, 400, 276, 307, 245, 276, 152, 183, + 121, 152, 28, 59, 28, 28, 928, 928, 897, 928, 866, 897, 804, 835, + 773, 804, 742, 773, 680, 711, 649, 680, 618, 649, 556, 587, 525, 556, + 494, 525, 432, 463, 401, 432, 370, 401, 308, 339, 277, 308, 246, 277, + 184, 215, 153, 184, 122, 153, 60, 91, 29, 60, 29, 29, 960, 960, + 929, 960, 898, 929, 867, 898, 836, 867, 805, 836, 774, 805, 743, 774, + 712, 743, 681, 712, 650, 681, 619, 650, 588, 619, 557, 588, 526, 557, + 495, 526, 464, 495, 433, 464, 402, 433, 371, 402, 340, 371, 309, 340, + 278, 309, 247, 278, 216, 247, 185, 216, 154, 185, 123, 154, 92, 123, + 61, 92, 30, 61, 30, 30, 961, 992, 930, 961, 899, 930, 837, 868, + 806, 837, 775, 806, 713, 744, 682, 713, 651, 682, 589, 620, 558, 589, + 527, 558, 465, 496, 434, 465, 403, 434, 341, 372, 310, 341, 279, 310, + 217, 248, 186, 217, 155, 186, 93, 124, 62, 93, 31, 62, 962, 993, + 931, 962, 838, 869, 807, 838, 714, 745, 683, 714, 590, 621, 559, 590, + 466, 497, 435, 466, 342, 373, 311, 342, 218, 249, 187, 218, 94, 125, + 63, 94, 963, 994, 839, 870, 715, 746, 591, 622, 467, 498, 343, 374, + 219, 250, 95, 126, 868, 899, 744, 775, 620, 651, 496, 527, 372, 403, + 248, 279, 124, 155, 900, 931, 869, 900, 776, 807, 745, 776, 652, 683, + 621, 652, 528, 559, 497, 528, 404, 435, 373, 404, 280, 311, 249, 280, + 156, 187, 125, 156, 932, 963, 901, 932, 870, 901, 808, 839, 777, 808, + 746, 777, 684, 715, 653, 684, 622, 653, 560, 591, 529, 560, 498, 529, + 436, 467, 405, 436, 374, 405, 312, 343, 281, 312, 250, 281, 188, 219, + 157, 188, 126, 157, 964, 995, 933, 964, 902, 933, 871, 902, 840, 871, + 809, 840, 778, 809, 747, 778, 716, 747, 685, 716, 654, 685, 623, 654, + 592, 623, 561, 592, 530, 561, 499, 530, 468, 499, 437, 468, 406, 437, + 375, 406, 344, 375, 313, 344, 282, 313, 251, 282, 220, 251, 189, 220, + 158, 189, 127, 158, 965, 996, 934, 965, 903, 934, 841, 872, 810, 841, + 779, 810, 717, 748, 686, 717, 655, 686, 593, 624, 562, 593, 531, 562, + 469, 500, 438, 469, 407, 438, 345, 376, 314, 345, 283, 314, 221, 252, + 190, 221, 159, 190, 966, 997, 935, 966, 842, 873, 811, 842, 718, 749, + 687, 718, 594, 625, 563, 594, 470, 501, 439, 470, 346, 377, 315, 346, + 222, 253, 191, 222, 967, 998, 843, 874, 719, 750, 595, 626, 471, 502, + 347, 378, 223, 254, 872, 903, 748, 779, 624, 655, 500, 531, 376, 407, + 252, 283, 904, 935, 873, 904, 780, 811, 749, 780, 656, 687, 625, 656, + 532, 563, 501, 532, 408, 439, 377, 408, 284, 315, 253, 284, 936, 967, + 905, 936, 874, 905, 812, 843, 781, 812, 750, 781, 688, 719, 657, 688, + 626, 657, 564, 595, 533, 564, 502, 533, 440, 471, 409, 440, 378, 409, + 316, 347, 285, 316, 254, 285, 968, 999, 937, 968, 906, 937, 875, 906, + 844, 875, 813, 844, 782, 813, 751, 782, 720, 751, 689, 720, 658, 689, + 627, 658, 596, 627, 565, 596, 534, 565, 503, 534, 472, 503, 441, 472, + 410, 441, 379, 410, 348, 379, 317, 348, 286, 317, 255, 286, 969, 1000, + 938, 969, 907, 938, 845, 876, 814, 845, 783, 814, 721, 752, 690, 721, + 659, 690, 597, 628, 566, 597, 535, 566, 473, 504, 442, 473, 411, 442, + 349, 380, 318, 349, 287, 318, 970, 1001, 939, 970, 846, 877, 815, 846, + 722, 753, 691, 722, 598, 629, 567, 598, 474, 505, 443, 474, 350, 381, + 319, 350, 971, 1002, 847, 878, 723, 754, 599, 630, 475, 506, 351, 382, + 876, 907, 752, 783, 628, 659, 504, 535, 380, 411, 908, 939, 877, 908, + 784, 815, 753, 784, 660, 691, 629, 660, 536, 567, 505, 536, 412, 443, + 381, 412, 940, 971, 909, 940, 878, 909, 816, 847, 785, 816, 754, 785, + 692, 723, 661, 692, 630, 661, 568, 599, 537, 568, 506, 537, 444, 475, + 413, 444, 382, 413, 972, 1003, 941, 972, 910, 941, 879, 910, 848, 879, + 817, 848, 786, 817, 755, 786, 724, 755, 693, 724, 662, 693, 631, 662, + 600, 631, 569, 600, 538, 569, 507, 538, 476, 507, 445, 476, 414, 445, + 383, 414, 973, 1004, 942, 973, 911, 942, 849, 880, 818, 849, 787, 818, + 725, 756, 694, 725, 663, 694, 601, 632, 570, 601, 539, 570, 477, 508, + 446, 477, 415, 446, 974, 1005, 943, 974, 850, 881, 819, 850, 726, 757, + 695, 726, 602, 633, 571, 602, 478, 509, 447, 478, 975, 1006, 851, 882, + 727, 758, 603, 634, 479, 510, 880, 911, 756, 787, 632, 663, 508, 539, + 912, 943, 881, 912, 788, 819, 757, 788, 664, 695, 633, 664, 540, 571, + 509, 540, 944, 975, 913, 944, 882, 913, 820, 851, 789, 820, 758, 789, + 696, 727, 665, 696, 634, 665, 572, 603, 541, 572, 510, 541, 976, 1007, + 945, 976, 914, 945, 883, 914, 852, 883, 821, 852, 790, 821, 759, 790, + 728, 759, 697, 728, 666, 697, 635, 666, 604, 635, 573, 604, 542, 573, + 511, 542, 977, 1008, 946, 977, 915, 946, 853, 884, 822, 853, 791, 822, + 729, 760, 698, 729, 667, 698, 605, 636, 574, 605, 543, 574, 978, 1009, + 947, 978, 854, 885, 823, 854, 730, 761, 699, 730, 606, 637, 575, 606, + 979, 1010, 855, 886, 731, 762, 607, 638, 884, 915, 760, 791, 636, 667, + 916, 947, 885, 916, 792, 823, 761, 792, 668, 699, 637, 668, 948, 979, + 917, 948, 886, 917, 824, 855, 793, 824, 762, 793, 700, 731, 669, 700, + 638, 669, 980, 1011, 949, 980, 918, 949, 887, 918, 856, 887, 825, 856, + 794, 825, 763, 794, 732, 763, 701, 732, 670, 701, 639, 670, 981, 1012, + 950, 981, 919, 950, 857, 888, 826, 857, 795, 826, 733, 764, 702, 733, + 671, 702, 982, 1013, 951, 982, 858, 889, 827, 858, 734, 765, 703, 734, + 983, 1014, 859, 890, 735, 766, 888, 919, 764, 795, 920, 951, 889, 920, + 796, 827, 765, 796, 952, 983, 921, 952, 890, 921, 828, 859, 797, 828, + 766, 797, 984, 1015, 953, 984, 922, 953, 891, 922, 860, 891, 829, 860, + 798, 829, 767, 798, 985, 1016, 954, 985, 923, 954, 861, 892, 830, 861, + 799, 830, 986, 1017, 955, 986, 862, 893, 831, 862, 987, 1018, 863, 894, + 892, 923, 924, 955, 893, 924, 956, 987, 925, 956, 894, 925, 988, 1019, + 957, 988, 926, 957, 895, 926, 989, 1020, 958, 989, 927, 958, 990, 1021, + 959, 990, 991, 1022, 0, 0, +}; + +DECLARE_ALIGNED(16, static const int16_t, vp9_default_iscan_4x4[16]) = { + 0, 2, 5, 8, 1, 3, 9, 12, 4, 7, 11, 14, 6, 10, 13, 15, +}; + +DECLARE_ALIGNED(16, static const int16_t, vp9_col_iscan_4x4[16]) = { + 0, 3, 7, 11, 1, 5, 9, 12, 2, 6, 10, 14, 4, 8, 13, 15, +}; + +DECLARE_ALIGNED(16, static const int16_t, vp9_row_iscan_4x4[16]) = { + 0, 1, 3, 5, 2, 4, 6, 9, 7, 8, 11, 13, 10, 12, 14, 15, +}; + +DECLARE_ALIGNED(16, static const int16_t, vp9_col_iscan_8x8[64]) = { + 0, 3, 8, 15, 22, 32, 40, 47, 1, 5, 11, 18, 26, 34, 44, 51, + 2, 7, 13, 20, 28, 38, 46, 54, 4, 10, 16, 24, 31, 41, 50, 56, + 6, 12, 21, 27, 35, 43, 52, 58, 9, 17, 25, 33, 39, 48, 55, 60, + 14, 23, 30, 37, 45, 53, 59, 62, 19, 29, 36, 42, 49, 57, 61, 63, +}; + +DECLARE_ALIGNED(16, static const int16_t, vp9_row_iscan_8x8[64]) = { + 0, 1, 2, 5, 8, 12, 19, 24, 3, 4, 7, 10, 15, 20, 30, 39, + 6, 9, 13, 16, 21, 27, 37, 46, 11, 14, 17, 23, 28, 34, 44, 52, + 18, 22, 25, 31, 35, 41, 50, 57, 26, 29, 33, 38, 43, 49, 55, 59, + 32, 36, 42, 47, 51, 54, 60, 61, 40, 45, 48, 53, 56, 58, 62, 63, +}; + +DECLARE_ALIGNED(16, static const int16_t, vp9_default_iscan_8x8[64]) = { + 0, 2, 5, 9, 14, 22, 31, 37, 1, 4, 8, 13, 19, 26, 38, 44, + 3, 6, 10, 17, 24, 30, 42, 49, 7, 11, 15, 21, 29, 36, 47, 53, + 12, 16, 20, 27, 34, 43, 52, 57, 18, 23, 28, 35, 41, 48, 56, 60, + 25, 32, 39, 45, 50, 55, 59, 62, 33, 40, 46, 51, 54, 58, 61, 63, +}; + +DECLARE_ALIGNED(16, static const int16_t, vp9_col_iscan_16x16[256]) = { + 0, 4, 11, 20, 31, 43, 59, 75, 85, 109, 130, 150, 165, 181, 195, 198, + 1, 6, 14, 23, 34, 47, 64, 81, 95, 114, 135, 153, 171, 188, 201, 212, + 2, 8, 16, 25, 38, 52, 67, 83, 101, 116, 136, 157, 172, 190, 205, 216, + 3, 10, 18, 29, 41, 55, 71, 89, 103, 119, 141, 159, 176, 194, 208, 218, + 5, 12, 21, 32, 45, 58, 74, 93, 104, 123, 144, 164, 179, 196, 210, 223, + 7, 15, 26, 37, 49, 63, 78, 96, 112, 129, 146, 166, 182, 200, 215, 228, + 9, 19, 28, 39, 54, 69, 86, 102, 117, 132, 151, 170, 187, 206, 220, 230, + 13, 24, 35, 46, 60, 73, 91, 108, 122, 137, 154, 174, 189, 207, 224, 235, + 17, 30, 40, 53, 66, 82, 98, 115, 126, 142, 161, 180, 197, 213, 227, 237, + 22, 36, 48, 62, 76, 92, 105, 120, 133, 147, 167, 186, 203, 219, 232, 240, + 27, 44, 56, 70, 84, 99, 113, 127, 140, 156, 175, 193, 209, 226, 236, 244, + 33, 51, 68, 79, 94, 110, 125, 138, 149, 162, 184, 202, 217, 229, 241, 247, + 42, 61, 77, 90, 106, 121, 134, 148, 160, 173, 191, 211, 225, 238, 245, 251, + 50, 72, 87, 100, 118, 128, 145, 158, 168, 183, 204, 222, 233, 242, 249, 253, + 57, 80, 97, 111, 131, 143, 155, 169, 178, 192, 214, 231, 239, 246, 250, 254, + 65, 88, 107, 124, 139, 152, 163, 177, 185, 199, 221, 234, 243, 248, 252, 255, +}; + +DECLARE_ALIGNED(16, static const int16_t, vp9_row_iscan_16x16[256]) = { + 0, 1, 2, 4, 6, 9, 12, 17, 22, 29, 36, 43, 54, 64, 76, + 86, 3, 5, 7, 11, 15, 19, 25, 32, 38, 48, 59, 68, 84, 99, + 115, 130, 8, 10, 13, 18, 23, 27, 33, 42, 51, 60, 72, 88, 103, + 119, 142, 167, 14, 16, 20, 26, 31, 37, 44, 53, 61, 73, 85, 100, + 116, 135, 161, 185, 21, 24, 30, 35, 40, 47, 55, 65, 74, 81, 94, + 112, 133, 154, 179, 205, 28, 34, 39, 45, 50, 58, 67, 77, 87, 96, + 106, 121, 146, 169, 196, 212, 41, 46, 49, 56, 63, 70, 79, 90, 98, + 107, 122, 138, 159, 182, 207, 222, 52, 57, 62, 69, 75, 83, 93, 102, + 110, 120, 134, 150, 176, 195, 215, 226, 66, 71, 78, 82, 91, 97, 108, + 113, 127, 136, 148, 168, 188, 202, 221, 232, 80, 89, 92, 101, 105, 114, + 125, 131, 139, 151, 162, 177, 192, 208, 223, 234, 95, 104, 109, 117, 123, + 128, 143, 144, 155, 165, 175, 190, 206, 219, 233, 239, 111, 118, 124, 129, + 140, 147, 157, 164, 170, 181, 191, 203, 224, 230, 240, 243, 126, 132, 137, + 145, 153, 160, 174, 178, 184, 197, 204, 216, 231, 237, 244, 246, 141, 149, + 156, 166, 172, 180, 189, 199, 200, 210, 220, 228, 238, 242, 249, 251, 152, + 163, 171, 183, 186, 193, 201, 211, 214, 218, 227, 236, 245, 247, 252, 253, + 158, 173, 187, 194, 198, 209, 213, 217, 225, 229, 235, 241, 248, 250, 254, + 255, +}; + +DECLARE_ALIGNED(16, static const int16_t, vp9_default_iscan_16x16[256]) = { + 0, 2, 5, 9, 17, 24, 36, 44, 55, 72, 88, 104, 128, 143, 166, + 179, 1, 4, 8, 13, 20, 30, 40, 54, 66, 79, 96, 113, 141, 154, + 178, 196, 3, 7, 11, 18, 25, 33, 46, 57, 71, 86, 101, 119, 148, + 164, 186, 201, 6, 12, 16, 23, 31, 39, 53, 64, 78, 92, 110, 127, + 153, 169, 193, 208, 10, 14, 19, 28, 37, 47, 58, 67, 84, 98, 114, + 133, 161, 176, 198, 214, 15, 21, 26, 34, 43, 52, 65, 77, 91, 106, + 120, 140, 165, 185, 205, 221, 22, 27, 32, 41, 48, 60, 73, 85, 99, + 116, 130, 151, 175, 190, 211, 225, 29, 35, 42, 49, 59, 69, 81, 95, + 108, 125, 139, 155, 182, 197, 217, 229, 38, 45, 51, 61, 68, 80, 93, + 105, 118, 134, 150, 168, 191, 207, 223, 234, 50, 56, 63, 74, 83, 94, + 109, 117, 129, 147, 163, 177, 199, 213, 228, 238, 62, 70, 76, 87, 97, + 107, 122, 131, 145, 159, 172, 188, 210, 222, 235, 242, 75, 82, 90, 102, + 112, 124, 138, 146, 157, 173, 187, 202, 219, 230, 240, 245, 89, 100, 111, + 123, 132, 142, 156, 167, 180, 189, 203, 216, 231, 237, 246, 250, 103, 115, + 126, 136, 149, 162, 171, 183, 194, 204, 215, 224, 236, 241, 248, 252, 121, + 135, 144, 158, 170, 181, 192, 200, 209, 218, 227, 233, 243, 244, 251, 254, + 137, 152, 160, 174, 184, 195, 206, 212, 220, 226, 232, 239, 247, 249, 253, + 255, +}; + +DECLARE_ALIGNED(16, static const int16_t, vp9_default_iscan_32x32[1024]) = { + 0, 2, 5, 10, 17, 25, 38, 47, 62, 83, 101, 121, 145, + 170, 193, 204, 210, 219, 229, 233, 245, 257, 275, 299, 342, 356, + 377, 405, 455, 471, 495, 527, 1, 4, 8, 15, 22, 30, 45, + 58, 74, 92, 112, 133, 158, 184, 203, 215, 222, 228, 234, 237, + 256, 274, 298, 317, 355, 376, 404, 426, 470, 494, 526, 551, 3, + 7, 12, 18, 28, 36, 52, 64, 82, 102, 118, 142, 164, 189, + 208, 217, 224, 231, 235, 238, 273, 297, 316, 329, 375, 403, 425, + 440, 493, 525, 550, 567, 6, 11, 16, 23, 31, 43, 60, 73, + 90, 109, 126, 150, 173, 196, 211, 220, 226, 232, 236, 239, 296, + 315, 328, 335, 402, 424, 439, 447, 524, 549, 566, 575, 9, 14, + 19, 29, 37, 50, 65, 78, 95, 116, 134, 157, 179, 201, 214, + 223, 244, 255, 272, 295, 341, 354, 374, 401, 454, 469, 492, 523, + 582, 596, 617, 645, 13, 20, 26, 35, 44, 54, 72, 85, 105, + 123, 140, 163, 182, 205, 216, 225, 254, 271, 294, 314, 353, 373, + 400, 423, 468, 491, 522, 548, 595, 616, 644, 666, 21, 27, 33, + 42, 53, 63, 80, 94, 113, 132, 151, 172, 190, 209, 218, 227, + 270, 293, 313, 327, 372, 399, 422, 438, 490, 521, 547, 565, 615, + 643, 665, 680, 24, 32, 39, 48, 57, 71, 88, 104, 120, 139, + 159, 178, 197, 212, 221, 230, 292, 312, 326, 334, 398, 421, 437, + 446, 520, 546, 564, 574, 642, 664, 679, 687, 34, 40, 46, 56, + 68, 81, 96, 111, 130, 147, 167, 186, 243, 253, 269, 291, 340, + 352, 371, 397, 453, 467, 489, 519, 581, 594, 614, 641, 693, 705, + 723, 747, 41, 49, 55, 67, 77, 91, 107, 124, 138, 161, 177, + 194, 252, 268, 290, 311, 351, 370, 396, 420, 466, 488, 518, 545, + 593, 613, 640, 663, 704, 722, 746, 765, 51, 59, 66, 76, 89, + 99, 119, 131, 149, 168, 181, 200, 267, 289, 310, 325, 369, 395, + 419, 436, 487, 517, 544, 563, 612, 639, 662, 678, 721, 745, 764, + 777, 61, 69, 75, 87, 100, 114, 129, 144, 162, 180, 191, 207, + 288, 309, 324, 333, 394, 418, 435, 445, 516, 543, 562, 573, 638, + 661, 677, 686, 744, 763, 776, 783, 70, 79, 86, 97, 108, 122, + 137, 155, 242, 251, 266, 287, 339, 350, 368, 393, 452, 465, 486, + 515, 580, 592, 611, 637, 692, 703, 720, 743, 788, 798, 813, 833, + 84, 93, 103, 110, 125, 141, 154, 171, 250, 265, 286, 308, 349, + 367, 392, 417, 464, 485, 514, 542, 591, 610, 636, 660, 702, 719, + 742, 762, 797, 812, 832, 848, 98, 106, 115, 127, 143, 156, 169, + 185, 264, 285, 307, 323, 366, 391, 416, 434, 484, 513, 541, 561, + 609, 635, 659, 676, 718, 741, 761, 775, 811, 831, 847, 858, 117, + 128, 136, 148, 160, 175, 188, 198, 284, 306, 322, 332, 390, 415, + 433, 444, 512, 540, 560, 572, 634, 658, 675, 685, 740, 760, 774, + 782, 830, 846, 857, 863, 135, 146, 152, 165, 241, 249, 263, 283, + 338, 348, 365, 389, 451, 463, 483, 511, 579, 590, 608, 633, 691, + 701, 717, 739, 787, 796, 810, 829, 867, 875, 887, 903, 153, 166, + 174, 183, 248, 262, 282, 305, 347, 364, 388, 414, 462, 482, 510, + 539, 589, 607, 632, 657, 700, 716, 738, 759, 795, 809, 828, 845, + 874, 886, 902, 915, 176, 187, 195, 202, 261, 281, 304, 321, 363, + 387, 413, 432, 481, 509, 538, 559, 606, 631, 656, 674, 715, 737, + 758, 773, 808, 827, 844, 856, 885, 901, 914, 923, 192, 199, 206, + 213, 280, 303, 320, 331, 386, 412, 431, 443, 508, 537, 558, 571, + 630, 655, 673, 684, 736, 757, 772, 781, 826, 843, 855, 862, 900, + 913, 922, 927, 240, 247, 260, 279, 337, 346, 362, 385, 450, 461, + 480, 507, 578, 588, 605, 629, 690, 699, 714, 735, 786, 794, 807, + 825, 866, 873, 884, 899, 930, 936, 945, 957, 246, 259, 278, 302, + 345, 361, 384, 411, 460, 479, 506, 536, 587, 604, 628, 654, 698, + 713, 734, 756, 793, 806, 824, 842, 872, 883, 898, 912, 935, 944, + 956, 966, 258, 277, 301, 319, 360, 383, 410, 430, 478, 505, 535, + 557, 603, 627, 653, 672, 712, 733, 755, 771, 805, 823, 841, 854, + 882, 897, 911, 921, 943, 955, 965, 972, 276, 300, 318, 330, 382, + 409, 429, 442, 504, 534, 556, 570, 626, 652, 671, 683, 732, 754, + 770, 780, 822, 840, 853, 861, 896, 910, 920, 926, 954, 964, 971, + 975, 336, 344, 359, 381, 449, 459, 477, 503, 577, 586, 602, 625, + 689, 697, 711, 731, 785, 792, 804, 821, 865, 871, 881, 895, 929, + 934, 942, 953, 977, 981, 987, 995, 343, 358, 380, 408, 458, 476, + 502, 533, 585, 601, 624, 651, 696, 710, 730, 753, 791, 803, 820, + 839, 870, 880, 894, 909, 933, 941, 952, 963, 980, 986, 994, 1001, + 357, 379, 407, 428, 475, 501, 532, 555, 600, 623, 650, 670, 709, + 729, 752, 769, 802, 819, 838, 852, 879, 893, 908, 919, 940, 951, + 962, 970, 985, 993, 1000, 1005, 378, 406, 427, 441, 500, 531, 554, + 569, 622, 649, 669, 682, 728, 751, 768, 779, 818, 837, 851, 860, + 892, 907, 918, 925, 950, 961, 969, 974, 992, 999, 1004, 1007, 448, + 457, 474, 499, 576, 584, 599, 621, 688, 695, 708, 727, 784, 790, + 801, 817, 864, 869, 878, 891, 928, 932, 939, 949, 976, 979, 984, + 991, 1008, 1010, 1013, 1017, 456, 473, 498, 530, 583, 598, 620, 648, + 694, 707, 726, 750, 789, 800, 816, 836, 868, 877, 890, 906, 931, + 938, 948, 960, 978, 983, 990, 998, 1009, 1012, 1016, 1020, 472, 497, + 529, 553, 597, 619, 647, 668, 706, 725, 749, 767, 799, 815, 835, + 850, 876, 889, 905, 917, 937, 947, 959, 968, 982, 989, 997, 1003, + 1011, 1015, 1019, 1022, 496, 528, 552, 568, 618, 646, 667, 681, 724, + 748, 766, 778, 814, 834, 849, 859, 888, 904, 916, 924, 946, 958, + 967, 973, 988, 996, 1002, 1006, 1014, 1018, 1021, 1023, +}; + +const scan_order vp9_default_scan_orders[TX_SIZES] = { + { default_scan_4x4, vp9_default_iscan_4x4, default_scan_4x4_neighbors }, + { default_scan_8x8, vp9_default_iscan_8x8, default_scan_8x8_neighbors }, + { default_scan_16x16, vp9_default_iscan_16x16, default_scan_16x16_neighbors }, + { default_scan_32x32, vp9_default_iscan_32x32, default_scan_32x32_neighbors }, +}; + +const scan_order vp9_scan_orders[TX_SIZES][TX_TYPES] = { + { // TX_4X4 + { default_scan_4x4, vp9_default_iscan_4x4, default_scan_4x4_neighbors }, + { row_scan_4x4, vp9_row_iscan_4x4, row_scan_4x4_neighbors }, + { col_scan_4x4, vp9_col_iscan_4x4, col_scan_4x4_neighbors }, + { default_scan_4x4, vp9_default_iscan_4x4, default_scan_4x4_neighbors } }, + { // TX_8X8 + { default_scan_8x8, vp9_default_iscan_8x8, default_scan_8x8_neighbors }, + { row_scan_8x8, vp9_row_iscan_8x8, row_scan_8x8_neighbors }, + { col_scan_8x8, vp9_col_iscan_8x8, col_scan_8x8_neighbors }, + { default_scan_8x8, vp9_default_iscan_8x8, default_scan_8x8_neighbors } }, + { // TX_16X16 + { default_scan_16x16, vp9_default_iscan_16x16, + default_scan_16x16_neighbors }, + { row_scan_16x16, vp9_row_iscan_16x16, row_scan_16x16_neighbors }, + { col_scan_16x16, vp9_col_iscan_16x16, col_scan_16x16_neighbors }, + { default_scan_16x16, vp9_default_iscan_16x16, + default_scan_16x16_neighbors } }, + { // TX_32X32 + { default_scan_32x32, vp9_default_iscan_32x32, + default_scan_32x32_neighbors }, + { default_scan_32x32, vp9_default_iscan_32x32, + default_scan_32x32_neighbors }, + { default_scan_32x32, vp9_default_iscan_32x32, + default_scan_32x32_neighbors }, + { default_scan_32x32, vp9_default_iscan_32x32, + default_scan_32x32_neighbors } } +}; diff --git a/vp9/common/vp9_scan.h b/vp9/common/vp9_scan.h new file mode 100644 index 0000000..b3520e7 --- /dev/null +++ b/vp9/common/vp9_scan.h @@ -0,0 +1,58 @@ +/* + * Copyright (c) 2013 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP9_COMMON_VP9_SCAN_H_ +#define VP9_COMMON_VP9_SCAN_H_ + +#include "vpx/vpx_integer.h" +#include "vpx_ports/mem.h" + +#include "vp9/common/vp9_enums.h" +#include "vp9/common/vp9_blockd.h" + +#ifdef __cplusplus +extern "C" { +#endif + +#define MAX_NEIGHBORS 2 + +typedef struct { + const int16_t *scan; + const int16_t *iscan; + const int16_t *neighbors; +} scan_order; + +extern const scan_order vp9_default_scan_orders[TX_SIZES]; +extern const scan_order vp9_scan_orders[TX_SIZES][TX_TYPES]; + +static INLINE int get_coef_context(const int16_t *neighbors, + const uint8_t *token_cache, int c) { + return (1 + token_cache[neighbors[MAX_NEIGHBORS * c + 0]] + + token_cache[neighbors[MAX_NEIGHBORS * c + 1]]) >> + 1; +} + +static INLINE const scan_order *get_scan(const MACROBLOCKD *xd, TX_SIZE tx_size, + PLANE_TYPE type, int block_idx) { + const MODE_INFO *const mi = xd->mi[0]; + + if (is_inter_block(mi) || type != PLANE_TYPE_Y || xd->lossless) { + return &vp9_default_scan_orders[tx_size]; + } else { + const PREDICTION_MODE mode = get_y_mode(mi, block_idx); + return &vp9_scan_orders[tx_size][intra_mode_to_tx_type_lookup[mode]]; + } +} + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP9_COMMON_VP9_SCAN_H_ diff --git a/vp9/common/vp9_seg_common.c b/vp9/common/vp9_seg_common.c new file mode 100644 index 0000000..1c7a1d2 --- /dev/null +++ b/vp9/common/vp9_seg_common.c @@ -0,0 +1,62 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include + +#include "vp9/common/vp9_blockd.h" +#include "vp9/common/vp9_loopfilter.h" +#include "vp9/common/vp9_seg_common.h" +#include "vp9/common/vp9_quant_common.h" + +static const int seg_feature_data_signed[SEG_LVL_MAX] = { 1, 1, 0, 0 }; + +static const int seg_feature_data_max[SEG_LVL_MAX] = { MAXQ, MAX_LOOP_FILTER, 3, + 0 }; + +// These functions provide access to new segment level features. +// Eventually these function may be "optimized out" but for the moment, +// the coding mechanism is still subject to change so these provide a +// convenient single point of change. + +void vp9_clearall_segfeatures(struct segmentation *seg) { + vp9_zero(seg->feature_data); + vp9_zero(seg->feature_mask); + seg->aq_av_offset = 0; +} + +void vp9_enable_segfeature(struct segmentation *seg, int segment_id, + SEG_LVL_FEATURES feature_id) { + seg->feature_mask[segment_id] |= 1 << feature_id; +} + +int vp9_seg_feature_data_max(SEG_LVL_FEATURES feature_id) { + return seg_feature_data_max[feature_id]; +} + +int vp9_is_segfeature_signed(SEG_LVL_FEATURES feature_id) { + return seg_feature_data_signed[feature_id]; +} + +void vp9_set_segdata(struct segmentation *seg, int segment_id, + SEG_LVL_FEATURES feature_id, int seg_data) { + assert(seg_data <= seg_feature_data_max[feature_id]); + if (seg_data < 0) { + assert(seg_feature_data_signed[feature_id]); + assert(-seg_data <= seg_feature_data_max[feature_id]); + } + + seg->feature_data[segment_id][feature_id] = seg_data; +} + +const vpx_tree_index vp9_segment_tree[TREE_SIZE(MAX_SEGMENTS)] = { + 2, 4, 6, 8, 10, 12, 0, -1, -2, -3, -4, -5, -6, -7 +}; + +// TBD? Functions to read and write segment data with range / validity checking diff --git a/vp9/common/vp9_seg_common.h b/vp9/common/vp9_seg_common.h new file mode 100644 index 0000000..b9bf75d --- /dev/null +++ b/vp9/common/vp9_seg_common.h @@ -0,0 +1,81 @@ +/* + * Copyright (c) 2012 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP9_COMMON_VP9_SEG_COMMON_H_ +#define VP9_COMMON_VP9_SEG_COMMON_H_ + +#include "vpx_dsp/prob.h" + +#ifdef __cplusplus +extern "C" { +#endif + +#define SEGMENT_DELTADATA 0 +#define SEGMENT_ABSDATA 1 + +#define MAX_SEGMENTS 8 +#define SEG_TREE_PROBS (MAX_SEGMENTS - 1) + +#define PREDICTION_PROBS 3 + +// Segment level features. +typedef enum { + SEG_LVL_ALT_Q = 0, // Use alternate Quantizer .... + SEG_LVL_ALT_LF = 1, // Use alternate loop filter value... + SEG_LVL_REF_FRAME = 2, // Optional Segment reference frame + SEG_LVL_SKIP = 3, // Optional Segment (0,0) + skip mode + SEG_LVL_MAX = 4 // Number of features supported +} SEG_LVL_FEATURES; + +struct segmentation { + uint8_t enabled; + uint8_t update_map; + uint8_t update_data; + uint8_t abs_delta; + uint8_t temporal_update; + + vpx_prob tree_probs[SEG_TREE_PROBS]; + vpx_prob pred_probs[PREDICTION_PROBS]; + + int16_t feature_data[MAX_SEGMENTS][SEG_LVL_MAX]; + uint32_t feature_mask[MAX_SEGMENTS]; + int aq_av_offset; +}; + +static INLINE int segfeature_active(const struct segmentation *seg, + int segment_id, + SEG_LVL_FEATURES feature_id) { + return seg->enabled && (seg->feature_mask[segment_id] & (1 << feature_id)); +} + +void vp9_clearall_segfeatures(struct segmentation *seg); + +void vp9_enable_segfeature(struct segmentation *seg, int segment_id, + SEG_LVL_FEATURES feature_id); + +int vp9_seg_feature_data_max(SEG_LVL_FEATURES feature_id); + +int vp9_is_segfeature_signed(SEG_LVL_FEATURES feature_id); + +void vp9_set_segdata(struct segmentation *seg, int segment_id, + SEG_LVL_FEATURES feature_id, int seg_data); + +static INLINE int get_segdata(const struct segmentation *seg, int segment_id, + SEG_LVL_FEATURES feature_id) { + return seg->feature_data[segment_id][feature_id]; +} + +extern const vpx_tree_index vp9_segment_tree[TREE_SIZE(MAX_SEGMENTS)]; + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP9_COMMON_VP9_SEG_COMMON_H_ diff --git a/vp9/common/vp9_thread_common.c b/vp9/common/vp9_thread_common.c new file mode 100644 index 0000000..8d44e91 --- /dev/null +++ b/vp9/common/vp9_thread_common.c @@ -0,0 +1,421 @@ +/* + * Copyright (c) 2014 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "./vpx_config.h" +#include "vpx_dsp/vpx_dsp_common.h" +#include "vpx_mem/vpx_mem.h" +#include "vp9/common/vp9_entropymode.h" +#include "vp9/common/vp9_thread_common.h" +#include "vp9/common/vp9_reconinter.h" +#include "vp9/common/vp9_loopfilter.h" + +#if CONFIG_MULTITHREAD +static INLINE void mutex_lock(pthread_mutex_t *const mutex) { + const int kMaxTryLocks = 4000; + int locked = 0; + int i; + + for (i = 0; i < kMaxTryLocks; ++i) { + if (!pthread_mutex_trylock(mutex)) { + locked = 1; + break; + } + } + + if (!locked) pthread_mutex_lock(mutex); +} +#endif // CONFIG_MULTITHREAD + +static INLINE void sync_read(VP9LfSync *const lf_sync, int r, int c) { +#if CONFIG_MULTITHREAD + const int nsync = lf_sync->sync_range; + + if (r && !(c & (nsync - 1))) { + pthread_mutex_t *const mutex = &lf_sync->mutex_[r - 1]; + mutex_lock(mutex); + + while (c > lf_sync->cur_sb_col[r - 1] - nsync) { + pthread_cond_wait(&lf_sync->cond_[r - 1], mutex); + } + pthread_mutex_unlock(mutex); + } +#else + (void)lf_sync; + (void)r; + (void)c; +#endif // CONFIG_MULTITHREAD +} + +static INLINE void sync_write(VP9LfSync *const lf_sync, int r, int c, + const int sb_cols) { +#if CONFIG_MULTITHREAD + const int nsync = lf_sync->sync_range; + int cur; + // Only signal when there are enough filtered SB for next row to run. + int sig = 1; + + if (c < sb_cols - 1) { + cur = c; + if (c % nsync) sig = 0; + } else { + cur = sb_cols + nsync; + } + + if (sig) { + mutex_lock(&lf_sync->mutex_[r]); + + lf_sync->cur_sb_col[r] = cur; + + pthread_cond_signal(&lf_sync->cond_[r]); + pthread_mutex_unlock(&lf_sync->mutex_[r]); + } +#else + (void)lf_sync; + (void)r; + (void)c; + (void)sb_cols; +#endif // CONFIG_MULTITHREAD +} + +// Implement row loopfiltering for each thread. +static INLINE void thread_loop_filter_rows( + const YV12_BUFFER_CONFIG *const frame_buffer, VP9_COMMON *const cm, + struct macroblockd_plane planes[MAX_MB_PLANE], int start, int stop, + int y_only, VP9LfSync *const lf_sync) { + const int num_planes = y_only ? 1 : MAX_MB_PLANE; + const int sb_cols = mi_cols_aligned_to_sb(cm->mi_cols) >> MI_BLOCK_SIZE_LOG2; + int mi_row, mi_col; + enum lf_path path; + if (y_only) + path = LF_PATH_444; + else if (planes[1].subsampling_y == 1 && planes[1].subsampling_x == 1) + path = LF_PATH_420; + else if (planes[1].subsampling_y == 0 && planes[1].subsampling_x == 0) + path = LF_PATH_444; + else + path = LF_PATH_SLOW; + + for (mi_row = start; mi_row < stop; + mi_row += lf_sync->num_workers * MI_BLOCK_SIZE) { + MODE_INFO **const mi = cm->mi_grid_visible + mi_row * cm->mi_stride; + LOOP_FILTER_MASK *lfm = get_lfm(&cm->lf, mi_row, 0); + + for (mi_col = 0; mi_col < cm->mi_cols; mi_col += MI_BLOCK_SIZE, ++lfm) { + const int r = mi_row >> MI_BLOCK_SIZE_LOG2; + const int c = mi_col >> MI_BLOCK_SIZE_LOG2; + int plane; + + sync_read(lf_sync, r, c); + + vp9_setup_dst_planes(planes, frame_buffer, mi_row, mi_col); + + vp9_adjust_mask(cm, mi_row, mi_col, lfm); + + vp9_filter_block_plane_ss00(cm, &planes[0], mi_row, lfm); + for (plane = 1; plane < num_planes; ++plane) { + switch (path) { + case LF_PATH_420: + vp9_filter_block_plane_ss11(cm, &planes[plane], mi_row, lfm); + break; + case LF_PATH_444: + vp9_filter_block_plane_ss00(cm, &planes[plane], mi_row, lfm); + break; + case LF_PATH_SLOW: + vp9_filter_block_plane_non420(cm, &planes[plane], mi + mi_col, + mi_row, mi_col); + break; + } + } + + sync_write(lf_sync, r, c, sb_cols); + } + } +} + +// Row-based multi-threaded loopfilter hook +static int loop_filter_row_worker(void *arg1, void *arg2) { + VP9LfSync *const lf_sync = (VP9LfSync *)arg1; + LFWorkerData *const lf_data = (LFWorkerData *)arg2; + thread_loop_filter_rows(lf_data->frame_buffer, lf_data->cm, lf_data->planes, + lf_data->start, lf_data->stop, lf_data->y_only, + lf_sync); + return 1; +} + +static void loop_filter_rows_mt(YV12_BUFFER_CONFIG *frame, VP9_COMMON *cm, + struct macroblockd_plane planes[MAX_MB_PLANE], + int start, int stop, int y_only, + VPxWorker *workers, int nworkers, + VP9LfSync *lf_sync) { + const VPxWorkerInterface *const winterface = vpx_get_worker_interface(); + // Number of superblock rows and cols + const int sb_rows = mi_cols_aligned_to_sb(cm->mi_rows) >> MI_BLOCK_SIZE_LOG2; + // Decoder may allocate more threads than number of tiles based on user's + // input. + const int tile_cols = 1 << cm->log2_tile_cols; + const int num_workers = VPXMIN(nworkers, tile_cols); + int i; + + if (!lf_sync->sync_range || sb_rows != lf_sync->rows || + num_workers > lf_sync->num_workers) { + vp9_loop_filter_dealloc(lf_sync); + vp9_loop_filter_alloc(lf_sync, cm, sb_rows, cm->width, num_workers); + } + + // Initialize cur_sb_col to -1 for all SB rows. + memset(lf_sync->cur_sb_col, -1, sizeof(*lf_sync->cur_sb_col) * sb_rows); + + // Set up loopfilter thread data. + // The decoder is capping num_workers because it has been observed that using + // more threads on the loopfilter than there are cores will hurt performance + // on Android. This is because the system will only schedule the tile decode + // workers on cores equal to the number of tile columns. Then if the decoder + // tries to use more threads for the loopfilter, it will hurt performance + // because of contention. If the multithreading code changes in the future + // then the number of workers used by the loopfilter should be revisited. + for (i = 0; i < num_workers; ++i) { + VPxWorker *const worker = &workers[i]; + LFWorkerData *const lf_data = &lf_sync->lfdata[i]; + + worker->hook = loop_filter_row_worker; + worker->data1 = lf_sync; + worker->data2 = lf_data; + + // Loopfilter data + vp9_loop_filter_data_reset(lf_data, frame, cm, planes); + lf_data->start = start + i * MI_BLOCK_SIZE; + lf_data->stop = stop; + lf_data->y_only = y_only; + + // Start loopfiltering + if (i == num_workers - 1) { + winterface->execute(worker); + } else { + winterface->launch(worker); + } + } + + // Wait till all rows are finished + for (i = 0; i < num_workers; ++i) { + winterface->sync(&workers[i]); + } +} + +void vp9_loop_filter_frame_mt(YV12_BUFFER_CONFIG *frame, VP9_COMMON *cm, + struct macroblockd_plane planes[MAX_MB_PLANE], + int frame_filter_level, int y_only, + int partial_frame, VPxWorker *workers, + int num_workers, VP9LfSync *lf_sync) { + int start_mi_row, end_mi_row, mi_rows_to_filter; + + if (!frame_filter_level) return; + + start_mi_row = 0; + mi_rows_to_filter = cm->mi_rows; + if (partial_frame && cm->mi_rows > 8) { + start_mi_row = cm->mi_rows >> 1; + start_mi_row &= 0xfffffff8; + mi_rows_to_filter = VPXMAX(cm->mi_rows / 8, 8); + } + end_mi_row = start_mi_row + mi_rows_to_filter; + vp9_loop_filter_frame_init(cm, frame_filter_level); + + loop_filter_rows_mt(frame, cm, planes, start_mi_row, end_mi_row, y_only, + workers, num_workers, lf_sync); +} + +// Set up nsync by width. +static INLINE int get_sync_range(int width) { + // nsync numbers are picked by testing. For example, for 4k + // video, using 4 gives best performance. + if (width < 640) + return 1; + else if (width <= 1280) + return 2; + else if (width <= 4096) + return 4; + else + return 8; +} + +// Allocate memory for lf row synchronization +void vp9_loop_filter_alloc(VP9LfSync *lf_sync, VP9_COMMON *cm, int rows, + int width, int num_workers) { + lf_sync->rows = rows; +#if CONFIG_MULTITHREAD + { + int i; + + CHECK_MEM_ERROR(cm, lf_sync->mutex_, + vpx_malloc(sizeof(*lf_sync->mutex_) * rows)); + if (lf_sync->mutex_) { + for (i = 0; i < rows; ++i) { + pthread_mutex_init(&lf_sync->mutex_[i], NULL); + } + } + + CHECK_MEM_ERROR(cm, lf_sync->cond_, + vpx_malloc(sizeof(*lf_sync->cond_) * rows)); + if (lf_sync->cond_) { + for (i = 0; i < rows; ++i) { + pthread_cond_init(&lf_sync->cond_[i], NULL); + } + } + } +#endif // CONFIG_MULTITHREAD + + CHECK_MEM_ERROR(cm, lf_sync->lfdata, + vpx_malloc(num_workers * sizeof(*lf_sync->lfdata))); + lf_sync->num_workers = num_workers; + + CHECK_MEM_ERROR(cm, lf_sync->cur_sb_col, + vpx_malloc(sizeof(*lf_sync->cur_sb_col) * rows)); + + // Set up nsync. + lf_sync->sync_range = get_sync_range(width); +} + +// Deallocate lf synchronization related mutex and data +void vp9_loop_filter_dealloc(VP9LfSync *lf_sync) { + if (lf_sync != NULL) { +#if CONFIG_MULTITHREAD + int i; + + if (lf_sync->mutex_ != NULL) { + for (i = 0; i < lf_sync->rows; ++i) { + pthread_mutex_destroy(&lf_sync->mutex_[i]); + } + vpx_free(lf_sync->mutex_); + } + if (lf_sync->cond_ != NULL) { + for (i = 0; i < lf_sync->rows; ++i) { + pthread_cond_destroy(&lf_sync->cond_[i]); + } + vpx_free(lf_sync->cond_); + } +#endif // CONFIG_MULTITHREAD + vpx_free(lf_sync->lfdata); + vpx_free(lf_sync->cur_sb_col); + // clear the structure as the source of this call may be a resize in which + // case this call will be followed by an _alloc() which may fail. + vp9_zero(*lf_sync); + } +} + +// Accumulate frame counts. +void vp9_accumulate_frame_counts(FRAME_COUNTS *accum, + const FRAME_COUNTS *counts, int is_dec) { + int i, j, k, l, m; + + for (i = 0; i < BLOCK_SIZE_GROUPS; i++) + for (j = 0; j < INTRA_MODES; j++) + accum->y_mode[i][j] += counts->y_mode[i][j]; + + for (i = 0; i < INTRA_MODES; i++) + for (j = 0; j < INTRA_MODES; j++) + accum->uv_mode[i][j] += counts->uv_mode[i][j]; + + for (i = 0; i < PARTITION_CONTEXTS; i++) + for (j = 0; j < PARTITION_TYPES; j++) + accum->partition[i][j] += counts->partition[i][j]; + + if (is_dec) { + int n; + for (i = 0; i < TX_SIZES; i++) + for (j = 0; j < PLANE_TYPES; j++) + for (k = 0; k < REF_TYPES; k++) + for (l = 0; l < COEF_BANDS; l++) + for (m = 0; m < COEFF_CONTEXTS; m++) { + accum->eob_branch[i][j][k][l][m] += + counts->eob_branch[i][j][k][l][m]; + for (n = 0; n < UNCONSTRAINED_NODES + 1; n++) + accum->coef[i][j][k][l][m][n] += counts->coef[i][j][k][l][m][n]; + } + } else { + for (i = 0; i < TX_SIZES; i++) + for (j = 0; j < PLANE_TYPES; j++) + for (k = 0; k < REF_TYPES; k++) + for (l = 0; l < COEF_BANDS; l++) + for (m = 0; m < COEFF_CONTEXTS; m++) + accum->eob_branch[i][j][k][l][m] += + counts->eob_branch[i][j][k][l][m]; + // In the encoder, coef is only updated at frame + // level, so not need to accumulate it here. + // for (n = 0; n < UNCONSTRAINED_NODES + 1; n++) + // accum->coef[i][j][k][l][m][n] += + // counts->coef[i][j][k][l][m][n]; + } + + for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++) + for (j = 0; j < SWITCHABLE_FILTERS; j++) + accum->switchable_interp[i][j] += counts->switchable_interp[i][j]; + + for (i = 0; i < INTER_MODE_CONTEXTS; i++) + for (j = 0; j < INTER_MODES; j++) + accum->inter_mode[i][j] += counts->inter_mode[i][j]; + + for (i = 0; i < INTRA_INTER_CONTEXTS; i++) + for (j = 0; j < 2; j++) + accum->intra_inter[i][j] += counts->intra_inter[i][j]; + + for (i = 0; i < COMP_INTER_CONTEXTS; i++) + for (j = 0; j < 2; j++) accum->comp_inter[i][j] += counts->comp_inter[i][j]; + + for (i = 0; i < REF_CONTEXTS; i++) + for (j = 0; j < 2; j++) + for (k = 0; k < 2; k++) + accum->single_ref[i][j][k] += counts->single_ref[i][j][k]; + + for (i = 0; i < REF_CONTEXTS; i++) + for (j = 0; j < 2; j++) accum->comp_ref[i][j] += counts->comp_ref[i][j]; + + for (i = 0; i < TX_SIZE_CONTEXTS; i++) { + for (j = 0; j < TX_SIZES; j++) + accum->tx.p32x32[i][j] += counts->tx.p32x32[i][j]; + + for (j = 0; j < TX_SIZES - 1; j++) + accum->tx.p16x16[i][j] += counts->tx.p16x16[i][j]; + + for (j = 0; j < TX_SIZES - 2; j++) + accum->tx.p8x8[i][j] += counts->tx.p8x8[i][j]; + } + + for (i = 0; i < TX_SIZES; i++) + accum->tx.tx_totals[i] += counts->tx.tx_totals[i]; + + for (i = 0; i < SKIP_CONTEXTS; i++) + for (j = 0; j < 2; j++) accum->skip[i][j] += counts->skip[i][j]; + + for (i = 0; i < MV_JOINTS; i++) accum->mv.joints[i] += counts->mv.joints[i]; + + for (k = 0; k < 2; k++) { + nmv_component_counts *const comps = &accum->mv.comps[k]; + const nmv_component_counts *const comps_t = &counts->mv.comps[k]; + + for (i = 0; i < 2; i++) { + comps->sign[i] += comps_t->sign[i]; + comps->class0_hp[i] += comps_t->class0_hp[i]; + comps->hp[i] += comps_t->hp[i]; + } + + for (i = 0; i < MV_CLASSES; i++) comps->classes[i] += comps_t->classes[i]; + + for (i = 0; i < CLASS0_SIZE; i++) { + comps->class0[i] += comps_t->class0[i]; + for (j = 0; j < MV_FP_SIZE; j++) + comps->class0_fp[i][j] += comps_t->class0_fp[i][j]; + } + + for (i = 0; i < MV_OFFSET_BITS; i++) + for (j = 0; j < 2; j++) comps->bits[i][j] += comps_t->bits[i][j]; + + for (i = 0; i < MV_FP_SIZE; i++) comps->fp[i] += comps_t->fp[i]; + } +} diff --git a/vp9/common/vp9_thread_common.h b/vp9/common/vp9_thread_common.h new file mode 100644 index 0000000..0f7c3ff --- /dev/null +++ b/vp9/common/vp9_thread_common.h @@ -0,0 +1,63 @@ +/* + * Copyright (c) 2014 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP9_COMMON_VP9_THREAD_COMMON_H_ +#define VP9_COMMON_VP9_THREAD_COMMON_H_ +#include "./vpx_config.h" +#include "vp9/common/vp9_loopfilter.h" +#include "vpx_util/vpx_thread.h" + +#ifdef __cplusplus +extern "C" { +#endif + +struct VP9Common; +struct FRAME_COUNTS; + +// Loopfilter row synchronization +typedef struct VP9LfSyncData { +#if CONFIG_MULTITHREAD + pthread_mutex_t *mutex_; + pthread_cond_t *cond_; +#endif + // Allocate memory to store the loop-filtered superblock index in each row. + int *cur_sb_col; + // The optimal sync_range for different resolution and platform should be + // determined by testing. Currently, it is chosen to be a power-of-2 number. + int sync_range; + int rows; + + // Row-based parallel loopfilter data + LFWorkerData *lfdata; + int num_workers; +} VP9LfSync; + +// Allocate memory for loopfilter row synchronization. +void vp9_loop_filter_alloc(VP9LfSync *lf_sync, struct VP9Common *cm, int rows, + int width, int num_workers); + +// Deallocate loopfilter synchronization related mutex and data. +void vp9_loop_filter_dealloc(VP9LfSync *lf_sync); + +// Multi-threaded loopfilter that uses the tile threads. +void vp9_loop_filter_frame_mt(YV12_BUFFER_CONFIG *frame, struct VP9Common *cm, + struct macroblockd_plane planes[MAX_MB_PLANE], + int frame_filter_level, int y_only, + int partial_frame, VPxWorker *workers, + int num_workers, VP9LfSync *lf_sync); + +void vp9_accumulate_frame_counts(struct FRAME_COUNTS *accum, + const struct FRAME_COUNTS *counts, int is_dec); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP9_COMMON_VP9_THREAD_COMMON_H_ diff --git a/vp9/common/vp9_tile_common.c b/vp9/common/vp9_tile_common.c new file mode 100644 index 0000000..672f808 --- /dev/null +++ b/vp9/common/vp9_tile_common.c @@ -0,0 +1,57 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "vp9/common/vp9_tile_common.h" +#include "vp9/common/vp9_onyxc_int.h" +#include "vpx_dsp/vpx_dsp_common.h" + +#define MIN_TILE_WIDTH_B64 4 +#define MAX_TILE_WIDTH_B64 64 + +static int get_tile_offset(int idx, int mis, int log2) { + const int sb_cols = mi_cols_aligned_to_sb(mis) >> MI_BLOCK_SIZE_LOG2; + const int offset = ((idx * sb_cols) >> log2) << MI_BLOCK_SIZE_LOG2; + return VPXMIN(offset, mis); +} + +void vp9_tile_set_row(TileInfo *tile, const VP9_COMMON *cm, int row) { + tile->mi_row_start = get_tile_offset(row, cm->mi_rows, cm->log2_tile_rows); + tile->mi_row_end = get_tile_offset(row + 1, cm->mi_rows, cm->log2_tile_rows); +} + +void vp9_tile_set_col(TileInfo *tile, const VP9_COMMON *cm, int col) { + tile->mi_col_start = get_tile_offset(col, cm->mi_cols, cm->log2_tile_cols); + tile->mi_col_end = get_tile_offset(col + 1, cm->mi_cols, cm->log2_tile_cols); +} + +void vp9_tile_init(TileInfo *tile, const VP9_COMMON *cm, int row, int col) { + vp9_tile_set_row(tile, cm, row); + vp9_tile_set_col(tile, cm, col); +} + +static int get_min_log2_tile_cols(const int sb64_cols) { + int min_log2 = 0; + while ((MAX_TILE_WIDTH_B64 << min_log2) < sb64_cols) ++min_log2; + return min_log2; +} + +static int get_max_log2_tile_cols(const int sb64_cols) { + int max_log2 = 1; + while ((sb64_cols >> max_log2) >= MIN_TILE_WIDTH_B64) ++max_log2; + return max_log2 - 1; +} + +void vp9_get_tile_n_bits(int mi_cols, int *min_log2_tile_cols, + int *max_log2_tile_cols) { + const int sb64_cols = mi_cols_aligned_to_sb(mi_cols) >> MI_BLOCK_SIZE_LOG2; + *min_log2_tile_cols = get_min_log2_tile_cols(sb64_cols); + *max_log2_tile_cols = get_max_log2_tile_cols(sb64_cols); + assert(*min_log2_tile_cols <= *max_log2_tile_cols); +} diff --git a/vp9/common/vp9_tile_common.h b/vp9/common/vp9_tile_common.h new file mode 100644 index 0000000..1b11c26 --- /dev/null +++ b/vp9/common/vp9_tile_common.h @@ -0,0 +1,40 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP9_COMMON_VP9_TILE_COMMON_H_ +#define VP9_COMMON_VP9_TILE_COMMON_H_ + +#ifdef __cplusplus +extern "C" { +#endif + +struct VP9Common; + +typedef struct TileInfo { + int mi_row_start, mi_row_end; + int mi_col_start, mi_col_end; +} TileInfo; + +// initializes 'tile->mi_(row|col)_(start|end)' for (row, col) based on +// 'cm->log2_tile_(rows|cols)' & 'cm->mi_(rows|cols)' +void vp9_tile_init(TileInfo *tile, const struct VP9Common *cm, int row, + int col); + +void vp9_tile_set_row(TileInfo *tile, const struct VP9Common *cm, int row); +void vp9_tile_set_col(TileInfo *tile, const struct VP9Common *cm, int col); + +void vp9_get_tile_n_bits(int mi_cols, int *min_log2_tile_cols, + int *max_log2_tile_cols); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP9_COMMON_VP9_TILE_COMMON_H_ diff --git a/vp9/common/x86/vp9_idct_intrin_sse2.c b/vp9/common/x86/vp9_idct_intrin_sse2.c new file mode 100644 index 0000000..6996260 --- /dev/null +++ b/vp9/common/x86/vp9_idct_intrin_sse2.c @@ -0,0 +1,226 @@ +/* + * Copyright (c) 2012 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "./vp9_rtcd.h" +#include "vpx_dsp/x86/inv_txfm_sse2.h" +#include "vpx_dsp/x86/txfm_common_sse2.h" +#include "vpx_ports/mem.h" + +void vp9_iht4x4_16_add_sse2(const tran_low_t *input, uint8_t *dest, int stride, + int tx_type) { + __m128i in[2]; + const __m128i eight = _mm_set1_epi16(8); + + in[0] = load_input_data8(input); + in[1] = load_input_data8(input + 8); + + switch (tx_type) { + case 0: // DCT_DCT + idct4_sse2(in); + idct4_sse2(in); + break; + case 1: // ADST_DCT + idct4_sse2(in); + iadst4_sse2(in); + break; + case 2: // DCT_ADST + iadst4_sse2(in); + idct4_sse2(in); + break; + case 3: // ADST_ADST + iadst4_sse2(in); + iadst4_sse2(in); + break; + default: assert(0); break; + } + + // Final round and shift + in[0] = _mm_add_epi16(in[0], eight); + in[1] = _mm_add_epi16(in[1], eight); + + in[0] = _mm_srai_epi16(in[0], 4); + in[1] = _mm_srai_epi16(in[1], 4); + + recon_and_store4x4_sse2(in, dest, stride); +} + +void vp9_iht8x8_64_add_sse2(const tran_low_t *input, uint8_t *dest, int stride, + int tx_type) { + __m128i in[8]; + const __m128i final_rounding = _mm_set1_epi16(1 << 4); + + // load input data + in[0] = load_input_data8(input); + in[1] = load_input_data8(input + 8 * 1); + in[2] = load_input_data8(input + 8 * 2); + in[3] = load_input_data8(input + 8 * 3); + in[4] = load_input_data8(input + 8 * 4); + in[5] = load_input_data8(input + 8 * 5); + in[6] = load_input_data8(input + 8 * 6); + in[7] = load_input_data8(input + 8 * 7); + + switch (tx_type) { + case 0: // DCT_DCT + idct8_sse2(in); + idct8_sse2(in); + break; + case 1: // ADST_DCT + idct8_sse2(in); + iadst8_sse2(in); + break; + case 2: // DCT_ADST + iadst8_sse2(in); + idct8_sse2(in); + break; + case 3: // ADST_ADST + iadst8_sse2(in); + iadst8_sse2(in); + break; + default: assert(0); break; + } + + // Final rounding and shift + in[0] = _mm_adds_epi16(in[0], final_rounding); + in[1] = _mm_adds_epi16(in[1], final_rounding); + in[2] = _mm_adds_epi16(in[2], final_rounding); + in[3] = _mm_adds_epi16(in[3], final_rounding); + in[4] = _mm_adds_epi16(in[4], final_rounding); + in[5] = _mm_adds_epi16(in[5], final_rounding); + in[6] = _mm_adds_epi16(in[6], final_rounding); + in[7] = _mm_adds_epi16(in[7], final_rounding); + + in[0] = _mm_srai_epi16(in[0], 5); + in[1] = _mm_srai_epi16(in[1], 5); + in[2] = _mm_srai_epi16(in[2], 5); + in[3] = _mm_srai_epi16(in[3], 5); + in[4] = _mm_srai_epi16(in[4], 5); + in[5] = _mm_srai_epi16(in[5], 5); + in[6] = _mm_srai_epi16(in[6], 5); + in[7] = _mm_srai_epi16(in[7], 5); + + recon_and_store(dest + 0 * stride, in[0]); + recon_and_store(dest + 1 * stride, in[1]); + recon_and_store(dest + 2 * stride, in[2]); + recon_and_store(dest + 3 * stride, in[3]); + recon_and_store(dest + 4 * stride, in[4]); + recon_and_store(dest + 5 * stride, in[5]); + recon_and_store(dest + 6 * stride, in[6]); + recon_and_store(dest + 7 * stride, in[7]); +} + +static INLINE void load_buffer_8x16(const tran_low_t *const input, + __m128i *const in) { + in[0] = load_input_data8(input + 0 * 16); + in[1] = load_input_data8(input + 1 * 16); + in[2] = load_input_data8(input + 2 * 16); + in[3] = load_input_data8(input + 3 * 16); + in[4] = load_input_data8(input + 4 * 16); + in[5] = load_input_data8(input + 5 * 16); + in[6] = load_input_data8(input + 6 * 16); + in[7] = load_input_data8(input + 7 * 16); + + in[8] = load_input_data8(input + 8 * 16); + in[9] = load_input_data8(input + 9 * 16); + in[10] = load_input_data8(input + 10 * 16); + in[11] = load_input_data8(input + 11 * 16); + in[12] = load_input_data8(input + 12 * 16); + in[13] = load_input_data8(input + 13 * 16); + in[14] = load_input_data8(input + 14 * 16); + in[15] = load_input_data8(input + 15 * 16); +} + +static INLINE void write_buffer_8x16(uint8_t *const dest, __m128i *const in, + const int stride) { + const __m128i final_rounding = _mm_set1_epi16(1 << 5); + // Final rounding and shift + in[0] = _mm_adds_epi16(in[0], final_rounding); + in[1] = _mm_adds_epi16(in[1], final_rounding); + in[2] = _mm_adds_epi16(in[2], final_rounding); + in[3] = _mm_adds_epi16(in[3], final_rounding); + in[4] = _mm_adds_epi16(in[4], final_rounding); + in[5] = _mm_adds_epi16(in[5], final_rounding); + in[6] = _mm_adds_epi16(in[6], final_rounding); + in[7] = _mm_adds_epi16(in[7], final_rounding); + in[8] = _mm_adds_epi16(in[8], final_rounding); + in[9] = _mm_adds_epi16(in[9], final_rounding); + in[10] = _mm_adds_epi16(in[10], final_rounding); + in[11] = _mm_adds_epi16(in[11], final_rounding); + in[12] = _mm_adds_epi16(in[12], final_rounding); + in[13] = _mm_adds_epi16(in[13], final_rounding); + in[14] = _mm_adds_epi16(in[14], final_rounding); + in[15] = _mm_adds_epi16(in[15], final_rounding); + + in[0] = _mm_srai_epi16(in[0], 6); + in[1] = _mm_srai_epi16(in[1], 6); + in[2] = _mm_srai_epi16(in[2], 6); + in[3] = _mm_srai_epi16(in[3], 6); + in[4] = _mm_srai_epi16(in[4], 6); + in[5] = _mm_srai_epi16(in[5], 6); + in[6] = _mm_srai_epi16(in[6], 6); + in[7] = _mm_srai_epi16(in[7], 6); + in[8] = _mm_srai_epi16(in[8], 6); + in[9] = _mm_srai_epi16(in[9], 6); + in[10] = _mm_srai_epi16(in[10], 6); + in[11] = _mm_srai_epi16(in[11], 6); + in[12] = _mm_srai_epi16(in[12], 6); + in[13] = _mm_srai_epi16(in[13], 6); + in[14] = _mm_srai_epi16(in[14], 6); + in[15] = _mm_srai_epi16(in[15], 6); + + recon_and_store(dest + 0 * stride, in[0]); + recon_and_store(dest + 1 * stride, in[1]); + recon_and_store(dest + 2 * stride, in[2]); + recon_and_store(dest + 3 * stride, in[3]); + recon_and_store(dest + 4 * stride, in[4]); + recon_and_store(dest + 5 * stride, in[5]); + recon_and_store(dest + 6 * stride, in[6]); + recon_and_store(dest + 7 * stride, in[7]); + recon_and_store(dest + 8 * stride, in[8]); + recon_and_store(dest + 9 * stride, in[9]); + recon_and_store(dest + 10 * stride, in[10]); + recon_and_store(dest + 11 * stride, in[11]); + recon_and_store(dest + 12 * stride, in[12]); + recon_and_store(dest + 13 * stride, in[13]); + recon_and_store(dest + 14 * stride, in[14]); + recon_and_store(dest + 15 * stride, in[15]); +} + +void vp9_iht16x16_256_add_sse2(const tran_low_t *input, uint8_t *dest, + int stride, int tx_type) { + __m128i in0[16], in1[16]; + + load_buffer_8x16(input, in0); + input += 8; + load_buffer_8x16(input, in1); + + switch (tx_type) { + case 0: // DCT_DCT + idct16_sse2(in0, in1); + idct16_sse2(in0, in1); + break; + case 1: // ADST_DCT + idct16_sse2(in0, in1); + iadst16_sse2(in0, in1); + break; + case 2: // DCT_ADST + iadst16_sse2(in0, in1); + idct16_sse2(in0, in1); + break; + case 3: // ADST_ADST + iadst16_sse2(in0, in1); + iadst16_sse2(in0, in1); + break; + default: assert(0); break; + } + + write_buffer_8x16(dest, in0, stride); + dest += 8; + write_buffer_8x16(dest, in1, stride); +} diff --git a/vp9/common/x86/vp9_mfqe_sse2.asm b/vp9/common/x86/vp9_mfqe_sse2.asm new file mode 100644 index 0000000..ca0897a --- /dev/null +++ b/vp9/common/x86/vp9_mfqe_sse2.asm @@ -0,0 +1,289 @@ +; +; Copyright (c) 2015 The WebM project authors. All Rights Reserved. +; +; Use of this source code is governed by a BSD-style license +; that can be found in the LICENSE file in the root of the source +; tree. An additional intellectual property rights grant can be found +; in the file PATENTS. All contributing project authors may +; be found in the AUTHORS file in the root of the source tree. +; + +; This file is a duplicate of mfqe_sse2.asm in VP8. +; TODO(jackychen): Find a way to fix the duplicate. +%include "vpx_ports/x86_abi_support.asm" + +SECTION .text + +;void vp9_filter_by_weight16x16_sse2 +;( +; unsigned char *src, +; int src_stride, +; unsigned char *dst, +; int dst_stride, +; int src_weight +;) +global sym(vp9_filter_by_weight16x16_sse2) PRIVATE +sym(vp9_filter_by_weight16x16_sse2): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 5 + SAVE_XMM 6 + GET_GOT rbx + push rsi + push rdi + ; end prolog + + movd xmm0, arg(4) ; src_weight + pshuflw xmm0, xmm0, 0x0 ; replicate to all low words + punpcklqdq xmm0, xmm0 ; replicate to all hi words + + movdqa xmm1, [GLOBAL(tMFQE)] + psubw xmm1, xmm0 ; dst_weight + + mov rax, arg(0) ; src + mov rsi, arg(1) ; src_stride + mov rdx, arg(2) ; dst + mov rdi, arg(3) ; dst_stride + + mov rcx, 16 ; loop count + pxor xmm6, xmm6 + +.combine: + movdqa xmm2, [rax] + movdqa xmm4, [rdx] + add rax, rsi + + ; src * src_weight + movdqa xmm3, xmm2 + punpcklbw xmm2, xmm6 + punpckhbw xmm3, xmm6 + pmullw xmm2, xmm0 + pmullw xmm3, xmm0 + + ; dst * dst_weight + movdqa xmm5, xmm4 + punpcklbw xmm4, xmm6 + punpckhbw xmm5, xmm6 + pmullw xmm4, xmm1 + pmullw xmm5, xmm1 + + ; sum, round and shift + paddw xmm2, xmm4 + paddw xmm3, xmm5 + paddw xmm2, [GLOBAL(tMFQE_round)] + paddw xmm3, [GLOBAL(tMFQE_round)] + psrlw xmm2, 4 + psrlw xmm3, 4 + + packuswb xmm2, xmm3 + movdqa [rdx], xmm2 + add rdx, rdi + + dec rcx + jnz .combine + + ; begin epilog + pop rdi + pop rsi + RESTORE_GOT + RESTORE_XMM + UNSHADOW_ARGS + pop rbp + + ret + +;void vp9_filter_by_weight8x8_sse2 +;( +; unsigned char *src, +; int src_stride, +; unsigned char *dst, +; int dst_stride, +; int src_weight +;) +global sym(vp9_filter_by_weight8x8_sse2) PRIVATE +sym(vp9_filter_by_weight8x8_sse2): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 5 + GET_GOT rbx + push rsi + push rdi + ; end prolog + + movd xmm0, arg(4) ; src_weight + pshuflw xmm0, xmm0, 0x0 ; replicate to all low words + punpcklqdq xmm0, xmm0 ; replicate to all hi words + + movdqa xmm1, [GLOBAL(tMFQE)] + psubw xmm1, xmm0 ; dst_weight + + mov rax, arg(0) ; src + mov rsi, arg(1) ; src_stride + mov rdx, arg(2) ; dst + mov rdi, arg(3) ; dst_stride + + mov rcx, 8 ; loop count + pxor xmm4, xmm4 + +.combine: + movq xmm2, [rax] + movq xmm3, [rdx] + add rax, rsi + + ; src * src_weight + punpcklbw xmm2, xmm4 + pmullw xmm2, xmm0 + + ; dst * dst_weight + punpcklbw xmm3, xmm4 + pmullw xmm3, xmm1 + + ; sum, round and shift + paddw xmm2, xmm3 + paddw xmm2, [GLOBAL(tMFQE_round)] + psrlw xmm2, 4 + + packuswb xmm2, xmm4 + movq [rdx], xmm2 + add rdx, rdi + + dec rcx + jnz .combine + + ; begin epilog + pop rdi + pop rsi + RESTORE_GOT + UNSHADOW_ARGS + pop rbp + + ret + +;void vp9_variance_and_sad_16x16_sse2 | arg +;( +; unsigned char *src1, 0 +; int stride1, 1 +; unsigned char *src2, 2 +; int stride2, 3 +; unsigned int *variance, 4 +; unsigned int *sad, 5 +;) +global sym(vp9_variance_and_sad_16x16_sse2) PRIVATE +sym(vp9_variance_and_sad_16x16_sse2): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 6 + GET_GOT rbx + push rsi + push rdi + ; end prolog + + mov rax, arg(0) ; src1 + mov rcx, arg(1) ; stride1 + mov rdx, arg(2) ; src2 + mov rdi, arg(3) ; stride2 + + mov rsi, 16 ; block height + + ; Prep accumulator registers + pxor xmm3, xmm3 ; SAD + pxor xmm4, xmm4 ; sum of src2 + pxor xmm5, xmm5 ; sum of src2^2 + + ; Because we're working with the actual output frames + ; we can't depend on any kind of data alignment. +.accumulate: + movdqa xmm0, [rax] ; src1 + movdqa xmm1, [rdx] ; src2 + add rax, rcx ; src1 + stride1 + add rdx, rdi ; src2 + stride2 + + ; SAD(src1, src2) + psadbw xmm0, xmm1 + paddusw xmm3, xmm0 + + ; SUM(src2) + pxor xmm2, xmm2 + psadbw xmm2, xmm1 ; sum src2 by misusing SAD against 0 + paddusw xmm4, xmm2 + + ; pmaddubsw would be ideal if it took two unsigned values. instead, + ; it expects a signed and an unsigned value. so instead we zero extend + ; and operate on words. + pxor xmm2, xmm2 + movdqa xmm0, xmm1 + punpcklbw xmm0, xmm2 + punpckhbw xmm1, xmm2 + pmaddwd xmm0, xmm0 + pmaddwd xmm1, xmm1 + paddd xmm5, xmm0 + paddd xmm5, xmm1 + + sub rsi, 1 + jnz .accumulate + + ; phaddd only operates on adjacent double words. + ; Finalize SAD and store + movdqa xmm0, xmm3 + psrldq xmm0, 8 + paddusw xmm0, xmm3 + paddd xmm0, [GLOBAL(t128)] + psrld xmm0, 8 + + mov rax, arg(5) + movd [rax], xmm0 + + ; Accumulate sum of src2 + movdqa xmm0, xmm4 + psrldq xmm0, 8 + paddusw xmm0, xmm4 + ; Square src2. Ignore high value + pmuludq xmm0, xmm0 + psrld xmm0, 8 + + ; phaddw could be used to sum adjacent values but we want + ; all the values summed. promote to doubles, accumulate, + ; shift and sum + pxor xmm2, xmm2 + movdqa xmm1, xmm5 + punpckldq xmm1, xmm2 + punpckhdq xmm5, xmm2 + paddd xmm1, xmm5 + movdqa xmm2, xmm1 + psrldq xmm1, 8 + paddd xmm1, xmm2 + + psubd xmm1, xmm0 + + ; (variance + 128) >> 8 + paddd xmm1, [GLOBAL(t128)] + psrld xmm1, 8 + mov rax, arg(4) + + movd [rax], xmm1 + + + ; begin epilog + pop rdi + pop rsi + RESTORE_GOT + UNSHADOW_ARGS + pop rbp + ret + +SECTION_RODATA +align 16 +t128: +%ifndef __NASM_VER__ + ddq 128 +%elif CONFIG_BIG_ENDIAN + dq 0, 128 +%else + dq 128, 0 +%endif +align 16 +tMFQE: ; 1 << MFQE_PRECISION + times 8 dw 0x10 +align 16 +tMFQE_round: ; 1 << (MFQE_PRECISION - 1) + times 8 dw 0x08 diff --git a/vp9/decoder/vp9_decodeframe.c b/vp9/decoder/vp9_decodeframe.c new file mode 100644 index 0000000..d0e896c --- /dev/null +++ b/vp9/decoder/vp9_decodeframe.c @@ -0,0 +1,2108 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include // qsort() + +#include "./vp9_rtcd.h" +#include "./vpx_dsp_rtcd.h" +#include "./vpx_scale_rtcd.h" + +#include "vpx_dsp/bitreader_buffer.h" +#include "vpx_dsp/bitreader.h" +#include "vpx_dsp/vpx_dsp_common.h" +#include "vpx_mem/vpx_mem.h" +#include "vpx_ports/mem.h" +#include "vpx_ports/mem_ops.h" +#include "vpx_scale/vpx_scale.h" +#include "vpx_util/vpx_thread.h" + +#include "vp9/common/vp9_alloccommon.h" +#include "vp9/common/vp9_common.h" +#include "vp9/common/vp9_entropy.h" +#include "vp9/common/vp9_entropymode.h" +#include "vp9/common/vp9_idct.h" +#include "vp9/common/vp9_thread_common.h" +#include "vp9/common/vp9_pred_common.h" +#include "vp9/common/vp9_quant_common.h" +#include "vp9/common/vp9_reconintra.h" +#include "vp9/common/vp9_reconinter.h" +#include "vp9/common/vp9_seg_common.h" +#include "vp9/common/vp9_tile_common.h" + +#include "vp9/decoder/vp9_decodeframe.h" +#include "vp9/decoder/vp9_detokenize.h" +#include "vp9/decoder/vp9_decodemv.h" +#include "vp9/decoder/vp9_decoder.h" +#include "vp9/decoder/vp9_dsubexp.h" + +#define MAX_VP9_HEADER_SIZE 80 + +static int is_compound_reference_allowed(const VP9_COMMON *cm) { + int i; + for (i = 1; i < REFS_PER_FRAME; ++i) + if (cm->ref_frame_sign_bias[i + 1] != cm->ref_frame_sign_bias[1]) return 1; + + return 0; +} + +static void setup_compound_reference_mode(VP9_COMMON *cm) { + if (cm->ref_frame_sign_bias[LAST_FRAME] == + cm->ref_frame_sign_bias[GOLDEN_FRAME]) { + cm->comp_fixed_ref = ALTREF_FRAME; + cm->comp_var_ref[0] = LAST_FRAME; + cm->comp_var_ref[1] = GOLDEN_FRAME; + } else if (cm->ref_frame_sign_bias[LAST_FRAME] == + cm->ref_frame_sign_bias[ALTREF_FRAME]) { + cm->comp_fixed_ref = GOLDEN_FRAME; + cm->comp_var_ref[0] = LAST_FRAME; + cm->comp_var_ref[1] = ALTREF_FRAME; + } else { + cm->comp_fixed_ref = LAST_FRAME; + cm->comp_var_ref[0] = GOLDEN_FRAME; + cm->comp_var_ref[1] = ALTREF_FRAME; + } +} + +static int read_is_valid(const uint8_t *start, size_t len, const uint8_t *end) { + return len != 0 && len <= (size_t)(end - start); +} + +static int decode_unsigned_max(struct vpx_read_bit_buffer *rb, int max) { + const int data = vpx_rb_read_literal(rb, get_unsigned_bits(max)); + return data > max ? max : data; +} + +static TX_MODE read_tx_mode(vpx_reader *r) { + TX_MODE tx_mode = vpx_read_literal(r, 2); + if (tx_mode == ALLOW_32X32) tx_mode += vpx_read_bit(r); + return tx_mode; +} + +static void read_tx_mode_probs(struct tx_probs *tx_probs, vpx_reader *r) { + int i, j; + + for (i = 0; i < TX_SIZE_CONTEXTS; ++i) + for (j = 0; j < TX_SIZES - 3; ++j) + vp9_diff_update_prob(r, &tx_probs->p8x8[i][j]); + + for (i = 0; i < TX_SIZE_CONTEXTS; ++i) + for (j = 0; j < TX_SIZES - 2; ++j) + vp9_diff_update_prob(r, &tx_probs->p16x16[i][j]); + + for (i = 0; i < TX_SIZE_CONTEXTS; ++i) + for (j = 0; j < TX_SIZES - 1; ++j) + vp9_diff_update_prob(r, &tx_probs->p32x32[i][j]); +} + +static void read_switchable_interp_probs(FRAME_CONTEXT *fc, vpx_reader *r) { + int i, j; + for (j = 0; j < SWITCHABLE_FILTER_CONTEXTS; ++j) + for (i = 0; i < SWITCHABLE_FILTERS - 1; ++i) + vp9_diff_update_prob(r, &fc->switchable_interp_prob[j][i]); +} + +static void read_inter_mode_probs(FRAME_CONTEXT *fc, vpx_reader *r) { + int i, j; + for (i = 0; i < INTER_MODE_CONTEXTS; ++i) + for (j = 0; j < INTER_MODES - 1; ++j) + vp9_diff_update_prob(r, &fc->inter_mode_probs[i][j]); +} + +static REFERENCE_MODE read_frame_reference_mode(const VP9_COMMON *cm, + vpx_reader *r) { + if (is_compound_reference_allowed(cm)) { + return vpx_read_bit(r) + ? (vpx_read_bit(r) ? REFERENCE_MODE_SELECT : COMPOUND_REFERENCE) + : SINGLE_REFERENCE; + } else { + return SINGLE_REFERENCE; + } +} + +static void read_frame_reference_mode_probs(VP9_COMMON *cm, vpx_reader *r) { + FRAME_CONTEXT *const fc = cm->fc; + int i; + + if (cm->reference_mode == REFERENCE_MODE_SELECT) + for (i = 0; i < COMP_INTER_CONTEXTS; ++i) + vp9_diff_update_prob(r, &fc->comp_inter_prob[i]); + + if (cm->reference_mode != COMPOUND_REFERENCE) + for (i = 0; i < REF_CONTEXTS; ++i) { + vp9_diff_update_prob(r, &fc->single_ref_prob[i][0]); + vp9_diff_update_prob(r, &fc->single_ref_prob[i][1]); + } + + if (cm->reference_mode != SINGLE_REFERENCE) + for (i = 0; i < REF_CONTEXTS; ++i) + vp9_diff_update_prob(r, &fc->comp_ref_prob[i]); +} + +static void update_mv_probs(vpx_prob *p, int n, vpx_reader *r) { + int i; + for (i = 0; i < n; ++i) + if (vpx_read(r, MV_UPDATE_PROB)) p[i] = (vpx_read_literal(r, 7) << 1) | 1; +} + +static void read_mv_probs(nmv_context *ctx, int allow_hp, vpx_reader *r) { + int i, j; + + update_mv_probs(ctx->joints, MV_JOINTS - 1, r); + + for (i = 0; i < 2; ++i) { + nmv_component *const comp_ctx = &ctx->comps[i]; + update_mv_probs(&comp_ctx->sign, 1, r); + update_mv_probs(comp_ctx->classes, MV_CLASSES - 1, r); + update_mv_probs(comp_ctx->class0, CLASS0_SIZE - 1, r); + update_mv_probs(comp_ctx->bits, MV_OFFSET_BITS, r); + } + + for (i = 0; i < 2; ++i) { + nmv_component *const comp_ctx = &ctx->comps[i]; + for (j = 0; j < CLASS0_SIZE; ++j) + update_mv_probs(comp_ctx->class0_fp[j], MV_FP_SIZE - 1, r); + update_mv_probs(comp_ctx->fp, 3, r); + } + + if (allow_hp) { + for (i = 0; i < 2; ++i) { + nmv_component *const comp_ctx = &ctx->comps[i]; + update_mv_probs(&comp_ctx->class0_hp, 1, r); + update_mv_probs(&comp_ctx->hp, 1, r); + } + } +} + +static void inverse_transform_block_inter(MACROBLOCKD *xd, int plane, + const TX_SIZE tx_size, uint8_t *dst, + int stride, int eob) { + struct macroblockd_plane *const pd = &xd->plane[plane]; + tran_low_t *const dqcoeff = pd->dqcoeff; + assert(eob > 0); +#if CONFIG_VP9_HIGHBITDEPTH + if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { + uint16_t *const dst16 = CONVERT_TO_SHORTPTR(dst); + if (xd->lossless) { + vp9_highbd_iwht4x4_add(dqcoeff, dst16, stride, eob, xd->bd); + } else { + switch (tx_size) { + case TX_4X4: + vp9_highbd_idct4x4_add(dqcoeff, dst16, stride, eob, xd->bd); + break; + case TX_8X8: + vp9_highbd_idct8x8_add(dqcoeff, dst16, stride, eob, xd->bd); + break; + case TX_16X16: + vp9_highbd_idct16x16_add(dqcoeff, dst16, stride, eob, xd->bd); + break; + case TX_32X32: + vp9_highbd_idct32x32_add(dqcoeff, dst16, stride, eob, xd->bd); + break; + default: assert(0 && "Invalid transform size"); + } + } + } else { + if (xd->lossless) { + vp9_iwht4x4_add(dqcoeff, dst, stride, eob); + } else { + switch (tx_size) { + case TX_4X4: vp9_idct4x4_add(dqcoeff, dst, stride, eob); break; + case TX_8X8: vp9_idct8x8_add(dqcoeff, dst, stride, eob); break; + case TX_16X16: vp9_idct16x16_add(dqcoeff, dst, stride, eob); break; + case TX_32X32: vp9_idct32x32_add(dqcoeff, dst, stride, eob); break; + default: assert(0 && "Invalid transform size"); return; + } + } + } +#else + if (xd->lossless) { + vp9_iwht4x4_add(dqcoeff, dst, stride, eob); + } else { + switch (tx_size) { + case TX_4X4: vp9_idct4x4_add(dqcoeff, dst, stride, eob); break; + case TX_8X8: vp9_idct8x8_add(dqcoeff, dst, stride, eob); break; + case TX_16X16: vp9_idct16x16_add(dqcoeff, dst, stride, eob); break; + case TX_32X32: vp9_idct32x32_add(dqcoeff, dst, stride, eob); break; + default: assert(0 && "Invalid transform size"); return; + } + } +#endif // CONFIG_VP9_HIGHBITDEPTH + + if (eob == 1) { + dqcoeff[0] = 0; + } else { + if (tx_size <= TX_16X16 && eob <= 10) + memset(dqcoeff, 0, 4 * (4 << tx_size) * sizeof(dqcoeff[0])); + else if (tx_size == TX_32X32 && eob <= 34) + memset(dqcoeff, 0, 256 * sizeof(dqcoeff[0])); + else + memset(dqcoeff, 0, (16 << (tx_size << 1)) * sizeof(dqcoeff[0])); + } +} + +static void inverse_transform_block_intra(MACROBLOCKD *xd, int plane, + const TX_TYPE tx_type, + const TX_SIZE tx_size, uint8_t *dst, + int stride, int eob) { + struct macroblockd_plane *const pd = &xd->plane[plane]; + tran_low_t *const dqcoeff = pd->dqcoeff; + assert(eob > 0); +#if CONFIG_VP9_HIGHBITDEPTH + if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { + uint16_t *const dst16 = CONVERT_TO_SHORTPTR(dst); + if (xd->lossless) { + vp9_highbd_iwht4x4_add(dqcoeff, dst16, stride, eob, xd->bd); + } else { + switch (tx_size) { + case TX_4X4: + vp9_highbd_iht4x4_add(tx_type, dqcoeff, dst16, stride, eob, xd->bd); + break; + case TX_8X8: + vp9_highbd_iht8x8_add(tx_type, dqcoeff, dst16, stride, eob, xd->bd); + break; + case TX_16X16: + vp9_highbd_iht16x16_add(tx_type, dqcoeff, dst16, stride, eob, xd->bd); + break; + case TX_32X32: + vp9_highbd_idct32x32_add(dqcoeff, dst16, stride, eob, xd->bd); + break; + default: assert(0 && "Invalid transform size"); + } + } + } else { + if (xd->lossless) { + vp9_iwht4x4_add(dqcoeff, dst, stride, eob); + } else { + switch (tx_size) { + case TX_4X4: vp9_iht4x4_add(tx_type, dqcoeff, dst, stride, eob); break; + case TX_8X8: vp9_iht8x8_add(tx_type, dqcoeff, dst, stride, eob); break; + case TX_16X16: + vp9_iht16x16_add(tx_type, dqcoeff, dst, stride, eob); + break; + case TX_32X32: vp9_idct32x32_add(dqcoeff, dst, stride, eob); break; + default: assert(0 && "Invalid transform size"); return; + } + } + } +#else + if (xd->lossless) { + vp9_iwht4x4_add(dqcoeff, dst, stride, eob); + } else { + switch (tx_size) { + case TX_4X4: vp9_iht4x4_add(tx_type, dqcoeff, dst, stride, eob); break; + case TX_8X8: vp9_iht8x8_add(tx_type, dqcoeff, dst, stride, eob); break; + case TX_16X16: + vp9_iht16x16_add(tx_type, dqcoeff, dst, stride, eob); + break; + case TX_32X32: vp9_idct32x32_add(dqcoeff, dst, stride, eob); break; + default: assert(0 && "Invalid transform size"); return; + } + } +#endif // CONFIG_VP9_HIGHBITDEPTH + + if (eob == 1) { + dqcoeff[0] = 0; + } else { + if (tx_type == DCT_DCT && tx_size <= TX_16X16 && eob <= 10) + memset(dqcoeff, 0, 4 * (4 << tx_size) * sizeof(dqcoeff[0])); + else if (tx_size == TX_32X32 && eob <= 34) + memset(dqcoeff, 0, 256 * sizeof(dqcoeff[0])); + else + memset(dqcoeff, 0, (16 << (tx_size << 1)) * sizeof(dqcoeff[0])); + } +} + +static void predict_and_reconstruct_intra_block(TileWorkerData *twd, + MODE_INFO *const mi, int plane, + int row, int col, + TX_SIZE tx_size) { + MACROBLOCKD *const xd = &twd->xd; + struct macroblockd_plane *const pd = &xd->plane[plane]; + PREDICTION_MODE mode = (plane == 0) ? mi->mode : mi->uv_mode; + uint8_t *dst; + dst = &pd->dst.buf[4 * row * pd->dst.stride + 4 * col]; + + if (mi->sb_type < BLOCK_8X8) + if (plane == 0) mode = xd->mi[0]->bmi[(row << 1) + col].as_mode; + + vp9_predict_intra_block(xd, pd->n4_wl, tx_size, mode, dst, pd->dst.stride, + dst, pd->dst.stride, col, row, plane); + + if (!mi->skip) { + const TX_TYPE tx_type = + (plane || xd->lossless) ? DCT_DCT : intra_mode_to_tx_type_lookup[mode]; + const scan_order *sc = (plane || xd->lossless) + ? &vp9_default_scan_orders[tx_size] + : &vp9_scan_orders[tx_size][tx_type]; + const int eob = vp9_decode_block_tokens(twd, plane, sc, col, row, tx_size, + mi->segment_id); + if (eob > 0) { + inverse_transform_block_intra(xd, plane, tx_type, tx_size, dst, + pd->dst.stride, eob); + } + } +} + +static int reconstruct_inter_block(TileWorkerData *twd, MODE_INFO *const mi, + int plane, int row, int col, + TX_SIZE tx_size) { + MACROBLOCKD *const xd = &twd->xd; + struct macroblockd_plane *const pd = &xd->plane[plane]; + const scan_order *sc = &vp9_default_scan_orders[tx_size]; + const int eob = vp9_decode_block_tokens(twd, plane, sc, col, row, tx_size, + mi->segment_id); + + if (eob > 0) { + inverse_transform_block_inter( + xd, plane, tx_size, &pd->dst.buf[4 * row * pd->dst.stride + 4 * col], + pd->dst.stride, eob); + } + return eob; +} + +static void build_mc_border(const uint8_t *src, int src_stride, uint8_t *dst, + int dst_stride, int x, int y, int b_w, int b_h, + int w, int h) { + // Get a pointer to the start of the real data for this row. + const uint8_t *ref_row = src - x - y * src_stride; + + if (y >= h) + ref_row += (h - 1) * src_stride; + else if (y > 0) + ref_row += y * src_stride; + + do { + int right = 0, copy; + int left = x < 0 ? -x : 0; + + if (left > b_w) left = b_w; + + if (x + b_w > w) right = x + b_w - w; + + if (right > b_w) right = b_w; + + copy = b_w - left - right; + + if (left) memset(dst, ref_row[0], left); + + if (copy) memcpy(dst + left, ref_row + x + left, copy); + + if (right) memset(dst + left + copy, ref_row[w - 1], right); + + dst += dst_stride; + ++y; + + if (y > 0 && y < h) ref_row += src_stride; + } while (--b_h); +} + +#if CONFIG_VP9_HIGHBITDEPTH +static void high_build_mc_border(const uint8_t *src8, int src_stride, + uint16_t *dst, int dst_stride, int x, int y, + int b_w, int b_h, int w, int h) { + // Get a pointer to the start of the real data for this row. + const uint16_t *src = CONVERT_TO_SHORTPTR(src8); + const uint16_t *ref_row = src - x - y * src_stride; + + if (y >= h) + ref_row += (h - 1) * src_stride; + else if (y > 0) + ref_row += y * src_stride; + + do { + int right = 0, copy; + int left = x < 0 ? -x : 0; + + if (left > b_w) left = b_w; + + if (x + b_w > w) right = x + b_w - w; + + if (right > b_w) right = b_w; + + copy = b_w - left - right; + + if (left) vpx_memset16(dst, ref_row[0], left); + + if (copy) memcpy(dst + left, ref_row + x + left, copy * sizeof(uint16_t)); + + if (right) vpx_memset16(dst + left + copy, ref_row[w - 1], right); + + dst += dst_stride; + ++y; + + if (y > 0 && y < h) ref_row += src_stride; + } while (--b_h); +} +#endif // CONFIG_VP9_HIGHBITDEPTH + +#if CONFIG_VP9_HIGHBITDEPTH +static void extend_and_predict(const uint8_t *buf_ptr1, int pre_buf_stride, + int x0, int y0, int b_w, int b_h, + int frame_width, int frame_height, + int border_offset, uint8_t *const dst, + int dst_buf_stride, int subpel_x, int subpel_y, + const InterpKernel *kernel, + const struct scale_factors *sf, MACROBLOCKD *xd, + int w, int h, int ref, int xs, int ys) { + DECLARE_ALIGNED(16, uint16_t, mc_buf_high[80 * 2 * 80 * 2]); + + if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { + high_build_mc_border(buf_ptr1, pre_buf_stride, mc_buf_high, b_w, x0, y0, + b_w, b_h, frame_width, frame_height); + highbd_inter_predictor(mc_buf_high + border_offset, b_w, + CONVERT_TO_SHORTPTR(dst), dst_buf_stride, subpel_x, + subpel_y, sf, w, h, ref, kernel, xs, ys, xd->bd); + } else { + build_mc_border(buf_ptr1, pre_buf_stride, (uint8_t *)mc_buf_high, b_w, x0, + y0, b_w, b_h, frame_width, frame_height); + inter_predictor(((uint8_t *)mc_buf_high) + border_offset, b_w, dst, + dst_buf_stride, subpel_x, subpel_y, sf, w, h, ref, kernel, + xs, ys); + } +} +#else +static void extend_and_predict(const uint8_t *buf_ptr1, int pre_buf_stride, + int x0, int y0, int b_w, int b_h, + int frame_width, int frame_height, + int border_offset, uint8_t *const dst, + int dst_buf_stride, int subpel_x, int subpel_y, + const InterpKernel *kernel, + const struct scale_factors *sf, int w, int h, + int ref, int xs, int ys) { + DECLARE_ALIGNED(16, uint8_t, mc_buf[80 * 2 * 80 * 2]); + const uint8_t *buf_ptr; + + build_mc_border(buf_ptr1, pre_buf_stride, mc_buf, b_w, x0, y0, b_w, b_h, + frame_width, frame_height); + buf_ptr = mc_buf + border_offset; + + inter_predictor(buf_ptr, b_w, dst, dst_buf_stride, subpel_x, subpel_y, sf, w, + h, ref, kernel, xs, ys); +} +#endif // CONFIG_VP9_HIGHBITDEPTH + +static void dec_build_inter_predictors( + MACROBLOCKD *xd, int plane, int bw, int bh, int x, int y, int w, int h, + int mi_x, int mi_y, const InterpKernel *kernel, + const struct scale_factors *sf, struct buf_2d *pre_buf, + struct buf_2d *dst_buf, const MV *mv, RefCntBuffer *ref_frame_buf, + int is_scaled, int ref) { + struct macroblockd_plane *const pd = &xd->plane[plane]; + uint8_t *const dst = dst_buf->buf + dst_buf->stride * y + x; + MV32 scaled_mv; + int xs, ys, x0, y0, x0_16, y0_16, frame_width, frame_height, buf_stride, + subpel_x, subpel_y; + uint8_t *ref_frame, *buf_ptr; + + // Get reference frame pointer, width and height. + if (plane == 0) { + frame_width = ref_frame_buf->buf.y_crop_width; + frame_height = ref_frame_buf->buf.y_crop_height; + ref_frame = ref_frame_buf->buf.y_buffer; + } else { + frame_width = ref_frame_buf->buf.uv_crop_width; + frame_height = ref_frame_buf->buf.uv_crop_height; + ref_frame = + plane == 1 ? ref_frame_buf->buf.u_buffer : ref_frame_buf->buf.v_buffer; + } + + if (is_scaled) { + const MV mv_q4 = clamp_mv_to_umv_border_sb( + xd, mv, bw, bh, pd->subsampling_x, pd->subsampling_y); + // Co-ordinate of containing block to pixel precision. + int x_start = (-xd->mb_to_left_edge >> (3 + pd->subsampling_x)); + int y_start = (-xd->mb_to_top_edge >> (3 + pd->subsampling_y)); +#if 0 // CONFIG_BETTER_HW_COMPATIBILITY + assert(xd->mi[0]->sb_type != BLOCK_4X8 && + xd->mi[0]->sb_type != BLOCK_8X4); + assert(mv_q4.row == mv->row * (1 << (1 - pd->subsampling_y)) && + mv_q4.col == mv->col * (1 << (1 - pd->subsampling_x))); +#endif + // Co-ordinate of the block to 1/16th pixel precision. + x0_16 = (x_start + x) << SUBPEL_BITS; + y0_16 = (y_start + y) << SUBPEL_BITS; + + // Co-ordinate of current block in reference frame + // to 1/16th pixel precision. + x0_16 = sf->scale_value_x(x0_16, sf); + y0_16 = sf->scale_value_y(y0_16, sf); + + // Map the top left corner of the block into the reference frame. + x0 = sf->scale_value_x(x_start + x, sf); + y0 = sf->scale_value_y(y_start + y, sf); + + // Scale the MV and incorporate the sub-pixel offset of the block + // in the reference frame. + scaled_mv = vp9_scale_mv(&mv_q4, mi_x + x, mi_y + y, sf); + xs = sf->x_step_q4; + ys = sf->y_step_q4; + } else { + // Co-ordinate of containing block to pixel precision. + x0 = (-xd->mb_to_left_edge >> (3 + pd->subsampling_x)) + x; + y0 = (-xd->mb_to_top_edge >> (3 + pd->subsampling_y)) + y; + + // Co-ordinate of the block to 1/16th pixel precision. + x0_16 = x0 << SUBPEL_BITS; + y0_16 = y0 << SUBPEL_BITS; + + scaled_mv.row = mv->row * (1 << (1 - pd->subsampling_y)); + scaled_mv.col = mv->col * (1 << (1 - pd->subsampling_x)); + xs = ys = 16; + } + subpel_x = scaled_mv.col & SUBPEL_MASK; + subpel_y = scaled_mv.row & SUBPEL_MASK; + + // Calculate the top left corner of the best matching block in the + // reference frame. + x0 += scaled_mv.col >> SUBPEL_BITS; + y0 += scaled_mv.row >> SUBPEL_BITS; + x0_16 += scaled_mv.col; + y0_16 += scaled_mv.row; + + // Get reference block pointer. + buf_ptr = ref_frame + y0 * pre_buf->stride + x0; + buf_stride = pre_buf->stride; + + // Do border extension if there is motion or the + // width/height is not a multiple of 8 pixels. + if (is_scaled || scaled_mv.col || scaled_mv.row || (frame_width & 0x7) || + (frame_height & 0x7)) { + int y1 = ((y0_16 + (h - 1) * ys) >> SUBPEL_BITS) + 1; + + // Get reference block bottom right horizontal coordinate. + int x1 = ((x0_16 + (w - 1) * xs) >> SUBPEL_BITS) + 1; + int x_pad = 0, y_pad = 0; + + if (subpel_x || (sf->x_step_q4 != SUBPEL_SHIFTS)) { + x0 -= VP9_INTERP_EXTEND - 1; + x1 += VP9_INTERP_EXTEND; + x_pad = 1; + } + + if (subpel_y || (sf->y_step_q4 != SUBPEL_SHIFTS)) { + y0 -= VP9_INTERP_EXTEND - 1; + y1 += VP9_INTERP_EXTEND; + y_pad = 1; + } + + // Skip border extension if block is inside the frame. + if (x0 < 0 || x0 > frame_width - 1 || x1 < 0 || x1 > frame_width - 1 || + y0 < 0 || y0 > frame_height - 1 || y1 < 0 || y1 > frame_height - 1) { + // Extend the border. + const uint8_t *const buf_ptr1 = ref_frame + y0 * buf_stride + x0; + const int b_w = x1 - x0 + 1; + const int b_h = y1 - y0 + 1; + const int border_offset = y_pad * 3 * b_w + x_pad * 3; + + extend_and_predict(buf_ptr1, buf_stride, x0, y0, b_w, b_h, frame_width, + frame_height, border_offset, dst, dst_buf->stride, + subpel_x, subpel_y, kernel, sf, +#if CONFIG_VP9_HIGHBITDEPTH + xd, +#endif + w, h, ref, xs, ys); + return; + } + } +#if CONFIG_VP9_HIGHBITDEPTH + if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { + highbd_inter_predictor(CONVERT_TO_SHORTPTR(buf_ptr), buf_stride, + CONVERT_TO_SHORTPTR(dst), dst_buf->stride, subpel_x, + subpel_y, sf, w, h, ref, kernel, xs, ys, xd->bd); + } else { + inter_predictor(buf_ptr, buf_stride, dst, dst_buf->stride, subpel_x, + subpel_y, sf, w, h, ref, kernel, xs, ys); + } +#else + inter_predictor(buf_ptr, buf_stride, dst, dst_buf->stride, subpel_x, subpel_y, + sf, w, h, ref, kernel, xs, ys); +#endif // CONFIG_VP9_HIGHBITDEPTH +} + +static void dec_build_inter_predictors_sb(VP9Decoder *const pbi, + MACROBLOCKD *xd, int mi_row, + int mi_col) { + int plane; + const int mi_x = mi_col * MI_SIZE; + const int mi_y = mi_row * MI_SIZE; + const MODE_INFO *mi = xd->mi[0]; + const InterpKernel *kernel = vp9_filter_kernels[mi->interp_filter]; + const BLOCK_SIZE sb_type = mi->sb_type; + const int is_compound = has_second_ref(mi); + int ref; + int is_scaled; + + for (ref = 0; ref < 1 + is_compound; ++ref) { + const MV_REFERENCE_FRAME frame = mi->ref_frame[ref]; + RefBuffer *ref_buf = &pbi->common.frame_refs[frame - LAST_FRAME]; + const struct scale_factors *const sf = &ref_buf->sf; + const int idx = ref_buf->idx; + BufferPool *const pool = pbi->common.buffer_pool; + RefCntBuffer *const ref_frame_buf = &pool->frame_bufs[idx]; + + if (!vp9_is_valid_scale(sf)) + vpx_internal_error(xd->error_info, VPX_CODEC_UNSUP_BITSTREAM, + "Reference frame has invalid dimensions"); + + is_scaled = vp9_is_scaled(sf); + vp9_setup_pre_planes(xd, ref, ref_buf->buf, mi_row, mi_col, + is_scaled ? sf : NULL); + xd->block_refs[ref] = ref_buf; + + if (sb_type < BLOCK_8X8) { + for (plane = 0; plane < MAX_MB_PLANE; ++plane) { + struct macroblockd_plane *const pd = &xd->plane[plane]; + struct buf_2d *const dst_buf = &pd->dst; + const int num_4x4_w = pd->n4_w; + const int num_4x4_h = pd->n4_h; + const int n4w_x4 = 4 * num_4x4_w; + const int n4h_x4 = 4 * num_4x4_h; + struct buf_2d *const pre_buf = &pd->pre[ref]; + int i = 0, x, y; + for (y = 0; y < num_4x4_h; ++y) { + for (x = 0; x < num_4x4_w; ++x) { + const MV mv = average_split_mvs(pd, mi, ref, i++); + dec_build_inter_predictors(xd, plane, n4w_x4, n4h_x4, 4 * x, 4 * y, + 4, 4, mi_x, mi_y, kernel, sf, pre_buf, + dst_buf, &mv, ref_frame_buf, is_scaled, + ref); + } + } + } + } else { + const MV mv = mi->mv[ref].as_mv; + for (plane = 0; plane < MAX_MB_PLANE; ++plane) { + struct macroblockd_plane *const pd = &xd->plane[plane]; + struct buf_2d *const dst_buf = &pd->dst; + const int num_4x4_w = pd->n4_w; + const int num_4x4_h = pd->n4_h; + const int n4w_x4 = 4 * num_4x4_w; + const int n4h_x4 = 4 * num_4x4_h; + struct buf_2d *const pre_buf = &pd->pre[ref]; + dec_build_inter_predictors(xd, plane, n4w_x4, n4h_x4, 0, 0, n4w_x4, + n4h_x4, mi_x, mi_y, kernel, sf, pre_buf, + dst_buf, &mv, ref_frame_buf, is_scaled, ref); + } + } + } +} + +static INLINE void dec_reset_skip_context(MACROBLOCKD *xd) { + int i; + for (i = 0; i < MAX_MB_PLANE; i++) { + struct macroblockd_plane *const pd = &xd->plane[i]; + memset(pd->above_context, 0, sizeof(ENTROPY_CONTEXT) * pd->n4_w); + memset(pd->left_context, 0, sizeof(ENTROPY_CONTEXT) * pd->n4_h); + } +} + +static void set_plane_n4(MACROBLOCKD *const xd, int bw, int bh, int bwl, + int bhl) { + int i; + for (i = 0; i < MAX_MB_PLANE; i++) { + xd->plane[i].n4_w = (bw << 1) >> xd->plane[i].subsampling_x; + xd->plane[i].n4_h = (bh << 1) >> xd->plane[i].subsampling_y; + xd->plane[i].n4_wl = bwl - xd->plane[i].subsampling_x; + xd->plane[i].n4_hl = bhl - xd->plane[i].subsampling_y; + } +} + +static MODE_INFO *set_offsets(VP9_COMMON *const cm, MACROBLOCKD *const xd, + BLOCK_SIZE bsize, int mi_row, int mi_col, int bw, + int bh, int x_mis, int y_mis, int bwl, int bhl) { + const int offset = mi_row * cm->mi_stride + mi_col; + int x, y; + const TileInfo *const tile = &xd->tile; + + xd->mi = cm->mi_grid_visible + offset; + xd->mi[0] = &cm->mi[offset]; + // TODO(slavarnway): Generate sb_type based on bwl and bhl, instead of + // passing bsize from decode_partition(). + xd->mi[0]->sb_type = bsize; + for (y = 0; y < y_mis; ++y) + for (x = !y; x < x_mis; ++x) { + xd->mi[y * cm->mi_stride + x] = xd->mi[0]; + } + + set_plane_n4(xd, bw, bh, bwl, bhl); + + set_skip_context(xd, mi_row, mi_col); + + // Distance of Mb to the various image edges. These are specified to 8th pel + // as they are always compared to values that are in 1/8th pel units + set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, cm->mi_rows, cm->mi_cols); + + vp9_setup_dst_planes(xd->plane, get_frame_new_buffer(cm), mi_row, mi_col); + return xd->mi[0]; +} + +static void decode_block(TileWorkerData *twd, VP9Decoder *const pbi, int mi_row, + int mi_col, BLOCK_SIZE bsize, int bwl, int bhl) { + VP9_COMMON *const cm = &pbi->common; + const int less8x8 = bsize < BLOCK_8X8; + const int bw = 1 << (bwl - 1); + const int bh = 1 << (bhl - 1); + const int x_mis = VPXMIN(bw, cm->mi_cols - mi_col); + const int y_mis = VPXMIN(bh, cm->mi_rows - mi_row); + vpx_reader *r = &twd->bit_reader; + MACROBLOCKD *const xd = &twd->xd; + + MODE_INFO *mi = set_offsets(cm, xd, bsize, mi_row, mi_col, bw, bh, x_mis, + y_mis, bwl, bhl); + + if (bsize >= BLOCK_8X8 && (cm->subsampling_x || cm->subsampling_y)) { + const BLOCK_SIZE uv_subsize = + ss_size_lookup[bsize][cm->subsampling_x][cm->subsampling_y]; + if (uv_subsize == BLOCK_INVALID) + vpx_internal_error(xd->error_info, VPX_CODEC_CORRUPT_FRAME, + "Invalid block size."); + } + + vp9_read_mode_info(twd, pbi, mi_row, mi_col, x_mis, y_mis); + + if (mi->skip) { + dec_reset_skip_context(xd); + } + + if (!is_inter_block(mi)) { + int plane; + for (plane = 0; plane < MAX_MB_PLANE; ++plane) { + const struct macroblockd_plane *const pd = &xd->plane[plane]; + const TX_SIZE tx_size = plane ? get_uv_tx_size(mi, pd) : mi->tx_size; + const int num_4x4_w = pd->n4_w; + const int num_4x4_h = pd->n4_h; + const int step = (1 << tx_size); + int row, col; + const int max_blocks_wide = + num_4x4_w + (xd->mb_to_right_edge >= 0 + ? 0 + : xd->mb_to_right_edge >> (5 + pd->subsampling_x)); + const int max_blocks_high = + num_4x4_h + (xd->mb_to_bottom_edge >= 0 + ? 0 + : xd->mb_to_bottom_edge >> (5 + pd->subsampling_y)); + + xd->max_blocks_wide = xd->mb_to_right_edge >= 0 ? 0 : max_blocks_wide; + xd->max_blocks_high = xd->mb_to_bottom_edge >= 0 ? 0 : max_blocks_high; + + for (row = 0; row < max_blocks_high; row += step) + for (col = 0; col < max_blocks_wide; col += step) + predict_and_reconstruct_intra_block(twd, mi, plane, row, col, + tx_size); + } + } else { + // Prediction + dec_build_inter_predictors_sb(pbi, xd, mi_row, mi_col); + + // Reconstruction + if (!mi->skip) { + int eobtotal = 0; + int plane; + + for (plane = 0; plane < MAX_MB_PLANE; ++plane) { + const struct macroblockd_plane *const pd = &xd->plane[plane]; + const TX_SIZE tx_size = plane ? get_uv_tx_size(mi, pd) : mi->tx_size; + const int num_4x4_w = pd->n4_w; + const int num_4x4_h = pd->n4_h; + const int step = (1 << tx_size); + int row, col; + const int max_blocks_wide = + num_4x4_w + (xd->mb_to_right_edge >= 0 + ? 0 + : xd->mb_to_right_edge >> (5 + pd->subsampling_x)); + const int max_blocks_high = + num_4x4_h + + (xd->mb_to_bottom_edge >= 0 + ? 0 + : xd->mb_to_bottom_edge >> (5 + pd->subsampling_y)); + + xd->max_blocks_wide = xd->mb_to_right_edge >= 0 ? 0 : max_blocks_wide; + xd->max_blocks_high = xd->mb_to_bottom_edge >= 0 ? 0 : max_blocks_high; + + for (row = 0; row < max_blocks_high; row += step) + for (col = 0; col < max_blocks_wide; col += step) + eobtotal += + reconstruct_inter_block(twd, mi, plane, row, col, tx_size); + } + + if (!less8x8 && eobtotal == 0) mi->skip = 1; // skip loopfilter + } + } + + xd->corrupted |= vpx_reader_has_error(r); + + if (cm->lf.filter_level) { + vp9_build_mask(cm, mi, mi_row, mi_col, bw, bh); + } +} + +static INLINE int dec_partition_plane_context(TileWorkerData *twd, int mi_row, + int mi_col, int bsl) { + const PARTITION_CONTEXT *above_ctx = twd->xd.above_seg_context + mi_col; + const PARTITION_CONTEXT *left_ctx = + twd->xd.left_seg_context + (mi_row & MI_MASK); + int above = (*above_ctx >> bsl) & 1, left = (*left_ctx >> bsl) & 1; + + // assert(bsl >= 0); + + return (left * 2 + above) + bsl * PARTITION_PLOFFSET; +} + +static INLINE void dec_update_partition_context(TileWorkerData *twd, int mi_row, + int mi_col, BLOCK_SIZE subsize, + int bw) { + PARTITION_CONTEXT *const above_ctx = twd->xd.above_seg_context + mi_col; + PARTITION_CONTEXT *const left_ctx = + twd->xd.left_seg_context + (mi_row & MI_MASK); + + // update the partition context at the end notes. set partition bits + // of block sizes larger than the current one to be one, and partition + // bits of smaller block sizes to be zero. + memset(above_ctx, partition_context_lookup[subsize].above, bw); + memset(left_ctx, partition_context_lookup[subsize].left, bw); +} + +static PARTITION_TYPE read_partition(TileWorkerData *twd, int mi_row, + int mi_col, int has_rows, int has_cols, + int bsl) { + const int ctx = dec_partition_plane_context(twd, mi_row, mi_col, bsl); + const vpx_prob *const probs = twd->xd.partition_probs[ctx]; + FRAME_COUNTS *counts = twd->xd.counts; + PARTITION_TYPE p; + vpx_reader *r = &twd->bit_reader; + + if (has_rows && has_cols) + p = (PARTITION_TYPE)vpx_read_tree(r, vp9_partition_tree, probs); + else if (!has_rows && has_cols) + p = vpx_read(r, probs[1]) ? PARTITION_SPLIT : PARTITION_HORZ; + else if (has_rows && !has_cols) + p = vpx_read(r, probs[2]) ? PARTITION_SPLIT : PARTITION_VERT; + else + p = PARTITION_SPLIT; + + if (counts) ++counts->partition[ctx][p]; + + return p; +} + +// TODO(slavarnway): eliminate bsize and subsize in future commits +static void decode_partition(TileWorkerData *twd, VP9Decoder *const pbi, + int mi_row, int mi_col, BLOCK_SIZE bsize, + int n4x4_l2) { + VP9_COMMON *const cm = &pbi->common; + const int n8x8_l2 = n4x4_l2 - 1; + const int num_8x8_wh = 1 << n8x8_l2; + const int hbs = num_8x8_wh >> 1; + PARTITION_TYPE partition; + BLOCK_SIZE subsize; + const int has_rows = (mi_row + hbs) < cm->mi_rows; + const int has_cols = (mi_col + hbs) < cm->mi_cols; + MACROBLOCKD *const xd = &twd->xd; + + if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return; + + partition = read_partition(twd, mi_row, mi_col, has_rows, has_cols, n8x8_l2); + subsize = subsize_lookup[partition][bsize]; // get_subsize(bsize, partition); + if (!hbs) { + // calculate bmode block dimensions (log 2) + xd->bmode_blocks_wl = 1 >> !!(partition & PARTITION_VERT); + xd->bmode_blocks_hl = 1 >> !!(partition & PARTITION_HORZ); + decode_block(twd, pbi, mi_row, mi_col, subsize, 1, 1); + } else { + switch (partition) { + case PARTITION_NONE: + decode_block(twd, pbi, mi_row, mi_col, subsize, n4x4_l2, n4x4_l2); + break; + case PARTITION_HORZ: + decode_block(twd, pbi, mi_row, mi_col, subsize, n4x4_l2, n8x8_l2); + if (has_rows) + decode_block(twd, pbi, mi_row + hbs, mi_col, subsize, n4x4_l2, + n8x8_l2); + break; + case PARTITION_VERT: + decode_block(twd, pbi, mi_row, mi_col, subsize, n8x8_l2, n4x4_l2); + if (has_cols) + decode_block(twd, pbi, mi_row, mi_col + hbs, subsize, n8x8_l2, + n4x4_l2); + break; + case PARTITION_SPLIT: + decode_partition(twd, pbi, mi_row, mi_col, subsize, n8x8_l2); + decode_partition(twd, pbi, mi_row, mi_col + hbs, subsize, n8x8_l2); + decode_partition(twd, pbi, mi_row + hbs, mi_col, subsize, n8x8_l2); + decode_partition(twd, pbi, mi_row + hbs, mi_col + hbs, subsize, + n8x8_l2); + break; + default: assert(0 && "Invalid partition type"); + } + } + + // update partition context + if (bsize >= BLOCK_8X8 && + (bsize == BLOCK_8X8 || partition != PARTITION_SPLIT)) + dec_update_partition_context(twd, mi_row, mi_col, subsize, num_8x8_wh); +} + +static void setup_token_decoder(const uint8_t *data, const uint8_t *data_end, + size_t read_size, + struct vpx_internal_error_info *error_info, + vpx_reader *r, vpx_decrypt_cb decrypt_cb, + void *decrypt_state) { + // Validate the calculated partition length. If the buffer + // described by the partition can't be fully read, then restrict + // it to the portion that can be (for EC mode) or throw an error. + if (!read_is_valid(data, read_size, data_end)) + vpx_internal_error(error_info, VPX_CODEC_CORRUPT_FRAME, + "Truncated packet or corrupt tile length"); + + if (vpx_reader_init(r, data, read_size, decrypt_cb, decrypt_state)) + vpx_internal_error(error_info, VPX_CODEC_MEM_ERROR, + "Failed to allocate bool decoder %d", 1); +} + +static void read_coef_probs_common(vp9_coeff_probs_model *coef_probs, + vpx_reader *r) { + int i, j, k, l, m; + + if (vpx_read_bit(r)) + for (i = 0; i < PLANE_TYPES; ++i) + for (j = 0; j < REF_TYPES; ++j) + for (k = 0; k < COEF_BANDS; ++k) + for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) + for (m = 0; m < UNCONSTRAINED_NODES; ++m) + vp9_diff_update_prob(r, &coef_probs[i][j][k][l][m]); +} + +static void read_coef_probs(FRAME_CONTEXT *fc, TX_MODE tx_mode, vpx_reader *r) { + const TX_SIZE max_tx_size = tx_mode_to_biggest_tx_size[tx_mode]; + TX_SIZE tx_size; + for (tx_size = TX_4X4; tx_size <= max_tx_size; ++tx_size) + read_coef_probs_common(fc->coef_probs[tx_size], r); +} + +static void setup_segmentation(struct segmentation *seg, + struct vpx_read_bit_buffer *rb) { + int i, j; + + seg->update_map = 0; + seg->update_data = 0; + + seg->enabled = vpx_rb_read_bit(rb); + if (!seg->enabled) return; + + // Segmentation map update + seg->update_map = vpx_rb_read_bit(rb); + if (seg->update_map) { + for (i = 0; i < SEG_TREE_PROBS; i++) + seg->tree_probs[i] = + vpx_rb_read_bit(rb) ? vpx_rb_read_literal(rb, 8) : MAX_PROB; + + seg->temporal_update = vpx_rb_read_bit(rb); + if (seg->temporal_update) { + for (i = 0; i < PREDICTION_PROBS; i++) + seg->pred_probs[i] = + vpx_rb_read_bit(rb) ? vpx_rb_read_literal(rb, 8) : MAX_PROB; + } else { + for (i = 0; i < PREDICTION_PROBS; i++) seg->pred_probs[i] = MAX_PROB; + } + } + + // Segmentation data update + seg->update_data = vpx_rb_read_bit(rb); + if (seg->update_data) { + seg->abs_delta = vpx_rb_read_bit(rb); + + vp9_clearall_segfeatures(seg); + + for (i = 0; i < MAX_SEGMENTS; i++) { + for (j = 0; j < SEG_LVL_MAX; j++) { + int data = 0; + const int feature_enabled = vpx_rb_read_bit(rb); + if (feature_enabled) { + vp9_enable_segfeature(seg, i, j); + data = decode_unsigned_max(rb, vp9_seg_feature_data_max(j)); + if (vp9_is_segfeature_signed(j)) + data = vpx_rb_read_bit(rb) ? -data : data; + } + vp9_set_segdata(seg, i, j, data); + } + } + } +} + +static void setup_loopfilter(struct loopfilter *lf, + struct vpx_read_bit_buffer *rb) { + lf->filter_level = vpx_rb_read_literal(rb, 6); + lf->sharpness_level = vpx_rb_read_literal(rb, 3); + + // Read in loop filter deltas applied at the MB level based on mode or ref + // frame. + lf->mode_ref_delta_update = 0; + + lf->mode_ref_delta_enabled = vpx_rb_read_bit(rb); + if (lf->mode_ref_delta_enabled) { + lf->mode_ref_delta_update = vpx_rb_read_bit(rb); + if (lf->mode_ref_delta_update) { + int i; + + for (i = 0; i < MAX_REF_LF_DELTAS; i++) + if (vpx_rb_read_bit(rb)) + lf->ref_deltas[i] = vpx_rb_read_signed_literal(rb, 6); + + for (i = 0; i < MAX_MODE_LF_DELTAS; i++) + if (vpx_rb_read_bit(rb)) + lf->mode_deltas[i] = vpx_rb_read_signed_literal(rb, 6); + } + } +} + +static INLINE int read_delta_q(struct vpx_read_bit_buffer *rb) { + return vpx_rb_read_bit(rb) ? vpx_rb_read_signed_literal(rb, 4) : 0; +} + +static void setup_quantization(VP9_COMMON *const cm, MACROBLOCKD *const xd, + struct vpx_read_bit_buffer *rb) { + cm->base_qindex = vpx_rb_read_literal(rb, QINDEX_BITS); + cm->y_dc_delta_q = read_delta_q(rb); + cm->uv_dc_delta_q = read_delta_q(rb); + cm->uv_ac_delta_q = read_delta_q(rb); + cm->dequant_bit_depth = cm->bit_depth; + xd->lossless = cm->base_qindex == 0 && cm->y_dc_delta_q == 0 && + cm->uv_dc_delta_q == 0 && cm->uv_ac_delta_q == 0; + +#if CONFIG_VP9_HIGHBITDEPTH + xd->bd = (int)cm->bit_depth; +#endif +} + +static void setup_segmentation_dequant(VP9_COMMON *const cm) { + // Build y/uv dequant values based on segmentation. + if (cm->seg.enabled) { + int i; + for (i = 0; i < MAX_SEGMENTS; ++i) { + const int qindex = vp9_get_qindex(&cm->seg, i, cm->base_qindex); + cm->y_dequant[i][0] = + vp9_dc_quant(qindex, cm->y_dc_delta_q, cm->bit_depth); + cm->y_dequant[i][1] = vp9_ac_quant(qindex, 0, cm->bit_depth); + cm->uv_dequant[i][0] = + vp9_dc_quant(qindex, cm->uv_dc_delta_q, cm->bit_depth); + cm->uv_dequant[i][1] = + vp9_ac_quant(qindex, cm->uv_ac_delta_q, cm->bit_depth); + } + } else { + const int qindex = cm->base_qindex; + // When segmentation is disabled, only the first value is used. The + // remaining are don't cares. + cm->y_dequant[0][0] = vp9_dc_quant(qindex, cm->y_dc_delta_q, cm->bit_depth); + cm->y_dequant[0][1] = vp9_ac_quant(qindex, 0, cm->bit_depth); + cm->uv_dequant[0][0] = + vp9_dc_quant(qindex, cm->uv_dc_delta_q, cm->bit_depth); + cm->uv_dequant[0][1] = + vp9_ac_quant(qindex, cm->uv_ac_delta_q, cm->bit_depth); + } +} + +static INTERP_FILTER read_interp_filter(struct vpx_read_bit_buffer *rb) { + const INTERP_FILTER literal_to_filter[] = { EIGHTTAP_SMOOTH, EIGHTTAP, + EIGHTTAP_SHARP, BILINEAR }; + return vpx_rb_read_bit(rb) ? SWITCHABLE + : literal_to_filter[vpx_rb_read_literal(rb, 2)]; +} + +static void setup_render_size(VP9_COMMON *cm, struct vpx_read_bit_buffer *rb) { + cm->render_width = cm->width; + cm->render_height = cm->height; + if (vpx_rb_read_bit(rb)) + vp9_read_frame_size(rb, &cm->render_width, &cm->render_height); +} + +static void resize_mv_buffer(VP9_COMMON *cm) { + vpx_free(cm->cur_frame->mvs); + cm->cur_frame->mi_rows = cm->mi_rows; + cm->cur_frame->mi_cols = cm->mi_cols; + CHECK_MEM_ERROR(cm, cm->cur_frame->mvs, + (MV_REF *)vpx_calloc(cm->mi_rows * cm->mi_cols, + sizeof(*cm->cur_frame->mvs))); +} + +static void resize_context_buffers(VP9_COMMON *cm, int width, int height) { +#if CONFIG_SIZE_LIMIT + if (width > DECODE_WIDTH_LIMIT || height > DECODE_HEIGHT_LIMIT) + vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME, + "Dimensions of %dx%d beyond allowed size of %dx%d.", + width, height, DECODE_WIDTH_LIMIT, DECODE_HEIGHT_LIMIT); +#endif + if (cm->width != width || cm->height != height) { + const int new_mi_rows = + ALIGN_POWER_OF_TWO(height, MI_SIZE_LOG2) >> MI_SIZE_LOG2; + const int new_mi_cols = + ALIGN_POWER_OF_TWO(width, MI_SIZE_LOG2) >> MI_SIZE_LOG2; + + // Allocations in vp9_alloc_context_buffers() depend on individual + // dimensions as well as the overall size. + if (new_mi_cols > cm->mi_cols || new_mi_rows > cm->mi_rows) { + if (vp9_alloc_context_buffers(cm, width, height)) + vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR, + "Failed to allocate context buffers"); + } else { + vp9_set_mb_mi(cm, width, height); + } + vp9_init_context_buffers(cm); + cm->width = width; + cm->height = height; + } + if (cm->cur_frame->mvs == NULL || cm->mi_rows > cm->cur_frame->mi_rows || + cm->mi_cols > cm->cur_frame->mi_cols) { + resize_mv_buffer(cm); + } +} + +static void setup_frame_size(VP9_COMMON *cm, struct vpx_read_bit_buffer *rb) { + int width, height; + BufferPool *const pool = cm->buffer_pool; + vp9_read_frame_size(rb, &width, &height); + resize_context_buffers(cm, width, height); + setup_render_size(cm, rb); + + if (vpx_realloc_frame_buffer( + get_frame_new_buffer(cm), cm->width, cm->height, cm->subsampling_x, + cm->subsampling_y, +#if CONFIG_VP9_HIGHBITDEPTH + cm->use_highbitdepth, +#endif + VP9_DEC_BORDER_IN_PIXELS, cm->byte_alignment, + &pool->frame_bufs[cm->new_fb_idx].raw_frame_buffer, pool->get_fb_cb, + pool->cb_priv)) { + vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR, + "Failed to allocate frame buffer"); + } + + pool->frame_bufs[cm->new_fb_idx].released = 0; + pool->frame_bufs[cm->new_fb_idx].buf.subsampling_x = cm->subsampling_x; + pool->frame_bufs[cm->new_fb_idx].buf.subsampling_y = cm->subsampling_y; + pool->frame_bufs[cm->new_fb_idx].buf.bit_depth = (unsigned int)cm->bit_depth; + pool->frame_bufs[cm->new_fb_idx].buf.color_space = cm->color_space; + pool->frame_bufs[cm->new_fb_idx].buf.color_range = cm->color_range; + pool->frame_bufs[cm->new_fb_idx].buf.render_width = cm->render_width; + pool->frame_bufs[cm->new_fb_idx].buf.render_height = cm->render_height; +} + +static INLINE int valid_ref_frame_img_fmt(vpx_bit_depth_t ref_bit_depth, + int ref_xss, int ref_yss, + vpx_bit_depth_t this_bit_depth, + int this_xss, int this_yss) { + return ref_bit_depth == this_bit_depth && ref_xss == this_xss && + ref_yss == this_yss; +} + +static void setup_frame_size_with_refs(VP9_COMMON *cm, + struct vpx_read_bit_buffer *rb) { + int width, height; + int found = 0, i; + int has_valid_ref_frame = 0; + BufferPool *const pool = cm->buffer_pool; + for (i = 0; i < REFS_PER_FRAME; ++i) { + if (vpx_rb_read_bit(rb)) { + if (cm->frame_refs[i].idx != INVALID_IDX) { + YV12_BUFFER_CONFIG *const buf = cm->frame_refs[i].buf; + width = buf->y_crop_width; + height = buf->y_crop_height; + found = 1; + break; + } else { + vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME, + "Failed to decode frame size"); + } + } + } + + if (!found) vp9_read_frame_size(rb, &width, &height); + + if (width <= 0 || height <= 0) + vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME, + "Invalid frame size"); + + // Check to make sure at least one of frames that this frame references + // has valid dimensions. + for (i = 0; i < REFS_PER_FRAME; ++i) { + RefBuffer *const ref_frame = &cm->frame_refs[i]; + has_valid_ref_frame |= + (ref_frame->idx != INVALID_IDX && + valid_ref_frame_size(ref_frame->buf->y_crop_width, + ref_frame->buf->y_crop_height, width, height)); + } + if (!has_valid_ref_frame) + vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME, + "Referenced frame has invalid size"); + for (i = 0; i < REFS_PER_FRAME; ++i) { + RefBuffer *const ref_frame = &cm->frame_refs[i]; + if (ref_frame->idx == INVALID_IDX || + !valid_ref_frame_img_fmt(ref_frame->buf->bit_depth, + ref_frame->buf->subsampling_x, + ref_frame->buf->subsampling_y, cm->bit_depth, + cm->subsampling_x, cm->subsampling_y)) + vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME, + "Referenced frame has incompatible color format"); + } + + resize_context_buffers(cm, width, height); + setup_render_size(cm, rb); + + if (vpx_realloc_frame_buffer( + get_frame_new_buffer(cm), cm->width, cm->height, cm->subsampling_x, + cm->subsampling_y, +#if CONFIG_VP9_HIGHBITDEPTH + cm->use_highbitdepth, +#endif + VP9_DEC_BORDER_IN_PIXELS, cm->byte_alignment, + &pool->frame_bufs[cm->new_fb_idx].raw_frame_buffer, pool->get_fb_cb, + pool->cb_priv)) { + vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR, + "Failed to allocate frame buffer"); + } + + pool->frame_bufs[cm->new_fb_idx].released = 0; + pool->frame_bufs[cm->new_fb_idx].buf.subsampling_x = cm->subsampling_x; + pool->frame_bufs[cm->new_fb_idx].buf.subsampling_y = cm->subsampling_y; + pool->frame_bufs[cm->new_fb_idx].buf.bit_depth = (unsigned int)cm->bit_depth; + pool->frame_bufs[cm->new_fb_idx].buf.color_space = cm->color_space; + pool->frame_bufs[cm->new_fb_idx].buf.color_range = cm->color_range; + pool->frame_bufs[cm->new_fb_idx].buf.render_width = cm->render_width; + pool->frame_bufs[cm->new_fb_idx].buf.render_height = cm->render_height; +} + +static void setup_tile_info(VP9_COMMON *cm, struct vpx_read_bit_buffer *rb) { + int min_log2_tile_cols, max_log2_tile_cols, max_ones; + vp9_get_tile_n_bits(cm->mi_cols, &min_log2_tile_cols, &max_log2_tile_cols); + + // columns + max_ones = max_log2_tile_cols - min_log2_tile_cols; + cm->log2_tile_cols = min_log2_tile_cols; + while (max_ones-- && vpx_rb_read_bit(rb)) cm->log2_tile_cols++; + + if (cm->log2_tile_cols > 6) + vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME, + "Invalid number of tile columns"); + + // rows + cm->log2_tile_rows = vpx_rb_read_bit(rb); + if (cm->log2_tile_rows) cm->log2_tile_rows += vpx_rb_read_bit(rb); +} + +// Reads the next tile returning its size and adjusting '*data' accordingly +// based on 'is_last'. +static void get_tile_buffer(const uint8_t *const data_end, int is_last, + struct vpx_internal_error_info *error_info, + const uint8_t **data, vpx_decrypt_cb decrypt_cb, + void *decrypt_state, TileBuffer *buf) { + size_t size; + + if (!is_last) { + if (!read_is_valid(*data, 4, data_end)) + vpx_internal_error(error_info, VPX_CODEC_CORRUPT_FRAME, + "Truncated packet or corrupt tile length"); + + if (decrypt_cb) { + uint8_t be_data[4]; + decrypt_cb(decrypt_state, *data, be_data, 4); + size = mem_get_be32(be_data); + } else { + size = mem_get_be32(*data); + } + *data += 4; + + if (size > (size_t)(data_end - *data)) + vpx_internal_error(error_info, VPX_CODEC_CORRUPT_FRAME, + "Truncated packet or corrupt tile size"); + } else { + size = data_end - *data; + } + + buf->data = *data; + buf->size = size; + + *data += size; +} + +static void get_tile_buffers(VP9Decoder *pbi, const uint8_t *data, + const uint8_t *data_end, int tile_cols, + int tile_rows, + TileBuffer (*tile_buffers)[1 << 6]) { + int r, c; + + for (r = 0; r < tile_rows; ++r) { + for (c = 0; c < tile_cols; ++c) { + const int is_last = (r == tile_rows - 1) && (c == tile_cols - 1); + TileBuffer *const buf = &tile_buffers[r][c]; + buf->col = c; + get_tile_buffer(data_end, is_last, &pbi->common.error, &data, + pbi->decrypt_cb, pbi->decrypt_state, buf); + } + } +} + +static const uint8_t *decode_tiles(VP9Decoder *pbi, const uint8_t *data, + const uint8_t *data_end) { + VP9_COMMON *const cm = &pbi->common; + const VPxWorkerInterface *const winterface = vpx_get_worker_interface(); + const int aligned_cols = mi_cols_aligned_to_sb(cm->mi_cols); + const int tile_cols = 1 << cm->log2_tile_cols; + const int tile_rows = 1 << cm->log2_tile_rows; + TileBuffer tile_buffers[4][1 << 6]; + int tile_row, tile_col; + int mi_row, mi_col; + TileWorkerData *tile_data = NULL; + + if (cm->lf.filter_level && !cm->skip_loop_filter && + pbi->lf_worker.data1 == NULL) { + CHECK_MEM_ERROR(cm, pbi->lf_worker.data1, + vpx_memalign(32, sizeof(LFWorkerData))); + pbi->lf_worker.hook = vp9_loop_filter_worker; + if (pbi->max_threads > 1 && !winterface->reset(&pbi->lf_worker)) { + vpx_internal_error(&cm->error, VPX_CODEC_ERROR, + "Loop filter thread creation failed"); + } + } + + if (cm->lf.filter_level && !cm->skip_loop_filter) { + LFWorkerData *const lf_data = (LFWorkerData *)pbi->lf_worker.data1; + // Be sure to sync as we might be resuming after a failed frame decode. + winterface->sync(&pbi->lf_worker); + vp9_loop_filter_data_reset(lf_data, get_frame_new_buffer(cm), cm, + pbi->mb.plane); + } + + assert(tile_rows <= 4); + assert(tile_cols <= (1 << 6)); + + // Note: this memset assumes above_context[0], [1] and [2] + // are allocated as part of the same buffer. + memset(cm->above_context, 0, + sizeof(*cm->above_context) * MAX_MB_PLANE * 2 * aligned_cols); + + memset(cm->above_seg_context, 0, + sizeof(*cm->above_seg_context) * aligned_cols); + + vp9_reset_lfm(cm); + + get_tile_buffers(pbi, data, data_end, tile_cols, tile_rows, tile_buffers); + + // Load all tile information into tile_data. + for (tile_row = 0; tile_row < tile_rows; ++tile_row) { + for (tile_col = 0; tile_col < tile_cols; ++tile_col) { + const TileBuffer *const buf = &tile_buffers[tile_row][tile_col]; + tile_data = pbi->tile_worker_data + tile_cols * tile_row + tile_col; + tile_data->xd = pbi->mb; + tile_data->xd.corrupted = 0; + tile_data->xd.counts = + cm->frame_parallel_decoding_mode ? NULL : &cm->counts; + vp9_zero(tile_data->dqcoeff); + vp9_tile_init(&tile_data->xd.tile, cm, tile_row, tile_col); + setup_token_decoder(buf->data, data_end, buf->size, &cm->error, + &tile_data->bit_reader, pbi->decrypt_cb, + pbi->decrypt_state); + vp9_init_macroblockd(cm, &tile_data->xd, tile_data->dqcoeff); + } + } + + for (tile_row = 0; tile_row < tile_rows; ++tile_row) { + TileInfo tile; + vp9_tile_set_row(&tile, cm, tile_row); + for (mi_row = tile.mi_row_start; mi_row < tile.mi_row_end; + mi_row += MI_BLOCK_SIZE) { + for (tile_col = 0; tile_col < tile_cols; ++tile_col) { + const int col = + pbi->inv_tile_order ? tile_cols - tile_col - 1 : tile_col; + tile_data = pbi->tile_worker_data + tile_cols * tile_row + col; + vp9_tile_set_col(&tile, cm, col); + vp9_zero(tile_data->xd.left_context); + vp9_zero(tile_data->xd.left_seg_context); + for (mi_col = tile.mi_col_start; mi_col < tile.mi_col_end; + mi_col += MI_BLOCK_SIZE) { + decode_partition(tile_data, pbi, mi_row, mi_col, BLOCK_64X64, 4); + } + pbi->mb.corrupted |= tile_data->xd.corrupted; + if (pbi->mb.corrupted) + vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME, + "Failed to decode tile data"); + } + // Loopfilter one row. + if (cm->lf.filter_level && !cm->skip_loop_filter) { + const int lf_start = mi_row - MI_BLOCK_SIZE; + LFWorkerData *const lf_data = (LFWorkerData *)pbi->lf_worker.data1; + + // delay the loopfilter by 1 macroblock row. + if (lf_start < 0) continue; + + // decoding has completed: finish up the loop filter in this thread. + if (mi_row + MI_BLOCK_SIZE >= cm->mi_rows) continue; + + winterface->sync(&pbi->lf_worker); + lf_data->start = lf_start; + lf_data->stop = mi_row; + if (pbi->max_threads > 1) { + winterface->launch(&pbi->lf_worker); + } else { + winterface->execute(&pbi->lf_worker); + } + } + } + } + + // Loopfilter remaining rows in the frame. + if (cm->lf.filter_level && !cm->skip_loop_filter) { + LFWorkerData *const lf_data = (LFWorkerData *)pbi->lf_worker.data1; + winterface->sync(&pbi->lf_worker); + lf_data->start = lf_data->stop; + lf_data->stop = cm->mi_rows; + winterface->execute(&pbi->lf_worker); + } + + // Get last tile data. + tile_data = pbi->tile_worker_data + tile_cols * tile_rows - 1; + + return vpx_reader_find_end(&tile_data->bit_reader); +} + +// On entry 'tile_data->data_end' points to the end of the input frame, on exit +// it is updated to reflect the bitreader position of the final tile column if +// present in the tile buffer group or NULL otherwise. +static int tile_worker_hook(void *arg1, void *arg2) { + TileWorkerData *const tile_data = (TileWorkerData *)arg1; + VP9Decoder *const pbi = (VP9Decoder *)arg2; + + TileInfo *volatile tile = &tile_data->xd.tile; + const int final_col = (1 << pbi->common.log2_tile_cols) - 1; + const uint8_t *volatile bit_reader_end = NULL; + volatile int n = tile_data->buf_start; + tile_data->error_info.setjmp = 1; + + if (setjmp(tile_data->error_info.jmp)) { + tile_data->error_info.setjmp = 0; + tile_data->xd.corrupted = 1; + tile_data->data_end = NULL; + return 0; + } + + tile_data->xd.corrupted = 0; + + do { + int mi_row, mi_col; + const TileBuffer *const buf = pbi->tile_buffers + n; + vp9_zero(tile_data->dqcoeff); + vp9_tile_init(tile, &pbi->common, 0, buf->col); + setup_token_decoder(buf->data, tile_data->data_end, buf->size, + &tile_data->error_info, &tile_data->bit_reader, + pbi->decrypt_cb, pbi->decrypt_state); + vp9_init_macroblockd(&pbi->common, &tile_data->xd, tile_data->dqcoeff); + // init resets xd.error_info + tile_data->xd.error_info = &tile_data->error_info; + + for (mi_row = tile->mi_row_start; mi_row < tile->mi_row_end; + mi_row += MI_BLOCK_SIZE) { + vp9_zero(tile_data->xd.left_context); + vp9_zero(tile_data->xd.left_seg_context); + for (mi_col = tile->mi_col_start; mi_col < tile->mi_col_end; + mi_col += MI_BLOCK_SIZE) { + decode_partition(tile_data, pbi, mi_row, mi_col, BLOCK_64X64, 4); + } + } + + if (buf->col == final_col) { + bit_reader_end = vpx_reader_find_end(&tile_data->bit_reader); + } + } while (!tile_data->xd.corrupted && ++n <= tile_data->buf_end); + + tile_data->data_end = bit_reader_end; + return !tile_data->xd.corrupted; +} + +// sorts in descending order +static int compare_tile_buffers(const void *a, const void *b) { + const TileBuffer *const buf1 = (const TileBuffer *)a; + const TileBuffer *const buf2 = (const TileBuffer *)b; + return (int)(buf2->size - buf1->size); +} + +static const uint8_t *decode_tiles_mt(VP9Decoder *pbi, const uint8_t *data, + const uint8_t *data_end) { + VP9_COMMON *const cm = &pbi->common; + const VPxWorkerInterface *const winterface = vpx_get_worker_interface(); + const uint8_t *bit_reader_end = NULL; + const int aligned_mi_cols = mi_cols_aligned_to_sb(cm->mi_cols); + const int tile_cols = 1 << cm->log2_tile_cols; + const int tile_rows = 1 << cm->log2_tile_rows; + const int num_workers = VPXMIN(pbi->max_threads, tile_cols); + int n; + + assert(tile_cols <= (1 << 6)); + assert(tile_rows == 1); + (void)tile_rows; + + if (pbi->num_tile_workers == 0) { + const int num_threads = pbi->max_threads; + CHECK_MEM_ERROR(cm, pbi->tile_workers, + vpx_malloc(num_threads * sizeof(*pbi->tile_workers))); + for (n = 0; n < num_threads; ++n) { + VPxWorker *const worker = &pbi->tile_workers[n]; + ++pbi->num_tile_workers; + + winterface->init(worker); + if (n < num_threads - 1 && !winterface->reset(worker)) { + vpx_internal_error(&cm->error, VPX_CODEC_ERROR, + "Tile decoder thread creation failed"); + } + } + } + + // Reset tile decoding hook + for (n = 0; n < num_workers; ++n) { + VPxWorker *const worker = &pbi->tile_workers[n]; + TileWorkerData *const tile_data = + &pbi->tile_worker_data[n + pbi->total_tiles]; + winterface->sync(worker); + tile_data->xd = pbi->mb; + tile_data->xd.counts = + cm->frame_parallel_decoding_mode ? NULL : &tile_data->counts; + worker->hook = tile_worker_hook; + worker->data1 = tile_data; + worker->data2 = pbi; + } + + // Note: this memset assumes above_context[0], [1] and [2] + // are allocated as part of the same buffer. + memset(cm->above_context, 0, + sizeof(*cm->above_context) * MAX_MB_PLANE * 2 * aligned_mi_cols); + memset(cm->above_seg_context, 0, + sizeof(*cm->above_seg_context) * aligned_mi_cols); + + vp9_reset_lfm(cm); + + // Load tile data into tile_buffers + get_tile_buffers(pbi, data, data_end, tile_cols, tile_rows, + &pbi->tile_buffers); + + // Sort the buffers based on size in descending order. + qsort(pbi->tile_buffers, tile_cols, sizeof(pbi->tile_buffers[0]), + compare_tile_buffers); + + if (num_workers == tile_cols) { + // Rearrange the tile buffers such that the largest, and + // presumably the most difficult, tile will be decoded in the main thread. + // This should help minimize the number of instances where the main thread + // is waiting for a worker to complete. + const TileBuffer largest = pbi->tile_buffers[0]; + memmove(pbi->tile_buffers, pbi->tile_buffers + 1, + (tile_cols - 1) * sizeof(pbi->tile_buffers[0])); + pbi->tile_buffers[tile_cols - 1] = largest; + } else { + int start = 0, end = tile_cols - 2; + TileBuffer tmp; + + // Interleave the tiles to distribute the load between threads, assuming a + // larger tile implies it is more difficult to decode. + while (start < end) { + tmp = pbi->tile_buffers[start]; + pbi->tile_buffers[start] = pbi->tile_buffers[end]; + pbi->tile_buffers[end] = tmp; + start += 2; + end -= 2; + } + } + + // Initialize thread frame counts. + if (!cm->frame_parallel_decoding_mode) { + for (n = 0; n < num_workers; ++n) { + TileWorkerData *const tile_data = + (TileWorkerData *)pbi->tile_workers[n].data1; + vp9_zero(tile_data->counts); + } + } + + { + const int base = tile_cols / num_workers; + const int remain = tile_cols % num_workers; + int buf_start = 0; + + for (n = 0; n < num_workers; ++n) { + const int count = base + (remain + n) / num_workers; + VPxWorker *const worker = &pbi->tile_workers[n]; + TileWorkerData *const tile_data = (TileWorkerData *)worker->data1; + + tile_data->buf_start = buf_start; + tile_data->buf_end = buf_start + count - 1; + tile_data->data_end = data_end; + buf_start += count; + + worker->had_error = 0; + if (n == num_workers - 1) { + assert(tile_data->buf_end == tile_cols - 1); + winterface->execute(worker); + } else { + winterface->launch(worker); + } + } + + for (; n > 0; --n) { + VPxWorker *const worker = &pbi->tile_workers[n - 1]; + TileWorkerData *const tile_data = (TileWorkerData *)worker->data1; + // TODO(jzern): The tile may have specific error data associated with + // its vpx_internal_error_info which could be propagated to the main info + // in cm. Additionally once the threads have been synced and an error is + // detected, there's no point in continuing to decode tiles. + pbi->mb.corrupted |= !winterface->sync(worker); + if (!bit_reader_end) bit_reader_end = tile_data->data_end; + } + } + + // Accumulate thread frame counts. + if (!cm->frame_parallel_decoding_mode) { + for (n = 0; n < num_workers; ++n) { + TileWorkerData *const tile_data = + (TileWorkerData *)pbi->tile_workers[n].data1; + vp9_accumulate_frame_counts(&cm->counts, &tile_data->counts, 1); + } + } + + assert(bit_reader_end || pbi->mb.corrupted); + return bit_reader_end; +} + +static void error_handler(void *data) { + VP9_COMMON *const cm = (VP9_COMMON *)data; + vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME, "Truncated packet"); +} + +static void read_bitdepth_colorspace_sampling(VP9_COMMON *cm, + struct vpx_read_bit_buffer *rb) { + if (cm->profile >= PROFILE_2) { + cm->bit_depth = vpx_rb_read_bit(rb) ? VPX_BITS_12 : VPX_BITS_10; +#if CONFIG_VP9_HIGHBITDEPTH + cm->use_highbitdepth = 1; +#endif + } else { + cm->bit_depth = VPX_BITS_8; +#if CONFIG_VP9_HIGHBITDEPTH + cm->use_highbitdepth = 0; +#endif + } + cm->color_space = vpx_rb_read_literal(rb, 3); + if (cm->color_space != VPX_CS_SRGB) { + cm->color_range = (vpx_color_range_t)vpx_rb_read_bit(rb); + if (cm->profile == PROFILE_1 || cm->profile == PROFILE_3) { + cm->subsampling_x = vpx_rb_read_bit(rb); + cm->subsampling_y = vpx_rb_read_bit(rb); + if (cm->subsampling_x == 1 && cm->subsampling_y == 1) + vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM, + "4:2:0 color not supported in profile 1 or 3"); + if (vpx_rb_read_bit(rb)) + vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM, + "Reserved bit set"); + } else { + cm->subsampling_y = cm->subsampling_x = 1; + } + } else { + cm->color_range = VPX_CR_FULL_RANGE; + if (cm->profile == PROFILE_1 || cm->profile == PROFILE_3) { + // Note if colorspace is SRGB then 4:4:4 chroma sampling is assumed. + // 4:2:2 or 4:4:0 chroma sampling is not allowed. + cm->subsampling_y = cm->subsampling_x = 0; + if (vpx_rb_read_bit(rb)) + vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM, + "Reserved bit set"); + } else { + vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM, + "4:4:4 color not supported in profile 0 or 2"); + } + } +} + +static size_t read_uncompressed_header(VP9Decoder *pbi, + struct vpx_read_bit_buffer *rb) { + VP9_COMMON *const cm = &pbi->common; + BufferPool *const pool = cm->buffer_pool; + RefCntBuffer *const frame_bufs = pool->frame_bufs; + int i, mask, ref_index = 0; + size_t sz; + + cm->last_frame_type = cm->frame_type; + cm->last_intra_only = cm->intra_only; + + if (vpx_rb_read_literal(rb, 2) != VP9_FRAME_MARKER) + vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM, + "Invalid frame marker"); + + cm->profile = vp9_read_profile(rb); +#if CONFIG_VP9_HIGHBITDEPTH + if (cm->profile >= MAX_PROFILES) + vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM, + "Unsupported bitstream profile"); +#else + if (cm->profile >= PROFILE_2) + vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM, + "Unsupported bitstream profile"); +#endif + + cm->show_existing_frame = vpx_rb_read_bit(rb); + if (cm->show_existing_frame) { + // Show an existing frame directly. + const int frame_to_show = cm->ref_frame_map[vpx_rb_read_literal(rb, 3)]; + if (frame_to_show < 0 || frame_bufs[frame_to_show].ref_count < 1) { + vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM, + "Buffer %d does not contain a decoded frame", + frame_to_show); + } + + ref_cnt_fb(frame_bufs, &cm->new_fb_idx, frame_to_show); + pbi->refresh_frame_flags = 0; + cm->lf.filter_level = 0; + cm->show_frame = 1; + + return 0; + } + + cm->frame_type = (FRAME_TYPE)vpx_rb_read_bit(rb); + cm->show_frame = vpx_rb_read_bit(rb); + cm->error_resilient_mode = vpx_rb_read_bit(rb); + + if (cm->frame_type == KEY_FRAME) { + if (!vp9_read_sync_code(rb)) + vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM, + "Invalid frame sync code"); + + read_bitdepth_colorspace_sampling(cm, rb); + pbi->refresh_frame_flags = (1 << REF_FRAMES) - 1; + + for (i = 0; i < REFS_PER_FRAME; ++i) { + cm->frame_refs[i].idx = INVALID_IDX; + cm->frame_refs[i].buf = NULL; + } + + setup_frame_size(cm, rb); + if (pbi->need_resync) { + memset(&cm->ref_frame_map, -1, sizeof(cm->ref_frame_map)); + pbi->need_resync = 0; + } + } else { + cm->intra_only = cm->show_frame ? 0 : vpx_rb_read_bit(rb); + + cm->reset_frame_context = + cm->error_resilient_mode ? 0 : vpx_rb_read_literal(rb, 2); + + if (cm->intra_only) { + if (!vp9_read_sync_code(rb)) + vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM, + "Invalid frame sync code"); + if (cm->profile > PROFILE_0) { + read_bitdepth_colorspace_sampling(cm, rb); + } else { + // NOTE: The intra-only frame header does not include the specification + // of either the color format or color sub-sampling in profile 0. VP9 + // specifies that the default color format should be YUV 4:2:0 in this + // case (normative). + cm->color_space = VPX_CS_BT_601; + cm->color_range = VPX_CR_STUDIO_RANGE; + cm->subsampling_y = cm->subsampling_x = 1; + cm->bit_depth = VPX_BITS_8; +#if CONFIG_VP9_HIGHBITDEPTH + cm->use_highbitdepth = 0; +#endif + } + + pbi->refresh_frame_flags = vpx_rb_read_literal(rb, REF_FRAMES); + setup_frame_size(cm, rb); + if (pbi->need_resync) { + memset(&cm->ref_frame_map, -1, sizeof(cm->ref_frame_map)); + pbi->need_resync = 0; + } + } else if (pbi->need_resync != 1) { /* Skip if need resync */ + pbi->refresh_frame_flags = vpx_rb_read_literal(rb, REF_FRAMES); + for (i = 0; i < REFS_PER_FRAME; ++i) { + const int ref = vpx_rb_read_literal(rb, REF_FRAMES_LOG2); + const int idx = cm->ref_frame_map[ref]; + RefBuffer *const ref_frame = &cm->frame_refs[i]; + ref_frame->idx = idx; + ref_frame->buf = &frame_bufs[idx].buf; + cm->ref_frame_sign_bias[LAST_FRAME + i] = vpx_rb_read_bit(rb); + } + + setup_frame_size_with_refs(cm, rb); + + cm->allow_high_precision_mv = vpx_rb_read_bit(rb); + cm->interp_filter = read_interp_filter(rb); + + for (i = 0; i < REFS_PER_FRAME; ++i) { + RefBuffer *const ref_buf = &cm->frame_refs[i]; +#if CONFIG_VP9_HIGHBITDEPTH + vp9_setup_scale_factors_for_frame( + &ref_buf->sf, ref_buf->buf->y_crop_width, + ref_buf->buf->y_crop_height, cm->width, cm->height, + cm->use_highbitdepth); +#else + vp9_setup_scale_factors_for_frame( + &ref_buf->sf, ref_buf->buf->y_crop_width, + ref_buf->buf->y_crop_height, cm->width, cm->height); +#endif + } + } + } +#if CONFIG_VP9_HIGHBITDEPTH + get_frame_new_buffer(cm)->bit_depth = cm->bit_depth; +#endif + get_frame_new_buffer(cm)->color_space = cm->color_space; + get_frame_new_buffer(cm)->color_range = cm->color_range; + get_frame_new_buffer(cm)->render_width = cm->render_width; + get_frame_new_buffer(cm)->render_height = cm->render_height; + + if (pbi->need_resync) { + vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME, + "Keyframe / intra-only frame required to reset decoder" + " state"); + } + + if (!cm->error_resilient_mode) { + cm->refresh_frame_context = vpx_rb_read_bit(rb); + cm->frame_parallel_decoding_mode = vpx_rb_read_bit(rb); + if (!cm->frame_parallel_decoding_mode) vp9_zero(cm->counts); + } else { + cm->refresh_frame_context = 0; + cm->frame_parallel_decoding_mode = 1; + } + + // This flag will be overridden by the call to vp9_setup_past_independence + // below, forcing the use of context 0 for those frame types. + cm->frame_context_idx = vpx_rb_read_literal(rb, FRAME_CONTEXTS_LOG2); + + // Generate next_ref_frame_map. + for (mask = pbi->refresh_frame_flags; mask; mask >>= 1) { + if (mask & 1) { + cm->next_ref_frame_map[ref_index] = cm->new_fb_idx; + ++frame_bufs[cm->new_fb_idx].ref_count; + } else { + cm->next_ref_frame_map[ref_index] = cm->ref_frame_map[ref_index]; + } + // Current thread holds the reference frame. + if (cm->ref_frame_map[ref_index] >= 0) + ++frame_bufs[cm->ref_frame_map[ref_index]].ref_count; + ++ref_index; + } + + for (; ref_index < REF_FRAMES; ++ref_index) { + cm->next_ref_frame_map[ref_index] = cm->ref_frame_map[ref_index]; + // Current thread holds the reference frame. + if (cm->ref_frame_map[ref_index] >= 0) + ++frame_bufs[cm->ref_frame_map[ref_index]].ref_count; + } + pbi->hold_ref_buf = 1; + + if (frame_is_intra_only(cm) || cm->error_resilient_mode) + vp9_setup_past_independence(cm); + + setup_loopfilter(&cm->lf, rb); + setup_quantization(cm, &pbi->mb, rb); + setup_segmentation(&cm->seg, rb); + setup_segmentation_dequant(cm); + + setup_tile_info(cm, rb); + sz = vpx_rb_read_literal(rb, 16); + + if (sz == 0) + vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME, + "Invalid header size"); + + return sz; +} + +static int read_compressed_header(VP9Decoder *pbi, const uint8_t *data, + size_t partition_size) { + VP9_COMMON *const cm = &pbi->common; + MACROBLOCKD *const xd = &pbi->mb; + FRAME_CONTEXT *const fc = cm->fc; + vpx_reader r; + int k; + + if (vpx_reader_init(&r, data, partition_size, pbi->decrypt_cb, + pbi->decrypt_state)) + vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR, + "Failed to allocate bool decoder 0"); + + cm->tx_mode = xd->lossless ? ONLY_4X4 : read_tx_mode(&r); + if (cm->tx_mode == TX_MODE_SELECT) read_tx_mode_probs(&fc->tx_probs, &r); + read_coef_probs(fc, cm->tx_mode, &r); + + for (k = 0; k < SKIP_CONTEXTS; ++k) + vp9_diff_update_prob(&r, &fc->skip_probs[k]); + + if (!frame_is_intra_only(cm)) { + nmv_context *const nmvc = &fc->nmvc; + int i, j; + + read_inter_mode_probs(fc, &r); + + if (cm->interp_filter == SWITCHABLE) read_switchable_interp_probs(fc, &r); + + for (i = 0; i < INTRA_INTER_CONTEXTS; i++) + vp9_diff_update_prob(&r, &fc->intra_inter_prob[i]); + + cm->reference_mode = read_frame_reference_mode(cm, &r); + if (cm->reference_mode != SINGLE_REFERENCE) + setup_compound_reference_mode(cm); + read_frame_reference_mode_probs(cm, &r); + + for (j = 0; j < BLOCK_SIZE_GROUPS; j++) + for (i = 0; i < INTRA_MODES - 1; ++i) + vp9_diff_update_prob(&r, &fc->y_mode_prob[j][i]); + + for (j = 0; j < PARTITION_CONTEXTS; ++j) + for (i = 0; i < PARTITION_TYPES - 1; ++i) + vp9_diff_update_prob(&r, &fc->partition_prob[j][i]); + + read_mv_probs(nmvc, cm->allow_high_precision_mv, &r); + } + + return vpx_reader_has_error(&r); +} + +static struct vpx_read_bit_buffer *init_read_bit_buffer( + VP9Decoder *pbi, struct vpx_read_bit_buffer *rb, const uint8_t *data, + const uint8_t *data_end, uint8_t clear_data[MAX_VP9_HEADER_SIZE]) { + rb->bit_offset = 0; + rb->error_handler = error_handler; + rb->error_handler_data = &pbi->common; + if (pbi->decrypt_cb) { + const int n = (int)VPXMIN(MAX_VP9_HEADER_SIZE, data_end - data); + pbi->decrypt_cb(pbi->decrypt_state, data, clear_data, n); + rb->bit_buffer = clear_data; + rb->bit_buffer_end = clear_data + n; + } else { + rb->bit_buffer = data; + rb->bit_buffer_end = data_end; + } + return rb; +} + +//------------------------------------------------------------------------------ + +int vp9_read_sync_code(struct vpx_read_bit_buffer *const rb) { + return vpx_rb_read_literal(rb, 8) == VP9_SYNC_CODE_0 && + vpx_rb_read_literal(rb, 8) == VP9_SYNC_CODE_1 && + vpx_rb_read_literal(rb, 8) == VP9_SYNC_CODE_2; +} + +void vp9_read_frame_size(struct vpx_read_bit_buffer *rb, int *width, + int *height) { + *width = vpx_rb_read_literal(rb, 16) + 1; + *height = vpx_rb_read_literal(rb, 16) + 1; +} + +BITSTREAM_PROFILE vp9_read_profile(struct vpx_read_bit_buffer *rb) { + int profile = vpx_rb_read_bit(rb); + profile |= vpx_rb_read_bit(rb) << 1; + if (profile > 2) profile += vpx_rb_read_bit(rb); + return (BITSTREAM_PROFILE)profile; +} + +void vp9_decode_frame(VP9Decoder *pbi, const uint8_t *data, + const uint8_t *data_end, const uint8_t **p_data_end) { + VP9_COMMON *const cm = &pbi->common; + MACROBLOCKD *const xd = &pbi->mb; + struct vpx_read_bit_buffer rb; + int context_updated = 0; + uint8_t clear_data[MAX_VP9_HEADER_SIZE]; + const size_t first_partition_size = read_uncompressed_header( + pbi, init_read_bit_buffer(pbi, &rb, data, data_end, clear_data)); + const int tile_rows = 1 << cm->log2_tile_rows; + const int tile_cols = 1 << cm->log2_tile_cols; + YV12_BUFFER_CONFIG *const new_fb = get_frame_new_buffer(cm); + xd->cur_buf = new_fb; + + if (!first_partition_size) { + // showing a frame directly + *p_data_end = data + (cm->profile <= PROFILE_2 ? 1 : 2); + return; + } + + data += vpx_rb_bytes_read(&rb); + if (!read_is_valid(data, first_partition_size, data_end)) + vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME, + "Truncated packet or corrupt header length"); + + cm->use_prev_frame_mvs = + !cm->error_resilient_mode && cm->width == cm->last_width && + cm->height == cm->last_height && !cm->last_intra_only && + cm->last_show_frame && (cm->last_frame_type != KEY_FRAME); + + vp9_setup_block_planes(xd, cm->subsampling_x, cm->subsampling_y); + + *cm->fc = cm->frame_contexts[cm->frame_context_idx]; + if (!cm->fc->initialized) + vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME, + "Uninitialized entropy context."); + + xd->corrupted = 0; + new_fb->corrupted = read_compressed_header(pbi, data, first_partition_size); + if (new_fb->corrupted) + vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME, + "Decode failed. Frame data header is corrupted."); + + if (cm->lf.filter_level && !cm->skip_loop_filter) { + vp9_loop_filter_frame_init(cm, cm->lf.filter_level); + } + + if (pbi->tile_worker_data == NULL || + (tile_cols * tile_rows) != pbi->total_tiles) { + const int num_tile_workers = + tile_cols * tile_rows + ((pbi->max_threads > 1) ? pbi->max_threads : 0); + const size_t twd_size = num_tile_workers * sizeof(*pbi->tile_worker_data); + // Ensure tile data offsets will be properly aligned. This may fail on + // platforms without DECLARE_ALIGNED(). + assert((sizeof(*pbi->tile_worker_data) % 16) == 0); + vpx_free(pbi->tile_worker_data); + CHECK_MEM_ERROR(cm, pbi->tile_worker_data, vpx_memalign(32, twd_size)); + pbi->total_tiles = tile_rows * tile_cols; + } + + if (pbi->max_threads > 1 && tile_rows == 1 && tile_cols > 1) { + // Multi-threaded tile decoder + *p_data_end = decode_tiles_mt(pbi, data + first_partition_size, data_end); + if (!xd->corrupted) { + if (!cm->skip_loop_filter) { + // If multiple threads are used to decode tiles, then we use those + // threads to do parallel loopfiltering. + vp9_loop_filter_frame_mt(new_fb, cm, pbi->mb.plane, cm->lf.filter_level, + 0, 0, pbi->tile_workers, pbi->num_tile_workers, + &pbi->lf_row_sync); + } + } else { + vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME, + "Decode failed. Frame data is corrupted."); + } + } else { + *p_data_end = decode_tiles(pbi, data + first_partition_size, data_end); + } + + if (!xd->corrupted) { + if (!cm->error_resilient_mode && !cm->frame_parallel_decoding_mode) { + vp9_adapt_coef_probs(cm); + + if (!frame_is_intra_only(cm)) { + vp9_adapt_mode_probs(cm); + vp9_adapt_mv_probs(cm, cm->allow_high_precision_mv); + } + } + } else { + vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME, + "Decode failed. Frame data is corrupted."); + } + + // Non frame parallel update frame context here. + if (cm->refresh_frame_context && !context_updated) + cm->frame_contexts[cm->frame_context_idx] = *cm->fc; +} diff --git a/vp9/decoder/vp9_decodeframe.h b/vp9/decoder/vp9_decodeframe.h new file mode 100644 index 0000000..44717f5 --- /dev/null +++ b/vp9/decoder/vp9_decodeframe.h @@ -0,0 +1,35 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP9_DECODER_VP9_DECODEFRAME_H_ +#define VP9_DECODER_VP9_DECODEFRAME_H_ + +#ifdef __cplusplus +extern "C" { +#endif + +#include "vp9/common/vp9_enums.h" + +struct VP9Decoder; +struct vpx_read_bit_buffer; + +int vp9_read_sync_code(struct vpx_read_bit_buffer *const rb); +void vp9_read_frame_size(struct vpx_read_bit_buffer *rb, int *width, + int *height); +BITSTREAM_PROFILE vp9_read_profile(struct vpx_read_bit_buffer *rb); + +void vp9_decode_frame(struct VP9Decoder *pbi, const uint8_t *data, + const uint8_t *data_end, const uint8_t **p_data_end); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP9_DECODER_VP9_DECODEFRAME_H_ diff --git a/vp9/decoder/vp9_decodemv.c b/vp9/decoder/vp9_decodemv.c new file mode 100644 index 0000000..0a78141 --- /dev/null +++ b/vp9/decoder/vp9_decodemv.c @@ -0,0 +1,839 @@ +/* + Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include + +#include "vp9/common/vp9_common.h" +#include "vp9/common/vp9_entropy.h" +#include "vp9/common/vp9_entropymode.h" +#include "vp9/common/vp9_entropymv.h" +#include "vp9/common/vp9_mvref_common.h" +#include "vp9/common/vp9_pred_common.h" +#include "vp9/common/vp9_reconinter.h" +#include "vp9/common/vp9_seg_common.h" + +#include "vp9/decoder/vp9_decodemv.h" +#include "vp9/decoder/vp9_decodeframe.h" + +#include "vpx_dsp/vpx_dsp_common.h" + +static PREDICTION_MODE read_intra_mode(vpx_reader *r, const vpx_prob *p) { + return (PREDICTION_MODE)vpx_read_tree(r, vp9_intra_mode_tree, p); +} + +static PREDICTION_MODE read_intra_mode_y(VP9_COMMON *cm, MACROBLOCKD *xd, + vpx_reader *r, int size_group) { + const PREDICTION_MODE y_mode = + read_intra_mode(r, cm->fc->y_mode_prob[size_group]); + FRAME_COUNTS *counts = xd->counts; + if (counts) ++counts->y_mode[size_group][y_mode]; + return y_mode; +} + +static PREDICTION_MODE read_intra_mode_uv(VP9_COMMON *cm, MACROBLOCKD *xd, + vpx_reader *r, + PREDICTION_MODE y_mode) { + const PREDICTION_MODE uv_mode = + read_intra_mode(r, cm->fc->uv_mode_prob[y_mode]); + FRAME_COUNTS *counts = xd->counts; + if (counts) ++counts->uv_mode[y_mode][uv_mode]; + return uv_mode; +} + +static PREDICTION_MODE read_inter_mode(VP9_COMMON *cm, MACROBLOCKD *xd, + vpx_reader *r, int ctx) { + const int mode = + vpx_read_tree(r, vp9_inter_mode_tree, cm->fc->inter_mode_probs[ctx]); + FRAME_COUNTS *counts = xd->counts; + if (counts) ++counts->inter_mode[ctx][mode]; + + return NEARESTMV + mode; +} + +static int read_segment_id(vpx_reader *r, const struct segmentation *seg) { + return vpx_read_tree(r, vp9_segment_tree, seg->tree_probs); +} + +static TX_SIZE read_selected_tx_size(VP9_COMMON *cm, MACROBLOCKD *xd, + TX_SIZE max_tx_size, vpx_reader *r) { + FRAME_COUNTS *counts = xd->counts; + const int ctx = get_tx_size_context(xd); + const vpx_prob *tx_probs = get_tx_probs(max_tx_size, ctx, &cm->fc->tx_probs); + int tx_size = vpx_read(r, tx_probs[0]); + if (tx_size != TX_4X4 && max_tx_size >= TX_16X16) { + tx_size += vpx_read(r, tx_probs[1]); + if (tx_size != TX_8X8 && max_tx_size >= TX_32X32) + tx_size += vpx_read(r, tx_probs[2]); + } + + if (counts) ++get_tx_counts(max_tx_size, ctx, &counts->tx)[tx_size]; + return (TX_SIZE)tx_size; +} + +static INLINE TX_SIZE read_tx_size(VP9_COMMON *cm, MACROBLOCKD *xd, + int allow_select, vpx_reader *r) { + TX_MODE tx_mode = cm->tx_mode; + BLOCK_SIZE bsize = xd->mi[0]->sb_type; + const TX_SIZE max_tx_size = max_txsize_lookup[bsize]; + if (allow_select && tx_mode == TX_MODE_SELECT && bsize >= BLOCK_8X8) + return read_selected_tx_size(cm, xd, max_tx_size, r); + else + return VPXMIN(max_tx_size, tx_mode_to_biggest_tx_size[tx_mode]); +} + +static int dec_get_segment_id(const VP9_COMMON *cm, const uint8_t *segment_ids, + int mi_offset, int x_mis, int y_mis) { + int x, y, segment_id = INT_MAX; + + for (y = 0; y < y_mis; y++) + for (x = 0; x < x_mis; x++) + segment_id = + VPXMIN(segment_id, segment_ids[mi_offset + y * cm->mi_cols + x]); + + assert(segment_id >= 0 && segment_id < MAX_SEGMENTS); + return segment_id; +} + +static void set_segment_id(VP9_COMMON *cm, int mi_offset, int x_mis, int y_mis, + int segment_id) { + int x, y; + + assert(segment_id >= 0 && segment_id < MAX_SEGMENTS); + + for (y = 0; y < y_mis; y++) + for (x = 0; x < x_mis; x++) + cm->current_frame_seg_map[mi_offset + y * cm->mi_cols + x] = segment_id; +} + +static void copy_segment_id(const VP9_COMMON *cm, + const uint8_t *last_segment_ids, + uint8_t *current_segment_ids, int mi_offset, + int x_mis, int y_mis) { + int x, y; + + for (y = 0; y < y_mis; y++) + for (x = 0; x < x_mis; x++) + current_segment_ids[mi_offset + y * cm->mi_cols + x] = + last_segment_ids ? last_segment_ids[mi_offset + y * cm->mi_cols + x] + : 0; +} + +static int read_intra_segment_id(VP9_COMMON *const cm, int mi_offset, int x_mis, + int y_mis, vpx_reader *r) { + struct segmentation *const seg = &cm->seg; + int segment_id; + + if (!seg->enabled) return 0; // Default for disabled segmentation + + if (!seg->update_map) { + copy_segment_id(cm, cm->last_frame_seg_map, cm->current_frame_seg_map, + mi_offset, x_mis, y_mis); + return 0; + } + + segment_id = read_segment_id(r, seg); + set_segment_id(cm, mi_offset, x_mis, y_mis, segment_id); + return segment_id; +} + +static int read_inter_segment_id(VP9_COMMON *const cm, MACROBLOCKD *const xd, + int mi_row, int mi_col, vpx_reader *r, + int x_mis, int y_mis) { + struct segmentation *const seg = &cm->seg; + MODE_INFO *const mi = xd->mi[0]; + int predicted_segment_id, segment_id; + const int mi_offset = mi_row * cm->mi_cols + mi_col; + + if (!seg->enabled) return 0; // Default for disabled segmentation + + predicted_segment_id = cm->last_frame_seg_map + ? dec_get_segment_id(cm, cm->last_frame_seg_map, + mi_offset, x_mis, y_mis) + : 0; + + if (!seg->update_map) { + copy_segment_id(cm, cm->last_frame_seg_map, cm->current_frame_seg_map, + mi_offset, x_mis, y_mis); + return predicted_segment_id; + } + + if (seg->temporal_update) { + const vpx_prob pred_prob = vp9_get_pred_prob_seg_id(seg, xd); + mi->seg_id_predicted = vpx_read(r, pred_prob); + segment_id = + mi->seg_id_predicted ? predicted_segment_id : read_segment_id(r, seg); + } else { + segment_id = read_segment_id(r, seg); + } + set_segment_id(cm, mi_offset, x_mis, y_mis, segment_id); + return segment_id; +} + +static int read_skip(VP9_COMMON *cm, const MACROBLOCKD *xd, int segment_id, + vpx_reader *r) { + if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)) { + return 1; + } else { + const int ctx = vp9_get_skip_context(xd); + const int skip = vpx_read(r, cm->fc->skip_probs[ctx]); + FRAME_COUNTS *counts = xd->counts; + if (counts) ++counts->skip[ctx][skip]; + return skip; + } +} + +static void read_intra_frame_mode_info(VP9_COMMON *const cm, + MACROBLOCKD *const xd, int mi_row, + int mi_col, vpx_reader *r, int x_mis, + int y_mis) { + MODE_INFO *const mi = xd->mi[0]; + const MODE_INFO *above_mi = xd->above_mi; + const MODE_INFO *left_mi = xd->left_mi; + const BLOCK_SIZE bsize = mi->sb_type; + int i; + const int mi_offset = mi_row * cm->mi_cols + mi_col; + + mi->segment_id = read_intra_segment_id(cm, mi_offset, x_mis, y_mis, r); + mi->skip = read_skip(cm, xd, mi->segment_id, r); + mi->tx_size = read_tx_size(cm, xd, 1, r); + mi->ref_frame[0] = INTRA_FRAME; + mi->ref_frame[1] = NONE; + + switch (bsize) { + case BLOCK_4X4: + for (i = 0; i < 4; ++i) + mi->bmi[i].as_mode = + read_intra_mode(r, get_y_mode_probs(mi, above_mi, left_mi, i)); + mi->mode = mi->bmi[3].as_mode; + break; + case BLOCK_4X8: + mi->bmi[0].as_mode = mi->bmi[2].as_mode = + read_intra_mode(r, get_y_mode_probs(mi, above_mi, left_mi, 0)); + mi->bmi[1].as_mode = mi->bmi[3].as_mode = mi->mode = + read_intra_mode(r, get_y_mode_probs(mi, above_mi, left_mi, 1)); + break; + case BLOCK_8X4: + mi->bmi[0].as_mode = mi->bmi[1].as_mode = + read_intra_mode(r, get_y_mode_probs(mi, above_mi, left_mi, 0)); + mi->bmi[2].as_mode = mi->bmi[3].as_mode = mi->mode = + read_intra_mode(r, get_y_mode_probs(mi, above_mi, left_mi, 2)); + break; + default: + mi->mode = read_intra_mode(r, get_y_mode_probs(mi, above_mi, left_mi, 0)); + } + + mi->uv_mode = read_intra_mode(r, vp9_kf_uv_mode_prob[mi->mode]); +} + +static int read_mv_component(vpx_reader *r, const nmv_component *mvcomp, + int usehp) { + int mag, d, fr, hp; + const int sign = vpx_read(r, mvcomp->sign); + const int mv_class = vpx_read_tree(r, vp9_mv_class_tree, mvcomp->classes); + const int class0 = mv_class == MV_CLASS_0; + + // Integer part + if (class0) { + d = vpx_read(r, mvcomp->class0[0]); + mag = 0; + } else { + int i; + const int n = mv_class + CLASS0_BITS - 1; // number of bits + + d = 0; + for (i = 0; i < n; ++i) d |= vpx_read(r, mvcomp->bits[i]) << i; + mag = CLASS0_SIZE << (mv_class + 2); + } + + // Fractional part + fr = vpx_read_tree(r, vp9_mv_fp_tree, + class0 ? mvcomp->class0_fp[d] : mvcomp->fp); + + // High precision part (if hp is not used, the default value of the hp is 1) + hp = usehp ? vpx_read(r, class0 ? mvcomp->class0_hp : mvcomp->hp) : 1; + + // Result + mag += ((d << 3) | (fr << 1) | hp) + 1; + return sign ? -mag : mag; +} + +static INLINE void read_mv(vpx_reader *r, MV *mv, const MV *ref, + const nmv_context *ctx, nmv_context_counts *counts, + int allow_hp) { + const MV_JOINT_TYPE joint_type = + (MV_JOINT_TYPE)vpx_read_tree(r, vp9_mv_joint_tree, ctx->joints); + const int use_hp = allow_hp && use_mv_hp(ref); + MV diff = { 0, 0 }; + + if (mv_joint_vertical(joint_type)) + diff.row = read_mv_component(r, &ctx->comps[0], use_hp); + + if (mv_joint_horizontal(joint_type)) + diff.col = read_mv_component(r, &ctx->comps[1], use_hp); + + vp9_inc_mv(&diff, counts); + + mv->row = ref->row + diff.row; + mv->col = ref->col + diff.col; +} + +static REFERENCE_MODE read_block_reference_mode(VP9_COMMON *cm, + const MACROBLOCKD *xd, + vpx_reader *r) { + if (cm->reference_mode == REFERENCE_MODE_SELECT) { + const int ctx = vp9_get_reference_mode_context(cm, xd); + const REFERENCE_MODE mode = + (REFERENCE_MODE)vpx_read(r, cm->fc->comp_inter_prob[ctx]); + FRAME_COUNTS *counts = xd->counts; + if (counts) ++counts->comp_inter[ctx][mode]; + return mode; // SINGLE_REFERENCE or COMPOUND_REFERENCE + } else { + return cm->reference_mode; + } +} + +// Read the referncence frame +static void read_ref_frames(VP9_COMMON *const cm, MACROBLOCKD *const xd, + vpx_reader *r, int segment_id, + MV_REFERENCE_FRAME ref_frame[2]) { + FRAME_CONTEXT *const fc = cm->fc; + FRAME_COUNTS *counts = xd->counts; + + if (segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME)) { + ref_frame[0] = (MV_REFERENCE_FRAME)get_segdata(&cm->seg, segment_id, + SEG_LVL_REF_FRAME); + ref_frame[1] = NONE; + } else { + const REFERENCE_MODE mode = read_block_reference_mode(cm, xd, r); + // FIXME(rbultje) I'm pretty sure this breaks segmentation ref frame coding + if (mode == COMPOUND_REFERENCE) { + const int idx = cm->ref_frame_sign_bias[cm->comp_fixed_ref]; + const int ctx = vp9_get_pred_context_comp_ref_p(cm, xd); + const int bit = vpx_read(r, fc->comp_ref_prob[ctx]); + if (counts) ++counts->comp_ref[ctx][bit]; + ref_frame[idx] = cm->comp_fixed_ref; + ref_frame[!idx] = cm->comp_var_ref[bit]; + } else if (mode == SINGLE_REFERENCE) { + const int ctx0 = vp9_get_pred_context_single_ref_p1(xd); + const int bit0 = vpx_read(r, fc->single_ref_prob[ctx0][0]); + if (counts) ++counts->single_ref[ctx0][0][bit0]; + if (bit0) { + const int ctx1 = vp9_get_pred_context_single_ref_p2(xd); + const int bit1 = vpx_read(r, fc->single_ref_prob[ctx1][1]); + if (counts) ++counts->single_ref[ctx1][1][bit1]; + ref_frame[0] = bit1 ? ALTREF_FRAME : GOLDEN_FRAME; + } else { + ref_frame[0] = LAST_FRAME; + } + + ref_frame[1] = NONE; + } else { + assert(0 && "Invalid prediction mode."); + } + } +} + +static INLINE INTERP_FILTER read_switchable_interp_filter(VP9_COMMON *const cm, + MACROBLOCKD *const xd, + vpx_reader *r) { + const int ctx = get_pred_context_switchable_interp(xd); + const INTERP_FILTER type = (INTERP_FILTER)vpx_read_tree( + r, vp9_switchable_interp_tree, cm->fc->switchable_interp_prob[ctx]); + FRAME_COUNTS *counts = xd->counts; + if (counts) ++counts->switchable_interp[ctx][type]; + return type; +} + +static void read_intra_block_mode_info(VP9_COMMON *const cm, + MACROBLOCKD *const xd, MODE_INFO *mi, + vpx_reader *r) { + const BLOCK_SIZE bsize = mi->sb_type; + int i; + + switch (bsize) { + case BLOCK_4X4: + for (i = 0; i < 4; ++i) + mi->bmi[i].as_mode = read_intra_mode_y(cm, xd, r, 0); + mi->mode = mi->bmi[3].as_mode; + break; + case BLOCK_4X8: + mi->bmi[0].as_mode = mi->bmi[2].as_mode = read_intra_mode_y(cm, xd, r, 0); + mi->bmi[1].as_mode = mi->bmi[3].as_mode = mi->mode = + read_intra_mode_y(cm, xd, r, 0); + break; + case BLOCK_8X4: + mi->bmi[0].as_mode = mi->bmi[1].as_mode = read_intra_mode_y(cm, xd, r, 0); + mi->bmi[2].as_mode = mi->bmi[3].as_mode = mi->mode = + read_intra_mode_y(cm, xd, r, 0); + break; + default: mi->mode = read_intra_mode_y(cm, xd, r, size_group_lookup[bsize]); + } + + mi->uv_mode = read_intra_mode_uv(cm, xd, r, mi->mode); + + // Initialize interp_filter here so we do not have to check for inter block + // modes in get_pred_context_switchable_interp() + mi->interp_filter = SWITCHABLE_FILTERS; + + mi->ref_frame[0] = INTRA_FRAME; + mi->ref_frame[1] = NONE; +} + +static INLINE int is_mv_valid(const MV *mv) { + return mv->row > MV_LOW && mv->row < MV_UPP && mv->col > MV_LOW && + mv->col < MV_UPP; +} + +static INLINE void copy_mv_pair(int_mv *dst, const int_mv *src) { + memcpy(dst, src, sizeof(*dst) * 2); +} + +static INLINE void zero_mv_pair(int_mv *dst) { + memset(dst, 0, sizeof(*dst) * 2); +} + +static INLINE int assign_mv(VP9_COMMON *cm, MACROBLOCKD *xd, + PREDICTION_MODE mode, int_mv mv[2], + int_mv ref_mv[2], int_mv near_nearest_mv[2], + int is_compound, int allow_hp, vpx_reader *r) { + int i; + int ret = 1; + + switch (mode) { + case NEWMV: { + FRAME_COUNTS *counts = xd->counts; + nmv_context_counts *const mv_counts = counts ? &counts->mv : NULL; + for (i = 0; i < 1 + is_compound; ++i) { + read_mv(r, &mv[i].as_mv, &ref_mv[i].as_mv, &cm->fc->nmvc, mv_counts, + allow_hp); + ret = ret && is_mv_valid(&mv[i].as_mv); + } + break; + } + case NEARMV: + case NEARESTMV: { + copy_mv_pair(mv, near_nearest_mv); + break; + } + case ZEROMV: { + zero_mv_pair(mv); + break; + } + default: { return 0; } + } + return ret; +} + +static int read_is_inter_block(VP9_COMMON *const cm, MACROBLOCKD *const xd, + int segment_id, vpx_reader *r) { + if (segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME)) { + return get_segdata(&cm->seg, segment_id, SEG_LVL_REF_FRAME) != INTRA_FRAME; + } else { + const int ctx = get_intra_inter_context(xd); + const int is_inter = vpx_read(r, cm->fc->intra_inter_prob[ctx]); + FRAME_COUNTS *counts = xd->counts; + if (counts) ++counts->intra_inter[ctx][is_inter]; + return is_inter; + } +} + +static void dec_find_best_ref_mvs(int allow_hp, int_mv *mvlist, int_mv *best_mv, + int refmv_count) { + int i; + + // Make sure all the candidates are properly clamped etc + for (i = 0; i < refmv_count; ++i) { + lower_mv_precision(&mvlist[i].as_mv, allow_hp); + *best_mv = mvlist[i]; + } +} + +// This macro is used to add a motion vector mv_ref list if it isn't +// already in the list. If it's the second motion vector or early_break +// it will also skip all additional processing and jump to Done! +#define ADD_MV_REF_LIST_EB(mv, refmv_count, mv_ref_list, Done) \ + do { \ + if (refmv_count) { \ + if ((mv).as_int != (mv_ref_list)[0].as_int) { \ + (mv_ref_list)[(refmv_count)] = (mv); \ + refmv_count++; \ + goto Done; \ + } \ + } else { \ + (mv_ref_list)[(refmv_count)++] = (mv); \ + if (early_break) goto Done; \ + } \ + } while (0) + +// If either reference frame is different, not INTRA, and they +// are different from each other scale and add the mv to our list. +#define IF_DIFF_REF_FRAME_ADD_MV_EB(mbmi, ref_frame, ref_sign_bias, \ + refmv_count, mv_ref_list, Done) \ + do { \ + if (is_inter_block(mbmi)) { \ + if ((mbmi)->ref_frame[0] != ref_frame) \ + ADD_MV_REF_LIST_EB(scale_mv((mbmi), 0, ref_frame, ref_sign_bias), \ + refmv_count, mv_ref_list, Done); \ + if (has_second_ref(mbmi) && (mbmi)->ref_frame[1] != ref_frame && \ + (mbmi)->mv[1].as_int != (mbmi)->mv[0].as_int) \ + ADD_MV_REF_LIST_EB(scale_mv((mbmi), 1, ref_frame, ref_sign_bias), \ + refmv_count, mv_ref_list, Done); \ + } \ + } while (0) + +// This function searches the neighborhood of a given MB/SB +// to try and find candidate reference vectors. +static int dec_find_mv_refs(const VP9_COMMON *cm, const MACROBLOCKD *xd, + PREDICTION_MODE mode, MV_REFERENCE_FRAME ref_frame, + const POSITION *const mv_ref_search, + int_mv *mv_ref_list, int mi_row, int mi_col, + int block, int is_sub8x8) { + const int *ref_sign_bias = cm->ref_frame_sign_bias; + int i, refmv_count = 0; + int different_ref_found = 0; + const MV_REF *const prev_frame_mvs = + cm->use_prev_frame_mvs + ? cm->prev_frame->mvs + mi_row * cm->mi_cols + mi_col + : NULL; + const TileInfo *const tile = &xd->tile; + // If mode is nearestmv or newmv (uses nearestmv as a reference) then stop + // searching after the first mv is found. + const int early_break = (mode != NEARMV); + + // Blank the reference vector list + memset(mv_ref_list, 0, sizeof(*mv_ref_list) * MAX_MV_REF_CANDIDATES); + + i = 0; + if (is_sub8x8) { + // If the size < 8x8 we get the mv from the bmi substructure for the + // nearest two blocks. + for (i = 0; i < 2; ++i) { + const POSITION *const mv_ref = &mv_ref_search[i]; + if (is_inside(tile, mi_col, mi_row, cm->mi_rows, mv_ref)) { + const MODE_INFO *const candidate_mi = + xd->mi[mv_ref->col + mv_ref->row * xd->mi_stride]; + different_ref_found = 1; + + if (candidate_mi->ref_frame[0] == ref_frame) + ADD_MV_REF_LIST_EB( + get_sub_block_mv(candidate_mi, 0, mv_ref->col, block), + refmv_count, mv_ref_list, Done); + else if (candidate_mi->ref_frame[1] == ref_frame) + ADD_MV_REF_LIST_EB( + get_sub_block_mv(candidate_mi, 1, mv_ref->col, block), + refmv_count, mv_ref_list, Done); + } + } + } + + // Check the rest of the neighbors in much the same way + // as before except we don't need to keep track of sub blocks or + // mode counts. + for (; i < MVREF_NEIGHBOURS; ++i) { + const POSITION *const mv_ref = &mv_ref_search[i]; + if (is_inside(tile, mi_col, mi_row, cm->mi_rows, mv_ref)) { + const MODE_INFO *const candidate = + xd->mi[mv_ref->col + mv_ref->row * xd->mi_stride]; + different_ref_found = 1; + + if (candidate->ref_frame[0] == ref_frame) + ADD_MV_REF_LIST_EB(candidate->mv[0], refmv_count, mv_ref_list, Done); + else if (candidate->ref_frame[1] == ref_frame) + ADD_MV_REF_LIST_EB(candidate->mv[1], refmv_count, mv_ref_list, Done); + } + } + + // Check the last frame's mode and mv info. + if (prev_frame_mvs) { + if (prev_frame_mvs->ref_frame[0] == ref_frame) { + ADD_MV_REF_LIST_EB(prev_frame_mvs->mv[0], refmv_count, mv_ref_list, Done); + } else if (prev_frame_mvs->ref_frame[1] == ref_frame) { + ADD_MV_REF_LIST_EB(prev_frame_mvs->mv[1], refmv_count, mv_ref_list, Done); + } + } + + // Since we couldn't find 2 mvs from the same reference frame + // go back through the neighbors and find motion vectors from + // different reference frames. + if (different_ref_found) { + for (i = 0; i < MVREF_NEIGHBOURS; ++i) { + const POSITION *mv_ref = &mv_ref_search[i]; + if (is_inside(tile, mi_col, mi_row, cm->mi_rows, mv_ref)) { + const MODE_INFO *const candidate = + xd->mi[mv_ref->col + mv_ref->row * xd->mi_stride]; + + // If the candidate is INTRA we don't want to consider its mv. + IF_DIFF_REF_FRAME_ADD_MV_EB(candidate, ref_frame, ref_sign_bias, + refmv_count, mv_ref_list, Done); + } + } + } + + // Since we still don't have a candidate we'll try the last frame. + if (prev_frame_mvs) { + if (prev_frame_mvs->ref_frame[0] != ref_frame && + prev_frame_mvs->ref_frame[0] > INTRA_FRAME) { + int_mv mv = prev_frame_mvs->mv[0]; + if (ref_sign_bias[prev_frame_mvs->ref_frame[0]] != + ref_sign_bias[ref_frame]) { + mv.as_mv.row *= -1; + mv.as_mv.col *= -1; + } + ADD_MV_REF_LIST_EB(mv, refmv_count, mv_ref_list, Done); + } + + if (prev_frame_mvs->ref_frame[1] > INTRA_FRAME && + prev_frame_mvs->ref_frame[1] != ref_frame && + prev_frame_mvs->mv[1].as_int != prev_frame_mvs->mv[0].as_int) { + int_mv mv = prev_frame_mvs->mv[1]; + if (ref_sign_bias[prev_frame_mvs->ref_frame[1]] != + ref_sign_bias[ref_frame]) { + mv.as_mv.row *= -1; + mv.as_mv.col *= -1; + } + ADD_MV_REF_LIST_EB(mv, refmv_count, mv_ref_list, Done); + } + } + + if (mode == NEARMV) + refmv_count = MAX_MV_REF_CANDIDATES; + else + // we only care about the nearestmv for the remaining modes + refmv_count = 1; + +Done: + // Clamp vectors + for (i = 0; i < refmv_count; ++i) clamp_mv_ref(&mv_ref_list[i].as_mv, xd); + + return refmv_count; +} + +static void append_sub8x8_mvs_for_idx(VP9_COMMON *cm, MACROBLOCKD *xd, + const POSITION *const mv_ref_search, + PREDICTION_MODE b_mode, int block, + int ref, int mi_row, int mi_col, + int_mv *best_sub8x8) { + int_mv mv_list[MAX_MV_REF_CANDIDATES]; + MODE_INFO *const mi = xd->mi[0]; + b_mode_info *bmi = mi->bmi; + int n; + int refmv_count; + + assert(MAX_MV_REF_CANDIDATES == 2); + + refmv_count = + dec_find_mv_refs(cm, xd, b_mode, mi->ref_frame[ref], mv_ref_search, + mv_list, mi_row, mi_col, block, 1); + + switch (block) { + case 0: best_sub8x8->as_int = mv_list[refmv_count - 1].as_int; break; + case 1: + case 2: + if (b_mode == NEARESTMV) { + best_sub8x8->as_int = bmi[0].as_mv[ref].as_int; + } else { + best_sub8x8->as_int = 0; + for (n = 0; n < refmv_count; ++n) + if (bmi[0].as_mv[ref].as_int != mv_list[n].as_int) { + best_sub8x8->as_int = mv_list[n].as_int; + break; + } + } + break; + case 3: + if (b_mode == NEARESTMV) { + best_sub8x8->as_int = bmi[2].as_mv[ref].as_int; + } else { + int_mv candidates[2 + MAX_MV_REF_CANDIDATES]; + candidates[0] = bmi[1].as_mv[ref]; + candidates[1] = bmi[0].as_mv[ref]; + candidates[2] = mv_list[0]; + candidates[3] = mv_list[1]; + best_sub8x8->as_int = 0; + for (n = 0; n < 2 + MAX_MV_REF_CANDIDATES; ++n) + if (bmi[2].as_mv[ref].as_int != candidates[n].as_int) { + best_sub8x8->as_int = candidates[n].as_int; + break; + } + } + break; + default: assert(0 && "Invalid block index."); + } +} + +static uint8_t get_mode_context(const VP9_COMMON *cm, const MACROBLOCKD *xd, + const POSITION *const mv_ref_search, int mi_row, + int mi_col) { + int i; + int context_counter = 0; + const TileInfo *const tile = &xd->tile; + + // Get mode count from nearest 2 blocks + for (i = 0; i < 2; ++i) { + const POSITION *const mv_ref = &mv_ref_search[i]; + if (is_inside(tile, mi_col, mi_row, cm->mi_rows, mv_ref)) { + const MODE_INFO *const candidate = + xd->mi[mv_ref->col + mv_ref->row * xd->mi_stride]; + // Keep counts for entropy encoding. + context_counter += mode_2_counter[candidate->mode]; + } + } + + return counter_to_context[context_counter]; +} + +static void read_inter_block_mode_info(VP9Decoder *const pbi, + MACROBLOCKD *const xd, + MODE_INFO *const mi, int mi_row, + int mi_col, vpx_reader *r) { + VP9_COMMON *const cm = &pbi->common; + const BLOCK_SIZE bsize = mi->sb_type; + const int allow_hp = cm->allow_high_precision_mv; + int_mv best_ref_mvs[2]; + int ref, is_compound; + uint8_t inter_mode_ctx; + const POSITION *const mv_ref_search = mv_ref_blocks[bsize]; + + read_ref_frames(cm, xd, r, mi->segment_id, mi->ref_frame); + is_compound = has_second_ref(mi); + inter_mode_ctx = get_mode_context(cm, xd, mv_ref_search, mi_row, mi_col); + + if (segfeature_active(&cm->seg, mi->segment_id, SEG_LVL_SKIP)) { + mi->mode = ZEROMV; + if (bsize < BLOCK_8X8) { + vpx_internal_error(xd->error_info, VPX_CODEC_UNSUP_BITSTREAM, + "Invalid usage of segement feature on small blocks"); + return; + } + } else { + if (bsize >= BLOCK_8X8) + mi->mode = read_inter_mode(cm, xd, r, inter_mode_ctx); + else + // Sub 8x8 blocks use the nearestmv as a ref_mv if the b_mode is NEWMV. + // Setting mode to NEARESTMV forces the search to stop after the nearestmv + // has been found. After b_modes have been read, mode will be overwritten + // by the last b_mode. + mi->mode = NEARESTMV; + + if (mi->mode != ZEROMV) { + for (ref = 0; ref < 1 + is_compound; ++ref) { + int_mv tmp_mvs[MAX_MV_REF_CANDIDATES]; + const MV_REFERENCE_FRAME frame = mi->ref_frame[ref]; + int refmv_count; + + refmv_count = dec_find_mv_refs(cm, xd, mi->mode, frame, mv_ref_search, + tmp_mvs, mi_row, mi_col, -1, 0); + + dec_find_best_ref_mvs(allow_hp, tmp_mvs, &best_ref_mvs[ref], + refmv_count); + } + } + } + + mi->interp_filter = (cm->interp_filter == SWITCHABLE) + ? read_switchable_interp_filter(cm, xd, r) + : cm->interp_filter; + + if (bsize < BLOCK_8X8) { + const int num_4x4_w = 1 << xd->bmode_blocks_wl; + const int num_4x4_h = 1 << xd->bmode_blocks_hl; + int idx, idy; + PREDICTION_MODE b_mode; + int_mv best_sub8x8[2]; + const uint32_t invalid_mv = 0x80008000; + // Initialize the 2nd element as even though it won't be used meaningfully + // if is_compound is false, copying/clamping it may trigger a MSan warning. + best_sub8x8[1].as_int = invalid_mv; + for (idy = 0; idy < 2; idy += num_4x4_h) { + for (idx = 0; idx < 2; idx += num_4x4_w) { + const int j = idy * 2 + idx; + b_mode = read_inter_mode(cm, xd, r, inter_mode_ctx); + + if (b_mode == NEARESTMV || b_mode == NEARMV) { + for (ref = 0; ref < 1 + is_compound; ++ref) + append_sub8x8_mvs_for_idx(cm, xd, mv_ref_search, b_mode, j, ref, + mi_row, mi_col, &best_sub8x8[ref]); + } + + if (!assign_mv(cm, xd, b_mode, mi->bmi[j].as_mv, best_ref_mvs, + best_sub8x8, is_compound, allow_hp, r)) { + xd->corrupted |= 1; + break; + } + + if (num_4x4_h == 2) mi->bmi[j + 2] = mi->bmi[j]; + if (num_4x4_w == 2) mi->bmi[j + 1] = mi->bmi[j]; + } + } + + mi->mode = b_mode; + + copy_mv_pair(mi->mv, mi->bmi[3].as_mv); + } else { + xd->corrupted |= !assign_mv(cm, xd, mi->mode, mi->mv, best_ref_mvs, + best_ref_mvs, is_compound, allow_hp, r); + } +} + +static void read_inter_frame_mode_info(VP9Decoder *const pbi, + MACROBLOCKD *const xd, int mi_row, + int mi_col, vpx_reader *r, int x_mis, + int y_mis) { + VP9_COMMON *const cm = &pbi->common; + MODE_INFO *const mi = xd->mi[0]; + int inter_block; + + mi->segment_id = + read_inter_segment_id(cm, xd, mi_row, mi_col, r, x_mis, y_mis); + mi->skip = read_skip(cm, xd, mi->segment_id, r); + inter_block = read_is_inter_block(cm, xd, mi->segment_id, r); + mi->tx_size = read_tx_size(cm, xd, !mi->skip || !inter_block, r); + + if (inter_block) + read_inter_block_mode_info(pbi, xd, mi, mi_row, mi_col, r); + else + read_intra_block_mode_info(cm, xd, mi, r); +} + +static INLINE void copy_ref_frame_pair(MV_REFERENCE_FRAME *dst, + const MV_REFERENCE_FRAME *src) { + memcpy(dst, src, sizeof(*dst) * 2); +} + +void vp9_read_mode_info(TileWorkerData *twd, VP9Decoder *const pbi, int mi_row, + int mi_col, int x_mis, int y_mis) { + vpx_reader *r = &twd->bit_reader; + MACROBLOCKD *const xd = &twd->xd; + VP9_COMMON *const cm = &pbi->common; + MODE_INFO *const mi = xd->mi[0]; + MV_REF *frame_mvs = cm->cur_frame->mvs + mi_row * cm->mi_cols + mi_col; + int w, h; + + if (frame_is_intra_only(cm)) { + read_intra_frame_mode_info(cm, xd, mi_row, mi_col, r, x_mis, y_mis); + } else { + read_inter_frame_mode_info(pbi, xd, mi_row, mi_col, r, x_mis, y_mis); + + for (h = 0; h < y_mis; ++h) { + for (w = 0; w < x_mis; ++w) { + MV_REF *const mv = frame_mvs + w; + copy_ref_frame_pair(mv->ref_frame, mi->ref_frame); + copy_mv_pair(mv->mv, mi->mv); + } + frame_mvs += cm->mi_cols; + } + } +#if 0 // CONFIG_BETTER_HW_COMPATIBILITY && CONFIG_VP9_HIGHBITDEPTH + if ((xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) && + (xd->above_mi == NULL || xd->left_mi == NULL) && + !is_inter_block(mi) && need_top_left[mi->uv_mode]) + assert(0); +#endif // CONFIG_BETTER_HW_COMPATIBILITY && CONFIG_VP9_HIGHBITDEPTH +} diff --git a/vp9/decoder/vp9_decodemv.h b/vp9/decoder/vp9_decodemv.h new file mode 100644 index 0000000..b460cb8 --- /dev/null +++ b/vp9/decoder/vp9_decodemv.h @@ -0,0 +1,29 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP9_DECODER_VP9_DECODEMV_H_ +#define VP9_DECODER_VP9_DECODEMV_H_ + +#include "vpx_dsp/bitreader.h" + +#include "vp9/decoder/vp9_decoder.h" + +#ifdef __cplusplus +extern "C" { +#endif + +void vp9_read_mode_info(TileWorkerData *twd, VP9Decoder *const pbi, int mi_row, + int mi_col, int x_mis, int y_mis); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP9_DECODER_VP9_DECODEMV_H_ diff --git a/vp9/decoder/vp9_decoder.c b/vp9/decoder/vp9_decoder.c new file mode 100644 index 0000000..a913fa5 --- /dev/null +++ b/vp9/decoder/vp9_decoder.c @@ -0,0 +1,468 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include +#include + +#include "./vp9_rtcd.h" +#include "./vpx_dsp_rtcd.h" +#include "./vpx_scale_rtcd.h" + +#include "vpx_mem/vpx_mem.h" +#include "vpx_ports/system_state.h" +#include "vpx_ports/vpx_once.h" +#include "vpx_ports/vpx_timer.h" +#include "vpx_scale/vpx_scale.h" +#include "vpx_util/vpx_thread.h" + +#include "vp9/common/vp9_alloccommon.h" +#include "vp9/common/vp9_loopfilter.h" +#include "vp9/common/vp9_onyxc_int.h" +#if CONFIG_VP9_POSTPROC +#include "vp9/common/vp9_postproc.h" +#endif +#include "vp9/common/vp9_quant_common.h" +#include "vp9/common/vp9_reconintra.h" + +#include "vp9/decoder/vp9_decodeframe.h" +#include "vp9/decoder/vp9_decoder.h" +#include "vp9/decoder/vp9_detokenize.h" + +static void initialize_dec(void) { + static volatile int init_done = 0; + + if (!init_done) { + vp9_rtcd(); + vpx_dsp_rtcd(); + vpx_scale_rtcd(); + vp9_init_intra_predictors(); + init_done = 1; + } +} + +static void vp9_dec_setup_mi(VP9_COMMON *cm) { + cm->mi = cm->mip + cm->mi_stride + 1; + cm->mi_grid_visible = cm->mi_grid_base + cm->mi_stride + 1; + memset(cm->mi_grid_base, 0, + cm->mi_stride * (cm->mi_rows + 1) * sizeof(*cm->mi_grid_base)); +} + +static int vp9_dec_alloc_mi(VP9_COMMON *cm, int mi_size) { + cm->mip = vpx_calloc(mi_size, sizeof(*cm->mip)); + if (!cm->mip) return 1; + cm->mi_alloc_size = mi_size; + cm->mi_grid_base = (MODE_INFO **)vpx_calloc(mi_size, sizeof(MODE_INFO *)); + if (!cm->mi_grid_base) return 1; + return 0; +} + +static void vp9_dec_free_mi(VP9_COMMON *cm) { + vpx_free(cm->mip); + cm->mip = NULL; + vpx_free(cm->mi_grid_base); + cm->mi_grid_base = NULL; +} + +VP9Decoder *vp9_decoder_create(BufferPool *const pool) { + VP9Decoder *volatile const pbi = vpx_memalign(32, sizeof(*pbi)); + VP9_COMMON *volatile const cm = pbi ? &pbi->common : NULL; + + if (!cm) return NULL; + + vp9_zero(*pbi); + + if (setjmp(cm->error.jmp)) { + cm->error.setjmp = 0; + vp9_decoder_remove(pbi); + return NULL; + } + + cm->error.setjmp = 1; + + CHECK_MEM_ERROR(cm, cm->fc, (FRAME_CONTEXT *)vpx_calloc(1, sizeof(*cm->fc))); + CHECK_MEM_ERROR( + cm, cm->frame_contexts, + (FRAME_CONTEXT *)vpx_calloc(FRAME_CONTEXTS, sizeof(*cm->frame_contexts))); + + pbi->need_resync = 1; + once(initialize_dec); + + // Initialize the references to not point to any frame buffers. + memset(&cm->ref_frame_map, -1, sizeof(cm->ref_frame_map)); + memset(&cm->next_ref_frame_map, -1, sizeof(cm->next_ref_frame_map)); + + cm->current_video_frame = 0; + pbi->ready_for_new_data = 1; + pbi->common.buffer_pool = pool; + + cm->bit_depth = VPX_BITS_8; + cm->dequant_bit_depth = VPX_BITS_8; + + cm->alloc_mi = vp9_dec_alloc_mi; + cm->free_mi = vp9_dec_free_mi; + cm->setup_mi = vp9_dec_setup_mi; + + vp9_loop_filter_init(cm); + + cm->error.setjmp = 0; + + vpx_get_worker_interface()->init(&pbi->lf_worker); + + return pbi; +} + +void vp9_decoder_remove(VP9Decoder *pbi) { + int i; + + if (!pbi) return; + + vpx_get_worker_interface()->end(&pbi->lf_worker); + vpx_free(pbi->lf_worker.data1); + + for (i = 0; i < pbi->num_tile_workers; ++i) { + VPxWorker *const worker = &pbi->tile_workers[i]; + vpx_get_worker_interface()->end(worker); + } + + vpx_free(pbi->tile_worker_data); + vpx_free(pbi->tile_workers); + + if (pbi->num_tile_workers > 0) { + vp9_loop_filter_dealloc(&pbi->lf_row_sync); + } + + vp9_remove_common(&pbi->common); + vpx_free(pbi); +} + +static int equal_dimensions(const YV12_BUFFER_CONFIG *a, + const YV12_BUFFER_CONFIG *b) { + return a->y_height == b->y_height && a->y_width == b->y_width && + a->uv_height == b->uv_height && a->uv_width == b->uv_width; +} + +vpx_codec_err_t vp9_copy_reference_dec(VP9Decoder *pbi, + VP9_REFFRAME ref_frame_flag, + YV12_BUFFER_CONFIG *sd) { + VP9_COMMON *cm = &pbi->common; + + /* TODO(jkoleszar): The decoder doesn't have any real knowledge of what the + * encoder is using the frame buffers for. This is just a stub to keep the + * vpxenc --test-decode functionality working, and will be replaced in a + * later commit that adds VP9-specific controls for this functionality. + */ + if (ref_frame_flag == VP9_LAST_FLAG) { + const YV12_BUFFER_CONFIG *const cfg = get_ref_frame(cm, 0); + if (cfg == NULL) { + vpx_internal_error(&cm->error, VPX_CODEC_ERROR, + "No 'last' reference frame"); + return VPX_CODEC_ERROR; + } + if (!equal_dimensions(cfg, sd)) + vpx_internal_error(&cm->error, VPX_CODEC_ERROR, + "Incorrect buffer dimensions"); + else + vpx_yv12_copy_frame(cfg, sd); + } else { + vpx_internal_error(&cm->error, VPX_CODEC_ERROR, "Invalid reference frame"); + } + + return cm->error.error_code; +} + +vpx_codec_err_t vp9_set_reference_dec(VP9_COMMON *cm, + VP9_REFFRAME ref_frame_flag, + YV12_BUFFER_CONFIG *sd) { + int idx; + YV12_BUFFER_CONFIG *ref_buf = NULL; + + // TODO(jkoleszar): The decoder doesn't have any real knowledge of what the + // encoder is using the frame buffers for. This is just a stub to keep the + // vpxenc --test-decode functionality working, and will be replaced in a + // later commit that adds VP9-specific controls for this functionality. + // (Yunqing) The set_reference control depends on the following setting in + // encoder. + // cpi->lst_fb_idx = 0; + // cpi->gld_fb_idx = 1; + // cpi->alt_fb_idx = 2; + if (ref_frame_flag == VP9_LAST_FLAG) { + idx = cm->ref_frame_map[0]; + } else if (ref_frame_flag == VP9_GOLD_FLAG) { + idx = cm->ref_frame_map[1]; + } else if (ref_frame_flag == VP9_ALT_FLAG) { + idx = cm->ref_frame_map[2]; + } else { + vpx_internal_error(&cm->error, VPX_CODEC_ERROR, "Invalid reference frame"); + return cm->error.error_code; + } + + if (idx < 0 || idx >= FRAME_BUFFERS) { + vpx_internal_error(&cm->error, VPX_CODEC_ERROR, + "Invalid reference frame map"); + return cm->error.error_code; + } + + // Get the destination reference buffer. + ref_buf = &cm->buffer_pool->frame_bufs[idx].buf; + + if (!equal_dimensions(ref_buf, sd)) { + vpx_internal_error(&cm->error, VPX_CODEC_ERROR, + "Incorrect buffer dimensions"); + } else { + // Overwrite the reference frame buffer. + vpx_yv12_copy_frame(sd, ref_buf); + } + + return cm->error.error_code; +} + +/* If any buffer updating is signaled it should be done here. */ +static void swap_frame_buffers(VP9Decoder *pbi) { + int ref_index = 0, mask; + VP9_COMMON *const cm = &pbi->common; + BufferPool *const pool = cm->buffer_pool; + RefCntBuffer *const frame_bufs = cm->buffer_pool->frame_bufs; + + for (mask = pbi->refresh_frame_flags; mask; mask >>= 1) { + const int old_idx = cm->ref_frame_map[ref_index]; + // Current thread releases the holding of reference frame. + decrease_ref_count(old_idx, frame_bufs, pool); + + // Release the reference frame in reference map. + if (mask & 1) { + decrease_ref_count(old_idx, frame_bufs, pool); + } + cm->ref_frame_map[ref_index] = cm->next_ref_frame_map[ref_index]; + ++ref_index; + } + + // Current thread releases the holding of reference frame. + for (; ref_index < REF_FRAMES && !cm->show_existing_frame; ++ref_index) { + const int old_idx = cm->ref_frame_map[ref_index]; + decrease_ref_count(old_idx, frame_bufs, pool); + cm->ref_frame_map[ref_index] = cm->next_ref_frame_map[ref_index]; + } + pbi->hold_ref_buf = 0; + cm->frame_to_show = get_frame_new_buffer(cm); + + --frame_bufs[cm->new_fb_idx].ref_count; + + // Invalidate these references until the next frame starts. + for (ref_index = 0; ref_index < 3; ref_index++) + cm->frame_refs[ref_index].idx = -1; +} + +int vp9_receive_compressed_data(VP9Decoder *pbi, size_t size, + const uint8_t **psource) { + VP9_COMMON *volatile const cm = &pbi->common; + BufferPool *volatile const pool = cm->buffer_pool; + RefCntBuffer *volatile const frame_bufs = cm->buffer_pool->frame_bufs; + const uint8_t *source = *psource; + int retcode = 0; + cm->error.error_code = VPX_CODEC_OK; + + if (size == 0) { + // This is used to signal that we are missing frames. + // We do not know if the missing frame(s) was supposed to update + // any of the reference buffers, but we act conservative and + // mark only the last buffer as corrupted. + // + // TODO(jkoleszar): Error concealment is undefined and non-normative + // at this point, but if it becomes so, [0] may not always be the correct + // thing to do here. + if (cm->frame_refs[0].idx > 0) { + assert(cm->frame_refs[0].buf != NULL); + cm->frame_refs[0].buf->corrupted = 1; + } + } + + pbi->ready_for_new_data = 0; + + // Check if the previous frame was a frame without any references to it. + if (cm->new_fb_idx >= 0 && frame_bufs[cm->new_fb_idx].ref_count == 0 && + !frame_bufs[cm->new_fb_idx].released) { + pool->release_fb_cb(pool->cb_priv, + &frame_bufs[cm->new_fb_idx].raw_frame_buffer); + frame_bufs[cm->new_fb_idx].released = 1; + } + + // Find a free frame buffer. Return error if can not find any. + cm->new_fb_idx = get_free_fb(cm); + if (cm->new_fb_idx == INVALID_IDX) { + vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR, + "Unable to find free frame buffer"); + return cm->error.error_code; + } + + // Assign a MV array to the frame buffer. + cm->cur_frame = &pool->frame_bufs[cm->new_fb_idx]; + + pbi->hold_ref_buf = 0; + pbi->cur_buf = &frame_bufs[cm->new_fb_idx]; + + if (setjmp(cm->error.jmp)) { + const VPxWorkerInterface *const winterface = vpx_get_worker_interface(); + int i; + + cm->error.setjmp = 0; + pbi->ready_for_new_data = 1; + + // Synchronize all threads immediately as a subsequent decode call may + // cause a resize invalidating some allocations. + winterface->sync(&pbi->lf_worker); + for (i = 0; i < pbi->num_tile_workers; ++i) { + winterface->sync(&pbi->tile_workers[i]); + } + + // Release all the reference buffers if worker thread is holding them. + if (pbi->hold_ref_buf == 1) { + int ref_index = 0, mask; + for (mask = pbi->refresh_frame_flags; mask; mask >>= 1) { + const int old_idx = cm->ref_frame_map[ref_index]; + // Current thread releases the holding of reference frame. + decrease_ref_count(old_idx, frame_bufs, pool); + + // Release the reference frame in reference map. + if (mask & 1) { + decrease_ref_count(old_idx, frame_bufs, pool); + } + ++ref_index; + } + + // Current thread releases the holding of reference frame. + for (; ref_index < REF_FRAMES && !cm->show_existing_frame; ++ref_index) { + const int old_idx = cm->ref_frame_map[ref_index]; + decrease_ref_count(old_idx, frame_bufs, pool); + } + pbi->hold_ref_buf = 0; + } + // Release current frame. + decrease_ref_count(cm->new_fb_idx, frame_bufs, pool); + + vpx_clear_system_state(); + return -1; + } + + cm->error.setjmp = 1; + vp9_decode_frame(pbi, source, source + size, psource); + + swap_frame_buffers(pbi); + + vpx_clear_system_state(); + + if (!cm->show_existing_frame) { + cm->last_show_frame = cm->show_frame; + cm->prev_frame = cm->cur_frame; + if (cm->seg.enabled) vp9_swap_current_and_last_seg_map(cm); + } + + // Update progress in frame parallel decode. + cm->last_width = cm->width; + cm->last_height = cm->height; + if (cm->show_frame) { + cm->current_video_frame++; + } + + cm->error.setjmp = 0; + return retcode; +} + +int vp9_get_raw_frame(VP9Decoder *pbi, YV12_BUFFER_CONFIG *sd, + vp9_ppflags_t *flags) { + VP9_COMMON *const cm = &pbi->common; + int ret = -1; +#if !CONFIG_VP9_POSTPROC + (void)*flags; +#endif + + if (pbi->ready_for_new_data == 1) return ret; + + pbi->ready_for_new_data = 1; + + /* no raw frame to show!!! */ + if (!cm->show_frame) return ret; + + pbi->ready_for_new_data = 1; + +#if CONFIG_VP9_POSTPROC + if (!cm->show_existing_frame) { + ret = vp9_post_proc_frame(cm, sd, flags); + } else { + *sd = *cm->frame_to_show; + ret = 0; + } +#else + *sd = *cm->frame_to_show; + ret = 0; +#endif /*!CONFIG_POSTPROC*/ + vpx_clear_system_state(); + return ret; +} + +vpx_codec_err_t vp9_parse_superframe_index(const uint8_t *data, size_t data_sz, + uint32_t sizes[8], int *count, + vpx_decrypt_cb decrypt_cb, + void *decrypt_state) { + // A chunk ending with a byte matching 0xc0 is an invalid chunk unless + // it is a super frame index. If the last byte of real video compression + // data is 0xc0 the encoder must add a 0 byte. If we have the marker but + // not the associated matching marker byte at the front of the index we have + // an invalid bitstream and need to return an error. + + uint8_t marker; + + assert(data_sz); + marker = read_marker(decrypt_cb, decrypt_state, data + data_sz - 1); + *count = 0; + + if ((marker & 0xe0) == 0xc0) { + const uint32_t frames = (marker & 0x7) + 1; + const uint32_t mag = ((marker >> 3) & 0x3) + 1; + const size_t index_sz = 2 + mag * frames; + + // This chunk is marked as having a superframe index but doesn't have + // enough data for it, thus it's an invalid superframe index. + if (data_sz < index_sz) return VPX_CODEC_CORRUPT_FRAME; + + { + const uint8_t marker2 = + read_marker(decrypt_cb, decrypt_state, data + data_sz - index_sz); + + // This chunk is marked as having a superframe index but doesn't have + // the matching marker byte at the front of the index therefore it's an + // invalid chunk. + if (marker != marker2) return VPX_CODEC_CORRUPT_FRAME; + } + + { + // Found a valid superframe index. + uint32_t i, j; + const uint8_t *x = &data[data_sz - index_sz + 1]; + + // Frames has a maximum of 8 and mag has a maximum of 4. + uint8_t clear_buffer[32]; + assert(sizeof(clear_buffer) >= frames * mag); + if (decrypt_cb) { + decrypt_cb(decrypt_state, x, clear_buffer, frames * mag); + x = clear_buffer; + } + + for (i = 0; i < frames; ++i) { + uint32_t this_sz = 0; + + for (j = 0; j < mag; ++j) this_sz |= ((uint32_t)(*x++)) << (j * 8); + sizes[i] = this_sz; + } + *count = frames; + } + } + return VPX_CODEC_OK; +} diff --git a/vp9/decoder/vp9_decoder.h b/vp9/decoder/vp9_decoder.h new file mode 100644 index 0000000..4b26c31 --- /dev/null +++ b/vp9/decoder/vp9_decoder.h @@ -0,0 +1,132 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP9_DECODER_VP9_DECODER_H_ +#define VP9_DECODER_VP9_DECODER_H_ + +#include "./vpx_config.h" + +#include "vpx/vpx_codec.h" +#include "vpx_dsp/bitreader.h" +#include "vpx_scale/yv12config.h" +#include "vpx_util/vpx_thread.h" + +#include "vp9/common/vp9_thread_common.h" +#include "vp9/common/vp9_onyxc_int.h" +#include "vp9/common/vp9_ppflags.h" + +#ifdef __cplusplus +extern "C" { +#endif + +typedef struct TileBuffer { + const uint8_t *data; + size_t size; + int col; // only used with multi-threaded decoding +} TileBuffer; + +typedef struct TileWorkerData { + const uint8_t *data_end; + int buf_start, buf_end; // pbi->tile_buffers to decode, inclusive + vpx_reader bit_reader; + FRAME_COUNTS counts; + DECLARE_ALIGNED(16, MACROBLOCKD, xd); + /* dqcoeff are shared by all the planes. So planes must be decoded serially */ + DECLARE_ALIGNED(16, tran_low_t, dqcoeff[32 * 32]); + struct vpx_internal_error_info error_info; +} TileWorkerData; + +typedef struct VP9Decoder { + DECLARE_ALIGNED(16, MACROBLOCKD, mb); + + DECLARE_ALIGNED(16, VP9_COMMON, common); + + int ready_for_new_data; + + int refresh_frame_flags; + + // TODO(hkuang): Combine this with cur_buf in macroblockd as they are + // the same. + RefCntBuffer *cur_buf; // Current decoding frame buffer. + + VPxWorker lf_worker; + VPxWorker *tile_workers; + TileWorkerData *tile_worker_data; + TileBuffer tile_buffers[64]; + int num_tile_workers; + int total_tiles; + + VP9LfSync lf_row_sync; + + vpx_decrypt_cb decrypt_cb; + void *decrypt_state; + + int max_threads; + int inv_tile_order; + int need_resync; // wait for key/intra-only frame. + int hold_ref_buf; // hold the reference buffer. +} VP9Decoder; + +int vp9_receive_compressed_data(struct VP9Decoder *pbi, size_t size, + const uint8_t **dest); + +int vp9_get_raw_frame(struct VP9Decoder *pbi, YV12_BUFFER_CONFIG *sd, + vp9_ppflags_t *flags); + +vpx_codec_err_t vp9_copy_reference_dec(struct VP9Decoder *pbi, + VP9_REFFRAME ref_frame_flag, + YV12_BUFFER_CONFIG *sd); + +vpx_codec_err_t vp9_set_reference_dec(VP9_COMMON *cm, + VP9_REFFRAME ref_frame_flag, + YV12_BUFFER_CONFIG *sd); + +static INLINE uint8_t read_marker(vpx_decrypt_cb decrypt_cb, + void *decrypt_state, const uint8_t *data) { + if (decrypt_cb) { + uint8_t marker; + decrypt_cb(decrypt_state, data, &marker, 1); + return marker; + } + return *data; +} + +// This function is exposed for use in tests, as well as the inlined function +// "read_marker". +vpx_codec_err_t vp9_parse_superframe_index(const uint8_t *data, size_t data_sz, + uint32_t sizes[8], int *count, + vpx_decrypt_cb decrypt_cb, + void *decrypt_state); + +struct VP9Decoder *vp9_decoder_create(BufferPool *const pool); + +void vp9_decoder_remove(struct VP9Decoder *pbi); + +static INLINE void decrease_ref_count(int idx, RefCntBuffer *const frame_bufs, + BufferPool *const pool) { + if (idx >= 0 && frame_bufs[idx].ref_count > 0) { + --frame_bufs[idx].ref_count; + // A worker may only get a free framebuffer index when calling get_free_fb. + // But the private buffer is not set up until finish decoding header. + // So any error happens during decoding header, the frame_bufs will not + // have valid priv buffer. + if (!frame_bufs[idx].released && frame_bufs[idx].ref_count == 0 && + frame_bufs[idx].raw_frame_buffer.priv) { + pool->release_fb_cb(pool->cb_priv, &frame_bufs[idx].raw_frame_buffer); + frame_bufs[idx].released = 1; + } + } +} + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP9_DECODER_VP9_DECODER_H_ diff --git a/vp9/decoder/vp9_detokenize.c b/vp9/decoder/vp9_detokenize.c new file mode 100644 index 0000000..4bd016d --- /dev/null +++ b/vp9/decoder/vp9_detokenize.c @@ -0,0 +1,292 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "vpx_mem/vpx_mem.h" +#include "vpx_ports/mem.h" + +#include "vp9/common/vp9_blockd.h" +#include "vp9/common/vp9_common.h" +#include "vp9/common/vp9_entropy.h" +#if CONFIG_COEFFICIENT_RANGE_CHECKING +#include "vp9/common/vp9_idct.h" +#endif + +#include "vp9/decoder/vp9_detokenize.h" + +#define EOB_CONTEXT_NODE 0 +#define ZERO_CONTEXT_NODE 1 +#define ONE_CONTEXT_NODE 2 + +#define INCREMENT_COUNT(token) \ + do { \ + if (counts) ++coef_counts[band][ctx][token]; \ + } while (0) + +static INLINE int read_bool(vpx_reader *r, int prob, BD_VALUE *value, + int *count, unsigned int *range) { + const unsigned int split = (*range * prob + (256 - prob)) >> CHAR_BIT; + const BD_VALUE bigsplit = (BD_VALUE)split << (BD_VALUE_SIZE - CHAR_BIT); + + if (*count < 0) { + r->value = *value; + r->count = *count; + vpx_reader_fill(r); + *value = r->value; + *count = r->count; + } + + if (*value >= bigsplit) { + *range = *range - split; + *value = *value - bigsplit; + { + const int shift = vpx_norm[*range]; + *range <<= shift; + *value <<= shift; + *count -= shift; + } + return 1; + } + *range = split; + { + const int shift = vpx_norm[*range]; + *range <<= shift; + *value <<= shift; + *count -= shift; + } + return 0; +} + +static INLINE int read_coeff(vpx_reader *r, const vpx_prob *probs, int n, + BD_VALUE *value, int *count, unsigned int *range) { + int i, val = 0; + for (i = 0; i < n; ++i) + val = (val << 1) | read_bool(r, probs[i], value, count, range); + return val; +} + +static int decode_coefs(const MACROBLOCKD *xd, PLANE_TYPE type, + tran_low_t *dqcoeff, TX_SIZE tx_size, const int16_t *dq, + int ctx, const int16_t *scan, const int16_t *nb, + vpx_reader *r) { + FRAME_COUNTS *counts = xd->counts; + const int max_eob = 16 << (tx_size << 1); + const FRAME_CONTEXT *const fc = xd->fc; + const int ref = is_inter_block(xd->mi[0]); + int band, c = 0; + const vpx_prob(*coef_probs)[COEFF_CONTEXTS][UNCONSTRAINED_NODES] = + fc->coef_probs[tx_size][type][ref]; + const vpx_prob *prob; + unsigned int(*coef_counts)[COEFF_CONTEXTS][UNCONSTRAINED_NODES + 1]; + unsigned int(*eob_branch_count)[COEFF_CONTEXTS]; + uint8_t token_cache[32 * 32]; + const uint8_t *band_translate = get_band_translate(tx_size); + const int dq_shift = (tx_size == TX_32X32); + int v; + int16_t dqv = dq[0]; + const uint8_t *const cat6_prob = +#if CONFIG_VP9_HIGHBITDEPTH + (xd->bd == VPX_BITS_12) + ? vp9_cat6_prob_high12 + : (xd->bd == VPX_BITS_10) ? vp9_cat6_prob_high12 + 2 : +#endif // CONFIG_VP9_HIGHBITDEPTH + vp9_cat6_prob; + const int cat6_bits = +#if CONFIG_VP9_HIGHBITDEPTH + (xd->bd == VPX_BITS_12) ? 18 + : (xd->bd == VPX_BITS_10) ? 16 : +#endif // CONFIG_VP9_HIGHBITDEPTH + 14; + // Keep value, range, and count as locals. The compiler produces better + // results with the locals than using r directly. + BD_VALUE value = r->value; + unsigned int range = r->range; + int count = r->count; + + if (counts) { + coef_counts = counts->coef[tx_size][type][ref]; + eob_branch_count = counts->eob_branch[tx_size][type][ref]; + } + + while (c < max_eob) { + int val = -1; + band = *band_translate++; + prob = coef_probs[band][ctx]; + if (counts) ++eob_branch_count[band][ctx]; + if (!read_bool(r, prob[EOB_CONTEXT_NODE], &value, &count, &range)) { + INCREMENT_COUNT(EOB_MODEL_TOKEN); + break; + } + + while (!read_bool(r, prob[ZERO_CONTEXT_NODE], &value, &count, &range)) { + INCREMENT_COUNT(ZERO_TOKEN); + dqv = dq[1]; + token_cache[scan[c]] = 0; + ++c; + if (c >= max_eob) { + r->value = value; + r->range = range; + r->count = count; + return c; // zero tokens at the end (no eob token) + } + ctx = get_coef_context(nb, token_cache, c); + band = *band_translate++; + prob = coef_probs[band][ctx]; + } + + if (read_bool(r, prob[ONE_CONTEXT_NODE], &value, &count, &range)) { + const vpx_prob *p = vp9_pareto8_full[prob[PIVOT_NODE] - 1]; + INCREMENT_COUNT(TWO_TOKEN); + if (read_bool(r, p[0], &value, &count, &range)) { + if (read_bool(r, p[3], &value, &count, &range)) { + token_cache[scan[c]] = 5; + if (read_bool(r, p[5], &value, &count, &range)) { + if (read_bool(r, p[7], &value, &count, &range)) { + val = CAT6_MIN_VAL + + read_coeff(r, cat6_prob, cat6_bits, &value, &count, &range); + } else { + val = CAT5_MIN_VAL + + read_coeff(r, vp9_cat5_prob, 5, &value, &count, &range); + } + } else if (read_bool(r, p[6], &value, &count, &range)) { + val = CAT4_MIN_VAL + + read_coeff(r, vp9_cat4_prob, 4, &value, &count, &range); + } else { + val = CAT3_MIN_VAL + + read_coeff(r, vp9_cat3_prob, 3, &value, &count, &range); + } + } else { + token_cache[scan[c]] = 4; + if (read_bool(r, p[4], &value, &count, &range)) { + val = CAT2_MIN_VAL + + read_coeff(r, vp9_cat2_prob, 2, &value, &count, &range); + } else { + val = CAT1_MIN_VAL + + read_coeff(r, vp9_cat1_prob, 1, &value, &count, &range); + } + } +#if CONFIG_VP9_HIGHBITDEPTH + // val may use 18-bits + v = (int)(((int64_t)val * dqv) >> dq_shift); +#else + v = (val * dqv) >> dq_shift; +#endif + } else { + if (read_bool(r, p[1], &value, &count, &range)) { + token_cache[scan[c]] = 3; + v = ((3 + read_bool(r, p[2], &value, &count, &range)) * dqv) >> + dq_shift; + } else { + token_cache[scan[c]] = 2; + v = (2 * dqv) >> dq_shift; + } + } + } else { + INCREMENT_COUNT(ONE_TOKEN); + token_cache[scan[c]] = 1; + v = dqv >> dq_shift; + } +#if CONFIG_COEFFICIENT_RANGE_CHECKING +#if CONFIG_VP9_HIGHBITDEPTH + dqcoeff[scan[c]] = highbd_check_range( + read_bool(r, 128, &value, &count, &range) ? -v : v, xd->bd); +#else + dqcoeff[scan[c]] = + check_range(read_bool(r, 128, &value, &count, &range) ? -v : v); +#endif // CONFIG_VP9_HIGHBITDEPTH +#else + if (read_bool(r, 128, &value, &count, &range)) { + dqcoeff[scan[c]] = -v; + } else { + dqcoeff[scan[c]] = v; + } +#endif // CONFIG_COEFFICIENT_RANGE_CHECKING + ++c; + ctx = get_coef_context(nb, token_cache, c); + dqv = dq[1]; + } + + r->value = value; + r->range = range; + r->count = count; + return c; +} + +static void get_ctx_shift(MACROBLOCKD *xd, int *ctx_shift_a, int *ctx_shift_l, + int x, int y, unsigned int tx_size_in_blocks) { + if (xd->max_blocks_wide) { + if (tx_size_in_blocks + x > xd->max_blocks_wide) + *ctx_shift_a = (tx_size_in_blocks - (xd->max_blocks_wide - x)) * 8; + } + if (xd->max_blocks_high) { + if (tx_size_in_blocks + y > xd->max_blocks_high) + *ctx_shift_l = (tx_size_in_blocks - (xd->max_blocks_high - y)) * 8; + } +} + +int vp9_decode_block_tokens(TileWorkerData *twd, int plane, + const scan_order *sc, int x, int y, TX_SIZE tx_size, + int seg_id) { + vpx_reader *r = &twd->bit_reader; + MACROBLOCKD *xd = &twd->xd; + struct macroblockd_plane *const pd = &xd->plane[plane]; + const int16_t *const dequant = pd->seg_dequant[seg_id]; + int eob; + ENTROPY_CONTEXT *a = pd->above_context + x; + ENTROPY_CONTEXT *l = pd->left_context + y; + int ctx; + int ctx_shift_a = 0; + int ctx_shift_l = 0; + + switch (tx_size) { + case TX_4X4: + ctx = a[0] != 0; + ctx += l[0] != 0; + eob = decode_coefs(xd, get_plane_type(plane), pd->dqcoeff, tx_size, + dequant, ctx, sc->scan, sc->neighbors, r); + a[0] = l[0] = (eob > 0); + break; + case TX_8X8: + get_ctx_shift(xd, &ctx_shift_a, &ctx_shift_l, x, y, 1 << TX_8X8); + ctx = !!*(const uint16_t *)a; + ctx += !!*(const uint16_t *)l; + eob = decode_coefs(xd, get_plane_type(plane), pd->dqcoeff, tx_size, + dequant, ctx, sc->scan, sc->neighbors, r); + *(uint16_t *)a = ((eob > 0) * 0x0101) >> ctx_shift_a; + *(uint16_t *)l = ((eob > 0) * 0x0101) >> ctx_shift_l; + break; + case TX_16X16: + get_ctx_shift(xd, &ctx_shift_a, &ctx_shift_l, x, y, 1 << TX_16X16); + ctx = !!*(const uint32_t *)a; + ctx += !!*(const uint32_t *)l; + eob = decode_coefs(xd, get_plane_type(plane), pd->dqcoeff, tx_size, + dequant, ctx, sc->scan, sc->neighbors, r); + *(uint32_t *)a = ((eob > 0) * 0x01010101) >> ctx_shift_a; + *(uint32_t *)l = ((eob > 0) * 0x01010101) >> ctx_shift_l; + break; + case TX_32X32: + get_ctx_shift(xd, &ctx_shift_a, &ctx_shift_l, x, y, 1 << TX_32X32); + // NOTE: casting to uint64_t here is safe because the default memory + // alignment is at least 8 bytes and the TX_32X32 is aligned on 8 byte + // boundaries. + ctx = !!*(const uint64_t *)a; + ctx += !!*(const uint64_t *)l; + eob = decode_coefs(xd, get_plane_type(plane), pd->dqcoeff, tx_size, + dequant, ctx, sc->scan, sc->neighbors, r); + *(uint64_t *)a = ((eob > 0) * 0x0101010101010101ULL) >> ctx_shift_a; + *(uint64_t *)l = ((eob > 0) * 0x0101010101010101ULL) >> ctx_shift_l; + break; + default: + assert(0 && "Invalid transform size."); + eob = 0; + break; + } + + return eob; +} diff --git a/vp9/decoder/vp9_detokenize.h b/vp9/decoder/vp9_detokenize.h new file mode 100644 index 0000000..7b0d876 --- /dev/null +++ b/vp9/decoder/vp9_detokenize.h @@ -0,0 +1,30 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP9_DECODER_VP9_DETOKENIZE_H_ +#define VP9_DECODER_VP9_DETOKENIZE_H_ + +#include "vpx_dsp/bitreader.h" +#include "vp9/decoder/vp9_decoder.h" +#include "vp9/common/vp9_scan.h" + +#ifdef __cplusplus +extern "C" { +#endif + +int vp9_decode_block_tokens(TileWorkerData *twd, int plane, + const scan_order *sc, int x, int y, TX_SIZE tx_size, + int seg_id); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP9_DECODER_VP9_DETOKENIZE_H_ diff --git a/vp9/decoder/vp9_dsubexp.c b/vp9/decoder/vp9_dsubexp.c new file mode 100644 index 0000000..126ba0b --- /dev/null +++ b/vp9/decoder/vp9_dsubexp.c @@ -0,0 +1,72 @@ +/* + Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include + +#include "vp9/common/vp9_entropy.h" + +#include "vp9/decoder/vp9_dsubexp.h" + +static int inv_recenter_nonneg(int v, int m) { + if (v > 2 * m) return v; + + return (v & 1) ? m - ((v + 1) >> 1) : m + (v >> 1); +} + +static int decode_uniform(vpx_reader *r) { + const int l = 8; + const int m = (1 << l) - 191; + const int v = vpx_read_literal(r, l - 1); + return v < m ? v : (v << 1) - m + vpx_read_bit(r); +} + +static int inv_remap_prob(int v, int m) { + static uint8_t inv_map_table[MAX_PROB] = { + 7, 20, 33, 46, 59, 72, 85, 98, 111, 124, 137, 150, 163, 176, 189, + 202, 215, 228, 241, 254, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, + 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, + 28, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, + 44, 45, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 60, + 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, + 77, 78, 79, 80, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, + 93, 94, 95, 96, 97, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, + 109, 110, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 125, + 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 138, 139, 140, 141, + 142, 143, 144, 145, 146, 147, 148, 149, 151, 152, 153, 154, 155, 156, 157, + 158, 159, 160, 161, 162, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, + 174, 175, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 190, + 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 203, 204, 205, 206, + 207, 208, 209, 210, 211, 212, 213, 214, 216, 217, 218, 219, 220, 221, 222, + 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, + 239, 240, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 253 + }; + assert(v < (int)(sizeof(inv_map_table) / sizeof(inv_map_table[0]))); + v = inv_map_table[v]; + m--; + if ((m << 1) <= MAX_PROB) { + return 1 + inv_recenter_nonneg(v, m); + } else { + return MAX_PROB - inv_recenter_nonneg(v, MAX_PROB - 1 - m); + } +} + +static int decode_term_subexp(vpx_reader *r) { + if (!vpx_read_bit(r)) return vpx_read_literal(r, 4); + if (!vpx_read_bit(r)) return vpx_read_literal(r, 4) + 16; + if (!vpx_read_bit(r)) return vpx_read_literal(r, 5) + 32; + return decode_uniform(r) + 64; +} + +void vp9_diff_update_prob(vpx_reader *r, vpx_prob *p) { + if (vpx_read(r, DIFF_UPDATE_PROB)) { + const int delp = decode_term_subexp(r); + *p = (vpx_prob)inv_remap_prob(delp, *p); + } +} diff --git a/vp9/decoder/vp9_dsubexp.h b/vp9/decoder/vp9_dsubexp.h new file mode 100644 index 0000000..5a8ec83 --- /dev/null +++ b/vp9/decoder/vp9_dsubexp.h @@ -0,0 +1,26 @@ +/* + * Copyright (c) 2013 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP9_DECODER_VP9_DSUBEXP_H_ +#define VP9_DECODER_VP9_DSUBEXP_H_ + +#include "vpx_dsp/bitreader.h" + +#ifdef __cplusplus +extern "C" { +#endif + +void vp9_diff_update_prob(vpx_reader *r, vpx_prob *p); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP9_DECODER_VP9_DSUBEXP_H_ diff --git a/vp9/encoder/arm/neon/vp9_dct_neon.c b/vp9/encoder/arm/neon/vp9_dct_neon.c new file mode 100644 index 0000000..513718e --- /dev/null +++ b/vp9/encoder/arm/neon/vp9_dct_neon.c @@ -0,0 +1,35 @@ +/* + * Copyright (c) 2014 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include + +#include "./vp9_rtcd.h" +#include "./vpx_config.h" +#include "./vpx_dsp_rtcd.h" + +#include "vp9/common/vp9_blockd.h" +#include "vpx_dsp/txfm_common.h" +#include "vpx_dsp/vpx_dsp_common.h" + +void vp9_fdct8x8_quant_neon(const int16_t *input, int stride, + tran_low_t *coeff_ptr, intptr_t n_coeffs, + int skip_block, const int16_t *round_ptr, + const int16_t *quant_ptr, tran_low_t *qcoeff_ptr, + tran_low_t *dqcoeff_ptr, const int16_t *dequant_ptr, + uint16_t *eob_ptr, const int16_t *scan_ptr, + const int16_t *iscan_ptr) { + tran_low_t temp_buffer[64]; + (void)coeff_ptr; + + vpx_fdct8x8_neon(input, temp_buffer, stride); + vp9_quantize_fp_neon(temp_buffer, n_coeffs, skip_block, round_ptr, quant_ptr, + qcoeff_ptr, dqcoeff_ptr, dequant_ptr, eob_ptr, scan_ptr, + iscan_ptr); +} diff --git a/vp9/encoder/arm/neon/vp9_denoiser_neon.c b/vp9/encoder/arm/neon/vp9_denoiser_neon.c new file mode 100644 index 0000000..4152e7b --- /dev/null +++ b/vp9/encoder/arm/neon/vp9_denoiser_neon.c @@ -0,0 +1,352 @@ +/* + * Copyright (c) 2017 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include + +#include "./vpx_config.h" +#include "./vp9_rtcd.h" + +#include "vpx/vpx_integer.h" +#include "vp9/common/vp9_reconinter.h" +#include "vp9/encoder/vp9_context_tree.h" +#include "vp9/encoder/vp9_denoiser.h" +#include "vpx_mem/vpx_mem.h" + +// Compute the sum of all pixel differences of this MB. +static INLINE int horizontal_add_s8x16(const int8x16_t v_sum_diff_total) { + const int16x8_t fe_dc_ba_98_76_54_32_10 = vpaddlq_s8(v_sum_diff_total); + const int32x4_t fedc_ba98_7654_3210 = vpaddlq_s16(fe_dc_ba_98_76_54_32_10); + const int64x2_t fedcba98_76543210 = vpaddlq_s32(fedc_ba98_7654_3210); + const int64x1_t x = vqadd_s64(vget_high_s64(fedcba98_76543210), + vget_low_s64(fedcba98_76543210)); + const int sum_diff = vget_lane_s32(vreinterpret_s32_s64(x), 0); + return sum_diff; +} + +// Denoise a 16x1 vector. +static INLINE int8x16_t denoiser_16x1_neon( + const uint8_t *sig, const uint8_t *mc_running_avg_y, uint8_t *running_avg_y, + const uint8x16_t v_level1_threshold, const uint8x16_t v_level2_threshold, + const uint8x16_t v_level3_threshold, const uint8x16_t v_level1_adjustment, + const uint8x16_t v_delta_level_1_and_2, + const uint8x16_t v_delta_level_2_and_3, int8x16_t v_sum_diff_total) { + const uint8x16_t v_sig = vld1q_u8(sig); + const uint8x16_t v_mc_running_avg_y = vld1q_u8(mc_running_avg_y); + + /* Calculate absolute difference and sign masks. */ + const uint8x16_t v_abs_diff = vabdq_u8(v_sig, v_mc_running_avg_y); + const uint8x16_t v_diff_pos_mask = vcltq_u8(v_sig, v_mc_running_avg_y); + const uint8x16_t v_diff_neg_mask = vcgtq_u8(v_sig, v_mc_running_avg_y); + + /* Figure out which level that put us in. */ + const uint8x16_t v_level1_mask = vcleq_u8(v_level1_threshold, v_abs_diff); + const uint8x16_t v_level2_mask = vcleq_u8(v_level2_threshold, v_abs_diff); + const uint8x16_t v_level3_mask = vcleq_u8(v_level3_threshold, v_abs_diff); + + /* Calculate absolute adjustments for level 1, 2 and 3. */ + const uint8x16_t v_level2_adjustment = + vandq_u8(v_level2_mask, v_delta_level_1_and_2); + const uint8x16_t v_level3_adjustment = + vandq_u8(v_level3_mask, v_delta_level_2_and_3); + const uint8x16_t v_level1and2_adjustment = + vaddq_u8(v_level1_adjustment, v_level2_adjustment); + const uint8x16_t v_level1and2and3_adjustment = + vaddq_u8(v_level1and2_adjustment, v_level3_adjustment); + + /* Figure adjustment absolute value by selecting between the absolute + * difference if in level0 or the value for level 1, 2 and 3. + */ + const uint8x16_t v_abs_adjustment = + vbslq_u8(v_level1_mask, v_level1and2and3_adjustment, v_abs_diff); + + /* Calculate positive and negative adjustments. Apply them to the signal + * and accumulate them. Adjustments are less than eight and the maximum + * sum of them (7 * 16) can fit in a signed char. + */ + const uint8x16_t v_pos_adjustment = + vandq_u8(v_diff_pos_mask, v_abs_adjustment); + const uint8x16_t v_neg_adjustment = + vandq_u8(v_diff_neg_mask, v_abs_adjustment); + + uint8x16_t v_running_avg_y = vqaddq_u8(v_sig, v_pos_adjustment); + v_running_avg_y = vqsubq_u8(v_running_avg_y, v_neg_adjustment); + + /* Store results. */ + vst1q_u8(running_avg_y, v_running_avg_y); + + /* Sum all the accumulators to have the sum of all pixel differences + * for this macroblock. + */ + { + const int8x16_t v_sum_diff = + vqsubq_s8(vreinterpretq_s8_u8(v_pos_adjustment), + vreinterpretq_s8_u8(v_neg_adjustment)); + v_sum_diff_total = vaddq_s8(v_sum_diff_total, v_sum_diff); + } + return v_sum_diff_total; +} + +static INLINE int8x16_t denoiser_adjust_16x1_neon( + const uint8_t *sig, const uint8_t *mc_running_avg_y, uint8_t *running_avg_y, + const uint8x16_t k_delta, int8x16_t v_sum_diff_total) { + uint8x16_t v_running_avg_y = vld1q_u8(running_avg_y); + const uint8x16_t v_sig = vld1q_u8(sig); + const uint8x16_t v_mc_running_avg_y = vld1q_u8(mc_running_avg_y); + + /* Calculate absolute difference and sign masks. */ + const uint8x16_t v_abs_diff = vabdq_u8(v_sig, v_mc_running_avg_y); + const uint8x16_t v_diff_pos_mask = vcltq_u8(v_sig, v_mc_running_avg_y); + const uint8x16_t v_diff_neg_mask = vcgtq_u8(v_sig, v_mc_running_avg_y); + // Clamp absolute difference to delta to get the adjustment. + const uint8x16_t v_abs_adjustment = vminq_u8(v_abs_diff, (k_delta)); + + const uint8x16_t v_pos_adjustment = + vandq_u8(v_diff_pos_mask, v_abs_adjustment); + const uint8x16_t v_neg_adjustment = + vandq_u8(v_diff_neg_mask, v_abs_adjustment); + + v_running_avg_y = vqsubq_u8(v_running_avg_y, v_pos_adjustment); + v_running_avg_y = vqaddq_u8(v_running_avg_y, v_neg_adjustment); + + /* Store results. */ + vst1q_u8(running_avg_y, v_running_avg_y); + + { + const int8x16_t v_sum_diff = + vqsubq_s8(vreinterpretq_s8_u8(v_neg_adjustment), + vreinterpretq_s8_u8(v_pos_adjustment)); + v_sum_diff_total = vaddq_s8(v_sum_diff_total, v_sum_diff); + } + return v_sum_diff_total; +} + +// Denoise 8x8 and 8x16 blocks. +static int vp9_denoiser_8xN_neon(const uint8_t *sig, int sig_stride, + const uint8_t *mc_running_avg_y, + int mc_avg_y_stride, uint8_t *running_avg_y, + int avg_y_stride, int increase_denoising, + BLOCK_SIZE bs, int motion_magnitude, + int width) { + int sum_diff_thresh, r, sum_diff = 0; + const int shift_inc = + (increase_denoising && motion_magnitude <= MOTION_MAGNITUDE_THRESHOLD) + ? 1 + : 0; + uint8_t sig_buffer[8][16], mc_running_buffer[8][16], running_buffer[8][16]; + + const uint8x16_t v_level1_adjustment = vmovq_n_u8( + (motion_magnitude <= MOTION_MAGNITUDE_THRESHOLD) ? 4 + shift_inc : 3); + const uint8x16_t v_delta_level_1_and_2 = vdupq_n_u8(1); + const uint8x16_t v_delta_level_2_and_3 = vdupq_n_u8(2); + const uint8x16_t v_level1_threshold = vdupq_n_u8(4 + shift_inc); + const uint8x16_t v_level2_threshold = vdupq_n_u8(8); + const uint8x16_t v_level3_threshold = vdupq_n_u8(16); + + const int b_height = (4 << b_height_log2_lookup[bs]) >> 1; + + int8x16_t v_sum_diff_total = vdupq_n_s8(0); + + for (r = 0; r < b_height; ++r) { + memcpy(sig_buffer[r], sig, width); + memcpy(sig_buffer[r] + width, sig + sig_stride, width); + memcpy(mc_running_buffer[r], mc_running_avg_y, width); + memcpy(mc_running_buffer[r] + width, mc_running_avg_y + mc_avg_y_stride, + width); + memcpy(running_buffer[r], running_avg_y, width); + memcpy(running_buffer[r] + width, running_avg_y + avg_y_stride, width); + v_sum_diff_total = denoiser_16x1_neon( + sig_buffer[r], mc_running_buffer[r], running_buffer[r], + v_level1_threshold, v_level2_threshold, v_level3_threshold, + v_level1_adjustment, v_delta_level_1_and_2, v_delta_level_2_and_3, + v_sum_diff_total); + { + const uint8x16_t v_running_buffer = vld1q_u8(running_buffer[r]); + const uint8x8_t v_running_buffer_high = vget_high_u8(v_running_buffer); + const uint8x8_t v_running_buffer_low = vget_low_u8(v_running_buffer); + vst1_u8(running_avg_y, v_running_buffer_low); + vst1_u8(running_avg_y + avg_y_stride, v_running_buffer_high); + } + // Update pointers for next iteration. + sig += (sig_stride << 1); + mc_running_avg_y += (mc_avg_y_stride << 1); + running_avg_y += (avg_y_stride << 1); + } + + { + sum_diff = horizontal_add_s8x16(v_sum_diff_total); + sum_diff_thresh = total_adj_strong_thresh(bs, increase_denoising); + if (abs(sum_diff) > sum_diff_thresh) { + // Before returning to copy the block (i.e., apply no denoising), + // check if we can still apply some (weaker) temporal filtering to + // this block, that would otherwise not be denoised at all. Simplest + // is to apply an additional adjustment to running_avg_y to bring it + // closer to sig. The adjustment is capped by a maximum delta, and + // chosen such that in most cases the resulting sum_diff will be + // within the acceptable range given by sum_diff_thresh. + + // The delta is set by the excess of absolute pixel diff over the + // threshold. + const int delta = + ((abs(sum_diff) - sum_diff_thresh) >> num_pels_log2_lookup[bs]) + 1; + // Only apply the adjustment for max delta up to 3. + if (delta < 4) { + const uint8x16_t k_delta = vmovq_n_u8(delta); + running_avg_y -= avg_y_stride * (b_height << 1); + for (r = 0; r < b_height; ++r) { + v_sum_diff_total = denoiser_adjust_16x1_neon( + sig_buffer[r], mc_running_buffer[r], running_buffer[r], k_delta, + v_sum_diff_total); + { + const uint8x16_t v_running_buffer = vld1q_u8(running_buffer[r]); + const uint8x8_t v_running_buffer_high = + vget_high_u8(v_running_buffer); + const uint8x8_t v_running_buffer_low = + vget_low_u8(v_running_buffer); + vst1_u8(running_avg_y, v_running_buffer_low); + vst1_u8(running_avg_y + avg_y_stride, v_running_buffer_high); + } + // Update pointers for next iteration. + running_avg_y += (avg_y_stride << 1); + } + sum_diff = horizontal_add_s8x16(v_sum_diff_total); + if (abs(sum_diff) > sum_diff_thresh) { + return COPY_BLOCK; + } + } else { + return COPY_BLOCK; + } + } + } + + return FILTER_BLOCK; +} + +// Denoise 16x16, 16x32, 32x16, 32x32, 32x64, 64x32 and 64x64 blocks. +static int vp9_denoiser_NxM_neon(const uint8_t *sig, int sig_stride, + const uint8_t *mc_running_avg_y, + int mc_avg_y_stride, uint8_t *running_avg_y, + int avg_y_stride, int increase_denoising, + BLOCK_SIZE bs, int motion_magnitude) { + const int shift_inc = + (increase_denoising && motion_magnitude <= MOTION_MAGNITUDE_THRESHOLD) + ? 1 + : 0; + const uint8x16_t v_level1_adjustment = vmovq_n_u8( + (motion_magnitude <= MOTION_MAGNITUDE_THRESHOLD) ? 4 + shift_inc : 3); + const uint8x16_t v_delta_level_1_and_2 = vdupq_n_u8(1); + const uint8x16_t v_delta_level_2_and_3 = vdupq_n_u8(2); + const uint8x16_t v_level1_threshold = vmovq_n_u8(4 + shift_inc); + const uint8x16_t v_level2_threshold = vdupq_n_u8(8); + const uint8x16_t v_level3_threshold = vdupq_n_u8(16); + + const int b_width = (4 << b_width_log2_lookup[bs]); + const int b_height = (4 << b_height_log2_lookup[bs]); + const int b_width_shift4 = b_width >> 4; + + int8x16_t v_sum_diff_total[4][4]; + int r, c, sum_diff = 0; + + for (r = 0; r < 4; ++r) { + for (c = 0; c < b_width_shift4; ++c) { + v_sum_diff_total[c][r] = vdupq_n_s8(0); + } + } + + for (r = 0; r < b_height; ++r) { + for (c = 0; c < b_width_shift4; ++c) { + v_sum_diff_total[c][r >> 4] = denoiser_16x1_neon( + sig, mc_running_avg_y, running_avg_y, v_level1_threshold, + v_level2_threshold, v_level3_threshold, v_level1_adjustment, + v_delta_level_1_and_2, v_delta_level_2_and_3, + v_sum_diff_total[c][r >> 4]); + + // Update pointers for next iteration. + sig += 16; + mc_running_avg_y += 16; + running_avg_y += 16; + } + + if ((r & 0xf) == 0xf || (bs == BLOCK_16X8 && r == 7)) { + for (c = 0; c < b_width_shift4; ++c) { + sum_diff += horizontal_add_s8x16(v_sum_diff_total[c][r >> 4]); + } + } + + // Update pointers for next iteration. + sig = sig - b_width + sig_stride; + mc_running_avg_y = mc_running_avg_y - b_width + mc_avg_y_stride; + running_avg_y = running_avg_y - b_width + avg_y_stride; + } + + { + const int sum_diff_thresh = total_adj_strong_thresh(bs, increase_denoising); + if (abs(sum_diff) > sum_diff_thresh) { + const int delta = + ((abs(sum_diff) - sum_diff_thresh) >> num_pels_log2_lookup[bs]) + 1; + // Only apply the adjustment for max delta up to 3. + if (delta < 4) { + const uint8x16_t k_delta = vdupq_n_u8(delta); + sig -= sig_stride * b_height; + mc_running_avg_y -= mc_avg_y_stride * b_height; + running_avg_y -= avg_y_stride * b_height; + sum_diff = 0; + + for (r = 0; r < b_height; ++r) { + for (c = 0; c < b_width_shift4; ++c) { + v_sum_diff_total[c][r >> 4] = + denoiser_adjust_16x1_neon(sig, mc_running_avg_y, running_avg_y, + k_delta, v_sum_diff_total[c][r >> 4]); + + // Update pointers for next iteration. + sig += 16; + mc_running_avg_y += 16; + running_avg_y += 16; + } + if ((r & 0xf) == 0xf || (bs == BLOCK_16X8 && r == 7)) { + for (c = 0; c < b_width_shift4; ++c) { + sum_diff += horizontal_add_s8x16(v_sum_diff_total[c][r >> 4]); + } + } + + sig = sig - b_width + sig_stride; + mc_running_avg_y = mc_running_avg_y - b_width + mc_avg_y_stride; + running_avg_y = running_avg_y - b_width + avg_y_stride; + } + + if (abs(sum_diff) > sum_diff_thresh) { + return COPY_BLOCK; + } + } else { + return COPY_BLOCK; + } + } + } + return FILTER_BLOCK; +} + +int vp9_denoiser_filter_neon(const uint8_t *sig, int sig_stride, + const uint8_t *mc_avg, int mc_avg_stride, + uint8_t *avg, int avg_stride, + int increase_denoising, BLOCK_SIZE bs, + int motion_magnitude) { + // Rank by frequency of the block type to have an early termination. + if (bs == BLOCK_16X16 || bs == BLOCK_32X32 || bs == BLOCK_64X64 || + bs == BLOCK_16X32 || bs == BLOCK_16X8 || bs == BLOCK_32X16 || + bs == BLOCK_32X64 || bs == BLOCK_64X32) { + return vp9_denoiser_NxM_neon(sig, sig_stride, mc_avg, mc_avg_stride, avg, + avg_stride, increase_denoising, bs, + motion_magnitude); + } else if (bs == BLOCK_8X8 || bs == BLOCK_8X16) { + return vp9_denoiser_8xN_neon(sig, sig_stride, mc_avg, mc_avg_stride, avg, + avg_stride, increase_denoising, bs, + motion_magnitude, 8); + } + return COPY_BLOCK; +} diff --git a/vp9/encoder/arm/neon/vp9_error_neon.c b/vp9/encoder/arm/neon/vp9_error_neon.c new file mode 100644 index 0000000..1c75031 --- /dev/null +++ b/vp9/encoder/arm/neon/vp9_error_neon.c @@ -0,0 +1,41 @@ +/* + * Copyright (c) 2015 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include + +#include "./vp9_rtcd.h" + +int64_t vp9_block_error_fp_neon(const int16_t *coeff, const int16_t *dqcoeff, + int block_size) { + int64x2_t error = vdupq_n_s64(0); + + assert(block_size >= 8); + assert((block_size % 8) == 0); + + do { + const int16x8_t c = vld1q_s16(coeff); + const int16x8_t d = vld1q_s16(dqcoeff); + const int16x8_t diff = vsubq_s16(c, d); + const int16x4_t diff_lo = vget_low_s16(diff); + const int16x4_t diff_hi = vget_high_s16(diff); + // diff is 15-bits, the squares 30, so we can store 2 in 31-bits before + // accumulating them in 64-bits. + const int32x4_t err0 = vmull_s16(diff_lo, diff_lo); + const int32x4_t err1 = vmlal_s16(err0, diff_hi, diff_hi); + const int64x2_t err2 = vaddl_s32(vget_low_s32(err1), vget_high_s32(err1)); + error = vaddq_s64(error, err2); + coeff += 8; + dqcoeff += 8; + block_size -= 8; + } while (block_size != 0); + + return vgetq_lane_s64(error, 0) + vgetq_lane_s64(error, 1); +} diff --git a/vp9/encoder/arm/neon/vp9_frame_scale_neon.c b/vp9/encoder/arm/neon/vp9_frame_scale_neon.c new file mode 100644 index 0000000..e46f789 --- /dev/null +++ b/vp9/encoder/arm/neon/vp9_frame_scale_neon.c @@ -0,0 +1,843 @@ +/* + * Copyright (c) 2017 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include + +#include "./vp9_rtcd.h" +#include "./vpx_dsp_rtcd.h" +#include "./vpx_scale_rtcd.h" +#include "vp9/common/vp9_blockd.h" +#include "vpx_dsp/arm/transpose_neon.h" +#include "vpx_dsp/arm/vpx_convolve8_neon.h" +#include "vpx_dsp/vpx_filter.h" +#include "vpx_scale/yv12config.h" + +// Note: The scaling functions could write extra rows and columns in dst, which +// exceed the right and bottom boundaries of the destination frame. We rely on +// the following frame extension function to fix these rows and columns. + +static INLINE void scale_plane_2_to_1_phase_0(const uint8_t *src, + const int src_stride, + uint8_t *dst, + const int dst_stride, const int w, + const int h) { + const int max_width = (w + 15) & ~15; + int y = h; + + assert(w && h); + + do { + int x = max_width; + do { + const uint8x16x2_t s = vld2q_u8(src); + vst1q_u8(dst, s.val[0]); + src += 32; + dst += 16; + x -= 16; + } while (x); + src += 2 * (src_stride - max_width); + dst += dst_stride - max_width; + } while (--y); +} + +static INLINE void scale_plane_4_to_1_phase_0(const uint8_t *src, + const int src_stride, + uint8_t *dst, + const int dst_stride, const int w, + const int h) { + const int max_width = (w + 15) & ~15; + int y = h; + + assert(w && h); + + do { + int x = max_width; + do { + const uint8x16x4_t s = vld4q_u8(src); + vst1q_u8(dst, s.val[0]); + src += 64; + dst += 16; + x -= 16; + } while (x); + src += 4 * (src_stride - max_width); + dst += dst_stride - max_width; + } while (--y); +} + +static INLINE void scale_plane_bilinear_kernel( + const uint8x16_t in0, const uint8x16_t in1, const uint8x16_t in2, + const uint8x16_t in3, const uint8x8_t coef0, const uint8x8_t coef1, + uint8_t *const dst) { + const uint16x8_t h0 = vmull_u8(vget_low_u8(in0), coef0); + const uint16x8_t h1 = vmull_u8(vget_high_u8(in0), coef0); + const uint16x8_t h2 = vmull_u8(vget_low_u8(in2), coef0); + const uint16x8_t h3 = vmull_u8(vget_high_u8(in2), coef0); + const uint16x8_t h4 = vmlal_u8(h0, vget_low_u8(in1), coef1); + const uint16x8_t h5 = vmlal_u8(h1, vget_high_u8(in1), coef1); + const uint16x8_t h6 = vmlal_u8(h2, vget_low_u8(in3), coef1); + const uint16x8_t h7 = vmlal_u8(h3, vget_high_u8(in3), coef1); + + const uint8x8_t hor0 = vrshrn_n_u16(h4, 7); // temp: 00 01 02 03 04 05 06 07 + const uint8x8_t hor1 = vrshrn_n_u16(h5, 7); // temp: 08 09 0A 0B 0C 0D 0E 0F + const uint8x8_t hor2 = vrshrn_n_u16(h6, 7); // temp: 10 11 12 13 14 15 16 17 + const uint8x8_t hor3 = vrshrn_n_u16(h7, 7); // temp: 18 19 1A 1B 1C 1D 1E 1F + const uint16x8_t v0 = vmull_u8(hor0, coef0); + const uint16x8_t v1 = vmull_u8(hor1, coef0); + const uint16x8_t v2 = vmlal_u8(v0, hor2, coef1); + const uint16x8_t v3 = vmlal_u8(v1, hor3, coef1); + // dst: 0 1 2 3 4 5 6 7 8 9 A B C D E F + const uint8x16_t d = vcombine_u8(vrshrn_n_u16(v2, 7), vrshrn_n_u16(v3, 7)); + vst1q_u8(dst, d); +} + +static INLINE void scale_plane_2_to_1_bilinear( + const uint8_t *const src, const int src_stride, uint8_t *dst, + const int dst_stride, const int w, const int h, const int16_t c0, + const int16_t c1) { + const int max_width = (w + 15) & ~15; + const uint8_t *src0 = src; + const uint8_t *src1 = src + src_stride; + const uint8x8_t coef0 = vdup_n_u8(c0); + const uint8x8_t coef1 = vdup_n_u8(c1); + int y = h; + + assert(w && h); + + do { + int x = max_width; + do { + // 000 002 004 006 008 00A 00C 00E 010 012 014 016 018 01A 01C 01E + // 001 003 005 007 009 00B 00D 00F 011 013 015 017 019 01B 01D 01F + const uint8x16x2_t s0 = vld2q_u8(src0); + // 100 102 104 106 108 10A 10C 10E 110 112 114 116 118 11A 11C 11E + // 101 103 105 107 109 10B 10D 10F 111 113 115 117 119 11B 11D 11F + const uint8x16x2_t s1 = vld2q_u8(src1); + scale_plane_bilinear_kernel(s0.val[0], s0.val[1], s1.val[0], s1.val[1], + coef0, coef1, dst); + src0 += 32; + src1 += 32; + dst += 16; + x -= 16; + } while (x); + src0 += 2 * (src_stride - max_width); + src1 += 2 * (src_stride - max_width); + dst += dst_stride - max_width; + } while (--y); +} + +static INLINE void scale_plane_4_to_1_bilinear( + const uint8_t *const src, const int src_stride, uint8_t *dst, + const int dst_stride, const int w, const int h, const int16_t c0, + const int16_t c1) { + const int max_width = (w + 15) & ~15; + const uint8_t *src0 = src; + const uint8_t *src1 = src + src_stride; + const uint8x8_t coef0 = vdup_n_u8(c0); + const uint8x8_t coef1 = vdup_n_u8(c1); + int y = h; + + assert(w && h); + + do { + int x = max_width; + do { + // (*) -- useless + // 000 004 008 00C 010 014 018 01C 020 024 028 02C 030 034 038 03C + // 001 005 009 00D 011 015 019 01D 021 025 029 02D 031 035 039 03D + // 002 006 00A 00E 012 016 01A 01E 022 026 02A 02E 032 036 03A 03E (*) + // 003 007 00B 00F 013 017 01B 01F 023 027 02B 02F 033 037 03B 03F (*) + const uint8x16x4_t s0 = vld4q_u8(src0); + // 100 104 108 10C 110 114 118 11C 120 124 128 12C 130 134 138 13C + // 101 105 109 10D 111 115 119 11D 121 125 129 12D 131 135 139 13D + // 102 106 10A 10E 112 116 11A 11E 122 126 12A 12E 132 136 13A 13E (*) + // 103 107 10B 10F 113 117 11B 11F 123 127 12B 12F 133 137 13B 13F (*) + const uint8x16x4_t s1 = vld4q_u8(src1); + scale_plane_bilinear_kernel(s0.val[0], s0.val[1], s1.val[0], s1.val[1], + coef0, coef1, dst); + src0 += 64; + src1 += 64; + dst += 16; + x -= 16; + } while (x); + src0 += 4 * (src_stride - max_width); + src1 += 4 * (src_stride - max_width); + dst += dst_stride - max_width; + } while (--y); +} + +static INLINE uint8x8_t scale_filter_bilinear(const uint8x8_t *const s, + const uint8x8_t *const coef) { + const uint16x8_t h0 = vmull_u8(s[0], coef[0]); + const uint16x8_t h1 = vmlal_u8(h0, s[1], coef[1]); + + return vrshrn_n_u16(h1, 7); +} + +static void scale_plane_2_to_1_general(const uint8_t *src, const int src_stride, + uint8_t *dst, const int dst_stride, + const int w, const int h, + const int16_t *const coef, + uint8_t *const temp_buffer) { + const int width_hor = (w + 3) & ~3; + const int width_ver = (w + 7) & ~7; + const int height_hor = (2 * h + SUBPEL_TAPS - 2 + 7) & ~7; + const int height_ver = (h + 3) & ~3; + const int16x8_t filters = vld1q_s16(coef); + int x, y = height_hor; + uint8_t *t = temp_buffer; + uint8x8_t s[14], d[4]; + + assert(w && h); + + src -= (SUBPEL_TAPS / 2 - 1) * src_stride + SUBPEL_TAPS / 2 + 1; + + // horizontal 4x8 + // Note: processing 4x8 is about 20% faster than processing row by row using + // vld4_u8(). + do { + load_u8_8x8(src + 2, src_stride, &s[0], &s[1], &s[2], &s[3], &s[4], &s[5], + &s[6], &s[7]); + transpose_u8_8x8(&s[0], &s[1], &s[2], &s[3], &s[4], &s[5], &s[6], &s[7]); + x = width_hor; + + do { + src += 8; + load_u8_8x8(src, src_stride, &s[6], &s[7], &s[8], &s[9], &s[10], &s[11], + &s[12], &s[13]); + transpose_u8_8x8(&s[6], &s[7], &s[8], &s[9], &s[10], &s[11], &s[12], + &s[13]); + + d[0] = scale_filter_8(&s[0], filters); // 00 10 20 30 40 50 60 70 + d[1] = scale_filter_8(&s[2], filters); // 01 11 21 31 41 51 61 71 + d[2] = scale_filter_8(&s[4], filters); // 02 12 22 32 42 52 62 72 + d[3] = scale_filter_8(&s[6], filters); // 03 13 23 33 43 53 63 73 + // 00 01 02 03 40 41 42 43 + // 10 11 12 13 50 51 52 53 + // 20 21 22 23 60 61 62 63 + // 30 31 32 33 70 71 72 73 + transpose_u8_8x4(&d[0], &d[1], &d[2], &d[3]); + vst1_lane_u32((uint32_t *)(t + 0 * width_hor), vreinterpret_u32_u8(d[0]), + 0); + vst1_lane_u32((uint32_t *)(t + 1 * width_hor), vreinterpret_u32_u8(d[1]), + 0); + vst1_lane_u32((uint32_t *)(t + 2 * width_hor), vreinterpret_u32_u8(d[2]), + 0); + vst1_lane_u32((uint32_t *)(t + 3 * width_hor), vreinterpret_u32_u8(d[3]), + 0); + vst1_lane_u32((uint32_t *)(t + 4 * width_hor), vreinterpret_u32_u8(d[0]), + 1); + vst1_lane_u32((uint32_t *)(t + 5 * width_hor), vreinterpret_u32_u8(d[1]), + 1); + vst1_lane_u32((uint32_t *)(t + 6 * width_hor), vreinterpret_u32_u8(d[2]), + 1); + vst1_lane_u32((uint32_t *)(t + 7 * width_hor), vreinterpret_u32_u8(d[3]), + 1); + + s[0] = s[8]; + s[1] = s[9]; + s[2] = s[10]; + s[3] = s[11]; + s[4] = s[12]; + s[5] = s[13]; + + t += 4; + x -= 4; + } while (x); + src += 8 * src_stride - 2 * width_hor; + t += 7 * width_hor; + y -= 8; + } while (y); + + // vertical 8x4 + x = width_ver; + t = temp_buffer; + do { + load_u8_8x8(t, width_hor, &s[0], &s[1], &s[2], &s[3], &s[4], &s[5], &s[6], + &s[7]); + t += 6 * width_hor; + y = height_ver; + + do { + load_u8_8x8(t, width_hor, &s[6], &s[7], &s[8], &s[9], &s[10], &s[11], + &s[12], &s[13]); + t += 8 * width_hor; + + d[0] = scale_filter_8(&s[0], filters); // 00 01 02 03 04 05 06 07 + d[1] = scale_filter_8(&s[2], filters); // 10 11 12 13 14 15 16 17 + d[2] = scale_filter_8(&s[4], filters); // 20 21 22 23 24 25 26 27 + d[3] = scale_filter_8(&s[6], filters); // 30 31 32 33 34 35 36 37 + vst1_u8(dst + 0 * dst_stride, d[0]); + vst1_u8(dst + 1 * dst_stride, d[1]); + vst1_u8(dst + 2 * dst_stride, d[2]); + vst1_u8(dst + 3 * dst_stride, d[3]); + + s[0] = s[8]; + s[1] = s[9]; + s[2] = s[10]; + s[3] = s[11]; + s[4] = s[12]; + s[5] = s[13]; + + dst += 4 * dst_stride; + y -= 4; + } while (y); + t -= width_hor * (2 * height_ver + 6); + t += 8; + dst -= height_ver * dst_stride; + dst += 8; + x -= 8; + } while (x); +} + +static void scale_plane_4_to_1_general(const uint8_t *src, const int src_stride, + uint8_t *dst, const int dst_stride, + const int w, const int h, + const int16_t *const coef, + uint8_t *const temp_buffer) { + const int width_hor = (w + 1) & ~1; + const int width_ver = (w + 7) & ~7; + const int height_hor = (4 * h + SUBPEL_TAPS - 2 + 7) & ~7; + const int height_ver = (h + 1) & ~1; + const int16x8_t filters = vld1q_s16(coef); + int x, y = height_hor; + uint8_t *t = temp_buffer; + uint8x8_t s[12], d[2]; + + assert(w && h); + + src -= (SUBPEL_TAPS / 2 - 1) * src_stride + SUBPEL_TAPS / 2 + 3; + + // horizontal 2x8 + // Note: processing 2x8 is about 20% faster than processing row by row using + // vld4_u8(). + do { + load_u8_8x8(src + 4, src_stride, &s[0], &s[1], &s[2], &s[3], &s[4], &s[5], + &s[6], &s[7]); + transpose_u8_4x8(&s[0], &s[1], &s[2], &s[3], s[4], s[5], s[6], s[7]); + x = width_hor; + + do { + uint8x8x2_t dd; + src += 8; + load_u8_8x8(src, src_stride, &s[4], &s[5], &s[6], &s[7], &s[8], &s[9], + &s[10], &s[11]); + transpose_u8_8x8(&s[4], &s[5], &s[6], &s[7], &s[8], &s[9], &s[10], + &s[11]); + + d[0] = scale_filter_8(&s[0], filters); // 00 10 20 30 40 50 60 70 + d[1] = scale_filter_8(&s[4], filters); // 01 11 21 31 41 51 61 71 + // dd.val[0]: 00 01 20 21 40 41 60 61 + // dd.val[1]: 10 11 30 31 50 51 70 71 + dd = vtrn_u8(d[0], d[1]); + vst1_lane_u16((uint16_t *)(t + 0 * width_hor), + vreinterpret_u16_u8(dd.val[0]), 0); + vst1_lane_u16((uint16_t *)(t + 1 * width_hor), + vreinterpret_u16_u8(dd.val[1]), 0); + vst1_lane_u16((uint16_t *)(t + 2 * width_hor), + vreinterpret_u16_u8(dd.val[0]), 1); + vst1_lane_u16((uint16_t *)(t + 3 * width_hor), + vreinterpret_u16_u8(dd.val[1]), 1); + vst1_lane_u16((uint16_t *)(t + 4 * width_hor), + vreinterpret_u16_u8(dd.val[0]), 2); + vst1_lane_u16((uint16_t *)(t + 5 * width_hor), + vreinterpret_u16_u8(dd.val[1]), 2); + vst1_lane_u16((uint16_t *)(t + 6 * width_hor), + vreinterpret_u16_u8(dd.val[0]), 3); + vst1_lane_u16((uint16_t *)(t + 7 * width_hor), + vreinterpret_u16_u8(dd.val[1]), 3); + + s[0] = s[8]; + s[1] = s[9]; + s[2] = s[10]; + s[3] = s[11]; + + t += 2; + x -= 2; + } while (x); + src += 8 * src_stride - 4 * width_hor; + t += 7 * width_hor; + y -= 8; + } while (y); + + // vertical 8x2 + x = width_ver; + t = temp_buffer; + do { + load_u8_8x4(t, width_hor, &s[0], &s[1], &s[2], &s[3]); + t += 4 * width_hor; + y = height_ver; + + do { + load_u8_8x8(t, width_hor, &s[4], &s[5], &s[6], &s[7], &s[8], &s[9], + &s[10], &s[11]); + t += 8 * width_hor; + + d[0] = scale_filter_8(&s[0], filters); // 00 01 02 03 04 05 06 07 + d[1] = scale_filter_8(&s[4], filters); // 10 11 12 13 14 15 16 17 + vst1_u8(dst + 0 * dst_stride, d[0]); + vst1_u8(dst + 1 * dst_stride, d[1]); + + s[0] = s[8]; + s[1] = s[9]; + s[2] = s[10]; + s[3] = s[11]; + + dst += 2 * dst_stride; + y -= 2; + } while (y); + t -= width_hor * (4 * height_ver + 4); + t += 8; + dst -= height_ver * dst_stride; + dst += 8; + x -= 8; + } while (x); +} + +// Notes for 4 to 3 scaling: +// +// 1. 6 rows are calculated in each horizontal inner loop, so width_hor must be +// multiple of 6, and no less than w. +// +// 2. 8 rows are calculated in each vertical inner loop, so width_ver must be +// multiple of 8, and no less than w. +// +// 3. 8 columns are calculated in each horizontal inner loop for further +// vertical scaling, so height_hor must be multiple of 8, and no less than +// 4 * h / 3. +// +// 4. 6 columns are calculated in each vertical inner loop, so height_ver must +// be multiple of 6, and no less than h. +// +// 5. The physical location of the last row of the 4 to 3 scaled frame is +// decided by phase_scaler, and are always less than 1 pixel below the last row +// of the original image. + +static void scale_plane_4_to_3_bilinear(const uint8_t *src, + const int src_stride, uint8_t *dst, + const int dst_stride, const int w, + const int h, const int phase_scaler, + uint8_t *const temp_buffer) { + static const int step_q4 = 16 * 4 / 3; + const int width_hor = (w + 5) - ((w + 5) % 6); + const int stride_hor = width_hor + 2; // store 2 extra pixels + const int width_ver = (w + 7) & ~7; + // We only need 1 extra row below because there are only 2 bilinear + // coefficients. + const int height_hor = (4 * h / 3 + 1 + 7) & ~7; + const int height_ver = (h + 5) - ((h + 5) % 6); + int x, y = height_hor; + uint8_t *t = temp_buffer; + uint8x8_t s[9], d[8], c[6]; + + assert(w && h); + + c[0] = vdup_n_u8((uint8_t)vp9_filter_kernels[BILINEAR][phase_scaler][3]); + c[1] = vdup_n_u8((uint8_t)vp9_filter_kernels[BILINEAR][phase_scaler][4]); + c[2] = vdup_n_u8( + (uint8_t)vp9_filter_kernels[BILINEAR][(phase_scaler + 1 * step_q4) & + SUBPEL_MASK][3]); + c[3] = vdup_n_u8( + (uint8_t)vp9_filter_kernels[BILINEAR][(phase_scaler + 1 * step_q4) & + SUBPEL_MASK][4]); + c[4] = vdup_n_u8( + (uint8_t)vp9_filter_kernels[BILINEAR][(phase_scaler + 2 * step_q4) & + SUBPEL_MASK][3]); + c[5] = vdup_n_u8( + (uint8_t)vp9_filter_kernels[BILINEAR][(phase_scaler + 2 * step_q4) & + SUBPEL_MASK][4]); + + d[6] = vdup_n_u8(0); + d[7] = vdup_n_u8(0); + + // horizontal 6x8 + do { + load_u8_8x8(src, src_stride, &s[0], &s[1], &s[2], &s[3], &s[4], &s[5], + &s[6], &s[7]); + src += 1; + transpose_u8_8x8(&s[0], &s[1], &s[2], &s[3], &s[4], &s[5], &s[6], &s[7]); + x = width_hor; + + do { + load_u8_8x8(src, src_stride, &s[1], &s[2], &s[3], &s[4], &s[5], &s[6], + &s[7], &s[8]); + src += 8; + transpose_u8_8x8(&s[1], &s[2], &s[3], &s[4], &s[5], &s[6], &s[7], &s[8]); + + // 00 10 20 30 40 50 60 70 + // 01 11 21 31 41 51 61 71 + // 02 12 22 32 42 52 62 72 + // 03 13 23 33 43 53 63 73 + // 04 14 24 34 44 54 64 74 + // 05 15 25 35 45 55 65 75 + d[0] = scale_filter_bilinear(&s[0], &c[0]); + d[1] = + scale_filter_bilinear(&s[(phase_scaler + 1 * step_q4) >> 4], &c[2]); + d[2] = + scale_filter_bilinear(&s[(phase_scaler + 2 * step_q4) >> 4], &c[4]); + d[3] = scale_filter_bilinear(&s[4], &c[0]); + d[4] = scale_filter_bilinear(&s[4 + ((phase_scaler + 1 * step_q4) >> 4)], + &c[2]); + d[5] = scale_filter_bilinear(&s[4 + ((phase_scaler + 2 * step_q4) >> 4)], + &c[4]); + + // 00 01 02 03 04 05 xx xx + // 10 11 12 13 14 15 xx xx + // 20 21 22 23 24 25 xx xx + // 30 31 32 33 34 35 xx xx + // 40 41 42 43 44 45 xx xx + // 50 51 52 53 54 55 xx xx + // 60 61 62 63 64 65 xx xx + // 70 71 72 73 74 75 xx xx + transpose_u8_8x8(&d[0], &d[1], &d[2], &d[3], &d[4], &d[5], &d[6], &d[7]); + // store 2 extra pixels + vst1_u8(t + 0 * stride_hor, d[0]); + vst1_u8(t + 1 * stride_hor, d[1]); + vst1_u8(t + 2 * stride_hor, d[2]); + vst1_u8(t + 3 * stride_hor, d[3]); + vst1_u8(t + 4 * stride_hor, d[4]); + vst1_u8(t + 5 * stride_hor, d[5]); + vst1_u8(t + 6 * stride_hor, d[6]); + vst1_u8(t + 7 * stride_hor, d[7]); + + s[0] = s[8]; + + t += 6; + x -= 6; + } while (x); + src += 8 * src_stride - 4 * width_hor / 3 - 1; + t += 7 * stride_hor + 2; + y -= 8; + } while (y); + + // vertical 8x6 + x = width_ver; + t = temp_buffer; + do { + load_u8_8x8(t, stride_hor, &s[0], &s[1], &s[2], &s[3], &s[4], &s[5], &s[6], + &s[7]); + t += stride_hor; + y = height_ver; + + do { + load_u8_8x8(t, stride_hor, &s[1], &s[2], &s[3], &s[4], &s[5], &s[6], + &s[7], &s[8]); + t += 8 * stride_hor; + + d[0] = scale_filter_bilinear(&s[0], &c[0]); + d[1] = + scale_filter_bilinear(&s[(phase_scaler + 1 * step_q4) >> 4], &c[2]); + d[2] = + scale_filter_bilinear(&s[(phase_scaler + 2 * step_q4) >> 4], &c[4]); + d[3] = scale_filter_bilinear(&s[4], &c[0]); + d[4] = scale_filter_bilinear(&s[4 + ((phase_scaler + 1 * step_q4) >> 4)], + &c[2]); + d[5] = scale_filter_bilinear(&s[4 + ((phase_scaler + 2 * step_q4) >> 4)], + &c[4]); + vst1_u8(dst + 0 * dst_stride, d[0]); + vst1_u8(dst + 1 * dst_stride, d[1]); + vst1_u8(dst + 2 * dst_stride, d[2]); + vst1_u8(dst + 3 * dst_stride, d[3]); + vst1_u8(dst + 4 * dst_stride, d[4]); + vst1_u8(dst + 5 * dst_stride, d[5]); + + s[0] = s[8]; + + dst += 6 * dst_stride; + y -= 6; + } while (y); + t -= stride_hor * (4 * height_ver / 3 + 1); + t += 8; + dst -= height_ver * dst_stride; + dst += 8; + x -= 8; + } while (x); +} + +static void scale_plane_4_to_3_general(const uint8_t *src, const int src_stride, + uint8_t *dst, const int dst_stride, + const int w, const int h, + const InterpKernel *const coef, + const int phase_scaler, + uint8_t *const temp_buffer) { + static const int step_q4 = 16 * 4 / 3; + const int width_hor = (w + 5) - ((w + 5) % 6); + const int stride_hor = width_hor + 2; // store 2 extra pixels + const int width_ver = (w + 7) & ~7; + // We need (SUBPEL_TAPS - 1) extra rows: (SUBPEL_TAPS / 2 - 1) extra rows + // above and (SUBPEL_TAPS / 2) extra rows below. + const int height_hor = (4 * h / 3 + SUBPEL_TAPS - 1 + 7) & ~7; + const int height_ver = (h + 5) - ((h + 5) % 6); + const int16x8_t filters0 = + vld1q_s16(coef[(phase_scaler + 0 * step_q4) & SUBPEL_MASK]); + const int16x8_t filters1 = + vld1q_s16(coef[(phase_scaler + 1 * step_q4) & SUBPEL_MASK]); + const int16x8_t filters2 = + vld1q_s16(coef[(phase_scaler + 2 * step_q4) & SUBPEL_MASK]); + int x, y = height_hor; + uint8_t *t = temp_buffer; + uint8x8_t s[15], d[8]; + + assert(w && h); + + src -= (SUBPEL_TAPS / 2 - 1) * src_stride + SUBPEL_TAPS / 2; + d[6] = vdup_n_u8(0); + d[7] = vdup_n_u8(0); + + // horizontal 6x8 + do { + load_u8_8x8(src + 1, src_stride, &s[0], &s[1], &s[2], &s[3], &s[4], &s[5], + &s[6], &s[7]); + transpose_u8_8x8(&s[0], &s[1], &s[2], &s[3], &s[4], &s[5], &s[6], &s[7]); + x = width_hor; + + do { + src += 8; + load_u8_8x8(src, src_stride, &s[7], &s[8], &s[9], &s[10], &s[11], &s[12], + &s[13], &s[14]); + transpose_u8_8x8(&s[7], &s[8], &s[9], &s[10], &s[11], &s[12], &s[13], + &s[14]); + + // 00 10 20 30 40 50 60 70 + // 01 11 21 31 41 51 61 71 + // 02 12 22 32 42 52 62 72 + // 03 13 23 33 43 53 63 73 + // 04 14 24 34 44 54 64 74 + // 05 15 25 35 45 55 65 75 + d[0] = scale_filter_8(&s[0], filters0); + d[1] = scale_filter_8(&s[(phase_scaler + 1 * step_q4) >> 4], filters1); + d[2] = scale_filter_8(&s[(phase_scaler + 2 * step_q4) >> 4], filters2); + d[3] = scale_filter_8(&s[4], filters0); + d[4] = + scale_filter_8(&s[4 + ((phase_scaler + 1 * step_q4) >> 4)], filters1); + d[5] = + scale_filter_8(&s[4 + ((phase_scaler + 2 * step_q4) >> 4)], filters2); + + // 00 01 02 03 04 05 xx xx + // 10 11 12 13 14 15 xx xx + // 20 21 22 23 24 25 xx xx + // 30 31 32 33 34 35 xx xx + // 40 41 42 43 44 45 xx xx + // 50 51 52 53 54 55 xx xx + // 60 61 62 63 64 65 xx xx + // 70 71 72 73 74 75 xx xx + transpose_u8_8x8(&d[0], &d[1], &d[2], &d[3], &d[4], &d[5], &d[6], &d[7]); + // store 2 extra pixels + vst1_u8(t + 0 * stride_hor, d[0]); + vst1_u8(t + 1 * stride_hor, d[1]); + vst1_u8(t + 2 * stride_hor, d[2]); + vst1_u8(t + 3 * stride_hor, d[3]); + vst1_u8(t + 4 * stride_hor, d[4]); + vst1_u8(t + 5 * stride_hor, d[5]); + vst1_u8(t + 6 * stride_hor, d[6]); + vst1_u8(t + 7 * stride_hor, d[7]); + + s[0] = s[8]; + s[1] = s[9]; + s[2] = s[10]; + s[3] = s[11]; + s[4] = s[12]; + s[5] = s[13]; + s[6] = s[14]; + + t += 6; + x -= 6; + } while (x); + src += 8 * src_stride - 4 * width_hor / 3; + t += 7 * stride_hor + 2; + y -= 8; + } while (y); + + // vertical 8x6 + x = width_ver; + t = temp_buffer; + do { + load_u8_8x8(t, stride_hor, &s[0], &s[1], &s[2], &s[3], &s[4], &s[5], &s[6], + &s[7]); + t += 7 * stride_hor; + y = height_ver; + + do { + load_u8_8x8(t, stride_hor, &s[7], &s[8], &s[9], &s[10], &s[11], &s[12], + &s[13], &s[14]); + t += 8 * stride_hor; + + d[0] = scale_filter_8(&s[0], filters0); + d[1] = scale_filter_8(&s[(phase_scaler + 1 * step_q4) >> 4], filters1); + d[2] = scale_filter_8(&s[(phase_scaler + 2 * step_q4) >> 4], filters2); + d[3] = scale_filter_8(&s[4], filters0); + d[4] = + scale_filter_8(&s[4 + ((phase_scaler + 1 * step_q4) >> 4)], filters1); + d[5] = + scale_filter_8(&s[4 + ((phase_scaler + 2 * step_q4) >> 4)], filters2); + vst1_u8(dst + 0 * dst_stride, d[0]); + vst1_u8(dst + 1 * dst_stride, d[1]); + vst1_u8(dst + 2 * dst_stride, d[2]); + vst1_u8(dst + 3 * dst_stride, d[3]); + vst1_u8(dst + 4 * dst_stride, d[4]); + vst1_u8(dst + 5 * dst_stride, d[5]); + + s[0] = s[8]; + s[1] = s[9]; + s[2] = s[10]; + s[3] = s[11]; + s[4] = s[12]; + s[5] = s[13]; + s[6] = s[14]; + + dst += 6 * dst_stride; + y -= 6; + } while (y); + t -= stride_hor * (4 * height_ver / 3 + 7); + t += 8; + dst -= height_ver * dst_stride; + dst += 8; + x -= 8; + } while (x); +} + +void vp9_scale_and_extend_frame_neon(const YV12_BUFFER_CONFIG *src, + YV12_BUFFER_CONFIG *dst, + INTERP_FILTER filter_type, + int phase_scaler) { + const int src_w = src->y_crop_width; + const int src_h = src->y_crop_height; + const int dst_w = dst->y_crop_width; + const int dst_h = dst->y_crop_height; + const int dst_uv_w = dst_w / 2; + const int dst_uv_h = dst_h / 2; + int scaled = 0; + + // phase_scaler is usually 0 or 8. + assert(phase_scaler >= 0 && phase_scaler < 16); + + if (2 * dst_w == src_w && 2 * dst_h == src_h) { + // 2 to 1 + scaled = 1; + if (phase_scaler == 0) { + scale_plane_2_to_1_phase_0(src->y_buffer, src->y_stride, dst->y_buffer, + dst->y_stride, dst_w, dst_h); + scale_plane_2_to_1_phase_0(src->u_buffer, src->uv_stride, dst->u_buffer, + dst->uv_stride, dst_uv_w, dst_uv_h); + scale_plane_2_to_1_phase_0(src->v_buffer, src->uv_stride, dst->v_buffer, + dst->uv_stride, dst_uv_w, dst_uv_h); + } else if (filter_type == BILINEAR) { + const int16_t c0 = vp9_filter_kernels[BILINEAR][phase_scaler][3]; + const int16_t c1 = vp9_filter_kernels[BILINEAR][phase_scaler][4]; + scale_plane_2_to_1_bilinear(src->y_buffer, src->y_stride, dst->y_buffer, + dst->y_stride, dst_w, dst_h, c0, c1); + scale_plane_2_to_1_bilinear(src->u_buffer, src->uv_stride, dst->u_buffer, + dst->uv_stride, dst_uv_w, dst_uv_h, c0, c1); + scale_plane_2_to_1_bilinear(src->v_buffer, src->uv_stride, dst->v_buffer, + dst->uv_stride, dst_uv_w, dst_uv_h, c0, c1); + } else { + const int buffer_stride = (dst_w + 3) & ~3; + const int buffer_height = (2 * dst_h + SUBPEL_TAPS - 2 + 7) & ~7; + uint8_t *const temp_buffer = + (uint8_t *)malloc(buffer_stride * buffer_height); + if (temp_buffer) { + scale_plane_2_to_1_general( + src->y_buffer, src->y_stride, dst->y_buffer, dst->y_stride, dst_w, + dst_h, vp9_filter_kernels[filter_type][phase_scaler], temp_buffer); + scale_plane_2_to_1_general( + src->u_buffer, src->uv_stride, dst->u_buffer, dst->uv_stride, + dst_uv_w, dst_uv_h, vp9_filter_kernels[filter_type][phase_scaler], + temp_buffer); + scale_plane_2_to_1_general( + src->v_buffer, src->uv_stride, dst->v_buffer, dst->uv_stride, + dst_uv_w, dst_uv_h, vp9_filter_kernels[filter_type][phase_scaler], + temp_buffer); + free(temp_buffer); + } else { + scaled = 0; + } + } + } else if (4 * dst_w == src_w && 4 * dst_h == src_h) { + // 4 to 1 + scaled = 1; + if (phase_scaler == 0) { + scale_plane_4_to_1_phase_0(src->y_buffer, src->y_stride, dst->y_buffer, + dst->y_stride, dst_w, dst_h); + scale_plane_4_to_1_phase_0(src->u_buffer, src->uv_stride, dst->u_buffer, + dst->uv_stride, dst_uv_w, dst_uv_h); + scale_plane_4_to_1_phase_0(src->v_buffer, src->uv_stride, dst->v_buffer, + dst->uv_stride, dst_uv_w, dst_uv_h); + } else if (filter_type == BILINEAR) { + const int16_t c0 = vp9_filter_kernels[BILINEAR][phase_scaler][3]; + const int16_t c1 = vp9_filter_kernels[BILINEAR][phase_scaler][4]; + scale_plane_4_to_1_bilinear(src->y_buffer, src->y_stride, dst->y_buffer, + dst->y_stride, dst_w, dst_h, c0, c1); + scale_plane_4_to_1_bilinear(src->u_buffer, src->uv_stride, dst->u_buffer, + dst->uv_stride, dst_uv_w, dst_uv_h, c0, c1); + scale_plane_4_to_1_bilinear(src->v_buffer, src->uv_stride, dst->v_buffer, + dst->uv_stride, dst_uv_w, dst_uv_h, c0, c1); + } else { + const int buffer_stride = (dst_w + 1) & ~1; + const int buffer_height = (4 * dst_h + SUBPEL_TAPS - 2 + 7) & ~7; + uint8_t *const temp_buffer = + (uint8_t *)malloc(buffer_stride * buffer_height); + if (temp_buffer) { + scale_plane_4_to_1_general( + src->y_buffer, src->y_stride, dst->y_buffer, dst->y_stride, dst_w, + dst_h, vp9_filter_kernels[filter_type][phase_scaler], temp_buffer); + scale_plane_4_to_1_general( + src->u_buffer, src->uv_stride, dst->u_buffer, dst->uv_stride, + dst_uv_w, dst_uv_h, vp9_filter_kernels[filter_type][phase_scaler], + temp_buffer); + scale_plane_4_to_1_general( + src->v_buffer, src->uv_stride, dst->v_buffer, dst->uv_stride, + dst_uv_w, dst_uv_h, vp9_filter_kernels[filter_type][phase_scaler], + temp_buffer); + free(temp_buffer); + } else { + scaled = 0; + } + } + } else if (4 * dst_w == 3 * src_w && 4 * dst_h == 3 * src_h) { + // 4 to 3 + const int buffer_stride = (dst_w + 5) - ((dst_w + 5) % 6) + 2; + const int buffer_height = (4 * dst_h / 3 + SUBPEL_TAPS - 1 + 7) & ~7; + uint8_t *const temp_buffer = + (uint8_t *)malloc(buffer_stride * buffer_height); + if (temp_buffer) { + scaled = 1; + if (filter_type == BILINEAR) { + scale_plane_4_to_3_bilinear(src->y_buffer, src->y_stride, dst->y_buffer, + dst->y_stride, dst_w, dst_h, phase_scaler, + temp_buffer); + scale_plane_4_to_3_bilinear(src->u_buffer, src->uv_stride, + dst->u_buffer, dst->uv_stride, dst_uv_w, + dst_uv_h, phase_scaler, temp_buffer); + scale_plane_4_to_3_bilinear(src->v_buffer, src->uv_stride, + dst->v_buffer, dst->uv_stride, dst_uv_w, + dst_uv_h, phase_scaler, temp_buffer); + } else { + scale_plane_4_to_3_general( + src->y_buffer, src->y_stride, dst->y_buffer, dst->y_stride, dst_w, + dst_h, vp9_filter_kernels[filter_type], phase_scaler, temp_buffer); + scale_plane_4_to_3_general(src->u_buffer, src->uv_stride, dst->u_buffer, + dst->uv_stride, dst_uv_w, dst_uv_h, + vp9_filter_kernels[filter_type], + phase_scaler, temp_buffer); + scale_plane_4_to_3_general(src->v_buffer, src->uv_stride, dst->v_buffer, + dst->uv_stride, dst_uv_w, dst_uv_h, + vp9_filter_kernels[filter_type], + phase_scaler, temp_buffer); + } + free(temp_buffer); + } + } + + if (scaled) { + vpx_extend_frame_borders(dst); + } else { + // Call c version for all other scaling ratios. + vp9_scale_and_extend_frame_c(src, dst, filter_type, phase_scaler); + } +} diff --git a/vp9/encoder/arm/neon/vp9_quantize_neon.c b/vp9/encoder/arm/neon/vp9_quantize_neon.c new file mode 100644 index 0000000..97a09bd --- /dev/null +++ b/vp9/encoder/arm/neon/vp9_quantize_neon.c @@ -0,0 +1,237 @@ +/* + * Copyright (c) 2014 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include +#include + +#include "./vpx_config.h" +#include "vpx_mem/vpx_mem.h" + +#include "vp9/common/vp9_quant_common.h" +#include "vp9/common/vp9_seg_common.h" + +#include "vp9/encoder/vp9_encoder.h" +#include "vp9/encoder/vp9_quantize.h" +#include "vp9/encoder/vp9_rd.h" + +#include "vpx_dsp/arm/idct_neon.h" +#include "vpx_dsp/arm/mem_neon.h" +#include "vpx_dsp/vpx_dsp_common.h" + +void vp9_quantize_fp_neon(const tran_low_t *coeff_ptr, intptr_t count, + int skip_block, const int16_t *round_ptr, + const int16_t *quant_ptr, tran_low_t *qcoeff_ptr, + tran_low_t *dqcoeff_ptr, const int16_t *dequant_ptr, + uint16_t *eob_ptr, const int16_t *scan, + const int16_t *iscan) { + // Quantization pass: All coefficients with index >= zero_flag are + // skippable. Note: zero_flag can be zero. + int i; + const int16x8_t v_zero = vdupq_n_s16(0); + const int16x8_t v_one = vdupq_n_s16(1); + int16x8_t v_eobmax_76543210 = vdupq_n_s16(-1); + int16x8_t v_round = vmovq_n_s16(round_ptr[1]); + int16x8_t v_quant = vmovq_n_s16(quant_ptr[1]); + int16x8_t v_dequant = vmovq_n_s16(dequant_ptr[1]); + + (void)scan; + (void)skip_block; + assert(!skip_block); + + // adjust for dc + v_round = vsetq_lane_s16(round_ptr[0], v_round, 0); + v_quant = vsetq_lane_s16(quant_ptr[0], v_quant, 0); + v_dequant = vsetq_lane_s16(dequant_ptr[0], v_dequant, 0); + // process dc and the first seven ac coeffs + { + const int16x8_t v_iscan = vld1q_s16(&iscan[0]); + const int16x8_t v_coeff = load_tran_low_to_s16q(coeff_ptr); + const int16x8_t v_coeff_sign = vshrq_n_s16(v_coeff, 15); + const int16x8_t v_tmp = vabaq_s16(v_round, v_coeff, v_zero); + const int32x4_t v_tmp_lo = + vmull_s16(vget_low_s16(v_tmp), vget_low_s16(v_quant)); + const int32x4_t v_tmp_hi = + vmull_s16(vget_high_s16(v_tmp), vget_high_s16(v_quant)); + const int16x8_t v_tmp2 = + vcombine_s16(vshrn_n_s32(v_tmp_lo, 16), vshrn_n_s32(v_tmp_hi, 16)); + const uint16x8_t v_nz_mask = vceqq_s16(v_tmp2, v_zero); + const int16x8_t v_iscan_plus1 = vaddq_s16(v_iscan, v_one); + const int16x8_t v_nz_iscan = vbslq_s16(v_nz_mask, v_zero, v_iscan_plus1); + const int16x8_t v_qcoeff_a = veorq_s16(v_tmp2, v_coeff_sign); + const int16x8_t v_qcoeff = vsubq_s16(v_qcoeff_a, v_coeff_sign); + const int16x8_t v_dqcoeff = vmulq_s16(v_qcoeff, v_dequant); + v_eobmax_76543210 = vmaxq_s16(v_eobmax_76543210, v_nz_iscan); + store_s16q_to_tran_low(qcoeff_ptr, v_qcoeff); + store_s16q_to_tran_low(dqcoeff_ptr, v_dqcoeff); + v_round = vmovq_n_s16(round_ptr[1]); + v_quant = vmovq_n_s16(quant_ptr[1]); + v_dequant = vmovq_n_s16(dequant_ptr[1]); + } + // now process the rest of the ac coeffs + for (i = 8; i < count; i += 8) { + const int16x8_t v_iscan = vld1q_s16(&iscan[i]); + const int16x8_t v_coeff = load_tran_low_to_s16q(coeff_ptr + i); + const int16x8_t v_coeff_sign = vshrq_n_s16(v_coeff, 15); + const int16x8_t v_tmp = vabaq_s16(v_round, v_coeff, v_zero); + const int32x4_t v_tmp_lo = + vmull_s16(vget_low_s16(v_tmp), vget_low_s16(v_quant)); + const int32x4_t v_tmp_hi = + vmull_s16(vget_high_s16(v_tmp), vget_high_s16(v_quant)); + const int16x8_t v_tmp2 = + vcombine_s16(vshrn_n_s32(v_tmp_lo, 16), vshrn_n_s32(v_tmp_hi, 16)); + const uint16x8_t v_nz_mask = vceqq_s16(v_tmp2, v_zero); + const int16x8_t v_iscan_plus1 = vaddq_s16(v_iscan, v_one); + const int16x8_t v_nz_iscan = vbslq_s16(v_nz_mask, v_zero, v_iscan_plus1); + const int16x8_t v_qcoeff_a = veorq_s16(v_tmp2, v_coeff_sign); + const int16x8_t v_qcoeff = vsubq_s16(v_qcoeff_a, v_coeff_sign); + const int16x8_t v_dqcoeff = vmulq_s16(v_qcoeff, v_dequant); + v_eobmax_76543210 = vmaxq_s16(v_eobmax_76543210, v_nz_iscan); + store_s16q_to_tran_low(qcoeff_ptr + i, v_qcoeff); + store_s16q_to_tran_low(dqcoeff_ptr + i, v_dqcoeff); + } + { + const int16x4_t v_eobmax_3210 = vmax_s16(vget_low_s16(v_eobmax_76543210), + vget_high_s16(v_eobmax_76543210)); + const int64x1_t v_eobmax_xx32 = + vshr_n_s64(vreinterpret_s64_s16(v_eobmax_3210), 32); + const int16x4_t v_eobmax_tmp = + vmax_s16(v_eobmax_3210, vreinterpret_s16_s64(v_eobmax_xx32)); + const int64x1_t v_eobmax_xxx3 = + vshr_n_s64(vreinterpret_s64_s16(v_eobmax_tmp), 16); + const int16x4_t v_eobmax_final = + vmax_s16(v_eobmax_tmp, vreinterpret_s16_s64(v_eobmax_xxx3)); + + *eob_ptr = (uint16_t)vget_lane_s16(v_eobmax_final, 0); + } +} + +static INLINE int32x4_t extract_sign_bit(int32x4_t a) { + return vreinterpretq_s32_u32(vshrq_n_u32(vreinterpretq_u32_s32(a), 31)); +} + +void vp9_quantize_fp_32x32_neon(const tran_low_t *coeff_ptr, intptr_t count, + int skip_block, const int16_t *round_ptr, + const int16_t *quant_ptr, + tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr, + const int16_t *dequant_ptr, uint16_t *eob_ptr, + const int16_t *scan, const int16_t *iscan_ptr) { + const int16x8_t one = vdupq_n_s16(1); + const int16x8_t neg_one = vdupq_n_s16(-1); + + // ROUND_POWER_OF_TWO(round_ptr[], 1) + const int16x8_t round = vrshrq_n_s16(vld1q_s16(round_ptr), 1); + const int16x8_t quant = vld1q_s16(quant_ptr); + const int16x4_t dequant = vld1_s16(dequant_ptr); + // dequant >> 2 is used similar to zbin as a threshold. + const int16x8_t dequant_thresh = vshrq_n_s16(vld1q_s16(dequant_ptr), 2); + + // Process dc and the first seven ac coeffs. + const uint16x8_t iscan = + vreinterpretq_u16_s16(vaddq_s16(vld1q_s16(iscan_ptr), one)); + const int16x8_t coeff = load_tran_low_to_s16q(coeff_ptr); + const int16x8_t coeff_sign = vshrq_n_s16(coeff, 15); + const int16x8_t coeff_abs = vabsq_s16(coeff); + const int16x8_t dequant_mask = + vreinterpretq_s16_u16(vcgeq_s16(coeff_abs, dequant_thresh)); + + int16x8_t qcoeff = vaddq_s16(coeff_abs, round); + int32x4_t dqcoeff_0, dqcoeff_1; + int16x8_t dqcoeff; + uint16x8_t eob_max; + (void)scan; + (void)count; + (void)skip_block; + assert(!skip_block); + + // coeff * quant_ptr[]) >> 15 + qcoeff = vqdmulhq_s16(qcoeff, quant); + + // Restore sign. + qcoeff = veorq_s16(qcoeff, coeff_sign); + qcoeff = vsubq_s16(qcoeff, coeff_sign); + qcoeff = vandq_s16(qcoeff, dequant_mask); + + // qcoeff * dequant[] / 2 + dqcoeff_0 = vmull_s16(vget_low_s16(qcoeff), dequant); + dqcoeff_1 = vmull_n_s16(vget_high_s16(qcoeff), dequant_ptr[1]); + + // Add 1 if negative to round towards zero because the C uses division. + dqcoeff_0 = vaddq_s32(dqcoeff_0, extract_sign_bit(dqcoeff_0)); + dqcoeff_1 = vaddq_s32(dqcoeff_1, extract_sign_bit(dqcoeff_1)); + + dqcoeff = vcombine_s16(vshrn_n_s32(dqcoeff_0, 1), vshrn_n_s32(dqcoeff_1, 1)); + + eob_max = vandq_u16(vtstq_s16(qcoeff, neg_one), iscan); + + store_s16q_to_tran_low(qcoeff_ptr, qcoeff); + store_s16q_to_tran_low(dqcoeff_ptr, dqcoeff); + + iscan_ptr += 8; + coeff_ptr += 8; + qcoeff_ptr += 8; + dqcoeff_ptr += 8; + + { + int i; + const int16x8_t round = vrshrq_n_s16(vmovq_n_s16(round_ptr[1]), 1); + const int16x8_t quant = vmovq_n_s16(quant_ptr[1]); + const int16x8_t dequant_thresh = + vshrq_n_s16(vmovq_n_s16(dequant_ptr[1]), 2); + + // Process the rest of the ac coeffs. + for (i = 8; i < 32 * 32; i += 8) { + const uint16x8_t iscan = + vreinterpretq_u16_s16(vaddq_s16(vld1q_s16(iscan_ptr), one)); + const int16x8_t coeff = load_tran_low_to_s16q(coeff_ptr); + const int16x8_t coeff_sign = vshrq_n_s16(coeff, 15); + const int16x8_t coeff_abs = vabsq_s16(coeff); + const int16x8_t dequant_mask = + vreinterpretq_s16_u16(vcgeq_s16(coeff_abs, dequant_thresh)); + + int16x8_t qcoeff = vaddq_s16(coeff_abs, round); + int32x4_t dqcoeff_0, dqcoeff_1; + int16x8_t dqcoeff; + + qcoeff = vqdmulhq_s16(qcoeff, quant); + qcoeff = veorq_s16(qcoeff, coeff_sign); + qcoeff = vsubq_s16(qcoeff, coeff_sign); + qcoeff = vandq_s16(qcoeff, dequant_mask); + + dqcoeff_0 = vmull_n_s16(vget_low_s16(qcoeff), dequant_ptr[1]); + dqcoeff_1 = vmull_n_s16(vget_high_s16(qcoeff), dequant_ptr[1]); + + dqcoeff_0 = vaddq_s32(dqcoeff_0, extract_sign_bit(dqcoeff_0)); + dqcoeff_1 = vaddq_s32(dqcoeff_1, extract_sign_bit(dqcoeff_1)); + + dqcoeff = + vcombine_s16(vshrn_n_s32(dqcoeff_0, 1), vshrn_n_s32(dqcoeff_1, 1)); + + eob_max = + vmaxq_u16(eob_max, vandq_u16(vtstq_s16(qcoeff, neg_one), iscan)); + + store_s16q_to_tran_low(qcoeff_ptr, qcoeff); + store_s16q_to_tran_low(dqcoeff_ptr, dqcoeff); + + iscan_ptr += 8; + coeff_ptr += 8; + qcoeff_ptr += 8; + dqcoeff_ptr += 8; + } + + { + const uint16x4_t eob_max_0 = + vmax_u16(vget_low_u16(eob_max), vget_high_u16(eob_max)); + const uint16x4_t eob_max_1 = vpmax_u16(eob_max_0, eob_max_0); + const uint16x4_t eob_max_2 = vpmax_u16(eob_max_1, eob_max_1); + vst1_lane_u16(eob_ptr, eob_max_2, 0); + } + } +} diff --git a/vp9/encoder/mips/msa/vp9_error_msa.c b/vp9/encoder/mips/msa/vp9_error_msa.c new file mode 100644 index 0000000..188d04d --- /dev/null +++ b/vp9/encoder/mips/msa/vp9_error_msa.c @@ -0,0 +1,105 @@ +/* + * Copyright (c) 2015 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "./vp9_rtcd.h" +#include "vpx_dsp/mips/macros_msa.h" + +#define BLOCK_ERROR_BLOCKSIZE_MSA(BSize) \ + static int64_t block_error_##BSize##size_msa( \ + const int16_t *coeff_ptr, const int16_t *dq_coeff_ptr, int64_t *ssz) { \ + int64_t err = 0; \ + uint32_t loop_cnt; \ + v8i16 coeff, dq_coeff, coeff_r_h, coeff_l_h; \ + v4i32 diff_r, diff_l, coeff_r_w, coeff_l_w; \ + v2i64 sq_coeff_r, sq_coeff_l; \ + v2i64 err0, err_dup0, err1, err_dup1; \ + \ + coeff = LD_SH(coeff_ptr); \ + dq_coeff = LD_SH(dq_coeff_ptr); \ + UNPCK_SH_SW(coeff, coeff_r_w, coeff_l_w); \ + ILVRL_H2_SH(coeff, dq_coeff, coeff_r_h, coeff_l_h); \ + HSUB_UH2_SW(coeff_r_h, coeff_l_h, diff_r, diff_l); \ + DOTP_SW2_SD(coeff_r_w, coeff_l_w, coeff_r_w, coeff_l_w, sq_coeff_r, \ + sq_coeff_l); \ + DOTP_SW2_SD(diff_r, diff_l, diff_r, diff_l, err0, err1); \ + \ + coeff = LD_SH(coeff_ptr + 8); \ + dq_coeff = LD_SH(dq_coeff_ptr + 8); \ + UNPCK_SH_SW(coeff, coeff_r_w, coeff_l_w); \ + ILVRL_H2_SH(coeff, dq_coeff, coeff_r_h, coeff_l_h); \ + HSUB_UH2_SW(coeff_r_h, coeff_l_h, diff_r, diff_l); \ + DPADD_SD2_SD(coeff_r_w, coeff_l_w, sq_coeff_r, sq_coeff_l); \ + DPADD_SD2_SD(diff_r, diff_l, err0, err1); \ + \ + coeff_ptr += 16; \ + dq_coeff_ptr += 16; \ + \ + for (loop_cnt = ((BSize >> 4) - 1); loop_cnt--;) { \ + coeff = LD_SH(coeff_ptr); \ + dq_coeff = LD_SH(dq_coeff_ptr); \ + UNPCK_SH_SW(coeff, coeff_r_w, coeff_l_w); \ + ILVRL_H2_SH(coeff, dq_coeff, coeff_r_h, coeff_l_h); \ + HSUB_UH2_SW(coeff_r_h, coeff_l_h, diff_r, diff_l); \ + DPADD_SD2_SD(coeff_r_w, coeff_l_w, sq_coeff_r, sq_coeff_l); \ + DPADD_SD2_SD(diff_r, diff_l, err0, err1); \ + \ + coeff = LD_SH(coeff_ptr + 8); \ + dq_coeff = LD_SH(dq_coeff_ptr + 8); \ + UNPCK_SH_SW(coeff, coeff_r_w, coeff_l_w); \ + ILVRL_H2_SH(coeff, dq_coeff, coeff_r_h, coeff_l_h); \ + HSUB_UH2_SW(coeff_r_h, coeff_l_h, diff_r, diff_l); \ + DPADD_SD2_SD(coeff_r_w, coeff_l_w, sq_coeff_r, sq_coeff_l); \ + DPADD_SD2_SD(diff_r, diff_l, err0, err1); \ + \ + coeff_ptr += 16; \ + dq_coeff_ptr += 16; \ + } \ + \ + err_dup0 = __msa_splati_d(sq_coeff_r, 1); \ + err_dup1 = __msa_splati_d(sq_coeff_l, 1); \ + sq_coeff_r += err_dup0; \ + sq_coeff_l += err_dup1; \ + *ssz = __msa_copy_s_d(sq_coeff_r, 0); \ + *ssz += __msa_copy_s_d(sq_coeff_l, 0); \ + \ + err_dup0 = __msa_splati_d(err0, 1); \ + err_dup1 = __msa_splati_d(err1, 1); \ + err0 += err_dup0; \ + err1 += err_dup1; \ + err = __msa_copy_s_d(err0, 0); \ + err += __msa_copy_s_d(err1, 0); \ + \ + return err; \ + } + +BLOCK_ERROR_BLOCKSIZE_MSA(16); +BLOCK_ERROR_BLOCKSIZE_MSA(64); +BLOCK_ERROR_BLOCKSIZE_MSA(256); +BLOCK_ERROR_BLOCKSIZE_MSA(1024); + +int64_t vp9_block_error_msa(const tran_low_t *coeff_ptr, + const tran_low_t *dq_coeff_ptr, intptr_t blk_size, + int64_t *ssz) { + int64_t err; + const int16_t *coeff = (const int16_t *)coeff_ptr; + const int16_t *dq_coeff = (const int16_t *)dq_coeff_ptr; + + switch (blk_size) { + case 16: err = block_error_16size_msa(coeff, dq_coeff, ssz); break; + case 64: err = block_error_64size_msa(coeff, dq_coeff, ssz); break; + case 256: err = block_error_256size_msa(coeff, dq_coeff, ssz); break; + case 1024: err = block_error_1024size_msa(coeff, dq_coeff, ssz); break; + default: + err = vp9_block_error_c(coeff_ptr, dq_coeff_ptr, blk_size, ssz); + break; + } + + return err; +} diff --git a/vp9/encoder/mips/msa/vp9_fdct16x16_msa.c b/vp9/encoder/mips/msa/vp9_fdct16x16_msa.c new file mode 100644 index 0000000..0831e59 --- /dev/null +++ b/vp9/encoder/mips/msa/vp9_fdct16x16_msa.c @@ -0,0 +1,500 @@ +/* + * Copyright (c) 2015 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include + +#include "vp9/common/vp9_enums.h" +#include "vp9/encoder/mips/msa/vp9_fdct_msa.h" +#include "vpx_dsp/mips/fwd_txfm_msa.h" + +static void fadst16_cols_step1_msa(const int16_t *input, int32_t stride, + const int32_t *const0, int16_t *int_buf) { + v8i16 r0, r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15; + v8i16 tp0, tp1, tp2, tp3, g0, g1, g2, g3, g8, g9, g10, g11, h0, h1, h2, h3; + v4i32 k0, k1, k2, k3; + + /* load input data */ + r0 = LD_SH(input); + r15 = LD_SH(input + 15 * stride); + r7 = LD_SH(input + 7 * stride); + r8 = LD_SH(input + 8 * stride); + SLLI_4V(r0, r15, r7, r8, 2); + + /* stage 1 */ + LD_SW2(const0, 4, k0, k1); + LD_SW2(const0 + 8, 4, k2, k3); + MADD_BF(r15, r0, r7, r8, k0, k1, k2, k3, g0, g1, g2, g3); + + r3 = LD_SH(input + 3 * stride); + r4 = LD_SH(input + 4 * stride); + r11 = LD_SH(input + 11 * stride); + r12 = LD_SH(input + 12 * stride); + SLLI_4V(r3, r4, r11, r12, 2); + + LD_SW2(const0 + 4 * 4, 4, k0, k1); + LD_SW2(const0 + 4 * 6, 4, k2, k3); + MADD_BF(r11, r4, r3, r12, k0, k1, k2, k3, g8, g9, g10, g11); + + /* stage 2 */ + BUTTERFLY_4(g0, g2, g10, g8, tp0, tp2, tp3, tp1); + ST_SH2(tp0, tp2, int_buf, 8); + ST_SH2(tp1, tp3, int_buf + 4 * 8, 8); + + LD_SW2(const0 + 4 * 8, 4, k0, k1); + k2 = LD_SW(const0 + 4 * 10); + MADD_BF(g1, g3, g9, g11, k0, k1, k2, k0, h0, h1, h2, h3); + + ST_SH2(h0, h1, int_buf + 8 * 8, 8); + ST_SH2(h3, h2, int_buf + 12 * 8, 8); + + r9 = LD_SH(input + 9 * stride); + r6 = LD_SH(input + 6 * stride); + r1 = LD_SH(input + stride); + r14 = LD_SH(input + 14 * stride); + SLLI_4V(r9, r6, r1, r14, 2); + + LD_SW2(const0 + 4 * 11, 4, k0, k1); + LD_SW2(const0 + 4 * 13, 4, k2, k3); + MADD_BF(r9, r6, r1, r14, k0, k1, k2, k3, g0, g1, g2, g3); + + ST_SH2(g1, g3, int_buf + 3 * 8, 4 * 8); + + r13 = LD_SH(input + 13 * stride); + r2 = LD_SH(input + 2 * stride); + r5 = LD_SH(input + 5 * stride); + r10 = LD_SH(input + 10 * stride); + SLLI_4V(r13, r2, r5, r10, 2); + + LD_SW2(const0 + 4 * 15, 4, k0, k1); + LD_SW2(const0 + 4 * 17, 4, k2, k3); + MADD_BF(r13, r2, r5, r10, k0, k1, k2, k3, h0, h1, h2, h3); + + ST_SH2(h1, h3, int_buf + 11 * 8, 4 * 8); + + BUTTERFLY_4(h0, h2, g2, g0, tp0, tp1, tp2, tp3); + ST_SH4(tp0, tp1, tp2, tp3, int_buf + 2 * 8, 4 * 8); +} + +static void fadst16_cols_step2_msa(int16_t *int_buf, const int32_t *const0, + int16_t *out) { + int16_t *out_ptr = out + 128; + v8i16 tp0, tp1, tp2, tp3, g5, g7, g13, g15; + v8i16 h0, h1, h2, h3, h4, h5, h6, h7, h10, h11; + v8i16 out0, out1, out2, out3, out4, out5, out6, out7; + v8i16 out8, out9, out10, out11, out12, out13, out14, out15; + v4i32 k0, k1, k2, k3; + + LD_SH2(int_buf + 3 * 8, 4 * 8, g13, g15); + LD_SH2(int_buf + 11 * 8, 4 * 8, g5, g7); + LD_SW2(const0 + 4 * 19, 4, k0, k1); + k2 = LD_SW(const0 + 4 * 21); + MADD_BF(g7, g5, g15, g13, k0, k1, k2, k0, h4, h5, h6, h7); + + tp0 = LD_SH(int_buf + 4 * 8); + tp1 = LD_SH(int_buf + 5 * 8); + tp3 = LD_SH(int_buf + 10 * 8); + tp2 = LD_SH(int_buf + 14 * 8); + LD_SW2(const0 + 4 * 22, 4, k0, k1); + k2 = LD_SW(const0 + 4 * 24); + MADD_BF(tp0, tp1, tp2, tp3, k0, k1, k2, k0, out4, out6, out5, out7); + out4 = -out4; + ST_SH(out4, (out + 3 * 16)); + ST_SH(out5, (out_ptr + 4 * 16)); + + h1 = LD_SH(int_buf + 9 * 8); + h3 = LD_SH(int_buf + 12 * 8); + MADD_BF(h1, h3, h5, h7, k0, k1, k2, k0, out12, out14, out13, out15); + out13 = -out13; + ST_SH(out12, (out + 2 * 16)); + ST_SH(out13, (out_ptr + 5 * 16)); + + tp0 = LD_SH(int_buf); + tp1 = LD_SH(int_buf + 8); + tp2 = LD_SH(int_buf + 2 * 8); + tp3 = LD_SH(int_buf + 6 * 8); + + BUTTERFLY_4(tp0, tp1, tp3, tp2, out0, out1, h11, h10); + out1 = -out1; + ST_SH(out0, (out)); + ST_SH(out1, (out_ptr + 7 * 16)); + + h0 = LD_SH(int_buf + 8 * 8); + h2 = LD_SH(int_buf + 13 * 8); + + BUTTERFLY_4(h0, h2, h6, h4, out8, out9, out11, out10); + out8 = -out8; + ST_SH(out8, (out + 16)); + ST_SH(out9, (out_ptr + 6 * 16)); + + /* stage 4 */ + LD_SW2(const0 + 4 * 25, 4, k0, k1); + LD_SW2(const0 + 4 * 27, 4, k2, k3); + MADD_SHORT(h10, h11, k1, k2, out2, out3); + ST_SH(out2, (out + 7 * 16)); + ST_SH(out3, (out_ptr)); + + MADD_SHORT(out6, out7, k0, k3, out6, out7); + ST_SH(out6, (out + 4 * 16)); + ST_SH(out7, (out_ptr + 3 * 16)); + + MADD_SHORT(out10, out11, k0, k3, out10, out11); + ST_SH(out10, (out + 6 * 16)); + ST_SH(out11, (out_ptr + 16)); + + MADD_SHORT(out14, out15, k1, k2, out14, out15); + ST_SH(out14, (out + 5 * 16)); + ST_SH(out15, (out_ptr + 2 * 16)); +} + +static void fadst16_transpose_postproc_msa(int16_t *input, int16_t *out) { + v8i16 r0, r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15; + v8i16 l0, l1, l2, l3, l4, l5, l6, l7, l8, l9, l10, l11, l12, l13, l14, l15; + + /* load input data */ + LD_SH8(input, 16, l0, l1, l2, l3, l4, l5, l6, l7); + TRANSPOSE8x8_SH_SH(l0, l1, l2, l3, l4, l5, l6, l7, r0, r1, r2, r3, r4, r5, r6, + r7); + FDCT_POSTPROC_2V_NEG_H(r0, r1); + FDCT_POSTPROC_2V_NEG_H(r2, r3); + FDCT_POSTPROC_2V_NEG_H(r4, r5); + FDCT_POSTPROC_2V_NEG_H(r6, r7); + ST_SH8(r0, r1, r2, r3, r4, r5, r6, r7, out, 8); + out += 64; + + LD_SH8(input + 8, 16, l8, l9, l10, l11, l12, l13, l14, l15); + TRANSPOSE8x8_SH_SH(l8, l9, l10, l11, l12, l13, l14, l15, r8, r9, r10, r11, + r12, r13, r14, r15); + FDCT_POSTPROC_2V_NEG_H(r8, r9); + FDCT_POSTPROC_2V_NEG_H(r10, r11); + FDCT_POSTPROC_2V_NEG_H(r12, r13); + FDCT_POSTPROC_2V_NEG_H(r14, r15); + ST_SH8(r8, r9, r10, r11, r12, r13, r14, r15, out, 8); + out += 64; + + /* load input data */ + input += 128; + LD_SH8(input, 16, l0, l1, l2, l3, l4, l5, l6, l7); + TRANSPOSE8x8_SH_SH(l0, l1, l2, l3, l4, l5, l6, l7, r0, r1, r2, r3, r4, r5, r6, + r7); + FDCT_POSTPROC_2V_NEG_H(r0, r1); + FDCT_POSTPROC_2V_NEG_H(r2, r3); + FDCT_POSTPROC_2V_NEG_H(r4, r5); + FDCT_POSTPROC_2V_NEG_H(r6, r7); + ST_SH8(r0, r1, r2, r3, r4, r5, r6, r7, out, 8); + out += 64; + + LD_SH8(input + 8, 16, l8, l9, l10, l11, l12, l13, l14, l15); + TRANSPOSE8x8_SH_SH(l8, l9, l10, l11, l12, l13, l14, l15, r8, r9, r10, r11, + r12, r13, r14, r15); + FDCT_POSTPROC_2V_NEG_H(r8, r9); + FDCT_POSTPROC_2V_NEG_H(r10, r11); + FDCT_POSTPROC_2V_NEG_H(r12, r13); + FDCT_POSTPROC_2V_NEG_H(r14, r15); + ST_SH8(r8, r9, r10, r11, r12, r13, r14, r15, out, 8); +} + +static void fadst16_rows_step1_msa(int16_t *input, const int32_t *const0, + int16_t *int_buf) { + v8i16 r0, r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15; + v8i16 tp0, tp1, tp2, tp3, g0, g1, g2, g3, g8, g9, g10, g11, h0, h1, h2, h3; + v4i32 k0, k1, k2, k3; + + /* load input data */ + r0 = LD_SH(input); + r7 = LD_SH(input + 7 * 8); + r8 = LD_SH(input + 8 * 8); + r15 = LD_SH(input + 15 * 8); + + /* stage 1 */ + LD_SW2(const0, 4, k0, k1); + LD_SW2(const0 + 4 * 2, 4, k2, k3); + MADD_BF(r15, r0, r7, r8, k0, k1, k2, k3, g0, g1, g2, g3); + + r3 = LD_SH(input + 3 * 8); + r4 = LD_SH(input + 4 * 8); + r11 = LD_SH(input + 11 * 8); + r12 = LD_SH(input + 12 * 8); + + LD_SW2(const0 + 4 * 4, 4, k0, k1); + LD_SW2(const0 + 4 * 6, 4, k2, k3); + MADD_BF(r11, r4, r3, r12, k0, k1, k2, k3, g8, g9, g10, g11); + + /* stage 2 */ + BUTTERFLY_4(g0, g2, g10, g8, tp0, tp2, tp3, tp1); + ST_SH2(tp0, tp1, int_buf, 4 * 8); + ST_SH2(tp2, tp3, int_buf + 8, 4 * 8); + + LD_SW2(const0 + 4 * 8, 4, k0, k1); + k2 = LD_SW(const0 + 4 * 10); + MADD_BF(g1, g3, g9, g11, k0, k1, k2, k0, h0, h1, h2, h3); + ST_SH2(h0, h3, int_buf + 8 * 8, 4 * 8); + ST_SH2(h1, h2, int_buf + 9 * 8, 4 * 8); + + r1 = LD_SH(input + 8); + r6 = LD_SH(input + 6 * 8); + r9 = LD_SH(input + 9 * 8); + r14 = LD_SH(input + 14 * 8); + + LD_SW2(const0 + 4 * 11, 4, k0, k1); + LD_SW2(const0 + 4 * 13, 4, k2, k3); + MADD_BF(r9, r6, r1, r14, k0, k1, k2, k3, g0, g1, g2, g3); + ST_SH2(g1, g3, int_buf + 3 * 8, 4 * 8); + + r2 = LD_SH(input + 2 * 8); + r5 = LD_SH(input + 5 * 8); + r10 = LD_SH(input + 10 * 8); + r13 = LD_SH(input + 13 * 8); + + LD_SW2(const0 + 4 * 15, 4, k0, k1); + LD_SW2(const0 + 4 * 17, 4, k2, k3); + MADD_BF(r13, r2, r5, r10, k0, k1, k2, k3, h0, h1, h2, h3); + ST_SH2(h1, h3, int_buf + 11 * 8, 4 * 8); + BUTTERFLY_4(h0, h2, g2, g0, tp0, tp1, tp2, tp3); + ST_SH4(tp0, tp1, tp2, tp3, int_buf + 2 * 8, 4 * 8); +} + +static void fadst16_rows_step2_msa(int16_t *int_buf, const int32_t *const0, + int16_t *out) { + int16_t *out_ptr = out + 8; + v8i16 tp0, tp1, tp2, tp3, g5, g7, g13, g15; + v8i16 h0, h1, h2, h3, h4, h5, h6, h7, h10, h11; + v8i16 out0, out1, out2, out3, out4, out5, out6, out7; + v8i16 out8, out9, out10, out11, out12, out13, out14, out15; + v4i32 k0, k1, k2, k3; + + g13 = LD_SH(int_buf + 3 * 8); + g15 = LD_SH(int_buf + 7 * 8); + g5 = LD_SH(int_buf + 11 * 8); + g7 = LD_SH(int_buf + 15 * 8); + + LD_SW2(const0 + 4 * 19, 4, k0, k1); + k2 = LD_SW(const0 + 4 * 21); + MADD_BF(g7, g5, g15, g13, k0, k1, k2, k0, h4, h5, h6, h7); + + tp0 = LD_SH(int_buf + 4 * 8); + tp1 = LD_SH(int_buf + 5 * 8); + tp3 = LD_SH(int_buf + 10 * 8); + tp2 = LD_SH(int_buf + 14 * 8); + + LD_SW2(const0 + 4 * 22, 4, k0, k1); + k2 = LD_SW(const0 + 4 * 24); + MADD_BF(tp0, tp1, tp2, tp3, k0, k1, k2, k0, out4, out6, out5, out7); + out4 = -out4; + ST_SH(out4, (out + 3 * 16)); + ST_SH(out5, (out_ptr + 4 * 16)); + + h1 = LD_SH(int_buf + 9 * 8); + h3 = LD_SH(int_buf + 12 * 8); + MADD_BF(h1, h3, h5, h7, k0, k1, k2, k0, out12, out14, out13, out15); + out13 = -out13; + ST_SH(out12, (out + 2 * 16)); + ST_SH(out13, (out_ptr + 5 * 16)); + + tp0 = LD_SH(int_buf); + tp1 = LD_SH(int_buf + 8); + tp2 = LD_SH(int_buf + 2 * 8); + tp3 = LD_SH(int_buf + 6 * 8); + + BUTTERFLY_4(tp0, tp1, tp3, tp2, out0, out1, h11, h10); + out1 = -out1; + ST_SH(out0, (out)); + ST_SH(out1, (out_ptr + 7 * 16)); + + h0 = LD_SH(int_buf + 8 * 8); + h2 = LD_SH(int_buf + 13 * 8); + BUTTERFLY_4(h0, h2, h6, h4, out8, out9, out11, out10); + out8 = -out8; + ST_SH(out8, (out + 16)); + ST_SH(out9, (out_ptr + 6 * 16)); + + /* stage 4 */ + LD_SW2(const0 + 4 * 25, 4, k0, k1); + LD_SW2(const0 + 4 * 27, 4, k2, k3); + MADD_SHORT(h10, h11, k1, k2, out2, out3); + ST_SH(out2, (out + 7 * 16)); + ST_SH(out3, (out_ptr)); + + MADD_SHORT(out6, out7, k0, k3, out6, out7); + ST_SH(out6, (out + 4 * 16)); + ST_SH(out7, (out_ptr + 3 * 16)); + + MADD_SHORT(out10, out11, k0, k3, out10, out11); + ST_SH(out10, (out + 6 * 16)); + ST_SH(out11, (out_ptr + 16)); + + MADD_SHORT(out14, out15, k1, k2, out14, out15); + ST_SH(out14, (out + 5 * 16)); + ST_SH(out15, (out_ptr + 2 * 16)); +} + +static void fadst16_transpose_msa(int16_t *input, int16_t *out) { + v8i16 r0, r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15; + v8i16 l0, l1, l2, l3, l4, l5, l6, l7, l8, l9, l10, l11, l12, l13, l14, l15; + + /* load input data */ + LD_SH16(input, 8, l0, l8, l1, l9, l2, l10, l3, l11, l4, l12, l5, l13, l6, l14, + l7, l15); + TRANSPOSE8x8_SH_SH(l0, l1, l2, l3, l4, l5, l6, l7, r0, r1, r2, r3, r4, r5, r6, + r7); + TRANSPOSE8x8_SH_SH(l8, l9, l10, l11, l12, l13, l14, l15, r8, r9, r10, r11, + r12, r13, r14, r15); + ST_SH8(r0, r8, r1, r9, r2, r10, r3, r11, out, 8); + ST_SH8(r4, r12, r5, r13, r6, r14, r7, r15, (out + 64), 8); + out += 16 * 8; + + /* load input data */ + input += 128; + LD_SH16(input, 8, l0, l8, l1, l9, l2, l10, l3, l11, l4, l12, l5, l13, l6, l14, + l7, l15); + TRANSPOSE8x8_SH_SH(l0, l1, l2, l3, l4, l5, l6, l7, r0, r1, r2, r3, r4, r5, r6, + r7); + TRANSPOSE8x8_SH_SH(l8, l9, l10, l11, l12, l13, l14, l15, r8, r9, r10, r11, + r12, r13, r14, r15); + ST_SH8(r0, r8, r1, r9, r2, r10, r3, r11, out, 8); + ST_SH8(r4, r12, r5, r13, r6, r14, r7, r15, (out + 64), 8); +} + +static void postproc_fdct16x8_1d_row(int16_t *intermediate, int16_t *output) { + int16_t *temp = intermediate; + int16_t *out = output; + v8i16 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; + v8i16 in0, in1, in2, in3, in4, in5, in6, in7, in8, in9, in10, in11; + v8i16 in12, in13, in14, in15; + + LD_SH8(temp, 16, in0, in1, in2, in3, in4, in5, in6, in7); + temp = intermediate + 8; + LD_SH8(temp, 16, in8, in9, in10, in11, in12, in13, in14, in15); + TRANSPOSE8x8_SH_SH(in0, in1, in2, in3, in4, in5, in6, in7, in0, in1, in2, in3, + in4, in5, in6, in7); + TRANSPOSE8x8_SH_SH(in8, in9, in10, in11, in12, in13, in14, in15, in8, in9, + in10, in11, in12, in13, in14, in15); + FDCT_POSTPROC_2V_NEG_H(in0, in1); + FDCT_POSTPROC_2V_NEG_H(in2, in3); + FDCT_POSTPROC_2V_NEG_H(in4, in5); + FDCT_POSTPROC_2V_NEG_H(in6, in7); + FDCT_POSTPROC_2V_NEG_H(in8, in9); + FDCT_POSTPROC_2V_NEG_H(in10, in11); + FDCT_POSTPROC_2V_NEG_H(in12, in13); + FDCT_POSTPROC_2V_NEG_H(in14, in15); + BUTTERFLY_16(in0, in1, in2, in3, in4, in5, in6, in7, in8, in9, in10, in11, + in12, in13, in14, in15, tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, + tmp7, in8, in9, in10, in11, in12, in13, in14, in15); + temp = intermediate; + ST_SH8(in8, in9, in10, in11, in12, in13, in14, in15, temp, 16); + FDCT8x16_EVEN(tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7, tmp0, tmp1, + tmp2, tmp3, tmp4, tmp5, tmp6, tmp7); + temp = intermediate; + LD_SH8(temp, 16, in8, in9, in10, in11, in12, in13, in14, in15); + FDCT8x16_ODD(in8, in9, in10, in11, in12, in13, in14, in15, in0, in1, in2, in3, + in4, in5, in6, in7); + TRANSPOSE8x8_SH_SH(tmp0, in0, tmp1, in1, tmp2, in2, tmp3, in3, tmp0, in0, + tmp1, in1, tmp2, in2, tmp3, in3); + ST_SH8(tmp0, in0, tmp1, in1, tmp2, in2, tmp3, in3, out, 16); + TRANSPOSE8x8_SH_SH(tmp4, in4, tmp5, in5, tmp6, in6, tmp7, in7, tmp4, in4, + tmp5, in5, tmp6, in6, tmp7, in7); + out = output + 8; + ST_SH8(tmp4, in4, tmp5, in5, tmp6, in6, tmp7, in7, out, 16); +} + +void vp9_fht16x16_msa(const int16_t *input, int16_t *output, int32_t stride, + int32_t tx_type) { + DECLARE_ALIGNED(32, int16_t, tmp[256]); + DECLARE_ALIGNED(32, int16_t, trans_buf[256]); + DECLARE_ALIGNED(32, int16_t, tmp_buf[128]); + int32_t i; + int16_t *ptmpbuf = &tmp_buf[0]; + int16_t *trans = &trans_buf[0]; + const int32_t const_arr[29 * 4] = { + 52707308, 52707308, 52707308, 52707308, -1072430300, + -1072430300, -1072430300, -1072430300, 795618043, 795618043, + 795618043, 795618043, -721080468, -721080468, -721080468, + -721080468, 459094491, 459094491, 459094491, 459094491, + -970646691, -970646691, -970646691, -970646691, 1010963856, + 1010963856, 1010963856, 1010963856, -361743294, -361743294, + -361743294, -361743294, 209469125, 209469125, 209469125, + 209469125, -1053094788, -1053094788, -1053094788, -1053094788, + 1053160324, 1053160324, 1053160324, 1053160324, 639644520, + 639644520, 639644520, 639644520, -862444000, -862444000, + -862444000, -862444000, 1062144356, 1062144356, 1062144356, + 1062144356, -157532337, -157532337, -157532337, -157532337, + 260914709, 260914709, 260914709, 260914709, -1041559667, + -1041559667, -1041559667, -1041559667, 920985831, 920985831, + 920985831, 920985831, -551995675, -551995675, -551995675, + -551995675, 596522295, 596522295, 596522295, 596522295, + 892853362, 892853362, 892853362, 892853362, -892787826, + -892787826, -892787826, -892787826, 410925857, 410925857, + 410925857, 410925857, -992012162, -992012162, -992012162, + -992012162, 992077698, 992077698, 992077698, 992077698, + 759246145, 759246145, 759246145, 759246145, -759180609, + -759180609, -759180609, -759180609, -759222975, -759222975, + -759222975, -759222975, 759288511, 759288511, 759288511, + 759288511 + }; + + switch (tx_type) { + case DCT_DCT: + /* column transform */ + for (i = 0; i < 2; ++i) { + fdct8x16_1d_column(input + 8 * i, tmp + 8 * i, stride); + } + + /* row transform */ + for (i = 0; i < 2; ++i) { + fdct16x8_1d_row(tmp + (128 * i), output + (128 * i)); + } + break; + case ADST_DCT: + /* column transform */ + for (i = 0; i < 2; ++i) { + fadst16_cols_step1_msa(input + (i << 3), stride, const_arr, ptmpbuf); + fadst16_cols_step2_msa(ptmpbuf, const_arr, tmp + (i << 3)); + } + + /* row transform */ + for (i = 0; i < 2; ++i) { + postproc_fdct16x8_1d_row(tmp + (128 * i), output + (128 * i)); + } + break; + case DCT_ADST: + /* column transform */ + for (i = 0; i < 2; ++i) { + fdct8x16_1d_column(input + 8 * i, tmp + 8 * i, stride); + } + + fadst16_transpose_postproc_msa(tmp, trans); + + /* row transform */ + for (i = 0; i < 2; ++i) { + fadst16_rows_step1_msa(trans + (i << 7), const_arr, ptmpbuf); + fadst16_rows_step2_msa(ptmpbuf, const_arr, tmp + (i << 7)); + } + + fadst16_transpose_msa(tmp, output); + break; + case ADST_ADST: + /* column transform */ + for (i = 0; i < 2; ++i) { + fadst16_cols_step1_msa(input + (i << 3), stride, const_arr, ptmpbuf); + fadst16_cols_step2_msa(ptmpbuf, const_arr, tmp + (i << 3)); + } + + fadst16_transpose_postproc_msa(tmp, trans); + + /* row transform */ + for (i = 0; i < 2; ++i) { + fadst16_rows_step1_msa(trans + (i << 7), const_arr, ptmpbuf); + fadst16_rows_step2_msa(ptmpbuf, const_arr, tmp + (i << 7)); + } + + fadst16_transpose_msa(tmp, output); + break; + default: assert(0); break; + } +} diff --git a/vp9/encoder/mips/msa/vp9_fdct4x4_msa.c b/vp9/encoder/mips/msa/vp9_fdct4x4_msa.c new file mode 100644 index 0000000..fa36f09 --- /dev/null +++ b/vp9/encoder/mips/msa/vp9_fdct4x4_msa.c @@ -0,0 +1,97 @@ +/* + * Copyright (c) 2015 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include + +#include "vp9/common/vp9_enums.h" +#include "vp9/encoder/mips/msa/vp9_fdct_msa.h" + +void vp9_fwht4x4_msa(const int16_t *input, int16_t *output, + int32_t src_stride) { + v8i16 in0, in1, in2, in3, in4; + + LD_SH4(input, src_stride, in0, in1, in2, in3); + + in0 += in1; + in3 -= in2; + in4 = (in0 - in3) >> 1; + SUB2(in4, in1, in4, in2, in1, in2); + in0 -= in2; + in3 += in1; + + TRANSPOSE4x4_SH_SH(in0, in2, in3, in1, in0, in2, in3, in1); + + in0 += in2; + in1 -= in3; + in4 = (in0 - in1) >> 1; + SUB2(in4, in2, in4, in3, in2, in3); + in0 -= in3; + in1 += in2; + + SLLI_4V(in0, in1, in2, in3, 2); + + TRANSPOSE4x4_SH_SH(in0, in3, in1, in2, in0, in3, in1, in2); + + ST4x2_UB(in0, output, 4); + ST4x2_UB(in3, output + 4, 4); + ST4x2_UB(in1, output + 8, 4); + ST4x2_UB(in2, output + 12, 4); +} + +void vp9_fht4x4_msa(const int16_t *input, int16_t *output, int32_t stride, + int32_t tx_type) { + v8i16 in0, in1, in2, in3; + + LD_SH4(input, stride, in0, in1, in2, in3); + + /* fdct4 pre-process */ + { + v8i16 temp, mask; + v16i8 zero = { 0 }; + v16i8 one = __msa_ldi_b(1); + + mask = (v8i16)__msa_sldi_b(zero, one, 15); + SLLI_4V(in0, in1, in2, in3, 4); + temp = __msa_ceqi_h(in0, 0); + temp = (v8i16)__msa_xori_b((v16u8)temp, 255); + temp = mask & temp; + in0 += temp; + } + + switch (tx_type) { + case DCT_DCT: + VP9_FDCT4(in0, in1, in2, in3, in0, in1, in2, in3); + TRANSPOSE4x4_SH_SH(in0, in1, in2, in3, in0, in1, in2, in3); + VP9_FDCT4(in0, in1, in2, in3, in0, in1, in2, in3); + break; + case ADST_DCT: + VP9_FADST4(in0, in1, in2, in3, in0, in1, in2, in3); + TRANSPOSE4x4_SH_SH(in0, in1, in2, in3, in0, in1, in2, in3); + VP9_FDCT4(in0, in1, in2, in3, in0, in1, in2, in3); + break; + case DCT_ADST: + VP9_FDCT4(in0, in1, in2, in3, in0, in1, in2, in3); + TRANSPOSE4x4_SH_SH(in0, in1, in2, in3, in0, in1, in2, in3); + VP9_FADST4(in0, in1, in2, in3, in0, in1, in2, in3); + break; + case ADST_ADST: + VP9_FADST4(in0, in1, in2, in3, in0, in1, in2, in3); + TRANSPOSE4x4_SH_SH(in0, in1, in2, in3, in0, in1, in2, in3); + VP9_FADST4(in0, in1, in2, in3, in0, in1, in2, in3); + break; + default: assert(0); break; + } + + TRANSPOSE4x4_SH_SH(in0, in1, in2, in3, in0, in1, in2, in3); + ADD4(in0, 1, in1, 1, in2, 1, in3, 1, in0, in1, in2, in3); + SRA_4V(in0, in1, in2, in3, 2); + PCKEV_D2_SH(in1, in0, in3, in2, in0, in2); + ST_SH2(in0, in2, output, 8); +} diff --git a/vp9/encoder/mips/msa/vp9_fdct8x8_msa.c b/vp9/encoder/mips/msa/vp9_fdct8x8_msa.c new file mode 100644 index 0000000..604db85 --- /dev/null +++ b/vp9/encoder/mips/msa/vp9_fdct8x8_msa.c @@ -0,0 +1,64 @@ +/* + * Copyright (c) 2015 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include + +#include "vp9/common/vp9_enums.h" +#include "vp9/encoder/mips/msa/vp9_fdct_msa.h" + +void vp9_fht8x8_msa(const int16_t *input, int16_t *output, int32_t stride, + int32_t tx_type) { + v8i16 in0, in1, in2, in3, in4, in5, in6, in7; + + LD_SH8(input, stride, in0, in1, in2, in3, in4, in5, in6, in7); + SLLI_4V(in0, in1, in2, in3, 2); + SLLI_4V(in4, in5, in6, in7, 2); + + switch (tx_type) { + case DCT_DCT: + VP9_FDCT8(in0, in1, in2, in3, in4, in5, in6, in7, in0, in1, in2, in3, in4, + in5, in6, in7); + TRANSPOSE8x8_SH_SH(in0, in1, in2, in3, in4, in5, in6, in7, in0, in1, in2, + in3, in4, in5, in6, in7); + VP9_FDCT8(in0, in1, in2, in3, in4, in5, in6, in7, in0, in1, in2, in3, in4, + in5, in6, in7); + break; + case ADST_DCT: + VP9_ADST8(in0, in1, in2, in3, in4, in5, in6, in7, in0, in1, in2, in3, in4, + in5, in6, in7); + TRANSPOSE8x8_SH_SH(in0, in1, in2, in3, in4, in5, in6, in7, in0, in1, in2, + in3, in4, in5, in6, in7); + VP9_FDCT8(in0, in1, in2, in3, in4, in5, in6, in7, in0, in1, in2, in3, in4, + in5, in6, in7); + break; + case DCT_ADST: + VP9_FDCT8(in0, in1, in2, in3, in4, in5, in6, in7, in0, in1, in2, in3, in4, + in5, in6, in7); + TRANSPOSE8x8_SH_SH(in0, in1, in2, in3, in4, in5, in6, in7, in0, in1, in2, + in3, in4, in5, in6, in7); + VP9_ADST8(in0, in1, in2, in3, in4, in5, in6, in7, in0, in1, in2, in3, in4, + in5, in6, in7); + break; + case ADST_ADST: + VP9_ADST8(in0, in1, in2, in3, in4, in5, in6, in7, in0, in1, in2, in3, in4, + in5, in6, in7); + TRANSPOSE8x8_SH_SH(in0, in1, in2, in3, in4, in5, in6, in7, in0, in1, in2, + in3, in4, in5, in6, in7); + VP9_ADST8(in0, in1, in2, in3, in4, in5, in6, in7, in0, in1, in2, in3, in4, + in5, in6, in7); + break; + default: assert(0); break; + } + + TRANSPOSE8x8_SH_SH(in0, in1, in2, in3, in4, in5, in6, in7, in0, in1, in2, in3, + in4, in5, in6, in7); + SRLI_AVE_S_4V_H(in0, in1, in2, in3, in4, in5, in6, in7); + ST_SH8(in0, in1, in2, in3, in4, in5, in6, in7, output, 8); +} diff --git a/vp9/encoder/mips/msa/vp9_fdct_msa.h b/vp9/encoder/mips/msa/vp9_fdct_msa.h new file mode 100644 index 0000000..794bec7 --- /dev/null +++ b/vp9/encoder/mips/msa/vp9_fdct_msa.h @@ -0,0 +1,116 @@ +/* + * Copyright (c) 2015 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP9_ENCODER_MIPS_MSA_VP9_FDCT_MSA_H_ +#define VP9_ENCODER_MIPS_MSA_VP9_FDCT_MSA_H_ + +#include "vpx_dsp/mips/fwd_txfm_msa.h" +#include "vpx_dsp/mips/txfm_macros_msa.h" +#include "vpx_ports/mem.h" + +#define VP9_ADST8(in0, in1, in2, in3, in4, in5, in6, in7, out0, out1, out2, \ + out3, out4, out5, out6, out7) \ + { \ + v8i16 cnst0_m, cnst1_m, cnst2_m, cnst3_m, cnst4_m; \ + v8i16 vec0_m, vec1_m, vec2_m, vec3_m, s0_m, s1_m; \ + v8i16 coeff0_m = { cospi_2_64, cospi_6_64, cospi_10_64, cospi_14_64, \ + cospi_18_64, cospi_22_64, cospi_26_64, cospi_30_64 }; \ + v8i16 coeff1_m = { cospi_8_64, -cospi_8_64, cospi_16_64, -cospi_16_64, \ + cospi_24_64, -cospi_24_64, 0, 0 }; \ + \ + SPLATI_H2_SH(coeff0_m, 0, 7, cnst0_m, cnst1_m); \ + cnst2_m = -cnst0_m; \ + ILVEV_H2_SH(cnst0_m, cnst1_m, cnst1_m, cnst2_m, cnst0_m, cnst1_m); \ + SPLATI_H2_SH(coeff0_m, 4, 3, cnst2_m, cnst3_m); \ + cnst4_m = -cnst2_m; \ + ILVEV_H2_SH(cnst2_m, cnst3_m, cnst3_m, cnst4_m, cnst2_m, cnst3_m); \ + \ + ILVRL_H2_SH(in0, in7, vec1_m, vec0_m); \ + ILVRL_H2_SH(in4, in3, vec3_m, vec2_m); \ + DOT_ADD_SUB_SRARI_PCK(vec0_m, vec1_m, vec2_m, vec3_m, cnst0_m, cnst1_m, \ + cnst2_m, cnst3_m, in7, in0, in4, in3); \ + \ + SPLATI_H2_SH(coeff0_m, 2, 5, cnst0_m, cnst1_m); \ + cnst2_m = -cnst0_m; \ + ILVEV_H2_SH(cnst0_m, cnst1_m, cnst1_m, cnst2_m, cnst0_m, cnst1_m); \ + SPLATI_H2_SH(coeff0_m, 6, 1, cnst2_m, cnst3_m); \ + cnst4_m = -cnst2_m; \ + ILVEV_H2_SH(cnst2_m, cnst3_m, cnst3_m, cnst4_m, cnst2_m, cnst3_m); \ + \ + ILVRL_H2_SH(in2, in5, vec1_m, vec0_m); \ + ILVRL_H2_SH(in6, in1, vec3_m, vec2_m); \ + \ + DOT_ADD_SUB_SRARI_PCK(vec0_m, vec1_m, vec2_m, vec3_m, cnst0_m, cnst1_m, \ + cnst2_m, cnst3_m, in5, in2, in6, in1); \ + BUTTERFLY_4(in7, in0, in2, in5, s1_m, s0_m, in2, in5); \ + out7 = -s0_m; \ + out0 = s1_m; \ + \ + SPLATI_H4_SH(coeff1_m, 0, 4, 1, 5, cnst0_m, cnst1_m, cnst2_m, cnst3_m); \ + \ + ILVEV_H2_SH(cnst3_m, cnst0_m, cnst1_m, cnst2_m, cnst3_m, cnst2_m); \ + cnst0_m = __msa_ilvev_h(cnst1_m, cnst0_m); \ + cnst1_m = cnst0_m; \ + \ + ILVRL_H2_SH(in4, in3, vec1_m, vec0_m); \ + ILVRL_H2_SH(in6, in1, vec3_m, vec2_m); \ + DOT_ADD_SUB_SRARI_PCK(vec0_m, vec1_m, vec2_m, vec3_m, cnst0_m, cnst2_m, \ + cnst3_m, cnst1_m, out1, out6, s0_m, s1_m); \ + \ + SPLATI_H2_SH(coeff1_m, 2, 3, cnst0_m, cnst1_m); \ + cnst1_m = __msa_ilvev_h(cnst1_m, cnst0_m); \ + \ + ILVRL_H2_SH(in2, in5, vec1_m, vec0_m); \ + ILVRL_H2_SH(s0_m, s1_m, vec3_m, vec2_m); \ + out3 = DOT_SHIFT_RIGHT_PCK_H(vec0_m, vec1_m, cnst0_m); \ + out4 = DOT_SHIFT_RIGHT_PCK_H(vec0_m, vec1_m, cnst1_m); \ + out2 = DOT_SHIFT_RIGHT_PCK_H(vec2_m, vec3_m, cnst0_m); \ + out5 = DOT_SHIFT_RIGHT_PCK_H(vec2_m, vec3_m, cnst1_m); \ + \ + out1 = -out1; \ + out3 = -out3; \ + out5 = -out5; \ + } + +#define VP9_FADST4(in0, in1, in2, in3, out0, out1, out2, out3) \ + { \ + v4i32 s0_m, s1_m, s2_m, s3_m, constant_m; \ + v4i32 in0_r_m, in1_r_m, in2_r_m, in3_r_m; \ + \ + UNPCK_R_SH_SW(in0, in0_r_m); \ + UNPCK_R_SH_SW(in1, in1_r_m); \ + UNPCK_R_SH_SW(in2, in2_r_m); \ + UNPCK_R_SH_SW(in3, in3_r_m); \ + \ + constant_m = __msa_fill_w(sinpi_4_9); \ + MUL2(in0_r_m, constant_m, in3_r_m, constant_m, s1_m, s0_m); \ + \ + constant_m = __msa_fill_w(sinpi_1_9); \ + s0_m += in0_r_m * constant_m; \ + s1_m -= in1_r_m * constant_m; \ + \ + constant_m = __msa_fill_w(sinpi_2_9); \ + s0_m += in1_r_m * constant_m; \ + s1_m += in3_r_m * constant_m; \ + \ + s2_m = in0_r_m + in1_r_m - in3_r_m; \ + \ + constant_m = __msa_fill_w(sinpi_3_9); \ + MUL2(in2_r_m, constant_m, s2_m, constant_m, s3_m, in1_r_m); \ + \ + in0_r_m = s0_m + s3_m; \ + s2_m = s1_m - s3_m; \ + s3_m = s1_m - s0_m + s3_m; \ + \ + SRARI_W4_SW(in0_r_m, in1_r_m, s2_m, s3_m, DCT_CONST_BITS); \ + PCKEV_H4_SH(in0_r_m, in0_r_m, in1_r_m, in1_r_m, s2_m, s2_m, s3_m, s3_m, \ + out0, out1, out2, out3); \ + } +#endif /* VP9_ENCODER_MIPS_MSA_VP9_FDCT_MSA_H_ */ diff --git a/vp9/encoder/vp9_alt_ref_aq.c b/vp9/encoder/vp9_alt_ref_aq.c new file mode 100644 index 0000000..acc3764 --- /dev/null +++ b/vp9/encoder/vp9_alt_ref_aq.c @@ -0,0 +1,63 @@ +/* + * Copyright (c) 2016 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license that can be + * found in the LICENSE file in the root of the source tree. An additional + * intellectual property rights grant can be found in the file PATENTS. + * All contributing project authors may be found in the AUTHORS file in + * the root of the source tree. + */ + +#include "vp9/encoder/vp9_encoder.h" +#include "vp9/encoder/vp9_alt_ref_aq.h" + +struct ALT_REF_AQ { + int dummy; +}; + +struct ALT_REF_AQ *vp9_alt_ref_aq_create(void) { + return (struct ALT_REF_AQ *)vpx_malloc(sizeof(struct ALT_REF_AQ)); +} + +void vp9_alt_ref_aq_destroy(struct ALT_REF_AQ *const self) { vpx_free(self); } + +void vp9_alt_ref_aq_upload_map(struct ALT_REF_AQ *const self, + const struct MATX_8U *segmentation_map) { + (void)self; + (void)segmentation_map; +} + +void vp9_alt_ref_aq_set_nsegments(struct ALT_REF_AQ *const self, + int nsegments) { + (void)self; + (void)nsegments; +} + +void vp9_alt_ref_aq_setup_mode(struct ALT_REF_AQ *const self, + struct VP9_COMP *const cpi) { + (void)cpi; + (void)self; +} + +// set basic segmentation to the altref's one +void vp9_alt_ref_aq_setup_map(struct ALT_REF_AQ *const self, + struct VP9_COMP *const cpi) { + (void)cpi; + (void)self; +} + +// restore cpi->aq_mode +void vp9_alt_ref_aq_unset_all(struct ALT_REF_AQ *const self, + struct VP9_COMP *const cpi) { + (void)cpi; + (void)self; +} + +int vp9_alt_ref_aq_disable_if(const struct ALT_REF_AQ *self, + int segmentation_overhead, int bandwidth) { + (void)bandwidth; + (void)self; + (void)segmentation_overhead; + + return 0; +} diff --git a/vp9/encoder/vp9_alt_ref_aq.h b/vp9/encoder/vp9_alt_ref_aq.h new file mode 100644 index 0000000..e508cb4 --- /dev/null +++ b/vp9/encoder/vp9_alt_ref_aq.h @@ -0,0 +1,127 @@ +/* + * Copyright (c) 2016 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license that can be + * found in the LICENSE file in the root of the source tree. An additional + * intellectual property rights grant can be found in the file PATENTS. + * All contributing project authors may be found in the AUTHORS file in + * the root of the source tree. + */ + +/* + * \file vp9_alt_ref_aq.h + * + * This file contains public interface for setting up adaptive segmentation + * for altref frames. Go to alt_ref_aq_private.h for implmentation details. + */ + +#ifndef VP9_ENCODER_VP9_ALT_REF_AQ_H_ +#define VP9_ENCODER_VP9_ALT_REF_AQ_H_ + +#include "vpx/vpx_integer.h" + +// Where to disable segmentation +#define ALT_REF_AQ_LOW_BITRATE_BOUNDARY 150 + +// Last frame always has overall quality = 0, +// so it is questionable if I can process it +#define ALT_REF_AQ_APPLY_TO_LAST_FRAME 1 + +// If I should try to compare gain +// against segmentation overhead +#define ALT_REF_AQ_PROTECT_GAIN 0 + +// Threshold to disable segmentation +#define ALT_REF_AQ_PROTECT_GAIN_THRESH 0.5 + +#ifdef __cplusplus +extern "C" { +#endif + +// Simple structure for storing images +struct MATX_8U { + int rows; + int cols; + int stride; + + uint8_t *data; +}; + +struct VP9_COMP; +struct ALT_REF_AQ; + +/*!\brief Constructor + * + * \return Instance of the class + */ +struct ALT_REF_AQ *vp9_alt_ref_aq_create(void); + +/*!\brief Upload segmentation_map to self object + * + * \param self Instance of the class + * \param segmentation_map Segmentation map to upload + */ +void vp9_alt_ref_aq_upload_map(struct ALT_REF_AQ *const self, + const struct MATX_8U *segmentation_map); + +/*!\brief Return pointer to the altref segmentation map + * + * \param self Instance of the class + * \param segmentation_overhead Segmentation overhead in bytes + * \param bandwidth Current frame bandwidth in bytes + * + * \return Boolean value to disable segmentation + */ +int vp9_alt_ref_aq_disable_if(const struct ALT_REF_AQ *self, + int segmentation_overhead, int bandwidth); + +/*!\brief Set number of segments + * + * It is used for delta quantizer computations + * and thus it can be larger than + * maximum value of the segmentation map + * + * \param self Instance of the class + * \param nsegments Maximum number of segments + */ +void vp9_alt_ref_aq_set_nsegments(struct ALT_REF_AQ *const self, int nsegments); + +/*!\brief Set up LOOKAHEAD_AQ segmentation mode + * + * Set up segmentation mode to LOOKAHEAD_AQ + * (expected future frames prediction + * quality refering to the current frame). + * + * \param self Instance of the class + * \param cpi Encoder context + */ +void vp9_alt_ref_aq_setup_mode(struct ALT_REF_AQ *const self, + struct VP9_COMP *const cpi); + +/*!\brief Set up LOOKAHEAD_AQ segmentation map and delta quantizers + * + * \param self Instance of the class + * \param cpi Encoder context + */ +void vp9_alt_ref_aq_setup_map(struct ALT_REF_AQ *const self, + struct VP9_COMP *const cpi); + +/*!\brief Restore main segmentation map mode and reset the class variables + * + * \param self Instance of the class + * \param cpi Encoder context + */ +void vp9_alt_ref_aq_unset_all(struct ALT_REF_AQ *const self, + struct VP9_COMP *const cpi); + +/*!\brief Destructor + * + * \param self Instance of the class + */ +void vp9_alt_ref_aq_destroy(struct ALT_REF_AQ *const self); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP9_ENCODER_VP9_ALT_REF_AQ_H_ diff --git a/vp9/encoder/vp9_aq_360.c b/vp9/encoder/vp9_aq_360.c new file mode 100644 index 0000000..dba017f --- /dev/null +++ b/vp9/encoder/vp9_aq_360.c @@ -0,0 +1,75 @@ +/* + * Copyright (c) 2013 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include + +#include "vpx_ports/mem.h" +#include "vpx_ports/system_state.h" + +#include "vp9/encoder/vp9_aq_360.h" +#include "vp9/encoder/vp9_aq_variance.h" + +#include "vp9/common/vp9_seg_common.h" + +#include "vp9/encoder/vp9_ratectrl.h" +#include "vp9/encoder/vp9_rd.h" +#include "vp9/encoder/vp9_segmentation.h" + +static const double rate_ratio[MAX_SEGMENTS] = { 1.0, 0.75, 0.6, 0.5, + 0.4, 0.3, 0.25 }; + +// Sets segment id 0 for the equatorial region, 1 for temperate region +// and 2 for the polar regions +unsigned int vp9_360aq_segment_id(int mi_row, int mi_rows) { + if (mi_row < mi_rows / 8 || mi_row > mi_rows - mi_rows / 8) + return 2; + else if (mi_row < mi_rows / 4 || mi_row > mi_rows - mi_rows / 4) + return 1; + else + return 0; +} + +void vp9_360aq_frame_setup(VP9_COMP *cpi) { + VP9_COMMON *cm = &cpi->common; + struct segmentation *seg = &cm->seg; + int i; + + if (frame_is_intra_only(cm) || cpi->force_update_segmentation || + cm->error_resilient_mode) { + vp9_enable_segmentation(seg); + vp9_clearall_segfeatures(seg); + + seg->abs_delta = SEGMENT_DELTADATA; + + vpx_clear_system_state(); + + for (i = 0; i < MAX_SEGMENTS; ++i) { + int qindex_delta = + vp9_compute_qdelta_by_rate(&cpi->rc, cm->frame_type, cm->base_qindex, + rate_ratio[i], cm->bit_depth); + + // We don't allow qindex 0 in a segment if the base value is not 0. + // Q index 0 (lossless) implies 4x4 encoding only and in AQ mode a segment + // Q delta is sometimes applied without going back around the rd loop. + // This could lead to an illegal combination of partition size and q. + if ((cm->base_qindex != 0) && ((cm->base_qindex + qindex_delta) == 0)) { + qindex_delta = -cm->base_qindex + 1; + } + + // No need to enable SEG_LVL_ALT_Q for this segment. + if (rate_ratio[i] == 1.0) { + continue; + } + + vp9_set_segdata(seg, i, SEG_LVL_ALT_Q, qindex_delta); + vp9_enable_segfeature(seg, i, SEG_LVL_ALT_Q); + } + } +} diff --git a/vp9/encoder/vp9_aq_360.h b/vp9/encoder/vp9_aq_360.h new file mode 100644 index 0000000..b1b5656 --- /dev/null +++ b/vp9/encoder/vp9_aq_360.h @@ -0,0 +1,27 @@ +/* + * Copyright (c) 2013 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP9_ENCODER_VP9_AQ_360_H_ +#define VP9_ENCODER_VP9_AQ_360_H_ + +#include "vp9/encoder/vp9_encoder.h" + +#ifdef __cplusplus +extern "C" { +#endif + +unsigned int vp9_360aq_segment_id(int mi_row, int mi_rows); +void vp9_360aq_frame_setup(VP9_COMP *cpi); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP9_ENCODER_VP9_AQ_VARIANCE_H_ diff --git a/vp9/encoder/vp9_aq_complexity.c b/vp9/encoder/vp9_aq_complexity.c new file mode 100644 index 0000000..bd38120 --- /dev/null +++ b/vp9/encoder/vp9_aq_complexity.c @@ -0,0 +1,160 @@ +/* + * Copyright (c) 2014 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include +#include "vpx_dsp/vpx_dsp_common.h" +#include "vpx_ports/system_state.h" + +#include "vp9/encoder/vp9_aq_complexity.h" +#include "vp9/encoder/vp9_aq_variance.h" +#include "vp9/encoder/vp9_encodeframe.h" +#include "vp9/common/vp9_seg_common.h" +#include "vp9/encoder/vp9_segmentation.h" + +#define AQ_C_SEGMENTS 5 +#define DEFAULT_AQ2_SEG 3 // Neutral Q segment +#define AQ_C_STRENGTHS 3 +static const double aq_c_q_adj_factor[AQ_C_STRENGTHS][AQ_C_SEGMENTS] = { + { 1.75, 1.25, 1.05, 1.00, 0.90 }, + { 2.00, 1.50, 1.15, 1.00, 0.85 }, + { 2.50, 1.75, 1.25, 1.00, 0.80 } +}; +static const double aq_c_transitions[AQ_C_STRENGTHS][AQ_C_SEGMENTS] = { + { 0.15, 0.30, 0.55, 2.00, 100.0 }, + { 0.20, 0.40, 0.65, 2.00, 100.0 }, + { 0.25, 0.50, 0.75, 2.00, 100.0 } +}; +static const double aq_c_var_thresholds[AQ_C_STRENGTHS][AQ_C_SEGMENTS] = { + { -4.0, -3.0, -2.0, 100.00, 100.0 }, + { -3.5, -2.5, -1.5, 100.00, 100.0 }, + { -3.0, -2.0, -1.0, 100.00, 100.0 } +}; + +static int get_aq_c_strength(int q_index, vpx_bit_depth_t bit_depth) { + // Approximate base quatizer (truncated to int) + const int base_quant = vp9_ac_quant(q_index, 0, bit_depth) / 4; + return (base_quant > 10) + (base_quant > 25); +} + +void vp9_setup_in_frame_q_adj(VP9_COMP *cpi) { + VP9_COMMON *const cm = &cpi->common; + struct segmentation *const seg = &cm->seg; + + // Make SURE use of floating point in this function is safe. + vpx_clear_system_state(); + + if (frame_is_intra_only(cm) || cm->error_resilient_mode || + cpi->refresh_alt_ref_frame || cpi->force_update_segmentation || + (cpi->refresh_golden_frame && !cpi->rc.is_src_frame_alt_ref)) { + int segment; + const int aq_strength = get_aq_c_strength(cm->base_qindex, cm->bit_depth); + + // Clear down the segment map. + memset(cpi->segmentation_map, DEFAULT_AQ2_SEG, cm->mi_rows * cm->mi_cols); + + vp9_clearall_segfeatures(seg); + + // Segmentation only makes sense if the target bits per SB is above a + // threshold. Below this the overheads will usually outweigh any benefit. + if (cpi->rc.sb64_target_rate < 256) { + vp9_disable_segmentation(seg); + return; + } + + vp9_enable_segmentation(seg); + + // Select delta coding method. + seg->abs_delta = SEGMENT_DELTADATA; + + // Default segment "Q" feature is disabled so it defaults to the baseline Q. + vp9_disable_segfeature(seg, DEFAULT_AQ2_SEG, SEG_LVL_ALT_Q); + + // Use some of the segments for in frame Q adjustment. + for (segment = 0; segment < AQ_C_SEGMENTS; ++segment) { + int qindex_delta; + + if (segment == DEFAULT_AQ2_SEG) continue; + + qindex_delta = vp9_compute_qdelta_by_rate( + &cpi->rc, cm->frame_type, cm->base_qindex, + aq_c_q_adj_factor[aq_strength][segment], cm->bit_depth); + + // For AQ complexity mode, we dont allow Q0 in a segment if the base + // Q is not 0. Q0 (lossless) implies 4x4 only and in AQ mode 2 a segment + // Q delta is sometimes applied without going back around the rd loop. + // This could lead to an illegal combination of partition size and q. + if ((cm->base_qindex != 0) && ((cm->base_qindex + qindex_delta) == 0)) { + qindex_delta = -cm->base_qindex + 1; + } + if ((cm->base_qindex + qindex_delta) > 0) { + vp9_enable_segfeature(seg, segment, SEG_LVL_ALT_Q); + vp9_set_segdata(seg, segment, SEG_LVL_ALT_Q, qindex_delta); + } + } + } +} + +#define DEFAULT_LV_THRESH 10.0 +#define MIN_DEFAULT_LV_THRESH 8.0 +// Select a segment for the current block. +// The choice of segment for a block depends on the ratio of the projected +// bits for the block vs a target average and its spatial complexity. +void vp9_caq_select_segment(VP9_COMP *cpi, MACROBLOCK *mb, BLOCK_SIZE bs, + int mi_row, int mi_col, int projected_rate) { + VP9_COMMON *const cm = &cpi->common; + + const int mi_offset = mi_row * cm->mi_cols + mi_col; + const int bw = num_8x8_blocks_wide_lookup[BLOCK_64X64]; + const int bh = num_8x8_blocks_high_lookup[BLOCK_64X64]; + const int xmis = VPXMIN(cm->mi_cols - mi_col, num_8x8_blocks_wide_lookup[bs]); + const int ymis = VPXMIN(cm->mi_rows - mi_row, num_8x8_blocks_high_lookup[bs]); + int x, y; + int i; + unsigned char segment; + + if (0) { + segment = DEFAULT_AQ2_SEG; + } else { + // Rate depends on fraction of a SB64 in frame (xmis * ymis / bw * bh). + // It is converted to bits * 256 units. + const int target_rate = + (cpi->rc.sb64_target_rate * xmis * ymis * 256) / (bw * bh); + double logvar; + double low_var_thresh; + const int aq_strength = get_aq_c_strength(cm->base_qindex, cm->bit_depth); + + vpx_clear_system_state(); + low_var_thresh = (cpi->oxcf.pass == 2) ? VPXMAX(cpi->twopass.mb_av_energy, + MIN_DEFAULT_LV_THRESH) + : DEFAULT_LV_THRESH; + + vp9_setup_src_planes(mb, cpi->Source, mi_row, mi_col); + logvar = vp9_log_block_var(cpi, mb, bs); + + segment = AQ_C_SEGMENTS - 1; // Just in case no break out below. + for (i = 0; i < AQ_C_SEGMENTS; ++i) { + // Test rate against a threshold value and variance against a threshold. + // Increasing segment number (higher variance and complexity) = higher Q. + if ((projected_rate < target_rate * aq_c_transitions[aq_strength][i]) && + (logvar < (low_var_thresh + aq_c_var_thresholds[aq_strength][i]))) { + segment = i; + break; + } + } + } + + // Fill in the entires in the segment map corresponding to this SB64. + for (y = 0; y < ymis; y++) { + for (x = 0; x < xmis; x++) { + cpi->segmentation_map[mi_offset + y * cm->mi_cols + x] = segment; + } + } +} diff --git a/vp9/encoder/vp9_aq_complexity.h b/vp9/encoder/vp9_aq_complexity.h new file mode 100644 index 0000000..a00d34e --- /dev/null +++ b/vp9/encoder/vp9_aq_complexity.h @@ -0,0 +1,36 @@ +/* + * Copyright (c) 2014 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP9_ENCODER_VP9_AQ_COMPLEXITY_H_ +#define VP9_ENCODER_VP9_AQ_COMPLEXITY_H_ + +#ifdef __cplusplus +extern "C" { +#endif + +#include "vp9/common/vp9_enums.h" + +struct VP9_COMP; +struct macroblock; + +// Select a segment for the current Block. +void vp9_caq_select_segment(struct VP9_COMP *cpi, struct macroblock *, + BLOCK_SIZE bs, int mi_row, int mi_col, + int projected_rate); + +// This function sets up a set of segments with delta Q values around +// the baseline frame quantizer. +void vp9_setup_in_frame_q_adj(struct VP9_COMP *cpi); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP9_ENCODER_VP9_AQ_COMPLEXITY_H_ diff --git a/vp9/encoder/vp9_aq_cyclicrefresh.c b/vp9/encoder/vp9_aq_cyclicrefresh.c new file mode 100644 index 0000000..2f2f005 --- /dev/null +++ b/vp9/encoder/vp9_aq_cyclicrefresh.c @@ -0,0 +1,590 @@ +/* + * Copyright (c) 2014 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include + +#include "vpx_dsp/vpx_dsp_common.h" +#include "vpx_ports/system_state.h" + +#include "vp9/encoder/vp9_aq_cyclicrefresh.h" + +#include "vp9/common/vp9_seg_common.h" + +#include "vp9/encoder/vp9_ratectrl.h" +#include "vp9/encoder/vp9_segmentation.h" + +CYCLIC_REFRESH *vp9_cyclic_refresh_alloc(int mi_rows, int mi_cols) { + size_t last_coded_q_map_size; + CYCLIC_REFRESH *const cr = vpx_calloc(1, sizeof(*cr)); + if (cr == NULL) return NULL; + + cr->map = vpx_calloc(mi_rows * mi_cols, sizeof(*cr->map)); + if (cr->map == NULL) { + vp9_cyclic_refresh_free(cr); + return NULL; + } + last_coded_q_map_size = mi_rows * mi_cols * sizeof(*cr->last_coded_q_map); + cr->last_coded_q_map = vpx_malloc(last_coded_q_map_size); + if (cr->last_coded_q_map == NULL) { + vp9_cyclic_refresh_free(cr); + return NULL; + } + assert(MAXQ <= 255); + memset(cr->last_coded_q_map, MAXQ, last_coded_q_map_size); + return cr; +} + +void vp9_cyclic_refresh_free(CYCLIC_REFRESH *cr) { + vpx_free(cr->map); + vpx_free(cr->last_coded_q_map); + vpx_free(cr); +} + +// Check if this coding block, of size bsize, should be considered for refresh +// (lower-qp coding). Decision can be based on various factors, such as +// size of the coding block (i.e., below min_block size rejected), coding +// mode, and rate/distortion. +static int candidate_refresh_aq(const CYCLIC_REFRESH *cr, const MODE_INFO *mi, + int64_t rate, int64_t dist, int bsize) { + MV mv = mi->mv[0].as_mv; + // Reject the block for lower-qp coding if projected distortion + // is above the threshold, and any of the following is true: + // 1) mode uses large mv + // 2) mode is an intra-mode + // Otherwise accept for refresh. + if (dist > cr->thresh_dist_sb && + (mv.row > cr->motion_thresh || mv.row < -cr->motion_thresh || + mv.col > cr->motion_thresh || mv.col < -cr->motion_thresh || + !is_inter_block(mi))) + return CR_SEGMENT_ID_BASE; + else if (bsize >= BLOCK_16X16 && rate < cr->thresh_rate_sb && + is_inter_block(mi) && mi->mv[0].as_int == 0 && + cr->rate_boost_fac > 10) + // More aggressive delta-q for bigger blocks with zero motion. + return CR_SEGMENT_ID_BOOST2; + else + return CR_SEGMENT_ID_BOOST1; +} + +// Compute delta-q for the segment. +static int compute_deltaq(const VP9_COMP *cpi, int q, double rate_factor) { + const CYCLIC_REFRESH *const cr = cpi->cyclic_refresh; + const RATE_CONTROL *const rc = &cpi->rc; + int deltaq = vp9_compute_qdelta_by_rate(rc, cpi->common.frame_type, q, + rate_factor, cpi->common.bit_depth); + if ((-deltaq) > cr->max_qdelta_perc * q / 100) { + deltaq = -cr->max_qdelta_perc * q / 100; + } + return deltaq; +} + +// For the just encoded frame, estimate the bits, incorporating the delta-q +// from non-base segment. For now ignore effect of multiple segments +// (with different delta-q). Note this function is called in the postencode +// (called from rc_update_rate_correction_factors()). +int vp9_cyclic_refresh_estimate_bits_at_q(const VP9_COMP *cpi, + double correction_factor) { + const VP9_COMMON *const cm = &cpi->common; + const CYCLIC_REFRESH *const cr = cpi->cyclic_refresh; + int estimated_bits; + int mbs = cm->MBs; + int num8x8bl = mbs << 2; + // Weight for non-base segments: use actual number of blocks refreshed in + // previous/just encoded frame. Note number of blocks here is in 8x8 units. + double weight_segment1 = (double)cr->actual_num_seg1_blocks / num8x8bl; + double weight_segment2 = (double)cr->actual_num_seg2_blocks / num8x8bl; + // Take segment weighted average for estimated bits. + estimated_bits = + (int)((1.0 - weight_segment1 - weight_segment2) * + vp9_estimate_bits_at_q(cm->frame_type, cm->base_qindex, mbs, + correction_factor, cm->bit_depth) + + weight_segment1 * + vp9_estimate_bits_at_q(cm->frame_type, + cm->base_qindex + cr->qindex_delta[1], + mbs, correction_factor, cm->bit_depth) + + weight_segment2 * + vp9_estimate_bits_at_q(cm->frame_type, + cm->base_qindex + cr->qindex_delta[2], + mbs, correction_factor, cm->bit_depth)); + return estimated_bits; +} + +// Prior to encoding the frame, estimate the bits per mb, for a given q = i and +// a corresponding delta-q (for segment 1). This function is called in the +// rc_regulate_q() to set the base qp index. +// Note: the segment map is set to either 0/CR_SEGMENT_ID_BASE (no refresh) or +// to 1/CR_SEGMENT_ID_BOOST1 (refresh) for each superblock, prior to encoding. +int vp9_cyclic_refresh_rc_bits_per_mb(const VP9_COMP *cpi, int i, + double correction_factor) { + const VP9_COMMON *const cm = &cpi->common; + CYCLIC_REFRESH *const cr = cpi->cyclic_refresh; + int bits_per_mb; + int deltaq = 0; + if (cpi->oxcf.speed < 8) + deltaq = compute_deltaq(cpi, i, cr->rate_ratio_qdelta); + else + deltaq = -(cr->max_qdelta_perc * i) / 200; + // Take segment weighted average for bits per mb. + bits_per_mb = (int)((1.0 - cr->weight_segment) * + vp9_rc_bits_per_mb(cm->frame_type, i, + correction_factor, cm->bit_depth) + + cr->weight_segment * + vp9_rc_bits_per_mb(cm->frame_type, i + deltaq, + correction_factor, cm->bit_depth)); + return bits_per_mb; +} + +// Prior to coding a given prediction block, of size bsize at (mi_row, mi_col), +// check if we should reset the segment_id, and update the cyclic_refresh map +// and segmentation map. +void vp9_cyclic_refresh_update_segment(VP9_COMP *const cpi, MODE_INFO *const mi, + int mi_row, int mi_col, BLOCK_SIZE bsize, + int64_t rate, int64_t dist, int skip, + struct macroblock_plane *const p) { + const VP9_COMMON *const cm = &cpi->common; + CYCLIC_REFRESH *const cr = cpi->cyclic_refresh; + const int bw = num_8x8_blocks_wide_lookup[bsize]; + const int bh = num_8x8_blocks_high_lookup[bsize]; + const int xmis = VPXMIN(cm->mi_cols - mi_col, bw); + const int ymis = VPXMIN(cm->mi_rows - mi_row, bh); + const int block_index = mi_row * cm->mi_cols + mi_col; + int refresh_this_block = candidate_refresh_aq(cr, mi, rate, dist, bsize); + // Default is to not update the refresh map. + int new_map_value = cr->map[block_index]; + int x = 0; + int y = 0; + + int is_skin = 0; + if (refresh_this_block == 0 && bsize <= BLOCK_16X16 && + cpi->use_skin_detection) { + is_skin = + vp9_compute_skin_block(p[0].src.buf, p[1].src.buf, p[2].src.buf, + p[0].src.stride, p[1].src.stride, bsize, 0, 0); + if (is_skin) refresh_this_block = 1; + } + + if (cpi->oxcf.rc_mode == VPX_VBR && mi->ref_frame[0] == GOLDEN_FRAME) + refresh_this_block = 0; + + // If this block is labeled for refresh, check if we should reset the + // segment_id. + if (cyclic_refresh_segment_id_boosted(mi->segment_id)) { + mi->segment_id = refresh_this_block; + // Reset segment_id if it will be skipped. + if (skip) mi->segment_id = CR_SEGMENT_ID_BASE; + } + + // Update the cyclic refresh map, to be used for setting segmentation map + // for the next frame. If the block will be refreshed this frame, mark it + // as clean. The magnitude of the -ve influences how long before we consider + // it for refresh again. + if (cyclic_refresh_segment_id_boosted(mi->segment_id)) { + new_map_value = -cr->time_for_refresh; + } else if (refresh_this_block) { + // Else if it is accepted as candidate for refresh, and has not already + // been refreshed (marked as 1) then mark it as a candidate for cleanup + // for future time (marked as 0), otherwise don't update it. + if (cr->map[block_index] == 1) new_map_value = 0; + } else { + // Leave it marked as block that is not candidate for refresh. + new_map_value = 1; + } + + // Update entries in the cyclic refresh map with new_map_value, and + // copy mbmi->segment_id into global segmentation map. + for (y = 0; y < ymis; y++) + for (x = 0; x < xmis; x++) { + int map_offset = block_index + y * cm->mi_cols + x; + cr->map[map_offset] = new_map_value; + cpi->segmentation_map[map_offset] = mi->segment_id; + } +} + +void vp9_cyclic_refresh_update_sb_postencode(VP9_COMP *const cpi, + const MODE_INFO *const mi, + int mi_row, int mi_col, + BLOCK_SIZE bsize) { + const VP9_COMMON *const cm = &cpi->common; + CYCLIC_REFRESH *const cr = cpi->cyclic_refresh; + const int bw = num_8x8_blocks_wide_lookup[bsize]; + const int bh = num_8x8_blocks_high_lookup[bsize]; + const int xmis = VPXMIN(cm->mi_cols - mi_col, bw); + const int ymis = VPXMIN(cm->mi_rows - mi_row, bh); + const int block_index = mi_row * cm->mi_cols + mi_col; + int x, y; + for (y = 0; y < ymis; y++) + for (x = 0; x < xmis; x++) { + int map_offset = block_index + y * cm->mi_cols + x; + // Inter skip blocks were clearly not coded at the current qindex, so + // don't update the map for them. For cases where motion is non-zero or + // the reference frame isn't the previous frame, the previous value in + // the map for this spatial location is not entirely correct. + if ((!is_inter_block(mi) || !mi->skip) && + mi->segment_id <= CR_SEGMENT_ID_BOOST2) { + cr->last_coded_q_map[map_offset] = + clamp(cm->base_qindex + cr->qindex_delta[mi->segment_id], 0, MAXQ); + } else if (is_inter_block(mi) && mi->skip && + mi->segment_id <= CR_SEGMENT_ID_BOOST2) { + cr->last_coded_q_map[map_offset] = VPXMIN( + clamp(cm->base_qindex + cr->qindex_delta[mi->segment_id], 0, MAXQ), + cr->last_coded_q_map[map_offset]); + } + } +} + +// From the just encoded frame: update the actual number of blocks that were +// applied the segment delta q, and the amount of low motion in the frame. +// Also check conditions for forcing golden update, or preventing golden +// update if the period is up. +void vp9_cyclic_refresh_postencode(VP9_COMP *const cpi) { + VP9_COMMON *const cm = &cpi->common; + MODE_INFO **mi = cm->mi_grid_visible; + CYCLIC_REFRESH *const cr = cpi->cyclic_refresh; + RATE_CONTROL *const rc = &cpi->rc; + unsigned char *const seg_map = cpi->segmentation_map; + double fraction_low = 0.0; + int force_gf_refresh = 0; + int low_content_frame = 0; + int mi_row, mi_col; + cr->actual_num_seg1_blocks = 0; + cr->actual_num_seg2_blocks = 0; + for (mi_row = 0; mi_row < cm->mi_rows; mi_row++) { + for (mi_col = 0; mi_col < cm->mi_cols; mi_col++) { + MV mv = mi[0]->mv[0].as_mv; + int map_index = mi_row * cm->mi_cols + mi_col; + if (cyclic_refresh_segment_id(seg_map[map_index]) == CR_SEGMENT_ID_BOOST1) + cr->actual_num_seg1_blocks++; + else if (cyclic_refresh_segment_id(seg_map[map_index]) == + CR_SEGMENT_ID_BOOST2) + cr->actual_num_seg2_blocks++; + // Accumulate low_content_frame. + if (is_inter_block(mi[0]) && abs(mv.row) < 16 && abs(mv.col) < 16) + low_content_frame++; + mi++; + } + mi += 8; + } + // Check for golden frame update: only for non-SVC and non-golden boost. + if (!cpi->use_svc && cpi->ext_refresh_frame_flags_pending == 0 && + !cpi->oxcf.gf_cbr_boost_pct) { + // Force this frame as a golden update frame if this frame changes the + // resolution (resize_pending != 0). + if (cpi->resize_pending != 0) { + vp9_cyclic_refresh_set_golden_update(cpi); + rc->frames_till_gf_update_due = rc->baseline_gf_interval; + if (rc->frames_till_gf_update_due > rc->frames_to_key) + rc->frames_till_gf_update_due = rc->frames_to_key; + cpi->refresh_golden_frame = 1; + force_gf_refresh = 1; + } + // Update average of low content/motion in the frame. + fraction_low = (double)low_content_frame / (cm->mi_rows * cm->mi_cols); + cr->low_content_avg = (fraction_low + 3 * cr->low_content_avg) / 4; + if (!force_gf_refresh && cpi->refresh_golden_frame == 1 && + rc->frames_since_key > rc->frames_since_golden + 1) { + // Don't update golden reference if the amount of low_content for the + // current encoded frame is small, or if the recursive average of the + // low_content over the update interval window falls below threshold. + if (fraction_low < 0.65 || cr->low_content_avg < 0.6) { + cpi->refresh_golden_frame = 0; + } + // Reset for next internal. + cr->low_content_avg = fraction_low; + } + } +} + +// Set golden frame update interval, for non-svc 1 pass CBR mode. +void vp9_cyclic_refresh_set_golden_update(VP9_COMP *const cpi) { + RATE_CONTROL *const rc = &cpi->rc; + CYCLIC_REFRESH *const cr = cpi->cyclic_refresh; + // Set minimum gf_interval for GF update to a multiple of the refresh period, + // with some max limit. Depending on past encoding stats, GF flag may be + // reset and update may not occur until next baseline_gf_interval. + if (cr->percent_refresh > 0) + rc->baseline_gf_interval = VPXMIN(4 * (100 / cr->percent_refresh), 40); + else + rc->baseline_gf_interval = 40; + if (cpi->oxcf.rc_mode == VPX_VBR) rc->baseline_gf_interval = 20; + if (rc->avg_frame_low_motion < 50 && rc->frames_since_key > 40) + rc->baseline_gf_interval = 10; +} + +// Update the segmentation map, and related quantities: cyclic refresh map, +// refresh sb_index, and target number of blocks to be refreshed. +// The map is set to either 0/CR_SEGMENT_ID_BASE (no refresh) or to +// 1/CR_SEGMENT_ID_BOOST1 (refresh) for each superblock. +// Blocks labeled as BOOST1 may later get set to BOOST2 (during the +// encoding of the superblock). +static void cyclic_refresh_update_map(VP9_COMP *const cpi) { + VP9_COMMON *const cm = &cpi->common; + CYCLIC_REFRESH *const cr = cpi->cyclic_refresh; + unsigned char *const seg_map = cpi->segmentation_map; + int i, block_count, bl_index, sb_rows, sb_cols, sbs_in_frame; + int xmis, ymis, x, y; + int consec_zero_mv_thresh = 0; + int qindex_thresh = 0; + int count_sel = 0; + int count_tot = 0; + memset(seg_map, CR_SEGMENT_ID_BASE, cm->mi_rows * cm->mi_cols); + sb_cols = (cm->mi_cols + MI_BLOCK_SIZE - 1) / MI_BLOCK_SIZE; + sb_rows = (cm->mi_rows + MI_BLOCK_SIZE - 1) / MI_BLOCK_SIZE; + sbs_in_frame = sb_cols * sb_rows; + // Number of target blocks to get the q delta (segment 1). + block_count = cr->percent_refresh * cm->mi_rows * cm->mi_cols / 100; + // Set the segmentation map: cycle through the superblocks, starting at + // cr->mb_index, and stopping when either block_count blocks have been found + // to be refreshed, or we have passed through whole frame. + assert(cr->sb_index < sbs_in_frame); + i = cr->sb_index; + cr->target_num_seg_blocks = 0; + if (cpi->oxcf.content != VP9E_CONTENT_SCREEN) { + consec_zero_mv_thresh = 100; + } + qindex_thresh = + cpi->oxcf.content == VP9E_CONTENT_SCREEN + ? vp9_get_qindex(&cm->seg, CR_SEGMENT_ID_BOOST2, cm->base_qindex) + : vp9_get_qindex(&cm->seg, CR_SEGMENT_ID_BOOST1, cm->base_qindex); + // More aggressive settings for noisy content. + if (cpi->noise_estimate.enabled && cpi->noise_estimate.level >= kMedium) { + consec_zero_mv_thresh = 60; + qindex_thresh = + VPXMAX(vp9_get_qindex(&cm->seg, CR_SEGMENT_ID_BOOST1, cm->base_qindex), + cm->base_qindex); + } + do { + int sum_map = 0; + int consec_zero_mv_thresh_block = consec_zero_mv_thresh; + // Get the mi_row/mi_col corresponding to superblock index i. + int sb_row_index = (i / sb_cols); + int sb_col_index = i - sb_row_index * sb_cols; + int mi_row = sb_row_index * MI_BLOCK_SIZE; + int mi_col = sb_col_index * MI_BLOCK_SIZE; + assert(mi_row >= 0 && mi_row < cm->mi_rows); + assert(mi_col >= 0 && mi_col < cm->mi_cols); + bl_index = mi_row * cm->mi_cols + mi_col; + // Loop through all 8x8 blocks in superblock and update map. + xmis = + VPXMIN(cm->mi_cols - mi_col, num_8x8_blocks_wide_lookup[BLOCK_64X64]); + ymis = + VPXMIN(cm->mi_rows - mi_row, num_8x8_blocks_high_lookup[BLOCK_64X64]); + if (cpi->noise_estimate.enabled && cpi->noise_estimate.level >= kMedium && + (xmis <= 2 || ymis <= 2)) + consec_zero_mv_thresh_block = 4; + for (y = 0; y < ymis; y++) { + for (x = 0; x < xmis; x++) { + const int bl_index2 = bl_index + y * cm->mi_cols + x; + // If the block is as a candidate for clean up then mark it + // for possible boost/refresh (segment 1). The segment id may get + // reset to 0 later depending on the coding mode. + if (cr->map[bl_index2] == 0) { + count_tot++; + if (cr->last_coded_q_map[bl_index2] > qindex_thresh || + cpi->consec_zero_mv[bl_index2] < consec_zero_mv_thresh_block) { + sum_map++; + count_sel++; + } + } else if (cr->map[bl_index2] < 0) { + cr->map[bl_index2]++; + } + } + } + // Enforce constant segment over superblock. + // If segment is at least half of superblock, set to 1. + if (sum_map >= xmis * ymis / 2) { + for (y = 0; y < ymis; y++) + for (x = 0; x < xmis; x++) { + seg_map[bl_index + y * cm->mi_cols + x] = CR_SEGMENT_ID_BOOST1; + } + cr->target_num_seg_blocks += xmis * ymis; + } + i++; + if (i == sbs_in_frame) { + i = 0; + } + } while (cr->target_num_seg_blocks < block_count && i != cr->sb_index); + cr->sb_index = i; + cr->reduce_refresh = 0; + if (count_sel<(3 * count_tot)>> 2) cr->reduce_refresh = 1; +} + +// Set cyclic refresh parameters. +void vp9_cyclic_refresh_update_parameters(VP9_COMP *const cpi) { + const RATE_CONTROL *const rc = &cpi->rc; + const VP9_COMMON *const cm = &cpi->common; + CYCLIC_REFRESH *const cr = cpi->cyclic_refresh; + int num8x8bl = cm->MBs << 2; + int target_refresh = 0; + double weight_segment_target = 0; + double weight_segment = 0; + int thresh_low_motion = (cm->width < 720) ? 55 : 20; + cr->apply_cyclic_refresh = 1; + if (cm->frame_type == KEY_FRAME || cpi->svc.temporal_layer_id > 0 || + (!cpi->use_svc && rc->avg_frame_low_motion < thresh_low_motion && + rc->frames_since_key > 40)) { + cr->apply_cyclic_refresh = 0; + return; + } + cr->percent_refresh = 10; + if (cr->reduce_refresh) cr->percent_refresh = 5; + cr->max_qdelta_perc = 60; + cr->time_for_refresh = 0; + cr->motion_thresh = 32; + cr->rate_boost_fac = 15; + // Use larger delta-qp (increase rate_ratio_qdelta) for first few (~4) + // periods of the refresh cycle, after a key frame. + // Account for larger interval on base layer for temporal layers. + if (cr->percent_refresh > 0 && + rc->frames_since_key < + (4 * cpi->svc.number_temporal_layers) * (100 / cr->percent_refresh)) { + cr->rate_ratio_qdelta = 3.0; + } else { + cr->rate_ratio_qdelta = 2.0; + if (cpi->noise_estimate.enabled && cpi->noise_estimate.level >= kMedium) { + // Reduce the delta-qp if the estimated source noise is above threshold. + cr->rate_ratio_qdelta = 1.7; + cr->rate_boost_fac = 13; + } + } + // Adjust some parameters for low resolutions. + if (cm->width <= 352 && cm->height <= 288) { + if (rc->avg_frame_bandwidth < 3000) { + cr->motion_thresh = 16; + cr->rate_boost_fac = 13; + } else { + cr->max_qdelta_perc = 70; + cr->rate_ratio_qdelta = VPXMAX(cr->rate_ratio_qdelta, 2.5); + } + } + if (cpi->svc.spatial_layer_id > 0) { + cr->motion_thresh = 4; + cr->rate_boost_fac = 12; + } + if (cpi->oxcf.rc_mode == VPX_VBR) { + // To be adjusted for VBR mode, e.g., based on gf period and boost. + // For now use smaller qp-delta (than CBR), no second boosted seg, and + // turn-off (no refresh) on golden refresh (since it's already boosted). + cr->percent_refresh = 10; + cr->rate_ratio_qdelta = 1.5; + cr->rate_boost_fac = 10; + if (cpi->refresh_golden_frame == 1) { + cr->percent_refresh = 0; + cr->rate_ratio_qdelta = 1.0; + } + } + // Weight for segment prior to encoding: take the average of the target + // number for the frame to be encoded and the actual from the previous frame. + // Use the target if its less. To be used for setting the base qp for the + // frame in vp9_rc_regulate_q. + target_refresh = cr->percent_refresh * cm->mi_rows * cm->mi_cols / 100; + weight_segment_target = (double)(target_refresh) / num8x8bl; + weight_segment = (double)((target_refresh + cr->actual_num_seg1_blocks + + cr->actual_num_seg2_blocks) >> + 1) / + num8x8bl; + if (weight_segment_target < 7 * weight_segment / 8) + weight_segment = weight_segment_target; + cr->weight_segment = weight_segment; +} + +// Setup cyclic background refresh: set delta q and segmentation map. +void vp9_cyclic_refresh_setup(VP9_COMP *const cpi) { + VP9_COMMON *const cm = &cpi->common; + const RATE_CONTROL *const rc = &cpi->rc; + CYCLIC_REFRESH *const cr = cpi->cyclic_refresh; + struct segmentation *const seg = &cm->seg; + if (cm->current_video_frame == 0) cr->low_content_avg = 0.0; + if (!cr->apply_cyclic_refresh || (cpi->force_update_segmentation)) { + // Set segmentation map to 0 and disable. + unsigned char *const seg_map = cpi->segmentation_map; + memset(seg_map, 0, cm->mi_rows * cm->mi_cols); + vp9_disable_segmentation(&cm->seg); + if (cm->frame_type == KEY_FRAME) { + memset(cr->last_coded_q_map, MAXQ, + cm->mi_rows * cm->mi_cols * sizeof(*cr->last_coded_q_map)); + cr->sb_index = 0; + cr->reduce_refresh = 0; + } + return; + } else { + int qindex_delta = 0; + int qindex2; + const double q = vp9_convert_qindex_to_q(cm->base_qindex, cm->bit_depth); + vpx_clear_system_state(); + // Set rate threshold to some multiple (set to 2 for now) of the target + // rate (target is given by sb64_target_rate and scaled by 256). + cr->thresh_rate_sb = ((int64_t)(rc->sb64_target_rate) << 8) << 2; + // Distortion threshold, quadratic in Q, scale factor to be adjusted. + // q will not exceed 457, so (q * q) is within 32bit; see: + // vp9_convert_qindex_to_q(), vp9_ac_quant(), ac_qlookup*[]. + cr->thresh_dist_sb = ((int64_t)(q * q)) << 2; + + // Set up segmentation. + // Clear down the segment map. + vp9_enable_segmentation(&cm->seg); + vp9_clearall_segfeatures(seg); + // Select delta coding method. + seg->abs_delta = SEGMENT_DELTADATA; + + // Note: setting temporal_update has no effect, as the seg-map coding method + // (temporal or spatial) is determined in vp9_choose_segmap_coding_method(), + // based on the coding cost of each method. For error_resilient mode on the + // last_frame_seg_map is set to 0, so if temporal coding is used, it is + // relative to 0 previous map. + // seg->temporal_update = 0; + + // Segment BASE "Q" feature is disabled so it defaults to the baseline Q. + vp9_disable_segfeature(seg, CR_SEGMENT_ID_BASE, SEG_LVL_ALT_Q); + // Use segment BOOST1 for in-frame Q adjustment. + vp9_enable_segfeature(seg, CR_SEGMENT_ID_BOOST1, SEG_LVL_ALT_Q); + // Use segment BOOST2 for more aggressive in-frame Q adjustment. + vp9_enable_segfeature(seg, CR_SEGMENT_ID_BOOST2, SEG_LVL_ALT_Q); + + // Set the q delta for segment BOOST1. + qindex_delta = compute_deltaq(cpi, cm->base_qindex, cr->rate_ratio_qdelta); + cr->qindex_delta[1] = qindex_delta; + + // Compute rd-mult for segment BOOST1. + qindex2 = clamp(cm->base_qindex + cm->y_dc_delta_q + qindex_delta, 0, MAXQ); + + cr->rdmult = vp9_compute_rd_mult(cpi, qindex2); + + vp9_set_segdata(seg, CR_SEGMENT_ID_BOOST1, SEG_LVL_ALT_Q, qindex_delta); + + // Set a more aggressive (higher) q delta for segment BOOST2. + qindex_delta = compute_deltaq( + cpi, cm->base_qindex, + VPXMIN(CR_MAX_RATE_TARGET_RATIO, + 0.1 * cr->rate_boost_fac * cr->rate_ratio_qdelta)); + cr->qindex_delta[2] = qindex_delta; + vp9_set_segdata(seg, CR_SEGMENT_ID_BOOST2, SEG_LVL_ALT_Q, qindex_delta); + + // Reset if resoluton change has occurred. + if (cpi->resize_pending != 0) vp9_cyclic_refresh_reset_resize(cpi); + + // Update the segmentation and refresh map. + cyclic_refresh_update_map(cpi); + } +} + +int vp9_cyclic_refresh_get_rdmult(const CYCLIC_REFRESH *cr) { + return cr->rdmult; +} + +void vp9_cyclic_refresh_reset_resize(VP9_COMP *const cpi) { + const VP9_COMMON *const cm = &cpi->common; + CYCLIC_REFRESH *const cr = cpi->cyclic_refresh; + memset(cr->map, 0, cm->mi_rows * cm->mi_cols); + memset(cr->last_coded_q_map, MAXQ, cm->mi_rows * cm->mi_cols); + cr->sb_index = 0; + cpi->refresh_golden_frame = 1; + cpi->refresh_alt_ref_frame = 1; +} diff --git a/vp9/encoder/vp9_aq_cyclicrefresh.h b/vp9/encoder/vp9_aq_cyclicrefresh.h new file mode 100644 index 0000000..77fa67c --- /dev/null +++ b/vp9/encoder/vp9_aq_cyclicrefresh.h @@ -0,0 +1,146 @@ +/* + * Copyright (c) 2014 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP9_ENCODER_VP9_AQ_CYCLICREFRESH_H_ +#define VP9_ENCODER_VP9_AQ_CYCLICREFRESH_H_ + +#include "vpx/vpx_integer.h" +#include "vp9/common/vp9_blockd.h" +#include "vp9/encoder/vp9_block.h" +#include "vp9/encoder/vp9_skin_detection.h" + +#ifdef __cplusplus +extern "C" { +#endif + +// The segment ids used in cyclic refresh: from base (no boost) to increasing +// boost (higher delta-qp). +#define CR_SEGMENT_ID_BASE 0 +#define CR_SEGMENT_ID_BOOST1 1 +#define CR_SEGMENT_ID_BOOST2 2 + +// Maximum rate target ratio for setting segment delta-qp. +#define CR_MAX_RATE_TARGET_RATIO 4.0 + +struct CYCLIC_REFRESH { + // Percentage of blocks per frame that are targeted as candidates + // for cyclic refresh. + int percent_refresh; + // Maximum q-delta as percentage of base q. + int max_qdelta_perc; + // Superblock starting index for cycling through the frame. + int sb_index; + // Controls how long block will need to wait to be refreshed again, in + // excess of the cycle time, i.e., in the case of all zero motion, block + // will be refreshed every (100/percent_refresh + time_for_refresh) frames. + int time_for_refresh; + // Target number of (8x8) blocks that are set for delta-q. + int target_num_seg_blocks; + // Actual number of (8x8) blocks that were applied delta-q. + int actual_num_seg1_blocks; + int actual_num_seg2_blocks; + // RD mult. parameters for segment 1. + int rdmult; + // Cyclic refresh map. + signed char *map; + // Map of the last q a block was coded at. + uint8_t *last_coded_q_map; + // Thresholds applied to the projected rate/distortion of the coding block, + // when deciding whether block should be refreshed. + int64_t thresh_rate_sb; + int64_t thresh_dist_sb; + // Threshold applied to the motion vector (in units of 1/8 pel) of the + // coding block, when deciding whether block should be refreshed. + int16_t motion_thresh; + // Rate target ratio to set q delta. + double rate_ratio_qdelta; + // Boost factor for rate target ratio, for segment CR_SEGMENT_ID_BOOST2. + int rate_boost_fac; + double low_content_avg; + int qindex_delta[3]; + int reduce_refresh; + double weight_segment; + int apply_cyclic_refresh; +}; + +struct VP9_COMP; + +typedef struct CYCLIC_REFRESH CYCLIC_REFRESH; + +CYCLIC_REFRESH *vp9_cyclic_refresh_alloc(int mi_rows, int mi_cols); + +void vp9_cyclic_refresh_free(CYCLIC_REFRESH *cr); + +// Estimate the bits, incorporating the delta-q from segment 1, after encoding +// the frame. +int vp9_cyclic_refresh_estimate_bits_at_q(const struct VP9_COMP *cpi, + double correction_factor); + +// Estimate the bits per mb, for a given q = i and a corresponding delta-q +// (for segment 1), prior to encoding the frame. +int vp9_cyclic_refresh_rc_bits_per_mb(const struct VP9_COMP *cpi, int i, + double correction_factor); + +// Prior to coding a given prediction block, of size bsize at (mi_row, mi_col), +// check if we should reset the segment_id, and update the cyclic_refresh map +// and segmentation map. +void vp9_cyclic_refresh_update_segment(struct VP9_COMP *const cpi, + MODE_INFO *const mi, int mi_row, + int mi_col, BLOCK_SIZE bsize, + int64_t rate, int64_t dist, int skip, + struct macroblock_plane *const p); + +void vp9_cyclic_refresh_update_sb_postencode(struct VP9_COMP *const cpi, + const MODE_INFO *const mi, + int mi_row, int mi_col, + BLOCK_SIZE bsize); + +// Update the segmentation map, and related quantities: cyclic refresh map, +// refresh sb_index, and target number of blocks to be refreshed. +void vp9_cyclic_refresh_update__map(struct VP9_COMP *const cpi); + +// From the just encoded frame: update the actual number of blocks that were +// applied the segment delta q, and the amount of low motion in the frame. +// Also check conditions for forcing golden update, or preventing golden +// update if the period is up. +void vp9_cyclic_refresh_postencode(struct VP9_COMP *const cpi); + +// Set golden frame update interval, for non-svc 1 pass CBR mode. +void vp9_cyclic_refresh_set_golden_update(struct VP9_COMP *const cpi); + +// Set/update global/frame level refresh parameters. +void vp9_cyclic_refresh_update_parameters(struct VP9_COMP *const cpi); + +// Setup cyclic background refresh: set delta q and segmentation map. +void vp9_cyclic_refresh_setup(struct VP9_COMP *const cpi); + +int vp9_cyclic_refresh_get_rdmult(const CYCLIC_REFRESH *cr); + +void vp9_cyclic_refresh_reset_resize(struct VP9_COMP *const cpi); + +static INLINE int cyclic_refresh_segment_id_boosted(int segment_id) { + return segment_id == CR_SEGMENT_ID_BOOST1 || + segment_id == CR_SEGMENT_ID_BOOST2; +} + +static INLINE int cyclic_refresh_segment_id(int segment_id) { + if (segment_id == CR_SEGMENT_ID_BOOST1) + return CR_SEGMENT_ID_BOOST1; + else if (segment_id == CR_SEGMENT_ID_BOOST2) + return CR_SEGMENT_ID_BOOST2; + else + return CR_SEGMENT_ID_BASE; +} + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP9_ENCODER_VP9_AQ_CYCLICREFRESH_H_ diff --git a/vp9/encoder/vp9_aq_variance.c b/vp9/encoder/vp9_aq_variance.c new file mode 100644 index 0000000..477f62b --- /dev/null +++ b/vp9/encoder/vp9_aq_variance.c @@ -0,0 +1,204 @@ +/* + * Copyright (c) 2013 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include + +#include "vpx_ports/mem.h" +#include "vpx_ports/system_state.h" + +#include "vp9/encoder/vp9_aq_variance.h" + +#include "vp9/common/vp9_seg_common.h" + +#include "vp9/encoder/vp9_ratectrl.h" +#include "vp9/encoder/vp9_rd.h" +#include "vp9/encoder/vp9_segmentation.h" + +#define ENERGY_MIN (-4) +#define ENERGY_MAX (1) +#define ENERGY_SPAN (ENERGY_MAX - ENERGY_MIN + 1) +#define ENERGY_IN_BOUNDS(energy) \ + assert((energy) >= ENERGY_MIN && (energy) <= ENERGY_MAX) + +static const double rate_ratio[MAX_SEGMENTS] = { 2.5, 2.0, 1.5, 1.0, + 0.75, 1.0, 1.0, 1.0 }; +static const int segment_id[ENERGY_SPAN] = { 0, 1, 1, 2, 3, 4 }; + +#define SEGMENT_ID(i) segment_id[(i)-ENERGY_MIN] + +DECLARE_ALIGNED(16, static const uint8_t, vp9_64_zeros[64]) = { 0 }; +#if CONFIG_VP9_HIGHBITDEPTH +DECLARE_ALIGNED(16, static const uint16_t, vp9_highbd_64_zeros[64]) = { 0 }; +#endif + +unsigned int vp9_vaq_segment_id(int energy) { + ENERGY_IN_BOUNDS(energy); + return SEGMENT_ID(energy); +} + +void vp9_vaq_frame_setup(VP9_COMP *cpi) { + VP9_COMMON *cm = &cpi->common; + struct segmentation *seg = &cm->seg; + int i; + + if (frame_is_intra_only(cm) || cm->error_resilient_mode || + cpi->refresh_alt_ref_frame || cpi->force_update_segmentation || + (cpi->refresh_golden_frame && !cpi->rc.is_src_frame_alt_ref)) { + vp9_enable_segmentation(seg); + vp9_clearall_segfeatures(seg); + + seg->abs_delta = SEGMENT_DELTADATA; + + vpx_clear_system_state(); + + for (i = 0; i < MAX_SEGMENTS; ++i) { + int qindex_delta = + vp9_compute_qdelta_by_rate(&cpi->rc, cm->frame_type, cm->base_qindex, + rate_ratio[i], cm->bit_depth); + + // We don't allow qindex 0 in a segment if the base value is not 0. + // Q index 0 (lossless) implies 4x4 encoding only and in AQ mode a segment + // Q delta is sometimes applied without going back around the rd loop. + // This could lead to an illegal combination of partition size and q. + if ((cm->base_qindex != 0) && ((cm->base_qindex + qindex_delta) == 0)) { + qindex_delta = -cm->base_qindex + 1; + } + + // No need to enable SEG_LVL_ALT_Q for this segment. + if (rate_ratio[i] == 1.0) { + continue; + } + + vp9_set_segdata(seg, i, SEG_LVL_ALT_Q, qindex_delta); + vp9_enable_segfeature(seg, i, SEG_LVL_ALT_Q); + } + } +} + +/* TODO(agrange, paulwilkins): The block_variance calls the unoptimized versions + * of variance() and highbd_8_variance(). It should not. + */ +static void aq_variance(const uint8_t *a, int a_stride, const uint8_t *b, + int b_stride, int w, int h, unsigned int *sse, + int *sum) { + int i, j; + + *sum = 0; + *sse = 0; + + for (i = 0; i < h; i++) { + for (j = 0; j < w; j++) { + const int diff = a[j] - b[j]; + *sum += diff; + *sse += diff * diff; + } + + a += a_stride; + b += b_stride; + } +} + +#if CONFIG_VP9_HIGHBITDEPTH +static void aq_highbd_variance64(const uint8_t *a8, int a_stride, + const uint8_t *b8, int b_stride, int w, int h, + uint64_t *sse, uint64_t *sum) { + int i, j; + + uint16_t *a = CONVERT_TO_SHORTPTR(a8); + uint16_t *b = CONVERT_TO_SHORTPTR(b8); + *sum = 0; + *sse = 0; + + for (i = 0; i < h; i++) { + for (j = 0; j < w; j++) { + const int diff = a[j] - b[j]; + *sum += diff; + *sse += diff * diff; + } + a += a_stride; + b += b_stride; + } +} + +static void aq_highbd_8_variance(const uint8_t *a8, int a_stride, + const uint8_t *b8, int b_stride, int w, int h, + unsigned int *sse, int *sum) { + uint64_t sse_long = 0; + uint64_t sum_long = 0; + aq_highbd_variance64(a8, a_stride, b8, b_stride, w, h, &sse_long, &sum_long); + *sse = (unsigned int)sse_long; + *sum = (int)sum_long; +} +#endif // CONFIG_VP9_HIGHBITDEPTH + +static unsigned int block_variance(VP9_COMP *cpi, MACROBLOCK *x, + BLOCK_SIZE bs) { + MACROBLOCKD *xd = &x->e_mbd; + unsigned int var, sse; + int right_overflow = + (xd->mb_to_right_edge < 0) ? ((-xd->mb_to_right_edge) >> 3) : 0; + int bottom_overflow = + (xd->mb_to_bottom_edge < 0) ? ((-xd->mb_to_bottom_edge) >> 3) : 0; + + if (right_overflow || bottom_overflow) { + const int bw = 8 * num_8x8_blocks_wide_lookup[bs] - right_overflow; + const int bh = 8 * num_8x8_blocks_high_lookup[bs] - bottom_overflow; + int avg; +#if CONFIG_VP9_HIGHBITDEPTH + if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { + aq_highbd_8_variance(x->plane[0].src.buf, x->plane[0].src.stride, + CONVERT_TO_BYTEPTR(vp9_highbd_64_zeros), 0, bw, bh, + &sse, &avg); + sse >>= 2 * (xd->bd - 8); + avg >>= (xd->bd - 8); + } else { + aq_variance(x->plane[0].src.buf, x->plane[0].src.stride, vp9_64_zeros, 0, + bw, bh, &sse, &avg); + } +#else + aq_variance(x->plane[0].src.buf, x->plane[0].src.stride, vp9_64_zeros, 0, + bw, bh, &sse, &avg); +#endif // CONFIG_VP9_HIGHBITDEPTH + var = sse - (unsigned int)(((int64_t)avg * avg) / (bw * bh)); + return (unsigned int)(((uint64_t)256 * var) / (bw * bh)); + } else { +#if CONFIG_VP9_HIGHBITDEPTH + if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { + var = + cpi->fn_ptr[bs].vf(x->plane[0].src.buf, x->plane[0].src.stride, + CONVERT_TO_BYTEPTR(vp9_highbd_64_zeros), 0, &sse); + } else { + var = cpi->fn_ptr[bs].vf(x->plane[0].src.buf, x->plane[0].src.stride, + vp9_64_zeros, 0, &sse); + } +#else + var = cpi->fn_ptr[bs].vf(x->plane[0].src.buf, x->plane[0].src.stride, + vp9_64_zeros, 0, &sse); +#endif // CONFIG_VP9_HIGHBITDEPTH + return (unsigned int)(((uint64_t)256 * var) >> num_pels_log2_lookup[bs]); + } +} + +double vp9_log_block_var(VP9_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bs) { + unsigned int var = block_variance(cpi, x, bs); + vpx_clear_system_state(); + return log(var + 1.0); +} + +#define DEFAULT_E_MIDPOINT 10.0 +int vp9_block_energy(VP9_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bs) { + double energy; + double energy_midpoint; + vpx_clear_system_state(); + energy_midpoint = + (cpi->oxcf.pass == 2) ? cpi->twopass.mb_av_energy : DEFAULT_E_MIDPOINT; + energy = vp9_log_block_var(cpi, x, bs) - energy_midpoint; + return clamp((int)round(energy), ENERGY_MIN, ENERGY_MAX); +} diff --git a/vp9/encoder/vp9_aq_variance.h b/vp9/encoder/vp9_aq_variance.h new file mode 100644 index 0000000..211a69f --- /dev/null +++ b/vp9/encoder/vp9_aq_variance.h @@ -0,0 +1,30 @@ +/* + * Copyright (c) 2013 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP9_ENCODER_VP9_AQ_VARIANCE_H_ +#define VP9_ENCODER_VP9_AQ_VARIANCE_H_ + +#include "vp9/encoder/vp9_encoder.h" + +#ifdef __cplusplus +extern "C" { +#endif + +unsigned int vp9_vaq_segment_id(int energy); +void vp9_vaq_frame_setup(VP9_COMP *cpi); + +int vp9_block_energy(VP9_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bs); +double vp9_log_block_var(VP9_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bs); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP9_ENCODER_VP9_AQ_VARIANCE_H_ diff --git a/vp9/encoder/vp9_bitstream.c b/vp9/encoder/vp9_bitstream.c new file mode 100644 index 0000000..d346cd5 --- /dev/null +++ b/vp9/encoder/vp9_bitstream.c @@ -0,0 +1,1360 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include +#include + +#include "vpx/vpx_encoder.h" +#include "vpx_dsp/bitwriter_buffer.h" +#include "vpx_dsp/vpx_dsp_common.h" +#include "vpx_mem/vpx_mem.h" +#include "vpx_ports/mem_ops.h" +#include "vpx_ports/system_state.h" + +#include "vp9/common/vp9_entropy.h" +#include "vp9/common/vp9_entropymode.h" +#include "vp9/common/vp9_entropymv.h" +#include "vp9/common/vp9_mvref_common.h" +#include "vp9/common/vp9_pred_common.h" +#include "vp9/common/vp9_seg_common.h" +#include "vp9/common/vp9_tile_common.h" + +#include "vp9/encoder/vp9_cost.h" +#include "vp9/encoder/vp9_bitstream.h" +#include "vp9/encoder/vp9_encodemv.h" +#include "vp9/encoder/vp9_mcomp.h" +#include "vp9/encoder/vp9_segmentation.h" +#include "vp9/encoder/vp9_subexp.h" +#include "vp9/encoder/vp9_tokenize.h" + +static const struct vp9_token intra_mode_encodings[INTRA_MODES] = { + { 0, 1 }, { 6, 3 }, { 28, 5 }, { 30, 5 }, { 58, 6 }, + { 59, 6 }, { 126, 7 }, { 127, 7 }, { 62, 6 }, { 2, 2 } +}; +static const struct vp9_token switchable_interp_encodings[SWITCHABLE_FILTERS] = + { { 0, 1 }, { 2, 2 }, { 3, 2 } }; +static const struct vp9_token partition_encodings[PARTITION_TYPES] = { + { 0, 1 }, { 2, 2 }, { 6, 3 }, { 7, 3 } +}; +static const struct vp9_token inter_mode_encodings[INTER_MODES] = { + { 2, 2 }, { 6, 3 }, { 0, 1 }, { 7, 3 } +}; + +static void write_intra_mode(vpx_writer *w, PREDICTION_MODE mode, + const vpx_prob *probs) { + vp9_write_token(w, vp9_intra_mode_tree, probs, &intra_mode_encodings[mode]); +} + +static void write_inter_mode(vpx_writer *w, PREDICTION_MODE mode, + const vpx_prob *probs) { + assert(is_inter_mode(mode)); + vp9_write_token(w, vp9_inter_mode_tree, probs, + &inter_mode_encodings[INTER_OFFSET(mode)]); +} + +static void encode_unsigned_max(struct vpx_write_bit_buffer *wb, int data, + int max) { + vpx_wb_write_literal(wb, data, get_unsigned_bits(max)); +} + +static void prob_diff_update(const vpx_tree_index *tree, + vpx_prob probs[/*n - 1*/], + const unsigned int counts[/*n - 1*/], int n, + vpx_writer *w) { + int i; + unsigned int branch_ct[32][2]; + + // Assuming max number of probabilities <= 32 + assert(n <= 32); + + vp9_tree_probs_from_distribution(tree, branch_ct, counts); + for (i = 0; i < n - 1; ++i) + vp9_cond_prob_diff_update(w, &probs[i], branch_ct[i]); +} + +static void write_selected_tx_size(const VP9_COMMON *cm, + const MACROBLOCKD *const xd, vpx_writer *w) { + TX_SIZE tx_size = xd->mi[0]->tx_size; + BLOCK_SIZE bsize = xd->mi[0]->sb_type; + const TX_SIZE max_tx_size = max_txsize_lookup[bsize]; + const vpx_prob *const tx_probs = + get_tx_probs2(max_tx_size, xd, &cm->fc->tx_probs); + vpx_write(w, tx_size != TX_4X4, tx_probs[0]); + if (tx_size != TX_4X4 && max_tx_size >= TX_16X16) { + vpx_write(w, tx_size != TX_8X8, tx_probs[1]); + if (tx_size != TX_8X8 && max_tx_size >= TX_32X32) + vpx_write(w, tx_size != TX_16X16, tx_probs[2]); + } +} + +static int write_skip(const VP9_COMMON *cm, const MACROBLOCKD *const xd, + int segment_id, const MODE_INFO *mi, vpx_writer *w) { + if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)) { + return 1; + } else { + const int skip = mi->skip; + vpx_write(w, skip, vp9_get_skip_prob(cm, xd)); + return skip; + } +} + +static void update_skip_probs(VP9_COMMON *cm, vpx_writer *w, + FRAME_COUNTS *counts) { + int k; + + for (k = 0; k < SKIP_CONTEXTS; ++k) + vp9_cond_prob_diff_update(w, &cm->fc->skip_probs[k], counts->skip[k]); +} + +static void update_switchable_interp_probs(VP9_COMMON *cm, vpx_writer *w, + FRAME_COUNTS *counts) { + int j; + for (j = 0; j < SWITCHABLE_FILTER_CONTEXTS; ++j) + prob_diff_update(vp9_switchable_interp_tree, + cm->fc->switchable_interp_prob[j], + counts->switchable_interp[j], SWITCHABLE_FILTERS, w); +} + +static void pack_mb_tokens(vpx_writer *w, TOKENEXTRA **tp, + const TOKENEXTRA *const stop, + vpx_bit_depth_t bit_depth) { + const TOKENEXTRA *p; + const vp9_extra_bit *const extra_bits = +#if CONFIG_VP9_HIGHBITDEPTH + (bit_depth == VPX_BITS_12) + ? vp9_extra_bits_high12 + : (bit_depth == VPX_BITS_10) ? vp9_extra_bits_high10 : vp9_extra_bits; +#else + vp9_extra_bits; + (void)bit_depth; +#endif // CONFIG_VP9_HIGHBITDEPTH + + for (p = *tp; p < stop && p->token != EOSB_TOKEN; ++p) { + if (p->token == EOB_TOKEN) { + vpx_write(w, 0, p->context_tree[0]); + continue; + } + vpx_write(w, 1, p->context_tree[0]); + while (p->token == ZERO_TOKEN) { + vpx_write(w, 0, p->context_tree[1]); + ++p; + if (p == stop || p->token == EOSB_TOKEN) { + *tp = (TOKENEXTRA *)(uintptr_t)p + (p->token == EOSB_TOKEN); + return; + } + } + + { + const int t = p->token; + const vpx_prob *const context_tree = p->context_tree; + assert(t != ZERO_TOKEN); + assert(t != EOB_TOKEN); + assert(t != EOSB_TOKEN); + vpx_write(w, 1, context_tree[1]); + if (t == ONE_TOKEN) { + vpx_write(w, 0, context_tree[2]); + vpx_write_bit(w, p->extra & 1); + } else { // t >= TWO_TOKEN && t < EOB_TOKEN + const struct vp9_token *const a = &vp9_coef_encodings[t]; + const int v = a->value; + const int n = a->len; + const int e = p->extra; + vpx_write(w, 1, context_tree[2]); + vp9_write_tree(w, vp9_coef_con_tree, + vp9_pareto8_full[context_tree[PIVOT_NODE] - 1], v, + n - UNCONSTRAINED_NODES, 0); + if (t >= CATEGORY1_TOKEN) { + const vp9_extra_bit *const b = &extra_bits[t]; + const unsigned char *pb = b->prob; + int v = e >> 1; + int n = b->len; // number of bits in v, assumed nonzero + do { + const int bb = (v >> --n) & 1; + vpx_write(w, bb, *pb++); + } while (n); + } + vpx_write_bit(w, e & 1); + } + } + } + *tp = (TOKENEXTRA *)(uintptr_t)p + (p->token == EOSB_TOKEN); +} + +static void write_segment_id(vpx_writer *w, const struct segmentation *seg, + int segment_id) { + if (seg->enabled && seg->update_map) + vp9_write_tree(w, vp9_segment_tree, seg->tree_probs, segment_id, 3, 0); +} + +// This function encodes the reference frame +static void write_ref_frames(const VP9_COMMON *cm, const MACROBLOCKD *const xd, + vpx_writer *w) { + const MODE_INFO *const mi = xd->mi[0]; + const int is_compound = has_second_ref(mi); + const int segment_id = mi->segment_id; + + // If segment level coding of this signal is disabled... + // or the segment allows multiple reference frame options + if (segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME)) { + assert(!is_compound); + assert(mi->ref_frame[0] == + get_segdata(&cm->seg, segment_id, SEG_LVL_REF_FRAME)); + } else { + // does the feature use compound prediction or not + // (if not specified at the frame/segment level) + if (cm->reference_mode == REFERENCE_MODE_SELECT) { + vpx_write(w, is_compound, vp9_get_reference_mode_prob(cm, xd)); + } else { + assert((!is_compound) == (cm->reference_mode == SINGLE_REFERENCE)); + } + + if (is_compound) { + vpx_write(w, mi->ref_frame[0] == GOLDEN_FRAME, + vp9_get_pred_prob_comp_ref_p(cm, xd)); + } else { + const int bit0 = mi->ref_frame[0] != LAST_FRAME; + vpx_write(w, bit0, vp9_get_pred_prob_single_ref_p1(cm, xd)); + if (bit0) { + const int bit1 = mi->ref_frame[0] != GOLDEN_FRAME; + vpx_write(w, bit1, vp9_get_pred_prob_single_ref_p2(cm, xd)); + } + } + } +} + +static void pack_inter_mode_mvs( + VP9_COMP *cpi, const MACROBLOCKD *const xd, + const MB_MODE_INFO_EXT *const mbmi_ext, vpx_writer *w, + unsigned int *const max_mv_magnitude, + int interp_filter_selected[MAX_REF_FRAMES][SWITCHABLE]) { + VP9_COMMON *const cm = &cpi->common; + const nmv_context *nmvc = &cm->fc->nmvc; + const struct segmentation *const seg = &cm->seg; + const MODE_INFO *const mi = xd->mi[0]; + const PREDICTION_MODE mode = mi->mode; + const int segment_id = mi->segment_id; + const BLOCK_SIZE bsize = mi->sb_type; + const int allow_hp = cm->allow_high_precision_mv; + const int is_inter = is_inter_block(mi); + const int is_compound = has_second_ref(mi); + int skip, ref; + + if (seg->update_map) { + if (seg->temporal_update) { + const int pred_flag = mi->seg_id_predicted; + vpx_prob pred_prob = vp9_get_pred_prob_seg_id(seg, xd); + vpx_write(w, pred_flag, pred_prob); + if (!pred_flag) write_segment_id(w, seg, segment_id); + } else { + write_segment_id(w, seg, segment_id); + } + } + + skip = write_skip(cm, xd, segment_id, mi, w); + + if (!segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME)) + vpx_write(w, is_inter, vp9_get_intra_inter_prob(cm, xd)); + + if (bsize >= BLOCK_8X8 && cm->tx_mode == TX_MODE_SELECT && + !(is_inter && skip)) { + write_selected_tx_size(cm, xd, w); + } + + if (!is_inter) { + if (bsize >= BLOCK_8X8) { + write_intra_mode(w, mode, cm->fc->y_mode_prob[size_group_lookup[bsize]]); + } else { + int idx, idy; + const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize]; + const int num_4x4_h = num_4x4_blocks_high_lookup[bsize]; + for (idy = 0; idy < 2; idy += num_4x4_h) { + for (idx = 0; idx < 2; idx += num_4x4_w) { + const PREDICTION_MODE b_mode = mi->bmi[idy * 2 + idx].as_mode; + write_intra_mode(w, b_mode, cm->fc->y_mode_prob[0]); + } + } + } + write_intra_mode(w, mi->uv_mode, cm->fc->uv_mode_prob[mode]); + } else { + const int mode_ctx = mbmi_ext->mode_context[mi->ref_frame[0]]; + const vpx_prob *const inter_probs = cm->fc->inter_mode_probs[mode_ctx]; + write_ref_frames(cm, xd, w); + + // If segment skip is not enabled code the mode. + if (!segfeature_active(seg, segment_id, SEG_LVL_SKIP)) { + if (bsize >= BLOCK_8X8) { + write_inter_mode(w, mode, inter_probs); + } + } + + if (cm->interp_filter == SWITCHABLE) { + const int ctx = get_pred_context_switchable_interp(xd); + vp9_write_token(w, vp9_switchable_interp_tree, + cm->fc->switchable_interp_prob[ctx], + &switchable_interp_encodings[mi->interp_filter]); + ++interp_filter_selected[0][mi->interp_filter]; + } else { + assert(mi->interp_filter == cm->interp_filter); + } + + if (bsize < BLOCK_8X8) { + const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize]; + const int num_4x4_h = num_4x4_blocks_high_lookup[bsize]; + int idx, idy; + for (idy = 0; idy < 2; idy += num_4x4_h) { + for (idx = 0; idx < 2; idx += num_4x4_w) { + const int j = idy * 2 + idx; + const PREDICTION_MODE b_mode = mi->bmi[j].as_mode; + write_inter_mode(w, b_mode, inter_probs); + if (b_mode == NEWMV) { + for (ref = 0; ref < 1 + is_compound; ++ref) + vp9_encode_mv(cpi, w, &mi->bmi[j].as_mv[ref].as_mv, + &mbmi_ext->ref_mvs[mi->ref_frame[ref]][0].as_mv, + nmvc, allow_hp, max_mv_magnitude); + } + } + } + } else { + if (mode == NEWMV) { + for (ref = 0; ref < 1 + is_compound; ++ref) + vp9_encode_mv(cpi, w, &mi->mv[ref].as_mv, + &mbmi_ext->ref_mvs[mi->ref_frame[ref]][0].as_mv, nmvc, + allow_hp, max_mv_magnitude); + } + } + } +} + +static void write_mb_modes_kf(const VP9_COMMON *cm, const MACROBLOCKD *xd, + vpx_writer *w) { + const struct segmentation *const seg = &cm->seg; + const MODE_INFO *const mi = xd->mi[0]; + const MODE_INFO *const above_mi = xd->above_mi; + const MODE_INFO *const left_mi = xd->left_mi; + const BLOCK_SIZE bsize = mi->sb_type; + + if (seg->update_map) write_segment_id(w, seg, mi->segment_id); + + write_skip(cm, xd, mi->segment_id, mi, w); + + if (bsize >= BLOCK_8X8 && cm->tx_mode == TX_MODE_SELECT) + write_selected_tx_size(cm, xd, w); + + if (bsize >= BLOCK_8X8) { + write_intra_mode(w, mi->mode, get_y_mode_probs(mi, above_mi, left_mi, 0)); + } else { + const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize]; + const int num_4x4_h = num_4x4_blocks_high_lookup[bsize]; + int idx, idy; + + for (idy = 0; idy < 2; idy += num_4x4_h) { + for (idx = 0; idx < 2; idx += num_4x4_w) { + const int block = idy * 2 + idx; + write_intra_mode(w, mi->bmi[block].as_mode, + get_y_mode_probs(mi, above_mi, left_mi, block)); + } + } + } + + write_intra_mode(w, mi->uv_mode, vp9_kf_uv_mode_prob[mi->mode]); +} + +static void write_modes_b( + VP9_COMP *cpi, MACROBLOCKD *const xd, const TileInfo *const tile, + vpx_writer *w, TOKENEXTRA **tok, const TOKENEXTRA *const tok_end, + int mi_row, int mi_col, unsigned int *const max_mv_magnitude, + int interp_filter_selected[MAX_REF_FRAMES][SWITCHABLE]) { + const VP9_COMMON *const cm = &cpi->common; + const MB_MODE_INFO_EXT *const mbmi_ext = + cpi->td.mb.mbmi_ext_base + (mi_row * cm->mi_cols + mi_col); + MODE_INFO *m; + + xd->mi = cm->mi_grid_visible + (mi_row * cm->mi_stride + mi_col); + m = xd->mi[0]; + + set_mi_row_col(xd, tile, mi_row, num_8x8_blocks_high_lookup[m->sb_type], + mi_col, num_8x8_blocks_wide_lookup[m->sb_type], cm->mi_rows, + cm->mi_cols); + if (frame_is_intra_only(cm)) { + write_mb_modes_kf(cm, xd, w); + } else { + pack_inter_mode_mvs(cpi, xd, mbmi_ext, w, max_mv_magnitude, + interp_filter_selected); + } + + assert(*tok < tok_end); + pack_mb_tokens(w, tok, tok_end, cm->bit_depth); +} + +static void write_partition(const VP9_COMMON *const cm, + const MACROBLOCKD *const xd, int hbs, int mi_row, + int mi_col, PARTITION_TYPE p, BLOCK_SIZE bsize, + vpx_writer *w) { + const int ctx = partition_plane_context(xd, mi_row, mi_col, bsize); + const vpx_prob *const probs = xd->partition_probs[ctx]; + const int has_rows = (mi_row + hbs) < cm->mi_rows; + const int has_cols = (mi_col + hbs) < cm->mi_cols; + + if (has_rows && has_cols) { + vp9_write_token(w, vp9_partition_tree, probs, &partition_encodings[p]); + } else if (!has_rows && has_cols) { + assert(p == PARTITION_SPLIT || p == PARTITION_HORZ); + vpx_write(w, p == PARTITION_SPLIT, probs[1]); + } else if (has_rows && !has_cols) { + assert(p == PARTITION_SPLIT || p == PARTITION_VERT); + vpx_write(w, p == PARTITION_SPLIT, probs[2]); + } else { + assert(p == PARTITION_SPLIT); + } +} + +static void write_modes_sb( + VP9_COMP *cpi, MACROBLOCKD *const xd, const TileInfo *const tile, + vpx_writer *w, TOKENEXTRA **tok, const TOKENEXTRA *const tok_end, + int mi_row, int mi_col, BLOCK_SIZE bsize, + unsigned int *const max_mv_magnitude, + int interp_filter_selected[MAX_REF_FRAMES][SWITCHABLE]) { + const VP9_COMMON *const cm = &cpi->common; + const int bsl = b_width_log2_lookup[bsize]; + const int bs = (1 << bsl) / 4; + PARTITION_TYPE partition; + BLOCK_SIZE subsize; + const MODE_INFO *m = NULL; + + if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return; + + m = cm->mi_grid_visible[mi_row * cm->mi_stride + mi_col]; + + partition = partition_lookup[bsl][m->sb_type]; + write_partition(cm, xd, bs, mi_row, mi_col, partition, bsize, w); + subsize = get_subsize(bsize, partition); + if (subsize < BLOCK_8X8) { + write_modes_b(cpi, xd, tile, w, tok, tok_end, mi_row, mi_col, + max_mv_magnitude, interp_filter_selected); + } else { + switch (partition) { + case PARTITION_NONE: + write_modes_b(cpi, xd, tile, w, tok, tok_end, mi_row, mi_col, + max_mv_magnitude, interp_filter_selected); + break; + case PARTITION_HORZ: + write_modes_b(cpi, xd, tile, w, tok, tok_end, mi_row, mi_col, + max_mv_magnitude, interp_filter_selected); + if (mi_row + bs < cm->mi_rows) + write_modes_b(cpi, xd, tile, w, tok, tok_end, mi_row + bs, mi_col, + max_mv_magnitude, interp_filter_selected); + break; + case PARTITION_VERT: + write_modes_b(cpi, xd, tile, w, tok, tok_end, mi_row, mi_col, + max_mv_magnitude, interp_filter_selected); + if (mi_col + bs < cm->mi_cols) + write_modes_b(cpi, xd, tile, w, tok, tok_end, mi_row, mi_col + bs, + max_mv_magnitude, interp_filter_selected); + break; + case PARTITION_SPLIT: + write_modes_sb(cpi, xd, tile, w, tok, tok_end, mi_row, mi_col, subsize, + max_mv_magnitude, interp_filter_selected); + write_modes_sb(cpi, xd, tile, w, tok, tok_end, mi_row, mi_col + bs, + subsize, max_mv_magnitude, interp_filter_selected); + write_modes_sb(cpi, xd, tile, w, tok, tok_end, mi_row + bs, mi_col, + subsize, max_mv_magnitude, interp_filter_selected); + write_modes_sb(cpi, xd, tile, w, tok, tok_end, mi_row + bs, mi_col + bs, + subsize, max_mv_magnitude, interp_filter_selected); + break; + default: assert(0); + } + } + + // update partition context + if (bsize >= BLOCK_8X8 && + (bsize == BLOCK_8X8 || partition != PARTITION_SPLIT)) + update_partition_context(xd, mi_row, mi_col, subsize, bsize); +} + +static void write_modes( + VP9_COMP *cpi, MACROBLOCKD *const xd, const TileInfo *const tile, + vpx_writer *w, int tile_row, int tile_col, + unsigned int *const max_mv_magnitude, + int interp_filter_selected[MAX_REF_FRAMES][SWITCHABLE]) { + const VP9_COMMON *const cm = &cpi->common; + int mi_row, mi_col, tile_sb_row; + TOKENEXTRA *tok = NULL; + TOKENEXTRA *tok_end = NULL; + + set_partition_probs(cm, xd); + + for (mi_row = tile->mi_row_start; mi_row < tile->mi_row_end; + mi_row += MI_BLOCK_SIZE) { + tile_sb_row = mi_cols_aligned_to_sb(mi_row - tile->mi_row_start) >> + MI_BLOCK_SIZE_LOG2; + tok = cpi->tplist[tile_row][tile_col][tile_sb_row].start; + tok_end = tok + cpi->tplist[tile_row][tile_col][tile_sb_row].count; + + vp9_zero(xd->left_seg_context); + for (mi_col = tile->mi_col_start; mi_col < tile->mi_col_end; + mi_col += MI_BLOCK_SIZE) + write_modes_sb(cpi, xd, tile, w, &tok, tok_end, mi_row, mi_col, + BLOCK_64X64, max_mv_magnitude, interp_filter_selected); + + assert(tok == cpi->tplist[tile_row][tile_col][tile_sb_row].stop); + } +} + +static void build_tree_distribution(VP9_COMP *cpi, TX_SIZE tx_size, + vp9_coeff_stats *coef_branch_ct, + vp9_coeff_probs_model *coef_probs) { + vp9_coeff_count *coef_counts = cpi->td.rd_counts.coef_counts[tx_size]; + unsigned int(*eob_branch_ct)[REF_TYPES][COEF_BANDS][COEFF_CONTEXTS] = + cpi->common.counts.eob_branch[tx_size]; + int i, j, k, l, m; + + for (i = 0; i < PLANE_TYPES; ++i) { + for (j = 0; j < REF_TYPES; ++j) { + for (k = 0; k < COEF_BANDS; ++k) { + for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) { + vp9_tree_probs_from_distribution(vp9_coef_tree, + coef_branch_ct[i][j][k][l], + coef_counts[i][j][k][l]); + coef_branch_ct[i][j][k][l][0][1] = + eob_branch_ct[i][j][k][l] - coef_branch_ct[i][j][k][l][0][0]; + for (m = 0; m < UNCONSTRAINED_NODES; ++m) + coef_probs[i][j][k][l][m] = + get_binary_prob(coef_branch_ct[i][j][k][l][m][0], + coef_branch_ct[i][j][k][l][m][1]); + } + } + } + } +} + +static void update_coef_probs_common(vpx_writer *const bc, VP9_COMP *cpi, + TX_SIZE tx_size, + vp9_coeff_stats *frame_branch_ct, + vp9_coeff_probs_model *new_coef_probs) { + vp9_coeff_probs_model *old_coef_probs = cpi->common.fc->coef_probs[tx_size]; + const vpx_prob upd = DIFF_UPDATE_PROB; + const int entropy_nodes_update = UNCONSTRAINED_NODES; + int i, j, k, l, t; + int stepsize = cpi->sf.coeff_prob_appx_step; + + switch (cpi->sf.use_fast_coef_updates) { + case TWO_LOOP: { + /* dry run to see if there is any update at all needed */ + int savings = 0; + int update[2] = { 0, 0 }; + for (i = 0; i < PLANE_TYPES; ++i) { + for (j = 0; j < REF_TYPES; ++j) { + for (k = 0; k < COEF_BANDS; ++k) { + for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) { + for (t = 0; t < entropy_nodes_update; ++t) { + vpx_prob newp = new_coef_probs[i][j][k][l][t]; + const vpx_prob oldp = old_coef_probs[i][j][k][l][t]; + int s; + int u = 0; + if (t == PIVOT_NODE) + s = vp9_prob_diff_update_savings_search_model( + frame_branch_ct[i][j][k][l][0], oldp, &newp, upd, + stepsize); + else + s = vp9_prob_diff_update_savings_search( + frame_branch_ct[i][j][k][l][t], oldp, &newp, upd); + if (s > 0 && newp != oldp) u = 1; + if (u) + savings += s - (int)(vp9_cost_zero(upd)); + else + savings -= (int)(vp9_cost_zero(upd)); + update[u]++; + } + } + } + } + } + + // printf("Update %d %d, savings %d\n", update[0], update[1], savings); + /* Is coef updated at all */ + if (update[1] == 0 || savings < 0) { + vpx_write_bit(bc, 0); + return; + } + vpx_write_bit(bc, 1); + for (i = 0; i < PLANE_TYPES; ++i) { + for (j = 0; j < REF_TYPES; ++j) { + for (k = 0; k < COEF_BANDS; ++k) { + for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) { + // calc probs and branch cts for this frame only + for (t = 0; t < entropy_nodes_update; ++t) { + vpx_prob newp = new_coef_probs[i][j][k][l][t]; + vpx_prob *oldp = old_coef_probs[i][j][k][l] + t; + const vpx_prob upd = DIFF_UPDATE_PROB; + int s; + int u = 0; + if (t == PIVOT_NODE) + s = vp9_prob_diff_update_savings_search_model( + frame_branch_ct[i][j][k][l][0], *oldp, &newp, upd, + stepsize); + else + s = vp9_prob_diff_update_savings_search( + frame_branch_ct[i][j][k][l][t], *oldp, &newp, upd); + if (s > 0 && newp != *oldp) u = 1; + vpx_write(bc, u, upd); + if (u) { + /* send/use new probability */ + vp9_write_prob_diff_update(bc, newp, *oldp); + *oldp = newp; + } + } + } + } + } + } + return; + } + + case ONE_LOOP_REDUCED: { + int updates = 0; + int noupdates_before_first = 0; + for (i = 0; i < PLANE_TYPES; ++i) { + for (j = 0; j < REF_TYPES; ++j) { + for (k = 0; k < COEF_BANDS; ++k) { + for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) { + // calc probs and branch cts for this frame only + for (t = 0; t < entropy_nodes_update; ++t) { + vpx_prob newp = new_coef_probs[i][j][k][l][t]; + vpx_prob *oldp = old_coef_probs[i][j][k][l] + t; + int s; + int u = 0; + + if (t == PIVOT_NODE) { + s = vp9_prob_diff_update_savings_search_model( + frame_branch_ct[i][j][k][l][0], *oldp, &newp, upd, + stepsize); + } else { + s = vp9_prob_diff_update_savings_search( + frame_branch_ct[i][j][k][l][t], *oldp, &newp, upd); + } + + if (s > 0 && newp != *oldp) u = 1; + updates += u; + if (u == 0 && updates == 0) { + noupdates_before_first++; + continue; + } + if (u == 1 && updates == 1) { + int v; + // first update + vpx_write_bit(bc, 1); + for (v = 0; v < noupdates_before_first; ++v) + vpx_write(bc, 0, upd); + } + vpx_write(bc, u, upd); + if (u) { + /* send/use new probability */ + vp9_write_prob_diff_update(bc, newp, *oldp); + *oldp = newp; + } + } + } + } + } + } + if (updates == 0) { + vpx_write_bit(bc, 0); // no updates + } + return; + } + default: assert(0); + } +} + +static void update_coef_probs(VP9_COMP *cpi, vpx_writer *w) { + const TX_MODE tx_mode = cpi->common.tx_mode; + const TX_SIZE max_tx_size = tx_mode_to_biggest_tx_size[tx_mode]; + TX_SIZE tx_size; + for (tx_size = TX_4X4; tx_size <= max_tx_size; ++tx_size) { + vp9_coeff_stats frame_branch_ct[PLANE_TYPES]; + vp9_coeff_probs_model frame_coef_probs[PLANE_TYPES]; + if (cpi->td.counts->tx.tx_totals[tx_size] <= 20 || + (tx_size >= TX_16X16 && cpi->sf.tx_size_search_method == USE_TX_8X8)) { + vpx_write_bit(w, 0); + } else { + build_tree_distribution(cpi, tx_size, frame_branch_ct, frame_coef_probs); + update_coef_probs_common(w, cpi, tx_size, frame_branch_ct, + frame_coef_probs); + } + } +} + +static void encode_loopfilter(struct loopfilter *lf, + struct vpx_write_bit_buffer *wb) { + int i; + + // Encode the loop filter level and type + vpx_wb_write_literal(wb, lf->filter_level, 6); + vpx_wb_write_literal(wb, lf->sharpness_level, 3); + + // Write out loop filter deltas applied at the MB level based on mode or + // ref frame (if they are enabled). + vpx_wb_write_bit(wb, lf->mode_ref_delta_enabled); + + if (lf->mode_ref_delta_enabled) { + vpx_wb_write_bit(wb, lf->mode_ref_delta_update); + if (lf->mode_ref_delta_update) { + for (i = 0; i < MAX_REF_LF_DELTAS; i++) { + const int delta = lf->ref_deltas[i]; + const int changed = delta != lf->last_ref_deltas[i]; + vpx_wb_write_bit(wb, changed); + if (changed) { + lf->last_ref_deltas[i] = delta; + vpx_wb_write_literal(wb, abs(delta) & 0x3F, 6); + vpx_wb_write_bit(wb, delta < 0); + } + } + + for (i = 0; i < MAX_MODE_LF_DELTAS; i++) { + const int delta = lf->mode_deltas[i]; + const int changed = delta != lf->last_mode_deltas[i]; + vpx_wb_write_bit(wb, changed); + if (changed) { + lf->last_mode_deltas[i] = delta; + vpx_wb_write_literal(wb, abs(delta) & 0x3F, 6); + vpx_wb_write_bit(wb, delta < 0); + } + } + } + } +} + +static void write_delta_q(struct vpx_write_bit_buffer *wb, int delta_q) { + if (delta_q != 0) { + vpx_wb_write_bit(wb, 1); + vpx_wb_write_literal(wb, abs(delta_q), 4); + vpx_wb_write_bit(wb, delta_q < 0); + } else { + vpx_wb_write_bit(wb, 0); + } +} + +static void encode_quantization(const VP9_COMMON *const cm, + struct vpx_write_bit_buffer *wb) { + vpx_wb_write_literal(wb, cm->base_qindex, QINDEX_BITS); + write_delta_q(wb, cm->y_dc_delta_q); + write_delta_q(wb, cm->uv_dc_delta_q); + write_delta_q(wb, cm->uv_ac_delta_q); +} + +static void encode_segmentation(VP9_COMMON *cm, MACROBLOCKD *xd, + struct vpx_write_bit_buffer *wb) { + int i, j; + + const struct segmentation *seg = &cm->seg; + + vpx_wb_write_bit(wb, seg->enabled); + if (!seg->enabled) return; + + // Segmentation map + vpx_wb_write_bit(wb, seg->update_map); + if (seg->update_map) { + // Select the coding strategy (temporal or spatial) + vp9_choose_segmap_coding_method(cm, xd); + // Write out probabilities used to decode unpredicted macro-block segments + for (i = 0; i < SEG_TREE_PROBS; i++) { + const int prob = seg->tree_probs[i]; + const int update = prob != MAX_PROB; + vpx_wb_write_bit(wb, update); + if (update) vpx_wb_write_literal(wb, prob, 8); + } + + // Write out the chosen coding method. + vpx_wb_write_bit(wb, seg->temporal_update); + if (seg->temporal_update) { + for (i = 0; i < PREDICTION_PROBS; i++) { + const int prob = seg->pred_probs[i]; + const int update = prob != MAX_PROB; + vpx_wb_write_bit(wb, update); + if (update) vpx_wb_write_literal(wb, prob, 8); + } + } + } + + // Segmentation data + vpx_wb_write_bit(wb, seg->update_data); + if (seg->update_data) { + vpx_wb_write_bit(wb, seg->abs_delta); + + for (i = 0; i < MAX_SEGMENTS; i++) { + for (j = 0; j < SEG_LVL_MAX; j++) { + const int active = segfeature_active(seg, i, j); + vpx_wb_write_bit(wb, active); + if (active) { + const int data = get_segdata(seg, i, j); + const int data_max = vp9_seg_feature_data_max(j); + + if (vp9_is_segfeature_signed(j)) { + encode_unsigned_max(wb, abs(data), data_max); + vpx_wb_write_bit(wb, data < 0); + } else { + encode_unsigned_max(wb, data, data_max); + } + } + } + } + } +} + +static void encode_txfm_probs(VP9_COMMON *cm, vpx_writer *w, + FRAME_COUNTS *counts) { + // Mode + vpx_write_literal(w, VPXMIN(cm->tx_mode, ALLOW_32X32), 2); + if (cm->tx_mode >= ALLOW_32X32) + vpx_write_bit(w, cm->tx_mode == TX_MODE_SELECT); + + // Probabilities + if (cm->tx_mode == TX_MODE_SELECT) { + int i, j; + unsigned int ct_8x8p[TX_SIZES - 3][2]; + unsigned int ct_16x16p[TX_SIZES - 2][2]; + unsigned int ct_32x32p[TX_SIZES - 1][2]; + + for (i = 0; i < TX_SIZE_CONTEXTS; i++) { + tx_counts_to_branch_counts_8x8(counts->tx.p8x8[i], ct_8x8p); + for (j = 0; j < TX_SIZES - 3; j++) + vp9_cond_prob_diff_update(w, &cm->fc->tx_probs.p8x8[i][j], ct_8x8p[j]); + } + + for (i = 0; i < TX_SIZE_CONTEXTS; i++) { + tx_counts_to_branch_counts_16x16(counts->tx.p16x16[i], ct_16x16p); + for (j = 0; j < TX_SIZES - 2; j++) + vp9_cond_prob_diff_update(w, &cm->fc->tx_probs.p16x16[i][j], + ct_16x16p[j]); + } + + for (i = 0; i < TX_SIZE_CONTEXTS; i++) { + tx_counts_to_branch_counts_32x32(counts->tx.p32x32[i], ct_32x32p); + for (j = 0; j < TX_SIZES - 1; j++) + vp9_cond_prob_diff_update(w, &cm->fc->tx_probs.p32x32[i][j], + ct_32x32p[j]); + } + } +} + +static void write_interp_filter(INTERP_FILTER filter, + struct vpx_write_bit_buffer *wb) { + const int filter_to_literal[] = { 1, 0, 2, 3 }; + + vpx_wb_write_bit(wb, filter == SWITCHABLE); + if (filter != SWITCHABLE) + vpx_wb_write_literal(wb, filter_to_literal[filter], 2); +} + +static void fix_interp_filter(VP9_COMMON *cm, FRAME_COUNTS *counts) { + if (cm->interp_filter == SWITCHABLE) { + // Check to see if only one of the filters is actually used + int count[SWITCHABLE_FILTERS]; + int i, j, c = 0; + for (i = 0; i < SWITCHABLE_FILTERS; ++i) { + count[i] = 0; + for (j = 0; j < SWITCHABLE_FILTER_CONTEXTS; ++j) + count[i] += counts->switchable_interp[j][i]; + c += (count[i] > 0); + } + if (c == 1) { + // Only one filter is used. So set the filter at frame level + for (i = 0; i < SWITCHABLE_FILTERS; ++i) { + if (count[i]) { + cm->interp_filter = i; + break; + } + } + } + } +} + +static void write_tile_info(const VP9_COMMON *const cm, + struct vpx_write_bit_buffer *wb) { + int min_log2_tile_cols, max_log2_tile_cols, ones; + vp9_get_tile_n_bits(cm->mi_cols, &min_log2_tile_cols, &max_log2_tile_cols); + + // columns + ones = cm->log2_tile_cols - min_log2_tile_cols; + while (ones--) vpx_wb_write_bit(wb, 1); + + if (cm->log2_tile_cols < max_log2_tile_cols) vpx_wb_write_bit(wb, 0); + + // rows + vpx_wb_write_bit(wb, cm->log2_tile_rows != 0); + if (cm->log2_tile_rows != 0) vpx_wb_write_bit(wb, cm->log2_tile_rows != 1); +} + +int vp9_get_refresh_mask(VP9_COMP *cpi) { + if (vp9_preserve_existing_gf(cpi)) { + // We have decided to preserve the previously existing golden frame as our + // new ARF frame. However, in the short term we leave it in the GF slot and, + // if we're updating the GF with the current decoded frame, we save it + // instead to the ARF slot. + // Later, in the function vp9_encoder.c:vp9_update_reference_frames() we + // will swap gld_fb_idx and alt_fb_idx to achieve our objective. We do it + // there so that it can be done outside of the recode loop. + // Note: This is highly specific to the use of ARF as a forward reference, + // and this needs to be generalized as other uses are implemented + // (like RTC/temporal scalability). + return (cpi->refresh_last_frame << cpi->lst_fb_idx) | + (cpi->refresh_golden_frame << cpi->alt_fb_idx); + } else { + int arf_idx = cpi->alt_fb_idx; + if ((cpi->oxcf.pass == 2) && cpi->multi_arf_allowed) { + const GF_GROUP *const gf_group = &cpi->twopass.gf_group; + arf_idx = gf_group->arf_update_idx[gf_group->index]; + } + return (cpi->refresh_last_frame << cpi->lst_fb_idx) | + (cpi->refresh_golden_frame << cpi->gld_fb_idx) | + (cpi->refresh_alt_ref_frame << arf_idx); + } +} + +static int encode_tile_worker(void *arg1, void *arg2) { + VP9_COMP *cpi = (VP9_COMP *)arg1; + VP9BitstreamWorkerData *data = (VP9BitstreamWorkerData *)arg2; + MACROBLOCKD *const xd = &data->xd; + const int tile_row = 0; + vpx_start_encode(&data->bit_writer, data->dest); + write_modes(cpi, xd, &cpi->tile_data[data->tile_idx].tile_info, + &data->bit_writer, tile_row, data->tile_idx, + &data->max_mv_magnitude, data->interp_filter_selected); + vpx_stop_encode(&data->bit_writer); + return 1; +} + +void vp9_bitstream_encode_tiles_buffer_dealloc(VP9_COMP *const cpi) { + if (cpi->vp9_bitstream_worker_data) { + int i; + for (i = 1; i < cpi->num_workers; ++i) { + vpx_free(cpi->vp9_bitstream_worker_data[i].dest); + } + vpx_free(cpi->vp9_bitstream_worker_data); + cpi->vp9_bitstream_worker_data = NULL; + } +} + +static int encode_tiles_buffer_alloc(VP9_COMP *const cpi) { + int i; + const size_t worker_data_size = + cpi->num_workers * sizeof(*cpi->vp9_bitstream_worker_data); + cpi->vp9_bitstream_worker_data = vpx_memalign(16, worker_data_size); + memset(cpi->vp9_bitstream_worker_data, 0, worker_data_size); + if (!cpi->vp9_bitstream_worker_data) return 1; + for (i = 1; i < cpi->num_workers; ++i) { + cpi->vp9_bitstream_worker_data[i].dest_size = + cpi->oxcf.width * cpi->oxcf.height; + cpi->vp9_bitstream_worker_data[i].dest = + vpx_malloc(cpi->vp9_bitstream_worker_data[i].dest_size); + if (!cpi->vp9_bitstream_worker_data[i].dest) return 1; + } + return 0; +} + +static size_t encode_tiles_mt(VP9_COMP *cpi, uint8_t *data_ptr) { + const VPxWorkerInterface *const winterface = vpx_get_worker_interface(); + VP9_COMMON *const cm = &cpi->common; + const int tile_cols = 1 << cm->log2_tile_cols; + const int num_workers = cpi->num_workers; + size_t total_size = 0; + int tile_col = 0; + + if (!cpi->vp9_bitstream_worker_data || + cpi->vp9_bitstream_worker_data[1].dest_size > + (cpi->oxcf.width * cpi->oxcf.height)) { + vp9_bitstream_encode_tiles_buffer_dealloc(cpi); + if (encode_tiles_buffer_alloc(cpi)) return 0; + } + + while (tile_col < tile_cols) { + int i, j; + for (i = 0; i < num_workers && tile_col < tile_cols; ++i) { + VPxWorker *const worker = &cpi->workers[i]; + VP9BitstreamWorkerData *const data = &cpi->vp9_bitstream_worker_data[i]; + + // Populate the worker data. + data->xd = cpi->td.mb.e_mbd; + data->tile_idx = tile_col; + data->max_mv_magnitude = cpi->max_mv_magnitude; + memset(data->interp_filter_selected, 0, + sizeof(data->interp_filter_selected[0][0]) * SWITCHABLE); + + // First thread can directly write into the output buffer. + if (i == 0) { + // If this worker happens to be for the last tile, then do not offset it + // by 4 for the tile size. + data->dest = + data_ptr + total_size + (tile_col == tile_cols - 1 ? 0 : 4); + } + worker->data1 = cpi; + worker->data2 = data; + worker->hook = encode_tile_worker; + worker->had_error = 0; + + if (i < num_workers - 1) { + winterface->launch(worker); + } else { + winterface->execute(worker); + } + ++tile_col; + } + for (j = 0; j < i; ++j) { + VPxWorker *const worker = &cpi->workers[j]; + VP9BitstreamWorkerData *const data = + (VP9BitstreamWorkerData *)worker->data2; + uint32_t tile_size; + int k; + + if (!winterface->sync(worker)) return 0; + tile_size = data->bit_writer.pos; + + // Aggregate per-thread bitstream stats. + cpi->max_mv_magnitude = + VPXMAX(cpi->max_mv_magnitude, data->max_mv_magnitude); + for (k = 0; k < SWITCHABLE; ++k) { + cpi->interp_filter_selected[0][k] += data->interp_filter_selected[0][k]; + } + + // Prefix the size of the tile on all but the last. + if (tile_col != tile_cols || j < i - 1) { + mem_put_be32(data_ptr + total_size, tile_size); + total_size += 4; + } + if (j > 0) { + memcpy(data_ptr + total_size, data->dest, tile_size); + } + total_size += tile_size; + } + } + return total_size; +} + +static size_t encode_tiles(VP9_COMP *cpi, uint8_t *data_ptr) { + VP9_COMMON *const cm = &cpi->common; + MACROBLOCKD *const xd = &cpi->td.mb.e_mbd; + vpx_writer residual_bc; + int tile_row, tile_col; + size_t total_size = 0; + const int tile_cols = 1 << cm->log2_tile_cols; + const int tile_rows = 1 << cm->log2_tile_rows; + + memset(cm->above_seg_context, 0, + sizeof(*cm->above_seg_context) * mi_cols_aligned_to_sb(cm->mi_cols)); + + // Encoding tiles in parallel is done only for realtime mode now. In other + // modes the speed up is insignificant and requires further testing to ensure + // that it does not make the overall process worse in any case. + if (cpi->oxcf.mode == REALTIME && cpi->num_workers > 1 && tile_rows == 1 && + tile_cols > 1) { + return encode_tiles_mt(cpi, data_ptr); + } + + for (tile_row = 0; tile_row < tile_rows; tile_row++) { + for (tile_col = 0; tile_col < tile_cols; tile_col++) { + int tile_idx = tile_row * tile_cols + tile_col; + + if (tile_col < tile_cols - 1 || tile_row < tile_rows - 1) + vpx_start_encode(&residual_bc, data_ptr + total_size + 4); + else + vpx_start_encode(&residual_bc, data_ptr + total_size); + + write_modes(cpi, xd, &cpi->tile_data[tile_idx].tile_info, &residual_bc, + tile_row, tile_col, &cpi->max_mv_magnitude, + cpi->interp_filter_selected); + + vpx_stop_encode(&residual_bc); + if (tile_col < tile_cols - 1 || tile_row < tile_rows - 1) { + // size of this tile + mem_put_be32(data_ptr + total_size, residual_bc.pos); + total_size += 4; + } + + total_size += residual_bc.pos; + } + } + return total_size; +} + +static void write_render_size(const VP9_COMMON *cm, + struct vpx_write_bit_buffer *wb) { + const int scaling_active = + cm->width != cm->render_width || cm->height != cm->render_height; + vpx_wb_write_bit(wb, scaling_active); + if (scaling_active) { + vpx_wb_write_literal(wb, cm->render_width - 1, 16); + vpx_wb_write_literal(wb, cm->render_height - 1, 16); + } +} + +static void write_frame_size(const VP9_COMMON *cm, + struct vpx_write_bit_buffer *wb) { + vpx_wb_write_literal(wb, cm->width - 1, 16); + vpx_wb_write_literal(wb, cm->height - 1, 16); + + write_render_size(cm, wb); +} + +static void write_frame_size_with_refs(VP9_COMP *cpi, + struct vpx_write_bit_buffer *wb) { + VP9_COMMON *const cm = &cpi->common; + int found = 0; + + MV_REFERENCE_FRAME ref_frame; + for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) { + YV12_BUFFER_CONFIG *cfg = get_ref_frame_buffer(cpi, ref_frame); + + // Set "found" to 0 for temporal svc and for spatial svc key frame + if (cpi->use_svc && + ((cpi->svc.number_temporal_layers > 1 && + cpi->oxcf.rc_mode == VPX_CBR) || + (cpi->svc.number_spatial_layers > 1 && + cpi->svc.layer_context[cpi->svc.spatial_layer_id].is_key_frame) || + (is_two_pass_svc(cpi) && + cpi->svc.encode_empty_frame_state == ENCODING && + cpi->svc.layer_context[0].frames_from_key_frame < + cpi->svc.number_temporal_layers + 1))) { + found = 0; + } else if (cfg != NULL) { + found = + cm->width == cfg->y_crop_width && cm->height == cfg->y_crop_height; + } + vpx_wb_write_bit(wb, found); + if (found) { + break; + } + } + + if (!found) { + vpx_wb_write_literal(wb, cm->width - 1, 16); + vpx_wb_write_literal(wb, cm->height - 1, 16); + } + + write_render_size(cm, wb); +} + +static void write_sync_code(struct vpx_write_bit_buffer *wb) { + vpx_wb_write_literal(wb, VP9_SYNC_CODE_0, 8); + vpx_wb_write_literal(wb, VP9_SYNC_CODE_1, 8); + vpx_wb_write_literal(wb, VP9_SYNC_CODE_2, 8); +} + +static void write_profile(BITSTREAM_PROFILE profile, + struct vpx_write_bit_buffer *wb) { + switch (profile) { + case PROFILE_0: vpx_wb_write_literal(wb, 0, 2); break; + case PROFILE_1: vpx_wb_write_literal(wb, 2, 2); break; + case PROFILE_2: vpx_wb_write_literal(wb, 1, 2); break; + case PROFILE_3: vpx_wb_write_literal(wb, 6, 3); break; + default: assert(0); + } +} + +static void write_bitdepth_colorspace_sampling( + VP9_COMMON *const cm, struct vpx_write_bit_buffer *wb) { + if (cm->profile >= PROFILE_2) { + assert(cm->bit_depth > VPX_BITS_8); + vpx_wb_write_bit(wb, cm->bit_depth == VPX_BITS_10 ? 0 : 1); + } + vpx_wb_write_literal(wb, cm->color_space, 3); + if (cm->color_space != VPX_CS_SRGB) { + // 0: [16, 235] (i.e. xvYCC), 1: [0, 255] + vpx_wb_write_bit(wb, cm->color_range); + if (cm->profile == PROFILE_1 || cm->profile == PROFILE_3) { + assert(cm->subsampling_x != 1 || cm->subsampling_y != 1); + vpx_wb_write_bit(wb, cm->subsampling_x); + vpx_wb_write_bit(wb, cm->subsampling_y); + vpx_wb_write_bit(wb, 0); // unused + } else { + assert(cm->subsampling_x == 1 && cm->subsampling_y == 1); + } + } else { + assert(cm->profile == PROFILE_1 || cm->profile == PROFILE_3); + vpx_wb_write_bit(wb, 0); // unused + } +} + +static void write_uncompressed_header(VP9_COMP *cpi, + struct vpx_write_bit_buffer *wb) { + VP9_COMMON *const cm = &cpi->common; + MACROBLOCKD *const xd = &cpi->td.mb.e_mbd; + + vpx_wb_write_literal(wb, VP9_FRAME_MARKER, 2); + + write_profile(cm->profile, wb); + + vpx_wb_write_bit(wb, 0); // show_existing_frame + vpx_wb_write_bit(wb, cm->frame_type); + vpx_wb_write_bit(wb, cm->show_frame); + vpx_wb_write_bit(wb, cm->error_resilient_mode); + + if (cm->frame_type == KEY_FRAME) { + write_sync_code(wb); + write_bitdepth_colorspace_sampling(cm, wb); + write_frame_size(cm, wb); + } else { + // In spatial svc if it's not error_resilient_mode then we need to code all + // visible frames as invisible. But we need to keep the show_frame flag so + // that the publisher could know whether it is supposed to be visible. + // So we will code the show_frame flag as it is. Then code the intra_only + // bit here. This will make the bitstream incompatible. In the player we + // will change to show_frame flag to 0, then add an one byte frame with + // show_existing_frame flag which tells the decoder which frame we want to + // show. + if (!cm->show_frame) vpx_wb_write_bit(wb, cm->intra_only); + + if (!cm->error_resilient_mode) + vpx_wb_write_literal(wb, cm->reset_frame_context, 2); + + if (cm->intra_only) { + write_sync_code(wb); + + // Note for profile 0, 420 8bpp is assumed. + if (cm->profile > PROFILE_0) { + write_bitdepth_colorspace_sampling(cm, wb); + } + + vpx_wb_write_literal(wb, vp9_get_refresh_mask(cpi), REF_FRAMES); + write_frame_size(cm, wb); + } else { + MV_REFERENCE_FRAME ref_frame; + vpx_wb_write_literal(wb, vp9_get_refresh_mask(cpi), REF_FRAMES); + for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) { + assert(get_ref_frame_map_idx(cpi, ref_frame) != INVALID_IDX); + vpx_wb_write_literal(wb, get_ref_frame_map_idx(cpi, ref_frame), + REF_FRAMES_LOG2); + vpx_wb_write_bit(wb, cm->ref_frame_sign_bias[ref_frame]); + } + + write_frame_size_with_refs(cpi, wb); + + vpx_wb_write_bit(wb, cm->allow_high_precision_mv); + + fix_interp_filter(cm, cpi->td.counts); + write_interp_filter(cm->interp_filter, wb); + } + } + + if (!cm->error_resilient_mode) { + vpx_wb_write_bit(wb, cm->refresh_frame_context); + vpx_wb_write_bit(wb, cm->frame_parallel_decoding_mode); + } + + vpx_wb_write_literal(wb, cm->frame_context_idx, FRAME_CONTEXTS_LOG2); + + encode_loopfilter(&cm->lf, wb); + encode_quantization(cm, wb); + encode_segmentation(cm, xd, wb); + + write_tile_info(cm, wb); +} + +static size_t write_compressed_header(VP9_COMP *cpi, uint8_t *data) { + VP9_COMMON *const cm = &cpi->common; + MACROBLOCKD *const xd = &cpi->td.mb.e_mbd; + FRAME_CONTEXT *const fc = cm->fc; + FRAME_COUNTS *counts = cpi->td.counts; + vpx_writer header_bc; + + vpx_start_encode(&header_bc, data); + + if (xd->lossless) + cm->tx_mode = ONLY_4X4; + else + encode_txfm_probs(cm, &header_bc, counts); + + update_coef_probs(cpi, &header_bc); + update_skip_probs(cm, &header_bc, counts); + + if (!frame_is_intra_only(cm)) { + int i; + + for (i = 0; i < INTER_MODE_CONTEXTS; ++i) + prob_diff_update(vp9_inter_mode_tree, cm->fc->inter_mode_probs[i], + counts->inter_mode[i], INTER_MODES, &header_bc); + + if (cm->interp_filter == SWITCHABLE) + update_switchable_interp_probs(cm, &header_bc, counts); + + for (i = 0; i < INTRA_INTER_CONTEXTS; i++) + vp9_cond_prob_diff_update(&header_bc, &fc->intra_inter_prob[i], + counts->intra_inter[i]); + + if (cpi->allow_comp_inter_inter) { + const int use_compound_pred = cm->reference_mode != SINGLE_REFERENCE; + const int use_hybrid_pred = cm->reference_mode == REFERENCE_MODE_SELECT; + + vpx_write_bit(&header_bc, use_compound_pred); + if (use_compound_pred) { + vpx_write_bit(&header_bc, use_hybrid_pred); + if (use_hybrid_pred) + for (i = 0; i < COMP_INTER_CONTEXTS; i++) + vp9_cond_prob_diff_update(&header_bc, &fc->comp_inter_prob[i], + counts->comp_inter[i]); + } + } + + if (cm->reference_mode != COMPOUND_REFERENCE) { + for (i = 0; i < REF_CONTEXTS; i++) { + vp9_cond_prob_diff_update(&header_bc, &fc->single_ref_prob[i][0], + counts->single_ref[i][0]); + vp9_cond_prob_diff_update(&header_bc, &fc->single_ref_prob[i][1], + counts->single_ref[i][1]); + } + } + + if (cm->reference_mode != SINGLE_REFERENCE) + for (i = 0; i < REF_CONTEXTS; i++) + vp9_cond_prob_diff_update(&header_bc, &fc->comp_ref_prob[i], + counts->comp_ref[i]); + + for (i = 0; i < BLOCK_SIZE_GROUPS; ++i) + prob_diff_update(vp9_intra_mode_tree, cm->fc->y_mode_prob[i], + counts->y_mode[i], INTRA_MODES, &header_bc); + + for (i = 0; i < PARTITION_CONTEXTS; ++i) + prob_diff_update(vp9_partition_tree, fc->partition_prob[i], + counts->partition[i], PARTITION_TYPES, &header_bc); + + vp9_write_nmv_probs(cm, cm->allow_high_precision_mv, &header_bc, + &counts->mv); + } + + vpx_stop_encode(&header_bc); + assert(header_bc.pos <= 0xffff); + + return header_bc.pos; +} + +void vp9_pack_bitstream(VP9_COMP *cpi, uint8_t *dest, size_t *size) { + uint8_t *data = dest; + size_t first_part_size, uncompressed_hdr_size; + struct vpx_write_bit_buffer wb = { data, 0 }; + struct vpx_write_bit_buffer saved_wb; + + write_uncompressed_header(cpi, &wb); + saved_wb = wb; + vpx_wb_write_literal(&wb, 0, 16); // don't know in advance first part. size + + uncompressed_hdr_size = vpx_wb_bytes_written(&wb); + data += uncompressed_hdr_size; + + vpx_clear_system_state(); + + first_part_size = write_compressed_header(cpi, data); + data += first_part_size; + // TODO(jbb): Figure out what to do if first_part_size > 16 bits. + vpx_wb_write_literal(&saved_wb, (int)first_part_size, 16); + + data += encode_tiles(cpi, data); + + *size = data - dest; +} diff --git a/vp9/encoder/vp9_bitstream.h b/vp9/encoder/vp9_bitstream.h new file mode 100644 index 0000000..339c3fe --- /dev/null +++ b/vp9/encoder/vp9_bitstream.h @@ -0,0 +1,53 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP9_ENCODER_VP9_BITSTREAM_H_ +#define VP9_ENCODER_VP9_BITSTREAM_H_ + +#ifdef __cplusplus +extern "C" { +#endif + +#include "vp9/encoder/vp9_encoder.h" + +typedef struct VP9BitstreamWorkerData { + uint8_t *dest; + int dest_size; + vpx_writer bit_writer; + int tile_idx; + unsigned int max_mv_magnitude; + // The size of interp_filter_selected in VP9_COMP is actually + // MAX_REFERENCE_FRAMES x SWITCHABLE. But when encoding tiles, all we ever do + // is increment the very first index (index 0) for the first dimension. Hence + // this is sufficient. + int interp_filter_selected[1][SWITCHABLE]; + DECLARE_ALIGNED(16, MACROBLOCKD, xd); +} VP9BitstreamWorkerData; + +int vp9_get_refresh_mask(VP9_COMP *cpi); + +void vp9_bitstream_encode_tiles_buffer_dealloc(VP9_COMP *const cpi); + +void vp9_pack_bitstream(VP9_COMP *cpi, uint8_t *dest, size_t *size); + +static INLINE int vp9_preserve_existing_gf(VP9_COMP *cpi) { + return !cpi->multi_arf_allowed && cpi->refresh_golden_frame && + cpi->rc.is_src_frame_alt_ref && + (!cpi->use_svc || // Add spatial svc base layer case here + (is_two_pass_svc(cpi) && cpi->svc.spatial_layer_id == 0 && + cpi->svc.layer_context[0].gold_ref_idx >= 0 && + cpi->oxcf.ss_enable_auto_arf[0])); +} + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP9_ENCODER_VP9_BITSTREAM_H_ diff --git a/vp9/encoder/vp9_block.h b/vp9/encoder/vp9_block.h new file mode 100644 index 0000000..724205d --- /dev/null +++ b/vp9/encoder/vp9_block.h @@ -0,0 +1,208 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP9_ENCODER_VP9_BLOCK_H_ +#define VP9_ENCODER_VP9_BLOCK_H_ + +#include "vpx_util/vpx_thread.h" + +#include "vp9/common/vp9_entropymv.h" +#include "vp9/common/vp9_entropy.h" + +#ifdef __cplusplus +extern "C" { +#endif + +typedef struct { + unsigned int sse; + int sum; + unsigned int var; +} diff; + +struct macroblock_plane { + DECLARE_ALIGNED(16, int16_t, src_diff[64 * 64]); + tran_low_t *qcoeff; + tran_low_t *coeff; + uint16_t *eobs; + struct buf_2d src; + + // Quantizer setings + int16_t *quant_fp; + int16_t *round_fp; + int16_t *quant; + int16_t *quant_shift; + int16_t *zbin; + int16_t *round; + + int64_t quant_thred[2]; +}; + +/* The [2] dimension is for whether we skip the EOB node (i.e. if previous + * coefficient in this block was zero) or not. */ +typedef unsigned int vp9_coeff_cost[PLANE_TYPES][REF_TYPES][COEF_BANDS][2] + [COEFF_CONTEXTS][ENTROPY_TOKENS]; + +typedef struct { + int_mv ref_mvs[MAX_REF_FRAMES][MAX_MV_REF_CANDIDATES]; + uint8_t mode_context[MAX_REF_FRAMES]; +} MB_MODE_INFO_EXT; + +typedef struct { + int col_min; + int col_max; + int row_min; + int row_max; +} MvLimits; + +typedef struct macroblock MACROBLOCK; +struct macroblock { +// cf. https://bugs.chromium.org/p/webm/issues/detail?id=1054 +#if defined(_MSC_VER) && _MSC_VER < 1900 + int64_t bsse[MAX_MB_PLANE << 2]; +#endif + + struct macroblock_plane plane[MAX_MB_PLANE]; + + MACROBLOCKD e_mbd; + MB_MODE_INFO_EXT *mbmi_ext; + MB_MODE_INFO_EXT *mbmi_ext_base; + int skip_block; + int select_tx_size; + int skip_recode; + int skip_optimize; + int q_index; + int block_qcoeff_opt; + int block_tx_domain; + + // The equivalent error at the current rdmult of one whole bit (not one + // bitcost unit). + int errorperbit; + // The equivalend SAD error of one (whole) bit at the current quantizer + // for large blocks. + int sadperbit16; + // The equivalend SAD error of one (whole) bit at the current quantizer + // for sub-8x8 blocks. + int sadperbit4; + int rddiv; + int rdmult; + int mb_energy; + + // These are set to their default values at the beginning, and then adjusted + // further in the encoding process. + BLOCK_SIZE min_partition_size; + BLOCK_SIZE max_partition_size; + + int mv_best_ref_index[MAX_REF_FRAMES]; + unsigned int max_mv_context[MAX_REF_FRAMES]; + unsigned int source_variance; + unsigned int pred_sse[MAX_REF_FRAMES]; + int pred_mv_sad[MAX_REF_FRAMES]; + + int nmvjointcost[MV_JOINTS]; + int *nmvcost[2]; + int *nmvcost_hp[2]; + int **mvcost; + + int nmvjointsadcost[MV_JOINTS]; + int *nmvsadcost[2]; + int *nmvsadcost_hp[2]; + int **mvsadcost; + + // These define limits to motion vector components to prevent them + // from extending outside the UMV borders + MvLimits mv_limits; + + // Notes transform blocks where no coefficents are coded. + // Set during mode selection. Read during block encoding. + uint8_t zcoeff_blk[TX_SIZES][256]; + + // Accumulate the tx block eobs in a partition block. + int32_t sum_y_eobs[TX_SIZES]; + + int skip; + + int encode_breakout; + + // note that token_costs is the cost when eob node is skipped + vp9_coeff_cost token_costs[TX_SIZES]; + + int optimize; + + // indicate if it is in the rd search loop or encoding process + int use_lp32x32fdct; + int skip_encode; + + // In first pass, intra prediction is done based on source pixels + // at tile boundaries + int fp_src_pred; + + // use fast quantization process + int quant_fp; + + // skip forward transform and quantization + uint8_t skip_txfm[MAX_MB_PLANE << 2]; +#define SKIP_TXFM_NONE 0 +#define SKIP_TXFM_AC_DC 1 +#define SKIP_TXFM_AC_ONLY 2 + +// cf. https://bugs.chromium.org/p/webm/issues/detail?id=1054 +#if !defined(_MSC_VER) || _MSC_VER >= 1900 + int64_t bsse[MAX_MB_PLANE << 2]; +#endif + + // Used to store sub partition's choices. + MV pred_mv[MAX_REF_FRAMES]; + + // Strong color activity detection. Used in RTC coding mode to enhance + // the visual quality at the boundary of moving color objects. + uint8_t color_sensitivity[2]; + + uint8_t sb_is_skin; + + uint8_t skip_low_source_sad; + + uint8_t lowvar_highsumdiff; + + uint8_t last_sb_high_content; + + int sb_use_mv_part; + + int sb_mvcol_part; + + int sb_mvrow_part; + + int sb_pickmode_part; + + // For each superblock: saves the content value (e.g., low/high sad/sumdiff) + // based on source sad, prior to encoding the frame. + uint8_t content_state_sb; + + // Used to save the status of whether a block has a low variance in + // choose_partitioning. 0 for 64x64, 1~2 for 64x32, 3~4 for 32x64, 5~8 for + // 32x32, 9~24 for 16x16. + uint8_t variance_low[25]; + + uint8_t arf_frame_usage; + uint8_t lastgolden_frame_usage; + + void (*fwd_txfm4x4)(const int16_t *input, tran_low_t *output, int stride); + void (*inv_txfm_add)(const tran_low_t *input, uint8_t *dest, int stride, + int eob); +#if CONFIG_VP9_HIGHBITDEPTH + void (*highbd_inv_txfm_add)(const tran_low_t *input, uint16_t *dest, + int stride, int eob, int bd); +#endif +}; + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP9_ENCODER_VP9_BLOCK_H_ diff --git a/vp9/encoder/vp9_blockiness.c b/vp9/encoder/vp9_blockiness.c new file mode 100644 index 0000000..9ab57b5 --- /dev/null +++ b/vp9/encoder/vp9_blockiness.c @@ -0,0 +1,134 @@ +/* + * Copyright (c) 2014 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ +#include + +#include "vpx/vpx_integer.h" +#include "vpx_ports/system_state.h" + +static int horizontal_filter(const uint8_t *s) { + return (s[1] - s[-2]) * 2 + (s[-1] - s[0]) * 6; +} + +static int vertical_filter(const uint8_t *s, int p) { + return (s[p] - s[-2 * p]) * 2 + (s[-p] - s[0]) * 6; +} + +static int variance(int sum, int sum_squared, int size) { + return sum_squared / size - (sum / size) * (sum / size); +} +// Calculate a blockiness level for a vertical block edge. +// This function returns a new blockiness metric that's defined as + +// p0 p1 p2 p3 +// q0 q1 q2 q3 +// block edge -> +// r0 r1 r2 r3 +// s0 s1 s2 s3 + +// blockiness = p0*-2+q0*6+r0*-6+s0*2 + +// p1*-2+q1*6+r1*-6+s1*2 + +// p2*-2+q2*6+r2*-6+s2*2 + +// p3*-2+q3*6+r3*-6+s3*2 ; + +// reconstructed_blockiness = abs(blockiness from reconstructed buffer - +// blockiness from source buffer,0) +// +// I make the assumption that flat blocks are much more visible than high +// contrast blocks. As such, I scale the result of the blockiness calc +// by dividing the blockiness by the variance of the pixels on either side +// of the edge as follows: +// var_0 = (q0^2+q1^2+q2^2+q3^2) - ((q0 + q1 + q2 + q3) / 4 )^2 +// var_1 = (r0^2+r1^2+r2^2+r3^2) - ((r0 + r1 + r2 + r3) / 4 )^2 +// The returned blockiness is the scaled value +// Reconstructed blockiness / ( 1 + var_0 + var_1 ) ; +static int blockiness_vertical(const uint8_t *s, int sp, const uint8_t *r, + int rp, int size) { + int s_blockiness = 0; + int r_blockiness = 0; + int sum_0 = 0; + int sum_sq_0 = 0; + int sum_1 = 0; + int sum_sq_1 = 0; + int i; + int var_0; + int var_1; + for (i = 0; i < size; ++i, s += sp, r += rp) { + s_blockiness += horizontal_filter(s); + r_blockiness += horizontal_filter(r); + sum_0 += s[0]; + sum_sq_0 += s[0] * s[0]; + sum_1 += s[-1]; + sum_sq_1 += s[-1] * s[-1]; + } + var_0 = variance(sum_0, sum_sq_0, size); + var_1 = variance(sum_1, sum_sq_1, size); + r_blockiness = abs(r_blockiness); + s_blockiness = abs(s_blockiness); + + if (r_blockiness > s_blockiness) + return (r_blockiness - s_blockiness) / (1 + var_0 + var_1); + else + return 0; +} + +// Calculate a blockiness level for a horizontal block edge +// same as above. +static int blockiness_horizontal(const uint8_t *s, int sp, const uint8_t *r, + int rp, int size) { + int s_blockiness = 0; + int r_blockiness = 0; + int sum_0 = 0; + int sum_sq_0 = 0; + int sum_1 = 0; + int sum_sq_1 = 0; + int i; + int var_0; + int var_1; + for (i = 0; i < size; ++i, ++s, ++r) { + s_blockiness += vertical_filter(s, sp); + r_blockiness += vertical_filter(r, rp); + sum_0 += s[0]; + sum_sq_0 += s[0] * s[0]; + sum_1 += s[-sp]; + sum_sq_1 += s[-sp] * s[-sp]; + } + var_0 = variance(sum_0, sum_sq_0, size); + var_1 = variance(sum_1, sum_sq_1, size); + r_blockiness = abs(r_blockiness); + s_blockiness = abs(s_blockiness); + + if (r_blockiness > s_blockiness) + return (r_blockiness - s_blockiness) / (1 + var_0 + var_1); + else + return 0; +} + +// This function returns the blockiness for the entire frame currently by +// looking at all borders in steps of 4. +double vp9_get_blockiness(const uint8_t *img1, int img1_pitch, + const uint8_t *img2, int img2_pitch, int width, + int height) { + double blockiness = 0; + int i, j; + vpx_clear_system_state(); + for (i = 0; i < height; + i += 4, img1 += img1_pitch * 4, img2 += img2_pitch * 4) { + for (j = 0; j < width; j += 4) { + if (i > 0 && i < height && j > 0 && j < width) { + blockiness += + blockiness_vertical(img1 + j, img1_pitch, img2 + j, img2_pitch, 4); + blockiness += blockiness_horizontal(img1 + j, img1_pitch, img2 + j, + img2_pitch, 4); + } + } + } + blockiness /= width * height / 16; + return blockiness; +} diff --git a/vp9/encoder/vp9_context_tree.c b/vp9/encoder/vp9_context_tree.c new file mode 100644 index 0000000..2f7e544 --- /dev/null +++ b/vp9/encoder/vp9_context_tree.c @@ -0,0 +1,152 @@ +/* + * Copyright (c) 2014 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "vp9/encoder/vp9_context_tree.h" +#include "vp9/encoder/vp9_encoder.h" + +static const BLOCK_SIZE square[] = { + BLOCK_8X8, BLOCK_16X16, BLOCK_32X32, BLOCK_64X64, +}; + +static void alloc_mode_context(VP9_COMMON *cm, int num_4x4_blk, + PICK_MODE_CONTEXT *ctx) { + const int num_blk = (num_4x4_blk < 4 ? 4 : num_4x4_blk); + const int num_pix = num_blk << 4; + int i, k; + ctx->num_4x4_blk = num_blk; + + CHECK_MEM_ERROR(cm, ctx->zcoeff_blk, vpx_calloc(num_blk, sizeof(uint8_t))); + for (i = 0; i < MAX_MB_PLANE; ++i) { + for (k = 0; k < 3; ++k) { + CHECK_MEM_ERROR(cm, ctx->coeff[i][k], + vpx_memalign(32, num_pix * sizeof(*ctx->coeff[i][k]))); + CHECK_MEM_ERROR(cm, ctx->qcoeff[i][k], + vpx_memalign(32, num_pix * sizeof(*ctx->qcoeff[i][k]))); + CHECK_MEM_ERROR(cm, ctx->dqcoeff[i][k], + vpx_memalign(32, num_pix * sizeof(*ctx->dqcoeff[i][k]))); + CHECK_MEM_ERROR(cm, ctx->eobs[i][k], + vpx_memalign(32, num_blk * sizeof(*ctx->eobs[i][k]))); + ctx->coeff_pbuf[i][k] = ctx->coeff[i][k]; + ctx->qcoeff_pbuf[i][k] = ctx->qcoeff[i][k]; + ctx->dqcoeff_pbuf[i][k] = ctx->dqcoeff[i][k]; + ctx->eobs_pbuf[i][k] = ctx->eobs[i][k]; + } + } +} + +static void free_mode_context(PICK_MODE_CONTEXT *ctx) { + int i, k; + vpx_free(ctx->zcoeff_blk); + ctx->zcoeff_blk = 0; + for (i = 0; i < MAX_MB_PLANE; ++i) { + for (k = 0; k < 3; ++k) { + vpx_free(ctx->coeff[i][k]); + ctx->coeff[i][k] = 0; + vpx_free(ctx->qcoeff[i][k]); + ctx->qcoeff[i][k] = 0; + vpx_free(ctx->dqcoeff[i][k]); + ctx->dqcoeff[i][k] = 0; + vpx_free(ctx->eobs[i][k]); + ctx->eobs[i][k] = 0; + } + } +} + +static void alloc_tree_contexts(VP9_COMMON *cm, PC_TREE *tree, + int num_4x4_blk) { + alloc_mode_context(cm, num_4x4_blk, &tree->none); + alloc_mode_context(cm, num_4x4_blk / 2, &tree->horizontal[0]); + alloc_mode_context(cm, num_4x4_blk / 2, &tree->vertical[0]); + + if (num_4x4_blk > 4) { + alloc_mode_context(cm, num_4x4_blk / 2, &tree->horizontal[1]); + alloc_mode_context(cm, num_4x4_blk / 2, &tree->vertical[1]); + } else { + memset(&tree->horizontal[1], 0, sizeof(tree->horizontal[1])); + memset(&tree->vertical[1], 0, sizeof(tree->vertical[1])); + } +} + +static void free_tree_contexts(PC_TREE *tree) { + free_mode_context(&tree->none); + free_mode_context(&tree->horizontal[0]); + free_mode_context(&tree->horizontal[1]); + free_mode_context(&tree->vertical[0]); + free_mode_context(&tree->vertical[1]); +} + +// This function sets up a tree of contexts such that at each square +// partition level. There are contexts for none, horizontal, vertical, and +// split. Along with a block_size value and a selected block_size which +// represents the state of our search. +void vp9_setup_pc_tree(VP9_COMMON *cm, ThreadData *td) { + int i, j; + const int leaf_nodes = 64; + const int tree_nodes = 64 + 16 + 4 + 1; + int pc_tree_index = 0; + PC_TREE *this_pc; + PICK_MODE_CONTEXT *this_leaf; + int square_index = 1; + int nodes; + + vpx_free(td->leaf_tree); + CHECK_MEM_ERROR(cm, td->leaf_tree, + vpx_calloc(leaf_nodes, sizeof(*td->leaf_tree))); + vpx_free(td->pc_tree); + CHECK_MEM_ERROR(cm, td->pc_tree, + vpx_calloc(tree_nodes, sizeof(*td->pc_tree))); + + this_pc = &td->pc_tree[0]; + this_leaf = &td->leaf_tree[0]; + + // 4x4 blocks smaller than 8x8 but in the same 8x8 block share the same + // context so we only need to allocate 1 for each 8x8 block. + for (i = 0; i < leaf_nodes; ++i) alloc_mode_context(cm, 1, &td->leaf_tree[i]); + + // Sets up all the leaf nodes in the tree. + for (pc_tree_index = 0; pc_tree_index < leaf_nodes; ++pc_tree_index) { + PC_TREE *const tree = &td->pc_tree[pc_tree_index]; + tree->block_size = square[0]; + alloc_tree_contexts(cm, tree, 4); + tree->leaf_split[0] = this_leaf++; + for (j = 1; j < 4; j++) tree->leaf_split[j] = tree->leaf_split[0]; + } + + // Each node has 4 leaf nodes, fill each block_size level of the tree + // from leafs to the root. + for (nodes = 16; nodes > 0; nodes >>= 2) { + for (i = 0; i < nodes; ++i) { + PC_TREE *const tree = &td->pc_tree[pc_tree_index]; + alloc_tree_contexts(cm, tree, 4 << (2 * square_index)); + tree->block_size = square[square_index]; + for (j = 0; j < 4; j++) tree->split[j] = this_pc++; + ++pc_tree_index; + } + ++square_index; + } + td->pc_root = &td->pc_tree[tree_nodes - 1]; + td->pc_root[0].none.best_mode_index = 2; +} + +void vp9_free_pc_tree(ThreadData *td) { + const int tree_nodes = 64 + 16 + 4 + 1; + int i; + + // Set up all 4x4 mode contexts + for (i = 0; i < 64; ++i) free_mode_context(&td->leaf_tree[i]); + + // Sets up all the leaf nodes in the tree. + for (i = 0; i < tree_nodes; ++i) free_tree_contexts(&td->pc_tree[i]); + + vpx_free(td->pc_tree); + td->pc_tree = NULL; + vpx_free(td->leaf_tree); + td->leaf_tree = NULL; +} diff --git a/vp9/encoder/vp9_context_tree.h b/vp9/encoder/vp9_context_tree.h new file mode 100644 index 0000000..73423c0 --- /dev/null +++ b/vp9/encoder/vp9_context_tree.h @@ -0,0 +1,100 @@ +/* + * Copyright (c) 2014 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP9_ENCODER_VP9_CONTEXT_TREE_H_ +#define VP9_ENCODER_VP9_CONTEXT_TREE_H_ + +#include "vp9/common/vp9_blockd.h" +#include "vp9/encoder/vp9_block.h" + +#ifdef __cplusplus +extern "C" { +#endif + +struct VP9_COMP; +struct VP9Common; +struct ThreadData; + +// Structure to hold snapshot of coding context during the mode picking process +typedef struct { + MODE_INFO mic; + MB_MODE_INFO_EXT mbmi_ext; + uint8_t *zcoeff_blk; + tran_low_t *coeff[MAX_MB_PLANE][3]; + tran_low_t *qcoeff[MAX_MB_PLANE][3]; + tran_low_t *dqcoeff[MAX_MB_PLANE][3]; + uint16_t *eobs[MAX_MB_PLANE][3]; + + // dual buffer pointers, 0: in use, 1: best in store + tran_low_t *coeff_pbuf[MAX_MB_PLANE][3]; + tran_low_t *qcoeff_pbuf[MAX_MB_PLANE][3]; + tran_low_t *dqcoeff_pbuf[MAX_MB_PLANE][3]; + uint16_t *eobs_pbuf[MAX_MB_PLANE][3]; + + int is_coded; + int num_4x4_blk; + int skip; + int pred_pixel_ready; + // For current partition, only if all Y, U, and V transform blocks' + // coefficients are quantized to 0, skippable is set to 0. + int skippable; + uint8_t skip_txfm[MAX_MB_PLANE << 2]; + int best_mode_index; + int hybrid_pred_diff; + int comp_pred_diff; + int single_pred_diff; + int64_t best_filter_diff[SWITCHABLE_FILTER_CONTEXTS]; + + // TODO(jingning) Use RD_COST struct here instead. This involves a boarder + // scope of refactoring. + int rate; + int64_t dist; + +#if CONFIG_VP9_TEMPORAL_DENOISING + unsigned int newmv_sse; + unsigned int zeromv_sse; + unsigned int zeromv_lastref_sse; + PREDICTION_MODE best_sse_inter_mode; + int_mv best_sse_mv; + MV_REFERENCE_FRAME best_reference_frame; + MV_REFERENCE_FRAME best_zeromv_reference_frame; + int sb_skip_denoising; +#endif + + // motion vector cache for adaptive motion search control in partition + // search loop + MV pred_mv[MAX_REF_FRAMES]; + INTERP_FILTER pred_interp_filter; + + // Used for the machine learning-based early termination + int32_t sum_y_eobs; +} PICK_MODE_CONTEXT; + +typedef struct PC_TREE { + int index; + PARTITION_TYPE partitioning; + BLOCK_SIZE block_size; + PICK_MODE_CONTEXT none; + PICK_MODE_CONTEXT horizontal[2]; + PICK_MODE_CONTEXT vertical[2]; + union { + struct PC_TREE *split[4]; + PICK_MODE_CONTEXT *leaf_split[4]; + }; +} PC_TREE; + +void vp9_setup_pc_tree(struct VP9Common *cm, struct ThreadData *td); +void vp9_free_pc_tree(struct ThreadData *td); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif /* VP9_ENCODER_VP9_CONTEXT_TREE_H_ */ diff --git a/vp9/encoder/vp9_cost.c b/vp9/encoder/vp9_cost.c new file mode 100644 index 0000000..81581a8 --- /dev/null +++ b/vp9/encoder/vp9_cost.c @@ -0,0 +1,65 @@ +/* + * Copyright (c) 2014 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ +#include + +#include "vp9/encoder/vp9_cost.h" + +/* round(-log2(i/256.) * (1 << VP9_PROB_COST_SHIFT)) + Begins with a bogus entry for simpler addressing. */ +const uint16_t vp9_prob_cost[256] = { + 4096, 4096, 3584, 3284, 3072, 2907, 2772, 2659, 2560, 2473, 2395, 2325, 2260, + 2201, 2147, 2096, 2048, 2003, 1961, 1921, 1883, 1847, 1813, 1780, 1748, 1718, + 1689, 1661, 1635, 1609, 1584, 1559, 1536, 1513, 1491, 1470, 1449, 1429, 1409, + 1390, 1371, 1353, 1335, 1318, 1301, 1284, 1268, 1252, 1236, 1221, 1206, 1192, + 1177, 1163, 1149, 1136, 1123, 1110, 1097, 1084, 1072, 1059, 1047, 1036, 1024, + 1013, 1001, 990, 979, 968, 958, 947, 937, 927, 917, 907, 897, 887, + 878, 868, 859, 850, 841, 832, 823, 814, 806, 797, 789, 780, 772, + 764, 756, 748, 740, 732, 724, 717, 709, 702, 694, 687, 680, 673, + 665, 658, 651, 644, 637, 631, 624, 617, 611, 604, 598, 591, 585, + 578, 572, 566, 560, 554, 547, 541, 535, 530, 524, 518, 512, 506, + 501, 495, 489, 484, 478, 473, 467, 462, 456, 451, 446, 441, 435, + 430, 425, 420, 415, 410, 405, 400, 395, 390, 385, 380, 375, 371, + 366, 361, 356, 352, 347, 343, 338, 333, 329, 324, 320, 316, 311, + 307, 302, 298, 294, 289, 285, 281, 277, 273, 268, 264, 260, 256, + 252, 248, 244, 240, 236, 232, 228, 224, 220, 216, 212, 209, 205, + 201, 197, 194, 190, 186, 182, 179, 175, 171, 168, 164, 161, 157, + 153, 150, 146, 143, 139, 136, 132, 129, 125, 122, 119, 115, 112, + 109, 105, 102, 99, 95, 92, 89, 86, 82, 79, 76, 73, 70, + 66, 63, 60, 57, 54, 51, 48, 45, 42, 38, 35, 32, 29, + 26, 23, 20, 18, 15, 12, 9, 6, 3 +}; + +static void cost(int *costs, vpx_tree tree, const vpx_prob *probs, int i, + int c) { + const vpx_prob prob = probs[i / 2]; + int b; + + assert(prob != 0); + for (b = 0; b <= 1; ++b) { + const int cc = c + vp9_cost_bit(prob, b); + const vpx_tree_index ii = tree[i + b]; + + if (ii <= 0) + costs[-ii] = cc; + else + cost(costs, tree, probs, ii, cc); + } +} + +void vp9_cost_tokens(int *costs, const vpx_prob *probs, vpx_tree tree) { + cost(costs, tree, probs, 0, 0); +} + +void vp9_cost_tokens_skip(int *costs, const vpx_prob *probs, vpx_tree tree) { + assert(tree[0] <= 0 && tree[1] > 0); + + costs[-tree[0]] = vp9_cost_bit(probs[0], 0); + cost(costs, tree, probs, 2, 0); +} diff --git a/vp9/encoder/vp9_cost.h b/vp9/encoder/vp9_cost.h new file mode 100644 index 0000000..70a1a2e --- /dev/null +++ b/vp9/encoder/vp9_cost.h @@ -0,0 +1,58 @@ +/* + * Copyright (c) 2014 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP9_ENCODER_VP9_COST_H_ +#define VP9_ENCODER_VP9_COST_H_ + +#include "vpx_dsp/prob.h" +#include "vpx/vpx_integer.h" + +#ifdef __cplusplus +extern "C" { +#endif + +extern const uint16_t vp9_prob_cost[256]; + +// The factor to scale from cost in bits to cost in vp9_prob_cost units. +#define VP9_PROB_COST_SHIFT 9 + +#define vp9_cost_zero(prob) (vp9_prob_cost[prob]) + +#define vp9_cost_one(prob) vp9_cost_zero(256 - (prob)) + +#define vp9_cost_bit(prob, bit) vp9_cost_zero((bit) ? 256 - (prob) : (prob)) + +static INLINE unsigned int cost_branch256(const unsigned int ct[2], + vpx_prob p) { + return ct[0] * vp9_cost_zero(p) + ct[1] * vp9_cost_one(p); +} + +static INLINE int treed_cost(vpx_tree tree, const vpx_prob *probs, int bits, + int len) { + int cost = 0; + vpx_tree_index i = 0; + + do { + const int bit = (bits >> --len) & 1; + cost += vp9_cost_bit(probs[i >> 1], bit); + i = tree[i + bit]; + } while (len); + + return cost; +} + +void vp9_cost_tokens(int *costs, const vpx_prob *probs, vpx_tree tree); +void vp9_cost_tokens_skip(int *costs, const vpx_prob *probs, vpx_tree tree); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP9_ENCODER_VP9_COST_H_ diff --git a/vp9/encoder/vp9_dct.c b/vp9/encoder/vp9_dct.c new file mode 100644 index 0000000..5c66562 --- /dev/null +++ b/vp9/encoder/vp9_dct.c @@ -0,0 +1,790 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include + +#include "./vp9_rtcd.h" +#include "./vpx_config.h" +#include "./vpx_dsp_rtcd.h" + +#include "vp9/common/vp9_blockd.h" +#include "vp9/common/vp9_idct.h" +#include "vpx_dsp/fwd_txfm.h" +#include "vpx_ports/mem.h" + +static void fdct4(const tran_low_t *input, tran_low_t *output) { + tran_high_t step[4]; + tran_high_t temp1, temp2; + + step[0] = input[0] + input[3]; + step[1] = input[1] + input[2]; + step[2] = input[1] - input[2]; + step[3] = input[0] - input[3]; + + temp1 = (step[0] + step[1]) * cospi_16_64; + temp2 = (step[0] - step[1]) * cospi_16_64; + output[0] = (tran_low_t)fdct_round_shift(temp1); + output[2] = (tran_low_t)fdct_round_shift(temp2); + temp1 = step[2] * cospi_24_64 + step[3] * cospi_8_64; + temp2 = -step[2] * cospi_8_64 + step[3] * cospi_24_64; + output[1] = (tran_low_t)fdct_round_shift(temp1); + output[3] = (tran_low_t)fdct_round_shift(temp2); +} + +static void fdct8(const tran_low_t *input, tran_low_t *output) { + tran_high_t s0, s1, s2, s3, s4, s5, s6, s7; // canbe16 + tran_high_t t0, t1, t2, t3; // needs32 + tran_high_t x0, x1, x2, x3; // canbe16 + + // stage 1 + s0 = input[0] + input[7]; + s1 = input[1] + input[6]; + s2 = input[2] + input[5]; + s3 = input[3] + input[4]; + s4 = input[3] - input[4]; + s5 = input[2] - input[5]; + s6 = input[1] - input[6]; + s7 = input[0] - input[7]; + + // fdct4(step, step); + x0 = s0 + s3; + x1 = s1 + s2; + x2 = s1 - s2; + x3 = s0 - s3; + t0 = (x0 + x1) * cospi_16_64; + t1 = (x0 - x1) * cospi_16_64; + t2 = x2 * cospi_24_64 + x3 * cospi_8_64; + t3 = -x2 * cospi_8_64 + x3 * cospi_24_64; + output[0] = (tran_low_t)fdct_round_shift(t0); + output[2] = (tran_low_t)fdct_round_shift(t2); + output[4] = (tran_low_t)fdct_round_shift(t1); + output[6] = (tran_low_t)fdct_round_shift(t3); + + // Stage 2 + t0 = (s6 - s5) * cospi_16_64; + t1 = (s6 + s5) * cospi_16_64; + t2 = (tran_low_t)fdct_round_shift(t0); + t3 = (tran_low_t)fdct_round_shift(t1); + + // Stage 3 + x0 = s4 + t2; + x1 = s4 - t2; + x2 = s7 - t3; + x3 = s7 + t3; + + // Stage 4 + t0 = x0 * cospi_28_64 + x3 * cospi_4_64; + t1 = x1 * cospi_12_64 + x2 * cospi_20_64; + t2 = x2 * cospi_12_64 + x1 * -cospi_20_64; + t3 = x3 * cospi_28_64 + x0 * -cospi_4_64; + output[1] = (tran_low_t)fdct_round_shift(t0); + output[3] = (tran_low_t)fdct_round_shift(t2); + output[5] = (tran_low_t)fdct_round_shift(t1); + output[7] = (tran_low_t)fdct_round_shift(t3); +} + +static void fdct16(const tran_low_t in[16], tran_low_t out[16]) { + tran_high_t step1[8]; // canbe16 + tran_high_t step2[8]; // canbe16 + tran_high_t step3[8]; // canbe16 + tran_high_t input[8]; // canbe16 + tran_high_t temp1, temp2; // needs32 + + // step 1 + input[0] = in[0] + in[15]; + input[1] = in[1] + in[14]; + input[2] = in[2] + in[13]; + input[3] = in[3] + in[12]; + input[4] = in[4] + in[11]; + input[5] = in[5] + in[10]; + input[6] = in[6] + in[9]; + input[7] = in[7] + in[8]; + + step1[0] = in[7] - in[8]; + step1[1] = in[6] - in[9]; + step1[2] = in[5] - in[10]; + step1[3] = in[4] - in[11]; + step1[4] = in[3] - in[12]; + step1[5] = in[2] - in[13]; + step1[6] = in[1] - in[14]; + step1[7] = in[0] - in[15]; + + // fdct8(step, step); + { + tran_high_t s0, s1, s2, s3, s4, s5, s6, s7; // canbe16 + tran_high_t t0, t1, t2, t3; // needs32 + tran_high_t x0, x1, x2, x3; // canbe16 + + // stage 1 + s0 = input[0] + input[7]; + s1 = input[1] + input[6]; + s2 = input[2] + input[5]; + s3 = input[3] + input[4]; + s4 = input[3] - input[4]; + s5 = input[2] - input[5]; + s6 = input[1] - input[6]; + s7 = input[0] - input[7]; + + // fdct4(step, step); + x0 = s0 + s3; + x1 = s1 + s2; + x2 = s1 - s2; + x3 = s0 - s3; + t0 = (x0 + x1) * cospi_16_64; + t1 = (x0 - x1) * cospi_16_64; + t2 = x3 * cospi_8_64 + x2 * cospi_24_64; + t3 = x3 * cospi_24_64 - x2 * cospi_8_64; + out[0] = (tran_low_t)fdct_round_shift(t0); + out[4] = (tran_low_t)fdct_round_shift(t2); + out[8] = (tran_low_t)fdct_round_shift(t1); + out[12] = (tran_low_t)fdct_round_shift(t3); + + // Stage 2 + t0 = (s6 - s5) * cospi_16_64; + t1 = (s6 + s5) * cospi_16_64; + t2 = fdct_round_shift(t0); + t3 = fdct_round_shift(t1); + + // Stage 3 + x0 = s4 + t2; + x1 = s4 - t2; + x2 = s7 - t3; + x3 = s7 + t3; + + // Stage 4 + t0 = x0 * cospi_28_64 + x3 * cospi_4_64; + t1 = x1 * cospi_12_64 + x2 * cospi_20_64; + t2 = x2 * cospi_12_64 + x1 * -cospi_20_64; + t3 = x3 * cospi_28_64 + x0 * -cospi_4_64; + out[2] = (tran_low_t)fdct_round_shift(t0); + out[6] = (tran_low_t)fdct_round_shift(t2); + out[10] = (tran_low_t)fdct_round_shift(t1); + out[14] = (tran_low_t)fdct_round_shift(t3); + } + + // step 2 + temp1 = (step1[5] - step1[2]) * cospi_16_64; + temp2 = (step1[4] - step1[3]) * cospi_16_64; + step2[2] = fdct_round_shift(temp1); + step2[3] = fdct_round_shift(temp2); + temp1 = (step1[4] + step1[3]) * cospi_16_64; + temp2 = (step1[5] + step1[2]) * cospi_16_64; + step2[4] = fdct_round_shift(temp1); + step2[5] = fdct_round_shift(temp2); + + // step 3 + step3[0] = step1[0] + step2[3]; + step3[1] = step1[1] + step2[2]; + step3[2] = step1[1] - step2[2]; + step3[3] = step1[0] - step2[3]; + step3[4] = step1[7] - step2[4]; + step3[5] = step1[6] - step2[5]; + step3[6] = step1[6] + step2[5]; + step3[7] = step1[7] + step2[4]; + + // step 4 + temp1 = step3[1] * -cospi_8_64 + step3[6] * cospi_24_64; + temp2 = step3[2] * cospi_24_64 + step3[5] * cospi_8_64; + step2[1] = fdct_round_shift(temp1); + step2[2] = fdct_round_shift(temp2); + temp1 = step3[2] * cospi_8_64 - step3[5] * cospi_24_64; + temp2 = step3[1] * cospi_24_64 + step3[6] * cospi_8_64; + step2[5] = fdct_round_shift(temp1); + step2[6] = fdct_round_shift(temp2); + + // step 5 + step1[0] = step3[0] + step2[1]; + step1[1] = step3[0] - step2[1]; + step1[2] = step3[3] + step2[2]; + step1[3] = step3[3] - step2[2]; + step1[4] = step3[4] - step2[5]; + step1[5] = step3[4] + step2[5]; + step1[6] = step3[7] - step2[6]; + step1[7] = step3[7] + step2[6]; + + // step 6 + temp1 = step1[0] * cospi_30_64 + step1[7] * cospi_2_64; + temp2 = step1[1] * cospi_14_64 + step1[6] * cospi_18_64; + out[1] = (tran_low_t)fdct_round_shift(temp1); + out[9] = (tran_low_t)fdct_round_shift(temp2); + + temp1 = step1[2] * cospi_22_64 + step1[5] * cospi_10_64; + temp2 = step1[3] * cospi_6_64 + step1[4] * cospi_26_64; + out[5] = (tran_low_t)fdct_round_shift(temp1); + out[13] = (tran_low_t)fdct_round_shift(temp2); + + temp1 = step1[3] * -cospi_26_64 + step1[4] * cospi_6_64; + temp2 = step1[2] * -cospi_10_64 + step1[5] * cospi_22_64; + out[3] = (tran_low_t)fdct_round_shift(temp1); + out[11] = (tran_low_t)fdct_round_shift(temp2); + + temp1 = step1[1] * -cospi_18_64 + step1[6] * cospi_14_64; + temp2 = step1[0] * -cospi_2_64 + step1[7] * cospi_30_64; + out[7] = (tran_low_t)fdct_round_shift(temp1); + out[15] = (tran_low_t)fdct_round_shift(temp2); +} + +static void fadst4(const tran_low_t *input, tran_low_t *output) { + tran_high_t x0, x1, x2, x3; + tran_high_t s0, s1, s2, s3, s4, s5, s6, s7; + + x0 = input[0]; + x1 = input[1]; + x2 = input[2]; + x3 = input[3]; + + if (!(x0 | x1 | x2 | x3)) { + output[0] = output[1] = output[2] = output[3] = 0; + return; + } + + s0 = sinpi_1_9 * x0; + s1 = sinpi_4_9 * x0; + s2 = sinpi_2_9 * x1; + s3 = sinpi_1_9 * x1; + s4 = sinpi_3_9 * x2; + s5 = sinpi_4_9 * x3; + s6 = sinpi_2_9 * x3; + s7 = x0 + x1 - x3; + + x0 = s0 + s2 + s5; + x1 = sinpi_3_9 * s7; + x2 = s1 - s3 + s6; + x3 = s4; + + s0 = x0 + x3; + s1 = x1; + s2 = x2 - x3; + s3 = x2 - x0 + x3; + + // 1-D transform scaling factor is sqrt(2). + output[0] = (tran_low_t)fdct_round_shift(s0); + output[1] = (tran_low_t)fdct_round_shift(s1); + output[2] = (tran_low_t)fdct_round_shift(s2); + output[3] = (tran_low_t)fdct_round_shift(s3); +} + +static void fadst8(const tran_low_t *input, tran_low_t *output) { + tran_high_t s0, s1, s2, s3, s4, s5, s6, s7; + + tran_high_t x0 = input[7]; + tran_high_t x1 = input[0]; + tran_high_t x2 = input[5]; + tran_high_t x3 = input[2]; + tran_high_t x4 = input[3]; + tran_high_t x5 = input[4]; + tran_high_t x6 = input[1]; + tran_high_t x7 = input[6]; + + // stage 1 + s0 = cospi_2_64 * x0 + cospi_30_64 * x1; + s1 = cospi_30_64 * x0 - cospi_2_64 * x1; + s2 = cospi_10_64 * x2 + cospi_22_64 * x3; + s3 = cospi_22_64 * x2 - cospi_10_64 * x3; + s4 = cospi_18_64 * x4 + cospi_14_64 * x5; + s5 = cospi_14_64 * x4 - cospi_18_64 * x5; + s6 = cospi_26_64 * x6 + cospi_6_64 * x7; + s7 = cospi_6_64 * x6 - cospi_26_64 * x7; + + x0 = fdct_round_shift(s0 + s4); + x1 = fdct_round_shift(s1 + s5); + x2 = fdct_round_shift(s2 + s6); + x3 = fdct_round_shift(s3 + s7); + x4 = fdct_round_shift(s0 - s4); + x5 = fdct_round_shift(s1 - s5); + x6 = fdct_round_shift(s2 - s6); + x7 = fdct_round_shift(s3 - s7); + + // stage 2 + s0 = x0; + s1 = x1; + s2 = x2; + s3 = x3; + s4 = cospi_8_64 * x4 + cospi_24_64 * x5; + s5 = cospi_24_64 * x4 - cospi_8_64 * x5; + s6 = -cospi_24_64 * x6 + cospi_8_64 * x7; + s7 = cospi_8_64 * x6 + cospi_24_64 * x7; + + x0 = s0 + s2; + x1 = s1 + s3; + x2 = s0 - s2; + x3 = s1 - s3; + x4 = fdct_round_shift(s4 + s6); + x5 = fdct_round_shift(s5 + s7); + x6 = fdct_round_shift(s4 - s6); + x7 = fdct_round_shift(s5 - s7); + + // stage 3 + s2 = cospi_16_64 * (x2 + x3); + s3 = cospi_16_64 * (x2 - x3); + s6 = cospi_16_64 * (x6 + x7); + s7 = cospi_16_64 * (x6 - x7); + + x2 = fdct_round_shift(s2); + x3 = fdct_round_shift(s3); + x6 = fdct_round_shift(s6); + x7 = fdct_round_shift(s7); + + output[0] = (tran_low_t)x0; + output[1] = (tran_low_t)-x4; + output[2] = (tran_low_t)x6; + output[3] = (tran_low_t)-x2; + output[4] = (tran_low_t)x3; + output[5] = (tran_low_t)-x7; + output[6] = (tran_low_t)x5; + output[7] = (tran_low_t)-x1; +} + +static void fadst16(const tran_low_t *input, tran_low_t *output) { + tran_high_t s0, s1, s2, s3, s4, s5, s6, s7, s8; + tran_high_t s9, s10, s11, s12, s13, s14, s15; + + tran_high_t x0 = input[15]; + tran_high_t x1 = input[0]; + tran_high_t x2 = input[13]; + tran_high_t x3 = input[2]; + tran_high_t x4 = input[11]; + tran_high_t x5 = input[4]; + tran_high_t x6 = input[9]; + tran_high_t x7 = input[6]; + tran_high_t x8 = input[7]; + tran_high_t x9 = input[8]; + tran_high_t x10 = input[5]; + tran_high_t x11 = input[10]; + tran_high_t x12 = input[3]; + tran_high_t x13 = input[12]; + tran_high_t x14 = input[1]; + tran_high_t x15 = input[14]; + + // stage 1 + s0 = x0 * cospi_1_64 + x1 * cospi_31_64; + s1 = x0 * cospi_31_64 - x1 * cospi_1_64; + s2 = x2 * cospi_5_64 + x3 * cospi_27_64; + s3 = x2 * cospi_27_64 - x3 * cospi_5_64; + s4 = x4 * cospi_9_64 + x5 * cospi_23_64; + s5 = x4 * cospi_23_64 - x5 * cospi_9_64; + s6 = x6 * cospi_13_64 + x7 * cospi_19_64; + s7 = x6 * cospi_19_64 - x7 * cospi_13_64; + s8 = x8 * cospi_17_64 + x9 * cospi_15_64; + s9 = x8 * cospi_15_64 - x9 * cospi_17_64; + s10 = x10 * cospi_21_64 + x11 * cospi_11_64; + s11 = x10 * cospi_11_64 - x11 * cospi_21_64; + s12 = x12 * cospi_25_64 + x13 * cospi_7_64; + s13 = x12 * cospi_7_64 - x13 * cospi_25_64; + s14 = x14 * cospi_29_64 + x15 * cospi_3_64; + s15 = x14 * cospi_3_64 - x15 * cospi_29_64; + + x0 = fdct_round_shift(s0 + s8); + x1 = fdct_round_shift(s1 + s9); + x2 = fdct_round_shift(s2 + s10); + x3 = fdct_round_shift(s3 + s11); + x4 = fdct_round_shift(s4 + s12); + x5 = fdct_round_shift(s5 + s13); + x6 = fdct_round_shift(s6 + s14); + x7 = fdct_round_shift(s7 + s15); + x8 = fdct_round_shift(s0 - s8); + x9 = fdct_round_shift(s1 - s9); + x10 = fdct_round_shift(s2 - s10); + x11 = fdct_round_shift(s3 - s11); + x12 = fdct_round_shift(s4 - s12); + x13 = fdct_round_shift(s5 - s13); + x14 = fdct_round_shift(s6 - s14); + x15 = fdct_round_shift(s7 - s15); + + // stage 2 + s0 = x0; + s1 = x1; + s2 = x2; + s3 = x3; + s4 = x4; + s5 = x5; + s6 = x6; + s7 = x7; + s8 = x8 * cospi_4_64 + x9 * cospi_28_64; + s9 = x8 * cospi_28_64 - x9 * cospi_4_64; + s10 = x10 * cospi_20_64 + x11 * cospi_12_64; + s11 = x10 * cospi_12_64 - x11 * cospi_20_64; + s12 = -x12 * cospi_28_64 + x13 * cospi_4_64; + s13 = x12 * cospi_4_64 + x13 * cospi_28_64; + s14 = -x14 * cospi_12_64 + x15 * cospi_20_64; + s15 = x14 * cospi_20_64 + x15 * cospi_12_64; + + x0 = s0 + s4; + x1 = s1 + s5; + x2 = s2 + s6; + x3 = s3 + s7; + x4 = s0 - s4; + x5 = s1 - s5; + x6 = s2 - s6; + x7 = s3 - s7; + x8 = fdct_round_shift(s8 + s12); + x9 = fdct_round_shift(s9 + s13); + x10 = fdct_round_shift(s10 + s14); + x11 = fdct_round_shift(s11 + s15); + x12 = fdct_round_shift(s8 - s12); + x13 = fdct_round_shift(s9 - s13); + x14 = fdct_round_shift(s10 - s14); + x15 = fdct_round_shift(s11 - s15); + + // stage 3 + s0 = x0; + s1 = x1; + s2 = x2; + s3 = x3; + s4 = x4 * cospi_8_64 + x5 * cospi_24_64; + s5 = x4 * cospi_24_64 - x5 * cospi_8_64; + s6 = -x6 * cospi_24_64 + x7 * cospi_8_64; + s7 = x6 * cospi_8_64 + x7 * cospi_24_64; + s8 = x8; + s9 = x9; + s10 = x10; + s11 = x11; + s12 = x12 * cospi_8_64 + x13 * cospi_24_64; + s13 = x12 * cospi_24_64 - x13 * cospi_8_64; + s14 = -x14 * cospi_24_64 + x15 * cospi_8_64; + s15 = x14 * cospi_8_64 + x15 * cospi_24_64; + + x0 = s0 + s2; + x1 = s1 + s3; + x2 = s0 - s2; + x3 = s1 - s3; + x4 = fdct_round_shift(s4 + s6); + x5 = fdct_round_shift(s5 + s7); + x6 = fdct_round_shift(s4 - s6); + x7 = fdct_round_shift(s5 - s7); + x8 = s8 + s10; + x9 = s9 + s11; + x10 = s8 - s10; + x11 = s9 - s11; + x12 = fdct_round_shift(s12 + s14); + x13 = fdct_round_shift(s13 + s15); + x14 = fdct_round_shift(s12 - s14); + x15 = fdct_round_shift(s13 - s15); + + // stage 4 + s2 = (-cospi_16_64) * (x2 + x3); + s3 = cospi_16_64 * (x2 - x3); + s6 = cospi_16_64 * (x6 + x7); + s7 = cospi_16_64 * (-x6 + x7); + s10 = cospi_16_64 * (x10 + x11); + s11 = cospi_16_64 * (-x10 + x11); + s14 = (-cospi_16_64) * (x14 + x15); + s15 = cospi_16_64 * (x14 - x15); + + x2 = fdct_round_shift(s2); + x3 = fdct_round_shift(s3); + x6 = fdct_round_shift(s6); + x7 = fdct_round_shift(s7); + x10 = fdct_round_shift(s10); + x11 = fdct_round_shift(s11); + x14 = fdct_round_shift(s14); + x15 = fdct_round_shift(s15); + + output[0] = (tran_low_t)x0; + output[1] = (tran_low_t)-x8; + output[2] = (tran_low_t)x12; + output[3] = (tran_low_t)-x4; + output[4] = (tran_low_t)x6; + output[5] = (tran_low_t)x14; + output[6] = (tran_low_t)x10; + output[7] = (tran_low_t)x2; + output[8] = (tran_low_t)x3; + output[9] = (tran_low_t)x11; + output[10] = (tran_low_t)x15; + output[11] = (tran_low_t)x7; + output[12] = (tran_low_t)x5; + output[13] = (tran_low_t)-x13; + output[14] = (tran_low_t)x9; + output[15] = (tran_low_t)-x1; +} + +static const transform_2d FHT_4[] = { + { fdct4, fdct4 }, // DCT_DCT = 0 + { fadst4, fdct4 }, // ADST_DCT = 1 + { fdct4, fadst4 }, // DCT_ADST = 2 + { fadst4, fadst4 } // ADST_ADST = 3 +}; + +static const transform_2d FHT_8[] = { + { fdct8, fdct8 }, // DCT_DCT = 0 + { fadst8, fdct8 }, // ADST_DCT = 1 + { fdct8, fadst8 }, // DCT_ADST = 2 + { fadst8, fadst8 } // ADST_ADST = 3 +}; + +static const transform_2d FHT_16[] = { + { fdct16, fdct16 }, // DCT_DCT = 0 + { fadst16, fdct16 }, // ADST_DCT = 1 + { fdct16, fadst16 }, // DCT_ADST = 2 + { fadst16, fadst16 } // ADST_ADST = 3 +}; + +void vp9_fht4x4_c(const int16_t *input, tran_low_t *output, int stride, + int tx_type) { + if (tx_type == DCT_DCT) { + vpx_fdct4x4_c(input, output, stride); + } else { + tran_low_t out[4 * 4]; + int i, j; + tran_low_t temp_in[4], temp_out[4]; + const transform_2d ht = FHT_4[tx_type]; + + // Columns + for (i = 0; i < 4; ++i) { + for (j = 0; j < 4; ++j) temp_in[j] = input[j * stride + i] * 16; + if (i == 0 && temp_in[0]) temp_in[0] += 1; + ht.cols(temp_in, temp_out); + for (j = 0; j < 4; ++j) out[j * 4 + i] = temp_out[j]; + } + + // Rows + for (i = 0; i < 4; ++i) { + for (j = 0; j < 4; ++j) temp_in[j] = out[j + i * 4]; + ht.rows(temp_in, temp_out); + for (j = 0; j < 4; ++j) output[j + i * 4] = (temp_out[j] + 1) >> 2; + } + } +} + +void vp9_fdct8x8_quant_c(const int16_t *input, int stride, + tran_low_t *coeff_ptr, intptr_t n_coeffs, + int skip_block, const int16_t *round_ptr, + const int16_t *quant_ptr, tran_low_t *qcoeff_ptr, + tran_low_t *dqcoeff_ptr, const int16_t *dequant_ptr, + uint16_t *eob_ptr, const int16_t *scan, + const int16_t *iscan) { + int eob = -1; + + int i, j; + tran_low_t intermediate[64]; + + (void)iscan; + + // Transform columns + { + tran_low_t *output = intermediate; + tran_high_t s0, s1, s2, s3, s4, s5, s6, s7; // canbe16 + tran_high_t t0, t1, t2, t3; // needs32 + tran_high_t x0, x1, x2, x3; // canbe16 + + int i; + for (i = 0; i < 8; i++) { + // stage 1 + s0 = (input[0 * stride] + input[7 * stride]) * 4; + s1 = (input[1 * stride] + input[6 * stride]) * 4; + s2 = (input[2 * stride] + input[5 * stride]) * 4; + s3 = (input[3 * stride] + input[4 * stride]) * 4; + s4 = (input[3 * stride] - input[4 * stride]) * 4; + s5 = (input[2 * stride] - input[5 * stride]) * 4; + s6 = (input[1 * stride] - input[6 * stride]) * 4; + s7 = (input[0 * stride] - input[7 * stride]) * 4; + + // fdct4(step, step); + x0 = s0 + s3; + x1 = s1 + s2; + x2 = s1 - s2; + x3 = s0 - s3; + t0 = (x0 + x1) * cospi_16_64; + t1 = (x0 - x1) * cospi_16_64; + t2 = x2 * cospi_24_64 + x3 * cospi_8_64; + t3 = -x2 * cospi_8_64 + x3 * cospi_24_64; + output[0 * 8] = (tran_low_t)fdct_round_shift(t0); + output[2 * 8] = (tran_low_t)fdct_round_shift(t2); + output[4 * 8] = (tran_low_t)fdct_round_shift(t1); + output[6 * 8] = (tran_low_t)fdct_round_shift(t3); + + // Stage 2 + t0 = (s6 - s5) * cospi_16_64; + t1 = (s6 + s5) * cospi_16_64; + t2 = fdct_round_shift(t0); + t3 = fdct_round_shift(t1); + + // Stage 3 + x0 = s4 + t2; + x1 = s4 - t2; + x2 = s7 - t3; + x3 = s7 + t3; + + // Stage 4 + t0 = x0 * cospi_28_64 + x3 * cospi_4_64; + t1 = x1 * cospi_12_64 + x2 * cospi_20_64; + t2 = x2 * cospi_12_64 + x1 * -cospi_20_64; + t3 = x3 * cospi_28_64 + x0 * -cospi_4_64; + output[1 * 8] = (tran_low_t)fdct_round_shift(t0); + output[3 * 8] = (tran_low_t)fdct_round_shift(t2); + output[5 * 8] = (tran_low_t)fdct_round_shift(t1); + output[7 * 8] = (tran_low_t)fdct_round_shift(t3); + input++; + output++; + } + } + + // Rows + for (i = 0; i < 8; ++i) { + fdct8(&intermediate[i * 8], &coeff_ptr[i * 8]); + for (j = 0; j < 8; ++j) coeff_ptr[j + i * 8] /= 2; + } + + memset(qcoeff_ptr, 0, n_coeffs * sizeof(*qcoeff_ptr)); + memset(dqcoeff_ptr, 0, n_coeffs * sizeof(*dqcoeff_ptr)); + + if (!skip_block) { + // Quantization pass: All coefficients with index >= zero_flag are + // skippable. Note: zero_flag can be zero. + for (i = 0; i < n_coeffs; i++) { + const int rc = scan[i]; + const int coeff = coeff_ptr[rc]; + const int coeff_sign = (coeff >> 31); + const int abs_coeff = (coeff ^ coeff_sign) - coeff_sign; + + int tmp = clamp(abs_coeff + round_ptr[rc != 0], INT16_MIN, INT16_MAX); + tmp = (tmp * quant_ptr[rc != 0]) >> 16; + + qcoeff_ptr[rc] = (tmp ^ coeff_sign) - coeff_sign; + dqcoeff_ptr[rc] = qcoeff_ptr[rc] * dequant_ptr[rc != 0]; + + if (tmp) eob = i; + } + } + *eob_ptr = eob + 1; +} + +void vp9_fht8x8_c(const int16_t *input, tran_low_t *output, int stride, + int tx_type) { + if (tx_type == DCT_DCT) { + vpx_fdct8x8_c(input, output, stride); + } else { + tran_low_t out[64]; + int i, j; + tran_low_t temp_in[8], temp_out[8]; + const transform_2d ht = FHT_8[tx_type]; + + // Columns + for (i = 0; i < 8; ++i) { + for (j = 0; j < 8; ++j) temp_in[j] = input[j * stride + i] * 4; + ht.cols(temp_in, temp_out); + for (j = 0; j < 8; ++j) out[j * 8 + i] = temp_out[j]; + } + + // Rows + for (i = 0; i < 8; ++i) { + for (j = 0; j < 8; ++j) temp_in[j] = out[j + i * 8]; + ht.rows(temp_in, temp_out); + for (j = 0; j < 8; ++j) + output[j + i * 8] = (temp_out[j] + (temp_out[j] < 0)) >> 1; + } + } +} + +/* 4-point reversible, orthonormal Walsh-Hadamard in 3.5 adds, 0.5 shifts per + pixel. */ +void vp9_fwht4x4_c(const int16_t *input, tran_low_t *output, int stride) { + int i; + tran_high_t a1, b1, c1, d1, e1; + const int16_t *ip_pass0 = input; + const tran_low_t *ip = NULL; + tran_low_t *op = output; + + for (i = 0; i < 4; i++) { + a1 = ip_pass0[0 * stride]; + b1 = ip_pass0[1 * stride]; + c1 = ip_pass0[2 * stride]; + d1 = ip_pass0[3 * stride]; + + a1 += b1; + d1 = d1 - c1; + e1 = (a1 - d1) >> 1; + b1 = e1 - b1; + c1 = e1 - c1; + a1 -= c1; + d1 += b1; + op[0] = (tran_low_t)a1; + op[4] = (tran_low_t)c1; + op[8] = (tran_low_t)d1; + op[12] = (tran_low_t)b1; + + ip_pass0++; + op++; + } + ip = output; + op = output; + + for (i = 0; i < 4; i++) { + a1 = ip[0]; + b1 = ip[1]; + c1 = ip[2]; + d1 = ip[3]; + + a1 += b1; + d1 -= c1; + e1 = (a1 - d1) >> 1; + b1 = e1 - b1; + c1 = e1 - c1; + a1 -= c1; + d1 += b1; + op[0] = (tran_low_t)(a1 * UNIT_QUANT_FACTOR); + op[1] = (tran_low_t)(c1 * UNIT_QUANT_FACTOR); + op[2] = (tran_low_t)(d1 * UNIT_QUANT_FACTOR); + op[3] = (tran_low_t)(b1 * UNIT_QUANT_FACTOR); + + ip += 4; + op += 4; + } +} + +void vp9_fht16x16_c(const int16_t *input, tran_low_t *output, int stride, + int tx_type) { + if (tx_type == DCT_DCT) { + vpx_fdct16x16_c(input, output, stride); + } else { + tran_low_t out[256]; + int i, j; + tran_low_t temp_in[16], temp_out[16]; + const transform_2d ht = FHT_16[tx_type]; + + // Columns + for (i = 0; i < 16; ++i) { + for (j = 0; j < 16; ++j) temp_in[j] = input[j * stride + i] * 4; + ht.cols(temp_in, temp_out); + for (j = 0; j < 16; ++j) + out[j * 16 + i] = (temp_out[j] + 1 + (temp_out[j] < 0)) >> 2; + } + + // Rows + for (i = 0; i < 16; ++i) { + for (j = 0; j < 16; ++j) temp_in[j] = out[j + i * 16]; + ht.rows(temp_in, temp_out); + for (j = 0; j < 16; ++j) output[j + i * 16] = temp_out[j]; + } + } +} + +#if CONFIG_VP9_HIGHBITDEPTH +void vp9_highbd_fht4x4_c(const int16_t *input, tran_low_t *output, int stride, + int tx_type) { + vp9_fht4x4_c(input, output, stride, tx_type); +} + +void vp9_highbd_fht8x8_c(const int16_t *input, tran_low_t *output, int stride, + int tx_type) { + vp9_fht8x8_c(input, output, stride, tx_type); +} + +void vp9_highbd_fwht4x4_c(const int16_t *input, tran_low_t *output, + int stride) { + vp9_fwht4x4_c(input, output, stride); +} + +void vp9_highbd_fht16x16_c(const int16_t *input, tran_low_t *output, int stride, + int tx_type) { + vp9_fht16x16_c(input, output, stride, tx_type); +} +#endif // CONFIG_VP9_HIGHBITDEPTH diff --git a/vp9/encoder/vp9_denoiser.c b/vp9/encoder/vp9_denoiser.c new file mode 100644 index 0000000..b08ccaa --- /dev/null +++ b/vp9/encoder/vp9_denoiser.c @@ -0,0 +1,731 @@ +/* + * Copyright (c) 2012 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include +#include + +#include "./vpx_dsp_rtcd.h" +#include "vpx_dsp/vpx_dsp_common.h" +#include "vpx_scale/yv12config.h" +#include "vpx/vpx_integer.h" +#include "vp9/common/vp9_reconinter.h" +#include "vp9/encoder/vp9_context_tree.h" +#include "vp9/encoder/vp9_denoiser.h" +#include "vp9/encoder/vp9_encoder.h" + +#ifdef OUTPUT_YUV_DENOISED +static void make_grayscale(YV12_BUFFER_CONFIG *yuv); +#endif + +static int absdiff_thresh(BLOCK_SIZE bs, int increase_denoising) { + (void)bs; + return 3 + (increase_denoising ? 1 : 0); +} + +static int delta_thresh(BLOCK_SIZE bs, int increase_denoising) { + (void)bs; + (void)increase_denoising; + return 4; +} + +static int noise_motion_thresh(BLOCK_SIZE bs, int increase_denoising) { + (void)bs; + (void)increase_denoising; + return 625; +} + +static unsigned int sse_thresh(BLOCK_SIZE bs, int increase_denoising) { + return (1 << num_pels_log2_lookup[bs]) * (increase_denoising ? 80 : 40); +} + +static int sse_diff_thresh(BLOCK_SIZE bs, int increase_denoising, + int motion_magnitude) { + if (motion_magnitude > noise_motion_thresh(bs, increase_denoising)) { + if (increase_denoising) + return (1 << num_pels_log2_lookup[bs]) << 2; + else + return 0; + } else { + return (1 << num_pels_log2_lookup[bs]) << 4; + } +} + +static int total_adj_weak_thresh(BLOCK_SIZE bs, int increase_denoising) { + return (1 << num_pels_log2_lookup[bs]) * (increase_denoising ? 3 : 2); +} + +// TODO(jackychen): If increase_denoising is enabled in the future, +// we might need to update the code for calculating 'total_adj' in +// case the C code is not bit-exact with corresponding sse2 code. +int vp9_denoiser_filter_c(const uint8_t *sig, int sig_stride, + const uint8_t *mc_avg, int mc_avg_stride, + uint8_t *avg, int avg_stride, int increase_denoising, + BLOCK_SIZE bs, int motion_magnitude) { + int r, c; + const uint8_t *sig_start = sig; + const uint8_t *mc_avg_start = mc_avg; + uint8_t *avg_start = avg; + int diff, adj, absdiff, delta; + int adj_val[] = { 3, 4, 6 }; + int total_adj = 0; + int shift_inc = 1; + + // If motion_magnitude is small, making the denoiser more aggressive by + // increasing the adjustment for each level. Add another increment for + // blocks that are labeled for increase denoising. + if (motion_magnitude <= MOTION_MAGNITUDE_THRESHOLD) { + if (increase_denoising) { + shift_inc = 2; + } + adj_val[0] += shift_inc; + adj_val[1] += shift_inc; + adj_val[2] += shift_inc; + } + + // First attempt to apply a strong temporal denoising filter. + for (r = 0; r < (4 << b_height_log2_lookup[bs]); ++r) { + for (c = 0; c < (4 << b_width_log2_lookup[bs]); ++c) { + diff = mc_avg[c] - sig[c]; + absdiff = abs(diff); + + if (absdiff <= absdiff_thresh(bs, increase_denoising)) { + avg[c] = mc_avg[c]; + total_adj += diff; + } else { + switch (absdiff) { + case 4: + case 5: + case 6: + case 7: adj = adj_val[0]; break; + case 8: + case 9: + case 10: + case 11: + case 12: + case 13: + case 14: + case 15: adj = adj_val[1]; break; + default: adj = adj_val[2]; + } + if (diff > 0) { + avg[c] = VPXMIN(UINT8_MAX, sig[c] + adj); + total_adj += adj; + } else { + avg[c] = VPXMAX(0, sig[c] - adj); + total_adj -= adj; + } + } + } + sig += sig_stride; + avg += avg_stride; + mc_avg += mc_avg_stride; + } + + // If the strong filter did not modify the signal too much, we're all set. + if (abs(total_adj) <= total_adj_strong_thresh(bs, increase_denoising)) { + return FILTER_BLOCK; + } + + // Otherwise, we try to dampen the filter if the delta is not too high. + delta = ((abs(total_adj) - total_adj_strong_thresh(bs, increase_denoising)) >> + num_pels_log2_lookup[bs]) + + 1; + + if (delta >= delta_thresh(bs, increase_denoising)) { + return COPY_BLOCK; + } + + mc_avg = mc_avg_start; + avg = avg_start; + sig = sig_start; + for (r = 0; r < (4 << b_height_log2_lookup[bs]); ++r) { + for (c = 0; c < (4 << b_width_log2_lookup[bs]); ++c) { + diff = mc_avg[c] - sig[c]; + adj = abs(diff); + if (adj > delta) { + adj = delta; + } + if (diff > 0) { + // Diff positive means we made positive adjustment above + // (in first try/attempt), so now make negative adjustment to bring + // denoised signal down. + avg[c] = VPXMAX(0, avg[c] - adj); + total_adj -= adj; + } else { + // Diff negative means we made negative adjustment above + // (in first try/attempt), so now make positive adjustment to bring + // denoised signal up. + avg[c] = VPXMIN(UINT8_MAX, avg[c] + adj); + total_adj += adj; + } + } + sig += sig_stride; + avg += avg_stride; + mc_avg += mc_avg_stride; + } + + // We can use the filter if it has been sufficiently dampened + if (abs(total_adj) <= total_adj_weak_thresh(bs, increase_denoising)) { + return FILTER_BLOCK; + } + return COPY_BLOCK; +} + +static uint8_t *block_start(uint8_t *framebuf, int stride, int mi_row, + int mi_col) { + return framebuf + (stride * mi_row << 3) + (mi_col << 3); +} + +static VP9_DENOISER_DECISION perform_motion_compensation( + VP9_COMMON *const cm, VP9_DENOISER *denoiser, MACROBLOCK *mb, BLOCK_SIZE bs, + int increase_denoising, int mi_row, int mi_col, PICK_MODE_CONTEXT *ctx, + int motion_magnitude, int is_skin, int *zeromv_filter, int consec_zeromv, + int num_spatial_layers, int width, int lst_fb_idx, int gld_fb_idx, + int use_svc, int spatial_layer) { + const int sse_diff = (ctx->newmv_sse == UINT_MAX) + ? 0 + : ((int)ctx->zeromv_sse - (int)ctx->newmv_sse); + int frame; + int denoise_layer_idx = 0; + MACROBLOCKD *filter_mbd = &mb->e_mbd; + MODE_INFO *mi = filter_mbd->mi[0]; + MODE_INFO saved_mi; + int i; + struct buf_2d saved_dst[MAX_MB_PLANE]; + struct buf_2d saved_pre[MAX_MB_PLANE]; + RefBuffer *saved_block_refs[2]; + MV_REFERENCE_FRAME saved_frame; + + frame = ctx->best_reference_frame; + + saved_mi = *mi; + + if (is_skin && (motion_magnitude > 0 || consec_zeromv < 4)) return COPY_BLOCK; + + // Avoid denoising small blocks. When noise > kDenLow or frame width > 480, + // denoise 16x16 blocks. + if (bs == BLOCK_8X8 || bs == BLOCK_8X16 || bs == BLOCK_16X8 || + (bs == BLOCK_16X16 && width > 480 && + denoiser->denoising_level <= kDenLow)) + return COPY_BLOCK; + + // If the best reference frame uses inter-prediction and there is enough of a + // difference in sum-squared-error, use it. + if (frame != INTRA_FRAME && frame != ALTREF_FRAME && + (frame != GOLDEN_FRAME || num_spatial_layers == 1) && + sse_diff > sse_diff_thresh(bs, increase_denoising, motion_magnitude)) { + mi->ref_frame[0] = ctx->best_reference_frame; + mi->mode = ctx->best_sse_inter_mode; + mi->mv[0] = ctx->best_sse_mv; + } else { + // Otherwise, use the zero reference frame. + frame = ctx->best_zeromv_reference_frame; + ctx->newmv_sse = ctx->zeromv_sse; + // Bias to last reference. + if (num_spatial_layers > 1 || frame == ALTREF_FRAME || + (frame != LAST_FRAME && + ((ctx->zeromv_lastref_sse<(5 * ctx->zeromv_sse)>> 2) || + denoiser->denoising_level >= kDenHigh))) { + frame = LAST_FRAME; + ctx->newmv_sse = ctx->zeromv_lastref_sse; + } + mi->ref_frame[0] = frame; + mi->mode = ZEROMV; + mi->mv[0].as_int = 0; + ctx->best_sse_inter_mode = ZEROMV; + ctx->best_sse_mv.as_int = 0; + *zeromv_filter = 1; + if (denoiser->denoising_level > kDenMedium) { + motion_magnitude = 0; + } + } + + saved_frame = frame; + // When using SVC, we need to map REF_FRAME to the frame buffer index. + if (use_svc) { + if (frame == LAST_FRAME) + frame = lst_fb_idx + 1; + else if (frame == GOLDEN_FRAME) + frame = gld_fb_idx + 1; + // Shift for the second spatial layer. + if (num_spatial_layers - spatial_layer == 2) + frame = frame + denoiser->num_ref_frames; + denoise_layer_idx = num_spatial_layers - spatial_layer - 1; + } + + if (ctx->newmv_sse > sse_thresh(bs, increase_denoising)) { + // Restore everything to its original state + *mi = saved_mi; + return COPY_BLOCK; + } + if (motion_magnitude > (noise_motion_thresh(bs, increase_denoising) << 3)) { + // Restore everything to its original state + *mi = saved_mi; + return COPY_BLOCK; + } + + // We will restore these after motion compensation. + for (i = 0; i < MAX_MB_PLANE; ++i) { + saved_pre[i] = filter_mbd->plane[i].pre[0]; + saved_dst[i] = filter_mbd->plane[i].dst; + } + saved_block_refs[0] = filter_mbd->block_refs[0]; + + // Set the pointers in the MACROBLOCKD to point to the buffers in the denoiser + // struct. + filter_mbd->plane[0].pre[0].buf = + block_start(denoiser->running_avg_y[frame].y_buffer, + denoiser->running_avg_y[frame].y_stride, mi_row, mi_col); + filter_mbd->plane[0].pre[0].stride = denoiser->running_avg_y[frame].y_stride; + filter_mbd->plane[1].pre[0].buf = + block_start(denoiser->running_avg_y[frame].u_buffer, + denoiser->running_avg_y[frame].uv_stride, mi_row, mi_col); + filter_mbd->plane[1].pre[0].stride = denoiser->running_avg_y[frame].uv_stride; + filter_mbd->plane[2].pre[0].buf = + block_start(denoiser->running_avg_y[frame].v_buffer, + denoiser->running_avg_y[frame].uv_stride, mi_row, mi_col); + filter_mbd->plane[2].pre[0].stride = denoiser->running_avg_y[frame].uv_stride; + + filter_mbd->plane[0].dst.buf = block_start( + denoiser->mc_running_avg_y[denoise_layer_idx].y_buffer, + denoiser->mc_running_avg_y[denoise_layer_idx].y_stride, mi_row, mi_col); + filter_mbd->plane[0].dst.stride = + denoiser->mc_running_avg_y[denoise_layer_idx].y_stride; + filter_mbd->plane[1].dst.buf = block_start( + denoiser->mc_running_avg_y[denoise_layer_idx].u_buffer, + denoiser->mc_running_avg_y[denoise_layer_idx].uv_stride, mi_row, mi_col); + filter_mbd->plane[1].dst.stride = + denoiser->mc_running_avg_y[denoise_layer_idx].uv_stride; + filter_mbd->plane[2].dst.buf = block_start( + denoiser->mc_running_avg_y[denoise_layer_idx].v_buffer, + denoiser->mc_running_avg_y[denoise_layer_idx].uv_stride, mi_row, mi_col); + filter_mbd->plane[2].dst.stride = + denoiser->mc_running_avg_y[denoise_layer_idx].uv_stride; + + set_ref_ptrs(cm, filter_mbd, saved_frame, NONE); + vp9_build_inter_predictors_sby(filter_mbd, mi_row, mi_col, bs); + + // Restore everything to its original state + *mi = saved_mi; + filter_mbd->block_refs[0] = saved_block_refs[0]; + for (i = 0; i < MAX_MB_PLANE; ++i) { + filter_mbd->plane[i].pre[0] = saved_pre[i]; + filter_mbd->plane[i].dst = saved_dst[i]; + } + + return FILTER_BLOCK; +} + +void vp9_denoiser_denoise(VP9_COMP *cpi, MACROBLOCK *mb, int mi_row, int mi_col, + BLOCK_SIZE bs, PICK_MODE_CONTEXT *ctx, + VP9_DENOISER_DECISION *denoiser_decision) { + int mv_col, mv_row; + int motion_magnitude = 0; + int zeromv_filter = 0; + VP9_DENOISER *denoiser = &cpi->denoiser; + VP9_DENOISER_DECISION decision = COPY_BLOCK; + + const int shift = + cpi->svc.number_spatial_layers - cpi->svc.spatial_layer_id == 2 + ? denoiser->num_ref_frames + : 0; + YV12_BUFFER_CONFIG avg = denoiser->running_avg_y[INTRA_FRAME + shift]; + const int denoise_layer_index = + cpi->svc.number_spatial_layers - cpi->svc.spatial_layer_id - 1; + YV12_BUFFER_CONFIG mc_avg = denoiser->mc_running_avg_y[denoise_layer_index]; + uint8_t *avg_start = block_start(avg.y_buffer, avg.y_stride, mi_row, mi_col); + + uint8_t *mc_avg_start = + block_start(mc_avg.y_buffer, mc_avg.y_stride, mi_row, mi_col); + struct buf_2d src = mb->plane[0].src; + int is_skin = 0; + int increase_denoising = 0; + int consec_zeromv = 0; + mv_col = ctx->best_sse_mv.as_mv.col; + mv_row = ctx->best_sse_mv.as_mv.row; + motion_magnitude = mv_row * mv_row + mv_col * mv_col; + + if (cpi->use_skin_detection && bs <= BLOCK_32X32 && + denoiser->denoising_level < kDenHigh) { + int motion_level = (motion_magnitude < 16) ? 0 : 1; + // If motion for current block is small/zero, compute consec_zeromv for + // skin detection (early exit in skin detection is done for large + // consec_zeromv when current block has small/zero motion). + consec_zeromv = 0; + if (motion_level == 0) { + VP9_COMMON *const cm = &cpi->common; + int j, i; + // Loop through the 8x8 sub-blocks. + const int bw = num_8x8_blocks_wide_lookup[bs]; + const int bh = num_8x8_blocks_high_lookup[bs]; + const int xmis = VPXMIN(cm->mi_cols - mi_col, bw); + const int ymis = VPXMIN(cm->mi_rows - mi_row, bh); + const int block_index = mi_row * cm->mi_cols + mi_col; + consec_zeromv = 100; + for (i = 0; i < ymis; i++) { + for (j = 0; j < xmis; j++) { + int bl_index = block_index + i * cm->mi_cols + j; + consec_zeromv = VPXMIN(cpi->consec_zero_mv[bl_index], consec_zeromv); + // No need to keep checking 8x8 blocks if any of the sub-blocks + // has small consec_zeromv (since threshold for no_skin based on + // zero/small motion in skin detection is high, i.e, > 4). + if (consec_zeromv < 4) { + i = ymis; + j = xmis; + } + } + } + } + // TODO(marpan): Compute skin detection over sub-blocks. + is_skin = vp9_compute_skin_block( + mb->plane[0].src.buf, mb->plane[1].src.buf, mb->plane[2].src.buf, + mb->plane[0].src.stride, mb->plane[1].src.stride, bs, consec_zeromv, + motion_level); + } + if (!is_skin && denoiser->denoising_level == kDenHigh) increase_denoising = 1; + + if (denoiser->denoising_level >= kDenLow && !ctx->sb_skip_denoising) + decision = perform_motion_compensation( + &cpi->common, denoiser, mb, bs, increase_denoising, mi_row, mi_col, ctx, + motion_magnitude, is_skin, &zeromv_filter, consec_zeromv, + cpi->svc.number_spatial_layers, cpi->Source->y_width, cpi->lst_fb_idx, + cpi->gld_fb_idx, cpi->use_svc, cpi->svc.spatial_layer_id); + + if (decision == FILTER_BLOCK) { + decision = vp9_denoiser_filter(src.buf, src.stride, mc_avg_start, + mc_avg.y_stride, avg_start, avg.y_stride, + increase_denoising, bs, motion_magnitude); + } + + if (decision == FILTER_BLOCK) { + vpx_convolve_copy(avg_start, avg.y_stride, src.buf, src.stride, NULL, 0, 0, + 0, 0, num_4x4_blocks_wide_lookup[bs] << 2, + num_4x4_blocks_high_lookup[bs] << 2); + } else { // COPY_BLOCK + vpx_convolve_copy(src.buf, src.stride, avg_start, avg.y_stride, NULL, 0, 0, + 0, 0, num_4x4_blocks_wide_lookup[bs] << 2, + num_4x4_blocks_high_lookup[bs] << 2); + } + *denoiser_decision = decision; + if (decision == FILTER_BLOCK && zeromv_filter == 1) + *denoiser_decision = FILTER_ZEROMV_BLOCK; +} + +static void copy_frame(YV12_BUFFER_CONFIG *const dest, + const YV12_BUFFER_CONFIG *const src) { + int r; + const uint8_t *srcbuf = src->y_buffer; + uint8_t *destbuf = dest->y_buffer; + + assert(dest->y_width == src->y_width); + assert(dest->y_height == src->y_height); + + for (r = 0; r < dest->y_height; ++r) { + memcpy(destbuf, srcbuf, dest->y_width); + destbuf += dest->y_stride; + srcbuf += src->y_stride; + } +} + +static void swap_frame_buffer(YV12_BUFFER_CONFIG *const dest, + YV12_BUFFER_CONFIG *const src) { + uint8_t *tmp_buf = dest->y_buffer; + assert(dest->y_width == src->y_width); + assert(dest->y_height == src->y_height); + dest->y_buffer = src->y_buffer; + src->y_buffer = tmp_buf; +} + +void vp9_denoiser_update_frame_info( + VP9_DENOISER *denoiser, YV12_BUFFER_CONFIG src, FRAME_TYPE frame_type, + int refresh_alt_ref_frame, int refresh_golden_frame, int refresh_last_frame, + int alt_fb_idx, int gld_fb_idx, int lst_fb_idx, int resized, + int svc_base_is_key, int second_spatial_layer) { + const int shift = second_spatial_layer ? denoiser->num_ref_frames : 0; + // Copy source into denoised reference buffers on KEY_FRAME or + // if the just encoded frame was resized. For SVC, copy source if the base + // spatial layer was key frame. + if (frame_type == KEY_FRAME || resized != 0 || denoiser->reset || + svc_base_is_key) { + int i; + // Start at 1 so as not to overwrite the INTRA_FRAME + for (i = 1; i < denoiser->num_ref_frames; ++i) { + if (denoiser->running_avg_y[i + shift].buffer_alloc != NULL) + copy_frame(&denoiser->running_avg_y[i + shift], &src); + } + denoiser->reset = 0; + return; + } + + // If more than one refresh occurs, must copy frame buffer. + if ((refresh_alt_ref_frame + refresh_golden_frame + refresh_last_frame) > 1) { + if (refresh_alt_ref_frame) { + copy_frame(&denoiser->running_avg_y[alt_fb_idx + 1 + shift], + &denoiser->running_avg_y[INTRA_FRAME + shift]); + } + if (refresh_golden_frame) { + copy_frame(&denoiser->running_avg_y[gld_fb_idx + 1 + shift], + &denoiser->running_avg_y[INTRA_FRAME + shift]); + } + if (refresh_last_frame) { + copy_frame(&denoiser->running_avg_y[lst_fb_idx + 1 + shift], + &denoiser->running_avg_y[INTRA_FRAME + shift]); + } + } else { + if (refresh_alt_ref_frame) { + swap_frame_buffer(&denoiser->running_avg_y[alt_fb_idx + 1 + shift], + &denoiser->running_avg_y[INTRA_FRAME + shift]); + } + if (refresh_golden_frame) { + swap_frame_buffer(&denoiser->running_avg_y[gld_fb_idx + 1 + shift], + &denoiser->running_avg_y[INTRA_FRAME + shift]); + } + if (refresh_last_frame) { + swap_frame_buffer(&denoiser->running_avg_y[lst_fb_idx + 1 + shift], + &denoiser->running_avg_y[INTRA_FRAME + shift]); + } + } +} + +void vp9_denoiser_reset_frame_stats(PICK_MODE_CONTEXT *ctx) { + ctx->zeromv_sse = UINT_MAX; + ctx->newmv_sse = UINT_MAX; + ctx->zeromv_lastref_sse = UINT_MAX; + ctx->best_sse_mv.as_int = 0; +} + +void vp9_denoiser_update_frame_stats(MODE_INFO *mi, unsigned int sse, + PREDICTION_MODE mode, + PICK_MODE_CONTEXT *ctx) { + if (mi->mv[0].as_int == 0 && sse < ctx->zeromv_sse) { + ctx->zeromv_sse = sse; + ctx->best_zeromv_reference_frame = mi->ref_frame[0]; + if (mi->ref_frame[0] == LAST_FRAME) ctx->zeromv_lastref_sse = sse; + } + + if (mi->mv[0].as_int != 0 && sse < ctx->newmv_sse) { + ctx->newmv_sse = sse; + ctx->best_sse_inter_mode = mode; + ctx->best_sse_mv = mi->mv[0]; + ctx->best_reference_frame = mi->ref_frame[0]; + } +} + +static int vp9_denoiser_realloc_svc_helper(VP9_COMMON *cm, + VP9_DENOISER *denoiser, int fb_idx) { + int fail = 0; + if (denoiser->running_avg_y[fb_idx].buffer_alloc == NULL) { + fail = + vpx_alloc_frame_buffer(&denoiser->running_avg_y[fb_idx], cm->width, + cm->height, cm->subsampling_x, cm->subsampling_y, +#if CONFIG_VP9_HIGHBITDEPTH + cm->use_highbitdepth, +#endif + VP9_ENC_BORDER_IN_PIXELS, 0); + if (fail) { + vp9_denoiser_free(denoiser); + return 1; + } + } + return 0; +} + +int vp9_denoiser_realloc_svc(VP9_COMMON *cm, VP9_DENOISER *denoiser, + int svc_buf_shift, int refresh_alt, + int refresh_gld, int refresh_lst, int alt_fb_idx, + int gld_fb_idx, int lst_fb_idx) { + int fail = 0; + if (refresh_alt) { + // Increase the frame buffer index by 1 to map it to the buffer index in the + // denoiser. + fail = vp9_denoiser_realloc_svc_helper(cm, denoiser, + alt_fb_idx + 1 + svc_buf_shift); + if (fail) return 1; + } + if (refresh_gld) { + fail = vp9_denoiser_realloc_svc_helper(cm, denoiser, + gld_fb_idx + 1 + svc_buf_shift); + if (fail) return 1; + } + if (refresh_lst) { + fail = vp9_denoiser_realloc_svc_helper(cm, denoiser, + lst_fb_idx + 1 + svc_buf_shift); + if (fail) return 1; + } + return 0; +} + +int vp9_denoiser_alloc(VP9_COMMON *cm, struct SVC *svc, VP9_DENOISER *denoiser, + int use_svc, int noise_sen, int width, int height, + int ssx, int ssy, +#if CONFIG_VP9_HIGHBITDEPTH + int use_highbitdepth, +#endif + int border) { + int i, layer, fail, init_num_ref_frames; + const int legacy_byte_alignment = 0; + int num_layers = 1; + int scaled_width = width; + int scaled_height = height; + if (use_svc) { + LAYER_CONTEXT *lc = &svc->layer_context[svc->spatial_layer_id * + svc->number_temporal_layers + + svc->temporal_layer_id]; + get_layer_resolution(width, height, lc->scaling_factor_num, + lc->scaling_factor_den, &scaled_width, &scaled_height); + // For SVC: only denoise at most 2 spatial (highest) layers. + if (noise_sen >= 2) + // Denoise from one spatial layer below the top. + svc->first_layer_denoise = VPXMAX(svc->number_spatial_layers - 2, 0); + else + // Only denoise the top spatial layer. + svc->first_layer_denoise = VPXMAX(svc->number_spatial_layers - 1, 0); + num_layers = svc->number_spatial_layers - svc->first_layer_denoise; + } + assert(denoiser != NULL); + denoiser->num_ref_frames = use_svc ? SVC_REF_FRAMES : NONSVC_REF_FRAMES; + init_num_ref_frames = use_svc ? MAX_REF_FRAMES : NONSVC_REF_FRAMES; + denoiser->num_layers = num_layers; + CHECK_MEM_ERROR(cm, denoiser->running_avg_y, + vpx_calloc(denoiser->num_ref_frames * num_layers, + sizeof(denoiser->running_avg_y[0]))); + CHECK_MEM_ERROR( + cm, denoiser->mc_running_avg_y, + vpx_calloc(num_layers, sizeof(denoiser->mc_running_avg_y[0]))); + + for (layer = 0; layer < num_layers; ++layer) { + const int denoise_width = (layer == 0) ? width : scaled_width; + const int denoise_height = (layer == 0) ? height : scaled_height; + for (i = 0; i < init_num_ref_frames; ++i) { + fail = vpx_alloc_frame_buffer( + &denoiser->running_avg_y[i + denoiser->num_ref_frames * layer], + denoise_width, denoise_height, ssx, ssy, +#if CONFIG_VP9_HIGHBITDEPTH + use_highbitdepth, +#endif + border, legacy_byte_alignment); + if (fail) { + vp9_denoiser_free(denoiser); + return 1; + } +#ifdef OUTPUT_YUV_DENOISED + make_grayscale(&denoiser->running_avg_y[i]); +#endif + } + + fail = vpx_alloc_frame_buffer(&denoiser->mc_running_avg_y[layer], + denoise_width, denoise_height, ssx, ssy, +#if CONFIG_VP9_HIGHBITDEPTH + use_highbitdepth, +#endif + border, legacy_byte_alignment); + if (fail) { + vp9_denoiser_free(denoiser); + return 1; + } + } + + // denoiser->last_source only used for noise_estimation, so only for top + // layer. + fail = vpx_alloc_frame_buffer(&denoiser->last_source, width, height, ssx, ssy, +#if CONFIG_VP9_HIGHBITDEPTH + use_highbitdepth, +#endif + border, legacy_byte_alignment); + if (fail) { + vp9_denoiser_free(denoiser); + return 1; + } +#ifdef OUTPUT_YUV_DENOISED + make_grayscale(&denoiser->running_avg_y[i]); +#endif + denoiser->frame_buffer_initialized = 1; + denoiser->denoising_level = kDenLow; + denoiser->prev_denoising_level = kDenLow; + denoiser->reset = 0; + return 0; +} + +void vp9_denoiser_free(VP9_DENOISER *denoiser) { + int i; + if (denoiser == NULL) { + return; + } + denoiser->frame_buffer_initialized = 0; + for (i = 0; i < denoiser->num_ref_frames * denoiser->num_layers; ++i) { + vpx_free_frame_buffer(&denoiser->running_avg_y[i]); + } + vpx_free(denoiser->running_avg_y); + denoiser->running_avg_y = NULL; + + for (i = 0; i < denoiser->num_layers; ++i) { + vpx_free_frame_buffer(&denoiser->mc_running_avg_y[i]); + } + + vpx_free(denoiser->mc_running_avg_y); + denoiser->mc_running_avg_y = NULL; + vpx_free_frame_buffer(&denoiser->last_source); +} + +void vp9_denoiser_set_noise_level(VP9_DENOISER *denoiser, int noise_level) { + denoiser->denoising_level = noise_level; + if (denoiser->denoising_level > kDenLowLow && + denoiser->prev_denoising_level == kDenLowLow) + denoiser->reset = 1; + else + denoiser->reset = 0; + denoiser->prev_denoising_level = denoiser->denoising_level; +} + +// Scale/increase the partition threshold +// for denoiser speed-up. +int64_t vp9_scale_part_thresh(int64_t threshold, VP9_DENOISER_LEVEL noise_level, + int content_state, int temporal_layer_id) { + if ((content_state == kLowSadLowSumdiff) || + (content_state == kHighSadLowSumdiff) || + (content_state == kLowVarHighSumdiff) || (noise_level == kDenHigh) || + (temporal_layer_id != 0)) { + int64_t scaled_thr = + (temporal_layer_id < 2) ? (3 * threshold) >> 1 : (7 * threshold) >> 2; + return scaled_thr; + } else { + return (5 * threshold) >> 2; + } +} + +// Scale/increase the ac skip threshold for +// denoiser speed-up. +int64_t vp9_scale_acskip_thresh(int64_t threshold, + VP9_DENOISER_LEVEL noise_level, int abs_sumdiff, + int temporal_layer_id) { + if (noise_level >= kDenLow && abs_sumdiff < 5) + return threshold *= + (noise_level == kDenLow) ? 2 : (temporal_layer_id == 2) ? 10 : 6; + else + return threshold; +} + +#ifdef OUTPUT_YUV_DENOISED +static void make_grayscale(YV12_BUFFER_CONFIG *yuv) { + int r, c; + uint8_t *u = yuv->u_buffer; + uint8_t *v = yuv->v_buffer; + + for (r = 0; r < yuv->uv_height; ++r) { + for (c = 0; c < yuv->uv_width; ++c) { + u[c] = UINT8_MAX / 2; + v[c] = UINT8_MAX / 2; + } + u += yuv->uv_stride; + v += yuv->uv_stride; + } +} +#endif diff --git a/vp9/encoder/vp9_denoiser.h b/vp9/encoder/vp9_denoiser.h new file mode 100644 index 0000000..f4da24c --- /dev/null +++ b/vp9/encoder/vp9_denoiser.h @@ -0,0 +1,126 @@ +/* + * Copyright (c) 2012 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP9_ENCODER_DENOISER_H_ +#define VP9_ENCODER_DENOISER_H_ + +#include "vp9/encoder/vp9_block.h" +#include "vp9/encoder/vp9_skin_detection.h" +#include "vpx_scale/yv12config.h" + +#ifdef __cplusplus +extern "C" { +#endif + +#define MOTION_MAGNITUDE_THRESHOLD (8 * 3) + +// Denoiser is used in non svc real-time mode which does not use alt-ref, so no +// need to allocate for it, and hence we need MAX_REF_FRAME - 1 +#define NONSVC_REF_FRAMES MAX_REF_FRAMES - 1 + +// Number of frame buffers when SVC is used. [0] for current denoised buffer and +// [1..8] for REF_FRAMES +#define SVC_REF_FRAMES 9 + +typedef enum vp9_denoiser_decision { + COPY_BLOCK, + FILTER_BLOCK, + FILTER_ZEROMV_BLOCK +} VP9_DENOISER_DECISION; + +typedef enum vp9_denoiser_level { + kDenLowLow, + kDenLow, + kDenMedium, + kDenHigh +} VP9_DENOISER_LEVEL; + +typedef struct vp9_denoiser { + YV12_BUFFER_CONFIG *running_avg_y; + YV12_BUFFER_CONFIG *mc_running_avg_y; + YV12_BUFFER_CONFIG last_source; + int frame_buffer_initialized; + int reset; + int num_ref_frames; + int num_layers; + VP9_DENOISER_LEVEL denoising_level; + VP9_DENOISER_LEVEL prev_denoising_level; +} VP9_DENOISER; + +typedef struct { + int64_t zero_last_cost_orig; + int *ref_frame_cost; + int_mv (*frame_mv)[MAX_REF_FRAMES]; + int reuse_inter_pred; + TX_SIZE best_tx_size; + PREDICTION_MODE best_mode; + MV_REFERENCE_FRAME best_ref_frame; + INTERP_FILTER best_pred_filter; + uint8_t best_mode_skip_txfm; +} VP9_PICKMODE_CTX_DEN; + +struct VP9_COMP; +struct SVC; + +void vp9_denoiser_update_frame_info( + VP9_DENOISER *denoiser, YV12_BUFFER_CONFIG src, FRAME_TYPE frame_type, + int refresh_alt_ref_frame, int refresh_golden_frame, int refresh_last_frame, + int alt_fb_idx, int gld_fb_idx, int lst_fb_idx, int resized, + int svc_base_is_key, int second_spatial_layer); + +void vp9_denoiser_denoise(struct VP9_COMP *cpi, MACROBLOCK *mb, int mi_row, + int mi_col, BLOCK_SIZE bs, PICK_MODE_CONTEXT *ctx, + VP9_DENOISER_DECISION *denoiser_decision); + +void vp9_denoiser_reset_frame_stats(PICK_MODE_CONTEXT *ctx); + +void vp9_denoiser_update_frame_stats(MODE_INFO *mi, unsigned int sse, + PREDICTION_MODE mode, + PICK_MODE_CONTEXT *ctx); + +int vp9_denoiser_realloc_svc(VP9_COMMON *cm, VP9_DENOISER *denoiser, + int svc_buf_shift, int refresh_alt, + int refresh_gld, int refresh_lst, int alt_fb_idx, + int gld_fb_idx, int lst_fb_idx); + +int vp9_denoiser_alloc(VP9_COMMON *cm, struct SVC *svc, VP9_DENOISER *denoiser, + int use_svc, int noise_sen, int width, int height, + int ssx, int ssy, +#if CONFIG_VP9_HIGHBITDEPTH + int use_highbitdepth, +#endif + int border); + +#if CONFIG_VP9_TEMPORAL_DENOISING +// This function is used by both c and sse2 denoiser implementations. +// Define it as a static function within the scope where vp9_denoiser.h +// is referenced. +static INLINE int total_adj_strong_thresh(BLOCK_SIZE bs, + int increase_denoising) { + return (1 << num_pels_log2_lookup[bs]) * (increase_denoising ? 3 : 2); +} +#endif + +void vp9_denoiser_free(VP9_DENOISER *denoiser); + +void vp9_denoiser_set_noise_level(VP9_DENOISER *denoiser, int noise_level); + +int64_t vp9_scale_part_thresh(int64_t threshold, VP9_DENOISER_LEVEL noise_level, + int content_state, int temporal_layer_id); + +int64_t vp9_scale_acskip_thresh(int64_t threshold, + VP9_DENOISER_LEVEL noise_level, int abs_sumdiff, + int temporal_layer_id); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP9_ENCODER_DENOISER_H_ diff --git a/vp9/encoder/vp9_encodeframe.c b/vp9/encoder/vp9_encodeframe.c new file mode 100644 index 0000000..682477d --- /dev/null +++ b/vp9/encoder/vp9_encodeframe.c @@ -0,0 +1,5165 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include +#include + +#include "./vp9_rtcd.h" +#include "./vpx_dsp_rtcd.h" +#include "./vpx_config.h" + +#include "vpx_dsp/vpx_dsp_common.h" +#include "vpx_ports/mem.h" +#include "vpx_ports/vpx_timer.h" +#include "vpx_ports/system_state.h" + +#include "vp9/common/vp9_common.h" +#include "vp9/common/vp9_entropy.h" +#include "vp9/common/vp9_entropymode.h" +#include "vp9/common/vp9_idct.h" +#include "vp9/common/vp9_mvref_common.h" +#include "vp9/common/vp9_pred_common.h" +#include "vp9/common/vp9_quant_common.h" +#include "vp9/common/vp9_reconintra.h" +#include "vp9/common/vp9_reconinter.h" +#include "vp9/common/vp9_seg_common.h" +#include "vp9/common/vp9_tile_common.h" + +#include "vp9/encoder/vp9_aq_360.h" +#include "vp9/encoder/vp9_aq_complexity.h" +#include "vp9/encoder/vp9_aq_cyclicrefresh.h" +#include "vp9/encoder/vp9_aq_variance.h" +#include "vp9/encoder/vp9_encodeframe.h" +#include "vp9/encoder/vp9_encodemb.h" +#include "vp9/encoder/vp9_encodemv.h" +#include "vp9/encoder/vp9_ethread.h" +#include "vp9/encoder/vp9_extend.h" +#include "vp9/encoder/vp9_pickmode.h" +#include "vp9/encoder/vp9_rd.h" +#include "vp9/encoder/vp9_rdopt.h" +#include "vp9/encoder/vp9_segmentation.h" +#include "vp9/encoder/vp9_tokenize.h" + +static void encode_superblock(VP9_COMP *cpi, ThreadData *td, TOKENEXTRA **t, + int output_enabled, int mi_row, int mi_col, + BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx); + +// Machine learning-based early termination parameters. +static const double train_mean[24] = { + 303501.697372, 3042630.372158, 24.694696, 1.392182, + 689.413511, 162.027012, 1.478213, 0.0, + 135382.260230, 912738.513263, 28.845217, 1.515230, + 544.158492, 131.807995, 1.436863, 0.0, + 43682.377587, 208131.711766, 28.084737, 1.356677, + 138.254122, 119.522553, 1.252322, 0.0 +}; + +static const double train_stdm[24] = { + 673689.212982, 5996652.516628, 0.024449, 1.989792, + 985.880847, 0.014638, 2.001898, 0.0, + 208798.775332, 1812548.443284, 0.018693, 1.838009, + 396.986910, 0.015657, 1.332541, 0.0, + 55888.847031, 448587.962714, 0.017900, 1.904776, + 98.652832, 0.016598, 1.320992, 0.0 +}; + +// Error tolerance: 0.01%-0.0.05%-0.1% +static const double classifiers[24] = { + 0.111736, 0.289977, 0.042219, 0.204765, 0.120410, -0.143863, + 0.282376, 0.847811, 0.637161, 0.131570, 0.018636, 0.202134, + 0.112797, 0.028162, 0.182450, 1.124367, 0.386133, 0.083700, + 0.050028, 0.150873, 0.061119, 0.109318, 0.127255, 0.625211 +}; + +// This is used as a reference when computing the source variance for the +// purpose of activity masking. +// Eventually this should be replaced by custom no-reference routines, +// which will be faster. +static const uint8_t VP9_VAR_OFFS[64] = { + 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, + 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, + 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, + 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, + 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128 +}; + +#if CONFIG_VP9_HIGHBITDEPTH +static const uint16_t VP9_HIGH_VAR_OFFS_8[64] = { + 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, + 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, + 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, + 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, + 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128 +}; + +static const uint16_t VP9_HIGH_VAR_OFFS_10[64] = { + 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, + 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, + 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, + 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, + 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, + 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, + 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, + 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4 +}; + +static const uint16_t VP9_HIGH_VAR_OFFS_12[64] = { + 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, + 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, + 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, + 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, + 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, + 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, + 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, + 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, + 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, + 128 * 16 +}; +#endif // CONFIG_VP9_HIGHBITDEPTH + +unsigned int vp9_get_sby_variance(VP9_COMP *cpi, const struct buf_2d *ref, + BLOCK_SIZE bs) { + unsigned int sse; + const unsigned int var = + cpi->fn_ptr[bs].vf(ref->buf, ref->stride, VP9_VAR_OFFS, 0, &sse); + return var; +} + +#if CONFIG_VP9_HIGHBITDEPTH +unsigned int vp9_high_get_sby_variance(VP9_COMP *cpi, const struct buf_2d *ref, + BLOCK_SIZE bs, int bd) { + unsigned int var, sse; + switch (bd) { + case 10: + var = + cpi->fn_ptr[bs].vf(ref->buf, ref->stride, + CONVERT_TO_BYTEPTR(VP9_HIGH_VAR_OFFS_10), 0, &sse); + break; + case 12: + var = + cpi->fn_ptr[bs].vf(ref->buf, ref->stride, + CONVERT_TO_BYTEPTR(VP9_HIGH_VAR_OFFS_12), 0, &sse); + break; + case 8: + default: + var = + cpi->fn_ptr[bs].vf(ref->buf, ref->stride, + CONVERT_TO_BYTEPTR(VP9_HIGH_VAR_OFFS_8), 0, &sse); + break; + } + return var; +} +#endif // CONFIG_VP9_HIGHBITDEPTH + +unsigned int vp9_get_sby_perpixel_variance(VP9_COMP *cpi, + const struct buf_2d *ref, + BLOCK_SIZE bs) { + return ROUND_POWER_OF_TWO(vp9_get_sby_variance(cpi, ref, bs), + num_pels_log2_lookup[bs]); +} + +#if CONFIG_VP9_HIGHBITDEPTH +unsigned int vp9_high_get_sby_perpixel_variance(VP9_COMP *cpi, + const struct buf_2d *ref, + BLOCK_SIZE bs, int bd) { + return (unsigned int)ROUND64_POWER_OF_TWO( + (int64_t)vp9_high_get_sby_variance(cpi, ref, bs, bd), + num_pels_log2_lookup[bs]); +} +#endif // CONFIG_VP9_HIGHBITDEPTH + +static unsigned int get_sby_perpixel_diff_variance(VP9_COMP *cpi, + const struct buf_2d *ref, + int mi_row, int mi_col, + BLOCK_SIZE bs) { + unsigned int sse, var; + uint8_t *last_y; + const YV12_BUFFER_CONFIG *last = get_ref_frame_buffer(cpi, LAST_FRAME); + + assert(last != NULL); + last_y = + &last->y_buffer[mi_row * MI_SIZE * last->y_stride + mi_col * MI_SIZE]; + var = cpi->fn_ptr[bs].vf(ref->buf, ref->stride, last_y, last->y_stride, &sse); + return ROUND_POWER_OF_TWO(var, num_pels_log2_lookup[bs]); +} + +static BLOCK_SIZE get_rd_var_based_fixed_partition(VP9_COMP *cpi, MACROBLOCK *x, + int mi_row, int mi_col) { + unsigned int var = get_sby_perpixel_diff_variance( + cpi, &x->plane[0].src, mi_row, mi_col, BLOCK_64X64); + if (var < 8) + return BLOCK_64X64; + else if (var < 128) + return BLOCK_32X32; + else if (var < 2048) + return BLOCK_16X16; + else + return BLOCK_8X8; +} + +// Lighter version of set_offsets that only sets the mode info +// pointers. +static INLINE void set_mode_info_offsets(VP9_COMMON *const cm, + MACROBLOCK *const x, + MACROBLOCKD *const xd, int mi_row, + int mi_col) { + const int idx_str = xd->mi_stride * mi_row + mi_col; + xd->mi = cm->mi_grid_visible + idx_str; + xd->mi[0] = cm->mi + idx_str; + x->mbmi_ext = x->mbmi_ext_base + (mi_row * cm->mi_cols + mi_col); +} + +static void set_offsets(VP9_COMP *cpi, const TileInfo *const tile, + MACROBLOCK *const x, int mi_row, int mi_col, + BLOCK_SIZE bsize) { + VP9_COMMON *const cm = &cpi->common; + MACROBLOCKD *const xd = &x->e_mbd; + MODE_INFO *mi; + const int mi_width = num_8x8_blocks_wide_lookup[bsize]; + const int mi_height = num_8x8_blocks_high_lookup[bsize]; + const struct segmentation *const seg = &cm->seg; + MvLimits *const mv_limits = &x->mv_limits; + + set_skip_context(xd, mi_row, mi_col); + + set_mode_info_offsets(cm, x, xd, mi_row, mi_col); + + mi = xd->mi[0]; + + // Set up destination pointers. + vp9_setup_dst_planes(xd->plane, get_frame_new_buffer(cm), mi_row, mi_col); + + // Set up limit values for MV components. + // Mv beyond the range do not produce new/different prediction block. + mv_limits->row_min = -(((mi_row + mi_height) * MI_SIZE) + VP9_INTERP_EXTEND); + mv_limits->col_min = -(((mi_col + mi_width) * MI_SIZE) + VP9_INTERP_EXTEND); + mv_limits->row_max = (cm->mi_rows - mi_row) * MI_SIZE + VP9_INTERP_EXTEND; + mv_limits->col_max = (cm->mi_cols - mi_col) * MI_SIZE + VP9_INTERP_EXTEND; + + // Set up distance of MB to edge of frame in 1/8th pel units. + assert(!(mi_col & (mi_width - 1)) && !(mi_row & (mi_height - 1))); + set_mi_row_col(xd, tile, mi_row, mi_height, mi_col, mi_width, cm->mi_rows, + cm->mi_cols); + + // Set up source buffers. + vp9_setup_src_planes(x, cpi->Source, mi_row, mi_col); + + // R/D setup. + x->rddiv = cpi->rd.RDDIV; + x->rdmult = cpi->rd.RDMULT; + + // Setup segment ID. + if (seg->enabled) { + if (cpi->oxcf.aq_mode != VARIANCE_AQ && cpi->oxcf.aq_mode != LOOKAHEAD_AQ && + cpi->oxcf.aq_mode != EQUATOR360_AQ) { + const uint8_t *const map = + seg->update_map ? cpi->segmentation_map : cm->last_frame_seg_map; + mi->segment_id = get_segment_id(cm, map, bsize, mi_row, mi_col); + } + vp9_init_plane_quantizers(cpi, x); + + x->encode_breakout = cpi->segment_encode_breakout[mi->segment_id]; + } else { + mi->segment_id = 0; + x->encode_breakout = cpi->encode_breakout; + } + + // required by vp9_append_sub8x8_mvs_for_idx() and vp9_find_best_ref_mvs() + xd->tile = *tile; +} + +static void duplicate_mode_info_in_sb(VP9_COMMON *cm, MACROBLOCKD *xd, + int mi_row, int mi_col, + BLOCK_SIZE bsize) { + const int block_width = + VPXMIN(num_8x8_blocks_wide_lookup[bsize], cm->mi_cols - mi_col); + const int block_height = + VPXMIN(num_8x8_blocks_high_lookup[bsize], cm->mi_rows - mi_row); + const int mi_stride = xd->mi_stride; + MODE_INFO *const src_mi = xd->mi[0]; + int i, j; + + for (j = 0; j < block_height; ++j) + for (i = 0; i < block_width; ++i) xd->mi[j * mi_stride + i] = src_mi; +} + +static void set_block_size(VP9_COMP *const cpi, MACROBLOCK *const x, + MACROBLOCKD *const xd, int mi_row, int mi_col, + BLOCK_SIZE bsize) { + if (cpi->common.mi_cols > mi_col && cpi->common.mi_rows > mi_row) { + set_mode_info_offsets(&cpi->common, x, xd, mi_row, mi_col); + xd->mi[0]->sb_type = bsize; + } +} + +typedef struct { + // This struct is used for computing variance in choose_partitioning(), where + // the max number of samples within a superblock is 16x16 (with 4x4 avg). Even + // in high bitdepth, uint32_t is enough for sum_square_error (2^12 * 2^12 * 16 + // * 16 = 2^32). + uint32_t sum_square_error; + int32_t sum_error; + int log2_count; + int variance; +} var; + +typedef struct { + var none; + var horz[2]; + var vert[2]; +} partition_variance; + +typedef struct { + partition_variance part_variances; + var split[4]; +} v4x4; + +typedef struct { + partition_variance part_variances; + v4x4 split[4]; +} v8x8; + +typedef struct { + partition_variance part_variances; + v8x8 split[4]; +} v16x16; + +typedef struct { + partition_variance part_variances; + v16x16 split[4]; +} v32x32; + +typedef struct { + partition_variance part_variances; + v32x32 split[4]; +} v64x64; + +typedef struct { + partition_variance *part_variances; + var *split[4]; +} variance_node; + +typedef enum { + V16X16, + V32X32, + V64X64, +} TREE_LEVEL; + +static void tree_to_node(void *data, BLOCK_SIZE bsize, variance_node *node) { + int i; + node->part_variances = NULL; + switch (bsize) { + case BLOCK_64X64: { + v64x64 *vt = (v64x64 *)data; + node->part_variances = &vt->part_variances; + for (i = 0; i < 4; i++) + node->split[i] = &vt->split[i].part_variances.none; + break; + } + case BLOCK_32X32: { + v32x32 *vt = (v32x32 *)data; + node->part_variances = &vt->part_variances; + for (i = 0; i < 4; i++) + node->split[i] = &vt->split[i].part_variances.none; + break; + } + case BLOCK_16X16: { + v16x16 *vt = (v16x16 *)data; + node->part_variances = &vt->part_variances; + for (i = 0; i < 4; i++) + node->split[i] = &vt->split[i].part_variances.none; + break; + } + case BLOCK_8X8: { + v8x8 *vt = (v8x8 *)data; + node->part_variances = &vt->part_variances; + for (i = 0; i < 4; i++) + node->split[i] = &vt->split[i].part_variances.none; + break; + } + case BLOCK_4X4: { + v4x4 *vt = (v4x4 *)data; + node->part_variances = &vt->part_variances; + for (i = 0; i < 4; i++) node->split[i] = &vt->split[i]; + break; + } + default: { + assert(0); + break; + } + } +} + +// Set variance values given sum square error, sum error, count. +static void fill_variance(uint32_t s2, int32_t s, int c, var *v) { + v->sum_square_error = s2; + v->sum_error = s; + v->log2_count = c; +} + +static void get_variance(var *v) { + v->variance = + (int)(256 * (v->sum_square_error - + ((v->sum_error * v->sum_error) >> v->log2_count)) >> + v->log2_count); +} + +static void sum_2_variances(const var *a, const var *b, var *r) { + assert(a->log2_count == b->log2_count); + fill_variance(a->sum_square_error + b->sum_square_error, + a->sum_error + b->sum_error, a->log2_count + 1, r); +} + +static void fill_variance_tree(void *data, BLOCK_SIZE bsize) { + variance_node node; + memset(&node, 0, sizeof(node)); + tree_to_node(data, bsize, &node); + sum_2_variances(node.split[0], node.split[1], &node.part_variances->horz[0]); + sum_2_variances(node.split[2], node.split[3], &node.part_variances->horz[1]); + sum_2_variances(node.split[0], node.split[2], &node.part_variances->vert[0]); + sum_2_variances(node.split[1], node.split[3], &node.part_variances->vert[1]); + sum_2_variances(&node.part_variances->vert[0], &node.part_variances->vert[1], + &node.part_variances->none); +} + +static int set_vt_partitioning(VP9_COMP *cpi, MACROBLOCK *const x, + MACROBLOCKD *const xd, void *data, + BLOCK_SIZE bsize, int mi_row, int mi_col, + int64_t threshold, BLOCK_SIZE bsize_min, + int force_split) { + VP9_COMMON *const cm = &cpi->common; + variance_node vt; + const int block_width = num_8x8_blocks_wide_lookup[bsize]; + const int block_height = num_8x8_blocks_high_lookup[bsize]; + + assert(block_height == block_width); + tree_to_node(data, bsize, &vt); + + if (force_split == 1) return 0; + + // For bsize=bsize_min (16x16/8x8 for 8x8/4x4 downsampling), select if + // variance is below threshold, otherwise split will be selected. + // No check for vert/horiz split as too few samples for variance. + if (bsize == bsize_min) { + // Variance already computed to set the force_split. + if (cm->frame_type == KEY_FRAME) get_variance(&vt.part_variances->none); + if (mi_col + block_width / 2 < cm->mi_cols && + mi_row + block_height / 2 < cm->mi_rows && + vt.part_variances->none.variance < threshold) { + set_block_size(cpi, x, xd, mi_row, mi_col, bsize); + return 1; + } + return 0; + } else if (bsize > bsize_min) { + // Variance already computed to set the force_split. + if (cm->frame_type == KEY_FRAME) get_variance(&vt.part_variances->none); + // For key frame: take split for bsize above 32X32 or very high variance. + if (cm->frame_type == KEY_FRAME && + (bsize > BLOCK_32X32 || + vt.part_variances->none.variance > (threshold << 4))) { + return 0; + } + // If variance is low, take the bsize (no split). + if (mi_col + block_width / 2 < cm->mi_cols && + mi_row + block_height / 2 < cm->mi_rows && + vt.part_variances->none.variance < threshold) { + set_block_size(cpi, x, xd, mi_row, mi_col, bsize); + return 1; + } + + // Check vertical split. + if (mi_row + block_height / 2 < cm->mi_rows) { + BLOCK_SIZE subsize = get_subsize(bsize, PARTITION_VERT); + get_variance(&vt.part_variances->vert[0]); + get_variance(&vt.part_variances->vert[1]); + if (vt.part_variances->vert[0].variance < threshold && + vt.part_variances->vert[1].variance < threshold && + get_plane_block_size(subsize, &xd->plane[1]) < BLOCK_INVALID) { + set_block_size(cpi, x, xd, mi_row, mi_col, subsize); + set_block_size(cpi, x, xd, mi_row, mi_col + block_width / 2, subsize); + return 1; + } + } + // Check horizontal split. + if (mi_col + block_width / 2 < cm->mi_cols) { + BLOCK_SIZE subsize = get_subsize(bsize, PARTITION_HORZ); + get_variance(&vt.part_variances->horz[0]); + get_variance(&vt.part_variances->horz[1]); + if (vt.part_variances->horz[0].variance < threshold && + vt.part_variances->horz[1].variance < threshold && + get_plane_block_size(subsize, &xd->plane[1]) < BLOCK_INVALID) { + set_block_size(cpi, x, xd, mi_row, mi_col, subsize); + set_block_size(cpi, x, xd, mi_row + block_height / 2, mi_col, subsize); + return 1; + } + } + + return 0; + } + return 0; +} + +static int64_t scale_part_thresh_sumdiff(int64_t threshold_base, int speed, + int width, int height, + int content_state) { + if (speed >= 8) { + if (width <= 640 && height <= 480) + return (5 * threshold_base) >> 2; + else if ((content_state == kLowSadLowSumdiff) || + (content_state == kHighSadLowSumdiff) || + (content_state == kLowVarHighSumdiff)) + return (5 * threshold_base) >> 2; + } else if (speed == 7) { + if ((content_state == kLowSadLowSumdiff) || + (content_state == kHighSadLowSumdiff) || + (content_state == kLowVarHighSumdiff)) { + return (5 * threshold_base) >> 2; + } + } + return threshold_base; +} + +// Set the variance split thresholds for following the block sizes: +// 0 - threshold_64x64, 1 - threshold_32x32, 2 - threshold_16x16, +// 3 - vbp_threshold_8x8. vbp_threshold_8x8 (to split to 4x4 partition) is +// currently only used on key frame. +static void set_vbp_thresholds(VP9_COMP *cpi, int64_t thresholds[], int q, + int content_state) { + VP9_COMMON *const cm = &cpi->common; + const int is_key_frame = (cm->frame_type == KEY_FRAME); + const int threshold_multiplier = is_key_frame ? 20 : 1; + int64_t threshold_base = + (int64_t)(threshold_multiplier * cpi->y_dequant[q][1]); + + if (is_key_frame) { + thresholds[0] = threshold_base; + thresholds[1] = threshold_base >> 2; + thresholds[2] = threshold_base >> 2; + thresholds[3] = threshold_base << 2; + } else { + // Increase base variance threshold based on estimated noise level. + if (cpi->noise_estimate.enabled && cm->width >= 640 && cm->height >= 480) { + NOISE_LEVEL noise_level = + vp9_noise_estimate_extract_level(&cpi->noise_estimate); + if (noise_level == kHigh) + threshold_base = 3 * threshold_base; + else if (noise_level == kMedium) + threshold_base = threshold_base << 1; + else if (noise_level < kLow) + threshold_base = (7 * threshold_base) >> 3; + } +#if CONFIG_VP9_TEMPORAL_DENOISING + if (cpi->oxcf.noise_sensitivity > 0 && denoise_svc(cpi) && + cpi->oxcf.speed > 5 && cpi->denoiser.denoising_level >= kDenLow) + threshold_base = + vp9_scale_part_thresh(threshold_base, cpi->denoiser.denoising_level, + content_state, cpi->svc.temporal_layer_id); + else + threshold_base = + scale_part_thresh_sumdiff(threshold_base, cpi->oxcf.speed, cm->width, + cm->height, content_state); +#else + // Increase base variance threshold based on content_state/sum_diff level. + threshold_base = scale_part_thresh_sumdiff( + threshold_base, cpi->oxcf.speed, cm->width, cm->height, content_state); +#endif + thresholds[0] = threshold_base; + thresholds[2] = threshold_base << cpi->oxcf.speed; + if (cm->width >= 1280 && cm->height >= 720 && cpi->oxcf.speed < 7) + thresholds[2] = thresholds[2] << 1; + if (cm->width <= 352 && cm->height <= 288) { + thresholds[0] = threshold_base >> 3; + thresholds[1] = threshold_base >> 1; + thresholds[2] = threshold_base << 3; + } else if (cm->width < 1280 && cm->height < 720) { + thresholds[1] = (5 * threshold_base) >> 2; + } else if (cm->width < 1920 && cm->height < 1080) { + thresholds[1] = threshold_base << 1; + } else { + thresholds[1] = (5 * threshold_base) >> 1; + } + } +} + +void vp9_set_variance_partition_thresholds(VP9_COMP *cpi, int q, + int content_state) { + VP9_COMMON *const cm = &cpi->common; + SPEED_FEATURES *const sf = &cpi->sf; + const int is_key_frame = (cm->frame_type == KEY_FRAME); + if (sf->partition_search_type != VAR_BASED_PARTITION && + sf->partition_search_type != REFERENCE_PARTITION) { + return; + } else { + set_vbp_thresholds(cpi, cpi->vbp_thresholds, q, content_state); + // The thresholds below are not changed locally. + if (is_key_frame) { + cpi->vbp_threshold_sad = 0; + cpi->vbp_threshold_copy = 0; + cpi->vbp_bsize_min = BLOCK_8X8; + } else { + if (cm->width <= 352 && cm->height <= 288) + cpi->vbp_threshold_sad = 10; + else + cpi->vbp_threshold_sad = (cpi->y_dequant[q][1] << 1) > 1000 + ? (cpi->y_dequant[q][1] << 1) + : 1000; + cpi->vbp_bsize_min = BLOCK_16X16; + if (cm->width <= 352 && cm->height <= 288) + cpi->vbp_threshold_copy = 4000; + else if (cm->width <= 640 && cm->height <= 360) + cpi->vbp_threshold_copy = 8000; + else + cpi->vbp_threshold_copy = (cpi->y_dequant[q][1] << 3) > 8000 + ? (cpi->y_dequant[q][1] << 3) + : 8000; + } + cpi->vbp_threshold_minmax = 15 + (q >> 3); + } +} + +// Compute the minmax over the 8x8 subblocks. +static int compute_minmax_8x8(const uint8_t *s, int sp, const uint8_t *d, + int dp, int x16_idx, int y16_idx, +#if CONFIG_VP9_HIGHBITDEPTH + int highbd_flag, +#endif + int pixels_wide, int pixels_high) { + int k; + int minmax_max = 0; + int minmax_min = 255; + // Loop over the 4 8x8 subblocks. + for (k = 0; k < 4; k++) { + int x8_idx = x16_idx + ((k & 1) << 3); + int y8_idx = y16_idx + ((k >> 1) << 3); + int min = 0; + int max = 0; + if (x8_idx < pixels_wide && y8_idx < pixels_high) { +#if CONFIG_VP9_HIGHBITDEPTH + if (highbd_flag & YV12_FLAG_HIGHBITDEPTH) { + vpx_highbd_minmax_8x8(s + y8_idx * sp + x8_idx, sp, + d + y8_idx * dp + x8_idx, dp, &min, &max); + } else { + vpx_minmax_8x8(s + y8_idx * sp + x8_idx, sp, d + y8_idx * dp + x8_idx, + dp, &min, &max); + } +#else + vpx_minmax_8x8(s + y8_idx * sp + x8_idx, sp, d + y8_idx * dp + x8_idx, dp, + &min, &max); +#endif + if ((max - min) > minmax_max) minmax_max = (max - min); + if ((max - min) < minmax_min) minmax_min = (max - min); + } + } + return (minmax_max - minmax_min); +} + +static void fill_variance_4x4avg(const uint8_t *s, int sp, const uint8_t *d, + int dp, int x8_idx, int y8_idx, v8x8 *vst, +#if CONFIG_VP9_HIGHBITDEPTH + int highbd_flag, +#endif + int pixels_wide, int pixels_high, + int is_key_frame) { + int k; + for (k = 0; k < 4; k++) { + int x4_idx = x8_idx + ((k & 1) << 2); + int y4_idx = y8_idx + ((k >> 1) << 2); + unsigned int sse = 0; + int sum = 0; + if (x4_idx < pixels_wide && y4_idx < pixels_high) { + int s_avg; + int d_avg = 128; +#if CONFIG_VP9_HIGHBITDEPTH + if (highbd_flag & YV12_FLAG_HIGHBITDEPTH) { + s_avg = vpx_highbd_avg_4x4(s + y4_idx * sp + x4_idx, sp); + if (!is_key_frame) + d_avg = vpx_highbd_avg_4x4(d + y4_idx * dp + x4_idx, dp); + } else { + s_avg = vpx_avg_4x4(s + y4_idx * sp + x4_idx, sp); + if (!is_key_frame) d_avg = vpx_avg_4x4(d + y4_idx * dp + x4_idx, dp); + } +#else + s_avg = vpx_avg_4x4(s + y4_idx * sp + x4_idx, sp); + if (!is_key_frame) d_avg = vpx_avg_4x4(d + y4_idx * dp + x4_idx, dp); +#endif + sum = s_avg - d_avg; + sse = sum * sum; + } + fill_variance(sse, sum, 0, &vst->split[k].part_variances.none); + } +} + +static void fill_variance_8x8avg(const uint8_t *s, int sp, const uint8_t *d, + int dp, int x16_idx, int y16_idx, v16x16 *vst, +#if CONFIG_VP9_HIGHBITDEPTH + int highbd_flag, +#endif + int pixels_wide, int pixels_high, + int is_key_frame) { + int k; + for (k = 0; k < 4; k++) { + int x8_idx = x16_idx + ((k & 1) << 3); + int y8_idx = y16_idx + ((k >> 1) << 3); + unsigned int sse = 0; + int sum = 0; + if (x8_idx < pixels_wide && y8_idx < pixels_high) { + int s_avg; + int d_avg = 128; +#if CONFIG_VP9_HIGHBITDEPTH + if (highbd_flag & YV12_FLAG_HIGHBITDEPTH) { + s_avg = vpx_highbd_avg_8x8(s + y8_idx * sp + x8_idx, sp); + if (!is_key_frame) + d_avg = vpx_highbd_avg_8x8(d + y8_idx * dp + x8_idx, dp); + } else { + s_avg = vpx_avg_8x8(s + y8_idx * sp + x8_idx, sp); + if (!is_key_frame) d_avg = vpx_avg_8x8(d + y8_idx * dp + x8_idx, dp); + } +#else + s_avg = vpx_avg_8x8(s + y8_idx * sp + x8_idx, sp); + if (!is_key_frame) d_avg = vpx_avg_8x8(d + y8_idx * dp + x8_idx, dp); +#endif + sum = s_avg - d_avg; + sse = sum * sum; + } + fill_variance(sse, sum, 0, &vst->split[k].part_variances.none); + } +} + +// Check if most of the superblock is skin content, and if so, force split to +// 32x32, and set x->sb_is_skin for use in mode selection. +static int skin_sb_split(VP9_COMP *cpi, MACROBLOCK *x, const int low_res, + int mi_row, int mi_col, int *force_split) { + VP9_COMMON *const cm = &cpi->common; +#if CONFIG_VP9_HIGHBITDEPTH + if (cm->use_highbitdepth) return 0; +#endif + // Avoid checking superblocks on/near boundary and avoid low resolutions. + // Note superblock may still pick 64X64 if y_sad is very small + // (i.e., y_sad < cpi->vbp_threshold_sad) below. For now leave this as is. + if (!low_res && (mi_col >= 8 && mi_col + 8 < cm->mi_cols && mi_row >= 8 && + mi_row + 8 < cm->mi_rows)) { + int num_16x16_skin = 0; + int num_16x16_nonskin = 0; + uint8_t *ysignal = x->plane[0].src.buf; + uint8_t *usignal = x->plane[1].src.buf; + uint8_t *vsignal = x->plane[2].src.buf; + int sp = x->plane[0].src.stride; + int spuv = x->plane[1].src.stride; + const int block_index = mi_row * cm->mi_cols + mi_col; + const int bw = num_8x8_blocks_wide_lookup[BLOCK_64X64]; + const int bh = num_8x8_blocks_high_lookup[BLOCK_64X64]; + const int xmis = VPXMIN(cm->mi_cols - mi_col, bw); + const int ymis = VPXMIN(cm->mi_rows - mi_row, bh); + // Loop through the 16x16 sub-blocks. + int i, j; + for (i = 0; i < ymis; i += 2) { + for (j = 0; j < xmis; j += 2) { + int bl_index = block_index + i * cm->mi_cols + j; + int is_skin = cpi->skin_map[bl_index]; + num_16x16_skin += is_skin; + num_16x16_nonskin += (1 - is_skin); + if (num_16x16_nonskin > 3) { + // Exit loop if at least 4 of the 16x16 blocks are not skin. + i = ymis; + break; + } + ysignal += 16; + usignal += 8; + vsignal += 8; + } + ysignal += (sp << 4) - 64; + usignal += (spuv << 3) - 32; + vsignal += (spuv << 3) - 32; + } + if (num_16x16_skin > 12) { + *force_split = 1; + return 1; + } + } + return 0; +} + +static void set_low_temp_var_flag(VP9_COMP *cpi, MACROBLOCK *x, MACROBLOCKD *xd, + v64x64 *vt, int64_t thresholds[], + MV_REFERENCE_FRAME ref_frame_partition, + int mi_col, int mi_row) { + int i, j; + VP9_COMMON *const cm = &cpi->common; + const int mv_thr = cm->width > 640 ? 8 : 4; + // Check temporal variance for bsize >= 16x16, if LAST_FRAME was selected and + // int_pro mv is small. If the temporal variance is small set the flag + // variance_low for the block. The variance threshold can be adjusted, the + // higher the more aggressive. + if (ref_frame_partition == LAST_FRAME && + (cpi->sf.short_circuit_low_temp_var == 1 || + (xd->mi[0]->mv[0].as_mv.col < mv_thr && + xd->mi[0]->mv[0].as_mv.col > -mv_thr && + xd->mi[0]->mv[0].as_mv.row < mv_thr && + xd->mi[0]->mv[0].as_mv.row > -mv_thr))) { + if (xd->mi[0]->sb_type == BLOCK_64X64) { + if ((vt->part_variances).none.variance < (thresholds[0] >> 1)) + x->variance_low[0] = 1; + } else if (xd->mi[0]->sb_type == BLOCK_64X32) { + for (i = 0; i < 2; i++) { + if (vt->part_variances.horz[i].variance < (thresholds[0] >> 2)) + x->variance_low[i + 1] = 1; + } + } else if (xd->mi[0]->sb_type == BLOCK_32X64) { + for (i = 0; i < 2; i++) { + if (vt->part_variances.vert[i].variance < (thresholds[0] >> 2)) + x->variance_low[i + 3] = 1; + } + } else { + for (i = 0; i < 4; i++) { + const int idx[4][2] = { { 0, 0 }, { 0, 4 }, { 4, 0 }, { 4, 4 } }; + const int idx_str = + cm->mi_stride * (mi_row + idx[i][0]) + mi_col + idx[i][1]; + MODE_INFO **this_mi = cm->mi_grid_visible + idx_str; + + if (cm->mi_cols <= mi_col + idx[i][1] || + cm->mi_rows <= mi_row + idx[i][0]) + continue; + + if ((*this_mi)->sb_type == BLOCK_32X32) { + int64_t threshold_32x32 = (cpi->sf.short_circuit_low_temp_var == 1 || + cpi->sf.short_circuit_low_temp_var == 3) + ? ((5 * thresholds[1]) >> 3) + : (thresholds[1] >> 1); + if (vt->split[i].part_variances.none.variance < threshold_32x32) + x->variance_low[i + 5] = 1; + } else if (cpi->sf.short_circuit_low_temp_var >= 2) { + // For 32x16 and 16x32 blocks, the flag is set on each 16x16 block + // inside. + if ((*this_mi)->sb_type == BLOCK_16X16 || + (*this_mi)->sb_type == BLOCK_32X16 || + (*this_mi)->sb_type == BLOCK_16X32) { + for (j = 0; j < 4; j++) { + if (vt->split[i].split[j].part_variances.none.variance < + (thresholds[2] >> 8)) + x->variance_low[(i << 2) + j + 9] = 1; + } + } + } + } + } + } +} + +static void copy_partitioning_helper(VP9_COMP *cpi, MACROBLOCK *x, + MACROBLOCKD *xd, BLOCK_SIZE bsize, + int mi_row, int mi_col) { + VP9_COMMON *const cm = &cpi->common; + BLOCK_SIZE *prev_part = cpi->prev_partition; + int start_pos = mi_row * cm->mi_stride + mi_col; + + const int bsl = b_width_log2_lookup[bsize]; + const int bs = (1 << bsl) >> 2; + BLOCK_SIZE subsize; + PARTITION_TYPE partition; + + if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return; + + partition = partition_lookup[bsl][prev_part[start_pos]]; + subsize = get_subsize(bsize, partition); + + if (subsize < BLOCK_8X8) { + set_block_size(cpi, x, xd, mi_row, mi_col, bsize); + } else { + switch (partition) { + case PARTITION_NONE: + set_block_size(cpi, x, xd, mi_row, mi_col, bsize); + break; + case PARTITION_HORZ: + set_block_size(cpi, x, xd, mi_row, mi_col, subsize); + set_block_size(cpi, x, xd, mi_row + bs, mi_col, subsize); + break; + case PARTITION_VERT: + set_block_size(cpi, x, xd, mi_row, mi_col, subsize); + set_block_size(cpi, x, xd, mi_row, mi_col + bs, subsize); + break; + case PARTITION_SPLIT: + copy_partitioning_helper(cpi, x, xd, subsize, mi_row, mi_col); + copy_partitioning_helper(cpi, x, xd, subsize, mi_row + bs, mi_col); + copy_partitioning_helper(cpi, x, xd, subsize, mi_row, mi_col + bs); + copy_partitioning_helper(cpi, x, xd, subsize, mi_row + bs, mi_col + bs); + break; + default: assert(0); + } + } +} + +static int copy_partitioning(VP9_COMP *cpi, MACROBLOCK *x, MACROBLOCKD *xd, + int mi_row, int mi_col, int segment_id, + int sb_offset) { + int svc_copy_allowed = 1; + int frames_since_key_thresh = 1; + if (cpi->use_svc) { + // For SVC, don't allow copy if base spatial layer is key frame, or if + // frame is not a temporal enhancement layer frame. + int layer = LAYER_IDS_TO_IDX(0, cpi->svc.temporal_layer_id, + cpi->svc.number_temporal_layers); + const LAYER_CONTEXT *lc = &cpi->svc.layer_context[layer]; + if (lc->is_key_frame || !cpi->svc.non_reference_frame) svc_copy_allowed = 0; + frames_since_key_thresh = cpi->svc.number_spatial_layers << 1; + } + if (cpi->rc.frames_since_key > frames_since_key_thresh && svc_copy_allowed && + !cpi->resize_pending && segment_id == CR_SEGMENT_ID_BASE && + cpi->prev_segment_id[sb_offset] == CR_SEGMENT_ID_BASE && + cpi->copied_frame_cnt[sb_offset] < cpi->max_copied_frame) { + if (cpi->prev_partition != NULL) { + copy_partitioning_helper(cpi, x, xd, BLOCK_64X64, mi_row, mi_col); + cpi->copied_frame_cnt[sb_offset] += 1; + memcpy(x->variance_low, &(cpi->prev_variance_low[sb_offset * 25]), + sizeof(x->variance_low)); + return 1; + } + } + + return 0; +} + +static int scale_partitioning_svc(VP9_COMP *cpi, MACROBLOCK *x, MACROBLOCKD *xd, + BLOCK_SIZE bsize, int mi_row, int mi_col, + int mi_row_high, int mi_col_high) { + VP9_COMMON *const cm = &cpi->common; + SVC *const svc = &cpi->svc; + BLOCK_SIZE *prev_part = svc->prev_partition_svc; + // Variables with _high are for higher resolution. + int bsize_high = 0; + int subsize_high = 0; + const int bsl_high = b_width_log2_lookup[bsize]; + const int bs_high = (1 << bsl_high) >> 2; + const int has_rows = (mi_row_high + bs_high) < cm->mi_rows; + const int has_cols = (mi_col_high + bs_high) < cm->mi_cols; + + const int row_boundary_block_scale_factor[BLOCK_SIZES] = { + 13, 13, 13, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0 + }; + const int col_boundary_block_scale_factor[BLOCK_SIZES] = { + 13, 13, 13, 2, 2, 0, 2, 2, 0, 2, 2, 0, 0 + }; + int start_pos; + BLOCK_SIZE bsize_low; + PARTITION_TYPE partition_high; + + if (mi_row_high >= cm->mi_rows || mi_col_high >= cm->mi_cols) return 0; + if (mi_row >= (cm->mi_rows >> 1) || mi_col >= (cm->mi_cols >> 1)) return 0; + + // Find corresponding (mi_col/mi_row) block down-scaled by 2x2. + start_pos = mi_row * (svc->mi_stride[svc->spatial_layer_id - 1]) + mi_col; + bsize_low = prev_part[start_pos]; + // The block size is too big for boundaries. Do variance based partitioning. + if ((!has_rows || !has_cols) && bsize_low > BLOCK_16X16) return 1; + + // For reference frames: return 1 (do variance-based partitioning) if the + // superblock is not low source sad and lower-resoln bsize is below 32x32. + if (!cpi->svc.non_reference_frame && !x->skip_low_source_sad && + bsize_low < BLOCK_32X32) + return 1; + + // Scale up block size by 2x2. Force 64x64 for size larger than 32x32. + if (bsize_low < BLOCK_32X32) { + bsize_high = bsize_low + 3; + } else if (bsize_low >= BLOCK_32X32) { + bsize_high = BLOCK_64X64; + } + // Scale up blocks on boundary. + if (!has_cols && has_rows) { + bsize_high = bsize_low + row_boundary_block_scale_factor[bsize_low]; + } else if (has_cols && !has_rows) { + bsize_high = bsize_low + col_boundary_block_scale_factor[bsize_low]; + } else if (!has_cols && !has_rows) { + bsize_high = bsize_low; + } + + partition_high = partition_lookup[bsl_high][bsize_high]; + subsize_high = get_subsize(bsize, partition_high); + + if (subsize_high < BLOCK_8X8) { + set_block_size(cpi, x, xd, mi_row_high, mi_col_high, bsize_high); + } else { + const int bsl = b_width_log2_lookup[bsize]; + const int bs = (1 << bsl) >> 2; + switch (partition_high) { + case PARTITION_NONE: + set_block_size(cpi, x, xd, mi_row_high, mi_col_high, bsize_high); + break; + case PARTITION_HORZ: + set_block_size(cpi, x, xd, mi_row_high, mi_col_high, subsize_high); + if (subsize_high < BLOCK_64X64) + set_block_size(cpi, x, xd, mi_row_high + bs_high, mi_col_high, + subsize_high); + break; + case PARTITION_VERT: + set_block_size(cpi, x, xd, mi_row_high, mi_col_high, subsize_high); + if (subsize_high < BLOCK_64X64) + set_block_size(cpi, x, xd, mi_row_high, mi_col_high + bs_high, + subsize_high); + break; + case PARTITION_SPLIT: + if (scale_partitioning_svc(cpi, x, xd, subsize_high, mi_row, mi_col, + mi_row_high, mi_col_high)) + return 1; + if (scale_partitioning_svc(cpi, x, xd, subsize_high, mi_row + (bs >> 1), + mi_col, mi_row_high + bs_high, mi_col_high)) + return 1; + if (scale_partitioning_svc(cpi, x, xd, subsize_high, mi_row, + mi_col + (bs >> 1), mi_row_high, + mi_col_high + bs_high)) + return 1; + if (scale_partitioning_svc(cpi, x, xd, subsize_high, mi_row + (bs >> 1), + mi_col + (bs >> 1), mi_row_high + bs_high, + mi_col_high + bs_high)) + return 1; + break; + default: assert(0); + } + } + + return 0; +} + +static void update_partition_svc(VP9_COMP *cpi, BLOCK_SIZE bsize, int mi_row, + int mi_col) { + VP9_COMMON *const cm = &cpi->common; + BLOCK_SIZE *prev_part = cpi->svc.prev_partition_svc; + int start_pos = mi_row * cm->mi_stride + mi_col; + const int bsl = b_width_log2_lookup[bsize]; + const int bs = (1 << bsl) >> 2; + BLOCK_SIZE subsize; + PARTITION_TYPE partition; + const MODE_INFO *mi = NULL; + int xx, yy; + + if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return; + + mi = cm->mi_grid_visible[start_pos]; + partition = partition_lookup[bsl][mi->sb_type]; + subsize = get_subsize(bsize, partition); + if (subsize < BLOCK_8X8) { + prev_part[start_pos] = bsize; + } else { + switch (partition) { + case PARTITION_NONE: + prev_part[start_pos] = bsize; + if (bsize == BLOCK_64X64) { + for (xx = 0; xx < 8; xx += 4) + for (yy = 0; yy < 8; yy += 4) { + if ((mi_row + xx < cm->mi_rows) && (mi_col + yy < cm->mi_cols)) + prev_part[start_pos + xx * cm->mi_stride + yy] = bsize; + } + } + break; + case PARTITION_HORZ: + prev_part[start_pos] = subsize; + if (mi_row + bs < cm->mi_rows) + prev_part[start_pos + bs * cm->mi_stride] = subsize; + break; + case PARTITION_VERT: + prev_part[start_pos] = subsize; + if (mi_col + bs < cm->mi_cols) prev_part[start_pos + bs] = subsize; + break; + case PARTITION_SPLIT: + update_partition_svc(cpi, subsize, mi_row, mi_col); + update_partition_svc(cpi, subsize, mi_row + bs, mi_col); + update_partition_svc(cpi, subsize, mi_row, mi_col + bs); + update_partition_svc(cpi, subsize, mi_row + bs, mi_col + bs); + break; + default: assert(0); + } + } +} + +static void update_prev_partition_helper(VP9_COMP *cpi, BLOCK_SIZE bsize, + int mi_row, int mi_col) { + VP9_COMMON *const cm = &cpi->common; + BLOCK_SIZE *prev_part = cpi->prev_partition; + int start_pos = mi_row * cm->mi_stride + mi_col; + const int bsl = b_width_log2_lookup[bsize]; + const int bs = (1 << bsl) >> 2; + BLOCK_SIZE subsize; + PARTITION_TYPE partition; + const MODE_INFO *mi = NULL; + + if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return; + + mi = cm->mi_grid_visible[start_pos]; + partition = partition_lookup[bsl][mi->sb_type]; + subsize = get_subsize(bsize, partition); + if (subsize < BLOCK_8X8) { + prev_part[start_pos] = bsize; + } else { + switch (partition) { + case PARTITION_NONE: prev_part[start_pos] = bsize; break; + case PARTITION_HORZ: + prev_part[start_pos] = subsize; + if (mi_row + bs < cm->mi_rows) + prev_part[start_pos + bs * cm->mi_stride] = subsize; + break; + case PARTITION_VERT: + prev_part[start_pos] = subsize; + if (mi_col + bs < cm->mi_cols) prev_part[start_pos + bs] = subsize; + break; + case PARTITION_SPLIT: + update_prev_partition_helper(cpi, subsize, mi_row, mi_col); + update_prev_partition_helper(cpi, subsize, mi_row + bs, mi_col); + update_prev_partition_helper(cpi, subsize, mi_row, mi_col + bs); + update_prev_partition_helper(cpi, subsize, mi_row + bs, mi_col + bs); + break; + default: assert(0); + } + } +} + +static void update_prev_partition(VP9_COMP *cpi, MACROBLOCK *x, int segment_id, + int mi_row, int mi_col, int sb_offset) { + update_prev_partition_helper(cpi, BLOCK_64X64, mi_row, mi_col); + cpi->prev_segment_id[sb_offset] = segment_id; + memcpy(&(cpi->prev_variance_low[sb_offset * 25]), x->variance_low, + sizeof(x->variance_low)); + // Reset the counter for copy partitioning + cpi->copied_frame_cnt[sb_offset] = 0; +} + +static void chroma_check(VP9_COMP *cpi, MACROBLOCK *x, int bsize, + unsigned int y_sad, int is_key_frame) { + int i; + MACROBLOCKD *xd = &x->e_mbd; + + if (is_key_frame) return; + + // For speed >= 8, avoid the chroma check if y_sad is above threshold. + if (cpi->oxcf.speed >= 8) { + if (y_sad > cpi->vbp_thresholds[1] && + (!cpi->noise_estimate.enabled || + vp9_noise_estimate_extract_level(&cpi->noise_estimate) < kMedium)) + return; + } + + for (i = 1; i <= 2; ++i) { + unsigned int uv_sad = UINT_MAX; + struct macroblock_plane *p = &x->plane[i]; + struct macroblockd_plane *pd = &xd->plane[i]; + const BLOCK_SIZE bs = get_plane_block_size(bsize, pd); + + if (bs != BLOCK_INVALID) + uv_sad = cpi->fn_ptr[bs].sdf(p->src.buf, p->src.stride, pd->dst.buf, + pd->dst.stride); + + // TODO(marpan): Investigate if we should lower this threshold if + // superblock is detected as skin. + x->color_sensitivity[i - 1] = uv_sad > (y_sad >> 2); + } +} + +static uint64_t avg_source_sad(VP9_COMP *cpi, MACROBLOCK *x, int shift, + int sb_offset) { + unsigned int tmp_sse; + uint64_t tmp_sad; + unsigned int tmp_variance; + const BLOCK_SIZE bsize = BLOCK_64X64; + uint8_t *src_y = cpi->Source->y_buffer; + int src_ystride = cpi->Source->y_stride; + uint8_t *last_src_y = cpi->Last_Source->y_buffer; + int last_src_ystride = cpi->Last_Source->y_stride; + uint64_t avg_source_sad_threshold = 10000; + uint64_t avg_source_sad_threshold2 = 12000; +#if CONFIG_VP9_HIGHBITDEPTH + if (cpi->common.use_highbitdepth) return 0; +#endif + src_y += shift; + last_src_y += shift; + tmp_sad = + cpi->fn_ptr[bsize].sdf(src_y, src_ystride, last_src_y, last_src_ystride); + tmp_variance = vpx_variance64x64(src_y, src_ystride, last_src_y, + last_src_ystride, &tmp_sse); + // Note: tmp_sse - tmp_variance = ((sum * sum) >> 12) + if (tmp_sad < avg_source_sad_threshold) + x->content_state_sb = ((tmp_sse - tmp_variance) < 25) ? kLowSadLowSumdiff + : kLowSadHighSumdiff; + else + x->content_state_sb = ((tmp_sse - tmp_variance) < 25) ? kHighSadLowSumdiff + : kHighSadHighSumdiff; + + // Detect large lighting change. + if (cpi->oxcf.content != VP9E_CONTENT_SCREEN && + cpi->oxcf.rc_mode == VPX_CBR && tmp_variance < (tmp_sse >> 3) && + (tmp_sse - tmp_variance) > 10000) + x->content_state_sb = kLowVarHighSumdiff; + else if (tmp_sad > (avg_source_sad_threshold << 1)) + x->content_state_sb = kVeryHighSad; + + if (cpi->content_state_sb_fd != NULL) { + if (tmp_sad < avg_source_sad_threshold2) { + // Cap the increment to 255. + if (cpi->content_state_sb_fd[sb_offset] < 255) + cpi->content_state_sb_fd[sb_offset]++; + } else { + cpi->content_state_sb_fd[sb_offset] = 0; + } + } + return tmp_sad; +} + +// This function chooses partitioning based on the variance between source and +// reconstructed last, where variance is computed for down-sampled inputs. +static int choose_partitioning(VP9_COMP *cpi, const TileInfo *const tile, + MACROBLOCK *x, int mi_row, int mi_col) { + VP9_COMMON *const cm = &cpi->common; + MACROBLOCKD *xd = &x->e_mbd; + int i, j, k, m; + v64x64 vt; + v16x16 *vt2 = NULL; + int force_split[21]; + int avg_32x32; + int max_var_32x32 = 0; + int min_var_32x32 = INT_MAX; + int var_32x32; + int avg_16x16[4]; + int maxvar_16x16[4]; + int minvar_16x16[4]; + int64_t threshold_4x4avg; + NOISE_LEVEL noise_level = kLow; + int content_state = 0; + uint8_t *s; + const uint8_t *d; + int sp; + int dp; + int compute_minmax_variance = 1; + unsigned int y_sad = UINT_MAX; + BLOCK_SIZE bsize = BLOCK_64X64; + // Ref frame used in partitioning. + MV_REFERENCE_FRAME ref_frame_partition = LAST_FRAME; + int pixels_wide = 64, pixels_high = 64; + int64_t thresholds[4] = { cpi->vbp_thresholds[0], cpi->vbp_thresholds[1], + cpi->vbp_thresholds[2], cpi->vbp_thresholds[3] }; + + // For the variance computation under SVC mode, we treat the frame as key if + // the reference (base layer frame) is key frame (i.e., is_key_frame == 1). + const int is_key_frame = + (cm->frame_type == KEY_FRAME || + (is_one_pass_cbr_svc(cpi) && + cpi->svc.layer_context[cpi->svc.temporal_layer_id].is_key_frame)); + // Always use 4x4 partition for key frame. + const int use_4x4_partition = cm->frame_type == KEY_FRAME; + const int low_res = (cm->width <= 352 && cm->height <= 288); + int variance4x4downsample[16]; + int segment_id; + int sb_offset = (cm->mi_stride >> 3) * (mi_row >> 3) + (mi_col >> 3); + + set_offsets(cpi, tile, x, mi_row, mi_col, BLOCK_64X64); + segment_id = xd->mi[0]->segment_id; + + if (cpi->oxcf.speed >= 8 || (cpi->use_svc && cpi->svc.non_reference_frame)) + compute_minmax_variance = 0; + + memset(x->variance_low, 0, sizeof(x->variance_low)); + + if (cpi->sf.use_source_sad && !is_key_frame) { + int sb_offset2 = ((cm->mi_cols + 7) >> 3) * (mi_row >> 3) + (mi_col >> 3); + content_state = x->content_state_sb; + x->skip_low_source_sad = (content_state == kLowSadLowSumdiff || + content_state == kLowSadHighSumdiff) + ? 1 + : 0; + x->lowvar_highsumdiff = (content_state == kLowVarHighSumdiff) ? 1 : 0; + if (cpi->content_state_sb_fd != NULL) + x->last_sb_high_content = cpi->content_state_sb_fd[sb_offset2]; + + // For SVC on top spatial layer: use/scale the partition from + // the lower spatial resolution if svc_use_lowres_part is enabled. + if (cpi->sf.svc_use_lowres_part && + cpi->svc.spatial_layer_id == cpi->svc.number_spatial_layers - 1 && + cpi->svc.prev_partition_svc != NULL && content_state != kVeryHighSad) { + if (!scale_partitioning_svc(cpi, x, xd, BLOCK_64X64, mi_row >> 1, + mi_col >> 1, mi_row, mi_col)) { + if (cpi->sf.copy_partition_flag) { + update_prev_partition(cpi, x, segment_id, mi_row, mi_col, sb_offset); + } + return 0; + } + } + // If source_sad is low copy the partition without computing the y_sad. + if (x->skip_low_source_sad && cpi->sf.copy_partition_flag && + copy_partitioning(cpi, x, xd, mi_row, mi_col, segment_id, sb_offset)) { + x->sb_use_mv_part = 1; + if (cpi->sf.svc_use_lowres_part && + cpi->svc.spatial_layer_id == cpi->svc.number_spatial_layers - 2) + update_partition_svc(cpi, BLOCK_64X64, mi_row, mi_col); + return 0; + } + } + + if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cm->seg.enabled && + cyclic_refresh_segment_id_boosted(segment_id)) { + int q = vp9_get_qindex(&cm->seg, segment_id, cm->base_qindex); + set_vbp_thresholds(cpi, thresholds, q, content_state); + } else { + set_vbp_thresholds(cpi, thresholds, cm->base_qindex, content_state); + } + + // For non keyframes, disable 4x4 average for low resolution when speed = 8 + threshold_4x4avg = (cpi->oxcf.speed < 8) ? thresholds[1] << 1 : INT64_MAX; + + if (xd->mb_to_right_edge < 0) pixels_wide += (xd->mb_to_right_edge >> 3); + if (xd->mb_to_bottom_edge < 0) pixels_high += (xd->mb_to_bottom_edge >> 3); + + s = x->plane[0].src.buf; + sp = x->plane[0].src.stride; + + // Index for force_split: 0 for 64x64, 1-4 for 32x32 blocks, + // 5-20 for the 16x16 blocks. + force_split[0] = 0; + + if (!is_key_frame) { + // In the case of spatial/temporal scalable coding, the assumption here is + // that the temporal reference frame will always be of type LAST_FRAME. + // TODO(marpan): If that assumption is broken, we need to revisit this code. + MODE_INFO *mi = xd->mi[0]; + YV12_BUFFER_CONFIG *yv12 = get_ref_frame_buffer(cpi, LAST_FRAME); + + const YV12_BUFFER_CONFIG *yv12_g = NULL; + unsigned int y_sad_g, y_sad_thr, y_sad_last; + bsize = BLOCK_32X32 + (mi_col + 4 < cm->mi_cols) * 2 + + (mi_row + 4 < cm->mi_rows); + + assert(yv12 != NULL); + + if (!(is_one_pass_cbr_svc(cpi) && cpi->svc.spatial_layer_id)) { + // For now, GOLDEN will not be used for non-zero spatial layers, since + // it may not be a temporal reference. + yv12_g = get_ref_frame_buffer(cpi, GOLDEN_FRAME); + } + + // Only compute y_sad_g (sad for golden reference) for speed < 8. + if (cpi->oxcf.speed < 8 && yv12_g && yv12_g != yv12 && + (cpi->ref_frame_flags & VP9_GOLD_FLAG)) { + vp9_setup_pre_planes(xd, 0, yv12_g, mi_row, mi_col, + &cm->frame_refs[GOLDEN_FRAME - 1].sf); + y_sad_g = cpi->fn_ptr[bsize].sdf( + x->plane[0].src.buf, x->plane[0].src.stride, xd->plane[0].pre[0].buf, + xd->plane[0].pre[0].stride); + } else { + y_sad_g = UINT_MAX; + } + + if (cpi->oxcf.lag_in_frames > 0 && cpi->oxcf.rc_mode == VPX_VBR && + cpi->rc.is_src_frame_alt_ref) { + yv12 = get_ref_frame_buffer(cpi, ALTREF_FRAME); + vp9_setup_pre_planes(xd, 0, yv12, mi_row, mi_col, + &cm->frame_refs[ALTREF_FRAME - 1].sf); + mi->ref_frame[0] = ALTREF_FRAME; + y_sad_g = UINT_MAX; + } else { + vp9_setup_pre_planes(xd, 0, yv12, mi_row, mi_col, + &cm->frame_refs[LAST_FRAME - 1].sf); + mi->ref_frame[0] = LAST_FRAME; + } + mi->ref_frame[1] = NONE; + mi->sb_type = BLOCK_64X64; + mi->mv[0].as_int = 0; + mi->interp_filter = BILINEAR; + + if (cpi->oxcf.speed >= 8 && !low_res && + x->content_state_sb != kVeryHighSad) { + y_sad = cpi->fn_ptr[bsize].sdf( + x->plane[0].src.buf, x->plane[0].src.stride, xd->plane[0].pre[0].buf, + xd->plane[0].pre[0].stride); + } else { + y_sad = vp9_int_pro_motion_estimation(cpi, x, bsize, mi_row, mi_col); + x->sb_use_mv_part = 1; + x->sb_mvcol_part = mi->mv[0].as_mv.col; + x->sb_mvrow_part = mi->mv[0].as_mv.row; + } + + y_sad_last = y_sad; + // Pick ref frame for partitioning, bias last frame when y_sad_g and y_sad + // are close if short_circuit_low_temp_var is on. + y_sad_thr = cpi->sf.short_circuit_low_temp_var ? (y_sad * 7) >> 3 : y_sad; + if (y_sad_g < y_sad_thr) { + vp9_setup_pre_planes(xd, 0, yv12_g, mi_row, mi_col, + &cm->frame_refs[GOLDEN_FRAME - 1].sf); + mi->ref_frame[0] = GOLDEN_FRAME; + mi->mv[0].as_int = 0; + y_sad = y_sad_g; + ref_frame_partition = GOLDEN_FRAME; + } else { + x->pred_mv[LAST_FRAME] = mi->mv[0].as_mv; + ref_frame_partition = LAST_FRAME; + } + + set_ref_ptrs(cm, xd, mi->ref_frame[0], mi->ref_frame[1]); + vp9_build_inter_predictors_sb(xd, mi_row, mi_col, BLOCK_64X64); + + if (cpi->use_skin_detection) + x->sb_is_skin = + skin_sb_split(cpi, x, low_res, mi_row, mi_col, force_split); + + d = xd->plane[0].dst.buf; + dp = xd->plane[0].dst.stride; + + // If the y_sad is very small, take 64x64 as partition and exit. + // Don't check on boosted segment for now, as 64x64 is suppressed there. + if (segment_id == CR_SEGMENT_ID_BASE && y_sad < cpi->vbp_threshold_sad) { + const int block_width = num_8x8_blocks_wide_lookup[BLOCK_64X64]; + const int block_height = num_8x8_blocks_high_lookup[BLOCK_64X64]; + if (mi_col + block_width / 2 < cm->mi_cols && + mi_row + block_height / 2 < cm->mi_rows) { + set_block_size(cpi, x, xd, mi_row, mi_col, BLOCK_64X64); + x->variance_low[0] = 1; + chroma_check(cpi, x, bsize, y_sad, is_key_frame); + if (cpi->sf.svc_use_lowres_part && + cpi->svc.spatial_layer_id == cpi->svc.number_spatial_layers - 2) + update_partition_svc(cpi, BLOCK_64X64, mi_row, mi_col); + if (cpi->sf.copy_partition_flag) { + update_prev_partition(cpi, x, segment_id, mi_row, mi_col, sb_offset); + } + return 0; + } + } + + // If the y_sad is small enough, copy the partition of the superblock in the + // last frame to current frame only if the last frame is not a keyframe. + // Stop the copy every cpi->max_copied_frame to refresh the partition. + // TODO(jianj) : tune the threshold. + if (cpi->sf.copy_partition_flag && y_sad_last < cpi->vbp_threshold_copy && + copy_partitioning(cpi, x, xd, mi_row, mi_col, segment_id, sb_offset)) { + chroma_check(cpi, x, bsize, y_sad, is_key_frame); + if (cpi->sf.svc_use_lowres_part && + cpi->svc.spatial_layer_id == cpi->svc.number_spatial_layers - 2) + update_partition_svc(cpi, BLOCK_64X64, mi_row, mi_col); + return 0; + } + } else { + d = VP9_VAR_OFFS; + dp = 0; +#if CONFIG_VP9_HIGHBITDEPTH + if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { + switch (xd->bd) { + case 10: d = CONVERT_TO_BYTEPTR(VP9_HIGH_VAR_OFFS_10); break; + case 12: d = CONVERT_TO_BYTEPTR(VP9_HIGH_VAR_OFFS_12); break; + case 8: + default: d = CONVERT_TO_BYTEPTR(VP9_HIGH_VAR_OFFS_8); break; + } + } +#endif // CONFIG_VP9_HIGHBITDEPTH + } + + if (low_res && threshold_4x4avg < INT64_MAX) + CHECK_MEM_ERROR(cm, vt2, vpx_calloc(16, sizeof(*vt2))); + // Fill in the entire tree of 8x8 (or 4x4 under some conditions) variances + // for splits. + for (i = 0; i < 4; i++) { + const int x32_idx = ((i & 1) << 5); + const int y32_idx = ((i >> 1) << 5); + const int i2 = i << 2; + force_split[i + 1] = 0; + avg_16x16[i] = 0; + maxvar_16x16[i] = 0; + minvar_16x16[i] = INT_MAX; + for (j = 0; j < 4; j++) { + const int x16_idx = x32_idx + ((j & 1) << 4); + const int y16_idx = y32_idx + ((j >> 1) << 4); + const int split_index = 5 + i2 + j; + v16x16 *vst = &vt.split[i].split[j]; + force_split[split_index] = 0; + variance4x4downsample[i2 + j] = 0; + if (!is_key_frame) { + fill_variance_8x8avg(s, sp, d, dp, x16_idx, y16_idx, vst, +#if CONFIG_VP9_HIGHBITDEPTH + xd->cur_buf->flags, +#endif + pixels_wide, pixels_high, is_key_frame); + fill_variance_tree(&vt.split[i].split[j], BLOCK_16X16); + get_variance(&vt.split[i].split[j].part_variances.none); + avg_16x16[i] += vt.split[i].split[j].part_variances.none.variance; + if (vt.split[i].split[j].part_variances.none.variance < minvar_16x16[i]) + minvar_16x16[i] = vt.split[i].split[j].part_variances.none.variance; + if (vt.split[i].split[j].part_variances.none.variance > maxvar_16x16[i]) + maxvar_16x16[i] = vt.split[i].split[j].part_variances.none.variance; + if (vt.split[i].split[j].part_variances.none.variance > thresholds[2]) { + // 16X16 variance is above threshold for split, so force split to 8x8 + // for this 16x16 block (this also forces splits for upper levels). + force_split[split_index] = 1; + force_split[i + 1] = 1; + force_split[0] = 1; + } else if (compute_minmax_variance && + vt.split[i].split[j].part_variances.none.variance > + thresholds[1] && + !cyclic_refresh_segment_id_boosted(segment_id)) { + // We have some nominal amount of 16x16 variance (based on average), + // compute the minmax over the 8x8 sub-blocks, and if above threshold, + // force split to 8x8 block for this 16x16 block. + int minmax = compute_minmax_8x8(s, sp, d, dp, x16_idx, y16_idx, +#if CONFIG_VP9_HIGHBITDEPTH + xd->cur_buf->flags, +#endif + pixels_wide, pixels_high); + int thresh_minmax = (int)cpi->vbp_threshold_minmax; + if (x->content_state_sb == kVeryHighSad) + thresh_minmax = thresh_minmax << 1; + if (minmax > thresh_minmax) { + force_split[split_index] = 1; + force_split[i + 1] = 1; + force_split[0] = 1; + } + } + } + if (is_key_frame || (low_res && + vt.split[i].split[j].part_variances.none.variance > + threshold_4x4avg)) { + force_split[split_index] = 0; + // Go down to 4x4 down-sampling for variance. + variance4x4downsample[i2 + j] = 1; + for (k = 0; k < 4; k++) { + int x8_idx = x16_idx + ((k & 1) << 3); + int y8_idx = y16_idx + ((k >> 1) << 3); + v8x8 *vst2 = is_key_frame ? &vst->split[k] : &vt2[i2 + j].split[k]; + fill_variance_4x4avg(s, sp, d, dp, x8_idx, y8_idx, vst2, +#if CONFIG_VP9_HIGHBITDEPTH + xd->cur_buf->flags, +#endif + pixels_wide, pixels_high, is_key_frame); + } + } + } + } + if (cpi->noise_estimate.enabled) + noise_level = vp9_noise_estimate_extract_level(&cpi->noise_estimate); + // Fill the rest of the variance tree by summing split partition values. + avg_32x32 = 0; + for (i = 0; i < 4; i++) { + const int i2 = i << 2; + for (j = 0; j < 4; j++) { + if (variance4x4downsample[i2 + j] == 1) { + v16x16 *vtemp = (!is_key_frame) ? &vt2[i2 + j] : &vt.split[i].split[j]; + for (m = 0; m < 4; m++) fill_variance_tree(&vtemp->split[m], BLOCK_8X8); + fill_variance_tree(vtemp, BLOCK_16X16); + // If variance of this 16x16 block is above the threshold, force block + // to split. This also forces a split on the upper levels. + get_variance(&vtemp->part_variances.none); + if (vtemp->part_variances.none.variance > thresholds[2]) { + force_split[5 + i2 + j] = 1; + force_split[i + 1] = 1; + force_split[0] = 1; + } + } + } + fill_variance_tree(&vt.split[i], BLOCK_32X32); + // If variance of this 32x32 block is above the threshold, or if its above + // (some threshold of) the average variance over the sub-16x16 blocks, then + // force this block to split. This also forces a split on the upper + // (64x64) level. + if (!force_split[i + 1]) { + get_variance(&vt.split[i].part_variances.none); + var_32x32 = vt.split[i].part_variances.none.variance; + max_var_32x32 = VPXMAX(var_32x32, max_var_32x32); + min_var_32x32 = VPXMIN(var_32x32, min_var_32x32); + if (vt.split[i].part_variances.none.variance > thresholds[1] || + (!is_key_frame && + vt.split[i].part_variances.none.variance > (thresholds[1] >> 1) && + vt.split[i].part_variances.none.variance > (avg_16x16[i] >> 1))) { + force_split[i + 1] = 1; + force_split[0] = 1; + } else if (!is_key_frame && noise_level < kLow && cm->height <= 360 && + (maxvar_16x16[i] - minvar_16x16[i]) > (thresholds[1] >> 1) && + maxvar_16x16[i] > thresholds[1]) { + force_split[i + 1] = 1; + force_split[0] = 1; + } + avg_32x32 += var_32x32; + } + } + if (!force_split[0]) { + fill_variance_tree(&vt, BLOCK_64X64); + get_variance(&vt.part_variances.none); + // If variance of this 64x64 block is above (some threshold of) the average + // variance over the sub-32x32 blocks, then force this block to split. + // Only checking this for noise level >= medium for now. + if (!is_key_frame && noise_level >= kMedium && + vt.part_variances.none.variance > (9 * avg_32x32) >> 5) + force_split[0] = 1; + // Else if the maximum 32x32 variance minus the miniumum 32x32 variance in + // a 64x64 block is greater than threshold and the maximum 32x32 variance is + // above a miniumum threshold, then force the split of a 64x64 block + // Only check this for low noise. + else if (!is_key_frame && noise_level < kMedium && + (max_var_32x32 - min_var_32x32) > 3 * (thresholds[0] >> 3) && + max_var_32x32 > thresholds[0] >> 1) + force_split[0] = 1; + } + + // Now go through the entire structure, splitting every block size until + // we get to one that's got a variance lower than our threshold. + if (mi_col + 8 > cm->mi_cols || mi_row + 8 > cm->mi_rows || + !set_vt_partitioning(cpi, x, xd, &vt, BLOCK_64X64, mi_row, mi_col, + thresholds[0], BLOCK_16X16, force_split[0])) { + for (i = 0; i < 4; ++i) { + const int x32_idx = ((i & 1) << 2); + const int y32_idx = ((i >> 1) << 2); + const int i2 = i << 2; + if (!set_vt_partitioning(cpi, x, xd, &vt.split[i], BLOCK_32X32, + (mi_row + y32_idx), (mi_col + x32_idx), + thresholds[1], BLOCK_16X16, + force_split[i + 1])) { + for (j = 0; j < 4; ++j) { + const int x16_idx = ((j & 1) << 1); + const int y16_idx = ((j >> 1) << 1); + // For inter frames: if variance4x4downsample[] == 1 for this 16x16 + // block, then the variance is based on 4x4 down-sampling, so use vt2 + // in set_vt_partioning(), otherwise use vt. + v16x16 *vtemp = (!is_key_frame && variance4x4downsample[i2 + j] == 1) + ? &vt2[i2 + j] + : &vt.split[i].split[j]; + if (!set_vt_partitioning( + cpi, x, xd, vtemp, BLOCK_16X16, mi_row + y32_idx + y16_idx, + mi_col + x32_idx + x16_idx, thresholds[2], cpi->vbp_bsize_min, + force_split[5 + i2 + j])) { + for (k = 0; k < 4; ++k) { + const int x8_idx = (k & 1); + const int y8_idx = (k >> 1); + if (use_4x4_partition) { + if (!set_vt_partitioning(cpi, x, xd, &vtemp->split[k], + BLOCK_8X8, + mi_row + y32_idx + y16_idx + y8_idx, + mi_col + x32_idx + x16_idx + x8_idx, + thresholds[3], BLOCK_8X8, 0)) { + set_block_size( + cpi, x, xd, (mi_row + y32_idx + y16_idx + y8_idx), + (mi_col + x32_idx + x16_idx + x8_idx), BLOCK_4X4); + } + } else { + set_block_size( + cpi, x, xd, (mi_row + y32_idx + y16_idx + y8_idx), + (mi_col + x32_idx + x16_idx + x8_idx), BLOCK_8X8); + } + } + } + } + } + } + } + + if (cm->frame_type != KEY_FRAME && cpi->sf.copy_partition_flag) { + update_prev_partition(cpi, x, segment_id, mi_row, mi_col, sb_offset); + } + + if (cm->frame_type != KEY_FRAME && cpi->sf.svc_use_lowres_part && + cpi->svc.spatial_layer_id == cpi->svc.number_spatial_layers - 2) + update_partition_svc(cpi, BLOCK_64X64, mi_row, mi_col); + + if (cpi->sf.short_circuit_low_temp_var) { + set_low_temp_var_flag(cpi, x, xd, &vt, thresholds, ref_frame_partition, + mi_col, mi_row); + } + + chroma_check(cpi, x, bsize, y_sad, is_key_frame); + if (vt2) vpx_free(vt2); + return 0; +} + +static void update_state(VP9_COMP *cpi, ThreadData *td, PICK_MODE_CONTEXT *ctx, + int mi_row, int mi_col, BLOCK_SIZE bsize, + int output_enabled) { + int i, x_idx, y; + VP9_COMMON *const cm = &cpi->common; + RD_COUNTS *const rdc = &td->rd_counts; + MACROBLOCK *const x = &td->mb; + MACROBLOCKD *const xd = &x->e_mbd; + struct macroblock_plane *const p = x->plane; + struct macroblockd_plane *const pd = xd->plane; + MODE_INFO *mi = &ctx->mic; + MODE_INFO *const xdmi = xd->mi[0]; + MODE_INFO *mi_addr = xd->mi[0]; + const struct segmentation *const seg = &cm->seg; + const int bw = num_8x8_blocks_wide_lookup[mi->sb_type]; + const int bh = num_8x8_blocks_high_lookup[mi->sb_type]; + const int x_mis = VPXMIN(bw, cm->mi_cols - mi_col); + const int y_mis = VPXMIN(bh, cm->mi_rows - mi_row); + MV_REF *const frame_mvs = cm->cur_frame->mvs + mi_row * cm->mi_cols + mi_col; + int w, h; + + const int mis = cm->mi_stride; + const int mi_width = num_8x8_blocks_wide_lookup[bsize]; + const int mi_height = num_8x8_blocks_high_lookup[bsize]; + int max_plane; + + assert(mi->sb_type == bsize); + + *mi_addr = *mi; + *x->mbmi_ext = ctx->mbmi_ext; + + // If segmentation in use + if (seg->enabled) { + // For in frame complexity AQ copy the segment id from the segment map. + if (cpi->oxcf.aq_mode == COMPLEXITY_AQ) { + const uint8_t *const map = + seg->update_map ? cpi->segmentation_map : cm->last_frame_seg_map; + mi_addr->segment_id = get_segment_id(cm, map, bsize, mi_row, mi_col); + } + // Else for cyclic refresh mode update the segment map, set the segment id + // and then update the quantizer. + if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ) { + vp9_cyclic_refresh_update_segment(cpi, xd->mi[0], mi_row, mi_col, bsize, + ctx->rate, ctx->dist, x->skip, p); + } + } + + max_plane = is_inter_block(xdmi) ? MAX_MB_PLANE : 1; + for (i = 0; i < max_plane; ++i) { + p[i].coeff = ctx->coeff_pbuf[i][1]; + p[i].qcoeff = ctx->qcoeff_pbuf[i][1]; + pd[i].dqcoeff = ctx->dqcoeff_pbuf[i][1]; + p[i].eobs = ctx->eobs_pbuf[i][1]; + } + + for (i = max_plane; i < MAX_MB_PLANE; ++i) { + p[i].coeff = ctx->coeff_pbuf[i][2]; + p[i].qcoeff = ctx->qcoeff_pbuf[i][2]; + pd[i].dqcoeff = ctx->dqcoeff_pbuf[i][2]; + p[i].eobs = ctx->eobs_pbuf[i][2]; + } + + // Restore the coding context of the MB to that that was in place + // when the mode was picked for it + for (y = 0; y < mi_height; y++) + for (x_idx = 0; x_idx < mi_width; x_idx++) + if ((xd->mb_to_right_edge >> (3 + MI_SIZE_LOG2)) + mi_width > x_idx && + (xd->mb_to_bottom_edge >> (3 + MI_SIZE_LOG2)) + mi_height > y) { + xd->mi[x_idx + y * mis] = mi_addr; + } + + if (cpi->oxcf.aq_mode != NO_AQ) vp9_init_plane_quantizers(cpi, x); + + if (is_inter_block(xdmi) && xdmi->sb_type < BLOCK_8X8) { + xdmi->mv[0].as_int = mi->bmi[3].as_mv[0].as_int; + xdmi->mv[1].as_int = mi->bmi[3].as_mv[1].as_int; + } + + x->skip = ctx->skip; + memcpy(x->zcoeff_blk[xdmi->tx_size], ctx->zcoeff_blk, + sizeof(ctx->zcoeff_blk[0]) * ctx->num_4x4_blk); + + if (!output_enabled) return; + +#if CONFIG_INTERNAL_STATS + if (frame_is_intra_only(cm)) { + static const int kf_mode_index[] = { + THR_DC /*DC_PRED*/, THR_V_PRED /*V_PRED*/, + THR_H_PRED /*H_PRED*/, THR_D45_PRED /*D45_PRED*/, + THR_D135_PRED /*D135_PRED*/, THR_D117_PRED /*D117_PRED*/, + THR_D153_PRED /*D153_PRED*/, THR_D207_PRED /*D207_PRED*/, + THR_D63_PRED /*D63_PRED*/, THR_TM /*TM_PRED*/, + }; + ++cpi->mode_chosen_counts[kf_mode_index[xdmi->mode]]; + } else { + // Note how often each mode chosen as best + ++cpi->mode_chosen_counts[ctx->best_mode_index]; + } +#endif + if (!frame_is_intra_only(cm)) { + if (is_inter_block(xdmi)) { + vp9_update_mv_count(td); + + if (cm->interp_filter == SWITCHABLE) { + const int ctx = get_pred_context_switchable_interp(xd); + ++td->counts->switchable_interp[ctx][xdmi->interp_filter]; + } + } + + rdc->comp_pred_diff[SINGLE_REFERENCE] += ctx->single_pred_diff; + rdc->comp_pred_diff[COMPOUND_REFERENCE] += ctx->comp_pred_diff; + rdc->comp_pred_diff[REFERENCE_MODE_SELECT] += ctx->hybrid_pred_diff; + + for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; ++i) + rdc->filter_diff[i] += ctx->best_filter_diff[i]; + } + + for (h = 0; h < y_mis; ++h) { + MV_REF *const frame_mv = frame_mvs + h * cm->mi_cols; + for (w = 0; w < x_mis; ++w) { + MV_REF *const mv = frame_mv + w; + mv->ref_frame[0] = mi->ref_frame[0]; + mv->ref_frame[1] = mi->ref_frame[1]; + mv->mv[0].as_int = mi->mv[0].as_int; + mv->mv[1].as_int = mi->mv[1].as_int; + } + } +} + +void vp9_setup_src_planes(MACROBLOCK *x, const YV12_BUFFER_CONFIG *src, + int mi_row, int mi_col) { + uint8_t *const buffers[3] = { src->y_buffer, src->u_buffer, src->v_buffer }; + const int strides[3] = { src->y_stride, src->uv_stride, src->uv_stride }; + int i; + + // Set current frame pointer. + x->e_mbd.cur_buf = src; + + for (i = 0; i < MAX_MB_PLANE; i++) + setup_pred_plane(&x->plane[i].src, buffers[i], strides[i], mi_row, mi_col, + NULL, x->e_mbd.plane[i].subsampling_x, + x->e_mbd.plane[i].subsampling_y); +} + +static void set_mode_info_seg_skip(MACROBLOCK *x, TX_MODE tx_mode, + RD_COST *rd_cost, BLOCK_SIZE bsize) { + MACROBLOCKD *const xd = &x->e_mbd; + MODE_INFO *const mi = xd->mi[0]; + INTERP_FILTER filter_ref; + + filter_ref = get_pred_context_switchable_interp(xd); + if (filter_ref == SWITCHABLE_FILTERS) filter_ref = EIGHTTAP; + + mi->sb_type = bsize; + mi->mode = ZEROMV; + mi->tx_size = + VPXMIN(max_txsize_lookup[bsize], tx_mode_to_biggest_tx_size[tx_mode]); + mi->skip = 1; + mi->uv_mode = DC_PRED; + mi->ref_frame[0] = LAST_FRAME; + mi->ref_frame[1] = NONE; + mi->mv[0].as_int = 0; + mi->interp_filter = filter_ref; + + xd->mi[0]->bmi[0].as_mv[0].as_int = 0; + x->skip = 1; + + vp9_rd_cost_init(rd_cost); +} + +static int set_segment_rdmult(VP9_COMP *const cpi, MACROBLOCK *const x, + int8_t segment_id) { + int segment_qindex; + VP9_COMMON *const cm = &cpi->common; + vp9_init_plane_quantizers(cpi, x); + vpx_clear_system_state(); + segment_qindex = vp9_get_qindex(&cm->seg, segment_id, cm->base_qindex); + return vp9_compute_rd_mult(cpi, segment_qindex + cm->y_dc_delta_q); +} + +static void rd_pick_sb_modes(VP9_COMP *cpi, TileDataEnc *tile_data, + MACROBLOCK *const x, int mi_row, int mi_col, + RD_COST *rd_cost, BLOCK_SIZE bsize, + PICK_MODE_CONTEXT *ctx, int64_t best_rd) { + VP9_COMMON *const cm = &cpi->common; + TileInfo *const tile_info = &tile_data->tile_info; + MACROBLOCKD *const xd = &x->e_mbd; + MODE_INFO *mi; + struct macroblock_plane *const p = x->plane; + struct macroblockd_plane *const pd = xd->plane; + const AQ_MODE aq_mode = cpi->oxcf.aq_mode; + int i, orig_rdmult; + + vpx_clear_system_state(); + + // Use the lower precision, but faster, 32x32 fdct for mode selection. + x->use_lp32x32fdct = 1; + + set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize); + mi = xd->mi[0]; + mi->sb_type = bsize; + + for (i = 0; i < MAX_MB_PLANE; ++i) { + p[i].coeff = ctx->coeff_pbuf[i][0]; + p[i].qcoeff = ctx->qcoeff_pbuf[i][0]; + pd[i].dqcoeff = ctx->dqcoeff_pbuf[i][0]; + p[i].eobs = ctx->eobs_pbuf[i][0]; + } + ctx->is_coded = 0; + ctx->skippable = 0; + ctx->pred_pixel_ready = 0; + x->skip_recode = 0; + + // Set to zero to make sure we do not use the previous encoded frame stats + mi->skip = 0; + +#if CONFIG_VP9_HIGHBITDEPTH + if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { + x->source_variance = vp9_high_get_sby_perpixel_variance( + cpi, &x->plane[0].src, bsize, xd->bd); + } else { + x->source_variance = + vp9_get_sby_perpixel_variance(cpi, &x->plane[0].src, bsize); + } +#else + x->source_variance = + vp9_get_sby_perpixel_variance(cpi, &x->plane[0].src, bsize); +#endif // CONFIG_VP9_HIGHBITDEPTH + + // Save rdmult before it might be changed, so it can be restored later. + orig_rdmult = x->rdmult; + + if ((cpi->sf.tx_domain_thresh > 0.0) || (cpi->sf.quant_opt_thresh > 0.0)) { + double logvar = vp9_log_block_var(cpi, x, bsize); + // Check block complexity as part of descision on using pixel or transform + // domain distortion in rd tests. + x->block_tx_domain = cpi->sf.allow_txfm_domain_distortion && + (logvar >= cpi->sf.tx_domain_thresh); + + // Check block complexity as part of descision on using quantized + // coefficient optimisation inside the rd loop. + x->block_qcoeff_opt = + cpi->sf.allow_quant_coeff_opt && (logvar <= cpi->sf.quant_opt_thresh); + } else { + x->block_tx_domain = cpi->sf.allow_txfm_domain_distortion; + x->block_qcoeff_opt = cpi->sf.allow_quant_coeff_opt; + } + + if (aq_mode == VARIANCE_AQ) { + const int energy = + bsize <= BLOCK_16X16 ? x->mb_energy : vp9_block_energy(cpi, x, bsize); + + if (cm->frame_type == KEY_FRAME || cpi->refresh_alt_ref_frame || + cpi->force_update_segmentation || + (cpi->refresh_golden_frame && !cpi->rc.is_src_frame_alt_ref)) { + mi->segment_id = vp9_vaq_segment_id(energy); + } else { + const uint8_t *const map = + cm->seg.update_map ? cpi->segmentation_map : cm->last_frame_seg_map; + mi->segment_id = get_segment_id(cm, map, bsize, mi_row, mi_col); + } + x->rdmult = set_segment_rdmult(cpi, x, mi->segment_id); + } else if (aq_mode == LOOKAHEAD_AQ) { + const uint8_t *const map = cpi->segmentation_map; + + // I do not change rdmult here consciously. + mi->segment_id = get_segment_id(cm, map, bsize, mi_row, mi_col); + } else if (aq_mode == EQUATOR360_AQ) { + if (cm->frame_type == KEY_FRAME || cpi->force_update_segmentation) { + mi->segment_id = vp9_360aq_segment_id(mi_row, cm->mi_rows); + } else { + const uint8_t *const map = + cm->seg.update_map ? cpi->segmentation_map : cm->last_frame_seg_map; + mi->segment_id = get_segment_id(cm, map, bsize, mi_row, mi_col); + } + x->rdmult = set_segment_rdmult(cpi, x, mi->segment_id); + } else if (aq_mode == COMPLEXITY_AQ) { + x->rdmult = set_segment_rdmult(cpi, x, mi->segment_id); + } else if (aq_mode == CYCLIC_REFRESH_AQ) { + const uint8_t *const map = + cm->seg.update_map ? cpi->segmentation_map : cm->last_frame_seg_map; + // If segment is boosted, use rdmult for that segment. + if (cyclic_refresh_segment_id_boosted( + get_segment_id(cm, map, bsize, mi_row, mi_col))) + x->rdmult = vp9_cyclic_refresh_get_rdmult(cpi->cyclic_refresh); + } + + // Find best coding mode & reconstruct the MB so it is available + // as a predictor for MBs that follow in the SB + if (frame_is_intra_only(cm)) { + vp9_rd_pick_intra_mode_sb(cpi, x, rd_cost, bsize, ctx, best_rd); + } else { + if (bsize >= BLOCK_8X8) { + if (segfeature_active(&cm->seg, mi->segment_id, SEG_LVL_SKIP)) + vp9_rd_pick_inter_mode_sb_seg_skip(cpi, tile_data, x, rd_cost, bsize, + ctx, best_rd); + else + vp9_rd_pick_inter_mode_sb(cpi, tile_data, x, mi_row, mi_col, rd_cost, + bsize, ctx, best_rd); + } else { + vp9_rd_pick_inter_mode_sub8x8(cpi, tile_data, x, mi_row, mi_col, rd_cost, + bsize, ctx, best_rd); + } + } + + // Examine the resulting rate and for AQ mode 2 make a segment choice. + if ((rd_cost->rate != INT_MAX) && (aq_mode == COMPLEXITY_AQ) && + (bsize >= BLOCK_16X16) && + (cm->frame_type == KEY_FRAME || cpi->refresh_alt_ref_frame || + (cpi->refresh_golden_frame && !cpi->rc.is_src_frame_alt_ref))) { + vp9_caq_select_segment(cpi, x, bsize, mi_row, mi_col, rd_cost->rate); + } + + x->rdmult = orig_rdmult; + + // TODO(jingning) The rate-distortion optimization flow needs to be + // refactored to provide proper exit/return handle. + if (rd_cost->rate == INT_MAX) rd_cost->rdcost = INT64_MAX; + + ctx->rate = rd_cost->rate; + ctx->dist = rd_cost->dist; +} + +static void update_stats(VP9_COMMON *cm, ThreadData *td) { + const MACROBLOCK *x = &td->mb; + const MACROBLOCKD *const xd = &x->e_mbd; + const MODE_INFO *const mi = xd->mi[0]; + const MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext; + const BLOCK_SIZE bsize = mi->sb_type; + + if (!frame_is_intra_only(cm)) { + FRAME_COUNTS *const counts = td->counts; + const int inter_block = is_inter_block(mi); + const int seg_ref_active = + segfeature_active(&cm->seg, mi->segment_id, SEG_LVL_REF_FRAME); + if (!seg_ref_active) { + counts->intra_inter[get_intra_inter_context(xd)][inter_block]++; + // If the segment reference feature is enabled we have only a single + // reference frame allowed for the segment so exclude it from + // the reference frame counts used to work out probabilities. + if (inter_block) { + const MV_REFERENCE_FRAME ref0 = mi->ref_frame[0]; + if (cm->reference_mode == REFERENCE_MODE_SELECT) + counts->comp_inter[vp9_get_reference_mode_context(cm, xd)] + [has_second_ref(mi)]++; + + if (has_second_ref(mi)) { + counts->comp_ref[vp9_get_pred_context_comp_ref_p(cm, xd)] + [ref0 == GOLDEN_FRAME]++; + } else { + counts->single_ref[vp9_get_pred_context_single_ref_p1(xd)][0] + [ref0 != LAST_FRAME]++; + if (ref0 != LAST_FRAME) + counts->single_ref[vp9_get_pred_context_single_ref_p2(xd)][1] + [ref0 != GOLDEN_FRAME]++; + } + } + } + if (inter_block && + !segfeature_active(&cm->seg, mi->segment_id, SEG_LVL_SKIP)) { + const int mode_ctx = mbmi_ext->mode_context[mi->ref_frame[0]]; + if (bsize >= BLOCK_8X8) { + const PREDICTION_MODE mode = mi->mode; + ++counts->inter_mode[mode_ctx][INTER_OFFSET(mode)]; + } else { + const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize]; + const int num_4x4_h = num_4x4_blocks_high_lookup[bsize]; + int idx, idy; + for (idy = 0; idy < 2; idy += num_4x4_h) { + for (idx = 0; idx < 2; idx += num_4x4_w) { + const int j = idy * 2 + idx; + const PREDICTION_MODE b_mode = mi->bmi[j].as_mode; + ++counts->inter_mode[mode_ctx][INTER_OFFSET(b_mode)]; + } + } + } + } + } +} + +static void restore_context(MACROBLOCK *const x, int mi_row, int mi_col, + ENTROPY_CONTEXT a[16 * MAX_MB_PLANE], + ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], + PARTITION_CONTEXT sa[8], PARTITION_CONTEXT sl[8], + BLOCK_SIZE bsize) { + MACROBLOCKD *const xd = &x->e_mbd; + int p; + const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize]; + const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize]; + int mi_width = num_8x8_blocks_wide_lookup[bsize]; + int mi_height = num_8x8_blocks_high_lookup[bsize]; + for (p = 0; p < MAX_MB_PLANE; p++) { + memcpy(xd->above_context[p] + ((mi_col * 2) >> xd->plane[p].subsampling_x), + a + num_4x4_blocks_wide * p, + (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_wide) >> + xd->plane[p].subsampling_x); + memcpy(xd->left_context[p] + + ((mi_row & MI_MASK) * 2 >> xd->plane[p].subsampling_y), + l + num_4x4_blocks_high * p, + (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_high) >> + xd->plane[p].subsampling_y); + } + memcpy(xd->above_seg_context + mi_col, sa, + sizeof(*xd->above_seg_context) * mi_width); + memcpy(xd->left_seg_context + (mi_row & MI_MASK), sl, + sizeof(xd->left_seg_context[0]) * mi_height); +} + +static void save_context(MACROBLOCK *const x, int mi_row, int mi_col, + ENTROPY_CONTEXT a[16 * MAX_MB_PLANE], + ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], + PARTITION_CONTEXT sa[8], PARTITION_CONTEXT sl[8], + BLOCK_SIZE bsize) { + const MACROBLOCKD *const xd = &x->e_mbd; + int p; + const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize]; + const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize]; + int mi_width = num_8x8_blocks_wide_lookup[bsize]; + int mi_height = num_8x8_blocks_high_lookup[bsize]; + + // buffer the above/left context information of the block in search. + for (p = 0; p < MAX_MB_PLANE; ++p) { + memcpy(a + num_4x4_blocks_wide * p, + xd->above_context[p] + (mi_col * 2 >> xd->plane[p].subsampling_x), + (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_wide) >> + xd->plane[p].subsampling_x); + memcpy(l + num_4x4_blocks_high * p, + xd->left_context[p] + + ((mi_row & MI_MASK) * 2 >> xd->plane[p].subsampling_y), + (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_high) >> + xd->plane[p].subsampling_y); + } + memcpy(sa, xd->above_seg_context + mi_col, + sizeof(*xd->above_seg_context) * mi_width); + memcpy(sl, xd->left_seg_context + (mi_row & MI_MASK), + sizeof(xd->left_seg_context[0]) * mi_height); +} + +static void encode_b(VP9_COMP *cpi, const TileInfo *const tile, ThreadData *td, + TOKENEXTRA **tp, int mi_row, int mi_col, + int output_enabled, BLOCK_SIZE bsize, + PICK_MODE_CONTEXT *ctx) { + MACROBLOCK *const x = &td->mb; + set_offsets(cpi, tile, x, mi_row, mi_col, bsize); + update_state(cpi, td, ctx, mi_row, mi_col, bsize, output_enabled); + encode_superblock(cpi, td, tp, output_enabled, mi_row, mi_col, bsize, ctx); + + if (output_enabled) { + update_stats(&cpi->common, td); + + (*tp)->token = EOSB_TOKEN; + (*tp)++; + } +} + +static void encode_sb(VP9_COMP *cpi, ThreadData *td, const TileInfo *const tile, + TOKENEXTRA **tp, int mi_row, int mi_col, + int output_enabled, BLOCK_SIZE bsize, PC_TREE *pc_tree) { + VP9_COMMON *const cm = &cpi->common; + MACROBLOCK *const x = &td->mb; + MACROBLOCKD *const xd = &x->e_mbd; + + const int bsl = b_width_log2_lookup[bsize], hbs = (1 << bsl) / 4; + int ctx; + PARTITION_TYPE partition; + BLOCK_SIZE subsize = bsize; + + if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return; + + if (bsize >= BLOCK_8X8) { + ctx = partition_plane_context(xd, mi_row, mi_col, bsize); + subsize = get_subsize(bsize, pc_tree->partitioning); + } else { + ctx = 0; + subsize = BLOCK_4X4; + } + + partition = partition_lookup[bsl][subsize]; + if (output_enabled && bsize != BLOCK_4X4) + td->counts->partition[ctx][partition]++; + + switch (partition) { + case PARTITION_NONE: + encode_b(cpi, tile, td, tp, mi_row, mi_col, output_enabled, subsize, + &pc_tree->none); + break; + case PARTITION_VERT: + encode_b(cpi, tile, td, tp, mi_row, mi_col, output_enabled, subsize, + &pc_tree->vertical[0]); + if (mi_col + hbs < cm->mi_cols && bsize > BLOCK_8X8) { + encode_b(cpi, tile, td, tp, mi_row, mi_col + hbs, output_enabled, + subsize, &pc_tree->vertical[1]); + } + break; + case PARTITION_HORZ: + encode_b(cpi, tile, td, tp, mi_row, mi_col, output_enabled, subsize, + &pc_tree->horizontal[0]); + if (mi_row + hbs < cm->mi_rows && bsize > BLOCK_8X8) { + encode_b(cpi, tile, td, tp, mi_row + hbs, mi_col, output_enabled, + subsize, &pc_tree->horizontal[1]); + } + break; + case PARTITION_SPLIT: + if (bsize == BLOCK_8X8) { + encode_b(cpi, tile, td, tp, mi_row, mi_col, output_enabled, subsize, + pc_tree->leaf_split[0]); + } else { + encode_sb(cpi, td, tile, tp, mi_row, mi_col, output_enabled, subsize, + pc_tree->split[0]); + encode_sb(cpi, td, tile, tp, mi_row, mi_col + hbs, output_enabled, + subsize, pc_tree->split[1]); + encode_sb(cpi, td, tile, tp, mi_row + hbs, mi_col, output_enabled, + subsize, pc_tree->split[2]); + encode_sb(cpi, td, tile, tp, mi_row + hbs, mi_col + hbs, output_enabled, + subsize, pc_tree->split[3]); + } + break; + default: assert(0 && "Invalid partition type."); break; + } + + if (partition != PARTITION_SPLIT || bsize == BLOCK_8X8) + update_partition_context(xd, mi_row, mi_col, subsize, bsize); +} + +// Check to see if the given partition size is allowed for a specified number +// of 8x8 block rows and columns remaining in the image. +// If not then return the largest allowed partition size +static BLOCK_SIZE find_partition_size(BLOCK_SIZE bsize, int rows_left, + int cols_left, int *bh, int *bw) { + if (rows_left <= 0 || cols_left <= 0) { + return VPXMIN(bsize, BLOCK_8X8); + } else { + for (; bsize > 0; bsize -= 3) { + *bh = num_8x8_blocks_high_lookup[bsize]; + *bw = num_8x8_blocks_wide_lookup[bsize]; + if ((*bh <= rows_left) && (*bw <= cols_left)) { + break; + } + } + } + return bsize; +} + +static void set_partial_b64x64_partition(MODE_INFO *mi, int mis, int bh_in, + int bw_in, int row8x8_remaining, + int col8x8_remaining, BLOCK_SIZE bsize, + MODE_INFO **mi_8x8) { + int bh = bh_in; + int r, c; + for (r = 0; r < MI_BLOCK_SIZE; r += bh) { + int bw = bw_in; + for (c = 0; c < MI_BLOCK_SIZE; c += bw) { + const int index = r * mis + c; + mi_8x8[index] = mi + index; + mi_8x8[index]->sb_type = find_partition_size( + bsize, row8x8_remaining - r, col8x8_remaining - c, &bh, &bw); + } + } +} + +// This function attempts to set all mode info entries in a given SB64 +// to the same block partition size. +// However, at the bottom and right borders of the image the requested size +// may not be allowed in which case this code attempts to choose the largest +// allowable partition. +static void set_fixed_partitioning(VP9_COMP *cpi, const TileInfo *const tile, + MODE_INFO **mi_8x8, int mi_row, int mi_col, + BLOCK_SIZE bsize) { + VP9_COMMON *const cm = &cpi->common; + const int mis = cm->mi_stride; + const int row8x8_remaining = tile->mi_row_end - mi_row; + const int col8x8_remaining = tile->mi_col_end - mi_col; + int block_row, block_col; + MODE_INFO *mi_upper_left = cm->mi + mi_row * mis + mi_col; + int bh = num_8x8_blocks_high_lookup[bsize]; + int bw = num_8x8_blocks_wide_lookup[bsize]; + + assert((row8x8_remaining > 0) && (col8x8_remaining > 0)); + + // Apply the requested partition size to the SB64 if it is all "in image" + if ((col8x8_remaining >= MI_BLOCK_SIZE) && + (row8x8_remaining >= MI_BLOCK_SIZE)) { + for (block_row = 0; block_row < MI_BLOCK_SIZE; block_row += bh) { + for (block_col = 0; block_col < MI_BLOCK_SIZE; block_col += bw) { + int index = block_row * mis + block_col; + mi_8x8[index] = mi_upper_left + index; + mi_8x8[index]->sb_type = bsize; + } + } + } else { + // Else this is a partial SB64. + set_partial_b64x64_partition(mi_upper_left, mis, bh, bw, row8x8_remaining, + col8x8_remaining, bsize, mi_8x8); + } +} + +static const struct { + int row; + int col; +} coord_lookup[16] = { + // 32x32 index = 0 + { 0, 0 }, + { 0, 2 }, + { 2, 0 }, + { 2, 2 }, + // 32x32 index = 1 + { 0, 4 }, + { 0, 6 }, + { 2, 4 }, + { 2, 6 }, + // 32x32 index = 2 + { 4, 0 }, + { 4, 2 }, + { 6, 0 }, + { 6, 2 }, + // 32x32 index = 3 + { 4, 4 }, + { 4, 6 }, + { 6, 4 }, + { 6, 6 }, +}; + +static void set_source_var_based_partition(VP9_COMP *cpi, + const TileInfo *const tile, + MACROBLOCK *const x, + MODE_INFO **mi_8x8, int mi_row, + int mi_col) { + VP9_COMMON *const cm = &cpi->common; + const int mis = cm->mi_stride; + const int row8x8_remaining = tile->mi_row_end - mi_row; + const int col8x8_remaining = tile->mi_col_end - mi_col; + MODE_INFO *mi_upper_left = cm->mi + mi_row * mis + mi_col; + + vp9_setup_src_planes(x, cpi->Source, mi_row, mi_col); + + assert((row8x8_remaining > 0) && (col8x8_remaining > 0)); + + // In-image SB64 + if ((col8x8_remaining >= MI_BLOCK_SIZE) && + (row8x8_remaining >= MI_BLOCK_SIZE)) { + int i, j; + int index; + diff d32[4]; + const int offset = (mi_row >> 1) * cm->mb_cols + (mi_col >> 1); + int is_larger_better = 0; + int use32x32 = 0; + unsigned int thr = cpi->source_var_thresh; + + memset(d32, 0, 4 * sizeof(diff)); + + for (i = 0; i < 4; i++) { + diff *d16[4]; + + for (j = 0; j < 4; j++) { + int b_mi_row = coord_lookup[i * 4 + j].row; + int b_mi_col = coord_lookup[i * 4 + j].col; + int boffset = b_mi_row / 2 * cm->mb_cols + b_mi_col / 2; + + d16[j] = cpi->source_diff_var + offset + boffset; + + index = b_mi_row * mis + b_mi_col; + mi_8x8[index] = mi_upper_left + index; + mi_8x8[index]->sb_type = BLOCK_16X16; + + // TODO(yunqingwang): If d16[j].var is very large, use 8x8 partition + // size to further improve quality. + } + + is_larger_better = (d16[0]->var < thr) && (d16[1]->var < thr) && + (d16[2]->var < thr) && (d16[3]->var < thr); + + // Use 32x32 partition + if (is_larger_better) { + use32x32 += 1; + + for (j = 0; j < 4; j++) { + d32[i].sse += d16[j]->sse; + d32[i].sum += d16[j]->sum; + } + + d32[i].var = + (unsigned int)(d32[i].sse - + (unsigned int)(((int64_t)d32[i].sum * d32[i].sum) >> + 10)); + + index = coord_lookup[i * 4].row * mis + coord_lookup[i * 4].col; + mi_8x8[index] = mi_upper_left + index; + mi_8x8[index]->sb_type = BLOCK_32X32; + } + } + + if (use32x32 == 4) { + thr <<= 1; + is_larger_better = (d32[0].var < thr) && (d32[1].var < thr) && + (d32[2].var < thr) && (d32[3].var < thr); + + // Use 64x64 partition + if (is_larger_better) { + mi_8x8[0] = mi_upper_left; + mi_8x8[0]->sb_type = BLOCK_64X64; + } + } + } else { // partial in-image SB64 + int bh = num_8x8_blocks_high_lookup[BLOCK_16X16]; + int bw = num_8x8_blocks_wide_lookup[BLOCK_16X16]; + set_partial_b64x64_partition(mi_upper_left, mis, bh, bw, row8x8_remaining, + col8x8_remaining, BLOCK_16X16, mi_8x8); + } +} + +static void update_state_rt(VP9_COMP *cpi, ThreadData *td, + PICK_MODE_CONTEXT *ctx, int mi_row, int mi_col, + int bsize) { + VP9_COMMON *const cm = &cpi->common; + MACROBLOCK *const x = &td->mb; + MACROBLOCKD *const xd = &x->e_mbd; + MODE_INFO *const mi = xd->mi[0]; + struct macroblock_plane *const p = x->plane; + const struct segmentation *const seg = &cm->seg; + const int bw = num_8x8_blocks_wide_lookup[mi->sb_type]; + const int bh = num_8x8_blocks_high_lookup[mi->sb_type]; + const int x_mis = VPXMIN(bw, cm->mi_cols - mi_col); + const int y_mis = VPXMIN(bh, cm->mi_rows - mi_row); + + *(xd->mi[0]) = ctx->mic; + *(x->mbmi_ext) = ctx->mbmi_ext; + + if (seg->enabled && cpi->oxcf.aq_mode != NO_AQ) { + // For in frame complexity AQ or variance AQ, copy segment_id from + // segmentation_map. + if (cpi->oxcf.aq_mode != CYCLIC_REFRESH_AQ) { + const uint8_t *const map = + seg->update_map ? cpi->segmentation_map : cm->last_frame_seg_map; + mi->segment_id = get_segment_id(cm, map, bsize, mi_row, mi_col); + } else { + // Setting segmentation map for cyclic_refresh. + vp9_cyclic_refresh_update_segment(cpi, mi, mi_row, mi_col, bsize, + ctx->rate, ctx->dist, x->skip, p); + } + vp9_init_plane_quantizers(cpi, x); + } + + if (is_inter_block(mi)) { + vp9_update_mv_count(td); + if (cm->interp_filter == SWITCHABLE) { + const int pred_ctx = get_pred_context_switchable_interp(xd); + ++td->counts->switchable_interp[pred_ctx][mi->interp_filter]; + } + + if (mi->sb_type < BLOCK_8X8) { + mi->mv[0].as_int = mi->bmi[3].as_mv[0].as_int; + mi->mv[1].as_int = mi->bmi[3].as_mv[1].as_int; + } + } + + if (cm->use_prev_frame_mvs || !cm->error_resilient_mode || + (cpi->svc.use_base_mv && cpi->svc.number_spatial_layers > 1 && + cpi->svc.spatial_layer_id != cpi->svc.number_spatial_layers - 1)) { + MV_REF *const frame_mvs = + cm->cur_frame->mvs + mi_row * cm->mi_cols + mi_col; + int w, h; + + for (h = 0; h < y_mis; ++h) { + MV_REF *const frame_mv = frame_mvs + h * cm->mi_cols; + for (w = 0; w < x_mis; ++w) { + MV_REF *const mv = frame_mv + w; + mv->ref_frame[0] = mi->ref_frame[0]; + mv->ref_frame[1] = mi->ref_frame[1]; + mv->mv[0].as_int = mi->mv[0].as_int; + mv->mv[1].as_int = mi->mv[1].as_int; + } + } + } + + x->skip = ctx->skip; + x->skip_txfm[0] = mi->segment_id ? 0 : ctx->skip_txfm[0]; +} + +static void encode_b_rt(VP9_COMP *cpi, ThreadData *td, + const TileInfo *const tile, TOKENEXTRA **tp, int mi_row, + int mi_col, int output_enabled, BLOCK_SIZE bsize, + PICK_MODE_CONTEXT *ctx) { + MACROBLOCK *const x = &td->mb; + set_offsets(cpi, tile, x, mi_row, mi_col, bsize); + update_state_rt(cpi, td, ctx, mi_row, mi_col, bsize); + + encode_superblock(cpi, td, tp, output_enabled, mi_row, mi_col, bsize, ctx); + update_stats(&cpi->common, td); + + (*tp)->token = EOSB_TOKEN; + (*tp)++; +} + +static void encode_sb_rt(VP9_COMP *cpi, ThreadData *td, + const TileInfo *const tile, TOKENEXTRA **tp, + int mi_row, int mi_col, int output_enabled, + BLOCK_SIZE bsize, PC_TREE *pc_tree) { + VP9_COMMON *const cm = &cpi->common; + MACROBLOCK *const x = &td->mb; + MACROBLOCKD *const xd = &x->e_mbd; + + const int bsl = b_width_log2_lookup[bsize], hbs = (1 << bsl) / 4; + int ctx; + PARTITION_TYPE partition; + BLOCK_SIZE subsize; + + if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return; + + if (bsize >= BLOCK_8X8) { + const int idx_str = xd->mi_stride * mi_row + mi_col; + MODE_INFO **mi_8x8 = cm->mi_grid_visible + idx_str; + ctx = partition_plane_context(xd, mi_row, mi_col, bsize); + subsize = mi_8x8[0]->sb_type; + } else { + ctx = 0; + subsize = BLOCK_4X4; + } + + partition = partition_lookup[bsl][subsize]; + if (output_enabled && bsize != BLOCK_4X4) + td->counts->partition[ctx][partition]++; + + switch (partition) { + case PARTITION_NONE: + encode_b_rt(cpi, td, tile, tp, mi_row, mi_col, output_enabled, subsize, + &pc_tree->none); + break; + case PARTITION_VERT: + encode_b_rt(cpi, td, tile, tp, mi_row, mi_col, output_enabled, subsize, + &pc_tree->vertical[0]); + if (mi_col + hbs < cm->mi_cols && bsize > BLOCK_8X8) { + encode_b_rt(cpi, td, tile, tp, mi_row, mi_col + hbs, output_enabled, + subsize, &pc_tree->vertical[1]); + } + break; + case PARTITION_HORZ: + encode_b_rt(cpi, td, tile, tp, mi_row, mi_col, output_enabled, subsize, + &pc_tree->horizontal[0]); + if (mi_row + hbs < cm->mi_rows && bsize > BLOCK_8X8) { + encode_b_rt(cpi, td, tile, tp, mi_row + hbs, mi_col, output_enabled, + subsize, &pc_tree->horizontal[1]); + } + break; + case PARTITION_SPLIT: + subsize = get_subsize(bsize, PARTITION_SPLIT); + encode_sb_rt(cpi, td, tile, tp, mi_row, mi_col, output_enabled, subsize, + pc_tree->split[0]); + encode_sb_rt(cpi, td, tile, tp, mi_row, mi_col + hbs, output_enabled, + subsize, pc_tree->split[1]); + encode_sb_rt(cpi, td, tile, tp, mi_row + hbs, mi_col, output_enabled, + subsize, pc_tree->split[2]); + encode_sb_rt(cpi, td, tile, tp, mi_row + hbs, mi_col + hbs, + output_enabled, subsize, pc_tree->split[3]); + break; + default: assert(0 && "Invalid partition type."); break; + } + + if (partition != PARTITION_SPLIT || bsize == BLOCK_8X8) + update_partition_context(xd, mi_row, mi_col, subsize, bsize); +} + +static void rd_use_partition(VP9_COMP *cpi, ThreadData *td, + TileDataEnc *tile_data, MODE_INFO **mi_8x8, + TOKENEXTRA **tp, int mi_row, int mi_col, + BLOCK_SIZE bsize, int *rate, int64_t *dist, + int do_recon, PC_TREE *pc_tree) { + VP9_COMMON *const cm = &cpi->common; + TileInfo *const tile_info = &tile_data->tile_info; + MACROBLOCK *const x = &td->mb; + MACROBLOCKD *const xd = &x->e_mbd; + const int mis = cm->mi_stride; + const int bsl = b_width_log2_lookup[bsize]; + const int mi_step = num_4x4_blocks_wide_lookup[bsize] / 2; + const int bss = (1 << bsl) / 4; + int i, pl; + PARTITION_TYPE partition = PARTITION_NONE; + BLOCK_SIZE subsize; + ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], a[16 * MAX_MB_PLANE]; + PARTITION_CONTEXT sl[8], sa[8]; + RD_COST last_part_rdc, none_rdc, chosen_rdc; + BLOCK_SIZE sub_subsize = BLOCK_4X4; + int splits_below = 0; + BLOCK_SIZE bs_type = mi_8x8[0]->sb_type; + int do_partition_search = 1; + PICK_MODE_CONTEXT *ctx = &pc_tree->none; + + if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return; + + assert(num_4x4_blocks_wide_lookup[bsize] == + num_4x4_blocks_high_lookup[bsize]); + + vp9_rd_cost_reset(&last_part_rdc); + vp9_rd_cost_reset(&none_rdc); + vp9_rd_cost_reset(&chosen_rdc); + + partition = partition_lookup[bsl][bs_type]; + subsize = get_subsize(bsize, partition); + + pc_tree->partitioning = partition; + save_context(x, mi_row, mi_col, a, l, sa, sl, bsize); + + if (bsize == BLOCK_16X16 && cpi->oxcf.aq_mode != NO_AQ) { + set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize); + x->mb_energy = vp9_block_energy(cpi, x, bsize); + } + + if (do_partition_search && + cpi->sf.partition_search_type == SEARCH_PARTITION && + cpi->sf.adjust_partitioning_from_last_frame) { + // Check if any of the sub blocks are further split. + if (partition == PARTITION_SPLIT && subsize > BLOCK_8X8) { + sub_subsize = get_subsize(subsize, PARTITION_SPLIT); + splits_below = 1; + for (i = 0; i < 4; i++) { + int jj = i >> 1, ii = i & 0x01; + MODE_INFO *this_mi = mi_8x8[jj * bss * mis + ii * bss]; + if (this_mi && this_mi->sb_type >= sub_subsize) { + splits_below = 0; + } + } + } + + // If partition is not none try none unless each of the 4 splits are split + // even further.. + if (partition != PARTITION_NONE && !splits_below && + mi_row + (mi_step >> 1) < cm->mi_rows && + mi_col + (mi_step >> 1) < cm->mi_cols) { + pc_tree->partitioning = PARTITION_NONE; + rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &none_rdc, bsize, ctx, + INT64_MAX); + + pl = partition_plane_context(xd, mi_row, mi_col, bsize); + + if (none_rdc.rate < INT_MAX) { + none_rdc.rate += cpi->partition_cost[pl][PARTITION_NONE]; + none_rdc.rdcost = + RDCOST(x->rdmult, x->rddiv, none_rdc.rate, none_rdc.dist); + } + + restore_context(x, mi_row, mi_col, a, l, sa, sl, bsize); + mi_8x8[0]->sb_type = bs_type; + pc_tree->partitioning = partition; + } + } + + switch (partition) { + case PARTITION_NONE: + rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc, bsize, + ctx, INT64_MAX); + break; + case PARTITION_HORZ: + rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc, + subsize, &pc_tree->horizontal[0], INT64_MAX); + if (last_part_rdc.rate != INT_MAX && bsize >= BLOCK_8X8 && + mi_row + (mi_step >> 1) < cm->mi_rows) { + RD_COST tmp_rdc; + PICK_MODE_CONTEXT *ctx = &pc_tree->horizontal[0]; + vp9_rd_cost_init(&tmp_rdc); + update_state(cpi, td, ctx, mi_row, mi_col, subsize, 0); + encode_superblock(cpi, td, tp, 0, mi_row, mi_col, subsize, ctx); + rd_pick_sb_modes(cpi, tile_data, x, mi_row + (mi_step >> 1), mi_col, + &tmp_rdc, subsize, &pc_tree->horizontal[1], INT64_MAX); + if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) { + vp9_rd_cost_reset(&last_part_rdc); + break; + } + last_part_rdc.rate += tmp_rdc.rate; + last_part_rdc.dist += tmp_rdc.dist; + last_part_rdc.rdcost += tmp_rdc.rdcost; + } + break; + case PARTITION_VERT: + rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc, + subsize, &pc_tree->vertical[0], INT64_MAX); + if (last_part_rdc.rate != INT_MAX && bsize >= BLOCK_8X8 && + mi_col + (mi_step >> 1) < cm->mi_cols) { + RD_COST tmp_rdc; + PICK_MODE_CONTEXT *ctx = &pc_tree->vertical[0]; + vp9_rd_cost_init(&tmp_rdc); + update_state(cpi, td, ctx, mi_row, mi_col, subsize, 0); + encode_superblock(cpi, td, tp, 0, mi_row, mi_col, subsize, ctx); + rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col + (mi_step >> 1), + &tmp_rdc, subsize, + &pc_tree->vertical[bsize > BLOCK_8X8], INT64_MAX); + if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) { + vp9_rd_cost_reset(&last_part_rdc); + break; + } + last_part_rdc.rate += tmp_rdc.rate; + last_part_rdc.dist += tmp_rdc.dist; + last_part_rdc.rdcost += tmp_rdc.rdcost; + } + break; + case PARTITION_SPLIT: + if (bsize == BLOCK_8X8) { + rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc, + subsize, pc_tree->leaf_split[0], INT64_MAX); + break; + } + last_part_rdc.rate = 0; + last_part_rdc.dist = 0; + last_part_rdc.rdcost = 0; + for (i = 0; i < 4; i++) { + int x_idx = (i & 1) * (mi_step >> 1); + int y_idx = (i >> 1) * (mi_step >> 1); + int jj = i >> 1, ii = i & 0x01; + RD_COST tmp_rdc; + if ((mi_row + y_idx >= cm->mi_rows) || (mi_col + x_idx >= cm->mi_cols)) + continue; + + vp9_rd_cost_init(&tmp_rdc); + rd_use_partition(cpi, td, tile_data, mi_8x8 + jj * bss * mis + ii * bss, + tp, mi_row + y_idx, mi_col + x_idx, subsize, + &tmp_rdc.rate, &tmp_rdc.dist, i != 3, + pc_tree->split[i]); + if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) { + vp9_rd_cost_reset(&last_part_rdc); + break; + } + last_part_rdc.rate += tmp_rdc.rate; + last_part_rdc.dist += tmp_rdc.dist; + } + break; + default: assert(0); break; + } + + pl = partition_plane_context(xd, mi_row, mi_col, bsize); + if (last_part_rdc.rate < INT_MAX) { + last_part_rdc.rate += cpi->partition_cost[pl][partition]; + last_part_rdc.rdcost = + RDCOST(x->rdmult, x->rddiv, last_part_rdc.rate, last_part_rdc.dist); + } + + if (do_partition_search && cpi->sf.adjust_partitioning_from_last_frame && + cpi->sf.partition_search_type == SEARCH_PARTITION && + partition != PARTITION_SPLIT && bsize > BLOCK_8X8 && + (mi_row + mi_step < cm->mi_rows || + mi_row + (mi_step >> 1) == cm->mi_rows) && + (mi_col + mi_step < cm->mi_cols || + mi_col + (mi_step >> 1) == cm->mi_cols)) { + BLOCK_SIZE split_subsize = get_subsize(bsize, PARTITION_SPLIT); + chosen_rdc.rate = 0; + chosen_rdc.dist = 0; + restore_context(x, mi_row, mi_col, a, l, sa, sl, bsize); + pc_tree->partitioning = PARTITION_SPLIT; + + // Split partition. + for (i = 0; i < 4; i++) { + int x_idx = (i & 1) * (mi_step >> 1); + int y_idx = (i >> 1) * (mi_step >> 1); + RD_COST tmp_rdc; + ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], a[16 * MAX_MB_PLANE]; + PARTITION_CONTEXT sl[8], sa[8]; + + if ((mi_row + y_idx >= cm->mi_rows) || (mi_col + x_idx >= cm->mi_cols)) + continue; + + save_context(x, mi_row, mi_col, a, l, sa, sl, bsize); + pc_tree->split[i]->partitioning = PARTITION_NONE; + rd_pick_sb_modes(cpi, tile_data, x, mi_row + y_idx, mi_col + x_idx, + &tmp_rdc, split_subsize, &pc_tree->split[i]->none, + INT64_MAX); + + restore_context(x, mi_row, mi_col, a, l, sa, sl, bsize); + + if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) { + vp9_rd_cost_reset(&chosen_rdc); + break; + } + + chosen_rdc.rate += tmp_rdc.rate; + chosen_rdc.dist += tmp_rdc.dist; + + if (i != 3) + encode_sb(cpi, td, tile_info, tp, mi_row + y_idx, mi_col + x_idx, 0, + split_subsize, pc_tree->split[i]); + + pl = partition_plane_context(xd, mi_row + y_idx, mi_col + x_idx, + split_subsize); + chosen_rdc.rate += cpi->partition_cost[pl][PARTITION_NONE]; + } + pl = partition_plane_context(xd, mi_row, mi_col, bsize); + if (chosen_rdc.rate < INT_MAX) { + chosen_rdc.rate += cpi->partition_cost[pl][PARTITION_SPLIT]; + chosen_rdc.rdcost = + RDCOST(x->rdmult, x->rddiv, chosen_rdc.rate, chosen_rdc.dist); + } + } + + // If last_part is better set the partitioning to that. + if (last_part_rdc.rdcost < chosen_rdc.rdcost) { + mi_8x8[0]->sb_type = bsize; + if (bsize >= BLOCK_8X8) pc_tree->partitioning = partition; + chosen_rdc = last_part_rdc; + } + // If none was better set the partitioning to that. + if (none_rdc.rdcost < chosen_rdc.rdcost) { + if (bsize >= BLOCK_8X8) pc_tree->partitioning = PARTITION_NONE; + chosen_rdc = none_rdc; + } + + restore_context(x, mi_row, mi_col, a, l, sa, sl, bsize); + + // We must have chosen a partitioning and encoding or we'll fail later on. + // No other opportunities for success. + if (bsize == BLOCK_64X64) + assert(chosen_rdc.rate < INT_MAX && chosen_rdc.dist < INT64_MAX); + + if (do_recon) { + int output_enabled = (bsize == BLOCK_64X64); + encode_sb(cpi, td, tile_info, tp, mi_row, mi_col, output_enabled, bsize, + pc_tree); + } + + *rate = chosen_rdc.rate; + *dist = chosen_rdc.dist; +} + +static const BLOCK_SIZE min_partition_size[BLOCK_SIZES] = { + BLOCK_4X4, BLOCK_4X4, BLOCK_4X4, BLOCK_4X4, BLOCK_4X4, + BLOCK_4X4, BLOCK_8X8, BLOCK_8X8, BLOCK_8X8, BLOCK_16X16, + BLOCK_16X16, BLOCK_16X16, BLOCK_16X16 +}; + +static const BLOCK_SIZE max_partition_size[BLOCK_SIZES] = { + BLOCK_8X8, BLOCK_16X16, BLOCK_16X16, BLOCK_16X16, BLOCK_32X32, + BLOCK_32X32, BLOCK_32X32, BLOCK_64X64, BLOCK_64X64, BLOCK_64X64, + BLOCK_64X64, BLOCK_64X64, BLOCK_64X64 +}; + +// Look at all the mode_info entries for blocks that are part of this +// partition and find the min and max values for sb_type. +// At the moment this is designed to work on a 64x64 SB but could be +// adjusted to use a size parameter. +// +// The min and max are assumed to have been initialized prior to calling this +// function so repeat calls can accumulate a min and max of more than one sb64. +static void get_sb_partition_size_range(MACROBLOCKD *xd, MODE_INFO **mi_8x8, + BLOCK_SIZE *min_block_size, + BLOCK_SIZE *max_block_size, + int bs_hist[BLOCK_SIZES]) { + int sb_width_in_blocks = MI_BLOCK_SIZE; + int sb_height_in_blocks = MI_BLOCK_SIZE; + int i, j; + int index = 0; + + // Check the sb_type for each block that belongs to this region. + for (i = 0; i < sb_height_in_blocks; ++i) { + for (j = 0; j < sb_width_in_blocks; ++j) { + MODE_INFO *mi = mi_8x8[index + j]; + BLOCK_SIZE sb_type = mi ? mi->sb_type : 0; + bs_hist[sb_type]++; + *min_block_size = VPXMIN(*min_block_size, sb_type); + *max_block_size = VPXMAX(*max_block_size, sb_type); + } + index += xd->mi_stride; + } +} + +// Next square block size less or equal than current block size. +static const BLOCK_SIZE next_square_size[BLOCK_SIZES] = { + BLOCK_4X4, BLOCK_4X4, BLOCK_4X4, BLOCK_8X8, BLOCK_8X8, + BLOCK_8X8, BLOCK_16X16, BLOCK_16X16, BLOCK_16X16, BLOCK_32X32, + BLOCK_32X32, BLOCK_32X32, BLOCK_64X64 +}; + +// Look at neighboring blocks and set a min and max partition size based on +// what they chose. +static void rd_auto_partition_range(VP9_COMP *cpi, const TileInfo *const tile, + MACROBLOCKD *const xd, int mi_row, + int mi_col, BLOCK_SIZE *min_block_size, + BLOCK_SIZE *max_block_size) { + VP9_COMMON *const cm = &cpi->common; + MODE_INFO **mi = xd->mi; + const int left_in_image = !!xd->left_mi; + const int above_in_image = !!xd->above_mi; + const int row8x8_remaining = tile->mi_row_end - mi_row; + const int col8x8_remaining = tile->mi_col_end - mi_col; + int bh, bw; + BLOCK_SIZE min_size = BLOCK_4X4; + BLOCK_SIZE max_size = BLOCK_64X64; + int bs_hist[BLOCK_SIZES] = { 0 }; + + // Trap case where we do not have a prediction. + if (left_in_image || above_in_image || cm->frame_type != KEY_FRAME) { + // Default "min to max" and "max to min" + min_size = BLOCK_64X64; + max_size = BLOCK_4X4; + + // NOTE: each call to get_sb_partition_size_range() uses the previous + // passed in values for min and max as a starting point. + // Find the min and max partition used in previous frame at this location + if (cm->frame_type != KEY_FRAME) { + MODE_INFO **prev_mi = + &cm->prev_mi_grid_visible[mi_row * xd->mi_stride + mi_col]; + get_sb_partition_size_range(xd, prev_mi, &min_size, &max_size, bs_hist); + } + // Find the min and max partition sizes used in the left SB64 + if (left_in_image) { + MODE_INFO **left_sb64_mi = &mi[-MI_BLOCK_SIZE]; + get_sb_partition_size_range(xd, left_sb64_mi, &min_size, &max_size, + bs_hist); + } + // Find the min and max partition sizes used in the above SB64. + if (above_in_image) { + MODE_INFO **above_sb64_mi = &mi[-xd->mi_stride * MI_BLOCK_SIZE]; + get_sb_partition_size_range(xd, above_sb64_mi, &min_size, &max_size, + bs_hist); + } + + // Adjust observed min and max for "relaxed" auto partition case. + if (cpi->sf.auto_min_max_partition_size == RELAXED_NEIGHBORING_MIN_MAX) { + min_size = min_partition_size[min_size]; + max_size = max_partition_size[max_size]; + } + } + + // Check border cases where max and min from neighbors may not be legal. + max_size = find_partition_size(max_size, row8x8_remaining, col8x8_remaining, + &bh, &bw); + // Test for blocks at the edge of the active image. + // This may be the actual edge of the image or where there are formatting + // bars. + if (vp9_active_edge_sb(cpi, mi_row, mi_col)) { + min_size = BLOCK_4X4; + } else { + min_size = + VPXMIN(cpi->sf.rd_auto_partition_min_limit, VPXMIN(min_size, max_size)); + } + + // When use_square_partition_only is true, make sure at least one square + // partition is allowed by selecting the next smaller square size as + // *min_block_size. + if (cpi->sf.use_square_partition_only && + next_square_size[max_size] < min_size) { + min_size = next_square_size[max_size]; + } + + *min_block_size = min_size; + *max_block_size = max_size; +} + +// TODO(jingning) refactor functions setting partition search range +static void set_partition_range(VP9_COMMON *cm, MACROBLOCKD *xd, int mi_row, + int mi_col, BLOCK_SIZE bsize, + BLOCK_SIZE *min_bs, BLOCK_SIZE *max_bs) { + int mi_width = num_8x8_blocks_wide_lookup[bsize]; + int mi_height = num_8x8_blocks_high_lookup[bsize]; + int idx, idy; + + MODE_INFO *mi; + const int idx_str = cm->mi_stride * mi_row + mi_col; + MODE_INFO **prev_mi = &cm->prev_mi_grid_visible[idx_str]; + BLOCK_SIZE bs, min_size, max_size; + + min_size = BLOCK_64X64; + max_size = BLOCK_4X4; + + if (prev_mi) { + for (idy = 0; idy < mi_height; ++idy) { + for (idx = 0; idx < mi_width; ++idx) { + mi = prev_mi[idy * cm->mi_stride + idx]; + bs = mi ? mi->sb_type : bsize; + min_size = VPXMIN(min_size, bs); + max_size = VPXMAX(max_size, bs); + } + } + } + + if (xd->left_mi) { + for (idy = 0; idy < mi_height; ++idy) { + mi = xd->mi[idy * cm->mi_stride - 1]; + bs = mi ? mi->sb_type : bsize; + min_size = VPXMIN(min_size, bs); + max_size = VPXMAX(max_size, bs); + } + } + + if (xd->above_mi) { + for (idx = 0; idx < mi_width; ++idx) { + mi = xd->mi[idx - cm->mi_stride]; + bs = mi ? mi->sb_type : bsize; + min_size = VPXMIN(min_size, bs); + max_size = VPXMAX(max_size, bs); + } + } + + if (min_size == max_size) { + min_size = min_partition_size[min_size]; + max_size = max_partition_size[max_size]; + } + + *min_bs = min_size; + *max_bs = max_size; +} + +static INLINE void store_pred_mv(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx) { + memcpy(ctx->pred_mv, x->pred_mv, sizeof(x->pred_mv)); +} + +static INLINE void load_pred_mv(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx) { + memcpy(x->pred_mv, ctx->pred_mv, sizeof(x->pred_mv)); +} + +#if CONFIG_FP_MB_STATS +const int num_16x16_blocks_wide_lookup[BLOCK_SIZES] = { 1, 1, 1, 1, 1, 1, 1, + 1, 2, 2, 2, 4, 4 }; +const int num_16x16_blocks_high_lookup[BLOCK_SIZES] = { 1, 1, 1, 1, 1, 1, 1, + 2, 1, 2, 4, 2, 4 }; +const int qindex_skip_threshold_lookup[BLOCK_SIZES] = { + 0, 10, 10, 30, 40, 40, 60, 80, 80, 90, 100, 100, 120 +}; +const int qindex_split_threshold_lookup[BLOCK_SIZES] = { + 0, 3, 3, 7, 15, 15, 30, 40, 40, 60, 80, 80, 120 +}; +const int complexity_16x16_blocks_threshold[BLOCK_SIZES] = { + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 4, 6 +}; + +typedef enum { + MV_ZERO = 0, + MV_LEFT = 1, + MV_UP = 2, + MV_RIGHT = 3, + MV_DOWN = 4, + MV_INVALID +} MOTION_DIRECTION; + +static INLINE MOTION_DIRECTION get_motion_direction_fp(uint8_t fp_byte) { + if (fp_byte & FPMB_MOTION_ZERO_MASK) { + return MV_ZERO; + } else if (fp_byte & FPMB_MOTION_LEFT_MASK) { + return MV_LEFT; + } else if (fp_byte & FPMB_MOTION_RIGHT_MASK) { + return MV_RIGHT; + } else if (fp_byte & FPMB_MOTION_UP_MASK) { + return MV_UP; + } else { + return MV_DOWN; + } +} + +static INLINE int get_motion_inconsistency(MOTION_DIRECTION this_mv, + MOTION_DIRECTION that_mv) { + if (this_mv == that_mv) { + return 0; + } else { + return abs(this_mv - that_mv) == 2 ? 2 : 1; + } +} +#endif + +// Calculate the score used in machine-learning based partition search early +// termination. +static double compute_score(VP9_COMMON *const cm, MACROBLOCKD *const xd, + PICK_MODE_CONTEXT *ctx, int mi_row, int mi_col, + BLOCK_SIZE bsize) { + const double *clf; + const double *mean; + const double *sd; + const int mag_mv = + abs(ctx->mic.mv[0].as_mv.col) + abs(ctx->mic.mv[0].as_mv.row); + const int left_in_image = !!xd->left_mi; + const int above_in_image = !!xd->above_mi; + MODE_INFO **prev_mi = + &cm->prev_mi_grid_visible[mi_col + cm->mi_stride * mi_row]; + int above_par = 0; // above_partitioning + int left_par = 0; // left_partitioning + int last_par = 0; // last_partitioning + BLOCK_SIZE context_size; + double score; + int offset = 0; + + assert(b_width_log2_lookup[bsize] == b_height_log2_lookup[bsize]); + + if (above_in_image) { + context_size = xd->above_mi->sb_type; + if (context_size < bsize) + above_par = 2; + else if (context_size == bsize) + above_par = 1; + } + + if (left_in_image) { + context_size = xd->left_mi->sb_type; + if (context_size < bsize) + left_par = 2; + else if (context_size == bsize) + left_par = 1; + } + + if (prev_mi) { + context_size = prev_mi[0]->sb_type; + if (context_size < bsize) + last_par = 2; + else if (context_size == bsize) + last_par = 1; + } + + if (bsize == BLOCK_64X64) + offset = 0; + else if (bsize == BLOCK_32X32) + offset = 8; + else if (bsize == BLOCK_16X16) + offset = 16; + + // early termination score calculation + clf = &classifiers[offset]; + mean = &train_mean[offset]; + sd = &train_stdm[offset]; + score = clf[0] * (((double)ctx->rate - mean[0]) / sd[0]) + + clf[1] * (((double)ctx->dist - mean[1]) / sd[1]) + + clf[2] * (((double)mag_mv / 2 - mean[2]) * sd[2]) + + clf[3] * (((double)(left_par + above_par) / 2 - mean[3]) * sd[3]) + + clf[4] * (((double)ctx->sum_y_eobs - mean[4]) / sd[4]) + + clf[5] * (((double)cm->base_qindex - mean[5]) * sd[5]) + + clf[6] * (((double)last_par - mean[6]) * sd[6]) + clf[7]; + return score; +} + +// TODO(jingning,jimbankoski,rbultje): properly skip partition types that are +// unlikely to be selected depending on previous rate-distortion optimization +// results, for encoding speed-up. +static void rd_pick_partition(VP9_COMP *cpi, ThreadData *td, + TileDataEnc *tile_data, TOKENEXTRA **tp, + int mi_row, int mi_col, BLOCK_SIZE bsize, + RD_COST *rd_cost, int64_t best_rd, + PC_TREE *pc_tree) { + VP9_COMMON *const cm = &cpi->common; + TileInfo *const tile_info = &tile_data->tile_info; + MACROBLOCK *const x = &td->mb; + MACROBLOCKD *const xd = &x->e_mbd; + const int mi_step = num_8x8_blocks_wide_lookup[bsize] / 2; + ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], a[16 * MAX_MB_PLANE]; + PARTITION_CONTEXT sl[8], sa[8]; + TOKENEXTRA *tp_orig = *tp; + PICK_MODE_CONTEXT *ctx = &pc_tree->none; + int i; + const int pl = partition_plane_context(xd, mi_row, mi_col, bsize); + BLOCK_SIZE subsize; + RD_COST this_rdc, sum_rdc, best_rdc; + int do_split = bsize >= BLOCK_8X8; + int do_rect = 1; + INTERP_FILTER pred_interp_filter; + + // Override skipping rectangular partition operations for edge blocks + const int force_horz_split = (mi_row + mi_step >= cm->mi_rows); + const int force_vert_split = (mi_col + mi_step >= cm->mi_cols); + const int xss = x->e_mbd.plane[1].subsampling_x; + const int yss = x->e_mbd.plane[1].subsampling_y; + + BLOCK_SIZE min_size = x->min_partition_size; + BLOCK_SIZE max_size = x->max_partition_size; + +#if CONFIG_FP_MB_STATS + unsigned int src_diff_var = UINT_MAX; + int none_complexity = 0; +#endif + + int partition_none_allowed = !force_horz_split && !force_vert_split; + int partition_horz_allowed = + !force_vert_split && yss <= xss && bsize >= BLOCK_8X8; + int partition_vert_allowed = + !force_horz_split && xss <= yss && bsize >= BLOCK_8X8; + + int64_t dist_breakout_thr = cpi->sf.partition_search_breakout_thr.dist; + int rate_breakout_thr = cpi->sf.partition_search_breakout_thr.rate; + + (void)*tp_orig; + + assert(num_8x8_blocks_wide_lookup[bsize] == + num_8x8_blocks_high_lookup[bsize]); + + // Adjust dist breakout threshold according to the partition size. + dist_breakout_thr >>= + 8 - (b_width_log2_lookup[bsize] + b_height_log2_lookup[bsize]); + rate_breakout_thr *= num_pels_log2_lookup[bsize]; + + vp9_rd_cost_init(&this_rdc); + vp9_rd_cost_init(&sum_rdc); + vp9_rd_cost_reset(&best_rdc); + best_rdc.rdcost = best_rd; + + set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize); + + if (bsize == BLOCK_16X16 && cpi->oxcf.aq_mode != NO_AQ && + cpi->oxcf.aq_mode != LOOKAHEAD_AQ) + x->mb_energy = vp9_block_energy(cpi, x, bsize); + + if (cpi->sf.cb_partition_search && bsize == BLOCK_16X16) { + int cb_partition_search_ctrl = + ((pc_tree->index == 0 || pc_tree->index == 3) + + get_chessboard_index(cm->current_video_frame)) & + 0x1; + + if (cb_partition_search_ctrl && bsize > min_size && bsize < max_size) + set_partition_range(cm, xd, mi_row, mi_col, bsize, &min_size, &max_size); + } + + // Determine partition types in search according to the speed features. + // The threshold set here has to be of square block size. + if (cpi->sf.auto_min_max_partition_size) { + partition_none_allowed &= (bsize <= max_size && bsize >= min_size); + partition_horz_allowed &= + ((bsize <= max_size && bsize > min_size) || force_horz_split); + partition_vert_allowed &= + ((bsize <= max_size && bsize > min_size) || force_vert_split); + do_split &= bsize > min_size; + } + + if (cpi->sf.use_square_partition_only && + bsize > cpi->sf.use_square_only_threshold) { + if (cpi->use_svc) { + if (!vp9_active_h_edge(cpi, mi_row, mi_step) || x->e_mbd.lossless) + partition_horz_allowed &= force_horz_split; + if (!vp9_active_v_edge(cpi, mi_row, mi_step) || x->e_mbd.lossless) + partition_vert_allowed &= force_vert_split; + } else { + partition_horz_allowed &= force_horz_split; + partition_vert_allowed &= force_vert_split; + } + } + + save_context(x, mi_row, mi_col, a, l, sa, sl, bsize); + +#if CONFIG_FP_MB_STATS + if (cpi->use_fp_mb_stats) { + set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize); + src_diff_var = get_sby_perpixel_diff_variance(cpi, &x->plane[0].src, mi_row, + mi_col, bsize); + } +#endif + +#if CONFIG_FP_MB_STATS + // Decide whether we shall split directly and skip searching NONE by using + // the first pass block statistics + if (cpi->use_fp_mb_stats && bsize >= BLOCK_32X32 && do_split && + partition_none_allowed && src_diff_var > 4 && + cm->base_qindex < qindex_split_threshold_lookup[bsize]) { + int mb_row = mi_row >> 1; + int mb_col = mi_col >> 1; + int mb_row_end = + VPXMIN(mb_row + num_16x16_blocks_high_lookup[bsize], cm->mb_rows); + int mb_col_end = + VPXMIN(mb_col + num_16x16_blocks_wide_lookup[bsize], cm->mb_cols); + int r, c; + + // compute a complexity measure, basically measure inconsistency of motion + // vectors obtained from the first pass in the current block + for (r = mb_row; r < mb_row_end; r++) { + for (c = mb_col; c < mb_col_end; c++) { + const int mb_index = r * cm->mb_cols + c; + + MOTION_DIRECTION this_mv; + MOTION_DIRECTION right_mv; + MOTION_DIRECTION bottom_mv; + + this_mv = + get_motion_direction_fp(cpi->twopass.this_frame_mb_stats[mb_index]); + + // to its right + if (c != mb_col_end - 1) { + right_mv = get_motion_direction_fp( + cpi->twopass.this_frame_mb_stats[mb_index + 1]); + none_complexity += get_motion_inconsistency(this_mv, right_mv); + } + + // to its bottom + if (r != mb_row_end - 1) { + bottom_mv = get_motion_direction_fp( + cpi->twopass.this_frame_mb_stats[mb_index + cm->mb_cols]); + none_complexity += get_motion_inconsistency(this_mv, bottom_mv); + } + + // do not count its left and top neighbors to avoid double counting + } + } + + if (none_complexity > complexity_16x16_blocks_threshold[bsize]) { + partition_none_allowed = 0; + } + } +#endif + + // PARTITION_NONE + if (partition_none_allowed) { + rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &this_rdc, bsize, ctx, + best_rdc.rdcost); + if (this_rdc.rate != INT_MAX) { + if (bsize >= BLOCK_8X8) { + this_rdc.rate += cpi->partition_cost[pl][PARTITION_NONE]; + this_rdc.rdcost = + RDCOST(x->rdmult, x->rddiv, this_rdc.rate, this_rdc.dist); + } + + if (this_rdc.rdcost < best_rdc.rdcost) { + MODE_INFO *mi = xd->mi[0]; + + best_rdc = this_rdc; + if (bsize >= BLOCK_8X8) pc_tree->partitioning = PARTITION_NONE; + + if (!cpi->sf.ml_partition_search_early_termination) { + // If all y, u, v transform blocks in this partition are skippable, + // and the dist & rate are within the thresholds, the partition search + // is terminated for current branch of the partition search tree. + if (!x->e_mbd.lossless && ctx->skippable && + ((best_rdc.dist < (dist_breakout_thr >> 2)) || + (best_rdc.dist < dist_breakout_thr && + best_rdc.rate < rate_breakout_thr))) { + do_split = 0; + do_rect = 0; + } + } else { + // Currently, the machine-learning based partition search early + // termination is only used while bsize is 16x16, 32x32 or 64x64, + // VPXMIN(cm->width, cm->height) >= 480, and speed = 0. + if (!x->e_mbd.lossless && + !segfeature_active(&cm->seg, mi->segment_id, SEG_LVL_SKIP) && + ctx->mic.mode >= INTRA_MODES && bsize >= BLOCK_16X16) { + if (compute_score(cm, xd, ctx, mi_row, mi_col, bsize) < 0.0) { + do_split = 0; + do_rect = 0; + } + } + } + +#if CONFIG_FP_MB_STATS + // Check if every 16x16 first pass block statistics has zero + // motion and the corresponding first pass residue is small enough. + // If that is the case, check the difference variance between the + // current frame and the last frame. If the variance is small enough, + // stop further splitting in RD optimization + if (cpi->use_fp_mb_stats && do_split != 0 && + cm->base_qindex > qindex_skip_threshold_lookup[bsize]) { + int mb_row = mi_row >> 1; + int mb_col = mi_col >> 1; + int mb_row_end = + VPXMIN(mb_row + num_16x16_blocks_high_lookup[bsize], cm->mb_rows); + int mb_col_end = + VPXMIN(mb_col + num_16x16_blocks_wide_lookup[bsize], cm->mb_cols); + int r, c; + + int skip = 1; + for (r = mb_row; r < mb_row_end; r++) { + for (c = mb_col; c < mb_col_end; c++) { + const int mb_index = r * cm->mb_cols + c; + if (!(cpi->twopass.this_frame_mb_stats[mb_index] & + FPMB_MOTION_ZERO_MASK) || + !(cpi->twopass.this_frame_mb_stats[mb_index] & + FPMB_ERROR_SMALL_MASK)) { + skip = 0; + break; + } + } + if (skip == 0) { + break; + } + } + + if (skip) { + if (src_diff_var == UINT_MAX) { + set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize); + src_diff_var = get_sby_perpixel_diff_variance( + cpi, &x->plane[0].src, mi_row, mi_col, bsize); + } + if (src_diff_var < 8) { + do_split = 0; + do_rect = 0; + } + } + } +#endif + } + } + restore_context(x, mi_row, mi_col, a, l, sa, sl, bsize); + } + + // store estimated motion vector + if (cpi->sf.adaptive_motion_search) store_pred_mv(x, ctx); + + // If the interp_filter is marked as SWITCHABLE_FILTERS, it was for an + // intra block and used for context purposes. + if (ctx->mic.interp_filter == SWITCHABLE_FILTERS) { + pred_interp_filter = EIGHTTAP; + } else { + pred_interp_filter = ctx->mic.interp_filter; + } + + // PARTITION_SPLIT + // TODO(jingning): use the motion vectors given by the above search as + // the starting point of motion search in the following partition type check. + if (do_split) { + subsize = get_subsize(bsize, PARTITION_SPLIT); + if (bsize == BLOCK_8X8) { + i = 4; + if (cpi->sf.adaptive_pred_interp_filter && partition_none_allowed) + pc_tree->leaf_split[0]->pred_interp_filter = pred_interp_filter; + rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &sum_rdc, subsize, + pc_tree->leaf_split[0], best_rdc.rdcost); + + if (sum_rdc.rate == INT_MAX) sum_rdc.rdcost = INT64_MAX; + } else { + for (i = 0; i < 4 && sum_rdc.rdcost < best_rdc.rdcost; ++i) { + const int x_idx = (i & 1) * mi_step; + const int y_idx = (i >> 1) * mi_step; + + if (mi_row + y_idx >= cm->mi_rows || mi_col + x_idx >= cm->mi_cols) + continue; + + if (cpi->sf.adaptive_motion_search) load_pred_mv(x, ctx); + + pc_tree->split[i]->index = i; + rd_pick_partition(cpi, td, tile_data, tp, mi_row + y_idx, + mi_col + x_idx, subsize, &this_rdc, + best_rdc.rdcost - sum_rdc.rdcost, pc_tree->split[i]); + + if (this_rdc.rate == INT_MAX) { + sum_rdc.rdcost = INT64_MAX; + break; + } else { + sum_rdc.rate += this_rdc.rate; + sum_rdc.dist += this_rdc.dist; + sum_rdc.rdcost += this_rdc.rdcost; + } + } + } + + if (sum_rdc.rdcost < best_rdc.rdcost && i == 4) { + sum_rdc.rate += cpi->partition_cost[pl][PARTITION_SPLIT]; + sum_rdc.rdcost = RDCOST(x->rdmult, x->rddiv, sum_rdc.rate, sum_rdc.dist); + + if (sum_rdc.rdcost < best_rdc.rdcost) { + best_rdc = sum_rdc; + pc_tree->partitioning = PARTITION_SPLIT; + + // Rate and distortion based partition search termination clause. + if (!cpi->sf.ml_partition_search_early_termination && + !x->e_mbd.lossless && ((best_rdc.dist < (dist_breakout_thr >> 2)) || + (best_rdc.dist < dist_breakout_thr && + best_rdc.rate < rate_breakout_thr))) { + do_rect = 0; + } + } + } else { + // skip rectangular partition test when larger block size + // gives better rd cost + if ((cpi->sf.less_rectangular_check) && + ((bsize > cpi->sf.use_square_only_threshold) || + (best_rdc.dist < dist_breakout_thr))) + do_rect &= !partition_none_allowed; + } + restore_context(x, mi_row, mi_col, a, l, sa, sl, bsize); + } + + // PARTITION_HORZ + if (partition_horz_allowed && + (do_rect || vp9_active_h_edge(cpi, mi_row, mi_step))) { + subsize = get_subsize(bsize, PARTITION_HORZ); + if (cpi->sf.adaptive_motion_search) load_pred_mv(x, ctx); + if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 && + partition_none_allowed) + pc_tree->horizontal[0].pred_interp_filter = pred_interp_filter; + rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &sum_rdc, subsize, + &pc_tree->horizontal[0], best_rdc.rdcost); + + if (sum_rdc.rdcost < best_rdc.rdcost && mi_row + mi_step < cm->mi_rows && + bsize > BLOCK_8X8) { + PICK_MODE_CONTEXT *ctx = &pc_tree->horizontal[0]; + update_state(cpi, td, ctx, mi_row, mi_col, subsize, 0); + encode_superblock(cpi, td, tp, 0, mi_row, mi_col, subsize, ctx); + + if (cpi->sf.adaptive_motion_search) load_pred_mv(x, ctx); + if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 && + partition_none_allowed) + pc_tree->horizontal[1].pred_interp_filter = pred_interp_filter; + rd_pick_sb_modes(cpi, tile_data, x, mi_row + mi_step, mi_col, &this_rdc, + subsize, &pc_tree->horizontal[1], + best_rdc.rdcost - sum_rdc.rdcost); + if (this_rdc.rate == INT_MAX) { + sum_rdc.rdcost = INT64_MAX; + } else { + sum_rdc.rate += this_rdc.rate; + sum_rdc.dist += this_rdc.dist; + sum_rdc.rdcost += this_rdc.rdcost; + } + } + + if (sum_rdc.rdcost < best_rdc.rdcost) { + sum_rdc.rate += cpi->partition_cost[pl][PARTITION_HORZ]; + sum_rdc.rdcost = RDCOST(x->rdmult, x->rddiv, sum_rdc.rate, sum_rdc.dist); + if (sum_rdc.rdcost < best_rdc.rdcost) { + best_rdc = sum_rdc; + pc_tree->partitioning = PARTITION_HORZ; + + if ((cpi->sf.less_rectangular_check) && + (bsize > cpi->sf.use_square_only_threshold)) + do_rect = 0; + } + } + restore_context(x, mi_row, mi_col, a, l, sa, sl, bsize); + } + + // PARTITION_VERT + if (partition_vert_allowed && + (do_rect || vp9_active_v_edge(cpi, mi_col, mi_step))) { + subsize = get_subsize(bsize, PARTITION_VERT); + + if (cpi->sf.adaptive_motion_search) load_pred_mv(x, ctx); + if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 && + partition_none_allowed) + pc_tree->vertical[0].pred_interp_filter = pred_interp_filter; + rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &sum_rdc, subsize, + &pc_tree->vertical[0], best_rdc.rdcost); + if (sum_rdc.rdcost < best_rdc.rdcost && mi_col + mi_step < cm->mi_cols && + bsize > BLOCK_8X8) { + update_state(cpi, td, &pc_tree->vertical[0], mi_row, mi_col, subsize, 0); + encode_superblock(cpi, td, tp, 0, mi_row, mi_col, subsize, + &pc_tree->vertical[0]); + + if (cpi->sf.adaptive_motion_search) load_pred_mv(x, ctx); + if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 && + partition_none_allowed) + pc_tree->vertical[1].pred_interp_filter = pred_interp_filter; + rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col + mi_step, &this_rdc, + subsize, &pc_tree->vertical[1], + best_rdc.rdcost - sum_rdc.rdcost); + if (this_rdc.rate == INT_MAX) { + sum_rdc.rdcost = INT64_MAX; + } else { + sum_rdc.rate += this_rdc.rate; + sum_rdc.dist += this_rdc.dist; + sum_rdc.rdcost += this_rdc.rdcost; + } + } + + if (sum_rdc.rdcost < best_rdc.rdcost) { + sum_rdc.rate += cpi->partition_cost[pl][PARTITION_VERT]; + sum_rdc.rdcost = RDCOST(x->rdmult, x->rddiv, sum_rdc.rate, sum_rdc.dist); + if (sum_rdc.rdcost < best_rdc.rdcost) { + best_rdc = sum_rdc; + pc_tree->partitioning = PARTITION_VERT; + } + } + restore_context(x, mi_row, mi_col, a, l, sa, sl, bsize); + } + + // TODO(jbb): This code added so that we avoid static analysis + // warning related to the fact that best_rd isn't used after this + // point. This code should be refactored so that the duplicate + // checks occur in some sub function and thus are used... + (void)best_rd; + *rd_cost = best_rdc; + + if (best_rdc.rate < INT_MAX && best_rdc.dist < INT64_MAX && + pc_tree->index != 3) { + int output_enabled = (bsize == BLOCK_64X64); + encode_sb(cpi, td, tile_info, tp, mi_row, mi_col, output_enabled, bsize, + pc_tree); + } + + if (bsize == BLOCK_64X64) { + assert(tp_orig < *tp); + assert(best_rdc.rate < INT_MAX); + assert(best_rdc.dist < INT64_MAX); + } else { + assert(tp_orig == *tp); + } +} + +static void encode_rd_sb_row(VP9_COMP *cpi, ThreadData *td, + TileDataEnc *tile_data, int mi_row, + TOKENEXTRA **tp) { + VP9_COMMON *const cm = &cpi->common; + TileInfo *const tile_info = &tile_data->tile_info; + MACROBLOCK *const x = &td->mb; + MACROBLOCKD *const xd = &x->e_mbd; + SPEED_FEATURES *const sf = &cpi->sf; + const int mi_col_start = tile_info->mi_col_start; + const int mi_col_end = tile_info->mi_col_end; + int mi_col; + const int sb_row = mi_row >> MI_BLOCK_SIZE_LOG2; + const int num_sb_cols = + get_num_cols(tile_data->tile_info, MI_BLOCK_SIZE_LOG2); + int sb_col_in_tile; + + // Initialize the left context for the new SB row + memset(&xd->left_context, 0, sizeof(xd->left_context)); + memset(xd->left_seg_context, 0, sizeof(xd->left_seg_context)); + + // Code each SB in the row + for (mi_col = mi_col_start, sb_col_in_tile = 0; mi_col < mi_col_end; + mi_col += MI_BLOCK_SIZE, sb_col_in_tile++) { + const struct segmentation *const seg = &cm->seg; + int dummy_rate; + int64_t dummy_dist; + RD_COST dummy_rdc; + int i; + int seg_skip = 0; + + const int idx_str = cm->mi_stride * mi_row + mi_col; + MODE_INFO **mi = cm->mi_grid_visible + idx_str; + + (*(cpi->row_mt_sync_read_ptr))(&tile_data->row_mt_sync, sb_row, + sb_col_in_tile); + + if (sf->adaptive_pred_interp_filter) { + for (i = 0; i < 64; ++i) td->leaf_tree[i].pred_interp_filter = SWITCHABLE; + + for (i = 0; i < 64; ++i) { + td->pc_tree[i].vertical[0].pred_interp_filter = SWITCHABLE; + td->pc_tree[i].vertical[1].pred_interp_filter = SWITCHABLE; + td->pc_tree[i].horizontal[0].pred_interp_filter = SWITCHABLE; + td->pc_tree[i].horizontal[1].pred_interp_filter = SWITCHABLE; + } + } + + vp9_zero(x->pred_mv); + td->pc_root->index = 0; + + if (seg->enabled) { + const uint8_t *const map = + seg->update_map ? cpi->segmentation_map : cm->last_frame_seg_map; + int segment_id = get_segment_id(cm, map, BLOCK_64X64, mi_row, mi_col); + seg_skip = segfeature_active(seg, segment_id, SEG_LVL_SKIP); + } + + x->source_variance = UINT_MAX; + if (sf->partition_search_type == FIXED_PARTITION || seg_skip) { + const BLOCK_SIZE bsize = + seg_skip ? BLOCK_64X64 : sf->always_this_block_size; + set_offsets(cpi, tile_info, x, mi_row, mi_col, BLOCK_64X64); + set_fixed_partitioning(cpi, tile_info, mi, mi_row, mi_col, bsize); + rd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col, BLOCK_64X64, + &dummy_rate, &dummy_dist, 1, td->pc_root); + } else if (cpi->partition_search_skippable_frame) { + BLOCK_SIZE bsize; + set_offsets(cpi, tile_info, x, mi_row, mi_col, BLOCK_64X64); + bsize = get_rd_var_based_fixed_partition(cpi, x, mi_row, mi_col); + set_fixed_partitioning(cpi, tile_info, mi, mi_row, mi_col, bsize); + rd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col, BLOCK_64X64, + &dummy_rate, &dummy_dist, 1, td->pc_root); + } else if (sf->partition_search_type == VAR_BASED_PARTITION && + cm->frame_type != KEY_FRAME) { + choose_partitioning(cpi, tile_info, x, mi_row, mi_col); + rd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col, BLOCK_64X64, + &dummy_rate, &dummy_dist, 1, td->pc_root); + } else { + // If required set upper and lower partition size limits + if (sf->auto_min_max_partition_size) { + set_offsets(cpi, tile_info, x, mi_row, mi_col, BLOCK_64X64); + rd_auto_partition_range(cpi, tile_info, xd, mi_row, mi_col, + &x->min_partition_size, &x->max_partition_size); + } + rd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col, BLOCK_64X64, + &dummy_rdc, INT64_MAX, td->pc_root); + } + (*(cpi->row_mt_sync_write_ptr))(&tile_data->row_mt_sync, sb_row, + sb_col_in_tile, num_sb_cols); + } +} + +static void init_encode_frame_mb_context(VP9_COMP *cpi) { + MACROBLOCK *const x = &cpi->td.mb; + VP9_COMMON *const cm = &cpi->common; + MACROBLOCKD *const xd = &x->e_mbd; + const int aligned_mi_cols = mi_cols_aligned_to_sb(cm->mi_cols); + + // Copy data over into macro block data structures. + vp9_setup_src_planes(x, cpi->Source, 0, 0); + + vp9_setup_block_planes(&x->e_mbd, cm->subsampling_x, cm->subsampling_y); + + // Note: this memset assumes above_context[0], [1] and [2] + // are allocated as part of the same buffer. + memset(xd->above_context[0], 0, + sizeof(*xd->above_context[0]) * 2 * aligned_mi_cols * MAX_MB_PLANE); + memset(xd->above_seg_context, 0, + sizeof(*xd->above_seg_context) * aligned_mi_cols); +} + +static int check_dual_ref_flags(VP9_COMP *cpi) { + const int ref_flags = cpi->ref_frame_flags; + + if (segfeature_active(&cpi->common.seg, 1, SEG_LVL_REF_FRAME)) { + return 0; + } else { + return (!!(ref_flags & VP9_GOLD_FLAG) + !!(ref_flags & VP9_LAST_FLAG) + + !!(ref_flags & VP9_ALT_FLAG)) >= 2; + } +} + +static void reset_skip_tx_size(VP9_COMMON *cm, TX_SIZE max_tx_size) { + int mi_row, mi_col; + const int mis = cm->mi_stride; + MODE_INFO **mi_ptr = cm->mi_grid_visible; + + for (mi_row = 0; mi_row < cm->mi_rows; ++mi_row, mi_ptr += mis) { + for (mi_col = 0; mi_col < cm->mi_cols; ++mi_col) { + if (mi_ptr[mi_col]->tx_size > max_tx_size) + mi_ptr[mi_col]->tx_size = max_tx_size; + } + } +} + +static MV_REFERENCE_FRAME get_frame_type(const VP9_COMP *cpi) { + if (frame_is_intra_only(&cpi->common)) + return INTRA_FRAME; + else if (cpi->rc.is_src_frame_alt_ref && cpi->refresh_golden_frame) + return ALTREF_FRAME; + else if (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame) + return GOLDEN_FRAME; + else + return LAST_FRAME; +} + +static TX_MODE select_tx_mode(const VP9_COMP *cpi, MACROBLOCKD *const xd) { + if (xd->lossless) return ONLY_4X4; + if (cpi->common.frame_type == KEY_FRAME && cpi->sf.use_nonrd_pick_mode) + return ALLOW_16X16; + if (cpi->sf.tx_size_search_method == USE_LARGESTALL) + return ALLOW_32X32; + else if (cpi->sf.tx_size_search_method == USE_FULL_RD || + cpi->sf.tx_size_search_method == USE_TX_8X8) + return TX_MODE_SELECT; + else + return cpi->common.tx_mode; +} + +static void hybrid_intra_mode_search(VP9_COMP *cpi, MACROBLOCK *const x, + RD_COST *rd_cost, BLOCK_SIZE bsize, + PICK_MODE_CONTEXT *ctx) { + if (!cpi->sf.nonrd_keyframe && bsize < BLOCK_16X16) + vp9_rd_pick_intra_mode_sb(cpi, x, rd_cost, bsize, ctx, INT64_MAX); + else + vp9_pick_intra_mode(cpi, x, rd_cost, bsize, ctx); +} + +static void nonrd_pick_sb_modes(VP9_COMP *cpi, TileDataEnc *tile_data, + MACROBLOCK *const x, int mi_row, int mi_col, + RD_COST *rd_cost, BLOCK_SIZE bsize, + PICK_MODE_CONTEXT *ctx) { + VP9_COMMON *const cm = &cpi->common; + TileInfo *const tile_info = &tile_data->tile_info; + MACROBLOCKD *const xd = &x->e_mbd; + MODE_INFO *mi; + ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], a[16 * MAX_MB_PLANE]; + BLOCK_SIZE bs = VPXMAX(bsize, BLOCK_8X8); // processing unit block size + const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bs]; + const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bs]; + int plane; + + set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize); + mi = xd->mi[0]; + mi->sb_type = bsize; + + for (plane = 0; plane < MAX_MB_PLANE; ++plane) { + struct macroblockd_plane *pd = &xd->plane[plane]; + memcpy(a + num_4x4_blocks_wide * plane, pd->above_context, + (sizeof(a[0]) * num_4x4_blocks_wide) >> pd->subsampling_x); + memcpy(l + num_4x4_blocks_high * plane, pd->left_context, + (sizeof(l[0]) * num_4x4_blocks_high) >> pd->subsampling_y); + } + + if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cm->seg.enabled) + if (cyclic_refresh_segment_id_boosted(mi->segment_id)) + x->rdmult = vp9_cyclic_refresh_get_rdmult(cpi->cyclic_refresh); + + if (cm->frame_type == KEY_FRAME) + hybrid_intra_mode_search(cpi, x, rd_cost, bsize, ctx); + else if (segfeature_active(&cm->seg, mi->segment_id, SEG_LVL_SKIP)) + set_mode_info_seg_skip(x, cm->tx_mode, rd_cost, bsize); + else if (bsize >= BLOCK_8X8) + vp9_pick_inter_mode(cpi, x, tile_data, mi_row, mi_col, rd_cost, bsize, ctx); + else + vp9_pick_inter_mode_sub8x8(cpi, x, mi_row, mi_col, rd_cost, bsize, ctx); + + duplicate_mode_info_in_sb(cm, xd, mi_row, mi_col, bsize); + + for (plane = 0; plane < MAX_MB_PLANE; ++plane) { + struct macroblockd_plane *pd = &xd->plane[plane]; + memcpy(pd->above_context, a + num_4x4_blocks_wide * plane, + (sizeof(a[0]) * num_4x4_blocks_wide) >> pd->subsampling_x); + memcpy(pd->left_context, l + num_4x4_blocks_high * plane, + (sizeof(l[0]) * num_4x4_blocks_high) >> pd->subsampling_y); + } + + if (rd_cost->rate == INT_MAX) vp9_rd_cost_reset(rd_cost); + + ctx->rate = rd_cost->rate; + ctx->dist = rd_cost->dist; +} + +static void fill_mode_info_sb(VP9_COMMON *cm, MACROBLOCK *x, int mi_row, + int mi_col, BLOCK_SIZE bsize, PC_TREE *pc_tree) { + MACROBLOCKD *xd = &x->e_mbd; + int bsl = b_width_log2_lookup[bsize], hbs = (1 << bsl) / 4; + PARTITION_TYPE partition = pc_tree->partitioning; + BLOCK_SIZE subsize = get_subsize(bsize, partition); + + assert(bsize >= BLOCK_8X8); + + if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return; + + switch (partition) { + case PARTITION_NONE: + set_mode_info_offsets(cm, x, xd, mi_row, mi_col); + *(xd->mi[0]) = pc_tree->none.mic; + *(x->mbmi_ext) = pc_tree->none.mbmi_ext; + duplicate_mode_info_in_sb(cm, xd, mi_row, mi_col, bsize); + break; + case PARTITION_VERT: + set_mode_info_offsets(cm, x, xd, mi_row, mi_col); + *(xd->mi[0]) = pc_tree->vertical[0].mic; + *(x->mbmi_ext) = pc_tree->vertical[0].mbmi_ext; + duplicate_mode_info_in_sb(cm, xd, mi_row, mi_col, subsize); + + if (mi_col + hbs < cm->mi_cols) { + set_mode_info_offsets(cm, x, xd, mi_row, mi_col + hbs); + *(xd->mi[0]) = pc_tree->vertical[1].mic; + *(x->mbmi_ext) = pc_tree->vertical[1].mbmi_ext; + duplicate_mode_info_in_sb(cm, xd, mi_row, mi_col + hbs, subsize); + } + break; + case PARTITION_HORZ: + set_mode_info_offsets(cm, x, xd, mi_row, mi_col); + *(xd->mi[0]) = pc_tree->horizontal[0].mic; + *(x->mbmi_ext) = pc_tree->horizontal[0].mbmi_ext; + duplicate_mode_info_in_sb(cm, xd, mi_row, mi_col, subsize); + if (mi_row + hbs < cm->mi_rows) { + set_mode_info_offsets(cm, x, xd, mi_row + hbs, mi_col); + *(xd->mi[0]) = pc_tree->horizontal[1].mic; + *(x->mbmi_ext) = pc_tree->horizontal[1].mbmi_ext; + duplicate_mode_info_in_sb(cm, xd, mi_row + hbs, mi_col, subsize); + } + break; + case PARTITION_SPLIT: { + fill_mode_info_sb(cm, x, mi_row, mi_col, subsize, pc_tree->split[0]); + fill_mode_info_sb(cm, x, mi_row, mi_col + hbs, subsize, + pc_tree->split[1]); + fill_mode_info_sb(cm, x, mi_row + hbs, mi_col, subsize, + pc_tree->split[2]); + fill_mode_info_sb(cm, x, mi_row + hbs, mi_col + hbs, subsize, + pc_tree->split[3]); + break; + } + default: break; + } +} + +// Reset the prediction pixel ready flag recursively. +static void pred_pixel_ready_reset(PC_TREE *pc_tree, BLOCK_SIZE bsize) { + pc_tree->none.pred_pixel_ready = 0; + pc_tree->horizontal[0].pred_pixel_ready = 0; + pc_tree->horizontal[1].pred_pixel_ready = 0; + pc_tree->vertical[0].pred_pixel_ready = 0; + pc_tree->vertical[1].pred_pixel_ready = 0; + + if (bsize > BLOCK_8X8) { + BLOCK_SIZE subsize = get_subsize(bsize, PARTITION_SPLIT); + int i; + for (i = 0; i < 4; ++i) pred_pixel_ready_reset(pc_tree->split[i], subsize); + } +} + +static void nonrd_pick_partition(VP9_COMP *cpi, ThreadData *td, + TileDataEnc *tile_data, TOKENEXTRA **tp, + int mi_row, int mi_col, BLOCK_SIZE bsize, + RD_COST *rd_cost, int do_recon, + int64_t best_rd, PC_TREE *pc_tree) { + const SPEED_FEATURES *const sf = &cpi->sf; + VP9_COMMON *const cm = &cpi->common; + TileInfo *const tile_info = &tile_data->tile_info; + MACROBLOCK *const x = &td->mb; + MACROBLOCKD *const xd = &x->e_mbd; + const int ms = num_8x8_blocks_wide_lookup[bsize] / 2; + TOKENEXTRA *tp_orig = *tp; + PICK_MODE_CONTEXT *ctx = &pc_tree->none; + int i; + BLOCK_SIZE subsize = bsize; + RD_COST this_rdc, sum_rdc, best_rdc; + int do_split = bsize >= BLOCK_8X8; + int do_rect = 1; + // Override skipping rectangular partition operations for edge blocks + const int force_horz_split = (mi_row + ms >= cm->mi_rows); + const int force_vert_split = (mi_col + ms >= cm->mi_cols); + const int xss = x->e_mbd.plane[1].subsampling_x; + const int yss = x->e_mbd.plane[1].subsampling_y; + + int partition_none_allowed = !force_horz_split && !force_vert_split; + int partition_horz_allowed = + !force_vert_split && yss <= xss && bsize >= BLOCK_8X8; + int partition_vert_allowed = + !force_horz_split && xss <= yss && bsize >= BLOCK_8X8; + (void)*tp_orig; + + // Avoid checking for rectangular partitions for speed >= 6. + if (cpi->oxcf.speed >= 6) do_rect = 0; + + assert(num_8x8_blocks_wide_lookup[bsize] == + num_8x8_blocks_high_lookup[bsize]); + + vp9_rd_cost_init(&sum_rdc); + vp9_rd_cost_reset(&best_rdc); + best_rdc.rdcost = best_rd; + + // Determine partition types in search according to the speed features. + // The threshold set here has to be of square block size. + if (sf->auto_min_max_partition_size) { + partition_none_allowed &= + (bsize <= x->max_partition_size && bsize >= x->min_partition_size); + partition_horz_allowed &= + ((bsize <= x->max_partition_size && bsize > x->min_partition_size) || + force_horz_split); + partition_vert_allowed &= + ((bsize <= x->max_partition_size && bsize > x->min_partition_size) || + force_vert_split); + do_split &= bsize > x->min_partition_size; + } + if (sf->use_square_partition_only) { + partition_horz_allowed &= force_horz_split; + partition_vert_allowed &= force_vert_split; + } + + ctx->pred_pixel_ready = + !(partition_vert_allowed || partition_horz_allowed || do_split); + + // PARTITION_NONE + if (partition_none_allowed) { + nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &this_rdc, bsize, + ctx); + ctx->mic = *xd->mi[0]; + ctx->mbmi_ext = *x->mbmi_ext; + ctx->skip_txfm[0] = x->skip_txfm[0]; + ctx->skip = x->skip; + + if (this_rdc.rate != INT_MAX) { + int pl = partition_plane_context(xd, mi_row, mi_col, bsize); + this_rdc.rate += cpi->partition_cost[pl][PARTITION_NONE]; + this_rdc.rdcost = + RDCOST(x->rdmult, x->rddiv, this_rdc.rate, this_rdc.dist); + if (this_rdc.rdcost < best_rdc.rdcost) { + int64_t dist_breakout_thr = sf->partition_search_breakout_thr.dist; + int64_t rate_breakout_thr = sf->partition_search_breakout_thr.rate; + + dist_breakout_thr >>= + 8 - (b_width_log2_lookup[bsize] + b_height_log2_lookup[bsize]); + + rate_breakout_thr *= num_pels_log2_lookup[bsize]; + + best_rdc = this_rdc; + if (bsize >= BLOCK_8X8) pc_tree->partitioning = PARTITION_NONE; + + if (!x->e_mbd.lossless && this_rdc.rate < rate_breakout_thr && + this_rdc.dist < dist_breakout_thr) { + do_split = 0; + do_rect = 0; + } + } + } + } + + // store estimated motion vector + store_pred_mv(x, ctx); + + // PARTITION_SPLIT + if (do_split) { + int pl = partition_plane_context(xd, mi_row, mi_col, bsize); + sum_rdc.rate += cpi->partition_cost[pl][PARTITION_SPLIT]; + sum_rdc.rdcost = RDCOST(x->rdmult, x->rddiv, sum_rdc.rate, sum_rdc.dist); + subsize = get_subsize(bsize, PARTITION_SPLIT); + for (i = 0; i < 4 && sum_rdc.rdcost < best_rdc.rdcost; ++i) { + const int x_idx = (i & 1) * ms; + const int y_idx = (i >> 1) * ms; + + if (mi_row + y_idx >= cm->mi_rows || mi_col + x_idx >= cm->mi_cols) + continue; + load_pred_mv(x, ctx); + nonrd_pick_partition(cpi, td, tile_data, tp, mi_row + y_idx, + mi_col + x_idx, subsize, &this_rdc, 0, + best_rdc.rdcost - sum_rdc.rdcost, pc_tree->split[i]); + + if (this_rdc.rate == INT_MAX) { + vp9_rd_cost_reset(&sum_rdc); + } else { + sum_rdc.rate += this_rdc.rate; + sum_rdc.dist += this_rdc.dist; + sum_rdc.rdcost += this_rdc.rdcost; + } + } + + if (sum_rdc.rdcost < best_rdc.rdcost) { + best_rdc = sum_rdc; + pc_tree->partitioning = PARTITION_SPLIT; + } else { + // skip rectangular partition test when larger block size + // gives better rd cost + if (sf->less_rectangular_check) do_rect &= !partition_none_allowed; + } + } + + // PARTITION_HORZ + if (partition_horz_allowed && do_rect) { + subsize = get_subsize(bsize, PARTITION_HORZ); + if (sf->adaptive_motion_search) load_pred_mv(x, ctx); + pc_tree->horizontal[0].pred_pixel_ready = 1; + nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &sum_rdc, subsize, + &pc_tree->horizontal[0]); + + pc_tree->horizontal[0].mic = *xd->mi[0]; + pc_tree->horizontal[0].mbmi_ext = *x->mbmi_ext; + pc_tree->horizontal[0].skip_txfm[0] = x->skip_txfm[0]; + pc_tree->horizontal[0].skip = x->skip; + + if (sum_rdc.rdcost < best_rdc.rdcost && mi_row + ms < cm->mi_rows) { + load_pred_mv(x, ctx); + pc_tree->horizontal[1].pred_pixel_ready = 1; + nonrd_pick_sb_modes(cpi, tile_data, x, mi_row + ms, mi_col, &this_rdc, + subsize, &pc_tree->horizontal[1]); + + pc_tree->horizontal[1].mic = *xd->mi[0]; + pc_tree->horizontal[1].mbmi_ext = *x->mbmi_ext; + pc_tree->horizontal[1].skip_txfm[0] = x->skip_txfm[0]; + pc_tree->horizontal[1].skip = x->skip; + + if (this_rdc.rate == INT_MAX) { + vp9_rd_cost_reset(&sum_rdc); + } else { + int pl = partition_plane_context(xd, mi_row, mi_col, bsize); + this_rdc.rate += cpi->partition_cost[pl][PARTITION_HORZ]; + sum_rdc.rate += this_rdc.rate; + sum_rdc.dist += this_rdc.dist; + sum_rdc.rdcost = + RDCOST(x->rdmult, x->rddiv, sum_rdc.rate, sum_rdc.dist); + } + } + + if (sum_rdc.rdcost < best_rdc.rdcost) { + best_rdc = sum_rdc; + pc_tree->partitioning = PARTITION_HORZ; + } else { + pred_pixel_ready_reset(pc_tree, bsize); + } + } + + // PARTITION_VERT + if (partition_vert_allowed && do_rect) { + subsize = get_subsize(bsize, PARTITION_VERT); + if (sf->adaptive_motion_search) load_pred_mv(x, ctx); + pc_tree->vertical[0].pred_pixel_ready = 1; + nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &sum_rdc, subsize, + &pc_tree->vertical[0]); + pc_tree->vertical[0].mic = *xd->mi[0]; + pc_tree->vertical[0].mbmi_ext = *x->mbmi_ext; + pc_tree->vertical[0].skip_txfm[0] = x->skip_txfm[0]; + pc_tree->vertical[0].skip = x->skip; + + if (sum_rdc.rdcost < best_rdc.rdcost && mi_col + ms < cm->mi_cols) { + load_pred_mv(x, ctx); + pc_tree->vertical[1].pred_pixel_ready = 1; + nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col + ms, &this_rdc, + subsize, &pc_tree->vertical[1]); + pc_tree->vertical[1].mic = *xd->mi[0]; + pc_tree->vertical[1].mbmi_ext = *x->mbmi_ext; + pc_tree->vertical[1].skip_txfm[0] = x->skip_txfm[0]; + pc_tree->vertical[1].skip = x->skip; + + if (this_rdc.rate == INT_MAX) { + vp9_rd_cost_reset(&sum_rdc); + } else { + int pl = partition_plane_context(xd, mi_row, mi_col, bsize); + sum_rdc.rate += cpi->partition_cost[pl][PARTITION_VERT]; + sum_rdc.rate += this_rdc.rate; + sum_rdc.dist += this_rdc.dist; + sum_rdc.rdcost = + RDCOST(x->rdmult, x->rddiv, sum_rdc.rate, sum_rdc.dist); + } + } + + if (sum_rdc.rdcost < best_rdc.rdcost) { + best_rdc = sum_rdc; + pc_tree->partitioning = PARTITION_VERT; + } else { + pred_pixel_ready_reset(pc_tree, bsize); + } + } + + *rd_cost = best_rdc; + + if (best_rdc.rate == INT_MAX) { + vp9_rd_cost_reset(rd_cost); + return; + } + + // update mode info array + fill_mode_info_sb(cm, x, mi_row, mi_col, bsize, pc_tree); + + if (best_rdc.rate < INT_MAX && best_rdc.dist < INT64_MAX && do_recon) { + int output_enabled = (bsize == BLOCK_64X64); + encode_sb_rt(cpi, td, tile_info, tp, mi_row, mi_col, output_enabled, bsize, + pc_tree); + } + + if (bsize == BLOCK_64X64 && do_recon) { + assert(tp_orig < *tp); + assert(best_rdc.rate < INT_MAX); + assert(best_rdc.dist < INT64_MAX); + } else { + assert(tp_orig == *tp); + } +} + +static void nonrd_select_partition(VP9_COMP *cpi, ThreadData *td, + TileDataEnc *tile_data, MODE_INFO **mi, + TOKENEXTRA **tp, int mi_row, int mi_col, + BLOCK_SIZE bsize, int output_enabled, + RD_COST *rd_cost, PC_TREE *pc_tree) { + VP9_COMMON *const cm = &cpi->common; + TileInfo *const tile_info = &tile_data->tile_info; + MACROBLOCK *const x = &td->mb; + MACROBLOCKD *const xd = &x->e_mbd; + const int bsl = b_width_log2_lookup[bsize], hbs = (1 << bsl) / 4; + const int mis = cm->mi_stride; + PARTITION_TYPE partition; + BLOCK_SIZE subsize; + RD_COST this_rdc; + BLOCK_SIZE subsize_ref = + (cpi->sf.adapt_partition_source_sad) ? BLOCK_8X8 : BLOCK_16X16; + + vp9_rd_cost_reset(&this_rdc); + if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return; + + subsize = (bsize >= BLOCK_8X8) ? mi[0]->sb_type : BLOCK_4X4; + partition = partition_lookup[bsl][subsize]; + + if (bsize == BLOCK_32X32 && subsize == BLOCK_32X32) { + x->max_partition_size = BLOCK_32X32; + x->min_partition_size = BLOCK_16X16; + nonrd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col, bsize, rd_cost, + 0, INT64_MAX, pc_tree); + } else if (bsize == BLOCK_32X32 && partition != PARTITION_NONE && + subsize >= subsize_ref) { + x->max_partition_size = BLOCK_32X32; + x->min_partition_size = BLOCK_8X8; + nonrd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col, bsize, rd_cost, + 0, INT64_MAX, pc_tree); + } else if (bsize == BLOCK_16X16 && partition != PARTITION_NONE) { + x->max_partition_size = BLOCK_16X16; + x->min_partition_size = BLOCK_8X8; + nonrd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col, bsize, rd_cost, + 0, INT64_MAX, pc_tree); + } else { + switch (partition) { + case PARTITION_NONE: + pc_tree->none.pred_pixel_ready = 1; + nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, rd_cost, subsize, + &pc_tree->none); + pc_tree->none.mic = *xd->mi[0]; + pc_tree->none.mbmi_ext = *x->mbmi_ext; + pc_tree->none.skip_txfm[0] = x->skip_txfm[0]; + pc_tree->none.skip = x->skip; + break; + case PARTITION_VERT: + pc_tree->vertical[0].pred_pixel_ready = 1; + nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, rd_cost, subsize, + &pc_tree->vertical[0]); + pc_tree->vertical[0].mic = *xd->mi[0]; + pc_tree->vertical[0].mbmi_ext = *x->mbmi_ext; + pc_tree->vertical[0].skip_txfm[0] = x->skip_txfm[0]; + pc_tree->vertical[0].skip = x->skip; + if (mi_col + hbs < cm->mi_cols) { + pc_tree->vertical[1].pred_pixel_ready = 1; + nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col + hbs, + &this_rdc, subsize, &pc_tree->vertical[1]); + pc_tree->vertical[1].mic = *xd->mi[0]; + pc_tree->vertical[1].mbmi_ext = *x->mbmi_ext; + pc_tree->vertical[1].skip_txfm[0] = x->skip_txfm[0]; + pc_tree->vertical[1].skip = x->skip; + if (this_rdc.rate != INT_MAX && this_rdc.dist != INT64_MAX && + rd_cost->rate != INT_MAX && rd_cost->dist != INT64_MAX) { + rd_cost->rate += this_rdc.rate; + rd_cost->dist += this_rdc.dist; + } + } + break; + case PARTITION_HORZ: + pc_tree->horizontal[0].pred_pixel_ready = 1; + nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, rd_cost, subsize, + &pc_tree->horizontal[0]); + pc_tree->horizontal[0].mic = *xd->mi[0]; + pc_tree->horizontal[0].mbmi_ext = *x->mbmi_ext; + pc_tree->horizontal[0].skip_txfm[0] = x->skip_txfm[0]; + pc_tree->horizontal[0].skip = x->skip; + if (mi_row + hbs < cm->mi_rows) { + pc_tree->horizontal[1].pred_pixel_ready = 1; + nonrd_pick_sb_modes(cpi, tile_data, x, mi_row + hbs, mi_col, + &this_rdc, subsize, &pc_tree->horizontal[1]); + pc_tree->horizontal[1].mic = *xd->mi[0]; + pc_tree->horizontal[1].mbmi_ext = *x->mbmi_ext; + pc_tree->horizontal[1].skip_txfm[0] = x->skip_txfm[0]; + pc_tree->horizontal[1].skip = x->skip; + if (this_rdc.rate != INT_MAX && this_rdc.dist != INT64_MAX && + rd_cost->rate != INT_MAX && rd_cost->dist != INT64_MAX) { + rd_cost->rate += this_rdc.rate; + rd_cost->dist += this_rdc.dist; + } + } + break; + case PARTITION_SPLIT: + subsize = get_subsize(bsize, PARTITION_SPLIT); + nonrd_select_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col, + subsize, output_enabled, rd_cost, + pc_tree->split[0]); + nonrd_select_partition(cpi, td, tile_data, mi + hbs, tp, mi_row, + mi_col + hbs, subsize, output_enabled, &this_rdc, + pc_tree->split[1]); + if (this_rdc.rate != INT_MAX && this_rdc.dist != INT64_MAX && + rd_cost->rate != INT_MAX && rd_cost->dist != INT64_MAX) { + rd_cost->rate += this_rdc.rate; + rd_cost->dist += this_rdc.dist; + } + nonrd_select_partition(cpi, td, tile_data, mi + hbs * mis, tp, + mi_row + hbs, mi_col, subsize, output_enabled, + &this_rdc, pc_tree->split[2]); + if (this_rdc.rate != INT_MAX && this_rdc.dist != INT64_MAX && + rd_cost->rate != INT_MAX && rd_cost->dist != INT64_MAX) { + rd_cost->rate += this_rdc.rate; + rd_cost->dist += this_rdc.dist; + } + nonrd_select_partition(cpi, td, tile_data, mi + hbs * mis + hbs, tp, + mi_row + hbs, mi_col + hbs, subsize, + output_enabled, &this_rdc, pc_tree->split[3]); + if (this_rdc.rate != INT_MAX && this_rdc.dist != INT64_MAX && + rd_cost->rate != INT_MAX && rd_cost->dist != INT64_MAX) { + rd_cost->rate += this_rdc.rate; + rd_cost->dist += this_rdc.dist; + } + break; + default: assert(0 && "Invalid partition type."); break; + } + } + + if (bsize == BLOCK_64X64 && output_enabled) + encode_sb_rt(cpi, td, tile_info, tp, mi_row, mi_col, 1, bsize, pc_tree); +} + +static void nonrd_use_partition(VP9_COMP *cpi, ThreadData *td, + TileDataEnc *tile_data, MODE_INFO **mi, + TOKENEXTRA **tp, int mi_row, int mi_col, + BLOCK_SIZE bsize, int output_enabled, + RD_COST *dummy_cost, PC_TREE *pc_tree) { + VP9_COMMON *const cm = &cpi->common; + TileInfo *tile_info = &tile_data->tile_info; + MACROBLOCK *const x = &td->mb; + MACROBLOCKD *const xd = &x->e_mbd; + const int bsl = b_width_log2_lookup[bsize], hbs = (1 << bsl) / 4; + const int mis = cm->mi_stride; + PARTITION_TYPE partition; + BLOCK_SIZE subsize; + + if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return; + + subsize = (bsize >= BLOCK_8X8) ? mi[0]->sb_type : BLOCK_4X4; + partition = partition_lookup[bsl][subsize]; + + if (output_enabled && bsize != BLOCK_4X4) { + int ctx = partition_plane_context(xd, mi_row, mi_col, bsize); + td->counts->partition[ctx][partition]++; + } + + switch (partition) { + case PARTITION_NONE: + pc_tree->none.pred_pixel_ready = 1; + nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, dummy_cost, + subsize, &pc_tree->none); + pc_tree->none.mic = *xd->mi[0]; + pc_tree->none.mbmi_ext = *x->mbmi_ext; + pc_tree->none.skip_txfm[0] = x->skip_txfm[0]; + pc_tree->none.skip = x->skip; + encode_b_rt(cpi, td, tile_info, tp, mi_row, mi_col, output_enabled, + subsize, &pc_tree->none); + break; + case PARTITION_VERT: + pc_tree->vertical[0].pred_pixel_ready = 1; + nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, dummy_cost, + subsize, &pc_tree->vertical[0]); + pc_tree->vertical[0].mic = *xd->mi[0]; + pc_tree->vertical[0].mbmi_ext = *x->mbmi_ext; + pc_tree->vertical[0].skip_txfm[0] = x->skip_txfm[0]; + pc_tree->vertical[0].skip = x->skip; + encode_b_rt(cpi, td, tile_info, tp, mi_row, mi_col, output_enabled, + subsize, &pc_tree->vertical[0]); + if (mi_col + hbs < cm->mi_cols && bsize > BLOCK_8X8) { + pc_tree->vertical[1].pred_pixel_ready = 1; + nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col + hbs, dummy_cost, + subsize, &pc_tree->vertical[1]); + pc_tree->vertical[1].mic = *xd->mi[0]; + pc_tree->vertical[1].mbmi_ext = *x->mbmi_ext; + pc_tree->vertical[1].skip_txfm[0] = x->skip_txfm[0]; + pc_tree->vertical[1].skip = x->skip; + encode_b_rt(cpi, td, tile_info, tp, mi_row, mi_col + hbs, + output_enabled, subsize, &pc_tree->vertical[1]); + } + break; + case PARTITION_HORZ: + pc_tree->horizontal[0].pred_pixel_ready = 1; + nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, dummy_cost, + subsize, &pc_tree->horizontal[0]); + pc_tree->horizontal[0].mic = *xd->mi[0]; + pc_tree->horizontal[0].mbmi_ext = *x->mbmi_ext; + pc_tree->horizontal[0].skip_txfm[0] = x->skip_txfm[0]; + pc_tree->horizontal[0].skip = x->skip; + encode_b_rt(cpi, td, tile_info, tp, mi_row, mi_col, output_enabled, + subsize, &pc_tree->horizontal[0]); + + if (mi_row + hbs < cm->mi_rows && bsize > BLOCK_8X8) { + pc_tree->horizontal[1].pred_pixel_ready = 1; + nonrd_pick_sb_modes(cpi, tile_data, x, mi_row + hbs, mi_col, dummy_cost, + subsize, &pc_tree->horizontal[1]); + pc_tree->horizontal[1].mic = *xd->mi[0]; + pc_tree->horizontal[1].mbmi_ext = *x->mbmi_ext; + pc_tree->horizontal[1].skip_txfm[0] = x->skip_txfm[0]; + pc_tree->horizontal[1].skip = x->skip; + encode_b_rt(cpi, td, tile_info, tp, mi_row + hbs, mi_col, + output_enabled, subsize, &pc_tree->horizontal[1]); + } + break; + case PARTITION_SPLIT: + subsize = get_subsize(bsize, PARTITION_SPLIT); + if (bsize == BLOCK_8X8) { + nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, dummy_cost, + subsize, pc_tree->leaf_split[0]); + encode_b_rt(cpi, td, tile_info, tp, mi_row, mi_col, output_enabled, + subsize, pc_tree->leaf_split[0]); + } else { + nonrd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col, subsize, + output_enabled, dummy_cost, pc_tree->split[0]); + nonrd_use_partition(cpi, td, tile_data, mi + hbs, tp, mi_row, + mi_col + hbs, subsize, output_enabled, dummy_cost, + pc_tree->split[1]); + nonrd_use_partition(cpi, td, tile_data, mi + hbs * mis, tp, + mi_row + hbs, mi_col, subsize, output_enabled, + dummy_cost, pc_tree->split[2]); + nonrd_use_partition(cpi, td, tile_data, mi + hbs * mis + hbs, tp, + mi_row + hbs, mi_col + hbs, subsize, output_enabled, + dummy_cost, pc_tree->split[3]); + } + break; + default: assert(0 && "Invalid partition type."); break; + } + + if (partition != PARTITION_SPLIT || bsize == BLOCK_8X8) + update_partition_context(xd, mi_row, mi_col, subsize, bsize); +} + +static void encode_nonrd_sb_row(VP9_COMP *cpi, ThreadData *td, + TileDataEnc *tile_data, int mi_row, + TOKENEXTRA **tp) { + SPEED_FEATURES *const sf = &cpi->sf; + VP9_COMMON *const cm = &cpi->common; + TileInfo *const tile_info = &tile_data->tile_info; + MACROBLOCK *const x = &td->mb; + MACROBLOCKD *const xd = &x->e_mbd; + const int mi_col_start = tile_info->mi_col_start; + const int mi_col_end = tile_info->mi_col_end; + int mi_col; + const int sb_row = mi_row >> MI_BLOCK_SIZE_LOG2; + const int num_sb_cols = + get_num_cols(tile_data->tile_info, MI_BLOCK_SIZE_LOG2); + int sb_col_in_tile; + + // Initialize the left context for the new SB row + memset(&xd->left_context, 0, sizeof(xd->left_context)); + memset(xd->left_seg_context, 0, sizeof(xd->left_seg_context)); + + // Code each SB in the row + for (mi_col = mi_col_start, sb_col_in_tile = 0; mi_col < mi_col_end; + mi_col += MI_BLOCK_SIZE, ++sb_col_in_tile) { + const struct segmentation *const seg = &cm->seg; + RD_COST dummy_rdc; + const int idx_str = cm->mi_stride * mi_row + mi_col; + MODE_INFO **mi = cm->mi_grid_visible + idx_str; + PARTITION_SEARCH_TYPE partition_search_type = sf->partition_search_type; + BLOCK_SIZE bsize = BLOCK_64X64; + int seg_skip = 0; + + (*(cpi->row_mt_sync_read_ptr))(&tile_data->row_mt_sync, sb_row, + sb_col_in_tile); + + if (cpi->use_skin_detection) { + vp9_compute_skin_sb(cpi, BLOCK_16X16, mi_row, mi_col); + } + + x->source_variance = UINT_MAX; + vp9_zero(x->pred_mv); + vp9_rd_cost_init(&dummy_rdc); + x->color_sensitivity[0] = 0; + x->color_sensitivity[1] = 0; + x->sb_is_skin = 0; + x->skip_low_source_sad = 0; + x->lowvar_highsumdiff = 0; + x->content_state_sb = 0; + x->sb_use_mv_part = 0; + x->sb_mvcol_part = 0; + x->sb_mvrow_part = 0; + x->sb_pickmode_part = 0; + x->arf_frame_usage = 0; + x->lastgolden_frame_usage = 0; + + if (seg->enabled) { + const uint8_t *const map = + seg->update_map ? cpi->segmentation_map : cm->last_frame_seg_map; + int segment_id = get_segment_id(cm, map, BLOCK_64X64, mi_row, mi_col); + seg_skip = segfeature_active(seg, segment_id, SEG_LVL_SKIP); + if (seg_skip) { + partition_search_type = FIXED_PARTITION; + } + } + + if (cpi->compute_source_sad_onepass && cpi->sf.use_source_sad) { + int shift = cpi->Source->y_stride * (mi_row << 3) + (mi_col << 3); + int sb_offset2 = ((cm->mi_cols + 7) >> 3) * (mi_row >> 3) + (mi_col >> 3); + int64_t source_sad = avg_source_sad(cpi, x, shift, sb_offset2); + if (sf->adapt_partition_source_sad && + (cpi->oxcf.rc_mode == VPX_VBR && !cpi->rc.is_src_frame_alt_ref && + source_sad > sf->adapt_partition_thresh && + (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame))) + partition_search_type = REFERENCE_PARTITION; + } + + // Set the partition type of the 64X64 block + switch (partition_search_type) { + case VAR_BASED_PARTITION: + // TODO(jingning, marpan): The mode decision and encoding process + // support both intra and inter sub8x8 block coding for RTC mode. + // Tune the thresholds accordingly to use sub8x8 block coding for + // coding performance improvement. + choose_partitioning(cpi, tile_info, x, mi_row, mi_col); + nonrd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col, + BLOCK_64X64, 1, &dummy_rdc, td->pc_root); + break; + case SOURCE_VAR_BASED_PARTITION: + set_source_var_based_partition(cpi, tile_info, x, mi, mi_row, mi_col); + nonrd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col, + BLOCK_64X64, 1, &dummy_rdc, td->pc_root); + break; + case FIXED_PARTITION: + if (!seg_skip) bsize = sf->always_this_block_size; + set_fixed_partitioning(cpi, tile_info, mi, mi_row, mi_col, bsize); + nonrd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col, + BLOCK_64X64, 1, &dummy_rdc, td->pc_root); + break; + case REFERENCE_PARTITION: + x->sb_pickmode_part = 1; + set_offsets(cpi, tile_info, x, mi_row, mi_col, BLOCK_64X64); + // Use nonrd_pick_partition on scene-cut for VBR mode. + // nonrd_pick_partition does not support 4x4 partition, so avoid it + // on key frame for now. + if ((cpi->oxcf.rc_mode == VPX_VBR && cpi->rc.high_source_sad && + cpi->oxcf.speed < 6 && cm->frame_type != KEY_FRAME && + (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame))) { + // Use lower max_partition_size for low resoultions. + if (cm->width <= 352 && cm->height <= 288) + x->max_partition_size = BLOCK_32X32; + else + x->max_partition_size = BLOCK_64X64; + x->min_partition_size = BLOCK_8X8; + nonrd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col, + BLOCK_64X64, &dummy_rdc, 1, INT64_MAX, + td->pc_root); + } else { + choose_partitioning(cpi, tile_info, x, mi_row, mi_col); + // TODO(marpan): Seems like nonrd_select_partition does not support + // 4x4 partition. Since 4x4 is used on key frame, use this switch + // for now. + if (cm->frame_type == KEY_FRAME) + nonrd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col, + BLOCK_64X64, 1, &dummy_rdc, td->pc_root); + else + nonrd_select_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col, + BLOCK_64X64, 1, &dummy_rdc, td->pc_root); + } + + break; + default: assert(0); break; + } + + // Update ref_frame usage for inter frame if this group is ARF group. + if (!cpi->rc.is_src_frame_alt_ref && !cpi->refresh_golden_frame && + !cpi->refresh_alt_ref_frame && cpi->rc.alt_ref_gf_group && + cpi->sf.use_altref_onepass) { + int sboffset = ((cm->mi_cols + 7) >> 3) * (mi_row >> 3) + (mi_col >> 3); + if (cpi->count_arf_frame_usage != NULL) + cpi->count_arf_frame_usage[sboffset] = x->arf_frame_usage; + if (cpi->count_lastgolden_frame_usage != NULL) + cpi->count_lastgolden_frame_usage[sboffset] = x->lastgolden_frame_usage; + } + + (*(cpi->row_mt_sync_write_ptr))(&tile_data->row_mt_sync, sb_row, + sb_col_in_tile, num_sb_cols); + } +} +// end RTC play code + +static INLINE uint32_t variance(const diff *const d) { + return d->sse - (uint32_t)(((int64_t)d->sum * d->sum) >> 8); +} + +#if CONFIG_VP9_HIGHBITDEPTH +static INLINE uint32_t variance_highbd(diff *const d) { + const int64_t var = (int64_t)d->sse - (((int64_t)d->sum * d->sum) >> 8); + return (var >= 0) ? (uint32_t)var : 0; +} +#endif // CONFIG_VP9_HIGHBITDEPTH + +static int set_var_thresh_from_histogram(VP9_COMP *cpi) { + const SPEED_FEATURES *const sf = &cpi->sf; + const VP9_COMMON *const cm = &cpi->common; + + const uint8_t *src = cpi->Source->y_buffer; + const uint8_t *last_src = cpi->Last_Source->y_buffer; + const int src_stride = cpi->Source->y_stride; + const int last_stride = cpi->Last_Source->y_stride; + + // Pick cutoff threshold + const int cutoff = (VPXMIN(cm->width, cm->height) >= 720) + ? (cm->MBs * VAR_HIST_LARGE_CUT_OFF / 100) + : (cm->MBs * VAR_HIST_SMALL_CUT_OFF / 100); + DECLARE_ALIGNED(16, int, hist[VAR_HIST_BINS]); + diff *var16 = cpi->source_diff_var; + + int sum = 0; + int i, j; + + memset(hist, 0, VAR_HIST_BINS * sizeof(hist[0])); + + for (i = 0; i < cm->mb_rows; i++) { + for (j = 0; j < cm->mb_cols; j++) { +#if CONFIG_VP9_HIGHBITDEPTH + if (cm->use_highbitdepth) { + switch (cm->bit_depth) { + case VPX_BITS_8: + vpx_highbd_8_get16x16var(src, src_stride, last_src, last_stride, + &var16->sse, &var16->sum); + var16->var = variance(var16); + break; + case VPX_BITS_10: + vpx_highbd_10_get16x16var(src, src_stride, last_src, last_stride, + &var16->sse, &var16->sum); + var16->var = variance_highbd(var16); + break; + case VPX_BITS_12: + vpx_highbd_12_get16x16var(src, src_stride, last_src, last_stride, + &var16->sse, &var16->sum); + var16->var = variance_highbd(var16); + break; + default: + assert(0 && + "cm->bit_depth should be VPX_BITS_8, VPX_BITS_10" + " or VPX_BITS_12"); + return -1; + } + } else { + vpx_get16x16var(src, src_stride, last_src, last_stride, &var16->sse, + &var16->sum); + var16->var = variance(var16); + } +#else + vpx_get16x16var(src, src_stride, last_src, last_stride, &var16->sse, + &var16->sum); + var16->var = variance(var16); +#endif // CONFIG_VP9_HIGHBITDEPTH + + if (var16->var >= VAR_HIST_MAX_BG_VAR) + hist[VAR_HIST_BINS - 1]++; + else + hist[var16->var / VAR_HIST_FACTOR]++; + + src += 16; + last_src += 16; + var16++; + } + + src = src - cm->mb_cols * 16 + 16 * src_stride; + last_src = last_src - cm->mb_cols * 16 + 16 * last_stride; + } + + cpi->source_var_thresh = 0; + + if (hist[VAR_HIST_BINS - 1] < cutoff) { + for (i = 0; i < VAR_HIST_BINS - 1; i++) { + sum += hist[i]; + + if (sum > cutoff) { + cpi->source_var_thresh = (i + 1) * VAR_HIST_FACTOR; + return 0; + } + } + } + + return sf->search_type_check_frequency; +} + +static void source_var_based_partition_search_method(VP9_COMP *cpi) { + VP9_COMMON *const cm = &cpi->common; + SPEED_FEATURES *const sf = &cpi->sf; + + if (cm->frame_type == KEY_FRAME) { + // For key frame, use SEARCH_PARTITION. + sf->partition_search_type = SEARCH_PARTITION; + } else if (cm->intra_only) { + sf->partition_search_type = FIXED_PARTITION; + } else { + if (cm->last_width != cm->width || cm->last_height != cm->height) { + if (cpi->source_diff_var) vpx_free(cpi->source_diff_var); + + CHECK_MEM_ERROR(cm, cpi->source_diff_var, + vpx_calloc(cm->MBs, sizeof(diff))); + } + + if (!cpi->frames_till_next_var_check) + cpi->frames_till_next_var_check = set_var_thresh_from_histogram(cpi); + + if (cpi->frames_till_next_var_check > 0) { + sf->partition_search_type = FIXED_PARTITION; + cpi->frames_till_next_var_check--; + } + } +} + +static int get_skip_encode_frame(const VP9_COMMON *cm, ThreadData *const td) { + unsigned int intra_count = 0, inter_count = 0; + int j; + + for (j = 0; j < INTRA_INTER_CONTEXTS; ++j) { + intra_count += td->counts->intra_inter[j][0]; + inter_count += td->counts->intra_inter[j][1]; + } + + return (intra_count << 2) < inter_count && cm->frame_type != KEY_FRAME && + cm->show_frame; +} + +void vp9_init_tile_data(VP9_COMP *cpi) { + VP9_COMMON *const cm = &cpi->common; + const int tile_cols = 1 << cm->log2_tile_cols; + const int tile_rows = 1 << cm->log2_tile_rows; + int tile_col, tile_row; + TOKENEXTRA *pre_tok = cpi->tile_tok[0][0]; + TOKENLIST *tplist = cpi->tplist[0][0]; + int tile_tok = 0; + int tplist_count = 0; + + if (cpi->tile_data == NULL || cpi->allocated_tiles < tile_cols * tile_rows) { + if (cpi->tile_data != NULL) vpx_free(cpi->tile_data); + CHECK_MEM_ERROR(cm, cpi->tile_data, vpx_malloc(tile_cols * tile_rows * + sizeof(*cpi->tile_data))); + cpi->allocated_tiles = tile_cols * tile_rows; + + for (tile_row = 0; tile_row < tile_rows; ++tile_row) + for (tile_col = 0; tile_col < tile_cols; ++tile_col) { + TileDataEnc *tile_data = + &cpi->tile_data[tile_row * tile_cols + tile_col]; + int i, j; + for (i = 0; i < BLOCK_SIZES; ++i) { + for (j = 0; j < MAX_MODES; ++j) { + tile_data->thresh_freq_fact[i][j] = RD_THRESH_INIT_FACT; + tile_data->mode_map[i][j] = j; + } + } +#if CONFIG_MULTITHREAD + tile_data->row_base_thresh_freq_fact = NULL; +#endif + } + } + + for (tile_row = 0; tile_row < tile_rows; ++tile_row) { + for (tile_col = 0; tile_col < tile_cols; ++tile_col) { + TileDataEnc *this_tile = &cpi->tile_data[tile_row * tile_cols + tile_col]; + TileInfo *tile_info = &this_tile->tile_info; + vp9_tile_init(tile_info, cm, tile_row, tile_col); + + cpi->tile_tok[tile_row][tile_col] = pre_tok + tile_tok; + pre_tok = cpi->tile_tok[tile_row][tile_col]; + tile_tok = allocated_tokens(*tile_info); + + cpi->tplist[tile_row][tile_col] = tplist + tplist_count; + tplist = cpi->tplist[tile_row][tile_col]; + tplist_count = get_num_vert_units(*tile_info, MI_BLOCK_SIZE_LOG2); + } + } +} + +void vp9_encode_sb_row(VP9_COMP *cpi, ThreadData *td, int tile_row, + int tile_col, int mi_row) { + VP9_COMMON *const cm = &cpi->common; + const int tile_cols = 1 << cm->log2_tile_cols; + TileDataEnc *this_tile = &cpi->tile_data[tile_row * tile_cols + tile_col]; + const TileInfo *const tile_info = &this_tile->tile_info; + TOKENEXTRA *tok = NULL; + int tile_sb_row; + int tile_mb_cols = (tile_info->mi_col_end - tile_info->mi_col_start + 1) >> 1; + + tile_sb_row = mi_cols_aligned_to_sb(mi_row - tile_info->mi_row_start) >> + MI_BLOCK_SIZE_LOG2; + get_start_tok(cpi, tile_row, tile_col, mi_row, &tok); + cpi->tplist[tile_row][tile_col][tile_sb_row].start = tok; + + if (cpi->sf.use_nonrd_pick_mode) + encode_nonrd_sb_row(cpi, td, this_tile, mi_row, &tok); + else + encode_rd_sb_row(cpi, td, this_tile, mi_row, &tok); + + cpi->tplist[tile_row][tile_col][tile_sb_row].stop = tok; + cpi->tplist[tile_row][tile_col][tile_sb_row].count = + (unsigned int)(cpi->tplist[tile_row][tile_col][tile_sb_row].stop - + cpi->tplist[tile_row][tile_col][tile_sb_row].start); + assert(tok - cpi->tplist[tile_row][tile_col][tile_sb_row].start <= + get_token_alloc(MI_BLOCK_SIZE >> 1, tile_mb_cols)); + + (void)tile_mb_cols; +} + +void vp9_encode_tile(VP9_COMP *cpi, ThreadData *td, int tile_row, + int tile_col) { + VP9_COMMON *const cm = &cpi->common; + const int tile_cols = 1 << cm->log2_tile_cols; + TileDataEnc *this_tile = &cpi->tile_data[tile_row * tile_cols + tile_col]; + const TileInfo *const tile_info = &this_tile->tile_info; + const int mi_row_start = tile_info->mi_row_start; + const int mi_row_end = tile_info->mi_row_end; + int mi_row; + + for (mi_row = mi_row_start; mi_row < mi_row_end; mi_row += MI_BLOCK_SIZE) + vp9_encode_sb_row(cpi, td, tile_row, tile_col, mi_row); +} + +static void encode_tiles(VP9_COMP *cpi) { + VP9_COMMON *const cm = &cpi->common; + const int tile_cols = 1 << cm->log2_tile_cols; + const int tile_rows = 1 << cm->log2_tile_rows; + int tile_col, tile_row; + + vp9_init_tile_data(cpi); + + for (tile_row = 0; tile_row < tile_rows; ++tile_row) + for (tile_col = 0; tile_col < tile_cols; ++tile_col) + vp9_encode_tile(cpi, &cpi->td, tile_row, tile_col); +} + +#if CONFIG_FP_MB_STATS +static int input_fpmb_stats(FIRSTPASS_MB_STATS *firstpass_mb_stats, + VP9_COMMON *cm, uint8_t **this_frame_mb_stats) { + uint8_t *mb_stats_in = firstpass_mb_stats->mb_stats_start + + cm->current_video_frame * cm->MBs * sizeof(uint8_t); + + if (mb_stats_in > firstpass_mb_stats->mb_stats_end) return EOF; + + *this_frame_mb_stats = mb_stats_in; + + return 1; +} +#endif + +static void encode_frame_internal(VP9_COMP *cpi) { + SPEED_FEATURES *const sf = &cpi->sf; + ThreadData *const td = &cpi->td; + MACROBLOCK *const x = &td->mb; + VP9_COMMON *const cm = &cpi->common; + MACROBLOCKD *const xd = &x->e_mbd; + + xd->mi = cm->mi_grid_visible; + xd->mi[0] = cm->mi; + + vp9_zero(*td->counts); + vp9_zero(cpi->td.rd_counts); + + xd->lossless = cm->base_qindex == 0 && cm->y_dc_delta_q == 0 && + cm->uv_dc_delta_q == 0 && cm->uv_ac_delta_q == 0; + +#if CONFIG_VP9_HIGHBITDEPTH + if (cm->use_highbitdepth) + x->fwd_txfm4x4 = xd->lossless ? vp9_highbd_fwht4x4 : vpx_highbd_fdct4x4; + else + x->fwd_txfm4x4 = xd->lossless ? vp9_fwht4x4 : vpx_fdct4x4; + x->highbd_inv_txfm_add = + xd->lossless ? vp9_highbd_iwht4x4_add : vp9_highbd_idct4x4_add; +#else + x->fwd_txfm4x4 = xd->lossless ? vp9_fwht4x4 : vpx_fdct4x4; +#endif // CONFIG_VP9_HIGHBITDEPTH + x->inv_txfm_add = xd->lossless ? vp9_iwht4x4_add : vp9_idct4x4_add; + + if (xd->lossless) x->optimize = 0; + + cm->tx_mode = select_tx_mode(cpi, xd); + + vp9_frame_init_quantizer(cpi); + + vp9_initialize_rd_consts(cpi); + vp9_initialize_me_consts(cpi, x, cm->base_qindex); + init_encode_frame_mb_context(cpi); + cm->use_prev_frame_mvs = + !cm->error_resilient_mode && cm->width == cm->last_width && + cm->height == cm->last_height && !cm->intra_only && cm->last_show_frame; + // Special case: set prev_mi to NULL when the previous mode info + // context cannot be used. + cm->prev_mi = + cm->use_prev_frame_mvs ? cm->prev_mip + cm->mi_stride + 1 : NULL; + + x->quant_fp = cpi->sf.use_quant_fp; + vp9_zero(x->skip_txfm); + if (sf->use_nonrd_pick_mode) { + // Initialize internal buffer pointers for rtc coding, where non-RD + // mode decision is used and hence no buffer pointer swap needed. + int i; + struct macroblock_plane *const p = x->plane; + struct macroblockd_plane *const pd = xd->plane; + PICK_MODE_CONTEXT *ctx = &cpi->td.pc_root->none; + + for (i = 0; i < MAX_MB_PLANE; ++i) { + p[i].coeff = ctx->coeff_pbuf[i][0]; + p[i].qcoeff = ctx->qcoeff_pbuf[i][0]; + pd[i].dqcoeff = ctx->dqcoeff_pbuf[i][0]; + p[i].eobs = ctx->eobs_pbuf[i][0]; + } + vp9_zero(x->zcoeff_blk); + + if (cm->frame_type != KEY_FRAME && cpi->rc.frames_since_golden == 0 && + !(cpi->oxcf.lag_in_frames > 0 && cpi->oxcf.rc_mode == VPX_VBR) && + !cpi->use_svc) + cpi->ref_frame_flags &= (~VP9_GOLD_FLAG); + + if (sf->partition_search_type == SOURCE_VAR_BASED_PARTITION) + source_var_based_partition_search_method(cpi); + } + + { + struct vpx_usec_timer emr_timer; + vpx_usec_timer_start(&emr_timer); + +#if CONFIG_FP_MB_STATS + if (cpi->use_fp_mb_stats) { + input_fpmb_stats(&cpi->twopass.firstpass_mb_stats, cm, + &cpi->twopass.this_frame_mb_stats); + } +#endif + + if (!cpi->row_mt) { + cpi->row_mt_sync_read_ptr = vp9_row_mt_sync_read_dummy; + cpi->row_mt_sync_write_ptr = vp9_row_mt_sync_write_dummy; + // If allowed, encoding tiles in parallel with one thread handling one + // tile when row based multi-threading is disabled. + if (VPXMIN(cpi->oxcf.max_threads, 1 << cm->log2_tile_cols) > 1) + vp9_encode_tiles_mt(cpi); + else + encode_tiles(cpi); + } else { + cpi->row_mt_sync_read_ptr = vp9_row_mt_sync_read; + cpi->row_mt_sync_write_ptr = vp9_row_mt_sync_write; + vp9_encode_tiles_row_mt(cpi); + } + + vpx_usec_timer_mark(&emr_timer); + cpi->time_encode_sb_row += vpx_usec_timer_elapsed(&emr_timer); + } + + sf->skip_encode_frame = + sf->skip_encode_sb ? get_skip_encode_frame(cm, td) : 0; + +#if 0 + // Keep record of the total distortion this time around for future use + cpi->last_frame_distortion = cpi->frame_distortion; +#endif +} + +static INTERP_FILTER get_interp_filter( + const int64_t threshes[SWITCHABLE_FILTER_CONTEXTS], int is_alt_ref) { + if (!is_alt_ref && threshes[EIGHTTAP_SMOOTH] > threshes[EIGHTTAP] && + threshes[EIGHTTAP_SMOOTH] > threshes[EIGHTTAP_SHARP] && + threshes[EIGHTTAP_SMOOTH] > threshes[SWITCHABLE - 1]) { + return EIGHTTAP_SMOOTH; + } else if (threshes[EIGHTTAP_SHARP] > threshes[EIGHTTAP] && + threshes[EIGHTTAP_SHARP] > threshes[SWITCHABLE - 1]) { + return EIGHTTAP_SHARP; + } else if (threshes[EIGHTTAP] > threshes[SWITCHABLE - 1]) { + return EIGHTTAP; + } else { + return SWITCHABLE; + } +} + +static int compute_frame_aq_offset(struct VP9_COMP *cpi) { + VP9_COMMON *const cm = &cpi->common; + MODE_INFO **mi_8x8_ptr = cm->mi_grid_visible; + struct segmentation *const seg = &cm->seg; + + int mi_row, mi_col; + int sum_delta = 0; + int map_index = 0; + int qdelta_index; + int segment_id; + + for (mi_row = 0; mi_row < cm->mi_rows; mi_row++) { + MODE_INFO **mi_8x8 = mi_8x8_ptr; + for (mi_col = 0; mi_col < cm->mi_cols; mi_col++, mi_8x8++) { + segment_id = mi_8x8[0]->segment_id; + qdelta_index = get_segdata(seg, segment_id, SEG_LVL_ALT_Q); + sum_delta += qdelta_index; + map_index++; + } + mi_8x8_ptr += cm->mi_stride; + } + + return sum_delta / (cm->mi_rows * cm->mi_cols); +} + +void vp9_encode_frame(VP9_COMP *cpi) { + VP9_COMMON *const cm = &cpi->common; + + // In the longer term the encoder should be generalized to match the + // decoder such that we allow compound where one of the 3 buffers has a + // different sign bias and that buffer is then the fixed ref. However, this + // requires further work in the rd loop. For now the only supported encoder + // side behavior is where the ALT ref buffer has opposite sign bias to + // the other two. + if (!frame_is_intra_only(cm)) { + if ((cm->ref_frame_sign_bias[ALTREF_FRAME] == + cm->ref_frame_sign_bias[GOLDEN_FRAME]) || + (cm->ref_frame_sign_bias[ALTREF_FRAME] == + cm->ref_frame_sign_bias[LAST_FRAME])) { + cpi->allow_comp_inter_inter = 0; + } else { + cpi->allow_comp_inter_inter = 1; + cm->comp_fixed_ref = ALTREF_FRAME; + cm->comp_var_ref[0] = LAST_FRAME; + cm->comp_var_ref[1] = GOLDEN_FRAME; + } + } + + if (cpi->sf.frame_parameter_update) { + int i; + RD_OPT *const rd_opt = &cpi->rd; + FRAME_COUNTS *counts = cpi->td.counts; + RD_COUNTS *const rdc = &cpi->td.rd_counts; + + // This code does a single RD pass over the whole frame assuming + // either compound, single or hybrid prediction as per whatever has + // worked best for that type of frame in the past. + // It also predicts whether another coding mode would have worked + // better than this coding mode. If that is the case, it remembers + // that for subsequent frames. + // It also does the same analysis for transform size selection. + const MV_REFERENCE_FRAME frame_type = get_frame_type(cpi); + int64_t *const mode_thrs = rd_opt->prediction_type_threshes[frame_type]; + int64_t *const filter_thrs = rd_opt->filter_threshes[frame_type]; + const int is_alt_ref = frame_type == ALTREF_FRAME; + + /* prediction (compound, single or hybrid) mode selection */ + if (is_alt_ref || !cpi->allow_comp_inter_inter) + cm->reference_mode = SINGLE_REFERENCE; + else if (mode_thrs[COMPOUND_REFERENCE] > mode_thrs[SINGLE_REFERENCE] && + mode_thrs[COMPOUND_REFERENCE] > mode_thrs[REFERENCE_MODE_SELECT] && + check_dual_ref_flags(cpi) && cpi->static_mb_pct == 100) + cm->reference_mode = COMPOUND_REFERENCE; + else if (mode_thrs[SINGLE_REFERENCE] > mode_thrs[REFERENCE_MODE_SELECT]) + cm->reference_mode = SINGLE_REFERENCE; + else + cm->reference_mode = REFERENCE_MODE_SELECT; + + if (cm->interp_filter == SWITCHABLE) + cm->interp_filter = get_interp_filter(filter_thrs, is_alt_ref); + + encode_frame_internal(cpi); + + for (i = 0; i < REFERENCE_MODES; ++i) + mode_thrs[i] = (mode_thrs[i] + rdc->comp_pred_diff[i] / cm->MBs) / 2; + + for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; ++i) + filter_thrs[i] = (filter_thrs[i] + rdc->filter_diff[i] / cm->MBs) / 2; + + if (cm->reference_mode == REFERENCE_MODE_SELECT) { + int single_count_zero = 0; + int comp_count_zero = 0; + + for (i = 0; i < COMP_INTER_CONTEXTS; i++) { + single_count_zero += counts->comp_inter[i][0]; + comp_count_zero += counts->comp_inter[i][1]; + } + + if (comp_count_zero == 0) { + cm->reference_mode = SINGLE_REFERENCE; + vp9_zero(counts->comp_inter); + } else if (single_count_zero == 0) { + cm->reference_mode = COMPOUND_REFERENCE; + vp9_zero(counts->comp_inter); + } + } + + if (cm->tx_mode == TX_MODE_SELECT) { + int count4x4 = 0; + int count8x8_lp = 0, count8x8_8x8p = 0; + int count16x16_16x16p = 0, count16x16_lp = 0; + int count32x32 = 0; + + for (i = 0; i < TX_SIZE_CONTEXTS; ++i) { + count4x4 += counts->tx.p32x32[i][TX_4X4]; + count4x4 += counts->tx.p16x16[i][TX_4X4]; + count4x4 += counts->tx.p8x8[i][TX_4X4]; + + count8x8_lp += counts->tx.p32x32[i][TX_8X8]; + count8x8_lp += counts->tx.p16x16[i][TX_8X8]; + count8x8_8x8p += counts->tx.p8x8[i][TX_8X8]; + + count16x16_16x16p += counts->tx.p16x16[i][TX_16X16]; + count16x16_lp += counts->tx.p32x32[i][TX_16X16]; + count32x32 += counts->tx.p32x32[i][TX_32X32]; + } + if (count4x4 == 0 && count16x16_lp == 0 && count16x16_16x16p == 0 && + count32x32 == 0) { + cm->tx_mode = ALLOW_8X8; + reset_skip_tx_size(cm, TX_8X8); + } else if (count8x8_8x8p == 0 && count16x16_16x16p == 0 && + count8x8_lp == 0 && count16x16_lp == 0 && count32x32 == 0) { + cm->tx_mode = ONLY_4X4; + reset_skip_tx_size(cm, TX_4X4); + } else if (count8x8_lp == 0 && count16x16_lp == 0 && count4x4 == 0) { + cm->tx_mode = ALLOW_32X32; + } else if (count32x32 == 0 && count8x8_lp == 0 && count4x4 == 0) { + cm->tx_mode = ALLOW_16X16; + reset_skip_tx_size(cm, TX_16X16); + } + } + } else { + FRAME_COUNTS *counts = cpi->td.counts; + cm->reference_mode = SINGLE_REFERENCE; + if (cpi->allow_comp_inter_inter && cpi->sf.use_compound_nonrd_pickmode && + cpi->rc.alt_ref_gf_group && !cpi->rc.is_src_frame_alt_ref && + cm->frame_type != KEY_FRAME) + cm->reference_mode = REFERENCE_MODE_SELECT; + + encode_frame_internal(cpi); + + if (cm->reference_mode == REFERENCE_MODE_SELECT) { + int single_count_zero = 0; + int comp_count_zero = 0; + int i; + for (i = 0; i < COMP_INTER_CONTEXTS; i++) { + single_count_zero += counts->comp_inter[i][0]; + comp_count_zero += counts->comp_inter[i][1]; + } + if (comp_count_zero == 0) { + cm->reference_mode = SINGLE_REFERENCE; + vp9_zero(counts->comp_inter); + } else if (single_count_zero == 0) { + cm->reference_mode = COMPOUND_REFERENCE; + vp9_zero(counts->comp_inter); + } + } + } + + // If segmented AQ is enabled compute the average AQ weighting. + if (cm->seg.enabled && (cpi->oxcf.aq_mode != NO_AQ) && + (cm->seg.update_map || cm->seg.update_data)) { + cm->seg.aq_av_offset = compute_frame_aq_offset(cpi); + } +} + +static void sum_intra_stats(FRAME_COUNTS *counts, const MODE_INFO *mi) { + const PREDICTION_MODE y_mode = mi->mode; + const PREDICTION_MODE uv_mode = mi->uv_mode; + const BLOCK_SIZE bsize = mi->sb_type; + + if (bsize < BLOCK_8X8) { + int idx, idy; + const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize]; + const int num_4x4_h = num_4x4_blocks_high_lookup[bsize]; + for (idy = 0; idy < 2; idy += num_4x4_h) + for (idx = 0; idx < 2; idx += num_4x4_w) + ++counts->y_mode[0][mi->bmi[idy * 2 + idx].as_mode]; + } else { + ++counts->y_mode[size_group_lookup[bsize]][y_mode]; + } + + ++counts->uv_mode[y_mode][uv_mode]; +} + +static void update_zeromv_cnt(VP9_COMP *const cpi, const MODE_INFO *const mi, + int mi_row, int mi_col, BLOCK_SIZE bsize) { + const VP9_COMMON *const cm = &cpi->common; + MV mv = mi->mv[0].as_mv; + const int bw = num_8x8_blocks_wide_lookup[bsize]; + const int bh = num_8x8_blocks_high_lookup[bsize]; + const int xmis = VPXMIN(cm->mi_cols - mi_col, bw); + const int ymis = VPXMIN(cm->mi_rows - mi_row, bh); + const int block_index = mi_row * cm->mi_cols + mi_col; + int x, y; + for (y = 0; y < ymis; y++) + for (x = 0; x < xmis; x++) { + int map_offset = block_index + y * cm->mi_cols + x; + if (is_inter_block(mi) && mi->segment_id <= CR_SEGMENT_ID_BOOST2) { + if (abs(mv.row) < 8 && abs(mv.col) < 8) { + if (cpi->consec_zero_mv[map_offset] < 255) + cpi->consec_zero_mv[map_offset]++; + } else { + cpi->consec_zero_mv[map_offset] = 0; + } + } + } +} + +static void encode_superblock(VP9_COMP *cpi, ThreadData *td, TOKENEXTRA **t, + int output_enabled, int mi_row, int mi_col, + BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx) { + VP9_COMMON *const cm = &cpi->common; + MACROBLOCK *const x = &td->mb; + MACROBLOCKD *const xd = &x->e_mbd; + MODE_INFO *mi = xd->mi[0]; + const int seg_skip = + segfeature_active(&cm->seg, mi->segment_id, SEG_LVL_SKIP); + x->skip_recode = !x->select_tx_size && mi->sb_type >= BLOCK_8X8 && + cpi->oxcf.aq_mode != COMPLEXITY_AQ && + cpi->oxcf.aq_mode != CYCLIC_REFRESH_AQ && + cpi->sf.allow_skip_recode; + + if (!x->skip_recode && !cpi->sf.use_nonrd_pick_mode) + memset(x->skip_txfm, 0, sizeof(x->skip_txfm)); + + x->skip_optimize = ctx->is_coded; + ctx->is_coded = 1; + x->use_lp32x32fdct = cpi->sf.use_lp32x32fdct; + x->skip_encode = (!output_enabled && cpi->sf.skip_encode_frame && + x->q_index < QIDX_SKIP_THRESH); + + if (x->skip_encode) return; + + if (!is_inter_block(mi)) { + int plane; +#if CONFIG_BETTER_HW_COMPATIBILITY && CONFIG_VP9_HIGHBITDEPTH + if ((xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) && + (xd->above_mi == NULL || xd->left_mi == NULL) && + need_top_left[mi->uv_mode]) + assert(0); +#endif // CONFIG_BETTER_HW_COMPATIBILITY && CONFIG_VP9_HIGHBITDEPTH + mi->skip = 1; + for (plane = 0; plane < MAX_MB_PLANE; ++plane) + vp9_encode_intra_block_plane(x, VPXMAX(bsize, BLOCK_8X8), plane, 1); + if (output_enabled) sum_intra_stats(td->counts, mi); + vp9_tokenize_sb(cpi, td, t, !output_enabled, seg_skip, + VPXMAX(bsize, BLOCK_8X8)); + } else { + int ref; + const int is_compound = has_second_ref(mi); + set_ref_ptrs(cm, xd, mi->ref_frame[0], mi->ref_frame[1]); + for (ref = 0; ref < 1 + is_compound; ++ref) { + YV12_BUFFER_CONFIG *cfg = get_ref_frame_buffer(cpi, mi->ref_frame[ref]); + assert(cfg != NULL); + vp9_setup_pre_planes(xd, ref, cfg, mi_row, mi_col, + &xd->block_refs[ref]->sf); + } + if (!(cpi->sf.reuse_inter_pred_sby && ctx->pred_pixel_ready) || seg_skip) + vp9_build_inter_predictors_sby(xd, mi_row, mi_col, + VPXMAX(bsize, BLOCK_8X8)); + + vp9_build_inter_predictors_sbuv(xd, mi_row, mi_col, + VPXMAX(bsize, BLOCK_8X8)); + + vp9_encode_sb(x, VPXMAX(bsize, BLOCK_8X8)); + vp9_tokenize_sb(cpi, td, t, !output_enabled, seg_skip, + VPXMAX(bsize, BLOCK_8X8)); + } + + if (seg_skip) { + assert(mi->skip); + } + + if (output_enabled) { + if (cm->tx_mode == TX_MODE_SELECT && mi->sb_type >= BLOCK_8X8 && + !(is_inter_block(mi) && mi->skip)) { + ++get_tx_counts(max_txsize_lookup[bsize], get_tx_size_context(xd), + &td->counts->tx)[mi->tx_size]; + } else { + // The new intra coding scheme requires no change of transform size + if (is_inter_block(mi)) { + mi->tx_size = VPXMIN(tx_mode_to_biggest_tx_size[cm->tx_mode], + max_txsize_lookup[bsize]); + } else { + mi->tx_size = (bsize >= BLOCK_8X8) ? mi->tx_size : TX_4X4; + } + } + + ++td->counts->tx.tx_totals[mi->tx_size]; + ++td->counts->tx.tx_totals[get_uv_tx_size(mi, &xd->plane[1])]; + if (cm->seg.enabled && cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ) + vp9_cyclic_refresh_update_sb_postencode(cpi, mi, mi_row, mi_col, bsize); + if (cpi->oxcf.pass == 0 && cpi->svc.temporal_layer_id == 0) + update_zeromv_cnt(cpi, mi, mi_row, mi_col, bsize); + } +} diff --git a/vp9/encoder/vp9_encodeframe.h b/vp9/encoder/vp9_encodeframe.h new file mode 100644 index 0000000..cf5ae3d --- /dev/null +++ b/vp9/encoder/vp9_encodeframe.h @@ -0,0 +1,52 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP9_ENCODER_VP9_ENCODEFRAME_H_ +#define VP9_ENCODER_VP9_ENCODEFRAME_H_ + +#include "vpx/vpx_integer.h" + +#ifdef __cplusplus +extern "C" { +#endif + +struct macroblock; +struct yv12_buffer_config; +struct VP9_COMP; +struct ThreadData; + +// Constants used in SOURCE_VAR_BASED_PARTITION +#define VAR_HIST_MAX_BG_VAR 1000 +#define VAR_HIST_FACTOR 10 +#define VAR_HIST_BINS (VAR_HIST_MAX_BG_VAR / VAR_HIST_FACTOR + 1) +#define VAR_HIST_LARGE_CUT_OFF 75 +#define VAR_HIST_SMALL_CUT_OFF 45 + +void vp9_setup_src_planes(struct macroblock *x, + const struct yv12_buffer_config *src, int mi_row, + int mi_col); + +void vp9_encode_frame(struct VP9_COMP *cpi); + +void vp9_init_tile_data(struct VP9_COMP *cpi); +void vp9_encode_tile(struct VP9_COMP *cpi, struct ThreadData *td, int tile_row, + int tile_col); + +void vp9_encode_sb_row(struct VP9_COMP *cpi, struct ThreadData *td, + int tile_row, int tile_col, int mi_row); + +void vp9_set_variance_partition_thresholds(struct VP9_COMP *cpi, int q, + int content_state); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP9_ENCODER_VP9_ENCODEFRAME_H_ diff --git a/vp9/encoder/vp9_encodemb.c b/vp9/encoder/vp9_encodemb.c new file mode 100644 index 0000000..f3c17f2 --- /dev/null +++ b/vp9/encoder/vp9_encodemb.c @@ -0,0 +1,981 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "./vp9_rtcd.h" +#include "./vpx_config.h" +#include "./vpx_dsp_rtcd.h" + +#include "vpx_dsp/quantize.h" +#include "vpx_mem/vpx_mem.h" +#include "vpx_ports/mem.h" + +#include "vp9/common/vp9_idct.h" +#include "vp9/common/vp9_reconinter.h" +#include "vp9/common/vp9_reconintra.h" +#include "vp9/common/vp9_scan.h" + +#include "vp9/encoder/vp9_encodemb.h" +#include "vp9/encoder/vp9_rd.h" +#include "vp9/encoder/vp9_tokenize.h" + +struct optimize_ctx { + ENTROPY_CONTEXT ta[MAX_MB_PLANE][16]; + ENTROPY_CONTEXT tl[MAX_MB_PLANE][16]; +}; + +void vp9_subtract_plane(MACROBLOCK *x, BLOCK_SIZE bsize, int plane) { + struct macroblock_plane *const p = &x->plane[plane]; + const struct macroblockd_plane *const pd = &x->e_mbd.plane[plane]; + const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd); + const int bw = 4 * num_4x4_blocks_wide_lookup[plane_bsize]; + const int bh = 4 * num_4x4_blocks_high_lookup[plane_bsize]; + +#if CONFIG_VP9_HIGHBITDEPTH + if (x->e_mbd.cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { + vpx_highbd_subtract_block(bh, bw, p->src_diff, bw, p->src.buf, + p->src.stride, pd->dst.buf, pd->dst.stride, + x->e_mbd.bd); + return; + } +#endif // CONFIG_VP9_HIGHBITDEPTH + vpx_subtract_block(bh, bw, p->src_diff, bw, p->src.buf, p->src.stride, + pd->dst.buf, pd->dst.stride); +} + +static const int plane_rd_mult[REF_TYPES][PLANE_TYPES] = { + { 10, 6 }, { 8, 5 }, +}; + +// 'num' can be negative, but 'shift' must be non-negative. +#define RIGHT_SHIFT_POSSIBLY_NEGATIVE(num, shift) \ + ((num) >= 0) ? (num) >> (shift) : -((-(num)) >> (shift)) + +int vp9_optimize_b(MACROBLOCK *mb, int plane, int block, TX_SIZE tx_size, + int ctx) { + MACROBLOCKD *const xd = &mb->e_mbd; + struct macroblock_plane *const p = &mb->plane[plane]; + struct macroblockd_plane *const pd = &xd->plane[plane]; + const int ref = is_inter_block(xd->mi[0]); + uint8_t token_cache[1024]; + const tran_low_t *const coeff = BLOCK_OFFSET(p->coeff, block); + tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block); + tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); + const int eob = p->eobs[block]; + const PLANE_TYPE plane_type = get_plane_type(plane); + const int default_eob = 16 << (tx_size << 1); + const int shift = (tx_size == TX_32X32); + const int16_t *const dequant_ptr = pd->dequant; + const uint8_t *const band_translate = get_band_translate(tx_size); + const scan_order *const so = get_scan(xd, tx_size, plane_type, block); + const int16_t *const scan = so->scan; + const int16_t *const nb = so->neighbors; + const int64_t rdmult = + ((int64_t)mb->rdmult * plane_rd_mult[ref][plane_type]) >> 1; + const int64_t rddiv = mb->rddiv; + int64_t rd_cost0, rd_cost1; + int64_t rate0, rate1; + int16_t t0, t1; + int i, final_eob; +#if CONFIG_VP9_HIGHBITDEPTH + const uint16_t *cat6_high_cost = vp9_get_high_cost_table(xd->bd); +#else + const uint16_t *cat6_high_cost = vp9_get_high_cost_table(8); +#endif + unsigned int(*const token_costs)[2][COEFF_CONTEXTS][ENTROPY_TOKENS] = + mb->token_costs[tx_size][plane_type][ref]; + unsigned int(*token_costs_cur)[2][COEFF_CONTEXTS][ENTROPY_TOKENS]; + int64_t eob_cost0, eob_cost1; + const int ctx0 = ctx; + int64_t accu_rate = 0; + // Initialized to the worst possible error for the largest transform size. + // This ensures that it never goes negative. + int64_t accu_error = ((int64_t)1) << 50; + int64_t best_block_rd_cost = INT64_MAX; + int x_prev = 1; + tran_low_t before_best_eob_qc = 0; + tran_low_t before_best_eob_dqc = 0; + + assert((!plane_type && !plane) || (plane_type && plane)); + assert(eob <= default_eob); + + for (i = 0; i < eob; i++) { + const int rc = scan[i]; + token_cache[rc] = vp9_pt_energy_class[vp9_get_token(qcoeff[rc])]; + } + final_eob = 0; + + // Initial RD cost. + token_costs_cur = token_costs + band_translate[0]; + rate0 = (*token_costs_cur)[0][ctx0][EOB_TOKEN]; + best_block_rd_cost = RDCOST(rdmult, rddiv, rate0, accu_error); + + // For each token, pick one of two choices greedily: + // (i) First candidate: Keep current quantized value, OR + // (ii) Second candidate: Reduce quantized value by 1. + for (i = 0; i < eob; i++) { + const int rc = scan[i]; + const int x = qcoeff[rc]; + const int band_cur = band_translate[i]; + const int ctx_cur = (i == 0) ? ctx : get_coef_context(nb, token_cache, i); + const int token_tree_sel_cur = (x_prev == 0); + token_costs_cur = token_costs + band_cur; + if (x == 0) { // No need to search + const int token = vp9_get_token(x); + rate0 = (*token_costs_cur)[token_tree_sel_cur][ctx_cur][token]; + accu_rate += rate0; + x_prev = 0; + // Note: accu_error does not change. + } else { + const int dqv = dequant_ptr[rc != 0]; + // Compute the distortion for quantizing to 0. + const int diff_for_zero_raw = (0 - coeff[rc]) * (1 << shift); + const int diff_for_zero = +#if CONFIG_VP9_HIGHBITDEPTH + (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) + ? RIGHT_SHIFT_POSSIBLY_NEGATIVE(diff_for_zero_raw, xd->bd - 8) + : +#endif + diff_for_zero_raw; + const int64_t distortion_for_zero = + (int64_t)diff_for_zero * diff_for_zero; + + // Compute the distortion for the first candidate + const int diff0_raw = (dqcoeff[rc] - coeff[rc]) * (1 << shift); + const int diff0 = +#if CONFIG_VP9_HIGHBITDEPTH + (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) + ? RIGHT_SHIFT_POSSIBLY_NEGATIVE(diff0_raw, xd->bd - 8) + : +#endif // CONFIG_VP9_HIGHBITDEPTH + diff0_raw; + const int64_t distortion0 = (int64_t)diff0 * diff0; + + // Compute the distortion for the second candidate + const int sign = -(x < 0); // -1 if x is negative and 0 otherwise. + const int x1 = x - 2 * sign - 1; // abs(x1) = abs(x) - 1. + int64_t distortion1; + if (x1 != 0) { + const int dqv_step = +#if CONFIG_VP9_HIGHBITDEPTH + (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? dqv >> (xd->bd - 8) + : +#endif // CONFIG_VP9_HIGHBITDEPTH + dqv; + const int diff_step = (dqv_step + sign) ^ sign; + const int diff1 = diff0 - diff_step; + assert(dqv > 0); // We aren't right shifting a negative number above. + distortion1 = (int64_t)diff1 * diff1; + } else { + distortion1 = distortion_for_zero; + } + { + // Calculate RDCost for current coeff for the two candidates. + const int64_t base_bits0 = vp9_get_token_cost(x, &t0, cat6_high_cost); + const int64_t base_bits1 = vp9_get_token_cost(x1, &t1, cat6_high_cost); + rate0 = + base_bits0 + (*token_costs_cur)[token_tree_sel_cur][ctx_cur][t0]; + rate1 = + base_bits1 + (*token_costs_cur)[token_tree_sel_cur][ctx_cur][t1]; + } + { + int rdcost_better_for_x1, eob_rdcost_better_for_x1; + int dqc0, dqc1; + int64_t best_eob_cost_cur; + int use_x1; + + // Calculate RD Cost effect on the next coeff for the two candidates. + int64_t next_bits0 = 0; + int64_t next_bits1 = 0; + int64_t next_eob_bits0 = 0; + int64_t next_eob_bits1 = 0; + if (i < default_eob - 1) { + int ctx_next, token_tree_sel_next; + const int band_next = band_translate[i + 1]; + const int token_next = + (i + 1 != eob) ? vp9_get_token(qcoeff[scan[i + 1]]) : EOB_TOKEN; + unsigned int( + *const token_costs_next)[2][COEFF_CONTEXTS][ENTROPY_TOKENS] = + token_costs + band_next; + token_cache[rc] = vp9_pt_energy_class[t0]; + ctx_next = get_coef_context(nb, token_cache, i + 1); + token_tree_sel_next = (x == 0); + next_bits0 = + (*token_costs_next)[token_tree_sel_next][ctx_next][token_next]; + next_eob_bits0 = + (*token_costs_next)[token_tree_sel_next][ctx_next][EOB_TOKEN]; + token_cache[rc] = vp9_pt_energy_class[t1]; + ctx_next = get_coef_context(nb, token_cache, i + 1); + token_tree_sel_next = (x1 == 0); + next_bits1 = + (*token_costs_next)[token_tree_sel_next][ctx_next][token_next]; + if (x1 != 0) { + next_eob_bits1 = + (*token_costs_next)[token_tree_sel_next][ctx_next][EOB_TOKEN]; + } + } + + // Compare the total RD costs for two candidates. + rd_cost0 = RDCOST(rdmult, rddiv, (rate0 + next_bits0), distortion0); + rd_cost1 = RDCOST(rdmult, rddiv, (rate1 + next_bits1), distortion1); + rdcost_better_for_x1 = (rd_cost1 < rd_cost0); + eob_cost0 = RDCOST(rdmult, rddiv, (accu_rate + rate0 + next_eob_bits0), + (accu_error + distortion0 - distortion_for_zero)); + eob_cost1 = eob_cost0; + if (x1 != 0) { + eob_cost1 = + RDCOST(rdmult, rddiv, (accu_rate + rate1 + next_eob_bits1), + (accu_error + distortion1 - distortion_for_zero)); + eob_rdcost_better_for_x1 = (eob_cost1 < eob_cost0); + } else { + eob_rdcost_better_for_x1 = 0; + } + + // Calculate the two candidate de-quantized values. + dqc0 = dqcoeff[rc]; + dqc1 = 0; + if (rdcost_better_for_x1 + eob_rdcost_better_for_x1) { + if (x1 != 0) { + dqc1 = RIGHT_SHIFT_POSSIBLY_NEGATIVE(x1 * dqv, shift); + } else { + dqc1 = 0; + } + } + + // Pick and record the better quantized and de-quantized values. + if (rdcost_better_for_x1) { + qcoeff[rc] = x1; + dqcoeff[rc] = dqc1; + accu_rate += rate1; + accu_error += distortion1 - distortion_for_zero; + assert(distortion1 <= distortion_for_zero); + token_cache[rc] = vp9_pt_energy_class[t1]; + } else { + accu_rate += rate0; + accu_error += distortion0 - distortion_for_zero; + assert(distortion0 <= distortion_for_zero); + token_cache[rc] = vp9_pt_energy_class[t0]; + } + assert(accu_error >= 0); + x_prev = qcoeff[rc]; // Update based on selected quantized value. + + use_x1 = (x1 != 0) && eob_rdcost_better_for_x1; + best_eob_cost_cur = use_x1 ? eob_cost1 : eob_cost0; + + // Determine whether to move the eob position to i+1 + if (best_eob_cost_cur < best_block_rd_cost) { + best_block_rd_cost = best_eob_cost_cur; + final_eob = i + 1; + if (use_x1) { + before_best_eob_qc = x1; + before_best_eob_dqc = dqc1; + } else { + before_best_eob_qc = x; + before_best_eob_dqc = dqc0; + } + } + } + } + } + assert(final_eob <= eob); + if (final_eob > 0) { + int rc; + assert(before_best_eob_qc != 0); + i = final_eob - 1; + rc = scan[i]; + qcoeff[rc] = before_best_eob_qc; + dqcoeff[rc] = before_best_eob_dqc; + } + for (i = final_eob; i < eob; i++) { + int rc = scan[i]; + qcoeff[rc] = 0; + dqcoeff[rc] = 0; + } + mb->plane[plane].eobs[block] = final_eob; + return final_eob; +} +#undef RIGHT_SHIFT_POSSIBLY_NEGATIVE + +static INLINE void fdct32x32(int rd_transform, const int16_t *src, + tran_low_t *dst, int src_stride) { + if (rd_transform) + vpx_fdct32x32_rd(src, dst, src_stride); + else + vpx_fdct32x32(src, dst, src_stride); +} + +#if CONFIG_VP9_HIGHBITDEPTH +static INLINE void highbd_fdct32x32(int rd_transform, const int16_t *src, + tran_low_t *dst, int src_stride) { + if (rd_transform) + vpx_highbd_fdct32x32_rd(src, dst, src_stride); + else + vpx_highbd_fdct32x32(src, dst, src_stride); +} +#endif // CONFIG_VP9_HIGHBITDEPTH + +void vp9_xform_quant_fp(MACROBLOCK *x, int plane, int block, int row, int col, + BLOCK_SIZE plane_bsize, TX_SIZE tx_size) { + MACROBLOCKD *const xd = &x->e_mbd; + const struct macroblock_plane *const p = &x->plane[plane]; + const struct macroblockd_plane *const pd = &xd->plane[plane]; + const scan_order *const scan_order = &vp9_default_scan_orders[tx_size]; + tran_low_t *const coeff = BLOCK_OFFSET(p->coeff, block); + tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block); + tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); + uint16_t *const eob = &p->eobs[block]; + const int diff_stride = 4 * num_4x4_blocks_wide_lookup[plane_bsize]; + const int16_t *src_diff; + src_diff = &p->src_diff[4 * (row * diff_stride + col)]; + // skip block condition should be handled before this is called. + assert(!x->skip_block); + +#if CONFIG_VP9_HIGHBITDEPTH + if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { + switch (tx_size) { + case TX_32X32: + highbd_fdct32x32(x->use_lp32x32fdct, src_diff, coeff, diff_stride); + vp9_highbd_quantize_fp_32x32(coeff, 1024, x->skip_block, p->round_fp, + p->quant_fp, qcoeff, dqcoeff, pd->dequant, + eob, scan_order->scan, scan_order->iscan); + break; + case TX_16X16: + vpx_highbd_fdct16x16(src_diff, coeff, diff_stride); + vp9_highbd_quantize_fp(coeff, 256, x->skip_block, p->round_fp, + p->quant_fp, qcoeff, dqcoeff, pd->dequant, eob, + scan_order->scan, scan_order->iscan); + break; + case TX_8X8: + vpx_highbd_fdct8x8(src_diff, coeff, diff_stride); + vp9_highbd_quantize_fp(coeff, 64, x->skip_block, p->round_fp, + p->quant_fp, qcoeff, dqcoeff, pd->dequant, eob, + scan_order->scan, scan_order->iscan); + break; + case TX_4X4: + x->fwd_txfm4x4(src_diff, coeff, diff_stride); + vp9_highbd_quantize_fp(coeff, 16, x->skip_block, p->round_fp, + p->quant_fp, qcoeff, dqcoeff, pd->dequant, eob, + scan_order->scan, scan_order->iscan); + break; + default: assert(0); + } + return; + } +#endif // CONFIG_VP9_HIGHBITDEPTH + + switch (tx_size) { + case TX_32X32: + fdct32x32(x->use_lp32x32fdct, src_diff, coeff, diff_stride); + vp9_quantize_fp_32x32(coeff, 1024, x->skip_block, p->round_fp, + p->quant_fp, qcoeff, dqcoeff, pd->dequant, eob, + scan_order->scan, scan_order->iscan); + break; + case TX_16X16: + vpx_fdct16x16(src_diff, coeff, diff_stride); + vp9_quantize_fp(coeff, 256, x->skip_block, p->round_fp, p->quant_fp, + qcoeff, dqcoeff, pd->dequant, eob, scan_order->scan, + scan_order->iscan); + break; + case TX_8X8: + vp9_fdct8x8_quant(src_diff, diff_stride, coeff, 64, x->skip_block, + p->round_fp, p->quant_fp, qcoeff, dqcoeff, pd->dequant, + eob, scan_order->scan, scan_order->iscan); + break; + case TX_4X4: + x->fwd_txfm4x4(src_diff, coeff, diff_stride); + vp9_quantize_fp(coeff, 16, x->skip_block, p->round_fp, p->quant_fp, + qcoeff, dqcoeff, pd->dequant, eob, scan_order->scan, + scan_order->iscan); + break; + default: assert(0); break; + } +} + +void vp9_xform_quant_dc(MACROBLOCK *x, int plane, int block, int row, int col, + BLOCK_SIZE plane_bsize, TX_SIZE tx_size) { + MACROBLOCKD *const xd = &x->e_mbd; + const struct macroblock_plane *const p = &x->plane[plane]; + const struct macroblockd_plane *const pd = &xd->plane[plane]; + tran_low_t *const coeff = BLOCK_OFFSET(p->coeff, block); + tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block); + tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); + uint16_t *const eob = &p->eobs[block]; + const int diff_stride = 4 * num_4x4_blocks_wide_lookup[plane_bsize]; + const int16_t *src_diff; + src_diff = &p->src_diff[4 * (row * diff_stride + col)]; + // skip block condition should be handled before this is called. + assert(!x->skip_block); + +#if CONFIG_VP9_HIGHBITDEPTH + if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { + switch (tx_size) { + case TX_32X32: + vpx_highbd_fdct32x32_1(src_diff, coeff, diff_stride); + vpx_highbd_quantize_dc_32x32(coeff, x->skip_block, p->round, + p->quant_fp[0], qcoeff, dqcoeff, + pd->dequant[0], eob); + break; + case TX_16X16: + vpx_highbd_fdct16x16_1(src_diff, coeff, diff_stride); + vpx_highbd_quantize_dc(coeff, 256, x->skip_block, p->round, + p->quant_fp[0], qcoeff, dqcoeff, pd->dequant[0], + eob); + break; + case TX_8X8: + vpx_highbd_fdct8x8_1(src_diff, coeff, diff_stride); + vpx_highbd_quantize_dc(coeff, 64, x->skip_block, p->round, + p->quant_fp[0], qcoeff, dqcoeff, pd->dequant[0], + eob); + break; + case TX_4X4: + x->fwd_txfm4x4(src_diff, coeff, diff_stride); + vpx_highbd_quantize_dc(coeff, 16, x->skip_block, p->round, + p->quant_fp[0], qcoeff, dqcoeff, pd->dequant[0], + eob); + break; + default: assert(0); + } + return; + } +#endif // CONFIG_VP9_HIGHBITDEPTH + + switch (tx_size) { + case TX_32X32: + vpx_fdct32x32_1(src_diff, coeff, diff_stride); + vpx_quantize_dc_32x32(coeff, x->skip_block, p->round, p->quant_fp[0], + qcoeff, dqcoeff, pd->dequant[0], eob); + break; + case TX_16X16: + vpx_fdct16x16_1(src_diff, coeff, diff_stride); + vpx_quantize_dc(coeff, 256, x->skip_block, p->round, p->quant_fp[0], + qcoeff, dqcoeff, pd->dequant[0], eob); + break; + case TX_8X8: + vpx_fdct8x8_1(src_diff, coeff, diff_stride); + vpx_quantize_dc(coeff, 64, x->skip_block, p->round, p->quant_fp[0], + qcoeff, dqcoeff, pd->dequant[0], eob); + break; + case TX_4X4: + x->fwd_txfm4x4(src_diff, coeff, diff_stride); + vpx_quantize_dc(coeff, 16, x->skip_block, p->round, p->quant_fp[0], + qcoeff, dqcoeff, pd->dequant[0], eob); + break; + default: assert(0); break; + } +} + +void vp9_xform_quant(MACROBLOCK *x, int plane, int block, int row, int col, + BLOCK_SIZE plane_bsize, TX_SIZE tx_size) { + MACROBLOCKD *const xd = &x->e_mbd; + const struct macroblock_plane *const p = &x->plane[plane]; + const struct macroblockd_plane *const pd = &xd->plane[plane]; + const scan_order *const scan_order = &vp9_default_scan_orders[tx_size]; + tran_low_t *const coeff = BLOCK_OFFSET(p->coeff, block); + tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block); + tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); + uint16_t *const eob = &p->eobs[block]; + const int diff_stride = 4 * num_4x4_blocks_wide_lookup[plane_bsize]; + const int16_t *src_diff; + src_diff = &p->src_diff[4 * (row * diff_stride + col)]; + // skip block condition should be handled before this is called. + assert(!x->skip_block); + +#if CONFIG_VP9_HIGHBITDEPTH + if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { + switch (tx_size) { + case TX_32X32: + highbd_fdct32x32(x->use_lp32x32fdct, src_diff, coeff, diff_stride); + vpx_highbd_quantize_b_32x32(coeff, 1024, x->skip_block, p->zbin, + p->round, p->quant, p->quant_shift, qcoeff, + dqcoeff, pd->dequant, eob, scan_order->scan, + scan_order->iscan); + break; + case TX_16X16: + vpx_highbd_fdct16x16(src_diff, coeff, diff_stride); + vpx_highbd_quantize_b(coeff, 256, x->skip_block, p->zbin, p->round, + p->quant, p->quant_shift, qcoeff, dqcoeff, + pd->dequant, eob, scan_order->scan, + scan_order->iscan); + break; + case TX_8X8: + vpx_highbd_fdct8x8(src_diff, coeff, diff_stride); + vpx_highbd_quantize_b(coeff, 64, x->skip_block, p->zbin, p->round, + p->quant, p->quant_shift, qcoeff, dqcoeff, + pd->dequant, eob, scan_order->scan, + scan_order->iscan); + break; + case TX_4X4: + x->fwd_txfm4x4(src_diff, coeff, diff_stride); + vpx_highbd_quantize_b(coeff, 16, x->skip_block, p->zbin, p->round, + p->quant, p->quant_shift, qcoeff, dqcoeff, + pd->dequant, eob, scan_order->scan, + scan_order->iscan); + break; + default: assert(0); + } + return; + } +#endif // CONFIG_VP9_HIGHBITDEPTH + + switch (tx_size) { + case TX_32X32: + fdct32x32(x->use_lp32x32fdct, src_diff, coeff, diff_stride); + vpx_quantize_b_32x32(coeff, 1024, x->skip_block, p->zbin, p->round, + p->quant, p->quant_shift, qcoeff, dqcoeff, + pd->dequant, eob, scan_order->scan, + scan_order->iscan); + break; + case TX_16X16: + vpx_fdct16x16(src_diff, coeff, diff_stride); + vpx_quantize_b(coeff, 256, x->skip_block, p->zbin, p->round, p->quant, + p->quant_shift, qcoeff, dqcoeff, pd->dequant, eob, + scan_order->scan, scan_order->iscan); + break; + case TX_8X8: + vpx_fdct8x8(src_diff, coeff, diff_stride); + vpx_quantize_b(coeff, 64, x->skip_block, p->zbin, p->round, p->quant, + p->quant_shift, qcoeff, dqcoeff, pd->dequant, eob, + scan_order->scan, scan_order->iscan); + break; + case TX_4X4: + x->fwd_txfm4x4(src_diff, coeff, diff_stride); + vpx_quantize_b(coeff, 16, x->skip_block, p->zbin, p->round, p->quant, + p->quant_shift, qcoeff, dqcoeff, pd->dequant, eob, + scan_order->scan, scan_order->iscan); + break; + default: assert(0); break; + } +} + +static void encode_block(int plane, int block, int row, int col, + BLOCK_SIZE plane_bsize, TX_SIZE tx_size, void *arg) { + struct encode_b_args *const args = arg; + MACROBLOCK *const x = args->x; + MACROBLOCKD *const xd = &x->e_mbd; + struct macroblock_plane *const p = &x->plane[plane]; + struct macroblockd_plane *const pd = &xd->plane[plane]; + tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); + uint8_t *dst; + ENTROPY_CONTEXT *a, *l; + dst = &pd->dst.buf[4 * row * pd->dst.stride + 4 * col]; + a = &args->ta[col]; + l = &args->tl[row]; + + // TODO(jingning): per transformed block zero forcing only enabled for + // luma component. will integrate chroma components as well. + if (x->zcoeff_blk[tx_size][block] && plane == 0) { + p->eobs[block] = 0; + *a = *l = 0; + return; + } + + if (!x->skip_recode) { + if (x->quant_fp) { + // Encoding process for rtc mode + if (x->skip_txfm[0] == SKIP_TXFM_AC_DC && plane == 0) { + // skip forward transform + p->eobs[block] = 0; + *a = *l = 0; + return; + } else { + vp9_xform_quant_fp(x, plane, block, row, col, plane_bsize, tx_size); + } + } else { + if (max_txsize_lookup[plane_bsize] == tx_size) { + int txfm_blk_index = (plane << 2) + (block >> (tx_size << 1)); + if (x->skip_txfm[txfm_blk_index] == SKIP_TXFM_NONE) { + // full forward transform and quantization + vp9_xform_quant(x, plane, block, row, col, plane_bsize, tx_size); + } else if (x->skip_txfm[txfm_blk_index] == SKIP_TXFM_AC_ONLY) { + // fast path forward transform and quantization + vp9_xform_quant_dc(x, plane, block, row, col, plane_bsize, tx_size); + } else { + // skip forward transform + p->eobs[block] = 0; + *a = *l = 0; + return; + } + } else { + vp9_xform_quant(x, plane, block, row, col, plane_bsize, tx_size); + } + } + } + + if (x->optimize && (!x->skip_recode || !x->skip_optimize)) { + const int ctx = combine_entropy_contexts(*a, *l); + *a = *l = vp9_optimize_b(x, plane, block, tx_size, ctx) > 0; + } else { + *a = *l = p->eobs[block] > 0; + } + + if (p->eobs[block]) *(args->skip) = 0; + + if (x->skip_encode || p->eobs[block] == 0) return; +#if CONFIG_VP9_HIGHBITDEPTH + if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { + uint16_t *const dst16 = CONVERT_TO_SHORTPTR(dst); + switch (tx_size) { + case TX_32X32: + vp9_highbd_idct32x32_add(dqcoeff, dst16, pd->dst.stride, p->eobs[block], + xd->bd); + break; + case TX_16X16: + vp9_highbd_idct16x16_add(dqcoeff, dst16, pd->dst.stride, p->eobs[block], + xd->bd); + break; + case TX_8X8: + vp9_highbd_idct8x8_add(dqcoeff, dst16, pd->dst.stride, p->eobs[block], + xd->bd); + break; + case TX_4X4: + // this is like vp9_short_idct4x4 but has a special case around eob<=1 + // which is significant (not just an optimization) for the lossless + // case. + x->highbd_inv_txfm_add(dqcoeff, dst16, pd->dst.stride, p->eobs[block], + xd->bd); + break; + default: assert(0 && "Invalid transform size"); + } + return; + } +#endif // CONFIG_VP9_HIGHBITDEPTH + + switch (tx_size) { + case TX_32X32: + vp9_idct32x32_add(dqcoeff, dst, pd->dst.stride, p->eobs[block]); + break; + case TX_16X16: + vp9_idct16x16_add(dqcoeff, dst, pd->dst.stride, p->eobs[block]); + break; + case TX_8X8: + vp9_idct8x8_add(dqcoeff, dst, pd->dst.stride, p->eobs[block]); + break; + case TX_4X4: + // this is like vp9_short_idct4x4 but has a special case around eob<=1 + // which is significant (not just an optimization) for the lossless + // case. + x->inv_txfm_add(dqcoeff, dst, pd->dst.stride, p->eobs[block]); + break; + default: assert(0 && "Invalid transform size"); break; + } +} + +static void encode_block_pass1(int plane, int block, int row, int col, + BLOCK_SIZE plane_bsize, TX_SIZE tx_size, + void *arg) { + MACROBLOCK *const x = (MACROBLOCK *)arg; + MACROBLOCKD *const xd = &x->e_mbd; + struct macroblock_plane *const p = &x->plane[plane]; + struct macroblockd_plane *const pd = &xd->plane[plane]; + tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); + uint8_t *dst; + dst = &pd->dst.buf[4 * row * pd->dst.stride + 4 * col]; + + vp9_xform_quant(x, plane, block, row, col, plane_bsize, tx_size); + + if (p->eobs[block] > 0) { +#if CONFIG_VP9_HIGHBITDEPTH + if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { + x->highbd_inv_txfm_add(dqcoeff, CONVERT_TO_SHORTPTR(dst), pd->dst.stride, + p->eobs[block], xd->bd); + return; + } +#endif // CONFIG_VP9_HIGHBITDEPTH + x->inv_txfm_add(dqcoeff, dst, pd->dst.stride, p->eobs[block]); + } +} + +void vp9_encode_sby_pass1(MACROBLOCK *x, BLOCK_SIZE bsize) { + vp9_subtract_plane(x, bsize, 0); + vp9_foreach_transformed_block_in_plane(&x->e_mbd, bsize, 0, + encode_block_pass1, x); +} + +void vp9_encode_sb(MACROBLOCK *x, BLOCK_SIZE bsize) { + MACROBLOCKD *const xd = &x->e_mbd; + struct optimize_ctx ctx; + MODE_INFO *mi = xd->mi[0]; + struct encode_b_args arg = { x, 1, NULL, NULL, &mi->skip }; + int plane; + + mi->skip = 1; + + if (x->skip) return; + + for (plane = 0; plane < MAX_MB_PLANE; ++plane) { + if (!x->skip_recode) vp9_subtract_plane(x, bsize, plane); + + if (x->optimize && (!x->skip_recode || !x->skip_optimize)) { + const struct macroblockd_plane *const pd = &xd->plane[plane]; + const TX_SIZE tx_size = plane ? get_uv_tx_size(mi, pd) : mi->tx_size; + vp9_get_entropy_contexts(bsize, tx_size, pd, ctx.ta[plane], + ctx.tl[plane]); + arg.enable_coeff_opt = 1; + } else { + arg.enable_coeff_opt = 0; + } + arg.ta = ctx.ta[plane]; + arg.tl = ctx.tl[plane]; + + vp9_foreach_transformed_block_in_plane(xd, bsize, plane, encode_block, + &arg); + } +} + +void vp9_encode_block_intra(int plane, int block, int row, int col, + BLOCK_SIZE plane_bsize, TX_SIZE tx_size, + void *arg) { + struct encode_b_args *const args = arg; + MACROBLOCK *const x = args->x; + MACROBLOCKD *const xd = &x->e_mbd; + MODE_INFO *mi = xd->mi[0]; + struct macroblock_plane *const p = &x->plane[plane]; + struct macroblockd_plane *const pd = &xd->plane[plane]; + tran_low_t *coeff = BLOCK_OFFSET(p->coeff, block); + tran_low_t *qcoeff = BLOCK_OFFSET(p->qcoeff, block); + tran_low_t *dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); + const scan_order *scan_order; + TX_TYPE tx_type = DCT_DCT; + PREDICTION_MODE mode; + const int bwl = b_width_log2_lookup[plane_bsize]; + const int diff_stride = 4 * (1 << bwl); + uint8_t *src, *dst; + int16_t *src_diff; + uint16_t *eob = &p->eobs[block]; + const int src_stride = p->src.stride; + const int dst_stride = pd->dst.stride; + ENTROPY_CONTEXT *a = NULL; + ENTROPY_CONTEXT *l = NULL; + int entropy_ctx = 0; + dst = &pd->dst.buf[4 * (row * dst_stride + col)]; + src = &p->src.buf[4 * (row * src_stride + col)]; + src_diff = &p->src_diff[4 * (row * diff_stride + col)]; + if (args->enable_coeff_opt) { + a = &args->ta[col]; + l = &args->tl[row]; + entropy_ctx = combine_entropy_contexts(*a, *l); + } + + if (tx_size == TX_4X4) { + tx_type = get_tx_type_4x4(get_plane_type(plane), xd, block); + scan_order = &vp9_scan_orders[TX_4X4][tx_type]; + mode = plane == 0 ? get_y_mode(xd->mi[0], block) : mi->uv_mode; + } else { + mode = plane == 0 ? mi->mode : mi->uv_mode; + if (tx_size == TX_32X32) { + scan_order = &vp9_default_scan_orders[TX_32X32]; + } else { + tx_type = get_tx_type(get_plane_type(plane), xd); + scan_order = &vp9_scan_orders[tx_size][tx_type]; + } + } + + vp9_predict_intra_block( + xd, bwl, tx_size, mode, (x->skip_encode || x->fp_src_pred) ? src : dst, + (x->skip_encode || x->fp_src_pred) ? src_stride : dst_stride, dst, + dst_stride, col, row, plane); + + // skip block condition should be handled before this is called. + assert(!x->skip_block); + +#if CONFIG_VP9_HIGHBITDEPTH + if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { + uint16_t *const dst16 = CONVERT_TO_SHORTPTR(dst); + switch (tx_size) { + case TX_32X32: + if (!x->skip_recode) { + vpx_highbd_subtract_block(32, 32, src_diff, diff_stride, src, + src_stride, dst, dst_stride, xd->bd); + highbd_fdct32x32(x->use_lp32x32fdct, src_diff, coeff, diff_stride); + vpx_highbd_quantize_b_32x32(coeff, 1024, x->skip_block, p->zbin, + p->round, p->quant, p->quant_shift, + qcoeff, dqcoeff, pd->dequant, eob, + scan_order->scan, scan_order->iscan); + } + if (args->enable_coeff_opt && !x->skip_recode) { + *a = *l = vp9_optimize_b(x, plane, block, tx_size, entropy_ctx) > 0; + } + if (!x->skip_encode && *eob) { + vp9_highbd_idct32x32_add(dqcoeff, dst16, dst_stride, *eob, xd->bd); + } + break; + case TX_16X16: + if (!x->skip_recode) { + vpx_highbd_subtract_block(16, 16, src_diff, diff_stride, src, + src_stride, dst, dst_stride, xd->bd); + if (tx_type == DCT_DCT) + vpx_highbd_fdct16x16(src_diff, coeff, diff_stride); + else + vp9_highbd_fht16x16(src_diff, coeff, diff_stride, tx_type); + vpx_highbd_quantize_b(coeff, 256, x->skip_block, p->zbin, p->round, + p->quant, p->quant_shift, qcoeff, dqcoeff, + pd->dequant, eob, scan_order->scan, + scan_order->iscan); + } + if (args->enable_coeff_opt && !x->skip_recode) { + *a = *l = vp9_optimize_b(x, plane, block, tx_size, entropy_ctx) > 0; + } + if (!x->skip_encode && *eob) { + vp9_highbd_iht16x16_add(tx_type, dqcoeff, dst16, dst_stride, *eob, + xd->bd); + } + break; + case TX_8X8: + if (!x->skip_recode) { + vpx_highbd_subtract_block(8, 8, src_diff, diff_stride, src, + src_stride, dst, dst_stride, xd->bd); + if (tx_type == DCT_DCT) + vpx_highbd_fdct8x8(src_diff, coeff, diff_stride); + else + vp9_highbd_fht8x8(src_diff, coeff, diff_stride, tx_type); + vpx_highbd_quantize_b(coeff, 64, x->skip_block, p->zbin, p->round, + p->quant, p->quant_shift, qcoeff, dqcoeff, + pd->dequant, eob, scan_order->scan, + scan_order->iscan); + } + if (args->enable_coeff_opt && !x->skip_recode) { + *a = *l = vp9_optimize_b(x, plane, block, tx_size, entropy_ctx) > 0; + } + if (!x->skip_encode && *eob) { + vp9_highbd_iht8x8_add(tx_type, dqcoeff, dst16, dst_stride, *eob, + xd->bd); + } + break; + case TX_4X4: + if (!x->skip_recode) { + vpx_highbd_subtract_block(4, 4, src_diff, diff_stride, src, + src_stride, dst, dst_stride, xd->bd); + if (tx_type != DCT_DCT) + vp9_highbd_fht4x4(src_diff, coeff, diff_stride, tx_type); + else + x->fwd_txfm4x4(src_diff, coeff, diff_stride); + vpx_highbd_quantize_b(coeff, 16, x->skip_block, p->zbin, p->round, + p->quant, p->quant_shift, qcoeff, dqcoeff, + pd->dequant, eob, scan_order->scan, + scan_order->iscan); + } + if (args->enable_coeff_opt && !x->skip_recode) { + *a = *l = vp9_optimize_b(x, plane, block, tx_size, entropy_ctx) > 0; + } + if (!x->skip_encode && *eob) { + if (tx_type == DCT_DCT) { + // this is like vp9_short_idct4x4 but has a special case around + // eob<=1 which is significant (not just an optimization) for the + // lossless case. + x->highbd_inv_txfm_add(dqcoeff, dst16, dst_stride, *eob, xd->bd); + } else { + vp9_highbd_iht4x4_16_add(dqcoeff, dst16, dst_stride, tx_type, + xd->bd); + } + } + break; + default: assert(0); return; + } + if (*eob) *(args->skip) = 0; + return; + } +#endif // CONFIG_VP9_HIGHBITDEPTH + + switch (tx_size) { + case TX_32X32: + if (!x->skip_recode) { + vpx_subtract_block(32, 32, src_diff, diff_stride, src, src_stride, dst, + dst_stride); + fdct32x32(x->use_lp32x32fdct, src_diff, coeff, diff_stride); + vpx_quantize_b_32x32(coeff, 1024, x->skip_block, p->zbin, p->round, + p->quant, p->quant_shift, qcoeff, dqcoeff, + pd->dequant, eob, scan_order->scan, + scan_order->iscan); + } + if (args->enable_coeff_opt && !x->skip_recode) { + *a = *l = vp9_optimize_b(x, plane, block, tx_size, entropy_ctx) > 0; + } + if (!x->skip_encode && *eob) + vp9_idct32x32_add(dqcoeff, dst, dst_stride, *eob); + break; + case TX_16X16: + if (!x->skip_recode) { + vpx_subtract_block(16, 16, src_diff, diff_stride, src, src_stride, dst, + dst_stride); + vp9_fht16x16(src_diff, coeff, diff_stride, tx_type); + vpx_quantize_b(coeff, 256, x->skip_block, p->zbin, p->round, p->quant, + p->quant_shift, qcoeff, dqcoeff, pd->dequant, eob, + scan_order->scan, scan_order->iscan); + } + if (args->enable_coeff_opt && !x->skip_recode) { + *a = *l = vp9_optimize_b(x, plane, block, tx_size, entropy_ctx) > 0; + } + if (!x->skip_encode && *eob) + vp9_iht16x16_add(tx_type, dqcoeff, dst, dst_stride, *eob); + break; + case TX_8X8: + if (!x->skip_recode) { + vpx_subtract_block(8, 8, src_diff, diff_stride, src, src_stride, dst, + dst_stride); + vp9_fht8x8(src_diff, coeff, diff_stride, tx_type); + vpx_quantize_b(coeff, 64, x->skip_block, p->zbin, p->round, p->quant, + p->quant_shift, qcoeff, dqcoeff, pd->dequant, eob, + scan_order->scan, scan_order->iscan); + } + if (args->enable_coeff_opt && !x->skip_recode) { + *a = *l = vp9_optimize_b(x, plane, block, tx_size, entropy_ctx) > 0; + } + if (!x->skip_encode && *eob) + vp9_iht8x8_add(tx_type, dqcoeff, dst, dst_stride, *eob); + break; + case TX_4X4: + if (!x->skip_recode) { + vpx_subtract_block(4, 4, src_diff, diff_stride, src, src_stride, dst, + dst_stride); + if (tx_type != DCT_DCT) + vp9_fht4x4(src_diff, coeff, diff_stride, tx_type); + else + x->fwd_txfm4x4(src_diff, coeff, diff_stride); + vpx_quantize_b(coeff, 16, x->skip_block, p->zbin, p->round, p->quant, + p->quant_shift, qcoeff, dqcoeff, pd->dequant, eob, + scan_order->scan, scan_order->iscan); + } + if (args->enable_coeff_opt && !x->skip_recode) { + *a = *l = vp9_optimize_b(x, plane, block, tx_size, entropy_ctx) > 0; + } + if (!x->skip_encode && *eob) { + if (tx_type == DCT_DCT) + // this is like vp9_short_idct4x4 but has a special case around eob<=1 + // which is significant (not just an optimization) for the lossless + // case. + x->inv_txfm_add(dqcoeff, dst, dst_stride, *eob); + else + vp9_iht4x4_16_add(dqcoeff, dst, dst_stride, tx_type); + } + break; + default: assert(0); break; + } + if (*eob) *(args->skip) = 0; +} + +void vp9_encode_intra_block_plane(MACROBLOCK *x, BLOCK_SIZE bsize, int plane, + int enable_optimize_b) { + const MACROBLOCKD *const xd = &x->e_mbd; + struct optimize_ctx ctx; + struct encode_b_args arg = { x, enable_optimize_b, ctx.ta[plane], + ctx.tl[plane], &xd->mi[0]->skip }; + + if (enable_optimize_b && x->optimize && + (!x->skip_recode || !x->skip_optimize)) { + const struct macroblockd_plane *const pd = &xd->plane[plane]; + const TX_SIZE tx_size = + plane ? get_uv_tx_size(xd->mi[0], pd) : xd->mi[0]->tx_size; + vp9_get_entropy_contexts(bsize, tx_size, pd, ctx.ta[plane], ctx.tl[plane]); + } else { + arg.enable_coeff_opt = 0; + } + + vp9_foreach_transformed_block_in_plane(xd, bsize, plane, + vp9_encode_block_intra, &arg); +} diff --git a/vp9/encoder/vp9_encodemb.h b/vp9/encoder/vp9_encodemb.h new file mode 100644 index 0000000..cf943be --- /dev/null +++ b/vp9/encoder/vp9_encodemb.h @@ -0,0 +1,51 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP9_ENCODER_VP9_ENCODEMB_H_ +#define VP9_ENCODER_VP9_ENCODEMB_H_ + +#include "./vpx_config.h" +#include "vp9/encoder/vp9_block.h" + +#ifdef __cplusplus +extern "C" { +#endif + +struct encode_b_args { + MACROBLOCK *x; + int enable_coeff_opt; + ENTROPY_CONTEXT *ta; + ENTROPY_CONTEXT *tl; + int8_t *skip; +}; +int vp9_optimize_b(MACROBLOCK *mb, int plane, int block, TX_SIZE tx_size, + int ctx); +void vp9_encode_sb(MACROBLOCK *x, BLOCK_SIZE bsize); +void vp9_encode_sby_pass1(MACROBLOCK *x, BLOCK_SIZE bsize); +void vp9_xform_quant_fp(MACROBLOCK *x, int plane, int block, int row, int col, + BLOCK_SIZE plane_bsize, TX_SIZE tx_size); +void vp9_xform_quant_dc(MACROBLOCK *x, int plane, int block, int row, int col, + BLOCK_SIZE plane_bsize, TX_SIZE tx_size); +void vp9_xform_quant(MACROBLOCK *x, int plane, int block, int row, int col, + BLOCK_SIZE plane_bsize, TX_SIZE tx_size); + +void vp9_subtract_plane(MACROBLOCK *x, BLOCK_SIZE bsize, int plane); + +void vp9_encode_block_intra(int plane, int block, int row, int col, + BLOCK_SIZE plane_bsize, TX_SIZE tx_size, void *arg); + +void vp9_encode_intra_block_plane(MACROBLOCK *x, BLOCK_SIZE bsize, int plane, + int enable_optimize_b); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP9_ENCODER_VP9_ENCODEMB_H_ diff --git a/vp9/encoder/vp9_encodemv.c b/vp9/encoder/vp9_encodemv.c new file mode 100644 index 0000000..023d087 --- /dev/null +++ b/vp9/encoder/vp9_encodemv.c @@ -0,0 +1,271 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include + +#include "vp9/common/vp9_common.h" +#include "vp9/common/vp9_entropymode.h" + +#include "vp9/encoder/vp9_cost.h" +#include "vp9/encoder/vp9_encodemv.h" + +#include "vpx_dsp/vpx_dsp_common.h" + +static struct vp9_token mv_joint_encodings[MV_JOINTS]; +static struct vp9_token mv_class_encodings[MV_CLASSES]; +static struct vp9_token mv_fp_encodings[MV_FP_SIZE]; + +void vp9_entropy_mv_init(void) { + vp9_tokens_from_tree(mv_joint_encodings, vp9_mv_joint_tree); + vp9_tokens_from_tree(mv_class_encodings, vp9_mv_class_tree); + vp9_tokens_from_tree(mv_fp_encodings, vp9_mv_fp_tree); +} + +static void encode_mv_component(vpx_writer *w, int comp, + const nmv_component *mvcomp, int usehp) { + int offset; + const int sign = comp < 0; + const int mag = sign ? -comp : comp; + const int mv_class = vp9_get_mv_class(mag - 1, &offset); + const int d = offset >> 3; // int mv data + const int fr = (offset >> 1) & 3; // fractional mv data + const int hp = offset & 1; // high precision mv data + + assert(comp != 0); + + // Sign + vpx_write(w, sign, mvcomp->sign); + + // Class + vp9_write_token(w, vp9_mv_class_tree, mvcomp->classes, + &mv_class_encodings[mv_class]); + + // Integer bits + if (mv_class == MV_CLASS_0) { + vpx_write(w, d, mvcomp->class0[0]); + } else { + int i; + const int n = mv_class + CLASS0_BITS - 1; // number of bits + for (i = 0; i < n; ++i) vpx_write(w, (d >> i) & 1, mvcomp->bits[i]); + } + + // Fractional bits + vp9_write_token(w, vp9_mv_fp_tree, + mv_class == MV_CLASS_0 ? mvcomp->class0_fp[d] : mvcomp->fp, + &mv_fp_encodings[fr]); + + // High precision bit + if (usehp) + vpx_write(w, hp, mv_class == MV_CLASS_0 ? mvcomp->class0_hp : mvcomp->hp); +} + +static void build_nmv_component_cost_table(int *mvcost, + const nmv_component *const mvcomp, + int usehp) { + int sign_cost[2], class_cost[MV_CLASSES], class0_cost[CLASS0_SIZE]; + int bits_cost[MV_OFFSET_BITS][2]; + int class0_fp_cost[CLASS0_SIZE][MV_FP_SIZE], fp_cost[MV_FP_SIZE]; + int class0_hp_cost[2], hp_cost[2]; + int i; + int c, o; + + sign_cost[0] = vp9_cost_zero(mvcomp->sign); + sign_cost[1] = vp9_cost_one(mvcomp->sign); + vp9_cost_tokens(class_cost, mvcomp->classes, vp9_mv_class_tree); + vp9_cost_tokens(class0_cost, mvcomp->class0, vp9_mv_class0_tree); + for (i = 0; i < MV_OFFSET_BITS; ++i) { + bits_cost[i][0] = vp9_cost_zero(mvcomp->bits[i]); + bits_cost[i][1] = vp9_cost_one(mvcomp->bits[i]); + } + + for (i = 0; i < CLASS0_SIZE; ++i) + vp9_cost_tokens(class0_fp_cost[i], mvcomp->class0_fp[i], vp9_mv_fp_tree); + vp9_cost_tokens(fp_cost, mvcomp->fp, vp9_mv_fp_tree); + + // Always build the hp costs to avoid an uninitialized warning from gcc + class0_hp_cost[0] = vp9_cost_zero(mvcomp->class0_hp); + class0_hp_cost[1] = vp9_cost_one(mvcomp->class0_hp); + hp_cost[0] = vp9_cost_zero(mvcomp->hp); + hp_cost[1] = vp9_cost_one(mvcomp->hp); + + mvcost[0] = 0; + // MV_CLASS_0 + for (o = 0; o < (CLASS0_SIZE << 3); ++o) { + int d, e, f; + int cost = class_cost[MV_CLASS_0]; + int v = o + 1; + d = (o >> 3); /* int mv data */ + f = (o >> 1) & 3; /* fractional pel mv data */ + cost += class0_cost[d]; + cost += class0_fp_cost[d][f]; + if (usehp) { + e = (o & 1); /* high precision mv data */ + cost += class0_hp_cost[e]; + } + mvcost[v] = cost + sign_cost[0]; + mvcost[-v] = cost + sign_cost[1]; + } + for (c = MV_CLASS_1; c < MV_CLASSES; ++c) { + int d; + for (d = 0; d < (1 << c); ++d) { + int f; + int whole_cost = class_cost[c]; + int b = c + CLASS0_BITS - 1; /* number of bits */ + for (i = 0; i < b; ++i) whole_cost += bits_cost[i][((d >> i) & 1)]; + for (f = 0; f < 4; ++f) { + int cost = whole_cost + fp_cost[f]; + int v = (CLASS0_SIZE << (c + 2)) + d * 8 + f * 2 /* + e */ + 1; + if (usehp) { + mvcost[v] = cost + hp_cost[0] + sign_cost[0]; + mvcost[-v] = cost + hp_cost[0] + sign_cost[1]; + if (v + 1 > MV_MAX) break; + mvcost[v + 1] = cost + hp_cost[1] + sign_cost[0]; + mvcost[-v - 1] = cost + hp_cost[1] + sign_cost[1]; + } else { + mvcost[v] = cost + sign_cost[0]; + mvcost[-v] = cost + sign_cost[1]; + if (v + 1 > MV_MAX) break; + mvcost[v + 1] = cost + sign_cost[0]; + mvcost[-v - 1] = cost + sign_cost[1]; + } + } + } + } +} + +static int update_mv(vpx_writer *w, const unsigned int ct[2], vpx_prob *cur_p, + vpx_prob upd_p) { + const vpx_prob new_p = get_binary_prob(ct[0], ct[1]) | 1; + const int update = cost_branch256(ct, *cur_p) + vp9_cost_zero(upd_p) > + cost_branch256(ct, new_p) + vp9_cost_one(upd_p) + + (7 << VP9_PROB_COST_SHIFT); + vpx_write(w, update, upd_p); + if (update) { + *cur_p = new_p; + vpx_write_literal(w, new_p >> 1, 7); + } + return update; +} + +static void write_mv_update(const vpx_tree_index *tree, + vpx_prob probs[/*n - 1*/], + const unsigned int counts[/*n - 1*/], int n, + vpx_writer *w) { + int i; + unsigned int branch_ct[32][2]; + + // Assuming max number of probabilities <= 32 + assert(n <= 32); + + vp9_tree_probs_from_distribution(tree, branch_ct, counts); + for (i = 0; i < n - 1; ++i) + update_mv(w, branch_ct[i], &probs[i], MV_UPDATE_PROB); +} + +void vp9_write_nmv_probs(VP9_COMMON *cm, int usehp, vpx_writer *w, + nmv_context_counts *const counts) { + int i, j; + nmv_context *const mvc = &cm->fc->nmvc; + + write_mv_update(vp9_mv_joint_tree, mvc->joints, counts->joints, MV_JOINTS, w); + + for (i = 0; i < 2; ++i) { + nmv_component *comp = &mvc->comps[i]; + nmv_component_counts *comp_counts = &counts->comps[i]; + + update_mv(w, comp_counts->sign, &comp->sign, MV_UPDATE_PROB); + write_mv_update(vp9_mv_class_tree, comp->classes, comp_counts->classes, + MV_CLASSES, w); + write_mv_update(vp9_mv_class0_tree, comp->class0, comp_counts->class0, + CLASS0_SIZE, w); + for (j = 0; j < MV_OFFSET_BITS; ++j) + update_mv(w, comp_counts->bits[j], &comp->bits[j], MV_UPDATE_PROB); + } + + for (i = 0; i < 2; ++i) { + for (j = 0; j < CLASS0_SIZE; ++j) + write_mv_update(vp9_mv_fp_tree, mvc->comps[i].class0_fp[j], + counts->comps[i].class0_fp[j], MV_FP_SIZE, w); + + write_mv_update(vp9_mv_fp_tree, mvc->comps[i].fp, counts->comps[i].fp, + MV_FP_SIZE, w); + } + + if (usehp) { + for (i = 0; i < 2; ++i) { + update_mv(w, counts->comps[i].class0_hp, &mvc->comps[i].class0_hp, + MV_UPDATE_PROB); + update_mv(w, counts->comps[i].hp, &mvc->comps[i].hp, MV_UPDATE_PROB); + } + } +} + +void vp9_encode_mv(VP9_COMP *cpi, vpx_writer *w, const MV *mv, const MV *ref, + const nmv_context *mvctx, int usehp, + unsigned int *const max_mv_magnitude) { + const MV diff = { mv->row - ref->row, mv->col - ref->col }; + const MV_JOINT_TYPE j = vp9_get_mv_joint(&diff); + usehp = usehp && use_mv_hp(ref); + + vp9_write_token(w, vp9_mv_joint_tree, mvctx->joints, &mv_joint_encodings[j]); + if (mv_joint_vertical(j)) + encode_mv_component(w, diff.row, &mvctx->comps[0], usehp); + + if (mv_joint_horizontal(j)) + encode_mv_component(w, diff.col, &mvctx->comps[1], usehp); + + // If auto_mv_step_size is enabled then keep track of the largest + // motion vector component used. + if (cpi->sf.mv.auto_mv_step_size) { + const unsigned int maxv = VPXMAX(abs(mv->row), abs(mv->col)) >> 3; + *max_mv_magnitude = VPXMAX(maxv, *max_mv_magnitude); + } +} + +void vp9_build_nmv_cost_table(int *mvjoint, int *mvcost[2], + const nmv_context *ctx, int usehp) { + vp9_cost_tokens(mvjoint, ctx->joints, vp9_mv_joint_tree); + build_nmv_component_cost_table(mvcost[0], &ctx->comps[0], usehp); + build_nmv_component_cost_table(mvcost[1], &ctx->comps[1], usehp); +} + +static void inc_mvs(const MODE_INFO *mi, const MB_MODE_INFO_EXT *mbmi_ext, + const int_mv mvs[2], nmv_context_counts *counts) { + int i; + + for (i = 0; i < 1 + has_second_ref(mi); ++i) { + const MV *ref = &mbmi_ext->ref_mvs[mi->ref_frame[i]][0].as_mv; + const MV diff = { mvs[i].as_mv.row - ref->row, + mvs[i].as_mv.col - ref->col }; + vp9_inc_mv(&diff, counts); + } +} + +void vp9_update_mv_count(ThreadData *td) { + const MACROBLOCKD *xd = &td->mb.e_mbd; + const MODE_INFO *mi = xd->mi[0]; + const MB_MODE_INFO_EXT *mbmi_ext = td->mb.mbmi_ext; + + if (mi->sb_type < BLOCK_8X8) { + const int num_4x4_w = num_4x4_blocks_wide_lookup[mi->sb_type]; + const int num_4x4_h = num_4x4_blocks_high_lookup[mi->sb_type]; + int idx, idy; + + for (idy = 0; idy < 2; idy += num_4x4_h) { + for (idx = 0; idx < 2; idx += num_4x4_w) { + const int i = idy * 2 + idx; + if (mi->bmi[i].as_mode == NEWMV) + inc_mvs(mi, mbmi_ext, mi->bmi[i].as_mv, &td->counts->mv); + } + } + } else { + if (mi->mode == NEWMV) inc_mvs(mi, mbmi_ext, mi->mv, &td->counts->mv); + } +} diff --git a/vp9/encoder/vp9_encodemv.h b/vp9/encoder/vp9_encodemv.h new file mode 100644 index 0000000..9fc7ab8 --- /dev/null +++ b/vp9/encoder/vp9_encodemv.h @@ -0,0 +1,38 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP9_ENCODER_VP9_ENCODEMV_H_ +#define VP9_ENCODER_VP9_ENCODEMV_H_ + +#include "vp9/encoder/vp9_encoder.h" + +#ifdef __cplusplus +extern "C" { +#endif + +void vp9_entropy_mv_init(void); + +void vp9_write_nmv_probs(VP9_COMMON *cm, int usehp, vpx_writer *w, + nmv_context_counts *const counts); + +void vp9_encode_mv(VP9_COMP *cpi, vpx_writer *w, const MV *mv, const MV *ref, + const nmv_context *mvctx, int usehp, + unsigned int *const max_mv_magnitude); + +void vp9_build_nmv_cost_table(int *mvjoint, int *mvcost[2], + const nmv_context *mvctx, int usehp); + +void vp9_update_mv_count(ThreadData *td); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP9_ENCODER_VP9_ENCODEMV_H_ diff --git a/vp9/encoder/vp9_encoder.c b/vp9/encoder/vp9_encoder.c new file mode 100644 index 0000000..2ae59dd --- /dev/null +++ b/vp9/encoder/vp9_encoder.c @@ -0,0 +1,5706 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include +#include + +#include "./vp9_rtcd.h" +#include "./vpx_config.h" +#include "./vpx_dsp_rtcd.h" +#include "./vpx_scale_rtcd.h" +#include "vpx_dsp/psnr.h" +#include "vpx_dsp/vpx_dsp_common.h" +#include "vpx_dsp/vpx_filter.h" +#if CONFIG_INTERNAL_STATS +#include "vpx_dsp/ssim.h" +#endif +#include "vpx_ports/mem.h" +#include "vpx_ports/system_state.h" +#include "vpx_ports/vpx_timer.h" + +#include "vp9/common/vp9_alloccommon.h" +#include "vp9/common/vp9_filter.h" +#include "vp9/common/vp9_idct.h" +#if CONFIG_VP9_POSTPROC +#include "vp9/common/vp9_postproc.h" +#endif +#include "vp9/common/vp9_reconinter.h" +#include "vp9/common/vp9_reconintra.h" +#include "vp9/common/vp9_tile_common.h" + +#include "vp9/encoder/vp9_alt_ref_aq.h" +#include "vp9/encoder/vp9_aq_360.h" +#include "vp9/encoder/vp9_aq_complexity.h" +#include "vp9/encoder/vp9_aq_cyclicrefresh.h" +#include "vp9/encoder/vp9_aq_variance.h" +#include "vp9/encoder/vp9_bitstream.h" +#include "vp9/encoder/vp9_context_tree.h" +#include "vp9/encoder/vp9_encodeframe.h" +#include "vp9/encoder/vp9_encodemv.h" +#include "vp9/encoder/vp9_encoder.h" +#include "vp9/encoder/vp9_extend.h" +#include "vp9/encoder/vp9_ethread.h" +#include "vp9/encoder/vp9_firstpass.h" +#include "vp9/encoder/vp9_mbgraph.h" +#include "vp9/encoder/vp9_multi_thread.h" +#include "vp9/encoder/vp9_noise_estimate.h" +#include "vp9/encoder/vp9_picklpf.h" +#include "vp9/encoder/vp9_ratectrl.h" +#include "vp9/encoder/vp9_rd.h" +#include "vp9/encoder/vp9_resize.h" +#include "vp9/encoder/vp9_segmentation.h" +#include "vp9/encoder/vp9_skin_detection.h" +#include "vp9/encoder/vp9_speed_features.h" +#include "vp9/encoder/vp9_svc_layercontext.h" +#include "vp9/encoder/vp9_temporal_filter.h" + +#define AM_SEGMENT_ID_INACTIVE 7 +#define AM_SEGMENT_ID_ACTIVE 0 + +#define ALTREF_HIGH_PRECISION_MV 1 // Whether to use high precision mv + // for altref computation. +#define HIGH_PRECISION_MV_QTHRESH 200 // Q threshold for high precision + // mv. Choose a very high value for + // now so that HIGH_PRECISION is always + // chosen. + +#define FRAME_SIZE_FACTOR 128 // empirical params for context model threshold +#define FRAME_RATE_FACTOR 8 + +#ifdef OUTPUT_YUV_DENOISED +FILE *yuv_denoised_file = NULL; +#endif +#ifdef OUTPUT_YUV_SKINMAP +static FILE *yuv_skinmap_file = NULL; +#endif +#ifdef OUTPUT_YUV_REC +FILE *yuv_rec_file; +#endif + +#if 0 +FILE *framepsnr; +FILE *kf_list; +FILE *keyfile; +#endif + +#ifdef ENABLE_KF_DENOISE +// Test condition for spatial denoise of source. +static int is_spatial_denoise_enabled(VP9_COMP *cpi) { + VP9_COMMON *const cm = &cpi->common; + const VP9EncoderConfig *const oxcf = &cpi->oxcf; + + return (oxcf->pass != 1) && !is_lossless_requested(&cpi->oxcf) && + frame_is_intra_only(cm); +} +#endif + +// compute adaptive threshold for skip recoding +static int compute_context_model_thresh(const VP9_COMP *const cpi) { + const VP9_COMMON *const cm = &cpi->common; + const VP9EncoderConfig *const oxcf = &cpi->oxcf; + const int frame_size = (cm->width * cm->height) >> 10; + const int bitrate = (int)(oxcf->target_bandwidth >> 10); + const int qindex_factor = cm->base_qindex + (MAXQ >> 1); + + // This equation makes the threshold adaptive to frame size. + // Coding gain obtained by recoding comes from alternate frames of large + // content change. We skip recoding if the difference of previous and current + // frame context probability model is less than a certain threshold. + // The first component is the most critical part to guarantee adaptivity. + // Other parameters are estimated based on normal setting of hd resolution + // parameters. e.g frame_size = 1920x1080, bitrate = 8000, qindex_factor < 50 + const int thresh = + ((FRAME_SIZE_FACTOR * frame_size - FRAME_RATE_FACTOR * bitrate) * + qindex_factor) >> + 9; + + return thresh; +} + +// compute the total cost difference between current +// and previous frame context prob model. +static int compute_context_model_diff(const VP9_COMMON *const cm) { + const FRAME_CONTEXT *const pre_fc = + &cm->frame_contexts[cm->frame_context_idx]; + const FRAME_CONTEXT *const cur_fc = cm->fc; + const FRAME_COUNTS *counts = &cm->counts; + vpx_prob pre_last_prob, cur_last_prob; + int diff = 0; + int i, j, k, l, m, n; + + // y_mode_prob + for (i = 0; i < BLOCK_SIZE_GROUPS; ++i) { + for (j = 0; j < INTRA_MODES - 1; ++j) { + diff += (int)counts->y_mode[i][j] * + (pre_fc->y_mode_prob[i][j] - cur_fc->y_mode_prob[i][j]); + } + pre_last_prob = MAX_PROB - pre_fc->y_mode_prob[i][INTRA_MODES - 2]; + cur_last_prob = MAX_PROB - cur_fc->y_mode_prob[i][INTRA_MODES - 2]; + + diff += (int)counts->y_mode[i][INTRA_MODES - 1] * + (pre_last_prob - cur_last_prob); + } + + // uv_mode_prob + for (i = 0; i < INTRA_MODES; ++i) { + for (j = 0; j < INTRA_MODES - 1; ++j) { + diff += (int)counts->uv_mode[i][j] * + (pre_fc->uv_mode_prob[i][j] - cur_fc->uv_mode_prob[i][j]); + } + pre_last_prob = MAX_PROB - pre_fc->uv_mode_prob[i][INTRA_MODES - 2]; + cur_last_prob = MAX_PROB - cur_fc->uv_mode_prob[i][INTRA_MODES - 2]; + + diff += (int)counts->uv_mode[i][INTRA_MODES - 1] * + (pre_last_prob - cur_last_prob); + } + + // partition_prob + for (i = 0; i < PARTITION_CONTEXTS; ++i) { + for (j = 0; j < PARTITION_TYPES - 1; ++j) { + diff += (int)counts->partition[i][j] * + (pre_fc->partition_prob[i][j] - cur_fc->partition_prob[i][j]); + } + pre_last_prob = MAX_PROB - pre_fc->partition_prob[i][PARTITION_TYPES - 2]; + cur_last_prob = MAX_PROB - cur_fc->partition_prob[i][PARTITION_TYPES - 2]; + + diff += (int)counts->partition[i][PARTITION_TYPES - 1] * + (pre_last_prob - cur_last_prob); + } + + // coef_probs + for (i = 0; i < TX_SIZES; ++i) { + for (j = 0; j < PLANE_TYPES; ++j) { + for (k = 0; k < REF_TYPES; ++k) { + for (l = 0; l < COEF_BANDS; ++l) { + for (m = 0; m < BAND_COEFF_CONTEXTS(l); ++m) { + for (n = 0; n < UNCONSTRAINED_NODES; ++n) { + diff += (int)counts->coef[i][j][k][l][m][n] * + (pre_fc->coef_probs[i][j][k][l][m][n] - + cur_fc->coef_probs[i][j][k][l][m][n]); + } + + pre_last_prob = + MAX_PROB - + pre_fc->coef_probs[i][j][k][l][m][UNCONSTRAINED_NODES - 1]; + cur_last_prob = + MAX_PROB - + cur_fc->coef_probs[i][j][k][l][m][UNCONSTRAINED_NODES - 1]; + + diff += (int)counts->coef[i][j][k][l][m][UNCONSTRAINED_NODES] * + (pre_last_prob - cur_last_prob); + } + } + } + } + } + + // switchable_interp_prob + for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; ++i) { + for (j = 0; j < SWITCHABLE_FILTERS - 1; ++j) { + diff += (int)counts->switchable_interp[i][j] * + (pre_fc->switchable_interp_prob[i][j] - + cur_fc->switchable_interp_prob[i][j]); + } + pre_last_prob = + MAX_PROB - pre_fc->switchable_interp_prob[i][SWITCHABLE_FILTERS - 2]; + cur_last_prob = + MAX_PROB - cur_fc->switchable_interp_prob[i][SWITCHABLE_FILTERS - 2]; + + diff += (int)counts->switchable_interp[i][SWITCHABLE_FILTERS - 1] * + (pre_last_prob - cur_last_prob); + } + + // inter_mode_probs + for (i = 0; i < INTER_MODE_CONTEXTS; ++i) { + for (j = 0; j < INTER_MODES - 1; ++j) { + diff += (int)counts->inter_mode[i][j] * + (pre_fc->inter_mode_probs[i][j] - cur_fc->inter_mode_probs[i][j]); + } + pre_last_prob = MAX_PROB - pre_fc->inter_mode_probs[i][INTER_MODES - 2]; + cur_last_prob = MAX_PROB - cur_fc->inter_mode_probs[i][INTER_MODES - 2]; + + diff += (int)counts->inter_mode[i][INTER_MODES - 1] * + (pre_last_prob - cur_last_prob); + } + + // intra_inter_prob + for (i = 0; i < INTRA_INTER_CONTEXTS; ++i) { + diff += (int)counts->intra_inter[i][0] * + (pre_fc->intra_inter_prob[i] - cur_fc->intra_inter_prob[i]); + + pre_last_prob = MAX_PROB - pre_fc->intra_inter_prob[i]; + cur_last_prob = MAX_PROB - cur_fc->intra_inter_prob[i]; + + diff += (int)counts->intra_inter[i][1] * (pre_last_prob - cur_last_prob); + } + + // comp_inter_prob + for (i = 0; i < COMP_INTER_CONTEXTS; ++i) { + diff += (int)counts->comp_inter[i][0] * + (pre_fc->comp_inter_prob[i] - cur_fc->comp_inter_prob[i]); + + pre_last_prob = MAX_PROB - pre_fc->comp_inter_prob[i]; + cur_last_prob = MAX_PROB - cur_fc->comp_inter_prob[i]; + + diff += (int)counts->comp_inter[i][1] * (pre_last_prob - cur_last_prob); + } + + // single_ref_prob + for (i = 0; i < REF_CONTEXTS; ++i) { + for (j = 0; j < 2; ++j) { + diff += (int)counts->single_ref[i][j][0] * + (pre_fc->single_ref_prob[i][j] - cur_fc->single_ref_prob[i][j]); + + pre_last_prob = MAX_PROB - pre_fc->single_ref_prob[i][j]; + cur_last_prob = MAX_PROB - cur_fc->single_ref_prob[i][j]; + + diff += + (int)counts->single_ref[i][j][1] * (pre_last_prob - cur_last_prob); + } + } + + // comp_ref_prob + for (i = 0; i < REF_CONTEXTS; ++i) { + diff += (int)counts->comp_ref[i][0] * + (pre_fc->comp_ref_prob[i] - cur_fc->comp_ref_prob[i]); + + pre_last_prob = MAX_PROB - pre_fc->comp_ref_prob[i]; + cur_last_prob = MAX_PROB - cur_fc->comp_ref_prob[i]; + + diff += (int)counts->comp_ref[i][1] * (pre_last_prob - cur_last_prob); + } + + // tx_probs + for (i = 0; i < TX_SIZE_CONTEXTS; ++i) { + // p32x32 + for (j = 0; j < TX_SIZES - 1; ++j) { + diff += (int)counts->tx.p32x32[i][j] * + (pre_fc->tx_probs.p32x32[i][j] - cur_fc->tx_probs.p32x32[i][j]); + } + pre_last_prob = MAX_PROB - pre_fc->tx_probs.p32x32[i][TX_SIZES - 2]; + cur_last_prob = MAX_PROB - cur_fc->tx_probs.p32x32[i][TX_SIZES - 2]; + + diff += (int)counts->tx.p32x32[i][TX_SIZES - 1] * + (pre_last_prob - cur_last_prob); + + // p16x16 + for (j = 0; j < TX_SIZES - 2; ++j) { + diff += (int)counts->tx.p16x16[i][j] * + (pre_fc->tx_probs.p16x16[i][j] - cur_fc->tx_probs.p16x16[i][j]); + } + pre_last_prob = MAX_PROB - pre_fc->tx_probs.p16x16[i][TX_SIZES - 3]; + cur_last_prob = MAX_PROB - cur_fc->tx_probs.p16x16[i][TX_SIZES - 3]; + + diff += (int)counts->tx.p16x16[i][TX_SIZES - 2] * + (pre_last_prob - cur_last_prob); + + // p8x8 + for (j = 0; j < TX_SIZES - 3; ++j) { + diff += (int)counts->tx.p8x8[i][j] * + (pre_fc->tx_probs.p8x8[i][j] - cur_fc->tx_probs.p8x8[i][j]); + } + pre_last_prob = MAX_PROB - pre_fc->tx_probs.p8x8[i][TX_SIZES - 4]; + cur_last_prob = MAX_PROB - cur_fc->tx_probs.p8x8[i][TX_SIZES - 4]; + + diff += + (int)counts->tx.p8x8[i][TX_SIZES - 3] * (pre_last_prob - cur_last_prob); + } + + // skip_probs + for (i = 0; i < SKIP_CONTEXTS; ++i) { + diff += (int)counts->skip[i][0] * + (pre_fc->skip_probs[i] - cur_fc->skip_probs[i]); + + pre_last_prob = MAX_PROB - pre_fc->skip_probs[i]; + cur_last_prob = MAX_PROB - cur_fc->skip_probs[i]; + + diff += (int)counts->skip[i][1] * (pre_last_prob - cur_last_prob); + } + + // mv + for (i = 0; i < MV_JOINTS - 1; ++i) { + diff += (int)counts->mv.joints[i] * + (pre_fc->nmvc.joints[i] - cur_fc->nmvc.joints[i]); + } + pre_last_prob = MAX_PROB - pre_fc->nmvc.joints[MV_JOINTS - 2]; + cur_last_prob = MAX_PROB - cur_fc->nmvc.joints[MV_JOINTS - 2]; + + diff += + (int)counts->mv.joints[MV_JOINTS - 1] * (pre_last_prob - cur_last_prob); + + for (i = 0; i < 2; ++i) { + const nmv_component_counts *nmv_count = &counts->mv.comps[i]; + const nmv_component *pre_nmv_prob = &pre_fc->nmvc.comps[i]; + const nmv_component *cur_nmv_prob = &cur_fc->nmvc.comps[i]; + + // sign + diff += (int)nmv_count->sign[0] * (pre_nmv_prob->sign - cur_nmv_prob->sign); + + pre_last_prob = MAX_PROB - pre_nmv_prob->sign; + cur_last_prob = MAX_PROB - cur_nmv_prob->sign; + + diff += (int)nmv_count->sign[1] * (pre_last_prob - cur_last_prob); + + // classes + for (j = 0; j < MV_CLASSES - 1; ++j) { + diff += (int)nmv_count->classes[j] * + (pre_nmv_prob->classes[j] - cur_nmv_prob->classes[j]); + } + pre_last_prob = MAX_PROB - pre_nmv_prob->classes[MV_CLASSES - 2]; + cur_last_prob = MAX_PROB - cur_nmv_prob->classes[MV_CLASSES - 2]; + + diff += (int)nmv_count->classes[MV_CLASSES - 1] * + (pre_last_prob - cur_last_prob); + + // class0 + for (j = 0; j < CLASS0_SIZE - 1; ++j) { + diff += (int)nmv_count->class0[j] * + (pre_nmv_prob->class0[j] - cur_nmv_prob->class0[j]); + } + pre_last_prob = MAX_PROB - pre_nmv_prob->class0[CLASS0_SIZE - 2]; + cur_last_prob = MAX_PROB - cur_nmv_prob->class0[CLASS0_SIZE - 2]; + + diff += (int)nmv_count->class0[CLASS0_SIZE - 1] * + (pre_last_prob - cur_last_prob); + + // bits + for (j = 0; j < MV_OFFSET_BITS; ++j) { + diff += (int)nmv_count->bits[j][0] * + (pre_nmv_prob->bits[j] - cur_nmv_prob->bits[j]); + + pre_last_prob = MAX_PROB - pre_nmv_prob->bits[j]; + cur_last_prob = MAX_PROB - cur_nmv_prob->bits[j]; + + diff += (int)nmv_count->bits[j][1] * (pre_last_prob - cur_last_prob); + } + + // class0_fp + for (j = 0; j < CLASS0_SIZE; ++j) { + for (k = 0; k < MV_FP_SIZE - 1; ++k) { + diff += (int)nmv_count->class0_fp[j][k] * + (pre_nmv_prob->class0_fp[j][k] - cur_nmv_prob->class0_fp[j][k]); + } + pre_last_prob = MAX_PROB - pre_nmv_prob->class0_fp[j][MV_FP_SIZE - 2]; + cur_last_prob = MAX_PROB - cur_nmv_prob->class0_fp[j][MV_FP_SIZE - 2]; + + diff += (int)nmv_count->class0_fp[j][MV_FP_SIZE - 1] * + (pre_last_prob - cur_last_prob); + } + + // fp + for (j = 0; j < MV_FP_SIZE - 1; ++j) { + diff += + (int)nmv_count->fp[j] * (pre_nmv_prob->fp[j] - cur_nmv_prob->fp[j]); + } + pre_last_prob = MAX_PROB - pre_nmv_prob->fp[MV_FP_SIZE - 2]; + cur_last_prob = MAX_PROB - cur_nmv_prob->fp[MV_FP_SIZE - 2]; + + diff += + (int)nmv_count->fp[MV_FP_SIZE - 1] * (pre_last_prob - cur_last_prob); + + // class0_hp + diff += (int)nmv_count->class0_hp[0] * + (pre_nmv_prob->class0_hp - cur_nmv_prob->class0_hp); + + pre_last_prob = MAX_PROB - pre_nmv_prob->class0_hp; + cur_last_prob = MAX_PROB - cur_nmv_prob->class0_hp; + + diff += (int)nmv_count->class0_hp[1] * (pre_last_prob - cur_last_prob); + + // hp + diff += (int)nmv_count->hp[0] * (pre_nmv_prob->hp - cur_nmv_prob->hp); + + pre_last_prob = MAX_PROB - pre_nmv_prob->hp; + cur_last_prob = MAX_PROB - cur_nmv_prob->hp; + + diff += (int)nmv_count->hp[1] * (pre_last_prob - cur_last_prob); + } + + return -diff; +} + +// Test for whether to calculate metrics for the frame. +static int is_psnr_calc_enabled(VP9_COMP *cpi) { + VP9_COMMON *const cm = &cpi->common; + const VP9EncoderConfig *const oxcf = &cpi->oxcf; + + return cpi->b_calculate_psnr && (oxcf->pass != 1) && cm->show_frame; +} + +/* clang-format off */ +const Vp9LevelSpec vp9_level_defs[VP9_LEVELS] = { + // sample rate size breadth bitrate cpb + { LEVEL_1, 829440, 36864, 512, 200, 400, 2, 1, 4, 8 }, + { LEVEL_1_1, 2764800, 73728, 768, 800, 1000, 2, 1, 4, 8 }, + { LEVEL_2, 4608000, 122880, 960, 1800, 1500, 2, 1, 4, 8 }, + { LEVEL_2_1, 9216000, 245760, 1344, 3600, 2800, 2, 2, 4, 8 }, + { LEVEL_3, 20736000, 552960, 2048, 7200, 6000, 2, 4, 4, 8 }, + { LEVEL_3_1, 36864000, 983040, 2752, 12000, 10000, 2, 4, 4, 8 }, + { LEVEL_4, 83558400, 2228224, 4160, 18000, 16000, 4, 4, 4, 8 }, + { LEVEL_4_1, 160432128, 2228224, 4160, 30000, 18000, 4, 4, 5, 6 }, + { LEVEL_5, 311951360, 8912896, 8384, 60000, 36000, 6, 8, 6, 4 }, + { LEVEL_5_1, 588251136, 8912896, 8384, 120000, 46000, 8, 8, 10, 4 }, + // TODO(huisu): update max_cpb_size for level 5_2 ~ 6_2 when + // they are finalized (currently tentative). + { LEVEL_5_2, 1176502272, 8912896, 8384, 180000, 90000, 8, 8, 10, 4 }, + { LEVEL_6, 1176502272, 35651584, 16832, 180000, 90000, 8, 16, 10, 4 }, + { LEVEL_6_1, 2353004544u, 35651584, 16832, 240000, 180000, 8, 16, 10, 4 }, + { LEVEL_6_2, 4706009088u, 35651584, 16832, 480000, 360000, 8, 16, 10, 4 }, +}; +/* clang-format on */ + +static const char *level_fail_messages[TARGET_LEVEL_FAIL_IDS] = { + "The average bit-rate is too high.", + "The picture size is too large.", + "The picture width/height is too large.", + "The luma sample rate is too large.", + "The CPB size is too large.", + "The compression ratio is too small", + "Too many column tiles are used.", + "The alt-ref distance is too small.", + "Too many reference buffers are used." +}; + +static INLINE void Scale2Ratio(VPX_SCALING mode, int *hr, int *hs) { + switch (mode) { + case NORMAL: + *hr = 1; + *hs = 1; + break; + case FOURFIVE: + *hr = 4; + *hs = 5; + break; + case THREEFIVE: + *hr = 3; + *hs = 5; + break; + case ONETWO: + *hr = 1; + *hs = 2; + break; + default: + *hr = 1; + *hs = 1; + assert(0); + break; + } +} + +// Mark all inactive blocks as active. Other segmentation features may be set +// so memset cannot be used, instead only inactive blocks should be reset. +static void suppress_active_map(VP9_COMP *cpi) { + unsigned char *const seg_map = cpi->segmentation_map; + + if (cpi->active_map.enabled || cpi->active_map.update) { + const int rows = cpi->common.mi_rows; + const int cols = cpi->common.mi_cols; + int i; + + for (i = 0; i < rows * cols; ++i) + if (seg_map[i] == AM_SEGMENT_ID_INACTIVE) + seg_map[i] = AM_SEGMENT_ID_ACTIVE; + } +} + +static void apply_active_map(VP9_COMP *cpi) { + struct segmentation *const seg = &cpi->common.seg; + unsigned char *const seg_map = cpi->segmentation_map; + const unsigned char *const active_map = cpi->active_map.map; + int i; + + assert(AM_SEGMENT_ID_ACTIVE == CR_SEGMENT_ID_BASE); + + if (frame_is_intra_only(&cpi->common)) { + cpi->active_map.enabled = 0; + cpi->active_map.update = 1; + } + + if (cpi->active_map.update) { + if (cpi->active_map.enabled) { + for (i = 0; i < cpi->common.mi_rows * cpi->common.mi_cols; ++i) + if (seg_map[i] == AM_SEGMENT_ID_ACTIVE) seg_map[i] = active_map[i]; + vp9_enable_segmentation(seg); + vp9_enable_segfeature(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_SKIP); + vp9_enable_segfeature(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_ALT_LF); + // Setting the data to -MAX_LOOP_FILTER will result in the computed loop + // filter level being zero regardless of the value of seg->abs_delta. + vp9_set_segdata(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_ALT_LF, + -MAX_LOOP_FILTER); + } else { + vp9_disable_segfeature(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_SKIP); + vp9_disable_segfeature(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_ALT_LF); + if (seg->enabled) { + seg->update_data = 1; + seg->update_map = 1; + } + } + cpi->active_map.update = 0; + } +} + +static void init_level_info(Vp9LevelInfo *level_info) { + Vp9LevelStats *const level_stats = &level_info->level_stats; + Vp9LevelSpec *const level_spec = &level_info->level_spec; + + memset(level_stats, 0, sizeof(*level_stats)); + memset(level_spec, 0, sizeof(*level_spec)); + level_spec->level = LEVEL_UNKNOWN; + level_spec->min_altref_distance = INT_MAX; +} + +VP9_LEVEL vp9_get_level(const Vp9LevelSpec *const level_spec) { + int i; + const Vp9LevelSpec *this_level; + + vpx_clear_system_state(); + + for (i = 0; i < VP9_LEVELS; ++i) { + this_level = &vp9_level_defs[i]; + if ((double)level_spec->max_luma_sample_rate > + (double)this_level->max_luma_sample_rate * + (1 + SAMPLE_RATE_GRACE_P) || + level_spec->max_luma_picture_size > this_level->max_luma_picture_size || + level_spec->max_luma_picture_breadth > + this_level->max_luma_picture_breadth || + level_spec->average_bitrate > this_level->average_bitrate || + level_spec->max_cpb_size > this_level->max_cpb_size || + level_spec->compression_ratio < this_level->compression_ratio || + level_spec->max_col_tiles > this_level->max_col_tiles || + level_spec->min_altref_distance < this_level->min_altref_distance || + level_spec->max_ref_frame_buffers > this_level->max_ref_frame_buffers) + continue; + break; + } + return (i == VP9_LEVELS) ? LEVEL_UNKNOWN : vp9_level_defs[i].level; +} + +int vp9_set_active_map(VP9_COMP *cpi, unsigned char *new_map_16x16, int rows, + int cols) { + if (rows == cpi->common.mb_rows && cols == cpi->common.mb_cols) { + unsigned char *const active_map_8x8 = cpi->active_map.map; + const int mi_rows = cpi->common.mi_rows; + const int mi_cols = cpi->common.mi_cols; + cpi->active_map.update = 1; + if (new_map_16x16) { + int r, c; + for (r = 0; r < mi_rows; ++r) { + for (c = 0; c < mi_cols; ++c) { + active_map_8x8[r * mi_cols + c] = + new_map_16x16[(r >> 1) * cols + (c >> 1)] + ? AM_SEGMENT_ID_ACTIVE + : AM_SEGMENT_ID_INACTIVE; + } + } + cpi->active_map.enabled = 1; + } else { + cpi->active_map.enabled = 0; + } + return 0; + } else { + return -1; + } +} + +int vp9_get_active_map(VP9_COMP *cpi, unsigned char *new_map_16x16, int rows, + int cols) { + if (rows == cpi->common.mb_rows && cols == cpi->common.mb_cols && + new_map_16x16) { + unsigned char *const seg_map_8x8 = cpi->segmentation_map; + const int mi_rows = cpi->common.mi_rows; + const int mi_cols = cpi->common.mi_cols; + memset(new_map_16x16, !cpi->active_map.enabled, rows * cols); + if (cpi->active_map.enabled) { + int r, c; + for (r = 0; r < mi_rows; ++r) { + for (c = 0; c < mi_cols; ++c) { + // Cyclic refresh segments are considered active despite not having + // AM_SEGMENT_ID_ACTIVE + new_map_16x16[(r >> 1) * cols + (c >> 1)] |= + seg_map_8x8[r * mi_cols + c] != AM_SEGMENT_ID_INACTIVE; + } + } + } + return 0; + } else { + return -1; + } +} + +void vp9_set_high_precision_mv(VP9_COMP *cpi, int allow_high_precision_mv) { + MACROBLOCK *const mb = &cpi->td.mb; + cpi->common.allow_high_precision_mv = allow_high_precision_mv; + if (cpi->common.allow_high_precision_mv) { + mb->mvcost = mb->nmvcost_hp; + mb->mvsadcost = mb->nmvsadcost_hp; + } else { + mb->mvcost = mb->nmvcost; + mb->mvsadcost = mb->nmvsadcost; + } +} + +static void setup_frame(VP9_COMP *cpi) { + VP9_COMMON *const cm = &cpi->common; + // Set up entropy context depending on frame type. The decoder mandates + // the use of the default context, index 0, for keyframes and inter + // frames where the error_resilient_mode or intra_only flag is set. For + // other inter-frames the encoder currently uses only two contexts; + // context 1 for ALTREF frames and context 0 for the others. + if (frame_is_intra_only(cm) || cm->error_resilient_mode) { + vp9_setup_past_independence(cm); + } else { + if (!cpi->use_svc) cm->frame_context_idx = cpi->refresh_alt_ref_frame; + } + + if (cm->frame_type == KEY_FRAME) { + if (!is_two_pass_svc(cpi)) cpi->refresh_golden_frame = 1; + cpi->refresh_alt_ref_frame = 1; + vp9_zero(cpi->interp_filter_selected); + } else { + *cm->fc = cm->frame_contexts[cm->frame_context_idx]; + vp9_zero(cpi->interp_filter_selected[0]); + } +} + +static void vp9_enc_setup_mi(VP9_COMMON *cm) { + int i; + cm->mi = cm->mip + cm->mi_stride + 1; + memset(cm->mip, 0, cm->mi_stride * (cm->mi_rows + 1) * sizeof(*cm->mip)); + cm->prev_mi = cm->prev_mip + cm->mi_stride + 1; + // Clear top border row + memset(cm->prev_mip, 0, sizeof(*cm->prev_mip) * cm->mi_stride); + // Clear left border column + for (i = 1; i < cm->mi_rows + 1; ++i) + memset(&cm->prev_mip[i * cm->mi_stride], 0, sizeof(*cm->prev_mip)); + + cm->mi_grid_visible = cm->mi_grid_base + cm->mi_stride + 1; + cm->prev_mi_grid_visible = cm->prev_mi_grid_base + cm->mi_stride + 1; + + memset(cm->mi_grid_base, 0, + cm->mi_stride * (cm->mi_rows + 1) * sizeof(*cm->mi_grid_base)); +} + +static int vp9_enc_alloc_mi(VP9_COMMON *cm, int mi_size) { + cm->mip = vpx_calloc(mi_size, sizeof(*cm->mip)); + if (!cm->mip) return 1; + cm->prev_mip = vpx_calloc(mi_size, sizeof(*cm->prev_mip)); + if (!cm->prev_mip) return 1; + cm->mi_alloc_size = mi_size; + + cm->mi_grid_base = (MODE_INFO **)vpx_calloc(mi_size, sizeof(MODE_INFO *)); + if (!cm->mi_grid_base) return 1; + cm->prev_mi_grid_base = + (MODE_INFO **)vpx_calloc(mi_size, sizeof(MODE_INFO *)); + if (!cm->prev_mi_grid_base) return 1; + + return 0; +} + +static void vp9_enc_free_mi(VP9_COMMON *cm) { + vpx_free(cm->mip); + cm->mip = NULL; + vpx_free(cm->prev_mip); + cm->prev_mip = NULL; + vpx_free(cm->mi_grid_base); + cm->mi_grid_base = NULL; + vpx_free(cm->prev_mi_grid_base); + cm->prev_mi_grid_base = NULL; +} + +static void vp9_swap_mi_and_prev_mi(VP9_COMMON *cm) { + // Current mip will be the prev_mip for the next frame. + MODE_INFO **temp_base = cm->prev_mi_grid_base; + MODE_INFO *temp = cm->prev_mip; + cm->prev_mip = cm->mip; + cm->mip = temp; + + // Update the upper left visible macroblock ptrs. + cm->mi = cm->mip + cm->mi_stride + 1; + cm->prev_mi = cm->prev_mip + cm->mi_stride + 1; + + cm->prev_mi_grid_base = cm->mi_grid_base; + cm->mi_grid_base = temp_base; + cm->mi_grid_visible = cm->mi_grid_base + cm->mi_stride + 1; + cm->prev_mi_grid_visible = cm->prev_mi_grid_base + cm->mi_stride + 1; +} + +void vp9_initialize_enc(void) { + static volatile int init_done = 0; + + if (!init_done) { + vp9_rtcd(); + vpx_dsp_rtcd(); + vpx_scale_rtcd(); + vp9_init_intra_predictors(); + vp9_init_me_luts(); + vp9_rc_init_minq_luts(); + vp9_entropy_mv_init(); +#if !CONFIG_REALTIME_ONLY + vp9_temporal_filter_init(); +#endif + init_done = 1; + } +} + +static void dealloc_compressor_data(VP9_COMP *cpi) { + VP9_COMMON *const cm = &cpi->common; + int i; + + vpx_free(cpi->mbmi_ext_base); + cpi->mbmi_ext_base = NULL; + + vpx_free(cpi->tile_data); + cpi->tile_data = NULL; + + vpx_free(cpi->segmentation_map); + cpi->segmentation_map = NULL; + vpx_free(cpi->coding_context.last_frame_seg_map_copy); + cpi->coding_context.last_frame_seg_map_copy = NULL; + + vpx_free(cpi->nmvcosts[0]); + vpx_free(cpi->nmvcosts[1]); + cpi->nmvcosts[0] = NULL; + cpi->nmvcosts[1] = NULL; + + vpx_free(cpi->nmvcosts_hp[0]); + vpx_free(cpi->nmvcosts_hp[1]); + cpi->nmvcosts_hp[0] = NULL; + cpi->nmvcosts_hp[1] = NULL; + + vpx_free(cpi->nmvsadcosts[0]); + vpx_free(cpi->nmvsadcosts[1]); + cpi->nmvsadcosts[0] = NULL; + cpi->nmvsadcosts[1] = NULL; + + vpx_free(cpi->nmvsadcosts_hp[0]); + vpx_free(cpi->nmvsadcosts_hp[1]); + cpi->nmvsadcosts_hp[0] = NULL; + cpi->nmvsadcosts_hp[1] = NULL; + + vpx_free(cpi->skin_map); + cpi->skin_map = NULL; + + vpx_free(cpi->prev_partition); + cpi->prev_partition = NULL; + + vpx_free(cpi->svc.prev_partition_svc); + cpi->svc.prev_partition_svc = NULL; + + vpx_free(cpi->prev_segment_id); + cpi->prev_segment_id = NULL; + + vpx_free(cpi->prev_variance_low); + cpi->prev_variance_low = NULL; + + vpx_free(cpi->copied_frame_cnt); + cpi->copied_frame_cnt = NULL; + + vpx_free(cpi->content_state_sb_fd); + cpi->content_state_sb_fd = NULL; + + vpx_free(cpi->count_arf_frame_usage); + cpi->count_arf_frame_usage = NULL; + vpx_free(cpi->count_lastgolden_frame_usage); + cpi->count_lastgolden_frame_usage = NULL; + + vp9_cyclic_refresh_free(cpi->cyclic_refresh); + cpi->cyclic_refresh = NULL; + + vpx_free(cpi->active_map.map); + cpi->active_map.map = NULL; + + vpx_free(cpi->consec_zero_mv); + cpi->consec_zero_mv = NULL; + + vp9_free_ref_frame_buffers(cm->buffer_pool); +#if CONFIG_VP9_POSTPROC + vp9_free_postproc_buffers(cm); +#endif + vp9_free_context_buffers(cm); + + vpx_free_frame_buffer(&cpi->last_frame_uf); + vpx_free_frame_buffer(&cpi->scaled_source); + vpx_free_frame_buffer(&cpi->scaled_last_source); + vpx_free_frame_buffer(&cpi->alt_ref_buffer); +#ifdef ENABLE_KF_DENOISE + vpx_free_frame_buffer(&cpi->raw_unscaled_source); + vpx_free_frame_buffer(&cpi->raw_scaled_source); +#endif + + vp9_lookahead_destroy(cpi->lookahead); + + vpx_free(cpi->tile_tok[0][0]); + cpi->tile_tok[0][0] = 0; + + vpx_free(cpi->tplist[0][0]); + cpi->tplist[0][0] = NULL; + + vp9_free_pc_tree(&cpi->td); + + for (i = 0; i < cpi->svc.number_spatial_layers; ++i) { + LAYER_CONTEXT *const lc = &cpi->svc.layer_context[i]; + vpx_free(lc->rc_twopass_stats_in.buf); + lc->rc_twopass_stats_in.buf = NULL; + lc->rc_twopass_stats_in.sz = 0; + } + + if (cpi->source_diff_var != NULL) { + vpx_free(cpi->source_diff_var); + cpi->source_diff_var = NULL; + } + + for (i = 0; i < MAX_LAG_BUFFERS; ++i) { + vpx_free_frame_buffer(&cpi->svc.scaled_frames[i]); + } + memset(&cpi->svc.scaled_frames[0], 0, + MAX_LAG_BUFFERS * sizeof(cpi->svc.scaled_frames[0])); + + vpx_free_frame_buffer(&cpi->svc.scaled_temp); + memset(&cpi->svc.scaled_temp, 0, sizeof(cpi->svc.scaled_temp)); + + vpx_free_frame_buffer(&cpi->svc.empty_frame.img); + memset(&cpi->svc.empty_frame, 0, sizeof(cpi->svc.empty_frame)); + + vp9_free_svc_cyclic_refresh(cpi); +} + +static void save_coding_context(VP9_COMP *cpi) { + CODING_CONTEXT *const cc = &cpi->coding_context; + VP9_COMMON *cm = &cpi->common; + + // Stores a snapshot of key state variables which can subsequently be + // restored with a call to vp9_restore_coding_context. These functions are + // intended for use in a re-code loop in vp9_compress_frame where the + // quantizer value is adjusted between loop iterations. + vp9_copy(cc->nmvjointcost, cpi->td.mb.nmvjointcost); + + memcpy(cc->nmvcosts[0], cpi->nmvcosts[0], + MV_VALS * sizeof(*cpi->nmvcosts[0])); + memcpy(cc->nmvcosts[1], cpi->nmvcosts[1], + MV_VALS * sizeof(*cpi->nmvcosts[1])); + memcpy(cc->nmvcosts_hp[0], cpi->nmvcosts_hp[0], + MV_VALS * sizeof(*cpi->nmvcosts_hp[0])); + memcpy(cc->nmvcosts_hp[1], cpi->nmvcosts_hp[1], + MV_VALS * sizeof(*cpi->nmvcosts_hp[1])); + + vp9_copy(cc->segment_pred_probs, cm->seg.pred_probs); + + memcpy(cpi->coding_context.last_frame_seg_map_copy, cm->last_frame_seg_map, + (cm->mi_rows * cm->mi_cols)); + + vp9_copy(cc->last_ref_lf_deltas, cm->lf.last_ref_deltas); + vp9_copy(cc->last_mode_lf_deltas, cm->lf.last_mode_deltas); + + cc->fc = *cm->fc; +} + +static void restore_coding_context(VP9_COMP *cpi) { + CODING_CONTEXT *const cc = &cpi->coding_context; + VP9_COMMON *cm = &cpi->common; + + // Restore key state variables to the snapshot state stored in the + // previous call to vp9_save_coding_context. + vp9_copy(cpi->td.mb.nmvjointcost, cc->nmvjointcost); + + memcpy(cpi->nmvcosts[0], cc->nmvcosts[0], MV_VALS * sizeof(*cc->nmvcosts[0])); + memcpy(cpi->nmvcosts[1], cc->nmvcosts[1], MV_VALS * sizeof(*cc->nmvcosts[1])); + memcpy(cpi->nmvcosts_hp[0], cc->nmvcosts_hp[0], + MV_VALS * sizeof(*cc->nmvcosts_hp[0])); + memcpy(cpi->nmvcosts_hp[1], cc->nmvcosts_hp[1], + MV_VALS * sizeof(*cc->nmvcosts_hp[1])); + + vp9_copy(cm->seg.pred_probs, cc->segment_pred_probs); + + memcpy(cm->last_frame_seg_map, cpi->coding_context.last_frame_seg_map_copy, + (cm->mi_rows * cm->mi_cols)); + + vp9_copy(cm->lf.last_ref_deltas, cc->last_ref_lf_deltas); + vp9_copy(cm->lf.last_mode_deltas, cc->last_mode_lf_deltas); + + *cm->fc = cc->fc; +} + +#if !CONFIG_REALTIME_ONLY +static void configure_static_seg_features(VP9_COMP *cpi) { + VP9_COMMON *const cm = &cpi->common; + const RATE_CONTROL *const rc = &cpi->rc; + struct segmentation *const seg = &cm->seg; + + int high_q = (int)(rc->avg_q > 48.0); + int qi_delta; + + // Disable and clear down for KF + if (cm->frame_type == KEY_FRAME) { + // Clear down the global segmentation map + memset(cpi->segmentation_map, 0, cm->mi_rows * cm->mi_cols); + seg->update_map = 0; + seg->update_data = 0; + cpi->static_mb_pct = 0; + + // Disable segmentation + vp9_disable_segmentation(seg); + + // Clear down the segment features. + vp9_clearall_segfeatures(seg); + } else if (cpi->refresh_alt_ref_frame) { + // If this is an alt ref frame + // Clear down the global segmentation map + memset(cpi->segmentation_map, 0, cm->mi_rows * cm->mi_cols); + seg->update_map = 0; + seg->update_data = 0; + cpi->static_mb_pct = 0; + + // Disable segmentation and individual segment features by default + vp9_disable_segmentation(seg); + vp9_clearall_segfeatures(seg); + + // Scan frames from current to arf frame. + // This function re-enables segmentation if appropriate. + vp9_update_mbgraph_stats(cpi); + + // If segmentation was enabled set those features needed for the + // arf itself. + if (seg->enabled) { + seg->update_map = 1; + seg->update_data = 1; + + qi_delta = + vp9_compute_qdelta(rc, rc->avg_q, rc->avg_q * 0.875, cm->bit_depth); + vp9_set_segdata(seg, 1, SEG_LVL_ALT_Q, qi_delta - 2); + vp9_set_segdata(seg, 1, SEG_LVL_ALT_LF, -2); + + vp9_enable_segfeature(seg, 1, SEG_LVL_ALT_Q); + vp9_enable_segfeature(seg, 1, SEG_LVL_ALT_LF); + + // Where relevant assume segment data is delta data + seg->abs_delta = SEGMENT_DELTADATA; + } + } else if (seg->enabled) { + // All other frames if segmentation has been enabled + + // First normal frame in a valid gf or alt ref group + if (rc->frames_since_golden == 0) { + // Set up segment features for normal frames in an arf group + if (rc->source_alt_ref_active) { + seg->update_map = 0; + seg->update_data = 1; + seg->abs_delta = SEGMENT_DELTADATA; + + qi_delta = + vp9_compute_qdelta(rc, rc->avg_q, rc->avg_q * 1.125, cm->bit_depth); + vp9_set_segdata(seg, 1, SEG_LVL_ALT_Q, qi_delta + 2); + vp9_enable_segfeature(seg, 1, SEG_LVL_ALT_Q); + + vp9_set_segdata(seg, 1, SEG_LVL_ALT_LF, -2); + vp9_enable_segfeature(seg, 1, SEG_LVL_ALT_LF); + + // Segment coding disabled for compred testing + if (high_q || (cpi->static_mb_pct == 100)) { + vp9_set_segdata(seg, 1, SEG_LVL_REF_FRAME, ALTREF_FRAME); + vp9_enable_segfeature(seg, 1, SEG_LVL_REF_FRAME); + vp9_enable_segfeature(seg, 1, SEG_LVL_SKIP); + } + } else { + // Disable segmentation and clear down features if alt ref + // is not active for this group + + vp9_disable_segmentation(seg); + + memset(cpi->segmentation_map, 0, cm->mi_rows * cm->mi_cols); + + seg->update_map = 0; + seg->update_data = 0; + + vp9_clearall_segfeatures(seg); + } + } else if (rc->is_src_frame_alt_ref) { + // Special case where we are coding over the top of a previous + // alt ref frame. + // Segment coding disabled for compred testing + + // Enable ref frame features for segment 0 as well + vp9_enable_segfeature(seg, 0, SEG_LVL_REF_FRAME); + vp9_enable_segfeature(seg, 1, SEG_LVL_REF_FRAME); + + // All mbs should use ALTREF_FRAME + vp9_clear_segdata(seg, 0, SEG_LVL_REF_FRAME); + vp9_set_segdata(seg, 0, SEG_LVL_REF_FRAME, ALTREF_FRAME); + vp9_clear_segdata(seg, 1, SEG_LVL_REF_FRAME); + vp9_set_segdata(seg, 1, SEG_LVL_REF_FRAME, ALTREF_FRAME); + + // Skip all MBs if high Q (0,0 mv and skip coeffs) + if (high_q) { + vp9_enable_segfeature(seg, 0, SEG_LVL_SKIP); + vp9_enable_segfeature(seg, 1, SEG_LVL_SKIP); + } + // Enable data update + seg->update_data = 1; + } else { + // All other frames. + + // No updates.. leave things as they are. + seg->update_map = 0; + seg->update_data = 0; + } + } +} +#endif // !CONFIG_REALTIME_ONLY + +static void update_reference_segmentation_map(VP9_COMP *cpi) { + VP9_COMMON *const cm = &cpi->common; + MODE_INFO **mi_8x8_ptr = cm->mi_grid_visible; + uint8_t *cache_ptr = cm->last_frame_seg_map; + int row, col; + + for (row = 0; row < cm->mi_rows; row++) { + MODE_INFO **mi_8x8 = mi_8x8_ptr; + uint8_t *cache = cache_ptr; + for (col = 0; col < cm->mi_cols; col++, mi_8x8++, cache++) + cache[0] = mi_8x8[0]->segment_id; + mi_8x8_ptr += cm->mi_stride; + cache_ptr += cm->mi_cols; + } +} + +static void alloc_raw_frame_buffers(VP9_COMP *cpi) { + VP9_COMMON *cm = &cpi->common; + const VP9EncoderConfig *oxcf = &cpi->oxcf; + + if (!cpi->lookahead) + cpi->lookahead = vp9_lookahead_init(oxcf->width, oxcf->height, + cm->subsampling_x, cm->subsampling_y, +#if CONFIG_VP9_HIGHBITDEPTH + cm->use_highbitdepth, +#endif + oxcf->lag_in_frames); + if (!cpi->lookahead) + vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR, + "Failed to allocate lag buffers"); + + // TODO(agrange) Check if ARF is enabled and skip allocation if not. + if (vpx_realloc_frame_buffer(&cpi->alt_ref_buffer, oxcf->width, oxcf->height, + cm->subsampling_x, cm->subsampling_y, +#if CONFIG_VP9_HIGHBITDEPTH + cm->use_highbitdepth, +#endif + VP9_ENC_BORDER_IN_PIXELS, cm->byte_alignment, + NULL, NULL, NULL)) + vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR, + "Failed to allocate altref buffer"); +} + +static void alloc_util_frame_buffers(VP9_COMP *cpi) { + VP9_COMMON *const cm = &cpi->common; + if (vpx_realloc_frame_buffer(&cpi->last_frame_uf, cm->width, cm->height, + cm->subsampling_x, cm->subsampling_y, +#if CONFIG_VP9_HIGHBITDEPTH + cm->use_highbitdepth, +#endif + VP9_ENC_BORDER_IN_PIXELS, cm->byte_alignment, + NULL, NULL, NULL)) + vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR, + "Failed to allocate last frame buffer"); + + if (vpx_realloc_frame_buffer(&cpi->scaled_source, cm->width, cm->height, + cm->subsampling_x, cm->subsampling_y, +#if CONFIG_VP9_HIGHBITDEPTH + cm->use_highbitdepth, +#endif + VP9_ENC_BORDER_IN_PIXELS, cm->byte_alignment, + NULL, NULL, NULL)) + vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR, + "Failed to allocate scaled source buffer"); + + // For 1 pass cbr: allocate scaled_frame that may be used as an intermediate + // buffer for a 2 stage down-sampling: two stages of 1:2 down-sampling for a + // target of 1/4x1/4. + if (is_one_pass_cbr_svc(cpi) && !cpi->svc.scaled_temp_is_alloc) { + cpi->svc.scaled_temp_is_alloc = 1; + if (vpx_realloc_frame_buffer( + &cpi->svc.scaled_temp, cm->width >> 1, cm->height >> 1, + cm->subsampling_x, cm->subsampling_y, +#if CONFIG_VP9_HIGHBITDEPTH + cm->use_highbitdepth, +#endif + VP9_ENC_BORDER_IN_PIXELS, cm->byte_alignment, NULL, NULL, NULL)) + vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR, + "Failed to allocate scaled_frame for svc "); + } + + if (vpx_realloc_frame_buffer(&cpi->scaled_last_source, cm->width, cm->height, + cm->subsampling_x, cm->subsampling_y, +#if CONFIG_VP9_HIGHBITDEPTH + cm->use_highbitdepth, +#endif + VP9_ENC_BORDER_IN_PIXELS, cm->byte_alignment, + NULL, NULL, NULL)) + vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR, + "Failed to allocate scaled last source buffer"); +#ifdef ENABLE_KF_DENOISE + if (vpx_realloc_frame_buffer(&cpi->raw_unscaled_source, cm->width, cm->height, + cm->subsampling_x, cm->subsampling_y, +#if CONFIG_VP9_HIGHBITDEPTH + cm->use_highbitdepth, +#endif + VP9_ENC_BORDER_IN_PIXELS, cm->byte_alignment, + NULL, NULL, NULL)) + vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR, + "Failed to allocate unscaled raw source frame buffer"); + + if (vpx_realloc_frame_buffer(&cpi->raw_scaled_source, cm->width, cm->height, + cm->subsampling_x, cm->subsampling_y, +#if CONFIG_VP9_HIGHBITDEPTH + cm->use_highbitdepth, +#endif + VP9_ENC_BORDER_IN_PIXELS, cm->byte_alignment, + NULL, NULL, NULL)) + vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR, + "Failed to allocate scaled raw source frame buffer"); +#endif +} + +static int alloc_context_buffers_ext(VP9_COMP *cpi) { + VP9_COMMON *cm = &cpi->common; + int mi_size = cm->mi_cols * cm->mi_rows; + + cpi->mbmi_ext_base = vpx_calloc(mi_size, sizeof(*cpi->mbmi_ext_base)); + if (!cpi->mbmi_ext_base) return 1; + + return 0; +} + +static void alloc_compressor_data(VP9_COMP *cpi) { + VP9_COMMON *cm = &cpi->common; + int sb_rows; + + vp9_alloc_context_buffers(cm, cm->width, cm->height); + + alloc_context_buffers_ext(cpi); + + vpx_free(cpi->tile_tok[0][0]); + + { + unsigned int tokens = get_token_alloc(cm->mb_rows, cm->mb_cols); + CHECK_MEM_ERROR(cm, cpi->tile_tok[0][0], + vpx_calloc(tokens, sizeof(*cpi->tile_tok[0][0]))); + } + + sb_rows = mi_cols_aligned_to_sb(cm->mi_rows) >> MI_BLOCK_SIZE_LOG2; + vpx_free(cpi->tplist[0][0]); + CHECK_MEM_ERROR( + cm, cpi->tplist[0][0], + vpx_calloc(sb_rows * 4 * (1 << 6), sizeof(*cpi->tplist[0][0]))); + + vp9_setup_pc_tree(&cpi->common, &cpi->td); +} + +void vp9_new_framerate(VP9_COMP *cpi, double framerate) { + cpi->framerate = framerate < 0.1 ? 30 : framerate; + vp9_rc_update_framerate(cpi); +} + +static void set_tile_limits(VP9_COMP *cpi) { + VP9_COMMON *const cm = &cpi->common; + + int min_log2_tile_cols, max_log2_tile_cols; + vp9_get_tile_n_bits(cm->mi_cols, &min_log2_tile_cols, &max_log2_tile_cols); + + if (is_two_pass_svc(cpi) && (cpi->svc.encode_empty_frame_state == ENCODING || + cpi->svc.number_spatial_layers > 1)) { + cm->log2_tile_cols = 0; + cm->log2_tile_rows = 0; + } else { + cm->log2_tile_cols = + clamp(cpi->oxcf.tile_columns, min_log2_tile_cols, max_log2_tile_cols); + cm->log2_tile_rows = cpi->oxcf.tile_rows; + } + + if (cpi->oxcf.target_level == LEVEL_AUTO) { + const int level_tile_cols = + log_tile_cols_from_picsize_level(cpi->common.width, cpi->common.height); + if (cm->log2_tile_cols > level_tile_cols) { + cm->log2_tile_cols = VPXMAX(level_tile_cols, min_log2_tile_cols); + } + } +} + +static void update_frame_size(VP9_COMP *cpi) { + VP9_COMMON *const cm = &cpi->common; + MACROBLOCKD *const xd = &cpi->td.mb.e_mbd; + + vp9_set_mb_mi(cm, cm->width, cm->height); + vp9_init_context_buffers(cm); + vp9_init_macroblockd(cm, xd, NULL); + cpi->td.mb.mbmi_ext_base = cpi->mbmi_ext_base; + memset(cpi->mbmi_ext_base, 0, + cm->mi_rows * cm->mi_cols * sizeof(*cpi->mbmi_ext_base)); + + set_tile_limits(cpi); + + if (is_two_pass_svc(cpi)) { + if (vpx_realloc_frame_buffer(&cpi->alt_ref_buffer, cm->width, cm->height, + cm->subsampling_x, cm->subsampling_y, +#if CONFIG_VP9_HIGHBITDEPTH + cm->use_highbitdepth, +#endif + VP9_ENC_BORDER_IN_PIXELS, cm->byte_alignment, + NULL, NULL, NULL)) + vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR, + "Failed to reallocate alt_ref_buffer"); + } +} + +static void init_buffer_indices(VP9_COMP *cpi) { + cpi->lst_fb_idx = 0; + cpi->gld_fb_idx = 1; + cpi->alt_fb_idx = 2; +} + +static void init_level_constraint(LevelConstraint *lc) { + lc->level_index = -1; + lc->max_cpb_size = INT_MAX; + lc->max_frame_size = INT_MAX; + lc->rc_config_updated = 0; + lc->fail_flag = 0; +} + +static void set_level_constraint(LevelConstraint *ls, int8_t level_index) { + vpx_clear_system_state(); + ls->level_index = level_index; + if (level_index >= 0) { + ls->max_cpb_size = vp9_level_defs[level_index].max_cpb_size * (double)1000; + } +} + +static void init_config(struct VP9_COMP *cpi, VP9EncoderConfig *oxcf) { + VP9_COMMON *const cm = &cpi->common; + + cpi->oxcf = *oxcf; + cpi->framerate = oxcf->init_framerate; + cm->profile = oxcf->profile; + cm->bit_depth = oxcf->bit_depth; +#if CONFIG_VP9_HIGHBITDEPTH + cm->use_highbitdepth = oxcf->use_highbitdepth; +#endif + cm->color_space = oxcf->color_space; + cm->color_range = oxcf->color_range; + + cpi->target_level = oxcf->target_level; + cpi->keep_level_stats = oxcf->target_level != LEVEL_MAX; + set_level_constraint(&cpi->level_constraint, + get_level_index(cpi->target_level)); + + cm->width = oxcf->width; + cm->height = oxcf->height; + alloc_compressor_data(cpi); + + cpi->svc.temporal_layering_mode = oxcf->temporal_layering_mode; + + // Single thread case: use counts in common. + cpi->td.counts = &cm->counts; + + // Spatial scalability. + cpi->svc.number_spatial_layers = oxcf->ss_number_layers; + // Temporal scalability. + cpi->svc.number_temporal_layers = oxcf->ts_number_layers; + + if ((cpi->svc.number_temporal_layers > 1 && cpi->oxcf.rc_mode == VPX_CBR) || + ((cpi->svc.number_temporal_layers > 1 || + cpi->svc.number_spatial_layers > 1) && + cpi->oxcf.pass != 1)) { + vp9_init_layer_context(cpi); + } + + // change includes all joint functionality + vp9_change_config(cpi, oxcf); + + cpi->static_mb_pct = 0; + cpi->ref_frame_flags = 0; + + init_buffer_indices(cpi); + + vp9_noise_estimate_init(&cpi->noise_estimate, cm->width, cm->height); +} + +static void set_rc_buffer_sizes(RATE_CONTROL *rc, + const VP9EncoderConfig *oxcf) { + const int64_t bandwidth = oxcf->target_bandwidth; + const int64_t starting = oxcf->starting_buffer_level_ms; + const int64_t optimal = oxcf->optimal_buffer_level_ms; + const int64_t maximum = oxcf->maximum_buffer_size_ms; + + rc->starting_buffer_level = starting * bandwidth / 1000; + rc->optimal_buffer_level = + (optimal == 0) ? bandwidth / 8 : optimal * bandwidth / 1000; + rc->maximum_buffer_size = + (maximum == 0) ? bandwidth / 8 : maximum * bandwidth / 1000; +} + +#if CONFIG_VP9_HIGHBITDEPTH +#define HIGHBD_BFP(BT, SDF, SDAF, VF, SVF, SVAF, SDX4DF) \ + cpi->fn_ptr[BT].sdf = SDF; \ + cpi->fn_ptr[BT].sdaf = SDAF; \ + cpi->fn_ptr[BT].vf = VF; \ + cpi->fn_ptr[BT].svf = SVF; \ + cpi->fn_ptr[BT].svaf = SVAF; \ + cpi->fn_ptr[BT].sdx4df = SDX4DF; + +#define MAKE_BFP_SAD_WRAPPER(fnname) \ + static unsigned int fnname##_bits8(const uint8_t *src_ptr, \ + int source_stride, \ + const uint8_t *ref_ptr, int ref_stride) { \ + return fnname(src_ptr, source_stride, ref_ptr, ref_stride); \ + } \ + static unsigned int fnname##_bits10( \ + const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, \ + int ref_stride) { \ + return fnname(src_ptr, source_stride, ref_ptr, ref_stride) >> 2; \ + } \ + static unsigned int fnname##_bits12( \ + const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, \ + int ref_stride) { \ + return fnname(src_ptr, source_stride, ref_ptr, ref_stride) >> 4; \ + } + +#define MAKE_BFP_SADAVG_WRAPPER(fnname) \ + static unsigned int fnname##_bits8( \ + const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, \ + int ref_stride, const uint8_t *second_pred) { \ + return fnname(src_ptr, source_stride, ref_ptr, ref_stride, second_pred); \ + } \ + static unsigned int fnname##_bits10( \ + const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, \ + int ref_stride, const uint8_t *second_pred) { \ + return fnname(src_ptr, source_stride, ref_ptr, ref_stride, second_pred) >> \ + 2; \ + } \ + static unsigned int fnname##_bits12( \ + const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, \ + int ref_stride, const uint8_t *second_pred) { \ + return fnname(src_ptr, source_stride, ref_ptr, ref_stride, second_pred) >> \ + 4; \ + } + +#define MAKE_BFP_SAD4D_WRAPPER(fnname) \ + static void fnname##_bits8(const uint8_t *src_ptr, int source_stride, \ + const uint8_t *const ref_ptr[], int ref_stride, \ + unsigned int *sad_array) { \ + fnname(src_ptr, source_stride, ref_ptr, ref_stride, sad_array); \ + } \ + static void fnname##_bits10(const uint8_t *src_ptr, int source_stride, \ + const uint8_t *const ref_ptr[], int ref_stride, \ + unsigned int *sad_array) { \ + int i; \ + fnname(src_ptr, source_stride, ref_ptr, ref_stride, sad_array); \ + for (i = 0; i < 4; i++) sad_array[i] >>= 2; \ + } \ + static void fnname##_bits12(const uint8_t *src_ptr, int source_stride, \ + const uint8_t *const ref_ptr[], int ref_stride, \ + unsigned int *sad_array) { \ + int i; \ + fnname(src_ptr, source_stride, ref_ptr, ref_stride, sad_array); \ + for (i = 0; i < 4; i++) sad_array[i] >>= 4; \ + } + +MAKE_BFP_SAD_WRAPPER(vpx_highbd_sad32x16) +MAKE_BFP_SADAVG_WRAPPER(vpx_highbd_sad32x16_avg) +MAKE_BFP_SAD4D_WRAPPER(vpx_highbd_sad32x16x4d) +MAKE_BFP_SAD_WRAPPER(vpx_highbd_sad16x32) +MAKE_BFP_SADAVG_WRAPPER(vpx_highbd_sad16x32_avg) +MAKE_BFP_SAD4D_WRAPPER(vpx_highbd_sad16x32x4d) +MAKE_BFP_SAD_WRAPPER(vpx_highbd_sad64x32) +MAKE_BFP_SADAVG_WRAPPER(vpx_highbd_sad64x32_avg) +MAKE_BFP_SAD4D_WRAPPER(vpx_highbd_sad64x32x4d) +MAKE_BFP_SAD_WRAPPER(vpx_highbd_sad32x64) +MAKE_BFP_SADAVG_WRAPPER(vpx_highbd_sad32x64_avg) +MAKE_BFP_SAD4D_WRAPPER(vpx_highbd_sad32x64x4d) +MAKE_BFP_SAD_WRAPPER(vpx_highbd_sad32x32) +MAKE_BFP_SADAVG_WRAPPER(vpx_highbd_sad32x32_avg) +MAKE_BFP_SAD4D_WRAPPER(vpx_highbd_sad32x32x4d) +MAKE_BFP_SAD_WRAPPER(vpx_highbd_sad64x64) +MAKE_BFP_SADAVG_WRAPPER(vpx_highbd_sad64x64_avg) +MAKE_BFP_SAD4D_WRAPPER(vpx_highbd_sad64x64x4d) +MAKE_BFP_SAD_WRAPPER(vpx_highbd_sad16x16) +MAKE_BFP_SADAVG_WRAPPER(vpx_highbd_sad16x16_avg) +MAKE_BFP_SAD4D_WRAPPER(vpx_highbd_sad16x16x4d) +MAKE_BFP_SAD_WRAPPER(vpx_highbd_sad16x8) +MAKE_BFP_SADAVG_WRAPPER(vpx_highbd_sad16x8_avg) +MAKE_BFP_SAD4D_WRAPPER(vpx_highbd_sad16x8x4d) +MAKE_BFP_SAD_WRAPPER(vpx_highbd_sad8x16) +MAKE_BFP_SADAVG_WRAPPER(vpx_highbd_sad8x16_avg) +MAKE_BFP_SAD4D_WRAPPER(vpx_highbd_sad8x16x4d) +MAKE_BFP_SAD_WRAPPER(vpx_highbd_sad8x8) +MAKE_BFP_SADAVG_WRAPPER(vpx_highbd_sad8x8_avg) +MAKE_BFP_SAD4D_WRAPPER(vpx_highbd_sad8x8x4d) +MAKE_BFP_SAD_WRAPPER(vpx_highbd_sad8x4) +MAKE_BFP_SADAVG_WRAPPER(vpx_highbd_sad8x4_avg) +MAKE_BFP_SAD4D_WRAPPER(vpx_highbd_sad8x4x4d) +MAKE_BFP_SAD_WRAPPER(vpx_highbd_sad4x8) +MAKE_BFP_SADAVG_WRAPPER(vpx_highbd_sad4x8_avg) +MAKE_BFP_SAD4D_WRAPPER(vpx_highbd_sad4x8x4d) +MAKE_BFP_SAD_WRAPPER(vpx_highbd_sad4x4) +MAKE_BFP_SADAVG_WRAPPER(vpx_highbd_sad4x4_avg) +MAKE_BFP_SAD4D_WRAPPER(vpx_highbd_sad4x4x4d) + +static void highbd_set_var_fns(VP9_COMP *const cpi) { + VP9_COMMON *const cm = &cpi->common; + if (cm->use_highbitdepth) { + switch (cm->bit_depth) { + case VPX_BITS_8: + HIGHBD_BFP(BLOCK_32X16, vpx_highbd_sad32x16_bits8, + vpx_highbd_sad32x16_avg_bits8, vpx_highbd_8_variance32x16, + vpx_highbd_8_sub_pixel_variance32x16, + vpx_highbd_8_sub_pixel_avg_variance32x16, + vpx_highbd_sad32x16x4d_bits8) + + HIGHBD_BFP(BLOCK_16X32, vpx_highbd_sad16x32_bits8, + vpx_highbd_sad16x32_avg_bits8, vpx_highbd_8_variance16x32, + vpx_highbd_8_sub_pixel_variance16x32, + vpx_highbd_8_sub_pixel_avg_variance16x32, + vpx_highbd_sad16x32x4d_bits8) + + HIGHBD_BFP(BLOCK_64X32, vpx_highbd_sad64x32_bits8, + vpx_highbd_sad64x32_avg_bits8, vpx_highbd_8_variance64x32, + vpx_highbd_8_sub_pixel_variance64x32, + vpx_highbd_8_sub_pixel_avg_variance64x32, + vpx_highbd_sad64x32x4d_bits8) + + HIGHBD_BFP(BLOCK_32X64, vpx_highbd_sad32x64_bits8, + vpx_highbd_sad32x64_avg_bits8, vpx_highbd_8_variance32x64, + vpx_highbd_8_sub_pixel_variance32x64, + vpx_highbd_8_sub_pixel_avg_variance32x64, + vpx_highbd_sad32x64x4d_bits8) + + HIGHBD_BFP(BLOCK_32X32, vpx_highbd_sad32x32_bits8, + vpx_highbd_sad32x32_avg_bits8, vpx_highbd_8_variance32x32, + vpx_highbd_8_sub_pixel_variance32x32, + vpx_highbd_8_sub_pixel_avg_variance32x32, + vpx_highbd_sad32x32x4d_bits8) + + HIGHBD_BFP(BLOCK_64X64, vpx_highbd_sad64x64_bits8, + vpx_highbd_sad64x64_avg_bits8, vpx_highbd_8_variance64x64, + vpx_highbd_8_sub_pixel_variance64x64, + vpx_highbd_8_sub_pixel_avg_variance64x64, + vpx_highbd_sad64x64x4d_bits8) + + HIGHBD_BFP(BLOCK_16X16, vpx_highbd_sad16x16_bits8, + vpx_highbd_sad16x16_avg_bits8, vpx_highbd_8_variance16x16, + vpx_highbd_8_sub_pixel_variance16x16, + vpx_highbd_8_sub_pixel_avg_variance16x16, + vpx_highbd_sad16x16x4d_bits8) + + HIGHBD_BFP(BLOCK_16X8, vpx_highbd_sad16x8_bits8, + vpx_highbd_sad16x8_avg_bits8, vpx_highbd_8_variance16x8, + vpx_highbd_8_sub_pixel_variance16x8, + vpx_highbd_8_sub_pixel_avg_variance16x8, + vpx_highbd_sad16x8x4d_bits8) + + HIGHBD_BFP(BLOCK_8X16, vpx_highbd_sad8x16_bits8, + vpx_highbd_sad8x16_avg_bits8, vpx_highbd_8_variance8x16, + vpx_highbd_8_sub_pixel_variance8x16, + vpx_highbd_8_sub_pixel_avg_variance8x16, + vpx_highbd_sad8x16x4d_bits8) + + HIGHBD_BFP( + BLOCK_8X8, vpx_highbd_sad8x8_bits8, vpx_highbd_sad8x8_avg_bits8, + vpx_highbd_8_variance8x8, vpx_highbd_8_sub_pixel_variance8x8, + vpx_highbd_8_sub_pixel_avg_variance8x8, vpx_highbd_sad8x8x4d_bits8) + + HIGHBD_BFP( + BLOCK_8X4, vpx_highbd_sad8x4_bits8, vpx_highbd_sad8x4_avg_bits8, + vpx_highbd_8_variance8x4, vpx_highbd_8_sub_pixel_variance8x4, + vpx_highbd_8_sub_pixel_avg_variance8x4, vpx_highbd_sad8x4x4d_bits8) + + HIGHBD_BFP( + BLOCK_4X8, vpx_highbd_sad4x8_bits8, vpx_highbd_sad4x8_avg_bits8, + vpx_highbd_8_variance4x8, vpx_highbd_8_sub_pixel_variance4x8, + vpx_highbd_8_sub_pixel_avg_variance4x8, vpx_highbd_sad4x8x4d_bits8) + + HIGHBD_BFP( + BLOCK_4X4, vpx_highbd_sad4x4_bits8, vpx_highbd_sad4x4_avg_bits8, + vpx_highbd_8_variance4x4, vpx_highbd_8_sub_pixel_variance4x4, + vpx_highbd_8_sub_pixel_avg_variance4x4, vpx_highbd_sad4x4x4d_bits8) + break; + + case VPX_BITS_10: + HIGHBD_BFP(BLOCK_32X16, vpx_highbd_sad32x16_bits10, + vpx_highbd_sad32x16_avg_bits10, vpx_highbd_10_variance32x16, + vpx_highbd_10_sub_pixel_variance32x16, + vpx_highbd_10_sub_pixel_avg_variance32x16, + vpx_highbd_sad32x16x4d_bits10) + + HIGHBD_BFP(BLOCK_16X32, vpx_highbd_sad16x32_bits10, + vpx_highbd_sad16x32_avg_bits10, vpx_highbd_10_variance16x32, + vpx_highbd_10_sub_pixel_variance16x32, + vpx_highbd_10_sub_pixel_avg_variance16x32, + vpx_highbd_sad16x32x4d_bits10) + + HIGHBD_BFP(BLOCK_64X32, vpx_highbd_sad64x32_bits10, + vpx_highbd_sad64x32_avg_bits10, vpx_highbd_10_variance64x32, + vpx_highbd_10_sub_pixel_variance64x32, + vpx_highbd_10_sub_pixel_avg_variance64x32, + vpx_highbd_sad64x32x4d_bits10) + + HIGHBD_BFP(BLOCK_32X64, vpx_highbd_sad32x64_bits10, + vpx_highbd_sad32x64_avg_bits10, vpx_highbd_10_variance32x64, + vpx_highbd_10_sub_pixel_variance32x64, + vpx_highbd_10_sub_pixel_avg_variance32x64, + vpx_highbd_sad32x64x4d_bits10) + + HIGHBD_BFP(BLOCK_32X32, vpx_highbd_sad32x32_bits10, + vpx_highbd_sad32x32_avg_bits10, vpx_highbd_10_variance32x32, + vpx_highbd_10_sub_pixel_variance32x32, + vpx_highbd_10_sub_pixel_avg_variance32x32, + vpx_highbd_sad32x32x4d_bits10) + + HIGHBD_BFP(BLOCK_64X64, vpx_highbd_sad64x64_bits10, + vpx_highbd_sad64x64_avg_bits10, vpx_highbd_10_variance64x64, + vpx_highbd_10_sub_pixel_variance64x64, + vpx_highbd_10_sub_pixel_avg_variance64x64, + vpx_highbd_sad64x64x4d_bits10) + + HIGHBD_BFP(BLOCK_16X16, vpx_highbd_sad16x16_bits10, + vpx_highbd_sad16x16_avg_bits10, vpx_highbd_10_variance16x16, + vpx_highbd_10_sub_pixel_variance16x16, + vpx_highbd_10_sub_pixel_avg_variance16x16, + vpx_highbd_sad16x16x4d_bits10) + + HIGHBD_BFP(BLOCK_16X8, vpx_highbd_sad16x8_bits10, + vpx_highbd_sad16x8_avg_bits10, vpx_highbd_10_variance16x8, + vpx_highbd_10_sub_pixel_variance16x8, + vpx_highbd_10_sub_pixel_avg_variance16x8, + vpx_highbd_sad16x8x4d_bits10) + + HIGHBD_BFP(BLOCK_8X16, vpx_highbd_sad8x16_bits10, + vpx_highbd_sad8x16_avg_bits10, vpx_highbd_10_variance8x16, + vpx_highbd_10_sub_pixel_variance8x16, + vpx_highbd_10_sub_pixel_avg_variance8x16, + vpx_highbd_sad8x16x4d_bits10) + + HIGHBD_BFP(BLOCK_8X8, vpx_highbd_sad8x8_bits10, + vpx_highbd_sad8x8_avg_bits10, vpx_highbd_10_variance8x8, + vpx_highbd_10_sub_pixel_variance8x8, + vpx_highbd_10_sub_pixel_avg_variance8x8, + vpx_highbd_sad8x8x4d_bits10) + + HIGHBD_BFP(BLOCK_8X4, vpx_highbd_sad8x4_bits10, + vpx_highbd_sad8x4_avg_bits10, vpx_highbd_10_variance8x4, + vpx_highbd_10_sub_pixel_variance8x4, + vpx_highbd_10_sub_pixel_avg_variance8x4, + vpx_highbd_sad8x4x4d_bits10) + + HIGHBD_BFP(BLOCK_4X8, vpx_highbd_sad4x8_bits10, + vpx_highbd_sad4x8_avg_bits10, vpx_highbd_10_variance4x8, + vpx_highbd_10_sub_pixel_variance4x8, + vpx_highbd_10_sub_pixel_avg_variance4x8, + vpx_highbd_sad4x8x4d_bits10) + + HIGHBD_BFP(BLOCK_4X4, vpx_highbd_sad4x4_bits10, + vpx_highbd_sad4x4_avg_bits10, vpx_highbd_10_variance4x4, + vpx_highbd_10_sub_pixel_variance4x4, + vpx_highbd_10_sub_pixel_avg_variance4x4, + vpx_highbd_sad4x4x4d_bits10) + break; + + case VPX_BITS_12: + HIGHBD_BFP(BLOCK_32X16, vpx_highbd_sad32x16_bits12, + vpx_highbd_sad32x16_avg_bits12, vpx_highbd_12_variance32x16, + vpx_highbd_12_sub_pixel_variance32x16, + vpx_highbd_12_sub_pixel_avg_variance32x16, + vpx_highbd_sad32x16x4d_bits12) + + HIGHBD_BFP(BLOCK_16X32, vpx_highbd_sad16x32_bits12, + vpx_highbd_sad16x32_avg_bits12, vpx_highbd_12_variance16x32, + vpx_highbd_12_sub_pixel_variance16x32, + vpx_highbd_12_sub_pixel_avg_variance16x32, + vpx_highbd_sad16x32x4d_bits12) + + HIGHBD_BFP(BLOCK_64X32, vpx_highbd_sad64x32_bits12, + vpx_highbd_sad64x32_avg_bits12, vpx_highbd_12_variance64x32, + vpx_highbd_12_sub_pixel_variance64x32, + vpx_highbd_12_sub_pixel_avg_variance64x32, + vpx_highbd_sad64x32x4d_bits12) + + HIGHBD_BFP(BLOCK_32X64, vpx_highbd_sad32x64_bits12, + vpx_highbd_sad32x64_avg_bits12, vpx_highbd_12_variance32x64, + vpx_highbd_12_sub_pixel_variance32x64, + vpx_highbd_12_sub_pixel_avg_variance32x64, + vpx_highbd_sad32x64x4d_bits12) + + HIGHBD_BFP(BLOCK_32X32, vpx_highbd_sad32x32_bits12, + vpx_highbd_sad32x32_avg_bits12, vpx_highbd_12_variance32x32, + vpx_highbd_12_sub_pixel_variance32x32, + vpx_highbd_12_sub_pixel_avg_variance32x32, + vpx_highbd_sad32x32x4d_bits12) + + HIGHBD_BFP(BLOCK_64X64, vpx_highbd_sad64x64_bits12, + vpx_highbd_sad64x64_avg_bits12, vpx_highbd_12_variance64x64, + vpx_highbd_12_sub_pixel_variance64x64, + vpx_highbd_12_sub_pixel_avg_variance64x64, + vpx_highbd_sad64x64x4d_bits12) + + HIGHBD_BFP(BLOCK_16X16, vpx_highbd_sad16x16_bits12, + vpx_highbd_sad16x16_avg_bits12, vpx_highbd_12_variance16x16, + vpx_highbd_12_sub_pixel_variance16x16, + vpx_highbd_12_sub_pixel_avg_variance16x16, + vpx_highbd_sad16x16x4d_bits12) + + HIGHBD_BFP(BLOCK_16X8, vpx_highbd_sad16x8_bits12, + vpx_highbd_sad16x8_avg_bits12, vpx_highbd_12_variance16x8, + vpx_highbd_12_sub_pixel_variance16x8, + vpx_highbd_12_sub_pixel_avg_variance16x8, + vpx_highbd_sad16x8x4d_bits12) + + HIGHBD_BFP(BLOCK_8X16, vpx_highbd_sad8x16_bits12, + vpx_highbd_sad8x16_avg_bits12, vpx_highbd_12_variance8x16, + vpx_highbd_12_sub_pixel_variance8x16, + vpx_highbd_12_sub_pixel_avg_variance8x16, + vpx_highbd_sad8x16x4d_bits12) + + HIGHBD_BFP(BLOCK_8X8, vpx_highbd_sad8x8_bits12, + vpx_highbd_sad8x8_avg_bits12, vpx_highbd_12_variance8x8, + vpx_highbd_12_sub_pixel_variance8x8, + vpx_highbd_12_sub_pixel_avg_variance8x8, + vpx_highbd_sad8x8x4d_bits12) + + HIGHBD_BFP(BLOCK_8X4, vpx_highbd_sad8x4_bits12, + vpx_highbd_sad8x4_avg_bits12, vpx_highbd_12_variance8x4, + vpx_highbd_12_sub_pixel_variance8x4, + vpx_highbd_12_sub_pixel_avg_variance8x4, + vpx_highbd_sad8x4x4d_bits12) + + HIGHBD_BFP(BLOCK_4X8, vpx_highbd_sad4x8_bits12, + vpx_highbd_sad4x8_avg_bits12, vpx_highbd_12_variance4x8, + vpx_highbd_12_sub_pixel_variance4x8, + vpx_highbd_12_sub_pixel_avg_variance4x8, + vpx_highbd_sad4x8x4d_bits12) + + HIGHBD_BFP(BLOCK_4X4, vpx_highbd_sad4x4_bits12, + vpx_highbd_sad4x4_avg_bits12, vpx_highbd_12_variance4x4, + vpx_highbd_12_sub_pixel_variance4x4, + vpx_highbd_12_sub_pixel_avg_variance4x4, + vpx_highbd_sad4x4x4d_bits12) + break; + + default: + assert(0 && + "cm->bit_depth should be VPX_BITS_8, " + "VPX_BITS_10 or VPX_BITS_12"); + } + } +} +#endif // CONFIG_VP9_HIGHBITDEPTH + +static void realloc_segmentation_maps(VP9_COMP *cpi) { + VP9_COMMON *const cm = &cpi->common; + + // Create the encoder segmentation map and set all entries to 0 + vpx_free(cpi->segmentation_map); + CHECK_MEM_ERROR(cm, cpi->segmentation_map, + vpx_calloc(cm->mi_rows * cm->mi_cols, 1)); + + // Create a map used for cyclic background refresh. + if (cpi->cyclic_refresh) vp9_cyclic_refresh_free(cpi->cyclic_refresh); + CHECK_MEM_ERROR(cm, cpi->cyclic_refresh, + vp9_cyclic_refresh_alloc(cm->mi_rows, cm->mi_cols)); + + // Create a map used to mark inactive areas. + vpx_free(cpi->active_map.map); + CHECK_MEM_ERROR(cm, cpi->active_map.map, + vpx_calloc(cm->mi_rows * cm->mi_cols, 1)); + + // And a place holder structure is the coding context + // for use if we want to save and restore it + vpx_free(cpi->coding_context.last_frame_seg_map_copy); + CHECK_MEM_ERROR(cm, cpi->coding_context.last_frame_seg_map_copy, + vpx_calloc(cm->mi_rows * cm->mi_cols, 1)); +} + +static void alloc_copy_partition_data(VP9_COMP *cpi) { + VP9_COMMON *const cm = &cpi->common; + if (cpi->prev_partition == NULL) { + CHECK_MEM_ERROR(cm, cpi->prev_partition, + (BLOCK_SIZE *)vpx_calloc(cm->mi_stride * cm->mi_rows, + sizeof(*cpi->prev_partition))); + } + if (cpi->prev_segment_id == NULL) { + CHECK_MEM_ERROR( + cm, cpi->prev_segment_id, + (int8_t *)vpx_calloc((cm->mi_stride >> 3) * ((cm->mi_rows >> 3) + 1), + sizeof(*cpi->prev_segment_id))); + } + if (cpi->prev_variance_low == NULL) { + CHECK_MEM_ERROR(cm, cpi->prev_variance_low, + (uint8_t *)vpx_calloc( + (cm->mi_stride >> 3) * ((cm->mi_rows >> 3) + 1) * 25, + sizeof(*cpi->prev_variance_low))); + } + if (cpi->copied_frame_cnt == NULL) { + CHECK_MEM_ERROR( + cm, cpi->copied_frame_cnt, + (uint8_t *)vpx_calloc((cm->mi_stride >> 3) * ((cm->mi_rows >> 3) + 1), + sizeof(*cpi->copied_frame_cnt))); + } +} + +void vp9_change_config(struct VP9_COMP *cpi, const VP9EncoderConfig *oxcf) { + VP9_COMMON *const cm = &cpi->common; + RATE_CONTROL *const rc = &cpi->rc; + int last_w = cpi->oxcf.width; + int last_h = cpi->oxcf.height; + + if (cm->profile != oxcf->profile) cm->profile = oxcf->profile; + cm->bit_depth = oxcf->bit_depth; + cm->color_space = oxcf->color_space; + cm->color_range = oxcf->color_range; + + cpi->target_level = oxcf->target_level; + cpi->keep_level_stats = oxcf->target_level != LEVEL_MAX; + set_level_constraint(&cpi->level_constraint, + get_level_index(cpi->target_level)); + + if (cm->profile <= PROFILE_1) + assert(cm->bit_depth == VPX_BITS_8); + else + assert(cm->bit_depth > VPX_BITS_8); + + cpi->oxcf = *oxcf; +#if CONFIG_VP9_HIGHBITDEPTH + cpi->td.mb.e_mbd.bd = (int)cm->bit_depth; +#endif // CONFIG_VP9_HIGHBITDEPTH + + if ((oxcf->pass == 0) && (oxcf->rc_mode == VPX_Q)) { + rc->baseline_gf_interval = FIXED_GF_INTERVAL; + } else { + rc->baseline_gf_interval = (MIN_GF_INTERVAL + MAX_GF_INTERVAL) / 2; + } + + cpi->refresh_golden_frame = 0; + cpi->refresh_last_frame = 1; + cm->refresh_frame_context = 1; + cm->reset_frame_context = 0; + + vp9_reset_segment_features(&cm->seg); + vp9_set_high_precision_mv(cpi, 0); + + { + int i; + + for (i = 0; i < MAX_SEGMENTS; i++) + cpi->segment_encode_breakout[i] = cpi->oxcf.encode_breakout; + } + cpi->encode_breakout = cpi->oxcf.encode_breakout; + + set_rc_buffer_sizes(rc, &cpi->oxcf); + + // Under a configuration change, where maximum_buffer_size may change, + // keep buffer level clipped to the maximum allowed buffer size. + rc->bits_off_target = VPXMIN(rc->bits_off_target, rc->maximum_buffer_size); + rc->buffer_level = VPXMIN(rc->buffer_level, rc->maximum_buffer_size); + + // Set up frame rate and related parameters rate control values. + vp9_new_framerate(cpi, cpi->framerate); + + // Set absolute upper and lower quality limits + rc->worst_quality = cpi->oxcf.worst_allowed_q; + rc->best_quality = cpi->oxcf.best_allowed_q; + + cm->interp_filter = cpi->sf.default_interp_filter; + + if (cpi->oxcf.render_width > 0 && cpi->oxcf.render_height > 0) { + cm->render_width = cpi->oxcf.render_width; + cm->render_height = cpi->oxcf.render_height; + } else { + cm->render_width = cpi->oxcf.width; + cm->render_height = cpi->oxcf.height; + } + if (last_w != cpi->oxcf.width || last_h != cpi->oxcf.height) { + cm->width = cpi->oxcf.width; + cm->height = cpi->oxcf.height; + cpi->external_resize = 1; + } + + if (cpi->initial_width) { + int new_mi_size = 0; + vp9_set_mb_mi(cm, cm->width, cm->height); + new_mi_size = cm->mi_stride * calc_mi_size(cm->mi_rows); + if (cm->mi_alloc_size < new_mi_size) { + vp9_free_context_buffers(cm); + alloc_compressor_data(cpi); + realloc_segmentation_maps(cpi); + cpi->initial_width = cpi->initial_height = 0; + cpi->external_resize = 0; + } else if (cm->mi_alloc_size == new_mi_size && + (cpi->oxcf.width > last_w || cpi->oxcf.height > last_h)) { + vp9_alloc_loop_filter(cm); + } + } + + if (cm->current_video_frame == 0 || last_w != cpi->oxcf.width || + last_h != cpi->oxcf.height) + update_frame_size(cpi); + + if (last_w != cpi->oxcf.width || last_h != cpi->oxcf.height) { + memset(cpi->consec_zero_mv, 0, + cm->mi_rows * cm->mi_cols * sizeof(*cpi->consec_zero_mv)); + if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ) + vp9_cyclic_refresh_reset_resize(cpi); + rc->rc_1_frame = 0; + rc->rc_2_frame = 0; + } + + if ((cpi->svc.number_temporal_layers > 1 && cpi->oxcf.rc_mode == VPX_CBR) || + ((cpi->svc.number_temporal_layers > 1 || + cpi->svc.number_spatial_layers > 1) && + cpi->oxcf.pass != 1)) { + vp9_update_layer_context_change_config(cpi, + (int)cpi->oxcf.target_bandwidth); + } + + // Check for resetting the rc flags (rc_1_frame, rc_2_frame) if the + // configuration change has a large change in avg_frame_bandwidth. + // For SVC check for resetting based on spatial layer average bandwidth. + // Also reset buffer level to optimal level. + if (cm->current_video_frame > 0) { + if (cpi->use_svc) { + vp9_svc_check_reset_layer_rc_flag(cpi); + } else { + if (rc->avg_frame_bandwidth > (3 * rc->last_avg_frame_bandwidth >> 1) || + rc->avg_frame_bandwidth < (rc->last_avg_frame_bandwidth >> 1)) { + rc->rc_1_frame = 0; + rc->rc_2_frame = 0; + rc->bits_off_target = rc->optimal_buffer_level; + rc->buffer_level = rc->optimal_buffer_level; + } + } + } + + cpi->alt_ref_source = NULL; + rc->is_src_frame_alt_ref = 0; + +#if 0 + // Experimental RD Code + cpi->frame_distortion = 0; + cpi->last_frame_distortion = 0; +#endif + + set_tile_limits(cpi); + + cpi->ext_refresh_frame_flags_pending = 0; + cpi->ext_refresh_frame_context_pending = 0; + +#if CONFIG_VP9_HIGHBITDEPTH + highbd_set_var_fns(cpi); +#endif + + vp9_set_row_mt(cpi); +} + +#ifndef M_LOG2_E +#define M_LOG2_E 0.693147180559945309417 +#endif +#define log2f(x) (log(x) / (float)M_LOG2_E) + +/*********************************************************************** + * Read before modifying 'cal_nmvjointsadcost' or 'cal_nmvsadcosts' * + *********************************************************************** + * The following 2 functions ('cal_nmvjointsadcost' and * + * 'cal_nmvsadcosts') are used to calculate cost lookup tables * + * used by 'vp9_diamond_search_sad'. The C implementation of the * + * function is generic, but the AVX intrinsics optimised version * + * relies on the following properties of the computed tables: * + * For cal_nmvjointsadcost: * + * - mvjointsadcost[1] == mvjointsadcost[2] == mvjointsadcost[3] * + * For cal_nmvsadcosts: * + * - For all i: mvsadcost[0][i] == mvsadcost[1][i] * + * (Equal costs for both components) * + * - For all i: mvsadcost[0][i] == mvsadcost[0][-i] * + * (Cost function is even) * + * If these do not hold, then the AVX optimised version of the * + * 'vp9_diamond_search_sad' function cannot be used as it is, in which * + * case you can revert to using the C function instead. * + ***********************************************************************/ + +static void cal_nmvjointsadcost(int *mvjointsadcost) { + /********************************************************************* + * Warning: Read the comments above before modifying this function * + *********************************************************************/ + mvjointsadcost[0] = 600; + mvjointsadcost[1] = 300; + mvjointsadcost[2] = 300; + mvjointsadcost[3] = 300; +} + +static void cal_nmvsadcosts(int *mvsadcost[2]) { + /********************************************************************* + * Warning: Read the comments above before modifying this function * + *********************************************************************/ + int i = 1; + + mvsadcost[0][0] = 0; + mvsadcost[1][0] = 0; + + do { + double z = 256 * (2 * (log2f(8 * i) + .6)); + mvsadcost[0][i] = (int)z; + mvsadcost[1][i] = (int)z; + mvsadcost[0][-i] = (int)z; + mvsadcost[1][-i] = (int)z; + } while (++i <= MV_MAX); +} + +static void cal_nmvsadcosts_hp(int *mvsadcost[2]) { + int i = 1; + + mvsadcost[0][0] = 0; + mvsadcost[1][0] = 0; + + do { + double z = 256 * (2 * (log2f(8 * i) + .6)); + mvsadcost[0][i] = (int)z; + mvsadcost[1][i] = (int)z; + mvsadcost[0][-i] = (int)z; + mvsadcost[1][-i] = (int)z; + } while (++i <= MV_MAX); +} + +VP9_COMP *vp9_create_compressor(VP9EncoderConfig *oxcf, + BufferPool *const pool) { + unsigned int i; + VP9_COMP *volatile const cpi = vpx_memalign(32, sizeof(VP9_COMP)); + VP9_COMMON *volatile const cm = cpi != NULL ? &cpi->common : NULL; + + if (!cm) return NULL; + + vp9_zero(*cpi); + + if (setjmp(cm->error.jmp)) { + cm->error.setjmp = 0; + vp9_remove_compressor(cpi); + return 0; + } + + cm->error.setjmp = 1; + cm->alloc_mi = vp9_enc_alloc_mi; + cm->free_mi = vp9_enc_free_mi; + cm->setup_mi = vp9_enc_setup_mi; + + CHECK_MEM_ERROR(cm, cm->fc, (FRAME_CONTEXT *)vpx_calloc(1, sizeof(*cm->fc))); + CHECK_MEM_ERROR( + cm, cm->frame_contexts, + (FRAME_CONTEXT *)vpx_calloc(FRAME_CONTEXTS, sizeof(*cm->frame_contexts))); + + cpi->use_svc = 0; + cpi->resize_state = ORIG; + cpi->external_resize = 0; + cpi->resize_avg_qp = 0; + cpi->resize_buffer_underflow = 0; + cpi->use_skin_detection = 0; + cpi->common.buffer_pool = pool; + + cpi->force_update_segmentation = 0; + + init_config(cpi, oxcf); + vp9_rc_init(&cpi->oxcf, oxcf->pass, &cpi->rc); + + cm->current_video_frame = 0; + cpi->partition_search_skippable_frame = 0; + cpi->tile_data = NULL; + + realloc_segmentation_maps(cpi); + + CHECK_MEM_ERROR(cm, cpi->skin_map, vpx_calloc(cm->mi_rows * cm->mi_cols, + sizeof(cpi->skin_map[0]))); + + CHECK_MEM_ERROR(cm, cpi->alt_ref_aq, vp9_alt_ref_aq_create()); + + CHECK_MEM_ERROR( + cm, cpi->consec_zero_mv, + vpx_calloc(cm->mi_rows * cm->mi_cols, sizeof(*cpi->consec_zero_mv))); + + CHECK_MEM_ERROR(cm, cpi->nmvcosts[0], + vpx_calloc(MV_VALS, sizeof(*cpi->nmvcosts[0]))); + CHECK_MEM_ERROR(cm, cpi->nmvcosts[1], + vpx_calloc(MV_VALS, sizeof(*cpi->nmvcosts[1]))); + CHECK_MEM_ERROR(cm, cpi->nmvcosts_hp[0], + vpx_calloc(MV_VALS, sizeof(*cpi->nmvcosts_hp[0]))); + CHECK_MEM_ERROR(cm, cpi->nmvcosts_hp[1], + vpx_calloc(MV_VALS, sizeof(*cpi->nmvcosts_hp[1]))); + CHECK_MEM_ERROR(cm, cpi->nmvsadcosts[0], + vpx_calloc(MV_VALS, sizeof(*cpi->nmvsadcosts[0]))); + CHECK_MEM_ERROR(cm, cpi->nmvsadcosts[1], + vpx_calloc(MV_VALS, sizeof(*cpi->nmvsadcosts[1]))); + CHECK_MEM_ERROR(cm, cpi->nmvsadcosts_hp[0], + vpx_calloc(MV_VALS, sizeof(*cpi->nmvsadcosts_hp[0]))); + CHECK_MEM_ERROR(cm, cpi->nmvsadcosts_hp[1], + vpx_calloc(MV_VALS, sizeof(*cpi->nmvsadcosts_hp[1]))); + + for (i = 0; i < (sizeof(cpi->mbgraph_stats) / sizeof(cpi->mbgraph_stats[0])); + i++) { + CHECK_MEM_ERROR( + cm, cpi->mbgraph_stats[i].mb_stats, + vpx_calloc(cm->MBs * sizeof(*cpi->mbgraph_stats[i].mb_stats), 1)); + } + +#if CONFIG_FP_MB_STATS + cpi->use_fp_mb_stats = 0; + if (cpi->use_fp_mb_stats) { + // a place holder used to store the first pass mb stats in the first pass + CHECK_MEM_ERROR(cm, cpi->twopass.frame_mb_stats_buf, + vpx_calloc(cm->MBs * sizeof(uint8_t), 1)); + } else { + cpi->twopass.frame_mb_stats_buf = NULL; + } +#endif + + cpi->refresh_alt_ref_frame = 0; + cpi->multi_arf_last_grp_enabled = 0; + + cpi->b_calculate_psnr = CONFIG_INTERNAL_STATS; + + init_level_info(&cpi->level_info); + init_level_constraint(&cpi->level_constraint); + +#if CONFIG_INTERNAL_STATS + cpi->b_calculate_blockiness = 1; + cpi->b_calculate_consistency = 1; + cpi->total_inconsistency = 0; + cpi->psnr.worst = 100.0; + cpi->worst_ssim = 100.0; + + cpi->count = 0; + cpi->bytes = 0; + + if (cpi->b_calculate_psnr) { + cpi->total_sq_error = 0; + cpi->total_samples = 0; + + cpi->totalp_sq_error = 0; + cpi->totalp_samples = 0; + + cpi->tot_recode_hits = 0; + cpi->summed_quality = 0; + cpi->summed_weights = 0; + cpi->summedp_quality = 0; + cpi->summedp_weights = 0; + } + + cpi->fastssim.worst = 100.0; + + cpi->psnrhvs.worst = 100.0; + + if (cpi->b_calculate_blockiness) { + cpi->total_blockiness = 0; + cpi->worst_blockiness = 0.0; + } + + if (cpi->b_calculate_consistency) { + CHECK_MEM_ERROR(cm, cpi->ssim_vars, + vpx_malloc(sizeof(*cpi->ssim_vars) * 4 * + cpi->common.mi_rows * cpi->common.mi_cols)); + cpi->worst_consistency = 100.0; + } + +#endif + + cpi->first_time_stamp_ever = INT64_MAX; + + /********************************************************************* + * Warning: Read the comments around 'cal_nmvjointsadcost' and * + * 'cal_nmvsadcosts' before modifying how these tables are computed. * + *********************************************************************/ + cal_nmvjointsadcost(cpi->td.mb.nmvjointsadcost); + cpi->td.mb.nmvcost[0] = &cpi->nmvcosts[0][MV_MAX]; + cpi->td.mb.nmvcost[1] = &cpi->nmvcosts[1][MV_MAX]; + cpi->td.mb.nmvsadcost[0] = &cpi->nmvsadcosts[0][MV_MAX]; + cpi->td.mb.nmvsadcost[1] = &cpi->nmvsadcosts[1][MV_MAX]; + cal_nmvsadcosts(cpi->td.mb.nmvsadcost); + + cpi->td.mb.nmvcost_hp[0] = &cpi->nmvcosts_hp[0][MV_MAX]; + cpi->td.mb.nmvcost_hp[1] = &cpi->nmvcosts_hp[1][MV_MAX]; + cpi->td.mb.nmvsadcost_hp[0] = &cpi->nmvsadcosts_hp[0][MV_MAX]; + cpi->td.mb.nmvsadcost_hp[1] = &cpi->nmvsadcosts_hp[1][MV_MAX]; + cal_nmvsadcosts_hp(cpi->td.mb.nmvsadcost_hp); + +#if CONFIG_VP9_TEMPORAL_DENOISING +#ifdef OUTPUT_YUV_DENOISED + yuv_denoised_file = fopen("denoised.yuv", "ab"); +#endif +#endif +#ifdef OUTPUT_YUV_SKINMAP + yuv_skinmap_file = fopen("skinmap.yuv", "wb"); +#endif +#ifdef OUTPUT_YUV_REC + yuv_rec_file = fopen("rec.yuv", "wb"); +#endif + +#if 0 + framepsnr = fopen("framepsnr.stt", "a"); + kf_list = fopen("kf_list.stt", "w"); +#endif + + cpi->allow_encode_breakout = ENCODE_BREAKOUT_ENABLED; + +#if !CONFIG_REALTIME_ONLY + if (oxcf->pass == 1) { + vp9_init_first_pass(cpi); + } else if (oxcf->pass == 2) { + const size_t packet_sz = sizeof(FIRSTPASS_STATS); + const int packets = (int)(oxcf->two_pass_stats_in.sz / packet_sz); + + if (cpi->svc.number_spatial_layers > 1 || + cpi->svc.number_temporal_layers > 1) { + FIRSTPASS_STATS *const stats = oxcf->two_pass_stats_in.buf; + FIRSTPASS_STATS *stats_copy[VPX_SS_MAX_LAYERS] = { 0 }; + int i; + + for (i = 0; i < oxcf->ss_number_layers; ++i) { + FIRSTPASS_STATS *const last_packet_for_layer = + &stats[packets - oxcf->ss_number_layers + i]; + const int layer_id = (int)last_packet_for_layer->spatial_layer_id; + const int packets_in_layer = (int)last_packet_for_layer->count + 1; + if (layer_id >= 0 && layer_id < oxcf->ss_number_layers) { + LAYER_CONTEXT *const lc = &cpi->svc.layer_context[layer_id]; + + vpx_free(lc->rc_twopass_stats_in.buf); + + lc->rc_twopass_stats_in.sz = packets_in_layer * packet_sz; + CHECK_MEM_ERROR(cm, lc->rc_twopass_stats_in.buf, + vpx_malloc(lc->rc_twopass_stats_in.sz)); + lc->twopass.stats_in_start = lc->rc_twopass_stats_in.buf; + lc->twopass.stats_in = lc->twopass.stats_in_start; + lc->twopass.stats_in_end = + lc->twopass.stats_in_start + packets_in_layer - 1; + stats_copy[layer_id] = lc->rc_twopass_stats_in.buf; + } + } + + for (i = 0; i < packets; ++i) { + const int layer_id = (int)stats[i].spatial_layer_id; + if (layer_id >= 0 && layer_id < oxcf->ss_number_layers && + stats_copy[layer_id] != NULL) { + *stats_copy[layer_id] = stats[i]; + ++stats_copy[layer_id]; + } + } + + vp9_init_second_pass_spatial_svc(cpi); + } else { +#if CONFIG_FP_MB_STATS + if (cpi->use_fp_mb_stats) { + const size_t psz = cpi->common.MBs * sizeof(uint8_t); + const int ps = (int)(oxcf->firstpass_mb_stats_in.sz / psz); + + cpi->twopass.firstpass_mb_stats.mb_stats_start = + oxcf->firstpass_mb_stats_in.buf; + cpi->twopass.firstpass_mb_stats.mb_stats_end = + cpi->twopass.firstpass_mb_stats.mb_stats_start + + (ps - 1) * cpi->common.MBs * sizeof(uint8_t); + } +#endif + + cpi->twopass.stats_in_start = oxcf->two_pass_stats_in.buf; + cpi->twopass.stats_in = cpi->twopass.stats_in_start; + cpi->twopass.stats_in_end = &cpi->twopass.stats_in[packets - 1]; + + vp9_init_second_pass(cpi); + } + } +#endif // !CONFIG_REALTIME_ONLY + + vp9_set_speed_features_framesize_independent(cpi); + vp9_set_speed_features_framesize_dependent(cpi); + + // Allocate memory to store variances for a frame. + CHECK_MEM_ERROR(cm, cpi->source_diff_var, vpx_calloc(cm->MBs, sizeof(diff))); + cpi->source_var_thresh = 0; + cpi->frames_till_next_var_check = 0; + +#define BFP(BT, SDF, SDAF, VF, SVF, SVAF, SDX4DF) \ + cpi->fn_ptr[BT].sdf = SDF; \ + cpi->fn_ptr[BT].sdaf = SDAF; \ + cpi->fn_ptr[BT].vf = VF; \ + cpi->fn_ptr[BT].svf = SVF; \ + cpi->fn_ptr[BT].svaf = SVAF; \ + cpi->fn_ptr[BT].sdx4df = SDX4DF; + + BFP(BLOCK_32X16, vpx_sad32x16, vpx_sad32x16_avg, vpx_variance32x16, + vpx_sub_pixel_variance32x16, vpx_sub_pixel_avg_variance32x16, + vpx_sad32x16x4d) + + BFP(BLOCK_16X32, vpx_sad16x32, vpx_sad16x32_avg, vpx_variance16x32, + vpx_sub_pixel_variance16x32, vpx_sub_pixel_avg_variance16x32, + vpx_sad16x32x4d) + + BFP(BLOCK_64X32, vpx_sad64x32, vpx_sad64x32_avg, vpx_variance64x32, + vpx_sub_pixel_variance64x32, vpx_sub_pixel_avg_variance64x32, + vpx_sad64x32x4d) + + BFP(BLOCK_32X64, vpx_sad32x64, vpx_sad32x64_avg, vpx_variance32x64, + vpx_sub_pixel_variance32x64, vpx_sub_pixel_avg_variance32x64, + vpx_sad32x64x4d) + + BFP(BLOCK_32X32, vpx_sad32x32, vpx_sad32x32_avg, vpx_variance32x32, + vpx_sub_pixel_variance32x32, vpx_sub_pixel_avg_variance32x32, + vpx_sad32x32x4d) + + BFP(BLOCK_64X64, vpx_sad64x64, vpx_sad64x64_avg, vpx_variance64x64, + vpx_sub_pixel_variance64x64, vpx_sub_pixel_avg_variance64x64, + vpx_sad64x64x4d) + + BFP(BLOCK_16X16, vpx_sad16x16, vpx_sad16x16_avg, vpx_variance16x16, + vpx_sub_pixel_variance16x16, vpx_sub_pixel_avg_variance16x16, + vpx_sad16x16x4d) + + BFP(BLOCK_16X8, vpx_sad16x8, vpx_sad16x8_avg, vpx_variance16x8, + vpx_sub_pixel_variance16x8, vpx_sub_pixel_avg_variance16x8, + vpx_sad16x8x4d) + + BFP(BLOCK_8X16, vpx_sad8x16, vpx_sad8x16_avg, vpx_variance8x16, + vpx_sub_pixel_variance8x16, vpx_sub_pixel_avg_variance8x16, + vpx_sad8x16x4d) + + BFP(BLOCK_8X8, vpx_sad8x8, vpx_sad8x8_avg, vpx_variance8x8, + vpx_sub_pixel_variance8x8, vpx_sub_pixel_avg_variance8x8, vpx_sad8x8x4d) + + BFP(BLOCK_8X4, vpx_sad8x4, vpx_sad8x4_avg, vpx_variance8x4, + vpx_sub_pixel_variance8x4, vpx_sub_pixel_avg_variance8x4, vpx_sad8x4x4d) + + BFP(BLOCK_4X8, vpx_sad4x8, vpx_sad4x8_avg, vpx_variance4x8, + vpx_sub_pixel_variance4x8, vpx_sub_pixel_avg_variance4x8, vpx_sad4x8x4d) + + BFP(BLOCK_4X4, vpx_sad4x4, vpx_sad4x4_avg, vpx_variance4x4, + vpx_sub_pixel_variance4x4, vpx_sub_pixel_avg_variance4x4, vpx_sad4x4x4d) + +#if CONFIG_VP9_HIGHBITDEPTH + highbd_set_var_fns(cpi); +#endif + + /* vp9_init_quantizer() is first called here. Add check in + * vp9_frame_init_quantizer() so that vp9_init_quantizer is only + * called later when needed. This will avoid unnecessary calls of + * vp9_init_quantizer() for every frame. + */ + vp9_init_quantizer(cpi); + + vp9_loop_filter_init(cm); + + cm->error.setjmp = 0; + + return cpi; +} + +#if CONFIG_INTERNAL_STATS +#define SNPRINT(H, T) snprintf((H) + strlen(H), sizeof(H) - strlen(H), (T)) + +#define SNPRINT2(H, T, V) \ + snprintf((H) + strlen(H), sizeof(H) - strlen(H), (T), (V)) +#endif // CONFIG_INTERNAL_STATS + +void vp9_remove_compressor(VP9_COMP *cpi) { + VP9_COMMON *cm; + unsigned int i; + int t; + + if (!cpi) return; + + cm = &cpi->common; + if (cm->current_video_frame > 0) { +#if CONFIG_INTERNAL_STATS + vpx_clear_system_state(); + + if (cpi->oxcf.pass != 1) { + char headings[512] = { 0 }; + char results[512] = { 0 }; + FILE *f = fopen("opsnr.stt", "a"); + double time_encoded = + (cpi->last_end_time_stamp_seen - cpi->first_time_stamp_ever) / + 10000000.000; + double total_encode_time = + (cpi->time_receive_data + cpi->time_compress_data) / 1000.000; + const double dr = + (double)cpi->bytes * (double)8 / (double)1000 / time_encoded; + const double peak = (double)((1 << cpi->oxcf.input_bit_depth) - 1); + const double target_rate = (double)cpi->oxcf.target_bandwidth / 1000; + const double rate_err = ((100.0 * (dr - target_rate)) / target_rate); + + if (cpi->b_calculate_psnr) { + const double total_psnr = vpx_sse_to_psnr( + (double)cpi->total_samples, peak, (double)cpi->total_sq_error); + const double totalp_psnr = vpx_sse_to_psnr( + (double)cpi->totalp_samples, peak, (double)cpi->totalp_sq_error); + const double total_ssim = + 100 * pow(cpi->summed_quality / cpi->summed_weights, 8.0); + const double totalp_ssim = + 100 * pow(cpi->summedp_quality / cpi->summedp_weights, 8.0); + + snprintf(headings, sizeof(headings), + "Bitrate\tAVGPsnr\tGLBPsnr\tAVPsnrP\tGLPsnrP\t" + "VPXSSIM\tVPSSIMP\tFASTSIM\tPSNRHVS\t" + "WstPsnr\tWstSsim\tWstFast\tWstHVS\t" + "AVPsnrY\tAPsnrCb\tAPsnrCr"); + snprintf(results, sizeof(results), + "%7.2f\t%7.3f\t%7.3f\t%7.3f\t%7.3f\t" + "%7.3f\t%7.3f\t%7.3f\t%7.3f\t" + "%7.3f\t%7.3f\t%7.3f\t%7.3f\t" + "%7.3f\t%7.3f\t%7.3f", + dr, cpi->psnr.stat[ALL] / cpi->count, total_psnr, + cpi->psnrp.stat[ALL] / cpi->count, totalp_psnr, total_ssim, + totalp_ssim, cpi->fastssim.stat[ALL] / cpi->count, + cpi->psnrhvs.stat[ALL] / cpi->count, cpi->psnr.worst, + cpi->worst_ssim, cpi->fastssim.worst, cpi->psnrhvs.worst, + cpi->psnr.stat[Y] / cpi->count, cpi->psnr.stat[U] / cpi->count, + cpi->psnr.stat[V] / cpi->count); + + if (cpi->b_calculate_blockiness) { + SNPRINT(headings, "\t Block\tWstBlck"); + SNPRINT2(results, "\t%7.3f", cpi->total_blockiness / cpi->count); + SNPRINT2(results, "\t%7.3f", cpi->worst_blockiness); + } + + if (cpi->b_calculate_consistency) { + double consistency = + vpx_sse_to_psnr((double)cpi->totalp_samples, peak, + (double)cpi->total_inconsistency); + + SNPRINT(headings, "\tConsist\tWstCons"); + SNPRINT2(results, "\t%7.3f", consistency); + SNPRINT2(results, "\t%7.3f", cpi->worst_consistency); + } + + fprintf(f, "%s\t Time\tRcErr\tAbsErr\n", headings); + fprintf(f, "%s\t%8.0f\t%7.2f\t%7.2f\n", results, total_encode_time, + rate_err, fabs(rate_err)); + } + + fclose(f); + } + +#endif + +#if 0 + { + printf("\n_pick_loop_filter_level:%d\n", cpi->time_pick_lpf / 1000); + printf("\n_frames recive_data encod_mb_row compress_frame Total\n"); + printf("%6d %10ld %10ld %10ld %10ld\n", cpi->common.current_video_frame, + cpi->time_receive_data / 1000, cpi->time_encode_sb_row / 1000, + cpi->time_compress_data / 1000, + (cpi->time_receive_data + cpi->time_compress_data) / 1000); + } +#endif + } + +#if CONFIG_VP9_TEMPORAL_DENOISING + vp9_denoiser_free(&(cpi->denoiser)); +#endif + + for (t = 0; t < cpi->num_workers; ++t) { + VPxWorker *const worker = &cpi->workers[t]; + EncWorkerData *const thread_data = &cpi->tile_thr_data[t]; + + // Deallocate allocated threads. + vpx_get_worker_interface()->end(worker); + + // Deallocate allocated thread data. + if (t < cpi->num_workers - 1) { + vpx_free(thread_data->td->counts); + vp9_free_pc_tree(thread_data->td); + vpx_free(thread_data->td); + } + } + vpx_free(cpi->tile_thr_data); + vpx_free(cpi->workers); + vp9_row_mt_mem_dealloc(cpi); + + if (cpi->num_workers > 1) { + vp9_loop_filter_dealloc(&cpi->lf_row_sync); + vp9_bitstream_encode_tiles_buffer_dealloc(cpi); + } + + vp9_alt_ref_aq_destroy(cpi->alt_ref_aq); + + dealloc_compressor_data(cpi); + + for (i = 0; i < sizeof(cpi->mbgraph_stats) / sizeof(cpi->mbgraph_stats[0]); + ++i) { + vpx_free(cpi->mbgraph_stats[i].mb_stats); + } + +#if CONFIG_FP_MB_STATS + if (cpi->use_fp_mb_stats) { + vpx_free(cpi->twopass.frame_mb_stats_buf); + cpi->twopass.frame_mb_stats_buf = NULL; + } +#endif + + vp9_remove_common(cm); + vp9_free_ref_frame_buffers(cm->buffer_pool); +#if CONFIG_VP9_POSTPROC + vp9_free_postproc_buffers(cm); +#endif + vpx_free(cpi); + +#if CONFIG_VP9_TEMPORAL_DENOISING +#ifdef OUTPUT_YUV_DENOISED + fclose(yuv_denoised_file); +#endif +#endif +#ifdef OUTPUT_YUV_SKINMAP + fclose(yuv_skinmap_file); +#endif +#ifdef OUTPUT_YUV_REC + fclose(yuv_rec_file); +#endif + +#if 0 + + if (keyfile) + fclose(keyfile); + + if (framepsnr) + fclose(framepsnr); + + if (kf_list) + fclose(kf_list); + +#endif +} + +static void generate_psnr_packet(VP9_COMP *cpi) { + struct vpx_codec_cx_pkt pkt; + int i; + PSNR_STATS psnr; +#if CONFIG_VP9_HIGHBITDEPTH + vpx_calc_highbd_psnr(cpi->raw_source_frame, cpi->common.frame_to_show, &psnr, + cpi->td.mb.e_mbd.bd, cpi->oxcf.input_bit_depth); +#else + vpx_calc_psnr(cpi->raw_source_frame, cpi->common.frame_to_show, &psnr); +#endif + + for (i = 0; i < 4; ++i) { + pkt.data.psnr.samples[i] = psnr.samples[i]; + pkt.data.psnr.sse[i] = psnr.sse[i]; + pkt.data.psnr.psnr[i] = psnr.psnr[i]; + } + pkt.kind = VPX_CODEC_PSNR_PKT; + if (cpi->use_svc) + cpi->svc + .layer_context[cpi->svc.spatial_layer_id * + cpi->svc.number_temporal_layers] + .psnr_pkt = pkt.data.psnr; + else + vpx_codec_pkt_list_add(cpi->output_pkt_list, &pkt); +} + +int vp9_use_as_reference(VP9_COMP *cpi, int ref_frame_flags) { + if (ref_frame_flags > 7) return -1; + + cpi->ref_frame_flags = ref_frame_flags; + return 0; +} + +void vp9_update_reference(VP9_COMP *cpi, int ref_frame_flags) { + cpi->ext_refresh_golden_frame = (ref_frame_flags & VP9_GOLD_FLAG) != 0; + cpi->ext_refresh_alt_ref_frame = (ref_frame_flags & VP9_ALT_FLAG) != 0; + cpi->ext_refresh_last_frame = (ref_frame_flags & VP9_LAST_FLAG) != 0; + cpi->ext_refresh_frame_flags_pending = 1; +} + +static YV12_BUFFER_CONFIG *get_vp9_ref_frame_buffer( + VP9_COMP *cpi, VP9_REFFRAME ref_frame_flag) { + MV_REFERENCE_FRAME ref_frame = NONE; + if (ref_frame_flag == VP9_LAST_FLAG) + ref_frame = LAST_FRAME; + else if (ref_frame_flag == VP9_GOLD_FLAG) + ref_frame = GOLDEN_FRAME; + else if (ref_frame_flag == VP9_ALT_FLAG) + ref_frame = ALTREF_FRAME; + + return ref_frame == NONE ? NULL : get_ref_frame_buffer(cpi, ref_frame); +} + +int vp9_copy_reference_enc(VP9_COMP *cpi, VP9_REFFRAME ref_frame_flag, + YV12_BUFFER_CONFIG *sd) { + YV12_BUFFER_CONFIG *cfg = get_vp9_ref_frame_buffer(cpi, ref_frame_flag); + if (cfg) { + vpx_yv12_copy_frame(cfg, sd); + return 0; + } else { + return -1; + } +} + +int vp9_set_reference_enc(VP9_COMP *cpi, VP9_REFFRAME ref_frame_flag, + YV12_BUFFER_CONFIG *sd) { + YV12_BUFFER_CONFIG *cfg = get_vp9_ref_frame_buffer(cpi, ref_frame_flag); + if (cfg) { + vpx_yv12_copy_frame(sd, cfg); + return 0; + } else { + return -1; + } +} + +int vp9_update_entropy(VP9_COMP *cpi, int update) { + cpi->ext_refresh_frame_context = update; + cpi->ext_refresh_frame_context_pending = 1; + return 0; +} + +#ifdef OUTPUT_YUV_REC +void vp9_write_yuv_rec_frame(VP9_COMMON *cm) { + YV12_BUFFER_CONFIG *s = cm->frame_to_show; + uint8_t *src = s->y_buffer; + int h = cm->height; + +#if CONFIG_VP9_HIGHBITDEPTH + if (s->flags & YV12_FLAG_HIGHBITDEPTH) { + uint16_t *src16 = CONVERT_TO_SHORTPTR(s->y_buffer); + + do { + fwrite(src16, s->y_width, 2, yuv_rec_file); + src16 += s->y_stride; + } while (--h); + + src16 = CONVERT_TO_SHORTPTR(s->u_buffer); + h = s->uv_height; + + do { + fwrite(src16, s->uv_width, 2, yuv_rec_file); + src16 += s->uv_stride; + } while (--h); + + src16 = CONVERT_TO_SHORTPTR(s->v_buffer); + h = s->uv_height; + + do { + fwrite(src16, s->uv_width, 2, yuv_rec_file); + src16 += s->uv_stride; + } while (--h); + + fflush(yuv_rec_file); + return; + } +#endif // CONFIG_VP9_HIGHBITDEPTH + + do { + fwrite(src, s->y_width, 1, yuv_rec_file); + src += s->y_stride; + } while (--h); + + src = s->u_buffer; + h = s->uv_height; + + do { + fwrite(src, s->uv_width, 1, yuv_rec_file); + src += s->uv_stride; + } while (--h); + + src = s->v_buffer; + h = s->uv_height; + + do { + fwrite(src, s->uv_width, 1, yuv_rec_file); + src += s->uv_stride; + } while (--h); + + fflush(yuv_rec_file); +} +#endif + +#if CONFIG_VP9_HIGHBITDEPTH +static void scale_and_extend_frame_nonnormative(const YV12_BUFFER_CONFIG *src, + YV12_BUFFER_CONFIG *dst, + int bd) { +#else +static void scale_and_extend_frame_nonnormative(const YV12_BUFFER_CONFIG *src, + YV12_BUFFER_CONFIG *dst) { +#endif // CONFIG_VP9_HIGHBITDEPTH + // TODO(dkovalev): replace YV12_BUFFER_CONFIG with vpx_image_t + int i; + const uint8_t *const srcs[3] = { src->y_buffer, src->u_buffer, + src->v_buffer }; + const int src_strides[3] = { src->y_stride, src->uv_stride, src->uv_stride }; + const int src_widths[3] = { src->y_crop_width, src->uv_crop_width, + src->uv_crop_width }; + const int src_heights[3] = { src->y_crop_height, src->uv_crop_height, + src->uv_crop_height }; + uint8_t *const dsts[3] = { dst->y_buffer, dst->u_buffer, dst->v_buffer }; + const int dst_strides[3] = { dst->y_stride, dst->uv_stride, dst->uv_stride }; + const int dst_widths[3] = { dst->y_crop_width, dst->uv_crop_width, + dst->uv_crop_width }; + const int dst_heights[3] = { dst->y_crop_height, dst->uv_crop_height, + dst->uv_crop_height }; + + for (i = 0; i < MAX_MB_PLANE; ++i) { +#if CONFIG_VP9_HIGHBITDEPTH + if (src->flags & YV12_FLAG_HIGHBITDEPTH) { + vp9_highbd_resize_plane(srcs[i], src_heights[i], src_widths[i], + src_strides[i], dsts[i], dst_heights[i], + dst_widths[i], dst_strides[i], bd); + } else { + vp9_resize_plane(srcs[i], src_heights[i], src_widths[i], src_strides[i], + dsts[i], dst_heights[i], dst_widths[i], dst_strides[i]); + } +#else + vp9_resize_plane(srcs[i], src_heights[i], src_widths[i], src_strides[i], + dsts[i], dst_heights[i], dst_widths[i], dst_strides[i]); +#endif // CONFIG_VP9_HIGHBITDEPTH + } + vpx_extend_frame_borders(dst); +} + +#if CONFIG_VP9_HIGHBITDEPTH +static void scale_and_extend_frame(const YV12_BUFFER_CONFIG *src, + YV12_BUFFER_CONFIG *dst, int bd, + INTERP_FILTER filter_type, + int phase_scaler) { + const int src_w = src->y_crop_width; + const int src_h = src->y_crop_height; + const int dst_w = dst->y_crop_width; + const int dst_h = dst->y_crop_height; + const uint8_t *const srcs[3] = { src->y_buffer, src->u_buffer, + src->v_buffer }; + const int src_strides[3] = { src->y_stride, src->uv_stride, src->uv_stride }; + uint8_t *const dsts[3] = { dst->y_buffer, dst->u_buffer, dst->v_buffer }; + const int dst_strides[3] = { dst->y_stride, dst->uv_stride, dst->uv_stride }; + const InterpKernel *const kernel = vp9_filter_kernels[filter_type]; + int x, y, i; + + for (i = 0; i < MAX_MB_PLANE; ++i) { + const int factor = (i == 0 || i == 3 ? 1 : 2); + const int src_stride = src_strides[i]; + const int dst_stride = dst_strides[i]; + for (y = 0; y < dst_h; y += 16) { + const int y_q4 = y * (16 / factor) * src_h / dst_h + phase_scaler; + for (x = 0; x < dst_w; x += 16) { + const int x_q4 = x * (16 / factor) * src_w / dst_w + phase_scaler; + const uint8_t *src_ptr = srcs[i] + + (y / factor) * src_h / dst_h * src_stride + + (x / factor) * src_w / dst_w; + uint8_t *dst_ptr = dsts[i] + (y / factor) * dst_stride + (x / factor); + + if (src->flags & YV12_FLAG_HIGHBITDEPTH) { + vpx_highbd_convolve8(CONVERT_TO_SHORTPTR(src_ptr), src_stride, + CONVERT_TO_SHORTPTR(dst_ptr), dst_stride, kernel, + x_q4 & 0xf, 16 * src_w / dst_w, y_q4 & 0xf, + 16 * src_h / dst_h, 16 / factor, 16 / factor, + bd); + } else { + vpx_scaled_2d(src_ptr, src_stride, dst_ptr, dst_stride, kernel, + x_q4 & 0xf, 16 * src_w / dst_w, y_q4 & 0xf, + 16 * src_h / dst_h, 16 / factor, 16 / factor); + } + } + } + } + + vpx_extend_frame_borders(dst); +} +#endif // CONFIG_VP9_HIGHBITDEPTH + +static int scale_down(VP9_COMP *cpi, int q) { + RATE_CONTROL *const rc = &cpi->rc; + GF_GROUP *const gf_group = &cpi->twopass.gf_group; + int scale = 0; + assert(frame_is_kf_gf_arf(cpi)); + + if (rc->frame_size_selector == UNSCALED && + q >= rc->rf_level_maxq[gf_group->rf_level[gf_group->index]]) { + const int max_size_thresh = + (int)(rate_thresh_mult[SCALE_STEP1] * + VPXMAX(rc->this_frame_target, rc->avg_frame_bandwidth)); + scale = rc->projected_frame_size > max_size_thresh ? 1 : 0; + } + return scale; +} + +static int big_rate_miss_high_threshold(VP9_COMP *cpi) { + const RATE_CONTROL *const rc = &cpi->rc; + int big_miss_high; + + if (frame_is_kf_gf_arf(cpi)) + big_miss_high = rc->this_frame_target * 3 / 2; + else + big_miss_high = rc->this_frame_target * 2; + + return big_miss_high; +} + +static int big_rate_miss(VP9_COMP *cpi) { + const RATE_CONTROL *const rc = &cpi->rc; + int big_miss_high; + int big_miss_low; + + // Ignore for overlay frames + if (rc->is_src_frame_alt_ref) { + return 0; + } else { + big_miss_low = (rc->this_frame_target / 2); + big_miss_high = big_rate_miss_high_threshold(cpi); + + return (rc->projected_frame_size > big_miss_high) || + (rc->projected_frame_size < big_miss_low); + } +} + +// test in two pass for the first +static int two_pass_first_group_inter(VP9_COMP *cpi) { + TWO_PASS *const twopass = &cpi->twopass; + GF_GROUP *const gf_group = &twopass->gf_group; + if ((cpi->oxcf.pass == 2) && + (gf_group->index == gf_group->first_inter_index)) { + return 1; + } else { + return 0; + } +} + +// Function to test for conditions that indicate we should loop +// back and recode a frame. +static int recode_loop_test(VP9_COMP *cpi, int high_limit, int low_limit, int q, + int maxq, int minq) { + const RATE_CONTROL *const rc = &cpi->rc; + const VP9EncoderConfig *const oxcf = &cpi->oxcf; + const int frame_is_kfgfarf = frame_is_kf_gf_arf(cpi); + int force_recode = 0; + + if ((rc->projected_frame_size >= rc->max_frame_bandwidth) || + big_rate_miss(cpi) || (cpi->sf.recode_loop == ALLOW_RECODE) || + (two_pass_first_group_inter(cpi) && + (cpi->sf.recode_loop == ALLOW_RECODE_FIRST)) || + (frame_is_kfgfarf && (cpi->sf.recode_loop >= ALLOW_RECODE_KFARFGF))) { + if (frame_is_kfgfarf && (oxcf->resize_mode == RESIZE_DYNAMIC) && + scale_down(cpi, q)) { + // Code this group at a lower resolution. + cpi->resize_pending = 1; + return 1; + } + + // Force recode for extreme overshoot. + if ((rc->projected_frame_size >= rc->max_frame_bandwidth) || + (cpi->sf.recode_loop >= ALLOW_RECODE_KFARFGF && + rc->projected_frame_size >= big_rate_miss_high_threshold(cpi))) { + return 1; + } + + // TODO(agrange) high_limit could be greater than the scale-down threshold. + if ((rc->projected_frame_size > high_limit && q < maxq) || + (rc->projected_frame_size < low_limit && q > minq)) { + force_recode = 1; + } else if (cpi->oxcf.rc_mode == VPX_CQ) { + // Deal with frame undershoot and whether or not we are + // below the automatically set cq level. + if (q > oxcf->cq_level && + rc->projected_frame_size < ((rc->this_frame_target * 7) >> 3)) { + force_recode = 1; + } + } + } + return force_recode; +} + +void vp9_update_reference_frames(VP9_COMP *cpi) { + VP9_COMMON *const cm = &cpi->common; + BufferPool *const pool = cm->buffer_pool; + + // At this point the new frame has been encoded. + // If any buffer copy / swapping is signaled it should be done here. + if (cm->frame_type == KEY_FRAME) { + ref_cnt_fb(pool->frame_bufs, &cm->ref_frame_map[cpi->gld_fb_idx], + cm->new_fb_idx); + ref_cnt_fb(pool->frame_bufs, &cm->ref_frame_map[cpi->alt_fb_idx], + cm->new_fb_idx); + } else if (vp9_preserve_existing_gf(cpi)) { + // We have decided to preserve the previously existing golden frame as our + // new ARF frame. However, in the short term in function + // vp9_get_refresh_mask() we left it in the GF slot and, if + // we're updating the GF with the current decoded frame, we save it to the + // ARF slot instead. + // We now have to update the ARF with the current frame and swap gld_fb_idx + // and alt_fb_idx so that, overall, we've stored the old GF in the new ARF + // slot and, if we're updating the GF, the current frame becomes the new GF. + int tmp; + + ref_cnt_fb(pool->frame_bufs, &cm->ref_frame_map[cpi->alt_fb_idx], + cm->new_fb_idx); + + tmp = cpi->alt_fb_idx; + cpi->alt_fb_idx = cpi->gld_fb_idx; + cpi->gld_fb_idx = tmp; + + if (is_two_pass_svc(cpi)) { + cpi->svc.layer_context[0].gold_ref_idx = cpi->gld_fb_idx; + cpi->svc.layer_context[0].alt_ref_idx = cpi->alt_fb_idx; + } + } else { /* For non key/golden frames */ + if (cpi->refresh_alt_ref_frame) { + int arf_idx = cpi->alt_fb_idx; + if ((cpi->oxcf.pass == 2) && cpi->multi_arf_allowed) { + const GF_GROUP *const gf_group = &cpi->twopass.gf_group; + arf_idx = gf_group->arf_update_idx[gf_group->index]; + } + + ref_cnt_fb(pool->frame_bufs, &cm->ref_frame_map[arf_idx], cm->new_fb_idx); + memcpy(cpi->interp_filter_selected[ALTREF_FRAME], + cpi->interp_filter_selected[0], + sizeof(cpi->interp_filter_selected[0])); + } + + if (cpi->refresh_golden_frame) { + ref_cnt_fb(pool->frame_bufs, &cm->ref_frame_map[cpi->gld_fb_idx], + cm->new_fb_idx); + if (!cpi->rc.is_src_frame_alt_ref) + memcpy(cpi->interp_filter_selected[GOLDEN_FRAME], + cpi->interp_filter_selected[0], + sizeof(cpi->interp_filter_selected[0])); + else + memcpy(cpi->interp_filter_selected[GOLDEN_FRAME], + cpi->interp_filter_selected[ALTREF_FRAME], + sizeof(cpi->interp_filter_selected[ALTREF_FRAME])); + } + } + + if (cpi->refresh_last_frame) { + ref_cnt_fb(pool->frame_bufs, &cm->ref_frame_map[cpi->lst_fb_idx], + cm->new_fb_idx); + if (!cpi->rc.is_src_frame_alt_ref) + memcpy(cpi->interp_filter_selected[LAST_FRAME], + cpi->interp_filter_selected[0], + sizeof(cpi->interp_filter_selected[0])); + } +#if CONFIG_VP9_TEMPORAL_DENOISING + if (cpi->oxcf.noise_sensitivity > 0 && denoise_svc(cpi) && + cpi->denoiser.denoising_level > kDenLowLow) { + int svc_base_is_key = 0; + int denoise_svc_second_layer = 0; + if (cpi->use_svc) { + int realloc_fail = 0; + const int svc_buf_shift = + cpi->svc.number_spatial_layers - cpi->svc.spatial_layer_id == 2 + ? cpi->denoiser.num_ref_frames + : 0; + int layer = LAYER_IDS_TO_IDX(cpi->svc.spatial_layer_id, + cpi->svc.temporal_layer_id, + cpi->svc.number_temporal_layers); + LAYER_CONTEXT *lc = &cpi->svc.layer_context[layer]; + svc_base_is_key = lc->is_key_frame; + denoise_svc_second_layer = + cpi->svc.number_spatial_layers - cpi->svc.spatial_layer_id == 2 ? 1 + : 0; + // Check if we need to allocate extra buffers in the denoiser + // for + // refreshed frames. + realloc_fail = vp9_denoiser_realloc_svc( + cm, &cpi->denoiser, svc_buf_shift, cpi->refresh_alt_ref_frame, + cpi->refresh_golden_frame, cpi->refresh_last_frame, cpi->alt_fb_idx, + cpi->gld_fb_idx, cpi->lst_fb_idx); + if (realloc_fail) + vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR, + "Failed to re-allocate denoiser for SVC"); + } + vp9_denoiser_update_frame_info( + &cpi->denoiser, *cpi->Source, cpi->common.frame_type, + cpi->refresh_alt_ref_frame, cpi->refresh_golden_frame, + cpi->refresh_last_frame, cpi->alt_fb_idx, cpi->gld_fb_idx, + cpi->lst_fb_idx, cpi->resize_pending, svc_base_is_key, + denoise_svc_second_layer); + } +#endif + if (is_one_pass_cbr_svc(cpi)) { + // Keep track of frame index for each reference frame. + SVC *const svc = &cpi->svc; + if (cm->frame_type == KEY_FRAME) { + svc->ref_frame_index[cpi->lst_fb_idx] = svc->current_superframe; + svc->ref_frame_index[cpi->gld_fb_idx] = svc->current_superframe; + svc->ref_frame_index[cpi->alt_fb_idx] = svc->current_superframe; + } else { + if (cpi->refresh_last_frame) + svc->ref_frame_index[cpi->lst_fb_idx] = svc->current_superframe; + if (cpi->refresh_golden_frame) + svc->ref_frame_index[cpi->gld_fb_idx] = svc->current_superframe; + if (cpi->refresh_alt_ref_frame) + svc->ref_frame_index[cpi->alt_fb_idx] = svc->current_superframe; + } + } +} + +static void loopfilter_frame(VP9_COMP *cpi, VP9_COMMON *cm) { + MACROBLOCKD *xd = &cpi->td.mb.e_mbd; + struct loopfilter *lf = &cm->lf; + + const int is_reference_frame = + (cm->frame_type == KEY_FRAME || cpi->refresh_last_frame || + cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame); + + if (xd->lossless) { + lf->filter_level = 0; + lf->last_filt_level = 0; + } else { + struct vpx_usec_timer timer; + + vpx_clear_system_state(); + + vpx_usec_timer_start(&timer); + + if (!cpi->rc.is_src_frame_alt_ref) { + if ((cpi->common.frame_type == KEY_FRAME) && + (!cpi->rc.this_key_frame_forced)) { + lf->last_filt_level = 0; + } + vp9_pick_filter_level(cpi->Source, cpi, cpi->sf.lpf_pick); + lf->last_filt_level = lf->filter_level; + } else { + lf->filter_level = 0; + } + + vpx_usec_timer_mark(&timer); + cpi->time_pick_lpf += vpx_usec_timer_elapsed(&timer); + } + + if (lf->filter_level > 0 && is_reference_frame) { + vp9_build_mask_frame(cm, lf->filter_level, 0); + + if (cpi->num_workers > 1) + vp9_loop_filter_frame_mt(cm->frame_to_show, cm, xd->plane, + lf->filter_level, 0, 0, cpi->workers, + cpi->num_workers, &cpi->lf_row_sync); + else + vp9_loop_filter_frame(cm->frame_to_show, cm, xd, lf->filter_level, 0, 0); + } + + vpx_extend_frame_inner_borders(cm->frame_to_show); +} + +static INLINE void alloc_frame_mvs(VP9_COMMON *const cm, int buffer_idx) { + RefCntBuffer *const new_fb_ptr = &cm->buffer_pool->frame_bufs[buffer_idx]; + if (new_fb_ptr->mvs == NULL || new_fb_ptr->mi_rows < cm->mi_rows || + new_fb_ptr->mi_cols < cm->mi_cols) { + vpx_free(new_fb_ptr->mvs); + CHECK_MEM_ERROR(cm, new_fb_ptr->mvs, + (MV_REF *)vpx_calloc(cm->mi_rows * cm->mi_cols, + sizeof(*new_fb_ptr->mvs))); + new_fb_ptr->mi_rows = cm->mi_rows; + new_fb_ptr->mi_cols = cm->mi_cols; + } +} + +void vp9_scale_references(VP9_COMP *cpi) { + VP9_COMMON *cm = &cpi->common; + MV_REFERENCE_FRAME ref_frame; + const VP9_REFFRAME ref_mask[3] = { VP9_LAST_FLAG, VP9_GOLD_FLAG, + VP9_ALT_FLAG }; + + for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) { + // Need to convert from VP9_REFFRAME to index into ref_mask (subtract 1). + if (cpi->ref_frame_flags & ref_mask[ref_frame - 1]) { + BufferPool *const pool = cm->buffer_pool; + const YV12_BUFFER_CONFIG *const ref = + get_ref_frame_buffer(cpi, ref_frame); + + if (ref == NULL) { + cpi->scaled_ref_idx[ref_frame - 1] = INVALID_IDX; + continue; + } + +#if CONFIG_VP9_HIGHBITDEPTH + if (ref->y_crop_width != cm->width || ref->y_crop_height != cm->height) { + RefCntBuffer *new_fb_ptr = NULL; + int force_scaling = 0; + int new_fb = cpi->scaled_ref_idx[ref_frame - 1]; + if (new_fb == INVALID_IDX) { + new_fb = get_free_fb(cm); + force_scaling = 1; + } + if (new_fb == INVALID_IDX) return; + new_fb_ptr = &pool->frame_bufs[new_fb]; + if (force_scaling || new_fb_ptr->buf.y_crop_width != cm->width || + new_fb_ptr->buf.y_crop_height != cm->height) { + if (vpx_realloc_frame_buffer(&new_fb_ptr->buf, cm->width, cm->height, + cm->subsampling_x, cm->subsampling_y, + cm->use_highbitdepth, + VP9_ENC_BORDER_IN_PIXELS, + cm->byte_alignment, NULL, NULL, NULL)) + vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR, + "Failed to allocate frame buffer"); + scale_and_extend_frame(ref, &new_fb_ptr->buf, (int)cm->bit_depth, + EIGHTTAP, 0); + cpi->scaled_ref_idx[ref_frame - 1] = new_fb; + alloc_frame_mvs(cm, new_fb); + } +#else + if (ref->y_crop_width != cm->width || ref->y_crop_height != cm->height) { + RefCntBuffer *new_fb_ptr = NULL; + int force_scaling = 0; + int new_fb = cpi->scaled_ref_idx[ref_frame - 1]; + if (new_fb == INVALID_IDX) { + new_fb = get_free_fb(cm); + force_scaling = 1; + } + if (new_fb == INVALID_IDX) return; + new_fb_ptr = &pool->frame_bufs[new_fb]; + if (force_scaling || new_fb_ptr->buf.y_crop_width != cm->width || + new_fb_ptr->buf.y_crop_height != cm->height) { + if (vpx_realloc_frame_buffer(&new_fb_ptr->buf, cm->width, cm->height, + cm->subsampling_x, cm->subsampling_y, + VP9_ENC_BORDER_IN_PIXELS, + cm->byte_alignment, NULL, NULL, NULL)) + vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR, + "Failed to allocate frame buffer"); + vp9_scale_and_extend_frame(ref, &new_fb_ptr->buf, EIGHTTAP, 0); + cpi->scaled_ref_idx[ref_frame - 1] = new_fb; + alloc_frame_mvs(cm, new_fb); + } +#endif // CONFIG_VP9_HIGHBITDEPTH + } else { + int buf_idx; + RefCntBuffer *buf = NULL; + if (cpi->oxcf.pass == 0 && !cpi->use_svc) { + // Check for release of scaled reference. + buf_idx = cpi->scaled_ref_idx[ref_frame - 1]; + buf = (buf_idx != INVALID_IDX) ? &pool->frame_bufs[buf_idx] : NULL; + if (buf != NULL) { + --buf->ref_count; + cpi->scaled_ref_idx[ref_frame - 1] = INVALID_IDX; + } + } + buf_idx = get_ref_frame_buf_idx(cpi, ref_frame); + buf = &pool->frame_bufs[buf_idx]; + buf->buf.y_crop_width = ref->y_crop_width; + buf->buf.y_crop_height = ref->y_crop_height; + cpi->scaled_ref_idx[ref_frame - 1] = buf_idx; + ++buf->ref_count; + } + } else { + if (cpi->oxcf.pass != 0 || cpi->use_svc) + cpi->scaled_ref_idx[ref_frame - 1] = INVALID_IDX; + } + } +} + +static void release_scaled_references(VP9_COMP *cpi) { + VP9_COMMON *cm = &cpi->common; + int i; + if (cpi->oxcf.pass == 0 && !cpi->use_svc) { + // Only release scaled references under certain conditions: + // if reference will be updated, or if scaled reference has same resolution. + int refresh[3]; + refresh[0] = (cpi->refresh_last_frame) ? 1 : 0; + refresh[1] = (cpi->refresh_golden_frame) ? 1 : 0; + refresh[2] = (cpi->refresh_alt_ref_frame) ? 1 : 0; + for (i = LAST_FRAME; i <= ALTREF_FRAME; ++i) { + const int idx = cpi->scaled_ref_idx[i - 1]; + RefCntBuffer *const buf = + idx != INVALID_IDX ? &cm->buffer_pool->frame_bufs[idx] : NULL; + const YV12_BUFFER_CONFIG *const ref = get_ref_frame_buffer(cpi, i); + if (buf != NULL && + (refresh[i - 1] || (buf->buf.y_crop_width == ref->y_crop_width && + buf->buf.y_crop_height == ref->y_crop_height))) { + --buf->ref_count; + cpi->scaled_ref_idx[i - 1] = INVALID_IDX; + } + } + } else { + for (i = 0; i < MAX_REF_FRAMES; ++i) { + const int idx = cpi->scaled_ref_idx[i]; + RefCntBuffer *const buf = + idx != INVALID_IDX ? &cm->buffer_pool->frame_bufs[idx] : NULL; + if (buf != NULL) { + --buf->ref_count; + cpi->scaled_ref_idx[i] = INVALID_IDX; + } + } + } +} + +static void full_to_model_count(unsigned int *model_count, + unsigned int *full_count) { + int n; + model_count[ZERO_TOKEN] = full_count[ZERO_TOKEN]; + model_count[ONE_TOKEN] = full_count[ONE_TOKEN]; + model_count[TWO_TOKEN] = full_count[TWO_TOKEN]; + for (n = THREE_TOKEN; n < EOB_TOKEN; ++n) + model_count[TWO_TOKEN] += full_count[n]; + model_count[EOB_MODEL_TOKEN] = full_count[EOB_TOKEN]; +} + +static void full_to_model_counts(vp9_coeff_count_model *model_count, + vp9_coeff_count *full_count) { + int i, j, k, l; + + for (i = 0; i < PLANE_TYPES; ++i) + for (j = 0; j < REF_TYPES; ++j) + for (k = 0; k < COEF_BANDS; ++k) + for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) + full_to_model_count(model_count[i][j][k][l], full_count[i][j][k][l]); +} + +#if 0 && CONFIG_INTERNAL_STATS +static void output_frame_level_debug_stats(VP9_COMP *cpi) { + VP9_COMMON *const cm = &cpi->common; + FILE *const f = fopen("tmp.stt", cm->current_video_frame ? "a" : "w"); + int64_t recon_err; + + vpx_clear_system_state(); + +#if CONFIG_VP9_HIGHBITDEPTH + if (cm->use_highbitdepth) { + recon_err = vpx_highbd_get_y_sse(cpi->Source, get_frame_new_buffer(cm)); + } else { + recon_err = vpx_get_y_sse(cpi->Source, get_frame_new_buffer(cm)); + } +#else + recon_err = vpx_get_y_sse(cpi->Source, get_frame_new_buffer(cm)); +#endif // CONFIG_VP9_HIGHBITDEPTH + + + if (cpi->twopass.total_left_stats.coded_error != 0.0) { + double dc_quant_devisor; +#if CONFIG_VP9_HIGHBITDEPTH + switch (cm->bit_depth) { + case VPX_BITS_8: + dc_quant_devisor = 4.0; + break; + case VPX_BITS_10: + dc_quant_devisor = 16.0; + break; + case VPX_BITS_12: + dc_quant_devisor = 64.0; + break; + default: + assert(0 && "bit_depth must be VPX_BITS_8, VPX_BITS_10 or VPX_BITS_12"); + break; + } +#else + dc_quant_devisor = 4.0; +#endif + + if (!cm->current_video_frame) { + fprintf(f, "frame, width, height, last ts, last end ts, " + "source_alt_ref_pending, source_alt_ref_active, " + "this_frame_target, projected_frame_size, " + "projected_frame_size / MBs, " + "projected_frame_size - this_frame_target, " + "vbr_bits_off_target, vbr_bits_off_target_fast, " + "twopass.extend_minq, twopass.extend_minq_fast, " + "total_target_vs_actual, " + "starting_buffer_level - bits_off_target, " + "total_actual_bits, base_qindex, q for base_qindex, " + "dc quant, q for active_worst_quality, avg_q, q for oxcf.cq_level, " + "refresh_last_frame, refresh_golden_frame, refresh_alt_ref_frame, " + "frame_type, gfu_boost, " + "twopass.bits_left, " + "twopass.total_left_stats.coded_error, " + "twopass.bits_left / (1 + twopass.total_left_stats.coded_error), " + "tot_recode_hits, recon_err, kf_boost, " + "twopass.kf_zeromotion_pct, twopass.fr_content_type, " + "filter_level, seg.aq_av_offset\n"); + } + + fprintf(f, "%10u, %d, %d, %10"PRId64", %10"PRId64", %d, %d, %10d, %10d, " + "%10d, %10d, %10"PRId64", %10"PRId64", %5d, %5d, %10"PRId64", " + "%10"PRId64", %10"PRId64", %10d, %7.2lf, %7.2lf, %7.2lf, %7.2lf, " + "%7.2lf, %6d, %6d, %5d, %5d, %5d, %10"PRId64", %10.3lf, %10lf, %8u, " + "%10"PRId64", %10d, %10d, %10d, %10d, %10d\n", + cpi->common.current_video_frame, + cm->width, cm->height, + cpi->last_time_stamp_seen, + cpi->last_end_time_stamp_seen, + cpi->rc.source_alt_ref_pending, + cpi->rc.source_alt_ref_active, + cpi->rc.this_frame_target, + cpi->rc.projected_frame_size, + cpi->rc.projected_frame_size / cpi->common.MBs, + (cpi->rc.projected_frame_size - cpi->rc.this_frame_target), + cpi->rc.vbr_bits_off_target, + cpi->rc.vbr_bits_off_target_fast, + cpi->twopass.extend_minq, + cpi->twopass.extend_minq_fast, + cpi->rc.total_target_vs_actual, + (cpi->rc.starting_buffer_level - cpi->rc.bits_off_target), + cpi->rc.total_actual_bits, cm->base_qindex, + vp9_convert_qindex_to_q(cm->base_qindex, cm->bit_depth), + (double)vp9_dc_quant(cm->base_qindex, 0, cm->bit_depth) / + dc_quant_devisor, + vp9_convert_qindex_to_q(cpi->twopass.active_worst_quality, + cm->bit_depth), + cpi->rc.avg_q, + vp9_convert_qindex_to_q(cpi->oxcf.cq_level, cm->bit_depth), + cpi->refresh_last_frame, cpi->refresh_golden_frame, + cpi->refresh_alt_ref_frame, cm->frame_type, cpi->rc.gfu_boost, + cpi->twopass.bits_left, + cpi->twopass.total_left_stats.coded_error, + cpi->twopass.bits_left / + (1 + cpi->twopass.total_left_stats.coded_error), + cpi->tot_recode_hits, recon_err, cpi->rc.kf_boost, + cpi->twopass.kf_zeromotion_pct, + cpi->twopass.fr_content_type, + cm->lf.filter_level, + cm->seg.aq_av_offset); + } + fclose(f); + + if (0) { + FILE *const fmodes = fopen("Modes.stt", "a"); + int i; + + fprintf(fmodes, "%6d:%1d:%1d:%1d ", cpi->common.current_video_frame, + cm->frame_type, cpi->refresh_golden_frame, + cpi->refresh_alt_ref_frame); + + for (i = 0; i < MAX_MODES; ++i) + fprintf(fmodes, "%5d ", cpi->mode_chosen_counts[i]); + + fprintf(fmodes, "\n"); + + fclose(fmodes); + } +} +#endif + +static void set_mv_search_params(VP9_COMP *cpi) { + const VP9_COMMON *const cm = &cpi->common; + const unsigned int max_mv_def = VPXMIN(cm->width, cm->height); + + // Default based on max resolution. + cpi->mv_step_param = vp9_init_search_range(max_mv_def); + + if (cpi->sf.mv.auto_mv_step_size) { + if (frame_is_intra_only(cm)) { + // Initialize max_mv_magnitude for use in the first INTER frame + // after a key/intra-only frame. + cpi->max_mv_magnitude = max_mv_def; + } else { + if (cm->show_frame) { + // Allow mv_steps to correspond to twice the max mv magnitude found + // in the previous frame, capped by the default max_mv_magnitude based + // on resolution. + cpi->mv_step_param = vp9_init_search_range( + VPXMIN(max_mv_def, 2 * cpi->max_mv_magnitude)); + } + cpi->max_mv_magnitude = 0; + } + } +} + +static void set_size_independent_vars(VP9_COMP *cpi) { + vp9_set_speed_features_framesize_independent(cpi); + vp9_set_rd_speed_thresholds(cpi); + vp9_set_rd_speed_thresholds_sub8x8(cpi); + cpi->common.interp_filter = cpi->sf.default_interp_filter; +} + +static void set_size_dependent_vars(VP9_COMP *cpi, int *q, int *bottom_index, + int *top_index) { + VP9_COMMON *const cm = &cpi->common; + + // Setup variables that depend on the dimensions of the frame. + vp9_set_speed_features_framesize_dependent(cpi); + + // Decide q and q bounds. + *q = vp9_rc_pick_q_and_bounds(cpi, bottom_index, top_index); + + if (!frame_is_intra_only(cm)) { + vp9_set_high_precision_mv(cpi, (*q) < HIGH_PRECISION_MV_QTHRESH); + } + +#if !CONFIG_REALTIME_ONLY + // Configure experimental use of segmentation for enhanced coding of + // static regions if indicated. + // Only allowed in the second pass of a two pass encode, as it requires + // lagged coding, and if the relevant speed feature flag is set. + if (cpi->oxcf.pass == 2 && cpi->sf.static_segmentation) + configure_static_seg_features(cpi); +#endif // !CONFIG_REALTIME_ONLY + +#if CONFIG_VP9_POSTPROC && !(CONFIG_VP9_TEMPORAL_DENOISING) + if (cpi->oxcf.noise_sensitivity > 0) { + int l = 0; + switch (cpi->oxcf.noise_sensitivity) { + case 1: l = 20; break; + case 2: l = 40; break; + case 3: l = 60; break; + case 4: + case 5: l = 100; break; + case 6: l = 150; break; + } + if (!cpi->common.postproc_state.limits) { + cpi->common.postproc_state.limits = + vpx_calloc(cpi->un_scaled_source->y_width, + sizeof(*cpi->common.postproc_state.limits)); + } + vp9_denoise(cpi->Source, cpi->Source, l, cpi->common.postproc_state.limits); + } +#endif // CONFIG_VP9_POSTPROC +} + +#if CONFIG_VP9_TEMPORAL_DENOISING +static void setup_denoiser_buffer(VP9_COMP *cpi) { + VP9_COMMON *const cm = &cpi->common; + if (cpi->oxcf.noise_sensitivity > 0 && + !cpi->denoiser.frame_buffer_initialized) { + if (vp9_denoiser_alloc(cm, &cpi->svc, &cpi->denoiser, cpi->use_svc, + cpi->oxcf.noise_sensitivity, cm->width, cm->height, + cm->subsampling_x, cm->subsampling_y, +#if CONFIG_VP9_HIGHBITDEPTH + cm->use_highbitdepth, +#endif + VP9_ENC_BORDER_IN_PIXELS)) + vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR, + "Failed to allocate denoiser"); + } +} +#endif + +static void init_motion_estimation(VP9_COMP *cpi) { + int y_stride = cpi->scaled_source.y_stride; + + if (cpi->sf.mv.search_method == NSTEP) { + vp9_init3smotion_compensation(&cpi->ss_cfg, y_stride); + } else if (cpi->sf.mv.search_method == DIAMOND) { + vp9_init_dsmotion_compensation(&cpi->ss_cfg, y_stride); + } +} + +static void set_frame_size(VP9_COMP *cpi) { + int ref_frame; + VP9_COMMON *const cm = &cpi->common; + VP9EncoderConfig *const oxcf = &cpi->oxcf; + MACROBLOCKD *const xd = &cpi->td.mb.e_mbd; + +#if !CONFIG_REALTIME_ONLY + if (oxcf->pass == 2 && oxcf->rc_mode == VPX_VBR && + ((oxcf->resize_mode == RESIZE_FIXED && cm->current_video_frame == 0) || + (oxcf->resize_mode == RESIZE_DYNAMIC && cpi->resize_pending))) { + calculate_coded_size(cpi, &oxcf->scaled_frame_width, + &oxcf->scaled_frame_height); + + // There has been a change in frame size. + vp9_set_size_literal(cpi, oxcf->scaled_frame_width, + oxcf->scaled_frame_height); + } +#endif // !CONFIG_REALTIME_ONLY + + if (oxcf->pass == 0 && oxcf->rc_mode == VPX_CBR && !cpi->use_svc && + oxcf->resize_mode == RESIZE_DYNAMIC && cpi->resize_pending != 0) { + oxcf->scaled_frame_width = + (oxcf->width * cpi->resize_scale_num) / cpi->resize_scale_den; + oxcf->scaled_frame_height = + (oxcf->height * cpi->resize_scale_num) / cpi->resize_scale_den; + // There has been a change in frame size. + vp9_set_size_literal(cpi, oxcf->scaled_frame_width, + oxcf->scaled_frame_height); + + // TODO(agrange) Scale cpi->max_mv_magnitude if frame-size has changed. + set_mv_search_params(cpi); + + vp9_noise_estimate_init(&cpi->noise_estimate, cm->width, cm->height); +#if CONFIG_VP9_TEMPORAL_DENOISING + // Reset the denoiser on the resized frame. + if (cpi->oxcf.noise_sensitivity > 0) { + vp9_denoiser_free(&(cpi->denoiser)); + setup_denoiser_buffer(cpi); + // Dynamic resize is only triggered for non-SVC, so we can force + // golden frame update here as temporary fix to denoiser. + cpi->refresh_golden_frame = 1; + } +#endif + } + + if ((oxcf->pass == 2) && + (!cpi->use_svc || (is_two_pass_svc(cpi) && + cpi->svc.encode_empty_frame_state != ENCODING))) { + vp9_set_target_rate(cpi); + } + + alloc_frame_mvs(cm, cm->new_fb_idx); + + // Reset the frame pointers to the current frame size. + if (vpx_realloc_frame_buffer(get_frame_new_buffer(cm), cm->width, cm->height, + cm->subsampling_x, cm->subsampling_y, +#if CONFIG_VP9_HIGHBITDEPTH + cm->use_highbitdepth, +#endif + VP9_ENC_BORDER_IN_PIXELS, cm->byte_alignment, + NULL, NULL, NULL)) + vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR, + "Failed to allocate frame buffer"); + + alloc_util_frame_buffers(cpi); + init_motion_estimation(cpi); + + for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) { + RefBuffer *const ref_buf = &cm->frame_refs[ref_frame - 1]; + const int buf_idx = get_ref_frame_buf_idx(cpi, ref_frame); + + ref_buf->idx = buf_idx; + + if (buf_idx != INVALID_IDX) { + YV12_BUFFER_CONFIG *const buf = &cm->buffer_pool->frame_bufs[buf_idx].buf; + ref_buf->buf = buf; +#if CONFIG_VP9_HIGHBITDEPTH + vp9_setup_scale_factors_for_frame( + &ref_buf->sf, buf->y_crop_width, buf->y_crop_height, cm->width, + cm->height, (buf->flags & YV12_FLAG_HIGHBITDEPTH) ? 1 : 0); +#else + vp9_setup_scale_factors_for_frame(&ref_buf->sf, buf->y_crop_width, + buf->y_crop_height, cm->width, + cm->height); +#endif // CONFIG_VP9_HIGHBITDEPTH + if (vp9_is_scaled(&ref_buf->sf)) vpx_extend_frame_borders(buf); + } else { + ref_buf->buf = NULL; + } + } + + set_ref_ptrs(cm, xd, LAST_FRAME, LAST_FRAME); +} + +static void encode_without_recode_loop(VP9_COMP *cpi, size_t *size, + uint8_t *dest) { + VP9_COMMON *const cm = &cpi->common; + int q = 0, bottom_index = 0, top_index = 0; // Dummy variables. + const INTERP_FILTER filter_scaler = + (is_one_pass_cbr_svc(cpi)) + ? cpi->svc.downsample_filter_type[cpi->svc.spatial_layer_id] + : EIGHTTAP; + const int phase_scaler = + (is_one_pass_cbr_svc(cpi)) + ? cpi->svc.downsample_filter_phase[cpi->svc.spatial_layer_id] + : 0; + + // Flag to check if its valid to compute the source sad (used for + // scene detection and for superblock content state in CBR mode). + // The flag may get reset below based on SVC or resizing state. + cpi->compute_source_sad_onepass = cpi->oxcf.mode == REALTIME; + + vpx_clear_system_state(); + + set_frame_size(cpi); + + if (is_one_pass_cbr_svc(cpi) && + cpi->un_scaled_source->y_width == cm->width << 2 && + cpi->un_scaled_source->y_height == cm->height << 2 && + cpi->svc.scaled_temp.y_width == cm->width << 1 && + cpi->svc.scaled_temp.y_height == cm->height << 1) { + // For svc, if it is a 1/4x1/4 downscaling, do a two-stage scaling to take + // advantage of the 1:2 optimized scaler. In the process, the 1/2x1/2 + // result will be saved in scaled_temp and might be used later. + const INTERP_FILTER filter_scaler2 = cpi->svc.downsample_filter_type[1]; + const int phase_scaler2 = cpi->svc.downsample_filter_phase[1]; + cpi->Source = vp9_svc_twostage_scale( + cm, cpi->un_scaled_source, &cpi->scaled_source, &cpi->svc.scaled_temp, + filter_scaler, phase_scaler, filter_scaler2, phase_scaler2); + cpi->svc.scaled_one_half = 1; + } else if (is_one_pass_cbr_svc(cpi) && + cpi->un_scaled_source->y_width == cm->width << 1 && + cpi->un_scaled_source->y_height == cm->height << 1 && + cpi->svc.scaled_one_half) { + // If the spatial layer is 1/2x1/2 and the scaling is already done in the + // two-stage scaling, use the result directly. + cpi->Source = &cpi->svc.scaled_temp; + cpi->svc.scaled_one_half = 0; + } else { + cpi->Source = vp9_scale_if_required( + cm, cpi->un_scaled_source, &cpi->scaled_source, (cpi->oxcf.pass == 0), + filter_scaler, phase_scaler); + } + // Unfiltered raw source used in metrics calculation if the source + // has been filtered. + if (is_psnr_calc_enabled(cpi)) { +#ifdef ENABLE_KF_DENOISE + if (is_spatial_denoise_enabled(cpi)) { + cpi->raw_source_frame = vp9_scale_if_required( + cm, &cpi->raw_unscaled_source, &cpi->raw_scaled_source, + (cpi->oxcf.pass == 0), EIGHTTAP, phase_scaler); + } else { + cpi->raw_source_frame = cpi->Source; + } +#else + cpi->raw_source_frame = cpi->Source; +#endif + } + + if ((cpi->use_svc && + (cpi->svc.spatial_layer_id < cpi->svc.number_spatial_layers - 1 || + cpi->svc.temporal_layer_id < cpi->svc.number_temporal_layers - 1 || + cpi->svc.current_superframe < 1)) || + cpi->resize_pending || cpi->resize_state || cpi->external_resize || + cpi->resize_state != ORIG) { + cpi->compute_source_sad_onepass = 0; + if (cpi->content_state_sb_fd != NULL) + memset(cpi->content_state_sb_fd, 0, + (cm->mi_stride >> 3) * ((cm->mi_rows >> 3) + 1) * + sizeof(*cpi->content_state_sb_fd)); + } + + // Avoid scaling last_source unless its needed. + // Last source is needed if avg_source_sad() is used, or if + // partition_search_type == SOURCE_VAR_BASED_PARTITION, or if noise + // estimation is enabled. + if (cpi->unscaled_last_source != NULL && + (cpi->oxcf.content == VP9E_CONTENT_SCREEN || + (cpi->oxcf.pass == 0 && cpi->oxcf.rc_mode == VPX_VBR && + cpi->oxcf.mode == REALTIME && cpi->oxcf.speed >= 5) || + cpi->sf.partition_search_type == SOURCE_VAR_BASED_PARTITION || + (cpi->noise_estimate.enabled && !cpi->oxcf.noise_sensitivity) || + cpi->compute_source_sad_onepass)) + cpi->Last_Source = vp9_scale_if_required( + cm, cpi->unscaled_last_source, &cpi->scaled_last_source, + (cpi->oxcf.pass == 0), EIGHTTAP, 0); + + if (cpi->Last_Source == NULL || + cpi->Last_Source->y_width != cpi->Source->y_width || + cpi->Last_Source->y_height != cpi->Source->y_height) + cpi->compute_source_sad_onepass = 0; + + if (cm->frame_type == KEY_FRAME || cpi->resize_pending != 0) { + memset(cpi->consec_zero_mv, 0, + cm->mi_rows * cm->mi_cols * sizeof(*cpi->consec_zero_mv)); + } + + vp9_update_noise_estimate(cpi); + + // Scene detection is always used for VBR mode or screen-content case. + // For other cases (e.g., CBR mode) use it for 5 <= speed < 8 for now + // (need to check encoding time cost for doing this for speed 8). + cpi->rc.high_source_sad = 0; + if (cpi->compute_source_sad_onepass && cm->show_frame && + (cpi->oxcf.rc_mode == VPX_VBR || + cpi->oxcf.content == VP9E_CONTENT_SCREEN || + (cpi->oxcf.speed >= 5 && cpi->oxcf.speed < 8 && !cpi->use_svc))) + vp9_scene_detection_onepass(cpi); + + // For 1 pass CBR SVC, only ZEROMV is allowed for spatial reference frame + // when svc->force_zero_mode_spatial_ref = 1. Under those conditions we can + // avoid this frame-level upsampling (for non intra_only frames). + if (frame_is_intra_only(cm) == 0 && + !(is_one_pass_cbr_svc(cpi) && cpi->svc.force_zero_mode_spatial_ref)) { + vp9_scale_references(cpi); + } + + set_size_independent_vars(cpi); + set_size_dependent_vars(cpi, &q, &bottom_index, &top_index); + + if (cpi->sf.copy_partition_flag) alloc_copy_partition_data(cpi); + + if (cpi->sf.svc_use_lowres_part && + cpi->svc.spatial_layer_id == cpi->svc.number_spatial_layers - 2) { + if (cpi->svc.prev_partition_svc == NULL) { + CHECK_MEM_ERROR( + cm, cpi->svc.prev_partition_svc, + (BLOCK_SIZE *)vpx_calloc(cm->mi_stride * cm->mi_rows, + sizeof(*cpi->svc.prev_partition_svc))); + } + } + + if (cpi->oxcf.speed >= 5 && cpi->oxcf.pass == 0 && + cpi->oxcf.rc_mode == VPX_CBR && + cpi->oxcf.content != VP9E_CONTENT_SCREEN && + cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ) { + cpi->use_skin_detection = 1; + } + + vp9_set_quantizer(cm, q); + vp9_set_variance_partition_thresholds(cpi, q, 0); + + setup_frame(cpi); + + suppress_active_map(cpi); + + // Variance adaptive and in frame q adjustment experiments are mutually + // exclusive. + if (cpi->oxcf.aq_mode == VARIANCE_AQ) { + vp9_vaq_frame_setup(cpi); + } else if (cpi->oxcf.aq_mode == EQUATOR360_AQ) { + vp9_360aq_frame_setup(cpi); + } else if (cpi->oxcf.aq_mode == COMPLEXITY_AQ) { + vp9_setup_in_frame_q_adj(cpi); + } else if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ) { + vp9_cyclic_refresh_setup(cpi); + } else if (cpi->oxcf.aq_mode == LOOKAHEAD_AQ) { + // it may be pretty bad for rate-control, + // and I should handle it somehow + vp9_alt_ref_aq_setup_map(cpi->alt_ref_aq, cpi); + } + + apply_active_map(cpi); + + vp9_encode_frame(cpi); + + // Check if we should drop this frame because of high overshoot. + // Only for frames where high temporal-source SAD is detected. + if (cpi->oxcf.pass == 0 && cpi->oxcf.rc_mode == VPX_CBR && + cpi->resize_state == ORIG && cm->frame_type != KEY_FRAME && + cpi->oxcf.content == VP9E_CONTENT_SCREEN && + cpi->rc.high_source_sad == 1) { + int frame_size = 0; + // Get an estimate of the encoded frame size. + save_coding_context(cpi); + vp9_pack_bitstream(cpi, dest, size); + restore_coding_context(cpi); + frame_size = (int)(*size) << 3; + // Check if encoded frame will overshoot too much, and if so, set the q and + // adjust some rate control parameters, and return to re-encode the frame. + if (vp9_encodedframe_overshoot(cpi, frame_size, &q)) { + vpx_clear_system_state(); + vp9_set_quantizer(cm, q); + vp9_set_variance_partition_thresholds(cpi, q, 0); + suppress_active_map(cpi); + // Turn-off cyclic refresh for re-encoded frame. + if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ) { + unsigned char *const seg_map = cpi->segmentation_map; + memset(seg_map, 0, cm->mi_rows * cm->mi_cols); + vp9_disable_segmentation(&cm->seg); + } + apply_active_map(cpi); + vp9_encode_frame(cpi); + } + } + + // Update some stats from cyclic refresh, and check for golden frame update. + if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cm->seg.enabled && + cm->frame_type != KEY_FRAME) + vp9_cyclic_refresh_postencode(cpi); + + // Update the skip mb flag probabilities based on the distribution + // seen in the last encoder iteration. + // update_base_skip_probs(cpi); + vpx_clear_system_state(); +} + +#define MAX_QSTEP_ADJ 4 +static int get_qstep_adj(int rate_excess, int rate_limit) { + int qstep = + rate_limit ? ((rate_excess + rate_limit / 2) / rate_limit) : INT_MAX; + return VPXMIN(qstep, MAX_QSTEP_ADJ); +} + +static void encode_with_recode_loop(VP9_COMP *cpi, size_t *size, + uint8_t *dest) { + const VP9EncoderConfig *const oxcf = &cpi->oxcf; + VP9_COMMON *const cm = &cpi->common; + RATE_CONTROL *const rc = &cpi->rc; + int bottom_index, top_index; + int loop_count = 0; + int loop_at_this_size = 0; + int loop = 0; + int overshoot_seen = 0; + int undershoot_seen = 0; + int frame_over_shoot_limit; + int frame_under_shoot_limit; + int q = 0, q_low = 0, q_high = 0; + int enable_acl; +#ifdef AGGRESSIVE_VBR + int qrange_adj = 1; +#endif + + set_size_independent_vars(cpi); + + enable_acl = cpi->sf.allow_acl + ? (cm->frame_type == KEY_FRAME) || (cm->show_frame == 0) + : 0; + + do { + vpx_clear_system_state(); + + set_frame_size(cpi); + + if (loop_count == 0 || cpi->resize_pending != 0) { + set_size_dependent_vars(cpi, &q, &bottom_index, &top_index); + +#ifdef AGGRESSIVE_VBR + if (two_pass_first_group_inter(cpi)) { + // Adjustment limits for min and max q + qrange_adj = VPXMAX(1, (top_index - bottom_index) / 2); + + bottom_index = + VPXMAX(bottom_index - qrange_adj / 2, oxcf->best_allowed_q); + top_index = VPXMIN(oxcf->worst_allowed_q, top_index + qrange_adj / 2); + } +#endif + // TODO(agrange) Scale cpi->max_mv_magnitude if frame-size has changed. + set_mv_search_params(cpi); + + // Reset the loop state for new frame size. + overshoot_seen = 0; + undershoot_seen = 0; + + // Reconfiguration for change in frame size has concluded. + cpi->resize_pending = 0; + + q_low = bottom_index; + q_high = top_index; + + loop_at_this_size = 0; + } + + // Decide frame size bounds first time through. + if (loop_count == 0) { + vp9_rc_compute_frame_size_bounds(cpi, rc->this_frame_target, + &frame_under_shoot_limit, + &frame_over_shoot_limit); + } + + cpi->Source = + vp9_scale_if_required(cm, cpi->un_scaled_source, &cpi->scaled_source, + (oxcf->pass == 0), EIGHTTAP, 0); + + // Unfiltered raw source used in metrics calculation if the source + // has been filtered. + if (is_psnr_calc_enabled(cpi)) { +#ifdef ENABLE_KF_DENOISE + if (is_spatial_denoise_enabled(cpi)) { + cpi->raw_source_frame = vp9_scale_if_required( + cm, &cpi->raw_unscaled_source, &cpi->raw_scaled_source, + (oxcf->pass == 0), EIGHTTAP, 0); + } else { + cpi->raw_source_frame = cpi->Source; + } +#else + cpi->raw_source_frame = cpi->Source; +#endif + } + + if (cpi->unscaled_last_source != NULL) + cpi->Last_Source = vp9_scale_if_required(cm, cpi->unscaled_last_source, + &cpi->scaled_last_source, + (oxcf->pass == 0), EIGHTTAP, 0); + + if (frame_is_intra_only(cm) == 0) { + if (loop_count > 0) { + release_scaled_references(cpi); + } + vp9_scale_references(cpi); + } + + vp9_set_quantizer(cm, q); + + if (loop_count == 0) setup_frame(cpi); + + // Variance adaptive and in frame q adjustment experiments are mutually + // exclusive. + if (oxcf->aq_mode == VARIANCE_AQ) { + vp9_vaq_frame_setup(cpi); + } else if (oxcf->aq_mode == EQUATOR360_AQ) { + vp9_360aq_frame_setup(cpi); + } else if (oxcf->aq_mode == COMPLEXITY_AQ) { + vp9_setup_in_frame_q_adj(cpi); + } else if (oxcf->aq_mode == LOOKAHEAD_AQ) { + vp9_alt_ref_aq_setup_map(cpi->alt_ref_aq, cpi); + } + + vp9_encode_frame(cpi); + + // Update the skip mb flag probabilities based on the distribution + // seen in the last encoder iteration. + // update_base_skip_probs(cpi); + + vpx_clear_system_state(); + + // Dummy pack of the bitstream using up to date stats to get an + // accurate estimate of output frame size to determine if we need + // to recode. + if (cpi->sf.recode_loop >= ALLOW_RECODE_KFARFGF) { + save_coding_context(cpi); + if (!cpi->sf.use_nonrd_pick_mode) vp9_pack_bitstream(cpi, dest, size); + + rc->projected_frame_size = (int)(*size) << 3; + + if (frame_over_shoot_limit == 0) frame_over_shoot_limit = 1; + } + + if (oxcf->rc_mode == VPX_Q) { + loop = 0; + } else { + if ((cm->frame_type == KEY_FRAME) && rc->this_key_frame_forced && + (rc->projected_frame_size < rc->max_frame_bandwidth)) { + int last_q = q; + int64_t kf_err; + + int64_t high_err_target = cpi->ambient_err; + int64_t low_err_target = cpi->ambient_err >> 1; + +#if CONFIG_VP9_HIGHBITDEPTH + if (cm->use_highbitdepth) { + kf_err = vpx_highbd_get_y_sse(cpi->Source, get_frame_new_buffer(cm)); + } else { + kf_err = vpx_get_y_sse(cpi->Source, get_frame_new_buffer(cm)); + } +#else + kf_err = vpx_get_y_sse(cpi->Source, get_frame_new_buffer(cm)); +#endif // CONFIG_VP9_HIGHBITDEPTH + + // Prevent possible divide by zero error below for perfect KF + kf_err += !kf_err; + + // The key frame is not good enough or we can afford + // to make it better without undue risk of popping. + if ((kf_err > high_err_target && + rc->projected_frame_size <= frame_over_shoot_limit) || + (kf_err > low_err_target && + rc->projected_frame_size <= frame_under_shoot_limit)) { + // Lower q_high + q_high = q > q_low ? q - 1 : q_low; + + // Adjust Q + q = (int)((q * high_err_target) / kf_err); + q = VPXMIN(q, (q_high + q_low) >> 1); + } else if (kf_err < low_err_target && + rc->projected_frame_size >= frame_under_shoot_limit) { + // The key frame is much better than the previous frame + // Raise q_low + q_low = q < q_high ? q + 1 : q_high; + + // Adjust Q + q = (int)((q * low_err_target) / kf_err); + q = VPXMIN(q, (q_high + q_low + 1) >> 1); + } + + // Clamp Q to upper and lower limits: + q = clamp(q, q_low, q_high); + + loop = q != last_q; + } else if (recode_loop_test(cpi, frame_over_shoot_limit, + frame_under_shoot_limit, q, + VPXMAX(q_high, top_index), bottom_index)) { + // Is the projected frame size out of range and are we allowed + // to attempt to recode. + int last_q = q; + int retries = 0; + int qstep; + + if (cpi->resize_pending == 1) { + // Change in frame size so go back around the recode loop. + cpi->rc.frame_size_selector = + SCALE_STEP1 - cpi->rc.frame_size_selector; + cpi->rc.next_frame_size_selector = cpi->rc.frame_size_selector; + +#if CONFIG_INTERNAL_STATS + ++cpi->tot_recode_hits; +#endif + ++loop_count; + loop = 1; + continue; + } + + // Frame size out of permitted range: + // Update correction factor & compute new Q to try... + + // Frame is too large + if (rc->projected_frame_size > rc->this_frame_target) { + // Special case if the projected size is > the max allowed. + if ((q == q_high) && + ((rc->projected_frame_size >= rc->max_frame_bandwidth) || + (rc->projected_frame_size >= + big_rate_miss_high_threshold(cpi)))) { + int max_rate = VPXMAX(1, VPXMIN(rc->max_frame_bandwidth, + big_rate_miss_high_threshold(cpi))); + double q_val_high; + q_val_high = vp9_convert_qindex_to_q(q_high, cm->bit_depth); + q_val_high = + q_val_high * ((double)rc->projected_frame_size / max_rate); + q_high = vp9_convert_q_to_qindex(q_val_high, cm->bit_depth); + q_high = clamp(q_high, rc->best_quality, rc->worst_quality); + } + + // Raise Qlow as to at least the current value + qstep = + get_qstep_adj(rc->projected_frame_size, rc->this_frame_target); + q_low = VPXMIN(q + qstep, q_high); + + if (undershoot_seen || loop_at_this_size > 1) { + // Update rate_correction_factor unless + vp9_rc_update_rate_correction_factors(cpi); + + q = (q_high + q_low + 1) / 2; + } else { + // Update rate_correction_factor unless + vp9_rc_update_rate_correction_factors(cpi); + + q = vp9_rc_regulate_q(cpi, rc->this_frame_target, bottom_index, + VPXMAX(q_high, top_index)); + + while (q < q_low && retries < 10) { + vp9_rc_update_rate_correction_factors(cpi); + q = vp9_rc_regulate_q(cpi, rc->this_frame_target, bottom_index, + VPXMAX(q_high, top_index)); + retries++; + } + } + + overshoot_seen = 1; + } else { + // Frame is too small + qstep = + get_qstep_adj(rc->this_frame_target, rc->projected_frame_size); + q_high = VPXMAX(q - qstep, q_low); + + if (overshoot_seen || loop_at_this_size > 1) { + vp9_rc_update_rate_correction_factors(cpi); + q = (q_high + q_low) / 2; + } else { + vp9_rc_update_rate_correction_factors(cpi); + q = vp9_rc_regulate_q(cpi, rc->this_frame_target, + VPXMIN(q_low, bottom_index), top_index); + // Special case reset for qlow for constrained quality. + // This should only trigger where there is very substantial + // undershoot on a frame and the auto cq level is above + // the user passsed in value. + if (oxcf->rc_mode == VPX_CQ && q < q_low) { + q_low = q; + } + + while (q > q_high && retries < 10) { + vp9_rc_update_rate_correction_factors(cpi); + q = vp9_rc_regulate_q(cpi, rc->this_frame_target, + VPXMIN(q_low, bottom_index), top_index); + retries++; + } + } + undershoot_seen = 1; + } + + // Clamp Q to upper and lower limits: + q = clamp(q, q_low, q_high); + + loop = (q != last_q); + } else { + loop = 0; + } + } + + // Special case for overlay frame. + if (rc->is_src_frame_alt_ref && + rc->projected_frame_size < rc->max_frame_bandwidth) + loop = 0; + + if (loop) { + ++loop_count; + ++loop_at_this_size; + +#if CONFIG_INTERNAL_STATS + ++cpi->tot_recode_hits; +#endif + } + + if (cpi->sf.recode_loop >= ALLOW_RECODE_KFARFGF) + if (loop || !enable_acl) restore_coding_context(cpi); + } while (loop); + +#ifdef AGGRESSIVE_VBR + if (two_pass_first_group_inter(cpi)) { + cpi->twopass.active_worst_quality = + VPXMIN(q + qrange_adj, oxcf->worst_allowed_q); + } else if (!frame_is_kf_gf_arf(cpi)) { +#else + if (!frame_is_kf_gf_arf(cpi)) { +#endif + // Have we been forced to adapt Q outside the expected range by an extreme + // rate miss. If so adjust the active maxQ for the subsequent frames. + if (q > cpi->twopass.active_worst_quality) { + cpi->twopass.active_worst_quality = q; + } else if (oxcf->vbr_corpus_complexity && q == q_low && + rc->projected_frame_size < rc->this_frame_target) { + cpi->twopass.active_worst_quality = + VPXMAX(q, cpi->twopass.active_worst_quality - 1); + } + } + + if (enable_acl) { + // Skip recoding, if model diff is below threshold + const int thresh = compute_context_model_thresh(cpi); + const int diff = compute_context_model_diff(cm); + if (diff < thresh) { + vpx_clear_system_state(); + restore_coding_context(cpi); + return; + } + + vp9_encode_frame(cpi); + vpx_clear_system_state(); + restore_coding_context(cpi); + vp9_pack_bitstream(cpi, dest, size); + + vp9_encode_frame(cpi); + vpx_clear_system_state(); + + restore_coding_context(cpi); + } +} + +static int get_ref_frame_flags(const VP9_COMP *cpi) { + const int *const map = cpi->common.ref_frame_map; + const int gold_is_last = map[cpi->gld_fb_idx] == map[cpi->lst_fb_idx]; + const int alt_is_last = map[cpi->alt_fb_idx] == map[cpi->lst_fb_idx]; + const int gold_is_alt = map[cpi->gld_fb_idx] == map[cpi->alt_fb_idx]; + int flags = VP9_ALT_FLAG | VP9_GOLD_FLAG | VP9_LAST_FLAG; + + if (gold_is_last) flags &= ~VP9_GOLD_FLAG; + + if (cpi->rc.frames_till_gf_update_due == INT_MAX && + (cpi->svc.number_temporal_layers == 1 && + cpi->svc.number_spatial_layers == 1)) + flags &= ~VP9_GOLD_FLAG; + + if (alt_is_last) flags &= ~VP9_ALT_FLAG; + + if (gold_is_alt) flags &= ~VP9_ALT_FLAG; + + return flags; +} + +static void set_ext_overrides(VP9_COMP *cpi) { + // Overrides the defaults with the externally supplied values with + // vp9_update_reference() and vp9_update_entropy() calls + // Note: The overrides are valid only for the next frame passed + // to encode_frame_to_data_rate() function + if (cpi->ext_refresh_frame_context_pending) { + cpi->common.refresh_frame_context = cpi->ext_refresh_frame_context; + cpi->ext_refresh_frame_context_pending = 0; + } + if (cpi->ext_refresh_frame_flags_pending) { + cpi->refresh_last_frame = cpi->ext_refresh_last_frame; + cpi->refresh_golden_frame = cpi->ext_refresh_golden_frame; + cpi->refresh_alt_ref_frame = cpi->ext_refresh_alt_ref_frame; + } +} + +YV12_BUFFER_CONFIG *vp9_svc_twostage_scale( + VP9_COMMON *cm, YV12_BUFFER_CONFIG *unscaled, YV12_BUFFER_CONFIG *scaled, + YV12_BUFFER_CONFIG *scaled_temp, INTERP_FILTER filter_type, + int phase_scaler, INTERP_FILTER filter_type2, int phase_scaler2) { + if (cm->mi_cols * MI_SIZE != unscaled->y_width || + cm->mi_rows * MI_SIZE != unscaled->y_height) { +#if CONFIG_VP9_HIGHBITDEPTH + if (cm->bit_depth == VPX_BITS_8) { + vp9_scale_and_extend_frame(unscaled, scaled_temp, filter_type2, + phase_scaler2); + vp9_scale_and_extend_frame(scaled_temp, scaled, filter_type, + phase_scaler); + } else { + scale_and_extend_frame(unscaled, scaled_temp, (int)cm->bit_depth, + filter_type2, phase_scaler2); + scale_and_extend_frame(scaled_temp, scaled, (int)cm->bit_depth, + filter_type, phase_scaler); + } +#else + vp9_scale_and_extend_frame(unscaled, scaled_temp, filter_type2, + phase_scaler2); + vp9_scale_and_extend_frame(scaled_temp, scaled, filter_type, phase_scaler); +#endif // CONFIG_VP9_HIGHBITDEPTH + return scaled; + } else { + return unscaled; + } +} + +YV12_BUFFER_CONFIG *vp9_scale_if_required( + VP9_COMMON *cm, YV12_BUFFER_CONFIG *unscaled, YV12_BUFFER_CONFIG *scaled, + int use_normative_scaler, INTERP_FILTER filter_type, int phase_scaler) { + if (cm->mi_cols * MI_SIZE != unscaled->y_width || + cm->mi_rows * MI_SIZE != unscaled->y_height) { +#if CONFIG_VP9_HIGHBITDEPTH + if (use_normative_scaler && unscaled->y_width <= (scaled->y_width << 1) && + unscaled->y_height <= (scaled->y_height << 1)) + if (cm->bit_depth == VPX_BITS_8) + vp9_scale_and_extend_frame(unscaled, scaled, filter_type, phase_scaler); + else + scale_and_extend_frame(unscaled, scaled, (int)cm->bit_depth, + filter_type, phase_scaler); + else + scale_and_extend_frame_nonnormative(unscaled, scaled, (int)cm->bit_depth); +#else + if (use_normative_scaler && unscaled->y_width <= (scaled->y_width << 1) && + unscaled->y_height <= (scaled->y_height << 1)) + vp9_scale_and_extend_frame(unscaled, scaled, filter_type, phase_scaler); + else + scale_and_extend_frame_nonnormative(unscaled, scaled); +#endif // CONFIG_VP9_HIGHBITDEPTH + return scaled; + } else { + return unscaled; + } +} + +static void set_arf_sign_bias(VP9_COMP *cpi) { + VP9_COMMON *const cm = &cpi->common; + int arf_sign_bias; + + if ((cpi->oxcf.pass == 2) && cpi->multi_arf_allowed) { + const GF_GROUP *const gf_group = &cpi->twopass.gf_group; + arf_sign_bias = cpi->rc.source_alt_ref_active && + (!cpi->refresh_alt_ref_frame || + (gf_group->rf_level[gf_group->index] == GF_ARF_LOW)); + } else { + arf_sign_bias = + (cpi->rc.source_alt_ref_active && !cpi->refresh_alt_ref_frame); + } + cm->ref_frame_sign_bias[ALTREF_FRAME] = arf_sign_bias; +} + +static int setup_interp_filter_search_mask(VP9_COMP *cpi) { + INTERP_FILTER ifilter; + int ref_total[MAX_REF_FRAMES] = { 0 }; + MV_REFERENCE_FRAME ref; + int mask = 0; + if (cpi->common.last_frame_type == KEY_FRAME || cpi->refresh_alt_ref_frame) + return mask; + for (ref = LAST_FRAME; ref <= ALTREF_FRAME; ++ref) + for (ifilter = EIGHTTAP; ifilter <= EIGHTTAP_SHARP; ++ifilter) + ref_total[ref] += cpi->interp_filter_selected[ref][ifilter]; + + for (ifilter = EIGHTTAP; ifilter <= EIGHTTAP_SHARP; ++ifilter) { + if ((ref_total[LAST_FRAME] && + cpi->interp_filter_selected[LAST_FRAME][ifilter] == 0) && + (ref_total[GOLDEN_FRAME] == 0 || + cpi->interp_filter_selected[GOLDEN_FRAME][ifilter] * 50 < + ref_total[GOLDEN_FRAME]) && + (ref_total[ALTREF_FRAME] == 0 || + cpi->interp_filter_selected[ALTREF_FRAME][ifilter] * 50 < + ref_total[ALTREF_FRAME])) + mask |= 1 << ifilter; + } + return mask; +} + +#ifdef ENABLE_KF_DENOISE +// Baseline Kernal weights for denoise +static uint8_t dn_kernal_3[9] = { 1, 2, 1, 2, 4, 2, 1, 2, 1 }; +static uint8_t dn_kernal_5[25] = { 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 4, + 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1 }; + +static INLINE void add_denoise_point(int centre_val, int data_val, int thresh, + uint8_t point_weight, int *sum_val, + int *sum_weight) { + if (abs(centre_val - data_val) <= thresh) { + *sum_weight += point_weight; + *sum_val += (int)data_val * (int)point_weight; + } +} + +static void spatial_denoise_point(uint8_t *src_ptr, const int stride, + const int strength) { + int sum_weight = 0; + int sum_val = 0; + int thresh = strength; + int kernal_size = 5; + int half_k_size = 2; + int i, j; + int max_diff = 0; + uint8_t *tmp_ptr; + uint8_t *kernal_ptr; + + // Find the maximum deviation from the source point in the locale. + tmp_ptr = src_ptr - (stride * (half_k_size + 1)) - (half_k_size + 1); + for (i = 0; i < kernal_size + 2; ++i) { + for (j = 0; j < kernal_size + 2; ++j) { + max_diff = VPXMAX(max_diff, abs((int)*src_ptr - (int)tmp_ptr[j])); + } + tmp_ptr += stride; + } + + // Select the kernal size. + if (max_diff > (strength + (strength >> 1))) { + kernal_size = 3; + half_k_size = 1; + thresh = thresh >> 1; + } + kernal_ptr = (kernal_size == 3) ? dn_kernal_3 : dn_kernal_5; + + // Apply the kernal + tmp_ptr = src_ptr - (stride * half_k_size) - half_k_size; + for (i = 0; i < kernal_size; ++i) { + for (j = 0; j < kernal_size; ++j) { + add_denoise_point((int)*src_ptr, (int)tmp_ptr[j], thresh, *kernal_ptr, + &sum_val, &sum_weight); + ++kernal_ptr; + } + tmp_ptr += stride; + } + + // Update the source value with the new filtered value + *src_ptr = (uint8_t)((sum_val + (sum_weight >> 1)) / sum_weight); +} + +#if CONFIG_VP9_HIGHBITDEPTH +static void highbd_spatial_denoise_point(uint16_t *src_ptr, const int stride, + const int strength) { + int sum_weight = 0; + int sum_val = 0; + int thresh = strength; + int kernal_size = 5; + int half_k_size = 2; + int i, j; + int max_diff = 0; + uint16_t *tmp_ptr; + uint8_t *kernal_ptr; + + // Find the maximum deviation from the source point in the locale. + tmp_ptr = src_ptr - (stride * (half_k_size + 1)) - (half_k_size + 1); + for (i = 0; i < kernal_size + 2; ++i) { + for (j = 0; j < kernal_size + 2; ++j) { + max_diff = VPXMAX(max_diff, abs((int)src_ptr - (int)tmp_ptr[j])); + } + tmp_ptr += stride; + } + + // Select the kernal size. + if (max_diff > (strength + (strength >> 1))) { + kernal_size = 3; + half_k_size = 1; + thresh = thresh >> 1; + } + kernal_ptr = (kernal_size == 3) ? dn_kernal_3 : dn_kernal_5; + + // Apply the kernal + tmp_ptr = src_ptr - (stride * half_k_size) - half_k_size; + for (i = 0; i < kernal_size; ++i) { + for (j = 0; j < kernal_size; ++j) { + add_denoise_point((int)*src_ptr, (int)tmp_ptr[j], thresh, *kernal_ptr, + &sum_val, &sum_weight); + ++kernal_ptr; + } + tmp_ptr += stride; + } + + // Update the source value with the new filtered value + *src_ptr = (uint16_t)((sum_val + (sum_weight >> 1)) / sum_weight); +} +#endif // CONFIG_VP9_HIGHBITDEPTH + +// Apply thresholded spatial noise supression to a given buffer. +static void spatial_denoise_buffer(VP9_COMP *cpi, uint8_t *buffer, + const int stride, const int width, + const int height, const int strength) { + VP9_COMMON *const cm = &cpi->common; + uint8_t *src_ptr = buffer; + int row; + int col; + + for (row = 0; row < height; ++row) { + for (col = 0; col < width; ++col) { +#if CONFIG_VP9_HIGHBITDEPTH + if (cm->use_highbitdepth) + highbd_spatial_denoise_point(CONVERT_TO_SHORTPTR(&src_ptr[col]), stride, + strength); + else + spatial_denoise_point(&src_ptr[col], stride, strength); +#else + spatial_denoise_point(&src_ptr[col], stride, strength); +#endif // CONFIG_VP9_HIGHBITDEPTH + } + src_ptr += stride; + } +} + +// Apply thresholded spatial noise supression to source. +static void spatial_denoise_frame(VP9_COMP *cpi) { + YV12_BUFFER_CONFIG *src = cpi->Source; + const VP9EncoderConfig *const oxcf = &cpi->oxcf; + TWO_PASS *const twopass = &cpi->twopass; + VP9_COMMON *const cm = &cpi->common; + + // Base the filter strength on the current active max Q. + const int q = (int)(vp9_convert_qindex_to_q(twopass->active_worst_quality, + cm->bit_depth)); + int strength = + VPXMAX(oxcf->arnr_strength >> 2, VPXMIN(oxcf->arnr_strength, (q >> 4))); + + // Denoise each of Y,U and V buffers. + spatial_denoise_buffer(cpi, src->y_buffer, src->y_stride, src->y_width, + src->y_height, strength); + + strength += (strength >> 1); + spatial_denoise_buffer(cpi, src->u_buffer, src->uv_stride, src->uv_width, + src->uv_height, strength << 1); + + spatial_denoise_buffer(cpi, src->v_buffer, src->uv_stride, src->uv_width, + src->uv_height, strength << 1); +} +#endif // ENABLE_KF_DENOISE + +static void vp9_try_disable_lookahead_aq(VP9_COMP *cpi, size_t *size, + uint8_t *dest) { + if (cpi->common.seg.enabled) + if (ALT_REF_AQ_PROTECT_GAIN) { + size_t nsize = *size; + int overhead; + + // TODO(yuryg): optimize this, as + // we don't really need to repack + + save_coding_context(cpi); + vp9_disable_segmentation(&cpi->common.seg); + vp9_pack_bitstream(cpi, dest, &nsize); + restore_coding_context(cpi); + + overhead = (int)*size - (int)nsize; + + if (vp9_alt_ref_aq_disable_if(cpi->alt_ref_aq, overhead, (int)*size)) + vp9_encode_frame(cpi); + else + vp9_enable_segmentation(&cpi->common.seg); + } +} + +static void encode_frame_to_data_rate(VP9_COMP *cpi, size_t *size, + uint8_t *dest, + unsigned int *frame_flags) { + VP9_COMMON *const cm = &cpi->common; + const VP9EncoderConfig *const oxcf = &cpi->oxcf; + struct segmentation *const seg = &cm->seg; + TX_SIZE t; + + set_ext_overrides(cpi); + vpx_clear_system_state(); + +#ifdef ENABLE_KF_DENOISE + // Spatial denoise of key frame. + if (is_spatial_denoise_enabled(cpi)) spatial_denoise_frame(cpi); +#endif + + // Set the arf sign bias for this frame. + set_arf_sign_bias(cpi); + + // Set default state for segment based loop filter update flags. + cm->lf.mode_ref_delta_update = 0; + + if (cpi->oxcf.pass == 2 && cpi->sf.adaptive_interp_filter_search) + cpi->sf.interp_filter_search_mask = setup_interp_filter_search_mask(cpi); + + // Set various flags etc to special state if it is a key frame. + if (frame_is_intra_only(cm)) { + // Reset the loop filter deltas and segmentation map. + vp9_reset_segment_features(&cm->seg); + + // If segmentation is enabled force a map update for key frames. + if (seg->enabled) { + seg->update_map = 1; + seg->update_data = 1; + } + + // The alternate reference frame cannot be active for a key frame. + cpi->rc.source_alt_ref_active = 0; + + cm->error_resilient_mode = oxcf->error_resilient_mode; + cm->frame_parallel_decoding_mode = oxcf->frame_parallel_decoding_mode; + + // By default, encoder assumes decoder can use prev_mi. + if (cm->error_resilient_mode) { + cm->frame_parallel_decoding_mode = 1; + cm->reset_frame_context = 0; + cm->refresh_frame_context = 0; + } else if (cm->intra_only) { + // Only reset the current context. + cm->reset_frame_context = 2; + } + } + if (is_two_pass_svc(cpi) && cm->error_resilient_mode == 0) { + // Use context 0 for intra only empty frame, but the last frame context + // for other empty frames. + if (cpi->svc.encode_empty_frame_state == ENCODING) { + if (cpi->svc.encode_intra_empty_frame != 0) + cm->frame_context_idx = 0; + else + cm->frame_context_idx = FRAME_CONTEXTS - 1; + } else { + cm->frame_context_idx = + cpi->svc.spatial_layer_id * cpi->svc.number_temporal_layers + + cpi->svc.temporal_layer_id; + } + + cm->frame_parallel_decoding_mode = oxcf->frame_parallel_decoding_mode; + + // The probs will be updated based on the frame type of its previous + // frame if frame_parallel_decoding_mode is 0. The type may vary for + // the frame after a key frame in base layer since we may drop enhancement + // layers. So set frame_parallel_decoding_mode to 1 in this case. + if (cm->frame_parallel_decoding_mode == 0) { + if (cpi->svc.number_temporal_layers == 1) { + if (cpi->svc.spatial_layer_id == 0 && + cpi->svc.layer_context[0].last_frame_type == KEY_FRAME) + cm->frame_parallel_decoding_mode = 1; + } else if (cpi->svc.spatial_layer_id == 0) { + // Find the 2nd frame in temporal base layer and 1st frame in temporal + // enhancement layers from the key frame. + int i; + for (i = 0; i < cpi->svc.number_temporal_layers; ++i) { + if (cpi->svc.layer_context[0].frames_from_key_frame == 1 << i) { + cm->frame_parallel_decoding_mode = 1; + break; + } + } + } + } + } + + // For 1 pass CBR, check if we are dropping this frame. + // For spatial layers, for now only check for frame-dropping on first spatial + // layer, and if decision is to drop, we drop whole super-frame. + if (oxcf->pass == 0 && oxcf->rc_mode == VPX_CBR && + cm->frame_type != KEY_FRAME) { + if (vp9_rc_drop_frame(cpi) || + (is_one_pass_cbr_svc(cpi) && cpi->svc.rc_drop_superframe == 1)) { + vp9_rc_postencode_update_drop_frame(cpi); + ++cm->current_video_frame; + cpi->ext_refresh_frame_flags_pending = 0; + cpi->svc.rc_drop_superframe = 1; + cpi->last_frame_dropped = 1; + // TODO(marpan): Advancing the svc counters on dropped frames can break + // the referencing scheme for the fixed svc patterns defined in + // vp9_one_pass_cbr_svc_start_layer(). Look into fixing this issue, but + // for now, don't advance the svc frame counters on dropped frame. + // if (cpi->use_svc) + // vp9_inc_frame_in_layer(cpi); + + return; + } + } + + vpx_clear_system_state(); + +#if CONFIG_INTERNAL_STATS + memset(cpi->mode_chosen_counts, 0, + MAX_MODES * sizeof(*cpi->mode_chosen_counts)); +#endif + + if (cpi->sf.recode_loop == DISALLOW_RECODE) { + encode_without_recode_loop(cpi, size, dest); + } else { + encode_with_recode_loop(cpi, size, dest); + } + + cpi->last_frame_dropped = 0; + + // Disable segmentation if it decrease rate/distortion ratio + if (cpi->oxcf.aq_mode == LOOKAHEAD_AQ) + vp9_try_disable_lookahead_aq(cpi, size, dest); + +#if CONFIG_VP9_TEMPORAL_DENOISING +#ifdef OUTPUT_YUV_DENOISED + if (oxcf->noise_sensitivity > 0 && denoise_svc(cpi)) { + vpx_write_yuv_frame(yuv_denoised_file, + &cpi->denoiser.running_avg_y[INTRA_FRAME]); + } +#endif +#endif +#ifdef OUTPUT_YUV_SKINMAP + if (cpi->common.current_video_frame > 1) { + vp9_output_skin_map(cpi, yuv_skinmap_file); + } +#endif + + // Special case code to reduce pulsing when key frames are forced at a + // fixed interval. Note the reconstruction error if it is the frame before + // the force key frame + if (cpi->rc.next_key_frame_forced && cpi->rc.frames_to_key == 1) { +#if CONFIG_VP9_HIGHBITDEPTH + if (cm->use_highbitdepth) { + cpi->ambient_err = + vpx_highbd_get_y_sse(cpi->Source, get_frame_new_buffer(cm)); + } else { + cpi->ambient_err = vpx_get_y_sse(cpi->Source, get_frame_new_buffer(cm)); + } +#else + cpi->ambient_err = vpx_get_y_sse(cpi->Source, get_frame_new_buffer(cm)); +#endif // CONFIG_VP9_HIGHBITDEPTH + } + + // If the encoder forced a KEY_FRAME decision + if (cm->frame_type == KEY_FRAME) cpi->refresh_last_frame = 1; + + cm->frame_to_show = get_frame_new_buffer(cm); + cm->frame_to_show->color_space = cm->color_space; + cm->frame_to_show->color_range = cm->color_range; + cm->frame_to_show->render_width = cm->render_width; + cm->frame_to_show->render_height = cm->render_height; + + // Pick the loop filter level for the frame. + loopfilter_frame(cpi, cm); + + // build the bitstream + vp9_pack_bitstream(cpi, dest, size); + + if (cm->seg.update_map) update_reference_segmentation_map(cpi); + + if (frame_is_intra_only(cm) == 0) { + release_scaled_references(cpi); + } + vp9_update_reference_frames(cpi); + + for (t = TX_4X4; t <= TX_32X32; t++) + full_to_model_counts(cpi->td.counts->coef[t], + cpi->td.rd_counts.coef_counts[t]); + + if (!cm->error_resilient_mode && !cm->frame_parallel_decoding_mode) + vp9_adapt_coef_probs(cm); + + if (!frame_is_intra_only(cm)) { + if (!cm->error_resilient_mode && !cm->frame_parallel_decoding_mode) { + vp9_adapt_mode_probs(cm); + vp9_adapt_mv_probs(cm, cm->allow_high_precision_mv); + } + } + + cpi->ext_refresh_frame_flags_pending = 0; + + if (cpi->refresh_golden_frame == 1) + cpi->frame_flags |= FRAMEFLAGS_GOLDEN; + else + cpi->frame_flags &= ~FRAMEFLAGS_GOLDEN; + + if (cpi->refresh_alt_ref_frame == 1) + cpi->frame_flags |= FRAMEFLAGS_ALTREF; + else + cpi->frame_flags &= ~FRAMEFLAGS_ALTREF; + + cpi->ref_frame_flags = get_ref_frame_flags(cpi); + + cm->last_frame_type = cm->frame_type; + + if (!(is_two_pass_svc(cpi) && cpi->svc.encode_empty_frame_state == ENCODING)) + vp9_rc_postencode_update(cpi, *size); + +#if 0 + output_frame_level_debug_stats(cpi); +#endif + + if (cm->frame_type == KEY_FRAME) { + // Tell the caller that the frame was coded as a key frame + *frame_flags = cpi->frame_flags | FRAMEFLAGS_KEY; + } else { + *frame_flags = cpi->frame_flags & ~FRAMEFLAGS_KEY; + } + + // Clear the one shot update flags for segmentation map and mode/ref loop + // filter deltas. + cm->seg.update_map = 0; + cm->seg.update_data = 0; + cm->lf.mode_ref_delta_update = 0; + + // keep track of the last coded dimensions + cm->last_width = cm->width; + cm->last_height = cm->height; + + // reset to normal state now that we are done. + if (!cm->show_existing_frame) cm->last_show_frame = cm->show_frame; + + if (cm->show_frame) { + vp9_swap_mi_and_prev_mi(cm); + // Don't increment frame counters if this was an altref buffer + // update not a real frame + ++cm->current_video_frame; + if (cpi->use_svc) vp9_inc_frame_in_layer(cpi); + } + cm->prev_frame = cm->cur_frame; + + if (cpi->use_svc) + cpi->svc + .layer_context[cpi->svc.spatial_layer_id * + cpi->svc.number_temporal_layers + + cpi->svc.temporal_layer_id] + .last_frame_type = cm->frame_type; + + cpi->force_update_segmentation = 0; + + if (cpi->oxcf.aq_mode == LOOKAHEAD_AQ) + vp9_alt_ref_aq_unset_all(cpi->alt_ref_aq, cpi); +} + +static void SvcEncode(VP9_COMP *cpi, size_t *size, uint8_t *dest, + unsigned int *frame_flags) { + vp9_rc_get_svc_params(cpi); + encode_frame_to_data_rate(cpi, size, dest, frame_flags); +} + +static void Pass0Encode(VP9_COMP *cpi, size_t *size, uint8_t *dest, + unsigned int *frame_flags) { + if (cpi->oxcf.rc_mode == VPX_CBR) { + vp9_rc_get_one_pass_cbr_params(cpi); + } else { + vp9_rc_get_one_pass_vbr_params(cpi); + } + encode_frame_to_data_rate(cpi, size, dest, frame_flags); +} + +#if !CONFIG_REALTIME_ONLY +static void Pass2Encode(VP9_COMP *cpi, size_t *size, uint8_t *dest, + unsigned int *frame_flags) { + cpi->allow_encode_breakout = ENCODE_BREAKOUT_ENABLED; + encode_frame_to_data_rate(cpi, size, dest, frame_flags); + + if (!(is_two_pass_svc(cpi) && cpi->svc.encode_empty_frame_state == ENCODING)) + vp9_twopass_postencode_update(cpi); +} +#endif // !CONFIG_REALTIME_ONLY + +static void init_ref_frame_bufs(VP9_COMMON *cm) { + int i; + BufferPool *const pool = cm->buffer_pool; + cm->new_fb_idx = INVALID_IDX; + for (i = 0; i < REF_FRAMES; ++i) { + cm->ref_frame_map[i] = INVALID_IDX; + pool->frame_bufs[i].ref_count = 0; + } +} + +static void check_initial_width(VP9_COMP *cpi, +#if CONFIG_VP9_HIGHBITDEPTH + int use_highbitdepth, +#endif + int subsampling_x, int subsampling_y) { + VP9_COMMON *const cm = &cpi->common; + + if (!cpi->initial_width || +#if CONFIG_VP9_HIGHBITDEPTH + cm->use_highbitdepth != use_highbitdepth || +#endif + cm->subsampling_x != subsampling_x || + cm->subsampling_y != subsampling_y) { + cm->subsampling_x = subsampling_x; + cm->subsampling_y = subsampling_y; +#if CONFIG_VP9_HIGHBITDEPTH + cm->use_highbitdepth = use_highbitdepth; +#endif + + alloc_raw_frame_buffers(cpi); + init_ref_frame_bufs(cm); + alloc_util_frame_buffers(cpi); + + init_motion_estimation(cpi); // TODO(agrange) This can be removed. + + cpi->initial_width = cm->width; + cpi->initial_height = cm->height; + cpi->initial_mbs = cm->MBs; + } +} + +int vp9_receive_raw_frame(VP9_COMP *cpi, vpx_enc_frame_flags_t frame_flags, + YV12_BUFFER_CONFIG *sd, int64_t time_stamp, + int64_t end_time) { + VP9_COMMON *const cm = &cpi->common; + struct vpx_usec_timer timer; + int res = 0; + const int subsampling_x = sd->subsampling_x; + const int subsampling_y = sd->subsampling_y; +#if CONFIG_VP9_HIGHBITDEPTH + const int use_highbitdepth = (sd->flags & YV12_FLAG_HIGHBITDEPTH) != 0; +#endif + +#if CONFIG_VP9_HIGHBITDEPTH + check_initial_width(cpi, use_highbitdepth, subsampling_x, subsampling_y); +#else + check_initial_width(cpi, subsampling_x, subsampling_y); +#endif // CONFIG_VP9_HIGHBITDEPTH + +#if CONFIG_VP9_TEMPORAL_DENOISING + setup_denoiser_buffer(cpi); +#endif + vpx_usec_timer_start(&timer); + + if (vp9_lookahead_push(cpi->lookahead, sd, time_stamp, end_time, +#if CONFIG_VP9_HIGHBITDEPTH + use_highbitdepth, +#endif // CONFIG_VP9_HIGHBITDEPTH + frame_flags)) + res = -1; + vpx_usec_timer_mark(&timer); + cpi->time_receive_data += vpx_usec_timer_elapsed(&timer); + + if ((cm->profile == PROFILE_0 || cm->profile == PROFILE_2) && + (subsampling_x != 1 || subsampling_y != 1)) { + vpx_internal_error(&cm->error, VPX_CODEC_INVALID_PARAM, + "Non-4:2:0 color format requires profile 1 or 3"); + res = -1; + } + if ((cm->profile == PROFILE_1 || cm->profile == PROFILE_3) && + (subsampling_x == 1 && subsampling_y == 1)) { + vpx_internal_error(&cm->error, VPX_CODEC_INVALID_PARAM, + "4:2:0 color format requires profile 0 or 2"); + res = -1; + } + + return res; +} + +static int frame_is_reference(const VP9_COMP *cpi) { + const VP9_COMMON *cm = &cpi->common; + + return cm->frame_type == KEY_FRAME || cpi->refresh_last_frame || + cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame || + cm->refresh_frame_context || cm->lf.mode_ref_delta_update || + cm->seg.update_map || cm->seg.update_data; +} + +static void adjust_frame_rate(VP9_COMP *cpi, + const struct lookahead_entry *source) { + int64_t this_duration; + int step = 0; + + if (source->ts_start == cpi->first_time_stamp_ever) { + this_duration = source->ts_end - source->ts_start; + step = 1; + } else { + int64_t last_duration = + cpi->last_end_time_stamp_seen - cpi->last_time_stamp_seen; + + this_duration = source->ts_end - cpi->last_end_time_stamp_seen; + + // do a step update if the duration changes by 10% + if (last_duration) + step = (int)((this_duration - last_duration) * 10 / last_duration); + } + + if (this_duration) { + if (step) { + vp9_new_framerate(cpi, 10000000.0 / this_duration); + } else { + // Average this frame's rate into the last second's average + // frame rate. If we haven't seen 1 second yet, then average + // over the whole interval seen. + const double interval = VPXMIN( + (double)(source->ts_end - cpi->first_time_stamp_ever), 10000000.0); + double avg_duration = 10000000.0 / cpi->framerate; + avg_duration *= (interval - avg_duration + this_duration); + avg_duration /= interval; + + vp9_new_framerate(cpi, 10000000.0 / avg_duration); + } + } + cpi->last_time_stamp_seen = source->ts_start; + cpi->last_end_time_stamp_seen = source->ts_end; +} + +// Returns 0 if this is not an alt ref else the offset of the source frame +// used as the arf midpoint. +static int get_arf_src_index(VP9_COMP *cpi) { + RATE_CONTROL *const rc = &cpi->rc; + int arf_src_index = 0; + if (is_altref_enabled(cpi)) { + if (cpi->oxcf.pass == 2) { + const GF_GROUP *const gf_group = &cpi->twopass.gf_group; + if (gf_group->update_type[gf_group->index] == ARF_UPDATE) { + arf_src_index = gf_group->arf_src_offset[gf_group->index]; + } + } else if (rc->source_alt_ref_pending) { + arf_src_index = rc->frames_till_gf_update_due; + } + } + return arf_src_index; +} + +static void check_src_altref(VP9_COMP *cpi, + const struct lookahead_entry *source) { + RATE_CONTROL *const rc = &cpi->rc; + + if (cpi->oxcf.pass == 2) { + const GF_GROUP *const gf_group = &cpi->twopass.gf_group; + rc->is_src_frame_alt_ref = + (gf_group->update_type[gf_group->index] == OVERLAY_UPDATE); + } else { + rc->is_src_frame_alt_ref = + cpi->alt_ref_source && (source == cpi->alt_ref_source); + } + + if (rc->is_src_frame_alt_ref) { + // Current frame is an ARF overlay frame. + cpi->alt_ref_source = NULL; + + // Don't refresh the last buffer for an ARF overlay frame. It will + // become the GF so preserve last as an alternative prediction option. + cpi->refresh_last_frame = 0; + } +} + +#if CONFIG_INTERNAL_STATS +extern double vp9_get_blockiness(const uint8_t *img1, int img1_pitch, + const uint8_t *img2, int img2_pitch, int width, + int height); + +static void adjust_image_stat(double y, double u, double v, double all, + ImageStat *s) { + s->stat[Y] += y; + s->stat[U] += u; + s->stat[V] += v; + s->stat[ALL] += all; + s->worst = VPXMIN(s->worst, all); +} +#endif // CONFIG_INTERNAL_STATS + +// Adjust the maximum allowable frame size for the target level. +static void level_rc_framerate(VP9_COMP *cpi, int arf_src_index) { + RATE_CONTROL *const rc = &cpi->rc; + LevelConstraint *const ls = &cpi->level_constraint; + VP9_COMMON *const cm = &cpi->common; + const double max_cpb_size = ls->max_cpb_size; + vpx_clear_system_state(); + rc->max_frame_bandwidth = VPXMIN(rc->max_frame_bandwidth, ls->max_frame_size); + if (frame_is_intra_only(cm)) { + rc->max_frame_bandwidth = + VPXMIN(rc->max_frame_bandwidth, (int)(max_cpb_size * 0.5)); + } else if (arf_src_index > 0) { + rc->max_frame_bandwidth = + VPXMIN(rc->max_frame_bandwidth, (int)(max_cpb_size * 0.4)); + } else { + rc->max_frame_bandwidth = + VPXMIN(rc->max_frame_bandwidth, (int)(max_cpb_size * 0.2)); + } +} + +static void update_level_info(VP9_COMP *cpi, size_t *size, int arf_src_index) { + VP9_COMMON *const cm = &cpi->common; + Vp9LevelInfo *const level_info = &cpi->level_info; + Vp9LevelSpec *const level_spec = &level_info->level_spec; + Vp9LevelStats *const level_stats = &level_info->level_stats; + int i, idx; + uint64_t luma_samples, dur_end; + const uint32_t luma_pic_size = cm->width * cm->height; + const uint32_t luma_pic_breadth = VPXMAX(cm->width, cm->height); + LevelConstraint *const level_constraint = &cpi->level_constraint; + const int8_t level_index = level_constraint->level_index; + double cpb_data_size; + + vpx_clear_system_state(); + + // update level_stats + level_stats->total_compressed_size += *size; + if (cm->show_frame) { + level_stats->total_uncompressed_size += + luma_pic_size + + 2 * (luma_pic_size >> (cm->subsampling_x + cm->subsampling_y)); + level_stats->time_encoded = + (cpi->last_end_time_stamp_seen - cpi->first_time_stamp_ever) / + (double)TICKS_PER_SEC; + } + + if (arf_src_index > 0) { + if (!level_stats->seen_first_altref) { + level_stats->seen_first_altref = 1; + } else if (level_stats->frames_since_last_altref < + level_spec->min_altref_distance) { + level_spec->min_altref_distance = level_stats->frames_since_last_altref; + } + level_stats->frames_since_last_altref = 0; + } else { + ++level_stats->frames_since_last_altref; + } + + if (level_stats->frame_window_buffer.len < FRAME_WINDOW_SIZE - 1) { + idx = (level_stats->frame_window_buffer.start + + level_stats->frame_window_buffer.len++) % + FRAME_WINDOW_SIZE; + } else { + idx = level_stats->frame_window_buffer.start; + level_stats->frame_window_buffer.start = (idx + 1) % FRAME_WINDOW_SIZE; + } + level_stats->frame_window_buffer.buf[idx].ts = cpi->last_time_stamp_seen; + level_stats->frame_window_buffer.buf[idx].size = (uint32_t)(*size); + level_stats->frame_window_buffer.buf[idx].luma_samples = luma_pic_size; + + if (cm->frame_type == KEY_FRAME) { + level_stats->ref_refresh_map = 0; + } else { + int count = 0; + level_stats->ref_refresh_map |= vp9_get_refresh_mask(cpi); + // Also need to consider the case where the encoder refers to a buffer + // that has been implicitly refreshed after encoding a keyframe. + if (!cm->intra_only) { + level_stats->ref_refresh_map |= (1 << cpi->lst_fb_idx); + level_stats->ref_refresh_map |= (1 << cpi->gld_fb_idx); + level_stats->ref_refresh_map |= (1 << cpi->alt_fb_idx); + } + for (i = 0; i < REF_FRAMES; ++i) { + count += (level_stats->ref_refresh_map >> i) & 1; + } + if (count > level_spec->max_ref_frame_buffers) { + level_spec->max_ref_frame_buffers = count; + } + } + + // update average_bitrate + level_spec->average_bitrate = (double)level_stats->total_compressed_size / + 125.0 / level_stats->time_encoded; + + // update max_luma_sample_rate + luma_samples = 0; + for (i = 0; i < level_stats->frame_window_buffer.len; ++i) { + idx = (level_stats->frame_window_buffer.start + + level_stats->frame_window_buffer.len - 1 - i) % + FRAME_WINDOW_SIZE; + if (i == 0) { + dur_end = level_stats->frame_window_buffer.buf[idx].ts; + } + if (dur_end - level_stats->frame_window_buffer.buf[idx].ts >= + TICKS_PER_SEC) { + break; + } + luma_samples += level_stats->frame_window_buffer.buf[idx].luma_samples; + } + if (luma_samples > level_spec->max_luma_sample_rate) { + level_spec->max_luma_sample_rate = luma_samples; + } + + // update max_cpb_size + cpb_data_size = 0; + for (i = 0; i < CPB_WINDOW_SIZE; ++i) { + if (i >= level_stats->frame_window_buffer.len) break; + idx = (level_stats->frame_window_buffer.start + + level_stats->frame_window_buffer.len - 1 - i) % + FRAME_WINDOW_SIZE; + cpb_data_size += level_stats->frame_window_buffer.buf[idx].size; + } + cpb_data_size = cpb_data_size / 125.0; + if (cpb_data_size > level_spec->max_cpb_size) { + level_spec->max_cpb_size = cpb_data_size; + } + + // update max_luma_picture_size + if (luma_pic_size > level_spec->max_luma_picture_size) { + level_spec->max_luma_picture_size = luma_pic_size; + } + + // update max_luma_picture_breadth + if (luma_pic_breadth > level_spec->max_luma_picture_breadth) { + level_spec->max_luma_picture_breadth = luma_pic_breadth; + } + + // update compression_ratio + level_spec->compression_ratio = (double)level_stats->total_uncompressed_size * + cm->bit_depth / + level_stats->total_compressed_size / 8.0; + + // update max_col_tiles + if (level_spec->max_col_tiles < (1 << cm->log2_tile_cols)) { + level_spec->max_col_tiles = (1 << cm->log2_tile_cols); + } + + if (level_index >= 0 && level_constraint->fail_flag == 0) { + if (level_spec->max_luma_picture_size > + vp9_level_defs[level_index].max_luma_picture_size) { + level_constraint->fail_flag |= (1 << LUMA_PIC_SIZE_TOO_LARGE); + vpx_internal_error(&cm->error, VPX_CODEC_ERROR, + "Failed to encode to the target level %d. %s", + vp9_level_defs[level_index].level, + level_fail_messages[LUMA_PIC_SIZE_TOO_LARGE]); + } + + if (level_spec->max_luma_picture_breadth > + vp9_level_defs[level_index].max_luma_picture_breadth) { + level_constraint->fail_flag |= (1 << LUMA_PIC_BREADTH_TOO_LARGE); + vpx_internal_error(&cm->error, VPX_CODEC_ERROR, + "Failed to encode to the target level %d. %s", + vp9_level_defs[level_index].level, + level_fail_messages[LUMA_PIC_BREADTH_TOO_LARGE]); + } + + if ((double)level_spec->max_luma_sample_rate > + (double)vp9_level_defs[level_index].max_luma_sample_rate * + (1 + SAMPLE_RATE_GRACE_P)) { + level_constraint->fail_flag |= (1 << LUMA_SAMPLE_RATE_TOO_LARGE); + vpx_internal_error(&cm->error, VPX_CODEC_ERROR, + "Failed to encode to the target level %d. %s", + vp9_level_defs[level_index].level, + level_fail_messages[LUMA_SAMPLE_RATE_TOO_LARGE]); + } + + if (level_spec->max_col_tiles > vp9_level_defs[level_index].max_col_tiles) { + level_constraint->fail_flag |= (1 << TOO_MANY_COLUMN_TILE); + vpx_internal_error(&cm->error, VPX_CODEC_ERROR, + "Failed to encode to the target level %d. %s", + vp9_level_defs[level_index].level, + level_fail_messages[TOO_MANY_COLUMN_TILE]); + } + + if (level_spec->min_altref_distance < + vp9_level_defs[level_index].min_altref_distance) { + level_constraint->fail_flag |= (1 << ALTREF_DIST_TOO_SMALL); + vpx_internal_error(&cm->error, VPX_CODEC_ERROR, + "Failed to encode to the target level %d. %s", + vp9_level_defs[level_index].level, + level_fail_messages[ALTREF_DIST_TOO_SMALL]); + } + + if (level_spec->max_ref_frame_buffers > + vp9_level_defs[level_index].max_ref_frame_buffers) { + level_constraint->fail_flag |= (1 << TOO_MANY_REF_BUFFER); + vpx_internal_error(&cm->error, VPX_CODEC_ERROR, + "Failed to encode to the target level %d. %s", + vp9_level_defs[level_index].level, + level_fail_messages[TOO_MANY_REF_BUFFER]); + } + + if (level_spec->max_cpb_size > vp9_level_defs[level_index].max_cpb_size) { + level_constraint->fail_flag |= (1 << CPB_TOO_LARGE); + vpx_internal_error(&cm->error, VPX_CODEC_ERROR, + "Failed to encode to the target level %d. %s", + vp9_level_defs[level_index].level, + level_fail_messages[CPB_TOO_LARGE]); + } + + // Set an upper bound for the next frame size. It will be used in + // level_rc_framerate() before encoding the next frame. + cpb_data_size = 0; + for (i = 0; i < CPB_WINDOW_SIZE - 1; ++i) { + if (i >= level_stats->frame_window_buffer.len) break; + idx = (level_stats->frame_window_buffer.start + + level_stats->frame_window_buffer.len - 1 - i) % + FRAME_WINDOW_SIZE; + cpb_data_size += level_stats->frame_window_buffer.buf[idx].size; + } + cpb_data_size = cpb_data_size / 125.0; + level_constraint->max_frame_size = + (int)((vp9_level_defs[level_index].max_cpb_size - cpb_data_size) * + 1000.0); + if (level_stats->frame_window_buffer.len < CPB_WINDOW_SIZE - 1) + level_constraint->max_frame_size >>= 1; + } +} + +int vp9_get_compressed_data(VP9_COMP *cpi, unsigned int *frame_flags, + size_t *size, uint8_t *dest, int64_t *time_stamp, + int64_t *time_end, int flush) { + const VP9EncoderConfig *const oxcf = &cpi->oxcf; + VP9_COMMON *const cm = &cpi->common; + BufferPool *const pool = cm->buffer_pool; + RATE_CONTROL *const rc = &cpi->rc; + struct vpx_usec_timer cmptimer; + YV12_BUFFER_CONFIG *force_src_buffer = NULL; + struct lookahead_entry *last_source = NULL; + struct lookahead_entry *source = NULL; + int arf_src_index; + int i; + + if (is_two_pass_svc(cpi)) { +#if CONFIG_SPATIAL_SVC + vp9_svc_start_frame(cpi); + // Use a small empty frame instead of a real frame + if (cpi->svc.encode_empty_frame_state == ENCODING) + source = &cpi->svc.empty_frame; +#endif + if (oxcf->pass == 2) vp9_restore_layer_context(cpi); + } else if (is_one_pass_cbr_svc(cpi)) { + vp9_one_pass_cbr_svc_start_layer(cpi); + } + + vpx_usec_timer_start(&cmptimer); + + vp9_set_high_precision_mv(cpi, ALTREF_HIGH_PRECISION_MV); + + // Is multi-arf enabled. + // Note that at the moment multi_arf is only configured for 2 pass VBR and + // will not work properly with svc. + if ((oxcf->pass == 2) && !cpi->use_svc && (cpi->oxcf.enable_auto_arf > 1)) + cpi->multi_arf_allowed = 1; + else + cpi->multi_arf_allowed = 0; + + // Normal defaults + cm->reset_frame_context = 0; + cm->refresh_frame_context = 1; + if (!is_one_pass_cbr_svc(cpi)) { + cpi->refresh_last_frame = 1; + cpi->refresh_golden_frame = 0; + cpi->refresh_alt_ref_frame = 0; + } + + // Should we encode an arf frame. + arf_src_index = get_arf_src_index(cpi); + + // Skip alt frame if we encode the empty frame + if (is_two_pass_svc(cpi) && source != NULL) arf_src_index = 0; + + if (arf_src_index) { + for (i = 0; i <= arf_src_index; ++i) { + struct lookahead_entry *e = vp9_lookahead_peek(cpi->lookahead, i); + // Avoid creating an alt-ref if there's a forced keyframe pending. + if (e == NULL) { + break; + } else if (e->flags == VPX_EFLAG_FORCE_KF) { + arf_src_index = 0; + flush = 1; + break; + } + } + } + + if (arf_src_index) { + assert(arf_src_index <= rc->frames_to_key); + + if ((source = vp9_lookahead_peek(cpi->lookahead, arf_src_index)) != NULL) { + cpi->alt_ref_source = source; + +#if CONFIG_SPATIAL_SVC + if (is_two_pass_svc(cpi) && cpi->svc.spatial_layer_id > 0) { + int i; + // Reference a hidden frame from a lower layer + for (i = cpi->svc.spatial_layer_id - 1; i >= 0; --i) { + if (oxcf->ss_enable_auto_arf[i]) { + cpi->gld_fb_idx = cpi->svc.layer_context[i].alt_ref_idx; + break; + } + } + } + cpi->svc.layer_context[cpi->svc.spatial_layer_id].has_alt_frame = 1; +#endif +#if !CONFIG_REALTIME_ONLY + if ((oxcf->mode != REALTIME) && (oxcf->arnr_max_frames > 0) && + (oxcf->arnr_strength > 0)) { + int bitrate = cpi->rc.avg_frame_bandwidth / 40; + int not_low_bitrate = bitrate > ALT_REF_AQ_LOW_BITRATE_BOUNDARY; + + int not_last_frame = (cpi->lookahead->sz - arf_src_index > 1); + not_last_frame |= ALT_REF_AQ_APPLY_TO_LAST_FRAME; + + // Produce the filtered ARF frame. + vp9_temporal_filter(cpi, arf_src_index); + vpx_extend_frame_borders(&cpi->alt_ref_buffer); + + // for small bitrates segmentation overhead usually + // eats all bitrate gain from enabling delta quantizers + if (cpi->oxcf.alt_ref_aq != 0 && not_low_bitrate && not_last_frame) + vp9_alt_ref_aq_setup_mode(cpi->alt_ref_aq, cpi); + + force_src_buffer = &cpi->alt_ref_buffer; + } +#endif + cm->show_frame = 0; + cm->intra_only = 0; + cpi->refresh_alt_ref_frame = 1; + cpi->refresh_golden_frame = 0; + cpi->refresh_last_frame = 0; + rc->is_src_frame_alt_ref = 0; + rc->source_alt_ref_pending = 0; + } else { + rc->source_alt_ref_pending = 0; + } + } + + if (!source) { + // Get last frame source. + if (cm->current_video_frame > 0) { + if ((last_source = vp9_lookahead_peek(cpi->lookahead, -1)) == NULL) + return -1; + } + + // Read in the source frame. + if (cpi->use_svc) + source = vp9_svc_lookahead_pop(cpi, cpi->lookahead, flush); + else + source = vp9_lookahead_pop(cpi->lookahead, flush); + + if (source != NULL) { + cm->show_frame = 1; + cm->intra_only = 0; + // if the flags indicate intra frame, but if the current picture is for + // non-zero spatial layer, it should not be an intra picture. + if ((source->flags & VPX_EFLAG_FORCE_KF) && + cpi->svc.spatial_layer_id > cpi->svc.first_spatial_layer_to_encode) { + source->flags &= ~(unsigned int)(VPX_EFLAG_FORCE_KF); + } + + // Check to see if the frame should be encoded as an arf overlay. + check_src_altref(cpi, source); + } + } + + if (source) { + cpi->un_scaled_source = cpi->Source = + force_src_buffer ? force_src_buffer : &source->img; + +#ifdef ENABLE_KF_DENOISE + // Copy of raw source for metrics calculation. + if (is_psnr_calc_enabled(cpi)) + vp9_copy_and_extend_frame(cpi->Source, &cpi->raw_unscaled_source); +#endif + + cpi->unscaled_last_source = last_source != NULL ? &last_source->img : NULL; + + *time_stamp = source->ts_start; + *time_end = source->ts_end; + *frame_flags = (source->flags & VPX_EFLAG_FORCE_KF) ? FRAMEFLAGS_KEY : 0; + + } else { + *size = 0; +#if !CONFIG_REALTIME_ONLY + if (flush && oxcf->pass == 1 && !cpi->twopass.first_pass_done) { + vp9_end_first_pass(cpi); /* get last stats packet */ + cpi->twopass.first_pass_done = 1; + } +#endif // !CONFIG_REALTIME_ONLY + return -1; + } + + if (source->ts_start < cpi->first_time_stamp_ever) { + cpi->first_time_stamp_ever = source->ts_start; + cpi->last_end_time_stamp_seen = source->ts_start; + } + + // Clear down mmx registers + vpx_clear_system_state(); + + // adjust frame rates based on timestamps given + if (cm->show_frame) { + adjust_frame_rate(cpi, source); + } + + if (is_one_pass_cbr_svc(cpi)) { + vp9_update_temporal_layer_framerate(cpi); + vp9_restore_layer_context(cpi); + } + + // Find a free buffer for the new frame, releasing the reference previously + // held. + if (cm->new_fb_idx != INVALID_IDX) { + --pool->frame_bufs[cm->new_fb_idx].ref_count; + } + cm->new_fb_idx = get_free_fb(cm); + + if (cm->new_fb_idx == INVALID_IDX) return -1; + + cm->cur_frame = &pool->frame_bufs[cm->new_fb_idx]; + + if (!cpi->use_svc && cpi->multi_arf_allowed) { + if (cm->frame_type == KEY_FRAME) { + init_buffer_indices(cpi); + } else if (oxcf->pass == 2) { + const GF_GROUP *const gf_group = &cpi->twopass.gf_group; + cpi->alt_fb_idx = gf_group->arf_ref_idx[gf_group->index]; + } + } + + // Start with a 0 size frame. + *size = 0; + + cpi->frame_flags = *frame_flags; + +#if !CONFIG_REALTIME_ONLY + if ((oxcf->pass == 2) && + (!cpi->use_svc || (is_two_pass_svc(cpi) && + cpi->svc.encode_empty_frame_state != ENCODING))) { + vp9_rc_get_second_pass_params(cpi); + } else if (oxcf->pass == 1) { + set_frame_size(cpi); + } +#endif // !CONFIG_REALTIME_ONLY + + if (oxcf->pass != 1 && cpi->level_constraint.level_index >= 0 && + cpi->level_constraint.fail_flag == 0) + level_rc_framerate(cpi, arf_src_index); + + if (cpi->oxcf.pass != 0 || cpi->use_svc || frame_is_intra_only(cm) == 1) { + for (i = 0; i < MAX_REF_FRAMES; ++i) cpi->scaled_ref_idx[i] = INVALID_IDX; + } + + cpi->td.mb.fp_src_pred = 0; +#if CONFIG_REALTIME_ONLY + if (cpi->use_svc) { + SvcEncode(cpi, size, dest, frame_flags); + } else { + // One pass encode + Pass0Encode(cpi, size, dest, frame_flags); + } +#else // !CONFIG_REALTIME_ONLY + if (oxcf->pass == 1 && (!cpi->use_svc || is_two_pass_svc(cpi))) { + const int lossless = is_lossless_requested(oxcf); +#if CONFIG_VP9_HIGHBITDEPTH + if (cpi->oxcf.use_highbitdepth) + cpi->td.mb.fwd_txfm4x4 = + lossless ? vp9_highbd_fwht4x4 : vpx_highbd_fdct4x4; + else + cpi->td.mb.fwd_txfm4x4 = lossless ? vp9_fwht4x4 : vpx_fdct4x4; + cpi->td.mb.highbd_inv_txfm_add = + lossless ? vp9_highbd_iwht4x4_add : vp9_highbd_idct4x4_add; +#else + cpi->td.mb.fwd_txfm4x4 = lossless ? vp9_fwht4x4 : vpx_fdct4x4; +#endif // CONFIG_VP9_HIGHBITDEPTH + cpi->td.mb.inv_txfm_add = lossless ? vp9_iwht4x4_add : vp9_idct4x4_add; + vp9_first_pass(cpi, source); + } else if (oxcf->pass == 2 && (!cpi->use_svc || is_two_pass_svc(cpi))) { + Pass2Encode(cpi, size, dest, frame_flags); + } else if (cpi->use_svc) { + SvcEncode(cpi, size, dest, frame_flags); + } else { + // One pass encode + Pass0Encode(cpi, size, dest, frame_flags); + } +#endif // CONFIG_REALTIME_ONLY + + if (cm->refresh_frame_context) + cm->frame_contexts[cm->frame_context_idx] = *cm->fc; + + // No frame encoded, or frame was dropped, release scaled references. + if ((*size == 0) && (frame_is_intra_only(cm) == 0)) { + release_scaled_references(cpi); + } + + if (*size > 0) { + cpi->droppable = !frame_is_reference(cpi); + } + + // Save layer specific state. + if (is_one_pass_cbr_svc(cpi) || ((cpi->svc.number_temporal_layers > 1 || + cpi->svc.number_spatial_layers > 1) && + oxcf->pass == 2)) { + vp9_save_layer_context(cpi); + } + + vpx_usec_timer_mark(&cmptimer); + cpi->time_compress_data += vpx_usec_timer_elapsed(&cmptimer); + + // Should we calculate metrics for the frame. + if (is_psnr_calc_enabled(cpi)) generate_psnr_packet(cpi); + + if (cpi->keep_level_stats && oxcf->pass != 1) + update_level_info(cpi, size, arf_src_index); + +#if CONFIG_INTERNAL_STATS + + if (oxcf->pass != 1) { + double samples = 0.0; + cpi->bytes += (int)(*size); + + if (cm->show_frame) { + uint32_t bit_depth = 8; + uint32_t in_bit_depth = 8; + cpi->count++; +#if CONFIG_VP9_HIGHBITDEPTH + if (cm->use_highbitdepth) { + in_bit_depth = cpi->oxcf.input_bit_depth; + bit_depth = cm->bit_depth; + } +#endif + + if (cpi->b_calculate_psnr) { + YV12_BUFFER_CONFIG *orig = cpi->raw_source_frame; + YV12_BUFFER_CONFIG *recon = cpi->common.frame_to_show; + YV12_BUFFER_CONFIG *pp = &cm->post_proc_buffer; + PSNR_STATS psnr; +#if CONFIG_VP9_HIGHBITDEPTH + vpx_calc_highbd_psnr(orig, recon, &psnr, cpi->td.mb.e_mbd.bd, + in_bit_depth); +#else + vpx_calc_psnr(orig, recon, &psnr); +#endif // CONFIG_VP9_HIGHBITDEPTH + + adjust_image_stat(psnr.psnr[1], psnr.psnr[2], psnr.psnr[3], + psnr.psnr[0], &cpi->psnr); + cpi->total_sq_error += psnr.sse[0]; + cpi->total_samples += psnr.samples[0]; + samples = psnr.samples[0]; + + { + PSNR_STATS psnr2; + double frame_ssim2 = 0, weight = 0; +#if CONFIG_VP9_POSTPROC + if (vpx_alloc_frame_buffer( + pp, recon->y_crop_width, recon->y_crop_height, + cm->subsampling_x, cm->subsampling_y, +#if CONFIG_VP9_HIGHBITDEPTH + cm->use_highbitdepth, +#endif + VP9_ENC_BORDER_IN_PIXELS, cm->byte_alignment) < 0) { + vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR, + "Failed to allocate post processing buffer"); + } + { + vp9_ppflags_t ppflags; + ppflags.post_proc_flag = VP9D_DEBLOCK; + ppflags.deblocking_level = 0; // not used in vp9_post_proc_frame() + ppflags.noise_level = 0; // not used in vp9_post_proc_frame() + vp9_post_proc_frame(cm, pp, &ppflags); + } +#endif + vpx_clear_system_state(); + +#if CONFIG_VP9_HIGHBITDEPTH + vpx_calc_highbd_psnr(orig, pp, &psnr2, cpi->td.mb.e_mbd.bd, + cpi->oxcf.input_bit_depth); +#else + vpx_calc_psnr(orig, pp, &psnr2); +#endif // CONFIG_VP9_HIGHBITDEPTH + + cpi->totalp_sq_error += psnr2.sse[0]; + cpi->totalp_samples += psnr2.samples[0]; + adjust_image_stat(psnr2.psnr[1], psnr2.psnr[2], psnr2.psnr[3], + psnr2.psnr[0], &cpi->psnrp); + +#if CONFIG_VP9_HIGHBITDEPTH + if (cm->use_highbitdepth) { + frame_ssim2 = vpx_highbd_calc_ssim(orig, recon, &weight, bit_depth, + in_bit_depth); + } else { + frame_ssim2 = vpx_calc_ssim(orig, recon, &weight); + } +#else + frame_ssim2 = vpx_calc_ssim(orig, recon, &weight); +#endif // CONFIG_VP9_HIGHBITDEPTH + + cpi->worst_ssim = VPXMIN(cpi->worst_ssim, frame_ssim2); + cpi->summed_quality += frame_ssim2 * weight; + cpi->summed_weights += weight; + +#if CONFIG_VP9_HIGHBITDEPTH + if (cm->use_highbitdepth) { + frame_ssim2 = vpx_highbd_calc_ssim(orig, pp, &weight, bit_depth, + in_bit_depth); + } else { + frame_ssim2 = vpx_calc_ssim(orig, pp, &weight); + } +#else + frame_ssim2 = vpx_calc_ssim(orig, pp, &weight); +#endif // CONFIG_VP9_HIGHBITDEPTH + + cpi->summedp_quality += frame_ssim2 * weight; + cpi->summedp_weights += weight; +#if 0 + { + FILE *f = fopen("q_used.stt", "a"); + fprintf(f, "%5d : Y%f7.3:U%f7.3:V%f7.3:F%f7.3:S%7.3f\n", + cpi->common.current_video_frame, y2, u2, v2, + frame_psnr2, frame_ssim2); + fclose(f); + } +#endif + } + } + if (cpi->b_calculate_blockiness) { +#if CONFIG_VP9_HIGHBITDEPTH + if (!cm->use_highbitdepth) +#endif + { + double frame_blockiness = vp9_get_blockiness( + cpi->Source->y_buffer, cpi->Source->y_stride, + cm->frame_to_show->y_buffer, cm->frame_to_show->y_stride, + cpi->Source->y_width, cpi->Source->y_height); + cpi->worst_blockiness = + VPXMAX(cpi->worst_blockiness, frame_blockiness); + cpi->total_blockiness += frame_blockiness; + } + } + + if (cpi->b_calculate_consistency) { +#if CONFIG_VP9_HIGHBITDEPTH + if (!cm->use_highbitdepth) +#endif + { + double this_inconsistency = vpx_get_ssim_metrics( + cpi->Source->y_buffer, cpi->Source->y_stride, + cm->frame_to_show->y_buffer, cm->frame_to_show->y_stride, + cpi->Source->y_width, cpi->Source->y_height, cpi->ssim_vars, + &cpi->metrics, 1); + + const double peak = (double)((1 << cpi->oxcf.input_bit_depth) - 1); + double consistency = + vpx_sse_to_psnr(samples, peak, (double)cpi->total_inconsistency); + if (consistency > 0.0) + cpi->worst_consistency = + VPXMIN(cpi->worst_consistency, consistency); + cpi->total_inconsistency += this_inconsistency; + } + } + + { + double y, u, v, frame_all; + frame_all = vpx_calc_fastssim(cpi->Source, cm->frame_to_show, &y, &u, + &v, bit_depth, in_bit_depth); + adjust_image_stat(y, u, v, frame_all, &cpi->fastssim); + } + { + double y, u, v, frame_all; + frame_all = vpx_psnrhvs(cpi->Source, cm->frame_to_show, &y, &u, &v, + bit_depth, in_bit_depth); + adjust_image_stat(y, u, v, frame_all, &cpi->psnrhvs); + } + } + } + +#endif + + if (is_two_pass_svc(cpi)) { + if (cpi->svc.encode_empty_frame_state == ENCODING) { + cpi->svc.encode_empty_frame_state = ENCODED; + cpi->svc.encode_intra_empty_frame = 0; + } + + if (cm->show_frame) { + ++cpi->svc.spatial_layer_to_encode; + if (cpi->svc.spatial_layer_to_encode >= cpi->svc.number_spatial_layers) + cpi->svc.spatial_layer_to_encode = 0; + + // May need the empty frame after an visible frame. + cpi->svc.encode_empty_frame_state = NEED_TO_ENCODE; + } + } else if (is_one_pass_cbr_svc(cpi)) { + if (cm->show_frame) { + ++cpi->svc.spatial_layer_to_encode; + if (cpi->svc.spatial_layer_to_encode >= cpi->svc.number_spatial_layers) + cpi->svc.spatial_layer_to_encode = 0; + } + } + + vpx_clear_system_state(); + return 0; +} + +int vp9_get_preview_raw_frame(VP9_COMP *cpi, YV12_BUFFER_CONFIG *dest, + vp9_ppflags_t *flags) { + VP9_COMMON *cm = &cpi->common; +#if !CONFIG_VP9_POSTPROC + (void)flags; +#endif + + if (!cm->show_frame) { + return -1; + } else { + int ret; +#if CONFIG_VP9_POSTPROC + ret = vp9_post_proc_frame(cm, dest, flags); +#else + if (cm->frame_to_show) { + *dest = *cm->frame_to_show; + dest->y_width = cm->width; + dest->y_height = cm->height; + dest->uv_width = cm->width >> cm->subsampling_x; + dest->uv_height = cm->height >> cm->subsampling_y; + ret = 0; + } else { + ret = -1; + } +#endif // !CONFIG_VP9_POSTPROC + vpx_clear_system_state(); + return ret; + } +} + +int vp9_set_internal_size(VP9_COMP *cpi, VPX_SCALING horiz_mode, + VPX_SCALING vert_mode) { + VP9_COMMON *cm = &cpi->common; + int hr = 0, hs = 0, vr = 0, vs = 0; + + if (horiz_mode > ONETWO || vert_mode > ONETWO) return -1; + + Scale2Ratio(horiz_mode, &hr, &hs); + Scale2Ratio(vert_mode, &vr, &vs); + + // always go to the next whole number + cm->width = (hs - 1 + cpi->oxcf.width * hr) / hs; + cm->height = (vs - 1 + cpi->oxcf.height * vr) / vs; + if (cm->current_video_frame) { + assert(cm->width <= cpi->initial_width); + assert(cm->height <= cpi->initial_height); + } + + update_frame_size(cpi); + + return 0; +} + +int vp9_set_size_literal(VP9_COMP *cpi, unsigned int width, + unsigned int height) { + VP9_COMMON *cm = &cpi->common; +#if CONFIG_VP9_HIGHBITDEPTH + check_initial_width(cpi, cm->use_highbitdepth, 1, 1); +#else + check_initial_width(cpi, 1, 1); +#endif // CONFIG_VP9_HIGHBITDEPTH + +#if CONFIG_VP9_TEMPORAL_DENOISING + setup_denoiser_buffer(cpi); +#endif + + if (width) { + cm->width = width; + if (cm->width > cpi->initial_width) { + cm->width = cpi->initial_width; + printf("Warning: Desired width too large, changed to %d\n", cm->width); + } + } + + if (height) { + cm->height = height; + if (cm->height > cpi->initial_height) { + cm->height = cpi->initial_height; + printf("Warning: Desired height too large, changed to %d\n", cm->height); + } + } + assert(cm->width <= cpi->initial_width); + assert(cm->height <= cpi->initial_height); + + update_frame_size(cpi); + + return 0; +} + +void vp9_set_svc(VP9_COMP *cpi, int use_svc) { + cpi->use_svc = use_svc; + return; +} + +int vp9_get_quantizer(VP9_COMP *cpi) { return cpi->common.base_qindex; } + +void vp9_apply_encoding_flags(VP9_COMP *cpi, vpx_enc_frame_flags_t flags) { + if (flags & + (VP8_EFLAG_NO_REF_LAST | VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_REF_ARF)) { + int ref = 7; + + if (flags & VP8_EFLAG_NO_REF_LAST) ref ^= VP9_LAST_FLAG; + + if (flags & VP8_EFLAG_NO_REF_GF) ref ^= VP9_GOLD_FLAG; + + if (flags & VP8_EFLAG_NO_REF_ARF) ref ^= VP9_ALT_FLAG; + + vp9_use_as_reference(cpi, ref); + } + + if (flags & + (VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF | + VP8_EFLAG_FORCE_GF | VP8_EFLAG_FORCE_ARF)) { + int upd = 7; + + if (flags & VP8_EFLAG_NO_UPD_LAST) upd ^= VP9_LAST_FLAG; + + if (flags & VP8_EFLAG_NO_UPD_GF) upd ^= VP9_GOLD_FLAG; + + if (flags & VP8_EFLAG_NO_UPD_ARF) upd ^= VP9_ALT_FLAG; + + vp9_update_reference(cpi, upd); + } + + if (flags & VP8_EFLAG_NO_UPD_ENTROPY) { + vp9_update_entropy(cpi, 0); + } +} + +void vp9_set_row_mt(VP9_COMP *cpi) { + // Enable row based multi-threading for supported modes of encoding + cpi->row_mt = 0; + if (((cpi->oxcf.mode == GOOD || cpi->oxcf.mode == BEST) && + cpi->oxcf.speed < 5 && cpi->oxcf.pass == 1) && + cpi->oxcf.row_mt && !cpi->use_svc) + cpi->row_mt = 1; + + if (cpi->oxcf.mode == GOOD && cpi->oxcf.speed < 5 && + (cpi->oxcf.pass == 0 || cpi->oxcf.pass == 2) && cpi->oxcf.row_mt && + !cpi->use_svc) + cpi->row_mt = 1; + + // In realtime mode, enable row based multi-threading for all the speed levels + // where non-rd path is used. + if (cpi->oxcf.mode == REALTIME && cpi->oxcf.speed >= 5 && cpi->oxcf.row_mt) { + cpi->row_mt = 1; + } + + if (cpi->row_mt) + cpi->row_mt_bit_exact = 1; + else + cpi->row_mt_bit_exact = 0; +} diff --git a/vp9/encoder/vp9_encoder.h b/vp9/encoder/vp9_encoder.h new file mode 100644 index 0000000..d723d93 --- /dev/null +++ b/vp9/encoder/vp9_encoder.h @@ -0,0 +1,951 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP9_ENCODER_VP9_ENCODER_H_ +#define VP9_ENCODER_VP9_ENCODER_H_ + +#include + +#include "./vpx_config.h" +#include "vpx/internal/vpx_codec_internal.h" +#include "vpx/vp8cx.h" +#if CONFIG_INTERNAL_STATS +#include "vpx_dsp/ssim.h" +#endif +#include "vpx_dsp/variance.h" +#include "vpx_ports/system_state.h" +#include "vpx_util/vpx_thread.h" + +#include "vp9/common/vp9_alloccommon.h" +#include "vp9/common/vp9_ppflags.h" +#include "vp9/common/vp9_entropymode.h" +#include "vp9/common/vp9_thread_common.h" +#include "vp9/common/vp9_onyxc_int.h" + +#include "vp9/encoder/vp9_alt_ref_aq.h" +#include "vp9/encoder/vp9_aq_cyclicrefresh.h" +#include "vp9/encoder/vp9_context_tree.h" +#include "vp9/encoder/vp9_encodemb.h" +#include "vp9/encoder/vp9_ethread.h" +#include "vp9/encoder/vp9_firstpass.h" +#include "vp9/encoder/vp9_job_queue.h" +#include "vp9/encoder/vp9_lookahead.h" +#include "vp9/encoder/vp9_mbgraph.h" +#include "vp9/encoder/vp9_mcomp.h" +#include "vp9/encoder/vp9_noise_estimate.h" +#include "vp9/encoder/vp9_quantize.h" +#include "vp9/encoder/vp9_ratectrl.h" +#include "vp9/encoder/vp9_rd.h" +#include "vp9/encoder/vp9_speed_features.h" +#include "vp9/encoder/vp9_svc_layercontext.h" +#include "vp9/encoder/vp9_tokenize.h" + +#if CONFIG_VP9_TEMPORAL_DENOISING +#include "vp9/encoder/vp9_denoiser.h" +#endif + +#ifdef __cplusplus +extern "C" { +#endif + +// vp9 uses 10,000,000 ticks/second as time stamp +#define TICKS_PER_SEC 10000000 + +typedef struct { + int nmvjointcost[MV_JOINTS]; + int nmvcosts[2][MV_VALS]; + int nmvcosts_hp[2][MV_VALS]; + + vpx_prob segment_pred_probs[PREDICTION_PROBS]; + + unsigned char *last_frame_seg_map_copy; + + // 0 = Intra, Last, GF, ARF + signed char last_ref_lf_deltas[MAX_REF_LF_DELTAS]; + // 0 = ZERO_MV, MV + signed char last_mode_lf_deltas[MAX_MODE_LF_DELTAS]; + + FRAME_CONTEXT fc; +} CODING_CONTEXT; + +typedef enum { + // encode_breakout is disabled. + ENCODE_BREAKOUT_DISABLED = 0, + // encode_breakout is enabled. + ENCODE_BREAKOUT_ENABLED = 1, + // encode_breakout is enabled with small max_thresh limit. + ENCODE_BREAKOUT_LIMITED = 2 +} ENCODE_BREAKOUT_TYPE; + +typedef enum { + NORMAL = 0, + FOURFIVE = 1, + THREEFIVE = 2, + ONETWO = 3 +} VPX_SCALING; + +typedef enum { + // Good Quality Fast Encoding. The encoder balances quality with the amount of + // time it takes to encode the output. Speed setting controls how fast. + GOOD, + + // The encoder places priority on the quality of the output over encoding + // speed. The output is compressed at the highest possible quality. This + // option takes the longest amount of time to encode. Speed setting ignored. + BEST, + + // Realtime/Live Encoding. This mode is optimized for realtime encoding (for + // example, capturing a television signal or feed from a live camera). Speed + // setting controls how fast. + REALTIME +} MODE; + +typedef enum { + FRAMEFLAGS_KEY = 1 << 0, + FRAMEFLAGS_GOLDEN = 1 << 1, + FRAMEFLAGS_ALTREF = 1 << 2, +} FRAMETYPE_FLAGS; + +typedef enum { + NO_AQ = 0, + VARIANCE_AQ = 1, + COMPLEXITY_AQ = 2, + CYCLIC_REFRESH_AQ = 3, + EQUATOR360_AQ = 4, + // AQ based on lookahead temporal + // variance (only valid for altref frames) + LOOKAHEAD_AQ = 5, + AQ_MODE_COUNT // This should always be the last member of the enum +} AQ_MODE; + +typedef enum { + RESIZE_NONE = 0, // No frame resizing allowed (except for SVC). + RESIZE_FIXED = 1, // All frames are coded at the specified dimension. + RESIZE_DYNAMIC = 2 // Coded size of each frame is determined by the codec. +} RESIZE_TYPE; + +typedef enum { + kInvalid = 0, + kLowSadLowSumdiff = 1, + kLowSadHighSumdiff = 2, + kHighSadLowSumdiff = 3, + kHighSadHighSumdiff = 4, + kLowVarHighSumdiff = 5, + kVeryHighSad = 6, +} CONTENT_STATE_SB; + +typedef struct VP9EncoderConfig { + BITSTREAM_PROFILE profile; + vpx_bit_depth_t bit_depth; // Codec bit-depth. + int width; // width of data passed to the compressor + int height; // height of data passed to the compressor + unsigned int input_bit_depth; // Input bit depth. + double init_framerate; // set to passed in framerate + int64_t target_bandwidth; // bandwidth to be used in bits per second + + int noise_sensitivity; // pre processing blur: recommendation 0 + int sharpness; // sharpening output: recommendation 0: + int speed; + // maximum allowed bitrate for any intra frame in % of bitrate target. + unsigned int rc_max_intra_bitrate_pct; + // maximum allowed bitrate for any inter frame in % of bitrate target. + unsigned int rc_max_inter_bitrate_pct; + // percent of rate boost for golden frame in CBR mode. + unsigned int gf_cbr_boost_pct; + + MODE mode; + int pass; + + // Key Framing Operations + int auto_key; // autodetect cut scenes and set the keyframes + int key_freq; // maximum distance to key frame. + + int lag_in_frames; // how many frames lag before we start encoding + + // ---------------------------------------------------------------- + // DATARATE CONTROL OPTIONS + + // vbr, cbr, constrained quality or constant quality + enum vpx_rc_mode rc_mode; + + // buffer targeting aggressiveness + int under_shoot_pct; + int over_shoot_pct; + + // buffering parameters + int64_t starting_buffer_level_ms; + int64_t optimal_buffer_level_ms; + int64_t maximum_buffer_size_ms; + + // Frame drop threshold. + int drop_frames_water_mark; + + // controlling quality + int fixed_q; + int worst_allowed_q; + int best_allowed_q; + int cq_level; + AQ_MODE aq_mode; // Adaptive Quantization mode + + // Special handling of Adaptive Quantization for AltRef frames + int alt_ref_aq; + + // Internal frame size scaling. + RESIZE_TYPE resize_mode; + int scaled_frame_width; + int scaled_frame_height; + + // Enable feature to reduce the frame quantization every x frames. + int frame_periodic_boost; + + // two pass datarate control + int two_pass_vbrbias; // two pass datarate control tweaks + int two_pass_vbrmin_section; + int two_pass_vbrmax_section; + int vbr_corpus_complexity; // 0 indicates corpus vbr disabled + // END DATARATE CONTROL OPTIONS + // ---------------------------------------------------------------- + + // Spatial and temporal scalability. + int ss_number_layers; // Number of spatial layers. + int ts_number_layers; // Number of temporal layers. + // Bitrate allocation for spatial layers. + int layer_target_bitrate[VPX_MAX_LAYERS]; + int ss_target_bitrate[VPX_SS_MAX_LAYERS]; + int ss_enable_auto_arf[VPX_SS_MAX_LAYERS]; + // Bitrate allocation (CBR mode) and framerate factor, for temporal layers. + int ts_rate_decimator[VPX_TS_MAX_LAYERS]; + + int enable_auto_arf; + + int encode_breakout; // early breakout : for video conf recommend 800 + + /* Bitfield defining the error resiliency features to enable. + * Can provide decodable frames after losses in previous + * frames and decodable partitions after losses in the same frame. + */ + unsigned int error_resilient_mode; + + /* Bitfield defining the parallel decoding mode where the + * decoding in successive frames may be conducted in parallel + * just by decoding the frame headers. + */ + unsigned int frame_parallel_decoding_mode; + + int arnr_max_frames; + int arnr_strength; + + int min_gf_interval; + int max_gf_interval; + + int tile_columns; + int tile_rows; + + int max_threads; + + unsigned int target_level; + + vpx_fixed_buf_t two_pass_stats_in; + struct vpx_codec_pkt_list *output_pkt_list; + +#if CONFIG_FP_MB_STATS + vpx_fixed_buf_t firstpass_mb_stats_in; +#endif + + vp8e_tuning tuning; + vp9e_tune_content content; +#if CONFIG_VP9_HIGHBITDEPTH + int use_highbitdepth; +#endif + vpx_color_space_t color_space; + vpx_color_range_t color_range; + int render_width; + int render_height; + VP9E_TEMPORAL_LAYERING_MODE temporal_layering_mode; + + int row_mt; + unsigned int motion_vector_unit_test; +} VP9EncoderConfig; + +static INLINE int is_lossless_requested(const VP9EncoderConfig *cfg) { + return cfg->best_allowed_q == 0 && cfg->worst_allowed_q == 0; +} + +// TODO(jingning) All spatially adaptive variables should go to TileDataEnc. +typedef struct TileDataEnc { + TileInfo tile_info; + int thresh_freq_fact[BLOCK_SIZES][MAX_MODES]; + int mode_map[BLOCK_SIZES][MAX_MODES]; + FIRSTPASS_DATA fp_data; + VP9RowMTSync row_mt_sync; + + // Used for adaptive_rd_thresh with row multithreading + int *row_base_thresh_freq_fact; +} TileDataEnc; + +typedef struct RowMTInfo { + JobQueueHandle job_queue_hdl; +#if CONFIG_MULTITHREAD + pthread_mutex_t job_mutex; +#endif +} RowMTInfo; + +typedef struct { + TOKENEXTRA *start; + TOKENEXTRA *stop; + unsigned int count; +} TOKENLIST; + +typedef struct MultiThreadHandle { + int allocated_tile_rows; + int allocated_tile_cols; + int allocated_vert_unit_rows; + + // Frame level params + int num_tile_vert_sbs[MAX_NUM_TILE_ROWS]; + + // Job Queue structure and handles + JobQueue *job_queue; + + int jobs_per_tile_col; + + RowMTInfo row_mt_info[MAX_NUM_TILE_COLS]; + int thread_id_to_tile_id[MAX_NUM_THREADS]; // Mapping of threads to tiles +} MultiThreadHandle; + +typedef struct RD_COUNTS { + vp9_coeff_count coef_counts[TX_SIZES][PLANE_TYPES]; + int64_t comp_pred_diff[REFERENCE_MODES]; + int64_t filter_diff[SWITCHABLE_FILTER_CONTEXTS]; +} RD_COUNTS; + +typedef struct ThreadData { + MACROBLOCK mb; + RD_COUNTS rd_counts; + FRAME_COUNTS *counts; + + PICK_MODE_CONTEXT *leaf_tree; + PC_TREE *pc_tree; + PC_TREE *pc_root; +} ThreadData; + +struct EncWorkerData; + +typedef struct ActiveMap { + int enabled; + int update; + unsigned char *map; +} ActiveMap; + +typedef enum { Y, U, V, ALL } STAT_TYPE; + +typedef struct IMAGE_STAT { + double stat[ALL + 1]; + double worst; +} ImageStat; + +// Kf noise filtering currently disabled by default in build. +// #define ENABLE_KF_DENOISE 1 + +#define CPB_WINDOW_SIZE 4 +#define FRAME_WINDOW_SIZE 128 +#define SAMPLE_RATE_GRACE_P 0.015 +#define VP9_LEVELS 14 + +typedef enum { + LEVEL_UNKNOWN = 0, + LEVEL_AUTO = 1, + LEVEL_1 = 10, + LEVEL_1_1 = 11, + LEVEL_2 = 20, + LEVEL_2_1 = 21, + LEVEL_3 = 30, + LEVEL_3_1 = 31, + LEVEL_4 = 40, + LEVEL_4_1 = 41, + LEVEL_5 = 50, + LEVEL_5_1 = 51, + LEVEL_5_2 = 52, + LEVEL_6 = 60, + LEVEL_6_1 = 61, + LEVEL_6_2 = 62, + LEVEL_MAX = 255 +} VP9_LEVEL; + +typedef struct { + VP9_LEVEL level; + uint64_t max_luma_sample_rate; + uint32_t max_luma_picture_size; + uint32_t max_luma_picture_breadth; + double average_bitrate; // in kilobits per second + double max_cpb_size; // in kilobits + double compression_ratio; + uint8_t max_col_tiles; + uint32_t min_altref_distance; + uint8_t max_ref_frame_buffers; +} Vp9LevelSpec; + +extern const Vp9LevelSpec vp9_level_defs[VP9_LEVELS]; + +typedef struct { + int64_t ts; // timestamp + uint32_t luma_samples; + uint32_t size; // in bytes +} FrameRecord; + +typedef struct { + FrameRecord buf[FRAME_WINDOW_SIZE]; + uint8_t start; + uint8_t len; +} FrameWindowBuffer; + +typedef struct { + uint8_t seen_first_altref; + uint32_t frames_since_last_altref; + uint64_t total_compressed_size; + uint64_t total_uncompressed_size; + double time_encoded; // in seconds + FrameWindowBuffer frame_window_buffer; + int ref_refresh_map; +} Vp9LevelStats; + +typedef struct { + Vp9LevelStats level_stats; + Vp9LevelSpec level_spec; +} Vp9LevelInfo; + +typedef enum { + BITRATE_TOO_LARGE = 0, + LUMA_PIC_SIZE_TOO_LARGE, + LUMA_PIC_BREADTH_TOO_LARGE, + LUMA_SAMPLE_RATE_TOO_LARGE, + CPB_TOO_LARGE, + COMPRESSION_RATIO_TOO_SMALL, + TOO_MANY_COLUMN_TILE, + ALTREF_DIST_TOO_SMALL, + TOO_MANY_REF_BUFFER, + TARGET_LEVEL_FAIL_IDS +} TARGET_LEVEL_FAIL_ID; + +typedef struct { + int8_t level_index; + uint8_t rc_config_updated; + uint8_t fail_flag; + int max_frame_size; // in bits + double max_cpb_size; // in bits +} LevelConstraint; + +typedef struct ARNRFilterData { + YV12_BUFFER_CONFIG *frames[MAX_LAG_BUFFERS]; + int strength; + int frame_count; + int alt_ref_index; + struct scale_factors sf; +} ARNRFilterData; + +typedef struct VP9_COMP { + QUANTS quants; + ThreadData td; + MB_MODE_INFO_EXT *mbmi_ext_base; + DECLARE_ALIGNED(16, int16_t, y_dequant[QINDEX_RANGE][8]); + DECLARE_ALIGNED(16, int16_t, uv_dequant[QINDEX_RANGE][8]); + VP9_COMMON common; + VP9EncoderConfig oxcf; + struct lookahead_ctx *lookahead; + struct lookahead_entry *alt_ref_source; + + YV12_BUFFER_CONFIG *Source; + YV12_BUFFER_CONFIG *Last_Source; // NULL for first frame and alt_ref frames + YV12_BUFFER_CONFIG *un_scaled_source; + YV12_BUFFER_CONFIG scaled_source; + YV12_BUFFER_CONFIG *unscaled_last_source; + YV12_BUFFER_CONFIG scaled_last_source; +#ifdef ENABLE_KF_DENOISE + YV12_BUFFER_CONFIG raw_unscaled_source; + YV12_BUFFER_CONFIG raw_scaled_source; +#endif + YV12_BUFFER_CONFIG *raw_source_frame; + + TileDataEnc *tile_data; + int allocated_tiles; // Keep track of memory allocated for tiles. + + // For a still frame, this flag is set to 1 to skip partition search. + int partition_search_skippable_frame; + + int scaled_ref_idx[MAX_REF_FRAMES]; + int lst_fb_idx; + int gld_fb_idx; + int alt_fb_idx; + + int refresh_last_frame; + int refresh_golden_frame; + int refresh_alt_ref_frame; + + int ext_refresh_frame_flags_pending; + int ext_refresh_last_frame; + int ext_refresh_golden_frame; + int ext_refresh_alt_ref_frame; + + int ext_refresh_frame_context_pending; + int ext_refresh_frame_context; + + YV12_BUFFER_CONFIG last_frame_uf; + + TOKENEXTRA *tile_tok[4][1 << 6]; + uint32_t tok_count[4][1 << 6]; + TOKENLIST *tplist[4][1 << 6]; + + // Ambient reconstruction err target for force key frames + int64_t ambient_err; + + RD_OPT rd; + + CODING_CONTEXT coding_context; + + int *nmvcosts[2]; + int *nmvcosts_hp[2]; + int *nmvsadcosts[2]; + int *nmvsadcosts_hp[2]; + + int64_t last_time_stamp_seen; + int64_t last_end_time_stamp_seen; + int64_t first_time_stamp_ever; + + RATE_CONTROL rc; + double framerate; + + int interp_filter_selected[MAX_REF_FRAMES][SWITCHABLE]; + + struct vpx_codec_pkt_list *output_pkt_list; + + MBGRAPH_FRAME_STATS mbgraph_stats[MAX_LAG_BUFFERS]; + int mbgraph_n_frames; // number of frames filled in the above + int static_mb_pct; // % forced skip mbs by segmentation + int ref_frame_flags; + + SPEED_FEATURES sf; + + uint32_t max_mv_magnitude; + int mv_step_param; + + int allow_comp_inter_inter; + + // Default value is 1. From first pass stats, encode_breakout may be disabled. + ENCODE_BREAKOUT_TYPE allow_encode_breakout; + + // Get threshold from external input. A suggested threshold is 800 for HD + // clips, and 300 for < HD clips. + int encode_breakout; + + uint8_t *segmentation_map; + + uint8_t *skin_map; + + // segment threashold for encode breakout + int segment_encode_breakout[MAX_SEGMENTS]; + + CYCLIC_REFRESH *cyclic_refresh; + ActiveMap active_map; + + fractional_mv_step_fp *find_fractional_mv_step; + vp9_diamond_search_fn_t diamond_search_sad; + vp9_variance_fn_ptr_t fn_ptr[BLOCK_SIZES]; + uint64_t time_receive_data; + uint64_t time_compress_data; + uint64_t time_pick_lpf; + uint64_t time_encode_sb_row; + +#if CONFIG_FP_MB_STATS + int use_fp_mb_stats; +#endif + + TWO_PASS twopass; + + // Force recalculation of segment_ids for each mode info + uint8_t force_update_segmentation; + + YV12_BUFFER_CONFIG alt_ref_buffer; + + // class responsible for adaptive + // quantization of altref frames + struct ALT_REF_AQ *alt_ref_aq; + +#if CONFIG_INTERNAL_STATS + unsigned int mode_chosen_counts[MAX_MODES]; + + int count; + uint64_t total_sq_error; + uint64_t total_samples; + ImageStat psnr; + + uint64_t totalp_sq_error; + uint64_t totalp_samples; + ImageStat psnrp; + + double total_blockiness; + double worst_blockiness; + + int bytes; + double summed_quality; + double summed_weights; + double summedp_quality; + double summedp_weights; + unsigned int tot_recode_hits; + double worst_ssim; + + ImageStat ssimg; + ImageStat fastssim; + ImageStat psnrhvs; + + int b_calculate_ssimg; + int b_calculate_blockiness; + + int b_calculate_consistency; + + double total_inconsistency; + double worst_consistency; + Ssimv *ssim_vars; + Metrics metrics; +#endif + int b_calculate_psnr; + + int droppable; + + int initial_width; + int initial_height; + int initial_mbs; // Number of MBs in the full-size frame; to be used to + // normalize the firstpass stats. This will differ from the + // number of MBs in the current frame when the frame is + // scaled. + + int use_svc; + + SVC svc; + + // Store frame variance info in SOURCE_VAR_BASED_PARTITION search type. + diff *source_diff_var; + // The threshold used in SOURCE_VAR_BASED_PARTITION search type. + unsigned int source_var_thresh; + int frames_till_next_var_check; + + int frame_flags; + + search_site_config ss_cfg; + + int mbmode_cost[INTRA_MODES]; + unsigned int inter_mode_cost[INTER_MODE_CONTEXTS][INTER_MODES]; + int intra_uv_mode_cost[FRAME_TYPES][INTRA_MODES][INTRA_MODES]; + int y_mode_costs[INTRA_MODES][INTRA_MODES][INTRA_MODES]; + int switchable_interp_costs[SWITCHABLE_FILTER_CONTEXTS][SWITCHABLE_FILTERS]; + int partition_cost[PARTITION_CONTEXTS][PARTITION_TYPES]; + + int multi_arf_allowed; + int multi_arf_enabled; + int multi_arf_last_grp_enabled; + +#if CONFIG_VP9_TEMPORAL_DENOISING + VP9_DENOISER denoiser; +#endif + + int resize_pending; + RESIZE_STATE resize_state; + int external_resize; + int resize_scale_num; + int resize_scale_den; + int resize_avg_qp; + int resize_buffer_underflow; + int resize_count; + + int use_skin_detection; + + int target_level; + + NOISE_ESTIMATE noise_estimate; + + // Count on how many consecutive times a block uses small/zeromv for encoding. + uint8_t *consec_zero_mv; + + // VAR_BASED_PARTITION thresholds + // 0 - threshold_64x64; 1 - threshold_32x32; + // 2 - threshold_16x16; 3 - vbp_threshold_8x8; + int64_t vbp_thresholds[4]; + int64_t vbp_threshold_minmax; + int64_t vbp_threshold_sad; + // Threshold used for partition copy + int64_t vbp_threshold_copy; + BLOCK_SIZE vbp_bsize_min; + + // Multi-threading + int num_workers; + VPxWorker *workers; + struct EncWorkerData *tile_thr_data; + VP9LfSync lf_row_sync; + struct VP9BitstreamWorkerData *vp9_bitstream_worker_data; + + int keep_level_stats; + Vp9LevelInfo level_info; + MultiThreadHandle multi_thread_ctxt; + void (*row_mt_sync_read_ptr)(VP9RowMTSync *const, int, int); + void (*row_mt_sync_write_ptr)(VP9RowMTSync *const, int, int, const int); + ARNRFilterData arnr_filter_data; + + int row_mt; + unsigned int row_mt_bit_exact; + + // Previous Partition Info + BLOCK_SIZE *prev_partition; + int8_t *prev_segment_id; + // Used to save the status of whether a block has a low variance in + // choose_partitioning. 0 for 64x64, 1~2 for 64x32, 3~4 for 32x64, 5~8 for + // 32x32, 9~24 for 16x16. + // This is for the last frame and is copied to the current frame + // when partition copy happens. + uint8_t *prev_variance_low; + uint8_t *copied_frame_cnt; + uint8_t max_copied_frame; + // If the last frame is dropped, we don't copy partition. + uint8_t last_frame_dropped; + + // For each superblock: keeps track of the last time (in frame distance) the + // the superblock did not have low source sad. + uint8_t *content_state_sb_fd; + + int compute_source_sad_onepass; + + LevelConstraint level_constraint; + + uint8_t *count_arf_frame_usage; + uint8_t *count_lastgolden_frame_usage; +} VP9_COMP; + +void vp9_initialize_enc(void); + +struct VP9_COMP *vp9_create_compressor(VP9EncoderConfig *oxcf, + BufferPool *const pool); +void vp9_remove_compressor(VP9_COMP *cpi); + +void vp9_change_config(VP9_COMP *cpi, const VP9EncoderConfig *oxcf); + +// receive a frames worth of data. caller can assume that a copy of this +// frame is made and not just a copy of the pointer.. +int vp9_receive_raw_frame(VP9_COMP *cpi, vpx_enc_frame_flags_t frame_flags, + YV12_BUFFER_CONFIG *sd, int64_t time_stamp, + int64_t end_time_stamp); + +int vp9_get_compressed_data(VP9_COMP *cpi, unsigned int *frame_flags, + size_t *size, uint8_t *dest, int64_t *time_stamp, + int64_t *time_end, int flush); + +int vp9_get_preview_raw_frame(VP9_COMP *cpi, YV12_BUFFER_CONFIG *dest, + vp9_ppflags_t *flags); + +int vp9_use_as_reference(VP9_COMP *cpi, int ref_frame_flags); + +void vp9_update_reference(VP9_COMP *cpi, int ref_frame_flags); + +int vp9_copy_reference_enc(VP9_COMP *cpi, VP9_REFFRAME ref_frame_flag, + YV12_BUFFER_CONFIG *sd); + +int vp9_set_reference_enc(VP9_COMP *cpi, VP9_REFFRAME ref_frame_flag, + YV12_BUFFER_CONFIG *sd); + +int vp9_update_entropy(VP9_COMP *cpi, int update); + +int vp9_set_active_map(VP9_COMP *cpi, unsigned char *map, int rows, int cols); + +int vp9_get_active_map(VP9_COMP *cpi, unsigned char *map, int rows, int cols); + +int vp9_set_internal_size(VP9_COMP *cpi, VPX_SCALING horiz_mode, + VPX_SCALING vert_mode); + +int vp9_set_size_literal(VP9_COMP *cpi, unsigned int width, + unsigned int height); + +void vp9_set_svc(VP9_COMP *cpi, int use_svc); + +int vp9_get_quantizer(struct VP9_COMP *cpi); + +static INLINE int frame_is_kf_gf_arf(const VP9_COMP *cpi) { + return frame_is_intra_only(&cpi->common) || cpi->refresh_alt_ref_frame || + (cpi->refresh_golden_frame && !cpi->rc.is_src_frame_alt_ref); +} + +static INLINE int get_ref_frame_map_idx(const VP9_COMP *cpi, + MV_REFERENCE_FRAME ref_frame) { + if (ref_frame == LAST_FRAME) { + return cpi->lst_fb_idx; + } else if (ref_frame == GOLDEN_FRAME) { + return cpi->gld_fb_idx; + } else { + return cpi->alt_fb_idx; + } +} + +static INLINE int get_ref_frame_buf_idx(const VP9_COMP *const cpi, + int ref_frame) { + const VP9_COMMON *const cm = &cpi->common; + const int map_idx = get_ref_frame_map_idx(cpi, ref_frame); + return (map_idx != INVALID_IDX) ? cm->ref_frame_map[map_idx] : INVALID_IDX; +} + +static INLINE YV12_BUFFER_CONFIG *get_ref_frame_buffer( + VP9_COMP *cpi, MV_REFERENCE_FRAME ref_frame) { + VP9_COMMON *const cm = &cpi->common; + const int buf_idx = get_ref_frame_buf_idx(cpi, ref_frame); + return buf_idx != INVALID_IDX ? &cm->buffer_pool->frame_bufs[buf_idx].buf + : NULL; +} + +static INLINE int get_token_alloc(int mb_rows, int mb_cols) { + // TODO(JBB): double check we can't exceed this token count if we have a + // 32x32 transform crossing a boundary at a multiple of 16. + // mb_rows, cols are in units of 16 pixels. We assume 3 planes all at full + // resolution. We assume up to 1 token per pixel, and then allow + // a head room of 4. + return mb_rows * mb_cols * (16 * 16 * 3 + 4); +} + +// Get the allocated token size for a tile. It does the same calculation as in +// the frame token allocation. +static INLINE int allocated_tokens(TileInfo tile) { + int tile_mb_rows = (tile.mi_row_end - tile.mi_row_start + 1) >> 1; + int tile_mb_cols = (tile.mi_col_end - tile.mi_col_start + 1) >> 1; + + return get_token_alloc(tile_mb_rows, tile_mb_cols); +} + +static INLINE void get_start_tok(VP9_COMP *cpi, int tile_row, int tile_col, + int mi_row, TOKENEXTRA **tok) { + VP9_COMMON *const cm = &cpi->common; + const int tile_cols = 1 << cm->log2_tile_cols; + TileDataEnc *this_tile = &cpi->tile_data[tile_row * tile_cols + tile_col]; + const TileInfo *const tile_info = &this_tile->tile_info; + + int tile_mb_cols = (tile_info->mi_col_end - tile_info->mi_col_start + 1) >> 1; + const int mb_row = (mi_row - tile_info->mi_row_start) >> 1; + + *tok = + cpi->tile_tok[tile_row][tile_col] + get_token_alloc(mb_row, tile_mb_cols); +} + +int64_t vp9_get_y_sse(const YV12_BUFFER_CONFIG *a, const YV12_BUFFER_CONFIG *b); +#if CONFIG_VP9_HIGHBITDEPTH +int64_t vp9_highbd_get_y_sse(const YV12_BUFFER_CONFIG *a, + const YV12_BUFFER_CONFIG *b); +#endif // CONFIG_VP9_HIGHBITDEPTH + +void vp9_scale_references(VP9_COMP *cpi); + +void vp9_update_reference_frames(VP9_COMP *cpi); + +void vp9_set_high_precision_mv(VP9_COMP *cpi, int allow_high_precision_mv); + +YV12_BUFFER_CONFIG *vp9_svc_twostage_scale( + VP9_COMMON *cm, YV12_BUFFER_CONFIG *unscaled, YV12_BUFFER_CONFIG *scaled, + YV12_BUFFER_CONFIG *scaled_temp, INTERP_FILTER filter_type, + int phase_scaler, INTERP_FILTER filter_type2, int phase_scaler2); + +YV12_BUFFER_CONFIG *vp9_scale_if_required( + VP9_COMMON *cm, YV12_BUFFER_CONFIG *unscaled, YV12_BUFFER_CONFIG *scaled, + int use_normative_scaler, INTERP_FILTER filter_type, int phase_scaler); + +void vp9_apply_encoding_flags(VP9_COMP *cpi, vpx_enc_frame_flags_t flags); + +static INLINE int is_two_pass_svc(const struct VP9_COMP *const cpi) { + return cpi->use_svc && cpi->oxcf.pass != 0; +} + +static INLINE int is_one_pass_cbr_svc(const struct VP9_COMP *const cpi) { + return (cpi->use_svc && cpi->oxcf.pass == 0); +} + +#if CONFIG_VP9_TEMPORAL_DENOISING +static INLINE int denoise_svc(const struct VP9_COMP *const cpi) { + return (!cpi->use_svc || + (cpi->use_svc && + cpi->svc.spatial_layer_id >= cpi->svc.first_layer_denoise)); +} +#endif + +#define MIN_LOOKAHEAD_FOR_ARFS 4 +static INLINE int is_altref_enabled(const VP9_COMP *const cpi) { + return !(cpi->oxcf.mode == REALTIME && cpi->oxcf.rc_mode == VPX_CBR) && + cpi->oxcf.lag_in_frames >= MIN_LOOKAHEAD_FOR_ARFS && + (cpi->oxcf.enable_auto_arf && + (!is_two_pass_svc(cpi) || + cpi->oxcf.ss_enable_auto_arf[cpi->svc.spatial_layer_id])); +} + +static INLINE void set_ref_ptrs(VP9_COMMON *cm, MACROBLOCKD *xd, + MV_REFERENCE_FRAME ref0, + MV_REFERENCE_FRAME ref1) { + xd->block_refs[0] = + &cm->frame_refs[ref0 >= LAST_FRAME ? ref0 - LAST_FRAME : 0]; + xd->block_refs[1] = + &cm->frame_refs[ref1 >= LAST_FRAME ? ref1 - LAST_FRAME : 0]; +} + +static INLINE int get_chessboard_index(const int frame_index) { + return frame_index & 0x1; +} + +static INLINE int *cond_cost_list(const struct VP9_COMP *cpi, int *cost_list) { + return cpi->sf.mv.subpel_search_method != SUBPEL_TREE ? cost_list : NULL; +} + +static INLINE int get_num_vert_units(TileInfo tile, int shift) { + int num_vert_units = + (tile.mi_row_end - tile.mi_row_start + (1 << shift) - 1) >> shift; + return num_vert_units; +} + +static INLINE int get_num_cols(TileInfo tile, int shift) { + int num_cols = + (tile.mi_col_end - tile.mi_col_start + (1 << shift) - 1) >> shift; + return num_cols; +} + +static INLINE int get_level_index(VP9_LEVEL level) { + int i; + for (i = 0; i < VP9_LEVELS; ++i) { + if (level == vp9_level_defs[i].level) return i; + } + return -1; +} + +// Return the log2 value of max column tiles corresponding to the level that +// the picture size fits into. +static INLINE int log_tile_cols_from_picsize_level(uint32_t width, + uint32_t height) { + int i; + const uint32_t pic_size = width * height; + const uint32_t pic_breadth = VPXMAX(width, height); + for (i = LEVEL_1; i < LEVEL_MAX; ++i) { + if (vp9_level_defs[i].max_luma_picture_size >= pic_size && + vp9_level_defs[i].max_luma_picture_breadth >= pic_breadth) { + return get_msb(vp9_level_defs[i].max_col_tiles); + } + } + return INT_MAX; +} + +VP9_LEVEL vp9_get_level(const Vp9LevelSpec *const level_spec); + +void vp9_new_framerate(VP9_COMP *cpi, double framerate); + +void vp9_set_row_mt(VP9_COMP *cpi); + +#define LAYER_IDS_TO_IDX(sl, tl, num_tl) ((sl) * (num_tl) + (tl)) + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP9_ENCODER_VP9_ENCODER_H_ diff --git a/vp9/encoder/vp9_ethread.c b/vp9/encoder/vp9_ethread.c new file mode 100644 index 0000000..0bd2e21 --- /dev/null +++ b/vp9/encoder/vp9_ethread.c @@ -0,0 +1,664 @@ +/* + * Copyright (c) 2014 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "vp9/encoder/vp9_encodeframe.h" +#include "vp9/encoder/vp9_encoder.h" +#include "vp9/encoder/vp9_ethread.h" +#include "vp9/encoder/vp9_firstpass.h" +#include "vp9/encoder/vp9_multi_thread.h" +#include "vp9/encoder/vp9_temporal_filter.h" +#include "vpx_dsp/vpx_dsp_common.h" + +static void accumulate_rd_opt(ThreadData *td, ThreadData *td_t) { + int i, j, k, l, m, n; + + for (i = 0; i < REFERENCE_MODES; i++) + td->rd_counts.comp_pred_diff[i] += td_t->rd_counts.comp_pred_diff[i]; + + for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++) + td->rd_counts.filter_diff[i] += td_t->rd_counts.filter_diff[i]; + + for (i = 0; i < TX_SIZES; i++) + for (j = 0; j < PLANE_TYPES; j++) + for (k = 0; k < REF_TYPES; k++) + for (l = 0; l < COEF_BANDS; l++) + for (m = 0; m < COEFF_CONTEXTS; m++) + for (n = 0; n < ENTROPY_TOKENS; n++) + td->rd_counts.coef_counts[i][j][k][l][m][n] += + td_t->rd_counts.coef_counts[i][j][k][l][m][n]; +} + +static int enc_worker_hook(void *arg1, void *unused) { + EncWorkerData *const thread_data = (EncWorkerData *)arg1; + VP9_COMP *const cpi = thread_data->cpi; + const VP9_COMMON *const cm = &cpi->common; + const int tile_cols = 1 << cm->log2_tile_cols; + const int tile_rows = 1 << cm->log2_tile_rows; + int t; + + (void)unused; + + for (t = thread_data->start; t < tile_rows * tile_cols; + t += cpi->num_workers) { + int tile_row = t / tile_cols; + int tile_col = t % tile_cols; + + vp9_encode_tile(cpi, thread_data->td, tile_row, tile_col); + } + + return 0; +} + +static int get_max_tile_cols(VP9_COMP *cpi) { + const int aligned_width = ALIGN_POWER_OF_TWO(cpi->oxcf.width, MI_SIZE_LOG2); + int mi_cols = aligned_width >> MI_SIZE_LOG2; + int min_log2_tile_cols, max_log2_tile_cols; + int log2_tile_cols; + + vp9_get_tile_n_bits(mi_cols, &min_log2_tile_cols, &max_log2_tile_cols); + log2_tile_cols = + clamp(cpi->oxcf.tile_columns, min_log2_tile_cols, max_log2_tile_cols); + if (cpi->oxcf.target_level == LEVEL_AUTO) { + const int level_tile_cols = + log_tile_cols_from_picsize_level(cpi->common.width, cpi->common.height); + if (log2_tile_cols > level_tile_cols) { + log2_tile_cols = VPXMAX(level_tile_cols, min_log2_tile_cols); + } + } + return (1 << log2_tile_cols); +} + +static void create_enc_workers(VP9_COMP *cpi, int num_workers) { + VP9_COMMON *const cm = &cpi->common; + const VPxWorkerInterface *const winterface = vpx_get_worker_interface(); + int i; + + // Only run once to create threads and allocate thread data. + if (cpi->num_workers == 0) { + int allocated_workers = num_workers; + + // While using SVC, we need to allocate threads according to the highest + // resolution. When row based multithreading is enabled, it is OK to + // allocate more threads than the number of max tile columns. + if (cpi->use_svc && !cpi->row_mt) { + int max_tile_cols = get_max_tile_cols(cpi); + allocated_workers = VPXMIN(cpi->oxcf.max_threads, max_tile_cols); + } + + CHECK_MEM_ERROR(cm, cpi->workers, + vpx_malloc(allocated_workers * sizeof(*cpi->workers))); + + CHECK_MEM_ERROR(cm, cpi->tile_thr_data, + vpx_calloc(allocated_workers, sizeof(*cpi->tile_thr_data))); + + for (i = 0; i < allocated_workers; i++) { + VPxWorker *const worker = &cpi->workers[i]; + EncWorkerData *thread_data = &cpi->tile_thr_data[i]; + + ++cpi->num_workers; + winterface->init(worker); + + if (i < allocated_workers - 1) { + thread_data->cpi = cpi; + + // Allocate thread data. + CHECK_MEM_ERROR(cm, thread_data->td, + vpx_memalign(32, sizeof(*thread_data->td))); + vp9_zero(*thread_data->td); + + // Set up pc_tree. + thread_data->td->leaf_tree = NULL; + thread_data->td->pc_tree = NULL; + vp9_setup_pc_tree(cm, thread_data->td); + + // Allocate frame counters in thread data. + CHECK_MEM_ERROR(cm, thread_data->td->counts, + vpx_calloc(1, sizeof(*thread_data->td->counts))); + + // Create threads + if (!winterface->reset(worker)) + vpx_internal_error(&cm->error, VPX_CODEC_ERROR, + "Tile encoder thread creation failed"); + } else { + // Main thread acts as a worker and uses the thread data in cpi. + thread_data->cpi = cpi; + thread_data->td = &cpi->td; + } + winterface->sync(worker); + } + } +} + +static void launch_enc_workers(VP9_COMP *cpi, VPxWorkerHook hook, void *data2, + int num_workers) { + const VPxWorkerInterface *const winterface = vpx_get_worker_interface(); + int i; + + for (i = 0; i < num_workers; i++) { + VPxWorker *const worker = &cpi->workers[i]; + worker->hook = hook; + worker->data1 = &cpi->tile_thr_data[i]; + worker->data2 = data2; + } + + // Encode a frame + for (i = 0; i < num_workers; i++) { + VPxWorker *const worker = &cpi->workers[i]; + EncWorkerData *const thread_data = (EncWorkerData *)worker->data1; + + // Set the starting tile for each thread. + thread_data->start = i; + + if (i == cpi->num_workers - 1) + winterface->execute(worker); + else + winterface->launch(worker); + } + + // Encoding ends. + for (i = 0; i < num_workers; i++) { + VPxWorker *const worker = &cpi->workers[i]; + winterface->sync(worker); + } +} + +void vp9_encode_tiles_mt(VP9_COMP *cpi) { + VP9_COMMON *const cm = &cpi->common; + const int tile_cols = 1 << cm->log2_tile_cols; + const int num_workers = VPXMIN(cpi->oxcf.max_threads, tile_cols); + int i; + + vp9_init_tile_data(cpi); + + create_enc_workers(cpi, num_workers); + + for (i = 0; i < num_workers; i++) { + EncWorkerData *thread_data; + thread_data = &cpi->tile_thr_data[i]; + + // Before encoding a frame, copy the thread data from cpi. + if (thread_data->td != &cpi->td) { + thread_data->td->mb = cpi->td.mb; + thread_data->td->rd_counts = cpi->td.rd_counts; + } + if (thread_data->td->counts != &cpi->common.counts) { + memcpy(thread_data->td->counts, &cpi->common.counts, + sizeof(cpi->common.counts)); + } + + // Handle use_nonrd_pick_mode case. + if (cpi->sf.use_nonrd_pick_mode) { + MACROBLOCK *const x = &thread_data->td->mb; + MACROBLOCKD *const xd = &x->e_mbd; + struct macroblock_plane *const p = x->plane; + struct macroblockd_plane *const pd = xd->plane; + PICK_MODE_CONTEXT *ctx = &thread_data->td->pc_root->none; + int j; + + for (j = 0; j < MAX_MB_PLANE; ++j) { + p[j].coeff = ctx->coeff_pbuf[j][0]; + p[j].qcoeff = ctx->qcoeff_pbuf[j][0]; + pd[j].dqcoeff = ctx->dqcoeff_pbuf[j][0]; + p[j].eobs = ctx->eobs_pbuf[j][0]; + } + } + } + + launch_enc_workers(cpi, enc_worker_hook, NULL, num_workers); + + for (i = 0; i < num_workers; i++) { + VPxWorker *const worker = &cpi->workers[i]; + EncWorkerData *const thread_data = (EncWorkerData *)worker->data1; + + // Accumulate counters. + if (i < cpi->num_workers - 1) { + vp9_accumulate_frame_counts(&cm->counts, thread_data->td->counts, 0); + accumulate_rd_opt(&cpi->td, thread_data->td); + } + } +} + +#if !CONFIG_REALTIME_ONLY +static void accumulate_fp_tile_stat(TileDataEnc *tile_data, + TileDataEnc *tile_data_t) { + tile_data->fp_data.intra_factor += tile_data_t->fp_data.intra_factor; + tile_data->fp_data.brightness_factor += + tile_data_t->fp_data.brightness_factor; + tile_data->fp_data.coded_error += tile_data_t->fp_data.coded_error; + tile_data->fp_data.sr_coded_error += tile_data_t->fp_data.sr_coded_error; + tile_data->fp_data.frame_noise_energy += + tile_data_t->fp_data.frame_noise_energy; + tile_data->fp_data.intra_error += tile_data_t->fp_data.intra_error; + tile_data->fp_data.intercount += tile_data_t->fp_data.intercount; + tile_data->fp_data.second_ref_count += tile_data_t->fp_data.second_ref_count; + tile_data->fp_data.neutral_count += tile_data_t->fp_data.neutral_count; + tile_data->fp_data.intra_count_low += tile_data_t->fp_data.intra_count_low; + tile_data->fp_data.intra_count_high += tile_data_t->fp_data.intra_count_high; + tile_data->fp_data.intra_skip_count += tile_data_t->fp_data.intra_skip_count; + tile_data->fp_data.mvcount += tile_data_t->fp_data.mvcount; + tile_data->fp_data.sum_mvr += tile_data_t->fp_data.sum_mvr; + tile_data->fp_data.sum_mvr_abs += tile_data_t->fp_data.sum_mvr_abs; + tile_data->fp_data.sum_mvc += tile_data_t->fp_data.sum_mvc; + tile_data->fp_data.sum_mvc_abs += tile_data_t->fp_data.sum_mvc_abs; + tile_data->fp_data.sum_mvrs += tile_data_t->fp_data.sum_mvrs; + tile_data->fp_data.sum_mvcs += tile_data_t->fp_data.sum_mvcs; + tile_data->fp_data.sum_in_vectors += tile_data_t->fp_data.sum_in_vectors; + tile_data->fp_data.intra_smooth_count += + tile_data_t->fp_data.intra_smooth_count; + tile_data->fp_data.image_data_start_row = + VPXMIN(tile_data->fp_data.image_data_start_row, + tile_data_t->fp_data.image_data_start_row) == INVALID_ROW + ? VPXMAX(tile_data->fp_data.image_data_start_row, + tile_data_t->fp_data.image_data_start_row) + : VPXMIN(tile_data->fp_data.image_data_start_row, + tile_data_t->fp_data.image_data_start_row); +} +#endif // !CONFIG_REALTIME_ONLY + +// Allocate memory for row synchronization +void vp9_row_mt_sync_mem_alloc(VP9RowMTSync *row_mt_sync, VP9_COMMON *cm, + int rows) { + row_mt_sync->rows = rows; +#if CONFIG_MULTITHREAD + { + int i; + + CHECK_MEM_ERROR(cm, row_mt_sync->mutex_, + vpx_malloc(sizeof(*row_mt_sync->mutex_) * rows)); + if (row_mt_sync->mutex_) { + for (i = 0; i < rows; ++i) { + pthread_mutex_init(&row_mt_sync->mutex_[i], NULL); + } + } + + CHECK_MEM_ERROR(cm, row_mt_sync->cond_, + vpx_malloc(sizeof(*row_mt_sync->cond_) * rows)); + if (row_mt_sync->cond_) { + for (i = 0; i < rows; ++i) { + pthread_cond_init(&row_mt_sync->cond_[i], NULL); + } + } + } +#endif // CONFIG_MULTITHREAD + + CHECK_MEM_ERROR(cm, row_mt_sync->cur_col, + vpx_malloc(sizeof(*row_mt_sync->cur_col) * rows)); + + // Set up nsync. + row_mt_sync->sync_range = 1; +} + +// Deallocate row based multi-threading synchronization related mutex and data +void vp9_row_mt_sync_mem_dealloc(VP9RowMTSync *row_mt_sync) { + if (row_mt_sync != NULL) { +#if CONFIG_MULTITHREAD + int i; + + if (row_mt_sync->mutex_ != NULL) { + for (i = 0; i < row_mt_sync->rows; ++i) { + pthread_mutex_destroy(&row_mt_sync->mutex_[i]); + } + vpx_free(row_mt_sync->mutex_); + } + if (row_mt_sync->cond_ != NULL) { + for (i = 0; i < row_mt_sync->rows; ++i) { + pthread_cond_destroy(&row_mt_sync->cond_[i]); + } + vpx_free(row_mt_sync->cond_); + } +#endif // CONFIG_MULTITHREAD + vpx_free(row_mt_sync->cur_col); + // clear the structure as the source of this call may be dynamic change + // in tiles in which case this call will be followed by an _alloc() + // which may fail. + vp9_zero(*row_mt_sync); + } +} + +void vp9_row_mt_sync_read(VP9RowMTSync *const row_mt_sync, int r, int c) { +#if CONFIG_MULTITHREAD + const int nsync = row_mt_sync->sync_range; + + if (r && !(c & (nsync - 1))) { + pthread_mutex_t *const mutex = &row_mt_sync->mutex_[r - 1]; + pthread_mutex_lock(mutex); + + while (c > row_mt_sync->cur_col[r - 1] - nsync + 1) { + pthread_cond_wait(&row_mt_sync->cond_[r - 1], mutex); + } + pthread_mutex_unlock(mutex); + } +#else + (void)row_mt_sync; + (void)r; + (void)c; +#endif // CONFIG_MULTITHREAD +} + +void vp9_row_mt_sync_read_dummy(VP9RowMTSync *const row_mt_sync, int r, int c) { + (void)row_mt_sync; + (void)r; + (void)c; + return; +} + +void vp9_row_mt_sync_write(VP9RowMTSync *const row_mt_sync, int r, int c, + const int cols) { +#if CONFIG_MULTITHREAD + const int nsync = row_mt_sync->sync_range; + int cur; + // Only signal when there are enough encoded blocks for next row to run. + int sig = 1; + + if (c < cols - 1) { + cur = c; + if (c % nsync != nsync - 1) sig = 0; + } else { + cur = cols + nsync; + } + + if (sig) { + pthread_mutex_lock(&row_mt_sync->mutex_[r]); + + row_mt_sync->cur_col[r] = cur; + + pthread_cond_signal(&row_mt_sync->cond_[r]); + pthread_mutex_unlock(&row_mt_sync->mutex_[r]); + } +#else + (void)row_mt_sync; + (void)r; + (void)c; + (void)cols; +#endif // CONFIG_MULTITHREAD +} + +void vp9_row_mt_sync_write_dummy(VP9RowMTSync *const row_mt_sync, int r, int c, + const int cols) { + (void)row_mt_sync; + (void)r; + (void)c; + (void)cols; + return; +} + +#if !CONFIG_REALTIME_ONLY +static int first_pass_worker_hook(EncWorkerData *const thread_data, + MultiThreadHandle *multi_thread_ctxt) { + VP9_COMP *const cpi = thread_data->cpi; + const VP9_COMMON *const cm = &cpi->common; + const int tile_cols = 1 << cm->log2_tile_cols; + int tile_row, tile_col; + TileDataEnc *this_tile; + int end_of_frame; + int thread_id = thread_data->thread_id; + int cur_tile_id = multi_thread_ctxt->thread_id_to_tile_id[thread_id]; + JobNode *proc_job = NULL; + FIRSTPASS_DATA fp_acc_data; + MV zero_mv = { 0, 0 }; + MV best_ref_mv; + int mb_row; + + end_of_frame = 0; + while (0 == end_of_frame) { + // Get the next job in the queue + proc_job = + (JobNode *)vp9_enc_grp_get_next_job(multi_thread_ctxt, cur_tile_id); + if (NULL == proc_job) { + // Query for the status of other tiles + end_of_frame = vp9_get_tiles_proc_status( + multi_thread_ctxt, thread_data->tile_completion_status, &cur_tile_id, + tile_cols); + } else { + tile_col = proc_job->tile_col_id; + tile_row = proc_job->tile_row_id; + + this_tile = &cpi->tile_data[tile_row * tile_cols + tile_col]; + mb_row = proc_job->vert_unit_row_num; + + best_ref_mv = zero_mv; + vp9_zero(fp_acc_data); + fp_acc_data.image_data_start_row = INVALID_ROW; + vp9_first_pass_encode_tile_mb_row(cpi, thread_data->td, &fp_acc_data, + this_tile, &best_ref_mv, mb_row); + } + } + return 0; +} + +void vp9_encode_fp_row_mt(VP9_COMP *cpi) { + VP9_COMMON *const cm = &cpi->common; + const int tile_cols = 1 << cm->log2_tile_cols; + const int tile_rows = 1 << cm->log2_tile_rows; + MultiThreadHandle *multi_thread_ctxt = &cpi->multi_thread_ctxt; + TileDataEnc *first_tile_col; + int num_workers = VPXMAX(cpi->oxcf.max_threads, 1); + int i; + + if (multi_thread_ctxt->allocated_tile_cols < tile_cols || + multi_thread_ctxt->allocated_tile_rows < tile_rows || + multi_thread_ctxt->allocated_vert_unit_rows < cm->mb_rows) { + vp9_row_mt_mem_dealloc(cpi); + vp9_init_tile_data(cpi); + vp9_row_mt_mem_alloc(cpi); + } else { + vp9_init_tile_data(cpi); + } + + create_enc_workers(cpi, num_workers); + + vp9_assign_tile_to_thread(multi_thread_ctxt, tile_cols, cpi->num_workers); + + vp9_prepare_job_queue(cpi, FIRST_PASS_JOB); + + vp9_multi_thread_tile_init(cpi); + + for (i = 0; i < num_workers; i++) { + EncWorkerData *thread_data; + thread_data = &cpi->tile_thr_data[i]; + + // Before encoding a frame, copy the thread data from cpi. + if (thread_data->td != &cpi->td) { + thread_data->td->mb = cpi->td.mb; + } + } + + launch_enc_workers(cpi, (VPxWorkerHook)first_pass_worker_hook, + multi_thread_ctxt, num_workers); + + first_tile_col = &cpi->tile_data[0]; + for (i = 1; i < tile_cols; i++) { + TileDataEnc *this_tile = &cpi->tile_data[i]; + accumulate_fp_tile_stat(first_tile_col, this_tile); + } +} + +static int temporal_filter_worker_hook(EncWorkerData *const thread_data, + MultiThreadHandle *multi_thread_ctxt) { + VP9_COMP *const cpi = thread_data->cpi; + const VP9_COMMON *const cm = &cpi->common; + const int tile_cols = 1 << cm->log2_tile_cols; + int tile_row, tile_col; + int mb_col_start, mb_col_end; + TileDataEnc *this_tile; + int end_of_frame; + int thread_id = thread_data->thread_id; + int cur_tile_id = multi_thread_ctxt->thread_id_to_tile_id[thread_id]; + JobNode *proc_job = NULL; + int mb_row; + + end_of_frame = 0; + while (0 == end_of_frame) { + // Get the next job in the queue + proc_job = + (JobNode *)vp9_enc_grp_get_next_job(multi_thread_ctxt, cur_tile_id); + if (NULL == proc_job) { + // Query for the status of other tiles + end_of_frame = vp9_get_tiles_proc_status( + multi_thread_ctxt, thread_data->tile_completion_status, &cur_tile_id, + tile_cols); + } else { + tile_col = proc_job->tile_col_id; + tile_row = proc_job->tile_row_id; + this_tile = &cpi->tile_data[tile_row * tile_cols + tile_col]; + mb_col_start = (this_tile->tile_info.mi_col_start) >> 1; + mb_col_end = (this_tile->tile_info.mi_col_end + 1) >> 1; + mb_row = proc_job->vert_unit_row_num; + + vp9_temporal_filter_iterate_row_c(cpi, thread_data->td, mb_row, + mb_col_start, mb_col_end); + } + } + return 0; +} + +void vp9_temporal_filter_row_mt(VP9_COMP *cpi) { + VP9_COMMON *const cm = &cpi->common; + const int tile_cols = 1 << cm->log2_tile_cols; + const int tile_rows = 1 << cm->log2_tile_rows; + MultiThreadHandle *multi_thread_ctxt = &cpi->multi_thread_ctxt; + int num_workers = cpi->num_workers ? cpi->num_workers : 1; + int i; + + if (multi_thread_ctxt->allocated_tile_cols < tile_cols || + multi_thread_ctxt->allocated_tile_rows < tile_rows || + multi_thread_ctxt->allocated_vert_unit_rows < cm->mb_rows) { + vp9_row_mt_mem_dealloc(cpi); + vp9_init_tile_data(cpi); + vp9_row_mt_mem_alloc(cpi); + } else { + vp9_init_tile_data(cpi); + } + + create_enc_workers(cpi, num_workers); + + vp9_assign_tile_to_thread(multi_thread_ctxt, tile_cols, cpi->num_workers); + + vp9_prepare_job_queue(cpi, ARNR_JOB); + + for (i = 0; i < num_workers; i++) { + EncWorkerData *thread_data; + thread_data = &cpi->tile_thr_data[i]; + + // Before encoding a frame, copy the thread data from cpi. + if (thread_data->td != &cpi->td) { + thread_data->td->mb = cpi->td.mb; + } + } + + launch_enc_workers(cpi, (VPxWorkerHook)temporal_filter_worker_hook, + multi_thread_ctxt, num_workers); +} +#endif // !CONFIG_REALTIME_ONLY + +static int enc_row_mt_worker_hook(EncWorkerData *const thread_data, + MultiThreadHandle *multi_thread_ctxt) { + VP9_COMP *const cpi = thread_data->cpi; + const VP9_COMMON *const cm = &cpi->common; + const int tile_cols = 1 << cm->log2_tile_cols; + int tile_row, tile_col; + int end_of_frame; + int thread_id = thread_data->thread_id; + int cur_tile_id = multi_thread_ctxt->thread_id_to_tile_id[thread_id]; + JobNode *proc_job = NULL; + int mi_row; + + end_of_frame = 0; + while (0 == end_of_frame) { + // Get the next job in the queue + proc_job = + (JobNode *)vp9_enc_grp_get_next_job(multi_thread_ctxt, cur_tile_id); + if (NULL == proc_job) { + // Query for the status of other tiles + end_of_frame = vp9_get_tiles_proc_status( + multi_thread_ctxt, thread_data->tile_completion_status, &cur_tile_id, + tile_cols); + } else { + tile_col = proc_job->tile_col_id; + tile_row = proc_job->tile_row_id; + mi_row = proc_job->vert_unit_row_num * MI_BLOCK_SIZE; + + vp9_encode_sb_row(cpi, thread_data->td, tile_row, tile_col, mi_row); + } + } + return 0; +} + +void vp9_encode_tiles_row_mt(VP9_COMP *cpi) { + VP9_COMMON *const cm = &cpi->common; + const int tile_cols = 1 << cm->log2_tile_cols; + const int tile_rows = 1 << cm->log2_tile_rows; + MultiThreadHandle *multi_thread_ctxt = &cpi->multi_thread_ctxt; + int num_workers = VPXMAX(cpi->oxcf.max_threads, 1); + int i; + + if (multi_thread_ctxt->allocated_tile_cols < tile_cols || + multi_thread_ctxt->allocated_tile_rows < tile_rows || + multi_thread_ctxt->allocated_vert_unit_rows < cm->mb_rows) { + vp9_row_mt_mem_dealloc(cpi); + vp9_init_tile_data(cpi); + vp9_row_mt_mem_alloc(cpi); + } else { + vp9_init_tile_data(cpi); + } + + create_enc_workers(cpi, num_workers); + + vp9_assign_tile_to_thread(multi_thread_ctxt, tile_cols, cpi->num_workers); + + vp9_prepare_job_queue(cpi, ENCODE_JOB); + + vp9_multi_thread_tile_init(cpi); + + for (i = 0; i < num_workers; i++) { + EncWorkerData *thread_data; + thread_data = &cpi->tile_thr_data[i]; + // Before encoding a frame, copy the thread data from cpi. + if (thread_data->td != &cpi->td) { + thread_data->td->mb = cpi->td.mb; + thread_data->td->rd_counts = cpi->td.rd_counts; + } + if (thread_data->td->counts != &cpi->common.counts) { + memcpy(thread_data->td->counts, &cpi->common.counts, + sizeof(cpi->common.counts)); + } + + // Handle use_nonrd_pick_mode case. + if (cpi->sf.use_nonrd_pick_mode) { + MACROBLOCK *const x = &thread_data->td->mb; + MACROBLOCKD *const xd = &x->e_mbd; + struct macroblock_plane *const p = x->plane; + struct macroblockd_plane *const pd = xd->plane; + PICK_MODE_CONTEXT *ctx = &thread_data->td->pc_root->none; + int j; + + for (j = 0; j < MAX_MB_PLANE; ++j) { + p[j].coeff = ctx->coeff_pbuf[j][0]; + p[j].qcoeff = ctx->qcoeff_pbuf[j][0]; + pd[j].dqcoeff = ctx->dqcoeff_pbuf[j][0]; + p[j].eobs = ctx->eobs_pbuf[j][0]; + } + } + } + + launch_enc_workers(cpi, (VPxWorkerHook)enc_row_mt_worker_hook, + multi_thread_ctxt, num_workers); + + for (i = 0; i < num_workers; i++) { + VPxWorker *const worker = &cpi->workers[i]; + EncWorkerData *const thread_data = (EncWorkerData *)worker->data1; + + // Accumulate counters. + if (i < cpi->num_workers - 1) { + vp9_accumulate_frame_counts(&cm->counts, thread_data->td->counts, 0); + accumulate_rd_opt(&cpi->td, thread_data->td); + } + } +} diff --git a/vp9/encoder/vp9_ethread.h b/vp9/encoder/vp9_ethread.h new file mode 100644 index 0000000..a396e62 --- /dev/null +++ b/vp9/encoder/vp9_ethread.h @@ -0,0 +1,72 @@ +/* + * Copyright (c) 2014 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP9_ENCODER_VP9_ETHREAD_H_ +#define VP9_ENCODER_VP9_ETHREAD_H_ + +#ifdef __cplusplus +extern "C" { +#endif + +#define MAX_NUM_TILE_COLS (1 << 6) +#define MAX_NUM_TILE_ROWS 4 +#define MAX_NUM_THREADS 80 + +struct VP9_COMP; +struct ThreadData; + +typedef struct EncWorkerData { + struct VP9_COMP *cpi; + struct ThreadData *td; + int start; + int thread_id; + int tile_completion_status[MAX_NUM_TILE_COLS]; +} EncWorkerData; + +// Encoder row synchronization +typedef struct VP9RowMTSyncData { +#if CONFIG_MULTITHREAD + pthread_mutex_t *mutex_; + pthread_cond_t *cond_; +#endif + // Allocate memory to store the sb/mb block index in each row. + int *cur_col; + int sync_range; + int rows; +} VP9RowMTSync; + +void vp9_encode_tiles_mt(struct VP9_COMP *cpi); + +void vp9_encode_tiles_row_mt(struct VP9_COMP *cpi); + +void vp9_encode_fp_row_mt(struct VP9_COMP *cpi); + +void vp9_row_mt_sync_read(VP9RowMTSync *const row_mt_sync, int r, int c); +void vp9_row_mt_sync_write(VP9RowMTSync *const row_mt_sync, int r, int c, + const int cols); + +void vp9_row_mt_sync_read_dummy(VP9RowMTSync *const row_mt_sync, int r, int c); +void vp9_row_mt_sync_write_dummy(VP9RowMTSync *const row_mt_sync, int r, int c, + const int cols); + +// Allocate memory for row based multi-threading synchronization. +void vp9_row_mt_sync_mem_alloc(VP9RowMTSync *row_mt_sync, struct VP9Common *cm, + int rows); + +// Deallocate row based multi-threading synchronization related mutex and data. +void vp9_row_mt_sync_mem_dealloc(VP9RowMTSync *row_mt_sync); + +void vp9_temporal_filter_row_mt(struct VP9_COMP *cpi); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP9_ENCODER_VP9_ETHREAD_H_ diff --git a/vp9/encoder/vp9_extend.c b/vp9/encoder/vp9_extend.c new file mode 100644 index 0000000..f8e2461 --- /dev/null +++ b/vp9/encoder/vp9_extend.c @@ -0,0 +1,191 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "vpx_dsp/vpx_dsp_common.h" +#include "vpx_mem/vpx_mem.h" +#include "vpx_ports/mem.h" + +#include "vp9/common/vp9_common.h" +#include "vp9/encoder/vp9_extend.h" + +static void copy_and_extend_plane(const uint8_t *src, int src_pitch, + uint8_t *dst, int dst_pitch, int w, int h, + int extend_top, int extend_left, + int extend_bottom, int extend_right) { + int i, linesize; + + // copy the left and right most columns out + const uint8_t *src_ptr1 = src; + const uint8_t *src_ptr2 = src + w - 1; + uint8_t *dst_ptr1 = dst - extend_left; + uint8_t *dst_ptr2 = dst + w; + + for (i = 0; i < h; i++) { + memset(dst_ptr1, src_ptr1[0], extend_left); + memcpy(dst_ptr1 + extend_left, src_ptr1, w); + memset(dst_ptr2, src_ptr2[0], extend_right); + src_ptr1 += src_pitch; + src_ptr2 += src_pitch; + dst_ptr1 += dst_pitch; + dst_ptr2 += dst_pitch; + } + + // Now copy the top and bottom lines into each line of the respective + // borders + src_ptr1 = dst - extend_left; + src_ptr2 = dst + dst_pitch * (h - 1) - extend_left; + dst_ptr1 = dst + dst_pitch * (-extend_top) - extend_left; + dst_ptr2 = dst + dst_pitch * (h)-extend_left; + linesize = extend_left + extend_right + w; + + for (i = 0; i < extend_top; i++) { + memcpy(dst_ptr1, src_ptr1, linesize); + dst_ptr1 += dst_pitch; + } + + for (i = 0; i < extend_bottom; i++) { + memcpy(dst_ptr2, src_ptr2, linesize); + dst_ptr2 += dst_pitch; + } +} + +#if CONFIG_VP9_HIGHBITDEPTH +static void highbd_copy_and_extend_plane(const uint8_t *src8, int src_pitch, + uint8_t *dst8, int dst_pitch, int w, + int h, int extend_top, int extend_left, + int extend_bottom, int extend_right) { + int i, linesize; + uint16_t *src = CONVERT_TO_SHORTPTR(src8); + uint16_t *dst = CONVERT_TO_SHORTPTR(dst8); + + // copy the left and right most columns out + const uint16_t *src_ptr1 = src; + const uint16_t *src_ptr2 = src + w - 1; + uint16_t *dst_ptr1 = dst - extend_left; + uint16_t *dst_ptr2 = dst + w; + + for (i = 0; i < h; i++) { + vpx_memset16(dst_ptr1, src_ptr1[0], extend_left); + memcpy(dst_ptr1 + extend_left, src_ptr1, w * sizeof(src_ptr1[0])); + vpx_memset16(dst_ptr2, src_ptr2[0], extend_right); + src_ptr1 += src_pitch; + src_ptr2 += src_pitch; + dst_ptr1 += dst_pitch; + dst_ptr2 += dst_pitch; + } + + // Now copy the top and bottom lines into each line of the respective + // borders + src_ptr1 = dst - extend_left; + src_ptr2 = dst + dst_pitch * (h - 1) - extend_left; + dst_ptr1 = dst + dst_pitch * (-extend_top) - extend_left; + dst_ptr2 = dst + dst_pitch * (h)-extend_left; + linesize = extend_left + extend_right + w; + + for (i = 0; i < extend_top; i++) { + memcpy(dst_ptr1, src_ptr1, linesize * sizeof(src_ptr1[0])); + dst_ptr1 += dst_pitch; + } + + for (i = 0; i < extend_bottom; i++) { + memcpy(dst_ptr2, src_ptr2, linesize * sizeof(src_ptr2[0])); + dst_ptr2 += dst_pitch; + } +} +#endif // CONFIG_VP9_HIGHBITDEPTH + +void vp9_copy_and_extend_frame(const YV12_BUFFER_CONFIG *src, + YV12_BUFFER_CONFIG *dst) { + // Extend src frame in buffer + // Altref filtering assumes 16 pixel extension + const int et_y = 16; + const int el_y = 16; + // Motion estimation may use src block variance with the block size up + // to 64x64, so the right and bottom need to be extended to 64 multiple + // or up to 16, whichever is greater. + const int er_y = + VPXMAX(src->y_width + 16, ALIGN_POWER_OF_TWO(src->y_width, 6)) - + src->y_crop_width; + const int eb_y = + VPXMAX(src->y_height + 16, ALIGN_POWER_OF_TWO(src->y_height, 6)) - + src->y_crop_height; + const int uv_width_subsampling = (src->uv_width != src->y_width); + const int uv_height_subsampling = (src->uv_height != src->y_height); + const int et_uv = et_y >> uv_height_subsampling; + const int el_uv = el_y >> uv_width_subsampling; + const int eb_uv = eb_y >> uv_height_subsampling; + const int er_uv = er_y >> uv_width_subsampling; + +#if CONFIG_VP9_HIGHBITDEPTH + if (src->flags & YV12_FLAG_HIGHBITDEPTH) { + highbd_copy_and_extend_plane(src->y_buffer, src->y_stride, dst->y_buffer, + dst->y_stride, src->y_crop_width, + src->y_crop_height, et_y, el_y, eb_y, er_y); + + highbd_copy_and_extend_plane( + src->u_buffer, src->uv_stride, dst->u_buffer, dst->uv_stride, + src->uv_crop_width, src->uv_crop_height, et_uv, el_uv, eb_uv, er_uv); + + highbd_copy_and_extend_plane( + src->v_buffer, src->uv_stride, dst->v_buffer, dst->uv_stride, + src->uv_crop_width, src->uv_crop_height, et_uv, el_uv, eb_uv, er_uv); + return; + } +#endif // CONFIG_VP9_HIGHBITDEPTH + + copy_and_extend_plane(src->y_buffer, src->y_stride, dst->y_buffer, + dst->y_stride, src->y_crop_width, src->y_crop_height, + et_y, el_y, eb_y, er_y); + + copy_and_extend_plane(src->u_buffer, src->uv_stride, dst->u_buffer, + dst->uv_stride, src->uv_crop_width, src->uv_crop_height, + et_uv, el_uv, eb_uv, er_uv); + + copy_and_extend_plane(src->v_buffer, src->uv_stride, dst->v_buffer, + dst->uv_stride, src->uv_crop_width, src->uv_crop_height, + et_uv, el_uv, eb_uv, er_uv); +} + +void vp9_copy_and_extend_frame_with_rect(const YV12_BUFFER_CONFIG *src, + YV12_BUFFER_CONFIG *dst, int srcy, + int srcx, int srch, int srcw) { + // If the side is not touching the bounder then don't extend. + const int et_y = srcy ? 0 : dst->border; + const int el_y = srcx ? 0 : dst->border; + const int eb_y = srcy + srch != src->y_height + ? 0 + : dst->border + dst->y_height - src->y_height; + const int er_y = srcx + srcw != src->y_width + ? 0 + : dst->border + dst->y_width - src->y_width; + const int src_y_offset = srcy * src->y_stride + srcx; + const int dst_y_offset = srcy * dst->y_stride + srcx; + + const int et_uv = ROUND_POWER_OF_TWO(et_y, 1); + const int el_uv = ROUND_POWER_OF_TWO(el_y, 1); + const int eb_uv = ROUND_POWER_OF_TWO(eb_y, 1); + const int er_uv = ROUND_POWER_OF_TWO(er_y, 1); + const int src_uv_offset = ((srcy * src->uv_stride) >> 1) + (srcx >> 1); + const int dst_uv_offset = ((srcy * dst->uv_stride) >> 1) + (srcx >> 1); + const int srch_uv = ROUND_POWER_OF_TWO(srch, 1); + const int srcw_uv = ROUND_POWER_OF_TWO(srcw, 1); + + copy_and_extend_plane(src->y_buffer + src_y_offset, src->y_stride, + dst->y_buffer + dst_y_offset, dst->y_stride, srcw, srch, + et_y, el_y, eb_y, er_y); + + copy_and_extend_plane(src->u_buffer + src_uv_offset, src->uv_stride, + dst->u_buffer + dst_uv_offset, dst->uv_stride, srcw_uv, + srch_uv, et_uv, el_uv, eb_uv, er_uv); + + copy_and_extend_plane(src->v_buffer + src_uv_offset, src->uv_stride, + dst->v_buffer + dst_uv_offset, dst->uv_stride, srcw_uv, + srch_uv, et_uv, el_uv, eb_uv, er_uv); +} diff --git a/vp9/encoder/vp9_extend.h b/vp9/encoder/vp9_extend.h new file mode 100644 index 0000000..c0dd757 --- /dev/null +++ b/vp9/encoder/vp9_extend.h @@ -0,0 +1,31 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP9_ENCODER_VP9_EXTEND_H_ +#define VP9_ENCODER_VP9_EXTEND_H_ + +#include "vpx_scale/yv12config.h" +#include "vpx/vpx_integer.h" + +#ifdef __cplusplus +extern "C" { +#endif + +void vp9_copy_and_extend_frame(const YV12_BUFFER_CONFIG *src, + YV12_BUFFER_CONFIG *dst); + +void vp9_copy_and_extend_frame_with_rect(const YV12_BUFFER_CONFIG *src, + YV12_BUFFER_CONFIG *dst, int srcy, + int srcx, int srch, int srcw); +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP9_ENCODER_VP9_EXTEND_H_ diff --git a/vp9/encoder/vp9_firstpass.c b/vp9/encoder/vp9_firstpass.c new file mode 100644 index 0000000..fb6b132 --- /dev/null +++ b/vp9/encoder/vp9_firstpass.c @@ -0,0 +1,3420 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include +#include + +#include "./vpx_dsp_rtcd.h" +#include "./vpx_scale_rtcd.h" + +#include "vpx_dsp/vpx_dsp_common.h" +#include "vpx_mem/vpx_mem.h" +#include "vpx_ports/mem.h" +#include "vpx_ports/system_state.h" +#include "vpx_scale/vpx_scale.h" +#include "vpx_scale/yv12config.h" + +#include "vp9/common/vp9_entropymv.h" +#include "vp9/common/vp9_quant_common.h" +#include "vp9/common/vp9_reconinter.h" // vp9_setup_dst_planes() +#include "vp9/encoder/vp9_aq_variance.h" +#include "vp9/encoder/vp9_block.h" +#include "vp9/encoder/vp9_encodeframe.h" +#include "vp9/encoder/vp9_encodemb.h" +#include "vp9/encoder/vp9_encodemv.h" +#include "vp9/encoder/vp9_encoder.h" +#include "vp9/encoder/vp9_ethread.h" +#include "vp9/encoder/vp9_extend.h" +#include "vp9/encoder/vp9_firstpass.h" +#include "vp9/encoder/vp9_mcomp.h" +#include "vp9/encoder/vp9_quantize.h" +#include "vp9/encoder/vp9_rd.h" +#include "vpx_dsp/variance.h" + +#define OUTPUT_FPF 0 +#define ARF_STATS_OUTPUT 0 +#define COMPLEXITY_STATS_OUTPUT 0 + +#define FIRST_PASS_Q 10.0 +#define INTRA_MODE_PENALTY 1024 +#define MIN_ARF_GF_BOOST 240 +#define MIN_DECAY_FACTOR 0.01 +#define NEW_MV_MODE_PENALTY 32 +#define DARK_THRESH 64 +#define DEFAULT_GRP_WEIGHT 1.0 +#define RC_FACTOR_MIN 0.75 +#define RC_FACTOR_MAX 1.75 +#define SECTION_NOISE_DEF 250.0 +#define LOW_I_THRESH 24000 + +#define NCOUNT_INTRA_THRESH 8192 +#define NCOUNT_INTRA_FACTOR 3 + +#define DOUBLE_DIVIDE_CHECK(x) ((x) < 0 ? (x)-0.000001 : (x) + 0.000001) + +#if ARF_STATS_OUTPUT +unsigned int arf_count = 0; +#endif + +// Resets the first pass file to the given position using a relative seek from +// the current position. +static void reset_fpf_position(TWO_PASS *p, const FIRSTPASS_STATS *position) { + p->stats_in = position; +} + +// Read frame stats at an offset from the current position. +static const FIRSTPASS_STATS *read_frame_stats(const TWO_PASS *p, int offset) { + if ((offset >= 0 && p->stats_in + offset >= p->stats_in_end) || + (offset < 0 && p->stats_in + offset < p->stats_in_start)) { + return NULL; + } + + return &p->stats_in[offset]; +} + +static int input_stats(TWO_PASS *p, FIRSTPASS_STATS *fps) { + if (p->stats_in >= p->stats_in_end) return EOF; + + *fps = *p->stats_in; + ++p->stats_in; + return 1; +} + +static void output_stats(FIRSTPASS_STATS *stats, + struct vpx_codec_pkt_list *pktlist) { + struct vpx_codec_cx_pkt pkt; + pkt.kind = VPX_CODEC_STATS_PKT; + pkt.data.twopass_stats.buf = stats; + pkt.data.twopass_stats.sz = sizeof(FIRSTPASS_STATS); + vpx_codec_pkt_list_add(pktlist, &pkt); + +// TEMP debug code +#if OUTPUT_FPF + { + FILE *fpfile; + fpfile = fopen("firstpass.stt", "a"); + + fprintf(fpfile, + "%12.0lf %12.4lf %12.2lf %12.2lf %12.2lf %12.0lf %12.4lf %12.4lf" + "%12.4lf %12.4lf %12.4lf %12.4lf %12.4lf %12.4lf %12.4lf %12.4lf" + "%12.4lf %12.4lf %12.4lf %12.4lf %12.4lf %12.0lf %12.0lf %12.0lf" + "%12.4lf" + "\n", + stats->frame, stats->weight, stats->intra_error, stats->coded_error, + stats->sr_coded_error, stats->frame_noise_energy, stats->pcnt_inter, + stats->pcnt_motion, stats->pcnt_second_ref, stats->pcnt_neutral, + stats->pcnt_intra_low, stats->pcnt_intra_high, + stats->intra_skip_pct, stats->intra_smooth_pct, + stats->inactive_zone_rows, stats->inactive_zone_cols, stats->MVr, + stats->mvr_abs, stats->MVc, stats->mvc_abs, stats->MVrv, + stats->MVcv, stats->mv_in_out_count, stats->count, stats->duration); + fclose(fpfile); + } +#endif +} + +#if CONFIG_FP_MB_STATS +static void output_fpmb_stats(uint8_t *this_frame_mb_stats, VP9_COMMON *cm, + struct vpx_codec_pkt_list *pktlist) { + struct vpx_codec_cx_pkt pkt; + pkt.kind = VPX_CODEC_FPMB_STATS_PKT; + pkt.data.firstpass_mb_stats.buf = this_frame_mb_stats; + pkt.data.firstpass_mb_stats.sz = cm->initial_mbs * sizeof(uint8_t); + vpx_codec_pkt_list_add(pktlist, &pkt); +} +#endif + +static void zero_stats(FIRSTPASS_STATS *section) { + section->frame = 0.0; + section->weight = 0.0; + section->intra_error = 0.0; + section->coded_error = 0.0; + section->sr_coded_error = 0.0; + section->frame_noise_energy = 0.0; + section->pcnt_inter = 0.0; + section->pcnt_motion = 0.0; + section->pcnt_second_ref = 0.0; + section->pcnt_neutral = 0.0; + section->intra_skip_pct = 0.0; + section->intra_smooth_pct = 0.0; + section->pcnt_intra_low = 0.0; + section->pcnt_intra_high = 0.0; + section->inactive_zone_rows = 0.0; + section->inactive_zone_cols = 0.0; + section->MVr = 0.0; + section->mvr_abs = 0.0; + section->MVc = 0.0; + section->mvc_abs = 0.0; + section->MVrv = 0.0; + section->MVcv = 0.0; + section->mv_in_out_count = 0.0; + section->count = 0.0; + section->duration = 1.0; + section->spatial_layer_id = 0; +} + +static void accumulate_stats(FIRSTPASS_STATS *section, + const FIRSTPASS_STATS *frame) { + section->frame += frame->frame; + section->weight += frame->weight; + section->spatial_layer_id = frame->spatial_layer_id; + section->intra_error += frame->intra_error; + section->coded_error += frame->coded_error; + section->sr_coded_error += frame->sr_coded_error; + section->frame_noise_energy += frame->frame_noise_energy; + section->pcnt_inter += frame->pcnt_inter; + section->pcnt_motion += frame->pcnt_motion; + section->pcnt_second_ref += frame->pcnt_second_ref; + section->pcnt_neutral += frame->pcnt_neutral; + section->intra_skip_pct += frame->intra_skip_pct; + section->intra_smooth_pct += frame->intra_smooth_pct; + section->pcnt_intra_low += frame->pcnt_intra_low; + section->pcnt_intra_high += frame->pcnt_intra_high; + section->inactive_zone_rows += frame->inactive_zone_rows; + section->inactive_zone_cols += frame->inactive_zone_cols; + section->MVr += frame->MVr; + section->mvr_abs += frame->mvr_abs; + section->MVc += frame->MVc; + section->mvc_abs += frame->mvc_abs; + section->MVrv += frame->MVrv; + section->MVcv += frame->MVcv; + section->mv_in_out_count += frame->mv_in_out_count; + section->count += frame->count; + section->duration += frame->duration; +} + +static void subtract_stats(FIRSTPASS_STATS *section, + const FIRSTPASS_STATS *frame) { + section->frame -= frame->frame; + section->weight -= frame->weight; + section->intra_error -= frame->intra_error; + section->coded_error -= frame->coded_error; + section->sr_coded_error -= frame->sr_coded_error; + section->frame_noise_energy -= frame->frame_noise_energy; + section->pcnt_inter -= frame->pcnt_inter; + section->pcnt_motion -= frame->pcnt_motion; + section->pcnt_second_ref -= frame->pcnt_second_ref; + section->pcnt_neutral -= frame->pcnt_neutral; + section->intra_skip_pct -= frame->intra_skip_pct; + section->intra_smooth_pct -= frame->intra_smooth_pct; + section->pcnt_intra_low -= frame->pcnt_intra_low; + section->pcnt_intra_high -= frame->pcnt_intra_high; + section->inactive_zone_rows -= frame->inactive_zone_rows; + section->inactive_zone_cols -= frame->inactive_zone_cols; + section->MVr -= frame->MVr; + section->mvr_abs -= frame->mvr_abs; + section->MVc -= frame->MVc; + section->mvc_abs -= frame->mvc_abs; + section->MVrv -= frame->MVrv; + section->MVcv -= frame->MVcv; + section->mv_in_out_count -= frame->mv_in_out_count; + section->count -= frame->count; + section->duration -= frame->duration; +} + +// Calculate an active area of the image that discounts formatting +// bars and partially discounts other 0 energy areas. +#define MIN_ACTIVE_AREA 0.5 +#define MAX_ACTIVE_AREA 1.0 +static double calculate_active_area(const VP9_COMP *cpi, + const FIRSTPASS_STATS *this_frame) { + double active_pct; + + active_pct = + 1.0 - + ((this_frame->intra_skip_pct / 2) + + ((this_frame->inactive_zone_rows * 2) / (double)cpi->common.mb_rows)); + return fclamp(active_pct, MIN_ACTIVE_AREA, MAX_ACTIVE_AREA); +} + +// Get the average weighted error for the clip (or corpus) +static double get_distribution_av_err(VP9_COMP *cpi, TWO_PASS *const twopass) { + const double av_weight = + twopass->total_stats.weight / twopass->total_stats.count; + + if (cpi->oxcf.vbr_corpus_complexity) + return av_weight * twopass->mean_mod_score; + else + return (twopass->total_stats.coded_error * av_weight) / + twopass->total_stats.count; +} + +#define ACT_AREA_CORRECTION 0.5 +// Calculate a modified Error used in distributing bits between easier and +// harder frames. +static double calculate_mod_frame_score(const VP9_COMP *cpi, + const VP9EncoderConfig *oxcf, + const FIRSTPASS_STATS *this_frame, + const double av_err) { + double modified_score = + av_err * pow(this_frame->coded_error * this_frame->weight / + DOUBLE_DIVIDE_CHECK(av_err), + oxcf->two_pass_vbrbias / 100.0); + + // Correction for active area. Frames with a reduced active area + // (eg due to formatting bars) have a higher error per mb for the + // remaining active MBs. The correction here assumes that coding + // 0.5N blocks of complexity 2X is a little easier than coding N + // blocks of complexity X. + modified_score *= + pow(calculate_active_area(cpi, this_frame), ACT_AREA_CORRECTION); + + return modified_score; +} + +static double calculate_norm_frame_score(const VP9_COMP *cpi, + const TWO_PASS *twopass, + const VP9EncoderConfig *oxcf, + const FIRSTPASS_STATS *this_frame, + const double av_err) { + double modified_score = + av_err * pow(this_frame->coded_error * this_frame->weight / + DOUBLE_DIVIDE_CHECK(av_err), + oxcf->two_pass_vbrbias / 100.0); + + const double min_score = (double)(oxcf->two_pass_vbrmin_section) / 100.0; + const double max_score = (double)(oxcf->two_pass_vbrmax_section) / 100.0; + + // Correction for active area. Frames with a reduced active area + // (eg due to formatting bars) have a higher error per mb for the + // remaining active MBs. The correction here assumes that coding + // 0.5N blocks of complexity 2X is a little easier than coding N + // blocks of complexity X. + modified_score *= + pow(calculate_active_area(cpi, this_frame), ACT_AREA_CORRECTION); + + // Normalize to a midpoint score. + modified_score /= DOUBLE_DIVIDE_CHECK(twopass->mean_mod_score); + + return fclamp(modified_score, min_score, max_score); +} + +// This function returns the maximum target rate per frame. +static int frame_max_bits(const RATE_CONTROL *rc, + const VP9EncoderConfig *oxcf) { + int64_t max_bits = ((int64_t)rc->avg_frame_bandwidth * + (int64_t)oxcf->two_pass_vbrmax_section) / + 100; + if (max_bits < 0) + max_bits = 0; + else if (max_bits > rc->max_frame_bandwidth) + max_bits = rc->max_frame_bandwidth; + + return (int)max_bits; +} + +void vp9_init_first_pass(VP9_COMP *cpi) { + zero_stats(&cpi->twopass.total_stats); +} + +void vp9_end_first_pass(VP9_COMP *cpi) { + if (is_two_pass_svc(cpi)) { + int i; + for (i = 0; i < cpi->svc.number_spatial_layers; ++i) { + output_stats(&cpi->svc.layer_context[i].twopass.total_stats, + cpi->output_pkt_list); + } + } else { + output_stats(&cpi->twopass.total_stats, cpi->output_pkt_list); + } + + vpx_free(cpi->twopass.fp_mb_float_stats); + cpi->twopass.fp_mb_float_stats = NULL; +} + +static vpx_variance_fn_t get_block_variance_fn(BLOCK_SIZE bsize) { + switch (bsize) { + case BLOCK_8X8: return vpx_mse8x8; + case BLOCK_16X8: return vpx_mse16x8; + case BLOCK_8X16: return vpx_mse8x16; + default: return vpx_mse16x16; + } +} + +static unsigned int get_prediction_error(BLOCK_SIZE bsize, + const struct buf_2d *src, + const struct buf_2d *ref) { + unsigned int sse; + const vpx_variance_fn_t fn = get_block_variance_fn(bsize); + fn(src->buf, src->stride, ref->buf, ref->stride, &sse); + return sse; +} + +#if CONFIG_VP9_HIGHBITDEPTH +static vpx_variance_fn_t highbd_get_block_variance_fn(BLOCK_SIZE bsize, + int bd) { + switch (bd) { + default: + switch (bsize) { + case BLOCK_8X8: return vpx_highbd_8_mse8x8; + case BLOCK_16X8: return vpx_highbd_8_mse16x8; + case BLOCK_8X16: return vpx_highbd_8_mse8x16; + default: return vpx_highbd_8_mse16x16; + } + break; + case 10: + switch (bsize) { + case BLOCK_8X8: return vpx_highbd_10_mse8x8; + case BLOCK_16X8: return vpx_highbd_10_mse16x8; + case BLOCK_8X16: return vpx_highbd_10_mse8x16; + default: return vpx_highbd_10_mse16x16; + } + break; + case 12: + switch (bsize) { + case BLOCK_8X8: return vpx_highbd_12_mse8x8; + case BLOCK_16X8: return vpx_highbd_12_mse16x8; + case BLOCK_8X16: return vpx_highbd_12_mse8x16; + default: return vpx_highbd_12_mse16x16; + } + break; + } +} + +static unsigned int highbd_get_prediction_error(BLOCK_SIZE bsize, + const struct buf_2d *src, + const struct buf_2d *ref, + int bd) { + unsigned int sse; + const vpx_variance_fn_t fn = highbd_get_block_variance_fn(bsize, bd); + fn(src->buf, src->stride, ref->buf, ref->stride, &sse); + return sse; +} +#endif // CONFIG_VP9_HIGHBITDEPTH + +// Refine the motion search range according to the frame dimension +// for first pass test. +static int get_search_range(const VP9_COMP *cpi) { + int sr = 0; + const int dim = VPXMIN(cpi->initial_width, cpi->initial_height); + + while ((dim << sr) < MAX_FULL_PEL_VAL) ++sr; + return sr; +} + +static void first_pass_motion_search(VP9_COMP *cpi, MACROBLOCK *x, + const MV *ref_mv, MV *best_mv, + int *best_motion_err) { + MACROBLOCKD *const xd = &x->e_mbd; + MV tmp_mv = { 0, 0 }; + MV ref_mv_full = { ref_mv->row >> 3, ref_mv->col >> 3 }; + int num00, tmp_err, n; + const BLOCK_SIZE bsize = xd->mi[0]->sb_type; + vp9_variance_fn_ptr_t v_fn_ptr = cpi->fn_ptr[bsize]; + const int new_mv_mode_penalty = NEW_MV_MODE_PENALTY; + + int step_param = 3; + int further_steps = (MAX_MVSEARCH_STEPS - 1) - step_param; + const int sr = get_search_range(cpi); + step_param += sr; + further_steps -= sr; + + // Override the default variance function to use MSE. + v_fn_ptr.vf = get_block_variance_fn(bsize); +#if CONFIG_VP9_HIGHBITDEPTH + if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { + v_fn_ptr.vf = highbd_get_block_variance_fn(bsize, xd->bd); + } +#endif // CONFIG_VP9_HIGHBITDEPTH + + // Center the initial step/diamond search on best mv. + tmp_err = cpi->diamond_search_sad(x, &cpi->ss_cfg, &ref_mv_full, &tmp_mv, + step_param, x->sadperbit16, &num00, + &v_fn_ptr, ref_mv); + if (tmp_err < INT_MAX) + tmp_err = vp9_get_mvpred_var(x, &tmp_mv, ref_mv, &v_fn_ptr, 1); + if (tmp_err < INT_MAX - new_mv_mode_penalty) tmp_err += new_mv_mode_penalty; + + if (tmp_err < *best_motion_err) { + *best_motion_err = tmp_err; + *best_mv = tmp_mv; + } + + // Carry out further step/diamond searches as necessary. + n = num00; + num00 = 0; + + while (n < further_steps) { + ++n; + + if (num00) { + --num00; + } else { + tmp_err = cpi->diamond_search_sad(x, &cpi->ss_cfg, &ref_mv_full, &tmp_mv, + step_param + n, x->sadperbit16, &num00, + &v_fn_ptr, ref_mv); + if (tmp_err < INT_MAX) + tmp_err = vp9_get_mvpred_var(x, &tmp_mv, ref_mv, &v_fn_ptr, 1); + if (tmp_err < INT_MAX - new_mv_mode_penalty) + tmp_err += new_mv_mode_penalty; + + if (tmp_err < *best_motion_err) { + *best_motion_err = tmp_err; + *best_mv = tmp_mv; + } + } + } +} + +static BLOCK_SIZE get_bsize(const VP9_COMMON *cm, int mb_row, int mb_col) { + if (2 * mb_col + 1 < cm->mi_cols) { + return 2 * mb_row + 1 < cm->mi_rows ? BLOCK_16X16 : BLOCK_16X8; + } else { + return 2 * mb_row + 1 < cm->mi_rows ? BLOCK_8X16 : BLOCK_8X8; + } +} + +static int find_fp_qindex(vpx_bit_depth_t bit_depth) { + int i; + + for (i = 0; i < QINDEX_RANGE; ++i) + if (vp9_convert_qindex_to_q(i, bit_depth) >= FIRST_PASS_Q) break; + + if (i == QINDEX_RANGE) i--; + + return i; +} + +static void set_first_pass_params(VP9_COMP *cpi) { + VP9_COMMON *const cm = &cpi->common; + if (!cpi->refresh_alt_ref_frame && + (cm->current_video_frame == 0 || (cpi->frame_flags & FRAMEFLAGS_KEY))) { + cm->frame_type = KEY_FRAME; + } else { + cm->frame_type = INTER_FRAME; + } + // Do not use periodic key frames. + cpi->rc.frames_to_key = INT_MAX; +} + +// Scale an sse threshold to account for 8/10/12 bit. +static int scale_sse_threshold(VP9_COMMON *cm, int thresh) { + int ret_val = thresh; +#if CONFIG_VP9_HIGHBITDEPTH + if (cm->use_highbitdepth) { + switch (cm->bit_depth) { + case VPX_BITS_8: ret_val = thresh; break; + case VPX_BITS_10: ret_val = thresh << 4; break; + case VPX_BITS_12: ret_val = thresh << 8; break; + default: + assert(0 && + "cm->bit_depth should be VPX_BITS_8, " + "VPX_BITS_10 or VPX_BITS_12"); + } + } +#else + (void)cm; +#endif // CONFIG_VP9_HIGHBITDEPTH + return ret_val; +} + +// This threshold is used to track blocks where to all intents and purposes +// the intra prediction error 0. Though the metric we test against +// is technically a sse we are mainly interested in blocks where all the pixels +// in the 8 bit domain have an error of <= 1 (where error = sse) so a +// linear scaling for 10 and 12 bit gives similar results. +#define UL_INTRA_THRESH 50 +static int get_ul_intra_threshold(VP9_COMMON *cm) { + int ret_val = UL_INTRA_THRESH; +#if CONFIG_VP9_HIGHBITDEPTH + if (cm->use_highbitdepth) { + switch (cm->bit_depth) { + case VPX_BITS_8: ret_val = UL_INTRA_THRESH; break; + case VPX_BITS_10: ret_val = UL_INTRA_THRESH << 2; break; + case VPX_BITS_12: ret_val = UL_INTRA_THRESH << 4; break; + default: + assert(0 && + "cm->bit_depth should be VPX_BITS_8, " + "VPX_BITS_10 or VPX_BITS_12"); + } + } +#else + (void)cm; +#endif // CONFIG_VP9_HIGHBITDEPTH + return ret_val; +} + +#define SMOOTH_INTRA_THRESH 4000 +static int get_smooth_intra_threshold(VP9_COMMON *cm) { + int ret_val = SMOOTH_INTRA_THRESH; +#if CONFIG_VP9_HIGHBITDEPTH + if (cm->use_highbitdepth) { + switch (cm->bit_depth) { + case VPX_BITS_8: ret_val = SMOOTH_INTRA_THRESH; break; + case VPX_BITS_10: ret_val = SMOOTH_INTRA_THRESH << 4; break; + case VPX_BITS_12: ret_val = SMOOTH_INTRA_THRESH << 8; break; + default: + assert(0 && + "cm->bit_depth should be VPX_BITS_8, " + "VPX_BITS_10 or VPX_BITS_12"); + } + } +#else + (void)cm; +#endif // CONFIG_VP9_HIGHBITDEPTH + return ret_val; +} + +#define FP_DN_THRESH 8 +#define FP_MAX_DN_THRESH 16 +#define KERNEL_SIZE 3 + +// Baseline Kernal weights for first pass noise metric +static uint8_t fp_dn_kernal_3[KERNEL_SIZE * KERNEL_SIZE] = { 1, 2, 1, 2, 4, + 2, 1, 2, 1 }; + +// Estimate noise at a single point based on the impace of a spatial kernal +// on the point value +static int fp_estimate_point_noise(uint8_t *src_ptr, const int stride) { + int sum_weight = 0; + int sum_val = 0; + int i, j; + int max_diff = 0; + int diff; + int dn_diff; + uint8_t *tmp_ptr; + uint8_t *kernal_ptr; + uint8_t dn_val; + uint8_t centre_val = *src_ptr; + + kernal_ptr = fp_dn_kernal_3; + + // Apply the kernal + tmp_ptr = src_ptr - stride - 1; + for (i = 0; i < KERNEL_SIZE; ++i) { + for (j = 0; j < KERNEL_SIZE; ++j) { + diff = abs((int)centre_val - (int)tmp_ptr[j]); + max_diff = VPXMAX(max_diff, diff); + if (diff <= FP_DN_THRESH) { + sum_weight += *kernal_ptr; + sum_val += (int)tmp_ptr[j] * (int)*kernal_ptr; + } + ++kernal_ptr; + } + tmp_ptr += stride; + } + + if (max_diff < FP_MAX_DN_THRESH) + // Update the source value with the new filtered value + dn_val = (sum_val + (sum_weight >> 1)) / sum_weight; + else + dn_val = *src_ptr; + + // return the noise energy as the square of the difference between the + // denoised and raw value. + dn_diff = (int)*src_ptr - (int)dn_val; + return dn_diff * dn_diff; +} +#if CONFIG_VP9_HIGHBITDEPTH +static int fp_highbd_estimate_point_noise(uint8_t *src_ptr, const int stride) { + int sum_weight = 0; + int sum_val = 0; + int i, j; + int max_diff = 0; + int diff; + int dn_diff; + uint8_t *tmp_ptr; + uint16_t *tmp_ptr16; + uint8_t *kernal_ptr; + uint16_t dn_val; + uint16_t centre_val = *CONVERT_TO_SHORTPTR(src_ptr); + + kernal_ptr = fp_dn_kernal_3; + + // Apply the kernal + tmp_ptr = src_ptr - stride - 1; + for (i = 0; i < KERNEL_SIZE; ++i) { + tmp_ptr16 = CONVERT_TO_SHORTPTR(tmp_ptr); + for (j = 0; j < KERNEL_SIZE; ++j) { + diff = abs((int)centre_val - (int)tmp_ptr16[j]); + max_diff = VPXMAX(max_diff, diff); + if (diff <= FP_DN_THRESH) { + sum_weight += *kernal_ptr; + sum_val += (int)tmp_ptr16[j] * (int)*kernal_ptr; + } + ++kernal_ptr; + } + tmp_ptr += stride; + } + + if (max_diff < FP_MAX_DN_THRESH) + // Update the source value with the new filtered value + dn_val = (sum_val + (sum_weight >> 1)) / sum_weight; + else + dn_val = *CONVERT_TO_SHORTPTR(src_ptr); + + // return the noise energy as the square of the difference between the + // denoised and raw value. + dn_diff = (int)(*CONVERT_TO_SHORTPTR(src_ptr)) - (int)dn_val; + return dn_diff * dn_diff; +} +#endif + +// Estimate noise for a block. +static int fp_estimate_block_noise(MACROBLOCK *x, BLOCK_SIZE bsize) { +#if CONFIG_VP9_HIGHBITDEPTH + MACROBLOCKD *xd = &x->e_mbd; +#endif + uint8_t *src_ptr = &x->plane[0].src.buf[0]; + const int width = num_4x4_blocks_wide_lookup[bsize] * 4; + const int height = num_4x4_blocks_high_lookup[bsize] * 4; + int w, h; + int stride = x->plane[0].src.stride; + int block_noise = 0; + + // Sampled points to reduce cost overhead. + for (h = 0; h < height; h += 2) { + for (w = 0; w < width; w += 2) { +#if CONFIG_VP9_HIGHBITDEPTH + if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) + block_noise += fp_highbd_estimate_point_noise(src_ptr, stride); + else + block_noise += fp_estimate_point_noise(src_ptr, stride); +#else + block_noise += fp_estimate_point_noise(src_ptr, stride); +#endif + ++src_ptr; + } + src_ptr += (stride - width); + } + return block_noise << 2; // Scale << 2 to account for sampling. +} + +// This function is called to test the functionality of row based +// multi-threading in unit tests for bit-exactness +static void accumulate_floating_point_stats(VP9_COMP *cpi, + TileDataEnc *first_tile_col) { + VP9_COMMON *const cm = &cpi->common; + int mb_row, mb_col; + first_tile_col->fp_data.intra_factor = 0; + first_tile_col->fp_data.brightness_factor = 0; + first_tile_col->fp_data.neutral_count = 0; + for (mb_row = 0; mb_row < cm->mb_rows; ++mb_row) { + for (mb_col = 0; mb_col < cm->mb_cols; ++mb_col) { + const int mb_index = mb_row * cm->mb_cols + mb_col; + first_tile_col->fp_data.intra_factor += + cpi->twopass.fp_mb_float_stats[mb_index].frame_mb_intra_factor; + first_tile_col->fp_data.brightness_factor += + cpi->twopass.fp_mb_float_stats[mb_index].frame_mb_brightness_factor; + first_tile_col->fp_data.neutral_count += + cpi->twopass.fp_mb_float_stats[mb_index].frame_mb_neutral_count; + } + } +} + +static void first_pass_stat_calc(VP9_COMP *cpi, FIRSTPASS_STATS *fps, + FIRSTPASS_DATA *fp_acc_data) { + VP9_COMMON *const cm = &cpi->common; + // The minimum error here insures some bit allocation to frames even + // in static regions. The allocation per MB declines for larger formats + // where the typical "real" energy per MB also falls. + // Initial estimate here uses sqrt(mbs) to define the min_err, where the + // number of mbs is proportional to the image area. + const int num_mbs = (cpi->oxcf.resize_mode != RESIZE_NONE) ? cpi->initial_mbs + : cpi->common.MBs; + const double min_err = 200 * sqrt(num_mbs); + + // Clamp the image start to rows/2. This number of rows is discarded top + // and bottom as dead data so rows / 2 means the frame is blank. + if ((fp_acc_data->image_data_start_row > cm->mb_rows / 2) || + (fp_acc_data->image_data_start_row == INVALID_ROW)) { + fp_acc_data->image_data_start_row = cm->mb_rows / 2; + } + // Exclude any image dead zone + if (fp_acc_data->image_data_start_row > 0) { + fp_acc_data->intra_skip_count = + VPXMAX(0, + fp_acc_data->intra_skip_count - + (fp_acc_data->image_data_start_row * cm->mb_cols * 2)); + } + + fp_acc_data->intra_factor = fp_acc_data->intra_factor / (double)num_mbs; + fp_acc_data->brightness_factor = + fp_acc_data->brightness_factor / (double)num_mbs; + fps->weight = fp_acc_data->intra_factor * fp_acc_data->brightness_factor; + + fps->frame = cm->current_video_frame; + fps->spatial_layer_id = cpi->svc.spatial_layer_id; + + fps->coded_error = + ((double)(fp_acc_data->coded_error >> 8) + min_err) / num_mbs; + fps->sr_coded_error = + ((double)(fp_acc_data->sr_coded_error >> 8) + min_err) / num_mbs; + fps->intra_error = + ((double)(fp_acc_data->intra_error >> 8) + min_err) / num_mbs; + + fps->frame_noise_energy = + (double)(fp_acc_data->frame_noise_energy) / (double)num_mbs; + fps->count = 1.0; + fps->pcnt_inter = (double)(fp_acc_data->intercount) / num_mbs; + fps->pcnt_second_ref = (double)(fp_acc_data->second_ref_count) / num_mbs; + fps->pcnt_neutral = (double)(fp_acc_data->neutral_count) / num_mbs; + fps->pcnt_intra_low = (double)(fp_acc_data->intra_count_low) / num_mbs; + fps->pcnt_intra_high = (double)(fp_acc_data->intra_count_high) / num_mbs; + fps->intra_skip_pct = (double)(fp_acc_data->intra_skip_count) / num_mbs; + fps->intra_smooth_pct = (double)(fp_acc_data->intra_smooth_count) / num_mbs; + fps->inactive_zone_rows = (double)(fp_acc_data->image_data_start_row); + // Currently set to 0 as most issues relate to letter boxing. + fps->inactive_zone_cols = (double)0; + + if (fp_acc_data->mvcount > 0) { + fps->MVr = (double)(fp_acc_data->sum_mvr) / fp_acc_data->mvcount; + fps->mvr_abs = (double)(fp_acc_data->sum_mvr_abs) / fp_acc_data->mvcount; + fps->MVc = (double)(fp_acc_data->sum_mvc) / fp_acc_data->mvcount; + fps->mvc_abs = (double)(fp_acc_data->sum_mvc_abs) / fp_acc_data->mvcount; + fps->MVrv = ((double)(fp_acc_data->sum_mvrs) - + ((double)(fp_acc_data->sum_mvr) * (fp_acc_data->sum_mvr) / + fp_acc_data->mvcount)) / + fp_acc_data->mvcount; + fps->MVcv = ((double)(fp_acc_data->sum_mvcs) - + ((double)(fp_acc_data->sum_mvc) * (fp_acc_data->sum_mvc) / + fp_acc_data->mvcount)) / + fp_acc_data->mvcount; + fps->mv_in_out_count = + (double)(fp_acc_data->sum_in_vectors) / (fp_acc_data->mvcount * 2); + fps->pcnt_motion = (double)(fp_acc_data->mvcount) / num_mbs; + } else { + fps->MVr = 0.0; + fps->mvr_abs = 0.0; + fps->MVc = 0.0; + fps->mvc_abs = 0.0; + fps->MVrv = 0.0; + fps->MVcv = 0.0; + fps->mv_in_out_count = 0.0; + fps->pcnt_motion = 0.0; + } +} + +static void accumulate_fp_mb_row_stat(TileDataEnc *this_tile, + FIRSTPASS_DATA *fp_acc_data) { + this_tile->fp_data.intra_factor += fp_acc_data->intra_factor; + this_tile->fp_data.brightness_factor += fp_acc_data->brightness_factor; + this_tile->fp_data.coded_error += fp_acc_data->coded_error; + this_tile->fp_data.sr_coded_error += fp_acc_data->sr_coded_error; + this_tile->fp_data.frame_noise_energy += fp_acc_data->frame_noise_energy; + this_tile->fp_data.intra_error += fp_acc_data->intra_error; + this_tile->fp_data.intercount += fp_acc_data->intercount; + this_tile->fp_data.second_ref_count += fp_acc_data->second_ref_count; + this_tile->fp_data.neutral_count += fp_acc_data->neutral_count; + this_tile->fp_data.intra_count_low += fp_acc_data->intra_count_low; + this_tile->fp_data.intra_count_high += fp_acc_data->intra_count_high; + this_tile->fp_data.intra_skip_count += fp_acc_data->intra_skip_count; + this_tile->fp_data.mvcount += fp_acc_data->mvcount; + this_tile->fp_data.sum_mvr += fp_acc_data->sum_mvr; + this_tile->fp_data.sum_mvr_abs += fp_acc_data->sum_mvr_abs; + this_tile->fp_data.sum_mvc += fp_acc_data->sum_mvc; + this_tile->fp_data.sum_mvc_abs += fp_acc_data->sum_mvc_abs; + this_tile->fp_data.sum_mvrs += fp_acc_data->sum_mvrs; + this_tile->fp_data.sum_mvcs += fp_acc_data->sum_mvcs; + this_tile->fp_data.sum_in_vectors += fp_acc_data->sum_in_vectors; + this_tile->fp_data.intra_smooth_count += fp_acc_data->intra_smooth_count; + this_tile->fp_data.image_data_start_row = + VPXMIN(this_tile->fp_data.image_data_start_row, + fp_acc_data->image_data_start_row) == INVALID_ROW + ? VPXMAX(this_tile->fp_data.image_data_start_row, + fp_acc_data->image_data_start_row) + : VPXMIN(this_tile->fp_data.image_data_start_row, + fp_acc_data->image_data_start_row); +} + +void vp9_first_pass_encode_tile_mb_row(VP9_COMP *cpi, ThreadData *td, + FIRSTPASS_DATA *fp_acc_data, + TileDataEnc *tile_data, MV *best_ref_mv, + int mb_row) { + int mb_col; + MACROBLOCK *const x = &td->mb; + VP9_COMMON *const cm = &cpi->common; + MACROBLOCKD *const xd = &x->e_mbd; + TileInfo tile = tile_data->tile_info; + struct macroblock_plane *const p = x->plane; + struct macroblockd_plane *const pd = xd->plane; + const PICK_MODE_CONTEXT *ctx = &td->pc_root->none; + int i, c; + int num_mb_cols = get_num_cols(tile_data->tile_info, 1); + + int recon_yoffset, recon_uvoffset; + const int intrapenalty = INTRA_MODE_PENALTY; + const MV zero_mv = { 0, 0 }; + int recon_y_stride, recon_uv_stride, uv_mb_height; + + YV12_BUFFER_CONFIG *const lst_yv12 = get_ref_frame_buffer(cpi, LAST_FRAME); + YV12_BUFFER_CONFIG *gld_yv12 = get_ref_frame_buffer(cpi, GOLDEN_FRAME); + YV12_BUFFER_CONFIG *const new_yv12 = get_frame_new_buffer(cm); + const YV12_BUFFER_CONFIG *first_ref_buf = lst_yv12; + + LAYER_CONTEXT *const lc = + is_two_pass_svc(cpi) ? &cpi->svc.layer_context[cpi->svc.spatial_layer_id] + : NULL; + MODE_INFO mi_above, mi_left; + + double mb_intra_factor; + double mb_brightness_factor; + double mb_neutral_count; + + // First pass code requires valid last and new frame buffers. + assert(new_yv12 != NULL); + assert((lc != NULL) || frame_is_intra_only(cm) || (lst_yv12 != NULL)); + + if (lc != NULL) { + // Use either last frame or alt frame for motion search. + if (cpi->ref_frame_flags & VP9_LAST_FLAG) { + first_ref_buf = vp9_get_scaled_ref_frame(cpi, LAST_FRAME); + if (first_ref_buf == NULL) + first_ref_buf = get_ref_frame_buffer(cpi, LAST_FRAME); + } + + if (cpi->ref_frame_flags & VP9_GOLD_FLAG) { + gld_yv12 = vp9_get_scaled_ref_frame(cpi, GOLDEN_FRAME); + if (gld_yv12 == NULL) { + gld_yv12 = get_ref_frame_buffer(cpi, GOLDEN_FRAME); + } + } else { + gld_yv12 = NULL; + } + } + + xd->mi = cm->mi_grid_visible + xd->mi_stride * (mb_row << 1) + + (tile.mi_col_start >> 1); + xd->mi[0] = cm->mi + xd->mi_stride * (mb_row << 1) + (tile.mi_col_start >> 1); + + for (i = 0; i < MAX_MB_PLANE; ++i) { + p[i].coeff = ctx->coeff_pbuf[i][1]; + p[i].qcoeff = ctx->qcoeff_pbuf[i][1]; + pd[i].dqcoeff = ctx->dqcoeff_pbuf[i][1]; + p[i].eobs = ctx->eobs_pbuf[i][1]; + } + + recon_y_stride = new_yv12->y_stride; + recon_uv_stride = new_yv12->uv_stride; + uv_mb_height = 16 >> (new_yv12->y_height > new_yv12->uv_height); + + // Reset above block coeffs. + recon_yoffset = + (mb_row * recon_y_stride * 16) + (tile.mi_col_start >> 1) * 16; + recon_uvoffset = (mb_row * recon_uv_stride * uv_mb_height) + + (tile.mi_col_start >> 1) * uv_mb_height; + + // Set up limit values for motion vectors to prevent them extending + // outside the UMV borders. + x->mv_limits.row_min = -((mb_row * 16) + BORDER_MV_PIXELS_B16); + x->mv_limits.row_max = + ((cm->mb_rows - 1 - mb_row) * 16) + BORDER_MV_PIXELS_B16; + + for (mb_col = tile.mi_col_start >> 1, c = 0; mb_col < (tile.mi_col_end >> 1); + ++mb_col, c++) { + int this_error; + int this_intra_error; + const int use_dc_pred = (mb_col || mb_row) && (!mb_col || !mb_row); + const BLOCK_SIZE bsize = get_bsize(cm, mb_row, mb_col); + double log_intra; + int level_sample; + const int mb_index = mb_row * cm->mb_cols + mb_col; + +#if CONFIG_FP_MB_STATS + const int mb_index = mb_row * cm->mb_cols + mb_col; +#endif + + (*(cpi->row_mt_sync_read_ptr))(&tile_data->row_mt_sync, mb_row, c); + + // Adjust to the next column of MBs. + x->plane[0].src.buf = cpi->Source->y_buffer + + mb_row * 16 * x->plane[0].src.stride + mb_col * 16; + x->plane[1].src.buf = cpi->Source->u_buffer + + mb_row * uv_mb_height * x->plane[1].src.stride + + mb_col * uv_mb_height; + x->plane[2].src.buf = cpi->Source->v_buffer + + mb_row * uv_mb_height * x->plane[1].src.stride + + mb_col * uv_mb_height; + + vpx_clear_system_state(); + + xd->plane[0].dst.buf = new_yv12->y_buffer + recon_yoffset; + xd->plane[1].dst.buf = new_yv12->u_buffer + recon_uvoffset; + xd->plane[2].dst.buf = new_yv12->v_buffer + recon_uvoffset; + xd->mi[0]->sb_type = bsize; + xd->mi[0]->ref_frame[0] = INTRA_FRAME; + set_mi_row_col(xd, &tile, mb_row << 1, num_8x8_blocks_high_lookup[bsize], + mb_col << 1, num_8x8_blocks_wide_lookup[bsize], cm->mi_rows, + cm->mi_cols); + // Are edges available for intra prediction? + // Since the firstpass does not populate the mi_grid_visible, + // above_mi/left_mi must be overwritten with a nonzero value when edges + // are available. Required by vp9_predict_intra_block(). + xd->above_mi = (mb_row != 0) ? &mi_above : NULL; + xd->left_mi = ((mb_col << 1) > tile.mi_col_start) ? &mi_left : NULL; + + // Do intra 16x16 prediction. + x->skip_encode = 0; + x->fp_src_pred = 0; + // Do intra prediction based on source pixels for tile boundaries + if ((mb_col == (tile.mi_col_start >> 1)) && mb_col != 0) { + xd->left_mi = &mi_left; + x->fp_src_pred = 1; + } + xd->mi[0]->mode = DC_PRED; + xd->mi[0]->tx_size = + use_dc_pred ? (bsize >= BLOCK_16X16 ? TX_16X16 : TX_8X8) : TX_4X4; + // Fix - zero the 16x16 block first. This ensures correct this_error for + // block sizes smaller than 16x16. + vp9_zero_array(x->plane[0].src_diff, 256); + vp9_encode_intra_block_plane(x, bsize, 0, 0); + this_error = vpx_get_mb_ss(x->plane[0].src_diff); + this_intra_error = this_error; + + // Keep a record of blocks that have very low intra error residual + // (i.e. are in effect completely flat and untextured in the intra + // domain). In natural videos this is uncommon, but it is much more + // common in animations, graphics and screen content, so may be used + // as a signal to detect these types of content. + if (this_error < get_ul_intra_threshold(cm)) { + ++(fp_acc_data->intra_skip_count); + } else if ((mb_col > 0) && + (fp_acc_data->image_data_start_row == INVALID_ROW)) { + fp_acc_data->image_data_start_row = mb_row; + } + + // Blocks that are mainly smooth in the intra domain. + // Some special accounting for CQ but also these are better for testing + // noise levels. + if (this_error < get_smooth_intra_threshold(cm)) { + ++(fp_acc_data->intra_smooth_count); + } + + // Special case noise measurement for first frame. + if (cm->current_video_frame == 0) { + if (this_intra_error < scale_sse_threshold(cm, LOW_I_THRESH)) { + fp_acc_data->frame_noise_energy += fp_estimate_block_noise(x, bsize); + } else { + fp_acc_data->frame_noise_energy += (int64_t)SECTION_NOISE_DEF; + } + } + +#if CONFIG_VP9_HIGHBITDEPTH + if (cm->use_highbitdepth) { + switch (cm->bit_depth) { + case VPX_BITS_8: break; + case VPX_BITS_10: this_error >>= 4; break; + case VPX_BITS_12: this_error >>= 8; break; + default: + assert(0 && + "cm->bit_depth should be VPX_BITS_8, " + "VPX_BITS_10 or VPX_BITS_12"); + return; + } + } +#endif // CONFIG_VP9_HIGHBITDEPTH + + vpx_clear_system_state(); + log_intra = log(this_error + 1.0); + if (log_intra < 10.0) { + mb_intra_factor = 1.0 + ((10.0 - log_intra) * 0.05); + fp_acc_data->intra_factor += mb_intra_factor; + if (cpi->row_mt_bit_exact) + cpi->twopass.fp_mb_float_stats[mb_index].frame_mb_intra_factor = + mb_intra_factor; + } else { + fp_acc_data->intra_factor += 1.0; + if (cpi->row_mt_bit_exact) + cpi->twopass.fp_mb_float_stats[mb_index].frame_mb_intra_factor = 1.0; + } + +#if CONFIG_VP9_HIGHBITDEPTH + if (cm->use_highbitdepth) + level_sample = CONVERT_TO_SHORTPTR(x->plane[0].src.buf)[0]; + else + level_sample = x->plane[0].src.buf[0]; +#else + level_sample = x->plane[0].src.buf[0]; +#endif + if ((level_sample < DARK_THRESH) && (log_intra < 9.0)) { + mb_brightness_factor = 1.0 + (0.01 * (DARK_THRESH - level_sample)); + fp_acc_data->brightness_factor += mb_brightness_factor; + if (cpi->row_mt_bit_exact) + cpi->twopass.fp_mb_float_stats[mb_index].frame_mb_brightness_factor = + mb_brightness_factor; + } else { + fp_acc_data->brightness_factor += 1.0; + if (cpi->row_mt_bit_exact) + cpi->twopass.fp_mb_float_stats[mb_index].frame_mb_brightness_factor = + 1.0; + } + + // Intrapenalty below deals with situations where the intra and inter + // error scores are very low (e.g. a plain black frame). + // We do not have special cases in first pass for 0,0 and nearest etc so + // all inter modes carry an overhead cost estimate for the mv. + // When the error score is very low this causes us to pick all or lots of + // INTRA modes and throw lots of key frames. + // This penalty adds a cost matching that of a 0,0 mv to the intra case. + this_error += intrapenalty; + + // Accumulate the intra error. + fp_acc_data->intra_error += (int64_t)this_error; + +#if CONFIG_FP_MB_STATS + if (cpi->use_fp_mb_stats) { + // initialization + cpi->twopass.frame_mb_stats_buf[mb_index] = 0; + } +#endif + + // Set up limit values for motion vectors to prevent them extending + // outside the UMV borders. + x->mv_limits.col_min = -((mb_col * 16) + BORDER_MV_PIXELS_B16); + x->mv_limits.col_max = + ((cm->mb_cols - 1 - mb_col) * 16) + BORDER_MV_PIXELS_B16; + + // Other than for the first frame do a motion search. + if ((lc == NULL && cm->current_video_frame > 0) || + (lc != NULL && lc->current_video_frame_in_layer > 0)) { + int tmp_err, motion_error, raw_motion_error; + // Assume 0,0 motion with no mv overhead. + MV mv = { 0, 0 }, tmp_mv = { 0, 0 }; + struct buf_2d unscaled_last_source_buf_2d; + + xd->plane[0].pre[0].buf = first_ref_buf->y_buffer + recon_yoffset; +#if CONFIG_VP9_HIGHBITDEPTH + if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { + motion_error = highbd_get_prediction_error( + bsize, &x->plane[0].src, &xd->plane[0].pre[0], xd->bd); + } else { + motion_error = + get_prediction_error(bsize, &x->plane[0].src, &xd->plane[0].pre[0]); + } +#else + motion_error = + get_prediction_error(bsize, &x->plane[0].src, &xd->plane[0].pre[0]); +#endif // CONFIG_VP9_HIGHBITDEPTH + + // Compute the motion error of the 0,0 motion using the last source + // frame as the reference. Skip the further motion search on + // reconstructed frame if this error is small. + unscaled_last_source_buf_2d.buf = + cpi->unscaled_last_source->y_buffer + recon_yoffset; + unscaled_last_source_buf_2d.stride = cpi->unscaled_last_source->y_stride; +#if CONFIG_VP9_HIGHBITDEPTH + if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { + raw_motion_error = highbd_get_prediction_error( + bsize, &x->plane[0].src, &unscaled_last_source_buf_2d, xd->bd); + } else { + raw_motion_error = get_prediction_error(bsize, &x->plane[0].src, + &unscaled_last_source_buf_2d); + } +#else + raw_motion_error = get_prediction_error(bsize, &x->plane[0].src, + &unscaled_last_source_buf_2d); +#endif // CONFIG_VP9_HIGHBITDEPTH + + // TODO(pengchong): Replace the hard-coded threshold + if (raw_motion_error > 25 || lc != NULL) { + // Test last reference frame using the previous best mv as the + // starting point (best reference) for the search. + first_pass_motion_search(cpi, x, best_ref_mv, &mv, &motion_error); + + // If the current best reference mv is not centered on 0,0 then do a + // 0,0 based search as well. + if (!is_zero_mv(best_ref_mv)) { + tmp_err = INT_MAX; + first_pass_motion_search(cpi, x, &zero_mv, &tmp_mv, &tmp_err); + + if (tmp_err < motion_error) { + motion_error = tmp_err; + mv = tmp_mv; + } + } + + // Search in an older reference frame. + if (((lc == NULL && cm->current_video_frame > 1) || + (lc != NULL && lc->current_video_frame_in_layer > 1)) && + gld_yv12 != NULL) { + // Assume 0,0 motion with no mv overhead. + int gf_motion_error; + + xd->plane[0].pre[0].buf = gld_yv12->y_buffer + recon_yoffset; +#if CONFIG_VP9_HIGHBITDEPTH + if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { + gf_motion_error = highbd_get_prediction_error( + bsize, &x->plane[0].src, &xd->plane[0].pre[0], xd->bd); + } else { + gf_motion_error = get_prediction_error(bsize, &x->plane[0].src, + &xd->plane[0].pre[0]); + } +#else + gf_motion_error = get_prediction_error(bsize, &x->plane[0].src, + &xd->plane[0].pre[0]); +#endif // CONFIG_VP9_HIGHBITDEPTH + + first_pass_motion_search(cpi, x, &zero_mv, &tmp_mv, &gf_motion_error); + + if (gf_motion_error < motion_error && gf_motion_error < this_error) + ++(fp_acc_data->second_ref_count); + + // Reset to last frame as reference buffer. + xd->plane[0].pre[0].buf = first_ref_buf->y_buffer + recon_yoffset; + xd->plane[1].pre[0].buf = first_ref_buf->u_buffer + recon_uvoffset; + xd->plane[2].pre[0].buf = first_ref_buf->v_buffer + recon_uvoffset; + + // In accumulating a score for the older reference frame take the + // best of the motion predicted score and the intra coded error + // (just as will be done for) accumulation of "coded_error" for + // the last frame. + if (gf_motion_error < this_error) + fp_acc_data->sr_coded_error += gf_motion_error; + else + fp_acc_data->sr_coded_error += this_error; + } else { + fp_acc_data->sr_coded_error += motion_error; + } + } else { + fp_acc_data->sr_coded_error += motion_error; + } + + // Start by assuming that intra mode is best. + best_ref_mv->row = 0; + best_ref_mv->col = 0; + +#if CONFIG_FP_MB_STATS + if (cpi->use_fp_mb_stats) { + // intra prediction statistics + cpi->twopass.frame_mb_stats_buf[mb_index] = 0; + cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_DCINTRA_MASK; + cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_MOTION_ZERO_MASK; + if (this_error > FPMB_ERROR_LARGE_TH) { + cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_ERROR_LARGE_MASK; + } else if (this_error < FPMB_ERROR_SMALL_TH) { + cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_ERROR_SMALL_MASK; + } + } +#endif + + if (motion_error <= this_error) { + vpx_clear_system_state(); + + // Keep a count of cases where the inter and intra were very close + // and very low. This helps with scene cut detection for example in + // cropped clips with black bars at the sides or top and bottom. + if (((this_error - intrapenalty) * 9 <= motion_error * 10) && + (this_error < (2 * intrapenalty))) { + fp_acc_data->neutral_count += 1.0; + if (cpi->row_mt_bit_exact) + cpi->twopass.fp_mb_float_stats[mb_index].frame_mb_neutral_count = + 1.0; + // Also track cases where the intra is not much worse than the inter + // and use this in limiting the GF/arf group length. + } else if ((this_error > NCOUNT_INTRA_THRESH) && + (this_error < (NCOUNT_INTRA_FACTOR * motion_error))) { + mb_neutral_count = + (double)motion_error / DOUBLE_DIVIDE_CHECK((double)this_error); + fp_acc_data->neutral_count += mb_neutral_count; + if (cpi->row_mt_bit_exact) + cpi->twopass.fp_mb_float_stats[mb_index].frame_mb_neutral_count = + mb_neutral_count; + } + + mv.row *= 8; + mv.col *= 8; + this_error = motion_error; + xd->mi[0]->mode = NEWMV; + xd->mi[0]->mv[0].as_mv = mv; + xd->mi[0]->tx_size = TX_4X4; + xd->mi[0]->ref_frame[0] = LAST_FRAME; + xd->mi[0]->ref_frame[1] = NONE; + vp9_build_inter_predictors_sby(xd, mb_row << 1, mb_col << 1, bsize); + vp9_encode_sby_pass1(x, bsize); + fp_acc_data->sum_mvr += mv.row; + fp_acc_data->sum_mvr_abs += abs(mv.row); + fp_acc_data->sum_mvc += mv.col; + fp_acc_data->sum_mvc_abs += abs(mv.col); + fp_acc_data->sum_mvrs += mv.row * mv.row; + fp_acc_data->sum_mvcs += mv.col * mv.col; + ++(fp_acc_data->intercount); + + *best_ref_mv = mv; + +#if CONFIG_FP_MB_STATS + if (cpi->use_fp_mb_stats) { + // inter prediction statistics + cpi->twopass.frame_mb_stats_buf[mb_index] = 0; + cpi->twopass.frame_mb_stats_buf[mb_index] &= ~FPMB_DCINTRA_MASK; + cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_MOTION_ZERO_MASK; + if (this_error > FPMB_ERROR_LARGE_TH) { + cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_ERROR_LARGE_MASK; + } else if (this_error < FPMB_ERROR_SMALL_TH) { + cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_ERROR_SMALL_MASK; + } + } +#endif + + if (!is_zero_mv(&mv)) { + ++(fp_acc_data->mvcount); + +#if CONFIG_FP_MB_STATS + if (cpi->use_fp_mb_stats) { + cpi->twopass.frame_mb_stats_buf[mb_index] &= ~FPMB_MOTION_ZERO_MASK; + // check estimated motion direction + if (mv.as_mv.col > 0 && mv.as_mv.col >= abs(mv.as_mv.row)) { + // right direction + cpi->twopass.frame_mb_stats_buf[mb_index] |= + FPMB_MOTION_RIGHT_MASK; + } else if (mv.as_mv.row < 0 && + abs(mv.as_mv.row) >= abs(mv.as_mv.col)) { + // up direction + cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_MOTION_UP_MASK; + } else if (mv.as_mv.col < 0 && + abs(mv.as_mv.col) >= abs(mv.as_mv.row)) { + // left direction + cpi->twopass.frame_mb_stats_buf[mb_index] |= + FPMB_MOTION_LEFT_MASK; + } else { + // down direction + cpi->twopass.frame_mb_stats_buf[mb_index] |= + FPMB_MOTION_DOWN_MASK; + } + } +#endif + + // Does the row vector point inwards or outwards? + if (mb_row < cm->mb_rows / 2) { + if (mv.row > 0) + --(fp_acc_data->sum_in_vectors); + else if (mv.row < 0) + ++(fp_acc_data->sum_in_vectors); + } else if (mb_row > cm->mb_rows / 2) { + if (mv.row > 0) + ++(fp_acc_data->sum_in_vectors); + else if (mv.row < 0) + --(fp_acc_data->sum_in_vectors); + } + + // Does the col vector point inwards or outwards? + if (mb_col < cm->mb_cols / 2) { + if (mv.col > 0) + --(fp_acc_data->sum_in_vectors); + else if (mv.col < 0) + ++(fp_acc_data->sum_in_vectors); + } else if (mb_col > cm->mb_cols / 2) { + if (mv.col > 0) + ++(fp_acc_data->sum_in_vectors); + else if (mv.col < 0) + --(fp_acc_data->sum_in_vectors); + } + fp_acc_data->frame_noise_energy += (int64_t)SECTION_NOISE_DEF; + } else if (this_intra_error < scale_sse_threshold(cm, LOW_I_THRESH)) { + fp_acc_data->frame_noise_energy += fp_estimate_block_noise(x, bsize); + } else { // 0,0 mv but high error + fp_acc_data->frame_noise_energy += (int64_t)SECTION_NOISE_DEF; + } + } else { // Intra < inter error + int scaled_low_intra_thresh = scale_sse_threshold(cm, LOW_I_THRESH); + if (this_intra_error < scaled_low_intra_thresh) { + fp_acc_data->frame_noise_energy += fp_estimate_block_noise(x, bsize); + if (motion_error < scaled_low_intra_thresh) { + fp_acc_data->intra_count_low += 1.0; + } else { + fp_acc_data->intra_count_high += 1.0; + } + } else { + fp_acc_data->frame_noise_energy += (int64_t)SECTION_NOISE_DEF; + fp_acc_data->intra_count_high += 1.0; + } + } + } else { + fp_acc_data->sr_coded_error += (int64_t)this_error; + } + fp_acc_data->coded_error += (int64_t)this_error; + + recon_yoffset += 16; + recon_uvoffset += uv_mb_height; + + // Accumulate row level stats to the corresponding tile stats + if (cpi->row_mt && mb_col == (tile.mi_col_end >> 1) - 1) + accumulate_fp_mb_row_stat(tile_data, fp_acc_data); + + (*(cpi->row_mt_sync_write_ptr))(&tile_data->row_mt_sync, mb_row, c, + num_mb_cols); + } + vpx_clear_system_state(); +} + +static void first_pass_encode(VP9_COMP *cpi, FIRSTPASS_DATA *fp_acc_data) { + VP9_COMMON *const cm = &cpi->common; + int mb_row; + TileDataEnc tile_data; + TileInfo *tile = &tile_data.tile_info; + MV zero_mv = { 0, 0 }; + MV best_ref_mv; + // Tiling is ignored in the first pass. + vp9_tile_init(tile, cm, 0, 0); + + for (mb_row = 0; mb_row < cm->mb_rows; ++mb_row) { + best_ref_mv = zero_mv; + vp9_first_pass_encode_tile_mb_row(cpi, &cpi->td, fp_acc_data, &tile_data, + &best_ref_mv, mb_row); + } +} + +void vp9_first_pass(VP9_COMP *cpi, const struct lookahead_entry *source) { + MACROBLOCK *const x = &cpi->td.mb; + VP9_COMMON *const cm = &cpi->common; + MACROBLOCKD *const xd = &x->e_mbd; + TWO_PASS *twopass = &cpi->twopass; + + YV12_BUFFER_CONFIG *const lst_yv12 = get_ref_frame_buffer(cpi, LAST_FRAME); + YV12_BUFFER_CONFIG *gld_yv12 = get_ref_frame_buffer(cpi, GOLDEN_FRAME); + YV12_BUFFER_CONFIG *const new_yv12 = get_frame_new_buffer(cm); + const YV12_BUFFER_CONFIG *first_ref_buf = lst_yv12; + + LAYER_CONTEXT *const lc = + is_two_pass_svc(cpi) ? &cpi->svc.layer_context[cpi->svc.spatial_layer_id] + : NULL; + BufferPool *const pool = cm->buffer_pool; + + FIRSTPASS_DATA fp_temp_data; + FIRSTPASS_DATA *fp_acc_data = &fp_temp_data; + + vpx_clear_system_state(); + vp9_zero(fp_temp_data); + fp_acc_data->image_data_start_row = INVALID_ROW; + + // First pass code requires valid last and new frame buffers. + assert(new_yv12 != NULL); + assert((lc != NULL) || frame_is_intra_only(cm) || (lst_yv12 != NULL)); + +#if CONFIG_FP_MB_STATS + if (cpi->use_fp_mb_stats) { + vp9_zero_array(cpi->twopass.frame_mb_stats_buf, cm->initial_mbs); + } +#endif + + set_first_pass_params(cpi); + vp9_set_quantizer(cm, find_fp_qindex(cm->bit_depth)); + + if (lc != NULL) { + twopass = &lc->twopass; + + cpi->lst_fb_idx = cpi->svc.spatial_layer_id; + cpi->ref_frame_flags = VP9_LAST_FLAG; + + if (cpi->svc.number_spatial_layers + cpi->svc.spatial_layer_id < + REF_FRAMES) { + cpi->gld_fb_idx = + cpi->svc.number_spatial_layers + cpi->svc.spatial_layer_id; + cpi->ref_frame_flags |= VP9_GOLD_FLAG; + cpi->refresh_golden_frame = (lc->current_video_frame_in_layer == 0); + } else { + cpi->refresh_golden_frame = 0; + } + + if (lc->current_video_frame_in_layer == 0) cpi->ref_frame_flags = 0; + + vp9_scale_references(cpi); + + // Use either last frame or alt frame for motion search. + if (cpi->ref_frame_flags & VP9_LAST_FLAG) { + first_ref_buf = vp9_get_scaled_ref_frame(cpi, LAST_FRAME); + if (first_ref_buf == NULL) + first_ref_buf = get_ref_frame_buffer(cpi, LAST_FRAME); + } + + if (cpi->ref_frame_flags & VP9_GOLD_FLAG) { + gld_yv12 = vp9_get_scaled_ref_frame(cpi, GOLDEN_FRAME); + if (gld_yv12 == NULL) { + gld_yv12 = get_ref_frame_buffer(cpi, GOLDEN_FRAME); + } + } else { + gld_yv12 = NULL; + } + + set_ref_ptrs(cm, xd, + (cpi->ref_frame_flags & VP9_LAST_FLAG) ? LAST_FRAME : NONE, + (cpi->ref_frame_flags & VP9_GOLD_FLAG) ? GOLDEN_FRAME : NONE); + + cpi->Source = vp9_scale_if_required(cm, cpi->un_scaled_source, + &cpi->scaled_source, 0, EIGHTTAP, 0); + } + + vp9_setup_block_planes(&x->e_mbd, cm->subsampling_x, cm->subsampling_y); + + vp9_setup_src_planes(x, cpi->Source, 0, 0); + vp9_setup_dst_planes(xd->plane, new_yv12, 0, 0); + + if (!frame_is_intra_only(cm)) { + vp9_setup_pre_planes(xd, 0, first_ref_buf, 0, 0, NULL); + } + + xd->mi = cm->mi_grid_visible; + xd->mi[0] = cm->mi; + + vp9_frame_init_quantizer(cpi); + + x->skip_recode = 0; + + vp9_init_mv_probs(cm); + vp9_initialize_rd_consts(cpi); + + cm->log2_tile_rows = 0; + + if (cpi->row_mt_bit_exact && cpi->twopass.fp_mb_float_stats == NULL) + CHECK_MEM_ERROR( + cm, cpi->twopass.fp_mb_float_stats, + vpx_calloc(cm->MBs * sizeof(*cpi->twopass.fp_mb_float_stats), 1)); + + { + FIRSTPASS_STATS fps; + TileDataEnc *first_tile_col; + if (!cpi->row_mt) { + cm->log2_tile_cols = 0; + cpi->row_mt_sync_read_ptr = vp9_row_mt_sync_read_dummy; + cpi->row_mt_sync_write_ptr = vp9_row_mt_sync_write_dummy; + first_pass_encode(cpi, fp_acc_data); + first_pass_stat_calc(cpi, &fps, fp_acc_data); + } else { + cpi->row_mt_sync_read_ptr = vp9_row_mt_sync_read; + cpi->row_mt_sync_write_ptr = vp9_row_mt_sync_write; + if (cpi->row_mt_bit_exact) { + cm->log2_tile_cols = 0; + vp9_zero_array(cpi->twopass.fp_mb_float_stats, cm->MBs); + } + vp9_encode_fp_row_mt(cpi); + first_tile_col = &cpi->tile_data[0]; + if (cpi->row_mt_bit_exact) + accumulate_floating_point_stats(cpi, first_tile_col); + first_pass_stat_calc(cpi, &fps, &(first_tile_col->fp_data)); + } + + // Dont allow a value of 0 for duration. + // (Section duration is also defaulted to minimum of 1.0). + fps.duration = VPXMAX(1.0, (double)(source->ts_end - source->ts_start)); + + // Don't want to do output stats with a stack variable! + twopass->this_frame_stats = fps; + output_stats(&twopass->this_frame_stats, cpi->output_pkt_list); + accumulate_stats(&twopass->total_stats, &fps); + +#if CONFIG_FP_MB_STATS + if (cpi->use_fp_mb_stats) { + output_fpmb_stats(twopass->frame_mb_stats_buf, cm, cpi->output_pkt_list); + } +#endif + } + + // Copy the previous Last Frame back into gf and and arf buffers if + // the prediction is good enough... but also don't allow it to lag too far. + if ((twopass->sr_update_lag > 3) || + ((cm->current_video_frame > 0) && + (twopass->this_frame_stats.pcnt_inter > 0.20) && + ((twopass->this_frame_stats.intra_error / + DOUBLE_DIVIDE_CHECK(twopass->this_frame_stats.coded_error)) > 2.0))) { + if (gld_yv12 != NULL) { + ref_cnt_fb(pool->frame_bufs, &cm->ref_frame_map[cpi->gld_fb_idx], + cm->ref_frame_map[cpi->lst_fb_idx]); + } + twopass->sr_update_lag = 1; + } else { + ++twopass->sr_update_lag; + } + + vpx_extend_frame_borders(new_yv12); + + if (lc != NULL) { + vp9_update_reference_frames(cpi); + } else { + // The frame we just compressed now becomes the last frame. + ref_cnt_fb(pool->frame_bufs, &cm->ref_frame_map[cpi->lst_fb_idx], + cm->new_fb_idx); + } + + // Special case for the first frame. Copy into the GF buffer as a second + // reference. + if (cm->current_video_frame == 0 && cpi->gld_fb_idx != INVALID_IDX && + lc == NULL) { + ref_cnt_fb(pool->frame_bufs, &cm->ref_frame_map[cpi->gld_fb_idx], + cm->ref_frame_map[cpi->lst_fb_idx]); + } + + // Use this to see what the first pass reconstruction looks like. + if (0) { + char filename[512]; + FILE *recon_file; + snprintf(filename, sizeof(filename), "enc%04d.yuv", + (int)cm->current_video_frame); + + if (cm->current_video_frame == 0) + recon_file = fopen(filename, "wb"); + else + recon_file = fopen(filename, "ab"); + + (void)fwrite(lst_yv12->buffer_alloc, lst_yv12->frame_size, 1, recon_file); + fclose(recon_file); + } + + ++cm->current_video_frame; + if (cpi->use_svc) vp9_inc_frame_in_layer(cpi); +} + +static const double q_pow_term[(QINDEX_RANGE >> 5) + 1] = { + 0.65, 0.70, 0.75, 0.85, 0.90, 0.90, 0.90, 1.00, 1.25 +}; + +static double calc_correction_factor(double err_per_mb, double err_divisor, + int q) { + const double error_term = err_per_mb / DOUBLE_DIVIDE_CHECK(err_divisor); + const int index = q >> 5; + double power_term; + + assert((index >= 0) && (index < (QINDEX_RANGE >> 5))); + + // Adjustment based on quantizer to the power term. + power_term = + q_pow_term[index] + + (((q_pow_term[index + 1] - q_pow_term[index]) * (q % 32)) / 32.0); + + // Calculate correction factor. + if (power_term < 1.0) assert(error_term >= 0.0); + + return fclamp(pow(error_term, power_term), 0.05, 5.0); +} + +#define ERR_DIVISOR 115.0 +#define NOISE_FACTOR_MIN 0.9 +#define NOISE_FACTOR_MAX 1.1 +static int get_twopass_worst_quality(VP9_COMP *cpi, const double section_err, + double inactive_zone, double section_noise, + int section_target_bandwidth) { + const RATE_CONTROL *const rc = &cpi->rc; + const VP9EncoderConfig *const oxcf = &cpi->oxcf; + TWO_PASS *const twopass = &cpi->twopass; + double last_group_rate_err; + + // Clamp the target rate to VBR min / max limts. + const int target_rate = + vp9_rc_clamp_pframe_target_size(cpi, section_target_bandwidth); + double noise_factor = pow((section_noise / SECTION_NOISE_DEF), 0.5); + noise_factor = fclamp(noise_factor, NOISE_FACTOR_MIN, NOISE_FACTOR_MAX); + inactive_zone = fclamp(inactive_zone, 0.0, 1.0); + +// TODO(jimbankoski): remove #if here or below when this has been +// well tested. +#if CONFIG_ALWAYS_ADJUST_BPM + // based on recent history adjust expectations of bits per macroblock. + last_group_rate_err = + (double)twopass->rolling_arf_group_actual_bits / + DOUBLE_DIVIDE_CHECK((double)twopass->rolling_arf_group_target_bits); + last_group_rate_err = VPXMAX(0.25, VPXMIN(4.0, last_group_rate_err)); + twopass->bpm_factor *= (3.0 + last_group_rate_err) / 4.0; + twopass->bpm_factor = VPXMAX(0.25, VPXMIN(4.0, twopass->bpm_factor)); +#endif + + if (target_rate <= 0) { + return rc->worst_quality; // Highest value allowed + } else { + const int num_mbs = (cpi->oxcf.resize_mode != RESIZE_NONE) + ? cpi->initial_mbs + : cpi->common.MBs; + const double active_pct = VPXMAX(0.01, 1.0 - inactive_zone); + const int active_mbs = (int)VPXMAX(1, (double)num_mbs * active_pct); + const double av_err_per_mb = section_err / active_pct; + const double speed_term = 1.0 + 0.04 * oxcf->speed; + const int target_norm_bits_per_mb = + (int)(((uint64_t)target_rate << BPER_MB_NORMBITS) / active_mbs); + int q; + +// TODO(jimbankoski): remove #if here or above when this has been +// well tested. +#if !CONFIG_ALWAYS_ADJUST_BPM + // based on recent history adjust expectations of bits per macroblock. + last_group_rate_err = + (double)twopass->rolling_arf_group_actual_bits / + DOUBLE_DIVIDE_CHECK((double)twopass->rolling_arf_group_target_bits); + last_group_rate_err = VPXMAX(0.25, VPXMIN(4.0, last_group_rate_err)); + twopass->bpm_factor *= (3.0 + last_group_rate_err) / 4.0; + twopass->bpm_factor = VPXMAX(0.25, VPXMIN(4.0, twopass->bpm_factor)); +#endif + + // Try and pick a max Q that will be high enough to encode the + // content at the given rate. + for (q = rc->best_quality; q < rc->worst_quality; ++q) { + const double factor = + calc_correction_factor(av_err_per_mb, ERR_DIVISOR, q); + const int bits_per_mb = vp9_rc_bits_per_mb( + INTER_FRAME, q, + factor * speed_term * cpi->twopass.bpm_factor * noise_factor, + cpi->common.bit_depth); + if (bits_per_mb <= target_norm_bits_per_mb) break; + } + + // Restriction on active max q for constrained quality mode. + if (cpi->oxcf.rc_mode == VPX_CQ) q = VPXMAX(q, oxcf->cq_level); + return q; + } +} + +static void setup_rf_level_maxq(VP9_COMP *cpi) { + int i; + RATE_CONTROL *const rc = &cpi->rc; + for (i = INTER_NORMAL; i < RATE_FACTOR_LEVELS; ++i) { + int qdelta = vp9_frame_type_qdelta(cpi, i, rc->worst_quality); + rc->rf_level_maxq[i] = VPXMAX(rc->worst_quality + qdelta, rc->best_quality); + } +} + +static void init_subsampling(VP9_COMP *cpi) { + const VP9_COMMON *const cm = &cpi->common; + RATE_CONTROL *const rc = &cpi->rc; + const int w = cm->width; + const int h = cm->height; + int i; + + for (i = 0; i < FRAME_SCALE_STEPS; ++i) { + // Note: Frames with odd-sized dimensions may result from this scaling. + rc->frame_width[i] = (w * 16) / frame_scale_factor[i]; + rc->frame_height[i] = (h * 16) / frame_scale_factor[i]; + } + + setup_rf_level_maxq(cpi); +} + +void calculate_coded_size(VP9_COMP *cpi, int *scaled_frame_width, + int *scaled_frame_height) { + RATE_CONTROL *const rc = &cpi->rc; + *scaled_frame_width = rc->frame_width[rc->frame_size_selector]; + *scaled_frame_height = rc->frame_height[rc->frame_size_selector]; +} + +void vp9_init_second_pass(VP9_COMP *cpi) { + SVC *const svc = &cpi->svc; + VP9EncoderConfig *const oxcf = &cpi->oxcf; + const int is_two_pass_svc = + (svc->number_spatial_layers > 1) || (svc->number_temporal_layers > 1); + RATE_CONTROL *const rc = &cpi->rc; + TWO_PASS *const twopass = + is_two_pass_svc ? &svc->layer_context[svc->spatial_layer_id].twopass + : &cpi->twopass; + double frame_rate; + FIRSTPASS_STATS *stats; + + zero_stats(&twopass->total_stats); + zero_stats(&twopass->total_left_stats); + + if (!twopass->stats_in_end) return; + + stats = &twopass->total_stats; + + *stats = *twopass->stats_in_end; + twopass->total_left_stats = *stats; + + // Scan the first pass file and calculate a modified score for each + // frame that is used to distribute bits. The modified score is assumed + // to provide a linear basis for bit allocation. I.e a frame A with a score + // that is double that of frame B will be allocated 2x as many bits. + { + double modified_score_total = 0.0; + const FIRSTPASS_STATS *s = twopass->stats_in; + double av_err; + + if (oxcf->vbr_corpus_complexity) { + twopass->mean_mod_score = (double)oxcf->vbr_corpus_complexity / 10.0; + av_err = get_distribution_av_err(cpi, twopass); + } else { + av_err = get_distribution_av_err(cpi, twopass); + // The first scan is unclamped and gives a raw average. + while (s < twopass->stats_in_end) { + modified_score_total += calculate_mod_frame_score(cpi, oxcf, s, av_err); + ++s; + } + + // The average error from this first scan is used to define the midpoint + // error for the rate distribution function. + twopass->mean_mod_score = + modified_score_total / DOUBLE_DIVIDE_CHECK(stats->count); + } + + // Second scan using clamps based on the previous cycle average. + // This may modify the total and average somewhat but we dont bother with + // further itterations. + modified_score_total = 0.0; + s = twopass->stats_in; + while (s < twopass->stats_in_end) { + modified_score_total += + calculate_norm_frame_score(cpi, twopass, oxcf, s, av_err); + ++s; + } + twopass->normalized_score_left = modified_score_total; + + // If using Corpus wide VBR mode then update the clip target bandwidth to + // reflect how the clip compares to the rest of the corpus. + if (oxcf->vbr_corpus_complexity) { + oxcf->target_bandwidth = + (int64_t)((double)oxcf->target_bandwidth * + (twopass->normalized_score_left / stats->count)); + } + +#if COMPLEXITY_STATS_OUTPUT + { + FILE *compstats; + compstats = fopen("complexity_stats.stt", "a"); + fprintf(compstats, "%10.3lf\n", + twopass->normalized_score_left / stats->count); + fclose(compstats); + } +#endif + } + + frame_rate = 10000000.0 * stats->count / stats->duration; + // Each frame can have a different duration, as the frame rate in the source + // isn't guaranteed to be constant. The frame rate prior to the first frame + // encoded in the second pass is a guess. However, the sum duration is not. + // It is calculated based on the actual durations of all frames from the + // first pass. + + if (is_two_pass_svc) { + vp9_update_spatial_layer_framerate(cpi, frame_rate); + twopass->bits_left = + (int64_t)(stats->duration * + svc->layer_context[svc->spatial_layer_id].target_bandwidth / + 10000000.0); + } else { + vp9_new_framerate(cpi, frame_rate); + twopass->bits_left = + (int64_t)(stats->duration * oxcf->target_bandwidth / 10000000.0); + } + + // This variable monitors how far behind the second ref update is lagging. + twopass->sr_update_lag = 1; + + // Reset the vbr bits off target counters + rc->vbr_bits_off_target = 0; + rc->vbr_bits_off_target_fast = 0; + rc->rate_error_estimate = 0; + + // Static sequence monitor variables. + twopass->kf_zeromotion_pct = 100; + twopass->last_kfgroup_zeromotion_pct = 100; + + // Initialize bits per macro_block estimate correction factor. + twopass->bpm_factor = 1.0; + // Initialize actual and target bits counters for ARF groups so that + // at the start we have a neutral bpm adjustment. + twopass->rolling_arf_group_target_bits = 1; + twopass->rolling_arf_group_actual_bits = 1; + + if (oxcf->resize_mode != RESIZE_NONE) { + init_subsampling(cpi); + } + + // Initialize the arnr strangth adjustment to 0 + twopass->arnr_strength_adjustment = 0; +} + +#define SR_DIFF_PART 0.0015 +#define INTRA_PART 0.005 +#define DEFAULT_DECAY_LIMIT 0.75 +#define LOW_SR_DIFF_TRHESH 0.1 +#define SR_DIFF_MAX 128.0 +#define LOW_CODED_ERR_PER_MB 10.0 +#define NCOUNT_FRAME_II_THRESH 6.0 + +static double get_sr_decay_rate(const VP9_COMP *cpi, + const FIRSTPASS_STATS *frame) { + double sr_diff = (frame->sr_coded_error - frame->coded_error); + double sr_decay = 1.0; + double modified_pct_inter; + double modified_pcnt_intra; + const double motion_amplitude_part = + frame->pcnt_motion * ((frame->mvc_abs + frame->mvr_abs) / + (cpi->initial_height + cpi->initial_width)); + + modified_pct_inter = frame->pcnt_inter; + if ((frame->coded_error > LOW_CODED_ERR_PER_MB) && + ((frame->intra_error / DOUBLE_DIVIDE_CHECK(frame->coded_error)) < + (double)NCOUNT_FRAME_II_THRESH)) { + modified_pct_inter = + frame->pcnt_inter + frame->pcnt_intra_low - frame->pcnt_neutral; + } + modified_pcnt_intra = 100 * (1.0 - modified_pct_inter); + + if ((sr_diff > LOW_SR_DIFF_TRHESH)) { + sr_diff = VPXMIN(sr_diff, SR_DIFF_MAX); + sr_decay = 1.0 - (SR_DIFF_PART * sr_diff) - motion_amplitude_part - + (INTRA_PART * modified_pcnt_intra); + } + return VPXMAX(sr_decay, DEFAULT_DECAY_LIMIT); +} + +// This function gives an estimate of how badly we believe the prediction +// quality is decaying from frame to frame. +static double get_zero_motion_factor(const VP9_COMP *cpi, + const FIRSTPASS_STATS *frame) { + const double zero_motion_pct = frame->pcnt_inter - frame->pcnt_motion; + double sr_decay = get_sr_decay_rate(cpi, frame); + return VPXMIN(sr_decay, zero_motion_pct); +} + +#define ZM_POWER_FACTOR 0.75 + +static double get_prediction_decay_rate(const VP9_COMP *cpi, + const FIRSTPASS_STATS *next_frame) { + const double sr_decay_rate = get_sr_decay_rate(cpi, next_frame); + const double zero_motion_factor = + (0.95 * pow((next_frame->pcnt_inter - next_frame->pcnt_motion), + ZM_POWER_FACTOR)); + + return VPXMAX(zero_motion_factor, + (sr_decay_rate + ((1.0 - sr_decay_rate) * zero_motion_factor))); +} + +// Function to test for a condition where a complex transition is followed +// by a static section. For example in slide shows where there is a fade +// between slides. This is to help with more optimal kf and gf positioning. +static int detect_transition_to_still(VP9_COMP *cpi, int frame_interval, + int still_interval, + double loop_decay_rate, + double last_decay_rate) { + TWO_PASS *const twopass = &cpi->twopass; + RATE_CONTROL *const rc = &cpi->rc; + + // Break clause to detect very still sections after motion + // For example a static image after a fade or other transition + // instead of a clean scene cut. + if (frame_interval > rc->min_gf_interval && loop_decay_rate >= 0.999 && + last_decay_rate < 0.9) { + int j; + + // Look ahead a few frames to see if static condition persists... + for (j = 0; j < still_interval; ++j) { + const FIRSTPASS_STATS *stats = &twopass->stats_in[j]; + if (stats >= twopass->stats_in_end) break; + + if (stats->pcnt_inter - stats->pcnt_motion < 0.999) break; + } + + // Only if it does do we signal a transition to still. + return j == still_interval; + } + + return 0; +} + +// This function detects a flash through the high relative pcnt_second_ref +// score in the frame following a flash frame. The offset passed in should +// reflect this. +static int detect_flash(const TWO_PASS *twopass, int offset) { + const FIRSTPASS_STATS *const next_frame = read_frame_stats(twopass, offset); + + // What we are looking for here is a situation where there is a + // brief break in prediction (such as a flash) but subsequent frames + // are reasonably well predicted by an earlier (pre flash) frame. + // The recovery after a flash is indicated by a high pcnt_second_ref + // compared to pcnt_inter. + return next_frame != NULL && + next_frame->pcnt_second_ref > next_frame->pcnt_inter && + next_frame->pcnt_second_ref >= 0.5; +} + +// Update the motion related elements to the GF arf boost calculation. +static void accumulate_frame_motion_stats(const FIRSTPASS_STATS *stats, + double *mv_in_out, + double *mv_in_out_accumulator, + double *abs_mv_in_out_accumulator, + double *mv_ratio_accumulator) { + const double pct = stats->pcnt_motion; + + // Accumulate Motion In/Out of frame stats. + *mv_in_out = stats->mv_in_out_count * pct; + *mv_in_out_accumulator += *mv_in_out; + *abs_mv_in_out_accumulator += fabs(*mv_in_out); + + // Accumulate a measure of how uniform (or conversely how random) the motion + // field is (a ratio of abs(mv) / mv). + if (pct > 0.05) { + const double mvr_ratio = + fabs(stats->mvr_abs) / DOUBLE_DIVIDE_CHECK(fabs(stats->MVr)); + const double mvc_ratio = + fabs(stats->mvc_abs) / DOUBLE_DIVIDE_CHECK(fabs(stats->MVc)); + + *mv_ratio_accumulator += + pct * (mvr_ratio < stats->mvr_abs ? mvr_ratio : stats->mvr_abs); + *mv_ratio_accumulator += + pct * (mvc_ratio < stats->mvc_abs ? mvc_ratio : stats->mvc_abs); + } +} + +#define BASELINE_ERR_PER_MB 12500.0 +#define GF_MAX_BOOST 96.0 +static double calc_frame_boost(VP9_COMP *cpi, const FIRSTPASS_STATS *this_frame, + double this_frame_mv_in_out) { + double frame_boost; + const double lq = vp9_convert_qindex_to_q( + cpi->rc.avg_frame_qindex[INTER_FRAME], cpi->common.bit_depth); + const double boost_q_correction = VPXMIN((0.5 + (lq * 0.015)), 1.5); + const double active_area = calculate_active_area(cpi, this_frame); + + // Underlying boost factor is based on inter error ratio. + frame_boost = (BASELINE_ERR_PER_MB * active_area) / + DOUBLE_DIVIDE_CHECK(this_frame->coded_error); + + // Small adjustment for cases where there is a zoom out + if (this_frame_mv_in_out > 0.0) + frame_boost += frame_boost * (this_frame_mv_in_out * 2.0); + + // Q correction and scalling + frame_boost = frame_boost * boost_q_correction; + + return VPXMIN(frame_boost, GF_MAX_BOOST * boost_q_correction); +} + +#define KF_BASELINE_ERR_PER_MB 12500.0 +static double calc_kf_frame_boost(VP9_COMP *cpi, + const FIRSTPASS_STATS *this_frame, + double *sr_accumulator, + double this_frame_mv_in_out, + double max_boost) { + double frame_boost; + const double lq = vp9_convert_qindex_to_q( + cpi->rc.avg_frame_qindex[INTER_FRAME], cpi->common.bit_depth); + const double boost_q_correction = VPXMIN((0.50 + (lq * 0.015)), 2.00); + const double active_area = calculate_active_area(cpi, this_frame); + + // Underlying boost factor is based on inter error ratio. + frame_boost = (KF_BASELINE_ERR_PER_MB * active_area) / + DOUBLE_DIVIDE_CHECK(this_frame->coded_error + *sr_accumulator); + + // Update the accumulator for second ref error difference. + // This is intended to give an indication of how much the coded error is + // increasing over time. + *sr_accumulator += (this_frame->sr_coded_error - this_frame->coded_error); + *sr_accumulator = VPXMAX(0.0, *sr_accumulator); + + // Small adjustment for cases where there is a zoom out + if (this_frame_mv_in_out > 0.0) + frame_boost += frame_boost * (this_frame_mv_in_out * 2.0); + + // Q correction and scalling + frame_boost = frame_boost * boost_q_correction; + + return VPXMIN(frame_boost, max_boost * boost_q_correction); +} + +static int calc_arf_boost(VP9_COMP *cpi, int f_frames, int b_frames) { + TWO_PASS *const twopass = &cpi->twopass; + int i; + double boost_score = 0.0; + double mv_ratio_accumulator = 0.0; + double decay_accumulator = 1.0; + double this_frame_mv_in_out = 0.0; + double mv_in_out_accumulator = 0.0; + double abs_mv_in_out_accumulator = 0.0; + int arf_boost; + int flash_detected = 0; + + // Search forward from the proposed arf/next gf position. + for (i = 0; i < f_frames; ++i) { + const FIRSTPASS_STATS *this_frame = read_frame_stats(twopass, i); + if (this_frame == NULL) break; + + // Update the motion related elements to the boost calculation. + accumulate_frame_motion_stats( + this_frame, &this_frame_mv_in_out, &mv_in_out_accumulator, + &abs_mv_in_out_accumulator, &mv_ratio_accumulator); + + // We want to discount the flash frame itself and the recovery + // frame that follows as both will have poor scores. + flash_detected = detect_flash(twopass, i) || detect_flash(twopass, i + 1); + + // Accumulate the effect of prediction quality decay. + if (!flash_detected) { + decay_accumulator *= get_prediction_decay_rate(cpi, this_frame); + decay_accumulator = decay_accumulator < MIN_DECAY_FACTOR + ? MIN_DECAY_FACTOR + : decay_accumulator; + } + boost_score += decay_accumulator * + calc_frame_boost(cpi, this_frame, this_frame_mv_in_out); + } + + arf_boost = (int)boost_score; + + // Reset for backward looking loop. + boost_score = 0.0; + mv_ratio_accumulator = 0.0; + decay_accumulator = 1.0; + this_frame_mv_in_out = 0.0; + mv_in_out_accumulator = 0.0; + abs_mv_in_out_accumulator = 0.0; + + // Search backward towards last gf position. + for (i = -1; i >= -b_frames; --i) { + const FIRSTPASS_STATS *this_frame = read_frame_stats(twopass, i); + if (this_frame == NULL) break; + + // Update the motion related elements to the boost calculation. + accumulate_frame_motion_stats( + this_frame, &this_frame_mv_in_out, &mv_in_out_accumulator, + &abs_mv_in_out_accumulator, &mv_ratio_accumulator); + + // We want to discount the the flash frame itself and the recovery + // frame that follows as both will have poor scores. + flash_detected = detect_flash(twopass, i) || detect_flash(twopass, i + 1); + + // Cumulative effect of prediction quality decay. + if (!flash_detected) { + decay_accumulator *= get_prediction_decay_rate(cpi, this_frame); + decay_accumulator = decay_accumulator < MIN_DECAY_FACTOR + ? MIN_DECAY_FACTOR + : decay_accumulator; + } + boost_score += decay_accumulator * + calc_frame_boost(cpi, this_frame, this_frame_mv_in_out); + } + arf_boost += (int)boost_score; + + if (arf_boost < ((b_frames + f_frames) * 40)) + arf_boost = ((b_frames + f_frames) * 40); + arf_boost = VPXMAX(arf_boost, MIN_ARF_GF_BOOST); + + return arf_boost; +} + +// Calculate a section intra ratio used in setting max loop filter. +static int calculate_section_intra_ratio(const FIRSTPASS_STATS *begin, + const FIRSTPASS_STATS *end, + int section_length) { + const FIRSTPASS_STATS *s = begin; + double intra_error = 0.0; + double coded_error = 0.0; + int i = 0; + + while (s < end && i < section_length) { + intra_error += s->intra_error; + coded_error += s->coded_error; + ++s; + ++i; + } + + return (int)(intra_error / DOUBLE_DIVIDE_CHECK(coded_error)); +} + +// Calculate the total bits to allocate in this GF/ARF group. +static int64_t calculate_total_gf_group_bits(VP9_COMP *cpi, + double gf_group_err) { + const RATE_CONTROL *const rc = &cpi->rc; + const TWO_PASS *const twopass = &cpi->twopass; + const int max_bits = frame_max_bits(rc, &cpi->oxcf); + int64_t total_group_bits; + + // Calculate the bits to be allocated to the group as a whole. + if ((twopass->kf_group_bits > 0) && (twopass->kf_group_error_left > 0.0)) { + total_group_bits = (int64_t)(twopass->kf_group_bits * + (gf_group_err / twopass->kf_group_error_left)); + } else { + total_group_bits = 0; + } + + // Clamp odd edge cases. + total_group_bits = (total_group_bits < 0) + ? 0 + : (total_group_bits > twopass->kf_group_bits) + ? twopass->kf_group_bits + : total_group_bits; + + // Clip based on user supplied data rate variability limit. + if (total_group_bits > (int64_t)max_bits * rc->baseline_gf_interval) + total_group_bits = (int64_t)max_bits * rc->baseline_gf_interval; + + return total_group_bits; +} + +// Calculate the number bits extra to assign to boosted frames in a group. +static int calculate_boost_bits(int frame_count, int boost, + int64_t total_group_bits) { + int allocation_chunks; + + // return 0 for invalid inputs (could arise e.g. through rounding errors) + if (!boost || (total_group_bits <= 0) || (frame_count < 0)) return 0; + + allocation_chunks = (frame_count * 100) + boost; + + // Prevent overflow. + if (boost > 1023) { + int divisor = boost >> 10; + boost /= divisor; + allocation_chunks /= divisor; + } + + // Calculate the number of extra bits for use in the boosted frame or frames. + return VPXMAX((int)(((int64_t)boost * total_group_bits) / allocation_chunks), + 0); +} + +// Current limit on maximum number of active arfs in a GF/ARF group. +#define MAX_ACTIVE_ARFS 2 +#define ARF_SLOT1 2 +#define ARF_SLOT2 3 +// This function indirects the choice of buffers for arfs. +// At the moment the values are fixed but this may change as part of +// the integration process with other codec features that swap buffers around. +static void get_arf_buffer_indices(unsigned char *arf_buffer_indices) { + arf_buffer_indices[0] = ARF_SLOT1; + arf_buffer_indices[1] = ARF_SLOT2; +} + +// Used in corpus vbr: Calculates the total normalized group complexity score +// for a given number of frames starting at the current position in the stats +// file. +static double calculate_group_score(VP9_COMP *cpi, double av_score, + int frame_count) { + VP9EncoderConfig *const oxcf = &cpi->oxcf; + TWO_PASS *const twopass = &cpi->twopass; + const FIRSTPASS_STATS *s = twopass->stats_in; + double score_total = 0.0; + int i = 0; + + // We dont ever want to return a 0 score here. + if (frame_count == 0) return 1.0; + + while ((i < frame_count) && (s < twopass->stats_in_end)) { + score_total += calculate_norm_frame_score(cpi, twopass, oxcf, s, av_score); + ++s; + ++i; + } + assert(i == frame_count); + + return score_total; +} + +static void allocate_gf_group_bits(VP9_COMP *cpi, int64_t gf_group_bits, + int gf_arf_bits) { + VP9EncoderConfig *const oxcf = &cpi->oxcf; + RATE_CONTROL *const rc = &cpi->rc; + TWO_PASS *const twopass = &cpi->twopass; + GF_GROUP *const gf_group = &twopass->gf_group; + FIRSTPASS_STATS frame_stats; + int i; + int frame_index = 1; + int target_frame_size; + int key_frame; + const int max_bits = frame_max_bits(&cpi->rc, oxcf); + int64_t total_group_bits = gf_group_bits; + int mid_boost_bits = 0; + int mid_frame_idx; + unsigned char arf_buffer_indices[MAX_ACTIVE_ARFS]; + int alt_frame_index = frame_index; + int has_temporal_layers = + is_two_pass_svc(cpi) && cpi->svc.number_temporal_layers > 1; + int normal_frames; + int normal_frame_bits; + int last_frame_reduction = 0; + double av_score = 1.0; + double tot_norm_frame_score = 1.0; + double this_frame_score = 1.0; + + // Only encode alt reference frame in temporal base layer. + if (has_temporal_layers) alt_frame_index = cpi->svc.number_temporal_layers; + + key_frame = + cpi->common.frame_type == KEY_FRAME || vp9_is_upper_layer_key_frame(cpi); + + get_arf_buffer_indices(arf_buffer_indices); + + // For key frames the frame target rate is already set and it + // is also the golden frame. + if (!key_frame) { + if (rc->source_alt_ref_active) { + gf_group->update_type[0] = OVERLAY_UPDATE; + gf_group->rf_level[0] = INTER_NORMAL; + gf_group->bit_allocation[0] = 0; + } else { + gf_group->update_type[0] = GF_UPDATE; + gf_group->rf_level[0] = GF_ARF_STD; + gf_group->bit_allocation[0] = gf_arf_bits; + } + gf_group->arf_update_idx[0] = arf_buffer_indices[0]; + gf_group->arf_ref_idx[0] = arf_buffer_indices[0]; + + // Step over the golden frame / overlay frame + if (EOF == input_stats(twopass, &frame_stats)) return; + } + + // Deduct the boost bits for arf (or gf if it is not a key frame) + // from the group total. + if (rc->source_alt_ref_pending || !key_frame) total_group_bits -= gf_arf_bits; + + // Store the bits to spend on the ARF if there is one. + if (rc->source_alt_ref_pending) { + gf_group->update_type[alt_frame_index] = ARF_UPDATE; + gf_group->rf_level[alt_frame_index] = GF_ARF_STD; + gf_group->bit_allocation[alt_frame_index] = gf_arf_bits; + + if (has_temporal_layers) + gf_group->arf_src_offset[alt_frame_index] = + (unsigned char)(rc->baseline_gf_interval - + cpi->svc.number_temporal_layers); + else + gf_group->arf_src_offset[alt_frame_index] = + (unsigned char)(rc->baseline_gf_interval - 1); + + gf_group->arf_update_idx[alt_frame_index] = arf_buffer_indices[0]; + gf_group->arf_ref_idx[alt_frame_index] = + arf_buffer_indices[cpi->multi_arf_last_grp_enabled && + rc->source_alt_ref_active]; + if (!has_temporal_layers) ++frame_index; + + if (cpi->multi_arf_enabled) { + // Set aside a slot for a level 1 arf. + gf_group->update_type[frame_index] = ARF_UPDATE; + gf_group->rf_level[frame_index] = GF_ARF_LOW; + gf_group->arf_src_offset[frame_index] = + (unsigned char)((rc->baseline_gf_interval >> 1) - 1); + gf_group->arf_update_idx[frame_index] = arf_buffer_indices[1]; + gf_group->arf_ref_idx[frame_index] = arf_buffer_indices[0]; + ++frame_index; + } + } + + // Note index of the first normal inter frame int eh group (not gf kf arf) + gf_group->first_inter_index = frame_index; + + // Define middle frame + mid_frame_idx = frame_index + (rc->baseline_gf_interval >> 1) - 1; + + normal_frames = (rc->baseline_gf_interval - rc->source_alt_ref_pending); + if (normal_frames > 1) + normal_frame_bits = (int)(total_group_bits / normal_frames); + else + normal_frame_bits = (int)total_group_bits; + + if (oxcf->vbr_corpus_complexity) { + av_score = get_distribution_av_err(cpi, twopass); + tot_norm_frame_score = calculate_group_score(cpi, av_score, normal_frames); + } + + // Allocate bits to the other frames in the group. + for (i = 0; i < normal_frames; ++i) { + int arf_idx = 0; + if (EOF == input_stats(twopass, &frame_stats)) break; + + if (has_temporal_layers && frame_index == alt_frame_index) { + ++frame_index; + } + + if (oxcf->vbr_corpus_complexity) { + this_frame_score = calculate_norm_frame_score(cpi, twopass, oxcf, + &frame_stats, av_score); + normal_frame_bits = (int)((double)total_group_bits * + (this_frame_score / tot_norm_frame_score)); + } + + target_frame_size = normal_frame_bits; + if ((i == (normal_frames - 1)) && (i >= 1)) { + last_frame_reduction = normal_frame_bits / 16; + target_frame_size -= last_frame_reduction; + } + + if (rc->source_alt_ref_pending && cpi->multi_arf_enabled) { + mid_boost_bits += (target_frame_size >> 4); + target_frame_size -= (target_frame_size >> 4); + + if (frame_index <= mid_frame_idx) arf_idx = 1; + } + gf_group->arf_update_idx[frame_index] = arf_buffer_indices[arf_idx]; + gf_group->arf_ref_idx[frame_index] = arf_buffer_indices[arf_idx]; + + target_frame_size = + clamp(target_frame_size, 0, VPXMIN(max_bits, (int)total_group_bits)); + + gf_group->update_type[frame_index] = LF_UPDATE; + gf_group->rf_level[frame_index] = INTER_NORMAL; + + gf_group->bit_allocation[frame_index] = target_frame_size; + ++frame_index; + } + + // Add in some extra bits for the middle frame in the group. + gf_group->bit_allocation[mid_frame_idx] += last_frame_reduction; + + // Note: + // We need to configure the frame at the end of the sequence + 1 that will be + // the start frame for the next group. Otherwise prior to the call to + // vp9_rc_get_second_pass_params() the data will be undefined. + gf_group->arf_update_idx[frame_index] = arf_buffer_indices[0]; + gf_group->arf_ref_idx[frame_index] = arf_buffer_indices[0]; + + if (rc->source_alt_ref_pending) { + gf_group->update_type[frame_index] = OVERLAY_UPDATE; + gf_group->rf_level[frame_index] = INTER_NORMAL; + + // Final setup for second arf and its overlay. + if (cpi->multi_arf_enabled) { + gf_group->bit_allocation[2] = + gf_group->bit_allocation[mid_frame_idx] + mid_boost_bits; + gf_group->update_type[mid_frame_idx] = OVERLAY_UPDATE; + gf_group->bit_allocation[mid_frame_idx] = 0; + } + } else { + gf_group->update_type[frame_index] = GF_UPDATE; + gf_group->rf_level[frame_index] = GF_ARF_STD; + } + + // Note whether multi-arf was enabled this group for next time. + cpi->multi_arf_last_grp_enabled = cpi->multi_arf_enabled; +} + +// Adjusts the ARNF filter for a GF group. +static void adjust_group_arnr_filter(VP9_COMP *cpi, double section_noise, + double section_inter, + double section_motion) { + TWO_PASS *const twopass = &cpi->twopass; + double section_zeromv = section_inter - section_motion; + + twopass->arnr_strength_adjustment = 0; + + if ((section_zeromv < 0.10) || (section_noise <= (SECTION_NOISE_DEF * 0.75))) + twopass->arnr_strength_adjustment -= 1; + if (section_zeromv > 0.50) twopass->arnr_strength_adjustment += 1; +} + +// Analyse and define a gf/arf group. +#define ARF_DECAY_BREAKOUT 0.10 +#define ARF_ABS_ZOOM_THRESH 4.0 + +static void define_gf_group(VP9_COMP *cpi, FIRSTPASS_STATS *this_frame) { + VP9_COMMON *const cm = &cpi->common; + RATE_CONTROL *const rc = &cpi->rc; + VP9EncoderConfig *const oxcf = &cpi->oxcf; + TWO_PASS *const twopass = &cpi->twopass; + FIRSTPASS_STATS next_frame; + const FIRSTPASS_STATS *const start_pos = twopass->stats_in; + int i; + + double gf_group_err = 0.0; + double gf_group_raw_error = 0.0; + double gf_group_noise = 0.0; + double gf_group_skip_pct = 0.0; + double gf_group_inactive_zone_rows = 0.0; + double gf_group_inter = 0.0; + double gf_group_motion = 0.0; + double gf_first_frame_err = 0.0; + double mod_frame_err = 0.0; + + double mv_ratio_accumulator = 0.0; + double zero_motion_accumulator = 1.0; + double loop_decay_rate = 1.00; + double last_loop_decay_rate = 1.00; + + double this_frame_mv_in_out = 0.0; + double mv_in_out_accumulator = 0.0; + double abs_mv_in_out_accumulator = 0.0; + double mv_ratio_accumulator_thresh; + double abs_mv_in_out_thresh; + double sr_accumulator = 0.0; + const double av_err = get_distribution_av_err(cpi, twopass); + unsigned int allow_alt_ref = is_altref_enabled(cpi); + + int flash_detected; + int active_max_gf_interval; + int active_min_gf_interval; + int64_t gf_group_bits; + int gf_arf_bits; + const int is_key_frame = frame_is_intra_only(cm); + const int arf_active_or_kf = is_key_frame || rc->source_alt_ref_active; + + // Reset the GF group data structures unless this is a key + // frame in which case it will already have been done. + if (is_key_frame == 0) { + vp9_zero(twopass->gf_group); + } + + vpx_clear_system_state(); + vp9_zero(next_frame); + + // Load stats for the current frame. + mod_frame_err = + calculate_norm_frame_score(cpi, twopass, oxcf, this_frame, av_err); + + // Note the error of the frame at the start of the group. This will be + // the GF frame error if we code a normal gf. + gf_first_frame_err = mod_frame_err; + + // If this is a key frame or the overlay from a previous arf then + // the error score / cost of this frame has already been accounted for. + if (arf_active_or_kf) { + gf_group_err -= gf_first_frame_err; + gf_group_raw_error -= this_frame->coded_error; + gf_group_noise -= this_frame->frame_noise_energy; + gf_group_skip_pct -= this_frame->intra_skip_pct; + gf_group_inactive_zone_rows -= this_frame->inactive_zone_rows; + gf_group_inter -= this_frame->pcnt_inter; + gf_group_motion -= this_frame->pcnt_motion; + } + + // Motion breakout threshold for loop below depends on image size. + mv_ratio_accumulator_thresh = + (cpi->initial_height + cpi->initial_width) / 4.0; + abs_mv_in_out_thresh = ARF_ABS_ZOOM_THRESH; + + // Set a maximum and minimum interval for the GF group. + // If the image appears almost completely static we can extend beyond this. + { + int int_max_q = (int)(vp9_convert_qindex_to_q(twopass->active_worst_quality, + cpi->common.bit_depth)); + int int_lbq = (int)(vp9_convert_qindex_to_q(rc->last_boosted_qindex, + cpi->common.bit_depth)); + active_min_gf_interval = + rc->min_gf_interval + arf_active_or_kf + VPXMIN(2, int_max_q / 200); + active_min_gf_interval = + VPXMIN(active_min_gf_interval, rc->max_gf_interval + arf_active_or_kf); + + if (cpi->multi_arf_allowed) { + active_max_gf_interval = rc->max_gf_interval; + } else { + // The value chosen depends on the active Q range. At low Q we have + // bits to spare and are better with a smaller interval and smaller boost. + // At high Q when there are few bits to spare we are better with a longer + // interval to spread the cost of the GF. + active_max_gf_interval = 12 + arf_active_or_kf + VPXMIN(4, (int_lbq / 6)); + + // We have: active_min_gf_interval <= + // rc->max_gf_interval + arf_active_or_kf. + if (active_max_gf_interval < active_min_gf_interval) { + active_max_gf_interval = active_min_gf_interval; + } else { + active_max_gf_interval = VPXMIN(active_max_gf_interval, + rc->max_gf_interval + arf_active_or_kf); + } + + // Would the active max drop us out just before the near the next kf? + if ((active_max_gf_interval <= rc->frames_to_key) && + (active_max_gf_interval >= (rc->frames_to_key - rc->min_gf_interval))) + active_max_gf_interval = rc->frames_to_key / 2; + } + } + + i = 0; + while (i < rc->static_scene_max_gf_interval && i < rc->frames_to_key) { + ++i; + + // Accumulate error score of frames in this gf group. + mod_frame_err = + calculate_norm_frame_score(cpi, twopass, oxcf, this_frame, av_err); + gf_group_err += mod_frame_err; + gf_group_raw_error += this_frame->coded_error; + gf_group_noise += this_frame->frame_noise_energy; + gf_group_skip_pct += this_frame->intra_skip_pct; + gf_group_inactive_zone_rows += this_frame->inactive_zone_rows; + gf_group_inter += this_frame->pcnt_inter; + gf_group_motion += this_frame->pcnt_motion; + + if (EOF == input_stats(twopass, &next_frame)) break; + + // Test for the case where there is a brief flash but the prediction + // quality back to an earlier frame is then restored. + flash_detected = detect_flash(twopass, 0); + + // Update the motion related elements to the boost calculation. + accumulate_frame_motion_stats( + &next_frame, &this_frame_mv_in_out, &mv_in_out_accumulator, + &abs_mv_in_out_accumulator, &mv_ratio_accumulator); + + // Accumulate the effect of prediction quality decay. + if (!flash_detected) { + last_loop_decay_rate = loop_decay_rate; + loop_decay_rate = get_prediction_decay_rate(cpi, &next_frame); + + // Monitor for static sections. + zero_motion_accumulator = VPXMIN( + zero_motion_accumulator, get_zero_motion_factor(cpi, &next_frame)); + + // Break clause to detect very still sections after motion. For example, + // a static image after a fade or other transition. + if (detect_transition_to_still(cpi, i, 5, loop_decay_rate, + last_loop_decay_rate)) { + allow_alt_ref = 0; + break; + } + + // Update the accumulator for second ref error difference. + // This is intended to give an indication of how much the coded error is + // increasing over time. + if (i == 1) { + sr_accumulator += next_frame.coded_error; + } else { + sr_accumulator += (next_frame.sr_coded_error - next_frame.coded_error); + } + } + + // Break out conditions. + if ( + // Break at active_max_gf_interval unless almost totally static. + ((i >= active_max_gf_interval) && (zero_motion_accumulator < 0.995)) || + ( + // Don't break out with a very short interval. + (i >= active_min_gf_interval) && + // If possible dont break very close to a kf + ((rc->frames_to_key - i) >= rc->min_gf_interval) && + (!flash_detected) && + ((mv_ratio_accumulator > mv_ratio_accumulator_thresh) || + (abs_mv_in_out_accumulator > abs_mv_in_out_thresh) || + (sr_accumulator > next_frame.intra_error)))) { + break; + } + + *this_frame = next_frame; + } + + // Was the group length constrained by the requirement for a new KF? + rc->constrained_gf_group = (i >= rc->frames_to_key) ? 1 : 0; + + // Should we use the alternate reference frame. + if (allow_alt_ref && (i < cpi->oxcf.lag_in_frames) && + (i >= rc->min_gf_interval)) { + const int forward_frames = (rc->frames_to_key - i >= i - 1) + ? i - 1 + : VPXMAX(0, rc->frames_to_key - i); + + // Calculate the boost for alt ref. + rc->gfu_boost = calc_arf_boost(cpi, forward_frames, (i - 1)); + rc->source_alt_ref_pending = 1; + + // Test to see if multi arf is appropriate. + cpi->multi_arf_enabled = + (cpi->multi_arf_allowed && (rc->baseline_gf_interval >= 6) && + (zero_motion_accumulator < 0.995)) + ? 1 + : 0; + } else { + rc->gfu_boost = calc_arf_boost(cpi, 0, (i - 1)); + rc->source_alt_ref_pending = 0; + } + +#ifdef AGGRESSIVE_VBR + // Limit maximum boost based on interval length. + rc->gfu_boost = VPXMIN((int)rc->gfu_boost, i * 140); +#else + rc->gfu_boost = VPXMIN((int)rc->gfu_boost, i * 200); +#endif + + // Set the interval until the next gf. + rc->baseline_gf_interval = i - (is_key_frame || rc->source_alt_ref_pending); + + // Only encode alt reference frame in temporal base layer. So + // baseline_gf_interval should be multiple of a temporal layer group + // (typically the frame distance between two base layer frames) + if (is_two_pass_svc(cpi) && cpi->svc.number_temporal_layers > 1) { + int count = (1 << (cpi->svc.number_temporal_layers - 1)) - 1; + int new_gf_interval = (rc->baseline_gf_interval + count) & (~count); + int j; + for (j = 0; j < new_gf_interval - rc->baseline_gf_interval; ++j) { + if (EOF == input_stats(twopass, this_frame)) break; + gf_group_err += + calculate_norm_frame_score(cpi, twopass, oxcf, this_frame, av_err); + gf_group_raw_error += this_frame->coded_error; + gf_group_noise += this_frame->frame_noise_energy; + gf_group_skip_pct += this_frame->intra_skip_pct; + gf_group_inactive_zone_rows += this_frame->inactive_zone_rows; + gf_group_inter += this_frame->pcnt_inter; + gf_group_motion += this_frame->pcnt_motion; + } + rc->baseline_gf_interval = new_gf_interval; + } + + rc->frames_till_gf_update_due = rc->baseline_gf_interval; + + // Reset the file position. + reset_fpf_position(twopass, start_pos); + + // Calculate the bits to be allocated to the gf/arf group as a whole + gf_group_bits = calculate_total_gf_group_bits(cpi, gf_group_err); + + // Calculate an estimate of the maxq needed for the group. + // We are more aggressive about correcting for sections + // where there could be significant overshoot than for easier + // sections where we do not wish to risk creating an overshoot + // of the allocated bit budget. + if ((cpi->oxcf.rc_mode != VPX_Q) && (rc->baseline_gf_interval > 1)) { + const int vbr_group_bits_per_frame = + (int)(gf_group_bits / rc->baseline_gf_interval); + const double group_av_err = gf_group_raw_error / rc->baseline_gf_interval; + const double group_av_noise = gf_group_noise / rc->baseline_gf_interval; + const double group_av_skip_pct = + gf_group_skip_pct / rc->baseline_gf_interval; + const double group_av_inactive_zone = + ((gf_group_inactive_zone_rows * 2) / + (rc->baseline_gf_interval * (double)cm->mb_rows)); + int tmp_q = get_twopass_worst_quality( + cpi, group_av_err, (group_av_skip_pct + group_av_inactive_zone), + group_av_noise, vbr_group_bits_per_frame); + twopass->active_worst_quality = + (tmp_q + (twopass->active_worst_quality * 3)) >> 2; + +#if CONFIG_ALWAYS_ADJUST_BPM + // Reset rolling actual and target bits counters for ARF groups. + twopass->rolling_arf_group_target_bits = 0; + twopass->rolling_arf_group_actual_bits = 0; +#endif + } + + // Context Adjustment of ARNR filter strength + if (rc->baseline_gf_interval > 1) { + adjust_group_arnr_filter(cpi, (gf_group_noise / rc->baseline_gf_interval), + (gf_group_inter / rc->baseline_gf_interval), + (gf_group_motion / rc->baseline_gf_interval)); + } else { + twopass->arnr_strength_adjustment = 0; + } + + // Calculate the extra bits to be used for boosted frame(s) + gf_arf_bits = calculate_boost_bits(rc->baseline_gf_interval, rc->gfu_boost, + gf_group_bits); + + // Adjust KF group bits and error remaining. + twopass->kf_group_error_left -= gf_group_err; + + // Allocate bits to each of the frames in the GF group. + allocate_gf_group_bits(cpi, gf_group_bits, gf_arf_bits); + + // Reset the file position. + reset_fpf_position(twopass, start_pos); + + // Calculate a section intra ratio used in setting max loop filter. + if (cpi->common.frame_type != KEY_FRAME) { + twopass->section_intra_rating = calculate_section_intra_ratio( + start_pos, twopass->stats_in_end, rc->baseline_gf_interval); + } + + if (oxcf->resize_mode == RESIZE_DYNAMIC) { + // Default to starting GF groups at normal frame size. + cpi->rc.next_frame_size_selector = UNSCALED; + } +#if !CONFIG_ALWAYS_ADJUST_BPM + // Reset rolling actual and target bits counters for ARF groups. + twopass->rolling_arf_group_target_bits = 0; + twopass->rolling_arf_group_actual_bits = 0; +#endif +} + +// Threshold for use of the lagging second reference frame. High second ref +// usage may point to a transient event like a flash or occlusion rather than +// a real scene cut. +#define SECOND_REF_USEAGE_THRESH 0.1 +// Minimum % intra coding observed in first pass (1.0 = 100%) +#define MIN_INTRA_LEVEL 0.25 +// Minimum ratio between the % of intra coding and inter coding in the first +// pass after discounting neutral blocks (discounting neutral blocks in this +// way helps catch scene cuts in clips with very flat areas or letter box +// format clips with image padding. +#define INTRA_VS_INTER_THRESH 2.0 +// Hard threshold where the first pass chooses intra for almost all blocks. +// In such a case even if the frame is not a scene cut coding a key frame +// may be a good option. +#define VERY_LOW_INTER_THRESH 0.05 +// Maximum threshold for the relative ratio of intra error score vs best +// inter error score. +#define KF_II_ERR_THRESHOLD 2.5 +// In real scene cuts there is almost always a sharp change in the intra +// or inter error score. +#define ERR_CHANGE_THRESHOLD 0.4 +// For real scene cuts we expect an improvment in the intra inter error +// ratio in the next frame. +#define II_IMPROVEMENT_THRESHOLD 3.5 +#define KF_II_MAX 128.0 +#define II_FACTOR 12.5 +// Test for very low intra complexity which could cause false key frames +#define V_LOW_INTRA 0.5 + +static int test_candidate_kf(TWO_PASS *twopass, + const FIRSTPASS_STATS *last_frame, + const FIRSTPASS_STATS *this_frame, + const FIRSTPASS_STATS *next_frame) { + int is_viable_kf = 0; + double pcnt_intra = 1.0 - this_frame->pcnt_inter; + double modified_pcnt_inter = + this_frame->pcnt_inter - this_frame->pcnt_neutral; + + // Does the frame satisfy the primary criteria of a key frame? + // See above for an explanation of the test criteria. + // If so, then examine how well it predicts subsequent frames. + if ((this_frame->pcnt_second_ref < SECOND_REF_USEAGE_THRESH) && + (next_frame->pcnt_second_ref < SECOND_REF_USEAGE_THRESH) && + ((this_frame->pcnt_inter < VERY_LOW_INTER_THRESH) || + ((pcnt_intra > MIN_INTRA_LEVEL) && + (pcnt_intra > (INTRA_VS_INTER_THRESH * modified_pcnt_inter)) && + ((this_frame->intra_error / + DOUBLE_DIVIDE_CHECK(this_frame->coded_error)) < + KF_II_ERR_THRESHOLD) && + ((fabs(last_frame->coded_error - this_frame->coded_error) / + DOUBLE_DIVIDE_CHECK(this_frame->coded_error) > + ERR_CHANGE_THRESHOLD) || + (fabs(last_frame->intra_error - this_frame->intra_error) / + DOUBLE_DIVIDE_CHECK(this_frame->intra_error) > + ERR_CHANGE_THRESHOLD) || + ((next_frame->intra_error / + DOUBLE_DIVIDE_CHECK(next_frame->coded_error)) > + II_IMPROVEMENT_THRESHOLD))))) { + int i; + const FIRSTPASS_STATS *start_pos = twopass->stats_in; + FIRSTPASS_STATS local_next_frame = *next_frame; + double boost_score = 0.0; + double old_boost_score = 0.0; + double decay_accumulator = 1.0; + + // Examine how well the key frame predicts subsequent frames. + for (i = 0; i < 16; ++i) { + double next_iiratio = (II_FACTOR * local_next_frame.intra_error / + DOUBLE_DIVIDE_CHECK(local_next_frame.coded_error)); + + if (next_iiratio > KF_II_MAX) next_iiratio = KF_II_MAX; + + // Cumulative effect of decay in prediction quality. + if (local_next_frame.pcnt_inter > 0.85) + decay_accumulator *= local_next_frame.pcnt_inter; + else + decay_accumulator *= (0.85 + local_next_frame.pcnt_inter) / 2.0; + + // Keep a running total. + boost_score += (decay_accumulator * next_iiratio); + + // Test various breakout clauses. + if ((local_next_frame.pcnt_inter < 0.05) || (next_iiratio < 1.5) || + (((local_next_frame.pcnt_inter - local_next_frame.pcnt_neutral) < + 0.20) && + (next_iiratio < 3.0)) || + ((boost_score - old_boost_score) < 3.0) || + (local_next_frame.intra_error < V_LOW_INTRA)) { + break; + } + + old_boost_score = boost_score; + + // Get the next frame details + if (EOF == input_stats(twopass, &local_next_frame)) break; + } + + // If there is tolerable prediction for at least the next 3 frames then + // break out else discard this potential key frame and move on + if (boost_score > 30.0 && (i > 3)) { + is_viable_kf = 1; + } else { + // Reset the file position + reset_fpf_position(twopass, start_pos); + + is_viable_kf = 0; + } + } + + return is_viable_kf; +} + +#define FRAMES_TO_CHECK_DECAY 8 +#define MIN_KF_TOT_BOOST 300 +#define KF_BOOST_SCAN_MAX_FRAMES 32 + +#ifdef AGGRESSIVE_VBR +#define KF_MAX_FRAME_BOOST 80.0 +#define MAX_KF_TOT_BOOST 4800 +#else +#define KF_MAX_FRAME_BOOST 96.0 +#define MAX_KF_TOT_BOOST 5400 +#endif + +static void find_next_key_frame(VP9_COMP *cpi, FIRSTPASS_STATS *this_frame) { + int i, j; + RATE_CONTROL *const rc = &cpi->rc; + TWO_PASS *const twopass = &cpi->twopass; + GF_GROUP *const gf_group = &twopass->gf_group; + const VP9EncoderConfig *const oxcf = &cpi->oxcf; + const FIRSTPASS_STATS first_frame = *this_frame; + const FIRSTPASS_STATS *const start_position = twopass->stats_in; + FIRSTPASS_STATS next_frame; + FIRSTPASS_STATS last_frame; + int kf_bits = 0; + double decay_accumulator = 1.0; + double zero_motion_accumulator = 1.0; + double boost_score = 0.0; + double kf_mod_err = 0.0; + double kf_group_err = 0.0; + double recent_loop_decay[FRAMES_TO_CHECK_DECAY]; + double sr_accumulator = 0.0; + const double av_err = get_distribution_av_err(cpi, twopass); + vp9_zero(next_frame); + + cpi->common.frame_type = KEY_FRAME; + + // Reset the GF group data structures. + vp9_zero(*gf_group); + + // Is this a forced key frame by interval. + rc->this_key_frame_forced = rc->next_key_frame_forced; + + // Clear the alt ref active flag and last group multi arf flags as they + // can never be set for a key frame. + rc->source_alt_ref_active = 0; + cpi->multi_arf_last_grp_enabled = 0; + + // KF is always a GF so clear frames till next gf counter. + rc->frames_till_gf_update_due = 0; + + rc->frames_to_key = 1; + + twopass->kf_group_bits = 0; // Total bits available to kf group + twopass->kf_group_error_left = 0.0; // Group modified error score. + + kf_mod_err = + calculate_norm_frame_score(cpi, twopass, oxcf, this_frame, av_err); + + // Initialize the decay rates for the recent frames to check + for (j = 0; j < FRAMES_TO_CHECK_DECAY; ++j) recent_loop_decay[j] = 1.0; + + // Find the next keyframe. + i = 0; + while (twopass->stats_in < twopass->stats_in_end && + rc->frames_to_key < cpi->oxcf.key_freq) { + // Accumulate kf group error. + kf_group_err += + calculate_norm_frame_score(cpi, twopass, oxcf, this_frame, av_err); + + // Load the next frame's stats. + last_frame = *this_frame; + input_stats(twopass, this_frame); + + // Provided that we are not at the end of the file... + if (cpi->oxcf.auto_key && twopass->stats_in < twopass->stats_in_end) { + double loop_decay_rate; + + // Check for a scene cut. + if (test_candidate_kf(twopass, &last_frame, this_frame, + twopass->stats_in)) + break; + + // How fast is the prediction quality decaying? + loop_decay_rate = get_prediction_decay_rate(cpi, twopass->stats_in); + + // We want to know something about the recent past... rather than + // as used elsewhere where we are concerned with decay in prediction + // quality since the last GF or KF. + recent_loop_decay[i % FRAMES_TO_CHECK_DECAY] = loop_decay_rate; + decay_accumulator = 1.0; + for (j = 0; j < FRAMES_TO_CHECK_DECAY; ++j) + decay_accumulator *= recent_loop_decay[j]; + + // Special check for transition or high motion followed by a + // static scene. + if (detect_transition_to_still(cpi, i, cpi->oxcf.key_freq - i, + loop_decay_rate, decay_accumulator)) + break; + + // Step on to the next frame. + ++rc->frames_to_key; + + // If we don't have a real key frame within the next two + // key_freq intervals then break out of the loop. + if (rc->frames_to_key >= 2 * cpi->oxcf.key_freq) break; + } else { + ++rc->frames_to_key; + } + ++i; + } + + // If there is a max kf interval set by the user we must obey it. + // We already breakout of the loop above at 2x max. + // This code centers the extra kf if the actual natural interval + // is between 1x and 2x. + if (cpi->oxcf.auto_key && rc->frames_to_key > cpi->oxcf.key_freq) { + FIRSTPASS_STATS tmp_frame = first_frame; + + rc->frames_to_key /= 2; + + // Reset to the start of the group. + reset_fpf_position(twopass, start_position); + + kf_group_err = 0.0; + + // Rescan to get the correct error data for the forced kf group. + for (i = 0; i < rc->frames_to_key; ++i) { + kf_group_err += + calculate_norm_frame_score(cpi, twopass, oxcf, &tmp_frame, av_err); + input_stats(twopass, &tmp_frame); + } + rc->next_key_frame_forced = 1; + } else if (twopass->stats_in == twopass->stats_in_end || + rc->frames_to_key >= cpi->oxcf.key_freq) { + rc->next_key_frame_forced = 1; + } else { + rc->next_key_frame_forced = 0; + } + + if (is_two_pass_svc(cpi) && cpi->svc.number_temporal_layers > 1) { + int count = (1 << (cpi->svc.number_temporal_layers - 1)) - 1; + int new_frame_to_key = (rc->frames_to_key + count) & (~count); + int j; + for (j = 0; j < new_frame_to_key - rc->frames_to_key; ++j) { + if (EOF == input_stats(twopass, this_frame)) break; + kf_group_err += + calculate_norm_frame_score(cpi, twopass, oxcf, this_frame, av_err); + } + rc->frames_to_key = new_frame_to_key; + } + + // Special case for the last key frame of the file. + if (twopass->stats_in >= twopass->stats_in_end) { + // Accumulate kf group error. + kf_group_err += + calculate_norm_frame_score(cpi, twopass, oxcf, this_frame, av_err); + } + + // Calculate the number of bits that should be assigned to the kf group. + if (twopass->bits_left > 0 && twopass->normalized_score_left > 0.0) { + // Maximum number of bits for a single normal frame (not key frame). + const int max_bits = frame_max_bits(rc, &cpi->oxcf); + + // Maximum number of bits allocated to the key frame group. + int64_t max_grp_bits; + + // Default allocation based on bits left and relative + // complexity of the section. + twopass->kf_group_bits = (int64_t)( + twopass->bits_left * (kf_group_err / twopass->normalized_score_left)); + + // Clip based on maximum per frame rate defined by the user. + max_grp_bits = (int64_t)max_bits * (int64_t)rc->frames_to_key; + if (twopass->kf_group_bits > max_grp_bits) + twopass->kf_group_bits = max_grp_bits; + } else { + twopass->kf_group_bits = 0; + } + twopass->kf_group_bits = VPXMAX(0, twopass->kf_group_bits); + + // Reset the first pass file position. + reset_fpf_position(twopass, start_position); + + // Scan through the kf group collating various stats used to determine + // how many bits to spend on it. + boost_score = 0.0; + + for (i = 0; i < (rc->frames_to_key - 1); ++i) { + if (EOF == input_stats(twopass, &next_frame)) break; + + if (i <= KF_BOOST_SCAN_MAX_FRAMES) { + double frame_boost; + double zm_factor; + + // Monitor for static sections. + zero_motion_accumulator = VPXMIN( + zero_motion_accumulator, get_zero_motion_factor(cpi, &next_frame)); + + // Factor 0.75-1.25 based on how much of frame is static. + zm_factor = (0.75 + (zero_motion_accumulator / 2.0)); + + // The second (lagging) ref error is not valid immediately after + // a key frame because either the lag has not built up (in the case of + // the first key frame or it points to a refernce before the new key + // frame. + if (i < 2) sr_accumulator = 0.0; + frame_boost = calc_kf_frame_boost(cpi, &next_frame, &sr_accumulator, 0, + KF_MAX_FRAME_BOOST * zm_factor); + + boost_score += frame_boost; + if (frame_boost < 25.00) break; + } else { + break; + } + } + + reset_fpf_position(twopass, start_position); + + // Store the zero motion percentage + twopass->kf_zeromotion_pct = (int)(zero_motion_accumulator * 100.0); + + // Calculate a section intra ratio used in setting max loop filter. + twopass->section_intra_rating = calculate_section_intra_ratio( + start_position, twopass->stats_in_end, rc->frames_to_key); + + // Apply various clamps for min and max boost + rc->kf_boost = VPXMAX((int)boost_score, (rc->frames_to_key * 3)); + rc->kf_boost = VPXMAX(rc->kf_boost, MIN_KF_TOT_BOOST); + rc->kf_boost = VPXMIN(rc->kf_boost, MAX_KF_TOT_BOOST); + + // Work out how many bits to allocate for the key frame itself. + kf_bits = calculate_boost_bits((rc->frames_to_key - 1), rc->kf_boost, + twopass->kf_group_bits); + + twopass->kf_group_bits -= kf_bits; + + // Save the bits to spend on the key frame. + gf_group->bit_allocation[0] = kf_bits; + gf_group->update_type[0] = KF_UPDATE; + gf_group->rf_level[0] = KF_STD; + + // Note the total error score of the kf group minus the key frame itself. + twopass->kf_group_error_left = (kf_group_err - kf_mod_err); + + // Adjust the count of total modified error left. + // The count of bits left is adjusted elsewhere based on real coded frame + // sizes. + twopass->normalized_score_left -= kf_group_err; + + if (oxcf->resize_mode == RESIZE_DYNAMIC) { + // Default to normal-sized frame on keyframes. + cpi->rc.next_frame_size_selector = UNSCALED; + } +} + +// Define the reference buffers that will be updated post encode. +static void configure_buffer_updates(VP9_COMP *cpi) { + TWO_PASS *const twopass = &cpi->twopass; + + cpi->rc.is_src_frame_alt_ref = 0; + switch (twopass->gf_group.update_type[twopass->gf_group.index]) { + case KF_UPDATE: + cpi->refresh_last_frame = 1; + cpi->refresh_golden_frame = 1; + cpi->refresh_alt_ref_frame = 1; + break; + case LF_UPDATE: + cpi->refresh_last_frame = 1; + cpi->refresh_golden_frame = 0; + cpi->refresh_alt_ref_frame = 0; + break; + case GF_UPDATE: + cpi->refresh_last_frame = 1; + cpi->refresh_golden_frame = 1; + cpi->refresh_alt_ref_frame = 0; + break; + case OVERLAY_UPDATE: + cpi->refresh_last_frame = 0; + cpi->refresh_golden_frame = 1; + cpi->refresh_alt_ref_frame = 0; + cpi->rc.is_src_frame_alt_ref = 1; + break; + case ARF_UPDATE: + cpi->refresh_last_frame = 0; + cpi->refresh_golden_frame = 0; + cpi->refresh_alt_ref_frame = 1; + break; + default: assert(0); break; + } + if (is_two_pass_svc(cpi)) { + if (cpi->svc.temporal_layer_id > 0) { + cpi->refresh_last_frame = 0; + cpi->refresh_golden_frame = 0; + } + if (cpi->svc.layer_context[cpi->svc.spatial_layer_id].gold_ref_idx < 0) + cpi->refresh_golden_frame = 0; + if (cpi->alt_ref_source == NULL) cpi->refresh_alt_ref_frame = 0; + } +} + +static int is_skippable_frame(const VP9_COMP *cpi) { + // If the current frame does not have non-zero motion vector detected in the + // first pass, and so do its previous and forward frames, then this frame + // can be skipped for partition check, and the partition size is assigned + // according to the variance + const SVC *const svc = &cpi->svc; + const TWO_PASS *const twopass = + is_two_pass_svc(cpi) ? &svc->layer_context[svc->spatial_layer_id].twopass + : &cpi->twopass; + + return (!frame_is_intra_only(&cpi->common) && + twopass->stats_in - 2 > twopass->stats_in_start && + twopass->stats_in < twopass->stats_in_end && + (twopass->stats_in - 1)->pcnt_inter - + (twopass->stats_in - 1)->pcnt_motion == + 1 && + (twopass->stats_in - 2)->pcnt_inter - + (twopass->stats_in - 2)->pcnt_motion == + 1 && + twopass->stats_in->pcnt_inter - twopass->stats_in->pcnt_motion == 1); +} + +void vp9_rc_get_second_pass_params(VP9_COMP *cpi) { + VP9_COMMON *const cm = &cpi->common; + RATE_CONTROL *const rc = &cpi->rc; + TWO_PASS *const twopass = &cpi->twopass; + GF_GROUP *const gf_group = &twopass->gf_group; + FIRSTPASS_STATS this_frame; + + int target_rate; + LAYER_CONTEXT *const lc = + is_two_pass_svc(cpi) ? &cpi->svc.layer_context[cpi->svc.spatial_layer_id] + : 0; + + if (!twopass->stats_in) return; + + // If this is an arf frame then we dont want to read the stats file or + // advance the input pointer as we already have what we need. + if (gf_group->update_type[gf_group->index] == ARF_UPDATE) { + int target_rate; + configure_buffer_updates(cpi); + target_rate = gf_group->bit_allocation[gf_group->index]; + target_rate = vp9_rc_clamp_pframe_target_size(cpi, target_rate); + rc->base_frame_target = target_rate; + + cm->frame_type = INTER_FRAME; + + if (lc != NULL) { + if (cpi->svc.spatial_layer_id == 0) { + lc->is_key_frame = 0; + } else { + lc->is_key_frame = cpi->svc.layer_context[0].is_key_frame; + + if (lc->is_key_frame) cpi->ref_frame_flags &= (~VP9_LAST_FLAG); + } + } + + // Do the firstpass stats indicate that this frame is skippable for the + // partition search? + if (cpi->sf.allow_partition_search_skip && cpi->oxcf.pass == 2 && + (!cpi->use_svc || is_two_pass_svc(cpi))) { + cpi->partition_search_skippable_frame = is_skippable_frame(cpi); + } + + return; + } + + vpx_clear_system_state(); + + if (cpi->oxcf.rc_mode == VPX_Q) { + twopass->active_worst_quality = cpi->oxcf.cq_level; + } else if (cm->current_video_frame == 0 || + (lc != NULL && lc->current_video_frame_in_layer == 0)) { + const int frames_left = + (int)(twopass->total_stats.count - + ((lc != NULL) ? lc->current_video_frame_in_layer + : cm->current_video_frame)); + // Special case code for first frame. + const int section_target_bandwidth = + (int)(twopass->bits_left / frames_left); + const double section_length = twopass->total_left_stats.count; + const double section_error = + twopass->total_left_stats.coded_error / section_length; + const double section_intra_skip = + twopass->total_left_stats.intra_skip_pct / section_length; + const double section_inactive_zone = + (twopass->total_left_stats.inactive_zone_rows * 2) / + ((double)cm->mb_rows * section_length); + const double section_noise = + twopass->total_left_stats.frame_noise_energy / section_length; + int tmp_q; + + tmp_q = get_twopass_worst_quality( + cpi, section_error, section_intra_skip + section_inactive_zone, + section_noise, section_target_bandwidth); + + twopass->active_worst_quality = tmp_q; + twopass->baseline_active_worst_quality = tmp_q; + rc->ni_av_qi = tmp_q; + rc->last_q[INTER_FRAME] = tmp_q; + rc->avg_q = vp9_convert_qindex_to_q(tmp_q, cm->bit_depth); + rc->avg_frame_qindex[INTER_FRAME] = tmp_q; + rc->last_q[KEY_FRAME] = (tmp_q + cpi->oxcf.best_allowed_q) / 2; + rc->avg_frame_qindex[KEY_FRAME] = rc->last_q[KEY_FRAME]; + } + vp9_zero(this_frame); + if (EOF == input_stats(twopass, &this_frame)) return; + + // Set the frame content type flag. + if (this_frame.intra_skip_pct >= FC_ANIMATION_THRESH) + twopass->fr_content_type = FC_GRAPHICS_ANIMATION; + else + twopass->fr_content_type = FC_NORMAL; + + // Keyframe and section processing. + if (rc->frames_to_key == 0 || (cpi->frame_flags & FRAMEFLAGS_KEY)) { + FIRSTPASS_STATS this_frame_copy; + this_frame_copy = this_frame; + // Define next KF group and assign bits to it. + find_next_key_frame(cpi, &this_frame); + this_frame = this_frame_copy; + } else { + cm->frame_type = INTER_FRAME; + } + + if (lc != NULL) { + if (cpi->svc.spatial_layer_id == 0) { + lc->is_key_frame = (cm->frame_type == KEY_FRAME); + if (lc->is_key_frame) { + cpi->ref_frame_flags &= + (~VP9_LAST_FLAG & ~VP9_GOLD_FLAG & ~VP9_ALT_FLAG); + lc->frames_from_key_frame = 0; + // Encode an intra only empty frame since we have a key frame. + cpi->svc.encode_intra_empty_frame = 1; + } + } else { + cm->frame_type = INTER_FRAME; + lc->is_key_frame = cpi->svc.layer_context[0].is_key_frame; + + if (lc->is_key_frame) { + cpi->ref_frame_flags &= (~VP9_LAST_FLAG); + lc->frames_from_key_frame = 0; + } + } + } + + // Define a new GF/ARF group. (Should always enter here for key frames). + if (rc->frames_till_gf_update_due == 0) { + define_gf_group(cpi, &this_frame); + + rc->frames_till_gf_update_due = rc->baseline_gf_interval; + if (lc != NULL) cpi->refresh_golden_frame = 1; + +#if ARF_STATS_OUTPUT + { + FILE *fpfile; + fpfile = fopen("arf.stt", "a"); + ++arf_count; + fprintf(fpfile, "%10d %10ld %10d %10d %10ld\n", cm->current_video_frame, + rc->frames_till_gf_update_due, rc->kf_boost, arf_count, + rc->gfu_boost); + + fclose(fpfile); + } +#endif + } + + configure_buffer_updates(cpi); + + // Do the firstpass stats indicate that this frame is skippable for the + // partition search? + if (cpi->sf.allow_partition_search_skip && cpi->oxcf.pass == 2 && + (!cpi->use_svc || is_two_pass_svc(cpi))) { + cpi->partition_search_skippable_frame = is_skippable_frame(cpi); + } + + target_rate = gf_group->bit_allocation[gf_group->index]; + rc->base_frame_target = target_rate; + + // The multiplication by 256 reverses a scaling factor of (>> 8) + // applied when combining MB error values for the frame. + twopass->mb_av_energy = log((this_frame.intra_error * 256.0) + 1.0); + twopass->mb_smooth_pct = this_frame.intra_smooth_pct; + + // Update the total stats remaining structure. + subtract_stats(&twopass->total_left_stats, &this_frame); +} + +#define MINQ_ADJ_LIMIT 48 +#define MINQ_ADJ_LIMIT_CQ 20 +#define HIGH_UNDERSHOOT_RATIO 2 +void vp9_twopass_postencode_update(VP9_COMP *cpi) { + TWO_PASS *const twopass = &cpi->twopass; + RATE_CONTROL *const rc = &cpi->rc; + VP9_COMMON *const cm = &cpi->common; + const int bits_used = rc->base_frame_target; + + // VBR correction is done through rc->vbr_bits_off_target. Based on the + // sign of this value, a limited % adjustment is made to the target rate + // of subsequent frames, to try and push it back towards 0. This method + // is designed to prevent extreme behaviour at the end of a clip + // or group of frames. + rc->vbr_bits_off_target += rc->base_frame_target - rc->projected_frame_size; + twopass->bits_left = VPXMAX(twopass->bits_left - bits_used, 0); + + // Target vs actual bits for this arf group. + twopass->rolling_arf_group_target_bits += rc->this_frame_target; + twopass->rolling_arf_group_actual_bits += rc->projected_frame_size; + + // Calculate the pct rc error. + if (rc->total_actual_bits) { + rc->rate_error_estimate = + (int)((rc->vbr_bits_off_target * 100) / rc->total_actual_bits); + rc->rate_error_estimate = clamp(rc->rate_error_estimate, -100, 100); + } else { + rc->rate_error_estimate = 0; + } + + if (cpi->common.frame_type != KEY_FRAME && + !vp9_is_upper_layer_key_frame(cpi)) { + twopass->kf_group_bits -= bits_used; + twopass->last_kfgroup_zeromotion_pct = twopass->kf_zeromotion_pct; + } + twopass->kf_group_bits = VPXMAX(twopass->kf_group_bits, 0); + + // Increment the gf group index ready for the next frame. + ++twopass->gf_group.index; + + // If the rate control is drifting consider adjustment to min or maxq. + if ((cpi->oxcf.rc_mode != VPX_Q) && !cpi->rc.is_src_frame_alt_ref) { + const int maxq_adj_limit = + rc->worst_quality - twopass->active_worst_quality; + const int minq_adj_limit = + (cpi->oxcf.rc_mode == VPX_CQ ? MINQ_ADJ_LIMIT_CQ : MINQ_ADJ_LIMIT); + int aq_extend_min = 0; + int aq_extend_max = 0; + + // Extend min or Max Q range to account for imbalance from the base + // value when using AQ. + if (cpi->oxcf.aq_mode != NO_AQ) { + if (cm->seg.aq_av_offset < 0) { + // The balance of the AQ map tends towarda lowering the average Q. + aq_extend_min = 0; + aq_extend_max = VPXMIN(maxq_adj_limit, -cm->seg.aq_av_offset); + } else { + // The balance of the AQ map tends towards raising the average Q. + aq_extend_min = VPXMIN(minq_adj_limit, cm->seg.aq_av_offset); + aq_extend_max = 0; + } + } + + // Undershoot. + if (rc->rate_error_estimate > cpi->oxcf.under_shoot_pct) { + --twopass->extend_maxq; + if (rc->rolling_target_bits >= rc->rolling_actual_bits) + ++twopass->extend_minq; + // Overshoot. + } else if (rc->rate_error_estimate < -cpi->oxcf.over_shoot_pct) { + --twopass->extend_minq; + if (rc->rolling_target_bits < rc->rolling_actual_bits) + ++twopass->extend_maxq; + } else { + // Adjustment for extreme local overshoot. + if (rc->projected_frame_size > (2 * rc->base_frame_target) && + rc->projected_frame_size > (2 * rc->avg_frame_bandwidth)) + ++twopass->extend_maxq; + + // Unwind undershoot or overshoot adjustment. + if (rc->rolling_target_bits < rc->rolling_actual_bits) + --twopass->extend_minq; + else if (rc->rolling_target_bits > rc->rolling_actual_bits) + --twopass->extend_maxq; + } + + twopass->extend_minq = + clamp(twopass->extend_minq, aq_extend_min, minq_adj_limit); + twopass->extend_maxq = + clamp(twopass->extend_maxq, aq_extend_max, maxq_adj_limit); + + // If there is a big and undexpected undershoot then feed the extra + // bits back in quickly. One situation where this may happen is if a + // frame is unexpectedly almost perfectly predicted by the ARF or GF + // but not very well predcited by the previous frame. + if (!frame_is_kf_gf_arf(cpi) && !cpi->rc.is_src_frame_alt_ref) { + int fast_extra_thresh = rc->base_frame_target / HIGH_UNDERSHOOT_RATIO; + if (rc->projected_frame_size < fast_extra_thresh) { + rc->vbr_bits_off_target_fast += + fast_extra_thresh - rc->projected_frame_size; + rc->vbr_bits_off_target_fast = + VPXMIN(rc->vbr_bits_off_target_fast, (4 * rc->avg_frame_bandwidth)); + + // Fast adaptation of minQ if necessary to use up the extra bits. + if (rc->avg_frame_bandwidth) { + twopass->extend_minq_fast = + (int)(rc->vbr_bits_off_target_fast * 8 / rc->avg_frame_bandwidth); + } + twopass->extend_minq_fast = VPXMIN( + twopass->extend_minq_fast, minq_adj_limit - twopass->extend_minq); + } else if (rc->vbr_bits_off_target_fast) { + twopass->extend_minq_fast = VPXMIN( + twopass->extend_minq_fast, minq_adj_limit - twopass->extend_minq); + } else { + twopass->extend_minq_fast = 0; + } + } + } +} diff --git a/vp9/encoder/vp9_firstpass.h b/vp9/encoder/vp9_firstpass.h new file mode 100644 index 0000000..000ecd7 --- /dev/null +++ b/vp9/encoder/vp9_firstpass.h @@ -0,0 +1,209 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP9_ENCODER_VP9_FIRSTPASS_H_ +#define VP9_ENCODER_VP9_FIRSTPASS_H_ + +#include "vp9/encoder/vp9_lookahead.h" +#include "vp9/encoder/vp9_ratectrl.h" + +#ifdef __cplusplus +extern "C" { +#endif + +#if CONFIG_FP_MB_STATS + +#define FPMB_DCINTRA_MASK 0x01 + +#define FPMB_MOTION_ZERO_MASK 0x02 +#define FPMB_MOTION_LEFT_MASK 0x04 +#define FPMB_MOTION_RIGHT_MASK 0x08 +#define FPMB_MOTION_UP_MASK 0x10 +#define FPMB_MOTION_DOWN_MASK 0x20 + +#define FPMB_ERROR_SMALL_MASK 0x40 +#define FPMB_ERROR_LARGE_MASK 0x80 +#define FPMB_ERROR_SMALL_TH 2000 +#define FPMB_ERROR_LARGE_TH 48000 + +typedef struct { + uint8_t *mb_stats_start; + uint8_t *mb_stats_end; +} FIRSTPASS_MB_STATS; +#endif + +#define INVALID_ROW -1 + +typedef struct { + double frame_mb_intra_factor; + double frame_mb_brightness_factor; + double frame_mb_neutral_count; +} FP_MB_FLOAT_STATS; + +typedef struct { + double intra_factor; + double brightness_factor; + int64_t coded_error; + int64_t sr_coded_error; + int64_t frame_noise_energy; + int64_t intra_error; + int intercount; + int second_ref_count; + double neutral_count; + double intra_count_low; // Coded intra but low variance + double intra_count_high; // Coded intra high variance + int intra_skip_count; + int image_data_start_row; + int mvcount; + int sum_mvr; + int sum_mvr_abs; + int sum_mvc; + int sum_mvc_abs; + int64_t sum_mvrs; + int64_t sum_mvcs; + int sum_in_vectors; + int intra_smooth_count; +} FIRSTPASS_DATA; + +typedef struct { + double frame; + double weight; + double intra_error; + double coded_error; + double sr_coded_error; + double frame_noise_energy; + double pcnt_inter; + double pcnt_motion; + double pcnt_second_ref; + double pcnt_neutral; + double pcnt_intra_low; // Coded intra but low variance + double pcnt_intra_high; // Coded intra high variance + double intra_skip_pct; + double intra_smooth_pct; // % of blocks that are smooth + double inactive_zone_rows; // Image mask rows top and bottom. + double inactive_zone_cols; // Image mask columns at left and right edges. + double MVr; + double mvr_abs; + double MVc; + double mvc_abs; + double MVrv; + double MVcv; + double mv_in_out_count; + double duration; + double count; + int64_t spatial_layer_id; +} FIRSTPASS_STATS; + +typedef enum { + KF_UPDATE = 0, + LF_UPDATE = 1, + GF_UPDATE = 2, + ARF_UPDATE = 3, + OVERLAY_UPDATE = 4, + FRAME_UPDATE_TYPES = 5 +} FRAME_UPDATE_TYPE; + +#define FC_ANIMATION_THRESH 0.15 +typedef enum { + FC_NORMAL = 0, + FC_GRAPHICS_ANIMATION = 1, + FRAME_CONTENT_TYPES = 2 +} FRAME_CONTENT_TYPE; + +typedef struct { + unsigned char index; + unsigned char first_inter_index; + RATE_FACTOR_LEVEL rf_level[(MAX_LAG_BUFFERS * 2) + 1]; + FRAME_UPDATE_TYPE update_type[(MAX_LAG_BUFFERS * 2) + 1]; + unsigned char arf_src_offset[(MAX_LAG_BUFFERS * 2) + 1]; + unsigned char arf_update_idx[(MAX_LAG_BUFFERS * 2) + 1]; + unsigned char arf_ref_idx[(MAX_LAG_BUFFERS * 2) + 1]; + int bit_allocation[(MAX_LAG_BUFFERS * 2) + 1]; +} GF_GROUP; + +typedef struct { + unsigned int section_intra_rating; + FIRSTPASS_STATS total_stats; + FIRSTPASS_STATS this_frame_stats; + const FIRSTPASS_STATS *stats_in; + const FIRSTPASS_STATS *stats_in_start; + const FIRSTPASS_STATS *stats_in_end; + FIRSTPASS_STATS total_left_stats; + int first_pass_done; + int64_t bits_left; + double mean_mod_score; + double normalized_score_left; + double mb_av_energy; + double mb_smooth_pct; + +#if CONFIG_FP_MB_STATS + uint8_t *frame_mb_stats_buf; + uint8_t *this_frame_mb_stats; + FIRSTPASS_MB_STATS firstpass_mb_stats; +#endif + + FP_MB_FLOAT_STATS *fp_mb_float_stats; + + // An indication of the content type of the current frame + FRAME_CONTENT_TYPE fr_content_type; + + // Projected total bits available for a key frame group of frames + int64_t kf_group_bits; + + // Error score of frames still to be coded in kf group + double kf_group_error_left; + + double bpm_factor; + int rolling_arf_group_target_bits; + int rolling_arf_group_actual_bits; + + int sr_update_lag; + int kf_zeromotion_pct; + int last_kfgroup_zeromotion_pct; + int active_worst_quality; + int baseline_active_worst_quality; + int extend_minq; + int extend_maxq; + int extend_minq_fast; + int arnr_strength_adjustment; + + GF_GROUP gf_group; +} TWO_PASS; + +struct VP9_COMP; +struct ThreadData; +struct TileDataEnc; + +void vp9_init_first_pass(struct VP9_COMP *cpi); +void vp9_rc_get_first_pass_params(struct VP9_COMP *cpi); +void vp9_first_pass(struct VP9_COMP *cpi, const struct lookahead_entry *source); +void vp9_end_first_pass(struct VP9_COMP *cpi); + +void vp9_first_pass_encode_tile_mb_row(struct VP9_COMP *cpi, + struct ThreadData *td, + FIRSTPASS_DATA *fp_acc_data, + struct TileDataEnc *tile_data, + MV *best_ref_mv, int mb_row); + +void vp9_init_second_pass(struct VP9_COMP *cpi); +void vp9_rc_get_second_pass_params(struct VP9_COMP *cpi); +void vp9_twopass_postencode_update(struct VP9_COMP *cpi); + +// Post encode update of the rate control parameters for 2-pass +void vp9_twopass_postencode_update(struct VP9_COMP *cpi); + +void calculate_coded_size(struct VP9_COMP *cpi, int *scaled_frame_width, + int *scaled_frame_height); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP9_ENCODER_VP9_FIRSTPASS_H_ diff --git a/vp9/encoder/vp9_frame_scale.c b/vp9/encoder/vp9_frame_scale.c new file mode 100644 index 0000000..a410d04 --- /dev/null +++ b/vp9/encoder/vp9_frame_scale.c @@ -0,0 +1,116 @@ +/* + * Copyright (c) 2017 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "./vp9_rtcd.h" +#include "./vpx_dsp_rtcd.h" +#include "./vpx_scale_rtcd.h" +#include "vp9/common/vp9_blockd.h" +#include "vpx_dsp/vpx_filter.h" +#include "vpx_scale/yv12config.h" + +void vp9_scale_and_extend_frame_c(const YV12_BUFFER_CONFIG *src, + YV12_BUFFER_CONFIG *dst, + INTERP_FILTER filter_type, int phase_scaler) { + const int src_w = src->y_crop_width; + const int src_h = src->y_crop_height; + const uint8_t *const srcs[3] = { src->y_buffer, src->u_buffer, + src->v_buffer }; + const int src_strides[3] = { src->y_stride, src->uv_stride, src->uv_stride }; + uint8_t *const dsts[3] = { dst->y_buffer, dst->u_buffer, dst->v_buffer }; + const int dst_strides[3] = { dst->y_stride, dst->uv_stride, dst->uv_stride }; + const InterpKernel *const kernel = vp9_filter_kernels[filter_type]; + int x, y, i; + +#if HAVE_SSSE3 || HAVE_NEON + // TODO(linfengz): The 4:3 specialized C code is disabled by default since + // it's much slower than the general version which calls vpx_scaled_2d() even + // if vpx_scaled_2d() is not optimized. It will only be enabled as a reference + // for the platforms which have faster optimization. + if (4 * dst->y_crop_width == 3 * src_w && + 4 * dst->y_crop_height == 3 * src_h) { + // Specialize 4 to 3 scaling. + // Example pixel locations. + // (O: Original pixel. S: Scaled pixel. X: Overlapped pixel.) + // phase_scaler = 0 | phase_scaler = 8 + // | + // X O S O S O X | O O O O O + // | + // | + // | S S S + // | + // | + // O O O O O | O O O O O + // | + // S S S S | + // | + // | + // | S S S + // O O O O O | O O O O O + // | + // | + // | + // S S S S | + // | + // O O O O O | O O O O O + // | S S S + // | + // | + // | + // | + // X O S O S O X | O O O O O + + const int dst_ws[3] = { dst->y_crop_width, dst->uv_crop_width, + dst->uv_crop_width }; + const int dst_hs[3] = { dst->y_crop_height, dst->uv_crop_height, + dst->uv_crop_height }; + for (i = 0; i < MAX_MB_PLANE; ++i) { + const int dst_w = dst_ws[i]; + const int dst_h = dst_hs[i]; + const int src_stride = src_strides[i]; + const int dst_stride = dst_strides[i]; + for (y = 0; y < dst_h; y += 3) { + for (x = 0; x < dst_w; x += 3) { + const uint8_t *src_ptr = srcs[i] + 4 * y / 3 * src_stride + 4 * x / 3; + uint8_t *dst_ptr = dsts[i] + y * dst_stride + x; + + // Must call c function because its optimization doesn't support 3x3. + vpx_scaled_2d_c(src_ptr, src_stride, dst_ptr, dst_stride, kernel, + phase_scaler, 64 / 3, phase_scaler, 64 / 3, 3, 3); + } + } + } + } else +#endif + { + const int dst_w = dst->y_crop_width; + const int dst_h = dst->y_crop_height; + for (i = 0; i < MAX_MB_PLANE; ++i) { + const int factor = (i == 0 || i == 3 ? 1 : 2); + const int src_stride = src_strides[i]; + const int dst_stride = dst_strides[i]; + for (y = 0; y < dst_h; y += 16) { + const int y_q4 = y * (16 / factor) * src_h / dst_h + phase_scaler; + for (x = 0; x < dst_w; x += 16) { + const int x_q4 = x * (16 / factor) * src_w / dst_w + phase_scaler; + const uint8_t *src_ptr = srcs[i] + + (y / factor) * src_h / dst_h * src_stride + + (x / factor) * src_w / dst_w; + uint8_t *dst_ptr = dsts[i] + (y / factor) * dst_stride + (x / factor); + + vpx_scaled_2d(src_ptr, src_stride, dst_ptr, dst_stride, kernel, + x_q4 & 0xf, 16 * src_w / dst_w, y_q4 & 0xf, + 16 * src_h / dst_h, 16 / factor, 16 / factor); + } + } + } + } + + vpx_extend_frame_borders(dst); +} diff --git a/vp9/encoder/vp9_job_queue.h b/vp9/encoder/vp9_job_queue.h new file mode 100644 index 0000000..89c08f2 --- /dev/null +++ b/vp9/encoder/vp9_job_queue.h @@ -0,0 +1,46 @@ +/* + * Copyright (c) 2017 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP9_ENCODER_VP9_JOB_QUEUE_H_ +#define VP9_ENCODER_VP9_JOB_QUEUE_H_ + +typedef enum { + FIRST_PASS_JOB, + ENCODE_JOB, + ARNR_JOB, + NUM_JOB_TYPES, +} JOB_TYPE; + +// Encode job parameters +typedef struct { + int vert_unit_row_num; // Index of the vertical unit row + int tile_col_id; // tile col id within a tile + int tile_row_id; // tile col id within a tile +} JobNode; + +// Job queue element parameters +typedef struct { + // Pointer to the next link in the job queue + void *next; + + // Job information context of the module + JobNode job_info; +} JobQueue; + +// Job queue handle +typedef struct { + // Pointer to the next link in the job queue + void *next; + + // Counter to store the number of jobs picked up for processing + int num_jobs_acquired; +} JobQueueHandle; + +#endif // VP9_ENCODER_VP9_JOB_QUEUE_H_ diff --git a/vp9/encoder/vp9_lookahead.c b/vp9/encoder/vp9_lookahead.c new file mode 100644 index 0000000..392cd5d --- /dev/null +++ b/vp9/encoder/vp9_lookahead.c @@ -0,0 +1,224 @@ +/* + * Copyright (c) 2011 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ +#include +#include + +#include "./vpx_config.h" + +#include "vp9/common/vp9_common.h" + +#include "vp9/encoder/vp9_encoder.h" +#include "vp9/encoder/vp9_extend.h" +#include "vp9/encoder/vp9_lookahead.h" + +/* Return the buffer at the given absolute index and increment the index */ +static struct lookahead_entry *pop(struct lookahead_ctx *ctx, int *idx) { + int index = *idx; + struct lookahead_entry *buf = ctx->buf + index; + + assert(index < ctx->max_sz); + if (++index >= ctx->max_sz) index -= ctx->max_sz; + *idx = index; + return buf; +} + +void vp9_lookahead_destroy(struct lookahead_ctx *ctx) { + if (ctx) { + if (ctx->buf) { + int i; + + for (i = 0; i < ctx->max_sz; i++) vpx_free_frame_buffer(&ctx->buf[i].img); + free(ctx->buf); + } + free(ctx); + } +} + +struct lookahead_ctx *vp9_lookahead_init(unsigned int width, + unsigned int height, + unsigned int subsampling_x, + unsigned int subsampling_y, +#if CONFIG_VP9_HIGHBITDEPTH + int use_highbitdepth, +#endif + unsigned int depth) { + struct lookahead_ctx *ctx = NULL; + + // Clamp the lookahead queue depth + depth = clamp(depth, 1, MAX_LAG_BUFFERS); + + // Allocate memory to keep previous source frames available. + depth += MAX_PRE_FRAMES; + + // Allocate the lookahead structures + ctx = calloc(1, sizeof(*ctx)); + if (ctx) { + const int legacy_byte_alignment = 0; + unsigned int i; + ctx->max_sz = depth; + ctx->buf = calloc(depth, sizeof(*ctx->buf)); + if (!ctx->buf) goto bail; + for (i = 0; i < depth; i++) + if (vpx_alloc_frame_buffer( + &ctx->buf[i].img, width, height, subsampling_x, subsampling_y, +#if CONFIG_VP9_HIGHBITDEPTH + use_highbitdepth, +#endif + VP9_ENC_BORDER_IN_PIXELS, legacy_byte_alignment)) + goto bail; + } + return ctx; +bail: + vp9_lookahead_destroy(ctx); + return NULL; +} + +#define USE_PARTIAL_COPY 0 + +int vp9_lookahead_push(struct lookahead_ctx *ctx, YV12_BUFFER_CONFIG *src, + int64_t ts_start, int64_t ts_end, +#if CONFIG_VP9_HIGHBITDEPTH + int use_highbitdepth, +#endif + vpx_enc_frame_flags_t flags) { + struct lookahead_entry *buf; +#if USE_PARTIAL_COPY + int row, col, active_end; + int mb_rows = (src->y_height + 15) >> 4; + int mb_cols = (src->y_width + 15) >> 4; +#endif + int width = src->y_crop_width; + int height = src->y_crop_height; + int uv_width = src->uv_crop_width; + int uv_height = src->uv_crop_height; + int subsampling_x = src->subsampling_x; + int subsampling_y = src->subsampling_y; + int larger_dimensions, new_dimensions; + + if (ctx->sz + 1 + MAX_PRE_FRAMES > ctx->max_sz) return 1; + ctx->sz++; + buf = pop(ctx, &ctx->write_idx); + + new_dimensions = width != buf->img.y_crop_width || + height != buf->img.y_crop_height || + uv_width != buf->img.uv_crop_width || + uv_height != buf->img.uv_crop_height; + larger_dimensions = width > buf->img.y_width || height > buf->img.y_height || + uv_width > buf->img.uv_width || + uv_height > buf->img.uv_height; + assert(!larger_dimensions || new_dimensions); + +#if USE_PARTIAL_COPY + // TODO(jkoleszar): This is disabled for now, as + // vp9_copy_and_extend_frame_with_rect is not subsampling/alpha aware. + + // Only do this partial copy if the following conditions are all met: + // 1. Lookahead queue has has size of 1. + // 2. Active map is provided. + // 3. This is not a key frame, golden nor altref frame. + if (!new_dimensions && ctx->max_sz == 1 && active_map && !flags) { + for (row = 0; row < mb_rows; ++row) { + col = 0; + + while (1) { + // Find the first active macroblock in this row. + for (; col < mb_cols; ++col) { + if (active_map[col]) break; + } + + // No more active macroblock in this row. + if (col == mb_cols) break; + + // Find the end of active region in this row. + active_end = col; + + for (; active_end < mb_cols; ++active_end) { + if (!active_map[active_end]) break; + } + + // Only copy this active region. + vp9_copy_and_extend_frame_with_rect(src, &buf->img, row << 4, col << 4, + 16, (active_end - col) << 4); + + // Start again from the end of this active region. + col = active_end; + } + + active_map += mb_cols; + } + } else { +#endif + if (larger_dimensions) { + YV12_BUFFER_CONFIG new_img; + memset(&new_img, 0, sizeof(new_img)); + if (vpx_alloc_frame_buffer(&new_img, width, height, subsampling_x, + subsampling_y, +#if CONFIG_VP9_HIGHBITDEPTH + use_highbitdepth, +#endif + VP9_ENC_BORDER_IN_PIXELS, 0)) + return 1; + vpx_free_frame_buffer(&buf->img); + buf->img = new_img; + } else if (new_dimensions) { + buf->img.y_crop_width = src->y_crop_width; + buf->img.y_crop_height = src->y_crop_height; + buf->img.uv_crop_width = src->uv_crop_width; + buf->img.uv_crop_height = src->uv_crop_height; + buf->img.subsampling_x = src->subsampling_x; + buf->img.subsampling_y = src->subsampling_y; + } + // Partial copy not implemented yet + vp9_copy_and_extend_frame(src, &buf->img); +#if USE_PARTIAL_COPY + } +#endif + + buf->ts_start = ts_start; + buf->ts_end = ts_end; + buf->flags = flags; + return 0; +} + +struct lookahead_entry *vp9_lookahead_pop(struct lookahead_ctx *ctx, + int drain) { + struct lookahead_entry *buf = NULL; + + if (ctx && ctx->sz && (drain || ctx->sz == ctx->max_sz - MAX_PRE_FRAMES)) { + buf = pop(ctx, &ctx->read_idx); + ctx->sz--; + } + return buf; +} + +struct lookahead_entry *vp9_lookahead_peek(struct lookahead_ctx *ctx, + int index) { + struct lookahead_entry *buf = NULL; + + if (index >= 0) { + // Forward peek + if (index < ctx->sz) { + index += ctx->read_idx; + if (index >= ctx->max_sz) index -= ctx->max_sz; + buf = ctx->buf + index; + } + } else if (index < 0) { + // Backward peek + if (-index <= MAX_PRE_FRAMES) { + index += ctx->read_idx; + if (index < 0) index += ctx->max_sz; + buf = ctx->buf + index; + } + } + + return buf; +} + +unsigned int vp9_lookahead_depth(struct lookahead_ctx *ctx) { return ctx->sz; } diff --git a/vp9/encoder/vp9_lookahead.h b/vp9/encoder/vp9_lookahead.h new file mode 100644 index 0000000..88be0ff --- /dev/null +++ b/vp9/encoder/vp9_lookahead.h @@ -0,0 +1,118 @@ +/* + * Copyright (c) 2011 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP9_ENCODER_VP9_LOOKAHEAD_H_ +#define VP9_ENCODER_VP9_LOOKAHEAD_H_ + +#include "vpx_scale/yv12config.h" +#include "vpx/vpx_encoder.h" +#include "vpx/vpx_integer.h" + +#if CONFIG_SPATIAL_SVC +#include "vpx/vp8cx.h" +#endif + +#ifdef __cplusplus +extern "C" { +#endif + +#define MAX_LAG_BUFFERS 25 + +struct lookahead_entry { + YV12_BUFFER_CONFIG img; + int64_t ts_start; + int64_t ts_end; + vpx_enc_frame_flags_t flags; +}; + +// The max of past frames we want to keep in the queue. +#define MAX_PRE_FRAMES 1 + +struct lookahead_ctx { + int max_sz; /* Absolute size of the queue */ + int sz; /* Number of buffers currently in the queue */ + int read_idx; /* Read index */ + int write_idx; /* Write index */ + struct lookahead_entry *buf; /* Buffer list */ +}; + +/**\brief Initializes the lookahead stage + * + * The lookahead stage is a queue of frame buffers on which some analysis + * may be done when buffers are enqueued. + */ +struct lookahead_ctx *vp9_lookahead_init(unsigned int width, + unsigned int height, + unsigned int subsampling_x, + unsigned int subsampling_y, +#if CONFIG_VP9_HIGHBITDEPTH + int use_highbitdepth, +#endif + unsigned int depth); + +/**\brief Destroys the lookahead stage + */ +void vp9_lookahead_destroy(struct lookahead_ctx *ctx); + +/**\brief Enqueue a source buffer + * + * This function will copy the source image into a new framebuffer with + * the expected stride/border. + * + * If active_map is non-NULL and there is only one frame in the queue, then copy + * only active macroblocks. + * + * \param[in] ctx Pointer to the lookahead context + * \param[in] src Pointer to the image to enqueue + * \param[in] ts_start Timestamp for the start of this frame + * \param[in] ts_end Timestamp for the end of this frame + * \param[in] flags Flags set on this frame + * \param[in] active_map Map that specifies which macroblock is active + */ +int vp9_lookahead_push(struct lookahead_ctx *ctx, YV12_BUFFER_CONFIG *src, + int64_t ts_start, int64_t ts_end, +#if CONFIG_VP9_HIGHBITDEPTH + int use_highbitdepth, +#endif + vpx_enc_frame_flags_t flags); + +/**\brief Get the next source buffer to encode + * + * + * \param[in] ctx Pointer to the lookahead context + * \param[in] drain Flag indicating the buffer should be drained + * (return a buffer regardless of the current queue depth) + * + * \retval NULL, if drain set and queue is empty + * \retval NULL, if drain not set and queue not of the configured depth + */ +struct lookahead_entry *vp9_lookahead_pop(struct lookahead_ctx *ctx, int drain); + +/**\brief Get a future source buffer to encode + * + * \param[in] ctx Pointer to the lookahead context + * \param[in] index Index of the frame to be returned, 0 == next frame + * + * \retval NULL, if no buffer exists at the specified index + */ +struct lookahead_entry *vp9_lookahead_peek(struct lookahead_ctx *ctx, + int index); + +/**\brief Get the number of frames currently in the lookahead queue + * + * \param[in] ctx Pointer to the lookahead context + */ +unsigned int vp9_lookahead_depth(struct lookahead_ctx *ctx); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP9_ENCODER_VP9_LOOKAHEAD_H_ diff --git a/vp9/encoder/vp9_mbgraph.c b/vp9/encoder/vp9_mbgraph.c new file mode 100644 index 0000000..46d626d --- /dev/null +++ b/vp9/encoder/vp9_mbgraph.c @@ -0,0 +1,401 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include + +#include "./vp9_rtcd.h" +#include "./vpx_dsp_rtcd.h" + +#include "vpx_dsp/vpx_dsp_common.h" +#include "vpx_mem/vpx_mem.h" +#include "vpx_ports/system_state.h" +#include "vp9/encoder/vp9_segmentation.h" +#include "vp9/encoder/vp9_mcomp.h" +#include "vp9/common/vp9_blockd.h" +#include "vp9/common/vp9_reconinter.h" +#include "vp9/common/vp9_reconintra.h" + +static unsigned int do_16x16_motion_iteration(VP9_COMP *cpi, const MV *ref_mv, + MV *dst_mv, int mb_row, + int mb_col) { + MACROBLOCK *const x = &cpi->td.mb; + MACROBLOCKD *const xd = &x->e_mbd; + MV_SPEED_FEATURES *const mv_sf = &cpi->sf.mv; + const SEARCH_METHODS old_search_method = mv_sf->search_method; + const vp9_variance_fn_ptr_t v_fn_ptr = cpi->fn_ptr[BLOCK_16X16]; + const MvLimits tmp_mv_limits = x->mv_limits; + MV ref_full; + int cost_list[5]; + + // Further step/diamond searches as necessary + int step_param = mv_sf->reduce_first_step_size; + step_param = VPXMIN(step_param, MAX_MVSEARCH_STEPS - 2); + + vp9_set_mv_search_range(&x->mv_limits, ref_mv); + + ref_full.col = ref_mv->col >> 3; + ref_full.row = ref_mv->row >> 3; + + mv_sf->search_method = HEX; + vp9_full_pixel_search(cpi, x, BLOCK_16X16, &ref_full, step_param, + cpi->sf.mv.search_method, x->errorperbit, + cond_cost_list(cpi, cost_list), ref_mv, dst_mv, 0, 0); + mv_sf->search_method = old_search_method; + + /* restore UMV window */ + x->mv_limits = tmp_mv_limits; + + // Try sub-pixel MC + // if (bestsme > error_thresh && bestsme < INT_MAX) + { + uint32_t distortion; + uint32_t sse; + cpi->find_fractional_mv_step( + x, dst_mv, ref_mv, cpi->common.allow_high_precision_mv, x->errorperbit, + &v_fn_ptr, 0, mv_sf->subpel_iters_per_step, + cond_cost_list(cpi, cost_list), NULL, NULL, &distortion, &sse, NULL, 0, + 0); + } + + xd->mi[0]->mode = NEWMV; + xd->mi[0]->mv[0].as_mv = *dst_mv; + + vp9_build_inter_predictors_sby(xd, mb_row, mb_col, BLOCK_16X16); + + return vpx_sad16x16(x->plane[0].src.buf, x->plane[0].src.stride, + xd->plane[0].dst.buf, xd->plane[0].dst.stride); +} + +static int do_16x16_motion_search(VP9_COMP *cpi, const MV *ref_mv, + int_mv *dst_mv, int mb_row, int mb_col) { + MACROBLOCK *const x = &cpi->td.mb; + MACROBLOCKD *const xd = &x->e_mbd; + unsigned int err, tmp_err; + MV tmp_mv; + + // Try zero MV first + // FIXME should really use something like near/nearest MV and/or MV prediction + err = vpx_sad16x16(x->plane[0].src.buf, x->plane[0].src.stride, + xd->plane[0].pre[0].buf, xd->plane[0].pre[0].stride); + dst_mv->as_int = 0; + + // Test last reference frame using the previous best mv as the + // starting point (best reference) for the search + tmp_err = do_16x16_motion_iteration(cpi, ref_mv, &tmp_mv, mb_row, mb_col); + if (tmp_err < err) { + err = tmp_err; + dst_mv->as_mv = tmp_mv; + } + + // If the current best reference mv is not centered on 0,0 then do a 0,0 + // based search as well. + if (ref_mv->row != 0 || ref_mv->col != 0) { + unsigned int tmp_err; + MV zero_ref_mv = { 0, 0 }, tmp_mv; + + tmp_err = + do_16x16_motion_iteration(cpi, &zero_ref_mv, &tmp_mv, mb_row, mb_col); + if (tmp_err < err) { + dst_mv->as_mv = tmp_mv; + err = tmp_err; + } + } + + return err; +} + +static int do_16x16_zerozero_search(VP9_COMP *cpi, int_mv *dst_mv) { + MACROBLOCK *const x = &cpi->td.mb; + MACROBLOCKD *const xd = &x->e_mbd; + unsigned int err; + + // Try zero MV first + // FIXME should really use something like near/nearest MV and/or MV prediction + err = vpx_sad16x16(x->plane[0].src.buf, x->plane[0].src.stride, + xd->plane[0].pre[0].buf, xd->plane[0].pre[0].stride); + + dst_mv->as_int = 0; + + return err; +} +static int find_best_16x16_intra(VP9_COMP *cpi, PREDICTION_MODE *pbest_mode) { + MACROBLOCK *const x = &cpi->td.mb; + MACROBLOCKD *const xd = &x->e_mbd; + PREDICTION_MODE best_mode = -1, mode; + unsigned int best_err = INT_MAX; + + // calculate SATD for each intra prediction mode; + // we're intentionally not doing 4x4, we just want a rough estimate + for (mode = DC_PRED; mode <= TM_PRED; mode++) { + unsigned int err; + + xd->mi[0]->mode = mode; + vp9_predict_intra_block(xd, 2, TX_16X16, mode, x->plane[0].src.buf, + x->plane[0].src.stride, xd->plane[0].dst.buf, + xd->plane[0].dst.stride, 0, 0, 0); + err = vpx_sad16x16(x->plane[0].src.buf, x->plane[0].src.stride, + xd->plane[0].dst.buf, xd->plane[0].dst.stride); + + // find best + if (err < best_err) { + best_err = err; + best_mode = mode; + } + } + + if (pbest_mode) *pbest_mode = best_mode; + + return best_err; +} + +static void update_mbgraph_mb_stats(VP9_COMP *cpi, MBGRAPH_MB_STATS *stats, + YV12_BUFFER_CONFIG *buf, int mb_y_offset, + YV12_BUFFER_CONFIG *golden_ref, + const MV *prev_golden_ref_mv, + YV12_BUFFER_CONFIG *alt_ref, int mb_row, + int mb_col) { + MACROBLOCK *const x = &cpi->td.mb; + MACROBLOCKD *const xd = &x->e_mbd; + int intra_error; + VP9_COMMON *cm = &cpi->common; + + // FIXME in practice we're completely ignoring chroma here + x->plane[0].src.buf = buf->y_buffer + mb_y_offset; + x->plane[0].src.stride = buf->y_stride; + + xd->plane[0].dst.buf = get_frame_new_buffer(cm)->y_buffer + mb_y_offset; + xd->plane[0].dst.stride = get_frame_new_buffer(cm)->y_stride; + + // do intra 16x16 prediction + intra_error = find_best_16x16_intra(cpi, &stats->ref[INTRA_FRAME].m.mode); + if (intra_error <= 0) intra_error = 1; + stats->ref[INTRA_FRAME].err = intra_error; + + // Golden frame MV search, if it exists and is different than last frame + if (golden_ref) { + int g_motion_error; + xd->plane[0].pre[0].buf = golden_ref->y_buffer + mb_y_offset; + xd->plane[0].pre[0].stride = golden_ref->y_stride; + g_motion_error = + do_16x16_motion_search(cpi, prev_golden_ref_mv, + &stats->ref[GOLDEN_FRAME].m.mv, mb_row, mb_col); + stats->ref[GOLDEN_FRAME].err = g_motion_error; + } else { + stats->ref[GOLDEN_FRAME].err = INT_MAX; + stats->ref[GOLDEN_FRAME].m.mv.as_int = 0; + } + + // Do an Alt-ref frame MV search, if it exists and is different than + // last/golden frame. + if (alt_ref) { + int a_motion_error; + xd->plane[0].pre[0].buf = alt_ref->y_buffer + mb_y_offset; + xd->plane[0].pre[0].stride = alt_ref->y_stride; + a_motion_error = + do_16x16_zerozero_search(cpi, &stats->ref[ALTREF_FRAME].m.mv); + + stats->ref[ALTREF_FRAME].err = a_motion_error; + } else { + stats->ref[ALTREF_FRAME].err = INT_MAX; + stats->ref[ALTREF_FRAME].m.mv.as_int = 0; + } +} + +static void update_mbgraph_frame_stats(VP9_COMP *cpi, + MBGRAPH_FRAME_STATS *stats, + YV12_BUFFER_CONFIG *buf, + YV12_BUFFER_CONFIG *golden_ref, + YV12_BUFFER_CONFIG *alt_ref) { + MACROBLOCK *const x = &cpi->td.mb; + MACROBLOCKD *const xd = &x->e_mbd; + VP9_COMMON *const cm = &cpi->common; + + int mb_col, mb_row, offset = 0; + int mb_y_offset = 0, arf_y_offset = 0, gld_y_offset = 0; + MV gld_top_mv = { 0, 0 }; + MODE_INFO mi_local; + MODE_INFO mi_above, mi_left; + + vp9_zero(mi_local); + // Set up limit values for motion vectors to prevent them extending outside + // the UMV borders. + x->mv_limits.row_min = -BORDER_MV_PIXELS_B16; + x->mv_limits.row_max = (cm->mb_rows - 1) * 8 + BORDER_MV_PIXELS_B16; + // Signal to vp9_predict_intra_block() that above is not available + xd->above_mi = NULL; + + xd->plane[0].dst.stride = buf->y_stride; + xd->plane[0].pre[0].stride = buf->y_stride; + xd->plane[1].dst.stride = buf->uv_stride; + xd->mi[0] = &mi_local; + mi_local.sb_type = BLOCK_16X16; + mi_local.ref_frame[0] = LAST_FRAME; + mi_local.ref_frame[1] = NONE; + + for (mb_row = 0; mb_row < cm->mb_rows; mb_row++) { + MV gld_left_mv = gld_top_mv; + int mb_y_in_offset = mb_y_offset; + int arf_y_in_offset = arf_y_offset; + int gld_y_in_offset = gld_y_offset; + + // Set up limit values for motion vectors to prevent them extending outside + // the UMV borders. + x->mv_limits.col_min = -BORDER_MV_PIXELS_B16; + x->mv_limits.col_max = (cm->mb_cols - 1) * 8 + BORDER_MV_PIXELS_B16; + // Signal to vp9_predict_intra_block() that left is not available + xd->left_mi = NULL; + + for (mb_col = 0; mb_col < cm->mb_cols; mb_col++) { + MBGRAPH_MB_STATS *mb_stats = &stats->mb_stats[offset + mb_col]; + + update_mbgraph_mb_stats(cpi, mb_stats, buf, mb_y_in_offset, golden_ref, + &gld_left_mv, alt_ref, mb_row, mb_col); + gld_left_mv = mb_stats->ref[GOLDEN_FRAME].m.mv.as_mv; + if (mb_col == 0) { + gld_top_mv = gld_left_mv; + } + // Signal to vp9_predict_intra_block() that left is available + xd->left_mi = &mi_left; + + mb_y_in_offset += 16; + gld_y_in_offset += 16; + arf_y_in_offset += 16; + x->mv_limits.col_min -= 16; + x->mv_limits.col_max -= 16; + } + + // Signal to vp9_predict_intra_block() that above is available + xd->above_mi = &mi_above; + + mb_y_offset += buf->y_stride * 16; + gld_y_offset += golden_ref->y_stride * 16; + if (alt_ref) arf_y_offset += alt_ref->y_stride * 16; + x->mv_limits.row_min -= 16; + x->mv_limits.row_max -= 16; + offset += cm->mb_cols; + } +} + +// void separate_arf_mbs_byzz +static void separate_arf_mbs(VP9_COMP *cpi) { + VP9_COMMON *const cm = &cpi->common; + int mb_col, mb_row, offset, i; + int mi_row, mi_col; + int ncnt[4] = { 0 }; + int n_frames = cpi->mbgraph_n_frames; + + int *arf_not_zz; + + CHECK_MEM_ERROR( + cm, arf_not_zz, + vpx_calloc(cm->mb_rows * cm->mb_cols * sizeof(*arf_not_zz), 1)); + + // We are not interested in results beyond the alt ref itself. + if (n_frames > cpi->rc.frames_till_gf_update_due) + n_frames = cpi->rc.frames_till_gf_update_due; + + // defer cost to reference frames + for (i = n_frames - 1; i >= 0; i--) { + MBGRAPH_FRAME_STATS *frame_stats = &cpi->mbgraph_stats[i]; + + for (offset = 0, mb_row = 0; mb_row < cm->mb_rows; + offset += cm->mb_cols, mb_row++) { + for (mb_col = 0; mb_col < cm->mb_cols; mb_col++) { + MBGRAPH_MB_STATS *mb_stats = &frame_stats->mb_stats[offset + mb_col]; + + int altref_err = mb_stats->ref[ALTREF_FRAME].err; + int intra_err = mb_stats->ref[INTRA_FRAME].err; + int golden_err = mb_stats->ref[GOLDEN_FRAME].err; + + // Test for altref vs intra and gf and that its mv was 0,0. + if (altref_err > 1000 || altref_err > intra_err || + altref_err > golden_err) { + arf_not_zz[offset + mb_col]++; + } + } + } + } + + // arf_not_zz is indexed by MB, but this loop is indexed by MI to avoid out + // of bound access in segmentation_map + for (mi_row = 0; mi_row < cm->mi_rows; mi_row++) { + for (mi_col = 0; mi_col < cm->mi_cols; mi_col++) { + // If any of the blocks in the sequence failed then the MB + // goes in segment 0 + if (arf_not_zz[mi_row / 2 * cm->mb_cols + mi_col / 2]) { + ncnt[0]++; + cpi->segmentation_map[mi_row * cm->mi_cols + mi_col] = 0; + } else { + cpi->segmentation_map[mi_row * cm->mi_cols + mi_col] = 1; + ncnt[1]++; + } + } + } + + // Only bother with segmentation if over 10% of the MBs in static segment + // if ( ncnt[1] && (ncnt[0] / ncnt[1] < 10) ) + if (1) { + // Note % of blocks that are marked as static + if (cm->MBs) + cpi->static_mb_pct = (ncnt[1] * 100) / (cm->mi_rows * cm->mi_cols); + + // This error case should not be reachable as this function should + // never be called with the common data structure uninitialized. + else + cpi->static_mb_pct = 0; + + vp9_enable_segmentation(&cm->seg); + } else { + cpi->static_mb_pct = 0; + vp9_disable_segmentation(&cm->seg); + } + + // Free localy allocated storage + vpx_free(arf_not_zz); +} + +void vp9_update_mbgraph_stats(VP9_COMP *cpi) { + VP9_COMMON *const cm = &cpi->common; + int i, n_frames = vp9_lookahead_depth(cpi->lookahead); + YV12_BUFFER_CONFIG *golden_ref = get_ref_frame_buffer(cpi, GOLDEN_FRAME); + + assert(golden_ref != NULL); + + // we need to look ahead beyond where the ARF transitions into + // being a GF - so exit if we don't look ahead beyond that + if (n_frames <= cpi->rc.frames_till_gf_update_due) return; + + if (n_frames > MAX_LAG_BUFFERS) n_frames = MAX_LAG_BUFFERS; + + cpi->mbgraph_n_frames = n_frames; + for (i = 0; i < n_frames; i++) { + MBGRAPH_FRAME_STATS *frame_stats = &cpi->mbgraph_stats[i]; + memset(frame_stats->mb_stats, 0, + cm->mb_rows * cm->mb_cols * sizeof(*cpi->mbgraph_stats[i].mb_stats)); + } + + // do motion search to find contribution of each reference to data + // later on in this GF group + // FIXME really, the GF/last MC search should be done forward, and + // the ARF MC search backwards, to get optimal results for MV caching + for (i = 0; i < n_frames; i++) { + MBGRAPH_FRAME_STATS *frame_stats = &cpi->mbgraph_stats[i]; + struct lookahead_entry *q_cur = vp9_lookahead_peek(cpi->lookahead, i); + + assert(q_cur != NULL); + + update_mbgraph_frame_stats(cpi, frame_stats, &q_cur->img, golden_ref, + cpi->Source); + } + + vpx_clear_system_state(); + + separate_arf_mbs(cpi); +} diff --git a/vp9/encoder/vp9_mbgraph.h b/vp9/encoder/vp9_mbgraph.h new file mode 100644 index 0000000..df2fb98 --- /dev/null +++ b/vp9/encoder/vp9_mbgraph.h @@ -0,0 +1,38 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP9_ENCODER_VP9_MBGRAPH_H_ +#define VP9_ENCODER_VP9_MBGRAPH_H_ + +#ifdef __cplusplus +extern "C" { +#endif + +typedef struct { + struct { + int err; + union { + int_mv mv; + PREDICTION_MODE mode; + } m; + } ref[MAX_REF_FRAMES]; +} MBGRAPH_MB_STATS; + +typedef struct { MBGRAPH_MB_STATS *mb_stats; } MBGRAPH_FRAME_STATS; + +struct VP9_COMP; + +void vp9_update_mbgraph_stats(struct VP9_COMP *cpi); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP9_ENCODER_VP9_MBGRAPH_H_ diff --git a/vp9/encoder/vp9_mcomp.c b/vp9/encoder/vp9_mcomp.c new file mode 100644 index 0000000..44f01be --- /dev/null +++ b/vp9/encoder/vp9_mcomp.c @@ -0,0 +1,2322 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include +#include +#include + +#include "./vpx_config.h" +#include "./vpx_dsp_rtcd.h" + +#include "vpx_dsp/vpx_dsp_common.h" +#include "vpx_mem/vpx_mem.h" +#include "vpx_ports/mem.h" + +#include "vp9/common/vp9_common.h" +#include "vp9/common/vp9_mvref_common.h" +#include "vp9/common/vp9_reconinter.h" + +#include "vp9/encoder/vp9_encoder.h" +#include "vp9/encoder/vp9_mcomp.h" + +// #define NEW_DIAMOND_SEARCH + +static INLINE const uint8_t *get_buf_from_mv(const struct buf_2d *buf, + const MV *mv) { + return &buf->buf[mv->row * buf->stride + mv->col]; +} + +void vp9_set_mv_search_range(MvLimits *mv_limits, const MV *mv) { + int col_min = (mv->col >> 3) - MAX_FULL_PEL_VAL + (mv->col & 7 ? 1 : 0); + int row_min = (mv->row >> 3) - MAX_FULL_PEL_VAL + (mv->row & 7 ? 1 : 0); + int col_max = (mv->col >> 3) + MAX_FULL_PEL_VAL; + int row_max = (mv->row >> 3) + MAX_FULL_PEL_VAL; + + col_min = VPXMAX(col_min, (MV_LOW >> 3) + 1); + row_min = VPXMAX(row_min, (MV_LOW >> 3) + 1); + col_max = VPXMIN(col_max, (MV_UPP >> 3) - 1); + row_max = VPXMIN(row_max, (MV_UPP >> 3) - 1); + + // Get intersection of UMV window and valid MV window to reduce # of checks + // in diamond search. + if (mv_limits->col_min < col_min) mv_limits->col_min = col_min; + if (mv_limits->col_max > col_max) mv_limits->col_max = col_max; + if (mv_limits->row_min < row_min) mv_limits->row_min = row_min; + if (mv_limits->row_max > row_max) mv_limits->row_max = row_max; +} + +void vp9_set_subpel_mv_search_range(MvLimits *subpel_mv_limits, + const MvLimits *umv_window_limits, + const MV *ref_mv) { + subpel_mv_limits->col_min = VPXMAX(umv_window_limits->col_min * 8, + ref_mv->col - MAX_FULL_PEL_VAL * 8); + subpel_mv_limits->col_max = VPXMIN(umv_window_limits->col_max * 8, + ref_mv->col + MAX_FULL_PEL_VAL * 8); + subpel_mv_limits->row_min = VPXMAX(umv_window_limits->row_min * 8, + ref_mv->row - MAX_FULL_PEL_VAL * 8); + subpel_mv_limits->row_max = VPXMIN(umv_window_limits->row_max * 8, + ref_mv->row + MAX_FULL_PEL_VAL * 8); + + subpel_mv_limits->col_min = VPXMAX(MV_LOW + 1, subpel_mv_limits->col_min); + subpel_mv_limits->col_max = VPXMIN(MV_UPP - 1, subpel_mv_limits->col_max); + subpel_mv_limits->row_min = VPXMAX(MV_LOW + 1, subpel_mv_limits->row_min); + subpel_mv_limits->row_max = VPXMIN(MV_UPP - 1, subpel_mv_limits->row_max); +} + +int vp9_init_search_range(int size) { + int sr = 0; + // Minimum search size no matter what the passed in value. + size = VPXMAX(16, size); + + while ((size << sr) < MAX_FULL_PEL_VAL) sr++; + + sr = VPXMIN(sr, MAX_MVSEARCH_STEPS - 2); + return sr; +} + +static INLINE int mv_cost(const MV *mv, const int *joint_cost, + int *const comp_cost[2]) { + assert(mv->row >= -MV_MAX && mv->row < MV_MAX); + assert(mv->col >= -MV_MAX && mv->col < MV_MAX); + return joint_cost[vp9_get_mv_joint(mv)] + comp_cost[0][mv->row] + + comp_cost[1][mv->col]; +} + +int vp9_mv_bit_cost(const MV *mv, const MV *ref, const int *mvjcost, + int *mvcost[2], int weight) { + const MV diff = { mv->row - ref->row, mv->col - ref->col }; + return ROUND_POWER_OF_TWO(mv_cost(&diff, mvjcost, mvcost) * weight, 7); +} + +#define PIXEL_TRANSFORM_ERROR_SCALE 4 +static int mv_err_cost(const MV *mv, const MV *ref, const int *mvjcost, + int *mvcost[2], int error_per_bit) { + if (mvcost) { + const MV diff = { mv->row - ref->row, mv->col - ref->col }; + return (int)ROUND64_POWER_OF_TWO( + (int64_t)mv_cost(&diff, mvjcost, mvcost) * error_per_bit, + RDDIV_BITS + VP9_PROB_COST_SHIFT - RD_EPB_SHIFT + + PIXEL_TRANSFORM_ERROR_SCALE); + } + return 0; +} + +static int mvsad_err_cost(const MACROBLOCK *x, const MV *mv, const MV *ref, + int sad_per_bit) { + const MV diff = { mv->row - ref->row, mv->col - ref->col }; + return ROUND_POWER_OF_TWO( + (unsigned)mv_cost(&diff, x->nmvjointsadcost, x->nmvsadcost) * sad_per_bit, + VP9_PROB_COST_SHIFT); +} + +void vp9_init_dsmotion_compensation(search_site_config *cfg, int stride) { + int len; + int ss_count = 0; + + for (len = MAX_FIRST_STEP; len > 0; len /= 2) { + // Generate offsets for 4 search sites per step. + const MV ss_mvs[] = { { -len, 0 }, { len, 0 }, { 0, -len }, { 0, len } }; + int i; + for (i = 0; i < 4; ++i, ++ss_count) { + cfg->ss_mv[ss_count] = ss_mvs[i]; + cfg->ss_os[ss_count] = ss_mvs[i].row * stride + ss_mvs[i].col; + } + } + + cfg->searches_per_step = 4; + cfg->total_steps = ss_count / cfg->searches_per_step; +} + +void vp9_init3smotion_compensation(search_site_config *cfg, int stride) { + int len; + int ss_count = 0; + + for (len = MAX_FIRST_STEP; len > 0; len /= 2) { + // Generate offsets for 8 search sites per step. + const MV ss_mvs[8] = { { -len, 0 }, { len, 0 }, { 0, -len }, + { 0, len }, { -len, -len }, { -len, len }, + { len, -len }, { len, len } }; + int i; + for (i = 0; i < 8; ++i, ++ss_count) { + cfg->ss_mv[ss_count] = ss_mvs[i]; + cfg->ss_os[ss_count] = ss_mvs[i].row * stride + ss_mvs[i].col; + } + } + + cfg->searches_per_step = 8; + cfg->total_steps = ss_count / cfg->searches_per_step; +} + +// convert motion vector component to offset for sv[a]f calc +static INLINE int sp(int x) { return x & 7; } + +static INLINE const uint8_t *pre(const uint8_t *buf, int stride, int r, int c) { + return &buf[(r >> 3) * stride + (c >> 3)]; +} + +#if CONFIG_VP9_HIGHBITDEPTH +/* checks if (r, c) has better score than previous best */ +#define CHECK_BETTER(v, r, c) \ + if (c >= minc && c <= maxc && r >= minr && r <= maxr) { \ + int64_t tmpmse; \ + const MV mv = { r, c }; \ + const MV ref_mv = { rr, rc }; \ + if (second_pred == NULL) { \ + thismse = vfp->svf(pre(y, y_stride, r, c), y_stride, sp(c), sp(r), z, \ + src_stride, &sse); \ + } else { \ + thismse = vfp->svaf(pre(y, y_stride, r, c), y_stride, sp(c), sp(r), z, \ + src_stride, &sse, second_pred); \ + } \ + tmpmse = thismse; \ + tmpmse += mv_err_cost(&mv, &ref_mv, mvjcost, mvcost, error_per_bit); \ + if (tmpmse >= INT_MAX) { \ + v = INT_MAX; \ + } else if ((v = (uint32_t)tmpmse) < besterr) { \ + besterr = v; \ + br = r; \ + bc = c; \ + *distortion = thismse; \ + *sse1 = sse; \ + } \ + } else { \ + v = INT_MAX; \ + } +#else +/* checks if (r, c) has better score than previous best */ +#define CHECK_BETTER(v, r, c) \ + if (c >= minc && c <= maxc && r >= minr && r <= maxr) { \ + const MV mv = { r, c }; \ + const MV ref_mv = { rr, rc }; \ + if (second_pred == NULL) \ + thismse = vfp->svf(pre(y, y_stride, r, c), y_stride, sp(c), sp(r), z, \ + src_stride, &sse); \ + else \ + thismse = vfp->svaf(pre(y, y_stride, r, c), y_stride, sp(c), sp(r), z, \ + src_stride, &sse, second_pred); \ + if ((v = mv_err_cost(&mv, &ref_mv, mvjcost, mvcost, error_per_bit) + \ + thismse) < besterr) { \ + besterr = v; \ + br = r; \ + bc = c; \ + *distortion = thismse; \ + *sse1 = sse; \ + } \ + } else { \ + v = INT_MAX; \ + } + +#endif +#define FIRST_LEVEL_CHECKS \ + { \ + unsigned int left, right, up, down, diag; \ + CHECK_BETTER(left, tr, tc - hstep); \ + CHECK_BETTER(right, tr, tc + hstep); \ + CHECK_BETTER(up, tr - hstep, tc); \ + CHECK_BETTER(down, tr + hstep, tc); \ + whichdir = (left < right ? 0 : 1) + (up < down ? 0 : 2); \ + switch (whichdir) { \ + case 0: CHECK_BETTER(diag, tr - hstep, tc - hstep); break; \ + case 1: CHECK_BETTER(diag, tr - hstep, tc + hstep); break; \ + case 2: CHECK_BETTER(diag, tr + hstep, tc - hstep); break; \ + case 3: CHECK_BETTER(diag, tr + hstep, tc + hstep); break; \ + } \ + } + +#define SECOND_LEVEL_CHECKS \ + { \ + int kr, kc; \ + unsigned int second; \ + if (tr != br && tc != bc) { \ + kr = br - tr; \ + kc = bc - tc; \ + CHECK_BETTER(second, tr + kr, tc + 2 * kc); \ + CHECK_BETTER(second, tr + 2 * kr, tc + kc); \ + } else if (tr == br && tc != bc) { \ + kc = bc - tc; \ + CHECK_BETTER(second, tr + hstep, tc + 2 * kc); \ + CHECK_BETTER(second, tr - hstep, tc + 2 * kc); \ + switch (whichdir) { \ + case 0: \ + case 1: CHECK_BETTER(second, tr + hstep, tc + kc); break; \ + case 2: \ + case 3: CHECK_BETTER(second, tr - hstep, tc + kc); break; \ + } \ + } else if (tr != br && tc == bc) { \ + kr = br - tr; \ + CHECK_BETTER(second, tr + 2 * kr, tc + hstep); \ + CHECK_BETTER(second, tr + 2 * kr, tc - hstep); \ + switch (whichdir) { \ + case 0: \ + case 2: CHECK_BETTER(second, tr + kr, tc + hstep); break; \ + case 1: \ + case 3: CHECK_BETTER(second, tr + kr, tc - hstep); break; \ + } \ + } \ + } + +// TODO(yunqingwang): SECOND_LEVEL_CHECKS_BEST was a rewrote of +// SECOND_LEVEL_CHECKS, and SECOND_LEVEL_CHECKS should be rewritten +// later in the same way. +#define SECOND_LEVEL_CHECKS_BEST \ + { \ + unsigned int second; \ + int br0 = br; \ + int bc0 = bc; \ + assert(tr == br || tc == bc); \ + if (tr == br && tc != bc) { \ + kc = bc - tc; \ + } else if (tr != br && tc == bc) { \ + kr = br - tr; \ + } \ + CHECK_BETTER(second, br0 + kr, bc0); \ + CHECK_BETTER(second, br0, bc0 + kc); \ + if (br0 != br || bc0 != bc) { \ + CHECK_BETTER(second, br0 + kr, bc0 + kc); \ + } \ + } + +#define SETUP_SUBPEL_SEARCH \ + const uint8_t *const z = x->plane[0].src.buf; \ + const int src_stride = x->plane[0].src.stride; \ + const MACROBLOCKD *xd = &x->e_mbd; \ + unsigned int besterr = UINT_MAX; \ + unsigned int sse; \ + unsigned int whichdir; \ + int thismse; \ + const unsigned int halfiters = iters_per_step; \ + const unsigned int quarteriters = iters_per_step; \ + const unsigned int eighthiters = iters_per_step; \ + const int y_stride = xd->plane[0].pre[0].stride; \ + const int offset = bestmv->row * y_stride + bestmv->col; \ + const uint8_t *const y = xd->plane[0].pre[0].buf; \ + \ + int rr = ref_mv->row; \ + int rc = ref_mv->col; \ + int br = bestmv->row * 8; \ + int bc = bestmv->col * 8; \ + int hstep = 4; \ + int minc, maxc, minr, maxr; \ + int tr = br; \ + int tc = bc; \ + MvLimits subpel_mv_limits; \ + \ + vp9_set_subpel_mv_search_range(&subpel_mv_limits, &x->mv_limits, ref_mv); \ + minc = subpel_mv_limits.col_min; \ + maxc = subpel_mv_limits.col_max; \ + minr = subpel_mv_limits.row_min; \ + maxr = subpel_mv_limits.row_max; \ + \ + bestmv->row *= 8; \ + bestmv->col *= 8; + +static unsigned int setup_center_error( + const MACROBLOCKD *xd, const MV *bestmv, const MV *ref_mv, + int error_per_bit, const vp9_variance_fn_ptr_t *vfp, + const uint8_t *const src, const int src_stride, const uint8_t *const y, + int y_stride, const uint8_t *second_pred, int w, int h, int offset, + int *mvjcost, int *mvcost[2], uint32_t *sse1, uint32_t *distortion) { +#if CONFIG_VP9_HIGHBITDEPTH + uint64_t besterr; + if (second_pred != NULL) { + if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { + DECLARE_ALIGNED(16, uint16_t, comp_pred16[64 * 64]); + vpx_highbd_comp_avg_pred(comp_pred16, second_pred, w, h, y + offset, + y_stride); + besterr = + vfp->vf(CONVERT_TO_BYTEPTR(comp_pred16), w, src, src_stride, sse1); + } else { + DECLARE_ALIGNED(16, uint8_t, comp_pred[64 * 64]); + vpx_comp_avg_pred(comp_pred, second_pred, w, h, y + offset, y_stride); + besterr = vfp->vf(comp_pred, w, src, src_stride, sse1); + } + } else { + besterr = vfp->vf(y + offset, y_stride, src, src_stride, sse1); + } + *distortion = (uint32_t)besterr; + besterr += mv_err_cost(bestmv, ref_mv, mvjcost, mvcost, error_per_bit); + if (besterr >= UINT_MAX) return UINT_MAX; + return (uint32_t)besterr; +#else + uint32_t besterr; + (void)xd; + if (second_pred != NULL) { + DECLARE_ALIGNED(16, uint8_t, comp_pred[64 * 64]); + vpx_comp_avg_pred(comp_pred, second_pred, w, h, y + offset, y_stride); + besterr = vfp->vf(comp_pred, w, src, src_stride, sse1); + } else { + besterr = vfp->vf(y + offset, y_stride, src, src_stride, sse1); + } + *distortion = besterr; + besterr += mv_err_cost(bestmv, ref_mv, mvjcost, mvcost, error_per_bit); + return besterr; +#endif // CONFIG_VP9_HIGHBITDEPTH +} + +static INLINE int64_t divide_and_round(const int64_t n, const int64_t d) { + return ((n < 0) ^ (d < 0)) ? ((n - d / 2) / d) : ((n + d / 2) / d); +} + +static INLINE int is_cost_list_wellbehaved(int *cost_list) { + return cost_list[0] < cost_list[1] && cost_list[0] < cost_list[2] && + cost_list[0] < cost_list[3] && cost_list[0] < cost_list[4]; +} + +// Returns surface minima estimate at given precision in 1/2^n bits. +// Assume a model for the cost surface: S = A(x - x0)^2 + B(y - y0)^2 + C +// For a given set of costs S0, S1, S2, S3, S4 at points +// (y, x) = (0, 0), (0, -1), (1, 0), (0, 1) and (-1, 0) respectively, +// the solution for the location of the minima (x0, y0) is given by: +// x0 = 1/2 (S1 - S3)/(S1 + S3 - 2*S0), +// y0 = 1/2 (S4 - S2)/(S4 + S2 - 2*S0). +// The code below is an integerized version of that. +static void get_cost_surf_min(int *cost_list, int *ir, int *ic, int bits) { + const int64_t x0 = (int64_t)cost_list[1] - cost_list[3]; + const int64_t y0 = cost_list[1] - 2 * (int64_t)cost_list[0] + cost_list[3]; + const int64_t x1 = (int64_t)cost_list[4] - cost_list[2]; + const int64_t y1 = cost_list[4] - 2 * (int64_t)cost_list[0] + cost_list[2]; + const int b = 1 << (bits - 1); + *ic = (int)divide_and_round(x0 * b, y0); + *ir = (int)divide_and_round(x1 * b, y1); +} + +uint32_t vp9_skip_sub_pixel_tree(const MACROBLOCK *x, MV *bestmv, + const MV *ref_mv, int allow_hp, + int error_per_bit, + const vp9_variance_fn_ptr_t *vfp, + int forced_stop, int iters_per_step, + int *cost_list, int *mvjcost, int *mvcost[2], + uint32_t *distortion, uint32_t *sse1, + const uint8_t *second_pred, int w, int h) { + SETUP_SUBPEL_SEARCH; + besterr = setup_center_error(xd, bestmv, ref_mv, error_per_bit, vfp, z, + src_stride, y, y_stride, second_pred, w, h, + offset, mvjcost, mvcost, sse1, distortion); + (void)halfiters; + (void)quarteriters; + (void)eighthiters; + (void)whichdir; + (void)allow_hp; + (void)forced_stop; + (void)hstep; + (void)rr; + (void)rc; + (void)minr; + (void)minc; + (void)maxr; + (void)maxc; + (void)tr; + (void)tc; + (void)sse; + (void)thismse; + (void)cost_list; + + return besterr; +} + +uint32_t vp9_find_best_sub_pixel_tree_pruned_evenmore( + const MACROBLOCK *x, MV *bestmv, const MV *ref_mv, int allow_hp, + int error_per_bit, const vp9_variance_fn_ptr_t *vfp, int forced_stop, + int iters_per_step, int *cost_list, int *mvjcost, int *mvcost[2], + uint32_t *distortion, uint32_t *sse1, const uint8_t *second_pred, int w, + int h) { + SETUP_SUBPEL_SEARCH; + besterr = setup_center_error(xd, bestmv, ref_mv, error_per_bit, vfp, z, + src_stride, y, y_stride, second_pred, w, h, + offset, mvjcost, mvcost, sse1, distortion); + (void)halfiters; + (void)quarteriters; + (void)eighthiters; + (void)whichdir; + (void)allow_hp; + (void)forced_stop; + (void)hstep; + + if (cost_list && cost_list[0] != INT_MAX && cost_list[1] != INT_MAX && + cost_list[2] != INT_MAX && cost_list[3] != INT_MAX && + cost_list[4] != INT_MAX && is_cost_list_wellbehaved(cost_list)) { + int ir, ic; + unsigned int minpt = INT_MAX; + get_cost_surf_min(cost_list, &ir, &ic, 2); + if (ir != 0 || ic != 0) { + CHECK_BETTER(minpt, tr + 2 * ir, tc + 2 * ic); + } + } else { + FIRST_LEVEL_CHECKS; + if (halfiters > 1) { + SECOND_LEVEL_CHECKS; + } + + tr = br; + tc = bc; + + // Each subsequent iteration checks at least one point in common with + // the last iteration could be 2 ( if diag selected) 1/4 pel + // Note forced_stop: 0 - full, 1 - qtr only, 2 - half only + if (forced_stop != 2) { + hstep >>= 1; + FIRST_LEVEL_CHECKS; + if (quarteriters > 1) { + SECOND_LEVEL_CHECKS; + } + } + } + + tr = br; + tc = bc; + + if (allow_hp && use_mv_hp(ref_mv) && forced_stop == 0) { + hstep >>= 1; + FIRST_LEVEL_CHECKS; + if (eighthiters > 1) { + SECOND_LEVEL_CHECKS; + } + } + + bestmv->row = br; + bestmv->col = bc; + + return besterr; +} + +uint32_t vp9_find_best_sub_pixel_tree_pruned_more( + const MACROBLOCK *x, MV *bestmv, const MV *ref_mv, int allow_hp, + int error_per_bit, const vp9_variance_fn_ptr_t *vfp, int forced_stop, + int iters_per_step, int *cost_list, int *mvjcost, int *mvcost[2], + uint32_t *distortion, uint32_t *sse1, const uint8_t *second_pred, int w, + int h) { + SETUP_SUBPEL_SEARCH; + besterr = setup_center_error(xd, bestmv, ref_mv, error_per_bit, vfp, z, + src_stride, y, y_stride, second_pred, w, h, + offset, mvjcost, mvcost, sse1, distortion); + if (cost_list && cost_list[0] != INT_MAX && cost_list[1] != INT_MAX && + cost_list[2] != INT_MAX && cost_list[3] != INT_MAX && + cost_list[4] != INT_MAX && is_cost_list_wellbehaved(cost_list)) { + unsigned int minpt; + int ir, ic; + get_cost_surf_min(cost_list, &ir, &ic, 1); + if (ir != 0 || ic != 0) { + CHECK_BETTER(minpt, tr + ir * hstep, tc + ic * hstep); + } + } else { + FIRST_LEVEL_CHECKS; + if (halfiters > 1) { + SECOND_LEVEL_CHECKS; + } + } + + // Each subsequent iteration checks at least one point in common with + // the last iteration could be 2 ( if diag selected) 1/4 pel + + // Note forced_stop: 0 - full, 1 - qtr only, 2 - half only + if (forced_stop != 2) { + tr = br; + tc = bc; + hstep >>= 1; + FIRST_LEVEL_CHECKS; + if (quarteriters > 1) { + SECOND_LEVEL_CHECKS; + } + } + + if (allow_hp && use_mv_hp(ref_mv) && forced_stop == 0) { + tr = br; + tc = bc; + hstep >>= 1; + FIRST_LEVEL_CHECKS; + if (eighthiters > 1) { + SECOND_LEVEL_CHECKS; + } + } + // These lines insure static analysis doesn't warn that + // tr and tc aren't used after the above point. + (void)tr; + (void)tc; + + bestmv->row = br; + bestmv->col = bc; + + return besterr; +} + +uint32_t vp9_find_best_sub_pixel_tree_pruned( + const MACROBLOCK *x, MV *bestmv, const MV *ref_mv, int allow_hp, + int error_per_bit, const vp9_variance_fn_ptr_t *vfp, int forced_stop, + int iters_per_step, int *cost_list, int *mvjcost, int *mvcost[2], + uint32_t *distortion, uint32_t *sse1, const uint8_t *second_pred, int w, + int h) { + SETUP_SUBPEL_SEARCH; + besterr = setup_center_error(xd, bestmv, ref_mv, error_per_bit, vfp, z, + src_stride, y, y_stride, second_pred, w, h, + offset, mvjcost, mvcost, sse1, distortion); + if (cost_list && cost_list[0] != INT_MAX && cost_list[1] != INT_MAX && + cost_list[2] != INT_MAX && cost_list[3] != INT_MAX && + cost_list[4] != INT_MAX) { + unsigned int left, right, up, down, diag; + whichdir = (cost_list[1] < cost_list[3] ? 0 : 1) + + (cost_list[2] < cost_list[4] ? 0 : 2); + switch (whichdir) { + case 0: + CHECK_BETTER(left, tr, tc - hstep); + CHECK_BETTER(down, tr + hstep, tc); + CHECK_BETTER(diag, tr + hstep, tc - hstep); + break; + case 1: + CHECK_BETTER(right, tr, tc + hstep); + CHECK_BETTER(down, tr + hstep, tc); + CHECK_BETTER(diag, tr + hstep, tc + hstep); + break; + case 2: + CHECK_BETTER(left, tr, tc - hstep); + CHECK_BETTER(up, tr - hstep, tc); + CHECK_BETTER(diag, tr - hstep, tc - hstep); + break; + case 3: + CHECK_BETTER(right, tr, tc + hstep); + CHECK_BETTER(up, tr - hstep, tc); + CHECK_BETTER(diag, tr - hstep, tc + hstep); + break; + } + } else { + FIRST_LEVEL_CHECKS; + if (halfiters > 1) { + SECOND_LEVEL_CHECKS; + } + } + + tr = br; + tc = bc; + + // Each subsequent iteration checks at least one point in common with + // the last iteration could be 2 ( if diag selected) 1/4 pel + + // Note forced_stop: 0 - full, 1 - qtr only, 2 - half only + if (forced_stop != 2) { + hstep >>= 1; + FIRST_LEVEL_CHECKS; + if (quarteriters > 1) { + SECOND_LEVEL_CHECKS; + } + tr = br; + tc = bc; + } + + if (allow_hp && use_mv_hp(ref_mv) && forced_stop == 0) { + hstep >>= 1; + FIRST_LEVEL_CHECKS; + if (eighthiters > 1) { + SECOND_LEVEL_CHECKS; + } + tr = br; + tc = bc; + } + // These lines insure static analysis doesn't warn that + // tr and tc aren't used after the above point. + (void)tr; + (void)tc; + + bestmv->row = br; + bestmv->col = bc; + + return besterr; +} + +/* clang-format off */ +static const MV search_step_table[12] = { + // left, right, up, down + { 0, -4 }, { 0, 4 }, { -4, 0 }, { 4, 0 }, + { 0, -2 }, { 0, 2 }, { -2, 0 }, { 2, 0 }, + { 0, -1 }, { 0, 1 }, { -1, 0 }, { 1, 0 } +}; +/* clang-format on */ + +uint32_t vp9_find_best_sub_pixel_tree( + const MACROBLOCK *x, MV *bestmv, const MV *ref_mv, int allow_hp, + int error_per_bit, const vp9_variance_fn_ptr_t *vfp, int forced_stop, + int iters_per_step, int *cost_list, int *mvjcost, int *mvcost[2], + uint32_t *distortion, uint32_t *sse1, const uint8_t *second_pred, int w, + int h) { + const uint8_t *const z = x->plane[0].src.buf; + const uint8_t *const src_address = z; + const int src_stride = x->plane[0].src.stride; + const MACROBLOCKD *xd = &x->e_mbd; + unsigned int besterr = UINT_MAX; + unsigned int sse; + int thismse; + const int y_stride = xd->plane[0].pre[0].stride; + const int offset = bestmv->row * y_stride + bestmv->col; + const uint8_t *const y = xd->plane[0].pre[0].buf; + + int rr = ref_mv->row; + int rc = ref_mv->col; + int br = bestmv->row * 8; + int bc = bestmv->col * 8; + int hstep = 4; + int iter, round = 3 - forced_stop; + + int minc, maxc, minr, maxr; + int tr = br; + int tc = bc; + const MV *search_step = search_step_table; + int idx, best_idx = -1; + unsigned int cost_array[5]; + int kr, kc; + MvLimits subpel_mv_limits; + + vp9_set_subpel_mv_search_range(&subpel_mv_limits, &x->mv_limits, ref_mv); + minc = subpel_mv_limits.col_min; + maxc = subpel_mv_limits.col_max; + minr = subpel_mv_limits.row_min; + maxr = subpel_mv_limits.row_max; + + if (!(allow_hp && use_mv_hp(ref_mv))) + if (round == 3) round = 2; + + bestmv->row *= 8; + bestmv->col *= 8; + + besterr = setup_center_error(xd, bestmv, ref_mv, error_per_bit, vfp, z, + src_stride, y, y_stride, second_pred, w, h, + offset, mvjcost, mvcost, sse1, distortion); + + (void)cost_list; // to silence compiler warning + + for (iter = 0; iter < round; ++iter) { + // Check vertical and horizontal sub-pixel positions. + for (idx = 0; idx < 4; ++idx) { + tr = br + search_step[idx].row; + tc = bc + search_step[idx].col; + if (tc >= minc && tc <= maxc && tr >= minr && tr <= maxr) { + const uint8_t *const pre_address = y + (tr >> 3) * y_stride + (tc >> 3); + MV this_mv; + this_mv.row = tr; + this_mv.col = tc; + if (second_pred == NULL) + thismse = vfp->svf(pre_address, y_stride, sp(tc), sp(tr), src_address, + src_stride, &sse); + else + thismse = vfp->svaf(pre_address, y_stride, sp(tc), sp(tr), + src_address, src_stride, &sse, second_pred); + cost_array[idx] = thismse + mv_err_cost(&this_mv, ref_mv, mvjcost, + mvcost, error_per_bit); + + if (cost_array[idx] < besterr) { + best_idx = idx; + besterr = cost_array[idx]; + *distortion = thismse; + *sse1 = sse; + } + } else { + cost_array[idx] = UINT_MAX; + } + } + + // Check diagonal sub-pixel position + kc = (cost_array[0] <= cost_array[1] ? -hstep : hstep); + kr = (cost_array[2] <= cost_array[3] ? -hstep : hstep); + + tc = bc + kc; + tr = br + kr; + if (tc >= minc && tc <= maxc && tr >= minr && tr <= maxr) { + const uint8_t *const pre_address = y + (tr >> 3) * y_stride + (tc >> 3); + MV this_mv = { tr, tc }; + if (second_pred == NULL) + thismse = vfp->svf(pre_address, y_stride, sp(tc), sp(tr), src_address, + src_stride, &sse); + else + thismse = vfp->svaf(pre_address, y_stride, sp(tc), sp(tr), src_address, + src_stride, &sse, second_pred); + cost_array[4] = thismse + mv_err_cost(&this_mv, ref_mv, mvjcost, mvcost, + error_per_bit); + + if (cost_array[4] < besterr) { + best_idx = 4; + besterr = cost_array[4]; + *distortion = thismse; + *sse1 = sse; + } + } else { + cost_array[idx] = UINT_MAX; + } + + if (best_idx < 4 && best_idx >= 0) { + br += search_step[best_idx].row; + bc += search_step[best_idx].col; + } else if (best_idx == 4) { + br = tr; + bc = tc; + } + + if (iters_per_step > 1 && best_idx != -1) SECOND_LEVEL_CHECKS_BEST; + + tr = br; + tc = bc; + + search_step += 4; + hstep >>= 1; + best_idx = -1; + } + + // Each subsequent iteration checks at least one point in common with + // the last iteration could be 2 ( if diag selected) 1/4 pel + + // These lines insure static analysis doesn't warn that + // tr and tc aren't used after the above point. + (void)tr; + (void)tc; + + bestmv->row = br; + bestmv->col = bc; + + return besterr; +} + +#undef CHECK_BETTER + +static INLINE int check_bounds(const MvLimits *mv_limits, int row, int col, + int range) { + return ((row - range) >= mv_limits->row_min) & + ((row + range) <= mv_limits->row_max) & + ((col - range) >= mv_limits->col_min) & + ((col + range) <= mv_limits->col_max); +} + +static INLINE int is_mv_in(const MvLimits *mv_limits, const MV *mv) { + return (mv->col >= mv_limits->col_min) && (mv->col <= mv_limits->col_max) && + (mv->row >= mv_limits->row_min) && (mv->row <= mv_limits->row_max); +} + +#define CHECK_BETTER \ + { \ + if (thissad < bestsad) { \ + if (use_mvcost) \ + thissad += mvsad_err_cost(x, &this_mv, &fcenter_mv, sad_per_bit); \ + if (thissad < bestsad) { \ + bestsad = thissad; \ + best_site = i; \ + } \ + } \ + } + +#define MAX_PATTERN_SCALES 11 +#define MAX_PATTERN_CANDIDATES 8 // max number of canddiates per scale +#define PATTERN_CANDIDATES_REF 3 // number of refinement candidates + +// Calculate and return a sad+mvcost list around an integer best pel. +static INLINE void calc_int_cost_list(const MACROBLOCK *x, const MV *ref_mv, + int sadpb, + const vp9_variance_fn_ptr_t *fn_ptr, + const MV *best_mv, int *cost_list) { + static const MV neighbors[4] = { { 0, -1 }, { 1, 0 }, { 0, 1 }, { -1, 0 } }; + const struct buf_2d *const what = &x->plane[0].src; + const struct buf_2d *const in_what = &x->e_mbd.plane[0].pre[0]; + const MV fcenter_mv = { ref_mv->row >> 3, ref_mv->col >> 3 }; + int br = best_mv->row; + int bc = best_mv->col; + MV this_mv; + int i; + unsigned int sse; + + this_mv.row = br; + this_mv.col = bc; + cost_list[0] = + fn_ptr->vf(what->buf, what->stride, get_buf_from_mv(in_what, &this_mv), + in_what->stride, &sse) + + mvsad_err_cost(x, &this_mv, &fcenter_mv, sadpb); + if (check_bounds(&x->mv_limits, br, bc, 1)) { + for (i = 0; i < 4; i++) { + const MV this_mv = { br + neighbors[i].row, bc + neighbors[i].col }; + cost_list[i + 1] = fn_ptr->vf(what->buf, what->stride, + get_buf_from_mv(in_what, &this_mv), + in_what->stride, &sse) + + mv_err_cost(&this_mv, &fcenter_mv, x->nmvjointcost, + x->mvcost, x->errorperbit); + } + } else { + for (i = 0; i < 4; i++) { + const MV this_mv = { br + neighbors[i].row, bc + neighbors[i].col }; + if (!is_mv_in(&x->mv_limits, &this_mv)) + cost_list[i + 1] = INT_MAX; + else + cost_list[i + 1] = fn_ptr->vf(what->buf, what->stride, + get_buf_from_mv(in_what, &this_mv), + in_what->stride, &sse) + + mv_err_cost(&this_mv, &fcenter_mv, x->nmvjointcost, + x->mvcost, x->errorperbit); + } + } +} + +// Generic pattern search function that searches over multiple scales. +// Each scale can have a different number of candidates and shape of +// candidates as indicated in the num_candidates and candidates arrays +// passed into this function +// +static int vp9_pattern_search( + const MACROBLOCK *x, MV *ref_mv, int search_param, int sad_per_bit, + int do_init_search, int *cost_list, const vp9_variance_fn_ptr_t *vfp, + int use_mvcost, const MV *center_mv, MV *best_mv, + const int num_candidates[MAX_PATTERN_SCALES], + const MV candidates[MAX_PATTERN_SCALES][MAX_PATTERN_CANDIDATES]) { + const MACROBLOCKD *const xd = &x->e_mbd; + static const int search_param_to_steps[MAX_MVSEARCH_STEPS] = { + 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, + }; + int i, s, t; + const struct buf_2d *const what = &x->plane[0].src; + const struct buf_2d *const in_what = &xd->plane[0].pre[0]; + int br, bc; + int bestsad = INT_MAX; + int thissad; + int k = -1; + const MV fcenter_mv = { center_mv->row >> 3, center_mv->col >> 3 }; + int best_init_s = search_param_to_steps[search_param]; + // adjust ref_mv to make sure it is within MV range + clamp_mv(ref_mv, x->mv_limits.col_min, x->mv_limits.col_max, + x->mv_limits.row_min, x->mv_limits.row_max); + br = ref_mv->row; + bc = ref_mv->col; + + // Work out the start point for the search + bestsad = vfp->sdf(what->buf, what->stride, get_buf_from_mv(in_what, ref_mv), + in_what->stride) + + mvsad_err_cost(x, ref_mv, &fcenter_mv, sad_per_bit); + + // Search all possible scales upto the search param around the center point + // pick the scale of the point that is best as the starting scale of + // further steps around it. + if (do_init_search) { + s = best_init_s; + best_init_s = -1; + for (t = 0; t <= s; ++t) { + int best_site = -1; + if (check_bounds(&x->mv_limits, br, bc, 1 << t)) { + for (i = 0; i < num_candidates[t]; i++) { + const MV this_mv = { br + candidates[t][i].row, + bc + candidates[t][i].col }; + thissad = + vfp->sdf(what->buf, what->stride, + get_buf_from_mv(in_what, &this_mv), in_what->stride); + CHECK_BETTER + } + } else { + for (i = 0; i < num_candidates[t]; i++) { + const MV this_mv = { br + candidates[t][i].row, + bc + candidates[t][i].col }; + if (!is_mv_in(&x->mv_limits, &this_mv)) continue; + thissad = + vfp->sdf(what->buf, what->stride, + get_buf_from_mv(in_what, &this_mv), in_what->stride); + CHECK_BETTER + } + } + if (best_site == -1) { + continue; + } else { + best_init_s = t; + k = best_site; + } + } + if (best_init_s != -1) { + br += candidates[best_init_s][k].row; + bc += candidates[best_init_s][k].col; + } + } + + // If the center point is still the best, just skip this and move to + // the refinement step. + if (best_init_s != -1) { + int best_site = -1; + s = best_init_s; + + do { + // No need to search all 6 points the 1st time if initial search was used + if (!do_init_search || s != best_init_s) { + if (check_bounds(&x->mv_limits, br, bc, 1 << s)) { + for (i = 0; i < num_candidates[s]; i++) { + const MV this_mv = { br + candidates[s][i].row, + bc + candidates[s][i].col }; + thissad = + vfp->sdf(what->buf, what->stride, + get_buf_from_mv(in_what, &this_mv), in_what->stride); + CHECK_BETTER + } + } else { + for (i = 0; i < num_candidates[s]; i++) { + const MV this_mv = { br + candidates[s][i].row, + bc + candidates[s][i].col }; + if (!is_mv_in(&x->mv_limits, &this_mv)) continue; + thissad = + vfp->sdf(what->buf, what->stride, + get_buf_from_mv(in_what, &this_mv), in_what->stride); + CHECK_BETTER + } + } + + if (best_site == -1) { + continue; + } else { + br += candidates[s][best_site].row; + bc += candidates[s][best_site].col; + k = best_site; + } + } + + do { + int next_chkpts_indices[PATTERN_CANDIDATES_REF]; + best_site = -1; + next_chkpts_indices[0] = (k == 0) ? num_candidates[s] - 1 : k - 1; + next_chkpts_indices[1] = k; + next_chkpts_indices[2] = (k == num_candidates[s] - 1) ? 0 : k + 1; + + if (check_bounds(&x->mv_limits, br, bc, 1 << s)) { + for (i = 0; i < PATTERN_CANDIDATES_REF; i++) { + const MV this_mv = { + br + candidates[s][next_chkpts_indices[i]].row, + bc + candidates[s][next_chkpts_indices[i]].col + }; + thissad = + vfp->sdf(what->buf, what->stride, + get_buf_from_mv(in_what, &this_mv), in_what->stride); + CHECK_BETTER + } + } else { + for (i = 0; i < PATTERN_CANDIDATES_REF; i++) { + const MV this_mv = { + br + candidates[s][next_chkpts_indices[i]].row, + bc + candidates[s][next_chkpts_indices[i]].col + }; + if (!is_mv_in(&x->mv_limits, &this_mv)) continue; + thissad = + vfp->sdf(what->buf, what->stride, + get_buf_from_mv(in_what, &this_mv), in_what->stride); + CHECK_BETTER + } + } + + if (best_site != -1) { + k = next_chkpts_indices[best_site]; + br += candidates[s][k].row; + bc += candidates[s][k].col; + } + } while (best_site != -1); + } while (s--); + } + + // Returns the one-away integer pel sad values around the best as follows: + // cost_list[0]: cost at the best integer pel + // cost_list[1]: cost at delta {0, -1} (left) from the best integer pel + // cost_list[2]: cost at delta { 1, 0} (bottom) from the best integer pel + // cost_list[3]: cost at delta { 0, 1} (right) from the best integer pel + // cost_list[4]: cost at delta {-1, 0} (top) from the best integer pel + if (cost_list) { + const MV best_mv = { br, bc }; + calc_int_cost_list(x, &fcenter_mv, sad_per_bit, vfp, &best_mv, cost_list); + } + best_mv->row = br; + best_mv->col = bc; + return bestsad; +} + +// A specialized function where the smallest scale search candidates +// are 4 1-away neighbors, and cost_list is non-null +// TODO(debargha): Merge this function with the one above. Also remove +// use_mvcost option since it is always 1, to save unnecessary branches. +static int vp9_pattern_search_sad( + const MACROBLOCK *x, MV *ref_mv, int search_param, int sad_per_bit, + int do_init_search, int *cost_list, const vp9_variance_fn_ptr_t *vfp, + int use_mvcost, const MV *center_mv, MV *best_mv, + const int num_candidates[MAX_PATTERN_SCALES], + const MV candidates[MAX_PATTERN_SCALES][MAX_PATTERN_CANDIDATES]) { + const MACROBLOCKD *const xd = &x->e_mbd; + static const int search_param_to_steps[MAX_MVSEARCH_STEPS] = { + 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, + }; + int i, s, t; + const struct buf_2d *const what = &x->plane[0].src; + const struct buf_2d *const in_what = &xd->plane[0].pre[0]; + int br, bc; + int bestsad = INT_MAX; + int thissad; + int k = -1; + const MV fcenter_mv = { center_mv->row >> 3, center_mv->col >> 3 }; + int best_init_s = search_param_to_steps[search_param]; + // adjust ref_mv to make sure it is within MV range + clamp_mv(ref_mv, x->mv_limits.col_min, x->mv_limits.col_max, + x->mv_limits.row_min, x->mv_limits.row_max); + br = ref_mv->row; + bc = ref_mv->col; + if (cost_list != NULL) { + cost_list[0] = cost_list[1] = cost_list[2] = cost_list[3] = cost_list[4] = + INT_MAX; + } + + // Work out the start point for the search + bestsad = vfp->sdf(what->buf, what->stride, get_buf_from_mv(in_what, ref_mv), + in_what->stride) + + mvsad_err_cost(x, ref_mv, &fcenter_mv, sad_per_bit); + + // Search all possible scales upto the search param around the center point + // pick the scale of the point that is best as the starting scale of + // further steps around it. + if (do_init_search) { + s = best_init_s; + best_init_s = -1; + for (t = 0; t <= s; ++t) { + int best_site = -1; + if (check_bounds(&x->mv_limits, br, bc, 1 << t)) { + for (i = 0; i < num_candidates[t]; i++) { + const MV this_mv = { br + candidates[t][i].row, + bc + candidates[t][i].col }; + thissad = + vfp->sdf(what->buf, what->stride, + get_buf_from_mv(in_what, &this_mv), in_what->stride); + CHECK_BETTER + } + } else { + for (i = 0; i < num_candidates[t]; i++) { + const MV this_mv = { br + candidates[t][i].row, + bc + candidates[t][i].col }; + if (!is_mv_in(&x->mv_limits, &this_mv)) continue; + thissad = + vfp->sdf(what->buf, what->stride, + get_buf_from_mv(in_what, &this_mv), in_what->stride); + CHECK_BETTER + } + } + if (best_site == -1) { + continue; + } else { + best_init_s = t; + k = best_site; + } + } + if (best_init_s != -1) { + br += candidates[best_init_s][k].row; + bc += candidates[best_init_s][k].col; + } + } + + // If the center point is still the best, just skip this and move to + // the refinement step. + if (best_init_s != -1) { + int do_sad = (num_candidates[0] == 4 && cost_list != NULL); + int best_site = -1; + s = best_init_s; + + for (; s >= do_sad; s--) { + if (!do_init_search || s != best_init_s) { + if (check_bounds(&x->mv_limits, br, bc, 1 << s)) { + for (i = 0; i < num_candidates[s]; i++) { + const MV this_mv = { br + candidates[s][i].row, + bc + candidates[s][i].col }; + thissad = + vfp->sdf(what->buf, what->stride, + get_buf_from_mv(in_what, &this_mv), in_what->stride); + CHECK_BETTER + } + } else { + for (i = 0; i < num_candidates[s]; i++) { + const MV this_mv = { br + candidates[s][i].row, + bc + candidates[s][i].col }; + if (!is_mv_in(&x->mv_limits, &this_mv)) continue; + thissad = + vfp->sdf(what->buf, what->stride, + get_buf_from_mv(in_what, &this_mv), in_what->stride); + CHECK_BETTER + } + } + + if (best_site == -1) { + continue; + } else { + br += candidates[s][best_site].row; + bc += candidates[s][best_site].col; + k = best_site; + } + } + + do { + int next_chkpts_indices[PATTERN_CANDIDATES_REF]; + best_site = -1; + next_chkpts_indices[0] = (k == 0) ? num_candidates[s] - 1 : k - 1; + next_chkpts_indices[1] = k; + next_chkpts_indices[2] = (k == num_candidates[s] - 1) ? 0 : k + 1; + + if (check_bounds(&x->mv_limits, br, bc, 1 << s)) { + for (i = 0; i < PATTERN_CANDIDATES_REF; i++) { + const MV this_mv = { + br + candidates[s][next_chkpts_indices[i]].row, + bc + candidates[s][next_chkpts_indices[i]].col + }; + thissad = + vfp->sdf(what->buf, what->stride, + get_buf_from_mv(in_what, &this_mv), in_what->stride); + CHECK_BETTER + } + } else { + for (i = 0; i < PATTERN_CANDIDATES_REF; i++) { + const MV this_mv = { + br + candidates[s][next_chkpts_indices[i]].row, + bc + candidates[s][next_chkpts_indices[i]].col + }; + if (!is_mv_in(&x->mv_limits, &this_mv)) continue; + thissad = + vfp->sdf(what->buf, what->stride, + get_buf_from_mv(in_what, &this_mv), in_what->stride); + CHECK_BETTER + } + } + + if (best_site != -1) { + k = next_chkpts_indices[best_site]; + br += candidates[s][k].row; + bc += candidates[s][k].col; + } + } while (best_site != -1); + } + + // Note: If we enter the if below, then cost_list must be non-NULL. + if (s == 0) { + cost_list[0] = bestsad; + if (!do_init_search || s != best_init_s) { + if (check_bounds(&x->mv_limits, br, bc, 1 << s)) { + for (i = 0; i < num_candidates[s]; i++) { + const MV this_mv = { br + candidates[s][i].row, + bc + candidates[s][i].col }; + cost_list[i + 1] = thissad = + vfp->sdf(what->buf, what->stride, + get_buf_from_mv(in_what, &this_mv), in_what->stride); + CHECK_BETTER + } + } else { + for (i = 0; i < num_candidates[s]; i++) { + const MV this_mv = { br + candidates[s][i].row, + bc + candidates[s][i].col }; + if (!is_mv_in(&x->mv_limits, &this_mv)) continue; + cost_list[i + 1] = thissad = + vfp->sdf(what->buf, what->stride, + get_buf_from_mv(in_what, &this_mv), in_what->stride); + CHECK_BETTER + } + } + + if (best_site != -1) { + br += candidates[s][best_site].row; + bc += candidates[s][best_site].col; + k = best_site; + } + } + while (best_site != -1) { + int next_chkpts_indices[PATTERN_CANDIDATES_REF]; + best_site = -1; + next_chkpts_indices[0] = (k == 0) ? num_candidates[s] - 1 : k - 1; + next_chkpts_indices[1] = k; + next_chkpts_indices[2] = (k == num_candidates[s] - 1) ? 0 : k + 1; + cost_list[1] = cost_list[2] = cost_list[3] = cost_list[4] = INT_MAX; + cost_list[((k + 2) % 4) + 1] = cost_list[0]; + cost_list[0] = bestsad; + + if (check_bounds(&x->mv_limits, br, bc, 1 << s)) { + for (i = 0; i < PATTERN_CANDIDATES_REF; i++) { + const MV this_mv = { + br + candidates[s][next_chkpts_indices[i]].row, + bc + candidates[s][next_chkpts_indices[i]].col + }; + cost_list[next_chkpts_indices[i] + 1] = thissad = + vfp->sdf(what->buf, what->stride, + get_buf_from_mv(in_what, &this_mv), in_what->stride); + CHECK_BETTER + } + } else { + for (i = 0; i < PATTERN_CANDIDATES_REF; i++) { + const MV this_mv = { + br + candidates[s][next_chkpts_indices[i]].row, + bc + candidates[s][next_chkpts_indices[i]].col + }; + if (!is_mv_in(&x->mv_limits, &this_mv)) { + cost_list[next_chkpts_indices[i] + 1] = INT_MAX; + continue; + } + cost_list[next_chkpts_indices[i] + 1] = thissad = + vfp->sdf(what->buf, what->stride, + get_buf_from_mv(in_what, &this_mv), in_what->stride); + CHECK_BETTER + } + } + + if (best_site != -1) { + k = next_chkpts_indices[best_site]; + br += candidates[s][k].row; + bc += candidates[s][k].col; + } + } + } + } + + // Returns the one-away integer pel sad values around the best as follows: + // cost_list[0]: sad at the best integer pel + // cost_list[1]: sad at delta {0, -1} (left) from the best integer pel + // cost_list[2]: sad at delta { 1, 0} (bottom) from the best integer pel + // cost_list[3]: sad at delta { 0, 1} (right) from the best integer pel + // cost_list[4]: sad at delta {-1, 0} (top) from the best integer pel + if (cost_list) { + static const MV neighbors[4] = { { 0, -1 }, { 1, 0 }, { 0, 1 }, { -1, 0 } }; + if (cost_list[0] == INT_MAX) { + cost_list[0] = bestsad; + if (check_bounds(&x->mv_limits, br, bc, 1)) { + for (i = 0; i < 4; i++) { + const MV this_mv = { br + neighbors[i].row, bc + neighbors[i].col }; + cost_list[i + 1] = + vfp->sdf(what->buf, what->stride, + get_buf_from_mv(in_what, &this_mv), in_what->stride); + } + } else { + for (i = 0; i < 4; i++) { + const MV this_mv = { br + neighbors[i].row, bc + neighbors[i].col }; + if (!is_mv_in(&x->mv_limits, &this_mv)) + cost_list[i + 1] = INT_MAX; + else + cost_list[i + 1] = + vfp->sdf(what->buf, what->stride, + get_buf_from_mv(in_what, &this_mv), in_what->stride); + } + } + } else { + if (use_mvcost) { + for (i = 0; i < 4; i++) { + const MV this_mv = { br + neighbors[i].row, bc + neighbors[i].col }; + if (cost_list[i + 1] != INT_MAX) { + cost_list[i + 1] += + mvsad_err_cost(x, &this_mv, &fcenter_mv, sad_per_bit); + } + } + } + } + } + best_mv->row = br; + best_mv->col = bc; + return bestsad; +} + +int vp9_get_mvpred_var(const MACROBLOCK *x, const MV *best_mv, + const MV *center_mv, const vp9_variance_fn_ptr_t *vfp, + int use_mvcost) { + const MACROBLOCKD *const xd = &x->e_mbd; + const struct buf_2d *const what = &x->plane[0].src; + const struct buf_2d *const in_what = &xd->plane[0].pre[0]; + const MV mv = { best_mv->row * 8, best_mv->col * 8 }; + uint32_t unused; +#if CONFIG_VP9_HIGHBITDEPTH + uint64_t err = + vfp->vf(what->buf, what->stride, get_buf_from_mv(in_what, best_mv), + in_what->stride, &unused); + err += (use_mvcost ? mv_err_cost(&mv, center_mv, x->nmvjointcost, x->mvcost, + x->errorperbit) + : 0); + if (err >= INT_MAX) return INT_MAX; + return (int)err; +#else + return vfp->vf(what->buf, what->stride, get_buf_from_mv(in_what, best_mv), + in_what->stride, &unused) + + (use_mvcost ? mv_err_cost(&mv, center_mv, x->nmvjointcost, x->mvcost, + x->errorperbit) + : 0); +#endif +} + +int vp9_get_mvpred_av_var(const MACROBLOCK *x, const MV *best_mv, + const MV *center_mv, const uint8_t *second_pred, + const vp9_variance_fn_ptr_t *vfp, int use_mvcost) { + const MACROBLOCKD *const xd = &x->e_mbd; + const struct buf_2d *const what = &x->plane[0].src; + const struct buf_2d *const in_what = &xd->plane[0].pre[0]; + const MV mv = { best_mv->row * 8, best_mv->col * 8 }; + unsigned int unused; + + return vfp->svaf(get_buf_from_mv(in_what, best_mv), in_what->stride, 0, 0, + what->buf, what->stride, &unused, second_pred) + + (use_mvcost ? mv_err_cost(&mv, center_mv, x->nmvjointcost, x->mvcost, + x->errorperbit) + : 0); +} + +static int hex_search(const MACROBLOCK *x, MV *ref_mv, int search_param, + int sad_per_bit, int do_init_search, int *cost_list, + const vp9_variance_fn_ptr_t *vfp, int use_mvcost, + const MV *center_mv, MV *best_mv) { + // First scale has 8-closest points, the rest have 6 points in hex shape + // at increasing scales + static const int hex_num_candidates[MAX_PATTERN_SCALES] = { 8, 6, 6, 6, 6, 6, + 6, 6, 6, 6, 6 }; + // Note that the largest candidate step at each scale is 2^scale + /* clang-format off */ + static const MV hex_candidates[MAX_PATTERN_SCALES][MAX_PATTERN_CANDIDATES] = { + { { -1, -1 }, { 0, -1 }, { 1, -1 }, { 1, 0 }, { 1, 1 }, { 0, 1 }, { -1, 1 }, + { -1, 0 } }, + { { -1, -2 }, { 1, -2 }, { 2, 0 }, { 1, 2 }, { -1, 2 }, { -2, 0 } }, + { { -2, -4 }, { 2, -4 }, { 4, 0 }, { 2, 4 }, { -2, 4 }, { -4, 0 } }, + { { -4, -8 }, { 4, -8 }, { 8, 0 }, { 4, 8 }, { -4, 8 }, { -8, 0 } }, + { { -8, -16 }, { 8, -16 }, { 16, 0 }, { 8, 16 }, { -8, 16 }, { -16, 0 } }, + { { -16, -32 }, { 16, -32 }, { 32, 0 }, { 16, 32 }, { -16, 32 }, + { -32, 0 } }, + { { -32, -64 }, { 32, -64 }, { 64, 0 }, { 32, 64 }, { -32, 64 }, + { -64, 0 } }, + { { -64, -128 }, { 64, -128 }, { 128, 0 }, { 64, 128 }, { -64, 128 }, + { -128, 0 } }, + { { -128, -256 }, { 128, -256 }, { 256, 0 }, { 128, 256 }, { -128, 256 }, + { -256, 0 } }, + { { -256, -512 }, { 256, -512 }, { 512, 0 }, { 256, 512 }, { -256, 512 }, + { -512, 0 } }, + { { -512, -1024 }, { 512, -1024 }, { 1024, 0 }, { 512, 1024 }, + { -512, 1024 }, { -1024, 0 } } + }; + /* clang-format on */ + return vp9_pattern_search( + x, ref_mv, search_param, sad_per_bit, do_init_search, cost_list, vfp, + use_mvcost, center_mv, best_mv, hex_num_candidates, hex_candidates); +} + +static int bigdia_search(const MACROBLOCK *x, MV *ref_mv, int search_param, + int sad_per_bit, int do_init_search, int *cost_list, + const vp9_variance_fn_ptr_t *vfp, int use_mvcost, + const MV *center_mv, MV *best_mv) { + // First scale has 4-closest points, the rest have 8 points in diamond + // shape at increasing scales + static const int bigdia_num_candidates[MAX_PATTERN_SCALES] = { + 4, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, + }; + // Note that the largest candidate step at each scale is 2^scale + /* clang-format off */ + static const MV + bigdia_candidates[MAX_PATTERN_SCALES][MAX_PATTERN_CANDIDATES] = { + { { 0, -1 }, { 1, 0 }, { 0, 1 }, { -1, 0 } }, + { { -1, -1 }, { 0, -2 }, { 1, -1 }, { 2, 0 }, { 1, 1 }, { 0, 2 }, + { -1, 1 }, { -2, 0 } }, + { { -2, -2 }, { 0, -4 }, { 2, -2 }, { 4, 0 }, { 2, 2 }, { 0, 4 }, + { -2, 2 }, { -4, 0 } }, + { { -4, -4 }, { 0, -8 }, { 4, -4 }, { 8, 0 }, { 4, 4 }, { 0, 8 }, + { -4, 4 }, { -8, 0 } }, + { { -8, -8 }, { 0, -16 }, { 8, -8 }, { 16, 0 }, { 8, 8 }, { 0, 16 }, + { -8, 8 }, { -16, 0 } }, + { { -16, -16 }, { 0, -32 }, { 16, -16 }, { 32, 0 }, { 16, 16 }, + { 0, 32 }, { -16, 16 }, { -32, 0 } }, + { { -32, -32 }, { 0, -64 }, { 32, -32 }, { 64, 0 }, { 32, 32 }, + { 0, 64 }, { -32, 32 }, { -64, 0 } }, + { { -64, -64 }, { 0, -128 }, { 64, -64 }, { 128, 0 }, { 64, 64 }, + { 0, 128 }, { -64, 64 }, { -128, 0 } }, + { { -128, -128 }, { 0, -256 }, { 128, -128 }, { 256, 0 }, { 128, 128 }, + { 0, 256 }, { -128, 128 }, { -256, 0 } }, + { { -256, -256 }, { 0, -512 }, { 256, -256 }, { 512, 0 }, { 256, 256 }, + { 0, 512 }, { -256, 256 }, { -512, 0 } }, + { { -512, -512 }, { 0, -1024 }, { 512, -512 }, { 1024, 0 }, + { 512, 512 }, { 0, 1024 }, { -512, 512 }, { -1024, 0 } } + }; + /* clang-format on */ + return vp9_pattern_search_sad( + x, ref_mv, search_param, sad_per_bit, do_init_search, cost_list, vfp, + use_mvcost, center_mv, best_mv, bigdia_num_candidates, bigdia_candidates); +} + +static int square_search(const MACROBLOCK *x, MV *ref_mv, int search_param, + int sad_per_bit, int do_init_search, int *cost_list, + const vp9_variance_fn_ptr_t *vfp, int use_mvcost, + const MV *center_mv, MV *best_mv) { + // All scales have 8 closest points in square shape + static const int square_num_candidates[MAX_PATTERN_SCALES] = { + 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, + }; + // Note that the largest candidate step at each scale is 2^scale + /* clang-format off */ + static const MV + square_candidates[MAX_PATTERN_SCALES][MAX_PATTERN_CANDIDATES] = { + { { -1, -1 }, { 0, -1 }, { 1, -1 }, { 1, 0 }, { 1, 1 }, { 0, 1 }, + { -1, 1 }, { -1, 0 } }, + { { -2, -2 }, { 0, -2 }, { 2, -2 }, { 2, 0 }, { 2, 2 }, { 0, 2 }, + { -2, 2 }, { -2, 0 } }, + { { -4, -4 }, { 0, -4 }, { 4, -4 }, { 4, 0 }, { 4, 4 }, { 0, 4 }, + { -4, 4 }, { -4, 0 } }, + { { -8, -8 }, { 0, -8 }, { 8, -8 }, { 8, 0 }, { 8, 8 }, { 0, 8 }, + { -8, 8 }, { -8, 0 } }, + { { -16, -16 }, { 0, -16 }, { 16, -16 }, { 16, 0 }, { 16, 16 }, + { 0, 16 }, { -16, 16 }, { -16, 0 } }, + { { -32, -32 }, { 0, -32 }, { 32, -32 }, { 32, 0 }, { 32, 32 }, + { 0, 32 }, { -32, 32 }, { -32, 0 } }, + { { -64, -64 }, { 0, -64 }, { 64, -64 }, { 64, 0 }, { 64, 64 }, + { 0, 64 }, { -64, 64 }, { -64, 0 } }, + { { -128, -128 }, { 0, -128 }, { 128, -128 }, { 128, 0 }, { 128, 128 }, + { 0, 128 }, { -128, 128 }, { -128, 0 } }, + { { -256, -256 }, { 0, -256 }, { 256, -256 }, { 256, 0 }, { 256, 256 }, + { 0, 256 }, { -256, 256 }, { -256, 0 } }, + { { -512, -512 }, { 0, -512 }, { 512, -512 }, { 512, 0 }, { 512, 512 }, + { 0, 512 }, { -512, 512 }, { -512, 0 } }, + { { -1024, -1024 }, { 0, -1024 }, { 1024, -1024 }, { 1024, 0 }, + { 1024, 1024 }, { 0, 1024 }, { -1024, 1024 }, { -1024, 0 } } + }; + /* clang-format on */ + return vp9_pattern_search( + x, ref_mv, search_param, sad_per_bit, do_init_search, cost_list, vfp, + use_mvcost, center_mv, best_mv, square_num_candidates, square_candidates); +} + +static int fast_hex_search(const MACROBLOCK *x, MV *ref_mv, int search_param, + int sad_per_bit, + int do_init_search, // must be zero for fast_hex + int *cost_list, const vp9_variance_fn_ptr_t *vfp, + int use_mvcost, const MV *center_mv, MV *best_mv) { + return hex_search(x, ref_mv, VPXMAX(MAX_MVSEARCH_STEPS - 2, search_param), + sad_per_bit, do_init_search, cost_list, vfp, use_mvcost, + center_mv, best_mv); +} + +static int fast_dia_search(const MACROBLOCK *x, MV *ref_mv, int search_param, + int sad_per_bit, int do_init_search, int *cost_list, + const vp9_variance_fn_ptr_t *vfp, int use_mvcost, + const MV *center_mv, MV *best_mv) { + return bigdia_search(x, ref_mv, VPXMAX(MAX_MVSEARCH_STEPS - 2, search_param), + sad_per_bit, do_init_search, cost_list, vfp, use_mvcost, + center_mv, best_mv); +} + +#undef CHECK_BETTER + +// Exhuastive motion search around a given centre position with a given +// step size. +static int exhuastive_mesh_search(const MACROBLOCK *x, MV *ref_mv, MV *best_mv, + int range, int step, int sad_per_bit, + const vp9_variance_fn_ptr_t *fn_ptr, + const MV *center_mv) { + const MACROBLOCKD *const xd = &x->e_mbd; + const struct buf_2d *const what = &x->plane[0].src; + const struct buf_2d *const in_what = &xd->plane[0].pre[0]; + MV fcenter_mv = { center_mv->row, center_mv->col }; + unsigned int best_sad = INT_MAX; + int r, c, i; + int start_col, end_col, start_row, end_row; + int col_step = (step > 1) ? step : 4; + + assert(step >= 1); + + clamp_mv(&fcenter_mv, x->mv_limits.col_min, x->mv_limits.col_max, + x->mv_limits.row_min, x->mv_limits.row_max); + *best_mv = fcenter_mv; + best_sad = + fn_ptr->sdf(what->buf, what->stride, + get_buf_from_mv(in_what, &fcenter_mv), in_what->stride) + + mvsad_err_cost(x, &fcenter_mv, ref_mv, sad_per_bit); + start_row = VPXMAX(-range, x->mv_limits.row_min - fcenter_mv.row); + start_col = VPXMAX(-range, x->mv_limits.col_min - fcenter_mv.col); + end_row = VPXMIN(range, x->mv_limits.row_max - fcenter_mv.row); + end_col = VPXMIN(range, x->mv_limits.col_max - fcenter_mv.col); + + for (r = start_row; r <= end_row; r += step) { + for (c = start_col; c <= end_col; c += col_step) { + // Step > 1 means we are not checking every location in this pass. + if (step > 1) { + const MV mv = { fcenter_mv.row + r, fcenter_mv.col + c }; + unsigned int sad = + fn_ptr->sdf(what->buf, what->stride, get_buf_from_mv(in_what, &mv), + in_what->stride); + if (sad < best_sad) { + sad += mvsad_err_cost(x, &mv, ref_mv, sad_per_bit); + if (sad < best_sad) { + best_sad = sad; + *best_mv = mv; + } + } + } else { + // 4 sads in a single call if we are checking every location + if (c + 3 <= end_col) { + unsigned int sads[4]; + const uint8_t *addrs[4]; + for (i = 0; i < 4; ++i) { + const MV mv = { fcenter_mv.row + r, fcenter_mv.col + c + i }; + addrs[i] = get_buf_from_mv(in_what, &mv); + } + fn_ptr->sdx4df(what->buf, what->stride, addrs, in_what->stride, sads); + + for (i = 0; i < 4; ++i) { + if (sads[i] < best_sad) { + const MV mv = { fcenter_mv.row + r, fcenter_mv.col + c + i }; + const unsigned int sad = + sads[i] + mvsad_err_cost(x, &mv, ref_mv, sad_per_bit); + if (sad < best_sad) { + best_sad = sad; + *best_mv = mv; + } + } + } + } else { + for (i = 0; i < end_col - c; ++i) { + const MV mv = { fcenter_mv.row + r, fcenter_mv.col + c + i }; + unsigned int sad = + fn_ptr->sdf(what->buf, what->stride, + get_buf_from_mv(in_what, &mv), in_what->stride); + if (sad < best_sad) { + sad += mvsad_err_cost(x, &mv, ref_mv, sad_per_bit); + if (sad < best_sad) { + best_sad = sad; + *best_mv = mv; + } + } + } + } + } + } + } + + return best_sad; +} + +int vp9_diamond_search_sad_c(const MACROBLOCK *x, const search_site_config *cfg, + MV *ref_mv, MV *best_mv, int search_param, + int sad_per_bit, int *num00, + const vp9_variance_fn_ptr_t *fn_ptr, + const MV *center_mv) { + int i, j, step; + + const MACROBLOCKD *const xd = &x->e_mbd; + uint8_t *what = x->plane[0].src.buf; + const int what_stride = x->plane[0].src.stride; + const uint8_t *in_what; + const int in_what_stride = xd->plane[0].pre[0].stride; + const uint8_t *best_address; + + unsigned int bestsad = INT_MAX; + int best_site = -1; + int last_site = -1; + + int ref_row; + int ref_col; + + // search_param determines the length of the initial step and hence the number + // of iterations. + // 0 = initial step (MAX_FIRST_STEP) pel + // 1 = (MAX_FIRST_STEP/2) pel, + // 2 = (MAX_FIRST_STEP/4) pel... + // const search_site *ss = &cfg->ss[search_param * cfg->searches_per_step]; + const MV *ss_mv = &cfg->ss_mv[search_param * cfg->searches_per_step]; + const intptr_t *ss_os = &cfg->ss_os[search_param * cfg->searches_per_step]; + const int tot_steps = cfg->total_steps - search_param; + + const MV fcenter_mv = { center_mv->row >> 3, center_mv->col >> 3 }; + clamp_mv(ref_mv, x->mv_limits.col_min, x->mv_limits.col_max, + x->mv_limits.row_min, x->mv_limits.row_max); + ref_row = ref_mv->row; + ref_col = ref_mv->col; + *num00 = 0; + best_mv->row = ref_row; + best_mv->col = ref_col; + + // Work out the start point for the search + in_what = xd->plane[0].pre[0].buf + ref_row * in_what_stride + ref_col; + best_address = in_what; + + // Check the starting position + bestsad = fn_ptr->sdf(what, what_stride, in_what, in_what_stride) + + mvsad_err_cost(x, best_mv, &fcenter_mv, sad_per_bit); + + i = 0; + + for (step = 0; step < tot_steps; step++) { + int all_in = 1, t; + + // All_in is true if every one of the points we are checking are within + // the bounds of the image. + all_in &= ((best_mv->row + ss_mv[i].row) > x->mv_limits.row_min); + all_in &= ((best_mv->row + ss_mv[i + 1].row) < x->mv_limits.row_max); + all_in &= ((best_mv->col + ss_mv[i + 2].col) > x->mv_limits.col_min); + all_in &= ((best_mv->col + ss_mv[i + 3].col) < x->mv_limits.col_max); + + // If all the pixels are within the bounds we don't check whether the + // search point is valid in this loop, otherwise we check each point + // for validity.. + if (all_in) { + unsigned int sad_array[4]; + + for (j = 0; j < cfg->searches_per_step; j += 4) { + unsigned char const *block_offset[4]; + + for (t = 0; t < 4; t++) block_offset[t] = ss_os[i + t] + best_address; + + fn_ptr->sdx4df(what, what_stride, block_offset, in_what_stride, + sad_array); + + for (t = 0; t < 4; t++, i++) { + if (sad_array[t] < bestsad) { + const MV this_mv = { best_mv->row + ss_mv[i].row, + best_mv->col + ss_mv[i].col }; + sad_array[t] += + mvsad_err_cost(x, &this_mv, &fcenter_mv, sad_per_bit); + if (sad_array[t] < bestsad) { + bestsad = sad_array[t]; + best_site = i; + } + } + } + } + } else { + for (j = 0; j < cfg->searches_per_step; j++) { + // Trap illegal vectors + const MV this_mv = { best_mv->row + ss_mv[i].row, + best_mv->col + ss_mv[i].col }; + + if (is_mv_in(&x->mv_limits, &this_mv)) { + const uint8_t *const check_here = ss_os[i] + best_address; + unsigned int thissad = + fn_ptr->sdf(what, what_stride, check_here, in_what_stride); + + if (thissad < bestsad) { + thissad += mvsad_err_cost(x, &this_mv, &fcenter_mv, sad_per_bit); + if (thissad < bestsad) { + bestsad = thissad; + best_site = i; + } + } + } + i++; + } + } + if (best_site != last_site) { + best_mv->row += ss_mv[best_site].row; + best_mv->col += ss_mv[best_site].col; + best_address += ss_os[best_site]; + last_site = best_site; +#if defined(NEW_DIAMOND_SEARCH) + while (1) { + const MV this_mv = { best_mv->row + ss_mv[best_site].row, + best_mv->col + ss_mv[best_site].col }; + if (is_mv_in(&x->mv_limits, &this_mv)) { + const uint8_t *const check_here = ss_os[best_site] + best_address; + unsigned int thissad = + fn_ptr->sdf(what, what_stride, check_here, in_what_stride); + if (thissad < bestsad) { + thissad += mvsad_err_cost(x, &this_mv, &fcenter_mv, sad_per_bit); + if (thissad < bestsad) { + bestsad = thissad; + best_mv->row += ss_mv[best_site].row; + best_mv->col += ss_mv[best_site].col; + best_address += ss_os[best_site]; + continue; + } + } + } + break; + } +#endif + } else if (best_address == in_what) { + (*num00)++; + } + } + return bestsad; +} + +static int vector_match(int16_t *ref, int16_t *src, int bwl) { + int best_sad = INT_MAX; + int this_sad; + int d; + int center, offset = 0; + int bw = 4 << bwl; // redundant variable, to be changed in the experiments. + for (d = 0; d <= bw; d += 16) { + this_sad = vpx_vector_var(&ref[d], src, bwl); + if (this_sad < best_sad) { + best_sad = this_sad; + offset = d; + } + } + center = offset; + + for (d = -8; d <= 8; d += 16) { + int this_pos = offset + d; + // check limit + if (this_pos < 0 || this_pos > bw) continue; + this_sad = vpx_vector_var(&ref[this_pos], src, bwl); + if (this_sad < best_sad) { + best_sad = this_sad; + center = this_pos; + } + } + offset = center; + + for (d = -4; d <= 4; d += 8) { + int this_pos = offset + d; + // check limit + if (this_pos < 0 || this_pos > bw) continue; + this_sad = vpx_vector_var(&ref[this_pos], src, bwl); + if (this_sad < best_sad) { + best_sad = this_sad; + center = this_pos; + } + } + offset = center; + + for (d = -2; d <= 2; d += 4) { + int this_pos = offset + d; + // check limit + if (this_pos < 0 || this_pos > bw) continue; + this_sad = vpx_vector_var(&ref[this_pos], src, bwl); + if (this_sad < best_sad) { + best_sad = this_sad; + center = this_pos; + } + } + offset = center; + + for (d = -1; d <= 1; d += 2) { + int this_pos = offset + d; + // check limit + if (this_pos < 0 || this_pos > bw) continue; + this_sad = vpx_vector_var(&ref[this_pos], src, bwl); + if (this_sad < best_sad) { + best_sad = this_sad; + center = this_pos; + } + } + + return (center - (bw >> 1)); +} + +static const MV search_pos[4] = { + { -1, 0 }, { 0, -1 }, { 0, 1 }, { 1, 0 }, +}; + +unsigned int vp9_int_pro_motion_estimation(const VP9_COMP *cpi, MACROBLOCK *x, + BLOCK_SIZE bsize, int mi_row, + int mi_col) { + MACROBLOCKD *xd = &x->e_mbd; + MODE_INFO *mi = xd->mi[0]; + struct buf_2d backup_yv12[MAX_MB_PLANE] = { { 0, 0 } }; + DECLARE_ALIGNED(16, int16_t, hbuf[128]); + DECLARE_ALIGNED(16, int16_t, vbuf[128]); + DECLARE_ALIGNED(16, int16_t, src_hbuf[64]); + DECLARE_ALIGNED(16, int16_t, src_vbuf[64]); + int idx; + const int bw = 4 << b_width_log2_lookup[bsize]; + const int bh = 4 << b_height_log2_lookup[bsize]; + const int search_width = bw << 1; + const int search_height = bh << 1; + const int src_stride = x->plane[0].src.stride; + const int ref_stride = xd->plane[0].pre[0].stride; + uint8_t const *ref_buf, *src_buf; + MV *tmp_mv = &xd->mi[0]->mv[0].as_mv; + unsigned int best_sad, tmp_sad, this_sad[4]; + MV this_mv; + const int norm_factor = 3 + (bw >> 5); + const YV12_BUFFER_CONFIG *scaled_ref_frame = + vp9_get_scaled_ref_frame(cpi, mi->ref_frame[0]); + + if (scaled_ref_frame) { + int i; + // Swap out the reference frame for a version that's been scaled to + // match the resolution of the current frame, allowing the existing + // motion search code to be used without additional modifications. + for (i = 0; i < MAX_MB_PLANE; i++) backup_yv12[i] = xd->plane[i].pre[0]; + vp9_setup_pre_planes(xd, 0, scaled_ref_frame, mi_row, mi_col, NULL); + } + +#if CONFIG_VP9_HIGHBITDEPTH + // TODO(jingning): Implement integral projection functions for high bit-depth + // setting and remove this part of code. + if (xd->bd != 8) { + unsigned int this_sad; + tmp_mv->row = 0; + tmp_mv->col = 0; + this_sad = cpi->fn_ptr[bsize].sdf(x->plane[0].src.buf, src_stride, + xd->plane[0].pre[0].buf, ref_stride); + + if (scaled_ref_frame) { + int i; + for (i = 0; i < MAX_MB_PLANE; i++) xd->plane[i].pre[0] = backup_yv12[i]; + } + return this_sad; + } +#endif + + // Set up prediction 1-D reference set + ref_buf = xd->plane[0].pre[0].buf - (bw >> 1); + for (idx = 0; idx < search_width; idx += 16) { + vpx_int_pro_row(&hbuf[idx], ref_buf, ref_stride, bh); + ref_buf += 16; + } + + ref_buf = xd->plane[0].pre[0].buf - (bh >> 1) * ref_stride; + for (idx = 0; idx < search_height; ++idx) { + vbuf[idx] = vpx_int_pro_col(ref_buf, bw) >> norm_factor; + ref_buf += ref_stride; + } + + // Set up src 1-D reference set + for (idx = 0; idx < bw; idx += 16) { + src_buf = x->plane[0].src.buf + idx; + vpx_int_pro_row(&src_hbuf[idx], src_buf, src_stride, bh); + } + + src_buf = x->plane[0].src.buf; + for (idx = 0; idx < bh; ++idx) { + src_vbuf[idx] = vpx_int_pro_col(src_buf, bw) >> norm_factor; + src_buf += src_stride; + } + + // Find the best match per 1-D search + tmp_mv->col = vector_match(hbuf, src_hbuf, b_width_log2_lookup[bsize]); + tmp_mv->row = vector_match(vbuf, src_vbuf, b_height_log2_lookup[bsize]); + + this_mv = *tmp_mv; + src_buf = x->plane[0].src.buf; + ref_buf = xd->plane[0].pre[0].buf + this_mv.row * ref_stride + this_mv.col; + best_sad = cpi->fn_ptr[bsize].sdf(src_buf, src_stride, ref_buf, ref_stride); + + { + const uint8_t *const pos[4] = { + ref_buf - ref_stride, ref_buf - 1, ref_buf + 1, ref_buf + ref_stride, + }; + + cpi->fn_ptr[bsize].sdx4df(src_buf, src_stride, pos, ref_stride, this_sad); + } + + for (idx = 0; idx < 4; ++idx) { + if (this_sad[idx] < best_sad) { + best_sad = this_sad[idx]; + tmp_mv->row = search_pos[idx].row + this_mv.row; + tmp_mv->col = search_pos[idx].col + this_mv.col; + } + } + + if (this_sad[0] < this_sad[3]) + this_mv.row -= 1; + else + this_mv.row += 1; + + if (this_sad[1] < this_sad[2]) + this_mv.col -= 1; + else + this_mv.col += 1; + + ref_buf = xd->plane[0].pre[0].buf + this_mv.row * ref_stride + this_mv.col; + + tmp_sad = cpi->fn_ptr[bsize].sdf(src_buf, src_stride, ref_buf, ref_stride); + if (best_sad > tmp_sad) { + *tmp_mv = this_mv; + best_sad = tmp_sad; + } + + tmp_mv->row *= 8; + tmp_mv->col *= 8; + + if (scaled_ref_frame) { + int i; + for (i = 0; i < MAX_MB_PLANE; i++) xd->plane[i].pre[0] = backup_yv12[i]; + } + + return best_sad; +} + +// Runs sequence of diamond searches in smaller steps for RD. +/* do_refine: If last step (1-away) of n-step search doesn't pick the center + point as the best match, we will do a final 1-away diamond + refining search */ +static int full_pixel_diamond(const VP9_COMP *cpi, MACROBLOCK *x, MV *mvp_full, + int step_param, int sadpb, int further_steps, + int do_refine, int *cost_list, + const vp9_variance_fn_ptr_t *fn_ptr, + const MV *ref_mv, MV *dst_mv) { + MV temp_mv; + int thissme, n, num00 = 0; + int bestsme = cpi->diamond_search_sad(x, &cpi->ss_cfg, mvp_full, &temp_mv, + step_param, sadpb, &n, fn_ptr, ref_mv); + if (bestsme < INT_MAX) + bestsme = vp9_get_mvpred_var(x, &temp_mv, ref_mv, fn_ptr, 1); + *dst_mv = temp_mv; + + // If there won't be more n-step search, check to see if refining search is + // needed. + if (n > further_steps) do_refine = 0; + + while (n < further_steps) { + ++n; + + if (num00) { + num00--; + } else { + thissme = cpi->diamond_search_sad(x, &cpi->ss_cfg, mvp_full, &temp_mv, + step_param + n, sadpb, &num00, fn_ptr, + ref_mv); + if (thissme < INT_MAX) + thissme = vp9_get_mvpred_var(x, &temp_mv, ref_mv, fn_ptr, 1); + + // check to see if refining search is needed. + if (num00 > further_steps - n) do_refine = 0; + + if (thissme < bestsme) { + bestsme = thissme; + *dst_mv = temp_mv; + } + } + } + + // final 1-away diamond refining search + if (do_refine) { + const int search_range = 8; + MV best_mv = *dst_mv; + thissme = vp9_refining_search_sad(x, &best_mv, sadpb, search_range, fn_ptr, + ref_mv); + if (thissme < INT_MAX) + thissme = vp9_get_mvpred_var(x, &best_mv, ref_mv, fn_ptr, 1); + if (thissme < bestsme) { + bestsme = thissme; + *dst_mv = best_mv; + } + } + + // Return cost list. + if (cost_list) { + calc_int_cost_list(x, ref_mv, sadpb, fn_ptr, dst_mv, cost_list); + } + return bestsme; +} + +#define MIN_RANGE 7 +#define MAX_RANGE 256 +#define MIN_INTERVAL 1 +// Runs an limited range exhaustive mesh search using a pattern set +// according to the encode speed profile. +static int full_pixel_exhaustive(VP9_COMP *cpi, MACROBLOCK *x, + MV *centre_mv_full, int sadpb, int *cost_list, + const vp9_variance_fn_ptr_t *fn_ptr, + const MV *ref_mv, MV *dst_mv) { + const SPEED_FEATURES *const sf = &cpi->sf; + MV temp_mv = { centre_mv_full->row, centre_mv_full->col }; + MV f_ref_mv = { ref_mv->row >> 3, ref_mv->col >> 3 }; + int bestsme; + int i; + int interval = sf->mesh_patterns[0].interval; + int range = sf->mesh_patterns[0].range; + int baseline_interval_divisor; + + // Trap illegal values for interval and range for this function. + if ((range < MIN_RANGE) || (range > MAX_RANGE) || (interval < MIN_INTERVAL) || + (interval > range)) + return INT_MAX; + + baseline_interval_divisor = range / interval; + + // Check size of proposed first range against magnitude of the centre + // value used as a starting point. + range = VPXMAX(range, (5 * VPXMAX(abs(temp_mv.row), abs(temp_mv.col))) / 4); + range = VPXMIN(range, MAX_RANGE); + interval = VPXMAX(interval, range / baseline_interval_divisor); + + // initial search + bestsme = exhuastive_mesh_search(x, &f_ref_mv, &temp_mv, range, interval, + sadpb, fn_ptr, &temp_mv); + + if ((interval > MIN_INTERVAL) && (range > MIN_RANGE)) { + // Progressive searches with range and step size decreasing each time + // till we reach a step size of 1. Then break out. + for (i = 1; i < MAX_MESH_STEP; ++i) { + // First pass with coarser step and longer range + bestsme = exhuastive_mesh_search( + x, &f_ref_mv, &temp_mv, sf->mesh_patterns[i].range, + sf->mesh_patterns[i].interval, sadpb, fn_ptr, &temp_mv); + + if (sf->mesh_patterns[i].interval == 1) break; + } + } + + if (bestsme < INT_MAX) + bestsme = vp9_get_mvpred_var(x, &temp_mv, ref_mv, fn_ptr, 1); + *dst_mv = temp_mv; + + // Return cost list. + if (cost_list) { + calc_int_cost_list(x, ref_mv, sadpb, fn_ptr, dst_mv, cost_list); + } + return bestsme; +} + +int vp9_refining_search_sad(const MACROBLOCK *x, MV *ref_mv, int error_per_bit, + int search_range, + const vp9_variance_fn_ptr_t *fn_ptr, + const MV *center_mv) { + const MACROBLOCKD *const xd = &x->e_mbd; + const MV neighbors[4] = { { -1, 0 }, { 0, -1 }, { 0, 1 }, { 1, 0 } }; + const struct buf_2d *const what = &x->plane[0].src; + const struct buf_2d *const in_what = &xd->plane[0].pre[0]; + const MV fcenter_mv = { center_mv->row >> 3, center_mv->col >> 3 }; + const uint8_t *best_address = get_buf_from_mv(in_what, ref_mv); + unsigned int best_sad = + fn_ptr->sdf(what->buf, what->stride, best_address, in_what->stride) + + mvsad_err_cost(x, ref_mv, &fcenter_mv, error_per_bit); + int i, j; + + for (i = 0; i < search_range; i++) { + int best_site = -1; + const int all_in = ((ref_mv->row - 1) > x->mv_limits.row_min) & + ((ref_mv->row + 1) < x->mv_limits.row_max) & + ((ref_mv->col - 1) > x->mv_limits.col_min) & + ((ref_mv->col + 1) < x->mv_limits.col_max); + + if (all_in) { + unsigned int sads[4]; + const uint8_t *const positions[4] = { best_address - in_what->stride, + best_address - 1, best_address + 1, + best_address + in_what->stride }; + + fn_ptr->sdx4df(what->buf, what->stride, positions, in_what->stride, sads); + + for (j = 0; j < 4; ++j) { + if (sads[j] < best_sad) { + const MV mv = { ref_mv->row + neighbors[j].row, + ref_mv->col + neighbors[j].col }; + sads[j] += mvsad_err_cost(x, &mv, &fcenter_mv, error_per_bit); + if (sads[j] < best_sad) { + best_sad = sads[j]; + best_site = j; + } + } + } + } else { + for (j = 0; j < 4; ++j) { + const MV mv = { ref_mv->row + neighbors[j].row, + ref_mv->col + neighbors[j].col }; + + if (is_mv_in(&x->mv_limits, &mv)) { + unsigned int sad = + fn_ptr->sdf(what->buf, what->stride, + get_buf_from_mv(in_what, &mv), in_what->stride); + if (sad < best_sad) { + sad += mvsad_err_cost(x, &mv, &fcenter_mv, error_per_bit); + if (sad < best_sad) { + best_sad = sad; + best_site = j; + } + } + } + } + } + + if (best_site == -1) { + break; + } else { + ref_mv->row += neighbors[best_site].row; + ref_mv->col += neighbors[best_site].col; + best_address = get_buf_from_mv(in_what, ref_mv); + } + } + + return best_sad; +} + +// This function is called when we do joint motion search in comp_inter_inter +// mode. +int vp9_refining_search_8p_c(const MACROBLOCK *x, MV *ref_mv, int error_per_bit, + int search_range, + const vp9_variance_fn_ptr_t *fn_ptr, + const MV *center_mv, const uint8_t *second_pred) { + const MV neighbors[8] = { { -1, 0 }, { 0, -1 }, { 0, 1 }, { 1, 0 }, + { -1, -1 }, { 1, -1 }, { -1, 1 }, { 1, 1 } }; + const MACROBLOCKD *const xd = &x->e_mbd; + const struct buf_2d *const what = &x->plane[0].src; + const struct buf_2d *const in_what = &xd->plane[0].pre[0]; + const MV fcenter_mv = { center_mv->row >> 3, center_mv->col >> 3 }; + unsigned int best_sad = INT_MAX; + int i, j; + clamp_mv(ref_mv, x->mv_limits.col_min, x->mv_limits.col_max, + x->mv_limits.row_min, x->mv_limits.row_max); + best_sad = + fn_ptr->sdaf(what->buf, what->stride, get_buf_from_mv(in_what, ref_mv), + in_what->stride, second_pred) + + mvsad_err_cost(x, ref_mv, &fcenter_mv, error_per_bit); + + for (i = 0; i < search_range; ++i) { + int best_site = -1; + + for (j = 0; j < 8; ++j) { + const MV mv = { ref_mv->row + neighbors[j].row, + ref_mv->col + neighbors[j].col }; + + if (is_mv_in(&x->mv_limits, &mv)) { + unsigned int sad = + fn_ptr->sdaf(what->buf, what->stride, get_buf_from_mv(in_what, &mv), + in_what->stride, second_pred); + if (sad < best_sad) { + sad += mvsad_err_cost(x, &mv, &fcenter_mv, error_per_bit); + if (sad < best_sad) { + best_sad = sad; + best_site = j; + } + } + } + } + + if (best_site == -1) { + break; + } else { + ref_mv->row += neighbors[best_site].row; + ref_mv->col += neighbors[best_site].col; + } + } + return best_sad; +} + +int vp9_full_pixel_search(VP9_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize, + MV *mvp_full, int step_param, int search_method, + int error_per_bit, int *cost_list, const MV *ref_mv, + MV *tmp_mv, int var_max, int rd) { + const SPEED_FEATURES *const sf = &cpi->sf; + const SEARCH_METHODS method = (SEARCH_METHODS)search_method; + vp9_variance_fn_ptr_t *fn_ptr = &cpi->fn_ptr[bsize]; + int var = 0; + if (cost_list) { + cost_list[0] = INT_MAX; + cost_list[1] = INT_MAX; + cost_list[2] = INT_MAX; + cost_list[3] = INT_MAX; + cost_list[4] = INT_MAX; + } + + switch (method) { + case FAST_DIAMOND: + var = fast_dia_search(x, mvp_full, step_param, error_per_bit, 0, + cost_list, fn_ptr, 1, ref_mv, tmp_mv); + break; + case FAST_HEX: + var = fast_hex_search(x, mvp_full, step_param, error_per_bit, 0, + cost_list, fn_ptr, 1, ref_mv, tmp_mv); + break; + case HEX: + var = hex_search(x, mvp_full, step_param, error_per_bit, 1, cost_list, + fn_ptr, 1, ref_mv, tmp_mv); + break; + case SQUARE: + var = square_search(x, mvp_full, step_param, error_per_bit, 1, cost_list, + fn_ptr, 1, ref_mv, tmp_mv); + break; + case BIGDIA: + var = bigdia_search(x, mvp_full, step_param, error_per_bit, 1, cost_list, + fn_ptr, 1, ref_mv, tmp_mv); + break; + case NSTEP: + var = full_pixel_diamond(cpi, x, mvp_full, step_param, error_per_bit, + MAX_MVSEARCH_STEPS - 1 - step_param, 1, + cost_list, fn_ptr, ref_mv, tmp_mv); + + // Should we allow a follow on exhaustive search? + if ((sf->exhaustive_searches_thresh < INT_MAX) && + !cpi->rc.is_src_frame_alt_ref) { + int64_t exhuastive_thr = sf->exhaustive_searches_thresh; + exhuastive_thr >>= + 8 - (b_width_log2_lookup[bsize] + b_height_log2_lookup[bsize]); + + // Threshold variance for an exhaustive full search. + if (var > exhuastive_thr) { + int var_ex; + MV tmp_mv_ex; + var_ex = full_pixel_exhaustive(cpi, x, tmp_mv, error_per_bit, + cost_list, fn_ptr, ref_mv, &tmp_mv_ex); + + if (var_ex < var) { + var = var_ex; + *tmp_mv = tmp_mv_ex; + } + } + } + break; + default: assert(0 && "Invalid search method."); + } + + if (method != NSTEP && rd && var < var_max) + var = vp9_get_mvpred_var(x, tmp_mv, ref_mv, fn_ptr, 1); + + return var; +} + +// Note(yunqingwang): The following 2 functions are only used in the motion +// vector unit test, which return extreme motion vectors allowed by the MV +// limits. +#define COMMON_MV_TEST \ + SETUP_SUBPEL_SEARCH; \ + \ + (void)error_per_bit; \ + (void)vfp; \ + (void)z; \ + (void)src_stride; \ + (void)y; \ + (void)y_stride; \ + (void)second_pred; \ + (void)w; \ + (void)h; \ + (void)offset; \ + (void)mvjcost; \ + (void)mvcost; \ + (void)sse1; \ + (void)distortion; \ + \ + (void)halfiters; \ + (void)quarteriters; \ + (void)eighthiters; \ + (void)whichdir; \ + (void)allow_hp; \ + (void)forced_stop; \ + (void)hstep; \ + (void)rr; \ + (void)rc; \ + \ + (void)tr; \ + (void)tc; \ + (void)sse; \ + (void)thismse; \ + (void)cost_list; + +// Return the maximum MV. +uint32_t vp9_return_max_sub_pixel_mv( + const MACROBLOCK *x, MV *bestmv, const MV *ref_mv, int allow_hp, + int error_per_bit, const vp9_variance_fn_ptr_t *vfp, int forced_stop, + int iters_per_step, int *cost_list, int *mvjcost, int *mvcost[2], + uint32_t *distortion, uint32_t *sse1, const uint8_t *second_pred, int w, + int h) { + COMMON_MV_TEST; + + (void)minr; + (void)minc; + + bestmv->row = maxr; + bestmv->col = maxc; + besterr = 0; + + // In the sub-pel motion search, if hp is not used, then the last bit of mv + // has to be 0. + lower_mv_precision(bestmv, allow_hp && use_mv_hp(ref_mv)); + + return besterr; +} +// Return the minimum MV. +uint32_t vp9_return_min_sub_pixel_mv( + const MACROBLOCK *x, MV *bestmv, const MV *ref_mv, int allow_hp, + int error_per_bit, const vp9_variance_fn_ptr_t *vfp, int forced_stop, + int iters_per_step, int *cost_list, int *mvjcost, int *mvcost[2], + uint32_t *distortion, uint32_t *sse1, const uint8_t *second_pred, int w, + int h) { + COMMON_MV_TEST; + + (void)maxr; + (void)maxc; + + bestmv->row = minr; + bestmv->col = minc; + besterr = 0; + + // In the sub-pel motion search, if hp is not used, then the last bit of mv + // has to be 0. + lower_mv_precision(bestmv, allow_hp && use_mv_hp(ref_mv)); + + return besterr; +} diff --git a/vp9/encoder/vp9_mcomp.h b/vp9/encoder/vp9_mcomp.h new file mode 100644 index 0000000..b8db2c3 --- /dev/null +++ b/vp9/encoder/vp9_mcomp.h @@ -0,0 +1,122 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP9_ENCODER_VP9_MCOMP_H_ +#define VP9_ENCODER_VP9_MCOMP_H_ + +#include "vp9/encoder/vp9_block.h" +#include "vpx_dsp/variance.h" + +#ifdef __cplusplus +extern "C" { +#endif + +// The maximum number of steps in a step search given the largest +// allowed initial step +#define MAX_MVSEARCH_STEPS 11 +// Max full pel mv specified in the unit of full pixel +// Enable the use of motion vector in range [-1023, 1023]. +#define MAX_FULL_PEL_VAL ((1 << (MAX_MVSEARCH_STEPS - 1)) - 1) +// Maximum size of the first step in full pel units +#define MAX_FIRST_STEP (1 << (MAX_MVSEARCH_STEPS - 1)) +// Allowed motion vector pixel distance outside image border +// for Block_16x16 +#define BORDER_MV_PIXELS_B16 (16 + VP9_INTERP_EXTEND) + +typedef struct search_site_config { + // motion search sites + MV ss_mv[8 * MAX_MVSEARCH_STEPS]; // Motion vector + intptr_t ss_os[8 * MAX_MVSEARCH_STEPS]; // Offset + int searches_per_step; + int total_steps; +} search_site_config; + +void vp9_init_dsmotion_compensation(search_site_config *cfg, int stride); +void vp9_init3smotion_compensation(search_site_config *cfg, int stride); + +void vp9_set_mv_search_range(MvLimits *mv_limits, const MV *mv); +int vp9_mv_bit_cost(const MV *mv, const MV *ref, const int *mvjcost, + int *mvcost[2], int weight); + +// Utility to compute variance + MV rate cost for a given MV +int vp9_get_mvpred_var(const MACROBLOCK *x, const MV *best_mv, + const MV *center_mv, const vp9_variance_fn_ptr_t *vfp, + int use_mvcost); +int vp9_get_mvpred_av_var(const MACROBLOCK *x, const MV *best_mv, + const MV *center_mv, const uint8_t *second_pred, + const vp9_variance_fn_ptr_t *vfp, int use_mvcost); + +struct VP9_COMP; +struct SPEED_FEATURES; + +int vp9_init_search_range(int size); + +int vp9_refining_search_sad(const struct macroblock *x, struct mv *ref_mv, + int sad_per_bit, int distance, + const struct vp9_variance_vtable *fn_ptr, + const struct mv *center_mv); + +// Perform integral projection based motion estimation. +unsigned int vp9_int_pro_motion_estimation(const struct VP9_COMP *cpi, + MACROBLOCK *x, BLOCK_SIZE bsize, + int mi_row, int mi_col); + +typedef uint32_t(fractional_mv_step_fp)( + const MACROBLOCK *x, MV *bestmv, const MV *ref_mv, int allow_hp, + int error_per_bit, const vp9_variance_fn_ptr_t *vfp, + int forced_stop, // 0 - full, 1 - qtr only, 2 - half only + int iters_per_step, int *cost_list, int *mvjcost, int *mvcost[2], + uint32_t *distortion, uint32_t *sse1, const uint8_t *second_pred, int w, + int h); + +extern fractional_mv_step_fp vp9_find_best_sub_pixel_tree; +extern fractional_mv_step_fp vp9_find_best_sub_pixel_tree_pruned; +extern fractional_mv_step_fp vp9_find_best_sub_pixel_tree_pruned_more; +extern fractional_mv_step_fp vp9_find_best_sub_pixel_tree_pruned_evenmore; +extern fractional_mv_step_fp vp9_skip_sub_pixel_tree; +extern fractional_mv_step_fp vp9_return_max_sub_pixel_mv; +extern fractional_mv_step_fp vp9_return_min_sub_pixel_mv; + +typedef int (*vp9_full_search_fn_t)(const MACROBLOCK *x, const MV *ref_mv, + int sad_per_bit, int distance, + const vp9_variance_fn_ptr_t *fn_ptr, + const MV *center_mv, MV *best_mv); + +typedef int (*vp9_refining_search_fn_t)(const MACROBLOCK *x, MV *ref_mv, + int sad_per_bit, int distance, + const vp9_variance_fn_ptr_t *fn_ptr, + const MV *center_mv); + +typedef int (*vp9_diamond_search_fn_t)( + const MACROBLOCK *x, const search_site_config *cfg, MV *ref_mv, MV *best_mv, + int search_param, int sad_per_bit, int *num00, + const vp9_variance_fn_ptr_t *fn_ptr, const MV *center_mv); + +int vp9_refining_search_8p_c(const MACROBLOCK *x, MV *ref_mv, int error_per_bit, + int search_range, + const vp9_variance_fn_ptr_t *fn_ptr, + const MV *center_mv, const uint8_t *second_pred); + +struct VP9_COMP; + +int vp9_full_pixel_search(struct VP9_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize, + MV *mvp_full, int step_param, int search_method, + int error_per_bit, int *cost_list, const MV *ref_mv, + MV *tmp_mv, int var_max, int rd); + +void vp9_set_subpel_mv_search_range(MvLimits *subpel_mv_limits, + const MvLimits *umv_window_limits, + const MV *ref_mv); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP9_ENCODER_VP9_MCOMP_H_ diff --git a/vp9/encoder/vp9_multi_thread.c b/vp9/encoder/vp9_multi_thread.c new file mode 100644 index 0000000..da06fb1 --- /dev/null +++ b/vp9/encoder/vp9_multi_thread.c @@ -0,0 +1,313 @@ +/* + * Copyright (c) 2017 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include + +#include "vp9/encoder/vp9_encoder.h" +#include "vp9/encoder/vp9_ethread.h" +#include "vp9/encoder/vp9_multi_thread.h" + +void *vp9_enc_grp_get_next_job(MultiThreadHandle *multi_thread_ctxt, + int tile_id) { + RowMTInfo *row_mt_info; + JobQueueHandle *job_queue_hdl = NULL; + void *next = NULL; + JobNode *job_info = NULL; +#if CONFIG_MULTITHREAD + pthread_mutex_t *mutex_handle = NULL; +#endif + + row_mt_info = (RowMTInfo *)(&multi_thread_ctxt->row_mt_info[tile_id]); + job_queue_hdl = (JobQueueHandle *)&row_mt_info->job_queue_hdl; +#if CONFIG_MULTITHREAD + mutex_handle = &row_mt_info->job_mutex; +#endif + +// lock the mutex for queue access +#if CONFIG_MULTITHREAD + pthread_mutex_lock(mutex_handle); +#endif + next = job_queue_hdl->next; + if (NULL != next) { + JobQueue *job_queue = (JobQueue *)next; + job_info = &job_queue->job_info; + // Update the next job in the queue + job_queue_hdl->next = job_queue->next; + job_queue_hdl->num_jobs_acquired++; + } + +#if CONFIG_MULTITHREAD + pthread_mutex_unlock(mutex_handle); +#endif + + return job_info; +} + +void vp9_row_mt_mem_alloc(VP9_COMP *cpi) { + struct VP9Common *cm = &cpi->common; + MultiThreadHandle *multi_thread_ctxt = &cpi->multi_thread_ctxt; + int tile_row, tile_col; + const int tile_cols = 1 << cm->log2_tile_cols; + const int tile_rows = 1 << cm->log2_tile_rows; + const int sb_rows = mi_cols_aligned_to_sb(cm->mi_rows) >> MI_BLOCK_SIZE_LOG2; + int jobs_per_tile_col, total_jobs; + + jobs_per_tile_col = VPXMAX(cm->mb_rows, sb_rows); + // Calculate the total number of jobs + total_jobs = jobs_per_tile_col * tile_cols; + + multi_thread_ctxt->allocated_tile_cols = tile_cols; + multi_thread_ctxt->allocated_tile_rows = tile_rows; + multi_thread_ctxt->allocated_vert_unit_rows = jobs_per_tile_col; + + multi_thread_ctxt->job_queue = + (JobQueue *)vpx_memalign(32, total_jobs * sizeof(JobQueue)); + +#if CONFIG_MULTITHREAD + // Create mutex for each tile + for (tile_col = 0; tile_col < tile_cols; tile_col++) { + RowMTInfo *row_mt_info = &multi_thread_ctxt->row_mt_info[tile_col]; + pthread_mutex_init(&row_mt_info->job_mutex, NULL); + } +#endif + + // Allocate memory for row based multi-threading + for (tile_col = 0; tile_col < tile_cols; tile_col++) { + TileDataEnc *this_tile = &cpi->tile_data[tile_col]; + vp9_row_mt_sync_mem_alloc(&this_tile->row_mt_sync, cm, jobs_per_tile_col); + if (cpi->sf.adaptive_rd_thresh_row_mt) { + const int sb_rows = + (mi_cols_aligned_to_sb(cm->mi_rows) >> MI_BLOCK_SIZE_LOG2) + 1; + int i; + this_tile->row_base_thresh_freq_fact = + (int *)vpx_calloc(sb_rows * BLOCK_SIZES * MAX_MODES, + sizeof(*(this_tile->row_base_thresh_freq_fact))); + for (i = 0; i < sb_rows * BLOCK_SIZES * MAX_MODES; i++) + this_tile->row_base_thresh_freq_fact[i] = RD_THRESH_INIT_FACT; + } + } + + // Assign the sync pointer of tile row zero for every tile row > 0 + for (tile_row = 1; tile_row < tile_rows; tile_row++) { + for (tile_col = 0; tile_col < tile_cols; tile_col++) { + TileDataEnc *this_tile = &cpi->tile_data[tile_row * tile_cols + tile_col]; + TileDataEnc *this_col_tile = &cpi->tile_data[tile_col]; + this_tile->row_mt_sync = this_col_tile->row_mt_sync; + } + } + + // Calculate the number of vertical units in the given tile row + for (tile_row = 0; tile_row < tile_rows; tile_row++) { + TileDataEnc *this_tile = &cpi->tile_data[tile_row * tile_cols]; + TileInfo *tile_info = &this_tile->tile_info; + multi_thread_ctxt->num_tile_vert_sbs[tile_row] = + get_num_vert_units(*tile_info, MI_BLOCK_SIZE_LOG2); + } +} + +void vp9_row_mt_mem_dealloc(VP9_COMP *cpi) { + MultiThreadHandle *multi_thread_ctxt = &cpi->multi_thread_ctxt; + int tile_col; +#if CONFIG_MULTITHREAD + int tile_row; +#endif + + // Deallocate memory for job queue + if (multi_thread_ctxt->job_queue) vpx_free(multi_thread_ctxt->job_queue); + +#if CONFIG_MULTITHREAD + // Destroy mutex for each tile + for (tile_col = 0; tile_col < multi_thread_ctxt->allocated_tile_cols; + tile_col++) { + RowMTInfo *row_mt_info = &multi_thread_ctxt->row_mt_info[tile_col]; + if (row_mt_info) pthread_mutex_destroy(&row_mt_info->job_mutex); + } +#endif + + // Free row based multi-threading sync memory + for (tile_col = 0; tile_col < multi_thread_ctxt->allocated_tile_cols; + tile_col++) { + TileDataEnc *this_tile = &cpi->tile_data[tile_col]; + vp9_row_mt_sync_mem_dealloc(&this_tile->row_mt_sync); + } + +#if CONFIG_MULTITHREAD + for (tile_row = 0; tile_row < multi_thread_ctxt->allocated_tile_rows; + tile_row++) { + for (tile_col = 0; tile_col < multi_thread_ctxt->allocated_tile_cols; + tile_col++) { + TileDataEnc *this_tile = + &cpi->tile_data[tile_row * multi_thread_ctxt->allocated_tile_cols + + tile_col]; + if (cpi->sf.adaptive_rd_thresh_row_mt) { + if (this_tile->row_base_thresh_freq_fact != NULL) { + vpx_free(this_tile->row_base_thresh_freq_fact); + this_tile->row_base_thresh_freq_fact = NULL; + } + } + } + } +#endif +} + +void vp9_multi_thread_tile_init(VP9_COMP *cpi) { + VP9_COMMON *const cm = &cpi->common; + const int tile_cols = 1 << cm->log2_tile_cols; + const int sb_rows = mi_cols_aligned_to_sb(cm->mi_rows) >> MI_BLOCK_SIZE_LOG2; + int i; + + for (i = 0; i < tile_cols; i++) { + TileDataEnc *this_tile = &cpi->tile_data[i]; + int jobs_per_tile_col = cpi->oxcf.pass == 1 ? cm->mb_rows : sb_rows; + + // Initialize cur_col to -1 for all rows. + memset(this_tile->row_mt_sync.cur_col, -1, + sizeof(*this_tile->row_mt_sync.cur_col) * jobs_per_tile_col); + vp9_zero(this_tile->fp_data); + this_tile->fp_data.image_data_start_row = INVALID_ROW; + } +} + +void vp9_assign_tile_to_thread(MultiThreadHandle *multi_thread_ctxt, + int tile_cols, int num_workers) { + int tile_id = 0; + int i; + + // Allocating the threads for the tiles + for (i = 0; i < num_workers; i++) { + multi_thread_ctxt->thread_id_to_tile_id[i] = tile_id++; + if (tile_id == tile_cols) tile_id = 0; + } +} + +int vp9_get_job_queue_status(MultiThreadHandle *multi_thread_ctxt, + int cur_tile_id) { + RowMTInfo *row_mt_info; + JobQueueHandle *job_queue_hndl; +#if CONFIG_MULTITHREAD + pthread_mutex_t *mutex; +#endif + int num_jobs_remaining; + + row_mt_info = &multi_thread_ctxt->row_mt_info[cur_tile_id]; + job_queue_hndl = &row_mt_info->job_queue_hdl; +#if CONFIG_MULTITHREAD + mutex = &row_mt_info->job_mutex; +#endif + +#if CONFIG_MULTITHREAD + pthread_mutex_lock(mutex); +#endif + num_jobs_remaining = + multi_thread_ctxt->jobs_per_tile_col - job_queue_hndl->num_jobs_acquired; +#if CONFIG_MULTITHREAD + pthread_mutex_unlock(mutex); +#endif + + return (num_jobs_remaining); +} + +void vp9_prepare_job_queue(VP9_COMP *cpi, JOB_TYPE job_type) { + VP9_COMMON *const cm = &cpi->common; + MultiThreadHandle *multi_thread_ctxt = &cpi->multi_thread_ctxt; + JobQueue *job_queue = multi_thread_ctxt->job_queue; + const int tile_cols = 1 << cm->log2_tile_cols; + int job_row_num, jobs_per_tile, jobs_per_tile_col, total_jobs; + const int sb_rows = mi_cols_aligned_to_sb(cm->mi_rows) >> MI_BLOCK_SIZE_LOG2; + int tile_col, i; + + jobs_per_tile_col = (job_type != ENCODE_JOB) ? cm->mb_rows : sb_rows; + total_jobs = jobs_per_tile_col * tile_cols; + + multi_thread_ctxt->jobs_per_tile_col = jobs_per_tile_col; + // memset the entire job queue buffer to zero + memset(job_queue, 0, total_jobs * sizeof(JobQueue)); + + // Job queue preparation + for (tile_col = 0; tile_col < tile_cols; tile_col++) { + RowMTInfo *tile_ctxt = &multi_thread_ctxt->row_mt_info[tile_col]; + JobQueue *job_queue_curr, *job_queue_temp; + int tile_row = 0; + + tile_ctxt->job_queue_hdl.next = (void *)job_queue; + tile_ctxt->job_queue_hdl.num_jobs_acquired = 0; + + job_queue_curr = job_queue; + job_queue_temp = job_queue; + + // loop over all the vertical rows + for (job_row_num = 0, jobs_per_tile = 0; job_row_num < jobs_per_tile_col; + job_row_num++, jobs_per_tile++) { + job_queue_curr->job_info.vert_unit_row_num = job_row_num; + job_queue_curr->job_info.tile_col_id = tile_col; + job_queue_curr->job_info.tile_row_id = tile_row; + job_queue_curr->next = (void *)(job_queue_temp + 1); + job_queue_curr = ++job_queue_temp; + + if (ENCODE_JOB == job_type) { + if (jobs_per_tile >= + multi_thread_ctxt->num_tile_vert_sbs[tile_row] - 1) { + tile_row++; + jobs_per_tile = -1; + } + } + } + + // Set the last pointer to NULL + job_queue_curr += -1; + job_queue_curr->next = (void *)NULL; + + // Move to the next tile + job_queue += jobs_per_tile_col; + } + + for (i = 0; i < cpi->num_workers; i++) { + EncWorkerData *thread_data; + thread_data = &cpi->tile_thr_data[i]; + thread_data->thread_id = i; + + for (tile_col = 0; tile_col < tile_cols; tile_col++) + thread_data->tile_completion_status[tile_col] = 0; + } +} + +int vp9_get_tiles_proc_status(MultiThreadHandle *multi_thread_ctxt, + int *tile_completion_status, int *cur_tile_id, + int tile_cols) { + int tile_col; + int tile_id = -1; // Stores the tile ID with minimum proc done + int max_num_jobs_remaining = 0; + int num_jobs_remaining; + + // Mark the completion to avoid check in the loop + tile_completion_status[*cur_tile_id] = 1; + // Check for the status of all the tiles + for (tile_col = 0; tile_col < tile_cols; tile_col++) { + if (tile_completion_status[tile_col] == 0) { + num_jobs_remaining = + vp9_get_job_queue_status(multi_thread_ctxt, tile_col); + // Mark the completion to avoid checks during future switches across tiles + if (num_jobs_remaining == 0) tile_completion_status[tile_col] = 1; + if (num_jobs_remaining > max_num_jobs_remaining) { + max_num_jobs_remaining = num_jobs_remaining; + tile_id = tile_col; + } + } + } + + if (-1 == tile_id) { + return 1; + } else { + // Update the cur ID to the next tile ID that will be processed, + // which will be the least processed tile + *cur_tile_id = tile_id; + return 0; + } +} diff --git a/vp9/encoder/vp9_multi_thread.h b/vp9/encoder/vp9_multi_thread.h new file mode 100644 index 0000000..bfc0c0a --- /dev/null +++ b/vp9/encoder/vp9_multi_thread.h @@ -0,0 +1,38 @@ +/* + * Copyright (c) 2017 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP9_ENCODER_VP9_MULTI_THREAD_H +#define VP9_ENCODER_VP9_MULTI_THREAD_H + +#include "vp9/encoder/vp9_encoder.h" +#include "vp9/encoder/vp9_job_queue.h" + +void *vp9_enc_grp_get_next_job(MultiThreadHandle *multi_thread_ctxt, + int tile_id); + +void vp9_prepare_job_queue(VP9_COMP *cpi, JOB_TYPE job_type); + +int vp9_get_job_queue_status(MultiThreadHandle *multi_thread_ctxt, + int cur_tile_id); + +void vp9_assign_tile_to_thread(MultiThreadHandle *multi_thread_ctxt, + int tile_cols, int num_workers); + +void vp9_multi_thread_tile_init(VP9_COMP *cpi); + +void vp9_row_mt_mem_alloc(VP9_COMP *cpi); + +void vp9_row_mt_mem_dealloc(VP9_COMP *cpi); + +int vp9_get_tiles_proc_status(MultiThreadHandle *multi_thread_ctxt, + int *tile_completion_status, int *cur_tile_id, + int tile_cols); + +#endif // VP9_ENCODER_VP9_MULTI_THREAD_H diff --git a/vp9/encoder/vp9_noise_estimate.c b/vp9/encoder/vp9_noise_estimate.c new file mode 100644 index 0000000..276a0c7 --- /dev/null +++ b/vp9/encoder/vp9_noise_estimate.c @@ -0,0 +1,279 @@ +/* + * Copyright (c) 2015 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include +#include + +#include "./vpx_dsp_rtcd.h" +#include "vpx_dsp/vpx_dsp_common.h" +#include "vpx_scale/yv12config.h" +#include "vpx/vpx_integer.h" +#include "vp9/common/vp9_reconinter.h" +#include "vp9/encoder/vp9_context_tree.h" +#include "vp9/encoder/vp9_noise_estimate.h" +#include "vp9/encoder/vp9_encoder.h" + +#if CONFIG_VP9_TEMPORAL_DENOISING +// For SVC: only do noise estimation on top spatial layer. +static INLINE int noise_est_svc(const struct VP9_COMP *const cpi) { + return (!cpi->use_svc || + (cpi->use_svc && + cpi->svc.spatial_layer_id == cpi->svc.number_spatial_layers - 1)); +} +#endif + +void vp9_noise_estimate_init(NOISE_ESTIMATE *const ne, int width, int height) { + ne->enabled = 0; + ne->level = kLowLow; + ne->value = 0; + ne->count = 0; + ne->thresh = 90; + ne->last_w = 0; + ne->last_h = 0; + if (width * height >= 1920 * 1080) { + ne->thresh = 200; + } else if (width * height >= 1280 * 720) { + ne->thresh = 140; + } else if (width * height >= 640 * 360) { + ne->thresh = 115; + } + ne->num_frames_estimate = 15; +} + +static int enable_noise_estimation(VP9_COMP *const cpi) { +#if CONFIG_VP9_HIGHBITDEPTH + if (cpi->common.use_highbitdepth) return 0; +#endif +// Enable noise estimation if denoising is on. +#if CONFIG_VP9_TEMPORAL_DENOISING + if (cpi->oxcf.noise_sensitivity > 0 && noise_est_svc(cpi) && + cpi->common.width >= 320 && cpi->common.height >= 180) + return 1; +#endif + // Only allow noise estimate under certain encoding mode. + // Enabled for 1 pass CBR, speed >=5, and if resolution is same as original. + // Not enabled for SVC mode and screen_content_mode. + // Not enabled for low resolutions. + if (cpi->oxcf.pass == 0 && cpi->oxcf.rc_mode == VPX_CBR && + cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cpi->oxcf.speed >= 5 && + cpi->resize_state == ORIG && cpi->resize_pending == 0 && !cpi->use_svc && + cpi->oxcf.content != VP9E_CONTENT_SCREEN && + cpi->common.width * cpi->common.height >= 640 * 360) + return 1; + else + return 0; +} + +#if CONFIG_VP9_TEMPORAL_DENOISING +static void copy_frame(YV12_BUFFER_CONFIG *const dest, + const YV12_BUFFER_CONFIG *const src) { + int r; + const uint8_t *srcbuf = src->y_buffer; + uint8_t *destbuf = dest->y_buffer; + + assert(dest->y_width == src->y_width); + assert(dest->y_height == src->y_height); + + for (r = 0; r < dest->y_height; ++r) { + memcpy(destbuf, srcbuf, dest->y_width); + destbuf += dest->y_stride; + srcbuf += src->y_stride; + } +} +#endif // CONFIG_VP9_TEMPORAL_DENOISING + +NOISE_LEVEL vp9_noise_estimate_extract_level(NOISE_ESTIMATE *const ne) { + int noise_level = kLowLow; + if (ne->value > (ne->thresh << 1)) { + noise_level = kHigh; + } else { + if (ne->value > ne->thresh) + noise_level = kMedium; + else if (ne->value > ((9 * ne->thresh) >> 4)) + noise_level = kLow; + else + noise_level = kLowLow; + } + return noise_level; +} + +void vp9_update_noise_estimate(VP9_COMP *const cpi) { + const VP9_COMMON *const cm = &cpi->common; + NOISE_ESTIMATE *const ne = &cpi->noise_estimate; + const int low_res = (cm->width <= 352 && cm->height <= 288); + // Estimate of noise level every frame_period frames. + int frame_period = 8; + int thresh_consec_zeromv = 6; + unsigned int thresh_sum_diff = 100; + unsigned int thresh_sum_spatial = (200 * 200) << 8; + unsigned int thresh_spatial_var = (32 * 32) << 8; + int min_blocks_estimate = cm->mi_rows * cm->mi_cols >> 7; + int frame_counter = cm->current_video_frame; + // Estimate is between current source and last source. + YV12_BUFFER_CONFIG *last_source = cpi->Last_Source; +#if CONFIG_VP9_TEMPORAL_DENOISING + if (cpi->oxcf.noise_sensitivity > 0 && noise_est_svc(cpi)) { + last_source = &cpi->denoiser.last_source; + // Tune these thresholds for different resolutions when denoising is + // enabled. + if (cm->width > 640 && cm->width < 1920) { + thresh_consec_zeromv = 4; + thresh_sum_diff = 200; + thresh_sum_spatial = (120 * 120) << 8; + thresh_spatial_var = (48 * 48) << 8; + } + } +#endif + ne->enabled = enable_noise_estimation(cpi); + if (cpi->svc.number_spatial_layers > 1) + frame_counter = cpi->svc.current_superframe; + if (!ne->enabled || frame_counter % frame_period != 0 || + last_source == NULL || + (cpi->svc.number_spatial_layers == 1 && + (ne->last_w != cm->width || ne->last_h != cm->height))) { +#if CONFIG_VP9_TEMPORAL_DENOISING + if (cpi->oxcf.noise_sensitivity > 0 && noise_est_svc(cpi)) + copy_frame(&cpi->denoiser.last_source, cpi->Source); +#endif + if (last_source != NULL) { + ne->last_w = cm->width; + ne->last_h = cm->height; + } + return; + } else if (cm->current_video_frame > 60 && + cpi->rc.avg_frame_low_motion < (low_res ? 70 : 50)) { + // Force noise estimation to 0 and denoiser off if content has high motion. + ne->level = kLowLow; + ne->count = 0; + ne->num_frames_estimate = 10; +#if CONFIG_VP9_TEMPORAL_DENOISING + if (cpi->oxcf.noise_sensitivity > 0 && noise_est_svc(cpi) && + cpi->svc.current_superframe > 1) { + vp9_denoiser_set_noise_level(&cpi->denoiser, ne->level); + copy_frame(&cpi->denoiser.last_source, cpi->Source); + } +#endif + return; + } else { + int num_samples = 0; + uint64_t avg_est = 0; + int bsize = BLOCK_16X16; + static const unsigned char const_source[16] = { 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0 }; + // Loop over sub-sample of 16x16 blocks of frame, and for blocks that have + // been encoded as zero/small mv at least x consecutive frames, compute + // the variance to update estimate of noise in the source. + const uint8_t *src_y = cpi->Source->y_buffer; + const int src_ystride = cpi->Source->y_stride; + const uint8_t *last_src_y = last_source->y_buffer; + const int last_src_ystride = last_source->y_stride; + const uint8_t *src_u = cpi->Source->u_buffer; + const uint8_t *src_v = cpi->Source->v_buffer; + const int src_uvstride = cpi->Source->uv_stride; + int mi_row, mi_col; + int num_low_motion = 0; + int frame_low_motion = 1; + for (mi_row = 0; mi_row < cm->mi_rows; mi_row++) { + for (mi_col = 0; mi_col < cm->mi_cols; mi_col++) { + int bl_index = mi_row * cm->mi_cols + mi_col; + if (cpi->consec_zero_mv[bl_index] > thresh_consec_zeromv) + num_low_motion++; + } + } + if (num_low_motion < ((3 * cm->mi_rows * cm->mi_cols) >> 3)) + frame_low_motion = 0; + for (mi_row = 0; mi_row < cm->mi_rows; mi_row++) { + for (mi_col = 0; mi_col < cm->mi_cols; mi_col++) { + // 16x16 blocks, 1/4 sample of frame. + if (mi_row % 4 == 0 && mi_col % 4 == 0 && mi_row < cm->mi_rows - 1 && + mi_col < cm->mi_cols - 1) { + int bl_index = mi_row * cm->mi_cols + mi_col; + int bl_index1 = bl_index + 1; + int bl_index2 = bl_index + cm->mi_cols; + int bl_index3 = bl_index2 + 1; + int consec_zeromv = + VPXMIN(cpi->consec_zero_mv[bl_index], + VPXMIN(cpi->consec_zero_mv[bl_index1], + VPXMIN(cpi->consec_zero_mv[bl_index2], + cpi->consec_zero_mv[bl_index3]))); + // Only consider blocks that are likely steady background. i.e, have + // been encoded as zero/low motion x (= thresh_consec_zeromv) frames + // in a row. consec_zero_mv[] defined for 8x8 blocks, so consider all + // 4 sub-blocks for 16x16 block. Also, avoid skin blocks. + if (frame_low_motion && consec_zeromv > thresh_consec_zeromv) { + int is_skin = 0; + if (cpi->use_skin_detection) { + is_skin = + vp9_compute_skin_block(src_y, src_u, src_v, src_ystride, + src_uvstride, bsize, consec_zeromv, 0); + } + if (!is_skin) { + unsigned int sse; + // Compute variance. + unsigned int variance = cpi->fn_ptr[bsize].vf( + src_y, src_ystride, last_src_y, last_src_ystride, &sse); + // Only consider this block as valid for noise measurement if the + // average term (sse - variance = N * avg^{2}, N = 16X16) of the + // temporal residual is small (avoid effects from lighting + // change). + if ((sse - variance) < thresh_sum_diff) { + unsigned int sse2; + const unsigned int spatial_variance = cpi->fn_ptr[bsize].vf( + src_y, src_ystride, const_source, 0, &sse2); + // Avoid blocks with high brightness and high spatial variance. + if ((sse2 - spatial_variance) < thresh_sum_spatial && + spatial_variance < thresh_spatial_var) { + avg_est += low_res ? variance >> 4 + : variance / ((spatial_variance >> 9) + 1); + num_samples++; + } + } + } + } + } + src_y += 8; + last_src_y += 8; + src_u += 4; + src_v += 4; + } + src_y += (src_ystride << 3) - (cm->mi_cols << 3); + last_src_y += (last_src_ystride << 3) - (cm->mi_cols << 3); + src_u += (src_uvstride << 2) - (cm->mi_cols << 2); + src_v += (src_uvstride << 2) - (cm->mi_cols << 2); + } + ne->last_w = cm->width; + ne->last_h = cm->height; + // Update noise estimate if we have at a minimum number of block samples, + // and avg_est > 0 (avg_est == 0 can happen if the application inputs + // duplicate frames). + if (num_samples > min_blocks_estimate && avg_est > 0) { + // Normalize. + avg_est = avg_est / num_samples; + // Update noise estimate. + ne->value = (int)((15 * ne->value + avg_est) >> 4); + ne->count++; + if (ne->count == ne->num_frames_estimate) { + // Reset counter and check noise level condition. + ne->num_frames_estimate = 30; + ne->count = 0; + ne->level = vp9_noise_estimate_extract_level(ne); +#if CONFIG_VP9_TEMPORAL_DENOISING + if (cpi->oxcf.noise_sensitivity > 0 && noise_est_svc(cpi)) + vp9_denoiser_set_noise_level(&cpi->denoiser, ne->level); +#endif + } + } + } +#if CONFIG_VP9_TEMPORAL_DENOISING + if (cpi->oxcf.noise_sensitivity > 0 && noise_est_svc(cpi)) + copy_frame(&cpi->denoiser.last_source, cpi->Source); +#endif +} diff --git a/vp9/encoder/vp9_noise_estimate.h b/vp9/encoder/vp9_noise_estimate.h new file mode 100644 index 0000000..335cdbe --- /dev/null +++ b/vp9/encoder/vp9_noise_estimate.h @@ -0,0 +1,51 @@ +/* + * Copyright (c) 2012 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP9_ENCODER_NOISE_ESTIMATE_H_ +#define VP9_ENCODER_NOISE_ESTIMATE_H_ + +#include "vp9/encoder/vp9_block.h" +#include "vp9/encoder/vp9_skin_detection.h" +#include "vpx_scale/yv12config.h" + +#if CONFIG_VP9_TEMPORAL_DENOISING +#include "vp9/encoder/vp9_denoiser.h" +#endif + +#ifdef __cplusplus +extern "C" { +#endif + +typedef enum noise_level { kLowLow, kLow, kMedium, kHigh } NOISE_LEVEL; + +typedef struct noise_estimate { + int enabled; + NOISE_LEVEL level; + int value; + int thresh; + int count; + int last_w; + int last_h; + int num_frames_estimate; +} NOISE_ESTIMATE; + +struct VP9_COMP; + +void vp9_noise_estimate_init(NOISE_ESTIMATE *const ne, int width, int height); + +NOISE_LEVEL vp9_noise_estimate_extract_level(NOISE_ESTIMATE *const ne); + +void vp9_update_noise_estimate(struct VP9_COMP *const cpi); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP9_ENCODER_NOISE_ESTIMATE_H_ diff --git a/vp9/encoder/vp9_picklpf.c b/vp9/encoder/vp9_picklpf.c new file mode 100644 index 0000000..1c2c55b --- /dev/null +++ b/vp9/encoder/vp9_picklpf.c @@ -0,0 +1,195 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include + +#include "./vpx_scale_rtcd.h" +#include "vpx_dsp/psnr.h" +#include "vpx_mem/vpx_mem.h" +#include "vpx_ports/mem.h" + +#include "vp9/common/vp9_loopfilter.h" +#include "vp9/common/vp9_onyxc_int.h" +#include "vp9/common/vp9_quant_common.h" + +#include "vp9/encoder/vp9_encoder.h" +#include "vp9/encoder/vp9_picklpf.h" +#include "vp9/encoder/vp9_quantize.h" + +static int get_max_filter_level(const VP9_COMP *cpi) { + if (cpi->oxcf.pass == 2) { + return cpi->twopass.section_intra_rating > 8 ? MAX_LOOP_FILTER * 3 / 4 + : MAX_LOOP_FILTER; + } else { + return MAX_LOOP_FILTER; + } +} + +static int64_t try_filter_frame(const YV12_BUFFER_CONFIG *sd, + VP9_COMP *const cpi, int filt_level, + int partial_frame) { + VP9_COMMON *const cm = &cpi->common; + int64_t filt_err; + + vp9_build_mask_frame(cm, filt_level, partial_frame); + + if (cpi->num_workers > 1) + vp9_loop_filter_frame_mt(cm->frame_to_show, cm, cpi->td.mb.e_mbd.plane, + filt_level, 1, partial_frame, cpi->workers, + cpi->num_workers, &cpi->lf_row_sync); + else + vp9_loop_filter_frame(cm->frame_to_show, cm, &cpi->td.mb.e_mbd, filt_level, + 1, partial_frame); + +#if CONFIG_VP9_HIGHBITDEPTH + if (cm->use_highbitdepth) { + filt_err = vpx_highbd_get_y_sse(sd, cm->frame_to_show); + } else { + filt_err = vpx_get_y_sse(sd, cm->frame_to_show); + } +#else + filt_err = vpx_get_y_sse(sd, cm->frame_to_show); +#endif // CONFIG_VP9_HIGHBITDEPTH + + // Re-instate the unfiltered frame + vpx_yv12_copy_y(&cpi->last_frame_uf, cm->frame_to_show); + + return filt_err; +} + +static int search_filter_level(const YV12_BUFFER_CONFIG *sd, VP9_COMP *cpi, + int partial_frame) { + const VP9_COMMON *const cm = &cpi->common; + const struct loopfilter *const lf = &cm->lf; + const int min_filter_level = 0; + const int max_filter_level = get_max_filter_level(cpi); + int filt_direction = 0; + int64_t best_err; + int filt_best; + + // Start the search at the previous frame filter level unless it is now out of + // range. + int filt_mid = clamp(lf->last_filt_level, min_filter_level, max_filter_level); + int filter_step = filt_mid < 16 ? 4 : filt_mid / 4; + // Sum squared error at each filter level + int64_t ss_err[MAX_LOOP_FILTER + 1]; + + // Set each entry to -1 + memset(ss_err, 0xFF, sizeof(ss_err)); + + // Make a copy of the unfiltered / processed recon buffer + vpx_yv12_copy_y(cm->frame_to_show, &cpi->last_frame_uf); + + best_err = try_filter_frame(sd, cpi, filt_mid, partial_frame); + filt_best = filt_mid; + ss_err[filt_mid] = best_err; + + while (filter_step > 0) { + const int filt_high = VPXMIN(filt_mid + filter_step, max_filter_level); + const int filt_low = VPXMAX(filt_mid - filter_step, min_filter_level); + + // Bias against raising loop filter in favor of lowering it. + int64_t bias = (best_err >> (15 - (filt_mid / 8))) * filter_step; + + if ((cpi->oxcf.pass == 2) && (cpi->twopass.section_intra_rating < 20)) + bias = (bias * cpi->twopass.section_intra_rating) / 20; + + // yx, bias less for large block size + if (cm->tx_mode != ONLY_4X4) bias >>= 1; + + if (filt_direction <= 0 && filt_low != filt_mid) { + // Get Low filter error score + if (ss_err[filt_low] < 0) { + ss_err[filt_low] = try_filter_frame(sd, cpi, filt_low, partial_frame); + } + // If value is close to the best so far then bias towards a lower loop + // filter value. + if ((ss_err[filt_low] - bias) < best_err) { + // Was it actually better than the previous best? + if (ss_err[filt_low] < best_err) best_err = ss_err[filt_low]; + + filt_best = filt_low; + } + } + + // Now look at filt_high + if (filt_direction >= 0 && filt_high != filt_mid) { + if (ss_err[filt_high] < 0) { + ss_err[filt_high] = try_filter_frame(sd, cpi, filt_high, partial_frame); + } + // Was it better than the previous best? + if (ss_err[filt_high] < (best_err - bias)) { + best_err = ss_err[filt_high]; + filt_best = filt_high; + } + } + + // Half the step distance if the best filter value was the same as last time + if (filt_best == filt_mid) { + filter_step /= 2; + filt_direction = 0; + } else { + filt_direction = (filt_best < filt_mid) ? -1 : 1; + filt_mid = filt_best; + } + } + + return filt_best; +} + +void vp9_pick_filter_level(const YV12_BUFFER_CONFIG *sd, VP9_COMP *cpi, + LPF_PICK_METHOD method) { + VP9_COMMON *const cm = &cpi->common; + struct loopfilter *const lf = &cm->lf; + + lf->sharpness_level = cm->frame_type == KEY_FRAME ? 0 : cpi->oxcf.sharpness; + + if (method == LPF_PICK_MINIMAL_LPF && lf->filter_level) { + lf->filter_level = 0; + } else if (method >= LPF_PICK_FROM_Q) { + const int min_filter_level = 0; + const int max_filter_level = get_max_filter_level(cpi); + const int q = vp9_ac_quant(cm->base_qindex, 0, cm->bit_depth); +// These values were determined by linear fitting the result of the +// searched level, filt_guess = q * 0.316206 + 3.87252 +#if CONFIG_VP9_HIGHBITDEPTH + int filt_guess; + switch (cm->bit_depth) { + case VPX_BITS_8: + filt_guess = ROUND_POWER_OF_TWO(q * 20723 + 1015158, 18); + break; + case VPX_BITS_10: + filt_guess = ROUND_POWER_OF_TWO(q * 20723 + 4060632, 20); + break; + case VPX_BITS_12: + filt_guess = ROUND_POWER_OF_TWO(q * 20723 + 16242526, 22); + break; + default: + assert(0 && + "bit_depth should be VPX_BITS_8, VPX_BITS_10 " + "or VPX_BITS_12"); + return; + } +#else + int filt_guess = ROUND_POWER_OF_TWO(q * 20723 + 1015158, 18); +#endif // CONFIG_VP9_HIGHBITDEPTH + if (cpi->oxcf.pass == 0 && cpi->oxcf.rc_mode == VPX_CBR && + cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cm->seg.enabled && + cpi->oxcf.content != VP9E_CONTENT_SCREEN && cm->frame_type != KEY_FRAME) + filt_guess = 5 * filt_guess >> 3; + + if (cm->frame_type == KEY_FRAME) filt_guess -= 4; + lf->filter_level = clamp(filt_guess, min_filter_level, max_filter_level); + } else { + lf->filter_level = + search_filter_level(sd, cpi, method == LPF_PICK_FROM_SUBIMAGE); + } +} diff --git a/vp9/encoder/vp9_picklpf.h b/vp9/encoder/vp9_picklpf.h new file mode 100644 index 0000000..cecca05 --- /dev/null +++ b/vp9/encoder/vp9_picklpf.h @@ -0,0 +1,29 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP9_ENCODER_VP9_PICKLPF_H_ +#define VP9_ENCODER_VP9_PICKLPF_H_ + +#ifdef __cplusplus +extern "C" { +#endif + +#include "vp9/encoder/vp9_encoder.h" + +struct yv12_buffer_config; +struct VP9_COMP; + +void vp9_pick_filter_level(const struct yv12_buffer_config *sd, + struct VP9_COMP *cpi, LPF_PICK_METHOD method); +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP9_ENCODER_VP9_PICKLPF_H_ diff --git a/vp9/encoder/vp9_pickmode.c b/vp9/encoder/vp9_pickmode.c new file mode 100644 index 0000000..f2f323a --- /dev/null +++ b/vp9/encoder/vp9_pickmode.c @@ -0,0 +1,2672 @@ +/* + * Copyright (c) 2014 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include +#include +#include + +#include "./vp9_rtcd.h" +#include "./vpx_dsp_rtcd.h" + +#include "vpx/vpx_codec.h" +#include "vpx_dsp/vpx_dsp_common.h" +#include "vpx_mem/vpx_mem.h" +#include "vpx_ports/mem.h" + +#include "vp9/common/vp9_blockd.h" +#include "vp9/common/vp9_common.h" +#include "vp9/common/vp9_mvref_common.h" +#include "vp9/common/vp9_pred_common.h" +#include "vp9/common/vp9_reconinter.h" +#include "vp9/common/vp9_reconintra.h" +#include "vp9/common/vp9_scan.h" + +#include "vp9/encoder/vp9_cost.h" +#include "vp9/encoder/vp9_encoder.h" +#include "vp9/encoder/vp9_pickmode.h" +#include "vp9/encoder/vp9_ratectrl.h" +#include "vp9/encoder/vp9_rd.h" + +typedef struct { + uint8_t *data; + int stride; + int in_use; +} PRED_BUFFER; + +static const int pos_shift_16x16[4][4] = { + { 9, 10, 13, 14 }, { 11, 12, 15, 16 }, { 17, 18, 21, 22 }, { 19, 20, 23, 24 } +}; + +static int mv_refs_rt(VP9_COMP *cpi, const VP9_COMMON *cm, const MACROBLOCK *x, + const MACROBLOCKD *xd, const TileInfo *const tile, + MODE_INFO *mi, MV_REFERENCE_FRAME ref_frame, + int_mv *mv_ref_list, int_mv *base_mv, int mi_row, + int mi_col, int use_base_mv) { + const int *ref_sign_bias = cm->ref_frame_sign_bias; + int i, refmv_count = 0; + + const POSITION *const mv_ref_search = mv_ref_blocks[mi->sb_type]; + + int different_ref_found = 0; + int context_counter = 0; + int const_motion = 0; + + // Blank the reference vector list + memset(mv_ref_list, 0, sizeof(*mv_ref_list) * MAX_MV_REF_CANDIDATES); + + // The nearest 2 blocks are treated differently + // if the size < 8x8 we get the mv from the bmi substructure, + // and we also need to keep a mode count. + for (i = 0; i < 2; ++i) { + const POSITION *const mv_ref = &mv_ref_search[i]; + if (is_inside(tile, mi_col, mi_row, cm->mi_rows, mv_ref)) { + const MODE_INFO *const candidate_mi = + xd->mi[mv_ref->col + mv_ref->row * xd->mi_stride]; + // Keep counts for entropy encoding. + context_counter += mode_2_counter[candidate_mi->mode]; + different_ref_found = 1; + + if (candidate_mi->ref_frame[0] == ref_frame) + ADD_MV_REF_LIST(get_sub_block_mv(candidate_mi, 0, mv_ref->col, -1), + refmv_count, mv_ref_list, Done); + } + } + + const_motion = 1; + + // Check the rest of the neighbors in much the same way + // as before except we don't need to keep track of sub blocks or + // mode counts. + for (; i < MVREF_NEIGHBOURS && !refmv_count; ++i) { + const POSITION *const mv_ref = &mv_ref_search[i]; + if (is_inside(tile, mi_col, mi_row, cm->mi_rows, mv_ref)) { + const MODE_INFO *const candidate_mi = + xd->mi[mv_ref->col + mv_ref->row * xd->mi_stride]; + different_ref_found = 1; + + if (candidate_mi->ref_frame[0] == ref_frame) + ADD_MV_REF_LIST(candidate_mi->mv[0], refmv_count, mv_ref_list, Done); + } + } + + // Since we couldn't find 2 mvs from the same reference frame + // go back through the neighbors and find motion vectors from + // different reference frames. + if (different_ref_found && !refmv_count) { + for (i = 0; i < MVREF_NEIGHBOURS; ++i) { + const POSITION *mv_ref = &mv_ref_search[i]; + if (is_inside(tile, mi_col, mi_row, cm->mi_rows, mv_ref)) { + const MODE_INFO *const candidate_mi = + xd->mi[mv_ref->col + mv_ref->row * xd->mi_stride]; + + // If the candidate is INTRA we don't want to consider its mv. + IF_DIFF_REF_FRAME_ADD_MV(candidate_mi, ref_frame, ref_sign_bias, + refmv_count, mv_ref_list, Done); + } + } + } + if (use_base_mv && + !cpi->svc.layer_context[cpi->svc.temporal_layer_id].is_key_frame && + ref_frame == LAST_FRAME) { + // Get base layer mv. + MV_REF *candidate = + &cm->prev_frame + ->mvs[(mi_col >> 1) + (mi_row >> 1) * (cm->mi_cols >> 1)]; + if (candidate->mv[0].as_int != INVALID_MV) { + base_mv->as_mv.row = (candidate->mv[0].as_mv.row * 2); + base_mv->as_mv.col = (candidate->mv[0].as_mv.col * 2); + clamp_mv_ref(&base_mv->as_mv, xd); + } else { + base_mv->as_int = INVALID_MV; + } + } + +Done: + + x->mbmi_ext->mode_context[ref_frame] = counter_to_context[context_counter]; + + // Clamp vectors + for (i = 0; i < MAX_MV_REF_CANDIDATES; ++i) + clamp_mv_ref(&mv_ref_list[i].as_mv, xd); + + return const_motion; +} + +static int combined_motion_search(VP9_COMP *cpi, MACROBLOCK *x, + BLOCK_SIZE bsize, int mi_row, int mi_col, + int_mv *tmp_mv, int *rate_mv, + int64_t best_rd_sofar, int use_base_mv) { + MACROBLOCKD *xd = &x->e_mbd; + MODE_INFO *mi = xd->mi[0]; + struct buf_2d backup_yv12[MAX_MB_PLANE] = { { 0, 0 } }; + const int step_param = cpi->sf.mv.fullpel_search_step_param; + const int sadpb = x->sadperbit16; + MV mvp_full; + const int ref = mi->ref_frame[0]; + const MV ref_mv = x->mbmi_ext->ref_mvs[ref][0].as_mv; + MV center_mv; + uint32_t dis; + int rate_mode; + const MvLimits tmp_mv_limits = x->mv_limits; + int rv = 0; + int cost_list[5]; + int search_subpel = 1; + const YV12_BUFFER_CONFIG *scaled_ref_frame = + vp9_get_scaled_ref_frame(cpi, ref); + if (scaled_ref_frame) { + int i; + // Swap out the reference frame for a version that's been scaled to + // match the resolution of the current frame, allowing the existing + // motion search code to be used without additional modifications. + for (i = 0; i < MAX_MB_PLANE; i++) backup_yv12[i] = xd->plane[i].pre[0]; + vp9_setup_pre_planes(xd, 0, scaled_ref_frame, mi_row, mi_col, NULL); + } + vp9_set_mv_search_range(&x->mv_limits, &ref_mv); + + // Limit motion vector for large lightning change. + if (cpi->oxcf.speed > 5 && x->lowvar_highsumdiff) { + x->mv_limits.col_min = VPXMAX(x->mv_limits.col_min, -10); + x->mv_limits.row_min = VPXMAX(x->mv_limits.row_min, -10); + x->mv_limits.col_max = VPXMIN(x->mv_limits.col_max, 10); + x->mv_limits.row_max = VPXMIN(x->mv_limits.row_max, 10); + } + + assert(x->mv_best_ref_index[ref] <= 2); + if (x->mv_best_ref_index[ref] < 2) + mvp_full = x->mbmi_ext->ref_mvs[ref][x->mv_best_ref_index[ref]].as_mv; + else + mvp_full = x->pred_mv[ref]; + + mvp_full.col >>= 3; + mvp_full.row >>= 3; + + if (!use_base_mv) + center_mv = ref_mv; + else + center_mv = tmp_mv->as_mv; + + if (x->sb_use_mv_part) { + tmp_mv->as_mv.row = x->sb_mvrow_part >> 3; + tmp_mv->as_mv.col = x->sb_mvcol_part >> 3; + } else { + vp9_full_pixel_search( + cpi, x, bsize, &mvp_full, step_param, cpi->sf.mv.search_method, sadpb, + cond_cost_list(cpi, cost_list), ¢er_mv, &tmp_mv->as_mv, INT_MAX, 0); + } + + x->mv_limits = tmp_mv_limits; + + // calculate the bit cost on motion vector + mvp_full.row = tmp_mv->as_mv.row * 8; + mvp_full.col = tmp_mv->as_mv.col * 8; + + *rate_mv = vp9_mv_bit_cost(&mvp_full, &ref_mv, x->nmvjointcost, x->mvcost, + MV_COST_WEIGHT); + + rate_mode = + cpi->inter_mode_cost[x->mbmi_ext->mode_context[ref]][INTER_OFFSET(NEWMV)]; + rv = + !(RDCOST(x->rdmult, x->rddiv, (*rate_mv + rate_mode), 0) > best_rd_sofar); + + // For SVC on non-reference frame, avoid subpel for (0, 0) motion. + if (cpi->use_svc && cpi->svc.non_reference_frame) { + if (mvp_full.row == 0 && mvp_full.col == 0) search_subpel = 0; + } + + if (rv && search_subpel) { + int subpel_force_stop = cpi->sf.mv.subpel_force_stop; + if (use_base_mv && cpi->sf.base_mv_aggressive) subpel_force_stop = 2; + cpi->find_fractional_mv_step( + x, &tmp_mv->as_mv, &ref_mv, cpi->common.allow_high_precision_mv, + x->errorperbit, &cpi->fn_ptr[bsize], subpel_force_stop, + cpi->sf.mv.subpel_iters_per_step, cond_cost_list(cpi, cost_list), + x->nmvjointcost, x->mvcost, &dis, &x->pred_sse[ref], NULL, 0, 0); + *rate_mv = vp9_mv_bit_cost(&tmp_mv->as_mv, &ref_mv, x->nmvjointcost, + x->mvcost, MV_COST_WEIGHT); + } + + if (scaled_ref_frame) { + int i; + for (i = 0; i < MAX_MB_PLANE; i++) xd->plane[i].pre[0] = backup_yv12[i]; + } + return rv; +} + +static void block_variance(const uint8_t *src, int src_stride, + const uint8_t *ref, int ref_stride, int w, int h, + unsigned int *sse, int *sum, int block_size, +#if CONFIG_VP9_HIGHBITDEPTH + int use_highbitdepth, vpx_bit_depth_t bd, +#endif + uint32_t *sse8x8, int *sum8x8, uint32_t *var8x8) { + int i, j, k = 0; + + *sse = 0; + *sum = 0; + + for (i = 0; i < h; i += block_size) { + for (j = 0; j < w; j += block_size) { +#if CONFIG_VP9_HIGHBITDEPTH + if (use_highbitdepth) { + switch (bd) { + case VPX_BITS_8: + vpx_highbd_8_get8x8var(src + src_stride * i + j, src_stride, + ref + ref_stride * i + j, ref_stride, + &sse8x8[k], &sum8x8[k]); + break; + case VPX_BITS_10: + vpx_highbd_10_get8x8var(src + src_stride * i + j, src_stride, + ref + ref_stride * i + j, ref_stride, + &sse8x8[k], &sum8x8[k]); + break; + case VPX_BITS_12: + vpx_highbd_12_get8x8var(src + src_stride * i + j, src_stride, + ref + ref_stride * i + j, ref_stride, + &sse8x8[k], &sum8x8[k]); + break; + } + } else { + vpx_get8x8var(src + src_stride * i + j, src_stride, + ref + ref_stride * i + j, ref_stride, &sse8x8[k], + &sum8x8[k]); + } +#else + vpx_get8x8var(src + src_stride * i + j, src_stride, + ref + ref_stride * i + j, ref_stride, &sse8x8[k], + &sum8x8[k]); +#endif + *sse += sse8x8[k]; + *sum += sum8x8[k]; + var8x8[k] = sse8x8[k] - (uint32_t)(((int64_t)sum8x8[k] * sum8x8[k]) >> 6); + k++; + } + } +} + +static void calculate_variance(int bw, int bh, TX_SIZE tx_size, + unsigned int *sse_i, int *sum_i, + unsigned int *var_o, unsigned int *sse_o, + int *sum_o) { + const BLOCK_SIZE unit_size = txsize_to_bsize[tx_size]; + const int nw = 1 << (bw - b_width_log2_lookup[unit_size]); + const int nh = 1 << (bh - b_height_log2_lookup[unit_size]); + int i, j, k = 0; + + for (i = 0; i < nh; i += 2) { + for (j = 0; j < nw; j += 2) { + sse_o[k] = sse_i[i * nw + j] + sse_i[i * nw + j + 1] + + sse_i[(i + 1) * nw + j] + sse_i[(i + 1) * nw + j + 1]; + sum_o[k] = sum_i[i * nw + j] + sum_i[i * nw + j + 1] + + sum_i[(i + 1) * nw + j] + sum_i[(i + 1) * nw + j + 1]; + var_o[k] = sse_o[k] - (uint32_t)(((int64_t)sum_o[k] * sum_o[k]) >> + (b_width_log2_lookup[unit_size] + + b_height_log2_lookup[unit_size] + 6)); + k++; + } + } +} + +// Adjust the ac_thr according to speed, width, height and normalized sum +static int ac_thr_factor(const int speed, const int width, const int height, + const int norm_sum) { + if (speed >= 8 && norm_sum < 5) { + if (width <= 640 && height <= 480) + return 4; + else + return 2; + } + return 1; +} + +static void model_rd_for_sb_y_large(VP9_COMP *cpi, BLOCK_SIZE bsize, + MACROBLOCK *x, MACROBLOCKD *xd, + int *out_rate_sum, int64_t *out_dist_sum, + unsigned int *var_y, unsigned int *sse_y, + int mi_row, int mi_col, int *early_term, + int *flag_preduv_computed) { + // Note our transform coeffs are 8 times an orthogonal transform. + // Hence quantizer step is also 8 times. To get effective quantizer + // we need to divide by 8 before sending to modeling function. + unsigned int sse; + int rate; + int64_t dist; + struct macroblock_plane *const p = &x->plane[0]; + struct macroblockd_plane *const pd = &xd->plane[0]; + const uint32_t dc_quant = pd->dequant[0]; + const uint32_t ac_quant = pd->dequant[1]; + const int64_t dc_thr = dc_quant * dc_quant >> 6; + int64_t ac_thr = ac_quant * ac_quant >> 6; + unsigned int var; + int sum; + int skip_dc = 0; + + const int bw = b_width_log2_lookup[bsize]; + const int bh = b_height_log2_lookup[bsize]; + const int num8x8 = 1 << (bw + bh - 2); + unsigned int sse8x8[64] = { 0 }; + int sum8x8[64] = { 0 }; + unsigned int var8x8[64] = { 0 }; + TX_SIZE tx_size; + int i, k; +#if CONFIG_VP9_HIGHBITDEPTH + const vpx_bit_depth_t bd = cpi->common.bit_depth; +#endif + // Calculate variance for whole partition, and also save 8x8 blocks' variance + // to be used in following transform skipping test. + block_variance(p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride, + 4 << bw, 4 << bh, &sse, &sum, 8, +#if CONFIG_VP9_HIGHBITDEPTH + cpi->common.use_highbitdepth, bd, +#endif + sse8x8, sum8x8, var8x8); + var = sse - (unsigned int)(((int64_t)sum * sum) >> (bw + bh + 4)); + + *var_y = var; + *sse_y = sse; + +#if CONFIG_VP9_TEMPORAL_DENOISING + if (cpi->oxcf.noise_sensitivity > 0 && denoise_svc(cpi) && + cpi->oxcf.speed > 5) + ac_thr = vp9_scale_acskip_thresh(ac_thr, cpi->denoiser.denoising_level, + (abs(sum) >> (bw + bh)), + cpi->svc.temporal_layer_id); + else + ac_thr *= ac_thr_factor(cpi->oxcf.speed, cpi->common.width, + cpi->common.height, abs(sum) >> (bw + bh)); +#else + ac_thr *= ac_thr_factor(cpi->oxcf.speed, cpi->common.width, + cpi->common.height, abs(sum) >> (bw + bh)); +#endif + + if (cpi->common.tx_mode == TX_MODE_SELECT) { + if (sse > (var << 2)) + tx_size = VPXMIN(max_txsize_lookup[bsize], + tx_mode_to_biggest_tx_size[cpi->common.tx_mode]); + else + tx_size = TX_8X8; + + if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && + cyclic_refresh_segment_id_boosted(xd->mi[0]->segment_id)) + tx_size = TX_8X8; + else if (tx_size > TX_16X16) + tx_size = TX_16X16; + } else { + tx_size = VPXMIN(max_txsize_lookup[bsize], + tx_mode_to_biggest_tx_size[cpi->common.tx_mode]); + } + + assert(tx_size >= TX_8X8); + xd->mi[0]->tx_size = tx_size; + + // Evaluate if the partition block is a skippable block in Y plane. + { + unsigned int sse16x16[16] = { 0 }; + int sum16x16[16] = { 0 }; + unsigned int var16x16[16] = { 0 }; + const int num16x16 = num8x8 >> 2; + + unsigned int sse32x32[4] = { 0 }; + int sum32x32[4] = { 0 }; + unsigned int var32x32[4] = { 0 }; + const int num32x32 = num8x8 >> 4; + + int ac_test = 1; + int dc_test = 1; + const int num = (tx_size == TX_8X8) + ? num8x8 + : ((tx_size == TX_16X16) ? num16x16 : num32x32); + const unsigned int *sse_tx = + (tx_size == TX_8X8) ? sse8x8 + : ((tx_size == TX_16X16) ? sse16x16 : sse32x32); + const unsigned int *var_tx = + (tx_size == TX_8X8) ? var8x8 + : ((tx_size == TX_16X16) ? var16x16 : var32x32); + + // Calculate variance if tx_size > TX_8X8 + if (tx_size >= TX_16X16) + calculate_variance(bw, bh, TX_8X8, sse8x8, sum8x8, var16x16, sse16x16, + sum16x16); + if (tx_size == TX_32X32) + calculate_variance(bw, bh, TX_16X16, sse16x16, sum16x16, var32x32, + sse32x32, sum32x32); + + // Skipping test + x->skip_txfm[0] = SKIP_TXFM_NONE; + for (k = 0; k < num; k++) + // Check if all ac coefficients can be quantized to zero. + if (!(var_tx[k] < ac_thr || var == 0)) { + ac_test = 0; + break; + } + + for (k = 0; k < num; k++) + // Check if dc coefficient can be quantized to zero. + if (!(sse_tx[k] - var_tx[k] < dc_thr || sse == var)) { + dc_test = 0; + break; + } + + if (ac_test) { + x->skip_txfm[0] = SKIP_TXFM_AC_ONLY; + + if (dc_test) x->skip_txfm[0] = SKIP_TXFM_AC_DC; + } else if (dc_test) { + skip_dc = 1; + } + } + + if (x->skip_txfm[0] == SKIP_TXFM_AC_DC) { + int skip_uv[2] = { 0 }; + unsigned int var_uv[2]; + unsigned int sse_uv[2]; + + *out_rate_sum = 0; + *out_dist_sum = sse << 4; + + // Transform skipping test in UV planes. + for (i = 1; i <= 2; i++) { + if (cpi->oxcf.speed < 8 || x->color_sensitivity[i - 1]) { + struct macroblock_plane *const p = &x->plane[i]; + struct macroblockd_plane *const pd = &xd->plane[i]; + const TX_SIZE uv_tx_size = get_uv_tx_size(xd->mi[0], pd); + const BLOCK_SIZE unit_size = txsize_to_bsize[uv_tx_size]; + const BLOCK_SIZE uv_bsize = get_plane_block_size(bsize, pd); + const int uv_bw = b_width_log2_lookup[uv_bsize]; + const int uv_bh = b_height_log2_lookup[uv_bsize]; + const int sf = (uv_bw - b_width_log2_lookup[unit_size]) + + (uv_bh - b_height_log2_lookup[unit_size]); + const uint32_t uv_dc_thr = pd->dequant[0] * pd->dequant[0] >> (6 - sf); + const uint32_t uv_ac_thr = pd->dequant[1] * pd->dequant[1] >> (6 - sf); + int j = i - 1; + + vp9_build_inter_predictors_sbp(xd, mi_row, mi_col, bsize, i); + flag_preduv_computed[i - 1] = 1; + var_uv[j] = cpi->fn_ptr[uv_bsize].vf( + p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride, &sse_uv[j]); + + if ((var_uv[j] < uv_ac_thr || var_uv[j] == 0) && + (sse_uv[j] - var_uv[j] < uv_dc_thr || sse_uv[j] == var_uv[j])) + skip_uv[j] = 1; + else + break; + } else { + skip_uv[i - 1] = 1; + } + } + + // If the transform in YUV planes are skippable, the mode search checks + // fewer inter modes and doesn't check intra modes. + if (skip_uv[0] & skip_uv[1]) { + *early_term = 1; + } + return; + } + + if (!skip_dc) { +#if CONFIG_VP9_HIGHBITDEPTH + vp9_model_rd_from_var_lapndz(sse - var, num_pels_log2_lookup[bsize], + dc_quant >> (xd->bd - 5), &rate, &dist); +#else + vp9_model_rd_from_var_lapndz(sse - var, num_pels_log2_lookup[bsize], + dc_quant >> 3, &rate, &dist); +#endif // CONFIG_VP9_HIGHBITDEPTH + } + + if (!skip_dc) { + *out_rate_sum = rate >> 1; + *out_dist_sum = dist << 3; + } else { + *out_rate_sum = 0; + *out_dist_sum = (sse - var) << 4; + } + +#if CONFIG_VP9_HIGHBITDEPTH + vp9_model_rd_from_var_lapndz(var, num_pels_log2_lookup[bsize], + ac_quant >> (xd->bd - 5), &rate, &dist); +#else + vp9_model_rd_from_var_lapndz(var, num_pels_log2_lookup[bsize], ac_quant >> 3, + &rate, &dist); +#endif // CONFIG_VP9_HIGHBITDEPTH + + *out_rate_sum += rate; + *out_dist_sum += dist << 4; +} + +static void model_rd_for_sb_y(VP9_COMP *cpi, BLOCK_SIZE bsize, MACROBLOCK *x, + MACROBLOCKD *xd, int *out_rate_sum, + int64_t *out_dist_sum, unsigned int *var_y, + unsigned int *sse_y) { + // Note our transform coeffs are 8 times an orthogonal transform. + // Hence quantizer step is also 8 times. To get effective quantizer + // we need to divide by 8 before sending to modeling function. + unsigned int sse; + int rate; + int64_t dist; + struct macroblock_plane *const p = &x->plane[0]; + struct macroblockd_plane *const pd = &xd->plane[0]; + const int64_t dc_thr = p->quant_thred[0] >> 6; + const int64_t ac_thr = p->quant_thred[1] >> 6; + const uint32_t dc_quant = pd->dequant[0]; + const uint32_t ac_quant = pd->dequant[1]; + unsigned int var = cpi->fn_ptr[bsize].vf(p->src.buf, p->src.stride, + pd->dst.buf, pd->dst.stride, &sse); + int skip_dc = 0; + + *var_y = var; + *sse_y = sse; + + if (cpi->common.tx_mode == TX_MODE_SELECT) { + if (sse > (var << 2)) + xd->mi[0]->tx_size = + VPXMIN(max_txsize_lookup[bsize], + tx_mode_to_biggest_tx_size[cpi->common.tx_mode]); + else + xd->mi[0]->tx_size = TX_8X8; + + if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && + cyclic_refresh_segment_id_boosted(xd->mi[0]->segment_id)) + xd->mi[0]->tx_size = TX_8X8; + else if (xd->mi[0]->tx_size > TX_16X16) + xd->mi[0]->tx_size = TX_16X16; + } else { + xd->mi[0]->tx_size = + VPXMIN(max_txsize_lookup[bsize], + tx_mode_to_biggest_tx_size[cpi->common.tx_mode]); + } + + // Evaluate if the partition block is a skippable block in Y plane. + { + const BLOCK_SIZE unit_size = txsize_to_bsize[xd->mi[0]->tx_size]; + const unsigned int num_blk_log2 = + (b_width_log2_lookup[bsize] - b_width_log2_lookup[unit_size]) + + (b_height_log2_lookup[bsize] - b_height_log2_lookup[unit_size]); + const unsigned int sse_tx = sse >> num_blk_log2; + const unsigned int var_tx = var >> num_blk_log2; + + x->skip_txfm[0] = SKIP_TXFM_NONE; + // Check if all ac coefficients can be quantized to zero. + if (var_tx < ac_thr || var == 0) { + x->skip_txfm[0] = SKIP_TXFM_AC_ONLY; + // Check if dc coefficient can be quantized to zero. + if (sse_tx - var_tx < dc_thr || sse == var) + x->skip_txfm[0] = SKIP_TXFM_AC_DC; + } else { + if (sse_tx - var_tx < dc_thr || sse == var) skip_dc = 1; + } + } + + if (x->skip_txfm[0] == SKIP_TXFM_AC_DC) { + *out_rate_sum = 0; + *out_dist_sum = sse << 4; + return; + } + + if (!skip_dc) { +#if CONFIG_VP9_HIGHBITDEPTH + vp9_model_rd_from_var_lapndz(sse - var, num_pels_log2_lookup[bsize], + dc_quant >> (xd->bd - 5), &rate, &dist); +#else + vp9_model_rd_from_var_lapndz(sse - var, num_pels_log2_lookup[bsize], + dc_quant >> 3, &rate, &dist); +#endif // CONFIG_VP9_HIGHBITDEPTH + } + + if (!skip_dc) { + *out_rate_sum = rate >> 1; + *out_dist_sum = dist << 3; + } else { + *out_rate_sum = 0; + *out_dist_sum = (sse - var) << 4; + } + +#if CONFIG_VP9_HIGHBITDEPTH + vp9_model_rd_from_var_lapndz(var, num_pels_log2_lookup[bsize], + ac_quant >> (xd->bd - 5), &rate, &dist); +#else + vp9_model_rd_from_var_lapndz(var, num_pels_log2_lookup[bsize], ac_quant >> 3, + &rate, &dist); +#endif // CONFIG_VP9_HIGHBITDEPTH + + *out_rate_sum += rate; + *out_dist_sum += dist << 4; +} + +static void block_yrd(VP9_COMP *cpi, MACROBLOCK *x, RD_COST *this_rdc, + int *skippable, int64_t *sse, BLOCK_SIZE bsize, + TX_SIZE tx_size, int rd_computed) { + MACROBLOCKD *xd = &x->e_mbd; + const struct macroblockd_plane *pd = &xd->plane[0]; + struct macroblock_plane *const p = &x->plane[0]; + const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize]; + const int num_4x4_h = num_4x4_blocks_high_lookup[bsize]; + const int step = 1 << (tx_size << 1); + const int block_step = (1 << tx_size); + int block = 0, r, c; + const int max_blocks_wide = + num_4x4_w + (xd->mb_to_right_edge >= 0 ? 0 : xd->mb_to_right_edge >> 5); + const int max_blocks_high = + num_4x4_h + (xd->mb_to_bottom_edge >= 0 ? 0 : xd->mb_to_bottom_edge >> 5); + int eob_cost = 0; + const int bw = 4 * num_4x4_w; + const int bh = 4 * num_4x4_h; + +#if CONFIG_VP9_HIGHBITDEPTH + // TODO(jingning): Implement the high bit-depth Hadamard transforms and + // remove this check condition. + // TODO(marpan): Use this path (model_rd) for 8bit under certain conditions + // for now, as the vp9_quantize_fp below for highbitdepth build is slow. + if (xd->bd != 8 || + (cpi->oxcf.speed > 5 && cpi->common.frame_type != KEY_FRAME && + bsize < BLOCK_32X32)) { + unsigned int var_y, sse_y; + (void)tx_size; + if (!rd_computed) + model_rd_for_sb_y(cpi, bsize, x, xd, &this_rdc->rate, &this_rdc->dist, + &var_y, &sse_y); + *sse = INT_MAX; + *skippable = 0; + return; + } +#endif + + if (cpi->sf.use_simple_block_yrd && cpi->common.frame_type != KEY_FRAME && + (bsize < BLOCK_32X32 || + (cpi->use_svc && + (bsize < BLOCK_32X32 || cpi->svc.temporal_layer_id > 0)))) { + unsigned int var_y, sse_y; + (void)tx_size; + if (!rd_computed) + model_rd_for_sb_y(cpi, bsize, x, xd, &this_rdc->rate, &this_rdc->dist, + &var_y, &sse_y); + *sse = INT_MAX; + *skippable = 0; + return; + } + + (void)cpi; + + // The max tx_size passed in is TX_16X16. + assert(tx_size != TX_32X32); + + vpx_subtract_block(bh, bw, p->src_diff, bw, p->src.buf, p->src.stride, + pd->dst.buf, pd->dst.stride); + *skippable = 1; + // Keep track of the row and column of the blocks we use so that we know + // if we are in the unrestricted motion border. + for (r = 0; r < max_blocks_high; r += block_step) { + for (c = 0; c < num_4x4_w; c += block_step) { + if (c < max_blocks_wide) { + const scan_order *const scan_order = &vp9_default_scan_orders[tx_size]; + tran_low_t *const coeff = BLOCK_OFFSET(p->coeff, block); + tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block); + tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); + uint16_t *const eob = &p->eobs[block]; + const int diff_stride = bw; + const int16_t *src_diff; + src_diff = &p->src_diff[(r * diff_stride + c) << 2]; + + switch (tx_size) { + case TX_16X16: + vpx_hadamard_16x16(src_diff, diff_stride, coeff); + vp9_quantize_fp(coeff, 256, x->skip_block, p->round_fp, p->quant_fp, + qcoeff, dqcoeff, pd->dequant, eob, scan_order->scan, + scan_order->iscan); + break; + case TX_8X8: + vpx_hadamard_8x8(src_diff, diff_stride, coeff); + vp9_quantize_fp(coeff, 64, x->skip_block, p->round_fp, p->quant_fp, + qcoeff, dqcoeff, pd->dequant, eob, scan_order->scan, + scan_order->iscan); + break; + case TX_4X4: + x->fwd_txfm4x4(src_diff, coeff, diff_stride); + vp9_quantize_fp(coeff, 16, x->skip_block, p->round_fp, p->quant_fp, + qcoeff, dqcoeff, pd->dequant, eob, scan_order->scan, + scan_order->iscan); + break; + default: assert(0); break; + } + *skippable &= (*eob == 0); + eob_cost += 1; + } + block += step; + } + } + + this_rdc->rate = 0; + if (*sse < INT64_MAX) { + *sse = (*sse << 6) >> 2; + if (*skippable) { + this_rdc->dist = *sse; + return; + } + } + + block = 0; + this_rdc->dist = 0; + for (r = 0; r < max_blocks_high; r += block_step) { + for (c = 0; c < num_4x4_w; c += block_step) { + if (c < max_blocks_wide) { + tran_low_t *const coeff = BLOCK_OFFSET(p->coeff, block); + tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block); + tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); + uint16_t *const eob = &p->eobs[block]; + + if (*eob == 1) + this_rdc->rate += (int)abs(qcoeff[0]); + else if (*eob > 1) + this_rdc->rate += vpx_satd(qcoeff, step << 4); + + this_rdc->dist += vp9_block_error_fp(coeff, dqcoeff, step << 4) >> 2; + } + block += step; + } + } + + // If skippable is set, rate gets clobbered later. + this_rdc->rate <<= (2 + VP9_PROB_COST_SHIFT); + this_rdc->rate += (eob_cost << VP9_PROB_COST_SHIFT); +} + +static void model_rd_for_sb_uv(VP9_COMP *cpi, BLOCK_SIZE plane_bsize, + MACROBLOCK *x, MACROBLOCKD *xd, + RD_COST *this_rdc, unsigned int *var_y, + unsigned int *sse_y, int start_plane, + int stop_plane) { + // Note our transform coeffs are 8 times an orthogonal transform. + // Hence quantizer step is also 8 times. To get effective quantizer + // we need to divide by 8 before sending to modeling function. + unsigned int sse; + int rate; + int64_t dist; + int i; +#if CONFIG_VP9_HIGHBITDEPTH + uint64_t tot_var = *var_y; + uint64_t tot_sse = *sse_y; +#else + uint32_t tot_var = *var_y; + uint32_t tot_sse = *sse_y; +#endif + + this_rdc->rate = 0; + this_rdc->dist = 0; + + for (i = start_plane; i <= stop_plane; ++i) { + struct macroblock_plane *const p = &x->plane[i]; + struct macroblockd_plane *const pd = &xd->plane[i]; + const uint32_t dc_quant = pd->dequant[0]; + const uint32_t ac_quant = pd->dequant[1]; + const BLOCK_SIZE bs = plane_bsize; + unsigned int var; + if (!x->color_sensitivity[i - 1]) continue; + + var = cpi->fn_ptr[bs].vf(p->src.buf, p->src.stride, pd->dst.buf, + pd->dst.stride, &sse); + assert(sse >= var); + tot_var += var; + tot_sse += sse; + +#if CONFIG_VP9_HIGHBITDEPTH + vp9_model_rd_from_var_lapndz(sse - var, num_pels_log2_lookup[bs], + dc_quant >> (xd->bd - 5), &rate, &dist); +#else + vp9_model_rd_from_var_lapndz(sse - var, num_pels_log2_lookup[bs], + dc_quant >> 3, &rate, &dist); +#endif // CONFIG_VP9_HIGHBITDEPTH + + this_rdc->rate += rate >> 1; + this_rdc->dist += dist << 3; + +#if CONFIG_VP9_HIGHBITDEPTH + vp9_model_rd_from_var_lapndz(var, num_pels_log2_lookup[bs], + ac_quant >> (xd->bd - 5), &rate, &dist); +#else + vp9_model_rd_from_var_lapndz(var, num_pels_log2_lookup[bs], ac_quant >> 3, + &rate, &dist); +#endif // CONFIG_VP9_HIGHBITDEPTH + + this_rdc->rate += rate; + this_rdc->dist += dist << 4; + } + +#if CONFIG_VP9_HIGHBITDEPTH + *var_y = tot_var > UINT32_MAX ? UINT32_MAX : (uint32_t)tot_var; + *sse_y = tot_sse > UINT32_MAX ? UINT32_MAX : (uint32_t)tot_sse; +#else + *var_y = tot_var; + *sse_y = tot_sse; +#endif +} + +static int get_pred_buffer(PRED_BUFFER *p, int len) { + int i; + + for (i = 0; i < len; i++) { + if (!p[i].in_use) { + p[i].in_use = 1; + return i; + } + } + return -1; +} + +static void free_pred_buffer(PRED_BUFFER *p) { + if (p != NULL) p->in_use = 0; +} + +static void encode_breakout_test( + VP9_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize, int mi_row, int mi_col, + MV_REFERENCE_FRAME ref_frame, PREDICTION_MODE this_mode, unsigned int var_y, + unsigned int sse_y, struct buf_2d yv12_mb[][MAX_MB_PLANE], int *rate, + int64_t *dist, int *flag_preduv_computed) { + MACROBLOCKD *xd = &x->e_mbd; + MODE_INFO *const mi = xd->mi[0]; + const BLOCK_SIZE uv_size = get_plane_block_size(bsize, &xd->plane[1]); + unsigned int var = var_y, sse = sse_y; + // Skipping threshold for ac. + unsigned int thresh_ac; + // Skipping threshold for dc. + unsigned int thresh_dc; + int motion_low = 1; + if (cpi->use_svc && ref_frame == GOLDEN_FRAME) return; + if (mi->mv[0].as_mv.row > 64 || mi->mv[0].as_mv.row < -64 || + mi->mv[0].as_mv.col > 64 || mi->mv[0].as_mv.col < -64) + motion_low = 0; + if (x->encode_breakout > 0 && motion_low == 1) { + // Set a maximum for threshold to avoid big PSNR loss in low bit rate + // case. Use extreme low threshold for static frames to limit + // skipping. + const unsigned int max_thresh = 36000; + // The encode_breakout input + const unsigned int min_thresh = + VPXMIN(((unsigned int)x->encode_breakout << 4), max_thresh); +#if CONFIG_VP9_HIGHBITDEPTH + const int shift = (xd->bd << 1) - 16; +#endif + + // Calculate threshold according to dequant value. + thresh_ac = (xd->plane[0].dequant[1] * xd->plane[0].dequant[1]) >> 3; +#if CONFIG_VP9_HIGHBITDEPTH + if ((xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) && shift > 0) { + thresh_ac = ROUND_POWER_OF_TWO(thresh_ac, shift); + } +#endif // CONFIG_VP9_HIGHBITDEPTH + thresh_ac = clamp(thresh_ac, min_thresh, max_thresh); + + // Adjust ac threshold according to partition size. + thresh_ac >>= + 8 - (b_width_log2_lookup[bsize] + b_height_log2_lookup[bsize]); + + thresh_dc = (xd->plane[0].dequant[0] * xd->plane[0].dequant[0] >> 6); +#if CONFIG_VP9_HIGHBITDEPTH + if ((xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) && shift > 0) { + thresh_dc = ROUND_POWER_OF_TWO(thresh_dc, shift); + } +#endif // CONFIG_VP9_HIGHBITDEPTH + } else { + thresh_ac = 0; + thresh_dc = 0; + } + + // Y skipping condition checking for ac and dc. + if (var <= thresh_ac && (sse - var) <= thresh_dc) { + unsigned int sse_u, sse_v; + unsigned int var_u, var_v; + unsigned int thresh_ac_uv = thresh_ac; + unsigned int thresh_dc_uv = thresh_dc; + if (x->sb_is_skin) { + thresh_ac_uv = 0; + thresh_dc_uv = 0; + } + + if (!flag_preduv_computed[0] || !flag_preduv_computed[1]) { + xd->plane[1].pre[0] = yv12_mb[ref_frame][1]; + xd->plane[2].pre[0] = yv12_mb[ref_frame][2]; + vp9_build_inter_predictors_sbuv(xd, mi_row, mi_col, bsize); + } + + var_u = cpi->fn_ptr[uv_size].vf(x->plane[1].src.buf, x->plane[1].src.stride, + xd->plane[1].dst.buf, + xd->plane[1].dst.stride, &sse_u); + + // U skipping condition checking + if (((var_u << 2) <= thresh_ac_uv) && (sse_u - var_u <= thresh_dc_uv)) { + var_v = cpi->fn_ptr[uv_size].vf( + x->plane[2].src.buf, x->plane[2].src.stride, xd->plane[2].dst.buf, + xd->plane[2].dst.stride, &sse_v); + + // V skipping condition checking + if (((var_v << 2) <= thresh_ac_uv) && (sse_v - var_v <= thresh_dc_uv)) { + x->skip = 1; + + // The cost of skip bit needs to be added. + *rate = cpi->inter_mode_cost[x->mbmi_ext->mode_context[ref_frame]] + [INTER_OFFSET(this_mode)]; + + // More on this part of rate + // rate += vp9_cost_bit(vp9_get_skip_prob(cm, xd), 1); + + // Scaling factor for SSE from spatial domain to frequency + // domain is 16. Adjust distortion accordingly. + // TODO(yunqingwang): In this function, only y-plane dist is + // calculated. + *dist = (sse << 4); // + ((sse_u + sse_v) << 4); + + // *disable_skip = 1; + } + } + } +} + +struct estimate_block_intra_args { + VP9_COMP *cpi; + MACROBLOCK *x; + PREDICTION_MODE mode; + int skippable; + RD_COST *rdc; +}; + +static void estimate_block_intra(int plane, int block, int row, int col, + BLOCK_SIZE plane_bsize, TX_SIZE tx_size, + void *arg) { + struct estimate_block_intra_args *const args = arg; + VP9_COMP *const cpi = args->cpi; + MACROBLOCK *const x = args->x; + MACROBLOCKD *const xd = &x->e_mbd; + struct macroblock_plane *const p = &x->plane[0]; + struct macroblockd_plane *const pd = &xd->plane[0]; + const BLOCK_SIZE bsize_tx = txsize_to_bsize[tx_size]; + uint8_t *const src_buf_base = p->src.buf; + uint8_t *const dst_buf_base = pd->dst.buf; + const int src_stride = p->src.stride; + const int dst_stride = pd->dst.stride; + RD_COST this_rdc; + + (void)block; + + p->src.buf = &src_buf_base[4 * (row * src_stride + col)]; + pd->dst.buf = &dst_buf_base[4 * (row * dst_stride + col)]; + // Use source buffer as an approximation for the fully reconstructed buffer. + vp9_predict_intra_block(xd, b_width_log2_lookup[plane_bsize], tx_size, + args->mode, x->skip_encode ? p->src.buf : pd->dst.buf, + x->skip_encode ? src_stride : dst_stride, pd->dst.buf, + dst_stride, col, row, plane); + + if (plane == 0) { + int64_t this_sse = INT64_MAX; + // TODO(jingning): This needs further refactoring. + block_yrd(cpi, x, &this_rdc, &args->skippable, &this_sse, bsize_tx, + VPXMIN(tx_size, TX_16X16), 0); + } else { + unsigned int var = 0; + unsigned int sse = 0; + model_rd_for_sb_uv(cpi, plane_bsize, x, xd, &this_rdc, &var, &sse, plane, + plane); + } + + p->src.buf = src_buf_base; + pd->dst.buf = dst_buf_base; + args->rdc->rate += this_rdc.rate; + args->rdc->dist += this_rdc.dist; +} + +static const THR_MODES mode_idx[MAX_REF_FRAMES][4] = { + { THR_DC, THR_V_PRED, THR_H_PRED, THR_TM }, + { THR_NEARESTMV, THR_NEARMV, THR_ZEROMV, THR_NEWMV }, + { THR_NEARESTG, THR_NEARG, THR_ZEROG, THR_NEWG }, + { THR_NEARESTA, THR_NEARA, THR_ZEROA, THR_NEWA }, +}; + +static const PREDICTION_MODE intra_mode_list[] = { DC_PRED, V_PRED, H_PRED, + TM_PRED }; + +static int mode_offset(const PREDICTION_MODE mode) { + if (mode >= NEARESTMV) { + return INTER_OFFSET(mode); + } else { + switch (mode) { + case DC_PRED: return 0; + case V_PRED: return 1; + case H_PRED: return 2; + case TM_PRED: return 3; + default: return -1; + } + } +} + +static INLINE int rd_less_than_thresh_row_mt(int64_t best_rd, int thresh, + const int *const thresh_fact) { + int is_rd_less_than_thresh; + is_rd_less_than_thresh = + best_rd < ((int64_t)thresh * (*thresh_fact) >> 5) || thresh == INT_MAX; + return is_rd_less_than_thresh; +} + +static INLINE void update_thresh_freq_fact_row_mt( + VP9_COMP *cpi, TileDataEnc *tile_data, int source_variance, + int thresh_freq_fact_idx, MV_REFERENCE_FRAME ref_frame, + THR_MODES best_mode_idx, PREDICTION_MODE mode) { + THR_MODES thr_mode_idx = mode_idx[ref_frame][mode_offset(mode)]; + int freq_fact_idx = thresh_freq_fact_idx + thr_mode_idx; + int *freq_fact = &tile_data->row_base_thresh_freq_fact[freq_fact_idx]; + if (thr_mode_idx == best_mode_idx) + *freq_fact -= (*freq_fact >> 4); + else if (cpi->sf.limit_newmv_early_exit && mode == NEWMV && + ref_frame == LAST_FRAME && source_variance < 5) { + *freq_fact = VPXMIN(*freq_fact + RD_THRESH_INC, 32); + } else { + *freq_fact = VPXMIN(*freq_fact + RD_THRESH_INC, + cpi->sf.adaptive_rd_thresh * RD_THRESH_MAX_FACT); + } +} + +static INLINE void update_thresh_freq_fact( + VP9_COMP *cpi, TileDataEnc *tile_data, int source_variance, + BLOCK_SIZE bsize, MV_REFERENCE_FRAME ref_frame, THR_MODES best_mode_idx, + PREDICTION_MODE mode) { + THR_MODES thr_mode_idx = mode_idx[ref_frame][mode_offset(mode)]; + int *freq_fact = &tile_data->thresh_freq_fact[bsize][thr_mode_idx]; + if (thr_mode_idx == best_mode_idx) + *freq_fact -= (*freq_fact >> 4); + else if (cpi->sf.limit_newmv_early_exit && mode == NEWMV && + ref_frame == LAST_FRAME && source_variance < 5) { + *freq_fact = VPXMIN(*freq_fact + RD_THRESH_INC, 32); + } else { + *freq_fact = VPXMIN(*freq_fact + RD_THRESH_INC, + cpi->sf.adaptive_rd_thresh * RD_THRESH_MAX_FACT); + } +} + +void vp9_pick_intra_mode(VP9_COMP *cpi, MACROBLOCK *x, RD_COST *rd_cost, + BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx) { + MACROBLOCKD *const xd = &x->e_mbd; + MODE_INFO *const mi = xd->mi[0]; + RD_COST this_rdc, best_rdc; + PREDICTION_MODE this_mode; + struct estimate_block_intra_args args = { cpi, x, DC_PRED, 1, 0 }; + const TX_SIZE intra_tx_size = + VPXMIN(max_txsize_lookup[bsize], + tx_mode_to_biggest_tx_size[cpi->common.tx_mode]); + MODE_INFO *const mic = xd->mi[0]; + int *bmode_costs; + const MODE_INFO *above_mi = xd->above_mi; + const MODE_INFO *left_mi = xd->left_mi; + const PREDICTION_MODE A = vp9_above_block_mode(mic, above_mi, 0); + const PREDICTION_MODE L = vp9_left_block_mode(mic, left_mi, 0); + bmode_costs = cpi->y_mode_costs[A][L]; + + (void)ctx; + vp9_rd_cost_reset(&best_rdc); + vp9_rd_cost_reset(&this_rdc); + + mi->ref_frame[0] = INTRA_FRAME; + // Initialize interp_filter here so we do not have to check for inter block + // modes in get_pred_context_switchable_interp() + mi->interp_filter = SWITCHABLE_FILTERS; + + mi->mv[0].as_int = INVALID_MV; + mi->uv_mode = DC_PRED; + memset(x->skip_txfm, 0, sizeof(x->skip_txfm)); + + // Change the limit of this loop to add other intra prediction + // mode tests. + for (this_mode = DC_PRED; this_mode <= H_PRED; ++this_mode) { + this_rdc.dist = this_rdc.rate = 0; + args.mode = this_mode; + args.skippable = 1; + args.rdc = &this_rdc; + mi->tx_size = intra_tx_size; + vp9_foreach_transformed_block_in_plane(xd, bsize, 0, estimate_block_intra, + &args); + if (args.skippable) { + x->skip_txfm[0] = SKIP_TXFM_AC_DC; + this_rdc.rate = vp9_cost_bit(vp9_get_skip_prob(&cpi->common, xd), 1); + } else { + x->skip_txfm[0] = SKIP_TXFM_NONE; + this_rdc.rate += vp9_cost_bit(vp9_get_skip_prob(&cpi->common, xd), 0); + } + this_rdc.rate += bmode_costs[this_mode]; + this_rdc.rdcost = RDCOST(x->rdmult, x->rddiv, this_rdc.rate, this_rdc.dist); + + if (this_rdc.rdcost < best_rdc.rdcost) { + best_rdc = this_rdc; + mi->mode = this_mode; + } + } + + *rd_cost = best_rdc; +} + +static void init_ref_frame_cost(VP9_COMMON *const cm, MACROBLOCKD *const xd, + int ref_frame_cost[MAX_REF_FRAMES]) { + vpx_prob intra_inter_p = vp9_get_intra_inter_prob(cm, xd); + vpx_prob ref_single_p1 = vp9_get_pred_prob_single_ref_p1(cm, xd); + vpx_prob ref_single_p2 = vp9_get_pred_prob_single_ref_p2(cm, xd); + + ref_frame_cost[INTRA_FRAME] = vp9_cost_bit(intra_inter_p, 0); + ref_frame_cost[LAST_FRAME] = ref_frame_cost[GOLDEN_FRAME] = + ref_frame_cost[ALTREF_FRAME] = vp9_cost_bit(intra_inter_p, 1); + + ref_frame_cost[LAST_FRAME] += vp9_cost_bit(ref_single_p1, 0); + ref_frame_cost[GOLDEN_FRAME] += vp9_cost_bit(ref_single_p1, 1); + ref_frame_cost[ALTREF_FRAME] += vp9_cost_bit(ref_single_p1, 1); + ref_frame_cost[GOLDEN_FRAME] += vp9_cost_bit(ref_single_p2, 0); + ref_frame_cost[ALTREF_FRAME] += vp9_cost_bit(ref_single_p2, 1); +} + +typedef struct { + MV_REFERENCE_FRAME ref_frame; + PREDICTION_MODE pred_mode; +} REF_MODE; + +#define RT_INTER_MODES 12 +static const REF_MODE ref_mode_set[RT_INTER_MODES] = { + { LAST_FRAME, ZEROMV }, { LAST_FRAME, NEARESTMV }, + { GOLDEN_FRAME, ZEROMV }, { LAST_FRAME, NEARMV }, + { LAST_FRAME, NEWMV }, { GOLDEN_FRAME, NEARESTMV }, + { GOLDEN_FRAME, NEARMV }, { GOLDEN_FRAME, NEWMV }, + { ALTREF_FRAME, ZEROMV }, { ALTREF_FRAME, NEARESTMV }, + { ALTREF_FRAME, NEARMV }, { ALTREF_FRAME, NEWMV } +}; + +#define RT_INTER_MODES_SVC 8 +static const REF_MODE ref_mode_set_svc[RT_INTER_MODES_SVC] = { + { LAST_FRAME, ZEROMV }, { LAST_FRAME, NEARESTMV }, + { LAST_FRAME, NEARMV }, { GOLDEN_FRAME, ZEROMV }, + { GOLDEN_FRAME, NEARESTMV }, { GOLDEN_FRAME, NEARMV }, + { LAST_FRAME, NEWMV }, { GOLDEN_FRAME, NEWMV } +}; + +static INLINE void find_predictors( + VP9_COMP *cpi, MACROBLOCK *x, MV_REFERENCE_FRAME ref_frame, + int_mv frame_mv[MB_MODE_COUNT][MAX_REF_FRAMES], + int const_motion[MAX_REF_FRAMES], int *ref_frame_skip_mask, + const int flag_list[4], TileDataEnc *tile_data, int mi_row, int mi_col, + struct buf_2d yv12_mb[4][MAX_MB_PLANE], BLOCK_SIZE bsize, + int force_skip_low_temp_var, int comp_pred_allowed) { + VP9_COMMON *const cm = &cpi->common; + MACROBLOCKD *const xd = &x->e_mbd; + const YV12_BUFFER_CONFIG *yv12 = get_ref_frame_buffer(cpi, ref_frame); + TileInfo *const tile_info = &tile_data->tile_info; + // TODO(jingning) placeholder for inter-frame non-RD mode decision. + x->pred_mv_sad[ref_frame] = INT_MAX; + frame_mv[NEWMV][ref_frame].as_int = INVALID_MV; + frame_mv[ZEROMV][ref_frame].as_int = 0; + // this needs various further optimizations. to be continued.. + if ((cpi->ref_frame_flags & flag_list[ref_frame]) && (yv12 != NULL)) { + int_mv *const candidates = x->mbmi_ext->ref_mvs[ref_frame]; + const struct scale_factors *const sf = &cm->frame_refs[ref_frame - 1].sf; + vp9_setup_pred_block(xd, yv12_mb[ref_frame], yv12, mi_row, mi_col, sf, sf); + if (cm->use_prev_frame_mvs || comp_pred_allowed) { + vp9_find_mv_refs(cm, xd, xd->mi[0], ref_frame, candidates, mi_row, mi_col, + x->mbmi_ext->mode_context); + } else { + const_motion[ref_frame] = + mv_refs_rt(cpi, cm, x, xd, tile_info, xd->mi[0], ref_frame, + candidates, &frame_mv[NEWMV][ref_frame], mi_row, mi_col, + (int)(cpi->svc.use_base_mv && cpi->svc.spatial_layer_id)); + } + vp9_find_best_ref_mvs(xd, cm->allow_high_precision_mv, candidates, + &frame_mv[NEARESTMV][ref_frame], + &frame_mv[NEARMV][ref_frame]); + // Early exit for golden frame if force_skip_low_temp_var is set. + if (!vp9_is_scaled(sf) && bsize >= BLOCK_8X8 && + !(force_skip_low_temp_var && ref_frame == GOLDEN_FRAME)) { + vp9_mv_pred(cpi, x, yv12_mb[ref_frame][0].buf, yv12->y_stride, ref_frame, + bsize); + } + } else { + *ref_frame_skip_mask |= (1 << ref_frame); + } +} + +static void vp9_NEWMV_diff_bias(const NOISE_ESTIMATE *ne, MACROBLOCKD *xd, + PREDICTION_MODE this_mode, RD_COST *this_rdc, + BLOCK_SIZE bsize, int mv_row, int mv_col, + int is_last_frame, int lowvar_highsumdiff, + int is_skin) { + // Bias against MVs associated with NEWMV mode that are very different from + // top/left neighbors. + if (this_mode == NEWMV) { + int al_mv_average_row; + int al_mv_average_col; + int left_row, left_col; + int row_diff, col_diff; + int above_mv_valid = 0; + int left_mv_valid = 0; + int above_row = 0; + int above_col = 0; + + if (xd->above_mi) { + above_mv_valid = xd->above_mi->mv[0].as_int != INVALID_MV; + above_row = xd->above_mi->mv[0].as_mv.row; + above_col = xd->above_mi->mv[0].as_mv.col; + } + if (xd->left_mi) { + left_mv_valid = xd->left_mi->mv[0].as_int != INVALID_MV; + left_row = xd->left_mi->mv[0].as_mv.row; + left_col = xd->left_mi->mv[0].as_mv.col; + } + if (above_mv_valid && left_mv_valid) { + al_mv_average_row = (above_row + left_row + 1) >> 1; + al_mv_average_col = (above_col + left_col + 1) >> 1; + } else if (above_mv_valid) { + al_mv_average_row = above_row; + al_mv_average_col = above_col; + } else if (left_mv_valid) { + al_mv_average_row = left_row; + al_mv_average_col = left_col; + } else { + al_mv_average_row = al_mv_average_col = 0; + } + row_diff = (al_mv_average_row - mv_row); + col_diff = (al_mv_average_col - mv_col); + if (row_diff > 48 || row_diff < -48 || col_diff > 48 || col_diff < -48) { + if (bsize > BLOCK_32X32) + this_rdc->rdcost = this_rdc->rdcost << 1; + else + this_rdc->rdcost = 3 * this_rdc->rdcost >> 1; + } + } + // If noise estimation is enabled, and estimated level is above threshold, + // add a bias to LAST reference with small motion, for large blocks. + if (ne->enabled && ne->level >= kMedium && bsize >= BLOCK_32X32 && + is_last_frame && mv_row < 8 && mv_row > -8 && mv_col < 8 && mv_col > -8) + this_rdc->rdcost = 7 * (this_rdc->rdcost >> 3); + else if (lowvar_highsumdiff && !is_skin && bsize >= BLOCK_16X16 && + is_last_frame && mv_row < 16 && mv_row > -16 && mv_col < 16 && + mv_col > -16) + this_rdc->rdcost = 7 * (this_rdc->rdcost >> 3); +} + +#if CONFIG_VP9_TEMPORAL_DENOISING +static void vp9_pickmode_ctx_den_update( + VP9_PICKMODE_CTX_DEN *ctx_den, int64_t zero_last_cost_orig, + int ref_frame_cost[MAX_REF_FRAMES], + int_mv frame_mv[MB_MODE_COUNT][MAX_REF_FRAMES], int reuse_inter_pred, + TX_SIZE best_tx_size, PREDICTION_MODE best_mode, + MV_REFERENCE_FRAME best_ref_frame, INTERP_FILTER best_pred_filter, + uint8_t best_mode_skip_txfm) { + ctx_den->zero_last_cost_orig = zero_last_cost_orig; + ctx_den->ref_frame_cost = ref_frame_cost; + ctx_den->frame_mv = frame_mv; + ctx_den->reuse_inter_pred = reuse_inter_pred; + ctx_den->best_tx_size = best_tx_size; + ctx_den->best_mode = best_mode; + ctx_den->best_ref_frame = best_ref_frame; + ctx_den->best_pred_filter = best_pred_filter; + ctx_den->best_mode_skip_txfm = best_mode_skip_txfm; +} + +static void recheck_zeromv_after_denoising( + VP9_COMP *cpi, MODE_INFO *const mi, MACROBLOCK *x, MACROBLOCKD *const xd, + VP9_DENOISER_DECISION decision, VP9_PICKMODE_CTX_DEN *ctx_den, + struct buf_2d yv12_mb[4][MAX_MB_PLANE], RD_COST *best_rdc, BLOCK_SIZE bsize, + int mi_row, int mi_col) { + // If INTRA or GOLDEN reference was selected, re-evaluate ZEROMV on + // denoised result. Only do this under noise conditions, and if rdcost of + // ZEROMV onoriginal source is not significantly higher than rdcost of best + // mode. + if (cpi->noise_estimate.enabled && cpi->noise_estimate.level > kLow && + ctx_den->zero_last_cost_orig < (best_rdc->rdcost << 3) && + ((ctx_den->best_ref_frame == INTRA_FRAME && decision >= FILTER_BLOCK) || + (ctx_den->best_ref_frame == GOLDEN_FRAME && + cpi->svc.number_spatial_layers == 1 && + decision == FILTER_ZEROMV_BLOCK))) { + // Check if we should pick ZEROMV on denoised signal. + int rate = 0; + int64_t dist = 0; + uint32_t var_y = UINT_MAX; + uint32_t sse_y = UINT_MAX; + RD_COST this_rdc; + mi->mode = ZEROMV; + mi->ref_frame[0] = LAST_FRAME; + mi->ref_frame[1] = NONE; + mi->mv[0].as_int = 0; + mi->interp_filter = EIGHTTAP; + xd->plane[0].pre[0] = yv12_mb[LAST_FRAME][0]; + vp9_build_inter_predictors_sby(xd, mi_row, mi_col, bsize); + model_rd_for_sb_y(cpi, bsize, x, xd, &rate, &dist, &var_y, &sse_y); + this_rdc.rate = rate + ctx_den->ref_frame_cost[LAST_FRAME] + + cpi->inter_mode_cost[x->mbmi_ext->mode_context[LAST_FRAME]] + [INTER_OFFSET(ZEROMV)]; + this_rdc.dist = dist; + this_rdc.rdcost = RDCOST(x->rdmult, x->rddiv, rate, dist); + // Don't switch to ZEROMV if the rdcost for ZEROMV on denoised source + // is higher than best_ref mode (on original source). + if (this_rdc.rdcost > best_rdc->rdcost) { + this_rdc = *best_rdc; + mi->mode = ctx_den->best_mode; + mi->ref_frame[0] = ctx_den->best_ref_frame; + mi->interp_filter = ctx_den->best_pred_filter; + if (ctx_den->best_ref_frame == INTRA_FRAME) { + mi->mv[0].as_int = INVALID_MV; + mi->interp_filter = SWITCHABLE_FILTERS; + } else if (ctx_den->best_ref_frame == GOLDEN_FRAME) { + mi->mv[0].as_int = + ctx_den->frame_mv[ctx_den->best_mode][ctx_den->best_ref_frame] + .as_int; + if (ctx_den->reuse_inter_pred) { + xd->plane[0].pre[0] = yv12_mb[GOLDEN_FRAME][0]; + vp9_build_inter_predictors_sby(xd, mi_row, mi_col, bsize); + } + } + mi->tx_size = ctx_den->best_tx_size; + x->skip_txfm[0] = ctx_den->best_mode_skip_txfm; + } else { + ctx_den->best_ref_frame = LAST_FRAME; + *best_rdc = this_rdc; + } + } +} +#endif // CONFIG_VP9_TEMPORAL_DENOISING + +static INLINE int get_force_skip_low_temp_var(uint8_t *variance_low, int mi_row, + int mi_col, BLOCK_SIZE bsize) { + const int i = (mi_row & 0x7) >> 1; + const int j = (mi_col & 0x7) >> 1; + int force_skip_low_temp_var = 0; + // Set force_skip_low_temp_var based on the block size and block offset. + if (bsize == BLOCK_64X64) { + force_skip_low_temp_var = variance_low[0]; + } else if (bsize == BLOCK_64X32) { + if (!(mi_col & 0x7) && !(mi_row & 0x7)) { + force_skip_low_temp_var = variance_low[1]; + } else if (!(mi_col & 0x7) && (mi_row & 0x7)) { + force_skip_low_temp_var = variance_low[2]; + } + } else if (bsize == BLOCK_32X64) { + if (!(mi_col & 0x7) && !(mi_row & 0x7)) { + force_skip_low_temp_var = variance_low[3]; + } else if ((mi_col & 0x7) && !(mi_row & 0x7)) { + force_skip_low_temp_var = variance_low[4]; + } + } else if (bsize == BLOCK_32X32) { + if (!(mi_col & 0x7) && !(mi_row & 0x7)) { + force_skip_low_temp_var = variance_low[5]; + } else if ((mi_col & 0x7) && !(mi_row & 0x7)) { + force_skip_low_temp_var = variance_low[6]; + } else if (!(mi_col & 0x7) && (mi_row & 0x7)) { + force_skip_low_temp_var = variance_low[7]; + } else if ((mi_col & 0x7) && (mi_row & 0x7)) { + force_skip_low_temp_var = variance_low[8]; + } + } else if (bsize == BLOCK_16X16) { + force_skip_low_temp_var = variance_low[pos_shift_16x16[i][j]]; + } else if (bsize == BLOCK_32X16) { + // The col shift index for the second 16x16 block. + const int j2 = ((mi_col + 2) & 0x7) >> 1; + // Only if each 16x16 block inside has low temporal variance. + force_skip_low_temp_var = variance_low[pos_shift_16x16[i][j]] && + variance_low[pos_shift_16x16[i][j2]]; + } else if (bsize == BLOCK_16X32) { + // The row shift index for the second 16x16 block. + const int i2 = ((mi_row + 2) & 0x7) >> 1; + force_skip_low_temp_var = variance_low[pos_shift_16x16[i][j]] && + variance_low[pos_shift_16x16[i2][j]]; + } + return force_skip_low_temp_var; +} + +void vp9_pick_inter_mode(VP9_COMP *cpi, MACROBLOCK *x, TileDataEnc *tile_data, + int mi_row, int mi_col, RD_COST *rd_cost, + BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx) { + VP9_COMMON *const cm = &cpi->common; + SPEED_FEATURES *const sf = &cpi->sf; + const SVC *const svc = &cpi->svc; + MACROBLOCKD *const xd = &x->e_mbd; + MODE_INFO *const mi = xd->mi[0]; + struct macroblockd_plane *const pd = &xd->plane[0]; + PREDICTION_MODE best_mode = ZEROMV; + MV_REFERENCE_FRAME ref_frame, best_ref_frame = LAST_FRAME; + MV_REFERENCE_FRAME usable_ref_frame, second_ref_frame; + TX_SIZE best_tx_size = TX_SIZES; + INTERP_FILTER best_pred_filter = EIGHTTAP; + int_mv frame_mv[MB_MODE_COUNT][MAX_REF_FRAMES]; + uint8_t mode_checked[MB_MODE_COUNT][MAX_REF_FRAMES]; + struct buf_2d yv12_mb[4][MAX_MB_PLANE]; + static const int flag_list[4] = { 0, VP9_LAST_FLAG, VP9_GOLD_FLAG, + VP9_ALT_FLAG }; + RD_COST this_rdc, best_rdc; + uint8_t skip_txfm = SKIP_TXFM_NONE, best_mode_skip_txfm = SKIP_TXFM_NONE; + // var_y and sse_y are saved to be used in skipping checking + unsigned int var_y = UINT_MAX; + unsigned int sse_y = UINT_MAX; + const int intra_cost_penalty = + vp9_get_intra_cost_penalty(cpi, bsize, cm->base_qindex, cm->y_dc_delta_q); + int64_t inter_mode_thresh = + RDCOST(x->rdmult, x->rddiv, intra_cost_penalty, 0); + const int *const rd_threshes = cpi->rd.threshes[mi->segment_id][bsize]; + const int sb_row = mi_row >> MI_BLOCK_SIZE_LOG2; + int thresh_freq_fact_idx = (sb_row * BLOCK_SIZES + bsize) * MAX_MODES; + const int *const rd_thresh_freq_fact = + (cpi->sf.adaptive_rd_thresh_row_mt) + ? &(tile_data->row_base_thresh_freq_fact[thresh_freq_fact_idx]) + : tile_data->thresh_freq_fact[bsize]; + + INTERP_FILTER filter_ref; + const int bsl = mi_width_log2_lookup[bsize]; + const int pred_filter_search = + cm->interp_filter == SWITCHABLE + ? (((mi_row + mi_col) >> bsl) + + get_chessboard_index(cm->current_video_frame)) & + 0x1 + : 0; + int const_motion[MAX_REF_FRAMES] = { 0 }; + const int bh = num_4x4_blocks_high_lookup[bsize] << 2; + const int bw = num_4x4_blocks_wide_lookup[bsize] << 2; + // For speed 6, the result of interp filter is reused later in actual encoding + // process. + // tmp[3] points to dst buffer, and the other 3 point to allocated buffers. + PRED_BUFFER tmp[4]; + DECLARE_ALIGNED(16, uint8_t, pred_buf[3 * 64 * 64]); +#if CONFIG_VP9_HIGHBITDEPTH + DECLARE_ALIGNED(16, uint16_t, pred_buf_16[3 * 64 * 64]); +#endif + struct buf_2d orig_dst = pd->dst; + PRED_BUFFER *best_pred = NULL; + PRED_BUFFER *this_mode_pred = NULL; + const int pixels_in_block = bh * bw; + int reuse_inter_pred = cpi->sf.reuse_inter_pred_sby && ctx->pred_pixel_ready; + int ref_frame_skip_mask = 0; + int idx; + int best_pred_sad = INT_MAX; + int best_early_term = 0; + int ref_frame_cost[MAX_REF_FRAMES]; + int svc_force_zero_mode[3] = { 0 }; + int perform_intra_pred = 1; + int use_golden_nonzeromv = 1; + int force_skip_low_temp_var = 0; + int skip_ref_find_pred[4] = { 0 }; + unsigned int sse_zeromv_normalized = UINT_MAX; + unsigned int best_sse_sofar = UINT_MAX; + unsigned int thresh_svc_skip_golden = 500; +#if CONFIG_VP9_TEMPORAL_DENOISING + VP9_PICKMODE_CTX_DEN ctx_den; + int64_t zero_last_cost_orig = INT64_MAX; + int denoise_svc_pickmode = 1; +#endif + INTERP_FILTER filter_gf_svc = EIGHTTAP; + MV_REFERENCE_FRAME best_second_ref_frame = NONE; + int comp_modes = 0; + int num_inter_modes = (cpi->use_svc) ? RT_INTER_MODES_SVC : RT_INTER_MODES; + int flag_svc_subpel = 0; + int svc_mv_col = 0; + int svc_mv_row = 0; + + init_ref_frame_cost(cm, xd, ref_frame_cost); + + memset(&mode_checked[0][0], 0, MB_MODE_COUNT * MAX_REF_FRAMES); + + if (reuse_inter_pred) { + int i; + for (i = 0; i < 3; i++) { +#if CONFIG_VP9_HIGHBITDEPTH + if (cm->use_highbitdepth) + tmp[i].data = CONVERT_TO_BYTEPTR(&pred_buf_16[pixels_in_block * i]); + else + tmp[i].data = &pred_buf[pixels_in_block * i]; +#else + tmp[i].data = &pred_buf[pixels_in_block * i]; +#endif // CONFIG_VP9_HIGHBITDEPTH + tmp[i].stride = bw; + tmp[i].in_use = 0; + } + tmp[3].data = pd->dst.buf; + tmp[3].stride = pd->dst.stride; + tmp[3].in_use = 0; + } + + x->skip_encode = cpi->sf.skip_encode_frame && x->q_index < QIDX_SKIP_THRESH; + x->skip = 0; + + // Instead of using vp9_get_pred_context_switchable_interp(xd) to assign + // filter_ref, we use a less strict condition on assigning filter_ref. + // This is to reduce the probabily of entering the flow of not assigning + // filter_ref and then skip filter search. + if (xd->above_mi && is_inter_block(xd->above_mi)) + filter_ref = xd->above_mi->interp_filter; + else if (xd->left_mi && is_inter_block(xd->left_mi)) + filter_ref = xd->left_mi->interp_filter; + else + filter_ref = cm->interp_filter; + + // initialize mode decisions + vp9_rd_cost_reset(&best_rdc); + vp9_rd_cost_reset(rd_cost); + mi->sb_type = bsize; + mi->ref_frame[0] = NONE; + mi->ref_frame[1] = NONE; + + mi->tx_size = + VPXMIN(max_txsize_lookup[bsize], tx_mode_to_biggest_tx_size[cm->tx_mode]); + + if (sf->short_circuit_flat_blocks || sf->limit_newmv_early_exit) { +#if CONFIG_VP9_HIGHBITDEPTH + if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) + x->source_variance = vp9_high_get_sby_perpixel_variance( + cpi, &x->plane[0].src, bsize, xd->bd); + else +#endif // CONFIG_VP9_HIGHBITDEPTH + x->source_variance = + vp9_get_sby_perpixel_variance(cpi, &x->plane[0].src, bsize); + } + +#if CONFIG_VP9_TEMPORAL_DENOISING + if (cpi->oxcf.noise_sensitivity > 0) { + if (cpi->use_svc) { + int layer = LAYER_IDS_TO_IDX(cpi->svc.spatial_layer_id, + cpi->svc.temporal_layer_id, + cpi->svc.number_temporal_layers); + LAYER_CONTEXT *lc = &cpi->svc.layer_context[layer]; + denoise_svc_pickmode = denoise_svc(cpi) && !lc->is_key_frame; + } + if (cpi->denoiser.denoising_level > kDenLowLow && denoise_svc_pickmode) + vp9_denoiser_reset_frame_stats(ctx); + } +#endif + + if (cpi->rc.frames_since_golden == 0 && !cpi->use_svc && + !cpi->rc.alt_ref_gf_group && !cpi->rc.last_frame_is_src_altref) { + usable_ref_frame = LAST_FRAME; + } else { + usable_ref_frame = GOLDEN_FRAME; + } + + if (cpi->oxcf.lag_in_frames > 0 && cpi->oxcf.rc_mode == VPX_VBR) { + if (cpi->rc.alt_ref_gf_group || cpi->rc.is_src_frame_alt_ref) + usable_ref_frame = ALTREF_FRAME; + + if (cpi->rc.is_src_frame_alt_ref) { + skip_ref_find_pred[LAST_FRAME] = 1; + skip_ref_find_pred[GOLDEN_FRAME] = 1; + } + if (!cm->show_frame) { + if (cpi->rc.frames_since_key == 1) { + usable_ref_frame = LAST_FRAME; + skip_ref_find_pred[GOLDEN_FRAME] = 1; + skip_ref_find_pred[ALTREF_FRAME] = 1; + } + } + } + + // For svc mode, on spatial_layer_id > 0: if the reference has different scale + // constrain the inter mode to only test zero motion. + if (cpi->use_svc && svc->force_zero_mode_spatial_ref && + cpi->svc.spatial_layer_id > 0) { + if (cpi->ref_frame_flags & flag_list[LAST_FRAME]) { + struct scale_factors *const sf = &cm->frame_refs[LAST_FRAME - 1].sf; + if (vp9_is_scaled(sf)) svc_force_zero_mode[LAST_FRAME - 1] = 1; + } + if (cpi->ref_frame_flags & flag_list[GOLDEN_FRAME]) { + struct scale_factors *const sf = &cm->frame_refs[GOLDEN_FRAME - 1].sf; + if (vp9_is_scaled(sf)) svc_force_zero_mode[GOLDEN_FRAME - 1] = 1; + } + } + + if (cpi->sf.short_circuit_low_temp_var) { + force_skip_low_temp_var = + get_force_skip_low_temp_var(&x->variance_low[0], mi_row, mi_col, bsize); + // If force_skip_low_temp_var is set, and for short circuit mode = 1 and 3, + // skip golden reference. + if ((cpi->sf.short_circuit_low_temp_var == 1 || + cpi->sf.short_circuit_low_temp_var == 3) && + force_skip_low_temp_var) { + usable_ref_frame = LAST_FRAME; + } + } + + if (!((cpi->ref_frame_flags & flag_list[GOLDEN_FRAME]) && + !svc_force_zero_mode[GOLDEN_FRAME - 1] && !force_skip_low_temp_var)) + use_golden_nonzeromv = 0; + + if (cpi->oxcf.speed >= 8 && !cpi->use_svc && + ((cpi->rc.frames_since_golden + 1) < x->last_sb_high_content || + x->last_sb_high_content > 40 || cpi->rc.frames_since_golden > 120)) + usable_ref_frame = LAST_FRAME; + + // Compound prediction modes: (0,0) on LAST/GOLDEN and ARF. + if (cm->reference_mode == REFERENCE_MODE_SELECT && + cpi->sf.use_compound_nonrd_pickmode && usable_ref_frame == ALTREF_FRAME) + comp_modes = 2; + + for (ref_frame = LAST_FRAME; ref_frame <= usable_ref_frame; ++ref_frame) { + if (!skip_ref_find_pred[ref_frame]) { + find_predictors(cpi, x, ref_frame, frame_mv, const_motion, + &ref_frame_skip_mask, flag_list, tile_data, mi_row, + mi_col, yv12_mb, bsize, force_skip_low_temp_var, + comp_modes > 0); + } + } + + if (cpi->use_svc || cpi->oxcf.speed <= 7 || bsize < BLOCK_32X32) + x->sb_use_mv_part = 0; + + // Set the flag_svc_subpel to 1 for SVC if the lower spatial layer used + // an averaging filter for downsampling (phase = 8). If so, we will test + // a nonzero motion mode on the spatial (goldeen) reference. + // The nonzero motion is half pixel shifted to left and top (-4, -4). + if (cpi->use_svc && cpi->svc.spatial_layer_id > 0 && + svc_force_zero_mode[GOLDEN_FRAME - 1] && + cpi->svc.downsample_filter_phase[cpi->svc.spatial_layer_id - 1] == 8) { + svc_mv_col = -4; + svc_mv_row = -4; + flag_svc_subpel = 1; + } + + for (idx = 0; idx < num_inter_modes + comp_modes; ++idx) { + int rate_mv = 0; + int mode_rd_thresh; + int mode_index; + int i; + int64_t this_sse; + int is_skippable; + int this_early_term = 0; + int rd_computed = 0; + int flag_preduv_computed[2] = { 0 }; + int inter_mv_mode = 0; + int skip_this_mv = 0; + int comp_pred = 0; + int force_gf_mv = 0; + PREDICTION_MODE this_mode; + second_ref_frame = NONE; + + if (idx < num_inter_modes) { + this_mode = ref_mode_set[idx].pred_mode; + ref_frame = ref_mode_set[idx].ref_frame; + + if (cpi->use_svc) { + this_mode = ref_mode_set_svc[idx].pred_mode; + ref_frame = ref_mode_set_svc[idx].ref_frame; + } + } else { + // Add (0,0) compound modes. + this_mode = ZEROMV; + ref_frame = LAST_FRAME; + if (idx == num_inter_modes + comp_modes - 1) ref_frame = GOLDEN_FRAME; + second_ref_frame = ALTREF_FRAME; + comp_pred = 1; + } + + if (ref_frame > usable_ref_frame) continue; + if (skip_ref_find_pred[ref_frame]) continue; + + if (flag_svc_subpel && ref_frame == GOLDEN_FRAME) { + force_gf_mv = 1; + // Only test mode if NEARESTMV/NEARMV is (svc_mv_col, svc_mv_row), + // otherwise set NEWMV to (svc_mv_col, svc_mv_row). + if (this_mode == NEWMV) { + frame_mv[this_mode][ref_frame].as_mv.col = svc_mv_col; + frame_mv[this_mode][ref_frame].as_mv.row = svc_mv_row; + } else if (frame_mv[this_mode][ref_frame].as_mv.col != svc_mv_col || + frame_mv[this_mode][ref_frame].as_mv.row != svc_mv_row) { + continue; + } + } + + if (comp_pred) { + const struct segmentation *const seg = &cm->seg; + if (!cpi->allow_comp_inter_inter) continue; + // Skip compound inter modes if ARF is not available. + if (!(cpi->ref_frame_flags & flag_list[second_ref_frame])) continue; + // Do not allow compound prediction if the segment level reference frame + // feature is in use as in this case there can only be one reference. + if (segfeature_active(seg, mi->segment_id, SEG_LVL_REF_FRAME)) continue; + } + + // For SVC, skip the golden (spatial) reference search if sse of zeromv_last + // is below threshold. + if (cpi->use_svc && ref_frame == GOLDEN_FRAME && + sse_zeromv_normalized < thresh_svc_skip_golden) + continue; + + if (sf->short_circuit_flat_blocks && x->source_variance == 0 && + this_mode != NEARESTMV) { + continue; + } + + if (!(cpi->sf.inter_mode_mask[bsize] & (1 << this_mode))) continue; + + if (cpi->oxcf.lag_in_frames > 0 && cpi->oxcf.rc_mode == VPX_VBR) { + if (cpi->rc.is_src_frame_alt_ref && + (ref_frame != ALTREF_FRAME || + frame_mv[this_mode][ref_frame].as_int != 0)) + continue; + + if (!cm->show_frame && ref_frame == ALTREF_FRAME && + frame_mv[this_mode][ref_frame].as_int != 0) + continue; + + if (cpi->rc.alt_ref_gf_group && cm->show_frame && + cpi->rc.frames_since_golden > (cpi->rc.baseline_gf_interval >> 1) && + ref_frame == GOLDEN_FRAME && + frame_mv[this_mode][ref_frame].as_int != 0) + continue; + + if (cpi->rc.alt_ref_gf_group && cm->show_frame && + cpi->rc.frames_since_golden > 0 && + cpi->rc.frames_since_golden < (cpi->rc.baseline_gf_interval >> 1) && + ref_frame == ALTREF_FRAME && + frame_mv[this_mode][ref_frame].as_int != 0) + continue; + } + + if (!(cpi->ref_frame_flags & flag_list[ref_frame])) continue; + + if (const_motion[ref_frame] && this_mode == NEARMV) continue; + + // Skip non-zeromv mode search for golden frame if force_skip_low_temp_var + // is set. If nearestmv for golden frame is 0, zeromv mode will be skipped + // later. + if (!force_gf_mv && force_skip_low_temp_var && ref_frame == GOLDEN_FRAME && + frame_mv[this_mode][ref_frame].as_int != 0) { + continue; + } + + if (x->content_state_sb != kVeryHighSad && + (cpi->sf.short_circuit_low_temp_var >= 2 || + (cpi->sf.short_circuit_low_temp_var == 1 && bsize == BLOCK_64X64)) && + force_skip_low_temp_var && ref_frame == LAST_FRAME && + this_mode == NEWMV) { + continue; + } + + if (cpi->use_svc) { + if (!force_gf_mv && svc_force_zero_mode[ref_frame - 1] && + frame_mv[this_mode][ref_frame].as_int != 0) + continue; + } + + if (sf->reference_masking && + !(frame_mv[this_mode][ref_frame].as_int == 0 && + ref_frame == LAST_FRAME)) { + if (usable_ref_frame < ALTREF_FRAME) { + if (!force_skip_low_temp_var && usable_ref_frame > LAST_FRAME) { + i = (ref_frame == LAST_FRAME) ? GOLDEN_FRAME : LAST_FRAME; + if ((cpi->ref_frame_flags & flag_list[i])) + if (x->pred_mv_sad[ref_frame] > (x->pred_mv_sad[i] << 1)) + ref_frame_skip_mask |= (1 << ref_frame); + } + } else if (!cpi->rc.is_src_frame_alt_ref && + !(frame_mv[this_mode][ref_frame].as_int == 0 && + ref_frame == ALTREF_FRAME)) { + int ref1 = (ref_frame == GOLDEN_FRAME) ? LAST_FRAME : GOLDEN_FRAME; + int ref2 = (ref_frame == ALTREF_FRAME) ? LAST_FRAME : ALTREF_FRAME; + if (((cpi->ref_frame_flags & flag_list[ref1]) && + (x->pred_mv_sad[ref_frame] > (x->pred_mv_sad[ref1] << 1))) || + ((cpi->ref_frame_flags & flag_list[ref2]) && + (x->pred_mv_sad[ref_frame] > (x->pred_mv_sad[ref2] << 1)))) + ref_frame_skip_mask |= (1 << ref_frame); + } + } + if (ref_frame_skip_mask & (1 << ref_frame)) continue; + + // Select prediction reference frames. + for (i = 0; i < MAX_MB_PLANE; i++) { + xd->plane[i].pre[0] = yv12_mb[ref_frame][i]; + if (comp_pred) xd->plane[i].pre[1] = yv12_mb[second_ref_frame][i]; + } + + mi->ref_frame[0] = ref_frame; + mi->ref_frame[1] = second_ref_frame; + set_ref_ptrs(cm, xd, ref_frame, second_ref_frame); + + mode_index = mode_idx[ref_frame][INTER_OFFSET(this_mode)]; + mode_rd_thresh = best_mode_skip_txfm ? rd_threshes[mode_index] << 1 + : rd_threshes[mode_index]; + + // Increase mode_rd_thresh value for GOLDEN_FRAME for improved encoding + // speed with little/no subjective quality loss. + if (cpi->sf.bias_golden && ref_frame == GOLDEN_FRAME && + cpi->rc.frames_since_golden > 4) + mode_rd_thresh = mode_rd_thresh << 3; + + if ((cpi->sf.adaptive_rd_thresh_row_mt && + rd_less_than_thresh_row_mt(best_rdc.rdcost, mode_rd_thresh, + &rd_thresh_freq_fact[mode_index])) || + (!cpi->sf.adaptive_rd_thresh_row_mt && + rd_less_than_thresh(best_rdc.rdcost, mode_rd_thresh, + &rd_thresh_freq_fact[mode_index]))) + continue; + + if (this_mode == NEWMV && !force_gf_mv) { + if (ref_frame > LAST_FRAME && !cpi->use_svc && + cpi->oxcf.rc_mode == VPX_CBR) { + int tmp_sad; + uint32_t dis; + int cost_list[5] = { INT_MAX, INT_MAX, INT_MAX, INT_MAX, INT_MAX }; + + if (bsize < BLOCK_16X16) continue; + + tmp_sad = vp9_int_pro_motion_estimation(cpi, x, bsize, mi_row, mi_col); + + if (tmp_sad > x->pred_mv_sad[LAST_FRAME]) continue; + if (tmp_sad + (num_pels_log2_lookup[bsize] << 4) > best_pred_sad) + continue; + + frame_mv[NEWMV][ref_frame].as_int = mi->mv[0].as_int; + rate_mv = vp9_mv_bit_cost(&frame_mv[NEWMV][ref_frame].as_mv, + &x->mbmi_ext->ref_mvs[ref_frame][0].as_mv, + x->nmvjointcost, x->mvcost, MV_COST_WEIGHT); + frame_mv[NEWMV][ref_frame].as_mv.row >>= 3; + frame_mv[NEWMV][ref_frame].as_mv.col >>= 3; + + cpi->find_fractional_mv_step( + x, &frame_mv[NEWMV][ref_frame].as_mv, + &x->mbmi_ext->ref_mvs[ref_frame][0].as_mv, + cpi->common.allow_high_precision_mv, x->errorperbit, + &cpi->fn_ptr[bsize], cpi->sf.mv.subpel_force_stop, + cpi->sf.mv.subpel_iters_per_step, cond_cost_list(cpi, cost_list), + x->nmvjointcost, x->mvcost, &dis, &x->pred_sse[ref_frame], NULL, 0, + 0); + } else if (svc->use_base_mv && svc->spatial_layer_id) { + if (frame_mv[NEWMV][ref_frame].as_int != INVALID_MV) { + const int pre_stride = xd->plane[0].pre[0].stride; + unsigned int base_mv_sse = UINT_MAX; + int scale = (cpi->rc.avg_frame_low_motion > 60) ? 2 : 4; + const uint8_t *const pre_buf = + xd->plane[0].pre[0].buf + + (frame_mv[NEWMV][ref_frame].as_mv.row >> 3) * pre_stride + + (frame_mv[NEWMV][ref_frame].as_mv.col >> 3); + cpi->fn_ptr[bsize].vf(x->plane[0].src.buf, x->plane[0].src.stride, + pre_buf, pre_stride, &base_mv_sse); + + // Exit NEWMV search if base_mv is (0,0) && bsize < BLOCK_16x16, + // for SVC encoding. + if (cpi->use_svc && cpi->svc.use_base_mv && bsize < BLOCK_16X16 && + frame_mv[NEWMV][ref_frame].as_mv.row == 0 && + frame_mv[NEWMV][ref_frame].as_mv.col == 0) + continue; + + // Exit NEWMV search if base_mv_sse is large. + if (sf->base_mv_aggressive && base_mv_sse > (best_sse_sofar << scale)) + continue; + if (base_mv_sse < (best_sse_sofar << 1)) { + // Base layer mv is good. + // Exit NEWMV search if the base_mv is (0, 0) and sse is low, since + // (0, 0) mode is already tested. + unsigned int base_mv_sse_normalized = + base_mv_sse >> + (b_width_log2_lookup[bsize] + b_height_log2_lookup[bsize]); + if (sf->base_mv_aggressive && base_mv_sse <= best_sse_sofar && + base_mv_sse_normalized < 400 && + frame_mv[NEWMV][ref_frame].as_mv.row == 0 && + frame_mv[NEWMV][ref_frame].as_mv.col == 0) + continue; + if (!combined_motion_search(cpi, x, bsize, mi_row, mi_col, + &frame_mv[NEWMV][ref_frame], &rate_mv, + best_rdc.rdcost, 1)) { + continue; + } + } else if (!combined_motion_search(cpi, x, bsize, mi_row, mi_col, + &frame_mv[NEWMV][ref_frame], + &rate_mv, best_rdc.rdcost, 0)) { + continue; + } + } else if (!combined_motion_search(cpi, x, bsize, mi_row, mi_col, + &frame_mv[NEWMV][ref_frame], + &rate_mv, best_rdc.rdcost, 0)) { + continue; + } + } else if (!combined_motion_search(cpi, x, bsize, mi_row, mi_col, + &frame_mv[NEWMV][ref_frame], &rate_mv, + best_rdc.rdcost, 0)) { + continue; + } + } + + // TODO(jianj): Skipping the testing of (duplicate) non-zero motion vector + // causes some regression, leave it for duplicate zero-mv for now, until + // regression issue is resolved. + for (inter_mv_mode = NEARESTMV; inter_mv_mode <= NEWMV; inter_mv_mode++) { + if (inter_mv_mode == this_mode || comp_pred) continue; + if (mode_checked[inter_mv_mode][ref_frame] && + frame_mv[this_mode][ref_frame].as_int == + frame_mv[inter_mv_mode][ref_frame].as_int && + frame_mv[inter_mv_mode][ref_frame].as_int == 0) { + skip_this_mv = 1; + break; + } + } + + if (skip_this_mv) continue; + + // If use_golden_nonzeromv is false, NEWMV mode is skipped for golden, no + // need to compute best_pred_sad which is only used to skip golden NEWMV. + if (use_golden_nonzeromv && this_mode == NEWMV && ref_frame == LAST_FRAME && + frame_mv[NEWMV][LAST_FRAME].as_int != INVALID_MV) { + const int pre_stride = xd->plane[0].pre[0].stride; + const uint8_t *const pre_buf = + xd->plane[0].pre[0].buf + + (frame_mv[NEWMV][LAST_FRAME].as_mv.row >> 3) * pre_stride + + (frame_mv[NEWMV][LAST_FRAME].as_mv.col >> 3); + best_pred_sad = cpi->fn_ptr[bsize].sdf( + x->plane[0].src.buf, x->plane[0].src.stride, pre_buf, pre_stride); + x->pred_mv_sad[LAST_FRAME] = best_pred_sad; + } + + if (this_mode != NEARESTMV && !comp_pred && + frame_mv[this_mode][ref_frame].as_int == + frame_mv[NEARESTMV][ref_frame].as_int) + continue; + + mi->mode = this_mode; + mi->mv[0].as_int = frame_mv[this_mode][ref_frame].as_int; + mi->mv[1].as_int = 0; + + // Search for the best prediction filter type, when the resulting + // motion vector is at sub-pixel accuracy level for luma component, i.e., + // the last three bits are all zeros. + if (reuse_inter_pred) { + if (!this_mode_pred) { + this_mode_pred = &tmp[3]; + } else { + this_mode_pred = &tmp[get_pred_buffer(tmp, 3)]; + pd->dst.buf = this_mode_pred->data; + pd->dst.stride = bw; + } + } + + if ((this_mode == NEWMV || filter_ref == SWITCHABLE) && + pred_filter_search && + (ref_frame == LAST_FRAME || + (ref_frame == GOLDEN_FRAME && !force_gf_mv && + (cpi->use_svc || cpi->oxcf.rc_mode == VPX_VBR))) && + (((mi->mv[0].as_mv.row | mi->mv[0].as_mv.col) & 0x07) != 0)) { + int pf_rate[3]; + int64_t pf_dist[3]; + int curr_rate[3]; + unsigned int pf_var[3]; + unsigned int pf_sse[3]; + TX_SIZE pf_tx_size[3]; + int64_t best_cost = INT64_MAX; + INTERP_FILTER best_filter = SWITCHABLE, filter; + PRED_BUFFER *current_pred = this_mode_pred; + rd_computed = 1; + + for (filter = EIGHTTAP; filter <= EIGHTTAP_SMOOTH; ++filter) { + int64_t cost; + mi->interp_filter = filter; + vp9_build_inter_predictors_sby(xd, mi_row, mi_col, bsize); + model_rd_for_sb_y(cpi, bsize, x, xd, &pf_rate[filter], &pf_dist[filter], + &pf_var[filter], &pf_sse[filter]); + curr_rate[filter] = pf_rate[filter]; + pf_rate[filter] += vp9_get_switchable_rate(cpi, xd); + cost = RDCOST(x->rdmult, x->rddiv, pf_rate[filter], pf_dist[filter]); + pf_tx_size[filter] = mi->tx_size; + if (cost < best_cost) { + best_filter = filter; + best_cost = cost; + skip_txfm = x->skip_txfm[0]; + + if (reuse_inter_pred) { + if (this_mode_pred != current_pred) { + free_pred_buffer(this_mode_pred); + this_mode_pred = current_pred; + } + current_pred = &tmp[get_pred_buffer(tmp, 3)]; + pd->dst.buf = current_pred->data; + pd->dst.stride = bw; + } + } + } + + if (reuse_inter_pred && this_mode_pred != current_pred) + free_pred_buffer(current_pred); + + mi->interp_filter = best_filter; + mi->tx_size = pf_tx_size[best_filter]; + this_rdc.rate = curr_rate[best_filter]; + this_rdc.dist = pf_dist[best_filter]; + var_y = pf_var[best_filter]; + sse_y = pf_sse[best_filter]; + x->skip_txfm[0] = skip_txfm; + if (reuse_inter_pred) { + pd->dst.buf = this_mode_pred->data; + pd->dst.stride = this_mode_pred->stride; + } + } else { + // For low motion content use x->sb_is_skin in addition to VeryHighSad + // for setting large_block. + const int large_block = + (x->content_state_sb == kVeryHighSad || + (x->sb_is_skin && cpi->rc.avg_frame_low_motion > 70) || + cpi->oxcf.speed < 7) + ? bsize > BLOCK_32X32 + : bsize >= BLOCK_32X32; + mi->interp_filter = (filter_ref == SWITCHABLE) ? EIGHTTAP : filter_ref; + + if (cpi->use_svc && ref_frame == GOLDEN_FRAME && + svc_force_zero_mode[ref_frame - 1]) + mi->interp_filter = filter_gf_svc; + + vp9_build_inter_predictors_sby(xd, mi_row, mi_col, bsize); + + // For large partition blocks, extra testing is done. + if (cpi->oxcf.rc_mode == VPX_CBR && large_block && + !cyclic_refresh_segment_id_boosted(xd->mi[0]->segment_id) && + cm->base_qindex) { + model_rd_for_sb_y_large(cpi, bsize, x, xd, &this_rdc.rate, + &this_rdc.dist, &var_y, &sse_y, mi_row, mi_col, + &this_early_term, flag_preduv_computed); + } else { + rd_computed = 1; + model_rd_for_sb_y(cpi, bsize, x, xd, &this_rdc.rate, &this_rdc.dist, + &var_y, &sse_y); + } + // Save normalized sse (between current and last frame) for (0, 0) motion. + if (cpi->use_svc && ref_frame == LAST_FRAME && + frame_mv[this_mode][ref_frame].as_int == 0) { + sse_zeromv_normalized = + sse_y >> (b_width_log2_lookup[bsize] + b_height_log2_lookup[bsize]); + } + if (sse_y < best_sse_sofar) best_sse_sofar = sse_y; + } + + if (!this_early_term) { + this_sse = (int64_t)sse_y; + block_yrd(cpi, x, &this_rdc, &is_skippable, &this_sse, bsize, + VPXMIN(mi->tx_size, TX_16X16), rd_computed); + + x->skip_txfm[0] = is_skippable; + if (is_skippable) { + this_rdc.rate = vp9_cost_bit(vp9_get_skip_prob(cm, xd), 1); + } else { + if (RDCOST(x->rdmult, x->rddiv, this_rdc.rate, this_rdc.dist) < + RDCOST(x->rdmult, x->rddiv, 0, this_sse)) { + this_rdc.rate += vp9_cost_bit(vp9_get_skip_prob(cm, xd), 0); + } else { + this_rdc.rate = vp9_cost_bit(vp9_get_skip_prob(cm, xd), 1); + this_rdc.dist = this_sse; + x->skip_txfm[0] = SKIP_TXFM_AC_DC; + } + } + + if (cm->interp_filter == SWITCHABLE) { + if ((mi->mv[0].as_mv.row | mi->mv[0].as_mv.col) & 0x07) + this_rdc.rate += vp9_get_switchable_rate(cpi, xd); + } + } else { + this_rdc.rate += cm->interp_filter == SWITCHABLE + ? vp9_get_switchable_rate(cpi, xd) + : 0; + this_rdc.rate += vp9_cost_bit(vp9_get_skip_prob(cm, xd), 1); + } + + if (!this_early_term && + (x->color_sensitivity[0] || x->color_sensitivity[1])) { + RD_COST rdc_uv; + const BLOCK_SIZE uv_bsize = get_plane_block_size(bsize, &xd->plane[1]); + if (x->color_sensitivity[0] && !flag_preduv_computed[0]) { + vp9_build_inter_predictors_sbp(xd, mi_row, mi_col, bsize, 1); + flag_preduv_computed[0] = 1; + } + if (x->color_sensitivity[1] && !flag_preduv_computed[1]) { + vp9_build_inter_predictors_sbp(xd, mi_row, mi_col, bsize, 2); + flag_preduv_computed[1] = 1; + } + model_rd_for_sb_uv(cpi, uv_bsize, x, xd, &rdc_uv, &var_y, &sse_y, 1, 2); + this_rdc.rate += rdc_uv.rate; + this_rdc.dist += rdc_uv.dist; + } + + this_rdc.rate += rate_mv; + this_rdc.rate += cpi->inter_mode_cost[x->mbmi_ext->mode_context[ref_frame]] + [INTER_OFFSET(this_mode)]; + // TODO(marpan): Add costing for compound mode. + this_rdc.rate += ref_frame_cost[ref_frame]; + this_rdc.rdcost = RDCOST(x->rdmult, x->rddiv, this_rdc.rate, this_rdc.dist); + + // Bias against NEWMV that is very different from its neighbors, and bias + // to small motion-lastref for noisy input. + if (cpi->oxcf.rc_mode == VPX_CBR && cpi->oxcf.speed >= 5 && + cpi->oxcf.content != VP9E_CONTENT_SCREEN) { + vp9_NEWMV_diff_bias(&cpi->noise_estimate, xd, this_mode, &this_rdc, bsize, + frame_mv[this_mode][ref_frame].as_mv.row, + frame_mv[this_mode][ref_frame].as_mv.col, + ref_frame == LAST_FRAME, x->lowvar_highsumdiff, + x->sb_is_skin); + } + + // Skipping checking: test to see if this block can be reconstructed by + // prediction only. + if (cpi->allow_encode_breakout) { + encode_breakout_test(cpi, x, bsize, mi_row, mi_col, ref_frame, this_mode, + var_y, sse_y, yv12_mb, &this_rdc.rate, + &this_rdc.dist, flag_preduv_computed); + if (x->skip) { + this_rdc.rate += rate_mv; + this_rdc.rdcost = + RDCOST(x->rdmult, x->rddiv, this_rdc.rate, this_rdc.dist); + } + } + +#if CONFIG_VP9_TEMPORAL_DENOISING + if (cpi->oxcf.noise_sensitivity > 0 && denoise_svc_pickmode && + cpi->denoiser.denoising_level > kDenLowLow) { + vp9_denoiser_update_frame_stats(mi, sse_y, this_mode, ctx); + // Keep track of zero_last cost. + if (ref_frame == LAST_FRAME && frame_mv[this_mode][ref_frame].as_int == 0) + zero_last_cost_orig = this_rdc.rdcost; + } +#else + (void)ctx; +#endif + + mode_checked[this_mode][ref_frame] = 1; + + if (this_rdc.rdcost < best_rdc.rdcost || x->skip) { + best_rdc = this_rdc; + best_mode = this_mode; + best_pred_filter = mi->interp_filter; + best_tx_size = mi->tx_size; + best_ref_frame = ref_frame; + best_mode_skip_txfm = x->skip_txfm[0]; + best_early_term = this_early_term; + best_second_ref_frame = second_ref_frame; + + if (reuse_inter_pred) { + free_pred_buffer(best_pred); + best_pred = this_mode_pred; + } + } else { + if (reuse_inter_pred) free_pred_buffer(this_mode_pred); + } + + if (x->skip) break; + + // If early termination flag is 1 and at least 2 modes are checked, + // the mode search is terminated. + if (best_early_term && idx > 0) { + x->skip = 1; + break; + } + } + + mi->mode = best_mode; + mi->interp_filter = best_pred_filter; + mi->tx_size = best_tx_size; + mi->ref_frame[0] = best_ref_frame; + mi->mv[0].as_int = frame_mv[best_mode][best_ref_frame].as_int; + xd->mi[0]->bmi[0].as_mv[0].as_int = mi->mv[0].as_int; + x->skip_txfm[0] = best_mode_skip_txfm; + mi->ref_frame[1] = best_second_ref_frame; + + // For spatial enhancemanent layer: perform intra prediction only if base + // layer is chosen as the reference. Always perform intra prediction if + // LAST is the only reference or is_key_frame is set. + if (cpi->svc.spatial_layer_id) { + perform_intra_pred = + cpi->svc.layer_context[cpi->svc.temporal_layer_id].is_key_frame || + !(cpi->ref_frame_flags & flag_list[GOLDEN_FRAME]) || + (!cpi->svc.layer_context[cpi->svc.temporal_layer_id].is_key_frame && + svc_force_zero_mode[best_ref_frame - 1]); + inter_mode_thresh = (inter_mode_thresh << 1) + inter_mode_thresh; + } + if (cpi->oxcf.lag_in_frames > 0 && cpi->oxcf.rc_mode == VPX_VBR && + cpi->rc.is_src_frame_alt_ref) + perform_intra_pred = 0; + // Perform intra prediction search, if the best SAD is above a certain + // threshold. + if (best_rdc.rdcost == INT64_MAX || + ((!force_skip_low_temp_var || bsize < BLOCK_32X32 || + x->content_state_sb == kVeryHighSad) && + perform_intra_pred && !x->skip && best_rdc.rdcost > inter_mode_thresh && + bsize <= cpi->sf.max_intra_bsize && !x->skip_low_source_sad && + !x->lowvar_highsumdiff)) { + struct estimate_block_intra_args args = { cpi, x, DC_PRED, 1, 0 }; + int i; + TX_SIZE best_intra_tx_size = TX_SIZES; + TX_SIZE intra_tx_size = + VPXMIN(max_txsize_lookup[bsize], + tx_mode_to_biggest_tx_size[cpi->common.tx_mode]); + if (cpi->oxcf.content != VP9E_CONTENT_SCREEN && intra_tx_size > TX_16X16) + intra_tx_size = TX_16X16; + + if (reuse_inter_pred && best_pred != NULL) { + if (best_pred->data == orig_dst.buf) { + this_mode_pred = &tmp[get_pred_buffer(tmp, 3)]; +#if CONFIG_VP9_HIGHBITDEPTH + if (cm->use_highbitdepth) + vpx_highbd_convolve_copy( + CONVERT_TO_SHORTPTR(best_pred->data), best_pred->stride, + CONVERT_TO_SHORTPTR(this_mode_pred->data), this_mode_pred->stride, + NULL, 0, 0, 0, 0, bw, bh, xd->bd); + else + vpx_convolve_copy(best_pred->data, best_pred->stride, + this_mode_pred->data, this_mode_pred->stride, NULL, + 0, 0, 0, 0, bw, bh); +#else + vpx_convolve_copy(best_pred->data, best_pred->stride, + this_mode_pred->data, this_mode_pred->stride, NULL, 0, + 0, 0, 0, bw, bh); +#endif // CONFIG_VP9_HIGHBITDEPTH + best_pred = this_mode_pred; + } + } + pd->dst = orig_dst; + + for (i = 0; i < 4; ++i) { + const PREDICTION_MODE this_mode = intra_mode_list[i]; + THR_MODES mode_index = mode_idx[INTRA_FRAME][mode_offset(this_mode)]; + int mode_rd_thresh = rd_threshes[mode_index]; + if (sf->short_circuit_flat_blocks && x->source_variance == 0 && + this_mode != DC_PRED) { + continue; + } + + if (!((1 << this_mode) & cpi->sf.intra_y_mode_bsize_mask[bsize])) + continue; + + if ((cpi->sf.adaptive_rd_thresh_row_mt && + rd_less_than_thresh_row_mt(best_rdc.rdcost, mode_rd_thresh, + &rd_thresh_freq_fact[mode_index])) || + (!cpi->sf.adaptive_rd_thresh_row_mt && + rd_less_than_thresh(best_rdc.rdcost, mode_rd_thresh, + &rd_thresh_freq_fact[mode_index]))) + continue; + + mi->mode = this_mode; + mi->ref_frame[0] = INTRA_FRAME; + this_rdc.dist = this_rdc.rate = 0; + args.mode = this_mode; + args.skippable = 1; + args.rdc = &this_rdc; + mi->tx_size = intra_tx_size; + vp9_foreach_transformed_block_in_plane(xd, bsize, 0, estimate_block_intra, + &args); + // Check skip cost here since skippable is not set for for uv, this + // mirrors the behavior used by inter + if (args.skippable) { + x->skip_txfm[0] = SKIP_TXFM_AC_DC; + this_rdc.rate = vp9_cost_bit(vp9_get_skip_prob(&cpi->common, xd), 1); + } else { + x->skip_txfm[0] = SKIP_TXFM_NONE; + this_rdc.rate += vp9_cost_bit(vp9_get_skip_prob(&cpi->common, xd), 0); + } + // Inter and intra RD will mismatch in scale for non-screen content. + if (cpi->oxcf.content == VP9E_CONTENT_SCREEN) { + if (x->color_sensitivity[0]) + vp9_foreach_transformed_block_in_plane(xd, bsize, 1, + estimate_block_intra, &args); + if (x->color_sensitivity[1]) + vp9_foreach_transformed_block_in_plane(xd, bsize, 2, + estimate_block_intra, &args); + } + this_rdc.rate += cpi->mbmode_cost[this_mode]; + this_rdc.rate += ref_frame_cost[INTRA_FRAME]; + this_rdc.rate += intra_cost_penalty; + this_rdc.rdcost = + RDCOST(x->rdmult, x->rddiv, this_rdc.rate, this_rdc.dist); + + if (this_rdc.rdcost < best_rdc.rdcost) { + best_rdc = this_rdc; + best_mode = this_mode; + best_intra_tx_size = mi->tx_size; + best_ref_frame = INTRA_FRAME; + best_second_ref_frame = NONE; + mi->uv_mode = this_mode; + mi->mv[0].as_int = INVALID_MV; + mi->mv[1].as_int = INVALID_MV; + best_mode_skip_txfm = x->skip_txfm[0]; + } + } + + // Reset mb_mode_info to the best inter mode. + if (best_ref_frame != INTRA_FRAME) { + mi->tx_size = best_tx_size; + } else { + mi->tx_size = best_intra_tx_size; + } + } + + pd->dst = orig_dst; + mi->mode = best_mode; + mi->ref_frame[0] = best_ref_frame; + mi->ref_frame[1] = best_second_ref_frame; + x->skip_txfm[0] = best_mode_skip_txfm; + + if (!is_inter_block(mi)) { + mi->interp_filter = SWITCHABLE_FILTERS; + } + + if (reuse_inter_pred && best_pred != NULL) { + if (best_pred->data != orig_dst.buf && is_inter_mode(mi->mode)) { +#if CONFIG_VP9_HIGHBITDEPTH + if (cm->use_highbitdepth) + vpx_highbd_convolve_copy( + CONVERT_TO_SHORTPTR(best_pred->data), best_pred->stride, + CONVERT_TO_SHORTPTR(pd->dst.buf), pd->dst.stride, NULL, 0, 0, 0, 0, + bw, bh, xd->bd); + else + vpx_convolve_copy(best_pred->data, best_pred->stride, pd->dst.buf, + pd->dst.stride, NULL, 0, 0, 0, 0, bw, bh); +#else + vpx_convolve_copy(best_pred->data, best_pred->stride, pd->dst.buf, + pd->dst.stride, NULL, 0, 0, 0, 0, bw, bh); +#endif // CONFIG_VP9_HIGHBITDEPTH + } + } + +#if CONFIG_VP9_TEMPORAL_DENOISING + if (cpi->oxcf.noise_sensitivity > 0 && cpi->resize_pending == 0 && + denoise_svc_pickmode && cpi->denoiser.denoising_level > kDenLowLow && + cpi->denoiser.reset == 0) { + VP9_DENOISER_DECISION decision = COPY_BLOCK; + ctx->sb_skip_denoising = 0; + // TODO(marpan): There is an issue with denoising when the + // superblock partitioning scheme is based on the pickmode. + // Remove this condition when the issue is resolved. + if (x->sb_pickmode_part) ctx->sb_skip_denoising = 1; + vp9_pickmode_ctx_den_update(&ctx_den, zero_last_cost_orig, ref_frame_cost, + frame_mv, reuse_inter_pred, best_tx_size, + best_mode, best_ref_frame, best_pred_filter, + best_mode_skip_txfm); + vp9_denoiser_denoise(cpi, x, mi_row, mi_col, bsize, ctx, &decision); + recheck_zeromv_after_denoising(cpi, mi, x, xd, decision, &ctx_den, yv12_mb, + &best_rdc, bsize, mi_row, mi_col); + best_ref_frame = ctx_den.best_ref_frame; + } +#endif + + if (best_ref_frame == ALTREF_FRAME || best_second_ref_frame == ALTREF_FRAME) + x->arf_frame_usage++; + else if (best_ref_frame != INTRA_FRAME) + x->lastgolden_frame_usage++; + + if (cpi->sf.adaptive_rd_thresh) { + THR_MODES best_mode_idx = mode_idx[best_ref_frame][mode_offset(mi->mode)]; + + if (best_ref_frame == INTRA_FRAME) { + // Only consider the modes that are included in the intra_mode_list. + int intra_modes = sizeof(intra_mode_list) / sizeof(PREDICTION_MODE); + int i; + + // TODO(yunqingwang): Check intra mode mask and only update freq_fact + // for those valid modes. + for (i = 0; i < intra_modes; i++) { + if (cpi->sf.adaptive_rd_thresh_row_mt) + update_thresh_freq_fact_row_mt(cpi, tile_data, x->source_variance, + thresh_freq_fact_idx, INTRA_FRAME, + best_mode_idx, intra_mode_list[i]); + else + update_thresh_freq_fact(cpi, tile_data, x->source_variance, bsize, + INTRA_FRAME, best_mode_idx, + intra_mode_list[i]); + } + } else { + for (ref_frame = LAST_FRAME; ref_frame <= GOLDEN_FRAME; ++ref_frame) { + PREDICTION_MODE this_mode; + if (best_ref_frame != ref_frame) continue; + for (this_mode = NEARESTMV; this_mode <= NEWMV; ++this_mode) { + if (cpi->sf.adaptive_rd_thresh_row_mt) + update_thresh_freq_fact_row_mt(cpi, tile_data, x->source_variance, + thresh_freq_fact_idx, ref_frame, + best_mode_idx, this_mode); + else + update_thresh_freq_fact(cpi, tile_data, x->source_variance, bsize, + ref_frame, best_mode_idx, this_mode); + } + } + } + } + + *rd_cost = best_rdc; +} + +void vp9_pick_inter_mode_sub8x8(VP9_COMP *cpi, MACROBLOCK *x, int mi_row, + int mi_col, RD_COST *rd_cost, BLOCK_SIZE bsize, + PICK_MODE_CONTEXT *ctx) { + VP9_COMMON *const cm = &cpi->common; + SPEED_FEATURES *const sf = &cpi->sf; + MACROBLOCKD *const xd = &x->e_mbd; + MODE_INFO *const mi = xd->mi[0]; + MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext; + const struct segmentation *const seg = &cm->seg; + MV_REFERENCE_FRAME ref_frame, second_ref_frame = NONE; + MV_REFERENCE_FRAME best_ref_frame = NONE; + unsigned char segment_id = mi->segment_id; + struct buf_2d yv12_mb[4][MAX_MB_PLANE]; + static const int flag_list[4] = { 0, VP9_LAST_FLAG, VP9_GOLD_FLAG, + VP9_ALT_FLAG }; + int64_t best_rd = INT64_MAX; + b_mode_info bsi[MAX_REF_FRAMES][4]; + int ref_frame_skip_mask = 0; + const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize]; + const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize]; + int idx, idy; + + x->skip_encode = sf->skip_encode_frame && x->q_index < QIDX_SKIP_THRESH; + ctx->pred_pixel_ready = 0; + + for (ref_frame = LAST_FRAME; ref_frame <= GOLDEN_FRAME; ++ref_frame) { + const YV12_BUFFER_CONFIG *yv12 = get_ref_frame_buffer(cpi, ref_frame); + int_mv dummy_mv[2]; + x->pred_mv_sad[ref_frame] = INT_MAX; + + if ((cpi->ref_frame_flags & flag_list[ref_frame]) && (yv12 != NULL)) { + int_mv *const candidates = mbmi_ext->ref_mvs[ref_frame]; + const struct scale_factors *const sf = &cm->frame_refs[ref_frame - 1].sf; + vp9_setup_pred_block(xd, yv12_mb[ref_frame], yv12, mi_row, mi_col, sf, + sf); + vp9_find_mv_refs(cm, xd, xd->mi[0], ref_frame, candidates, mi_row, mi_col, + mbmi_ext->mode_context); + + vp9_find_best_ref_mvs(xd, cm->allow_high_precision_mv, candidates, + &dummy_mv[0], &dummy_mv[1]); + } else { + ref_frame_skip_mask |= (1 << ref_frame); + } + } + + mi->sb_type = bsize; + mi->tx_size = TX_4X4; + mi->uv_mode = DC_PRED; + mi->ref_frame[0] = LAST_FRAME; + mi->ref_frame[1] = NONE; + mi->interp_filter = + cm->interp_filter == SWITCHABLE ? EIGHTTAP : cm->interp_filter; + + for (ref_frame = LAST_FRAME; ref_frame <= GOLDEN_FRAME; ++ref_frame) { + int64_t this_rd = 0; + int plane; + + if (ref_frame_skip_mask & (1 << ref_frame)) continue; + +#if CONFIG_BETTER_HW_COMPATIBILITY + if ((bsize == BLOCK_8X4 || bsize == BLOCK_4X8) && ref_frame > INTRA_FRAME && + vp9_is_scaled(&cm->frame_refs[ref_frame - 1].sf)) + continue; +#endif + + // TODO(jingning, agrange): Scaling reference frame not supported for + // sub8x8 blocks. Is this supported now? + if (ref_frame > INTRA_FRAME && + vp9_is_scaled(&cm->frame_refs[ref_frame - 1].sf)) + continue; + + // If the segment reference frame feature is enabled.... + // then do nothing if the current ref frame is not allowed.. + if (segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME) && + get_segdata(seg, segment_id, SEG_LVL_REF_FRAME) != (int)ref_frame) + continue; + + mi->ref_frame[0] = ref_frame; + x->skip = 0; + set_ref_ptrs(cm, xd, ref_frame, second_ref_frame); + + // Select prediction reference frames. + for (plane = 0; plane < MAX_MB_PLANE; plane++) + xd->plane[plane].pre[0] = yv12_mb[ref_frame][plane]; + + for (idy = 0; idy < 2; idy += num_4x4_blocks_high) { + for (idx = 0; idx < 2; idx += num_4x4_blocks_wide) { + int_mv b_mv[MB_MODE_COUNT]; + int64_t b_best_rd = INT64_MAX; + const int i = idy * 2 + idx; + PREDICTION_MODE this_mode; + RD_COST this_rdc; + unsigned int var_y, sse_y; + + struct macroblock_plane *p = &x->plane[0]; + struct macroblockd_plane *pd = &xd->plane[0]; + + const struct buf_2d orig_src = p->src; + const struct buf_2d orig_dst = pd->dst; + struct buf_2d orig_pre[2]; + memcpy(orig_pre, xd->plane[0].pre, sizeof(orig_pre)); + + // set buffer pointers for sub8x8 motion search. + p->src.buf = + &p->src.buf[vp9_raster_block_offset(BLOCK_8X8, i, p->src.stride)]; + pd->dst.buf = + &pd->dst.buf[vp9_raster_block_offset(BLOCK_8X8, i, pd->dst.stride)]; + pd->pre[0].buf = + &pd->pre[0] + .buf[vp9_raster_block_offset(BLOCK_8X8, i, pd->pre[0].stride)]; + + b_mv[ZEROMV].as_int = 0; + b_mv[NEWMV].as_int = INVALID_MV; + vp9_append_sub8x8_mvs_for_idx(cm, xd, i, 0, mi_row, mi_col, + &b_mv[NEARESTMV], &b_mv[NEARMV], + mbmi_ext->mode_context); + + for (this_mode = NEARESTMV; this_mode <= NEWMV; ++this_mode) { + int b_rate = 0; + xd->mi[0]->bmi[i].as_mv[0].as_int = b_mv[this_mode].as_int; + + if (this_mode == NEWMV) { + const int step_param = cpi->sf.mv.fullpel_search_step_param; + MV mvp_full; + MV tmp_mv; + int cost_list[5]; + const MvLimits tmp_mv_limits = x->mv_limits; + uint32_t dummy_dist; + + if (i == 0) { + mvp_full.row = b_mv[NEARESTMV].as_mv.row >> 3; + mvp_full.col = b_mv[NEARESTMV].as_mv.col >> 3; + } else { + mvp_full.row = xd->mi[0]->bmi[0].as_mv[0].as_mv.row >> 3; + mvp_full.col = xd->mi[0]->bmi[0].as_mv[0].as_mv.col >> 3; + } + + vp9_set_mv_search_range(&x->mv_limits, + &mbmi_ext->ref_mvs[ref_frame][0].as_mv); + + vp9_full_pixel_search( + cpi, x, bsize, &mvp_full, step_param, cpi->sf.mv.search_method, + x->sadperbit4, cond_cost_list(cpi, cost_list), + &mbmi_ext->ref_mvs[ref_frame][0].as_mv, &tmp_mv, INT_MAX, 0); + + x->mv_limits = tmp_mv_limits; + + // calculate the bit cost on motion vector + mvp_full.row = tmp_mv.row * 8; + mvp_full.col = tmp_mv.col * 8; + + b_rate += vp9_mv_bit_cost( + &mvp_full, &mbmi_ext->ref_mvs[ref_frame][0].as_mv, + x->nmvjointcost, x->mvcost, MV_COST_WEIGHT); + + b_rate += cpi->inter_mode_cost[x->mbmi_ext->mode_context[ref_frame]] + [INTER_OFFSET(NEWMV)]; + if (RDCOST(x->rdmult, x->rddiv, b_rate, 0) > b_best_rd) continue; + + cpi->find_fractional_mv_step( + x, &tmp_mv, &mbmi_ext->ref_mvs[ref_frame][0].as_mv, + cpi->common.allow_high_precision_mv, x->errorperbit, + &cpi->fn_ptr[bsize], cpi->sf.mv.subpel_force_stop, + cpi->sf.mv.subpel_iters_per_step, + cond_cost_list(cpi, cost_list), x->nmvjointcost, x->mvcost, + &dummy_dist, &x->pred_sse[ref_frame], NULL, 0, 0); + + xd->mi[0]->bmi[i].as_mv[0].as_mv = tmp_mv; + } else { + b_rate += cpi->inter_mode_cost[x->mbmi_ext->mode_context[ref_frame]] + [INTER_OFFSET(this_mode)]; + } + +#if CONFIG_VP9_HIGHBITDEPTH + if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { + vp9_highbd_build_inter_predictor( + CONVERT_TO_SHORTPTR(pd->pre[0].buf), pd->pre[0].stride, + CONVERT_TO_SHORTPTR(pd->dst.buf), pd->dst.stride, + &xd->mi[0]->bmi[i].as_mv[0].as_mv, &xd->block_refs[0]->sf, + 4 * num_4x4_blocks_wide, 4 * num_4x4_blocks_high, 0, + vp9_filter_kernels[mi->interp_filter], MV_PRECISION_Q3, + mi_col * MI_SIZE + 4 * (i & 0x01), + mi_row * MI_SIZE + 4 * (i >> 1), xd->bd); + } else { +#endif + vp9_build_inter_predictor( + pd->pre[0].buf, pd->pre[0].stride, pd->dst.buf, pd->dst.stride, + &xd->mi[0]->bmi[i].as_mv[0].as_mv, &xd->block_refs[0]->sf, + 4 * num_4x4_blocks_wide, 4 * num_4x4_blocks_high, 0, + vp9_filter_kernels[mi->interp_filter], MV_PRECISION_Q3, + mi_col * MI_SIZE + 4 * (i & 0x01), + mi_row * MI_SIZE + 4 * (i >> 1)); + +#if CONFIG_VP9_HIGHBITDEPTH + } +#endif + + model_rd_for_sb_y(cpi, bsize, x, xd, &this_rdc.rate, &this_rdc.dist, + &var_y, &sse_y); + + this_rdc.rate += b_rate; + this_rdc.rdcost = + RDCOST(x->rdmult, x->rddiv, this_rdc.rate, this_rdc.dist); + if (this_rdc.rdcost < b_best_rd) { + b_best_rd = this_rdc.rdcost; + bsi[ref_frame][i].as_mode = this_mode; + bsi[ref_frame][i].as_mv[0].as_mv = xd->mi[0]->bmi[i].as_mv[0].as_mv; + } + } // mode search + + // restore source and prediction buffer pointers. + p->src = orig_src; + pd->pre[0] = orig_pre[0]; + pd->dst = orig_dst; + this_rd += b_best_rd; + + xd->mi[0]->bmi[i] = bsi[ref_frame][i]; + if (num_4x4_blocks_wide > 1) xd->mi[0]->bmi[i + 1] = xd->mi[0]->bmi[i]; + if (num_4x4_blocks_high > 1) xd->mi[0]->bmi[i + 2] = xd->mi[0]->bmi[i]; + } + } // loop through sub8x8 blocks + + if (this_rd < best_rd) { + best_rd = this_rd; + best_ref_frame = ref_frame; + } + } // reference frames + + mi->tx_size = TX_4X4; + mi->ref_frame[0] = best_ref_frame; + for (idy = 0; idy < 2; idy += num_4x4_blocks_high) { + for (idx = 0; idx < 2; idx += num_4x4_blocks_wide) { + const int block = idy * 2 + idx; + xd->mi[0]->bmi[block] = bsi[best_ref_frame][block]; + if (num_4x4_blocks_wide > 1) + xd->mi[0]->bmi[block + 1] = bsi[best_ref_frame][block]; + if (num_4x4_blocks_high > 1) + xd->mi[0]->bmi[block + 2] = bsi[best_ref_frame][block]; + } + } + mi->mode = xd->mi[0]->bmi[3].as_mode; + ctx->mic = *(xd->mi[0]); + ctx->mbmi_ext = *x->mbmi_ext; + ctx->skip_txfm[0] = SKIP_TXFM_NONE; + ctx->skip = 0; + // Dummy assignment for speed -5. No effect in speed -6. + rd_cost->rdcost = best_rd; +} diff --git a/vp9/encoder/vp9_pickmode.h b/vp9/encoder/vp9_pickmode.h new file mode 100644 index 0000000..9aa00c4 --- /dev/null +++ b/vp9/encoder/vp9_pickmode.h @@ -0,0 +1,35 @@ +/* + * Copyright (c) 2014 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP9_ENCODER_VP9_PICKMODE_H_ +#define VP9_ENCODER_VP9_PICKMODE_H_ + +#include "vp9/encoder/vp9_encoder.h" + +#ifdef __cplusplus +extern "C" { +#endif + +void vp9_pick_intra_mode(VP9_COMP *cpi, MACROBLOCK *x, RD_COST *rd_cost, + BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx); + +void vp9_pick_inter_mode(VP9_COMP *cpi, MACROBLOCK *x, TileDataEnc *tile_data, + int mi_row, int mi_col, RD_COST *rd_cost, + BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx); + +void vp9_pick_inter_mode_sub8x8(VP9_COMP *cpi, MACROBLOCK *x, int mi_row, + int mi_col, RD_COST *rd_cost, BLOCK_SIZE bsize, + PICK_MODE_CONTEXT *ctx); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP9_ENCODER_VP9_PICKMODE_H_ diff --git a/vp9/encoder/vp9_quantize.c b/vp9/encoder/vp9_quantize.c new file mode 100644 index 0000000..09f61ea --- /dev/null +++ b/vp9/encoder/vp9_quantize.c @@ -0,0 +1,350 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include +#include "./vpx_dsp_rtcd.h" +#include "vpx_mem/vpx_mem.h" +#include "vpx_ports/mem.h" + +#include "vp9/common/vp9_quant_common.h" +#include "vp9/common/vp9_seg_common.h" + +#include "vp9/encoder/vp9_encoder.h" +#include "vp9/encoder/vp9_quantize.h" +#include "vp9/encoder/vp9_rd.h" + +void vp9_quantize_fp_c(const tran_low_t *coeff_ptr, intptr_t n_coeffs, + int skip_block, const int16_t *round_ptr, + const int16_t *quant_ptr, tran_low_t *qcoeff_ptr, + tran_low_t *dqcoeff_ptr, const int16_t *dequant_ptr, + uint16_t *eob_ptr, const int16_t *scan, + const int16_t *iscan) { + int i, eob = -1; + (void)iscan; + (void)skip_block; + assert(!skip_block); + + memset(qcoeff_ptr, 0, n_coeffs * sizeof(*qcoeff_ptr)); + memset(dqcoeff_ptr, 0, n_coeffs * sizeof(*dqcoeff_ptr)); + + // Quantization pass: All coefficients with index >= zero_flag are + // skippable. Note: zero_flag can be zero. + for (i = 0; i < n_coeffs; i++) { + const int rc = scan[i]; + const int coeff = coeff_ptr[rc]; + const int coeff_sign = (coeff >> 31); + const int abs_coeff = (coeff ^ coeff_sign) - coeff_sign; + + int tmp = clamp(abs_coeff + round_ptr[rc != 0], INT16_MIN, INT16_MAX); + tmp = (tmp * quant_ptr[rc != 0]) >> 16; + + qcoeff_ptr[rc] = (tmp ^ coeff_sign) - coeff_sign; + dqcoeff_ptr[rc] = qcoeff_ptr[rc] * dequant_ptr[rc != 0]; + + if (tmp) eob = i; + } + *eob_ptr = eob + 1; +} + +#if CONFIG_VP9_HIGHBITDEPTH +void vp9_highbd_quantize_fp_c(const tran_low_t *coeff_ptr, intptr_t n_coeffs, + int skip_block, const int16_t *round_ptr, + const int16_t *quant_ptr, tran_low_t *qcoeff_ptr, + tran_low_t *dqcoeff_ptr, + const int16_t *dequant_ptr, uint16_t *eob_ptr, + const int16_t *scan, const int16_t *iscan) { + int i; + int eob = -1; + + (void)iscan; + (void)skip_block; + assert(!skip_block); + + memset(qcoeff_ptr, 0, n_coeffs * sizeof(*qcoeff_ptr)); + memset(dqcoeff_ptr, 0, n_coeffs * sizeof(*dqcoeff_ptr)); + + // Quantization pass: All coefficients with index >= zero_flag are + // skippable. Note: zero_flag can be zero. + for (i = 0; i < n_coeffs; i++) { + const int rc = scan[i]; + const int coeff = coeff_ptr[rc]; + const int coeff_sign = (coeff >> 31); + const int abs_coeff = (coeff ^ coeff_sign) - coeff_sign; + const int64_t tmp = abs_coeff + round_ptr[rc != 0]; + const int abs_qcoeff = (int)((tmp * quant_ptr[rc != 0]) >> 16); + qcoeff_ptr[rc] = (tran_low_t)(abs_qcoeff ^ coeff_sign) - coeff_sign; + dqcoeff_ptr[rc] = qcoeff_ptr[rc] * dequant_ptr[rc != 0]; + if (abs_qcoeff) eob = i; + } + *eob_ptr = eob + 1; +} +#endif + +// TODO(jingning) Refactor this file and combine functions with similar +// operations. +void vp9_quantize_fp_32x32_c(const tran_low_t *coeff_ptr, intptr_t n_coeffs, + int skip_block, const int16_t *round_ptr, + const int16_t *quant_ptr, tran_low_t *qcoeff_ptr, + tran_low_t *dqcoeff_ptr, + const int16_t *dequant_ptr, uint16_t *eob_ptr, + const int16_t *scan, const int16_t *iscan) { + int i, eob = -1; + (void)iscan; + (void)skip_block; + assert(!skip_block); + + memset(qcoeff_ptr, 0, n_coeffs * sizeof(*qcoeff_ptr)); + memset(dqcoeff_ptr, 0, n_coeffs * sizeof(*dqcoeff_ptr)); + + for (i = 0; i < n_coeffs; i++) { + const int rc = scan[i]; + const int coeff = coeff_ptr[rc]; + const int coeff_sign = (coeff >> 31); + int tmp = 0; + int abs_coeff = (coeff ^ coeff_sign) - coeff_sign; + + if (abs_coeff >= (dequant_ptr[rc != 0] >> 2)) { + abs_coeff += ROUND_POWER_OF_TWO(round_ptr[rc != 0], 1); + abs_coeff = clamp(abs_coeff, INT16_MIN, INT16_MAX); + tmp = (abs_coeff * quant_ptr[rc != 0]) >> 15; + qcoeff_ptr[rc] = (tmp ^ coeff_sign) - coeff_sign; + dqcoeff_ptr[rc] = qcoeff_ptr[rc] * dequant_ptr[rc != 0] / 2; + } + + if (tmp) eob = i; + } + *eob_ptr = eob + 1; +} + +#if CONFIG_VP9_HIGHBITDEPTH +void vp9_highbd_quantize_fp_32x32_c( + const tran_low_t *coeff_ptr, intptr_t n_coeffs, int skip_block, + const int16_t *round_ptr, const int16_t *quant_ptr, tran_low_t *qcoeff_ptr, + tran_low_t *dqcoeff_ptr, const int16_t *dequant_ptr, uint16_t *eob_ptr, + const int16_t *scan, const int16_t *iscan) { + int i, eob = -1; + + (void)iscan; + (void)skip_block; + assert(!skip_block); + + memset(qcoeff_ptr, 0, n_coeffs * sizeof(*qcoeff_ptr)); + memset(dqcoeff_ptr, 0, n_coeffs * sizeof(*dqcoeff_ptr)); + + for (i = 0; i < n_coeffs; i++) { + int abs_qcoeff = 0; + const int rc = scan[i]; + const int coeff = coeff_ptr[rc]; + const int coeff_sign = (coeff >> 31); + const int abs_coeff = (coeff ^ coeff_sign) - coeff_sign; + + if (abs_coeff >= (dequant_ptr[rc != 0] >> 2)) { + const int64_t tmp = abs_coeff + ROUND_POWER_OF_TWO(round_ptr[rc != 0], 1); + abs_qcoeff = (int)((tmp * quant_ptr[rc != 0]) >> 15); + qcoeff_ptr[rc] = (tran_low_t)((abs_qcoeff ^ coeff_sign) - coeff_sign); + dqcoeff_ptr[rc] = qcoeff_ptr[rc] * dequant_ptr[rc != 0] / 2; + } + + if (abs_qcoeff) eob = i; + } + *eob_ptr = eob + 1; +} +#endif + +void vp9_regular_quantize_b_4x4(MACROBLOCK *x, int plane, int block, + const int16_t *scan, const int16_t *iscan) { + MACROBLOCKD *const xd = &x->e_mbd; + struct macroblock_plane *p = &x->plane[plane]; + struct macroblockd_plane *pd = &xd->plane[plane]; + tran_low_t *qcoeff = BLOCK_OFFSET(p->qcoeff, block), + *dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); + const int n_coeffs = 4 * 4; + + if (x->skip_block) { + memset(qcoeff, 0, n_coeffs * sizeof(*qcoeff)); + memset(dqcoeff, 0, n_coeffs * sizeof(*dqcoeff)); + return; + } + +#if CONFIG_VP9_HIGHBITDEPTH + if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { + vpx_highbd_quantize_b(BLOCK_OFFSET(p->coeff, block), n_coeffs, + x->skip_block, p->zbin, p->round, p->quant, + p->quant_shift, qcoeff, dqcoeff, pd->dequant, + &p->eobs[block], scan, iscan); + return; + } +#endif + vpx_quantize_b(BLOCK_OFFSET(p->coeff, block), n_coeffs, x->skip_block, + p->zbin, p->round, p->quant, p->quant_shift, qcoeff, dqcoeff, + pd->dequant, &p->eobs[block], scan, iscan); +} + +static void invert_quant(int16_t *quant, int16_t *shift, int d) { + unsigned t; + int l, m; + t = d; + for (l = 0; t > 1; l++) t >>= 1; + m = 1 + (1 << (16 + l)) / d; + *quant = (int16_t)(m - (1 << 16)); + *shift = 1 << (16 - l); +} + +static int get_qzbin_factor(int q, vpx_bit_depth_t bit_depth) { + const int quant = vp9_dc_quant(q, 0, bit_depth); +#if CONFIG_VP9_HIGHBITDEPTH + switch (bit_depth) { + case VPX_BITS_8: return q == 0 ? 64 : (quant < 148 ? 84 : 80); + case VPX_BITS_10: return q == 0 ? 64 : (quant < 592 ? 84 : 80); + case VPX_BITS_12: return q == 0 ? 64 : (quant < 2368 ? 84 : 80); + default: + assert(0 && "bit_depth should be VPX_BITS_8, VPX_BITS_10 or VPX_BITS_12"); + return -1; + } +#else + (void)bit_depth; + return q == 0 ? 64 : (quant < 148 ? 84 : 80); +#endif +} + +void vp9_init_quantizer(VP9_COMP *cpi) { + VP9_COMMON *const cm = &cpi->common; + QUANTS *const quants = &cpi->quants; + int i, q, quant; + + for (q = 0; q < QINDEX_RANGE; q++) { + const int qzbin_factor = get_qzbin_factor(q, cm->bit_depth); + const int qrounding_factor = q == 0 ? 64 : 48; + + for (i = 0; i < 2; ++i) { + int qrounding_factor_fp = i == 0 ? 48 : 42; + if (q == 0) qrounding_factor_fp = 64; + + // y + quant = i == 0 ? vp9_dc_quant(q, cm->y_dc_delta_q, cm->bit_depth) + : vp9_ac_quant(q, 0, cm->bit_depth); + invert_quant(&quants->y_quant[q][i], &quants->y_quant_shift[q][i], quant); + quants->y_quant_fp[q][i] = (1 << 16) / quant; + quants->y_round_fp[q][i] = (qrounding_factor_fp * quant) >> 7; + quants->y_zbin[q][i] = ROUND_POWER_OF_TWO(qzbin_factor * quant, 7); + quants->y_round[q][i] = (qrounding_factor * quant) >> 7; + cpi->y_dequant[q][i] = quant; + + // uv + quant = i == 0 ? vp9_dc_quant(q, cm->uv_dc_delta_q, cm->bit_depth) + : vp9_ac_quant(q, cm->uv_ac_delta_q, cm->bit_depth); + invert_quant(&quants->uv_quant[q][i], &quants->uv_quant_shift[q][i], + quant); + quants->uv_quant_fp[q][i] = (1 << 16) / quant; + quants->uv_round_fp[q][i] = (qrounding_factor_fp * quant) >> 7; + quants->uv_zbin[q][i] = ROUND_POWER_OF_TWO(qzbin_factor * quant, 7); + quants->uv_round[q][i] = (qrounding_factor * quant) >> 7; + cpi->uv_dequant[q][i] = quant; + } + + for (i = 2; i < 8; i++) { + quants->y_quant[q][i] = quants->y_quant[q][1]; + quants->y_quant_fp[q][i] = quants->y_quant_fp[q][1]; + quants->y_round_fp[q][i] = quants->y_round_fp[q][1]; + quants->y_quant_shift[q][i] = quants->y_quant_shift[q][1]; + quants->y_zbin[q][i] = quants->y_zbin[q][1]; + quants->y_round[q][i] = quants->y_round[q][1]; + cpi->y_dequant[q][i] = cpi->y_dequant[q][1]; + + quants->uv_quant[q][i] = quants->uv_quant[q][1]; + quants->uv_quant_fp[q][i] = quants->uv_quant_fp[q][1]; + quants->uv_round_fp[q][i] = quants->uv_round_fp[q][1]; + quants->uv_quant_shift[q][i] = quants->uv_quant_shift[q][1]; + quants->uv_zbin[q][i] = quants->uv_zbin[q][1]; + quants->uv_round[q][i] = quants->uv_round[q][1]; + cpi->uv_dequant[q][i] = cpi->uv_dequant[q][1]; + } + } +} + +void vp9_init_plane_quantizers(VP9_COMP *cpi, MACROBLOCK *x) { + const VP9_COMMON *const cm = &cpi->common; + MACROBLOCKD *const xd = &x->e_mbd; + QUANTS *const quants = &cpi->quants; + const int segment_id = xd->mi[0]->segment_id; + const int qindex = vp9_get_qindex(&cm->seg, segment_id, cm->base_qindex); + const int rdmult = vp9_compute_rd_mult(cpi, qindex + cm->y_dc_delta_q); + int i; + + // Y + x->plane[0].quant = quants->y_quant[qindex]; + x->plane[0].quant_fp = quants->y_quant_fp[qindex]; + x->plane[0].round_fp = quants->y_round_fp[qindex]; + x->plane[0].quant_shift = quants->y_quant_shift[qindex]; + x->plane[0].zbin = quants->y_zbin[qindex]; + x->plane[0].round = quants->y_round[qindex]; + xd->plane[0].dequant = cpi->y_dequant[qindex]; + + x->plane[0].quant_thred[0] = x->plane[0].zbin[0] * x->plane[0].zbin[0]; + x->plane[0].quant_thred[1] = x->plane[0].zbin[1] * x->plane[0].zbin[1]; + + // UV + for (i = 1; i < 3; i++) { + x->plane[i].quant = quants->uv_quant[qindex]; + x->plane[i].quant_fp = quants->uv_quant_fp[qindex]; + x->plane[i].round_fp = quants->uv_round_fp[qindex]; + x->plane[i].quant_shift = quants->uv_quant_shift[qindex]; + x->plane[i].zbin = quants->uv_zbin[qindex]; + x->plane[i].round = quants->uv_round[qindex]; + xd->plane[i].dequant = cpi->uv_dequant[qindex]; + + x->plane[i].quant_thred[0] = x->plane[i].zbin[0] * x->plane[i].zbin[0]; + x->plane[i].quant_thred[1] = x->plane[i].zbin[1] * x->plane[i].zbin[1]; + } + + x->skip_block = segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP); + x->q_index = qindex; + + set_error_per_bit(x, rdmult); + + vp9_initialize_me_consts(cpi, x, x->q_index); +} + +void vp9_frame_init_quantizer(VP9_COMP *cpi) { + vp9_init_plane_quantizers(cpi, &cpi->td.mb); +} + +void vp9_set_quantizer(VP9_COMMON *cm, int q) { + // quantizer has to be reinitialized with vp9_init_quantizer() if any + // delta_q changes. + cm->base_qindex = q; + cm->y_dc_delta_q = 0; + cm->uv_dc_delta_q = 0; + cm->uv_ac_delta_q = 0; +} + +// Table that converts 0-63 Q-range values passed in outside to the Qindex +// range used internally. +static const int quantizer_to_qindex[] = { + 0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, + 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92, 96, 100, + 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144, 148, 152, + 156, 160, 164, 168, 172, 176, 180, 184, 188, 192, 196, 200, 204, + 208, 212, 216, 220, 224, 228, 232, 236, 240, 244, 249, 255, +}; + +int vp9_quantizer_to_qindex(int quantizer) { + return quantizer_to_qindex[quantizer]; +} + +int vp9_qindex_to_quantizer(int qindex) { + int quantizer; + + for (quantizer = 0; quantizer < 64; ++quantizer) + if (quantizer_to_qindex[quantizer] >= qindex) return quantizer; + + return 63; +} diff --git a/vp9/encoder/vp9_quantize.h b/vp9/encoder/vp9_quantize.h new file mode 100644 index 0000000..6132036 --- /dev/null +++ b/vp9/encoder/vp9_quantize.h @@ -0,0 +1,62 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP9_ENCODER_VP9_QUANTIZE_H_ +#define VP9_ENCODER_VP9_QUANTIZE_H_ + +#include "./vpx_config.h" +#include "vp9/encoder/vp9_block.h" + +#ifdef __cplusplus +extern "C" { +#endif + +typedef struct { + DECLARE_ALIGNED(16, int16_t, y_quant[QINDEX_RANGE][8]); + DECLARE_ALIGNED(16, int16_t, y_quant_shift[QINDEX_RANGE][8]); + DECLARE_ALIGNED(16, int16_t, y_zbin[QINDEX_RANGE][8]); + DECLARE_ALIGNED(16, int16_t, y_round[QINDEX_RANGE][8]); + + // TODO(jingning): in progress of re-working the quantization. will decide + // if we want to deprecate the current use of y_quant. + DECLARE_ALIGNED(16, int16_t, y_quant_fp[QINDEX_RANGE][8]); + DECLARE_ALIGNED(16, int16_t, uv_quant_fp[QINDEX_RANGE][8]); + DECLARE_ALIGNED(16, int16_t, y_round_fp[QINDEX_RANGE][8]); + DECLARE_ALIGNED(16, int16_t, uv_round_fp[QINDEX_RANGE][8]); + + DECLARE_ALIGNED(16, int16_t, uv_quant[QINDEX_RANGE][8]); + DECLARE_ALIGNED(16, int16_t, uv_quant_shift[QINDEX_RANGE][8]); + DECLARE_ALIGNED(16, int16_t, uv_zbin[QINDEX_RANGE][8]); + DECLARE_ALIGNED(16, int16_t, uv_round[QINDEX_RANGE][8]); +} QUANTS; + +void vp9_regular_quantize_b_4x4(MACROBLOCK *x, int plane, int block, + const int16_t *scan, const int16_t *iscan); + +struct VP9_COMP; +struct VP9Common; + +void vp9_frame_init_quantizer(struct VP9_COMP *cpi); + +void vp9_init_plane_quantizers(struct VP9_COMP *cpi, MACROBLOCK *x); + +void vp9_init_quantizer(struct VP9_COMP *cpi); + +void vp9_set_quantizer(struct VP9Common *cm, int q); + +int vp9_quantizer_to_qindex(int quantizer); + +int vp9_qindex_to_quantizer(int qindex); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP9_ENCODER_VP9_QUANTIZE_H_ diff --git a/vp9/encoder/vp9_ratectrl.c b/vp9/encoder/vp9_ratectrl.c new file mode 100644 index 0000000..b7f3a0e --- /dev/null +++ b/vp9/encoder/vp9_ratectrl.c @@ -0,0 +1,2503 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include +#include +#include +#include +#include + +#include "./vpx_dsp_rtcd.h" +#include "vpx_dsp/vpx_dsp_common.h" +#include "vpx_mem/vpx_mem.h" +#include "vpx_ports/mem.h" +#include "vpx_ports/system_state.h" + +#include "vp9/common/vp9_alloccommon.h" +#include "vp9/encoder/vp9_aq_cyclicrefresh.h" +#include "vp9/common/vp9_common.h" +#include "vp9/common/vp9_entropymode.h" +#include "vp9/common/vp9_quant_common.h" +#include "vp9/common/vp9_seg_common.h" + +#include "vp9/encoder/vp9_encodemv.h" +#include "vp9/encoder/vp9_ratectrl.h" + +// Max rate target for 1080P and below encodes under normal circumstances +// (1920 * 1080 / (16 * 16)) * MAX_MB_RATE bits per MB +#define MAX_MB_RATE 250 +#define MAXRATE_1080P 2025000 + +#define DEFAULT_KF_BOOST 2000 +#define DEFAULT_GF_BOOST 2000 + +#define LIMIT_QRANGE_FOR_ALTREF_AND_KEY 1 + +#define MIN_BPB_FACTOR 0.005 +#define MAX_BPB_FACTOR 50 + +#if CONFIG_VP9_HIGHBITDEPTH +#define ASSIGN_MINQ_TABLE(bit_depth, name) \ + do { \ + switch (bit_depth) { \ + case VPX_BITS_8: name = name##_8; break; \ + case VPX_BITS_10: name = name##_10; break; \ + case VPX_BITS_12: name = name##_12; break; \ + default: \ + assert(0 && \ + "bit_depth should be VPX_BITS_8, VPX_BITS_10" \ + " or VPX_BITS_12"); \ + name = NULL; \ + } \ + } while (0) +#else +#define ASSIGN_MINQ_TABLE(bit_depth, name) \ + do { \ + (void)bit_depth; \ + name = name##_8; \ + } while (0) +#endif + +// Tables relating active max Q to active min Q +static int kf_low_motion_minq_8[QINDEX_RANGE]; +static int kf_high_motion_minq_8[QINDEX_RANGE]; +static int arfgf_low_motion_minq_8[QINDEX_RANGE]; +static int arfgf_high_motion_minq_8[QINDEX_RANGE]; +static int inter_minq_8[QINDEX_RANGE]; +static int rtc_minq_8[QINDEX_RANGE]; + +#if CONFIG_VP9_HIGHBITDEPTH +static int kf_low_motion_minq_10[QINDEX_RANGE]; +static int kf_high_motion_minq_10[QINDEX_RANGE]; +static int arfgf_low_motion_minq_10[QINDEX_RANGE]; +static int arfgf_high_motion_minq_10[QINDEX_RANGE]; +static int inter_minq_10[QINDEX_RANGE]; +static int rtc_minq_10[QINDEX_RANGE]; +static int kf_low_motion_minq_12[QINDEX_RANGE]; +static int kf_high_motion_minq_12[QINDEX_RANGE]; +static int arfgf_low_motion_minq_12[QINDEX_RANGE]; +static int arfgf_high_motion_minq_12[QINDEX_RANGE]; +static int inter_minq_12[QINDEX_RANGE]; +static int rtc_minq_12[QINDEX_RANGE]; +#endif + +#ifdef AGGRESSIVE_VBR +static int gf_high = 2400; +static int gf_low = 400; +static int kf_high = 4000; +static int kf_low = 400; +#else +static int gf_high = 2000; +static int gf_low = 400; +static int kf_high = 5000; +static int kf_low = 400; +#endif + +// Functions to compute the active minq lookup table entries based on a +// formulaic approach to facilitate easier adjustment of the Q tables. +// The formulae were derived from computing a 3rd order polynomial best +// fit to the original data (after plotting real maxq vs minq (not q index)) +static int get_minq_index(double maxq, double x3, double x2, double x1, + vpx_bit_depth_t bit_depth) { + int i; + const double minqtarget = VPXMIN(((x3 * maxq + x2) * maxq + x1) * maxq, maxq); + + // Special case handling to deal with the step from q2.0 + // down to lossless mode represented by q 1.0. + if (minqtarget <= 2.0) return 0; + + for (i = 0; i < QINDEX_RANGE; i++) { + if (minqtarget <= vp9_convert_qindex_to_q(i, bit_depth)) return i; + } + + return QINDEX_RANGE - 1; +} + +static void init_minq_luts(int *kf_low_m, int *kf_high_m, int *arfgf_low, + int *arfgf_high, int *inter, int *rtc, + vpx_bit_depth_t bit_depth) { + int i; + for (i = 0; i < QINDEX_RANGE; i++) { + const double maxq = vp9_convert_qindex_to_q(i, bit_depth); + kf_low_m[i] = get_minq_index(maxq, 0.000001, -0.0004, 0.150, bit_depth); + kf_high_m[i] = get_minq_index(maxq, 0.0000021, -0.00125, 0.55, bit_depth); +#ifdef AGGRESSIVE_VBR + arfgf_low[i] = get_minq_index(maxq, 0.0000015, -0.0009, 0.275, bit_depth); + inter[i] = get_minq_index(maxq, 0.00000271, -0.00113, 0.80, bit_depth); +#else + arfgf_low[i] = get_minq_index(maxq, 0.0000015, -0.0009, 0.30, bit_depth); + inter[i] = get_minq_index(maxq, 0.00000271, -0.00113, 0.70, bit_depth); +#endif + arfgf_high[i] = get_minq_index(maxq, 0.0000021, -0.00125, 0.55, bit_depth); + rtc[i] = get_minq_index(maxq, 0.00000271, -0.00113, 0.70, bit_depth); + } +} + +void vp9_rc_init_minq_luts(void) { + init_minq_luts(kf_low_motion_minq_8, kf_high_motion_minq_8, + arfgf_low_motion_minq_8, arfgf_high_motion_minq_8, + inter_minq_8, rtc_minq_8, VPX_BITS_8); +#if CONFIG_VP9_HIGHBITDEPTH + init_minq_luts(kf_low_motion_minq_10, kf_high_motion_minq_10, + arfgf_low_motion_minq_10, arfgf_high_motion_minq_10, + inter_minq_10, rtc_minq_10, VPX_BITS_10); + init_minq_luts(kf_low_motion_minq_12, kf_high_motion_minq_12, + arfgf_low_motion_minq_12, arfgf_high_motion_minq_12, + inter_minq_12, rtc_minq_12, VPX_BITS_12); +#endif +} + +// These functions use formulaic calculations to make playing with the +// quantizer tables easier. If necessary they can be replaced by lookup +// tables if and when things settle down in the experimental bitstream +double vp9_convert_qindex_to_q(int qindex, vpx_bit_depth_t bit_depth) { +// Convert the index to a real Q value (scaled down to match old Q values) +#if CONFIG_VP9_HIGHBITDEPTH + switch (bit_depth) { + case VPX_BITS_8: return vp9_ac_quant(qindex, 0, bit_depth) / 4.0; + case VPX_BITS_10: return vp9_ac_quant(qindex, 0, bit_depth) / 16.0; + case VPX_BITS_12: return vp9_ac_quant(qindex, 0, bit_depth) / 64.0; + default: + assert(0 && "bit_depth should be VPX_BITS_8, VPX_BITS_10 or VPX_BITS_12"); + return -1.0; + } +#else + return vp9_ac_quant(qindex, 0, bit_depth) / 4.0; +#endif +} + +int vp9_convert_q_to_qindex(double q_val, vpx_bit_depth_t bit_depth) { + int i; + + for (i = 0; i < QINDEX_RANGE; ++i) + if (vp9_convert_qindex_to_q(i, bit_depth) >= q_val) break; + + if (i == QINDEX_RANGE) i--; + + return i; +} + +int vp9_rc_bits_per_mb(FRAME_TYPE frame_type, int qindex, + double correction_factor, vpx_bit_depth_t bit_depth) { + const double q = vp9_convert_qindex_to_q(qindex, bit_depth); + int enumerator = frame_type == KEY_FRAME ? 2700000 : 1800000; + + assert(correction_factor <= MAX_BPB_FACTOR && + correction_factor >= MIN_BPB_FACTOR); + + // q based adjustment to baseline enumerator + enumerator += (int)(enumerator * q) >> 12; + return (int)(enumerator * correction_factor / q); +} + +int vp9_estimate_bits_at_q(FRAME_TYPE frame_type, int q, int mbs, + double correction_factor, + vpx_bit_depth_t bit_depth) { + const int bpm = + (int)(vp9_rc_bits_per_mb(frame_type, q, correction_factor, bit_depth)); + return VPXMAX(FRAME_OVERHEAD_BITS, + (int)(((uint64_t)bpm * mbs) >> BPER_MB_NORMBITS)); +} + +int vp9_rc_clamp_pframe_target_size(const VP9_COMP *const cpi, int target) { + const RATE_CONTROL *rc = &cpi->rc; + const VP9EncoderConfig *oxcf = &cpi->oxcf; + + if (cpi->oxcf.pass != 2) { + const int min_frame_target = + VPXMAX(rc->min_frame_bandwidth, rc->avg_frame_bandwidth >> 5); + if (target < min_frame_target) target = min_frame_target; + if (cpi->refresh_golden_frame && rc->is_src_frame_alt_ref) { + // If there is an active ARF at this location use the minimum + // bits on this frame even if it is a constructed arf. + // The active maximum quantizer insures that an appropriate + // number of bits will be spent if needed for constructed ARFs. + target = min_frame_target; + } + } + + // Clip the frame target to the maximum allowed value. + if (target > rc->max_frame_bandwidth) target = rc->max_frame_bandwidth; + + if (oxcf->rc_max_inter_bitrate_pct) { + const int max_rate = + rc->avg_frame_bandwidth * oxcf->rc_max_inter_bitrate_pct / 100; + target = VPXMIN(target, max_rate); + } + return target; +} + +int vp9_rc_clamp_iframe_target_size(const VP9_COMP *const cpi, int target) { + const RATE_CONTROL *rc = &cpi->rc; + const VP9EncoderConfig *oxcf = &cpi->oxcf; + if (oxcf->rc_max_intra_bitrate_pct) { + const int max_rate = + rc->avg_frame_bandwidth * oxcf->rc_max_intra_bitrate_pct / 100; + target = VPXMIN(target, max_rate); + } + if (target > rc->max_frame_bandwidth) target = rc->max_frame_bandwidth; + return target; +} + +// Update the buffer level for higher temporal layers, given the encoded current +// temporal layer. +static void update_layer_buffer_level(SVC *svc, int encoded_frame_size) { + int i = 0; + int current_temporal_layer = svc->temporal_layer_id; + for (i = current_temporal_layer + 1; i < svc->number_temporal_layers; ++i) { + const int layer = + LAYER_IDS_TO_IDX(svc->spatial_layer_id, i, svc->number_temporal_layers); + LAYER_CONTEXT *lc = &svc->layer_context[layer]; + RATE_CONTROL *lrc = &lc->rc; + int bits_off_for_this_layer = + (int)(lc->target_bandwidth / lc->framerate - encoded_frame_size); + lrc->bits_off_target += bits_off_for_this_layer; + + // Clip buffer level to maximum buffer size for the layer. + lrc->bits_off_target = + VPXMIN(lrc->bits_off_target, lrc->maximum_buffer_size); + lrc->buffer_level = lrc->bits_off_target; + } +} + +// Update the buffer level: leaky bucket model. +static void update_buffer_level(VP9_COMP *cpi, int encoded_frame_size) { + const VP9_COMMON *const cm = &cpi->common; + RATE_CONTROL *const rc = &cpi->rc; + + // Non-viewable frames are a special case and are treated as pure overhead. + if (!cm->show_frame) { + rc->bits_off_target -= encoded_frame_size; + } else { + rc->bits_off_target += rc->avg_frame_bandwidth - encoded_frame_size; + } + + // Clip the buffer level to the maximum specified buffer size. + rc->bits_off_target = VPXMIN(rc->bits_off_target, rc->maximum_buffer_size); + + // For screen-content mode, and if frame-dropper is off, don't let buffer + // level go below threshold, given here as -rc->maximum_ buffer_size. + if (cpi->oxcf.content == VP9E_CONTENT_SCREEN && + cpi->oxcf.drop_frames_water_mark == 0) + rc->bits_off_target = VPXMAX(rc->bits_off_target, -rc->maximum_buffer_size); + + rc->buffer_level = rc->bits_off_target; + + if (is_one_pass_cbr_svc(cpi)) { + update_layer_buffer_level(&cpi->svc, encoded_frame_size); + } +} + +int vp9_rc_get_default_min_gf_interval(int width, int height, + double framerate) { + // Assume we do not need any constraint lower than 4K 20 fps + static const double factor_safe = 3840 * 2160 * 20.0; + const double factor = width * height * framerate; + const int default_interval = + clamp((int)(framerate * 0.125), MIN_GF_INTERVAL, MAX_GF_INTERVAL); + + if (factor <= factor_safe) + return default_interval; + else + return VPXMAX(default_interval, + (int)(MIN_GF_INTERVAL * factor / factor_safe + 0.5)); + // Note this logic makes: + // 4K24: 5 + // 4K30: 6 + // 4K60: 12 +} + +int vp9_rc_get_default_max_gf_interval(double framerate, int min_gf_interval) { + int interval = VPXMIN(MAX_GF_INTERVAL, (int)(framerate * 0.75)); + interval += (interval & 0x01); // Round to even value + return VPXMAX(interval, min_gf_interval); +} + +void vp9_rc_init(const VP9EncoderConfig *oxcf, int pass, RATE_CONTROL *rc) { + int i; + + if (pass == 0 && oxcf->rc_mode == VPX_CBR) { + rc->avg_frame_qindex[KEY_FRAME] = oxcf->worst_allowed_q; + rc->avg_frame_qindex[INTER_FRAME] = oxcf->worst_allowed_q; + } else { + rc->avg_frame_qindex[KEY_FRAME] = + (oxcf->worst_allowed_q + oxcf->best_allowed_q) / 2; + rc->avg_frame_qindex[INTER_FRAME] = + (oxcf->worst_allowed_q + oxcf->best_allowed_q) / 2; + } + + rc->last_q[KEY_FRAME] = oxcf->best_allowed_q; + rc->last_q[INTER_FRAME] = oxcf->worst_allowed_q; + + rc->buffer_level = rc->starting_buffer_level; + rc->bits_off_target = rc->starting_buffer_level; + + rc->rolling_target_bits = rc->avg_frame_bandwidth; + rc->rolling_actual_bits = rc->avg_frame_bandwidth; + rc->long_rolling_target_bits = rc->avg_frame_bandwidth; + rc->long_rolling_actual_bits = rc->avg_frame_bandwidth; + + rc->total_actual_bits = 0; + rc->total_target_bits = 0; + rc->total_target_vs_actual = 0; + rc->avg_frame_low_motion = 0; + rc->count_last_scene_change = 0; + rc->af_ratio_onepass_vbr = 10; + rc->prev_avg_source_sad_lag = 0; + rc->high_source_sad = 0; + rc->reset_high_source_sad = 0; + rc->high_source_sad_lagindex = -1; + rc->alt_ref_gf_group = 0; + rc->last_frame_is_src_altref = 0; + rc->fac_active_worst_inter = 150; + rc->fac_active_worst_gf = 100; + rc->force_qpmin = 0; + for (i = 0; i < MAX_LAG_BUFFERS; ++i) rc->avg_source_sad[i] = 0; + rc->frames_since_key = 8; // Sensible default for first frame. + rc->this_key_frame_forced = 0; + rc->next_key_frame_forced = 0; + rc->source_alt_ref_pending = 0; + rc->source_alt_ref_active = 0; + + rc->frames_till_gf_update_due = 0; + rc->ni_av_qi = oxcf->worst_allowed_q; + rc->ni_tot_qi = 0; + rc->ni_frames = 0; + + rc->tot_q = 0.0; + rc->avg_q = vp9_convert_qindex_to_q(oxcf->worst_allowed_q, oxcf->bit_depth); + + for (i = 0; i < RATE_FACTOR_LEVELS; ++i) { + rc->rate_correction_factors[i] = 1.0; + } + + rc->min_gf_interval = oxcf->min_gf_interval; + rc->max_gf_interval = oxcf->max_gf_interval; + if (rc->min_gf_interval == 0) + rc->min_gf_interval = vp9_rc_get_default_min_gf_interval( + oxcf->width, oxcf->height, oxcf->init_framerate); + if (rc->max_gf_interval == 0) + rc->max_gf_interval = vp9_rc_get_default_max_gf_interval( + oxcf->init_framerate, rc->min_gf_interval); + rc->baseline_gf_interval = (rc->min_gf_interval + rc->max_gf_interval) / 2; +} + +int vp9_rc_drop_frame(VP9_COMP *cpi) { + const VP9EncoderConfig *oxcf = &cpi->oxcf; + RATE_CONTROL *const rc = &cpi->rc; + if (!oxcf->drop_frames_water_mark || + (is_one_pass_cbr_svc(cpi) && + cpi->svc.spatial_layer_id > cpi->svc.first_spatial_layer_to_encode)) { + return 0; + } else { + if (rc->buffer_level < 0) { + // Always drop if buffer is below 0. + return 1; + } else { + // If buffer is below drop_mark, for now just drop every other frame + // (starting with the next frame) until it increases back over drop_mark. + int drop_mark = + (int)(oxcf->drop_frames_water_mark * rc->optimal_buffer_level / 100); + if ((rc->buffer_level > drop_mark) && (rc->decimation_factor > 0)) { + --rc->decimation_factor; + } else if (rc->buffer_level <= drop_mark && rc->decimation_factor == 0) { + rc->decimation_factor = 1; + } + if (rc->decimation_factor > 0) { + if (rc->decimation_count > 0) { + --rc->decimation_count; + return 1; + } else { + rc->decimation_count = rc->decimation_factor; + return 0; + } + } else { + rc->decimation_count = 0; + return 0; + } + } + } +} + +static double get_rate_correction_factor(const VP9_COMP *cpi) { + const RATE_CONTROL *const rc = &cpi->rc; + double rcf; + + if (cpi->common.frame_type == KEY_FRAME) { + rcf = rc->rate_correction_factors[KF_STD]; + } else if (cpi->oxcf.pass == 2) { + RATE_FACTOR_LEVEL rf_lvl = + cpi->twopass.gf_group.rf_level[cpi->twopass.gf_group.index]; + rcf = rc->rate_correction_factors[rf_lvl]; + } else { + if ((cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame) && + !rc->is_src_frame_alt_ref && !cpi->use_svc && + (cpi->oxcf.rc_mode != VPX_CBR || cpi->oxcf.gf_cbr_boost_pct > 100)) + rcf = rc->rate_correction_factors[GF_ARF_STD]; + else + rcf = rc->rate_correction_factors[INTER_NORMAL]; + } + rcf *= rcf_mult[rc->frame_size_selector]; + return fclamp(rcf, MIN_BPB_FACTOR, MAX_BPB_FACTOR); +} + +static void set_rate_correction_factor(VP9_COMP *cpi, double factor) { + RATE_CONTROL *const rc = &cpi->rc; + + // Normalize RCF to account for the size-dependent scaling factor. + factor /= rcf_mult[cpi->rc.frame_size_selector]; + + factor = fclamp(factor, MIN_BPB_FACTOR, MAX_BPB_FACTOR); + + if (cpi->common.frame_type == KEY_FRAME) { + rc->rate_correction_factors[KF_STD] = factor; + } else if (cpi->oxcf.pass == 2) { + RATE_FACTOR_LEVEL rf_lvl = + cpi->twopass.gf_group.rf_level[cpi->twopass.gf_group.index]; + rc->rate_correction_factors[rf_lvl] = factor; + } else { + if ((cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame) && + !rc->is_src_frame_alt_ref && !cpi->use_svc && + (cpi->oxcf.rc_mode != VPX_CBR || cpi->oxcf.gf_cbr_boost_pct > 100)) + rc->rate_correction_factors[GF_ARF_STD] = factor; + else + rc->rate_correction_factors[INTER_NORMAL] = factor; + } +} + +void vp9_rc_update_rate_correction_factors(VP9_COMP *cpi) { + const VP9_COMMON *const cm = &cpi->common; + int correction_factor = 100; + double rate_correction_factor = get_rate_correction_factor(cpi); + double adjustment_limit; + + int projected_size_based_on_q = 0; + + // Do not update the rate factors for arf overlay frames. + if (cpi->rc.is_src_frame_alt_ref) return; + + // Clear down mmx registers to allow floating point in what follows + vpx_clear_system_state(); + + // Work out how big we would have expected the frame to be at this Q given + // the current correction factor. + // Stay in double to avoid int overflow when values are large + if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cpi->common.seg.enabled) { + projected_size_based_on_q = + vp9_cyclic_refresh_estimate_bits_at_q(cpi, rate_correction_factor); + } else { + projected_size_based_on_q = + vp9_estimate_bits_at_q(cpi->common.frame_type, cm->base_qindex, cm->MBs, + rate_correction_factor, cm->bit_depth); + } + // Work out a size correction factor. + if (projected_size_based_on_q > FRAME_OVERHEAD_BITS) + correction_factor = (int)((100 * (int64_t)cpi->rc.projected_frame_size) / + projected_size_based_on_q); + + // More heavily damped adjustment used if we have been oscillating either side + // of target. + adjustment_limit = + 0.25 + 0.5 * VPXMIN(1, fabs(log10(0.01 * correction_factor))); + + cpi->rc.q_2_frame = cpi->rc.q_1_frame; + cpi->rc.q_1_frame = cm->base_qindex; + cpi->rc.rc_2_frame = cpi->rc.rc_1_frame; + if (correction_factor > 110) + cpi->rc.rc_1_frame = -1; + else if (correction_factor < 90) + cpi->rc.rc_1_frame = 1; + else + cpi->rc.rc_1_frame = 0; + + // Turn off oscilation detection in the case of massive overshoot. + if (cpi->rc.rc_1_frame == -1 && cpi->rc.rc_2_frame == 1 && + correction_factor > 1000) { + cpi->rc.rc_2_frame = 0; + } + + if (correction_factor > 102) { + // We are not already at the worst allowable quality + correction_factor = + (int)(100 + ((correction_factor - 100) * adjustment_limit)); + rate_correction_factor = (rate_correction_factor * correction_factor) / 100; + // Keep rate_correction_factor within limits + if (rate_correction_factor > MAX_BPB_FACTOR) + rate_correction_factor = MAX_BPB_FACTOR; + } else if (correction_factor < 99) { + // We are not already at the best allowable quality + correction_factor = + (int)(100 - ((100 - correction_factor) * adjustment_limit)); + rate_correction_factor = (rate_correction_factor * correction_factor) / 100; + + // Keep rate_correction_factor within limits + if (rate_correction_factor < MIN_BPB_FACTOR) + rate_correction_factor = MIN_BPB_FACTOR; + } + + set_rate_correction_factor(cpi, rate_correction_factor); +} + +int vp9_rc_regulate_q(const VP9_COMP *cpi, int target_bits_per_frame, + int active_best_quality, int active_worst_quality) { + const VP9_COMMON *const cm = &cpi->common; + CYCLIC_REFRESH *const cr = cpi->cyclic_refresh; + int q = active_worst_quality; + int last_error = INT_MAX; + int i, target_bits_per_mb, bits_per_mb_at_this_q; + const double correction_factor = get_rate_correction_factor(cpi); + + // Calculate required scaling factor based on target frame size and size of + // frame produced using previous Q. + target_bits_per_mb = + (int)(((uint64_t)target_bits_per_frame << BPER_MB_NORMBITS) / cm->MBs); + + i = active_best_quality; + + do { + if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cm->seg.enabled && + cr->apply_cyclic_refresh && + (!cpi->oxcf.gf_cbr_boost_pct || !cpi->refresh_golden_frame)) { + bits_per_mb_at_this_q = + (int)vp9_cyclic_refresh_rc_bits_per_mb(cpi, i, correction_factor); + } else { + bits_per_mb_at_this_q = (int)vp9_rc_bits_per_mb( + cm->frame_type, i, correction_factor, cm->bit_depth); + } + + if (bits_per_mb_at_this_q <= target_bits_per_mb) { + if ((target_bits_per_mb - bits_per_mb_at_this_q) <= last_error) + q = i; + else + q = i - 1; + + break; + } else { + last_error = bits_per_mb_at_this_q - target_bits_per_mb; + } + } while (++i <= active_worst_quality); + + // In CBR mode, this makes sure q is between oscillating Qs to prevent + // resonance. + if (cpi->oxcf.rc_mode == VPX_CBR && !cpi->rc.reset_high_source_sad && + (!cpi->oxcf.gf_cbr_boost_pct || + !(cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame)) && + (cpi->rc.rc_1_frame * cpi->rc.rc_2_frame == -1) && + cpi->rc.q_1_frame != cpi->rc.q_2_frame) { + q = clamp(q, VPXMIN(cpi->rc.q_1_frame, cpi->rc.q_2_frame), + VPXMAX(cpi->rc.q_1_frame, cpi->rc.q_2_frame)); + } + return q; +} + +static int get_active_quality(int q, int gfu_boost, int low, int high, + int *low_motion_minq, int *high_motion_minq) { + if (gfu_boost > high) { + return low_motion_minq[q]; + } else if (gfu_boost < low) { + return high_motion_minq[q]; + } else { + const int gap = high - low; + const int offset = high - gfu_boost; + const int qdiff = high_motion_minq[q] - low_motion_minq[q]; + const int adjustment = ((offset * qdiff) + (gap >> 1)) / gap; + return low_motion_minq[q] + adjustment; + } +} + +static int get_kf_active_quality(const RATE_CONTROL *const rc, int q, + vpx_bit_depth_t bit_depth) { + int *kf_low_motion_minq; + int *kf_high_motion_minq; + ASSIGN_MINQ_TABLE(bit_depth, kf_low_motion_minq); + ASSIGN_MINQ_TABLE(bit_depth, kf_high_motion_minq); + return get_active_quality(q, rc->kf_boost, kf_low, kf_high, + kf_low_motion_minq, kf_high_motion_minq); +} + +static int get_gf_active_quality(const RATE_CONTROL *const rc, int q, + vpx_bit_depth_t bit_depth) { + int *arfgf_low_motion_minq; + int *arfgf_high_motion_minq; + ASSIGN_MINQ_TABLE(bit_depth, arfgf_low_motion_minq); + ASSIGN_MINQ_TABLE(bit_depth, arfgf_high_motion_minq); + return get_active_quality(q, rc->gfu_boost, gf_low, gf_high, + arfgf_low_motion_minq, arfgf_high_motion_minq); +} + +static int calc_active_worst_quality_one_pass_vbr(const VP9_COMP *cpi) { + const RATE_CONTROL *const rc = &cpi->rc; + const unsigned int curr_frame = cpi->common.current_video_frame; + int active_worst_quality; + + if (cpi->common.frame_type == KEY_FRAME) { + active_worst_quality = + curr_frame == 0 ? rc->worst_quality : rc->last_q[KEY_FRAME] << 1; + } else { + if (!rc->is_src_frame_alt_ref && + (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) { + active_worst_quality = + curr_frame == 1 + ? rc->last_q[KEY_FRAME] * 5 >> 2 + : rc->last_q[INTER_FRAME] * rc->fac_active_worst_gf / 100; + } else { + active_worst_quality = curr_frame == 1 + ? rc->last_q[KEY_FRAME] << 1 + : rc->avg_frame_qindex[INTER_FRAME] * + rc->fac_active_worst_inter / 100; + } + } + return VPXMIN(active_worst_quality, rc->worst_quality); +} + +// Adjust active_worst_quality level based on buffer level. +static int calc_active_worst_quality_one_pass_cbr(const VP9_COMP *cpi) { + // Adjust active_worst_quality: If buffer is above the optimal/target level, + // bring active_worst_quality down depending on fullness of buffer. + // If buffer is below the optimal level, let the active_worst_quality go from + // ambient Q (at buffer = optimal level) to worst_quality level + // (at buffer = critical level). + const VP9_COMMON *const cm = &cpi->common; + const RATE_CONTROL *rc = &cpi->rc; + // Buffer level below which we push active_worst to worst_quality. + int64_t critical_level = rc->optimal_buffer_level >> 3; + int64_t buff_lvl_step = 0; + int adjustment = 0; + int active_worst_quality; + int ambient_qp; + unsigned int num_frames_weight_key = 5 * cpi->svc.number_temporal_layers; + if (cm->frame_type == KEY_FRAME || rc->reset_high_source_sad) + return rc->worst_quality; + // For ambient_qp we use minimum of avg_frame_qindex[KEY_FRAME/INTER_FRAME] + // for the first few frames following key frame. These are both initialized + // to worst_quality and updated with (3/4, 1/4) average in postencode_update. + // So for first few frames following key, the qp of that key frame is weighted + // into the active_worst_quality setting. + ambient_qp = (cm->current_video_frame < num_frames_weight_key) + ? VPXMIN(rc->avg_frame_qindex[INTER_FRAME], + rc->avg_frame_qindex[KEY_FRAME]) + : rc->avg_frame_qindex[INTER_FRAME]; + // For SVC if the current base spatial layer was key frame, use the QP from + // that base layer for ambient_qp. + if (cpi->use_svc && cpi->svc.spatial_layer_id > 0) { + int layer = LAYER_IDS_TO_IDX(0, cpi->svc.temporal_layer_id, + cpi->svc.number_temporal_layers); + const LAYER_CONTEXT *lc = &cpi->svc.layer_context[layer]; + if (lc->is_key_frame) { + const RATE_CONTROL *lrc = &lc->rc; + ambient_qp = VPXMIN(ambient_qp, lrc->last_q[KEY_FRAME]); + } + } + active_worst_quality = VPXMIN(rc->worst_quality, ambient_qp * 5 >> 2); + if (rc->buffer_level > rc->optimal_buffer_level) { + // Adjust down. + // Maximum limit for down adjustment, ~30%. + int max_adjustment_down = active_worst_quality / 3; + if (max_adjustment_down) { + buff_lvl_step = ((rc->maximum_buffer_size - rc->optimal_buffer_level) / + max_adjustment_down); + if (buff_lvl_step) + adjustment = (int)((rc->buffer_level - rc->optimal_buffer_level) / + buff_lvl_step); + active_worst_quality -= adjustment; + } + } else if (rc->buffer_level > critical_level) { + // Adjust up from ambient Q. + if (critical_level) { + buff_lvl_step = (rc->optimal_buffer_level - critical_level); + if (buff_lvl_step) { + adjustment = (int)((rc->worst_quality - ambient_qp) * + (rc->optimal_buffer_level - rc->buffer_level) / + buff_lvl_step); + } + active_worst_quality = ambient_qp + adjustment; + } + } else { + // Set to worst_quality if buffer is below critical level. + active_worst_quality = rc->worst_quality; + } + return active_worst_quality; +} + +static int rc_pick_q_and_bounds_one_pass_cbr(const VP9_COMP *cpi, + int *bottom_index, + int *top_index) { + const VP9_COMMON *const cm = &cpi->common; + const RATE_CONTROL *const rc = &cpi->rc; + int active_best_quality; + int active_worst_quality = calc_active_worst_quality_one_pass_cbr(cpi); + int q; + int *rtc_minq; + ASSIGN_MINQ_TABLE(cm->bit_depth, rtc_minq); + + if (frame_is_intra_only(cm)) { + active_best_quality = rc->best_quality; + // Handle the special case for key frames forced when we have reached + // the maximum key frame interval. Here force the Q to a range + // based on the ambient Q to reduce the risk of popping. + if (rc->this_key_frame_forced) { + int qindex = rc->last_boosted_qindex; + double last_boosted_q = vp9_convert_qindex_to_q(qindex, cm->bit_depth); + int delta_qindex = vp9_compute_qdelta( + rc, last_boosted_q, (last_boosted_q * 0.75), cm->bit_depth); + active_best_quality = VPXMAX(qindex + delta_qindex, rc->best_quality); + } else if (cm->current_video_frame > 0) { + // not first frame of one pass and kf_boost is set + double q_adj_factor = 1.0; + double q_val; + + active_best_quality = get_kf_active_quality( + rc, rc->avg_frame_qindex[KEY_FRAME], cm->bit_depth); + + // Allow somewhat lower kf minq with small image formats. + if ((cm->width * cm->height) <= (352 * 288)) { + q_adj_factor -= 0.25; + } + + // Convert the adjustment factor to a qindex delta + // on active_best_quality. + q_val = vp9_convert_qindex_to_q(active_best_quality, cm->bit_depth); + active_best_quality += + vp9_compute_qdelta(rc, q_val, q_val * q_adj_factor, cm->bit_depth); + } + } else if (!rc->is_src_frame_alt_ref && !cpi->use_svc && + (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) { + // Use the lower of active_worst_quality and recent + // average Q as basis for GF/ARF best Q limit unless last frame was + // a key frame. + if (rc->frames_since_key > 1 && + rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality) { + q = rc->avg_frame_qindex[INTER_FRAME]; + } else { + q = active_worst_quality; + } + active_best_quality = get_gf_active_quality(rc, q, cm->bit_depth); + } else { + // Use the lower of active_worst_quality and recent/average Q. + if (cm->current_video_frame > 1) { + if (rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality) + active_best_quality = rtc_minq[rc->avg_frame_qindex[INTER_FRAME]]; + else + active_best_quality = rtc_minq[active_worst_quality]; + } else { + if (rc->avg_frame_qindex[KEY_FRAME] < active_worst_quality) + active_best_quality = rtc_minq[rc->avg_frame_qindex[KEY_FRAME]]; + else + active_best_quality = rtc_minq[active_worst_quality]; + } + } + + // Clip the active best and worst quality values to limits + active_best_quality = + clamp(active_best_quality, rc->best_quality, rc->worst_quality); + active_worst_quality = + clamp(active_worst_quality, active_best_quality, rc->worst_quality); + + *top_index = active_worst_quality; + *bottom_index = active_best_quality; + +#if LIMIT_QRANGE_FOR_ALTREF_AND_KEY + // Limit Q range for the adaptive loop. + if (cm->frame_type == KEY_FRAME && !rc->this_key_frame_forced && + !(cm->current_video_frame == 0)) { + int qdelta = 0; + vpx_clear_system_state(); + qdelta = vp9_compute_qdelta_by_rate( + &cpi->rc, cm->frame_type, active_worst_quality, 2.0, cm->bit_depth); + *top_index = active_worst_quality + qdelta; + *top_index = (*top_index > *bottom_index) ? *top_index : *bottom_index; + } +#endif + + // Special case code to try and match quality with forced key frames + if (cm->frame_type == KEY_FRAME && rc->this_key_frame_forced) { + q = rc->last_boosted_qindex; + } else { + q = vp9_rc_regulate_q(cpi, rc->this_frame_target, active_best_quality, + active_worst_quality); + if (q > *top_index) { + // Special case when we are targeting the max allowed rate + if (rc->this_frame_target >= rc->max_frame_bandwidth) + *top_index = q; + else + q = *top_index; + } + } + assert(*top_index <= rc->worst_quality && *top_index >= rc->best_quality); + assert(*bottom_index <= rc->worst_quality && + *bottom_index >= rc->best_quality); + assert(q <= rc->worst_quality && q >= rc->best_quality); + return q; +} + +static int get_active_cq_level_one_pass(const RATE_CONTROL *rc, + const VP9EncoderConfig *const oxcf) { + static const double cq_adjust_threshold = 0.1; + int active_cq_level = oxcf->cq_level; + if (oxcf->rc_mode == VPX_CQ && rc->total_target_bits > 0) { + const double x = (double)rc->total_actual_bits / rc->total_target_bits; + if (x < cq_adjust_threshold) { + active_cq_level = (int)(active_cq_level * x / cq_adjust_threshold); + } + } + return active_cq_level; +} + +#define SMOOTH_PCT_MIN 0.1 +#define SMOOTH_PCT_DIV 0.05 +static int get_active_cq_level_two_pass(const TWO_PASS *twopass, + const RATE_CONTROL *rc, + const VP9EncoderConfig *const oxcf) { + static const double cq_adjust_threshold = 0.1; + int active_cq_level = oxcf->cq_level; + if (oxcf->rc_mode == VPX_CQ) { + if (twopass->mb_smooth_pct > SMOOTH_PCT_MIN) { + active_cq_level -= + (int)((twopass->mb_smooth_pct - SMOOTH_PCT_MIN) / SMOOTH_PCT_DIV); + active_cq_level = VPXMAX(active_cq_level, 0); + } + if (rc->total_target_bits > 0) { + const double x = (double)rc->total_actual_bits / rc->total_target_bits; + if (x < cq_adjust_threshold) { + active_cq_level = (int)(active_cq_level * x / cq_adjust_threshold); + } + } + } + return active_cq_level; +} + +static int rc_pick_q_and_bounds_one_pass_vbr(const VP9_COMP *cpi, + int *bottom_index, + int *top_index) { + const VP9_COMMON *const cm = &cpi->common; + const RATE_CONTROL *const rc = &cpi->rc; + const VP9EncoderConfig *const oxcf = &cpi->oxcf; + const int cq_level = get_active_cq_level_one_pass(rc, oxcf); + int active_best_quality; + int active_worst_quality = calc_active_worst_quality_one_pass_vbr(cpi); + int q; + int *inter_minq; + ASSIGN_MINQ_TABLE(cm->bit_depth, inter_minq); + + if (frame_is_intra_only(cm)) { + if (oxcf->rc_mode == VPX_Q) { + int qindex = cq_level; + double q = vp9_convert_qindex_to_q(qindex, cm->bit_depth); + int delta_qindex = vp9_compute_qdelta(rc, q, q * 0.25, cm->bit_depth); + active_best_quality = VPXMAX(qindex + delta_qindex, rc->best_quality); + } else if (rc->this_key_frame_forced) { + // Handle the special case for key frames forced when we have reached + // the maximum key frame interval. Here force the Q to a range + // based on the ambient Q to reduce the risk of popping. + int qindex = rc->last_boosted_qindex; + double last_boosted_q = vp9_convert_qindex_to_q(qindex, cm->bit_depth); + int delta_qindex = vp9_compute_qdelta( + rc, last_boosted_q, last_boosted_q * 0.75, cm->bit_depth); + active_best_quality = VPXMAX(qindex + delta_qindex, rc->best_quality); + } else { + // not first frame of one pass and kf_boost is set + double q_adj_factor = 1.0; + double q_val; + + active_best_quality = get_kf_active_quality( + rc, rc->avg_frame_qindex[KEY_FRAME], cm->bit_depth); + + // Allow somewhat lower kf minq with small image formats. + if ((cm->width * cm->height) <= (352 * 288)) { + q_adj_factor -= 0.25; + } + + // Convert the adjustment factor to a qindex delta + // on active_best_quality. + q_val = vp9_convert_qindex_to_q(active_best_quality, cm->bit_depth); + active_best_quality += + vp9_compute_qdelta(rc, q_val, q_val * q_adj_factor, cm->bit_depth); + } + } else if (!rc->is_src_frame_alt_ref && + (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) { + // Use the lower of active_worst_quality and recent + // average Q as basis for GF/ARF best Q limit unless last frame was + // a key frame. + if (rc->frames_since_key > 1) { + if (rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality) { + q = rc->avg_frame_qindex[INTER_FRAME]; + } else { + q = active_worst_quality; + } + } else { + q = rc->avg_frame_qindex[KEY_FRAME]; + } + // For constrained quality dont allow Q less than the cq level + if (oxcf->rc_mode == VPX_CQ) { + if (q < cq_level) q = cq_level; + + active_best_quality = get_gf_active_quality(rc, q, cm->bit_depth); + + // Constrained quality use slightly lower active best. + active_best_quality = active_best_quality * 15 / 16; + + } else if (oxcf->rc_mode == VPX_Q) { + int qindex = cq_level; + double q = vp9_convert_qindex_to_q(qindex, cm->bit_depth); + int delta_qindex; + if (cpi->refresh_alt_ref_frame) + delta_qindex = vp9_compute_qdelta(rc, q, q * 0.40, cm->bit_depth); + else + delta_qindex = vp9_compute_qdelta(rc, q, q * 0.50, cm->bit_depth); + active_best_quality = VPXMAX(qindex + delta_qindex, rc->best_quality); + } else { + active_best_quality = get_gf_active_quality(rc, q, cm->bit_depth); + } + } else { + if (oxcf->rc_mode == VPX_Q) { + int qindex = cq_level; + double q = vp9_convert_qindex_to_q(qindex, cm->bit_depth); + double delta_rate[FIXED_GF_INTERVAL] = { 0.50, 1.0, 0.85, 1.0, + 0.70, 1.0, 0.85, 1.0 }; + int delta_qindex = vp9_compute_qdelta( + rc, q, q * delta_rate[cm->current_video_frame % FIXED_GF_INTERVAL], + cm->bit_depth); + active_best_quality = VPXMAX(qindex + delta_qindex, rc->best_quality); + } else { + // Use the min of the average Q and active_worst_quality as basis for + // active_best. + if (cm->current_video_frame > 1) { + q = VPXMIN(rc->avg_frame_qindex[INTER_FRAME], active_worst_quality); + active_best_quality = inter_minq[q]; + } else { + active_best_quality = inter_minq[rc->avg_frame_qindex[KEY_FRAME]]; + } + // For the constrained quality mode we don't want + // q to fall below the cq level. + if ((oxcf->rc_mode == VPX_CQ) && (active_best_quality < cq_level)) { + active_best_quality = cq_level; + } + } + } + + // Clip the active best and worst quality values to limits + active_best_quality = + clamp(active_best_quality, rc->best_quality, rc->worst_quality); + active_worst_quality = + clamp(active_worst_quality, active_best_quality, rc->worst_quality); + + *top_index = active_worst_quality; + *bottom_index = active_best_quality; + +#if LIMIT_QRANGE_FOR_ALTREF_AND_KEY + { + int qdelta = 0; + vpx_clear_system_state(); + + // Limit Q range for the adaptive loop. + if (cm->frame_type == KEY_FRAME && !rc->this_key_frame_forced && + !(cm->current_video_frame == 0)) { + qdelta = vp9_compute_qdelta_by_rate( + &cpi->rc, cm->frame_type, active_worst_quality, 2.0, cm->bit_depth); + } else if (!rc->is_src_frame_alt_ref && + (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) { + qdelta = vp9_compute_qdelta_by_rate( + &cpi->rc, cm->frame_type, active_worst_quality, 1.75, cm->bit_depth); + } + if (rc->high_source_sad && cpi->sf.use_altref_onepass) qdelta = 0; + *top_index = active_worst_quality + qdelta; + *top_index = (*top_index > *bottom_index) ? *top_index : *bottom_index; + } +#endif + + if (oxcf->rc_mode == VPX_Q) { + q = active_best_quality; + // Special case code to try and match quality with forced key frames + } else if ((cm->frame_type == KEY_FRAME) && rc->this_key_frame_forced) { + q = rc->last_boosted_qindex; + } else { + q = vp9_rc_regulate_q(cpi, rc->this_frame_target, active_best_quality, + active_worst_quality); + if (q > *top_index) { + // Special case when we are targeting the max allowed rate + if (rc->this_frame_target >= rc->max_frame_bandwidth) + *top_index = q; + else + q = *top_index; + } + } + + assert(*top_index <= rc->worst_quality && *top_index >= rc->best_quality); + assert(*bottom_index <= rc->worst_quality && + *bottom_index >= rc->best_quality); + assert(q <= rc->worst_quality && q >= rc->best_quality); + return q; +} + +int vp9_frame_type_qdelta(const VP9_COMP *cpi, int rf_level, int q) { + static const double rate_factor_deltas[RATE_FACTOR_LEVELS] = { + 1.00, // INTER_NORMAL + 1.00, // INTER_HIGH + 1.50, // GF_ARF_LOW + 1.75, // GF_ARF_STD + 2.00, // KF_STD + }; + static const FRAME_TYPE frame_type[RATE_FACTOR_LEVELS] = { + INTER_FRAME, INTER_FRAME, INTER_FRAME, INTER_FRAME, KEY_FRAME + }; + const VP9_COMMON *const cm = &cpi->common; + int qdelta = + vp9_compute_qdelta_by_rate(&cpi->rc, frame_type[rf_level], q, + rate_factor_deltas[rf_level], cm->bit_depth); + return qdelta; +} + +#define STATIC_MOTION_THRESH 95 +static int rc_pick_q_and_bounds_two_pass(const VP9_COMP *cpi, int *bottom_index, + int *top_index) { + const VP9_COMMON *const cm = &cpi->common; + const RATE_CONTROL *const rc = &cpi->rc; + const VP9EncoderConfig *const oxcf = &cpi->oxcf; + const GF_GROUP *gf_group = &cpi->twopass.gf_group; + const int cq_level = get_active_cq_level_two_pass(&cpi->twopass, rc, oxcf); + int active_best_quality; + int active_worst_quality = cpi->twopass.active_worst_quality; + int q; + int *inter_minq; + ASSIGN_MINQ_TABLE(cm->bit_depth, inter_minq); + + if (frame_is_intra_only(cm) || vp9_is_upper_layer_key_frame(cpi)) { + // Handle the special case for key frames forced when we have reached + // the maximum key frame interval. Here force the Q to a range + // based on the ambient Q to reduce the risk of popping. + if (rc->this_key_frame_forced) { + double last_boosted_q; + int delta_qindex; + int qindex; + + if (cpi->twopass.last_kfgroup_zeromotion_pct >= STATIC_MOTION_THRESH) { + qindex = VPXMIN(rc->last_kf_qindex, rc->last_boosted_qindex); + active_best_quality = qindex; + last_boosted_q = vp9_convert_qindex_to_q(qindex, cm->bit_depth); + delta_qindex = vp9_compute_qdelta(rc, last_boosted_q, + last_boosted_q * 1.25, cm->bit_depth); + active_worst_quality = + VPXMIN(qindex + delta_qindex, active_worst_quality); + } else { + qindex = rc->last_boosted_qindex; + last_boosted_q = vp9_convert_qindex_to_q(qindex, cm->bit_depth); + delta_qindex = vp9_compute_qdelta(rc, last_boosted_q, + last_boosted_q * 0.75, cm->bit_depth); + active_best_quality = VPXMAX(qindex + delta_qindex, rc->best_quality); + } + } else { + // Not forced keyframe. + double q_adj_factor = 1.0; + double q_val; + // Baseline value derived from cpi->active_worst_quality and kf boost. + active_best_quality = + get_kf_active_quality(rc, active_worst_quality, cm->bit_depth); + + // Allow somewhat lower kf minq with small image formats. + if ((cm->width * cm->height) <= (352 * 288)) { + q_adj_factor -= 0.25; + } + + // Make a further adjustment based on the kf zero motion measure. + q_adj_factor += 0.05 - (0.001 * (double)cpi->twopass.kf_zeromotion_pct); + + // Convert the adjustment factor to a qindex delta + // on active_best_quality. + q_val = vp9_convert_qindex_to_q(active_best_quality, cm->bit_depth); + active_best_quality += + vp9_compute_qdelta(rc, q_val, q_val * q_adj_factor, cm->bit_depth); + } + } else if (!rc->is_src_frame_alt_ref && + (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) { + // Use the lower of active_worst_quality and recent + // average Q as basis for GF/ARF best Q limit unless last frame was + // a key frame. + if (rc->frames_since_key > 1 && + rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality) { + q = rc->avg_frame_qindex[INTER_FRAME]; + } else { + q = active_worst_quality; + } + // For constrained quality dont allow Q less than the cq level + if (oxcf->rc_mode == VPX_CQ) { + if (q < cq_level) q = cq_level; + + active_best_quality = get_gf_active_quality(rc, q, cm->bit_depth); + + // Constrained quality use slightly lower active best. + active_best_quality = active_best_quality * 15 / 16; + + } else if (oxcf->rc_mode == VPX_Q) { + if (!cpi->refresh_alt_ref_frame) { + active_best_quality = cq_level; + } else { + active_best_quality = get_gf_active_quality(rc, q, cm->bit_depth); + + // Modify best quality for second level arfs. For mode VPX_Q this + // becomes the baseline frame q. + if (gf_group->rf_level[gf_group->index] == GF_ARF_LOW) + active_best_quality = (active_best_quality + cq_level + 1) / 2; + } + } else { + active_best_quality = get_gf_active_quality(rc, q, cm->bit_depth); + } + } else { + if (oxcf->rc_mode == VPX_Q) { + active_best_quality = cq_level; + } else { + active_best_quality = inter_minq[active_worst_quality]; + + // For the constrained quality mode we don't want + // q to fall below the cq level. + if ((oxcf->rc_mode == VPX_CQ) && (active_best_quality < cq_level)) { + active_best_quality = cq_level; + } + } + } + + // Extension to max or min Q if undershoot or overshoot is outside + // the permitted range. + if (cpi->oxcf.rc_mode != VPX_Q) { + if (frame_is_intra_only(cm) || + (!rc->is_src_frame_alt_ref && + (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame))) { + active_best_quality -= + (cpi->twopass.extend_minq + cpi->twopass.extend_minq_fast); + active_worst_quality += (cpi->twopass.extend_maxq / 2); + } else { + active_best_quality -= + (cpi->twopass.extend_minq + cpi->twopass.extend_minq_fast) / 2; + active_worst_quality += cpi->twopass.extend_maxq; + } + } + +#if LIMIT_QRANGE_FOR_ALTREF_AND_KEY + vpx_clear_system_state(); + // Static forced key frames Q restrictions dealt with elsewhere. + if (!((frame_is_intra_only(cm) || vp9_is_upper_layer_key_frame(cpi))) || + !rc->this_key_frame_forced || + (cpi->twopass.last_kfgroup_zeromotion_pct < STATIC_MOTION_THRESH)) { + int qdelta = vp9_frame_type_qdelta(cpi, gf_group->rf_level[gf_group->index], + active_worst_quality); + active_worst_quality = + VPXMAX(active_worst_quality + qdelta, active_best_quality); + } +#endif + + // Modify active_best_quality for downscaled normal frames. + if (rc->frame_size_selector != UNSCALED && !frame_is_kf_gf_arf(cpi)) { + int qdelta = vp9_compute_qdelta_by_rate( + rc, cm->frame_type, active_best_quality, 2.0, cm->bit_depth); + active_best_quality = + VPXMAX(active_best_quality + qdelta, rc->best_quality); + } + + active_best_quality = + clamp(active_best_quality, rc->best_quality, rc->worst_quality); + active_worst_quality = + clamp(active_worst_quality, active_best_quality, rc->worst_quality); + + if (oxcf->rc_mode == VPX_Q) { + q = active_best_quality; + // Special case code to try and match quality with forced key frames. + } else if ((frame_is_intra_only(cm) || vp9_is_upper_layer_key_frame(cpi)) && + rc->this_key_frame_forced) { + // If static since last kf use better of last boosted and last kf q. + if (cpi->twopass.last_kfgroup_zeromotion_pct >= STATIC_MOTION_THRESH) { + q = VPXMIN(rc->last_kf_qindex, rc->last_boosted_qindex); + } else { + q = rc->last_boosted_qindex; + } + } else { + q = vp9_rc_regulate_q(cpi, rc->this_frame_target, active_best_quality, + active_worst_quality); + if (q > active_worst_quality) { + // Special case when we are targeting the max allowed rate. + if (rc->this_frame_target >= rc->max_frame_bandwidth) + active_worst_quality = q; + else + q = active_worst_quality; + } + } + clamp(q, active_best_quality, active_worst_quality); + + *top_index = active_worst_quality; + *bottom_index = active_best_quality; + + assert(*top_index <= rc->worst_quality && *top_index >= rc->best_quality); + assert(*bottom_index <= rc->worst_quality && + *bottom_index >= rc->best_quality); + assert(q <= rc->worst_quality && q >= rc->best_quality); + return q; +} + +int vp9_rc_pick_q_and_bounds(const VP9_COMP *cpi, int *bottom_index, + int *top_index) { + int q; + if (cpi->oxcf.pass == 0) { + if (cpi->oxcf.rc_mode == VPX_CBR) + q = rc_pick_q_and_bounds_one_pass_cbr(cpi, bottom_index, top_index); + else + q = rc_pick_q_and_bounds_one_pass_vbr(cpi, bottom_index, top_index); + } else { + q = rc_pick_q_and_bounds_two_pass(cpi, bottom_index, top_index); + } + if (cpi->sf.use_nonrd_pick_mode) { + if (cpi->sf.force_frame_boost == 1) q -= cpi->sf.max_delta_qindex; + + if (q < *bottom_index) + *bottom_index = q; + else if (q > *top_index) + *top_index = q; + } + return q; +} + +void vp9_rc_compute_frame_size_bounds(const VP9_COMP *cpi, int frame_target, + int *frame_under_shoot_limit, + int *frame_over_shoot_limit) { + if (cpi->oxcf.rc_mode == VPX_Q) { + *frame_under_shoot_limit = 0; + *frame_over_shoot_limit = INT_MAX; + } else { + // For very small rate targets where the fractional adjustment + // may be tiny make sure there is at least a minimum range. + const int tol_low = (cpi->sf.recode_tolerance_low * frame_target) / 100; + const int tol_high = (cpi->sf.recode_tolerance_high * frame_target) / 100; + *frame_under_shoot_limit = VPXMAX(frame_target - tol_low - 100, 0); + *frame_over_shoot_limit = + VPXMIN(frame_target + tol_high + 100, cpi->rc.max_frame_bandwidth); + } +} + +void vp9_rc_set_frame_target(VP9_COMP *cpi, int target) { + const VP9_COMMON *const cm = &cpi->common; + RATE_CONTROL *const rc = &cpi->rc; + + rc->this_frame_target = target; + + // Modify frame size target when down-scaling. + if (cpi->oxcf.resize_mode == RESIZE_DYNAMIC && + rc->frame_size_selector != UNSCALED) + rc->this_frame_target = (int)(rc->this_frame_target * + rate_thresh_mult[rc->frame_size_selector]); + + // Target rate per SB64 (including partial SB64s. + rc->sb64_target_rate = (int)(((int64_t)rc->this_frame_target * 64 * 64) / + (cm->width * cm->height)); +} + +static void update_alt_ref_frame_stats(VP9_COMP *cpi) { + // this frame refreshes means next frames don't unless specified by user + RATE_CONTROL *const rc = &cpi->rc; + rc->frames_since_golden = 0; + + // Mark the alt ref as done (setting to 0 means no further alt refs pending). + rc->source_alt_ref_pending = 0; + + // Set the alternate reference frame active flag + rc->source_alt_ref_active = 1; +} + +static void update_golden_frame_stats(VP9_COMP *cpi) { + RATE_CONTROL *const rc = &cpi->rc; + + // Update the Golden frame usage counts. + if (cpi->refresh_golden_frame) { + // this frame refreshes means next frames don't unless specified by user + rc->frames_since_golden = 0; + + // If we are not using alt ref in the up and coming group clear the arf + // active flag. In multi arf group case, if the index is not 0 then + // we are overlaying a mid group arf so should not reset the flag. + if (cpi->oxcf.pass == 2) { + if (!rc->source_alt_ref_pending && (cpi->twopass.gf_group.index == 0)) + rc->source_alt_ref_active = 0; + } else if (!rc->source_alt_ref_pending) { + rc->source_alt_ref_active = 0; + } + + // Decrement count down till next gf + if (rc->frames_till_gf_update_due > 0) rc->frames_till_gf_update_due--; + + } else if (!cpi->refresh_alt_ref_frame) { + // Decrement count down till next gf + if (rc->frames_till_gf_update_due > 0) rc->frames_till_gf_update_due--; + + rc->frames_since_golden++; + } +} + +static void update_altref_usage(VP9_COMP *const cpi) { + VP9_COMMON *const cm = &cpi->common; + int sum_ref_frame_usage = 0; + int arf_frame_usage = 0; + int mi_row, mi_col; + if (cpi->rc.alt_ref_gf_group && !cpi->rc.is_src_frame_alt_ref && + !cpi->refresh_golden_frame && !cpi->refresh_alt_ref_frame) + for (mi_row = 0; mi_row < cm->mi_rows; mi_row += 8) { + for (mi_col = 0; mi_col < cm->mi_cols; mi_col += 8) { + int sboffset = ((cm->mi_cols + 7) >> 3) * (mi_row >> 3) + (mi_col >> 3); + sum_ref_frame_usage += cpi->count_arf_frame_usage[sboffset] + + cpi->count_lastgolden_frame_usage[sboffset]; + arf_frame_usage += cpi->count_arf_frame_usage[sboffset]; + } + } + if (sum_ref_frame_usage > 0) { + double altref_count = 100.0 * arf_frame_usage / sum_ref_frame_usage; + cpi->rc.perc_arf_usage = + 0.75 * cpi->rc.perc_arf_usage + 0.25 * altref_count; + } +} + +static void compute_frame_low_motion(VP9_COMP *const cpi) { + VP9_COMMON *const cm = &cpi->common; + int mi_row, mi_col; + MODE_INFO **mi = cm->mi_grid_visible; + RATE_CONTROL *const rc = &cpi->rc; + const int rows = cm->mi_rows, cols = cm->mi_cols; + int cnt_zeromv = 0; + for (mi_row = 0; mi_row < rows; mi_row++) { + for (mi_col = 0; mi_col < cols; mi_col++) { + if (abs(mi[0]->mv[0].as_mv.row) < 16 && abs(mi[0]->mv[0].as_mv.col) < 16) + cnt_zeromv++; + mi++; + } + mi += 8; + } + cnt_zeromv = 100 * cnt_zeromv / (rows * cols); + rc->avg_frame_low_motion = (3 * rc->avg_frame_low_motion + cnt_zeromv) >> 2; +} + +void vp9_rc_postencode_update(VP9_COMP *cpi, uint64_t bytes_used) { + const VP9_COMMON *const cm = &cpi->common; + const VP9EncoderConfig *const oxcf = &cpi->oxcf; + RATE_CONTROL *const rc = &cpi->rc; + const int qindex = cm->base_qindex; + + // Update rate control heuristics + rc->projected_frame_size = (int)(bytes_used << 3); + + // Post encode loop adjustment of Q prediction. + vp9_rc_update_rate_correction_factors(cpi); + + // Keep a record of last Q and ambient average Q. + if (cm->frame_type == KEY_FRAME) { + rc->last_q[KEY_FRAME] = qindex; + rc->avg_frame_qindex[KEY_FRAME] = + ROUND_POWER_OF_TWO(3 * rc->avg_frame_qindex[KEY_FRAME] + qindex, 2); + if (cpi->use_svc) { + int i = 0; + SVC *svc = &cpi->svc; + for (i = 0; i < svc->number_temporal_layers; ++i) { + const int layer = LAYER_IDS_TO_IDX(svc->spatial_layer_id, i, + svc->number_temporal_layers); + LAYER_CONTEXT *lc = &svc->layer_context[layer]; + RATE_CONTROL *lrc = &lc->rc; + lrc->last_q[KEY_FRAME] = rc->last_q[KEY_FRAME]; + lrc->avg_frame_qindex[KEY_FRAME] = rc->avg_frame_qindex[KEY_FRAME]; + } + } + } else { + if ((cpi->use_svc && oxcf->rc_mode == VPX_CBR) || + (!rc->is_src_frame_alt_ref && + !(cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame))) { + rc->last_q[INTER_FRAME] = qindex; + rc->avg_frame_qindex[INTER_FRAME] = + ROUND_POWER_OF_TWO(3 * rc->avg_frame_qindex[INTER_FRAME] + qindex, 2); + rc->ni_frames++; + rc->tot_q += vp9_convert_qindex_to_q(qindex, cm->bit_depth); + rc->avg_q = rc->tot_q / rc->ni_frames; + // Calculate the average Q for normal inter frames (not key or GFU + // frames). + rc->ni_tot_qi += qindex; + rc->ni_av_qi = rc->ni_tot_qi / rc->ni_frames; + } + } + + // Keep record of last boosted (KF/KF/ARF) Q value. + // If the current frame is coded at a lower Q then we also update it. + // If all mbs in this group are skipped only update if the Q value is + // better than that already stored. + // This is used to help set quality in forced key frames to reduce popping + if ((qindex < rc->last_boosted_qindex) || (cm->frame_type == KEY_FRAME) || + (!rc->constrained_gf_group && + (cpi->refresh_alt_ref_frame || + (cpi->refresh_golden_frame && !rc->is_src_frame_alt_ref)))) { + rc->last_boosted_qindex = qindex; + } + if (cm->frame_type == KEY_FRAME) rc->last_kf_qindex = qindex; + + update_buffer_level(cpi, rc->projected_frame_size); + + // Rolling monitors of whether we are over or underspending used to help + // regulate min and Max Q in two pass. + if (cm->frame_type != KEY_FRAME) { + rc->rolling_target_bits = ROUND_POWER_OF_TWO( + rc->rolling_target_bits * 3 + rc->this_frame_target, 2); + rc->rolling_actual_bits = ROUND_POWER_OF_TWO( + rc->rolling_actual_bits * 3 + rc->projected_frame_size, 2); + rc->long_rolling_target_bits = ROUND_POWER_OF_TWO( + rc->long_rolling_target_bits * 31 + rc->this_frame_target, 5); + rc->long_rolling_actual_bits = ROUND_POWER_OF_TWO( + rc->long_rolling_actual_bits * 31 + rc->projected_frame_size, 5); + } + + // Actual bits spent + rc->total_actual_bits += rc->projected_frame_size; + rc->total_target_bits += cm->show_frame ? rc->avg_frame_bandwidth : 0; + + rc->total_target_vs_actual = rc->total_actual_bits - rc->total_target_bits; + + if (!cpi->use_svc || is_two_pass_svc(cpi)) { + if (is_altref_enabled(cpi) && cpi->refresh_alt_ref_frame && + (cm->frame_type != KEY_FRAME)) + // Update the alternate reference frame stats as appropriate. + update_alt_ref_frame_stats(cpi); + else + // Update the Golden frame stats as appropriate. + update_golden_frame_stats(cpi); + } + + if (cm->frame_type == KEY_FRAME) rc->frames_since_key = 0; + if (cm->show_frame) { + rc->frames_since_key++; + rc->frames_to_key--; + } + + // Trigger the resizing of the next frame if it is scaled. + if (oxcf->pass != 0) { + cpi->resize_pending = + rc->next_frame_size_selector != rc->frame_size_selector; + rc->frame_size_selector = rc->next_frame_size_selector; + } + + if (oxcf->pass == 0) { + if (cm->frame_type != KEY_FRAME) { + compute_frame_low_motion(cpi); + if (cpi->sf.use_altref_onepass) update_altref_usage(cpi); + } + cpi->rc.last_frame_is_src_altref = cpi->rc.is_src_frame_alt_ref; + } + if (cm->frame_type != KEY_FRAME) rc->reset_high_source_sad = 0; + + rc->last_avg_frame_bandwidth = rc->avg_frame_bandwidth; +} + +void vp9_rc_postencode_update_drop_frame(VP9_COMP *cpi) { + // Update buffer level with zero size, update frame counters, and return. + update_buffer_level(cpi, 0); + cpi->rc.frames_since_key++; + cpi->rc.frames_to_key--; + cpi->rc.rc_2_frame = 0; + cpi->rc.rc_1_frame = 0; +} + +static int calc_pframe_target_size_one_pass_vbr(const VP9_COMP *const cpi) { + const RATE_CONTROL *const rc = &cpi->rc; + const int af_ratio = rc->af_ratio_onepass_vbr; + int target = + (!rc->is_src_frame_alt_ref && + (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) + ? (rc->avg_frame_bandwidth * rc->baseline_gf_interval * af_ratio) / + (rc->baseline_gf_interval + af_ratio - 1) + : (rc->avg_frame_bandwidth * rc->baseline_gf_interval) / + (rc->baseline_gf_interval + af_ratio - 1); + return vp9_rc_clamp_pframe_target_size(cpi, target); +} + +static int calc_iframe_target_size_one_pass_vbr(const VP9_COMP *const cpi) { + static const int kf_ratio = 25; + const RATE_CONTROL *rc = &cpi->rc; + const int target = rc->avg_frame_bandwidth * kf_ratio; + return vp9_rc_clamp_iframe_target_size(cpi, target); +} + +static void adjust_gfint_frame_constraint(VP9_COMP *cpi, int frame_constraint) { + RATE_CONTROL *const rc = &cpi->rc; + rc->constrained_gf_group = 0; + // Reset gf interval to make more equal spacing for frame_constraint. + if ((frame_constraint <= 7 * rc->baseline_gf_interval >> 2) && + (frame_constraint > rc->baseline_gf_interval)) { + rc->baseline_gf_interval = frame_constraint >> 1; + if (rc->baseline_gf_interval < 5) + rc->baseline_gf_interval = frame_constraint; + rc->constrained_gf_group = 1; + } else { + // Reset to keep gf_interval <= frame_constraint. + if (rc->baseline_gf_interval > frame_constraint) { + rc->baseline_gf_interval = frame_constraint; + rc->constrained_gf_group = 1; + } + } +} + +void vp9_rc_get_one_pass_vbr_params(VP9_COMP *cpi) { + VP9_COMMON *const cm = &cpi->common; + RATE_CONTROL *const rc = &cpi->rc; + int target; + // TODO(yaowu): replace the "auto_key && 0" below with proper decision logic. + if (!cpi->refresh_alt_ref_frame && + (cm->current_video_frame == 0 || (cpi->frame_flags & FRAMEFLAGS_KEY) || + rc->frames_to_key == 0 || (cpi->oxcf.auto_key && 0))) { + cm->frame_type = KEY_FRAME; + rc->this_key_frame_forced = + cm->current_video_frame != 0 && rc->frames_to_key == 0; + rc->frames_to_key = cpi->oxcf.key_freq; + rc->kf_boost = DEFAULT_KF_BOOST; + rc->source_alt_ref_active = 0; + } else { + cm->frame_type = INTER_FRAME; + } + if (rc->frames_till_gf_update_due == 0) { + double rate_err = 1.0; + rc->gfu_boost = DEFAULT_GF_BOOST; + if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cpi->oxcf.pass == 0) { + vp9_cyclic_refresh_set_golden_update(cpi); + } else { + rc->baseline_gf_interval = VPXMIN( + 20, VPXMAX(10, (rc->min_gf_interval + rc->max_gf_interval) / 2)); + } + rc->af_ratio_onepass_vbr = 10; + if (rc->rolling_target_bits > 0) + rate_err = + (double)rc->rolling_actual_bits / (double)rc->rolling_target_bits; + if (cm->current_video_frame > 30) { + if (rc->avg_frame_qindex[INTER_FRAME] > (7 * rc->worst_quality) >> 3 && + rate_err > 3.5) { + rc->baseline_gf_interval = + VPXMIN(15, (3 * rc->baseline_gf_interval) >> 1); + } else if (rc->avg_frame_low_motion < 20) { + // Decrease gf interval for high motion case. + rc->baseline_gf_interval = VPXMAX(6, rc->baseline_gf_interval >> 1); + } + // Adjust boost and af_ratio based on avg_frame_low_motion, which varies + // between 0 and 100 (stationary, 100% zero/small motion). + rc->gfu_boost = + VPXMAX(500, + DEFAULT_GF_BOOST * (rc->avg_frame_low_motion << 1) / + (rc->avg_frame_low_motion + 100)); + rc->af_ratio_onepass_vbr = VPXMIN(15, VPXMAX(5, 3 * rc->gfu_boost / 400)); + } + adjust_gfint_frame_constraint(cpi, rc->frames_to_key); + rc->frames_till_gf_update_due = rc->baseline_gf_interval; + cpi->refresh_golden_frame = 1; + rc->source_alt_ref_pending = 0; + rc->alt_ref_gf_group = 0; + if (cpi->sf.use_altref_onepass && cpi->oxcf.enable_auto_arf) { + rc->source_alt_ref_pending = 1; + rc->alt_ref_gf_group = 1; + } + } + if (cm->frame_type == KEY_FRAME) + target = calc_iframe_target_size_one_pass_vbr(cpi); + else + target = calc_pframe_target_size_one_pass_vbr(cpi); + vp9_rc_set_frame_target(cpi, target); + if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cpi->oxcf.pass == 0) + vp9_cyclic_refresh_update_parameters(cpi); +} + +static int calc_pframe_target_size_one_pass_cbr(const VP9_COMP *cpi) { + const VP9EncoderConfig *oxcf = &cpi->oxcf; + const RATE_CONTROL *rc = &cpi->rc; + const SVC *const svc = &cpi->svc; + const int64_t diff = rc->optimal_buffer_level - rc->buffer_level; + const int64_t one_pct_bits = 1 + rc->optimal_buffer_level / 100; + int min_frame_target = + VPXMAX(rc->avg_frame_bandwidth >> 4, FRAME_OVERHEAD_BITS); + int target; + + if (oxcf->gf_cbr_boost_pct) { + const int af_ratio_pct = oxcf->gf_cbr_boost_pct + 100; + target = cpi->refresh_golden_frame + ? (rc->avg_frame_bandwidth * rc->baseline_gf_interval * + af_ratio_pct) / + (rc->baseline_gf_interval * 100 + af_ratio_pct - 100) + : (rc->avg_frame_bandwidth * rc->baseline_gf_interval * 100) / + (rc->baseline_gf_interval * 100 + af_ratio_pct - 100); + } else { + target = rc->avg_frame_bandwidth; + } + if (is_one_pass_cbr_svc(cpi)) { + // Note that for layers, avg_frame_bandwidth is the cumulative + // per-frame-bandwidth. For the target size of this frame, use the + // layer average frame size (i.e., non-cumulative per-frame-bw). + int layer = LAYER_IDS_TO_IDX(svc->spatial_layer_id, svc->temporal_layer_id, + svc->number_temporal_layers); + const LAYER_CONTEXT *lc = &svc->layer_context[layer]; + target = lc->avg_frame_size; + min_frame_target = VPXMAX(lc->avg_frame_size >> 4, FRAME_OVERHEAD_BITS); + } + if (diff > 0) { + // Lower the target bandwidth for this frame. + const int pct_low = (int)VPXMIN(diff / one_pct_bits, oxcf->under_shoot_pct); + target -= (target * pct_low) / 200; + } else if (diff < 0) { + // Increase the target bandwidth for this frame. + const int pct_high = + (int)VPXMIN(-diff / one_pct_bits, oxcf->over_shoot_pct); + target += (target * pct_high) / 200; + } + if (oxcf->rc_max_inter_bitrate_pct) { + const int max_rate = + rc->avg_frame_bandwidth * oxcf->rc_max_inter_bitrate_pct / 100; + target = VPXMIN(target, max_rate); + } + return VPXMAX(min_frame_target, target); +} + +static int calc_iframe_target_size_one_pass_cbr(const VP9_COMP *cpi) { + const RATE_CONTROL *rc = &cpi->rc; + const VP9EncoderConfig *oxcf = &cpi->oxcf; + const SVC *const svc = &cpi->svc; + int target; + if (cpi->common.current_video_frame == 0) { + target = ((rc->starting_buffer_level / 2) > INT_MAX) + ? INT_MAX + : (int)(rc->starting_buffer_level / 2); + } else { + int kf_boost = 32; + double framerate = cpi->framerate; + if (svc->number_temporal_layers > 1 && oxcf->rc_mode == VPX_CBR) { + // Use the layer framerate for temporal layers CBR mode. + const int layer = + LAYER_IDS_TO_IDX(svc->spatial_layer_id, svc->temporal_layer_id, + svc->number_temporal_layers); + const LAYER_CONTEXT *lc = &svc->layer_context[layer]; + framerate = lc->framerate; + } + kf_boost = VPXMAX(kf_boost, (int)(2 * framerate - 16)); + if (rc->frames_since_key < framerate / 2) { + kf_boost = (int)(kf_boost * rc->frames_since_key / (framerate / 2)); + } + target = ((16 + kf_boost) * rc->avg_frame_bandwidth) >> 4; + } + return vp9_rc_clamp_iframe_target_size(cpi, target); +} + +void vp9_rc_get_svc_params(VP9_COMP *cpi) { + VP9_COMMON *const cm = &cpi->common; + RATE_CONTROL *const rc = &cpi->rc; + int target = rc->avg_frame_bandwidth; + int layer = + LAYER_IDS_TO_IDX(cpi->svc.spatial_layer_id, cpi->svc.temporal_layer_id, + cpi->svc.number_temporal_layers); + // Periodic key frames is based on the super-frame counter + // (svc.current_superframe), also only base spatial layer is key frame. + if ((cm->current_video_frame == 0) || (cpi->frame_flags & FRAMEFLAGS_KEY) || + (cpi->oxcf.auto_key && + (cpi->svc.current_superframe % cpi->oxcf.key_freq == 0) && + cpi->svc.spatial_layer_id == 0)) { + cm->frame_type = KEY_FRAME; + rc->source_alt_ref_active = 0; + if (is_two_pass_svc(cpi)) { + cpi->svc.layer_context[layer].is_key_frame = 1; + cpi->ref_frame_flags &= (~VP9_LAST_FLAG & ~VP9_GOLD_FLAG & ~VP9_ALT_FLAG); + } else if (is_one_pass_cbr_svc(cpi)) { + if (cm->current_video_frame > 0) vp9_svc_reset_key_frame(cpi); + layer = LAYER_IDS_TO_IDX(cpi->svc.spatial_layer_id, + cpi->svc.temporal_layer_id, + cpi->svc.number_temporal_layers); + cpi->svc.layer_context[layer].is_key_frame = 1; + cpi->ref_frame_flags &= (~VP9_LAST_FLAG & ~VP9_GOLD_FLAG & ~VP9_ALT_FLAG); + // Assumption here is that LAST_FRAME is being updated for a keyframe. + // Thus no change in update flags. + target = calc_iframe_target_size_one_pass_cbr(cpi); + } + } else { + cm->frame_type = INTER_FRAME; + if (is_two_pass_svc(cpi)) { + LAYER_CONTEXT *lc = &cpi->svc.layer_context[layer]; + if (cpi->svc.spatial_layer_id == 0) { + lc->is_key_frame = 0; + } else { + lc->is_key_frame = + cpi->svc.layer_context[cpi->svc.temporal_layer_id].is_key_frame; + if (lc->is_key_frame) cpi->ref_frame_flags &= (~VP9_LAST_FLAG); + } + cpi->ref_frame_flags &= (~VP9_ALT_FLAG); + } else if (is_one_pass_cbr_svc(cpi)) { + LAYER_CONTEXT *lc = &cpi->svc.layer_context[layer]; + if (cpi->svc.spatial_layer_id == cpi->svc.first_spatial_layer_to_encode) { + lc->is_key_frame = 0; + } else { + lc->is_key_frame = + cpi->svc.layer_context[cpi->svc.temporal_layer_id].is_key_frame; + } + target = calc_pframe_target_size_one_pass_cbr(cpi); + } + } + + // Any update/change of global cyclic refresh parameters (amount/delta-qp) + // should be done here, before the frame qp is selected. + if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ) + vp9_cyclic_refresh_update_parameters(cpi); + + vp9_rc_set_frame_target(cpi, target); + rc->frames_till_gf_update_due = INT_MAX; + rc->baseline_gf_interval = INT_MAX; +} + +void vp9_rc_get_one_pass_cbr_params(VP9_COMP *cpi) { + VP9_COMMON *const cm = &cpi->common; + RATE_CONTROL *const rc = &cpi->rc; + int target; + // TODO(yaowu): replace the "auto_key && 0" below with proper decision logic. + if ((cm->current_video_frame == 0 || (cpi->frame_flags & FRAMEFLAGS_KEY) || + rc->frames_to_key == 0 || (cpi->oxcf.auto_key && 0))) { + cm->frame_type = KEY_FRAME; + rc->this_key_frame_forced = + cm->current_video_frame != 0 && rc->frames_to_key == 0; + rc->frames_to_key = cpi->oxcf.key_freq; + rc->kf_boost = DEFAULT_KF_BOOST; + rc->source_alt_ref_active = 0; + } else { + cm->frame_type = INTER_FRAME; + } + if (rc->frames_till_gf_update_due == 0) { + if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ) + vp9_cyclic_refresh_set_golden_update(cpi); + else + rc->baseline_gf_interval = + (rc->min_gf_interval + rc->max_gf_interval) / 2; + rc->frames_till_gf_update_due = rc->baseline_gf_interval; + // NOTE: frames_till_gf_update_due must be <= frames_to_key. + if (rc->frames_till_gf_update_due > rc->frames_to_key) + rc->frames_till_gf_update_due = rc->frames_to_key; + cpi->refresh_golden_frame = 1; + rc->gfu_boost = DEFAULT_GF_BOOST; + } + + // Any update/change of global cyclic refresh parameters (amount/delta-qp) + // should be done here, before the frame qp is selected. + if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ) + vp9_cyclic_refresh_update_parameters(cpi); + + if (cm->frame_type == KEY_FRAME) + target = calc_iframe_target_size_one_pass_cbr(cpi); + else + target = calc_pframe_target_size_one_pass_cbr(cpi); + + vp9_rc_set_frame_target(cpi, target); + if (cpi->oxcf.resize_mode == RESIZE_DYNAMIC) + cpi->resize_pending = vp9_resize_one_pass_cbr(cpi); + else + cpi->resize_pending = 0; +} + +int vp9_compute_qdelta(const RATE_CONTROL *rc, double qstart, double qtarget, + vpx_bit_depth_t bit_depth) { + int start_index = rc->worst_quality; + int target_index = rc->worst_quality; + int i; + + // Convert the average q value to an index. + for (i = rc->best_quality; i < rc->worst_quality; ++i) { + start_index = i; + if (vp9_convert_qindex_to_q(i, bit_depth) >= qstart) break; + } + + // Convert the q target to an index + for (i = rc->best_quality; i < rc->worst_quality; ++i) { + target_index = i; + if (vp9_convert_qindex_to_q(i, bit_depth) >= qtarget) break; + } + + return target_index - start_index; +} + +int vp9_compute_qdelta_by_rate(const RATE_CONTROL *rc, FRAME_TYPE frame_type, + int qindex, double rate_target_ratio, + vpx_bit_depth_t bit_depth) { + int target_index = rc->worst_quality; + int i; + + // Look up the current projected bits per block for the base index + const int base_bits_per_mb = + vp9_rc_bits_per_mb(frame_type, qindex, 1.0, bit_depth); + + // Find the target bits per mb based on the base value and given ratio. + const int target_bits_per_mb = (int)(rate_target_ratio * base_bits_per_mb); + + // Convert the q target to an index + for (i = rc->best_quality; i < rc->worst_quality; ++i) { + if (vp9_rc_bits_per_mb(frame_type, i, 1.0, bit_depth) <= + target_bits_per_mb) { + target_index = i; + break; + } + } + return target_index - qindex; +} + +void vp9_rc_set_gf_interval_range(const VP9_COMP *const cpi, + RATE_CONTROL *const rc) { + const VP9EncoderConfig *const oxcf = &cpi->oxcf; + + // Special case code for 1 pass fixed Q mode tests + if ((oxcf->pass == 0) && (oxcf->rc_mode == VPX_Q)) { + rc->max_gf_interval = FIXED_GF_INTERVAL; + rc->min_gf_interval = FIXED_GF_INTERVAL; + rc->static_scene_max_gf_interval = FIXED_GF_INTERVAL; + } else { + // Set Maximum gf/arf interval + rc->max_gf_interval = oxcf->max_gf_interval; + rc->min_gf_interval = oxcf->min_gf_interval; + if (rc->min_gf_interval == 0) + rc->min_gf_interval = vp9_rc_get_default_min_gf_interval( + oxcf->width, oxcf->height, cpi->framerate); + if (rc->max_gf_interval == 0) + rc->max_gf_interval = vp9_rc_get_default_max_gf_interval( + cpi->framerate, rc->min_gf_interval); + + // Extended interval for genuinely static scenes + rc->static_scene_max_gf_interval = MAX_LAG_BUFFERS * 2; + + if (is_altref_enabled(cpi)) { + if (rc->static_scene_max_gf_interval > oxcf->lag_in_frames - 1) + rc->static_scene_max_gf_interval = oxcf->lag_in_frames - 1; + } + + if (rc->max_gf_interval > rc->static_scene_max_gf_interval) + rc->max_gf_interval = rc->static_scene_max_gf_interval; + + // Clamp min to max + rc->min_gf_interval = VPXMIN(rc->min_gf_interval, rc->max_gf_interval); + + if (oxcf->target_level == LEVEL_AUTO) { + const uint32_t pic_size = cpi->common.width * cpi->common.height; + const uint32_t pic_breadth = + VPXMAX(cpi->common.width, cpi->common.height); + int i; + for (i = LEVEL_1; i < LEVEL_MAX; ++i) { + if (vp9_level_defs[i].max_luma_picture_size >= pic_size && + vp9_level_defs[i].max_luma_picture_breadth >= pic_breadth) { + if (rc->min_gf_interval <= + (int)vp9_level_defs[i].min_altref_distance) { + rc->min_gf_interval = + (int)vp9_level_defs[i].min_altref_distance + 1; + rc->max_gf_interval = + VPXMAX(rc->max_gf_interval, rc->min_gf_interval); + } + break; + } + } + } + } +} + +void vp9_rc_update_framerate(VP9_COMP *cpi) { + const VP9_COMMON *const cm = &cpi->common; + const VP9EncoderConfig *const oxcf = &cpi->oxcf; + RATE_CONTROL *const rc = &cpi->rc; + int vbr_max_bits; + + rc->avg_frame_bandwidth = (int)(oxcf->target_bandwidth / cpi->framerate); + rc->min_frame_bandwidth = + (int)(rc->avg_frame_bandwidth * oxcf->two_pass_vbrmin_section / 100); + + rc->min_frame_bandwidth = + VPXMAX(rc->min_frame_bandwidth, FRAME_OVERHEAD_BITS); + + // A maximum bitrate for a frame is defined. + // The baseline for this aligns with HW implementations that + // can support decode of 1080P content up to a bitrate of MAX_MB_RATE bits + // per 16x16 MB (averaged over a frame). However this limit is extended if + // a very high rate is given on the command line or the the rate cannnot + // be acheived because of a user specificed max q (e.g. when the user + // specifies lossless encode. + vbr_max_bits = + (int)(((int64_t)rc->avg_frame_bandwidth * oxcf->two_pass_vbrmax_section) / + 100); + rc->max_frame_bandwidth = + VPXMAX(VPXMAX((cm->MBs * MAX_MB_RATE), MAXRATE_1080P), vbr_max_bits); + + vp9_rc_set_gf_interval_range(cpi, rc); +} + +#define VBR_PCT_ADJUSTMENT_LIMIT 50 +// For VBR...adjustment to the frame target based on error from previous frames +static void vbr_rate_correction(VP9_COMP *cpi, int *this_frame_target) { + RATE_CONTROL *const rc = &cpi->rc; + int64_t vbr_bits_off_target = rc->vbr_bits_off_target; + int max_delta; + int frame_window = VPXMIN(16, ((int)cpi->twopass.total_stats.count - + cpi->common.current_video_frame)); + + // Calcluate the adjustment to rate for this frame. + if (frame_window > 0) { + max_delta = (vbr_bits_off_target > 0) + ? (int)(vbr_bits_off_target / frame_window) + : (int)(-vbr_bits_off_target / frame_window); + + max_delta = VPXMIN(max_delta, + ((*this_frame_target * VBR_PCT_ADJUSTMENT_LIMIT) / 100)); + + // vbr_bits_off_target > 0 means we have extra bits to spend + if (vbr_bits_off_target > 0) { + *this_frame_target += (vbr_bits_off_target > max_delta) + ? max_delta + : (int)vbr_bits_off_target; + } else { + *this_frame_target -= (vbr_bits_off_target < -max_delta) + ? max_delta + : (int)-vbr_bits_off_target; + } + } + + // Fast redistribution of bits arising from massive local undershoot. + // Dont do it for kf,arf,gf or overlay frames. + if (!frame_is_kf_gf_arf(cpi) && !rc->is_src_frame_alt_ref && + rc->vbr_bits_off_target_fast) { + int one_frame_bits = VPXMAX(rc->avg_frame_bandwidth, *this_frame_target); + int fast_extra_bits; + fast_extra_bits = (int)VPXMIN(rc->vbr_bits_off_target_fast, one_frame_bits); + fast_extra_bits = (int)VPXMIN( + fast_extra_bits, + VPXMAX(one_frame_bits / 8, rc->vbr_bits_off_target_fast / 8)); + *this_frame_target += (int)fast_extra_bits; + rc->vbr_bits_off_target_fast -= fast_extra_bits; + } +} + +void vp9_set_target_rate(VP9_COMP *cpi) { + RATE_CONTROL *const rc = &cpi->rc; + int target_rate = rc->base_frame_target; + + if (cpi->common.frame_type == KEY_FRAME) + target_rate = vp9_rc_clamp_iframe_target_size(cpi, target_rate); + else + target_rate = vp9_rc_clamp_pframe_target_size(cpi, target_rate); + + if (!cpi->oxcf.vbr_corpus_complexity) { + // Correction to rate target based on prior over or under shoot. + if (cpi->oxcf.rc_mode == VPX_VBR || cpi->oxcf.rc_mode == VPX_CQ) + vbr_rate_correction(cpi, &target_rate); + } + vp9_rc_set_frame_target(cpi, target_rate); +} + +// Check if we should resize, based on average QP from past x frames. +// Only allow for resize at most one scale down for now, scaling factor is 2. +int vp9_resize_one_pass_cbr(VP9_COMP *cpi) { + const VP9_COMMON *const cm = &cpi->common; + RATE_CONTROL *const rc = &cpi->rc; + RESIZE_ACTION resize_action = NO_RESIZE; + int avg_qp_thr1 = 70; + int avg_qp_thr2 = 50; + int min_width = 180; + int min_height = 180; + int down_size_on = 1; + cpi->resize_scale_num = 1; + cpi->resize_scale_den = 1; + // Don't resize on key frame; reset the counters on key frame. + if (cm->frame_type == KEY_FRAME) { + cpi->resize_avg_qp = 0; + cpi->resize_count = 0; + return 0; + } + // Check current frame reslution to avoid generating frames smaller than + // the minimum resolution. + if (ONEHALFONLY_RESIZE) { + if ((cm->width >> 1) < min_width || (cm->height >> 1) < min_height) + down_size_on = 0; + } else { + if (cpi->resize_state == ORIG && + (cm->width * 3 / 4 < min_width || cm->height * 3 / 4 < min_height)) + return 0; + else if (cpi->resize_state == THREE_QUARTER && + ((cpi->oxcf.width >> 1) < min_width || + (cpi->oxcf.height >> 1) < min_height)) + down_size_on = 0; + } + +#if CONFIG_VP9_TEMPORAL_DENOISING + // If denoiser is on, apply a smaller qp threshold. + if (cpi->oxcf.noise_sensitivity > 0) { + avg_qp_thr1 = 60; + avg_qp_thr2 = 40; + } +#endif + + // Resize based on average buffer underflow and QP over some window. + // Ignore samples close to key frame, since QP is usually high after key. + if (cpi->rc.frames_since_key > 2 * cpi->framerate) { + const int window = (int)(4 * cpi->framerate); + cpi->resize_avg_qp += cm->base_qindex; + if (cpi->rc.buffer_level < (int)(30 * rc->optimal_buffer_level / 100)) + ++cpi->resize_buffer_underflow; + ++cpi->resize_count; + // Check for resize action every "window" frames. + if (cpi->resize_count >= window) { + int avg_qp = cpi->resize_avg_qp / cpi->resize_count; + // Resize down if buffer level has underflowed sufficient amount in past + // window, and we are at original or 3/4 of original resolution. + // Resize back up if average QP is low, and we are currently in a resized + // down state, i.e. 1/2 or 3/4 of original resolution. + // Currently, use a flag to turn 3/4 resizing feature on/off. + if (cpi->resize_buffer_underflow > (cpi->resize_count >> 2)) { + if (cpi->resize_state == THREE_QUARTER && down_size_on) { + resize_action = DOWN_ONEHALF; + cpi->resize_state = ONE_HALF; + } else if (cpi->resize_state == ORIG) { + resize_action = ONEHALFONLY_RESIZE ? DOWN_ONEHALF : DOWN_THREEFOUR; + cpi->resize_state = ONEHALFONLY_RESIZE ? ONE_HALF : THREE_QUARTER; + } + } else if (cpi->resize_state != ORIG && + avg_qp < avg_qp_thr1 * cpi->rc.worst_quality / 100) { + if (cpi->resize_state == THREE_QUARTER || + avg_qp < avg_qp_thr2 * cpi->rc.worst_quality / 100 || + ONEHALFONLY_RESIZE) { + resize_action = UP_ORIG; + cpi->resize_state = ORIG; + } else if (cpi->resize_state == ONE_HALF) { + resize_action = UP_THREEFOUR; + cpi->resize_state = THREE_QUARTER; + } + } + // Reset for next window measurement. + cpi->resize_avg_qp = 0; + cpi->resize_count = 0; + cpi->resize_buffer_underflow = 0; + } + } + // If decision is to resize, reset some quantities, and check is we should + // reduce rate correction factor, + if (resize_action != NO_RESIZE) { + int target_bits_per_frame; + int active_worst_quality; + int qindex; + int tot_scale_change; + if (resize_action == DOWN_THREEFOUR || resize_action == UP_THREEFOUR) { + cpi->resize_scale_num = 3; + cpi->resize_scale_den = 4; + } else if (resize_action == DOWN_ONEHALF) { + cpi->resize_scale_num = 1; + cpi->resize_scale_den = 2; + } else { // UP_ORIG or anything else + cpi->resize_scale_num = 1; + cpi->resize_scale_den = 1; + } + tot_scale_change = (cpi->resize_scale_den * cpi->resize_scale_den) / + (cpi->resize_scale_num * cpi->resize_scale_num); + // Reset buffer level to optimal, update target size. + rc->buffer_level = rc->optimal_buffer_level; + rc->bits_off_target = rc->optimal_buffer_level; + rc->this_frame_target = calc_pframe_target_size_one_pass_cbr(cpi); + // Get the projected qindex, based on the scaled target frame size (scaled + // so target_bits_per_mb in vp9_rc_regulate_q will be correct target). + target_bits_per_frame = (resize_action >= 0) + ? rc->this_frame_target * tot_scale_change + : rc->this_frame_target / tot_scale_change; + active_worst_quality = calc_active_worst_quality_one_pass_cbr(cpi); + qindex = vp9_rc_regulate_q(cpi, target_bits_per_frame, rc->best_quality, + active_worst_quality); + // If resize is down, check if projected q index is close to worst_quality, + // and if so, reduce the rate correction factor (since likely can afford + // lower q for resized frame). + if (resize_action > 0 && qindex > 90 * cpi->rc.worst_quality / 100) { + rc->rate_correction_factors[INTER_NORMAL] *= 0.85; + } + // If resize is back up, check if projected q index is too much above the + // current base_qindex, and if so, reduce the rate correction factor + // (since prefer to keep q for resized frame at least close to previous q). + if (resize_action < 0 && qindex > 130 * cm->base_qindex / 100) { + rc->rate_correction_factors[INTER_NORMAL] *= 0.9; + } + } + return resize_action; +} + +static void adjust_gf_boost_lag_one_pass_vbr(VP9_COMP *cpi, + uint64_t avg_sad_current) { + VP9_COMMON *const cm = &cpi->common; + RATE_CONTROL *const rc = &cpi->rc; + int target; + int found = 0; + int found2 = 0; + int frame; + int i; + uint64_t avg_source_sad_lag = avg_sad_current; + int high_source_sad_lagindex = -1; + int steady_sad_lagindex = -1; + uint32_t sad_thresh1 = 70000; + uint32_t sad_thresh2 = 120000; + int low_content = 0; + int high_content = 0; + double rate_err = 1.0; + // Get measure of complexity over the future frames, and get the first + // future frame with high_source_sad/scene-change. + int tot_frames = (int)vp9_lookahead_depth(cpi->lookahead) - 1; + for (frame = tot_frames; frame >= 1; --frame) { + const int lagframe_idx = tot_frames - frame + 1; + uint64_t reference_sad = rc->avg_source_sad[0]; + for (i = 1; i < lagframe_idx; ++i) { + if (rc->avg_source_sad[i] > 0) + reference_sad = (3 * reference_sad + rc->avg_source_sad[i]) >> 2; + } + // Detect up-coming scene change. + if (!found && + (rc->avg_source_sad[lagframe_idx] > + VPXMAX(sad_thresh1, (unsigned int)(reference_sad << 1)) || + rc->avg_source_sad[lagframe_idx] > + VPXMAX(3 * sad_thresh1 >> 2, + (unsigned int)(reference_sad << 2)))) { + high_source_sad_lagindex = lagframe_idx; + found = 1; + } + // Detect change from motion to steady. + if (!found2 && lagframe_idx > 1 && lagframe_idx < tot_frames && + rc->avg_source_sad[lagframe_idx - 1] > (sad_thresh1 >> 2)) { + found2 = 1; + for (i = lagframe_idx; i < tot_frames; ++i) { + if (!(rc->avg_source_sad[i] > 0 && + rc->avg_source_sad[i] < (sad_thresh1 >> 2) && + rc->avg_source_sad[i] < + (rc->avg_source_sad[lagframe_idx - 1] >> 1))) { + found2 = 0; + i = tot_frames; + } + } + if (found2) steady_sad_lagindex = lagframe_idx; + } + avg_source_sad_lag += rc->avg_source_sad[lagframe_idx]; + } + if (tot_frames > 0) avg_source_sad_lag = avg_source_sad_lag / tot_frames; + // Constrain distance between detected scene cuts. + if (high_source_sad_lagindex != -1 && + high_source_sad_lagindex != rc->high_source_sad_lagindex - 1 && + abs(high_source_sad_lagindex - rc->high_source_sad_lagindex) < 4) + rc->high_source_sad_lagindex = -1; + else + rc->high_source_sad_lagindex = high_source_sad_lagindex; + // Adjust some factors for the next GF group, ignore initial key frame, + // and only for lag_in_frames not too small. + if (cpi->refresh_golden_frame == 1 && cm->current_video_frame > 30 && + cpi->oxcf.lag_in_frames > 8) { + int frame_constraint; + if (rc->rolling_target_bits > 0) + rate_err = + (double)rc->rolling_actual_bits / (double)rc->rolling_target_bits; + high_content = high_source_sad_lagindex != -1 || + avg_source_sad_lag > (rc->prev_avg_source_sad_lag << 1) || + avg_source_sad_lag > sad_thresh2; + low_content = high_source_sad_lagindex == -1 && + ((avg_source_sad_lag < (rc->prev_avg_source_sad_lag >> 1)) || + (avg_source_sad_lag < sad_thresh1)); + if (low_content) { + rc->gfu_boost = DEFAULT_GF_BOOST; + rc->baseline_gf_interval = + VPXMIN(15, (3 * rc->baseline_gf_interval) >> 1); + } else if (high_content) { + rc->gfu_boost = DEFAULT_GF_BOOST >> 1; + rc->baseline_gf_interval = (rate_err > 3.0) + ? VPXMAX(10, rc->baseline_gf_interval >> 1) + : VPXMAX(6, rc->baseline_gf_interval >> 1); + } + if (rc->baseline_gf_interval > cpi->oxcf.lag_in_frames - 1) + rc->baseline_gf_interval = cpi->oxcf.lag_in_frames - 1; + // Check for constraining gf_interval for up-coming scene/content changes, + // or for up-coming key frame, whichever is closer. + frame_constraint = rc->frames_to_key; + if (rc->high_source_sad_lagindex > 0 && + frame_constraint > rc->high_source_sad_lagindex) + frame_constraint = rc->high_source_sad_lagindex; + if (steady_sad_lagindex > 3 && frame_constraint > steady_sad_lagindex) + frame_constraint = steady_sad_lagindex; + adjust_gfint_frame_constraint(cpi, frame_constraint); + rc->frames_till_gf_update_due = rc->baseline_gf_interval; + // Adjust factors for active_worst setting & af_ratio for next gf interval. + rc->fac_active_worst_inter = 150; // corresponds to 3/2 (= 150 /100). + rc->fac_active_worst_gf = 100; + if (rate_err < 2.0 && !high_content) { + rc->fac_active_worst_inter = 120; + rc->fac_active_worst_gf = 90; + } else if (rate_err > 8.0 && rc->avg_frame_qindex[INTER_FRAME] < 16) { + // Increase active_worst faster at low Q if rate fluctuation is high. + rc->fac_active_worst_inter = 200; + if (rc->avg_frame_qindex[INTER_FRAME] < 8) + rc->fac_active_worst_inter = 400; + } + if (low_content && rc->avg_frame_low_motion > 80) { + rc->af_ratio_onepass_vbr = 15; + } else if (high_content || rc->avg_frame_low_motion < 30) { + rc->af_ratio_onepass_vbr = 5; + rc->gfu_boost = DEFAULT_GF_BOOST >> 2; + } + if (cpi->sf.use_altref_onepass && cpi->oxcf.enable_auto_arf) { + // Flag to disable usage of ARF based on past usage, only allow this + // disabling if current frame/group does not start with key frame or + // scene cut. Note perc_arf_usage is only computed for speed >= 5. + int arf_usage_low = + (cm->frame_type != KEY_FRAME && !rc->high_source_sad && + cpi->rc.perc_arf_usage < 15 && cpi->oxcf.speed >= 5); + // Don't use alt-ref for this group under certain conditions. + if (arf_usage_low || + (rc->high_source_sad_lagindex > 0 && + rc->high_source_sad_lagindex <= rc->frames_till_gf_update_due) || + (avg_source_sad_lag > 3 * sad_thresh1 >> 3)) { + rc->source_alt_ref_pending = 0; + rc->alt_ref_gf_group = 0; + } else { + rc->source_alt_ref_pending = 1; + rc->alt_ref_gf_group = 1; + // If alt-ref is used for this gf group, limit the interval. + if (rc->baseline_gf_interval > 12) { + rc->baseline_gf_interval = 12; + rc->frames_till_gf_update_due = rc->baseline_gf_interval; + } + } + } + target = calc_pframe_target_size_one_pass_vbr(cpi); + vp9_rc_set_frame_target(cpi, target); + } + rc->prev_avg_source_sad_lag = avg_source_sad_lag; +} + +// Compute average source sad (temporal sad: between current source and +// previous source) over a subset of superblocks. Use this is detect big changes +// in content and allow rate control to react. +// This function also handles special case of lag_in_frames, to measure content +// level in #future frames set by the lag_in_frames. +void vp9_scene_detection_onepass(VP9_COMP *cpi) { + VP9_COMMON *const cm = &cpi->common; + RATE_CONTROL *const rc = &cpi->rc; +#if CONFIG_VP9_HIGHBITDEPTH + if (cm->use_highbitdepth) return; +#endif + rc->high_source_sad = 0; + if (cpi->Last_Source != NULL && + cpi->Last_Source->y_width == cpi->Source->y_width && + cpi->Last_Source->y_height == cpi->Source->y_height) { + YV12_BUFFER_CONFIG *frames[MAX_LAG_BUFFERS] = { NULL }; + uint8_t *src_y = cpi->Source->y_buffer; + int src_ystride = cpi->Source->y_stride; + uint8_t *last_src_y = cpi->Last_Source->y_buffer; + int last_src_ystride = cpi->Last_Source->y_stride; + int start_frame = 0; + int frames_to_buffer = 1; + int frame = 0; + int scene_cut_force_key_frame = 0; + uint64_t avg_sad_current = 0; + uint32_t min_thresh = 4000; + float thresh = 8.0f; + uint32_t thresh_key = 140000; + if (cpi->oxcf.speed <= 5) thresh_key = 240000; + if (cpi->oxcf.rc_mode == VPX_VBR) { + min_thresh = 65000; + thresh = 2.1f; + } + if (cpi->oxcf.lag_in_frames > 0) { + frames_to_buffer = (cm->current_video_frame == 1) + ? (int)vp9_lookahead_depth(cpi->lookahead) - 1 + : 2; + start_frame = (int)vp9_lookahead_depth(cpi->lookahead) - 1; + for (frame = 0; frame < frames_to_buffer; ++frame) { + const int lagframe_idx = start_frame - frame; + if (lagframe_idx >= 0) { + struct lookahead_entry *buf = + vp9_lookahead_peek(cpi->lookahead, lagframe_idx); + frames[frame] = &buf->img; + } + } + // The avg_sad for this current frame is the value of frame#1 + // (first future frame) from previous frame. + avg_sad_current = rc->avg_source_sad[1]; + if (avg_sad_current > + VPXMAX(min_thresh, + (unsigned int)(rc->avg_source_sad[0] * thresh)) && + cm->current_video_frame > (unsigned int)cpi->oxcf.lag_in_frames) + rc->high_source_sad = 1; + else + rc->high_source_sad = 0; + if (rc->high_source_sad && avg_sad_current > thresh_key) + scene_cut_force_key_frame = 1; + // Update recursive average for current frame. + if (avg_sad_current > 0) + rc->avg_source_sad[0] = + (3 * rc->avg_source_sad[0] + avg_sad_current) >> 2; + // Shift back data, starting at frame#1. + for (frame = 1; frame < cpi->oxcf.lag_in_frames - 1; ++frame) + rc->avg_source_sad[frame] = rc->avg_source_sad[frame + 1]; + } + for (frame = 0; frame < frames_to_buffer; ++frame) { + if (cpi->oxcf.lag_in_frames == 0 || + (frames[frame] != NULL && frames[frame + 1] != NULL && + frames[frame]->y_width == frames[frame + 1]->y_width && + frames[frame]->y_height == frames[frame + 1]->y_height)) { + int sbi_row, sbi_col; + const int lagframe_idx = + (cpi->oxcf.lag_in_frames == 0) ? 0 : start_frame - frame + 1; + const BLOCK_SIZE bsize = BLOCK_64X64; + // Loop over sub-sample of frame, compute average sad over 64x64 blocks. + uint64_t avg_sad = 0; + uint64_t tmp_sad = 0; + int num_samples = 0; + int sb_cols = (cm->mi_cols + MI_BLOCK_SIZE - 1) / MI_BLOCK_SIZE; + int sb_rows = (cm->mi_rows + MI_BLOCK_SIZE - 1) / MI_BLOCK_SIZE; + if (cpi->oxcf.lag_in_frames > 0) { + src_y = frames[frame]->y_buffer; + src_ystride = frames[frame]->y_stride; + last_src_y = frames[frame + 1]->y_buffer; + last_src_ystride = frames[frame + 1]->y_stride; + } + for (sbi_row = 0; sbi_row < sb_rows; ++sbi_row) { + for (sbi_col = 0; sbi_col < sb_cols; ++sbi_col) { + // Checker-board pattern, ignore boundary. + if (((sbi_row > 0 && sbi_col > 0) && + (sbi_row < sb_rows - 1 && sbi_col < sb_cols - 1) && + ((sbi_row % 2 == 0 && sbi_col % 2 == 0) || + (sbi_row % 2 != 0 && sbi_col % 2 != 0)))) { + tmp_sad = cpi->fn_ptr[bsize].sdf(src_y, src_ystride, last_src_y, + last_src_ystride); + avg_sad += tmp_sad; + num_samples++; + } + src_y += 64; + last_src_y += 64; + } + src_y += (src_ystride << 6) - (sb_cols << 6); + last_src_y += (last_src_ystride << 6) - (sb_cols << 6); + } + if (num_samples > 0) avg_sad = avg_sad / num_samples; + // Set high_source_sad flag if we detect very high increase in avg_sad + // between current and previous frame value(s). Use minimum threshold + // for cases where there is small change from content that is completely + // static. + if (lagframe_idx == 0) { + if (avg_sad > + VPXMAX(min_thresh, + (unsigned int)(rc->avg_source_sad[0] * thresh)) && + rc->frames_since_key > 1) + rc->high_source_sad = 1; + else + rc->high_source_sad = 0; + if (rc->high_source_sad && avg_sad > thresh_key) + scene_cut_force_key_frame = 1; + if (avg_sad > 0 || cpi->oxcf.rc_mode == VPX_CBR) + rc->avg_source_sad[0] = (3 * rc->avg_source_sad[0] + avg_sad) >> 2; + } else { + rc->avg_source_sad[lagframe_idx] = avg_sad; + } + } + } + // For CBR non-screen content mode, check if we should reset the rate + // control. Reset is done if high_source_sad is detected and the rate + // control is at very low QP with rate correction factor at min level. + if (cpi->oxcf.rc_mode == VPX_CBR && + cpi->oxcf.content != VP9E_CONTENT_SCREEN && !cpi->use_svc) { + if (rc->high_source_sad && rc->last_q[INTER_FRAME] == rc->best_quality && + rc->avg_frame_qindex[INTER_FRAME] < (rc->best_quality << 1) && + rc->rate_correction_factors[INTER_NORMAL] == MIN_BPB_FACTOR) { + rc->rate_correction_factors[INTER_NORMAL] = 0.5; + rc->avg_frame_qindex[INTER_FRAME] = rc->worst_quality; + rc->buffer_level = rc->optimal_buffer_level; + rc->bits_off_target = rc->optimal_buffer_level; + rc->reset_high_source_sad = 1; + } + if (cm->frame_type != KEY_FRAME && rc->reset_high_source_sad) + rc->this_frame_target = rc->avg_frame_bandwidth; + } + // For VBR, under scene change/high content change, force golden refresh. + if (cpi->oxcf.rc_mode == VPX_VBR && cm->frame_type != KEY_FRAME && + rc->high_source_sad && rc->frames_to_key > 3 && + rc->count_last_scene_change > 4 && + cpi->ext_refresh_frame_flags_pending == 0) { + int target; + cpi->refresh_golden_frame = 1; + if (scene_cut_force_key_frame) cm->frame_type = KEY_FRAME; + rc->source_alt_ref_pending = 0; + if (cpi->sf.use_altref_onepass && cpi->oxcf.enable_auto_arf) + rc->source_alt_ref_pending = 1; + rc->gfu_boost = DEFAULT_GF_BOOST >> 1; + rc->baseline_gf_interval = + VPXMIN(20, VPXMAX(10, rc->baseline_gf_interval)); + adjust_gfint_frame_constraint(cpi, rc->frames_to_key); + rc->frames_till_gf_update_due = rc->baseline_gf_interval; + target = calc_pframe_target_size_one_pass_vbr(cpi); + vp9_rc_set_frame_target(cpi, target); + rc->count_last_scene_change = 0; + } else { + rc->count_last_scene_change++; + } + // If lag_in_frame is used, set the gf boost and interval. + if (cpi->oxcf.lag_in_frames > 0) + adjust_gf_boost_lag_one_pass_vbr(cpi, avg_sad_current); + } +} + +// Test if encoded frame will significantly overshoot the target bitrate, and +// if so, set the QP, reset/adjust some rate control parameters, and return 1. +int vp9_encodedframe_overshoot(VP9_COMP *cpi, int frame_size, int *q) { + VP9_COMMON *const cm = &cpi->common; + RATE_CONTROL *const rc = &cpi->rc; + int thresh_qp = 3 * (rc->worst_quality >> 2); + int thresh_rate = rc->avg_frame_bandwidth * 10; + if (cm->base_qindex < thresh_qp && frame_size > thresh_rate) { + double rate_correction_factor = + cpi->rc.rate_correction_factors[INTER_NORMAL]; + const int target_size = cpi->rc.avg_frame_bandwidth; + double new_correction_factor; + int target_bits_per_mb; + double q2; + int enumerator; + // Force a re-encode, and for now use max-QP. + *q = cpi->rc.worst_quality; + // Adjust avg_frame_qindex, buffer_level, and rate correction factors, as + // these parameters will affect QP selection for subsequent frames. If they + // have settled down to a very different (low QP) state, then not adjusting + // them may cause next frame to select low QP and overshoot again. + cpi->rc.avg_frame_qindex[INTER_FRAME] = *q; + rc->buffer_level = rc->optimal_buffer_level; + rc->bits_off_target = rc->optimal_buffer_level; + // Reset rate under/over-shoot flags. + cpi->rc.rc_1_frame = 0; + cpi->rc.rc_2_frame = 0; + // Adjust rate correction factor. + target_bits_per_mb = + (int)(((uint64_t)target_size << BPER_MB_NORMBITS) / cm->MBs); + // Rate correction factor based on target_bits_per_mb and qp (==max_QP). + // This comes from the inverse computation of vp9_rc_bits_per_mb(). + q2 = vp9_convert_qindex_to_q(*q, cm->bit_depth); + enumerator = 1800000; // Factor for inter frame. + enumerator += (int)(enumerator * q2) >> 12; + new_correction_factor = (double)target_bits_per_mb * q2 / enumerator; + if (new_correction_factor > rate_correction_factor) { + rate_correction_factor = + VPXMIN(2.0 * rate_correction_factor, new_correction_factor); + if (rate_correction_factor > MAX_BPB_FACTOR) + rate_correction_factor = MAX_BPB_FACTOR; + cpi->rc.rate_correction_factors[INTER_NORMAL] = rate_correction_factor; + } + // For temporal layers, reset the rate control parametes across all + // temporal layers. + if (cpi->use_svc) { + int i = 0; + SVC *svc = &cpi->svc; + for (i = 0; i < svc->number_temporal_layers; ++i) { + const int layer = LAYER_IDS_TO_IDX(svc->spatial_layer_id, i, + svc->number_temporal_layers); + LAYER_CONTEXT *lc = &svc->layer_context[layer]; + RATE_CONTROL *lrc = &lc->rc; + lrc->avg_frame_qindex[INTER_FRAME] = *q; + lrc->buffer_level = rc->optimal_buffer_level; + lrc->bits_off_target = rc->optimal_buffer_level; + lrc->rc_1_frame = 0; + lrc->rc_2_frame = 0; + lrc->rate_correction_factors[INTER_NORMAL] = rate_correction_factor; + } + } + return 1; + } else { + return 0; + } +} diff --git a/vp9/encoder/vp9_ratectrl.h b/vp9/encoder/vp9_ratectrl.h new file mode 100644 index 0000000..c1b2106 --- /dev/null +++ b/vp9/encoder/vp9_ratectrl.h @@ -0,0 +1,301 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP9_ENCODER_VP9_RATECTRL_H_ +#define VP9_ENCODER_VP9_RATECTRL_H_ + +#include "vpx/vpx_codec.h" +#include "vpx/vpx_integer.h" + +#include "vp9/common/vp9_blockd.h" +#include "vp9/encoder/vp9_lookahead.h" + +#ifdef __cplusplus +extern "C" { +#endif + +// Used to control aggressive VBR mode. +// #define AGGRESSIVE_VBR 1 + +// Bits Per MB at different Q (Multiplied by 512) +#define BPER_MB_NORMBITS 9 + +#define MIN_GF_INTERVAL 4 +#define MAX_GF_INTERVAL 16 +#define FIXED_GF_INTERVAL 8 // Used in some testing modes only +#define ONEHALFONLY_RESIZE 0 + +#define FRAME_OVERHEAD_BITS 200 + +typedef enum { + INTER_NORMAL = 0, + INTER_HIGH = 1, + GF_ARF_LOW = 2, + GF_ARF_STD = 3, + KF_STD = 4, + RATE_FACTOR_LEVELS = 5 +} RATE_FACTOR_LEVEL; + +// Internal frame scaling level. +typedef enum { + UNSCALED = 0, // Frame is unscaled. + SCALE_STEP1 = 1, // First-level down-scaling. + FRAME_SCALE_STEPS +} FRAME_SCALE_LEVEL; + +typedef enum { + NO_RESIZE = 0, + DOWN_THREEFOUR = 1, // From orig to 3/4. + DOWN_ONEHALF = 2, // From orig or 3/4 to 1/2. + UP_THREEFOUR = -1, // From 1/2 to 3/4. + UP_ORIG = -2, // From 1/2 or 3/4 to orig. +} RESIZE_ACTION; + +typedef enum { ORIG = 0, THREE_QUARTER = 1, ONE_HALF = 2 } RESIZE_STATE; + +// Frame dimensions multiplier wrt the native frame size, in 1/16ths, +// specified for the scale-up case. +// e.g. 24 => 16/24 = 2/3 of native size. The restriction to 1/16th is +// intended to match the capabilities of the normative scaling filters, +// giving precedence to the up-scaling accuracy. +static const int frame_scale_factor[FRAME_SCALE_STEPS] = { 16, 24 }; + +// Multiplier of the target rate to be used as threshold for triggering scaling. +static const double rate_thresh_mult[FRAME_SCALE_STEPS] = { 1.0, 2.0 }; + +// Scale dependent Rate Correction Factor multipliers. Compensates for the +// greater number of bits per pixel generated in down-scaled frames. +static const double rcf_mult[FRAME_SCALE_STEPS] = { 1.0, 2.0 }; + +typedef struct { + // Rate targetting variables + int base_frame_target; // A baseline frame target before adjustment + // for previous under or over shoot. + int this_frame_target; // Actual frame target after rc adjustment. + int projected_frame_size; + int sb64_target_rate; + int last_q[FRAME_TYPES]; // Separate values for Intra/Inter + int last_boosted_qindex; // Last boosted GF/KF/ARF q + int last_kf_qindex; // Q index of the last key frame coded. + + int gfu_boost; + int last_boost; + int kf_boost; + + double rate_correction_factors[RATE_FACTOR_LEVELS]; + + int frames_since_golden; + int frames_till_gf_update_due; + int min_gf_interval; + int max_gf_interval; + int static_scene_max_gf_interval; + int baseline_gf_interval; + int constrained_gf_group; + int frames_to_key; + int frames_since_key; + int this_key_frame_forced; + int next_key_frame_forced; + int source_alt_ref_pending; + int source_alt_ref_active; + int is_src_frame_alt_ref; + + int avg_frame_bandwidth; // Average frame size target for clip + int min_frame_bandwidth; // Minimum allocation used for any frame + int max_frame_bandwidth; // Maximum burst rate allowed for a frame. + + int ni_av_qi; + int ni_tot_qi; + int ni_frames; + int avg_frame_qindex[FRAME_TYPES]; + double tot_q; + double avg_q; + + int64_t buffer_level; + int64_t bits_off_target; + int64_t vbr_bits_off_target; + int64_t vbr_bits_off_target_fast; + + int decimation_factor; + int decimation_count; + + int rolling_target_bits; + int rolling_actual_bits; + + int long_rolling_target_bits; + int long_rolling_actual_bits; + + int rate_error_estimate; + + int64_t total_actual_bits; + int64_t total_target_bits; + int64_t total_target_vs_actual; + + int worst_quality; + int best_quality; + + int64_t starting_buffer_level; + int64_t optimal_buffer_level; + int64_t maximum_buffer_size; + + // rate control history for last frame(1) and the frame before(2). + // -1: undershot + // 1: overshoot + // 0: not initialized. + int rc_1_frame; + int rc_2_frame; + int q_1_frame; + int q_2_frame; + // Keep track of the last target average frame bandwidth. + int last_avg_frame_bandwidth; + + // Auto frame-scaling variables. + FRAME_SCALE_LEVEL frame_size_selector; + FRAME_SCALE_LEVEL next_frame_size_selector; + int frame_width[FRAME_SCALE_STEPS]; + int frame_height[FRAME_SCALE_STEPS]; + int rf_level_maxq[RATE_FACTOR_LEVELS]; + + int fac_active_worst_inter; + int fac_active_worst_gf; + uint64_t avg_source_sad[MAX_LAG_BUFFERS]; + uint64_t prev_avg_source_sad_lag; + int high_source_sad_lagindex; + int alt_ref_gf_group; + int last_frame_is_src_altref; + int high_source_sad; + int count_last_scene_change; + int avg_frame_low_motion; + int af_ratio_onepass_vbr; + int force_qpmin; + int reset_high_source_sad; + double perc_arf_usage; +} RATE_CONTROL; + +struct VP9_COMP; +struct VP9EncoderConfig; + +void vp9_rc_init(const struct VP9EncoderConfig *oxcf, int pass, + RATE_CONTROL *rc); + +int vp9_estimate_bits_at_q(FRAME_TYPE frame_kind, int q, int mbs, + double correction_factor, vpx_bit_depth_t bit_depth); + +double vp9_convert_qindex_to_q(int qindex, vpx_bit_depth_t bit_depth); + +int vp9_convert_q_to_qindex(double q_val, vpx_bit_depth_t bit_depth); + +void vp9_rc_init_minq_luts(void); + +int vp9_rc_get_default_min_gf_interval(int width, int height, double framerate); +// Note vp9_rc_get_default_max_gf_interval() requires the min_gf_interval to +// be passed in to ensure that the max_gf_interval returned is at least as bis +// as that. +int vp9_rc_get_default_max_gf_interval(double framerate, int min_frame_rate); + +// Generally at the high level, the following flow is expected +// to be enforced for rate control: +// First call per frame, one of: +// vp9_rc_get_one_pass_vbr_params() +// vp9_rc_get_one_pass_cbr_params() +// vp9_rc_get_svc_params() +// vp9_rc_get_first_pass_params() +// vp9_rc_get_second_pass_params() +// depending on the usage to set the rate control encode parameters desired. +// +// Then, call encode_frame_to_data_rate() to perform the +// actual encode. This function will in turn call encode_frame() +// one or more times, followed by one of: +// vp9_rc_postencode_update() +// vp9_rc_postencode_update_drop_frame() +// +// The majority of rate control parameters are only expected +// to be set in the vp9_rc_get_..._params() functions and +// updated during the vp9_rc_postencode_update...() functions. +// The only exceptions are vp9_rc_drop_frame() and +// vp9_rc_update_rate_correction_factors() functions. + +// Functions to set parameters for encoding before the actual +// encode_frame_to_data_rate() function. +void vp9_rc_get_one_pass_vbr_params(struct VP9_COMP *cpi); +void vp9_rc_get_one_pass_cbr_params(struct VP9_COMP *cpi); +void vp9_rc_get_svc_params(struct VP9_COMP *cpi); + +// Post encode update of the rate control parameters based +// on bytes used +void vp9_rc_postencode_update(struct VP9_COMP *cpi, uint64_t bytes_used); +// Post encode update of the rate control parameters for dropped frames +void vp9_rc_postencode_update_drop_frame(struct VP9_COMP *cpi); + +// Updates rate correction factors +// Changes only the rate correction factors in the rate control structure. +void vp9_rc_update_rate_correction_factors(struct VP9_COMP *cpi); + +// Decide if we should drop this frame: For 1-pass CBR. +// Changes only the decimation count in the rate control structure +int vp9_rc_drop_frame(struct VP9_COMP *cpi); + +// Computes frame size bounds. +void vp9_rc_compute_frame_size_bounds(const struct VP9_COMP *cpi, + int this_frame_target, + int *frame_under_shoot_limit, + int *frame_over_shoot_limit); + +// Picks q and q bounds given the target for bits +int vp9_rc_pick_q_and_bounds(const struct VP9_COMP *cpi, int *bottom_index, + int *top_index); + +// Estimates q to achieve a target bits per frame +int vp9_rc_regulate_q(const struct VP9_COMP *cpi, int target_bits_per_frame, + int active_best_quality, int active_worst_quality); + +// Estimates bits per mb for a given qindex and correction factor. +int vp9_rc_bits_per_mb(FRAME_TYPE frame_type, int qindex, + double correction_factor, vpx_bit_depth_t bit_depth); + +// Clamping utilities for bitrate targets for iframes and pframes. +int vp9_rc_clamp_iframe_target_size(const struct VP9_COMP *const cpi, + int target); +int vp9_rc_clamp_pframe_target_size(const struct VP9_COMP *const cpi, + int target); +// Utility to set frame_target into the RATE_CONTROL structure +// This function is called only from the vp9_rc_get_..._params() functions. +void vp9_rc_set_frame_target(struct VP9_COMP *cpi, int target); + +// Computes a q delta (in "q index" terms) to get from a starting q value +// to a target q value +int vp9_compute_qdelta(const RATE_CONTROL *rc, double qstart, double qtarget, + vpx_bit_depth_t bit_depth); + +// Computes a q delta (in "q index" terms) to get from a starting q value +// to a value that should equate to the given rate ratio. +int vp9_compute_qdelta_by_rate(const RATE_CONTROL *rc, FRAME_TYPE frame_type, + int qindex, double rate_target_ratio, + vpx_bit_depth_t bit_depth); + +int vp9_frame_type_qdelta(const struct VP9_COMP *cpi, int rf_level, int q); + +void vp9_rc_update_framerate(struct VP9_COMP *cpi); + +void vp9_rc_set_gf_interval_range(const struct VP9_COMP *const cpi, + RATE_CONTROL *const rc); + +void vp9_set_target_rate(struct VP9_COMP *cpi); + +int vp9_resize_one_pass_cbr(struct VP9_COMP *cpi); + +void vp9_scene_detection_onepass(struct VP9_COMP *cpi); + +int vp9_encodedframe_overshoot(struct VP9_COMP *cpi, int frame_size, int *q); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP9_ENCODER_VP9_RATECTRL_H_ diff --git a/vp9/encoder/vp9_rd.c b/vp9/encoder/vp9_rd.c new file mode 100644 index 0000000..6b2306c --- /dev/null +++ b/vp9/encoder/vp9_rd.c @@ -0,0 +1,690 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include +#include + +#include "./vp9_rtcd.h" + +#include "vpx_dsp/vpx_dsp_common.h" +#include "vpx_mem/vpx_mem.h" +#include "vpx_ports/bitops.h" +#include "vpx_ports/mem.h" +#include "vpx_ports/system_state.h" + +#include "vp9/common/vp9_common.h" +#include "vp9/common/vp9_entropy.h" +#include "vp9/common/vp9_entropymode.h" +#include "vp9/common/vp9_mvref_common.h" +#include "vp9/common/vp9_pred_common.h" +#include "vp9/common/vp9_quant_common.h" +#include "vp9/common/vp9_reconinter.h" +#include "vp9/common/vp9_reconintra.h" +#include "vp9/common/vp9_seg_common.h" + +#include "vp9/encoder/vp9_cost.h" +#include "vp9/encoder/vp9_encodemb.h" +#include "vp9/encoder/vp9_encodemv.h" +#include "vp9/encoder/vp9_encoder.h" +#include "vp9/encoder/vp9_mcomp.h" +#include "vp9/encoder/vp9_quantize.h" +#include "vp9/encoder/vp9_ratectrl.h" +#include "vp9/encoder/vp9_rd.h" +#include "vp9/encoder/vp9_tokenize.h" + +#define RD_THRESH_POW 1.25 + +// Factor to weigh the rate for switchable interp filters. +#define SWITCHABLE_INTERP_RATE_FACTOR 1 + +void vp9_rd_cost_reset(RD_COST *rd_cost) { + rd_cost->rate = INT_MAX; + rd_cost->dist = INT64_MAX; + rd_cost->rdcost = INT64_MAX; +} + +void vp9_rd_cost_init(RD_COST *rd_cost) { + rd_cost->rate = 0; + rd_cost->dist = 0; + rd_cost->rdcost = 0; +} + +// The baseline rd thresholds for breaking out of the rd loop for +// certain modes are assumed to be based on 8x8 blocks. +// This table is used to correct for block size. +// The factors here are << 2 (2 = x0.5, 32 = x8 etc). +static const uint8_t rd_thresh_block_size_factor[BLOCK_SIZES] = { + 2, 3, 3, 4, 6, 6, 8, 12, 12, 16, 24, 24, 32 +}; + +static void fill_mode_costs(VP9_COMP *cpi) { + const FRAME_CONTEXT *const fc = cpi->common.fc; + int i, j; + + for (i = 0; i < INTRA_MODES; ++i) + for (j = 0; j < INTRA_MODES; ++j) + vp9_cost_tokens(cpi->y_mode_costs[i][j], vp9_kf_y_mode_prob[i][j], + vp9_intra_mode_tree); + + vp9_cost_tokens(cpi->mbmode_cost, fc->y_mode_prob[1], vp9_intra_mode_tree); + for (i = 0; i < INTRA_MODES; ++i) { + vp9_cost_tokens(cpi->intra_uv_mode_cost[KEY_FRAME][i], + vp9_kf_uv_mode_prob[i], vp9_intra_mode_tree); + vp9_cost_tokens(cpi->intra_uv_mode_cost[INTER_FRAME][i], + fc->uv_mode_prob[i], vp9_intra_mode_tree); + } + + for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; ++i) + vp9_cost_tokens(cpi->switchable_interp_costs[i], + fc->switchable_interp_prob[i], vp9_switchable_interp_tree); +} + +static void fill_token_costs(vp9_coeff_cost *c, + vp9_coeff_probs_model (*p)[PLANE_TYPES]) { + int i, j, k, l; + TX_SIZE t; + for (t = TX_4X4; t <= TX_32X32; ++t) + for (i = 0; i < PLANE_TYPES; ++i) + for (j = 0; j < REF_TYPES; ++j) + for (k = 0; k < COEF_BANDS; ++k) + for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) { + vpx_prob probs[ENTROPY_NODES]; + vp9_model_to_full_probs(p[t][i][j][k][l], probs); + vp9_cost_tokens((int *)c[t][i][j][k][0][l], probs, vp9_coef_tree); + vp9_cost_tokens_skip((int *)c[t][i][j][k][1][l], probs, + vp9_coef_tree); + assert(c[t][i][j][k][0][l][EOB_TOKEN] == + c[t][i][j][k][1][l][EOB_TOKEN]); + } +} + +// Values are now correlated to quantizer. +static int sad_per_bit16lut_8[QINDEX_RANGE]; +static int sad_per_bit4lut_8[QINDEX_RANGE]; + +#if CONFIG_VP9_HIGHBITDEPTH +static int sad_per_bit16lut_10[QINDEX_RANGE]; +static int sad_per_bit4lut_10[QINDEX_RANGE]; +static int sad_per_bit16lut_12[QINDEX_RANGE]; +static int sad_per_bit4lut_12[QINDEX_RANGE]; +#endif + +static void init_me_luts_bd(int *bit16lut, int *bit4lut, int range, + vpx_bit_depth_t bit_depth) { + int i; + // Initialize the sad lut tables using a formulaic calculation for now. + // This is to make it easier to resolve the impact of experimental changes + // to the quantizer tables. + for (i = 0; i < range; i++) { + const double q = vp9_convert_qindex_to_q(i, bit_depth); + bit16lut[i] = (int)(0.0418 * q + 2.4107); + bit4lut[i] = (int)(0.063 * q + 2.742); + } +} + +void vp9_init_me_luts(void) { + init_me_luts_bd(sad_per_bit16lut_8, sad_per_bit4lut_8, QINDEX_RANGE, + VPX_BITS_8); +#if CONFIG_VP9_HIGHBITDEPTH + init_me_luts_bd(sad_per_bit16lut_10, sad_per_bit4lut_10, QINDEX_RANGE, + VPX_BITS_10); + init_me_luts_bd(sad_per_bit16lut_12, sad_per_bit4lut_12, QINDEX_RANGE, + VPX_BITS_12); +#endif +} + +static const int rd_boost_factor[16] = { 64, 32, 32, 32, 24, 16, 12, 12, + 8, 8, 4, 4, 2, 2, 1, 0 }; +static const int rd_frame_type_factor[FRAME_UPDATE_TYPES] = { 128, 144, 128, + 128, 144 }; + +int64_t vp9_compute_rd_mult_based_on_qindex(const VP9_COMP *cpi, int qindex) { + const int64_t q = vp9_dc_quant(qindex, 0, cpi->common.bit_depth); +#if CONFIG_VP9_HIGHBITDEPTH + int64_t rdmult = 0; + switch (cpi->common.bit_depth) { + case VPX_BITS_8: rdmult = 88 * q * q / 24; break; + case VPX_BITS_10: rdmult = ROUND_POWER_OF_TWO(88 * q * q / 24, 4); break; + case VPX_BITS_12: rdmult = ROUND_POWER_OF_TWO(88 * q * q / 24, 8); break; + default: + assert(0 && "bit_depth should be VPX_BITS_8, VPX_BITS_10 or VPX_BITS_12"); + return -1; + } +#else + int64_t rdmult = 88 * q * q / 24; +#endif // CONFIG_VP9_HIGHBITDEPTH + return rdmult; +} + +int vp9_compute_rd_mult(const VP9_COMP *cpi, int qindex) { + int64_t rdmult = vp9_compute_rd_mult_based_on_qindex(cpi, qindex); + + if (cpi->oxcf.pass == 2 && (cpi->common.frame_type != KEY_FRAME)) { + const GF_GROUP *const gf_group = &cpi->twopass.gf_group; + const FRAME_UPDATE_TYPE frame_type = gf_group->update_type[gf_group->index]; + const int boost_index = VPXMIN(15, (cpi->rc.gfu_boost / 100)); + + rdmult = (rdmult * rd_frame_type_factor[frame_type]) >> 7; + rdmult += ((rdmult * rd_boost_factor[boost_index]) >> 7); + } + if (rdmult < 1) rdmult = 1; + return (int)rdmult; +} + +static int compute_rd_thresh_factor(int qindex, vpx_bit_depth_t bit_depth) { + double q; +#if CONFIG_VP9_HIGHBITDEPTH + switch (bit_depth) { + case VPX_BITS_8: q = vp9_dc_quant(qindex, 0, VPX_BITS_8) / 4.0; break; + case VPX_BITS_10: q = vp9_dc_quant(qindex, 0, VPX_BITS_10) / 16.0; break; + case VPX_BITS_12: q = vp9_dc_quant(qindex, 0, VPX_BITS_12) / 64.0; break; + default: + assert(0 && "bit_depth should be VPX_BITS_8, VPX_BITS_10 or VPX_BITS_12"); + return -1; + } +#else + (void)bit_depth; + q = vp9_dc_quant(qindex, 0, VPX_BITS_8) / 4.0; +#endif // CONFIG_VP9_HIGHBITDEPTH + // TODO(debargha): Adjust the function below. + return VPXMAX((int)(pow(q, RD_THRESH_POW) * 5.12), 8); +} + +void vp9_initialize_me_consts(VP9_COMP *cpi, MACROBLOCK *x, int qindex) { +#if CONFIG_VP9_HIGHBITDEPTH + switch (cpi->common.bit_depth) { + case VPX_BITS_8: + x->sadperbit16 = sad_per_bit16lut_8[qindex]; + x->sadperbit4 = sad_per_bit4lut_8[qindex]; + break; + case VPX_BITS_10: + x->sadperbit16 = sad_per_bit16lut_10[qindex]; + x->sadperbit4 = sad_per_bit4lut_10[qindex]; + break; + case VPX_BITS_12: + x->sadperbit16 = sad_per_bit16lut_12[qindex]; + x->sadperbit4 = sad_per_bit4lut_12[qindex]; + break; + default: + assert(0 && "bit_depth should be VPX_BITS_8, VPX_BITS_10 or VPX_BITS_12"); + } +#else + (void)cpi; + x->sadperbit16 = sad_per_bit16lut_8[qindex]; + x->sadperbit4 = sad_per_bit4lut_8[qindex]; +#endif // CONFIG_VP9_HIGHBITDEPTH +} + +static void set_block_thresholds(const VP9_COMMON *cm, RD_OPT *rd) { + int i, bsize, segment_id; + + for (segment_id = 0; segment_id < MAX_SEGMENTS; ++segment_id) { + const int qindex = + clamp(vp9_get_qindex(&cm->seg, segment_id, cm->base_qindex) + + cm->y_dc_delta_q, + 0, MAXQ); + const int q = compute_rd_thresh_factor(qindex, cm->bit_depth); + + for (bsize = 0; bsize < BLOCK_SIZES; ++bsize) { + // Threshold here seems unnecessarily harsh but fine given actual + // range of values used for cpi->sf.thresh_mult[]. + const int t = q * rd_thresh_block_size_factor[bsize]; + const int thresh_max = INT_MAX / t; + + if (bsize >= BLOCK_8X8) { + for (i = 0; i < MAX_MODES; ++i) + rd->threshes[segment_id][bsize][i] = rd->thresh_mult[i] < thresh_max + ? rd->thresh_mult[i] * t / 4 + : INT_MAX; + } else { + for (i = 0; i < MAX_REFS; ++i) + rd->threshes[segment_id][bsize][i] = + rd->thresh_mult_sub8x8[i] < thresh_max + ? rd->thresh_mult_sub8x8[i] * t / 4 + : INT_MAX; + } + } + } +} + +void vp9_initialize_rd_consts(VP9_COMP *cpi) { + VP9_COMMON *const cm = &cpi->common; + MACROBLOCK *const x = &cpi->td.mb; + MACROBLOCKD *const xd = &cpi->td.mb.e_mbd; + RD_OPT *const rd = &cpi->rd; + int i; + + vpx_clear_system_state(); + + rd->RDDIV = RDDIV_BITS; // In bits (to multiply D by 128). + rd->RDMULT = vp9_compute_rd_mult(cpi, cm->base_qindex + cm->y_dc_delta_q); + + set_error_per_bit(x, rd->RDMULT); + + x->select_tx_size = (cpi->sf.tx_size_search_method == USE_LARGESTALL && + cm->frame_type != KEY_FRAME) + ? 0 + : 1; + + set_block_thresholds(cm, rd); + set_partition_probs(cm, xd); + + if (cpi->oxcf.pass == 1) { + if (!frame_is_intra_only(cm)) + vp9_build_nmv_cost_table( + x->nmvjointcost, + cm->allow_high_precision_mv ? x->nmvcost_hp : x->nmvcost, + &cm->fc->nmvc, cm->allow_high_precision_mv); + } else { + if (!cpi->sf.use_nonrd_pick_mode || cm->frame_type == KEY_FRAME) + fill_token_costs(x->token_costs, cm->fc->coef_probs); + + if (cpi->sf.partition_search_type != VAR_BASED_PARTITION || + cm->frame_type == KEY_FRAME) { + for (i = 0; i < PARTITION_CONTEXTS; ++i) + vp9_cost_tokens(cpi->partition_cost[i], get_partition_probs(xd, i), + vp9_partition_tree); + } + + if (!cpi->sf.use_nonrd_pick_mode || (cm->current_video_frame & 0x07) == 1 || + cm->frame_type == KEY_FRAME) { + fill_mode_costs(cpi); + + if (!frame_is_intra_only(cm)) { + vp9_build_nmv_cost_table( + x->nmvjointcost, + cm->allow_high_precision_mv ? x->nmvcost_hp : x->nmvcost, + &cm->fc->nmvc, cm->allow_high_precision_mv); + + for (i = 0; i < INTER_MODE_CONTEXTS; ++i) + vp9_cost_tokens((int *)cpi->inter_mode_cost[i], + cm->fc->inter_mode_probs[i], vp9_inter_mode_tree); + } + } + } +} + +// NOTE: The tables below must be of the same size. + +// The functions described below are sampled at the four most significant +// bits of x^2 + 8 / 256. + +// Normalized rate: +// This table models the rate for a Laplacian source with given variance +// when quantized with a uniform quantizer with given stepsize. The +// closed form expression is: +// Rn(x) = H(sqrt(r)) + sqrt(r)*[1 + H(r)/(1 - r)], +// where r = exp(-sqrt(2) * x) and x = qpstep / sqrt(variance), +// and H(x) is the binary entropy function. +static const int rate_tab_q10[] = { + 65536, 6086, 5574, 5275, 5063, 4899, 4764, 4651, 4553, 4389, 4255, 4142, 4044, + 3958, 3881, 3811, 3748, 3635, 3538, 3453, 3376, 3307, 3244, 3186, 3133, 3037, + 2952, 2877, 2809, 2747, 2690, 2638, 2589, 2501, 2423, 2353, 2290, 2232, 2179, + 2130, 2084, 2001, 1928, 1862, 1802, 1748, 1698, 1651, 1608, 1530, 1460, 1398, + 1342, 1290, 1243, 1199, 1159, 1086, 1021, 963, 911, 864, 821, 781, 745, + 680, 623, 574, 530, 490, 455, 424, 395, 345, 304, 269, 239, 213, + 190, 171, 154, 126, 104, 87, 73, 61, 52, 44, 38, 28, 21, + 16, 12, 10, 8, 6, 5, 3, 2, 1, 1, 1, 0, 0, +}; + +// Normalized distortion: +// This table models the normalized distortion for a Laplacian source +// with given variance when quantized with a uniform quantizer +// with given stepsize. The closed form expression is: +// Dn(x) = 1 - 1/sqrt(2) * x / sinh(x/sqrt(2)) +// where x = qpstep / sqrt(variance). +// Note the actual distortion is Dn * variance. +static const int dist_tab_q10[] = { + 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 4, 5, 5, + 6, 7, 7, 8, 9, 11, 12, 13, 15, 16, 17, 18, 21, + 24, 26, 29, 31, 34, 36, 39, 44, 49, 54, 59, 64, 69, + 73, 78, 88, 97, 106, 115, 124, 133, 142, 151, 167, 184, 200, + 215, 231, 245, 260, 274, 301, 327, 351, 375, 397, 418, 439, 458, + 495, 528, 559, 587, 613, 637, 659, 680, 717, 749, 777, 801, 823, + 842, 859, 874, 899, 919, 936, 949, 960, 969, 977, 983, 994, 1001, + 1006, 1010, 1013, 1015, 1017, 1018, 1020, 1022, 1022, 1023, 1023, 1023, 1024, +}; +static const int xsq_iq_q10[] = { + 0, 4, 8, 12, 16, 20, 24, 28, 32, + 40, 48, 56, 64, 72, 80, 88, 96, 112, + 128, 144, 160, 176, 192, 208, 224, 256, 288, + 320, 352, 384, 416, 448, 480, 544, 608, 672, + 736, 800, 864, 928, 992, 1120, 1248, 1376, 1504, + 1632, 1760, 1888, 2016, 2272, 2528, 2784, 3040, 3296, + 3552, 3808, 4064, 4576, 5088, 5600, 6112, 6624, 7136, + 7648, 8160, 9184, 10208, 11232, 12256, 13280, 14304, 15328, + 16352, 18400, 20448, 22496, 24544, 26592, 28640, 30688, 32736, + 36832, 40928, 45024, 49120, 53216, 57312, 61408, 65504, 73696, + 81888, 90080, 98272, 106464, 114656, 122848, 131040, 147424, 163808, + 180192, 196576, 212960, 229344, 245728, +}; + +static void model_rd_norm(int xsq_q10, int *r_q10, int *d_q10) { + const int tmp = (xsq_q10 >> 2) + 8; + const int k = get_msb(tmp) - 3; + const int xq = (k << 3) + ((tmp >> k) & 0x7); + const int one_q10 = 1 << 10; + const int a_q10 = ((xsq_q10 - xsq_iq_q10[xq]) << 10) >> (2 + k); + const int b_q10 = one_q10 - a_q10; + *r_q10 = (rate_tab_q10[xq] * b_q10 + rate_tab_q10[xq + 1] * a_q10) >> 10; + *d_q10 = (dist_tab_q10[xq] * b_q10 + dist_tab_q10[xq + 1] * a_q10) >> 10; +} + +static void model_rd_norm_vec(int xsq_q10[MAX_MB_PLANE], + int r_q10[MAX_MB_PLANE], + int d_q10[MAX_MB_PLANE]) { + int i; + const int one_q10 = 1 << 10; + for (i = 0; i < MAX_MB_PLANE; ++i) { + const int tmp = (xsq_q10[i] >> 2) + 8; + const int k = get_msb(tmp) - 3; + const int xq = (k << 3) + ((tmp >> k) & 0x7); + const int a_q10 = ((xsq_q10[i] - xsq_iq_q10[xq]) << 10) >> (2 + k); + const int b_q10 = one_q10 - a_q10; + r_q10[i] = (rate_tab_q10[xq] * b_q10 + rate_tab_q10[xq + 1] * a_q10) >> 10; + d_q10[i] = (dist_tab_q10[xq] * b_q10 + dist_tab_q10[xq + 1] * a_q10) >> 10; + } +} + +static const uint32_t MAX_XSQ_Q10 = 245727; + +void vp9_model_rd_from_var_lapndz(unsigned int var, unsigned int n_log2, + unsigned int qstep, int *rate, + int64_t *dist) { + // This function models the rate and distortion for a Laplacian + // source with given variance when quantized with a uniform quantizer + // with given stepsize. The closed form expressions are in: + // Hang and Chen, "Source Model for transform video coder and its + // application - Part I: Fundamental Theory", IEEE Trans. Circ. + // Sys. for Video Tech., April 1997. + if (var == 0) { + *rate = 0; + *dist = 0; + } else { + int d_q10, r_q10; + const uint64_t xsq_q10_64 = + (((uint64_t)qstep * qstep << (n_log2 + 10)) + (var >> 1)) / var; + const int xsq_q10 = (int)VPXMIN(xsq_q10_64, MAX_XSQ_Q10); + model_rd_norm(xsq_q10, &r_q10, &d_q10); + *rate = ROUND_POWER_OF_TWO(r_q10 << n_log2, 10 - VP9_PROB_COST_SHIFT); + *dist = (var * (int64_t)d_q10 + 512) >> 10; + } +} + +// Implements a fixed length vector form of vp9_model_rd_from_var_lapndz where +// vectors are of length MAX_MB_PLANE and all elements of var are non-zero. +void vp9_model_rd_from_var_lapndz_vec(unsigned int var[MAX_MB_PLANE], + unsigned int n_log2[MAX_MB_PLANE], + unsigned int qstep[MAX_MB_PLANE], + int64_t *rate_sum, int64_t *dist_sum) { + int i; + int xsq_q10[MAX_MB_PLANE], d_q10[MAX_MB_PLANE], r_q10[MAX_MB_PLANE]; + for (i = 0; i < MAX_MB_PLANE; ++i) { + const uint64_t xsq_q10_64 = + (((uint64_t)qstep[i] * qstep[i] << (n_log2[i] + 10)) + (var[i] >> 1)) / + var[i]; + xsq_q10[i] = (int)VPXMIN(xsq_q10_64, MAX_XSQ_Q10); + } + model_rd_norm_vec(xsq_q10, r_q10, d_q10); + for (i = 0; i < MAX_MB_PLANE; ++i) { + int rate = + ROUND_POWER_OF_TWO(r_q10[i] << n_log2[i], 10 - VP9_PROB_COST_SHIFT); + int64_t dist = (var[i] * (int64_t)d_q10[i] + 512) >> 10; + *rate_sum += rate; + *dist_sum += dist; + } +} + +void vp9_get_entropy_contexts(BLOCK_SIZE bsize, TX_SIZE tx_size, + const struct macroblockd_plane *pd, + ENTROPY_CONTEXT t_above[16], + ENTROPY_CONTEXT t_left[16]) { + const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd); + const int num_4x4_w = num_4x4_blocks_wide_lookup[plane_bsize]; + const int num_4x4_h = num_4x4_blocks_high_lookup[plane_bsize]; + const ENTROPY_CONTEXT *const above = pd->above_context; + const ENTROPY_CONTEXT *const left = pd->left_context; + + int i; + switch (tx_size) { + case TX_4X4: + memcpy(t_above, above, sizeof(ENTROPY_CONTEXT) * num_4x4_w); + memcpy(t_left, left, sizeof(ENTROPY_CONTEXT) * num_4x4_h); + break; + case TX_8X8: + for (i = 0; i < num_4x4_w; i += 2) + t_above[i] = !!*(const uint16_t *)&above[i]; + for (i = 0; i < num_4x4_h; i += 2) + t_left[i] = !!*(const uint16_t *)&left[i]; + break; + case TX_16X16: + for (i = 0; i < num_4x4_w; i += 4) + t_above[i] = !!*(const uint32_t *)&above[i]; + for (i = 0; i < num_4x4_h; i += 4) + t_left[i] = !!*(const uint32_t *)&left[i]; + break; + case TX_32X32: + for (i = 0; i < num_4x4_w; i += 8) + t_above[i] = !!*(const uint64_t *)&above[i]; + for (i = 0; i < num_4x4_h; i += 8) + t_left[i] = !!*(const uint64_t *)&left[i]; + break; + default: assert(0 && "Invalid transform size."); break; + } +} + +void vp9_mv_pred(VP9_COMP *cpi, MACROBLOCK *x, uint8_t *ref_y_buffer, + int ref_y_stride, int ref_frame, BLOCK_SIZE block_size) { + int i; + int zero_seen = 0; + int best_index = 0; + int best_sad = INT_MAX; + int this_sad = INT_MAX; + int max_mv = 0; + int near_same_nearest; + uint8_t *src_y_ptr = x->plane[0].src.buf; + uint8_t *ref_y_ptr; + const int num_mv_refs = + MAX_MV_REF_CANDIDATES + + (cpi->sf.adaptive_motion_search && block_size < x->max_partition_size); + + MV pred_mv[3]; + pred_mv[0] = x->mbmi_ext->ref_mvs[ref_frame][0].as_mv; + pred_mv[1] = x->mbmi_ext->ref_mvs[ref_frame][1].as_mv; + pred_mv[2] = x->pred_mv[ref_frame]; + assert(num_mv_refs <= (int)(sizeof(pred_mv) / sizeof(pred_mv[0]))); + + near_same_nearest = x->mbmi_ext->ref_mvs[ref_frame][0].as_int == + x->mbmi_ext->ref_mvs[ref_frame][1].as_int; + // Get the sad for each candidate reference mv. + for (i = 0; i < num_mv_refs; ++i) { + const MV *this_mv = &pred_mv[i]; + int fp_row, fp_col; + + if (i == 1 && near_same_nearest) continue; + fp_row = (this_mv->row + 3 + (this_mv->row >= 0)) >> 3; + fp_col = (this_mv->col + 3 + (this_mv->col >= 0)) >> 3; + max_mv = VPXMAX(max_mv, VPXMAX(abs(this_mv->row), abs(this_mv->col)) >> 3); + + if (fp_row == 0 && fp_col == 0 && zero_seen) continue; + zero_seen |= (fp_row == 0 && fp_col == 0); + + ref_y_ptr = &ref_y_buffer[ref_y_stride * fp_row + fp_col]; + // Find sad for current vector. + this_sad = cpi->fn_ptr[block_size].sdf(src_y_ptr, x->plane[0].src.stride, + ref_y_ptr, ref_y_stride); + // Note if it is the best so far. + if (this_sad < best_sad) { + best_sad = this_sad; + best_index = i; + } + } + + // Note the index of the mv that worked best in the reference list. + x->mv_best_ref_index[ref_frame] = best_index; + x->max_mv_context[ref_frame] = max_mv; + x->pred_mv_sad[ref_frame] = best_sad; +} + +void vp9_setup_pred_block(const MACROBLOCKD *xd, + struct buf_2d dst[MAX_MB_PLANE], + const YV12_BUFFER_CONFIG *src, int mi_row, int mi_col, + const struct scale_factors *scale, + const struct scale_factors *scale_uv) { + int i; + + dst[0].buf = src->y_buffer; + dst[0].stride = src->y_stride; + dst[1].buf = src->u_buffer; + dst[2].buf = src->v_buffer; + dst[1].stride = dst[2].stride = src->uv_stride; + + for (i = 0; i < MAX_MB_PLANE; ++i) { + setup_pred_plane(dst + i, dst[i].buf, dst[i].stride, mi_row, mi_col, + i ? scale_uv : scale, xd->plane[i].subsampling_x, + xd->plane[i].subsampling_y); + } +} + +int vp9_raster_block_offset(BLOCK_SIZE plane_bsize, int raster_block, + int stride) { + const int bw = b_width_log2_lookup[plane_bsize]; + const int y = 4 * (raster_block >> bw); + const int x = 4 * (raster_block & ((1 << bw) - 1)); + return y * stride + x; +} + +int16_t *vp9_raster_block_offset_int16(BLOCK_SIZE plane_bsize, int raster_block, + int16_t *base) { + const int stride = 4 * num_4x4_blocks_wide_lookup[plane_bsize]; + return base + vp9_raster_block_offset(plane_bsize, raster_block, stride); +} + +YV12_BUFFER_CONFIG *vp9_get_scaled_ref_frame(const VP9_COMP *cpi, + int ref_frame) { + const VP9_COMMON *const cm = &cpi->common; + const int scaled_idx = cpi->scaled_ref_idx[ref_frame - 1]; + const int ref_idx = get_ref_frame_buf_idx(cpi, ref_frame); + return (scaled_idx != ref_idx && scaled_idx != INVALID_IDX) + ? &cm->buffer_pool->frame_bufs[scaled_idx].buf + : NULL; +} + +int vp9_get_switchable_rate(const VP9_COMP *cpi, const MACROBLOCKD *const xd) { + const MODE_INFO *const mi = xd->mi[0]; + const int ctx = get_pred_context_switchable_interp(xd); + return SWITCHABLE_INTERP_RATE_FACTOR * + cpi->switchable_interp_costs[ctx][mi->interp_filter]; +} + +void vp9_set_rd_speed_thresholds(VP9_COMP *cpi) { + int i; + RD_OPT *const rd = &cpi->rd; + SPEED_FEATURES *const sf = &cpi->sf; + + // Set baseline threshold values. + for (i = 0; i < MAX_MODES; ++i) + rd->thresh_mult[i] = cpi->oxcf.mode == BEST ? -500 : 0; + + if (sf->adaptive_rd_thresh) { + rd->thresh_mult[THR_NEARESTMV] = 300; + rd->thresh_mult[THR_NEARESTG] = 300; + rd->thresh_mult[THR_NEARESTA] = 300; + } else { + rd->thresh_mult[THR_NEARESTMV] = 0; + rd->thresh_mult[THR_NEARESTG] = 0; + rd->thresh_mult[THR_NEARESTA] = 0; + } + + rd->thresh_mult[THR_DC] += 1000; + + rd->thresh_mult[THR_NEWMV] += 1000; + rd->thresh_mult[THR_NEWA] += 1000; + rd->thresh_mult[THR_NEWG] += 1000; + + rd->thresh_mult[THR_NEARMV] += 1000; + rd->thresh_mult[THR_NEARA] += 1000; + rd->thresh_mult[THR_COMP_NEARESTLA] += 1000; + rd->thresh_mult[THR_COMP_NEARESTGA] += 1000; + + rd->thresh_mult[THR_TM] += 1000; + + rd->thresh_mult[THR_COMP_NEARLA] += 1500; + rd->thresh_mult[THR_COMP_NEWLA] += 2000; + rd->thresh_mult[THR_NEARG] += 1000; + rd->thresh_mult[THR_COMP_NEARGA] += 1500; + rd->thresh_mult[THR_COMP_NEWGA] += 2000; + + rd->thresh_mult[THR_ZEROMV] += 2000; + rd->thresh_mult[THR_ZEROG] += 2000; + rd->thresh_mult[THR_ZEROA] += 2000; + rd->thresh_mult[THR_COMP_ZEROLA] += 2500; + rd->thresh_mult[THR_COMP_ZEROGA] += 2500; + + rd->thresh_mult[THR_H_PRED] += 2000; + rd->thresh_mult[THR_V_PRED] += 2000; + rd->thresh_mult[THR_D45_PRED] += 2500; + rd->thresh_mult[THR_D135_PRED] += 2500; + rd->thresh_mult[THR_D117_PRED] += 2500; + rd->thresh_mult[THR_D153_PRED] += 2500; + rd->thresh_mult[THR_D207_PRED] += 2500; + rd->thresh_mult[THR_D63_PRED] += 2500; +} + +void vp9_set_rd_speed_thresholds_sub8x8(VP9_COMP *cpi) { + static const int thresh_mult[2][MAX_REFS] = { + { 2500, 2500, 2500, 4500, 4500, 2500 }, + { 2000, 2000, 2000, 4000, 4000, 2000 } + }; + RD_OPT *const rd = &cpi->rd; + const int idx = cpi->oxcf.mode == BEST; + memcpy(rd->thresh_mult_sub8x8, thresh_mult[idx], sizeof(thresh_mult[idx])); +} + +void vp9_update_rd_thresh_fact(int (*factor_buf)[MAX_MODES], int rd_thresh, + int bsize, int best_mode_index) { + if (rd_thresh > 0) { + const int top_mode = bsize < BLOCK_8X8 ? MAX_REFS : MAX_MODES; + int mode; + for (mode = 0; mode < top_mode; ++mode) { + const BLOCK_SIZE min_size = VPXMAX(bsize - 1, BLOCK_4X4); + const BLOCK_SIZE max_size = VPXMIN(bsize + 2, BLOCK_64X64); + BLOCK_SIZE bs; + for (bs = min_size; bs <= max_size; ++bs) { + int *const fact = &factor_buf[bs][mode]; + if (mode == best_mode_index) { + *fact -= (*fact >> 4); + } else { + *fact = VPXMIN(*fact + RD_THRESH_INC, rd_thresh * RD_THRESH_MAX_FACT); + } + } + } + } +} + +int vp9_get_intra_cost_penalty(const VP9_COMP *const cpi, BLOCK_SIZE bsize, + int qindex, int qdelta) { + // Reduce the intra cost penalty for small blocks (<=16x16). + int reduction_fac = + (bsize <= BLOCK_16X16) ? ((bsize <= BLOCK_8X8) ? 4 : 2) : 0; + + if (cpi->noise_estimate.enabled && cpi->noise_estimate.level == kHigh) + // Don't reduce intra cost penalty if estimated noise level is high. + reduction_fac = 0; + + // Always use VPX_BITS_8 as input here because the penalty is applied + // to rate not distortion so we want a consistent penalty for all bit + // depths. If the actual bit depth were passed in here then the value + // retured by vp9_dc_quant() would scale with the bit depth and we would + // then need to apply inverse scaling to correct back to a bit depth + // independent rate penalty. + return (20 * vp9_dc_quant(qindex, qdelta, VPX_BITS_8)) >> reduction_fac; +} diff --git a/vp9/encoder/vp9_rd.h b/vp9/encoder/vp9_rd.h new file mode 100644 index 0000000..59022c1 --- /dev/null +++ b/vp9/encoder/vp9_rd.h @@ -0,0 +1,215 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP9_ENCODER_VP9_RD_H_ +#define VP9_ENCODER_VP9_RD_H_ + +#include + +#include "vp9/common/vp9_blockd.h" + +#include "vp9/encoder/vp9_block.h" +#include "vp9/encoder/vp9_context_tree.h" +#include "vp9/encoder/vp9_cost.h" + +#ifdef __cplusplus +extern "C" { +#endif + +#define RDDIV_BITS 7 +#define RD_EPB_SHIFT 6 + +#define RDCOST(RM, DM, R, D) \ + (ROUND_POWER_OF_TWO(((int64_t)R) * (RM), VP9_PROB_COST_SHIFT) + (D << DM)) +#define QIDX_SKIP_THRESH 115 + +#define MV_COST_WEIGHT 108 +#define MV_COST_WEIGHT_SUB 120 + +#define INVALID_MV 0x80008000 + +#define MAX_MODES 30 +#define MAX_REFS 6 + +#define RD_THRESH_INIT_FACT 32 +#define RD_THRESH_MAX_FACT 64 +#define RD_THRESH_INC 1 + +// This enumerator type needs to be kept aligned with the mode order in +// const MODE_DEFINITION vp9_mode_order[MAX_MODES] used in the rd code. +typedef enum { + THR_NEARESTMV, + THR_NEARESTA, + THR_NEARESTG, + + THR_DC, + + THR_NEWMV, + THR_NEWA, + THR_NEWG, + + THR_NEARMV, + THR_NEARA, + THR_NEARG, + + THR_ZEROMV, + THR_ZEROG, + THR_ZEROA, + + THR_COMP_NEARESTLA, + THR_COMP_NEARESTGA, + + THR_TM, + + THR_COMP_NEARLA, + THR_COMP_NEWLA, + THR_COMP_NEARGA, + THR_COMP_NEWGA, + + THR_COMP_ZEROLA, + THR_COMP_ZEROGA, + + THR_H_PRED, + THR_V_PRED, + THR_D135_PRED, + THR_D207_PRED, + THR_D153_PRED, + THR_D63_PRED, + THR_D117_PRED, + THR_D45_PRED, +} THR_MODES; + +typedef enum { + THR_LAST, + THR_GOLD, + THR_ALTR, + THR_COMP_LA, + THR_COMP_GA, + THR_INTRA, +} THR_MODES_SUB8X8; + +typedef struct RD_OPT { + // Thresh_mult is used to set a threshold for the rd score. A higher value + // means that we will accept the best mode so far more often. This number + // is used in combination with the current block size, and thresh_freq_fact + // to pick a threshold. + int thresh_mult[MAX_MODES]; + int thresh_mult_sub8x8[MAX_REFS]; + + int threshes[MAX_SEGMENTS][BLOCK_SIZES][MAX_MODES]; + + int64_t prediction_type_threshes[MAX_REF_FRAMES][REFERENCE_MODES]; + + int64_t filter_threshes[MAX_REF_FRAMES][SWITCHABLE_FILTER_CONTEXTS]; + + int RDMULT; + int RDDIV; +} RD_OPT; + +typedef struct RD_COST { + int rate; + int64_t dist; + int64_t rdcost; +} RD_COST; + +// Reset the rate distortion cost values to maximum (invalid) value. +void vp9_rd_cost_reset(RD_COST *rd_cost); +// Initialize the rate distortion cost values to zero. +void vp9_rd_cost_init(RD_COST *rd_cost); + +struct TileInfo; +struct TileDataEnc; +struct VP9_COMP; +struct macroblock; + +int64_t vp9_compute_rd_mult_based_on_qindex(const struct VP9_COMP *cpi, + int qindex); + +int vp9_compute_rd_mult(const struct VP9_COMP *cpi, int qindex); + +void vp9_initialize_rd_consts(struct VP9_COMP *cpi); + +void vp9_initialize_me_consts(struct VP9_COMP *cpi, MACROBLOCK *x, int qindex); + +void vp9_model_rd_from_var_lapndz(unsigned int var, unsigned int n, + unsigned int qstep, int *rate, int64_t *dist); + +void vp9_model_rd_from_var_lapndz_vec(unsigned int var[MAX_MB_PLANE], + unsigned int n_log2[MAX_MB_PLANE], + unsigned int qstep[MAX_MB_PLANE], + int64_t *rate_sum, int64_t *dist_sum); + +int vp9_get_switchable_rate(const struct VP9_COMP *cpi, + const MACROBLOCKD *const xd); + +int vp9_raster_block_offset(BLOCK_SIZE plane_bsize, int raster_block, + int stride); + +int16_t *vp9_raster_block_offset_int16(BLOCK_SIZE plane_bsize, int raster_block, + int16_t *base); + +YV12_BUFFER_CONFIG *vp9_get_scaled_ref_frame(const struct VP9_COMP *cpi, + int ref_frame); + +void vp9_init_me_luts(void); + +void vp9_get_entropy_contexts(BLOCK_SIZE bsize, TX_SIZE tx_size, + const struct macroblockd_plane *pd, + ENTROPY_CONTEXT t_above[16], + ENTROPY_CONTEXT t_left[16]); + +void vp9_set_rd_speed_thresholds(struct VP9_COMP *cpi); + +void vp9_set_rd_speed_thresholds_sub8x8(struct VP9_COMP *cpi); + +void vp9_update_rd_thresh_fact(int (*fact)[MAX_MODES], int rd_thresh, int bsize, + int best_mode_index); + +static INLINE int rd_less_than_thresh(int64_t best_rd, int thresh, + const int *const thresh_fact) { + return best_rd < ((int64_t)thresh * (*thresh_fact) >> 5) || thresh == INT_MAX; +} + +static INLINE void set_error_per_bit(MACROBLOCK *x, int rdmult) { + x->errorperbit = rdmult >> RD_EPB_SHIFT; + x->errorperbit += (x->errorperbit == 0); +} + +void vp9_mv_pred(struct VP9_COMP *cpi, MACROBLOCK *x, uint8_t *ref_y_buffer, + int ref_y_stride, int ref_frame, BLOCK_SIZE block_size); + +void vp9_setup_pred_block(const MACROBLOCKD *xd, + struct buf_2d dst[MAX_MB_PLANE], + const YV12_BUFFER_CONFIG *src, int mi_row, int mi_col, + const struct scale_factors *scale, + const struct scale_factors *scale_uv); + +int vp9_get_intra_cost_penalty(const struct VP9_COMP *const cpi, + BLOCK_SIZE bsize, int qindex, int qdelta); + +unsigned int vp9_get_sby_variance(struct VP9_COMP *cpi, + const struct buf_2d *ref, BLOCK_SIZE bs); +unsigned int vp9_get_sby_perpixel_variance(struct VP9_COMP *cpi, + const struct buf_2d *ref, + BLOCK_SIZE bs); +#if CONFIG_VP9_HIGHBITDEPTH +unsigned int vp9_high_get_sby_variance(struct VP9_COMP *cpi, + const struct buf_2d *ref, BLOCK_SIZE bs, + int bd); +unsigned int vp9_high_get_sby_perpixel_variance(struct VP9_COMP *cpi, + const struct buf_2d *ref, + BLOCK_SIZE bs, int bd); +#endif + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP9_ENCODER_VP9_RD_H_ diff --git a/vp9/encoder/vp9_rdopt.c b/vp9/encoder/vp9_rdopt.c new file mode 100644 index 0000000..2ba6378 --- /dev/null +++ b/vp9/encoder/vp9_rdopt.c @@ -0,0 +1,4420 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include + +#include "./vp9_rtcd.h" +#include "./vpx_dsp_rtcd.h" + +#include "vpx_dsp/vpx_dsp_common.h" +#include "vpx_mem/vpx_mem.h" +#include "vpx_ports/mem.h" +#include "vpx_ports/system_state.h" + +#include "vp9/common/vp9_common.h" +#include "vp9/common/vp9_entropy.h" +#include "vp9/common/vp9_entropymode.h" +#include "vp9/common/vp9_idct.h" +#include "vp9/common/vp9_mvref_common.h" +#include "vp9/common/vp9_pred_common.h" +#include "vp9/common/vp9_quant_common.h" +#include "vp9/common/vp9_reconinter.h" +#include "vp9/common/vp9_reconintra.h" +#include "vp9/common/vp9_scan.h" +#include "vp9/common/vp9_seg_common.h" + +#include "vp9/encoder/vp9_cost.h" +#include "vp9/encoder/vp9_encodemb.h" +#include "vp9/encoder/vp9_encodemv.h" +#include "vp9/encoder/vp9_encoder.h" +#include "vp9/encoder/vp9_mcomp.h" +#include "vp9/encoder/vp9_quantize.h" +#include "vp9/encoder/vp9_ratectrl.h" +#include "vp9/encoder/vp9_rd.h" +#include "vp9/encoder/vp9_rdopt.h" +#include "vp9/encoder/vp9_aq_variance.h" + +#define LAST_FRAME_MODE_MASK \ + ((1 << GOLDEN_FRAME) | (1 << ALTREF_FRAME) | (1 << INTRA_FRAME)) +#define GOLDEN_FRAME_MODE_MASK \ + ((1 << LAST_FRAME) | (1 << ALTREF_FRAME) | (1 << INTRA_FRAME)) +#define ALT_REF_MODE_MASK \ + ((1 << LAST_FRAME) | (1 << GOLDEN_FRAME) | (1 << INTRA_FRAME)) + +#define SECOND_REF_FRAME_MASK ((1 << ALTREF_FRAME) | 0x01) + +#define MIN_EARLY_TERM_INDEX 3 +#define NEW_MV_DISCOUNT_FACTOR 8 + +typedef struct { + PREDICTION_MODE mode; + MV_REFERENCE_FRAME ref_frame[2]; +} MODE_DEFINITION; + +typedef struct { MV_REFERENCE_FRAME ref_frame[2]; } REF_DEFINITION; + +struct rdcost_block_args { + const VP9_COMP *cpi; + MACROBLOCK *x; + ENTROPY_CONTEXT t_above[16]; + ENTROPY_CONTEXT t_left[16]; + int this_rate; + int64_t this_dist; + int64_t this_sse; + int64_t this_rd; + int64_t best_rd; + int exit_early; + int use_fast_coef_costing; + const scan_order *so; + uint8_t skippable; +}; + +#define LAST_NEW_MV_INDEX 6 +static const MODE_DEFINITION vp9_mode_order[MAX_MODES] = { + { NEARESTMV, { LAST_FRAME, NONE } }, + { NEARESTMV, { ALTREF_FRAME, NONE } }, + { NEARESTMV, { GOLDEN_FRAME, NONE } }, + + { DC_PRED, { INTRA_FRAME, NONE } }, + + { NEWMV, { LAST_FRAME, NONE } }, + { NEWMV, { ALTREF_FRAME, NONE } }, + { NEWMV, { GOLDEN_FRAME, NONE } }, + + { NEARMV, { LAST_FRAME, NONE } }, + { NEARMV, { ALTREF_FRAME, NONE } }, + { NEARMV, { GOLDEN_FRAME, NONE } }, + + { ZEROMV, { LAST_FRAME, NONE } }, + { ZEROMV, { GOLDEN_FRAME, NONE } }, + { ZEROMV, { ALTREF_FRAME, NONE } }, + + { NEARESTMV, { LAST_FRAME, ALTREF_FRAME } }, + { NEARESTMV, { GOLDEN_FRAME, ALTREF_FRAME } }, + + { TM_PRED, { INTRA_FRAME, NONE } }, + + { NEARMV, { LAST_FRAME, ALTREF_FRAME } }, + { NEWMV, { LAST_FRAME, ALTREF_FRAME } }, + { NEARMV, { GOLDEN_FRAME, ALTREF_FRAME } }, + { NEWMV, { GOLDEN_FRAME, ALTREF_FRAME } }, + + { ZEROMV, { LAST_FRAME, ALTREF_FRAME } }, + { ZEROMV, { GOLDEN_FRAME, ALTREF_FRAME } }, + + { H_PRED, { INTRA_FRAME, NONE } }, + { V_PRED, { INTRA_FRAME, NONE } }, + { D135_PRED, { INTRA_FRAME, NONE } }, + { D207_PRED, { INTRA_FRAME, NONE } }, + { D153_PRED, { INTRA_FRAME, NONE } }, + { D63_PRED, { INTRA_FRAME, NONE } }, + { D117_PRED, { INTRA_FRAME, NONE } }, + { D45_PRED, { INTRA_FRAME, NONE } }, +}; + +static const REF_DEFINITION vp9_ref_order[MAX_REFS] = { + { { LAST_FRAME, NONE } }, { { GOLDEN_FRAME, NONE } }, + { { ALTREF_FRAME, NONE } }, { { LAST_FRAME, ALTREF_FRAME } }, + { { GOLDEN_FRAME, ALTREF_FRAME } }, { { INTRA_FRAME, NONE } }, +}; + +static void swap_block_ptr(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx, int m, int n, + int min_plane, int max_plane) { + int i; + + for (i = min_plane; i < max_plane; ++i) { + struct macroblock_plane *const p = &x->plane[i]; + struct macroblockd_plane *const pd = &x->e_mbd.plane[i]; + + p->coeff = ctx->coeff_pbuf[i][m]; + p->qcoeff = ctx->qcoeff_pbuf[i][m]; + pd->dqcoeff = ctx->dqcoeff_pbuf[i][m]; + p->eobs = ctx->eobs_pbuf[i][m]; + + ctx->coeff_pbuf[i][m] = ctx->coeff_pbuf[i][n]; + ctx->qcoeff_pbuf[i][m] = ctx->qcoeff_pbuf[i][n]; + ctx->dqcoeff_pbuf[i][m] = ctx->dqcoeff_pbuf[i][n]; + ctx->eobs_pbuf[i][m] = ctx->eobs_pbuf[i][n]; + + ctx->coeff_pbuf[i][n] = p->coeff; + ctx->qcoeff_pbuf[i][n] = p->qcoeff; + ctx->dqcoeff_pbuf[i][n] = pd->dqcoeff; + ctx->eobs_pbuf[i][n] = p->eobs; + } +} + +static void model_rd_for_sb(VP9_COMP *cpi, BLOCK_SIZE bsize, MACROBLOCK *x, + MACROBLOCKD *xd, int *out_rate_sum, + int64_t *out_dist_sum, int *skip_txfm_sb, + int64_t *skip_sse_sb) { + // Note our transform coeffs are 8 times an orthogonal transform. + // Hence quantizer step is also 8 times. To get effective quantizer + // we need to divide by 8 before sending to modeling function. + int i; + int64_t rate_sum = 0; + int64_t dist_sum = 0; + const int ref = xd->mi[0]->ref_frame[0]; + unsigned int sse; + unsigned int var = 0; + int64_t total_sse = 0; + int skip_flag = 1; + const int shift = 6; + int64_t dist; + const int dequant_shift = +#if CONFIG_VP9_HIGHBITDEPTH + (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? xd->bd - 5 : +#endif // CONFIG_VP9_HIGHBITDEPTH + 3; + unsigned int qstep_vec[MAX_MB_PLANE]; + unsigned int nlog2_vec[MAX_MB_PLANE]; + unsigned int sum_sse_vec[MAX_MB_PLANE]; + int any_zero_sum_sse = 0; + + x->pred_sse[ref] = 0; + + for (i = 0; i < MAX_MB_PLANE; ++i) { + struct macroblock_plane *const p = &x->plane[i]; + struct macroblockd_plane *const pd = &xd->plane[i]; + const BLOCK_SIZE bs = get_plane_block_size(bsize, pd); + const TX_SIZE max_tx_size = max_txsize_lookup[bs]; + const BLOCK_SIZE unit_size = txsize_to_bsize[max_tx_size]; + const int64_t dc_thr = p->quant_thred[0] >> shift; + const int64_t ac_thr = p->quant_thred[1] >> shift; + unsigned int sum_sse = 0; + // The low thresholds are used to measure if the prediction errors are + // low enough so that we can skip the mode search. + const int64_t low_dc_thr = VPXMIN(50, dc_thr >> 2); + const int64_t low_ac_thr = VPXMIN(80, ac_thr >> 2); + int bw = 1 << (b_width_log2_lookup[bs] - b_width_log2_lookup[unit_size]); + int bh = 1 << (b_height_log2_lookup[bs] - b_width_log2_lookup[unit_size]); + int idx, idy; + int lw = b_width_log2_lookup[unit_size] + 2; + int lh = b_height_log2_lookup[unit_size] + 2; + + for (idy = 0; idy < bh; ++idy) { + for (idx = 0; idx < bw; ++idx) { + uint8_t *src = p->src.buf + (idy * p->src.stride << lh) + (idx << lw); + uint8_t *dst = pd->dst.buf + (idy * pd->dst.stride << lh) + (idx << lh); + int block_idx = (idy << 1) + idx; + int low_err_skip = 0; + + var = cpi->fn_ptr[unit_size].vf(src, p->src.stride, dst, pd->dst.stride, + &sse); + x->bsse[(i << 2) + block_idx] = sse; + sum_sse += sse; + + x->skip_txfm[(i << 2) + block_idx] = SKIP_TXFM_NONE; + if (!x->select_tx_size) { + // Check if all ac coefficients can be quantized to zero. + if (var < ac_thr || var == 0) { + x->skip_txfm[(i << 2) + block_idx] = SKIP_TXFM_AC_ONLY; + + // Check if dc coefficient can be quantized to zero. + if (sse - var < dc_thr || sse == var) { + x->skip_txfm[(i << 2) + block_idx] = SKIP_TXFM_AC_DC; + + if (!sse || (var < low_ac_thr && sse - var < low_dc_thr)) + low_err_skip = 1; + } + } + } + + if (skip_flag && !low_err_skip) skip_flag = 0; + + if (i == 0) x->pred_sse[ref] += sse; + } + } + + total_sse += sum_sse; + sum_sse_vec[i] = sum_sse; + any_zero_sum_sse = any_zero_sum_sse || (sum_sse == 0); + qstep_vec[i] = pd->dequant[1] >> dequant_shift; + nlog2_vec[i] = num_pels_log2_lookup[bs]; + } + + // Fast approximate the modelling function. + if (cpi->sf.simple_model_rd_from_var) { + for (i = 0; i < MAX_MB_PLANE; ++i) { + int64_t rate; + const int64_t square_error = sum_sse_vec[i]; + int quantizer = qstep_vec[i]; + + if (quantizer < 120) + rate = (square_error * (280 - quantizer)) >> (16 - VP9_PROB_COST_SHIFT); + else + rate = 0; + dist = (square_error * quantizer) >> 8; + rate_sum += rate; + dist_sum += dist; + } + } else { + if (any_zero_sum_sse) { + for (i = 0; i < MAX_MB_PLANE; ++i) { + int rate; + vp9_model_rd_from_var_lapndz(sum_sse_vec[i], nlog2_vec[i], qstep_vec[i], + &rate, &dist); + rate_sum += rate; + dist_sum += dist; + } + } else { + vp9_model_rd_from_var_lapndz_vec(sum_sse_vec, nlog2_vec, qstep_vec, + &rate_sum, &dist_sum); + } + } + + *skip_txfm_sb = skip_flag; + *skip_sse_sb = total_sse << 4; + *out_rate_sum = (int)rate_sum; + *out_dist_sum = dist_sum << 4; +} + +#if CONFIG_VP9_HIGHBITDEPTH +int64_t vp9_highbd_block_error_c(const tran_low_t *coeff, + const tran_low_t *dqcoeff, intptr_t block_size, + int64_t *ssz, int bd) { + int i; + int64_t error = 0, sqcoeff = 0; + int shift = 2 * (bd - 8); + int rounding = shift > 0 ? 1 << (shift - 1) : 0; + + for (i = 0; i < block_size; i++) { + const int64_t diff = coeff[i] - dqcoeff[i]; + error += diff * diff; + sqcoeff += (int64_t)coeff[i] * (int64_t)coeff[i]; + } + assert(error >= 0 && sqcoeff >= 0); + error = (error + rounding) >> shift; + sqcoeff = (sqcoeff + rounding) >> shift; + + *ssz = sqcoeff; + return error; +} + +static int64_t vp9_highbd_block_error_dispatch(const tran_low_t *coeff, + const tran_low_t *dqcoeff, + intptr_t block_size, + int64_t *ssz, int bd) { + if (bd == 8) { + return vp9_block_error(coeff, dqcoeff, block_size, ssz); + } else { + return vp9_highbd_block_error(coeff, dqcoeff, block_size, ssz, bd); + } +} +#endif // CONFIG_VP9_HIGHBITDEPTH + +int64_t vp9_block_error_c(const tran_low_t *coeff, const tran_low_t *dqcoeff, + intptr_t block_size, int64_t *ssz) { + int i; + int64_t error = 0, sqcoeff = 0; + + for (i = 0; i < block_size; i++) { + const int diff = coeff[i] - dqcoeff[i]; + error += diff * diff; + sqcoeff += coeff[i] * coeff[i]; + } + + *ssz = sqcoeff; + return error; +} + +int64_t vp9_block_error_fp_c(const tran_low_t *coeff, const tran_low_t *dqcoeff, + int block_size) { + int i; + int64_t error = 0; + + for (i = 0; i < block_size; i++) { + const int diff = coeff[i] - dqcoeff[i]; + error += diff * diff; + } + + return error; +} + +/* The trailing '0' is a terminator which is used inside cost_coeffs() to + * decide whether to include cost of a trailing EOB node or not (i.e. we + * can skip this if the last coefficient in this transform block, e.g. the + * 16th coefficient in a 4x4 block or the 64th coefficient in a 8x8 block, + * were non-zero). */ +static const int16_t band_counts[TX_SIZES][8] = { + { 1, 2, 3, 4, 3, 16 - 13, 0 }, + { 1, 2, 3, 4, 11, 64 - 21, 0 }, + { 1, 2, 3, 4, 11, 256 - 21, 0 }, + { 1, 2, 3, 4, 11, 1024 - 21, 0 }, +}; +static int cost_coeffs(MACROBLOCK *x, int plane, int block, TX_SIZE tx_size, + int pt, const int16_t *scan, const int16_t *nb, + int use_fast_coef_costing) { + MACROBLOCKD *const xd = &x->e_mbd; + MODE_INFO *mi = xd->mi[0]; + const struct macroblock_plane *p = &x->plane[plane]; + const PLANE_TYPE type = get_plane_type(plane); + const int16_t *band_count = &band_counts[tx_size][1]; + const int eob = p->eobs[block]; + const tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block); + unsigned int(*token_costs)[2][COEFF_CONTEXTS][ENTROPY_TOKENS] = + x->token_costs[tx_size][type][is_inter_block(mi)]; + uint8_t token_cache[32 * 32]; + int cost; +#if CONFIG_VP9_HIGHBITDEPTH + const uint16_t *cat6_high_cost = vp9_get_high_cost_table(xd->bd); +#else + const uint16_t *cat6_high_cost = vp9_get_high_cost_table(8); +#endif + + // Check for consistency of tx_size with mode info + assert(type == PLANE_TYPE_Y + ? mi->tx_size == tx_size + : get_uv_tx_size(mi, &xd->plane[plane]) == tx_size); + + if (eob == 0) { + // single eob token + cost = token_costs[0][0][pt][EOB_TOKEN]; + } else { + if (use_fast_coef_costing) { + int band_left = *band_count++; + int c; + + // dc token + int v = qcoeff[0]; + int16_t prev_t; + cost = vp9_get_token_cost(v, &prev_t, cat6_high_cost); + cost += (*token_costs)[0][pt][prev_t]; + + token_cache[0] = vp9_pt_energy_class[prev_t]; + ++token_costs; + + // ac tokens + for (c = 1; c < eob; c++) { + const int rc = scan[c]; + int16_t t; + + v = qcoeff[rc]; + cost += vp9_get_token_cost(v, &t, cat6_high_cost); + cost += (*token_costs)[!prev_t][!prev_t][t]; + prev_t = t; + if (!--band_left) { + band_left = *band_count++; + ++token_costs; + } + } + + // eob token + if (band_left) cost += (*token_costs)[0][!prev_t][EOB_TOKEN]; + + } else { // !use_fast_coef_costing + int band_left = *band_count++; + int c; + + // dc token + int v = qcoeff[0]; + int16_t tok; + unsigned int(*tok_cost_ptr)[COEFF_CONTEXTS][ENTROPY_TOKENS]; + cost = vp9_get_token_cost(v, &tok, cat6_high_cost); + cost += (*token_costs)[0][pt][tok]; + + token_cache[0] = vp9_pt_energy_class[tok]; + ++token_costs; + + tok_cost_ptr = &((*token_costs)[!tok]); + + // ac tokens + for (c = 1; c < eob; c++) { + const int rc = scan[c]; + + v = qcoeff[rc]; + cost += vp9_get_token_cost(v, &tok, cat6_high_cost); + pt = get_coef_context(nb, token_cache, c); + cost += (*tok_cost_ptr)[pt][tok]; + token_cache[rc] = vp9_pt_energy_class[tok]; + if (!--band_left) { + band_left = *band_count++; + ++token_costs; + } + tok_cost_ptr = &((*token_costs)[!tok]); + } + + // eob token + if (band_left) { + pt = get_coef_context(nb, token_cache, c); + cost += (*token_costs)[0][pt][EOB_TOKEN]; + } + } + } + + return cost; +} + +static INLINE int num_4x4_to_edge(int plane_4x4_dim, int mb_to_edge_dim, + int subsampling_dim, int blk_dim) { + return plane_4x4_dim + (mb_to_edge_dim >> (5 + subsampling_dim)) - blk_dim; +} + +// Compute the pixel domain sum square error on all visible 4x4s in the +// transform block. +static unsigned pixel_sse(const VP9_COMP *const cpi, const MACROBLOCKD *xd, + const struct macroblockd_plane *const pd, + const uint8_t *src, const int src_stride, + const uint8_t *dst, const int dst_stride, int blk_row, + int blk_col, const BLOCK_SIZE plane_bsize, + const BLOCK_SIZE tx_bsize) { + unsigned int sse = 0; + const int plane_4x4_w = num_4x4_blocks_wide_lookup[plane_bsize]; + const int plane_4x4_h = num_4x4_blocks_high_lookup[plane_bsize]; + const int tx_4x4_w = num_4x4_blocks_wide_lookup[tx_bsize]; + const int tx_4x4_h = num_4x4_blocks_high_lookup[tx_bsize]; + int b4x4s_to_right_edge = num_4x4_to_edge(plane_4x4_w, xd->mb_to_right_edge, + pd->subsampling_x, blk_col); + int b4x4s_to_bottom_edge = num_4x4_to_edge(plane_4x4_h, xd->mb_to_bottom_edge, + pd->subsampling_y, blk_row); + if (tx_bsize == BLOCK_4X4 || + (b4x4s_to_right_edge >= tx_4x4_w && b4x4s_to_bottom_edge >= tx_4x4_h)) { + cpi->fn_ptr[tx_bsize].vf(src, src_stride, dst, dst_stride, &sse); + } else { + const vpx_variance_fn_t vf_4x4 = cpi->fn_ptr[BLOCK_4X4].vf; + int r, c; + unsigned this_sse = 0; + int max_r = VPXMIN(b4x4s_to_bottom_edge, tx_4x4_h); + int max_c = VPXMIN(b4x4s_to_right_edge, tx_4x4_w); + sse = 0; + // if we are in the unrestricted motion border. + for (r = 0; r < max_r; ++r) { + // Skip visiting the sub blocks that are wholly within the UMV. + for (c = 0; c < max_c; ++c) { + vf_4x4(src + r * src_stride * 4 + c * 4, src_stride, + dst + r * dst_stride * 4 + c * 4, dst_stride, &this_sse); + sse += this_sse; + } + } + } + return sse; +} + +// Compute the squares sum squares on all visible 4x4s in the transform block. +static int64_t sum_squares_visible(const MACROBLOCKD *xd, + const struct macroblockd_plane *const pd, + const int16_t *diff, const int diff_stride, + int blk_row, int blk_col, + const BLOCK_SIZE plane_bsize, + const BLOCK_SIZE tx_bsize) { + int64_t sse; + const int plane_4x4_w = num_4x4_blocks_wide_lookup[plane_bsize]; + const int plane_4x4_h = num_4x4_blocks_high_lookup[plane_bsize]; + const int tx_4x4_w = num_4x4_blocks_wide_lookup[tx_bsize]; + const int tx_4x4_h = num_4x4_blocks_high_lookup[tx_bsize]; + int b4x4s_to_right_edge = num_4x4_to_edge(plane_4x4_w, xd->mb_to_right_edge, + pd->subsampling_x, blk_col); + int b4x4s_to_bottom_edge = num_4x4_to_edge(plane_4x4_h, xd->mb_to_bottom_edge, + pd->subsampling_y, blk_row); + if (tx_bsize == BLOCK_4X4 || + (b4x4s_to_right_edge >= tx_4x4_w && b4x4s_to_bottom_edge >= tx_4x4_h)) { + assert(tx_4x4_w == tx_4x4_h); + sse = (int64_t)vpx_sum_squares_2d_i16(diff, diff_stride, tx_4x4_w << 2); + } else { + int r, c; + int max_r = VPXMIN(b4x4s_to_bottom_edge, tx_4x4_h); + int max_c = VPXMIN(b4x4s_to_right_edge, tx_4x4_w); + sse = 0; + // if we are in the unrestricted motion border. + for (r = 0; r < max_r; ++r) { + // Skip visiting the sub blocks that are wholly within the UMV. + for (c = 0; c < max_c; ++c) { + sse += (int64_t)vpx_sum_squares_2d_i16( + diff + r * diff_stride * 4 + c * 4, diff_stride, 4); + } + } + } + return sse; +} + +static void dist_block(const VP9_COMP *cpi, MACROBLOCK *x, int plane, + BLOCK_SIZE plane_bsize, int block, int blk_row, + int blk_col, TX_SIZE tx_size, int64_t *out_dist, + int64_t *out_sse) { + MACROBLOCKD *const xd = &x->e_mbd; + const struct macroblock_plane *const p = &x->plane[plane]; + const struct macroblockd_plane *const pd = &xd->plane[plane]; + + if (x->block_tx_domain) { + const int ss_txfrm_size = tx_size << 1; + int64_t this_sse; + const int shift = tx_size == TX_32X32 ? 0 : 2; + const tran_low_t *const coeff = BLOCK_OFFSET(p->coeff, block); + const tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); +#if CONFIG_VP9_HIGHBITDEPTH + const int bd = (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? xd->bd : 8; + *out_dist = vp9_highbd_block_error_dispatch( + coeff, dqcoeff, 16 << ss_txfrm_size, &this_sse, bd) >> + shift; +#else + *out_dist = + vp9_block_error(coeff, dqcoeff, 16 << ss_txfrm_size, &this_sse) >> + shift; +#endif // CONFIG_VP9_HIGHBITDEPTH + *out_sse = this_sse >> shift; + + if (x->skip_encode && !is_inter_block(xd->mi[0])) { + // TODO(jingning): tune the model to better capture the distortion. + const int64_t p = + (pd->dequant[1] * pd->dequant[1] * (1 << ss_txfrm_size)) >> +#if CONFIG_VP9_HIGHBITDEPTH + (shift + 2 + (bd - 8) * 2); +#else + (shift + 2); +#endif // CONFIG_VP9_HIGHBITDEPTH + *out_dist += (p >> 4); + *out_sse += p; + } + } else { + const BLOCK_SIZE tx_bsize = txsize_to_bsize[tx_size]; + const int bs = 4 * num_4x4_blocks_wide_lookup[tx_bsize]; + const int src_stride = p->src.stride; + const int dst_stride = pd->dst.stride; + const int src_idx = 4 * (blk_row * src_stride + blk_col); + const int dst_idx = 4 * (blk_row * dst_stride + blk_col); + const uint8_t *src = &p->src.buf[src_idx]; + const uint8_t *dst = &pd->dst.buf[dst_idx]; + const tran_low_t *dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); + const uint16_t *eob = &p->eobs[block]; + unsigned int tmp; + + tmp = pixel_sse(cpi, xd, pd, src, src_stride, dst, dst_stride, blk_row, + blk_col, plane_bsize, tx_bsize); + *out_sse = (int64_t)tmp * 16; + + if (*eob) { +#if CONFIG_VP9_HIGHBITDEPTH + DECLARE_ALIGNED(16, uint16_t, recon16[1024]); + uint8_t *recon = (uint8_t *)recon16; +#else + DECLARE_ALIGNED(16, uint8_t, recon[1024]); +#endif // CONFIG_VP9_HIGHBITDEPTH + +#if CONFIG_VP9_HIGHBITDEPTH + if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { + vpx_highbd_convolve_copy(CONVERT_TO_SHORTPTR(dst), dst_stride, recon16, + 32, NULL, 0, 0, 0, 0, bs, bs, xd->bd); + if (xd->lossless) { + vp9_highbd_iwht4x4_add(dqcoeff, recon16, 32, *eob, xd->bd); + } else { + switch (tx_size) { + case TX_4X4: + vp9_highbd_idct4x4_add(dqcoeff, recon16, 32, *eob, xd->bd); + break; + case TX_8X8: + vp9_highbd_idct8x8_add(dqcoeff, recon16, 32, *eob, xd->bd); + break; + case TX_16X16: + vp9_highbd_idct16x16_add(dqcoeff, recon16, 32, *eob, xd->bd); + break; + case TX_32X32: + vp9_highbd_idct32x32_add(dqcoeff, recon16, 32, *eob, xd->bd); + break; + default: assert(0 && "Invalid transform size"); + } + } + recon = CONVERT_TO_BYTEPTR(recon16); + } else { +#endif // CONFIG_VP9_HIGHBITDEPTH + vpx_convolve_copy(dst, dst_stride, recon, 32, NULL, 0, 0, 0, 0, bs, bs); + switch (tx_size) { + case TX_32X32: vp9_idct32x32_add(dqcoeff, recon, 32, *eob); break; + case TX_16X16: vp9_idct16x16_add(dqcoeff, recon, 32, *eob); break; + case TX_8X8: vp9_idct8x8_add(dqcoeff, recon, 32, *eob); break; + case TX_4X4: + // this is like vp9_short_idct4x4 but has a special case around + // eob<=1, which is significant (not just an optimization) for + // the lossless case. + x->inv_txfm_add(dqcoeff, recon, 32, *eob); + break; + default: assert(0 && "Invalid transform size"); break; + } +#if CONFIG_VP9_HIGHBITDEPTH + } +#endif // CONFIG_VP9_HIGHBITDEPTH + + tmp = pixel_sse(cpi, xd, pd, src, src_stride, recon, 32, blk_row, blk_col, + plane_bsize, tx_bsize); + } + + *out_dist = (int64_t)tmp * 16; + } +} + +static int rate_block(int plane, int block, TX_SIZE tx_size, int coeff_ctx, + struct rdcost_block_args *args) { + return cost_coeffs(args->x, plane, block, tx_size, coeff_ctx, args->so->scan, + args->so->neighbors, args->use_fast_coef_costing); +} + +static void block_rd_txfm(int plane, int block, int blk_row, int blk_col, + BLOCK_SIZE plane_bsize, TX_SIZE tx_size, void *arg) { + struct rdcost_block_args *args = arg; + MACROBLOCK *const x = args->x; + MACROBLOCKD *const xd = &x->e_mbd; + MODE_INFO *const mi = xd->mi[0]; + int64_t rd1, rd2, rd; + int rate; + int64_t dist; + int64_t sse; + const int coeff_ctx = + combine_entropy_contexts(args->t_left[blk_row], args->t_above[blk_col]); + + if (args->exit_early) return; + + if (!is_inter_block(mi)) { + struct encode_b_args intra_arg = { x, x->block_qcoeff_opt, args->t_above, + args->t_left, &mi->skip }; + vp9_encode_block_intra(plane, block, blk_row, blk_col, plane_bsize, tx_size, + &intra_arg); + if (x->block_tx_domain) { + dist_block(args->cpi, x, plane, plane_bsize, block, blk_row, blk_col, + tx_size, &dist, &sse); + } else { + const BLOCK_SIZE tx_bsize = txsize_to_bsize[tx_size]; + const struct macroblock_plane *const p = &x->plane[plane]; + const struct macroblockd_plane *const pd = &xd->plane[plane]; + const int src_stride = p->src.stride; + const int dst_stride = pd->dst.stride; + const int diff_stride = 4 * num_4x4_blocks_wide_lookup[plane_bsize]; + const uint8_t *src = &p->src.buf[4 * (blk_row * src_stride + blk_col)]; + const uint8_t *dst = &pd->dst.buf[4 * (blk_row * dst_stride + blk_col)]; + const int16_t *diff = &p->src_diff[4 * (blk_row * diff_stride + blk_col)]; + unsigned int tmp; + sse = sum_squares_visible(xd, pd, diff, diff_stride, blk_row, blk_col, + plane_bsize, tx_bsize); +#if CONFIG_VP9_HIGHBITDEPTH + if ((xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) && (xd->bd > 8)) + sse = ROUND64_POWER_OF_TWO(sse, (xd->bd - 8) * 2); +#endif // CONFIG_VP9_HIGHBITDEPTH + sse = sse * 16; + tmp = pixel_sse(args->cpi, xd, pd, src, src_stride, dst, dst_stride, + blk_row, blk_col, plane_bsize, tx_bsize); + dist = (int64_t)tmp * 16; + } + } else if (max_txsize_lookup[plane_bsize] == tx_size) { + if (x->skip_txfm[(plane << 2) + (block >> (tx_size << 1))] == + SKIP_TXFM_NONE) { + // full forward transform and quantization + vp9_xform_quant(x, plane, block, blk_row, blk_col, plane_bsize, tx_size); + if (x->block_qcoeff_opt) + vp9_optimize_b(x, plane, block, tx_size, coeff_ctx); + dist_block(args->cpi, x, plane, plane_bsize, block, blk_row, blk_col, + tx_size, &dist, &sse); + } else if (x->skip_txfm[(plane << 2) + (block >> (tx_size << 1))] == + SKIP_TXFM_AC_ONLY) { + // compute DC coefficient + tran_low_t *const coeff = BLOCK_OFFSET(x->plane[plane].coeff, block); + tran_low_t *const dqcoeff = BLOCK_OFFSET(xd->plane[plane].dqcoeff, block); + vp9_xform_quant_dc(x, plane, block, blk_row, blk_col, plane_bsize, + tx_size); + sse = x->bsse[(plane << 2) + (block >> (tx_size << 1))] << 4; + dist = sse; + if (x->plane[plane].eobs[block]) { + const int64_t orig_sse = (int64_t)coeff[0] * coeff[0]; + const int64_t resd_sse = coeff[0] - dqcoeff[0]; + int64_t dc_correct = orig_sse - resd_sse * resd_sse; +#if CONFIG_VP9_HIGHBITDEPTH + dc_correct >>= ((xd->bd - 8) * 2); +#endif + if (tx_size != TX_32X32) dc_correct >>= 2; + + dist = VPXMAX(0, sse - dc_correct); + } + } else { + // SKIP_TXFM_AC_DC + // skip forward transform. Because this is handled here, the quantization + // does not need to do it. + x->plane[plane].eobs[block] = 0; + sse = x->bsse[(plane << 2) + (block >> (tx_size << 1))] << 4; + dist = sse; + } + } else { + // full forward transform and quantization + vp9_xform_quant(x, plane, block, blk_row, blk_col, plane_bsize, tx_size); + if (x->block_qcoeff_opt) + vp9_optimize_b(x, plane, block, tx_size, coeff_ctx); + dist_block(args->cpi, x, plane, plane_bsize, block, blk_row, blk_col, + tx_size, &dist, &sse); + } + + rd = RDCOST(x->rdmult, x->rddiv, 0, dist); + if (args->this_rd + rd > args->best_rd) { + args->exit_early = 1; + return; + } + + rate = rate_block(plane, block, tx_size, coeff_ctx, args); + args->t_above[blk_col] = (x->plane[plane].eobs[block] > 0) ? 1 : 0; + args->t_left[blk_row] = (x->plane[plane].eobs[block] > 0) ? 1 : 0; + rd1 = RDCOST(x->rdmult, x->rddiv, rate, dist); + rd2 = RDCOST(x->rdmult, x->rddiv, 0, sse); + + // TODO(jingning): temporarily enabled only for luma component + rd = VPXMIN(rd1, rd2); + if (plane == 0) { + x->zcoeff_blk[tx_size][block] = + !x->plane[plane].eobs[block] || (rd1 > rd2 && !xd->lossless); + x->sum_y_eobs[tx_size] += x->plane[plane].eobs[block]; + } + + args->this_rate += rate; + args->this_dist += dist; + args->this_sse += sse; + args->this_rd += rd; + + if (args->this_rd > args->best_rd) { + args->exit_early = 1; + return; + } + + args->skippable &= !x->plane[plane].eobs[block]; +} + +static void txfm_rd_in_plane(const VP9_COMP *cpi, MACROBLOCK *x, int *rate, + int64_t *distortion, int *skippable, int64_t *sse, + int64_t ref_best_rd, int plane, BLOCK_SIZE bsize, + TX_SIZE tx_size, int use_fast_coef_casting) { + MACROBLOCKD *const xd = &x->e_mbd; + const struct macroblockd_plane *const pd = &xd->plane[plane]; + struct rdcost_block_args args; + vp9_zero(args); + args.cpi = cpi; + args.x = x; + args.best_rd = ref_best_rd; + args.use_fast_coef_costing = use_fast_coef_casting; + args.skippable = 1; + + if (plane == 0) xd->mi[0]->tx_size = tx_size; + + vp9_get_entropy_contexts(bsize, tx_size, pd, args.t_above, args.t_left); + + args.so = get_scan(xd, tx_size, get_plane_type(plane), 0); + + vp9_foreach_transformed_block_in_plane(xd, bsize, plane, block_rd_txfm, + &args); + if (args.exit_early) { + *rate = INT_MAX; + *distortion = INT64_MAX; + *sse = INT64_MAX; + *skippable = 0; + } else { + *distortion = args.this_dist; + *rate = args.this_rate; + *sse = args.this_sse; + *skippable = args.skippable; + } +} + +static void choose_largest_tx_size(VP9_COMP *cpi, MACROBLOCK *x, int *rate, + int64_t *distortion, int *skip, int64_t *sse, + int64_t ref_best_rd, BLOCK_SIZE bs) { + const TX_SIZE max_tx_size = max_txsize_lookup[bs]; + VP9_COMMON *const cm = &cpi->common; + const TX_SIZE largest_tx_size = tx_mode_to_biggest_tx_size[cm->tx_mode]; + MACROBLOCKD *const xd = &x->e_mbd; + MODE_INFO *const mi = xd->mi[0]; + + mi->tx_size = VPXMIN(max_tx_size, largest_tx_size); + + txfm_rd_in_plane(cpi, x, rate, distortion, skip, sse, ref_best_rd, 0, bs, + mi->tx_size, cpi->sf.use_fast_coef_costing); +} + +static void choose_tx_size_from_rd(VP9_COMP *cpi, MACROBLOCK *x, int *rate, + int64_t *distortion, int *skip, + int64_t *psse, int64_t ref_best_rd, + BLOCK_SIZE bs) { + const TX_SIZE max_tx_size = max_txsize_lookup[bs]; + VP9_COMMON *const cm = &cpi->common; + MACROBLOCKD *const xd = &x->e_mbd; + MODE_INFO *const mi = xd->mi[0]; + vpx_prob skip_prob = vp9_get_skip_prob(cm, xd); + int r[TX_SIZES][2], s[TX_SIZES]; + int64_t d[TX_SIZES], sse[TX_SIZES]; + int64_t rd[TX_SIZES][2] = { { INT64_MAX, INT64_MAX }, + { INT64_MAX, INT64_MAX }, + { INT64_MAX, INT64_MAX }, + { INT64_MAX, INT64_MAX } }; + int n, m; + int s0, s1; + int64_t best_rd = INT64_MAX; + TX_SIZE best_tx = max_tx_size; + int start_tx, end_tx; + + const vpx_prob *tx_probs = get_tx_probs2(max_tx_size, xd, &cm->fc->tx_probs); + assert(skip_prob > 0); + s0 = vp9_cost_bit(skip_prob, 0); + s1 = vp9_cost_bit(skip_prob, 1); + + if (cm->tx_mode == TX_MODE_SELECT) { + start_tx = max_tx_size; + end_tx = 0; + } else { + TX_SIZE chosen_tx_size = + VPXMIN(max_tx_size, tx_mode_to_biggest_tx_size[cm->tx_mode]); + start_tx = chosen_tx_size; + end_tx = chosen_tx_size; + } + + for (n = start_tx; n >= end_tx; n--) { + int r_tx_size = 0; + for (m = 0; m <= n - (n == (int)max_tx_size); m++) { + if (m == n) + r_tx_size += vp9_cost_zero(tx_probs[m]); + else + r_tx_size += vp9_cost_one(tx_probs[m]); + } + txfm_rd_in_plane(cpi, x, &r[n][0], &d[n], &s[n], &sse[n], ref_best_rd, 0, + bs, n, cpi->sf.use_fast_coef_costing); + r[n][1] = r[n][0]; + if (r[n][0] < INT_MAX) { + r[n][1] += r_tx_size; + } + if (d[n] == INT64_MAX || r[n][0] == INT_MAX) { + rd[n][0] = rd[n][1] = INT64_MAX; + } else if (s[n]) { + if (is_inter_block(mi)) { + rd[n][0] = rd[n][1] = RDCOST(x->rdmult, x->rddiv, s1, sse[n]); + r[n][1] -= r_tx_size; + } else { + rd[n][0] = RDCOST(x->rdmult, x->rddiv, s1, sse[n]); + rd[n][1] = RDCOST(x->rdmult, x->rddiv, s1 + r_tx_size, sse[n]); + } + } else { + rd[n][0] = RDCOST(x->rdmult, x->rddiv, r[n][0] + s0, d[n]); + rd[n][1] = RDCOST(x->rdmult, x->rddiv, r[n][1] + s0, d[n]); + } + + if (is_inter_block(mi) && !xd->lossless && !s[n] && sse[n] != INT64_MAX) { + rd[n][0] = VPXMIN(rd[n][0], RDCOST(x->rdmult, x->rddiv, s1, sse[n])); + rd[n][1] = VPXMIN(rd[n][1], RDCOST(x->rdmult, x->rddiv, s1, sse[n])); + } + + // Early termination in transform size search. + if (cpi->sf.tx_size_search_breakout && + (rd[n][1] == INT64_MAX || + (n < (int)max_tx_size && rd[n][1] > rd[n + 1][1]) || s[n] == 1)) + break; + + if (rd[n][1] < best_rd) { + best_tx = n; + best_rd = rd[n][1]; + } + } + mi->tx_size = best_tx; + + *distortion = d[mi->tx_size]; + *rate = r[mi->tx_size][cm->tx_mode == TX_MODE_SELECT]; + *skip = s[mi->tx_size]; + *psse = sse[mi->tx_size]; +} + +static void super_block_yrd(VP9_COMP *cpi, MACROBLOCK *x, int *rate, + int64_t *distortion, int *skip, int64_t *psse, + BLOCK_SIZE bs, int64_t ref_best_rd) { + MACROBLOCKD *xd = &x->e_mbd; + int64_t sse; + int64_t *ret_sse = psse ? psse : &sse; + + assert(bs == xd->mi[0]->sb_type); + + if (cpi->sf.tx_size_search_method == USE_LARGESTALL || xd->lossless) { + choose_largest_tx_size(cpi, x, rate, distortion, skip, ret_sse, ref_best_rd, + bs); + } else { + choose_tx_size_from_rd(cpi, x, rate, distortion, skip, ret_sse, ref_best_rd, + bs); + } +} + +static int conditional_skipintra(PREDICTION_MODE mode, + PREDICTION_MODE best_intra_mode) { + if (mode == D117_PRED && best_intra_mode != V_PRED && + best_intra_mode != D135_PRED) + return 1; + if (mode == D63_PRED && best_intra_mode != V_PRED && + best_intra_mode != D45_PRED) + return 1; + if (mode == D207_PRED && best_intra_mode != H_PRED && + best_intra_mode != D45_PRED) + return 1; + if (mode == D153_PRED && best_intra_mode != H_PRED && + best_intra_mode != D135_PRED) + return 1; + return 0; +} + +static int64_t rd_pick_intra4x4block(VP9_COMP *cpi, MACROBLOCK *x, int row, + int col, PREDICTION_MODE *best_mode, + const int *bmode_costs, ENTROPY_CONTEXT *a, + ENTROPY_CONTEXT *l, int *bestrate, + int *bestratey, int64_t *bestdistortion, + BLOCK_SIZE bsize, int64_t rd_thresh) { + PREDICTION_MODE mode; + MACROBLOCKD *const xd = &x->e_mbd; + int64_t best_rd = rd_thresh; + struct macroblock_plane *p = &x->plane[0]; + struct macroblockd_plane *pd = &xd->plane[0]; + const int src_stride = p->src.stride; + const int dst_stride = pd->dst.stride; + const uint8_t *src_init = &p->src.buf[row * 4 * src_stride + col * 4]; + uint8_t *dst_init = &pd->dst.buf[row * 4 * src_stride + col * 4]; + ENTROPY_CONTEXT ta[2], tempa[2]; + ENTROPY_CONTEXT tl[2], templ[2]; + const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize]; + const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize]; + int idx, idy; + uint8_t best_dst[8 * 8]; +#if CONFIG_VP9_HIGHBITDEPTH + uint16_t best_dst16[8 * 8]; +#endif + memcpy(ta, a, num_4x4_blocks_wide * sizeof(a[0])); + memcpy(tl, l, num_4x4_blocks_high * sizeof(l[0])); + + xd->mi[0]->tx_size = TX_4X4; + +#if CONFIG_VP9_HIGHBITDEPTH + if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { + for (mode = DC_PRED; mode <= TM_PRED; ++mode) { + int64_t this_rd; + int ratey = 0; + int64_t distortion = 0; + int rate = bmode_costs[mode]; + + if (!(cpi->sf.intra_y_mode_mask[TX_4X4] & (1 << mode))) continue; + + // Only do the oblique modes if the best so far is + // one of the neighboring directional modes + if (cpi->sf.mode_search_skip_flags & FLAG_SKIP_INTRA_DIRMISMATCH) { + if (conditional_skipintra(mode, *best_mode)) continue; + } + + memcpy(tempa, ta, num_4x4_blocks_wide * sizeof(ta[0])); + memcpy(templ, tl, num_4x4_blocks_high * sizeof(tl[0])); + + for (idy = 0; idy < num_4x4_blocks_high; ++idy) { + for (idx = 0; idx < num_4x4_blocks_wide; ++idx) { + const int block = (row + idy) * 2 + (col + idx); + const uint8_t *const src = &src_init[idx * 4 + idy * 4 * src_stride]; + uint8_t *const dst = &dst_init[idx * 4 + idy * 4 * dst_stride]; + uint16_t *const dst16 = CONVERT_TO_SHORTPTR(dst); + int16_t *const src_diff = + vp9_raster_block_offset_int16(BLOCK_8X8, block, p->src_diff); + tran_low_t *const coeff = BLOCK_OFFSET(x->plane[0].coeff, block); + xd->mi[0]->bmi[block].as_mode = mode; + vp9_predict_intra_block(xd, 1, TX_4X4, mode, + x->skip_encode ? src : dst, + x->skip_encode ? src_stride : dst_stride, dst, + dst_stride, col + idx, row + idy, 0); + vpx_highbd_subtract_block(4, 4, src_diff, 8, src, src_stride, dst, + dst_stride, xd->bd); + if (xd->lossless) { + const scan_order *so = &vp9_default_scan_orders[TX_4X4]; + const int coeff_ctx = + combine_entropy_contexts(tempa[idx], templ[idy]); + vp9_highbd_fwht4x4(src_diff, coeff, 8); + vp9_regular_quantize_b_4x4(x, 0, block, so->scan, so->iscan); + ratey += cost_coeffs(x, 0, block, TX_4X4, coeff_ctx, so->scan, + so->neighbors, cpi->sf.use_fast_coef_costing); + tempa[idx] = templ[idy] = (x->plane[0].eobs[block] > 0 ? 1 : 0); + if (RDCOST(x->rdmult, x->rddiv, ratey, distortion) >= best_rd) + goto next_highbd; + vp9_highbd_iwht4x4_add(BLOCK_OFFSET(pd->dqcoeff, block), dst16, + dst_stride, p->eobs[block], xd->bd); + } else { + int64_t unused; + const TX_TYPE tx_type = get_tx_type_4x4(PLANE_TYPE_Y, xd, block); + const scan_order *so = &vp9_scan_orders[TX_4X4][tx_type]; + const int coeff_ctx = + combine_entropy_contexts(tempa[idx], templ[idy]); + if (tx_type == DCT_DCT) + vpx_highbd_fdct4x4(src_diff, coeff, 8); + else + vp9_highbd_fht4x4(src_diff, coeff, 8, tx_type); + vp9_regular_quantize_b_4x4(x, 0, block, so->scan, so->iscan); + ratey += cost_coeffs(x, 0, block, TX_4X4, coeff_ctx, so->scan, + so->neighbors, cpi->sf.use_fast_coef_costing); + distortion += vp9_highbd_block_error_dispatch( + coeff, BLOCK_OFFSET(pd->dqcoeff, block), 16, + &unused, xd->bd) >> + 2; + tempa[idx] = templ[idy] = (x->plane[0].eobs[block] > 0 ? 1 : 0); + if (RDCOST(x->rdmult, x->rddiv, ratey, distortion) >= best_rd) + goto next_highbd; + vp9_highbd_iht4x4_add(tx_type, BLOCK_OFFSET(pd->dqcoeff, block), + dst16, dst_stride, p->eobs[block], xd->bd); + } + } + } + + rate += ratey; + this_rd = RDCOST(x->rdmult, x->rddiv, rate, distortion); + + if (this_rd < best_rd) { + *bestrate = rate; + *bestratey = ratey; + *bestdistortion = distortion; + best_rd = this_rd; + *best_mode = mode; + memcpy(a, tempa, num_4x4_blocks_wide * sizeof(tempa[0])); + memcpy(l, templ, num_4x4_blocks_high * sizeof(templ[0])); + for (idy = 0; idy < num_4x4_blocks_high * 4; ++idy) { + memcpy(best_dst16 + idy * 8, + CONVERT_TO_SHORTPTR(dst_init + idy * dst_stride), + num_4x4_blocks_wide * 4 * sizeof(uint16_t)); + } + } + next_highbd : {} + } + if (best_rd >= rd_thresh || x->skip_encode) return best_rd; + + for (idy = 0; idy < num_4x4_blocks_high * 4; ++idy) { + memcpy(CONVERT_TO_SHORTPTR(dst_init + idy * dst_stride), + best_dst16 + idy * 8, num_4x4_blocks_wide * 4 * sizeof(uint16_t)); + } + + return best_rd; + } +#endif // CONFIG_VP9_HIGHBITDEPTH + + for (mode = DC_PRED; mode <= TM_PRED; ++mode) { + int64_t this_rd; + int ratey = 0; + int64_t distortion = 0; + int rate = bmode_costs[mode]; + + if (!(cpi->sf.intra_y_mode_mask[TX_4X4] & (1 << mode))) continue; + + // Only do the oblique modes if the best so far is + // one of the neighboring directional modes + if (cpi->sf.mode_search_skip_flags & FLAG_SKIP_INTRA_DIRMISMATCH) { + if (conditional_skipintra(mode, *best_mode)) continue; + } + + memcpy(tempa, ta, num_4x4_blocks_wide * sizeof(ta[0])); + memcpy(templ, tl, num_4x4_blocks_high * sizeof(tl[0])); + + for (idy = 0; idy < num_4x4_blocks_high; ++idy) { + for (idx = 0; idx < num_4x4_blocks_wide; ++idx) { + const int block = (row + idy) * 2 + (col + idx); + const uint8_t *const src = &src_init[idx * 4 + idy * 4 * src_stride]; + uint8_t *const dst = &dst_init[idx * 4 + idy * 4 * dst_stride]; + int16_t *const src_diff = + vp9_raster_block_offset_int16(BLOCK_8X8, block, p->src_diff); + tran_low_t *const coeff = BLOCK_OFFSET(x->plane[0].coeff, block); + xd->mi[0]->bmi[block].as_mode = mode; + vp9_predict_intra_block(xd, 1, TX_4X4, mode, x->skip_encode ? src : dst, + x->skip_encode ? src_stride : dst_stride, dst, + dst_stride, col + idx, row + idy, 0); + vpx_subtract_block(4, 4, src_diff, 8, src, src_stride, dst, dst_stride); + + if (xd->lossless) { + const scan_order *so = &vp9_default_scan_orders[TX_4X4]; + const int coeff_ctx = + combine_entropy_contexts(tempa[idx], templ[idy]); + vp9_fwht4x4(src_diff, coeff, 8); + vp9_regular_quantize_b_4x4(x, 0, block, so->scan, so->iscan); + ratey += cost_coeffs(x, 0, block, TX_4X4, coeff_ctx, so->scan, + so->neighbors, cpi->sf.use_fast_coef_costing); + tempa[idx] = templ[idy] = (x->plane[0].eobs[block] > 0) ? 1 : 0; + if (RDCOST(x->rdmult, x->rddiv, ratey, distortion) >= best_rd) + goto next; + vp9_iwht4x4_add(BLOCK_OFFSET(pd->dqcoeff, block), dst, dst_stride, + p->eobs[block]); + } else { + int64_t unused; + const TX_TYPE tx_type = get_tx_type_4x4(PLANE_TYPE_Y, xd, block); + const scan_order *so = &vp9_scan_orders[TX_4X4][tx_type]; + const int coeff_ctx = + combine_entropy_contexts(tempa[idx], templ[idy]); + vp9_fht4x4(src_diff, coeff, 8, tx_type); + vp9_regular_quantize_b_4x4(x, 0, block, so->scan, so->iscan); + ratey += cost_coeffs(x, 0, block, TX_4X4, coeff_ctx, so->scan, + so->neighbors, cpi->sf.use_fast_coef_costing); + tempa[idx] = templ[idy] = (x->plane[0].eobs[block] > 0) ? 1 : 0; + distortion += vp9_block_error(coeff, BLOCK_OFFSET(pd->dqcoeff, block), + 16, &unused) >> + 2; + if (RDCOST(x->rdmult, x->rddiv, ratey, distortion) >= best_rd) + goto next; + vp9_iht4x4_add(tx_type, BLOCK_OFFSET(pd->dqcoeff, block), dst, + dst_stride, p->eobs[block]); + } + } + } + + rate += ratey; + this_rd = RDCOST(x->rdmult, x->rddiv, rate, distortion); + + if (this_rd < best_rd) { + *bestrate = rate; + *bestratey = ratey; + *bestdistortion = distortion; + best_rd = this_rd; + *best_mode = mode; + memcpy(a, tempa, num_4x4_blocks_wide * sizeof(tempa[0])); + memcpy(l, templ, num_4x4_blocks_high * sizeof(templ[0])); + for (idy = 0; idy < num_4x4_blocks_high * 4; ++idy) + memcpy(best_dst + idy * 8, dst_init + idy * dst_stride, + num_4x4_blocks_wide * 4); + } + next : {} + } + + if (best_rd >= rd_thresh || x->skip_encode) return best_rd; + + for (idy = 0; idy < num_4x4_blocks_high * 4; ++idy) + memcpy(dst_init + idy * dst_stride, best_dst + idy * 8, + num_4x4_blocks_wide * 4); + + return best_rd; +} + +static int64_t rd_pick_intra_sub_8x8_y_mode(VP9_COMP *cpi, MACROBLOCK *mb, + int *rate, int *rate_y, + int64_t *distortion, + int64_t best_rd) { + int i, j; + const MACROBLOCKD *const xd = &mb->e_mbd; + MODE_INFO *const mic = xd->mi[0]; + const MODE_INFO *above_mi = xd->above_mi; + const MODE_INFO *left_mi = xd->left_mi; + const BLOCK_SIZE bsize = xd->mi[0]->sb_type; + const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize]; + const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize]; + int idx, idy; + int cost = 0; + int64_t total_distortion = 0; + int tot_rate_y = 0; + int64_t total_rd = 0; + const int *bmode_costs = cpi->mbmode_cost; + + // Pick modes for each sub-block (of size 4x4, 4x8, or 8x4) in an 8x8 block. + for (idy = 0; idy < 2; idy += num_4x4_blocks_high) { + for (idx = 0; idx < 2; idx += num_4x4_blocks_wide) { + PREDICTION_MODE best_mode = DC_PRED; + int r = INT_MAX, ry = INT_MAX; + int64_t d = INT64_MAX, this_rd = INT64_MAX; + i = idy * 2 + idx; + if (cpi->common.frame_type == KEY_FRAME) { + const PREDICTION_MODE A = vp9_above_block_mode(mic, above_mi, i); + const PREDICTION_MODE L = vp9_left_block_mode(mic, left_mi, i); + + bmode_costs = cpi->y_mode_costs[A][L]; + } + + this_rd = rd_pick_intra4x4block( + cpi, mb, idy, idx, &best_mode, bmode_costs, + xd->plane[0].above_context + idx, xd->plane[0].left_context + idy, &r, + &ry, &d, bsize, best_rd - total_rd); + + if (this_rd >= best_rd - total_rd) return INT64_MAX; + + total_rd += this_rd; + cost += r; + total_distortion += d; + tot_rate_y += ry; + + mic->bmi[i].as_mode = best_mode; + for (j = 1; j < num_4x4_blocks_high; ++j) + mic->bmi[i + j * 2].as_mode = best_mode; + for (j = 1; j < num_4x4_blocks_wide; ++j) + mic->bmi[i + j].as_mode = best_mode; + + if (total_rd >= best_rd) return INT64_MAX; + } + } + + *rate = cost; + *rate_y = tot_rate_y; + *distortion = total_distortion; + mic->mode = mic->bmi[3].as_mode; + + return RDCOST(mb->rdmult, mb->rddiv, cost, total_distortion); +} + +// This function is used only for intra_only frames +static int64_t rd_pick_intra_sby_mode(VP9_COMP *cpi, MACROBLOCK *x, int *rate, + int *rate_tokenonly, int64_t *distortion, + int *skippable, BLOCK_SIZE bsize, + int64_t best_rd) { + PREDICTION_MODE mode; + PREDICTION_MODE mode_selected = DC_PRED; + MACROBLOCKD *const xd = &x->e_mbd; + MODE_INFO *const mic = xd->mi[0]; + int this_rate, this_rate_tokenonly, s; + int64_t this_distortion, this_rd; + TX_SIZE best_tx = TX_4X4; + int *bmode_costs; + const MODE_INFO *above_mi = xd->above_mi; + const MODE_INFO *left_mi = xd->left_mi; + const PREDICTION_MODE A = vp9_above_block_mode(mic, above_mi, 0); + const PREDICTION_MODE L = vp9_left_block_mode(mic, left_mi, 0); + bmode_costs = cpi->y_mode_costs[A][L]; + + memset(x->skip_txfm, SKIP_TXFM_NONE, sizeof(x->skip_txfm)); + /* Y Search for intra prediction mode */ + for (mode = DC_PRED; mode <= TM_PRED; mode++) { + if (cpi->sf.use_nonrd_pick_mode) { + // These speed features are turned on in hybrid non-RD and RD mode + // for key frame coding in the context of real-time setting. + if (conditional_skipintra(mode, mode_selected)) continue; + if (*skippable) break; + } + + mic->mode = mode; + + super_block_yrd(cpi, x, &this_rate_tokenonly, &this_distortion, &s, NULL, + bsize, best_rd); + + if (this_rate_tokenonly == INT_MAX) continue; + + this_rate = this_rate_tokenonly + bmode_costs[mode]; + this_rd = RDCOST(x->rdmult, x->rddiv, this_rate, this_distortion); + + if (this_rd < best_rd) { + mode_selected = mode; + best_rd = this_rd; + best_tx = mic->tx_size; + *rate = this_rate; + *rate_tokenonly = this_rate_tokenonly; + *distortion = this_distortion; + *skippable = s; + } + } + + mic->mode = mode_selected; + mic->tx_size = best_tx; + + return best_rd; +} + +// Return value 0: early termination triggered, no valid rd cost available; +// 1: rd cost values are valid. +static int super_block_uvrd(const VP9_COMP *cpi, MACROBLOCK *x, int *rate, + int64_t *distortion, int *skippable, int64_t *sse, + BLOCK_SIZE bsize, int64_t ref_best_rd) { + MACROBLOCKD *const xd = &x->e_mbd; + MODE_INFO *const mi = xd->mi[0]; + const TX_SIZE uv_tx_size = get_uv_tx_size(mi, &xd->plane[1]); + int plane; + int pnrate = 0, pnskip = 1; + int64_t pndist = 0, pnsse = 0; + int is_cost_valid = 1; + + if (ref_best_rd < 0) is_cost_valid = 0; + + if (is_inter_block(mi) && is_cost_valid) { + int plane; + for (plane = 1; plane < MAX_MB_PLANE; ++plane) + vp9_subtract_plane(x, bsize, plane); + } + + *rate = 0; + *distortion = 0; + *sse = 0; + *skippable = 1; + + for (plane = 1; plane < MAX_MB_PLANE; ++plane) { + txfm_rd_in_plane(cpi, x, &pnrate, &pndist, &pnskip, &pnsse, ref_best_rd, + plane, bsize, uv_tx_size, cpi->sf.use_fast_coef_costing); + if (pnrate == INT_MAX) { + is_cost_valid = 0; + break; + } + *rate += pnrate; + *distortion += pndist; + *sse += pnsse; + *skippable &= pnskip; + } + + if (!is_cost_valid) { + // reset cost value + *rate = INT_MAX; + *distortion = INT64_MAX; + *sse = INT64_MAX; + *skippable = 0; + } + + return is_cost_valid; +} + +static int64_t rd_pick_intra_sbuv_mode(VP9_COMP *cpi, MACROBLOCK *x, + PICK_MODE_CONTEXT *ctx, int *rate, + int *rate_tokenonly, int64_t *distortion, + int *skippable, BLOCK_SIZE bsize, + TX_SIZE max_tx_size) { + MACROBLOCKD *xd = &x->e_mbd; + PREDICTION_MODE mode; + PREDICTION_MODE mode_selected = DC_PRED; + int64_t best_rd = INT64_MAX, this_rd; + int this_rate_tokenonly, this_rate, s; + int64_t this_distortion, this_sse; + + memset(x->skip_txfm, SKIP_TXFM_NONE, sizeof(x->skip_txfm)); + for (mode = DC_PRED; mode <= TM_PRED; ++mode) { + if (!(cpi->sf.intra_uv_mode_mask[max_tx_size] & (1 << mode))) continue; +#if CONFIG_BETTER_HW_COMPATIBILITY && CONFIG_VP9_HIGHBITDEPTH + if ((xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) && + (xd->above_mi == NULL || xd->left_mi == NULL) && need_top_left[mode]) + continue; +#endif // CONFIG_BETTER_HW_COMPATIBILITY && CONFIG_VP9_HIGHBITDEPTH + + xd->mi[0]->uv_mode = mode; + + if (!super_block_uvrd(cpi, x, &this_rate_tokenonly, &this_distortion, &s, + &this_sse, bsize, best_rd)) + continue; + this_rate = + this_rate_tokenonly + + cpi->intra_uv_mode_cost[cpi->common.frame_type][xd->mi[0]->mode][mode]; + this_rd = RDCOST(x->rdmult, x->rddiv, this_rate, this_distortion); + + if (this_rd < best_rd) { + mode_selected = mode; + best_rd = this_rd; + *rate = this_rate; + *rate_tokenonly = this_rate_tokenonly; + *distortion = this_distortion; + *skippable = s; + if (!x->select_tx_size) swap_block_ptr(x, ctx, 2, 0, 1, MAX_MB_PLANE); + } + } + + xd->mi[0]->uv_mode = mode_selected; + return best_rd; +} + +static int64_t rd_sbuv_dcpred(const VP9_COMP *cpi, MACROBLOCK *x, int *rate, + int *rate_tokenonly, int64_t *distortion, + int *skippable, BLOCK_SIZE bsize) { + const VP9_COMMON *cm = &cpi->common; + int64_t unused; + + x->e_mbd.mi[0]->uv_mode = DC_PRED; + memset(x->skip_txfm, SKIP_TXFM_NONE, sizeof(x->skip_txfm)); + super_block_uvrd(cpi, x, rate_tokenonly, distortion, skippable, &unused, + bsize, INT64_MAX); + *rate = + *rate_tokenonly + + cpi->intra_uv_mode_cost[cm->frame_type][x->e_mbd.mi[0]->mode][DC_PRED]; + return RDCOST(x->rdmult, x->rddiv, *rate, *distortion); +} + +static void choose_intra_uv_mode(VP9_COMP *cpi, MACROBLOCK *const x, + PICK_MODE_CONTEXT *ctx, BLOCK_SIZE bsize, + TX_SIZE max_tx_size, int *rate_uv, + int *rate_uv_tokenonly, int64_t *dist_uv, + int *skip_uv, PREDICTION_MODE *mode_uv) { + // Use an estimated rd for uv_intra based on DC_PRED if the + // appropriate speed flag is set. + if (cpi->sf.use_uv_intra_rd_estimate) { + rd_sbuv_dcpred(cpi, x, rate_uv, rate_uv_tokenonly, dist_uv, skip_uv, + bsize < BLOCK_8X8 ? BLOCK_8X8 : bsize); + // Else do a proper rd search for each possible transform size that may + // be considered in the main rd loop. + } else { + rd_pick_intra_sbuv_mode(cpi, x, ctx, rate_uv, rate_uv_tokenonly, dist_uv, + skip_uv, bsize < BLOCK_8X8 ? BLOCK_8X8 : bsize, + max_tx_size); + } + *mode_uv = x->e_mbd.mi[0]->uv_mode; +} + +static int cost_mv_ref(const VP9_COMP *cpi, PREDICTION_MODE mode, + int mode_context) { + assert(is_inter_mode(mode)); + return cpi->inter_mode_cost[mode_context][INTER_OFFSET(mode)]; +} + +static int set_and_cost_bmi_mvs(VP9_COMP *cpi, MACROBLOCK *x, MACROBLOCKD *xd, + int i, PREDICTION_MODE mode, int_mv this_mv[2], + int_mv frame_mv[MB_MODE_COUNT][MAX_REF_FRAMES], + int_mv seg_mvs[MAX_REF_FRAMES], + int_mv *best_ref_mv[2], const int *mvjcost, + int *mvcost[2]) { + MODE_INFO *const mi = xd->mi[0]; + const MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext; + int thismvcost = 0; + int idx, idy; + const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[mi->sb_type]; + const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[mi->sb_type]; + const int is_compound = has_second_ref(mi); + + switch (mode) { + case NEWMV: + this_mv[0].as_int = seg_mvs[mi->ref_frame[0]].as_int; + thismvcost += vp9_mv_bit_cost(&this_mv[0].as_mv, &best_ref_mv[0]->as_mv, + mvjcost, mvcost, MV_COST_WEIGHT_SUB); + if (is_compound) { + this_mv[1].as_int = seg_mvs[mi->ref_frame[1]].as_int; + thismvcost += vp9_mv_bit_cost(&this_mv[1].as_mv, &best_ref_mv[1]->as_mv, + mvjcost, mvcost, MV_COST_WEIGHT_SUB); + } + break; + case NEARMV: + case NEARESTMV: + this_mv[0].as_int = frame_mv[mode][mi->ref_frame[0]].as_int; + if (is_compound) + this_mv[1].as_int = frame_mv[mode][mi->ref_frame[1]].as_int; + break; + case ZEROMV: + this_mv[0].as_int = 0; + if (is_compound) this_mv[1].as_int = 0; + break; + default: break; + } + + mi->bmi[i].as_mv[0].as_int = this_mv[0].as_int; + if (is_compound) mi->bmi[i].as_mv[1].as_int = this_mv[1].as_int; + + mi->bmi[i].as_mode = mode; + + for (idy = 0; idy < num_4x4_blocks_high; ++idy) + for (idx = 0; idx < num_4x4_blocks_wide; ++idx) + memmove(&mi->bmi[i + idy * 2 + idx], &mi->bmi[i], sizeof(mi->bmi[i])); + + return cost_mv_ref(cpi, mode, mbmi_ext->mode_context[mi->ref_frame[0]]) + + thismvcost; +} + +static int64_t encode_inter_mb_segment(VP9_COMP *cpi, MACROBLOCK *x, + int64_t best_yrd, int i, int *labelyrate, + int64_t *distortion, int64_t *sse, + ENTROPY_CONTEXT *ta, ENTROPY_CONTEXT *tl, + int mi_row, int mi_col) { + int k; + MACROBLOCKD *xd = &x->e_mbd; + struct macroblockd_plane *const pd = &xd->plane[0]; + struct macroblock_plane *const p = &x->plane[0]; + MODE_INFO *const mi = xd->mi[0]; + const BLOCK_SIZE plane_bsize = get_plane_block_size(mi->sb_type, pd); + const int width = 4 * num_4x4_blocks_wide_lookup[plane_bsize]; + const int height = 4 * num_4x4_blocks_high_lookup[plane_bsize]; + int idx, idy; + + const uint8_t *const src = + &p->src.buf[vp9_raster_block_offset(BLOCK_8X8, i, p->src.stride)]; + uint8_t *const dst = + &pd->dst.buf[vp9_raster_block_offset(BLOCK_8X8, i, pd->dst.stride)]; + int64_t thisdistortion = 0, thissse = 0; + int thisrate = 0, ref; + const scan_order *so = &vp9_default_scan_orders[TX_4X4]; + const int is_compound = has_second_ref(mi); + const InterpKernel *kernel = vp9_filter_kernels[mi->interp_filter]; + + for (ref = 0; ref < 1 + is_compound; ++ref) { + const int bw = b_width_log2_lookup[BLOCK_8X8]; + const int h = 4 * (i >> bw); + const int w = 4 * (i & ((1 << bw) - 1)); + const struct scale_factors *sf = &xd->block_refs[ref]->sf; + int y_stride = pd->pre[ref].stride; + uint8_t *pre = pd->pre[ref].buf + (h * pd->pre[ref].stride + w); + + if (vp9_is_scaled(sf)) { + const int x_start = (-xd->mb_to_left_edge >> (3 + pd->subsampling_x)); + const int y_start = (-xd->mb_to_top_edge >> (3 + pd->subsampling_y)); + + y_stride = xd->block_refs[ref]->buf->y_stride; + pre = xd->block_refs[ref]->buf->y_buffer; + pre += scaled_buffer_offset(x_start + w, y_start + h, y_stride, sf); + } +#if CONFIG_VP9_HIGHBITDEPTH + if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { + vp9_highbd_build_inter_predictor( + CONVERT_TO_SHORTPTR(pre), y_stride, CONVERT_TO_SHORTPTR(dst), + pd->dst.stride, &mi->bmi[i].as_mv[ref].as_mv, + &xd->block_refs[ref]->sf, width, height, ref, kernel, MV_PRECISION_Q3, + mi_col * MI_SIZE + 4 * (i % 2), mi_row * MI_SIZE + 4 * (i / 2), + xd->bd); + } else { + vp9_build_inter_predictor( + pre, y_stride, dst, pd->dst.stride, &mi->bmi[i].as_mv[ref].as_mv, + &xd->block_refs[ref]->sf, width, height, ref, kernel, MV_PRECISION_Q3, + mi_col * MI_SIZE + 4 * (i % 2), mi_row * MI_SIZE + 4 * (i / 2)); + } +#else + vp9_build_inter_predictor( + pre, y_stride, dst, pd->dst.stride, &mi->bmi[i].as_mv[ref].as_mv, + &xd->block_refs[ref]->sf, width, height, ref, kernel, MV_PRECISION_Q3, + mi_col * MI_SIZE + 4 * (i % 2), mi_row * MI_SIZE + 4 * (i / 2)); +#endif // CONFIG_VP9_HIGHBITDEPTH + } + +#if CONFIG_VP9_HIGHBITDEPTH + if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { + vpx_highbd_subtract_block( + height, width, vp9_raster_block_offset_int16(BLOCK_8X8, i, p->src_diff), + 8, src, p->src.stride, dst, pd->dst.stride, xd->bd); + } else { + vpx_subtract_block(height, width, + vp9_raster_block_offset_int16(BLOCK_8X8, i, p->src_diff), + 8, src, p->src.stride, dst, pd->dst.stride); + } +#else + vpx_subtract_block(height, width, + vp9_raster_block_offset_int16(BLOCK_8X8, i, p->src_diff), + 8, src, p->src.stride, dst, pd->dst.stride); +#endif // CONFIG_VP9_HIGHBITDEPTH + + k = i; + for (idy = 0; idy < height / 4; ++idy) { + for (idx = 0; idx < width / 4; ++idx) { +#if CONFIG_VP9_HIGHBITDEPTH + const int bd = (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? xd->bd : 8; +#endif + int64_t ssz, rd, rd1, rd2; + tran_low_t *coeff; + int coeff_ctx; + k += (idy * 2 + idx); + coeff_ctx = combine_entropy_contexts(ta[k & 1], tl[k >> 1]); + coeff = BLOCK_OFFSET(p->coeff, k); + x->fwd_txfm4x4(vp9_raster_block_offset_int16(BLOCK_8X8, k, p->src_diff), + coeff, 8); + vp9_regular_quantize_b_4x4(x, 0, k, so->scan, so->iscan); +#if CONFIG_VP9_HIGHBITDEPTH + thisdistortion += vp9_highbd_block_error_dispatch( + coeff, BLOCK_OFFSET(pd->dqcoeff, k), 16, &ssz, bd); +#else + thisdistortion += + vp9_block_error(coeff, BLOCK_OFFSET(pd->dqcoeff, k), 16, &ssz); +#endif // CONFIG_VP9_HIGHBITDEPTH + thissse += ssz; + thisrate += cost_coeffs(x, 0, k, TX_4X4, coeff_ctx, so->scan, + so->neighbors, cpi->sf.use_fast_coef_costing); + ta[k & 1] = tl[k >> 1] = (x->plane[0].eobs[k] > 0) ? 1 : 0; + rd1 = RDCOST(x->rdmult, x->rddiv, thisrate, thisdistortion >> 2); + rd2 = RDCOST(x->rdmult, x->rddiv, 0, thissse >> 2); + rd = VPXMIN(rd1, rd2); + if (rd >= best_yrd) return INT64_MAX; + } + } + + *distortion = thisdistortion >> 2; + *labelyrate = thisrate; + *sse = thissse >> 2; + + return RDCOST(x->rdmult, x->rddiv, *labelyrate, *distortion); +} + +typedef struct { + int eobs; + int brate; + int byrate; + int64_t bdist; + int64_t bsse; + int64_t brdcost; + int_mv mvs[2]; + ENTROPY_CONTEXT ta[2]; + ENTROPY_CONTEXT tl[2]; +} SEG_RDSTAT; + +typedef struct { + int_mv *ref_mv[2]; + int_mv mvp; + + int64_t segment_rd; + int r; + int64_t d; + int64_t sse; + int segment_yrate; + PREDICTION_MODE modes[4]; + SEG_RDSTAT rdstat[4][INTER_MODES]; + int mvthresh; +} BEST_SEG_INFO; + +static INLINE int mv_check_bounds(const MvLimits *mv_limits, const MV *mv) { + return (mv->row >> 3) < mv_limits->row_min || + (mv->row >> 3) > mv_limits->row_max || + (mv->col >> 3) < mv_limits->col_min || + (mv->col >> 3) > mv_limits->col_max; +} + +static INLINE void mi_buf_shift(MACROBLOCK *x, int i) { + MODE_INFO *const mi = x->e_mbd.mi[0]; + struct macroblock_plane *const p = &x->plane[0]; + struct macroblockd_plane *const pd = &x->e_mbd.plane[0]; + + p->src.buf = + &p->src.buf[vp9_raster_block_offset(BLOCK_8X8, i, p->src.stride)]; + assert(((intptr_t)pd->pre[0].buf & 0x7) == 0); + pd->pre[0].buf = + &pd->pre[0].buf[vp9_raster_block_offset(BLOCK_8X8, i, pd->pre[0].stride)]; + if (has_second_ref(mi)) + pd->pre[1].buf = + &pd->pre[1] + .buf[vp9_raster_block_offset(BLOCK_8X8, i, pd->pre[1].stride)]; +} + +static INLINE void mi_buf_restore(MACROBLOCK *x, struct buf_2d orig_src, + struct buf_2d orig_pre[2]) { + MODE_INFO *mi = x->e_mbd.mi[0]; + x->plane[0].src = orig_src; + x->e_mbd.plane[0].pre[0] = orig_pre[0]; + if (has_second_ref(mi)) x->e_mbd.plane[0].pre[1] = orig_pre[1]; +} + +static INLINE int mv_has_subpel(const MV *mv) { + return (mv->row & 0x0F) || (mv->col & 0x0F); +} + +// Check if NEARESTMV/NEARMV/ZEROMV is the cheapest way encode zero motion. +// TODO(aconverse): Find out if this is still productive then clean up or remove +static int check_best_zero_mv(const VP9_COMP *cpi, + const uint8_t mode_context[MAX_REF_FRAMES], + int_mv frame_mv[MB_MODE_COUNT][MAX_REF_FRAMES], + int this_mode, + const MV_REFERENCE_FRAME ref_frames[2]) { + if ((this_mode == NEARMV || this_mode == NEARESTMV || this_mode == ZEROMV) && + frame_mv[this_mode][ref_frames[0]].as_int == 0 && + (ref_frames[1] == NONE || + frame_mv[this_mode][ref_frames[1]].as_int == 0)) { + int rfc = mode_context[ref_frames[0]]; + int c1 = cost_mv_ref(cpi, NEARMV, rfc); + int c2 = cost_mv_ref(cpi, NEARESTMV, rfc); + int c3 = cost_mv_ref(cpi, ZEROMV, rfc); + + if (this_mode == NEARMV) { + if (c1 > c3) return 0; + } else if (this_mode == NEARESTMV) { + if (c2 > c3) return 0; + } else { + assert(this_mode == ZEROMV); + if (ref_frames[1] == NONE) { + if ((c3 >= c2 && frame_mv[NEARESTMV][ref_frames[0]].as_int == 0) || + (c3 >= c1 && frame_mv[NEARMV][ref_frames[0]].as_int == 0)) + return 0; + } else { + if ((c3 >= c2 && frame_mv[NEARESTMV][ref_frames[0]].as_int == 0 && + frame_mv[NEARESTMV][ref_frames[1]].as_int == 0) || + (c3 >= c1 && frame_mv[NEARMV][ref_frames[0]].as_int == 0 && + frame_mv[NEARMV][ref_frames[1]].as_int == 0)) + return 0; + } + } + } + return 1; +} + +static void joint_motion_search(VP9_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize, + int_mv *frame_mv, int mi_row, int mi_col, + int_mv single_newmv[MAX_REF_FRAMES], + int *rate_mv) { + const VP9_COMMON *const cm = &cpi->common; + const int pw = 4 * num_4x4_blocks_wide_lookup[bsize]; + const int ph = 4 * num_4x4_blocks_high_lookup[bsize]; + MACROBLOCKD *xd = &x->e_mbd; + MODE_INFO *mi = xd->mi[0]; + const int refs[2] = { mi->ref_frame[0], + mi->ref_frame[1] < 0 ? 0 : mi->ref_frame[1] }; + int_mv ref_mv[2]; + int ite, ref; + const InterpKernel *kernel = vp9_filter_kernels[mi->interp_filter]; + struct scale_factors sf; + + // Do joint motion search in compound mode to get more accurate mv. + struct buf_2d backup_yv12[2][MAX_MB_PLANE]; + uint32_t last_besterr[2] = { UINT_MAX, UINT_MAX }; + const YV12_BUFFER_CONFIG *const scaled_ref_frame[2] = { + vp9_get_scaled_ref_frame(cpi, mi->ref_frame[0]), + vp9_get_scaled_ref_frame(cpi, mi->ref_frame[1]) + }; + +// Prediction buffer from second frame. +#if CONFIG_VP9_HIGHBITDEPTH + DECLARE_ALIGNED(16, uint16_t, second_pred_alloc_16[64 * 64]); + uint8_t *second_pred; +#else + DECLARE_ALIGNED(16, uint8_t, second_pred[64 * 64]); +#endif // CONFIG_VP9_HIGHBITDEPTH + + for (ref = 0; ref < 2; ++ref) { + ref_mv[ref] = x->mbmi_ext->ref_mvs[refs[ref]][0]; + + if (scaled_ref_frame[ref]) { + int i; + // Swap out the reference frame for a version that's been scaled to + // match the resolution of the current frame, allowing the existing + // motion search code to be used without additional modifications. + for (i = 0; i < MAX_MB_PLANE; i++) + backup_yv12[ref][i] = xd->plane[i].pre[ref]; + vp9_setup_pre_planes(xd, ref, scaled_ref_frame[ref], mi_row, mi_col, + NULL); + } + + frame_mv[refs[ref]].as_int = single_newmv[refs[ref]].as_int; + } + +// Since we have scaled the reference frames to match the size of the current +// frame we must use a unit scaling factor during mode selection. +#if CONFIG_VP9_HIGHBITDEPTH + vp9_setup_scale_factors_for_frame(&sf, cm->width, cm->height, cm->width, + cm->height, cm->use_highbitdepth); +#else + vp9_setup_scale_factors_for_frame(&sf, cm->width, cm->height, cm->width, + cm->height); +#endif // CONFIG_VP9_HIGHBITDEPTH + + // Allow joint search multiple times iteratively for each reference frame + // and break out of the search loop if it couldn't find a better mv. + for (ite = 0; ite < 4; ite++) { + struct buf_2d ref_yv12[2]; + uint32_t bestsme = UINT_MAX; + int sadpb = x->sadperbit16; + MV tmp_mv; + int search_range = 3; + + const MvLimits tmp_mv_limits = x->mv_limits; + int id = ite % 2; // Even iterations search in the first reference frame, + // odd iterations search in the second. The predictor + // found for the 'other' reference frame is factored in. + + // Initialized here because of compiler problem in Visual Studio. + ref_yv12[0] = xd->plane[0].pre[0]; + ref_yv12[1] = xd->plane[0].pre[1]; + +// Get the prediction block from the 'other' reference frame. +#if CONFIG_VP9_HIGHBITDEPTH + if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { + second_pred = CONVERT_TO_BYTEPTR(second_pred_alloc_16); + vp9_highbd_build_inter_predictor( + CONVERT_TO_SHORTPTR(ref_yv12[!id].buf), ref_yv12[!id].stride, + second_pred_alloc_16, pw, &frame_mv[refs[!id]].as_mv, &sf, pw, ph, 0, + kernel, MV_PRECISION_Q3, mi_col * MI_SIZE, mi_row * MI_SIZE, xd->bd); + } else { + second_pred = (uint8_t *)second_pred_alloc_16; + vp9_build_inter_predictor(ref_yv12[!id].buf, ref_yv12[!id].stride, + second_pred, pw, &frame_mv[refs[!id]].as_mv, + &sf, pw, ph, 0, kernel, MV_PRECISION_Q3, + mi_col * MI_SIZE, mi_row * MI_SIZE); + } +#else + vp9_build_inter_predictor(ref_yv12[!id].buf, ref_yv12[!id].stride, + second_pred, pw, &frame_mv[refs[!id]].as_mv, &sf, + pw, ph, 0, kernel, MV_PRECISION_Q3, + mi_col * MI_SIZE, mi_row * MI_SIZE); +#endif // CONFIG_VP9_HIGHBITDEPTH + + // Do compound motion search on the current reference frame. + if (id) xd->plane[0].pre[0] = ref_yv12[id]; + vp9_set_mv_search_range(&x->mv_limits, &ref_mv[id].as_mv); + + // Use the mv result from the single mode as mv predictor. + tmp_mv = frame_mv[refs[id]].as_mv; + + tmp_mv.col >>= 3; + tmp_mv.row >>= 3; + + // Small-range full-pixel motion search. + bestsme = vp9_refining_search_8p_c(x, &tmp_mv, sadpb, search_range, + &cpi->fn_ptr[bsize], &ref_mv[id].as_mv, + second_pred); + if (bestsme < UINT_MAX) + bestsme = vp9_get_mvpred_av_var(x, &tmp_mv, &ref_mv[id].as_mv, + second_pred, &cpi->fn_ptr[bsize], 1); + + x->mv_limits = tmp_mv_limits; + + if (bestsme < UINT_MAX) { + uint32_t dis; /* TODO: use dis in distortion calculation later. */ + uint32_t sse; + bestsme = cpi->find_fractional_mv_step( + x, &tmp_mv, &ref_mv[id].as_mv, cpi->common.allow_high_precision_mv, + x->errorperbit, &cpi->fn_ptr[bsize], 0, + cpi->sf.mv.subpel_iters_per_step, NULL, x->nmvjointcost, x->mvcost, + &dis, &sse, second_pred, pw, ph); + } + + // Restore the pointer to the first (possibly scaled) prediction buffer. + if (id) xd->plane[0].pre[0] = ref_yv12[0]; + + if (bestsme < last_besterr[id]) { + frame_mv[refs[id]].as_mv = tmp_mv; + last_besterr[id] = bestsme; + } else { + break; + } + } + + *rate_mv = 0; + + for (ref = 0; ref < 2; ++ref) { + if (scaled_ref_frame[ref]) { + // Restore the prediction frame pointers to their unscaled versions. + int i; + for (i = 0; i < MAX_MB_PLANE; i++) + xd->plane[i].pre[ref] = backup_yv12[ref][i]; + } + + *rate_mv += vp9_mv_bit_cost(&frame_mv[refs[ref]].as_mv, + &x->mbmi_ext->ref_mvs[refs[ref]][0].as_mv, + x->nmvjointcost, x->mvcost, MV_COST_WEIGHT); + } +} + +static int64_t rd_pick_best_sub8x8_mode( + VP9_COMP *cpi, MACROBLOCK *x, int_mv *best_ref_mv, + int_mv *second_best_ref_mv, int64_t best_rd, int *returntotrate, + int *returnyrate, int64_t *returndistortion, int *skippable, int64_t *psse, + int mvthresh, int_mv seg_mvs[4][MAX_REF_FRAMES], BEST_SEG_INFO *bsi_buf, + int filter_idx, int mi_row, int mi_col) { + int i; + BEST_SEG_INFO *bsi = bsi_buf + filter_idx; + MACROBLOCKD *xd = &x->e_mbd; + MODE_INFO *mi = xd->mi[0]; + int mode_idx; + int k, br = 0, idx, idy; + int64_t bd = 0, block_sse = 0; + PREDICTION_MODE this_mode; + VP9_COMMON *cm = &cpi->common; + struct macroblock_plane *const p = &x->plane[0]; + struct macroblockd_plane *const pd = &xd->plane[0]; + const int label_count = 4; + int64_t this_segment_rd = 0; + int label_mv_thresh; + int segmentyrate = 0; + const BLOCK_SIZE bsize = mi->sb_type; + const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize]; + const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize]; + ENTROPY_CONTEXT t_above[2], t_left[2]; + int subpelmv = 1, have_ref = 0; + SPEED_FEATURES *const sf = &cpi->sf; + const int has_second_rf = has_second_ref(mi); + const int inter_mode_mask = sf->inter_mode_mask[bsize]; + MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext; + + vp9_zero(*bsi); + + bsi->segment_rd = best_rd; + bsi->ref_mv[0] = best_ref_mv; + bsi->ref_mv[1] = second_best_ref_mv; + bsi->mvp.as_int = best_ref_mv->as_int; + bsi->mvthresh = mvthresh; + + for (i = 0; i < 4; i++) bsi->modes[i] = ZEROMV; + + memcpy(t_above, pd->above_context, sizeof(t_above)); + memcpy(t_left, pd->left_context, sizeof(t_left)); + + // 64 makes this threshold really big effectively + // making it so that we very rarely check mvs on + // segments. setting this to 1 would make mv thresh + // roughly equal to what it is for macroblocks + label_mv_thresh = 1 * bsi->mvthresh / label_count; + + // Segmentation method overheads + for (idy = 0; idy < 2; idy += num_4x4_blocks_high) { + for (idx = 0; idx < 2; idx += num_4x4_blocks_wide) { + // TODO(jingning,rbultje): rewrite the rate-distortion optimization + // loop for 4x4/4x8/8x4 block coding. to be replaced with new rd loop + int_mv mode_mv[MB_MODE_COUNT][2]; + int_mv frame_mv[MB_MODE_COUNT][MAX_REF_FRAMES]; + PREDICTION_MODE mode_selected = ZEROMV; + int64_t best_rd = INT64_MAX; + const int i = idy * 2 + idx; + int ref; + + for (ref = 0; ref < 1 + has_second_rf; ++ref) { + const MV_REFERENCE_FRAME frame = mi->ref_frame[ref]; + frame_mv[ZEROMV][frame].as_int = 0; + vp9_append_sub8x8_mvs_for_idx( + cm, xd, i, ref, mi_row, mi_col, &frame_mv[NEARESTMV][frame], + &frame_mv[NEARMV][frame], mbmi_ext->mode_context); + } + + // search for the best motion vector on this segment + for (this_mode = NEARESTMV; this_mode <= NEWMV; ++this_mode) { + const struct buf_2d orig_src = x->plane[0].src; + struct buf_2d orig_pre[2]; + + mode_idx = INTER_OFFSET(this_mode); + bsi->rdstat[i][mode_idx].brdcost = INT64_MAX; + if (!(inter_mode_mask & (1 << this_mode))) continue; + + if (!check_best_zero_mv(cpi, mbmi_ext->mode_context, frame_mv, + this_mode, mi->ref_frame)) + continue; + + memcpy(orig_pre, pd->pre, sizeof(orig_pre)); + memcpy(bsi->rdstat[i][mode_idx].ta, t_above, + sizeof(bsi->rdstat[i][mode_idx].ta)); + memcpy(bsi->rdstat[i][mode_idx].tl, t_left, + sizeof(bsi->rdstat[i][mode_idx].tl)); + + // motion search for newmv (single predictor case only) + if (!has_second_rf && this_mode == NEWMV && + seg_mvs[i][mi->ref_frame[0]].as_int == INVALID_MV) { + MV *const new_mv = &mode_mv[NEWMV][0].as_mv; + int step_param = 0; + uint32_t bestsme = UINT_MAX; + int sadpb = x->sadperbit4; + MV mvp_full; + int max_mv; + int cost_list[5]; + const MvLimits tmp_mv_limits = x->mv_limits; + + /* Is the best so far sufficiently good that we cant justify doing + * and new motion search. */ + if (best_rd < label_mv_thresh) break; + + if (cpi->oxcf.mode != BEST) { + // use previous block's result as next block's MV predictor. + if (i > 0) { + bsi->mvp.as_int = mi->bmi[i - 1].as_mv[0].as_int; + if (i == 2) bsi->mvp.as_int = mi->bmi[i - 2].as_mv[0].as_int; + } + } + if (i == 0) + max_mv = x->max_mv_context[mi->ref_frame[0]]; + else + max_mv = + VPXMAX(abs(bsi->mvp.as_mv.row), abs(bsi->mvp.as_mv.col)) >> 3; + + if (sf->mv.auto_mv_step_size && cm->show_frame) { + // Take wtd average of the step_params based on the last frame's + // max mv magnitude and the best ref mvs of the current block for + // the given reference. + step_param = + (vp9_init_search_range(max_mv) + cpi->mv_step_param) / 2; + } else { + step_param = cpi->mv_step_param; + } + + mvp_full.row = bsi->mvp.as_mv.row >> 3; + mvp_full.col = bsi->mvp.as_mv.col >> 3; + + if (sf->adaptive_motion_search) { + mvp_full.row = x->pred_mv[mi->ref_frame[0]].row >> 3; + mvp_full.col = x->pred_mv[mi->ref_frame[0]].col >> 3; + step_param = VPXMAX(step_param, 8); + } + + // adjust src pointer for this block + mi_buf_shift(x, i); + + vp9_set_mv_search_range(&x->mv_limits, &bsi->ref_mv[0]->as_mv); + + bestsme = vp9_full_pixel_search( + cpi, x, bsize, &mvp_full, step_param, cpi->sf.mv.search_method, + sadpb, + sf->mv.subpel_search_method != SUBPEL_TREE ? cost_list : NULL, + &bsi->ref_mv[0]->as_mv, new_mv, INT_MAX, 1); + + x->mv_limits = tmp_mv_limits; + + if (bestsme < UINT_MAX) { + uint32_t distortion; + cpi->find_fractional_mv_step( + x, new_mv, &bsi->ref_mv[0]->as_mv, cm->allow_high_precision_mv, + x->errorperbit, &cpi->fn_ptr[bsize], sf->mv.subpel_force_stop, + sf->mv.subpel_iters_per_step, cond_cost_list(cpi, cost_list), + x->nmvjointcost, x->mvcost, &distortion, + &x->pred_sse[mi->ref_frame[0]], NULL, 0, 0); + + // save motion search result for use in compound prediction + seg_mvs[i][mi->ref_frame[0]].as_mv = *new_mv; + } + + if (sf->adaptive_motion_search) + x->pred_mv[mi->ref_frame[0]] = *new_mv; + + // restore src pointers + mi_buf_restore(x, orig_src, orig_pre); + } + + if (has_second_rf) { + if (seg_mvs[i][mi->ref_frame[1]].as_int == INVALID_MV || + seg_mvs[i][mi->ref_frame[0]].as_int == INVALID_MV) + continue; + } + + if (has_second_rf && this_mode == NEWMV && + mi->interp_filter == EIGHTTAP) { + // adjust src pointers + mi_buf_shift(x, i); + if (sf->comp_inter_joint_search_thresh <= bsize) { + int rate_mv; + joint_motion_search(cpi, x, bsize, frame_mv[this_mode], mi_row, + mi_col, seg_mvs[i], &rate_mv); + seg_mvs[i][mi->ref_frame[0]].as_int = + frame_mv[this_mode][mi->ref_frame[0]].as_int; + seg_mvs[i][mi->ref_frame[1]].as_int = + frame_mv[this_mode][mi->ref_frame[1]].as_int; + } + // restore src pointers + mi_buf_restore(x, orig_src, orig_pre); + } + + bsi->rdstat[i][mode_idx].brate = set_and_cost_bmi_mvs( + cpi, x, xd, i, this_mode, mode_mv[this_mode], frame_mv, seg_mvs[i], + bsi->ref_mv, x->nmvjointcost, x->mvcost); + + for (ref = 0; ref < 1 + has_second_rf; ++ref) { + bsi->rdstat[i][mode_idx].mvs[ref].as_int = + mode_mv[this_mode][ref].as_int; + if (num_4x4_blocks_wide > 1) + bsi->rdstat[i + 1][mode_idx].mvs[ref].as_int = + mode_mv[this_mode][ref].as_int; + if (num_4x4_blocks_high > 1) + bsi->rdstat[i + 2][mode_idx].mvs[ref].as_int = + mode_mv[this_mode][ref].as_int; + } + + // Trap vectors that reach beyond the UMV borders + if (mv_check_bounds(&x->mv_limits, &mode_mv[this_mode][0].as_mv) || + (has_second_rf && + mv_check_bounds(&x->mv_limits, &mode_mv[this_mode][1].as_mv))) + continue; + + if (filter_idx > 0) { + BEST_SEG_INFO *ref_bsi = bsi_buf; + subpelmv = 0; + have_ref = 1; + + for (ref = 0; ref < 1 + has_second_rf; ++ref) { + subpelmv |= mv_has_subpel(&mode_mv[this_mode][ref].as_mv); + have_ref &= mode_mv[this_mode][ref].as_int == + ref_bsi->rdstat[i][mode_idx].mvs[ref].as_int; + } + + if (filter_idx > 1 && !subpelmv && !have_ref) { + ref_bsi = bsi_buf + 1; + have_ref = 1; + for (ref = 0; ref < 1 + has_second_rf; ++ref) + have_ref &= mode_mv[this_mode][ref].as_int == + ref_bsi->rdstat[i][mode_idx].mvs[ref].as_int; + } + + if (!subpelmv && have_ref && + ref_bsi->rdstat[i][mode_idx].brdcost < INT64_MAX) { + memcpy(&bsi->rdstat[i][mode_idx], &ref_bsi->rdstat[i][mode_idx], + sizeof(SEG_RDSTAT)); + if (num_4x4_blocks_wide > 1) + bsi->rdstat[i + 1][mode_idx].eobs = + ref_bsi->rdstat[i + 1][mode_idx].eobs; + if (num_4x4_blocks_high > 1) + bsi->rdstat[i + 2][mode_idx].eobs = + ref_bsi->rdstat[i + 2][mode_idx].eobs; + + if (bsi->rdstat[i][mode_idx].brdcost < best_rd) { + mode_selected = this_mode; + best_rd = bsi->rdstat[i][mode_idx].brdcost; + } + continue; + } + } + + bsi->rdstat[i][mode_idx].brdcost = encode_inter_mb_segment( + cpi, x, bsi->segment_rd - this_segment_rd, i, + &bsi->rdstat[i][mode_idx].byrate, &bsi->rdstat[i][mode_idx].bdist, + &bsi->rdstat[i][mode_idx].bsse, bsi->rdstat[i][mode_idx].ta, + bsi->rdstat[i][mode_idx].tl, mi_row, mi_col); + if (bsi->rdstat[i][mode_idx].brdcost < INT64_MAX) { + bsi->rdstat[i][mode_idx].brdcost += + RDCOST(x->rdmult, x->rddiv, bsi->rdstat[i][mode_idx].brate, 0); + bsi->rdstat[i][mode_idx].brate += bsi->rdstat[i][mode_idx].byrate; + bsi->rdstat[i][mode_idx].eobs = p->eobs[i]; + if (num_4x4_blocks_wide > 1) + bsi->rdstat[i + 1][mode_idx].eobs = p->eobs[i + 1]; + if (num_4x4_blocks_high > 1) + bsi->rdstat[i + 2][mode_idx].eobs = p->eobs[i + 2]; + } + + if (bsi->rdstat[i][mode_idx].brdcost < best_rd) { + mode_selected = this_mode; + best_rd = bsi->rdstat[i][mode_idx].brdcost; + } + } /*for each 4x4 mode*/ + + if (best_rd == INT64_MAX) { + int iy, midx; + for (iy = i + 1; iy < 4; ++iy) + for (midx = 0; midx < INTER_MODES; ++midx) + bsi->rdstat[iy][midx].brdcost = INT64_MAX; + bsi->segment_rd = INT64_MAX; + return INT64_MAX; + } + + mode_idx = INTER_OFFSET(mode_selected); + memcpy(t_above, bsi->rdstat[i][mode_idx].ta, sizeof(t_above)); + memcpy(t_left, bsi->rdstat[i][mode_idx].tl, sizeof(t_left)); + + set_and_cost_bmi_mvs(cpi, x, xd, i, mode_selected, mode_mv[mode_selected], + frame_mv, seg_mvs[i], bsi->ref_mv, x->nmvjointcost, + x->mvcost); + + br += bsi->rdstat[i][mode_idx].brate; + bd += bsi->rdstat[i][mode_idx].bdist; + block_sse += bsi->rdstat[i][mode_idx].bsse; + segmentyrate += bsi->rdstat[i][mode_idx].byrate; + this_segment_rd += bsi->rdstat[i][mode_idx].brdcost; + + if (this_segment_rd > bsi->segment_rd) { + int iy, midx; + for (iy = i + 1; iy < 4; ++iy) + for (midx = 0; midx < INTER_MODES; ++midx) + bsi->rdstat[iy][midx].brdcost = INT64_MAX; + bsi->segment_rd = INT64_MAX; + return INT64_MAX; + } + } + } /* for each label */ + + bsi->r = br; + bsi->d = bd; + bsi->segment_yrate = segmentyrate; + bsi->segment_rd = this_segment_rd; + bsi->sse = block_sse; + + // update the coding decisions + for (k = 0; k < 4; ++k) bsi->modes[k] = mi->bmi[k].as_mode; + + if (bsi->segment_rd > best_rd) return INT64_MAX; + /* set it to the best */ + for (i = 0; i < 4; i++) { + mode_idx = INTER_OFFSET(bsi->modes[i]); + mi->bmi[i].as_mv[0].as_int = bsi->rdstat[i][mode_idx].mvs[0].as_int; + if (has_second_ref(mi)) + mi->bmi[i].as_mv[1].as_int = bsi->rdstat[i][mode_idx].mvs[1].as_int; + x->plane[0].eobs[i] = bsi->rdstat[i][mode_idx].eobs; + mi->bmi[i].as_mode = bsi->modes[i]; + } + + /* + * used to set mbmi->mv.as_int + */ + *returntotrate = bsi->r; + *returndistortion = bsi->d; + *returnyrate = bsi->segment_yrate; + *skippable = vp9_is_skippable_in_plane(x, BLOCK_8X8, 0); + *psse = bsi->sse; + mi->mode = bsi->modes[3]; + + return bsi->segment_rd; +} + +static void estimate_ref_frame_costs(const VP9_COMMON *cm, + const MACROBLOCKD *xd, int segment_id, + unsigned int *ref_costs_single, + unsigned int *ref_costs_comp, + vpx_prob *comp_mode_p) { + int seg_ref_active = + segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME); + if (seg_ref_active) { + memset(ref_costs_single, 0, MAX_REF_FRAMES * sizeof(*ref_costs_single)); + memset(ref_costs_comp, 0, MAX_REF_FRAMES * sizeof(*ref_costs_comp)); + *comp_mode_p = 128; + } else { + vpx_prob intra_inter_p = vp9_get_intra_inter_prob(cm, xd); + vpx_prob comp_inter_p = 128; + + if (cm->reference_mode == REFERENCE_MODE_SELECT) { + comp_inter_p = vp9_get_reference_mode_prob(cm, xd); + *comp_mode_p = comp_inter_p; + } else { + *comp_mode_p = 128; + } + + ref_costs_single[INTRA_FRAME] = vp9_cost_bit(intra_inter_p, 0); + + if (cm->reference_mode != COMPOUND_REFERENCE) { + vpx_prob ref_single_p1 = vp9_get_pred_prob_single_ref_p1(cm, xd); + vpx_prob ref_single_p2 = vp9_get_pred_prob_single_ref_p2(cm, xd); + unsigned int base_cost = vp9_cost_bit(intra_inter_p, 1); + + if (cm->reference_mode == REFERENCE_MODE_SELECT) + base_cost += vp9_cost_bit(comp_inter_p, 0); + + ref_costs_single[LAST_FRAME] = ref_costs_single[GOLDEN_FRAME] = + ref_costs_single[ALTREF_FRAME] = base_cost; + ref_costs_single[LAST_FRAME] += vp9_cost_bit(ref_single_p1, 0); + ref_costs_single[GOLDEN_FRAME] += vp9_cost_bit(ref_single_p1, 1); + ref_costs_single[ALTREF_FRAME] += vp9_cost_bit(ref_single_p1, 1); + ref_costs_single[GOLDEN_FRAME] += vp9_cost_bit(ref_single_p2, 0); + ref_costs_single[ALTREF_FRAME] += vp9_cost_bit(ref_single_p2, 1); + } else { + ref_costs_single[LAST_FRAME] = 512; + ref_costs_single[GOLDEN_FRAME] = 512; + ref_costs_single[ALTREF_FRAME] = 512; + } + if (cm->reference_mode != SINGLE_REFERENCE) { + vpx_prob ref_comp_p = vp9_get_pred_prob_comp_ref_p(cm, xd); + unsigned int base_cost = vp9_cost_bit(intra_inter_p, 1); + + if (cm->reference_mode == REFERENCE_MODE_SELECT) + base_cost += vp9_cost_bit(comp_inter_p, 1); + + ref_costs_comp[LAST_FRAME] = base_cost + vp9_cost_bit(ref_comp_p, 0); + ref_costs_comp[GOLDEN_FRAME] = base_cost + vp9_cost_bit(ref_comp_p, 1); + } else { + ref_costs_comp[LAST_FRAME] = 512; + ref_costs_comp[GOLDEN_FRAME] = 512; + } + } +} + +static void store_coding_context( + MACROBLOCK *x, PICK_MODE_CONTEXT *ctx, int mode_index, + int64_t comp_pred_diff[REFERENCE_MODES], + int64_t best_filter_diff[SWITCHABLE_FILTER_CONTEXTS], int skippable) { + MACROBLOCKD *const xd = &x->e_mbd; + + // Take a snapshot of the coding context so it can be + // restored if we decide to encode this way + ctx->skip = x->skip; + ctx->skippable = skippable; + ctx->best_mode_index = mode_index; + ctx->mic = *xd->mi[0]; + ctx->mbmi_ext = *x->mbmi_ext; + ctx->single_pred_diff = (int)comp_pred_diff[SINGLE_REFERENCE]; + ctx->comp_pred_diff = (int)comp_pred_diff[COMPOUND_REFERENCE]; + ctx->hybrid_pred_diff = (int)comp_pred_diff[REFERENCE_MODE_SELECT]; + + memcpy(ctx->best_filter_diff, best_filter_diff, + sizeof(*best_filter_diff) * SWITCHABLE_FILTER_CONTEXTS); +} + +static void setup_buffer_inter(VP9_COMP *cpi, MACROBLOCK *x, + MV_REFERENCE_FRAME ref_frame, + BLOCK_SIZE block_size, int mi_row, int mi_col, + int_mv frame_nearest_mv[MAX_REF_FRAMES], + int_mv frame_near_mv[MAX_REF_FRAMES], + struct buf_2d yv12_mb[4][MAX_MB_PLANE]) { + const VP9_COMMON *cm = &cpi->common; + const YV12_BUFFER_CONFIG *yv12 = get_ref_frame_buffer(cpi, ref_frame); + MACROBLOCKD *const xd = &x->e_mbd; + MODE_INFO *const mi = xd->mi[0]; + int_mv *const candidates = x->mbmi_ext->ref_mvs[ref_frame]; + const struct scale_factors *const sf = &cm->frame_refs[ref_frame - 1].sf; + MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext; + + assert(yv12 != NULL); + + // TODO(jkoleszar): Is the UV buffer ever used here? If so, need to make this + // use the UV scaling factors. + vp9_setup_pred_block(xd, yv12_mb[ref_frame], yv12, mi_row, mi_col, sf, sf); + + // Gets an initial list of candidate vectors from neighbours and orders them + vp9_find_mv_refs(cm, xd, mi, ref_frame, candidates, mi_row, mi_col, + mbmi_ext->mode_context); + + // Candidate refinement carried out at encoder and decoder + vp9_find_best_ref_mvs(xd, cm->allow_high_precision_mv, candidates, + &frame_nearest_mv[ref_frame], + &frame_near_mv[ref_frame]); + + // Further refinement that is encode side only to test the top few candidates + // in full and choose the best as the centre point for subsequent searches. + // The current implementation doesn't support scaling. + if (!vp9_is_scaled(sf) && block_size >= BLOCK_8X8) + vp9_mv_pred(cpi, x, yv12_mb[ref_frame][0].buf, yv12->y_stride, ref_frame, + block_size); +} + +static void single_motion_search(VP9_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize, + int mi_row, int mi_col, int_mv *tmp_mv, + int *rate_mv) { + MACROBLOCKD *xd = &x->e_mbd; + const VP9_COMMON *cm = &cpi->common; + MODE_INFO *mi = xd->mi[0]; + struct buf_2d backup_yv12[MAX_MB_PLANE] = { { 0, 0 } }; + int bestsme = INT_MAX; + int step_param; + int sadpb = x->sadperbit16; + MV mvp_full; + int ref = mi->ref_frame[0]; + MV ref_mv = x->mbmi_ext->ref_mvs[ref][0].as_mv; + const MvLimits tmp_mv_limits = x->mv_limits; + int cost_list[5]; + + const YV12_BUFFER_CONFIG *scaled_ref_frame = + vp9_get_scaled_ref_frame(cpi, ref); + + MV pred_mv[3]; + pred_mv[0] = x->mbmi_ext->ref_mvs[ref][0].as_mv; + pred_mv[1] = x->mbmi_ext->ref_mvs[ref][1].as_mv; + pred_mv[2] = x->pred_mv[ref]; + + if (scaled_ref_frame) { + int i; + // Swap out the reference frame for a version that's been scaled to + // match the resolution of the current frame, allowing the existing + // motion search code to be used without additional modifications. + for (i = 0; i < MAX_MB_PLANE; i++) backup_yv12[i] = xd->plane[i].pre[0]; + + vp9_setup_pre_planes(xd, 0, scaled_ref_frame, mi_row, mi_col, NULL); + } + + // Work out the size of the first step in the mv step search. + // 0 here is maximum length first step. 1 is VPXMAX >> 1 etc. + if (cpi->sf.mv.auto_mv_step_size && cm->show_frame) { + // Take wtd average of the step_params based on the last frame's + // max mv magnitude and that based on the best ref mvs of the current + // block for the given reference. + step_param = + (vp9_init_search_range(x->max_mv_context[ref]) + cpi->mv_step_param) / + 2; + } else { + step_param = cpi->mv_step_param; + } + + if (cpi->sf.adaptive_motion_search && bsize < BLOCK_64X64) { + int boffset = + 2 * (b_width_log2_lookup[BLOCK_64X64] - + VPXMIN(b_height_log2_lookup[bsize], b_width_log2_lookup[bsize])); + step_param = VPXMAX(step_param, boffset); + } + + if (cpi->sf.adaptive_motion_search) { + int bwl = b_width_log2_lookup[bsize]; + int bhl = b_height_log2_lookup[bsize]; + int tlevel = x->pred_mv_sad[ref] >> (bwl + bhl + 4); + + if (tlevel < 5) step_param += 2; + + // prev_mv_sad is not setup for dynamically scaled frames. + if (cpi->oxcf.resize_mode != RESIZE_DYNAMIC) { + int i; + for (i = LAST_FRAME; i <= ALTREF_FRAME && cm->show_frame; ++i) { + if ((x->pred_mv_sad[ref] >> 3) > x->pred_mv_sad[i]) { + x->pred_mv[ref].row = 0; + x->pred_mv[ref].col = 0; + tmp_mv->as_int = INVALID_MV; + + if (scaled_ref_frame) { + int i; + for (i = 0; i < MAX_MB_PLANE; ++i) + xd->plane[i].pre[0] = backup_yv12[i]; + } + return; + } + } + } + } + + // Note: MV limits are modified here. Always restore the original values + // after full-pixel motion search. + vp9_set_mv_search_range(&x->mv_limits, &ref_mv); + + mvp_full = pred_mv[x->mv_best_ref_index[ref]]; + + mvp_full.col >>= 3; + mvp_full.row >>= 3; + + bestsme = vp9_full_pixel_search( + cpi, x, bsize, &mvp_full, step_param, cpi->sf.mv.search_method, sadpb, + cond_cost_list(cpi, cost_list), &ref_mv, &tmp_mv->as_mv, INT_MAX, 1); + + x->mv_limits = tmp_mv_limits; + + if (bestsme < INT_MAX) { + uint32_t dis; /* TODO: use dis in distortion calculation later. */ + cpi->find_fractional_mv_step( + x, &tmp_mv->as_mv, &ref_mv, cm->allow_high_precision_mv, x->errorperbit, + &cpi->fn_ptr[bsize], cpi->sf.mv.subpel_force_stop, + cpi->sf.mv.subpel_iters_per_step, cond_cost_list(cpi, cost_list), + x->nmvjointcost, x->mvcost, &dis, &x->pred_sse[ref], NULL, 0, 0); + } + *rate_mv = vp9_mv_bit_cost(&tmp_mv->as_mv, &ref_mv, x->nmvjointcost, + x->mvcost, MV_COST_WEIGHT); + + if (cpi->sf.adaptive_motion_search) x->pred_mv[ref] = tmp_mv->as_mv; + + if (scaled_ref_frame) { + int i; + for (i = 0; i < MAX_MB_PLANE; i++) xd->plane[i].pre[0] = backup_yv12[i]; + } +} + +static INLINE void restore_dst_buf(MACROBLOCKD *xd, + uint8_t *orig_dst[MAX_MB_PLANE], + int orig_dst_stride[MAX_MB_PLANE]) { + int i; + for (i = 0; i < MAX_MB_PLANE; i++) { + xd->plane[i].dst.buf = orig_dst[i]; + xd->plane[i].dst.stride = orig_dst_stride[i]; + } +} + +// In some situations we want to discount tha pparent cost of a new motion +// vector. Where there is a subtle motion field and especially where there is +// low spatial complexity then it can be hard to cover the cost of a new motion +// vector in a single block, even if that motion vector reduces distortion. +// However, once established that vector may be usable through the nearest and +// near mv modes to reduce distortion in subsequent blocks and also improve +// visual quality. +static int discount_newmv_test(const VP9_COMP *cpi, int this_mode, + int_mv this_mv, + int_mv (*mode_mv)[MAX_REF_FRAMES], + int ref_frame) { + return (!cpi->rc.is_src_frame_alt_ref && (this_mode == NEWMV) && + (this_mv.as_int != 0) && + ((mode_mv[NEARESTMV][ref_frame].as_int == 0) || + (mode_mv[NEARESTMV][ref_frame].as_int == INVALID_MV)) && + ((mode_mv[NEARMV][ref_frame].as_int == 0) || + (mode_mv[NEARMV][ref_frame].as_int == INVALID_MV))); +} + +static int64_t handle_inter_mode( + VP9_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize, int *rate2, + int64_t *distortion, int *skippable, int *rate_y, int *rate_uv, + int *disable_skip, int_mv (*mode_mv)[MAX_REF_FRAMES], int mi_row, + int mi_col, int_mv single_newmv[MAX_REF_FRAMES], + INTERP_FILTER (*single_filter)[MAX_REF_FRAMES], + int (*single_skippable)[MAX_REF_FRAMES], int64_t *psse, + const int64_t ref_best_rd, int64_t *mask_filter, int64_t filter_cache[]) { + VP9_COMMON *cm = &cpi->common; + MACROBLOCKD *xd = &x->e_mbd; + MODE_INFO *mi = xd->mi[0]; + MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext; + const int is_comp_pred = has_second_ref(mi); + const int this_mode = mi->mode; + int_mv *frame_mv = mode_mv[this_mode]; + int i; + int refs[2] = { mi->ref_frame[0], + (mi->ref_frame[1] < 0 ? 0 : mi->ref_frame[1]) }; + int_mv cur_mv[2]; +#if CONFIG_VP9_HIGHBITDEPTH + DECLARE_ALIGNED(16, uint16_t, tmp_buf16[MAX_MB_PLANE * 64 * 64]); + uint8_t *tmp_buf; +#else + DECLARE_ALIGNED(16, uint8_t, tmp_buf[MAX_MB_PLANE * 64 * 64]); +#endif // CONFIG_VP9_HIGHBITDEPTH + int pred_exists = 0; + int intpel_mv; + int64_t rd, tmp_rd, best_rd = INT64_MAX; + int best_needs_copy = 0; + uint8_t *orig_dst[MAX_MB_PLANE]; + int orig_dst_stride[MAX_MB_PLANE]; + int rs = 0; + INTERP_FILTER best_filter = SWITCHABLE; + uint8_t skip_txfm[MAX_MB_PLANE << 2] = { 0 }; + int64_t bsse[MAX_MB_PLANE << 2] = { 0 }; + + int bsl = mi_width_log2_lookup[bsize]; + int pred_filter_search = + cpi->sf.cb_pred_filter_search + ? (((mi_row + mi_col) >> bsl) + + get_chessboard_index(cm->current_video_frame)) & + 0x1 + : 0; + + int skip_txfm_sb = 0; + int64_t skip_sse_sb = INT64_MAX; + int64_t distortion_y = 0, distortion_uv = 0; + +#if CONFIG_VP9_HIGHBITDEPTH + if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { + tmp_buf = CONVERT_TO_BYTEPTR(tmp_buf16); + } else { + tmp_buf = (uint8_t *)tmp_buf16; + } +#endif // CONFIG_VP9_HIGHBITDEPTH + + if (pred_filter_search) { + INTERP_FILTER af = SWITCHABLE, lf = SWITCHABLE; + if (xd->above_mi && is_inter_block(xd->above_mi)) + af = xd->above_mi->interp_filter; + if (xd->left_mi && is_inter_block(xd->left_mi)) + lf = xd->left_mi->interp_filter; + + if ((this_mode != NEWMV) || (af == lf)) best_filter = af; + } + + if (is_comp_pred) { + if (frame_mv[refs[0]].as_int == INVALID_MV || + frame_mv[refs[1]].as_int == INVALID_MV) + return INT64_MAX; + + if (cpi->sf.adaptive_mode_search) { + if (single_filter[this_mode][refs[0]] == + single_filter[this_mode][refs[1]]) + best_filter = single_filter[this_mode][refs[0]]; + } + } + + if (this_mode == NEWMV) { + int rate_mv; + if (is_comp_pred) { + // Initialize mv using single prediction mode result. + frame_mv[refs[0]].as_int = single_newmv[refs[0]].as_int; + frame_mv[refs[1]].as_int = single_newmv[refs[1]].as_int; + + if (cpi->sf.comp_inter_joint_search_thresh <= bsize) { + joint_motion_search(cpi, x, bsize, frame_mv, mi_row, mi_col, + single_newmv, &rate_mv); + } else { + rate_mv = vp9_mv_bit_cost(&frame_mv[refs[0]].as_mv, + &x->mbmi_ext->ref_mvs[refs[0]][0].as_mv, + x->nmvjointcost, x->mvcost, MV_COST_WEIGHT); + rate_mv += vp9_mv_bit_cost(&frame_mv[refs[1]].as_mv, + &x->mbmi_ext->ref_mvs[refs[1]][0].as_mv, + x->nmvjointcost, x->mvcost, MV_COST_WEIGHT); + } + *rate2 += rate_mv; + } else { + int_mv tmp_mv; + single_motion_search(cpi, x, bsize, mi_row, mi_col, &tmp_mv, &rate_mv); + if (tmp_mv.as_int == INVALID_MV) return INT64_MAX; + + frame_mv[refs[0]].as_int = xd->mi[0]->bmi[0].as_mv[0].as_int = + tmp_mv.as_int; + single_newmv[refs[0]].as_int = tmp_mv.as_int; + + // Estimate the rate implications of a new mv but discount this + // under certain circumstances where we want to help initiate a weak + // motion field, where the distortion gain for a single block may not + // be enough to overcome the cost of a new mv. + if (discount_newmv_test(cpi, this_mode, tmp_mv, mode_mv, refs[0])) { + *rate2 += VPXMAX((rate_mv / NEW_MV_DISCOUNT_FACTOR), 1); + } else { + *rate2 += rate_mv; + } + } + } + + for (i = 0; i < is_comp_pred + 1; ++i) { + cur_mv[i] = frame_mv[refs[i]]; + // Clip "next_nearest" so that it does not extend to far out of image + if (this_mode != NEWMV) clamp_mv2(&cur_mv[i].as_mv, xd); + + if (mv_check_bounds(&x->mv_limits, &cur_mv[i].as_mv)) return INT64_MAX; + mi->mv[i].as_int = cur_mv[i].as_int; + } + + // do first prediction into the destination buffer. Do the next + // prediction into a temporary buffer. Then keep track of which one + // of these currently holds the best predictor, and use the other + // one for future predictions. In the end, copy from tmp_buf to + // dst if necessary. + for (i = 0; i < MAX_MB_PLANE; i++) { + orig_dst[i] = xd->plane[i].dst.buf; + orig_dst_stride[i] = xd->plane[i].dst.stride; + } + + // We don't include the cost of the second reference here, because there + // are only two options: Last/ARF or Golden/ARF; The second one is always + // known, which is ARF. + // + // Under some circumstances we discount the cost of new mv mode to encourage + // initiation of a motion field. + if (discount_newmv_test(cpi, this_mode, frame_mv[refs[0]], mode_mv, + refs[0])) { + *rate2 += + VPXMIN(cost_mv_ref(cpi, this_mode, mbmi_ext->mode_context[refs[0]]), + cost_mv_ref(cpi, NEARESTMV, mbmi_ext->mode_context[refs[0]])); + } else { + *rate2 += cost_mv_ref(cpi, this_mode, mbmi_ext->mode_context[refs[0]]); + } + + if (RDCOST(x->rdmult, x->rddiv, *rate2, 0) > ref_best_rd && + mi->mode != NEARESTMV) + return INT64_MAX; + + pred_exists = 0; + // Are all MVs integer pel for Y and UV + intpel_mv = !mv_has_subpel(&mi->mv[0].as_mv); + if (is_comp_pred) intpel_mv &= !mv_has_subpel(&mi->mv[1].as_mv); + + // Search for best switchable filter by checking the variance of + // pred error irrespective of whether the filter will be used + for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; ++i) filter_cache[i] = INT64_MAX; + + if (cm->interp_filter != BILINEAR) { + if (x->source_variance < cpi->sf.disable_filter_search_var_thresh) { + best_filter = EIGHTTAP; + } else if (best_filter == SWITCHABLE) { + int newbest; + int tmp_rate_sum = 0; + int64_t tmp_dist_sum = 0; + + for (i = 0; i < SWITCHABLE_FILTERS; ++i) { + int j; + int64_t rs_rd; + int tmp_skip_sb = 0; + int64_t tmp_skip_sse = INT64_MAX; + + mi->interp_filter = i; + rs = vp9_get_switchable_rate(cpi, xd); + rs_rd = RDCOST(x->rdmult, x->rddiv, rs, 0); + + if (i > 0 && intpel_mv) { + rd = RDCOST(x->rdmult, x->rddiv, tmp_rate_sum, tmp_dist_sum); + filter_cache[i] = rd; + filter_cache[SWITCHABLE_FILTERS] = + VPXMIN(filter_cache[SWITCHABLE_FILTERS], rd + rs_rd); + if (cm->interp_filter == SWITCHABLE) rd += rs_rd; + *mask_filter = VPXMAX(*mask_filter, rd); + } else { + int rate_sum = 0; + int64_t dist_sum = 0; + if (i > 0 && cpi->sf.adaptive_interp_filter_search && + (cpi->sf.interp_filter_search_mask & (1 << i))) { + rate_sum = INT_MAX; + dist_sum = INT64_MAX; + continue; + } + + if ((cm->interp_filter == SWITCHABLE && (!i || best_needs_copy)) || + (cm->interp_filter != SWITCHABLE && + (cm->interp_filter == mi->interp_filter || + (i == 0 && intpel_mv)))) { + restore_dst_buf(xd, orig_dst, orig_dst_stride); + } else { + for (j = 0; j < MAX_MB_PLANE; j++) { + xd->plane[j].dst.buf = tmp_buf + j * 64 * 64; + xd->plane[j].dst.stride = 64; + } + } + vp9_build_inter_predictors_sb(xd, mi_row, mi_col, bsize); + model_rd_for_sb(cpi, bsize, x, xd, &rate_sum, &dist_sum, &tmp_skip_sb, + &tmp_skip_sse); + + rd = RDCOST(x->rdmult, x->rddiv, rate_sum, dist_sum); + filter_cache[i] = rd; + filter_cache[SWITCHABLE_FILTERS] = + VPXMIN(filter_cache[SWITCHABLE_FILTERS], rd + rs_rd); + if (cm->interp_filter == SWITCHABLE) rd += rs_rd; + *mask_filter = VPXMAX(*mask_filter, rd); + + if (i == 0 && intpel_mv) { + tmp_rate_sum = rate_sum; + tmp_dist_sum = dist_sum; + } + } + + if (i == 0 && cpi->sf.use_rd_breakout && ref_best_rd < INT64_MAX) { + if (rd / 2 > ref_best_rd) { + restore_dst_buf(xd, orig_dst, orig_dst_stride); + return INT64_MAX; + } + } + newbest = i == 0 || rd < best_rd; + + if (newbest) { + best_rd = rd; + best_filter = mi->interp_filter; + if (cm->interp_filter == SWITCHABLE && i && !intpel_mv) + best_needs_copy = !best_needs_copy; + } + + if ((cm->interp_filter == SWITCHABLE && newbest) || + (cm->interp_filter != SWITCHABLE && + cm->interp_filter == mi->interp_filter)) { + pred_exists = 1; + tmp_rd = best_rd; + + skip_txfm_sb = tmp_skip_sb; + skip_sse_sb = tmp_skip_sse; + memcpy(skip_txfm, x->skip_txfm, sizeof(skip_txfm)); + memcpy(bsse, x->bsse, sizeof(bsse)); + } + } + restore_dst_buf(xd, orig_dst, orig_dst_stride); + } + } + // Set the appropriate filter + mi->interp_filter = + cm->interp_filter != SWITCHABLE ? cm->interp_filter : best_filter; + rs = cm->interp_filter == SWITCHABLE ? vp9_get_switchable_rate(cpi, xd) : 0; + + if (pred_exists) { + if (best_needs_copy) { + // again temporarily set the buffers to local memory to prevent a memcpy + for (i = 0; i < MAX_MB_PLANE; i++) { + xd->plane[i].dst.buf = tmp_buf + i * 64 * 64; + xd->plane[i].dst.stride = 64; + } + } + rd = tmp_rd + RDCOST(x->rdmult, x->rddiv, rs, 0); + } else { + int tmp_rate; + int64_t tmp_dist; + // Handles the special case when a filter that is not in the + // switchable list (ex. bilinear) is indicated at the frame level, or + // skip condition holds. + vp9_build_inter_predictors_sb(xd, mi_row, mi_col, bsize); + model_rd_for_sb(cpi, bsize, x, xd, &tmp_rate, &tmp_dist, &skip_txfm_sb, + &skip_sse_sb); + rd = RDCOST(x->rdmult, x->rddiv, rs + tmp_rate, tmp_dist); + memcpy(skip_txfm, x->skip_txfm, sizeof(skip_txfm)); + memcpy(bsse, x->bsse, sizeof(bsse)); + } + + if (!is_comp_pred) single_filter[this_mode][refs[0]] = mi->interp_filter; + + if (cpi->sf.adaptive_mode_search) + if (is_comp_pred) + if (single_skippable[this_mode][refs[0]] && + single_skippable[this_mode][refs[1]]) + memset(skip_txfm, SKIP_TXFM_AC_DC, sizeof(skip_txfm)); + + if (cpi->sf.use_rd_breakout && ref_best_rd < INT64_MAX) { + // if current pred_error modeled rd is substantially more than the best + // so far, do not bother doing full rd + if (rd / 2 > ref_best_rd) { + restore_dst_buf(xd, orig_dst, orig_dst_stride); + return INT64_MAX; + } + } + + if (cm->interp_filter == SWITCHABLE) *rate2 += rs; + + memcpy(x->skip_txfm, skip_txfm, sizeof(skip_txfm)); + memcpy(x->bsse, bsse, sizeof(bsse)); + + if (!skip_txfm_sb) { + int skippable_y, skippable_uv; + int64_t sseuv = INT64_MAX; + int64_t rdcosty = INT64_MAX; + + // Y cost and distortion + vp9_subtract_plane(x, bsize, 0); + super_block_yrd(cpi, x, rate_y, &distortion_y, &skippable_y, psse, bsize, + ref_best_rd); + + if (*rate_y == INT_MAX) { + *rate2 = INT_MAX; + *distortion = INT64_MAX; + restore_dst_buf(xd, orig_dst, orig_dst_stride); + return INT64_MAX; + } + + *rate2 += *rate_y; + *distortion += distortion_y; + + rdcosty = RDCOST(x->rdmult, x->rddiv, *rate2, *distortion); + rdcosty = VPXMIN(rdcosty, RDCOST(x->rdmult, x->rddiv, 0, *psse)); + + if (!super_block_uvrd(cpi, x, rate_uv, &distortion_uv, &skippable_uv, + &sseuv, bsize, ref_best_rd - rdcosty)) { + *rate2 = INT_MAX; + *distortion = INT64_MAX; + restore_dst_buf(xd, orig_dst, orig_dst_stride); + return INT64_MAX; + } + + *psse += sseuv; + *rate2 += *rate_uv; + *distortion += distortion_uv; + *skippable = skippable_y && skippable_uv; + } else { + x->skip = 1; + *disable_skip = 1; + + // The cost of skip bit needs to be added. + *rate2 += vp9_cost_bit(vp9_get_skip_prob(cm, xd), 1); + + *distortion = skip_sse_sb; + } + + if (!is_comp_pred) single_skippable[this_mode][refs[0]] = *skippable; + + restore_dst_buf(xd, orig_dst, orig_dst_stride); + return 0; // The rate-distortion cost will be re-calculated by caller. +} + +void vp9_rd_pick_intra_mode_sb(VP9_COMP *cpi, MACROBLOCK *x, RD_COST *rd_cost, + BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx, + int64_t best_rd) { + VP9_COMMON *const cm = &cpi->common; + MACROBLOCKD *const xd = &x->e_mbd; + struct macroblockd_plane *const pd = xd->plane; + int rate_y = 0, rate_uv = 0, rate_y_tokenonly = 0, rate_uv_tokenonly = 0; + int y_skip = 0, uv_skip = 0; + int64_t dist_y = 0, dist_uv = 0; + TX_SIZE max_uv_tx_size; + x->skip_encode = 0; + ctx->skip = 0; + xd->mi[0]->ref_frame[0] = INTRA_FRAME; + xd->mi[0]->ref_frame[1] = NONE; + // Initialize interp_filter here so we do not have to check for inter block + // modes in get_pred_context_switchable_interp() + xd->mi[0]->interp_filter = SWITCHABLE_FILTERS; + + if (bsize >= BLOCK_8X8) { + if (rd_pick_intra_sby_mode(cpi, x, &rate_y, &rate_y_tokenonly, &dist_y, + &y_skip, bsize, best_rd) >= best_rd) { + rd_cost->rate = INT_MAX; + return; + } + } else { + y_skip = 0; + if (rd_pick_intra_sub_8x8_y_mode(cpi, x, &rate_y, &rate_y_tokenonly, + &dist_y, best_rd) >= best_rd) { + rd_cost->rate = INT_MAX; + return; + } + } + max_uv_tx_size = uv_txsize_lookup[bsize][xd->mi[0]->tx_size] + [pd[1].subsampling_x][pd[1].subsampling_y]; + rd_pick_intra_sbuv_mode(cpi, x, ctx, &rate_uv, &rate_uv_tokenonly, &dist_uv, + &uv_skip, VPXMAX(BLOCK_8X8, bsize), max_uv_tx_size); + + if (y_skip && uv_skip) { + rd_cost->rate = rate_y + rate_uv - rate_y_tokenonly - rate_uv_tokenonly + + vp9_cost_bit(vp9_get_skip_prob(cm, xd), 1); + rd_cost->dist = dist_y + dist_uv; + } else { + rd_cost->rate = + rate_y + rate_uv + vp9_cost_bit(vp9_get_skip_prob(cm, xd), 0); + rd_cost->dist = dist_y + dist_uv; + } + + ctx->mic = *xd->mi[0]; + ctx->mbmi_ext = *x->mbmi_ext; + rd_cost->rdcost = RDCOST(x->rdmult, x->rddiv, rd_cost->rate, rd_cost->dist); +} + +// This function is designed to apply a bias or adjustment to an rd value based +// on the relative variance of the source and reconstruction. +#define VERY_LOW_VAR_THRESH 2 +#define LOW_VAR_THRESH 5 +#define VAR_MULT 100 +static unsigned int max_var_adjust[VP9E_CONTENT_INVALID] = { 16, 16, 100 }; + +static void rd_variance_adjustment(VP9_COMP *cpi, MACROBLOCK *x, + BLOCK_SIZE bsize, int64_t *this_rd, + MV_REFERENCE_FRAME ref_frame, + unsigned int source_variance) { + MACROBLOCKD *const xd = &x->e_mbd; + unsigned int rec_variance; + unsigned int src_variance; + unsigned int src_rec_min; + unsigned int absvar_diff = 0; + unsigned int var_factor = 0; + unsigned int adj_max; + vp9e_tune_content content_type = cpi->oxcf.content; + + if (*this_rd == INT64_MAX) return; + +#if CONFIG_VP9_HIGHBITDEPTH + if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { + if (source_variance > 0) { + rec_variance = vp9_high_get_sby_perpixel_variance(cpi, &xd->plane[0].dst, + bsize, xd->bd); + src_variance = source_variance; + } else { + rec_variance = + vp9_high_get_sby_variance(cpi, &xd->plane[0].dst, bsize, xd->bd); + src_variance = + vp9_high_get_sby_variance(cpi, &x->plane[0].src, bsize, xd->bd); + } + } else { + if (source_variance > 0) { + rec_variance = + vp9_get_sby_perpixel_variance(cpi, &xd->plane[0].dst, bsize); + src_variance = source_variance; + } else { + rec_variance = vp9_get_sby_variance(cpi, &xd->plane[0].dst, bsize); + src_variance = vp9_get_sby_variance(cpi, &x->plane[0].src, bsize); + } + } +#else + if (source_variance > 0) { + rec_variance = vp9_get_sby_perpixel_variance(cpi, &xd->plane[0].dst, bsize); + src_variance = source_variance; + } else { + rec_variance = vp9_get_sby_variance(cpi, &xd->plane[0].dst, bsize); + src_variance = vp9_get_sby_variance(cpi, &x->plane[0].src, bsize); + } +#endif // CONFIG_VP9_HIGHBITDEPTH + + // Lower of source (raw per pixel value) and recon variance. Note that + // if the source per pixel is 0 then the recon value here will not be per + // pixel (see above) so will likely be much larger. + src_rec_min = VPXMIN(source_variance, rec_variance); + + if (src_rec_min > LOW_VAR_THRESH) return; + + absvar_diff = (src_variance > rec_variance) ? (src_variance - rec_variance) + : (rec_variance - src_variance); + + adj_max = max_var_adjust[content_type]; + + var_factor = + (unsigned int)((int64_t)VAR_MULT * absvar_diff) / VPXMAX(1, src_variance); + var_factor = VPXMIN(adj_max, var_factor); + + *this_rd += (*this_rd * var_factor) / 100; + + if (content_type == VP9E_CONTENT_FILM) { + if (src_rec_min <= VERY_LOW_VAR_THRESH) { + if (ref_frame == INTRA_FRAME) *this_rd *= 2; + if (bsize > 6) *this_rd *= 2; + } + } +} + +// Do we have an internal image edge (e.g. formatting bars). +int vp9_internal_image_edge(VP9_COMP *cpi) { + return (cpi->oxcf.pass == 2) && + ((cpi->twopass.this_frame_stats.inactive_zone_rows > 0) || + (cpi->twopass.this_frame_stats.inactive_zone_cols > 0)); +} + +// Checks to see if a super block is on a horizontal image edge. +// In most cases this is the "real" edge unless there are formatting +// bars embedded in the stream. +int vp9_active_h_edge(VP9_COMP *cpi, int mi_row, int mi_step) { + int top_edge = 0; + int bottom_edge = cpi->common.mi_rows; + int is_active_h_edge = 0; + + // For two pass account for any formatting bars detected. + if (cpi->oxcf.pass == 2) { + TWO_PASS *twopass = &cpi->twopass; + + // The inactive region is specified in MBs not mi units. + // The image edge is in the following MB row. + top_edge += (int)(twopass->this_frame_stats.inactive_zone_rows * 2); + + bottom_edge -= (int)(twopass->this_frame_stats.inactive_zone_rows * 2); + bottom_edge = VPXMAX(top_edge, bottom_edge); + } + + if (((top_edge >= mi_row) && (top_edge < (mi_row + mi_step))) || + ((bottom_edge >= mi_row) && (bottom_edge < (mi_row + mi_step)))) { + is_active_h_edge = 1; + } + return is_active_h_edge; +} + +// Checks to see if a super block is on a vertical image edge. +// In most cases this is the "real" edge unless there are formatting +// bars embedded in the stream. +int vp9_active_v_edge(VP9_COMP *cpi, int mi_col, int mi_step) { + int left_edge = 0; + int right_edge = cpi->common.mi_cols; + int is_active_v_edge = 0; + + // For two pass account for any formatting bars detected. + if (cpi->oxcf.pass == 2) { + TWO_PASS *twopass = &cpi->twopass; + + // The inactive region is specified in MBs not mi units. + // The image edge is in the following MB row. + left_edge += (int)(twopass->this_frame_stats.inactive_zone_cols * 2); + + right_edge -= (int)(twopass->this_frame_stats.inactive_zone_cols * 2); + right_edge = VPXMAX(left_edge, right_edge); + } + + if (((left_edge >= mi_col) && (left_edge < (mi_col + mi_step))) || + ((right_edge >= mi_col) && (right_edge < (mi_col + mi_step)))) { + is_active_v_edge = 1; + } + return is_active_v_edge; +} + +// Checks to see if a super block is at the edge of the active image. +// In most cases this is the "real" edge unless there are formatting +// bars embedded in the stream. +int vp9_active_edge_sb(VP9_COMP *cpi, int mi_row, int mi_col) { + return vp9_active_h_edge(cpi, mi_row, MI_BLOCK_SIZE) || + vp9_active_v_edge(cpi, mi_col, MI_BLOCK_SIZE); +} + +void vp9_rd_pick_inter_mode_sb(VP9_COMP *cpi, TileDataEnc *tile_data, + MACROBLOCK *x, int mi_row, int mi_col, + RD_COST *rd_cost, BLOCK_SIZE bsize, + PICK_MODE_CONTEXT *ctx, int64_t best_rd_so_far) { + VP9_COMMON *const cm = &cpi->common; + TileInfo *const tile_info = &tile_data->tile_info; + RD_OPT *const rd_opt = &cpi->rd; + SPEED_FEATURES *const sf = &cpi->sf; + MACROBLOCKD *const xd = &x->e_mbd; + MODE_INFO *const mi = xd->mi[0]; + MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext; + const struct segmentation *const seg = &cm->seg; + PREDICTION_MODE this_mode; + MV_REFERENCE_FRAME ref_frame, second_ref_frame; + unsigned char segment_id = mi->segment_id; + int comp_pred, i, k; + int_mv frame_mv[MB_MODE_COUNT][MAX_REF_FRAMES]; + struct buf_2d yv12_mb[4][MAX_MB_PLANE]; + int_mv single_newmv[MAX_REF_FRAMES] = { { 0 } }; + INTERP_FILTER single_inter_filter[MB_MODE_COUNT][MAX_REF_FRAMES]; + int single_skippable[MB_MODE_COUNT][MAX_REF_FRAMES]; + static const int flag_list[4] = { 0, VP9_LAST_FLAG, VP9_GOLD_FLAG, + VP9_ALT_FLAG }; + int64_t best_rd = best_rd_so_far; + int64_t best_pred_diff[REFERENCE_MODES]; + int64_t best_pred_rd[REFERENCE_MODES]; + int64_t best_filter_rd[SWITCHABLE_FILTER_CONTEXTS]; + int64_t best_filter_diff[SWITCHABLE_FILTER_CONTEXTS]; + MODE_INFO best_mbmode; + int best_mode_skippable = 0; + int midx, best_mode_index = -1; + unsigned int ref_costs_single[MAX_REF_FRAMES], ref_costs_comp[MAX_REF_FRAMES]; + vpx_prob comp_mode_p; + int64_t best_intra_rd = INT64_MAX; + unsigned int best_pred_sse = UINT_MAX; + PREDICTION_MODE best_intra_mode = DC_PRED; + int rate_uv_intra[TX_SIZES], rate_uv_tokenonly[TX_SIZES]; + int64_t dist_uv[TX_SIZES]; + int skip_uv[TX_SIZES]; + PREDICTION_MODE mode_uv[TX_SIZES]; + const int intra_cost_penalty = + vp9_get_intra_cost_penalty(cpi, bsize, cm->base_qindex, cm->y_dc_delta_q); + int best_skip2 = 0; + uint8_t ref_frame_skip_mask[2] = { 0 }; + uint16_t mode_skip_mask[MAX_REF_FRAMES] = { 0 }; + int mode_skip_start = sf->mode_skip_start + 1; + const int *const rd_threshes = rd_opt->threshes[segment_id][bsize]; + const int *const rd_thresh_freq_fact = tile_data->thresh_freq_fact[bsize]; + int64_t mode_threshold[MAX_MODES]; + int *tile_mode_map = tile_data->mode_map[bsize]; + int mode_map[MAX_MODES]; // Maintain mode_map information locally to avoid + // lock mechanism involved with reads from + // tile_mode_map + const int mode_search_skip_flags = sf->mode_search_skip_flags; + int64_t mask_filter = 0; + int64_t filter_cache[SWITCHABLE_FILTER_CONTEXTS]; + + vp9_zero(best_mbmode); + + x->skip_encode = sf->skip_encode_frame && x->q_index < QIDX_SKIP_THRESH; + + for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; ++i) filter_cache[i] = INT64_MAX; + + estimate_ref_frame_costs(cm, xd, segment_id, ref_costs_single, ref_costs_comp, + &comp_mode_p); + + for (i = 0; i < REFERENCE_MODES; ++i) best_pred_rd[i] = INT64_MAX; + for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++) + best_filter_rd[i] = INT64_MAX; + for (i = 0; i < TX_SIZES; i++) rate_uv_intra[i] = INT_MAX; + for (i = 0; i < MAX_REF_FRAMES; ++i) x->pred_sse[i] = INT_MAX; + for (i = 0; i < MB_MODE_COUNT; ++i) { + for (k = 0; k < MAX_REF_FRAMES; ++k) { + single_inter_filter[i][k] = SWITCHABLE; + single_skippable[i][k] = 0; + } + } + + rd_cost->rate = INT_MAX; + + for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) { + x->pred_mv_sad[ref_frame] = INT_MAX; + if (cpi->ref_frame_flags & flag_list[ref_frame]) { + assert(get_ref_frame_buffer(cpi, ref_frame) != NULL); + setup_buffer_inter(cpi, x, ref_frame, bsize, mi_row, mi_col, + frame_mv[NEARESTMV], frame_mv[NEARMV], yv12_mb); + } + frame_mv[NEWMV][ref_frame].as_int = INVALID_MV; + frame_mv[ZEROMV][ref_frame].as_int = 0; + } + + for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) { + if (!(cpi->ref_frame_flags & flag_list[ref_frame])) { + // Skip checking missing references in both single and compound reference + // modes. Note that a mode will be skipped if both reference frames + // are masked out. + ref_frame_skip_mask[0] |= (1 << ref_frame); + ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK; + } else if (sf->reference_masking) { + for (i = LAST_FRAME; i <= ALTREF_FRAME; ++i) { + // Skip fixed mv modes for poor references + if ((x->pred_mv_sad[ref_frame] >> 2) > x->pred_mv_sad[i]) { + mode_skip_mask[ref_frame] |= INTER_NEAREST_NEAR_ZERO; + break; + } + } + } + // If the segment reference frame feature is enabled.... + // then do nothing if the current ref frame is not allowed.. + if (segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME) && + get_segdata(seg, segment_id, SEG_LVL_REF_FRAME) != (int)ref_frame) { + ref_frame_skip_mask[0] |= (1 << ref_frame); + ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK; + } + } + + // Disable this drop out case if the ref frame + // segment level feature is enabled for this segment. This is to + // prevent the possibility that we end up unable to pick any mode. + if (!segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME)) { + // Only consider ZEROMV/ALTREF_FRAME for alt ref frame, + // unless ARNR filtering is enabled in which case we want + // an unfiltered alternative. We allow near/nearest as well + // because they may result in zero-zero MVs but be cheaper. + if (cpi->rc.is_src_frame_alt_ref && (cpi->oxcf.arnr_max_frames == 0)) { + ref_frame_skip_mask[0] = (1 << LAST_FRAME) | (1 << GOLDEN_FRAME); + ref_frame_skip_mask[1] = SECOND_REF_FRAME_MASK; + mode_skip_mask[ALTREF_FRAME] = ~INTER_NEAREST_NEAR_ZERO; + if (frame_mv[NEARMV][ALTREF_FRAME].as_int != 0) + mode_skip_mask[ALTREF_FRAME] |= (1 << NEARMV); + if (frame_mv[NEARESTMV][ALTREF_FRAME].as_int != 0) + mode_skip_mask[ALTREF_FRAME] |= (1 << NEARESTMV); + } + } + + if (cpi->rc.is_src_frame_alt_ref) { + if (sf->alt_ref_search_fp) { + mode_skip_mask[ALTREF_FRAME] = 0; + ref_frame_skip_mask[0] = ~(1 << ALTREF_FRAME); + ref_frame_skip_mask[1] = SECOND_REF_FRAME_MASK; + } + } + + if (sf->alt_ref_search_fp) + if (!cm->show_frame && x->pred_mv_sad[GOLDEN_FRAME] < INT_MAX) + if (x->pred_mv_sad[ALTREF_FRAME] > (x->pred_mv_sad[GOLDEN_FRAME] << 1)) + mode_skip_mask[ALTREF_FRAME] |= INTER_ALL; + + if (sf->adaptive_mode_search) { + if (cm->show_frame && !cpi->rc.is_src_frame_alt_ref && + cpi->rc.frames_since_golden >= 3) + if (x->pred_mv_sad[GOLDEN_FRAME] > (x->pred_mv_sad[LAST_FRAME] << 1)) + mode_skip_mask[GOLDEN_FRAME] |= INTER_ALL; + } + + if (bsize > sf->max_intra_bsize) { + ref_frame_skip_mask[0] |= (1 << INTRA_FRAME); + ref_frame_skip_mask[1] |= (1 << INTRA_FRAME); + } + + mode_skip_mask[INTRA_FRAME] |= + ~(sf->intra_y_mode_mask[max_txsize_lookup[bsize]]); + + for (i = 0; i <= LAST_NEW_MV_INDEX; ++i) mode_threshold[i] = 0; + + for (i = LAST_NEW_MV_INDEX + 1; i < MAX_MODES; ++i) + mode_threshold[i] = ((int64_t)rd_threshes[i] * rd_thresh_freq_fact[i]) >> 5; + + midx = sf->schedule_mode_search ? mode_skip_start : 0; + + while (midx > 4) { + uint8_t end_pos = 0; + for (i = 5; i < midx; ++i) { + if (mode_threshold[tile_mode_map[i - 1]] > + mode_threshold[tile_mode_map[i]]) { + uint8_t tmp = tile_mode_map[i]; + tile_mode_map[i] = tile_mode_map[i - 1]; + tile_mode_map[i - 1] = tmp; + end_pos = i; + } + } + midx = end_pos; + } + + memcpy(mode_map, tile_mode_map, sizeof(mode_map)); + + for (midx = 0; midx < MAX_MODES; ++midx) { + int mode_index = mode_map[midx]; + int mode_excluded = 0; + int64_t this_rd = INT64_MAX; + int disable_skip = 0; + int compmode_cost = 0; + int rate2 = 0, rate_y = 0, rate_uv = 0; + int64_t distortion2 = 0, distortion_y = 0, distortion_uv = 0; + int skippable = 0; + int this_skip2 = 0; + int64_t total_sse = INT64_MAX; + int early_term = 0; + + this_mode = vp9_mode_order[mode_index].mode; + ref_frame = vp9_mode_order[mode_index].ref_frame[0]; + second_ref_frame = vp9_mode_order[mode_index].ref_frame[1]; + + vp9_zero(x->sum_y_eobs); + + // Look at the reference frame of the best mode so far and set the + // skip mask to look at a subset of the remaining modes. + if (midx == mode_skip_start && best_mode_index >= 0) { + switch (best_mbmode.ref_frame[0]) { + case INTRA_FRAME: break; + case LAST_FRAME: + ref_frame_skip_mask[0] |= LAST_FRAME_MODE_MASK; + ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK; + break; + case GOLDEN_FRAME: + ref_frame_skip_mask[0] |= GOLDEN_FRAME_MODE_MASK; + ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK; + break; + case ALTREF_FRAME: ref_frame_skip_mask[0] |= ALT_REF_MODE_MASK; break; + case NONE: + case MAX_REF_FRAMES: assert(0 && "Invalid Reference frame"); break; + } + } + + if ((ref_frame_skip_mask[0] & (1 << ref_frame)) && + (ref_frame_skip_mask[1] & (1 << VPXMAX(0, second_ref_frame)))) + continue; + + if (mode_skip_mask[ref_frame] & (1 << this_mode)) continue; + + // Test best rd so far against threshold for trying this mode. + if (best_mode_skippable && sf->schedule_mode_search) + mode_threshold[mode_index] <<= 1; + + if (best_rd < mode_threshold[mode_index]) continue; + + // This is only used in motion vector unit test. + if (cpi->oxcf.motion_vector_unit_test && ref_frame == INTRA_FRAME) continue; + + if (sf->motion_field_mode_search) { + const int mi_width = VPXMIN(num_8x8_blocks_wide_lookup[bsize], + tile_info->mi_col_end - mi_col); + const int mi_height = VPXMIN(num_8x8_blocks_high_lookup[bsize], + tile_info->mi_row_end - mi_row); + const int bsl = mi_width_log2_lookup[bsize]; + int cb_partition_search_ctrl = + (((mi_row + mi_col) >> bsl) + + get_chessboard_index(cm->current_video_frame)) & + 0x1; + MODE_INFO *ref_mi; + int const_motion = 1; + int skip_ref_frame = !cb_partition_search_ctrl; + MV_REFERENCE_FRAME rf = NONE; + int_mv ref_mv; + ref_mv.as_int = INVALID_MV; + + if ((mi_row - 1) >= tile_info->mi_row_start) { + ref_mv = xd->mi[-xd->mi_stride]->mv[0]; + rf = xd->mi[-xd->mi_stride]->ref_frame[0]; + for (i = 0; i < mi_width; ++i) { + ref_mi = xd->mi[-xd->mi_stride + i]; + const_motion &= (ref_mv.as_int == ref_mi->mv[0].as_int) && + (ref_frame == ref_mi->ref_frame[0]); + skip_ref_frame &= (rf == ref_mi->ref_frame[0]); + } + } + + if ((mi_col - 1) >= tile_info->mi_col_start) { + if (ref_mv.as_int == INVALID_MV) ref_mv = xd->mi[-1]->mv[0]; + if (rf == NONE) rf = xd->mi[-1]->ref_frame[0]; + for (i = 0; i < mi_height; ++i) { + ref_mi = xd->mi[i * xd->mi_stride - 1]; + const_motion &= (ref_mv.as_int == ref_mi->mv[0].as_int) && + (ref_frame == ref_mi->ref_frame[0]); + skip_ref_frame &= (rf == ref_mi->ref_frame[0]); + } + } + + if (skip_ref_frame && this_mode != NEARESTMV && this_mode != NEWMV) + if (rf > INTRA_FRAME) + if (ref_frame != rf) continue; + + if (const_motion) + if (this_mode == NEARMV || this_mode == ZEROMV) continue; + } + + comp_pred = second_ref_frame > INTRA_FRAME; + if (comp_pred) { + if (!cpi->allow_comp_inter_inter) continue; + + // Skip compound inter modes if ARF is not available. + if (!(cpi->ref_frame_flags & flag_list[second_ref_frame])) continue; + + // Do not allow compound prediction if the segment level reference frame + // feature is in use as in this case there can only be one reference. + if (segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME)) continue; + + if ((mode_search_skip_flags & FLAG_SKIP_COMP_BESTINTRA) && + best_mode_index >= 0 && best_mbmode.ref_frame[0] == INTRA_FRAME) + continue; + + mode_excluded = cm->reference_mode == SINGLE_REFERENCE; + } else { + if (ref_frame != INTRA_FRAME) + mode_excluded = cm->reference_mode == COMPOUND_REFERENCE; + } + + if (ref_frame == INTRA_FRAME) { + if (sf->adaptive_mode_search) + if ((x->source_variance << num_pels_log2_lookup[bsize]) > best_pred_sse) + continue; + + if (this_mode != DC_PRED) { + // Disable intra modes other than DC_PRED for blocks with low variance + // Threshold for intra skipping based on source variance + // TODO(debargha): Specialize the threshold for super block sizes + const unsigned int skip_intra_var_thresh = 64; + if ((mode_search_skip_flags & FLAG_SKIP_INTRA_LOWVAR) && + x->source_variance < skip_intra_var_thresh) + continue; + // Only search the oblique modes if the best so far is + // one of the neighboring directional modes + if ((mode_search_skip_flags & FLAG_SKIP_INTRA_BESTINTER) && + (this_mode >= D45_PRED && this_mode <= TM_PRED)) { + if (best_mode_index >= 0 && best_mbmode.ref_frame[0] > INTRA_FRAME) + continue; + } + if (mode_search_skip_flags & FLAG_SKIP_INTRA_DIRMISMATCH) { + if (conditional_skipintra(this_mode, best_intra_mode)) continue; + } + } + } else { + const MV_REFERENCE_FRAME ref_frames[2] = { ref_frame, second_ref_frame }; + if (!check_best_zero_mv(cpi, mbmi_ext->mode_context, frame_mv, this_mode, + ref_frames)) + continue; + } + + mi->mode = this_mode; + mi->uv_mode = DC_PRED; + mi->ref_frame[0] = ref_frame; + mi->ref_frame[1] = second_ref_frame; + // Evaluate all sub-pel filters irrespective of whether we can use + // them for this frame. + mi->interp_filter = + cm->interp_filter == SWITCHABLE ? EIGHTTAP : cm->interp_filter; + mi->mv[0].as_int = mi->mv[1].as_int = 0; + + x->skip = 0; + set_ref_ptrs(cm, xd, ref_frame, second_ref_frame); + + // Select prediction reference frames. + for (i = 0; i < MAX_MB_PLANE; i++) { + xd->plane[i].pre[0] = yv12_mb[ref_frame][i]; + if (comp_pred) xd->plane[i].pre[1] = yv12_mb[second_ref_frame][i]; + } + + if (ref_frame == INTRA_FRAME) { + TX_SIZE uv_tx; + struct macroblockd_plane *const pd = &xd->plane[1]; + memset(x->skip_txfm, 0, sizeof(x->skip_txfm)); + super_block_yrd(cpi, x, &rate_y, &distortion_y, &skippable, NULL, bsize, + best_rd); + if (rate_y == INT_MAX) continue; + + uv_tx = uv_txsize_lookup[bsize][mi->tx_size][pd->subsampling_x] + [pd->subsampling_y]; + if (rate_uv_intra[uv_tx] == INT_MAX) { + choose_intra_uv_mode(cpi, x, ctx, bsize, uv_tx, &rate_uv_intra[uv_tx], + &rate_uv_tokenonly[uv_tx], &dist_uv[uv_tx], + &skip_uv[uv_tx], &mode_uv[uv_tx]); + } + + rate_uv = rate_uv_tokenonly[uv_tx]; + distortion_uv = dist_uv[uv_tx]; + skippable = skippable && skip_uv[uv_tx]; + mi->uv_mode = mode_uv[uv_tx]; + + rate2 = rate_y + cpi->mbmode_cost[mi->mode] + rate_uv_intra[uv_tx]; + if (this_mode != DC_PRED && this_mode != TM_PRED) + rate2 += intra_cost_penalty; + distortion2 = distortion_y + distortion_uv; + } else { + this_rd = handle_inter_mode( + cpi, x, bsize, &rate2, &distortion2, &skippable, &rate_y, &rate_uv, + &disable_skip, frame_mv, mi_row, mi_col, single_newmv, + single_inter_filter, single_skippable, &total_sse, best_rd, + &mask_filter, filter_cache); + if (this_rd == INT64_MAX) continue; + + compmode_cost = vp9_cost_bit(comp_mode_p, comp_pred); + + if (cm->reference_mode == REFERENCE_MODE_SELECT) rate2 += compmode_cost; + } + + // Estimate the reference frame signaling cost and add it + // to the rolling cost variable. + if (comp_pred) { + rate2 += ref_costs_comp[ref_frame]; + } else { + rate2 += ref_costs_single[ref_frame]; + } + + if (!disable_skip) { + const vpx_prob skip_prob = vp9_get_skip_prob(cm, xd); + const int skip_cost0 = vp9_cost_bit(skip_prob, 0); + const int skip_cost1 = vp9_cost_bit(skip_prob, 1); + + if (skippable) { + // Back out the coefficient coding costs + rate2 -= (rate_y + rate_uv); + + // Cost the skip mb case + rate2 += skip_cost1; + } else if (ref_frame != INTRA_FRAME && !xd->lossless) { + if (RDCOST(x->rdmult, x->rddiv, rate_y + rate_uv + skip_cost0, + distortion2) < + RDCOST(x->rdmult, x->rddiv, skip_cost1, total_sse)) { + // Add in the cost of the no skip flag. + rate2 += skip_cost0; + } else { + // FIXME(rbultje) make this work for splitmv also + assert(total_sse >= 0); + + rate2 += skip_cost1; + distortion2 = total_sse; + rate2 -= (rate_y + rate_uv); + this_skip2 = 1; + } + } else { + // Add in the cost of the no skip flag. + rate2 += skip_cost0; + } + + // Calculate the final RD estimate for this mode. + this_rd = RDCOST(x->rdmult, x->rddiv, rate2, distortion2); + } + + // Apply an adjustment to the rd value based on the similarity of the + // source variance and reconstructed variance. + rd_variance_adjustment(cpi, x, bsize, &this_rd, ref_frame, + x->source_variance); + + if (ref_frame == INTRA_FRAME) { + // Keep record of best intra rd + if (this_rd < best_intra_rd) { + best_intra_rd = this_rd; + best_intra_mode = mi->mode; + } + } + + if (!disable_skip && ref_frame == INTRA_FRAME) { + for (i = 0; i < REFERENCE_MODES; ++i) + best_pred_rd[i] = VPXMIN(best_pred_rd[i], this_rd); + for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++) + best_filter_rd[i] = VPXMIN(best_filter_rd[i], this_rd); + } + + // Did this mode help.. i.e. is it the new best mode + if (this_rd < best_rd || x->skip) { + int max_plane = MAX_MB_PLANE; + if (!mode_excluded) { + // Note index of best mode so far + best_mode_index = mode_index; + + if (ref_frame == INTRA_FRAME) { + /* required for left and above block mv */ + mi->mv[0].as_int = 0; + max_plane = 1; + // Initialize interp_filter here so we do not have to check for + // inter block modes in get_pred_context_switchable_interp() + mi->interp_filter = SWITCHABLE_FILTERS; + } else { + best_pred_sse = x->pred_sse[ref_frame]; + } + + rd_cost->rate = rate2; + rd_cost->dist = distortion2; + rd_cost->rdcost = this_rd; + best_rd = this_rd; + best_mbmode = *mi; + best_skip2 = this_skip2; + best_mode_skippable = skippable; + + if (!x->select_tx_size) swap_block_ptr(x, ctx, 1, 0, 0, max_plane); + memcpy(ctx->zcoeff_blk, x->zcoeff_blk[mi->tx_size], + sizeof(ctx->zcoeff_blk[0]) * ctx->num_4x4_blk); + ctx->sum_y_eobs = x->sum_y_eobs[mi->tx_size]; + + // TODO(debargha): enhance this test with a better distortion prediction + // based on qp, activity mask and history + if ((mode_search_skip_flags & FLAG_EARLY_TERMINATE) && + (mode_index > MIN_EARLY_TERM_INDEX)) { + int qstep = xd->plane[0].dequant[1]; + // TODO(debargha): Enhance this by specializing for each mode_index + int scale = 4; +#if CONFIG_VP9_HIGHBITDEPTH + if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { + qstep >>= (xd->bd - 8); + } +#endif // CONFIG_VP9_HIGHBITDEPTH + if (x->source_variance < UINT_MAX) { + const int var_adjust = (x->source_variance < 16); + scale -= var_adjust; + } + if (ref_frame > INTRA_FRAME && distortion2 * scale < qstep * qstep) { + early_term = 1; + } + } + } + } + + /* keep record of best compound/single-only prediction */ + if (!disable_skip && ref_frame != INTRA_FRAME) { + int64_t single_rd, hybrid_rd, single_rate, hybrid_rate; + + if (cm->reference_mode == REFERENCE_MODE_SELECT) { + single_rate = rate2 - compmode_cost; + hybrid_rate = rate2; + } else { + single_rate = rate2; + hybrid_rate = rate2 + compmode_cost; + } + + single_rd = RDCOST(x->rdmult, x->rddiv, single_rate, distortion2); + hybrid_rd = RDCOST(x->rdmult, x->rddiv, hybrid_rate, distortion2); + + if (!comp_pred) { + if (single_rd < best_pred_rd[SINGLE_REFERENCE]) + best_pred_rd[SINGLE_REFERENCE] = single_rd; + } else { + if (single_rd < best_pred_rd[COMPOUND_REFERENCE]) + best_pred_rd[COMPOUND_REFERENCE] = single_rd; + } + if (hybrid_rd < best_pred_rd[REFERENCE_MODE_SELECT]) + best_pred_rd[REFERENCE_MODE_SELECT] = hybrid_rd; + + /* keep record of best filter type */ + if (!mode_excluded && cm->interp_filter != BILINEAR) { + int64_t ref = + filter_cache[cm->interp_filter == SWITCHABLE ? SWITCHABLE_FILTERS + : cm->interp_filter]; + + for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++) { + int64_t adj_rd; + if (ref == INT64_MAX) + adj_rd = 0; + else if (filter_cache[i] == INT64_MAX) + // when early termination is triggered, the encoder does not have + // access to the rate-distortion cost. it only knows that the cost + // should be above the maximum valid value. hence it takes the known + // maximum plus an arbitrary constant as the rate-distortion cost. + adj_rd = mask_filter - ref + 10; + else + adj_rd = filter_cache[i] - ref; + + adj_rd += this_rd; + best_filter_rd[i] = VPXMIN(best_filter_rd[i], adj_rd); + } + } + } + + if (early_term) break; + + if (x->skip && !comp_pred) break; + } + + // The inter modes' rate costs are not calculated precisely in some cases. + // Therefore, sometimes, NEWMV is chosen instead of NEARESTMV, NEARMV, and + // ZEROMV. Here, checks are added for those cases, and the mode decisions + // are corrected. + if (best_mbmode.mode == NEWMV) { + const MV_REFERENCE_FRAME refs[2] = { best_mbmode.ref_frame[0], + best_mbmode.ref_frame[1] }; + int comp_pred_mode = refs[1] > INTRA_FRAME; + + if (frame_mv[NEARESTMV][refs[0]].as_int == best_mbmode.mv[0].as_int && + ((comp_pred_mode && + frame_mv[NEARESTMV][refs[1]].as_int == best_mbmode.mv[1].as_int) || + !comp_pred_mode)) + best_mbmode.mode = NEARESTMV; + else if (frame_mv[NEARMV][refs[0]].as_int == best_mbmode.mv[0].as_int && + ((comp_pred_mode && + frame_mv[NEARMV][refs[1]].as_int == best_mbmode.mv[1].as_int) || + !comp_pred_mode)) + best_mbmode.mode = NEARMV; + else if (best_mbmode.mv[0].as_int == 0 && + ((comp_pred_mode && best_mbmode.mv[1].as_int == 0) || + !comp_pred_mode)) + best_mbmode.mode = ZEROMV; + } + + if (best_mode_index < 0 || best_rd >= best_rd_so_far) { + // If adaptive interp filter is enabled, then the current leaf node of 8x8 + // data is needed for sub8x8. Hence preserve the context. + if (cpi->row_mt && bsize == BLOCK_8X8) ctx->mic = *xd->mi[0]; + rd_cost->rate = INT_MAX; + rd_cost->rdcost = INT64_MAX; + return; + } + + // If we used an estimate for the uv intra rd in the loop above... + if (sf->use_uv_intra_rd_estimate) { + // Do Intra UV best rd mode selection if best mode choice above was intra. + if (best_mbmode.ref_frame[0] == INTRA_FRAME) { + TX_SIZE uv_tx_size; + *mi = best_mbmode; + uv_tx_size = get_uv_tx_size(mi, &xd->plane[1]); + rd_pick_intra_sbuv_mode(cpi, x, ctx, &rate_uv_intra[uv_tx_size], + &rate_uv_tokenonly[uv_tx_size], + &dist_uv[uv_tx_size], &skip_uv[uv_tx_size], + bsize < BLOCK_8X8 ? BLOCK_8X8 : bsize, + uv_tx_size); + } + } + + assert((cm->interp_filter == SWITCHABLE) || + (cm->interp_filter == best_mbmode.interp_filter) || + !is_inter_block(&best_mbmode)); + + if (!cpi->rc.is_src_frame_alt_ref) + vp9_update_rd_thresh_fact(tile_data->thresh_freq_fact, + sf->adaptive_rd_thresh, bsize, best_mode_index); + + // macroblock modes + *mi = best_mbmode; + x->skip |= best_skip2; + + for (i = 0; i < REFERENCE_MODES; ++i) { + if (best_pred_rd[i] == INT64_MAX) + best_pred_diff[i] = INT_MIN; + else + best_pred_diff[i] = best_rd - best_pred_rd[i]; + } + + if (!x->skip) { + for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++) { + if (best_filter_rd[i] == INT64_MAX) + best_filter_diff[i] = 0; + else + best_filter_diff[i] = best_rd - best_filter_rd[i]; + } + if (cm->interp_filter == SWITCHABLE) + assert(best_filter_diff[SWITCHABLE_FILTERS] == 0); + } else { + vp9_zero(best_filter_diff); + } + + // TODO(yunqingwang): Moving this line in front of the above best_filter_diff + // updating code causes PSNR loss. Need to figure out the confliction. + x->skip |= best_mode_skippable; + + if (!x->skip && !x->select_tx_size) { + int has_high_freq_coeff = 0; + int plane; + int max_plane = is_inter_block(xd->mi[0]) ? MAX_MB_PLANE : 1; + for (plane = 0; plane < max_plane; ++plane) { + x->plane[plane].eobs = ctx->eobs_pbuf[plane][1]; + has_high_freq_coeff |= vp9_has_high_freq_in_plane(x, bsize, plane); + } + + for (plane = max_plane; plane < MAX_MB_PLANE; ++plane) { + x->plane[plane].eobs = ctx->eobs_pbuf[plane][2]; + has_high_freq_coeff |= vp9_has_high_freq_in_plane(x, bsize, plane); + } + + best_mode_skippable |= !has_high_freq_coeff; + } + + assert(best_mode_index >= 0); + + store_coding_context(x, ctx, best_mode_index, best_pred_diff, + best_filter_diff, best_mode_skippable); +} + +void vp9_rd_pick_inter_mode_sb_seg_skip(VP9_COMP *cpi, TileDataEnc *tile_data, + MACROBLOCK *x, RD_COST *rd_cost, + BLOCK_SIZE bsize, + PICK_MODE_CONTEXT *ctx, + int64_t best_rd_so_far) { + VP9_COMMON *const cm = &cpi->common; + MACROBLOCKD *const xd = &x->e_mbd; + MODE_INFO *const mi = xd->mi[0]; + unsigned char segment_id = mi->segment_id; + const int comp_pred = 0; + int i; + int64_t best_pred_diff[REFERENCE_MODES]; + int64_t best_filter_diff[SWITCHABLE_FILTER_CONTEXTS]; + unsigned int ref_costs_single[MAX_REF_FRAMES], ref_costs_comp[MAX_REF_FRAMES]; + vpx_prob comp_mode_p; + INTERP_FILTER best_filter = SWITCHABLE; + int64_t this_rd = INT64_MAX; + int rate2 = 0; + const int64_t distortion2 = 0; + + x->skip_encode = cpi->sf.skip_encode_frame && x->q_index < QIDX_SKIP_THRESH; + + estimate_ref_frame_costs(cm, xd, segment_id, ref_costs_single, ref_costs_comp, + &comp_mode_p); + + for (i = 0; i < MAX_REF_FRAMES; ++i) x->pred_sse[i] = INT_MAX; + for (i = LAST_FRAME; i < MAX_REF_FRAMES; ++i) x->pred_mv_sad[i] = INT_MAX; + + rd_cost->rate = INT_MAX; + + assert(segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)); + + mi->mode = ZEROMV; + mi->uv_mode = DC_PRED; + mi->ref_frame[0] = LAST_FRAME; + mi->ref_frame[1] = NONE; + mi->mv[0].as_int = 0; + x->skip = 1; + + ctx->sum_y_eobs = 0; + + if (cm->interp_filter != BILINEAR) { + best_filter = EIGHTTAP; + if (cm->interp_filter == SWITCHABLE && + x->source_variance >= cpi->sf.disable_filter_search_var_thresh) { + int rs; + int best_rs = INT_MAX; + for (i = 0; i < SWITCHABLE_FILTERS; ++i) { + mi->interp_filter = i; + rs = vp9_get_switchable_rate(cpi, xd); + if (rs < best_rs) { + best_rs = rs; + best_filter = mi->interp_filter; + } + } + } + } + // Set the appropriate filter + if (cm->interp_filter == SWITCHABLE) { + mi->interp_filter = best_filter; + rate2 += vp9_get_switchable_rate(cpi, xd); + } else { + mi->interp_filter = cm->interp_filter; + } + + if (cm->reference_mode == REFERENCE_MODE_SELECT) + rate2 += vp9_cost_bit(comp_mode_p, comp_pred); + + // Estimate the reference frame signaling cost and add it + // to the rolling cost variable. + rate2 += ref_costs_single[LAST_FRAME]; + this_rd = RDCOST(x->rdmult, x->rddiv, rate2, distortion2); + + rd_cost->rate = rate2; + rd_cost->dist = distortion2; + rd_cost->rdcost = this_rd; + + if (this_rd >= best_rd_so_far) { + rd_cost->rate = INT_MAX; + rd_cost->rdcost = INT64_MAX; + return; + } + + assert((cm->interp_filter == SWITCHABLE) || + (cm->interp_filter == mi->interp_filter)); + + vp9_update_rd_thresh_fact(tile_data->thresh_freq_fact, + cpi->sf.adaptive_rd_thresh, bsize, THR_ZEROMV); + + vp9_zero(best_pred_diff); + vp9_zero(best_filter_diff); + + if (!x->select_tx_size) swap_block_ptr(x, ctx, 1, 0, 0, MAX_MB_PLANE); + store_coding_context(x, ctx, THR_ZEROMV, best_pred_diff, best_filter_diff, 0); +} + +void vp9_rd_pick_inter_mode_sub8x8(VP9_COMP *cpi, TileDataEnc *tile_data, + MACROBLOCK *x, int mi_row, int mi_col, + RD_COST *rd_cost, BLOCK_SIZE bsize, + PICK_MODE_CONTEXT *ctx, + int64_t best_rd_so_far) { + VP9_COMMON *const cm = &cpi->common; + RD_OPT *const rd_opt = &cpi->rd; + SPEED_FEATURES *const sf = &cpi->sf; + MACROBLOCKD *const xd = &x->e_mbd; + MODE_INFO *const mi = xd->mi[0]; + const struct segmentation *const seg = &cm->seg; + MV_REFERENCE_FRAME ref_frame, second_ref_frame; + unsigned char segment_id = mi->segment_id; + int comp_pred, i; + int_mv frame_mv[MB_MODE_COUNT][MAX_REF_FRAMES]; + struct buf_2d yv12_mb[4][MAX_MB_PLANE]; + static const int flag_list[4] = { 0, VP9_LAST_FLAG, VP9_GOLD_FLAG, + VP9_ALT_FLAG }; + int64_t best_rd = best_rd_so_far; + int64_t best_yrd = best_rd_so_far; // FIXME(rbultje) more precise + int64_t best_pred_diff[REFERENCE_MODES]; + int64_t best_pred_rd[REFERENCE_MODES]; + int64_t best_filter_rd[SWITCHABLE_FILTER_CONTEXTS]; + int64_t best_filter_diff[SWITCHABLE_FILTER_CONTEXTS]; + MODE_INFO best_mbmode; + int ref_index, best_ref_index = 0; + unsigned int ref_costs_single[MAX_REF_FRAMES], ref_costs_comp[MAX_REF_FRAMES]; + vpx_prob comp_mode_p; + INTERP_FILTER tmp_best_filter = SWITCHABLE; + int rate_uv_intra, rate_uv_tokenonly; + int64_t dist_uv; + int skip_uv; + PREDICTION_MODE mode_uv = DC_PRED; + const int intra_cost_penalty = + vp9_get_intra_cost_penalty(cpi, bsize, cm->base_qindex, cm->y_dc_delta_q); + int_mv seg_mvs[4][MAX_REF_FRAMES]; + b_mode_info best_bmodes[4]; + int best_skip2 = 0; + int ref_frame_skip_mask[2] = { 0 }; + int64_t mask_filter = 0; + int64_t filter_cache[SWITCHABLE_FILTER_CONTEXTS]; + int internal_active_edge = + vp9_active_edge_sb(cpi, mi_row, mi_col) && vp9_internal_image_edge(cpi); + const int *const rd_thresh_freq_fact = tile_data->thresh_freq_fact[bsize]; + + x->skip_encode = sf->skip_encode_frame && x->q_index < QIDX_SKIP_THRESH; + memset(x->zcoeff_blk[TX_4X4], 0, 4); + vp9_zero(best_mbmode); + + for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; ++i) filter_cache[i] = INT64_MAX; + + for (i = 0; i < 4; i++) { + int j; + for (j = 0; j < MAX_REF_FRAMES; j++) seg_mvs[i][j].as_int = INVALID_MV; + } + + estimate_ref_frame_costs(cm, xd, segment_id, ref_costs_single, ref_costs_comp, + &comp_mode_p); + + for (i = 0; i < REFERENCE_MODES; ++i) best_pred_rd[i] = INT64_MAX; + for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++) + best_filter_rd[i] = INT64_MAX; + rate_uv_intra = INT_MAX; + + rd_cost->rate = INT_MAX; + + for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ref_frame++) { + if (cpi->ref_frame_flags & flag_list[ref_frame]) { + setup_buffer_inter(cpi, x, ref_frame, bsize, mi_row, mi_col, + frame_mv[NEARESTMV], frame_mv[NEARMV], yv12_mb); + } else { + ref_frame_skip_mask[0] |= (1 << ref_frame); + ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK; + } + frame_mv[NEWMV][ref_frame].as_int = INVALID_MV; + frame_mv[ZEROMV][ref_frame].as_int = 0; + } + + for (ref_index = 0; ref_index < MAX_REFS; ++ref_index) { + int mode_excluded = 0; + int64_t this_rd = INT64_MAX; + int disable_skip = 0; + int compmode_cost = 0; + int rate2 = 0, rate_y = 0, rate_uv = 0; + int64_t distortion2 = 0, distortion_y = 0, distortion_uv = 0; + int skippable = 0; + int i; + int this_skip2 = 0; + int64_t total_sse = INT_MAX; + int early_term = 0; + struct buf_2d backup_yv12[2][MAX_MB_PLANE]; + + ref_frame = vp9_ref_order[ref_index].ref_frame[0]; + second_ref_frame = vp9_ref_order[ref_index].ref_frame[1]; + + vp9_zero(x->sum_y_eobs); + +#if CONFIG_BETTER_HW_COMPATIBILITY + // forbid 8X4 and 4X8 partitions if any reference frame is scaled. + if (bsize == BLOCK_8X4 || bsize == BLOCK_4X8) { + int ref_scaled = vp9_is_scaled(&cm->frame_refs[ref_frame - 1].sf); + if (second_ref_frame > INTRA_FRAME) + ref_scaled += vp9_is_scaled(&cm->frame_refs[second_ref_frame - 1].sf); + if (ref_scaled) continue; + } +#endif + // Look at the reference frame of the best mode so far and set the + // skip mask to look at a subset of the remaining modes. + if (ref_index > 2 && sf->mode_skip_start < MAX_MODES) { + if (ref_index == 3) { + switch (best_mbmode.ref_frame[0]) { + case INTRA_FRAME: break; + case LAST_FRAME: + ref_frame_skip_mask[0] |= (1 << GOLDEN_FRAME) | (1 << ALTREF_FRAME); + ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK; + break; + case GOLDEN_FRAME: + ref_frame_skip_mask[0] |= (1 << LAST_FRAME) | (1 << ALTREF_FRAME); + ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK; + break; + case ALTREF_FRAME: + ref_frame_skip_mask[0] |= (1 << GOLDEN_FRAME) | (1 << LAST_FRAME); + break; + case NONE: + case MAX_REF_FRAMES: assert(0 && "Invalid Reference frame"); break; + } + } + } + + if ((ref_frame_skip_mask[0] & (1 << ref_frame)) && + (ref_frame_skip_mask[1] & (1 << VPXMAX(0, second_ref_frame)))) + continue; + + // Test best rd so far against threshold for trying this mode. + if (!internal_active_edge && + rd_less_than_thresh(best_rd, + rd_opt->threshes[segment_id][bsize][ref_index], + &rd_thresh_freq_fact[ref_index])) + continue; + + // This is only used in motion vector unit test. + if (cpi->oxcf.motion_vector_unit_test && ref_frame == INTRA_FRAME) continue; + + comp_pred = second_ref_frame > INTRA_FRAME; + if (comp_pred) { + if (!cpi->allow_comp_inter_inter) continue; + if (!(cpi->ref_frame_flags & flag_list[second_ref_frame])) continue; + // Do not allow compound prediction if the segment level reference frame + // feature is in use as in this case there can only be one reference. + if (segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME)) continue; + + if ((sf->mode_search_skip_flags & FLAG_SKIP_COMP_BESTINTRA) && + best_mbmode.ref_frame[0] == INTRA_FRAME) + continue; + } + + if (comp_pred) + mode_excluded = cm->reference_mode == SINGLE_REFERENCE; + else if (ref_frame != INTRA_FRAME) + mode_excluded = cm->reference_mode == COMPOUND_REFERENCE; + + // If the segment reference frame feature is enabled.... + // then do nothing if the current ref frame is not allowed.. + if (segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME) && + get_segdata(seg, segment_id, SEG_LVL_REF_FRAME) != (int)ref_frame) { + continue; + // Disable this drop out case if the ref frame + // segment level feature is enabled for this segment. This is to + // prevent the possibility that we end up unable to pick any mode. + } else if (!segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME)) { + // Only consider ZEROMV/ALTREF_FRAME for alt ref frame, + // unless ARNR filtering is enabled in which case we want + // an unfiltered alternative. We allow near/nearest as well + // because they may result in zero-zero MVs but be cheaper. + if (cpi->rc.is_src_frame_alt_ref && (cpi->oxcf.arnr_max_frames == 0)) + continue; + } + + mi->tx_size = TX_4X4; + mi->uv_mode = DC_PRED; + mi->ref_frame[0] = ref_frame; + mi->ref_frame[1] = second_ref_frame; + // Evaluate all sub-pel filters irrespective of whether we can use + // them for this frame. + mi->interp_filter = + cm->interp_filter == SWITCHABLE ? EIGHTTAP : cm->interp_filter; + x->skip = 0; + set_ref_ptrs(cm, xd, ref_frame, second_ref_frame); + + // Select prediction reference frames. + for (i = 0; i < MAX_MB_PLANE; i++) { + xd->plane[i].pre[0] = yv12_mb[ref_frame][i]; + if (comp_pred) xd->plane[i].pre[1] = yv12_mb[second_ref_frame][i]; + } + + if (ref_frame == INTRA_FRAME) { + int rate; + if (rd_pick_intra_sub_8x8_y_mode(cpi, x, &rate, &rate_y, &distortion_y, + best_rd) >= best_rd) + continue; + rate2 += rate; + rate2 += intra_cost_penalty; + distortion2 += distortion_y; + + if (rate_uv_intra == INT_MAX) { + choose_intra_uv_mode(cpi, x, ctx, bsize, TX_4X4, &rate_uv_intra, + &rate_uv_tokenonly, &dist_uv, &skip_uv, &mode_uv); + } + rate2 += rate_uv_intra; + rate_uv = rate_uv_tokenonly; + distortion2 += dist_uv; + distortion_uv = dist_uv; + mi->uv_mode = mode_uv; + } else { + int rate; + int64_t distortion; + int64_t this_rd_thresh; + int64_t tmp_rd, tmp_best_rd = INT64_MAX, tmp_best_rdu = INT64_MAX; + int tmp_best_rate = INT_MAX, tmp_best_ratey = INT_MAX; + int64_t tmp_best_distortion = INT_MAX, tmp_best_sse, uv_sse; + int tmp_best_skippable = 0; + int switchable_filter_index; + int_mv *second_ref = + comp_pred ? &x->mbmi_ext->ref_mvs[second_ref_frame][0] : NULL; + b_mode_info tmp_best_bmodes[16]; + MODE_INFO tmp_best_mbmode; + BEST_SEG_INFO bsi[SWITCHABLE_FILTERS]; + int pred_exists = 0; + int uv_skippable; + + YV12_BUFFER_CONFIG *scaled_ref_frame[2] = { NULL, NULL }; + int ref; + + for (ref = 0; ref < 2; ++ref) { + scaled_ref_frame[ref] = + mi->ref_frame[ref] > INTRA_FRAME + ? vp9_get_scaled_ref_frame(cpi, mi->ref_frame[ref]) + : NULL; + + if (scaled_ref_frame[ref]) { + int i; + // Swap out the reference frame for a version that's been scaled to + // match the resolution of the current frame, allowing the existing + // motion search code to be used without additional modifications. + for (i = 0; i < MAX_MB_PLANE; i++) + backup_yv12[ref][i] = xd->plane[i].pre[ref]; + vp9_setup_pre_planes(xd, ref, scaled_ref_frame[ref], mi_row, mi_col, + NULL); + } + } + + this_rd_thresh = (ref_frame == LAST_FRAME) + ? rd_opt->threshes[segment_id][bsize][THR_LAST] + : rd_opt->threshes[segment_id][bsize][THR_ALTR]; + this_rd_thresh = (ref_frame == GOLDEN_FRAME) + ? rd_opt->threshes[segment_id][bsize][THR_GOLD] + : this_rd_thresh; + for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; ++i) + filter_cache[i] = INT64_MAX; + + if (cm->interp_filter != BILINEAR) { + tmp_best_filter = EIGHTTAP; + if (x->source_variance < sf->disable_filter_search_var_thresh) { + tmp_best_filter = EIGHTTAP; + } else if (sf->adaptive_pred_interp_filter == 1 && + ctx->pred_interp_filter < SWITCHABLE) { + tmp_best_filter = ctx->pred_interp_filter; + } else if (sf->adaptive_pred_interp_filter == 2) { + tmp_best_filter = ctx->pred_interp_filter < SWITCHABLE + ? ctx->pred_interp_filter + : 0; + } else { + for (switchable_filter_index = 0; + switchable_filter_index < SWITCHABLE_FILTERS; + ++switchable_filter_index) { + int newbest, rs; + int64_t rs_rd; + MB_MODE_INFO_EXT *mbmi_ext = x->mbmi_ext; + mi->interp_filter = switchable_filter_index; + tmp_rd = rd_pick_best_sub8x8_mode( + cpi, x, &mbmi_ext->ref_mvs[ref_frame][0], second_ref, best_yrd, + &rate, &rate_y, &distortion, &skippable, &total_sse, + (int)this_rd_thresh, seg_mvs, bsi, switchable_filter_index, + mi_row, mi_col); + + if (tmp_rd == INT64_MAX) continue; + rs = vp9_get_switchable_rate(cpi, xd); + rs_rd = RDCOST(x->rdmult, x->rddiv, rs, 0); + filter_cache[switchable_filter_index] = tmp_rd; + filter_cache[SWITCHABLE_FILTERS] = + VPXMIN(filter_cache[SWITCHABLE_FILTERS], tmp_rd + rs_rd); + if (cm->interp_filter == SWITCHABLE) tmp_rd += rs_rd; + + mask_filter = VPXMAX(mask_filter, tmp_rd); + + newbest = (tmp_rd < tmp_best_rd); + if (newbest) { + tmp_best_filter = mi->interp_filter; + tmp_best_rd = tmp_rd; + } + if ((newbest && cm->interp_filter == SWITCHABLE) || + (mi->interp_filter == cm->interp_filter && + cm->interp_filter != SWITCHABLE)) { + tmp_best_rdu = tmp_rd; + tmp_best_rate = rate; + tmp_best_ratey = rate_y; + tmp_best_distortion = distortion; + tmp_best_sse = total_sse; + tmp_best_skippable = skippable; + tmp_best_mbmode = *mi; + for (i = 0; i < 4; i++) { + tmp_best_bmodes[i] = xd->mi[0]->bmi[i]; + x->zcoeff_blk[TX_4X4][i] = !x->plane[0].eobs[i]; + x->sum_y_eobs[TX_4X4] += x->plane[0].eobs[i]; + } + pred_exists = 1; + if (switchable_filter_index == 0 && sf->use_rd_breakout && + best_rd < INT64_MAX) { + if (tmp_best_rdu / 2 > best_rd) { + // skip searching the other filters if the first is + // already substantially larger than the best so far + tmp_best_filter = mi->interp_filter; + tmp_best_rdu = INT64_MAX; + break; + } + } + } + } // switchable_filter_index loop + } + } + + if (tmp_best_rdu == INT64_MAX && pred_exists) continue; + + mi->interp_filter = (cm->interp_filter == SWITCHABLE ? tmp_best_filter + : cm->interp_filter); + if (!pred_exists) { + // Handles the special case when a filter that is not in the + // switchable list (bilinear, 6-tap) is indicated at the frame level + tmp_rd = rd_pick_best_sub8x8_mode( + cpi, x, &x->mbmi_ext->ref_mvs[ref_frame][0], second_ref, best_yrd, + &rate, &rate_y, &distortion, &skippable, &total_sse, + (int)this_rd_thresh, seg_mvs, bsi, 0, mi_row, mi_col); + if (tmp_rd == INT64_MAX) continue; + } else { + total_sse = tmp_best_sse; + rate = tmp_best_rate; + rate_y = tmp_best_ratey; + distortion = tmp_best_distortion; + skippable = tmp_best_skippable; + *mi = tmp_best_mbmode; + for (i = 0; i < 4; i++) xd->mi[0]->bmi[i] = tmp_best_bmodes[i]; + } + + rate2 += rate; + distortion2 += distortion; + + if (cm->interp_filter == SWITCHABLE) + rate2 += vp9_get_switchable_rate(cpi, xd); + + if (!mode_excluded) + mode_excluded = comp_pred ? cm->reference_mode == SINGLE_REFERENCE + : cm->reference_mode == COMPOUND_REFERENCE; + + compmode_cost = vp9_cost_bit(comp_mode_p, comp_pred); + + tmp_best_rdu = + best_rd - VPXMIN(RDCOST(x->rdmult, x->rddiv, rate2, distortion2), + RDCOST(x->rdmult, x->rddiv, 0, total_sse)); + + if (tmp_best_rdu > 0) { + // If even the 'Y' rd value of split is higher than best so far + // then dont bother looking at UV + vp9_build_inter_predictors_sbuv(&x->e_mbd, mi_row, mi_col, BLOCK_8X8); + memset(x->skip_txfm, SKIP_TXFM_NONE, sizeof(x->skip_txfm)); + if (!super_block_uvrd(cpi, x, &rate_uv, &distortion_uv, &uv_skippable, + &uv_sse, BLOCK_8X8, tmp_best_rdu)) { + for (ref = 0; ref < 2; ++ref) { + if (scaled_ref_frame[ref]) { + int i; + for (i = 0; i < MAX_MB_PLANE; ++i) + xd->plane[i].pre[ref] = backup_yv12[ref][i]; + } + } + continue; + } + + rate2 += rate_uv; + distortion2 += distortion_uv; + skippable = skippable && uv_skippable; + total_sse += uv_sse; + } + + for (ref = 0; ref < 2; ++ref) { + if (scaled_ref_frame[ref]) { + // Restore the prediction frame pointers to their unscaled versions. + int i; + for (i = 0; i < MAX_MB_PLANE; ++i) + xd->plane[i].pre[ref] = backup_yv12[ref][i]; + } + } + } + + if (cm->reference_mode == REFERENCE_MODE_SELECT) rate2 += compmode_cost; + + // Estimate the reference frame signaling cost and add it + // to the rolling cost variable. + if (second_ref_frame > INTRA_FRAME) { + rate2 += ref_costs_comp[ref_frame]; + } else { + rate2 += ref_costs_single[ref_frame]; + } + + if (!disable_skip) { + const vpx_prob skip_prob = vp9_get_skip_prob(cm, xd); + const int skip_cost0 = vp9_cost_bit(skip_prob, 0); + const int skip_cost1 = vp9_cost_bit(skip_prob, 1); + + // Skip is never coded at the segment level for sub8x8 blocks and instead + // always coded in the bitstream at the mode info level. + if (ref_frame != INTRA_FRAME && !xd->lossless) { + if (RDCOST(x->rdmult, x->rddiv, rate_y + rate_uv + skip_cost0, + distortion2) < + RDCOST(x->rdmult, x->rddiv, skip_cost1, total_sse)) { + // Add in the cost of the no skip flag. + rate2 += skip_cost0; + } else { + // FIXME(rbultje) make this work for splitmv also + rate2 += skip_cost1; + distortion2 = total_sse; + assert(total_sse >= 0); + rate2 -= (rate_y + rate_uv); + rate_y = 0; + rate_uv = 0; + this_skip2 = 1; + } + } else { + // Add in the cost of the no skip flag. + rate2 += skip_cost0; + } + + // Calculate the final RD estimate for this mode. + this_rd = RDCOST(x->rdmult, x->rddiv, rate2, distortion2); + } + + if (!disable_skip && ref_frame == INTRA_FRAME) { + for (i = 0; i < REFERENCE_MODES; ++i) + best_pred_rd[i] = VPXMIN(best_pred_rd[i], this_rd); + for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++) + best_filter_rd[i] = VPXMIN(best_filter_rd[i], this_rd); + } + + // Did this mode help.. i.e. is it the new best mode + if (this_rd < best_rd || x->skip) { + if (!mode_excluded) { + int max_plane = MAX_MB_PLANE; + // Note index of best mode so far + best_ref_index = ref_index; + + if (ref_frame == INTRA_FRAME) { + /* required for left and above block mv */ + mi->mv[0].as_int = 0; + max_plane = 1; + // Initialize interp_filter here so we do not have to check for + // inter block modes in get_pred_context_switchable_interp() + mi->interp_filter = SWITCHABLE_FILTERS; + } + + rd_cost->rate = rate2; + rd_cost->dist = distortion2; + rd_cost->rdcost = this_rd; + best_rd = this_rd; + best_yrd = + best_rd - RDCOST(x->rdmult, x->rddiv, rate_uv, distortion_uv); + best_mbmode = *mi; + best_skip2 = this_skip2; + if (!x->select_tx_size) swap_block_ptr(x, ctx, 1, 0, 0, max_plane); + memcpy(ctx->zcoeff_blk, x->zcoeff_blk[TX_4X4], + sizeof(ctx->zcoeff_blk[0]) * ctx->num_4x4_blk); + ctx->sum_y_eobs = x->sum_y_eobs[TX_4X4]; + + for (i = 0; i < 4; i++) best_bmodes[i] = xd->mi[0]->bmi[i]; + + // TODO(debargha): enhance this test with a better distortion prediction + // based on qp, activity mask and history + if ((sf->mode_search_skip_flags & FLAG_EARLY_TERMINATE) && + (ref_index > MIN_EARLY_TERM_INDEX)) { + int qstep = xd->plane[0].dequant[1]; + // TODO(debargha): Enhance this by specializing for each mode_index + int scale = 4; +#if CONFIG_VP9_HIGHBITDEPTH + if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { + qstep >>= (xd->bd - 8); + } +#endif // CONFIG_VP9_HIGHBITDEPTH + if (x->source_variance < UINT_MAX) { + const int var_adjust = (x->source_variance < 16); + scale -= var_adjust; + } + if (ref_frame > INTRA_FRAME && distortion2 * scale < qstep * qstep) { + early_term = 1; + } + } + } + } + + /* keep record of best compound/single-only prediction */ + if (!disable_skip && ref_frame != INTRA_FRAME) { + int64_t single_rd, hybrid_rd, single_rate, hybrid_rate; + + if (cm->reference_mode == REFERENCE_MODE_SELECT) { + single_rate = rate2 - compmode_cost; + hybrid_rate = rate2; + } else { + single_rate = rate2; + hybrid_rate = rate2 + compmode_cost; + } + + single_rd = RDCOST(x->rdmult, x->rddiv, single_rate, distortion2); + hybrid_rd = RDCOST(x->rdmult, x->rddiv, hybrid_rate, distortion2); + + if (!comp_pred && single_rd < best_pred_rd[SINGLE_REFERENCE]) + best_pred_rd[SINGLE_REFERENCE] = single_rd; + else if (comp_pred && single_rd < best_pred_rd[COMPOUND_REFERENCE]) + best_pred_rd[COMPOUND_REFERENCE] = single_rd; + + if (hybrid_rd < best_pred_rd[REFERENCE_MODE_SELECT]) + best_pred_rd[REFERENCE_MODE_SELECT] = hybrid_rd; + } + + /* keep record of best filter type */ + if (!mode_excluded && !disable_skip && ref_frame != INTRA_FRAME && + cm->interp_filter != BILINEAR) { + int64_t ref = + filter_cache[cm->interp_filter == SWITCHABLE ? SWITCHABLE_FILTERS + : cm->interp_filter]; + int64_t adj_rd; + for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++) { + if (ref == INT64_MAX) + adj_rd = 0; + else if (filter_cache[i] == INT64_MAX) + // when early termination is triggered, the encoder does not have + // access to the rate-distortion cost. it only knows that the cost + // should be above the maximum valid value. hence it takes the known + // maximum plus an arbitrary constant as the rate-distortion cost. + adj_rd = mask_filter - ref + 10; + else + adj_rd = filter_cache[i] - ref; + + adj_rd += this_rd; + best_filter_rd[i] = VPXMIN(best_filter_rd[i], adj_rd); + } + } + + if (early_term) break; + + if (x->skip && !comp_pred) break; + } + + if (best_rd >= best_rd_so_far) { + rd_cost->rate = INT_MAX; + rd_cost->rdcost = INT64_MAX; + return; + } + + // If we used an estimate for the uv intra rd in the loop above... + if (sf->use_uv_intra_rd_estimate) { + // Do Intra UV best rd mode selection if best mode choice above was intra. + if (best_mbmode.ref_frame[0] == INTRA_FRAME) { + *mi = best_mbmode; + rd_pick_intra_sbuv_mode(cpi, x, ctx, &rate_uv_intra, &rate_uv_tokenonly, + &dist_uv, &skip_uv, BLOCK_8X8, TX_4X4); + } + } + + if (best_rd == INT64_MAX) { + rd_cost->rate = INT_MAX; + rd_cost->dist = INT64_MAX; + rd_cost->rdcost = INT64_MAX; + return; + } + + assert((cm->interp_filter == SWITCHABLE) || + (cm->interp_filter == best_mbmode.interp_filter) || + !is_inter_block(&best_mbmode)); + + vp9_update_rd_thresh_fact(tile_data->thresh_freq_fact, sf->adaptive_rd_thresh, + bsize, best_ref_index); + + // macroblock modes + *mi = best_mbmode; + x->skip |= best_skip2; + if (!is_inter_block(&best_mbmode)) { + for (i = 0; i < 4; i++) xd->mi[0]->bmi[i].as_mode = best_bmodes[i].as_mode; + } else { + for (i = 0; i < 4; ++i) + memcpy(&xd->mi[0]->bmi[i], &best_bmodes[i], sizeof(b_mode_info)); + + mi->mv[0].as_int = xd->mi[0]->bmi[3].as_mv[0].as_int; + mi->mv[1].as_int = xd->mi[0]->bmi[3].as_mv[1].as_int; + } + + for (i = 0; i < REFERENCE_MODES; ++i) { + if (best_pred_rd[i] == INT64_MAX) + best_pred_diff[i] = INT_MIN; + else + best_pred_diff[i] = best_rd - best_pred_rd[i]; + } + + if (!x->skip) { + for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++) { + if (best_filter_rd[i] == INT64_MAX) + best_filter_diff[i] = 0; + else + best_filter_diff[i] = best_rd - best_filter_rd[i]; + } + if (cm->interp_filter == SWITCHABLE) + assert(best_filter_diff[SWITCHABLE_FILTERS] == 0); + } else { + vp9_zero(best_filter_diff); + } + + store_coding_context(x, ctx, best_ref_index, best_pred_diff, best_filter_diff, + 0); +} diff --git a/vp9/encoder/vp9_rdopt.h b/vp9/encoder/vp9_rdopt.h new file mode 100644 index 0000000..795c91a --- /dev/null +++ b/vp9/encoder/vp9_rdopt.h @@ -0,0 +1,59 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP9_ENCODER_VP9_RDOPT_H_ +#define VP9_ENCODER_VP9_RDOPT_H_ + +#include "vp9/common/vp9_blockd.h" + +#include "vp9/encoder/vp9_block.h" +#include "vp9/encoder/vp9_context_tree.h" + +#ifdef __cplusplus +extern "C" { +#endif + +struct TileInfo; +struct VP9_COMP; +struct macroblock; +struct RD_COST; + +void vp9_rd_pick_intra_mode_sb(struct VP9_COMP *cpi, struct macroblock *x, + struct RD_COST *rd_cost, BLOCK_SIZE bsize, + PICK_MODE_CONTEXT *ctx, int64_t best_rd); + +void vp9_rd_pick_inter_mode_sb(struct VP9_COMP *cpi, + struct TileDataEnc *tile_data, + struct macroblock *x, int mi_row, int mi_col, + struct RD_COST *rd_cost, BLOCK_SIZE bsize, + PICK_MODE_CONTEXT *ctx, int64_t best_rd_so_far); + +void vp9_rd_pick_inter_mode_sb_seg_skip( + struct VP9_COMP *cpi, struct TileDataEnc *tile_data, struct macroblock *x, + struct RD_COST *rd_cost, BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx, + int64_t best_rd_so_far); + +int vp9_internal_image_edge(struct VP9_COMP *cpi); +int vp9_active_h_edge(struct VP9_COMP *cpi, int mi_row, int mi_step); +int vp9_active_v_edge(struct VP9_COMP *cpi, int mi_col, int mi_step); +int vp9_active_edge_sb(struct VP9_COMP *cpi, int mi_row, int mi_col); + +void vp9_rd_pick_inter_mode_sub8x8(struct VP9_COMP *cpi, + struct TileDataEnc *tile_data, + struct macroblock *x, int mi_row, int mi_col, + struct RD_COST *rd_cost, BLOCK_SIZE bsize, + PICK_MODE_CONTEXT *ctx, + int64_t best_rd_so_far); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP9_ENCODER_VP9_RDOPT_H_ diff --git a/vp9/encoder/vp9_resize.c b/vp9/encoder/vp9_resize.c new file mode 100644 index 0000000..f6c4aad --- /dev/null +++ b/vp9/encoder/vp9_resize.c @@ -0,0 +1,820 @@ +/* + * Copyright (c) 2014 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include +#include +#include +#include +#include + +#include "./vpx_config.h" +#if CONFIG_VP9_HIGHBITDEPTH +#include "vpx_dsp/vpx_dsp_common.h" +#endif // CONFIG_VP9_HIGHBITDEPTH +#include "vpx_ports/mem.h" +#include "vp9/common/vp9_common.h" +#include "vp9/encoder/vp9_resize.h" + +#define FILTER_BITS 7 + +#define INTERP_TAPS 8 +#define SUBPEL_BITS 5 +#define SUBPEL_MASK ((1 << SUBPEL_BITS) - 1) +#define INTERP_PRECISION_BITS 32 + +typedef int16_t interp_kernel[INTERP_TAPS]; + +// Filters for interpolation (0.5-band) - note this also filters integer pels. +static const interp_kernel filteredinterp_filters500[(1 << SUBPEL_BITS)] = { + { -3, 0, 35, 64, 35, 0, -3, 0 }, { -3, -1, 34, 64, 36, 1, -3, 0 }, + { -3, -1, 32, 64, 38, 1, -3, 0 }, { -2, -2, 31, 63, 39, 2, -3, 0 }, + { -2, -2, 29, 63, 41, 2, -3, 0 }, { -2, -2, 28, 63, 42, 3, -4, 0 }, + { -2, -3, 27, 63, 43, 4, -4, 0 }, { -2, -3, 25, 62, 45, 5, -4, 0 }, + { -2, -3, 24, 62, 46, 5, -4, 0 }, { -2, -3, 23, 61, 47, 6, -4, 0 }, + { -2, -3, 21, 60, 49, 7, -4, 0 }, { -1, -4, 20, 60, 50, 8, -4, -1 }, + { -1, -4, 19, 59, 51, 9, -4, -1 }, { -1, -4, 17, 58, 52, 10, -4, 0 }, + { -1, -4, 16, 57, 53, 12, -4, -1 }, { -1, -4, 15, 56, 54, 13, -4, -1 }, + { -1, -4, 14, 55, 55, 14, -4, -1 }, { -1, -4, 13, 54, 56, 15, -4, -1 }, + { -1, -4, 12, 53, 57, 16, -4, -1 }, { 0, -4, 10, 52, 58, 17, -4, -1 }, + { -1, -4, 9, 51, 59, 19, -4, -1 }, { -1, -4, 8, 50, 60, 20, -4, -1 }, + { 0, -4, 7, 49, 60, 21, -3, -2 }, { 0, -4, 6, 47, 61, 23, -3, -2 }, + { 0, -4, 5, 46, 62, 24, -3, -2 }, { 0, -4, 5, 45, 62, 25, -3, -2 }, + { 0, -4, 4, 43, 63, 27, -3, -2 }, { 0, -4, 3, 42, 63, 28, -2, -2 }, + { 0, -3, 2, 41, 63, 29, -2, -2 }, { 0, -3, 2, 39, 63, 31, -2, -2 }, + { 0, -3, 1, 38, 64, 32, -1, -3 }, { 0, -3, 1, 36, 64, 34, -1, -3 } +}; + +// Filters for interpolation (0.625-band) - note this also filters integer pels. +static const interp_kernel filteredinterp_filters625[(1 << SUBPEL_BITS)] = { + { -1, -8, 33, 80, 33, -8, -1, 0 }, { -1, -8, 30, 80, 35, -8, -1, 1 }, + { -1, -8, 28, 80, 37, -7, -2, 1 }, { 0, -8, 26, 79, 39, -7, -2, 1 }, + { 0, -8, 24, 79, 41, -7, -2, 1 }, { 0, -8, 22, 78, 43, -6, -2, 1 }, + { 0, -8, 20, 78, 45, -5, -3, 1 }, { 0, -8, 18, 77, 48, -5, -3, 1 }, + { 0, -8, 16, 76, 50, -4, -3, 1 }, { 0, -8, 15, 75, 52, -3, -4, 1 }, + { 0, -7, 13, 74, 54, -3, -4, 1 }, { 0, -7, 11, 73, 56, -2, -4, 1 }, + { 0, -7, 10, 71, 58, -1, -4, 1 }, { 1, -7, 8, 70, 60, 0, -5, 1 }, + { 1, -6, 6, 68, 62, 1, -5, 1 }, { 1, -6, 5, 67, 63, 2, -5, 1 }, + { 1, -6, 4, 65, 65, 4, -6, 1 }, { 1, -5, 2, 63, 67, 5, -6, 1 }, + { 1, -5, 1, 62, 68, 6, -6, 1 }, { 1, -5, 0, 60, 70, 8, -7, 1 }, + { 1, -4, -1, 58, 71, 10, -7, 0 }, { 1, -4, -2, 56, 73, 11, -7, 0 }, + { 1, -4, -3, 54, 74, 13, -7, 0 }, { 1, -4, -3, 52, 75, 15, -8, 0 }, + { 1, -3, -4, 50, 76, 16, -8, 0 }, { 1, -3, -5, 48, 77, 18, -8, 0 }, + { 1, -3, -5, 45, 78, 20, -8, 0 }, { 1, -2, -6, 43, 78, 22, -8, 0 }, + { 1, -2, -7, 41, 79, 24, -8, 0 }, { 1, -2, -7, 39, 79, 26, -8, 0 }, + { 1, -2, -7, 37, 80, 28, -8, -1 }, { 1, -1, -8, 35, 80, 30, -8, -1 }, +}; + +// Filters for interpolation (0.75-band) - note this also filters integer pels. +static const interp_kernel filteredinterp_filters750[(1 << SUBPEL_BITS)] = { + { 2, -11, 25, 96, 25, -11, 2, 0 }, { 2, -11, 22, 96, 28, -11, 2, 0 }, + { 2, -10, 19, 95, 31, -11, 2, 0 }, { 2, -10, 17, 95, 34, -12, 2, 0 }, + { 2, -9, 14, 94, 37, -12, 2, 0 }, { 2, -8, 12, 93, 40, -12, 1, 0 }, + { 2, -8, 9, 92, 43, -12, 1, 1 }, { 2, -7, 7, 91, 46, -12, 1, 0 }, + { 2, -7, 5, 90, 49, -12, 1, 0 }, { 2, -6, 3, 88, 52, -12, 0, 1 }, + { 2, -5, 1, 86, 55, -12, 0, 1 }, { 2, -5, -1, 84, 58, -11, 0, 1 }, + { 2, -4, -2, 82, 61, -11, -1, 1 }, { 2, -4, -4, 80, 64, -10, -1, 1 }, + { 1, -3, -5, 77, 67, -9, -1, 1 }, { 1, -3, -6, 75, 70, -8, -2, 1 }, + { 1, -2, -7, 72, 72, -7, -2, 1 }, { 1, -2, -8, 70, 75, -6, -3, 1 }, + { 1, -1, -9, 67, 77, -5, -3, 1 }, { 1, -1, -10, 64, 80, -4, -4, 2 }, + { 1, -1, -11, 61, 82, -2, -4, 2 }, { 1, 0, -11, 58, 84, -1, -5, 2 }, + { 1, 0, -12, 55, 86, 1, -5, 2 }, { 1, 0, -12, 52, 88, 3, -6, 2 }, + { 0, 1, -12, 49, 90, 5, -7, 2 }, { 0, 1, -12, 46, 91, 7, -7, 2 }, + { 1, 1, -12, 43, 92, 9, -8, 2 }, { 0, 1, -12, 40, 93, 12, -8, 2 }, + { 0, 2, -12, 37, 94, 14, -9, 2 }, { 0, 2, -12, 34, 95, 17, -10, 2 }, + { 0, 2, -11, 31, 95, 19, -10, 2 }, { 0, 2, -11, 28, 96, 22, -11, 2 } +}; + +// Filters for interpolation (0.875-band) - note this also filters integer pels. +static const interp_kernel filteredinterp_filters875[(1 << SUBPEL_BITS)] = { + { 3, -8, 13, 112, 13, -8, 3, 0 }, { 3, -7, 10, 112, 17, -9, 3, -1 }, + { 2, -6, 7, 111, 21, -9, 3, -1 }, { 2, -5, 4, 111, 24, -10, 3, -1 }, + { 2, -4, 1, 110, 28, -11, 3, -1 }, { 1, -3, -1, 108, 32, -12, 4, -1 }, + { 1, -2, -3, 106, 36, -13, 4, -1 }, { 1, -1, -6, 105, 40, -14, 4, -1 }, + { 1, -1, -7, 102, 44, -14, 4, -1 }, { 1, 0, -9, 100, 48, -15, 4, -1 }, + { 1, 1, -11, 97, 53, -16, 4, -1 }, { 0, 1, -12, 95, 57, -16, 4, -1 }, + { 0, 2, -13, 91, 61, -16, 4, -1 }, { 0, 2, -14, 88, 65, -16, 4, -1 }, + { 0, 3, -15, 84, 69, -17, 4, 0 }, { 0, 3, -16, 81, 73, -16, 3, 0 }, + { 0, 3, -16, 77, 77, -16, 3, 0 }, { 0, 3, -16, 73, 81, -16, 3, 0 }, + { 0, 4, -17, 69, 84, -15, 3, 0 }, { -1, 4, -16, 65, 88, -14, 2, 0 }, + { -1, 4, -16, 61, 91, -13, 2, 0 }, { -1, 4, -16, 57, 95, -12, 1, 0 }, + { -1, 4, -16, 53, 97, -11, 1, 1 }, { -1, 4, -15, 48, 100, -9, 0, 1 }, + { -1, 4, -14, 44, 102, -7, -1, 1 }, { -1, 4, -14, 40, 105, -6, -1, 1 }, + { -1, 4, -13, 36, 106, -3, -2, 1 }, { -1, 4, -12, 32, 108, -1, -3, 1 }, + { -1, 3, -11, 28, 110, 1, -4, 2 }, { -1, 3, -10, 24, 111, 4, -5, 2 }, + { -1, 3, -9, 21, 111, 7, -6, 2 }, { -1, 3, -9, 17, 112, 10, -7, 3 } +}; + +// Filters for interpolation (full-band) - no filtering for integer pixels +static const interp_kernel filteredinterp_filters1000[(1 << SUBPEL_BITS)] = { + { 0, 0, 0, 128, 0, 0, 0, 0 }, { 0, 1, -3, 128, 3, -1, 0, 0 }, + { -1, 2, -6, 127, 7, -2, 1, 0 }, { -1, 3, -9, 126, 12, -4, 1, 0 }, + { -1, 4, -12, 125, 16, -5, 1, 0 }, { -1, 4, -14, 123, 20, -6, 2, 0 }, + { -1, 5, -15, 120, 25, -8, 2, 0 }, { -1, 5, -17, 118, 30, -9, 3, -1 }, + { -1, 6, -18, 114, 35, -10, 3, -1 }, { -1, 6, -19, 111, 41, -12, 3, -1 }, + { -1, 6, -20, 107, 46, -13, 4, -1 }, { -1, 6, -21, 103, 52, -14, 4, -1 }, + { -1, 6, -21, 99, 57, -16, 5, -1 }, { -1, 6, -21, 94, 63, -17, 5, -1 }, + { -1, 6, -20, 89, 68, -18, 5, -1 }, { -1, 6, -20, 84, 73, -19, 6, -1 }, + { -1, 6, -20, 79, 79, -20, 6, -1 }, { -1, 6, -19, 73, 84, -20, 6, -1 }, + { -1, 5, -18, 68, 89, -20, 6, -1 }, { -1, 5, -17, 63, 94, -21, 6, -1 }, + { -1, 5, -16, 57, 99, -21, 6, -1 }, { -1, 4, -14, 52, 103, -21, 6, -1 }, + { -1, 4, -13, 46, 107, -20, 6, -1 }, { -1, 3, -12, 41, 111, -19, 6, -1 }, + { -1, 3, -10, 35, 114, -18, 6, -1 }, { -1, 3, -9, 30, 118, -17, 5, -1 }, + { 0, 2, -8, 25, 120, -15, 5, -1 }, { 0, 2, -6, 20, 123, -14, 4, -1 }, + { 0, 1, -5, 16, 125, -12, 4, -1 }, { 0, 1, -4, 12, 126, -9, 3, -1 }, + { 0, 1, -2, 7, 127, -6, 2, -1 }, { 0, 0, -1, 3, 128, -3, 1, 0 } +}; + +// Filters for factor of 2 downsampling. +static const int16_t vp9_down2_symeven_half_filter[] = { 56, 12, -3, -1 }; +static const int16_t vp9_down2_symodd_half_filter[] = { 64, 35, 0, -3 }; + +static const interp_kernel *choose_interp_filter(int inlength, int outlength) { + int outlength16 = outlength * 16; + if (outlength16 >= inlength * 16) + return filteredinterp_filters1000; + else if (outlength16 >= inlength * 13) + return filteredinterp_filters875; + else if (outlength16 >= inlength * 11) + return filteredinterp_filters750; + else if (outlength16 >= inlength * 9) + return filteredinterp_filters625; + else + return filteredinterp_filters500; +} + +static void interpolate(const uint8_t *const input, int inlength, + uint8_t *output, int outlength) { + const int64_t delta = + (((uint64_t)inlength << 32) + outlength / 2) / outlength; + const int64_t offset = + inlength > outlength + ? (((int64_t)(inlength - outlength) << 31) + outlength / 2) / + outlength + : -(((int64_t)(outlength - inlength) << 31) + outlength / 2) / + outlength; + uint8_t *optr = output; + int x, x1, x2, sum, k, int_pel, sub_pel; + int64_t y; + + const interp_kernel *interp_filters = + choose_interp_filter(inlength, outlength); + + x = 0; + y = offset; + while ((y >> INTERP_PRECISION_BITS) < (INTERP_TAPS / 2 - 1)) { + x++; + y += delta; + } + x1 = x; + x = outlength - 1; + y = delta * x + offset; + while ((y >> INTERP_PRECISION_BITS) + (int64_t)(INTERP_TAPS / 2) >= + inlength) { + x--; + y -= delta; + } + x2 = x; + if (x1 > x2) { + for (x = 0, y = offset; x < outlength; ++x, y += delta) { + const int16_t *filter; + int_pel = y >> INTERP_PRECISION_BITS; + sub_pel = (y >> (INTERP_PRECISION_BITS - SUBPEL_BITS)) & SUBPEL_MASK; + filter = interp_filters[sub_pel]; + sum = 0; + for (k = 0; k < INTERP_TAPS; ++k) { + const int pk = int_pel - INTERP_TAPS / 2 + 1 + k; + sum += filter[k] * + input[(pk < 0 ? 0 : (pk >= inlength ? inlength - 1 : pk))]; + } + *optr++ = clip_pixel(ROUND_POWER_OF_TWO(sum, FILTER_BITS)); + } + } else { + // Initial part. + for (x = 0, y = offset; x < x1; ++x, y += delta) { + const int16_t *filter; + int_pel = y >> INTERP_PRECISION_BITS; + sub_pel = (y >> (INTERP_PRECISION_BITS - SUBPEL_BITS)) & SUBPEL_MASK; + filter = interp_filters[sub_pel]; + sum = 0; + for (k = 0; k < INTERP_TAPS; ++k) + sum += filter[k] * input[(int_pel - INTERP_TAPS / 2 + 1 + k < 0 + ? 0 + : int_pel - INTERP_TAPS / 2 + 1 + k)]; + *optr++ = clip_pixel(ROUND_POWER_OF_TWO(sum, FILTER_BITS)); + } + // Middle part. + for (; x <= x2; ++x, y += delta) { + const int16_t *filter; + int_pel = y >> INTERP_PRECISION_BITS; + sub_pel = (y >> (INTERP_PRECISION_BITS - SUBPEL_BITS)) & SUBPEL_MASK; + filter = interp_filters[sub_pel]; + sum = 0; + for (k = 0; k < INTERP_TAPS; ++k) + sum += filter[k] * input[int_pel - INTERP_TAPS / 2 + 1 + k]; + *optr++ = clip_pixel(ROUND_POWER_OF_TWO(sum, FILTER_BITS)); + } + // End part. + for (; x < outlength; ++x, y += delta) { + const int16_t *filter; + int_pel = y >> INTERP_PRECISION_BITS; + sub_pel = (y >> (INTERP_PRECISION_BITS - SUBPEL_BITS)) & SUBPEL_MASK; + filter = interp_filters[sub_pel]; + sum = 0; + for (k = 0; k < INTERP_TAPS; ++k) + sum += filter[k] * input[(int_pel - INTERP_TAPS / 2 + 1 + k >= inlength + ? inlength - 1 + : int_pel - INTERP_TAPS / 2 + 1 + k)]; + *optr++ = clip_pixel(ROUND_POWER_OF_TWO(sum, FILTER_BITS)); + } + } +} + +static void down2_symeven(const uint8_t *const input, int length, + uint8_t *output) { + // Actual filter len = 2 * filter_len_half. + const int16_t *filter = vp9_down2_symeven_half_filter; + const int filter_len_half = sizeof(vp9_down2_symeven_half_filter) / 2; + int i, j; + uint8_t *optr = output; + int l1 = filter_len_half; + int l2 = (length - filter_len_half); + l1 += (l1 & 1); + l2 += (l2 & 1); + if (l1 > l2) { + // Short input length. + for (i = 0; i < length; i += 2) { + int sum = (1 << (FILTER_BITS - 1)); + for (j = 0; j < filter_len_half; ++j) { + sum += (input[(i - j < 0 ? 0 : i - j)] + + input[(i + 1 + j >= length ? length - 1 : i + 1 + j)]) * + filter[j]; + } + sum >>= FILTER_BITS; + *optr++ = clip_pixel(sum); + } + } else { + // Initial part. + for (i = 0; i < l1; i += 2) { + int sum = (1 << (FILTER_BITS - 1)); + for (j = 0; j < filter_len_half; ++j) { + sum += (input[(i - j < 0 ? 0 : i - j)] + input[i + 1 + j]) * filter[j]; + } + sum >>= FILTER_BITS; + *optr++ = clip_pixel(sum); + } + // Middle part. + for (; i < l2; i += 2) { + int sum = (1 << (FILTER_BITS - 1)); + for (j = 0; j < filter_len_half; ++j) { + sum += (input[i - j] + input[i + 1 + j]) * filter[j]; + } + sum >>= FILTER_BITS; + *optr++ = clip_pixel(sum); + } + // End part. + for (; i < length; i += 2) { + int sum = (1 << (FILTER_BITS - 1)); + for (j = 0; j < filter_len_half; ++j) { + sum += (input[i - j] + + input[(i + 1 + j >= length ? length - 1 : i + 1 + j)]) * + filter[j]; + } + sum >>= FILTER_BITS; + *optr++ = clip_pixel(sum); + } + } +} + +static void down2_symodd(const uint8_t *const input, int length, + uint8_t *output) { + // Actual filter len = 2 * filter_len_half - 1. + const int16_t *filter = vp9_down2_symodd_half_filter; + const int filter_len_half = sizeof(vp9_down2_symodd_half_filter) / 2; + int i, j; + uint8_t *optr = output; + int l1 = filter_len_half - 1; + int l2 = (length - filter_len_half + 1); + l1 += (l1 & 1); + l2 += (l2 & 1); + if (l1 > l2) { + // Short input length. + for (i = 0; i < length; i += 2) { + int sum = (1 << (FILTER_BITS - 1)) + input[i] * filter[0]; + for (j = 1; j < filter_len_half; ++j) { + sum += (input[(i - j < 0 ? 0 : i - j)] + + input[(i + j >= length ? length - 1 : i + j)]) * + filter[j]; + } + sum >>= FILTER_BITS; + *optr++ = clip_pixel(sum); + } + } else { + // Initial part. + for (i = 0; i < l1; i += 2) { + int sum = (1 << (FILTER_BITS - 1)) + input[i] * filter[0]; + for (j = 1; j < filter_len_half; ++j) { + sum += (input[(i - j < 0 ? 0 : i - j)] + input[i + j]) * filter[j]; + } + sum >>= FILTER_BITS; + *optr++ = clip_pixel(sum); + } + // Middle part. + for (; i < l2; i += 2) { + int sum = (1 << (FILTER_BITS - 1)) + input[i] * filter[0]; + for (j = 1; j < filter_len_half; ++j) { + sum += (input[i - j] + input[i + j]) * filter[j]; + } + sum >>= FILTER_BITS; + *optr++ = clip_pixel(sum); + } + // End part. + for (; i < length; i += 2) { + int sum = (1 << (FILTER_BITS - 1)) + input[i] * filter[0]; + for (j = 1; j < filter_len_half; ++j) { + sum += (input[i - j] + input[(i + j >= length ? length - 1 : i + j)]) * + filter[j]; + } + sum >>= FILTER_BITS; + *optr++ = clip_pixel(sum); + } + } +} + +static int get_down2_length(int length, int steps) { + int s; + for (s = 0; s < steps; ++s) length = (length + 1) >> 1; + return length; +} + +static int get_down2_steps(int in_length, int out_length) { + int steps = 0; + int proj_in_length; + while ((proj_in_length = get_down2_length(in_length, 1)) >= out_length) { + ++steps; + in_length = proj_in_length; + } + return steps; +} + +static void resize_multistep(const uint8_t *const input, int length, + uint8_t *output, int olength, uint8_t *otmp) { + int steps; + if (length == olength) { + memcpy(output, input, sizeof(output[0]) * length); + return; + } + steps = get_down2_steps(length, olength); + + if (steps > 0) { + int s; + uint8_t *out = NULL; + uint8_t *otmp2; + int filteredlength = length; + + assert(otmp != NULL); + otmp2 = otmp + get_down2_length(length, 1); + for (s = 0; s < steps; ++s) { + const int proj_filteredlength = get_down2_length(filteredlength, 1); + const uint8_t *const in = (s == 0 ? input : out); + if (s == steps - 1 && proj_filteredlength == olength) + out = output; + else + out = (s & 1 ? otmp2 : otmp); + if (filteredlength & 1) + down2_symodd(in, filteredlength, out); + else + down2_symeven(in, filteredlength, out); + filteredlength = proj_filteredlength; + } + if (filteredlength != olength) { + interpolate(out, filteredlength, output, olength); + } + } else { + interpolate(input, length, output, olength); + } +} + +static void fill_col_to_arr(uint8_t *img, int stride, int len, uint8_t *arr) { + int i; + uint8_t *iptr = img; + uint8_t *aptr = arr; + for (i = 0; i < len; ++i, iptr += stride) { + *aptr++ = *iptr; + } +} + +static void fill_arr_to_col(uint8_t *img, int stride, int len, uint8_t *arr) { + int i; + uint8_t *iptr = img; + uint8_t *aptr = arr; + for (i = 0; i < len; ++i, iptr += stride) { + *iptr = *aptr++; + } +} + +void vp9_resize_plane(const uint8_t *const input, int height, int width, + int in_stride, uint8_t *output, int height2, int width2, + int out_stride) { + int i; + uint8_t *intbuf = (uint8_t *)malloc(sizeof(uint8_t) * width2 * height); + uint8_t *tmpbuf = + (uint8_t *)malloc(sizeof(uint8_t) * (width < height ? height : width)); + uint8_t *arrbuf = (uint8_t *)malloc(sizeof(uint8_t) * height); + uint8_t *arrbuf2 = (uint8_t *)malloc(sizeof(uint8_t) * height2); + if (intbuf == NULL || tmpbuf == NULL || arrbuf == NULL || arrbuf2 == NULL) + goto Error; + assert(width > 0); + assert(height > 0); + assert(width2 > 0); + assert(height2 > 0); + for (i = 0; i < height; ++i) + resize_multistep(input + in_stride * i, width, intbuf + width2 * i, width2, + tmpbuf); + for (i = 0; i < width2; ++i) { + fill_col_to_arr(intbuf + i, width2, height, arrbuf); + resize_multistep(arrbuf, height, arrbuf2, height2, tmpbuf); + fill_arr_to_col(output + i, out_stride, height2, arrbuf2); + } + +Error: + free(intbuf); + free(tmpbuf); + free(arrbuf); + free(arrbuf2); +} + +#if CONFIG_VP9_HIGHBITDEPTH +static void highbd_interpolate(const uint16_t *const input, int inlength, + uint16_t *output, int outlength, int bd) { + const int64_t delta = + (((uint64_t)inlength << 32) + outlength / 2) / outlength; + const int64_t offset = + inlength > outlength + ? (((int64_t)(inlength - outlength) << 31) + outlength / 2) / + outlength + : -(((int64_t)(outlength - inlength) << 31) + outlength / 2) / + outlength; + uint16_t *optr = output; + int x, x1, x2, sum, k, int_pel, sub_pel; + int64_t y; + + const interp_kernel *interp_filters = + choose_interp_filter(inlength, outlength); + + x = 0; + y = offset; + while ((y >> INTERP_PRECISION_BITS) < (INTERP_TAPS / 2 - 1)) { + x++; + y += delta; + } + x1 = x; + x = outlength - 1; + y = delta * x + offset; + while ((y >> INTERP_PRECISION_BITS) + (int64_t)(INTERP_TAPS / 2) >= + inlength) { + x--; + y -= delta; + } + x2 = x; + if (x1 > x2) { + for (x = 0, y = offset; x < outlength; ++x, y += delta) { + const int16_t *filter; + int_pel = y >> INTERP_PRECISION_BITS; + sub_pel = (y >> (INTERP_PRECISION_BITS - SUBPEL_BITS)) & SUBPEL_MASK; + filter = interp_filters[sub_pel]; + sum = 0; + for (k = 0; k < INTERP_TAPS; ++k) { + const int pk = int_pel - INTERP_TAPS / 2 + 1 + k; + sum += filter[k] * + input[(pk < 0 ? 0 : (pk >= inlength ? inlength - 1 : pk))]; + } + *optr++ = clip_pixel_highbd(ROUND_POWER_OF_TWO(sum, FILTER_BITS), bd); + } + } else { + // Initial part. + for (x = 0, y = offset; x < x1; ++x, y += delta) { + const int16_t *filter; + int_pel = y >> INTERP_PRECISION_BITS; + sub_pel = (y >> (INTERP_PRECISION_BITS - SUBPEL_BITS)) & SUBPEL_MASK; + filter = interp_filters[sub_pel]; + sum = 0; + for (k = 0; k < INTERP_TAPS; ++k) + sum += filter[k] * input[(int_pel - INTERP_TAPS / 2 + 1 + k < 0 + ? 0 + : int_pel - INTERP_TAPS / 2 + 1 + k)]; + *optr++ = clip_pixel_highbd(ROUND_POWER_OF_TWO(sum, FILTER_BITS), bd); + } + // Middle part. + for (; x <= x2; ++x, y += delta) { + const int16_t *filter; + int_pel = y >> INTERP_PRECISION_BITS; + sub_pel = (y >> (INTERP_PRECISION_BITS - SUBPEL_BITS)) & SUBPEL_MASK; + filter = interp_filters[sub_pel]; + sum = 0; + for (k = 0; k < INTERP_TAPS; ++k) + sum += filter[k] * input[int_pel - INTERP_TAPS / 2 + 1 + k]; + *optr++ = clip_pixel_highbd(ROUND_POWER_OF_TWO(sum, FILTER_BITS), bd); + } + // End part. + for (; x < outlength; ++x, y += delta) { + const int16_t *filter; + int_pel = y >> INTERP_PRECISION_BITS; + sub_pel = (y >> (INTERP_PRECISION_BITS - SUBPEL_BITS)) & SUBPEL_MASK; + filter = interp_filters[sub_pel]; + sum = 0; + for (k = 0; k < INTERP_TAPS; ++k) + sum += filter[k] * input[(int_pel - INTERP_TAPS / 2 + 1 + k >= inlength + ? inlength - 1 + : int_pel - INTERP_TAPS / 2 + 1 + k)]; + *optr++ = clip_pixel_highbd(ROUND_POWER_OF_TWO(sum, FILTER_BITS), bd); + } + } +} + +static void highbd_down2_symeven(const uint16_t *const input, int length, + uint16_t *output, int bd) { + // Actual filter len = 2 * filter_len_half. + static const int16_t *filter = vp9_down2_symeven_half_filter; + const int filter_len_half = sizeof(vp9_down2_symeven_half_filter) / 2; + int i, j; + uint16_t *optr = output; + int l1 = filter_len_half; + int l2 = (length - filter_len_half); + l1 += (l1 & 1); + l2 += (l2 & 1); + if (l1 > l2) { + // Short input length. + for (i = 0; i < length; i += 2) { + int sum = (1 << (FILTER_BITS - 1)); + for (j = 0; j < filter_len_half; ++j) { + sum += (input[(i - j < 0 ? 0 : i - j)] + + input[(i + 1 + j >= length ? length - 1 : i + 1 + j)]) * + filter[j]; + } + sum >>= FILTER_BITS; + *optr++ = clip_pixel_highbd(sum, bd); + } + } else { + // Initial part. + for (i = 0; i < l1; i += 2) { + int sum = (1 << (FILTER_BITS - 1)); + for (j = 0; j < filter_len_half; ++j) { + sum += (input[(i - j < 0 ? 0 : i - j)] + input[i + 1 + j]) * filter[j]; + } + sum >>= FILTER_BITS; + *optr++ = clip_pixel_highbd(sum, bd); + } + // Middle part. + for (; i < l2; i += 2) { + int sum = (1 << (FILTER_BITS - 1)); + for (j = 0; j < filter_len_half; ++j) { + sum += (input[i - j] + input[i + 1 + j]) * filter[j]; + } + sum >>= FILTER_BITS; + *optr++ = clip_pixel_highbd(sum, bd); + } + // End part. + for (; i < length; i += 2) { + int sum = (1 << (FILTER_BITS - 1)); + for (j = 0; j < filter_len_half; ++j) { + sum += (input[i - j] + + input[(i + 1 + j >= length ? length - 1 : i + 1 + j)]) * + filter[j]; + } + sum >>= FILTER_BITS; + *optr++ = clip_pixel_highbd(sum, bd); + } + } +} + +static void highbd_down2_symodd(const uint16_t *const input, int length, + uint16_t *output, int bd) { + // Actual filter len = 2 * filter_len_half - 1. + static const int16_t *filter = vp9_down2_symodd_half_filter; + const int filter_len_half = sizeof(vp9_down2_symodd_half_filter) / 2; + int i, j; + uint16_t *optr = output; + int l1 = filter_len_half - 1; + int l2 = (length - filter_len_half + 1); + l1 += (l1 & 1); + l2 += (l2 & 1); + if (l1 > l2) { + // Short input length. + for (i = 0; i < length; i += 2) { + int sum = (1 << (FILTER_BITS - 1)) + input[i] * filter[0]; + for (j = 1; j < filter_len_half; ++j) { + sum += (input[(i - j < 0 ? 0 : i - j)] + + input[(i + j >= length ? length - 1 : i + j)]) * + filter[j]; + } + sum >>= FILTER_BITS; + *optr++ = clip_pixel_highbd(sum, bd); + } + } else { + // Initial part. + for (i = 0; i < l1; i += 2) { + int sum = (1 << (FILTER_BITS - 1)) + input[i] * filter[0]; + for (j = 1; j < filter_len_half; ++j) { + sum += (input[(i - j < 0 ? 0 : i - j)] + input[i + j]) * filter[j]; + } + sum >>= FILTER_BITS; + *optr++ = clip_pixel_highbd(sum, bd); + } + // Middle part. + for (; i < l2; i += 2) { + int sum = (1 << (FILTER_BITS - 1)) + input[i] * filter[0]; + for (j = 1; j < filter_len_half; ++j) { + sum += (input[i - j] + input[i + j]) * filter[j]; + } + sum >>= FILTER_BITS; + *optr++ = clip_pixel_highbd(sum, bd); + } + // End part. + for (; i < length; i += 2) { + int sum = (1 << (FILTER_BITS - 1)) + input[i] * filter[0]; + for (j = 1; j < filter_len_half; ++j) { + sum += (input[i - j] + input[(i + j >= length ? length - 1 : i + j)]) * + filter[j]; + } + sum >>= FILTER_BITS; + *optr++ = clip_pixel_highbd(sum, bd); + } + } +} + +static void highbd_resize_multistep(const uint16_t *const input, int length, + uint16_t *output, int olength, + uint16_t *otmp, int bd) { + int steps; + if (length == olength) { + memcpy(output, input, sizeof(output[0]) * length); + return; + } + steps = get_down2_steps(length, olength); + + if (steps > 0) { + int s; + uint16_t *out = NULL; + uint16_t *otmp2; + int filteredlength = length; + + assert(otmp != NULL); + otmp2 = otmp + get_down2_length(length, 1); + for (s = 0; s < steps; ++s) { + const int proj_filteredlength = get_down2_length(filteredlength, 1); + const uint16_t *const in = (s == 0 ? input : out); + if (s == steps - 1 && proj_filteredlength == olength) + out = output; + else + out = (s & 1 ? otmp2 : otmp); + if (filteredlength & 1) + highbd_down2_symodd(in, filteredlength, out, bd); + else + highbd_down2_symeven(in, filteredlength, out, bd); + filteredlength = proj_filteredlength; + } + if (filteredlength != olength) { + highbd_interpolate(out, filteredlength, output, olength, bd); + } + } else { + highbd_interpolate(input, length, output, olength, bd); + } +} + +static void highbd_fill_col_to_arr(uint16_t *img, int stride, int len, + uint16_t *arr) { + int i; + uint16_t *iptr = img; + uint16_t *aptr = arr; + for (i = 0; i < len; ++i, iptr += stride) { + *aptr++ = *iptr; + } +} + +static void highbd_fill_arr_to_col(uint16_t *img, int stride, int len, + uint16_t *arr) { + int i; + uint16_t *iptr = img; + uint16_t *aptr = arr; + for (i = 0; i < len; ++i, iptr += stride) { + *iptr = *aptr++; + } +} + +void vp9_highbd_resize_plane(const uint8_t *const input, int height, int width, + int in_stride, uint8_t *output, int height2, + int width2, int out_stride, int bd) { + int i; + uint16_t *intbuf = (uint16_t *)malloc(sizeof(uint16_t) * width2 * height); + uint16_t *tmpbuf = + (uint16_t *)malloc(sizeof(uint16_t) * (width < height ? height : width)); + uint16_t *arrbuf = (uint16_t *)malloc(sizeof(uint16_t) * height); + uint16_t *arrbuf2 = (uint16_t *)malloc(sizeof(uint16_t) * height2); + if (intbuf == NULL || tmpbuf == NULL || arrbuf == NULL || arrbuf2 == NULL) + goto Error; + for (i = 0; i < height; ++i) { + highbd_resize_multistep(CONVERT_TO_SHORTPTR(input + in_stride * i), width, + intbuf + width2 * i, width2, tmpbuf, bd); + } + for (i = 0; i < width2; ++i) { + highbd_fill_col_to_arr(intbuf + i, width2, height, arrbuf); + highbd_resize_multistep(arrbuf, height, arrbuf2, height2, tmpbuf, bd); + highbd_fill_arr_to_col(CONVERT_TO_SHORTPTR(output + i), out_stride, height2, + arrbuf2); + } + +Error: + free(intbuf); + free(tmpbuf); + free(arrbuf); + free(arrbuf2); +} +#endif // CONFIG_VP9_HIGHBITDEPTH + +void vp9_resize_frame420(const uint8_t *const y, int y_stride, + const uint8_t *const u, const uint8_t *const v, + int uv_stride, int height, int width, uint8_t *oy, + int oy_stride, uint8_t *ou, uint8_t *ov, + int ouv_stride, int oheight, int owidth) { + vp9_resize_plane(y, height, width, y_stride, oy, oheight, owidth, oy_stride); + vp9_resize_plane(u, height / 2, width / 2, uv_stride, ou, oheight / 2, + owidth / 2, ouv_stride); + vp9_resize_plane(v, height / 2, width / 2, uv_stride, ov, oheight / 2, + owidth / 2, ouv_stride); +} + +void vp9_resize_frame422(const uint8_t *const y, int y_stride, + const uint8_t *const u, const uint8_t *const v, + int uv_stride, int height, int width, uint8_t *oy, + int oy_stride, uint8_t *ou, uint8_t *ov, + int ouv_stride, int oheight, int owidth) { + vp9_resize_plane(y, height, width, y_stride, oy, oheight, owidth, oy_stride); + vp9_resize_plane(u, height, width / 2, uv_stride, ou, oheight, owidth / 2, + ouv_stride); + vp9_resize_plane(v, height, width / 2, uv_stride, ov, oheight, owidth / 2, + ouv_stride); +} + +void vp9_resize_frame444(const uint8_t *const y, int y_stride, + const uint8_t *const u, const uint8_t *const v, + int uv_stride, int height, int width, uint8_t *oy, + int oy_stride, uint8_t *ou, uint8_t *ov, + int ouv_stride, int oheight, int owidth) { + vp9_resize_plane(y, height, width, y_stride, oy, oheight, owidth, oy_stride); + vp9_resize_plane(u, height, width, uv_stride, ou, oheight, owidth, + ouv_stride); + vp9_resize_plane(v, height, width, uv_stride, ov, oheight, owidth, + ouv_stride); +} + +#if CONFIG_VP9_HIGHBITDEPTH +void vp9_highbd_resize_frame420(const uint8_t *const y, int y_stride, + const uint8_t *const u, const uint8_t *const v, + int uv_stride, int height, int width, + uint8_t *oy, int oy_stride, uint8_t *ou, + uint8_t *ov, int ouv_stride, int oheight, + int owidth, int bd) { + vp9_highbd_resize_plane(y, height, width, y_stride, oy, oheight, owidth, + oy_stride, bd); + vp9_highbd_resize_plane(u, height / 2, width / 2, uv_stride, ou, oheight / 2, + owidth / 2, ouv_stride, bd); + vp9_highbd_resize_plane(v, height / 2, width / 2, uv_stride, ov, oheight / 2, + owidth / 2, ouv_stride, bd); +} + +void vp9_highbd_resize_frame422(const uint8_t *const y, int y_stride, + const uint8_t *const u, const uint8_t *const v, + int uv_stride, int height, int width, + uint8_t *oy, int oy_stride, uint8_t *ou, + uint8_t *ov, int ouv_stride, int oheight, + int owidth, int bd) { + vp9_highbd_resize_plane(y, height, width, y_stride, oy, oheight, owidth, + oy_stride, bd); + vp9_highbd_resize_plane(u, height, width / 2, uv_stride, ou, oheight, + owidth / 2, ouv_stride, bd); + vp9_highbd_resize_plane(v, height, width / 2, uv_stride, ov, oheight, + owidth / 2, ouv_stride, bd); +} + +void vp9_highbd_resize_frame444(const uint8_t *const y, int y_stride, + const uint8_t *const u, const uint8_t *const v, + int uv_stride, int height, int width, + uint8_t *oy, int oy_stride, uint8_t *ou, + uint8_t *ov, int ouv_stride, int oheight, + int owidth, int bd) { + vp9_highbd_resize_plane(y, height, width, y_stride, oy, oheight, owidth, + oy_stride, bd); + vp9_highbd_resize_plane(u, height, width, uv_stride, ou, oheight, owidth, + ouv_stride, bd); + vp9_highbd_resize_plane(v, height, width, uv_stride, ov, oheight, owidth, + ouv_stride, bd); +} +#endif // CONFIG_VP9_HIGHBITDEPTH diff --git a/vp9/encoder/vp9_resize.h b/vp9/encoder/vp9_resize.h new file mode 100644 index 0000000..d3282ee --- /dev/null +++ b/vp9/encoder/vp9_resize.h @@ -0,0 +1,68 @@ +/* + * Copyright (c) 2014 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP9_ENCODER_VP9_RESIZE_H_ +#define VP9_ENCODER_VP9_RESIZE_H_ + +#include +#include "vpx/vpx_integer.h" + +#ifdef __cplusplus +extern "C" { +#endif + +void vp9_resize_plane(const uint8_t *const input, int height, int width, + int in_stride, uint8_t *output, int height2, int width2, + int out_stride); +void vp9_resize_frame420(const uint8_t *const y, int y_stride, + const uint8_t *const u, const uint8_t *const v, + int uv_stride, int height, int width, uint8_t *oy, + int oy_stride, uint8_t *ou, uint8_t *ov, + int ouv_stride, int oheight, int owidth); +void vp9_resize_frame422(const uint8_t *const y, int y_stride, + const uint8_t *const u, const uint8_t *const v, + int uv_stride, int height, int width, uint8_t *oy, + int oy_stride, uint8_t *ou, uint8_t *ov, + int ouv_stride, int oheight, int owidth); +void vp9_resize_frame444(const uint8_t *const y, int y_stride, + const uint8_t *const u, const uint8_t *const v, + int uv_stride, int height, int width, uint8_t *oy, + int oy_stride, uint8_t *ou, uint8_t *ov, + int ouv_stride, int oheight, int owidth); + +#if CONFIG_VP9_HIGHBITDEPTH +void vp9_highbd_resize_plane(const uint8_t *const input, int height, int width, + int in_stride, uint8_t *output, int height2, + int width2, int out_stride, int bd); +void vp9_highbd_resize_frame420(const uint8_t *const y, int y_stride, + const uint8_t *const u, const uint8_t *const v, + int uv_stride, int height, int width, + uint8_t *oy, int oy_stride, uint8_t *ou, + uint8_t *ov, int ouv_stride, int oheight, + int owidth, int bd); +void vp9_highbd_resize_frame422(const uint8_t *const y, int y_stride, + const uint8_t *const u, const uint8_t *const v, + int uv_stride, int height, int width, + uint8_t *oy, int oy_stride, uint8_t *ou, + uint8_t *ov, int ouv_stride, int oheight, + int owidth, int bd); +void vp9_highbd_resize_frame444(const uint8_t *const y, int y_stride, + const uint8_t *const u, const uint8_t *const v, + int uv_stride, int height, int width, + uint8_t *oy, int oy_stride, uint8_t *ou, + uint8_t *ov, int ouv_stride, int oheight, + int owidth, int bd); +#endif // CONFIG_VP9_HIGHBITDEPTH + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP9_ENCODER_VP9_RESIZE_H_ diff --git a/vp9/encoder/vp9_segmentation.c b/vp9/encoder/vp9_segmentation.c new file mode 100644 index 0000000..4a5a68e --- /dev/null +++ b/vp9/encoder/vp9_segmentation.c @@ -0,0 +1,271 @@ +/* + * Copyright (c) 2012 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include + +#include "vpx_mem/vpx_mem.h" + +#include "vp9/common/vp9_pred_common.h" +#include "vp9/common/vp9_tile_common.h" + +#include "vp9/encoder/vp9_cost.h" +#include "vp9/encoder/vp9_segmentation.h" + +void vp9_enable_segmentation(struct segmentation *seg) { + seg->enabled = 1; + seg->update_map = 1; + seg->update_data = 1; +} + +void vp9_disable_segmentation(struct segmentation *seg) { + seg->enabled = 0; + seg->update_map = 0; + seg->update_data = 0; +} + +void vp9_set_segment_data(struct segmentation *seg, signed char *feature_data, + unsigned char abs_delta) { + seg->abs_delta = abs_delta; + + memcpy(seg->feature_data, feature_data, sizeof(seg->feature_data)); +} +void vp9_disable_segfeature(struct segmentation *seg, int segment_id, + SEG_LVL_FEATURES feature_id) { + seg->feature_mask[segment_id] &= ~(1 << feature_id); +} + +void vp9_clear_segdata(struct segmentation *seg, int segment_id, + SEG_LVL_FEATURES feature_id) { + seg->feature_data[segment_id][feature_id] = 0; +} + +// Based on set of segment counts calculate a probability tree +static void calc_segtree_probs(int *segcounts, vpx_prob *segment_tree_probs) { + // Work out probabilities of each segment + const int c01 = segcounts[0] + segcounts[1]; + const int c23 = segcounts[2] + segcounts[3]; + const int c45 = segcounts[4] + segcounts[5]; + const int c67 = segcounts[6] + segcounts[7]; + + segment_tree_probs[0] = get_binary_prob(c01 + c23, c45 + c67); + segment_tree_probs[1] = get_binary_prob(c01, c23); + segment_tree_probs[2] = get_binary_prob(c45, c67); + segment_tree_probs[3] = get_binary_prob(segcounts[0], segcounts[1]); + segment_tree_probs[4] = get_binary_prob(segcounts[2], segcounts[3]); + segment_tree_probs[5] = get_binary_prob(segcounts[4], segcounts[5]); + segment_tree_probs[6] = get_binary_prob(segcounts[6], segcounts[7]); +} + +// Based on set of segment counts and probabilities calculate a cost estimate +static int cost_segmap(int *segcounts, vpx_prob *probs) { + const int c01 = segcounts[0] + segcounts[1]; + const int c23 = segcounts[2] + segcounts[3]; + const int c45 = segcounts[4] + segcounts[5]; + const int c67 = segcounts[6] + segcounts[7]; + const int c0123 = c01 + c23; + const int c4567 = c45 + c67; + + // Cost the top node of the tree + int cost = c0123 * vp9_cost_zero(probs[0]) + c4567 * vp9_cost_one(probs[0]); + + // Cost subsequent levels + if (c0123 > 0) { + cost += c01 * vp9_cost_zero(probs[1]) + c23 * vp9_cost_one(probs[1]); + + if (c01 > 0) + cost += segcounts[0] * vp9_cost_zero(probs[3]) + + segcounts[1] * vp9_cost_one(probs[3]); + if (c23 > 0) + cost += segcounts[2] * vp9_cost_zero(probs[4]) + + segcounts[3] * vp9_cost_one(probs[4]); + } + + if (c4567 > 0) { + cost += c45 * vp9_cost_zero(probs[2]) + c67 * vp9_cost_one(probs[2]); + + if (c45 > 0) + cost += segcounts[4] * vp9_cost_zero(probs[5]) + + segcounts[5] * vp9_cost_one(probs[5]); + if (c67 > 0) + cost += segcounts[6] * vp9_cost_zero(probs[6]) + + segcounts[7] * vp9_cost_one(probs[6]); + } + + return cost; +} + +static void count_segs(const VP9_COMMON *cm, MACROBLOCKD *xd, + const TileInfo *tile, MODE_INFO **mi, + int *no_pred_segcounts, + int (*temporal_predictor_count)[2], + int *t_unpred_seg_counts, int bw, int bh, int mi_row, + int mi_col) { + int segment_id; + + if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return; + + xd->mi = mi; + segment_id = xd->mi[0]->segment_id; + + set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, cm->mi_rows, cm->mi_cols); + + // Count the number of hits on each segment with no prediction + no_pred_segcounts[segment_id]++; + + // Temporal prediction not allowed on key frames + if (cm->frame_type != KEY_FRAME) { + const BLOCK_SIZE bsize = xd->mi[0]->sb_type; + // Test to see if the segment id matches the predicted value. + const int pred_segment_id = + get_segment_id(cm, cm->last_frame_seg_map, bsize, mi_row, mi_col); + const int pred_flag = pred_segment_id == segment_id; + const int pred_context = vp9_get_pred_context_seg_id(xd); + + // Store the prediction status for this mb and update counts + // as appropriate + xd->mi[0]->seg_id_predicted = pred_flag; + temporal_predictor_count[pred_context][pred_flag]++; + + // Update the "unpredicted" segment count + if (!pred_flag) t_unpred_seg_counts[segment_id]++; + } +} + +static void count_segs_sb(const VP9_COMMON *cm, MACROBLOCKD *xd, + const TileInfo *tile, MODE_INFO **mi, + int *no_pred_segcounts, + int (*temporal_predictor_count)[2], + int *t_unpred_seg_counts, int mi_row, int mi_col, + BLOCK_SIZE bsize) { + const int mis = cm->mi_stride; + int bw, bh; + const int bs = num_8x8_blocks_wide_lookup[bsize], hbs = bs / 2; + + if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return; + + bw = num_8x8_blocks_wide_lookup[mi[0]->sb_type]; + bh = num_8x8_blocks_high_lookup[mi[0]->sb_type]; + + if (bw == bs && bh == bs) { + count_segs(cm, xd, tile, mi, no_pred_segcounts, temporal_predictor_count, + t_unpred_seg_counts, bs, bs, mi_row, mi_col); + } else if (bw == bs && bh < bs) { + count_segs(cm, xd, tile, mi, no_pred_segcounts, temporal_predictor_count, + t_unpred_seg_counts, bs, hbs, mi_row, mi_col); + count_segs(cm, xd, tile, mi + hbs * mis, no_pred_segcounts, + temporal_predictor_count, t_unpred_seg_counts, bs, hbs, + mi_row + hbs, mi_col); + } else if (bw < bs && bh == bs) { + count_segs(cm, xd, tile, mi, no_pred_segcounts, temporal_predictor_count, + t_unpred_seg_counts, hbs, bs, mi_row, mi_col); + count_segs(cm, xd, tile, mi + hbs, no_pred_segcounts, + temporal_predictor_count, t_unpred_seg_counts, hbs, bs, mi_row, + mi_col + hbs); + } else { + const BLOCK_SIZE subsize = subsize_lookup[PARTITION_SPLIT][bsize]; + int n; + + assert(bw < bs && bh < bs); + + for (n = 0; n < 4; n++) { + const int mi_dc = hbs * (n & 1); + const int mi_dr = hbs * (n >> 1); + + count_segs_sb(cm, xd, tile, &mi[mi_dr * mis + mi_dc], no_pred_segcounts, + temporal_predictor_count, t_unpred_seg_counts, + mi_row + mi_dr, mi_col + mi_dc, subsize); + } + } +} + +void vp9_choose_segmap_coding_method(VP9_COMMON *cm, MACROBLOCKD *xd) { + struct segmentation *seg = &cm->seg; + + int no_pred_cost; + int t_pred_cost = INT_MAX; + + int i, tile_col, mi_row, mi_col; + + int temporal_predictor_count[PREDICTION_PROBS][2] = { { 0 } }; + int no_pred_segcounts[MAX_SEGMENTS] = { 0 }; + int t_unpred_seg_counts[MAX_SEGMENTS] = { 0 }; + + vpx_prob no_pred_tree[SEG_TREE_PROBS]; + vpx_prob t_pred_tree[SEG_TREE_PROBS]; + vpx_prob t_nopred_prob[PREDICTION_PROBS]; + + // Set default state for the segment tree probabilities and the + // temporal coding probabilities + memset(seg->tree_probs, 255, sizeof(seg->tree_probs)); + memset(seg->pred_probs, 255, sizeof(seg->pred_probs)); + + // First of all generate stats regarding how well the last segment map + // predicts this one + for (tile_col = 0; tile_col < 1 << cm->log2_tile_cols; tile_col++) { + TileInfo tile; + MODE_INFO **mi_ptr; + vp9_tile_init(&tile, cm, 0, tile_col); + + mi_ptr = cm->mi_grid_visible + tile.mi_col_start; + for (mi_row = 0; mi_row < cm->mi_rows; + mi_row += 8, mi_ptr += 8 * cm->mi_stride) { + MODE_INFO **mi = mi_ptr; + for (mi_col = tile.mi_col_start; mi_col < tile.mi_col_end; + mi_col += 8, mi += 8) + count_segs_sb(cm, xd, &tile, mi, no_pred_segcounts, + temporal_predictor_count, t_unpred_seg_counts, mi_row, + mi_col, BLOCK_64X64); + } + } + + // Work out probability tree for coding segments without prediction + // and the cost. + calc_segtree_probs(no_pred_segcounts, no_pred_tree); + no_pred_cost = cost_segmap(no_pred_segcounts, no_pred_tree); + + // Key frames cannot use temporal prediction + if (!frame_is_intra_only(cm)) { + // Work out probability tree for coding those segments not + // predicted using the temporal method and the cost. + calc_segtree_probs(t_unpred_seg_counts, t_pred_tree); + t_pred_cost = cost_segmap(t_unpred_seg_counts, t_pred_tree); + + // Add in the cost of the signaling for each prediction context. + for (i = 0; i < PREDICTION_PROBS; i++) { + const int count0 = temporal_predictor_count[i][0]; + const int count1 = temporal_predictor_count[i][1]; + + t_nopred_prob[i] = get_binary_prob(count0, count1); + + // Add in the predictor signaling cost + t_pred_cost += count0 * vp9_cost_zero(t_nopred_prob[i]) + + count1 * vp9_cost_one(t_nopred_prob[i]); + } + } + + // Now choose which coding method to use. + if (t_pred_cost < no_pred_cost) { + seg->temporal_update = 1; + memcpy(seg->tree_probs, t_pred_tree, sizeof(t_pred_tree)); + memcpy(seg->pred_probs, t_nopred_prob, sizeof(t_nopred_prob)); + } else { + seg->temporal_update = 0; + memcpy(seg->tree_probs, no_pred_tree, sizeof(no_pred_tree)); + } +} + +void vp9_reset_segment_features(struct segmentation *seg) { + // Set up default state for MB feature flags + seg->enabled = 0; + seg->update_map = 0; + seg->update_data = 0; + memset(seg->tree_probs, 255, sizeof(seg->tree_probs)); + vp9_clearall_segfeatures(seg); +} diff --git a/vp9/encoder/vp9_segmentation.h b/vp9/encoder/vp9_segmentation.h new file mode 100644 index 0000000..5628055 --- /dev/null +++ b/vp9/encoder/vp9_segmentation.h @@ -0,0 +1,50 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP9_ENCODER_VP9_SEGMENTATION_H_ +#define VP9_ENCODER_VP9_SEGMENTATION_H_ + +#include "vp9/common/vp9_blockd.h" +#include "vp9/encoder/vp9_encoder.h" + +#ifdef __cplusplus +extern "C" { +#endif + +void vp9_enable_segmentation(struct segmentation *seg); +void vp9_disable_segmentation(struct segmentation *seg); + +void vp9_disable_segfeature(struct segmentation *seg, int segment_id, + SEG_LVL_FEATURES feature_id); +void vp9_clear_segdata(struct segmentation *seg, int segment_id, + SEG_LVL_FEATURES feature_id); + +// The values given for each segment can be either deltas (from the default +// value chosen for the frame) or absolute values. +// +// Valid range for abs values is (0-127 for MB_LVL_ALT_Q), (0-63 for +// SEGMENT_ALT_LF) +// Valid range for delta values are (+/-127 for MB_LVL_ALT_Q), (+/-63 for +// SEGMENT_ALT_LF) +// +// abs_delta = SEGMENT_DELTADATA (deltas) abs_delta = SEGMENT_ABSDATA (use +// the absolute values given). +void vp9_set_segment_data(struct segmentation *seg, signed char *feature_data, + unsigned char abs_delta); + +void vp9_choose_segmap_coding_method(VP9_COMMON *cm, MACROBLOCKD *xd); + +void vp9_reset_segment_features(struct segmentation *seg); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP9_ENCODER_VP9_SEGMENTATION_H_ diff --git a/vp9/encoder/vp9_skin_detection.c b/vp9/encoder/vp9_skin_detection.c new file mode 100644 index 0000000..cc6c967 --- /dev/null +++ b/vp9/encoder/vp9_skin_detection.c @@ -0,0 +1,174 @@ +/* + * Copyright (c) 2015 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include + +#include "vp9/common/vp9_blockd.h" +#include "vp9/encoder/vp9_encoder.h" +#include "vp9/encoder/vp9_skin_detection.h" + +int vp9_compute_skin_block(const uint8_t *y, const uint8_t *u, const uint8_t *v, + int stride, int strideuv, int bsize, + int consec_zeromv, int curr_motion_magn) { + // No skin if block has been zero/small motion for long consecutive time. + if (consec_zeromv > 60 && curr_motion_magn == 0) { + return 0; + } else { + int motion = 1; + // Take center pixel in block to determine is_skin. + const int y_width_shift = (4 << b_width_log2_lookup[bsize]) >> 1; + const int y_height_shift = (4 << b_height_log2_lookup[bsize]) >> 1; + const int uv_width_shift = y_width_shift >> 1; + const int uv_height_shift = y_height_shift >> 1; + const uint8_t ysource = y[y_height_shift * stride + y_width_shift]; + const uint8_t usource = u[uv_height_shift * strideuv + uv_width_shift]; + const uint8_t vsource = v[uv_height_shift * strideuv + uv_width_shift]; + + if (consec_zeromv > 25 && curr_motion_magn == 0) motion = 0; + return vpx_skin_pixel(ysource, usource, vsource, motion); + } +} + +void vp9_compute_skin_sb(VP9_COMP *const cpi, BLOCK_SIZE bsize, int mi_row, + int mi_col) { + int i, j, num_bl; + VP9_COMMON *const cm = &cpi->common; + const uint8_t *src_y = cpi->Source->y_buffer; + const uint8_t *src_u = cpi->Source->u_buffer; + const uint8_t *src_v = cpi->Source->v_buffer; + const int src_ystride = cpi->Source->y_stride; + const int src_uvstride = cpi->Source->uv_stride; + const int y_bsize = 4 << b_width_log2_lookup[bsize]; + const int uv_bsize = y_bsize >> 1; + const int shy = (y_bsize == 8) ? 3 : 4; + const int shuv = shy - 1; + const int fac = y_bsize / 8; + const int y_shift = src_ystride * (mi_row << 3) + (mi_col << 3); + const int uv_shift = src_uvstride * (mi_row << 2) + (mi_col << 2); + const int mi_row_limit = VPXMIN(mi_row + 8, cm->mi_rows - 2); + const int mi_col_limit = VPXMIN(mi_col + 8, cm->mi_cols - 2); + src_y += y_shift; + src_u += uv_shift; + src_v += uv_shift; + + for (i = mi_row; i < mi_row_limit; i += fac) { + num_bl = 0; + for (j = mi_col; j < mi_col_limit; j += fac) { + int consec_zeromv = 0; + int bl_index = i * cm->mi_cols + j; + int bl_index1 = bl_index + 1; + int bl_index2 = bl_index + cm->mi_cols; + int bl_index3 = bl_index2 + 1; + // Don't detect skin on the boundary. + if (i == 0 || j == 0) continue; + if (bsize == BLOCK_8X8) + consec_zeromv = cpi->consec_zero_mv[bl_index]; + else + consec_zeromv = VPXMIN(cpi->consec_zero_mv[bl_index], + VPXMIN(cpi->consec_zero_mv[bl_index1], + VPXMIN(cpi->consec_zero_mv[bl_index2], + cpi->consec_zero_mv[bl_index3]))); + cpi->skin_map[bl_index] = + vp9_compute_skin_block(src_y, src_u, src_v, src_ystride, src_uvstride, + bsize, consec_zeromv, 0); + num_bl++; + src_y += y_bsize; + src_u += uv_bsize; + src_v += uv_bsize; + } + src_y += (src_ystride << shy) - (num_bl << shy); + src_u += (src_uvstride << shuv) - (num_bl << shuv); + src_v += (src_uvstride << shuv) - (num_bl << shuv); + } + + // Remove isolated skin blocks (none of its neighbors are skin) and isolated + // non-skin blocks (all of its neighbors are skin). + // Skip 4 corner blocks which have only 3 neighbors to remove isolated skin + // blocks. Skip superblock borders to remove isolated non-skin blocks. + for (i = mi_row; i < mi_row_limit; i += fac) { + for (j = mi_col; j < mi_col_limit; j += fac) { + int bl_index = i * cm->mi_cols + j; + int num_neighbor = 0; + int mi, mj; + int non_skin_threshold = 8; + // Skip 4 corners. + if ((i == mi_row && (j == mi_col || j == mi_col_limit - fac)) || + (i == mi_row_limit - fac && (j == mi_col || j == mi_col_limit - fac))) + continue; + // There are only 5 neighbors for non-skin blocks on the border. + if (i == mi_row || i == mi_row_limit - fac || j == mi_col || + j == mi_col_limit - fac) + non_skin_threshold = 5; + + for (mi = -fac; mi <= fac; mi += fac) { + for (mj = -fac; mj <= fac; mj += fac) { + if (i + mi >= mi_row && i + mi < mi_row_limit && j + mj >= mi_col && + j + mj < mi_col_limit) { + int bl_neighbor_index = (i + mi) * cm->mi_cols + j + mj; + if (cpi->skin_map[bl_neighbor_index]) num_neighbor++; + } + } + } + + if (cpi->skin_map[bl_index] && num_neighbor < 2) + cpi->skin_map[bl_index] = 0; + if (!cpi->skin_map[bl_index] && num_neighbor == non_skin_threshold) + cpi->skin_map[bl_index] = 1; + } + } +} + +#ifdef OUTPUT_YUV_SKINMAP +// For viewing skin map on input source. +void vp9_output_skin_map(VP9_COMP *const cpi, FILE *yuv_skinmap_file) { + int i, j, mi_row, mi_col, num_bl; + VP9_COMMON *const cm = &cpi->common; + uint8_t *y; + const uint8_t *src_y = cpi->Source->y_buffer; + const int src_ystride = cpi->Source->y_stride; + const int y_bsize = 16; // Use 8x8 or 16x16. + const int shy = (y_bsize == 8) ? 3 : 4; + const int fac = y_bsize / 8; + + YV12_BUFFER_CONFIG skinmap; + memset(&skinmap, 0, sizeof(YV12_BUFFER_CONFIG)); + if (vpx_alloc_frame_buffer(&skinmap, cm->width, cm->height, cm->subsampling_x, + cm->subsampling_y, VP9_ENC_BORDER_IN_PIXELS, + cm->byte_alignment)) { + vpx_free_frame_buffer(&skinmap); + return; + } + memset(skinmap.buffer_alloc, 128, skinmap.frame_size); + y = skinmap.y_buffer; + // Loop through blocks and set skin map based on center pixel of block. + // Set y to white for skin block, otherwise set to source with gray scale. + // Ignore rightmost/bottom boundary blocks. + for (mi_row = 0; mi_row < cm->mi_rows - 1; mi_row += fac) { + num_bl = 0; + for (mi_col = 0; mi_col < cm->mi_cols - 1; mi_col += fac) { + const int block_index = mi_row * cm->mi_cols + mi_col; + const int is_skin = cpi->skin_map[block_index]; + for (i = 0; i < y_bsize; i++) { + for (j = 0; j < y_bsize; j++) { + y[i * src_ystride + j] = is_skin ? 255 : src_y[i * src_ystride + j]; + } + } + num_bl++; + y += y_bsize; + src_y += y_bsize; + } + y += (src_ystride << shy) - (num_bl << shy); + src_y += (src_ystride << shy) - (num_bl << shy); + } + vpx_write_yuv_frame(yuv_skinmap_file, &skinmap); + vpx_free_frame_buffer(&skinmap); +} +#endif diff --git a/vp9/encoder/vp9_skin_detection.h b/vp9/encoder/vp9_skin_detection.h new file mode 100644 index 0000000..8880bff --- /dev/null +++ b/vp9/encoder/vp9_skin_detection.h @@ -0,0 +1,40 @@ +/* + * Copyright (c) 2015 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP9_ENCODER_VP9_SKIN_MAP_H_ +#define VP9_ENCODER_VP9_SKIN_MAP_H_ + +#include "vp9/common/vp9_blockd.h" +#include "vpx_dsp/skin_detection.h" +#include "vpx_util/vpx_write_yuv_frame.h" + +#ifdef __cplusplus +extern "C" { +#endif + +struct VP9_COMP; + +int vp9_compute_skin_block(const uint8_t *y, const uint8_t *u, const uint8_t *v, + int stride, int strideuv, int bsize, + int consec_zeromv, int curr_motion_magn); + +void vp9_compute_skin_sb(struct VP9_COMP *const cpi, BLOCK_SIZE bsize, + int mi_row, int mi_col); + +#ifdef OUTPUT_YUV_SKINMAP +// For viewing skin map on input source. +void vp9_output_skin_map(struct VP9_COMP *const cpi, FILE *yuv_skinmap_file); +#endif + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP9_ENCODER_VP9_SKIN_MAP_H_ diff --git a/vp9/encoder/vp9_speed_features.c b/vp9/encoder/vp9_speed_features.c new file mode 100644 index 0000000..a05db60 --- /dev/null +++ b/vp9/encoder/vp9_speed_features.c @@ -0,0 +1,876 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include + +#include "vp9/encoder/vp9_encoder.h" +#include "vp9/encoder/vp9_speed_features.h" +#include "vp9/encoder/vp9_rdopt.h" +#include "vpx_dsp/vpx_dsp_common.h" + +// Mesh search patters for various speed settings +static MESH_PATTERN best_quality_mesh_pattern[MAX_MESH_STEP] = { + { 64, 4 }, { 28, 2 }, { 15, 1 }, { 7, 1 } +}; + +// Define 3 mesh density levels to control the number of searches. +#define MESH_DENSITY_LEVELS 3 +static MESH_PATTERN + good_quality_mesh_patterns[MESH_DENSITY_LEVELS][MAX_MESH_STEP] = { + { { 64, 8 }, { 28, 4 }, { 15, 1 }, { 7, 1 } }, + { { 64, 8 }, { 14, 2 }, { 7, 1 }, { 7, 1 } }, + { { 64, 16 }, { 24, 8 }, { 12, 4 }, { 7, 1 } }, + }; + +// Intra only frames, golden frames (except alt ref overlays) and +// alt ref frames tend to be coded at a higher than ambient quality +static int frame_is_boosted(const VP9_COMP *cpi) { + return frame_is_kf_gf_arf(cpi) || vp9_is_upper_layer_key_frame(cpi); +} + +// Sets a partition size down to which the auto partition code will always +// search (can go lower), based on the image dimensions. The logic here +// is that the extent to which ringing artefacts are offensive, depends +// partly on the screen area that over which they propogate. Propogation is +// limited by transform block size but the screen area take up by a given block +// size will be larger for a small image format stretched to full screen. +static BLOCK_SIZE set_partition_min_limit(VP9_COMMON *const cm) { + unsigned int screen_area = (cm->width * cm->height); + + // Select block size based on image format size. + if (screen_area < 1280 * 720) { + // Formats smaller in area than 720P + return BLOCK_4X4; + } else if (screen_area < 1920 * 1080) { + // Format >= 720P and < 1080P + return BLOCK_8X8; + } else { + // Formats 1080P and up + return BLOCK_16X16; + } +} + +static void set_good_speed_feature_framesize_dependent(VP9_COMP *cpi, + SPEED_FEATURES *sf, + int speed) { + VP9_COMMON *const cm = &cpi->common; + + // speed 0 features + sf->partition_search_breakout_thr.dist = (1 << 20); + sf->partition_search_breakout_thr.rate = 80; + + // Currently, the machine-learning based partition search early termination + // is only used while VPXMIN(cm->width, cm->height) >= 480 and speed = 0. + if (VPXMIN(cm->width, cm->height) >= 480) { + sf->ml_partition_search_early_termination = 1; + } + + if (speed >= 1) { + sf->ml_partition_search_early_termination = 0; + + if (VPXMIN(cm->width, cm->height) >= 720) { + sf->disable_split_mask = + cm->show_frame ? DISABLE_ALL_SPLIT : DISABLE_ALL_INTER_SPLIT; + sf->partition_search_breakout_thr.dist = (1 << 23); + } else { + sf->disable_split_mask = DISABLE_COMPOUND_SPLIT; + sf->partition_search_breakout_thr.dist = (1 << 21); + } + } + + if (speed >= 2) { + if (VPXMIN(cm->width, cm->height) >= 720) { + sf->disable_split_mask = + cm->show_frame ? DISABLE_ALL_SPLIT : DISABLE_ALL_INTER_SPLIT; + sf->adaptive_pred_interp_filter = 0; + sf->partition_search_breakout_thr.dist = (1 << 24); + sf->partition_search_breakout_thr.rate = 120; + } else { + sf->disable_split_mask = LAST_AND_INTRA_SPLIT_ONLY; + sf->partition_search_breakout_thr.dist = (1 << 22); + sf->partition_search_breakout_thr.rate = 100; + } + sf->rd_auto_partition_min_limit = set_partition_min_limit(cm); + + // Use a set of speed features for 4k videos. + if (VPXMIN(cm->width, cm->height) >= 2160) { + sf->use_square_partition_only = 1; + sf->intra_y_mode_mask[TX_32X32] = INTRA_DC; + sf->intra_uv_mode_mask[TX_32X32] = INTRA_DC; + sf->alt_ref_search_fp = 1; + sf->cb_pred_filter_search = 1; + sf->adaptive_interp_filter_search = 1; + sf->disable_split_mask = DISABLE_ALL_SPLIT; + } + } + + if (speed >= 3) { + if (VPXMIN(cm->width, cm->height) >= 720) { + sf->disable_split_mask = DISABLE_ALL_SPLIT; + sf->schedule_mode_search = cm->base_qindex < 220 ? 1 : 0; + sf->partition_search_breakout_thr.dist = (1 << 25); + sf->partition_search_breakout_thr.rate = 200; + } else { + sf->max_intra_bsize = BLOCK_32X32; + sf->disable_split_mask = DISABLE_ALL_INTER_SPLIT; + sf->schedule_mode_search = cm->base_qindex < 175 ? 1 : 0; + sf->partition_search_breakout_thr.dist = (1 << 23); + sf->partition_search_breakout_thr.rate = 120; + } + } + + // If this is a two pass clip that fits the criteria for animated or + // graphics content then reset disable_split_mask for speeds 1-4. + // Also if the image edge is internal to the coded area. + if ((speed >= 1) && (cpi->oxcf.pass == 2) && + ((cpi->twopass.fr_content_type == FC_GRAPHICS_ANIMATION) || + (vp9_internal_image_edge(cpi)))) { + sf->disable_split_mask = DISABLE_COMPOUND_SPLIT; + } + + if (speed >= 4) { + sf->partition_search_breakout_thr.rate = 300; + if (VPXMIN(cm->width, cm->height) >= 720) { + sf->partition_search_breakout_thr.dist = (1 << 26); + } else { + sf->partition_search_breakout_thr.dist = (1 << 24); + } + sf->disable_split_mask = DISABLE_ALL_SPLIT; + } + + if (speed >= 5) { + sf->partition_search_breakout_thr.rate = 500; + } +} + +static double tx_dom_thresholds[6] = { 99.0, 14.0, 12.0, 8.0, 4.0, 0.0 }; +static double qopt_thresholds[6] = { 99.0, 12.0, 10.0, 4.0, 2.0, 0.0 }; + +static void set_good_speed_feature_framesize_independent(VP9_COMP *cpi, + VP9_COMMON *cm, + SPEED_FEATURES *sf, + int speed) { + const VP9EncoderConfig *const oxcf = &cpi->oxcf; + const int boosted = frame_is_boosted(cpi); + int i; + + sf->tx_size_search_breakout = 1; + sf->adaptive_rd_thresh = 1; + sf->adaptive_rd_thresh_row_mt = 0; + sf->allow_skip_recode = 1; + sf->less_rectangular_check = 1; + sf->use_square_partition_only = !frame_is_boosted(cpi); + sf->use_square_only_threshold = BLOCK_16X16; + + if (cpi->twopass.fr_content_type == FC_GRAPHICS_ANIMATION) { + sf->exhaustive_searches_thresh = (1 << 22); + for (i = 0; i < MAX_MESH_STEP; ++i) { + int mesh_density_level = 0; + sf->mesh_patterns[i].range = + good_quality_mesh_patterns[mesh_density_level][i].range; + sf->mesh_patterns[i].interval = + good_quality_mesh_patterns[mesh_density_level][i].interval; + } + } else { + sf->exhaustive_searches_thresh = INT_MAX; + } + + if (speed >= 1) { + if (oxcf->pass == 2) { + TWO_PASS *const twopass = &cpi->twopass; + if ((twopass->fr_content_type == FC_GRAPHICS_ANIMATION) || + vp9_internal_image_edge(cpi)) { + sf->use_square_partition_only = !frame_is_boosted(cpi); + } else { + sf->use_square_partition_only = !frame_is_intra_only(cm); + } + } else { + sf->use_square_partition_only = !frame_is_intra_only(cm); + } + + sf->allow_txfm_domain_distortion = 1; + sf->tx_domain_thresh = tx_dom_thresholds[(speed < 6) ? speed : 5]; + sf->allow_quant_coeff_opt = sf->optimize_coefficients; + sf->quant_opt_thresh = qopt_thresholds[(speed < 6) ? speed : 5]; + + sf->use_square_only_threshold = BLOCK_4X4; + sf->less_rectangular_check = 1; + + sf->use_rd_breakout = 1; + sf->adaptive_motion_search = 1; + sf->mv.auto_mv_step_size = 1; + sf->adaptive_rd_thresh = 2; + sf->mv.subpel_iters_per_step = 1; + sf->mode_skip_start = 10; + sf->adaptive_pred_interp_filter = 1; + sf->allow_acl = 0; + + sf->intra_y_mode_mask[TX_32X32] = INTRA_DC_H_V; + sf->intra_uv_mode_mask[TX_32X32] = INTRA_DC_H_V; + sf->intra_y_mode_mask[TX_16X16] = INTRA_DC_H_V; + sf->intra_uv_mode_mask[TX_16X16] = INTRA_DC_H_V; + + sf->recode_tolerance_low = 15; + sf->recode_tolerance_high = 30; + + sf->exhaustive_searches_thresh = + (cpi->twopass.fr_content_type == FC_GRAPHICS_ANIMATION) ? (1 << 23) + : INT_MAX; + } + + if (speed >= 2) { + if (oxcf->vbr_corpus_complexity) + sf->recode_loop = ALLOW_RECODE_FIRST; + else + sf->recode_loop = ALLOW_RECODE_KFARFGF; + + sf->tx_size_search_method = + frame_is_boosted(cpi) ? USE_FULL_RD : USE_LARGESTALL; + + // Reference masking is not supported in dynamic scaling mode. + sf->reference_masking = oxcf->resize_mode != RESIZE_DYNAMIC ? 1 : 0; + + sf->mode_search_skip_flags = + (cm->frame_type == KEY_FRAME) + ? 0 + : FLAG_SKIP_INTRA_DIRMISMATCH | FLAG_SKIP_INTRA_BESTINTER | + FLAG_SKIP_COMP_BESTINTRA | FLAG_SKIP_INTRA_LOWVAR; + sf->disable_filter_search_var_thresh = 100; + sf->comp_inter_joint_search_thresh = BLOCK_SIZES; + sf->auto_min_max_partition_size = RELAXED_NEIGHBORING_MIN_MAX; + sf->recode_tolerance_low = 15; + sf->recode_tolerance_high = 45; + + if (cpi->twopass.fr_content_type == FC_GRAPHICS_ANIMATION) { + for (i = 0; i < MAX_MESH_STEP; ++i) { + int mesh_density_level = 1; + sf->mesh_patterns[i].range = + good_quality_mesh_patterns[mesh_density_level][i].range; + sf->mesh_patterns[i].interval = + good_quality_mesh_patterns[mesh_density_level][i].interval; + } + } + } + + if (speed >= 3) { + sf->use_square_partition_only = !frame_is_intra_only(cm); + sf->tx_size_search_method = + frame_is_intra_only(cm) ? USE_FULL_RD : USE_LARGESTALL; + sf->mv.subpel_search_method = SUBPEL_TREE_PRUNED; + sf->adaptive_pred_interp_filter = 0; + sf->adaptive_mode_search = 1; + sf->cb_partition_search = !boosted; + sf->cb_pred_filter_search = 1; + sf->alt_ref_search_fp = 1; + sf->recode_loop = ALLOW_RECODE_KFMAXBW; + sf->adaptive_rd_thresh = 3; + sf->mode_skip_start = 6; + sf->intra_y_mode_mask[TX_32X32] = INTRA_DC; + sf->intra_uv_mode_mask[TX_32X32] = INTRA_DC; + sf->adaptive_interp_filter_search = 1; + sf->allow_partition_search_skip = 1; + + if (cpi->twopass.fr_content_type == FC_GRAPHICS_ANIMATION) { + for (i = 0; i < MAX_MESH_STEP; ++i) { + int mesh_density_level = 2; + sf->mesh_patterns[i].range = + good_quality_mesh_patterns[mesh_density_level][i].range; + sf->mesh_patterns[i].interval = + good_quality_mesh_patterns[mesh_density_level][i].interval; + } + } + } + + if (speed >= 4) { + sf->use_square_partition_only = 1; + sf->tx_size_search_method = USE_LARGESTALL; + sf->mv.search_method = BIGDIA; + sf->mv.subpel_search_method = SUBPEL_TREE_PRUNED_MORE; + sf->adaptive_rd_thresh = 4; + if (cm->frame_type != KEY_FRAME) + sf->mode_search_skip_flags |= FLAG_EARLY_TERMINATE; + sf->disable_filter_search_var_thresh = 200; + sf->use_lp32x32fdct = 1; + sf->use_fast_coef_updates = ONE_LOOP_REDUCED; + sf->use_fast_coef_costing = 1; + sf->motion_field_mode_search = !boosted; + } + + if (speed >= 5) { + int i; + sf->optimize_coefficients = 0; + sf->mv.search_method = HEX; + sf->disable_filter_search_var_thresh = 500; + for (i = 0; i < TX_SIZES; ++i) { + sf->intra_y_mode_mask[i] = INTRA_DC; + sf->intra_uv_mode_mask[i] = INTRA_DC; + } + sf->mv.reduce_first_step_size = 1; + sf->simple_model_rd_from_var = 1; + } +} + +static void set_rt_speed_feature_framesize_dependent(VP9_COMP *cpi, + SPEED_FEATURES *sf, + int speed) { + VP9_COMMON *const cm = &cpi->common; + + if (speed >= 1) { + if (VPXMIN(cm->width, cm->height) >= 720) { + sf->disable_split_mask = + cm->show_frame ? DISABLE_ALL_SPLIT : DISABLE_ALL_INTER_SPLIT; + } else { + sf->disable_split_mask = DISABLE_COMPOUND_SPLIT; + } + } + + if (speed >= 2) { + if (VPXMIN(cm->width, cm->height) >= 720) { + sf->disable_split_mask = + cm->show_frame ? DISABLE_ALL_SPLIT : DISABLE_ALL_INTER_SPLIT; + } else { + sf->disable_split_mask = LAST_AND_INTRA_SPLIT_ONLY; + } + } + + if (speed >= 5) { + sf->partition_search_breakout_thr.rate = 200; + if (VPXMIN(cm->width, cm->height) >= 720) { + sf->partition_search_breakout_thr.dist = (1 << 25); + } else { + sf->partition_search_breakout_thr.dist = (1 << 23); + } + } + + if (speed >= 7) { + sf->encode_breakout_thresh = + (VPXMIN(cm->width, cm->height) >= 720) ? 800 : 300; + } +} + +static void set_rt_speed_feature_framesize_independent( + VP9_COMP *cpi, SPEED_FEATURES *sf, int speed, vp9e_tune_content content) { + VP9_COMMON *const cm = &cpi->common; + const int is_keyframe = cm->frame_type == KEY_FRAME; + const int frames_since_key = is_keyframe ? 0 : cpi->rc.frames_since_key; + sf->static_segmentation = 0; + sf->adaptive_rd_thresh = 1; + sf->adaptive_rd_thresh_row_mt = 0; + sf->use_fast_coef_costing = 1; + sf->exhaustive_searches_thresh = INT_MAX; + sf->allow_acl = 0; + sf->copy_partition_flag = 0; + sf->use_source_sad = 0; + sf->use_simple_block_yrd = 0; + sf->adapt_partition_source_sad = 0; + sf->use_altref_onepass = 0; + sf->use_compound_nonrd_pickmode = 0; + sf->nonrd_keyframe = 0; + sf->svc_use_lowres_part = 0; + + if (speed >= 1) { + sf->allow_txfm_domain_distortion = 1; + sf->tx_domain_thresh = 0.0; + sf->allow_quant_coeff_opt = 0; + sf->quant_opt_thresh = 0.0; + sf->use_square_partition_only = !frame_is_intra_only(cm); + sf->less_rectangular_check = 1; + sf->tx_size_search_method = + frame_is_intra_only(cm) ? USE_FULL_RD : USE_LARGESTALL; + + sf->use_rd_breakout = 1; + + sf->adaptive_motion_search = 1; + sf->adaptive_pred_interp_filter = 1; + sf->mv.auto_mv_step_size = 1; + sf->adaptive_rd_thresh = 2; + sf->intra_y_mode_mask[TX_32X32] = INTRA_DC_H_V; + sf->intra_uv_mode_mask[TX_32X32] = INTRA_DC_H_V; + sf->intra_uv_mode_mask[TX_16X16] = INTRA_DC_H_V; + } + + if (speed >= 2) { + sf->mode_search_skip_flags = + (cm->frame_type == KEY_FRAME) + ? 0 + : FLAG_SKIP_INTRA_DIRMISMATCH | FLAG_SKIP_INTRA_BESTINTER | + FLAG_SKIP_COMP_BESTINTRA | FLAG_SKIP_INTRA_LOWVAR; + sf->adaptive_pred_interp_filter = 2; + + // Reference masking only enabled for 1 spatial layer, and if none of the + // references have been scaled. The latter condition needs to be checked + // for external or internal dynamic resize. + sf->reference_masking = (cpi->svc.number_spatial_layers == 1); + if (sf->reference_masking == 1 && + (cpi->external_resize == 1 || + cpi->oxcf.resize_mode == RESIZE_DYNAMIC)) { + MV_REFERENCE_FRAME ref_frame; + static const int flag_list[4] = { 0, VP9_LAST_FLAG, VP9_GOLD_FLAG, + VP9_ALT_FLAG }; + for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) { + const YV12_BUFFER_CONFIG *yv12 = get_ref_frame_buffer(cpi, ref_frame); + if (yv12 != NULL && (cpi->ref_frame_flags & flag_list[ref_frame])) { + const struct scale_factors *const scale_fac = + &cm->frame_refs[ref_frame - 1].sf; + if (vp9_is_scaled(scale_fac)) sf->reference_masking = 0; + } + } + } + + sf->disable_filter_search_var_thresh = 50; + sf->comp_inter_joint_search_thresh = BLOCK_SIZES; + sf->auto_min_max_partition_size = RELAXED_NEIGHBORING_MIN_MAX; + sf->lf_motion_threshold = LOW_MOTION_THRESHOLD; + sf->adjust_partitioning_from_last_frame = 1; + sf->last_partitioning_redo_frequency = 3; + sf->use_lp32x32fdct = 1; + sf->mode_skip_start = 11; + sf->intra_y_mode_mask[TX_16X16] = INTRA_DC_H_V; + } + + if (speed >= 3) { + sf->use_square_partition_only = 1; + sf->disable_filter_search_var_thresh = 100; + sf->use_uv_intra_rd_estimate = 1; + sf->skip_encode_sb = 1; + sf->mv.subpel_iters_per_step = 1; + sf->adaptive_rd_thresh = 4; + sf->mode_skip_start = 6; + sf->allow_skip_recode = 0; + sf->optimize_coefficients = 0; + sf->disable_split_mask = DISABLE_ALL_SPLIT; + sf->lpf_pick = LPF_PICK_FROM_Q; + } + + if (speed >= 4) { + int i; + if (cpi->oxcf.rc_mode == VPX_VBR && cpi->oxcf.lag_in_frames > 0) + sf->use_altref_onepass = 1; + sf->last_partitioning_redo_frequency = 4; + sf->adaptive_rd_thresh = 5; + sf->use_fast_coef_costing = 0; + sf->auto_min_max_partition_size = STRICT_NEIGHBORING_MIN_MAX; + sf->adjust_partitioning_from_last_frame = + cm->last_frame_type != cm->frame_type || + (0 == (frames_since_key + 1) % sf->last_partitioning_redo_frequency); + sf->mv.subpel_force_stop = 1; + for (i = 0; i < TX_SIZES; i++) { + sf->intra_y_mode_mask[i] = INTRA_DC_H_V; + sf->intra_uv_mode_mask[i] = INTRA_DC; + } + sf->intra_y_mode_mask[TX_32X32] = INTRA_DC; + sf->frame_parameter_update = 0; + sf->mv.search_method = FAST_HEX; + + sf->inter_mode_mask[BLOCK_32X32] = INTER_NEAREST_NEAR_NEW; + sf->inter_mode_mask[BLOCK_32X64] = INTER_NEAREST; + sf->inter_mode_mask[BLOCK_64X32] = INTER_NEAREST; + sf->inter_mode_mask[BLOCK_64X64] = INTER_NEAREST; + sf->max_intra_bsize = BLOCK_32X32; + sf->allow_skip_recode = 1; + } + + if (speed >= 5) { + sf->use_altref_onepass = 0; + sf->use_quant_fp = !is_keyframe; + sf->auto_min_max_partition_size = + is_keyframe ? RELAXED_NEIGHBORING_MIN_MAX : STRICT_NEIGHBORING_MIN_MAX; + sf->default_max_partition_size = BLOCK_32X32; + sf->default_min_partition_size = BLOCK_8X8; + sf->force_frame_boost = + is_keyframe || + (frames_since_key % (sf->last_partitioning_redo_frequency << 1) == 1); + sf->max_delta_qindex = is_keyframe ? 20 : 15; + sf->partition_search_type = REFERENCE_PARTITION; + if (cpi->oxcf.rc_mode == VPX_VBR && cpi->oxcf.lag_in_frames > 0 && + cpi->rc.is_src_frame_alt_ref) { + sf->partition_search_type = VAR_BASED_PARTITION; + } + sf->use_nonrd_pick_mode = 1; + sf->allow_skip_recode = 0; + sf->inter_mode_mask[BLOCK_32X32] = INTER_NEAREST_NEW_ZERO; + sf->inter_mode_mask[BLOCK_32X64] = INTER_NEAREST_NEW_ZERO; + sf->inter_mode_mask[BLOCK_64X32] = INTER_NEAREST_NEW_ZERO; + sf->inter_mode_mask[BLOCK_64X64] = INTER_NEAREST_NEW_ZERO; + sf->adaptive_rd_thresh = 2; + // This feature is only enabled when partition search is disabled. + sf->reuse_inter_pred_sby = 1; + sf->coeff_prob_appx_step = 4; + sf->use_fast_coef_updates = is_keyframe ? TWO_LOOP : ONE_LOOP_REDUCED; + sf->mode_search_skip_flags = FLAG_SKIP_INTRA_DIRMISMATCH; + sf->tx_size_search_method = is_keyframe ? USE_LARGESTALL : USE_TX_8X8; + sf->simple_model_rd_from_var = 1; + if (cpi->oxcf.rc_mode == VPX_VBR) sf->mv.search_method = NSTEP; + + if (!is_keyframe) { + int i; + if (content == VP9E_CONTENT_SCREEN) { + for (i = 0; i < BLOCK_SIZES; ++i) + sf->intra_y_mode_bsize_mask[i] = INTRA_DC_TM_H_V; + } else { + for (i = 0; i < BLOCK_SIZES; ++i) + if (i > BLOCK_16X16) + sf->intra_y_mode_bsize_mask[i] = INTRA_DC; + else + // Use H and V intra mode for block sizes <= 16X16. + sf->intra_y_mode_bsize_mask[i] = INTRA_DC_H_V; + } + } + if (content == VP9E_CONTENT_SCREEN) { + sf->short_circuit_flat_blocks = 1; + } + if (cpi->oxcf.rc_mode == VPX_CBR && + cpi->oxcf.content != VP9E_CONTENT_SCREEN) { + sf->limit_newmv_early_exit = 1; + if (!cpi->use_svc) sf->bias_golden = 1; + } + } + + if (speed >= 6) { + if (cpi->oxcf.rc_mode == VPX_VBR && cpi->oxcf.lag_in_frames > 0) { + sf->use_altref_onepass = 1; + sf->use_compound_nonrd_pickmode = 1; + } + sf->partition_search_type = VAR_BASED_PARTITION; + // Turn on this to use non-RD key frame coding mode. + sf->use_nonrd_pick_mode = 1; + sf->mv.search_method = NSTEP; + sf->mv.reduce_first_step_size = 1; + sf->skip_encode_sb = 0; + + if (!cpi->external_resize) sf->use_source_sad = 1; + + if (sf->use_source_sad) { + sf->adapt_partition_source_sad = 1; + sf->adapt_partition_thresh = + (cm->width * cm->height <= 640 * 360) ? 40000 : 60000; + if (cpi->content_state_sb_fd == NULL && + (!cpi->use_svc || + cpi->svc.spatial_layer_id == cpi->svc.number_spatial_layers - 1)) { + cpi->content_state_sb_fd = (uint8_t *)vpx_calloc( + (cm->mi_stride >> 3) * ((cm->mi_rows >> 3) + 1), sizeof(uint8_t)); + } + } + if (cpi->oxcf.rc_mode == VPX_CBR && content != VP9E_CONTENT_SCREEN) { + // Enable short circuit for low temporal variance. + sf->short_circuit_low_temp_var = 1; + } + if (cpi->svc.temporal_layer_id > 0) { + sf->adaptive_rd_thresh = 4; + sf->limit_newmv_early_exit = 0; + sf->base_mv_aggressive = 1; + } + } + + if (speed >= 7) { + sf->adapt_partition_source_sad = 0; + sf->adaptive_rd_thresh = 3; + sf->mv.search_method = FAST_DIAMOND; + sf->mv.fullpel_search_step_param = 10; + // For SVC: use better mv search on base temporal layer, and only + // on base spatial layer if highest resolution is above 640x360. + if (cpi->svc.number_temporal_layers > 2 && + cpi->svc.temporal_layer_id == 0 && + (cpi->svc.spatial_layer_id == 0 || + cpi->oxcf.width * cpi->oxcf.height <= 640 * 360)) { + sf->mv.search_method = NSTEP; + sf->mv.fullpel_search_step_param = 6; + } + if (cpi->svc.temporal_layer_id > 0 || cpi->svc.spatial_layer_id > 1) { + sf->use_simple_block_yrd = 1; + if (cpi->svc.non_reference_frame) + sf->mv.subpel_search_method = SUBPEL_TREE_PRUNED_EVENMORE; + } + if (cpi->use_svc && cpi->row_mt && cpi->oxcf.max_threads > 1) + sf->adaptive_rd_thresh_row_mt = 1; + // Enable partition copy. For SVC only enabled for top spatial resolution + // layer. + cpi->max_copied_frame = 0; + if (!cpi->last_frame_dropped && cpi->resize_state == ORIG && + !cpi->external_resize && + (!cpi->use_svc || + cpi->svc.spatial_layer_id == cpi->svc.number_spatial_layers - 1)) { + sf->copy_partition_flag = 1; + cpi->max_copied_frame = 2; + // The top temporal enhancement layer (for number of temporal layers > 1) + // are non-reference frames, so use large/max value for max_copied_frame. + if (cpi->svc.number_temporal_layers > 1 && + cpi->svc.temporal_layer_id == cpi->svc.number_temporal_layers - 1) + cpi->max_copied_frame = 255; + } + // For SVC: enable use of lower resolution partition for higher resolution, + // only for 3 spatial layers and when config/top resolution is above VGA. + // Enable only for non-base temporal layer frames. + if (cpi->use_svc && cpi->svc.number_spatial_layers == 3 && + cpi->svc.temporal_layer_id > 0 && + cpi->oxcf.width * cpi->oxcf.height > 640 * 480) + sf->svc_use_lowres_part = 1; + } + + if (speed >= 8) { + sf->adaptive_rd_thresh = 4; + sf->skip_encode_sb = 1; + sf->nonrd_keyframe = 1; + if (!cpi->use_svc) cpi->max_copied_frame = 4; + if (cpi->row_mt && cpi->oxcf.max_threads > 1) + sf->adaptive_rd_thresh_row_mt = 1; + + if (content == VP9E_CONTENT_SCREEN) sf->mv.subpel_force_stop = 3; + if (content == VP9E_CONTENT_SCREEN) sf->lpf_pick = LPF_PICK_MINIMAL_LPF; + // Only keep INTRA_DC mode for speed 8. + if (!is_keyframe) { + int i = 0; + for (i = 0; i < BLOCK_SIZES; ++i) + sf->intra_y_mode_bsize_mask[i] = INTRA_DC; + } + if (!cpi->use_svc && cpi->oxcf.rc_mode == VPX_CBR && + content != VP9E_CONTENT_SCREEN) { + // More aggressive short circuit for speed 8. + sf->short_circuit_low_temp_var = 3; + // Use level 2 for noisey cases as there is a regression in some + // noisy clips with level 3. + if (cpi->noise_estimate.enabled && cm->width >= 1280 && + cm->height >= 720) { + NOISE_LEVEL noise_level = + vp9_noise_estimate_extract_level(&cpi->noise_estimate); + if (noise_level >= kMedium) sf->short_circuit_low_temp_var = 2; + } + // Since the short_circuit_low_temp_var is used, reduce the + // adaptive_rd_thresh level. + if (cm->width * cm->height > 352 * 288) + sf->adaptive_rd_thresh = 1; + else + sf->adaptive_rd_thresh = 2; + } + sf->limit_newmv_early_exit = 0; + sf->use_simple_block_yrd = 1; + } + if (sf->use_altref_onepass) { + if (cpi->rc.is_src_frame_alt_ref && cm->frame_type != KEY_FRAME) { + sf->partition_search_type = FIXED_PARTITION; + sf->always_this_block_size = BLOCK_64X64; + } + if (cpi->count_arf_frame_usage == NULL) + cpi->count_arf_frame_usage = + (uint8_t *)vpx_calloc((cm->mi_stride >> 3) * ((cm->mi_rows >> 3) + 1), + sizeof(*cpi->count_arf_frame_usage)); + if (cpi->count_lastgolden_frame_usage == NULL) + cpi->count_lastgolden_frame_usage = + (uint8_t *)vpx_calloc((cm->mi_stride >> 3) * ((cm->mi_rows >> 3) + 1), + sizeof(*cpi->count_lastgolden_frame_usage)); + } +} + +void vp9_set_speed_features_framesize_dependent(VP9_COMP *cpi) { + SPEED_FEATURES *const sf = &cpi->sf; + const VP9EncoderConfig *const oxcf = &cpi->oxcf; + RD_OPT *const rd = &cpi->rd; + int i; + + // best quality defaults + // Some speed-up features even for best quality as minimal impact on quality. + sf->partition_search_breakout_thr.dist = (1 << 19); + sf->partition_search_breakout_thr.rate = 80; + sf->ml_partition_search_early_termination = 0; + + if (oxcf->mode == REALTIME) { + set_rt_speed_feature_framesize_dependent(cpi, sf, oxcf->speed); + } else if (oxcf->mode == GOOD) { + set_good_speed_feature_framesize_dependent(cpi, sf, oxcf->speed); + } + + if (sf->disable_split_mask == DISABLE_ALL_SPLIT) { + sf->adaptive_pred_interp_filter = 0; + } + + if (cpi->encode_breakout && oxcf->mode == REALTIME && + sf->encode_breakout_thresh > cpi->encode_breakout) { + cpi->encode_breakout = sf->encode_breakout_thresh; + } + + // Check for masked out split cases. + for (i = 0; i < MAX_REFS; ++i) { + if (sf->disable_split_mask & (1 << i)) { + rd->thresh_mult_sub8x8[i] = INT_MAX; + } + } + + // With row based multi-threading, the following speed features + // have to be disabled to guarantee that bitstreams encoded with single thread + // and multiple threads match. + // It can be used in realtime when adaptive_rd_thresh_row_mt is enabled since + // adaptive_rd_thresh is defined per-row for non-rd pickmode. + if (!sf->adaptive_rd_thresh_row_mt && cpi->row_mt_bit_exact && + oxcf->max_threads > 1) + sf->adaptive_rd_thresh = 0; + + // This is only used in motion vector unit test. + if (cpi->oxcf.motion_vector_unit_test == 1) + cpi->find_fractional_mv_step = vp9_return_max_sub_pixel_mv; + else if (cpi->oxcf.motion_vector_unit_test == 2) + cpi->find_fractional_mv_step = vp9_return_min_sub_pixel_mv; +} + +void vp9_set_speed_features_framesize_independent(VP9_COMP *cpi) { + SPEED_FEATURES *const sf = &cpi->sf; + VP9_COMMON *const cm = &cpi->common; + MACROBLOCK *const x = &cpi->td.mb; + const VP9EncoderConfig *const oxcf = &cpi->oxcf; + int i; + + // best quality defaults + sf->frame_parameter_update = 1; + sf->mv.search_method = NSTEP; + sf->recode_loop = ALLOW_RECODE_FIRST; + sf->mv.subpel_search_method = SUBPEL_TREE; + sf->mv.subpel_iters_per_step = 2; + sf->mv.subpel_force_stop = 0; + sf->optimize_coefficients = !is_lossless_requested(&cpi->oxcf); + sf->mv.reduce_first_step_size = 0; + sf->coeff_prob_appx_step = 1; + sf->mv.auto_mv_step_size = 0; + sf->mv.fullpel_search_step_param = 6; + sf->comp_inter_joint_search_thresh = BLOCK_4X4; + sf->tx_size_search_method = USE_FULL_RD; + sf->use_lp32x32fdct = 0; + sf->adaptive_motion_search = 0; + sf->adaptive_pred_interp_filter = 0; + sf->adaptive_mode_search = 0; + sf->cb_pred_filter_search = 0; + sf->cb_partition_search = 0; + sf->motion_field_mode_search = 0; + sf->alt_ref_search_fp = 0; + sf->use_quant_fp = 0; + sf->reference_masking = 0; + sf->partition_search_type = SEARCH_PARTITION; + sf->less_rectangular_check = 0; + sf->use_square_partition_only = 0; + sf->use_square_only_threshold = BLOCK_SIZES; + sf->auto_min_max_partition_size = NOT_IN_USE; + sf->rd_auto_partition_min_limit = BLOCK_4X4; + sf->default_max_partition_size = BLOCK_64X64; + sf->default_min_partition_size = BLOCK_4X4; + sf->adjust_partitioning_from_last_frame = 0; + sf->last_partitioning_redo_frequency = 4; + sf->disable_split_mask = 0; + sf->mode_search_skip_flags = 0; + sf->force_frame_boost = 0; + sf->max_delta_qindex = 0; + sf->disable_filter_search_var_thresh = 0; + sf->adaptive_interp_filter_search = 0; + sf->allow_partition_search_skip = 0; + sf->allow_txfm_domain_distortion = 0; + sf->tx_domain_thresh = 99.0; + sf->allow_quant_coeff_opt = sf->optimize_coefficients; + sf->quant_opt_thresh = 99.0; + sf->allow_acl = 1; + + for (i = 0; i < TX_SIZES; i++) { + sf->intra_y_mode_mask[i] = INTRA_ALL; + sf->intra_uv_mode_mask[i] = INTRA_ALL; + } + sf->use_rd_breakout = 0; + sf->skip_encode_sb = 0; + sf->use_uv_intra_rd_estimate = 0; + sf->allow_skip_recode = 0; + sf->lpf_pick = LPF_PICK_FROM_FULL_IMAGE; + sf->use_fast_coef_updates = TWO_LOOP; + sf->use_fast_coef_costing = 0; + sf->mode_skip_start = MAX_MODES; // Mode index at which mode skip mask set + sf->schedule_mode_search = 0; + sf->use_nonrd_pick_mode = 0; + for (i = 0; i < BLOCK_SIZES; ++i) sf->inter_mode_mask[i] = INTER_ALL; + sf->max_intra_bsize = BLOCK_64X64; + sf->reuse_inter_pred_sby = 0; + // This setting only takes effect when partition_search_type is set + // to FIXED_PARTITION. + sf->always_this_block_size = BLOCK_16X16; + sf->search_type_check_frequency = 50; + sf->encode_breakout_thresh = 0; + // Recode loop tolerance %. + sf->recode_tolerance_low = 12; + sf->recode_tolerance_high = 25; + sf->default_interp_filter = SWITCHABLE; + sf->simple_model_rd_from_var = 0; + sf->short_circuit_flat_blocks = 0; + sf->short_circuit_low_temp_var = 0; + sf->limit_newmv_early_exit = 0; + sf->bias_golden = 0; + sf->base_mv_aggressive = 0; + + // Some speed-up features even for best quality as minimal impact on quality. + sf->adaptive_rd_thresh = 1; + sf->tx_size_search_breakout = 1; + + sf->exhaustive_searches_thresh = + (cpi->twopass.fr_content_type == FC_GRAPHICS_ANIMATION) ? (1 << 20) + : INT_MAX; + if (cpi->twopass.fr_content_type == FC_GRAPHICS_ANIMATION) { + for (i = 0; i < MAX_MESH_STEP; ++i) { + sf->mesh_patterns[i].range = best_quality_mesh_pattern[i].range; + sf->mesh_patterns[i].interval = best_quality_mesh_pattern[i].interval; + } + } + + if (oxcf->mode == REALTIME) + set_rt_speed_feature_framesize_independent(cpi, sf, oxcf->speed, + oxcf->content); + else if (oxcf->mode == GOOD) + set_good_speed_feature_framesize_independent(cpi, cm, sf, oxcf->speed); + + cpi->diamond_search_sad = vp9_diamond_search_sad; + + // Slow quant, dct and trellis not worthwhile for first pass + // so make sure they are always turned off. + if (oxcf->pass == 1) sf->optimize_coefficients = 0; + + // No recode for 1 pass. + if (oxcf->pass == 0) { + sf->recode_loop = DISALLOW_RECODE; + sf->optimize_coefficients = 0; + } + + if (sf->mv.subpel_force_stop == 3) { + // Whole pel only + cpi->find_fractional_mv_step = vp9_skip_sub_pixel_tree; + } else if (sf->mv.subpel_search_method == SUBPEL_TREE) { + cpi->find_fractional_mv_step = vp9_find_best_sub_pixel_tree; + } else if (sf->mv.subpel_search_method == SUBPEL_TREE_PRUNED) { + cpi->find_fractional_mv_step = vp9_find_best_sub_pixel_tree_pruned; + } else if (sf->mv.subpel_search_method == SUBPEL_TREE_PRUNED_MORE) { + cpi->find_fractional_mv_step = vp9_find_best_sub_pixel_tree_pruned_more; + } else if (sf->mv.subpel_search_method == SUBPEL_TREE_PRUNED_EVENMORE) { + cpi->find_fractional_mv_step = vp9_find_best_sub_pixel_tree_pruned_evenmore; + } + + x->optimize = sf->optimize_coefficients == 1 && oxcf->pass != 1; + + x->min_partition_size = sf->default_min_partition_size; + x->max_partition_size = sf->default_max_partition_size; + + if (!cpi->oxcf.frame_periodic_boost) { + sf->max_delta_qindex = 0; + } + + // With row based multi-threading, the following speed features + // have to be disabled to guarantee that bitstreams encoded with single thread + // and multiple threads match. + // It can be used in realtime when adaptive_rd_thresh_row_mt is enabled since + // adaptive_rd_thresh is defined per-row for non-rd pickmode. + if (!sf->adaptive_rd_thresh_row_mt && cpi->row_mt_bit_exact && + oxcf->max_threads > 1) + sf->adaptive_rd_thresh = 0; + + // This is only used in motion vector unit test. + if (cpi->oxcf.motion_vector_unit_test == 1) + cpi->find_fractional_mv_step = vp9_return_max_sub_pixel_mv; + else if (cpi->oxcf.motion_vector_unit_test == 2) + cpi->find_fractional_mv_step = vp9_return_min_sub_pixel_mv; +} diff --git a/vp9/encoder/vp9_speed_features.h b/vp9/encoder/vp9_speed_features.h new file mode 100644 index 0000000..50d52bc --- /dev/null +++ b/vp9/encoder/vp9_speed_features.h @@ -0,0 +1,522 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP9_ENCODER_VP9_SPEED_FEATURES_H_ +#define VP9_ENCODER_VP9_SPEED_FEATURES_H_ + +#include "vp9/common/vp9_enums.h" + +#ifdef __cplusplus +extern "C" { +#endif + +enum { + INTRA_ALL = (1 << DC_PRED) | (1 << V_PRED) | (1 << H_PRED) | (1 << D45_PRED) | + (1 << D135_PRED) | (1 << D117_PRED) | (1 << D153_PRED) | + (1 << D207_PRED) | (1 << D63_PRED) | (1 << TM_PRED), + INTRA_DC = (1 << DC_PRED), + INTRA_DC_TM = (1 << DC_PRED) | (1 << TM_PRED), + INTRA_DC_H_V = (1 << DC_PRED) | (1 << V_PRED) | (1 << H_PRED), + INTRA_DC_TM_H_V = + (1 << DC_PRED) | (1 << TM_PRED) | (1 << V_PRED) | (1 << H_PRED) +}; + +enum { + INTER_ALL = (1 << NEARESTMV) | (1 << NEARMV) | (1 << ZEROMV) | (1 << NEWMV), + INTER_NEAREST = (1 << NEARESTMV), + INTER_NEAREST_NEW = (1 << NEARESTMV) | (1 << NEWMV), + INTER_NEAREST_ZERO = (1 << NEARESTMV) | (1 << ZEROMV), + INTER_NEAREST_NEW_ZERO = (1 << NEARESTMV) | (1 << ZEROMV) | (1 << NEWMV), + INTER_NEAREST_NEAR_NEW = (1 << NEARESTMV) | (1 << NEARMV) | (1 << NEWMV), + INTER_NEAREST_NEAR_ZERO = (1 << NEARESTMV) | (1 << NEARMV) | (1 << ZEROMV), +}; + +enum { + DISABLE_ALL_INTER_SPLIT = (1 << THR_COMP_GA) | (1 << THR_COMP_LA) | + (1 << THR_ALTR) | (1 << THR_GOLD) | (1 << THR_LAST), + + DISABLE_ALL_SPLIT = (1 << THR_INTRA) | DISABLE_ALL_INTER_SPLIT, + + DISABLE_COMPOUND_SPLIT = (1 << THR_COMP_GA) | (1 << THR_COMP_LA), + + LAST_AND_INTRA_SPLIT_ONLY = (1 << THR_COMP_GA) | (1 << THR_COMP_LA) | + (1 << THR_ALTR) | (1 << THR_GOLD) +}; + +typedef enum { + DIAMOND = 0, + NSTEP = 1, + HEX = 2, + BIGDIA = 3, + SQUARE = 4, + FAST_HEX = 5, + FAST_DIAMOND = 6 +} SEARCH_METHODS; + +typedef enum { + // No recode. + DISALLOW_RECODE = 0, + // Allow recode for KF and exceeding maximum frame bandwidth. + ALLOW_RECODE_KFMAXBW = 1, + // Allow recode only for KF/ARF/GF frames. + ALLOW_RECODE_KFARFGF = 2, + // Allow recode for ARF/GF/KF and first normal frame in each group. + ALLOW_RECODE_FIRST = 3, + // Allow recode for all frames based on bitrate constraints. + ALLOW_RECODE = 4, +} RECODE_LOOP_TYPE; + +typedef enum { + SUBPEL_TREE = 0, + SUBPEL_TREE_PRUNED = 1, // Prunes 1/2-pel searches + SUBPEL_TREE_PRUNED_MORE = 2, // Prunes 1/2-pel searches more aggressively + SUBPEL_TREE_PRUNED_EVENMORE = 3, // Prunes 1/2- and 1/4-pel searches + // Other methods to come +} SUBPEL_SEARCH_METHODS; + +typedef enum { + NO_MOTION_THRESHOLD = 0, + LOW_MOTION_THRESHOLD = 7 +} MOTION_THRESHOLD; + +typedef enum { + USE_FULL_RD = 0, + USE_LARGESTALL, + USE_TX_8X8 +} TX_SIZE_SEARCH_METHOD; + +typedef enum { + NOT_IN_USE = 0, + RELAXED_NEIGHBORING_MIN_MAX = 1, + STRICT_NEIGHBORING_MIN_MAX = 2 +} AUTO_MIN_MAX_MODE; + +typedef enum { + // Try the full image with different values. + LPF_PICK_FROM_FULL_IMAGE, + // Try a small portion of the image with different values. + LPF_PICK_FROM_SUBIMAGE, + // Estimate the level based on quantizer and frame type + LPF_PICK_FROM_Q, + // Pick 0 to disable LPF if LPF was enabled last frame + LPF_PICK_MINIMAL_LPF +} LPF_PICK_METHOD; + +typedef enum { + // Terminate search early based on distortion so far compared to + // qp step, distortion in the neighborhood of the frame, etc. + FLAG_EARLY_TERMINATE = 1 << 0, + + // Skips comp inter modes if the best so far is an intra mode. + FLAG_SKIP_COMP_BESTINTRA = 1 << 1, + + // Skips oblique intra modes if the best so far is an inter mode. + FLAG_SKIP_INTRA_BESTINTER = 1 << 3, + + // Skips oblique intra modes at angles 27, 63, 117, 153 if the best + // intra so far is not one of the neighboring directions. + FLAG_SKIP_INTRA_DIRMISMATCH = 1 << 4, + + // Skips intra modes other than DC_PRED if the source variance is small + FLAG_SKIP_INTRA_LOWVAR = 1 << 5, +} MODE_SEARCH_SKIP_LOGIC; + +typedef enum { + FLAG_SKIP_EIGHTTAP = 1 << EIGHTTAP, + FLAG_SKIP_EIGHTTAP_SMOOTH = 1 << EIGHTTAP_SMOOTH, + FLAG_SKIP_EIGHTTAP_SHARP = 1 << EIGHTTAP_SHARP, +} INTERP_FILTER_MASK; + +typedef enum { + // Search partitions using RD/NONRD criterion + SEARCH_PARTITION, + + // Always use a fixed size partition + FIXED_PARTITION, + + REFERENCE_PARTITION, + + // Use an arbitrary partitioning scheme based on source variance within + // a 64X64 SB + VAR_BASED_PARTITION, + + // Use non-fixed partitions based on source variance + SOURCE_VAR_BASED_PARTITION +} PARTITION_SEARCH_TYPE; + +typedef enum { + // Does a dry run to see if any of the contexts need to be updated or not, + // before the final run. + TWO_LOOP = 0, + + // No dry run, also only half the coef contexts and bands are updated. + // The rest are not updated at all. + ONE_LOOP_REDUCED = 1 +} FAST_COEFF_UPDATE; + +typedef struct MV_SPEED_FEATURES { + // Motion search method (Diamond, NSTEP, Hex, Big Diamond, Square, etc). + SEARCH_METHODS search_method; + + // This parameter controls which step in the n-step process we start at. + // It's changed adaptively based on circumstances. + int reduce_first_step_size; + + // If this is set to 1, we limit the motion search range to 2 times the + // largest motion vector found in the last frame. + int auto_mv_step_size; + + // Subpel_search_method can only be subpel_tree which does a subpixel + // logarithmic search that keeps stepping at 1/2 pixel units until + // you stop getting a gain, and then goes on to 1/4 and repeats + // the same process. Along the way it skips many diagonals. + SUBPEL_SEARCH_METHODS subpel_search_method; + + // Maximum number of steps in logarithmic subpel search before giving up. + int subpel_iters_per_step; + + // Control when to stop subpel search: + // 0: Full subpel search. + // 1: Stop at quarter pixel. + // 2: Stop at half pixel. + // 3: Stop at full pixel. + int subpel_force_stop; + + // This variable sets the step_param used in full pel motion search. + int fullpel_search_step_param; +} MV_SPEED_FEATURES; + +typedef struct PARTITION_SEARCH_BREAKOUT_THR { + int64_t dist; + int rate; +} PARTITION_SEARCH_BREAKOUT_THR; + +#define MAX_MESH_STEP 4 + +typedef struct MESH_PATTERN { + int range; + int interval; +} MESH_PATTERN; + +typedef struct SPEED_FEATURES { + MV_SPEED_FEATURES mv; + + // Frame level coding parameter update + int frame_parameter_update; + + RECODE_LOOP_TYPE recode_loop; + + // Trellis (dynamic programming) optimization of quantized values (+1, 0). + int optimize_coefficients; + + // Always set to 0. If on it enables 0 cost background transmission + // (except for the initial transmission of the segmentation). The feature is + // disabled because the addition of very large block sizes make the + // backgrounds very to cheap to encode, and the segmentation we have + // adds overhead. + int static_segmentation; + + // If 1 we iterate finding a best reference for 2 ref frames together - via + // a log search that iterates 4 times (check around mv for last for best + // error of combined predictor then check around mv for alt). If 0 we + // we just use the best motion vector found for each frame by itself. + BLOCK_SIZE comp_inter_joint_search_thresh; + + // This variable is used to cap the maximum number of times we skip testing a + // mode to be evaluated. A high value means we will be faster. + // Turned off when (row_mt_bit_exact == 1 && adaptive_rd_thresh_row_mt == 0). + int adaptive_rd_thresh; + + // Flag to use adaptive_rd_thresh when row-mt it enabled, only for non-rd + // pickmode. + int adaptive_rd_thresh_row_mt; + + // Enables skipping the reconstruction step (idct, recon) in the + // intermediate steps assuming the last frame didn't have too many intra + // blocks and the q is less than a threshold. + int skip_encode_sb; + int skip_encode_frame; + // Speed feature to allow or disallow skipping of recode at block + // level within a frame. + int allow_skip_recode; + + // Coefficient probability model approximation step size + int coeff_prob_appx_step; + + // Enable uniform quantizer followed by trellis coefficient optimization + int allow_quant_coeff_opt; + double quant_opt_thresh; + + // Enable asymptotic closed-loop encoding decision for key frame and + // alternate reference frames. + int allow_acl; + + // Use transform domain distortion. Use pixel domain distortion in speed 0 + // and certain situations in higher speed to improve the RD model precision. + int allow_txfm_domain_distortion; + double tx_domain_thresh; + + // The threshold is to determine how slow the motino is, it is used when + // use_lastframe_partitioning is set to LAST_FRAME_PARTITION_LOW_MOTION + MOTION_THRESHOLD lf_motion_threshold; + + // Determine which method we use to determine transform size. We can choose + // between options like full rd, largest for prediction size, largest + // for intra and model coefs for the rest. + TX_SIZE_SEARCH_METHOD tx_size_search_method; + + // Low precision 32x32 fdct keeps everything in 16 bits and thus is less + // precise but significantly faster than the non lp version. + int use_lp32x32fdct; + + // After looking at the first set of modes (set by index here), skip + // checking modes for reference frames that don't match the reference frame + // of the best so far. + int mode_skip_start; + + // TODO(JBB): Remove this. + int reference_masking; + + PARTITION_SEARCH_TYPE partition_search_type; + + // Used if partition_search_type = FIXED_SIZE_PARTITION + BLOCK_SIZE always_this_block_size; + + // Skip rectangular partition test when partition type none gives better + // rd than partition type split. + int less_rectangular_check; + + // Disable testing non square partitions. (eg 16x32) + int use_square_partition_only; + BLOCK_SIZE use_square_only_threshold; + + // Sets min and max partition sizes for this 64x64 region based on the + // same 64x64 in last encoded frame, and the left and above neighbor. + AUTO_MIN_MAX_MODE auto_min_max_partition_size; + // Ensures the rd based auto partition search will always + // go down at least to the specified level. + BLOCK_SIZE rd_auto_partition_min_limit; + + // Min and max partition size we enable (block_size) as per auto + // min max, but also used by adjust partitioning, and pick_partitioning. + BLOCK_SIZE default_min_partition_size; + BLOCK_SIZE default_max_partition_size; + + // Whether or not we allow partitions one smaller or one greater than the last + // frame's partitioning. Only used if use_lastframe_partitioning is set. + int adjust_partitioning_from_last_frame; + + // How frequently we re do the partitioning from scratch. Only used if + // use_lastframe_partitioning is set. + int last_partitioning_redo_frequency; + + // Disables sub 8x8 blocksizes in different scenarios: Choices are to disable + // it always, to allow it for only Last frame and Intra, disable it for all + // inter modes or to enable it always. + int disable_split_mask; + + // TODO(jingning): combine the related motion search speed features + // This allows us to use motion search at other sizes as a starting + // point for this motion search and limits the search range around it. + int adaptive_motion_search; + + // Threshold for allowing exhaistive motion search. + int exhaustive_searches_thresh; + + // Pattern to be used for any exhaustive mesh searches. + MESH_PATTERN mesh_patterns[MAX_MESH_STEP]; + + int schedule_mode_search; + + // Allows sub 8x8 modes to use the prediction filter that was determined + // best for 8x8 mode. If set to 0 we always re check all the filters for + // sizes less than 8x8, 1 means we check all filter modes if no 8x8 filter + // was selected, and 2 means we use 8 tap if no 8x8 filter mode was selected. + int adaptive_pred_interp_filter; + + // Adaptive prediction mode search + int adaptive_mode_search; + + // Chessboard pattern prediction filter type search + int cb_pred_filter_search; + + int cb_partition_search; + + int motion_field_mode_search; + + int alt_ref_search_fp; + + // Fast quantization process path + int use_quant_fp; + + // Use finer quantizer in every other few frames that run variable block + // partition type search. + int force_frame_boost; + + // Maximally allowed base quantization index fluctuation. + int max_delta_qindex; + + // Implements various heuristics to skip searching modes + // The heuristics selected are based on flags + // defined in the MODE_SEARCH_SKIP_HEURISTICS enum + unsigned int mode_search_skip_flags; + + // A source variance threshold below which filter search is disabled + // Choose a very large value (UINT_MAX) to use 8-tap always + unsigned int disable_filter_search_var_thresh; + + // These bit masks allow you to enable or disable intra modes for each + // transform size separately. + int intra_y_mode_mask[TX_SIZES]; + int intra_uv_mode_mask[TX_SIZES]; + + // These bit masks allow you to enable or disable intra modes for each + // prediction block size separately. + int intra_y_mode_bsize_mask[BLOCK_SIZES]; + + // This variable enables an early break out of mode testing if the model for + // rd built from the prediction signal indicates a value that's much + // higher than the best rd we've seen so far. + int use_rd_breakout; + + // This enables us to use an estimate for intra rd based on dc mode rather + // than choosing an actual uv mode in the stage of encoding before the actual + // final encode. + int use_uv_intra_rd_estimate; + + // This feature controls how the loop filter level is determined. + LPF_PICK_METHOD lpf_pick; + + // This feature limits the number of coefficients updates we actually do + // by only looking at counts from 1/2 the bands. + FAST_COEFF_UPDATE use_fast_coef_updates; + + // This flag controls the use of non-RD mode decision. + int use_nonrd_pick_mode; + + // A binary mask indicating if NEARESTMV, NEARMV, ZEROMV, NEWMV + // modes are used in order from LSB to MSB for each BLOCK_SIZE. + int inter_mode_mask[BLOCK_SIZES]; + + // This feature controls whether we do the expensive context update and + // calculation in the rd coefficient costing loop. + int use_fast_coef_costing; + + // This feature controls the tolerence vs target used in deciding whether to + // recode a frame. It has no meaning if recode is disabled. + int recode_tolerance_low; + int recode_tolerance_high; + + // This variable controls the maximum block size where intra blocks can be + // used in inter frames. + // TODO(aconverse): Fold this into one of the other many mode skips + BLOCK_SIZE max_intra_bsize; + + // The frequency that we check if SOURCE_VAR_BASED_PARTITION or + // FIXED_PARTITION search type should be used. + int search_type_check_frequency; + + // When partition is pre-set, the inter prediction result from pick_inter_mode + // can be reused in final block encoding process. It is enabled only for real- + // time mode speed 6. + int reuse_inter_pred_sby; + + // This variable sets the encode_breakout threshold. Currently, it is only + // enabled in real time mode. + int encode_breakout_thresh; + + // default interp filter choice + INTERP_FILTER default_interp_filter; + + // Early termination in transform size search, which only applies while + // tx_size_search_method is USE_FULL_RD. + int tx_size_search_breakout; + + // adaptive interp_filter search to allow skip of certain filter types. + int adaptive_interp_filter_search; + + // mask for skip evaluation of certain interp_filter type. + INTERP_FILTER_MASK interp_filter_search_mask; + + // Partition search early breakout thresholds. + PARTITION_SEARCH_BREAKOUT_THR partition_search_breakout_thr; + + // Machine-learning based partition search early termination + int ml_partition_search_early_termination; + + // Allow skipping partition search for still image frame + int allow_partition_search_skip; + + // Fast approximation of vp9_model_rd_from_var_lapndz + int simple_model_rd_from_var; + + // Skip a number of expensive mode evaluations for blocks with zero source + // variance. + int short_circuit_flat_blocks; + + // Skip a number of expensive mode evaluations for blocks with very low + // temporal variance. If the low temporal variance flag is set for a block, + // do the following: + // 1: Skip all golden modes and ALL INTRA for bsize >= 32x32. + // 2: Skip golden non-zeromv and newmv-last for bsize >= 16x16, skip ALL + // INTRA for bsize >= 32x32 and vert/horz INTRA for bsize 16x16, 16x32 and + // 32x16. + // 3: Same as (2), but also skip golden zeromv. + int short_circuit_low_temp_var; + + // Limits the rd-threshold update for early exit for the newmv-last mode, + // for non-rd mode. + int limit_newmv_early_exit; + + // Adds a bias against golden reference, for non-rd mode. + int bias_golden; + + // Bias to use base mv and skip 1/4 subpel search when use base mv in + // enhancement layer. + int base_mv_aggressive; + + // Global flag to enable partition copy from the previous frame. + int copy_partition_flag; + + // Compute the source sad for every superblock of the frame, + // prior to encoding the frame, to be used to bypass some encoder decisions. + int use_source_sad; + + int use_simple_block_yrd; + + // If source sad of superblock is high (> adapt_partition_thresh), will switch + // from VARIANCE_PARTITION to REFERENCE_PARTITION (which selects partition + // based on the nonrd-pickmode). + int adapt_partition_source_sad; + int adapt_partition_thresh; + + // Enable use of alt-refs in 1 pass VBR. + int use_altref_onepass; + + // Enable use of compound prediction, for nonrd_pickmode with nonzero lag. + int use_compound_nonrd_pickmode; + + // Always use nonrd_pick_intra for all block sizes on keyframes. + int nonrd_keyframe; + + // For SVC: enables use of partition from lower spatial resolution. + int svc_use_lowres_part; +} SPEED_FEATURES; + +struct VP9_COMP; + +void vp9_set_speed_features_framesize_independent(struct VP9_COMP *cpi); +void vp9_set_speed_features_framesize_dependent(struct VP9_COMP *cpi); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP9_ENCODER_VP9_SPEED_FEATURES_H_ diff --git a/vp9/encoder/vp9_subexp.c b/vp9/encoder/vp9_subexp.c new file mode 100644 index 0000000..e8212ce --- /dev/null +++ b/vp9/encoder/vp9_subexp.c @@ -0,0 +1,194 @@ +/* + * Copyright (c) 2013 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ +#include "vpx_dsp/bitwriter.h" + +#include "vp9/common/vp9_common.h" +#include "vp9/common/vp9_entropy.h" +#include "vp9/encoder/vp9_cost.h" +#include "vp9/encoder/vp9_subexp.h" + +static const uint8_t update_bits[255] = { + 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, + 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 8, 8, 8, 8, 8, 8, + 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, + 8, 8, 8, 8, 8, 8, 8, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, + 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, + 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, + 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, + 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, + 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, + 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, + 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, + 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, + 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, + 11, 11, 11, 11, 11, 11, 11, 0, +}; +#define MIN_DELP_BITS 5 + +static int recenter_nonneg(int v, int m) { + if (v > (m << 1)) + return v; + else if (v >= m) + return ((v - m) << 1); + else + return ((m - v) << 1) - 1; +} + +static int remap_prob(int v, int m) { + int i; + static const uint8_t map_table[MAX_PROB - 1] = { + // generated by: + // map_table[j] = split_index(j, MAX_PROB - 1, MODULUS_PARAM); + 20, 21, 22, 23, 24, 25, 0, 26, 27, 28, 29, 30, 31, 32, 33, + 34, 35, 36, 37, 1, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, + 48, 49, 2, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, + 3, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 4, 74, + 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 5, 86, 87, 88, + 89, 90, 91, 92, 93, 94, 95, 96, 97, 6, 98, 99, 100, 101, 102, + 103, 104, 105, 106, 107, 108, 109, 7, 110, 111, 112, 113, 114, 115, 116, + 117, 118, 119, 120, 121, 8, 122, 123, 124, 125, 126, 127, 128, 129, 130, + 131, 132, 133, 9, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, + 145, 10, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 11, + 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 12, 170, 171, + 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 13, 182, 183, 184, 185, + 186, 187, 188, 189, 190, 191, 192, 193, 14, 194, 195, 196, 197, 198, 199, + 200, 201, 202, 203, 204, 205, 15, 206, 207, 208, 209, 210, 211, 212, 213, + 214, 215, 216, 217, 16, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, + 228, 229, 17, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, + 18, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 19, + }; + v--; + m--; + if ((m << 1) <= MAX_PROB) + i = recenter_nonneg(v, m) - 1; + else + i = recenter_nonneg(MAX_PROB - 1 - v, MAX_PROB - 1 - m) - 1; + + i = map_table[i]; + return i; +} + +static int prob_diff_update_cost(vpx_prob newp, vpx_prob oldp) { + int delp = remap_prob(newp, oldp); + return update_bits[delp] << VP9_PROB_COST_SHIFT; +} + +static void encode_uniform(vpx_writer *w, int v) { + const int l = 8; + const int m = (1 << l) - 191; + if (v < m) { + vpx_write_literal(w, v, l - 1); + } else { + vpx_write_literal(w, m + ((v - m) >> 1), l - 1); + vpx_write_literal(w, (v - m) & 1, 1); + } +} + +static INLINE int write_bit_gte(vpx_writer *w, int word, int test) { + vpx_write_literal(w, word >= test, 1); + return word >= test; +} + +static void encode_term_subexp(vpx_writer *w, int word) { + if (!write_bit_gte(w, word, 16)) { + vpx_write_literal(w, word, 4); + } else if (!write_bit_gte(w, word, 32)) { + vpx_write_literal(w, word - 16, 4); + } else if (!write_bit_gte(w, word, 64)) { + vpx_write_literal(w, word - 32, 5); + } else { + encode_uniform(w, word - 64); + } +} + +void vp9_write_prob_diff_update(vpx_writer *w, vpx_prob newp, vpx_prob oldp) { + const int delp = remap_prob(newp, oldp); + encode_term_subexp(w, delp); +} + +int vp9_prob_diff_update_savings_search(const unsigned int *ct, vpx_prob oldp, + vpx_prob *bestp, vpx_prob upd) { + const int old_b = cost_branch256(ct, oldp); + int bestsavings = 0; + vpx_prob newp, bestnewp = oldp; + const int step = *bestp > oldp ? -1 : 1; + const int upd_cost = vp9_cost_one(upd) - vp9_cost_zero(upd); + + if (old_b > upd_cost + (MIN_DELP_BITS << VP9_PROB_COST_SHIFT)) { + for (newp = *bestp; newp != oldp; newp += step) { + const int new_b = cost_branch256(ct, newp); + const int update_b = prob_diff_update_cost(newp, oldp) + upd_cost; + const int savings = old_b - new_b - update_b; + if (savings > bestsavings) { + bestsavings = savings; + bestnewp = newp; + } + } + } + *bestp = bestnewp; + return bestsavings; +} + +int vp9_prob_diff_update_savings_search_model(const unsigned int *ct, + const vpx_prob oldp, + vpx_prob *bestp, vpx_prob upd, + int stepsize) { + int i, old_b, new_b, update_b, savings, bestsavings; + int newp; + const int step_sign = *bestp > oldp ? -1 : 1; + const int step = stepsize * step_sign; + const int upd_cost = vp9_cost_one(upd) - vp9_cost_zero(upd); + const vpx_prob *newplist, *oldplist; + vpx_prob bestnewp; + oldplist = vp9_pareto8_full[oldp - 1]; + old_b = cost_branch256(ct + 2 * PIVOT_NODE, oldp); + for (i = UNCONSTRAINED_NODES; i < ENTROPY_NODES; ++i) + old_b += cost_branch256(ct + 2 * i, oldplist[i - UNCONSTRAINED_NODES]); + + bestsavings = 0; + bestnewp = oldp; + + assert(stepsize > 0); + + if (old_b > upd_cost + (MIN_DELP_BITS << VP9_PROB_COST_SHIFT)) { + for (newp = *bestp; (newp - oldp) * step_sign < 0; newp += step) { + if (newp < 1 || newp > 255) continue; + newplist = vp9_pareto8_full[newp - 1]; + new_b = cost_branch256(ct + 2 * PIVOT_NODE, newp); + for (i = UNCONSTRAINED_NODES; i < ENTROPY_NODES; ++i) + new_b += cost_branch256(ct + 2 * i, newplist[i - UNCONSTRAINED_NODES]); + update_b = prob_diff_update_cost(newp, oldp) + upd_cost; + savings = old_b - new_b - update_b; + if (savings > bestsavings) { + bestsavings = savings; + bestnewp = newp; + } + } + } + + *bestp = bestnewp; + return bestsavings; +} + +void vp9_cond_prob_diff_update(vpx_writer *w, vpx_prob *oldp, + const unsigned int ct[2]) { + const vpx_prob upd = DIFF_UPDATE_PROB; + vpx_prob newp = get_binary_prob(ct[0], ct[1]); + const int savings = + vp9_prob_diff_update_savings_search(ct, *oldp, &newp, upd); + assert(newp >= 1); + if (savings > 0) { + vpx_write(w, 1, upd); + vp9_write_prob_diff_update(w, newp, *oldp); + *oldp = newp; + } else { + vpx_write(w, 0, upd); + } +} diff --git a/vp9/encoder/vp9_subexp.h b/vp9/encoder/vp9_subexp.h new file mode 100644 index 0000000..26c89e2 --- /dev/null +++ b/vp9/encoder/vp9_subexp.h @@ -0,0 +1,40 @@ +/* + * Copyright (c) 2013 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP9_ENCODER_VP9_SUBEXP_H_ +#define VP9_ENCODER_VP9_SUBEXP_H_ + +#ifdef __cplusplus +extern "C" { +#endif + +#include "vpx_dsp/prob.h" + +struct vpx_writer; + +void vp9_write_prob_diff_update(struct vpx_writer *w, vpx_prob newp, + vpx_prob oldp); + +void vp9_cond_prob_diff_update(struct vpx_writer *w, vpx_prob *oldp, + const unsigned int ct[2]); + +int vp9_prob_diff_update_savings_search(const unsigned int *ct, vpx_prob oldp, + vpx_prob *bestp, vpx_prob upd); + +int vp9_prob_diff_update_savings_search_model(const unsigned int *ct, + const vpx_prob oldp, + vpx_prob *bestp, vpx_prob upd, + int stepsize); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP9_ENCODER_VP9_SUBEXP_H_ diff --git a/vp9/encoder/vp9_svc_layercontext.c b/vp9/encoder/vp9_svc_layercontext.c new file mode 100644 index 0000000..2636bd9 --- /dev/null +++ b/vp9/encoder/vp9_svc_layercontext.c @@ -0,0 +1,889 @@ +/* + * Copyright (c) 2014 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include + +#include "vp9/encoder/vp9_aq_cyclicrefresh.h" +#include "vp9/encoder/vp9_encoder.h" +#include "vp9/encoder/vp9_svc_layercontext.h" +#include "vp9/encoder/vp9_extend.h" +#include "vpx_dsp/vpx_dsp_common.h" + +#define SMALL_FRAME_WIDTH 32 +#define SMALL_FRAME_HEIGHT 16 + +void vp9_init_layer_context(VP9_COMP *const cpi) { + SVC *const svc = &cpi->svc; + const VP9EncoderConfig *const oxcf = &cpi->oxcf; + int mi_rows = cpi->common.mi_rows; + int mi_cols = cpi->common.mi_cols; + int sl, tl, i; + int alt_ref_idx = svc->number_spatial_layers; + + svc->spatial_layer_id = 0; + svc->temporal_layer_id = 0; + svc->first_spatial_layer_to_encode = 0; + svc->rc_drop_superframe = 0; + svc->force_zero_mode_spatial_ref = 0; + svc->use_base_mv = 0; + svc->scaled_temp_is_alloc = 0; + svc->scaled_one_half = 0; + svc->current_superframe = 0; + svc->non_reference_frame = 0; + + for (i = 0; i < REF_FRAMES; ++i) svc->ref_frame_index[i] = -1; + for (sl = 0; sl < oxcf->ss_number_layers; ++sl) { + svc->ext_frame_flags[sl] = 0; + svc->ext_lst_fb_idx[sl] = 0; + svc->ext_gld_fb_idx[sl] = 1; + svc->ext_alt_fb_idx[sl] = 2; + svc->downsample_filter_type[sl] = EIGHTTAP; + svc->downsample_filter_phase[sl] = 0; // Set to 8 for averaging filter. + } + + if (cpi->oxcf.error_resilient_mode == 0 && cpi->oxcf.pass == 2) { + if (vpx_realloc_frame_buffer(&cpi->svc.empty_frame.img, SMALL_FRAME_WIDTH, + SMALL_FRAME_HEIGHT, cpi->common.subsampling_x, + cpi->common.subsampling_y, +#if CONFIG_VP9_HIGHBITDEPTH + cpi->common.use_highbitdepth, +#endif + VP9_ENC_BORDER_IN_PIXELS, + cpi->common.byte_alignment, NULL, NULL, NULL)) + vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR, + "Failed to allocate empty frame for multiple frame " + "contexts"); + + memset(cpi->svc.empty_frame.img.buffer_alloc, 0x80, + cpi->svc.empty_frame.img.buffer_alloc_sz); + } + + for (sl = 0; sl < oxcf->ss_number_layers; ++sl) { + for (tl = 0; tl < oxcf->ts_number_layers; ++tl) { + int layer = LAYER_IDS_TO_IDX(sl, tl, oxcf->ts_number_layers); + LAYER_CONTEXT *const lc = &svc->layer_context[layer]; + RATE_CONTROL *const lrc = &lc->rc; + int i; + lc->current_video_frame_in_layer = 0; + lc->layer_size = 0; + lc->frames_from_key_frame = 0; + lc->last_frame_type = FRAME_TYPES; + lrc->ni_av_qi = oxcf->worst_allowed_q; + lrc->total_actual_bits = 0; + lrc->total_target_vs_actual = 0; + lrc->ni_tot_qi = 0; + lrc->tot_q = 0.0; + lrc->avg_q = 0.0; + lrc->ni_frames = 0; + lrc->decimation_count = 0; + lrc->decimation_factor = 0; + + for (i = 0; i < RATE_FACTOR_LEVELS; ++i) { + lrc->rate_correction_factors[i] = 1.0; + } + + if (cpi->oxcf.rc_mode == VPX_CBR) { + lc->target_bandwidth = oxcf->layer_target_bitrate[layer]; + lrc->last_q[INTER_FRAME] = oxcf->worst_allowed_q; + lrc->avg_frame_qindex[INTER_FRAME] = oxcf->worst_allowed_q; + lrc->avg_frame_qindex[KEY_FRAME] = oxcf->worst_allowed_q; + } else { + lc->target_bandwidth = oxcf->layer_target_bitrate[layer]; + lrc->last_q[KEY_FRAME] = oxcf->best_allowed_q; + lrc->last_q[INTER_FRAME] = oxcf->best_allowed_q; + lrc->avg_frame_qindex[KEY_FRAME] = + (oxcf->worst_allowed_q + oxcf->best_allowed_q) / 2; + lrc->avg_frame_qindex[INTER_FRAME] = + (oxcf->worst_allowed_q + oxcf->best_allowed_q) / 2; + if (oxcf->ss_enable_auto_arf[sl]) + lc->alt_ref_idx = alt_ref_idx++; + else + lc->alt_ref_idx = INVALID_IDX; + lc->gold_ref_idx = INVALID_IDX; + } + + lrc->buffer_level = + oxcf->starting_buffer_level_ms * lc->target_bandwidth / 1000; + lrc->bits_off_target = lrc->buffer_level; + + // Initialize the cyclic refresh parameters. If spatial layers are used + // (i.e., ss_number_layers > 1), these need to be updated per spatial + // layer. + // Cyclic refresh is only applied on base temporal layer. + if (oxcf->ss_number_layers > 1 && tl == 0) { + size_t last_coded_q_map_size; + size_t consec_zero_mv_size; + VP9_COMMON *const cm = &cpi->common; + lc->sb_index = 0; + CHECK_MEM_ERROR(cm, lc->map, + vpx_malloc(mi_rows * mi_cols * sizeof(*lc->map))); + memset(lc->map, 0, mi_rows * mi_cols); + last_coded_q_map_size = + mi_rows * mi_cols * sizeof(*lc->last_coded_q_map); + CHECK_MEM_ERROR(cm, lc->last_coded_q_map, + vpx_malloc(last_coded_q_map_size)); + assert(MAXQ <= 255); + memset(lc->last_coded_q_map, MAXQ, last_coded_q_map_size); + consec_zero_mv_size = mi_rows * mi_cols * sizeof(*lc->consec_zero_mv); + CHECK_MEM_ERROR(cm, lc->consec_zero_mv, + vpx_malloc(consec_zero_mv_size)); + memset(lc->consec_zero_mv, 0, consec_zero_mv_size); + } + } + } + + // Still have extra buffer for base layer golden frame + if (!(svc->number_temporal_layers > 1 && cpi->oxcf.rc_mode == VPX_CBR) && + alt_ref_idx < REF_FRAMES) + svc->layer_context[0].gold_ref_idx = alt_ref_idx; +} + +// Update the layer context from a change_config() call. +void vp9_update_layer_context_change_config(VP9_COMP *const cpi, + const int target_bandwidth) { + SVC *const svc = &cpi->svc; + const VP9EncoderConfig *const oxcf = &cpi->oxcf; + const RATE_CONTROL *const rc = &cpi->rc; + int sl, tl, layer = 0, spatial_layer_target; + float bitrate_alloc = 1.0; + + if (svc->temporal_layering_mode != VP9E_TEMPORAL_LAYERING_MODE_NOLAYERING) { + for (sl = 0; sl < oxcf->ss_number_layers; ++sl) { + for (tl = 0; tl < oxcf->ts_number_layers; ++tl) { + layer = LAYER_IDS_TO_IDX(sl, tl, oxcf->ts_number_layers); + svc->layer_context[layer].target_bandwidth = + oxcf->layer_target_bitrate[layer]; + } + + layer = LAYER_IDS_TO_IDX( + sl, + ((oxcf->ts_number_layers - 1) < 0 ? 0 : (oxcf->ts_number_layers - 1)), + oxcf->ts_number_layers); + spatial_layer_target = svc->layer_context[layer].target_bandwidth = + oxcf->layer_target_bitrate[layer]; + + for (tl = 0; tl < oxcf->ts_number_layers; ++tl) { + LAYER_CONTEXT *const lc = + &svc->layer_context[sl * oxcf->ts_number_layers + tl]; + RATE_CONTROL *const lrc = &lc->rc; + + lc->spatial_layer_target_bandwidth = spatial_layer_target; + bitrate_alloc = (float)lc->target_bandwidth / target_bandwidth; + lrc->starting_buffer_level = + (int64_t)(rc->starting_buffer_level * bitrate_alloc); + lrc->optimal_buffer_level = + (int64_t)(rc->optimal_buffer_level * bitrate_alloc); + lrc->maximum_buffer_size = + (int64_t)(rc->maximum_buffer_size * bitrate_alloc); + lrc->bits_off_target = + VPXMIN(lrc->bits_off_target, lrc->maximum_buffer_size); + lrc->buffer_level = VPXMIN(lrc->buffer_level, lrc->maximum_buffer_size); + lc->framerate = cpi->framerate / oxcf->ts_rate_decimator[tl]; + lrc->avg_frame_bandwidth = (int)(lc->target_bandwidth / lc->framerate); + lrc->max_frame_bandwidth = rc->max_frame_bandwidth; + lrc->worst_quality = rc->worst_quality; + lrc->best_quality = rc->best_quality; + } + } + } else { + int layer_end; + + if (svc->number_temporal_layers > 1 && cpi->oxcf.rc_mode == VPX_CBR) { + layer_end = svc->number_temporal_layers; + } else { + layer_end = svc->number_spatial_layers; + } + + for (layer = 0; layer < layer_end; ++layer) { + LAYER_CONTEXT *const lc = &svc->layer_context[layer]; + RATE_CONTROL *const lrc = &lc->rc; + + lc->target_bandwidth = oxcf->layer_target_bitrate[layer]; + + bitrate_alloc = (float)lc->target_bandwidth / target_bandwidth; + // Update buffer-related quantities. + lrc->starting_buffer_level = + (int64_t)(rc->starting_buffer_level * bitrate_alloc); + lrc->optimal_buffer_level = + (int64_t)(rc->optimal_buffer_level * bitrate_alloc); + lrc->maximum_buffer_size = + (int64_t)(rc->maximum_buffer_size * bitrate_alloc); + lrc->bits_off_target = + VPXMIN(lrc->bits_off_target, lrc->maximum_buffer_size); + lrc->buffer_level = VPXMIN(lrc->buffer_level, lrc->maximum_buffer_size); + // Update framerate-related quantities. + if (svc->number_temporal_layers > 1 && cpi->oxcf.rc_mode == VPX_CBR) { + lc->framerate = cpi->framerate / oxcf->ts_rate_decimator[layer]; + } else { + lc->framerate = cpi->framerate; + } + lrc->avg_frame_bandwidth = (int)(lc->target_bandwidth / lc->framerate); + lrc->max_frame_bandwidth = rc->max_frame_bandwidth; + // Update qp-related quantities. + lrc->worst_quality = rc->worst_quality; + lrc->best_quality = rc->best_quality; + } + } +} + +static LAYER_CONTEXT *get_layer_context(VP9_COMP *const cpi) { + if (is_one_pass_cbr_svc(cpi)) + return &cpi->svc.layer_context[cpi->svc.spatial_layer_id * + cpi->svc.number_temporal_layers + + cpi->svc.temporal_layer_id]; + else + return (cpi->svc.number_temporal_layers > 1 && cpi->oxcf.rc_mode == VPX_CBR) + ? &cpi->svc.layer_context[cpi->svc.temporal_layer_id] + : &cpi->svc.layer_context[cpi->svc.spatial_layer_id]; +} + +void vp9_update_temporal_layer_framerate(VP9_COMP *const cpi) { + SVC *const svc = &cpi->svc; + const VP9EncoderConfig *const oxcf = &cpi->oxcf; + LAYER_CONTEXT *const lc = get_layer_context(cpi); + RATE_CONTROL *const lrc = &lc->rc; + // Index into spatial+temporal arrays. + const int st_idx = svc->spatial_layer_id * svc->number_temporal_layers + + svc->temporal_layer_id; + const int tl = svc->temporal_layer_id; + + lc->framerate = cpi->framerate / oxcf->ts_rate_decimator[tl]; + lrc->avg_frame_bandwidth = (int)(lc->target_bandwidth / lc->framerate); + lrc->max_frame_bandwidth = cpi->rc.max_frame_bandwidth; + // Update the average layer frame size (non-cumulative per-frame-bw). + if (tl == 0) { + lc->avg_frame_size = lrc->avg_frame_bandwidth; + } else { + const double prev_layer_framerate = + cpi->framerate / oxcf->ts_rate_decimator[tl - 1]; + const int prev_layer_target_bandwidth = + oxcf->layer_target_bitrate[st_idx - 1]; + lc->avg_frame_size = + (int)((lc->target_bandwidth - prev_layer_target_bandwidth) / + (lc->framerate - prev_layer_framerate)); + } +} + +void vp9_update_spatial_layer_framerate(VP9_COMP *const cpi, double framerate) { + const VP9EncoderConfig *const oxcf = &cpi->oxcf; + LAYER_CONTEXT *const lc = get_layer_context(cpi); + RATE_CONTROL *const lrc = &lc->rc; + + lc->framerate = framerate; + lrc->avg_frame_bandwidth = (int)(lc->target_bandwidth / lc->framerate); + lrc->min_frame_bandwidth = + (int)(lrc->avg_frame_bandwidth * oxcf->two_pass_vbrmin_section / 100); + lrc->max_frame_bandwidth = (int)(((int64_t)lrc->avg_frame_bandwidth * + oxcf->two_pass_vbrmax_section) / + 100); + vp9_rc_set_gf_interval_range(cpi, lrc); +} + +void vp9_restore_layer_context(VP9_COMP *const cpi) { + LAYER_CONTEXT *const lc = get_layer_context(cpi); + const int old_frame_since_key = cpi->rc.frames_since_key; + const int old_frame_to_key = cpi->rc.frames_to_key; + + cpi->rc = lc->rc; + cpi->twopass = lc->twopass; + cpi->oxcf.target_bandwidth = lc->target_bandwidth; + cpi->alt_ref_source = lc->alt_ref_source; + // Check if it is one_pass_cbr_svc mode and lc->speed > 0 (real-time mode + // does not use speed = 0). + if (is_one_pass_cbr_svc(cpi) && lc->speed > 0) { + cpi->oxcf.speed = lc->speed; + } + // Reset the frames_since_key and frames_to_key counters to their values + // before the layer restore. Keep these defined for the stream (not layer). + if (cpi->svc.number_temporal_layers > 1 || + (cpi->svc.number_spatial_layers > 1 && !is_two_pass_svc(cpi))) { + cpi->rc.frames_since_key = old_frame_since_key; + cpi->rc.frames_to_key = old_frame_to_key; + } + + // For spatial-svc, allow cyclic-refresh to be applied on the spatial layers, + // for the base temporal layer. + if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && + cpi->svc.number_spatial_layers > 1 && cpi->svc.temporal_layer_id == 0) { + CYCLIC_REFRESH *const cr = cpi->cyclic_refresh; + signed char *temp = cr->map; + uint8_t *temp2 = cr->last_coded_q_map; + uint8_t *temp3 = cpi->consec_zero_mv; + cr->map = lc->map; + lc->map = temp; + cr->last_coded_q_map = lc->last_coded_q_map; + lc->last_coded_q_map = temp2; + cpi->consec_zero_mv = lc->consec_zero_mv; + lc->consec_zero_mv = temp3; + cr->sb_index = lc->sb_index; + } +} + +void vp9_save_layer_context(VP9_COMP *const cpi) { + const VP9EncoderConfig *const oxcf = &cpi->oxcf; + LAYER_CONTEXT *const lc = get_layer_context(cpi); + + lc->rc = cpi->rc; + lc->twopass = cpi->twopass; + lc->target_bandwidth = (int)oxcf->target_bandwidth; + lc->alt_ref_source = cpi->alt_ref_source; + + // For spatial-svc, allow cyclic-refresh to be applied on the spatial layers, + // for the base temporal layer. + if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && + cpi->svc.number_spatial_layers > 1 && cpi->svc.temporal_layer_id == 0) { + CYCLIC_REFRESH *const cr = cpi->cyclic_refresh; + signed char *temp = lc->map; + uint8_t *temp2 = lc->last_coded_q_map; + uint8_t *temp3 = lc->consec_zero_mv; + lc->map = cr->map; + cr->map = temp; + lc->last_coded_q_map = cr->last_coded_q_map; + cr->last_coded_q_map = temp2; + lc->consec_zero_mv = cpi->consec_zero_mv; + cpi->consec_zero_mv = temp3; + lc->sb_index = cr->sb_index; + } +} + +#if !CONFIG_REALTIME_ONLY +void vp9_init_second_pass_spatial_svc(VP9_COMP *cpi) { + SVC *const svc = &cpi->svc; + int i; + + for (i = 0; i < svc->number_spatial_layers; ++i) { + TWO_PASS *const twopass = &svc->layer_context[i].twopass; + + svc->spatial_layer_id = i; + vp9_init_second_pass(cpi); + + twopass->total_stats.spatial_layer_id = i; + twopass->total_left_stats.spatial_layer_id = i; + } + svc->spatial_layer_id = 0; +} +#endif // !CONFIG_REALTIME_ONLY + +void vp9_inc_frame_in_layer(VP9_COMP *const cpi) { + LAYER_CONTEXT *const lc = + &cpi->svc.layer_context[cpi->svc.spatial_layer_id * + cpi->svc.number_temporal_layers]; + ++lc->current_video_frame_in_layer; + ++lc->frames_from_key_frame; + if (cpi->svc.spatial_layer_id == cpi->svc.number_spatial_layers - 1) + ++cpi->svc.current_superframe; +} + +int vp9_is_upper_layer_key_frame(const VP9_COMP *const cpi) { + return is_two_pass_svc(cpi) && cpi->svc.spatial_layer_id > 0 && + cpi->svc + .layer_context[cpi->svc.spatial_layer_id * + cpi->svc.number_temporal_layers + + cpi->svc.temporal_layer_id] + .is_key_frame; +} + +void get_layer_resolution(const int width_org, const int height_org, + const int num, const int den, int *width_out, + int *height_out) { + int w, h; + + if (width_out == NULL || height_out == NULL || den == 0) return; + + w = width_org * num / den; + h = height_org * num / den; + + // make height and width even to make chrome player happy + w += w % 2; + h += h % 2; + + *width_out = w; + *height_out = h; +} + +// The function sets proper ref_frame_flags, buffer indices, and buffer update +// variables for temporal layering mode 3 - that does 0-2-1-2 temporal layering +// scheme. +static void set_flags_and_fb_idx_for_temporal_mode3(VP9_COMP *const cpi) { + int frame_num_within_temporal_struct = 0; + int spatial_id, temporal_id; + spatial_id = cpi->svc.spatial_layer_id = cpi->svc.spatial_layer_to_encode; + frame_num_within_temporal_struct = + cpi->svc + .layer_context[cpi->svc.spatial_layer_id * + cpi->svc.number_temporal_layers] + .current_video_frame_in_layer % + 4; + temporal_id = cpi->svc.temporal_layer_id = + (frame_num_within_temporal_struct & 1) + ? 2 + : (frame_num_within_temporal_struct >> 1); + cpi->ext_refresh_last_frame = cpi->ext_refresh_golden_frame = + cpi->ext_refresh_alt_ref_frame = 0; + if (!temporal_id) { + cpi->ext_refresh_frame_flags_pending = 1; + cpi->ext_refresh_last_frame = 1; + if (!spatial_id) { + cpi->ref_frame_flags = VP9_LAST_FLAG; + } else if (cpi->svc.layer_context[temporal_id].is_key_frame) { + // base layer is a key frame. + cpi->ref_frame_flags = VP9_LAST_FLAG; + cpi->ext_refresh_last_frame = 0; + cpi->ext_refresh_golden_frame = 1; + } else { + cpi->ref_frame_flags = VP9_LAST_FLAG | VP9_GOLD_FLAG; + } + } else if (temporal_id == 1) { + cpi->ext_refresh_frame_flags_pending = 1; + cpi->ext_refresh_alt_ref_frame = 1; + if (!spatial_id) { + cpi->ref_frame_flags = VP9_LAST_FLAG; + } else { + cpi->ref_frame_flags = VP9_LAST_FLAG | VP9_GOLD_FLAG; + } + } else { + if (frame_num_within_temporal_struct == 1) { + // the first tl2 picture + if (spatial_id == cpi->svc.number_spatial_layers - 1) { // top layer + cpi->ext_refresh_frame_flags_pending = 1; + if (!spatial_id) + cpi->ref_frame_flags = VP9_LAST_FLAG; + else + cpi->ref_frame_flags = VP9_LAST_FLAG | VP9_GOLD_FLAG; + } else if (!spatial_id) { + cpi->ext_refresh_frame_flags_pending = 1; + cpi->ext_refresh_alt_ref_frame = 1; + cpi->ref_frame_flags = VP9_LAST_FLAG; + } else if (spatial_id < cpi->svc.number_spatial_layers - 1) { + cpi->ext_refresh_frame_flags_pending = 1; + cpi->ext_refresh_alt_ref_frame = 1; + cpi->ref_frame_flags = VP9_LAST_FLAG | VP9_GOLD_FLAG; + } + } else { + // The second tl2 picture + if (spatial_id == cpi->svc.number_spatial_layers - 1) { // top layer + cpi->ext_refresh_frame_flags_pending = 1; + if (!spatial_id) + cpi->ref_frame_flags = VP9_LAST_FLAG; + else + cpi->ref_frame_flags = VP9_LAST_FLAG | VP9_GOLD_FLAG; + } else if (!spatial_id) { + cpi->ext_refresh_frame_flags_pending = 1; + cpi->ref_frame_flags = VP9_LAST_FLAG; + cpi->ext_refresh_alt_ref_frame = 1; + } else { // top layer + cpi->ext_refresh_frame_flags_pending = 1; + cpi->ref_frame_flags = VP9_LAST_FLAG | VP9_GOLD_FLAG; + cpi->ext_refresh_alt_ref_frame = 1; + } + } + } + if (temporal_id == 0) { + cpi->lst_fb_idx = spatial_id; + if (spatial_id) { + if (cpi->svc.layer_context[temporal_id].is_key_frame) { + cpi->lst_fb_idx = spatial_id - 1; + cpi->gld_fb_idx = spatial_id; + } else { + cpi->gld_fb_idx = spatial_id - 1; + } + } else { + cpi->gld_fb_idx = 0; + } + cpi->alt_fb_idx = 0; + } else if (temporal_id == 1) { + cpi->lst_fb_idx = spatial_id; + cpi->gld_fb_idx = cpi->svc.number_spatial_layers + spatial_id - 1; + cpi->alt_fb_idx = cpi->svc.number_spatial_layers + spatial_id; + } else if (frame_num_within_temporal_struct == 1) { + cpi->lst_fb_idx = spatial_id; + cpi->gld_fb_idx = cpi->svc.number_spatial_layers + spatial_id - 1; + cpi->alt_fb_idx = cpi->svc.number_spatial_layers + spatial_id; + } else { + cpi->lst_fb_idx = cpi->svc.number_spatial_layers + spatial_id; + cpi->gld_fb_idx = cpi->svc.number_spatial_layers + spatial_id - 1; + cpi->alt_fb_idx = cpi->svc.number_spatial_layers + spatial_id; + } +} + +// The function sets proper ref_frame_flags, buffer indices, and buffer update +// variables for temporal layering mode 2 - that does 0-1-0-1 temporal layering +// scheme. +static void set_flags_and_fb_idx_for_temporal_mode2(VP9_COMP *const cpi) { + int spatial_id, temporal_id; + spatial_id = cpi->svc.spatial_layer_id = cpi->svc.spatial_layer_to_encode; + temporal_id = cpi->svc.temporal_layer_id = + cpi->svc + .layer_context[cpi->svc.spatial_layer_id * + cpi->svc.number_temporal_layers] + .current_video_frame_in_layer & + 1; + cpi->ext_refresh_last_frame = cpi->ext_refresh_golden_frame = + cpi->ext_refresh_alt_ref_frame = 0; + if (!temporal_id) { + cpi->ext_refresh_frame_flags_pending = 1; + cpi->ext_refresh_last_frame = 1; + if (!spatial_id) { + cpi->ref_frame_flags = VP9_LAST_FLAG; + } else if (cpi->svc.layer_context[temporal_id].is_key_frame) { + // base layer is a key frame. + cpi->ref_frame_flags = VP9_LAST_FLAG; + cpi->ext_refresh_last_frame = 0; + cpi->ext_refresh_golden_frame = 1; + } else { + cpi->ref_frame_flags = VP9_LAST_FLAG | VP9_GOLD_FLAG; + } + } else if (temporal_id == 1) { + cpi->ext_refresh_frame_flags_pending = 1; + cpi->ext_refresh_alt_ref_frame = 1; + if (!spatial_id) { + cpi->ref_frame_flags = VP9_LAST_FLAG; + } else { + cpi->ref_frame_flags = VP9_LAST_FLAG | VP9_GOLD_FLAG; + } + } + + if (temporal_id == 0) { + cpi->lst_fb_idx = spatial_id; + if (spatial_id) { + if (cpi->svc.layer_context[temporal_id].is_key_frame) { + cpi->lst_fb_idx = spatial_id - 1; + cpi->gld_fb_idx = spatial_id; + } else { + cpi->gld_fb_idx = spatial_id - 1; + } + } else { + cpi->gld_fb_idx = 0; + } + cpi->alt_fb_idx = 0; + } else if (temporal_id == 1) { + cpi->lst_fb_idx = spatial_id; + cpi->gld_fb_idx = cpi->svc.number_spatial_layers + spatial_id - 1; + cpi->alt_fb_idx = cpi->svc.number_spatial_layers + spatial_id; + } +} + +// The function sets proper ref_frame_flags, buffer indices, and buffer update +// variables for temporal layering mode 0 - that has no temporal layering. +static void set_flags_and_fb_idx_for_temporal_mode_noLayering( + VP9_COMP *const cpi) { + int spatial_id; + spatial_id = cpi->svc.spatial_layer_id = cpi->svc.spatial_layer_to_encode; + cpi->ext_refresh_last_frame = cpi->ext_refresh_golden_frame = + cpi->ext_refresh_alt_ref_frame = 0; + cpi->ext_refresh_frame_flags_pending = 1; + cpi->ext_refresh_last_frame = 1; + if (!spatial_id) { + cpi->ref_frame_flags = VP9_LAST_FLAG; + } else if (cpi->svc.layer_context[0].is_key_frame) { + cpi->ref_frame_flags = VP9_LAST_FLAG; + cpi->ext_refresh_last_frame = 0; + cpi->ext_refresh_golden_frame = 1; + } else { + cpi->ref_frame_flags = VP9_LAST_FLAG | VP9_GOLD_FLAG; + } + cpi->lst_fb_idx = spatial_id; + if (spatial_id) { + if (cpi->svc.layer_context[0].is_key_frame) { + cpi->lst_fb_idx = spatial_id - 1; + cpi->gld_fb_idx = spatial_id; + } else { + cpi->gld_fb_idx = spatial_id - 1; + } + } else { + cpi->gld_fb_idx = 0; + } +} + +int vp9_one_pass_cbr_svc_start_layer(VP9_COMP *const cpi) { + int width = 0, height = 0; + LAYER_CONTEXT *lc = NULL; + if (cpi->svc.number_spatial_layers > 1) cpi->svc.use_base_mv = 1; + cpi->svc.force_zero_mode_spatial_ref = 1; + cpi->svc.mi_stride[cpi->svc.spatial_layer_id] = cpi->common.mi_stride; + + if (cpi->svc.temporal_layering_mode == VP9E_TEMPORAL_LAYERING_MODE_0212) { + set_flags_and_fb_idx_for_temporal_mode3(cpi); + } else if (cpi->svc.temporal_layering_mode == + VP9E_TEMPORAL_LAYERING_MODE_NOLAYERING) { + set_flags_and_fb_idx_for_temporal_mode_noLayering(cpi); + } else if (cpi->svc.temporal_layering_mode == + VP9E_TEMPORAL_LAYERING_MODE_0101) { + set_flags_and_fb_idx_for_temporal_mode2(cpi); + } else if (cpi->svc.temporal_layering_mode == + VP9E_TEMPORAL_LAYERING_MODE_BYPASS) { + // In the BYPASS/flexible mode, the encoder is relying on the application + // to specify, for each spatial layer, the flags and buffer indices for the + // layering. + // Note that the check (cpi->ext_refresh_frame_flags_pending == 0) is + // needed to support the case where the frame flags may be passed in via + // vpx_codec_encode(), which can be used for the temporal-only svc case. + // TODO(marpan): Consider adding an enc_config parameter to better handle + // this case. + if (cpi->ext_refresh_frame_flags_pending == 0) { + int sl; + cpi->svc.spatial_layer_id = cpi->svc.spatial_layer_to_encode; + sl = cpi->svc.spatial_layer_id; + vp9_apply_encoding_flags(cpi, cpi->svc.ext_frame_flags[sl]); + cpi->lst_fb_idx = cpi->svc.ext_lst_fb_idx[sl]; + cpi->gld_fb_idx = cpi->svc.ext_gld_fb_idx[sl]; + cpi->alt_fb_idx = cpi->svc.ext_alt_fb_idx[sl]; + } + } + + if (cpi->svc.spatial_layer_id == cpi->svc.first_spatial_layer_to_encode) + cpi->svc.rc_drop_superframe = 0; + + lc = &cpi->svc.layer_context[cpi->svc.spatial_layer_id * + cpi->svc.number_temporal_layers + + cpi->svc.temporal_layer_id]; + + // Setting the worst/best_quality via the encoder control: SET_SVC_PARAMETERS, + // only for non-BYPASS mode for now. + if (cpi->svc.temporal_layering_mode != VP9E_TEMPORAL_LAYERING_MODE_BYPASS) { + RATE_CONTROL *const lrc = &lc->rc; + lrc->worst_quality = vp9_quantizer_to_qindex(lc->max_q); + lrc->best_quality = vp9_quantizer_to_qindex(lc->min_q); + } + + get_layer_resolution(cpi->oxcf.width, cpi->oxcf.height, + lc->scaling_factor_num, lc->scaling_factor_den, &width, + &height); + + // For resolutions <= VGA: set phase of the filter = 8 (for symmetric + // averaging filter), use bilinear for now. + if (width * height <= 640 * 480) { + cpi->svc.downsample_filter_type[cpi->svc.spatial_layer_id] = BILINEAR; + cpi->svc.downsample_filter_phase[cpi->svc.spatial_layer_id] = 8; + } + + // The usage of use_base_mv assumes down-scale of 2x2. For now, turn off use + // of base motion vectors if spatial scale factors for any layers are not 2, + // keep the case of 3 spatial layers with scale factor of 4x4 for base layer. + // TODO(marpan): Fix this to allow for use_base_mv for scale factors != 2. + if (cpi->svc.number_spatial_layers > 1) { + int sl; + for (sl = 0; sl < cpi->svc.number_spatial_layers - 1; ++sl) { + lc = &cpi->svc.layer_context[sl * cpi->svc.number_temporal_layers + + cpi->svc.temporal_layer_id]; + if ((lc->scaling_factor_num != lc->scaling_factor_den >> 1) && + !(lc->scaling_factor_num == lc->scaling_factor_den >> 2 && sl == 0 && + cpi->svc.number_spatial_layers == 3)) { + cpi->svc.use_base_mv = 0; + break; + } + } + } + + cpi->svc.non_reference_frame = 0; + if (cpi->common.frame_type != KEY_FRAME && !cpi->ext_refresh_last_frame && + !cpi->ext_refresh_golden_frame && !cpi->ext_refresh_alt_ref_frame) { + cpi->svc.non_reference_frame = 1; + } + + if (vp9_set_size_literal(cpi, width, height) != 0) + return VPX_CODEC_INVALID_PARAM; + + return 0; +} + +#if CONFIG_SPATIAL_SVC +#define SMALL_FRAME_FB_IDX 7 + +int vp9_svc_start_frame(VP9_COMP *const cpi) { + int width = 0, height = 0; + LAYER_CONTEXT *lc; + struct lookahead_entry *buf; + int count = 1 << (cpi->svc.number_temporal_layers - 1); + + cpi->svc.spatial_layer_id = cpi->svc.spatial_layer_to_encode; + lc = &cpi->svc.layer_context[cpi->svc.spatial_layer_id]; + + cpi->svc.temporal_layer_id = 0; + while ((lc->current_video_frame_in_layer % count) != 0) { + ++cpi->svc.temporal_layer_id; + count >>= 1; + } + + cpi->ref_frame_flags = VP9_ALT_FLAG | VP9_GOLD_FLAG | VP9_LAST_FLAG; + + cpi->lst_fb_idx = cpi->svc.spatial_layer_id; + + if (cpi->svc.spatial_layer_id == 0) + cpi->gld_fb_idx = + (lc->gold_ref_idx >= 0) ? lc->gold_ref_idx : cpi->lst_fb_idx; + else + cpi->gld_fb_idx = cpi->svc.spatial_layer_id - 1; + + if (lc->current_video_frame_in_layer == 0) { + if (cpi->svc.spatial_layer_id >= 2) { + cpi->alt_fb_idx = cpi->svc.spatial_layer_id - 2; + } else { + cpi->alt_fb_idx = cpi->lst_fb_idx; + cpi->ref_frame_flags &= (~VP9_LAST_FLAG & ~VP9_ALT_FLAG); + } + } else { + if (cpi->oxcf.ss_enable_auto_arf[cpi->svc.spatial_layer_id]) { + cpi->alt_fb_idx = lc->alt_ref_idx; + if (!lc->has_alt_frame) cpi->ref_frame_flags &= (~VP9_ALT_FLAG); + } else { + // Find a proper alt_fb_idx for layers that don't have alt ref frame + if (cpi->svc.spatial_layer_id == 0) { + cpi->alt_fb_idx = cpi->lst_fb_idx; + } else { + LAYER_CONTEXT *lc_lower = + &cpi->svc.layer_context[cpi->svc.spatial_layer_id - 1]; + + if (cpi->oxcf.ss_enable_auto_arf[cpi->svc.spatial_layer_id - 1] && + lc_lower->alt_ref_source != NULL) + cpi->alt_fb_idx = lc_lower->alt_ref_idx; + else if (cpi->svc.spatial_layer_id >= 2) + cpi->alt_fb_idx = cpi->svc.spatial_layer_id - 2; + else + cpi->alt_fb_idx = cpi->lst_fb_idx; + } + } + } + + get_layer_resolution(cpi->oxcf.width, cpi->oxcf.height, + lc->scaling_factor_num, lc->scaling_factor_den, &width, + &height); + + // Workaround for multiple frame contexts. In some frames we can't use prev_mi + // since its previous frame could be changed during decoding time. The idea is + // we put a empty invisible frame in front of them, then we will not use + // prev_mi when encoding these frames. + + buf = vp9_lookahead_peek(cpi->lookahead, 0); + if (cpi->oxcf.error_resilient_mode == 0 && cpi->oxcf.pass == 2 && + cpi->svc.encode_empty_frame_state == NEED_TO_ENCODE && + lc->rc.frames_to_key != 0 && + !(buf != NULL && (buf->flags & VPX_EFLAG_FORCE_KF))) { + if ((cpi->svc.number_temporal_layers > 1 && + cpi->svc.temporal_layer_id < cpi->svc.number_temporal_layers - 1) || + (cpi->svc.number_spatial_layers > 1 && + cpi->svc.spatial_layer_id == 0)) { + struct lookahead_entry *buf = vp9_lookahead_peek(cpi->lookahead, 0); + + if (buf != NULL) { + cpi->svc.empty_frame.ts_start = buf->ts_start; + cpi->svc.empty_frame.ts_end = buf->ts_end; + cpi->svc.encode_empty_frame_state = ENCODING; + cpi->common.show_frame = 0; + cpi->ref_frame_flags = 0; + cpi->common.frame_type = INTER_FRAME; + cpi->lst_fb_idx = cpi->gld_fb_idx = cpi->alt_fb_idx = + SMALL_FRAME_FB_IDX; + + if (cpi->svc.encode_intra_empty_frame != 0) cpi->common.intra_only = 1; + + width = SMALL_FRAME_WIDTH; + height = SMALL_FRAME_HEIGHT; + } + } + } + + cpi->oxcf.worst_allowed_q = vp9_quantizer_to_qindex(lc->max_q); + cpi->oxcf.best_allowed_q = vp9_quantizer_to_qindex(lc->min_q); + + vp9_change_config(cpi, &cpi->oxcf); + + if (vp9_set_size_literal(cpi, width, height) != 0) + return VPX_CODEC_INVALID_PARAM; + + vp9_set_high_precision_mv(cpi, 1); + + cpi->alt_ref_source = get_layer_context(cpi)->alt_ref_source; + + return 0; +} + +#undef SMALL_FRAME_FB_IDX +#endif // CONFIG_SPATIAL_SVC + +struct lookahead_entry *vp9_svc_lookahead_pop(VP9_COMP *const cpi, + struct lookahead_ctx *ctx, + int drain) { + struct lookahead_entry *buf = NULL; + if (ctx->sz && (drain || ctx->sz == ctx->max_sz - MAX_PRE_FRAMES)) { + buf = vp9_lookahead_peek(ctx, 0); + if (buf != NULL) { + // Only remove the buffer when pop the highest layer. + if (cpi->svc.spatial_layer_id == cpi->svc.number_spatial_layers - 1) { + vp9_lookahead_pop(ctx, drain); + } + } + } + return buf; +} + +void vp9_free_svc_cyclic_refresh(VP9_COMP *const cpi) { + int sl, tl; + SVC *const svc = &cpi->svc; + const VP9EncoderConfig *const oxcf = &cpi->oxcf; + for (sl = 0; sl < oxcf->ss_number_layers; ++sl) { + for (tl = 0; tl < oxcf->ts_number_layers; ++tl) { + int layer = LAYER_IDS_TO_IDX(sl, tl, oxcf->ts_number_layers); + LAYER_CONTEXT *const lc = &svc->layer_context[layer]; + if (lc->map) vpx_free(lc->map); + if (lc->last_coded_q_map) vpx_free(lc->last_coded_q_map); + if (lc->consec_zero_mv) vpx_free(lc->consec_zero_mv); + } + } +} + +// Reset on key frame: reset counters, references and buffer updates. +void vp9_svc_reset_key_frame(VP9_COMP *const cpi) { + int sl, tl; + SVC *const svc = &cpi->svc; + LAYER_CONTEXT *lc = NULL; + for (sl = 0; sl < svc->number_spatial_layers; ++sl) { + for (tl = 0; tl < svc->number_temporal_layers; ++tl) { + lc = &cpi->svc.layer_context[sl * svc->number_temporal_layers + tl]; + lc->current_video_frame_in_layer = 0; + lc->frames_from_key_frame = 0; + } + } + if (svc->temporal_layering_mode == VP9E_TEMPORAL_LAYERING_MODE_0212) { + set_flags_and_fb_idx_for_temporal_mode3(cpi); + } else if (svc->temporal_layering_mode == + VP9E_TEMPORAL_LAYERING_MODE_NOLAYERING) { + set_flags_and_fb_idx_for_temporal_mode_noLayering(cpi); + } else if (svc->temporal_layering_mode == VP9E_TEMPORAL_LAYERING_MODE_0101) { + set_flags_and_fb_idx_for_temporal_mode2(cpi); + } + vp9_update_temporal_layer_framerate(cpi); + vp9_restore_layer_context(cpi); +} + +void vp9_svc_check_reset_layer_rc_flag(VP9_COMP *const cpi) { + SVC *svc = &cpi->svc; + int sl, tl; + for (sl = 0; sl < svc->number_spatial_layers; ++sl) { + // Check for reset based on avg_frame_bandwidth for spatial layer sl. + int layer = LAYER_IDS_TO_IDX(sl, svc->number_temporal_layers - 1, + svc->number_temporal_layers); + LAYER_CONTEXT *lc = &svc->layer_context[layer]; + RATE_CONTROL *lrc = &lc->rc; + if (lrc->avg_frame_bandwidth > (3 * lrc->last_avg_frame_bandwidth >> 1) || + lrc->avg_frame_bandwidth < (lrc->last_avg_frame_bandwidth >> 1)) { + // Reset for all temporal layers with spatial layer sl. + for (tl = 0; tl < svc->number_temporal_layers; ++tl) { + int layer = LAYER_IDS_TO_IDX(sl, tl, svc->number_temporal_layers); + LAYER_CONTEXT *lc = &svc->layer_context[layer]; + RATE_CONTROL *lrc = &lc->rc; + lrc->rc_1_frame = 0; + lrc->rc_2_frame = 0; + lrc->bits_off_target = lrc->optimal_buffer_level; + lrc->buffer_level = lrc->optimal_buffer_level; + } + } + } +} diff --git a/vp9/encoder/vp9_svc_layercontext.h b/vp9/encoder/vp9_svc_layercontext.h new file mode 100644 index 0000000..b7cdfd9 --- /dev/null +++ b/vp9/encoder/vp9_svc_layercontext.h @@ -0,0 +1,163 @@ +/* + * Copyright (c) 2014 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP9_ENCODER_VP9_SVC_LAYERCONTEXT_H_ +#define VP9_ENCODER_VP9_SVC_LAYERCONTEXT_H_ + +#include "vpx/vpx_encoder.h" + +#include "vp9/encoder/vp9_ratectrl.h" + +#ifdef __cplusplus +extern "C" { +#endif + +typedef struct { + RATE_CONTROL rc; + int target_bandwidth; + int spatial_layer_target_bandwidth; // Target for the spatial layer. + double framerate; + int avg_frame_size; + int max_q; + int min_q; + int scaling_factor_num; + int scaling_factor_den; + TWO_PASS twopass; + vpx_fixed_buf_t rc_twopass_stats_in; + unsigned int current_video_frame_in_layer; + int is_key_frame; + int frames_from_key_frame; + FRAME_TYPE last_frame_type; + struct lookahead_entry *alt_ref_source; + int alt_ref_idx; + int gold_ref_idx; + int has_alt_frame; + size_t layer_size; + struct vpx_psnr_pkt psnr_pkt; + // Cyclic refresh parameters (aq-mode=3), that need to be updated per-frame. + int sb_index; + signed char *map; + uint8_t *last_coded_q_map; + uint8_t *consec_zero_mv; + uint8_t speed; +} LAYER_CONTEXT; + +typedef struct SVC { + int spatial_layer_id; + int temporal_layer_id; + int number_spatial_layers; + int number_temporal_layers; + + int spatial_layer_to_encode; + int first_spatial_layer_to_encode; + int rc_drop_superframe; + + // Workaround for multiple frame contexts + enum { ENCODED = 0, ENCODING, NEED_TO_ENCODE } encode_empty_frame_state; + struct lookahead_entry empty_frame; + int encode_intra_empty_frame; + + // Store scaled source frames to be used for temporal filter to generate + // a alt ref frame. + YV12_BUFFER_CONFIG scaled_frames[MAX_LAG_BUFFERS]; + // Temp buffer used for 2-stage down-sampling, for real-time mode. + YV12_BUFFER_CONFIG scaled_temp; + int scaled_one_half; + int scaled_temp_is_alloc; + + // Layer context used for rate control in one pass temporal CBR mode or + // two pass spatial mode. + LAYER_CONTEXT layer_context[VPX_MAX_LAYERS]; + // Indicates what sort of temporal layering is used. + // Currently, this only works for CBR mode. + VP9E_TEMPORAL_LAYERING_MODE temporal_layering_mode; + // Frame flags and buffer indexes for each spatial layer, set by the + // application (external settings). + int ext_frame_flags[VPX_MAX_LAYERS]; + int ext_lst_fb_idx[VPX_MAX_LAYERS]; + int ext_gld_fb_idx[VPX_MAX_LAYERS]; + int ext_alt_fb_idx[VPX_MAX_LAYERS]; + int ref_frame_index[REF_FRAMES]; + int force_zero_mode_spatial_ref; + int current_superframe; + int non_reference_frame; + int use_base_mv; + // Used to control the downscaling filter for source scaling, for 1 pass CBR. + // downsample_filter_phase: = 0 will do sub-sampling (no weighted average), + // = 8 will center the target pixel and get a symmetric averaging filter. + // downsample_filter_type: 4 filters may be used: eighttap_regular, + // eighttap_smooth, eighttap_sharp, and bilinear. + INTERP_FILTER downsample_filter_type[VPX_SS_MAX_LAYERS]; + int downsample_filter_phase[VPX_SS_MAX_LAYERS]; + + BLOCK_SIZE *prev_partition_svc; + int mi_stride[VPX_MAX_LAYERS]; + + int first_layer_denoise; +} SVC; + +struct VP9_COMP; + +// Initialize layer context data from init_config(). +void vp9_init_layer_context(struct VP9_COMP *const cpi); + +// Update the layer context from a change_config() call. +void vp9_update_layer_context_change_config(struct VP9_COMP *const cpi, + const int target_bandwidth); + +// Prior to encoding the frame, update framerate-related quantities +// for the current temporal layer. +void vp9_update_temporal_layer_framerate(struct VP9_COMP *const cpi); + +// Update framerate-related quantities for the current spatial layer. +void vp9_update_spatial_layer_framerate(struct VP9_COMP *const cpi, + double framerate); + +// Prior to encoding the frame, set the layer context, for the current layer +// to be encoded, to the cpi struct. +void vp9_restore_layer_context(struct VP9_COMP *const cpi); + +// Save the layer context after encoding the frame. +void vp9_save_layer_context(struct VP9_COMP *const cpi); + +// Initialize second pass rc for spatial svc. +void vp9_init_second_pass_spatial_svc(struct VP9_COMP *cpi); + +void get_layer_resolution(const int width_org, const int height_org, + const int num, const int den, int *width_out, + int *height_out); + +// Increment number of video frames in layer +void vp9_inc_frame_in_layer(struct VP9_COMP *const cpi); + +// Check if current layer is key frame in spatial upper layer +int vp9_is_upper_layer_key_frame(const struct VP9_COMP *const cpi); + +// Get the next source buffer to encode +struct lookahead_entry *vp9_svc_lookahead_pop(struct VP9_COMP *const cpi, + struct lookahead_ctx *ctx, + int drain); + +// Start a frame and initialize svc parameters +int vp9_svc_start_frame(struct VP9_COMP *const cpi); + +int vp9_one_pass_cbr_svc_start_layer(struct VP9_COMP *const cpi); + +void vp9_free_svc_cyclic_refresh(struct VP9_COMP *const cpi); + +void vp9_svc_reset_key_frame(struct VP9_COMP *const cpi); + +void vp9_svc_check_reset_layer_rc_flag(struct VP9_COMP *const cpi); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP9_ENCODER_VP9_SVC_LAYERCONTEXT_ diff --git a/vp9/encoder/vp9_temporal_filter.c b/vp9/encoder/vp9_temporal_filter.c new file mode 100644 index 0000000..2758c42 --- /dev/null +++ b/vp9/encoder/vp9_temporal_filter.c @@ -0,0 +1,812 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include +#include + +#include "vp9/common/vp9_alloccommon.h" +#include "vp9/common/vp9_common.h" +#include "vp9/common/vp9_onyxc_int.h" +#include "vp9/common/vp9_quant_common.h" +#include "vp9/common/vp9_reconinter.h" +#include "vp9/encoder/vp9_encodeframe.h" +#include "vp9/encoder/vp9_ethread.h" +#include "vp9/encoder/vp9_extend.h" +#include "vp9/encoder/vp9_firstpass.h" +#include "vp9/encoder/vp9_mcomp.h" +#include "vp9/encoder/vp9_encoder.h" +#include "vp9/encoder/vp9_quantize.h" +#include "vp9/encoder/vp9_ratectrl.h" +#include "vp9/encoder/vp9_segmentation.h" +#include "vp9/encoder/vp9_temporal_filter.h" +#include "vpx_dsp/vpx_dsp_common.h" +#include "vpx_mem/vpx_mem.h" +#include "vpx_ports/mem.h" +#include "vpx_ports/vpx_timer.h" +#include "vpx_scale/vpx_scale.h" + +static int fixed_divide[512]; + +static void temporal_filter_predictors_mb_c( + MACROBLOCKD *xd, uint8_t *y_mb_ptr, uint8_t *u_mb_ptr, uint8_t *v_mb_ptr, + int stride, int uv_block_width, int uv_block_height, int mv_row, int mv_col, + uint8_t *pred, struct scale_factors *scale, int x, int y) { + const int which_mv = 0; + const MV mv = { mv_row, mv_col }; + const InterpKernel *const kernel = vp9_filter_kernels[EIGHTTAP_SHARP]; + + enum mv_precision mv_precision_uv; + int uv_stride; + if (uv_block_width == 8) { + uv_stride = (stride + 1) >> 1; + mv_precision_uv = MV_PRECISION_Q4; + } else { + uv_stride = stride; + mv_precision_uv = MV_PRECISION_Q3; + } + +#if CONFIG_VP9_HIGHBITDEPTH + if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { + vp9_highbd_build_inter_predictor(CONVERT_TO_SHORTPTR(y_mb_ptr), stride, + CONVERT_TO_SHORTPTR(&pred[0]), 16, &mv, + scale, 16, 16, which_mv, kernel, + MV_PRECISION_Q3, x, y, xd->bd); + + vp9_highbd_build_inter_predictor(CONVERT_TO_SHORTPTR(u_mb_ptr), uv_stride, + CONVERT_TO_SHORTPTR(&pred[256]), + uv_block_width, &mv, scale, uv_block_width, + uv_block_height, which_mv, kernel, + mv_precision_uv, x, y, xd->bd); + + vp9_highbd_build_inter_predictor(CONVERT_TO_SHORTPTR(v_mb_ptr), uv_stride, + CONVERT_TO_SHORTPTR(&pred[512]), + uv_block_width, &mv, scale, uv_block_width, + uv_block_height, which_mv, kernel, + mv_precision_uv, x, y, xd->bd); + return; + } +#endif // CONFIG_VP9_HIGHBITDEPTH + (void)xd; + vp9_build_inter_predictor(y_mb_ptr, stride, &pred[0], 16, &mv, scale, 16, 16, + which_mv, kernel, MV_PRECISION_Q3, x, y); + + vp9_build_inter_predictor(u_mb_ptr, uv_stride, &pred[256], uv_block_width, + &mv, scale, uv_block_width, uv_block_height, + which_mv, kernel, mv_precision_uv, x, y); + + vp9_build_inter_predictor(v_mb_ptr, uv_stride, &pred[512], uv_block_width, + &mv, scale, uv_block_width, uv_block_height, + which_mv, kernel, mv_precision_uv, x, y); +} + +void vp9_temporal_filter_init(void) { + int i; + + fixed_divide[0] = 0; + for (i = 1; i < 512; ++i) fixed_divide[i] = 0x80000 / i; +} + +void vp9_temporal_filter_apply_c(const uint8_t *frame1, unsigned int stride, + const uint8_t *frame2, + unsigned int block_width, + unsigned int block_height, int strength, + int filter_weight, uint32_t *accumulator, + uint16_t *count) { + unsigned int i, j, k; + int modifier; + int byte = 0; + const int rounding = strength > 0 ? 1 << (strength - 1) : 0; + + assert(strength >= 0); + assert(strength <= 6); + + assert(filter_weight >= 0); + assert(filter_weight <= 2); + + for (i = 0, k = 0; i < block_height; i++) { + for (j = 0; j < block_width; j++, k++) { + int pixel_value = *frame2; + + // non-local mean approach + int diff_sse[9] = { 0 }; + int idx, idy, index = 0; + + for (idy = -1; idy <= 1; ++idy) { + for (idx = -1; idx <= 1; ++idx) { + int row = (int)i + idy; + int col = (int)j + idx; + + if (row >= 0 && row < (int)block_height && col >= 0 && + col < (int)block_width) { + int diff = frame1[byte + idy * (int)stride + idx] - + frame2[idy * (int)block_width + idx]; + diff_sse[index] = diff * diff; + ++index; + } + } + } + + assert(index > 0); + + modifier = 0; + for (idx = 0; idx < 9; ++idx) modifier += diff_sse[idx]; + + modifier *= 3; + modifier /= index; + + ++frame2; + + modifier += rounding; + modifier >>= strength; + + if (modifier > 16) modifier = 16; + + modifier = 16 - modifier; + modifier *= filter_weight; + + count[k] += modifier; + accumulator[k] += modifier * pixel_value; + + byte++; + } + + byte += stride - block_width; + } +} + +#if CONFIG_VP9_HIGHBITDEPTH +void vp9_highbd_temporal_filter_apply_c( + const uint8_t *frame1_8, unsigned int stride, const uint8_t *frame2_8, + unsigned int block_width, unsigned int block_height, int strength, + int filter_weight, uint32_t *accumulator, uint16_t *count) { + const uint16_t *frame1 = CONVERT_TO_SHORTPTR(frame1_8); + const uint16_t *frame2 = CONVERT_TO_SHORTPTR(frame2_8); + unsigned int i, j, k; + int modifier; + int byte = 0; + const int rounding = strength > 0 ? 1 << (strength - 1) : 0; + + for (i = 0, k = 0; i < block_height; i++) { + for (j = 0; j < block_width; j++, k++) { + int pixel_value = *frame2; + int diff_sse[9] = { 0 }; + int idx, idy, index = 0; + + for (idy = -1; idy <= 1; ++idy) { + for (idx = -1; idx <= 1; ++idx) { + int row = (int)i + idy; + int col = (int)j + idx; + + if (row >= 0 && row < (int)block_height && col >= 0 && + col < (int)block_width) { + int diff = frame1[byte + idy * (int)stride + idx] - + frame2[idy * (int)block_width + idx]; + diff_sse[index] = diff * diff; + ++index; + } + } + } + assert(index > 0); + + modifier = 0; + for (idx = 0; idx < 9; ++idx) modifier += diff_sse[idx]; + + modifier *= 3; + modifier /= index; + + ++frame2; + modifier += rounding; + modifier >>= strength; + + if (modifier > 16) modifier = 16; + + modifier = 16 - modifier; + modifier *= filter_weight; + + count[k] += modifier; + accumulator[k] += modifier * pixel_value; + + byte++; + } + + byte += stride - block_width; + } +} +#endif // CONFIG_VP9_HIGHBITDEPTH + +static uint32_t temporal_filter_find_matching_mb_c(VP9_COMP *cpi, + ThreadData *td, + uint8_t *arf_frame_buf, + uint8_t *frame_ptr_buf, + int stride, MV *ref_mv) { + MACROBLOCK *const x = &td->mb; + MACROBLOCKD *const xd = &x->e_mbd; + MV_SPEED_FEATURES *const mv_sf = &cpi->sf.mv; + const SEARCH_METHODS search_method = HEX; + int step_param; + int sadpb = x->sadperbit16; + uint32_t bestsme = UINT_MAX; + uint32_t distortion; + uint32_t sse; + int cost_list[5]; + const MvLimits tmp_mv_limits = x->mv_limits; + + MV best_ref_mv1 = { 0, 0 }; + MV best_ref_mv1_full; /* full-pixel value of best_ref_mv1 */ + + // Save input state + struct buf_2d src = x->plane[0].src; + struct buf_2d pre = xd->plane[0].pre[0]; + + best_ref_mv1_full.col = best_ref_mv1.col >> 3; + best_ref_mv1_full.row = best_ref_mv1.row >> 3; + + // Setup frame pointers + x->plane[0].src.buf = arf_frame_buf; + x->plane[0].src.stride = stride; + xd->plane[0].pre[0].buf = frame_ptr_buf; + xd->plane[0].pre[0].stride = stride; + + step_param = mv_sf->reduce_first_step_size; + step_param = VPXMIN(step_param, MAX_MVSEARCH_STEPS - 2); + + vp9_set_mv_search_range(&x->mv_limits, &best_ref_mv1); + + vp9_full_pixel_search(cpi, x, BLOCK_16X16, &best_ref_mv1_full, step_param, + search_method, sadpb, cond_cost_list(cpi, cost_list), + &best_ref_mv1, ref_mv, 0, 0); + + /* restore UMV window */ + x->mv_limits = tmp_mv_limits; + + // Ignore mv costing by sending NULL pointer instead of cost array + bestsme = cpi->find_fractional_mv_step( + x, ref_mv, &best_ref_mv1, cpi->common.allow_high_precision_mv, + x->errorperbit, &cpi->fn_ptr[BLOCK_16X16], 0, + mv_sf->subpel_iters_per_step, cond_cost_list(cpi, cost_list), NULL, NULL, + &distortion, &sse, NULL, 0, 0); + + // Restore input state + x->plane[0].src = src; + xd->plane[0].pre[0] = pre; + + return bestsme; +} + +void vp9_temporal_filter_iterate_row_c(VP9_COMP *cpi, ThreadData *td, + int mb_row, int mb_col_start, + int mb_col_end) { + ARNRFilterData *arnr_filter_data = &cpi->arnr_filter_data; + YV12_BUFFER_CONFIG **frames = arnr_filter_data->frames; + int frame_count = arnr_filter_data->frame_count; + int alt_ref_index = arnr_filter_data->alt_ref_index; + int strength = arnr_filter_data->strength; + struct scale_factors *scale = &arnr_filter_data->sf; + int byte; + int frame; + int mb_col; + unsigned int filter_weight; + int mb_cols = (frames[alt_ref_index]->y_crop_width + 15) >> 4; + int mb_rows = (frames[alt_ref_index]->y_crop_height + 15) >> 4; + DECLARE_ALIGNED(16, uint32_t, accumulator[16 * 16 * 3]); + DECLARE_ALIGNED(16, uint16_t, count[16 * 16 * 3]); + MACROBLOCKD *mbd = &td->mb.e_mbd; + YV12_BUFFER_CONFIG *f = frames[alt_ref_index]; + uint8_t *dst1, *dst2; +#if CONFIG_VP9_HIGHBITDEPTH + DECLARE_ALIGNED(16, uint16_t, predictor16[16 * 16 * 3]); + DECLARE_ALIGNED(16, uint8_t, predictor8[16 * 16 * 3]); + uint8_t *predictor; +#else + DECLARE_ALIGNED(16, uint8_t, predictor[16 * 16 * 3]); +#endif + const int mb_uv_height = 16 >> mbd->plane[1].subsampling_y; + const int mb_uv_width = 16 >> mbd->plane[1].subsampling_x; + // Addition of the tile col level offsets + int mb_y_offset = mb_row * 16 * (f->y_stride) + 16 * mb_col_start; + int mb_uv_offset = + mb_row * mb_uv_height * f->uv_stride + mb_uv_width * mb_col_start; + +#if CONFIG_VP9_HIGHBITDEPTH + if (mbd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { + predictor = CONVERT_TO_BYTEPTR(predictor16); + } else { + predictor = predictor8; + } +#endif + + // Source frames are extended to 16 pixels. This is different than + // L/A/G reference frames that have a border of 32 (VP9ENCBORDERINPIXELS) + // A 6/8 tap filter is used for motion search. This requires 2 pixels + // before and 3 pixels after. So the largest Y mv on a border would + // then be 16 - VP9_INTERP_EXTEND. The UV blocks are half the size of the + // Y and therefore only extended by 8. The largest mv that a UV block + // can support is 8 - VP9_INTERP_EXTEND. A UV mv is half of a Y mv. + // (16 - VP9_INTERP_EXTEND) >> 1 which is greater than + // 8 - VP9_INTERP_EXTEND. + // To keep the mv in play for both Y and UV planes the max that it + // can be on a border is therefore 16 - (2*VP9_INTERP_EXTEND+1). + td->mb.mv_limits.row_min = -((mb_row * 16) + (17 - 2 * VP9_INTERP_EXTEND)); + td->mb.mv_limits.row_max = + ((mb_rows - 1 - mb_row) * 16) + (17 - 2 * VP9_INTERP_EXTEND); + + for (mb_col = mb_col_start; mb_col < mb_col_end; mb_col++) { + int i, j, k; + int stride; + MV ref_mv; + + vp9_zero_array(accumulator, 16 * 16 * 3); + vp9_zero_array(count, 16 * 16 * 3); + + td->mb.mv_limits.col_min = -((mb_col * 16) + (17 - 2 * VP9_INTERP_EXTEND)); + td->mb.mv_limits.col_max = + ((mb_cols - 1 - mb_col) * 16) + (17 - 2 * VP9_INTERP_EXTEND); + + if (cpi->oxcf.content == VP9E_CONTENT_FILM) { + unsigned int src_variance; + struct buf_2d src; + + src.buf = f->y_buffer + mb_y_offset; + src.stride = f->y_stride; + +#if CONFIG_VP9_HIGHBITDEPTH + if (mbd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { + src_variance = + vp9_high_get_sby_perpixel_variance(cpi, &src, BLOCK_16X16, mbd->bd); + } else { + src_variance = vp9_get_sby_perpixel_variance(cpi, &src, BLOCK_16X16); + } +#else + src_variance = vp9_get_sby_perpixel_variance(cpi, &src, BLOCK_16X16); +#endif // CONFIG_VP9_HIGHBITDEPTH + + if (src_variance <= 2) strength = VPXMAX(0, (int)strength - 2); + } + + for (frame = 0; frame < frame_count; frame++) { + const uint32_t thresh_low = 10000; + const uint32_t thresh_high = 20000; + + if (frames[frame] == NULL) continue; + + ref_mv.row = 0; + ref_mv.col = 0; + + if (frame == alt_ref_index) { + filter_weight = 2; + } else { + // Find best match in this frame by MC + uint32_t err = temporal_filter_find_matching_mb_c( + cpi, td, frames[alt_ref_index]->y_buffer + mb_y_offset, + frames[frame]->y_buffer + mb_y_offset, frames[frame]->y_stride, + &ref_mv); + + // Assign higher weight to matching MB if its error + // score is lower. If not applying MC default behavior + // is to weight all MBs equal. + filter_weight = err < thresh_low ? 2 : err < thresh_high ? 1 : 0; + } + + if (filter_weight != 0) { + // Construct the predictors + temporal_filter_predictors_mb_c( + mbd, frames[frame]->y_buffer + mb_y_offset, + frames[frame]->u_buffer + mb_uv_offset, + frames[frame]->v_buffer + mb_uv_offset, frames[frame]->y_stride, + mb_uv_width, mb_uv_height, ref_mv.row, ref_mv.col, predictor, scale, + mb_col * 16, mb_row * 16); + +#if CONFIG_VP9_HIGHBITDEPTH + if (mbd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { + int adj_strength = strength + 2 * (mbd->bd - 8); + // Apply the filter (YUV) + vp9_highbd_temporal_filter_apply( + f->y_buffer + mb_y_offset, f->y_stride, predictor, 16, 16, + adj_strength, filter_weight, accumulator, count); + vp9_highbd_temporal_filter_apply( + f->u_buffer + mb_uv_offset, f->uv_stride, predictor + 256, + mb_uv_width, mb_uv_height, adj_strength, filter_weight, + accumulator + 256, count + 256); + vp9_highbd_temporal_filter_apply( + f->v_buffer + mb_uv_offset, f->uv_stride, predictor + 512, + mb_uv_width, mb_uv_height, adj_strength, filter_weight, + accumulator + 512, count + 512); + } else { + // Apply the filter (YUV) + vp9_temporal_filter_apply(f->y_buffer + mb_y_offset, f->y_stride, + predictor, 16, 16, strength, filter_weight, + accumulator, count); + vp9_temporal_filter_apply(f->u_buffer + mb_uv_offset, f->uv_stride, + predictor + 256, mb_uv_width, mb_uv_height, + strength, filter_weight, accumulator + 256, + count + 256); + vp9_temporal_filter_apply(f->v_buffer + mb_uv_offset, f->uv_stride, + predictor + 512, mb_uv_width, mb_uv_height, + strength, filter_weight, accumulator + 512, + count + 512); + } +#else + // Apply the filter (YUV) + vp9_temporal_filter_apply(f->y_buffer + mb_y_offset, f->y_stride, + predictor, 16, 16, strength, filter_weight, + accumulator, count); + vp9_temporal_filter_apply(f->u_buffer + mb_uv_offset, f->uv_stride, + predictor + 256, mb_uv_width, mb_uv_height, + strength, filter_weight, accumulator + 256, + count + 256); + vp9_temporal_filter_apply(f->v_buffer + mb_uv_offset, f->uv_stride, + predictor + 512, mb_uv_width, mb_uv_height, + strength, filter_weight, accumulator + 512, + count + 512); +#endif // CONFIG_VP9_HIGHBITDEPTH + } + } + +#if CONFIG_VP9_HIGHBITDEPTH + if (mbd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { + uint16_t *dst1_16; + uint16_t *dst2_16; + // Normalize filter output to produce AltRef frame + dst1 = cpi->alt_ref_buffer.y_buffer; + dst1_16 = CONVERT_TO_SHORTPTR(dst1); + stride = cpi->alt_ref_buffer.y_stride; + byte = mb_y_offset; + for (i = 0, k = 0; i < 16; i++) { + for (j = 0; j < 16; j++, k++) { + unsigned int pval = accumulator[k] + (count[k] >> 1); + pval *= fixed_divide[count[k]]; + pval >>= 19; + + dst1_16[byte] = (uint16_t)pval; + + // move to next pixel + byte++; + } + + byte += stride - 16; + } + + dst1 = cpi->alt_ref_buffer.u_buffer; + dst2 = cpi->alt_ref_buffer.v_buffer; + dst1_16 = CONVERT_TO_SHORTPTR(dst1); + dst2_16 = CONVERT_TO_SHORTPTR(dst2); + stride = cpi->alt_ref_buffer.uv_stride; + byte = mb_uv_offset; + for (i = 0, k = 256; i < mb_uv_height; i++) { + for (j = 0; j < mb_uv_width; j++, k++) { + int m = k + 256; + + // U + unsigned int pval = accumulator[k] + (count[k] >> 1); + pval *= fixed_divide[count[k]]; + pval >>= 19; + dst1_16[byte] = (uint16_t)pval; + + // V + pval = accumulator[m] + (count[m] >> 1); + pval *= fixed_divide[count[m]]; + pval >>= 19; + dst2_16[byte] = (uint16_t)pval; + + // move to next pixel + byte++; + } + + byte += stride - mb_uv_width; + } + } else { + // Normalize filter output to produce AltRef frame + dst1 = cpi->alt_ref_buffer.y_buffer; + stride = cpi->alt_ref_buffer.y_stride; + byte = mb_y_offset; + for (i = 0, k = 0; i < 16; i++) { + for (j = 0; j < 16; j++, k++) { + unsigned int pval = accumulator[k] + (count[k] >> 1); + pval *= fixed_divide[count[k]]; + pval >>= 19; + + dst1[byte] = (uint8_t)pval; + + // move to next pixel + byte++; + } + byte += stride - 16; + } + + dst1 = cpi->alt_ref_buffer.u_buffer; + dst2 = cpi->alt_ref_buffer.v_buffer; + stride = cpi->alt_ref_buffer.uv_stride; + byte = mb_uv_offset; + for (i = 0, k = 256; i < mb_uv_height; i++) { + for (j = 0; j < mb_uv_width; j++, k++) { + int m = k + 256; + + // U + unsigned int pval = accumulator[k] + (count[k] >> 1); + pval *= fixed_divide[count[k]]; + pval >>= 19; + dst1[byte] = (uint8_t)pval; + + // V + pval = accumulator[m] + (count[m] >> 1); + pval *= fixed_divide[count[m]]; + pval >>= 19; + dst2[byte] = (uint8_t)pval; + + // move to next pixel + byte++; + } + byte += stride - mb_uv_width; + } + } +#else + // Normalize filter output to produce AltRef frame + dst1 = cpi->alt_ref_buffer.y_buffer; + stride = cpi->alt_ref_buffer.y_stride; + byte = mb_y_offset; + for (i = 0, k = 0; i < 16; i++) { + for (j = 0; j < 16; j++, k++) { + unsigned int pval = accumulator[k] + (count[k] >> 1); + pval *= fixed_divide[count[k]]; + pval >>= 19; + + dst1[byte] = (uint8_t)pval; + + // move to next pixel + byte++; + } + byte += stride - 16; + } + + dst1 = cpi->alt_ref_buffer.u_buffer; + dst2 = cpi->alt_ref_buffer.v_buffer; + stride = cpi->alt_ref_buffer.uv_stride; + byte = mb_uv_offset; + for (i = 0, k = 256; i < mb_uv_height; i++) { + for (j = 0; j < mb_uv_width; j++, k++) { + int m = k + 256; + + // U + unsigned int pval = accumulator[k] + (count[k] >> 1); + pval *= fixed_divide[count[k]]; + pval >>= 19; + dst1[byte] = (uint8_t)pval; + + // V + pval = accumulator[m] + (count[m] >> 1); + pval *= fixed_divide[count[m]]; + pval >>= 19; + dst2[byte] = (uint8_t)pval; + + // move to next pixel + byte++; + } + byte += stride - mb_uv_width; + } +#endif // CONFIG_VP9_HIGHBITDEPTH + mb_y_offset += 16; + mb_uv_offset += mb_uv_width; + } +} + +static void temporal_filter_iterate_tile_c(VP9_COMP *cpi, int tile_row, + int tile_col) { + VP9_COMMON *const cm = &cpi->common; + const int tile_cols = 1 << cm->log2_tile_cols; + TileInfo *tile_info = + &cpi->tile_data[tile_row * tile_cols + tile_col].tile_info; + const int mb_row_start = (tile_info->mi_row_start) >> 1; + const int mb_row_end = (tile_info->mi_row_end + 1) >> 1; + const int mb_col_start = (tile_info->mi_col_start) >> 1; + const int mb_col_end = (tile_info->mi_col_end + 1) >> 1; + int mb_row; + + for (mb_row = mb_row_start; mb_row < mb_row_end; mb_row++) { + vp9_temporal_filter_iterate_row_c(cpi, &cpi->td, mb_row, mb_col_start, + mb_col_end); + } +} + +static void temporal_filter_iterate_c(VP9_COMP *cpi) { + VP9_COMMON *const cm = &cpi->common; + const int tile_cols = 1 << cm->log2_tile_cols; + const int tile_rows = 1 << cm->log2_tile_rows; + int tile_row, tile_col; + MACROBLOCKD *mbd = &cpi->td.mb.e_mbd; + // Save input state + uint8_t *input_buffer[MAX_MB_PLANE]; + int i; + + for (i = 0; i < MAX_MB_PLANE; i++) input_buffer[i] = mbd->plane[i].pre[0].buf; + + vp9_init_tile_data(cpi); + + for (tile_row = 0; tile_row < tile_rows; ++tile_row) { + for (tile_col = 0; tile_col < tile_cols; ++tile_col) { + temporal_filter_iterate_tile_c(cpi, tile_row, tile_col); + } + } + + // Restore input state + for (i = 0; i < MAX_MB_PLANE; i++) mbd->plane[i].pre[0].buf = input_buffer[i]; +} + +// Apply buffer limits and context specific adjustments to arnr filter. +static void adjust_arnr_filter(VP9_COMP *cpi, int distance, int group_boost, + int *arnr_frames, int *arnr_strength) { + const VP9EncoderConfig *const oxcf = &cpi->oxcf; + const int frames_after_arf = + vp9_lookahead_depth(cpi->lookahead) - distance - 1; + int frames_fwd = (cpi->oxcf.arnr_max_frames - 1) >> 1; + int frames_bwd; + int q, frames, base_strength, strength; + + // Context dependent two pass adjustment to strength. + if (oxcf->pass == 2) { + base_strength = oxcf->arnr_strength + cpi->twopass.arnr_strength_adjustment; + // Clip to allowed range. + base_strength = VPXMIN(6, VPXMAX(0, base_strength)); + } else { + base_strength = oxcf->arnr_strength; + } + + // Define the forward and backwards filter limits for this arnr group. + if (frames_fwd > frames_after_arf) frames_fwd = frames_after_arf; + if (frames_fwd > distance) frames_fwd = distance; + + frames_bwd = frames_fwd; + + // For even length filter there is one more frame backward + // than forward: e.g. len=6 ==> bbbAff, len=7 ==> bbbAfff. + if (frames_bwd < distance) frames_bwd += (oxcf->arnr_max_frames + 1) & 0x1; + + // Set the baseline active filter size. + frames = frames_bwd + 1 + frames_fwd; + + // Adjust the strength based on active max q. + if (cpi->common.current_video_frame > 1) + q = ((int)vp9_convert_qindex_to_q(cpi->rc.avg_frame_qindex[INTER_FRAME], + cpi->common.bit_depth)); + else + q = ((int)vp9_convert_qindex_to_q(cpi->rc.avg_frame_qindex[KEY_FRAME], + cpi->common.bit_depth)); + if (q > 16) { + strength = base_strength; + } else { + strength = base_strength - ((16 - q) / 2); + if (strength < 0) strength = 0; + } + + // Adjust number of frames in filter and strength based on gf boost level. + if (frames > group_boost / 150) { + frames = group_boost / 150; + frames += !(frames & 1); + } + + if (strength > group_boost / 300) { + strength = group_boost / 300; + } + + // Adjustments for second level arf in multi arf case. + if (cpi->oxcf.pass == 2 && cpi->multi_arf_allowed) { + const GF_GROUP *const gf_group = &cpi->twopass.gf_group; + if (gf_group->rf_level[gf_group->index] != GF_ARF_STD) { + strength >>= 1; + } + } + + *arnr_frames = frames; + *arnr_strength = strength; +} + +void vp9_temporal_filter(VP9_COMP *cpi, int distance) { + VP9_COMMON *const cm = &cpi->common; + RATE_CONTROL *const rc = &cpi->rc; + MACROBLOCKD *const xd = &cpi->td.mb.e_mbd; + ARNRFilterData *arnr_filter_data = &cpi->arnr_filter_data; + int frame; + int frames_to_blur; + int start_frame; + int strength; + int frames_to_blur_backward; + int frames_to_blur_forward; + struct scale_factors *sf = &arnr_filter_data->sf; + YV12_BUFFER_CONFIG **frames = arnr_filter_data->frames; + int rdmult; + + // Apply context specific adjustments to the arnr filter parameters. + adjust_arnr_filter(cpi, distance, rc->gfu_boost, &frames_to_blur, &strength); + frames_to_blur_backward = (frames_to_blur / 2); + frames_to_blur_forward = ((frames_to_blur - 1) / 2); + start_frame = distance + frames_to_blur_forward; + + arnr_filter_data->strength = strength; + arnr_filter_data->frame_count = frames_to_blur; + arnr_filter_data->alt_ref_index = frames_to_blur_backward; + + // Setup frame pointers, NULL indicates frame not included in filter. + for (frame = 0; frame < frames_to_blur; ++frame) { + const int which_buffer = start_frame - frame; + struct lookahead_entry *buf = + vp9_lookahead_peek(cpi->lookahead, which_buffer); + frames[frames_to_blur - 1 - frame] = &buf->img; + } + + if (frames_to_blur > 0) { + // Setup scaling factors. Scaling on each of the arnr frames is not + // supported. + if (cpi->use_svc) { + // In spatial svc the scaling factors might be less then 1/2. + // So we will use non-normative scaling. + int frame_used = 0; +#if CONFIG_VP9_HIGHBITDEPTH + vp9_setup_scale_factors_for_frame( + sf, get_frame_new_buffer(cm)->y_crop_width, + get_frame_new_buffer(cm)->y_crop_height, + get_frame_new_buffer(cm)->y_crop_width, + get_frame_new_buffer(cm)->y_crop_height, cm->use_highbitdepth); +#else + vp9_setup_scale_factors_for_frame( + sf, get_frame_new_buffer(cm)->y_crop_width, + get_frame_new_buffer(cm)->y_crop_height, + get_frame_new_buffer(cm)->y_crop_width, + get_frame_new_buffer(cm)->y_crop_height); +#endif // CONFIG_VP9_HIGHBITDEPTH + + for (frame = 0; frame < frames_to_blur; ++frame) { + if (cm->mi_cols * MI_SIZE != frames[frame]->y_width || + cm->mi_rows * MI_SIZE != frames[frame]->y_height) { + if (vpx_realloc_frame_buffer(&cpi->svc.scaled_frames[frame_used], + cm->width, cm->height, cm->subsampling_x, + cm->subsampling_y, +#if CONFIG_VP9_HIGHBITDEPTH + cm->use_highbitdepth, +#endif + VP9_ENC_BORDER_IN_PIXELS, + cm->byte_alignment, NULL, NULL, NULL)) { + vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR, + "Failed to reallocate alt_ref_buffer"); + } + frames[frame] = vp9_scale_if_required( + cm, frames[frame], &cpi->svc.scaled_frames[frame_used], 0, + EIGHTTAP, 0); + ++frame_used; + } + } + cm->mi = cm->mip + cm->mi_stride + 1; + xd->mi = cm->mi_grid_visible; + xd->mi[0] = cm->mi; + } else { +// ARF is produced at the native frame size and resized when coded. +#if CONFIG_VP9_HIGHBITDEPTH + vp9_setup_scale_factors_for_frame( + sf, frames[0]->y_crop_width, frames[0]->y_crop_height, + frames[0]->y_crop_width, frames[0]->y_crop_height, + cm->use_highbitdepth); +#else + vp9_setup_scale_factors_for_frame( + sf, frames[0]->y_crop_width, frames[0]->y_crop_height, + frames[0]->y_crop_width, frames[0]->y_crop_height); +#endif // CONFIG_VP9_HIGHBITDEPTH + } + } + + // Initialize errorperbit and sabperbit. + rdmult = (int)vp9_compute_rd_mult_based_on_qindex(cpi, ARNR_FILT_QINDEX); + if (rdmult < 1) rdmult = 1; + set_error_per_bit(&cpi->td.mb, rdmult); + vp9_initialize_me_consts(cpi, &cpi->td.mb, ARNR_FILT_QINDEX); + + if (!cpi->row_mt) + temporal_filter_iterate_c(cpi); + else + vp9_temporal_filter_row_mt(cpi); +} diff --git a/vp9/encoder/vp9_temporal_filter.h b/vp9/encoder/vp9_temporal_filter.h new file mode 100644 index 0000000..775e49c --- /dev/null +++ b/vp9/encoder/vp9_temporal_filter.h @@ -0,0 +1,31 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP9_ENCODER_VP9_TEMPORAL_FILTER_H_ +#define VP9_ENCODER_VP9_TEMPORAL_FILTER_H_ + +#ifdef __cplusplus +extern "C" { +#endif + +#define ARNR_FILT_QINDEX 128 + +void vp9_temporal_filter_init(void); +void vp9_temporal_filter(VP9_COMP *cpi, int distance); + +void vp9_temporal_filter_iterate_row_c(VP9_COMP *cpi, ThreadData *td, + int mb_row, int mb_col_start, + int mb_col_end); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP9_ENCODER_VP9_TEMPORAL_FILTER_H_ diff --git a/vp9/encoder/vp9_tokenize.c b/vp9/encoder/vp9_tokenize.c new file mode 100644 index 0000000..814d769 --- /dev/null +++ b/vp9/encoder/vp9_tokenize.c @@ -0,0 +1,490 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include +#include +#include + +#include "vpx_mem/vpx_mem.h" + +#include "vp9/common/vp9_entropy.h" +#include "vp9/common/vp9_pred_common.h" +#include "vp9/common/vp9_scan.h" + +#include "vp9/encoder/vp9_cost.h" +#include "vp9/encoder/vp9_encoder.h" +#include "vp9/encoder/vp9_tokenize.h" + +static const TOKENVALUE dct_cat_lt_10_value_tokens[] = { + { 9, 63 }, { 9, 61 }, { 9, 59 }, { 9, 57 }, { 9, 55 }, { 9, 53 }, { 9, 51 }, + { 9, 49 }, { 9, 47 }, { 9, 45 }, { 9, 43 }, { 9, 41 }, { 9, 39 }, { 9, 37 }, + { 9, 35 }, { 9, 33 }, { 9, 31 }, { 9, 29 }, { 9, 27 }, { 9, 25 }, { 9, 23 }, + { 9, 21 }, { 9, 19 }, { 9, 17 }, { 9, 15 }, { 9, 13 }, { 9, 11 }, { 9, 9 }, + { 9, 7 }, { 9, 5 }, { 9, 3 }, { 9, 1 }, { 8, 31 }, { 8, 29 }, { 8, 27 }, + { 8, 25 }, { 8, 23 }, { 8, 21 }, { 8, 19 }, { 8, 17 }, { 8, 15 }, { 8, 13 }, + { 8, 11 }, { 8, 9 }, { 8, 7 }, { 8, 5 }, { 8, 3 }, { 8, 1 }, { 7, 15 }, + { 7, 13 }, { 7, 11 }, { 7, 9 }, { 7, 7 }, { 7, 5 }, { 7, 3 }, { 7, 1 }, + { 6, 7 }, { 6, 5 }, { 6, 3 }, { 6, 1 }, { 5, 3 }, { 5, 1 }, { 4, 1 }, + { 3, 1 }, { 2, 1 }, { 1, 1 }, { 0, 0 }, { 1, 0 }, { 2, 0 }, { 3, 0 }, + { 4, 0 }, { 5, 0 }, { 5, 2 }, { 6, 0 }, { 6, 2 }, { 6, 4 }, { 6, 6 }, + { 7, 0 }, { 7, 2 }, { 7, 4 }, { 7, 6 }, { 7, 8 }, { 7, 10 }, { 7, 12 }, + { 7, 14 }, { 8, 0 }, { 8, 2 }, { 8, 4 }, { 8, 6 }, { 8, 8 }, { 8, 10 }, + { 8, 12 }, { 8, 14 }, { 8, 16 }, { 8, 18 }, { 8, 20 }, { 8, 22 }, { 8, 24 }, + { 8, 26 }, { 8, 28 }, { 8, 30 }, { 9, 0 }, { 9, 2 }, { 9, 4 }, { 9, 6 }, + { 9, 8 }, { 9, 10 }, { 9, 12 }, { 9, 14 }, { 9, 16 }, { 9, 18 }, { 9, 20 }, + { 9, 22 }, { 9, 24 }, { 9, 26 }, { 9, 28 }, { 9, 30 }, { 9, 32 }, { 9, 34 }, + { 9, 36 }, { 9, 38 }, { 9, 40 }, { 9, 42 }, { 9, 44 }, { 9, 46 }, { 9, 48 }, + { 9, 50 }, { 9, 52 }, { 9, 54 }, { 9, 56 }, { 9, 58 }, { 9, 60 }, { 9, 62 } +}; +const TOKENVALUE *vp9_dct_cat_lt_10_value_tokens = + dct_cat_lt_10_value_tokens + + (sizeof(dct_cat_lt_10_value_tokens) / sizeof(*dct_cat_lt_10_value_tokens)) / + 2; +// The corresponding costs of the extrabits for the tokens in the above table +// are stored in the table below. The values are obtained from looking up the +// entry for the specified extrabits in the table corresponding to the token +// (as defined in cost element vp9_extra_bits) +// e.g. {9, 63} maps to cat5_cost[63 >> 1], {1, 1} maps to sign_cost[1 >> 1] +static const int dct_cat_lt_10_value_cost[] = { + 3773, 3750, 3704, 3681, 3623, 3600, 3554, 3531, 3432, 3409, 3363, 3340, 3282, + 3259, 3213, 3190, 3136, 3113, 3067, 3044, 2986, 2963, 2917, 2894, 2795, 2772, + 2726, 2703, 2645, 2622, 2576, 2553, 3197, 3116, 3058, 2977, 2881, 2800, 2742, + 2661, 2615, 2534, 2476, 2395, 2299, 2218, 2160, 2079, 2566, 2427, 2334, 2195, + 2023, 1884, 1791, 1652, 1893, 1696, 1453, 1256, 1229, 864, 512, 512, 512, + 512, 0, 512, 512, 512, 512, 864, 1229, 1256, 1453, 1696, 1893, 1652, + 1791, 1884, 2023, 2195, 2334, 2427, 2566, 2079, 2160, 2218, 2299, 2395, 2476, + 2534, 2615, 2661, 2742, 2800, 2881, 2977, 3058, 3116, 3197, 2553, 2576, 2622, + 2645, 2703, 2726, 2772, 2795, 2894, 2917, 2963, 2986, 3044, 3067, 3113, 3136, + 3190, 3213, 3259, 3282, 3340, 3363, 3409, 3432, 3531, 3554, 3600, 3623, 3681, + 3704, 3750, 3773, +}; +const int *vp9_dct_cat_lt_10_value_cost = + dct_cat_lt_10_value_cost + + (sizeof(dct_cat_lt_10_value_cost) / sizeof(*dct_cat_lt_10_value_cost)) / 2; + +// Array indices are identical to previously-existing CONTEXT_NODE indices +/* clang-format off */ +const vpx_tree_index vp9_coef_tree[TREE_SIZE(ENTROPY_TOKENS)] = { + -EOB_TOKEN, 2, // 0 = EOB + -ZERO_TOKEN, 4, // 1 = ZERO + -ONE_TOKEN, 6, // 2 = ONE + 8, 12, // 3 = LOW_VAL + -TWO_TOKEN, 10, // 4 = TWO + -THREE_TOKEN, -FOUR_TOKEN, // 5 = THREE + 14, 16, // 6 = HIGH_LOW + -CATEGORY1_TOKEN, -CATEGORY2_TOKEN, // 7 = CAT_ONE + 18, 20, // 8 = CAT_THREEFOUR + -CATEGORY3_TOKEN, -CATEGORY4_TOKEN, // 9 = CAT_THREE + -CATEGORY5_TOKEN, -CATEGORY6_TOKEN // 10 = CAT_FIVE +}; +/* clang-format on */ + +static const int16_t zero_cost[] = { 0 }; +static const int16_t sign_cost[1] = { 512 }; +static const int16_t cat1_cost[1 << 1] = { 864, 1229 }; +static const int16_t cat2_cost[1 << 2] = { 1256, 1453, 1696, 1893 }; +static const int16_t cat3_cost[1 << 3] = { 1652, 1791, 1884, 2023, + 2195, 2334, 2427, 2566 }; +static const int16_t cat4_cost[1 << 4] = { 2079, 2160, 2218, 2299, 2395, 2476, + 2534, 2615, 2661, 2742, 2800, 2881, + 2977, 3058, 3116, 3197 }; +static const int16_t cat5_cost[1 << 5] = { + 2553, 2576, 2622, 2645, 2703, 2726, 2772, 2795, 2894, 2917, 2963, + 2986, 3044, 3067, 3113, 3136, 3190, 3213, 3259, 3282, 3340, 3363, + 3409, 3432, 3531, 3554, 3600, 3623, 3681, 3704, 3750, 3773 +}; +const int16_t vp9_cat6_low_cost[256] = { + 3378, 3390, 3401, 3413, 3435, 3447, 3458, 3470, 3517, 3529, 3540, 3552, 3574, + 3586, 3597, 3609, 3671, 3683, 3694, 3706, 3728, 3740, 3751, 3763, 3810, 3822, + 3833, 3845, 3867, 3879, 3890, 3902, 3973, 3985, 3996, 4008, 4030, 4042, 4053, + 4065, 4112, 4124, 4135, 4147, 4169, 4181, 4192, 4204, 4266, 4278, 4289, 4301, + 4323, 4335, 4346, 4358, 4405, 4417, 4428, 4440, 4462, 4474, 4485, 4497, 4253, + 4265, 4276, 4288, 4310, 4322, 4333, 4345, 4392, 4404, 4415, 4427, 4449, 4461, + 4472, 4484, 4546, 4558, 4569, 4581, 4603, 4615, 4626, 4638, 4685, 4697, 4708, + 4720, 4742, 4754, 4765, 4777, 4848, 4860, 4871, 4883, 4905, 4917, 4928, 4940, + 4987, 4999, 5010, 5022, 5044, 5056, 5067, 5079, 5141, 5153, 5164, 5176, 5198, + 5210, 5221, 5233, 5280, 5292, 5303, 5315, 5337, 5349, 5360, 5372, 4988, 5000, + 5011, 5023, 5045, 5057, 5068, 5080, 5127, 5139, 5150, 5162, 5184, 5196, 5207, + 5219, 5281, 5293, 5304, 5316, 5338, 5350, 5361, 5373, 5420, 5432, 5443, 5455, + 5477, 5489, 5500, 5512, 5583, 5595, 5606, 5618, 5640, 5652, 5663, 5675, 5722, + 5734, 5745, 5757, 5779, 5791, 5802, 5814, 5876, 5888, 5899, 5911, 5933, 5945, + 5956, 5968, 6015, 6027, 6038, 6050, 6072, 6084, 6095, 6107, 5863, 5875, 5886, + 5898, 5920, 5932, 5943, 5955, 6002, 6014, 6025, 6037, 6059, 6071, 6082, 6094, + 6156, 6168, 6179, 6191, 6213, 6225, 6236, 6248, 6295, 6307, 6318, 6330, 6352, + 6364, 6375, 6387, 6458, 6470, 6481, 6493, 6515, 6527, 6538, 6550, 6597, 6609, + 6620, 6632, 6654, 6666, 6677, 6689, 6751, 6763, 6774, 6786, 6808, 6820, 6831, + 6843, 6890, 6902, 6913, 6925, 6947, 6959, 6970, 6982 +}; +const uint16_t vp9_cat6_high_cost[64] = { + 88, 2251, 2727, 4890, 3148, 5311, 5787, 7950, 3666, 5829, 6305, + 8468, 6726, 8889, 9365, 11528, 3666, 5829, 6305, 8468, 6726, 8889, + 9365, 11528, 7244, 9407, 9883, 12046, 10304, 12467, 12943, 15106, 3666, + 5829, 6305, 8468, 6726, 8889, 9365, 11528, 7244, 9407, 9883, 12046, + 10304, 12467, 12943, 15106, 7244, 9407, 9883, 12046, 10304, 12467, 12943, + 15106, 10822, 12985, 13461, 15624, 13882, 16045, 16521, 18684 +}; + +#if CONFIG_VP9_HIGHBITDEPTH +const uint16_t vp9_cat6_high10_high_cost[256] = { + 94, 2257, 2733, 4896, 3154, 5317, 5793, 7956, 3672, 5835, 6311, + 8474, 6732, 8895, 9371, 11534, 3672, 5835, 6311, 8474, 6732, 8895, + 9371, 11534, 7250, 9413, 9889, 12052, 10310, 12473, 12949, 15112, 3672, + 5835, 6311, 8474, 6732, 8895, 9371, 11534, 7250, 9413, 9889, 12052, + 10310, 12473, 12949, 15112, 7250, 9413, 9889, 12052, 10310, 12473, 12949, + 15112, 10828, 12991, 13467, 15630, 13888, 16051, 16527, 18690, 4187, 6350, + 6826, 8989, 7247, 9410, 9886, 12049, 7765, 9928, 10404, 12567, 10825, + 12988, 13464, 15627, 7765, 9928, 10404, 12567, 10825, 12988, 13464, 15627, + 11343, 13506, 13982, 16145, 14403, 16566, 17042, 19205, 7765, 9928, 10404, + 12567, 10825, 12988, 13464, 15627, 11343, 13506, 13982, 16145, 14403, 16566, + 17042, 19205, 11343, 13506, 13982, 16145, 14403, 16566, 17042, 19205, 14921, + 17084, 17560, 19723, 17981, 20144, 20620, 22783, 4187, 6350, 6826, 8989, + 7247, 9410, 9886, 12049, 7765, 9928, 10404, 12567, 10825, 12988, 13464, + 15627, 7765, 9928, 10404, 12567, 10825, 12988, 13464, 15627, 11343, 13506, + 13982, 16145, 14403, 16566, 17042, 19205, 7765, 9928, 10404, 12567, 10825, + 12988, 13464, 15627, 11343, 13506, 13982, 16145, 14403, 16566, 17042, 19205, + 11343, 13506, 13982, 16145, 14403, 16566, 17042, 19205, 14921, 17084, 17560, + 19723, 17981, 20144, 20620, 22783, 8280, 10443, 10919, 13082, 11340, 13503, + 13979, 16142, 11858, 14021, 14497, 16660, 14918, 17081, 17557, 19720, 11858, + 14021, 14497, 16660, 14918, 17081, 17557, 19720, 15436, 17599, 18075, 20238, + 18496, 20659, 21135, 23298, 11858, 14021, 14497, 16660, 14918, 17081, 17557, + 19720, 15436, 17599, 18075, 20238, 18496, 20659, 21135, 23298, 15436, 17599, + 18075, 20238, 18496, 20659, 21135, 23298, 19014, 21177, 21653, 23816, 22074, + 24237, 24713, 26876 +}; +const uint16_t vp9_cat6_high12_high_cost[1024] = { + 100, 2263, 2739, 4902, 3160, 5323, 5799, 7962, 3678, 5841, 6317, + 8480, 6738, 8901, 9377, 11540, 3678, 5841, 6317, 8480, 6738, 8901, + 9377, 11540, 7256, 9419, 9895, 12058, 10316, 12479, 12955, 15118, 3678, + 5841, 6317, 8480, 6738, 8901, 9377, 11540, 7256, 9419, 9895, 12058, + 10316, 12479, 12955, 15118, 7256, 9419, 9895, 12058, 10316, 12479, 12955, + 15118, 10834, 12997, 13473, 15636, 13894, 16057, 16533, 18696, 4193, 6356, + 6832, 8995, 7253, 9416, 9892, 12055, 7771, 9934, 10410, 12573, 10831, + 12994, 13470, 15633, 7771, 9934, 10410, 12573, 10831, 12994, 13470, 15633, + 11349, 13512, 13988, 16151, 14409, 16572, 17048, 19211, 7771, 9934, 10410, + 12573, 10831, 12994, 13470, 15633, 11349, 13512, 13988, 16151, 14409, 16572, + 17048, 19211, 11349, 13512, 13988, 16151, 14409, 16572, 17048, 19211, 14927, + 17090, 17566, 19729, 17987, 20150, 20626, 22789, 4193, 6356, 6832, 8995, + 7253, 9416, 9892, 12055, 7771, 9934, 10410, 12573, 10831, 12994, 13470, + 15633, 7771, 9934, 10410, 12573, 10831, 12994, 13470, 15633, 11349, 13512, + 13988, 16151, 14409, 16572, 17048, 19211, 7771, 9934, 10410, 12573, 10831, + 12994, 13470, 15633, 11349, 13512, 13988, 16151, 14409, 16572, 17048, 19211, + 11349, 13512, 13988, 16151, 14409, 16572, 17048, 19211, 14927, 17090, 17566, + 19729, 17987, 20150, 20626, 22789, 8286, 10449, 10925, 13088, 11346, 13509, + 13985, 16148, 11864, 14027, 14503, 16666, 14924, 17087, 17563, 19726, 11864, + 14027, 14503, 16666, 14924, 17087, 17563, 19726, 15442, 17605, 18081, 20244, + 18502, 20665, 21141, 23304, 11864, 14027, 14503, 16666, 14924, 17087, 17563, + 19726, 15442, 17605, 18081, 20244, 18502, 20665, 21141, 23304, 15442, 17605, + 18081, 20244, 18502, 20665, 21141, 23304, 19020, 21183, 21659, 23822, 22080, + 24243, 24719, 26882, 4193, 6356, 6832, 8995, 7253, 9416, 9892, 12055, + 7771, 9934, 10410, 12573, 10831, 12994, 13470, 15633, 7771, 9934, 10410, + 12573, 10831, 12994, 13470, 15633, 11349, 13512, 13988, 16151, 14409, 16572, + 17048, 19211, 7771, 9934, 10410, 12573, 10831, 12994, 13470, 15633, 11349, + 13512, 13988, 16151, 14409, 16572, 17048, 19211, 11349, 13512, 13988, 16151, + 14409, 16572, 17048, 19211, 14927, 17090, 17566, 19729, 17987, 20150, 20626, + 22789, 8286, 10449, 10925, 13088, 11346, 13509, 13985, 16148, 11864, 14027, + 14503, 16666, 14924, 17087, 17563, 19726, 11864, 14027, 14503, 16666, 14924, + 17087, 17563, 19726, 15442, 17605, 18081, 20244, 18502, 20665, 21141, 23304, + 11864, 14027, 14503, 16666, 14924, 17087, 17563, 19726, 15442, 17605, 18081, + 20244, 18502, 20665, 21141, 23304, 15442, 17605, 18081, 20244, 18502, 20665, + 21141, 23304, 19020, 21183, 21659, 23822, 22080, 24243, 24719, 26882, 8286, + 10449, 10925, 13088, 11346, 13509, 13985, 16148, 11864, 14027, 14503, 16666, + 14924, 17087, 17563, 19726, 11864, 14027, 14503, 16666, 14924, 17087, 17563, + 19726, 15442, 17605, 18081, 20244, 18502, 20665, 21141, 23304, 11864, 14027, + 14503, 16666, 14924, 17087, 17563, 19726, 15442, 17605, 18081, 20244, 18502, + 20665, 21141, 23304, 15442, 17605, 18081, 20244, 18502, 20665, 21141, 23304, + 19020, 21183, 21659, 23822, 22080, 24243, 24719, 26882, 12379, 14542, 15018, + 17181, 15439, 17602, 18078, 20241, 15957, 18120, 18596, 20759, 19017, 21180, + 21656, 23819, 15957, 18120, 18596, 20759, 19017, 21180, 21656, 23819, 19535, + 21698, 22174, 24337, 22595, 24758, 25234, 27397, 15957, 18120, 18596, 20759, + 19017, 21180, 21656, 23819, 19535, 21698, 22174, 24337, 22595, 24758, 25234, + 27397, 19535, 21698, 22174, 24337, 22595, 24758, 25234, 27397, 23113, 25276, + 25752, 27915, 26173, 28336, 28812, 30975, 4193, 6356, 6832, 8995, 7253, + 9416, 9892, 12055, 7771, 9934, 10410, 12573, 10831, 12994, 13470, 15633, + 7771, 9934, 10410, 12573, 10831, 12994, 13470, 15633, 11349, 13512, 13988, + 16151, 14409, 16572, 17048, 19211, 7771, 9934, 10410, 12573, 10831, 12994, + 13470, 15633, 11349, 13512, 13988, 16151, 14409, 16572, 17048, 19211, 11349, + 13512, 13988, 16151, 14409, 16572, 17048, 19211, 14927, 17090, 17566, 19729, + 17987, 20150, 20626, 22789, 8286, 10449, 10925, 13088, 11346, 13509, 13985, + 16148, 11864, 14027, 14503, 16666, 14924, 17087, 17563, 19726, 11864, 14027, + 14503, 16666, 14924, 17087, 17563, 19726, 15442, 17605, 18081, 20244, 18502, + 20665, 21141, 23304, 11864, 14027, 14503, 16666, 14924, 17087, 17563, 19726, + 15442, 17605, 18081, 20244, 18502, 20665, 21141, 23304, 15442, 17605, 18081, + 20244, 18502, 20665, 21141, 23304, 19020, 21183, 21659, 23822, 22080, 24243, + 24719, 26882, 8286, 10449, 10925, 13088, 11346, 13509, 13985, 16148, 11864, + 14027, 14503, 16666, 14924, 17087, 17563, 19726, 11864, 14027, 14503, 16666, + 14924, 17087, 17563, 19726, 15442, 17605, 18081, 20244, 18502, 20665, 21141, + 23304, 11864, 14027, 14503, 16666, 14924, 17087, 17563, 19726, 15442, 17605, + 18081, 20244, 18502, 20665, 21141, 23304, 15442, 17605, 18081, 20244, 18502, + 20665, 21141, 23304, 19020, 21183, 21659, 23822, 22080, 24243, 24719, 26882, + 12379, 14542, 15018, 17181, 15439, 17602, 18078, 20241, 15957, 18120, 18596, + 20759, 19017, 21180, 21656, 23819, 15957, 18120, 18596, 20759, 19017, 21180, + 21656, 23819, 19535, 21698, 22174, 24337, 22595, 24758, 25234, 27397, 15957, + 18120, 18596, 20759, 19017, 21180, 21656, 23819, 19535, 21698, 22174, 24337, + 22595, 24758, 25234, 27397, 19535, 21698, 22174, 24337, 22595, 24758, 25234, + 27397, 23113, 25276, 25752, 27915, 26173, 28336, 28812, 30975, 8286, 10449, + 10925, 13088, 11346, 13509, 13985, 16148, 11864, 14027, 14503, 16666, 14924, + 17087, 17563, 19726, 11864, 14027, 14503, 16666, 14924, 17087, 17563, 19726, + 15442, 17605, 18081, 20244, 18502, 20665, 21141, 23304, 11864, 14027, 14503, + 16666, 14924, 17087, 17563, 19726, 15442, 17605, 18081, 20244, 18502, 20665, + 21141, 23304, 15442, 17605, 18081, 20244, 18502, 20665, 21141, 23304, 19020, + 21183, 21659, 23822, 22080, 24243, 24719, 26882, 12379, 14542, 15018, 17181, + 15439, 17602, 18078, 20241, 15957, 18120, 18596, 20759, 19017, 21180, 21656, + 23819, 15957, 18120, 18596, 20759, 19017, 21180, 21656, 23819, 19535, 21698, + 22174, 24337, 22595, 24758, 25234, 27397, 15957, 18120, 18596, 20759, 19017, + 21180, 21656, 23819, 19535, 21698, 22174, 24337, 22595, 24758, 25234, 27397, + 19535, 21698, 22174, 24337, 22595, 24758, 25234, 27397, 23113, 25276, 25752, + 27915, 26173, 28336, 28812, 30975, 12379, 14542, 15018, 17181, 15439, 17602, + 18078, 20241, 15957, 18120, 18596, 20759, 19017, 21180, 21656, 23819, 15957, + 18120, 18596, 20759, 19017, 21180, 21656, 23819, 19535, 21698, 22174, 24337, + 22595, 24758, 25234, 27397, 15957, 18120, 18596, 20759, 19017, 21180, 21656, + 23819, 19535, 21698, 22174, 24337, 22595, 24758, 25234, 27397, 19535, 21698, + 22174, 24337, 22595, 24758, 25234, 27397, 23113, 25276, 25752, 27915, 26173, + 28336, 28812, 30975, 16472, 18635, 19111, 21274, 19532, 21695, 22171, 24334, + 20050, 22213, 22689, 24852, 23110, 25273, 25749, 27912, 20050, 22213, 22689, + 24852, 23110, 25273, 25749, 27912, 23628, 25791, 26267, 28430, 26688, 28851, + 29327, 31490, 20050, 22213, 22689, 24852, 23110, 25273, 25749, 27912, 23628, + 25791, 26267, 28430, 26688, 28851, 29327, 31490, 23628, 25791, 26267, 28430, + 26688, 28851, 29327, 31490, 27206, 29369, 29845, 32008, 30266, 32429, 32905, + 35068 +}; +#endif + +const vp9_extra_bit vp9_extra_bits[ENTROPY_TOKENS] = { + { 0, 0, 0, zero_cost }, // ZERO_TOKEN + { 0, 0, 1, sign_cost }, // ONE_TOKEN + { 0, 0, 2, sign_cost }, // TWO_TOKEN + { 0, 0, 3, sign_cost }, // THREE_TOKEN + { 0, 0, 4, sign_cost }, // FOUR_TOKEN + { vp9_cat1_prob, 1, CAT1_MIN_VAL, cat1_cost }, // CATEGORY1_TOKEN + { vp9_cat2_prob, 2, CAT2_MIN_VAL, cat2_cost }, // CATEGORY2_TOKEN + { vp9_cat3_prob, 3, CAT3_MIN_VAL, cat3_cost }, // CATEGORY3_TOKEN + { vp9_cat4_prob, 4, CAT4_MIN_VAL, cat4_cost }, // CATEGORY4_TOKEN + { vp9_cat5_prob, 5, CAT5_MIN_VAL, cat5_cost }, // CATEGORY5_TOKEN + { vp9_cat6_prob, 14, CAT6_MIN_VAL, 0 }, // CATEGORY6_TOKEN + { 0, 0, 0, zero_cost } // EOB_TOKEN +}; + +#if CONFIG_VP9_HIGHBITDEPTH +const vp9_extra_bit vp9_extra_bits_high10[ENTROPY_TOKENS] = { + { 0, 0, 0, zero_cost }, // ZERO + { 0, 0, 1, sign_cost }, // ONE + { 0, 0, 2, sign_cost }, // TWO + { 0, 0, 3, sign_cost }, // THREE + { 0, 0, 4, sign_cost }, // FOUR + { vp9_cat1_prob, 1, CAT1_MIN_VAL, cat1_cost }, // CAT1 + { vp9_cat2_prob, 2, CAT2_MIN_VAL, cat2_cost }, // CAT2 + { vp9_cat3_prob, 3, CAT3_MIN_VAL, cat3_cost }, // CAT3 + { vp9_cat4_prob, 4, CAT4_MIN_VAL, cat4_cost }, // CAT4 + { vp9_cat5_prob, 5, CAT5_MIN_VAL, cat5_cost }, // CAT5 + { vp9_cat6_prob_high12 + 2, 16, CAT6_MIN_VAL, 0 }, // CAT6 + { 0, 0, 0, zero_cost } // EOB +}; +const vp9_extra_bit vp9_extra_bits_high12[ENTROPY_TOKENS] = { + { 0, 0, 0, zero_cost }, // ZERO + { 0, 0, 1, sign_cost }, // ONE + { 0, 0, 2, sign_cost }, // TWO + { 0, 0, 3, sign_cost }, // THREE + { 0, 0, 4, sign_cost }, // FOUR + { vp9_cat1_prob, 1, CAT1_MIN_VAL, cat1_cost }, // CAT1 + { vp9_cat2_prob, 2, CAT2_MIN_VAL, cat2_cost }, // CAT2 + { vp9_cat3_prob, 3, CAT3_MIN_VAL, cat3_cost }, // CAT3 + { vp9_cat4_prob, 4, CAT4_MIN_VAL, cat4_cost }, // CAT4 + { vp9_cat5_prob, 5, CAT5_MIN_VAL, cat5_cost }, // CAT5 + { vp9_cat6_prob_high12, 18, CAT6_MIN_VAL, 0 }, // CAT6 + { 0, 0, 0, zero_cost } // EOB +}; +#endif + +const struct vp9_token vp9_coef_encodings[ENTROPY_TOKENS] = { + { 2, 2 }, { 6, 3 }, { 28, 5 }, { 58, 6 }, { 59, 6 }, { 60, 6 }, + { 61, 6 }, { 124, 7 }, { 125, 7 }, { 126, 7 }, { 127, 7 }, { 0, 1 } +}; + +struct tokenize_b_args { + VP9_COMP *cpi; + ThreadData *td; + TOKENEXTRA **tp; +}; + +static void set_entropy_context_b(int plane, int block, int row, int col, + BLOCK_SIZE plane_bsize, TX_SIZE tx_size, + void *arg) { + struct tokenize_b_args *const args = arg; + ThreadData *const td = args->td; + MACROBLOCK *const x = &td->mb; + MACROBLOCKD *const xd = &x->e_mbd; + struct macroblock_plane *p = &x->plane[plane]; + struct macroblockd_plane *pd = &xd->plane[plane]; + vp9_set_contexts(xd, pd, plane_bsize, tx_size, p->eobs[block] > 0, col, row); +} + +static INLINE void add_token(TOKENEXTRA **t, const vpx_prob *context_tree, + int16_t token, EXTRABIT extra, + unsigned int *counts) { + (*t)->context_tree = context_tree; + (*t)->token = token; + (*t)->extra = extra; + (*t)++; + ++counts[token]; +} + +static INLINE void add_token_no_extra(TOKENEXTRA **t, + const vpx_prob *context_tree, + int16_t token, unsigned int *counts) { + (*t)->context_tree = context_tree; + (*t)->token = token; + (*t)++; + ++counts[token]; +} + +static void tokenize_b(int plane, int block, int row, int col, + BLOCK_SIZE plane_bsize, TX_SIZE tx_size, void *arg) { + struct tokenize_b_args *const args = arg; + VP9_COMP *cpi = args->cpi; + ThreadData *const td = args->td; + MACROBLOCK *const x = &td->mb; + MACROBLOCKD *const xd = &x->e_mbd; + TOKENEXTRA **tp = args->tp; + uint8_t token_cache[32 * 32]; + struct macroblock_plane *p = &x->plane[plane]; + struct macroblockd_plane *pd = &xd->plane[plane]; + MODE_INFO *mi = xd->mi[0]; + int pt; /* near block/prev token context index */ + int c; + TOKENEXTRA *t = *tp; /* store tokens starting here */ + int eob = p->eobs[block]; + const PLANE_TYPE type = get_plane_type(plane); + const tran_low_t *qcoeff = BLOCK_OFFSET(p->qcoeff, block); + const int16_t *scan, *nb; + const scan_order *so; + const int ref = is_inter_block(mi); + unsigned int(*const counts)[COEFF_CONTEXTS][ENTROPY_TOKENS] = + td->rd_counts.coef_counts[tx_size][type][ref]; + vpx_prob(*const coef_probs)[COEFF_CONTEXTS][UNCONSTRAINED_NODES] = + cpi->common.fc->coef_probs[tx_size][type][ref]; + unsigned int(*const eob_branch)[COEFF_CONTEXTS] = + td->counts->eob_branch[tx_size][type][ref]; + const uint8_t *const band = get_band_translate(tx_size); + const int tx_eob = 16 << (tx_size << 1); + int16_t token; + EXTRABIT extra; + pt = get_entropy_context(tx_size, pd->above_context + col, + pd->left_context + row); + so = get_scan(xd, tx_size, type, block); + scan = so->scan; + nb = so->neighbors; + c = 0; + + while (c < eob) { + int v = 0; + v = qcoeff[scan[c]]; + ++eob_branch[band[c]][pt]; + + while (!v) { + add_token_no_extra(&t, coef_probs[band[c]][pt], ZERO_TOKEN, + counts[band[c]][pt]); + + token_cache[scan[c]] = 0; + ++c; + pt = get_coef_context(nb, token_cache, c); + v = qcoeff[scan[c]]; + } + + vp9_get_token_extra(v, &token, &extra); + + add_token(&t, coef_probs[band[c]][pt], token, extra, counts[band[c]][pt]); + + token_cache[scan[c]] = vp9_pt_energy_class[token]; + ++c; + pt = get_coef_context(nb, token_cache, c); + } + if (c < tx_eob) { + ++eob_branch[band[c]][pt]; + add_token_no_extra(&t, coef_probs[band[c]][pt], EOB_TOKEN, + counts[band[c]][pt]); + } + + *tp = t; + + vp9_set_contexts(xd, pd, plane_bsize, tx_size, c > 0, col, row); +} + +struct is_skippable_args { + uint16_t *eobs; + int *skippable; +}; + +static void is_skippable(int plane, int block, int row, int col, + BLOCK_SIZE plane_bsize, TX_SIZE tx_size, void *argv) { + struct is_skippable_args *args = argv; + (void)plane; + (void)plane_bsize; + (void)tx_size; + (void)row; + (void)col; + args->skippable[0] &= (!args->eobs[block]); +} + +// TODO(yaowu): rewrite and optimize this function to remove the usage of +// vp9_foreach_transform_block() and simplify is_skippable(). +int vp9_is_skippable_in_plane(MACROBLOCK *x, BLOCK_SIZE bsize, int plane) { + int result = 1; + struct is_skippable_args args = { x->plane[plane].eobs, &result }; + vp9_foreach_transformed_block_in_plane(&x->e_mbd, bsize, plane, is_skippable, + &args); + return result; +} + +static void has_high_freq_coeff(int plane, int block, int row, int col, + BLOCK_SIZE plane_bsize, TX_SIZE tx_size, + void *argv) { + struct is_skippable_args *args = argv; + int eobs = (tx_size == TX_4X4) ? 3 : 10; + (void)plane; + (void)plane_bsize; + (void)row; + (void)col; + *(args->skippable) |= (args->eobs[block] > eobs); +} + +int vp9_has_high_freq_in_plane(MACROBLOCK *x, BLOCK_SIZE bsize, int plane) { + int result = 0; + struct is_skippable_args args = { x->plane[plane].eobs, &result }; + vp9_foreach_transformed_block_in_plane(&x->e_mbd, bsize, plane, + has_high_freq_coeff, &args); + return result; +} + +void vp9_tokenize_sb(VP9_COMP *cpi, ThreadData *td, TOKENEXTRA **t, int dry_run, + int seg_skip, BLOCK_SIZE bsize) { + MACROBLOCK *const x = &td->mb; + MACROBLOCKD *const xd = &x->e_mbd; + MODE_INFO *const mi = xd->mi[0]; + const int ctx = vp9_get_skip_context(xd); + struct tokenize_b_args arg = { cpi, td, t }; + + if (seg_skip) { + assert(mi->skip); + } + + if (mi->skip) { + if (!dry_run && !seg_skip) ++td->counts->skip[ctx][1]; + reset_skip_context(xd, bsize); + return; + } + + if (!dry_run) { + ++td->counts->skip[ctx][0]; + vp9_foreach_transformed_block(xd, bsize, tokenize_b, &arg); + } else { + vp9_foreach_transformed_block(xd, bsize, set_entropy_context_b, &arg); + } +} diff --git a/vp9/encoder/vp9_tokenize.h b/vp9/encoder/vp9_tokenize.h new file mode 100644 index 0000000..b2f63ff --- /dev/null +++ b/vp9/encoder/vp9_tokenize.h @@ -0,0 +1,130 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP9_ENCODER_VP9_TOKENIZE_H_ +#define VP9_ENCODER_VP9_TOKENIZE_H_ + +#include "vp9/common/vp9_entropy.h" + +#include "vp9/encoder/vp9_block.h" +#include "vp9/encoder/vp9_treewriter.h" + +#ifdef __cplusplus +extern "C" { +#endif + +#define EOSB_TOKEN 127 // Not signalled, encoder only + +#if CONFIG_VP9_HIGHBITDEPTH +typedef int32_t EXTRABIT; +#else +typedef int16_t EXTRABIT; +#endif + +typedef struct { + int16_t token; + EXTRABIT extra; +} TOKENVALUE; + +typedef struct { + const vpx_prob *context_tree; + int16_t token; + EXTRABIT extra; +} TOKENEXTRA; + +extern const vpx_tree_index vp9_coef_tree[]; +extern const vpx_tree_index vp9_coef_con_tree[]; +extern const struct vp9_token vp9_coef_encodings[]; + +int vp9_is_skippable_in_plane(MACROBLOCK *x, BLOCK_SIZE bsize, int plane); +int vp9_has_high_freq_in_plane(MACROBLOCK *x, BLOCK_SIZE bsize, int plane); + +struct VP9_COMP; +struct ThreadData; + +void vp9_tokenize_sb(struct VP9_COMP *cpi, struct ThreadData *td, + TOKENEXTRA **t, int dry_run, int seg_skip, + BLOCK_SIZE bsize); + +typedef struct { + const vpx_prob *prob; + int len; + int base_val; + const int16_t *cost; +} vp9_extra_bit; + +// indexed by token value +extern const vp9_extra_bit vp9_extra_bits[ENTROPY_TOKENS]; +#if CONFIG_VP9_HIGHBITDEPTH +extern const vp9_extra_bit vp9_extra_bits_high10[ENTROPY_TOKENS]; +extern const vp9_extra_bit vp9_extra_bits_high12[ENTROPY_TOKENS]; +#endif // CONFIG_VP9_HIGHBITDEPTH + +extern const int16_t *vp9_dct_value_cost_ptr; +/* TODO: The Token field should be broken out into a separate char array to + * improve cache locality, since it's needed for costing when the rest of the + * fields are not. + */ +extern const TOKENVALUE *vp9_dct_value_tokens_ptr; +extern const TOKENVALUE *vp9_dct_cat_lt_10_value_tokens; +extern const int *vp9_dct_cat_lt_10_value_cost; +extern const int16_t vp9_cat6_low_cost[256]; +extern const uint16_t vp9_cat6_high_cost[64]; +extern const uint16_t vp9_cat6_high10_high_cost[256]; +extern const uint16_t vp9_cat6_high12_high_cost[1024]; + +#if CONFIG_VP9_HIGHBITDEPTH +static INLINE const uint16_t *vp9_get_high_cost_table(int bit_depth) { + return bit_depth == 8 ? vp9_cat6_high_cost + : (bit_depth == 10 ? vp9_cat6_high10_high_cost + : vp9_cat6_high12_high_cost); +} +#else +static INLINE const uint16_t *vp9_get_high_cost_table(int bit_depth) { + (void)bit_depth; + return vp9_cat6_high_cost; +} +#endif // CONFIG_VP9_HIGHBITDEPTH + +static INLINE void vp9_get_token_extra(int v, int16_t *token, EXTRABIT *extra) { + if (v >= CAT6_MIN_VAL || v <= -CAT6_MIN_VAL) { + *token = CATEGORY6_TOKEN; + if (v >= CAT6_MIN_VAL) + *extra = 2 * v - 2 * CAT6_MIN_VAL; + else + *extra = -2 * v - 2 * CAT6_MIN_VAL + 1; + return; + } + *token = vp9_dct_cat_lt_10_value_tokens[v].token; + *extra = vp9_dct_cat_lt_10_value_tokens[v].extra; +} +static INLINE int16_t vp9_get_token(int v) { + if (v >= CAT6_MIN_VAL || v <= -CAT6_MIN_VAL) return 10; + return vp9_dct_cat_lt_10_value_tokens[v].token; +} + +static INLINE int vp9_get_token_cost(int v, int16_t *token, + const uint16_t *cat6_high_table) { + if (v >= CAT6_MIN_VAL || v <= -CAT6_MIN_VAL) { + EXTRABIT extrabits; + *token = CATEGORY6_TOKEN; + extrabits = abs(v) - CAT6_MIN_VAL; + return vp9_cat6_low_cost[extrabits & 0xff] + + cat6_high_table[extrabits >> 8]; + } + *token = vp9_dct_cat_lt_10_value_tokens[v].token; + return vp9_dct_cat_lt_10_value_cost[v]; +} + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP9_ENCODER_VP9_TOKENIZE_H_ diff --git a/vp9/encoder/vp9_treewriter.c b/vp9/encoder/vp9_treewriter.c new file mode 100644 index 0000000..0fc078e --- /dev/null +++ b/vp9/encoder/vp9_treewriter.c @@ -0,0 +1,58 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "vp9/encoder/vp9_treewriter.h" + +static void tree2tok(struct vp9_token *tokens, const vpx_tree_index *tree, + int i, int v, int l) { + v += v; + ++l; + + do { + const vpx_tree_index j = tree[i++]; + if (j <= 0) { + tokens[-j].value = v; + tokens[-j].len = l; + } else { + tree2tok(tokens, tree, j, v, l); + } + } while (++v & 1); +} + +void vp9_tokens_from_tree(struct vp9_token *tokens, + const vpx_tree_index *tree) { + tree2tok(tokens, tree, 0, 0, 0); +} + +static unsigned int convert_distribution(unsigned int i, vpx_tree tree, + unsigned int branch_ct[][2], + const unsigned int num_events[]) { + unsigned int left, right; + + if (tree[i] <= 0) + left = num_events[-tree[i]]; + else + left = convert_distribution(tree[i], tree, branch_ct, num_events); + + if (tree[i + 1] <= 0) + right = num_events[-tree[i + 1]]; + else + right = convert_distribution(tree[i + 1], tree, branch_ct, num_events); + + branch_ct[i >> 1][0] = left; + branch_ct[i >> 1][1] = right; + return left + right; +} + +void vp9_tree_probs_from_distribution(vpx_tree tree, + unsigned int branch_ct[/* n-1 */][2], + const unsigned int num_events[/* n */]) { + convert_distribution(0, tree, branch_ct, num_events); +} diff --git a/vp9/encoder/vp9_treewriter.h b/vp9/encoder/vp9_treewriter.h new file mode 100644 index 0000000..a8b9c2c --- /dev/null +++ b/vp9/encoder/vp9_treewriter.h @@ -0,0 +1,51 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP9_ENCODER_VP9_TREEWRITER_H_ +#define VP9_ENCODER_VP9_TREEWRITER_H_ + +#include "vpx_dsp/bitwriter.h" + +#ifdef __cplusplus +extern "C" { +#endif + +void vp9_tree_probs_from_distribution(vpx_tree tree, + unsigned int branch_ct[/* n - 1 */][2], + const unsigned int num_events[/* n */]); + +struct vp9_token { + int value; + int len; +}; + +void vp9_tokens_from_tree(struct vp9_token *, const vpx_tree_index *); + +static INLINE void vp9_write_tree(vpx_writer *w, const vpx_tree_index *tree, + const vpx_prob *probs, int bits, int len, + vpx_tree_index i) { + do { + const int bit = (bits >> --len) & 1; + vpx_write(w, bit, probs[i >> 1]); + i = tree[i + bit]; + } while (len); +} + +static INLINE void vp9_write_token(vpx_writer *w, const vpx_tree_index *tree, + const vpx_prob *probs, + const struct vp9_token *token) { + vp9_write_tree(w, tree, probs, token->value, token->len, 0); +} + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP9_ENCODER_VP9_TREEWRITER_H_ diff --git a/vp9/encoder/x86/temporal_filter_sse4.c b/vp9/encoder/x86/temporal_filter_sse4.c new file mode 100644 index 0000000..460dab6 --- /dev/null +++ b/vp9/encoder/x86/temporal_filter_sse4.c @@ -0,0 +1,376 @@ +/* + * Copyright (c) 2017 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include + +#include "./vp9_rtcd.h" +#include "./vpx_config.h" +#include "vpx/vpx_integer.h" + +// Division using multiplication and shifting. The C implementation does: +// modifier *= 3; +// modifier /= index; +// where 'modifier' is a set of summed values and 'index' is the number of +// summed values. 'index' may be 4, 6, or 9, representing a block of 9 values +// which may be bound by the edges of the block being filtered. +// +// This equation works out to (m * 3) / i which reduces to: +// m * 3/4 +// m * 1/2 +// m * 1/3 +// +// By pairing the multiply with a down shift by 16 (_mm_mulhi_epu16): +// m * C / 65536 +// we can create a C to replicate the division. +// +// m * 49152 / 65536 = m * 3/4 +// m * 32758 / 65536 = m * 1/2 +// m * 21846 / 65536 = m * 0.3333 +// +// These are loaded using an instruction expecting int16_t values but are used +// with _mm_mulhi_epu16(), which treats them as unsigned. +#define NEIGHBOR_CONSTANT_4 (int16_t)49152 +#define NEIGHBOR_CONSTANT_6 (int16_t)32768 +#define NEIGHBOR_CONSTANT_9 (int16_t)21846 + +// Load values from 'a' and 'b'. Compute the difference squared and sum +// neighboring values such that: +// sum[1] = (a[0]-b[0])^2 + (a[1]-b[1])^2 + (a[2]-b[2])^2 +// Values to the left and right of the row are set to 0. +// The values are returned in sum_0 and sum_1 as *unsigned* 16 bit values. +static void sum_8(const uint8_t *a, const uint8_t *b, __m128i *sum) { + const __m128i a_u8 = _mm_loadl_epi64((const __m128i *)a); + const __m128i b_u8 = _mm_loadl_epi64((const __m128i *)b); + + const __m128i a_u16 = _mm_cvtepu8_epi16(a_u8); + const __m128i b_u16 = _mm_cvtepu8_epi16(b_u8); + + const __m128i diff_s16 = _mm_sub_epi16(a_u16, b_u16); + const __m128i diff_sq_u16 = _mm_mullo_epi16(diff_s16, diff_s16); + + // Shift all the values one place to the left/right so we can efficiently sum + // diff_sq_u16[i - 1] + diff_sq_u16[i] + diff_sq_u16[i + 1]. + const __m128i shift_left = _mm_slli_si128(diff_sq_u16, 2); + const __m128i shift_right = _mm_srli_si128(diff_sq_u16, 2); + + // It becomes necessary to treat the values as unsigned at this point. The + // 255^2 fits in uint16_t but not int16_t. Use saturating adds from this point + // forward since the filter is only applied to smooth small pixel changes. + // Once the value has saturated to uint16_t it is well outside the useful + // range. + __m128i sum_u16 = _mm_adds_epu16(diff_sq_u16, shift_left); + sum_u16 = _mm_adds_epu16(sum_u16, shift_right); + + *sum = sum_u16; +} + +static void sum_16(const uint8_t *a, const uint8_t *b, __m128i *sum_0, + __m128i *sum_1) { + const __m128i zero = _mm_setzero_si128(); + const __m128i a_u8 = _mm_loadu_si128((const __m128i *)a); + const __m128i b_u8 = _mm_loadu_si128((const __m128i *)b); + + const __m128i a_0_u16 = _mm_cvtepu8_epi16(a_u8); + const __m128i a_1_u16 = _mm_unpackhi_epi8(a_u8, zero); + const __m128i b_0_u16 = _mm_cvtepu8_epi16(b_u8); + const __m128i b_1_u16 = _mm_unpackhi_epi8(b_u8, zero); + + const __m128i diff_0_s16 = _mm_sub_epi16(a_0_u16, b_0_u16); + const __m128i diff_1_s16 = _mm_sub_epi16(a_1_u16, b_1_u16); + const __m128i diff_sq_0_u16 = _mm_mullo_epi16(diff_0_s16, diff_0_s16); + const __m128i diff_sq_1_u16 = _mm_mullo_epi16(diff_1_s16, diff_1_s16); + + __m128i shift_left = _mm_slli_si128(diff_sq_0_u16, 2); + // Use _mm_alignr_epi8() to "shift in" diff_sq_u16[8]. + __m128i shift_right = _mm_alignr_epi8(diff_sq_1_u16, diff_sq_0_u16, 2); + + __m128i sum_u16 = _mm_adds_epu16(diff_sq_0_u16, shift_left); + sum_u16 = _mm_adds_epu16(sum_u16, shift_right); + + *sum_0 = sum_u16; + + shift_left = _mm_alignr_epi8(diff_sq_1_u16, diff_sq_0_u16, 14); + shift_right = _mm_srli_si128(diff_sq_1_u16, 2); + + sum_u16 = _mm_adds_epu16(diff_sq_1_u16, shift_left); + sum_u16 = _mm_adds_epu16(sum_u16, shift_right); + + *sum_1 = sum_u16; +} + +// Average the value based on the number of values summed (9 for pixels away +// from the border, 4 for pixels in corners, and 6 for other edge values). +// +// Add in the rounding factor and shift, clamp to 16, invert and shift. Multiply +// by weight. +static __m128i average_8(__m128i sum, const __m128i mul_constants, + const int strength, const int rounding, + const int weight) { + // _mm_srl_epi16 uses the lower 64 bit value for the shift. + const __m128i strength_u128 = _mm_set_epi32(0, 0, 0, strength); + const __m128i rounding_u16 = _mm_set1_epi16(rounding); + const __m128i weight_u16 = _mm_set1_epi16(weight); + const __m128i sixteen = _mm_set1_epi16(16); + + // modifier * 3 / index; + sum = _mm_mulhi_epu16(sum, mul_constants); + + sum = _mm_adds_epu16(sum, rounding_u16); + sum = _mm_srl_epi16(sum, strength_u128); + + // The maximum input to this comparison is UINT16_MAX * NEIGHBOR_CONSTANT_4 + // >> 16 (also NEIGHBOR_CONSTANT_4 -1) which is 49151 / 0xbfff / -16385 + // So this needs to use the epu16 version which did not come until SSE4. + sum = _mm_min_epu16(sum, sixteen); + + sum = _mm_sub_epi16(sixteen, sum); + + return _mm_mullo_epi16(sum, weight_u16); +} + +static void average_16(__m128i *sum_0_u16, __m128i *sum_1_u16, + const __m128i mul_constants_0, + const __m128i mul_constants_1, const int strength, + const int rounding, const int weight) { + const __m128i strength_u128 = _mm_set_epi32(0, 0, 0, strength); + const __m128i rounding_u16 = _mm_set1_epi16(rounding); + const __m128i weight_u16 = _mm_set1_epi16(weight); + const __m128i sixteen = _mm_set1_epi16(16); + __m128i input_0, input_1; + + input_0 = _mm_mulhi_epu16(*sum_0_u16, mul_constants_0); + input_0 = _mm_adds_epu16(input_0, rounding_u16); + + input_1 = _mm_mulhi_epu16(*sum_1_u16, mul_constants_1); + input_1 = _mm_adds_epu16(input_1, rounding_u16); + + input_0 = _mm_srl_epi16(input_0, strength_u128); + input_1 = _mm_srl_epi16(input_1, strength_u128); + + input_0 = _mm_min_epu16(input_0, sixteen); + input_1 = _mm_min_epu16(input_1, sixteen); + input_0 = _mm_sub_epi16(sixteen, input_0); + input_1 = _mm_sub_epi16(sixteen, input_1); + + *sum_0_u16 = _mm_mullo_epi16(input_0, weight_u16); + *sum_1_u16 = _mm_mullo_epi16(input_1, weight_u16); +} + +// Add 'sum_u16' to 'count'. Multiply by 'pred' and add to 'accumulator.' +static void accumulate_and_store_8(const __m128i sum_u16, const uint8_t *pred, + uint16_t *count, uint32_t *accumulator) { + const __m128i pred_u8 = _mm_loadl_epi64((const __m128i *)pred); + const __m128i zero = _mm_setzero_si128(); + __m128i count_u16 = _mm_loadu_si128((const __m128i *)count); + __m128i pred_u16 = _mm_cvtepu8_epi16(pred_u8); + __m128i pred_0_u32, pred_1_u32; + __m128i accum_0_u32, accum_1_u32; + + count_u16 = _mm_adds_epu16(count_u16, sum_u16); + _mm_storeu_si128((__m128i *)count, count_u16); + + pred_u16 = _mm_mullo_epi16(sum_u16, pred_u16); + + pred_0_u32 = _mm_cvtepu16_epi32(pred_u16); + pred_1_u32 = _mm_unpackhi_epi16(pred_u16, zero); + + accum_0_u32 = _mm_loadu_si128((const __m128i *)accumulator); + accum_1_u32 = _mm_loadu_si128((const __m128i *)(accumulator + 4)); + + accum_0_u32 = _mm_add_epi32(pred_0_u32, accum_0_u32); + accum_1_u32 = _mm_add_epi32(pred_1_u32, accum_1_u32); + + _mm_storeu_si128((__m128i *)accumulator, accum_0_u32); + _mm_storeu_si128((__m128i *)(accumulator + 4), accum_1_u32); +} + +static void accumulate_and_store_16(const __m128i sum_0_u16, + const __m128i sum_1_u16, + const uint8_t *pred, uint16_t *count, + uint32_t *accumulator) { + const __m128i pred_u8 = _mm_loadu_si128((const __m128i *)pred); + const __m128i zero = _mm_setzero_si128(); + __m128i count_0_u16 = _mm_loadu_si128((const __m128i *)count), + count_1_u16 = _mm_loadu_si128((const __m128i *)(count + 8)); + __m128i pred_0_u16 = _mm_cvtepu8_epi16(pred_u8), + pred_1_u16 = _mm_unpackhi_epi8(pred_u8, zero); + __m128i pred_0_u32, pred_1_u32, pred_2_u32, pred_3_u32; + __m128i accum_0_u32, accum_1_u32, accum_2_u32, accum_3_u32; + + count_0_u16 = _mm_adds_epu16(count_0_u16, sum_0_u16); + _mm_storeu_si128((__m128i *)count, count_0_u16); + + count_1_u16 = _mm_adds_epu16(count_1_u16, sum_1_u16); + _mm_storeu_si128((__m128i *)(count + 8), count_1_u16); + + pred_0_u16 = _mm_mullo_epi16(sum_0_u16, pred_0_u16); + pred_1_u16 = _mm_mullo_epi16(sum_1_u16, pred_1_u16); + + pred_0_u32 = _mm_cvtepu16_epi32(pred_0_u16); + pred_1_u32 = _mm_unpackhi_epi16(pred_0_u16, zero); + pred_2_u32 = _mm_cvtepu16_epi32(pred_1_u16); + pred_3_u32 = _mm_unpackhi_epi16(pred_1_u16, zero); + + accum_0_u32 = _mm_loadu_si128((const __m128i *)accumulator); + accum_1_u32 = _mm_loadu_si128((const __m128i *)(accumulator + 4)); + accum_2_u32 = _mm_loadu_si128((const __m128i *)(accumulator + 8)); + accum_3_u32 = _mm_loadu_si128((const __m128i *)(accumulator + 12)); + + accum_0_u32 = _mm_add_epi32(pred_0_u32, accum_0_u32); + accum_1_u32 = _mm_add_epi32(pred_1_u32, accum_1_u32); + accum_2_u32 = _mm_add_epi32(pred_2_u32, accum_2_u32); + accum_3_u32 = _mm_add_epi32(pred_3_u32, accum_3_u32); + + _mm_storeu_si128((__m128i *)accumulator, accum_0_u32); + _mm_storeu_si128((__m128i *)(accumulator + 4), accum_1_u32); + _mm_storeu_si128((__m128i *)(accumulator + 8), accum_2_u32); + _mm_storeu_si128((__m128i *)(accumulator + 12), accum_3_u32); +} + +void vp9_temporal_filter_apply_sse4_1(const uint8_t *a, unsigned int stride, + const uint8_t *b, unsigned int width, + unsigned int height, int strength, + int weight, uint32_t *accumulator, + uint16_t *count) { + unsigned int h; + const int rounding = strength > 0 ? 1 << (strength - 1) : 0; + + assert(strength >= 0); + assert(strength <= 6); + + assert(weight >= 0); + assert(weight <= 2); + + assert(width == 8 || width == 16); + + if (width == 8) { + __m128i sum_row_a, sum_row_b, sum_row_c; + __m128i mul_constants = _mm_setr_epi16( + NEIGHBOR_CONSTANT_4, NEIGHBOR_CONSTANT_6, NEIGHBOR_CONSTANT_6, + NEIGHBOR_CONSTANT_6, NEIGHBOR_CONSTANT_6, NEIGHBOR_CONSTANT_6, + NEIGHBOR_CONSTANT_6, NEIGHBOR_CONSTANT_4); + + sum_8(a, b, &sum_row_a); + sum_8(a + stride, b + width, &sum_row_b); + sum_row_c = _mm_adds_epu16(sum_row_a, sum_row_b); + sum_row_c = average_8(sum_row_c, mul_constants, strength, rounding, weight); + accumulate_and_store_8(sum_row_c, b, count, accumulator); + + a += stride + stride; + b += width; + count += width; + accumulator += width; + + mul_constants = _mm_setr_epi16(NEIGHBOR_CONSTANT_6, NEIGHBOR_CONSTANT_9, + NEIGHBOR_CONSTANT_9, NEIGHBOR_CONSTANT_9, + NEIGHBOR_CONSTANT_9, NEIGHBOR_CONSTANT_9, + NEIGHBOR_CONSTANT_9, NEIGHBOR_CONSTANT_6); + + for (h = 0; h < height - 2; ++h) { + sum_8(a, b + width, &sum_row_c); + sum_row_a = _mm_adds_epu16(sum_row_a, sum_row_b); + sum_row_a = _mm_adds_epu16(sum_row_a, sum_row_c); + sum_row_a = + average_8(sum_row_a, mul_constants, strength, rounding, weight); + accumulate_and_store_8(sum_row_a, b, count, accumulator); + + a += stride; + b += width; + count += width; + accumulator += width; + + sum_row_a = sum_row_b; + sum_row_b = sum_row_c; + } + + mul_constants = _mm_setr_epi16(NEIGHBOR_CONSTANT_4, NEIGHBOR_CONSTANT_6, + NEIGHBOR_CONSTANT_6, NEIGHBOR_CONSTANT_6, + NEIGHBOR_CONSTANT_6, NEIGHBOR_CONSTANT_6, + NEIGHBOR_CONSTANT_6, NEIGHBOR_CONSTANT_4); + sum_row_a = _mm_adds_epu16(sum_row_a, sum_row_b); + sum_row_a = average_8(sum_row_a, mul_constants, strength, rounding, weight); + accumulate_and_store_8(sum_row_a, b, count, accumulator); + + } else { // width == 16 + __m128i sum_row_a_0, sum_row_a_1; + __m128i sum_row_b_0, sum_row_b_1; + __m128i sum_row_c_0, sum_row_c_1; + __m128i mul_constants_0 = _mm_setr_epi16( + NEIGHBOR_CONSTANT_4, NEIGHBOR_CONSTANT_6, NEIGHBOR_CONSTANT_6, + NEIGHBOR_CONSTANT_6, NEIGHBOR_CONSTANT_6, NEIGHBOR_CONSTANT_6, + NEIGHBOR_CONSTANT_6, NEIGHBOR_CONSTANT_6), + mul_constants_1 = _mm_setr_epi16( + NEIGHBOR_CONSTANT_6, NEIGHBOR_CONSTANT_6, NEIGHBOR_CONSTANT_6, + NEIGHBOR_CONSTANT_6, NEIGHBOR_CONSTANT_6, NEIGHBOR_CONSTANT_6, + NEIGHBOR_CONSTANT_6, NEIGHBOR_CONSTANT_4); + + sum_16(a, b, &sum_row_a_0, &sum_row_a_1); + sum_16(a + stride, b + width, &sum_row_b_0, &sum_row_b_1); + + sum_row_c_0 = _mm_adds_epu16(sum_row_a_0, sum_row_b_0); + sum_row_c_1 = _mm_adds_epu16(sum_row_a_1, sum_row_b_1); + + average_16(&sum_row_c_0, &sum_row_c_1, mul_constants_0, mul_constants_1, + strength, rounding, weight); + accumulate_and_store_16(sum_row_c_0, sum_row_c_1, b, count, accumulator); + + a += stride + stride; + b += width; + count += width; + accumulator += width; + + mul_constants_0 = _mm_setr_epi16(NEIGHBOR_CONSTANT_6, NEIGHBOR_CONSTANT_9, + NEIGHBOR_CONSTANT_9, NEIGHBOR_CONSTANT_9, + NEIGHBOR_CONSTANT_9, NEIGHBOR_CONSTANT_9, + NEIGHBOR_CONSTANT_9, NEIGHBOR_CONSTANT_9); + mul_constants_1 = _mm_setr_epi16(NEIGHBOR_CONSTANT_9, NEIGHBOR_CONSTANT_9, + NEIGHBOR_CONSTANT_9, NEIGHBOR_CONSTANT_9, + NEIGHBOR_CONSTANT_9, NEIGHBOR_CONSTANT_9, + NEIGHBOR_CONSTANT_9, NEIGHBOR_CONSTANT_6); + for (h = 0; h < height - 2; ++h) { + sum_16(a, b + width, &sum_row_c_0, &sum_row_c_1); + + sum_row_a_0 = _mm_adds_epu16(sum_row_a_0, sum_row_b_0); + sum_row_a_0 = _mm_adds_epu16(sum_row_a_0, sum_row_c_0); + sum_row_a_1 = _mm_adds_epu16(sum_row_a_1, sum_row_b_1); + sum_row_a_1 = _mm_adds_epu16(sum_row_a_1, sum_row_c_1); + + average_16(&sum_row_a_0, &sum_row_a_1, mul_constants_0, mul_constants_1, + strength, rounding, weight); + accumulate_and_store_16(sum_row_a_0, sum_row_a_1, b, count, accumulator); + + a += stride; + b += width; + count += width; + accumulator += width; + + sum_row_a_0 = sum_row_b_0; + sum_row_a_1 = sum_row_b_1; + sum_row_b_0 = sum_row_c_0; + sum_row_b_1 = sum_row_c_1; + } + + mul_constants_0 = _mm_setr_epi16(NEIGHBOR_CONSTANT_4, NEIGHBOR_CONSTANT_6, + NEIGHBOR_CONSTANT_6, NEIGHBOR_CONSTANT_6, + NEIGHBOR_CONSTANT_6, NEIGHBOR_CONSTANT_6, + NEIGHBOR_CONSTANT_6, NEIGHBOR_CONSTANT_6); + mul_constants_1 = _mm_setr_epi16(NEIGHBOR_CONSTANT_6, NEIGHBOR_CONSTANT_6, + NEIGHBOR_CONSTANT_6, NEIGHBOR_CONSTANT_6, + NEIGHBOR_CONSTANT_6, NEIGHBOR_CONSTANT_6, + NEIGHBOR_CONSTANT_6, NEIGHBOR_CONSTANT_4); + sum_row_c_0 = _mm_adds_epu16(sum_row_a_0, sum_row_b_0); + sum_row_c_1 = _mm_adds_epu16(sum_row_a_1, sum_row_b_1); + + average_16(&sum_row_c_0, &sum_row_c_1, mul_constants_0, mul_constants_1, + strength, rounding, weight); + accumulate_and_store_16(sum_row_c_0, sum_row_c_1, b, count, accumulator); + } +} diff --git a/vp9/encoder/x86/vp9_dct_intrin_sse2.c b/vp9/encoder/x86/vp9_dct_intrin_sse2.c new file mode 100644 index 0000000..dbd243a --- /dev/null +++ b/vp9/encoder/x86/vp9_dct_intrin_sse2.c @@ -0,0 +1,1975 @@ +/* + * Copyright (c) 2012 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include // SSE2 + +#include "./vp9_rtcd.h" +#include "./vpx_dsp_rtcd.h" +#include "vpx_dsp/txfm_common.h" +#include "vpx_dsp/x86/fwd_txfm_sse2.h" +#include "vpx_dsp/x86/transpose_sse2.h" +#include "vpx_dsp/x86/txfm_common_sse2.h" +#include "vpx_ports/mem.h" + +static INLINE void load_buffer_4x4(const int16_t *input, __m128i *in, + int stride) { + const __m128i k__nonzero_bias_a = _mm_setr_epi16(0, 1, 1, 1, 1, 1, 1, 1); + const __m128i k__nonzero_bias_b = _mm_setr_epi16(1, 0, 0, 0, 0, 0, 0, 0); + __m128i mask; + + in[0] = _mm_loadl_epi64((const __m128i *)(input + 0 * stride)); + in[1] = _mm_loadl_epi64((const __m128i *)(input + 1 * stride)); + in[2] = _mm_loadl_epi64((const __m128i *)(input + 2 * stride)); + in[3] = _mm_loadl_epi64((const __m128i *)(input + 3 * stride)); + + in[0] = _mm_slli_epi16(in[0], 4); + in[1] = _mm_slli_epi16(in[1], 4); + in[2] = _mm_slli_epi16(in[2], 4); + in[3] = _mm_slli_epi16(in[3], 4); + + mask = _mm_cmpeq_epi16(in[0], k__nonzero_bias_a); + in[0] = _mm_add_epi16(in[0], mask); + in[0] = _mm_add_epi16(in[0], k__nonzero_bias_b); +} + +static INLINE void write_buffer_4x4(tran_low_t *output, __m128i *res) { + const __m128i kOne = _mm_set1_epi16(1); + __m128i in01 = _mm_unpacklo_epi64(res[0], res[1]); + __m128i in23 = _mm_unpacklo_epi64(res[2], res[3]); + __m128i out01 = _mm_add_epi16(in01, kOne); + __m128i out23 = _mm_add_epi16(in23, kOne); + out01 = _mm_srai_epi16(out01, 2); + out23 = _mm_srai_epi16(out23, 2); + store_output(&out01, (output + 0 * 8)); + store_output(&out23, (output + 1 * 8)); +} + +static INLINE void transpose_4x4(__m128i *res) { + // Combine and transpose + // 00 01 02 03 20 21 22 23 + // 10 11 12 13 30 31 32 33 + const __m128i tr0_0 = _mm_unpacklo_epi16(res[0], res[1]); + const __m128i tr0_1 = _mm_unpackhi_epi16(res[0], res[1]); + + // 00 10 01 11 02 12 03 13 + // 20 30 21 31 22 32 23 33 + res[0] = _mm_unpacklo_epi32(tr0_0, tr0_1); + res[2] = _mm_unpackhi_epi32(tr0_0, tr0_1); + + // 00 10 20 30 01 11 21 31 + // 02 12 22 32 03 13 23 33 + // only use the first 4 16-bit integers + res[1] = _mm_unpackhi_epi64(res[0], res[0]); + res[3] = _mm_unpackhi_epi64(res[2], res[2]); +} + +static void fdct4_sse2(__m128i *in) { + const __m128i k__cospi_p16_p16 = _mm_set1_epi16(cospi_16_64); + const __m128i k__cospi_p16_m16 = pair_set_epi16(cospi_16_64, -cospi_16_64); + const __m128i k__cospi_p08_p24 = pair_set_epi16(cospi_8_64, cospi_24_64); + const __m128i k__cospi_p24_m08 = pair_set_epi16(cospi_24_64, -cospi_8_64); + const __m128i k__DCT_CONST_ROUNDING = _mm_set1_epi32(DCT_CONST_ROUNDING); + + __m128i u[4], v[4]; + u[0] = _mm_unpacklo_epi16(in[0], in[1]); + u[1] = _mm_unpacklo_epi16(in[3], in[2]); + + v[0] = _mm_add_epi16(u[0], u[1]); + v[1] = _mm_sub_epi16(u[0], u[1]); + + u[0] = _mm_madd_epi16(v[0], k__cospi_p16_p16); // 0 + u[1] = _mm_madd_epi16(v[0], k__cospi_p16_m16); // 2 + u[2] = _mm_madd_epi16(v[1], k__cospi_p08_p24); // 1 + u[3] = _mm_madd_epi16(v[1], k__cospi_p24_m08); // 3 + + v[0] = _mm_add_epi32(u[0], k__DCT_CONST_ROUNDING); + v[1] = _mm_add_epi32(u[1], k__DCT_CONST_ROUNDING); + v[2] = _mm_add_epi32(u[2], k__DCT_CONST_ROUNDING); + v[3] = _mm_add_epi32(u[3], k__DCT_CONST_ROUNDING); + u[0] = _mm_srai_epi32(v[0], DCT_CONST_BITS); + u[1] = _mm_srai_epi32(v[1], DCT_CONST_BITS); + u[2] = _mm_srai_epi32(v[2], DCT_CONST_BITS); + u[3] = _mm_srai_epi32(v[3], DCT_CONST_BITS); + + in[0] = _mm_packs_epi32(u[0], u[1]); + in[1] = _mm_packs_epi32(u[2], u[3]); + transpose_4x4(in); +} + +static void fadst4_sse2(__m128i *in) { + const __m128i k__sinpi_p01_p02 = pair_set_epi16(sinpi_1_9, sinpi_2_9); + const __m128i k__sinpi_p04_m01 = pair_set_epi16(sinpi_4_9, -sinpi_1_9); + const __m128i k__sinpi_p03_p04 = pair_set_epi16(sinpi_3_9, sinpi_4_9); + const __m128i k__sinpi_m03_p02 = pair_set_epi16(-sinpi_3_9, sinpi_2_9); + const __m128i k__sinpi_p03_p03 = _mm_set1_epi16((int16_t)sinpi_3_9); + const __m128i kZero = _mm_set1_epi16(0); + const __m128i k__DCT_CONST_ROUNDING = _mm_set1_epi32(DCT_CONST_ROUNDING); + __m128i u[8], v[8]; + __m128i in7 = _mm_add_epi16(in[0], in[1]); + + u[0] = _mm_unpacklo_epi16(in[0], in[1]); + u[1] = _mm_unpacklo_epi16(in[2], in[3]); + u[2] = _mm_unpacklo_epi16(in7, kZero); + u[3] = _mm_unpacklo_epi16(in[2], kZero); + u[4] = _mm_unpacklo_epi16(in[3], kZero); + + v[0] = _mm_madd_epi16(u[0], k__sinpi_p01_p02); // s0 + s2 + v[1] = _mm_madd_epi16(u[1], k__sinpi_p03_p04); // s4 + s5 + v[2] = _mm_madd_epi16(u[2], k__sinpi_p03_p03); // x1 + v[3] = _mm_madd_epi16(u[0], k__sinpi_p04_m01); // s1 - s3 + v[4] = _mm_madd_epi16(u[1], k__sinpi_m03_p02); // -s4 + s6 + v[5] = _mm_madd_epi16(u[3], k__sinpi_p03_p03); // s4 + v[6] = _mm_madd_epi16(u[4], k__sinpi_p03_p03); + + u[0] = _mm_add_epi32(v[0], v[1]); + u[1] = _mm_sub_epi32(v[2], v[6]); + u[2] = _mm_add_epi32(v[3], v[4]); + u[3] = _mm_sub_epi32(u[2], u[0]); + u[4] = _mm_slli_epi32(v[5], 2); + u[5] = _mm_sub_epi32(u[4], v[5]); + u[6] = _mm_add_epi32(u[3], u[5]); + + v[0] = _mm_add_epi32(u[0], k__DCT_CONST_ROUNDING); + v[1] = _mm_add_epi32(u[1], k__DCT_CONST_ROUNDING); + v[2] = _mm_add_epi32(u[2], k__DCT_CONST_ROUNDING); + v[3] = _mm_add_epi32(u[6], k__DCT_CONST_ROUNDING); + + u[0] = _mm_srai_epi32(v[0], DCT_CONST_BITS); + u[1] = _mm_srai_epi32(v[1], DCT_CONST_BITS); + u[2] = _mm_srai_epi32(v[2], DCT_CONST_BITS); + u[3] = _mm_srai_epi32(v[3], DCT_CONST_BITS); + + in[0] = _mm_packs_epi32(u[0], u[2]); + in[1] = _mm_packs_epi32(u[1], u[3]); + transpose_4x4(in); +} + +void vp9_fht4x4_sse2(const int16_t *input, tran_low_t *output, int stride, + int tx_type) { + __m128i in[4]; + + switch (tx_type) { + case DCT_DCT: vpx_fdct4x4_sse2(input, output, stride); break; + case ADST_DCT: + load_buffer_4x4(input, in, stride); + fadst4_sse2(in); + fdct4_sse2(in); + write_buffer_4x4(output, in); + break; + case DCT_ADST: + load_buffer_4x4(input, in, stride); + fdct4_sse2(in); + fadst4_sse2(in); + write_buffer_4x4(output, in); + break; + case ADST_ADST: + load_buffer_4x4(input, in, stride); + fadst4_sse2(in); + fadst4_sse2(in); + write_buffer_4x4(output, in); + break; + default: assert(0); break; + } +} + +void vp9_fdct8x8_quant_sse2(const int16_t *input, int stride, + int16_t *coeff_ptr, intptr_t n_coeffs, + int skip_block, const int16_t *round_ptr, + const int16_t *quant_ptr, int16_t *qcoeff_ptr, + int16_t *dqcoeff_ptr, const int16_t *dequant_ptr, + uint16_t *eob_ptr, const int16_t *scan_ptr, + const int16_t *iscan_ptr) { + __m128i zero; + int pass; + + // Constants + // When we use them, in one case, they are all the same. In all others + // it's a pair of them that we need to repeat four times. This is done + // by constructing the 32 bit constant corresponding to that pair. + const __m128i k__cospi_p16_p16 = _mm_set1_epi16(cospi_16_64); + const __m128i k__cospi_p16_m16 = pair_set_epi16(cospi_16_64, -cospi_16_64); + const __m128i k__cospi_p24_p08 = pair_set_epi16(cospi_24_64, cospi_8_64); + const __m128i k__cospi_m08_p24 = pair_set_epi16(-cospi_8_64, cospi_24_64); + const __m128i k__cospi_p28_p04 = pair_set_epi16(cospi_28_64, cospi_4_64); + const __m128i k__cospi_m04_p28 = pair_set_epi16(-cospi_4_64, cospi_28_64); + const __m128i k__cospi_p12_p20 = pair_set_epi16(cospi_12_64, cospi_20_64); + const __m128i k__cospi_m20_p12 = pair_set_epi16(-cospi_20_64, cospi_12_64); + const __m128i k__DCT_CONST_ROUNDING = _mm_set1_epi32(DCT_CONST_ROUNDING); + // Load input + __m128i in0 = _mm_load_si128((const __m128i *)(input + 0 * stride)); + __m128i in1 = _mm_load_si128((const __m128i *)(input + 1 * stride)); + __m128i in2 = _mm_load_si128((const __m128i *)(input + 2 * stride)); + __m128i in3 = _mm_load_si128((const __m128i *)(input + 3 * stride)); + __m128i in4 = _mm_load_si128((const __m128i *)(input + 4 * stride)); + __m128i in5 = _mm_load_si128((const __m128i *)(input + 5 * stride)); + __m128i in6 = _mm_load_si128((const __m128i *)(input + 6 * stride)); + __m128i in7 = _mm_load_si128((const __m128i *)(input + 7 * stride)); + __m128i *in[8]; + int index = 0; + + (void)scan_ptr; + (void)coeff_ptr; + + // Pre-condition input (shift by two) + in0 = _mm_slli_epi16(in0, 2); + in1 = _mm_slli_epi16(in1, 2); + in2 = _mm_slli_epi16(in2, 2); + in3 = _mm_slli_epi16(in3, 2); + in4 = _mm_slli_epi16(in4, 2); + in5 = _mm_slli_epi16(in5, 2); + in6 = _mm_slli_epi16(in6, 2); + in7 = _mm_slli_epi16(in7, 2); + + in[0] = &in0; + in[1] = &in1; + in[2] = &in2; + in[3] = &in3; + in[4] = &in4; + in[5] = &in5; + in[6] = &in6; + in[7] = &in7; + + // We do two passes, first the columns, then the rows. The results of the + // first pass are transposed so that the same column code can be reused. The + // results of the second pass are also transposed so that the rows (processed + // as columns) are put back in row positions. + for (pass = 0; pass < 2; pass++) { + // To store results of each pass before the transpose. + __m128i res0, res1, res2, res3, res4, res5, res6, res7; + // Add/subtract + const __m128i q0 = _mm_add_epi16(in0, in7); + const __m128i q1 = _mm_add_epi16(in1, in6); + const __m128i q2 = _mm_add_epi16(in2, in5); + const __m128i q3 = _mm_add_epi16(in3, in4); + const __m128i q4 = _mm_sub_epi16(in3, in4); + const __m128i q5 = _mm_sub_epi16(in2, in5); + const __m128i q6 = _mm_sub_epi16(in1, in6); + const __m128i q7 = _mm_sub_epi16(in0, in7); + // Work on first four results + { + // Add/subtract + const __m128i r0 = _mm_add_epi16(q0, q3); + const __m128i r1 = _mm_add_epi16(q1, q2); + const __m128i r2 = _mm_sub_epi16(q1, q2); + const __m128i r3 = _mm_sub_epi16(q0, q3); + // Interleave to do the multiply by constants which gets us into 32bits + const __m128i t0 = _mm_unpacklo_epi16(r0, r1); + const __m128i t1 = _mm_unpackhi_epi16(r0, r1); + const __m128i t2 = _mm_unpacklo_epi16(r2, r3); + const __m128i t3 = _mm_unpackhi_epi16(r2, r3); + const __m128i u0 = _mm_madd_epi16(t0, k__cospi_p16_p16); + const __m128i u1 = _mm_madd_epi16(t1, k__cospi_p16_p16); + const __m128i u2 = _mm_madd_epi16(t0, k__cospi_p16_m16); + const __m128i u3 = _mm_madd_epi16(t1, k__cospi_p16_m16); + const __m128i u4 = _mm_madd_epi16(t2, k__cospi_p24_p08); + const __m128i u5 = _mm_madd_epi16(t3, k__cospi_p24_p08); + const __m128i u6 = _mm_madd_epi16(t2, k__cospi_m08_p24); + const __m128i u7 = _mm_madd_epi16(t3, k__cospi_m08_p24); + // dct_const_round_shift + const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING); + const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING); + const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING); + const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING); + const __m128i v4 = _mm_add_epi32(u4, k__DCT_CONST_ROUNDING); + const __m128i v5 = _mm_add_epi32(u5, k__DCT_CONST_ROUNDING); + const __m128i v6 = _mm_add_epi32(u6, k__DCT_CONST_ROUNDING); + const __m128i v7 = _mm_add_epi32(u7, k__DCT_CONST_ROUNDING); + const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS); + const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS); + const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS); + const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS); + const __m128i w4 = _mm_srai_epi32(v4, DCT_CONST_BITS); + const __m128i w5 = _mm_srai_epi32(v5, DCT_CONST_BITS); + const __m128i w6 = _mm_srai_epi32(v6, DCT_CONST_BITS); + const __m128i w7 = _mm_srai_epi32(v7, DCT_CONST_BITS); + // Combine + res0 = _mm_packs_epi32(w0, w1); + res4 = _mm_packs_epi32(w2, w3); + res2 = _mm_packs_epi32(w4, w5); + res6 = _mm_packs_epi32(w6, w7); + } + // Work on next four results + { + // Interleave to do the multiply by constants which gets us into 32bits + const __m128i d0 = _mm_unpacklo_epi16(q6, q5); + const __m128i d1 = _mm_unpackhi_epi16(q6, q5); + const __m128i e0 = _mm_madd_epi16(d0, k__cospi_p16_m16); + const __m128i e1 = _mm_madd_epi16(d1, k__cospi_p16_m16); + const __m128i e2 = _mm_madd_epi16(d0, k__cospi_p16_p16); + const __m128i e3 = _mm_madd_epi16(d1, k__cospi_p16_p16); + // dct_const_round_shift + const __m128i f0 = _mm_add_epi32(e0, k__DCT_CONST_ROUNDING); + const __m128i f1 = _mm_add_epi32(e1, k__DCT_CONST_ROUNDING); + const __m128i f2 = _mm_add_epi32(e2, k__DCT_CONST_ROUNDING); + const __m128i f3 = _mm_add_epi32(e3, k__DCT_CONST_ROUNDING); + const __m128i s0 = _mm_srai_epi32(f0, DCT_CONST_BITS); + const __m128i s1 = _mm_srai_epi32(f1, DCT_CONST_BITS); + const __m128i s2 = _mm_srai_epi32(f2, DCT_CONST_BITS); + const __m128i s3 = _mm_srai_epi32(f3, DCT_CONST_BITS); + // Combine + const __m128i r0 = _mm_packs_epi32(s0, s1); + const __m128i r1 = _mm_packs_epi32(s2, s3); + // Add/subtract + const __m128i x0 = _mm_add_epi16(q4, r0); + const __m128i x1 = _mm_sub_epi16(q4, r0); + const __m128i x2 = _mm_sub_epi16(q7, r1); + const __m128i x3 = _mm_add_epi16(q7, r1); + // Interleave to do the multiply by constants which gets us into 32bits + const __m128i t0 = _mm_unpacklo_epi16(x0, x3); + const __m128i t1 = _mm_unpackhi_epi16(x0, x3); + const __m128i t2 = _mm_unpacklo_epi16(x1, x2); + const __m128i t3 = _mm_unpackhi_epi16(x1, x2); + const __m128i u0 = _mm_madd_epi16(t0, k__cospi_p28_p04); + const __m128i u1 = _mm_madd_epi16(t1, k__cospi_p28_p04); + const __m128i u2 = _mm_madd_epi16(t0, k__cospi_m04_p28); + const __m128i u3 = _mm_madd_epi16(t1, k__cospi_m04_p28); + const __m128i u4 = _mm_madd_epi16(t2, k__cospi_p12_p20); + const __m128i u5 = _mm_madd_epi16(t3, k__cospi_p12_p20); + const __m128i u6 = _mm_madd_epi16(t2, k__cospi_m20_p12); + const __m128i u7 = _mm_madd_epi16(t3, k__cospi_m20_p12); + // dct_const_round_shift + const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING); + const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING); + const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING); + const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING); + const __m128i v4 = _mm_add_epi32(u4, k__DCT_CONST_ROUNDING); + const __m128i v5 = _mm_add_epi32(u5, k__DCT_CONST_ROUNDING); + const __m128i v6 = _mm_add_epi32(u6, k__DCT_CONST_ROUNDING); + const __m128i v7 = _mm_add_epi32(u7, k__DCT_CONST_ROUNDING); + const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS); + const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS); + const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS); + const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS); + const __m128i w4 = _mm_srai_epi32(v4, DCT_CONST_BITS); + const __m128i w5 = _mm_srai_epi32(v5, DCT_CONST_BITS); + const __m128i w6 = _mm_srai_epi32(v6, DCT_CONST_BITS); + const __m128i w7 = _mm_srai_epi32(v7, DCT_CONST_BITS); + // Combine + res1 = _mm_packs_epi32(w0, w1); + res7 = _mm_packs_epi32(w2, w3); + res5 = _mm_packs_epi32(w4, w5); + res3 = _mm_packs_epi32(w6, w7); + } + // Transpose the 8x8. + { + // 00 01 02 03 04 05 06 07 + // 10 11 12 13 14 15 16 17 + // 20 21 22 23 24 25 26 27 + // 30 31 32 33 34 35 36 37 + // 40 41 42 43 44 45 46 47 + // 50 51 52 53 54 55 56 57 + // 60 61 62 63 64 65 66 67 + // 70 71 72 73 74 75 76 77 + const __m128i tr0_0 = _mm_unpacklo_epi16(res0, res1); + const __m128i tr0_1 = _mm_unpacklo_epi16(res2, res3); + const __m128i tr0_2 = _mm_unpackhi_epi16(res0, res1); + const __m128i tr0_3 = _mm_unpackhi_epi16(res2, res3); + const __m128i tr0_4 = _mm_unpacklo_epi16(res4, res5); + const __m128i tr0_5 = _mm_unpacklo_epi16(res6, res7); + const __m128i tr0_6 = _mm_unpackhi_epi16(res4, res5); + const __m128i tr0_7 = _mm_unpackhi_epi16(res6, res7); + // 00 10 01 11 02 12 03 13 + // 20 30 21 31 22 32 23 33 + // 04 14 05 15 06 16 07 17 + // 24 34 25 35 26 36 27 37 + // 40 50 41 51 42 52 43 53 + // 60 70 61 71 62 72 63 73 + // 54 54 55 55 56 56 57 57 + // 64 74 65 75 66 76 67 77 + const __m128i tr1_0 = _mm_unpacklo_epi32(tr0_0, tr0_1); + const __m128i tr1_1 = _mm_unpacklo_epi32(tr0_2, tr0_3); + const __m128i tr1_2 = _mm_unpackhi_epi32(tr0_0, tr0_1); + const __m128i tr1_3 = _mm_unpackhi_epi32(tr0_2, tr0_3); + const __m128i tr1_4 = _mm_unpacklo_epi32(tr0_4, tr0_5); + const __m128i tr1_5 = _mm_unpacklo_epi32(tr0_6, tr0_7); + const __m128i tr1_6 = _mm_unpackhi_epi32(tr0_4, tr0_5); + const __m128i tr1_7 = _mm_unpackhi_epi32(tr0_6, tr0_7); + // 00 10 20 30 01 11 21 31 + // 40 50 60 70 41 51 61 71 + // 02 12 22 32 03 13 23 33 + // 42 52 62 72 43 53 63 73 + // 04 14 24 34 05 15 21 36 + // 44 54 64 74 45 55 61 76 + // 06 16 26 36 07 17 27 37 + // 46 56 66 76 47 57 67 77 + in0 = _mm_unpacklo_epi64(tr1_0, tr1_4); + in1 = _mm_unpackhi_epi64(tr1_0, tr1_4); + in2 = _mm_unpacklo_epi64(tr1_2, tr1_6); + in3 = _mm_unpackhi_epi64(tr1_2, tr1_6); + in4 = _mm_unpacklo_epi64(tr1_1, tr1_5); + in5 = _mm_unpackhi_epi64(tr1_1, tr1_5); + in6 = _mm_unpacklo_epi64(tr1_3, tr1_7); + in7 = _mm_unpackhi_epi64(tr1_3, tr1_7); + // 00 10 20 30 40 50 60 70 + // 01 11 21 31 41 51 61 71 + // 02 12 22 32 42 52 62 72 + // 03 13 23 33 43 53 63 73 + // 04 14 24 34 44 54 64 74 + // 05 15 25 35 45 55 65 75 + // 06 16 26 36 46 56 66 76 + // 07 17 27 37 47 57 67 77 + } + } + // Post-condition output and store it + { + // Post-condition (division by two) + // division of two 16 bits signed numbers using shifts + // n / 2 = (n - (n >> 15)) >> 1 + const __m128i sign_in0 = _mm_srai_epi16(in0, 15); + const __m128i sign_in1 = _mm_srai_epi16(in1, 15); + const __m128i sign_in2 = _mm_srai_epi16(in2, 15); + const __m128i sign_in3 = _mm_srai_epi16(in3, 15); + const __m128i sign_in4 = _mm_srai_epi16(in4, 15); + const __m128i sign_in5 = _mm_srai_epi16(in5, 15); + const __m128i sign_in6 = _mm_srai_epi16(in6, 15); + const __m128i sign_in7 = _mm_srai_epi16(in7, 15); + in0 = _mm_sub_epi16(in0, sign_in0); + in1 = _mm_sub_epi16(in1, sign_in1); + in2 = _mm_sub_epi16(in2, sign_in2); + in3 = _mm_sub_epi16(in3, sign_in3); + in4 = _mm_sub_epi16(in4, sign_in4); + in5 = _mm_sub_epi16(in5, sign_in5); + in6 = _mm_sub_epi16(in6, sign_in6); + in7 = _mm_sub_epi16(in7, sign_in7); + in0 = _mm_srai_epi16(in0, 1); + in1 = _mm_srai_epi16(in1, 1); + in2 = _mm_srai_epi16(in2, 1); + in3 = _mm_srai_epi16(in3, 1); + in4 = _mm_srai_epi16(in4, 1); + in5 = _mm_srai_epi16(in5, 1); + in6 = _mm_srai_epi16(in6, 1); + in7 = _mm_srai_epi16(in7, 1); + } + + iscan_ptr += n_coeffs; + qcoeff_ptr += n_coeffs; + dqcoeff_ptr += n_coeffs; + n_coeffs = -n_coeffs; + zero = _mm_setzero_si128(); + + if (!skip_block) { + __m128i eob; + __m128i round, quant, dequant; + { + __m128i coeff0, coeff1; + + // Setup global values + { + round = _mm_load_si128((const __m128i *)round_ptr); + quant = _mm_load_si128((const __m128i *)quant_ptr); + dequant = _mm_load_si128((const __m128i *)dequant_ptr); + } + + { + __m128i coeff0_sign, coeff1_sign; + __m128i qcoeff0, qcoeff1; + __m128i qtmp0, qtmp1; + // Do DC and first 15 AC + coeff0 = *in[0]; + coeff1 = *in[1]; + + // Poor man's sign extract + coeff0_sign = _mm_srai_epi16(coeff0, 15); + coeff1_sign = _mm_srai_epi16(coeff1, 15); + qcoeff0 = _mm_xor_si128(coeff0, coeff0_sign); + qcoeff1 = _mm_xor_si128(coeff1, coeff1_sign); + qcoeff0 = _mm_sub_epi16(qcoeff0, coeff0_sign); + qcoeff1 = _mm_sub_epi16(qcoeff1, coeff1_sign); + + qcoeff0 = _mm_adds_epi16(qcoeff0, round); + round = _mm_unpackhi_epi64(round, round); + qcoeff1 = _mm_adds_epi16(qcoeff1, round); + qtmp0 = _mm_mulhi_epi16(qcoeff0, quant); + quant = _mm_unpackhi_epi64(quant, quant); + qtmp1 = _mm_mulhi_epi16(qcoeff1, quant); + + // Reinsert signs + qcoeff0 = _mm_xor_si128(qtmp0, coeff0_sign); + qcoeff1 = _mm_xor_si128(qtmp1, coeff1_sign); + qcoeff0 = _mm_sub_epi16(qcoeff0, coeff0_sign); + qcoeff1 = _mm_sub_epi16(qcoeff1, coeff1_sign); + + _mm_store_si128((__m128i *)(qcoeff_ptr + n_coeffs), qcoeff0); + _mm_store_si128((__m128i *)(qcoeff_ptr + n_coeffs) + 1, qcoeff1); + + coeff0 = _mm_mullo_epi16(qcoeff0, dequant); + dequant = _mm_unpackhi_epi64(dequant, dequant); + coeff1 = _mm_mullo_epi16(qcoeff1, dequant); + + _mm_store_si128((__m128i *)(dqcoeff_ptr + n_coeffs), coeff0); + _mm_store_si128((__m128i *)(dqcoeff_ptr + n_coeffs) + 1, coeff1); + } + + { + // Scan for eob + __m128i zero_coeff0, zero_coeff1; + __m128i nzero_coeff0, nzero_coeff1; + __m128i iscan0, iscan1; + __m128i eob1; + zero_coeff0 = _mm_cmpeq_epi16(coeff0, zero); + zero_coeff1 = _mm_cmpeq_epi16(coeff1, zero); + nzero_coeff0 = _mm_cmpeq_epi16(zero_coeff0, zero); + nzero_coeff1 = _mm_cmpeq_epi16(zero_coeff1, zero); + iscan0 = _mm_load_si128((const __m128i *)(iscan_ptr + n_coeffs)); + iscan1 = _mm_load_si128((const __m128i *)(iscan_ptr + n_coeffs) + 1); + // Add one to convert from indices to counts + iscan0 = _mm_sub_epi16(iscan0, nzero_coeff0); + iscan1 = _mm_sub_epi16(iscan1, nzero_coeff1); + eob = _mm_and_si128(iscan0, nzero_coeff0); + eob1 = _mm_and_si128(iscan1, nzero_coeff1); + eob = _mm_max_epi16(eob, eob1); + } + n_coeffs += 8 * 2; + } + + // AC only loop + index = 2; + while (n_coeffs < 0) { + __m128i coeff0, coeff1; + { + __m128i coeff0_sign, coeff1_sign; + __m128i qcoeff0, qcoeff1; + __m128i qtmp0, qtmp1; + + assert(index < (int)(sizeof(in) / sizeof(in[0])) - 1); + coeff0 = *in[index]; + coeff1 = *in[index + 1]; + + // Poor man's sign extract + coeff0_sign = _mm_srai_epi16(coeff0, 15); + coeff1_sign = _mm_srai_epi16(coeff1, 15); + qcoeff0 = _mm_xor_si128(coeff0, coeff0_sign); + qcoeff1 = _mm_xor_si128(coeff1, coeff1_sign); + qcoeff0 = _mm_sub_epi16(qcoeff0, coeff0_sign); + qcoeff1 = _mm_sub_epi16(qcoeff1, coeff1_sign); + + qcoeff0 = _mm_adds_epi16(qcoeff0, round); + qcoeff1 = _mm_adds_epi16(qcoeff1, round); + qtmp0 = _mm_mulhi_epi16(qcoeff0, quant); + qtmp1 = _mm_mulhi_epi16(qcoeff1, quant); + + // Reinsert signs + qcoeff0 = _mm_xor_si128(qtmp0, coeff0_sign); + qcoeff1 = _mm_xor_si128(qtmp1, coeff1_sign); + qcoeff0 = _mm_sub_epi16(qcoeff0, coeff0_sign); + qcoeff1 = _mm_sub_epi16(qcoeff1, coeff1_sign); + + _mm_store_si128((__m128i *)(qcoeff_ptr + n_coeffs), qcoeff0); + _mm_store_si128((__m128i *)(qcoeff_ptr + n_coeffs) + 1, qcoeff1); + + coeff0 = _mm_mullo_epi16(qcoeff0, dequant); + coeff1 = _mm_mullo_epi16(qcoeff1, dequant); + + _mm_store_si128((__m128i *)(dqcoeff_ptr + n_coeffs), coeff0); + _mm_store_si128((__m128i *)(dqcoeff_ptr + n_coeffs) + 1, coeff1); + } + + { + // Scan for eob + __m128i zero_coeff0, zero_coeff1; + __m128i nzero_coeff0, nzero_coeff1; + __m128i iscan0, iscan1; + __m128i eob0, eob1; + zero_coeff0 = _mm_cmpeq_epi16(coeff0, zero); + zero_coeff1 = _mm_cmpeq_epi16(coeff1, zero); + nzero_coeff0 = _mm_cmpeq_epi16(zero_coeff0, zero); + nzero_coeff1 = _mm_cmpeq_epi16(zero_coeff1, zero); + iscan0 = _mm_load_si128((const __m128i *)(iscan_ptr + n_coeffs)); + iscan1 = _mm_load_si128((const __m128i *)(iscan_ptr + n_coeffs) + 1); + // Add one to convert from indices to counts + iscan0 = _mm_sub_epi16(iscan0, nzero_coeff0); + iscan1 = _mm_sub_epi16(iscan1, nzero_coeff1); + eob0 = _mm_and_si128(iscan0, nzero_coeff0); + eob1 = _mm_and_si128(iscan1, nzero_coeff1); + eob0 = _mm_max_epi16(eob0, eob1); + eob = _mm_max_epi16(eob, eob0); + } + n_coeffs += 8 * 2; + index += 2; + } + + // Accumulate EOB + { + __m128i eob_shuffled; + eob_shuffled = _mm_shuffle_epi32(eob, 0xe); + eob = _mm_max_epi16(eob, eob_shuffled); + eob_shuffled = _mm_shufflelo_epi16(eob, 0xe); + eob = _mm_max_epi16(eob, eob_shuffled); + eob_shuffled = _mm_shufflelo_epi16(eob, 0x1); + eob = _mm_max_epi16(eob, eob_shuffled); + *eob_ptr = _mm_extract_epi16(eob, 1); + } + } else { + do { + _mm_store_si128((__m128i *)(dqcoeff_ptr + n_coeffs), zero); + _mm_store_si128((__m128i *)(dqcoeff_ptr + n_coeffs) + 1, zero); + _mm_store_si128((__m128i *)(qcoeff_ptr + n_coeffs), zero); + _mm_store_si128((__m128i *)(qcoeff_ptr + n_coeffs) + 1, zero); + n_coeffs += 8 * 2; + } while (n_coeffs < 0); + *eob_ptr = 0; + } +} + +// load 8x8 array +static INLINE void load_buffer_8x8(const int16_t *input, __m128i *in, + int stride) { + in[0] = _mm_load_si128((const __m128i *)(input + 0 * stride)); + in[1] = _mm_load_si128((const __m128i *)(input + 1 * stride)); + in[2] = _mm_load_si128((const __m128i *)(input + 2 * stride)); + in[3] = _mm_load_si128((const __m128i *)(input + 3 * stride)); + in[4] = _mm_load_si128((const __m128i *)(input + 4 * stride)); + in[5] = _mm_load_si128((const __m128i *)(input + 5 * stride)); + in[6] = _mm_load_si128((const __m128i *)(input + 6 * stride)); + in[7] = _mm_load_si128((const __m128i *)(input + 7 * stride)); + + in[0] = _mm_slli_epi16(in[0], 2); + in[1] = _mm_slli_epi16(in[1], 2); + in[2] = _mm_slli_epi16(in[2], 2); + in[3] = _mm_slli_epi16(in[3], 2); + in[4] = _mm_slli_epi16(in[4], 2); + in[5] = _mm_slli_epi16(in[5], 2); + in[6] = _mm_slli_epi16(in[6], 2); + in[7] = _mm_slli_epi16(in[7], 2); +} + +// right shift and rounding +static INLINE void right_shift_8x8(__m128i *res, const int bit) { + __m128i sign0 = _mm_srai_epi16(res[0], 15); + __m128i sign1 = _mm_srai_epi16(res[1], 15); + __m128i sign2 = _mm_srai_epi16(res[2], 15); + __m128i sign3 = _mm_srai_epi16(res[3], 15); + __m128i sign4 = _mm_srai_epi16(res[4], 15); + __m128i sign5 = _mm_srai_epi16(res[5], 15); + __m128i sign6 = _mm_srai_epi16(res[6], 15); + __m128i sign7 = _mm_srai_epi16(res[7], 15); + + if (bit == 2) { + const __m128i const_rounding = _mm_set1_epi16(1); + res[0] = _mm_add_epi16(res[0], const_rounding); + res[1] = _mm_add_epi16(res[1], const_rounding); + res[2] = _mm_add_epi16(res[2], const_rounding); + res[3] = _mm_add_epi16(res[3], const_rounding); + res[4] = _mm_add_epi16(res[4], const_rounding); + res[5] = _mm_add_epi16(res[5], const_rounding); + res[6] = _mm_add_epi16(res[6], const_rounding); + res[7] = _mm_add_epi16(res[7], const_rounding); + } + + res[0] = _mm_sub_epi16(res[0], sign0); + res[1] = _mm_sub_epi16(res[1], sign1); + res[2] = _mm_sub_epi16(res[2], sign2); + res[3] = _mm_sub_epi16(res[3], sign3); + res[4] = _mm_sub_epi16(res[4], sign4); + res[5] = _mm_sub_epi16(res[5], sign5); + res[6] = _mm_sub_epi16(res[6], sign6); + res[7] = _mm_sub_epi16(res[7], sign7); + + if (bit == 1) { + res[0] = _mm_srai_epi16(res[0], 1); + res[1] = _mm_srai_epi16(res[1], 1); + res[2] = _mm_srai_epi16(res[2], 1); + res[3] = _mm_srai_epi16(res[3], 1); + res[4] = _mm_srai_epi16(res[4], 1); + res[5] = _mm_srai_epi16(res[5], 1); + res[6] = _mm_srai_epi16(res[6], 1); + res[7] = _mm_srai_epi16(res[7], 1); + } else { + res[0] = _mm_srai_epi16(res[0], 2); + res[1] = _mm_srai_epi16(res[1], 2); + res[2] = _mm_srai_epi16(res[2], 2); + res[3] = _mm_srai_epi16(res[3], 2); + res[4] = _mm_srai_epi16(res[4], 2); + res[5] = _mm_srai_epi16(res[5], 2); + res[6] = _mm_srai_epi16(res[6], 2); + res[7] = _mm_srai_epi16(res[7], 2); + } +} + +// write 8x8 array +static INLINE void write_buffer_8x8(tran_low_t *output, __m128i *res, + int stride) { + store_output(&res[0], (output + 0 * stride)); + store_output(&res[1], (output + 1 * stride)); + store_output(&res[2], (output + 2 * stride)); + store_output(&res[3], (output + 3 * stride)); + store_output(&res[4], (output + 4 * stride)); + store_output(&res[5], (output + 5 * stride)); + store_output(&res[6], (output + 6 * stride)); + store_output(&res[7], (output + 7 * stride)); +} + +static void fdct8_sse2(__m128i *in) { + // constants + const __m128i k__cospi_p16_p16 = _mm_set1_epi16(cospi_16_64); + const __m128i k__cospi_p16_m16 = pair_set_epi16(cospi_16_64, -cospi_16_64); + const __m128i k__cospi_p24_p08 = pair_set_epi16(cospi_24_64, cospi_8_64); + const __m128i k__cospi_m08_p24 = pair_set_epi16(-cospi_8_64, cospi_24_64); + const __m128i k__cospi_p28_p04 = pair_set_epi16(cospi_28_64, cospi_4_64); + const __m128i k__cospi_m04_p28 = pair_set_epi16(-cospi_4_64, cospi_28_64); + const __m128i k__cospi_p12_p20 = pair_set_epi16(cospi_12_64, cospi_20_64); + const __m128i k__cospi_m20_p12 = pair_set_epi16(-cospi_20_64, cospi_12_64); + const __m128i k__DCT_CONST_ROUNDING = _mm_set1_epi32(DCT_CONST_ROUNDING); + __m128i u0, u1, u2, u3, u4, u5, u6, u7; + __m128i v0, v1, v2, v3, v4, v5, v6, v7; + __m128i s0, s1, s2, s3, s4, s5, s6, s7; + + // stage 1 + s0 = _mm_add_epi16(in[0], in[7]); + s1 = _mm_add_epi16(in[1], in[6]); + s2 = _mm_add_epi16(in[2], in[5]); + s3 = _mm_add_epi16(in[3], in[4]); + s4 = _mm_sub_epi16(in[3], in[4]); + s5 = _mm_sub_epi16(in[2], in[5]); + s6 = _mm_sub_epi16(in[1], in[6]); + s7 = _mm_sub_epi16(in[0], in[7]); + + u0 = _mm_add_epi16(s0, s3); + u1 = _mm_add_epi16(s1, s2); + u2 = _mm_sub_epi16(s1, s2); + u3 = _mm_sub_epi16(s0, s3); + // interleave and perform butterfly multiplication/addition + v0 = _mm_unpacklo_epi16(u0, u1); + v1 = _mm_unpackhi_epi16(u0, u1); + v2 = _mm_unpacklo_epi16(u2, u3); + v3 = _mm_unpackhi_epi16(u2, u3); + + u0 = _mm_madd_epi16(v0, k__cospi_p16_p16); + u1 = _mm_madd_epi16(v1, k__cospi_p16_p16); + u2 = _mm_madd_epi16(v0, k__cospi_p16_m16); + u3 = _mm_madd_epi16(v1, k__cospi_p16_m16); + u4 = _mm_madd_epi16(v2, k__cospi_p24_p08); + u5 = _mm_madd_epi16(v3, k__cospi_p24_p08); + u6 = _mm_madd_epi16(v2, k__cospi_m08_p24); + u7 = _mm_madd_epi16(v3, k__cospi_m08_p24); + + // shift and rounding + v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING); + v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING); + v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING); + v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING); + v4 = _mm_add_epi32(u4, k__DCT_CONST_ROUNDING); + v5 = _mm_add_epi32(u5, k__DCT_CONST_ROUNDING); + v6 = _mm_add_epi32(u6, k__DCT_CONST_ROUNDING); + v7 = _mm_add_epi32(u7, k__DCT_CONST_ROUNDING); + + u0 = _mm_srai_epi32(v0, DCT_CONST_BITS); + u1 = _mm_srai_epi32(v1, DCT_CONST_BITS); + u2 = _mm_srai_epi32(v2, DCT_CONST_BITS); + u3 = _mm_srai_epi32(v3, DCT_CONST_BITS); + u4 = _mm_srai_epi32(v4, DCT_CONST_BITS); + u5 = _mm_srai_epi32(v5, DCT_CONST_BITS); + u6 = _mm_srai_epi32(v6, DCT_CONST_BITS); + u7 = _mm_srai_epi32(v7, DCT_CONST_BITS); + + in[0] = _mm_packs_epi32(u0, u1); + in[2] = _mm_packs_epi32(u4, u5); + in[4] = _mm_packs_epi32(u2, u3); + in[6] = _mm_packs_epi32(u6, u7); + + // stage 2 + // interleave and perform butterfly multiplication/addition + u0 = _mm_unpacklo_epi16(s6, s5); + u1 = _mm_unpackhi_epi16(s6, s5); + v0 = _mm_madd_epi16(u0, k__cospi_p16_m16); + v1 = _mm_madd_epi16(u1, k__cospi_p16_m16); + v2 = _mm_madd_epi16(u0, k__cospi_p16_p16); + v3 = _mm_madd_epi16(u1, k__cospi_p16_p16); + + // shift and rounding + u0 = _mm_add_epi32(v0, k__DCT_CONST_ROUNDING); + u1 = _mm_add_epi32(v1, k__DCT_CONST_ROUNDING); + u2 = _mm_add_epi32(v2, k__DCT_CONST_ROUNDING); + u3 = _mm_add_epi32(v3, k__DCT_CONST_ROUNDING); + + v0 = _mm_srai_epi32(u0, DCT_CONST_BITS); + v1 = _mm_srai_epi32(u1, DCT_CONST_BITS); + v2 = _mm_srai_epi32(u2, DCT_CONST_BITS); + v3 = _mm_srai_epi32(u3, DCT_CONST_BITS); + + u0 = _mm_packs_epi32(v0, v1); + u1 = _mm_packs_epi32(v2, v3); + + // stage 3 + s0 = _mm_add_epi16(s4, u0); + s1 = _mm_sub_epi16(s4, u0); + s2 = _mm_sub_epi16(s7, u1); + s3 = _mm_add_epi16(s7, u1); + + // stage 4 + u0 = _mm_unpacklo_epi16(s0, s3); + u1 = _mm_unpackhi_epi16(s0, s3); + u2 = _mm_unpacklo_epi16(s1, s2); + u3 = _mm_unpackhi_epi16(s1, s2); + + v0 = _mm_madd_epi16(u0, k__cospi_p28_p04); + v1 = _mm_madd_epi16(u1, k__cospi_p28_p04); + v2 = _mm_madd_epi16(u2, k__cospi_p12_p20); + v3 = _mm_madd_epi16(u3, k__cospi_p12_p20); + v4 = _mm_madd_epi16(u2, k__cospi_m20_p12); + v5 = _mm_madd_epi16(u3, k__cospi_m20_p12); + v6 = _mm_madd_epi16(u0, k__cospi_m04_p28); + v7 = _mm_madd_epi16(u1, k__cospi_m04_p28); + + // shift and rounding + u0 = _mm_add_epi32(v0, k__DCT_CONST_ROUNDING); + u1 = _mm_add_epi32(v1, k__DCT_CONST_ROUNDING); + u2 = _mm_add_epi32(v2, k__DCT_CONST_ROUNDING); + u3 = _mm_add_epi32(v3, k__DCT_CONST_ROUNDING); + u4 = _mm_add_epi32(v4, k__DCT_CONST_ROUNDING); + u5 = _mm_add_epi32(v5, k__DCT_CONST_ROUNDING); + u6 = _mm_add_epi32(v6, k__DCT_CONST_ROUNDING); + u7 = _mm_add_epi32(v7, k__DCT_CONST_ROUNDING); + + v0 = _mm_srai_epi32(u0, DCT_CONST_BITS); + v1 = _mm_srai_epi32(u1, DCT_CONST_BITS); + v2 = _mm_srai_epi32(u2, DCT_CONST_BITS); + v3 = _mm_srai_epi32(u3, DCT_CONST_BITS); + v4 = _mm_srai_epi32(u4, DCT_CONST_BITS); + v5 = _mm_srai_epi32(u5, DCT_CONST_BITS); + v6 = _mm_srai_epi32(u6, DCT_CONST_BITS); + v7 = _mm_srai_epi32(u7, DCT_CONST_BITS); + + in[1] = _mm_packs_epi32(v0, v1); + in[3] = _mm_packs_epi32(v4, v5); + in[5] = _mm_packs_epi32(v2, v3); + in[7] = _mm_packs_epi32(v6, v7); + + // transpose + transpose_16bit_8x8(in, in); +} + +static void fadst8_sse2(__m128i *in) { + // Constants + const __m128i k__cospi_p02_p30 = pair_set_epi16(cospi_2_64, cospi_30_64); + const __m128i k__cospi_p30_m02 = pair_set_epi16(cospi_30_64, -cospi_2_64); + const __m128i k__cospi_p10_p22 = pair_set_epi16(cospi_10_64, cospi_22_64); + const __m128i k__cospi_p22_m10 = pair_set_epi16(cospi_22_64, -cospi_10_64); + const __m128i k__cospi_p18_p14 = pair_set_epi16(cospi_18_64, cospi_14_64); + const __m128i k__cospi_p14_m18 = pair_set_epi16(cospi_14_64, -cospi_18_64); + const __m128i k__cospi_p26_p06 = pair_set_epi16(cospi_26_64, cospi_6_64); + const __m128i k__cospi_p06_m26 = pair_set_epi16(cospi_6_64, -cospi_26_64); + const __m128i k__cospi_p08_p24 = pair_set_epi16(cospi_8_64, cospi_24_64); + const __m128i k__cospi_p24_m08 = pair_set_epi16(cospi_24_64, -cospi_8_64); + const __m128i k__cospi_m24_p08 = pair_set_epi16(-cospi_24_64, cospi_8_64); + const __m128i k__cospi_p16_m16 = pair_set_epi16(cospi_16_64, -cospi_16_64); + const __m128i k__cospi_p16_p16 = _mm_set1_epi16(cospi_16_64); + const __m128i k__const_0 = _mm_set1_epi16(0); + const __m128i k__DCT_CONST_ROUNDING = _mm_set1_epi32(DCT_CONST_ROUNDING); + + __m128i u0, u1, u2, u3, u4, u5, u6, u7, u8, u9, u10, u11, u12, u13, u14, u15; + __m128i v0, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15; + __m128i w0, w1, w2, w3, w4, w5, w6, w7, w8, w9, w10, w11, w12, w13, w14, w15; + __m128i s0, s1, s2, s3, s4, s5, s6, s7; + __m128i in0, in1, in2, in3, in4, in5, in6, in7; + + // properly aligned for butterfly input + in0 = in[7]; + in1 = in[0]; + in2 = in[5]; + in3 = in[2]; + in4 = in[3]; + in5 = in[4]; + in6 = in[1]; + in7 = in[6]; + + // column transformation + // stage 1 + // interleave and multiply/add into 32-bit integer + s0 = _mm_unpacklo_epi16(in0, in1); + s1 = _mm_unpackhi_epi16(in0, in1); + s2 = _mm_unpacklo_epi16(in2, in3); + s3 = _mm_unpackhi_epi16(in2, in3); + s4 = _mm_unpacklo_epi16(in4, in5); + s5 = _mm_unpackhi_epi16(in4, in5); + s6 = _mm_unpacklo_epi16(in6, in7); + s7 = _mm_unpackhi_epi16(in6, in7); + + u0 = _mm_madd_epi16(s0, k__cospi_p02_p30); + u1 = _mm_madd_epi16(s1, k__cospi_p02_p30); + u2 = _mm_madd_epi16(s0, k__cospi_p30_m02); + u3 = _mm_madd_epi16(s1, k__cospi_p30_m02); + u4 = _mm_madd_epi16(s2, k__cospi_p10_p22); + u5 = _mm_madd_epi16(s3, k__cospi_p10_p22); + u6 = _mm_madd_epi16(s2, k__cospi_p22_m10); + u7 = _mm_madd_epi16(s3, k__cospi_p22_m10); + u8 = _mm_madd_epi16(s4, k__cospi_p18_p14); + u9 = _mm_madd_epi16(s5, k__cospi_p18_p14); + u10 = _mm_madd_epi16(s4, k__cospi_p14_m18); + u11 = _mm_madd_epi16(s5, k__cospi_p14_m18); + u12 = _mm_madd_epi16(s6, k__cospi_p26_p06); + u13 = _mm_madd_epi16(s7, k__cospi_p26_p06); + u14 = _mm_madd_epi16(s6, k__cospi_p06_m26); + u15 = _mm_madd_epi16(s7, k__cospi_p06_m26); + + // addition + w0 = _mm_add_epi32(u0, u8); + w1 = _mm_add_epi32(u1, u9); + w2 = _mm_add_epi32(u2, u10); + w3 = _mm_add_epi32(u3, u11); + w4 = _mm_add_epi32(u4, u12); + w5 = _mm_add_epi32(u5, u13); + w6 = _mm_add_epi32(u6, u14); + w7 = _mm_add_epi32(u7, u15); + w8 = _mm_sub_epi32(u0, u8); + w9 = _mm_sub_epi32(u1, u9); + w10 = _mm_sub_epi32(u2, u10); + w11 = _mm_sub_epi32(u3, u11); + w12 = _mm_sub_epi32(u4, u12); + w13 = _mm_sub_epi32(u5, u13); + w14 = _mm_sub_epi32(u6, u14); + w15 = _mm_sub_epi32(u7, u15); + + // shift and rounding + v0 = _mm_add_epi32(w0, k__DCT_CONST_ROUNDING); + v1 = _mm_add_epi32(w1, k__DCT_CONST_ROUNDING); + v2 = _mm_add_epi32(w2, k__DCT_CONST_ROUNDING); + v3 = _mm_add_epi32(w3, k__DCT_CONST_ROUNDING); + v4 = _mm_add_epi32(w4, k__DCT_CONST_ROUNDING); + v5 = _mm_add_epi32(w5, k__DCT_CONST_ROUNDING); + v6 = _mm_add_epi32(w6, k__DCT_CONST_ROUNDING); + v7 = _mm_add_epi32(w7, k__DCT_CONST_ROUNDING); + v8 = _mm_add_epi32(w8, k__DCT_CONST_ROUNDING); + v9 = _mm_add_epi32(w9, k__DCT_CONST_ROUNDING); + v10 = _mm_add_epi32(w10, k__DCT_CONST_ROUNDING); + v11 = _mm_add_epi32(w11, k__DCT_CONST_ROUNDING); + v12 = _mm_add_epi32(w12, k__DCT_CONST_ROUNDING); + v13 = _mm_add_epi32(w13, k__DCT_CONST_ROUNDING); + v14 = _mm_add_epi32(w14, k__DCT_CONST_ROUNDING); + v15 = _mm_add_epi32(w15, k__DCT_CONST_ROUNDING); + + u0 = _mm_srai_epi32(v0, DCT_CONST_BITS); + u1 = _mm_srai_epi32(v1, DCT_CONST_BITS); + u2 = _mm_srai_epi32(v2, DCT_CONST_BITS); + u3 = _mm_srai_epi32(v3, DCT_CONST_BITS); + u4 = _mm_srai_epi32(v4, DCT_CONST_BITS); + u5 = _mm_srai_epi32(v5, DCT_CONST_BITS); + u6 = _mm_srai_epi32(v6, DCT_CONST_BITS); + u7 = _mm_srai_epi32(v7, DCT_CONST_BITS); + u8 = _mm_srai_epi32(v8, DCT_CONST_BITS); + u9 = _mm_srai_epi32(v9, DCT_CONST_BITS); + u10 = _mm_srai_epi32(v10, DCT_CONST_BITS); + u11 = _mm_srai_epi32(v11, DCT_CONST_BITS); + u12 = _mm_srai_epi32(v12, DCT_CONST_BITS); + u13 = _mm_srai_epi32(v13, DCT_CONST_BITS); + u14 = _mm_srai_epi32(v14, DCT_CONST_BITS); + u15 = _mm_srai_epi32(v15, DCT_CONST_BITS); + + // back to 16-bit and pack 8 integers into __m128i + in[0] = _mm_packs_epi32(u0, u1); + in[1] = _mm_packs_epi32(u2, u3); + in[2] = _mm_packs_epi32(u4, u5); + in[3] = _mm_packs_epi32(u6, u7); + in[4] = _mm_packs_epi32(u8, u9); + in[5] = _mm_packs_epi32(u10, u11); + in[6] = _mm_packs_epi32(u12, u13); + in[7] = _mm_packs_epi32(u14, u15); + + // stage 2 + s0 = _mm_add_epi16(in[0], in[2]); + s1 = _mm_add_epi16(in[1], in[3]); + s2 = _mm_sub_epi16(in[0], in[2]); + s3 = _mm_sub_epi16(in[1], in[3]); + u0 = _mm_unpacklo_epi16(in[4], in[5]); + u1 = _mm_unpackhi_epi16(in[4], in[5]); + u2 = _mm_unpacklo_epi16(in[6], in[7]); + u3 = _mm_unpackhi_epi16(in[6], in[7]); + + v0 = _mm_madd_epi16(u0, k__cospi_p08_p24); + v1 = _mm_madd_epi16(u1, k__cospi_p08_p24); + v2 = _mm_madd_epi16(u0, k__cospi_p24_m08); + v3 = _mm_madd_epi16(u1, k__cospi_p24_m08); + v4 = _mm_madd_epi16(u2, k__cospi_m24_p08); + v5 = _mm_madd_epi16(u3, k__cospi_m24_p08); + v6 = _mm_madd_epi16(u2, k__cospi_p08_p24); + v7 = _mm_madd_epi16(u3, k__cospi_p08_p24); + + w0 = _mm_add_epi32(v0, v4); + w1 = _mm_add_epi32(v1, v5); + w2 = _mm_add_epi32(v2, v6); + w3 = _mm_add_epi32(v3, v7); + w4 = _mm_sub_epi32(v0, v4); + w5 = _mm_sub_epi32(v1, v5); + w6 = _mm_sub_epi32(v2, v6); + w7 = _mm_sub_epi32(v3, v7); + + v0 = _mm_add_epi32(w0, k__DCT_CONST_ROUNDING); + v1 = _mm_add_epi32(w1, k__DCT_CONST_ROUNDING); + v2 = _mm_add_epi32(w2, k__DCT_CONST_ROUNDING); + v3 = _mm_add_epi32(w3, k__DCT_CONST_ROUNDING); + v4 = _mm_add_epi32(w4, k__DCT_CONST_ROUNDING); + v5 = _mm_add_epi32(w5, k__DCT_CONST_ROUNDING); + v6 = _mm_add_epi32(w6, k__DCT_CONST_ROUNDING); + v7 = _mm_add_epi32(w7, k__DCT_CONST_ROUNDING); + + u0 = _mm_srai_epi32(v0, DCT_CONST_BITS); + u1 = _mm_srai_epi32(v1, DCT_CONST_BITS); + u2 = _mm_srai_epi32(v2, DCT_CONST_BITS); + u3 = _mm_srai_epi32(v3, DCT_CONST_BITS); + u4 = _mm_srai_epi32(v4, DCT_CONST_BITS); + u5 = _mm_srai_epi32(v5, DCT_CONST_BITS); + u6 = _mm_srai_epi32(v6, DCT_CONST_BITS); + u7 = _mm_srai_epi32(v7, DCT_CONST_BITS); + + // back to 16-bit intergers + s4 = _mm_packs_epi32(u0, u1); + s5 = _mm_packs_epi32(u2, u3); + s6 = _mm_packs_epi32(u4, u5); + s7 = _mm_packs_epi32(u6, u7); + + // stage 3 + u0 = _mm_unpacklo_epi16(s2, s3); + u1 = _mm_unpackhi_epi16(s2, s3); + u2 = _mm_unpacklo_epi16(s6, s7); + u3 = _mm_unpackhi_epi16(s6, s7); + + v0 = _mm_madd_epi16(u0, k__cospi_p16_p16); + v1 = _mm_madd_epi16(u1, k__cospi_p16_p16); + v2 = _mm_madd_epi16(u0, k__cospi_p16_m16); + v3 = _mm_madd_epi16(u1, k__cospi_p16_m16); + v4 = _mm_madd_epi16(u2, k__cospi_p16_p16); + v5 = _mm_madd_epi16(u3, k__cospi_p16_p16); + v6 = _mm_madd_epi16(u2, k__cospi_p16_m16); + v7 = _mm_madd_epi16(u3, k__cospi_p16_m16); + + u0 = _mm_add_epi32(v0, k__DCT_CONST_ROUNDING); + u1 = _mm_add_epi32(v1, k__DCT_CONST_ROUNDING); + u2 = _mm_add_epi32(v2, k__DCT_CONST_ROUNDING); + u3 = _mm_add_epi32(v3, k__DCT_CONST_ROUNDING); + u4 = _mm_add_epi32(v4, k__DCT_CONST_ROUNDING); + u5 = _mm_add_epi32(v5, k__DCT_CONST_ROUNDING); + u6 = _mm_add_epi32(v6, k__DCT_CONST_ROUNDING); + u7 = _mm_add_epi32(v7, k__DCT_CONST_ROUNDING); + + v0 = _mm_srai_epi32(u0, DCT_CONST_BITS); + v1 = _mm_srai_epi32(u1, DCT_CONST_BITS); + v2 = _mm_srai_epi32(u2, DCT_CONST_BITS); + v3 = _mm_srai_epi32(u3, DCT_CONST_BITS); + v4 = _mm_srai_epi32(u4, DCT_CONST_BITS); + v5 = _mm_srai_epi32(u5, DCT_CONST_BITS); + v6 = _mm_srai_epi32(u6, DCT_CONST_BITS); + v7 = _mm_srai_epi32(u7, DCT_CONST_BITS); + + s2 = _mm_packs_epi32(v0, v1); + s3 = _mm_packs_epi32(v2, v3); + s6 = _mm_packs_epi32(v4, v5); + s7 = _mm_packs_epi32(v6, v7); + + // FIXME(jingning): do subtract using bit inversion? + in[0] = s0; + in[1] = _mm_sub_epi16(k__const_0, s4); + in[2] = s6; + in[3] = _mm_sub_epi16(k__const_0, s2); + in[4] = s3; + in[5] = _mm_sub_epi16(k__const_0, s7); + in[6] = s5; + in[7] = _mm_sub_epi16(k__const_0, s1); + + // transpose + transpose_16bit_8x8(in, in); +} + +void vp9_fht8x8_sse2(const int16_t *input, tran_low_t *output, int stride, + int tx_type) { + __m128i in[8]; + + switch (tx_type) { + case DCT_DCT: vpx_fdct8x8_sse2(input, output, stride); break; + case ADST_DCT: + load_buffer_8x8(input, in, stride); + fadst8_sse2(in); + fdct8_sse2(in); + right_shift_8x8(in, 1); + write_buffer_8x8(output, in, 8); + break; + case DCT_ADST: + load_buffer_8x8(input, in, stride); + fdct8_sse2(in); + fadst8_sse2(in); + right_shift_8x8(in, 1); + write_buffer_8x8(output, in, 8); + break; + case ADST_ADST: + load_buffer_8x8(input, in, stride); + fadst8_sse2(in); + fadst8_sse2(in); + right_shift_8x8(in, 1); + write_buffer_8x8(output, in, 8); + break; + default: assert(0); break; + } +} + +static INLINE void load_buffer_16x16(const int16_t *input, __m128i *in0, + __m128i *in1, int stride) { + // load first 8 columns + load_buffer_8x8(input, in0, stride); + load_buffer_8x8(input + 8 * stride, in0 + 8, stride); + + input += 8; + // load second 8 columns + load_buffer_8x8(input, in1, stride); + load_buffer_8x8(input + 8 * stride, in1 + 8, stride); +} + +static INLINE void write_buffer_16x16(tran_low_t *output, __m128i *in0, + __m128i *in1, int stride) { + // write first 8 columns + write_buffer_8x8(output, in0, stride); + write_buffer_8x8(output + 8 * stride, in0 + 8, stride); + // write second 8 columns + output += 8; + write_buffer_8x8(output, in1, stride); + write_buffer_8x8(output + 8 * stride, in1 + 8, stride); +} + +static INLINE void right_shift_16x16(__m128i *res0, __m128i *res1) { + // perform rounding operations + right_shift_8x8(res0, 2); + right_shift_8x8(res0 + 8, 2); + right_shift_8x8(res1, 2); + right_shift_8x8(res1 + 8, 2); +} + +static void fdct16_8col(__m128i *in) { + // perform 16x16 1-D DCT for 8 columns + __m128i i[8], s[8], p[8], t[8], u[16], v[16]; + const __m128i k__cospi_p16_p16 = _mm_set1_epi16(cospi_16_64); + const __m128i k__cospi_p16_m16 = pair_set_epi16(cospi_16_64, -cospi_16_64); + const __m128i k__cospi_m16_p16 = pair_set_epi16(-cospi_16_64, cospi_16_64); + const __m128i k__cospi_p24_p08 = pair_set_epi16(cospi_24_64, cospi_8_64); + const __m128i k__cospi_p08_m24 = pair_set_epi16(cospi_8_64, -cospi_24_64); + const __m128i k__cospi_m08_p24 = pair_set_epi16(-cospi_8_64, cospi_24_64); + const __m128i k__cospi_p28_p04 = pair_set_epi16(cospi_28_64, cospi_4_64); + const __m128i k__cospi_m04_p28 = pair_set_epi16(-cospi_4_64, cospi_28_64); + const __m128i k__cospi_p12_p20 = pair_set_epi16(cospi_12_64, cospi_20_64); + const __m128i k__cospi_m20_p12 = pair_set_epi16(-cospi_20_64, cospi_12_64); + const __m128i k__cospi_p30_p02 = pair_set_epi16(cospi_30_64, cospi_2_64); + const __m128i k__cospi_p14_p18 = pair_set_epi16(cospi_14_64, cospi_18_64); + const __m128i k__cospi_m02_p30 = pair_set_epi16(-cospi_2_64, cospi_30_64); + const __m128i k__cospi_m18_p14 = pair_set_epi16(-cospi_18_64, cospi_14_64); + const __m128i k__cospi_p22_p10 = pair_set_epi16(cospi_22_64, cospi_10_64); + const __m128i k__cospi_p06_p26 = pair_set_epi16(cospi_6_64, cospi_26_64); + const __m128i k__cospi_m10_p22 = pair_set_epi16(-cospi_10_64, cospi_22_64); + const __m128i k__cospi_m26_p06 = pair_set_epi16(-cospi_26_64, cospi_6_64); + const __m128i k__DCT_CONST_ROUNDING = _mm_set1_epi32(DCT_CONST_ROUNDING); + + // stage 1 + i[0] = _mm_add_epi16(in[0], in[15]); + i[1] = _mm_add_epi16(in[1], in[14]); + i[2] = _mm_add_epi16(in[2], in[13]); + i[3] = _mm_add_epi16(in[3], in[12]); + i[4] = _mm_add_epi16(in[4], in[11]); + i[5] = _mm_add_epi16(in[5], in[10]); + i[6] = _mm_add_epi16(in[6], in[9]); + i[7] = _mm_add_epi16(in[7], in[8]); + + s[0] = _mm_sub_epi16(in[7], in[8]); + s[1] = _mm_sub_epi16(in[6], in[9]); + s[2] = _mm_sub_epi16(in[5], in[10]); + s[3] = _mm_sub_epi16(in[4], in[11]); + s[4] = _mm_sub_epi16(in[3], in[12]); + s[5] = _mm_sub_epi16(in[2], in[13]); + s[6] = _mm_sub_epi16(in[1], in[14]); + s[7] = _mm_sub_epi16(in[0], in[15]); + + p[0] = _mm_add_epi16(i[0], i[7]); + p[1] = _mm_add_epi16(i[1], i[6]); + p[2] = _mm_add_epi16(i[2], i[5]); + p[3] = _mm_add_epi16(i[3], i[4]); + p[4] = _mm_sub_epi16(i[3], i[4]); + p[5] = _mm_sub_epi16(i[2], i[5]); + p[6] = _mm_sub_epi16(i[1], i[6]); + p[7] = _mm_sub_epi16(i[0], i[7]); + + u[0] = _mm_add_epi16(p[0], p[3]); + u[1] = _mm_add_epi16(p[1], p[2]); + u[2] = _mm_sub_epi16(p[1], p[2]); + u[3] = _mm_sub_epi16(p[0], p[3]); + + v[0] = _mm_unpacklo_epi16(u[0], u[1]); + v[1] = _mm_unpackhi_epi16(u[0], u[1]); + v[2] = _mm_unpacklo_epi16(u[2], u[3]); + v[3] = _mm_unpackhi_epi16(u[2], u[3]); + + u[0] = _mm_madd_epi16(v[0], k__cospi_p16_p16); + u[1] = _mm_madd_epi16(v[1], k__cospi_p16_p16); + u[2] = _mm_madd_epi16(v[0], k__cospi_p16_m16); + u[3] = _mm_madd_epi16(v[1], k__cospi_p16_m16); + u[4] = _mm_madd_epi16(v[2], k__cospi_p24_p08); + u[5] = _mm_madd_epi16(v[3], k__cospi_p24_p08); + u[6] = _mm_madd_epi16(v[2], k__cospi_m08_p24); + u[7] = _mm_madd_epi16(v[3], k__cospi_m08_p24); + + v[0] = _mm_add_epi32(u[0], k__DCT_CONST_ROUNDING); + v[1] = _mm_add_epi32(u[1], k__DCT_CONST_ROUNDING); + v[2] = _mm_add_epi32(u[2], k__DCT_CONST_ROUNDING); + v[3] = _mm_add_epi32(u[3], k__DCT_CONST_ROUNDING); + v[4] = _mm_add_epi32(u[4], k__DCT_CONST_ROUNDING); + v[5] = _mm_add_epi32(u[5], k__DCT_CONST_ROUNDING); + v[6] = _mm_add_epi32(u[6], k__DCT_CONST_ROUNDING); + v[7] = _mm_add_epi32(u[7], k__DCT_CONST_ROUNDING); + + u[0] = _mm_srai_epi32(v[0], DCT_CONST_BITS); + u[1] = _mm_srai_epi32(v[1], DCT_CONST_BITS); + u[2] = _mm_srai_epi32(v[2], DCT_CONST_BITS); + u[3] = _mm_srai_epi32(v[3], DCT_CONST_BITS); + u[4] = _mm_srai_epi32(v[4], DCT_CONST_BITS); + u[5] = _mm_srai_epi32(v[5], DCT_CONST_BITS); + u[6] = _mm_srai_epi32(v[6], DCT_CONST_BITS); + u[7] = _mm_srai_epi32(v[7], DCT_CONST_BITS); + + in[0] = _mm_packs_epi32(u[0], u[1]); + in[4] = _mm_packs_epi32(u[4], u[5]); + in[8] = _mm_packs_epi32(u[2], u[3]); + in[12] = _mm_packs_epi32(u[6], u[7]); + + u[0] = _mm_unpacklo_epi16(p[5], p[6]); + u[1] = _mm_unpackhi_epi16(p[5], p[6]); + v[0] = _mm_madd_epi16(u[0], k__cospi_m16_p16); + v[1] = _mm_madd_epi16(u[1], k__cospi_m16_p16); + v[2] = _mm_madd_epi16(u[0], k__cospi_p16_p16); + v[3] = _mm_madd_epi16(u[1], k__cospi_p16_p16); + + u[0] = _mm_add_epi32(v[0], k__DCT_CONST_ROUNDING); + u[1] = _mm_add_epi32(v[1], k__DCT_CONST_ROUNDING); + u[2] = _mm_add_epi32(v[2], k__DCT_CONST_ROUNDING); + u[3] = _mm_add_epi32(v[3], k__DCT_CONST_ROUNDING); + + v[0] = _mm_srai_epi32(u[0], DCT_CONST_BITS); + v[1] = _mm_srai_epi32(u[1], DCT_CONST_BITS); + v[2] = _mm_srai_epi32(u[2], DCT_CONST_BITS); + v[3] = _mm_srai_epi32(u[3], DCT_CONST_BITS); + + u[0] = _mm_packs_epi32(v[0], v[1]); + u[1] = _mm_packs_epi32(v[2], v[3]); + + t[0] = _mm_add_epi16(p[4], u[0]); + t[1] = _mm_sub_epi16(p[4], u[0]); + t[2] = _mm_sub_epi16(p[7], u[1]); + t[3] = _mm_add_epi16(p[7], u[1]); + + u[0] = _mm_unpacklo_epi16(t[0], t[3]); + u[1] = _mm_unpackhi_epi16(t[0], t[3]); + u[2] = _mm_unpacklo_epi16(t[1], t[2]); + u[3] = _mm_unpackhi_epi16(t[1], t[2]); + + v[0] = _mm_madd_epi16(u[0], k__cospi_p28_p04); + v[1] = _mm_madd_epi16(u[1], k__cospi_p28_p04); + v[2] = _mm_madd_epi16(u[2], k__cospi_p12_p20); + v[3] = _mm_madd_epi16(u[3], k__cospi_p12_p20); + v[4] = _mm_madd_epi16(u[2], k__cospi_m20_p12); + v[5] = _mm_madd_epi16(u[3], k__cospi_m20_p12); + v[6] = _mm_madd_epi16(u[0], k__cospi_m04_p28); + v[7] = _mm_madd_epi16(u[1], k__cospi_m04_p28); + + u[0] = _mm_add_epi32(v[0], k__DCT_CONST_ROUNDING); + u[1] = _mm_add_epi32(v[1], k__DCT_CONST_ROUNDING); + u[2] = _mm_add_epi32(v[2], k__DCT_CONST_ROUNDING); + u[3] = _mm_add_epi32(v[3], k__DCT_CONST_ROUNDING); + u[4] = _mm_add_epi32(v[4], k__DCT_CONST_ROUNDING); + u[5] = _mm_add_epi32(v[5], k__DCT_CONST_ROUNDING); + u[6] = _mm_add_epi32(v[6], k__DCT_CONST_ROUNDING); + u[7] = _mm_add_epi32(v[7], k__DCT_CONST_ROUNDING); + + v[0] = _mm_srai_epi32(u[0], DCT_CONST_BITS); + v[1] = _mm_srai_epi32(u[1], DCT_CONST_BITS); + v[2] = _mm_srai_epi32(u[2], DCT_CONST_BITS); + v[3] = _mm_srai_epi32(u[3], DCT_CONST_BITS); + v[4] = _mm_srai_epi32(u[4], DCT_CONST_BITS); + v[5] = _mm_srai_epi32(u[5], DCT_CONST_BITS); + v[6] = _mm_srai_epi32(u[6], DCT_CONST_BITS); + v[7] = _mm_srai_epi32(u[7], DCT_CONST_BITS); + + in[2] = _mm_packs_epi32(v[0], v[1]); + in[6] = _mm_packs_epi32(v[4], v[5]); + in[10] = _mm_packs_epi32(v[2], v[3]); + in[14] = _mm_packs_epi32(v[6], v[7]); + + // stage 2 + u[0] = _mm_unpacklo_epi16(s[2], s[5]); + u[1] = _mm_unpackhi_epi16(s[2], s[5]); + u[2] = _mm_unpacklo_epi16(s[3], s[4]); + u[3] = _mm_unpackhi_epi16(s[3], s[4]); + + v[0] = _mm_madd_epi16(u[0], k__cospi_m16_p16); + v[1] = _mm_madd_epi16(u[1], k__cospi_m16_p16); + v[2] = _mm_madd_epi16(u[2], k__cospi_m16_p16); + v[3] = _mm_madd_epi16(u[3], k__cospi_m16_p16); + v[4] = _mm_madd_epi16(u[2], k__cospi_p16_p16); + v[5] = _mm_madd_epi16(u[3], k__cospi_p16_p16); + v[6] = _mm_madd_epi16(u[0], k__cospi_p16_p16); + v[7] = _mm_madd_epi16(u[1], k__cospi_p16_p16); + + u[0] = _mm_add_epi32(v[0], k__DCT_CONST_ROUNDING); + u[1] = _mm_add_epi32(v[1], k__DCT_CONST_ROUNDING); + u[2] = _mm_add_epi32(v[2], k__DCT_CONST_ROUNDING); + u[3] = _mm_add_epi32(v[3], k__DCT_CONST_ROUNDING); + u[4] = _mm_add_epi32(v[4], k__DCT_CONST_ROUNDING); + u[5] = _mm_add_epi32(v[5], k__DCT_CONST_ROUNDING); + u[6] = _mm_add_epi32(v[6], k__DCT_CONST_ROUNDING); + u[7] = _mm_add_epi32(v[7], k__DCT_CONST_ROUNDING); + + v[0] = _mm_srai_epi32(u[0], DCT_CONST_BITS); + v[1] = _mm_srai_epi32(u[1], DCT_CONST_BITS); + v[2] = _mm_srai_epi32(u[2], DCT_CONST_BITS); + v[3] = _mm_srai_epi32(u[3], DCT_CONST_BITS); + v[4] = _mm_srai_epi32(u[4], DCT_CONST_BITS); + v[5] = _mm_srai_epi32(u[5], DCT_CONST_BITS); + v[6] = _mm_srai_epi32(u[6], DCT_CONST_BITS); + v[7] = _mm_srai_epi32(u[7], DCT_CONST_BITS); + + t[2] = _mm_packs_epi32(v[0], v[1]); + t[3] = _mm_packs_epi32(v[2], v[3]); + t[4] = _mm_packs_epi32(v[4], v[5]); + t[5] = _mm_packs_epi32(v[6], v[7]); + + // stage 3 + p[0] = _mm_add_epi16(s[0], t[3]); + p[1] = _mm_add_epi16(s[1], t[2]); + p[2] = _mm_sub_epi16(s[1], t[2]); + p[3] = _mm_sub_epi16(s[0], t[3]); + p[4] = _mm_sub_epi16(s[7], t[4]); + p[5] = _mm_sub_epi16(s[6], t[5]); + p[6] = _mm_add_epi16(s[6], t[5]); + p[7] = _mm_add_epi16(s[7], t[4]); + + // stage 4 + u[0] = _mm_unpacklo_epi16(p[1], p[6]); + u[1] = _mm_unpackhi_epi16(p[1], p[6]); + u[2] = _mm_unpacklo_epi16(p[2], p[5]); + u[3] = _mm_unpackhi_epi16(p[2], p[5]); + + v[0] = _mm_madd_epi16(u[0], k__cospi_m08_p24); + v[1] = _mm_madd_epi16(u[1], k__cospi_m08_p24); + v[2] = _mm_madd_epi16(u[2], k__cospi_p24_p08); + v[3] = _mm_madd_epi16(u[3], k__cospi_p24_p08); + v[4] = _mm_madd_epi16(u[2], k__cospi_p08_m24); + v[5] = _mm_madd_epi16(u[3], k__cospi_p08_m24); + v[6] = _mm_madd_epi16(u[0], k__cospi_p24_p08); + v[7] = _mm_madd_epi16(u[1], k__cospi_p24_p08); + + u[0] = _mm_add_epi32(v[0], k__DCT_CONST_ROUNDING); + u[1] = _mm_add_epi32(v[1], k__DCT_CONST_ROUNDING); + u[2] = _mm_add_epi32(v[2], k__DCT_CONST_ROUNDING); + u[3] = _mm_add_epi32(v[3], k__DCT_CONST_ROUNDING); + u[4] = _mm_add_epi32(v[4], k__DCT_CONST_ROUNDING); + u[5] = _mm_add_epi32(v[5], k__DCT_CONST_ROUNDING); + u[6] = _mm_add_epi32(v[6], k__DCT_CONST_ROUNDING); + u[7] = _mm_add_epi32(v[7], k__DCT_CONST_ROUNDING); + + v[0] = _mm_srai_epi32(u[0], DCT_CONST_BITS); + v[1] = _mm_srai_epi32(u[1], DCT_CONST_BITS); + v[2] = _mm_srai_epi32(u[2], DCT_CONST_BITS); + v[3] = _mm_srai_epi32(u[3], DCT_CONST_BITS); + v[4] = _mm_srai_epi32(u[4], DCT_CONST_BITS); + v[5] = _mm_srai_epi32(u[5], DCT_CONST_BITS); + v[6] = _mm_srai_epi32(u[6], DCT_CONST_BITS); + v[7] = _mm_srai_epi32(u[7], DCT_CONST_BITS); + + t[1] = _mm_packs_epi32(v[0], v[1]); + t[2] = _mm_packs_epi32(v[2], v[3]); + t[5] = _mm_packs_epi32(v[4], v[5]); + t[6] = _mm_packs_epi32(v[6], v[7]); + + // stage 5 + s[0] = _mm_add_epi16(p[0], t[1]); + s[1] = _mm_sub_epi16(p[0], t[1]); + s[2] = _mm_add_epi16(p[3], t[2]); + s[3] = _mm_sub_epi16(p[3], t[2]); + s[4] = _mm_sub_epi16(p[4], t[5]); + s[5] = _mm_add_epi16(p[4], t[5]); + s[6] = _mm_sub_epi16(p[7], t[6]); + s[7] = _mm_add_epi16(p[7], t[6]); + + // stage 6 + u[0] = _mm_unpacklo_epi16(s[0], s[7]); + u[1] = _mm_unpackhi_epi16(s[0], s[7]); + u[2] = _mm_unpacklo_epi16(s[1], s[6]); + u[3] = _mm_unpackhi_epi16(s[1], s[6]); + u[4] = _mm_unpacklo_epi16(s[2], s[5]); + u[5] = _mm_unpackhi_epi16(s[2], s[5]); + u[6] = _mm_unpacklo_epi16(s[3], s[4]); + u[7] = _mm_unpackhi_epi16(s[3], s[4]); + + v[0] = _mm_madd_epi16(u[0], k__cospi_p30_p02); + v[1] = _mm_madd_epi16(u[1], k__cospi_p30_p02); + v[2] = _mm_madd_epi16(u[2], k__cospi_p14_p18); + v[3] = _mm_madd_epi16(u[3], k__cospi_p14_p18); + v[4] = _mm_madd_epi16(u[4], k__cospi_p22_p10); + v[5] = _mm_madd_epi16(u[5], k__cospi_p22_p10); + v[6] = _mm_madd_epi16(u[6], k__cospi_p06_p26); + v[7] = _mm_madd_epi16(u[7], k__cospi_p06_p26); + v[8] = _mm_madd_epi16(u[6], k__cospi_m26_p06); + v[9] = _mm_madd_epi16(u[7], k__cospi_m26_p06); + v[10] = _mm_madd_epi16(u[4], k__cospi_m10_p22); + v[11] = _mm_madd_epi16(u[5], k__cospi_m10_p22); + v[12] = _mm_madd_epi16(u[2], k__cospi_m18_p14); + v[13] = _mm_madd_epi16(u[3], k__cospi_m18_p14); + v[14] = _mm_madd_epi16(u[0], k__cospi_m02_p30); + v[15] = _mm_madd_epi16(u[1], k__cospi_m02_p30); + + u[0] = _mm_add_epi32(v[0], k__DCT_CONST_ROUNDING); + u[1] = _mm_add_epi32(v[1], k__DCT_CONST_ROUNDING); + u[2] = _mm_add_epi32(v[2], k__DCT_CONST_ROUNDING); + u[3] = _mm_add_epi32(v[3], k__DCT_CONST_ROUNDING); + u[4] = _mm_add_epi32(v[4], k__DCT_CONST_ROUNDING); + u[5] = _mm_add_epi32(v[5], k__DCT_CONST_ROUNDING); + u[6] = _mm_add_epi32(v[6], k__DCT_CONST_ROUNDING); + u[7] = _mm_add_epi32(v[7], k__DCT_CONST_ROUNDING); + u[8] = _mm_add_epi32(v[8], k__DCT_CONST_ROUNDING); + u[9] = _mm_add_epi32(v[9], k__DCT_CONST_ROUNDING); + u[10] = _mm_add_epi32(v[10], k__DCT_CONST_ROUNDING); + u[11] = _mm_add_epi32(v[11], k__DCT_CONST_ROUNDING); + u[12] = _mm_add_epi32(v[12], k__DCT_CONST_ROUNDING); + u[13] = _mm_add_epi32(v[13], k__DCT_CONST_ROUNDING); + u[14] = _mm_add_epi32(v[14], k__DCT_CONST_ROUNDING); + u[15] = _mm_add_epi32(v[15], k__DCT_CONST_ROUNDING); + + v[0] = _mm_srai_epi32(u[0], DCT_CONST_BITS); + v[1] = _mm_srai_epi32(u[1], DCT_CONST_BITS); + v[2] = _mm_srai_epi32(u[2], DCT_CONST_BITS); + v[3] = _mm_srai_epi32(u[3], DCT_CONST_BITS); + v[4] = _mm_srai_epi32(u[4], DCT_CONST_BITS); + v[5] = _mm_srai_epi32(u[5], DCT_CONST_BITS); + v[6] = _mm_srai_epi32(u[6], DCT_CONST_BITS); + v[7] = _mm_srai_epi32(u[7], DCT_CONST_BITS); + v[8] = _mm_srai_epi32(u[8], DCT_CONST_BITS); + v[9] = _mm_srai_epi32(u[9], DCT_CONST_BITS); + v[10] = _mm_srai_epi32(u[10], DCT_CONST_BITS); + v[11] = _mm_srai_epi32(u[11], DCT_CONST_BITS); + v[12] = _mm_srai_epi32(u[12], DCT_CONST_BITS); + v[13] = _mm_srai_epi32(u[13], DCT_CONST_BITS); + v[14] = _mm_srai_epi32(u[14], DCT_CONST_BITS); + v[15] = _mm_srai_epi32(u[15], DCT_CONST_BITS); + + in[1] = _mm_packs_epi32(v[0], v[1]); + in[9] = _mm_packs_epi32(v[2], v[3]); + in[5] = _mm_packs_epi32(v[4], v[5]); + in[13] = _mm_packs_epi32(v[6], v[7]); + in[3] = _mm_packs_epi32(v[8], v[9]); + in[11] = _mm_packs_epi32(v[10], v[11]); + in[7] = _mm_packs_epi32(v[12], v[13]); + in[15] = _mm_packs_epi32(v[14], v[15]); +} + +static void fadst16_8col(__m128i *in) { + // perform 16x16 1-D ADST for 8 columns + __m128i s[16], x[16], u[32], v[32]; + const __m128i k__cospi_p01_p31 = pair_set_epi16(cospi_1_64, cospi_31_64); + const __m128i k__cospi_p31_m01 = pair_set_epi16(cospi_31_64, -cospi_1_64); + const __m128i k__cospi_p05_p27 = pair_set_epi16(cospi_5_64, cospi_27_64); + const __m128i k__cospi_p27_m05 = pair_set_epi16(cospi_27_64, -cospi_5_64); + const __m128i k__cospi_p09_p23 = pair_set_epi16(cospi_9_64, cospi_23_64); + const __m128i k__cospi_p23_m09 = pair_set_epi16(cospi_23_64, -cospi_9_64); + const __m128i k__cospi_p13_p19 = pair_set_epi16(cospi_13_64, cospi_19_64); + const __m128i k__cospi_p19_m13 = pair_set_epi16(cospi_19_64, -cospi_13_64); + const __m128i k__cospi_p17_p15 = pair_set_epi16(cospi_17_64, cospi_15_64); + const __m128i k__cospi_p15_m17 = pair_set_epi16(cospi_15_64, -cospi_17_64); + const __m128i k__cospi_p21_p11 = pair_set_epi16(cospi_21_64, cospi_11_64); + const __m128i k__cospi_p11_m21 = pair_set_epi16(cospi_11_64, -cospi_21_64); + const __m128i k__cospi_p25_p07 = pair_set_epi16(cospi_25_64, cospi_7_64); + const __m128i k__cospi_p07_m25 = pair_set_epi16(cospi_7_64, -cospi_25_64); + const __m128i k__cospi_p29_p03 = pair_set_epi16(cospi_29_64, cospi_3_64); + const __m128i k__cospi_p03_m29 = pair_set_epi16(cospi_3_64, -cospi_29_64); + const __m128i k__cospi_p04_p28 = pair_set_epi16(cospi_4_64, cospi_28_64); + const __m128i k__cospi_p28_m04 = pair_set_epi16(cospi_28_64, -cospi_4_64); + const __m128i k__cospi_p20_p12 = pair_set_epi16(cospi_20_64, cospi_12_64); + const __m128i k__cospi_p12_m20 = pair_set_epi16(cospi_12_64, -cospi_20_64); + const __m128i k__cospi_m28_p04 = pair_set_epi16(-cospi_28_64, cospi_4_64); + const __m128i k__cospi_m12_p20 = pair_set_epi16(-cospi_12_64, cospi_20_64); + const __m128i k__cospi_p08_p24 = pair_set_epi16(cospi_8_64, cospi_24_64); + const __m128i k__cospi_p24_m08 = pair_set_epi16(cospi_24_64, -cospi_8_64); + const __m128i k__cospi_m24_p08 = pair_set_epi16(-cospi_24_64, cospi_8_64); + const __m128i k__cospi_m16_m16 = _mm_set1_epi16(-cospi_16_64); + const __m128i k__cospi_p16_p16 = _mm_set1_epi16(cospi_16_64); + const __m128i k__cospi_p16_m16 = pair_set_epi16(cospi_16_64, -cospi_16_64); + const __m128i k__cospi_m16_p16 = pair_set_epi16(-cospi_16_64, cospi_16_64); + const __m128i k__DCT_CONST_ROUNDING = _mm_set1_epi32(DCT_CONST_ROUNDING); + const __m128i kZero = _mm_set1_epi16(0); + + u[0] = _mm_unpacklo_epi16(in[15], in[0]); + u[1] = _mm_unpackhi_epi16(in[15], in[0]); + u[2] = _mm_unpacklo_epi16(in[13], in[2]); + u[3] = _mm_unpackhi_epi16(in[13], in[2]); + u[4] = _mm_unpacklo_epi16(in[11], in[4]); + u[5] = _mm_unpackhi_epi16(in[11], in[4]); + u[6] = _mm_unpacklo_epi16(in[9], in[6]); + u[7] = _mm_unpackhi_epi16(in[9], in[6]); + u[8] = _mm_unpacklo_epi16(in[7], in[8]); + u[9] = _mm_unpackhi_epi16(in[7], in[8]); + u[10] = _mm_unpacklo_epi16(in[5], in[10]); + u[11] = _mm_unpackhi_epi16(in[5], in[10]); + u[12] = _mm_unpacklo_epi16(in[3], in[12]); + u[13] = _mm_unpackhi_epi16(in[3], in[12]); + u[14] = _mm_unpacklo_epi16(in[1], in[14]); + u[15] = _mm_unpackhi_epi16(in[1], in[14]); + + v[0] = _mm_madd_epi16(u[0], k__cospi_p01_p31); + v[1] = _mm_madd_epi16(u[1], k__cospi_p01_p31); + v[2] = _mm_madd_epi16(u[0], k__cospi_p31_m01); + v[3] = _mm_madd_epi16(u[1], k__cospi_p31_m01); + v[4] = _mm_madd_epi16(u[2], k__cospi_p05_p27); + v[5] = _mm_madd_epi16(u[3], k__cospi_p05_p27); + v[6] = _mm_madd_epi16(u[2], k__cospi_p27_m05); + v[7] = _mm_madd_epi16(u[3], k__cospi_p27_m05); + v[8] = _mm_madd_epi16(u[4], k__cospi_p09_p23); + v[9] = _mm_madd_epi16(u[5], k__cospi_p09_p23); + v[10] = _mm_madd_epi16(u[4], k__cospi_p23_m09); + v[11] = _mm_madd_epi16(u[5], k__cospi_p23_m09); + v[12] = _mm_madd_epi16(u[6], k__cospi_p13_p19); + v[13] = _mm_madd_epi16(u[7], k__cospi_p13_p19); + v[14] = _mm_madd_epi16(u[6], k__cospi_p19_m13); + v[15] = _mm_madd_epi16(u[7], k__cospi_p19_m13); + v[16] = _mm_madd_epi16(u[8], k__cospi_p17_p15); + v[17] = _mm_madd_epi16(u[9], k__cospi_p17_p15); + v[18] = _mm_madd_epi16(u[8], k__cospi_p15_m17); + v[19] = _mm_madd_epi16(u[9], k__cospi_p15_m17); + v[20] = _mm_madd_epi16(u[10], k__cospi_p21_p11); + v[21] = _mm_madd_epi16(u[11], k__cospi_p21_p11); + v[22] = _mm_madd_epi16(u[10], k__cospi_p11_m21); + v[23] = _mm_madd_epi16(u[11], k__cospi_p11_m21); + v[24] = _mm_madd_epi16(u[12], k__cospi_p25_p07); + v[25] = _mm_madd_epi16(u[13], k__cospi_p25_p07); + v[26] = _mm_madd_epi16(u[12], k__cospi_p07_m25); + v[27] = _mm_madd_epi16(u[13], k__cospi_p07_m25); + v[28] = _mm_madd_epi16(u[14], k__cospi_p29_p03); + v[29] = _mm_madd_epi16(u[15], k__cospi_p29_p03); + v[30] = _mm_madd_epi16(u[14], k__cospi_p03_m29); + v[31] = _mm_madd_epi16(u[15], k__cospi_p03_m29); + + u[0] = _mm_add_epi32(v[0], v[16]); + u[1] = _mm_add_epi32(v[1], v[17]); + u[2] = _mm_add_epi32(v[2], v[18]); + u[3] = _mm_add_epi32(v[3], v[19]); + u[4] = _mm_add_epi32(v[4], v[20]); + u[5] = _mm_add_epi32(v[5], v[21]); + u[6] = _mm_add_epi32(v[6], v[22]); + u[7] = _mm_add_epi32(v[7], v[23]); + u[8] = _mm_add_epi32(v[8], v[24]); + u[9] = _mm_add_epi32(v[9], v[25]); + u[10] = _mm_add_epi32(v[10], v[26]); + u[11] = _mm_add_epi32(v[11], v[27]); + u[12] = _mm_add_epi32(v[12], v[28]); + u[13] = _mm_add_epi32(v[13], v[29]); + u[14] = _mm_add_epi32(v[14], v[30]); + u[15] = _mm_add_epi32(v[15], v[31]); + u[16] = _mm_sub_epi32(v[0], v[16]); + u[17] = _mm_sub_epi32(v[1], v[17]); + u[18] = _mm_sub_epi32(v[2], v[18]); + u[19] = _mm_sub_epi32(v[3], v[19]); + u[20] = _mm_sub_epi32(v[4], v[20]); + u[21] = _mm_sub_epi32(v[5], v[21]); + u[22] = _mm_sub_epi32(v[6], v[22]); + u[23] = _mm_sub_epi32(v[7], v[23]); + u[24] = _mm_sub_epi32(v[8], v[24]); + u[25] = _mm_sub_epi32(v[9], v[25]); + u[26] = _mm_sub_epi32(v[10], v[26]); + u[27] = _mm_sub_epi32(v[11], v[27]); + u[28] = _mm_sub_epi32(v[12], v[28]); + u[29] = _mm_sub_epi32(v[13], v[29]); + u[30] = _mm_sub_epi32(v[14], v[30]); + u[31] = _mm_sub_epi32(v[15], v[31]); + + v[0] = _mm_add_epi32(u[0], k__DCT_CONST_ROUNDING); + v[1] = _mm_add_epi32(u[1], k__DCT_CONST_ROUNDING); + v[2] = _mm_add_epi32(u[2], k__DCT_CONST_ROUNDING); + v[3] = _mm_add_epi32(u[3], k__DCT_CONST_ROUNDING); + v[4] = _mm_add_epi32(u[4], k__DCT_CONST_ROUNDING); + v[5] = _mm_add_epi32(u[5], k__DCT_CONST_ROUNDING); + v[6] = _mm_add_epi32(u[6], k__DCT_CONST_ROUNDING); + v[7] = _mm_add_epi32(u[7], k__DCT_CONST_ROUNDING); + v[8] = _mm_add_epi32(u[8], k__DCT_CONST_ROUNDING); + v[9] = _mm_add_epi32(u[9], k__DCT_CONST_ROUNDING); + v[10] = _mm_add_epi32(u[10], k__DCT_CONST_ROUNDING); + v[11] = _mm_add_epi32(u[11], k__DCT_CONST_ROUNDING); + v[12] = _mm_add_epi32(u[12], k__DCT_CONST_ROUNDING); + v[13] = _mm_add_epi32(u[13], k__DCT_CONST_ROUNDING); + v[14] = _mm_add_epi32(u[14], k__DCT_CONST_ROUNDING); + v[15] = _mm_add_epi32(u[15], k__DCT_CONST_ROUNDING); + v[16] = _mm_add_epi32(u[16], k__DCT_CONST_ROUNDING); + v[17] = _mm_add_epi32(u[17], k__DCT_CONST_ROUNDING); + v[18] = _mm_add_epi32(u[18], k__DCT_CONST_ROUNDING); + v[19] = _mm_add_epi32(u[19], k__DCT_CONST_ROUNDING); + v[20] = _mm_add_epi32(u[20], k__DCT_CONST_ROUNDING); + v[21] = _mm_add_epi32(u[21], k__DCT_CONST_ROUNDING); + v[22] = _mm_add_epi32(u[22], k__DCT_CONST_ROUNDING); + v[23] = _mm_add_epi32(u[23], k__DCT_CONST_ROUNDING); + v[24] = _mm_add_epi32(u[24], k__DCT_CONST_ROUNDING); + v[25] = _mm_add_epi32(u[25], k__DCT_CONST_ROUNDING); + v[26] = _mm_add_epi32(u[26], k__DCT_CONST_ROUNDING); + v[27] = _mm_add_epi32(u[27], k__DCT_CONST_ROUNDING); + v[28] = _mm_add_epi32(u[28], k__DCT_CONST_ROUNDING); + v[29] = _mm_add_epi32(u[29], k__DCT_CONST_ROUNDING); + v[30] = _mm_add_epi32(u[30], k__DCT_CONST_ROUNDING); + v[31] = _mm_add_epi32(u[31], k__DCT_CONST_ROUNDING); + + u[0] = _mm_srai_epi32(v[0], DCT_CONST_BITS); + u[1] = _mm_srai_epi32(v[1], DCT_CONST_BITS); + u[2] = _mm_srai_epi32(v[2], DCT_CONST_BITS); + u[3] = _mm_srai_epi32(v[3], DCT_CONST_BITS); + u[4] = _mm_srai_epi32(v[4], DCT_CONST_BITS); + u[5] = _mm_srai_epi32(v[5], DCT_CONST_BITS); + u[6] = _mm_srai_epi32(v[6], DCT_CONST_BITS); + u[7] = _mm_srai_epi32(v[7], DCT_CONST_BITS); + u[8] = _mm_srai_epi32(v[8], DCT_CONST_BITS); + u[9] = _mm_srai_epi32(v[9], DCT_CONST_BITS); + u[10] = _mm_srai_epi32(v[10], DCT_CONST_BITS); + u[11] = _mm_srai_epi32(v[11], DCT_CONST_BITS); + u[12] = _mm_srai_epi32(v[12], DCT_CONST_BITS); + u[13] = _mm_srai_epi32(v[13], DCT_CONST_BITS); + u[14] = _mm_srai_epi32(v[14], DCT_CONST_BITS); + u[15] = _mm_srai_epi32(v[15], DCT_CONST_BITS); + u[16] = _mm_srai_epi32(v[16], DCT_CONST_BITS); + u[17] = _mm_srai_epi32(v[17], DCT_CONST_BITS); + u[18] = _mm_srai_epi32(v[18], DCT_CONST_BITS); + u[19] = _mm_srai_epi32(v[19], DCT_CONST_BITS); + u[20] = _mm_srai_epi32(v[20], DCT_CONST_BITS); + u[21] = _mm_srai_epi32(v[21], DCT_CONST_BITS); + u[22] = _mm_srai_epi32(v[22], DCT_CONST_BITS); + u[23] = _mm_srai_epi32(v[23], DCT_CONST_BITS); + u[24] = _mm_srai_epi32(v[24], DCT_CONST_BITS); + u[25] = _mm_srai_epi32(v[25], DCT_CONST_BITS); + u[26] = _mm_srai_epi32(v[26], DCT_CONST_BITS); + u[27] = _mm_srai_epi32(v[27], DCT_CONST_BITS); + u[28] = _mm_srai_epi32(v[28], DCT_CONST_BITS); + u[29] = _mm_srai_epi32(v[29], DCT_CONST_BITS); + u[30] = _mm_srai_epi32(v[30], DCT_CONST_BITS); + u[31] = _mm_srai_epi32(v[31], DCT_CONST_BITS); + + s[0] = _mm_packs_epi32(u[0], u[1]); + s[1] = _mm_packs_epi32(u[2], u[3]); + s[2] = _mm_packs_epi32(u[4], u[5]); + s[3] = _mm_packs_epi32(u[6], u[7]); + s[4] = _mm_packs_epi32(u[8], u[9]); + s[5] = _mm_packs_epi32(u[10], u[11]); + s[6] = _mm_packs_epi32(u[12], u[13]); + s[7] = _mm_packs_epi32(u[14], u[15]); + s[8] = _mm_packs_epi32(u[16], u[17]); + s[9] = _mm_packs_epi32(u[18], u[19]); + s[10] = _mm_packs_epi32(u[20], u[21]); + s[11] = _mm_packs_epi32(u[22], u[23]); + s[12] = _mm_packs_epi32(u[24], u[25]); + s[13] = _mm_packs_epi32(u[26], u[27]); + s[14] = _mm_packs_epi32(u[28], u[29]); + s[15] = _mm_packs_epi32(u[30], u[31]); + + // stage 2 + u[0] = _mm_unpacklo_epi16(s[8], s[9]); + u[1] = _mm_unpackhi_epi16(s[8], s[9]); + u[2] = _mm_unpacklo_epi16(s[10], s[11]); + u[3] = _mm_unpackhi_epi16(s[10], s[11]); + u[4] = _mm_unpacklo_epi16(s[12], s[13]); + u[5] = _mm_unpackhi_epi16(s[12], s[13]); + u[6] = _mm_unpacklo_epi16(s[14], s[15]); + u[7] = _mm_unpackhi_epi16(s[14], s[15]); + + v[0] = _mm_madd_epi16(u[0], k__cospi_p04_p28); + v[1] = _mm_madd_epi16(u[1], k__cospi_p04_p28); + v[2] = _mm_madd_epi16(u[0], k__cospi_p28_m04); + v[3] = _mm_madd_epi16(u[1], k__cospi_p28_m04); + v[4] = _mm_madd_epi16(u[2], k__cospi_p20_p12); + v[5] = _mm_madd_epi16(u[3], k__cospi_p20_p12); + v[6] = _mm_madd_epi16(u[2], k__cospi_p12_m20); + v[7] = _mm_madd_epi16(u[3], k__cospi_p12_m20); + v[8] = _mm_madd_epi16(u[4], k__cospi_m28_p04); + v[9] = _mm_madd_epi16(u[5], k__cospi_m28_p04); + v[10] = _mm_madd_epi16(u[4], k__cospi_p04_p28); + v[11] = _mm_madd_epi16(u[5], k__cospi_p04_p28); + v[12] = _mm_madd_epi16(u[6], k__cospi_m12_p20); + v[13] = _mm_madd_epi16(u[7], k__cospi_m12_p20); + v[14] = _mm_madd_epi16(u[6], k__cospi_p20_p12); + v[15] = _mm_madd_epi16(u[7], k__cospi_p20_p12); + + u[0] = _mm_add_epi32(v[0], v[8]); + u[1] = _mm_add_epi32(v[1], v[9]); + u[2] = _mm_add_epi32(v[2], v[10]); + u[3] = _mm_add_epi32(v[3], v[11]); + u[4] = _mm_add_epi32(v[4], v[12]); + u[5] = _mm_add_epi32(v[5], v[13]); + u[6] = _mm_add_epi32(v[6], v[14]); + u[7] = _mm_add_epi32(v[7], v[15]); + u[8] = _mm_sub_epi32(v[0], v[8]); + u[9] = _mm_sub_epi32(v[1], v[9]); + u[10] = _mm_sub_epi32(v[2], v[10]); + u[11] = _mm_sub_epi32(v[3], v[11]); + u[12] = _mm_sub_epi32(v[4], v[12]); + u[13] = _mm_sub_epi32(v[5], v[13]); + u[14] = _mm_sub_epi32(v[6], v[14]); + u[15] = _mm_sub_epi32(v[7], v[15]); + + v[0] = _mm_add_epi32(u[0], k__DCT_CONST_ROUNDING); + v[1] = _mm_add_epi32(u[1], k__DCT_CONST_ROUNDING); + v[2] = _mm_add_epi32(u[2], k__DCT_CONST_ROUNDING); + v[3] = _mm_add_epi32(u[3], k__DCT_CONST_ROUNDING); + v[4] = _mm_add_epi32(u[4], k__DCT_CONST_ROUNDING); + v[5] = _mm_add_epi32(u[5], k__DCT_CONST_ROUNDING); + v[6] = _mm_add_epi32(u[6], k__DCT_CONST_ROUNDING); + v[7] = _mm_add_epi32(u[7], k__DCT_CONST_ROUNDING); + v[8] = _mm_add_epi32(u[8], k__DCT_CONST_ROUNDING); + v[9] = _mm_add_epi32(u[9], k__DCT_CONST_ROUNDING); + v[10] = _mm_add_epi32(u[10], k__DCT_CONST_ROUNDING); + v[11] = _mm_add_epi32(u[11], k__DCT_CONST_ROUNDING); + v[12] = _mm_add_epi32(u[12], k__DCT_CONST_ROUNDING); + v[13] = _mm_add_epi32(u[13], k__DCT_CONST_ROUNDING); + v[14] = _mm_add_epi32(u[14], k__DCT_CONST_ROUNDING); + v[15] = _mm_add_epi32(u[15], k__DCT_CONST_ROUNDING); + + u[0] = _mm_srai_epi32(v[0], DCT_CONST_BITS); + u[1] = _mm_srai_epi32(v[1], DCT_CONST_BITS); + u[2] = _mm_srai_epi32(v[2], DCT_CONST_BITS); + u[3] = _mm_srai_epi32(v[3], DCT_CONST_BITS); + u[4] = _mm_srai_epi32(v[4], DCT_CONST_BITS); + u[5] = _mm_srai_epi32(v[5], DCT_CONST_BITS); + u[6] = _mm_srai_epi32(v[6], DCT_CONST_BITS); + u[7] = _mm_srai_epi32(v[7], DCT_CONST_BITS); + u[8] = _mm_srai_epi32(v[8], DCT_CONST_BITS); + u[9] = _mm_srai_epi32(v[9], DCT_CONST_BITS); + u[10] = _mm_srai_epi32(v[10], DCT_CONST_BITS); + u[11] = _mm_srai_epi32(v[11], DCT_CONST_BITS); + u[12] = _mm_srai_epi32(v[12], DCT_CONST_BITS); + u[13] = _mm_srai_epi32(v[13], DCT_CONST_BITS); + u[14] = _mm_srai_epi32(v[14], DCT_CONST_BITS); + u[15] = _mm_srai_epi32(v[15], DCT_CONST_BITS); + + x[0] = _mm_add_epi16(s[0], s[4]); + x[1] = _mm_add_epi16(s[1], s[5]); + x[2] = _mm_add_epi16(s[2], s[6]); + x[3] = _mm_add_epi16(s[3], s[7]); + x[4] = _mm_sub_epi16(s[0], s[4]); + x[5] = _mm_sub_epi16(s[1], s[5]); + x[6] = _mm_sub_epi16(s[2], s[6]); + x[7] = _mm_sub_epi16(s[3], s[7]); + x[8] = _mm_packs_epi32(u[0], u[1]); + x[9] = _mm_packs_epi32(u[2], u[3]); + x[10] = _mm_packs_epi32(u[4], u[5]); + x[11] = _mm_packs_epi32(u[6], u[7]); + x[12] = _mm_packs_epi32(u[8], u[9]); + x[13] = _mm_packs_epi32(u[10], u[11]); + x[14] = _mm_packs_epi32(u[12], u[13]); + x[15] = _mm_packs_epi32(u[14], u[15]); + + // stage 3 + u[0] = _mm_unpacklo_epi16(x[4], x[5]); + u[1] = _mm_unpackhi_epi16(x[4], x[5]); + u[2] = _mm_unpacklo_epi16(x[6], x[7]); + u[3] = _mm_unpackhi_epi16(x[6], x[7]); + u[4] = _mm_unpacklo_epi16(x[12], x[13]); + u[5] = _mm_unpackhi_epi16(x[12], x[13]); + u[6] = _mm_unpacklo_epi16(x[14], x[15]); + u[7] = _mm_unpackhi_epi16(x[14], x[15]); + + v[0] = _mm_madd_epi16(u[0], k__cospi_p08_p24); + v[1] = _mm_madd_epi16(u[1], k__cospi_p08_p24); + v[2] = _mm_madd_epi16(u[0], k__cospi_p24_m08); + v[3] = _mm_madd_epi16(u[1], k__cospi_p24_m08); + v[4] = _mm_madd_epi16(u[2], k__cospi_m24_p08); + v[5] = _mm_madd_epi16(u[3], k__cospi_m24_p08); + v[6] = _mm_madd_epi16(u[2], k__cospi_p08_p24); + v[7] = _mm_madd_epi16(u[3], k__cospi_p08_p24); + v[8] = _mm_madd_epi16(u[4], k__cospi_p08_p24); + v[9] = _mm_madd_epi16(u[5], k__cospi_p08_p24); + v[10] = _mm_madd_epi16(u[4], k__cospi_p24_m08); + v[11] = _mm_madd_epi16(u[5], k__cospi_p24_m08); + v[12] = _mm_madd_epi16(u[6], k__cospi_m24_p08); + v[13] = _mm_madd_epi16(u[7], k__cospi_m24_p08); + v[14] = _mm_madd_epi16(u[6], k__cospi_p08_p24); + v[15] = _mm_madd_epi16(u[7], k__cospi_p08_p24); + + u[0] = _mm_add_epi32(v[0], v[4]); + u[1] = _mm_add_epi32(v[1], v[5]); + u[2] = _mm_add_epi32(v[2], v[6]); + u[3] = _mm_add_epi32(v[3], v[7]); + u[4] = _mm_sub_epi32(v[0], v[4]); + u[5] = _mm_sub_epi32(v[1], v[5]); + u[6] = _mm_sub_epi32(v[2], v[6]); + u[7] = _mm_sub_epi32(v[3], v[7]); + u[8] = _mm_add_epi32(v[8], v[12]); + u[9] = _mm_add_epi32(v[9], v[13]); + u[10] = _mm_add_epi32(v[10], v[14]); + u[11] = _mm_add_epi32(v[11], v[15]); + u[12] = _mm_sub_epi32(v[8], v[12]); + u[13] = _mm_sub_epi32(v[9], v[13]); + u[14] = _mm_sub_epi32(v[10], v[14]); + u[15] = _mm_sub_epi32(v[11], v[15]); + + u[0] = _mm_add_epi32(u[0], k__DCT_CONST_ROUNDING); + u[1] = _mm_add_epi32(u[1], k__DCT_CONST_ROUNDING); + u[2] = _mm_add_epi32(u[2], k__DCT_CONST_ROUNDING); + u[3] = _mm_add_epi32(u[3], k__DCT_CONST_ROUNDING); + u[4] = _mm_add_epi32(u[4], k__DCT_CONST_ROUNDING); + u[5] = _mm_add_epi32(u[5], k__DCT_CONST_ROUNDING); + u[6] = _mm_add_epi32(u[6], k__DCT_CONST_ROUNDING); + u[7] = _mm_add_epi32(u[7], k__DCT_CONST_ROUNDING); + u[8] = _mm_add_epi32(u[8], k__DCT_CONST_ROUNDING); + u[9] = _mm_add_epi32(u[9], k__DCT_CONST_ROUNDING); + u[10] = _mm_add_epi32(u[10], k__DCT_CONST_ROUNDING); + u[11] = _mm_add_epi32(u[11], k__DCT_CONST_ROUNDING); + u[12] = _mm_add_epi32(u[12], k__DCT_CONST_ROUNDING); + u[13] = _mm_add_epi32(u[13], k__DCT_CONST_ROUNDING); + u[14] = _mm_add_epi32(u[14], k__DCT_CONST_ROUNDING); + u[15] = _mm_add_epi32(u[15], k__DCT_CONST_ROUNDING); + + v[0] = _mm_srai_epi32(u[0], DCT_CONST_BITS); + v[1] = _mm_srai_epi32(u[1], DCT_CONST_BITS); + v[2] = _mm_srai_epi32(u[2], DCT_CONST_BITS); + v[3] = _mm_srai_epi32(u[3], DCT_CONST_BITS); + v[4] = _mm_srai_epi32(u[4], DCT_CONST_BITS); + v[5] = _mm_srai_epi32(u[5], DCT_CONST_BITS); + v[6] = _mm_srai_epi32(u[6], DCT_CONST_BITS); + v[7] = _mm_srai_epi32(u[7], DCT_CONST_BITS); + v[8] = _mm_srai_epi32(u[8], DCT_CONST_BITS); + v[9] = _mm_srai_epi32(u[9], DCT_CONST_BITS); + v[10] = _mm_srai_epi32(u[10], DCT_CONST_BITS); + v[11] = _mm_srai_epi32(u[11], DCT_CONST_BITS); + v[12] = _mm_srai_epi32(u[12], DCT_CONST_BITS); + v[13] = _mm_srai_epi32(u[13], DCT_CONST_BITS); + v[14] = _mm_srai_epi32(u[14], DCT_CONST_BITS); + v[15] = _mm_srai_epi32(u[15], DCT_CONST_BITS); + + s[0] = _mm_add_epi16(x[0], x[2]); + s[1] = _mm_add_epi16(x[1], x[3]); + s[2] = _mm_sub_epi16(x[0], x[2]); + s[3] = _mm_sub_epi16(x[1], x[3]); + s[4] = _mm_packs_epi32(v[0], v[1]); + s[5] = _mm_packs_epi32(v[2], v[3]); + s[6] = _mm_packs_epi32(v[4], v[5]); + s[7] = _mm_packs_epi32(v[6], v[7]); + s[8] = _mm_add_epi16(x[8], x[10]); + s[9] = _mm_add_epi16(x[9], x[11]); + s[10] = _mm_sub_epi16(x[8], x[10]); + s[11] = _mm_sub_epi16(x[9], x[11]); + s[12] = _mm_packs_epi32(v[8], v[9]); + s[13] = _mm_packs_epi32(v[10], v[11]); + s[14] = _mm_packs_epi32(v[12], v[13]); + s[15] = _mm_packs_epi32(v[14], v[15]); + + // stage 4 + u[0] = _mm_unpacklo_epi16(s[2], s[3]); + u[1] = _mm_unpackhi_epi16(s[2], s[3]); + u[2] = _mm_unpacklo_epi16(s[6], s[7]); + u[3] = _mm_unpackhi_epi16(s[6], s[7]); + u[4] = _mm_unpacklo_epi16(s[10], s[11]); + u[5] = _mm_unpackhi_epi16(s[10], s[11]); + u[6] = _mm_unpacklo_epi16(s[14], s[15]); + u[7] = _mm_unpackhi_epi16(s[14], s[15]); + + v[0] = _mm_madd_epi16(u[0], k__cospi_m16_m16); + v[1] = _mm_madd_epi16(u[1], k__cospi_m16_m16); + v[2] = _mm_madd_epi16(u[0], k__cospi_p16_m16); + v[3] = _mm_madd_epi16(u[1], k__cospi_p16_m16); + v[4] = _mm_madd_epi16(u[2], k__cospi_p16_p16); + v[5] = _mm_madd_epi16(u[3], k__cospi_p16_p16); + v[6] = _mm_madd_epi16(u[2], k__cospi_m16_p16); + v[7] = _mm_madd_epi16(u[3], k__cospi_m16_p16); + v[8] = _mm_madd_epi16(u[4], k__cospi_p16_p16); + v[9] = _mm_madd_epi16(u[5], k__cospi_p16_p16); + v[10] = _mm_madd_epi16(u[4], k__cospi_m16_p16); + v[11] = _mm_madd_epi16(u[5], k__cospi_m16_p16); + v[12] = _mm_madd_epi16(u[6], k__cospi_m16_m16); + v[13] = _mm_madd_epi16(u[7], k__cospi_m16_m16); + v[14] = _mm_madd_epi16(u[6], k__cospi_p16_m16); + v[15] = _mm_madd_epi16(u[7], k__cospi_p16_m16); + + u[0] = _mm_add_epi32(v[0], k__DCT_CONST_ROUNDING); + u[1] = _mm_add_epi32(v[1], k__DCT_CONST_ROUNDING); + u[2] = _mm_add_epi32(v[2], k__DCT_CONST_ROUNDING); + u[3] = _mm_add_epi32(v[3], k__DCT_CONST_ROUNDING); + u[4] = _mm_add_epi32(v[4], k__DCT_CONST_ROUNDING); + u[5] = _mm_add_epi32(v[5], k__DCT_CONST_ROUNDING); + u[6] = _mm_add_epi32(v[6], k__DCT_CONST_ROUNDING); + u[7] = _mm_add_epi32(v[7], k__DCT_CONST_ROUNDING); + u[8] = _mm_add_epi32(v[8], k__DCT_CONST_ROUNDING); + u[9] = _mm_add_epi32(v[9], k__DCT_CONST_ROUNDING); + u[10] = _mm_add_epi32(v[10], k__DCT_CONST_ROUNDING); + u[11] = _mm_add_epi32(v[11], k__DCT_CONST_ROUNDING); + u[12] = _mm_add_epi32(v[12], k__DCT_CONST_ROUNDING); + u[13] = _mm_add_epi32(v[13], k__DCT_CONST_ROUNDING); + u[14] = _mm_add_epi32(v[14], k__DCT_CONST_ROUNDING); + u[15] = _mm_add_epi32(v[15], k__DCT_CONST_ROUNDING); + + v[0] = _mm_srai_epi32(u[0], DCT_CONST_BITS); + v[1] = _mm_srai_epi32(u[1], DCT_CONST_BITS); + v[2] = _mm_srai_epi32(u[2], DCT_CONST_BITS); + v[3] = _mm_srai_epi32(u[3], DCT_CONST_BITS); + v[4] = _mm_srai_epi32(u[4], DCT_CONST_BITS); + v[5] = _mm_srai_epi32(u[5], DCT_CONST_BITS); + v[6] = _mm_srai_epi32(u[6], DCT_CONST_BITS); + v[7] = _mm_srai_epi32(u[7], DCT_CONST_BITS); + v[8] = _mm_srai_epi32(u[8], DCT_CONST_BITS); + v[9] = _mm_srai_epi32(u[9], DCT_CONST_BITS); + v[10] = _mm_srai_epi32(u[10], DCT_CONST_BITS); + v[11] = _mm_srai_epi32(u[11], DCT_CONST_BITS); + v[12] = _mm_srai_epi32(u[12], DCT_CONST_BITS); + v[13] = _mm_srai_epi32(u[13], DCT_CONST_BITS); + v[14] = _mm_srai_epi32(u[14], DCT_CONST_BITS); + v[15] = _mm_srai_epi32(u[15], DCT_CONST_BITS); + + in[0] = s[0]; + in[1] = _mm_sub_epi16(kZero, s[8]); + in[2] = s[12]; + in[3] = _mm_sub_epi16(kZero, s[4]); + in[4] = _mm_packs_epi32(v[4], v[5]); + in[5] = _mm_packs_epi32(v[12], v[13]); + in[6] = _mm_packs_epi32(v[8], v[9]); + in[7] = _mm_packs_epi32(v[0], v[1]); + in[8] = _mm_packs_epi32(v[2], v[3]); + in[9] = _mm_packs_epi32(v[10], v[11]); + in[10] = _mm_packs_epi32(v[14], v[15]); + in[11] = _mm_packs_epi32(v[6], v[7]); + in[12] = s[5]; + in[13] = _mm_sub_epi16(kZero, s[13]); + in[14] = s[9]; + in[15] = _mm_sub_epi16(kZero, s[1]); +} + +static void fdct16_sse2(__m128i *in0, __m128i *in1) { + fdct16_8col(in0); + fdct16_8col(in1); + transpose_16bit_16x16(in0, in1); +} + +static void fadst16_sse2(__m128i *in0, __m128i *in1) { + fadst16_8col(in0); + fadst16_8col(in1); + transpose_16bit_16x16(in0, in1); +} + +void vp9_fht16x16_sse2(const int16_t *input, tran_low_t *output, int stride, + int tx_type) { + __m128i in0[16], in1[16]; + + switch (tx_type) { + case DCT_DCT: vpx_fdct16x16_sse2(input, output, stride); break; + case ADST_DCT: + load_buffer_16x16(input, in0, in1, stride); + fadst16_sse2(in0, in1); + right_shift_16x16(in0, in1); + fdct16_sse2(in0, in1); + write_buffer_16x16(output, in0, in1, 16); + break; + case DCT_ADST: + load_buffer_16x16(input, in0, in1, stride); + fdct16_sse2(in0, in1); + right_shift_16x16(in0, in1); + fadst16_sse2(in0, in1); + write_buffer_16x16(output, in0, in1, 16); + break; + case ADST_ADST: + load_buffer_16x16(input, in0, in1, stride); + fadst16_sse2(in0, in1); + right_shift_16x16(in0, in1); + fadst16_sse2(in0, in1); + write_buffer_16x16(output, in0, in1, 16); + break; + default: assert(0); break; + } +} diff --git a/vp9/encoder/x86/vp9_dct_sse2.asm b/vp9/encoder/x86/vp9_dct_sse2.asm new file mode 100644 index 0000000..8152dce --- /dev/null +++ b/vp9/encoder/x86/vp9_dct_sse2.asm @@ -0,0 +1,69 @@ +; +; Copyright (c) 2016 The WebM project authors. All Rights Reserved. +; +; Use of this source code is governed by a BSD-style license +; that can be found in the LICENSE file in the root of the source +; tree. An additional intellectual property rights grant can be found +; in the file PATENTS. All contributing project authors may +; be found in the AUTHORS file in the root of the source tree. +; + +%define private_prefix vp9 + +%include "third_party/x86inc/x86inc.asm" +%include "vpx_dsp/x86/bitdepth_conversion_sse2.asm" + +SECTION .text + +%macro TRANSFORM_COLS 0 + paddw m0, m1 + movq m4, m0 + psubw m3, m2 + psubw m4, m3 + psraw m4, 1 + movq m5, m4 + psubw m5, m1 ;b1 + psubw m4, m2 ;c1 + psubw m0, m4 + paddw m3, m5 + ; m0 a0 + SWAP 1, 4 ; m1 c1 + SWAP 2, 3 ; m2 d1 + SWAP 3, 5 ; m3 b1 +%endmacro + +%macro TRANSPOSE_4X4 0 + ; 00 01 02 03 + ; 10 11 12 13 + ; 20 21 22 23 + ; 30 31 32 33 + punpcklwd m0, m1 ; 00 10 01 11 02 12 03 13 + punpcklwd m2, m3 ; 20 30 21 31 22 32 23 33 + mova m1, m0 + punpckldq m0, m2 ; 00 10 20 30 01 11 21 31 + punpckhdq m1, m2 ; 02 12 22 32 03 13 23 33 +%endmacro + +INIT_XMM sse2 +cglobal fwht4x4, 3, 4, 8, input, output, stride + lea r3q, [inputq + strideq*4] + movq m0, [inputq] ;a1 + movq m1, [inputq + strideq*2] ;b1 + movq m2, [r3q] ;c1 + movq m3, [r3q + strideq*2] ;d1 + + TRANSFORM_COLS + TRANSPOSE_4X4 + SWAP 1, 2 + psrldq m1, m0, 8 + psrldq m3, m2, 8 + TRANSFORM_COLS + TRANSPOSE_4X4 + + psllw m0, 2 + psllw m1, 2 + + STORE_TRAN_LOW 0, outputq, 0, 2, 3 + STORE_TRAN_LOW 1, outputq, 8, 2, 3 + + RET diff --git a/vp9/encoder/x86/vp9_dct_ssse3.c b/vp9/encoder/x86/vp9_dct_ssse3.c new file mode 100644 index 0000000..bf874a0 --- /dev/null +++ b/vp9/encoder/x86/vp9_dct_ssse3.c @@ -0,0 +1,465 @@ +/* + * Copyright (c) 2014 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include // SSSE3 + +#include "./vp9_rtcd.h" +#include "./vpx_config.h" +#include "vpx_dsp/vpx_dsp_common.h" +#include "vpx_dsp/x86/bitdepth_conversion_sse2.h" +#include "vpx_dsp/x86/inv_txfm_sse2.h" +#include "vpx_dsp/x86/txfm_common_sse2.h" + +void vp9_fdct8x8_quant_ssse3( + const int16_t *input, int stride, tran_low_t *coeff_ptr, intptr_t n_coeffs, + int skip_block, const int16_t *round_ptr, const int16_t *quant_ptr, + tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr, const int16_t *dequant_ptr, + uint16_t *eob_ptr, const int16_t *scan_ptr, const int16_t *iscan_ptr) { + __m128i zero; + int pass; + + // Constants + // When we use them, in one case, they are all the same. In all others + // it's a pair of them that we need to repeat four times. This is done + // by constructing the 32 bit constant corresponding to that pair. + const __m128i k__dual_p16_p16 = dual_set_epi16(23170, 23170); + const __m128i k__cospi_p16_p16 = _mm_set1_epi16(cospi_16_64); + const __m128i k__cospi_p16_m16 = pair_set_epi16(cospi_16_64, -cospi_16_64); + const __m128i k__cospi_p24_p08 = pair_set_epi16(cospi_24_64, cospi_8_64); + const __m128i k__cospi_m08_p24 = pair_set_epi16(-cospi_8_64, cospi_24_64); + const __m128i k__cospi_p28_p04 = pair_set_epi16(cospi_28_64, cospi_4_64); + const __m128i k__cospi_m04_p28 = pair_set_epi16(-cospi_4_64, cospi_28_64); + const __m128i k__cospi_p12_p20 = pair_set_epi16(cospi_12_64, cospi_20_64); + const __m128i k__cospi_m20_p12 = pair_set_epi16(-cospi_20_64, cospi_12_64); + const __m128i k__DCT_CONST_ROUNDING = _mm_set1_epi32(DCT_CONST_ROUNDING); + // Load input + __m128i in0 = _mm_load_si128((const __m128i *)(input + 0 * stride)); + __m128i in1 = _mm_load_si128((const __m128i *)(input + 1 * stride)); + __m128i in2 = _mm_load_si128((const __m128i *)(input + 2 * stride)); + __m128i in3 = _mm_load_si128((const __m128i *)(input + 3 * stride)); + __m128i in4 = _mm_load_si128((const __m128i *)(input + 4 * stride)); + __m128i in5 = _mm_load_si128((const __m128i *)(input + 5 * stride)); + __m128i in6 = _mm_load_si128((const __m128i *)(input + 6 * stride)); + __m128i in7 = _mm_load_si128((const __m128i *)(input + 7 * stride)); + __m128i *in[8]; + int index = 0; + + (void)scan_ptr; + (void)coeff_ptr; + + // Pre-condition input (shift by two) + in0 = _mm_slli_epi16(in0, 2); + in1 = _mm_slli_epi16(in1, 2); + in2 = _mm_slli_epi16(in2, 2); + in3 = _mm_slli_epi16(in3, 2); + in4 = _mm_slli_epi16(in4, 2); + in5 = _mm_slli_epi16(in5, 2); + in6 = _mm_slli_epi16(in6, 2); + in7 = _mm_slli_epi16(in7, 2); + + in[0] = &in0; + in[1] = &in1; + in[2] = &in2; + in[3] = &in3; + in[4] = &in4; + in[5] = &in5; + in[6] = &in6; + in[7] = &in7; + + // We do two passes, first the columns, then the rows. The results of the + // first pass are transposed so that the same column code can be reused. The + // results of the second pass are also transposed so that the rows (processed + // as columns) are put back in row positions. + for (pass = 0; pass < 2; pass++) { + // To store results of each pass before the transpose. + __m128i res0, res1, res2, res3, res4, res5, res6, res7; + // Add/subtract + const __m128i q0 = _mm_add_epi16(in0, in7); + const __m128i q1 = _mm_add_epi16(in1, in6); + const __m128i q2 = _mm_add_epi16(in2, in5); + const __m128i q3 = _mm_add_epi16(in3, in4); + const __m128i q4 = _mm_sub_epi16(in3, in4); + const __m128i q5 = _mm_sub_epi16(in2, in5); + const __m128i q6 = _mm_sub_epi16(in1, in6); + const __m128i q7 = _mm_sub_epi16(in0, in7); + // Work on first four results + { + // Add/subtract + const __m128i r0 = _mm_add_epi16(q0, q3); + const __m128i r1 = _mm_add_epi16(q1, q2); + const __m128i r2 = _mm_sub_epi16(q1, q2); + const __m128i r3 = _mm_sub_epi16(q0, q3); + // Interleave to do the multiply by constants which gets us into 32bits + const __m128i t0 = _mm_unpacklo_epi16(r0, r1); + const __m128i t1 = _mm_unpackhi_epi16(r0, r1); + const __m128i t2 = _mm_unpacklo_epi16(r2, r3); + const __m128i t3 = _mm_unpackhi_epi16(r2, r3); + + const __m128i u0 = _mm_madd_epi16(t0, k__cospi_p16_p16); + const __m128i u1 = _mm_madd_epi16(t1, k__cospi_p16_p16); + const __m128i u2 = _mm_madd_epi16(t0, k__cospi_p16_m16); + const __m128i u3 = _mm_madd_epi16(t1, k__cospi_p16_m16); + + const __m128i u4 = _mm_madd_epi16(t2, k__cospi_p24_p08); + const __m128i u5 = _mm_madd_epi16(t3, k__cospi_p24_p08); + const __m128i u6 = _mm_madd_epi16(t2, k__cospi_m08_p24); + const __m128i u7 = _mm_madd_epi16(t3, k__cospi_m08_p24); + // dct_const_round_shift + + const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING); + const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING); + const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING); + const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING); + + const __m128i v4 = _mm_add_epi32(u4, k__DCT_CONST_ROUNDING); + const __m128i v5 = _mm_add_epi32(u5, k__DCT_CONST_ROUNDING); + const __m128i v6 = _mm_add_epi32(u6, k__DCT_CONST_ROUNDING); + const __m128i v7 = _mm_add_epi32(u7, k__DCT_CONST_ROUNDING); + + const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS); + const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS); + const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS); + const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS); + + const __m128i w4 = _mm_srai_epi32(v4, DCT_CONST_BITS); + const __m128i w5 = _mm_srai_epi32(v5, DCT_CONST_BITS); + const __m128i w6 = _mm_srai_epi32(v6, DCT_CONST_BITS); + const __m128i w7 = _mm_srai_epi32(v7, DCT_CONST_BITS); + // Combine + + res0 = _mm_packs_epi32(w0, w1); + res4 = _mm_packs_epi32(w2, w3); + res2 = _mm_packs_epi32(w4, w5); + res6 = _mm_packs_epi32(w6, w7); + } + // Work on next four results + { + // Interleave to do the multiply by constants which gets us into 32bits + const __m128i d0 = _mm_sub_epi16(q6, q5); + const __m128i d1 = _mm_add_epi16(q6, q5); + const __m128i r0 = _mm_mulhrs_epi16(d0, k__dual_p16_p16); + const __m128i r1 = _mm_mulhrs_epi16(d1, k__dual_p16_p16); + + // Add/subtract + const __m128i x0 = _mm_add_epi16(q4, r0); + const __m128i x1 = _mm_sub_epi16(q4, r0); + const __m128i x2 = _mm_sub_epi16(q7, r1); + const __m128i x3 = _mm_add_epi16(q7, r1); + // Interleave to do the multiply by constants which gets us into 32bits + const __m128i t0 = _mm_unpacklo_epi16(x0, x3); + const __m128i t1 = _mm_unpackhi_epi16(x0, x3); + const __m128i t2 = _mm_unpacklo_epi16(x1, x2); + const __m128i t3 = _mm_unpackhi_epi16(x1, x2); + const __m128i u0 = _mm_madd_epi16(t0, k__cospi_p28_p04); + const __m128i u1 = _mm_madd_epi16(t1, k__cospi_p28_p04); + const __m128i u2 = _mm_madd_epi16(t0, k__cospi_m04_p28); + const __m128i u3 = _mm_madd_epi16(t1, k__cospi_m04_p28); + const __m128i u4 = _mm_madd_epi16(t2, k__cospi_p12_p20); + const __m128i u5 = _mm_madd_epi16(t3, k__cospi_p12_p20); + const __m128i u6 = _mm_madd_epi16(t2, k__cospi_m20_p12); + const __m128i u7 = _mm_madd_epi16(t3, k__cospi_m20_p12); + // dct_const_round_shift + const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING); + const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING); + const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING); + const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING); + const __m128i v4 = _mm_add_epi32(u4, k__DCT_CONST_ROUNDING); + const __m128i v5 = _mm_add_epi32(u5, k__DCT_CONST_ROUNDING); + const __m128i v6 = _mm_add_epi32(u6, k__DCT_CONST_ROUNDING); + const __m128i v7 = _mm_add_epi32(u7, k__DCT_CONST_ROUNDING); + const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS); + const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS); + const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS); + const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS); + const __m128i w4 = _mm_srai_epi32(v4, DCT_CONST_BITS); + const __m128i w5 = _mm_srai_epi32(v5, DCT_CONST_BITS); + const __m128i w6 = _mm_srai_epi32(v6, DCT_CONST_BITS); + const __m128i w7 = _mm_srai_epi32(v7, DCT_CONST_BITS); + // Combine + res1 = _mm_packs_epi32(w0, w1); + res7 = _mm_packs_epi32(w2, w3); + res5 = _mm_packs_epi32(w4, w5); + res3 = _mm_packs_epi32(w6, w7); + } + // Transpose the 8x8. + { + // 00 01 02 03 04 05 06 07 + // 10 11 12 13 14 15 16 17 + // 20 21 22 23 24 25 26 27 + // 30 31 32 33 34 35 36 37 + // 40 41 42 43 44 45 46 47 + // 50 51 52 53 54 55 56 57 + // 60 61 62 63 64 65 66 67 + // 70 71 72 73 74 75 76 77 + const __m128i tr0_0 = _mm_unpacklo_epi16(res0, res1); + const __m128i tr0_1 = _mm_unpacklo_epi16(res2, res3); + const __m128i tr0_2 = _mm_unpackhi_epi16(res0, res1); + const __m128i tr0_3 = _mm_unpackhi_epi16(res2, res3); + const __m128i tr0_4 = _mm_unpacklo_epi16(res4, res5); + const __m128i tr0_5 = _mm_unpacklo_epi16(res6, res7); + const __m128i tr0_6 = _mm_unpackhi_epi16(res4, res5); + const __m128i tr0_7 = _mm_unpackhi_epi16(res6, res7); + // 00 10 01 11 02 12 03 13 + // 20 30 21 31 22 32 23 33 + // 04 14 05 15 06 16 07 17 + // 24 34 25 35 26 36 27 37 + // 40 50 41 51 42 52 43 53 + // 60 70 61 71 62 72 63 73 + // 54 54 55 55 56 56 57 57 + // 64 74 65 75 66 76 67 77 + const __m128i tr1_0 = _mm_unpacklo_epi32(tr0_0, tr0_1); + const __m128i tr1_1 = _mm_unpacklo_epi32(tr0_2, tr0_3); + const __m128i tr1_2 = _mm_unpackhi_epi32(tr0_0, tr0_1); + const __m128i tr1_3 = _mm_unpackhi_epi32(tr0_2, tr0_3); + const __m128i tr1_4 = _mm_unpacklo_epi32(tr0_4, tr0_5); + const __m128i tr1_5 = _mm_unpacklo_epi32(tr0_6, tr0_7); + const __m128i tr1_6 = _mm_unpackhi_epi32(tr0_4, tr0_5); + const __m128i tr1_7 = _mm_unpackhi_epi32(tr0_6, tr0_7); + // 00 10 20 30 01 11 21 31 + // 40 50 60 70 41 51 61 71 + // 02 12 22 32 03 13 23 33 + // 42 52 62 72 43 53 63 73 + // 04 14 24 34 05 15 21 36 + // 44 54 64 74 45 55 61 76 + // 06 16 26 36 07 17 27 37 + // 46 56 66 76 47 57 67 77 + in0 = _mm_unpacklo_epi64(tr1_0, tr1_4); + in1 = _mm_unpackhi_epi64(tr1_0, tr1_4); + in2 = _mm_unpacklo_epi64(tr1_2, tr1_6); + in3 = _mm_unpackhi_epi64(tr1_2, tr1_6); + in4 = _mm_unpacklo_epi64(tr1_1, tr1_5); + in5 = _mm_unpackhi_epi64(tr1_1, tr1_5); + in6 = _mm_unpacklo_epi64(tr1_3, tr1_7); + in7 = _mm_unpackhi_epi64(tr1_3, tr1_7); + // 00 10 20 30 40 50 60 70 + // 01 11 21 31 41 51 61 71 + // 02 12 22 32 42 52 62 72 + // 03 13 23 33 43 53 63 73 + // 04 14 24 34 44 54 64 74 + // 05 15 25 35 45 55 65 75 + // 06 16 26 36 46 56 66 76 + // 07 17 27 37 47 57 67 77 + } + } + // Post-condition output and store it + { + // Post-condition (division by two) + // division of two 16 bits signed numbers using shifts + // n / 2 = (n - (n >> 15)) >> 1 + const __m128i sign_in0 = _mm_srai_epi16(in0, 15); + const __m128i sign_in1 = _mm_srai_epi16(in1, 15); + const __m128i sign_in2 = _mm_srai_epi16(in2, 15); + const __m128i sign_in3 = _mm_srai_epi16(in3, 15); + const __m128i sign_in4 = _mm_srai_epi16(in4, 15); + const __m128i sign_in5 = _mm_srai_epi16(in5, 15); + const __m128i sign_in6 = _mm_srai_epi16(in6, 15); + const __m128i sign_in7 = _mm_srai_epi16(in7, 15); + in0 = _mm_sub_epi16(in0, sign_in0); + in1 = _mm_sub_epi16(in1, sign_in1); + in2 = _mm_sub_epi16(in2, sign_in2); + in3 = _mm_sub_epi16(in3, sign_in3); + in4 = _mm_sub_epi16(in4, sign_in4); + in5 = _mm_sub_epi16(in5, sign_in5); + in6 = _mm_sub_epi16(in6, sign_in6); + in7 = _mm_sub_epi16(in7, sign_in7); + in0 = _mm_srai_epi16(in0, 1); + in1 = _mm_srai_epi16(in1, 1); + in2 = _mm_srai_epi16(in2, 1); + in3 = _mm_srai_epi16(in3, 1); + in4 = _mm_srai_epi16(in4, 1); + in5 = _mm_srai_epi16(in5, 1); + in6 = _mm_srai_epi16(in6, 1); + in7 = _mm_srai_epi16(in7, 1); + } + + iscan_ptr += n_coeffs; + qcoeff_ptr += n_coeffs; + dqcoeff_ptr += n_coeffs; + n_coeffs = -n_coeffs; + zero = _mm_setzero_si128(); + + if (!skip_block) { + __m128i eob; + __m128i round, quant, dequant, thr; + int16_t nzflag; + { + __m128i coeff0, coeff1; + + // Setup global values + { + round = _mm_load_si128((const __m128i *)round_ptr); + quant = _mm_load_si128((const __m128i *)quant_ptr); + dequant = _mm_load_si128((const __m128i *)dequant_ptr); + } + + { + __m128i coeff0_sign, coeff1_sign; + __m128i qcoeff0, qcoeff1; + __m128i qtmp0, qtmp1; + // Do DC and first 15 AC + coeff0 = *in[0]; + coeff1 = *in[1]; + + // Poor man's sign extract + coeff0_sign = _mm_srai_epi16(coeff0, 15); + coeff1_sign = _mm_srai_epi16(coeff1, 15); + qcoeff0 = _mm_xor_si128(coeff0, coeff0_sign); + qcoeff1 = _mm_xor_si128(coeff1, coeff1_sign); + qcoeff0 = _mm_sub_epi16(qcoeff0, coeff0_sign); + qcoeff1 = _mm_sub_epi16(qcoeff1, coeff1_sign); + + qcoeff0 = _mm_adds_epi16(qcoeff0, round); + round = _mm_unpackhi_epi64(round, round); + qcoeff1 = _mm_adds_epi16(qcoeff1, round); + qtmp0 = _mm_mulhi_epi16(qcoeff0, quant); + quant = _mm_unpackhi_epi64(quant, quant); + qtmp1 = _mm_mulhi_epi16(qcoeff1, quant); + + // Reinsert signs + qcoeff0 = _mm_xor_si128(qtmp0, coeff0_sign); + qcoeff1 = _mm_xor_si128(qtmp1, coeff1_sign); + qcoeff0 = _mm_sub_epi16(qcoeff0, coeff0_sign); + qcoeff1 = _mm_sub_epi16(qcoeff1, coeff1_sign); + + store_tran_low(qcoeff0, qcoeff_ptr + n_coeffs); + store_tran_low(qcoeff1, qcoeff_ptr + n_coeffs + 8); + + coeff0 = _mm_mullo_epi16(qcoeff0, dequant); + dequant = _mm_unpackhi_epi64(dequant, dequant); + coeff1 = _mm_mullo_epi16(qcoeff1, dequant); + + store_tran_low(coeff0, dqcoeff_ptr + n_coeffs); + store_tran_low(coeff1, dqcoeff_ptr + n_coeffs + 8); + } + + { + // Scan for eob + __m128i zero_coeff0, zero_coeff1; + __m128i nzero_coeff0, nzero_coeff1; + __m128i iscan0, iscan1; + __m128i eob1; + zero_coeff0 = _mm_cmpeq_epi16(coeff0, zero); + zero_coeff1 = _mm_cmpeq_epi16(coeff1, zero); + nzero_coeff0 = _mm_cmpeq_epi16(zero_coeff0, zero); + nzero_coeff1 = _mm_cmpeq_epi16(zero_coeff1, zero); + iscan0 = _mm_load_si128((const __m128i *)(iscan_ptr + n_coeffs)); + iscan1 = _mm_load_si128((const __m128i *)(iscan_ptr + n_coeffs) + 1); + // Add one to convert from indices to counts + iscan0 = _mm_sub_epi16(iscan0, nzero_coeff0); + iscan1 = _mm_sub_epi16(iscan1, nzero_coeff1); + eob = _mm_and_si128(iscan0, nzero_coeff0); + eob1 = _mm_and_si128(iscan1, nzero_coeff1); + eob = _mm_max_epi16(eob, eob1); + } + n_coeffs += 8 * 2; + } + + // AC only loop + index = 2; + thr = _mm_srai_epi16(dequant, 1); + while (n_coeffs < 0) { + __m128i coeff0, coeff1; + { + __m128i coeff0_sign, coeff1_sign; + __m128i qcoeff0, qcoeff1; + __m128i qtmp0, qtmp1; + + assert(index < (int)(sizeof(in) / sizeof(in[0])) - 1); + coeff0 = *in[index]; + coeff1 = *in[index + 1]; + + // Poor man's sign extract + coeff0_sign = _mm_srai_epi16(coeff0, 15); + coeff1_sign = _mm_srai_epi16(coeff1, 15); + qcoeff0 = _mm_xor_si128(coeff0, coeff0_sign); + qcoeff1 = _mm_xor_si128(coeff1, coeff1_sign); + qcoeff0 = _mm_sub_epi16(qcoeff0, coeff0_sign); + qcoeff1 = _mm_sub_epi16(qcoeff1, coeff1_sign); + + nzflag = _mm_movemask_epi8(_mm_cmpgt_epi16(qcoeff0, thr)) | + _mm_movemask_epi8(_mm_cmpgt_epi16(qcoeff1, thr)); + + if (nzflag) { + qcoeff0 = _mm_adds_epi16(qcoeff0, round); + qcoeff1 = _mm_adds_epi16(qcoeff1, round); + qtmp0 = _mm_mulhi_epi16(qcoeff0, quant); + qtmp1 = _mm_mulhi_epi16(qcoeff1, quant); + + // Reinsert signs + qcoeff0 = _mm_xor_si128(qtmp0, coeff0_sign); + qcoeff1 = _mm_xor_si128(qtmp1, coeff1_sign); + qcoeff0 = _mm_sub_epi16(qcoeff0, coeff0_sign); + qcoeff1 = _mm_sub_epi16(qcoeff1, coeff1_sign); + + store_tran_low(qcoeff0, qcoeff_ptr + n_coeffs); + store_tran_low(qcoeff1, qcoeff_ptr + n_coeffs + 8); + + coeff0 = _mm_mullo_epi16(qcoeff0, dequant); + coeff1 = _mm_mullo_epi16(qcoeff1, dequant); + + store_tran_low(coeff0, dqcoeff_ptr + n_coeffs); + store_tran_low(coeff1, dqcoeff_ptr + n_coeffs + 8); + } else { + // Maybe a more efficient way to store 0? + store_zero_tran_low(qcoeff_ptr + n_coeffs); + store_zero_tran_low(qcoeff_ptr + n_coeffs + 8); + + store_zero_tran_low(dqcoeff_ptr + n_coeffs); + store_zero_tran_low(dqcoeff_ptr + n_coeffs + 8); + } + } + + if (nzflag) { + // Scan for eob + __m128i zero_coeff0, zero_coeff1; + __m128i nzero_coeff0, nzero_coeff1; + __m128i iscan0, iscan1; + __m128i eob0, eob1; + zero_coeff0 = _mm_cmpeq_epi16(coeff0, zero); + zero_coeff1 = _mm_cmpeq_epi16(coeff1, zero); + nzero_coeff0 = _mm_cmpeq_epi16(zero_coeff0, zero); + nzero_coeff1 = _mm_cmpeq_epi16(zero_coeff1, zero); + iscan0 = _mm_load_si128((const __m128i *)(iscan_ptr + n_coeffs)); + iscan1 = _mm_load_si128((const __m128i *)(iscan_ptr + n_coeffs) + 1); + // Add one to convert from indices to counts + iscan0 = _mm_sub_epi16(iscan0, nzero_coeff0); + iscan1 = _mm_sub_epi16(iscan1, nzero_coeff1); + eob0 = _mm_and_si128(iscan0, nzero_coeff0); + eob1 = _mm_and_si128(iscan1, nzero_coeff1); + eob0 = _mm_max_epi16(eob0, eob1); + eob = _mm_max_epi16(eob, eob0); + } + n_coeffs += 8 * 2; + index += 2; + } + + // Accumulate EOB + { + __m128i eob_shuffled; + eob_shuffled = _mm_shuffle_epi32(eob, 0xe); + eob = _mm_max_epi16(eob, eob_shuffled); + eob_shuffled = _mm_shufflelo_epi16(eob, 0xe); + eob = _mm_max_epi16(eob, eob_shuffled); + eob_shuffled = _mm_shufflelo_epi16(eob, 0x1); + eob = _mm_max_epi16(eob, eob_shuffled); + *eob_ptr = _mm_extract_epi16(eob, 1); + } + } else { + do { + store_zero_tran_low(dqcoeff_ptr + n_coeffs); + store_zero_tran_low(dqcoeff_ptr + n_coeffs + 8); + store_zero_tran_low(qcoeff_ptr + n_coeffs); + store_zero_tran_low(qcoeff_ptr + n_coeffs + 8); + n_coeffs += 8 * 2; + } while (n_coeffs < 0); + *eob_ptr = 0; + } +} diff --git a/vp9/encoder/x86/vp9_denoiser_sse2.c b/vp9/encoder/x86/vp9_denoiser_sse2.c new file mode 100644 index 0000000..5930bf4 --- /dev/null +++ b/vp9/encoder/x86/vp9_denoiser_sse2.c @@ -0,0 +1,327 @@ +/* + * Copyright (c) 2014 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include + +#include "./vpx_config.h" +#include "./vp9_rtcd.h" + +#include "vpx/vpx_integer.h" +#include "vp9/common/vp9_reconinter.h" +#include "vp9/encoder/vp9_context_tree.h" +#include "vp9/encoder/vp9_denoiser.h" +#include "vpx_mem/vpx_mem.h" + +// Compute the sum of all pixel differences of this MB. +static INLINE int sum_diff_16x1(__m128i acc_diff) { + const __m128i k_1 = _mm_set1_epi16(1); + const __m128i acc_diff_lo = + _mm_srai_epi16(_mm_unpacklo_epi8(acc_diff, acc_diff), 8); + const __m128i acc_diff_hi = + _mm_srai_epi16(_mm_unpackhi_epi8(acc_diff, acc_diff), 8); + const __m128i acc_diff_16 = _mm_add_epi16(acc_diff_lo, acc_diff_hi); + const __m128i hg_fe_dc_ba = _mm_madd_epi16(acc_diff_16, k_1); + const __m128i hgfe_dcba = + _mm_add_epi32(hg_fe_dc_ba, _mm_srli_si128(hg_fe_dc_ba, 8)); + const __m128i hgfedcba = + _mm_add_epi32(hgfe_dcba, _mm_srli_si128(hgfe_dcba, 4)); + return _mm_cvtsi128_si32(hgfedcba); +} + +// Denoise a 16x1 vector. +static INLINE __m128i vp9_denoiser_16x1_sse2( + const uint8_t *sig, const uint8_t *mc_running_avg_y, uint8_t *running_avg_y, + const __m128i *k_0, const __m128i *k_4, const __m128i *k_8, + const __m128i *k_16, const __m128i *l3, const __m128i *l32, + const __m128i *l21, __m128i acc_diff) { + // Calculate differences + const __m128i v_sig = _mm_loadu_si128((const __m128i *)(&sig[0])); + const __m128i v_mc_running_avg_y = + _mm_loadu_si128((const __m128i *)(&mc_running_avg_y[0])); + __m128i v_running_avg_y; + const __m128i pdiff = _mm_subs_epu8(v_mc_running_avg_y, v_sig); + const __m128i ndiff = _mm_subs_epu8(v_sig, v_mc_running_avg_y); + // Obtain the sign. FF if diff is negative. + const __m128i diff_sign = _mm_cmpeq_epi8(pdiff, *k_0); + // Clamp absolute difference to 16 to be used to get mask. Doing this + // allows us to use _mm_cmpgt_epi8, which operates on signed byte. + const __m128i clamped_absdiff = + _mm_min_epu8(_mm_or_si128(pdiff, ndiff), *k_16); + // Get masks for l2 l1 and l0 adjustments. + const __m128i mask2 = _mm_cmpgt_epi8(*k_16, clamped_absdiff); + const __m128i mask1 = _mm_cmpgt_epi8(*k_8, clamped_absdiff); + const __m128i mask0 = _mm_cmpgt_epi8(*k_4, clamped_absdiff); + // Get adjustments for l2, l1, and l0. + __m128i adj2 = _mm_and_si128(mask2, *l32); + const __m128i adj1 = _mm_and_si128(mask1, *l21); + const __m128i adj0 = _mm_and_si128(mask0, clamped_absdiff); + __m128i adj, padj, nadj; + + // Combine the adjustments and get absolute adjustments. + adj2 = _mm_add_epi8(adj2, adj1); + adj = _mm_sub_epi8(*l3, adj2); + adj = _mm_andnot_si128(mask0, adj); + adj = _mm_or_si128(adj, adj0); + + // Restore the sign and get positive and negative adjustments. + padj = _mm_andnot_si128(diff_sign, adj); + nadj = _mm_and_si128(diff_sign, adj); + + // Calculate filtered value. + v_running_avg_y = _mm_adds_epu8(v_sig, padj); + v_running_avg_y = _mm_subs_epu8(v_running_avg_y, nadj); + _mm_storeu_si128((__m128i *)running_avg_y, v_running_avg_y); + + // Adjustments <=7, and each element in acc_diff can fit in signed + // char. + acc_diff = _mm_adds_epi8(acc_diff, padj); + acc_diff = _mm_subs_epi8(acc_diff, nadj); + return acc_diff; +} + +// Denoise a 16x1 vector with a weaker filter. +static INLINE __m128i vp9_denoiser_adj_16x1_sse2( + const uint8_t *sig, const uint8_t *mc_running_avg_y, uint8_t *running_avg_y, + const __m128i k_0, const __m128i k_delta, __m128i acc_diff) { + __m128i v_running_avg_y = _mm_loadu_si128((__m128i *)(&running_avg_y[0])); + // Calculate differences. + const __m128i v_sig = _mm_loadu_si128((const __m128i *)(&sig[0])); + const __m128i v_mc_running_avg_y = + _mm_loadu_si128((const __m128i *)(&mc_running_avg_y[0])); + const __m128i pdiff = _mm_subs_epu8(v_mc_running_avg_y, v_sig); + const __m128i ndiff = _mm_subs_epu8(v_sig, v_mc_running_avg_y); + // Obtain the sign. FF if diff is negative. + const __m128i diff_sign = _mm_cmpeq_epi8(pdiff, k_0); + // Clamp absolute difference to delta to get the adjustment. + const __m128i adj = _mm_min_epu8(_mm_or_si128(pdiff, ndiff), k_delta); + // Restore the sign and get positive and negative adjustments. + __m128i padj, nadj; + padj = _mm_andnot_si128(diff_sign, adj); + nadj = _mm_and_si128(diff_sign, adj); + // Calculate filtered value. + v_running_avg_y = _mm_subs_epu8(v_running_avg_y, padj); + v_running_avg_y = _mm_adds_epu8(v_running_avg_y, nadj); + _mm_storeu_si128((__m128i *)running_avg_y, v_running_avg_y); + + // Accumulate the adjustments. + acc_diff = _mm_subs_epi8(acc_diff, padj); + acc_diff = _mm_adds_epi8(acc_diff, nadj); + return acc_diff; +} + +// Denoise 8x8 and 8x16 blocks. +static int vp9_denoiser_NxM_sse2_small(const uint8_t *sig, int sig_stride, + const uint8_t *mc_running_avg_y, + int mc_avg_y_stride, + uint8_t *running_avg_y, int avg_y_stride, + int increase_denoising, BLOCK_SIZE bs, + int motion_magnitude, int width) { + int sum_diff_thresh, r, sum_diff = 0; + const int shift_inc = + (increase_denoising && motion_magnitude <= MOTION_MAGNITUDE_THRESHOLD) + ? 1 + : 0; + uint8_t sig_buffer[8][16], mc_running_buffer[8][16], running_buffer[8][16]; + __m128i acc_diff = _mm_setzero_si128(); + const __m128i k_0 = _mm_setzero_si128(); + const __m128i k_4 = _mm_set1_epi8(4 + shift_inc); + const __m128i k_8 = _mm_set1_epi8(8); + const __m128i k_16 = _mm_set1_epi8(16); + // Modify each level's adjustment according to motion_magnitude. + const __m128i l3 = _mm_set1_epi8( + (motion_magnitude <= MOTION_MAGNITUDE_THRESHOLD) ? 7 + shift_inc : 6); + // Difference between level 3 and level 2 is 2. + const __m128i l32 = _mm_set1_epi8(2); + // Difference between level 2 and level 1 is 1. + const __m128i l21 = _mm_set1_epi8(1); + const int b_height = (4 << b_height_log2_lookup[bs]) >> 1; + + for (r = 0; r < b_height; ++r) { + memcpy(sig_buffer[r], sig, width); + memcpy(sig_buffer[r] + width, sig + sig_stride, width); + memcpy(mc_running_buffer[r], mc_running_avg_y, width); + memcpy(mc_running_buffer[r] + width, mc_running_avg_y + mc_avg_y_stride, + width); + memcpy(running_buffer[r], running_avg_y, width); + memcpy(running_buffer[r] + width, running_avg_y + avg_y_stride, width); + acc_diff = vp9_denoiser_16x1_sse2(sig_buffer[r], mc_running_buffer[r], + running_buffer[r], &k_0, &k_4, &k_8, + &k_16, &l3, &l32, &l21, acc_diff); + memcpy(running_avg_y, running_buffer[r], width); + memcpy(running_avg_y + avg_y_stride, running_buffer[r] + width, width); + // Update pointers for next iteration. + sig += (sig_stride << 1); + mc_running_avg_y += (mc_avg_y_stride << 1); + running_avg_y += (avg_y_stride << 1); + } + + { + sum_diff = sum_diff_16x1(acc_diff); + sum_diff_thresh = total_adj_strong_thresh(bs, increase_denoising); + if (abs(sum_diff) > sum_diff_thresh) { + // Before returning to copy the block (i.e., apply no denoising), + // check if we can still apply some (weaker) temporal filtering to + // this block, that would otherwise not be denoised at all. Simplest + // is to apply an additional adjustment to running_avg_y to bring it + // closer to sig. The adjustment is capped by a maximum delta, and + // chosen such that in most cases the resulting sum_diff will be + // within the acceptable range given by sum_diff_thresh. + + // The delta is set by the excess of absolute pixel diff over the + // threshold. + const int delta = + ((abs(sum_diff) - sum_diff_thresh) >> num_pels_log2_lookup[bs]) + 1; + // Only apply the adjustment for max delta up to 3. + if (delta < 4) { + const __m128i k_delta = _mm_set1_epi8(delta); + running_avg_y -= avg_y_stride * (b_height << 1); + for (r = 0; r < b_height; ++r) { + acc_diff = vp9_denoiser_adj_16x1_sse2( + sig_buffer[r], mc_running_buffer[r], running_buffer[r], k_0, + k_delta, acc_diff); + memcpy(running_avg_y, running_buffer[r], width); + memcpy(running_avg_y + avg_y_stride, running_buffer[r] + width, + width); + // Update pointers for next iteration. + running_avg_y += (avg_y_stride << 1); + } + sum_diff = sum_diff_16x1(acc_diff); + if (abs(sum_diff) > sum_diff_thresh) { + return COPY_BLOCK; + } + } else { + return COPY_BLOCK; + } + } + } + return FILTER_BLOCK; +} + +// Denoise 16x16, 16x32, 32x16, 32x32, 32x64, 64x32 and 64x64 blocks. +static int vp9_denoiser_NxM_sse2_big(const uint8_t *sig, int sig_stride, + const uint8_t *mc_running_avg_y, + int mc_avg_y_stride, + uint8_t *running_avg_y, int avg_y_stride, + int increase_denoising, BLOCK_SIZE bs, + int motion_magnitude) { + int sum_diff_thresh, r, c, sum_diff = 0; + const int shift_inc = + (increase_denoising && motion_magnitude <= MOTION_MAGNITUDE_THRESHOLD) + ? 1 + : 0; + __m128i acc_diff[4][4]; + const __m128i k_0 = _mm_setzero_si128(); + const __m128i k_4 = _mm_set1_epi8(4 + shift_inc); + const __m128i k_8 = _mm_set1_epi8(8); + const __m128i k_16 = _mm_set1_epi8(16); + // Modify each level's adjustment according to motion_magnitude. + const __m128i l3 = _mm_set1_epi8( + (motion_magnitude <= MOTION_MAGNITUDE_THRESHOLD) ? 7 + shift_inc : 6); + // Difference between level 3 and level 2 is 2. + const __m128i l32 = _mm_set1_epi8(2); + // Difference between level 2 and level 1 is 1. + const __m128i l21 = _mm_set1_epi8(1); + const int b_width = (4 << b_width_log2_lookup[bs]); + const int b_height = (4 << b_height_log2_lookup[bs]); + const int b_width_shift4 = b_width >> 4; + + for (r = 0; r < 4; ++r) { + for (c = 0; c < b_width_shift4; ++c) { + acc_diff[c][r] = _mm_setzero_si128(); + } + } + + for (r = 0; r < b_height; ++r) { + for (c = 0; c < b_width_shift4; ++c) { + acc_diff[c][r >> 4] = vp9_denoiser_16x1_sse2( + sig, mc_running_avg_y, running_avg_y, &k_0, &k_4, &k_8, &k_16, &l3, + &l32, &l21, acc_diff[c][r >> 4]); + // Update pointers for next iteration. + sig += 16; + mc_running_avg_y += 16; + running_avg_y += 16; + } + + if ((r & 0xf) == 0xf || (bs == BLOCK_16X8 && r == 7)) { + for (c = 0; c < b_width_shift4; ++c) { + sum_diff += sum_diff_16x1(acc_diff[c][r >> 4]); + } + } + + // Update pointers for next iteration. + sig = sig - b_width + sig_stride; + mc_running_avg_y = mc_running_avg_y - b_width + mc_avg_y_stride; + running_avg_y = running_avg_y - b_width + avg_y_stride; + } + + { + sum_diff_thresh = total_adj_strong_thresh(bs, increase_denoising); + if (abs(sum_diff) > sum_diff_thresh) { + const int delta = + ((abs(sum_diff) - sum_diff_thresh) >> num_pels_log2_lookup[bs]) + 1; + + // Only apply the adjustment for max delta up to 3. + if (delta < 4) { + const __m128i k_delta = _mm_set1_epi8(delta); + sig -= sig_stride * b_height; + mc_running_avg_y -= mc_avg_y_stride * b_height; + running_avg_y -= avg_y_stride * b_height; + sum_diff = 0; + for (r = 0; r < b_height; ++r) { + for (c = 0; c < b_width_shift4; ++c) { + acc_diff[c][r >> 4] = + vp9_denoiser_adj_16x1_sse2(sig, mc_running_avg_y, running_avg_y, + k_0, k_delta, acc_diff[c][r >> 4]); + // Update pointers for next iteration. + sig += 16; + mc_running_avg_y += 16; + running_avg_y += 16; + } + + if ((r & 0xf) == 0xf || (bs == BLOCK_16X8 && r == 7)) { + for (c = 0; c < b_width_shift4; ++c) { + sum_diff += sum_diff_16x1(acc_diff[c][r >> 4]); + } + } + sig = sig - b_width + sig_stride; + mc_running_avg_y = mc_running_avg_y - b_width + mc_avg_y_stride; + running_avg_y = running_avg_y - b_width + avg_y_stride; + } + if (abs(sum_diff) > sum_diff_thresh) { + return COPY_BLOCK; + } + } else { + return COPY_BLOCK; + } + } + } + return FILTER_BLOCK; +} + +int vp9_denoiser_filter_sse2(const uint8_t *sig, int sig_stride, + const uint8_t *mc_avg, int mc_avg_stride, + uint8_t *avg, int avg_stride, + int increase_denoising, BLOCK_SIZE bs, + int motion_magnitude) { + // Rank by frequency of the block type to have an early termination. + if (bs == BLOCK_16X16 || bs == BLOCK_32X32 || bs == BLOCK_64X64 || + bs == BLOCK_16X32 || bs == BLOCK_16X8 || bs == BLOCK_32X16 || + bs == BLOCK_32X64 || bs == BLOCK_64X32) { + return vp9_denoiser_NxM_sse2_big(sig, sig_stride, mc_avg, mc_avg_stride, + avg, avg_stride, increase_denoising, bs, + motion_magnitude); + } else if (bs == BLOCK_8X8 || bs == BLOCK_8X16) { + return vp9_denoiser_NxM_sse2_small(sig, sig_stride, mc_avg, mc_avg_stride, + avg, avg_stride, increase_denoising, bs, + motion_magnitude, 8); + } else { + return COPY_BLOCK; + } +} diff --git a/vp9/encoder/x86/vp9_diamond_search_sad_avx.c b/vp9/encoder/x86/vp9_diamond_search_sad_avx.c new file mode 100644 index 0000000..2f3c66c --- /dev/null +++ b/vp9/encoder/x86/vp9_diamond_search_sad_avx.c @@ -0,0 +1,310 @@ +/* + * Copyright (c) 2015 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#if defined(_MSC_VER) +#include +#endif +#include +#include + +#include "vpx_dsp/vpx_dsp_common.h" +#include "vp9/encoder/vp9_encoder.h" +#include "vpx_ports/mem.h" + +#ifdef __GNUC__ +#define LIKELY(v) __builtin_expect(v, 1) +#define UNLIKELY(v) __builtin_expect(v, 0) +#else +#define LIKELY(v) (v) +#define UNLIKELY(v) (v) +#endif + +static INLINE int_mv pack_int_mv(int16_t row, int16_t col) { + int_mv result; + result.as_mv.row = row; + result.as_mv.col = col; + return result; +} + +static INLINE MV_JOINT_TYPE get_mv_joint(const int_mv mv) { + // This is simplified from the C implementation to utilise that + // x->nmvjointsadcost[1] == x->nmvjointsadcost[2] and + // x->nmvjointsadcost[1] == x->nmvjointsadcost[3] + return mv.as_int == 0 ? 0 : 1; +} + +static INLINE int mv_cost(const int_mv mv, const int *joint_cost, + int *const comp_cost[2]) { + return joint_cost[get_mv_joint(mv)] + comp_cost[0][mv.as_mv.row] + + comp_cost[1][mv.as_mv.col]; +} + +static int mvsad_err_cost(const MACROBLOCK *x, const int_mv mv, const MV *ref, + int sad_per_bit) { + const int_mv diff = + pack_int_mv(mv.as_mv.row - ref->row, mv.as_mv.col - ref->col); + return ROUND_POWER_OF_TWO( + (unsigned)mv_cost(diff, x->nmvjointsadcost, x->nmvsadcost) * sad_per_bit, + VP9_PROB_COST_SHIFT); +} + +/***************************************************************************** + * This function utilizes 3 properties of the cost function lookup tables, * + * constructed in using 'cal_nmvjointsadcost' and 'cal_nmvsadcosts' in * + * vp9_encoder.c. * + * For the joint cost: * + * - mvjointsadcost[1] == mvjointsadcost[2] == mvjointsadcost[3] * + * For the component costs: * + * - For all i: mvsadcost[0][i] == mvsadcost[1][i] * + * (Equal costs for both components) * + * - For all i: mvsadcost[0][i] == mvsadcost[0][-i] * + * (Cost function is even) * + * If these do not hold, then this function cannot be used without * + * modification, in which case you can revert to using the C implementation, * + * which does not rely on these properties. * + *****************************************************************************/ +int vp9_diamond_search_sad_avx(const MACROBLOCK *x, + const search_site_config *cfg, MV *ref_mv, + MV *best_mv, int search_param, int sad_per_bit, + int *num00, const vp9_variance_fn_ptr_t *fn_ptr, + const MV *center_mv) { + const int_mv maxmv = pack_int_mv(x->mv_limits.row_max, x->mv_limits.col_max); + const __m128i v_max_mv_w = _mm_set1_epi32(maxmv.as_int); + const int_mv minmv = pack_int_mv(x->mv_limits.row_min, x->mv_limits.col_min); + const __m128i v_min_mv_w = _mm_set1_epi32(minmv.as_int); + + const __m128i v_spb_d = _mm_set1_epi32(sad_per_bit); + + const __m128i v_joint_cost_0_d = _mm_set1_epi32(x->nmvjointsadcost[0]); + const __m128i v_joint_cost_1_d = _mm_set1_epi32(x->nmvjointsadcost[1]); + + // search_param determines the length of the initial step and hence the number + // of iterations. + // 0 = initial step (MAX_FIRST_STEP) pel + // 1 = (MAX_FIRST_STEP/2) pel, + // 2 = (MAX_FIRST_STEP/4) pel... + const MV *ss_mv = &cfg->ss_mv[cfg->searches_per_step * search_param]; + const intptr_t *ss_os = &cfg->ss_os[cfg->searches_per_step * search_param]; + const int tot_steps = cfg->total_steps - search_param; + + const int_mv fcenter_mv = + pack_int_mv(center_mv->row >> 3, center_mv->col >> 3); + const __m128i vfcmv = _mm_set1_epi32(fcenter_mv.as_int); + + const int ref_row = clamp(ref_mv->row, minmv.as_mv.row, maxmv.as_mv.row); + const int ref_col = clamp(ref_mv->col, minmv.as_mv.col, maxmv.as_mv.col); + + int_mv bmv = pack_int_mv(ref_row, ref_col); + int_mv new_bmv = bmv; + __m128i v_bmv_w = _mm_set1_epi32(bmv.as_int); + + const int what_stride = x->plane[0].src.stride; + const int in_what_stride = x->e_mbd.plane[0].pre[0].stride; + const uint8_t *const what = x->plane[0].src.buf; + const uint8_t *const in_what = + x->e_mbd.plane[0].pre[0].buf + ref_row * in_what_stride + ref_col; + + // Work out the start point for the search + const uint8_t *best_address = in_what; + const uint8_t *new_best_address = best_address; +#if ARCH_X86_64 + __m128i v_ba_q = _mm_set1_epi64x((intptr_t)best_address); +#else + __m128i v_ba_d = _mm_set1_epi32((intptr_t)best_address); +#endif + + unsigned int best_sad; + int i, j, step; + + // Check the prerequisite cost function properties that are easy to check + // in an assert. See the function-level documentation for details on all + // prerequisites. + assert(x->nmvjointsadcost[1] == x->nmvjointsadcost[2]); + assert(x->nmvjointsadcost[1] == x->nmvjointsadcost[3]); + + // Check the starting position + best_sad = fn_ptr->sdf(what, what_stride, in_what, in_what_stride); + best_sad += mvsad_err_cost(x, bmv, &fcenter_mv.as_mv, sad_per_bit); + + *num00 = 0; + + for (i = 0, step = 0; step < tot_steps; step++) { + for (j = 0; j < cfg->searches_per_step; j += 4, i += 4) { + __m128i v_sad_d, v_cost_d, v_outside_d, v_inside_d, v_diff_mv_w; +#if ARCH_X86_64 + __m128i v_blocka[2]; +#else + __m128i v_blocka[1]; +#endif + + // Compute the candidate motion vectors + const __m128i v_ss_mv_w = _mm_loadu_si128((const __m128i *)&ss_mv[i]); + const __m128i v_these_mv_w = _mm_add_epi16(v_bmv_w, v_ss_mv_w); + // Clamp them to the search bounds + __m128i v_these_mv_clamp_w = v_these_mv_w; + v_these_mv_clamp_w = _mm_min_epi16(v_these_mv_clamp_w, v_max_mv_w); + v_these_mv_clamp_w = _mm_max_epi16(v_these_mv_clamp_w, v_min_mv_w); + // The ones that did not change are inside the search area + v_inside_d = _mm_cmpeq_epi32(v_these_mv_clamp_w, v_these_mv_w); + + // If none of them are inside, then move on + if (LIKELY(_mm_test_all_zeros(v_inside_d, v_inside_d))) { + continue; + } + + // The inverse mask indicates which of the MVs are outside + v_outside_d = _mm_xor_si128(v_inside_d, _mm_set1_epi8(0xff)); + // Shift right to keep the sign bit clear, we will use this later + // to set the cost to the maximum value. + v_outside_d = _mm_srli_epi32(v_outside_d, 1); + + // Compute the difference MV + v_diff_mv_w = _mm_sub_epi16(v_these_mv_clamp_w, vfcmv); + // We utilise the fact that the cost function is even, and use the + // absolute difference. This allows us to use unsigned indexes later + // and reduces cache pressure somewhat as only a half of the table + // is ever referenced. + v_diff_mv_w = _mm_abs_epi16(v_diff_mv_w); + + // Compute the SIMD pointer offsets. + { +#if ARCH_X86_64 // sizeof(intptr_t) == 8 + // Load the offsets + __m128i v_bo10_q = _mm_loadu_si128((const __m128i *)&ss_os[i + 0]); + __m128i v_bo32_q = _mm_loadu_si128((const __m128i *)&ss_os[i + 2]); + // Set the ones falling outside to zero + v_bo10_q = _mm_and_si128(v_bo10_q, _mm_cvtepi32_epi64(v_inside_d)); + v_bo32_q = + _mm_and_si128(v_bo32_q, _mm_unpackhi_epi32(v_inside_d, v_inside_d)); + // Compute the candidate addresses + v_blocka[0] = _mm_add_epi64(v_ba_q, v_bo10_q); + v_blocka[1] = _mm_add_epi64(v_ba_q, v_bo32_q); +#else // ARCH_X86 // sizeof(intptr_t) == 4 + __m128i v_bo_d = _mm_loadu_si128((const __m128i *)&ss_os[i]); + v_bo_d = _mm_and_si128(v_bo_d, v_inside_d); + v_blocka[0] = _mm_add_epi32(v_ba_d, v_bo_d); +#endif + } + + fn_ptr->sdx4df(what, what_stride, (const uint8_t **)&v_blocka[0], + in_what_stride, (uint32_t *)&v_sad_d); + + // Look up the component cost of the residual motion vector + { + const int32_t row0 = _mm_extract_epi16(v_diff_mv_w, 0); + const int32_t col0 = _mm_extract_epi16(v_diff_mv_w, 1); + const int32_t row1 = _mm_extract_epi16(v_diff_mv_w, 2); + const int32_t col1 = _mm_extract_epi16(v_diff_mv_w, 3); + const int32_t row2 = _mm_extract_epi16(v_diff_mv_w, 4); + const int32_t col2 = _mm_extract_epi16(v_diff_mv_w, 5); + const int32_t row3 = _mm_extract_epi16(v_diff_mv_w, 6); + const int32_t col3 = _mm_extract_epi16(v_diff_mv_w, 7); + + // Note: This is a use case for vpgather in AVX2 + const uint32_t cost0 = x->nmvsadcost[0][row0] + x->nmvsadcost[0][col0]; + const uint32_t cost1 = x->nmvsadcost[0][row1] + x->nmvsadcost[0][col1]; + const uint32_t cost2 = x->nmvsadcost[0][row2] + x->nmvsadcost[0][col2]; + const uint32_t cost3 = x->nmvsadcost[0][row3] + x->nmvsadcost[0][col3]; + + __m128i v_cost_10_d, v_cost_32_d; + v_cost_10_d = _mm_cvtsi32_si128(cost0); + v_cost_10_d = _mm_insert_epi32(v_cost_10_d, cost1, 1); + v_cost_32_d = _mm_cvtsi32_si128(cost2); + v_cost_32_d = _mm_insert_epi32(v_cost_32_d, cost3, 1); + v_cost_d = _mm_unpacklo_epi64(v_cost_10_d, v_cost_32_d); + } + + // Now add in the joint cost + { + const __m128i v_sel_d = + _mm_cmpeq_epi32(v_diff_mv_w, _mm_setzero_si128()); + const __m128i v_joint_cost_d = + _mm_blendv_epi8(v_joint_cost_1_d, v_joint_cost_0_d, v_sel_d); + v_cost_d = _mm_add_epi32(v_cost_d, v_joint_cost_d); + } + + // Multiply by sad_per_bit + v_cost_d = _mm_mullo_epi32(v_cost_d, v_spb_d); + // ROUND_POWER_OF_TWO(v_cost_d, VP9_PROB_COST_SHIFT) + v_cost_d = _mm_add_epi32(v_cost_d, + _mm_set1_epi32(1 << (VP9_PROB_COST_SHIFT - 1))); + v_cost_d = _mm_srai_epi32(v_cost_d, VP9_PROB_COST_SHIFT); + // Add the cost to the sad + v_sad_d = _mm_add_epi32(v_sad_d, v_cost_d); + + // Make the motion vectors outside the search area have max cost + // by or'ing in the comparison mask, this way the minimum search won't + // pick them. + v_sad_d = _mm_or_si128(v_sad_d, v_outside_d); + + // Find the minimum value and index horizontally in v_sad_d + { + // Try speculatively on 16 bits, so we can use the minpos intrinsic + const __m128i v_sad_w = _mm_packus_epi32(v_sad_d, v_sad_d); + const __m128i v_minp_w = _mm_minpos_epu16(v_sad_w); + + uint32_t local_best_sad = _mm_extract_epi16(v_minp_w, 0); + uint32_t local_best_idx = _mm_extract_epi16(v_minp_w, 1); + + // If the local best value is not saturated, just use it, otherwise + // find the horizontal minimum again the hard way on 32 bits. + // This is executed rarely. + if (UNLIKELY(local_best_sad == 0xffff)) { + __m128i v_loval_d, v_hival_d, v_loidx_d, v_hiidx_d, v_sel_d; + + v_loval_d = v_sad_d; + v_loidx_d = _mm_set_epi32(3, 2, 1, 0); + v_hival_d = _mm_srli_si128(v_loval_d, 8); + v_hiidx_d = _mm_srli_si128(v_loidx_d, 8); + + v_sel_d = _mm_cmplt_epi32(v_hival_d, v_loval_d); + + v_loval_d = _mm_blendv_epi8(v_loval_d, v_hival_d, v_sel_d); + v_loidx_d = _mm_blendv_epi8(v_loidx_d, v_hiidx_d, v_sel_d); + v_hival_d = _mm_srli_si128(v_loval_d, 4); + v_hiidx_d = _mm_srli_si128(v_loidx_d, 4); + + v_sel_d = _mm_cmplt_epi32(v_hival_d, v_loval_d); + + v_loval_d = _mm_blendv_epi8(v_loval_d, v_hival_d, v_sel_d); + v_loidx_d = _mm_blendv_epi8(v_loidx_d, v_hiidx_d, v_sel_d); + + local_best_sad = _mm_extract_epi32(v_loval_d, 0); + local_best_idx = _mm_extract_epi32(v_loidx_d, 0); + } + + // Update the global minimum if the local minimum is smaller + if (LIKELY(local_best_sad < best_sad)) { + new_bmv = ((const int_mv *)&v_these_mv_w)[local_best_idx]; + new_best_address = ((const uint8_t **)v_blocka)[local_best_idx]; + + best_sad = local_best_sad; + } + } + } + + bmv = new_bmv; + best_address = new_best_address; + + v_bmv_w = _mm_set1_epi32(bmv.as_int); +#if ARCH_X86_64 + v_ba_q = _mm_set1_epi64x((intptr_t)best_address); +#else + v_ba_d = _mm_set1_epi32((intptr_t)best_address); +#endif + + if (UNLIKELY(best_address == in_what)) { + (*num00)++; + } + } + + *best_mv = bmv.as_mv; + return best_sad; +} diff --git a/vp9/encoder/x86/vp9_error_avx2.c b/vp9/encoder/x86/vp9_error_avx2.c new file mode 100644 index 0000000..99fef31 --- /dev/null +++ b/vp9/encoder/x86/vp9_error_avx2.c @@ -0,0 +1,161 @@ +/* + * Copyright (c) 2014 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include + +#include "./vp9_rtcd.h" +#include "vpx/vpx_integer.h" +#include "vpx_dsp/vpx_dsp_common.h" +#include "vpx_dsp/x86/bitdepth_conversion_avx2.h" + +int64_t vp9_block_error_avx2(const tran_low_t *coeff, const tran_low_t *dqcoeff, + intptr_t block_size, int64_t *ssz) { + __m256i sse_256, ssz_256; + __m256i exp_dqcoeff_lo, exp_dqcoeff_hi, exp_coeff_lo, exp_coeff_hi; + __m256i sse_hi, ssz_hi; + __m128i sse_128, ssz_128; + int64_t sse; + const __m256i zero = _mm256_setzero_si256(); + + // If the block size is 16 then the results will fit in 32 bits. + if (block_size == 16) { + __m256i coeff_256, dqcoeff_256, coeff_hi, dqcoeff_hi; + // Load 16 elements for coeff and dqcoeff. + coeff_256 = load_tran_low(coeff); + dqcoeff_256 = load_tran_low(dqcoeff); + // dqcoeff - coeff + dqcoeff_256 = _mm256_sub_epi16(dqcoeff_256, coeff_256); + // madd (dqcoeff - coeff) + dqcoeff_256 = _mm256_madd_epi16(dqcoeff_256, dqcoeff_256); + // madd coeff + coeff_256 = _mm256_madd_epi16(coeff_256, coeff_256); + // Save the higher 64 bit of each 128 bit lane. + dqcoeff_hi = _mm256_srli_si256(dqcoeff_256, 8); + coeff_hi = _mm256_srli_si256(coeff_256, 8); + // Add the higher 64 bit to the low 64 bit. + dqcoeff_256 = _mm256_add_epi32(dqcoeff_256, dqcoeff_hi); + coeff_256 = _mm256_add_epi32(coeff_256, coeff_hi); + // Expand each double word in the lower 64 bits to quad word. + sse_256 = _mm256_unpacklo_epi32(dqcoeff_256, zero); + ssz_256 = _mm256_unpacklo_epi32(coeff_256, zero); + } else { + int i; + assert(block_size % 32 == 0); + sse_256 = zero; + ssz_256 = zero; + + for (i = 0; i < block_size; i += 32) { + __m256i coeff_0, coeff_1, dqcoeff_0, dqcoeff_1; + // Load 32 elements for coeff and dqcoeff. + coeff_0 = load_tran_low(coeff + i); + dqcoeff_0 = load_tran_low(dqcoeff + i); + coeff_1 = load_tran_low(coeff + i + 16); + dqcoeff_1 = load_tran_low(dqcoeff + i + 16); + // dqcoeff - coeff + dqcoeff_0 = _mm256_sub_epi16(dqcoeff_0, coeff_0); + dqcoeff_1 = _mm256_sub_epi16(dqcoeff_1, coeff_1); + // madd (dqcoeff - coeff) + dqcoeff_0 = _mm256_madd_epi16(dqcoeff_0, dqcoeff_0); + dqcoeff_1 = _mm256_madd_epi16(dqcoeff_1, dqcoeff_1); + // madd coeff + coeff_0 = _mm256_madd_epi16(coeff_0, coeff_0); + coeff_1 = _mm256_madd_epi16(coeff_1, coeff_1); + // Add the first madd (dqcoeff - coeff) with the second. + dqcoeff_0 = _mm256_add_epi32(dqcoeff_0, dqcoeff_1); + // Add the first madd (coeff) with the second. + coeff_0 = _mm256_add_epi32(coeff_0, coeff_1); + // Expand each double word of madd (dqcoeff - coeff) to quad word. + exp_dqcoeff_lo = _mm256_unpacklo_epi32(dqcoeff_0, zero); + exp_dqcoeff_hi = _mm256_unpackhi_epi32(dqcoeff_0, zero); + // expand each double word of madd (coeff) to quad word + exp_coeff_lo = _mm256_unpacklo_epi32(coeff_0, zero); + exp_coeff_hi = _mm256_unpackhi_epi32(coeff_0, zero); + // Add each quad word of madd (dqcoeff - coeff) and madd (coeff). + sse_256 = _mm256_add_epi64(sse_256, exp_dqcoeff_lo); + ssz_256 = _mm256_add_epi64(ssz_256, exp_coeff_lo); + sse_256 = _mm256_add_epi64(sse_256, exp_dqcoeff_hi); + ssz_256 = _mm256_add_epi64(ssz_256, exp_coeff_hi); + } + } + // Save the higher 64 bit of each 128 bit lane. + sse_hi = _mm256_srli_si256(sse_256, 8); + ssz_hi = _mm256_srli_si256(ssz_256, 8); + // Add the higher 64 bit to the low 64 bit. + sse_256 = _mm256_add_epi64(sse_256, sse_hi); + ssz_256 = _mm256_add_epi64(ssz_256, ssz_hi); + + // Add each 64 bit from each of the 128 bit lane of the 256 bit. + sse_128 = _mm_add_epi64(_mm256_castsi256_si128(sse_256), + _mm256_extractf128_si256(sse_256, 1)); + + ssz_128 = _mm_add_epi64(_mm256_castsi256_si128(ssz_256), + _mm256_extractf128_si256(ssz_256, 1)); + + // Store the results. + _mm_storel_epi64((__m128i *)(&sse), sse_128); + + _mm_storel_epi64((__m128i *)(ssz), ssz_128); + return sse; +} + +int64_t vp9_block_error_fp_avx2(const tran_low_t *coeff, + const tran_low_t *dqcoeff, int block_size) { + int i; + const __m256i zero = _mm256_setzero_si256(); + __m256i sse_256 = zero; + __m256i sse_hi; + __m128i sse_128; + int64_t sse; + + if (block_size == 16) { + // Load 16 elements for coeff and dqcoeff. + const __m256i _coeff = load_tran_low(coeff); + const __m256i _dqcoeff = load_tran_low(dqcoeff); + // dqcoeff - coeff + const __m256i diff = _mm256_sub_epi16(_dqcoeff, _coeff); + // madd (dqcoeff - coeff) + const __m256i error_lo = _mm256_madd_epi16(diff, diff); + // Save the higher 64 bit of each 128 bit lane. + const __m256i error_hi = _mm256_srli_si256(error_lo, 8); + // Add the higher 64 bit to the low 64 bit. + const __m256i error = _mm256_add_epi32(error_lo, error_hi); + // Expand each double word in the lower 64 bits to quad word. + sse_256 = _mm256_unpacklo_epi32(error, zero); + } else { + for (i = 0; i < block_size; i += 16) { + // Load 16 elements for coeff and dqcoeff. + const __m256i _coeff = load_tran_low(coeff); + const __m256i _dqcoeff = load_tran_low(dqcoeff); + const __m256i diff = _mm256_sub_epi16(_dqcoeff, _coeff); + const __m256i error = _mm256_madd_epi16(diff, diff); + // Expand each double word of madd (dqcoeff - coeff) to quad word. + const __m256i exp_error_lo = _mm256_unpacklo_epi32(error, zero); + const __m256i exp_error_hi = _mm256_unpackhi_epi32(error, zero); + // Add each quad word of madd (dqcoeff - coeff). + sse_256 = _mm256_add_epi64(sse_256, exp_error_lo); + sse_256 = _mm256_add_epi64(sse_256, exp_error_hi); + coeff += 16; + dqcoeff += 16; + } + } + // Save the higher 64 bit of each 128 bit lane. + sse_hi = _mm256_srli_si256(sse_256, 8); + // Add the higher 64 bit to the low 64 bit. + sse_256 = _mm256_add_epi64(sse_256, sse_hi); + + // Add each 64 bit from each of the 128 bit lane of the 256 bit. + sse_128 = _mm_add_epi64(_mm256_castsi256_si128(sse_256), + _mm256_extractf128_si256(sse_256, 1)); + + // Store the results. + _mm_storel_epi64((__m128i *)&sse, sse_128); + return sse; +} diff --git a/vp9/encoder/x86/vp9_error_sse2.asm b/vp9/encoder/x86/vp9_error_sse2.asm new file mode 100644 index 0000000..11d473b --- /dev/null +++ b/vp9/encoder/x86/vp9_error_sse2.asm @@ -0,0 +1,115 @@ +; +; Copyright (c) 2010 The WebM project authors. All Rights Reserved. +; +; Use of this source code is governed by a BSD-style license +; that can be found in the LICENSE file in the root of the source +; tree. An additional intellectual property rights grant can be found +; in the file PATENTS. All contributing project authors may +; be found in the AUTHORS file in the root of the source tree. +; + +%define private_prefix vp9 + +%include "third_party/x86inc/x86inc.asm" +%include "vpx_dsp/x86/bitdepth_conversion_sse2.asm" + +SECTION .text + +; int64_t vp9_block_error(int16_t *coeff, int16_t *dqcoeff, intptr_t block_size, +; int64_t *ssz) + +INIT_XMM sse2 +cglobal block_error, 3, 3, 8, uqc, dqc, size, ssz + pxor m4, m4 ; sse accumulator + pxor m6, m6 ; ssz accumulator + pxor m5, m5 ; dedicated zero register +.loop: + LOAD_TRAN_LOW 2, uqcq, 0 + LOAD_TRAN_LOW 0, dqcq, 0 + LOAD_TRAN_LOW 3, uqcq, 8 + LOAD_TRAN_LOW 1, dqcq, 8 + INCREMENT_ELEMENTS_TRAN_LOW uqcq, 16 + INCREMENT_ELEMENTS_TRAN_LOW dqcq, 16 + sub sizeq, 16 + psubw m0, m2 + psubw m1, m3 + ; individual errors are max. 15bit+sign, so squares are 30bit, and + ; thus the sum of 2 should fit in a 31bit integer (+ unused sign bit) + pmaddwd m0, m0 + pmaddwd m1, m1 + pmaddwd m2, m2 + pmaddwd m3, m3 + ; the sum of 2 31bit integers will fit in a 32bit unsigned integer + paddd m0, m1 + paddd m2, m3 + ; accumulate in 64bit + punpckldq m7, m0, m5 + punpckhdq m0, m5 + paddq m4, m7 + punpckldq m7, m2, m5 + paddq m4, m0 + punpckhdq m2, m5 + paddq m6, m7 + paddq m6, m2 + jg .loop + + ; accumulate horizontally and store in return value + movhlps m5, m4 + movhlps m7, m6 + paddq m4, m5 + paddq m6, m7 +%if ARCH_X86_64 + movq rax, m4 + movq [sszq], m6 +%else + mov eax, sszm + pshufd m5, m4, 0x1 + movq [eax], m6 + movd eax, m4 + movd edx, m5 +%endif + RET + +; Compute the sum of squared difference between two tran_low_t vectors. +; Vectors are converted (if necessary) to int16_t for calculations. +; int64_t vp9_block_error_fp(tran_low_t *coeff, tran_low_t *dqcoeff, +; intptr_t block_size) + +INIT_XMM sse2 +cglobal block_error_fp, 3, 3, 6, uqc, dqc, size + pxor m4, m4 ; sse accumulator + pxor m5, m5 ; dedicated zero register +.loop: + LOAD_TRAN_LOW 2, uqcq, 0 + LOAD_TRAN_LOW 0, dqcq, 0 + LOAD_TRAN_LOW 3, uqcq, 8 + LOAD_TRAN_LOW 1, dqcq, 8 + INCREMENT_ELEMENTS_TRAN_LOW uqcq, 16 + INCREMENT_ELEMENTS_TRAN_LOW dqcq, 16 + sub sizeq, 16 + psubw m0, m2 + psubw m1, m3 + ; individual errors are max. 15bit+sign, so squares are 30bit, and + ; thus the sum of 2 should fit in a 31bit integer (+ unused sign bit) + pmaddwd m0, m0 + pmaddwd m1, m1 + ; the sum of 2 31bit integers will fit in a 32bit unsigned integer + paddd m0, m1 + ; accumulate in 64bit + punpckldq m3, m0, m5 + punpckhdq m0, m5 + paddq m4, m3 + paddq m4, m0 + jnz .loop + + ; accumulate horizontally and store in return value + movhlps m5, m4 + paddq m4, m5 +%if ARCH_X86_64 + movq rax, m4 +%else + pshufd m5, m4, 0x1 + movd eax, m4 + movd edx, m5 +%endif + RET diff --git a/vp9/encoder/x86/vp9_frame_scale_ssse3.c b/vp9/encoder/x86/vp9_frame_scale_ssse3.c new file mode 100644 index 0000000..7685e7b --- /dev/null +++ b/vp9/encoder/x86/vp9_frame_scale_ssse3.c @@ -0,0 +1,907 @@ +/* + * Copyright (c) 2016 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include // SSSE3 + +#include "./vp9_rtcd.h" +#include "./vpx_dsp_rtcd.h" +#include "./vpx_scale_rtcd.h" +#include "vpx_dsp/x86/convolve_ssse3.h" +#include "vpx_dsp/x86/mem_sse2.h" +#include "vpx_dsp/x86/transpose_sse2.h" +#include "vpx_scale/yv12config.h" + +static INLINE __m128i scale_plane_2_to_1_phase_0_kernel( + const uint8_t *const src, const __m128i *const mask) { + const __m128i a = _mm_loadu_si128((const __m128i *)(&src[0])); + const __m128i b = _mm_loadu_si128((const __m128i *)(&src[16])); + const __m128i a_and = _mm_and_si128(a, *mask); + const __m128i b_and = _mm_and_si128(b, *mask); + return _mm_packus_epi16(a_and, b_and); +} + +static void scale_plane_2_to_1_phase_0(const uint8_t *src, + const ptrdiff_t src_stride, uint8_t *dst, + const ptrdiff_t dst_stride, + const int dst_w, const int dst_h) { + const int max_width = (dst_w + 15) & ~15; + const __m128i mask = _mm_set1_epi16(0x00FF); + int y = dst_h; + + do { + int x = max_width; + do { + const __m128i d = scale_plane_2_to_1_phase_0_kernel(src, &mask); + _mm_storeu_si128((__m128i *)dst, d); + src += 32; + dst += 16; + x -= 16; + } while (x); + src += 2 * (src_stride - max_width); + dst += dst_stride - max_width; + } while (--y); +} + +static void scale_plane_4_to_1_phase_0(const uint8_t *src, + const ptrdiff_t src_stride, uint8_t *dst, + const ptrdiff_t dst_stride, + const int dst_w, const int dst_h) { + const int max_width = (dst_w + 15) & ~15; + const __m128i mask = _mm_set1_epi32(0x000000FF); + int y = dst_h; + + do { + int x = max_width; + do { + const __m128i d0 = scale_plane_2_to_1_phase_0_kernel(&src[0], &mask); + const __m128i d1 = scale_plane_2_to_1_phase_0_kernel(&src[32], &mask); + const __m128i d2 = _mm_packus_epi16(d0, d1); + _mm_storeu_si128((__m128i *)dst, d2); + src += 64; + dst += 16; + x -= 16; + } while (x); + src += 4 * (src_stride - max_width); + dst += dst_stride - max_width; + } while (--y); +} + +static INLINE __m128i scale_plane_bilinear_kernel(const __m128i *const s, + const __m128i c0c1) { + const __m128i k_64 = _mm_set1_epi16(1 << 6); + const __m128i t0 = _mm_maddubs_epi16(s[0], c0c1); + const __m128i t1 = _mm_maddubs_epi16(s[1], c0c1); + // round and shift by 7 bit each 16 bit + const __m128i t2 = _mm_adds_epi16(t0, k_64); + const __m128i t3 = _mm_adds_epi16(t1, k_64); + const __m128i t4 = _mm_srai_epi16(t2, 7); + const __m128i t5 = _mm_srai_epi16(t3, 7); + return _mm_packus_epi16(t4, t5); +} + +static void scale_plane_2_to_1_bilinear(const uint8_t *src, + const ptrdiff_t src_stride, + uint8_t *dst, + const ptrdiff_t dst_stride, + const int dst_w, const int dst_h, + const __m128i c0c1) { + const int max_width = (dst_w + 15) & ~15; + int y = dst_h; + + do { + int x = max_width; + do { + __m128i s[2], d[2]; + + // Horizontal + // Even rows + s[0] = _mm_loadu_si128((const __m128i *)(src + 0)); + s[1] = _mm_loadu_si128((const __m128i *)(src + 16)); + d[0] = scale_plane_bilinear_kernel(s, c0c1); + + // odd rows + s[0] = _mm_loadu_si128((const __m128i *)(src + src_stride + 0)); + s[1] = _mm_loadu_si128((const __m128i *)(src + src_stride + 16)); + d[1] = scale_plane_bilinear_kernel(s, c0c1); + + // Vertical + s[0] = _mm_unpacklo_epi8(d[0], d[1]); + s[1] = _mm_unpackhi_epi8(d[0], d[1]); + d[0] = scale_plane_bilinear_kernel(s, c0c1); + + _mm_storeu_si128((__m128i *)dst, d[0]); + src += 32; + dst += 16; + x -= 16; + } while (x); + src += 2 * (src_stride - max_width); + dst += dst_stride - max_width; + } while (--y); +} + +static void scale_plane_4_to_1_bilinear(const uint8_t *src, + const ptrdiff_t src_stride, + uint8_t *dst, + const ptrdiff_t dst_stride, + const int dst_w, const int dst_h, + const __m128i c0c1) { + const int max_width = (dst_w + 15) & ~15; + int y = dst_h; + + do { + int x = max_width; + do { + __m128i s[8], d[8]; + + // Note: Using _mm_packus_epi32() in SSE4.1 could be faster. + // Here we tried to not use shuffle instructions which would be slow + // on some x86 CPUs. + + // Horizontal + // 000 001 xx xx 004 005 xx xx 008 009 xx xx 00C 00D xx xx + // 010 011 xx xx 014 015 xx xx 018 019 xx xx 01C 01D xx xx + // 020 021 xx xx 024 025 xx xx 028 029 xx xx 02C 02D xx xx + // 030 031 xx xx 034 035 xx xx 038 039 xx xx 03C 03D xx xx + // 100 101 xx xx 104 105 xx xx 108 109 xx xx 10C 10D xx xx + // 110 111 xx xx 114 115 xx xx 118 119 xx xx 11C 11D xx xx + // 120 121 xx xx 124 125 xx xx 128 129 xx xx 12C 12D xx xx + // 130 131 xx xx 134 135 xx xx 138 139 xx xx 13C 13D xx xx + s[0] = _mm_loadu_si128((const __m128i *)(&src[0])); + s[1] = _mm_loadu_si128((const __m128i *)(&src[16])); + s[2] = _mm_loadu_si128((const __m128i *)(&src[32])); + s[3] = _mm_loadu_si128((const __m128i *)(&src[48])); + s[4] = _mm_loadu_si128((const __m128i *)(src + src_stride + 0)); + s[5] = _mm_loadu_si128((const __m128i *)(src + src_stride + 16)); + s[6] = _mm_loadu_si128((const __m128i *)(src + src_stride + 32)); + s[7] = _mm_loadu_si128((const __m128i *)(src + src_stride + 48)); + + // 000 001 100 101 xx xx xx xx 004 005 104 105 xx xx xx xx + // 008 009 108 109 xx xx xx xx 00C 00D 10C 10D xx xx xx xx + // 010 011 110 111 xx xx xx xx 014 015 114 115 xx xx xx xx + // 018 019 118 119 xx xx xx xx 01C 01D 11C 11D xx xx xx xx + // 020 021 120 121 xx xx xx xx 024 025 124 125 xx xx xx xx + // 028 029 128 129 xx xx xx xx 02C 02D 12C 12D xx xx xx xx + // 030 031 130 131 xx xx xx xx 034 035 134 135 xx xx xx xx + // 038 039 138 139 xx xx xx xx 03C 03D 13C 13D xx xx xx xx + d[0] = _mm_unpacklo_epi16(s[0], s[4]); + d[1] = _mm_unpackhi_epi16(s[0], s[4]); + d[2] = _mm_unpacklo_epi16(s[1], s[5]); + d[3] = _mm_unpackhi_epi16(s[1], s[5]); + d[4] = _mm_unpacklo_epi16(s[2], s[6]); + d[5] = _mm_unpackhi_epi16(s[2], s[6]); + d[6] = _mm_unpacklo_epi16(s[3], s[7]); + d[7] = _mm_unpackhi_epi16(s[3], s[7]); + + // 000 001 100 101 008 009 108 109 xx xx xx xx xx xx xx xx + // 004 005 104 105 00C 00D 10C 10D xx xx xx xx xx xx xx xx + // 010 011 110 111 018 019 118 119 xx xx xx xx xx xx xx xx + // 014 015 114 115 01C 01D 11C 11D xx xx xx xx xx xx xx xx + // 020 021 120 121 028 029 128 129 xx xx xx xx xx xx xx xx + // 024 025 124 125 02C 02D 12C 12D xx xx xx xx xx xx xx xx + // 030 031 130 131 038 039 138 139 xx xx xx xx xx xx xx xx + // 034 035 134 135 03C 03D 13C 13D xx xx xx xx xx xx xx xx + s[0] = _mm_unpacklo_epi32(d[0], d[1]); + s[1] = _mm_unpackhi_epi32(d[0], d[1]); + s[2] = _mm_unpacklo_epi32(d[2], d[3]); + s[3] = _mm_unpackhi_epi32(d[2], d[3]); + s[4] = _mm_unpacklo_epi32(d[4], d[5]); + s[5] = _mm_unpackhi_epi32(d[4], d[5]); + s[6] = _mm_unpacklo_epi32(d[6], d[7]); + s[7] = _mm_unpackhi_epi32(d[6], d[7]); + + // 000 001 100 101 004 005 104 105 008 009 108 109 00C 00D 10C 10D + // 010 011 110 111 014 015 114 115 018 019 118 119 01C 01D 11C 11D + // 020 021 120 121 024 025 124 125 028 029 128 129 02C 02D 12C 12D + // 030 031 130 131 034 035 134 135 038 039 138 139 03C 03D 13C 13D + d[0] = _mm_unpacklo_epi32(s[0], s[1]); + d[1] = _mm_unpacklo_epi32(s[2], s[3]); + d[2] = _mm_unpacklo_epi32(s[4], s[5]); + d[3] = _mm_unpacklo_epi32(s[6], s[7]); + + d[0] = scale_plane_bilinear_kernel(&d[0], c0c1); + d[1] = scale_plane_bilinear_kernel(&d[2], c0c1); + + // Vertical + d[0] = scale_plane_bilinear_kernel(d, c0c1); + + _mm_storeu_si128((__m128i *)dst, d[0]); + src += 64; + dst += 16; + x -= 16; + } while (x); + src += 4 * (src_stride - max_width); + dst += dst_stride - max_width; + } while (--y); +} + +static void scale_plane_2_to_1_general(const uint8_t *src, const int src_stride, + uint8_t *dst, const int dst_stride, + const int w, const int h, + const int16_t *const coef, + uint8_t *const temp_buffer) { + const int width_hor = (w + 3) & ~3; + const int width_ver = (w + 7) & ~7; + const int height_hor = (2 * h + SUBPEL_TAPS - 2 + 7) & ~7; + const int height_ver = (h + 3) & ~3; + int x, y = height_hor; + uint8_t *t = temp_buffer; + __m128i s[11], d[4]; + __m128i f[4]; + + assert(w && h); + + shuffle_filter_ssse3(coef, f); + src -= (SUBPEL_TAPS / 2 - 1) * src_stride + SUBPEL_TAPS / 2 + 1; + + // horizontal 4x8 + do { + load_8bit_8x8(src + 2, src_stride, s); + // 00 01 10 11 20 21 30 31 40 41 50 51 60 61 70 71 + // 02 03 12 13 22 23 32 33 42 43 52 53 62 63 72 73 + // 04 05 14 15 24 25 34 35 44 45 54 55 64 65 74 75 + // 06 07 16 17 26 27 36 37 46 47 56 57 66 67 76 77 (overlapped) + transpose_16bit_4x8(s, s); + x = width_hor; + + do { + src += 8; + load_8bit_8x8(src, src_stride, &s[3]); + // 06 07 16 17 26 27 36 37 46 47 56 57 66 67 76 77 + // 08 09 18 19 28 29 38 39 48 49 58 59 68 69 78 79 + // 0A 0B 1A 1B 2A 2B 3A 3B 4A 4B 5A 5B 6A 6B 7A 7B + // 0C 0D 1C 1D 2C 2D 3C 3D 4C 4D 5C 5D 6C 6D 7C 7D + transpose_16bit_4x8(&s[3], &s[3]); + + d[0] = convolve8_8_ssse3(&s[0], f); // 00 10 20 30 40 50 60 70 + d[1] = convolve8_8_ssse3(&s[1], f); // 01 11 21 31 41 51 61 71 + d[2] = convolve8_8_ssse3(&s[2], f); // 02 12 22 32 42 52 62 72 + d[3] = convolve8_8_ssse3(&s[3], f); // 03 13 23 33 43 53 63 73 + + // 00 10 20 30 40 50 60 70 02 12 22 32 42 52 62 72 + // 01 11 21 31 41 51 61 71 03 13 23 33 43 53 63 73 + d[0] = _mm_packus_epi16(d[0], d[2]); + d[1] = _mm_packus_epi16(d[1], d[3]); + // 00 10 01 11 20 30 21 31 40 50 41 51 60 70 61 71 + // 02 12 03 13 22 32 23 33 42 52 43 53 62 72 63 73 + d[2] = _mm_unpacklo_epi16(d[0], d[1]); + d[3] = _mm_unpackhi_epi16(d[0], d[1]); + // 00 10 01 11 02 12 03 13 20 30 21 31 22 32 23 33 + // 40 50 41 51 42 52 43 53 60 70 61 71 62 72 63 73 + d[0] = _mm_unpacklo_epi32(d[2], d[3]); + d[1] = _mm_unpackhi_epi32(d[2], d[3]); + store_8bit_8x4_from_16x2(d, t, 2 * width_hor); + + s[0] = s[4]; + s[1] = s[5]; + s[2] = s[6]; + + t += 8; + x -= 4; + } while (x); + src += 8 * src_stride - 2 * width_hor; + t += 6 * width_hor; + y -= 8; + } while (y); + + // vertical 8x4 + x = width_ver; + t = temp_buffer; + do { + // 00 10 01 11 02 12 03 13 04 14 05 15 06 16 07 17 + // 20 30 21 31 22 32 23 33 24 34 25 35 26 36 27 37 + // 40 50 41 51 42 52 43 53 44 54 45 55 46 56 47 57 + s[0] = _mm_loadu_si128((const __m128i *)(t + 0 * width_hor)); + s[1] = _mm_loadu_si128((const __m128i *)(t + 2 * width_hor)); + s[2] = _mm_loadu_si128((const __m128i *)(t + 4 * width_hor)); + t += 6 * width_hor; + y = height_ver; + + do { + // 60 70 61 71 62 72 63 73 64 74 65 75 66 76 67 77 + // 80 90 81 91 82 92 83 93 84 94 85 95 86 96 87 77 + // A0 B0 A1 B1 A2 B2 A3 B3 A4 B4 A5 B5 A6 B6 A7 77 + // C0 D0 C1 D1 C2 D2 C3 D3 C4 D4 C5 D5 C6 D6 C7 77 + loadu_8bit_16x4(t, 2 * width_hor, &s[3]); + t += 8 * width_hor; + + d[0] = convolve8_8_ssse3(&s[0], f); // 00 01 02 03 04 05 06 07 + d[1] = convolve8_8_ssse3(&s[1], f); // 10 11 12 13 14 15 16 17 + d[2] = convolve8_8_ssse3(&s[2], f); // 20 21 22 23 24 25 26 27 + d[3] = convolve8_8_ssse3(&s[3], f); // 30 31 32 33 34 35 36 37 + + // 00 01 02 03 04 05 06 07 10 11 12 13 14 15 16 17 + // 20 21 22 23 24 25 26 27 30 31 32 33 34 35 36 37 + d[0] = _mm_packus_epi16(d[0], d[1]); + d[1] = _mm_packus_epi16(d[2], d[3]); + store_8bit_8x4_from_16x2(d, dst, dst_stride); + + s[0] = s[4]; + s[1] = s[5]; + s[2] = s[6]; + + dst += 4 * dst_stride; + y -= 4; + } while (y); + t -= width_hor * (2 * height_ver + 6); + t += 16; + dst -= height_ver * dst_stride; + dst += 8; + x -= 8; + } while (x); +} + +static void scale_plane_4_to_1_general(const uint8_t *src, const int src_stride, + uint8_t *dst, const int dst_stride, + const int w, const int h, + const int16_t *const coef, + uint8_t *const temp_buffer) { + const int width_hor = (w + 1) & ~1; + const int width_ver = (w + 7) & ~7; + const int height_hor = (4 * h + SUBPEL_TAPS - 2 + 7) & ~7; + const int height_ver = (h + 1) & ~1; + int x, y = height_hor; + uint8_t *t = temp_buffer; + __m128i s[11], d[4]; + __m128i f[4]; + + assert(w && h); + + shuffle_filter_ssse3(coef, f); + src -= (SUBPEL_TAPS / 2 - 1) * src_stride + SUBPEL_TAPS / 2 + 3; + + // horizontal 2x8 + do { + load_8bit_8x8(src + 4, src_stride, s); + // 00 01 10 11 20 21 30 31 40 41 50 51 60 61 70 71 + // 02 03 12 13 22 23 32 33 42 43 52 53 62 63 72 73 + // 04 05 14 15 24 25 34 35 44 45 54 55 64 65 74 75 (overlapped) + // 06 07 16 17 26 27 36 37 46 47 56 57 66 67 76 77 (overlapped) + transpose_16bit_4x8(s, s); + x = width_hor; + + do { + src += 8; + load_8bit_8x8(src, src_stride, &s[2]); + // 04 05 14 15 24 25 34 35 44 45 54 55 64 65 74 75 + // 06 07 16 17 26 27 36 37 46 47 56 57 66 67 76 77 + // 08 09 18 19 28 29 38 39 48 49 58 59 68 69 78 79 + // 0A 0B 1A 1B 2A 2B 3A 3B 4A 4B 5A 5B 6A 6B 7A 7B + transpose_16bit_4x8(&s[2], &s[2]); + + d[0] = convolve8_8_ssse3(&s[0], f); // 00 10 20 30 40 50 60 70 + d[1] = convolve8_8_ssse3(&s[2], f); // 01 11 21 31 41 51 61 71 + + // 00 10 20 30 40 50 60 70 xx xx xx xx xx xx xx xx + // 01 11 21 31 41 51 61 71 xx xx xx xx xx xx xx xx + d[0] = _mm_packus_epi16(d[0], d[0]); + d[1] = _mm_packus_epi16(d[1], d[1]); + // 00 10 01 11 20 30 21 31 40 50 41 51 60 70 61 71 + d[0] = _mm_unpacklo_epi16(d[0], d[1]); + store_8bit_4x4_sse2(d[0], t, 2 * width_hor); + + s[0] = s[4]; + s[1] = s[5]; + + t += 4; + x -= 2; + } while (x); + src += 8 * src_stride - 4 * width_hor; + t += 6 * width_hor; + y -= 8; + } while (y); + + // vertical 8x2 + x = width_ver; + t = temp_buffer; + do { + // 00 10 01 11 02 12 03 13 04 14 05 15 06 16 07 17 + // 20 30 21 31 22 32 23 33 24 34 25 35 26 36 27 37 + s[0] = _mm_loadu_si128((const __m128i *)(t + 0 * width_hor)); + s[1] = _mm_loadu_si128((const __m128i *)(t + 2 * width_hor)); + t += 4 * width_hor; + y = height_ver; + + do { + // 40 50 41 51 42 52 43 53 44 54 45 55 46 56 47 57 + // 60 70 61 71 62 72 63 73 64 74 65 75 66 76 67 77 + // 80 90 81 91 82 92 83 93 84 94 85 95 86 96 87 77 + // A0 B0 A1 B1 A2 B2 A3 B3 A4 B4 A5 B5 A6 B6 A7 77 + loadu_8bit_16x4(t, 2 * width_hor, &s[2]); + t += 8 * width_hor; + + d[0] = convolve8_8_ssse3(&s[0], f); // 00 01 02 03 04 05 06 07 + d[1] = convolve8_8_ssse3(&s[2], f); // 10 11 12 13 14 15 16 17 + + // 00 01 02 03 04 05 06 07 10 11 12 13 14 15 16 17 + d[0] = _mm_packus_epi16(d[0], d[1]); + _mm_storel_epi64((__m128i *)(dst + 0 * dst_stride), d[0]); + _mm_storeh_epi64((__m128i *)(dst + 1 * dst_stride), d[0]); + + s[0] = s[4]; + s[1] = s[5]; + + dst += 2 * dst_stride; + y -= 2; + } while (y); + t -= width_hor * (4 * height_ver + 4); + t += 16; + dst -= height_ver * dst_stride; + dst += 8; + x -= 8; + } while (x); +} + +typedef void (*shuffle_filter_funcs)(const int16_t *const filter, + __m128i *const f); + +typedef __m128i (*convolve8_funcs)(const __m128i *const s, + const __m128i *const f); + +static void scale_plane_4_to_3_general(const uint8_t *src, const int src_stride, + uint8_t *dst, const int dst_stride, + const int w, const int h, + const InterpKernel *const coef, + const int phase_scaler, + uint8_t *const temp_buffer) { + static const int step_q4 = 16 * 4 / 3; + const int width_hor = (w + 5) - ((w + 5) % 6); + const int stride_hor = 2 * width_hor + 4; // store 4 extra pixels + const int width_ver = (w + 7) & ~7; + // We need (SUBPEL_TAPS - 1) extra rows: (SUBPEL_TAPS / 2 - 1) extra rows + // above and (SUBPEL_TAPS / 2) extra rows below. + const int height_hor = (4 * h / 3 + SUBPEL_TAPS - 1 + 7) & ~7; + const int height_ver = (h + 5) - ((h + 5) % 6); + int x, y = height_hor; + uint8_t *t = temp_buffer; + __m128i s[12], d[6], dd[4]; + __m128i f0[4], f1[5], f2[5]; + // The offset of the first row is always less than 1 pixel. + const int offset1_q4 = phase_scaler + 1 * step_q4; + const int offset2_q4 = phase_scaler + 2 * step_q4; + // offset_idxx indicates the pixel offset is even (0) or odd (1). + // It's used to choose the src offset and filter coefficient offset. + const int offset_idx1 = (offset1_q4 >> 4) & 1; + const int offset_idx2 = (offset2_q4 >> 4) & 1; + static const shuffle_filter_funcs shuffle_filter_funcs[2] = { + shuffle_filter_ssse3, shuffle_filter_odd_ssse3 + }; + static const convolve8_funcs convolve8_funcs[2] = { + convolve8_8_even_offset_ssse3, convolve8_8_odd_offset_ssse3 + }; + + assert(w && h); + + shuffle_filter_ssse3(coef[(phase_scaler + 0 * step_q4) & SUBPEL_MASK], f0); + shuffle_filter_funcs[offset_idx1](coef[offset1_q4 & SUBPEL_MASK], f1); + shuffle_filter_funcs[offset_idx2](coef[offset2_q4 & SUBPEL_MASK], f2); + + // Sub 64 to avoid overflow. + // Coef 128 would be treated as -128 in PMADDUBSW. Sub 64 here. + // Coef 128 is in either fx[1] or fx[2] depending on the phase idx. + // When filter phase idx is 1, the two biggest coefficients are shuffled + // together, and the sum of them are always no less than 128. Sub 64 here. + // After the subtraction, when the sum of all positive coefficients are no + // larger than 128, and the sum of all negative coefficients are no + // less than -128, there will be no overflow in the convolve8 functions. + f0[1] = _mm_sub_epi8(f0[1], _mm_set1_epi8(64)); + f1[1 + offset_idx1] = _mm_sub_epi8(f1[1 + offset_idx1], _mm_set1_epi8(64)); + f2[1 + offset_idx2] = _mm_sub_epi8(f2[1 + offset_idx2], _mm_set1_epi8(64)); + + src -= (SUBPEL_TAPS / 2 - 1) * src_stride + SUBPEL_TAPS / 2 - 1; + + // horizontal 6x8 + do { + load_8bit_8x8(src, src_stride, s); + // 00 01 10 11 20 21 30 31 40 41 50 51 60 61 70 71 + // 02 03 12 13 22 23 32 33 42 43 52 53 62 63 72 73 + // 04 05 14 15 24 25 34 35 44 45 54 55 64 65 74 75 + // 06 07 16 17 26 27 36 37 46 47 56 57 66 67 76 77 + transpose_16bit_4x8(s, s); + x = width_hor; + + do { + src += 8; + load_8bit_8x8(src, src_stride, &s[4]); + // 08 09 18 19 28 29 38 39 48 49 58 59 68 69 78 79 + // 0A 0B 1A 1B 2A 2B 3A 3B 4A 4B 5A 5B 6A 6B 7A 7B + // OC 0D 1C 1D 2C 2D 3C 3D 4C 4D 5C 5D 6C 6D 7C 7D + // 0E 0F 1E 1F 2E 2F 3E 3F 4E 4F 5E 5F 6E 6F 7E 7F + transpose_16bit_4x8(&s[4], &s[4]); + + // 00 10 20 30 40 50 60 70 + // 01 11 21 31 41 51 61 71 + // 02 12 22 32 42 52 62 72 + // 03 13 23 33 43 53 63 73 + // 04 14 24 34 44 54 64 74 + // 05 15 25 35 45 55 65 75 + d[0] = convolve8_8_even_offset_ssse3(&s[0], f0); + d[1] = convolve8_funcs[offset_idx1](&s[offset1_q4 >> 5], f1); + d[2] = convolve8_funcs[offset_idx2](&s[offset2_q4 >> 5], f2); + d[3] = convolve8_8_even_offset_ssse3(&s[2], f0); + d[4] = convolve8_funcs[offset_idx1](&s[2 + (offset1_q4 >> 5)], f1); + d[5] = convolve8_funcs[offset_idx2](&s[2 + (offset2_q4 >> 5)], f2); + + // 00 10 20 30 40 50 60 70 02 12 22 32 42 52 62 72 + // 01 11 21 31 41 51 61 71 03 13 23 33 43 53 63 73 + // 04 14 24 34 44 54 64 74 xx xx xx xx xx xx xx xx + // 05 15 25 35 45 55 65 75 xx xx xx xx xx xx xx xx + dd[0] = _mm_packus_epi16(d[0], d[2]); + dd[1] = _mm_packus_epi16(d[1], d[3]); + dd[2] = _mm_packus_epi16(d[4], d[4]); + dd[3] = _mm_packus_epi16(d[5], d[5]); + + // 00 10 01 11 20 30 21 31 40 50 41 51 60 70 61 71 + // 02 12 03 13 22 32 23 33 42 52 43 53 62 72 63 73 + // 04 14 05 15 24 34 25 35 44 54 45 55 64 74 65 75 + d[0] = _mm_unpacklo_epi16(dd[0], dd[1]); + d[1] = _mm_unpackhi_epi16(dd[0], dd[1]); + d[2] = _mm_unpacklo_epi16(dd[2], dd[3]); + + // 00 10 01 11 02 12 03 13 20 30 21 31 22 32 23 33 + // 40 50 41 51 42 52 43 53 60 70 61 71 62 72 63 73 + // 04 14 05 15 xx xx xx xx 24 34 25 35 xx xx xx xx + // 44 54 45 55 xx xx xx xx 64 74 65 75 xx xx xx xx + dd[0] = _mm_unpacklo_epi32(d[0], d[1]); + dd[1] = _mm_unpackhi_epi32(d[0], d[1]); + dd[2] = _mm_unpacklo_epi32(d[2], d[2]); + dd[3] = _mm_unpackhi_epi32(d[2], d[2]); + + // 00 10 01 11 02 12 03 13 04 14 05 15 xx xx xx xx + // 20 30 21 31 22 32 23 33 24 34 25 35 xx xx xx xx + // 40 50 41 51 42 52 43 53 44 54 45 55 xx xx xx xx + // 60 70 61 71 62 72 63 73 64 74 65 75 xx xx xx xx + d[0] = _mm_unpacklo_epi64(dd[0], dd[2]); + d[1] = _mm_unpackhi_epi64(dd[0], dd[2]); + d[2] = _mm_unpacklo_epi64(dd[1], dd[3]); + d[3] = _mm_unpackhi_epi64(dd[1], dd[3]); + + // store 4 extra pixels + storeu_8bit_16x4(d, t, stride_hor); + + s[0] = s[4]; + s[1] = s[5]; + s[2] = s[6]; + s[3] = s[7]; + + t += 12; + x -= 6; + } while (x); + src += 8 * src_stride - 4 * width_hor / 3; + t += 3 * stride_hor + 4; + y -= 8; + } while (y); + + // vertical 8x6 + x = width_ver; + t = temp_buffer; + do { + // 00 10 01 11 02 12 03 13 04 14 05 15 06 16 07 17 + // 20 30 21 31 22 32 23 33 24 34 25 35 26 36 27 37 + // 40 50 41 51 42 52 43 53 44 54 45 55 46 56 47 57 + // 60 70 61 71 62 72 63 73 64 74 65 75 66 76 67 77 + loadu_8bit_16x4(t, stride_hor, s); + y = height_ver; + + do { + // 80 90 81 91 82 92 83 93 84 94 85 95 86 96 87 97 + // A0 B0 A1 B1 A2 B2 A3 B3 A4 B4 A5 B5 A6 B6 A7 B7 + // C0 D0 C1 D1 C2 D2 C3 D3 C4 D4 C5 D5 C6 D6 C7 D7 + // E0 F0 E1 F1 E2 F2 E3 F3 E4 F4 E5 F5 E6 F6 E7 F7 + t += 4 * stride_hor; + loadu_8bit_16x4(t, stride_hor, &s[4]); + + d[0] = convolve8_8_even_offset_ssse3(&s[0], f0); + d[1] = convolve8_funcs[offset_idx1](&s[offset1_q4 >> 5], f1); + d[2] = convolve8_funcs[offset_idx2](&s[offset2_q4 >> 5], f2); + d[3] = convolve8_8_even_offset_ssse3(&s[2], f0); + d[4] = convolve8_funcs[offset_idx1](&s[2 + (offset1_q4 >> 5)], f1); + d[5] = convolve8_funcs[offset_idx2](&s[2 + (offset2_q4 >> 5)], f2); + + // 00 01 02 03 04 05 06 07 10 11 12 13 14 15 16 17 + // 20 21 22 23 24 25 26 27 30 31 32 33 34 35 36 37 + // 40 41 42 43 44 45 46 47 50 51 52 53 54 55 56 57 + d[0] = _mm_packus_epi16(d[0], d[1]); + d[2] = _mm_packus_epi16(d[2], d[3]); + d[4] = _mm_packus_epi16(d[4], d[5]); + + _mm_storel_epi64((__m128i *)(dst + 0 * dst_stride), d[0]); + _mm_storeh_epi64((__m128i *)(dst + 1 * dst_stride), d[0]); + _mm_storel_epi64((__m128i *)(dst + 2 * dst_stride), d[2]); + _mm_storeh_epi64((__m128i *)(dst + 3 * dst_stride), d[2]); + _mm_storel_epi64((__m128i *)(dst + 4 * dst_stride), d[4]); + _mm_storeh_epi64((__m128i *)(dst + 5 * dst_stride), d[4]); + + s[0] = s[4]; + s[1] = s[5]; + s[2] = s[6]; + s[3] = s[7]; + + dst += 6 * dst_stride; + y -= 6; + } while (y); + t -= stride_hor * 2 * height_ver / 3; + t += 16; + dst -= height_ver * dst_stride; + dst += 8; + x -= 8; + } while (x); +} + +static INLINE __m128i scale_1_to_2_phase_0_kernel(const __m128i *const s, + const __m128i *const f) { + __m128i ss[4], temp; + + ss[0] = _mm_unpacklo_epi8(s[0], s[1]); + ss[1] = _mm_unpacklo_epi8(s[2], s[3]); + ss[2] = _mm_unpacklo_epi8(s[4], s[5]); + ss[3] = _mm_unpacklo_epi8(s[6], s[7]); + temp = convolve8_8_ssse3(ss, f); + return _mm_packus_epi16(temp, temp); +} + +// Only calculate odd columns since even columns are just src pixels' copies. +static void scale_1_to_2_phase_0_row(const uint8_t *src, uint8_t *dst, + const int w, const __m128i *const f) { + int x = w; + + do { + __m128i s[8], temp; + s[0] = _mm_loadl_epi64((const __m128i *)(src + 0)); + s[1] = _mm_loadl_epi64((const __m128i *)(src + 1)); + s[2] = _mm_loadl_epi64((const __m128i *)(src + 2)); + s[3] = _mm_loadl_epi64((const __m128i *)(src + 3)); + s[4] = _mm_loadl_epi64((const __m128i *)(src + 4)); + s[5] = _mm_loadl_epi64((const __m128i *)(src + 5)); + s[6] = _mm_loadl_epi64((const __m128i *)(src + 6)); + s[7] = _mm_loadl_epi64((const __m128i *)(src + 7)); + temp = scale_1_to_2_phase_0_kernel(s, f); + _mm_storel_epi64((__m128i *)dst, temp); + src += 8; + dst += 8; + x -= 8; + } while (x); +} + +static void scale_plane_1_to_2_phase_0(const uint8_t *src, + const ptrdiff_t src_stride, uint8_t *dst, + const ptrdiff_t dst_stride, + const int src_w, const int src_h, + const int16_t *const coef, + uint8_t *const temp_buffer) { + int max_width; + int y; + uint8_t *tmp[9]; + __m128i f[4]; + + max_width = (src_w + 7) & ~7; + tmp[0] = temp_buffer + 0 * max_width; + tmp[1] = temp_buffer + 1 * max_width; + tmp[2] = temp_buffer + 2 * max_width; + tmp[3] = temp_buffer + 3 * max_width; + tmp[4] = temp_buffer + 4 * max_width; + tmp[5] = temp_buffer + 5 * max_width; + tmp[6] = temp_buffer + 6 * max_width; + tmp[7] = temp_buffer + 7 * max_width; + + shuffle_filter_ssse3(coef, f); + + scale_1_to_2_phase_0_row(src - 3 * src_stride - 3, tmp[0], max_width, f); + scale_1_to_2_phase_0_row(src - 2 * src_stride - 3, tmp[1], max_width, f); + scale_1_to_2_phase_0_row(src - 1 * src_stride - 3, tmp[2], max_width, f); + scale_1_to_2_phase_0_row(src + 0 * src_stride - 3, tmp[3], max_width, f); + scale_1_to_2_phase_0_row(src + 1 * src_stride - 3, tmp[4], max_width, f); + scale_1_to_2_phase_0_row(src + 2 * src_stride - 3, tmp[5], max_width, f); + scale_1_to_2_phase_0_row(src + 3 * src_stride - 3, tmp[6], max_width, f); + + y = src_h; + do { + int x; + scale_1_to_2_phase_0_row(src + 4 * src_stride - 3, tmp[7], max_width, f); + for (x = 0; x < max_width; x += 8) { + __m128i s[8], C, D, CD; + + // Even rows + const __m128i a = _mm_loadl_epi64((const __m128i *)(src + x)); + const __m128i b = _mm_loadl_epi64((const __m128i *)(tmp[3] + x)); + const __m128i ab = _mm_unpacklo_epi8(a, b); + _mm_storeu_si128((__m128i *)(dst + 2 * x), ab); + + // Odd rows + // Even columns + load_8bit_8x8(src + x - 3 * src_stride, src_stride, s); + C = scale_1_to_2_phase_0_kernel(s, f); + + // Odd columns + s[0] = _mm_loadl_epi64((const __m128i *)(tmp[0] + x)); + s[1] = _mm_loadl_epi64((const __m128i *)(tmp[1] + x)); + s[2] = _mm_loadl_epi64((const __m128i *)(tmp[2] + x)); + s[3] = _mm_loadl_epi64((const __m128i *)(tmp[3] + x)); + s[4] = _mm_loadl_epi64((const __m128i *)(tmp[4] + x)); + s[5] = _mm_loadl_epi64((const __m128i *)(tmp[5] + x)); + s[6] = _mm_loadl_epi64((const __m128i *)(tmp[6] + x)); + s[7] = _mm_loadl_epi64((const __m128i *)(tmp[7] + x)); + D = scale_1_to_2_phase_0_kernel(s, f); + + CD = _mm_unpacklo_epi8(C, D); + _mm_storeu_si128((__m128i *)(dst + dst_stride + 2 * x), CD); + } + + src += src_stride; + dst += 2 * dst_stride; + tmp[8] = tmp[0]; + tmp[0] = tmp[1]; + tmp[1] = tmp[2]; + tmp[2] = tmp[3]; + tmp[3] = tmp[4]; + tmp[4] = tmp[5]; + tmp[5] = tmp[6]; + tmp[6] = tmp[7]; + tmp[7] = tmp[8]; + } while (--y); +} + +void vp9_scale_and_extend_frame_ssse3(const YV12_BUFFER_CONFIG *src, + YV12_BUFFER_CONFIG *dst, + uint8_t filter_type, int phase_scaler) { + const int src_w = src->y_crop_width; + const int src_h = src->y_crop_height; + const int dst_w = dst->y_crop_width; + const int dst_h = dst->y_crop_height; + const int dst_uv_w = dst_w / 2; + const int dst_uv_h = dst_h / 2; + int scaled = 0; + + // phase_scaler is usually 0 or 8. + assert(phase_scaler >= 0 && phase_scaler < 16); + + if (dst_w * 2 == src_w && dst_h * 2 == src_h) { + // 2 to 1 + scaled = 1; + + if (phase_scaler == 0) { + scale_plane_2_to_1_phase_0(src->y_buffer, src->y_stride, dst->y_buffer, + dst->y_stride, dst_w, dst_h); + scale_plane_2_to_1_phase_0(src->u_buffer, src->uv_stride, dst->u_buffer, + dst->uv_stride, dst_uv_w, dst_uv_h); + scale_plane_2_to_1_phase_0(src->v_buffer, src->uv_stride, dst->v_buffer, + dst->uv_stride, dst_uv_w, dst_uv_h); + } else if (filter_type == BILINEAR) { + const int16_t c0 = vp9_filter_kernels[BILINEAR][phase_scaler][3]; + const int16_t c1 = vp9_filter_kernels[BILINEAR][phase_scaler][4]; + const __m128i c0c1 = _mm_set1_epi16(c0 | (c1 << 8)); // c0 and c1 >= 0 + scale_plane_2_to_1_bilinear(src->y_buffer, src->y_stride, dst->y_buffer, + dst->y_stride, dst_w, dst_h, c0c1); + scale_plane_2_to_1_bilinear(src->u_buffer, src->uv_stride, dst->u_buffer, + dst->uv_stride, dst_uv_w, dst_uv_h, c0c1); + scale_plane_2_to_1_bilinear(src->v_buffer, src->uv_stride, dst->v_buffer, + dst->uv_stride, dst_uv_w, dst_uv_h, c0c1); + } else { + const int buffer_stride = (dst_w + 3) & ~3; + const int buffer_height = (2 * dst_h + SUBPEL_TAPS - 2 + 7) & ~7; + uint8_t *const temp_buffer = + (uint8_t *)malloc(buffer_stride * buffer_height); + if (temp_buffer) { + scale_plane_2_to_1_general( + src->y_buffer, src->y_stride, dst->y_buffer, dst->y_stride, dst_w, + dst_h, vp9_filter_kernels[filter_type][phase_scaler], temp_buffer); + scale_plane_2_to_1_general( + src->u_buffer, src->uv_stride, dst->u_buffer, dst->uv_stride, + dst_uv_w, dst_uv_h, vp9_filter_kernels[filter_type][phase_scaler], + temp_buffer); + scale_plane_2_to_1_general( + src->v_buffer, src->uv_stride, dst->v_buffer, dst->uv_stride, + dst_uv_w, dst_uv_h, vp9_filter_kernels[filter_type][phase_scaler], + temp_buffer); + free(temp_buffer); + } else { + scaled = 0; + } + } + } else if (4 * dst_w == src_w && 4 * dst_h == src_h) { + // 4 to 1 + scaled = 1; + if (phase_scaler == 0) { + scale_plane_4_to_1_phase_0(src->y_buffer, src->y_stride, dst->y_buffer, + dst->y_stride, dst_w, dst_h); + scale_plane_4_to_1_phase_0(src->u_buffer, src->uv_stride, dst->u_buffer, + dst->uv_stride, dst_uv_w, dst_uv_h); + scale_plane_4_to_1_phase_0(src->v_buffer, src->uv_stride, dst->v_buffer, + dst->uv_stride, dst_uv_w, dst_uv_h); + } else if (filter_type == BILINEAR) { + const int16_t c0 = vp9_filter_kernels[BILINEAR][phase_scaler][3]; + const int16_t c1 = vp9_filter_kernels[BILINEAR][phase_scaler][4]; + const __m128i c0c1 = _mm_set1_epi16(c0 | (c1 << 8)); // c0 and c1 >= 0 + scale_plane_4_to_1_bilinear(src->y_buffer, src->y_stride, dst->y_buffer, + dst->y_stride, dst_w, dst_h, c0c1); + scale_plane_4_to_1_bilinear(src->u_buffer, src->uv_stride, dst->u_buffer, + dst->uv_stride, dst_uv_w, dst_uv_h, c0c1); + scale_plane_4_to_1_bilinear(src->v_buffer, src->uv_stride, dst->v_buffer, + dst->uv_stride, dst_uv_w, dst_uv_h, c0c1); + } else { + const int buffer_stride = (dst_w + 1) & ~1; + const int buffer_height = (4 * dst_h + SUBPEL_TAPS - 2 + 7) & ~7; + // When dst_w is 1 or 2, we need extra padding to avoid heap read overflow + const int extra_padding = 16; + uint8_t *const temp_buffer = + (uint8_t *)malloc(buffer_stride * buffer_height + extra_padding); + if (temp_buffer) { + scale_plane_4_to_1_general( + src->y_buffer, src->y_stride, dst->y_buffer, dst->y_stride, dst_w, + dst_h, vp9_filter_kernels[filter_type][phase_scaler], temp_buffer); + scale_plane_4_to_1_general( + src->u_buffer, src->uv_stride, dst->u_buffer, dst->uv_stride, + dst_uv_w, dst_uv_h, vp9_filter_kernels[filter_type][phase_scaler], + temp_buffer); + scale_plane_4_to_1_general( + src->v_buffer, src->uv_stride, dst->v_buffer, dst->uv_stride, + dst_uv_w, dst_uv_h, vp9_filter_kernels[filter_type][phase_scaler], + temp_buffer); + free(temp_buffer); + } else { + scaled = 0; + } + } + } else if (4 * dst_w == 3 * src_w && 4 * dst_h == 3 * src_h) { + // 4 to 3 + const int buffer_stride_hor = (dst_w + 5) - ((dst_w + 5) % 6) + 2; + const int buffer_stride_ver = (dst_w + 7) & ~7; + const int buffer_height = (4 * dst_h / 3 + SUBPEL_TAPS - 1 + 7) & ~7; + // When the vertical filter reads more pixels than the horizontal filter + // generated in each row, we need extra padding to avoid heap read overflow. + // For example, the horizontal filter generates 18 pixels but the vertical + // filter reads 24 pixels in a row. The difference is multiplied by 2 since + // two rows are interlaced together in the optimization. + const int extra_padding = (buffer_stride_ver > buffer_stride_hor) + ? 2 * (buffer_stride_ver - buffer_stride_hor) + : 0; + const int buffer_size = buffer_stride_hor * buffer_height + extra_padding; + uint8_t *const temp_buffer = (uint8_t *)malloc(buffer_size); + if (temp_buffer) { + scaled = 1; + scale_plane_4_to_3_general( + src->y_buffer, src->y_stride, dst->y_buffer, dst->y_stride, dst_w, + dst_h, vp9_filter_kernels[filter_type], phase_scaler, temp_buffer); + scale_plane_4_to_3_general(src->u_buffer, src->uv_stride, dst->u_buffer, + dst->uv_stride, dst_uv_w, dst_uv_h, + vp9_filter_kernels[filter_type], phase_scaler, + temp_buffer); + scale_plane_4_to_3_general(src->v_buffer, src->uv_stride, dst->v_buffer, + dst->uv_stride, dst_uv_w, dst_uv_h, + vp9_filter_kernels[filter_type], phase_scaler, + temp_buffer); + free(temp_buffer); + } + } else if (dst_w == src_w * 2 && dst_h == src_h * 2 && phase_scaler == 0) { + // 1 to 2 + uint8_t *const temp_buffer = (uint8_t *)malloc(8 * ((src_w + 7) & ~7)); + if (temp_buffer) { + scaled = 1; + scale_plane_1_to_2_phase_0( + src->y_buffer, src->y_stride, dst->y_buffer, dst->y_stride, src_w, + src_h, vp9_filter_kernels[filter_type][8], temp_buffer); + scale_plane_1_to_2_phase_0(src->u_buffer, src->uv_stride, dst->u_buffer, + dst->uv_stride, src_w / 2, src_h / 2, + vp9_filter_kernels[filter_type][8], + temp_buffer); + scale_plane_1_to_2_phase_0(src->v_buffer, src->uv_stride, dst->v_buffer, + dst->uv_stride, src_w / 2, src_h / 2, + vp9_filter_kernels[filter_type][8], + temp_buffer); + free(temp_buffer); + } + } + + if (scaled) { + vpx_extend_frame_borders(dst); + } else { + // Call c version for all other scaling ratios. + vp9_scale_and_extend_frame_c(src, dst, filter_type, phase_scaler); + } +} diff --git a/vp9/encoder/x86/vp9_highbd_block_error_intrin_sse2.c b/vp9/encoder/x86/vp9_highbd_block_error_intrin_sse2.c new file mode 100644 index 0000000..91f627c --- /dev/null +++ b/vp9/encoder/x86/vp9_highbd_block_error_intrin_sse2.c @@ -0,0 +1,71 @@ +/* + * Copyright (c) 2014 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include + +#include "vp9/common/vp9_common.h" + +int64_t vp9_highbd_block_error_sse2(tran_low_t *coeff, tran_low_t *dqcoeff, + intptr_t block_size, int64_t *ssz, + int bps) { + int i, j, test; + uint32_t temp[4]; + __m128i max, min, cmp0, cmp1, cmp2, cmp3; + int64_t error = 0, sqcoeff = 0; + const int shift = 2 * (bps - 8); + const int rounding = shift > 0 ? 1 << (shift - 1) : 0; + + for (i = 0; i < block_size; i += 8) { + // Load the data into xmm registers + __m128i mm_coeff = _mm_load_si128((__m128i *)(coeff + i)); + __m128i mm_coeff2 = _mm_load_si128((__m128i *)(coeff + i + 4)); + __m128i mm_dqcoeff = _mm_load_si128((__m128i *)(dqcoeff + i)); + __m128i mm_dqcoeff2 = _mm_load_si128((__m128i *)(dqcoeff + i + 4)); + // Check if any values require more than 15 bit + max = _mm_set1_epi32(0x3fff); + min = _mm_set1_epi32(0xffffc000); + cmp0 = _mm_xor_si128(_mm_cmpgt_epi32(mm_coeff, max), + _mm_cmplt_epi32(mm_coeff, min)); + cmp1 = _mm_xor_si128(_mm_cmpgt_epi32(mm_coeff2, max), + _mm_cmplt_epi32(mm_coeff2, min)); + cmp2 = _mm_xor_si128(_mm_cmpgt_epi32(mm_dqcoeff, max), + _mm_cmplt_epi32(mm_dqcoeff, min)); + cmp3 = _mm_xor_si128(_mm_cmpgt_epi32(mm_dqcoeff2, max), + _mm_cmplt_epi32(mm_dqcoeff2, min)); + test = _mm_movemask_epi8( + _mm_or_si128(_mm_or_si128(cmp0, cmp1), _mm_or_si128(cmp2, cmp3))); + + if (!test) { + __m128i mm_diff, error_sse2, sqcoeff_sse2; + mm_coeff = _mm_packs_epi32(mm_coeff, mm_coeff2); + mm_dqcoeff = _mm_packs_epi32(mm_dqcoeff, mm_dqcoeff2); + mm_diff = _mm_sub_epi16(mm_coeff, mm_dqcoeff); + error_sse2 = _mm_madd_epi16(mm_diff, mm_diff); + sqcoeff_sse2 = _mm_madd_epi16(mm_coeff, mm_coeff); + _mm_storeu_si128((__m128i *)temp, error_sse2); + error = error + temp[0] + temp[1] + temp[2] + temp[3]; + _mm_storeu_si128((__m128i *)temp, sqcoeff_sse2); + sqcoeff += temp[0] + temp[1] + temp[2] + temp[3]; + } else { + for (j = 0; j < 8; j++) { + const int64_t diff = coeff[i + j] - dqcoeff[i + j]; + error += diff * diff; + sqcoeff += (int64_t)coeff[i + j] * (int64_t)coeff[i + j]; + } + } + } + assert(error >= 0 && sqcoeff >= 0); + error = (error + rounding) >> shift; + sqcoeff = (sqcoeff + rounding) >> shift; + + *ssz = sqcoeff; + return error; +} diff --git a/vp9/encoder/x86/vp9_quantize_sse2.c b/vp9/encoder/x86/vp9_quantize_sse2.c new file mode 100644 index 0000000..ca0ad44 --- /dev/null +++ b/vp9/encoder/x86/vp9_quantize_sse2.c @@ -0,0 +1,202 @@ +/* + * Copyright (c) 2014 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include +#include + +#include "./vp9_rtcd.h" +#include "vpx/vpx_integer.h" +#include "vpx_dsp/vpx_dsp_common.h" +#include "vpx_dsp/x86/bitdepth_conversion_sse2.h" + +void vp9_quantize_fp_sse2(const tran_low_t *coeff_ptr, intptr_t n_coeffs, + int skip_block, const int16_t *round_ptr, + const int16_t *quant_ptr, tran_low_t *qcoeff_ptr, + tran_low_t *dqcoeff_ptr, const int16_t *dequant_ptr, + uint16_t *eob_ptr, const int16_t *scan_ptr, + const int16_t *iscan_ptr) { + __m128i zero; + __m128i thr; + int16_t nzflag; + __m128i eob; + __m128i round, quant, dequant; + + (void)scan_ptr; + (void)skip_block; + assert(!skip_block); + + coeff_ptr += n_coeffs; + iscan_ptr += n_coeffs; + qcoeff_ptr += n_coeffs; + dqcoeff_ptr += n_coeffs; + n_coeffs = -n_coeffs; + zero = _mm_setzero_si128(); + + { + __m128i coeff0, coeff1; + + // Setup global values + { + round = _mm_load_si128((const __m128i *)round_ptr); + quant = _mm_load_si128((const __m128i *)quant_ptr); + dequant = _mm_load_si128((const __m128i *)dequant_ptr); + } + + { + __m128i coeff0_sign, coeff1_sign; + __m128i qcoeff0, qcoeff1; + __m128i qtmp0, qtmp1; + // Do DC and first 15 AC + coeff0 = load_tran_low(coeff_ptr + n_coeffs); + coeff1 = load_tran_low(coeff_ptr + n_coeffs + 8); + + // Poor man's sign extract + coeff0_sign = _mm_srai_epi16(coeff0, 15); + coeff1_sign = _mm_srai_epi16(coeff1, 15); + qcoeff0 = _mm_xor_si128(coeff0, coeff0_sign); + qcoeff1 = _mm_xor_si128(coeff1, coeff1_sign); + qcoeff0 = _mm_sub_epi16(qcoeff0, coeff0_sign); + qcoeff1 = _mm_sub_epi16(qcoeff1, coeff1_sign); + + qcoeff0 = _mm_adds_epi16(qcoeff0, round); + round = _mm_unpackhi_epi64(round, round); + qcoeff1 = _mm_adds_epi16(qcoeff1, round); + qtmp0 = _mm_mulhi_epi16(qcoeff0, quant); + quant = _mm_unpackhi_epi64(quant, quant); + qtmp1 = _mm_mulhi_epi16(qcoeff1, quant); + + // Reinsert signs + qcoeff0 = _mm_xor_si128(qtmp0, coeff0_sign); + qcoeff1 = _mm_xor_si128(qtmp1, coeff1_sign); + qcoeff0 = _mm_sub_epi16(qcoeff0, coeff0_sign); + qcoeff1 = _mm_sub_epi16(qcoeff1, coeff1_sign); + + store_tran_low(qcoeff0, qcoeff_ptr + n_coeffs); + store_tran_low(qcoeff1, qcoeff_ptr + n_coeffs + 8); + + coeff0 = _mm_mullo_epi16(qcoeff0, dequant); + dequant = _mm_unpackhi_epi64(dequant, dequant); + coeff1 = _mm_mullo_epi16(qcoeff1, dequant); + + store_tran_low(coeff0, dqcoeff_ptr + n_coeffs); + store_tran_low(coeff1, dqcoeff_ptr + n_coeffs + 8); + } + + { + // Scan for eob + __m128i zero_coeff0, zero_coeff1; + __m128i nzero_coeff0, nzero_coeff1; + __m128i iscan0, iscan1; + __m128i eob1; + zero_coeff0 = _mm_cmpeq_epi16(coeff0, zero); + zero_coeff1 = _mm_cmpeq_epi16(coeff1, zero); + nzero_coeff0 = _mm_cmpeq_epi16(zero_coeff0, zero); + nzero_coeff1 = _mm_cmpeq_epi16(zero_coeff1, zero); + iscan0 = _mm_load_si128((const __m128i *)(iscan_ptr + n_coeffs)); + iscan1 = _mm_load_si128((const __m128i *)(iscan_ptr + n_coeffs) + 1); + // Add one to convert from indices to counts + iscan0 = _mm_sub_epi16(iscan0, nzero_coeff0); + iscan1 = _mm_sub_epi16(iscan1, nzero_coeff1); + eob = _mm_and_si128(iscan0, nzero_coeff0); + eob1 = _mm_and_si128(iscan1, nzero_coeff1); + eob = _mm_max_epi16(eob, eob1); + } + n_coeffs += 8 * 2; + } + + thr = _mm_srai_epi16(dequant, 1); + + // AC only loop + while (n_coeffs < 0) { + __m128i coeff0, coeff1; + { + __m128i coeff0_sign, coeff1_sign; + __m128i qcoeff0, qcoeff1; + __m128i qtmp0, qtmp1; + + coeff0 = load_tran_low(coeff_ptr + n_coeffs); + coeff1 = load_tran_low(coeff_ptr + n_coeffs + 8); + + // Poor man's sign extract + coeff0_sign = _mm_srai_epi16(coeff0, 15); + coeff1_sign = _mm_srai_epi16(coeff1, 15); + qcoeff0 = _mm_xor_si128(coeff0, coeff0_sign); + qcoeff1 = _mm_xor_si128(coeff1, coeff1_sign); + qcoeff0 = _mm_sub_epi16(qcoeff0, coeff0_sign); + qcoeff1 = _mm_sub_epi16(qcoeff1, coeff1_sign); + + nzflag = _mm_movemask_epi8(_mm_cmpgt_epi16(qcoeff0, thr)) | + _mm_movemask_epi8(_mm_cmpgt_epi16(qcoeff1, thr)); + + if (nzflag) { + qcoeff0 = _mm_adds_epi16(qcoeff0, round); + qcoeff1 = _mm_adds_epi16(qcoeff1, round); + qtmp0 = _mm_mulhi_epi16(qcoeff0, quant); + qtmp1 = _mm_mulhi_epi16(qcoeff1, quant); + + // Reinsert signs + qcoeff0 = _mm_xor_si128(qtmp0, coeff0_sign); + qcoeff1 = _mm_xor_si128(qtmp1, coeff1_sign); + qcoeff0 = _mm_sub_epi16(qcoeff0, coeff0_sign); + qcoeff1 = _mm_sub_epi16(qcoeff1, coeff1_sign); + + store_tran_low(qcoeff0, qcoeff_ptr + n_coeffs); + store_tran_low(qcoeff1, qcoeff_ptr + n_coeffs + 8); + + coeff0 = _mm_mullo_epi16(qcoeff0, dequant); + coeff1 = _mm_mullo_epi16(qcoeff1, dequant); + + store_tran_low(coeff0, dqcoeff_ptr + n_coeffs); + store_tran_low(coeff1, dqcoeff_ptr + n_coeffs + 8); + } else { + store_zero_tran_low(qcoeff_ptr + n_coeffs); + store_zero_tran_low(qcoeff_ptr + n_coeffs + 8); + + store_zero_tran_low(dqcoeff_ptr + n_coeffs); + store_zero_tran_low(dqcoeff_ptr + n_coeffs + 8); + } + } + + if (nzflag) { + // Scan for eob + __m128i zero_coeff0, zero_coeff1; + __m128i nzero_coeff0, nzero_coeff1; + __m128i iscan0, iscan1; + __m128i eob0, eob1; + zero_coeff0 = _mm_cmpeq_epi16(coeff0, zero); + zero_coeff1 = _mm_cmpeq_epi16(coeff1, zero); + nzero_coeff0 = _mm_cmpeq_epi16(zero_coeff0, zero); + nzero_coeff1 = _mm_cmpeq_epi16(zero_coeff1, zero); + iscan0 = _mm_load_si128((const __m128i *)(iscan_ptr + n_coeffs)); + iscan1 = _mm_load_si128((const __m128i *)(iscan_ptr + n_coeffs) + 1); + // Add one to convert from indices to counts + iscan0 = _mm_sub_epi16(iscan0, nzero_coeff0); + iscan1 = _mm_sub_epi16(iscan1, nzero_coeff1); + eob0 = _mm_and_si128(iscan0, nzero_coeff0); + eob1 = _mm_and_si128(iscan1, nzero_coeff1); + eob0 = _mm_max_epi16(eob0, eob1); + eob = _mm_max_epi16(eob, eob0); + } + n_coeffs += 8 * 2; + } + + // Accumulate EOB + { + __m128i eob_shuffled; + eob_shuffled = _mm_shuffle_epi32(eob, 0xe); + eob = _mm_max_epi16(eob, eob_shuffled); + eob_shuffled = _mm_shufflelo_epi16(eob, 0xe); + eob = _mm_max_epi16(eob, eob_shuffled); + eob_shuffled = _mm_shufflelo_epi16(eob, 0x1); + eob = _mm_max_epi16(eob, eob_shuffled); + *eob_ptr = _mm_extract_epi16(eob, 1); + } +} diff --git a/vp9/encoder/x86/vp9_quantize_ssse3_x86_64.asm b/vp9/encoder/x86/vp9_quantize_ssse3_x86_64.asm new file mode 100644 index 0000000..5703aa3 --- /dev/null +++ b/vp9/encoder/x86/vp9_quantize_ssse3_x86_64.asm @@ -0,0 +1,178 @@ +; +; Copyright (c) 2010 The WebM project authors. All Rights Reserved. +; +; Use of this source code is governed by a BSD-style license +; that can be found in the LICENSE file in the root of the source +; tree. An additional intellectual property rights grant can be found +; in the file PATENTS. All contributing project authors may +; be found in the AUTHORS file in the root of the source tree. +; + +%define private_prefix vp9 + +%include "third_party/x86inc/x86inc.asm" +%include "vpx_dsp/x86/bitdepth_conversion_sse2.asm" + +SECTION_RODATA +pw_1: times 8 dw 1 + +SECTION .text + +%macro QUANTIZE_FP 2 +cglobal quantize_%1, 0, %2, 15, coeff, ncoeff, skip, round, quant, \ + qcoeff, dqcoeff, dequant, \ + eob, scan, iscan + + ; actual quantize loop - setup pointers, rounders, etc. + movifnidn coeffq, coeffmp + movifnidn ncoeffq, ncoeffmp + mov r2, dequantmp + movifnidn roundq, roundmp + movifnidn quantq, quantmp + mova m1, [roundq] ; m1 = round + mova m2, [quantq] ; m2 = quant +%ifidn %1, fp_32x32 + pcmpeqw m5, m5 + psrlw m5, 15 + paddw m1, m5 + psrlw m1, 1 ; m1 = (m1 + 1) / 2 +%endif + mova m3, [r2q] ; m3 = dequant + mov r3, qcoeffmp + mov r4, dqcoeffmp + mov r5, iscanmp +%ifidn %1, fp_32x32 + psllw m2, 1 +%endif + pxor m5, m5 ; m5 = dedicated zero + + INCREMENT_ELEMENTS_TRAN_LOW coeffq, ncoeffq + lea r5q, [r5q+ncoeffq*2] + INCREMENT_ELEMENTS_TRAN_LOW r3q, ncoeffq + INCREMENT_ELEMENTS_TRAN_LOW r4q, ncoeffq + neg ncoeffq + + ; get DC and first 15 AC coeffs + LOAD_TRAN_LOW 9, coeffq, ncoeffq ; m9 = c[i] + LOAD_TRAN_LOW 10, coeffq, ncoeffq + 8 ; m10 = c[i] + pabsw m6, m9 ; m6 = abs(m9) + pabsw m11, m10 ; m11 = abs(m10) + pcmpeqw m7, m7 + + paddsw m6, m1 ; m6 += round + punpckhqdq m1, m1 + paddsw m11, m1 ; m11 += round + pmulhw m8, m6, m2 ; m8 = m6*q>>16 + punpckhqdq m2, m2 + pmulhw m13, m11, m2 ; m13 = m11*q>>16 + psignw m8, m9 ; m8 = reinsert sign + psignw m13, m10 ; m13 = reinsert sign + STORE_TRAN_LOW 8, r3q, ncoeffq, 6, 11, 12 + STORE_TRAN_LOW 13, r3q, ncoeffq + 8, 6, 11, 12 +%ifidn %1, fp_32x32 + pabsw m8, m8 + pabsw m13, m13 +%endif + pmullw m8, m3 ; r4[i] = r3[i] * q + punpckhqdq m3, m3 + pmullw m13, m3 ; r4[i] = r3[i] * q +%ifidn %1, fp_32x32 + psrlw m8, 1 + psrlw m13, 1 + psignw m8, m9 + psignw m13, m10 + psrlw m0, m3, 2 +%else + psrlw m0, m3, 1 +%endif + STORE_TRAN_LOW 8, r4q, ncoeffq, 6, 11, 12 + STORE_TRAN_LOW 13, r4q, ncoeffq + 8, 6, 11, 12 + pcmpeqw m8, m5 ; m8 = c[i] == 0 + pcmpeqw m13, m5 ; m13 = c[i] == 0 + mova m6, [ r5q+ncoeffq*2+ 0] ; m6 = scan[i] + mova m11, [ r5q+ncoeffq*2+16] ; m11 = scan[i] + psubw m6, m7 ; m6 = scan[i] + 1 + psubw m11, m7 ; m11 = scan[i] + 1 + pandn m8, m6 ; m8 = max(eob) + pandn m13, m11 ; m13 = max(eob) + pmaxsw m8, m13 + add ncoeffq, mmsize + jz .accumulate_eob + +.ac_only_loop: + LOAD_TRAN_LOW 9, coeffq, ncoeffq ; m9 = c[i] + LOAD_TRAN_LOW 10, coeffq, ncoeffq + 8 ; m10 = c[i] + pabsw m6, m9 ; m6 = abs(m9) + pabsw m11, m10 ; m11 = abs(m10) + + pcmpgtw m7, m6, m0 + pcmpgtw m12, m11, m0 + pmovmskb r6d, m7 + pmovmskb r2d, m12 + + or r6, r2 + jz .skip_iter + + pcmpeqw m7, m7 + + paddsw m6, m1 ; m6 += round + paddsw m11, m1 ; m11 += round + pmulhw m14, m6, m2 ; m14 = m6*q>>16 + pmulhw m13, m11, m2 ; m13 = m11*q>>16 + psignw m14, m9 ; m14 = reinsert sign + psignw m13, m10 ; m13 = reinsert sign + STORE_TRAN_LOW 14, r3q, ncoeffq, 6, 11, 12 + STORE_TRAN_LOW 13, r3q, ncoeffq + 8, 6, 11, 12 +%ifidn %1, fp_32x32 + pabsw m14, m14 + pabsw m13, m13 +%endif + pmullw m14, m3 ; r4[i] = r3[i] * q + pmullw m13, m3 ; r4[i] = r3[i] * q +%ifidn %1, fp_32x32 + psrlw m14, 1 + psrlw m13, 1 + psignw m14, m9 + psignw m13, m10 +%endif + STORE_TRAN_LOW 14, r4q, ncoeffq, 6, 11, 12 + STORE_TRAN_LOW 13, r4q, ncoeffq + 8, 6, 11, 12 + pcmpeqw m14, m5 ; m14 = c[i] == 0 + pcmpeqw m13, m5 ; m13 = c[i] == 0 + mova m6, [ r5q+ncoeffq*2+ 0] ; m6 = scan[i] + mova m11, [ r5q+ncoeffq*2+16] ; m11 = scan[i] + psubw m6, m7 ; m6 = scan[i] + 1 + psubw m11, m7 ; m11 = scan[i] + 1 + pandn m14, m6 ; m14 = max(eob) + pandn m13, m11 ; m13 = max(eob) + pmaxsw m8, m14 + pmaxsw m8, m13 + add ncoeffq, mmsize + jl .ac_only_loop + + jmp .accumulate_eob +.skip_iter: + STORE_ZERO_TRAN_LOW 5, r3q, ncoeffq + STORE_ZERO_TRAN_LOW 5, r3q, ncoeffq + 8 + STORE_ZERO_TRAN_LOW 5, r4q, ncoeffq + STORE_ZERO_TRAN_LOW 5, r4q, ncoeffq + 8 + add ncoeffq, mmsize + jl .ac_only_loop + +.accumulate_eob: + ; horizontally accumulate/max eobs and write into [eob] memory pointer + mov r2, eobmp + pshufd m7, m8, 0xe + pmaxsw m8, m7 + pshuflw m7, m8, 0xe + pmaxsw m8, m7 + pshuflw m7, m8, 0x1 + pmaxsw m8, m7 + pextrw r6, m8, 0 + mov [r2], r6w + RET +%endmacro + +INIT_XMM ssse3 +QUANTIZE_FP fp, 7 +QUANTIZE_FP fp_32x32, 7 diff --git a/vp9/exports_dec b/vp9/exports_dec new file mode 100644 index 0000000..0a61fde --- /dev/null +++ b/vp9/exports_dec @@ -0,0 +1,2 @@ +data vpx_codec_vp9_dx_algo +text vpx_codec_vp9_dx diff --git a/vp9/exports_enc b/vp9/exports_enc new file mode 100644 index 0000000..2a0fef3 --- /dev/null +++ b/vp9/exports_enc @@ -0,0 +1,2 @@ +data vpx_codec_vp9_cx_algo +text vpx_codec_vp9_cx diff --git a/vp9/vp9_common.mk b/vp9/vp9_common.mk new file mode 100644 index 0000000..5bfc0d3 --- /dev/null +++ b/vp9/vp9_common.mk @@ -0,0 +1,92 @@ +## +## Copyright (c) 2010 The WebM project authors. All Rights Reserved. +## +## Use of this source code is governed by a BSD-style license +## that can be found in the LICENSE file in the root of the source +## tree. An additional intellectual property rights grant can be found +## in the file PATENTS. All contributing project authors may +## be found in the AUTHORS file in the root of the source tree. +## + +VP9_COMMON_SRCS-yes += vp9_common.mk +VP9_COMMON_SRCS-yes += vp9_iface_common.h +VP9_COMMON_SRCS-yes += common/vp9_ppflags.h +VP9_COMMON_SRCS-yes += common/vp9_alloccommon.c +VP9_COMMON_SRCS-yes += common/vp9_blockd.c +# VP9_COMMON_SRCS-yes += common/vp9_debugmodes.c +VP9_COMMON_SRCS-yes += common/vp9_entropy.c +VP9_COMMON_SRCS-yes += common/vp9_entropymode.c +VP9_COMMON_SRCS-yes += common/vp9_entropymv.c +VP9_COMMON_SRCS-yes += common/vp9_frame_buffers.c +VP9_COMMON_SRCS-yes += common/vp9_frame_buffers.h +VP9_COMMON_SRCS-yes += common/vp9_idct.c +VP9_COMMON_SRCS-yes += common/vp9_alloccommon.h +VP9_COMMON_SRCS-yes += common/vp9_blockd.h +VP9_COMMON_SRCS-yes += common/vp9_common.h +VP9_COMMON_SRCS-yes += common/vp9_entropy.h +VP9_COMMON_SRCS-yes += common/vp9_entropymode.h +VP9_COMMON_SRCS-yes += common/vp9_entropymv.h +VP9_COMMON_SRCS-yes += common/vp9_enums.h +VP9_COMMON_SRCS-yes += common/vp9_filter.h +VP9_COMMON_SRCS-yes += common/vp9_filter.c +VP9_COMMON_SRCS-yes += common/vp9_idct.h +VP9_COMMON_SRCS-yes += common/vp9_loopfilter.h +VP9_COMMON_SRCS-yes += common/vp9_thread_common.h +VP9_COMMON_SRCS-yes += common/vp9_mv.h +VP9_COMMON_SRCS-yes += common/vp9_onyxc_int.h +VP9_COMMON_SRCS-yes += common/vp9_pred_common.h +VP9_COMMON_SRCS-yes += common/vp9_pred_common.c +VP9_COMMON_SRCS-yes += common/vp9_quant_common.h +VP9_COMMON_SRCS-yes += common/vp9_reconinter.h +VP9_COMMON_SRCS-yes += common/vp9_reconintra.h +VP9_COMMON_SRCS-yes += common/vp9_rtcd.c +VP9_COMMON_SRCS-yes += common/vp9_rtcd_defs.pl +VP9_COMMON_SRCS-yes += common/vp9_scale.h +VP9_COMMON_SRCS-yes += common/vp9_scale.c +VP9_COMMON_SRCS-yes += common/vp9_seg_common.h +VP9_COMMON_SRCS-yes += common/vp9_seg_common.c +VP9_COMMON_SRCS-yes += common/vp9_tile_common.h +VP9_COMMON_SRCS-yes += common/vp9_tile_common.c +VP9_COMMON_SRCS-yes += common/vp9_loopfilter.c +VP9_COMMON_SRCS-yes += common/vp9_thread_common.c +VP9_COMMON_SRCS-yes += common/vp9_mvref_common.c +VP9_COMMON_SRCS-yes += common/vp9_mvref_common.h +VP9_COMMON_SRCS-yes += common/vp9_quant_common.c +VP9_COMMON_SRCS-yes += common/vp9_reconinter.c +VP9_COMMON_SRCS-yes += common/vp9_reconintra.c +VP9_COMMON_SRCS-yes += common/vp9_common_data.c +VP9_COMMON_SRCS-yes += common/vp9_common_data.h +VP9_COMMON_SRCS-yes += common/vp9_scan.c +VP9_COMMON_SRCS-yes += common/vp9_scan.h + +VP9_COMMON_SRCS-$(CONFIG_VP9_POSTPROC) += common/vp9_postproc.h +VP9_COMMON_SRCS-$(CONFIG_VP9_POSTPROC) += common/vp9_postproc.c +VP9_COMMON_SRCS-$(CONFIG_VP9_POSTPROC) += common/vp9_mfqe.h +VP9_COMMON_SRCS-$(CONFIG_VP9_POSTPROC) += common/vp9_mfqe.c +ifeq ($(CONFIG_VP9_POSTPROC),yes) +VP9_COMMON_SRCS-$(HAVE_SSE2) += common/x86/vp9_mfqe_sse2.asm +endif + +ifneq ($(CONFIG_VP9_HIGHBITDEPTH),yes) +VP9_COMMON_SRCS-$(HAVE_DSPR2) += common/mips/dspr2/vp9_itrans4_dspr2.c +VP9_COMMON_SRCS-$(HAVE_DSPR2) += common/mips/dspr2/vp9_itrans8_dspr2.c +VP9_COMMON_SRCS-$(HAVE_DSPR2) += common/mips/dspr2/vp9_itrans16_dspr2.c +endif + +# common (msa) +VP9_COMMON_SRCS-$(HAVE_MSA) += common/mips/msa/vp9_idct4x4_msa.c +VP9_COMMON_SRCS-$(HAVE_MSA) += common/mips/msa/vp9_idct8x8_msa.c +VP9_COMMON_SRCS-$(HAVE_MSA) += common/mips/msa/vp9_idct16x16_msa.c + +ifeq ($(CONFIG_VP9_POSTPROC),yes) +VP9_COMMON_SRCS-$(HAVE_MSA) += common/mips/msa/vp9_mfqe_msa.c +endif + +VP9_COMMON_SRCS-$(HAVE_SSE2) += common/x86/vp9_idct_intrin_sse2.c + +ifneq ($(CONFIG_VP9_HIGHBITDEPTH),yes) +VP9_COMMON_SRCS-$(HAVE_NEON) += common/arm/neon/vp9_iht4x4_add_neon.c +VP9_COMMON_SRCS-$(HAVE_NEON) += common/arm/neon/vp9_iht8x8_add_neon.c +endif + +$(eval $(call rtcd_h_template,vp9_rtcd,vp9/common/vp9_rtcd_defs.pl)) diff --git a/vp9/vp9_cx_iface.c b/vp9/vp9_cx_iface.c new file mode 100644 index 0000000..881caae --- /dev/null +++ b/vp9/vp9_cx_iface.c @@ -0,0 +1,1754 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include + +#include "./vpx_config.h" +#include "vpx/vpx_encoder.h" +#include "vpx_ports/vpx_once.h" +#include "vpx_ports/system_state.h" +#include "vpx/internal/vpx_codec_internal.h" +#include "./vpx_version.h" +#include "vp9/encoder/vp9_encoder.h" +#include "vpx/vp8cx.h" +#include "vp9/encoder/vp9_firstpass.h" +#include "vp9/vp9_iface_common.h" + +struct vp9_extracfg { + int cpu_used; // available cpu percentage in 1/16 + unsigned int enable_auto_alt_ref; + unsigned int noise_sensitivity; + unsigned int sharpness; + unsigned int static_thresh; + unsigned int tile_columns; + unsigned int tile_rows; + unsigned int arnr_max_frames; + unsigned int arnr_strength; + unsigned int min_gf_interval; + unsigned int max_gf_interval; + vp8e_tuning tuning; + unsigned int cq_level; // constrained quality level + unsigned int rc_max_intra_bitrate_pct; + unsigned int rc_max_inter_bitrate_pct; + unsigned int gf_cbr_boost_pct; + unsigned int lossless; + unsigned int target_level; + unsigned int frame_parallel_decoding_mode; + AQ_MODE aq_mode; + int alt_ref_aq; + unsigned int frame_periodic_boost; + vpx_bit_depth_t bit_depth; + vp9e_tune_content content; + vpx_color_space_t color_space; + vpx_color_range_t color_range; + int render_width; + int render_height; + unsigned int row_mt; + unsigned int motion_vector_unit_test; +}; + +static struct vp9_extracfg default_extra_cfg = { + 0, // cpu_used + 1, // enable_auto_alt_ref + 0, // noise_sensitivity + 0, // sharpness + 0, // static_thresh + 6, // tile_columns + 0, // tile_rows + 7, // arnr_max_frames + 5, // arnr_strength + 0, // min_gf_interval; 0 -> default decision + 0, // max_gf_interval; 0 -> default decision + VP8_TUNE_PSNR, // tuning + 10, // cq_level + 0, // rc_max_intra_bitrate_pct + 0, // rc_max_inter_bitrate_pct + 0, // gf_cbr_boost_pct + 0, // lossless + 255, // target_level + 1, // frame_parallel_decoding_mode + NO_AQ, // aq_mode + 0, // alt_ref_aq + 0, // frame_periodic_delta_q + VPX_BITS_8, // Bit depth + VP9E_CONTENT_DEFAULT, // content + VPX_CS_UNKNOWN, // color space + 0, // color range + 0, // render width + 0, // render height + 0, // row_mt + 0, // motion_vector_unit_test +}; + +struct vpx_codec_alg_priv { + vpx_codec_priv_t base; + vpx_codec_enc_cfg_t cfg; + struct vp9_extracfg extra_cfg; + VP9EncoderConfig oxcf; + VP9_COMP *cpi; + unsigned char *cx_data; + size_t cx_data_sz; + unsigned char *pending_cx_data; + size_t pending_cx_data_sz; + int pending_frame_count; + size_t pending_frame_sizes[8]; + size_t pending_frame_magnitude; + vpx_image_t preview_img; + vpx_enc_frame_flags_t next_frame_flags; + vp8_postproc_cfg_t preview_ppcfg; + vpx_codec_pkt_list_decl(256) pkt_list; + unsigned int fixed_kf_cntr; + vpx_codec_priv_output_cx_pkt_cb_pair_t output_cx_pkt_cb; + // BufferPool that holds all reference frames. + BufferPool *buffer_pool; +}; + +static vpx_codec_err_t update_error_state( + vpx_codec_alg_priv_t *ctx, const struct vpx_internal_error_info *error) { + const vpx_codec_err_t res = error->error_code; + + if (res != VPX_CODEC_OK) + ctx->base.err_detail = error->has_detail ? error->detail : NULL; + + return res; +} + +#undef ERROR +#define ERROR(str) \ + do { \ + ctx->base.err_detail = str; \ + return VPX_CODEC_INVALID_PARAM; \ + } while (0) + +#define RANGE_CHECK(p, memb, lo, hi) \ + do { \ + if (!(((p)->memb == lo || (p)->memb > (lo)) && (p)->memb <= hi)) \ + ERROR(#memb " out of range [" #lo ".." #hi "]"); \ + } while (0) + +#define RANGE_CHECK_HI(p, memb, hi) \ + do { \ + if (!((p)->memb <= (hi))) ERROR(#memb " out of range [.." #hi "]"); \ + } while (0) + +#define RANGE_CHECK_LO(p, memb, lo) \ + do { \ + if (!((p)->memb >= (lo))) ERROR(#memb " out of range [" #lo "..]"); \ + } while (0) + +#define RANGE_CHECK_BOOL(p, memb) \ + do { \ + if (!!((p)->memb) != (p)->memb) ERROR(#memb " expected boolean"); \ + } while (0) + +static vpx_codec_err_t validate_config(vpx_codec_alg_priv_t *ctx, + const vpx_codec_enc_cfg_t *cfg, + const struct vp9_extracfg *extra_cfg) { + RANGE_CHECK(cfg, g_w, 1, 65535); // 16 bits available + RANGE_CHECK(cfg, g_h, 1, 65535); // 16 bits available + RANGE_CHECK(cfg, g_timebase.den, 1, 1000000000); + RANGE_CHECK(cfg, g_timebase.num, 1, 1000000000); + RANGE_CHECK_HI(cfg, g_profile, 3); + + RANGE_CHECK_HI(cfg, rc_max_quantizer, 63); + RANGE_CHECK_HI(cfg, rc_min_quantizer, cfg->rc_max_quantizer); + RANGE_CHECK_BOOL(extra_cfg, lossless); + RANGE_CHECK_BOOL(extra_cfg, frame_parallel_decoding_mode); + RANGE_CHECK(extra_cfg, aq_mode, 0, AQ_MODE_COUNT - 2); + RANGE_CHECK(extra_cfg, alt_ref_aq, 0, 1); + RANGE_CHECK(extra_cfg, frame_periodic_boost, 0, 1); + RANGE_CHECK_HI(cfg, g_threads, 64); + RANGE_CHECK_HI(cfg, g_lag_in_frames, MAX_LAG_BUFFERS); + RANGE_CHECK(cfg, rc_end_usage, VPX_VBR, VPX_Q); + RANGE_CHECK_HI(cfg, rc_undershoot_pct, 100); + RANGE_CHECK_HI(cfg, rc_overshoot_pct, 100); + RANGE_CHECK_HI(cfg, rc_2pass_vbr_bias_pct, 100); + RANGE_CHECK(cfg, rc_2pass_vbr_corpus_complexity, 0, 10000); + RANGE_CHECK(cfg, kf_mode, VPX_KF_DISABLED, VPX_KF_AUTO); + RANGE_CHECK_BOOL(cfg, rc_resize_allowed); + RANGE_CHECK_HI(cfg, rc_dropframe_thresh, 100); + RANGE_CHECK_HI(cfg, rc_resize_up_thresh, 100); + RANGE_CHECK_HI(cfg, rc_resize_down_thresh, 100); +#if CONFIG_REALTIME_ONLY + RANGE_CHECK(cfg, g_pass, VPX_RC_ONE_PASS, VPX_RC_ONE_PASS); +#else + RANGE_CHECK(cfg, g_pass, VPX_RC_ONE_PASS, VPX_RC_LAST_PASS); +#endif + RANGE_CHECK(extra_cfg, min_gf_interval, 0, (MAX_LAG_BUFFERS - 1)); + RANGE_CHECK(extra_cfg, max_gf_interval, 0, (MAX_LAG_BUFFERS - 1)); + if (extra_cfg->max_gf_interval > 0) { + RANGE_CHECK(extra_cfg, max_gf_interval, 2, (MAX_LAG_BUFFERS - 1)); + } + if (extra_cfg->min_gf_interval > 0 && extra_cfg->max_gf_interval > 0) { + RANGE_CHECK(extra_cfg, max_gf_interval, extra_cfg->min_gf_interval, + (MAX_LAG_BUFFERS - 1)); + } + + // For formation of valid ARF groups lag_in _frames should be 0 or greater + // than the max_gf_interval + 2 + if (cfg->g_lag_in_frames > 0 && extra_cfg->max_gf_interval > 0 && + cfg->g_lag_in_frames < extra_cfg->max_gf_interval + 2) { + ERROR("Set lag in frames to 0 (low delay) or >= (max-gf-interval + 2)"); + } + + if (cfg->rc_resize_allowed == 1) { + RANGE_CHECK(cfg, rc_scaled_width, 0, cfg->g_w); + RANGE_CHECK(cfg, rc_scaled_height, 0, cfg->g_h); + } + + RANGE_CHECK(cfg, ss_number_layers, 1, VPX_SS_MAX_LAYERS); + RANGE_CHECK(cfg, ts_number_layers, 1, VPX_TS_MAX_LAYERS); + + { + unsigned int level = extra_cfg->target_level; + if (level != LEVEL_1 && level != LEVEL_1_1 && level != LEVEL_2 && + level != LEVEL_2_1 && level != LEVEL_3 && level != LEVEL_3_1 && + level != LEVEL_4 && level != LEVEL_4_1 && level != LEVEL_5 && + level != LEVEL_5_1 && level != LEVEL_5_2 && level != LEVEL_6 && + level != LEVEL_6_1 && level != LEVEL_6_2 && level != LEVEL_UNKNOWN && + level != LEVEL_AUTO && level != LEVEL_MAX) + ERROR("target_level is invalid"); + } + + if (cfg->ss_number_layers * cfg->ts_number_layers > VPX_MAX_LAYERS) + ERROR("ss_number_layers * ts_number_layers is out of range"); + if (cfg->ts_number_layers > 1) { + unsigned int sl, tl; + for (sl = 1; sl < cfg->ss_number_layers; ++sl) { + for (tl = 1; tl < cfg->ts_number_layers; ++tl) { + const int layer = LAYER_IDS_TO_IDX(sl, tl, cfg->ts_number_layers); + if (cfg->layer_target_bitrate[layer] < + cfg->layer_target_bitrate[layer - 1]) + ERROR("ts_target_bitrate entries are not increasing"); + } + } + + RANGE_CHECK(cfg, ts_rate_decimator[cfg->ts_number_layers - 1], 1, 1); + for (tl = cfg->ts_number_layers - 2; tl > 0; --tl) + if (cfg->ts_rate_decimator[tl - 1] != 2 * cfg->ts_rate_decimator[tl]) + ERROR("ts_rate_decimator factors are not powers of 2"); + } + +#if CONFIG_SPATIAL_SVC + + if ((cfg->ss_number_layers > 1 || cfg->ts_number_layers > 1) && + cfg->g_pass == VPX_RC_LAST_PASS) { + unsigned int i, alt_ref_sum = 0; + for (i = 0; i < cfg->ss_number_layers; ++i) { + if (cfg->ss_enable_auto_alt_ref[i]) ++alt_ref_sum; + } + if (alt_ref_sum > REF_FRAMES - cfg->ss_number_layers) + ERROR("Not enough ref buffers for svc alt ref frames"); + if (cfg->ss_number_layers * cfg->ts_number_layers > 3 && + cfg->g_error_resilient == 0) + ERROR("Multiple frame context are not supported for more than 3 layers"); + } +#endif + + // VP9 does not support a lower bound on the keyframe interval in + // automatic keyframe placement mode. + if (cfg->kf_mode != VPX_KF_DISABLED && cfg->kf_min_dist != cfg->kf_max_dist && + cfg->kf_min_dist > 0) + ERROR( + "kf_min_dist not supported in auto mode, use 0 " + "or kf_max_dist instead."); + + RANGE_CHECK(extra_cfg, row_mt, 0, 1); + RANGE_CHECK(extra_cfg, motion_vector_unit_test, 0, 2); + RANGE_CHECK(extra_cfg, enable_auto_alt_ref, 0, 2); + RANGE_CHECK(extra_cfg, cpu_used, -8, 8); + RANGE_CHECK_HI(extra_cfg, noise_sensitivity, 6); + RANGE_CHECK(extra_cfg, tile_columns, 0, 6); + RANGE_CHECK(extra_cfg, tile_rows, 0, 2); + RANGE_CHECK_HI(extra_cfg, sharpness, 7); + RANGE_CHECK(extra_cfg, arnr_max_frames, 0, 15); + RANGE_CHECK_HI(extra_cfg, arnr_strength, 6); + RANGE_CHECK(extra_cfg, cq_level, 0, 63); + RANGE_CHECK(cfg, g_bit_depth, VPX_BITS_8, VPX_BITS_12); + RANGE_CHECK(cfg, g_input_bit_depth, 8, 12); + RANGE_CHECK(extra_cfg, content, VP9E_CONTENT_DEFAULT, + VP9E_CONTENT_INVALID - 1); + + // TODO(yaowu): remove this when ssim tuning is implemented for vp9 + if (extra_cfg->tuning == VP8_TUNE_SSIM) + ERROR("Option --tune=ssim is not currently supported in VP9."); + +#if !CONFIG_REALTIME_ONLY + if (cfg->g_pass == VPX_RC_LAST_PASS) { + const size_t packet_sz = sizeof(FIRSTPASS_STATS); + const int n_packets = (int)(cfg->rc_twopass_stats_in.sz / packet_sz); + const FIRSTPASS_STATS *stats; + + if (cfg->rc_twopass_stats_in.buf == NULL) + ERROR("rc_twopass_stats_in.buf not set."); + + if (cfg->rc_twopass_stats_in.sz % packet_sz) + ERROR("rc_twopass_stats_in.sz indicates truncated packet."); + + if (cfg->ss_number_layers > 1 || cfg->ts_number_layers > 1) { + int i; + unsigned int n_packets_per_layer[VPX_SS_MAX_LAYERS] = { 0 }; + + stats = cfg->rc_twopass_stats_in.buf; + for (i = 0; i < n_packets; ++i) { + const int layer_id = (int)stats[i].spatial_layer_id; + if (layer_id >= 0 && layer_id < (int)cfg->ss_number_layers) { + ++n_packets_per_layer[layer_id]; + } + } + + for (i = 0; i < (int)cfg->ss_number_layers; ++i) { + unsigned int layer_id; + if (n_packets_per_layer[i] < 2) { + ERROR( + "rc_twopass_stats_in requires at least two packets for each " + "layer."); + } + + stats = (const FIRSTPASS_STATS *)cfg->rc_twopass_stats_in.buf + + n_packets - cfg->ss_number_layers + i; + layer_id = (int)stats->spatial_layer_id; + + if (layer_id >= cfg->ss_number_layers || + (unsigned int)(stats->count + 0.5) != + n_packets_per_layer[layer_id] - 1) + ERROR("rc_twopass_stats_in missing EOS stats packet"); + } + } else { + if (cfg->rc_twopass_stats_in.sz < 2 * packet_sz) + ERROR("rc_twopass_stats_in requires at least two packets."); + + stats = + (const FIRSTPASS_STATS *)cfg->rc_twopass_stats_in.buf + n_packets - 1; + + if ((int)(stats->count + 0.5) != n_packets - 1) + ERROR("rc_twopass_stats_in missing EOS stats packet"); + } + } +#endif // !CONFIG_REALTIME_ONLY + +#if !CONFIG_VP9_HIGHBITDEPTH + if (cfg->g_profile > (unsigned int)PROFILE_1) { + ERROR("Profile > 1 not supported in this build configuration"); + } +#endif + if (cfg->g_profile <= (unsigned int)PROFILE_1 && + cfg->g_bit_depth > VPX_BITS_8) { + ERROR("Codec high bit-depth not supported in profile < 2"); + } + if (cfg->g_profile <= (unsigned int)PROFILE_1 && cfg->g_input_bit_depth > 8) { + ERROR("Source high bit-depth not supported in profile < 2"); + } + if (cfg->g_profile > (unsigned int)PROFILE_1 && + cfg->g_bit_depth == VPX_BITS_8) { + ERROR("Codec bit-depth 8 not supported in profile > 1"); + } + RANGE_CHECK(extra_cfg, color_space, VPX_CS_UNKNOWN, VPX_CS_SRGB); + RANGE_CHECK(extra_cfg, color_range, VPX_CR_STUDIO_RANGE, VPX_CR_FULL_RANGE); + return VPX_CODEC_OK; +} + +static vpx_codec_err_t validate_img(vpx_codec_alg_priv_t *ctx, + const vpx_image_t *img) { + switch (img->fmt) { + case VPX_IMG_FMT_YV12: + case VPX_IMG_FMT_I420: + case VPX_IMG_FMT_I42016: break; + case VPX_IMG_FMT_I422: + case VPX_IMG_FMT_I444: + case VPX_IMG_FMT_I440: + if (ctx->cfg.g_profile != (unsigned int)PROFILE_1) { + ERROR( + "Invalid image format. I422, I444, I440 images are " + "not supported in profile."); + } + break; + case VPX_IMG_FMT_I42216: + case VPX_IMG_FMT_I44416: + case VPX_IMG_FMT_I44016: + if (ctx->cfg.g_profile != (unsigned int)PROFILE_1 && + ctx->cfg.g_profile != (unsigned int)PROFILE_3) { + ERROR( + "Invalid image format. 16-bit I422, I444, I440 images are " + "not supported in profile."); + } + break; + default: + ERROR( + "Invalid image format. Only YV12, I420, I422, I444 images are " + "supported."); + break; + } + + if (img->d_w != ctx->cfg.g_w || img->d_h != ctx->cfg.g_h) + ERROR("Image size must match encoder init configuration size"); + + return VPX_CODEC_OK; +} + +static int get_image_bps(const vpx_image_t *img) { + switch (img->fmt) { + case VPX_IMG_FMT_YV12: + case VPX_IMG_FMT_I420: return 12; + case VPX_IMG_FMT_I422: return 16; + case VPX_IMG_FMT_I444: return 24; + case VPX_IMG_FMT_I440: return 16; + case VPX_IMG_FMT_I42016: return 24; + case VPX_IMG_FMT_I42216: return 32; + case VPX_IMG_FMT_I44416: return 48; + case VPX_IMG_FMT_I44016: return 32; + default: assert(0 && "Invalid image format"); break; + } + return 0; +} + +// Modify the encoder config for the target level. +static void config_target_level(VP9EncoderConfig *oxcf) { + double max_average_bitrate; // in bits per second + int max_over_shoot_pct; + const int target_level_index = get_level_index(oxcf->target_level); + + vpx_clear_system_state(); + assert(target_level_index >= 0); + assert(target_level_index < VP9_LEVELS); + + // Maximum target bit-rate is level_limit * 80%. + max_average_bitrate = + vp9_level_defs[target_level_index].average_bitrate * 800.0; + if ((double)oxcf->target_bandwidth > max_average_bitrate) + oxcf->target_bandwidth = (int64_t)(max_average_bitrate); + if (oxcf->ss_number_layers == 1 && oxcf->pass != 0) + oxcf->ss_target_bitrate[0] = (int)oxcf->target_bandwidth; + + // Adjust max over-shoot percentage. + max_over_shoot_pct = + (int)((max_average_bitrate * 1.10 - (double)oxcf->target_bandwidth) * + 100 / (double)(oxcf->target_bandwidth)); + if (oxcf->over_shoot_pct > max_over_shoot_pct) + oxcf->over_shoot_pct = max_over_shoot_pct; + + // Adjust worst allowed quantizer. + oxcf->worst_allowed_q = vp9_quantizer_to_qindex(63); + + // Adjust minimum art-ref distance. + // min_gf_interval should be no less than min_altref_distance + 1, + // as the encoder may produce bitstream with alt-ref distance being + // min_gf_interval - 1. + if (oxcf->min_gf_interval <= + (int)vp9_level_defs[target_level_index].min_altref_distance) { + oxcf->min_gf_interval = + (int)vp9_level_defs[target_level_index].min_altref_distance + 1; + // If oxcf->max_gf_interval == 0, it will be assigned with a default value + // in vp9_rc_set_gf_interval_range(). + if (oxcf->max_gf_interval != 0) { + oxcf->max_gf_interval = + VPXMAX(oxcf->max_gf_interval, oxcf->min_gf_interval); + } + } + + // Adjust maximum column tiles. + if (vp9_level_defs[target_level_index].max_col_tiles < + (1 << oxcf->tile_columns)) { + while (oxcf->tile_columns > 0 && + vp9_level_defs[target_level_index].max_col_tiles < + (1 << oxcf->tile_columns)) + --oxcf->tile_columns; + } +} + +static vpx_codec_err_t set_encoder_config( + VP9EncoderConfig *oxcf, const vpx_codec_enc_cfg_t *cfg, + const struct vp9_extracfg *extra_cfg) { + const int is_vbr = cfg->rc_end_usage == VPX_VBR; + int sl, tl; + oxcf->profile = cfg->g_profile; + oxcf->max_threads = (int)cfg->g_threads; + oxcf->width = cfg->g_w; + oxcf->height = cfg->g_h; + oxcf->bit_depth = cfg->g_bit_depth; + oxcf->input_bit_depth = cfg->g_input_bit_depth; + // guess a frame rate if out of whack, use 30 + oxcf->init_framerate = (double)cfg->g_timebase.den / cfg->g_timebase.num; + if (oxcf->init_framerate > 180) oxcf->init_framerate = 30; + + oxcf->mode = GOOD; + + switch (cfg->g_pass) { + case VPX_RC_ONE_PASS: oxcf->pass = 0; break; + case VPX_RC_FIRST_PASS: oxcf->pass = 1; break; + case VPX_RC_LAST_PASS: oxcf->pass = 2; break; + } + + oxcf->lag_in_frames = + cfg->g_pass == VPX_RC_FIRST_PASS ? 0 : cfg->g_lag_in_frames; + oxcf->rc_mode = cfg->rc_end_usage; + + // Convert target bandwidth from Kbit/s to Bit/s + oxcf->target_bandwidth = 1000 * cfg->rc_target_bitrate; + oxcf->rc_max_intra_bitrate_pct = extra_cfg->rc_max_intra_bitrate_pct; + oxcf->rc_max_inter_bitrate_pct = extra_cfg->rc_max_inter_bitrate_pct; + oxcf->gf_cbr_boost_pct = extra_cfg->gf_cbr_boost_pct; + + oxcf->best_allowed_q = + extra_cfg->lossless ? 0 : vp9_quantizer_to_qindex(cfg->rc_min_quantizer); + oxcf->worst_allowed_q = + extra_cfg->lossless ? 0 : vp9_quantizer_to_qindex(cfg->rc_max_quantizer); + oxcf->cq_level = vp9_quantizer_to_qindex(extra_cfg->cq_level); + oxcf->fixed_q = -1; + + oxcf->under_shoot_pct = cfg->rc_undershoot_pct; + oxcf->over_shoot_pct = cfg->rc_overshoot_pct; + + oxcf->scaled_frame_width = cfg->rc_scaled_width; + oxcf->scaled_frame_height = cfg->rc_scaled_height; + if (cfg->rc_resize_allowed == 1) { + oxcf->resize_mode = + (oxcf->scaled_frame_width == 0 || oxcf->scaled_frame_height == 0) + ? RESIZE_DYNAMIC + : RESIZE_FIXED; + } else { + oxcf->resize_mode = RESIZE_NONE; + } + + oxcf->maximum_buffer_size_ms = is_vbr ? 240000 : cfg->rc_buf_sz; + oxcf->starting_buffer_level_ms = is_vbr ? 60000 : cfg->rc_buf_initial_sz; + oxcf->optimal_buffer_level_ms = is_vbr ? 60000 : cfg->rc_buf_optimal_sz; + + oxcf->drop_frames_water_mark = cfg->rc_dropframe_thresh; + + oxcf->two_pass_vbrbias = cfg->rc_2pass_vbr_bias_pct; + oxcf->two_pass_vbrmin_section = cfg->rc_2pass_vbr_minsection_pct; + oxcf->two_pass_vbrmax_section = cfg->rc_2pass_vbr_maxsection_pct; + oxcf->vbr_corpus_complexity = cfg->rc_2pass_vbr_corpus_complexity; + + oxcf->auto_key = + cfg->kf_mode == VPX_KF_AUTO && cfg->kf_min_dist != cfg->kf_max_dist; + + oxcf->key_freq = cfg->kf_max_dist; + + oxcf->speed = abs(extra_cfg->cpu_used); + oxcf->encode_breakout = extra_cfg->static_thresh; + oxcf->enable_auto_arf = extra_cfg->enable_auto_alt_ref; + oxcf->noise_sensitivity = extra_cfg->noise_sensitivity; + oxcf->sharpness = extra_cfg->sharpness; + + oxcf->two_pass_stats_in = cfg->rc_twopass_stats_in; + +#if CONFIG_FP_MB_STATS + oxcf->firstpass_mb_stats_in = cfg->rc_firstpass_mb_stats_in; +#endif + + oxcf->color_space = extra_cfg->color_space; + oxcf->color_range = extra_cfg->color_range; + oxcf->render_width = extra_cfg->render_width; + oxcf->render_height = extra_cfg->render_height; + oxcf->arnr_max_frames = extra_cfg->arnr_max_frames; + oxcf->arnr_strength = extra_cfg->arnr_strength; + oxcf->min_gf_interval = extra_cfg->min_gf_interval; + oxcf->max_gf_interval = extra_cfg->max_gf_interval; + + oxcf->tuning = extra_cfg->tuning; + oxcf->content = extra_cfg->content; + + oxcf->tile_columns = extra_cfg->tile_columns; + + // TODO(yunqing): The dependencies between row tiles cause error in multi- + // threaded encoding. For now, tile_rows is forced to be 0 in this case. + // The further fix can be done by adding synchronizations after a tile row + // is encoded. But this will hurt multi-threaded encoder performance. So, + // it is recommended to use tile-rows=0 while encoding with threads > 1. + if (oxcf->max_threads > 1 && oxcf->tile_columns > 0) + oxcf->tile_rows = 0; + else + oxcf->tile_rows = extra_cfg->tile_rows; + + oxcf->error_resilient_mode = cfg->g_error_resilient; + oxcf->frame_parallel_decoding_mode = extra_cfg->frame_parallel_decoding_mode; + + oxcf->aq_mode = extra_cfg->aq_mode; + oxcf->alt_ref_aq = extra_cfg->alt_ref_aq; + + oxcf->frame_periodic_boost = extra_cfg->frame_periodic_boost; + + oxcf->ss_number_layers = cfg->ss_number_layers; + oxcf->ts_number_layers = cfg->ts_number_layers; + oxcf->temporal_layering_mode = + (enum vp9e_temporal_layering_mode)cfg->temporal_layering_mode; + + oxcf->target_level = extra_cfg->target_level; + + oxcf->row_mt = extra_cfg->row_mt; + oxcf->motion_vector_unit_test = extra_cfg->motion_vector_unit_test; + + for (sl = 0; sl < oxcf->ss_number_layers; ++sl) { +#if CONFIG_SPATIAL_SVC + oxcf->ss_enable_auto_arf[sl] = cfg->ss_enable_auto_alt_ref[sl]; +#endif + for (tl = 0; tl < oxcf->ts_number_layers; ++tl) { + oxcf->layer_target_bitrate[sl * oxcf->ts_number_layers + tl] = + 1000 * cfg->layer_target_bitrate[sl * oxcf->ts_number_layers + tl]; + } + } + if (oxcf->ss_number_layers == 1 && oxcf->pass != 0) { + oxcf->ss_target_bitrate[0] = (int)oxcf->target_bandwidth; +#if CONFIG_SPATIAL_SVC + oxcf->ss_enable_auto_arf[0] = extra_cfg->enable_auto_alt_ref; +#endif + } + if (oxcf->ts_number_layers > 1) { + for (tl = 0; tl < VPX_TS_MAX_LAYERS; ++tl) { + oxcf->ts_rate_decimator[tl] = + cfg->ts_rate_decimator[tl] ? cfg->ts_rate_decimator[tl] : 1; + } + } else if (oxcf->ts_number_layers == 1) { + oxcf->ts_rate_decimator[0] = 1; + } + + if (get_level_index(oxcf->target_level) >= 0) config_target_level(oxcf); + /* + printf("Current VP9 Settings: \n"); + printf("target_bandwidth: %d\n", oxcf->target_bandwidth); + printf("target_level: %d\n", oxcf->target_level); + printf("noise_sensitivity: %d\n", oxcf->noise_sensitivity); + printf("sharpness: %d\n", oxcf->sharpness); + printf("cpu_used: %d\n", oxcf->cpu_used); + printf("Mode: %d\n", oxcf->mode); + printf("auto_key: %d\n", oxcf->auto_key); + printf("key_freq: %d\n", oxcf->key_freq); + printf("end_usage: %d\n", oxcf->end_usage); + printf("under_shoot_pct: %d\n", oxcf->under_shoot_pct); + printf("over_shoot_pct: %d\n", oxcf->over_shoot_pct); + printf("starting_buffer_level: %d\n", oxcf->starting_buffer_level); + printf("optimal_buffer_level: %d\n", oxcf->optimal_buffer_level); + printf("maximum_buffer_size: %d\n", oxcf->maximum_buffer_size); + printf("fixed_q: %d\n", oxcf->fixed_q); + printf("worst_allowed_q: %d\n", oxcf->worst_allowed_q); + printf("best_allowed_q: %d\n", oxcf->best_allowed_q); + printf("allow_spatial_resampling: %d\n", oxcf->allow_spatial_resampling); + printf("scaled_frame_width: %d\n", oxcf->scaled_frame_width); + printf("scaled_frame_height: %d\n", oxcf->scaled_frame_height); + printf("two_pass_vbrbias: %d\n", oxcf->two_pass_vbrbias); + printf("two_pass_vbrmin_section: %d\n", oxcf->two_pass_vbrmin_section); + printf("two_pass_vbrmax_section: %d\n", oxcf->two_pass_vbrmax_section); + printf("vbr_corpus_complexity: %d\n", oxcf->vbr_corpus_complexity); + printf("lag_in_frames: %d\n", oxcf->lag_in_frames); + printf("enable_auto_arf: %d\n", oxcf->enable_auto_arf); + printf("Version: %d\n", oxcf->Version); + printf("encode_breakout: %d\n", oxcf->encode_breakout); + printf("error resilient: %d\n", oxcf->error_resilient_mode); + printf("frame parallel detokenization: %d\n", + oxcf->frame_parallel_decoding_mode); + */ + return VPX_CODEC_OK; +} + +static vpx_codec_err_t encoder_set_config(vpx_codec_alg_priv_t *ctx, + const vpx_codec_enc_cfg_t *cfg) { + vpx_codec_err_t res; + int force_key = 0; + + if (cfg->g_w != ctx->cfg.g_w || cfg->g_h != ctx->cfg.g_h) { + if (cfg->g_lag_in_frames > 1 || cfg->g_pass != VPX_RC_ONE_PASS) + ERROR("Cannot change width or height after initialization"); + if (!valid_ref_frame_size(ctx->cfg.g_w, ctx->cfg.g_h, cfg->g_w, cfg->g_h) || + (ctx->cpi->initial_width && (int)cfg->g_w > ctx->cpi->initial_width) || + (ctx->cpi->initial_height && (int)cfg->g_h > ctx->cpi->initial_height)) + force_key = 1; + } + + // Prevent increasing lag_in_frames. This check is stricter than it needs + // to be -- the limit is not increasing past the first lag_in_frames + // value, but we don't track the initial config, only the last successful + // config. + if (cfg->g_lag_in_frames > ctx->cfg.g_lag_in_frames) + ERROR("Cannot increase lag_in_frames"); + + res = validate_config(ctx, cfg, &ctx->extra_cfg); + + if (res == VPX_CODEC_OK) { + ctx->cfg = *cfg; + set_encoder_config(&ctx->oxcf, &ctx->cfg, &ctx->extra_cfg); + // On profile change, request a key frame + force_key |= ctx->cpi->common.profile != ctx->oxcf.profile; + vp9_change_config(ctx->cpi, &ctx->oxcf); + } + + if (force_key) ctx->next_frame_flags |= VPX_EFLAG_FORCE_KF; + + return res; +} + +static vpx_codec_err_t ctrl_get_quantizer(vpx_codec_alg_priv_t *ctx, + va_list args) { + int *const arg = va_arg(args, int *); + if (arg == NULL) return VPX_CODEC_INVALID_PARAM; + *arg = vp9_get_quantizer(ctx->cpi); + return VPX_CODEC_OK; +} + +static vpx_codec_err_t ctrl_get_quantizer64(vpx_codec_alg_priv_t *ctx, + va_list args) { + int *const arg = va_arg(args, int *); + if (arg == NULL) return VPX_CODEC_INVALID_PARAM; + *arg = vp9_qindex_to_quantizer(vp9_get_quantizer(ctx->cpi)); + return VPX_CODEC_OK; +} + +static vpx_codec_err_t update_extra_cfg(vpx_codec_alg_priv_t *ctx, + const struct vp9_extracfg *extra_cfg) { + const vpx_codec_err_t res = validate_config(ctx, &ctx->cfg, extra_cfg); + if (res == VPX_CODEC_OK) { + ctx->extra_cfg = *extra_cfg; + set_encoder_config(&ctx->oxcf, &ctx->cfg, &ctx->extra_cfg); + vp9_change_config(ctx->cpi, &ctx->oxcf); + } + return res; +} + +static vpx_codec_err_t ctrl_set_cpuused(vpx_codec_alg_priv_t *ctx, + va_list args) { + struct vp9_extracfg extra_cfg = ctx->extra_cfg; + extra_cfg.cpu_used = CAST(VP8E_SET_CPUUSED, args); + return update_extra_cfg(ctx, &extra_cfg); +} + +static vpx_codec_err_t ctrl_set_enable_auto_alt_ref(vpx_codec_alg_priv_t *ctx, + va_list args) { + struct vp9_extracfg extra_cfg = ctx->extra_cfg; + extra_cfg.enable_auto_alt_ref = CAST(VP8E_SET_ENABLEAUTOALTREF, args); + return update_extra_cfg(ctx, &extra_cfg); +} + +static vpx_codec_err_t ctrl_set_noise_sensitivity(vpx_codec_alg_priv_t *ctx, + va_list args) { + struct vp9_extracfg extra_cfg = ctx->extra_cfg; + extra_cfg.noise_sensitivity = CAST(VP9E_SET_NOISE_SENSITIVITY, args); + return update_extra_cfg(ctx, &extra_cfg); +} + +static vpx_codec_err_t ctrl_set_sharpness(vpx_codec_alg_priv_t *ctx, + va_list args) { + struct vp9_extracfg extra_cfg = ctx->extra_cfg; + extra_cfg.sharpness = CAST(VP8E_SET_SHARPNESS, args); + return update_extra_cfg(ctx, &extra_cfg); +} + +static vpx_codec_err_t ctrl_set_static_thresh(vpx_codec_alg_priv_t *ctx, + va_list args) { + struct vp9_extracfg extra_cfg = ctx->extra_cfg; + extra_cfg.static_thresh = CAST(VP8E_SET_STATIC_THRESHOLD, args); + return update_extra_cfg(ctx, &extra_cfg); +} + +static vpx_codec_err_t ctrl_set_tile_columns(vpx_codec_alg_priv_t *ctx, + va_list args) { + struct vp9_extracfg extra_cfg = ctx->extra_cfg; + extra_cfg.tile_columns = CAST(VP9E_SET_TILE_COLUMNS, args); + return update_extra_cfg(ctx, &extra_cfg); +} + +static vpx_codec_err_t ctrl_set_tile_rows(vpx_codec_alg_priv_t *ctx, + va_list args) { + struct vp9_extracfg extra_cfg = ctx->extra_cfg; + extra_cfg.tile_rows = CAST(VP9E_SET_TILE_ROWS, args); + return update_extra_cfg(ctx, &extra_cfg); +} + +static vpx_codec_err_t ctrl_set_arnr_max_frames(vpx_codec_alg_priv_t *ctx, + va_list args) { + struct vp9_extracfg extra_cfg = ctx->extra_cfg; + extra_cfg.arnr_max_frames = CAST(VP8E_SET_ARNR_MAXFRAMES, args); + return update_extra_cfg(ctx, &extra_cfg); +} + +static vpx_codec_err_t ctrl_set_arnr_strength(vpx_codec_alg_priv_t *ctx, + va_list args) { + struct vp9_extracfg extra_cfg = ctx->extra_cfg; + extra_cfg.arnr_strength = CAST(VP8E_SET_ARNR_STRENGTH, args); + return update_extra_cfg(ctx, &extra_cfg); +} + +static vpx_codec_err_t ctrl_set_arnr_type(vpx_codec_alg_priv_t *ctx, + va_list args) { + (void)ctx; + (void)args; + return VPX_CODEC_OK; +} + +static vpx_codec_err_t ctrl_set_tuning(vpx_codec_alg_priv_t *ctx, + va_list args) { + struct vp9_extracfg extra_cfg = ctx->extra_cfg; + extra_cfg.tuning = CAST(VP8E_SET_TUNING, args); + return update_extra_cfg(ctx, &extra_cfg); +} + +static vpx_codec_err_t ctrl_set_cq_level(vpx_codec_alg_priv_t *ctx, + va_list args) { + struct vp9_extracfg extra_cfg = ctx->extra_cfg; + extra_cfg.cq_level = CAST(VP8E_SET_CQ_LEVEL, args); + return update_extra_cfg(ctx, &extra_cfg); +} + +static vpx_codec_err_t ctrl_set_rc_max_intra_bitrate_pct( + vpx_codec_alg_priv_t *ctx, va_list args) { + struct vp9_extracfg extra_cfg = ctx->extra_cfg; + extra_cfg.rc_max_intra_bitrate_pct = + CAST(VP8E_SET_MAX_INTRA_BITRATE_PCT, args); + return update_extra_cfg(ctx, &extra_cfg); +} + +static vpx_codec_err_t ctrl_set_rc_max_inter_bitrate_pct( + vpx_codec_alg_priv_t *ctx, va_list args) { + struct vp9_extracfg extra_cfg = ctx->extra_cfg; + extra_cfg.rc_max_inter_bitrate_pct = + CAST(VP8E_SET_MAX_INTER_BITRATE_PCT, args); + return update_extra_cfg(ctx, &extra_cfg); +} + +static vpx_codec_err_t ctrl_set_rc_gf_cbr_boost_pct(vpx_codec_alg_priv_t *ctx, + va_list args) { + struct vp9_extracfg extra_cfg = ctx->extra_cfg; + extra_cfg.gf_cbr_boost_pct = CAST(VP9E_SET_GF_CBR_BOOST_PCT, args); + return update_extra_cfg(ctx, &extra_cfg); +} + +static vpx_codec_err_t ctrl_set_lossless(vpx_codec_alg_priv_t *ctx, + va_list args) { + struct vp9_extracfg extra_cfg = ctx->extra_cfg; + extra_cfg.lossless = CAST(VP9E_SET_LOSSLESS, args); + return update_extra_cfg(ctx, &extra_cfg); +} + +static vpx_codec_err_t ctrl_set_frame_parallel_decoding_mode( + vpx_codec_alg_priv_t *ctx, va_list args) { + struct vp9_extracfg extra_cfg = ctx->extra_cfg; + extra_cfg.frame_parallel_decoding_mode = + CAST(VP9E_SET_FRAME_PARALLEL_DECODING, args); + return update_extra_cfg(ctx, &extra_cfg); +} + +static vpx_codec_err_t ctrl_set_aq_mode(vpx_codec_alg_priv_t *ctx, + va_list args) { + struct vp9_extracfg extra_cfg = ctx->extra_cfg; + extra_cfg.aq_mode = CAST(VP9E_SET_AQ_MODE, args); + return update_extra_cfg(ctx, &extra_cfg); +} + +static vpx_codec_err_t ctrl_set_alt_ref_aq(vpx_codec_alg_priv_t *ctx, + va_list args) { + struct vp9_extracfg extra_cfg = ctx->extra_cfg; + extra_cfg.alt_ref_aq = CAST(VP9E_SET_ALT_REF_AQ, args); + return update_extra_cfg(ctx, &extra_cfg); +} + +static vpx_codec_err_t ctrl_set_min_gf_interval(vpx_codec_alg_priv_t *ctx, + va_list args) { + struct vp9_extracfg extra_cfg = ctx->extra_cfg; + extra_cfg.min_gf_interval = CAST(VP9E_SET_MIN_GF_INTERVAL, args); + return update_extra_cfg(ctx, &extra_cfg); +} + +static vpx_codec_err_t ctrl_set_max_gf_interval(vpx_codec_alg_priv_t *ctx, + va_list args) { + struct vp9_extracfg extra_cfg = ctx->extra_cfg; + extra_cfg.max_gf_interval = CAST(VP9E_SET_MAX_GF_INTERVAL, args); + return update_extra_cfg(ctx, &extra_cfg); +} + +static vpx_codec_err_t ctrl_set_frame_periodic_boost(vpx_codec_alg_priv_t *ctx, + va_list args) { + struct vp9_extracfg extra_cfg = ctx->extra_cfg; + extra_cfg.frame_periodic_boost = CAST(VP9E_SET_FRAME_PERIODIC_BOOST, args); + return update_extra_cfg(ctx, &extra_cfg); +} + +static vpx_codec_err_t ctrl_set_target_level(vpx_codec_alg_priv_t *ctx, + va_list args) { + struct vp9_extracfg extra_cfg = ctx->extra_cfg; + extra_cfg.target_level = CAST(VP9E_SET_TARGET_LEVEL, args); + return update_extra_cfg(ctx, &extra_cfg); +} + +static vpx_codec_err_t ctrl_set_row_mt(vpx_codec_alg_priv_t *ctx, + va_list args) { + struct vp9_extracfg extra_cfg = ctx->extra_cfg; + extra_cfg.row_mt = CAST(VP9E_SET_ROW_MT, args); + return update_extra_cfg(ctx, &extra_cfg); +} + +static vpx_codec_err_t ctrl_enable_motion_vector_unit_test( + vpx_codec_alg_priv_t *ctx, va_list args) { + struct vp9_extracfg extra_cfg = ctx->extra_cfg; + extra_cfg.motion_vector_unit_test = + CAST(VP9E_ENABLE_MOTION_VECTOR_UNIT_TEST, args); + return update_extra_cfg(ctx, &extra_cfg); +} + +static vpx_codec_err_t ctrl_get_level(vpx_codec_alg_priv_t *ctx, va_list args) { + int *const arg = va_arg(args, int *); + if (arg == NULL) return VPX_CODEC_INVALID_PARAM; + *arg = (int)vp9_get_level(&ctx->cpi->level_info.level_spec); + return VPX_CODEC_OK; +} + +static vpx_codec_err_t encoder_init(vpx_codec_ctx_t *ctx, + vpx_codec_priv_enc_mr_cfg_t *data) { + vpx_codec_err_t res = VPX_CODEC_OK; + (void)data; + + if (ctx->priv == NULL) { + vpx_codec_alg_priv_t *const priv = vpx_calloc(1, sizeof(*priv)); + if (priv == NULL) return VPX_CODEC_MEM_ERROR; + + ctx->priv = (vpx_codec_priv_t *)priv; + ctx->priv->init_flags = ctx->init_flags; + ctx->priv->enc.total_encoders = 1; + priv->buffer_pool = (BufferPool *)vpx_calloc(1, sizeof(BufferPool)); + if (priv->buffer_pool == NULL) return VPX_CODEC_MEM_ERROR; + + if (ctx->config.enc) { + // Update the reference to the config structure to an internal copy. + priv->cfg = *ctx->config.enc; + ctx->config.enc = &priv->cfg; + } + + priv->extra_cfg = default_extra_cfg; + once(vp9_initialize_enc); + + res = validate_config(priv, &priv->cfg, &priv->extra_cfg); + + if (res == VPX_CODEC_OK) { + set_encoder_config(&priv->oxcf, &priv->cfg, &priv->extra_cfg); +#if CONFIG_VP9_HIGHBITDEPTH + priv->oxcf.use_highbitdepth = + (ctx->init_flags & VPX_CODEC_USE_HIGHBITDEPTH) ? 1 : 0; +#endif + priv->cpi = vp9_create_compressor(&priv->oxcf, priv->buffer_pool); + if (priv->cpi == NULL) + res = VPX_CODEC_MEM_ERROR; + else + priv->cpi->output_pkt_list = &priv->pkt_list.head; + } + } + + return res; +} + +static vpx_codec_err_t encoder_destroy(vpx_codec_alg_priv_t *ctx) { + free(ctx->cx_data); + vp9_remove_compressor(ctx->cpi); + vpx_free(ctx->buffer_pool); + vpx_free(ctx); + return VPX_CODEC_OK; +} + +static void pick_quickcompress_mode(vpx_codec_alg_priv_t *ctx, + unsigned long duration, + unsigned long deadline) { + MODE new_mode = BEST; + +#if CONFIG_REALTIME_ONLY + (void)duration; + deadline = VPX_DL_REALTIME; +#else + switch (ctx->cfg.g_pass) { + case VPX_RC_ONE_PASS: + if (deadline > 0) { + const vpx_codec_enc_cfg_t *const cfg = &ctx->cfg; + + // Convert duration parameter from stream timebase to microseconds. + const uint64_t duration_us = (uint64_t)duration * 1000000 * + (uint64_t)cfg->g_timebase.num / + (uint64_t)cfg->g_timebase.den; + + // If the deadline is more that the duration this frame is to be shown, + // use good quality mode. Otherwise use realtime mode. + new_mode = (deadline > duration_us) ? GOOD : REALTIME; + } else { + new_mode = BEST; + } + break; + case VPX_RC_FIRST_PASS: break; + case VPX_RC_LAST_PASS: new_mode = deadline > 0 ? GOOD : BEST; break; + } +#endif // CONFIG_REALTIME_ONLY + + if (deadline == VPX_DL_REALTIME) { + ctx->oxcf.pass = 0; + new_mode = REALTIME; + } + + if (ctx->oxcf.mode != new_mode) { + ctx->oxcf.mode = new_mode; + vp9_change_config(ctx->cpi, &ctx->oxcf); + } +} + +// Turn on to test if supplemental superframe data breaks decoding +// #define TEST_SUPPLEMENTAL_SUPERFRAME_DATA +static int write_superframe_index(vpx_codec_alg_priv_t *ctx) { + uint8_t marker = 0xc0; + unsigned int mask; + int mag, index_sz; + + assert(ctx->pending_frame_count); + assert(ctx->pending_frame_count <= 8); + + // Add the number of frames to the marker byte + marker |= ctx->pending_frame_count - 1; + + // Choose the magnitude + for (mag = 0, mask = 0xff; mag < 4; mag++) { + if (ctx->pending_frame_magnitude < mask) break; + mask <<= 8; + mask |= 0xff; + } + marker |= mag << 3; + + // Write the index + index_sz = 2 + (mag + 1) * ctx->pending_frame_count; + if (ctx->pending_cx_data_sz + index_sz < ctx->cx_data_sz) { + uint8_t *x = ctx->pending_cx_data + ctx->pending_cx_data_sz; + int i, j; +#ifdef TEST_SUPPLEMENTAL_SUPERFRAME_DATA + uint8_t marker_test = 0xc0; + int mag_test = 2; // 1 - 4 + int frames_test = 4; // 1 - 8 + int index_sz_test = 2 + mag_test * frames_test; + marker_test |= frames_test - 1; + marker_test |= (mag_test - 1) << 3; + *x++ = marker_test; + for (i = 0; i < mag_test * frames_test; ++i) + *x++ = 0; // fill up with arbitrary data + *x++ = marker_test; + ctx->pending_cx_data_sz += index_sz_test; + printf("Added supplemental superframe data\n"); +#endif + + *x++ = marker; + for (i = 0; i < ctx->pending_frame_count; i++) { + unsigned int this_sz = (unsigned int)ctx->pending_frame_sizes[i]; + + for (j = 0; j <= mag; j++) { + *x++ = this_sz & 0xff; + this_sz >>= 8; + } + } + *x++ = marker; + ctx->pending_cx_data_sz += index_sz; +#ifdef TEST_SUPPLEMENTAL_SUPERFRAME_DATA + index_sz += index_sz_test; +#endif + } + return index_sz; +} + +static int64_t timebase_units_to_ticks(const vpx_rational_t *timebase, + int64_t n) { + return n * TICKS_PER_SEC * timebase->num / timebase->den; +} + +static int64_t ticks_to_timebase_units(const vpx_rational_t *timebase, + int64_t n) { + const int64_t round = (int64_t)TICKS_PER_SEC * timebase->num / 2 - 1; + return (n * timebase->den + round) / timebase->num / TICKS_PER_SEC; +} + +static vpx_codec_frame_flags_t get_frame_pkt_flags(const VP9_COMP *cpi, + unsigned int lib_flags) { + vpx_codec_frame_flags_t flags = lib_flags << 16; + + if (lib_flags & FRAMEFLAGS_KEY || + (cpi->use_svc && + cpi->svc + .layer_context[cpi->svc.spatial_layer_id * + cpi->svc.number_temporal_layers + + cpi->svc.temporal_layer_id] + .is_key_frame)) + flags |= VPX_FRAME_IS_KEY; + + if (cpi->droppable) flags |= VPX_FRAME_IS_DROPPABLE; + + return flags; +} + +const size_t kMinCompressedSize = 8192; +static vpx_codec_err_t encoder_encode(vpx_codec_alg_priv_t *ctx, + const vpx_image_t *img, + vpx_codec_pts_t pts, + unsigned long duration, + vpx_enc_frame_flags_t enc_flags, + unsigned long deadline) { + volatile vpx_codec_err_t res = VPX_CODEC_OK; + volatile vpx_enc_frame_flags_t flags = enc_flags; + VP9_COMP *const cpi = ctx->cpi; + const vpx_rational_t *const timebase = &ctx->cfg.g_timebase; + size_t data_sz; + + if (cpi == NULL) return VPX_CODEC_INVALID_PARAM; + + if (cpi->oxcf.pass == 2 && cpi->level_constraint.level_index >= 0 && + !cpi->level_constraint.rc_config_updated) { + SVC *const svc = &cpi->svc; + const int is_two_pass_svc = + (svc->number_spatial_layers > 1) || (svc->number_temporal_layers > 1); + const VP9EncoderConfig *const oxcf = &cpi->oxcf; + TWO_PASS *const twopass = &cpi->twopass; + FIRSTPASS_STATS *stats = &twopass->total_stats; + if (is_two_pass_svc) { + const double frame_rate = 10000000.0 * stats->count / stats->duration; + vp9_update_spatial_layer_framerate(cpi, frame_rate); + twopass->bits_left = + (int64_t)(stats->duration * + svc->layer_context[svc->spatial_layer_id].target_bandwidth / + 10000000.0); + } else { + twopass->bits_left = + (int64_t)(stats->duration * oxcf->target_bandwidth / 10000000.0); + } + cpi->level_constraint.rc_config_updated = 1; + } + + if (img != NULL) { + res = validate_img(ctx, img); + if (res == VPX_CODEC_OK) { + // There's no codec control for multiple alt-refs so check the encoder + // instance for its status to determine the compressed data size. + data_sz = ctx->cfg.g_w * ctx->cfg.g_h * get_image_bps(img) / 8 * + (cpi->multi_arf_allowed ? 8 : 2); + if (data_sz < kMinCompressedSize) data_sz = kMinCompressedSize; + if (ctx->cx_data == NULL || ctx->cx_data_sz < data_sz) { + ctx->cx_data_sz = data_sz; + free(ctx->cx_data); + ctx->cx_data = (unsigned char *)malloc(ctx->cx_data_sz); + if (ctx->cx_data == NULL) { + return VPX_CODEC_MEM_ERROR; + } + } + } + } + + pick_quickcompress_mode(ctx, duration, deadline); + vpx_codec_pkt_list_init(&ctx->pkt_list); + + // Handle Flags + if (((flags & VP8_EFLAG_NO_UPD_GF) && (flags & VP8_EFLAG_FORCE_GF)) || + ((flags & VP8_EFLAG_NO_UPD_ARF) && (flags & VP8_EFLAG_FORCE_ARF))) { + ctx->base.err_detail = "Conflicting flags."; + return VPX_CODEC_INVALID_PARAM; + } + + if (setjmp(cpi->common.error.jmp)) { + cpi->common.error.setjmp = 0; + res = update_error_state(ctx, &cpi->common.error); + vpx_clear_system_state(); + return res; + } + cpi->common.error.setjmp = 1; + + if (res == VPX_CODEC_OK) vp9_apply_encoding_flags(cpi, flags); + + // Handle fixed keyframe intervals + if (ctx->cfg.kf_mode == VPX_KF_AUTO && + ctx->cfg.kf_min_dist == ctx->cfg.kf_max_dist) { + if (++ctx->fixed_kf_cntr > ctx->cfg.kf_min_dist) { + flags |= VPX_EFLAG_FORCE_KF; + ctx->fixed_kf_cntr = 1; + } + } + + if (res == VPX_CODEC_OK) { + unsigned int lib_flags = 0; + YV12_BUFFER_CONFIG sd; + int64_t dst_time_stamp = timebase_units_to_ticks(timebase, pts); + int64_t dst_end_time_stamp = + timebase_units_to_ticks(timebase, pts + duration); + size_t size, cx_data_sz; + unsigned char *cx_data; + + // Set up internal flags + if (ctx->base.init_flags & VPX_CODEC_USE_PSNR) cpi->b_calculate_psnr = 1; + + if (img != NULL) { + res = image2yuvconfig(img, &sd); + + // Store the original flags in to the frame buffer. Will extract the + // key frame flag when we actually encode this frame. + if (vp9_receive_raw_frame(cpi, flags | ctx->next_frame_flags, &sd, + dst_time_stamp, dst_end_time_stamp)) { + res = update_error_state(ctx, &cpi->common.error); + } + ctx->next_frame_flags = 0; + } + + cx_data = ctx->cx_data; + cx_data_sz = ctx->cx_data_sz; + + /* Any pending invisible frames? */ + if (ctx->pending_cx_data) { + memmove(cx_data, ctx->pending_cx_data, ctx->pending_cx_data_sz); + ctx->pending_cx_data = cx_data; + cx_data += ctx->pending_cx_data_sz; + cx_data_sz -= ctx->pending_cx_data_sz; + + /* TODO: this is a minimal check, the underlying codec doesn't respect + * the buffer size anyway. + */ + if (cx_data_sz < ctx->cx_data_sz / 2) { + vpx_internal_error(&cpi->common.error, VPX_CODEC_ERROR, + "Compressed data buffer too small"); + return VPX_CODEC_ERROR; + } + } + + while (cx_data_sz >= ctx->cx_data_sz / 2 && + -1 != vp9_get_compressed_data(cpi, &lib_flags, &size, cx_data, + &dst_time_stamp, &dst_end_time_stamp, + !img)) { + if (size) { + vpx_codec_cx_pkt_t pkt; + +#if CONFIG_SPATIAL_SVC + if (cpi->use_svc) + cpi->svc + .layer_context[cpi->svc.spatial_layer_id * + cpi->svc.number_temporal_layers] + .layer_size += size; +#endif + + // Pack invisible frames with the next visible frame + if (!cpi->common.show_frame || + (cpi->use_svc && + cpi->svc.spatial_layer_id < cpi->svc.number_spatial_layers - 1)) { + if (ctx->pending_cx_data == 0) ctx->pending_cx_data = cx_data; + ctx->pending_cx_data_sz += size; + ctx->pending_frame_sizes[ctx->pending_frame_count++] = size; + ctx->pending_frame_magnitude |= size; + cx_data += size; + cx_data_sz -= size; + + if (ctx->output_cx_pkt_cb.output_cx_pkt) { + pkt.kind = VPX_CODEC_CX_FRAME_PKT; + pkt.data.frame.pts = + ticks_to_timebase_units(timebase, dst_time_stamp); + pkt.data.frame.duration = (unsigned long)ticks_to_timebase_units( + timebase, dst_end_time_stamp - dst_time_stamp); + pkt.data.frame.flags = get_frame_pkt_flags(cpi, lib_flags); + pkt.data.frame.buf = ctx->pending_cx_data; + pkt.data.frame.sz = size; + ctx->pending_cx_data = NULL; + ctx->pending_cx_data_sz = 0; + ctx->pending_frame_count = 0; + ctx->pending_frame_magnitude = 0; + ctx->output_cx_pkt_cb.output_cx_pkt( + &pkt, ctx->output_cx_pkt_cb.user_priv); + } + continue; + } + + // Add the frame packet to the list of returned packets. + pkt.kind = VPX_CODEC_CX_FRAME_PKT; + pkt.data.frame.pts = ticks_to_timebase_units(timebase, dst_time_stamp); + pkt.data.frame.duration = (unsigned long)ticks_to_timebase_units( + timebase, dst_end_time_stamp - dst_time_stamp); + pkt.data.frame.flags = get_frame_pkt_flags(cpi, lib_flags); + + if (ctx->pending_cx_data) { + ctx->pending_frame_sizes[ctx->pending_frame_count++] = size; + ctx->pending_frame_magnitude |= size; + ctx->pending_cx_data_sz += size; + // write the superframe only for the case when + if (!ctx->output_cx_pkt_cb.output_cx_pkt) + size += write_superframe_index(ctx); + pkt.data.frame.buf = ctx->pending_cx_data; + pkt.data.frame.sz = ctx->pending_cx_data_sz; + ctx->pending_cx_data = NULL; + ctx->pending_cx_data_sz = 0; + ctx->pending_frame_count = 0; + ctx->pending_frame_magnitude = 0; + } else { + pkt.data.frame.buf = cx_data; + pkt.data.frame.sz = size; + } + pkt.data.frame.partition_id = -1; + + if (ctx->output_cx_pkt_cb.output_cx_pkt) + ctx->output_cx_pkt_cb.output_cx_pkt(&pkt, + ctx->output_cx_pkt_cb.user_priv); + else + vpx_codec_pkt_list_add(&ctx->pkt_list.head, &pkt); + + cx_data += size; + cx_data_sz -= size; +#if CONFIG_SPATIAL_SVC && defined(VPX_TEST_SPATIAL_SVC) + if (cpi->use_svc && !ctx->output_cx_pkt_cb.output_cx_pkt) { + vpx_codec_cx_pkt_t pkt_sizes, pkt_psnr; + int sl; + vp9_zero(pkt_sizes); + vp9_zero(pkt_psnr); + pkt_sizes.kind = VPX_CODEC_SPATIAL_SVC_LAYER_SIZES; + pkt_psnr.kind = VPX_CODEC_SPATIAL_SVC_LAYER_PSNR; + for (sl = 0; sl < cpi->svc.number_spatial_layers; ++sl) { + LAYER_CONTEXT *lc = + &cpi->svc.layer_context[sl * cpi->svc.number_temporal_layers]; + pkt_sizes.data.layer_sizes[sl] = lc->layer_size; + pkt_psnr.data.layer_psnr[sl] = lc->psnr_pkt; + lc->layer_size = 0; + } + + vpx_codec_pkt_list_add(&ctx->pkt_list.head, &pkt_sizes); + + vpx_codec_pkt_list_add(&ctx->pkt_list.head, &pkt_psnr); + } +#endif + if (is_one_pass_cbr_svc(cpi) && + (cpi->svc.spatial_layer_id == cpi->svc.number_spatial_layers - 1)) { + // Encoded all spatial layers; exit loop. + break; + } + } + } + } + + cpi->common.error.setjmp = 0; + return res; +} + +static const vpx_codec_cx_pkt_t *encoder_get_cxdata(vpx_codec_alg_priv_t *ctx, + vpx_codec_iter_t *iter) { + return vpx_codec_pkt_list_get(&ctx->pkt_list.head, iter); +} + +static vpx_codec_err_t ctrl_set_reference(vpx_codec_alg_priv_t *ctx, + va_list args) { + vpx_ref_frame_t *const frame = va_arg(args, vpx_ref_frame_t *); + + if (frame != NULL) { + YV12_BUFFER_CONFIG sd; + + image2yuvconfig(&frame->img, &sd); + vp9_set_reference_enc(ctx->cpi, ref_frame_to_vp9_reframe(frame->frame_type), + &sd); + return VPX_CODEC_OK; + } else { + return VPX_CODEC_INVALID_PARAM; + } +} + +static vpx_codec_err_t ctrl_copy_reference(vpx_codec_alg_priv_t *ctx, + va_list args) { + vpx_ref_frame_t *const frame = va_arg(args, vpx_ref_frame_t *); + + if (frame != NULL) { + YV12_BUFFER_CONFIG sd; + + image2yuvconfig(&frame->img, &sd); + vp9_copy_reference_enc(ctx->cpi, + ref_frame_to_vp9_reframe(frame->frame_type), &sd); + return VPX_CODEC_OK; + } else { + return VPX_CODEC_INVALID_PARAM; + } +} + +static vpx_codec_err_t ctrl_get_reference(vpx_codec_alg_priv_t *ctx, + va_list args) { + vp9_ref_frame_t *const frame = va_arg(args, vp9_ref_frame_t *); + + if (frame != NULL) { + YV12_BUFFER_CONFIG *fb = get_ref_frame(&ctx->cpi->common, frame->idx); + if (fb == NULL) return VPX_CODEC_ERROR; + + yuvconfig2image(&frame->img, fb, NULL); + return VPX_CODEC_OK; + } else { + return VPX_CODEC_INVALID_PARAM; + } +} + +static vpx_codec_err_t ctrl_set_previewpp(vpx_codec_alg_priv_t *ctx, + va_list args) { +#if CONFIG_VP9_POSTPROC + vp8_postproc_cfg_t *config = va_arg(args, vp8_postproc_cfg_t *); + if (config != NULL) { + ctx->preview_ppcfg = *config; + return VPX_CODEC_OK; + } else { + return VPX_CODEC_INVALID_PARAM; + } +#else + (void)ctx; + (void)args; + return VPX_CODEC_INCAPABLE; +#endif +} + +static vpx_image_t *encoder_get_preview(vpx_codec_alg_priv_t *ctx) { + YV12_BUFFER_CONFIG sd; + vp9_ppflags_t flags; + vp9_zero(flags); + + if (ctx->preview_ppcfg.post_proc_flag) { + flags.post_proc_flag = ctx->preview_ppcfg.post_proc_flag; + flags.deblocking_level = ctx->preview_ppcfg.deblocking_level; + flags.noise_level = ctx->preview_ppcfg.noise_level; + } + + if (vp9_get_preview_raw_frame(ctx->cpi, &sd, &flags) == 0) { + yuvconfig2image(&ctx->preview_img, &sd, NULL); + return &ctx->preview_img; + } else { + return NULL; + } +} + +static vpx_codec_err_t ctrl_set_roi_map(vpx_codec_alg_priv_t *ctx, + va_list args) { + (void)ctx; + (void)args; + + // TODO(yaowu): Need to re-implement and test for VP9. + return VPX_CODEC_INVALID_PARAM; +} + +static vpx_codec_err_t ctrl_set_active_map(vpx_codec_alg_priv_t *ctx, + va_list args) { + vpx_active_map_t *const map = va_arg(args, vpx_active_map_t *); + + if (map) { + if (!vp9_set_active_map(ctx->cpi, map->active_map, (int)map->rows, + (int)map->cols)) + return VPX_CODEC_OK; + else + return VPX_CODEC_INVALID_PARAM; + } else { + return VPX_CODEC_INVALID_PARAM; + } +} + +static vpx_codec_err_t ctrl_get_active_map(vpx_codec_alg_priv_t *ctx, + va_list args) { + vpx_active_map_t *const map = va_arg(args, vpx_active_map_t *); + + if (map) { + if (!vp9_get_active_map(ctx->cpi, map->active_map, (int)map->rows, + (int)map->cols)) + return VPX_CODEC_OK; + else + return VPX_CODEC_INVALID_PARAM; + } else { + return VPX_CODEC_INVALID_PARAM; + } +} + +static vpx_codec_err_t ctrl_set_scale_mode(vpx_codec_alg_priv_t *ctx, + va_list args) { + vpx_scaling_mode_t *const mode = va_arg(args, vpx_scaling_mode_t *); + + if (mode) { + const int res = + vp9_set_internal_size(ctx->cpi, (VPX_SCALING)mode->h_scaling_mode, + (VPX_SCALING)mode->v_scaling_mode); + return (res == 0) ? VPX_CODEC_OK : VPX_CODEC_INVALID_PARAM; + } else { + return VPX_CODEC_INVALID_PARAM; + } +} + +static vpx_codec_err_t ctrl_set_svc(vpx_codec_alg_priv_t *ctx, va_list args) { + int data = va_arg(args, int); + const vpx_codec_enc_cfg_t *cfg = &ctx->cfg; + // Both one-pass and two-pass RC are supported now. + // User setting this has to make sure of the following. + // In two-pass setting: either (but not both) + // cfg->ss_number_layers > 1, or cfg->ts_number_layers > 1 + // In one-pass setting: + // either or both cfg->ss_number_layers > 1, or cfg->ts_number_layers > 1 + + vp9_set_svc(ctx->cpi, data); + + if (data == 1 && + (cfg->g_pass == VPX_RC_FIRST_PASS || cfg->g_pass == VPX_RC_LAST_PASS) && + cfg->ss_number_layers > 1 && cfg->ts_number_layers > 1) { + return VPX_CODEC_INVALID_PARAM; + } + + vp9_set_row_mt(ctx->cpi); + + return VPX_CODEC_OK; +} + +static vpx_codec_err_t ctrl_set_svc_layer_id(vpx_codec_alg_priv_t *ctx, + va_list args) { + vpx_svc_layer_id_t *const data = va_arg(args, vpx_svc_layer_id_t *); + VP9_COMP *const cpi = (VP9_COMP *)ctx->cpi; + SVC *const svc = &cpi->svc; + + svc->first_spatial_layer_to_encode = data->spatial_layer_id; + svc->spatial_layer_to_encode = data->spatial_layer_id; + svc->temporal_layer_id = data->temporal_layer_id; + // Checks on valid layer_id input. + if (svc->temporal_layer_id < 0 || + svc->temporal_layer_id >= (int)ctx->cfg.ts_number_layers) { + return VPX_CODEC_INVALID_PARAM; + } + if (svc->first_spatial_layer_to_encode < 0 || + svc->first_spatial_layer_to_encode >= (int)ctx->cfg.ss_number_layers) { + return VPX_CODEC_INVALID_PARAM; + } + // First spatial layer to encode not implemented for two-pass. + if (is_two_pass_svc(cpi) && svc->first_spatial_layer_to_encode > 0) + return VPX_CODEC_INVALID_PARAM; + return VPX_CODEC_OK; +} + +static vpx_codec_err_t ctrl_get_svc_layer_id(vpx_codec_alg_priv_t *ctx, + va_list args) { + vpx_svc_layer_id_t *data = va_arg(args, vpx_svc_layer_id_t *); + VP9_COMP *const cpi = (VP9_COMP *)ctx->cpi; + SVC *const svc = &cpi->svc; + + data->spatial_layer_id = svc->spatial_layer_id; + data->temporal_layer_id = svc->temporal_layer_id; + + return VPX_CODEC_OK; +} + +static vpx_codec_err_t ctrl_set_svc_parameters(vpx_codec_alg_priv_t *ctx, + va_list args) { + VP9_COMP *const cpi = ctx->cpi; + vpx_svc_extra_cfg_t *const params = va_arg(args, vpx_svc_extra_cfg_t *); + int sl, tl; + + // Number of temporal layers and number of spatial layers have to be set + // properly before calling this control function. + for (sl = 0; sl < cpi->svc.number_spatial_layers; ++sl) { + for (tl = 0; tl < cpi->svc.number_temporal_layers; ++tl) { + const int layer = + LAYER_IDS_TO_IDX(sl, tl, cpi->svc.number_temporal_layers); + LAYER_CONTEXT *lc = &cpi->svc.layer_context[layer]; + lc->max_q = params->max_quantizers[layer]; + lc->min_q = params->min_quantizers[layer]; + lc->scaling_factor_num = params->scaling_factor_num[sl]; + lc->scaling_factor_den = params->scaling_factor_den[sl]; + lc->speed = params->speed_per_layer[sl]; + } + } + + return VPX_CODEC_OK; +} + +static vpx_codec_err_t ctrl_set_svc_ref_frame_config(vpx_codec_alg_priv_t *ctx, + va_list args) { + VP9_COMP *const cpi = ctx->cpi; + vpx_svc_ref_frame_config_t *data = va_arg(args, vpx_svc_ref_frame_config_t *); + int sl; + for (sl = 0; sl < cpi->svc.number_spatial_layers; ++sl) { + cpi->svc.ext_frame_flags[sl] = data->frame_flags[sl]; + cpi->svc.ext_lst_fb_idx[sl] = data->lst_fb_idx[sl]; + cpi->svc.ext_gld_fb_idx[sl] = data->gld_fb_idx[sl]; + cpi->svc.ext_alt_fb_idx[sl] = data->alt_fb_idx[sl]; + } + return VPX_CODEC_OK; +} + +static vpx_codec_err_t ctrl_register_cx_callback(vpx_codec_alg_priv_t *ctx, + va_list args) { + vpx_codec_priv_output_cx_pkt_cb_pair_t *cbp = + (vpx_codec_priv_output_cx_pkt_cb_pair_t *)va_arg(args, void *); + ctx->output_cx_pkt_cb.output_cx_pkt = cbp->output_cx_pkt; + ctx->output_cx_pkt_cb.user_priv = cbp->user_priv; + + return VPX_CODEC_OK; +} + +static vpx_codec_err_t ctrl_set_tune_content(vpx_codec_alg_priv_t *ctx, + va_list args) { + struct vp9_extracfg extra_cfg = ctx->extra_cfg; + extra_cfg.content = CAST(VP9E_SET_TUNE_CONTENT, args); + return update_extra_cfg(ctx, &extra_cfg); +} + +static vpx_codec_err_t ctrl_set_color_space(vpx_codec_alg_priv_t *ctx, + va_list args) { + struct vp9_extracfg extra_cfg = ctx->extra_cfg; + extra_cfg.color_space = CAST(VP9E_SET_COLOR_SPACE, args); + return update_extra_cfg(ctx, &extra_cfg); +} + +static vpx_codec_err_t ctrl_set_color_range(vpx_codec_alg_priv_t *ctx, + va_list args) { + struct vp9_extracfg extra_cfg = ctx->extra_cfg; + extra_cfg.color_range = CAST(VP9E_SET_COLOR_RANGE, args); + return update_extra_cfg(ctx, &extra_cfg); +} + +static vpx_codec_err_t ctrl_set_render_size(vpx_codec_alg_priv_t *ctx, + va_list args) { + struct vp9_extracfg extra_cfg = ctx->extra_cfg; + int *const render_size = va_arg(args, int *); + extra_cfg.render_width = render_size[0]; + extra_cfg.render_height = render_size[1]; + return update_extra_cfg(ctx, &extra_cfg); +} + +static vpx_codec_ctrl_fn_map_t encoder_ctrl_maps[] = { + { VP8_COPY_REFERENCE, ctrl_copy_reference }, + + // Setters + { VP8_SET_REFERENCE, ctrl_set_reference }, + { VP8_SET_POSTPROC, ctrl_set_previewpp }, + { VP8E_SET_ROI_MAP, ctrl_set_roi_map }, + { VP8E_SET_ACTIVEMAP, ctrl_set_active_map }, + { VP8E_SET_SCALEMODE, ctrl_set_scale_mode }, + { VP8E_SET_CPUUSED, ctrl_set_cpuused }, + { VP8E_SET_ENABLEAUTOALTREF, ctrl_set_enable_auto_alt_ref }, + { VP8E_SET_SHARPNESS, ctrl_set_sharpness }, + { VP8E_SET_STATIC_THRESHOLD, ctrl_set_static_thresh }, + { VP9E_SET_TILE_COLUMNS, ctrl_set_tile_columns }, + { VP9E_SET_TILE_ROWS, ctrl_set_tile_rows }, + { VP8E_SET_ARNR_MAXFRAMES, ctrl_set_arnr_max_frames }, + { VP8E_SET_ARNR_STRENGTH, ctrl_set_arnr_strength }, + { VP8E_SET_ARNR_TYPE, ctrl_set_arnr_type }, + { VP8E_SET_TUNING, ctrl_set_tuning }, + { VP8E_SET_CQ_LEVEL, ctrl_set_cq_level }, + { VP8E_SET_MAX_INTRA_BITRATE_PCT, ctrl_set_rc_max_intra_bitrate_pct }, + { VP9E_SET_MAX_INTER_BITRATE_PCT, ctrl_set_rc_max_inter_bitrate_pct }, + { VP9E_SET_GF_CBR_BOOST_PCT, ctrl_set_rc_gf_cbr_boost_pct }, + { VP9E_SET_LOSSLESS, ctrl_set_lossless }, + { VP9E_SET_FRAME_PARALLEL_DECODING, ctrl_set_frame_parallel_decoding_mode }, + { VP9E_SET_AQ_MODE, ctrl_set_aq_mode }, + { VP9E_SET_ALT_REF_AQ, ctrl_set_alt_ref_aq }, + { VP9E_SET_FRAME_PERIODIC_BOOST, ctrl_set_frame_periodic_boost }, + { VP9E_SET_SVC, ctrl_set_svc }, + { VP9E_SET_SVC_PARAMETERS, ctrl_set_svc_parameters }, + { VP9E_REGISTER_CX_CALLBACK, ctrl_register_cx_callback }, + { VP9E_SET_SVC_LAYER_ID, ctrl_set_svc_layer_id }, + { VP9E_SET_TUNE_CONTENT, ctrl_set_tune_content }, + { VP9E_SET_COLOR_SPACE, ctrl_set_color_space }, + { VP9E_SET_COLOR_RANGE, ctrl_set_color_range }, + { VP9E_SET_NOISE_SENSITIVITY, ctrl_set_noise_sensitivity }, + { VP9E_SET_MIN_GF_INTERVAL, ctrl_set_min_gf_interval }, + { VP9E_SET_MAX_GF_INTERVAL, ctrl_set_max_gf_interval }, + { VP9E_SET_SVC_REF_FRAME_CONFIG, ctrl_set_svc_ref_frame_config }, + { VP9E_SET_RENDER_SIZE, ctrl_set_render_size }, + { VP9E_SET_TARGET_LEVEL, ctrl_set_target_level }, + { VP9E_SET_ROW_MT, ctrl_set_row_mt }, + { VP9E_ENABLE_MOTION_VECTOR_UNIT_TEST, ctrl_enable_motion_vector_unit_test }, + + // Getters + { VP8E_GET_LAST_QUANTIZER, ctrl_get_quantizer }, + { VP8E_GET_LAST_QUANTIZER_64, ctrl_get_quantizer64 }, + { VP9_GET_REFERENCE, ctrl_get_reference }, + { VP9E_GET_SVC_LAYER_ID, ctrl_get_svc_layer_id }, + { VP9E_GET_ACTIVEMAP, ctrl_get_active_map }, + { VP9E_GET_LEVEL, ctrl_get_level }, + + { -1, NULL }, +}; + +static vpx_codec_enc_cfg_map_t encoder_usage_cfg_map[] = { + { 0, + { + // NOLINT + 0, // g_usage + 8, // g_threads + 0, // g_profile + + 320, // g_width + 240, // g_height + VPX_BITS_8, // g_bit_depth + 8, // g_input_bit_depth + + { 1, 30 }, // g_timebase + + 0, // g_error_resilient + + VPX_RC_ONE_PASS, // g_pass + + 25, // g_lag_in_frames + + 0, // rc_dropframe_thresh + 0, // rc_resize_allowed + 0, // rc_scaled_width + 0, // rc_scaled_height + 60, // rc_resize_down_thresold + 30, // rc_resize_up_thresold + + VPX_VBR, // rc_end_usage + { NULL, 0 }, // rc_twopass_stats_in + { NULL, 0 }, // rc_firstpass_mb_stats_in + 256, // rc_target_bandwidth + 0, // rc_min_quantizer + 63, // rc_max_quantizer + 25, // rc_undershoot_pct + 25, // rc_overshoot_pct + + 6000, // rc_max_buffer_size + 4000, // rc_buffer_initial_size + 5000, // rc_buffer_optimal_size + + 50, // rc_two_pass_vbrbias + 0, // rc_two_pass_vbrmin_section + 2000, // rc_two_pass_vbrmax_section + 0, // rc_2pass_vbr_corpus_complexity (non 0 for corpus vbr) + + // keyframing settings (kf) + VPX_KF_AUTO, // g_kfmode + 0, // kf_min_dist + 128, // kf_max_dist + + VPX_SS_DEFAULT_LAYERS, // ss_number_layers + { 0 }, + { 0 }, // ss_target_bitrate + 1, // ts_number_layers + { 0 }, // ts_target_bitrate + { 0 }, // ts_rate_decimator + 0, // ts_periodicity + { 0 }, // ts_layer_id + { 0 }, // layer_taget_bitrate + 0 // temporal_layering_mode + } }, +}; + +#ifndef VERSION_STRING +#define VERSION_STRING +#endif +CODEC_INTERFACE(vpx_codec_vp9_cx) = { + "WebM Project VP9 Encoder" VERSION_STRING, + VPX_CODEC_INTERNAL_ABI_VERSION, +#if CONFIG_VP9_HIGHBITDEPTH + VPX_CODEC_CAP_HIGHBITDEPTH | +#endif + VPX_CODEC_CAP_ENCODER | VPX_CODEC_CAP_PSNR, // vpx_codec_caps_t + encoder_init, // vpx_codec_init_fn_t + encoder_destroy, // vpx_codec_destroy_fn_t + encoder_ctrl_maps, // vpx_codec_ctrl_fn_map_t + { + // NOLINT + NULL, // vpx_codec_peek_si_fn_t + NULL, // vpx_codec_get_si_fn_t + NULL, // vpx_codec_decode_fn_t + NULL, // vpx_codec_frame_get_fn_t + NULL // vpx_codec_set_fb_fn_t + }, + { + // NOLINT + 1, // 1 cfg map + encoder_usage_cfg_map, // vpx_codec_enc_cfg_map_t + encoder_encode, // vpx_codec_encode_fn_t + encoder_get_cxdata, // vpx_codec_get_cx_data_fn_t + encoder_set_config, // vpx_codec_enc_config_set_fn_t + NULL, // vpx_codec_get_global_headers_fn_t + encoder_get_preview, // vpx_codec_get_preview_frame_fn_t + NULL // vpx_codec_enc_mr_get_mem_loc_fn_t + } +}; diff --git a/vp9/vp9_dx_iface.c b/vp9/vp9_dx_iface.c new file mode 100644 index 0000000..657490f --- /dev/null +++ b/vp9/vp9_dx_iface.c @@ -0,0 +1,692 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include + +#include "./vpx_config.h" +#include "./vpx_version.h" + +#include "vpx/internal/vpx_codec_internal.h" +#include "vpx/vp8dx.h" +#include "vpx/vpx_decoder.h" +#include "vpx_dsp/bitreader_buffer.h" +#include "vpx_dsp/vpx_dsp_common.h" +#include "vpx_util/vpx_thread.h" + +#include "vp9/common/vp9_alloccommon.h" +#include "vp9/common/vp9_frame_buffers.h" + +#include "vp9/decoder/vp9_decodeframe.h" + +#include "vp9/vp9_dx_iface.h" +#include "vp9/vp9_iface_common.h" + +#define VP9_CAP_POSTPROC (CONFIG_VP9_POSTPROC ? VPX_CODEC_CAP_POSTPROC : 0) + +static vpx_codec_err_t decoder_init(vpx_codec_ctx_t *ctx, + vpx_codec_priv_enc_mr_cfg_t *data) { + // This function only allocates space for the vpx_codec_alg_priv_t + // structure. More memory may be required at the time the stream + // information becomes known. + (void)data; + + if (!ctx->priv) { + vpx_codec_alg_priv_t *const priv = + (vpx_codec_alg_priv_t *)vpx_calloc(1, sizeof(*priv)); + if (priv == NULL) return VPX_CODEC_MEM_ERROR; + + ctx->priv = (vpx_codec_priv_t *)priv; + ctx->priv->init_flags = ctx->init_flags; + priv->si.sz = sizeof(priv->si); + priv->flushed = 0; + if (ctx->config.dec) { + priv->cfg = *ctx->config.dec; + ctx->config.dec = &priv->cfg; + } + } + + return VPX_CODEC_OK; +} + +static vpx_codec_err_t decoder_destroy(vpx_codec_alg_priv_t *ctx) { + if (ctx->pbi != NULL) { + vp9_decoder_remove(ctx->pbi); + } + + if (ctx->buffer_pool) { + vp9_free_ref_frame_buffers(ctx->buffer_pool); + vp9_free_internal_frame_buffers(&ctx->buffer_pool->int_frame_buffers); + } + + vpx_free(ctx->buffer_pool); + vpx_free(ctx); + return VPX_CODEC_OK; +} + +static int parse_bitdepth_colorspace_sampling(BITSTREAM_PROFILE profile, + struct vpx_read_bit_buffer *rb) { + vpx_color_space_t color_space; + if (profile >= PROFILE_2) rb->bit_offset += 1; // Bit-depth 10 or 12. + color_space = (vpx_color_space_t)vpx_rb_read_literal(rb, 3); + if (color_space != VPX_CS_SRGB) { + rb->bit_offset += 1; // [16,235] (including xvycc) vs [0,255] range. + if (profile == PROFILE_1 || profile == PROFILE_3) { + rb->bit_offset += 2; // subsampling x/y. + rb->bit_offset += 1; // unused. + } + } else { + if (profile == PROFILE_1 || profile == PROFILE_3) { + rb->bit_offset += 1; // unused + } else { + // RGB is only available in version 1. + return 0; + } + } + return 1; +} + +static vpx_codec_err_t decoder_peek_si_internal( + const uint8_t *data, unsigned int data_sz, vpx_codec_stream_info_t *si, + int *is_intra_only, vpx_decrypt_cb decrypt_cb, void *decrypt_state) { + int intra_only_flag = 0; + uint8_t clear_buffer[10]; + + if (data + data_sz <= data) return VPX_CODEC_INVALID_PARAM; + + si->is_kf = 0; + si->w = si->h = 0; + + if (decrypt_cb) { + data_sz = VPXMIN(sizeof(clear_buffer), data_sz); + decrypt_cb(decrypt_state, data, clear_buffer, data_sz); + data = clear_buffer; + } + + // A maximum of 6 bits are needed to read the frame marker, profile and + // show_existing_frame. + if (data_sz < 1) return VPX_CODEC_UNSUP_BITSTREAM; + + { + int show_frame; + int error_resilient; + struct vpx_read_bit_buffer rb = { data, data + data_sz, 0, NULL, NULL }; + const int frame_marker = vpx_rb_read_literal(&rb, 2); + const BITSTREAM_PROFILE profile = vp9_read_profile(&rb); + + if (frame_marker != VP9_FRAME_MARKER) return VPX_CODEC_UNSUP_BITSTREAM; + + if (profile >= MAX_PROFILES) return VPX_CODEC_UNSUP_BITSTREAM; + + if (vpx_rb_read_bit(&rb)) { // show an existing frame + // If profile is > 2 and show_existing_frame is true, then at least 1 more + // byte (6+3=9 bits) is needed. + if (profile > 2 && data_sz < 2) return VPX_CODEC_UNSUP_BITSTREAM; + vpx_rb_read_literal(&rb, 3); // Frame buffer to show. + return VPX_CODEC_OK; + } + + // For the rest of the function, a maximum of 9 more bytes are needed + // (computed by taking the maximum possible bits needed in each case). Note + // that this has to be updated if we read any more bits in this function. + if (data_sz < 10) return VPX_CODEC_UNSUP_BITSTREAM; + + si->is_kf = !vpx_rb_read_bit(&rb); + show_frame = vpx_rb_read_bit(&rb); + error_resilient = vpx_rb_read_bit(&rb); + + if (si->is_kf) { + if (!vp9_read_sync_code(&rb)) return VPX_CODEC_UNSUP_BITSTREAM; + + if (!parse_bitdepth_colorspace_sampling(profile, &rb)) + return VPX_CODEC_UNSUP_BITSTREAM; + vp9_read_frame_size(&rb, (int *)&si->w, (int *)&si->h); + } else { + intra_only_flag = show_frame ? 0 : vpx_rb_read_bit(&rb); + + rb.bit_offset += error_resilient ? 0 : 2; // reset_frame_context + + if (intra_only_flag) { + if (!vp9_read_sync_code(&rb)) return VPX_CODEC_UNSUP_BITSTREAM; + if (profile > PROFILE_0) { + if (!parse_bitdepth_colorspace_sampling(profile, &rb)) + return VPX_CODEC_UNSUP_BITSTREAM; + } + rb.bit_offset += REF_FRAMES; // refresh_frame_flags + vp9_read_frame_size(&rb, (int *)&si->w, (int *)&si->h); + } + } + } + if (is_intra_only != NULL) *is_intra_only = intra_only_flag; + return VPX_CODEC_OK; +} + +static vpx_codec_err_t decoder_peek_si(const uint8_t *data, + unsigned int data_sz, + vpx_codec_stream_info_t *si) { + return decoder_peek_si_internal(data, data_sz, si, NULL, NULL, NULL); +} + +static vpx_codec_err_t decoder_get_si(vpx_codec_alg_priv_t *ctx, + vpx_codec_stream_info_t *si) { + const size_t sz = (si->sz >= sizeof(vp9_stream_info_t)) + ? sizeof(vp9_stream_info_t) + : sizeof(vpx_codec_stream_info_t); + memcpy(si, &ctx->si, sz); + si->sz = (unsigned int)sz; + + return VPX_CODEC_OK; +} + +static void set_error_detail(vpx_codec_alg_priv_t *ctx, + const char *const error) { + ctx->base.err_detail = error; +} + +static vpx_codec_err_t update_error_state( + vpx_codec_alg_priv_t *ctx, const struct vpx_internal_error_info *error) { + if (error->error_code) + set_error_detail(ctx, error->has_detail ? error->detail : NULL); + + return error->error_code; +} + +static void init_buffer_callbacks(vpx_codec_alg_priv_t *ctx) { + VP9_COMMON *const cm = &ctx->pbi->common; + BufferPool *const pool = cm->buffer_pool; + + cm->new_fb_idx = INVALID_IDX; + cm->byte_alignment = ctx->byte_alignment; + cm->skip_loop_filter = ctx->skip_loop_filter; + + if (ctx->get_ext_fb_cb != NULL && ctx->release_ext_fb_cb != NULL) { + pool->get_fb_cb = ctx->get_ext_fb_cb; + pool->release_fb_cb = ctx->release_ext_fb_cb; + pool->cb_priv = ctx->ext_priv; + } else { + pool->get_fb_cb = vp9_get_frame_buffer; + pool->release_fb_cb = vp9_release_frame_buffer; + + if (vp9_alloc_internal_frame_buffers(&pool->int_frame_buffers)) + vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR, + "Failed to initialize internal frame buffers"); + + pool->cb_priv = &pool->int_frame_buffers; + } +} + +static void set_default_ppflags(vp8_postproc_cfg_t *cfg) { + cfg->post_proc_flag = VP8_DEBLOCK | VP8_DEMACROBLOCK; + cfg->deblocking_level = 4; + cfg->noise_level = 0; +} + +static void set_ppflags(const vpx_codec_alg_priv_t *ctx, vp9_ppflags_t *flags) { + flags->post_proc_flag = ctx->postproc_cfg.post_proc_flag; + + flags->deblocking_level = ctx->postproc_cfg.deblocking_level; + flags->noise_level = ctx->postproc_cfg.noise_level; +} + +static vpx_codec_err_t init_decoder(vpx_codec_alg_priv_t *ctx) { + ctx->last_show_frame = -1; + ctx->need_resync = 1; + ctx->flushed = 0; + + ctx->buffer_pool = (BufferPool *)vpx_calloc(1, sizeof(BufferPool)); + if (ctx->buffer_pool == NULL) return VPX_CODEC_MEM_ERROR; + + ctx->pbi = vp9_decoder_create(ctx->buffer_pool); + if (ctx->pbi == NULL) { + set_error_detail(ctx, "Failed to allocate decoder"); + return VPX_CODEC_MEM_ERROR; + } + ctx->pbi->max_threads = ctx->cfg.threads; + ctx->pbi->inv_tile_order = ctx->invert_tile_order; + + // If postprocessing was enabled by the application and a + // configuration has not been provided, default it. + if (!ctx->postproc_cfg_set && (ctx->base.init_flags & VPX_CODEC_USE_POSTPROC)) + set_default_ppflags(&ctx->postproc_cfg); + + init_buffer_callbacks(ctx); + + return VPX_CODEC_OK; +} + +static INLINE void check_resync(vpx_codec_alg_priv_t *const ctx, + const VP9Decoder *const pbi) { + // Clear resync flag if the decoder got a key frame or intra only frame. + if (ctx->need_resync == 1 && pbi->need_resync == 0 && + (pbi->common.intra_only || pbi->common.frame_type == KEY_FRAME)) + ctx->need_resync = 0; +} + +static vpx_codec_err_t decode_one(vpx_codec_alg_priv_t *ctx, + const uint8_t **data, unsigned int data_sz, + void *user_priv, int64_t deadline) { + (void)deadline; + + // Determine the stream parameters. Note that we rely on peek_si to + // validate that we have a buffer that does not wrap around the top + // of the heap. + if (!ctx->si.h) { + int is_intra_only = 0; + const vpx_codec_err_t res = + decoder_peek_si_internal(*data, data_sz, &ctx->si, &is_intra_only, + ctx->decrypt_cb, ctx->decrypt_state); + if (res != VPX_CODEC_OK) return res; + + if (!ctx->si.is_kf && !is_intra_only) return VPX_CODEC_ERROR; + } + + ctx->user_priv = user_priv; + + // Set these even if already initialized. The caller may have changed the + // decrypt config between frames. + ctx->pbi->decrypt_cb = ctx->decrypt_cb; + ctx->pbi->decrypt_state = ctx->decrypt_state; + + if (vp9_receive_compressed_data(ctx->pbi, data_sz, data)) { + ctx->pbi->cur_buf->buf.corrupted = 1; + ctx->pbi->need_resync = 1; + ctx->need_resync = 1; + return update_error_state(ctx, &ctx->pbi->common.error); + } + + check_resync(ctx, ctx->pbi); + + return VPX_CODEC_OK; +} + +static vpx_codec_err_t decoder_decode(vpx_codec_alg_priv_t *ctx, + const uint8_t *data, unsigned int data_sz, + void *user_priv, long deadline) { + const uint8_t *data_start = data; + const uint8_t *const data_end = data + data_sz; + vpx_codec_err_t res; + uint32_t frame_sizes[8]; + int frame_count; + + if (data == NULL && data_sz == 0) { + ctx->flushed = 1; + return VPX_CODEC_OK; + } + + // Reset flushed when receiving a valid frame. + ctx->flushed = 0; + + // Initialize the decoder on the first frame. + if (ctx->pbi == NULL) { + const vpx_codec_err_t res = init_decoder(ctx); + if (res != VPX_CODEC_OK) return res; + } + + res = vp9_parse_superframe_index(data, data_sz, frame_sizes, &frame_count, + ctx->decrypt_cb, ctx->decrypt_state); + if (res != VPX_CODEC_OK) return res; + + if (ctx->svc_decoding && ctx->svc_spatial_layer < frame_count - 1) + frame_count = ctx->svc_spatial_layer + 1; + + // Decode in serial mode. + if (frame_count > 0) { + int i; + + for (i = 0; i < frame_count; ++i) { + const uint8_t *data_start_copy = data_start; + const uint32_t frame_size = frame_sizes[i]; + vpx_codec_err_t res; + if (data_start < data || frame_size > (uint32_t)(data_end - data_start)) { + set_error_detail(ctx, "Invalid frame size in index"); + return VPX_CODEC_CORRUPT_FRAME; + } + + res = decode_one(ctx, &data_start_copy, frame_size, user_priv, deadline); + if (res != VPX_CODEC_OK) return res; + + data_start += frame_size; + } + } else { + while (data_start < data_end) { + const uint32_t frame_size = (uint32_t)(data_end - data_start); + const vpx_codec_err_t res = + decode_one(ctx, &data_start, frame_size, user_priv, deadline); + if (res != VPX_CODEC_OK) return res; + + // Account for suboptimal termination by the encoder. + while (data_start < data_end) { + const uint8_t marker = + read_marker(ctx->decrypt_cb, ctx->decrypt_state, data_start); + if (marker) break; + ++data_start; + } + } + } + + return res; +} + +static vpx_image_t *decoder_get_frame(vpx_codec_alg_priv_t *ctx, + vpx_codec_iter_t *iter) { + vpx_image_t *img = NULL; + + // Legacy parameter carried over from VP8. Has no effect for VP9 since we + // always return only 1 frame per decode call. + (void)iter; + + if (ctx->pbi != NULL) { + YV12_BUFFER_CONFIG sd; + vp9_ppflags_t flags = { 0, 0, 0 }; + if (ctx->base.init_flags & VPX_CODEC_USE_POSTPROC) set_ppflags(ctx, &flags); + if (vp9_get_raw_frame(ctx->pbi, &sd, &flags) == 0) { + VP9_COMMON *const cm = &ctx->pbi->common; + RefCntBuffer *const frame_bufs = cm->buffer_pool->frame_bufs; + ctx->last_show_frame = ctx->pbi->common.new_fb_idx; + if (ctx->need_resync) return NULL; + yuvconfig2image(&ctx->img, &sd, ctx->user_priv); + ctx->img.fb_priv = frame_bufs[cm->new_fb_idx].raw_frame_buffer.priv; + img = &ctx->img; + return img; + } + } + return NULL; +} + +static vpx_codec_err_t decoder_set_fb_fn( + vpx_codec_alg_priv_t *ctx, vpx_get_frame_buffer_cb_fn_t cb_get, + vpx_release_frame_buffer_cb_fn_t cb_release, void *cb_priv) { + if (cb_get == NULL || cb_release == NULL) { + return VPX_CODEC_INVALID_PARAM; + } else if (ctx->pbi == NULL) { + // If the decoder has already been initialized, do not accept changes to + // the frame buffer functions. + ctx->get_ext_fb_cb = cb_get; + ctx->release_ext_fb_cb = cb_release; + ctx->ext_priv = cb_priv; + return VPX_CODEC_OK; + } + + return VPX_CODEC_ERROR; +} + +static vpx_codec_err_t ctrl_set_reference(vpx_codec_alg_priv_t *ctx, + va_list args) { + vpx_ref_frame_t *const data = va_arg(args, vpx_ref_frame_t *); + + if (data) { + vpx_ref_frame_t *const frame = (vpx_ref_frame_t *)data; + YV12_BUFFER_CONFIG sd; + image2yuvconfig(&frame->img, &sd); + return vp9_set_reference_dec( + &ctx->pbi->common, ref_frame_to_vp9_reframe(frame->frame_type), &sd); + } else { + return VPX_CODEC_INVALID_PARAM; + } +} + +static vpx_codec_err_t ctrl_copy_reference(vpx_codec_alg_priv_t *ctx, + va_list args) { + vpx_ref_frame_t *data = va_arg(args, vpx_ref_frame_t *); + + if (data) { + vpx_ref_frame_t *frame = (vpx_ref_frame_t *)data; + YV12_BUFFER_CONFIG sd; + image2yuvconfig(&frame->img, &sd); + return vp9_copy_reference_dec(ctx->pbi, (VP9_REFFRAME)frame->frame_type, + &sd); + } else { + return VPX_CODEC_INVALID_PARAM; + } +} + +static vpx_codec_err_t ctrl_get_reference(vpx_codec_alg_priv_t *ctx, + va_list args) { + vp9_ref_frame_t *data = va_arg(args, vp9_ref_frame_t *); + + if (data) { + YV12_BUFFER_CONFIG *fb; + fb = get_ref_frame(&ctx->pbi->common, data->idx); + if (fb == NULL) return VPX_CODEC_ERROR; + yuvconfig2image(&data->img, fb, NULL); + return VPX_CODEC_OK; + } else { + return VPX_CODEC_INVALID_PARAM; + } +} + +static vpx_codec_err_t ctrl_set_postproc(vpx_codec_alg_priv_t *ctx, + va_list args) { +#if CONFIG_VP9_POSTPROC + vp8_postproc_cfg_t *data = va_arg(args, vp8_postproc_cfg_t *); + + if (data) { + ctx->postproc_cfg_set = 1; + ctx->postproc_cfg = *((vp8_postproc_cfg_t *)data); + return VPX_CODEC_OK; + } else { + return VPX_CODEC_INVALID_PARAM; + } +#else + (void)ctx; + (void)args; + return VPX_CODEC_INCAPABLE; +#endif +} + +static vpx_codec_err_t ctrl_get_quantizer(vpx_codec_alg_priv_t *ctx, + va_list args) { + int *const arg = va_arg(args, int *); + if (arg == NULL || ctx->pbi == NULL) return VPX_CODEC_INVALID_PARAM; + *arg = ctx->pbi->common.base_qindex; + return VPX_CODEC_OK; +} + +static vpx_codec_err_t ctrl_get_last_ref_updates(vpx_codec_alg_priv_t *ctx, + va_list args) { + int *const update_info = va_arg(args, int *); + + if (update_info) { + if (ctx->pbi != NULL) { + *update_info = ctx->pbi->refresh_frame_flags; + return VPX_CODEC_OK; + } else { + return VPX_CODEC_ERROR; + } + } + + return VPX_CODEC_INVALID_PARAM; +} + +static vpx_codec_err_t ctrl_get_frame_corrupted(vpx_codec_alg_priv_t *ctx, + va_list args) { + int *corrupted = va_arg(args, int *); + + if (corrupted) { + if (ctx->pbi != NULL) { + RefCntBuffer *const frame_bufs = ctx->pbi->common.buffer_pool->frame_bufs; + if (ctx->pbi->common.frame_to_show == NULL) return VPX_CODEC_ERROR; + if (ctx->last_show_frame >= 0) + *corrupted = frame_bufs[ctx->last_show_frame].buf.corrupted; + return VPX_CODEC_OK; + } else { + return VPX_CODEC_ERROR; + } + } + + return VPX_CODEC_INVALID_PARAM; +} + +static vpx_codec_err_t ctrl_get_frame_size(vpx_codec_alg_priv_t *ctx, + va_list args) { + int *const frame_size = va_arg(args, int *); + + if (frame_size) { + if (ctx->pbi != NULL) { + const VP9_COMMON *const cm = &ctx->pbi->common; + frame_size[0] = cm->width; + frame_size[1] = cm->height; + return VPX_CODEC_OK; + } else { + return VPX_CODEC_ERROR; + } + } + + return VPX_CODEC_INVALID_PARAM; +} + +static vpx_codec_err_t ctrl_get_render_size(vpx_codec_alg_priv_t *ctx, + va_list args) { + int *const render_size = va_arg(args, int *); + + if (render_size) { + if (ctx->pbi != NULL) { + const VP9_COMMON *const cm = &ctx->pbi->common; + render_size[0] = cm->render_width; + render_size[1] = cm->render_height; + return VPX_CODEC_OK; + } else { + return VPX_CODEC_ERROR; + } + } + + return VPX_CODEC_INVALID_PARAM; +} + +static vpx_codec_err_t ctrl_get_bit_depth(vpx_codec_alg_priv_t *ctx, + va_list args) { + unsigned int *const bit_depth = va_arg(args, unsigned int *); + + if (bit_depth) { + if (ctx->pbi != NULL) { + const VP9_COMMON *const cm = &ctx->pbi->common; + *bit_depth = cm->bit_depth; + return VPX_CODEC_OK; + } else { + return VPX_CODEC_ERROR; + } + } + + return VPX_CODEC_INVALID_PARAM; +} + +static vpx_codec_err_t ctrl_set_invert_tile_order(vpx_codec_alg_priv_t *ctx, + va_list args) { + ctx->invert_tile_order = va_arg(args, int); + return VPX_CODEC_OK; +} + +static vpx_codec_err_t ctrl_set_decryptor(vpx_codec_alg_priv_t *ctx, + va_list args) { + vpx_decrypt_init *init = va_arg(args, vpx_decrypt_init *); + ctx->decrypt_cb = init ? init->decrypt_cb : NULL; + ctx->decrypt_state = init ? init->decrypt_state : NULL; + return VPX_CODEC_OK; +} + +static vpx_codec_err_t ctrl_set_byte_alignment(vpx_codec_alg_priv_t *ctx, + va_list args) { + const int legacy_byte_alignment = 0; + const int min_byte_alignment = 32; + const int max_byte_alignment = 1024; + const int byte_alignment = va_arg(args, int); + + if (byte_alignment != legacy_byte_alignment && + (byte_alignment < min_byte_alignment || + byte_alignment > max_byte_alignment || + (byte_alignment & (byte_alignment - 1)) != 0)) + return VPX_CODEC_INVALID_PARAM; + + ctx->byte_alignment = byte_alignment; + if (ctx->pbi != NULL) { + ctx->pbi->common.byte_alignment = byte_alignment; + } + return VPX_CODEC_OK; +} + +static vpx_codec_err_t ctrl_set_skip_loop_filter(vpx_codec_alg_priv_t *ctx, + va_list args) { + ctx->skip_loop_filter = va_arg(args, int); + + if (ctx->pbi != NULL) { + ctx->pbi->common.skip_loop_filter = ctx->skip_loop_filter; + } + + return VPX_CODEC_OK; +} + +static vpx_codec_err_t ctrl_set_spatial_layer_svc(vpx_codec_alg_priv_t *ctx, + va_list args) { + ctx->svc_decoding = 1; + ctx->svc_spatial_layer = va_arg(args, int); + if (ctx->svc_spatial_layer < 0) + return VPX_CODEC_INVALID_PARAM; + else + return VPX_CODEC_OK; +} + +static vpx_codec_ctrl_fn_map_t decoder_ctrl_maps[] = { + { VP8_COPY_REFERENCE, ctrl_copy_reference }, + + // Setters + { VP8_SET_REFERENCE, ctrl_set_reference }, + { VP8_SET_POSTPROC, ctrl_set_postproc }, + { VP9_INVERT_TILE_DECODE_ORDER, ctrl_set_invert_tile_order }, + { VPXD_SET_DECRYPTOR, ctrl_set_decryptor }, + { VP9_SET_BYTE_ALIGNMENT, ctrl_set_byte_alignment }, + { VP9_SET_SKIP_LOOP_FILTER, ctrl_set_skip_loop_filter }, + { VP9_DECODE_SVC_SPATIAL_LAYER, ctrl_set_spatial_layer_svc }, + + // Getters + { VPXD_GET_LAST_QUANTIZER, ctrl_get_quantizer }, + { VP8D_GET_LAST_REF_UPDATES, ctrl_get_last_ref_updates }, + { VP8D_GET_FRAME_CORRUPTED, ctrl_get_frame_corrupted }, + { VP9_GET_REFERENCE, ctrl_get_reference }, + { VP9D_GET_DISPLAY_SIZE, ctrl_get_render_size }, + { VP9D_GET_BIT_DEPTH, ctrl_get_bit_depth }, + { VP9D_GET_FRAME_SIZE, ctrl_get_frame_size }, + + { -1, NULL }, +}; + +#ifndef VERSION_STRING +#define VERSION_STRING +#endif +CODEC_INTERFACE(vpx_codec_vp9_dx) = { + "WebM Project VP9 Decoder" VERSION_STRING, + VPX_CODEC_INTERNAL_ABI_VERSION, +#if CONFIG_VP9_HIGHBITDEPTH + VPX_CODEC_CAP_HIGHBITDEPTH | +#endif + VPX_CODEC_CAP_DECODER | VP9_CAP_POSTPROC | + VPX_CODEC_CAP_EXTERNAL_FRAME_BUFFER, // vpx_codec_caps_t + decoder_init, // vpx_codec_init_fn_t + decoder_destroy, // vpx_codec_destroy_fn_t + decoder_ctrl_maps, // vpx_codec_ctrl_fn_map_t + { + // NOLINT + decoder_peek_si, // vpx_codec_peek_si_fn_t + decoder_get_si, // vpx_codec_get_si_fn_t + decoder_decode, // vpx_codec_decode_fn_t + decoder_get_frame, // vpx_codec_frame_get_fn_t + decoder_set_fb_fn, // vpx_codec_set_fb_fn_t + }, + { + // NOLINT + 0, + NULL, // vpx_codec_enc_cfg_map_t + NULL, // vpx_codec_encode_fn_t + NULL, // vpx_codec_get_cx_data_fn_t + NULL, // vpx_codec_enc_config_set_fn_t + NULL, // vpx_codec_get_global_headers_fn_t + NULL, // vpx_codec_get_preview_frame_fn_t + NULL // vpx_codec_enc_mr_get_mem_loc_fn_t + } +}; diff --git a/vp9/vp9_dx_iface.h b/vp9/vp9_dx_iface.h new file mode 100644 index 0000000..18bc7ab --- /dev/null +++ b/vp9/vp9_dx_iface.h @@ -0,0 +1,50 @@ +/* + * Copyright (c) 2015 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP9_VP9_DX_IFACE_H_ +#define VP9_VP9_DX_IFACE_H_ + +#include "vp9/decoder/vp9_decoder.h" + +typedef vpx_codec_stream_info_t vp9_stream_info_t; + +struct vpx_codec_alg_priv { + vpx_codec_priv_t base; + vpx_codec_dec_cfg_t cfg; + vp9_stream_info_t si; + VP9Decoder *pbi; + void *user_priv; + int postproc_cfg_set; + vp8_postproc_cfg_t postproc_cfg; + vpx_decrypt_cb decrypt_cb; + void *decrypt_state; + vpx_image_t img; + int img_avail; + int flushed; + int invert_tile_order; + int last_show_frame; // Index of last output frame. + int byte_alignment; + int skip_loop_filter; + + int need_resync; // wait for key/intra-only frame + // BufferPool that holds all reference frames. + BufferPool *buffer_pool; + + // External frame buffer info to save for VP9 common. + void *ext_priv; // Private data associated with the external frame buffers. + vpx_get_frame_buffer_cb_fn_t get_ext_fb_cb; + vpx_release_frame_buffer_cb_fn_t release_ext_fb_cb; + + // Allow for decoding up to a given spatial layer for SVC stream. + int svc_decoding; + int svc_spatial_layer; +}; + +#endif // VP9_VP9_DX_IFACE_H_ diff --git a/vp9/vp9_iface_common.h b/vp9/vp9_iface_common.h new file mode 100644 index 0000000..d688727 --- /dev/null +++ b/vp9/vp9_iface_common.h @@ -0,0 +1,145 @@ +/* + * Copyright (c) 2013 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ +#ifndef VP9_VP9_IFACE_COMMON_H_ +#define VP9_VP9_IFACE_COMMON_H_ + +#include "vpx_ports/mem.h" + +static void yuvconfig2image(vpx_image_t *img, const YV12_BUFFER_CONFIG *yv12, + void *user_priv) { + /** vpx_img_wrap() doesn't allow specifying independent strides for + * the Y, U, and V planes, nor other alignment adjustments that + * might be representable by a YV12_BUFFER_CONFIG, so we just + * initialize all the fields.*/ + int bps; + if (!yv12->subsampling_y) { + if (!yv12->subsampling_x) { + img->fmt = VPX_IMG_FMT_I444; + bps = 24; + } else { + img->fmt = VPX_IMG_FMT_I422; + bps = 16; + } + } else { + if (!yv12->subsampling_x) { + img->fmt = VPX_IMG_FMT_I440; + bps = 16; + } else { + img->fmt = VPX_IMG_FMT_I420; + bps = 12; + } + } + img->cs = yv12->color_space; + img->range = yv12->color_range; + img->bit_depth = 8; + img->w = yv12->y_stride; + img->h = ALIGN_POWER_OF_TWO(yv12->y_height + 2 * VP9_ENC_BORDER_IN_PIXELS, 3); + img->d_w = yv12->y_crop_width; + img->d_h = yv12->y_crop_height; + img->r_w = yv12->render_width; + img->r_h = yv12->render_height; + img->x_chroma_shift = yv12->subsampling_x; + img->y_chroma_shift = yv12->subsampling_y; + img->planes[VPX_PLANE_Y] = yv12->y_buffer; + img->planes[VPX_PLANE_U] = yv12->u_buffer; + img->planes[VPX_PLANE_V] = yv12->v_buffer; + img->planes[VPX_PLANE_ALPHA] = NULL; + img->stride[VPX_PLANE_Y] = yv12->y_stride; + img->stride[VPX_PLANE_U] = yv12->uv_stride; + img->stride[VPX_PLANE_V] = yv12->uv_stride; + img->stride[VPX_PLANE_ALPHA] = yv12->y_stride; +#if CONFIG_VP9_HIGHBITDEPTH + if (yv12->flags & YV12_FLAG_HIGHBITDEPTH) { + // vpx_image_t uses byte strides and a pointer to the first byte + // of the image. + img->fmt = (vpx_img_fmt_t)(img->fmt | VPX_IMG_FMT_HIGHBITDEPTH); + img->bit_depth = yv12->bit_depth; + img->planes[VPX_PLANE_Y] = (uint8_t *)CONVERT_TO_SHORTPTR(yv12->y_buffer); + img->planes[VPX_PLANE_U] = (uint8_t *)CONVERT_TO_SHORTPTR(yv12->u_buffer); + img->planes[VPX_PLANE_V] = (uint8_t *)CONVERT_TO_SHORTPTR(yv12->v_buffer); + img->planes[VPX_PLANE_ALPHA] = NULL; + img->stride[VPX_PLANE_Y] = 2 * yv12->y_stride; + img->stride[VPX_PLANE_U] = 2 * yv12->uv_stride; + img->stride[VPX_PLANE_V] = 2 * yv12->uv_stride; + img->stride[VPX_PLANE_ALPHA] = 2 * yv12->y_stride; + } +#endif // CONFIG_VP9_HIGHBITDEPTH + img->bps = bps; + img->user_priv = user_priv; + img->img_data = yv12->buffer_alloc; + img->img_data_owner = 0; + img->self_allocd = 0; +} + +static vpx_codec_err_t image2yuvconfig(const vpx_image_t *img, + YV12_BUFFER_CONFIG *yv12) { + yv12->y_buffer = img->planes[VPX_PLANE_Y]; + yv12->u_buffer = img->planes[VPX_PLANE_U]; + yv12->v_buffer = img->planes[VPX_PLANE_V]; + + yv12->y_crop_width = img->d_w; + yv12->y_crop_height = img->d_h; + yv12->render_width = img->r_w; + yv12->render_height = img->r_h; + yv12->y_width = img->d_w; + yv12->y_height = img->d_h; + + yv12->uv_width = + img->x_chroma_shift == 1 ? (1 + yv12->y_width) / 2 : yv12->y_width; + yv12->uv_height = + img->y_chroma_shift == 1 ? (1 + yv12->y_height) / 2 : yv12->y_height; + yv12->uv_crop_width = yv12->uv_width; + yv12->uv_crop_height = yv12->uv_height; + + yv12->y_stride = img->stride[VPX_PLANE_Y]; + yv12->uv_stride = img->stride[VPX_PLANE_U]; + yv12->color_space = img->cs; + yv12->color_range = img->range; + +#if CONFIG_VP9_HIGHBITDEPTH + if (img->fmt & VPX_IMG_FMT_HIGHBITDEPTH) { + // In vpx_image_t + // planes point to uint8 address of start of data + // stride counts uint8s to reach next row + // In YV12_BUFFER_CONFIG + // y_buffer, u_buffer, v_buffer point to uint16 address of data + // stride and border counts in uint16s + // This means that all the address calculations in the main body of code + // should work correctly. + // However, before we do any pixel operations we need to cast the address + // to a uint16 ponter and double its value. + yv12->y_buffer = CONVERT_TO_BYTEPTR(yv12->y_buffer); + yv12->u_buffer = CONVERT_TO_BYTEPTR(yv12->u_buffer); + yv12->v_buffer = CONVERT_TO_BYTEPTR(yv12->v_buffer); + yv12->y_stride >>= 1; + yv12->uv_stride >>= 1; + yv12->flags = YV12_FLAG_HIGHBITDEPTH; + } else { + yv12->flags = 0; + } + yv12->border = (yv12->y_stride - img->w) / 2; +#else + yv12->border = (img->stride[VPX_PLANE_Y] - img->w) / 2; +#endif // CONFIG_VP9_HIGHBITDEPTH + yv12->subsampling_x = img->x_chroma_shift; + yv12->subsampling_y = img->y_chroma_shift; + return VPX_CODEC_OK; +} + +static VP9_REFFRAME ref_frame_to_vp9_reframe(vpx_ref_frame_type_t frame) { + switch (frame) { + case VP8_LAST_FRAME: return VP9_LAST_FLAG; + case VP8_GOLD_FRAME: return VP9_GOLD_FLAG; + case VP8_ALTR_FRAME: return VP9_ALT_FLAG; + } + assert(0 && "Invalid Reference Frame"); + return VP9_LAST_FLAG; +} +#endif // VP9_VP9_IFACE_COMMON_H_ diff --git a/vp9/vp9cx.mk b/vp9/vp9cx.mk new file mode 100644 index 0000000..d633ed1 --- /dev/null +++ b/vp9/vp9cx.mk @@ -0,0 +1,148 @@ +## +## Copyright (c) 2010 The WebM project authors. All Rights Reserved. +## +## Use of this source code is governed by a BSD-style license +## that can be found in the LICENSE file in the root of the source +## tree. An additional intellectual property rights grant can be found +## in the file PATENTS. All contributing project authors may +## be found in the AUTHORS file in the root of the source tree. +## + +VP9_CX_EXPORTS += exports_enc + +VP9_CX_SRCS-yes += $(VP9_COMMON_SRCS-yes) +VP9_CX_SRCS-no += $(VP9_COMMON_SRCS-no) +VP9_CX_SRCS_REMOVE-yes += $(VP9_COMMON_SRCS_REMOVE-yes) +VP9_CX_SRCS_REMOVE-no += $(VP9_COMMON_SRCS_REMOVE-no) + +VP9_CX_SRCS-yes += vp9_cx_iface.c + +VP9_CX_SRCS-yes += encoder/vp9_bitstream.c +VP9_CX_SRCS-yes += encoder/vp9_context_tree.c +VP9_CX_SRCS-yes += encoder/vp9_context_tree.h +VP9_CX_SRCS-yes += encoder/vp9_cost.h +VP9_CX_SRCS-yes += encoder/vp9_cost.c +VP9_CX_SRCS-yes += encoder/vp9_dct.c +VP9_CX_SRCS-$(CONFIG_VP9_TEMPORAL_DENOISING) += encoder/vp9_denoiser.c +VP9_CX_SRCS-$(CONFIG_VP9_TEMPORAL_DENOISING) += encoder/vp9_denoiser.h +VP9_CX_SRCS-yes += encoder/vp9_encodeframe.c +VP9_CX_SRCS-yes += encoder/vp9_encodeframe.h +VP9_CX_SRCS-yes += encoder/vp9_encodemb.c +VP9_CX_SRCS-yes += encoder/vp9_encodemv.c +VP9_CX_SRCS-yes += encoder/vp9_ethread.h +VP9_CX_SRCS-yes += encoder/vp9_ethread.c +VP9_CX_SRCS-yes += encoder/vp9_extend.c +VP9_CX_SRCS-yes += encoder/vp9_firstpass.c +VP9_CX_SRCS-yes += encoder/vp9_block.h +VP9_CX_SRCS-yes += encoder/vp9_bitstream.h +VP9_CX_SRCS-yes += encoder/vp9_encodemb.h +VP9_CX_SRCS-yes += encoder/vp9_encodemv.h +VP9_CX_SRCS-yes += encoder/vp9_extend.h +VP9_CX_SRCS-yes += encoder/vp9_firstpass.h +VP9_CX_SRCS-yes += encoder/vp9_frame_scale.c +VP9_CX_SRCS-yes += encoder/vp9_job_queue.h +VP9_CX_SRCS-yes += encoder/vp9_lookahead.c +VP9_CX_SRCS-yes += encoder/vp9_lookahead.h +VP9_CX_SRCS-yes += encoder/vp9_mcomp.h +VP9_CX_SRCS-yes += encoder/vp9_multi_thread.c +VP9_CX_SRCS-yes += encoder/vp9_multi_thread.h +VP9_CX_SRCS-yes += encoder/vp9_encoder.h +VP9_CX_SRCS-yes += encoder/vp9_quantize.h +VP9_CX_SRCS-yes += encoder/vp9_ratectrl.h +VP9_CX_SRCS-yes += encoder/vp9_rd.h +VP9_CX_SRCS-yes += encoder/vp9_rdopt.h +VP9_CX_SRCS-yes += encoder/vp9_pickmode.h +VP9_CX_SRCS-yes += encoder/vp9_svc_layercontext.h +VP9_CX_SRCS-yes += encoder/vp9_tokenize.h +VP9_CX_SRCS-yes += encoder/vp9_treewriter.h +VP9_CX_SRCS-yes += encoder/vp9_mcomp.c +VP9_CX_SRCS-yes += encoder/vp9_encoder.c +VP9_CX_SRCS-yes += encoder/vp9_picklpf.c +VP9_CX_SRCS-yes += encoder/vp9_picklpf.h +VP9_CX_SRCS-yes += encoder/vp9_quantize.c +VP9_CX_SRCS-yes += encoder/vp9_ratectrl.c +VP9_CX_SRCS-yes += encoder/vp9_rd.c +VP9_CX_SRCS-yes += encoder/vp9_rdopt.c +VP9_CX_SRCS-yes += encoder/vp9_pickmode.c +VP9_CX_SRCS-yes += encoder/vp9_segmentation.c +VP9_CX_SRCS-yes += encoder/vp9_segmentation.h +VP9_CX_SRCS-yes += encoder/vp9_speed_features.c +VP9_CX_SRCS-yes += encoder/vp9_speed_features.h +VP9_CX_SRCS-yes += encoder/vp9_subexp.c +VP9_CX_SRCS-yes += encoder/vp9_subexp.h +VP9_CX_SRCS-yes += encoder/vp9_svc_layercontext.c +VP9_CX_SRCS-yes += encoder/vp9_resize.c +VP9_CX_SRCS-yes += encoder/vp9_resize.h +VP9_CX_SRCS-$(CONFIG_INTERNAL_STATS) += encoder/vp9_blockiness.c + +VP9_CX_SRCS-yes += encoder/vp9_tokenize.c +VP9_CX_SRCS-yes += encoder/vp9_treewriter.c +VP9_CX_SRCS-yes += encoder/vp9_aq_variance.c +VP9_CX_SRCS-yes += encoder/vp9_aq_variance.h +VP9_CX_SRCS-yes += encoder/vp9_aq_360.c +VP9_CX_SRCS-yes += encoder/vp9_aq_360.h +VP9_CX_SRCS-yes += encoder/vp9_aq_cyclicrefresh.c +VP9_CX_SRCS-yes += encoder/vp9_aq_cyclicrefresh.h +VP9_CX_SRCS-yes += encoder/vp9_aq_complexity.c +VP9_CX_SRCS-yes += encoder/vp9_aq_complexity.h +VP9_CX_SRCS-yes += encoder/vp9_alt_ref_aq.h +VP9_CX_SRCS-yes += encoder/vp9_alt_ref_aq.c +VP9_CX_SRCS-yes += encoder/vp9_skin_detection.c +VP9_CX_SRCS-yes += encoder/vp9_skin_detection.h +VP9_CX_SRCS-yes += encoder/vp9_noise_estimate.c +VP9_CX_SRCS-yes += encoder/vp9_noise_estimate.h +ifeq ($(CONFIG_VP9_POSTPROC),yes) +VP9_CX_SRCS-$(CONFIG_INTERNAL_STATS) += common/vp9_postproc.h +VP9_CX_SRCS-$(CONFIG_INTERNAL_STATS) += common/vp9_postproc.c +endif +VP9_CX_SRCS-yes += encoder/vp9_temporal_filter.c +VP9_CX_SRCS-yes += encoder/vp9_temporal_filter.h +VP9_CX_SRCS-yes += encoder/vp9_mbgraph.c +VP9_CX_SRCS-yes += encoder/vp9_mbgraph.h + +VP9_CX_SRCS-$(HAVE_SSE4_1) += encoder/x86/temporal_filter_sse4.c + +VP9_CX_SRCS-$(HAVE_SSE2) += encoder/x86/vp9_quantize_sse2.c +VP9_CX_SRCS-$(HAVE_AVX) += encoder/x86/vp9_diamond_search_sad_avx.c +ifeq ($(CONFIG_VP9_HIGHBITDEPTH),yes) +VP9_CX_SRCS-$(HAVE_SSE2) += encoder/x86/vp9_highbd_block_error_intrin_sse2.c +endif + +VP9_CX_SRCS-$(HAVE_SSE2) += encoder/x86/vp9_dct_sse2.asm +VP9_CX_SRCS-$(HAVE_SSE2) += encoder/x86/vp9_error_sse2.asm + +ifeq ($(ARCH_X86_64),yes) +VP9_CX_SRCS-$(HAVE_SSSE3) += encoder/x86/vp9_quantize_ssse3_x86_64.asm +endif + +VP9_CX_SRCS-$(HAVE_SSE2) += encoder/x86/vp9_dct_intrin_sse2.c +VP9_CX_SRCS-$(HAVE_SSSE3) += encoder/x86/vp9_dct_ssse3.c +VP9_CX_SRCS-$(HAVE_SSSE3) += encoder/x86/vp9_frame_scale_ssse3.c + +ifeq ($(CONFIG_VP9_TEMPORAL_DENOISING),yes) +VP9_CX_SRCS-$(HAVE_SSE2) += encoder/x86/vp9_denoiser_sse2.c +VP9_CX_SRCS-$(HAVE_NEON) += encoder/arm/neon/vp9_denoiser_neon.c +endif + +VP9_CX_SRCS-$(HAVE_AVX2) += encoder/x86/vp9_error_avx2.c + +ifneq ($(CONFIG_VP9_HIGHBITDEPTH),yes) +VP9_CX_SRCS-$(HAVE_NEON) += encoder/arm/neon/vp9_error_neon.c +endif +VP9_CX_SRCS-$(HAVE_NEON) += encoder/arm/neon/vp9_dct_neon.c +VP9_CX_SRCS-$(HAVE_NEON) += encoder/arm/neon/vp9_frame_scale_neon.c +VP9_CX_SRCS-$(HAVE_NEON) += encoder/arm/neon/vp9_quantize_neon.c + +VP9_CX_SRCS-$(HAVE_MSA) += encoder/mips/msa/vp9_error_msa.c +VP9_CX_SRCS-$(HAVE_MSA) += encoder/mips/msa/vp9_fdct4x4_msa.c +VP9_CX_SRCS-$(HAVE_MSA) += encoder/mips/msa/vp9_fdct8x8_msa.c +VP9_CX_SRCS-$(HAVE_MSA) += encoder/mips/msa/vp9_fdct16x16_msa.c +VP9_CX_SRCS-$(HAVE_MSA) += encoder/mips/msa/vp9_fdct_msa.h + +# Strip unnecessary files with CONFIG_REALTIME_ONLY +VP9_CX_SRCS_REMOVE-$(CONFIG_REALTIME_ONLY) += encoder/vp9_firstpass.c +VP9_CX_SRCS_REMOVE-$(CONFIG_REALTIME_ONLY) += encoder/vp9_mbgraph.c +VP9_CX_SRCS_REMOVE-$(CONFIG_REALTIME_ONLY) += encoder/vp9_temporal_filter.c +VP9_CX_SRCS_REMOVE-$(CONFIG_REALTIME_ONLY) += encoder/x86/temporal_filter_sse4.c + +VP9_CX_SRCS-yes := $(filter-out $(VP9_CX_SRCS_REMOVE-yes),$(VP9_CX_SRCS-yes)) diff --git a/vp9/vp9dx.mk b/vp9/vp9dx.mk new file mode 100644 index 0000000..59f612b --- /dev/null +++ b/vp9/vp9dx.mk @@ -0,0 +1,32 @@ +## +## Copyright (c) 2010 The WebM project authors. All Rights Reserved. +## +## Use of this source code is governed by a BSD-style license +## that can be found in the LICENSE file in the root of the source +## tree. An additional intellectual property rights grant can be found +## in the file PATENTS. All contributing project authors may +## be found in the AUTHORS file in the root of the source tree. +## + +VP9_DX_EXPORTS += exports_dec + +VP9_DX_SRCS-yes += $(VP9_COMMON_SRCS-yes) +VP9_DX_SRCS-no += $(VP9_COMMON_SRCS-no) +VP9_DX_SRCS_REMOVE-yes += $(VP9_COMMON_SRCS_REMOVE-yes) +VP9_DX_SRCS_REMOVE-no += $(VP9_COMMON_SRCS_REMOVE-no) + +VP9_DX_SRCS-yes += vp9_dx_iface.c +VP9_DX_SRCS-yes += vp9_dx_iface.h + +VP9_DX_SRCS-yes += decoder/vp9_decodemv.c +VP9_DX_SRCS-yes += decoder/vp9_decodeframe.c +VP9_DX_SRCS-yes += decoder/vp9_decodeframe.h +VP9_DX_SRCS-yes += decoder/vp9_detokenize.c +VP9_DX_SRCS-yes += decoder/vp9_decodemv.h +VP9_DX_SRCS-yes += decoder/vp9_detokenize.h +VP9_DX_SRCS-yes += decoder/vp9_decoder.c +VP9_DX_SRCS-yes += decoder/vp9_decoder.h +VP9_DX_SRCS-yes += decoder/vp9_dsubexp.c +VP9_DX_SRCS-yes += decoder/vp9_dsubexp.h + +VP9_DX_SRCS-yes := $(filter-out $(VP9_DX_SRCS_REMOVE-yes),$(VP9_DX_SRCS-yes)) diff --git a/vpx/exports_com b/vpx/exports_com new file mode 100644 index 0000000..2ab0509 --- /dev/null +++ b/vpx/exports_com @@ -0,0 +1,16 @@ +text vpx_codec_build_config +text vpx_codec_control_ +text vpx_codec_destroy +text vpx_codec_err_to_string +text vpx_codec_error +text vpx_codec_error_detail +text vpx_codec_get_caps +text vpx_codec_iface_name +text vpx_codec_version +text vpx_codec_version_extra_str +text vpx_codec_version_str +text vpx_img_alloc +text vpx_img_flip +text vpx_img_free +text vpx_img_set_rect +text vpx_img_wrap diff --git a/vpx/exports_dec b/vpx/exports_dec new file mode 100644 index 0000000..c694eba --- /dev/null +++ b/vpx/exports_dec @@ -0,0 +1,8 @@ +text vpx_codec_dec_init_ver +text vpx_codec_decode +text vpx_codec_get_frame +text vpx_codec_get_stream_info +text vpx_codec_peek_stream_info +text vpx_codec_register_put_frame_cb +text vpx_codec_register_put_slice_cb +text vpx_codec_set_frame_buffer_functions diff --git a/vpx/exports_enc b/vpx/exports_enc new file mode 100644 index 0000000..914e36c --- /dev/null +++ b/vpx/exports_enc @@ -0,0 +1,9 @@ +text vpx_codec_enc_config_default +text vpx_codec_enc_config_set +text vpx_codec_enc_init_multi_ver +text vpx_codec_enc_init_ver +text vpx_codec_encode +text vpx_codec_get_cx_data +text vpx_codec_get_global_headers +text vpx_codec_get_preview_frame +text vpx_codec_set_cx_data_buf diff --git a/vpx/exports_spatial_svc b/vpx/exports_spatial_svc new file mode 100644 index 0000000..d258a1d --- /dev/null +++ b/vpx/exports_spatial_svc @@ -0,0 +1,6 @@ +text vpx_svc_dump_statistics +text vpx_svc_encode +text vpx_svc_get_message +text vpx_svc_init +text vpx_svc_release +text vpx_svc_set_options diff --git a/vpx/internal/vpx_codec_internal.h b/vpx/internal/vpx_codec_internal.h new file mode 100644 index 0000000..522e5c1 --- /dev/null +++ b/vpx/internal/vpx_codec_internal.h @@ -0,0 +1,445 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +/*!\file + * \brief Describes the decoder algorithm interface for algorithm + * implementations. + * + * This file defines the private structures and data types that are only + * relevant to implementing an algorithm, as opposed to using it. + * + * To create a decoder algorithm class, an interface structure is put + * into the global namespace: + *
+ *     my_codec.c:
+ *       vpx_codec_iface_t my_codec = {
+ *           "My Codec v1.0",
+ *           VPX_CODEC_ALG_ABI_VERSION,
+ *           ...
+ *       };
+ *     
+ * + * An application instantiates a specific decoder instance by using + * vpx_codec_init() and a pointer to the algorithm's interface structure: + *
+ *     my_app.c:
+ *       extern vpx_codec_iface_t my_codec;
+ *       {
+ *           vpx_codec_ctx_t algo;
+ *           res = vpx_codec_init(&algo, &my_codec);
+ *       }
+ *     
+ * + * Once initialized, the instance is manged using other functions from + * the vpx_codec_* family. + */ +#ifndef VPX_INTERNAL_VPX_CODEC_INTERNAL_H_ +#define VPX_INTERNAL_VPX_CODEC_INTERNAL_H_ +#include "../vpx_decoder.h" +#include "../vpx_encoder.h" +#include + +#ifdef __cplusplus +extern "C" { +#endif + +/*!\brief Current ABI version number + * + * \internal + * If this file is altered in any way that changes the ABI, this value + * must be bumped. Examples include, but are not limited to, changing + * types, removing or reassigning enums, adding/removing/rearranging + * fields to structures + */ +#define VPX_CODEC_INTERNAL_ABI_VERSION (5) /**<\hideinitializer*/ + +typedef struct vpx_codec_alg_priv vpx_codec_alg_priv_t; +typedef struct vpx_codec_priv_enc_mr_cfg vpx_codec_priv_enc_mr_cfg_t; + +/*!\brief init function pointer prototype + * + * Performs algorithm-specific initialization of the decoder context. This + * function is called by the generic vpx_codec_init() wrapper function, so + * plugins implementing this interface may trust the input parameters to be + * properly initialized. + * + * \param[in] ctx Pointer to this instance's context + * \retval #VPX_CODEC_OK + * The input stream was recognized and decoder initialized. + * \retval #VPX_CODEC_MEM_ERROR + * Memory operation failed. + */ +typedef vpx_codec_err_t (*vpx_codec_init_fn_t)( + vpx_codec_ctx_t *ctx, vpx_codec_priv_enc_mr_cfg_t *data); + +/*!\brief destroy function pointer prototype + * + * Performs algorithm-specific destruction of the decoder context. This + * function is called by the generic vpx_codec_destroy() wrapper function, + * so plugins implementing this interface may trust the input parameters + * to be properly initialized. + * + * \param[in] ctx Pointer to this instance's context + * \retval #VPX_CODEC_OK + * The input stream was recognized and decoder initialized. + * \retval #VPX_CODEC_MEM_ERROR + * Memory operation failed. + */ +typedef vpx_codec_err_t (*vpx_codec_destroy_fn_t)(vpx_codec_alg_priv_t *ctx); + +/*!\brief parse stream info function pointer prototype + * + * Performs high level parsing of the bitstream. This function is called by the + * generic vpx_codec_peek_stream_info() wrapper function, so plugins + * implementing this interface may trust the input parameters to be properly + * initialized. + * + * \param[in] data Pointer to a block of data to parse + * \param[in] data_sz Size of the data buffer + * \param[in,out] si Pointer to stream info to update. The size member + * \ref MUST be properly initialized, but \ref MAY be + * clobbered by the algorithm. This parameter \ref MAY + * be NULL. + * + * \retval #VPX_CODEC_OK + * Bitstream is parsable and stream information updated + */ +typedef vpx_codec_err_t (*vpx_codec_peek_si_fn_t)(const uint8_t *data, + unsigned int data_sz, + vpx_codec_stream_info_t *si); + +/*!\brief Return information about the current stream. + * + * Returns information about the stream that has been parsed during decoding. + * + * \param[in] ctx Pointer to this instance's context + * \param[in,out] si Pointer to stream info to update. The size member + * \ref MUST be properly initialized, but \ref MAY be + * clobbered by the algorithm. This parameter \ref MAY + * be NULL. + * + * \retval #VPX_CODEC_OK + * Bitstream is parsable and stream information updated + */ +typedef vpx_codec_err_t (*vpx_codec_get_si_fn_t)(vpx_codec_alg_priv_t *ctx, + vpx_codec_stream_info_t *si); + +/*!\brief control function pointer prototype + * + * This function is used to exchange algorithm specific data with the decoder + * instance. This can be used to implement features specific to a particular + * algorithm. + * + * This function is called by the generic vpx_codec_control() wrapper + * function, so plugins implementing this interface may trust the input + * parameters to be properly initialized. However, this interface does not + * provide type safety for the exchanged data or assign meanings to the + * control codes. Those details should be specified in the algorithm's + * header file. In particular, the ctrl_id parameter is guaranteed to exist + * in the algorithm's control mapping table, and the data parameter may be NULL. + * + * + * \param[in] ctx Pointer to this instance's context + * \param[in] ctrl_id Algorithm specific control identifier + * \param[in,out] data Data to exchange with algorithm instance. + * + * \retval #VPX_CODEC_OK + * The internal state data was deserialized. + */ +typedef vpx_codec_err_t (*vpx_codec_control_fn_t)(vpx_codec_alg_priv_t *ctx, + va_list ap); + +/*!\brief control function pointer mapping + * + * This structure stores the mapping between control identifiers and + * implementing functions. Each algorithm provides a list of these + * mappings. This list is searched by the vpx_codec_control() wrapper + * function to determine which function to invoke. The special + * value {0, NULL} is used to indicate end-of-list, and must be + * present. The special value {0, } can be used as a catch-all + * mapping. This implies that ctrl_id values chosen by the algorithm + * \ref MUST be non-zero. + */ +typedef const struct vpx_codec_ctrl_fn_map { + int ctrl_id; + vpx_codec_control_fn_t fn; +} vpx_codec_ctrl_fn_map_t; + +/*!\brief decode data function pointer prototype + * + * Processes a buffer of coded data. If the processing results in a new + * decoded frame becoming available, #VPX_CODEC_CB_PUT_SLICE and + * #VPX_CODEC_CB_PUT_FRAME events are generated as appropriate. This + * function is called by the generic vpx_codec_decode() wrapper function, + * so plugins implementing this interface may trust the input parameters + * to be properly initialized. + * + * \param[in] ctx Pointer to this instance's context + * \param[in] data Pointer to this block of new coded data. If + * NULL, a #VPX_CODEC_CB_PUT_FRAME event is posted + * for the previously decoded frame. + * \param[in] data_sz Size of the coded data, in bytes. + * + * \return Returns #VPX_CODEC_OK if the coded data was processed completely + * and future pictures can be decoded without error. Otherwise, + * see the descriptions of the other error codes in ::vpx_codec_err_t + * for recoverability capabilities. + */ +typedef vpx_codec_err_t (*vpx_codec_decode_fn_t)(vpx_codec_alg_priv_t *ctx, + const uint8_t *data, + unsigned int data_sz, + void *user_priv, + long deadline); + +/*!\brief Decoded frames iterator + * + * Iterates over a list of the frames available for display. The iterator + * storage should be initialized to NULL to start the iteration. Iteration is + * complete when this function returns NULL. + * + * The list of available frames becomes valid upon completion of the + * vpx_codec_decode call, and remains valid until the next call to + * vpx_codec_decode. + * + * \param[in] ctx Pointer to this instance's context + * \param[in out] iter Iterator storage, initialized to NULL + * + * \return Returns a pointer to an image, if one is ready for display. Frames + * produced will always be in PTS (presentation time stamp) order. + */ +typedef vpx_image_t *(*vpx_codec_get_frame_fn_t)(vpx_codec_alg_priv_t *ctx, + vpx_codec_iter_t *iter); + +/*!\brief Pass in external frame buffers for the decoder to use. + * + * Registers functions to be called when libvpx needs a frame buffer + * to decode the current frame and a function to be called when libvpx does + * not internally reference the frame buffer. This set function must + * be called before the first call to decode or libvpx will assume the + * default behavior of allocating frame buffers internally. + * + * \param[in] ctx Pointer to this instance's context + * \param[in] cb_get Pointer to the get callback function + * \param[in] cb_release Pointer to the release callback function + * \param[in] cb_priv Callback's private data + * + * \retval #VPX_CODEC_OK + * External frame buffers will be used by libvpx. + * \retval #VPX_CODEC_INVALID_PARAM + * One or more of the callbacks were NULL. + * \retval #VPX_CODEC_ERROR + * Decoder context not initialized, or algorithm not capable of + * using external frame buffers. + * + * \note + * When decoding VP9, the application may be required to pass in at least + * #VP9_MAXIMUM_REF_BUFFERS + #VPX_MAXIMUM_WORK_BUFFERS external frame + * buffers. + */ +typedef vpx_codec_err_t (*vpx_codec_set_fb_fn_t)( + vpx_codec_alg_priv_t *ctx, vpx_get_frame_buffer_cb_fn_t cb_get, + vpx_release_frame_buffer_cb_fn_t cb_release, void *cb_priv); + +typedef vpx_codec_err_t (*vpx_codec_encode_fn_t)(vpx_codec_alg_priv_t *ctx, + const vpx_image_t *img, + vpx_codec_pts_t pts, + unsigned long duration, + vpx_enc_frame_flags_t flags, + unsigned long deadline); +typedef const vpx_codec_cx_pkt_t *(*vpx_codec_get_cx_data_fn_t)( + vpx_codec_alg_priv_t *ctx, vpx_codec_iter_t *iter); + +typedef vpx_codec_err_t (*vpx_codec_enc_config_set_fn_t)( + vpx_codec_alg_priv_t *ctx, const vpx_codec_enc_cfg_t *cfg); +typedef vpx_fixed_buf_t *(*vpx_codec_get_global_headers_fn_t)( + vpx_codec_alg_priv_t *ctx); + +typedef vpx_image_t *(*vpx_codec_get_preview_frame_fn_t)( + vpx_codec_alg_priv_t *ctx); + +typedef vpx_codec_err_t (*vpx_codec_enc_mr_get_mem_loc_fn_t)( + const vpx_codec_enc_cfg_t *cfg, void **mem_loc); + +/*!\brief usage configuration mapping + * + * This structure stores the mapping between usage identifiers and + * configuration structures. Each algorithm provides a list of these + * mappings. This list is searched by the vpx_codec_enc_config_default() + * wrapper function to determine which config to return. The special value + * {-1, {0}} is used to indicate end-of-list, and must be present. At least + * one mapping must be present, in addition to the end-of-list. + * + */ +typedef const struct vpx_codec_enc_cfg_map { + int usage; + vpx_codec_enc_cfg_t cfg; +} vpx_codec_enc_cfg_map_t; + +/*!\brief Decoder algorithm interface interface + * + * All decoders \ref MUST expose a variable of this type. + */ +struct vpx_codec_iface { + const char *name; /**< Identification String */ + int abi_version; /**< Implemented ABI version */ + vpx_codec_caps_t caps; /**< Decoder capabilities */ + vpx_codec_init_fn_t init; /**< \copydoc ::vpx_codec_init_fn_t */ + vpx_codec_destroy_fn_t destroy; /**< \copydoc ::vpx_codec_destroy_fn_t */ + vpx_codec_ctrl_fn_map_t *ctrl_maps; /**< \copydoc ::vpx_codec_ctrl_fn_map_t */ + struct vpx_codec_dec_iface { + vpx_codec_peek_si_fn_t peek_si; /**< \copydoc ::vpx_codec_peek_si_fn_t */ + vpx_codec_get_si_fn_t get_si; /**< \copydoc ::vpx_codec_get_si_fn_t */ + vpx_codec_decode_fn_t decode; /**< \copydoc ::vpx_codec_decode_fn_t */ + vpx_codec_get_frame_fn_t + get_frame; /**< \copydoc ::vpx_codec_get_frame_fn_t */ + vpx_codec_set_fb_fn_t set_fb_fn; /**< \copydoc ::vpx_codec_set_fb_fn_t */ + } dec; + struct vpx_codec_enc_iface { + int cfg_map_count; + vpx_codec_enc_cfg_map_t + *cfg_maps; /**< \copydoc ::vpx_codec_enc_cfg_map_t */ + vpx_codec_encode_fn_t encode; /**< \copydoc ::vpx_codec_encode_fn_t */ + vpx_codec_get_cx_data_fn_t + get_cx_data; /**< \copydoc ::vpx_codec_get_cx_data_fn_t */ + vpx_codec_enc_config_set_fn_t + cfg_set; /**< \copydoc ::vpx_codec_enc_config_set_fn_t */ + vpx_codec_get_global_headers_fn_t + get_glob_hdrs; /**< \copydoc ::vpx_codec_get_global_headers_fn_t */ + vpx_codec_get_preview_frame_fn_t + get_preview; /**< \copydoc ::vpx_codec_get_preview_frame_fn_t */ + vpx_codec_enc_mr_get_mem_loc_fn_t + mr_get_mem_loc; /**< \copydoc ::vpx_codec_enc_mr_get_mem_loc_fn_t */ + } enc; +}; + +/*!\brief Callback function pointer / user data pair storage */ +typedef struct vpx_codec_priv_cb_pair { + union { + vpx_codec_put_frame_cb_fn_t put_frame; + vpx_codec_put_slice_cb_fn_t put_slice; + } u; + void *user_priv; +} vpx_codec_priv_cb_pair_t; + +/*!\brief Instance private storage + * + * This structure is allocated by the algorithm's init function. It can be + * extended in one of two ways. First, a second, algorithm specific structure + * can be allocated and the priv member pointed to it. Alternatively, this + * structure can be made the first member of the algorithm specific structure, + * and the pointer cast to the proper type. + */ +struct vpx_codec_priv { + const char *err_detail; + vpx_codec_flags_t init_flags; + struct { + vpx_codec_priv_cb_pair_t put_frame_cb; + vpx_codec_priv_cb_pair_t put_slice_cb; + } dec; + struct { + vpx_fixed_buf_t cx_data_dst_buf; + unsigned int cx_data_pad_before; + unsigned int cx_data_pad_after; + vpx_codec_cx_pkt_t cx_data_pkt; + unsigned int total_encoders; + } enc; +}; + +/* + * Multi-resolution encoding internal configuration + */ +struct vpx_codec_priv_enc_mr_cfg { + unsigned int mr_total_resolutions; + unsigned int mr_encoder_id; + struct vpx_rational mr_down_sampling_factor; + void *mr_low_res_mode_info; +}; + +#undef VPX_CTRL_USE_TYPE +#define VPX_CTRL_USE_TYPE(id, typ) \ + static VPX_INLINE typ id##__value(va_list args) { return va_arg(args, typ); } + +#undef VPX_CTRL_USE_TYPE_DEPRECATED +#define VPX_CTRL_USE_TYPE_DEPRECATED(id, typ) \ + static VPX_INLINE typ id##__value(va_list args) { return va_arg(args, typ); } + +#define CAST(id, arg) id##__value(arg) + +/* CODEC_INTERFACE convenience macro + * + * By convention, each codec interface is a struct with extern linkage, where + * the symbol is suffixed with _algo. A getter function is also defined to + * return a pointer to the struct, since in some cases it's easier to work + * with text symbols than data symbols (see issue #169). This function has + * the same name as the struct, less the _algo suffix. The CODEC_INTERFACE + * macro is provided to define this getter function automatically. + */ +#define CODEC_INTERFACE(id) \ + vpx_codec_iface_t *id(void) { return &id##_algo; } \ + vpx_codec_iface_t id##_algo + +/* Internal Utility Functions + * + * The following functions are intended to be used inside algorithms as + * utilities for manipulating vpx_codec_* data structures. + */ +struct vpx_codec_pkt_list { + unsigned int cnt; + unsigned int max; + struct vpx_codec_cx_pkt pkts[1]; +}; + +#define vpx_codec_pkt_list_decl(n) \ + union { \ + struct vpx_codec_pkt_list head; \ + struct { \ + struct vpx_codec_pkt_list head; \ + struct vpx_codec_cx_pkt pkts[n]; \ + } alloc; \ + } + +#define vpx_codec_pkt_list_init(m) \ + (m)->alloc.head.cnt = 0, \ + (m)->alloc.head.max = sizeof((m)->alloc.pkts) / sizeof((m)->alloc.pkts[0]) + +int vpx_codec_pkt_list_add(struct vpx_codec_pkt_list *, + const struct vpx_codec_cx_pkt *); + +const vpx_codec_cx_pkt_t *vpx_codec_pkt_list_get( + struct vpx_codec_pkt_list *list, vpx_codec_iter_t *iter); + +#include +#include + +struct vpx_internal_error_info { + vpx_codec_err_t error_code; + int has_detail; + char detail[80]; + int setjmp; + jmp_buf jmp; +}; + +#define CLANG_ANALYZER_NORETURN +#if defined(__has_feature) +#if __has_feature(attribute_analyzer_noreturn) +#undef CLANG_ANALYZER_NORETURN +#define CLANG_ANALYZER_NORETURN __attribute__((analyzer_noreturn)) +#endif +#endif + +void vpx_internal_error(struct vpx_internal_error_info *info, + vpx_codec_err_t error, const char *fmt, + ...) CLANG_ANALYZER_NORETURN; + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VPX_INTERNAL_VPX_CODEC_INTERNAL_H_ diff --git a/vpx/src/svc_encodeframe.c b/vpx/src/svc_encodeframe.c new file mode 100644 index 0000000..f633600 --- /dev/null +++ b/vpx/src/svc_encodeframe.c @@ -0,0 +1,702 @@ +/* + * Copyright (c) 2013 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +/** + * @file + * VP9 SVC encoding support via libvpx + */ + +#include +#include +#include +#include +#include +#include +#include +#define VPX_DISABLE_CTRL_TYPECHECKS 1 +#include "./vpx_config.h" +#include "vpx/svc_context.h" +#include "vpx/vp8cx.h" +#include "vpx/vpx_encoder.h" +#include "vpx_mem/vpx_mem.h" +#include "vp9/common/vp9_onyxc_int.h" + +#ifdef __MINGW32__ +#define strtok_r strtok_s +#ifndef MINGW_HAS_SECURE_API +// proto from /usr/x86_64-w64-mingw32/include/sec_api/string_s.h +_CRTIMP char *__cdecl strtok_s(char *str, const char *delim, char **context); +#endif /* MINGW_HAS_SECURE_API */ +#endif /* __MINGW32__ */ + +#ifdef _MSC_VER +#define strdup _strdup +#define strtok_r strtok_s +#endif + +#define SVC_REFERENCE_FRAMES 8 +#define SUPERFRAME_SLOTS (8) +#define SUPERFRAME_BUFFER_SIZE (SUPERFRAME_SLOTS * sizeof(uint32_t) + 2) + +#define MAX_QUANTIZER 63 + +static const int DEFAULT_SCALE_FACTORS_NUM[VPX_SS_MAX_LAYERS] = { 4, 5, 7, 11, + 16 }; + +static const int DEFAULT_SCALE_FACTORS_DEN[VPX_SS_MAX_LAYERS] = { 16, 16, 16, + 16, 16 }; + +static const int DEFAULT_SCALE_FACTORS_NUM_2x[VPX_SS_MAX_LAYERS] = { 1, 2, 4 }; + +static const int DEFAULT_SCALE_FACTORS_DEN_2x[VPX_SS_MAX_LAYERS] = { 4, 4, 4 }; + +typedef enum { + QUANTIZER = 0, + BITRATE, + SCALE_FACTOR, + AUTO_ALT_REF, + ALL_OPTION_TYPES +} LAYER_OPTION_TYPE; + +static const int option_max_values[ALL_OPTION_TYPES] = { 63, INT_MAX, INT_MAX, + 1 }; + +static const int option_min_values[ALL_OPTION_TYPES] = { 0, 0, 1, 0 }; + +// One encoded frame +typedef struct FrameData { + void *buf; // compressed data buffer + size_t size; // length of compressed data + vpx_codec_frame_flags_t flags; /**< flags for this frame */ + struct FrameData *next; +} FrameData; + +static SvcInternal_t *get_svc_internal(SvcContext *svc_ctx) { + if (svc_ctx == NULL) return NULL; + if (svc_ctx->internal == NULL) { + SvcInternal_t *const si = (SvcInternal_t *)malloc(sizeof(*si)); + if (si != NULL) { + memset(si, 0, sizeof(*si)); + } + svc_ctx->internal = si; + } + return (SvcInternal_t *)svc_ctx->internal; +} + +static const SvcInternal_t *get_const_svc_internal(const SvcContext *svc_ctx) { + if (svc_ctx == NULL) return NULL; + return (const SvcInternal_t *)svc_ctx->internal; +} + +static void svc_log_reset(SvcContext *svc_ctx) { + SvcInternal_t *const si = (SvcInternal_t *)svc_ctx->internal; + si->message_buffer[0] = '\0'; +} + +static int svc_log(SvcContext *svc_ctx, SVC_LOG_LEVEL level, const char *fmt, + ...) { + char buf[512]; + int retval = 0; + va_list ap; + SvcInternal_t *const si = get_svc_internal(svc_ctx); + + if (level > svc_ctx->log_level) { + return retval; + } + + va_start(ap, fmt); + retval = vsnprintf(buf, sizeof(buf), fmt, ap); + va_end(ap); + + if (svc_ctx->log_print) { + printf("%s", buf); + } else { + strncat(si->message_buffer, buf, + sizeof(si->message_buffer) - strlen(si->message_buffer) - 1); + } + + if (level == SVC_LOG_ERROR) { + si->codec_ctx->err_detail = si->message_buffer; + } + return retval; +} + +static vpx_codec_err_t extract_option(LAYER_OPTION_TYPE type, char *input, + int *value0, int *value1) { + if (type == SCALE_FACTOR) { + *value0 = (int)strtol(input, &input, 10); + if (*input++ != '/') return VPX_CODEC_INVALID_PARAM; + *value1 = (int)strtol(input, &input, 10); + + if (*value0 < option_min_values[SCALE_FACTOR] || + *value1 < option_min_values[SCALE_FACTOR] || + *value0 > option_max_values[SCALE_FACTOR] || + *value1 > option_max_values[SCALE_FACTOR] || + *value0 > *value1) // num shouldn't be greater than den + return VPX_CODEC_INVALID_PARAM; + } else { + *value0 = atoi(input); + if (*value0 < option_min_values[type] || *value0 > option_max_values[type]) + return VPX_CODEC_INVALID_PARAM; + } + return VPX_CODEC_OK; +} + +static vpx_codec_err_t parse_layer_options_from_string(SvcContext *svc_ctx, + LAYER_OPTION_TYPE type, + const char *input, + int *option0, + int *option1) { + int i; + vpx_codec_err_t res = VPX_CODEC_OK; + char *input_string; + char *token; + const char *delim = ","; + char *save_ptr; + int num_layers = svc_ctx->spatial_layers; + if (type == BITRATE) + num_layers = svc_ctx->spatial_layers * svc_ctx->temporal_layers; + + if (input == NULL || option0 == NULL || + (option1 == NULL && type == SCALE_FACTOR)) + return VPX_CODEC_INVALID_PARAM; + + input_string = strdup(input); + token = strtok_r(input_string, delim, &save_ptr); + for (i = 0; i < num_layers; ++i) { + if (token != NULL) { + res = extract_option(type, token, option0 + i, option1 + i); + if (res != VPX_CODEC_OK) break; + token = strtok_r(NULL, delim, &save_ptr); + } else { + break; + } + } + if (res == VPX_CODEC_OK && i != num_layers) { + svc_log(svc_ctx, SVC_LOG_ERROR, + "svc: layer params type: %d %d values required, " + "but only %d specified\n", + type, num_layers, i); + res = VPX_CODEC_INVALID_PARAM; + } + free(input_string); + return res; +} + +/** + * Parse SVC encoding options + * Format: encoding-mode=,layers= + * scale-factors=/,/,... + * quantizers=,,... + * svc_mode = [i|ip|alt_ip|gf] + */ +static vpx_codec_err_t parse_options(SvcContext *svc_ctx, const char *options) { + char *input_string; + char *option_name; + char *option_value; + char *input_ptr = NULL; + SvcInternal_t *const si = get_svc_internal(svc_ctx); + vpx_codec_err_t res = VPX_CODEC_OK; + int i, alt_ref_enabled = 0; + + if (options == NULL) return VPX_CODEC_OK; + input_string = strdup(options); + + // parse option name + option_name = strtok_r(input_string, "=", &input_ptr); + while (option_name != NULL) { + // parse option value + option_value = strtok_r(NULL, " ", &input_ptr); + if (option_value == NULL) { + svc_log(svc_ctx, SVC_LOG_ERROR, "option missing value: %s\n", + option_name); + res = VPX_CODEC_INVALID_PARAM; + break; + } + if (strcmp("spatial-layers", option_name) == 0) { + svc_ctx->spatial_layers = atoi(option_value); + } else if (strcmp("temporal-layers", option_name) == 0) { + svc_ctx->temporal_layers = atoi(option_value); + } else if (strcmp("scale-factors", option_name) == 0) { + res = parse_layer_options_from_string(svc_ctx, SCALE_FACTOR, option_value, + si->svc_params.scaling_factor_num, + si->svc_params.scaling_factor_den); + if (res != VPX_CODEC_OK) break; + } else if (strcmp("max-quantizers", option_name) == 0) { + res = + parse_layer_options_from_string(svc_ctx, QUANTIZER, option_value, + si->svc_params.max_quantizers, NULL); + if (res != VPX_CODEC_OK) break; + } else if (strcmp("min-quantizers", option_name) == 0) { + res = + parse_layer_options_from_string(svc_ctx, QUANTIZER, option_value, + si->svc_params.min_quantizers, NULL); + if (res != VPX_CODEC_OK) break; + } else if (strcmp("auto-alt-refs", option_name) == 0) { + res = parse_layer_options_from_string(svc_ctx, AUTO_ALT_REF, option_value, + si->enable_auto_alt_ref, NULL); + if (res != VPX_CODEC_OK) break; + } else if (strcmp("bitrates", option_name) == 0) { + res = parse_layer_options_from_string(svc_ctx, BITRATE, option_value, + si->bitrates, NULL); + if (res != VPX_CODEC_OK) break; + } else if (strcmp("multi-frame-contexts", option_name) == 0) { + si->use_multiple_frame_contexts = atoi(option_value); + } else { + svc_log(svc_ctx, SVC_LOG_ERROR, "invalid option: %s\n", option_name); + res = VPX_CODEC_INVALID_PARAM; + break; + } + option_name = strtok_r(NULL, "=", &input_ptr); + } + free(input_string); + + for (i = 0; i < svc_ctx->spatial_layers; ++i) { + if (si->svc_params.max_quantizers[i] > MAX_QUANTIZER || + si->svc_params.max_quantizers[i] < 0 || + si->svc_params.min_quantizers[i] > si->svc_params.max_quantizers[i] || + si->svc_params.min_quantizers[i] < 0) + res = VPX_CODEC_INVALID_PARAM; + } + + if (si->use_multiple_frame_contexts && + (svc_ctx->spatial_layers > 3 || + svc_ctx->spatial_layers * svc_ctx->temporal_layers > 4)) + res = VPX_CODEC_INVALID_PARAM; + + for (i = 0; i < svc_ctx->spatial_layers; ++i) + alt_ref_enabled += si->enable_auto_alt_ref[i]; + if (alt_ref_enabled > REF_FRAMES - svc_ctx->spatial_layers) { + svc_log(svc_ctx, SVC_LOG_ERROR, + "svc: auto alt ref: Maxinum %d(REF_FRAMES - layers) layers could" + "enabled auto alt reference frame, but % layers are enabled\n", + REF_FRAMES - svc_ctx->spatial_layers, alt_ref_enabled); + res = VPX_CODEC_INVALID_PARAM; + } + + return res; +} + +vpx_codec_err_t vpx_svc_set_options(SvcContext *svc_ctx, const char *options) { + SvcInternal_t *const si = get_svc_internal(svc_ctx); + if (svc_ctx == NULL || options == NULL || si == NULL) { + return VPX_CODEC_INVALID_PARAM; + } + strncpy(si->options, options, sizeof(si->options)); + si->options[sizeof(si->options) - 1] = '\0'; + return VPX_CODEC_OK; +} + +vpx_codec_err_t assign_layer_bitrates(const SvcContext *svc_ctx, + vpx_codec_enc_cfg_t *const enc_cfg) { + int i; + const SvcInternal_t *const si = get_const_svc_internal(svc_ctx); + int sl, tl, spatial_layer_target; + + if (svc_ctx->temporal_layering_mode != 0) { + if (si->bitrates[0] != 0) { + unsigned int total_bitrate = 0; + for (sl = 0; sl < svc_ctx->spatial_layers; ++sl) { + total_bitrate += si->bitrates[sl * svc_ctx->temporal_layers + + svc_ctx->temporal_layers - 1]; + for (tl = 0; tl < svc_ctx->temporal_layers; ++tl) { + enc_cfg->ss_target_bitrate[sl * svc_ctx->temporal_layers] += + (unsigned int)si->bitrates[sl * svc_ctx->temporal_layers + tl]; + enc_cfg->layer_target_bitrate[sl * svc_ctx->temporal_layers + tl] = + si->bitrates[sl * svc_ctx->temporal_layers + tl]; + if (tl > 0 && (si->bitrates[sl * svc_ctx->temporal_layers + tl] <= + si->bitrates[sl * svc_ctx->temporal_layers + tl - 1])) + return VPX_CODEC_INVALID_PARAM; + } + } + if (total_bitrate != enc_cfg->rc_target_bitrate) + return VPX_CODEC_INVALID_PARAM; + } else { + float total = 0; + float alloc_ratio[VPX_MAX_LAYERS] = { 0 }; + + for (sl = 0; sl < svc_ctx->spatial_layers; ++sl) { + if (si->svc_params.scaling_factor_den[sl] > 0) { + alloc_ratio[sl] = (float)(pow(2, sl)); + total += alloc_ratio[sl]; + } + } + + for (sl = 0; sl < svc_ctx->spatial_layers; ++sl) { + enc_cfg->ss_target_bitrate[sl] = spatial_layer_target = + (unsigned int)(enc_cfg->rc_target_bitrate * alloc_ratio[sl] / + total); + if (svc_ctx->temporal_layering_mode == 3) { + enc_cfg->layer_target_bitrate[sl * svc_ctx->temporal_layers] = + (spatial_layer_target * 6) / 10; // 60% + enc_cfg->layer_target_bitrate[sl * svc_ctx->temporal_layers + 1] = + (spatial_layer_target * 8) / 10; // 80% + enc_cfg->layer_target_bitrate[sl * svc_ctx->temporal_layers + 2] = + spatial_layer_target; + } else if (svc_ctx->temporal_layering_mode == 2 || + svc_ctx->temporal_layering_mode == 1) { + enc_cfg->layer_target_bitrate[sl * svc_ctx->temporal_layers] = + spatial_layer_target * 2 / 3; + enc_cfg->layer_target_bitrate[sl * svc_ctx->temporal_layers + 1] = + spatial_layer_target; + } else { + // User should explicitly assign bitrates in this case. + assert(0); + } + } + } + } else { + if (si->bitrates[0] != 0) { + unsigned int total_bitrate = 0; + for (i = 0; i < svc_ctx->spatial_layers; ++i) { + enc_cfg->ss_target_bitrate[i] = (unsigned int)si->bitrates[i]; + enc_cfg->layer_target_bitrate[i] = (unsigned int)si->bitrates[i]; + total_bitrate += si->bitrates[i]; + } + if (total_bitrate != enc_cfg->rc_target_bitrate) + return VPX_CODEC_INVALID_PARAM; + } else { + float total = 0; + float alloc_ratio[VPX_MAX_LAYERS] = { 0 }; + + for (i = 0; i < svc_ctx->spatial_layers; ++i) { + if (si->svc_params.scaling_factor_den[i] > 0) { + alloc_ratio[i] = (float)(si->svc_params.scaling_factor_num[i] * 1.0 / + si->svc_params.scaling_factor_den[i]); + + alloc_ratio[i] *= alloc_ratio[i]; + total += alloc_ratio[i]; + } + } + for (i = 0; i < VPX_SS_MAX_LAYERS; ++i) { + if (total > 0) { + enc_cfg->layer_target_bitrate[i] = + (unsigned int)(enc_cfg->rc_target_bitrate * alloc_ratio[i] / + total); + } + } + } + } + return VPX_CODEC_OK; +} + +vpx_codec_err_t vpx_svc_init(SvcContext *svc_ctx, vpx_codec_ctx_t *codec_ctx, + vpx_codec_iface_t *iface, + vpx_codec_enc_cfg_t *enc_cfg) { + vpx_codec_err_t res; + int i, sl, tl; + SvcInternal_t *const si = get_svc_internal(svc_ctx); + if (svc_ctx == NULL || codec_ctx == NULL || iface == NULL || + enc_cfg == NULL) { + return VPX_CODEC_INVALID_PARAM; + } + if (si == NULL) return VPX_CODEC_MEM_ERROR; + + si->codec_ctx = codec_ctx; + + si->width = enc_cfg->g_w; + si->height = enc_cfg->g_h; + + si->kf_dist = enc_cfg->kf_max_dist; + + if (svc_ctx->spatial_layers == 0) + svc_ctx->spatial_layers = VPX_SS_DEFAULT_LAYERS; + if (svc_ctx->spatial_layers < 1 || + svc_ctx->spatial_layers > VPX_SS_MAX_LAYERS) { + svc_log(svc_ctx, SVC_LOG_ERROR, "spatial layers: invalid value: %d\n", + svc_ctx->spatial_layers); + return VPX_CODEC_INVALID_PARAM; + } + + // Note: temporal_layering_mode only applies to one-pass CBR + // si->svc_params.temporal_layering_mode = svc_ctx->temporal_layering_mode; + if (svc_ctx->temporal_layering_mode == 3) { + svc_ctx->temporal_layers = 3; + } else if (svc_ctx->temporal_layering_mode == 2 || + svc_ctx->temporal_layering_mode == 1) { + svc_ctx->temporal_layers = 2; + } + + for (sl = 0; sl < VPX_SS_MAX_LAYERS; ++sl) { + si->svc_params.scaling_factor_num[sl] = DEFAULT_SCALE_FACTORS_NUM[sl]; + si->svc_params.scaling_factor_den[sl] = DEFAULT_SCALE_FACTORS_DEN[sl]; + si->svc_params.speed_per_layer[sl] = svc_ctx->speed; + } + if (enc_cfg->rc_end_usage == VPX_CBR && enc_cfg->g_pass == VPX_RC_ONE_PASS && + svc_ctx->spatial_layers <= 3) { + for (sl = 0; sl < svc_ctx->spatial_layers; ++sl) { + int sl2 = (svc_ctx->spatial_layers == 2) ? sl + 1 : sl; + si->svc_params.scaling_factor_num[sl] = DEFAULT_SCALE_FACTORS_NUM_2x[sl2]; + si->svc_params.scaling_factor_den[sl] = DEFAULT_SCALE_FACTORS_DEN_2x[sl2]; + } + if (svc_ctx->spatial_layers == 1) { + si->svc_params.scaling_factor_num[0] = 1; + si->svc_params.scaling_factor_den[0] = 1; + } + } + for (tl = 0; tl < svc_ctx->temporal_layers; ++tl) { + for (sl = 0; sl < svc_ctx->spatial_layers; ++sl) { + i = sl * svc_ctx->temporal_layers + tl; + si->svc_params.max_quantizers[i] = MAX_QUANTIZER; + si->svc_params.min_quantizers[i] = 0; + if (enc_cfg->rc_end_usage == VPX_CBR && + enc_cfg->g_pass == VPX_RC_ONE_PASS) { + si->svc_params.max_quantizers[i] = 56; + si->svc_params.min_quantizers[i] = 2; + } + } + } + + // Parse aggregate command line options. Options must start with + // "layers=xx" then followed by other options + res = parse_options(svc_ctx, si->options); + if (res != VPX_CODEC_OK) return res; + + if (svc_ctx->spatial_layers < 1) svc_ctx->spatial_layers = 1; + if (svc_ctx->spatial_layers > VPX_SS_MAX_LAYERS) + svc_ctx->spatial_layers = VPX_SS_MAX_LAYERS; + + if (svc_ctx->temporal_layers < 1) svc_ctx->temporal_layers = 1; + if (svc_ctx->temporal_layers > VPX_TS_MAX_LAYERS) + svc_ctx->temporal_layers = VPX_TS_MAX_LAYERS; + + if (svc_ctx->temporal_layers * svc_ctx->spatial_layers > VPX_MAX_LAYERS) { + svc_log(svc_ctx, SVC_LOG_ERROR, + "spatial layers * temporal layers exceeds the maximum number of " + "allowed layers of %d\n", + svc_ctx->spatial_layers * svc_ctx->temporal_layers, + (int)VPX_MAX_LAYERS); + return VPX_CODEC_INVALID_PARAM; + } + res = assign_layer_bitrates(svc_ctx, enc_cfg); + if (res != VPX_CODEC_OK) { + svc_log(svc_ctx, SVC_LOG_ERROR, + "layer bitrates incorrect: \n" + "1) spatial layer bitrates should sum up to target \n" + "2) temporal layer bitrates should be increasing within \n" + "a spatial layer \n"); + return VPX_CODEC_INVALID_PARAM; + } + +#if CONFIG_SPATIAL_SVC + for (i = 0; i < svc_ctx->spatial_layers; ++i) + enc_cfg->ss_enable_auto_alt_ref[i] = si->enable_auto_alt_ref[i]; +#endif + + if (svc_ctx->temporal_layers > 1) { + int i; + for (i = 0; i < svc_ctx->temporal_layers; ++i) { + enc_cfg->ts_target_bitrate[i] = + enc_cfg->rc_target_bitrate / svc_ctx->temporal_layers; + enc_cfg->ts_rate_decimator[i] = 1 << (svc_ctx->temporal_layers - 1 - i); + } + } + + if (svc_ctx->threads) enc_cfg->g_threads = svc_ctx->threads; + + // Modify encoder configuration + enc_cfg->ss_number_layers = svc_ctx->spatial_layers; + enc_cfg->ts_number_layers = svc_ctx->temporal_layers; + + if (enc_cfg->rc_end_usage == VPX_CBR) { + enc_cfg->rc_resize_allowed = 0; + enc_cfg->rc_min_quantizer = 2; + enc_cfg->rc_max_quantizer = 56; + enc_cfg->rc_undershoot_pct = 50; + enc_cfg->rc_overshoot_pct = 50; + enc_cfg->rc_buf_initial_sz = 500; + enc_cfg->rc_buf_optimal_sz = 600; + enc_cfg->rc_buf_sz = 1000; + enc_cfg->rc_dropframe_thresh = 0; + } + + if (enc_cfg->g_error_resilient == 0 && si->use_multiple_frame_contexts == 0) + enc_cfg->g_error_resilient = 1; + + // Initialize codec + res = vpx_codec_enc_init(codec_ctx, iface, enc_cfg, VPX_CODEC_USE_PSNR); + if (res != VPX_CODEC_OK) { + svc_log(svc_ctx, SVC_LOG_ERROR, "svc_enc_init error\n"); + return res; + } + if (svc_ctx->spatial_layers > 1 || svc_ctx->temporal_layers > 1) { + vpx_codec_control(codec_ctx, VP9E_SET_SVC, 1); + vpx_codec_control(codec_ctx, VP9E_SET_SVC_PARAMETERS, &si->svc_params); + } + return VPX_CODEC_OK; +} + +/** + * Encode a frame into multiple layers + * Create a superframe containing the individual layers + */ +vpx_codec_err_t vpx_svc_encode(SvcContext *svc_ctx, vpx_codec_ctx_t *codec_ctx, + struct vpx_image *rawimg, vpx_codec_pts_t pts, + int64_t duration, int deadline) { + vpx_codec_err_t res; + vpx_codec_iter_t iter; + const vpx_codec_cx_pkt_t *cx_pkt; + SvcInternal_t *const si = get_svc_internal(svc_ctx); + if (svc_ctx == NULL || codec_ctx == NULL || si == NULL) { + return VPX_CODEC_INVALID_PARAM; + } + + svc_log_reset(svc_ctx); + + res = + vpx_codec_encode(codec_ctx, rawimg, pts, (uint32_t)duration, 0, deadline); + if (res != VPX_CODEC_OK) { + return res; + } + // save compressed data + iter = NULL; + while ((cx_pkt = vpx_codec_get_cx_data(codec_ctx, &iter))) { + switch (cx_pkt->kind) { +#if CONFIG_SPATIAL_SVC && defined(VPX_TEST_SPATIAL_SVC) + case VPX_CODEC_SPATIAL_SVC_LAYER_PSNR: { + int i; + for (i = 0; i < svc_ctx->spatial_layers; ++i) { + int j; + svc_log(svc_ctx, SVC_LOG_DEBUG, + "SVC frame: %d, layer: %d, PSNR(Total/Y/U/V): " + "%2.3f %2.3f %2.3f %2.3f \n", + si->psnr_pkt_received, i, cx_pkt->data.layer_psnr[i].psnr[0], + cx_pkt->data.layer_psnr[i].psnr[1], + cx_pkt->data.layer_psnr[i].psnr[2], + cx_pkt->data.layer_psnr[i].psnr[3]); + svc_log(svc_ctx, SVC_LOG_DEBUG, + "SVC frame: %d, layer: %d, SSE(Total/Y/U/V): " + "%2.3f %2.3f %2.3f %2.3f \n", + si->psnr_pkt_received, i, cx_pkt->data.layer_psnr[i].sse[0], + cx_pkt->data.layer_psnr[i].sse[1], + cx_pkt->data.layer_psnr[i].sse[2], + cx_pkt->data.layer_psnr[i].sse[3]); + + for (j = 0; j < COMPONENTS; ++j) { + si->psnr_sum[i][j] += cx_pkt->data.layer_psnr[i].psnr[j]; + si->sse_sum[i][j] += cx_pkt->data.layer_psnr[i].sse[j]; + } + } + ++si->psnr_pkt_received; + break; + } + case VPX_CODEC_SPATIAL_SVC_LAYER_SIZES: { + int i; + for (i = 0; i < svc_ctx->spatial_layers; ++i) + si->bytes_sum[i] += cx_pkt->data.layer_sizes[i]; + break; + } +#endif + case VPX_CODEC_PSNR_PKT: { +#if CONFIG_SPATIAL_SVC && defined(VPX_TEST_SPATIAL_SVC) + int j; + svc_log(svc_ctx, SVC_LOG_DEBUG, + "frame: %d, layer: %d, PSNR(Total/Y/U/V): " + "%2.3f %2.3f %2.3f %2.3f \n", + si->psnr_pkt_received, 0, cx_pkt->data.layer_psnr[0].psnr[0], + cx_pkt->data.layer_psnr[0].psnr[1], + cx_pkt->data.layer_psnr[0].psnr[2], + cx_pkt->data.layer_psnr[0].psnr[3]); + for (j = 0; j < COMPONENTS; ++j) { + si->psnr_sum[0][j] += cx_pkt->data.layer_psnr[0].psnr[j]; + si->sse_sum[0][j] += cx_pkt->data.layer_psnr[0].sse[j]; + } +#endif + } + ++si->psnr_pkt_received; + break; + default: { break; } + } + } + + return VPX_CODEC_OK; +} + +const char *vpx_svc_get_message(const SvcContext *svc_ctx) { + const SvcInternal_t *const si = get_const_svc_internal(svc_ctx); + if (svc_ctx == NULL || si == NULL) return NULL; + return si->message_buffer; +} + +static double calc_psnr(double d) { + if (d == 0) return 100; + return -10.0 * log(d) / log(10.0); +} + +// dump accumulated statistics and reset accumulated values +const char *vpx_svc_dump_statistics(SvcContext *svc_ctx) { + int number_of_frames; + int i, j; + uint32_t bytes_total = 0; + double scale[COMPONENTS]; + double psnr[COMPONENTS]; + double mse[COMPONENTS]; + double y_scale; + + SvcInternal_t *const si = get_svc_internal(svc_ctx); + if (svc_ctx == NULL || si == NULL) return NULL; + + svc_log_reset(svc_ctx); + + number_of_frames = si->psnr_pkt_received; + if (number_of_frames <= 0) return vpx_svc_get_message(svc_ctx); + + svc_log(svc_ctx, SVC_LOG_INFO, "\n"); + for (i = 0; i < svc_ctx->spatial_layers; ++i) { + svc_log(svc_ctx, SVC_LOG_INFO, + "Layer %d Average PSNR=[%2.3f, %2.3f, %2.3f, %2.3f], Bytes=[%u]\n", + i, (double)si->psnr_sum[i][0] / number_of_frames, + (double)si->psnr_sum[i][1] / number_of_frames, + (double)si->psnr_sum[i][2] / number_of_frames, + (double)si->psnr_sum[i][3] / number_of_frames, si->bytes_sum[i]); + // the following psnr calculation is deduced from ffmpeg.c#print_report + y_scale = si->width * si->height * 255.0 * 255.0 * number_of_frames; + scale[1] = y_scale; + scale[2] = scale[3] = y_scale / 4; // U or V + scale[0] = y_scale * 1.5; // total + + for (j = 0; j < COMPONENTS; j++) { + psnr[j] = calc_psnr(si->sse_sum[i][j] / scale[j]); + mse[j] = si->sse_sum[i][j] * 255.0 * 255.0 / scale[j]; + } + svc_log(svc_ctx, SVC_LOG_INFO, + "Layer %d Overall PSNR=[%2.3f, %2.3f, %2.3f, %2.3f]\n", i, psnr[0], + psnr[1], psnr[2], psnr[3]); + svc_log(svc_ctx, SVC_LOG_INFO, + "Layer %d Overall MSE=[%2.3f, %2.3f, %2.3f, %2.3f]\n", i, mse[0], + mse[1], mse[2], mse[3]); + + bytes_total += si->bytes_sum[i]; + // Clear sums for next time. + si->bytes_sum[i] = 0; + for (j = 0; j < COMPONENTS; ++j) { + si->psnr_sum[i][j] = 0; + si->sse_sum[i][j] = 0; + } + } + + // only display statistics once + si->psnr_pkt_received = 0; + + svc_log(svc_ctx, SVC_LOG_INFO, "Total Bytes=[%u]\n", bytes_total); + return vpx_svc_get_message(svc_ctx); +} + +void vpx_svc_release(SvcContext *svc_ctx) { + SvcInternal_t *si; + if (svc_ctx == NULL) return; + // do not use get_svc_internal as it will unnecessarily allocate an + // SvcInternal_t if it was not already allocated + si = (SvcInternal_t *)svc_ctx->internal; + if (si != NULL) { + free(si); + svc_ctx->internal = NULL; + } +} diff --git a/vpx/src/vpx_codec.c b/vpx/src/vpx_codec.c new file mode 100644 index 0000000..10331aa --- /dev/null +++ b/vpx/src/vpx_codec.c @@ -0,0 +1,133 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +/*!\file + * \brief Provides the high level interface to wrap decoder algorithms. + * + */ +#include +#include +#include "vpx/vpx_integer.h" +#include "vpx/internal/vpx_codec_internal.h" +#include "vpx_version.h" + +#define SAVE_STATUS(ctx, var) (ctx ? (ctx->err = var) : var) + +int vpx_codec_version(void) { return VERSION_PACKED; } + +const char *vpx_codec_version_str(void) { return VERSION_STRING_NOSP; } + +const char *vpx_codec_version_extra_str(void) { return VERSION_EXTRA; } + +const char *vpx_codec_iface_name(vpx_codec_iface_t *iface) { + return iface ? iface->name : ""; +} + +const char *vpx_codec_err_to_string(vpx_codec_err_t err) { + switch (err) { + case VPX_CODEC_OK: return "Success"; + case VPX_CODEC_ERROR: return "Unspecified internal error"; + case VPX_CODEC_MEM_ERROR: return "Memory allocation error"; + case VPX_CODEC_ABI_MISMATCH: return "ABI version mismatch"; + case VPX_CODEC_INCAPABLE: + return "Codec does not implement requested capability"; + case VPX_CODEC_UNSUP_BITSTREAM: + return "Bitstream not supported by this decoder"; + case VPX_CODEC_UNSUP_FEATURE: + return "Bitstream required feature not supported by this decoder"; + case VPX_CODEC_CORRUPT_FRAME: return "Corrupt frame detected"; + case VPX_CODEC_INVALID_PARAM: return "Invalid parameter"; + case VPX_CODEC_LIST_END: return "End of iterated list"; + } + + return "Unrecognized error code"; +} + +const char *vpx_codec_error(vpx_codec_ctx_t *ctx) { + return (ctx) ? vpx_codec_err_to_string(ctx->err) + : vpx_codec_err_to_string(VPX_CODEC_INVALID_PARAM); +} + +const char *vpx_codec_error_detail(vpx_codec_ctx_t *ctx) { + if (ctx && ctx->err) + return ctx->priv ? ctx->priv->err_detail : ctx->err_detail; + + return NULL; +} + +vpx_codec_err_t vpx_codec_destroy(vpx_codec_ctx_t *ctx) { + vpx_codec_err_t res; + + if (!ctx) + res = VPX_CODEC_INVALID_PARAM; + else if (!ctx->iface || !ctx->priv) + res = VPX_CODEC_ERROR; + else { + ctx->iface->destroy((vpx_codec_alg_priv_t *)ctx->priv); + + ctx->iface = NULL; + ctx->name = NULL; + ctx->priv = NULL; + res = VPX_CODEC_OK; + } + + return SAVE_STATUS(ctx, res); +} + +vpx_codec_caps_t vpx_codec_get_caps(vpx_codec_iface_t *iface) { + return (iface) ? iface->caps : 0; +} + +vpx_codec_err_t vpx_codec_control_(vpx_codec_ctx_t *ctx, int ctrl_id, ...) { + vpx_codec_err_t res; + + if (!ctx || !ctrl_id) + res = VPX_CODEC_INVALID_PARAM; + else if (!ctx->iface || !ctx->priv || !ctx->iface->ctrl_maps) + res = VPX_CODEC_ERROR; + else { + vpx_codec_ctrl_fn_map_t *entry; + + res = VPX_CODEC_INCAPABLE; + + for (entry = ctx->iface->ctrl_maps; entry && entry->fn; entry++) { + if (!entry->ctrl_id || entry->ctrl_id == ctrl_id) { + va_list ap; + + va_start(ap, ctrl_id); + res = entry->fn((vpx_codec_alg_priv_t *)ctx->priv, ap); + va_end(ap); + break; + } + } + } + + return SAVE_STATUS(ctx, res); +} + +void vpx_internal_error(struct vpx_internal_error_info *info, + vpx_codec_err_t error, const char *fmt, ...) { + va_list ap; + + info->error_code = error; + info->has_detail = 0; + + if (fmt) { + size_t sz = sizeof(info->detail); + + info->has_detail = 1; + va_start(ap, fmt); + vsnprintf(info->detail, sz - 1, fmt, ap); + va_end(ap); + info->detail[sz - 1] = '\0'; + } + + if (info->setjmp) longjmp(info->jmp, info->error_code); +} diff --git a/vpx/src/vpx_decoder.c b/vpx/src/vpx_decoder.c new file mode 100644 index 0000000..fc1c2bc --- /dev/null +++ b/vpx/src/vpx_decoder.c @@ -0,0 +1,188 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +/*!\file + * \brief Provides the high level interface to wrap decoder algorithms. + * + */ +#include +#include "vpx/internal/vpx_codec_internal.h" + +#define SAVE_STATUS(ctx, var) (ctx ? (ctx->err = var) : var) + +static vpx_codec_alg_priv_t *get_alg_priv(vpx_codec_ctx_t *ctx) { + return (vpx_codec_alg_priv_t *)ctx->priv; +} + +vpx_codec_err_t vpx_codec_dec_init_ver(vpx_codec_ctx_t *ctx, + vpx_codec_iface_t *iface, + const vpx_codec_dec_cfg_t *cfg, + vpx_codec_flags_t flags, int ver) { + vpx_codec_err_t res; + + if (ver != VPX_DECODER_ABI_VERSION) + res = VPX_CODEC_ABI_MISMATCH; + else if (!ctx || !iface) + res = VPX_CODEC_INVALID_PARAM; + else if (iface->abi_version != VPX_CODEC_INTERNAL_ABI_VERSION) + res = VPX_CODEC_ABI_MISMATCH; + else if ((flags & VPX_CODEC_USE_POSTPROC) && + !(iface->caps & VPX_CODEC_CAP_POSTPROC)) + res = VPX_CODEC_INCAPABLE; + else if ((flags & VPX_CODEC_USE_ERROR_CONCEALMENT) && + !(iface->caps & VPX_CODEC_CAP_ERROR_CONCEALMENT)) + res = VPX_CODEC_INCAPABLE; + else if ((flags & VPX_CODEC_USE_INPUT_FRAGMENTS) && + !(iface->caps & VPX_CODEC_CAP_INPUT_FRAGMENTS)) + res = VPX_CODEC_INCAPABLE; + else if (!(iface->caps & VPX_CODEC_CAP_DECODER)) + res = VPX_CODEC_INCAPABLE; + else { + memset(ctx, 0, sizeof(*ctx)); + ctx->iface = iface; + ctx->name = iface->name; + ctx->priv = NULL; + ctx->init_flags = flags; + ctx->config.dec = cfg; + + res = ctx->iface->init(ctx, NULL); + if (res) { + ctx->err_detail = ctx->priv ? ctx->priv->err_detail : NULL; + vpx_codec_destroy(ctx); + } + } + + return SAVE_STATUS(ctx, res); +} + +vpx_codec_err_t vpx_codec_peek_stream_info(vpx_codec_iface_t *iface, + const uint8_t *data, + unsigned int data_sz, + vpx_codec_stream_info_t *si) { + vpx_codec_err_t res; + + if (!iface || !data || !data_sz || !si || + si->sz < sizeof(vpx_codec_stream_info_t)) + res = VPX_CODEC_INVALID_PARAM; + else { + /* Set default/unknown values */ + si->w = 0; + si->h = 0; + + res = iface->dec.peek_si(data, data_sz, si); + } + + return res; +} + +vpx_codec_err_t vpx_codec_get_stream_info(vpx_codec_ctx_t *ctx, + vpx_codec_stream_info_t *si) { + vpx_codec_err_t res; + + if (!ctx || !si || si->sz < sizeof(vpx_codec_stream_info_t)) + res = VPX_CODEC_INVALID_PARAM; + else if (!ctx->iface || !ctx->priv) + res = VPX_CODEC_ERROR; + else { + /* Set default/unknown values */ + si->w = 0; + si->h = 0; + + res = ctx->iface->dec.get_si(get_alg_priv(ctx), si); + } + + return SAVE_STATUS(ctx, res); +} + +vpx_codec_err_t vpx_codec_decode(vpx_codec_ctx_t *ctx, const uint8_t *data, + unsigned int data_sz, void *user_priv, + long deadline) { + vpx_codec_err_t res; + + /* Sanity checks */ + /* NULL data ptr allowed if data_sz is 0 too */ + if (!ctx || (!data && data_sz) || (data && !data_sz)) + res = VPX_CODEC_INVALID_PARAM; + else if (!ctx->iface || !ctx->priv) + res = VPX_CODEC_ERROR; + else { + res = ctx->iface->dec.decode(get_alg_priv(ctx), data, data_sz, user_priv, + deadline); + } + + return SAVE_STATUS(ctx, res); +} + +vpx_image_t *vpx_codec_get_frame(vpx_codec_ctx_t *ctx, vpx_codec_iter_t *iter) { + vpx_image_t *img; + + if (!ctx || !iter || !ctx->iface || !ctx->priv) + img = NULL; + else + img = ctx->iface->dec.get_frame(get_alg_priv(ctx), iter); + + return img; +} + +vpx_codec_err_t vpx_codec_register_put_frame_cb(vpx_codec_ctx_t *ctx, + vpx_codec_put_frame_cb_fn_t cb, + void *user_priv) { + vpx_codec_err_t res; + + if (!ctx || !cb) + res = VPX_CODEC_INVALID_PARAM; + else if (!ctx->iface || !ctx->priv || + !(ctx->iface->caps & VPX_CODEC_CAP_PUT_FRAME)) + res = VPX_CODEC_ERROR; + else { + ctx->priv->dec.put_frame_cb.u.put_frame = cb; + ctx->priv->dec.put_frame_cb.user_priv = user_priv; + res = VPX_CODEC_OK; + } + + return SAVE_STATUS(ctx, res); +} + +vpx_codec_err_t vpx_codec_register_put_slice_cb(vpx_codec_ctx_t *ctx, + vpx_codec_put_slice_cb_fn_t cb, + void *user_priv) { + vpx_codec_err_t res; + + if (!ctx || !cb) + res = VPX_CODEC_INVALID_PARAM; + else if (!ctx->iface || !ctx->priv || + !(ctx->iface->caps & VPX_CODEC_CAP_PUT_SLICE)) + res = VPX_CODEC_ERROR; + else { + ctx->priv->dec.put_slice_cb.u.put_slice = cb; + ctx->priv->dec.put_slice_cb.user_priv = user_priv; + res = VPX_CODEC_OK; + } + + return SAVE_STATUS(ctx, res); +} + +vpx_codec_err_t vpx_codec_set_frame_buffer_functions( + vpx_codec_ctx_t *ctx, vpx_get_frame_buffer_cb_fn_t cb_get, + vpx_release_frame_buffer_cb_fn_t cb_release, void *cb_priv) { + vpx_codec_err_t res; + + if (!ctx || !cb_get || !cb_release) { + res = VPX_CODEC_INVALID_PARAM; + } else if (!ctx->iface || !ctx->priv || + !(ctx->iface->caps & VPX_CODEC_CAP_EXTERNAL_FRAME_BUFFER)) { + res = VPX_CODEC_ERROR; + } else { + res = ctx->iface->dec.set_fb_fn(get_alg_priv(ctx), cb_get, cb_release, + cb_priv); + } + + return SAVE_STATUS(ctx, res); +} diff --git a/vpx/src/vpx_encoder.c b/vpx/src/vpx_encoder.c new file mode 100644 index 0000000..1cf2dca --- /dev/null +++ b/vpx/src/vpx_encoder.c @@ -0,0 +1,387 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +/*!\file + * \brief Provides the high level interface to wrap encoder algorithms. + * + */ +#include +#include +#include +#include +#include "vp8/common/blockd.h" +#include "vpx_config.h" +#include "vpx/internal/vpx_codec_internal.h" + +#define SAVE_STATUS(ctx, var) (ctx ? (ctx->err = var) : var) + +static vpx_codec_alg_priv_t *get_alg_priv(vpx_codec_ctx_t *ctx) { + return (vpx_codec_alg_priv_t *)ctx->priv; +} + +vpx_codec_err_t vpx_codec_enc_init_ver(vpx_codec_ctx_t *ctx, + vpx_codec_iface_t *iface, + const vpx_codec_enc_cfg_t *cfg, + vpx_codec_flags_t flags, int ver) { + vpx_codec_err_t res; + + if (ver != VPX_ENCODER_ABI_VERSION) + res = VPX_CODEC_ABI_MISMATCH; + else if (!ctx || !iface || !cfg) + res = VPX_CODEC_INVALID_PARAM; + else if (iface->abi_version != VPX_CODEC_INTERNAL_ABI_VERSION) + res = VPX_CODEC_ABI_MISMATCH; + else if (!(iface->caps & VPX_CODEC_CAP_ENCODER)) + res = VPX_CODEC_INCAPABLE; + else if ((flags & VPX_CODEC_USE_PSNR) && !(iface->caps & VPX_CODEC_CAP_PSNR)) + res = VPX_CODEC_INCAPABLE; + else if ((flags & VPX_CODEC_USE_OUTPUT_PARTITION) && + !(iface->caps & VPX_CODEC_CAP_OUTPUT_PARTITION)) + res = VPX_CODEC_INCAPABLE; + else { + ctx->iface = iface; + ctx->name = iface->name; + ctx->priv = NULL; + ctx->init_flags = flags; + ctx->config.enc = cfg; + res = ctx->iface->init(ctx, NULL); + + if (res) { + ctx->err_detail = ctx->priv ? ctx->priv->err_detail : NULL; + vpx_codec_destroy(ctx); + } + } + + return SAVE_STATUS(ctx, res); +} + +vpx_codec_err_t vpx_codec_enc_init_multi_ver( + vpx_codec_ctx_t *ctx, vpx_codec_iface_t *iface, vpx_codec_enc_cfg_t *cfg, + int num_enc, vpx_codec_flags_t flags, vpx_rational_t *dsf, int ver) { + vpx_codec_err_t res = VPX_CODEC_OK; + + if (ver != VPX_ENCODER_ABI_VERSION) + res = VPX_CODEC_ABI_MISMATCH; + else if (!ctx || !iface || !cfg || (num_enc > 16 || num_enc < 1)) + res = VPX_CODEC_INVALID_PARAM; + else if (iface->abi_version != VPX_CODEC_INTERNAL_ABI_VERSION) + res = VPX_CODEC_ABI_MISMATCH; + else if (!(iface->caps & VPX_CODEC_CAP_ENCODER)) + res = VPX_CODEC_INCAPABLE; + else if ((flags & VPX_CODEC_USE_PSNR) && !(iface->caps & VPX_CODEC_CAP_PSNR)) + res = VPX_CODEC_INCAPABLE; + else if ((flags & VPX_CODEC_USE_OUTPUT_PARTITION) && + !(iface->caps & VPX_CODEC_CAP_OUTPUT_PARTITION)) + res = VPX_CODEC_INCAPABLE; + else { + int i; + void *mem_loc = NULL; + + if (iface->enc.mr_get_mem_loc == NULL) return VPX_CODEC_INCAPABLE; + + if (!(res = iface->enc.mr_get_mem_loc(cfg, &mem_loc))) { + for (i = 0; i < num_enc; i++) { + vpx_codec_priv_enc_mr_cfg_t mr_cfg; + + /* Validate down-sampling factor. */ + if (dsf->num < 1 || dsf->num > 4096 || dsf->den < 1 || + dsf->den > dsf->num) { + res = VPX_CODEC_INVALID_PARAM; + } else { + mr_cfg.mr_low_res_mode_info = mem_loc; + mr_cfg.mr_total_resolutions = num_enc; + mr_cfg.mr_encoder_id = num_enc - 1 - i; + mr_cfg.mr_down_sampling_factor.num = dsf->num; + mr_cfg.mr_down_sampling_factor.den = dsf->den; + + /* Force Key-frame synchronization. Namely, encoder at higher + * resolution always use the same frame_type chosen by the + * lowest-resolution encoder. + */ + if (mr_cfg.mr_encoder_id) cfg->kf_mode = VPX_KF_DISABLED; + + ctx->iface = iface; + ctx->name = iface->name; + ctx->priv = NULL; + ctx->init_flags = flags; + ctx->config.enc = cfg; + res = ctx->iface->init(ctx, &mr_cfg); + } + + if (res) { + const char *error_detail = ctx->priv ? ctx->priv->err_detail : NULL; + /* Destroy current ctx */ + ctx->err_detail = error_detail; + vpx_codec_destroy(ctx); + + /* Destroy already allocated high-level ctx */ + while (i) { + ctx--; + ctx->err_detail = error_detail; + vpx_codec_destroy(ctx); + i--; + } +#if CONFIG_MULTI_RES_ENCODING + assert(mem_loc); + free(((LOWER_RES_FRAME_INFO *)mem_loc)->mb_info); + free(mem_loc); +#endif + return SAVE_STATUS(ctx, res); + } + + ctx++; + cfg++; + dsf++; + } + ctx--; + } + } + + return SAVE_STATUS(ctx, res); +} + +vpx_codec_err_t vpx_codec_enc_config_default(vpx_codec_iface_t *iface, + vpx_codec_enc_cfg_t *cfg, + unsigned int usage) { + vpx_codec_err_t res; + vpx_codec_enc_cfg_map_t *map; + int i; + + if (!iface || !cfg || usage > INT_MAX) + res = VPX_CODEC_INVALID_PARAM; + else if (!(iface->caps & VPX_CODEC_CAP_ENCODER)) + res = VPX_CODEC_INCAPABLE; + else { + res = VPX_CODEC_INVALID_PARAM; + + for (i = 0; i < iface->enc.cfg_map_count; ++i) { + map = iface->enc.cfg_maps + i; + if (map->usage == (int)usage) { + *cfg = map->cfg; + cfg->g_usage = usage; + res = VPX_CODEC_OK; + break; + } + } + } + + return res; +} + +#if ARCH_X86 || ARCH_X86_64 +/* On X86, disable the x87 unit's internal 80 bit precision for better + * consistency with the SSE unit's 64 bit precision. + */ +#include "vpx_ports/x86.h" +#define FLOATING_POINT_INIT() \ + do { \ + unsigned short x87_orig_mode = x87_set_double_precision(); +#define FLOATING_POINT_RESTORE() \ + x87_set_control_word(x87_orig_mode); \ + } \ + while (0) + +#else +static void FLOATING_POINT_INIT() {} +static void FLOATING_POINT_RESTORE() {} +#endif + +vpx_codec_err_t vpx_codec_encode(vpx_codec_ctx_t *ctx, const vpx_image_t *img, + vpx_codec_pts_t pts, unsigned long duration, + vpx_enc_frame_flags_t flags, + unsigned long deadline) { + vpx_codec_err_t res = VPX_CODEC_OK; + + if (!ctx || (img && !duration)) + res = VPX_CODEC_INVALID_PARAM; + else if (!ctx->iface || !ctx->priv) + res = VPX_CODEC_ERROR; + else if (!(ctx->iface->caps & VPX_CODEC_CAP_ENCODER)) + res = VPX_CODEC_INCAPABLE; + else { + unsigned int num_enc = ctx->priv->enc.total_encoders; + + /* Execute in a normalized floating point environment, if the platform + * requires it. + */ + FLOATING_POINT_INIT(); + + if (num_enc == 1) + res = ctx->iface->enc.encode(get_alg_priv(ctx), img, pts, duration, flags, + deadline); + else { + /* Multi-resolution encoding: + * Encode multi-levels in reverse order. For example, + * if mr_total_resolutions = 3, first encode level 2, + * then encode level 1, and finally encode level 0. + */ + int i; + + ctx += num_enc - 1; + if (img) img += num_enc - 1; + + for (i = num_enc - 1; i >= 0; i--) { + if ((res = ctx->iface->enc.encode(get_alg_priv(ctx), img, pts, duration, + flags, deadline))) + break; + + ctx--; + if (img) img--; + } + ctx++; + } + + FLOATING_POINT_RESTORE(); + } + + return SAVE_STATUS(ctx, res); +} + +const vpx_codec_cx_pkt_t *vpx_codec_get_cx_data(vpx_codec_ctx_t *ctx, + vpx_codec_iter_t *iter) { + const vpx_codec_cx_pkt_t *pkt = NULL; + + if (ctx) { + if (!iter) + ctx->err = VPX_CODEC_INVALID_PARAM; + else if (!ctx->iface || !ctx->priv) + ctx->err = VPX_CODEC_ERROR; + else if (!(ctx->iface->caps & VPX_CODEC_CAP_ENCODER)) + ctx->err = VPX_CODEC_INCAPABLE; + else + pkt = ctx->iface->enc.get_cx_data(get_alg_priv(ctx), iter); + } + + if (pkt && pkt->kind == VPX_CODEC_CX_FRAME_PKT) { + // If the application has specified a destination area for the + // compressed data, and the codec has not placed the data there, + // and it fits, copy it. + vpx_codec_priv_t *const priv = ctx->priv; + char *const dst_buf = (char *)priv->enc.cx_data_dst_buf.buf; + + if (dst_buf && pkt->data.raw.buf != dst_buf && + pkt->data.raw.sz + priv->enc.cx_data_pad_before + + priv->enc.cx_data_pad_after <= + priv->enc.cx_data_dst_buf.sz) { + vpx_codec_cx_pkt_t *modified_pkt = &priv->enc.cx_data_pkt; + + memcpy(dst_buf + priv->enc.cx_data_pad_before, pkt->data.raw.buf, + pkt->data.raw.sz); + *modified_pkt = *pkt; + modified_pkt->data.raw.buf = dst_buf; + modified_pkt->data.raw.sz += + priv->enc.cx_data_pad_before + priv->enc.cx_data_pad_after; + pkt = modified_pkt; + } + + if (dst_buf == pkt->data.raw.buf) { + priv->enc.cx_data_dst_buf.buf = dst_buf + pkt->data.raw.sz; + priv->enc.cx_data_dst_buf.sz -= pkt->data.raw.sz; + } + } + + return pkt; +} + +vpx_codec_err_t vpx_codec_set_cx_data_buf(vpx_codec_ctx_t *ctx, + const vpx_fixed_buf_t *buf, + unsigned int pad_before, + unsigned int pad_after) { + if (!ctx || !ctx->priv) return VPX_CODEC_INVALID_PARAM; + + if (buf) { + ctx->priv->enc.cx_data_dst_buf = *buf; + ctx->priv->enc.cx_data_pad_before = pad_before; + ctx->priv->enc.cx_data_pad_after = pad_after; + } else { + ctx->priv->enc.cx_data_dst_buf.buf = NULL; + ctx->priv->enc.cx_data_dst_buf.sz = 0; + ctx->priv->enc.cx_data_pad_before = 0; + ctx->priv->enc.cx_data_pad_after = 0; + } + + return VPX_CODEC_OK; +} + +const vpx_image_t *vpx_codec_get_preview_frame(vpx_codec_ctx_t *ctx) { + vpx_image_t *img = NULL; + + if (ctx) { + if (!ctx->iface || !ctx->priv) + ctx->err = VPX_CODEC_ERROR; + else if (!(ctx->iface->caps & VPX_CODEC_CAP_ENCODER)) + ctx->err = VPX_CODEC_INCAPABLE; + else if (!ctx->iface->enc.get_preview) + ctx->err = VPX_CODEC_INCAPABLE; + else + img = ctx->iface->enc.get_preview(get_alg_priv(ctx)); + } + + return img; +} + +vpx_fixed_buf_t *vpx_codec_get_global_headers(vpx_codec_ctx_t *ctx) { + vpx_fixed_buf_t *buf = NULL; + + if (ctx) { + if (!ctx->iface || !ctx->priv) + ctx->err = VPX_CODEC_ERROR; + else if (!(ctx->iface->caps & VPX_CODEC_CAP_ENCODER)) + ctx->err = VPX_CODEC_INCAPABLE; + else if (!ctx->iface->enc.get_glob_hdrs) + ctx->err = VPX_CODEC_INCAPABLE; + else + buf = ctx->iface->enc.get_glob_hdrs(get_alg_priv(ctx)); + } + + return buf; +} + +vpx_codec_err_t vpx_codec_enc_config_set(vpx_codec_ctx_t *ctx, + const vpx_codec_enc_cfg_t *cfg) { + vpx_codec_err_t res; + + if (!ctx || !ctx->iface || !ctx->priv || !cfg) + res = VPX_CODEC_INVALID_PARAM; + else if (!(ctx->iface->caps & VPX_CODEC_CAP_ENCODER)) + res = VPX_CODEC_INCAPABLE; + else + res = ctx->iface->enc.cfg_set(get_alg_priv(ctx), cfg); + + return SAVE_STATUS(ctx, res); +} + +int vpx_codec_pkt_list_add(struct vpx_codec_pkt_list *list, + const struct vpx_codec_cx_pkt *pkt) { + if (list->cnt < list->max) { + list->pkts[list->cnt++] = *pkt; + return 0; + } + + return 1; +} + +const vpx_codec_cx_pkt_t *vpx_codec_pkt_list_get( + struct vpx_codec_pkt_list *list, vpx_codec_iter_t *iter) { + const vpx_codec_cx_pkt_t *pkt; + + if (!(*iter)) { + *iter = list->pkts; + } + + pkt = (const vpx_codec_cx_pkt_t *)*iter; + + if ((size_t)(pkt - list->pkts) < list->cnt) + *iter = pkt + 1; + else + pkt = NULL; + + return pkt; +} diff --git a/vpx/src/vpx_image.c b/vpx/src/vpx_image.c new file mode 100644 index 0000000..af7c529 --- /dev/null +++ b/vpx/src/vpx_image.c @@ -0,0 +1,247 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include + +#include "vpx/vpx_image.h" +#include "vpx/vpx_integer.h" +#include "vpx_mem/vpx_mem.h" + +static vpx_image_t *img_alloc_helper(vpx_image_t *img, vpx_img_fmt_t fmt, + unsigned int d_w, unsigned int d_h, + unsigned int buf_align, + unsigned int stride_align, + unsigned char *img_data) { + unsigned int h, w, s, xcs, ycs, bps; + unsigned int stride_in_bytes; + int align; + + /* Treat align==0 like align==1 */ + if (!buf_align) buf_align = 1; + + /* Validate alignment (must be power of 2) */ + if (buf_align & (buf_align - 1)) goto fail; + + /* Treat align==0 like align==1 */ + if (!stride_align) stride_align = 1; + + /* Validate alignment (must be power of 2) */ + if (stride_align & (stride_align - 1)) goto fail; + + /* Get sample size for this format */ + switch (fmt) { + case VPX_IMG_FMT_RGB32: + case VPX_IMG_FMT_RGB32_LE: + case VPX_IMG_FMT_ARGB: + case VPX_IMG_FMT_ARGB_LE: bps = 32; break; + case VPX_IMG_FMT_RGB24: + case VPX_IMG_FMT_BGR24: bps = 24; break; + case VPX_IMG_FMT_RGB565: + case VPX_IMG_FMT_RGB565_LE: + case VPX_IMG_FMT_RGB555: + case VPX_IMG_FMT_RGB555_LE: + case VPX_IMG_FMT_UYVY: + case VPX_IMG_FMT_YUY2: + case VPX_IMG_FMT_YVYU: bps = 16; break; + case VPX_IMG_FMT_I420: + case VPX_IMG_FMT_YV12: + case VPX_IMG_FMT_VPXI420: + case VPX_IMG_FMT_VPXYV12: bps = 12; break; + case VPX_IMG_FMT_I422: + case VPX_IMG_FMT_I440: bps = 16; break; + case VPX_IMG_FMT_I444: bps = 24; break; + case VPX_IMG_FMT_I42016: bps = 24; break; + case VPX_IMG_FMT_I42216: + case VPX_IMG_FMT_I44016: bps = 32; break; + case VPX_IMG_FMT_I44416: bps = 48; break; + default: bps = 16; break; + } + + /* Get chroma shift values for this format */ + switch (fmt) { + case VPX_IMG_FMT_I420: + case VPX_IMG_FMT_YV12: + case VPX_IMG_FMT_VPXI420: + case VPX_IMG_FMT_VPXYV12: + case VPX_IMG_FMT_I422: + case VPX_IMG_FMT_I42016: + case VPX_IMG_FMT_I42216: xcs = 1; break; + default: xcs = 0; break; + } + + switch (fmt) { + case VPX_IMG_FMT_I420: + case VPX_IMG_FMT_I440: + case VPX_IMG_FMT_YV12: + case VPX_IMG_FMT_VPXI420: + case VPX_IMG_FMT_VPXYV12: + case VPX_IMG_FMT_I42016: + case VPX_IMG_FMT_I44016: ycs = 1; break; + default: ycs = 0; break; + } + + /* Calculate storage sizes. If the buffer was allocated externally, the width + * and height shouldn't be adjusted. */ + w = d_w; + h = d_h; + s = (fmt & VPX_IMG_FMT_PLANAR) ? w : bps * w / 8; + s = (s + stride_align - 1) & ~(stride_align - 1); + stride_in_bytes = (fmt & VPX_IMG_FMT_HIGHBITDEPTH) ? s * 2 : s; + + /* Allocate the new image */ + if (!img) { + img = (vpx_image_t *)calloc(1, sizeof(vpx_image_t)); + + if (!img) goto fail; + + img->self_allocd = 1; + } else { + memset(img, 0, sizeof(vpx_image_t)); + } + + img->img_data = img_data; + + if (!img_data) { + uint64_t alloc_size; + /* Calculate storage sizes given the chroma subsampling */ + align = (1 << xcs) - 1; + w = (d_w + align) & ~align; + align = (1 << ycs) - 1; + h = (d_h + align) & ~align; + + s = (fmt & VPX_IMG_FMT_PLANAR) ? w : bps * w / 8; + s = (s + stride_align - 1) & ~(stride_align - 1); + stride_in_bytes = (fmt & VPX_IMG_FMT_HIGHBITDEPTH) ? s * 2 : s; + alloc_size = (fmt & VPX_IMG_FMT_PLANAR) ? (uint64_t)h * s * bps / 8 + : (uint64_t)h * s; + + if (alloc_size != (size_t)alloc_size) goto fail; + + img->img_data = (uint8_t *)vpx_memalign(buf_align, (size_t)alloc_size); + img->img_data_owner = 1; + } + + if (!img->img_data) goto fail; + + img->fmt = fmt; + img->bit_depth = (fmt & VPX_IMG_FMT_HIGHBITDEPTH) ? 16 : 8; + img->w = w; + img->h = h; + img->x_chroma_shift = xcs; + img->y_chroma_shift = ycs; + img->bps = bps; + + /* Calculate strides */ + img->stride[VPX_PLANE_Y] = img->stride[VPX_PLANE_ALPHA] = stride_in_bytes; + img->stride[VPX_PLANE_U] = img->stride[VPX_PLANE_V] = stride_in_bytes >> xcs; + + /* Default viewport to entire image */ + if (!vpx_img_set_rect(img, 0, 0, d_w, d_h)) return img; + +fail: + vpx_img_free(img); + return NULL; +} + +vpx_image_t *vpx_img_alloc(vpx_image_t *img, vpx_img_fmt_t fmt, + unsigned int d_w, unsigned int d_h, + unsigned int align) { + return img_alloc_helper(img, fmt, d_w, d_h, align, align, NULL); +} + +vpx_image_t *vpx_img_wrap(vpx_image_t *img, vpx_img_fmt_t fmt, unsigned int d_w, + unsigned int d_h, unsigned int stride_align, + unsigned char *img_data) { + /* By setting buf_align = 1, we don't change buffer alignment in this + * function. */ + return img_alloc_helper(img, fmt, d_w, d_h, 1, stride_align, img_data); +} + +int vpx_img_set_rect(vpx_image_t *img, unsigned int x, unsigned int y, + unsigned int w, unsigned int h) { + unsigned char *data; + + if (x + w <= img->w && y + h <= img->h) { + img->d_w = w; + img->d_h = h; + + /* Calculate plane pointers */ + if (!(img->fmt & VPX_IMG_FMT_PLANAR)) { + img->planes[VPX_PLANE_PACKED] = + img->img_data + x * img->bps / 8 + y * img->stride[VPX_PLANE_PACKED]; + } else { + const int bytes_per_sample = + (img->fmt & VPX_IMG_FMT_HIGHBITDEPTH) ? 2 : 1; + data = img->img_data; + + if (img->fmt & VPX_IMG_FMT_HAS_ALPHA) { + img->planes[VPX_PLANE_ALPHA] = + data + x * bytes_per_sample + y * img->stride[VPX_PLANE_ALPHA]; + data += img->h * img->stride[VPX_PLANE_ALPHA]; + } + + img->planes[VPX_PLANE_Y] = + data + x * bytes_per_sample + y * img->stride[VPX_PLANE_Y]; + data += img->h * img->stride[VPX_PLANE_Y]; + + if (!(img->fmt & VPX_IMG_FMT_UV_FLIP)) { + img->planes[VPX_PLANE_U] = + data + (x >> img->x_chroma_shift) * bytes_per_sample + + (y >> img->y_chroma_shift) * img->stride[VPX_PLANE_U]; + data += (img->h >> img->y_chroma_shift) * img->stride[VPX_PLANE_U]; + img->planes[VPX_PLANE_V] = + data + (x >> img->x_chroma_shift) * bytes_per_sample + + (y >> img->y_chroma_shift) * img->stride[VPX_PLANE_V]; + } else { + img->planes[VPX_PLANE_V] = + data + (x >> img->x_chroma_shift) * bytes_per_sample + + (y >> img->y_chroma_shift) * img->stride[VPX_PLANE_V]; + data += (img->h >> img->y_chroma_shift) * img->stride[VPX_PLANE_V]; + img->planes[VPX_PLANE_U] = + data + (x >> img->x_chroma_shift) * bytes_per_sample + + (y >> img->y_chroma_shift) * img->stride[VPX_PLANE_U]; + } + } + return 0; + } + return -1; +} + +void vpx_img_flip(vpx_image_t *img) { + /* Note: In the calculation pointer adjustment calculation, we want the + * rhs to be promoted to a signed type. Section 6.3.1.8 of the ISO C99 + * standard indicates that if the adjustment parameter is unsigned, the + * stride parameter will be promoted to unsigned, causing errors when + * the lhs is a larger type than the rhs. + */ + img->planes[VPX_PLANE_Y] += (signed)(img->d_h - 1) * img->stride[VPX_PLANE_Y]; + img->stride[VPX_PLANE_Y] = -img->stride[VPX_PLANE_Y]; + + img->planes[VPX_PLANE_U] += (signed)((img->d_h >> img->y_chroma_shift) - 1) * + img->stride[VPX_PLANE_U]; + img->stride[VPX_PLANE_U] = -img->stride[VPX_PLANE_U]; + + img->planes[VPX_PLANE_V] += (signed)((img->d_h >> img->y_chroma_shift) - 1) * + img->stride[VPX_PLANE_V]; + img->stride[VPX_PLANE_V] = -img->stride[VPX_PLANE_V]; + + img->planes[VPX_PLANE_ALPHA] += + (signed)(img->d_h - 1) * img->stride[VPX_PLANE_ALPHA]; + img->stride[VPX_PLANE_ALPHA] = -img->stride[VPX_PLANE_ALPHA]; +} + +void vpx_img_free(vpx_image_t *img) { + if (img) { + if (img->img_data && img->img_data_owner) vpx_free(img->img_data); + + if (img->self_allocd) free(img); + } +} diff --git a/vpx/svc_context.h b/vpx/svc_context.h new file mode 100644 index 0000000..4627850 --- /dev/null +++ b/vpx/svc_context.h @@ -0,0 +1,120 @@ +/* + * Copyright (c) 2013 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +/** + * SvcContext - input parameters and state to encode a multi-layered + * spatial SVC frame + */ + +#ifndef VPX_SVC_CONTEXT_H_ +#define VPX_SVC_CONTEXT_H_ + +#include "./vp8cx.h" +#include "./vpx_encoder.h" + +#ifdef __cplusplus +extern "C" { +#endif + +typedef enum SVC_LOG_LEVEL { + SVC_LOG_ERROR, + SVC_LOG_INFO, + SVC_LOG_DEBUG +} SVC_LOG_LEVEL; + +typedef struct { + // public interface to svc_command options + int spatial_layers; // number of spatial layers + int temporal_layers; // number of temporal layers + int temporal_layering_mode; + SVC_LOG_LEVEL log_level; // amount of information to display + int log_print; // when set, printf log messages instead of returning the + // message with svc_get_message + int output_rc_stat; // for outputting rc stats + int speed; // speed setting for codec + int threads; + int aqmode; // turns on aq-mode=3 (cyclic_refresh): 0=off, 1=on. + // private storage for vpx_svc_encode + void *internal; +} SvcContext; + +#define OPTION_BUFFER_SIZE 1024 +#define COMPONENTS 4 // psnr & sse statistics maintained for total, y, u, v + +typedef struct SvcInternal { + char options[OPTION_BUFFER_SIZE]; // set by vpx_svc_set_options + + // values extracted from option, quantizers + vpx_svc_extra_cfg_t svc_params; + int enable_auto_alt_ref[VPX_SS_MAX_LAYERS]; + int bitrates[VPX_MAX_LAYERS]; + + // accumulated statistics + double psnr_sum[VPX_SS_MAX_LAYERS][COMPONENTS]; // total/Y/U/V + uint64_t sse_sum[VPX_SS_MAX_LAYERS][COMPONENTS]; + uint32_t bytes_sum[VPX_SS_MAX_LAYERS]; + + // codec encoding values + int width; // width of highest layer + int height; // height of highest layer + int kf_dist; // distance between keyframes + + // state variables + int psnr_pkt_received; + int layer; + int use_multiple_frame_contexts; + + char message_buffer[2048]; + vpx_codec_ctx_t *codec_ctx; +} SvcInternal_t; + +/** + * Set SVC options + * options are supplied as a single string separated by spaces + * Format: encoding-mode= + * layers= + * scaling-factors=/,/,... + * quantizers=,,... + */ +vpx_codec_err_t vpx_svc_set_options(SvcContext *svc_ctx, const char *options); + +/** + * initialize SVC encoding + */ +vpx_codec_err_t vpx_svc_init(SvcContext *svc_ctx, vpx_codec_ctx_t *codec_ctx, + vpx_codec_iface_t *iface, + vpx_codec_enc_cfg_t *cfg); +/** + * encode a frame of video with multiple layers + */ +vpx_codec_err_t vpx_svc_encode(SvcContext *svc_ctx, vpx_codec_ctx_t *codec_ctx, + struct vpx_image *rawimg, vpx_codec_pts_t pts, + int64_t duration, int deadline); + +/** + * finished with svc encoding, release allocated resources + */ +void vpx_svc_release(SvcContext *svc_ctx); + +/** + * dump accumulated statistics and reset accumulated values + */ +const char *vpx_svc_dump_statistics(SvcContext *svc_ctx); + +/** + * get status message from previous encode + */ +const char *vpx_svc_get_message(const SvcContext *svc_ctx); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VPX_SVC_CONTEXT_H_ diff --git a/vpx/vp8.h b/vpx/vp8.h new file mode 100644 index 0000000..059c9d0 --- /dev/null +++ b/vpx/vp8.h @@ -0,0 +1,153 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +/*!\defgroup vp8 VP8 + * \ingroup codecs + * VP8 is vpx's newest video compression algorithm that uses motion + * compensated prediction, Discrete Cosine Transform (DCT) coding of the + * prediction error signal and context dependent entropy coding techniques + * based on arithmetic principles. It features: + * - YUV 4:2:0 image format + * - Macro-block based coding (16x16 luma plus two 8x8 chroma) + * - 1/4 (1/8) pixel accuracy motion compensated prediction + * - 4x4 DCT transform + * - 128 level linear quantizer + * - In loop deblocking filter + * - Context-based entropy coding + * + * @{ + */ +/*!\file + * \brief Provides controls common to both the VP8 encoder and decoder. + */ +#ifndef VPX_VP8_H_ +#define VPX_VP8_H_ + +#include "./vpx_codec.h" +#include "./vpx_image.h" + +#ifdef __cplusplus +extern "C" { +#endif + +/*!\brief Control functions + * + * The set of macros define the control functions of VP8 interface + */ +enum vp8_com_control_id { + /*!\brief pass in an external frame into decoder to be used as reference frame + */ + VP8_SET_REFERENCE = 1, + VP8_COPY_REFERENCE = 2, /**< get a copy of reference frame from the decoder */ + VP8_SET_POSTPROC = 3, /**< set the decoder's post processing settings */ + VP8_SET_DBG_COLOR_REF_FRAME = 4, /**< \deprecated */ + VP8_SET_DBG_COLOR_MB_MODES = 5, /**< \deprecated */ + VP8_SET_DBG_COLOR_B_MODES = 6, /**< \deprecated */ + VP8_SET_DBG_DISPLAY_MV = 7, /**< \deprecated */ + + /* TODO(jkoleszar): The encoder incorrectly reuses some of these values (5+) + * for its control ids. These should be migrated to something like the + * VP8_DECODER_CTRL_ID_START range next time we're ready to break the ABI. + */ + VP9_GET_REFERENCE = 128, /**< get a pointer to a reference frame */ + VP8_COMMON_CTRL_ID_MAX, + VP8_DECODER_CTRL_ID_START = 256 +}; + +/*!\brief post process flags + * + * The set of macros define VP8 decoder post processing flags + */ +enum vp8_postproc_level { + VP8_NOFILTERING = 0, + VP8_DEBLOCK = 1 << 0, + VP8_DEMACROBLOCK = 1 << 1, + VP8_ADDNOISE = 1 << 2, + VP8_DEBUG_TXT_FRAME_INFO = 1 << 3, /**< print frame information */ + VP8_DEBUG_TXT_MBLK_MODES = + 1 << 4, /**< print macro block modes over each macro block */ + VP8_DEBUG_TXT_DC_DIFF = 1 << 5, /**< print dc diff for each macro block */ + VP8_DEBUG_TXT_RATE_INFO = 1 << 6, /**< print video rate info (encoder only) */ + VP8_MFQE = 1 << 10 +}; + +/*!\brief post process flags + * + * This define a structure that describe the post processing settings. For + * the best objective measure (using the PSNR metric) set post_proc_flag + * to VP8_DEBLOCK and deblocking_level to 1. + */ + +typedef struct vp8_postproc_cfg { + /*!\brief the types of post processing to be done, should be combination of + * "vp8_postproc_level" */ + int post_proc_flag; + int deblocking_level; /**< the strength of deblocking, valid range [0, 16] */ + int noise_level; /**< the strength of additive noise, valid range [0, 16] */ +} vp8_postproc_cfg_t; + +/*!\brief reference frame type + * + * The set of macros define the type of VP8 reference frames + */ +typedef enum vpx_ref_frame_type { + VP8_LAST_FRAME = 1, + VP8_GOLD_FRAME = 2, + VP8_ALTR_FRAME = 4 +} vpx_ref_frame_type_t; + +/*!\brief reference frame data struct + * + * Define the data struct to access vp8 reference frames. + */ +typedef struct vpx_ref_frame { + vpx_ref_frame_type_t frame_type; /**< which reference frame */ + vpx_image_t img; /**< reference frame data in image format */ +} vpx_ref_frame_t; + +/*!\brief VP9 specific reference frame data struct + * + * Define the data struct to access vp9 reference frames. + */ +typedef struct vp9_ref_frame { + int idx; /**< frame index to get (input) */ + vpx_image_t img; /**< img structure to populate (output) */ +} vp9_ref_frame_t; + +/*!\cond */ +/*!\brief vp8 decoder control function parameter type + * + * defines the data type for each of VP8 decoder control function requires + */ +VPX_CTRL_USE_TYPE(VP8_SET_REFERENCE, vpx_ref_frame_t *) +#define VPX_CTRL_VP8_SET_REFERENCE +VPX_CTRL_USE_TYPE(VP8_COPY_REFERENCE, vpx_ref_frame_t *) +#define VPX_CTRL_VP8_COPY_REFERENCE +VPX_CTRL_USE_TYPE(VP8_SET_POSTPROC, vp8_postproc_cfg_t *) +#define VPX_CTRL_VP8_SET_POSTPROC +VPX_CTRL_USE_TYPE_DEPRECATED(VP8_SET_DBG_COLOR_REF_FRAME, int) +#define VPX_CTRL_VP8_SET_DBG_COLOR_REF_FRAME +VPX_CTRL_USE_TYPE_DEPRECATED(VP8_SET_DBG_COLOR_MB_MODES, int) +#define VPX_CTRL_VP8_SET_DBG_COLOR_MB_MODES +VPX_CTRL_USE_TYPE_DEPRECATED(VP8_SET_DBG_COLOR_B_MODES, int) +#define VPX_CTRL_VP8_SET_DBG_COLOR_B_MODES +VPX_CTRL_USE_TYPE_DEPRECATED(VP8_SET_DBG_DISPLAY_MV, int) +#define VPX_CTRL_VP8_SET_DBG_DISPLAY_MV +VPX_CTRL_USE_TYPE(VP9_GET_REFERENCE, vp9_ref_frame_t *) +#define VPX_CTRL_VP9_GET_REFERENCE + +/*!\endcond */ +/*! @} - end defgroup vp8 */ + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VPX_VP8_H_ diff --git a/vpx/vp8cx.h b/vpx/vp8cx.h new file mode 100644 index 0000000..c21b8b6 --- /dev/null +++ b/vpx/vp8cx.h @@ -0,0 +1,876 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ +#ifndef VPX_VP8CX_H_ +#define VPX_VP8CX_H_ + +/*!\defgroup vp8_encoder WebM VP8/VP9 Encoder + * \ingroup vp8 + * + * @{ + */ +#include "./vp8.h" +#include "./vpx_encoder.h" + +/*!\file + * \brief Provides definitions for using VP8 or VP9 encoder algorithm within the + * vpx Codec Interface. + */ + +#ifdef __cplusplus +extern "C" { +#endif + +/*!\name Algorithm interface for VP8 + * + * This interface provides the capability to encode raw VP8 streams. + * @{ + */ +extern vpx_codec_iface_t vpx_codec_vp8_cx_algo; +extern vpx_codec_iface_t *vpx_codec_vp8_cx(void); +/*!@} - end algorithm interface member group*/ + +/*!\name Algorithm interface for VP9 + * + * This interface provides the capability to encode raw VP9 streams. + * @{ + */ +extern vpx_codec_iface_t vpx_codec_vp9_cx_algo; +extern vpx_codec_iface_t *vpx_codec_vp9_cx(void); +/*!@} - end algorithm interface member group*/ + +/* + * Algorithm Flags + */ + +/*!\brief Don't reference the last frame + * + * When this flag is set, the encoder will not use the last frame as a + * predictor. When not set, the encoder will choose whether to use the + * last frame or not automatically. + */ +#define VP8_EFLAG_NO_REF_LAST (1 << 16) + +/*!\brief Don't reference the golden frame + * + * When this flag is set, the encoder will not use the golden frame as a + * predictor. When not set, the encoder will choose whether to use the + * golden frame or not automatically. + */ +#define VP8_EFLAG_NO_REF_GF (1 << 17) + +/*!\brief Don't reference the alternate reference frame + * + * When this flag is set, the encoder will not use the alt ref frame as a + * predictor. When not set, the encoder will choose whether to use the + * alt ref frame or not automatically. + */ +#define VP8_EFLAG_NO_REF_ARF (1 << 21) + +/*!\brief Don't update the last frame + * + * When this flag is set, the encoder will not update the last frame with + * the contents of the current frame. + */ +#define VP8_EFLAG_NO_UPD_LAST (1 << 18) + +/*!\brief Don't update the golden frame + * + * When this flag is set, the encoder will not update the golden frame with + * the contents of the current frame. + */ +#define VP8_EFLAG_NO_UPD_GF (1 << 22) + +/*!\brief Don't update the alternate reference frame + * + * When this flag is set, the encoder will not update the alt ref frame with + * the contents of the current frame. + */ +#define VP8_EFLAG_NO_UPD_ARF (1 << 23) + +/*!\brief Force golden frame update + * + * When this flag is set, the encoder copy the contents of the current frame + * to the golden frame buffer. + */ +#define VP8_EFLAG_FORCE_GF (1 << 19) + +/*!\brief Force alternate reference frame update + * + * When this flag is set, the encoder copy the contents of the current frame + * to the alternate reference frame buffer. + */ +#define VP8_EFLAG_FORCE_ARF (1 << 24) + +/*!\brief Disable entropy update + * + * When this flag is set, the encoder will not update its internal entropy + * model based on the entropy of this frame. + */ +#define VP8_EFLAG_NO_UPD_ENTROPY (1 << 20) + +/*!\brief VPx encoder control functions + * + * This set of macros define the control functions available for VPx + * encoder interface. + * + * \sa #vpx_codec_control + */ +enum vp8e_enc_control_id { + /*!\brief Codec control function to pass an ROI map to encoder. + * + * Supported in codecs: VP8, VP9 + */ + VP8E_SET_ROI_MAP = 8, + + /*!\brief Codec control function to pass an Active map to encoder. + * + * Supported in codecs: VP8, VP9 + */ + VP8E_SET_ACTIVEMAP, + + /*!\brief Codec control function to set encoder scaling mode. + * + * Supported in codecs: VP8, VP9 + */ + VP8E_SET_SCALEMODE = 11, + + /*!\brief Codec control function to set encoder internal speed settings. + * + * Changes in this value influences, among others, the encoder's selection + * of motion estimation methods. Values greater than 0 will increase encoder + * speed at the expense of quality. + * + * \note Valid range for VP8: -16..16 + * \note Valid range for VP9: -8..8 + * + * Supported in codecs: VP8, VP9 + */ + VP8E_SET_CPUUSED = 13, + + /*!\brief Codec control function to enable automatic set and use alf frames. + * + * Supported in codecs: VP8, VP9 + */ + VP8E_SET_ENABLEAUTOALTREF, + + /*!\brief control function to set noise sensitivity + * + * 0: off, 1: OnYOnly, 2: OnYUV, + * 3: OnYUVAggressive, 4: Adaptive + * + * Supported in codecs: VP8 + */ + VP8E_SET_NOISE_SENSITIVITY, + + /*!\brief Codec control function to set sharpness. + * + * Supported in codecs: VP8, VP9 + */ + VP8E_SET_SHARPNESS, + + /*!\brief Codec control function to set the threshold for MBs treated static. + * + * Supported in codecs: VP8, VP9 + */ + VP8E_SET_STATIC_THRESHOLD, + + /*!\brief Codec control function to set the number of token partitions. + * + * Supported in codecs: VP8 + */ + VP8E_SET_TOKEN_PARTITIONS, + + /*!\brief Codec control function to get last quantizer chosen by the encoder. + * + * Return value uses internal quantizer scale defined by the codec. + * + * Supported in codecs: VP8, VP9 + */ + VP8E_GET_LAST_QUANTIZER, + + /*!\brief Codec control function to get last quantizer chosen by the encoder. + * + * Return value uses the 0..63 scale as used by the rc_*_quantizer config + * parameters. + * + * Supported in codecs: VP8, VP9 + */ + VP8E_GET_LAST_QUANTIZER_64, + + /*!\brief Codec control function to set the max no of frames to create arf. + * + * Supported in codecs: VP8, VP9 + */ + VP8E_SET_ARNR_MAXFRAMES, + + /*!\brief Codec control function to set the filter strength for the arf. + * + * Supported in codecs: VP8, VP9 + */ + VP8E_SET_ARNR_STRENGTH, + + /*!\deprecated control function to set the filter type to use for the arf. */ + VP8E_SET_ARNR_TYPE, + + /*!\brief Codec control function to set visual tuning. + * + * Supported in codecs: VP8, VP9 + */ + VP8E_SET_TUNING, + + /*!\brief Codec control function to set constrained quality level. + * + * \attention For this value to be used vpx_codec_enc_cfg_t::g_usage must be + * set to #VPX_CQ. + * \note Valid range: 0..63 + * + * Supported in codecs: VP8, VP9 + */ + VP8E_SET_CQ_LEVEL, + + /*!\brief Codec control function to set Max data rate for Intra frames. + * + * This value controls additional clamping on the maximum size of a + * keyframe. It is expressed as a percentage of the average + * per-frame bitrate, with the special (and default) value 0 meaning + * unlimited, or no additional clamping beyond the codec's built-in + * algorithm. + * + * For example, to allocate no more than 4.5 frames worth of bitrate + * to a keyframe, set this to 450. + * + * Supported in codecs: VP8, VP9 + */ + VP8E_SET_MAX_INTRA_BITRATE_PCT, + + /*!\brief Codec control function to set reference and update frame flags. + * + * Supported in codecs: VP8 + */ + VP8E_SET_FRAME_FLAGS, + + /*!\brief Codec control function to set max data rate for Inter frames. + * + * This value controls additional clamping on the maximum size of an + * inter frame. It is expressed as a percentage of the average + * per-frame bitrate, with the special (and default) value 0 meaning + * unlimited, or no additional clamping beyond the codec's built-in + * algorithm. + * + * For example, to allow no more than 4.5 frames worth of bitrate + * to an inter frame, set this to 450. + * + * Supported in codecs: VP9 + */ + VP9E_SET_MAX_INTER_BITRATE_PCT, + + /*!\brief Boost percentage for Golden Frame in CBR mode. + * + * This value controls the amount of boost given to Golden Frame in + * CBR mode. It is expressed as a percentage of the average + * per-frame bitrate, with the special (and default) value 0 meaning + * the feature is off, i.e., no golden frame boost in CBR mode and + * average bitrate target is used. + * + * For example, to allow 100% more bits, i.e, 2X, in a golden frame + * than average frame, set this to 100. + * + * Supported in codecs: VP9 + */ + VP9E_SET_GF_CBR_BOOST_PCT, + + /*!\brief Codec control function to set the temporal layer id. + * + * For temporal scalability: this control allows the application to set the + * layer id for each frame to be encoded. Note that this control must be set + * for every frame prior to encoding. The usage of this control function + * supersedes the internal temporal pattern counter, which is now deprecated. + * + * Supported in codecs: VP8 + */ + VP8E_SET_TEMPORAL_LAYER_ID, + + /*!\brief Codec control function to set encoder screen content mode. + * + * 0: off, 1: On, 2: On with more aggressive rate control. + * + * Supported in codecs: VP8 + */ + VP8E_SET_SCREEN_CONTENT_MODE, + + /*!\brief Codec control function to set lossless encoding mode. + * + * VP9 can operate in lossless encoding mode, in which the bitstream + * produced will be able to decode and reconstruct a perfect copy of + * input source. This control function provides a mean to switch encoder + * into lossless coding mode(1) or normal coding mode(0) that may be lossy. + * 0 = lossy coding mode + * 1 = lossless coding mode + * + * By default, encoder operates in normal coding mode (maybe lossy). + * + * Supported in codecs: VP9 + */ + VP9E_SET_LOSSLESS, + + /*!\brief Codec control function to set number of tile columns. + * + * In encoding and decoding, VP9 allows an input image frame be partitioned + * into separated vertical tile columns, which can be encoded or decoded + * independently. This enables easy implementation of parallel encoding and + * decoding. This control requests the encoder to use column tiles in + * encoding an input frame, with number of tile columns (in Log2 unit) as + * the parameter: + * 0 = 1 tile column + * 1 = 2 tile columns + * 2 = 4 tile columns + * ..... + * n = 2**n tile columns + * The requested tile columns will be capped by the encoder based on image + * size limitations (The minimum width of a tile column is 256 pixels, the + * maximum is 4096). + * + * By default, the value is 6, i.e., the maximum number of tiles supported by + * the resolution. + * + * Supported in codecs: VP9 + */ + VP9E_SET_TILE_COLUMNS, + + /*!\brief Codec control function to set number of tile rows. + * + * In encoding and decoding, VP9 allows an input image frame be partitioned + * into separated horizontal tile rows. Tile rows are encoded or decoded + * sequentially. Even though encoding/decoding of later tile rows depends on + * earlier ones, this allows the encoder to output data packets for tile rows + * prior to completely processing all tile rows in a frame, thereby reducing + * the latency in processing between input and output. The parameter + * for this control describes the number of tile rows, which has a valid + * range [0, 2]: + * 0 = 1 tile row + * 1 = 2 tile rows + * 2 = 4 tile rows + * + * By default, the value is 0, i.e. one single row tile for entire image. + * + * Supported in codecs: VP9 + */ + VP9E_SET_TILE_ROWS, + + /*!\brief Codec control function to enable frame parallel decoding feature. + * + * VP9 has a bitstream feature to reduce decoding dependency between frames + * by turning off backward update of probability context used in encoding + * and decoding. This allows staged parallel processing of more than one + * video frame in the decoder. This control function provides a means to + * turn this feature on or off for bitstreams produced by encoder. + * + * By default, this feature is on. + * + * Supported in codecs: VP9 + */ + VP9E_SET_FRAME_PARALLEL_DECODING, + + /*!\brief Codec control function to set adaptive quantization mode. + * + * VP9 has a segment based feature that allows encoder to adaptively change + * quantization parameter for each segment within a frame to improve the + * subjective quality. This control makes encoder operate in one of the + * several AQ_modes supported. + * + * By default, encoder operates with AQ_Mode 0(adaptive quantization off). + * + * Supported in codecs: VP9 + */ + VP9E_SET_AQ_MODE, + + /*!\brief Codec control function to enable/disable periodic Q boost. + * + * One VP9 encoder speed feature is to enable quality boost by lowering + * frame level Q periodically. This control function provides a mean to + * turn on/off this feature. + * 0 = off + * 1 = on + * + * By default, the encoder is allowed to use this feature for appropriate + * encoding modes. + * + * Supported in codecs: VP9 + */ + VP9E_SET_FRAME_PERIODIC_BOOST, + + /*!\brief Codec control function to set noise sensitivity. + * + * 0: off, 1: On(YOnly), 2: For SVC only, on top two spatial layers(YOnly) + * + * Supported in codecs: VP9 + */ + VP9E_SET_NOISE_SENSITIVITY, + + /*!\brief Codec control function to turn on/off SVC in encoder. + * \note Return value is VPX_CODEC_INVALID_PARAM if the encoder does not + * support SVC in its current encoding mode + * 0: off, 1: on + * + * Supported in codecs: VP9 + */ + VP9E_SET_SVC, + + /*!\brief Codec control function to set parameters for SVC. + * \note Parameters contain min_q, max_q, scaling factor for each of the + * SVC layers. + * + * Supported in codecs: VP9 + */ + VP9E_SET_SVC_PARAMETERS, + + /*!\brief Codec control function to set svc layer for spatial and temporal. + * \note Valid ranges: 0..#vpx_codec_enc_cfg::ss_number_layers for spatial + * layer and 0..#vpx_codec_enc_cfg::ts_number_layers for + * temporal layer. + * + * Supported in codecs: VP9 + */ + VP9E_SET_SVC_LAYER_ID, + + /*!\brief Codec control function to set content type. + * \note Valid parameter range: + * VP9E_CONTENT_DEFAULT = Regular video content (Default) + * VP9E_CONTENT_SCREEN = Screen capture content + * VP9E_CONTENT_FILM = Film content: improves grain retention + * + * Supported in codecs: VP9 + */ + VP9E_SET_TUNE_CONTENT, + + /*!\brief Codec control function to get svc layer ID. + * \note The layer ID returned is for the data packet from the registered + * callback function. + * + * Supported in codecs: VP9 + */ + VP9E_GET_SVC_LAYER_ID, + + /*!\brief Codec control function to register callback to get per layer packet. + * \note Parameter for this control function is a structure with a callback + * function and a pointer to private data used by the callback. + * + * Supported in codecs: VP9 + */ + VP9E_REGISTER_CX_CALLBACK, + + /*!\brief Codec control function to set color space info. + * \note Valid ranges: 0..7, default is "UNKNOWN". + * 0 = UNKNOWN, + * 1 = BT_601 + * 2 = BT_709 + * 3 = SMPTE_170 + * 4 = SMPTE_240 + * 5 = BT_2020 + * 6 = RESERVED + * 7 = SRGB + * + * Supported in codecs: VP9 + */ + VP9E_SET_COLOR_SPACE, + + /*!\brief Codec control function to set temporal layering mode. + * \note Valid ranges: 0..3, default is "0" + * (VP9E_TEMPORAL_LAYERING_MODE_NOLAYERING). + * 0 = VP9E_TEMPORAL_LAYERING_MODE_NOLAYERING + * 1 = VP9E_TEMPORAL_LAYERING_MODE_BYPASS + * 2 = VP9E_TEMPORAL_LAYERING_MODE_0101 + * 3 = VP9E_TEMPORAL_LAYERING_MODE_0212 + * + * Supported in codecs: VP9 + */ + VP9E_SET_TEMPORAL_LAYERING_MODE, + + /*!\brief Codec control function to set minimum interval between GF/ARF frames + * + * By default the value is set as 4. + * + * Supported in codecs: VP9 + */ + VP9E_SET_MIN_GF_INTERVAL, + + /*!\brief Codec control function to set minimum interval between GF/ARF frames + * + * By default the value is set as 16. + * + * Supported in codecs: VP9 + */ + VP9E_SET_MAX_GF_INTERVAL, + + /*!\brief Codec control function to get an Active map back from the encoder. + * + * Supported in codecs: VP9 + */ + VP9E_GET_ACTIVEMAP, + + /*!\brief Codec control function to set color range bit. + * \note Valid ranges: 0..1, default is 0 + * 0 = Limited range (16..235 or HBD equivalent) + * 1 = Full range (0..255 or HBD equivalent) + * + * Supported in codecs: VP9 + */ + VP9E_SET_COLOR_RANGE, + + /*!\brief Codec control function to set the frame flags and buffer indices + * for spatial layers. The frame flags and buffer indices are set using the + * struct #vpx_svc_ref_frame_config defined below. + * + * Supported in codecs: VP9 + */ + VP9E_SET_SVC_REF_FRAME_CONFIG, + + /*!\brief Codec control function to set intended rendering image size. + * + * By default, this is identical to the image size in pixels. + * + * Supported in codecs: VP9 + */ + VP9E_SET_RENDER_SIZE, + + /*!\brief Codec control function to set target level. + * + * 255: off (default); 0: only keep level stats; 10: target for level 1.0; + * 11: target for level 1.1; ... 62: target for level 6.2 + * + * Supported in codecs: VP9 + */ + VP9E_SET_TARGET_LEVEL, + + /*!\brief Codec control function to set row level multi-threading. + * + * 0 : off, 1 : on + * + * Supported in codecs: VP9 + */ + VP9E_SET_ROW_MT, + + /*!\brief Codec control function to get bitstream level. + * + * Supported in codecs: VP9 + */ + VP9E_GET_LEVEL, + + /*!\brief Codec control function to enable/disable special mode for altref + * adaptive quantization. You can use it with --aq-mode concurrently. + * + * Enable special adaptive quantization for altref frames based on their + * expected prediction quality for the future frames. + * + * Supported in codecs: VP9 + */ + VP9E_SET_ALT_REF_AQ, + + /*!\brief Boost percentage for Golden Frame in CBR mode. + * + * This value controls the amount of boost given to Golden Frame in + * CBR mode. It is expressed as a percentage of the average + * per-frame bitrate, with the special (and default) value 0 meaning + * the feature is off, i.e., no golden frame boost in CBR mode and + * average bitrate target is used. + * + * For example, to allow 100% more bits, i.e, 2X, in a golden frame + * than average frame, set this to 100. + * + * Supported in codecs: VP8 + */ + VP8E_SET_GF_CBR_BOOST_PCT, + + /*!\brief Codec control function to enable the extreme motion vector unit test + * in VP9. Please note that this is only used in motion vector unit test. + * + * 0 : off, 1 : MAX_EXTREME_MV, 2 : MIN_EXTREME_MV + * + * Supported in codecs: VP9 + */ + VP9E_ENABLE_MOTION_VECTOR_UNIT_TEST, +}; + +/*!\brief vpx 1-D scaling mode + * + * This set of constants define 1-D vpx scaling modes + */ +typedef enum vpx_scaling_mode_1d { + VP8E_NORMAL = 0, + VP8E_FOURFIVE = 1, + VP8E_THREEFIVE = 2, + VP8E_ONETWO = 3 +} VPX_SCALING_MODE; + +/*!\brief Temporal layering mode enum for VP9 SVC. + * + * This set of macros define the different temporal layering modes. + * Supported codecs: VP9 (in SVC mode) + * + */ +typedef enum vp9e_temporal_layering_mode { + /*!\brief No temporal layering. + * Used when only spatial layering is used. + */ + VP9E_TEMPORAL_LAYERING_MODE_NOLAYERING = 0, + + /*!\brief Bypass mode. + * Used when application needs to control temporal layering. + * This will only work when the number of spatial layers equals 1. + */ + VP9E_TEMPORAL_LAYERING_MODE_BYPASS = 1, + + /*!\brief 0-1-0-1... temporal layering scheme with two temporal layers. + */ + VP9E_TEMPORAL_LAYERING_MODE_0101 = 2, + + /*!\brief 0-2-1-2... temporal layering scheme with three temporal layers. + */ + VP9E_TEMPORAL_LAYERING_MODE_0212 = 3 +} VP9E_TEMPORAL_LAYERING_MODE; + +/*!\brief vpx region of interest map + * + * These defines the data structures for the region of interest map + * + */ + +typedef struct vpx_roi_map { + /*! An id between 0 and 3 for each 16x16 region within a frame. */ + unsigned char *roi_map; + unsigned int rows; /**< Number of rows. */ + unsigned int cols; /**< Number of columns. */ + // TODO(paulwilkins): broken for VP9 which has 8 segments + // q and loop filter deltas for each segment + // (see MAX_MB_SEGMENTS) + int delta_q[4]; /**< Quantizer deltas. */ + int delta_lf[4]; /**< Loop filter deltas. */ + /*! Static breakout threshold for each segment. */ + unsigned int static_threshold[4]; +} vpx_roi_map_t; + +/*!\brief vpx active region map + * + * These defines the data structures for active region map + * + */ + +typedef struct vpx_active_map { + /*!\brief specify an on (1) or off (0) each 16x16 region within a frame */ + unsigned char *active_map; + unsigned int rows; /**< number of rows */ + unsigned int cols; /**< number of cols */ +} vpx_active_map_t; + +/*!\brief vpx image scaling mode + * + * This defines the data structure for image scaling mode + * + */ +typedef struct vpx_scaling_mode { + VPX_SCALING_MODE h_scaling_mode; /**< horizontal scaling mode */ + VPX_SCALING_MODE v_scaling_mode; /**< vertical scaling mode */ +} vpx_scaling_mode_t; + +/*!\brief VP8 token partition mode + * + * This defines VP8 partitioning mode for compressed data, i.e., the number of + * sub-streams in the bitstream. Used for parallelized decoding. + * + */ + +typedef enum { + VP8_ONE_TOKENPARTITION = 0, + VP8_TWO_TOKENPARTITION = 1, + VP8_FOUR_TOKENPARTITION = 2, + VP8_EIGHT_TOKENPARTITION = 3 +} vp8e_token_partitions; + +/*!brief VP9 encoder content type */ +typedef enum { + VP9E_CONTENT_DEFAULT, + VP9E_CONTENT_SCREEN, + VP9E_CONTENT_FILM, + VP9E_CONTENT_INVALID +} vp9e_tune_content; + +/*!\brief VP8 model tuning parameters + * + * Changes the encoder to tune for certain types of input material. + * + */ +typedef enum { VP8_TUNE_PSNR, VP8_TUNE_SSIM } vp8e_tuning; + +/*!\brief vp9 svc layer parameters + * + * This defines the spatial and temporal layer id numbers for svc encoding. + * This is used with the #VP9E_SET_SVC_LAYER_ID control to set the spatial and + * temporal layer id for the current frame. + * + */ +typedef struct vpx_svc_layer_id { + int spatial_layer_id; /**< Spatial layer id number. */ + int temporal_layer_id; /**< Temporal layer id number. */ +} vpx_svc_layer_id_t; + +/*!\brief vp9 svc frame flag parameters. + * + * This defines the frame flags and buffer indices for each spatial layer for + * svc encoding. + * This is used with the #VP9E_SET_SVC_REF_FRAME_CONFIG control to set frame + * flags and buffer indices for each spatial layer for the current (super)frame. + * + */ +typedef struct vpx_svc_ref_frame_config { + int frame_flags[VPX_TS_MAX_LAYERS]; /**< Frame flags. */ + int lst_fb_idx[VPX_TS_MAX_LAYERS]; /**< Last buffer index. */ + int gld_fb_idx[VPX_TS_MAX_LAYERS]; /**< Golden buffer index. */ + int alt_fb_idx[VPX_TS_MAX_LAYERS]; /**< Altref buffer index. */ +} vpx_svc_ref_frame_config_t; + +/*!\cond */ +/*!\brief VP8 encoder control function parameter type + * + * Defines the data types that VP8E control functions take. Note that + * additional common controls are defined in vp8.h + * + */ + +VPX_CTRL_USE_TYPE(VP8E_SET_FRAME_FLAGS, int) +#define VPX_CTRL_VP8E_SET_FRAME_FLAGS +VPX_CTRL_USE_TYPE(VP8E_SET_TEMPORAL_LAYER_ID, int) +#define VPX_CTRL_VP8E_SET_TEMPORAL_LAYER_ID +VPX_CTRL_USE_TYPE(VP8E_SET_ROI_MAP, vpx_roi_map_t *) +#define VPX_CTRL_VP8E_SET_ROI_MAP +VPX_CTRL_USE_TYPE(VP8E_SET_ACTIVEMAP, vpx_active_map_t *) +#define VPX_CTRL_VP8E_SET_ACTIVEMAP +VPX_CTRL_USE_TYPE(VP8E_SET_SCALEMODE, vpx_scaling_mode_t *) +#define VPX_CTRL_VP8E_SET_SCALEMODE + +VPX_CTRL_USE_TYPE(VP9E_SET_SVC, int) +#define VPX_CTRL_VP9E_SET_SVC +VPX_CTRL_USE_TYPE(VP9E_SET_SVC_PARAMETERS, void *) +#define VPX_CTRL_VP9E_SET_SVC_PARAMETERS +VPX_CTRL_USE_TYPE(VP9E_REGISTER_CX_CALLBACK, void *) +#define VPX_CTRL_VP9E_REGISTER_CX_CALLBACK +VPX_CTRL_USE_TYPE(VP9E_SET_SVC_LAYER_ID, vpx_svc_layer_id_t *) +#define VPX_CTRL_VP9E_SET_SVC_LAYER_ID + +VPX_CTRL_USE_TYPE(VP8E_SET_CPUUSED, int) +#define VPX_CTRL_VP8E_SET_CPUUSED +VPX_CTRL_USE_TYPE(VP8E_SET_ENABLEAUTOALTREF, unsigned int) +#define VPX_CTRL_VP8E_SET_ENABLEAUTOALTREF +VPX_CTRL_USE_TYPE(VP8E_SET_NOISE_SENSITIVITY, unsigned int) +#define VPX_CTRL_VP8E_SET_NOISE_SENSITIVITY +VPX_CTRL_USE_TYPE(VP8E_SET_SHARPNESS, unsigned int) +#define VPX_CTRL_VP8E_SET_SHARPNESS +VPX_CTRL_USE_TYPE(VP8E_SET_STATIC_THRESHOLD, unsigned int) +#define VPX_CTRL_VP8E_SET_STATIC_THRESHOLD +VPX_CTRL_USE_TYPE(VP8E_SET_TOKEN_PARTITIONS, int) /* vp8e_token_partitions */ +#define VPX_CTRL_VP8E_SET_TOKEN_PARTITIONS + +VPX_CTRL_USE_TYPE(VP8E_SET_ARNR_MAXFRAMES, unsigned int) +#define VPX_CTRL_VP8E_SET_ARNR_MAXFRAMES +VPX_CTRL_USE_TYPE(VP8E_SET_ARNR_STRENGTH, unsigned int) +#define VPX_CTRL_VP8E_SET_ARNR_STRENGTH +VPX_CTRL_USE_TYPE_DEPRECATED(VP8E_SET_ARNR_TYPE, unsigned int) +#define VPX_CTRL_VP8E_SET_ARNR_TYPE +VPX_CTRL_USE_TYPE(VP8E_SET_TUNING, int) /* vp8e_tuning */ +#define VPX_CTRL_VP8E_SET_TUNING +VPX_CTRL_USE_TYPE(VP8E_SET_CQ_LEVEL, unsigned int) +#define VPX_CTRL_VP8E_SET_CQ_LEVEL + +VPX_CTRL_USE_TYPE(VP9E_SET_TILE_COLUMNS, int) +#define VPX_CTRL_VP9E_SET_TILE_COLUMNS +VPX_CTRL_USE_TYPE(VP9E_SET_TILE_ROWS, int) +#define VPX_CTRL_VP9E_SET_TILE_ROWS + +VPX_CTRL_USE_TYPE(VP8E_GET_LAST_QUANTIZER, int *) +#define VPX_CTRL_VP8E_GET_LAST_QUANTIZER +VPX_CTRL_USE_TYPE(VP8E_GET_LAST_QUANTIZER_64, int *) +#define VPX_CTRL_VP8E_GET_LAST_QUANTIZER_64 +VPX_CTRL_USE_TYPE(VP9E_GET_SVC_LAYER_ID, vpx_svc_layer_id_t *) +#define VPX_CTRL_VP9E_GET_SVC_LAYER_ID + +VPX_CTRL_USE_TYPE(VP8E_SET_MAX_INTRA_BITRATE_PCT, unsigned int) +#define VPX_CTRL_VP8E_SET_MAX_INTRA_BITRATE_PCT +VPX_CTRL_USE_TYPE(VP8E_SET_MAX_INTER_BITRATE_PCT, unsigned int) +#define VPX_CTRL_VP8E_SET_MAX_INTER_BITRATE_PCT + +VPX_CTRL_USE_TYPE(VP8E_SET_GF_CBR_BOOST_PCT, unsigned int) +#define VPX_CTRL_VP8E_SET_GF_CBR_BOOST_PCT + +VPX_CTRL_USE_TYPE(VP8E_SET_SCREEN_CONTENT_MODE, unsigned int) +#define VPX_CTRL_VP8E_SET_SCREEN_CONTENT_MODE + +VPX_CTRL_USE_TYPE(VP9E_SET_GF_CBR_BOOST_PCT, unsigned int) +#define VPX_CTRL_VP9E_SET_GF_CBR_BOOST_PCT + +VPX_CTRL_USE_TYPE(VP9E_SET_LOSSLESS, unsigned int) +#define VPX_CTRL_VP9E_SET_LOSSLESS + +VPX_CTRL_USE_TYPE(VP9E_SET_FRAME_PARALLEL_DECODING, unsigned int) +#define VPX_CTRL_VP9E_SET_FRAME_PARALLEL_DECODING + +VPX_CTRL_USE_TYPE(VP9E_SET_AQ_MODE, unsigned int) +#define VPX_CTRL_VP9E_SET_AQ_MODE + +VPX_CTRL_USE_TYPE(VP9E_SET_ALT_REF_AQ, int) +#define VPX_CTRL_VP9E_SET_ALT_REF_AQ + +VPX_CTRL_USE_TYPE(VP9E_SET_FRAME_PERIODIC_BOOST, unsigned int) +#define VPX_CTRL_VP9E_SET_FRAME_PERIODIC_BOOST + +VPX_CTRL_USE_TYPE(VP9E_SET_NOISE_SENSITIVITY, unsigned int) +#define VPX_CTRL_VP9E_SET_NOISE_SENSITIVITY + +VPX_CTRL_USE_TYPE(VP9E_SET_TUNE_CONTENT, int) /* vp9e_tune_content */ +#define VPX_CTRL_VP9E_SET_TUNE_CONTENT + +VPX_CTRL_USE_TYPE(VP9E_SET_COLOR_SPACE, int) +#define VPX_CTRL_VP9E_SET_COLOR_SPACE + +VPX_CTRL_USE_TYPE(VP9E_SET_MIN_GF_INTERVAL, unsigned int) +#define VPX_CTRL_VP9E_SET_MIN_GF_INTERVAL + +VPX_CTRL_USE_TYPE(VP9E_SET_MAX_GF_INTERVAL, unsigned int) +#define VPX_CTRL_VP9E_SET_MAX_GF_INTERVAL + +VPX_CTRL_USE_TYPE(VP9E_GET_ACTIVEMAP, vpx_active_map_t *) +#define VPX_CTRL_VP9E_GET_ACTIVEMAP + +VPX_CTRL_USE_TYPE(VP9E_SET_COLOR_RANGE, int) +#define VPX_CTRL_VP9E_SET_COLOR_RANGE + +VPX_CTRL_USE_TYPE(VP9E_SET_SVC_REF_FRAME_CONFIG, vpx_svc_ref_frame_config_t *) +#define VPX_CTRL_VP9E_SET_SVC_REF_FRAME_CONFIG + +VPX_CTRL_USE_TYPE(VP9E_SET_RENDER_SIZE, int *) +#define VPX_CTRL_VP9E_SET_RENDER_SIZE + +VPX_CTRL_USE_TYPE(VP9E_SET_TARGET_LEVEL, unsigned int) +#define VPX_CTRL_VP9E_SET_TARGET_LEVEL + +VPX_CTRL_USE_TYPE(VP9E_SET_ROW_MT, unsigned int) +#define VPX_CTRL_VP9E_SET_ROW_MT + +VPX_CTRL_USE_TYPE(VP9E_GET_LEVEL, int *) +#define VPX_CTRL_VP9E_GET_LEVEL + +VPX_CTRL_USE_TYPE(VP9E_ENABLE_MOTION_VECTOR_UNIT_TEST, unsigned int) +#define VPX_CTRL_VP9E_ENABLE_MOTION_VECTOR_UNIT_TEST + +/*!\endcond */ +/*! @} - end defgroup vp8_encoder */ +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VPX_VP8CX_H_ diff --git a/vpx/vp8dx.h b/vpx/vp8dx.h new file mode 100644 index 0000000..398c670 --- /dev/null +++ b/vpx/vp8dx.h @@ -0,0 +1,192 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +/*!\defgroup vp8_decoder WebM VP8/VP9 Decoder + * \ingroup vp8 + * + * @{ + */ +/*!\file + * \brief Provides definitions for using VP8 or VP9 within the vpx Decoder + * interface. + */ +#ifndef VPX_VP8DX_H_ +#define VPX_VP8DX_H_ + +#ifdef __cplusplus +extern "C" { +#endif + +/* Include controls common to both the encoder and decoder */ +#include "./vp8.h" + +/*!\name Algorithm interface for VP8 + * + * This interface provides the capability to decode VP8 streams. + * @{ + */ +extern vpx_codec_iface_t vpx_codec_vp8_dx_algo; +extern vpx_codec_iface_t *vpx_codec_vp8_dx(void); +/*!@} - end algorithm interface member group*/ + +/*!\name Algorithm interface for VP9 + * + * This interface provides the capability to decode VP9 streams. + * @{ + */ +extern vpx_codec_iface_t vpx_codec_vp9_dx_algo; +extern vpx_codec_iface_t *vpx_codec_vp9_dx(void); +/*!@} - end algorithm interface member group*/ + +/*!\enum vp8_dec_control_id + * \brief VP8 decoder control functions + * + * This set of macros define the control functions available for the VP8 + * decoder interface. + * + * \sa #vpx_codec_control + */ +enum vp8_dec_control_id { + /** control function to get info on which reference frames were updated + * by the last decode + */ + VP8D_GET_LAST_REF_UPDATES = VP8_DECODER_CTRL_ID_START, + + /** check if the indicated frame is corrupted */ + VP8D_GET_FRAME_CORRUPTED, + + /** control function to get info on which reference frames were used + * by the last decode + */ + VP8D_GET_LAST_REF_USED, + + /** decryption function to decrypt encoded buffer data immediately + * before decoding. Takes a vpx_decrypt_init, which contains + * a callback function and opaque context pointer. + */ + VPXD_SET_DECRYPTOR, + VP8D_SET_DECRYPTOR = VPXD_SET_DECRYPTOR, + + /** control function to get the dimensions that the current frame is decoded + * at. This may be different to the intended display size for the frame as + * specified in the wrapper or frame header (see VP9D_GET_DISPLAY_SIZE). */ + VP9D_GET_FRAME_SIZE, + + /** control function to get the current frame's intended display dimensions + * (as specified in the wrapper or frame header). This may be different to + * the decoded dimensions of this frame (see VP9D_GET_FRAME_SIZE). */ + VP9D_GET_DISPLAY_SIZE, + + /** control function to get the bit depth of the stream. */ + VP9D_GET_BIT_DEPTH, + + /** control function to set the byte alignment of the planes in the reference + * buffers. Valid values are power of 2, from 32 to 1024. A value of 0 sets + * legacy alignment. I.e. Y plane is aligned to 32 bytes, U plane directly + * follows Y plane, and V plane directly follows U plane. Default value is 0. + */ + VP9_SET_BYTE_ALIGNMENT, + + /** control function to invert the decoding order to from right to left. The + * function is used in a test to confirm the decoding independence of tile + * columns. The function may be used in application where this order + * of decoding is desired. + * + * TODO(yaowu): Rework the unit test that uses this control, and in a future + * release, this test-only control shall be removed. + */ + VP9_INVERT_TILE_DECODE_ORDER, + + /** control function to set the skip loop filter flag. Valid values are + * integers. The decoder will skip the loop filter when its value is set to + * nonzero. If the loop filter is skipped the decoder may accumulate decode + * artifacts. The default value is 0. + */ + VP9_SET_SKIP_LOOP_FILTER, + + /** control function to decode SVC stream up to the x spatial layers, + * where x is passed in through the control, and is 0 for base layer. + */ + VP9_DECODE_SVC_SPATIAL_LAYER, + + /*!\brief Codec control function to get last decoded frame quantizer. + * + * Return value uses internal quantizer scale defined by the codec. + * + * Supported in codecs: VP8, VP9 + */ + VPXD_GET_LAST_QUANTIZER, + + VP8_DECODER_CTRL_ID_MAX +}; + +/** Decrypt n bytes of data from input -> output, using the decrypt_state + * passed in VPXD_SET_DECRYPTOR. + */ +typedef void (*vpx_decrypt_cb)(void *decrypt_state, const unsigned char *input, + unsigned char *output, int count); + +/*!\brief Structure to hold decryption state + * + * Defines a structure to hold the decryption state and access function. + */ +typedef struct vpx_decrypt_init { + /*! Decrypt callback. */ + vpx_decrypt_cb decrypt_cb; + + /*! Decryption state. */ + void *decrypt_state; +} vpx_decrypt_init; + +/*!\brief A deprecated alias for vpx_decrypt_init. + */ +typedef vpx_decrypt_init vp8_decrypt_init; + +/*!\cond */ +/*!\brief VP8 decoder control function parameter type + * + * Defines the data types that VP8D control functions take. Note that + * additional common controls are defined in vp8.h + * + */ + +VPX_CTRL_USE_TYPE(VP8D_GET_LAST_REF_UPDATES, int *) +#define VPX_CTRL_VP8D_GET_LAST_REF_UPDATES +VPX_CTRL_USE_TYPE(VP8D_GET_FRAME_CORRUPTED, int *) +#define VPX_CTRL_VP8D_GET_FRAME_CORRUPTED +VPX_CTRL_USE_TYPE(VP8D_GET_LAST_REF_USED, int *) +#define VPX_CTRL_VP8D_GET_LAST_REF_USED +VPX_CTRL_USE_TYPE(VPXD_GET_LAST_QUANTIZER, int *) +#define VPX_CTRL_VPXD_GET_LAST_QUANTIZER +VPX_CTRL_USE_TYPE(VPXD_SET_DECRYPTOR, vpx_decrypt_init *) +#define VPX_CTRL_VPXD_SET_DECRYPTOR +VPX_CTRL_USE_TYPE(VP8D_SET_DECRYPTOR, vpx_decrypt_init *) +#define VPX_CTRL_VP8D_SET_DECRYPTOR +VPX_CTRL_USE_TYPE(VP9D_GET_DISPLAY_SIZE, int *) +#define VPX_CTRL_VP9D_GET_DISPLAY_SIZE +VPX_CTRL_USE_TYPE(VP9D_GET_BIT_DEPTH, unsigned int *) +#define VPX_CTRL_VP9D_GET_BIT_DEPTH +VPX_CTRL_USE_TYPE(VP9D_GET_FRAME_SIZE, int *) +#define VPX_CTRL_VP9D_GET_FRAME_SIZE +VPX_CTRL_USE_TYPE(VP9_INVERT_TILE_DECODE_ORDER, int) +#define VPX_CTRL_VP9_INVERT_TILE_DECODE_ORDER +#define VPX_CTRL_VP9_DECODE_SVC_SPATIAL_LAYER +VPX_CTRL_USE_TYPE(VP9_DECODE_SVC_SPATIAL_LAYER, int) +#define VPX_CTRL_VP9_SET_SKIP_LOOP_FILTER +VPX_CTRL_USE_TYPE(VP9_SET_SKIP_LOOP_FILTER, int) + +/*!\endcond */ +/*! @} - end defgroup vp8_decoder */ + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VPX_VP8DX_H_ diff --git a/vpx/vpx_codec.h b/vpx/vpx_codec.h new file mode 100644 index 0000000..ad05f4c --- /dev/null +++ b/vpx/vpx_codec.h @@ -0,0 +1,468 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +/*!\defgroup codec Common Algorithm Interface + * This abstraction allows applications to easily support multiple video + * formats with minimal code duplication. This section describes the interface + * common to all codecs (both encoders and decoders). + * @{ + */ + +/*!\file + * \brief Describes the codec algorithm interface to applications. + * + * This file describes the interface between an application and a + * video codec algorithm. + * + * An application instantiates a specific codec instance by using + * vpx_codec_init() and a pointer to the algorithm's interface structure: + *
+ *     my_app.c:
+ *       extern vpx_codec_iface_t my_codec;
+ *       {
+ *           vpx_codec_ctx_t algo;
+ *           res = vpx_codec_init(&algo, &my_codec);
+ *       }
+ *     
+ * + * Once initialized, the instance is manged using other functions from + * the vpx_codec_* family. + */ +#ifndef VPX_VPX_CODEC_H_ +#define VPX_VPX_CODEC_H_ + +#ifdef __cplusplus +extern "C" { +#endif + +#include "./vpx_image.h" +#include "./vpx_integer.h" + +/*!\brief Decorator indicating a function is deprecated */ +#ifndef VPX_DEPRECATED +#if defined(__GNUC__) && __GNUC__ +#define VPX_DEPRECATED __attribute__((deprecated)) +#elif defined(_MSC_VER) +#define VPX_DEPRECATED +#else +#define VPX_DEPRECATED +#endif +#endif /* VPX_DEPRECATED */ + +#ifndef VPX_DECLSPEC_DEPRECATED +#if defined(__GNUC__) && __GNUC__ +#define VPX_DECLSPEC_DEPRECATED /**< \copydoc #VPX_DEPRECATED */ +#elif defined(_MSC_VER) +/*!\brief \copydoc #VPX_DEPRECATED */ +#define VPX_DECLSPEC_DEPRECATED __declspec(deprecated) +#else +#define VPX_DECLSPEC_DEPRECATED /**< \copydoc #VPX_DEPRECATED */ +#endif +#endif /* VPX_DECLSPEC_DEPRECATED */ + +/*!\brief Decorator indicating a function is potentially unused */ +#ifndef VPX_UNUSED +#if defined(__GNUC__) || defined(__clang__) +#define VPX_UNUSED __attribute__((unused)) +#else +#define VPX_UNUSED +#endif +#endif /* VPX_UNUSED */ + +/*!\brief Current ABI version number + * + * \internal + * If this file is altered in any way that changes the ABI, this value + * must be bumped. Examples include, but are not limited to, changing + * types, removing or reassigning enums, adding/removing/rearranging + * fields to structures + */ +#define VPX_CODEC_ABI_VERSION (4 + VPX_IMAGE_ABI_VERSION) /**<\hideinitializer*/ + +/*!\brief Algorithm return codes */ +typedef enum { + /*!\brief Operation completed without error */ + VPX_CODEC_OK, + + /*!\brief Unspecified error */ + VPX_CODEC_ERROR, + + /*!\brief Memory operation failed */ + VPX_CODEC_MEM_ERROR, + + /*!\brief ABI version mismatch */ + VPX_CODEC_ABI_MISMATCH, + + /*!\brief Algorithm does not have required capability */ + VPX_CODEC_INCAPABLE, + + /*!\brief The given bitstream is not supported. + * + * The bitstream was unable to be parsed at the highest level. The decoder + * is unable to proceed. This error \ref SHOULD be treated as fatal to the + * stream. */ + VPX_CODEC_UNSUP_BITSTREAM, + + /*!\brief Encoded bitstream uses an unsupported feature + * + * The decoder does not implement a feature required by the encoder. This + * return code should only be used for features that prevent future + * pictures from being properly decoded. This error \ref MAY be treated as + * fatal to the stream or \ref MAY be treated as fatal to the current GOP. + */ + VPX_CODEC_UNSUP_FEATURE, + + /*!\brief The coded data for this stream is corrupt or incomplete + * + * There was a problem decoding the current frame. This return code + * should only be used for failures that prevent future pictures from + * being properly decoded. This error \ref MAY be treated as fatal to the + * stream or \ref MAY be treated as fatal to the current GOP. If decoding + * is continued for the current GOP, artifacts may be present. + */ + VPX_CODEC_CORRUPT_FRAME, + + /*!\brief An application-supplied parameter is not valid. + * + */ + VPX_CODEC_INVALID_PARAM, + + /*!\brief An iterator reached the end of list. + * + */ + VPX_CODEC_LIST_END + +} vpx_codec_err_t; + +/*! \brief Codec capabilities bitfield + * + * Each codec advertises the capabilities it supports as part of its + * ::vpx_codec_iface_t interface structure. Capabilities are extra interfaces + * or functionality, and are not required to be supported. + * + * The available flags are specified by VPX_CODEC_CAP_* defines. + */ +typedef long vpx_codec_caps_t; +#define VPX_CODEC_CAP_DECODER 0x1 /**< Is a decoder */ +#define VPX_CODEC_CAP_ENCODER 0x2 /**< Is an encoder */ + +/*! Can support images at greater than 8 bitdepth. + */ +#define VPX_CODEC_CAP_HIGHBITDEPTH 0x4 + +/*! \brief Initialization-time Feature Enabling + * + * Certain codec features must be known at initialization time, to allow for + * proper memory allocation. + * + * The available flags are specified by VPX_CODEC_USE_* defines. + */ +typedef long vpx_codec_flags_t; + +/*!\brief Codec interface structure. + * + * Contains function pointers and other data private to the codec + * implementation. This structure is opaque to the application. + */ +typedef const struct vpx_codec_iface vpx_codec_iface_t; + +/*!\brief Codec private data structure. + * + * Contains data private to the codec implementation. This structure is opaque + * to the application. + */ +typedef struct vpx_codec_priv vpx_codec_priv_t; + +/*!\brief Iterator + * + * Opaque storage used for iterating over lists. + */ +typedef const void *vpx_codec_iter_t; + +/*!\brief Codec context structure + * + * All codecs \ref MUST support this context structure fully. In general, + * this data should be considered private to the codec algorithm, and + * not be manipulated or examined by the calling application. Applications + * may reference the 'name' member to get a printable description of the + * algorithm. + */ +typedef struct vpx_codec_ctx { + const char *name; /**< Printable interface name */ + vpx_codec_iface_t *iface; /**< Interface pointers */ + vpx_codec_err_t err; /**< Last returned error */ + const char *err_detail; /**< Detailed info, if available */ + vpx_codec_flags_t init_flags; /**< Flags passed at init time */ + union { + /**< Decoder Configuration Pointer */ + const struct vpx_codec_dec_cfg *dec; + /**< Encoder Configuration Pointer */ + const struct vpx_codec_enc_cfg *enc; + const void *raw; + } config; /**< Configuration pointer aliasing union */ + vpx_codec_priv_t *priv; /**< Algorithm private storage */ +} vpx_codec_ctx_t; + +/*!\brief Bit depth for codec + * * + * This enumeration determines the bit depth of the codec. + */ +typedef enum vpx_bit_depth { + VPX_BITS_8 = 8, /**< 8 bits */ + VPX_BITS_10 = 10, /**< 10 bits */ + VPX_BITS_12 = 12, /**< 12 bits */ +} vpx_bit_depth_t; + +/* + * Library Version Number Interface + * + * For example, see the following sample return values: + * vpx_codec_version() (1<<16 | 2<<8 | 3) + * vpx_codec_version_str() "v1.2.3-rc1-16-gec6a1ba" + * vpx_codec_version_extra_str() "rc1-16-gec6a1ba" + */ + +/*!\brief Return the version information (as an integer) + * + * Returns a packed encoding of the library version number. This will only + * include + * the major.minor.patch component of the version number. Note that this encoded + * value should be accessed through the macros provided, as the encoding may + * change + * in the future. + * + */ +int vpx_codec_version(void); +#define VPX_VERSION_MAJOR(v) \ + ((v >> 16) & 0xff) /**< extract major from packed version */ +#define VPX_VERSION_MINOR(v) \ + ((v >> 8) & 0xff) /**< extract minor from packed version */ +#define VPX_VERSION_PATCH(v) \ + ((v >> 0) & 0xff) /**< extract patch from packed version */ + +/*!\brief Return the version major number */ +#define vpx_codec_version_major() ((vpx_codec_version() >> 16) & 0xff) + +/*!\brief Return the version minor number */ +#define vpx_codec_version_minor() ((vpx_codec_version() >> 8) & 0xff) + +/*!\brief Return the version patch number */ +#define vpx_codec_version_patch() ((vpx_codec_version() >> 0) & 0xff) + +/*!\brief Return the version information (as a string) + * + * Returns a printable string containing the full library version number. This + * may + * contain additional text following the three digit version number, as to + * indicate + * release candidates, prerelease versions, etc. + * + */ +const char *vpx_codec_version_str(void); + +/*!\brief Return the version information (as a string) + * + * Returns a printable "extra string". This is the component of the string + * returned + * by vpx_codec_version_str() following the three digit version number. + * + */ +const char *vpx_codec_version_extra_str(void); + +/*!\brief Return the build configuration + * + * Returns a printable string containing an encoded version of the build + * configuration. This may be useful to vpx support. + * + */ +const char *vpx_codec_build_config(void); + +/*!\brief Return the name for a given interface + * + * Returns a human readable string for name of the given codec interface. + * + * \param[in] iface Interface pointer + * + */ +const char *vpx_codec_iface_name(vpx_codec_iface_t *iface); + +/*!\brief Convert error number to printable string + * + * Returns a human readable string for the last error returned by the + * algorithm. The returned error will be one line and will not contain + * any newline characters. + * + * + * \param[in] err Error number. + * + */ +const char *vpx_codec_err_to_string(vpx_codec_err_t err); + +/*!\brief Retrieve error synopsis for codec context + * + * Returns a human readable string for the last error returned by the + * algorithm. The returned error will be one line and will not contain + * any newline characters. + * + * + * \param[in] ctx Pointer to this instance's context. + * + */ +const char *vpx_codec_error(vpx_codec_ctx_t *ctx); + +/*!\brief Retrieve detailed error information for codec context + * + * Returns a human readable string providing detailed information about + * the last error. + * + * \param[in] ctx Pointer to this instance's context. + * + * \retval NULL + * No detailed information is available. + */ +const char *vpx_codec_error_detail(vpx_codec_ctx_t *ctx); + +/* REQUIRED FUNCTIONS + * + * The following functions are required to be implemented for all codecs. + * They represent the base case functionality expected of all codecs. + */ + +/*!\brief Destroy a codec instance + * + * Destroys a codec context, freeing any associated memory buffers. + * + * \param[in] ctx Pointer to this instance's context + * + * \retval #VPX_CODEC_OK + * The codec algorithm initialized. + * \retval #VPX_CODEC_MEM_ERROR + * Memory allocation failed. + */ +vpx_codec_err_t vpx_codec_destroy(vpx_codec_ctx_t *ctx); + +/*!\brief Get the capabilities of an algorithm. + * + * Retrieves the capabilities bitfield from the algorithm's interface. + * + * \param[in] iface Pointer to the algorithm interface + * + */ +vpx_codec_caps_t vpx_codec_get_caps(vpx_codec_iface_t *iface); + +/*!\brief Control algorithm + * + * This function is used to exchange algorithm specific data with the codec + * instance. This can be used to implement features specific to a particular + * algorithm. + * + * This wrapper function dispatches the request to the helper function + * associated with the given ctrl_id. It tries to call this function + * transparently, but will return #VPX_CODEC_ERROR if the request could not + * be dispatched. + * + * Note that this function should not be used directly. Call the + * #vpx_codec_control wrapper macro instead. + * + * \param[in] ctx Pointer to this instance's context + * \param[in] ctrl_id Algorithm specific control identifier + * + * \retval #VPX_CODEC_OK + * The control request was processed. + * \retval #VPX_CODEC_ERROR + * The control request was not processed. + * \retval #VPX_CODEC_INVALID_PARAM + * The data was not valid. + */ +vpx_codec_err_t vpx_codec_control_(vpx_codec_ctx_t *ctx, int ctrl_id, ...); +#if defined(VPX_DISABLE_CTRL_TYPECHECKS) && VPX_DISABLE_CTRL_TYPECHECKS +#define vpx_codec_control(ctx, id, data) vpx_codec_control_(ctx, id, data) +#define VPX_CTRL_USE_TYPE(id, typ) +#define VPX_CTRL_USE_TYPE_DEPRECATED(id, typ) +#define VPX_CTRL_VOID(id, typ) + +#else +/*!\brief vpx_codec_control wrapper macro + * + * This macro allows for type safe conversions across the variadic parameter + * to vpx_codec_control_(). + * + * \internal + * It works by dispatching the call to the control function through a wrapper + * function named with the id parameter. + */ +#define vpx_codec_control(ctx, id, data) \ + vpx_codec_control_##id(ctx, id, data) /**<\hideinitializer*/ + +/*!\brief vpx_codec_control type definition macro + * + * This macro allows for type safe conversions across the variadic parameter + * to vpx_codec_control_(). It defines the type of the argument for a given + * control identifier. + * + * \internal + * It defines a static function with + * the correctly typed arguments as a wrapper to the type-unsafe internal + * function. + */ +#define VPX_CTRL_USE_TYPE(id, typ) \ + static vpx_codec_err_t vpx_codec_control_##id(vpx_codec_ctx_t *, int, typ) \ + VPX_UNUSED; \ + \ + static vpx_codec_err_t vpx_codec_control_##id(vpx_codec_ctx_t *ctx, \ + int ctrl_id, typ data) { \ + return vpx_codec_control_(ctx, ctrl_id, data); \ + } /**<\hideinitializer*/ + +/*!\brief vpx_codec_control deprecated type definition macro + * + * Like #VPX_CTRL_USE_TYPE, but indicates that the specified control is + * deprecated and should not be used. Consult the documentation for your + * codec for more information. + * + * \internal + * It defines a static function with the correctly typed arguments as a + * wrapper to the type-unsafe internal function. + */ +#define VPX_CTRL_USE_TYPE_DEPRECATED(id, typ) \ + VPX_DECLSPEC_DEPRECATED static vpx_codec_err_t vpx_codec_control_##id( \ + vpx_codec_ctx_t *, int, typ) VPX_DEPRECATED VPX_UNUSED; \ + \ + VPX_DECLSPEC_DEPRECATED static vpx_codec_err_t vpx_codec_control_##id( \ + vpx_codec_ctx_t *ctx, int ctrl_id, typ data) { \ + return vpx_codec_control_(ctx, ctrl_id, data); \ + } /**<\hideinitializer*/ + +/*!\brief vpx_codec_control void type definition macro + * + * This macro allows for type safe conversions across the variadic parameter + * to vpx_codec_control_(). It indicates that a given control identifier takes + * no argument. + * + * \internal + * It defines a static function without a data argument as a wrapper to the + * type-unsafe internal function. + */ +#define VPX_CTRL_VOID(id) \ + static vpx_codec_err_t vpx_codec_control_##id(vpx_codec_ctx_t *, int) \ + VPX_UNUSED; \ + \ + static vpx_codec_err_t vpx_codec_control_##id(vpx_codec_ctx_t *ctx, \ + int ctrl_id) { \ + return vpx_codec_control_(ctx, ctrl_id); \ + } /**<\hideinitializer*/ + +#endif + +/*!@} - end defgroup codec*/ +#ifdef __cplusplus +} +#endif +#endif // VPX_VPX_CODEC_H_ diff --git a/vpx/vpx_codec.mk b/vpx/vpx_codec.mk new file mode 100644 index 0000000..b77f458 --- /dev/null +++ b/vpx/vpx_codec.mk @@ -0,0 +1,45 @@ +## +## Copyright (c) 2010 The WebM project authors. All Rights Reserved. +## +## Use of this source code is governed by a BSD-style license +## that can be found in the LICENSE file in the root of the source +## tree. An additional intellectual property rights grant can be found +## in the file PATENTS. All contributing project authors may +## be found in the AUTHORS file in the root of the source tree. +## + + +API_EXPORTS += exports + +API_SRCS-$(CONFIG_VP8_ENCODER) += vp8.h +API_SRCS-$(CONFIG_VP8_ENCODER) += vp8cx.h +API_DOC_SRCS-$(CONFIG_VP8_ENCODER) += vp8.h +API_DOC_SRCS-$(CONFIG_VP8_ENCODER) += vp8cx.h +ifeq ($(CONFIG_VP9_ENCODER),yes) + API_SRCS-$(CONFIG_SPATIAL_SVC) += src/svc_encodeframe.c + API_SRCS-$(CONFIG_SPATIAL_SVC) += svc_context.h +endif + +API_SRCS-$(CONFIG_VP8_DECODER) += vp8.h +API_SRCS-$(CONFIG_VP8_DECODER) += vp8dx.h +API_DOC_SRCS-$(CONFIG_VP8_DECODER) += vp8.h +API_DOC_SRCS-$(CONFIG_VP8_DECODER) += vp8dx.h + +API_DOC_SRCS-yes += vpx_codec.h +API_DOC_SRCS-yes += vpx_decoder.h +API_DOC_SRCS-yes += vpx_encoder.h +API_DOC_SRCS-yes += vpx_frame_buffer.h +API_DOC_SRCS-yes += vpx_image.h + +API_SRCS-yes += src/vpx_decoder.c +API_SRCS-yes += vpx_decoder.h +API_SRCS-yes += src/vpx_encoder.c +API_SRCS-yes += vpx_encoder.h +API_SRCS-yes += internal/vpx_codec_internal.h +API_SRCS-yes += src/vpx_codec.c +API_SRCS-yes += src/vpx_image.c +API_SRCS-yes += vpx_codec.h +API_SRCS-yes += vpx_codec.mk +API_SRCS-yes += vpx_frame_buffer.h +API_SRCS-yes += vpx_image.h +API_SRCS-yes += vpx_integer.h diff --git a/vpx/vpx_decoder.h b/vpx/vpx_decoder.h new file mode 100644 index 0000000..2ff1211 --- /dev/null +++ b/vpx/vpx_decoder.h @@ -0,0 +1,365 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ +#ifndef VPX_VPX_DECODER_H_ +#define VPX_VPX_DECODER_H_ + +/*!\defgroup decoder Decoder Algorithm Interface + * \ingroup codec + * This abstraction allows applications using this decoder to easily support + * multiple video formats with minimal code duplication. This section describes + * the interface common to all decoders. + * @{ + */ + +/*!\file + * \brief Describes the decoder algorithm interface to applications. + * + * This file describes the interface between an application and a + * video decoder algorithm. + * + */ +#ifdef __cplusplus +extern "C" { +#endif + +#include "./vpx_codec.h" +#include "./vpx_frame_buffer.h" + +/*!\brief Current ABI version number + * + * \internal + * If this file is altered in any way that changes the ABI, this value + * must be bumped. Examples include, but are not limited to, changing + * types, removing or reassigning enums, adding/removing/rearranging + * fields to structures + */ +#define VPX_DECODER_ABI_VERSION \ + (3 + VPX_CODEC_ABI_VERSION) /**<\hideinitializer*/ + +/*! \brief Decoder capabilities bitfield + * + * Each decoder advertises the capabilities it supports as part of its + * ::vpx_codec_iface_t interface structure. Capabilities are extra interfaces + * or functionality, and are not required to be supported by a decoder. + * + * The available flags are specified by VPX_CODEC_CAP_* defines. + */ +#define VPX_CODEC_CAP_PUT_SLICE 0x10000 /**< Will issue put_slice callbacks */ +#define VPX_CODEC_CAP_PUT_FRAME 0x20000 /**< Will issue put_frame callbacks */ +#define VPX_CODEC_CAP_POSTPROC 0x40000 /**< Can postprocess decoded frame */ +/*!\brief Can conceal errors due to packet loss */ +#define VPX_CODEC_CAP_ERROR_CONCEALMENT 0x80000 +/*!\brief Can receive encoded frames one fragment at a time */ +#define VPX_CODEC_CAP_INPUT_FRAGMENTS 0x100000 + +/*! \brief Initialization-time Feature Enabling + * + * Certain codec features must be known at initialization time, to allow for + * proper memory allocation. + * + * The available flags are specified by VPX_CODEC_USE_* defines. + */ +/*!\brief Can support frame-based multi-threading */ +#define VPX_CODEC_CAP_FRAME_THREADING 0x200000 +/*!brief Can support external frame buffers */ +#define VPX_CODEC_CAP_EXTERNAL_FRAME_BUFFER 0x400000 + +#define VPX_CODEC_USE_POSTPROC 0x10000 /**< Postprocess decoded frame */ +/*!\brief Conceal errors in decoded frames */ +#define VPX_CODEC_USE_ERROR_CONCEALMENT 0x20000 +/*!\brief The input frame should be passed to the decoder one fragment at a + * time */ +#define VPX_CODEC_USE_INPUT_FRAGMENTS 0x40000 +/*!\brief Enable frame-based multi-threading */ +#define VPX_CODEC_USE_FRAME_THREADING 0x80000 + +/*!\brief Stream properties + * + * This structure is used to query or set properties of the decoded + * stream. Algorithms may extend this structure with data specific + * to their bitstream by setting the sz member appropriately. + */ +typedef struct vpx_codec_stream_info { + unsigned int sz; /**< Size of this structure */ + unsigned int w; /**< Width (or 0 for unknown/default) */ + unsigned int h; /**< Height (or 0 for unknown/default) */ + unsigned int is_kf; /**< Current frame is a keyframe */ +} vpx_codec_stream_info_t; + +/* REQUIRED FUNCTIONS + * + * The following functions are required to be implemented for all decoders. + * They represent the base case functionality expected of all decoders. + */ + +/*!\brief Initialization Configurations + * + * This structure is used to pass init time configuration options to the + * decoder. + */ +typedef struct vpx_codec_dec_cfg { + unsigned int threads; /**< Maximum number of threads to use, default 1 */ + unsigned int w; /**< Width */ + unsigned int h; /**< Height */ +} vpx_codec_dec_cfg_t; /**< alias for struct vpx_codec_dec_cfg */ + +/*!\brief Initialize a decoder instance + * + * Initializes a decoder context using the given interface. Applications + * should call the vpx_codec_dec_init convenience macro instead of this + * function directly, to ensure that the ABI version number parameter + * is properly initialized. + * + * If the library was configured with --disable-multithread, this call + * is not thread safe and should be guarded with a lock if being used + * in a multithreaded context. + * + * \param[in] ctx Pointer to this instance's context. + * \param[in] iface Pointer to the algorithm interface to use. + * \param[in] cfg Configuration to use, if known. May be NULL. + * \param[in] flags Bitfield of VPX_CODEC_USE_* flags + * \param[in] ver ABI version number. Must be set to + * VPX_DECODER_ABI_VERSION + * \retval #VPX_CODEC_OK + * The decoder algorithm initialized. + * \retval #VPX_CODEC_MEM_ERROR + * Memory allocation failed. + */ +vpx_codec_err_t vpx_codec_dec_init_ver(vpx_codec_ctx_t *ctx, + vpx_codec_iface_t *iface, + const vpx_codec_dec_cfg_t *cfg, + vpx_codec_flags_t flags, int ver); + +/*!\brief Convenience macro for vpx_codec_dec_init_ver() + * + * Ensures the ABI version parameter is properly set. + */ +#define vpx_codec_dec_init(ctx, iface, cfg, flags) \ + vpx_codec_dec_init_ver(ctx, iface, cfg, flags, VPX_DECODER_ABI_VERSION) + +/*!\brief Parse stream info from a buffer + * + * Performs high level parsing of the bitstream. Construction of a decoder + * context is not necessary. Can be used to determine if the bitstream is + * of the proper format, and to extract information from the stream. + * + * \param[in] iface Pointer to the algorithm interface + * \param[in] data Pointer to a block of data to parse + * \param[in] data_sz Size of the data buffer + * \param[in,out] si Pointer to stream info to update. The size member + * \ref MUST be properly initialized, but \ref MAY be + * clobbered by the algorithm. This parameter \ref MAY + * be NULL. + * + * \retval #VPX_CODEC_OK + * Bitstream is parsable and stream information updated + */ +vpx_codec_err_t vpx_codec_peek_stream_info(vpx_codec_iface_t *iface, + const uint8_t *data, + unsigned int data_sz, + vpx_codec_stream_info_t *si); + +/*!\brief Return information about the current stream. + * + * Returns information about the stream that has been parsed during decoding. + * + * \param[in] ctx Pointer to this instance's context + * \param[in,out] si Pointer to stream info to update. The size member + * \ref MUST be properly initialized, but \ref MAY be + * clobbered by the algorithm. This parameter \ref MAY + * be NULL. + * + * \retval #VPX_CODEC_OK + * Bitstream is parsable and stream information updated + */ +vpx_codec_err_t vpx_codec_get_stream_info(vpx_codec_ctx_t *ctx, + vpx_codec_stream_info_t *si); + +/*!\brief Decode data + * + * Processes a buffer of coded data. If the processing results in a new + * decoded frame becoming available, PUT_SLICE and PUT_FRAME events may be + * generated, as appropriate. Encoded data \ref MUST be passed in DTS (decode + * time stamp) order. Frames produced will always be in PTS (presentation + * time stamp) order. + * If the decoder is configured with VPX_CODEC_USE_INPUT_FRAGMENTS enabled, + * data and data_sz can contain a fragment of the encoded frame. Fragment + * \#n must contain at least partition \#n, but can also contain subsequent + * partitions (\#n+1 - \#n+i), and if so, fragments \#n+1, .., \#n+i must + * be empty. When no more data is available, this function should be called + * with NULL as data and 0 as data_sz. The memory passed to this function + * must be available until the frame has been decoded. + * + * \param[in] ctx Pointer to this instance's context + * \param[in] data Pointer to this block of new coded data. If + * NULL, a VPX_CODEC_CB_PUT_FRAME event is posted + * for the previously decoded frame. + * \param[in] data_sz Size of the coded data, in bytes. + * \param[in] user_priv Application specific data to associate with + * this frame. + * \param[in] deadline Soft deadline the decoder should attempt to meet, + * in us. Set to zero for unlimited. + * + * \return Returns #VPX_CODEC_OK if the coded data was processed completely + * and future pictures can be decoded without error. Otherwise, + * see the descriptions of the other error codes in ::vpx_codec_err_t + * for recoverability capabilities. + */ +vpx_codec_err_t vpx_codec_decode(vpx_codec_ctx_t *ctx, const uint8_t *data, + unsigned int data_sz, void *user_priv, + long deadline); + +/*!\brief Decoded frames iterator + * + * Iterates over a list of the frames available for display. The iterator + * storage should be initialized to NULL to start the iteration. Iteration is + * complete when this function returns NULL. + * + * The list of available frames becomes valid upon completion of the + * vpx_codec_decode call, and remains valid until the next call to + * vpx_codec_decode. + * + * \param[in] ctx Pointer to this instance's context + * \param[in,out] iter Iterator storage, initialized to NULL + * + * \return Returns a pointer to an image, if one is ready for display. Frames + * produced will always be in PTS (presentation time stamp) order. + */ +vpx_image_t *vpx_codec_get_frame(vpx_codec_ctx_t *ctx, vpx_codec_iter_t *iter); + +/*!\defgroup cap_put_frame Frame-Based Decoding Functions + * + * The following functions are required to be implemented for all decoders + * that advertise the VPX_CODEC_CAP_PUT_FRAME capability. Calling these + * functions + * for codecs that don't advertise this capability will result in an error + * code being returned, usually VPX_CODEC_ERROR + * @{ + */ + +/*!\brief put frame callback prototype + * + * This callback is invoked by the decoder to notify the application of + * the availability of decoded image data. + */ +typedef void (*vpx_codec_put_frame_cb_fn_t)(void *user_priv, + const vpx_image_t *img); + +/*!\brief Register for notification of frame completion. + * + * Registers a given function to be called when a decoded frame is + * available. + * + * \param[in] ctx Pointer to this instance's context + * \param[in] cb Pointer to the callback function + * \param[in] user_priv User's private data + * + * \retval #VPX_CODEC_OK + * Callback successfully registered. + * \retval #VPX_CODEC_ERROR + * Decoder context not initialized, or algorithm not capable of + * posting slice completion. + */ +vpx_codec_err_t vpx_codec_register_put_frame_cb(vpx_codec_ctx_t *ctx, + vpx_codec_put_frame_cb_fn_t cb, + void *user_priv); + +/*!@} - end defgroup cap_put_frame */ + +/*!\defgroup cap_put_slice Slice-Based Decoding Functions + * + * The following functions are required to be implemented for all decoders + * that advertise the VPX_CODEC_CAP_PUT_SLICE capability. Calling these + * functions + * for codecs that don't advertise this capability will result in an error + * code being returned, usually VPX_CODEC_ERROR + * @{ + */ + +/*!\brief put slice callback prototype + * + * This callback is invoked by the decoder to notify the application of + * the availability of partially decoded image data. The + */ +typedef void (*vpx_codec_put_slice_cb_fn_t)(void *user_priv, + const vpx_image_t *img, + const vpx_image_rect_t *valid, + const vpx_image_rect_t *update); + +/*!\brief Register for notification of slice completion. + * + * Registers a given function to be called when a decoded slice is + * available. + * + * \param[in] ctx Pointer to this instance's context + * \param[in] cb Pointer to the callback function + * \param[in] user_priv User's private data + * + * \retval #VPX_CODEC_OK + * Callback successfully registered. + * \retval #VPX_CODEC_ERROR + * Decoder context not initialized, or algorithm not capable of + * posting slice completion. + */ +vpx_codec_err_t vpx_codec_register_put_slice_cb(vpx_codec_ctx_t *ctx, + vpx_codec_put_slice_cb_fn_t cb, + void *user_priv); + +/*!@} - end defgroup cap_put_slice*/ + +/*!\defgroup cap_external_frame_buffer External Frame Buffer Functions + * + * The following section is required to be implemented for all decoders + * that advertise the VPX_CODEC_CAP_EXTERNAL_FRAME_BUFFER capability. + * Calling this function for codecs that don't advertise this capability + * will result in an error code being returned, usually VPX_CODEC_ERROR. + * + * \note + * Currently this only works with VP9. + * @{ + */ + +/*!\brief Pass in external frame buffers for the decoder to use. + * + * Registers functions to be called when libvpx needs a frame buffer + * to decode the current frame and a function to be called when libvpx does + * not internally reference the frame buffer. This set function must + * be called before the first call to decode or libvpx will assume the + * default behavior of allocating frame buffers internally. + * + * \param[in] ctx Pointer to this instance's context + * \param[in] cb_get Pointer to the get callback function + * \param[in] cb_release Pointer to the release callback function + * \param[in] cb_priv Callback's private data + * + * \retval #VPX_CODEC_OK + * External frame buffers will be used by libvpx. + * \retval #VPX_CODEC_INVALID_PARAM + * One or more of the callbacks were NULL. + * \retval #VPX_CODEC_ERROR + * Decoder context not initialized, or algorithm not capable of + * using external frame buffers. + * + * \note + * When decoding VP9, the application may be required to pass in at least + * #VP9_MAXIMUM_REF_BUFFERS + #VPX_MAXIMUM_WORK_BUFFERS external frame + * buffers. + */ +vpx_codec_err_t vpx_codec_set_frame_buffer_functions( + vpx_codec_ctx_t *ctx, vpx_get_frame_buffer_cb_fn_t cb_get, + vpx_release_frame_buffer_cb_fn_t cb_release, void *cb_priv); + +/*!@} - end defgroup cap_external_frame_buffer */ + +/*!@} - end defgroup decoder*/ +#ifdef __cplusplus +} +#endif +#endif // VPX_VPX_DECODER_H_ diff --git a/vpx/vpx_encoder.h b/vpx/vpx_encoder.h new file mode 100644 index 0000000..464bc40 --- /dev/null +++ b/vpx/vpx_encoder.h @@ -0,0 +1,987 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ +#ifndef VPX_VPX_ENCODER_H_ +#define VPX_VPX_ENCODER_H_ + +/*!\defgroup encoder Encoder Algorithm Interface + * \ingroup codec + * This abstraction allows applications using this encoder to easily support + * multiple video formats with minimal code duplication. This section describes + * the interface common to all encoders. + * @{ + */ + +/*!\file + * \brief Describes the encoder algorithm interface to applications. + * + * This file describes the interface between an application and a + * video encoder algorithm. + * + */ +#ifdef __cplusplus +extern "C" { +#endif + +#include "./vpx_codec.h" + +/*! Temporal Scalability: Maximum length of the sequence defining frame + * layer membership + */ +#define VPX_TS_MAX_PERIODICITY 16 + +/*! Temporal Scalability: Maximum number of coding layers */ +#define VPX_TS_MAX_LAYERS 5 + +/*!\deprecated Use #VPX_TS_MAX_PERIODICITY instead. */ +#define MAX_PERIODICITY VPX_TS_MAX_PERIODICITY + +/*! Temporal+Spatial Scalability: Maximum number of coding layers */ +#define VPX_MAX_LAYERS 12 // 3 temporal + 4 spatial layers are allowed. + +/*!\deprecated Use #VPX_MAX_LAYERS instead. */ +#define MAX_LAYERS VPX_MAX_LAYERS // 3 temporal + 4 spatial layers allowed. + +/*! Spatial Scalability: Maximum number of coding layers */ +#define VPX_SS_MAX_LAYERS 5 + +/*! Spatial Scalability: Default number of coding layers */ +#define VPX_SS_DEFAULT_LAYERS 1 + +/*!\brief Current ABI version number + * + * \internal + * If this file is altered in any way that changes the ABI, this value + * must be bumped. Examples include, but are not limited to, changing + * types, removing or reassigning enums, adding/removing/rearranging + * fields to structures + */ +#define VPX_ENCODER_ABI_VERSION \ + (6 + VPX_CODEC_ABI_VERSION) /**<\hideinitializer*/ + +/*! \brief Encoder capabilities bitfield + * + * Each encoder advertises the capabilities it supports as part of its + * ::vpx_codec_iface_t interface structure. Capabilities are extra + * interfaces or functionality, and are not required to be supported + * by an encoder. + * + * The available flags are specified by VPX_CODEC_CAP_* defines. + */ +#define VPX_CODEC_CAP_PSNR 0x10000 /**< Can issue PSNR packets */ + +/*! Can output one partition at a time. Each partition is returned in its + * own VPX_CODEC_CX_FRAME_PKT, with the FRAME_IS_FRAGMENT flag set for + * every partition but the last. In this mode all frames are always + * returned partition by partition. + */ +#define VPX_CODEC_CAP_OUTPUT_PARTITION 0x20000 + +/*! \brief Initialization-time Feature Enabling + * + * Certain codec features must be known at initialization time, to allow + * for proper memory allocation. + * + * The available flags are specified by VPX_CODEC_USE_* defines. + */ +#define VPX_CODEC_USE_PSNR 0x10000 /**< Calculate PSNR on each frame */ +/*!\brief Make the encoder output one partition at a time. */ +#define VPX_CODEC_USE_OUTPUT_PARTITION 0x20000 +#define VPX_CODEC_USE_HIGHBITDEPTH 0x40000 /**< Use high bitdepth */ + +/*!\brief Generic fixed size buffer structure + * + * This structure is able to hold a reference to any fixed size buffer. + */ +typedef struct vpx_fixed_buf { + void *buf; /**< Pointer to the data */ + size_t sz; /**< Length of the buffer, in chars */ +} vpx_fixed_buf_t; /**< alias for struct vpx_fixed_buf */ + +/*!\brief Time Stamp Type + * + * An integer, which when multiplied by the stream's time base, provides + * the absolute time of a sample. + */ +typedef int64_t vpx_codec_pts_t; + +/*!\brief Compressed Frame Flags + * + * This type represents a bitfield containing information about a compressed + * frame that may be useful to an application. The most significant 16 bits + * can be used by an algorithm to provide additional detail, for example to + * support frame types that are codec specific (MPEG-1 D-frames for example) + */ +typedef uint32_t vpx_codec_frame_flags_t; +#define VPX_FRAME_IS_KEY 0x1 /**< frame is the start of a GOP */ +/*!\brief frame can be dropped without affecting the stream (no future frame + * depends on this one) */ +#define VPX_FRAME_IS_DROPPABLE 0x2 +/*!\brief frame should be decoded but will not be shown */ +#define VPX_FRAME_IS_INVISIBLE 0x4 +/*!\brief this is a fragment of the encoded frame */ +#define VPX_FRAME_IS_FRAGMENT 0x8 + +/*!\brief Error Resilient flags + * + * These flags define which error resilient features to enable in the + * encoder. The flags are specified through the + * vpx_codec_enc_cfg::g_error_resilient variable. + */ +typedef uint32_t vpx_codec_er_flags_t; +/*!\brief Improve resiliency against losses of whole frames */ +#define VPX_ERROR_RESILIENT_DEFAULT 0x1 +/*!\brief The frame partitions are independently decodable by the bool decoder, + * meaning that partitions can be decoded even though earlier partitions have + * been lost. Note that intra prediction is still done over the partition + * boundary. */ +#define VPX_ERROR_RESILIENT_PARTITIONS 0x2 + +/*!\brief Encoder output packet variants + * + * This enumeration lists the different kinds of data packets that can be + * returned by calls to vpx_codec_get_cx_data(). Algorithms \ref MAY + * extend this list to provide additional functionality. + */ +enum vpx_codec_cx_pkt_kind { + VPX_CODEC_CX_FRAME_PKT, /**< Compressed video frame */ + VPX_CODEC_STATS_PKT, /**< Two-pass statistics for this frame */ + VPX_CODEC_FPMB_STATS_PKT, /**< first pass mb statistics for this frame */ + VPX_CODEC_PSNR_PKT, /**< PSNR statistics for this frame */ +// Spatial SVC is still experimental and may be removed. +#if defined(VPX_TEST_SPATIAL_SVC) + VPX_CODEC_SPATIAL_SVC_LAYER_SIZES, /**< Sizes for each layer in this frame*/ + VPX_CODEC_SPATIAL_SVC_LAYER_PSNR, /**< PSNR for each layer in this frame*/ +#endif + VPX_CODEC_CUSTOM_PKT = 256 /**< Algorithm extensions */ +}; + +/*!\brief Encoder output packet + * + * This structure contains the different kinds of output data the encoder + * may produce while compressing a frame. + */ +typedef struct vpx_codec_cx_pkt { + enum vpx_codec_cx_pkt_kind kind; /**< packet variant */ + union { + struct { + void *buf; /**< compressed data buffer */ + size_t sz; /**< length of compressed data */ + /*!\brief time stamp to show frame (in timebase units) */ + vpx_codec_pts_t pts; + /*!\brief duration to show frame (in timebase units) */ + unsigned long duration; + vpx_codec_frame_flags_t flags; /**< flags for this frame */ + /*!\brief the partition id defines the decoding order of the partitions. + * Only applicable when "output partition" mode is enabled. First + * partition has id 0.*/ + int partition_id; + } frame; /**< data for compressed frame packet */ + vpx_fixed_buf_t twopass_stats; /**< data for two-pass packet */ + vpx_fixed_buf_t firstpass_mb_stats; /**< first pass mb packet */ + struct vpx_psnr_pkt { + unsigned int samples[4]; /**< Number of samples, total/y/u/v */ + uint64_t sse[4]; /**< sum squared error, total/y/u/v */ + double psnr[4]; /**< PSNR, total/y/u/v */ + } psnr; /**< data for PSNR packet */ + vpx_fixed_buf_t raw; /**< data for arbitrary packets */ +// Spatial SVC is still experimental and may be removed. +#if defined(VPX_TEST_SPATIAL_SVC) + size_t layer_sizes[VPX_SS_MAX_LAYERS]; + struct vpx_psnr_pkt layer_psnr[VPX_SS_MAX_LAYERS]; +#endif + + /* This packet size is fixed to allow codecs to extend this + * interface without having to manage storage for raw packets, + * i.e., if it's smaller than 128 bytes, you can store in the + * packet list directly. + */ + char pad[128 - sizeof(enum vpx_codec_cx_pkt_kind)]; /**< fixed sz */ + } data; /**< packet data */ +} vpx_codec_cx_pkt_t; /**< alias for struct vpx_codec_cx_pkt */ + +/*!\brief Encoder return output buffer callback + * + * This callback function, when registered, returns with packets when each + * spatial layer is encoded. + */ +// putting the definitions here for now. (agrange: find if there +// is a better place for this) +typedef void (*vpx_codec_enc_output_cx_pkt_cb_fn_t)(vpx_codec_cx_pkt_t *pkt, + void *user_data); + +/*!\brief Callback function pointer / user data pair storage */ +typedef struct vpx_codec_enc_output_cx_cb_pair { + vpx_codec_enc_output_cx_pkt_cb_fn_t output_cx_pkt; /**< Callback function */ + void *user_priv; /**< Pointer to private data */ +} vpx_codec_priv_output_cx_pkt_cb_pair_t; + +/*!\brief Rational Number + * + * This structure holds a fractional value. + */ +typedef struct vpx_rational { + int num; /**< fraction numerator */ + int den; /**< fraction denominator */ +} vpx_rational_t; /**< alias for struct vpx_rational */ + +/*!\brief Multi-pass Encoding Pass */ +enum vpx_enc_pass { + VPX_RC_ONE_PASS, /**< Single pass mode */ + VPX_RC_FIRST_PASS, /**< First pass of multi-pass mode */ + VPX_RC_LAST_PASS /**< Final pass of multi-pass mode */ +}; + +/*!\brief Rate control mode */ +enum vpx_rc_mode { + VPX_VBR, /**< Variable Bit Rate (VBR) mode */ + VPX_CBR, /**< Constant Bit Rate (CBR) mode */ + VPX_CQ, /**< Constrained Quality (CQ) mode */ + VPX_Q, /**< Constant Quality (Q) mode */ +}; + +/*!\brief Keyframe placement mode. + * + * This enumeration determines whether keyframes are placed automatically by + * the encoder or whether this behavior is disabled. Older releases of this + * SDK were implemented such that VPX_KF_FIXED meant keyframes were disabled. + * This name is confusing for this behavior, so the new symbols to be used + * are VPX_KF_AUTO and VPX_KF_DISABLED. + */ +enum vpx_kf_mode { + VPX_KF_FIXED, /**< deprecated, implies VPX_KF_DISABLED */ + VPX_KF_AUTO, /**< Encoder determines optimal placement automatically */ + VPX_KF_DISABLED = 0 /**< Encoder does not place keyframes. */ +}; + +/*!\brief Encoded Frame Flags + * + * This type indicates a bitfield to be passed to vpx_codec_encode(), defining + * per-frame boolean values. By convention, bits common to all codecs will be + * named VPX_EFLAG_*, and bits specific to an algorithm will be named + * /algo/_eflag_*. The lower order 16 bits are reserved for common use. + */ +typedef long vpx_enc_frame_flags_t; +#define VPX_EFLAG_FORCE_KF (1 << 0) /**< Force this frame to be a keyframe */ + +/*!\brief Encoder configuration structure + * + * This structure contains the encoder settings that have common representations + * across all codecs. This doesn't imply that all codecs support all features, + * however. + */ +typedef struct vpx_codec_enc_cfg { + /* + * generic settings (g) + */ + + /*!\brief Algorithm specific "usage" value + * + * Algorithms may define multiple values for usage, which may convey the + * intent of how the application intends to use the stream. If this value + * is non-zero, consult the documentation for the codec to determine its + * meaning. + */ + unsigned int g_usage; + + /*!\brief Maximum number of threads to use + * + * For multi-threaded implementations, use no more than this number of + * threads. The codec may use fewer threads than allowed. The value + * 0 is equivalent to the value 1. + */ + unsigned int g_threads; + + /*!\brief Bitstream profile to use + * + * Some codecs support a notion of multiple bitstream profiles. Typically + * this maps to a set of features that are turned on or off. Often the + * profile to use is determined by the features of the intended decoder. + * Consult the documentation for the codec to determine the valid values + * for this parameter, or set to zero for a sane default. + */ + unsigned int g_profile; /**< profile of bitstream to use */ + + /*!\brief Width of the frame + * + * This value identifies the presentation resolution of the frame, + * in pixels. Note that the frames passed as input to the encoder must + * have this resolution. Frames will be presented by the decoder in this + * resolution, independent of any spatial resampling the encoder may do. + */ + unsigned int g_w; + + /*!\brief Height of the frame + * + * This value identifies the presentation resolution of the frame, + * in pixels. Note that the frames passed as input to the encoder must + * have this resolution. Frames will be presented by the decoder in this + * resolution, independent of any spatial resampling the encoder may do. + */ + unsigned int g_h; + + /*!\brief Bit-depth of the codec + * + * This value identifies the bit_depth of the codec, + * Only certain bit-depths are supported as identified in the + * vpx_bit_depth_t enum. + */ + vpx_bit_depth_t g_bit_depth; + + /*!\brief Bit-depth of the input frames + * + * This value identifies the bit_depth of the input frames in bits. + * Note that the frames passed as input to the encoder must have + * this bit-depth. + */ + unsigned int g_input_bit_depth; + + /*!\brief Stream timebase units + * + * Indicates the smallest interval of time, in seconds, used by the stream. + * For fixed frame rate material, or variable frame rate material where + * frames are timed at a multiple of a given clock (ex: video capture), + * the \ref RECOMMENDED method is to set the timebase to the reciprocal + * of the frame rate (ex: 1001/30000 for 29.970 Hz NTSC). This allows the + * pts to correspond to the frame number, which can be handy. For + * re-encoding video from containers with absolute time timestamps, the + * \ref RECOMMENDED method is to set the timebase to that of the parent + * container or multimedia framework (ex: 1/1000 for ms, as in FLV). + */ + struct vpx_rational g_timebase; + + /*!\brief Enable error resilient modes. + * + * The error resilient bitfield indicates to the encoder which features + * it should enable to take measures for streaming over lossy or noisy + * links. + */ + vpx_codec_er_flags_t g_error_resilient; + + /*!\brief Multi-pass Encoding Mode + * + * This value should be set to the current phase for multi-pass encoding. + * For single pass, set to #VPX_RC_ONE_PASS. + */ + enum vpx_enc_pass g_pass; + + /*!\brief Allow lagged encoding + * + * If set, this value allows the encoder to consume a number of input + * frames before producing output frames. This allows the encoder to + * base decisions for the current frame on future frames. This does + * increase the latency of the encoding pipeline, so it is not appropriate + * in all situations (ex: realtime encoding). + * + * Note that this is a maximum value -- the encoder may produce frames + * sooner than the given limit. Set this value to 0 to disable this + * feature. + */ + unsigned int g_lag_in_frames; + + /* + * rate control settings (rc) + */ + + /*!\brief Temporal resampling configuration, if supported by the codec. + * + * Temporal resampling allows the codec to "drop" frames as a strategy to + * meet its target data rate. This can cause temporal discontinuities in + * the encoded video, which may appear as stuttering during playback. This + * trade-off is often acceptable, but for many applications is not. It can + * be disabled in these cases. + * + * Note that not all codecs support this feature. All vpx VPx codecs do. + * For other codecs, consult the documentation for that algorithm. + * + * This threshold is described as a percentage of the target data buffer. + * When the data buffer falls below this percentage of fullness, a + * dropped frame is indicated. Set the threshold to zero (0) to disable + * this feature. + */ + unsigned int rc_dropframe_thresh; + + /*!\brief Enable/disable spatial resampling, if supported by the codec. + * + * Spatial resampling allows the codec to compress a lower resolution + * version of the frame, which is then upscaled by the encoder to the + * correct presentation resolution. This increases visual quality at + * low data rates, at the expense of CPU time on the encoder/decoder. + */ + unsigned int rc_resize_allowed; + + /*!\brief Internal coded frame width. + * + * If spatial resampling is enabled this specifies the width of the + * encoded frame. + */ + unsigned int rc_scaled_width; + + /*!\brief Internal coded frame height. + * + * If spatial resampling is enabled this specifies the height of the + * encoded frame. + */ + unsigned int rc_scaled_height; + + /*!\brief Spatial resampling up watermark. + * + * This threshold is described as a percentage of the target data buffer. + * When the data buffer rises above this percentage of fullness, the + * encoder will step up to a higher resolution version of the frame. + */ + unsigned int rc_resize_up_thresh; + + /*!\brief Spatial resampling down watermark. + * + * This threshold is described as a percentage of the target data buffer. + * When the data buffer falls below this percentage of fullness, the + * encoder will step down to a lower resolution version of the frame. + */ + unsigned int rc_resize_down_thresh; + + /*!\brief Rate control algorithm to use. + * + * Indicates whether the end usage of this stream is to be streamed over + * a bandwidth constrained link, indicating that Constant Bit Rate (CBR) + * mode should be used, or whether it will be played back on a high + * bandwidth link, as from a local disk, where higher variations in + * bitrate are acceptable. + */ + enum vpx_rc_mode rc_end_usage; + + /*!\brief Two-pass stats buffer. + * + * A buffer containing all of the stats packets produced in the first + * pass, concatenated. + */ + vpx_fixed_buf_t rc_twopass_stats_in; + + /*!\brief first pass mb stats buffer. + * + * A buffer containing all of the first pass mb stats packets produced + * in the first pass, concatenated. + */ + vpx_fixed_buf_t rc_firstpass_mb_stats_in; + + /*!\brief Target data rate + * + * Target bandwidth to use for this stream, in kilobits per second. + */ + unsigned int rc_target_bitrate; + + /* + * quantizer settings + */ + + /*!\brief Minimum (Best Quality) Quantizer + * + * The quantizer is the most direct control over the quality of the + * encoded image. The range of valid values for the quantizer is codec + * specific. Consult the documentation for the codec to determine the + * values to use. To determine the range programmatically, call + * vpx_codec_enc_config_default() with a usage value of 0. + */ + unsigned int rc_min_quantizer; + + /*!\brief Maximum (Worst Quality) Quantizer + * + * The quantizer is the most direct control over the quality of the + * encoded image. The range of valid values for the quantizer is codec + * specific. Consult the documentation for the codec to determine the + * values to use. To determine the range programmatically, call + * vpx_codec_enc_config_default() with a usage value of 0. + */ + unsigned int rc_max_quantizer; + + /* + * bitrate tolerance + */ + + /*!\brief Rate control adaptation undershoot control + * + * VP8: Expressed as a percentage of the target bitrate, + * controls the maximum allowed adaptation speed of the codec. + * This factor controls the maximum amount of bits that can + * be subtracted from the target bitrate in order to compensate + * for prior overshoot. + * VP9: Expressed as a percentage of the target bitrate, a threshold + * undershoot level (current rate vs target) beyond which more agressive + * corrective measures are taken. + * * + * Valid values in the range VP8:0-1000 VP9: 0-100. + */ + unsigned int rc_undershoot_pct; + + /*!\brief Rate control adaptation overshoot control + * + * VP8: Expressed as a percentage of the target bitrate, + * controls the maximum allowed adaptation speed of the codec. + * This factor controls the maximum amount of bits that can + * be added to the target bitrate in order to compensate for + * prior undershoot. + * VP9: Expressed as a percentage of the target bitrate, a threshold + * overshoot level (current rate vs target) beyond which more agressive + * corrective measures are taken. + * + * Valid values in the range VP8:0-1000 VP9: 0-100. + */ + unsigned int rc_overshoot_pct; + + /* + * decoder buffer model parameters + */ + + /*!\brief Decoder Buffer Size + * + * This value indicates the amount of data that may be buffered by the + * decoding application. Note that this value is expressed in units of + * time (milliseconds). For example, a value of 5000 indicates that the + * client will buffer (at least) 5000ms worth of encoded data. Use the + * target bitrate (#rc_target_bitrate) to convert to bits/bytes, if + * necessary. + */ + unsigned int rc_buf_sz; + + /*!\brief Decoder Buffer Initial Size + * + * This value indicates the amount of data that will be buffered by the + * decoding application prior to beginning playback. This value is + * expressed in units of time (milliseconds). Use the target bitrate + * (#rc_target_bitrate) to convert to bits/bytes, if necessary. + */ + unsigned int rc_buf_initial_sz; + + /*!\brief Decoder Buffer Optimal Size + * + * This value indicates the amount of data that the encoder should try + * to maintain in the decoder's buffer. This value is expressed in units + * of time (milliseconds). Use the target bitrate (#rc_target_bitrate) + * to convert to bits/bytes, if necessary. + */ + unsigned int rc_buf_optimal_sz; + + /* + * 2 pass rate control parameters + */ + + /*!\brief Two-pass mode CBR/VBR bias + * + * Bias, expressed on a scale of 0 to 100, for determining target size + * for the current frame. The value 0 indicates the optimal CBR mode + * value should be used. The value 100 indicates the optimal VBR mode + * value should be used. Values in between indicate which way the + * encoder should "lean." + */ + unsigned int rc_2pass_vbr_bias_pct; + + /*!\brief Two-pass mode per-GOP minimum bitrate + * + * This value, expressed as a percentage of the target bitrate, indicates + * the minimum bitrate to be used for a single GOP (aka "section") + */ + unsigned int rc_2pass_vbr_minsection_pct; + + /*!\brief Two-pass mode per-GOP maximum bitrate + * + * This value, expressed as a percentage of the target bitrate, indicates + * the maximum bitrate to be used for a single GOP (aka "section") + */ + unsigned int rc_2pass_vbr_maxsection_pct; + + /*!\brief Two-pass corpus vbr mode complexity control + * Used only in VP9: A value representing the corpus midpoint complexity + * for corpus vbr mode. This value defaults to 0 which disables corpus vbr + * mode in favour of normal vbr mode. + */ + unsigned int rc_2pass_vbr_corpus_complexity; + + /* + * keyframing settings (kf) + */ + + /*!\brief Keyframe placement mode + * + * This value indicates whether the encoder should place keyframes at a + * fixed interval, or determine the optimal placement automatically + * (as governed by the #kf_min_dist and #kf_max_dist parameters) + */ + enum vpx_kf_mode kf_mode; + + /*!\brief Keyframe minimum interval + * + * This value, expressed as a number of frames, prevents the encoder from + * placing a keyframe nearer than kf_min_dist to the previous keyframe. At + * least kf_min_dist frames non-keyframes will be coded before the next + * keyframe. Set kf_min_dist equal to kf_max_dist for a fixed interval. + */ + unsigned int kf_min_dist; + + /*!\brief Keyframe maximum interval + * + * This value, expressed as a number of frames, forces the encoder to code + * a keyframe if one has not been coded in the last kf_max_dist frames. + * A value of 0 implies all frames will be keyframes. Set kf_min_dist + * equal to kf_max_dist for a fixed interval. + */ + unsigned int kf_max_dist; + + /* + * Spatial scalability settings (ss) + */ + + /*!\brief Number of spatial coding layers. + * + * This value specifies the number of spatial coding layers to be used. + */ + unsigned int ss_number_layers; + + /*!\brief Enable auto alt reference flags for each spatial layer. + * + * These values specify if auto alt reference frame is enabled for each + * spatial layer. + */ + int ss_enable_auto_alt_ref[VPX_SS_MAX_LAYERS]; + + /*!\brief Target bitrate for each spatial layer. + * + * These values specify the target coding bitrate to be used for each + * spatial layer. + */ + unsigned int ss_target_bitrate[VPX_SS_MAX_LAYERS]; + + /*!\brief Number of temporal coding layers. + * + * This value specifies the number of temporal layers to be used. + */ + unsigned int ts_number_layers; + + /*!\brief Target bitrate for each temporal layer. + * + * These values specify the target coding bitrate to be used for each + * temporal layer. + */ + unsigned int ts_target_bitrate[VPX_TS_MAX_LAYERS]; + + /*!\brief Frame rate decimation factor for each temporal layer. + * + * These values specify the frame rate decimation factors to apply + * to each temporal layer. + */ + unsigned int ts_rate_decimator[VPX_TS_MAX_LAYERS]; + + /*!\brief Length of the sequence defining frame temporal layer membership. + * + * This value specifies the length of the sequence that defines the + * membership of frames to temporal layers. For example, if the + * ts_periodicity = 8, then the frames are assigned to coding layers with a + * repeated sequence of length 8. + */ + unsigned int ts_periodicity; + + /*!\brief Template defining the membership of frames to temporal layers. + * + * This array defines the membership of frames to temporal coding layers. + * For a 2-layer encoding that assigns even numbered frames to one temporal + * layer (0) and odd numbered frames to a second temporal layer (1) with + * ts_periodicity=8, then ts_layer_id = (0,1,0,1,0,1,0,1). + */ + unsigned int ts_layer_id[VPX_TS_MAX_PERIODICITY]; + + /*!\brief Target bitrate for each spatial/temporal layer. + * + * These values specify the target coding bitrate to be used for each + * spatial/temporal layer. + * + */ + unsigned int layer_target_bitrate[VPX_MAX_LAYERS]; + + /*!\brief Temporal layering mode indicating which temporal layering scheme to + * use. + * + * The value (refer to VP9E_TEMPORAL_LAYERING_MODE) specifies the + * temporal layering mode to use. + * + */ + int temporal_layering_mode; +} vpx_codec_enc_cfg_t; /**< alias for struct vpx_codec_enc_cfg */ + +/*!\brief vp9 svc extra configure parameters + * + * This defines max/min quantizers and scale factors for each layer + * + */ +typedef struct vpx_svc_parameters { + int max_quantizers[VPX_MAX_LAYERS]; /**< Max Q for each layer */ + int min_quantizers[VPX_MAX_LAYERS]; /**< Min Q for each layer */ + int scaling_factor_num[VPX_MAX_LAYERS]; /**< Scaling factor-numerator */ + int scaling_factor_den[VPX_MAX_LAYERS]; /**< Scaling factor-denominator */ + int speed_per_layer[VPX_MAX_LAYERS]; /**< Speed setting for each sl */ + int temporal_layering_mode; /**< Temporal layering mode */ +} vpx_svc_extra_cfg_t; + +/*!\brief Initialize an encoder instance + * + * Initializes a encoder context using the given interface. Applications + * should call the vpx_codec_enc_init convenience macro instead of this + * function directly, to ensure that the ABI version number parameter + * is properly initialized. + * + * If the library was configured with --disable-multithread, this call + * is not thread safe and should be guarded with a lock if being used + * in a multithreaded context. + * + * \param[in] ctx Pointer to this instance's context. + * \param[in] iface Pointer to the algorithm interface to use. + * \param[in] cfg Configuration to use, if known. May be NULL. + * \param[in] flags Bitfield of VPX_CODEC_USE_* flags + * \param[in] ver ABI version number. Must be set to + * VPX_ENCODER_ABI_VERSION + * \retval #VPX_CODEC_OK + * The decoder algorithm initialized. + * \retval #VPX_CODEC_MEM_ERROR + * Memory allocation failed. + */ +vpx_codec_err_t vpx_codec_enc_init_ver(vpx_codec_ctx_t *ctx, + vpx_codec_iface_t *iface, + const vpx_codec_enc_cfg_t *cfg, + vpx_codec_flags_t flags, int ver); + +/*!\brief Convenience macro for vpx_codec_enc_init_ver() + * + * Ensures the ABI version parameter is properly set. + */ +#define vpx_codec_enc_init(ctx, iface, cfg, flags) \ + vpx_codec_enc_init_ver(ctx, iface, cfg, flags, VPX_ENCODER_ABI_VERSION) + +/*!\brief Initialize multi-encoder instance + * + * Initializes multi-encoder context using the given interface. + * Applications should call the vpx_codec_enc_init_multi convenience macro + * instead of this function directly, to ensure that the ABI version number + * parameter is properly initialized. + * + * \param[in] ctx Pointer to this instance's context. + * \param[in] iface Pointer to the algorithm interface to use. + * \param[in] cfg Configuration to use, if known. May be NULL. + * \param[in] num_enc Total number of encoders. + * \param[in] flags Bitfield of VPX_CODEC_USE_* flags + * \param[in] dsf Pointer to down-sampling factors. + * \param[in] ver ABI version number. Must be set to + * VPX_ENCODER_ABI_VERSION + * \retval #VPX_CODEC_OK + * The decoder algorithm initialized. + * \retval #VPX_CODEC_MEM_ERROR + * Memory allocation failed. + */ +vpx_codec_err_t vpx_codec_enc_init_multi_ver( + vpx_codec_ctx_t *ctx, vpx_codec_iface_t *iface, vpx_codec_enc_cfg_t *cfg, + int num_enc, vpx_codec_flags_t flags, vpx_rational_t *dsf, int ver); + +/*!\brief Convenience macro for vpx_codec_enc_init_multi_ver() + * + * Ensures the ABI version parameter is properly set. + */ +#define vpx_codec_enc_init_multi(ctx, iface, cfg, num_enc, flags, dsf) \ + vpx_codec_enc_init_multi_ver(ctx, iface, cfg, num_enc, flags, dsf, \ + VPX_ENCODER_ABI_VERSION) + +/*!\brief Get a default configuration + * + * Initializes a encoder configuration structure with default values. Supports + * the notion of "usages" so that an algorithm may offer different default + * settings depending on the user's intended goal. This function \ref SHOULD + * be called by all applications to initialize the configuration structure + * before specializing the configuration with application specific values. + * + * \param[in] iface Pointer to the algorithm interface to use. + * \param[out] cfg Configuration buffer to populate. + * \param[in] reserved Must set to 0 for VP8 and VP9. + * + * \retval #VPX_CODEC_OK + * The configuration was populated. + * \retval #VPX_CODEC_INCAPABLE + * Interface is not an encoder interface. + * \retval #VPX_CODEC_INVALID_PARAM + * A parameter was NULL, or the usage value was not recognized. + */ +vpx_codec_err_t vpx_codec_enc_config_default(vpx_codec_iface_t *iface, + vpx_codec_enc_cfg_t *cfg, + unsigned int reserved); + +/*!\brief Set or change configuration + * + * Reconfigures an encoder instance according to the given configuration. + * + * \param[in] ctx Pointer to this instance's context + * \param[in] cfg Configuration buffer to use + * + * \retval #VPX_CODEC_OK + * The configuration was populated. + * \retval #VPX_CODEC_INCAPABLE + * Interface is not an encoder interface. + * \retval #VPX_CODEC_INVALID_PARAM + * A parameter was NULL, or the usage value was not recognized. + */ +vpx_codec_err_t vpx_codec_enc_config_set(vpx_codec_ctx_t *ctx, + const vpx_codec_enc_cfg_t *cfg); + +/*!\brief Get global stream headers + * + * Retrieves a stream level global header packet, if supported by the codec. + * + * \param[in] ctx Pointer to this instance's context + * + * \retval NULL + * Encoder does not support global header + * \retval Non-NULL + * Pointer to buffer containing global header packet + */ +vpx_fixed_buf_t *vpx_codec_get_global_headers(vpx_codec_ctx_t *ctx); + +/*!\brief deadline parameter analogous to VPx REALTIME mode. */ +#define VPX_DL_REALTIME (1) +/*!\brief deadline parameter analogous to VPx GOOD QUALITY mode. */ +#define VPX_DL_GOOD_QUALITY (1000000) +/*!\brief deadline parameter analogous to VPx BEST QUALITY mode. */ +#define VPX_DL_BEST_QUALITY (0) +/*!\brief Encode a frame + * + * Encodes a video frame at the given "presentation time." The presentation + * time stamp (PTS) \ref MUST be strictly increasing. + * + * The encoder supports the notion of a soft real-time deadline. Given a + * non-zero value to the deadline parameter, the encoder will make a "best + * effort" guarantee to return before the given time slice expires. It is + * implicit that limiting the available time to encode will degrade the + * output quality. The encoder can be given an unlimited time to produce the + * best possible frame by specifying a deadline of '0'. This deadline + * supercedes the VPx notion of "best quality, good quality, realtime". + * Applications that wish to map these former settings to the new deadline + * based system can use the symbols #VPX_DL_REALTIME, #VPX_DL_GOOD_QUALITY, + * and #VPX_DL_BEST_QUALITY. + * + * When the last frame has been passed to the encoder, this function should + * continue to be called, with the img parameter set to NULL. This will + * signal the end-of-stream condition to the encoder and allow it to encode + * any held buffers. Encoding is complete when vpx_codec_encode() is called + * and vpx_codec_get_cx_data() returns no data. + * + * \param[in] ctx Pointer to this instance's context + * \param[in] img Image data to encode, NULL to flush. + * \param[in] pts Presentation time stamp, in timebase units. + * \param[in] duration Duration to show frame, in timebase units. + * \param[in] flags Flags to use for encoding this frame. + * \param[in] deadline Time to spend encoding, in microseconds. (0=infinite) + * + * \retval #VPX_CODEC_OK + * The configuration was populated. + * \retval #VPX_CODEC_INCAPABLE + * Interface is not an encoder interface. + * \retval #VPX_CODEC_INVALID_PARAM + * A parameter was NULL, the image format is unsupported, etc. + */ +vpx_codec_err_t vpx_codec_encode(vpx_codec_ctx_t *ctx, const vpx_image_t *img, + vpx_codec_pts_t pts, unsigned long duration, + vpx_enc_frame_flags_t flags, + unsigned long deadline); + +/*!\brief Set compressed data output buffer + * + * Sets the buffer that the codec should output the compressed data + * into. This call effectively sets the buffer pointer returned in the + * next VPX_CODEC_CX_FRAME_PKT packet. Subsequent packets will be + * appended into this buffer. The buffer is preserved across frames, + * so applications must periodically call this function after flushing + * the accumulated compressed data to disk or to the network to reset + * the pointer to the buffer's head. + * + * `pad_before` bytes will be skipped before writing the compressed + * data, and `pad_after` bytes will be appended to the packet. The size + * of the packet will be the sum of the size of the actual compressed + * data, pad_before, and pad_after. The padding bytes will be preserved + * (not overwritten). + * + * Note that calling this function does not guarantee that the returned + * compressed data will be placed into the specified buffer. In the + * event that the encoded data will not fit into the buffer provided, + * the returned packet \ref MAY point to an internal buffer, as it would + * if this call were never used. In this event, the output packet will + * NOT have any padding, and the application must free space and copy it + * to the proper place. This is of particular note in configurations + * that may output multiple packets for a single encoded frame (e.g., lagged + * encoding) or if the application does not reset the buffer periodically. + * + * Applications may restore the default behavior of the codec providing + * the compressed data buffer by calling this function with a NULL + * buffer. + * + * Applications \ref MUSTNOT call this function during iteration of + * vpx_codec_get_cx_data(). + * + * \param[in] ctx Pointer to this instance's context + * \param[in] buf Buffer to store compressed data into + * \param[in] pad_before Bytes to skip before writing compressed data + * \param[in] pad_after Bytes to skip after writing compressed data + * + * \retval #VPX_CODEC_OK + * The buffer was set successfully. + * \retval #VPX_CODEC_INVALID_PARAM + * A parameter was NULL, the image format is unsupported, etc. + */ +vpx_codec_err_t vpx_codec_set_cx_data_buf(vpx_codec_ctx_t *ctx, + const vpx_fixed_buf_t *buf, + unsigned int pad_before, + unsigned int pad_after); + +/*!\brief Encoded data iterator + * + * Iterates over a list of data packets to be passed from the encoder to the + * application. The different kinds of packets available are enumerated in + * #vpx_codec_cx_pkt_kind. + * + * #VPX_CODEC_CX_FRAME_PKT packets should be passed to the application's + * muxer. Multiple compressed frames may be in the list. + * #VPX_CODEC_STATS_PKT packets should be appended to a global buffer. + * + * The application \ref MUST silently ignore any packet kinds that it does + * not recognize or support. + * + * The data buffers returned from this function are only guaranteed to be + * valid until the application makes another call to any vpx_codec_* function. + * + * \param[in] ctx Pointer to this instance's context + * \param[in,out] iter Iterator storage, initialized to NULL + * + * \return Returns a pointer to an output data packet (compressed frame data, + * two-pass statistics, etc.) or NULL to signal end-of-list. + * + */ +const vpx_codec_cx_pkt_t *vpx_codec_get_cx_data(vpx_codec_ctx_t *ctx, + vpx_codec_iter_t *iter); + +/*!\brief Get Preview Frame + * + * Returns an image that can be used as a preview. Shows the image as it would + * exist at the decompressor. The application \ref MUST NOT write into this + * image buffer. + * + * \param[in] ctx Pointer to this instance's context + * + * \return Returns a pointer to a preview image, or NULL if no image is + * available. + * + */ +const vpx_image_t *vpx_codec_get_preview_frame(vpx_codec_ctx_t *ctx); + +/*!@} - end defgroup encoder*/ +#ifdef __cplusplus +} +#endif +#endif // VPX_VPX_ENCODER_H_ diff --git a/vpx/vpx_frame_buffer.h b/vpx/vpx_frame_buffer.h new file mode 100644 index 0000000..ad70cdd --- /dev/null +++ b/vpx/vpx_frame_buffer.h @@ -0,0 +1,83 @@ +/* + * Copyright (c) 2014 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VPX_VPX_FRAME_BUFFER_H_ +#define VPX_VPX_FRAME_BUFFER_H_ + +/*!\file + * \brief Describes the decoder external frame buffer interface. + */ + +#ifdef __cplusplus +extern "C" { +#endif + +#include "./vpx_integer.h" + +/*!\brief The maximum number of work buffers used by libvpx. + * Support maximum 4 threads to decode video in parallel. + * Each thread will use one work buffer. + * TODO(hkuang): Add support to set number of worker threads dynamically. + */ +#define VPX_MAXIMUM_WORK_BUFFERS 8 + +/*!\brief The maximum number of reference buffers that a VP9 encoder may use. + */ +#define VP9_MAXIMUM_REF_BUFFERS 8 + +/*!\brief External frame buffer + * + * This structure holds allocated frame buffers used by the decoder. + */ +typedef struct vpx_codec_frame_buffer { + uint8_t *data; /**< Pointer to the data buffer */ + size_t size; /**< Size of data in bytes */ + void *priv; /**< Frame's private data */ +} vpx_codec_frame_buffer_t; + +/*!\brief get frame buffer callback prototype + * + * This callback is invoked by the decoder to retrieve data for the frame + * buffer in order for the decode call to complete. The callback must + * allocate at least min_size in bytes and assign it to fb->data. The callback + * must zero out all the data allocated. Then the callback must set fb->size + * to the allocated size. The application does not need to align the allocated + * data. The callback is triggered when the decoder needs a frame buffer to + * decode a compressed image into. This function may be called more than once + * for every call to vpx_codec_decode. The application may set fb->priv to + * some data which will be passed back in the ximage and the release function + * call. |fb| is guaranteed to not be NULL. On success the callback must + * return 0. Any failure the callback must return a value less than 0. + * + * \param[in] priv Callback's private data + * \param[in] new_size Size in bytes needed by the buffer + * \param[in,out] fb Pointer to vpx_codec_frame_buffer_t + */ +typedef int (*vpx_get_frame_buffer_cb_fn_t)(void *priv, size_t min_size, + vpx_codec_frame_buffer_t *fb); + +/*!\brief release frame buffer callback prototype + * + * This callback is invoked by the decoder when the frame buffer is not + * referenced by any other buffers. |fb| is guaranteed to not be NULL. On + * success the callback must return 0. Any failure the callback must return + * a value less than 0. + * + * \param[in] priv Callback's private data + * \param[in] fb Pointer to vpx_codec_frame_buffer_t + */ +typedef int (*vpx_release_frame_buffer_cb_fn_t)(void *priv, + vpx_codec_frame_buffer_t *fb); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VPX_VPX_FRAME_BUFFER_H_ diff --git a/vpx/vpx_image.h b/vpx/vpx_image.h new file mode 100644 index 0000000..d6d3166 --- /dev/null +++ b/vpx/vpx_image.h @@ -0,0 +1,224 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +/*!\file + * \brief Describes the vpx image descriptor and associated operations + * + */ +#ifndef VPX_VPX_IMAGE_H_ +#define VPX_VPX_IMAGE_H_ + +#ifdef __cplusplus +extern "C" { +#endif + +/*!\brief Current ABI version number + * + * \internal + * If this file is altered in any way that changes the ABI, this value + * must be bumped. Examples include, but are not limited to, changing + * types, removing or reassigning enums, adding/removing/rearranging + * fields to structures + */ +#define VPX_IMAGE_ABI_VERSION (4) /**<\hideinitializer*/ + +#define VPX_IMG_FMT_PLANAR 0x100 /**< Image is a planar format. */ +#define VPX_IMG_FMT_UV_FLIP 0x200 /**< V plane precedes U in memory. */ +#define VPX_IMG_FMT_HAS_ALPHA 0x400 /**< Image has an alpha channel. */ +#define VPX_IMG_FMT_HIGHBITDEPTH 0x800 /**< Image uses 16bit framebuffer. */ + +/*!\brief List of supported image formats */ +typedef enum vpx_img_fmt { + VPX_IMG_FMT_NONE, + VPX_IMG_FMT_RGB24, /**< 24 bit per pixel packed RGB */ + VPX_IMG_FMT_RGB32, /**< 32 bit per pixel packed 0RGB */ + VPX_IMG_FMT_RGB565, /**< 16 bit per pixel, 565 */ + VPX_IMG_FMT_RGB555, /**< 16 bit per pixel, 555 */ + VPX_IMG_FMT_UYVY, /**< UYVY packed YUV */ + VPX_IMG_FMT_YUY2, /**< YUYV packed YUV */ + VPX_IMG_FMT_YVYU, /**< YVYU packed YUV */ + VPX_IMG_FMT_BGR24, /**< 24 bit per pixel packed BGR */ + VPX_IMG_FMT_RGB32_LE, /**< 32 bit packed BGR0 */ + VPX_IMG_FMT_ARGB, /**< 32 bit packed ARGB, alpha=255 */ + VPX_IMG_FMT_ARGB_LE, /**< 32 bit packed BGRA, alpha=255 */ + VPX_IMG_FMT_RGB565_LE, /**< 16 bit per pixel, gggbbbbb rrrrrggg */ + VPX_IMG_FMT_RGB555_LE, /**< 16 bit per pixel, gggbbbbb 0rrrrrgg */ + VPX_IMG_FMT_YV12 = + VPX_IMG_FMT_PLANAR | VPX_IMG_FMT_UV_FLIP | 1, /**< planar YVU */ + VPX_IMG_FMT_I420 = VPX_IMG_FMT_PLANAR | 2, + VPX_IMG_FMT_VPXYV12 = VPX_IMG_FMT_PLANAR | VPX_IMG_FMT_UV_FLIP | + 3, /** < planar 4:2:0 format with vpx color space */ + VPX_IMG_FMT_VPXI420 = VPX_IMG_FMT_PLANAR | 4, + VPX_IMG_FMT_I422 = VPX_IMG_FMT_PLANAR | 5, + VPX_IMG_FMT_I444 = VPX_IMG_FMT_PLANAR | 6, + VPX_IMG_FMT_I440 = VPX_IMG_FMT_PLANAR | 7, + VPX_IMG_FMT_444A = VPX_IMG_FMT_PLANAR | VPX_IMG_FMT_HAS_ALPHA | 6, + VPX_IMG_FMT_I42016 = VPX_IMG_FMT_I420 | VPX_IMG_FMT_HIGHBITDEPTH, + VPX_IMG_FMT_I42216 = VPX_IMG_FMT_I422 | VPX_IMG_FMT_HIGHBITDEPTH, + VPX_IMG_FMT_I44416 = VPX_IMG_FMT_I444 | VPX_IMG_FMT_HIGHBITDEPTH, + VPX_IMG_FMT_I44016 = VPX_IMG_FMT_I440 | VPX_IMG_FMT_HIGHBITDEPTH +} vpx_img_fmt_t; /**< alias for enum vpx_img_fmt */ + +/*!\brief List of supported color spaces */ +typedef enum vpx_color_space { + VPX_CS_UNKNOWN = 0, /**< Unknown */ + VPX_CS_BT_601 = 1, /**< BT.601 */ + VPX_CS_BT_709 = 2, /**< BT.709 */ + VPX_CS_SMPTE_170 = 3, /**< SMPTE.170 */ + VPX_CS_SMPTE_240 = 4, /**< SMPTE.240 */ + VPX_CS_BT_2020 = 5, /**< BT.2020 */ + VPX_CS_RESERVED = 6, /**< Reserved */ + VPX_CS_SRGB = 7 /**< sRGB */ +} vpx_color_space_t; /**< alias for enum vpx_color_space */ + +/*!\brief List of supported color range */ +typedef enum vpx_color_range { + VPX_CR_STUDIO_RANGE = 0, /**< Y [16..235], UV [16..240] */ + VPX_CR_FULL_RANGE = 1 /**< YUV/RGB [0..255] */ +} vpx_color_range_t; /**< alias for enum vpx_color_range */ + +/**\brief Image Descriptor */ +typedef struct vpx_image { + vpx_img_fmt_t fmt; /**< Image Format */ + vpx_color_space_t cs; /**< Color Space */ + vpx_color_range_t range; /**< Color Range */ + + /* Image storage dimensions */ + unsigned int w; /**< Stored image width */ + unsigned int h; /**< Stored image height */ + unsigned int bit_depth; /**< Stored image bit-depth */ + + /* Image display dimensions */ + unsigned int d_w; /**< Displayed image width */ + unsigned int d_h; /**< Displayed image height */ + + /* Image intended rendering dimensions */ + unsigned int r_w; /**< Intended rendering image width */ + unsigned int r_h; /**< Intended rendering image height */ + + /* Chroma subsampling info */ + unsigned int x_chroma_shift; /**< subsampling order, X */ + unsigned int y_chroma_shift; /**< subsampling order, Y */ + +/* Image data pointers. */ +#define VPX_PLANE_PACKED 0 /**< To be used for all packed formats */ +#define VPX_PLANE_Y 0 /**< Y (Luminance) plane */ +#define VPX_PLANE_U 1 /**< U (Chroma) plane */ +#define VPX_PLANE_V 2 /**< V (Chroma) plane */ +#define VPX_PLANE_ALPHA 3 /**< A (Transparency) plane */ + unsigned char *planes[4]; /**< pointer to the top left pixel for each plane */ + int stride[4]; /**< stride between rows for each plane */ + + int bps; /**< bits per sample (for packed formats) */ + + /*!\brief The following member may be set by the application to associate + * data with this image. + */ + void *user_priv; + + /* The following members should be treated as private. */ + unsigned char *img_data; /**< private */ + int img_data_owner; /**< private */ + int self_allocd; /**< private */ + + void *fb_priv; /**< Frame buffer data associated with the image. */ +} vpx_image_t; /**< alias for struct vpx_image */ + +/**\brief Representation of a rectangle on a surface */ +typedef struct vpx_image_rect { + unsigned int x; /**< leftmost column */ + unsigned int y; /**< topmost row */ + unsigned int w; /**< width */ + unsigned int h; /**< height */ +} vpx_image_rect_t; /**< alias for struct vpx_image_rect */ + +/*!\brief Open a descriptor, allocating storage for the underlying image + * + * Returns a descriptor for storing an image of the given format. The + * storage for the descriptor is allocated on the heap. + * + * \param[in] img Pointer to storage for descriptor. If this parameter + * is NULL, the storage for the descriptor will be + * allocated on the heap. + * \param[in] fmt Format for the image + * \param[in] d_w Width of the image + * \param[in] d_h Height of the image + * \param[in] align Alignment, in bytes, of the image buffer and + * each row in the image(stride). + * + * \return Returns a pointer to the initialized image descriptor. If the img + * parameter is non-null, the value of the img parameter will be + * returned. + */ +vpx_image_t *vpx_img_alloc(vpx_image_t *img, vpx_img_fmt_t fmt, + unsigned int d_w, unsigned int d_h, + unsigned int align); + +/*!\brief Open a descriptor, using existing storage for the underlying image + * + * Returns a descriptor for storing an image of the given format. The + * storage for descriptor has been allocated elsewhere, and a descriptor is + * desired to "wrap" that storage. + * + * \param[in] img Pointer to storage for descriptor. If this parameter + * is NULL, the storage for the descriptor will be + * allocated on the heap. + * \param[in] fmt Format for the image + * \param[in] d_w Width of the image + * \param[in] d_h Height of the image + * \param[in] align Alignment, in bytes, of each row in the image. + * \param[in] img_data Storage to use for the image + * + * \return Returns a pointer to the initialized image descriptor. If the img + * parameter is non-null, the value of the img parameter will be + * returned. + */ +vpx_image_t *vpx_img_wrap(vpx_image_t *img, vpx_img_fmt_t fmt, unsigned int d_w, + unsigned int d_h, unsigned int align, + unsigned char *img_data); + +/*!\brief Set the rectangle identifying the displayed portion of the image + * + * Updates the displayed rectangle (aka viewport) on the image surface to + * match the specified coordinates and size. + * + * \param[in] img Image descriptor + * \param[in] x leftmost column + * \param[in] y topmost row + * \param[in] w width + * \param[in] h height + * + * \return 0 if the requested rectangle is valid, nonzero otherwise. + */ +int vpx_img_set_rect(vpx_image_t *img, unsigned int x, unsigned int y, + unsigned int w, unsigned int h); + +/*!\brief Flip the image vertically (top for bottom) + * + * Adjusts the image descriptor's pointers and strides to make the image + * be referenced upside-down. + * + * \param[in] img Image descriptor + */ +void vpx_img_flip(vpx_image_t *img); + +/*!\brief Close an image descriptor + * + * Frees all allocated storage associated with an image descriptor. + * + * \param[in] img Image descriptor + */ +void vpx_img_free(vpx_image_t *img); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VPX_VPX_IMAGE_H_ diff --git a/vpx/vpx_integer.h b/vpx/vpx_integer.h new file mode 100644 index 0000000..09bad92 --- /dev/null +++ b/vpx/vpx_integer.h @@ -0,0 +1,63 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VPX_VPX_INTEGER_H_ +#define VPX_VPX_INTEGER_H_ + +/* get ptrdiff_t, size_t, wchar_t, NULL */ +#include + +#if defined(_MSC_VER) +#define VPX_FORCE_INLINE __forceinline +#define VPX_INLINE __inline +#else +#define VPX_FORCE_INLINE __inline__ __attribute__(always_inline) +// TODO(jbb): Allow a way to force inline off for older compilers. +#define VPX_INLINE inline +#endif + +#if defined(VPX_EMULATE_INTTYPES) +typedef signed char int8_t; +typedef signed short int16_t; +typedef signed int int32_t; + +typedef unsigned char uint8_t; +typedef unsigned short uint16_t; +typedef unsigned int uint32_t; + +#ifndef _UINTPTR_T_DEFINED +typedef size_t uintptr_t; +#endif + +#else + +/* Most platforms have the C99 standard integer types. */ + +#if defined(__cplusplus) +#if !defined(__STDC_FORMAT_MACROS) +#define __STDC_FORMAT_MACROS +#endif +#if !defined(__STDC_LIMIT_MACROS) +#define __STDC_LIMIT_MACROS +#endif +#endif // __cplusplus + +#include + +#endif + +/* VS2010 defines stdint.h, but not inttypes.h */ +#if defined(_MSC_VER) && _MSC_VER < 1800 +#define PRId64 "I64d" +#else +#include +#endif + +#endif // VPX_VPX_INTEGER_H_ diff --git a/vpx_dsp/add_noise.c b/vpx_dsp/add_noise.c new file mode 100644 index 0000000..cda6ae8 --- /dev/null +++ b/vpx_dsp/add_noise.c @@ -0,0 +1,72 @@ +/* + * Copyright (c) 2015 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include + +#include "./vpx_config.h" +#include "./vpx_dsp_rtcd.h" + +#include "vpx/vpx_integer.h" +#include "vpx_dsp/postproc.h" +#include "vpx_ports/mem.h" + +void vpx_plane_add_noise_c(uint8_t *start, const int8_t *noise, int blackclamp, + int whiteclamp, int width, int height, int pitch) { + int i, j; + int bothclamp = blackclamp + whiteclamp; + for (i = 0; i < height; ++i) { + uint8_t *pos = start + i * pitch; + const int8_t *ref = (const int8_t *)(noise + (rand() & 0xff)); // NOLINT + + for (j = 0; j < width; ++j) { + int v = pos[j]; + + v = clamp(v - blackclamp, 0, 255); + v = clamp(v + bothclamp, 0, 255); + v = clamp(v - whiteclamp, 0, 255); + + pos[j] = v + ref[j]; + } + } +} + +static double gaussian(double sigma, double mu, double x) { + return 1 / (sigma * sqrt(2.0 * 3.14159265)) * + (exp(-(x - mu) * (x - mu) / (2 * sigma * sigma))); +} + +int vpx_setup_noise(double sigma, int8_t *noise, int size) { + int8_t char_dist[256]; + int next = 0, i, j; + + // set up a 256 entry lookup that matches gaussian distribution + for (i = -32; i < 32; ++i) { + const int a_i = (int)(0.5 + 256 * gaussian(sigma, 0, i)); + if (a_i) { + for (j = 0; j < a_i; ++j) { + char_dist[next + j] = (int8_t)i; + } + next = next + j; + } + } + + // Rounding error - might mean we have less than 256. + for (; next < 256; ++next) { + char_dist[next] = 0; + } + + for (i = 0; i < size; ++i) { + noise[i] = char_dist[rand() & 0xff]; // NOLINT + } + + // Returns the highest non 0 value used in distribution. + return -char_dist[0]; +} diff --git a/vpx_dsp/arm/avg_neon.c b/vpx_dsp/arm/avg_neon.c new file mode 100644 index 0000000..fa7dd09 --- /dev/null +++ b/vpx_dsp/arm/avg_neon.c @@ -0,0 +1,240 @@ +/* + * Copyright (c) 2015 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include + +#include "./vpx_dsp_rtcd.h" +#include "./vpx_config.h" + +#include "vpx/vpx_integer.h" +#include "vpx_dsp/arm/idct_neon.h" +#include "vpx_dsp/arm/mem_neon.h" +#include "vpx_dsp/arm/sum_neon.h" + +uint32_t vpx_avg_4x4_neon(const uint8_t *a, int a_stride) { + const uint8x16_t b = load_unaligned_u8q(a, a_stride); + const uint16x8_t c = vaddl_u8(vget_low_u8(b), vget_high_u8(b)); + const uint32x2_t d = horizontal_add_uint16x8(c); + return vget_lane_u32(vrshr_n_u32(d, 4), 0); +} + +uint32_t vpx_avg_8x8_neon(const uint8_t *a, int a_stride) { + int i; + uint8x8_t b, c; + uint16x8_t sum; + uint32x2_t d; + b = vld1_u8(a); + a += a_stride; + c = vld1_u8(a); + a += a_stride; + sum = vaddl_u8(b, c); + + for (i = 0; i < 6; ++i) { + const uint8x8_t d = vld1_u8(a); + a += a_stride; + sum = vaddw_u8(sum, d); + } + + d = horizontal_add_uint16x8(sum); + + return vget_lane_u32(vrshr_n_u32(d, 6), 0); +} + +// coeff: 16 bits, dynamic range [-32640, 32640]. +// length: value range {16, 64, 256, 1024}. +int vpx_satd_neon(const tran_low_t *coeff, int length) { + const int16x4_t zero = vdup_n_s16(0); + int32x4_t accum = vdupq_n_s32(0); + + do { + const int16x8_t src0 = load_tran_low_to_s16q(coeff); + const int16x8_t src8 = load_tran_low_to_s16q(coeff + 8); + accum = vabal_s16(accum, vget_low_s16(src0), zero); + accum = vabal_s16(accum, vget_high_s16(src0), zero); + accum = vabal_s16(accum, vget_low_s16(src8), zero); + accum = vabal_s16(accum, vget_high_s16(src8), zero); + length -= 16; + coeff += 16; + } while (length != 0); + + { + // satd: 26 bits, dynamic range [-32640 * 1024, 32640 * 1024] + const int64x2_t s0 = vpaddlq_s32(accum); // cascading summation of 'accum'. + const int32x2_t s1 = vadd_s32(vreinterpret_s32_s64(vget_low_s64(s0)), + vreinterpret_s32_s64(vget_high_s64(s0))); + const int satd = vget_lane_s32(s1, 0); + return satd; + } +} + +void vpx_int_pro_row_neon(int16_t hbuf[16], uint8_t const *ref, + const int ref_stride, const int height) { + int i; + uint16x8_t vec_sum_lo = vdupq_n_u16(0); + uint16x8_t vec_sum_hi = vdupq_n_u16(0); + const int shift_factor = ((height >> 5) + 3) * -1; + const int16x8_t vec_shift = vdupq_n_s16(shift_factor); + + for (i = 0; i < height; i += 8) { + const uint8x16_t vec_row1 = vld1q_u8(ref); + const uint8x16_t vec_row2 = vld1q_u8(ref + ref_stride); + const uint8x16_t vec_row3 = vld1q_u8(ref + ref_stride * 2); + const uint8x16_t vec_row4 = vld1q_u8(ref + ref_stride * 3); + const uint8x16_t vec_row5 = vld1q_u8(ref + ref_stride * 4); + const uint8x16_t vec_row6 = vld1q_u8(ref + ref_stride * 5); + const uint8x16_t vec_row7 = vld1q_u8(ref + ref_stride * 6); + const uint8x16_t vec_row8 = vld1q_u8(ref + ref_stride * 7); + + vec_sum_lo = vaddw_u8(vec_sum_lo, vget_low_u8(vec_row1)); + vec_sum_hi = vaddw_u8(vec_sum_hi, vget_high_u8(vec_row1)); + + vec_sum_lo = vaddw_u8(vec_sum_lo, vget_low_u8(vec_row2)); + vec_sum_hi = vaddw_u8(vec_sum_hi, vget_high_u8(vec_row2)); + + vec_sum_lo = vaddw_u8(vec_sum_lo, vget_low_u8(vec_row3)); + vec_sum_hi = vaddw_u8(vec_sum_hi, vget_high_u8(vec_row3)); + + vec_sum_lo = vaddw_u8(vec_sum_lo, vget_low_u8(vec_row4)); + vec_sum_hi = vaddw_u8(vec_sum_hi, vget_high_u8(vec_row4)); + + vec_sum_lo = vaddw_u8(vec_sum_lo, vget_low_u8(vec_row5)); + vec_sum_hi = vaddw_u8(vec_sum_hi, vget_high_u8(vec_row5)); + + vec_sum_lo = vaddw_u8(vec_sum_lo, vget_low_u8(vec_row6)); + vec_sum_hi = vaddw_u8(vec_sum_hi, vget_high_u8(vec_row6)); + + vec_sum_lo = vaddw_u8(vec_sum_lo, vget_low_u8(vec_row7)); + vec_sum_hi = vaddw_u8(vec_sum_hi, vget_high_u8(vec_row7)); + + vec_sum_lo = vaddw_u8(vec_sum_lo, vget_low_u8(vec_row8)); + vec_sum_hi = vaddw_u8(vec_sum_hi, vget_high_u8(vec_row8)); + + ref += ref_stride * 8; + } + + vec_sum_lo = vshlq_u16(vec_sum_lo, vec_shift); + vec_sum_hi = vshlq_u16(vec_sum_hi, vec_shift); + + vst1q_s16(hbuf, vreinterpretq_s16_u16(vec_sum_lo)); + hbuf += 8; + vst1q_s16(hbuf, vreinterpretq_s16_u16(vec_sum_hi)); +} + +int16_t vpx_int_pro_col_neon(uint8_t const *ref, const int width) { + int i; + uint16x8_t vec_sum = vdupq_n_u16(0); + + for (i = 0; i < width; i += 16) { + const uint8x16_t vec_row = vld1q_u8(ref); + vec_sum = vaddw_u8(vec_sum, vget_low_u8(vec_row)); + vec_sum = vaddw_u8(vec_sum, vget_high_u8(vec_row)); + ref += 16; + } + + return vget_lane_s16(vreinterpret_s16_u32(horizontal_add_uint16x8(vec_sum)), + 0); +} + +// ref, src = [0, 510] - max diff = 16-bits +// bwl = {2, 3, 4}, width = {16, 32, 64} +int vpx_vector_var_neon(int16_t const *ref, int16_t const *src, const int bwl) { + int width = 4 << bwl; + int32x4_t sse = vdupq_n_s32(0); + int16x8_t total = vdupq_n_s16(0); + + assert(width >= 8); + assert((width % 8) == 0); + + do { + const int16x8_t r = vld1q_s16(ref); + const int16x8_t s = vld1q_s16(src); + const int16x8_t diff = vsubq_s16(r, s); // [-510, 510], 10 bits. + const int16x4_t diff_lo = vget_low_s16(diff); + const int16x4_t diff_hi = vget_high_s16(diff); + sse = vmlal_s16(sse, diff_lo, diff_lo); // dynamic range 26 bits. + sse = vmlal_s16(sse, diff_hi, diff_hi); + total = vaddq_s16(total, diff); // dynamic range 16 bits. + + ref += 8; + src += 8; + width -= 8; + } while (width != 0); + + { + // Note: 'total''s pairwise addition could be implemented similarly to + // horizontal_add_uint16x8(), but one less vpaddl with 'total' when paired + // with the summation of 'sse' performed better on a Cortex-A15. + const int32x4_t t0 = vpaddlq_s16(total); // cascading summation of 'total' + const int32x2_t t1 = vadd_s32(vget_low_s32(t0), vget_high_s32(t0)); + const int32x2_t t2 = vpadd_s32(t1, t1); + const int t = vget_lane_s32(t2, 0); + const int64x2_t s0 = vpaddlq_s32(sse); // cascading summation of 'sse'. + const int32x2_t s1 = vadd_s32(vreinterpret_s32_s64(vget_low_s64(s0)), + vreinterpret_s32_s64(vget_high_s64(s0))); + const int s = vget_lane_s32(s1, 0); + const int shift_factor = bwl + 2; + return s - ((t * t) >> shift_factor); + } +} + +void vpx_minmax_8x8_neon(const uint8_t *a, int a_stride, const uint8_t *b, + int b_stride, int *min, int *max) { + // Load and concatenate. + const uint8x16_t a01 = vcombine_u8(vld1_u8(a), vld1_u8(a + a_stride)); + const uint8x16_t a23 = + vcombine_u8(vld1_u8(a + 2 * a_stride), vld1_u8(a + 3 * a_stride)); + const uint8x16_t a45 = + vcombine_u8(vld1_u8(a + 4 * a_stride), vld1_u8(a + 5 * a_stride)); + const uint8x16_t a67 = + vcombine_u8(vld1_u8(a + 6 * a_stride), vld1_u8(a + 7 * a_stride)); + + const uint8x16_t b01 = vcombine_u8(vld1_u8(b), vld1_u8(b + b_stride)); + const uint8x16_t b23 = + vcombine_u8(vld1_u8(b + 2 * b_stride), vld1_u8(b + 3 * b_stride)); + const uint8x16_t b45 = + vcombine_u8(vld1_u8(b + 4 * b_stride), vld1_u8(b + 5 * b_stride)); + const uint8x16_t b67 = + vcombine_u8(vld1_u8(b + 6 * b_stride), vld1_u8(b + 7 * b_stride)); + + // Absolute difference. + const uint8x16_t ab01_diff = vabdq_u8(a01, b01); + const uint8x16_t ab23_diff = vabdq_u8(a23, b23); + const uint8x16_t ab45_diff = vabdq_u8(a45, b45); + const uint8x16_t ab67_diff = vabdq_u8(a67, b67); + + // Max values between the Q vectors. + const uint8x16_t ab0123_max = vmaxq_u8(ab01_diff, ab23_diff); + const uint8x16_t ab4567_max = vmaxq_u8(ab45_diff, ab67_diff); + const uint8x16_t ab0123_min = vminq_u8(ab01_diff, ab23_diff); + const uint8x16_t ab4567_min = vminq_u8(ab45_diff, ab67_diff); + + const uint8x16_t ab07_max = vmaxq_u8(ab0123_max, ab4567_max); + const uint8x16_t ab07_min = vminq_u8(ab0123_min, ab4567_min); + + // Split to D and start doing pairwise. + uint8x8_t ab_max = vmax_u8(vget_high_u8(ab07_max), vget_low_u8(ab07_max)); + uint8x8_t ab_min = vmin_u8(vget_high_u8(ab07_min), vget_low_u8(ab07_min)); + + // Enough runs of vpmax/min propogate the max/min values to every position. + ab_max = vpmax_u8(ab_max, ab_max); + ab_min = vpmin_u8(ab_min, ab_min); + + ab_max = vpmax_u8(ab_max, ab_max); + ab_min = vpmin_u8(ab_min, ab_min); + + ab_max = vpmax_u8(ab_max, ab_max); + ab_min = vpmin_u8(ab_min, ab_min); + + *min = *max = 0; // Clear high bits + // Store directly to avoid costly neon->gpr transfer. + vst1_lane_u8((uint8_t *)max, ab_max, 0); + vst1_lane_u8((uint8_t *)min, ab_min, 0); +} diff --git a/vpx_dsp/arm/avg_pred_neon.c b/vpx_dsp/arm/avg_pred_neon.c new file mode 100644 index 0000000..1370ec2 --- /dev/null +++ b/vpx_dsp/arm/avg_pred_neon.c @@ -0,0 +1,55 @@ +/* + * Copyright (c) 2017 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include + +#include "./vpx_dsp_rtcd.h" +#include "vpx_dsp/arm/mem_neon.h" + +void vpx_comp_avg_pred_neon(uint8_t *comp, const uint8_t *pred, int width, + int height, const uint8_t *ref, int ref_stride) { + if (width > 8) { + int x, y; + for (y = 0; y < height; ++y) { + for (x = 0; x < width; x += 16) { + const uint8x16_t p = vld1q_u8(pred + x); + const uint8x16_t r = vld1q_u8(ref + x); + const uint8x16_t avg = vrhaddq_u8(p, r); + vst1q_u8(comp + x, avg); + } + comp += width; + pred += width; + ref += ref_stride; + } + } else { + int i; + for (i = 0; i < width * height; i += 16) { + const uint8x16_t p = vld1q_u8(pred); + uint8x16_t r; + + if (width == 4) { + r = load_unaligned_u8q(ref, ref_stride); + ref += 4 * ref_stride; + } else { + const uint8x8_t r_0 = vld1_u8(ref); + const uint8x8_t r_1 = vld1_u8(ref + ref_stride); + assert(width == 8); + r = vcombine_u8(r_0, r_1); + ref += 2 * ref_stride; + } + r = vrhaddq_u8(r, p); + vst1q_u8(comp, r); + + pred += 16; + comp += 16; + } + } +} diff --git a/vpx_dsp/arm/deblock_neon.c b/vpx_dsp/arm/deblock_neon.c new file mode 100644 index 0000000..1fb41d2 --- /dev/null +++ b/vpx_dsp/arm/deblock_neon.c @@ -0,0 +1,485 @@ +/* + * Copyright (c) 2016 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include + +#include "./vpx_dsp_rtcd.h" +#include "vpx/vpx_integer.h" +#include "vpx_dsp/arm/transpose_neon.h" + +extern const int16_t vpx_rv[]; + +static uint8x8_t average_k_out(const uint8x8_t a2, const uint8x8_t a1, + const uint8x8_t v0, const uint8x8_t b1, + const uint8x8_t b2) { + const uint8x8_t k1 = vrhadd_u8(a2, a1); + const uint8x8_t k2 = vrhadd_u8(b2, b1); + const uint8x8_t k3 = vrhadd_u8(k1, k2); + return vrhadd_u8(k3, v0); +} + +static uint8x8_t generate_mask(const uint8x8_t a2, const uint8x8_t a1, + const uint8x8_t v0, const uint8x8_t b1, + const uint8x8_t b2, const uint8x8_t filter) { + const uint8x8_t a2_v0 = vabd_u8(a2, v0); + const uint8x8_t a1_v0 = vabd_u8(a1, v0); + const uint8x8_t b1_v0 = vabd_u8(b1, v0); + const uint8x8_t b2_v0 = vabd_u8(b2, v0); + + uint8x8_t max = vmax_u8(a2_v0, a1_v0); + max = vmax_u8(b1_v0, max); + max = vmax_u8(b2_v0, max); + return vclt_u8(max, filter); +} + +static uint8x8_t generate_output(const uint8x8_t a2, const uint8x8_t a1, + const uint8x8_t v0, const uint8x8_t b1, + const uint8x8_t b2, const uint8x8_t filter) { + const uint8x8_t k_out = average_k_out(a2, a1, v0, b1, b2); + const uint8x8_t mask = generate_mask(a2, a1, v0, b1, b2, filter); + + return vbsl_u8(mask, k_out, v0); +} + +// Same functions but for uint8x16_t. +static uint8x16_t average_k_outq(const uint8x16_t a2, const uint8x16_t a1, + const uint8x16_t v0, const uint8x16_t b1, + const uint8x16_t b2) { + const uint8x16_t k1 = vrhaddq_u8(a2, a1); + const uint8x16_t k2 = vrhaddq_u8(b2, b1); + const uint8x16_t k3 = vrhaddq_u8(k1, k2); + return vrhaddq_u8(k3, v0); +} + +static uint8x16_t generate_maskq(const uint8x16_t a2, const uint8x16_t a1, + const uint8x16_t v0, const uint8x16_t b1, + const uint8x16_t b2, const uint8x16_t filter) { + const uint8x16_t a2_v0 = vabdq_u8(a2, v0); + const uint8x16_t a1_v0 = vabdq_u8(a1, v0); + const uint8x16_t b1_v0 = vabdq_u8(b1, v0); + const uint8x16_t b2_v0 = vabdq_u8(b2, v0); + + uint8x16_t max = vmaxq_u8(a2_v0, a1_v0); + max = vmaxq_u8(b1_v0, max); + max = vmaxq_u8(b2_v0, max); + return vcltq_u8(max, filter); +} + +static uint8x16_t generate_outputq(const uint8x16_t a2, const uint8x16_t a1, + const uint8x16_t v0, const uint8x16_t b1, + const uint8x16_t b2, + const uint8x16_t filter) { + const uint8x16_t k_out = average_k_outq(a2, a1, v0, b1, b2); + const uint8x16_t mask = generate_maskq(a2, a1, v0, b1, b2, filter); + + return vbslq_u8(mask, k_out, v0); +} + +void vpx_post_proc_down_and_across_mb_row_neon(uint8_t *src_ptr, + uint8_t *dst_ptr, int src_stride, + int dst_stride, int cols, + uint8_t *f, int size) { + uint8_t *src, *dst; + int row; + int col; + + // Process a stripe of macroblocks. The stripe will be a multiple of 16 (for + // Y) or 8 (for U/V) wide (cols) and the height (size) will be 16 (for Y) or 8 + // (for U/V). + assert((size == 8 || size == 16) && cols % 8 == 0); + + // While columns of length 16 can be processed, load them. + for (col = 0; col < cols - 8; col += 16) { + uint8x16_t a0, a1, a2, a3, a4, a5, a6, a7; + src = src_ptr - 2 * src_stride; + dst = dst_ptr; + + a0 = vld1q_u8(src); + src += src_stride; + a1 = vld1q_u8(src); + src += src_stride; + a2 = vld1q_u8(src); + src += src_stride; + a3 = vld1q_u8(src); + src += src_stride; + + for (row = 0; row < size; row += 4) { + uint8x16_t v_out_0, v_out_1, v_out_2, v_out_3; + const uint8x16_t filterq = vld1q_u8(f + col); + + a4 = vld1q_u8(src); + src += src_stride; + a5 = vld1q_u8(src); + src += src_stride; + a6 = vld1q_u8(src); + src += src_stride; + a7 = vld1q_u8(src); + src += src_stride; + + v_out_0 = generate_outputq(a0, a1, a2, a3, a4, filterq); + v_out_1 = generate_outputq(a1, a2, a3, a4, a5, filterq); + v_out_2 = generate_outputq(a2, a3, a4, a5, a6, filterq); + v_out_3 = generate_outputq(a3, a4, a5, a6, a7, filterq); + + vst1q_u8(dst, v_out_0); + dst += dst_stride; + vst1q_u8(dst, v_out_1); + dst += dst_stride; + vst1q_u8(dst, v_out_2); + dst += dst_stride; + vst1q_u8(dst, v_out_3); + dst += dst_stride; + + // Rotate over to the next slot. + a0 = a4; + a1 = a5; + a2 = a6; + a3 = a7; + } + + src_ptr += 16; + dst_ptr += 16; + } + + // Clean up any left over column of length 8. + if (col != cols) { + uint8x8_t a0, a1, a2, a3, a4, a5, a6, a7; + src = src_ptr - 2 * src_stride; + dst = dst_ptr; + + a0 = vld1_u8(src); + src += src_stride; + a1 = vld1_u8(src); + src += src_stride; + a2 = vld1_u8(src); + src += src_stride; + a3 = vld1_u8(src); + src += src_stride; + + for (row = 0; row < size; row += 4) { + uint8x8_t v_out_0, v_out_1, v_out_2, v_out_3; + const uint8x8_t filter = vld1_u8(f + col); + + a4 = vld1_u8(src); + src += src_stride; + a5 = vld1_u8(src); + src += src_stride; + a6 = vld1_u8(src); + src += src_stride; + a7 = vld1_u8(src); + src += src_stride; + + v_out_0 = generate_output(a0, a1, a2, a3, a4, filter); + v_out_1 = generate_output(a1, a2, a3, a4, a5, filter); + v_out_2 = generate_output(a2, a3, a4, a5, a6, filter); + v_out_3 = generate_output(a3, a4, a5, a6, a7, filter); + + vst1_u8(dst, v_out_0); + dst += dst_stride; + vst1_u8(dst, v_out_1); + dst += dst_stride; + vst1_u8(dst, v_out_2); + dst += dst_stride; + vst1_u8(dst, v_out_3); + dst += dst_stride; + + // Rotate over to the next slot. + a0 = a4; + a1 = a5; + a2 = a6; + a3 = a7; + } + + // Not strictly necessary but makes resetting dst_ptr easier. + dst_ptr += 8; + } + + dst_ptr -= cols; + + for (row = 0; row < size; row += 8) { + uint8x8_t a0, a1, a2, a3; + uint8x8_t b0, b1, b2, b3, b4, b5, b6, b7; + + src = dst_ptr; + dst = dst_ptr; + + // Load 8 values, transpose 4 of them, and discard 2 because they will be + // reloaded later. + load_and_transpose_u8_4x8(src, dst_stride, &a0, &a1, &a2, &a3); + a3 = a1; + a2 = a1 = a0; // Extend left border. + + src += 2; + + for (col = 0; col < cols; col += 8) { + uint8x8_t v_out_0, v_out_1, v_out_2, v_out_3, v_out_4, v_out_5, v_out_6, + v_out_7; + // Although the filter is meant to be applied vertically and is instead + // being applied horizontally here it's OK because it's set in blocks of 8 + // (or 16). + const uint8x8_t filter = vld1_u8(f + col); + + load_and_transpose_u8_8x8(src, dst_stride, &b0, &b1, &b2, &b3, &b4, &b5, + &b6, &b7); + + if (col + 8 == cols) { + // Last row. Extend border (b5). + b6 = b7 = b5; + } + + v_out_0 = generate_output(a0, a1, a2, a3, b0, filter); + v_out_1 = generate_output(a1, a2, a3, b0, b1, filter); + v_out_2 = generate_output(a2, a3, b0, b1, b2, filter); + v_out_3 = generate_output(a3, b0, b1, b2, b3, filter); + v_out_4 = generate_output(b0, b1, b2, b3, b4, filter); + v_out_5 = generate_output(b1, b2, b3, b4, b5, filter); + v_out_6 = generate_output(b2, b3, b4, b5, b6, filter); + v_out_7 = generate_output(b3, b4, b5, b6, b7, filter); + + transpose_and_store_u8_8x8(dst, dst_stride, v_out_0, v_out_1, v_out_2, + v_out_3, v_out_4, v_out_5, v_out_6, v_out_7); + + a0 = b4; + a1 = b5; + a2 = b6; + a3 = b7; + + src += 8; + dst += 8; + } + + dst_ptr += 8 * dst_stride; + } +} + +// sum += x; +// sumsq += x * y; +static void accumulate_sum_sumsq(const int16x4_t x, const int32x4_t xy, + int16x4_t *const sum, int32x4_t *const sumsq) { + const int16x4_t zero = vdup_n_s16(0); + const int32x4_t zeroq = vdupq_n_s32(0); + + // Add in the first set because vext doesn't work with '0'. + *sum = vadd_s16(*sum, x); + *sumsq = vaddq_s32(*sumsq, xy); + + // Shift x and xy to the right and sum. vext requires an immediate. + *sum = vadd_s16(*sum, vext_s16(zero, x, 1)); + *sumsq = vaddq_s32(*sumsq, vextq_s32(zeroq, xy, 1)); + + *sum = vadd_s16(*sum, vext_s16(zero, x, 2)); + *sumsq = vaddq_s32(*sumsq, vextq_s32(zeroq, xy, 2)); + + *sum = vadd_s16(*sum, vext_s16(zero, x, 3)); + *sumsq = vaddq_s32(*sumsq, vextq_s32(zeroq, xy, 3)); +} + +// Generate mask based on (sumsq * 15 - sum * sum < flimit) +static uint16x4_t calculate_mask(const int16x4_t sum, const int32x4_t sumsq, + const int32x4_t f, const int32x4_t fifteen) { + const int32x4_t a = vmulq_s32(sumsq, fifteen); + const int32x4_t b = vmlsl_s16(a, sum, sum); + const uint32x4_t mask32 = vcltq_s32(b, f); + return vmovn_u32(mask32); +} + +static uint8x8_t combine_mask(const int16x4_t sum_low, const int16x4_t sum_high, + const int32x4_t sumsq_low, + const int32x4_t sumsq_high, const int32x4_t f) { + const int32x4_t fifteen = vdupq_n_s32(15); + const uint16x4_t mask16_low = calculate_mask(sum_low, sumsq_low, f, fifteen); + const uint16x4_t mask16_high = + calculate_mask(sum_high, sumsq_high, f, fifteen); + return vmovn_u16(vcombine_u16(mask16_low, mask16_high)); +} + +// Apply filter of (8 + sum + s[c]) >> 4. +static uint8x8_t filter_pixels(const int16x8_t sum, const uint8x8_t s) { + const int16x8_t s16 = vreinterpretq_s16_u16(vmovl_u8(s)); + const int16x8_t sum_s = vaddq_s16(sum, s16); + + return vqrshrun_n_s16(sum_s, 4); +} + +void vpx_mbpost_proc_across_ip_neon(uint8_t *src, int pitch, int rows, int cols, + int flimit) { + int row, col; + const int32x4_t f = vdupq_n_s32(flimit); + + assert(cols % 8 == 0); + + for (row = 0; row < rows; ++row) { + // Sum the first 8 elements, which are extended from s[0]. + // sumsq gets primed with +16. + int sumsq = src[0] * src[0] * 9 + 16; + int sum = src[0] * 9; + + uint8x8_t left_context, s, right_context; + int16x4_t sum_low, sum_high; + int32x4_t sumsq_low, sumsq_high; + + // Sum (+square) the next 6 elements. + // Skip [0] because it's included above. + for (col = 1; col <= 6; ++col) { + sumsq += src[col] * src[col]; + sum += src[col]; + } + + // Prime the sums. Later the loop uses the _high values to prime the new + // vectors. + sumsq_high = vdupq_n_s32(sumsq); + sum_high = vdup_n_s16(sum); + + // Manually extend the left border. + left_context = vdup_n_u8(src[0]); + + for (col = 0; col < cols; col += 8) { + uint8x8_t mask, output; + int16x8_t x, y; + int32x4_t xy_low, xy_high; + + s = vld1_u8(src + col); + + if (col + 8 == cols) { + // Last row. Extend border. + right_context = vdup_n_u8(src[col + 7]); + } else { + right_context = vld1_u8(src + col + 7); + } + + x = vreinterpretq_s16_u16(vsubl_u8(right_context, left_context)); + y = vreinterpretq_s16_u16(vaddl_u8(right_context, left_context)); + xy_low = vmull_s16(vget_low_s16(x), vget_low_s16(y)); + xy_high = vmull_s16(vget_high_s16(x), vget_high_s16(y)); + + // Catch up to the last sum'd value. + sum_low = vdup_lane_s16(sum_high, 3); + sumsq_low = vdupq_lane_s32(vget_high_s32(sumsq_high), 1); + + accumulate_sum_sumsq(vget_low_s16(x), xy_low, &sum_low, &sumsq_low); + + // Need to do this sequentially because we need the max value from + // sum_low. + sum_high = vdup_lane_s16(sum_low, 3); + sumsq_high = vdupq_lane_s32(vget_high_s32(sumsq_low), 1); + + accumulate_sum_sumsq(vget_high_s16(x), xy_high, &sum_high, &sumsq_high); + + mask = combine_mask(sum_low, sum_high, sumsq_low, sumsq_high, f); + + output = filter_pixels(vcombine_s16(sum_low, sum_high), s); + output = vbsl_u8(mask, output, s); + + vst1_u8(src + col, output); + + left_context = s; + } + + src += pitch; + } +} + +// Apply filter of (vpx_rv + sum + s[c]) >> 4. +static uint8x8_t filter_pixels_rv(const int16x8_t sum, const uint8x8_t s, + const int16x8_t rv) { + const int16x8_t s16 = vreinterpretq_s16_u16(vmovl_u8(s)); + const int16x8_t sum_s = vaddq_s16(sum, s16); + const int16x8_t rounded = vaddq_s16(sum_s, rv); + + return vqshrun_n_s16(rounded, 4); +} + +void vpx_mbpost_proc_down_neon(uint8_t *dst, int pitch, int rows, int cols, + int flimit) { + int row, col, i; + const int32x4_t f = vdupq_n_s32(flimit); + uint8x8_t below_context = vdup_n_u8(0); + + // 8 columns are processed at a time. + // If rows is less than 8 the bottom border extension fails. + assert(cols % 8 == 0); + assert(rows >= 8); + + // Load and keep the first 8 values in memory. Process a vertical stripe that + // is 8 wide. + for (col = 0; col < cols; col += 8) { + uint8x8_t s, above_context[8]; + int16x8_t sum, sum_tmp; + int32x4_t sumsq_low, sumsq_high; + + // Load and extend the top border. + s = vld1_u8(dst); + for (i = 0; i < 8; i++) { + above_context[i] = s; + } + + sum_tmp = vreinterpretq_s16_u16(vmovl_u8(s)); + + // sum * 9 + sum = vmulq_n_s16(sum_tmp, 9); + + // (sum * 9) * sum == sum * sum * 9 + sumsq_low = vmull_s16(vget_low_s16(sum), vget_low_s16(sum_tmp)); + sumsq_high = vmull_s16(vget_high_s16(sum), vget_high_s16(sum_tmp)); + + // Load and discard the next 6 values to prime sum and sumsq. + for (i = 1; i <= 6; ++i) { + const uint8x8_t a = vld1_u8(dst + i * pitch); + const int16x8_t b = vreinterpretq_s16_u16(vmovl_u8(a)); + sum = vaddq_s16(sum, b); + + sumsq_low = vmlal_s16(sumsq_low, vget_low_s16(b), vget_low_s16(b)); + sumsq_high = vmlal_s16(sumsq_high, vget_high_s16(b), vget_high_s16(b)); + } + + for (row = 0; row < rows; ++row) { + uint8x8_t mask, output; + int16x8_t x, y; + int32x4_t xy_low, xy_high; + + s = vld1_u8(dst + row * pitch); + + // Extend the bottom border. + if (row + 7 < rows) { + below_context = vld1_u8(dst + (row + 7) * pitch); + } + + x = vreinterpretq_s16_u16(vsubl_u8(below_context, above_context[0])); + y = vreinterpretq_s16_u16(vaddl_u8(below_context, above_context[0])); + xy_low = vmull_s16(vget_low_s16(x), vget_low_s16(y)); + xy_high = vmull_s16(vget_high_s16(x), vget_high_s16(y)); + + sum = vaddq_s16(sum, x); + + sumsq_low = vaddq_s32(sumsq_low, xy_low); + sumsq_high = vaddq_s32(sumsq_high, xy_high); + + mask = combine_mask(vget_low_s16(sum), vget_high_s16(sum), sumsq_low, + sumsq_high, f); + + output = filter_pixels_rv(sum, s, vld1q_s16(vpx_rv + (row & 127))); + output = vbsl_u8(mask, output, s); + + vst1_u8(dst + row * pitch, output); + + above_context[0] = above_context[1]; + above_context[1] = above_context[2]; + above_context[2] = above_context[3]; + above_context[3] = above_context[4]; + above_context[4] = above_context[5]; + above_context[5] = above_context[6]; + above_context[6] = above_context[7]; + above_context[7] = s; + } + + dst += 8; + } +} diff --git a/vpx_dsp/arm/fdct16x16_neon.c b/vpx_dsp/arm/fdct16x16_neon.c new file mode 100644 index 0000000..6b2bebd --- /dev/null +++ b/vpx_dsp/arm/fdct16x16_neon.c @@ -0,0 +1,387 @@ +/* + * Copyright (c) 2017 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include + +#include "./vpx_config.h" +#include "./vpx_dsp_rtcd.h" +#include "vpx_dsp/txfm_common.h" +#include "vpx_dsp/arm/mem_neon.h" +#include "vpx_dsp/arm/transpose_neon.h" + +// Some builds of gcc 4.9.2 and .3 have trouble with some of the inline +// functions. +#if !defined(__clang__) && !defined(__ANDROID__) && defined(__GNUC__) && \ + __GNUC__ == 4 && __GNUC_MINOR__ == 9 && __GNUC_PATCHLEVEL__ < 4 + +void vpx_fdct16x16_neon(const int16_t *input, tran_low_t *output, int stride) { + vpx_fdct16x16_c(input, output, stride); +} + +#else + +static INLINE void load(const int16_t *a, int stride, int16x8_t *b /*[16]*/) { + b[0] = vld1q_s16(a); + a += stride; + b[1] = vld1q_s16(a); + a += stride; + b[2] = vld1q_s16(a); + a += stride; + b[3] = vld1q_s16(a); + a += stride; + b[4] = vld1q_s16(a); + a += stride; + b[5] = vld1q_s16(a); + a += stride; + b[6] = vld1q_s16(a); + a += stride; + b[7] = vld1q_s16(a); + a += stride; + b[8] = vld1q_s16(a); + a += stride; + b[9] = vld1q_s16(a); + a += stride; + b[10] = vld1q_s16(a); + a += stride; + b[11] = vld1q_s16(a); + a += stride; + b[12] = vld1q_s16(a); + a += stride; + b[13] = vld1q_s16(a); + a += stride; + b[14] = vld1q_s16(a); + a += stride; + b[15] = vld1q_s16(a); +} + +// Store 8 16x8 values, assuming stride == 16. +static INLINE void store(tran_low_t *a, const int16x8_t *b /*[8]*/) { + store_s16q_to_tran_low(a, b[0]); + a += 16; + store_s16q_to_tran_low(a, b[1]); + a += 16; + store_s16q_to_tran_low(a, b[2]); + a += 16; + store_s16q_to_tran_low(a, b[3]); + a += 16; + store_s16q_to_tran_low(a, b[4]); + a += 16; + store_s16q_to_tran_low(a, b[5]); + a += 16; + store_s16q_to_tran_low(a, b[6]); + a += 16; + store_s16q_to_tran_low(a, b[7]); +} + +// Load step of each pass. Add and subtract clear across the input, requiring +// all 16 values to be loaded. For the first pass it also multiplies by 4. + +// To maybe reduce register usage this could be combined with the load() step to +// get the first 4 and last 4 values, cross those, then load the middle 8 values +// and cross them. +static INLINE void cross_input(const int16x8_t *a /*[16]*/, + int16x8_t *b /*[16]*/, const int pass) { + if (pass == 0) { + b[0] = vshlq_n_s16(vaddq_s16(a[0], a[15]), 2); + b[1] = vshlq_n_s16(vaddq_s16(a[1], a[14]), 2); + b[2] = vshlq_n_s16(vaddq_s16(a[2], a[13]), 2); + b[3] = vshlq_n_s16(vaddq_s16(a[3], a[12]), 2); + b[4] = vshlq_n_s16(vaddq_s16(a[4], a[11]), 2); + b[5] = vshlq_n_s16(vaddq_s16(a[5], a[10]), 2); + b[6] = vshlq_n_s16(vaddq_s16(a[6], a[9]), 2); + b[7] = vshlq_n_s16(vaddq_s16(a[7], a[8]), 2); + + b[8] = vshlq_n_s16(vsubq_s16(a[7], a[8]), 2); + b[9] = vshlq_n_s16(vsubq_s16(a[6], a[9]), 2); + b[10] = vshlq_n_s16(vsubq_s16(a[5], a[10]), 2); + b[11] = vshlq_n_s16(vsubq_s16(a[4], a[11]), 2); + b[12] = vshlq_n_s16(vsubq_s16(a[3], a[12]), 2); + b[13] = vshlq_n_s16(vsubq_s16(a[2], a[13]), 2); + b[14] = vshlq_n_s16(vsubq_s16(a[1], a[14]), 2); + b[15] = vshlq_n_s16(vsubq_s16(a[0], a[15]), 2); + } else { + b[0] = vaddq_s16(a[0], a[15]); + b[1] = vaddq_s16(a[1], a[14]); + b[2] = vaddq_s16(a[2], a[13]); + b[3] = vaddq_s16(a[3], a[12]); + b[4] = vaddq_s16(a[4], a[11]); + b[5] = vaddq_s16(a[5], a[10]); + b[6] = vaddq_s16(a[6], a[9]); + b[7] = vaddq_s16(a[7], a[8]); + + b[8] = vsubq_s16(a[7], a[8]); + b[9] = vsubq_s16(a[6], a[9]); + b[10] = vsubq_s16(a[5], a[10]); + b[11] = vsubq_s16(a[4], a[11]); + b[12] = vsubq_s16(a[3], a[12]); + b[13] = vsubq_s16(a[2], a[13]); + b[14] = vsubq_s16(a[1], a[14]); + b[15] = vsubq_s16(a[0], a[15]); + } +} + +// Quarter round at the beginning of the second pass. Can't use vrshr (rounding) +// because this only adds 1, not 1 << 2. +static INLINE void partial_round_shift(int16x8_t *a /*[16]*/) { + const int16x8_t one = vdupq_n_s16(1); + a[0] = vshrq_n_s16(vaddq_s16(a[0], one), 2); + a[1] = vshrq_n_s16(vaddq_s16(a[1], one), 2); + a[2] = vshrq_n_s16(vaddq_s16(a[2], one), 2); + a[3] = vshrq_n_s16(vaddq_s16(a[3], one), 2); + a[4] = vshrq_n_s16(vaddq_s16(a[4], one), 2); + a[5] = vshrq_n_s16(vaddq_s16(a[5], one), 2); + a[6] = vshrq_n_s16(vaddq_s16(a[6], one), 2); + a[7] = vshrq_n_s16(vaddq_s16(a[7], one), 2); + a[8] = vshrq_n_s16(vaddq_s16(a[8], one), 2); + a[9] = vshrq_n_s16(vaddq_s16(a[9], one), 2); + a[10] = vshrq_n_s16(vaddq_s16(a[10], one), 2); + a[11] = vshrq_n_s16(vaddq_s16(a[11], one), 2); + a[12] = vshrq_n_s16(vaddq_s16(a[12], one), 2); + a[13] = vshrq_n_s16(vaddq_s16(a[13], one), 2); + a[14] = vshrq_n_s16(vaddq_s16(a[14], one), 2); + a[15] = vshrq_n_s16(vaddq_s16(a[15], one), 2); +} + +// fdct_round_shift((a +/- b) * c) +static INLINE void butterfly_one_coeff(const int16x8_t a, const int16x8_t b, + const tran_high_t c, int16x8_t *add, + int16x8_t *sub) { + const int32x4_t a0 = vmull_n_s16(vget_low_s16(a), c); + const int32x4_t a1 = vmull_n_s16(vget_high_s16(a), c); + const int32x4_t sum0 = vmlal_n_s16(a0, vget_low_s16(b), c); + const int32x4_t sum1 = vmlal_n_s16(a1, vget_high_s16(b), c); + const int32x4_t diff0 = vmlsl_n_s16(a0, vget_low_s16(b), c); + const int32x4_t diff1 = vmlsl_n_s16(a1, vget_high_s16(b), c); + const int16x4_t rounded0 = vqrshrn_n_s32(sum0, 14); + const int16x4_t rounded1 = vqrshrn_n_s32(sum1, 14); + const int16x4_t rounded2 = vqrshrn_n_s32(diff0, 14); + const int16x4_t rounded3 = vqrshrn_n_s32(diff1, 14); + *add = vcombine_s16(rounded0, rounded1); + *sub = vcombine_s16(rounded2, rounded3); +} + +// fdct_round_shift(a * c0 +/- b * c1) +static INLINE void butterfly_two_coeff(const int16x8_t a, const int16x8_t b, + const tran_coef_t c0, + const tran_coef_t c1, int16x8_t *add, + int16x8_t *sub) { + const int32x4_t a0 = vmull_n_s16(vget_low_s16(a), c0); + const int32x4_t a1 = vmull_n_s16(vget_high_s16(a), c0); + const int32x4_t a2 = vmull_n_s16(vget_low_s16(a), c1); + const int32x4_t a3 = vmull_n_s16(vget_high_s16(a), c1); + const int32x4_t sum0 = vmlal_n_s16(a2, vget_low_s16(b), c0); + const int32x4_t sum1 = vmlal_n_s16(a3, vget_high_s16(b), c0); + const int32x4_t diff0 = vmlsl_n_s16(a0, vget_low_s16(b), c1); + const int32x4_t diff1 = vmlsl_n_s16(a1, vget_high_s16(b), c1); + const int16x4_t rounded0 = vqrshrn_n_s32(sum0, 14); + const int16x4_t rounded1 = vqrshrn_n_s32(sum1, 14); + const int16x4_t rounded2 = vqrshrn_n_s32(diff0, 14); + const int16x4_t rounded3 = vqrshrn_n_s32(diff1, 14); + *add = vcombine_s16(rounded0, rounded1); + *sub = vcombine_s16(rounded2, rounded3); +} + +// Transpose 8x8 to a new location. Don't use transpose_neon.h because those +// are all in-place. +static INLINE void transpose_8x8(const int16x8_t *a /*[8]*/, + int16x8_t *b /*[8]*/) { + // Swap 16 bit elements. + const int16x8x2_t c0 = vtrnq_s16(a[0], a[1]); + const int16x8x2_t c1 = vtrnq_s16(a[2], a[3]); + const int16x8x2_t c2 = vtrnq_s16(a[4], a[5]); + const int16x8x2_t c3 = vtrnq_s16(a[6], a[7]); + + // Swap 32 bit elements. + const int32x4x2_t d0 = vtrnq_s32(vreinterpretq_s32_s16(c0.val[0]), + vreinterpretq_s32_s16(c1.val[0])); + const int32x4x2_t d1 = vtrnq_s32(vreinterpretq_s32_s16(c0.val[1]), + vreinterpretq_s32_s16(c1.val[1])); + const int32x4x2_t d2 = vtrnq_s32(vreinterpretq_s32_s16(c2.val[0]), + vreinterpretq_s32_s16(c3.val[0])); + const int32x4x2_t d3 = vtrnq_s32(vreinterpretq_s32_s16(c2.val[1]), + vreinterpretq_s32_s16(c3.val[1])); + + // Swap 64 bit elements + const int16x8x2_t e0 = vpx_vtrnq_s64_to_s16(d0.val[0], d2.val[0]); + const int16x8x2_t e1 = vpx_vtrnq_s64_to_s16(d1.val[0], d3.val[0]); + const int16x8x2_t e2 = vpx_vtrnq_s64_to_s16(d0.val[1], d2.val[1]); + const int16x8x2_t e3 = vpx_vtrnq_s64_to_s16(d1.val[1], d3.val[1]); + + b[0] = e0.val[0]; + b[1] = e1.val[0]; + b[2] = e2.val[0]; + b[3] = e3.val[0]; + b[4] = e0.val[1]; + b[5] = e1.val[1]; + b[6] = e2.val[1]; + b[7] = e3.val[1]; +} + +// Main body of fdct16x16. +static void dct_body(const int16x8_t *in /*[16]*/, int16x8_t *out /*[16]*/) { + int16x8_t s[8]; + int16x8_t x[4]; + int16x8_t step[8]; + + // stage 1 + // From fwd_txfm.c: Work on the first eight values; fdct8(input, + // even_results);" + s[0] = vaddq_s16(in[0], in[7]); + s[1] = vaddq_s16(in[1], in[6]); + s[2] = vaddq_s16(in[2], in[5]); + s[3] = vaddq_s16(in[3], in[4]); + s[4] = vsubq_s16(in[3], in[4]); + s[5] = vsubq_s16(in[2], in[5]); + s[6] = vsubq_s16(in[1], in[6]); + s[7] = vsubq_s16(in[0], in[7]); + + // fdct4(step, step); + x[0] = vaddq_s16(s[0], s[3]); + x[1] = vaddq_s16(s[1], s[2]); + x[2] = vsubq_s16(s[1], s[2]); + x[3] = vsubq_s16(s[0], s[3]); + + // out[0] = fdct_round_shift((x0 + x1) * cospi_16_64) + // out[8] = fdct_round_shift((x0 - x1) * cospi_16_64) + butterfly_one_coeff(x[0], x[1], cospi_16_64, &out[0], &out[8]); + // out[4] = fdct_round_shift(x3 * cospi_8_64 + x2 * cospi_24_64); + // out[12] = fdct_round_shift(x3 * cospi_24_64 - x2 * cospi_8_64); + butterfly_two_coeff(x[3], x[2], cospi_24_64, cospi_8_64, &out[4], &out[12]); + + // Stage 2 + // Re-using source s5/s6 + // s5 = fdct_round_shift((s6 - s5) * cospi_16_64) + // s6 = fdct_round_shift((s6 + s5) * cospi_16_64) + butterfly_one_coeff(s[6], s[5], cospi_16_64, &s[6], &s[5]); + + // Stage 3 + x[0] = vaddq_s16(s[4], s[5]); + x[1] = vsubq_s16(s[4], s[5]); + x[2] = vsubq_s16(s[7], s[6]); + x[3] = vaddq_s16(s[7], s[6]); + + // Stage 4 + // out[2] = fdct_round_shift(x0 * cospi_28_64 + x3 * cospi_4_64) + // out[14] = fdct_round_shift(x3 * cospi_28_64 + x0 * -cospi_4_64) + butterfly_two_coeff(x[3], x[0], cospi_28_64, cospi_4_64, &out[2], &out[14]); + // out[6] = fdct_round_shift(x1 * cospi_12_64 + x2 * cospi_20_64) + // out[10] = fdct_round_shift(x2 * cospi_12_64 + x1 * -cospi_20_64) + butterfly_two_coeff(x[2], x[1], cospi_12_64, cospi_20_64, &out[10], &out[6]); + + // step 2 + // From fwd_txfm.c: Work on the next eight values; step1 -> odd_results" + // That file distinguished between "in_high" and "step1" but the only + // difference is that "in_high" is the first 8 values and "step 1" is the + // second. Here, since they are all in one array, "step1" values are += 8. + + // step2[2] = fdct_round_shift((step1[5] - step1[2]) * cospi_16_64) + // step2[3] = fdct_round_shift((step1[4] - step1[3]) * cospi_16_64) + // step2[4] = fdct_round_shift((step1[4] + step1[3]) * cospi_16_64) + // step2[5] = fdct_round_shift((step1[5] + step1[2]) * cospi_16_64) + butterfly_one_coeff(in[13], in[10], cospi_16_64, &s[5], &s[2]); + butterfly_one_coeff(in[12], in[11], cospi_16_64, &s[4], &s[3]); + + // step 3 + s[0] = vaddq_s16(in[8], s[3]); + s[1] = vaddq_s16(in[9], s[2]); + x[0] = vsubq_s16(in[9], s[2]); + x[1] = vsubq_s16(in[8], s[3]); + x[2] = vsubq_s16(in[15], s[4]); + x[3] = vsubq_s16(in[14], s[5]); + s[6] = vaddq_s16(in[14], s[5]); + s[7] = vaddq_s16(in[15], s[4]); + + // step 4 + // step2[1] = fdct_round_shift(step3[1] *-cospi_8_64 + step3[6] * cospi_24_64) + // step2[6] = fdct_round_shift(step3[1] * cospi_24_64 + step3[6] * cospi_8_64) + butterfly_two_coeff(s[6], s[1], cospi_24_64, cospi_8_64, &s[6], &s[1]); + + // step2[2] = fdct_round_shift(step3[2] * cospi_24_64 + step3[5] * cospi_8_64) + // step2[5] = fdct_round_shift(step3[2] * cospi_8_64 - step3[5] * cospi_24_64) + butterfly_two_coeff(x[0], x[3], cospi_8_64, cospi_24_64, &s[2], &s[5]); + + // step 5 + step[0] = vaddq_s16(s[0], s[1]); + step[1] = vsubq_s16(s[0], s[1]); + step[2] = vaddq_s16(x[1], s[2]); + step[3] = vsubq_s16(x[1], s[2]); + step[4] = vsubq_s16(x[2], s[5]); + step[5] = vaddq_s16(x[2], s[5]); + step[6] = vsubq_s16(s[7], s[6]); + step[7] = vaddq_s16(s[7], s[6]); + + // step 6 + // out[1] = fdct_round_shift(step1[0] * cospi_30_64 + step1[7] * cospi_2_64) + // out[9] = fdct_round_shift(step1[1] * cospi_14_64 + step1[6] * cospi_18_64) + // out[5] = fdct_round_shift(step1[2] * cospi_22_64 + step1[5] * cospi_10_64) + // out[13] = fdct_round_shift(step1[3] * cospi_6_64 + step1[4] * cospi_26_64) + // out[3] = fdct_round_shift(step1[3] * -cospi_26_64 + step1[4] * cospi_6_64) + // out[11] = fdct_round_shift(step1[2] * -cospi_10_64 + step1[5] * + // cospi_22_64) + // out[7] = fdct_round_shift(step1[1] * -cospi_18_64 + step1[6] * cospi_14_64) + // out[15] = fdct_round_shift(step1[0] * -cospi_2_64 + step1[7] * cospi_30_64) + butterfly_two_coeff(step[6], step[1], cospi_14_64, cospi_18_64, &out[9], + &out[7]); + butterfly_two_coeff(step[7], step[0], cospi_30_64, cospi_2_64, &out[1], + &out[15]); + butterfly_two_coeff(step[4], step[3], cospi_6_64, cospi_26_64, &out[13], + &out[3]); + butterfly_two_coeff(step[5], step[2], cospi_22_64, cospi_10_64, &out[5], + &out[11]); +} + +void vpx_fdct16x16_neon(const int16_t *input, tran_low_t *output, int stride) { + int16x8_t temp0[16]; + int16x8_t temp1[16]; + int16x8_t temp2[16]; + int16x8_t temp3[16]; + + // Left half. + load(input, stride, temp0); + cross_input(temp0, temp1, 0); + dct_body(temp1, temp0); + + // Right half. + load(input + 8, stride, temp1); + cross_input(temp1, temp2, 0); + dct_body(temp2, temp1); + + // Transpose top left and top right quarters into one contiguous location to + // process to the top half. + transpose_8x8(&temp0[0], &temp2[0]); + transpose_8x8(&temp1[0], &temp2[8]); + partial_round_shift(temp2); + cross_input(temp2, temp3, 1); + dct_body(temp3, temp2); + transpose_s16_8x8(&temp2[0], &temp2[1], &temp2[2], &temp2[3], &temp2[4], + &temp2[5], &temp2[6], &temp2[7]); + transpose_s16_8x8(&temp2[8], &temp2[9], &temp2[10], &temp2[11], &temp2[12], + &temp2[13], &temp2[14], &temp2[15]); + store(output, temp2); + store(output + 8, temp2 + 8); + output += 8 * 16; + + // Transpose bottom left and bottom right quarters into one contiguous + // location to process to the bottom half. + transpose_8x8(&temp0[8], &temp1[0]); + transpose_s16_8x8(&temp1[8], &temp1[9], &temp1[10], &temp1[11], &temp1[12], + &temp1[13], &temp1[14], &temp1[15]); + partial_round_shift(temp1); + cross_input(temp1, temp0, 1); + dct_body(temp0, temp1); + transpose_s16_8x8(&temp1[0], &temp1[1], &temp1[2], &temp1[3], &temp1[4], + &temp1[5], &temp1[6], &temp1[7]); + transpose_s16_8x8(&temp1[8], &temp1[9], &temp1[10], &temp1[11], &temp1[12], + &temp1[13], &temp1[14], &temp1[15]); + store(output, temp1); + store(output + 8, temp1 + 8); +} +#endif // !defined(__clang__) && !defined(__ANDROID__) && defined(__GNUC__) && + // __GNUC__ == 4 && __GNUC_MINOR__ == 9 && __GNUC_PATCHLEVEL__ < 4 diff --git a/vpx_dsp/arm/fdct32x32_neon.c b/vpx_dsp/arm/fdct32x32_neon.c new file mode 100644 index 0000000..e9cd349 --- /dev/null +++ b/vpx_dsp/arm/fdct32x32_neon.c @@ -0,0 +1,1507 @@ +/* + * Copyright (c) 2017 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include + +#include "./vpx_config.h" +#include "./vpx_dsp_rtcd.h" +#include "vpx_dsp/txfm_common.h" +#include "vpx_dsp/arm/mem_neon.h" +#include "vpx_dsp/arm/transpose_neon.h" + +// Most gcc 4.9 distributions outside of Android do not generate correct code +// for this function. +#if !defined(__clang__) && !defined(__ANDROID__) && defined(__GNUC__) && \ + __GNUC__ == 4 && __GNUC_MINOR__ <= 9 + +void vpx_fdct32x32_neon(const int16_t *input, tran_low_t *output, int stride) { + vpx_fdct32x32_c(input, output, stride); +} + +void vpx_fdct32x32_rd_neon(const int16_t *input, tran_low_t *output, + int stride) { + vpx_fdct32x32_rd_c(input, output, stride); +} + +#else + +#define LOAD_INCREMENT(src, stride, dest, index) \ + do { \ + dest[index] = vld1q_s16(src); \ + src += stride; \ + } while (0) + +#define ADD_S16(src, index0, index1, dest, index3) \ + do { \ + dest[index3] = vaddq_s16(src[index0], src[index1]); \ + } while (0) + +#define ADD_SHIFT_S16(src, index0, index1) \ + do { \ + src[index1] = vshlq_n_s16(vsubq_s16(src[index0], src[index1]), 2); \ + } while (0) + +// Load, cross, and multiply by 4. Load the first 8 and last 8, then the +// middle +// 16. Doing sets of 16 at a time. Maybe sets of 8 would be better? +static INLINE void load(const int16_t *a, int stride, int16x8_t *b) { + const int16_t *a_end = a + 24 * stride; + int16x8_t c[8]; + + LOAD_INCREMENT(a, stride, b, 0); + LOAD_INCREMENT(a, stride, b, 1); + LOAD_INCREMENT(a, stride, b, 2); + LOAD_INCREMENT(a, stride, b, 3); + LOAD_INCREMENT(a, stride, b, 4); + LOAD_INCREMENT(a, stride, b, 5); + LOAD_INCREMENT(a, stride, b, 6); + LOAD_INCREMENT(a, stride, b, 7); + + LOAD_INCREMENT(a_end, stride, b, 24); + LOAD_INCREMENT(a_end, stride, b, 25); + LOAD_INCREMENT(a_end, stride, b, 26); + LOAD_INCREMENT(a_end, stride, b, 27); + LOAD_INCREMENT(a_end, stride, b, 28); + LOAD_INCREMENT(a_end, stride, b, 29); + LOAD_INCREMENT(a_end, stride, b, 30); + LOAD_INCREMENT(a_end, stride, b, 31); + + ADD_S16(b, 0, 31, c, 0); + ADD_S16(b, 1, 30, c, 1); + ADD_S16(b, 2, 29, c, 2); + ADD_S16(b, 3, 28, c, 3); + ADD_S16(b, 4, 27, c, 4); + ADD_S16(b, 5, 26, c, 5); + ADD_S16(b, 6, 25, c, 6); + ADD_S16(b, 7, 24, c, 7); + + ADD_SHIFT_S16(b, 7, 24); + ADD_SHIFT_S16(b, 6, 25); + ADD_SHIFT_S16(b, 5, 26); + ADD_SHIFT_S16(b, 4, 27); + ADD_SHIFT_S16(b, 3, 28); + ADD_SHIFT_S16(b, 2, 29); + ADD_SHIFT_S16(b, 1, 30); + ADD_SHIFT_S16(b, 0, 31); + + b[0] = vshlq_n_s16(c[0], 2); + b[1] = vshlq_n_s16(c[1], 2); + b[2] = vshlq_n_s16(c[2], 2); + b[3] = vshlq_n_s16(c[3], 2); + b[4] = vshlq_n_s16(c[4], 2); + b[5] = vshlq_n_s16(c[5], 2); + b[6] = vshlq_n_s16(c[6], 2); + b[7] = vshlq_n_s16(c[7], 2); + + LOAD_INCREMENT(a, stride, b, 8); + LOAD_INCREMENT(a, stride, b, 9); + LOAD_INCREMENT(a, stride, b, 10); + LOAD_INCREMENT(a, stride, b, 11); + LOAD_INCREMENT(a, stride, b, 12); + LOAD_INCREMENT(a, stride, b, 13); + LOAD_INCREMENT(a, stride, b, 14); + LOAD_INCREMENT(a, stride, b, 15); + LOAD_INCREMENT(a, stride, b, 16); + LOAD_INCREMENT(a, stride, b, 17); + LOAD_INCREMENT(a, stride, b, 18); + LOAD_INCREMENT(a, stride, b, 19); + LOAD_INCREMENT(a, stride, b, 20); + LOAD_INCREMENT(a, stride, b, 21); + LOAD_INCREMENT(a, stride, b, 22); + LOAD_INCREMENT(a, stride, b, 23); + + ADD_S16(b, 8, 23, c, 0); + ADD_S16(b, 9, 22, c, 1); + ADD_S16(b, 10, 21, c, 2); + ADD_S16(b, 11, 20, c, 3); + ADD_S16(b, 12, 19, c, 4); + ADD_S16(b, 13, 18, c, 5); + ADD_S16(b, 14, 17, c, 6); + ADD_S16(b, 15, 16, c, 7); + + ADD_SHIFT_S16(b, 15, 16); + ADD_SHIFT_S16(b, 14, 17); + ADD_SHIFT_S16(b, 13, 18); + ADD_SHIFT_S16(b, 12, 19); + ADD_SHIFT_S16(b, 11, 20); + ADD_SHIFT_S16(b, 10, 21); + ADD_SHIFT_S16(b, 9, 22); + ADD_SHIFT_S16(b, 8, 23); + + b[8] = vshlq_n_s16(c[0], 2); + b[9] = vshlq_n_s16(c[1], 2); + b[10] = vshlq_n_s16(c[2], 2); + b[11] = vshlq_n_s16(c[3], 2); + b[12] = vshlq_n_s16(c[4], 2); + b[13] = vshlq_n_s16(c[5], 2); + b[14] = vshlq_n_s16(c[6], 2); + b[15] = vshlq_n_s16(c[7], 2); +} + +#undef LOAD_INCREMENT +#undef ADD_S16 +#undef ADD_SHIFT_S16 + +#define STORE_S16(src, index, dest) \ + do { \ + store_s16q_to_tran_low(dest, src[index]); \ + dest += 8; \ + } while (0); + +// Store 32 16x8 values, assuming stride == 32. +// Slight twist: store horizontally in blocks of 8. +static INLINE void store(tran_low_t *a, const int16x8_t *b) { + STORE_S16(b, 0, a); + STORE_S16(b, 8, a); + STORE_S16(b, 16, a); + STORE_S16(b, 24, a); + STORE_S16(b, 1, a); + STORE_S16(b, 9, a); + STORE_S16(b, 17, a); + STORE_S16(b, 25, a); + STORE_S16(b, 2, a); + STORE_S16(b, 10, a); + STORE_S16(b, 18, a); + STORE_S16(b, 26, a); + STORE_S16(b, 3, a); + STORE_S16(b, 11, a); + STORE_S16(b, 19, a); + STORE_S16(b, 27, a); + STORE_S16(b, 4, a); + STORE_S16(b, 12, a); + STORE_S16(b, 20, a); + STORE_S16(b, 28, a); + STORE_S16(b, 5, a); + STORE_S16(b, 13, a); + STORE_S16(b, 21, a); + STORE_S16(b, 29, a); + STORE_S16(b, 6, a); + STORE_S16(b, 14, a); + STORE_S16(b, 22, a); + STORE_S16(b, 30, a); + STORE_S16(b, 7, a); + STORE_S16(b, 15, a); + STORE_S16(b, 23, a); + STORE_S16(b, 31, a); +} + +#undef STORE_S16 + +// fdct_round_shift((a +/- b) * c) +static INLINE void butterfly_one_coeff(const int16x8_t a, const int16x8_t b, + const tran_high_t constant, + int16x8_t *add, int16x8_t *sub) { + const int32x4_t a0 = vmull_n_s16(vget_low_s16(a), constant); + const int32x4_t a1 = vmull_n_s16(vget_high_s16(a), constant); + const int32x4_t sum0 = vmlal_n_s16(a0, vget_low_s16(b), constant); + const int32x4_t sum1 = vmlal_n_s16(a1, vget_high_s16(b), constant); + const int32x4_t diff0 = vmlsl_n_s16(a0, vget_low_s16(b), constant); + const int32x4_t diff1 = vmlsl_n_s16(a1, vget_high_s16(b), constant); + const int16x4_t rounded0 = vqrshrn_n_s32(sum0, DCT_CONST_BITS); + const int16x4_t rounded1 = vqrshrn_n_s32(sum1, DCT_CONST_BITS); + const int16x4_t rounded2 = vqrshrn_n_s32(diff0, DCT_CONST_BITS); + const int16x4_t rounded3 = vqrshrn_n_s32(diff1, DCT_CONST_BITS); + *add = vcombine_s16(rounded0, rounded1); + *sub = vcombine_s16(rounded2, rounded3); +} + +// fdct_round_shift(a * c0 +/- b * c1) +static INLINE void butterfly_two_coeff(const int16x8_t a, const int16x8_t b, + const tran_coef_t constant0, + const tran_coef_t constant1, + int16x8_t *add, int16x8_t *sub) { + const int32x4_t a0 = vmull_n_s16(vget_low_s16(a), constant0); + const int32x4_t a1 = vmull_n_s16(vget_high_s16(a), constant0); + const int32x4_t a2 = vmull_n_s16(vget_low_s16(a), constant1); + const int32x4_t a3 = vmull_n_s16(vget_high_s16(a), constant1); + const int32x4_t sum0 = vmlal_n_s16(a2, vget_low_s16(b), constant0); + const int32x4_t sum1 = vmlal_n_s16(a3, vget_high_s16(b), constant0); + const int32x4_t diff0 = vmlsl_n_s16(a0, vget_low_s16(b), constant1); + const int32x4_t diff1 = vmlsl_n_s16(a1, vget_high_s16(b), constant1); + const int16x4_t rounded0 = vqrshrn_n_s32(sum0, DCT_CONST_BITS); + const int16x4_t rounded1 = vqrshrn_n_s32(sum1, DCT_CONST_BITS); + const int16x4_t rounded2 = vqrshrn_n_s32(diff0, DCT_CONST_BITS); + const int16x4_t rounded3 = vqrshrn_n_s32(diff1, DCT_CONST_BITS); + *add = vcombine_s16(rounded0, rounded1); + *sub = vcombine_s16(rounded2, rounded3); +} + +// Add 2 if positive, 1 if negative, and shift by 2. +// In practice, subtract the sign bit, then shift with rounding. +static INLINE int16x8_t sub_round_shift(const int16x8_t a) { + const uint16x8_t a_u16 = vreinterpretq_u16_s16(a); + const uint16x8_t a_sign_u16 = vshrq_n_u16(a_u16, 15); + const int16x8_t a_sign_s16 = vreinterpretq_s16_u16(a_sign_u16); + return vrshrq_n_s16(vsubq_s16(a, a_sign_s16), 2); +} + +static void dct_body_first_pass(const int16x8_t *in, int16x8_t *out) { + int16x8_t a[32]; + int16x8_t b[32]; + + // Stage 1: Done as part of the load. + + // Stage 2. + // Mini cross. X the first 16 values and the middle 8 of the second half. + a[0] = vaddq_s16(in[0], in[15]); + a[1] = vaddq_s16(in[1], in[14]); + a[2] = vaddq_s16(in[2], in[13]); + a[3] = vaddq_s16(in[3], in[12]); + a[4] = vaddq_s16(in[4], in[11]); + a[5] = vaddq_s16(in[5], in[10]); + a[6] = vaddq_s16(in[6], in[9]); + a[7] = vaddq_s16(in[7], in[8]); + + a[8] = vsubq_s16(in[7], in[8]); + a[9] = vsubq_s16(in[6], in[9]); + a[10] = vsubq_s16(in[5], in[10]); + a[11] = vsubq_s16(in[4], in[11]); + a[12] = vsubq_s16(in[3], in[12]); + a[13] = vsubq_s16(in[2], in[13]); + a[14] = vsubq_s16(in[1], in[14]); + a[15] = vsubq_s16(in[0], in[15]); + + a[16] = in[16]; + a[17] = in[17]; + a[18] = in[18]; + a[19] = in[19]; + + butterfly_one_coeff(in[27], in[20], cospi_16_64, &a[27], &a[20]); + butterfly_one_coeff(in[26], in[21], cospi_16_64, &a[26], &a[21]); + butterfly_one_coeff(in[25], in[22], cospi_16_64, &a[25], &a[22]); + butterfly_one_coeff(in[24], in[23], cospi_16_64, &a[24], &a[23]); + + a[28] = in[28]; + a[29] = in[29]; + a[30] = in[30]; + a[31] = in[31]; + + // Stage 3. + b[0] = vaddq_s16(a[0], a[7]); + b[1] = vaddq_s16(a[1], a[6]); + b[2] = vaddq_s16(a[2], a[5]); + b[3] = vaddq_s16(a[3], a[4]); + + b[4] = vsubq_s16(a[3], a[4]); + b[5] = vsubq_s16(a[2], a[5]); + b[6] = vsubq_s16(a[1], a[6]); + b[7] = vsubq_s16(a[0], a[7]); + + b[8] = a[8]; + b[9] = a[9]; + + butterfly_one_coeff(a[13], a[10], cospi_16_64, &b[13], &b[10]); + butterfly_one_coeff(a[12], a[11], cospi_16_64, &b[12], &b[11]); + + b[14] = a[14]; + b[15] = a[15]; + + b[16] = vaddq_s16(in[16], a[23]); + b[17] = vaddq_s16(in[17], a[22]); + b[18] = vaddq_s16(in[18], a[21]); + b[19] = vaddq_s16(in[19], a[20]); + + b[20] = vsubq_s16(in[19], a[20]); + b[21] = vsubq_s16(in[18], a[21]); + b[22] = vsubq_s16(in[17], a[22]); + b[23] = vsubq_s16(in[16], a[23]); + + b[24] = vsubq_s16(in[31], a[24]); + b[25] = vsubq_s16(in[30], a[25]); + b[26] = vsubq_s16(in[29], a[26]); + b[27] = vsubq_s16(in[28], a[27]); + + b[28] = vaddq_s16(in[28], a[27]); + b[29] = vaddq_s16(in[29], a[26]); + b[30] = vaddq_s16(in[30], a[25]); + b[31] = vaddq_s16(in[31], a[24]); + + // Stage 4. + a[0] = vaddq_s16(b[0], b[3]); + a[1] = vaddq_s16(b[1], b[2]); + a[2] = vsubq_s16(b[1], b[2]); + a[3] = vsubq_s16(b[0], b[3]); + + a[4] = b[4]; + + butterfly_one_coeff(b[6], b[5], cospi_16_64, &a[6], &a[5]); + + a[7] = b[7]; + + a[8] = vaddq_s16(b[8], b[11]); + a[9] = vaddq_s16(b[9], b[10]); + a[10] = vsubq_s16(b[9], b[10]); + a[11] = vsubq_s16(b[8], b[11]); + a[12] = vsubq_s16(b[15], b[12]); + a[13] = vsubq_s16(b[14], b[13]); + a[14] = vaddq_s16(b[14], b[13]); + a[15] = vaddq_s16(b[15], b[12]); + + a[16] = b[16]; + a[17] = b[17]; + + butterfly_two_coeff(b[29], b[18], cospi_24_64, cospi_8_64, &a[29], &a[18]); + butterfly_two_coeff(b[28], b[19], cospi_24_64, cospi_8_64, &a[28], &a[19]); + butterfly_two_coeff(b[27], b[20], -cospi_8_64, cospi_24_64, &a[27], &a[20]); + butterfly_two_coeff(b[26], b[21], -cospi_8_64, cospi_24_64, &a[26], &a[21]); + + a[22] = b[22]; + a[23] = b[23]; + a[24] = b[24]; + a[25] = b[25]; + + a[30] = b[30]; + a[31] = b[31]; + + // Stage 5. + butterfly_one_coeff(a[0], a[1], cospi_16_64, &b[0], &b[1]); + butterfly_two_coeff(a[3], a[2], cospi_24_64, cospi_8_64, &b[2], &b[3]); + + b[4] = vaddq_s16(a[4], a[5]); + b[5] = vsubq_s16(a[4], a[5]); + b[6] = vsubq_s16(a[7], a[6]); + b[7] = vaddq_s16(a[7], a[6]); + + b[8] = a[8]; + + butterfly_two_coeff(a[14], a[9], cospi_24_64, cospi_8_64, &b[14], &b[9]); + butterfly_two_coeff(a[13], a[10], -cospi_8_64, cospi_24_64, &b[13], &b[10]); + + b[11] = a[11]; + b[12] = a[12]; + + b[15] = a[15]; + + b[16] = vaddq_s16(a[19], a[16]); + b[17] = vaddq_s16(a[18], a[17]); + b[18] = vsubq_s16(a[17], a[18]); + b[19] = vsubq_s16(a[16], a[19]); + b[20] = vsubq_s16(a[23], a[20]); + b[21] = vsubq_s16(a[22], a[21]); + b[22] = vaddq_s16(a[21], a[22]); + b[23] = vaddq_s16(a[20], a[23]); + b[24] = vaddq_s16(a[27], a[24]); + b[25] = vaddq_s16(a[26], a[25]); + b[26] = vsubq_s16(a[25], a[26]); + b[27] = vsubq_s16(a[24], a[27]); + b[28] = vsubq_s16(a[31], a[28]); + b[29] = vsubq_s16(a[30], a[29]); + b[30] = vaddq_s16(a[29], a[30]); + b[31] = vaddq_s16(a[28], a[31]); + + // Stage 6. + a[0] = b[0]; + a[1] = b[1]; + a[2] = b[2]; + a[3] = b[3]; + + butterfly_two_coeff(b[7], b[4], cospi_28_64, cospi_4_64, &a[4], &a[7]); + butterfly_two_coeff(b[6], b[5], cospi_12_64, cospi_20_64, &a[5], &a[6]); + + a[8] = vaddq_s16(b[8], b[9]); + a[9] = vsubq_s16(b[8], b[9]); + a[10] = vsubq_s16(b[11], b[10]); + a[11] = vaddq_s16(b[11], b[10]); + a[12] = vaddq_s16(b[12], b[13]); + a[13] = vsubq_s16(b[12], b[13]); + a[14] = vsubq_s16(b[15], b[14]); + a[15] = vaddq_s16(b[15], b[14]); + + a[16] = b[16]; + a[19] = b[19]; + a[20] = b[20]; + a[23] = b[23]; + a[24] = b[24]; + a[27] = b[27]; + a[28] = b[28]; + a[31] = b[31]; + + butterfly_two_coeff(b[30], b[17], cospi_28_64, cospi_4_64, &a[30], &a[17]); + butterfly_two_coeff(b[29], b[18], -cospi_4_64, cospi_28_64, &a[29], &a[18]); + + butterfly_two_coeff(b[26], b[21], cospi_12_64, cospi_20_64, &a[26], &a[21]); + butterfly_two_coeff(b[25], b[22], -cospi_20_64, cospi_12_64, &a[25], &a[22]); + + // Stage 7. + b[0] = a[0]; + b[1] = a[1]; + b[2] = a[2]; + b[3] = a[3]; + b[4] = a[4]; + b[5] = a[5]; + b[6] = a[6]; + b[7] = a[7]; + + butterfly_two_coeff(a[15], a[8], cospi_30_64, cospi_2_64, &b[8], &b[15]); + butterfly_two_coeff(a[14], a[9], cospi_14_64, cospi_18_64, &b[9], &b[14]); + butterfly_two_coeff(a[13], a[10], cospi_22_64, cospi_10_64, &b[10], &b[13]); + butterfly_two_coeff(a[12], a[11], cospi_6_64, cospi_26_64, &b[11], &b[12]); + + b[16] = vaddq_s16(a[16], a[17]); + b[17] = vsubq_s16(a[16], a[17]); + b[18] = vsubq_s16(a[19], a[18]); + b[19] = vaddq_s16(a[19], a[18]); + b[20] = vaddq_s16(a[20], a[21]); + b[21] = vsubq_s16(a[20], a[21]); + b[22] = vsubq_s16(a[23], a[22]); + b[23] = vaddq_s16(a[23], a[22]); + b[24] = vaddq_s16(a[24], a[25]); + b[25] = vsubq_s16(a[24], a[25]); + b[26] = vsubq_s16(a[27], a[26]); + b[27] = vaddq_s16(a[27], a[26]); + b[28] = vaddq_s16(a[28], a[29]); + b[29] = vsubq_s16(a[28], a[29]); + b[30] = vsubq_s16(a[31], a[30]); + b[31] = vaddq_s16(a[31], a[30]); + + // Final stage. + // Also compute partial rounding shift: + // output[j * 32 + i] = (temp_out[j] + 1 + (temp_out[j] > 0)) >> 2; + out[0] = sub_round_shift(b[0]); + out[16] = sub_round_shift(b[1]); + out[8] = sub_round_shift(b[2]); + out[24] = sub_round_shift(b[3]); + out[4] = sub_round_shift(b[4]); + out[20] = sub_round_shift(b[5]); + out[12] = sub_round_shift(b[6]); + out[28] = sub_round_shift(b[7]); + out[2] = sub_round_shift(b[8]); + out[18] = sub_round_shift(b[9]); + out[10] = sub_round_shift(b[10]); + out[26] = sub_round_shift(b[11]); + out[6] = sub_round_shift(b[12]); + out[22] = sub_round_shift(b[13]); + out[14] = sub_round_shift(b[14]); + out[30] = sub_round_shift(b[15]); + + butterfly_two_coeff(b[31], b[16], cospi_31_64, cospi_1_64, &a[1], &a[31]); + out[1] = sub_round_shift(a[1]); + out[31] = sub_round_shift(a[31]); + + butterfly_two_coeff(b[30], b[17], cospi_15_64, cospi_17_64, &a[17], &a[15]); + out[17] = sub_round_shift(a[17]); + out[15] = sub_round_shift(a[15]); + + butterfly_two_coeff(b[29], b[18], cospi_23_64, cospi_9_64, &a[9], &a[23]); + out[9] = sub_round_shift(a[9]); + out[23] = sub_round_shift(a[23]); + + butterfly_two_coeff(b[28], b[19], cospi_7_64, cospi_25_64, &a[25], &a[7]); + out[25] = sub_round_shift(a[25]); + out[7] = sub_round_shift(a[7]); + + butterfly_two_coeff(b[27], b[20], cospi_27_64, cospi_5_64, &a[5], &a[27]); + out[5] = sub_round_shift(a[5]); + out[27] = sub_round_shift(a[27]); + + butterfly_two_coeff(b[26], b[21], cospi_11_64, cospi_21_64, &a[21], &a[11]); + out[21] = sub_round_shift(a[21]); + out[11] = sub_round_shift(a[11]); + + butterfly_two_coeff(b[25], b[22], cospi_19_64, cospi_13_64, &a[13], &a[19]); + out[13] = sub_round_shift(a[13]); + out[19] = sub_round_shift(a[19]); + + butterfly_two_coeff(b[24], b[23], cospi_3_64, cospi_29_64, &a[29], &a[3]); + out[29] = sub_round_shift(a[29]); + out[3] = sub_round_shift(a[3]); +} + +#define PASS_THROUGH(src, dst, element) \ + do { \ + dst##_lo[element] = src##_lo[element]; \ + dst##_hi[element] = src##_hi[element]; \ + } while (0) + +#define ADD_S16_S32(a, left_index, right_index, b, b_index) \ + do { \ + b##_lo[b_index] = \ + vaddl_s16(vget_low_s16(a[left_index]), vget_low_s16(a[right_index])); \ + b##_hi[b_index] = vaddl_s16(vget_high_s16(a[left_index]), \ + vget_high_s16(a[right_index])); \ + } while (0) + +#define SUB_S16_S32(a, left_index, right_index, b, b_index) \ + do { \ + b##_lo[b_index] = \ + vsubl_s16(vget_low_s16(a[left_index]), vget_low_s16(a[right_index])); \ + b##_hi[b_index] = vsubl_s16(vget_high_s16(a[left_index]), \ + vget_high_s16(a[right_index])); \ + } while (0) + +#define ADDW_S16_S32(a, a_index, b, b_index, c, c_index) \ + do { \ + c##_lo[c_index] = vaddw_s16(a##_lo[a_index], vget_low_s16(b[b_index])); \ + c##_hi[c_index] = vaddw_s16(a##_hi[a_index], vget_high_s16(b[b_index])); \ + } while (0) + +#define SUBW_S16_S32(a, a_index, b, b_index, temp, temp_index, c, c_index) \ + do { \ + temp##_lo[temp_index] = vmovl_s16(vget_low_s16(a[a_index])); \ + temp##_hi[temp_index] = vmovl_s16(vget_high_s16(a[a_index])); \ + c##_lo[c_index] = vsubq_s32(temp##_lo[temp_index], b##_lo[b_index]); \ + c##_hi[c_index] = vsubq_s32(temp##_hi[temp_index], b##_hi[b_index]); \ + } while (0) + +#define ADD_S32(a, left_index, right_index, b, b_index) \ + do { \ + b##_lo[b_index] = vaddq_s32(a##_lo[left_index], a##_lo[right_index]); \ + b##_hi[b_index] = vaddq_s32(a##_hi[left_index], a##_hi[right_index]); \ + } while (0) + +#define SUB_S32(a, left_index, right_index, b, b_index) \ + do { \ + b##_lo[b_index] = vsubq_s32(a##_lo[left_index], a##_lo[right_index]); \ + b##_hi[b_index] = vsubq_s32(a##_hi[left_index], a##_hi[right_index]); \ + } while (0) + +// Like butterfly_one_coeff, but don't narrow results. +static INLINE void butterfly_one_coeff_s16_s32( + const int16x8_t a, const int16x8_t b, const tran_high_t constant, + int32x4_t *add_lo, int32x4_t *add_hi, int32x4_t *sub_lo, + int32x4_t *sub_hi) { + const int32x4_t a0 = vmull_n_s16(vget_low_s16(a), constant); + const int32x4_t a1 = vmull_n_s16(vget_high_s16(a), constant); + const int32x4_t sum0 = vmlal_n_s16(a0, vget_low_s16(b), constant); + const int32x4_t sum1 = vmlal_n_s16(a1, vget_high_s16(b), constant); + const int32x4_t diff0 = vmlsl_n_s16(a0, vget_low_s16(b), constant); + const int32x4_t diff1 = vmlsl_n_s16(a1, vget_high_s16(b), constant); + *add_lo = vrshrq_n_s32(sum0, DCT_CONST_BITS); + *add_hi = vrshrq_n_s32(sum1, DCT_CONST_BITS); + *sub_lo = vrshrq_n_s32(diff0, DCT_CONST_BITS); + *sub_hi = vrshrq_n_s32(diff1, DCT_CONST_BITS); +} + +#define BUTTERFLY_ONE_S16_S32(a, left_index, right_index, constant, b, \ + add_index, sub_index) \ + do { \ + butterfly_one_coeff_s16_s32(a[left_index], a[right_index], constant, \ + &b##_lo[add_index], &b##_hi[add_index], \ + &b##_lo[sub_index], &b##_hi[sub_index]); \ + } while (0) + +// Like butterfly_one_coeff, but with s32. +static INLINE void butterfly_one_coeff_s32( + const int32x4_t a_lo, const int32x4_t a_hi, const int32x4_t b_lo, + const int32x4_t b_hi, const int32_t constant, int32x4_t *add_lo, + int32x4_t *add_hi, int32x4_t *sub_lo, int32x4_t *sub_hi) { + const int32x4_t a_lo_0 = vmulq_n_s32(a_lo, constant); + const int32x4_t a_hi_0 = vmulq_n_s32(a_hi, constant); + const int32x4_t sum0 = vmlaq_n_s32(a_lo_0, b_lo, constant); + const int32x4_t sum1 = vmlaq_n_s32(a_hi_0, b_hi, constant); + const int32x4_t diff0 = vmlsq_n_s32(a_lo_0, b_lo, constant); + const int32x4_t diff1 = vmlsq_n_s32(a_hi_0, b_hi, constant); + *add_lo = vrshrq_n_s32(sum0, DCT_CONST_BITS); + *add_hi = vrshrq_n_s32(sum1, DCT_CONST_BITS); + *sub_lo = vrshrq_n_s32(diff0, DCT_CONST_BITS); + *sub_hi = vrshrq_n_s32(diff1, DCT_CONST_BITS); +} + +#define BUTTERFLY_ONE_S32(a, left_index, right_index, constant, b, add_index, \ + sub_index) \ + do { \ + butterfly_one_coeff_s32(a##_lo[left_index], a##_hi[left_index], \ + a##_lo[right_index], a##_hi[right_index], \ + constant, &b##_lo[add_index], &b##_hi[add_index], \ + &b##_lo[sub_index], &b##_hi[sub_index]); \ + } while (0) + +// Like butterfly_two_coeff, but with s32. +static INLINE void butterfly_two_coeff_s32( + const int32x4_t a_lo, const int32x4_t a_hi, const int32x4_t b_lo, + const int32x4_t b_hi, const int32_t constant0, const int32_t constant1, + int32x4_t *add_lo, int32x4_t *add_hi, int32x4_t *sub_lo, + int32x4_t *sub_hi) { + const int32x4_t a0 = vmulq_n_s32(a_lo, constant0); + const int32x4_t a1 = vmulq_n_s32(a_hi, constant0); + const int32x4_t a2 = vmulq_n_s32(a_lo, constant1); + const int32x4_t a3 = vmulq_n_s32(a_hi, constant1); + const int32x4_t sum0 = vmlaq_n_s32(a2, b_lo, constant0); + const int32x4_t sum1 = vmlaq_n_s32(a3, b_hi, constant0); + const int32x4_t diff0 = vmlsq_n_s32(a0, b_lo, constant1); + const int32x4_t diff1 = vmlsq_n_s32(a1, b_hi, constant1); + *add_lo = vrshrq_n_s32(sum0, DCT_CONST_BITS); + *add_hi = vrshrq_n_s32(sum1, DCT_CONST_BITS); + *sub_lo = vrshrq_n_s32(diff0, DCT_CONST_BITS); + *sub_hi = vrshrq_n_s32(diff1, DCT_CONST_BITS); +} + +#define BUTTERFLY_TWO_S32(a, left_index, right_index, left_constant, \ + right_constant, b, add_index, sub_index) \ + do { \ + butterfly_two_coeff_s32(a##_lo[left_index], a##_hi[left_index], \ + a##_lo[right_index], a##_hi[right_index], \ + left_constant, right_constant, &b##_lo[add_index], \ + &b##_hi[add_index], &b##_lo[sub_index], \ + &b##_hi[sub_index]); \ + } while (0) + +// Add 1 if positive, 2 if negative, and shift by 2. +// In practice, add 1, then add the sign bit, then shift without rounding. +static INLINE int16x8_t add_round_shift_s32(const int32x4_t a_lo, + const int32x4_t a_hi) { + const int32x4_t one = vdupq_n_s32(1); + const uint32x4_t a_lo_u32 = vreinterpretq_u32_s32(a_lo); + const uint32x4_t a_lo_sign_u32 = vshrq_n_u32(a_lo_u32, 31); + const int32x4_t a_lo_sign_s32 = vreinterpretq_s32_u32(a_lo_sign_u32); + const int16x4_t b_lo = + vshrn_n_s32(vqaddq_s32(vqaddq_s32(a_lo, a_lo_sign_s32), one), 2); + const uint32x4_t a_hi_u32 = vreinterpretq_u32_s32(a_hi); + const uint32x4_t a_hi_sign_u32 = vshrq_n_u32(a_hi_u32, 31); + const int32x4_t a_hi_sign_s32 = vreinterpretq_s32_u32(a_hi_sign_u32); + const int16x4_t b_hi = + vshrn_n_s32(vqaddq_s32(vqaddq_s32(a_hi, a_hi_sign_s32), one), 2); + return vcombine_s16(b_lo, b_hi); +} + +static void dct_body_second_pass(const int16x8_t *in, int16x8_t *out) { + int16x8_t a[32]; + int16x8_t b[32]; + int32x4_t c_lo[32]; + int32x4_t c_hi[32]; + int32x4_t d_lo[32]; + int32x4_t d_hi[32]; + + // Stage 1. Done as part of the load for the first pass. + a[0] = vaddq_s16(in[0], in[31]); + a[1] = vaddq_s16(in[1], in[30]); + a[2] = vaddq_s16(in[2], in[29]); + a[3] = vaddq_s16(in[3], in[28]); + a[4] = vaddq_s16(in[4], in[27]); + a[5] = vaddq_s16(in[5], in[26]); + a[6] = vaddq_s16(in[6], in[25]); + a[7] = vaddq_s16(in[7], in[24]); + a[8] = vaddq_s16(in[8], in[23]); + a[9] = vaddq_s16(in[9], in[22]); + a[10] = vaddq_s16(in[10], in[21]); + a[11] = vaddq_s16(in[11], in[20]); + a[12] = vaddq_s16(in[12], in[19]); + a[13] = vaddq_s16(in[13], in[18]); + a[14] = vaddq_s16(in[14], in[17]); + a[15] = vaddq_s16(in[15], in[16]); + a[16] = vsubq_s16(in[15], in[16]); + a[17] = vsubq_s16(in[14], in[17]); + a[18] = vsubq_s16(in[13], in[18]); + a[19] = vsubq_s16(in[12], in[19]); + a[20] = vsubq_s16(in[11], in[20]); + a[21] = vsubq_s16(in[10], in[21]); + a[22] = vsubq_s16(in[9], in[22]); + a[23] = vsubq_s16(in[8], in[23]); + a[24] = vsubq_s16(in[7], in[24]); + a[25] = vsubq_s16(in[6], in[25]); + a[26] = vsubq_s16(in[5], in[26]); + a[27] = vsubq_s16(in[4], in[27]); + a[28] = vsubq_s16(in[3], in[28]); + a[29] = vsubq_s16(in[2], in[29]); + a[30] = vsubq_s16(in[1], in[30]); + a[31] = vsubq_s16(in[0], in[31]); + + // Stage 2. + b[0] = vaddq_s16(a[0], a[15]); + b[1] = vaddq_s16(a[1], a[14]); + b[2] = vaddq_s16(a[2], a[13]); + b[3] = vaddq_s16(a[3], a[12]); + b[4] = vaddq_s16(a[4], a[11]); + b[5] = vaddq_s16(a[5], a[10]); + b[6] = vaddq_s16(a[6], a[9]); + b[7] = vaddq_s16(a[7], a[8]); + + b[8] = vsubq_s16(a[7], a[8]); + b[9] = vsubq_s16(a[6], a[9]); + b[10] = vsubq_s16(a[5], a[10]); + b[11] = vsubq_s16(a[4], a[11]); + b[12] = vsubq_s16(a[3], a[12]); + b[13] = vsubq_s16(a[2], a[13]); + b[14] = vsubq_s16(a[1], a[14]); + b[15] = vsubq_s16(a[0], a[15]); + + b[16] = a[16]; + b[17] = a[17]; + b[18] = a[18]; + b[19] = a[19]; + + butterfly_one_coeff(a[27], a[20], cospi_16_64, &b[27], &b[20]); + butterfly_one_coeff(a[26], a[21], cospi_16_64, &b[26], &b[21]); + butterfly_one_coeff(a[25], a[22], cospi_16_64, &b[25], &b[22]); + butterfly_one_coeff(a[24], a[23], cospi_16_64, &b[24], &b[23]); + + b[28] = a[28]; + b[29] = a[29]; + b[30] = a[30]; + b[31] = a[31]; + + // Stage 3. With extreme values for input this calculation rolls over int16_t. + // The sources for b[0] get added multiple times and, through testing, have + // been shown to overflow starting here. + ADD_S16_S32(b, 0, 7, c, 0); + ADD_S16_S32(b, 1, 6, c, 1); + ADD_S16_S32(b, 2, 5, c, 2); + ADD_S16_S32(b, 3, 4, c, 3); + SUB_S16_S32(b, 3, 4, c, 4); + SUB_S16_S32(b, 2, 5, c, 5); + SUB_S16_S32(b, 1, 6, c, 6); + SUB_S16_S32(b, 0, 7, c, 7); + + a[8] = b[8]; + a[9] = b[9]; + + BUTTERFLY_ONE_S16_S32(b, 13, 10, cospi_16_64, c, 13, 10); + BUTTERFLY_ONE_S16_S32(b, 12, 11, cospi_16_64, c, 12, 11); + + a[14] = b[14]; + a[15] = b[15]; + + ADD_S16_S32(b, 16, 23, c, 16); + ADD_S16_S32(b, 17, 22, c, 17); + ADD_S16_S32(b, 18, 21, c, 18); + ADD_S16_S32(b, 19, 20, c, 19); + SUB_S16_S32(b, 19, 20, c, 20); + SUB_S16_S32(b, 18, 21, c, 21); + SUB_S16_S32(b, 17, 22, c, 22); + SUB_S16_S32(b, 16, 23, c, 23); + SUB_S16_S32(b, 31, 24, c, 24); + SUB_S16_S32(b, 30, 25, c, 25); + SUB_S16_S32(b, 29, 26, c, 26); + SUB_S16_S32(b, 28, 27, c, 27); + ADD_S16_S32(b, 28, 27, c, 28); + ADD_S16_S32(b, 29, 26, c, 29); + ADD_S16_S32(b, 30, 25, c, 30); + ADD_S16_S32(b, 31, 24, c, 31); + + // Stage 4. + ADD_S32(c, 0, 3, d, 0); + ADD_S32(c, 1, 2, d, 1); + SUB_S32(c, 1, 2, d, 2); + SUB_S32(c, 0, 3, d, 3); + + PASS_THROUGH(c, d, 4); + + BUTTERFLY_ONE_S32(c, 6, 5, cospi_16_64, d, 6, 5); + + PASS_THROUGH(c, d, 7); + + ADDW_S16_S32(c, 11, a, 8, d, 8); + ADDW_S16_S32(c, 10, a, 9, d, 9); + SUBW_S16_S32(a, 9, c, 10, c, 9, d, 10); + SUBW_S16_S32(a, 8, c, 11, c, 8, d, 11); + SUBW_S16_S32(a, 15, c, 12, c, 15, d, 12); + SUBW_S16_S32(a, 14, c, 13, c, 14, d, 13); + ADDW_S16_S32(c, 13, b, 14, d, 14); + ADDW_S16_S32(c, 12, b, 15, d, 15); + + PASS_THROUGH(c, d, 16); + PASS_THROUGH(c, d, 17); + + BUTTERFLY_TWO_S32(c, 29, 18, cospi_24_64, cospi_8_64, d, 29, 18); + BUTTERFLY_TWO_S32(c, 28, 19, cospi_24_64, cospi_8_64, d, 28, 19); + BUTTERFLY_TWO_S32(c, 27, 20, -cospi_8_64, cospi_24_64, d, 27, 20); + BUTTERFLY_TWO_S32(c, 26, 21, -cospi_8_64, cospi_24_64, d, 26, 21); + + PASS_THROUGH(c, d, 22); + PASS_THROUGH(c, d, 23); + PASS_THROUGH(c, d, 24); + PASS_THROUGH(c, d, 25); + + PASS_THROUGH(c, d, 30); + PASS_THROUGH(c, d, 31); + + // Stage 5. + BUTTERFLY_ONE_S32(d, 0, 1, cospi_16_64, c, 0, 1); + BUTTERFLY_TWO_S32(d, 3, 2, cospi_24_64, cospi_8_64, c, 2, 3); + + ADD_S32(d, 4, 5, c, 4); + SUB_S32(d, 4, 5, c, 5); + SUB_S32(d, 7, 6, c, 6); + ADD_S32(d, 7, 6, c, 7); + + PASS_THROUGH(d, c, 8); + + BUTTERFLY_TWO_S32(d, 14, 9, cospi_24_64, cospi_8_64, c, 14, 9); + BUTTERFLY_TWO_S32(d, 13, 10, -cospi_8_64, cospi_24_64, c, 13, 10); + + PASS_THROUGH(d, c, 11); + PASS_THROUGH(d, c, 12); + PASS_THROUGH(d, c, 15); + + ADD_S32(d, 16, 19, c, 16); + ADD_S32(d, 17, 18, c, 17); + SUB_S32(d, 17, 18, c, 18); + SUB_S32(d, 16, 19, c, 19); + SUB_S32(d, 23, 20, c, 20); + SUB_S32(d, 22, 21, c, 21); + ADD_S32(d, 22, 21, c, 22); + ADD_S32(d, 23, 20, c, 23); + ADD_S32(d, 24, 27, c, 24); + ADD_S32(d, 25, 26, c, 25); + SUB_S32(d, 25, 26, c, 26); + SUB_S32(d, 24, 27, c, 27); + SUB_S32(d, 31, 28, c, 28); + SUB_S32(d, 30, 29, c, 29); + ADD_S32(d, 30, 29, c, 30); + ADD_S32(d, 31, 28, c, 31); + + // Stage 6. + PASS_THROUGH(c, d, 0); + PASS_THROUGH(c, d, 1); + PASS_THROUGH(c, d, 2); + PASS_THROUGH(c, d, 3); + + BUTTERFLY_TWO_S32(c, 7, 4, cospi_28_64, cospi_4_64, d, 4, 7); + BUTTERFLY_TWO_S32(c, 6, 5, cospi_12_64, cospi_20_64, d, 5, 6); + + ADD_S32(c, 8, 9, d, 8); + SUB_S32(c, 8, 9, d, 9); + SUB_S32(c, 11, 10, d, 10); + ADD_S32(c, 11, 10, d, 11); + ADD_S32(c, 12, 13, d, 12); + SUB_S32(c, 12, 13, d, 13); + SUB_S32(c, 15, 14, d, 14); + ADD_S32(c, 15, 14, d, 15); + + PASS_THROUGH(c, d, 16); + PASS_THROUGH(c, d, 19); + PASS_THROUGH(c, d, 20); + PASS_THROUGH(c, d, 23); + PASS_THROUGH(c, d, 24); + PASS_THROUGH(c, d, 27); + PASS_THROUGH(c, d, 28); + PASS_THROUGH(c, d, 31); + + BUTTERFLY_TWO_S32(c, 30, 17, cospi_28_64, cospi_4_64, d, 30, 17); + BUTTERFLY_TWO_S32(c, 29, 18, -cospi_4_64, cospi_28_64, d, 29, 18); + BUTTERFLY_TWO_S32(c, 26, 21, cospi_12_64, cospi_20_64, d, 26, 21); + BUTTERFLY_TWO_S32(c, 25, 22, -cospi_20_64, cospi_12_64, d, 25, 22); + + // Stage 7. + PASS_THROUGH(d, c, 0); + PASS_THROUGH(d, c, 1); + PASS_THROUGH(d, c, 2); + PASS_THROUGH(d, c, 3); + PASS_THROUGH(d, c, 4); + PASS_THROUGH(d, c, 5); + PASS_THROUGH(d, c, 6); + PASS_THROUGH(d, c, 7); + + BUTTERFLY_TWO_S32(d, 15, 8, cospi_30_64, cospi_2_64, c, 8, 15); + BUTTERFLY_TWO_S32(d, 14, 9, cospi_14_64, cospi_18_64, c, 9, 14); + BUTTERFLY_TWO_S32(d, 13, 10, cospi_22_64, cospi_10_64, c, 10, 13); + BUTTERFLY_TWO_S32(d, 12, 11, cospi_6_64, cospi_26_64, c, 11, 12); + + ADD_S32(d, 16, 17, c, 16); + SUB_S32(d, 16, 17, c, 17); + SUB_S32(d, 19, 18, c, 18); + ADD_S32(d, 19, 18, c, 19); + ADD_S32(d, 20, 21, c, 20); + SUB_S32(d, 20, 21, c, 21); + SUB_S32(d, 23, 22, c, 22); + ADD_S32(d, 23, 22, c, 23); + ADD_S32(d, 24, 25, c, 24); + SUB_S32(d, 24, 25, c, 25); + SUB_S32(d, 27, 26, c, 26); + ADD_S32(d, 27, 26, c, 27); + ADD_S32(d, 28, 29, c, 28); + SUB_S32(d, 28, 29, c, 29); + SUB_S32(d, 31, 30, c, 30); + ADD_S32(d, 31, 30, c, 31); + + // Final stage. + // Roll rounding into this function so we can pass back int16x8. + + out[0] = add_round_shift_s32(c_lo[0], c_hi[0]); + out[16] = add_round_shift_s32(c_lo[1], c_hi[1]); + + out[8] = add_round_shift_s32(c_lo[2], c_hi[2]); + out[24] = add_round_shift_s32(c_lo[3], c_hi[3]); + out[4] = add_round_shift_s32(c_lo[4], c_hi[4]); + out[20] = add_round_shift_s32(c_lo[5], c_hi[5]); + out[12] = add_round_shift_s32(c_lo[6], c_hi[6]); + + out[28] = add_round_shift_s32(c_lo[7], c_hi[7]); + out[2] = add_round_shift_s32(c_lo[8], c_hi[8]); + out[18] = add_round_shift_s32(c_lo[9], c_hi[9]); + out[10] = add_round_shift_s32(c_lo[10], c_hi[10]); + + out[26] = add_round_shift_s32(c_lo[11], c_hi[11]); + out[6] = add_round_shift_s32(c_lo[12], c_hi[12]); + out[22] = add_round_shift_s32(c_lo[13], c_hi[13]); + out[14] = add_round_shift_s32(c_lo[14], c_hi[14]); + out[30] = add_round_shift_s32(c_lo[15], c_hi[15]); + + BUTTERFLY_TWO_S32(c, 31, 16, cospi_31_64, cospi_1_64, d, 1, 31); + out[1] = add_round_shift_s32(d_lo[1], d_hi[1]); + out[31] = add_round_shift_s32(d_lo[31], d_hi[31]); + + BUTTERFLY_TWO_S32(c, 30, 17, cospi_15_64, cospi_17_64, d, 17, 15); + out[17] = add_round_shift_s32(d_lo[17], d_hi[17]); + out[15] = add_round_shift_s32(d_lo[15], d_hi[15]); + + BUTTERFLY_TWO_S32(c, 29, 18, cospi_23_64, cospi_9_64, d, 9, 23); + out[9] = add_round_shift_s32(d_lo[9], d_hi[9]); + out[23] = add_round_shift_s32(d_lo[23], d_hi[23]); + + BUTTERFLY_TWO_S32(c, 28, 19, cospi_7_64, cospi_25_64, d, 25, 7); + out[25] = add_round_shift_s32(d_lo[25], d_hi[25]); + out[7] = add_round_shift_s32(d_lo[7], d_hi[7]); + + BUTTERFLY_TWO_S32(c, 27, 20, cospi_27_64, cospi_5_64, d, 5, 27); + out[5] = add_round_shift_s32(d_lo[5], d_hi[5]); + out[27] = add_round_shift_s32(d_lo[27], d_hi[27]); + + BUTTERFLY_TWO_S32(c, 26, 21, cospi_11_64, cospi_21_64, d, 21, 11); + out[21] = add_round_shift_s32(d_lo[21], d_hi[21]); + out[11] = add_round_shift_s32(d_lo[11], d_hi[11]); + + BUTTERFLY_TWO_S32(c, 25, 22, cospi_19_64, cospi_13_64, d, 13, 19); + out[13] = add_round_shift_s32(d_lo[13], d_hi[13]); + out[19] = add_round_shift_s32(d_lo[19], d_hi[19]); + + BUTTERFLY_TWO_S32(c, 24, 23, cospi_3_64, cospi_29_64, d, 29, 3); + out[29] = add_round_shift_s32(d_lo[29], d_hi[29]); + out[3] = add_round_shift_s32(d_lo[3], d_hi[3]); +} + +// Add 1 if positive, 2 if negative, and shift by 2. +// In practice, add 1, then add the sign bit, then shift without rounding. +static INLINE int16x8_t add_round_shift_s16(const int16x8_t a) { + const int16x8_t one = vdupq_n_s16(1); + const uint16x8_t a_u16 = vreinterpretq_u16_s16(a); + const uint16x8_t a_sign_u16 = vshrq_n_u16(a_u16, 15); + const int16x8_t a_sign_s16 = vreinterpretq_s16_u16(a_sign_u16); + return vshrq_n_s16(vaddq_s16(vaddq_s16(a, a_sign_s16), one), 2); +} + +static void dct_body_second_pass_rd(const int16x8_t *in, int16x8_t *out) { + int16x8_t a[32]; + int16x8_t b[32]; + + // Stage 1. Done as part of the load for the first pass. + a[0] = vaddq_s16(in[0], in[31]); + a[1] = vaddq_s16(in[1], in[30]); + a[2] = vaddq_s16(in[2], in[29]); + a[3] = vaddq_s16(in[3], in[28]); + a[4] = vaddq_s16(in[4], in[27]); + a[5] = vaddq_s16(in[5], in[26]); + a[6] = vaddq_s16(in[6], in[25]); + a[7] = vaddq_s16(in[7], in[24]); + a[8] = vaddq_s16(in[8], in[23]); + a[9] = vaddq_s16(in[9], in[22]); + a[10] = vaddq_s16(in[10], in[21]); + a[11] = vaddq_s16(in[11], in[20]); + a[12] = vaddq_s16(in[12], in[19]); + a[13] = vaddq_s16(in[13], in[18]); + a[14] = vaddq_s16(in[14], in[17]); + a[15] = vaddq_s16(in[15], in[16]); + a[16] = vsubq_s16(in[15], in[16]); + a[17] = vsubq_s16(in[14], in[17]); + a[18] = vsubq_s16(in[13], in[18]); + a[19] = vsubq_s16(in[12], in[19]); + a[20] = vsubq_s16(in[11], in[20]); + a[21] = vsubq_s16(in[10], in[21]); + a[22] = vsubq_s16(in[9], in[22]); + a[23] = vsubq_s16(in[8], in[23]); + a[24] = vsubq_s16(in[7], in[24]); + a[25] = vsubq_s16(in[6], in[25]); + a[26] = vsubq_s16(in[5], in[26]); + a[27] = vsubq_s16(in[4], in[27]); + a[28] = vsubq_s16(in[3], in[28]); + a[29] = vsubq_s16(in[2], in[29]); + a[30] = vsubq_s16(in[1], in[30]); + a[31] = vsubq_s16(in[0], in[31]); + + // Stage 2. + // For the "rd" version, all the values are rounded down after stage 2 to keep + // the values in 16 bits. + b[0] = add_round_shift_s16(vaddq_s16(a[0], a[15])); + b[1] = add_round_shift_s16(vaddq_s16(a[1], a[14])); + b[2] = add_round_shift_s16(vaddq_s16(a[2], a[13])); + b[3] = add_round_shift_s16(vaddq_s16(a[3], a[12])); + b[4] = add_round_shift_s16(vaddq_s16(a[4], a[11])); + b[5] = add_round_shift_s16(vaddq_s16(a[5], a[10])); + b[6] = add_round_shift_s16(vaddq_s16(a[6], a[9])); + b[7] = add_round_shift_s16(vaddq_s16(a[7], a[8])); + + b[8] = add_round_shift_s16(vsubq_s16(a[7], a[8])); + b[9] = add_round_shift_s16(vsubq_s16(a[6], a[9])); + b[10] = add_round_shift_s16(vsubq_s16(a[5], a[10])); + b[11] = add_round_shift_s16(vsubq_s16(a[4], a[11])); + b[12] = add_round_shift_s16(vsubq_s16(a[3], a[12])); + b[13] = add_round_shift_s16(vsubq_s16(a[2], a[13])); + b[14] = add_round_shift_s16(vsubq_s16(a[1], a[14])); + b[15] = add_round_shift_s16(vsubq_s16(a[0], a[15])); + + b[16] = add_round_shift_s16(a[16]); + b[17] = add_round_shift_s16(a[17]); + b[18] = add_round_shift_s16(a[18]); + b[19] = add_round_shift_s16(a[19]); + + butterfly_one_coeff(a[27], a[20], cospi_16_64, &b[27], &b[20]); + butterfly_one_coeff(a[26], a[21], cospi_16_64, &b[26], &b[21]); + butterfly_one_coeff(a[25], a[22], cospi_16_64, &b[25], &b[22]); + butterfly_one_coeff(a[24], a[23], cospi_16_64, &b[24], &b[23]); + b[20] = add_round_shift_s16(b[20]); + b[21] = add_round_shift_s16(b[21]); + b[22] = add_round_shift_s16(b[22]); + b[23] = add_round_shift_s16(b[23]); + b[24] = add_round_shift_s16(b[24]); + b[25] = add_round_shift_s16(b[25]); + b[26] = add_round_shift_s16(b[26]); + b[27] = add_round_shift_s16(b[27]); + + b[28] = add_round_shift_s16(a[28]); + b[29] = add_round_shift_s16(a[29]); + b[30] = add_round_shift_s16(a[30]); + b[31] = add_round_shift_s16(a[31]); + + // Stage 3. + a[0] = vaddq_s16(b[0], b[7]); + a[1] = vaddq_s16(b[1], b[6]); + a[2] = vaddq_s16(b[2], b[5]); + a[3] = vaddq_s16(b[3], b[4]); + + a[4] = vsubq_s16(b[3], b[4]); + a[5] = vsubq_s16(b[2], b[5]); + a[6] = vsubq_s16(b[1], b[6]); + a[7] = vsubq_s16(b[0], b[7]); + + a[8] = b[8]; + a[9] = b[9]; + + butterfly_one_coeff(b[13], b[10], cospi_16_64, &a[13], &a[10]); + butterfly_one_coeff(b[12], b[11], cospi_16_64, &a[12], &a[11]); + + a[14] = b[14]; + a[15] = b[15]; + + a[16] = vaddq_s16(b[16], b[23]); + a[17] = vaddq_s16(b[17], b[22]); + a[18] = vaddq_s16(b[18], b[21]); + a[19] = vaddq_s16(b[19], b[20]); + + a[20] = vsubq_s16(b[19], b[20]); + a[21] = vsubq_s16(b[18], b[21]); + a[22] = vsubq_s16(b[17], b[22]); + a[23] = vsubq_s16(b[16], b[23]); + + a[24] = vsubq_s16(b[31], b[24]); + a[25] = vsubq_s16(b[30], b[25]); + a[26] = vsubq_s16(b[29], b[26]); + a[27] = vsubq_s16(b[28], b[27]); + + a[28] = vaddq_s16(b[28], b[27]); + a[29] = vaddq_s16(b[29], b[26]); + a[30] = vaddq_s16(b[30], b[25]); + a[31] = vaddq_s16(b[31], b[24]); + + // Stage 4. + b[0] = vaddq_s16(a[0], a[3]); + b[1] = vaddq_s16(a[1], a[2]); + b[2] = vsubq_s16(a[1], a[2]); + b[3] = vsubq_s16(a[0], a[3]); + + b[4] = a[4]; + + butterfly_one_coeff(a[6], a[5], cospi_16_64, &b[6], &b[5]); + + b[7] = a[7]; + + b[8] = vaddq_s16(a[8], a[11]); + b[9] = vaddq_s16(a[9], a[10]); + b[10] = vsubq_s16(a[9], a[10]); + b[11] = vsubq_s16(a[8], a[11]); + b[12] = vsubq_s16(a[15], a[12]); + b[13] = vsubq_s16(a[14], a[13]); + b[14] = vaddq_s16(a[14], a[13]); + b[15] = vaddq_s16(a[15], a[12]); + + b[16] = a[16]; + b[17] = a[17]; + + butterfly_two_coeff(a[29], a[18], cospi_24_64, cospi_8_64, &b[29], &b[18]); + butterfly_two_coeff(a[28], a[19], cospi_24_64, cospi_8_64, &b[28], &b[19]); + butterfly_two_coeff(a[27], a[20], -cospi_8_64, cospi_24_64, &b[27], &b[20]); + butterfly_two_coeff(a[26], a[21], -cospi_8_64, cospi_24_64, &b[26], &b[21]); + + b[22] = a[22]; + b[23] = a[23]; + b[24] = a[24]; + b[25] = a[25]; + + b[30] = a[30]; + b[31] = a[31]; + + // Stage 5. + butterfly_one_coeff(b[0], b[1], cospi_16_64, &a[0], &a[1]); + butterfly_two_coeff(b[3], b[2], cospi_24_64, cospi_8_64, &a[2], &a[3]); + + a[4] = vaddq_s16(b[4], b[5]); + a[5] = vsubq_s16(b[4], b[5]); + a[6] = vsubq_s16(b[7], b[6]); + a[7] = vaddq_s16(b[7], b[6]); + + a[8] = b[8]; + + butterfly_two_coeff(b[14], b[9], cospi_24_64, cospi_8_64, &a[14], &a[9]); + butterfly_two_coeff(b[13], b[10], -cospi_8_64, cospi_24_64, &a[13], &a[10]); + + a[11] = b[11]; + a[12] = b[12]; + + a[15] = b[15]; + + a[16] = vaddq_s16(b[19], b[16]); + a[17] = vaddq_s16(b[18], b[17]); + a[18] = vsubq_s16(b[17], b[18]); + a[19] = vsubq_s16(b[16], b[19]); + a[20] = vsubq_s16(b[23], b[20]); + a[21] = vsubq_s16(b[22], b[21]); + a[22] = vaddq_s16(b[21], b[22]); + a[23] = vaddq_s16(b[20], b[23]); + a[24] = vaddq_s16(b[27], b[24]); + a[25] = vaddq_s16(b[26], b[25]); + a[26] = vsubq_s16(b[25], b[26]); + a[27] = vsubq_s16(b[24], b[27]); + a[28] = vsubq_s16(b[31], b[28]); + a[29] = vsubq_s16(b[30], b[29]); + a[30] = vaddq_s16(b[29], b[30]); + a[31] = vaddq_s16(b[28], b[31]); + + // Stage 6. + b[0] = a[0]; + b[1] = a[1]; + b[2] = a[2]; + b[3] = a[3]; + + butterfly_two_coeff(a[7], a[4], cospi_28_64, cospi_4_64, &b[4], &b[7]); + butterfly_two_coeff(a[6], a[5], cospi_12_64, cospi_20_64, &b[5], &b[6]); + + b[8] = vaddq_s16(a[8], a[9]); + b[9] = vsubq_s16(a[8], a[9]); + b[10] = vsubq_s16(a[11], a[10]); + b[11] = vaddq_s16(a[11], a[10]); + b[12] = vaddq_s16(a[12], a[13]); + b[13] = vsubq_s16(a[12], a[13]); + b[14] = vsubq_s16(a[15], a[14]); + b[15] = vaddq_s16(a[15], a[14]); + + b[16] = a[16]; + b[19] = a[19]; + b[20] = a[20]; + b[23] = a[23]; + b[24] = a[24]; + b[27] = a[27]; + b[28] = a[28]; + b[31] = a[31]; + + butterfly_two_coeff(a[30], a[17], cospi_28_64, cospi_4_64, &b[30], &b[17]); + butterfly_two_coeff(a[29], a[18], -cospi_4_64, cospi_28_64, &b[29], &b[18]); + + butterfly_two_coeff(a[26], a[21], cospi_12_64, cospi_20_64, &b[26], &b[21]); + butterfly_two_coeff(a[25], a[22], -cospi_20_64, cospi_12_64, &b[25], &b[22]); + + // Stage 7. + a[0] = b[0]; + a[1] = b[1]; + a[2] = b[2]; + a[3] = b[3]; + a[4] = b[4]; + a[5] = b[5]; + a[6] = b[6]; + a[7] = b[7]; + + butterfly_two_coeff(b[15], b[8], cospi_30_64, cospi_2_64, &a[8], &a[15]); + butterfly_two_coeff(b[14], b[9], cospi_14_64, cospi_18_64, &a[9], &a[14]); + butterfly_two_coeff(b[13], b[10], cospi_22_64, cospi_10_64, &a[10], &a[13]); + butterfly_two_coeff(b[12], b[11], cospi_6_64, cospi_26_64, &a[11], &a[12]); + + a[16] = vaddq_s16(b[16], b[17]); + a[17] = vsubq_s16(b[16], b[17]); + a[18] = vsubq_s16(b[19], b[18]); + a[19] = vaddq_s16(b[19], b[18]); + a[20] = vaddq_s16(b[20], b[21]); + a[21] = vsubq_s16(b[20], b[21]); + a[22] = vsubq_s16(b[23], b[22]); + a[23] = vaddq_s16(b[23], b[22]); + a[24] = vaddq_s16(b[24], b[25]); + a[25] = vsubq_s16(b[24], b[25]); + a[26] = vsubq_s16(b[27], b[26]); + a[27] = vaddq_s16(b[27], b[26]); + a[28] = vaddq_s16(b[28], b[29]); + a[29] = vsubq_s16(b[28], b[29]); + a[30] = vsubq_s16(b[31], b[30]); + a[31] = vaddq_s16(b[31], b[30]); + + // Final stage. + out[0] = a[0]; + out[16] = a[1]; + out[8] = a[2]; + out[24] = a[3]; + out[4] = a[4]; + out[20] = a[5]; + out[12] = a[6]; + out[28] = a[7]; + out[2] = a[8]; + out[18] = a[9]; + out[10] = a[10]; + out[26] = a[11]; + out[6] = a[12]; + out[22] = a[13]; + out[14] = a[14]; + out[30] = a[15]; + + butterfly_two_coeff(a[31], a[16], cospi_31_64, cospi_1_64, &out[1], &out[31]); + butterfly_two_coeff(a[30], a[17], cospi_15_64, cospi_17_64, &out[17], + &out[15]); + butterfly_two_coeff(a[29], a[18], cospi_23_64, cospi_9_64, &out[9], &out[23]); + butterfly_two_coeff(a[28], a[19], cospi_7_64, cospi_25_64, &out[25], &out[7]); + butterfly_two_coeff(a[27], a[20], cospi_27_64, cospi_5_64, &out[5], &out[27]); + butterfly_two_coeff(a[26], a[21], cospi_11_64, cospi_21_64, &out[21], + &out[11]); + butterfly_two_coeff(a[25], a[22], cospi_19_64, cospi_13_64, &out[13], + &out[19]); + butterfly_two_coeff(a[24], a[23], cospi_3_64, cospi_29_64, &out[29], &out[3]); +} + +#undef PASS_THROUGH +#undef ADD_S16_S32 +#undef SUB_S16_S32 +#undef ADDW_S16_S32 +#undef SUBW_S16_S32 +#undef ADD_S32 +#undef SUB_S32 +#undef BUTTERFLY_ONE_S16_S32 +#undef BUTTERFLY_ONE_S32 +#undef BUTTERFLY_TWO_S32 + +// Transpose 8x8 to a new location. Don't use transpose_neon.h because those +// are all in-place. +// TODO(johannkoenig): share with other fdcts. +static INLINE void transpose_8x8(const int16x8_t *a, int16x8_t *b) { + // Swap 16 bit elements. + const int16x8x2_t c0 = vtrnq_s16(a[0], a[1]); + const int16x8x2_t c1 = vtrnq_s16(a[2], a[3]); + const int16x8x2_t c2 = vtrnq_s16(a[4], a[5]); + const int16x8x2_t c3 = vtrnq_s16(a[6], a[7]); + + // Swap 32 bit elements. + const int32x4x2_t d0 = vtrnq_s32(vreinterpretq_s32_s16(c0.val[0]), + vreinterpretq_s32_s16(c1.val[0])); + const int32x4x2_t d1 = vtrnq_s32(vreinterpretq_s32_s16(c0.val[1]), + vreinterpretq_s32_s16(c1.val[1])); + const int32x4x2_t d2 = vtrnq_s32(vreinterpretq_s32_s16(c2.val[0]), + vreinterpretq_s32_s16(c3.val[0])); + const int32x4x2_t d3 = vtrnq_s32(vreinterpretq_s32_s16(c2.val[1]), + vreinterpretq_s32_s16(c3.val[1])); + + // Swap 64 bit elements + const int16x8x2_t e0 = vpx_vtrnq_s64_to_s16(d0.val[0], d2.val[0]); + const int16x8x2_t e1 = vpx_vtrnq_s64_to_s16(d1.val[0], d3.val[0]); + const int16x8x2_t e2 = vpx_vtrnq_s64_to_s16(d0.val[1], d2.val[1]); + const int16x8x2_t e3 = vpx_vtrnq_s64_to_s16(d1.val[1], d3.val[1]); + + b[0] = e0.val[0]; + b[1] = e1.val[0]; + b[2] = e2.val[0]; + b[3] = e3.val[0]; + b[4] = e0.val[1]; + b[5] = e1.val[1]; + b[6] = e2.val[1]; + b[7] = e3.val[1]; +} + +void vpx_fdct32x32_neon(const int16_t *input, tran_low_t *output, int stride) { + int16x8_t temp0[32]; + int16x8_t temp1[32]; + int16x8_t temp2[32]; + int16x8_t temp3[32]; + int16x8_t temp4[32]; + int16x8_t temp5[32]; + + // Process in 8x32 columns. + load(input, stride, temp0); + dct_body_first_pass(temp0, temp1); + + load(input + 8, stride, temp0); + dct_body_first_pass(temp0, temp2); + + load(input + 16, stride, temp0); + dct_body_first_pass(temp0, temp3); + + load(input + 24, stride, temp0); + dct_body_first_pass(temp0, temp4); + + // Generate the top row by munging the first set of 8 from each one together. + transpose_8x8(&temp1[0], &temp0[0]); + transpose_8x8(&temp2[0], &temp0[8]); + transpose_8x8(&temp3[0], &temp0[16]); + transpose_8x8(&temp4[0], &temp0[24]); + + dct_body_second_pass(temp0, temp5); + + transpose_s16_8x8(&temp5[0], &temp5[1], &temp5[2], &temp5[3], &temp5[4], + &temp5[5], &temp5[6], &temp5[7]); + transpose_s16_8x8(&temp5[8], &temp5[9], &temp5[10], &temp5[11], &temp5[12], + &temp5[13], &temp5[14], &temp5[15]); + transpose_s16_8x8(&temp5[16], &temp5[17], &temp5[18], &temp5[19], &temp5[20], + &temp5[21], &temp5[22], &temp5[23]); + transpose_s16_8x8(&temp5[24], &temp5[25], &temp5[26], &temp5[27], &temp5[28], + &temp5[29], &temp5[30], &temp5[31]); + store(output, temp5); + + // Second row of 8x32. + transpose_8x8(&temp1[8], &temp0[0]); + transpose_8x8(&temp2[8], &temp0[8]); + transpose_8x8(&temp3[8], &temp0[16]); + transpose_8x8(&temp4[8], &temp0[24]); + + dct_body_second_pass(temp0, temp5); + + transpose_s16_8x8(&temp5[0], &temp5[1], &temp5[2], &temp5[3], &temp5[4], + &temp5[5], &temp5[6], &temp5[7]); + transpose_s16_8x8(&temp5[8], &temp5[9], &temp5[10], &temp5[11], &temp5[12], + &temp5[13], &temp5[14], &temp5[15]); + transpose_s16_8x8(&temp5[16], &temp5[17], &temp5[18], &temp5[19], &temp5[20], + &temp5[21], &temp5[22], &temp5[23]); + transpose_s16_8x8(&temp5[24], &temp5[25], &temp5[26], &temp5[27], &temp5[28], + &temp5[29], &temp5[30], &temp5[31]); + store(output + 8 * 32, temp5); + + // Third row of 8x32 + transpose_8x8(&temp1[16], &temp0[0]); + transpose_8x8(&temp2[16], &temp0[8]); + transpose_8x8(&temp3[16], &temp0[16]); + transpose_8x8(&temp4[16], &temp0[24]); + + dct_body_second_pass(temp0, temp5); + + transpose_s16_8x8(&temp5[0], &temp5[1], &temp5[2], &temp5[3], &temp5[4], + &temp5[5], &temp5[6], &temp5[7]); + transpose_s16_8x8(&temp5[8], &temp5[9], &temp5[10], &temp5[11], &temp5[12], + &temp5[13], &temp5[14], &temp5[15]); + transpose_s16_8x8(&temp5[16], &temp5[17], &temp5[18], &temp5[19], &temp5[20], + &temp5[21], &temp5[22], &temp5[23]); + transpose_s16_8x8(&temp5[24], &temp5[25], &temp5[26], &temp5[27], &temp5[28], + &temp5[29], &temp5[30], &temp5[31]); + store(output + 16 * 32, temp5); + + // Final row of 8x32. + transpose_8x8(&temp1[24], &temp0[0]); + transpose_8x8(&temp2[24], &temp0[8]); + transpose_8x8(&temp3[24], &temp0[16]); + transpose_8x8(&temp4[24], &temp0[24]); + + dct_body_second_pass(temp0, temp5); + + transpose_s16_8x8(&temp5[0], &temp5[1], &temp5[2], &temp5[3], &temp5[4], + &temp5[5], &temp5[6], &temp5[7]); + transpose_s16_8x8(&temp5[8], &temp5[9], &temp5[10], &temp5[11], &temp5[12], + &temp5[13], &temp5[14], &temp5[15]); + transpose_s16_8x8(&temp5[16], &temp5[17], &temp5[18], &temp5[19], &temp5[20], + &temp5[21], &temp5[22], &temp5[23]); + transpose_s16_8x8(&temp5[24], &temp5[25], &temp5[26], &temp5[27], &temp5[28], + &temp5[29], &temp5[30], &temp5[31]); + store(output + 24 * 32, temp5); +} + +void vpx_fdct32x32_rd_neon(const int16_t *input, tran_low_t *output, + int stride) { + int16x8_t temp0[32]; + int16x8_t temp1[32]; + int16x8_t temp2[32]; + int16x8_t temp3[32]; + int16x8_t temp4[32]; + int16x8_t temp5[32]; + + // Process in 8x32 columns. + load(input, stride, temp0); + dct_body_first_pass(temp0, temp1); + + load(input + 8, stride, temp0); + dct_body_first_pass(temp0, temp2); + + load(input + 16, stride, temp0); + dct_body_first_pass(temp0, temp3); + + load(input + 24, stride, temp0); + dct_body_first_pass(temp0, temp4); + + // Generate the top row by munging the first set of 8 from each one together. + transpose_8x8(&temp1[0], &temp0[0]); + transpose_8x8(&temp2[0], &temp0[8]); + transpose_8x8(&temp3[0], &temp0[16]); + transpose_8x8(&temp4[0], &temp0[24]); + + dct_body_second_pass_rd(temp0, temp5); + + transpose_s16_8x8(&temp5[0], &temp5[1], &temp5[2], &temp5[3], &temp5[4], + &temp5[5], &temp5[6], &temp5[7]); + transpose_s16_8x8(&temp5[8], &temp5[9], &temp5[10], &temp5[11], &temp5[12], + &temp5[13], &temp5[14], &temp5[15]); + transpose_s16_8x8(&temp5[16], &temp5[17], &temp5[18], &temp5[19], &temp5[20], + &temp5[21], &temp5[22], &temp5[23]); + transpose_s16_8x8(&temp5[24], &temp5[25], &temp5[26], &temp5[27], &temp5[28], + &temp5[29], &temp5[30], &temp5[31]); + store(output, temp5); + + // Second row of 8x32. + transpose_8x8(&temp1[8], &temp0[0]); + transpose_8x8(&temp2[8], &temp0[8]); + transpose_8x8(&temp3[8], &temp0[16]); + transpose_8x8(&temp4[8], &temp0[24]); + + dct_body_second_pass_rd(temp0, temp5); + + transpose_s16_8x8(&temp5[0], &temp5[1], &temp5[2], &temp5[3], &temp5[4], + &temp5[5], &temp5[6], &temp5[7]); + transpose_s16_8x8(&temp5[8], &temp5[9], &temp5[10], &temp5[11], &temp5[12], + &temp5[13], &temp5[14], &temp5[15]); + transpose_s16_8x8(&temp5[16], &temp5[17], &temp5[18], &temp5[19], &temp5[20], + &temp5[21], &temp5[22], &temp5[23]); + transpose_s16_8x8(&temp5[24], &temp5[25], &temp5[26], &temp5[27], &temp5[28], + &temp5[29], &temp5[30], &temp5[31]); + store(output + 8 * 32, temp5); + + // Third row of 8x32 + transpose_8x8(&temp1[16], &temp0[0]); + transpose_8x8(&temp2[16], &temp0[8]); + transpose_8x8(&temp3[16], &temp0[16]); + transpose_8x8(&temp4[16], &temp0[24]); + + dct_body_second_pass_rd(temp0, temp5); + + transpose_s16_8x8(&temp5[0], &temp5[1], &temp5[2], &temp5[3], &temp5[4], + &temp5[5], &temp5[6], &temp5[7]); + transpose_s16_8x8(&temp5[8], &temp5[9], &temp5[10], &temp5[11], &temp5[12], + &temp5[13], &temp5[14], &temp5[15]); + transpose_s16_8x8(&temp5[16], &temp5[17], &temp5[18], &temp5[19], &temp5[20], + &temp5[21], &temp5[22], &temp5[23]); + transpose_s16_8x8(&temp5[24], &temp5[25], &temp5[26], &temp5[27], &temp5[28], + &temp5[29], &temp5[30], &temp5[31]); + store(output + 16 * 32, temp5); + + // Final row of 8x32. + transpose_8x8(&temp1[24], &temp0[0]); + transpose_8x8(&temp2[24], &temp0[8]); + transpose_8x8(&temp3[24], &temp0[16]); + transpose_8x8(&temp4[24], &temp0[24]); + + dct_body_second_pass_rd(temp0, temp5); + + transpose_s16_8x8(&temp5[0], &temp5[1], &temp5[2], &temp5[3], &temp5[4], + &temp5[5], &temp5[6], &temp5[7]); + transpose_s16_8x8(&temp5[8], &temp5[9], &temp5[10], &temp5[11], &temp5[12], + &temp5[13], &temp5[14], &temp5[15]); + transpose_s16_8x8(&temp5[16], &temp5[17], &temp5[18], &temp5[19], &temp5[20], + &temp5[21], &temp5[22], &temp5[23]); + transpose_s16_8x8(&temp5[24], &temp5[25], &temp5[26], &temp5[27], &temp5[28], + &temp5[29], &temp5[30], &temp5[31]); + store(output + 24 * 32, temp5); +} +#endif // !defined(__clang__) && !defined(__ANDROID__) && defined(__GNUC__) && + // __GNUC__ == 4 && __GNUC_MINOR__ <= 9 diff --git a/vpx_dsp/arm/fdct_neon.c b/vpx_dsp/arm/fdct_neon.c new file mode 100644 index 0000000..04646ed --- /dev/null +++ b/vpx_dsp/arm/fdct_neon.c @@ -0,0 +1,90 @@ +/* + * Copyright (c) 2017 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include + +#include "./vpx_config.h" +#include "vpx_dsp/txfm_common.h" +#include "vpx_dsp/vpx_dsp_common.h" +#include "vpx_dsp/arm/idct_neon.h" +#include "vpx_dsp/arm/mem_neon.h" +#include "vpx_dsp/arm/transpose_neon.h" + +void vpx_fdct4x4_neon(const int16_t *input, tran_low_t *final_output, + int stride) { + int i; + // input[M * stride] * 16 + int16x4_t input_0 = vshl_n_s16(vld1_s16(input + 0 * stride), 4); + int16x4_t input_1 = vshl_n_s16(vld1_s16(input + 1 * stride), 4); + int16x4_t input_2 = vshl_n_s16(vld1_s16(input + 2 * stride), 4); + int16x4_t input_3 = vshl_n_s16(vld1_s16(input + 3 * stride), 4); + + // If the very first value != 0, then add 1. + if (input[0] != 0) { + const int16x4_t one = vreinterpret_s16_s64(vdup_n_s64(1)); + input_0 = vadd_s16(input_0, one); + } + + for (i = 0; i < 2; ++i) { + const int16x8_t input_01 = vcombine_s16(input_0, input_1); + const int16x8_t input_32 = vcombine_s16(input_3, input_2); + + // in_0 +/- in_3, in_1 +/- in_2 + const int16x8_t s_01 = vaddq_s16(input_01, input_32); + const int16x8_t s_32 = vsubq_s16(input_01, input_32); + + // step_0 +/- step_1, step_2 +/- step_3 + const int16x4_t s_0 = vget_low_s16(s_01); + const int16x4_t s_1 = vget_high_s16(s_01); + const int16x4_t s_2 = vget_high_s16(s_32); + const int16x4_t s_3 = vget_low_s16(s_32); + + // (s_0 +/- s_1) * cospi_16_64 + // Must expand all elements to s32. See 'needs32' comment in fwd_txfm.c. + const int32x4_t s_0_p_s_1 = vaddl_s16(s_0, s_1); + const int32x4_t s_0_m_s_1 = vsubl_s16(s_0, s_1); + const int32x4_t temp1 = vmulq_n_s32(s_0_p_s_1, cospi_16_64); + const int32x4_t temp2 = vmulq_n_s32(s_0_m_s_1, cospi_16_64); + + // fdct_round_shift + int16x4_t out_0 = vrshrn_n_s32(temp1, DCT_CONST_BITS); + int16x4_t out_2 = vrshrn_n_s32(temp2, DCT_CONST_BITS); + + // s_3 * cospi_8_64 + s_2 * cospi_24_64 + // s_3 * cospi_24_64 - s_2 * cospi_8_64 + const int32x4_t s_3_cospi_8_64 = vmull_n_s16(s_3, cospi_8_64); + const int32x4_t s_3_cospi_24_64 = vmull_n_s16(s_3, cospi_24_64); + + const int32x4_t temp3 = vmlal_n_s16(s_3_cospi_8_64, s_2, cospi_24_64); + const int32x4_t temp4 = vmlsl_n_s16(s_3_cospi_24_64, s_2, cospi_8_64); + + // fdct_round_shift + int16x4_t out_1 = vrshrn_n_s32(temp3, DCT_CONST_BITS); + int16x4_t out_3 = vrshrn_n_s32(temp4, DCT_CONST_BITS); + + transpose_s16_4x4d(&out_0, &out_1, &out_2, &out_3); + + input_0 = out_0; + input_1 = out_1; + input_2 = out_2; + input_3 = out_3; + } + + { + // Not quite a rounding shift. Only add 1 despite shifting by 2. + const int16x8_t one = vdupq_n_s16(1); + int16x8_t out_01 = vcombine_s16(input_0, input_1); + int16x8_t out_23 = vcombine_s16(input_2, input_3); + out_01 = vshrq_n_s16(vaddq_s16(out_01, one), 2); + out_23 = vshrq_n_s16(vaddq_s16(out_23, one), 2); + store_s16q_to_tran_low(final_output + 0 * 8, out_01); + store_s16q_to_tran_low(final_output + 1 * 8, out_23); + } +} diff --git a/vpx_dsp/arm/fdct_partial_neon.c b/vpx_dsp/arm/fdct_partial_neon.c new file mode 100644 index 0000000..e73de41 --- /dev/null +++ b/vpx_dsp/arm/fdct_partial_neon.c @@ -0,0 +1,113 @@ +/* + * Copyright (c) 2017 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include + +#include "./vpx_dsp_rtcd.h" +#include "./vpx_config.h" +#include "vpx_dsp/arm/mem_neon.h" +#include "vpx_dsp/arm/sum_neon.h" + +static INLINE tran_low_t get_lane(const int32x2_t a) { +#if CONFIG_VP9_HIGHBITDEPTH + return vget_lane_s32(a, 0); +#else + return vget_lane_s16(vreinterpret_s16_s32(a), 0); +#endif // CONFIG_VP9_HIGHBITDETPH +} + +void vpx_fdct4x4_1_neon(const int16_t *input, tran_low_t *output, int stride) { + int16x4_t a0, a1, a2, a3; + int16x8_t b0, b1; + int16x8_t c; + int32x2_t d; + + a0 = vld1_s16(input); + input += stride; + a1 = vld1_s16(input); + input += stride; + a2 = vld1_s16(input); + input += stride; + a3 = vld1_s16(input); + + b0 = vcombine_s16(a0, a1); + b1 = vcombine_s16(a2, a3); + + c = vaddq_s16(b0, b1); + + d = horizontal_add_int16x8(c); + + output[0] = get_lane(vshl_n_s32(d, 1)); + output[1] = 0; +} + +void vpx_fdct8x8_1_neon(const int16_t *input, tran_low_t *output, int stride) { + int r; + int16x8_t sum = vld1q_s16(&input[0]); + + for (r = 1; r < 8; ++r) { + const int16x8_t input_00 = vld1q_s16(&input[r * stride]); + sum = vaddq_s16(sum, input_00); + } + + output[0] = get_lane(horizontal_add_int16x8(sum)); + output[1] = 0; +} + +void vpx_fdct16x16_1_neon(const int16_t *input, tran_low_t *output, + int stride) { + int r; + int16x8_t left = vld1q_s16(input); + int16x8_t right = vld1q_s16(input + 8); + int32x2_t sum; + input += stride; + + for (r = 1; r < 16; ++r) { + const int16x8_t a = vld1q_s16(input); + const int16x8_t b = vld1q_s16(input + 8); + input += stride; + left = vaddq_s16(left, a); + right = vaddq_s16(right, b); + } + + sum = vadd_s32(horizontal_add_int16x8(left), horizontal_add_int16x8(right)); + + output[0] = get_lane(vshr_n_s32(sum, 1)); + output[1] = 0; +} + +void vpx_fdct32x32_1_neon(const int16_t *input, tran_low_t *output, + int stride) { + int r; + int16x8_t a0 = vld1q_s16(input); + int16x8_t a1 = vld1q_s16(input + 8); + int16x8_t a2 = vld1q_s16(input + 16); + int16x8_t a3 = vld1q_s16(input + 24); + int32x2_t sum; + input += stride; + + for (r = 1; r < 32; ++r) { + const int16x8_t b0 = vld1q_s16(input); + const int16x8_t b1 = vld1q_s16(input + 8); + const int16x8_t b2 = vld1q_s16(input + 16); + const int16x8_t b3 = vld1q_s16(input + 24); + input += stride; + a0 = vaddq_s16(a0, b0); + a1 = vaddq_s16(a1, b1); + a2 = vaddq_s16(a2, b2); + a3 = vaddq_s16(a3, b3); + } + + sum = vadd_s32(horizontal_add_int16x8(a0), horizontal_add_int16x8(a1)); + sum = vadd_s32(sum, horizontal_add_int16x8(a2)); + sum = vadd_s32(sum, horizontal_add_int16x8(a3)); + output[0] = get_lane(vshr_n_s32(sum, 3)); + output[1] = 0; +} diff --git a/vpx_dsp/arm/fwd_txfm_neon.c b/vpx_dsp/arm/fwd_txfm_neon.c new file mode 100644 index 0000000..8049277 --- /dev/null +++ b/vpx_dsp/arm/fwd_txfm_neon.c @@ -0,0 +1,209 @@ +/* + * Copyright (c) 2015 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include + +#include "./vpx_config.h" +#include "vpx_dsp/txfm_common.h" +#include "vpx_dsp/vpx_dsp_common.h" +#include "vpx_dsp/arm/idct_neon.h" +#include "vpx_dsp/arm/mem_neon.h" + +void vpx_fdct8x8_neon(const int16_t *input, tran_low_t *final_output, + int stride) { + int i; + // stage 1 + int16x8_t input_0 = vshlq_n_s16(vld1q_s16(&input[0 * stride]), 2); + int16x8_t input_1 = vshlq_n_s16(vld1q_s16(&input[1 * stride]), 2); + int16x8_t input_2 = vshlq_n_s16(vld1q_s16(&input[2 * stride]), 2); + int16x8_t input_3 = vshlq_n_s16(vld1q_s16(&input[3 * stride]), 2); + int16x8_t input_4 = vshlq_n_s16(vld1q_s16(&input[4 * stride]), 2); + int16x8_t input_5 = vshlq_n_s16(vld1q_s16(&input[5 * stride]), 2); + int16x8_t input_6 = vshlq_n_s16(vld1q_s16(&input[6 * stride]), 2); + int16x8_t input_7 = vshlq_n_s16(vld1q_s16(&input[7 * stride]), 2); + for (i = 0; i < 2; ++i) { + int16x8_t out_0, out_1, out_2, out_3, out_4, out_5, out_6, out_7; + const int16x8_t v_s0 = vaddq_s16(input_0, input_7); + const int16x8_t v_s1 = vaddq_s16(input_1, input_6); + const int16x8_t v_s2 = vaddq_s16(input_2, input_5); + const int16x8_t v_s3 = vaddq_s16(input_3, input_4); + const int16x8_t v_s4 = vsubq_s16(input_3, input_4); + const int16x8_t v_s5 = vsubq_s16(input_2, input_5); + const int16x8_t v_s6 = vsubq_s16(input_1, input_6); + const int16x8_t v_s7 = vsubq_s16(input_0, input_7); + // fdct4(step, step); + int16x8_t v_x0 = vaddq_s16(v_s0, v_s3); + int16x8_t v_x1 = vaddq_s16(v_s1, v_s2); + int16x8_t v_x2 = vsubq_s16(v_s1, v_s2); + int16x8_t v_x3 = vsubq_s16(v_s0, v_s3); + // fdct4(step, step); + int32x4_t v_t0_lo = vaddl_s16(vget_low_s16(v_x0), vget_low_s16(v_x1)); + int32x4_t v_t0_hi = vaddl_s16(vget_high_s16(v_x0), vget_high_s16(v_x1)); + int32x4_t v_t1_lo = vsubl_s16(vget_low_s16(v_x0), vget_low_s16(v_x1)); + int32x4_t v_t1_hi = vsubl_s16(vget_high_s16(v_x0), vget_high_s16(v_x1)); + int32x4_t v_t2_lo = vmull_n_s16(vget_low_s16(v_x2), cospi_24_64); + int32x4_t v_t2_hi = vmull_n_s16(vget_high_s16(v_x2), cospi_24_64); + int32x4_t v_t3_lo = vmull_n_s16(vget_low_s16(v_x3), cospi_24_64); + int32x4_t v_t3_hi = vmull_n_s16(vget_high_s16(v_x3), cospi_24_64); + v_t2_lo = vmlal_n_s16(v_t2_lo, vget_low_s16(v_x3), cospi_8_64); + v_t2_hi = vmlal_n_s16(v_t2_hi, vget_high_s16(v_x3), cospi_8_64); + v_t3_lo = vmlsl_n_s16(v_t3_lo, vget_low_s16(v_x2), cospi_8_64); + v_t3_hi = vmlsl_n_s16(v_t3_hi, vget_high_s16(v_x2), cospi_8_64); + v_t0_lo = vmulq_n_s32(v_t0_lo, cospi_16_64); + v_t0_hi = vmulq_n_s32(v_t0_hi, cospi_16_64); + v_t1_lo = vmulq_n_s32(v_t1_lo, cospi_16_64); + v_t1_hi = vmulq_n_s32(v_t1_hi, cospi_16_64); + { + const int16x4_t a = vrshrn_n_s32(v_t0_lo, DCT_CONST_BITS); + const int16x4_t b = vrshrn_n_s32(v_t0_hi, DCT_CONST_BITS); + const int16x4_t c = vrshrn_n_s32(v_t1_lo, DCT_CONST_BITS); + const int16x4_t d = vrshrn_n_s32(v_t1_hi, DCT_CONST_BITS); + const int16x4_t e = vrshrn_n_s32(v_t2_lo, DCT_CONST_BITS); + const int16x4_t f = vrshrn_n_s32(v_t2_hi, DCT_CONST_BITS); + const int16x4_t g = vrshrn_n_s32(v_t3_lo, DCT_CONST_BITS); + const int16x4_t h = vrshrn_n_s32(v_t3_hi, DCT_CONST_BITS); + out_0 = vcombine_s16(a, c); // 00 01 02 03 40 41 42 43 + out_2 = vcombine_s16(e, g); // 20 21 22 23 60 61 62 63 + out_4 = vcombine_s16(b, d); // 04 05 06 07 44 45 46 47 + out_6 = vcombine_s16(f, h); // 24 25 26 27 64 65 66 67 + } + // Stage 2 + v_x0 = vsubq_s16(v_s6, v_s5); + v_x1 = vaddq_s16(v_s6, v_s5); + v_t0_lo = vmull_n_s16(vget_low_s16(v_x0), cospi_16_64); + v_t0_hi = vmull_n_s16(vget_high_s16(v_x0), cospi_16_64); + v_t1_lo = vmull_n_s16(vget_low_s16(v_x1), cospi_16_64); + v_t1_hi = vmull_n_s16(vget_high_s16(v_x1), cospi_16_64); + { + const int16x4_t a = vrshrn_n_s32(v_t0_lo, DCT_CONST_BITS); + const int16x4_t b = vrshrn_n_s32(v_t0_hi, DCT_CONST_BITS); + const int16x4_t c = vrshrn_n_s32(v_t1_lo, DCT_CONST_BITS); + const int16x4_t d = vrshrn_n_s32(v_t1_hi, DCT_CONST_BITS); + const int16x8_t ab = vcombine_s16(a, b); + const int16x8_t cd = vcombine_s16(c, d); + // Stage 3 + v_x0 = vaddq_s16(v_s4, ab); + v_x1 = vsubq_s16(v_s4, ab); + v_x2 = vsubq_s16(v_s7, cd); + v_x3 = vaddq_s16(v_s7, cd); + } + // Stage 4 + v_t0_lo = vmull_n_s16(vget_low_s16(v_x3), cospi_4_64); + v_t0_hi = vmull_n_s16(vget_high_s16(v_x3), cospi_4_64); + v_t0_lo = vmlal_n_s16(v_t0_lo, vget_low_s16(v_x0), cospi_28_64); + v_t0_hi = vmlal_n_s16(v_t0_hi, vget_high_s16(v_x0), cospi_28_64); + v_t1_lo = vmull_n_s16(vget_low_s16(v_x1), cospi_12_64); + v_t1_hi = vmull_n_s16(vget_high_s16(v_x1), cospi_12_64); + v_t1_lo = vmlal_n_s16(v_t1_lo, vget_low_s16(v_x2), cospi_20_64); + v_t1_hi = vmlal_n_s16(v_t1_hi, vget_high_s16(v_x2), cospi_20_64); + v_t2_lo = vmull_n_s16(vget_low_s16(v_x2), cospi_12_64); + v_t2_hi = vmull_n_s16(vget_high_s16(v_x2), cospi_12_64); + v_t2_lo = vmlsl_n_s16(v_t2_lo, vget_low_s16(v_x1), cospi_20_64); + v_t2_hi = vmlsl_n_s16(v_t2_hi, vget_high_s16(v_x1), cospi_20_64); + v_t3_lo = vmull_n_s16(vget_low_s16(v_x3), cospi_28_64); + v_t3_hi = vmull_n_s16(vget_high_s16(v_x3), cospi_28_64); + v_t3_lo = vmlsl_n_s16(v_t3_lo, vget_low_s16(v_x0), cospi_4_64); + v_t3_hi = vmlsl_n_s16(v_t3_hi, vget_high_s16(v_x0), cospi_4_64); + { + const int16x4_t a = vrshrn_n_s32(v_t0_lo, DCT_CONST_BITS); + const int16x4_t b = vrshrn_n_s32(v_t0_hi, DCT_CONST_BITS); + const int16x4_t c = vrshrn_n_s32(v_t1_lo, DCT_CONST_BITS); + const int16x4_t d = vrshrn_n_s32(v_t1_hi, DCT_CONST_BITS); + const int16x4_t e = vrshrn_n_s32(v_t2_lo, DCT_CONST_BITS); + const int16x4_t f = vrshrn_n_s32(v_t2_hi, DCT_CONST_BITS); + const int16x4_t g = vrshrn_n_s32(v_t3_lo, DCT_CONST_BITS); + const int16x4_t h = vrshrn_n_s32(v_t3_hi, DCT_CONST_BITS); + out_1 = vcombine_s16(a, c); // 10 11 12 13 50 51 52 53 + out_3 = vcombine_s16(e, g); // 30 31 32 33 70 71 72 73 + out_5 = vcombine_s16(b, d); // 14 15 16 17 54 55 56 57 + out_7 = vcombine_s16(f, h); // 34 35 36 37 74 75 76 77 + } + // transpose 8x8 + // Can't use transpose_s16_8x8() because the values are arranged in two 4x8 + // columns. + { + // 00 01 02 03 40 41 42 43 + // 10 11 12 13 50 51 52 53 + // 20 21 22 23 60 61 62 63 + // 30 31 32 33 70 71 72 73 + // 04 05 06 07 44 45 46 47 + // 14 15 16 17 54 55 56 57 + // 24 25 26 27 64 65 66 67 + // 34 35 36 37 74 75 76 77 + const int32x4x2_t r02_s32 = + vtrnq_s32(vreinterpretq_s32_s16(out_0), vreinterpretq_s32_s16(out_2)); + const int32x4x2_t r13_s32 = + vtrnq_s32(vreinterpretq_s32_s16(out_1), vreinterpretq_s32_s16(out_3)); + const int32x4x2_t r46_s32 = + vtrnq_s32(vreinterpretq_s32_s16(out_4), vreinterpretq_s32_s16(out_6)); + const int32x4x2_t r57_s32 = + vtrnq_s32(vreinterpretq_s32_s16(out_5), vreinterpretq_s32_s16(out_7)); + const int16x8x2_t r01_s16 = + vtrnq_s16(vreinterpretq_s16_s32(r02_s32.val[0]), + vreinterpretq_s16_s32(r13_s32.val[0])); + const int16x8x2_t r23_s16 = + vtrnq_s16(vreinterpretq_s16_s32(r02_s32.val[1]), + vreinterpretq_s16_s32(r13_s32.val[1])); + const int16x8x2_t r45_s16 = + vtrnq_s16(vreinterpretq_s16_s32(r46_s32.val[0]), + vreinterpretq_s16_s32(r57_s32.val[0])); + const int16x8x2_t r67_s16 = + vtrnq_s16(vreinterpretq_s16_s32(r46_s32.val[1]), + vreinterpretq_s16_s32(r57_s32.val[1])); + input_0 = r01_s16.val[0]; + input_1 = r01_s16.val[1]; + input_2 = r23_s16.val[0]; + input_3 = r23_s16.val[1]; + input_4 = r45_s16.val[0]; + input_5 = r45_s16.val[1]; + input_6 = r67_s16.val[0]; + input_7 = r67_s16.val[1]; + // 00 10 20 30 40 50 60 70 + // 01 11 21 31 41 51 61 71 + // 02 12 22 32 42 52 62 72 + // 03 13 23 33 43 53 63 73 + // 04 14 24 34 44 54 64 74 + // 05 15 25 35 45 55 65 75 + // 06 16 26 36 46 56 66 76 + // 07 17 27 37 47 57 67 77 + } + } // for + { + // from vpx_dct_sse2.c + // Post-condition (division by two) + // division of two 16 bits signed numbers using shifts + // n / 2 = (n - (n >> 15)) >> 1 + const int16x8_t sign_in0 = vshrq_n_s16(input_0, 15); + const int16x8_t sign_in1 = vshrq_n_s16(input_1, 15); + const int16x8_t sign_in2 = vshrq_n_s16(input_2, 15); + const int16x8_t sign_in3 = vshrq_n_s16(input_3, 15); + const int16x8_t sign_in4 = vshrq_n_s16(input_4, 15); + const int16x8_t sign_in5 = vshrq_n_s16(input_5, 15); + const int16x8_t sign_in6 = vshrq_n_s16(input_6, 15); + const int16x8_t sign_in7 = vshrq_n_s16(input_7, 15); + input_0 = vhsubq_s16(input_0, sign_in0); + input_1 = vhsubq_s16(input_1, sign_in1); + input_2 = vhsubq_s16(input_2, sign_in2); + input_3 = vhsubq_s16(input_3, sign_in3); + input_4 = vhsubq_s16(input_4, sign_in4); + input_5 = vhsubq_s16(input_5, sign_in5); + input_6 = vhsubq_s16(input_6, sign_in6); + input_7 = vhsubq_s16(input_7, sign_in7); + // store results + store_s16q_to_tran_low(final_output + 0 * 8, input_0); + store_s16q_to_tran_low(final_output + 1 * 8, input_1); + store_s16q_to_tran_low(final_output + 2 * 8, input_2); + store_s16q_to_tran_low(final_output + 3 * 8, input_3); + store_s16q_to_tran_low(final_output + 4 * 8, input_4); + store_s16q_to_tran_low(final_output + 5 * 8, input_5); + store_s16q_to_tran_low(final_output + 6 * 8, input_6); + store_s16q_to_tran_low(final_output + 7 * 8, input_7); + } +} diff --git a/vpx_dsp/arm/hadamard_neon.c b/vpx_dsp/arm/hadamard_neon.c new file mode 100644 index 0000000..523a63c --- /dev/null +++ b/vpx_dsp/arm/hadamard_neon.c @@ -0,0 +1,116 @@ +/* + * Copyright (c) 2016 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include + +#include "./vpx_dsp_rtcd.h" +#include "vpx/vpx_integer.h" +#include "vpx_dsp/arm/idct_neon.h" +#include "vpx_dsp/arm/mem_neon.h" +#include "vpx_dsp/arm/transpose_neon.h" + +static void hadamard8x8_one_pass(int16x8_t *a0, int16x8_t *a1, int16x8_t *a2, + int16x8_t *a3, int16x8_t *a4, int16x8_t *a5, + int16x8_t *a6, int16x8_t *a7) { + const int16x8_t b0 = vaddq_s16(*a0, *a1); + const int16x8_t b1 = vsubq_s16(*a0, *a1); + const int16x8_t b2 = vaddq_s16(*a2, *a3); + const int16x8_t b3 = vsubq_s16(*a2, *a3); + const int16x8_t b4 = vaddq_s16(*a4, *a5); + const int16x8_t b5 = vsubq_s16(*a4, *a5); + const int16x8_t b6 = vaddq_s16(*a6, *a7); + const int16x8_t b7 = vsubq_s16(*a6, *a7); + + const int16x8_t c0 = vaddq_s16(b0, b2); + const int16x8_t c1 = vaddq_s16(b1, b3); + const int16x8_t c2 = vsubq_s16(b0, b2); + const int16x8_t c3 = vsubq_s16(b1, b3); + const int16x8_t c4 = vaddq_s16(b4, b6); + const int16x8_t c5 = vaddq_s16(b5, b7); + const int16x8_t c6 = vsubq_s16(b4, b6); + const int16x8_t c7 = vsubq_s16(b5, b7); + + *a0 = vaddq_s16(c0, c4); + *a1 = vsubq_s16(c2, c6); + *a2 = vsubq_s16(c0, c4); + *a3 = vaddq_s16(c2, c6); + *a4 = vaddq_s16(c3, c7); + *a5 = vsubq_s16(c3, c7); + *a6 = vsubq_s16(c1, c5); + *a7 = vaddq_s16(c1, c5); +} + +void vpx_hadamard_8x8_neon(const int16_t *src_diff, ptrdiff_t src_stride, + tran_low_t *coeff) { + int16x8_t a0 = vld1q_s16(src_diff); + int16x8_t a1 = vld1q_s16(src_diff + src_stride); + int16x8_t a2 = vld1q_s16(src_diff + 2 * src_stride); + int16x8_t a3 = vld1q_s16(src_diff + 3 * src_stride); + int16x8_t a4 = vld1q_s16(src_diff + 4 * src_stride); + int16x8_t a5 = vld1q_s16(src_diff + 5 * src_stride); + int16x8_t a6 = vld1q_s16(src_diff + 6 * src_stride); + int16x8_t a7 = vld1q_s16(src_diff + 7 * src_stride); + + hadamard8x8_one_pass(&a0, &a1, &a2, &a3, &a4, &a5, &a6, &a7); + + transpose_s16_8x8(&a0, &a1, &a2, &a3, &a4, &a5, &a6, &a7); + + hadamard8x8_one_pass(&a0, &a1, &a2, &a3, &a4, &a5, &a6, &a7); + + // Skip the second transpose because it is not required. + + store_s16q_to_tran_low(coeff + 0, a0); + store_s16q_to_tran_low(coeff + 8, a1); + store_s16q_to_tran_low(coeff + 16, a2); + store_s16q_to_tran_low(coeff + 24, a3); + store_s16q_to_tran_low(coeff + 32, a4); + store_s16q_to_tran_low(coeff + 40, a5); + store_s16q_to_tran_low(coeff + 48, a6); + store_s16q_to_tran_low(coeff + 56, a7); +} + +void vpx_hadamard_16x16_neon(const int16_t *src_diff, ptrdiff_t src_stride, + tran_low_t *coeff) { + int i; + + /* Rearrange 16x16 to 8x32 and remove stride. + * Top left first. */ + vpx_hadamard_8x8_neon(src_diff + 0 + 0 * src_stride, src_stride, coeff + 0); + /* Top right. */ + vpx_hadamard_8x8_neon(src_diff + 8 + 0 * src_stride, src_stride, coeff + 64); + /* Bottom left. */ + vpx_hadamard_8x8_neon(src_diff + 0 + 8 * src_stride, src_stride, coeff + 128); + /* Bottom right. */ + vpx_hadamard_8x8_neon(src_diff + 8 + 8 * src_stride, src_stride, coeff + 192); + + for (i = 0; i < 64; i += 8) { + const int16x8_t a0 = load_tran_low_to_s16q(coeff + 0); + const int16x8_t a1 = load_tran_low_to_s16q(coeff + 64); + const int16x8_t a2 = load_tran_low_to_s16q(coeff + 128); + const int16x8_t a3 = load_tran_low_to_s16q(coeff + 192); + + const int16x8_t b0 = vhaddq_s16(a0, a1); + const int16x8_t b1 = vhsubq_s16(a0, a1); + const int16x8_t b2 = vhaddq_s16(a2, a3); + const int16x8_t b3 = vhsubq_s16(a2, a3); + + const int16x8_t c0 = vaddq_s16(b0, b2); + const int16x8_t c1 = vaddq_s16(b1, b3); + const int16x8_t c2 = vsubq_s16(b0, b2); + const int16x8_t c3 = vsubq_s16(b1, b3); + + store_s16q_to_tran_low(coeff + 0, c0); + store_s16q_to_tran_low(coeff + 64, c1); + store_s16q_to_tran_low(coeff + 128, c2); + store_s16q_to_tran_low(coeff + 192, c3); + + coeff += 8; + } +} diff --git a/vpx_dsp/arm/highbd_idct16x16_add_neon.c b/vpx_dsp/arm/highbd_idct16x16_add_neon.c new file mode 100644 index 0000000..5358839 --- /dev/null +++ b/vpx_dsp/arm/highbd_idct16x16_add_neon.c @@ -0,0 +1,1437 @@ +/* + * Copyright (c) 2017 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include + +#include "./vpx_dsp_rtcd.h" +#include "vpx_dsp/arm/idct_neon.h" +#include "vpx_dsp/inv_txfm.h" + +static INLINE void highbd_idct16x16_add_wrap_low_8x2(const int64x2x2_t *const t, + int32x4x2_t *const d0, + int32x4x2_t *const d1) { + int32x2x2_t t32[4]; + + t32[0].val[0] = vrshrn_n_s64(t[0].val[0], DCT_CONST_BITS); + t32[0].val[1] = vrshrn_n_s64(t[0].val[1], DCT_CONST_BITS); + t32[1].val[0] = vrshrn_n_s64(t[1].val[0], DCT_CONST_BITS); + t32[1].val[1] = vrshrn_n_s64(t[1].val[1], DCT_CONST_BITS); + t32[2].val[0] = vrshrn_n_s64(t[2].val[0], DCT_CONST_BITS); + t32[2].val[1] = vrshrn_n_s64(t[2].val[1], DCT_CONST_BITS); + t32[3].val[0] = vrshrn_n_s64(t[3].val[0], DCT_CONST_BITS); + t32[3].val[1] = vrshrn_n_s64(t[3].val[1], DCT_CONST_BITS); + d0->val[0] = vcombine_s32(t32[0].val[0], t32[0].val[1]); + d0->val[1] = vcombine_s32(t32[1].val[0], t32[1].val[1]); + d1->val[0] = vcombine_s32(t32[2].val[0], t32[2].val[1]); + d1->val[1] = vcombine_s32(t32[3].val[0], t32[3].val[1]); +} + +static INLINE void highbd_idct16x16_add_wrap_low_4x2(const int64x2x2_t *const t, + int32x4_t *const d0, + int32x4_t *const d1) { + int32x2x2_t t32[2]; + + t32[0].val[0] = vrshrn_n_s64(t[0].val[0], DCT_CONST_BITS); + t32[0].val[1] = vrshrn_n_s64(t[0].val[1], DCT_CONST_BITS); + t32[1].val[0] = vrshrn_n_s64(t[1].val[0], DCT_CONST_BITS); + t32[1].val[1] = vrshrn_n_s64(t[1].val[1], DCT_CONST_BITS); + *d0 = vcombine_s32(t32[0].val[0], t32[0].val[1]); + *d1 = vcombine_s32(t32[1].val[0], t32[1].val[1]); +} + +static INLINE int32x4x2_t +highbd_idct16x16_add_wrap_low_8x1(const int64x2x2_t *const t) { + int32x2x2_t t32[2]; + int32x4x2_t d; + + t32[0].val[0] = vrshrn_n_s64(t[0].val[0], DCT_CONST_BITS); + t32[0].val[1] = vrshrn_n_s64(t[0].val[1], DCT_CONST_BITS); + t32[1].val[0] = vrshrn_n_s64(t[1].val[0], DCT_CONST_BITS); + t32[1].val[1] = vrshrn_n_s64(t[1].val[1], DCT_CONST_BITS); + d.val[0] = vcombine_s32(t32[0].val[0], t32[0].val[1]); + d.val[1] = vcombine_s32(t32[1].val[0], t32[1].val[1]); + return d; +} + +static INLINE int32x4_t highbd_idct16x16_add_wrap_low_4x1(const int64x2x2_t t) { + int32x2x2_t t32; + + t32.val[0] = vrshrn_n_s64(t.val[0], DCT_CONST_BITS); + t32.val[1] = vrshrn_n_s64(t.val[1], DCT_CONST_BITS); + return vcombine_s32(t32.val[0], t32.val[1]); +} + +static INLINE void highbd_idct_cospi_2_30(const int32x4x2_t s0, + const int32x4x2_t s1, + const int32x4_t cospi_2_30_10_22, + int32x4x2_t *const d0, + int32x4x2_t *const d1) { + int64x2x2_t t[4]; + + t[0].val[0] = vmull_lane_s32(vget_low_s32(s0.val[0]), + vget_low_s32(cospi_2_30_10_22), 1); + t[0].val[1] = vmull_lane_s32(vget_high_s32(s0.val[0]), + vget_low_s32(cospi_2_30_10_22), 1); + t[1].val[0] = vmull_lane_s32(vget_low_s32(s0.val[1]), + vget_low_s32(cospi_2_30_10_22), 1); + t[1].val[1] = vmull_lane_s32(vget_high_s32(s0.val[1]), + vget_low_s32(cospi_2_30_10_22), 1); + t[2].val[0] = vmull_lane_s32(vget_low_s32(s1.val[0]), + vget_low_s32(cospi_2_30_10_22), 1); + t[2].val[1] = vmull_lane_s32(vget_high_s32(s1.val[0]), + vget_low_s32(cospi_2_30_10_22), 1); + t[3].val[0] = vmull_lane_s32(vget_low_s32(s1.val[1]), + vget_low_s32(cospi_2_30_10_22), 1); + t[3].val[1] = vmull_lane_s32(vget_high_s32(s1.val[1]), + vget_low_s32(cospi_2_30_10_22), 1); + t[0].val[0] = vmlsl_lane_s32(t[0].val[0], vget_low_s32(s1.val[0]), + vget_low_s32(cospi_2_30_10_22), 0); + t[0].val[1] = vmlsl_lane_s32(t[0].val[1], vget_high_s32(s1.val[0]), + vget_low_s32(cospi_2_30_10_22), 0); + t[1].val[0] = vmlsl_lane_s32(t[1].val[0], vget_low_s32(s1.val[1]), + vget_low_s32(cospi_2_30_10_22), 0); + t[1].val[1] = vmlsl_lane_s32(t[1].val[1], vget_high_s32(s1.val[1]), + vget_low_s32(cospi_2_30_10_22), 0); + t[2].val[0] = vmlal_lane_s32(t[2].val[0], vget_low_s32(s0.val[0]), + vget_low_s32(cospi_2_30_10_22), 0); + t[2].val[1] = vmlal_lane_s32(t[2].val[1], vget_high_s32(s0.val[0]), + vget_low_s32(cospi_2_30_10_22), 0); + t[3].val[0] = vmlal_lane_s32(t[3].val[0], vget_low_s32(s0.val[1]), + vget_low_s32(cospi_2_30_10_22), 0); + t[3].val[1] = vmlal_lane_s32(t[3].val[1], vget_high_s32(s0.val[1]), + vget_low_s32(cospi_2_30_10_22), 0); + highbd_idct16x16_add_wrap_low_8x2(t, d0, d1); +} + +static INLINE void highbd_idct_cospi_4_28(const int32x4x2_t s0, + const int32x4x2_t s1, + const int32x4_t cospi_4_12_20N_28, + int32x4x2_t *const d0, + int32x4x2_t *const d1) { + int64x2x2_t t[4]; + + t[0].val[0] = vmull_lane_s32(vget_low_s32(s0.val[0]), + vget_high_s32(cospi_4_12_20N_28), 1); + t[0].val[1] = vmull_lane_s32(vget_high_s32(s0.val[0]), + vget_high_s32(cospi_4_12_20N_28), 1); + t[1].val[0] = vmull_lane_s32(vget_low_s32(s0.val[1]), + vget_high_s32(cospi_4_12_20N_28), 1); + t[1].val[1] = vmull_lane_s32(vget_high_s32(s0.val[1]), + vget_high_s32(cospi_4_12_20N_28), 1); + t[2].val[0] = vmull_lane_s32(vget_low_s32(s1.val[0]), + vget_high_s32(cospi_4_12_20N_28), 1); + t[2].val[1] = vmull_lane_s32(vget_high_s32(s1.val[0]), + vget_high_s32(cospi_4_12_20N_28), 1); + t[3].val[0] = vmull_lane_s32(vget_low_s32(s1.val[1]), + vget_high_s32(cospi_4_12_20N_28), 1); + t[3].val[1] = vmull_lane_s32(vget_high_s32(s1.val[1]), + vget_high_s32(cospi_4_12_20N_28), 1); + t[0].val[0] = vmlsl_lane_s32(t[0].val[0], vget_low_s32(s1.val[0]), + vget_low_s32(cospi_4_12_20N_28), 0); + t[0].val[1] = vmlsl_lane_s32(t[0].val[1], vget_high_s32(s1.val[0]), + vget_low_s32(cospi_4_12_20N_28), 0); + t[1].val[0] = vmlsl_lane_s32(t[1].val[0], vget_low_s32(s1.val[1]), + vget_low_s32(cospi_4_12_20N_28), 0); + t[1].val[1] = vmlsl_lane_s32(t[1].val[1], vget_high_s32(s1.val[1]), + vget_low_s32(cospi_4_12_20N_28), 0); + t[2].val[0] = vmlal_lane_s32(t[2].val[0], vget_low_s32(s0.val[0]), + vget_low_s32(cospi_4_12_20N_28), 0); + t[2].val[1] = vmlal_lane_s32(t[2].val[1], vget_high_s32(s0.val[0]), + vget_low_s32(cospi_4_12_20N_28), 0); + t[3].val[0] = vmlal_lane_s32(t[3].val[0], vget_low_s32(s0.val[1]), + vget_low_s32(cospi_4_12_20N_28), 0); + t[3].val[1] = vmlal_lane_s32(t[3].val[1], vget_high_s32(s0.val[1]), + vget_low_s32(cospi_4_12_20N_28), 0); + highbd_idct16x16_add_wrap_low_8x2(t, d0, d1); +} + +static INLINE void highbd_idct_cospi_6_26(const int32x4x2_t s0, + const int32x4x2_t s1, + const int32x4_t cospi_6_26N_14_18N, + int32x4x2_t *const d0, + int32x4x2_t *const d1) { + int64x2x2_t t[4]; + + t[0].val[0] = vmull_lane_s32(vget_low_s32(s0.val[0]), + vget_low_s32(cospi_6_26N_14_18N), 0); + t[0].val[1] = vmull_lane_s32(vget_high_s32(s0.val[0]), + vget_low_s32(cospi_6_26N_14_18N), 0); + t[1].val[0] = vmull_lane_s32(vget_low_s32(s0.val[1]), + vget_low_s32(cospi_6_26N_14_18N), 0); + t[1].val[1] = vmull_lane_s32(vget_high_s32(s0.val[1]), + vget_low_s32(cospi_6_26N_14_18N), 0); + t[2].val[0] = vmull_lane_s32(vget_low_s32(s1.val[0]), + vget_low_s32(cospi_6_26N_14_18N), 0); + t[2].val[1] = vmull_lane_s32(vget_high_s32(s1.val[0]), + vget_low_s32(cospi_6_26N_14_18N), 0); + t[3].val[0] = vmull_lane_s32(vget_low_s32(s1.val[1]), + vget_low_s32(cospi_6_26N_14_18N), 0); + t[3].val[1] = vmull_lane_s32(vget_high_s32(s1.val[1]), + vget_low_s32(cospi_6_26N_14_18N), 0); + t[0].val[0] = vmlal_lane_s32(t[0].val[0], vget_low_s32(s1.val[0]), + vget_low_s32(cospi_6_26N_14_18N), 1); + t[0].val[1] = vmlal_lane_s32(t[0].val[1], vget_high_s32(s1.val[0]), + vget_low_s32(cospi_6_26N_14_18N), 1); + t[1].val[0] = vmlal_lane_s32(t[1].val[0], vget_low_s32(s1.val[1]), + vget_low_s32(cospi_6_26N_14_18N), 1); + t[1].val[1] = vmlal_lane_s32(t[1].val[1], vget_high_s32(s1.val[1]), + vget_low_s32(cospi_6_26N_14_18N), 1); + t[2].val[0] = vmlsl_lane_s32(t[2].val[0], vget_low_s32(s0.val[0]), + vget_low_s32(cospi_6_26N_14_18N), 1); + t[2].val[1] = vmlsl_lane_s32(t[2].val[1], vget_high_s32(s0.val[0]), + vget_low_s32(cospi_6_26N_14_18N), 1); + t[3].val[0] = vmlsl_lane_s32(t[3].val[0], vget_low_s32(s0.val[1]), + vget_low_s32(cospi_6_26N_14_18N), 1); + t[3].val[1] = vmlsl_lane_s32(t[3].val[1], vget_high_s32(s0.val[1]), + vget_low_s32(cospi_6_26N_14_18N), 1); + highbd_idct16x16_add_wrap_low_8x2(t, d0, d1); +} + +static INLINE void highbd_idct_cospi_10_22(const int32x4x2_t s0, + const int32x4x2_t s1, + const int32x4_t cospi_2_30_10_22, + int32x4x2_t *const d0, + int32x4x2_t *const d1) { + int64x2x2_t t[4]; + + t[0].val[0] = vmull_lane_s32(vget_low_s32(s0.val[0]), + vget_high_s32(cospi_2_30_10_22), 1); + t[0].val[1] = vmull_lane_s32(vget_high_s32(s0.val[0]), + vget_high_s32(cospi_2_30_10_22), 1); + t[1].val[0] = vmull_lane_s32(vget_low_s32(s0.val[1]), + vget_high_s32(cospi_2_30_10_22), 1); + t[1].val[1] = vmull_lane_s32(vget_high_s32(s0.val[1]), + vget_high_s32(cospi_2_30_10_22), 1); + t[2].val[0] = vmull_lane_s32(vget_low_s32(s1.val[0]), + vget_high_s32(cospi_2_30_10_22), 1); + t[2].val[1] = vmull_lane_s32(vget_high_s32(s1.val[0]), + vget_high_s32(cospi_2_30_10_22), 1); + t[3].val[0] = vmull_lane_s32(vget_low_s32(s1.val[1]), + vget_high_s32(cospi_2_30_10_22), 1); + t[3].val[1] = vmull_lane_s32(vget_high_s32(s1.val[1]), + vget_high_s32(cospi_2_30_10_22), 1); + t[0].val[0] = vmlsl_lane_s32(t[0].val[0], vget_low_s32(s1.val[0]), + vget_high_s32(cospi_2_30_10_22), 0); + t[0].val[1] = vmlsl_lane_s32(t[0].val[1], vget_high_s32(s1.val[0]), + vget_high_s32(cospi_2_30_10_22), 0); + t[1].val[0] = vmlsl_lane_s32(t[1].val[0], vget_low_s32(s1.val[1]), + vget_high_s32(cospi_2_30_10_22), 0); + t[1].val[1] = vmlsl_lane_s32(t[1].val[1], vget_high_s32(s1.val[1]), + vget_high_s32(cospi_2_30_10_22), 0); + t[2].val[0] = vmlal_lane_s32(t[2].val[0], vget_low_s32(s0.val[0]), + vget_high_s32(cospi_2_30_10_22), 0); + t[2].val[1] = vmlal_lane_s32(t[2].val[1], vget_high_s32(s0.val[0]), + vget_high_s32(cospi_2_30_10_22), 0); + t[3].val[0] = vmlal_lane_s32(t[3].val[0], vget_low_s32(s0.val[1]), + vget_high_s32(cospi_2_30_10_22), 0); + t[3].val[1] = vmlal_lane_s32(t[3].val[1], vget_high_s32(s0.val[1]), + vget_high_s32(cospi_2_30_10_22), 0); + highbd_idct16x16_add_wrap_low_8x2(t, d0, d1); +} + +static INLINE void highbd_idct_cospi_12_20(const int32x4x2_t s0, + const int32x4x2_t s1, + const int32x4_t cospi_4_12_20N_28, + int32x4x2_t *const d0, + int32x4x2_t *const d1) { + int64x2x2_t t[4]; + + t[0].val[0] = vmull_lane_s32(vget_low_s32(s0.val[0]), + vget_low_s32(cospi_4_12_20N_28), 1); + t[0].val[1] = vmull_lane_s32(vget_high_s32(s0.val[0]), + vget_low_s32(cospi_4_12_20N_28), 1); + t[1].val[0] = vmull_lane_s32(vget_low_s32(s0.val[1]), + vget_low_s32(cospi_4_12_20N_28), 1); + t[1].val[1] = vmull_lane_s32(vget_high_s32(s0.val[1]), + vget_low_s32(cospi_4_12_20N_28), 1); + t[2].val[0] = vmull_lane_s32(vget_low_s32(s1.val[0]), + vget_low_s32(cospi_4_12_20N_28), 1); + t[2].val[1] = vmull_lane_s32(vget_high_s32(s1.val[0]), + vget_low_s32(cospi_4_12_20N_28), 1); + t[3].val[0] = vmull_lane_s32(vget_low_s32(s1.val[1]), + vget_low_s32(cospi_4_12_20N_28), 1); + t[3].val[1] = vmull_lane_s32(vget_high_s32(s1.val[1]), + vget_low_s32(cospi_4_12_20N_28), 1); + t[0].val[0] = vmlal_lane_s32(t[0].val[0], vget_low_s32(s1.val[0]), + vget_high_s32(cospi_4_12_20N_28), 0); + t[0].val[1] = vmlal_lane_s32(t[0].val[1], vget_high_s32(s1.val[0]), + vget_high_s32(cospi_4_12_20N_28), 0); + t[1].val[0] = vmlal_lane_s32(t[1].val[0], vget_low_s32(s1.val[1]), + vget_high_s32(cospi_4_12_20N_28), 0); + t[1].val[1] = vmlal_lane_s32(t[1].val[1], vget_high_s32(s1.val[1]), + vget_high_s32(cospi_4_12_20N_28), 0); + t[2].val[0] = vmlsl_lane_s32(t[2].val[0], vget_low_s32(s0.val[0]), + vget_high_s32(cospi_4_12_20N_28), 0); + t[2].val[1] = vmlsl_lane_s32(t[2].val[1], vget_high_s32(s0.val[0]), + vget_high_s32(cospi_4_12_20N_28), 0); + t[3].val[0] = vmlsl_lane_s32(t[3].val[0], vget_low_s32(s0.val[1]), + vget_high_s32(cospi_4_12_20N_28), 0); + t[3].val[1] = vmlsl_lane_s32(t[3].val[1], vget_high_s32(s0.val[1]), + vget_high_s32(cospi_4_12_20N_28), 0); + highbd_idct16x16_add_wrap_low_8x2(t, d0, d1); +} + +static INLINE void highbd_idct_cospi_14_18(const int32x4x2_t s0, + const int32x4x2_t s1, + const int32x4_t cospi_6_26N_14_18N, + int32x4x2_t *const d0, + int32x4x2_t *const d1) { + int64x2x2_t t[4]; + + t[0].val[0] = vmull_lane_s32(vget_low_s32(s0.val[0]), + vget_high_s32(cospi_6_26N_14_18N), 0); + t[0].val[1] = vmull_lane_s32(vget_high_s32(s0.val[0]), + vget_high_s32(cospi_6_26N_14_18N), 0); + t[1].val[0] = vmull_lane_s32(vget_low_s32(s0.val[1]), + vget_high_s32(cospi_6_26N_14_18N), 0); + t[1].val[1] = vmull_lane_s32(vget_high_s32(s0.val[1]), + vget_high_s32(cospi_6_26N_14_18N), 0); + t[2].val[0] = vmull_lane_s32(vget_low_s32(s1.val[0]), + vget_high_s32(cospi_6_26N_14_18N), 0); + t[2].val[1] = vmull_lane_s32(vget_high_s32(s1.val[0]), + vget_high_s32(cospi_6_26N_14_18N), 0); + t[3].val[0] = vmull_lane_s32(vget_low_s32(s1.val[1]), + vget_high_s32(cospi_6_26N_14_18N), 0); + t[3].val[1] = vmull_lane_s32(vget_high_s32(s1.val[1]), + vget_high_s32(cospi_6_26N_14_18N), 0); + t[0].val[0] = vmlal_lane_s32(t[0].val[0], vget_low_s32(s1.val[0]), + vget_high_s32(cospi_6_26N_14_18N), 1); + t[0].val[1] = vmlal_lane_s32(t[0].val[1], vget_high_s32(s1.val[0]), + vget_high_s32(cospi_6_26N_14_18N), 1); + t[1].val[0] = vmlal_lane_s32(t[1].val[0], vget_low_s32(s1.val[1]), + vget_high_s32(cospi_6_26N_14_18N), 1); + t[1].val[1] = vmlal_lane_s32(t[1].val[1], vget_high_s32(s1.val[1]), + vget_high_s32(cospi_6_26N_14_18N), 1); + t[2].val[0] = vmlsl_lane_s32(t[2].val[0], vget_low_s32(s0.val[0]), + vget_high_s32(cospi_6_26N_14_18N), 1); + t[2].val[1] = vmlsl_lane_s32(t[2].val[1], vget_high_s32(s0.val[0]), + vget_high_s32(cospi_6_26N_14_18N), 1); + t[3].val[0] = vmlsl_lane_s32(t[3].val[0], vget_low_s32(s0.val[1]), + vget_high_s32(cospi_6_26N_14_18N), 1); + t[3].val[1] = vmlsl_lane_s32(t[3].val[1], vget_high_s32(s0.val[1]), + vget_high_s32(cospi_6_26N_14_18N), 1); + highbd_idct16x16_add_wrap_low_8x2(t, d0, d1); +} + +static INLINE void highbd_idct_cospi_8_24_q_kernel( + const int32x4x2_t s0, const int32x4x2_t s1, const int32x4_t cospi_0_8_16_24, + int64x2x2_t *const t) { + t[0].val[0] = vmull_lane_s32(vget_low_s32(s0.val[0]), + vget_high_s32(cospi_0_8_16_24), 1); + t[0].val[1] = vmull_lane_s32(vget_high_s32(s0.val[0]), + vget_high_s32(cospi_0_8_16_24), 1); + t[1].val[0] = vmull_lane_s32(vget_low_s32(s0.val[1]), + vget_high_s32(cospi_0_8_16_24), 1); + t[1].val[1] = vmull_lane_s32(vget_high_s32(s0.val[1]), + vget_high_s32(cospi_0_8_16_24), 1); + t[2].val[0] = vmull_lane_s32(vget_low_s32(s1.val[0]), + vget_high_s32(cospi_0_8_16_24), 1); + t[2].val[1] = vmull_lane_s32(vget_high_s32(s1.val[0]), + vget_high_s32(cospi_0_8_16_24), 1); + t[3].val[0] = vmull_lane_s32(vget_low_s32(s1.val[1]), + vget_high_s32(cospi_0_8_16_24), 1); + t[3].val[1] = vmull_lane_s32(vget_high_s32(s1.val[1]), + vget_high_s32(cospi_0_8_16_24), 1); + t[0].val[0] = vmlsl_lane_s32(t[0].val[0], vget_low_s32(s1.val[0]), + vget_low_s32(cospi_0_8_16_24), 1); + t[0].val[1] = vmlsl_lane_s32(t[0].val[1], vget_high_s32(s1.val[0]), + vget_low_s32(cospi_0_8_16_24), 1); + t[1].val[0] = vmlsl_lane_s32(t[1].val[0], vget_low_s32(s1.val[1]), + vget_low_s32(cospi_0_8_16_24), 1); + t[1].val[1] = vmlsl_lane_s32(t[1].val[1], vget_high_s32(s1.val[1]), + vget_low_s32(cospi_0_8_16_24), 1); + t[2].val[0] = vmlal_lane_s32(t[2].val[0], vget_low_s32(s0.val[0]), + vget_low_s32(cospi_0_8_16_24), 1); + t[2].val[1] = vmlal_lane_s32(t[2].val[1], vget_high_s32(s0.val[0]), + vget_low_s32(cospi_0_8_16_24), 1); + t[3].val[0] = vmlal_lane_s32(t[3].val[0], vget_low_s32(s0.val[1]), + vget_low_s32(cospi_0_8_16_24), 1); + t[3].val[1] = vmlal_lane_s32(t[3].val[1], vget_high_s32(s0.val[1]), + vget_low_s32(cospi_0_8_16_24), 1); +} + +static INLINE void highbd_idct_cospi_8_24_d_kernel( + const int32x4_t s0, const int32x4_t s1, const int32x4_t cospi_0_8_16_24, + int64x2x2_t *const t) { + t[0].val[0] = + vmull_lane_s32(vget_low_s32(s0), vget_high_s32(cospi_0_8_16_24), 1); + t[0].val[1] = + vmull_lane_s32(vget_high_s32(s0), vget_high_s32(cospi_0_8_16_24), 1); + t[1].val[0] = + vmull_lane_s32(vget_low_s32(s1), vget_high_s32(cospi_0_8_16_24), 1); + t[1].val[1] = + vmull_lane_s32(vget_high_s32(s1), vget_high_s32(cospi_0_8_16_24), 1); + t[0].val[0] = vmlsl_lane_s32(t[0].val[0], vget_low_s32(s1), + vget_low_s32(cospi_0_8_16_24), 1); + t[0].val[1] = vmlsl_lane_s32(t[0].val[1], vget_high_s32(s1), + vget_low_s32(cospi_0_8_16_24), 1); + t[1].val[0] = vmlal_lane_s32(t[1].val[0], vget_low_s32(s0), + vget_low_s32(cospi_0_8_16_24), 1); + t[1].val[1] = vmlal_lane_s32(t[1].val[1], vget_high_s32(s0), + vget_low_s32(cospi_0_8_16_24), 1); +} + +static INLINE void highbd_idct_cospi_8_24_q(const int32x4x2_t s0, + const int32x4x2_t s1, + const int32x4_t cospi_0_8_16_24, + int32x4x2_t *const d0, + int32x4x2_t *const d1) { + int64x2x2_t t[4]; + + highbd_idct_cospi_8_24_q_kernel(s0, s1, cospi_0_8_16_24, t); + highbd_idct16x16_add_wrap_low_8x2(t, d0, d1); +} + +static INLINE void highbd_idct_cospi_8_24_d(const int32x4_t s0, + const int32x4_t s1, + const int32x4_t cospi_0_8_16_24, + int32x4_t *const d0, + int32x4_t *const d1) { + int64x2x2_t t[2]; + + highbd_idct_cospi_8_24_d_kernel(s0, s1, cospi_0_8_16_24, t); + highbd_idct16x16_add_wrap_low_4x2(t, d0, d1); +} + +static INLINE void highbd_idct_cospi_8_24_neg_q(const int32x4x2_t s0, + const int32x4x2_t s1, + const int32x4_t cospi_0_8_16_24, + int32x4x2_t *const d0, + int32x4x2_t *const d1) { + int64x2x2_t t[4]; + + highbd_idct_cospi_8_24_q_kernel(s0, s1, cospi_0_8_16_24, t); + t[2].val[0] = vsubq_s64(vdupq_n_s64(0), t[2].val[0]); + t[2].val[1] = vsubq_s64(vdupq_n_s64(0), t[2].val[1]); + t[3].val[0] = vsubq_s64(vdupq_n_s64(0), t[3].val[0]); + t[3].val[1] = vsubq_s64(vdupq_n_s64(0), t[3].val[1]); + highbd_idct16x16_add_wrap_low_8x2(t, d0, d1); +} + +static INLINE void highbd_idct_cospi_8_24_neg_d(const int32x4_t s0, + const int32x4_t s1, + const int32x4_t cospi_0_8_16_24, + int32x4_t *const d0, + int32x4_t *const d1) { + int64x2x2_t t[2]; + + highbd_idct_cospi_8_24_d_kernel(s0, s1, cospi_0_8_16_24, t); + t[1].val[0] = vsubq_s64(vdupq_n_s64(0), t[1].val[0]); + t[1].val[1] = vsubq_s64(vdupq_n_s64(0), t[1].val[1]); + highbd_idct16x16_add_wrap_low_4x2(t, d0, d1); +} + +static INLINE void highbd_idct_cospi_16_16_q(const int32x4x2_t s0, + const int32x4x2_t s1, + const int32x4_t cospi_0_8_16_24, + int32x4x2_t *const d0, + int32x4x2_t *const d1) { + int64x2x2_t t[6]; + + t[4].val[0] = vmull_lane_s32(vget_low_s32(s1.val[0]), + vget_high_s32(cospi_0_8_16_24), 0); + t[4].val[1] = vmull_lane_s32(vget_high_s32(s1.val[0]), + vget_high_s32(cospi_0_8_16_24), 0); + t[5].val[0] = vmull_lane_s32(vget_low_s32(s1.val[1]), + vget_high_s32(cospi_0_8_16_24), 0); + t[5].val[1] = vmull_lane_s32(vget_high_s32(s1.val[1]), + vget_high_s32(cospi_0_8_16_24), 0); + t[0].val[0] = vmlsl_lane_s32(t[4].val[0], vget_low_s32(s0.val[0]), + vget_high_s32(cospi_0_8_16_24), 0); + t[0].val[1] = vmlsl_lane_s32(t[4].val[1], vget_high_s32(s0.val[0]), + vget_high_s32(cospi_0_8_16_24), 0); + t[1].val[0] = vmlsl_lane_s32(t[5].val[0], vget_low_s32(s0.val[1]), + vget_high_s32(cospi_0_8_16_24), 0); + t[1].val[1] = vmlsl_lane_s32(t[5].val[1], vget_high_s32(s0.val[1]), + vget_high_s32(cospi_0_8_16_24), 0); + t[2].val[0] = vmlal_lane_s32(t[4].val[0], vget_low_s32(s0.val[0]), + vget_high_s32(cospi_0_8_16_24), 0); + t[2].val[1] = vmlal_lane_s32(t[4].val[1], vget_high_s32(s0.val[0]), + vget_high_s32(cospi_0_8_16_24), 0); + t[3].val[0] = vmlal_lane_s32(t[5].val[0], vget_low_s32(s0.val[1]), + vget_high_s32(cospi_0_8_16_24), 0); + t[3].val[1] = vmlal_lane_s32(t[5].val[1], vget_high_s32(s0.val[1]), + vget_high_s32(cospi_0_8_16_24), 0); + highbd_idct16x16_add_wrap_low_8x2(t, d0, d1); +} + +static INLINE void highbd_idct_cospi_16_16_d(const int32x4_t s0, + const int32x4_t s1, + const int32x4_t cospi_0_8_16_24, + int32x4_t *const d0, + int32x4_t *const d1) { + int64x2x2_t t[3]; + + t[2].val[0] = + vmull_lane_s32(vget_low_s32(s1), vget_high_s32(cospi_0_8_16_24), 0); + t[2].val[1] = + vmull_lane_s32(vget_high_s32(s1), vget_high_s32(cospi_0_8_16_24), 0); + t[0].val[0] = vmlsl_lane_s32(t[2].val[0], vget_low_s32(s0), + vget_high_s32(cospi_0_8_16_24), 0); + t[0].val[1] = vmlsl_lane_s32(t[2].val[1], vget_high_s32(s0), + vget_high_s32(cospi_0_8_16_24), 0); + t[1].val[0] = vmlal_lane_s32(t[2].val[0], vget_low_s32(s0), + vget_high_s32(cospi_0_8_16_24), 0); + t[1].val[1] = vmlal_lane_s32(t[2].val[1], vget_high_s32(s0), + vget_high_s32(cospi_0_8_16_24), 0); + highbd_idct16x16_add_wrap_low_4x2(t, d0, d1); +} + +static INLINE void highbd_idct16x16_add_stage7_dual( + const int32x4x2_t *const step2, int32x4x2_t *const out) { + out[0].val[0] = vaddq_s32(step2[0].val[0], step2[15].val[0]); + out[0].val[1] = vaddq_s32(step2[0].val[1], step2[15].val[1]); + out[1].val[0] = vaddq_s32(step2[1].val[0], step2[14].val[0]); + out[1].val[1] = vaddq_s32(step2[1].val[1], step2[14].val[1]); + out[2].val[0] = vaddq_s32(step2[2].val[0], step2[13].val[0]); + out[2].val[1] = vaddq_s32(step2[2].val[1], step2[13].val[1]); + out[3].val[0] = vaddq_s32(step2[3].val[0], step2[12].val[0]); + out[3].val[1] = vaddq_s32(step2[3].val[1], step2[12].val[1]); + out[4].val[0] = vaddq_s32(step2[4].val[0], step2[11].val[0]); + out[4].val[1] = vaddq_s32(step2[4].val[1], step2[11].val[1]); + out[5].val[0] = vaddq_s32(step2[5].val[0], step2[10].val[0]); + out[5].val[1] = vaddq_s32(step2[5].val[1], step2[10].val[1]); + out[6].val[0] = vaddq_s32(step2[6].val[0], step2[9].val[0]); + out[6].val[1] = vaddq_s32(step2[6].val[1], step2[9].val[1]); + out[7].val[0] = vaddq_s32(step2[7].val[0], step2[8].val[0]); + out[7].val[1] = vaddq_s32(step2[7].val[1], step2[8].val[1]); + out[8].val[0] = vsubq_s32(step2[7].val[0], step2[8].val[0]); + out[8].val[1] = vsubq_s32(step2[7].val[1], step2[8].val[1]); + out[9].val[0] = vsubq_s32(step2[6].val[0], step2[9].val[0]); + out[9].val[1] = vsubq_s32(step2[6].val[1], step2[9].val[1]); + out[10].val[0] = vsubq_s32(step2[5].val[0], step2[10].val[0]); + out[10].val[1] = vsubq_s32(step2[5].val[1], step2[10].val[1]); + out[11].val[0] = vsubq_s32(step2[4].val[0], step2[11].val[0]); + out[11].val[1] = vsubq_s32(step2[4].val[1], step2[11].val[1]); + out[12].val[0] = vsubq_s32(step2[3].val[0], step2[12].val[0]); + out[12].val[1] = vsubq_s32(step2[3].val[1], step2[12].val[1]); + out[13].val[0] = vsubq_s32(step2[2].val[0], step2[13].val[0]); + out[13].val[1] = vsubq_s32(step2[2].val[1], step2[13].val[1]); + out[14].val[0] = vsubq_s32(step2[1].val[0], step2[14].val[0]); + out[14].val[1] = vsubq_s32(step2[1].val[1], step2[14].val[1]); + out[15].val[0] = vsubq_s32(step2[0].val[0], step2[15].val[0]); + out[15].val[1] = vsubq_s32(step2[0].val[1], step2[15].val[1]); +} + +static INLINE void highbd_idct16x16_add_stage7(const int32x4_t *const step2, + int32x4_t *const out) { + out[0] = vaddq_s32(step2[0], step2[15]); + out[1] = vaddq_s32(step2[1], step2[14]); + out[2] = vaddq_s32(step2[2], step2[13]); + out[3] = vaddq_s32(step2[3], step2[12]); + out[4] = vaddq_s32(step2[4], step2[11]); + out[5] = vaddq_s32(step2[5], step2[10]); + out[6] = vaddq_s32(step2[6], step2[9]); + out[7] = vaddq_s32(step2[7], step2[8]); + out[8] = vsubq_s32(step2[7], step2[8]); + out[9] = vsubq_s32(step2[6], step2[9]); + out[10] = vsubq_s32(step2[5], step2[10]); + out[11] = vsubq_s32(step2[4], step2[11]); + out[12] = vsubq_s32(step2[3], step2[12]); + out[13] = vsubq_s32(step2[2], step2[13]); + out[14] = vsubq_s32(step2[1], step2[14]); + out[15] = vsubq_s32(step2[0], step2[15]); +} + +static INLINE void highbd_idct16x16_store_pass1(const int32x4x2_t *const out, + int32_t *output) { + // Save the result into output + vst1q_s32(output + 0, out[0].val[0]); + vst1q_s32(output + 4, out[0].val[1]); + output += 16; + vst1q_s32(output + 0, out[1].val[0]); + vst1q_s32(output + 4, out[1].val[1]); + output += 16; + vst1q_s32(output + 0, out[2].val[0]); + vst1q_s32(output + 4, out[2].val[1]); + output += 16; + vst1q_s32(output + 0, out[3].val[0]); + vst1q_s32(output + 4, out[3].val[1]); + output += 16; + vst1q_s32(output + 0, out[4].val[0]); + vst1q_s32(output + 4, out[4].val[1]); + output += 16; + vst1q_s32(output + 0, out[5].val[0]); + vst1q_s32(output + 4, out[5].val[1]); + output += 16; + vst1q_s32(output + 0, out[6].val[0]); + vst1q_s32(output + 4, out[6].val[1]); + output += 16; + vst1q_s32(output + 0, out[7].val[0]); + vst1q_s32(output + 4, out[7].val[1]); + output += 16; + vst1q_s32(output + 0, out[8].val[0]); + vst1q_s32(output + 4, out[8].val[1]); + output += 16; + vst1q_s32(output + 0, out[9].val[0]); + vst1q_s32(output + 4, out[9].val[1]); + output += 16; + vst1q_s32(output + 0, out[10].val[0]); + vst1q_s32(output + 4, out[10].val[1]); + output += 16; + vst1q_s32(output + 0, out[11].val[0]); + vst1q_s32(output + 4, out[11].val[1]); + output += 16; + vst1q_s32(output + 0, out[12].val[0]); + vst1q_s32(output + 4, out[12].val[1]); + output += 16; + vst1q_s32(output + 0, out[13].val[0]); + vst1q_s32(output + 4, out[13].val[1]); + output += 16; + vst1q_s32(output + 0, out[14].val[0]); + vst1q_s32(output + 4, out[14].val[1]); + output += 16; + vst1q_s32(output + 0, out[15].val[0]); + vst1q_s32(output + 4, out[15].val[1]); +} + +static void vpx_highbd_idct16x16_256_add_half1d(const int32_t *input, + int32_t *output, uint16_t *dest, + const int stride, + const int bd) { + const int32x4_t cospi_0_8_16_24 = vld1q_s32(kCospi32 + 0); + const int32x4_t cospi_4_12_20N_28 = vld1q_s32(kCospi32 + 4); + const int32x4_t cospi_2_30_10_22 = vld1q_s32(kCospi32 + 8); + const int32x4_t cospi_6_26N_14_18N = vld1q_s32(kCospi32 + 12); + int32x4x2_t in[16], step1[16], step2[16], out[16]; + + // Load input (16x8) + in[0].val[0] = vld1q_s32(input); + in[0].val[1] = vld1q_s32(input + 4); + input += 8; + in[8].val[0] = vld1q_s32(input); + in[8].val[1] = vld1q_s32(input + 4); + input += 8; + in[1].val[0] = vld1q_s32(input); + in[1].val[1] = vld1q_s32(input + 4); + input += 8; + in[9].val[0] = vld1q_s32(input); + in[9].val[1] = vld1q_s32(input + 4); + input += 8; + in[2].val[0] = vld1q_s32(input); + in[2].val[1] = vld1q_s32(input + 4); + input += 8; + in[10].val[0] = vld1q_s32(input); + in[10].val[1] = vld1q_s32(input + 4); + input += 8; + in[3].val[0] = vld1q_s32(input); + in[3].val[1] = vld1q_s32(input + 4); + input += 8; + in[11].val[0] = vld1q_s32(input); + in[11].val[1] = vld1q_s32(input + 4); + input += 8; + in[4].val[0] = vld1q_s32(input); + in[4].val[1] = vld1q_s32(input + 4); + input += 8; + in[12].val[0] = vld1q_s32(input); + in[12].val[1] = vld1q_s32(input + 4); + input += 8; + in[5].val[0] = vld1q_s32(input); + in[5].val[1] = vld1q_s32(input + 4); + input += 8; + in[13].val[0] = vld1q_s32(input); + in[13].val[1] = vld1q_s32(input + 4); + input += 8; + in[6].val[0] = vld1q_s32(input); + in[6].val[1] = vld1q_s32(input + 4); + input += 8; + in[14].val[0] = vld1q_s32(input); + in[14].val[1] = vld1q_s32(input + 4); + input += 8; + in[7].val[0] = vld1q_s32(input); + in[7].val[1] = vld1q_s32(input + 4); + input += 8; + in[15].val[0] = vld1q_s32(input); + in[15].val[1] = vld1q_s32(input + 4); + + // Transpose + transpose_s32_8x8(&in[0], &in[1], &in[2], &in[3], &in[4], &in[5], &in[6], + &in[7]); + transpose_s32_8x8(&in[8], &in[9], &in[10], &in[11], &in[12], &in[13], &in[14], + &in[15]); + + // stage 1 + step1[0] = in[0 / 2]; + step1[1] = in[16 / 2]; + step1[2] = in[8 / 2]; + step1[3] = in[24 / 2]; + step1[4] = in[4 / 2]; + step1[5] = in[20 / 2]; + step1[6] = in[12 / 2]; + step1[7] = in[28 / 2]; + step1[8] = in[2 / 2]; + step1[9] = in[18 / 2]; + step1[10] = in[10 / 2]; + step1[11] = in[26 / 2]; + step1[12] = in[6 / 2]; + step1[13] = in[22 / 2]; + step1[14] = in[14 / 2]; + step1[15] = in[30 / 2]; + + // stage 2 + step2[0] = step1[0]; + step2[1] = step1[1]; + step2[2] = step1[2]; + step2[3] = step1[3]; + step2[4] = step1[4]; + step2[5] = step1[5]; + step2[6] = step1[6]; + step2[7] = step1[7]; + highbd_idct_cospi_2_30(step1[8], step1[15], cospi_2_30_10_22, &step2[8], + &step2[15]); + highbd_idct_cospi_14_18(step1[9], step1[14], cospi_6_26N_14_18N, &step2[9], + &step2[14]); + highbd_idct_cospi_10_22(step1[10], step1[13], cospi_2_30_10_22, &step2[10], + &step2[13]); + highbd_idct_cospi_6_26(step1[11], step1[12], cospi_6_26N_14_18N, &step2[11], + &step2[12]); + + // stage 3 + step1[0] = step2[0]; + step1[1] = step2[1]; + step1[2] = step2[2]; + step1[3] = step2[3]; + highbd_idct_cospi_4_28(step2[4], step2[7], cospi_4_12_20N_28, &step1[4], + &step1[7]); + highbd_idct_cospi_12_20(step2[5], step2[6], cospi_4_12_20N_28, &step1[5], + &step1[6]); + step1[8].val[0] = vaddq_s32(step2[8].val[0], step2[9].val[0]); + step1[8].val[1] = vaddq_s32(step2[8].val[1], step2[9].val[1]); + step1[9].val[0] = vsubq_s32(step2[8].val[0], step2[9].val[0]); + step1[9].val[1] = vsubq_s32(step2[8].val[1], step2[9].val[1]); + step1[10].val[0] = vsubq_s32(step2[11].val[0], step2[10].val[0]); + step1[10].val[1] = vsubq_s32(step2[11].val[1], step2[10].val[1]); + step1[11].val[0] = vaddq_s32(step2[11].val[0], step2[10].val[0]); + step1[11].val[1] = vaddq_s32(step2[11].val[1], step2[10].val[1]); + step1[12].val[0] = vaddq_s32(step2[12].val[0], step2[13].val[0]); + step1[12].val[1] = vaddq_s32(step2[12].val[1], step2[13].val[1]); + step1[13].val[0] = vsubq_s32(step2[12].val[0], step2[13].val[0]); + step1[13].val[1] = vsubq_s32(step2[12].val[1], step2[13].val[1]); + step1[14].val[0] = vsubq_s32(step2[15].val[0], step2[14].val[0]); + step1[14].val[1] = vsubq_s32(step2[15].val[1], step2[14].val[1]); + step1[15].val[0] = vaddq_s32(step2[15].val[0], step2[14].val[0]); + step1[15].val[1] = vaddq_s32(step2[15].val[1], step2[14].val[1]); + + // stage 4 + highbd_idct_cospi_16_16_q(step1[1], step1[0], cospi_0_8_16_24, &step2[1], + &step2[0]); + highbd_idct_cospi_8_24_q(step1[2], step1[3], cospi_0_8_16_24, &step2[2], + &step2[3]); + step2[4].val[0] = vaddq_s32(step1[4].val[0], step1[5].val[0]); + step2[4].val[1] = vaddq_s32(step1[4].val[1], step1[5].val[1]); + step2[5].val[0] = vsubq_s32(step1[4].val[0], step1[5].val[0]); + step2[5].val[1] = vsubq_s32(step1[4].val[1], step1[5].val[1]); + step2[6].val[0] = vsubq_s32(step1[7].val[0], step1[6].val[0]); + step2[6].val[1] = vsubq_s32(step1[7].val[1], step1[6].val[1]); + step2[7].val[0] = vaddq_s32(step1[7].val[0], step1[6].val[0]); + step2[7].val[1] = vaddq_s32(step1[7].val[1], step1[6].val[1]); + step2[8] = step1[8]; + highbd_idct_cospi_8_24_q(step1[14], step1[9], cospi_0_8_16_24, &step2[9], + &step2[14]); + highbd_idct_cospi_8_24_neg_q(step1[13], step1[10], cospi_0_8_16_24, + &step2[13], &step2[10]); + step2[11] = step1[11]; + step2[12] = step1[12]; + step2[15] = step1[15]; + + // stage 5 + step1[0].val[0] = vaddq_s32(step2[0].val[0], step2[3].val[0]); + step1[0].val[1] = vaddq_s32(step2[0].val[1], step2[3].val[1]); + step1[1].val[0] = vaddq_s32(step2[1].val[0], step2[2].val[0]); + step1[1].val[1] = vaddq_s32(step2[1].val[1], step2[2].val[1]); + step1[2].val[0] = vsubq_s32(step2[1].val[0], step2[2].val[0]); + step1[2].val[1] = vsubq_s32(step2[1].val[1], step2[2].val[1]); + step1[3].val[0] = vsubq_s32(step2[0].val[0], step2[3].val[0]); + step1[3].val[1] = vsubq_s32(step2[0].val[1], step2[3].val[1]); + step1[4] = step2[4]; + highbd_idct_cospi_16_16_q(step2[5], step2[6], cospi_0_8_16_24, &step1[5], + &step1[6]); + step1[7] = step2[7]; + step1[8].val[0] = vaddq_s32(step2[8].val[0], step2[11].val[0]); + step1[8].val[1] = vaddq_s32(step2[8].val[1], step2[11].val[1]); + step1[9].val[0] = vaddq_s32(step2[9].val[0], step2[10].val[0]); + step1[9].val[1] = vaddq_s32(step2[9].val[1], step2[10].val[1]); + step1[10].val[0] = vsubq_s32(step2[9].val[0], step2[10].val[0]); + step1[10].val[1] = vsubq_s32(step2[9].val[1], step2[10].val[1]); + step1[11].val[0] = vsubq_s32(step2[8].val[0], step2[11].val[0]); + step1[11].val[1] = vsubq_s32(step2[8].val[1], step2[11].val[1]); + step1[12].val[0] = vsubq_s32(step2[15].val[0], step2[12].val[0]); + step1[12].val[1] = vsubq_s32(step2[15].val[1], step2[12].val[1]); + step1[13].val[0] = vsubq_s32(step2[14].val[0], step2[13].val[0]); + step1[13].val[1] = vsubq_s32(step2[14].val[1], step2[13].val[1]); + step1[14].val[0] = vaddq_s32(step2[14].val[0], step2[13].val[0]); + step1[14].val[1] = vaddq_s32(step2[14].val[1], step2[13].val[1]); + step1[15].val[0] = vaddq_s32(step2[15].val[0], step2[12].val[0]); + step1[15].val[1] = vaddq_s32(step2[15].val[1], step2[12].val[1]); + + // stage 6 + step2[0].val[0] = vaddq_s32(step1[0].val[0], step1[7].val[0]); + step2[0].val[1] = vaddq_s32(step1[0].val[1], step1[7].val[1]); + step2[1].val[0] = vaddq_s32(step1[1].val[0], step1[6].val[0]); + step2[1].val[1] = vaddq_s32(step1[1].val[1], step1[6].val[1]); + step2[2].val[0] = vaddq_s32(step1[2].val[0], step1[5].val[0]); + step2[2].val[1] = vaddq_s32(step1[2].val[1], step1[5].val[1]); + step2[3].val[0] = vaddq_s32(step1[3].val[0], step1[4].val[0]); + step2[3].val[1] = vaddq_s32(step1[3].val[1], step1[4].val[1]); + step2[4].val[0] = vsubq_s32(step1[3].val[0], step1[4].val[0]); + step2[4].val[1] = vsubq_s32(step1[3].val[1], step1[4].val[1]); + step2[5].val[0] = vsubq_s32(step1[2].val[0], step1[5].val[0]); + step2[5].val[1] = vsubq_s32(step1[2].val[1], step1[5].val[1]); + step2[6].val[0] = vsubq_s32(step1[1].val[0], step1[6].val[0]); + step2[6].val[1] = vsubq_s32(step1[1].val[1], step1[6].val[1]); + step2[7].val[0] = vsubq_s32(step1[0].val[0], step1[7].val[0]); + step2[7].val[1] = vsubq_s32(step1[0].val[1], step1[7].val[1]); + highbd_idct_cospi_16_16_q(step1[10], step1[13], cospi_0_8_16_24, &step2[10], + &step2[13]); + highbd_idct_cospi_16_16_q(step1[11], step1[12], cospi_0_8_16_24, &step2[11], + &step2[12]); + step2[8] = step1[8]; + step2[9] = step1[9]; + step2[14] = step1[14]; + step2[15] = step1[15]; + + // stage 7 + highbd_idct16x16_add_stage7_dual(step2, out); + + if (output) { + highbd_idct16x16_store_pass1(out, output); + } else { + highbd_idct16x16_add_store(out, dest, stride, bd); + } +} + +static INLINE int32x4x2_t highbd_idct_cospi_lane0_dual(const int32x4x2_t s, + const int32x2_t coef) { + int64x2x2_t t[2]; + + t[0].val[0] = vmull_lane_s32(vget_low_s32(s.val[0]), coef, 0); + t[0].val[1] = vmull_lane_s32(vget_high_s32(s.val[0]), coef, 0); + t[1].val[0] = vmull_lane_s32(vget_low_s32(s.val[1]), coef, 0); + t[1].val[1] = vmull_lane_s32(vget_high_s32(s.val[1]), coef, 0); + return highbd_idct16x16_add_wrap_low_8x1(t); +} + +static INLINE int32x4_t highbd_idct_cospi_lane0(const int32x4_t s, + const int32x2_t coef) { + int64x2x2_t t; + + t.val[0] = vmull_lane_s32(vget_low_s32(s), coef, 0); + t.val[1] = vmull_lane_s32(vget_high_s32(s), coef, 0); + return highbd_idct16x16_add_wrap_low_4x1(t); +} + +static INLINE int32x4x2_t highbd_idct_cospi_lane1_dual(const int32x4x2_t s, + const int32x2_t coef) { + int64x2x2_t t[2]; + + t[0].val[0] = vmull_lane_s32(vget_low_s32(s.val[0]), coef, 1); + t[0].val[1] = vmull_lane_s32(vget_high_s32(s.val[0]), coef, 1); + t[1].val[0] = vmull_lane_s32(vget_low_s32(s.val[1]), coef, 1); + t[1].val[1] = vmull_lane_s32(vget_high_s32(s.val[1]), coef, 1); + return highbd_idct16x16_add_wrap_low_8x1(t); +} + +static INLINE int32x4_t highbd_idct_cospi_lane1(const int32x4_t s, + const int32x2_t coef) { + int64x2x2_t t; + + t.val[0] = vmull_lane_s32(vget_low_s32(s), coef, 1); + t.val[1] = vmull_lane_s32(vget_high_s32(s), coef, 1); + return highbd_idct16x16_add_wrap_low_4x1(t); +} + +static void vpx_highbd_idct16x16_38_add_half1d(const int32_t *input, + int32_t *output, uint16_t *dest, + const int stride, const int bd) { + const int32x4_t cospi_0_8_16_24 = vld1q_s32(kCospi32 + 0); + const int32x4_t cospi_4_12_20N_28 = vld1q_s32(kCospi32 + 4); + const int32x4_t cospi_2_30_10_22 = vld1q_s32(kCospi32 + 8); + const int32x4_t cospi_6_26N_14_18N = vld1q_s32(kCospi32 + 12); + int32x4x2_t in[8], step1[16], step2[16], out[16]; + + // Load input (8x8) + in[0].val[0] = vld1q_s32(input); + in[0].val[1] = vld1q_s32(input + 4); + input += 16; + in[1].val[0] = vld1q_s32(input); + in[1].val[1] = vld1q_s32(input + 4); + input += 16; + in[2].val[0] = vld1q_s32(input); + in[2].val[1] = vld1q_s32(input + 4); + input += 16; + in[3].val[0] = vld1q_s32(input); + in[3].val[1] = vld1q_s32(input + 4); + input += 16; + in[4].val[0] = vld1q_s32(input); + in[4].val[1] = vld1q_s32(input + 4); + input += 16; + in[5].val[0] = vld1q_s32(input); + in[5].val[1] = vld1q_s32(input + 4); + input += 16; + in[6].val[0] = vld1q_s32(input); + in[6].val[1] = vld1q_s32(input + 4); + input += 16; + in[7].val[0] = vld1q_s32(input); + in[7].val[1] = vld1q_s32(input + 4); + + // Transpose + transpose_s32_8x8(&in[0], &in[1], &in[2], &in[3], &in[4], &in[5], &in[6], + &in[7]); + + // stage 1 + step1[0] = in[0 / 2]; + step1[2] = in[8 / 2]; + step1[4] = in[4 / 2]; + step1[6] = in[12 / 2]; + step1[8] = in[2 / 2]; + step1[10] = in[10 / 2]; + step1[12] = in[6 / 2]; + step1[14] = in[14 / 2]; // 0 in pass 1 + + // stage 2 + step2[0] = step1[0]; + step2[2] = step1[2]; + step2[4] = step1[4]; + step2[6] = step1[6]; + step2[8] = + highbd_idct_cospi_lane1_dual(step1[8], vget_low_s32(cospi_2_30_10_22)); + step2[9] = highbd_idct_cospi_lane1_dual(step1[14], + vget_high_s32(cospi_6_26N_14_18N)); + step2[10] = + highbd_idct_cospi_lane1_dual(step1[10], vget_high_s32(cospi_2_30_10_22)); + step2[11] = + highbd_idct_cospi_lane1_dual(step1[12], vget_low_s32(cospi_6_26N_14_18N)); + step2[12] = + highbd_idct_cospi_lane0_dual(step1[12], vget_low_s32(cospi_6_26N_14_18N)); + step2[13] = + highbd_idct_cospi_lane0_dual(step1[10], vget_high_s32(cospi_2_30_10_22)); + step2[14] = highbd_idct_cospi_lane0_dual(step1[14], + vget_high_s32(cospi_6_26N_14_18N)); + step2[15] = + highbd_idct_cospi_lane0_dual(step1[8], vget_low_s32(cospi_2_30_10_22)); + + // stage 3 + step1[0] = step2[0]; + step1[2] = step2[2]; + step1[4] = + highbd_idct_cospi_lane1_dual(step2[4], vget_high_s32(cospi_4_12_20N_28)); + step1[5] = + highbd_idct_cospi_lane0_dual(step2[6], vget_high_s32(cospi_4_12_20N_28)); + step1[6] = + highbd_idct_cospi_lane1_dual(step2[6], vget_low_s32(cospi_4_12_20N_28)); + step1[7] = + highbd_idct_cospi_lane0_dual(step2[4], vget_low_s32(cospi_4_12_20N_28)); + step1[8] = highbd_idct_add_dual(step2[8], step2[9]); + step1[9] = highbd_idct_sub_dual(step2[8], step2[9]); + step1[10] = highbd_idct_sub_dual(step2[11], step2[10]); + step1[11] = highbd_idct_add_dual(step2[11], step2[10]); + step1[12] = highbd_idct_add_dual(step2[12], step2[13]); + step1[13] = highbd_idct_sub_dual(step2[12], step2[13]); + step1[14] = highbd_idct_sub_dual(step2[15], step2[14]); + step1[15] = highbd_idct_add_dual(step2[15], step2[14]); + + // stage 4 + step2[0] = step2[1] = + highbd_idct_cospi_lane0_dual(step1[0], vget_high_s32(cospi_0_8_16_24)); + step2[2] = + highbd_idct_cospi_lane1_dual(step1[2], vget_high_s32(cospi_0_8_16_24)); + step2[3] = + highbd_idct_cospi_lane1_dual(step1[2], vget_low_s32(cospi_0_8_16_24)); + step2[4] = highbd_idct_add_dual(step1[4], step1[5]); + step2[5] = highbd_idct_sub_dual(step1[4], step1[5]); + step2[6] = highbd_idct_sub_dual(step1[7], step1[6]); + step2[7] = highbd_idct_add_dual(step1[7], step1[6]); + step2[8] = step1[8]; + highbd_idct_cospi_8_24_q(step1[14], step1[9], cospi_0_8_16_24, &step2[9], + &step2[14]); + highbd_idct_cospi_8_24_neg_q(step1[13], step1[10], cospi_0_8_16_24, + &step2[13], &step2[10]); + step2[11] = step1[11]; + step2[12] = step1[12]; + step2[15] = step1[15]; + + // stage 5 + step1[0] = highbd_idct_add_dual(step2[0], step2[3]); + step1[1] = highbd_idct_add_dual(step2[1], step2[2]); + step1[2] = highbd_idct_sub_dual(step2[1], step2[2]); + step1[3] = highbd_idct_sub_dual(step2[0], step2[3]); + step1[4] = step2[4]; + highbd_idct_cospi_16_16_q(step2[5], step2[6], cospi_0_8_16_24, &step1[5], + &step1[6]); + step1[7] = step2[7]; + step1[8] = highbd_idct_add_dual(step2[8], step2[11]); + step1[9] = highbd_idct_add_dual(step2[9], step2[10]); + step1[10] = highbd_idct_sub_dual(step2[9], step2[10]); + step1[11] = highbd_idct_sub_dual(step2[8], step2[11]); + step1[12] = highbd_idct_sub_dual(step2[15], step2[12]); + step1[13] = highbd_idct_sub_dual(step2[14], step2[13]); + step1[14] = highbd_idct_add_dual(step2[14], step2[13]); + step1[15] = highbd_idct_add_dual(step2[15], step2[12]); + + // stage 6 + step2[0] = highbd_idct_add_dual(step1[0], step1[7]); + step2[1] = highbd_idct_add_dual(step1[1], step1[6]); + step2[2] = highbd_idct_add_dual(step1[2], step1[5]); + step2[3] = highbd_idct_add_dual(step1[3], step1[4]); + step2[4] = highbd_idct_sub_dual(step1[3], step1[4]); + step2[5] = highbd_idct_sub_dual(step1[2], step1[5]); + step2[6] = highbd_idct_sub_dual(step1[1], step1[6]); + step2[7] = highbd_idct_sub_dual(step1[0], step1[7]); + highbd_idct_cospi_16_16_q(step1[10], step1[13], cospi_0_8_16_24, &step2[10], + &step2[13]); + highbd_idct_cospi_16_16_q(step1[11], step1[12], cospi_0_8_16_24, &step2[11], + &step2[12]); + step2[8] = step1[8]; + step2[9] = step1[9]; + step2[14] = step1[14]; + step2[15] = step1[15]; + + // stage 7 + highbd_idct16x16_add_stage7_dual(step2, out); + + if (output) { + highbd_idct16x16_store_pass1(out, output); + } else { + highbd_idct16x16_add_store(out, dest, stride, bd); + } +} + +void vpx_highbd_idct16x16_10_add_half1d_pass1(const tran_low_t *input, + int32_t *output) { + const int32x4_t cospi_0_8_16_24 = vld1q_s32(kCospi32 + 0); + const int32x4_t cospi_4_12_20N_28 = vld1q_s32(kCospi32 + 4); + const int32x4_t cospi_2_30_10_22 = vld1q_s32(kCospi32 + 8); + const int32x4_t cospi_6_26N_14_18N = vld1q_s32(kCospi32 + 12); + int32x4_t in[4], step1[16], step2[16], out[16]; + + // Load input (4x4) + in[0] = vld1q_s32(input); + input += 16; + in[1] = vld1q_s32(input); + input += 16; + in[2] = vld1q_s32(input); + input += 16; + in[3] = vld1q_s32(input); + + // Transpose + transpose_s32_4x4(&in[0], &in[1], &in[2], &in[3]); + + // stage 1 + step1[0] = in[0 / 2]; + step1[4] = in[4 / 2]; + step1[8] = in[2 / 2]; + step1[12] = in[6 / 2]; + + // stage 2 + step2[0] = step1[0]; + step2[4] = step1[4]; + step2[8] = highbd_idct_cospi_lane1(step1[8], vget_low_s32(cospi_2_30_10_22)); + step2[11] = + highbd_idct_cospi_lane1(step1[12], vget_low_s32(cospi_6_26N_14_18N)); + step2[12] = + highbd_idct_cospi_lane0(step1[12], vget_low_s32(cospi_6_26N_14_18N)); + step2[15] = highbd_idct_cospi_lane0(step1[8], vget_low_s32(cospi_2_30_10_22)); + + // stage 3 + step1[0] = step2[0]; + step1[4] = + highbd_idct_cospi_lane1(step2[4], vget_high_s32(cospi_4_12_20N_28)); + step1[7] = highbd_idct_cospi_lane0(step2[4], vget_low_s32(cospi_4_12_20N_28)); + step1[8] = step2[8]; + step1[9] = step2[8]; + step1[10] = step2[11]; + step1[11] = step2[11]; + step1[12] = step2[12]; + step1[13] = step2[12]; + step1[14] = step2[15]; + step1[15] = step2[15]; + + // stage 4 + step2[0] = step2[1] = + highbd_idct_cospi_lane0(step1[0], vget_high_s32(cospi_0_8_16_24)); + step2[4] = step1[4]; + step2[5] = step1[4]; + step2[6] = step1[7]; + step2[7] = step1[7]; + step2[8] = step1[8]; + highbd_idct_cospi_8_24_d(step1[14], step1[9], cospi_0_8_16_24, &step2[9], + &step2[14]); + highbd_idct_cospi_8_24_neg_d(step1[13], step1[10], cospi_0_8_16_24, + &step2[13], &step2[10]); + step2[11] = step1[11]; + step2[12] = step1[12]; + step2[15] = step1[15]; + + // stage 5 + step1[0] = step2[0]; + step1[1] = step2[1]; + step1[2] = step2[1]; + step1[3] = step2[0]; + step1[4] = step2[4]; + highbd_idct_cospi_16_16_d(step2[5], step2[6], cospi_0_8_16_24, &step1[5], + &step1[6]); + step1[7] = step2[7]; + step1[8] = vaddq_s32(step2[8], step2[11]); + step1[9] = vaddq_s32(step2[9], step2[10]); + step1[10] = vsubq_s32(step2[9], step2[10]); + step1[11] = vsubq_s32(step2[8], step2[11]); + step1[12] = vsubq_s32(step2[15], step2[12]); + step1[13] = vsubq_s32(step2[14], step2[13]); + step1[14] = vaddq_s32(step2[14], step2[13]); + step1[15] = vaddq_s32(step2[15], step2[12]); + + // stage 6 + step2[0] = vaddq_s32(step1[0], step1[7]); + step2[1] = vaddq_s32(step1[1], step1[6]); + step2[2] = vaddq_s32(step1[2], step1[5]); + step2[3] = vaddq_s32(step1[3], step1[4]); + step2[4] = vsubq_s32(step1[3], step1[4]); + step2[5] = vsubq_s32(step1[2], step1[5]); + step2[6] = vsubq_s32(step1[1], step1[6]); + step2[7] = vsubq_s32(step1[0], step1[7]); + highbd_idct_cospi_16_16_d(step1[10], step1[13], cospi_0_8_16_24, &step2[10], + &step2[13]); + highbd_idct_cospi_16_16_d(step1[11], step1[12], cospi_0_8_16_24, &step2[11], + &step2[12]); + step2[8] = step1[8]; + step2[9] = step1[9]; + step2[14] = step1[14]; + step2[15] = step1[15]; + + // stage 7 + highbd_idct16x16_add_stage7(step2, out); + + // pass 1: save the result into output + vst1q_s32(output, out[0]); + output += 4; + vst1q_s32(output, out[1]); + output += 4; + vst1q_s32(output, out[2]); + output += 4; + vst1q_s32(output, out[3]); + output += 4; + vst1q_s32(output, out[4]); + output += 4; + vst1q_s32(output, out[5]); + output += 4; + vst1q_s32(output, out[6]); + output += 4; + vst1q_s32(output, out[7]); + output += 4; + vst1q_s32(output, out[8]); + output += 4; + vst1q_s32(output, out[9]); + output += 4; + vst1q_s32(output, out[10]); + output += 4; + vst1q_s32(output, out[11]); + output += 4; + vst1q_s32(output, out[12]); + output += 4; + vst1q_s32(output, out[13]); + output += 4; + vst1q_s32(output, out[14]); + output += 4; + vst1q_s32(output, out[15]); +} + +void vpx_highbd_idct16x16_10_add_half1d_pass2(const int32_t *input, + int32_t *const output, + uint16_t *const dest, + const int stride, const int bd) { + const int32x4_t cospi_0_8_16_24 = vld1q_s32(kCospi32 + 0); + const int32x4_t cospi_4_12_20N_28 = vld1q_s32(kCospi32 + 4); + const int32x4_t cospi_2_30_10_22 = vld1q_s32(kCospi32 + 8); + const int32x4_t cospi_6_26N_14_18N = vld1q_s32(kCospi32 + 12); + int32x4x2_t in[4], step1[16], step2[16], out[16]; + + // Load input (4x8) + in[0].val[0] = vld1q_s32(input); + input += 4; + in[0].val[1] = vld1q_s32(input); + input += 4; + in[1].val[0] = vld1q_s32(input); + input += 4; + in[1].val[1] = vld1q_s32(input); + input += 4; + in[2].val[0] = vld1q_s32(input); + input += 4; + in[2].val[1] = vld1q_s32(input); + input += 4; + in[3].val[0] = vld1q_s32(input); + input += 4; + in[3].val[1] = vld1q_s32(input); + + // Transpose + transpose_s32_4x8(&in[0].val[0], &in[0].val[1], &in[1].val[0], &in[1].val[1], + &in[2].val[0], &in[2].val[1], &in[3].val[0], &in[3].val[1]); + + // stage 1 + step1[0] = in[0 / 2]; + step1[4] = in[4 / 2]; + step1[8] = in[2 / 2]; + step1[12] = in[6 / 2]; + + // stage 2 + step2[0] = step1[0]; + step2[4] = step1[4]; + step2[8] = + highbd_idct_cospi_lane1_dual(step1[8], vget_low_s32(cospi_2_30_10_22)); + step2[11] = + highbd_idct_cospi_lane1_dual(step1[12], vget_low_s32(cospi_6_26N_14_18N)); + step2[12] = + highbd_idct_cospi_lane0_dual(step1[12], vget_low_s32(cospi_6_26N_14_18N)); + step2[15] = + highbd_idct_cospi_lane0_dual(step1[8], vget_low_s32(cospi_2_30_10_22)); + + // stage 3 + step1[0] = step2[0]; + step1[4] = + highbd_idct_cospi_lane1_dual(step2[4], vget_high_s32(cospi_4_12_20N_28)); + step1[7] = + highbd_idct_cospi_lane0_dual(step2[4], vget_low_s32(cospi_4_12_20N_28)); + step1[8] = step2[8]; + step1[9] = step2[8]; + step1[10] = step2[11]; + step1[11] = step2[11]; + step1[12] = step2[12]; + step1[13] = step2[12]; + step1[14] = step2[15]; + step1[15] = step2[15]; + + // stage 4 + step2[0] = step2[1] = + highbd_idct_cospi_lane0_dual(step1[0], vget_high_s32(cospi_0_8_16_24)); + step2[4] = step1[4]; + step2[5] = step1[4]; + step2[6] = step1[7]; + step2[7] = step1[7]; + step2[8] = step1[8]; + highbd_idct_cospi_8_24_q(step1[14], step1[9], cospi_0_8_16_24, &step2[9], + &step2[14]); + highbd_idct_cospi_8_24_neg_q(step1[13], step1[10], cospi_0_8_16_24, + &step2[13], &step2[10]); + step2[11] = step1[11]; + step2[12] = step1[12]; + step2[15] = step1[15]; + + // stage 5 + step1[0] = step2[0]; + step1[1] = step2[1]; + step1[2] = step2[1]; + step1[3] = step2[0]; + step1[4] = step2[4]; + highbd_idct_cospi_16_16_q(step2[5], step2[6], cospi_0_8_16_24, &step1[5], + &step1[6]); + step1[7] = step2[7]; + step1[8] = highbd_idct_add_dual(step2[8], step2[11]); + step1[9] = highbd_idct_add_dual(step2[9], step2[10]); + step1[10] = highbd_idct_sub_dual(step2[9], step2[10]); + step1[11] = highbd_idct_sub_dual(step2[8], step2[11]); + step1[12] = highbd_idct_sub_dual(step2[15], step2[12]); + step1[13] = highbd_idct_sub_dual(step2[14], step2[13]); + step1[14] = highbd_idct_add_dual(step2[14], step2[13]); + step1[15] = highbd_idct_add_dual(step2[15], step2[12]); + + // stage 6 + step2[0] = highbd_idct_add_dual(step1[0], step1[7]); + step2[1] = highbd_idct_add_dual(step1[1], step1[6]); + step2[2] = highbd_idct_add_dual(step1[2], step1[5]); + step2[3] = highbd_idct_add_dual(step1[3], step1[4]); + step2[4] = highbd_idct_sub_dual(step1[3], step1[4]); + step2[5] = highbd_idct_sub_dual(step1[2], step1[5]); + step2[6] = highbd_idct_sub_dual(step1[1], step1[6]); + step2[7] = highbd_idct_sub_dual(step1[0], step1[7]); + highbd_idct_cospi_16_16_q(step1[10], step1[13], cospi_0_8_16_24, &step2[10], + &step2[13]); + highbd_idct_cospi_16_16_q(step1[11], step1[12], cospi_0_8_16_24, &step2[11], + &step2[12]); + step2[8] = step1[8]; + step2[9] = step1[9]; + step2[14] = step1[14]; + step2[15] = step1[15]; + + // stage 7 + highbd_idct16x16_add_stage7_dual(step2, out); + + if (output) { + highbd_idct16x16_store_pass1(out, output); + } else { + highbd_idct16x16_add_store(out, dest, stride, bd); + } +} + +void vpx_highbd_idct16x16_256_add_neon(const tran_low_t *input, uint16_t *dest, + int stride, int bd) { + if (bd == 8) { + int16_t row_idct_output[16 * 16]; + + // pass 1 + // Parallel idct on the upper 8 rows + vpx_idct16x16_256_add_half1d(input, row_idct_output, dest, stride, 1); + + // Parallel idct on the lower 8 rows + vpx_idct16x16_256_add_half1d(input + 8 * 16, row_idct_output + 8, dest, + stride, 1); + + // pass 2 + // Parallel idct to get the left 8 columns + vpx_idct16x16_256_add_half1d(row_idct_output, NULL, dest, stride, 1); + + // Parallel idct to get the right 8 columns + vpx_idct16x16_256_add_half1d(row_idct_output + 8 * 16, NULL, dest + 8, + stride, 1); + } else { + int32_t row_idct_output[16 * 16]; + + // pass 1 + // Parallel idct on the upper 8 rows + vpx_highbd_idct16x16_256_add_half1d(input, row_idct_output, dest, stride, + bd); + + // Parallel idct on the lower 8 rows + vpx_highbd_idct16x16_256_add_half1d(input + 8 * 16, row_idct_output + 8, + dest, stride, bd); + + // pass 2 + // Parallel idct to get the left 8 columns + vpx_highbd_idct16x16_256_add_half1d(row_idct_output, NULL, dest, stride, + bd); + + // Parallel idct to get the right 8 columns + vpx_highbd_idct16x16_256_add_half1d(row_idct_output + 8 * 16, NULL, + dest + 8, stride, bd); + } +} + +void vpx_highbd_idct16x16_38_add_neon(const tran_low_t *input, uint16_t *dest, + int stride, int bd) { + if (bd == 8) { + int16_t row_idct_output[16 * 16]; + + // pass 1 + // Parallel idct on the upper 8 rows + vpx_idct16x16_38_add_half1d(input, row_idct_output, dest, stride, 1); + + // pass 2 + // Parallel idct to get the left 8 columns + vpx_idct16x16_38_add_half1d(row_idct_output, NULL, dest, stride, 1); + + // Parallel idct to get the right 8 columns + vpx_idct16x16_38_add_half1d(row_idct_output + 16 * 8, NULL, dest + 8, + stride, 1); + } else { + int32_t row_idct_output[16 * 16]; + + // pass 1 + // Parallel idct on the upper 8 rows + vpx_highbd_idct16x16_38_add_half1d(input, row_idct_output, dest, stride, + bd); + + // pass 2 + // Parallel idct to get the left 8 columns + vpx_highbd_idct16x16_38_add_half1d(row_idct_output, NULL, dest, stride, bd); + + // Parallel idct to get the right 8 columns + vpx_highbd_idct16x16_38_add_half1d(row_idct_output + 16 * 8, NULL, dest + 8, + stride, bd); + } +} + +void vpx_highbd_idct16x16_10_add_neon(const tran_low_t *input, uint16_t *dest, + int stride, int bd) { + if (bd == 8) { + int16_t row_idct_output[4 * 16]; + + // pass 1 + // Parallel idct on the upper 8 rows + vpx_idct16x16_10_add_half1d_pass1(input, row_idct_output); + + // pass 2 + // Parallel idct to get the left 8 columns + vpx_idct16x16_10_add_half1d_pass2(row_idct_output, NULL, dest, stride, 1); + + // Parallel idct to get the right 8 columns + vpx_idct16x16_10_add_half1d_pass2(row_idct_output + 4 * 8, NULL, dest + 8, + stride, 1); + } else { + int32_t row_idct_output[4 * 16]; + + // pass 1 + // Parallel idct on the upper 8 rows + vpx_highbd_idct16x16_10_add_half1d_pass1(input, row_idct_output); + + // pass 2 + // Parallel idct to get the left 8 columns + vpx_highbd_idct16x16_10_add_half1d_pass2(row_idct_output, NULL, dest, + stride, bd); + + // Parallel idct to get the right 8 columns + vpx_highbd_idct16x16_10_add_half1d_pass2(row_idct_output + 4 * 8, NULL, + dest + 8, stride, bd); + } +} + +static INLINE void highbd_idct16x16_1_add_pos_kernel(uint16_t **dest, + const int stride, + const int16x8_t res, + const int16x8_t max) { + const uint16x8_t a0 = vld1q_u16(*dest + 0); + const uint16x8_t a1 = vld1q_u16(*dest + 8); + const int16x8_t b0 = vaddq_s16(res, vreinterpretq_s16_u16(a0)); + const int16x8_t b1 = vaddq_s16(res, vreinterpretq_s16_u16(a1)); + const int16x8_t c0 = vminq_s16(b0, max); + const int16x8_t c1 = vminq_s16(b1, max); + vst1q_u16(*dest + 0, vreinterpretq_u16_s16(c0)); + vst1q_u16(*dest + 8, vreinterpretq_u16_s16(c1)); + *dest += stride; +} + +static INLINE void highbd_idct16x16_1_add_neg_kernel(uint16_t **dest, + const int stride, + const int16x8_t res) { + const uint16x8_t a0 = vld1q_u16(*dest + 0); + const uint16x8_t a1 = vld1q_u16(*dest + 8); + const int16x8_t b0 = vaddq_s16(res, vreinterpretq_s16_u16(a0)); + const int16x8_t b1 = vaddq_s16(res, vreinterpretq_s16_u16(a1)); + const uint16x8_t c0 = vqshluq_n_s16(b0, 0); + const uint16x8_t c1 = vqshluq_n_s16(b1, 0); + vst1q_u16(*dest + 0, c0); + vst1q_u16(*dest + 8, c1); + *dest += stride; +} + +void vpx_highbd_idct16x16_1_add_neon(const tran_low_t *input, uint16_t *dest, + int stride, int bd) { + const tran_low_t out0 = HIGHBD_WRAPLOW( + dct_const_round_shift(input[0] * (tran_high_t)cospi_16_64), bd); + const tran_low_t out1 = HIGHBD_WRAPLOW( + dct_const_round_shift(out0 * (tran_high_t)cospi_16_64), bd); + const int16_t a1 = ROUND_POWER_OF_TWO(out1, 6); + const int16x8_t dc = vdupq_n_s16(a1); + int i; + + if (a1 >= 0) { + const int16x8_t max = vdupq_n_s16((1 << bd) - 1); + for (i = 0; i < 4; ++i) { + highbd_idct16x16_1_add_pos_kernel(&dest, stride, dc, max); + highbd_idct16x16_1_add_pos_kernel(&dest, stride, dc, max); + highbd_idct16x16_1_add_pos_kernel(&dest, stride, dc, max); + highbd_idct16x16_1_add_pos_kernel(&dest, stride, dc, max); + } + } else { + for (i = 0; i < 4; ++i) { + highbd_idct16x16_1_add_neg_kernel(&dest, stride, dc); + highbd_idct16x16_1_add_neg_kernel(&dest, stride, dc); + highbd_idct16x16_1_add_neg_kernel(&dest, stride, dc); + highbd_idct16x16_1_add_neg_kernel(&dest, stride, dc); + } + } +} diff --git a/vpx_dsp/arm/highbd_idct32x32_1024_add_neon.c b/vpx_dsp/arm/highbd_idct32x32_1024_add_neon.c new file mode 100644 index 0000000..96a55c4 --- /dev/null +++ b/vpx_dsp/arm/highbd_idct32x32_1024_add_neon.c @@ -0,0 +1,646 @@ +/* + * Copyright (c) 2017 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include + +#include "./vpx_config.h" +#include "./vpx_dsp_rtcd.h" +#include "vpx_dsp/arm/idct_neon.h" +#include "vpx_dsp/arm/transpose_neon.h" +#include "vpx_dsp/txfm_common.h" + +static INLINE void load_from_transformed(const int32_t *const trans_buf, + const int first, const int second, + int32x4x2_t *const q0, + int32x4x2_t *const q1) { + q0->val[0] = vld1q_s32(trans_buf + first * 8); + q0->val[1] = vld1q_s32(trans_buf + first * 8 + 4); + q1->val[0] = vld1q_s32(trans_buf + second * 8); + q1->val[1] = vld1q_s32(trans_buf + second * 8 + 4); +} + +static INLINE void load_from_output(const int32_t *const out, const int first, + const int second, int32x4x2_t *const q0, + int32x4x2_t *const q1) { + q0->val[0] = vld1q_s32(out + first * 32); + q0->val[1] = vld1q_s32(out + first * 32 + 4); + q1->val[0] = vld1q_s32(out + second * 32); + q1->val[1] = vld1q_s32(out + second * 32 + 4); +} + +static INLINE void store_in_output(int32_t *const out, const int first, + const int second, const int32x4x2_t q0, + const int32x4x2_t q1) { + vst1q_s32(out + first * 32, q0.val[0]); + vst1q_s32(out + first * 32 + 4, q0.val[1]); + vst1q_s32(out + second * 32, q1.val[0]); + vst1q_s32(out + second * 32 + 4, q1.val[1]); +} + +static INLINE void highbd_store_combine_results( + uint16_t *p1, uint16_t *p2, const int stride, const int32x4x2_t q0, + const int32x4x2_t q1, const int32x4x2_t q2, const int32x4x2_t q3, + const int16x8_t max) { + int16x8_t o[4]; + uint16x8_t d[4]; + + d[0] = vld1q_u16(p1); + p1 += stride; + d[1] = vld1q_u16(p1); + d[3] = vld1q_u16(p2); + p2 -= stride; + d[2] = vld1q_u16(p2); + + o[0] = vcombine_s16(vrshrn_n_s32(q0.val[0], 6), vrshrn_n_s32(q0.val[1], 6)); + o[1] = vcombine_s16(vrshrn_n_s32(q1.val[0], 6), vrshrn_n_s32(q1.val[1], 6)); + o[2] = vcombine_s16(vrshrn_n_s32(q2.val[0], 6), vrshrn_n_s32(q2.val[1], 6)); + o[3] = vcombine_s16(vrshrn_n_s32(q3.val[0], 6), vrshrn_n_s32(q3.val[1], 6)); + + o[0] = vqaddq_s16(o[0], vreinterpretq_s16_u16(d[0])); + o[1] = vqaddq_s16(o[1], vreinterpretq_s16_u16(d[1])); + o[2] = vqaddq_s16(o[2], vreinterpretq_s16_u16(d[2])); + o[3] = vqaddq_s16(o[3], vreinterpretq_s16_u16(d[3])); + o[0] = vminq_s16(o[0], max); + o[1] = vminq_s16(o[1], max); + o[2] = vminq_s16(o[2], max); + o[3] = vminq_s16(o[3], max); + d[0] = vqshluq_n_s16(o[0], 0); + d[1] = vqshluq_n_s16(o[1], 0); + d[2] = vqshluq_n_s16(o[2], 0); + d[3] = vqshluq_n_s16(o[3], 0); + + vst1q_u16(p1, d[1]); + p1 -= stride; + vst1q_u16(p1, d[0]); + vst1q_u16(p2, d[2]); + p2 += stride; + vst1q_u16(p2, d[3]); +} + +static INLINE void do_butterfly(const int32x4x2_t qIn0, const int32x4x2_t qIn1, + const int32_t first_const, + const int32_t second_const, + int32x4x2_t *const qOut0, + int32x4x2_t *const qOut1) { + int64x2x2_t q[4]; + int32x2_t d[6]; + + // Note: using v{mul, mla, mls}l_n_s32 here slows down 35% with gcc 4.9. + d[4] = vdup_n_s32(first_const); + d[5] = vdup_n_s32(second_const); + + q[0].val[0] = vmull_s32(vget_low_s32(qIn0.val[0]), d[4]); + q[0].val[1] = vmull_s32(vget_high_s32(qIn0.val[0]), d[4]); + q[1].val[0] = vmull_s32(vget_low_s32(qIn0.val[1]), d[4]); + q[1].val[1] = vmull_s32(vget_high_s32(qIn0.val[1]), d[4]); + q[0].val[0] = vmlsl_s32(q[0].val[0], vget_low_s32(qIn1.val[0]), d[5]); + q[0].val[1] = vmlsl_s32(q[0].val[1], vget_high_s32(qIn1.val[0]), d[5]); + q[1].val[0] = vmlsl_s32(q[1].val[0], vget_low_s32(qIn1.val[1]), d[5]); + q[1].val[1] = vmlsl_s32(q[1].val[1], vget_high_s32(qIn1.val[1]), d[5]); + + q[2].val[0] = vmull_s32(vget_low_s32(qIn0.val[0]), d[5]); + q[2].val[1] = vmull_s32(vget_high_s32(qIn0.val[0]), d[5]); + q[3].val[0] = vmull_s32(vget_low_s32(qIn0.val[1]), d[5]); + q[3].val[1] = vmull_s32(vget_high_s32(qIn0.val[1]), d[5]); + q[2].val[0] = vmlal_s32(q[2].val[0], vget_low_s32(qIn1.val[0]), d[4]); + q[2].val[1] = vmlal_s32(q[2].val[1], vget_high_s32(qIn1.val[0]), d[4]); + q[3].val[0] = vmlal_s32(q[3].val[0], vget_low_s32(qIn1.val[1]), d[4]); + q[3].val[1] = vmlal_s32(q[3].val[1], vget_high_s32(qIn1.val[1]), d[4]); + + qOut0->val[0] = vcombine_s32(vrshrn_n_s64(q[0].val[0], DCT_CONST_BITS), + vrshrn_n_s64(q[0].val[1], DCT_CONST_BITS)); + qOut0->val[1] = vcombine_s32(vrshrn_n_s64(q[1].val[0], DCT_CONST_BITS), + vrshrn_n_s64(q[1].val[1], DCT_CONST_BITS)); + qOut1->val[0] = vcombine_s32(vrshrn_n_s64(q[2].val[0], DCT_CONST_BITS), + vrshrn_n_s64(q[2].val[1], DCT_CONST_BITS)); + qOut1->val[1] = vcombine_s32(vrshrn_n_s64(q[3].val[0], DCT_CONST_BITS), + vrshrn_n_s64(q[3].val[1], DCT_CONST_BITS)); +} + +static INLINE void load_s32x4q_dual( + const int32_t *in, int32x4x2_t *const s0, int32x4x2_t *const s1, + int32x4x2_t *const s2, int32x4x2_t *const s3, int32x4x2_t *const s4, + int32x4x2_t *const s5, int32x4x2_t *const s6, int32x4x2_t *const s7) { + s0->val[0] = vld1q_s32(in); + s0->val[1] = vld1q_s32(in + 4); + in += 32; + s1->val[0] = vld1q_s32(in); + s1->val[1] = vld1q_s32(in + 4); + in += 32; + s2->val[0] = vld1q_s32(in); + s2->val[1] = vld1q_s32(in + 4); + in += 32; + s3->val[0] = vld1q_s32(in); + s3->val[1] = vld1q_s32(in + 4); + in += 32; + s4->val[0] = vld1q_s32(in); + s4->val[1] = vld1q_s32(in + 4); + in += 32; + s5->val[0] = vld1q_s32(in); + s5->val[1] = vld1q_s32(in + 4); + in += 32; + s6->val[0] = vld1q_s32(in); + s6->val[1] = vld1q_s32(in + 4); + in += 32; + s7->val[0] = vld1q_s32(in); + s7->val[1] = vld1q_s32(in + 4); +} + +static INLINE void transpose_and_store_s32_8x8(int32x4x2_t a0, int32x4x2_t a1, + int32x4x2_t a2, int32x4x2_t a3, + int32x4x2_t a4, int32x4x2_t a5, + int32x4x2_t a6, int32x4x2_t a7, + int32_t **out) { + transpose_s32_8x8(&a0, &a1, &a2, &a3, &a4, &a5, &a6, &a7); + + vst1q_s32(*out, a0.val[0]); + *out += 4; + vst1q_s32(*out, a0.val[1]); + *out += 4; + vst1q_s32(*out, a1.val[0]); + *out += 4; + vst1q_s32(*out, a1.val[1]); + *out += 4; + vst1q_s32(*out, a2.val[0]); + *out += 4; + vst1q_s32(*out, a2.val[1]); + *out += 4; + vst1q_s32(*out, a3.val[0]); + *out += 4; + vst1q_s32(*out, a3.val[1]); + *out += 4; + vst1q_s32(*out, a4.val[0]); + *out += 4; + vst1q_s32(*out, a4.val[1]); + *out += 4; + vst1q_s32(*out, a5.val[0]); + *out += 4; + vst1q_s32(*out, a5.val[1]); + *out += 4; + vst1q_s32(*out, a6.val[0]); + *out += 4; + vst1q_s32(*out, a6.val[1]); + *out += 4; + vst1q_s32(*out, a7.val[0]); + *out += 4; + vst1q_s32(*out, a7.val[1]); + *out += 4; +} + +static INLINE void idct32_transpose_pair(const int32_t *input, int32_t *t_buf) { + int i; + int32x4x2_t s0, s1, s2, s3, s4, s5, s6, s7; + + for (i = 0; i < 4; i++, input += 8) { + load_s32x4q_dual(input, &s0, &s1, &s2, &s3, &s4, &s5, &s6, &s7); + transpose_and_store_s32_8x8(s0, s1, s2, s3, s4, s5, s6, s7, &t_buf); + } +} + +static INLINE void idct32_bands_end_1st_pass(int32_t *const out, + int32x4x2_t *const q) { + store_in_output(out, 16, 17, q[6], q[7]); + store_in_output(out, 14, 15, q[8], q[9]); + + load_from_output(out, 30, 31, &q[0], &q[1]); + q[4] = highbd_idct_add_dual(q[2], q[1]); + q[5] = highbd_idct_add_dual(q[3], q[0]); + q[6] = highbd_idct_sub_dual(q[3], q[0]); + q[7] = highbd_idct_sub_dual(q[2], q[1]); + store_in_output(out, 30, 31, q[6], q[7]); + store_in_output(out, 0, 1, q[4], q[5]); + + load_from_output(out, 12, 13, &q[0], &q[1]); + q[2] = highbd_idct_add_dual(q[10], q[1]); + q[3] = highbd_idct_add_dual(q[11], q[0]); + q[4] = highbd_idct_sub_dual(q[11], q[0]); + q[5] = highbd_idct_sub_dual(q[10], q[1]); + + load_from_output(out, 18, 19, &q[0], &q[1]); + q[8] = highbd_idct_add_dual(q[4], q[1]); + q[9] = highbd_idct_add_dual(q[5], q[0]); + q[6] = highbd_idct_sub_dual(q[5], q[0]); + q[7] = highbd_idct_sub_dual(q[4], q[1]); + store_in_output(out, 18, 19, q[6], q[7]); + store_in_output(out, 12, 13, q[8], q[9]); + + load_from_output(out, 28, 29, &q[0], &q[1]); + q[4] = highbd_idct_add_dual(q[2], q[1]); + q[5] = highbd_idct_add_dual(q[3], q[0]); + q[6] = highbd_idct_sub_dual(q[3], q[0]); + q[7] = highbd_idct_sub_dual(q[2], q[1]); + store_in_output(out, 28, 29, q[6], q[7]); + store_in_output(out, 2, 3, q[4], q[5]); + + load_from_output(out, 10, 11, &q[0], &q[1]); + q[2] = highbd_idct_add_dual(q[12], q[1]); + q[3] = highbd_idct_add_dual(q[13], q[0]); + q[4] = highbd_idct_sub_dual(q[13], q[0]); + q[5] = highbd_idct_sub_dual(q[12], q[1]); + + load_from_output(out, 20, 21, &q[0], &q[1]); + q[8] = highbd_idct_add_dual(q[4], q[1]); + q[9] = highbd_idct_add_dual(q[5], q[0]); + q[6] = highbd_idct_sub_dual(q[5], q[0]); + q[7] = highbd_idct_sub_dual(q[4], q[1]); + store_in_output(out, 20, 21, q[6], q[7]); + store_in_output(out, 10, 11, q[8], q[9]); + + load_from_output(out, 26, 27, &q[0], &q[1]); + q[4] = highbd_idct_add_dual(q[2], q[1]); + q[5] = highbd_idct_add_dual(q[3], q[0]); + q[6] = highbd_idct_sub_dual(q[3], q[0]); + q[7] = highbd_idct_sub_dual(q[2], q[1]); + store_in_output(out, 26, 27, q[6], q[7]); + store_in_output(out, 4, 5, q[4], q[5]); + + load_from_output(out, 8, 9, &q[0], &q[1]); + q[2] = highbd_idct_add_dual(q[14], q[1]); + q[3] = highbd_idct_add_dual(q[15], q[0]); + q[4] = highbd_idct_sub_dual(q[15], q[0]); + q[5] = highbd_idct_sub_dual(q[14], q[1]); + + load_from_output(out, 22, 23, &q[0], &q[1]); + q[8] = highbd_idct_add_dual(q[4], q[1]); + q[9] = highbd_idct_add_dual(q[5], q[0]); + q[6] = highbd_idct_sub_dual(q[5], q[0]); + q[7] = highbd_idct_sub_dual(q[4], q[1]); + store_in_output(out, 22, 23, q[6], q[7]); + store_in_output(out, 8, 9, q[8], q[9]); + + load_from_output(out, 24, 25, &q[0], &q[1]); + q[4] = highbd_idct_add_dual(q[2], q[1]); + q[5] = highbd_idct_add_dual(q[3], q[0]); + q[6] = highbd_idct_sub_dual(q[3], q[0]); + q[7] = highbd_idct_sub_dual(q[2], q[1]); + store_in_output(out, 24, 25, q[6], q[7]); + store_in_output(out, 6, 7, q[4], q[5]); +} + +static INLINE void idct32_bands_end_2nd_pass(const int32_t *const out, + uint16_t *const dest, + const int stride, + const int16x8_t max, + int32x4x2_t *const q) { + uint16_t *dest0 = dest + 0 * stride; + uint16_t *dest1 = dest + 31 * stride; + uint16_t *dest2 = dest + 16 * stride; + uint16_t *dest3 = dest + 15 * stride; + const int str2 = stride << 1; + + highbd_store_combine_results(dest2, dest3, stride, q[6], q[7], q[8], q[9], + max); + dest2 += str2; + dest3 -= str2; + + load_from_output(out, 30, 31, &q[0], &q[1]); + q[4] = highbd_idct_add_dual(q[2], q[1]); + q[5] = highbd_idct_add_dual(q[3], q[0]); + q[6] = highbd_idct_sub_dual(q[3], q[0]); + q[7] = highbd_idct_sub_dual(q[2], q[1]); + highbd_store_combine_results(dest0, dest1, stride, q[4], q[5], q[6], q[7], + max); + dest0 += str2; + dest1 -= str2; + + load_from_output(out, 12, 13, &q[0], &q[1]); + q[2] = highbd_idct_add_dual(q[10], q[1]); + q[3] = highbd_idct_add_dual(q[11], q[0]); + q[4] = highbd_idct_sub_dual(q[11], q[0]); + q[5] = highbd_idct_sub_dual(q[10], q[1]); + + load_from_output(out, 18, 19, &q[0], &q[1]); + q[8] = highbd_idct_add_dual(q[4], q[1]); + q[9] = highbd_idct_add_dual(q[5], q[0]); + q[6] = highbd_idct_sub_dual(q[5], q[0]); + q[7] = highbd_idct_sub_dual(q[4], q[1]); + highbd_store_combine_results(dest2, dest3, stride, q[6], q[7], q[8], q[9], + max); + dest2 += str2; + dest3 -= str2; + + load_from_output(out, 28, 29, &q[0], &q[1]); + q[4] = highbd_idct_add_dual(q[2], q[1]); + q[5] = highbd_idct_add_dual(q[3], q[0]); + q[6] = highbd_idct_sub_dual(q[3], q[0]); + q[7] = highbd_idct_sub_dual(q[2], q[1]); + highbd_store_combine_results(dest0, dest1, stride, q[4], q[5], q[6], q[7], + max); + dest0 += str2; + dest1 -= str2; + + load_from_output(out, 10, 11, &q[0], &q[1]); + q[2] = highbd_idct_add_dual(q[12], q[1]); + q[3] = highbd_idct_add_dual(q[13], q[0]); + q[4] = highbd_idct_sub_dual(q[13], q[0]); + q[5] = highbd_idct_sub_dual(q[12], q[1]); + + load_from_output(out, 20, 21, &q[0], &q[1]); + q[8] = highbd_idct_add_dual(q[4], q[1]); + q[9] = highbd_idct_add_dual(q[5], q[0]); + q[6] = highbd_idct_sub_dual(q[5], q[0]); + q[7] = highbd_idct_sub_dual(q[4], q[1]); + highbd_store_combine_results(dest2, dest3, stride, q[6], q[7], q[8], q[9], + max); + dest2 += str2; + dest3 -= str2; + + load_from_output(out, 26, 27, &q[0], &q[1]); + q[4] = highbd_idct_add_dual(q[2], q[1]); + q[5] = highbd_idct_add_dual(q[3], q[0]); + q[6] = highbd_idct_sub_dual(q[3], q[0]); + q[7] = highbd_idct_sub_dual(q[2], q[1]); + highbd_store_combine_results(dest0, dest1, stride, q[4], q[5], q[6], q[7], + max); + dest0 += str2; + dest1 -= str2; + + load_from_output(out, 8, 9, &q[0], &q[1]); + q[2] = highbd_idct_add_dual(q[14], q[1]); + q[3] = highbd_idct_add_dual(q[15], q[0]); + q[4] = highbd_idct_sub_dual(q[15], q[0]); + q[5] = highbd_idct_sub_dual(q[14], q[1]); + + load_from_output(out, 22, 23, &q[0], &q[1]); + q[8] = highbd_idct_add_dual(q[4], q[1]); + q[9] = highbd_idct_add_dual(q[5], q[0]); + q[6] = highbd_idct_sub_dual(q[5], q[0]); + q[7] = highbd_idct_sub_dual(q[4], q[1]); + highbd_store_combine_results(dest2, dest3, stride, q[6], q[7], q[8], q[9], + max); + + load_from_output(out, 24, 25, &q[0], &q[1]); + q[4] = highbd_idct_add_dual(q[2], q[1]); + q[5] = highbd_idct_add_dual(q[3], q[0]); + q[6] = highbd_idct_sub_dual(q[3], q[0]); + q[7] = highbd_idct_sub_dual(q[2], q[1]); + highbd_store_combine_results(dest0, dest1, stride, q[4], q[5], q[6], q[7], + max); +} + +static INLINE void vpx_highbd_idct32_32_neon(const tran_low_t *input, + uint16_t *dst, const int stride, + const int bd) { + int i, idct32_pass_loop; + int32_t trans_buf[32 * 8]; + int32_t pass1[32 * 32]; + int32_t pass2[32 * 32]; + int32_t *out; + int32x4x2_t q[16]; + + for (idct32_pass_loop = 0, out = pass1; idct32_pass_loop < 2; + idct32_pass_loop++, input = pass1, out = pass2) { + for (i = 0; i < 4; i++, out += 8) { // idct32_bands_loop + idct32_transpose_pair(input, trans_buf); + input += 32 * 8; + + // ----------------------------------------- + // BLOCK A: 16-19,28-31 + // ----------------------------------------- + // generate 16,17,30,31 + // part of stage 1 + load_from_transformed(trans_buf, 1, 31, &q[14], &q[13]); + do_butterfly(q[14], q[13], cospi_31_64, cospi_1_64, &q[0], &q[2]); + load_from_transformed(trans_buf, 17, 15, &q[14], &q[13]); + do_butterfly(q[14], q[13], cospi_15_64, cospi_17_64, &q[1], &q[3]); + // part of stage 2 + q[4] = highbd_idct_add_dual(q[0], q[1]); + q[13] = highbd_idct_sub_dual(q[0], q[1]); + q[6] = highbd_idct_add_dual(q[2], q[3]); + q[14] = highbd_idct_sub_dual(q[2], q[3]); + // part of stage 3 + do_butterfly(q[14], q[13], cospi_28_64, cospi_4_64, &q[5], &q[7]); + + // generate 18,19,28,29 + // part of stage 1 + load_from_transformed(trans_buf, 9, 23, &q[14], &q[13]); + do_butterfly(q[14], q[13], cospi_23_64, cospi_9_64, &q[0], &q[2]); + load_from_transformed(trans_buf, 25, 7, &q[14], &q[13]); + do_butterfly(q[14], q[13], cospi_7_64, cospi_25_64, &q[1], &q[3]); + // part of stage 2 + q[13] = highbd_idct_sub_dual(q[3], q[2]); + q[3] = highbd_idct_add_dual(q[3], q[2]); + q[14] = highbd_idct_sub_dual(q[1], q[0]); + q[2] = highbd_idct_add_dual(q[1], q[0]); + // part of stage 3 + do_butterfly(q[14], q[13], -cospi_4_64, -cospi_28_64, &q[1], &q[0]); + // part of stage 4 + q[8] = highbd_idct_add_dual(q[4], q[2]); + q[9] = highbd_idct_add_dual(q[5], q[0]); + q[10] = highbd_idct_add_dual(q[7], q[1]); + q[15] = highbd_idct_add_dual(q[6], q[3]); + q[13] = highbd_idct_sub_dual(q[5], q[0]); + q[14] = highbd_idct_sub_dual(q[7], q[1]); + store_in_output(out, 16, 31, q[8], q[15]); + store_in_output(out, 17, 30, q[9], q[10]); + // part of stage 5 + do_butterfly(q[14], q[13], cospi_24_64, cospi_8_64, &q[0], &q[1]); + store_in_output(out, 29, 18, q[1], q[0]); + // part of stage 4 + q[13] = highbd_idct_sub_dual(q[4], q[2]); + q[14] = highbd_idct_sub_dual(q[6], q[3]); + // part of stage 5 + do_butterfly(q[14], q[13], cospi_24_64, cospi_8_64, &q[4], &q[6]); + store_in_output(out, 19, 28, q[4], q[6]); + + // ----------------------------------------- + // BLOCK B: 20-23,24-27 + // ----------------------------------------- + // generate 20,21,26,27 + // part of stage 1 + load_from_transformed(trans_buf, 5, 27, &q[14], &q[13]); + do_butterfly(q[14], q[13], cospi_27_64, cospi_5_64, &q[0], &q[2]); + load_from_transformed(trans_buf, 21, 11, &q[14], &q[13]); + do_butterfly(q[14], q[13], cospi_11_64, cospi_21_64, &q[1], &q[3]); + // part of stage 2 + q[13] = highbd_idct_sub_dual(q[0], q[1]); + q[0] = highbd_idct_add_dual(q[0], q[1]); + q[14] = highbd_idct_sub_dual(q[2], q[3]); + q[2] = highbd_idct_add_dual(q[2], q[3]); + // part of stage 3 + do_butterfly(q[14], q[13], cospi_12_64, cospi_20_64, &q[1], &q[3]); + + // generate 22,23,24,25 + // part of stage 1 + load_from_transformed(trans_buf, 13, 19, &q[14], &q[13]); + do_butterfly(q[14], q[13], cospi_19_64, cospi_13_64, &q[5], &q[7]); + load_from_transformed(trans_buf, 29, 3, &q[14], &q[13]); + do_butterfly(q[14], q[13], cospi_3_64, cospi_29_64, &q[4], &q[6]); + // part of stage 2 + q[14] = highbd_idct_sub_dual(q[4], q[5]); + q[5] = highbd_idct_add_dual(q[4], q[5]); + q[13] = highbd_idct_sub_dual(q[6], q[7]); + q[6] = highbd_idct_add_dual(q[6], q[7]); + // part of stage 3 + do_butterfly(q[14], q[13], -cospi_20_64, -cospi_12_64, &q[4], &q[7]); + // part of stage 4 + q[10] = highbd_idct_add_dual(q[7], q[1]); + q[11] = highbd_idct_add_dual(q[5], q[0]); + q[12] = highbd_idct_add_dual(q[6], q[2]); + q[15] = highbd_idct_add_dual(q[4], q[3]); + // part of stage 6 + load_from_output(out, 16, 17, &q[14], &q[13]); + q[8] = highbd_idct_add_dual(q[14], q[11]); + q[9] = highbd_idct_add_dual(q[13], q[10]); + q[13] = highbd_idct_sub_dual(q[13], q[10]); + q[11] = highbd_idct_sub_dual(q[14], q[11]); + store_in_output(out, 17, 16, q[9], q[8]); + load_from_output(out, 30, 31, &q[14], &q[9]); + q[8] = highbd_idct_sub_dual(q[9], q[12]); + q[10] = highbd_idct_add_dual(q[14], q[15]); + q[14] = highbd_idct_sub_dual(q[14], q[15]); + q[12] = highbd_idct_add_dual(q[9], q[12]); + store_in_output(out, 30, 31, q[10], q[12]); + // part of stage 7 + do_butterfly(q[14], q[13], cospi_16_64, cospi_16_64, &q[13], &q[14]); + store_in_output(out, 25, 22, q[14], q[13]); + do_butterfly(q[8], q[11], cospi_16_64, cospi_16_64, &q[13], &q[14]); + store_in_output(out, 24, 23, q[14], q[13]); + // part of stage 4 + q[14] = highbd_idct_sub_dual(q[5], q[0]); + q[13] = highbd_idct_sub_dual(q[6], q[2]); + do_butterfly(q[14], q[13], -cospi_8_64, -cospi_24_64, &q[5], &q[6]); + q[14] = highbd_idct_sub_dual(q[7], q[1]); + q[13] = highbd_idct_sub_dual(q[4], q[3]); + do_butterfly(q[14], q[13], -cospi_8_64, -cospi_24_64, &q[0], &q[1]); + // part of stage 6 + load_from_output(out, 18, 19, &q[14], &q[13]); + q[8] = highbd_idct_add_dual(q[14], q[1]); + q[9] = highbd_idct_add_dual(q[13], q[6]); + q[13] = highbd_idct_sub_dual(q[13], q[6]); + q[1] = highbd_idct_sub_dual(q[14], q[1]); + store_in_output(out, 18, 19, q[8], q[9]); + load_from_output(out, 28, 29, &q[8], &q[9]); + q[14] = highbd_idct_sub_dual(q[8], q[5]); + q[10] = highbd_idct_add_dual(q[8], q[5]); + q[11] = highbd_idct_add_dual(q[9], q[0]); + q[0] = highbd_idct_sub_dual(q[9], q[0]); + store_in_output(out, 28, 29, q[10], q[11]); + // part of stage 7 + do_butterfly(q[14], q[13], cospi_16_64, cospi_16_64, &q[13], &q[14]); + store_in_output(out, 20, 27, q[13], q[14]); + do_butterfly(q[0], q[1], cospi_16_64, cospi_16_64, &q[1], &q[0]); + store_in_output(out, 21, 26, q[1], q[0]); + + // ----------------------------------------- + // BLOCK C: 8-10,11-15 + // ----------------------------------------- + // generate 8,9,14,15 + // part of stage 2 + load_from_transformed(trans_buf, 2, 30, &q[14], &q[13]); + do_butterfly(q[14], q[13], cospi_30_64, cospi_2_64, &q[0], &q[2]); + load_from_transformed(trans_buf, 18, 14, &q[14], &q[13]); + do_butterfly(q[14], q[13], cospi_14_64, cospi_18_64, &q[1], &q[3]); + // part of stage 3 + q[13] = highbd_idct_sub_dual(q[0], q[1]); + q[0] = highbd_idct_add_dual(q[0], q[1]); + q[14] = highbd_idct_sub_dual(q[2], q[3]); + q[2] = highbd_idct_add_dual(q[2], q[3]); + // part of stage 4 + do_butterfly(q[14], q[13], cospi_24_64, cospi_8_64, &q[1], &q[3]); + + // generate 10,11,12,13 + // part of stage 2 + load_from_transformed(trans_buf, 10, 22, &q[14], &q[13]); + do_butterfly(q[14], q[13], cospi_22_64, cospi_10_64, &q[5], &q[7]); + load_from_transformed(trans_buf, 26, 6, &q[14], &q[13]); + do_butterfly(q[14], q[13], cospi_6_64, cospi_26_64, &q[4], &q[6]); + // part of stage 3 + q[14] = highbd_idct_sub_dual(q[4], q[5]); + q[5] = highbd_idct_add_dual(q[4], q[5]); + q[13] = highbd_idct_sub_dual(q[6], q[7]); + q[6] = highbd_idct_add_dual(q[6], q[7]); + // part of stage 4 + do_butterfly(q[14], q[13], -cospi_8_64, -cospi_24_64, &q[4], &q[7]); + // part of stage 5 + q[8] = highbd_idct_add_dual(q[0], q[5]); + q[9] = highbd_idct_add_dual(q[1], q[7]); + q[13] = highbd_idct_sub_dual(q[1], q[7]); + q[14] = highbd_idct_sub_dual(q[3], q[4]); + q[10] = highbd_idct_add_dual(q[3], q[4]); + q[15] = highbd_idct_add_dual(q[2], q[6]); + store_in_output(out, 8, 15, q[8], q[15]); + store_in_output(out, 9, 14, q[9], q[10]); + // part of stage 6 + do_butterfly(q[14], q[13], cospi_16_64, cospi_16_64, &q[1], &q[3]); + store_in_output(out, 13, 10, q[3], q[1]); + q[13] = highbd_idct_sub_dual(q[0], q[5]); + q[14] = highbd_idct_sub_dual(q[2], q[6]); + do_butterfly(q[14], q[13], cospi_16_64, cospi_16_64, &q[1], &q[3]); + store_in_output(out, 11, 12, q[1], q[3]); + + // ----------------------------------------- + // BLOCK D: 0-3,4-7 + // ----------------------------------------- + // generate 4,5,6,7 + // part of stage 3 + load_from_transformed(trans_buf, 4, 28, &q[14], &q[13]); + do_butterfly(q[14], q[13], cospi_28_64, cospi_4_64, &q[0], &q[2]); + load_from_transformed(trans_buf, 20, 12, &q[14], &q[13]); + do_butterfly(q[14], q[13], cospi_12_64, cospi_20_64, &q[1], &q[3]); + // part of stage 4 + q[13] = highbd_idct_sub_dual(q[0], q[1]); + q[0] = highbd_idct_add_dual(q[0], q[1]); + q[14] = highbd_idct_sub_dual(q[2], q[3]); + q[2] = highbd_idct_add_dual(q[2], q[3]); + // part of stage 5 + do_butterfly(q[14], q[13], cospi_16_64, cospi_16_64, &q[1], &q[3]); + + // generate 0,1,2,3 + // part of stage 4 + load_from_transformed(trans_buf, 0, 16, &q[14], &q[13]); + do_butterfly(q[14], q[13], cospi_16_64, cospi_16_64, &q[5], &q[7]); + load_from_transformed(trans_buf, 8, 24, &q[14], &q[13]); + do_butterfly(q[14], q[13], cospi_24_64, cospi_8_64, &q[14], &q[6]); + // part of stage 5 + q[4] = highbd_idct_add_dual(q[7], q[6]); + q[7] = highbd_idct_sub_dual(q[7], q[6]); + q[6] = highbd_idct_sub_dual(q[5], q[14]); + q[5] = highbd_idct_add_dual(q[5], q[14]); + // part of stage 6 + q[8] = highbd_idct_add_dual(q[4], q[2]); + q[9] = highbd_idct_add_dual(q[5], q[3]); + q[10] = highbd_idct_add_dual(q[6], q[1]); + q[11] = highbd_idct_add_dual(q[7], q[0]); + q[12] = highbd_idct_sub_dual(q[7], q[0]); + q[13] = highbd_idct_sub_dual(q[6], q[1]); + q[14] = highbd_idct_sub_dual(q[5], q[3]); + q[15] = highbd_idct_sub_dual(q[4], q[2]); + // part of stage 7 + load_from_output(out, 14, 15, &q[0], &q[1]); + q[2] = highbd_idct_add_dual(q[8], q[1]); + q[3] = highbd_idct_add_dual(q[9], q[0]); + q[4] = highbd_idct_sub_dual(q[9], q[0]); + q[5] = highbd_idct_sub_dual(q[8], q[1]); + load_from_output(out, 16, 17, &q[0], &q[1]); + q[8] = highbd_idct_add_dual(q[4], q[1]); + q[9] = highbd_idct_add_dual(q[5], q[0]); + q[6] = highbd_idct_sub_dual(q[5], q[0]); + q[7] = highbd_idct_sub_dual(q[4], q[1]); + + if (idct32_pass_loop == 0) { + idct32_bands_end_1st_pass(out, q); + } else { + const int16x8_t max = vdupq_n_s16((1 << bd) - 1); + idct32_bands_end_2nd_pass(out, dst, stride, max, q); + dst += 8; + } + } + } +} + +void vpx_highbd_idct32x32_1024_add_neon(const tran_low_t *input, uint16_t *dest, + int stride, int bd) { + if (bd == 8) { + vpx_idct32_32_neon(input, CAST_TO_BYTEPTR(dest), stride, 1); + } else { + vpx_highbd_idct32_32_neon(input, dest, stride, bd); + } +} diff --git a/vpx_dsp/arm/highbd_idct32x32_135_add_neon.c b/vpx_dsp/arm/highbd_idct32x32_135_add_neon.c new file mode 100644 index 0000000..3970a5a --- /dev/null +++ b/vpx_dsp/arm/highbd_idct32x32_135_add_neon.c @@ -0,0 +1,756 @@ +/* + * Copyright (c) 2017 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include + +#include "./vpx_config.h" +#include "./vpx_dsp_rtcd.h" +#include "vpx_dsp/arm/idct_neon.h" +#include "vpx_dsp/arm/transpose_neon.h" +#include "vpx_dsp/txfm_common.h" + +static INLINE void load_8x8_s32_dual( + const tran_low_t *input, int32x4x2_t *const in0, int32x4x2_t *const in1, + int32x4x2_t *const in2, int32x4x2_t *const in3, int32x4x2_t *const in4, + int32x4x2_t *const in5, int32x4x2_t *const in6, int32x4x2_t *const in7) { + in0->val[0] = vld1q_s32(input); + in0->val[1] = vld1q_s32(input + 4); + input += 32; + in1->val[0] = vld1q_s32(input); + in1->val[1] = vld1q_s32(input + 4); + input += 32; + in2->val[0] = vld1q_s32(input); + in2->val[1] = vld1q_s32(input + 4); + input += 32; + in3->val[0] = vld1q_s32(input); + in3->val[1] = vld1q_s32(input + 4); + input += 32; + in4->val[0] = vld1q_s32(input); + in4->val[1] = vld1q_s32(input + 4); + input += 32; + in5->val[0] = vld1q_s32(input); + in5->val[1] = vld1q_s32(input + 4); + input += 32; + in6->val[0] = vld1q_s32(input); + in6->val[1] = vld1q_s32(input + 4); + input += 32; + in7->val[0] = vld1q_s32(input); + in7->val[1] = vld1q_s32(input + 4); +} + +static INLINE void load_4x8_s32_dual(const tran_low_t *input, + int32x4_t *const in0, int32x4_t *const in1, + int32x4_t *const in2, int32x4_t *const in3, + int32x4_t *const in4, int32x4_t *const in5, + int32x4_t *const in6, + int32x4_t *const in7) { + *in0 = vld1q_s32(input); + input += 32; + *in1 = vld1q_s32(input); + input += 32; + *in2 = vld1q_s32(input); + input += 32; + *in3 = vld1q_s32(input); + input += 32; + *in4 = vld1q_s32(input); + input += 32; + *in5 = vld1q_s32(input); + input += 32; + *in6 = vld1q_s32(input); + input += 32; + *in7 = vld1q_s32(input); +} + +// Only for the first pass of the _135_ variant. Since it only uses values from +// the top left 16x16 it can safely assume all the remaining values are 0 and +// skip an awful lot of calculations. In fact, only the first 12 columns make +// the cut. None of the elements in the 13th, 14th, 15th or 16th columns are +// used so it skips any calls to input[12|13|14|15] too. +// In C this does a single row of 32 for each call. Here it transposes the top +// left 12x8 to allow using SIMD. + +// vp9/common/vp9_scan.c:vp9_default_iscan_32x32 arranges the first 135 non-zero +// coefficients as follows: +// 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 +// 0 0 2 5 10 17 25 38 47 62 83 101 121 +// 1 1 4 8 15 22 30 45 58 74 92 112 133 +// 2 3 7 12 18 28 36 52 64 82 102 118 +// 3 6 11 16 23 31 43 60 73 90 109 126 +// 4 9 14 19 29 37 50 65 78 98 116 134 +// 5 13 20 26 35 44 54 72 85 105 123 +// 6 21 27 33 42 53 63 80 94 113 132 +// 7 24 32 39 48 57 71 88 104 120 +// 8 34 40 46 56 68 81 96 111 130 +// 9 41 49 55 67 77 91 107 124 +// 10 51 59 66 76 89 99 119 131 +// 11 61 69 75 87 100 114 129 +// 12 70 79 86 97 108 122 +// 13 84 93 103 110 125 +// 14 98 106 115 127 +// 15 117 128 +static void vpx_highbd_idct32_12_neon(const tran_low_t *const input, + int32_t *output) { + int32x4x2_t in[12], s1[32], s2[32], s3[32], s4[32], s5[32], s6[32], s7[32], + s8[32]; + + load_8x8_s32_dual(input, &in[0], &in[1], &in[2], &in[3], &in[4], &in[5], + &in[6], &in[7]); + transpose_s32_8x8(&in[0], &in[1], &in[2], &in[3], &in[4], &in[5], &in[6], + &in[7]); + + load_4x8_s32_dual(input + 8, &in[8].val[0], &in[8].val[1], &in[9].val[0], + &in[9].val[1], &in[10].val[0], &in[10].val[1], + &in[11].val[0], &in[11].val[1]); + transpose_s32_4x8(&in[8].val[0], &in[8].val[1], &in[9].val[0], &in[9].val[1], + &in[10].val[0], &in[10].val[1], &in[11].val[0], + &in[11].val[1]); + + // stage 1 + s1[16] = multiply_shift_and_narrow_s32_dual(in[1], cospi_31_64); + s1[31] = multiply_shift_and_narrow_s32_dual(in[1], cospi_1_64); + + s1[18] = multiply_shift_and_narrow_s32_dual(in[9], cospi_23_64); + s1[29] = multiply_shift_and_narrow_s32_dual(in[9], cospi_9_64); + + s1[19] = multiply_shift_and_narrow_s32_dual(in[7], -cospi_25_64); + s1[28] = multiply_shift_and_narrow_s32_dual(in[7], cospi_7_64); + + s1[20] = multiply_shift_and_narrow_s32_dual(in[5], cospi_27_64); + s1[27] = multiply_shift_and_narrow_s32_dual(in[5], cospi_5_64); + + s1[21] = multiply_shift_and_narrow_s32_dual(in[11], -cospi_21_64); + s1[26] = multiply_shift_and_narrow_s32_dual(in[11], cospi_11_64); + + s1[23] = multiply_shift_and_narrow_s32_dual(in[3], -cospi_29_64); + s1[24] = multiply_shift_and_narrow_s32_dual(in[3], cospi_3_64); + + // stage 2 + s2[8] = multiply_shift_and_narrow_s32_dual(in[2], cospi_30_64); + s2[15] = multiply_shift_and_narrow_s32_dual(in[2], cospi_2_64); + + s2[10] = multiply_shift_and_narrow_s32_dual(in[10], cospi_22_64); + s2[13] = multiply_shift_and_narrow_s32_dual(in[10], cospi_10_64); + + s2[11] = multiply_shift_and_narrow_s32_dual(in[6], -cospi_26_64); + s2[12] = multiply_shift_and_narrow_s32_dual(in[6], cospi_6_64); + + s2[18] = highbd_idct_sub_dual(s1[19], s1[18]); + s2[19] = highbd_idct_add_dual(s1[18], s1[19]); + s2[20] = highbd_idct_add_dual(s1[20], s1[21]); + s2[21] = highbd_idct_sub_dual(s1[20], s1[21]); + s2[26] = highbd_idct_sub_dual(s1[27], s1[26]); + s2[27] = highbd_idct_add_dual(s1[26], s1[27]); + s2[28] = highbd_idct_add_dual(s1[28], s1[29]); + s2[29] = highbd_idct_sub_dual(s1[28], s1[29]); + + // stage 3 + s3[4] = multiply_shift_and_narrow_s32_dual(in[4], cospi_28_64); + s3[7] = multiply_shift_and_narrow_s32_dual(in[4], cospi_4_64); + + s3[10] = highbd_idct_sub_dual(s2[11], s2[10]); + s3[11] = highbd_idct_add_dual(s2[10], s2[11]); + s3[12] = highbd_idct_add_dual(s2[12], s2[13]); + s3[13] = highbd_idct_sub_dual(s2[12], s2[13]); + + s3[17] = multiply_accumulate_shift_and_narrow_s32_dual(s1[16], -cospi_4_64, + s1[31], cospi_28_64); + s3[30] = multiply_accumulate_shift_and_narrow_s32_dual(s1[16], cospi_28_64, + s1[31], cospi_4_64); + + s3[18] = multiply_accumulate_shift_and_narrow_s32_dual(s2[18], -cospi_28_64, + s2[29], -cospi_4_64); + s3[29] = multiply_accumulate_shift_and_narrow_s32_dual(s2[18], -cospi_4_64, + s2[29], cospi_28_64); + + s3[21] = multiply_accumulate_shift_and_narrow_s32_dual(s2[21], -cospi_20_64, + s2[26], cospi_12_64); + s3[26] = multiply_accumulate_shift_and_narrow_s32_dual(s2[21], cospi_12_64, + s2[26], cospi_20_64); + + s3[22] = multiply_accumulate_shift_and_narrow_s32_dual(s1[23], -cospi_12_64, + s1[24], -cospi_20_64); + s3[25] = multiply_accumulate_shift_and_narrow_s32_dual(s1[23], -cospi_20_64, + s1[24], cospi_12_64); + + // stage 4 + s4[0] = multiply_shift_and_narrow_s32_dual(in[0], cospi_16_64); + s4[2] = multiply_shift_and_narrow_s32_dual(in[8], cospi_24_64); + s4[3] = multiply_shift_and_narrow_s32_dual(in[8], cospi_8_64); + + s4[9] = multiply_accumulate_shift_and_narrow_s32_dual(s2[8], -cospi_8_64, + s2[15], cospi_24_64); + s4[14] = multiply_accumulate_shift_and_narrow_s32_dual(s2[8], cospi_24_64, + s2[15], cospi_8_64); + + s4[10] = multiply_accumulate_shift_and_narrow_s32_dual(s3[10], -cospi_24_64, + s3[13], -cospi_8_64); + s4[13] = multiply_accumulate_shift_and_narrow_s32_dual(s3[10], -cospi_8_64, + s3[13], cospi_24_64); + + s4[16] = highbd_idct_add_dual(s1[16], s2[19]); + s4[17] = highbd_idct_add_dual(s3[17], s3[18]); + s4[18] = highbd_idct_sub_dual(s3[17], s3[18]); + s4[19] = highbd_idct_sub_dual(s1[16], s2[19]); + s4[20] = highbd_idct_sub_dual(s1[23], s2[20]); + s4[21] = highbd_idct_sub_dual(s3[22], s3[21]); + s4[22] = highbd_idct_add_dual(s3[21], s3[22]); + s4[23] = highbd_idct_add_dual(s2[20], s1[23]); + s4[24] = highbd_idct_add_dual(s1[24], s2[27]); + s4[25] = highbd_idct_add_dual(s3[25], s3[26]); + s4[26] = highbd_idct_sub_dual(s3[25], s3[26]); + s4[27] = highbd_idct_sub_dual(s1[24], s2[27]); + s4[28] = highbd_idct_sub_dual(s1[31], s2[28]); + s4[29] = highbd_idct_sub_dual(s3[30], s3[29]); + s4[30] = highbd_idct_add_dual(s3[29], s3[30]); + s4[31] = highbd_idct_add_dual(s2[28], s1[31]); + + // stage 5 + s5[0] = highbd_idct_add_dual(s4[0], s4[3]); + s5[1] = highbd_idct_add_dual(s4[0], s4[2]); + s5[2] = highbd_idct_sub_dual(s4[0], s4[2]); + s5[3] = highbd_idct_sub_dual(s4[0], s4[3]); + + s5[5] = sub_multiply_shift_and_narrow_s32_dual(s3[7], s3[4], cospi_16_64); + s5[6] = add_multiply_shift_and_narrow_s32_dual(s3[4], s3[7], cospi_16_64); + + s5[8] = highbd_idct_add_dual(s2[8], s3[11]); + s5[9] = highbd_idct_add_dual(s4[9], s4[10]); + s5[10] = highbd_idct_sub_dual(s4[9], s4[10]); + s5[11] = highbd_idct_sub_dual(s2[8], s3[11]); + s5[12] = highbd_idct_sub_dual(s2[15], s3[12]); + s5[13] = highbd_idct_sub_dual(s4[14], s4[13]); + s5[14] = highbd_idct_add_dual(s4[13], s4[14]); + s5[15] = highbd_idct_add_dual(s2[15], s3[12]); + + s5[18] = multiply_accumulate_shift_and_narrow_s32_dual(s4[18], -cospi_8_64, + s4[29], cospi_24_64); + s5[29] = multiply_accumulate_shift_and_narrow_s32_dual(s4[18], cospi_24_64, + s4[29], cospi_8_64); + + s5[19] = multiply_accumulate_shift_and_narrow_s32_dual(s4[19], -cospi_8_64, + s4[28], cospi_24_64); + s5[28] = multiply_accumulate_shift_and_narrow_s32_dual(s4[19], cospi_24_64, + s4[28], cospi_8_64); + + s5[20] = multiply_accumulate_shift_and_narrow_s32_dual(s4[20], -cospi_24_64, + s4[27], -cospi_8_64); + s5[27] = multiply_accumulate_shift_and_narrow_s32_dual(s4[20], -cospi_8_64, + s4[27], cospi_24_64); + + s5[21] = multiply_accumulate_shift_and_narrow_s32_dual(s4[21], -cospi_24_64, + s4[26], -cospi_8_64); + s5[26] = multiply_accumulate_shift_and_narrow_s32_dual(s4[21], -cospi_8_64, + s4[26], cospi_24_64); + + // stage 6 + s6[0] = highbd_idct_add_dual(s5[0], s3[7]); + s6[1] = highbd_idct_add_dual(s5[1], s5[6]); + s6[2] = highbd_idct_add_dual(s5[2], s5[5]); + s6[3] = highbd_idct_add_dual(s5[3], s3[4]); + s6[4] = highbd_idct_sub_dual(s5[3], s3[4]); + s6[5] = highbd_idct_sub_dual(s5[2], s5[5]); + s6[6] = highbd_idct_sub_dual(s5[1], s5[6]); + s6[7] = highbd_idct_sub_dual(s5[0], s3[7]); + + s6[10] = sub_multiply_shift_and_narrow_s32_dual(s5[13], s5[10], cospi_16_64); + s6[13] = add_multiply_shift_and_narrow_s32_dual(s5[10], s5[13], cospi_16_64); + + s6[11] = sub_multiply_shift_and_narrow_s32_dual(s5[12], s5[11], cospi_16_64); + s6[12] = add_multiply_shift_and_narrow_s32_dual(s5[11], s5[12], cospi_16_64); + + s6[16] = highbd_idct_add_dual(s4[16], s4[23]); + s6[17] = highbd_idct_add_dual(s4[17], s4[22]); + s6[18] = highbd_idct_add_dual(s5[18], s5[21]); + s6[19] = highbd_idct_add_dual(s5[19], s5[20]); + s6[20] = highbd_idct_sub_dual(s5[19], s5[20]); + s6[21] = highbd_idct_sub_dual(s5[18], s5[21]); + s6[22] = highbd_idct_sub_dual(s4[17], s4[22]); + s6[23] = highbd_idct_sub_dual(s4[16], s4[23]); + + s6[24] = highbd_idct_sub_dual(s4[31], s4[24]); + s6[25] = highbd_idct_sub_dual(s4[30], s4[25]); + s6[26] = highbd_idct_sub_dual(s5[29], s5[26]); + s6[27] = highbd_idct_sub_dual(s5[28], s5[27]); + s6[28] = highbd_idct_add_dual(s5[27], s5[28]); + s6[29] = highbd_idct_add_dual(s5[26], s5[29]); + s6[30] = highbd_idct_add_dual(s4[25], s4[30]); + s6[31] = highbd_idct_add_dual(s4[24], s4[31]); + + // stage 7 + s7[0] = highbd_idct_add_dual(s6[0], s5[15]); + s7[1] = highbd_idct_add_dual(s6[1], s5[14]); + s7[2] = highbd_idct_add_dual(s6[2], s6[13]); + s7[3] = highbd_idct_add_dual(s6[3], s6[12]); + s7[4] = highbd_idct_add_dual(s6[4], s6[11]); + s7[5] = highbd_idct_add_dual(s6[5], s6[10]); + s7[6] = highbd_idct_add_dual(s6[6], s5[9]); + s7[7] = highbd_idct_add_dual(s6[7], s5[8]); + s7[8] = highbd_idct_sub_dual(s6[7], s5[8]); + s7[9] = highbd_idct_sub_dual(s6[6], s5[9]); + s7[10] = highbd_idct_sub_dual(s6[5], s6[10]); + s7[11] = highbd_idct_sub_dual(s6[4], s6[11]); + s7[12] = highbd_idct_sub_dual(s6[3], s6[12]); + s7[13] = highbd_idct_sub_dual(s6[2], s6[13]); + s7[14] = highbd_idct_sub_dual(s6[1], s5[14]); + s7[15] = highbd_idct_sub_dual(s6[0], s5[15]); + + s7[20] = sub_multiply_shift_and_narrow_s32_dual(s6[27], s6[20], cospi_16_64); + s7[27] = add_multiply_shift_and_narrow_s32_dual(s6[20], s6[27], cospi_16_64); + + s7[21] = sub_multiply_shift_and_narrow_s32_dual(s6[26], s6[21], cospi_16_64); + s7[26] = add_multiply_shift_and_narrow_s32_dual(s6[21], s6[26], cospi_16_64); + + s7[22] = sub_multiply_shift_and_narrow_s32_dual(s6[25], s6[22], cospi_16_64); + s7[25] = add_multiply_shift_and_narrow_s32_dual(s6[22], s6[25], cospi_16_64); + + s7[23] = sub_multiply_shift_and_narrow_s32_dual(s6[24], s6[23], cospi_16_64); + s7[24] = add_multiply_shift_and_narrow_s32_dual(s6[23], s6[24], cospi_16_64); + + // final stage + s8[0] = highbd_idct_add_dual(s7[0], s6[31]); + s8[1] = highbd_idct_add_dual(s7[1], s6[30]); + s8[2] = highbd_idct_add_dual(s7[2], s6[29]); + s8[3] = highbd_idct_add_dual(s7[3], s6[28]); + s8[4] = highbd_idct_add_dual(s7[4], s7[27]); + s8[5] = highbd_idct_add_dual(s7[5], s7[26]); + s8[6] = highbd_idct_add_dual(s7[6], s7[25]); + s8[7] = highbd_idct_add_dual(s7[7], s7[24]); + s8[8] = highbd_idct_add_dual(s7[8], s7[23]); + s8[9] = highbd_idct_add_dual(s7[9], s7[22]); + s8[10] = highbd_idct_add_dual(s7[10], s7[21]); + s8[11] = highbd_idct_add_dual(s7[11], s7[20]); + s8[12] = highbd_idct_add_dual(s7[12], s6[19]); + s8[13] = highbd_idct_add_dual(s7[13], s6[18]); + s8[14] = highbd_idct_add_dual(s7[14], s6[17]); + s8[15] = highbd_idct_add_dual(s7[15], s6[16]); + s8[16] = highbd_idct_sub_dual(s7[15], s6[16]); + s8[17] = highbd_idct_sub_dual(s7[14], s6[17]); + s8[18] = highbd_idct_sub_dual(s7[13], s6[18]); + s8[19] = highbd_idct_sub_dual(s7[12], s6[19]); + s8[20] = highbd_idct_sub_dual(s7[11], s7[20]); + s8[21] = highbd_idct_sub_dual(s7[10], s7[21]); + s8[22] = highbd_idct_sub_dual(s7[9], s7[22]); + s8[23] = highbd_idct_sub_dual(s7[8], s7[23]); + s8[24] = highbd_idct_sub_dual(s7[7], s7[24]); + s8[25] = highbd_idct_sub_dual(s7[6], s7[25]); + s8[26] = highbd_idct_sub_dual(s7[5], s7[26]); + s8[27] = highbd_idct_sub_dual(s7[4], s7[27]); + s8[28] = highbd_idct_sub_dual(s7[3], s6[28]); + s8[29] = highbd_idct_sub_dual(s7[2], s6[29]); + s8[30] = highbd_idct_sub_dual(s7[1], s6[30]); + s8[31] = highbd_idct_sub_dual(s7[0], s6[31]); + + vst1q_s32(output + 0, s8[0].val[0]); + vst1q_s32(output + 4, s8[0].val[1]); + output += 16; + vst1q_s32(output + 0, s8[1].val[0]); + vst1q_s32(output + 4, s8[1].val[1]); + output += 16; + vst1q_s32(output + 0, s8[2].val[0]); + vst1q_s32(output + 4, s8[2].val[1]); + output += 16; + vst1q_s32(output + 0, s8[3].val[0]); + vst1q_s32(output + 4, s8[3].val[1]); + output += 16; + vst1q_s32(output + 0, s8[4].val[0]); + vst1q_s32(output + 4, s8[4].val[1]); + output += 16; + vst1q_s32(output + 0, s8[5].val[0]); + vst1q_s32(output + 4, s8[5].val[1]); + output += 16; + vst1q_s32(output + 0, s8[6].val[0]); + vst1q_s32(output + 4, s8[6].val[1]); + output += 16; + vst1q_s32(output + 0, s8[7].val[0]); + vst1q_s32(output + 4, s8[7].val[1]); + output += 16; + + vst1q_s32(output + 0, s8[8].val[0]); + vst1q_s32(output + 4, s8[8].val[1]); + output += 16; + vst1q_s32(output + 0, s8[9].val[0]); + vst1q_s32(output + 4, s8[9].val[1]); + output += 16; + vst1q_s32(output + 0, s8[10].val[0]); + vst1q_s32(output + 4, s8[10].val[1]); + output += 16; + vst1q_s32(output + 0, s8[11].val[0]); + vst1q_s32(output + 4, s8[11].val[1]); + output += 16; + vst1q_s32(output + 0, s8[12].val[0]); + vst1q_s32(output + 4, s8[12].val[1]); + output += 16; + vst1q_s32(output + 0, s8[13].val[0]); + vst1q_s32(output + 4, s8[13].val[1]); + output += 16; + vst1q_s32(output + 0, s8[14].val[0]); + vst1q_s32(output + 4, s8[14].val[1]); + output += 16; + vst1q_s32(output + 0, s8[15].val[0]); + vst1q_s32(output + 4, s8[15].val[1]); + output += 16; + + vst1q_s32(output + 0, s8[16].val[0]); + vst1q_s32(output + 4, s8[16].val[1]); + output += 16; + vst1q_s32(output + 0, s8[17].val[0]); + vst1q_s32(output + 4, s8[17].val[1]); + output += 16; + vst1q_s32(output + 0, s8[18].val[0]); + vst1q_s32(output + 4, s8[18].val[1]); + output += 16; + vst1q_s32(output + 0, s8[19].val[0]); + vst1q_s32(output + 4, s8[19].val[1]); + output += 16; + vst1q_s32(output + 0, s8[20].val[0]); + vst1q_s32(output + 4, s8[20].val[1]); + output += 16; + vst1q_s32(output + 0, s8[21].val[0]); + vst1q_s32(output + 4, s8[21].val[1]); + output += 16; + vst1q_s32(output + 0, s8[22].val[0]); + vst1q_s32(output + 4, s8[22].val[1]); + output += 16; + vst1q_s32(output + 0, s8[23].val[0]); + vst1q_s32(output + 4, s8[23].val[1]); + output += 16; + + vst1q_s32(output + 0, s8[24].val[0]); + vst1q_s32(output + 4, s8[24].val[1]); + output += 16; + vst1q_s32(output + 0, s8[25].val[0]); + vst1q_s32(output + 4, s8[25].val[1]); + output += 16; + vst1q_s32(output + 0, s8[26].val[0]); + vst1q_s32(output + 4, s8[26].val[1]); + output += 16; + vst1q_s32(output + 0, s8[27].val[0]); + vst1q_s32(output + 4, s8[27].val[1]); + output += 16; + vst1q_s32(output + 0, s8[28].val[0]); + vst1q_s32(output + 4, s8[28].val[1]); + output += 16; + vst1q_s32(output + 0, s8[29].val[0]); + vst1q_s32(output + 4, s8[29].val[1]); + output += 16; + vst1q_s32(output + 0, s8[30].val[0]); + vst1q_s32(output + 4, s8[30].val[1]); + output += 16; + vst1q_s32(output + 0, s8[31].val[0]); + vst1q_s32(output + 4, s8[31].val[1]); +} + +static void vpx_highbd_idct32_16_neon(const int32_t *const input, + uint16_t *const output, const int stride, + const int bd) { + int32x4x2_t in[16], s1[32], s2[32], s3[32], s4[32], s5[32], s6[32], s7[32], + out[32]; + + load_and_transpose_s32_8x8(input, 16, &in[0], &in[1], &in[2], &in[3], &in[4], + &in[5], &in[6], &in[7]); + + load_and_transpose_s32_8x8(input + 8, 16, &in[8], &in[9], &in[10], &in[11], + &in[12], &in[13], &in[14], &in[15]); + + // stage 1 + s1[16] = multiply_shift_and_narrow_s32_dual(in[1], cospi_31_64); + s1[31] = multiply_shift_and_narrow_s32_dual(in[1], cospi_1_64); + + s1[17] = multiply_shift_and_narrow_s32_dual(in[15], -cospi_17_64); + s1[30] = multiply_shift_and_narrow_s32_dual(in[15], cospi_15_64); + + s1[18] = multiply_shift_and_narrow_s32_dual(in[9], cospi_23_64); + s1[29] = multiply_shift_and_narrow_s32_dual(in[9], cospi_9_64); + + s1[19] = multiply_shift_and_narrow_s32_dual(in[7], -cospi_25_64); + s1[28] = multiply_shift_and_narrow_s32_dual(in[7], cospi_7_64); + + s1[20] = multiply_shift_and_narrow_s32_dual(in[5], cospi_27_64); + s1[27] = multiply_shift_and_narrow_s32_dual(in[5], cospi_5_64); + + s1[21] = multiply_shift_and_narrow_s32_dual(in[11], -cospi_21_64); + s1[26] = multiply_shift_and_narrow_s32_dual(in[11], cospi_11_64); + + s1[22] = multiply_shift_and_narrow_s32_dual(in[13], cospi_19_64); + s1[25] = multiply_shift_and_narrow_s32_dual(in[13], cospi_13_64); + + s1[23] = multiply_shift_and_narrow_s32_dual(in[3], -cospi_29_64); + s1[24] = multiply_shift_and_narrow_s32_dual(in[3], cospi_3_64); + + // stage 2 + s2[8] = multiply_shift_and_narrow_s32_dual(in[2], cospi_30_64); + s2[15] = multiply_shift_and_narrow_s32_dual(in[2], cospi_2_64); + + s2[9] = multiply_shift_and_narrow_s32_dual(in[14], -cospi_18_64); + s2[14] = multiply_shift_and_narrow_s32_dual(in[14], cospi_14_64); + + s2[10] = multiply_shift_and_narrow_s32_dual(in[10], cospi_22_64); + s2[13] = multiply_shift_and_narrow_s32_dual(in[10], cospi_10_64); + + s2[11] = multiply_shift_and_narrow_s32_dual(in[6], -cospi_26_64); + s2[12] = multiply_shift_and_narrow_s32_dual(in[6], cospi_6_64); + + s2[16] = highbd_idct_add_dual(s1[16], s1[17]); + s2[17] = highbd_idct_sub_dual(s1[16], s1[17]); + s2[18] = highbd_idct_sub_dual(s1[19], s1[18]); + s2[19] = highbd_idct_add_dual(s1[18], s1[19]); + s2[20] = highbd_idct_add_dual(s1[20], s1[21]); + s2[21] = highbd_idct_sub_dual(s1[20], s1[21]); + s2[22] = highbd_idct_sub_dual(s1[23], s1[22]); + s2[23] = highbd_idct_add_dual(s1[22], s1[23]); + s2[24] = highbd_idct_add_dual(s1[24], s1[25]); + s2[25] = highbd_idct_sub_dual(s1[24], s1[25]); + s2[26] = highbd_idct_sub_dual(s1[27], s1[26]); + s2[27] = highbd_idct_add_dual(s1[26], s1[27]); + s2[28] = highbd_idct_add_dual(s1[28], s1[29]); + s2[29] = highbd_idct_sub_dual(s1[28], s1[29]); + s2[30] = highbd_idct_sub_dual(s1[31], s1[30]); + s2[31] = highbd_idct_add_dual(s1[30], s1[31]); + + // stage 3 + s3[4] = multiply_shift_and_narrow_s32_dual(in[4], cospi_28_64); + s3[7] = multiply_shift_and_narrow_s32_dual(in[4], cospi_4_64); + + s3[5] = multiply_shift_and_narrow_s32_dual(in[12], -cospi_20_64); + s3[6] = multiply_shift_and_narrow_s32_dual(in[12], cospi_12_64); + + s3[8] = highbd_idct_add_dual(s2[8], s2[9]); + s3[9] = highbd_idct_sub_dual(s2[8], s2[9]); + s3[10] = highbd_idct_sub_dual(s2[11], s2[10]); + s3[11] = highbd_idct_add_dual(s2[10], s2[11]); + s3[12] = highbd_idct_add_dual(s2[12], s2[13]); + s3[13] = highbd_idct_sub_dual(s2[12], s2[13]); + s3[14] = highbd_idct_sub_dual(s2[15], s2[14]); + s3[15] = highbd_idct_add_dual(s2[14], s2[15]); + + s3[17] = multiply_accumulate_shift_and_narrow_s32_dual(s2[17], -cospi_4_64, + s2[30], cospi_28_64); + s3[30] = multiply_accumulate_shift_and_narrow_s32_dual(s2[17], cospi_28_64, + s2[30], cospi_4_64); + + s3[18] = multiply_accumulate_shift_and_narrow_s32_dual(s2[18], -cospi_28_64, + s2[29], -cospi_4_64); + s3[29] = multiply_accumulate_shift_and_narrow_s32_dual(s2[18], -cospi_4_64, + s2[29], cospi_28_64); + + s3[21] = multiply_accumulate_shift_and_narrow_s32_dual(s2[21], -cospi_20_64, + s2[26], cospi_12_64); + s3[26] = multiply_accumulate_shift_and_narrow_s32_dual(s2[21], cospi_12_64, + s2[26], cospi_20_64); + + s3[22] = multiply_accumulate_shift_and_narrow_s32_dual(s2[22], -cospi_12_64, + s2[25], -cospi_20_64); + s3[25] = multiply_accumulate_shift_and_narrow_s32_dual(s2[22], -cospi_20_64, + s2[25], cospi_12_64); + + // stage 4 + s4[0] = multiply_shift_and_narrow_s32_dual(in[0], cospi_16_64); + s4[2] = multiply_shift_and_narrow_s32_dual(in[8], cospi_24_64); + s4[3] = multiply_shift_and_narrow_s32_dual(in[8], cospi_8_64); + + s4[4] = highbd_idct_add_dual(s3[4], s3[5]); + s4[5] = highbd_idct_sub_dual(s3[4], s3[5]); + s4[6] = highbd_idct_sub_dual(s3[7], s3[6]); + s4[7] = highbd_idct_add_dual(s3[6], s3[7]); + + s4[9] = multiply_accumulate_shift_and_narrow_s32_dual(s3[9], -cospi_8_64, + s3[14], cospi_24_64); + s4[14] = multiply_accumulate_shift_and_narrow_s32_dual(s3[9], cospi_24_64, + s3[14], cospi_8_64); + + s4[10] = multiply_accumulate_shift_and_narrow_s32_dual(s3[10], -cospi_24_64, + s3[13], -cospi_8_64); + s4[13] = multiply_accumulate_shift_and_narrow_s32_dual(s3[10], -cospi_8_64, + s3[13], cospi_24_64); + + s4[16] = highbd_idct_add_dual(s2[16], s2[19]); + s4[17] = highbd_idct_add_dual(s3[17], s3[18]); + s4[18] = highbd_idct_sub_dual(s3[17], s3[18]); + s4[19] = highbd_idct_sub_dual(s2[16], s2[19]); + s4[20] = highbd_idct_sub_dual(s2[23], s2[20]); + s4[21] = highbd_idct_sub_dual(s3[22], s3[21]); + s4[22] = highbd_idct_add_dual(s3[21], s3[22]); + s4[23] = highbd_idct_add_dual(s2[20], s2[23]); + s4[24] = highbd_idct_add_dual(s2[24], s2[27]); + s4[25] = highbd_idct_add_dual(s3[25], s3[26]); + s4[26] = highbd_idct_sub_dual(s3[25], s3[26]); + s4[27] = highbd_idct_sub_dual(s2[24], s2[27]); + s4[28] = highbd_idct_sub_dual(s2[31], s2[28]); + s4[29] = highbd_idct_sub_dual(s3[30], s3[29]); + s4[30] = highbd_idct_add_dual(s3[29], s3[30]); + s4[31] = highbd_idct_add_dual(s2[28], s2[31]); + + // stage 5 + s5[0] = highbd_idct_add_dual(s4[0], s4[3]); + s5[1] = highbd_idct_add_dual(s4[0], s4[2]); + s5[2] = highbd_idct_sub_dual(s4[0], s4[2]); + s5[3] = highbd_idct_sub_dual(s4[0], s4[3]); + + s5[5] = sub_multiply_shift_and_narrow_s32_dual(s4[6], s4[5], cospi_16_64); + s5[6] = add_multiply_shift_and_narrow_s32_dual(s4[5], s4[6], cospi_16_64); + + s5[8] = highbd_idct_add_dual(s3[8], s3[11]); + s5[9] = highbd_idct_add_dual(s4[9], s4[10]); + s5[10] = highbd_idct_sub_dual(s4[9], s4[10]); + s5[11] = highbd_idct_sub_dual(s3[8], s3[11]); + s5[12] = highbd_idct_sub_dual(s3[15], s3[12]); + s5[13] = highbd_idct_sub_dual(s4[14], s4[13]); + s5[14] = highbd_idct_add_dual(s4[13], s4[14]); + s5[15] = highbd_idct_add_dual(s3[15], s3[12]); + + s5[18] = multiply_accumulate_shift_and_narrow_s32_dual(s4[18], -cospi_8_64, + s4[29], cospi_24_64); + s5[29] = multiply_accumulate_shift_and_narrow_s32_dual(s4[18], cospi_24_64, + s4[29], cospi_8_64); + + s5[19] = multiply_accumulate_shift_and_narrow_s32_dual(s4[19], -cospi_8_64, + s4[28], cospi_24_64); + s5[28] = multiply_accumulate_shift_and_narrow_s32_dual(s4[19], cospi_24_64, + s4[28], cospi_8_64); + + s5[20] = multiply_accumulate_shift_and_narrow_s32_dual(s4[20], -cospi_24_64, + s4[27], -cospi_8_64); + s5[27] = multiply_accumulate_shift_and_narrow_s32_dual(s4[20], -cospi_8_64, + s4[27], cospi_24_64); + + s5[21] = multiply_accumulate_shift_and_narrow_s32_dual(s4[21], -cospi_24_64, + s4[26], -cospi_8_64); + s5[26] = multiply_accumulate_shift_and_narrow_s32_dual(s4[21], -cospi_8_64, + s4[26], cospi_24_64); + + // stage 6 + s6[0] = highbd_idct_add_dual(s5[0], s4[7]); + s6[1] = highbd_idct_add_dual(s5[1], s5[6]); + s6[2] = highbd_idct_add_dual(s5[2], s5[5]); + s6[3] = highbd_idct_add_dual(s5[3], s4[4]); + s6[4] = highbd_idct_sub_dual(s5[3], s4[4]); + s6[5] = highbd_idct_sub_dual(s5[2], s5[5]); + s6[6] = highbd_idct_sub_dual(s5[1], s5[6]); + s6[7] = highbd_idct_sub_dual(s5[0], s4[7]); + + s6[10] = sub_multiply_shift_and_narrow_s32_dual(s5[13], s5[10], cospi_16_64); + s6[13] = add_multiply_shift_and_narrow_s32_dual(s5[10], s5[13], cospi_16_64); + + s6[11] = sub_multiply_shift_and_narrow_s32_dual(s5[12], s5[11], cospi_16_64); + s6[12] = add_multiply_shift_and_narrow_s32_dual(s5[11], s5[12], cospi_16_64); + + s6[16] = highbd_idct_add_dual(s4[16], s4[23]); + s6[17] = highbd_idct_add_dual(s4[17], s4[22]); + s6[18] = highbd_idct_add_dual(s5[18], s5[21]); + s6[19] = highbd_idct_add_dual(s5[19], s5[20]); + s6[20] = highbd_idct_sub_dual(s5[19], s5[20]); + s6[21] = highbd_idct_sub_dual(s5[18], s5[21]); + s6[22] = highbd_idct_sub_dual(s4[17], s4[22]); + s6[23] = highbd_idct_sub_dual(s4[16], s4[23]); + s6[24] = highbd_idct_sub_dual(s4[31], s4[24]); + s6[25] = highbd_idct_sub_dual(s4[30], s4[25]); + s6[26] = highbd_idct_sub_dual(s5[29], s5[26]); + s6[27] = highbd_idct_sub_dual(s5[28], s5[27]); + s6[28] = highbd_idct_add_dual(s5[27], s5[28]); + s6[29] = highbd_idct_add_dual(s5[26], s5[29]); + s6[30] = highbd_idct_add_dual(s4[25], s4[30]); + s6[31] = highbd_idct_add_dual(s4[24], s4[31]); + + // stage 7 + s7[0] = highbd_idct_add_dual(s6[0], s5[15]); + s7[1] = highbd_idct_add_dual(s6[1], s5[14]); + s7[2] = highbd_idct_add_dual(s6[2], s6[13]); + s7[3] = highbd_idct_add_dual(s6[3], s6[12]); + s7[4] = highbd_idct_add_dual(s6[4], s6[11]); + s7[5] = highbd_idct_add_dual(s6[5], s6[10]); + s7[6] = highbd_idct_add_dual(s6[6], s5[9]); + s7[7] = highbd_idct_add_dual(s6[7], s5[8]); + s7[8] = highbd_idct_sub_dual(s6[7], s5[8]); + s7[9] = highbd_idct_sub_dual(s6[6], s5[9]); + s7[10] = highbd_idct_sub_dual(s6[5], s6[10]); + s7[11] = highbd_idct_sub_dual(s6[4], s6[11]); + s7[12] = highbd_idct_sub_dual(s6[3], s6[12]); + s7[13] = highbd_idct_sub_dual(s6[2], s6[13]); + s7[14] = highbd_idct_sub_dual(s6[1], s5[14]); + s7[15] = highbd_idct_sub_dual(s6[0], s5[15]); + + s7[20] = sub_multiply_shift_and_narrow_s32_dual(s6[27], s6[20], cospi_16_64); + s7[27] = add_multiply_shift_and_narrow_s32_dual(s6[20], s6[27], cospi_16_64); + + s7[21] = sub_multiply_shift_and_narrow_s32_dual(s6[26], s6[21], cospi_16_64); + s7[26] = add_multiply_shift_and_narrow_s32_dual(s6[21], s6[26], cospi_16_64); + + s7[22] = sub_multiply_shift_and_narrow_s32_dual(s6[25], s6[22], cospi_16_64); + s7[25] = add_multiply_shift_and_narrow_s32_dual(s6[22], s6[25], cospi_16_64); + + s7[23] = sub_multiply_shift_and_narrow_s32_dual(s6[24], s6[23], cospi_16_64); + s7[24] = add_multiply_shift_and_narrow_s32_dual(s6[23], s6[24], cospi_16_64); + + // final stage + out[0] = highbd_idct_add_dual(s7[0], s6[31]); + out[1] = highbd_idct_add_dual(s7[1], s6[30]); + out[2] = highbd_idct_add_dual(s7[2], s6[29]); + out[3] = highbd_idct_add_dual(s7[3], s6[28]); + out[4] = highbd_idct_add_dual(s7[4], s7[27]); + out[5] = highbd_idct_add_dual(s7[5], s7[26]); + out[6] = highbd_idct_add_dual(s7[6], s7[25]); + out[7] = highbd_idct_add_dual(s7[7], s7[24]); + out[8] = highbd_idct_add_dual(s7[8], s7[23]); + out[9] = highbd_idct_add_dual(s7[9], s7[22]); + out[10] = highbd_idct_add_dual(s7[10], s7[21]); + out[11] = highbd_idct_add_dual(s7[11], s7[20]); + out[12] = highbd_idct_add_dual(s7[12], s6[19]); + out[13] = highbd_idct_add_dual(s7[13], s6[18]); + out[14] = highbd_idct_add_dual(s7[14], s6[17]); + out[15] = highbd_idct_add_dual(s7[15], s6[16]); + out[16] = highbd_idct_sub_dual(s7[15], s6[16]); + out[17] = highbd_idct_sub_dual(s7[14], s6[17]); + out[18] = highbd_idct_sub_dual(s7[13], s6[18]); + out[19] = highbd_idct_sub_dual(s7[12], s6[19]); + out[20] = highbd_idct_sub_dual(s7[11], s7[20]); + out[21] = highbd_idct_sub_dual(s7[10], s7[21]); + out[22] = highbd_idct_sub_dual(s7[9], s7[22]); + out[23] = highbd_idct_sub_dual(s7[8], s7[23]); + out[24] = highbd_idct_sub_dual(s7[7], s7[24]); + out[25] = highbd_idct_sub_dual(s7[6], s7[25]); + out[26] = highbd_idct_sub_dual(s7[5], s7[26]); + out[27] = highbd_idct_sub_dual(s7[4], s7[27]); + out[28] = highbd_idct_sub_dual(s7[3], s6[28]); + out[29] = highbd_idct_sub_dual(s7[2], s6[29]); + out[30] = highbd_idct_sub_dual(s7[1], s6[30]); + out[31] = highbd_idct_sub_dual(s7[0], s6[31]); + + highbd_idct16x16_add_store(out, output, stride, bd); + highbd_idct16x16_add_store(out + 16, output + 16 * stride, stride, bd); +} + +void vpx_highbd_idct32x32_135_add_neon(const tran_low_t *input, uint16_t *dest, + int stride, int bd) { + int i; + + if (bd == 8) { + int16_t temp[32 * 16]; + int16_t *t = temp; + vpx_idct32_12_neon(input, temp); + vpx_idct32_12_neon(input + 32 * 8, temp + 8); + + for (i = 0; i < 32; i += 8) { + vpx_idct32_16_neon(t, dest, stride, 1); + t += (16 * 8); + dest += 8; + } + } else { + int32_t temp[32 * 16]; + int32_t *t = temp; + vpx_highbd_idct32_12_neon(input, temp); + vpx_highbd_idct32_12_neon(input + 32 * 8, temp + 8); + + for (i = 0; i < 32; i += 8) { + vpx_highbd_idct32_16_neon(t, dest, stride, bd); + t += (16 * 8); + dest += 8; + } + } +} diff --git a/vpx_dsp/arm/highbd_idct32x32_34_add_neon.c b/vpx_dsp/arm/highbd_idct32x32_34_add_neon.c new file mode 100644 index 0000000..5d9063b --- /dev/null +++ b/vpx_dsp/arm/highbd_idct32x32_34_add_neon.c @@ -0,0 +1,624 @@ +/* + * Copyright (c) 2017 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include + +#include "./vpx_config.h" +#include "./vpx_dsp_rtcd.h" +#include "vpx_dsp/arm/idct_neon.h" +#include "vpx_dsp/arm/transpose_neon.h" +#include "vpx_dsp/txfm_common.h" + +// Only for the first pass of the _34_ variant. Since it only uses values from +// the top left 8x8 it can safely assume all the remaining values are 0 and skip +// an awful lot of calculations. In fact, only the first 6 columns make the cut. +// None of the elements in the 7th or 8th column are used so it skips any calls +// to input[67] too. +// In C this does a single row of 32 for each call. Here it transposes the top +// left 8x8 to allow using SIMD. + +// vp9/common/vp9_scan.c:vp9_default_iscan_32x32 arranges the first 34 non-zero +// coefficients as follows: +// 0 1 2 3 4 5 6 7 +// 0 0 2 5 10 17 25 +// 1 1 4 8 15 22 30 +// 2 3 7 12 18 28 +// 3 6 11 16 23 31 +// 4 9 14 19 29 +// 5 13 20 26 +// 6 21 27 33 +// 7 24 32 +static void vpx_highbd_idct32_6_neon(const tran_low_t *input, int32_t *output) { + int32x4x2_t in[8], s1[32], s2[32], s3[32]; + + in[0].val[0] = vld1q_s32(input); + in[0].val[1] = vld1q_s32(input + 4); + input += 32; + in[1].val[0] = vld1q_s32(input); + in[1].val[1] = vld1q_s32(input + 4); + input += 32; + in[2].val[0] = vld1q_s32(input); + in[2].val[1] = vld1q_s32(input + 4); + input += 32; + in[3].val[0] = vld1q_s32(input); + in[3].val[1] = vld1q_s32(input + 4); + input += 32; + in[4].val[0] = vld1q_s32(input); + in[4].val[1] = vld1q_s32(input + 4); + input += 32; + in[5].val[0] = vld1q_s32(input); + in[5].val[1] = vld1q_s32(input + 4); + input += 32; + in[6].val[0] = vld1q_s32(input); + in[6].val[1] = vld1q_s32(input + 4); + input += 32; + in[7].val[0] = vld1q_s32(input); + in[7].val[1] = vld1q_s32(input + 4); + transpose_s32_8x8(&in[0], &in[1], &in[2], &in[3], &in[4], &in[5], &in[6], + &in[7]); + + // stage 1 + // input[1] * cospi_31_64 - input[31] * cospi_1_64 (but input[31] == 0) + s1[16] = multiply_shift_and_narrow_s32_dual(in[1], cospi_31_64); + // input[1] * cospi_1_64 + input[31] * cospi_31_64 (but input[31] == 0) + s1[31] = multiply_shift_and_narrow_s32_dual(in[1], cospi_1_64); + + s1[20] = multiply_shift_and_narrow_s32_dual(in[5], cospi_27_64); + s1[27] = multiply_shift_and_narrow_s32_dual(in[5], cospi_5_64); + + s1[23] = multiply_shift_and_narrow_s32_dual(in[3], -cospi_29_64); + s1[24] = multiply_shift_and_narrow_s32_dual(in[3], cospi_3_64); + + // stage 2 + s2[8] = multiply_shift_and_narrow_s32_dual(in[2], cospi_30_64); + s2[15] = multiply_shift_and_narrow_s32_dual(in[2], cospi_2_64); + + // stage 3 + s1[4] = multiply_shift_and_narrow_s32_dual(in[4], cospi_28_64); + s1[7] = multiply_shift_and_narrow_s32_dual(in[4], cospi_4_64); + + s1[17] = multiply_accumulate_shift_and_narrow_s32_dual(s1[16], -cospi_4_64, + s1[31], cospi_28_64); + s1[30] = multiply_accumulate_shift_and_narrow_s32_dual(s1[16], cospi_28_64, + s1[31], cospi_4_64); + + s1[21] = multiply_accumulate_shift_and_narrow_s32_dual(s1[20], -cospi_20_64, + s1[27], cospi_12_64); + s1[26] = multiply_accumulate_shift_and_narrow_s32_dual(s1[20], cospi_12_64, + s1[27], cospi_20_64); + + s1[22] = multiply_accumulate_shift_and_narrow_s32_dual(s1[23], -cospi_12_64, + s1[24], -cospi_20_64); + s1[25] = multiply_accumulate_shift_and_narrow_s32_dual(s1[23], -cospi_20_64, + s1[24], cospi_12_64); + + // stage 4 + s1[0] = multiply_shift_and_narrow_s32_dual(in[0], cospi_16_64); + + s2[9] = multiply_accumulate_shift_and_narrow_s32_dual(s2[8], -cospi_8_64, + s2[15], cospi_24_64); + s2[14] = multiply_accumulate_shift_and_narrow_s32_dual(s2[8], cospi_24_64, + s2[15], cospi_8_64); + + s2[20] = highbd_idct_sub_dual(s1[23], s1[20]); + s2[21] = highbd_idct_sub_dual(s1[22], s1[21]); + s2[22] = highbd_idct_add_dual(s1[21], s1[22]); + s2[23] = highbd_idct_add_dual(s1[20], s1[23]); + s2[24] = highbd_idct_add_dual(s1[24], s1[27]); + s2[25] = highbd_idct_add_dual(s1[25], s1[26]); + s2[26] = highbd_idct_sub_dual(s1[25], s1[26]); + s2[27] = highbd_idct_sub_dual(s1[24], s1[27]); + + // stage 5 + s1[5] = sub_multiply_shift_and_narrow_s32_dual(s1[7], s1[4], cospi_16_64); + s1[6] = add_multiply_shift_and_narrow_s32_dual(s1[4], s1[7], cospi_16_64); + + s1[18] = multiply_accumulate_shift_and_narrow_s32_dual(s1[17], -cospi_8_64, + s1[30], cospi_24_64); + s1[29] = multiply_accumulate_shift_and_narrow_s32_dual(s1[17], cospi_24_64, + s1[30], cospi_8_64); + + s1[19] = multiply_accumulate_shift_and_narrow_s32_dual(s1[16], -cospi_8_64, + s1[31], cospi_24_64); + s1[28] = multiply_accumulate_shift_and_narrow_s32_dual(s1[16], cospi_24_64, + s1[31], cospi_8_64); + + s1[20] = multiply_accumulate_shift_and_narrow_s32_dual(s2[20], -cospi_24_64, + s2[27], -cospi_8_64); + s1[27] = multiply_accumulate_shift_and_narrow_s32_dual(s2[20], -cospi_8_64, + s2[27], cospi_24_64); + + s1[21] = multiply_accumulate_shift_and_narrow_s32_dual(s2[21], -cospi_24_64, + s2[26], -cospi_8_64); + s1[26] = multiply_accumulate_shift_and_narrow_s32_dual(s2[21], -cospi_8_64, + s2[26], cospi_24_64); + + // stage 6 + s2[0] = highbd_idct_add_dual(s1[0], s1[7]); + s2[1] = highbd_idct_add_dual(s1[0], s1[6]); + s2[2] = highbd_idct_add_dual(s1[0], s1[5]); + s2[3] = highbd_idct_add_dual(s1[0], s1[4]); + s2[4] = highbd_idct_sub_dual(s1[0], s1[4]); + s2[5] = highbd_idct_sub_dual(s1[0], s1[5]); + s2[6] = highbd_idct_sub_dual(s1[0], s1[6]); + s2[7] = highbd_idct_sub_dual(s1[0], s1[7]); + + s2[10] = sub_multiply_shift_and_narrow_s32_dual(s2[14], s2[9], cospi_16_64); + s2[13] = add_multiply_shift_and_narrow_s32_dual(s2[9], s2[14], cospi_16_64); + + s2[11] = sub_multiply_shift_and_narrow_s32_dual(s2[15], s2[8], cospi_16_64); + s2[12] = add_multiply_shift_and_narrow_s32_dual(s2[8], s2[15], cospi_16_64); + + s2[16] = highbd_idct_add_dual(s1[16], s2[23]); + s2[17] = highbd_idct_add_dual(s1[17], s2[22]); + s2[18] = highbd_idct_add_dual(s1[18], s1[21]); + s2[19] = highbd_idct_add_dual(s1[19], s1[20]); + s2[20] = highbd_idct_sub_dual(s1[19], s1[20]); + s2[21] = highbd_idct_sub_dual(s1[18], s1[21]); + s2[22] = highbd_idct_sub_dual(s1[17], s2[22]); + s2[23] = highbd_idct_sub_dual(s1[16], s2[23]); + + s3[24] = highbd_idct_sub_dual(s1[31], s2[24]); + s3[25] = highbd_idct_sub_dual(s1[30], s2[25]); + s3[26] = highbd_idct_sub_dual(s1[29], s1[26]); + s3[27] = highbd_idct_sub_dual(s1[28], s1[27]); + s2[28] = highbd_idct_add_dual(s1[27], s1[28]); + s2[29] = highbd_idct_add_dual(s1[26], s1[29]); + s2[30] = highbd_idct_add_dual(s2[25], s1[30]); + s2[31] = highbd_idct_add_dual(s2[24], s1[31]); + + // stage 7 + s1[0] = highbd_idct_add_dual(s2[0], s2[15]); + s1[1] = highbd_idct_add_dual(s2[1], s2[14]); + s1[2] = highbd_idct_add_dual(s2[2], s2[13]); + s1[3] = highbd_idct_add_dual(s2[3], s2[12]); + s1[4] = highbd_idct_add_dual(s2[4], s2[11]); + s1[5] = highbd_idct_add_dual(s2[5], s2[10]); + s1[6] = highbd_idct_add_dual(s2[6], s2[9]); + s1[7] = highbd_idct_add_dual(s2[7], s2[8]); + s1[8] = highbd_idct_sub_dual(s2[7], s2[8]); + s1[9] = highbd_idct_sub_dual(s2[6], s2[9]); + s1[10] = highbd_idct_sub_dual(s2[5], s2[10]); + s1[11] = highbd_idct_sub_dual(s2[4], s2[11]); + s1[12] = highbd_idct_sub_dual(s2[3], s2[12]); + s1[13] = highbd_idct_sub_dual(s2[2], s2[13]); + s1[14] = highbd_idct_sub_dual(s2[1], s2[14]); + s1[15] = highbd_idct_sub_dual(s2[0], s2[15]); + + s1[20] = sub_multiply_shift_and_narrow_s32_dual(s3[27], s2[20], cospi_16_64); + s1[27] = add_multiply_shift_and_narrow_s32_dual(s2[20], s3[27], cospi_16_64); + + s1[21] = sub_multiply_shift_and_narrow_s32_dual(s3[26], s2[21], cospi_16_64); + s1[26] = add_multiply_shift_and_narrow_s32_dual(s2[21], s3[26], cospi_16_64); + + s1[22] = sub_multiply_shift_and_narrow_s32_dual(s3[25], s2[22], cospi_16_64); + s1[25] = add_multiply_shift_and_narrow_s32_dual(s2[22], s3[25], cospi_16_64); + + s1[23] = sub_multiply_shift_and_narrow_s32_dual(s3[24], s2[23], cospi_16_64); + s1[24] = add_multiply_shift_and_narrow_s32_dual(s2[23], s3[24], cospi_16_64); + + // final stage + s3[0] = highbd_idct_add_dual(s1[0], s2[31]); + s3[1] = highbd_idct_add_dual(s1[1], s2[30]); + s3[2] = highbd_idct_add_dual(s1[2], s2[29]); + s3[3] = highbd_idct_add_dual(s1[3], s2[28]); + s3[4] = highbd_idct_add_dual(s1[4], s1[27]); + s3[5] = highbd_idct_add_dual(s1[5], s1[26]); + s3[6] = highbd_idct_add_dual(s1[6], s1[25]); + s3[7] = highbd_idct_add_dual(s1[7], s1[24]); + s3[8] = highbd_idct_add_dual(s1[8], s1[23]); + s3[9] = highbd_idct_add_dual(s1[9], s1[22]); + s3[10] = highbd_idct_add_dual(s1[10], s1[21]); + s3[11] = highbd_idct_add_dual(s1[11], s1[20]); + s3[12] = highbd_idct_add_dual(s1[12], s2[19]); + s3[13] = highbd_idct_add_dual(s1[13], s2[18]); + s3[14] = highbd_idct_add_dual(s1[14], s2[17]); + s3[15] = highbd_idct_add_dual(s1[15], s2[16]); + s3[16] = highbd_idct_sub_dual(s1[15], s2[16]); + s3[17] = highbd_idct_sub_dual(s1[14], s2[17]); + s3[18] = highbd_idct_sub_dual(s1[13], s2[18]); + s3[19] = highbd_idct_sub_dual(s1[12], s2[19]); + s3[20] = highbd_idct_sub_dual(s1[11], s1[20]); + s3[21] = highbd_idct_sub_dual(s1[10], s1[21]); + s3[22] = highbd_idct_sub_dual(s1[9], s1[22]); + s3[23] = highbd_idct_sub_dual(s1[8], s1[23]); + s3[24] = highbd_idct_sub_dual(s1[7], s1[24]); + s3[25] = highbd_idct_sub_dual(s1[6], s1[25]); + s3[26] = highbd_idct_sub_dual(s1[5], s1[26]); + s3[27] = highbd_idct_sub_dual(s1[4], s1[27]); + s3[28] = highbd_idct_sub_dual(s1[3], s2[28]); + s3[29] = highbd_idct_sub_dual(s1[2], s2[29]); + s3[30] = highbd_idct_sub_dual(s1[1], s2[30]); + s3[31] = highbd_idct_sub_dual(s1[0], s2[31]); + + vst1q_s32(output, s3[0].val[0]); + output += 4; + vst1q_s32(output, s3[0].val[1]); + output += 4; + vst1q_s32(output, s3[1].val[0]); + output += 4; + vst1q_s32(output, s3[1].val[1]); + output += 4; + vst1q_s32(output, s3[2].val[0]); + output += 4; + vst1q_s32(output, s3[2].val[1]); + output += 4; + vst1q_s32(output, s3[3].val[0]); + output += 4; + vst1q_s32(output, s3[3].val[1]); + output += 4; + vst1q_s32(output, s3[4].val[0]); + output += 4; + vst1q_s32(output, s3[4].val[1]); + output += 4; + vst1q_s32(output, s3[5].val[0]); + output += 4; + vst1q_s32(output, s3[5].val[1]); + output += 4; + vst1q_s32(output, s3[6].val[0]); + output += 4; + vst1q_s32(output, s3[6].val[1]); + output += 4; + vst1q_s32(output, s3[7].val[0]); + output += 4; + vst1q_s32(output, s3[7].val[1]); + output += 4; + + vst1q_s32(output, s3[8].val[0]); + output += 4; + vst1q_s32(output, s3[8].val[1]); + output += 4; + vst1q_s32(output, s3[9].val[0]); + output += 4; + vst1q_s32(output, s3[9].val[1]); + output += 4; + vst1q_s32(output, s3[10].val[0]); + output += 4; + vst1q_s32(output, s3[10].val[1]); + output += 4; + vst1q_s32(output, s3[11].val[0]); + output += 4; + vst1q_s32(output, s3[11].val[1]); + output += 4; + vst1q_s32(output, s3[12].val[0]); + output += 4; + vst1q_s32(output, s3[12].val[1]); + output += 4; + vst1q_s32(output, s3[13].val[0]); + output += 4; + vst1q_s32(output, s3[13].val[1]); + output += 4; + vst1q_s32(output, s3[14].val[0]); + output += 4; + vst1q_s32(output, s3[14].val[1]); + output += 4; + vst1q_s32(output, s3[15].val[0]); + output += 4; + vst1q_s32(output, s3[15].val[1]); + output += 4; + + vst1q_s32(output, s3[16].val[0]); + output += 4; + vst1q_s32(output, s3[16].val[1]); + output += 4; + vst1q_s32(output, s3[17].val[0]); + output += 4; + vst1q_s32(output, s3[17].val[1]); + output += 4; + vst1q_s32(output, s3[18].val[0]); + output += 4; + vst1q_s32(output, s3[18].val[1]); + output += 4; + vst1q_s32(output, s3[19].val[0]); + output += 4; + vst1q_s32(output, s3[19].val[1]); + output += 4; + vst1q_s32(output, s3[20].val[0]); + output += 4; + vst1q_s32(output, s3[20].val[1]); + output += 4; + vst1q_s32(output, s3[21].val[0]); + output += 4; + vst1q_s32(output, s3[21].val[1]); + output += 4; + vst1q_s32(output, s3[22].val[0]); + output += 4; + vst1q_s32(output, s3[22].val[1]); + output += 4; + vst1q_s32(output, s3[23].val[0]); + output += 4; + vst1q_s32(output, s3[23].val[1]); + output += 4; + + vst1q_s32(output, s3[24].val[0]); + output += 4; + vst1q_s32(output, s3[24].val[1]); + output += 4; + vst1q_s32(output, s3[25].val[0]); + output += 4; + vst1q_s32(output, s3[25].val[1]); + output += 4; + vst1q_s32(output, s3[26].val[0]); + output += 4; + vst1q_s32(output, s3[26].val[1]); + output += 4; + vst1q_s32(output, s3[27].val[0]); + output += 4; + vst1q_s32(output, s3[27].val[1]); + output += 4; + vst1q_s32(output, s3[28].val[0]); + output += 4; + vst1q_s32(output, s3[28].val[1]); + output += 4; + vst1q_s32(output, s3[29].val[0]); + output += 4; + vst1q_s32(output, s3[29].val[1]); + output += 4; + vst1q_s32(output, s3[30].val[0]); + output += 4; + vst1q_s32(output, s3[30].val[1]); + output += 4; + vst1q_s32(output, s3[31].val[0]); + output += 4; + vst1q_s32(output, s3[31].val[1]); +} + +static void vpx_highbd_idct32_8_neon(const int32_t *input, uint16_t *output, + int stride, const int bd) { + int32x4x2_t in[8], s1[32], s2[32], s3[32], out[32]; + + load_and_transpose_s32_8x8(input, 8, &in[0], &in[1], &in[2], &in[3], &in[4], + &in[5], &in[6], &in[7]); + + // stage 1 + s1[16] = multiply_shift_and_narrow_s32_dual(in[1], cospi_31_64); + s1[31] = multiply_shift_and_narrow_s32_dual(in[1], cospi_1_64); + + // Different for _8_ + s1[19] = multiply_shift_and_narrow_s32_dual(in[7], -cospi_25_64); + s1[28] = multiply_shift_and_narrow_s32_dual(in[7], cospi_7_64); + + s1[20] = multiply_shift_and_narrow_s32_dual(in[5], cospi_27_64); + s1[27] = multiply_shift_and_narrow_s32_dual(in[5], cospi_5_64); + + s1[23] = multiply_shift_and_narrow_s32_dual(in[3], -cospi_29_64); + s1[24] = multiply_shift_and_narrow_s32_dual(in[3], cospi_3_64); + + // stage 2 + s2[8] = multiply_shift_and_narrow_s32_dual(in[2], cospi_30_64); + s2[15] = multiply_shift_and_narrow_s32_dual(in[2], cospi_2_64); + + s2[11] = multiply_shift_and_narrow_s32_dual(in[6], -cospi_26_64); + s2[12] = multiply_shift_and_narrow_s32_dual(in[6], cospi_6_64); + + // stage 3 + s1[4] = multiply_shift_and_narrow_s32_dual(in[4], cospi_28_64); + s1[7] = multiply_shift_and_narrow_s32_dual(in[4], cospi_4_64); + + s1[17] = multiply_accumulate_shift_and_narrow_s32_dual(s1[16], -cospi_4_64, + s1[31], cospi_28_64); + s1[30] = multiply_accumulate_shift_and_narrow_s32_dual(s1[16], cospi_28_64, + s1[31], cospi_4_64); + + // Different for _8_ + s1[18] = multiply_accumulate_shift_and_narrow_s32_dual(s1[19], -cospi_28_64, + s1[28], -cospi_4_64); + s1[29] = multiply_accumulate_shift_and_narrow_s32_dual(s1[19], -cospi_4_64, + s1[28], cospi_28_64); + + s1[21] = multiply_accumulate_shift_and_narrow_s32_dual(s1[20], -cospi_20_64, + s1[27], cospi_12_64); + s1[26] = multiply_accumulate_shift_and_narrow_s32_dual(s1[20], cospi_12_64, + s1[27], cospi_20_64); + + s1[22] = multiply_accumulate_shift_and_narrow_s32_dual(s1[23], -cospi_12_64, + s1[24], -cospi_20_64); + s1[25] = multiply_accumulate_shift_and_narrow_s32_dual(s1[23], -cospi_20_64, + s1[24], cospi_12_64); + + // stage 4 + s1[0] = multiply_shift_and_narrow_s32_dual(in[0], cospi_16_64); + + s2[9] = multiply_accumulate_shift_and_narrow_s32_dual(s2[8], -cospi_8_64, + s2[15], cospi_24_64); + s2[14] = multiply_accumulate_shift_and_narrow_s32_dual(s2[8], cospi_24_64, + s2[15], cospi_8_64); + + s2[10] = multiply_accumulate_shift_and_narrow_s32_dual(s2[11], -cospi_24_64, + s2[12], -cospi_8_64); + s2[13] = multiply_accumulate_shift_and_narrow_s32_dual(s2[11], -cospi_8_64, + s2[12], cospi_24_64); + + s2[16] = highbd_idct_add_dual(s1[16], s1[19]); + + s2[17] = highbd_idct_add_dual(s1[17], s1[18]); + s2[18] = highbd_idct_sub_dual(s1[17], s1[18]); + + s2[19] = highbd_idct_sub_dual(s1[16], s1[19]); + + s2[20] = highbd_idct_sub_dual(s1[23], s1[20]); + s2[21] = highbd_idct_sub_dual(s1[22], s1[21]); + + s2[22] = highbd_idct_add_dual(s1[21], s1[22]); + s2[23] = highbd_idct_add_dual(s1[20], s1[23]); + + s2[24] = highbd_idct_add_dual(s1[24], s1[27]); + s2[25] = highbd_idct_add_dual(s1[25], s1[26]); + s2[26] = highbd_idct_sub_dual(s1[25], s1[26]); + s2[27] = highbd_idct_sub_dual(s1[24], s1[27]); + + s2[28] = highbd_idct_sub_dual(s1[31], s1[28]); + s2[29] = highbd_idct_sub_dual(s1[30], s1[29]); + s2[30] = highbd_idct_add_dual(s1[29], s1[30]); + s2[31] = highbd_idct_add_dual(s1[28], s1[31]); + + // stage 5 + s1[5] = sub_multiply_shift_and_narrow_s32_dual(s1[7], s1[4], cospi_16_64); + s1[6] = add_multiply_shift_and_narrow_s32_dual(s1[4], s1[7], cospi_16_64); + + s1[8] = highbd_idct_add_dual(s2[8], s2[11]); + s1[9] = highbd_idct_add_dual(s2[9], s2[10]); + s1[10] = highbd_idct_sub_dual(s2[9], s2[10]); + s1[11] = highbd_idct_sub_dual(s2[8], s2[11]); + s1[12] = highbd_idct_sub_dual(s2[15], s2[12]); + s1[13] = highbd_idct_sub_dual(s2[14], s2[13]); + s1[14] = highbd_idct_add_dual(s2[13], s2[14]); + s1[15] = highbd_idct_add_dual(s2[12], s2[15]); + + s1[18] = multiply_accumulate_shift_and_narrow_s32_dual(s2[18], -cospi_8_64, + s2[29], cospi_24_64); + s1[29] = multiply_accumulate_shift_and_narrow_s32_dual(s2[18], cospi_24_64, + s2[29], cospi_8_64); + + s1[19] = multiply_accumulate_shift_and_narrow_s32_dual(s2[19], -cospi_8_64, + s2[28], cospi_24_64); + s1[28] = multiply_accumulate_shift_and_narrow_s32_dual(s2[19], cospi_24_64, + s2[28], cospi_8_64); + + s1[20] = multiply_accumulate_shift_and_narrow_s32_dual(s2[20], -cospi_24_64, + s2[27], -cospi_8_64); + s1[27] = multiply_accumulate_shift_and_narrow_s32_dual(s2[20], -cospi_8_64, + s2[27], cospi_24_64); + + s1[21] = multiply_accumulate_shift_and_narrow_s32_dual(s2[21], -cospi_24_64, + s2[26], -cospi_8_64); + s1[26] = multiply_accumulate_shift_and_narrow_s32_dual(s2[21], -cospi_8_64, + s2[26], cospi_24_64); + + // stage 6 + s2[0] = highbd_idct_add_dual(s1[0], s1[7]); + s2[1] = highbd_idct_add_dual(s1[0], s1[6]); + s2[2] = highbd_idct_add_dual(s1[0], s1[5]); + s2[3] = highbd_idct_add_dual(s1[0], s1[4]); + s2[4] = highbd_idct_sub_dual(s1[0], s1[4]); + s2[5] = highbd_idct_sub_dual(s1[0], s1[5]); + s2[6] = highbd_idct_sub_dual(s1[0], s1[6]); + s2[7] = highbd_idct_sub_dual(s1[0], s1[7]); + + s2[10] = sub_multiply_shift_and_narrow_s32_dual(s1[13], s1[10], cospi_16_64); + s2[13] = add_multiply_shift_and_narrow_s32_dual(s1[10], s1[13], cospi_16_64); + + s2[11] = sub_multiply_shift_and_narrow_s32_dual(s1[12], s1[11], cospi_16_64); + s2[12] = add_multiply_shift_and_narrow_s32_dual(s1[11], s1[12], cospi_16_64); + + s1[16] = highbd_idct_add_dual(s2[16], s2[23]); + s1[17] = highbd_idct_add_dual(s2[17], s2[22]); + s2[18] = highbd_idct_add_dual(s1[18], s1[21]); + s2[19] = highbd_idct_add_dual(s1[19], s1[20]); + s2[20] = highbd_idct_sub_dual(s1[19], s1[20]); + s2[21] = highbd_idct_sub_dual(s1[18], s1[21]); + s1[22] = highbd_idct_sub_dual(s2[17], s2[22]); + s1[23] = highbd_idct_sub_dual(s2[16], s2[23]); + + s3[24] = highbd_idct_sub_dual(s2[31], s2[24]); + s3[25] = highbd_idct_sub_dual(s2[30], s2[25]); + s3[26] = highbd_idct_sub_dual(s1[29], s1[26]); + s3[27] = highbd_idct_sub_dual(s1[28], s1[27]); + s2[28] = highbd_idct_add_dual(s1[27], s1[28]); + s2[29] = highbd_idct_add_dual(s1[26], s1[29]); + s2[30] = highbd_idct_add_dual(s2[25], s2[30]); + s2[31] = highbd_idct_add_dual(s2[24], s2[31]); + + // stage 7 + s1[0] = highbd_idct_add_dual(s2[0], s1[15]); + s1[1] = highbd_idct_add_dual(s2[1], s1[14]); + s1[2] = highbd_idct_add_dual(s2[2], s2[13]); + s1[3] = highbd_idct_add_dual(s2[3], s2[12]); + s1[4] = highbd_idct_add_dual(s2[4], s2[11]); + s1[5] = highbd_idct_add_dual(s2[5], s2[10]); + s1[6] = highbd_idct_add_dual(s2[6], s1[9]); + s1[7] = highbd_idct_add_dual(s2[7], s1[8]); + s1[8] = highbd_idct_sub_dual(s2[7], s1[8]); + s1[9] = highbd_idct_sub_dual(s2[6], s1[9]); + s1[10] = highbd_idct_sub_dual(s2[5], s2[10]); + s1[11] = highbd_idct_sub_dual(s2[4], s2[11]); + s1[12] = highbd_idct_sub_dual(s2[3], s2[12]); + s1[13] = highbd_idct_sub_dual(s2[2], s2[13]); + s1[14] = highbd_idct_sub_dual(s2[1], s1[14]); + s1[15] = highbd_idct_sub_dual(s2[0], s1[15]); + + s1[20] = sub_multiply_shift_and_narrow_s32_dual(s3[27], s2[20], cospi_16_64); + s1[27] = add_multiply_shift_and_narrow_s32_dual(s2[20], s3[27], cospi_16_64); + + s1[21] = sub_multiply_shift_and_narrow_s32_dual(s3[26], s2[21], cospi_16_64); + s1[26] = add_multiply_shift_and_narrow_s32_dual(s2[21], s3[26], cospi_16_64); + + s2[22] = sub_multiply_shift_and_narrow_s32_dual(s3[25], s1[22], cospi_16_64); + s1[25] = add_multiply_shift_and_narrow_s32_dual(s1[22], s3[25], cospi_16_64); + + s2[23] = sub_multiply_shift_and_narrow_s32_dual(s3[24], s1[23], cospi_16_64); + s1[24] = add_multiply_shift_and_narrow_s32_dual(s1[23], s3[24], cospi_16_64); + + // final stage + out[0] = highbd_idct_add_dual(s1[0], s2[31]); + out[1] = highbd_idct_add_dual(s1[1], s2[30]); + out[2] = highbd_idct_add_dual(s1[2], s2[29]); + out[3] = highbd_idct_add_dual(s1[3], s2[28]); + out[4] = highbd_idct_add_dual(s1[4], s1[27]); + out[5] = highbd_idct_add_dual(s1[5], s1[26]); + out[6] = highbd_idct_add_dual(s1[6], s1[25]); + out[7] = highbd_idct_add_dual(s1[7], s1[24]); + out[8] = highbd_idct_add_dual(s1[8], s2[23]); + out[9] = highbd_idct_add_dual(s1[9], s2[22]); + out[10] = highbd_idct_add_dual(s1[10], s1[21]); + out[11] = highbd_idct_add_dual(s1[11], s1[20]); + out[12] = highbd_idct_add_dual(s1[12], s2[19]); + out[13] = highbd_idct_add_dual(s1[13], s2[18]); + out[14] = highbd_idct_add_dual(s1[14], s1[17]); + out[15] = highbd_idct_add_dual(s1[15], s1[16]); + out[16] = highbd_idct_sub_dual(s1[15], s1[16]); + out[17] = highbd_idct_sub_dual(s1[14], s1[17]); + out[18] = highbd_idct_sub_dual(s1[13], s2[18]); + out[19] = highbd_idct_sub_dual(s1[12], s2[19]); + out[20] = highbd_idct_sub_dual(s1[11], s1[20]); + out[21] = highbd_idct_sub_dual(s1[10], s1[21]); + out[22] = highbd_idct_sub_dual(s1[9], s2[22]); + out[23] = highbd_idct_sub_dual(s1[8], s2[23]); + out[24] = highbd_idct_sub_dual(s1[7], s1[24]); + out[25] = highbd_idct_sub_dual(s1[6], s1[25]); + out[26] = highbd_idct_sub_dual(s1[5], s1[26]); + out[27] = highbd_idct_sub_dual(s1[4], s1[27]); + out[28] = highbd_idct_sub_dual(s1[3], s2[28]); + out[29] = highbd_idct_sub_dual(s1[2], s2[29]); + out[30] = highbd_idct_sub_dual(s1[1], s2[30]); + out[31] = highbd_idct_sub_dual(s1[0], s2[31]); + + highbd_idct16x16_add_store(out, output, stride, bd); + highbd_idct16x16_add_store(out + 16, output + 16 * stride, stride, bd); +} + +void vpx_highbd_idct32x32_34_add_neon(const tran_low_t *input, uint16_t *dest, + int stride, int bd) { + int i; + + if (bd == 8) { + int16_t temp[32 * 8]; + int16_t *t = temp; + + vpx_idct32_6_neon(input, t); + + for (i = 0; i < 32; i += 8) { + vpx_idct32_8_neon(t, dest, stride, 1); + t += (8 * 8); + dest += 8; + } + } else { + int32_t temp[32 * 8]; + int32_t *t = temp; + + vpx_highbd_idct32_6_neon(input, t); + + for (i = 0; i < 32; i += 8) { + vpx_highbd_idct32_8_neon(t, dest, stride, bd); + t += (8 * 8); + dest += 8; + } + } +} diff --git a/vpx_dsp/arm/highbd_idct32x32_add_neon.c b/vpx_dsp/arm/highbd_idct32x32_add_neon.c new file mode 100644 index 0000000..c1354c0 --- /dev/null +++ b/vpx_dsp/arm/highbd_idct32x32_add_neon.c @@ -0,0 +1,88 @@ +/* + * Copyright (c) 2017 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include + +#include "./vpx_dsp_rtcd.h" +#include "vpx_dsp/arm/idct_neon.h" +#include "vpx_dsp/inv_txfm.h" + +static INLINE void highbd_idct32x32_1_add_pos_kernel(uint16_t **dest, + const int stride, + const int16x8_t res, + const int16x8_t max) { + const uint16x8_t a0 = vld1q_u16(*dest); + const uint16x8_t a1 = vld1q_u16(*dest + 8); + const uint16x8_t a2 = vld1q_u16(*dest + 16); + const uint16x8_t a3 = vld1q_u16(*dest + 24); + const int16x8_t b0 = vaddq_s16(res, vreinterpretq_s16_u16(a0)); + const int16x8_t b1 = vaddq_s16(res, vreinterpretq_s16_u16(a1)); + const int16x8_t b2 = vaddq_s16(res, vreinterpretq_s16_u16(a2)); + const int16x8_t b3 = vaddq_s16(res, vreinterpretq_s16_u16(a3)); + const int16x8_t c0 = vminq_s16(b0, max); + const int16x8_t c1 = vminq_s16(b1, max); + const int16x8_t c2 = vminq_s16(b2, max); + const int16x8_t c3 = vminq_s16(b3, max); + vst1q_u16(*dest, vreinterpretq_u16_s16(c0)); + vst1q_u16(*dest + 8, vreinterpretq_u16_s16(c1)); + vst1q_u16(*dest + 16, vreinterpretq_u16_s16(c2)); + vst1q_u16(*dest + 24, vreinterpretq_u16_s16(c3)); + *dest += stride; +} + +static INLINE void highbd_idct32x32_1_add_neg_kernel(uint16_t **dest, + const int stride, + const int16x8_t res) { + const uint16x8_t a0 = vld1q_u16(*dest); + const uint16x8_t a1 = vld1q_u16(*dest + 8); + const uint16x8_t a2 = vld1q_u16(*dest + 16); + const uint16x8_t a3 = vld1q_u16(*dest + 24); + const int16x8_t b0 = vaddq_s16(res, vreinterpretq_s16_u16(a0)); + const int16x8_t b1 = vaddq_s16(res, vreinterpretq_s16_u16(a1)); + const int16x8_t b2 = vaddq_s16(res, vreinterpretq_s16_u16(a2)); + const int16x8_t b3 = vaddq_s16(res, vreinterpretq_s16_u16(a3)); + const uint16x8_t c0 = vqshluq_n_s16(b0, 0); + const uint16x8_t c1 = vqshluq_n_s16(b1, 0); + const uint16x8_t c2 = vqshluq_n_s16(b2, 0); + const uint16x8_t c3 = vqshluq_n_s16(b3, 0); + vst1q_u16(*dest, c0); + vst1q_u16(*dest + 8, c1); + vst1q_u16(*dest + 16, c2); + vst1q_u16(*dest + 24, c3); + *dest += stride; +} + +void vpx_highbd_idct32x32_1_add_neon(const tran_low_t *input, uint16_t *dest, + int stride, int bd) { + const tran_low_t out0 = HIGHBD_WRAPLOW( + dct_const_round_shift(input[0] * (tran_high_t)cospi_16_64), bd); + const tran_low_t out1 = HIGHBD_WRAPLOW( + dct_const_round_shift(out0 * (tran_high_t)cospi_16_64), bd); + const int16_t a1 = ROUND_POWER_OF_TWO(out1, 6); + const int16x8_t dc = vdupq_n_s16(a1); + int i; + + if (a1 >= 0) { + const int16x8_t max = vdupq_n_s16((1 << bd) - 1); + for (i = 0; i < 8; ++i) { + highbd_idct32x32_1_add_pos_kernel(&dest, stride, dc, max); + highbd_idct32x32_1_add_pos_kernel(&dest, stride, dc, max); + highbd_idct32x32_1_add_pos_kernel(&dest, stride, dc, max); + highbd_idct32x32_1_add_pos_kernel(&dest, stride, dc, max); + } + } else { + for (i = 0; i < 8; ++i) { + highbd_idct32x32_1_add_neg_kernel(&dest, stride, dc); + highbd_idct32x32_1_add_neg_kernel(&dest, stride, dc); + highbd_idct32x32_1_add_neg_kernel(&dest, stride, dc); + highbd_idct32x32_1_add_neg_kernel(&dest, stride, dc); + } + } +} diff --git a/vpx_dsp/arm/highbd_idct4x4_add_neon.c b/vpx_dsp/arm/highbd_idct4x4_add_neon.c new file mode 100644 index 0000000..1418a75 --- /dev/null +++ b/vpx_dsp/arm/highbd_idct4x4_add_neon.c @@ -0,0 +1,173 @@ +/* + * Copyright (c) 2016 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include + +#include "./vpx_dsp_rtcd.h" +#include "vpx_dsp/arm/idct_neon.h" +#include "vpx_dsp/inv_txfm.h" + +static INLINE void highbd_idct4x4_1_add_kernel1(uint16_t **dest, + const int stride, + const int16x8_t res, + const int16x8_t max) { + const uint16x4_t a0 = vld1_u16(*dest); + const uint16x4_t a1 = vld1_u16(*dest + stride); + const int16x8_t a = vreinterpretq_s16_u16(vcombine_u16(a0, a1)); + // Note: In some profile tests, res is quite close to +/-32767. + // We use saturating addition. + const int16x8_t b = vqaddq_s16(res, a); + const int16x8_t c = vminq_s16(b, max); + const uint16x8_t d = vqshluq_n_s16(c, 0); + vst1_u16(*dest, vget_low_u16(d)); + *dest += stride; + vst1_u16(*dest, vget_high_u16(d)); + *dest += stride; +} + +// res is in reverse row order +static INLINE void highbd_idct4x4_1_add_kernel2(uint16_t **dest, + const int stride, + const int16x8_t res, + const int16x8_t max) { + const uint16x4_t a0 = vld1_u16(*dest); + const uint16x4_t a1 = vld1_u16(*dest + stride); + const int16x8_t a = vreinterpretq_s16_u16(vcombine_u16(a1, a0)); + // Note: In some profile tests, res is quite close to +/-32767. + // We use saturating addition. + const int16x8_t b = vqaddq_s16(res, a); + const int16x8_t c = vminq_s16(b, max); + const uint16x8_t d = vqshluq_n_s16(c, 0); + vst1_u16(*dest, vget_high_u16(d)); + *dest += stride; + vst1_u16(*dest, vget_low_u16(d)); + *dest += stride; +} + +void vpx_highbd_idct4x4_1_add_neon(const tran_low_t *input, uint16_t *dest, + int stride, int bd) { + const int16x8_t max = vdupq_n_s16((1 << bd) - 1); + const tran_low_t out0 = HIGHBD_WRAPLOW( + dct_const_round_shift(input[0] * (tran_high_t)cospi_16_64), bd); + const tran_low_t out1 = HIGHBD_WRAPLOW( + dct_const_round_shift(out0 * (tran_high_t)cospi_16_64), bd); + const int16_t a1 = ROUND_POWER_OF_TWO(out1, 4); + const int16x8_t dc = vdupq_n_s16(a1); + + highbd_idct4x4_1_add_kernel1(&dest, stride, dc, max); + highbd_idct4x4_1_add_kernel1(&dest, stride, dc, max); +} + +static INLINE void idct4x4_16_kernel_bd10(const int32x4_t cospis, + int32x4_t *const a0, + int32x4_t *const a1, + int32x4_t *const a2, + int32x4_t *const a3) { + int32x4_t b0, b1, b2, b3; + + transpose_s32_4x4(a0, a1, a2, a3); + b0 = vaddq_s32(*a0, *a2); + b1 = vsubq_s32(*a0, *a2); + b0 = vmulq_lane_s32(b0, vget_high_s32(cospis), 0); + b1 = vmulq_lane_s32(b1, vget_high_s32(cospis), 0); + b2 = vmulq_lane_s32(*a1, vget_high_s32(cospis), 1); + b3 = vmulq_lane_s32(*a1, vget_low_s32(cospis), 1); + b2 = vmlsq_lane_s32(b2, *a3, vget_low_s32(cospis), 1); + b3 = vmlaq_lane_s32(b3, *a3, vget_high_s32(cospis), 1); + b0 = vrshrq_n_s32(b0, DCT_CONST_BITS); + b1 = vrshrq_n_s32(b1, DCT_CONST_BITS); + b2 = vrshrq_n_s32(b2, DCT_CONST_BITS); + b3 = vrshrq_n_s32(b3, DCT_CONST_BITS); + *a0 = vaddq_s32(b0, b3); + *a1 = vaddq_s32(b1, b2); + *a2 = vsubq_s32(b1, b2); + *a3 = vsubq_s32(b0, b3); +} + +static INLINE void idct4x4_16_kernel_bd12(const int32x4_t cospis, + int32x4_t *const a0, + int32x4_t *const a1, + int32x4_t *const a2, + int32x4_t *const a3) { + int32x4_t b0, b1, b2, b3; + int64x2_t c0, c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11; + + transpose_s32_4x4(a0, a1, a2, a3); + b0 = vaddq_s32(*a0, *a2); + b1 = vsubq_s32(*a0, *a2); + c0 = vmull_lane_s32(vget_low_s32(b0), vget_high_s32(cospis), 0); + c1 = vmull_lane_s32(vget_high_s32(b0), vget_high_s32(cospis), 0); + c2 = vmull_lane_s32(vget_low_s32(b1), vget_high_s32(cospis), 0); + c3 = vmull_lane_s32(vget_high_s32(b1), vget_high_s32(cospis), 0); + c4 = vmull_lane_s32(vget_low_s32(*a1), vget_high_s32(cospis), 1); + c5 = vmull_lane_s32(vget_high_s32(*a1), vget_high_s32(cospis), 1); + c6 = vmull_lane_s32(vget_low_s32(*a1), vget_low_s32(cospis), 1); + c7 = vmull_lane_s32(vget_high_s32(*a1), vget_low_s32(cospis), 1); + c8 = vmull_lane_s32(vget_low_s32(*a3), vget_low_s32(cospis), 1); + c9 = vmull_lane_s32(vget_high_s32(*a3), vget_low_s32(cospis), 1); + c10 = vmull_lane_s32(vget_low_s32(*a3), vget_high_s32(cospis), 1); + c11 = vmull_lane_s32(vget_high_s32(*a3), vget_high_s32(cospis), 1); + c4 = vsubq_s64(c4, c8); + c5 = vsubq_s64(c5, c9); + c6 = vaddq_s64(c6, c10); + c7 = vaddq_s64(c7, c11); + b0 = vcombine_s32(vrshrn_n_s64(c0, DCT_CONST_BITS), + vrshrn_n_s64(c1, DCT_CONST_BITS)); + b1 = vcombine_s32(vrshrn_n_s64(c2, DCT_CONST_BITS), + vrshrn_n_s64(c3, DCT_CONST_BITS)); + b2 = vcombine_s32(vrshrn_n_s64(c4, DCT_CONST_BITS), + vrshrn_n_s64(c5, DCT_CONST_BITS)); + b3 = vcombine_s32(vrshrn_n_s64(c6, DCT_CONST_BITS), + vrshrn_n_s64(c7, DCT_CONST_BITS)); + *a0 = vaddq_s32(b0, b3); + *a1 = vaddq_s32(b1, b2); + *a2 = vsubq_s32(b1, b2); + *a3 = vsubq_s32(b0, b3); +} + +void vpx_highbd_idct4x4_16_add_neon(const tran_low_t *input, uint16_t *dest, + int stride, int bd) { + const int16x8_t max = vdupq_n_s16((1 << bd) - 1); + int32x4_t c0 = vld1q_s32(input); + int32x4_t c1 = vld1q_s32(input + 4); + int32x4_t c2 = vld1q_s32(input + 8); + int32x4_t c3 = vld1q_s32(input + 12); + int16x8_t a0, a1; + + if (bd == 8) { + const int16x4_t cospis = vld1_s16(kCospi); + + // Rows + a0 = vcombine_s16(vmovn_s32(c0), vmovn_s32(c1)); + a1 = vcombine_s16(vmovn_s32(c2), vmovn_s32(c3)); + idct4x4_16_kernel_bd8(cospis, &a0, &a1); + + // Columns + a1 = vcombine_s16(vget_high_s16(a1), vget_low_s16(a1)); + idct4x4_16_kernel_bd8(cospis, &a0, &a1); + a0 = vrshrq_n_s16(a0, 4); + a1 = vrshrq_n_s16(a1, 4); + } else { + const int32x4_t cospis = vld1q_s32(kCospi32); + + if (bd == 10) { + idct4x4_16_kernel_bd10(cospis, &c0, &c1, &c2, &c3); + idct4x4_16_kernel_bd10(cospis, &c0, &c1, &c2, &c3); + } else { + idct4x4_16_kernel_bd12(cospis, &c0, &c1, &c2, &c3); + idct4x4_16_kernel_bd12(cospis, &c0, &c1, &c2, &c3); + } + a0 = vcombine_s16(vqrshrn_n_s32(c0, 4), vqrshrn_n_s32(c1, 4)); + a1 = vcombine_s16(vqrshrn_n_s32(c3, 4), vqrshrn_n_s32(c2, 4)); + } + + highbd_idct4x4_1_add_kernel1(&dest, stride, a0, max); + highbd_idct4x4_1_add_kernel2(&dest, stride, a1, max); +} diff --git a/vpx_dsp/arm/highbd_idct8x8_add_neon.c b/vpx_dsp/arm/highbd_idct8x8_add_neon.c new file mode 100644 index 0000000..dd90134 --- /dev/null +++ b/vpx_dsp/arm/highbd_idct8x8_add_neon.c @@ -0,0 +1,631 @@ +/* + * Copyright (c) 2016 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include + +#include "./vpx_dsp_rtcd.h" +#include "vpx_dsp/arm/idct_neon.h" +#include "vpx_dsp/arm/transpose_neon.h" +#include "vpx_dsp/inv_txfm.h" + +static INLINE void highbd_idct8x8_1_add_pos_kernel(uint16_t **dest, + const int stride, + const int16x8_t res, + const int16x8_t max) { + const uint16x8_t a = vld1q_u16(*dest); + const int16x8_t b = vaddq_s16(res, vreinterpretq_s16_u16(a)); + const int16x8_t c = vminq_s16(b, max); + vst1q_u16(*dest, vreinterpretq_u16_s16(c)); + *dest += stride; +} + +static INLINE void highbd_idct8x8_1_add_neg_kernel(uint16_t **dest, + const int stride, + const int16x8_t res) { + const uint16x8_t a = vld1q_u16(*dest); + const int16x8_t b = vaddq_s16(res, vreinterpretq_s16_u16(a)); + const uint16x8_t c = vqshluq_n_s16(b, 0); + vst1q_u16(*dest, c); + *dest += stride; +} + +void vpx_highbd_idct8x8_1_add_neon(const tran_low_t *input, uint16_t *dest, + int stride, int bd) { + const tran_low_t out0 = HIGHBD_WRAPLOW( + dct_const_round_shift(input[0] * (tran_high_t)cospi_16_64), bd); + const tran_low_t out1 = HIGHBD_WRAPLOW( + dct_const_round_shift(out0 * (tran_high_t)cospi_16_64), bd); + const int16_t a1 = ROUND_POWER_OF_TWO(out1, 5); + const int16x8_t dc = vdupq_n_s16(a1); + + if (a1 >= 0) { + const int16x8_t max = vdupq_n_s16((1 << bd) - 1); + highbd_idct8x8_1_add_pos_kernel(&dest, stride, dc, max); + highbd_idct8x8_1_add_pos_kernel(&dest, stride, dc, max); + highbd_idct8x8_1_add_pos_kernel(&dest, stride, dc, max); + highbd_idct8x8_1_add_pos_kernel(&dest, stride, dc, max); + highbd_idct8x8_1_add_pos_kernel(&dest, stride, dc, max); + highbd_idct8x8_1_add_pos_kernel(&dest, stride, dc, max); + highbd_idct8x8_1_add_pos_kernel(&dest, stride, dc, max); + highbd_idct8x8_1_add_pos_kernel(&dest, stride, dc, max); + } else { + highbd_idct8x8_1_add_neg_kernel(&dest, stride, dc); + highbd_idct8x8_1_add_neg_kernel(&dest, stride, dc); + highbd_idct8x8_1_add_neg_kernel(&dest, stride, dc); + highbd_idct8x8_1_add_neg_kernel(&dest, stride, dc); + highbd_idct8x8_1_add_neg_kernel(&dest, stride, dc); + highbd_idct8x8_1_add_neg_kernel(&dest, stride, dc); + highbd_idct8x8_1_add_neg_kernel(&dest, stride, dc); + highbd_idct8x8_1_add_neg_kernel(&dest, stride, dc); + } +} + +static INLINE void idct8x8_12_half1d_bd10( + const int32x4_t cospis0, const int32x4_t cospis1, int32x4_t *const io0, + int32x4_t *const io1, int32x4_t *const io2, int32x4_t *const io3, + int32x4_t *const io4, int32x4_t *const io5, int32x4_t *const io6, + int32x4_t *const io7) { + int32x4_t step1[8], step2[8]; + + transpose_s32_4x4(io0, io1, io2, io3); + + // stage 1 + step1[4] = vmulq_lane_s32(*io1, vget_high_s32(cospis1), 1); + step1[5] = vmulq_lane_s32(*io3, vget_high_s32(cospis1), 0); + step1[6] = vmulq_lane_s32(*io3, vget_low_s32(cospis1), 1); + step1[7] = vmulq_lane_s32(*io1, vget_low_s32(cospis1), 0); + step1[4] = vrshrq_n_s32(step1[4], DCT_CONST_BITS); + step1[5] = vrshrq_n_s32(step1[5], DCT_CONST_BITS); + step1[6] = vrshrq_n_s32(step1[6], DCT_CONST_BITS); + step1[7] = vrshrq_n_s32(step1[7], DCT_CONST_BITS); + + // stage 2 + step2[1] = vmulq_lane_s32(*io0, vget_high_s32(cospis0), 0); + step2[2] = vmulq_lane_s32(*io2, vget_high_s32(cospis0), 1); + step2[3] = vmulq_lane_s32(*io2, vget_low_s32(cospis0), 1); + step2[1] = vrshrq_n_s32(step2[1], DCT_CONST_BITS); + step2[2] = vrshrq_n_s32(step2[2], DCT_CONST_BITS); + step2[3] = vrshrq_n_s32(step2[3], DCT_CONST_BITS); + + step2[4] = vaddq_s32(step1[4], step1[5]); + step2[5] = vsubq_s32(step1[4], step1[5]); + step2[6] = vsubq_s32(step1[7], step1[6]); + step2[7] = vaddq_s32(step1[7], step1[6]); + + // stage 3 + step1[0] = vaddq_s32(step2[1], step2[3]); + step1[1] = vaddq_s32(step2[1], step2[2]); + step1[2] = vsubq_s32(step2[1], step2[2]); + step1[3] = vsubq_s32(step2[1], step2[3]); + + step1[6] = vmulq_lane_s32(step2[6], vget_high_s32(cospis0), 0); + step1[5] = vmlsq_lane_s32(step1[6], step2[5], vget_high_s32(cospis0), 0); + step1[6] = vmlaq_lane_s32(step1[6], step2[5], vget_high_s32(cospis0), 0); + step1[5] = vrshrq_n_s32(step1[5], DCT_CONST_BITS); + step1[6] = vrshrq_n_s32(step1[6], DCT_CONST_BITS); + + // stage 4 + *io0 = vaddq_s32(step1[0], step2[7]); + *io1 = vaddq_s32(step1[1], step1[6]); + *io2 = vaddq_s32(step1[2], step1[5]); + *io3 = vaddq_s32(step1[3], step2[4]); + *io4 = vsubq_s32(step1[3], step2[4]); + *io5 = vsubq_s32(step1[2], step1[5]); + *io6 = vsubq_s32(step1[1], step1[6]); + *io7 = vsubq_s32(step1[0], step2[7]); +} + +static INLINE void idct8x8_12_half1d_bd12( + const int32x4_t cospis0, const int32x4_t cospis1, int32x4_t *const io0, + int32x4_t *const io1, int32x4_t *const io2, int32x4_t *const io3, + int32x4_t *const io4, int32x4_t *const io5, int32x4_t *const io6, + int32x4_t *const io7) { + int32x2_t input_1l, input_1h, input_3l, input_3h; + int32x2_t step1l[2], step1h[2]; + int32x4_t step1[8], step2[8]; + int64x2_t t64[8]; + int32x2_t t32[8]; + + transpose_s32_4x4(io0, io1, io2, io3); + + // stage 1 + input_1l = vget_low_s32(*io1); + input_1h = vget_high_s32(*io1); + input_3l = vget_low_s32(*io3); + input_3h = vget_high_s32(*io3); + step1l[0] = vget_low_s32(*io0); + step1h[0] = vget_high_s32(*io0); + step1l[1] = vget_low_s32(*io2); + step1h[1] = vget_high_s32(*io2); + + t64[0] = vmull_lane_s32(input_1l, vget_high_s32(cospis1), 1); + t64[1] = vmull_lane_s32(input_1h, vget_high_s32(cospis1), 1); + t64[2] = vmull_lane_s32(input_3l, vget_high_s32(cospis1), 0); + t64[3] = vmull_lane_s32(input_3h, vget_high_s32(cospis1), 0); + t64[4] = vmull_lane_s32(input_3l, vget_low_s32(cospis1), 1); + t64[5] = vmull_lane_s32(input_3h, vget_low_s32(cospis1), 1); + t64[6] = vmull_lane_s32(input_1l, vget_low_s32(cospis1), 0); + t64[7] = vmull_lane_s32(input_1h, vget_low_s32(cospis1), 0); + t32[0] = vrshrn_n_s64(t64[0], DCT_CONST_BITS); + t32[1] = vrshrn_n_s64(t64[1], DCT_CONST_BITS); + t32[2] = vrshrn_n_s64(t64[2], DCT_CONST_BITS); + t32[3] = vrshrn_n_s64(t64[3], DCT_CONST_BITS); + t32[4] = vrshrn_n_s64(t64[4], DCT_CONST_BITS); + t32[5] = vrshrn_n_s64(t64[5], DCT_CONST_BITS); + t32[6] = vrshrn_n_s64(t64[6], DCT_CONST_BITS); + t32[7] = vrshrn_n_s64(t64[7], DCT_CONST_BITS); + step1[4] = vcombine_s32(t32[0], t32[1]); + step1[5] = vcombine_s32(t32[2], t32[3]); + step1[6] = vcombine_s32(t32[4], t32[5]); + step1[7] = vcombine_s32(t32[6], t32[7]); + + // stage 2 + t64[2] = vmull_lane_s32(step1l[0], vget_high_s32(cospis0), 0); + t64[3] = vmull_lane_s32(step1h[0], vget_high_s32(cospis0), 0); + t64[4] = vmull_lane_s32(step1l[1], vget_high_s32(cospis0), 1); + t64[5] = vmull_lane_s32(step1h[1], vget_high_s32(cospis0), 1); + t64[6] = vmull_lane_s32(step1l[1], vget_low_s32(cospis0), 1); + t64[7] = vmull_lane_s32(step1h[1], vget_low_s32(cospis0), 1); + t32[2] = vrshrn_n_s64(t64[2], DCT_CONST_BITS); + t32[3] = vrshrn_n_s64(t64[3], DCT_CONST_BITS); + t32[4] = vrshrn_n_s64(t64[4], DCT_CONST_BITS); + t32[5] = vrshrn_n_s64(t64[5], DCT_CONST_BITS); + t32[6] = vrshrn_n_s64(t64[6], DCT_CONST_BITS); + t32[7] = vrshrn_n_s64(t64[7], DCT_CONST_BITS); + step2[1] = vcombine_s32(t32[2], t32[3]); + step2[2] = vcombine_s32(t32[4], t32[5]); + step2[3] = vcombine_s32(t32[6], t32[7]); + + step2[4] = vaddq_s32(step1[4], step1[5]); + step2[5] = vsubq_s32(step1[4], step1[5]); + step2[6] = vsubq_s32(step1[7], step1[6]); + step2[7] = vaddq_s32(step1[7], step1[6]); + + // stage 3 + step1[0] = vaddq_s32(step2[1], step2[3]); + step1[1] = vaddq_s32(step2[1], step2[2]); + step1[2] = vsubq_s32(step2[1], step2[2]); + step1[3] = vsubq_s32(step2[1], step2[3]); + + t64[2] = vmull_lane_s32(vget_low_s32(step2[6]), vget_high_s32(cospis0), 0); + t64[3] = vmull_lane_s32(vget_high_s32(step2[6]), vget_high_s32(cospis0), 0); + t64[0] = + vmlsl_lane_s32(t64[2], vget_low_s32(step2[5]), vget_high_s32(cospis0), 0); + t64[1] = vmlsl_lane_s32(t64[3], vget_high_s32(step2[5]), + vget_high_s32(cospis0), 0); + t64[2] = + vmlal_lane_s32(t64[2], vget_low_s32(step2[5]), vget_high_s32(cospis0), 0); + t64[3] = vmlal_lane_s32(t64[3], vget_high_s32(step2[5]), + vget_high_s32(cospis0), 0); + t32[0] = vrshrn_n_s64(t64[0], DCT_CONST_BITS); + t32[1] = vrshrn_n_s64(t64[1], DCT_CONST_BITS); + t32[2] = vrshrn_n_s64(t64[2], DCT_CONST_BITS); + t32[3] = vrshrn_n_s64(t64[3], DCT_CONST_BITS); + step1[5] = vcombine_s32(t32[0], t32[1]); + step1[6] = vcombine_s32(t32[2], t32[3]); + + // stage 4 + *io0 = vaddq_s32(step1[0], step2[7]); + *io1 = vaddq_s32(step1[1], step1[6]); + *io2 = vaddq_s32(step1[2], step1[5]); + *io3 = vaddq_s32(step1[3], step2[4]); + *io4 = vsubq_s32(step1[3], step2[4]); + *io5 = vsubq_s32(step1[2], step1[5]); + *io6 = vsubq_s32(step1[1], step1[6]); + *io7 = vsubq_s32(step1[0], step2[7]); +} + +static INLINE void highbd_add8x8(int16x8_t a0, int16x8_t a1, int16x8_t a2, + int16x8_t a3, int16x8_t a4, int16x8_t a5, + int16x8_t a6, int16x8_t a7, uint16_t *dest, + const int stride, const int bd) { + const int16x8_t max = vdupq_n_s16((1 << bd) - 1); + const uint16_t *dst = dest; + uint16x8_t d0, d1, d2, d3, d4, d5, d6, d7; + uint16x8_t d0_u16, d1_u16, d2_u16, d3_u16, d4_u16, d5_u16, d6_u16, d7_u16; + int16x8_t d0_s16, d1_s16, d2_s16, d3_s16, d4_s16, d5_s16, d6_s16, d7_s16; + + d0 = vld1q_u16(dst); + dst += stride; + d1 = vld1q_u16(dst); + dst += stride; + d2 = vld1q_u16(dst); + dst += stride; + d3 = vld1q_u16(dst); + dst += stride; + d4 = vld1q_u16(dst); + dst += stride; + d5 = vld1q_u16(dst); + dst += stride; + d6 = vld1q_u16(dst); + dst += stride; + d7 = vld1q_u16(dst); + + d0_s16 = vqaddq_s16(a0, vreinterpretq_s16_u16(d0)); + d1_s16 = vqaddq_s16(a1, vreinterpretq_s16_u16(d1)); + d2_s16 = vqaddq_s16(a2, vreinterpretq_s16_u16(d2)); + d3_s16 = vqaddq_s16(a3, vreinterpretq_s16_u16(d3)); + d4_s16 = vqaddq_s16(a4, vreinterpretq_s16_u16(d4)); + d5_s16 = vqaddq_s16(a5, vreinterpretq_s16_u16(d5)); + d6_s16 = vqaddq_s16(a6, vreinterpretq_s16_u16(d6)); + d7_s16 = vqaddq_s16(a7, vreinterpretq_s16_u16(d7)); + + d0_s16 = vminq_s16(d0_s16, max); + d1_s16 = vminq_s16(d1_s16, max); + d2_s16 = vminq_s16(d2_s16, max); + d3_s16 = vminq_s16(d3_s16, max); + d4_s16 = vminq_s16(d4_s16, max); + d5_s16 = vminq_s16(d5_s16, max); + d6_s16 = vminq_s16(d6_s16, max); + d7_s16 = vminq_s16(d7_s16, max); + d0_u16 = vqshluq_n_s16(d0_s16, 0); + d1_u16 = vqshluq_n_s16(d1_s16, 0); + d2_u16 = vqshluq_n_s16(d2_s16, 0); + d3_u16 = vqshluq_n_s16(d3_s16, 0); + d4_u16 = vqshluq_n_s16(d4_s16, 0); + d5_u16 = vqshluq_n_s16(d5_s16, 0); + d6_u16 = vqshluq_n_s16(d6_s16, 0); + d7_u16 = vqshluq_n_s16(d7_s16, 0); + + vst1q_u16(dest, d0_u16); + dest += stride; + vst1q_u16(dest, d1_u16); + dest += stride; + vst1q_u16(dest, d2_u16); + dest += stride; + vst1q_u16(dest, d3_u16); + dest += stride; + vst1q_u16(dest, d4_u16); + dest += stride; + vst1q_u16(dest, d5_u16); + dest += stride; + vst1q_u16(dest, d6_u16); + dest += stride; + vst1q_u16(dest, d7_u16); +} + +void vpx_highbd_idct8x8_12_add_neon(const tran_low_t *input, uint16_t *dest, + int stride, int bd) { + int32x4_t a0 = vld1q_s32(input); + int32x4_t a1 = vld1q_s32(input + 8); + int32x4_t a2 = vld1q_s32(input + 16); + int32x4_t a3 = vld1q_s32(input + 24); + int16x8_t c0, c1, c2, c3, c4, c5, c6, c7; + + if (bd == 8) { + const int16x8_t cospis = vld1q_s16(kCospi); + const int16x8_t cospisd = vaddq_s16(cospis, cospis); + const int16x4_t cospis0 = vget_low_s16(cospis); // cospi 0, 8, 16, 24 + const int16x4_t cospisd0 = vget_low_s16(cospisd); // doubled 0, 8, 16, 24 + const int16x4_t cospisd1 = vget_high_s16(cospisd); // doubled 4, 12, 20, 28 + int16x4_t b0 = vmovn_s32(a0); + int16x4_t b1 = vmovn_s32(a1); + int16x4_t b2 = vmovn_s32(a2); + int16x4_t b3 = vmovn_s32(a3); + int16x4_t b4, b5, b6, b7; + + idct8x8_12_pass1_bd8(cospis0, cospisd0, cospisd1, &b0, &b1, &b2, &b3, &b4, + &b5, &b6, &b7); + idct8x8_12_pass2_bd8(cospis0, cospisd0, cospisd1, b0, b1, b2, b3, b4, b5, + b6, b7, &c0, &c1, &c2, &c3, &c4, &c5, &c6, &c7); + c0 = vrshrq_n_s16(c0, 5); + c1 = vrshrq_n_s16(c1, 5); + c2 = vrshrq_n_s16(c2, 5); + c3 = vrshrq_n_s16(c3, 5); + c4 = vrshrq_n_s16(c4, 5); + c5 = vrshrq_n_s16(c5, 5); + c6 = vrshrq_n_s16(c6, 5); + c7 = vrshrq_n_s16(c7, 5); + } else { + const int32x4_t cospis0 = vld1q_s32(kCospi32); // cospi 0, 8, 16, 24 + const int32x4_t cospis1 = vld1q_s32(kCospi32 + 4); // cospi 4, 12, 20, 28 + int32x4_t a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14, a15; + + if (bd == 10) { + idct8x8_12_half1d_bd10(cospis0, cospis1, &a0, &a1, &a2, &a3, &a4, &a5, + &a6, &a7); + idct8x8_12_half1d_bd10(cospis0, cospis1, &a0, &a1, &a2, &a3, &a8, &a9, + &a10, &a11); + idct8x8_12_half1d_bd10(cospis0, cospis1, &a4, &a5, &a6, &a7, &a12, &a13, + &a14, &a15); + } else { + idct8x8_12_half1d_bd12(cospis0, cospis1, &a0, &a1, &a2, &a3, &a4, &a5, + &a6, &a7); + idct8x8_12_half1d_bd12(cospis0, cospis1, &a0, &a1, &a2, &a3, &a8, &a9, + &a10, &a11); + idct8x8_12_half1d_bd12(cospis0, cospis1, &a4, &a5, &a6, &a7, &a12, &a13, + &a14, &a15); + } + c0 = vcombine_s16(vrshrn_n_s32(a0, 5), vrshrn_n_s32(a4, 5)); + c1 = vcombine_s16(vrshrn_n_s32(a1, 5), vrshrn_n_s32(a5, 5)); + c2 = vcombine_s16(vrshrn_n_s32(a2, 5), vrshrn_n_s32(a6, 5)); + c3 = vcombine_s16(vrshrn_n_s32(a3, 5), vrshrn_n_s32(a7, 5)); + c4 = vcombine_s16(vrshrn_n_s32(a8, 5), vrshrn_n_s32(a12, 5)); + c5 = vcombine_s16(vrshrn_n_s32(a9, 5), vrshrn_n_s32(a13, 5)); + c6 = vcombine_s16(vrshrn_n_s32(a10, 5), vrshrn_n_s32(a14, 5)); + c7 = vcombine_s16(vrshrn_n_s32(a11, 5), vrshrn_n_s32(a15, 5)); + } + highbd_add8x8(c0, c1, c2, c3, c4, c5, c6, c7, dest, stride, bd); +} + +static INLINE void idct8x8_64_half1d_bd10( + const int32x4_t cospis0, const int32x4_t cospis1, int32x4_t *const io0, + int32x4_t *const io1, int32x4_t *const io2, int32x4_t *const io3, + int32x4_t *const io4, int32x4_t *const io5, int32x4_t *const io6, + int32x4_t *const io7) { + int32x4_t step1[8], step2[8]; + + transpose_s32_8x4(io0, io1, io2, io3, io4, io5, io6, io7); + + // stage 1 + step1[4] = vmulq_lane_s32(*io1, vget_high_s32(cospis1), 1); + step1[5] = vmulq_lane_s32(*io3, vget_high_s32(cospis1), 0); + step1[6] = vmulq_lane_s32(*io3, vget_low_s32(cospis1), 1); + step1[7] = vmulq_lane_s32(*io1, vget_low_s32(cospis1), 0); + + step1[4] = vmlsq_lane_s32(step1[4], *io7, vget_low_s32(cospis1), 0); + step1[5] = vmlaq_lane_s32(step1[5], *io5, vget_low_s32(cospis1), 1); + step1[6] = vmlsq_lane_s32(step1[6], *io5, vget_high_s32(cospis1), 0); + step1[7] = vmlaq_lane_s32(step1[7], *io7, vget_high_s32(cospis1), 1); + + step1[4] = vrshrq_n_s32(step1[4], DCT_CONST_BITS); + step1[5] = vrshrq_n_s32(step1[5], DCT_CONST_BITS); + step1[6] = vrshrq_n_s32(step1[6], DCT_CONST_BITS); + step1[7] = vrshrq_n_s32(step1[7], DCT_CONST_BITS); + + // stage 2 + step2[1] = vmulq_lane_s32(*io0, vget_high_s32(cospis0), 0); + step2[2] = vmulq_lane_s32(*io2, vget_high_s32(cospis0), 1); + step2[3] = vmulq_lane_s32(*io2, vget_low_s32(cospis0), 1); + + step2[0] = vmlaq_lane_s32(step2[1], *io4, vget_high_s32(cospis0), 0); + step2[1] = vmlsq_lane_s32(step2[1], *io4, vget_high_s32(cospis0), 0); + step2[2] = vmlsq_lane_s32(step2[2], *io6, vget_low_s32(cospis0), 1); + step2[3] = vmlaq_lane_s32(step2[3], *io6, vget_high_s32(cospis0), 1); + + step2[0] = vrshrq_n_s32(step2[0], DCT_CONST_BITS); + step2[1] = vrshrq_n_s32(step2[1], DCT_CONST_BITS); + step2[2] = vrshrq_n_s32(step2[2], DCT_CONST_BITS); + step2[3] = vrshrq_n_s32(step2[3], DCT_CONST_BITS); + + step2[4] = vaddq_s32(step1[4], step1[5]); + step2[5] = vsubq_s32(step1[4], step1[5]); + step2[6] = vsubq_s32(step1[7], step1[6]); + step2[7] = vaddq_s32(step1[7], step1[6]); + + // stage 3 + step1[0] = vaddq_s32(step2[0], step2[3]); + step1[1] = vaddq_s32(step2[1], step2[2]); + step1[2] = vsubq_s32(step2[1], step2[2]); + step1[3] = vsubq_s32(step2[0], step2[3]); + + step1[6] = vmulq_lane_s32(step2[6], vget_high_s32(cospis0), 0); + step1[5] = vmlsq_lane_s32(step1[6], step2[5], vget_high_s32(cospis0), 0); + step1[6] = vmlaq_lane_s32(step1[6], step2[5], vget_high_s32(cospis0), 0); + step1[5] = vrshrq_n_s32(step1[5], DCT_CONST_BITS); + step1[6] = vrshrq_n_s32(step1[6], DCT_CONST_BITS); + + // stage 4 + *io0 = vaddq_s32(step1[0], step2[7]); + *io1 = vaddq_s32(step1[1], step1[6]); + *io2 = vaddq_s32(step1[2], step1[5]); + *io3 = vaddq_s32(step1[3], step2[4]); + *io4 = vsubq_s32(step1[3], step2[4]); + *io5 = vsubq_s32(step1[2], step1[5]); + *io6 = vsubq_s32(step1[1], step1[6]); + *io7 = vsubq_s32(step1[0], step2[7]); +} + +static INLINE void idct8x8_64_half1d_bd12( + const int32x4_t cospis0, const int32x4_t cospis1, int32x4_t *const io0, + int32x4_t *const io1, int32x4_t *const io2, int32x4_t *const io3, + int32x4_t *const io4, int32x4_t *const io5, int32x4_t *const io6, + int32x4_t *const io7) { + int32x2_t input_1l, input_1h, input_3l, input_3h, input_5l, input_5h, + input_7l, input_7h; + int32x2_t step1l[4], step1h[4]; + int32x4_t step1[8], step2[8]; + int64x2_t t64[8]; + int32x2_t t32[8]; + + transpose_s32_8x4(io0, io1, io2, io3, io4, io5, io6, io7); + + // stage 1 + input_1l = vget_low_s32(*io1); + input_1h = vget_high_s32(*io1); + input_3l = vget_low_s32(*io3); + input_3h = vget_high_s32(*io3); + input_5l = vget_low_s32(*io5); + input_5h = vget_high_s32(*io5); + input_7l = vget_low_s32(*io7); + input_7h = vget_high_s32(*io7); + step1l[0] = vget_low_s32(*io0); + step1h[0] = vget_high_s32(*io0); + step1l[1] = vget_low_s32(*io2); + step1h[1] = vget_high_s32(*io2); + step1l[2] = vget_low_s32(*io4); + step1h[2] = vget_high_s32(*io4); + step1l[3] = vget_low_s32(*io6); + step1h[3] = vget_high_s32(*io6); + + t64[0] = vmull_lane_s32(input_1l, vget_high_s32(cospis1), 1); + t64[1] = vmull_lane_s32(input_1h, vget_high_s32(cospis1), 1); + t64[2] = vmull_lane_s32(input_3l, vget_high_s32(cospis1), 0); + t64[3] = vmull_lane_s32(input_3h, vget_high_s32(cospis1), 0); + t64[4] = vmull_lane_s32(input_3l, vget_low_s32(cospis1), 1); + t64[5] = vmull_lane_s32(input_3h, vget_low_s32(cospis1), 1); + t64[6] = vmull_lane_s32(input_1l, vget_low_s32(cospis1), 0); + t64[7] = vmull_lane_s32(input_1h, vget_low_s32(cospis1), 0); + t64[0] = vmlsl_lane_s32(t64[0], input_7l, vget_low_s32(cospis1), 0); + t64[1] = vmlsl_lane_s32(t64[1], input_7h, vget_low_s32(cospis1), 0); + t64[2] = vmlal_lane_s32(t64[2], input_5l, vget_low_s32(cospis1), 1); + t64[3] = vmlal_lane_s32(t64[3], input_5h, vget_low_s32(cospis1), 1); + t64[4] = vmlsl_lane_s32(t64[4], input_5l, vget_high_s32(cospis1), 0); + t64[5] = vmlsl_lane_s32(t64[5], input_5h, vget_high_s32(cospis1), 0); + t64[6] = vmlal_lane_s32(t64[6], input_7l, vget_high_s32(cospis1), 1); + t64[7] = vmlal_lane_s32(t64[7], input_7h, vget_high_s32(cospis1), 1); + t32[0] = vrshrn_n_s64(t64[0], DCT_CONST_BITS); + t32[1] = vrshrn_n_s64(t64[1], DCT_CONST_BITS); + t32[2] = vrshrn_n_s64(t64[2], DCT_CONST_BITS); + t32[3] = vrshrn_n_s64(t64[3], DCT_CONST_BITS); + t32[4] = vrshrn_n_s64(t64[4], DCT_CONST_BITS); + t32[5] = vrshrn_n_s64(t64[5], DCT_CONST_BITS); + t32[6] = vrshrn_n_s64(t64[6], DCT_CONST_BITS); + t32[7] = vrshrn_n_s64(t64[7], DCT_CONST_BITS); + step1[4] = vcombine_s32(t32[0], t32[1]); + step1[5] = vcombine_s32(t32[2], t32[3]); + step1[6] = vcombine_s32(t32[4], t32[5]); + step1[7] = vcombine_s32(t32[6], t32[7]); + + // stage 2 + t64[2] = vmull_lane_s32(step1l[0], vget_high_s32(cospis0), 0); + t64[3] = vmull_lane_s32(step1h[0], vget_high_s32(cospis0), 0); + t64[4] = vmull_lane_s32(step1l[1], vget_high_s32(cospis0), 1); + t64[5] = vmull_lane_s32(step1h[1], vget_high_s32(cospis0), 1); + t64[6] = vmull_lane_s32(step1l[1], vget_low_s32(cospis0), 1); + t64[7] = vmull_lane_s32(step1h[1], vget_low_s32(cospis0), 1); + t64[0] = vmlal_lane_s32(t64[2], step1l[2], vget_high_s32(cospis0), 0); + t64[1] = vmlal_lane_s32(t64[3], step1h[2], vget_high_s32(cospis0), 0); + t64[2] = vmlsl_lane_s32(t64[2], step1l[2], vget_high_s32(cospis0), 0); + t64[3] = vmlsl_lane_s32(t64[3], step1h[2], vget_high_s32(cospis0), 0); + t64[4] = vmlsl_lane_s32(t64[4], step1l[3], vget_low_s32(cospis0), 1); + t64[5] = vmlsl_lane_s32(t64[5], step1h[3], vget_low_s32(cospis0), 1); + t64[6] = vmlal_lane_s32(t64[6], step1l[3], vget_high_s32(cospis0), 1); + t64[7] = vmlal_lane_s32(t64[7], step1h[3], vget_high_s32(cospis0), 1); + t32[0] = vrshrn_n_s64(t64[0], DCT_CONST_BITS); + t32[1] = vrshrn_n_s64(t64[1], DCT_CONST_BITS); + t32[2] = vrshrn_n_s64(t64[2], DCT_CONST_BITS); + t32[3] = vrshrn_n_s64(t64[3], DCT_CONST_BITS); + t32[4] = vrshrn_n_s64(t64[4], DCT_CONST_BITS); + t32[5] = vrshrn_n_s64(t64[5], DCT_CONST_BITS); + t32[6] = vrshrn_n_s64(t64[6], DCT_CONST_BITS); + t32[7] = vrshrn_n_s64(t64[7], DCT_CONST_BITS); + step2[0] = vcombine_s32(t32[0], t32[1]); + step2[1] = vcombine_s32(t32[2], t32[3]); + step2[2] = vcombine_s32(t32[4], t32[5]); + step2[3] = vcombine_s32(t32[6], t32[7]); + + step2[4] = vaddq_s32(step1[4], step1[5]); + step2[5] = vsubq_s32(step1[4], step1[5]); + step2[6] = vsubq_s32(step1[7], step1[6]); + step2[7] = vaddq_s32(step1[7], step1[6]); + + // stage 3 + step1[0] = vaddq_s32(step2[0], step2[3]); + step1[1] = vaddq_s32(step2[1], step2[2]); + step1[2] = vsubq_s32(step2[1], step2[2]); + step1[3] = vsubq_s32(step2[0], step2[3]); + + t64[2] = vmull_lane_s32(vget_low_s32(step2[6]), vget_high_s32(cospis0), 0); + t64[3] = vmull_lane_s32(vget_high_s32(step2[6]), vget_high_s32(cospis0), 0); + t64[0] = + vmlsl_lane_s32(t64[2], vget_low_s32(step2[5]), vget_high_s32(cospis0), 0); + t64[1] = vmlsl_lane_s32(t64[3], vget_high_s32(step2[5]), + vget_high_s32(cospis0), 0); + t64[2] = + vmlal_lane_s32(t64[2], vget_low_s32(step2[5]), vget_high_s32(cospis0), 0); + t64[3] = vmlal_lane_s32(t64[3], vget_high_s32(step2[5]), + vget_high_s32(cospis0), 0); + t32[0] = vrshrn_n_s64(t64[0], DCT_CONST_BITS); + t32[1] = vrshrn_n_s64(t64[1], DCT_CONST_BITS); + t32[2] = vrshrn_n_s64(t64[2], DCT_CONST_BITS); + t32[3] = vrshrn_n_s64(t64[3], DCT_CONST_BITS); + step1[5] = vcombine_s32(t32[0], t32[1]); + step1[6] = vcombine_s32(t32[2], t32[3]); + + // stage 4 + *io0 = vaddq_s32(step1[0], step2[7]); + *io1 = vaddq_s32(step1[1], step1[6]); + *io2 = vaddq_s32(step1[2], step1[5]); + *io3 = vaddq_s32(step1[3], step2[4]); + *io4 = vsubq_s32(step1[3], step2[4]); + *io5 = vsubq_s32(step1[2], step1[5]); + *io6 = vsubq_s32(step1[1], step1[6]); + *io7 = vsubq_s32(step1[0], step2[7]); +} + +void vpx_highbd_idct8x8_64_add_neon(const tran_low_t *input, uint16_t *dest, + int stride, int bd) { + int32x4_t a0 = vld1q_s32(input); + int32x4_t a1 = vld1q_s32(input + 4); + int32x4_t a2 = vld1q_s32(input + 8); + int32x4_t a3 = vld1q_s32(input + 12); + int32x4_t a4 = vld1q_s32(input + 16); + int32x4_t a5 = vld1q_s32(input + 20); + int32x4_t a6 = vld1q_s32(input + 24); + int32x4_t a7 = vld1q_s32(input + 28); + int32x4_t a8 = vld1q_s32(input + 32); + int32x4_t a9 = vld1q_s32(input + 36); + int32x4_t a10 = vld1q_s32(input + 40); + int32x4_t a11 = vld1q_s32(input + 44); + int32x4_t a12 = vld1q_s32(input + 48); + int32x4_t a13 = vld1q_s32(input + 52); + int32x4_t a14 = vld1q_s32(input + 56); + int32x4_t a15 = vld1q_s32(input + 60); + int16x8_t c0, c1, c2, c3, c4, c5, c6, c7; + + if (bd == 8) { + const int16x8_t cospis = vld1q_s16(kCospi); + const int16x4_t cospis0 = vget_low_s16(cospis); // cospi 0, 8, 16, 24 + const int16x4_t cospis1 = vget_high_s16(cospis); // cospi 4, 12, 20, 28 + int16x8_t b0 = vcombine_s16(vmovn_s32(a0), vmovn_s32(a1)); + int16x8_t b1 = vcombine_s16(vmovn_s32(a2), vmovn_s32(a3)); + int16x8_t b2 = vcombine_s16(vmovn_s32(a4), vmovn_s32(a5)); + int16x8_t b3 = vcombine_s16(vmovn_s32(a6), vmovn_s32(a7)); + int16x8_t b4 = vcombine_s16(vmovn_s32(a8), vmovn_s32(a9)); + int16x8_t b5 = vcombine_s16(vmovn_s32(a10), vmovn_s32(a11)); + int16x8_t b6 = vcombine_s16(vmovn_s32(a12), vmovn_s32(a13)); + int16x8_t b7 = vcombine_s16(vmovn_s32(a14), vmovn_s32(a15)); + + idct8x8_64_1d_bd8(cospis0, cospis1, &b0, &b1, &b2, &b3, &b4, &b5, &b6, &b7); + idct8x8_64_1d_bd8(cospis0, cospis1, &b0, &b1, &b2, &b3, &b4, &b5, &b6, &b7); + + c0 = vrshrq_n_s16(b0, 5); + c1 = vrshrq_n_s16(b1, 5); + c2 = vrshrq_n_s16(b2, 5); + c3 = vrshrq_n_s16(b3, 5); + c4 = vrshrq_n_s16(b4, 5); + c5 = vrshrq_n_s16(b5, 5); + c6 = vrshrq_n_s16(b6, 5); + c7 = vrshrq_n_s16(b7, 5); + } else { + const int32x4_t cospis0 = vld1q_s32(kCospi32); // cospi 0, 8, 16, 24 + const int32x4_t cospis1 = vld1q_s32(kCospi32 + 4); // cospi 4, 12, 20, 28 + + if (bd == 10) { + idct8x8_64_half1d_bd10(cospis0, cospis1, &a0, &a1, &a2, &a3, &a4, &a5, + &a6, &a7); + idct8x8_64_half1d_bd10(cospis0, cospis1, &a8, &a9, &a10, &a11, &a12, &a13, + &a14, &a15); + idct8x8_64_half1d_bd10(cospis0, cospis1, &a0, &a8, &a1, &a9, &a2, &a10, + &a3, &a11); + idct8x8_64_half1d_bd10(cospis0, cospis1, &a4, &a12, &a5, &a13, &a6, &a14, + &a7, &a15); + } else { + idct8x8_64_half1d_bd12(cospis0, cospis1, &a0, &a1, &a2, &a3, &a4, &a5, + &a6, &a7); + idct8x8_64_half1d_bd12(cospis0, cospis1, &a8, &a9, &a10, &a11, &a12, &a13, + &a14, &a15); + idct8x8_64_half1d_bd12(cospis0, cospis1, &a0, &a8, &a1, &a9, &a2, &a10, + &a3, &a11); + idct8x8_64_half1d_bd12(cospis0, cospis1, &a4, &a12, &a5, &a13, &a6, &a14, + &a7, &a15); + } + c0 = vcombine_s16(vrshrn_n_s32(a0, 5), vrshrn_n_s32(a4, 5)); + c1 = vcombine_s16(vrshrn_n_s32(a8, 5), vrshrn_n_s32(a12, 5)); + c2 = vcombine_s16(vrshrn_n_s32(a1, 5), vrshrn_n_s32(a5, 5)); + c3 = vcombine_s16(vrshrn_n_s32(a9, 5), vrshrn_n_s32(a13, 5)); + c4 = vcombine_s16(vrshrn_n_s32(a2, 5), vrshrn_n_s32(a6, 5)); + c5 = vcombine_s16(vrshrn_n_s32(a10, 5), vrshrn_n_s32(a14, 5)); + c6 = vcombine_s16(vrshrn_n_s32(a3, 5), vrshrn_n_s32(a7, 5)); + c7 = vcombine_s16(vrshrn_n_s32(a11, 5), vrshrn_n_s32(a15, 5)); + } + highbd_add8x8(c0, c1, c2, c3, c4, c5, c6, c7, dest, stride, bd); +} diff --git a/vpx_dsp/arm/highbd_intrapred_neon.c b/vpx_dsp/arm/highbd_intrapred_neon.c new file mode 100644 index 0000000..6f7e5da --- /dev/null +++ b/vpx_dsp/arm/highbd_intrapred_neon.c @@ -0,0 +1,1078 @@ +/* + * Copyright (c) 2016 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include + +#include "./vpx_config.h" +#include "./vpx_dsp_rtcd.h" +#include "vpx/vpx_integer.h" + +//------------------------------------------------------------------------------ +// DC 4x4 + +static INLINE uint16x4_t dc_sum_4(const uint16_t *ref) { + const uint16x4_t ref_u16 = vld1_u16(ref); + const uint16x4_t p0 = vpadd_u16(ref_u16, ref_u16); + return vpadd_u16(p0, p0); +} + +static INLINE void dc_store_4x4(uint16_t *dst, ptrdiff_t stride, + const uint16x4_t dc) { + const uint16x4_t dc_dup = vdup_lane_u16(dc, 0); + int i; + for (i = 0; i < 4; ++i, dst += stride) { + vst1_u16(dst, dc_dup); + } +} + +void vpx_highbd_dc_predictor_4x4_neon(uint16_t *dst, ptrdiff_t stride, + const uint16_t *above, + const uint16_t *left, int bd) { + const uint16x4_t a = vld1_u16(above); + const uint16x4_t l = vld1_u16(left); + uint16x4_t sum; + uint16x4_t dc; + (void)bd; + sum = vadd_u16(a, l); + sum = vpadd_u16(sum, sum); + sum = vpadd_u16(sum, sum); + dc = vrshr_n_u16(sum, 3); + dc_store_4x4(dst, stride, dc); +} + +void vpx_highbd_dc_left_predictor_4x4_neon(uint16_t *dst, ptrdiff_t stride, + const uint16_t *above, + const uint16_t *left, int bd) { + const uint16x4_t sum = dc_sum_4(left); + const uint16x4_t dc = vrshr_n_u16(sum, 2); + (void)above; + (void)bd; + dc_store_4x4(dst, stride, dc); +} + +void vpx_highbd_dc_top_predictor_4x4_neon(uint16_t *dst, ptrdiff_t stride, + const uint16_t *above, + const uint16_t *left, int bd) { + const uint16x4_t sum = dc_sum_4(above); + const uint16x4_t dc = vrshr_n_u16(sum, 2); + (void)left; + (void)bd; + dc_store_4x4(dst, stride, dc); +} + +void vpx_highbd_dc_128_predictor_4x4_neon(uint16_t *dst, ptrdiff_t stride, + const uint16_t *above, + const uint16_t *left, int bd) { + const uint16x4_t dc = vdup_n_u16(1 << (bd - 1)); + (void)above; + (void)left; + dc_store_4x4(dst, stride, dc); +} + +//------------------------------------------------------------------------------ +// DC 8x8 + +static INLINE uint16x4_t dc_sum_8(const uint16_t *ref) { + const uint16x8_t ref_u16 = vld1q_u16(ref); + uint16x4_t sum = vadd_u16(vget_low_u16(ref_u16), vget_high_u16(ref_u16)); + sum = vpadd_u16(sum, sum); + return vpadd_u16(sum, sum); +} + +static INLINE void dc_store_8x8(uint16_t *dst, ptrdiff_t stride, + const uint16x4_t dc) { + const uint16x8_t dc_dup = vdupq_lane_u16(dc, 0); + int i; + for (i = 0; i < 8; ++i, dst += stride) { + vst1q_u16(dst, dc_dup); + } +} + +void vpx_highbd_dc_predictor_8x8_neon(uint16_t *dst, ptrdiff_t stride, + const uint16_t *above, + const uint16_t *left, int bd) { + const uint16x8_t above_u16 = vld1q_u16(above); + const uint16x8_t left_u16 = vld1q_u16(left); + const uint16x8_t p0 = vaddq_u16(above_u16, left_u16); + uint16x4_t sum = vadd_u16(vget_low_u16(p0), vget_high_u16(p0)); + uint16x4_t dc; + (void)bd; + sum = vpadd_u16(sum, sum); + sum = vpadd_u16(sum, sum); + dc = vrshr_n_u16(sum, 4); + dc_store_8x8(dst, stride, dc); +} + +void vpx_highbd_dc_left_predictor_8x8_neon(uint16_t *dst, ptrdiff_t stride, + const uint16_t *above, + const uint16_t *left, int bd) { + const uint16x4_t sum = dc_sum_8(left); + const uint16x4_t dc = vrshr_n_u16(sum, 3); + (void)above; + (void)bd; + dc_store_8x8(dst, stride, dc); +} + +void vpx_highbd_dc_top_predictor_8x8_neon(uint16_t *dst, ptrdiff_t stride, + const uint16_t *above, + const uint16_t *left, int bd) { + const uint16x4_t sum = dc_sum_8(above); + const uint16x4_t dc = vrshr_n_u16(sum, 3); + (void)left; + (void)bd; + dc_store_8x8(dst, stride, dc); +} + +void vpx_highbd_dc_128_predictor_8x8_neon(uint16_t *dst, ptrdiff_t stride, + const uint16_t *above, + const uint16_t *left, int bd) { + const uint16x4_t dc = vdup_n_u16(1 << (bd - 1)); + (void)above; + (void)left; + dc_store_8x8(dst, stride, dc); +} + +//------------------------------------------------------------------------------ +// DC 16x16 + +static INLINE uint16x4_t dc_sum_16(const uint16_t *ref) { + const uint16x8x2_t ref_u16 = vld2q_u16(ref); + const uint16x8_t p0 = vaddq_u16(ref_u16.val[0], ref_u16.val[1]); + uint16x4_t sum = vadd_u16(vget_low_u16(p0), vget_high_u16(p0)); + sum = vpadd_u16(sum, sum); + return vpadd_u16(sum, sum); +} + +static INLINE void dc_store_16x16(uint16_t *dst, ptrdiff_t stride, + const uint16x4_t dc) { + uint16x8x2_t dc_dup; + int i; + dc_dup.val[0] = dc_dup.val[1] = vdupq_lane_u16(dc, 0); + for (i = 0; i < 16; ++i, dst += stride) { + vst2q_u16(dst, dc_dup); + } +} + +void vpx_highbd_dc_predictor_16x16_neon(uint16_t *dst, ptrdiff_t stride, + const uint16_t *above, + const uint16_t *left, int bd) { + const uint16x8x2_t a = vld2q_u16(above); + const uint16x8x2_t l = vld2q_u16(left); + const uint16x8_t pa = vaddq_u16(a.val[0], a.val[1]); + const uint16x8_t pl = vaddq_u16(l.val[0], l.val[1]); + const uint16x8_t pal0 = vaddq_u16(pa, pl); + uint16x4_t pal1 = vadd_u16(vget_low_u16(pal0), vget_high_u16(pal0)); + uint32x2_t sum; + uint16x4_t dc; + (void)bd; + pal1 = vpadd_u16(pal1, pal1); + sum = vpaddl_u16(pal1); + dc = vreinterpret_u16_u32(vrshr_n_u32(sum, 5)); + dc_store_16x16(dst, stride, dc); +} + +void vpx_highbd_dc_left_predictor_16x16_neon(uint16_t *dst, ptrdiff_t stride, + const uint16_t *above, + const uint16_t *left, int bd) { + const uint16x4_t sum = dc_sum_16(left); + const uint16x4_t dc = vrshr_n_u16(sum, 4); + (void)above; + (void)bd; + dc_store_16x16(dst, stride, dc); +} + +void vpx_highbd_dc_top_predictor_16x16_neon(uint16_t *dst, ptrdiff_t stride, + const uint16_t *above, + const uint16_t *left, int bd) { + const uint16x4_t sum = dc_sum_16(above); + const uint16x4_t dc = vrshr_n_u16(sum, 4); + (void)left; + (void)bd; + dc_store_16x16(dst, stride, dc); +} + +void vpx_highbd_dc_128_predictor_16x16_neon(uint16_t *dst, ptrdiff_t stride, + const uint16_t *above, + const uint16_t *left, int bd) { + const uint16x4_t dc = vdup_n_u16(1 << (bd - 1)); + (void)above; + (void)left; + dc_store_16x16(dst, stride, dc); +} + +//------------------------------------------------------------------------------ +// DC 32x32 + +static INLINE uint32x2_t dc_sum_32(const uint16_t *ref) { + const uint16x8x4_t r = vld4q_u16(ref); + const uint16x8_t p0 = vaddq_u16(r.val[0], r.val[1]); + const uint16x8_t p1 = vaddq_u16(r.val[2], r.val[3]); + const uint16x8_t p2 = vaddq_u16(p0, p1); + uint16x4_t sum = vadd_u16(vget_low_u16(p2), vget_high_u16(p2)); + sum = vpadd_u16(sum, sum); + return vpaddl_u16(sum); +} + +static INLINE void dc_store_32x32(uint16_t *dst, ptrdiff_t stride, + const uint16x4_t dc) { + uint16x8x2_t dc_dup; + int i; + dc_dup.val[0] = dc_dup.val[1] = vdupq_lane_u16(dc, 0); + + for (i = 0; i < 32; ++i) { + vst2q_u16(dst, dc_dup); + dst += 16; + vst2q_u16(dst, dc_dup); + dst += stride - 16; + } +} + +void vpx_highbd_dc_predictor_32x32_neon(uint16_t *dst, ptrdiff_t stride, + const uint16_t *above, + const uint16_t *left, int bd) { + const uint16x8x4_t a = vld4q_u16(above); + const uint16x8x4_t l = vld4q_u16(left); + const uint16x8_t pa0 = vaddq_u16(a.val[0], a.val[1]); + const uint16x8_t pa1 = vaddq_u16(a.val[2], a.val[3]); + const uint16x8_t pl0 = vaddq_u16(l.val[0], l.val[1]); + const uint16x8_t pl1 = vaddq_u16(l.val[2], l.val[3]); + const uint16x8_t pa = vaddq_u16(pa0, pa1); + const uint16x8_t pl = vaddq_u16(pl0, pl1); + const uint16x8_t pal0 = vaddq_u16(pa, pl); + const uint16x4_t pal1 = vadd_u16(vget_low_u16(pal0), vget_high_u16(pal0)); + uint32x2_t sum = vpaddl_u16(pal1); + uint16x4_t dc; + (void)bd; + sum = vpadd_u32(sum, sum); + dc = vreinterpret_u16_u32(vrshr_n_u32(sum, 6)); + dc_store_32x32(dst, stride, dc); +} + +void vpx_highbd_dc_left_predictor_32x32_neon(uint16_t *dst, ptrdiff_t stride, + const uint16_t *above, + const uint16_t *left, int bd) { + const uint32x2_t sum = dc_sum_32(left); + const uint16x4_t dc = vreinterpret_u16_u32(vrshr_n_u32(sum, 5)); + (void)above; + (void)bd; + dc_store_32x32(dst, stride, dc); +} + +void vpx_highbd_dc_top_predictor_32x32_neon(uint16_t *dst, ptrdiff_t stride, + const uint16_t *above, + const uint16_t *left, int bd) { + const uint32x2_t sum = dc_sum_32(above); + const uint16x4_t dc = vreinterpret_u16_u32(vrshr_n_u32(sum, 5)); + (void)left; + (void)bd; + dc_store_32x32(dst, stride, dc); +} + +void vpx_highbd_dc_128_predictor_32x32_neon(uint16_t *dst, ptrdiff_t stride, + const uint16_t *above, + const uint16_t *left, int bd) { + const uint16x4_t dc = vdup_n_u16(1 << (bd - 1)); + (void)above; + (void)left; + dc_store_32x32(dst, stride, dc); +} + +// ----------------------------------------------------------------------------- + +void vpx_highbd_d45_predictor_4x4_neon(uint16_t *dst, ptrdiff_t stride, + const uint16_t *above, + const uint16_t *left, int bd) { + const uint16x8_t ABCDEFGH = vld1q_u16(above); + const uint16x8_t BCDEFGH0 = vld1q_u16(above + 1); + const uint16x8_t CDEFGH00 = vld1q_u16(above + 2); + const uint16x8_t avg1 = vhaddq_u16(ABCDEFGH, CDEFGH00); + const uint16x8_t avg2 = vrhaddq_u16(avg1, BCDEFGH0); + const uint16x4_t avg2_low = vget_low_u16(avg2); + const uint16x4_t avg2_high = vget_high_u16(avg2); + const uint16x4_t r1 = vext_u16(avg2_low, avg2_high, 1); + const uint16x4_t r2 = vext_u16(avg2_low, avg2_high, 2); + const uint16x4_t r3 = vext_u16(avg2_low, avg2_high, 3); + (void)left; + (void)bd; + vst1_u16(dst, avg2_low); + dst += stride; + vst1_u16(dst, r1); + dst += stride; + vst1_u16(dst, r2); + dst += stride; + vst1_u16(dst, r3); + vst1q_lane_u16(dst + 3, ABCDEFGH, 7); +} + +static INLINE void d45_store_8(uint16_t **dst, const ptrdiff_t stride, + const uint16x8_t above_right, uint16x8_t *row) { + *row = vextq_u16(*row, above_right, 1); + vst1q_u16(*dst, *row); + *dst += stride; +} + +void vpx_highbd_d45_predictor_8x8_neon(uint16_t *dst, ptrdiff_t stride, + const uint16_t *above, + const uint16_t *left, int bd) { + const uint16x8_t A0 = vld1q_u16(above); + const uint16x8_t above_right = vdupq_lane_u16(vget_high_u16(A0), 3); + const uint16x8_t A1 = vld1q_u16(above + 1); + const uint16x8_t A2 = vld1q_u16(above + 2); + const uint16x8_t avg1 = vhaddq_u16(A0, A2); + uint16x8_t row = vrhaddq_u16(avg1, A1); + (void)left; + (void)bd; + + vst1q_u16(dst, row); + dst += stride; + d45_store_8(&dst, stride, above_right, &row); + d45_store_8(&dst, stride, above_right, &row); + d45_store_8(&dst, stride, above_right, &row); + d45_store_8(&dst, stride, above_right, &row); + d45_store_8(&dst, stride, above_right, &row); + d45_store_8(&dst, stride, above_right, &row); + vst1q_u16(dst, above_right); +} + +static INLINE void d45_store_16(uint16_t **dst, const ptrdiff_t stride, + const uint16x8_t above_right, uint16x8_t *row_0, + uint16x8_t *row_1) { + *row_0 = vextq_u16(*row_0, *row_1, 1); + *row_1 = vextq_u16(*row_1, above_right, 1); + vst1q_u16(*dst, *row_0); + *dst += 8; + vst1q_u16(*dst, *row_1); + *dst += stride - 8; +} + +void vpx_highbd_d45_predictor_16x16_neon(uint16_t *dst, ptrdiff_t stride, + const uint16_t *above, + const uint16_t *left, int bd) { + const uint16x8_t A0_0 = vld1q_u16(above); + const uint16x8_t A0_1 = vld1q_u16(above + 8); + const uint16x8_t above_right = vdupq_lane_u16(vget_high_u16(A0_1), 3); + const uint16x8_t A1_0 = vld1q_u16(above + 1); + const uint16x8_t A1_1 = vld1q_u16(above + 9); + const uint16x8_t A2_0 = vld1q_u16(above + 2); + const uint16x8_t A2_1 = vld1q_u16(above + 10); + const uint16x8_t avg_0 = vhaddq_u16(A0_0, A2_0); + const uint16x8_t avg_1 = vhaddq_u16(A0_1, A2_1); + uint16x8_t row_0 = vrhaddq_u16(avg_0, A1_0); + uint16x8_t row_1 = vrhaddq_u16(avg_1, A1_1); + (void)left; + (void)bd; + + vst1q_u16(dst, row_0); + vst1q_u16(dst + 8, row_1); + dst += stride; + d45_store_16(&dst, stride, above_right, &row_0, &row_1); + d45_store_16(&dst, stride, above_right, &row_0, &row_1); + d45_store_16(&dst, stride, above_right, &row_0, &row_1); + d45_store_16(&dst, stride, above_right, &row_0, &row_1); + d45_store_16(&dst, stride, above_right, &row_0, &row_1); + d45_store_16(&dst, stride, above_right, &row_0, &row_1); + d45_store_16(&dst, stride, above_right, &row_0, &row_1); + d45_store_16(&dst, stride, above_right, &row_0, &row_1); + d45_store_16(&dst, stride, above_right, &row_0, &row_1); + d45_store_16(&dst, stride, above_right, &row_0, &row_1); + d45_store_16(&dst, stride, above_right, &row_0, &row_1); + d45_store_16(&dst, stride, above_right, &row_0, &row_1); + d45_store_16(&dst, stride, above_right, &row_0, &row_1); + d45_store_16(&dst, stride, above_right, &row_0, &row_1); + vst1q_u16(dst, above_right); + vst1q_u16(dst + 8, above_right); +} + +void vpx_highbd_d45_predictor_32x32_neon(uint16_t *dst, ptrdiff_t stride, + const uint16_t *above, + const uint16_t *left, int bd) { + const uint16x8_t A0_0 = vld1q_u16(above); + const uint16x8_t A0_1 = vld1q_u16(above + 8); + const uint16x8_t A0_2 = vld1q_u16(above + 16); + const uint16x8_t A0_3 = vld1q_u16(above + 24); + const uint16x8_t above_right = vdupq_lane_u16(vget_high_u16(A0_3), 3); + const uint16x8_t A1_0 = vld1q_u16(above + 1); + const uint16x8_t A1_1 = vld1q_u16(above + 9); + const uint16x8_t A1_2 = vld1q_u16(above + 17); + const uint16x8_t A1_3 = vld1q_u16(above + 25); + const uint16x8_t A2_0 = vld1q_u16(above + 2); + const uint16x8_t A2_1 = vld1q_u16(above + 10); + const uint16x8_t A2_2 = vld1q_u16(above + 18); + const uint16x8_t A2_3 = vld1q_u16(above + 26); + const uint16x8_t avg_0 = vhaddq_u16(A0_0, A2_0); + const uint16x8_t avg_1 = vhaddq_u16(A0_1, A2_1); + const uint16x8_t avg_2 = vhaddq_u16(A0_2, A2_2); + const uint16x8_t avg_3 = vhaddq_u16(A0_3, A2_3); + uint16x8_t row_0 = vrhaddq_u16(avg_0, A1_0); + uint16x8_t row_1 = vrhaddq_u16(avg_1, A1_1); + uint16x8_t row_2 = vrhaddq_u16(avg_2, A1_2); + uint16x8_t row_3 = vrhaddq_u16(avg_3, A1_3); + int i; + (void)left; + (void)bd; + + vst1q_u16(dst, row_0); + dst += 8; + vst1q_u16(dst, row_1); + dst += 8; + vst1q_u16(dst, row_2); + dst += 8; + vst1q_u16(dst, row_3); + dst += stride - 24; + + for (i = 0; i < 30; ++i) { + row_0 = vextq_u16(row_0, row_1, 1); + row_1 = vextq_u16(row_1, row_2, 1); + row_2 = vextq_u16(row_2, row_3, 1); + row_3 = vextq_u16(row_3, above_right, 1); + vst1q_u16(dst, row_0); + dst += 8; + vst1q_u16(dst, row_1); + dst += 8; + vst1q_u16(dst, row_2); + dst += 8; + vst1q_u16(dst, row_3); + dst += stride - 24; + } + + vst1q_u16(dst, above_right); + dst += 8; + vst1q_u16(dst, above_right); + dst += 8; + vst1q_u16(dst, above_right); + dst += 8; + vst1q_u16(dst, above_right); +} + +// ----------------------------------------------------------------------------- + +void vpx_highbd_d135_predictor_4x4_neon(uint16_t *dst, ptrdiff_t stride, + const uint16_t *above, + const uint16_t *left, int bd) { + const uint16x8_t XA0123___ = vld1q_u16(above - 1); + const uint16x4_t L0123 = vld1_u16(left); + const uint16x4_t L3210 = vrev64_u16(L0123); + const uint16x8_t L____3210 = vcombine_u16(L0123, L3210); + const uint16x8_t L3210XA012 = vcombine_u16(L3210, vget_low_u16(XA0123___)); + const uint16x8_t L210XA0123 = vextq_u16(L____3210, XA0123___, 5); + const uint16x8_t L10XA0123_ = vextq_u16(L____3210, XA0123___, 6); + const uint16x8_t avg1 = vhaddq_u16(L3210XA012, L10XA0123_); + const uint16x8_t avg2 = vrhaddq_u16(avg1, L210XA0123); + const uint16x4_t row_0 = vget_low_u16(avg2); + const uint16x4_t row_1 = vget_high_u16(avg2); + const uint16x4_t r0 = vext_u16(row_0, row_1, 3); + const uint16x4_t r1 = vext_u16(row_0, row_1, 2); + const uint16x4_t r2 = vext_u16(row_0, row_1, 1); + (void)bd; + vst1_u16(dst, r0); + dst += stride; + vst1_u16(dst, r1); + dst += stride; + vst1_u16(dst, r2); + dst += stride; + vst1_u16(dst, row_0); +} + +void vpx_highbd_d135_predictor_8x8_neon(uint16_t *dst, ptrdiff_t stride, + const uint16_t *above, + const uint16_t *left, int bd) { + const uint16x8_t XA0123456 = vld1q_u16(above - 1); + const uint16x8_t A01234567 = vld1q_u16(above); + const uint16x8_t A1234567_ = vld1q_u16(above + 1); + const uint16x8_t L01234567 = vld1q_u16(left); + const uint16x4_t L3210 = vrev64_u16(vget_low_u16(L01234567)); + const uint16x4_t L7654 = vrev64_u16(vget_high_u16(L01234567)); + const uint16x8_t L76543210 = vcombine_u16(L7654, L3210); + const uint16x8_t L6543210X = vextq_u16(L76543210, XA0123456, 1); + const uint16x8_t L543210XA0 = vextq_u16(L76543210, XA0123456, 2); + const uint16x8_t avg_0 = vhaddq_u16(L76543210, L543210XA0); + const uint16x8_t avg_1 = vhaddq_u16(XA0123456, A1234567_); + const uint16x8_t row_0 = vrhaddq_u16(avg_0, L6543210X); + const uint16x8_t row_1 = vrhaddq_u16(avg_1, A01234567); + const uint16x8_t r0 = vextq_u16(row_0, row_1, 7); + const uint16x8_t r1 = vextq_u16(row_0, row_1, 6); + const uint16x8_t r2 = vextq_u16(row_0, row_1, 5); + const uint16x8_t r3 = vextq_u16(row_0, row_1, 4); + const uint16x8_t r4 = vextq_u16(row_0, row_1, 3); + const uint16x8_t r5 = vextq_u16(row_0, row_1, 2); + const uint16x8_t r6 = vextq_u16(row_0, row_1, 1); + (void)bd; + vst1q_u16(dst, r0); + dst += stride; + vst1q_u16(dst, r1); + dst += stride; + vst1q_u16(dst, r2); + dst += stride; + vst1q_u16(dst, r3); + dst += stride; + vst1q_u16(dst, r4); + dst += stride; + vst1q_u16(dst, r5); + dst += stride; + vst1q_u16(dst, r6); + dst += stride; + vst1q_u16(dst, row_0); +} + +static INLINE void d135_store_16(uint16_t **dst, const ptrdiff_t stride, + const uint16x8_t row_0, + const uint16x8_t row_1) { + vst1q_u16(*dst, row_0); + *dst += 8; + vst1q_u16(*dst, row_1); + *dst += stride - 8; +} + +void vpx_highbd_d135_predictor_16x16_neon(uint16_t *dst, ptrdiff_t stride, + const uint16_t *above, + const uint16_t *left, int bd) { + const uint16x8_t L01234567 = vld1q_u16(left); + const uint16x8_t L89abcdef = vld1q_u16(left + 8); + const uint16x4_t L3210 = vrev64_u16(vget_low_u16(L01234567)); + const uint16x4_t L7654 = vrev64_u16(vget_high_u16(L01234567)); + const uint16x4_t Lba98 = vrev64_u16(vget_low_u16(L89abcdef)); + const uint16x4_t Lfedc = vrev64_u16(vget_high_u16(L89abcdef)); + const uint16x8_t L76543210 = vcombine_u16(L7654, L3210); + const uint16x8_t Lfedcba98 = vcombine_u16(Lfedc, Lba98); + const uint16x8_t Ledcba987 = vextq_u16(Lfedcba98, L76543210, 1); + const uint16x8_t Ldcba9876 = vextq_u16(Lfedcba98, L76543210, 2); + const uint16x8_t avg_0 = vhaddq_u16(Lfedcba98, Ldcba9876); + const uint16x8_t row_0 = vrhaddq_u16(avg_0, Ledcba987); + + const uint16x8_t XA0123456 = vld1q_u16(above - 1); + const uint16x8_t L6543210X = vextq_u16(L76543210, XA0123456, 1); + const uint16x8_t L543210XA0 = vextq_u16(L76543210, XA0123456, 2); + const uint16x8_t avg_1 = vhaddq_u16(L76543210, L543210XA0); + const uint16x8_t row_1 = vrhaddq_u16(avg_1, L6543210X); + + const uint16x8_t A01234567 = vld1q_u16(above); + const uint16x8_t A12345678 = vld1q_u16(above + 1); + const uint16x8_t avg_2 = vhaddq_u16(XA0123456, A12345678); + const uint16x8_t row_2 = vrhaddq_u16(avg_2, A01234567); + + const uint16x8_t A789abcde = vld1q_u16(above + 7); + const uint16x8_t A89abcdef = vld1q_u16(above + 8); + const uint16x8_t A9abcdef_ = vld1q_u16(above + 9); + const uint16x8_t avg_3 = vhaddq_u16(A789abcde, A9abcdef_); + const uint16x8_t row_3 = vrhaddq_u16(avg_3, A89abcdef); + + const uint16x8_t r0_0 = vextq_u16(row_1, row_2, 7); + const uint16x8_t r0_1 = vextq_u16(row_2, row_3, 7); + const uint16x8_t r1_0 = vextq_u16(row_1, row_2, 6); + const uint16x8_t r1_1 = vextq_u16(row_2, row_3, 6); + const uint16x8_t r2_0 = vextq_u16(row_1, row_2, 5); + const uint16x8_t r2_1 = vextq_u16(row_2, row_3, 5); + const uint16x8_t r3_0 = vextq_u16(row_1, row_2, 4); + const uint16x8_t r3_1 = vextq_u16(row_2, row_3, 4); + const uint16x8_t r4_0 = vextq_u16(row_1, row_2, 3); + const uint16x8_t r4_1 = vextq_u16(row_2, row_3, 3); + const uint16x8_t r5_0 = vextq_u16(row_1, row_2, 2); + const uint16x8_t r5_1 = vextq_u16(row_2, row_3, 2); + const uint16x8_t r6_0 = vextq_u16(row_1, row_2, 1); + const uint16x8_t r6_1 = vextq_u16(row_2, row_3, 1); + const uint16x8_t r8_0 = vextq_u16(row_0, row_1, 7); + const uint16x8_t r9_0 = vextq_u16(row_0, row_1, 6); + const uint16x8_t ra_0 = vextq_u16(row_0, row_1, 5); + const uint16x8_t rb_0 = vextq_u16(row_0, row_1, 4); + const uint16x8_t rc_0 = vextq_u16(row_0, row_1, 3); + const uint16x8_t rd_0 = vextq_u16(row_0, row_1, 2); + const uint16x8_t re_0 = vextq_u16(row_0, row_1, 1); + (void)bd; + + d135_store_16(&dst, stride, r0_0, r0_1); + d135_store_16(&dst, stride, r1_0, r1_1); + d135_store_16(&dst, stride, r2_0, r2_1); + d135_store_16(&dst, stride, r3_0, r3_1); + d135_store_16(&dst, stride, r4_0, r4_1); + d135_store_16(&dst, stride, r5_0, r5_1); + d135_store_16(&dst, stride, r6_0, r6_1); + d135_store_16(&dst, stride, row_1, row_2); + d135_store_16(&dst, stride, r8_0, r0_0); + d135_store_16(&dst, stride, r9_0, r1_0); + d135_store_16(&dst, stride, ra_0, r2_0); + d135_store_16(&dst, stride, rb_0, r3_0); + d135_store_16(&dst, stride, rc_0, r4_0); + d135_store_16(&dst, stride, rd_0, r5_0); + d135_store_16(&dst, stride, re_0, r6_0); + vst1q_u16(dst, row_0); + dst += 8; + vst1q_u16(dst, row_1); +} + +void vpx_highbd_d135_predictor_32x32_neon(uint16_t *dst, ptrdiff_t stride, + const uint16_t *above, + const uint16_t *left, int bd) { + const uint16x8_t LL01234567 = vld1q_u16(left + 16); + const uint16x8_t LL89abcdef = vld1q_u16(left + 24); + const uint16x4_t LL3210 = vrev64_u16(vget_low_u16(LL01234567)); + const uint16x4_t LL7654 = vrev64_u16(vget_high_u16(LL01234567)); + const uint16x4_t LLba98 = vrev64_u16(vget_low_u16(LL89abcdef)); + const uint16x4_t LLfedc = vrev64_u16(vget_high_u16(LL89abcdef)); + const uint16x8_t LL76543210 = vcombine_u16(LL7654, LL3210); + const uint16x8_t LLfedcba98 = vcombine_u16(LLfedc, LLba98); + const uint16x8_t LLedcba987 = vextq_u16(LLfedcba98, LL76543210, 1); + const uint16x8_t LLdcba9876 = vextq_u16(LLfedcba98, LL76543210, 2); + const uint16x8_t avg_0 = vhaddq_u16(LLfedcba98, LLdcba9876); + uint16x8_t row_0 = vrhaddq_u16(avg_0, LLedcba987); + + const uint16x8_t LU01234567 = vld1q_u16(left); + const uint16x8_t LU89abcdef = vld1q_u16(left + 8); + const uint16x4_t LU3210 = vrev64_u16(vget_low_u16(LU01234567)); + const uint16x4_t LU7654 = vrev64_u16(vget_high_u16(LU01234567)); + const uint16x4_t LUba98 = vrev64_u16(vget_low_u16(LU89abcdef)); + const uint16x4_t LUfedc = vrev64_u16(vget_high_u16(LU89abcdef)); + const uint16x8_t LU76543210 = vcombine_u16(LU7654, LU3210); + const uint16x8_t LUfedcba98 = vcombine_u16(LUfedc, LUba98); + const uint16x8_t LL6543210Uf = vextq_u16(LL76543210, LUfedcba98, 1); + const uint16x8_t LL543210Ufe = vextq_u16(LL76543210, LUfedcba98, 2); + const uint16x8_t avg_1 = vhaddq_u16(LL76543210, LL543210Ufe); + uint16x8_t row_1 = vrhaddq_u16(avg_1, LL6543210Uf); + + const uint16x8_t LUedcba987 = vextq_u16(LUfedcba98, LU76543210, 1); + const uint16x8_t LUdcba9876 = vextq_u16(LUfedcba98, LU76543210, 2); + const uint16x8_t avg_2 = vhaddq_u16(LUfedcba98, LUdcba9876); + uint16x8_t row_2 = vrhaddq_u16(avg_2, LUedcba987); + + const uint16x8_t XAL0123456 = vld1q_u16(above - 1); + const uint16x8_t LU6543210X = vextq_u16(LU76543210, XAL0123456, 1); + const uint16x8_t LU543210XA0 = vextq_u16(LU76543210, XAL0123456, 2); + const uint16x8_t avg_3 = vhaddq_u16(LU76543210, LU543210XA0); + uint16x8_t row_3 = vrhaddq_u16(avg_3, LU6543210X); + + const uint16x8_t AL01234567 = vld1q_u16(above); + const uint16x8_t AL12345678 = vld1q_u16(above + 1); + const uint16x8_t avg_4 = vhaddq_u16(XAL0123456, AL12345678); + uint16x8_t row_4 = vrhaddq_u16(avg_4, AL01234567); + + const uint16x8_t AL789abcde = vld1q_u16(above + 7); + const uint16x8_t AL89abcdef = vld1q_u16(above + 8); + const uint16x8_t AL9abcdefg = vld1q_u16(above + 9); + const uint16x8_t avg_5 = vhaddq_u16(AL789abcde, AL9abcdefg); + uint16x8_t row_5 = vrhaddq_u16(avg_5, AL89abcdef); + + const uint16x8_t ALfR0123456 = vld1q_u16(above + 15); + const uint16x8_t AR01234567 = vld1q_u16(above + 16); + const uint16x8_t AR12345678 = vld1q_u16(above + 17); + const uint16x8_t avg_6 = vhaddq_u16(ALfR0123456, AR12345678); + uint16x8_t row_6 = vrhaddq_u16(avg_6, AR01234567); + + const uint16x8_t AR789abcde = vld1q_u16(above + 23); + const uint16x8_t AR89abcdef = vld1q_u16(above + 24); + const uint16x8_t AR9abcdef_ = vld1q_u16(above + 25); + const uint16x8_t avg_7 = vhaddq_u16(AR789abcde, AR9abcdef_); + uint16x8_t row_7 = vrhaddq_u16(avg_7, AR89abcdef); + int i, j; + (void)bd; + + dst += 31 * stride; + for (i = 0; i < 4; ++i) { + for (j = 0; j < 8; ++j) { + vst1q_u16(dst, row_0); + dst += 8; + vst1q_u16(dst, row_1); + dst += 8; + vst1q_u16(dst, row_2); + dst += 8; + vst1q_u16(dst, row_3); + dst -= stride + 24; + row_0 = vextq_u16(row_0, row_1, 1); + row_1 = vextq_u16(row_1, row_2, 1); + row_2 = vextq_u16(row_2, row_3, 1); + row_3 = vextq_u16(row_3, row_4, 1); + row_4 = vextq_u16(row_4, row_4, 1); + } + row_4 = row_5; + row_5 = row_6; + row_6 = row_7; + } +} + +//------------------------------------------------------------------------------ + +void vpx_highbd_v_predictor_4x4_neon(uint16_t *dst, ptrdiff_t stride, + const uint16_t *above, + const uint16_t *left, int bd) { + const uint16x4_t row = vld1_u16(above); + int i; + (void)left; + (void)bd; + + for (i = 0; i < 4; i++, dst += stride) { + vst1_u16(dst, row); + } +} + +void vpx_highbd_v_predictor_8x8_neon(uint16_t *dst, ptrdiff_t stride, + const uint16_t *above, + const uint16_t *left, int bd) { + const uint16x8_t row = vld1q_u16(above); + int i; + (void)left; + (void)bd; + + for (i = 0; i < 8; i++, dst += stride) { + vst1q_u16(dst, row); + } +} + +void vpx_highbd_v_predictor_16x16_neon(uint16_t *dst, ptrdiff_t stride, + const uint16_t *above, + const uint16_t *left, int bd) { + const uint16x8x2_t row = vld2q_u16(above); + int i; + (void)left; + (void)bd; + + for (i = 0; i < 16; i++, dst += stride) { + vst2q_u16(dst, row); + } +} + +void vpx_highbd_v_predictor_32x32_neon(uint16_t *dst, ptrdiff_t stride, + const uint16_t *above, + const uint16_t *left, int bd) { + const uint16x8x2_t row0 = vld2q_u16(above); + const uint16x8x2_t row1 = vld2q_u16(above + 16); + int i; + (void)left; + (void)bd; + + for (i = 0; i < 32; i++) { + vst2q_u16(dst, row0); + dst += 16; + vst2q_u16(dst, row1); + dst += stride - 16; + } +} + +// ----------------------------------------------------------------------------- + +void vpx_highbd_h_predictor_4x4_neon(uint16_t *dst, ptrdiff_t stride, + const uint16_t *above, + const uint16_t *left, int bd) { + const uint16x4_t left_u16 = vld1_u16(left); + uint16x4_t row; + (void)above; + (void)bd; + + row = vdup_lane_u16(left_u16, 0); + vst1_u16(dst, row); + dst += stride; + row = vdup_lane_u16(left_u16, 1); + vst1_u16(dst, row); + dst += stride; + row = vdup_lane_u16(left_u16, 2); + vst1_u16(dst, row); + dst += stride; + row = vdup_lane_u16(left_u16, 3); + vst1_u16(dst, row); +} + +void vpx_highbd_h_predictor_8x8_neon(uint16_t *dst, ptrdiff_t stride, + const uint16_t *above, + const uint16_t *left, int bd) { + const uint16x8_t left_u16 = vld1q_u16(left); + const uint16x4_t left_low = vget_low_u16(left_u16); + const uint16x4_t left_high = vget_high_u16(left_u16); + uint16x8_t row; + (void)above; + (void)bd; + + row = vdupq_lane_u16(left_low, 0); + vst1q_u16(dst, row); + dst += stride; + row = vdupq_lane_u16(left_low, 1); + vst1q_u16(dst, row); + dst += stride; + row = vdupq_lane_u16(left_low, 2); + vst1q_u16(dst, row); + dst += stride; + row = vdupq_lane_u16(left_low, 3); + vst1q_u16(dst, row); + dst += stride; + row = vdupq_lane_u16(left_high, 0); + vst1q_u16(dst, row); + dst += stride; + row = vdupq_lane_u16(left_high, 1); + vst1q_u16(dst, row); + dst += stride; + row = vdupq_lane_u16(left_high, 2); + vst1q_u16(dst, row); + dst += stride; + row = vdupq_lane_u16(left_high, 3); + vst1q_u16(dst, row); +} + +static INLINE void h_store_16(uint16_t **dst, const ptrdiff_t stride, + const uint16x8_t row) { + // Note: vst1q is faster than vst2q + vst1q_u16(*dst, row); + *dst += 8; + vst1q_u16(*dst, row); + *dst += stride - 8; +} + +void vpx_highbd_h_predictor_16x16_neon(uint16_t *dst, ptrdiff_t stride, + const uint16_t *above, + const uint16_t *left, int bd) { + int i; + (void)above; + (void)bd; + + for (i = 0; i < 2; i++, left += 8) { + const uint16x8_t left_u16q = vld1q_u16(left); + const uint16x4_t left_low = vget_low_u16(left_u16q); + const uint16x4_t left_high = vget_high_u16(left_u16q); + uint16x8_t row; + + row = vdupq_lane_u16(left_low, 0); + h_store_16(&dst, stride, row); + row = vdupq_lane_u16(left_low, 1); + h_store_16(&dst, stride, row); + row = vdupq_lane_u16(left_low, 2); + h_store_16(&dst, stride, row); + row = vdupq_lane_u16(left_low, 3); + h_store_16(&dst, stride, row); + row = vdupq_lane_u16(left_high, 0); + h_store_16(&dst, stride, row); + row = vdupq_lane_u16(left_high, 1); + h_store_16(&dst, stride, row); + row = vdupq_lane_u16(left_high, 2); + h_store_16(&dst, stride, row); + row = vdupq_lane_u16(left_high, 3); + h_store_16(&dst, stride, row); + } +} + +static INLINE void h_store_32(uint16_t **dst, const ptrdiff_t stride, + const uint16x8_t row) { + // Note: vst1q is faster than vst2q + vst1q_u16(*dst, row); + *dst += 8; + vst1q_u16(*dst, row); + *dst += 8; + vst1q_u16(*dst, row); + *dst += 8; + vst1q_u16(*dst, row); + *dst += stride - 24; +} + +void vpx_highbd_h_predictor_32x32_neon(uint16_t *dst, ptrdiff_t stride, + const uint16_t *above, + const uint16_t *left, int bd) { + int i; + (void)above; + (void)bd; + + for (i = 0; i < 4; i++, left += 8) { + const uint16x8_t left_u16q = vld1q_u16(left); + const uint16x4_t left_low = vget_low_u16(left_u16q); + const uint16x4_t left_high = vget_high_u16(left_u16q); + uint16x8_t row; + + row = vdupq_lane_u16(left_low, 0); + h_store_32(&dst, stride, row); + row = vdupq_lane_u16(left_low, 1); + h_store_32(&dst, stride, row); + row = vdupq_lane_u16(left_low, 2); + h_store_32(&dst, stride, row); + row = vdupq_lane_u16(left_low, 3); + h_store_32(&dst, stride, row); + row = vdupq_lane_u16(left_high, 0); + h_store_32(&dst, stride, row); + row = vdupq_lane_u16(left_high, 1); + h_store_32(&dst, stride, row); + row = vdupq_lane_u16(left_high, 2); + h_store_32(&dst, stride, row); + row = vdupq_lane_u16(left_high, 3); + h_store_32(&dst, stride, row); + } +} + +// ----------------------------------------------------------------------------- + +void vpx_highbd_tm_predictor_4x4_neon(uint16_t *dst, ptrdiff_t stride, + const uint16_t *above, + const uint16_t *left, int bd) { + const int16x8_t max = vmovq_n_s16((1 << bd) - 1); + const int16x8_t top_left = vld1q_dup_s16((const int16_t *)(above - 1)); + const int16x4_t above_s16d = vld1_s16((const int16_t *)above); + const int16x8_t above_s16 = vcombine_s16(above_s16d, above_s16d); + const int16x4_t left_s16 = vld1_s16((const int16_t *)left); + const int16x8_t sub = vsubq_s16(above_s16, top_left); + int16x8_t sum; + uint16x8_t row; + + sum = vcombine_s16(vdup_lane_s16(left_s16, 0), vdup_lane_s16(left_s16, 1)); + sum = vaddq_s16(sum, sub); + sum = vminq_s16(sum, max); + row = vqshluq_n_s16(sum, 0); + vst1_u16(dst, vget_low_u16(row)); + dst += stride; + vst1_u16(dst, vget_high_u16(row)); + dst += stride; + + sum = vcombine_s16(vdup_lane_s16(left_s16, 2), vdup_lane_s16(left_s16, 3)); + sum = vaddq_s16(sum, sub); + sum = vminq_s16(sum, max); + row = vqshluq_n_s16(sum, 0); + vst1_u16(dst, vget_low_u16(row)); + dst += stride; + vst1_u16(dst, vget_high_u16(row)); +} + +static INLINE void tm_8_kernel(uint16_t **dst, const ptrdiff_t stride, + const int16x8_t left_dup, const int16x8_t sub, + const int16x8_t max) { + uint16x8_t row; + int16x8_t sum = vaddq_s16(left_dup, sub); + sum = vminq_s16(sum, max); + row = vqshluq_n_s16(sum, 0); + vst1q_u16(*dst, row); + *dst += stride; +} + +void vpx_highbd_tm_predictor_8x8_neon(uint16_t *dst, ptrdiff_t stride, + const uint16_t *above, + const uint16_t *left, int bd) { + const int16x8_t max = vmovq_n_s16((1 << bd) - 1); + const int16x8_t top_left = vld1q_dup_s16((const int16_t *)(above - 1)); + const int16x8_t above_s16 = vld1q_s16((const int16_t *)above); + const int16x8_t left_s16 = vld1q_s16((const int16_t *)left); + const int16x8_t sub = vsubq_s16(above_s16, top_left); + int16x4_t left_s16d; + int16x8_t left_dup; + int i; + + left_s16d = vget_low_s16(left_s16); + + for (i = 0; i < 2; i++, left_s16d = vget_high_s16(left_s16)) { + left_dup = vdupq_lane_s16(left_s16d, 0); + tm_8_kernel(&dst, stride, left_dup, sub, max); + + left_dup = vdupq_lane_s16(left_s16d, 1); + tm_8_kernel(&dst, stride, left_dup, sub, max); + + left_dup = vdupq_lane_s16(left_s16d, 2); + tm_8_kernel(&dst, stride, left_dup, sub, max); + + left_dup = vdupq_lane_s16(left_s16d, 3); + tm_8_kernel(&dst, stride, left_dup, sub, max); + } +} + +static INLINE void tm_16_kernel(uint16_t **dst, const ptrdiff_t stride, + const int16x8_t left_dup, const int16x8_t sub0, + const int16x8_t sub1, const int16x8_t max) { + uint16x8_t row0, row1; + int16x8_t sum0 = vaddq_s16(left_dup, sub0); + int16x8_t sum1 = vaddq_s16(left_dup, sub1); + sum0 = vminq_s16(sum0, max); + sum1 = vminq_s16(sum1, max); + row0 = vqshluq_n_s16(sum0, 0); + row1 = vqshluq_n_s16(sum1, 0); + vst1q_u16(*dst, row0); + *dst += 8; + vst1q_u16(*dst, row1); + *dst += stride - 8; +} + +void vpx_highbd_tm_predictor_16x16_neon(uint16_t *dst, ptrdiff_t stride, + const uint16_t *above, + const uint16_t *left, int bd) { + const int16x8_t max = vmovq_n_s16((1 << bd) - 1); + const int16x8_t top_left = vld1q_dup_s16((const int16_t *)(above - 1)); + const int16x8_t above0 = vld1q_s16((const int16_t *)above); + const int16x8_t above1 = vld1q_s16((const int16_t *)(above + 8)); + const int16x8_t sub0 = vsubq_s16(above0, top_left); + const int16x8_t sub1 = vsubq_s16(above1, top_left); + int16x8_t left_dup; + int i, j; + + for (j = 0; j < 2; j++, left += 8) { + const int16x8_t left_s16q = vld1q_s16((const int16_t *)left); + int16x4_t left_s16d = vget_low_s16(left_s16q); + for (i = 0; i < 2; i++, left_s16d = vget_high_s16(left_s16q)) { + left_dup = vdupq_lane_s16(left_s16d, 0); + tm_16_kernel(&dst, stride, left_dup, sub0, sub1, max); + + left_dup = vdupq_lane_s16(left_s16d, 1); + tm_16_kernel(&dst, stride, left_dup, sub0, sub1, max); + + left_dup = vdupq_lane_s16(left_s16d, 2); + tm_16_kernel(&dst, stride, left_dup, sub0, sub1, max); + + left_dup = vdupq_lane_s16(left_s16d, 3); + tm_16_kernel(&dst, stride, left_dup, sub0, sub1, max); + } + } +} + +static INLINE void tm_32_kernel(uint16_t **dst, const ptrdiff_t stride, + const int16x8_t left_dup, const int16x8_t sub0, + const int16x8_t sub1, const int16x8_t sub2, + const int16x8_t sub3, const int16x8_t max) { + uint16x8_t row0, row1, row2, row3; + int16x8_t sum0 = vaddq_s16(left_dup, sub0); + int16x8_t sum1 = vaddq_s16(left_dup, sub1); + int16x8_t sum2 = vaddq_s16(left_dup, sub2); + int16x8_t sum3 = vaddq_s16(left_dup, sub3); + sum0 = vminq_s16(sum0, max); + sum1 = vminq_s16(sum1, max); + sum2 = vminq_s16(sum2, max); + sum3 = vminq_s16(sum3, max); + row0 = vqshluq_n_s16(sum0, 0); + row1 = vqshluq_n_s16(sum1, 0); + row2 = vqshluq_n_s16(sum2, 0); + row3 = vqshluq_n_s16(sum3, 0); + vst1q_u16(*dst, row0); + *dst += 8; + vst1q_u16(*dst, row1); + *dst += 8; + vst1q_u16(*dst, row2); + *dst += 8; + vst1q_u16(*dst, row3); + *dst += stride - 24; +} + +void vpx_highbd_tm_predictor_32x32_neon(uint16_t *dst, ptrdiff_t stride, + const uint16_t *above, + const uint16_t *left, int bd) { + const int16x8_t max = vmovq_n_s16((1 << bd) - 1); + const int16x8_t top_left = vld1q_dup_s16((const int16_t *)(above - 1)); + const int16x8_t above0 = vld1q_s16((const int16_t *)above); + const int16x8_t above1 = vld1q_s16((const int16_t *)(above + 8)); + const int16x8_t above2 = vld1q_s16((const int16_t *)(above + 16)); + const int16x8_t above3 = vld1q_s16((const int16_t *)(above + 24)); + const int16x8_t sub0 = vsubq_s16(above0, top_left); + const int16x8_t sub1 = vsubq_s16(above1, top_left); + const int16x8_t sub2 = vsubq_s16(above2, top_left); + const int16x8_t sub3 = vsubq_s16(above3, top_left); + int16x8_t left_dup; + int i, j; + + for (i = 0; i < 4; i++, left += 8) { + const int16x8_t left_s16q = vld1q_s16((const int16_t *)left); + int16x4_t left_s16d = vget_low_s16(left_s16q); + for (j = 0; j < 2; j++, left_s16d = vget_high_s16(left_s16q)) { + left_dup = vdupq_lane_s16(left_s16d, 0); + tm_32_kernel(&dst, stride, left_dup, sub0, sub1, sub2, sub3, max); + + left_dup = vdupq_lane_s16(left_s16d, 1); + tm_32_kernel(&dst, stride, left_dup, sub0, sub1, sub2, sub3, max); + + left_dup = vdupq_lane_s16(left_s16d, 2); + tm_32_kernel(&dst, stride, left_dup, sub0, sub1, sub2, sub3, max); + + left_dup = vdupq_lane_s16(left_s16d, 3); + tm_32_kernel(&dst, stride, left_dup, sub0, sub1, sub2, sub3, max); + } + } +} diff --git a/vpx_dsp/arm/highbd_loopfilter_neon.c b/vpx_dsp/arm/highbd_loopfilter_neon.c new file mode 100644 index 0000000..5530c64 --- /dev/null +++ b/vpx_dsp/arm/highbd_loopfilter_neon.c @@ -0,0 +1,761 @@ +/* + * Copyright (c) 2016 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include "./vpx_config.h" +#include "./vpx_dsp_rtcd.h" +#include "vpx_dsp/arm/transpose_neon.h" + +static INLINE void load_thresh(const uint8_t *blimit, const uint8_t *limit, + const uint8_t *thresh, uint16x8_t *blimit_vec, + uint16x8_t *limit_vec, uint16x8_t *thresh_vec, + const int bd) { + const int16x8_t shift = vdupq_n_s16(bd - 8); + *blimit_vec = vmovl_u8(vld1_dup_u8(blimit)); + *limit_vec = vmovl_u8(vld1_dup_u8(limit)); + *thresh_vec = vmovl_u8(vld1_dup_u8(thresh)); + *blimit_vec = vshlq_u16(*blimit_vec, shift); + *limit_vec = vshlq_u16(*limit_vec, shift); + *thresh_vec = vshlq_u16(*thresh_vec, shift); +} + +// Here flat is 128-bit long, with each 16-bit chunk being a mask of +// a pixel. When used to control filter branches, we only detect whether it is +// all 0s or all 1s. We pairwise add flat to a 32-bit long number flat_status. +// flat equals 0 if and only if flat_status equals 0. +// flat equals -1 (all 1s) if and only if flat_status equals -4. (This is true +// because each mask occupies more than 1 bit.) +static INLINE uint32_t calc_flat_status(const uint16x8_t flat) { + const uint64x1_t t0 = vadd_u64(vreinterpret_u64_u16(vget_low_u16(flat)), + vreinterpret_u64_u16(vget_high_u16(flat))); + const uint64x1_t t1 = vpaddl_u32(vreinterpret_u32_u64(t0)); + return vget_lane_u32(vreinterpret_u32_u64(t1), 0); +} + +static INLINE uint16x8_t +filter_hev_mask4(const uint16x8_t limit, const uint16x8_t blimit, + const uint16x8_t thresh, const uint16x8_t p3, + const uint16x8_t p2, const uint16x8_t p1, const uint16x8_t p0, + const uint16x8_t q0, const uint16x8_t q1, const uint16x8_t q2, + const uint16x8_t q3, uint16x8_t *hev, uint16x8_t *mask) { + uint16x8_t max, t0, t1; + + max = vabdq_u16(p1, p0); + max = vmaxq_u16(max, vabdq_u16(q1, q0)); + *hev = vcgtq_u16(max, thresh); + *mask = vmaxq_u16(max, vabdq_u16(p3, p2)); + *mask = vmaxq_u16(*mask, vabdq_u16(p2, p1)); + *mask = vmaxq_u16(*mask, vabdq_u16(q2, q1)); + *mask = vmaxq_u16(*mask, vabdq_u16(q3, q2)); + t0 = vabdq_u16(p0, q0); + t1 = vabdq_u16(p1, q1); + t0 = vaddq_u16(t0, t0); + t1 = vshrq_n_u16(t1, 1); + t0 = vaddq_u16(t0, t1); + *mask = vcleq_u16(*mask, limit); + t0 = vcleq_u16(t0, blimit); + *mask = vandq_u16(*mask, t0); + + return max; +} + +static INLINE uint16x8_t filter_flat_hev_mask( + const uint16x8_t limit, const uint16x8_t blimit, const uint16x8_t thresh, + const uint16x8_t p3, const uint16x8_t p2, const uint16x8_t p1, + const uint16x8_t p0, const uint16x8_t q0, const uint16x8_t q1, + const uint16x8_t q2, const uint16x8_t q3, uint16x8_t *flat, + uint32_t *flat_status, uint16x8_t *hev, const int bd) { + uint16x8_t mask; + const uint16x8_t max = filter_hev_mask4(limit, blimit, thresh, p3, p2, p1, p0, + q0, q1, q2, q3, hev, &mask); + *flat = vmaxq_u16(max, vabdq_u16(p2, p0)); + *flat = vmaxq_u16(*flat, vabdq_u16(q2, q0)); + *flat = vmaxq_u16(*flat, vabdq_u16(p3, p0)); + *flat = vmaxq_u16(*flat, vabdq_u16(q3, q0)); + *flat = vcleq_u16(*flat, vdupq_n_u16(1 << (bd - 8))); /* flat_mask4() */ + *flat = vandq_u16(*flat, mask); + *flat_status = calc_flat_status(*flat); + + return mask; +} + +static INLINE uint16x8_t flat_mask5(const uint16x8_t p4, const uint16x8_t p3, + const uint16x8_t p2, const uint16x8_t p1, + const uint16x8_t p0, const uint16x8_t q0, + const uint16x8_t q1, const uint16x8_t q2, + const uint16x8_t q3, const uint16x8_t q4, + const uint16x8_t flat, + uint32_t *flat2_status, const int bd) { + uint16x8_t flat2 = vabdq_u16(p4, p0); + flat2 = vmaxq_u16(flat2, vabdq_u16(p3, p0)); + flat2 = vmaxq_u16(flat2, vabdq_u16(p2, p0)); + flat2 = vmaxq_u16(flat2, vabdq_u16(p1, p0)); + flat2 = vmaxq_u16(flat2, vabdq_u16(q1, q0)); + flat2 = vmaxq_u16(flat2, vabdq_u16(q2, q0)); + flat2 = vmaxq_u16(flat2, vabdq_u16(q3, q0)); + flat2 = vmaxq_u16(flat2, vabdq_u16(q4, q0)); + flat2 = vcleq_u16(flat2, vdupq_n_u16(1 << (bd - 8))); + flat2 = vandq_u16(flat2, flat); + *flat2_status = calc_flat_status(flat2); + + return flat2; +} + +static INLINE int16x8_t flip_sign(const uint16x8_t v, const int bd) { + const uint16x8_t offset = vdupq_n_u16(0x80 << (bd - 8)); + return vreinterpretq_s16_u16(vsubq_u16(v, offset)); +} + +static INLINE uint16x8_t flip_sign_back(const int16x8_t v, const int bd) { + const int16x8_t offset = vdupq_n_s16(0x80 << (bd - 8)); + return vreinterpretq_u16_s16(vaddq_s16(v, offset)); +} + +static INLINE void filter_update(const uint16x8_t sub0, const uint16x8_t sub1, + const uint16x8_t add0, const uint16x8_t add1, + uint16x8_t *sum) { + *sum = vsubq_u16(*sum, sub0); + *sum = vsubq_u16(*sum, sub1); + *sum = vaddq_u16(*sum, add0); + *sum = vaddq_u16(*sum, add1); +} + +static INLINE uint16x8_t calc_7_tap_filter_kernel(const uint16x8_t sub0, + const uint16x8_t sub1, + const uint16x8_t add0, + const uint16x8_t add1, + uint16x8_t *sum) { + filter_update(sub0, sub1, add0, add1, sum); + return vrshrq_n_u16(*sum, 3); +} + +static INLINE uint16x8_t apply_15_tap_filter_kernel( + const uint16x8_t flat, const uint16x8_t sub0, const uint16x8_t sub1, + const uint16x8_t add0, const uint16x8_t add1, const uint16x8_t in, + uint16x8_t *sum) { + filter_update(sub0, sub1, add0, add1, sum); + return vbslq_u16(flat, vrshrq_n_u16(*sum, 4), in); +} + +// 7-tap filter [1, 1, 1, 2, 1, 1, 1] +static INLINE void calc_7_tap_filter(const uint16x8_t p3, const uint16x8_t p2, + const uint16x8_t p1, const uint16x8_t p0, + const uint16x8_t q0, const uint16x8_t q1, + const uint16x8_t q2, const uint16x8_t q3, + uint16x8_t *op2, uint16x8_t *op1, + uint16x8_t *op0, uint16x8_t *oq0, + uint16x8_t *oq1, uint16x8_t *oq2) { + uint16x8_t sum; + sum = vaddq_u16(p3, p3); // 2*p3 + sum = vaddq_u16(sum, p3); // 3*p3 + sum = vaddq_u16(sum, p2); // 3*p3+p2 + sum = vaddq_u16(sum, p2); // 3*p3+2*p2 + sum = vaddq_u16(sum, p1); // 3*p3+2*p2+p1 + sum = vaddq_u16(sum, p0); // 3*p3+2*p2+p1+p0 + sum = vaddq_u16(sum, q0); // 3*p3+2*p2+p1+p0+q0 + *op2 = vrshrq_n_u16(sum, 3); + *op1 = calc_7_tap_filter_kernel(p3, p2, p1, q1, &sum); + *op0 = calc_7_tap_filter_kernel(p3, p1, p0, q2, &sum); + *oq0 = calc_7_tap_filter_kernel(p3, p0, q0, q3, &sum); + *oq1 = calc_7_tap_filter_kernel(p2, q0, q1, q3, &sum); + *oq2 = calc_7_tap_filter_kernel(p1, q1, q2, q3, &sum); +} + +static INLINE void apply_7_tap_filter(const uint16x8_t flat, + const uint16x8_t p3, const uint16x8_t p2, + const uint16x8_t p1, const uint16x8_t p0, + const uint16x8_t q0, const uint16x8_t q1, + const uint16x8_t q2, const uint16x8_t q3, + uint16x8_t *op2, uint16x8_t *op1, + uint16x8_t *op0, uint16x8_t *oq0, + uint16x8_t *oq1, uint16x8_t *oq2) { + uint16x8_t tp1, tp0, tq0, tq1; + calc_7_tap_filter(p3, p2, p1, p0, q0, q1, q2, q3, op2, &tp1, &tp0, &tq0, &tq1, + oq2); + *op2 = vbslq_u16(flat, *op2, p2); + *op1 = vbslq_u16(flat, tp1, *op1); + *op0 = vbslq_u16(flat, tp0, *op0); + *oq0 = vbslq_u16(flat, tq0, *oq0); + *oq1 = vbslq_u16(flat, tq1, *oq1); + *oq2 = vbslq_u16(flat, *oq2, q2); +} + +// 15-tap filter [1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1] +static INLINE void apply_15_tap_filter( + const uint16x8_t flat2, const uint16x8_t p7, const uint16x8_t p6, + const uint16x8_t p5, const uint16x8_t p4, const uint16x8_t p3, + const uint16x8_t p2, const uint16x8_t p1, const uint16x8_t p0, + const uint16x8_t q0, const uint16x8_t q1, const uint16x8_t q2, + const uint16x8_t q3, const uint16x8_t q4, const uint16x8_t q5, + const uint16x8_t q6, const uint16x8_t q7, uint16x8_t *op6, uint16x8_t *op5, + uint16x8_t *op4, uint16x8_t *op3, uint16x8_t *op2, uint16x8_t *op1, + uint16x8_t *op0, uint16x8_t *oq0, uint16x8_t *oq1, uint16x8_t *oq2, + uint16x8_t *oq3, uint16x8_t *oq4, uint16x8_t *oq5, uint16x8_t *oq6) { + uint16x8_t sum; + sum = vshlq_n_u16(p7, 3); // 8*p7 + sum = vsubq_u16(sum, p7); // 7*p7 + sum = vaddq_u16(sum, p6); // 7*p7+p6 + sum = vaddq_u16(sum, p6); // 7*p7+2*p6 + sum = vaddq_u16(sum, p5); // 7*p7+2*p6+p5 + sum = vaddq_u16(sum, p4); // 7*p7+2*p6+p5+p4 + sum = vaddq_u16(sum, p3); // 7*p7+2*p6+p5+p4+p3 + sum = vaddq_u16(sum, p2); // 7*p7+2*p6+p5+p4+p3+p2 + sum = vaddq_u16(sum, p1); // 7*p7+2*p6+p5+p4+p3+p2+p1 + sum = vaddq_u16(sum, p0); // 7*p7+2*p6+p5+p4+p3+p2+p1+p0 + sum = vaddq_u16(sum, q0); // 7*p7+2*p6+p5+p4+p3+p2+p1+p0+q0 + *op6 = vbslq_u16(flat2, vrshrq_n_u16(sum, 4), p6); + *op5 = apply_15_tap_filter_kernel(flat2, p7, p6, p5, q1, p5, &sum); + *op4 = apply_15_tap_filter_kernel(flat2, p7, p5, p4, q2, p4, &sum); + *op3 = apply_15_tap_filter_kernel(flat2, p7, p4, p3, q3, p3, &sum); + *op2 = apply_15_tap_filter_kernel(flat2, p7, p3, p2, q4, *op2, &sum); + *op1 = apply_15_tap_filter_kernel(flat2, p7, p2, p1, q5, *op1, &sum); + *op0 = apply_15_tap_filter_kernel(flat2, p7, p1, p0, q6, *op0, &sum); + *oq0 = apply_15_tap_filter_kernel(flat2, p7, p0, q0, q7, *oq0, &sum); + *oq1 = apply_15_tap_filter_kernel(flat2, p6, q0, q1, q7, *oq1, &sum); + *oq2 = apply_15_tap_filter_kernel(flat2, p5, q1, q2, q7, *oq2, &sum); + *oq3 = apply_15_tap_filter_kernel(flat2, p4, q2, q3, q7, q3, &sum); + *oq4 = apply_15_tap_filter_kernel(flat2, p3, q3, q4, q7, q4, &sum); + *oq5 = apply_15_tap_filter_kernel(flat2, p2, q4, q5, q7, q5, &sum); + *oq6 = apply_15_tap_filter_kernel(flat2, p1, q5, q6, q7, q6, &sum); +} + +static INLINE void filter4(const uint16x8_t mask, const uint16x8_t hev, + const uint16x8_t p1, const uint16x8_t p0, + const uint16x8_t q0, const uint16x8_t q1, + uint16x8_t *op1, uint16x8_t *op0, uint16x8_t *oq0, + uint16x8_t *oq1, const int bd) { + const int16x8_t max = vdupq_n_s16((1 << (bd - 1)) - 1); + const int16x8_t min = vdupq_n_s16((int16_t)(((uint32_t)-1) << (bd - 1))); + int16x8_t filter, filter1, filter2, t; + int16x8_t ps1 = flip_sign(p1, bd); + int16x8_t ps0 = flip_sign(p0, bd); + int16x8_t qs0 = flip_sign(q0, bd); + int16x8_t qs1 = flip_sign(q1, bd); + + /* add outer taps if we have high edge variance */ + filter = vsubq_s16(ps1, qs1); + filter = vmaxq_s16(filter, min); + filter = vminq_s16(filter, max); + filter = vandq_s16(filter, vreinterpretq_s16_u16(hev)); + t = vsubq_s16(qs0, ps0); + + /* inner taps */ + filter = vaddq_s16(filter, t); + filter = vaddq_s16(filter, t); + filter = vaddq_s16(filter, t); + filter = vmaxq_s16(filter, min); + filter = vminq_s16(filter, max); + filter = vandq_s16(filter, vreinterpretq_s16_u16(mask)); + + /* save bottom 3 bits so that we round one side +4 and the other +3 */ + /* if it equals 4 we'll set it to adjust by -1 to account for the fact */ + /* we'd round it by 3 the other way */ + t = vaddq_s16(filter, vdupq_n_s16(4)); + t = vminq_s16(t, max); + filter1 = vshrq_n_s16(t, 3); + t = vaddq_s16(filter, vdupq_n_s16(3)); + t = vminq_s16(t, max); + filter2 = vshrq_n_s16(t, 3); + + qs0 = vsubq_s16(qs0, filter1); + qs0 = vmaxq_s16(qs0, min); + qs0 = vminq_s16(qs0, max); + ps0 = vaddq_s16(ps0, filter2); + ps0 = vmaxq_s16(ps0, min); + ps0 = vminq_s16(ps0, max); + *oq0 = flip_sign_back(qs0, bd); + *op0 = flip_sign_back(ps0, bd); + + /* outer tap adjustments */ + filter = vrshrq_n_s16(filter1, 1); + filter = vbicq_s16(filter, vreinterpretq_s16_u16(hev)); + + qs1 = vsubq_s16(qs1, filter); + qs1 = vmaxq_s16(qs1, min); + qs1 = vminq_s16(qs1, max); + ps1 = vaddq_s16(ps1, filter); + ps1 = vmaxq_s16(ps1, min); + ps1 = vminq_s16(ps1, max); + *oq1 = flip_sign_back(qs1, bd); + *op1 = flip_sign_back(ps1, bd); +} + +static INLINE void filter8(const uint16x8_t mask, const uint16x8_t flat, + const uint32_t flat_status, const uint16x8_t hev, + const uint16x8_t p3, const uint16x8_t p2, + const uint16x8_t p1, const uint16x8_t p0, + const uint16x8_t q0, const uint16x8_t q1, + const uint16x8_t q2, const uint16x8_t q3, + uint16x8_t *op2, uint16x8_t *op1, uint16x8_t *op0, + uint16x8_t *oq0, uint16x8_t *oq1, uint16x8_t *oq2, + const int bd) { + if (flat_status != (uint32_t)-4) { + filter4(mask, hev, p1, p0, q0, q1, op1, op0, oq0, oq1, bd); + *op2 = p2; + *oq2 = q2; + if (flat_status) { + apply_7_tap_filter(flat, p3, p2, p1, p0, q0, q1, q2, q3, op2, op1, op0, + oq0, oq1, oq2); + } + } else { + calc_7_tap_filter(p3, p2, p1, p0, q0, q1, q2, q3, op2, op1, op0, oq0, oq1, + oq2); + } +} + +static INLINE void filter16( + const uint16x8_t mask, const uint16x8_t flat, const uint32_t flat_status, + const uint16x8_t flat2, const uint32_t flat2_status, const uint16x8_t hev, + const uint16x8_t p7, const uint16x8_t p6, const uint16x8_t p5, + const uint16x8_t p4, const uint16x8_t p3, const uint16x8_t p2, + const uint16x8_t p1, const uint16x8_t p0, const uint16x8_t q0, + const uint16x8_t q1, const uint16x8_t q2, const uint16x8_t q3, + const uint16x8_t q4, const uint16x8_t q5, const uint16x8_t q6, + const uint16x8_t q7, uint16x8_t *op6, uint16x8_t *op5, uint16x8_t *op4, + uint16x8_t *op3, uint16x8_t *op2, uint16x8_t *op1, uint16x8_t *op0, + uint16x8_t *oq0, uint16x8_t *oq1, uint16x8_t *oq2, uint16x8_t *oq3, + uint16x8_t *oq4, uint16x8_t *oq5, uint16x8_t *oq6, const int bd) { + if (flat_status != (uint32_t)-4) { + filter4(mask, hev, p1, p0, q0, q1, op1, op0, oq0, oq1, bd); + } + + if (flat_status) { + *op2 = p2; + *oq2 = q2; + if (flat2_status != (uint32_t)-4) { + apply_7_tap_filter(flat, p3, p2, p1, p0, q0, q1, q2, q3, op2, op1, op0, + oq0, oq1, oq2); + } + if (flat2_status) { + apply_15_tap_filter(flat2, p7, p6, p5, p4, p3, p2, p1, p0, q0, q1, q2, q3, + q4, q5, q6, q7, op6, op5, op4, op3, op2, op1, op0, + oq0, oq1, oq2, oq3, oq4, oq5, oq6); + } + } +} + +static INLINE void load_8x8(const uint16_t *s, const int p, uint16x8_t *p3, + uint16x8_t *p2, uint16x8_t *p1, uint16x8_t *p0, + uint16x8_t *q0, uint16x8_t *q1, uint16x8_t *q2, + uint16x8_t *q3) { + *p3 = vld1q_u16(s); + s += p; + *p2 = vld1q_u16(s); + s += p; + *p1 = vld1q_u16(s); + s += p; + *p0 = vld1q_u16(s); + s += p; + *q0 = vld1q_u16(s); + s += p; + *q1 = vld1q_u16(s); + s += p; + *q2 = vld1q_u16(s); + s += p; + *q3 = vld1q_u16(s); +} + +static INLINE void load_8x16(const uint16_t *s, const int p, uint16x8_t *s0, + uint16x8_t *s1, uint16x8_t *s2, uint16x8_t *s3, + uint16x8_t *s4, uint16x8_t *s5, uint16x8_t *s6, + uint16x8_t *s7, uint16x8_t *s8, uint16x8_t *s9, + uint16x8_t *s10, uint16x8_t *s11, uint16x8_t *s12, + uint16x8_t *s13, uint16x8_t *s14, + uint16x8_t *s15) { + *s0 = vld1q_u16(s); + s += p; + *s1 = vld1q_u16(s); + s += p; + *s2 = vld1q_u16(s); + s += p; + *s3 = vld1q_u16(s); + s += p; + *s4 = vld1q_u16(s); + s += p; + *s5 = vld1q_u16(s); + s += p; + *s6 = vld1q_u16(s); + s += p; + *s7 = vld1q_u16(s); + s += p; + *s8 = vld1q_u16(s); + s += p; + *s9 = vld1q_u16(s); + s += p; + *s10 = vld1q_u16(s); + s += p; + *s11 = vld1q_u16(s); + s += p; + *s12 = vld1q_u16(s); + s += p; + *s13 = vld1q_u16(s); + s += p; + *s14 = vld1q_u16(s); + s += p; + *s15 = vld1q_u16(s); +} + +static INLINE void store_8x4(uint16_t *s, const int p, const uint16x8_t s0, + const uint16x8_t s1, const uint16x8_t s2, + const uint16x8_t s3) { + vst1q_u16(s, s0); + s += p; + vst1q_u16(s, s1); + s += p; + vst1q_u16(s, s2); + s += p; + vst1q_u16(s, s3); +} + +static INLINE void store_8x6(uint16_t *s, const int p, const uint16x8_t s0, + const uint16x8_t s1, const uint16x8_t s2, + const uint16x8_t s3, const uint16x8_t s4, + const uint16x8_t s5) { + vst1q_u16(s, s0); + s += p; + vst1q_u16(s, s1); + s += p; + vst1q_u16(s, s2); + s += p; + vst1q_u16(s, s3); + s += p; + vst1q_u16(s, s4); + s += p; + vst1q_u16(s, s5); +} + +static INLINE void store_4x8(uint16_t *s, const int p, const uint16x8_t p1, + const uint16x8_t p0, const uint16x8_t q0, + const uint16x8_t q1) { + uint16x8x4_t o; + + o.val[0] = p1; + o.val[1] = p0; + o.val[2] = q0; + o.val[3] = q1; + vst4q_lane_u16(s, o, 0); + s += p; + vst4q_lane_u16(s, o, 1); + s += p; + vst4q_lane_u16(s, o, 2); + s += p; + vst4q_lane_u16(s, o, 3); + s += p; + vst4q_lane_u16(s, o, 4); + s += p; + vst4q_lane_u16(s, o, 5); + s += p; + vst4q_lane_u16(s, o, 6); + s += p; + vst4q_lane_u16(s, o, 7); +} + +static INLINE void store_6x8(uint16_t *s, const int p, const uint16x8_t s0, + const uint16x8_t s1, const uint16x8_t s2, + const uint16x8_t s3, const uint16x8_t s4, + const uint16x8_t s5) { + uint16x8x3_t o0, o1; + + o0.val[0] = s0; + o0.val[1] = s1; + o0.val[2] = s2; + o1.val[0] = s3; + o1.val[1] = s4; + o1.val[2] = s5; + vst3q_lane_u16(s - 3, o0, 0); + vst3q_lane_u16(s + 0, o1, 0); + s += p; + vst3q_lane_u16(s - 3, o0, 1); + vst3q_lane_u16(s + 0, o1, 1); + s += p; + vst3q_lane_u16(s - 3, o0, 2); + vst3q_lane_u16(s + 0, o1, 2); + s += p; + vst3q_lane_u16(s - 3, o0, 3); + vst3q_lane_u16(s + 0, o1, 3); + s += p; + vst3q_lane_u16(s - 3, o0, 4); + vst3q_lane_u16(s + 0, o1, 4); + s += p; + vst3q_lane_u16(s - 3, o0, 5); + vst3q_lane_u16(s + 0, o1, 5); + s += p; + vst3q_lane_u16(s - 3, o0, 6); + vst3q_lane_u16(s + 0, o1, 6); + s += p; + vst3q_lane_u16(s - 3, o0, 7); + vst3q_lane_u16(s + 0, o1, 7); +} + +static INLINE void store_7x8(uint16_t *s, const int p, const uint16x8_t s0, + const uint16x8_t s1, const uint16x8_t s2, + const uint16x8_t s3, const uint16x8_t s4, + const uint16x8_t s5, const uint16x8_t s6) { + uint16x8x4_t o0; + uint16x8x3_t o1; + + o0.val[0] = s0; + o0.val[1] = s1; + o0.val[2] = s2; + o0.val[3] = s3; + o1.val[0] = s4; + o1.val[1] = s5; + o1.val[2] = s6; + vst4q_lane_u16(s - 4, o0, 0); + vst3q_lane_u16(s + 0, o1, 0); + s += p; + vst4q_lane_u16(s - 4, o0, 1); + vst3q_lane_u16(s + 0, o1, 1); + s += p; + vst4q_lane_u16(s - 4, o0, 2); + vst3q_lane_u16(s + 0, o1, 2); + s += p; + vst4q_lane_u16(s - 4, o0, 3); + vst3q_lane_u16(s + 0, o1, 3); + s += p; + vst4q_lane_u16(s - 4, o0, 4); + vst3q_lane_u16(s + 0, o1, 4); + s += p; + vst4q_lane_u16(s - 4, o0, 5); + vst3q_lane_u16(s + 0, o1, 5); + s += p; + vst4q_lane_u16(s - 4, o0, 6); + vst3q_lane_u16(s + 0, o1, 6); + s += p; + vst4q_lane_u16(s - 4, o0, 7); + vst3q_lane_u16(s + 0, o1, 7); +} + +static INLINE void store_8x14(uint16_t *s, const int p, const uint16x8_t p6, + const uint16x8_t p5, const uint16x8_t p4, + const uint16x8_t p3, const uint16x8_t p2, + const uint16x8_t p1, const uint16x8_t p0, + const uint16x8_t q0, const uint16x8_t q1, + const uint16x8_t q2, const uint16x8_t q3, + const uint16x8_t q4, const uint16x8_t q5, + const uint16x8_t q6, const uint32_t flat_status, + const uint32_t flat2_status) { + if (flat_status) { + if (flat2_status) { + vst1q_u16(s - 7 * p, p6); + vst1q_u16(s - 6 * p, p5); + vst1q_u16(s - 5 * p, p4); + vst1q_u16(s - 4 * p, p3); + vst1q_u16(s + 3 * p, q3); + vst1q_u16(s + 4 * p, q4); + vst1q_u16(s + 5 * p, q5); + vst1q_u16(s + 6 * p, q6); + } + vst1q_u16(s - 3 * p, p2); + vst1q_u16(s + 2 * p, q2); + } + vst1q_u16(s - 2 * p, p1); + vst1q_u16(s - 1 * p, p0); + vst1q_u16(s + 0 * p, q0); + vst1q_u16(s + 1 * p, q1); +} + +void vpx_highbd_lpf_horizontal_4_neon(uint16_t *s, int p, const uint8_t *blimit, + const uint8_t *limit, + const uint8_t *thresh, int bd) { + uint16x8_t blimit_vec, limit_vec, thresh_vec, p3, p2, p1, p0, q0, q1, q2, q3, + mask, hev; + + load_thresh(blimit, limit, thresh, &blimit_vec, &limit_vec, &thresh_vec, bd); + load_8x8(s - 4 * p, p, &p3, &p2, &p1, &p0, &q0, &q1, &q2, &q3); + filter_hev_mask4(limit_vec, blimit_vec, thresh_vec, p3, p2, p1, p0, q0, q1, + q2, q3, &hev, &mask); + filter4(mask, hev, p1, p0, q0, q1, &p1, &p0, &q0, &q1, bd); + store_8x4(s - 2 * p, p, p1, p0, q0, q1); +} + +void vpx_highbd_lpf_horizontal_4_dual_neon( + uint16_t *s, int p, const uint8_t *blimit0, const uint8_t *limit0, + const uint8_t *thresh0, const uint8_t *blimit1, const uint8_t *limit1, + const uint8_t *thresh1, int bd) { + vpx_highbd_lpf_horizontal_4_neon(s, p, blimit0, limit0, thresh0, bd); + vpx_highbd_lpf_horizontal_4_neon(s + 8, p, blimit1, limit1, thresh1, bd); +} + +void vpx_highbd_lpf_vertical_4_neon(uint16_t *s, int p, const uint8_t *blimit, + const uint8_t *limit, const uint8_t *thresh, + int bd) { + uint16x8_t blimit_vec, limit_vec, thresh_vec, p3, p2, p1, p0, q0, q1, q2, q3, + mask, hev; + + load_8x8(s - 4, p, &p3, &p2, &p1, &p0, &q0, &q1, &q2, &q3); + transpose_s16_8x8((int16x8_t *)&p3, (int16x8_t *)&p2, (int16x8_t *)&p1, + (int16x8_t *)&p0, (int16x8_t *)&q0, (int16x8_t *)&q1, + (int16x8_t *)&q2, (int16x8_t *)&q3); + load_thresh(blimit, limit, thresh, &blimit_vec, &limit_vec, &thresh_vec, bd); + filter_hev_mask4(limit_vec, blimit_vec, thresh_vec, p3, p2, p1, p0, q0, q1, + q2, q3, &hev, &mask); + filter4(mask, hev, p1, p0, q0, q1, &p1, &p0, &q0, &q1, bd); + store_4x8(s - 2, p, p1, p0, q0, q1); +} + +void vpx_highbd_lpf_vertical_4_dual_neon( + uint16_t *s, int p, const uint8_t *blimit0, const uint8_t *limit0, + const uint8_t *thresh0, const uint8_t *blimit1, const uint8_t *limit1, + const uint8_t *thresh1, int bd) { + vpx_highbd_lpf_vertical_4_neon(s, p, blimit0, limit0, thresh0, bd); + vpx_highbd_lpf_vertical_4_neon(s + 8 * p, p, blimit1, limit1, thresh1, bd); +} + +void vpx_highbd_lpf_horizontal_8_neon(uint16_t *s, int p, const uint8_t *blimit, + const uint8_t *limit, + const uint8_t *thresh, int bd) { + uint16x8_t blimit_vec, limit_vec, thresh_vec, p3, p2, p1, p0, q0, q1, q2, q3, + op2, op1, op0, oq0, oq1, oq2, mask, flat, hev; + uint32_t flat_status; + + load_thresh(blimit, limit, thresh, &blimit_vec, &limit_vec, &thresh_vec, bd); + load_8x8(s - 4 * p, p, &p3, &p2, &p1, &p0, &q0, &q1, &q2, &q3); + mask = filter_flat_hev_mask(limit_vec, blimit_vec, thresh_vec, p3, p2, p1, p0, + q0, q1, q2, q3, &flat, &flat_status, &hev, bd); + filter8(mask, flat, flat_status, hev, p3, p2, p1, p0, q0, q1, q2, q3, &op2, + &op1, &op0, &oq0, &oq1, &oq2, bd); + store_8x6(s - 3 * p, p, op2, op1, op0, oq0, oq1, oq2); +} + +void vpx_highbd_lpf_horizontal_8_dual_neon( + uint16_t *s, int p, const uint8_t *blimit0, const uint8_t *limit0, + const uint8_t *thresh0, const uint8_t *blimit1, const uint8_t *limit1, + const uint8_t *thresh1, int bd) { + vpx_highbd_lpf_horizontal_8_neon(s, p, blimit0, limit0, thresh0, bd); + vpx_highbd_lpf_horizontal_8_neon(s + 8, p, blimit1, limit1, thresh1, bd); +} + +void vpx_highbd_lpf_vertical_8_neon(uint16_t *s, int p, const uint8_t *blimit, + const uint8_t *limit, const uint8_t *thresh, + int bd) { + uint16x8_t blimit_vec, limit_vec, thresh_vec, p3, p2, p1, p0, q0, q1, q2, q3, + op2, op1, op0, oq0, oq1, oq2, mask, flat, hev; + uint32_t flat_status; + + load_8x8(s - 4, p, &p3, &p2, &p1, &p0, &q0, &q1, &q2, &q3); + transpose_s16_8x8((int16x8_t *)&p3, (int16x8_t *)&p2, (int16x8_t *)&p1, + (int16x8_t *)&p0, (int16x8_t *)&q0, (int16x8_t *)&q1, + (int16x8_t *)&q2, (int16x8_t *)&q3); + load_thresh(blimit, limit, thresh, &blimit_vec, &limit_vec, &thresh_vec, bd); + mask = filter_flat_hev_mask(limit_vec, blimit_vec, thresh_vec, p3, p2, p1, p0, + q0, q1, q2, q3, &flat, &flat_status, &hev, bd); + filter8(mask, flat, flat_status, hev, p3, p2, p1, p0, q0, q1, q2, q3, &op2, + &op1, &op0, &oq0, &oq1, &oq2, bd); + // Note: store_6x8() is faster than transpose + store_8x8(). + store_6x8(s, p, op2, op1, op0, oq0, oq1, oq2); +} + +void vpx_highbd_lpf_vertical_8_dual_neon( + uint16_t *s, int p, const uint8_t *blimit0, const uint8_t *limit0, + const uint8_t *thresh0, const uint8_t *blimit1, const uint8_t *limit1, + const uint8_t *thresh1, int bd) { + vpx_highbd_lpf_vertical_8_neon(s, p, blimit0, limit0, thresh0, bd); + vpx_highbd_lpf_vertical_8_neon(s + 8 * p, p, blimit1, limit1, thresh1, bd); +} + +static void lpf_horizontal_16_kernel(uint16_t *s, int p, + const uint16x8_t blimit_vec, + const uint16x8_t limit_vec, + const uint16x8_t thresh_vec, + const int bd) { + uint16x8_t mask, flat, flat2, hev, p7, p6, p5, p4, p3, p2, p1, p0, q0, q1, q2, + q3, q4, q5, q6, q7, op6, op5, op4, op3, op2, op1, op0, oq0, oq1, oq2, oq3, + oq4, oq5, oq6; + uint32_t flat_status, flat2_status; + + load_8x16(s - 8 * p, p, &p7, &p6, &p5, &p4, &p3, &p2, &p1, &p0, &q0, &q1, &q2, + &q3, &q4, &q5, &q6, &q7); + mask = filter_flat_hev_mask(limit_vec, blimit_vec, thresh_vec, p3, p2, p1, p0, + q0, q1, q2, q3, &flat, &flat_status, &hev, bd); + flat2 = flat_mask5(p7, p6, p5, p4, p0, q0, q4, q5, q6, q7, flat, + &flat2_status, bd); + filter16(mask, flat, flat_status, flat2, flat2_status, hev, p7, p6, p5, p4, + p3, p2, p1, p0, q0, q1, q2, q3, q4, q5, q6, q7, &op6, &op5, &op4, + &op3, &op2, &op1, &op0, &oq0, &oq1, &oq2, &oq3, &oq4, &oq5, &oq6, + bd); + store_8x14(s, p, op6, op5, op4, op3, op2, op1, op0, oq0, oq1, oq2, oq3, oq4, + oq5, oq6, flat_status, flat2_status); +} + +static void lpf_vertical_16_kernel(uint16_t *s, int p, + const uint16x8_t blimit_vec, + const uint16x8_t limit_vec, + const uint16x8_t thresh_vec, const int bd) { + uint16x8_t mask, flat, flat2, hev, p7, p6, p5, p4, p3, p2, p1, p0, q0, q1, q2, + q3, q4, q5, q6, q7, op6, op5, op4, op3, op2, op1, op0, oq0, oq1, oq2, oq3, + oq4, oq5, oq6; + uint32_t flat_status, flat2_status; + + load_8x8(s - 8, p, &p7, &p6, &p5, &p4, &p3, &p2, &p1, &p0); + transpose_s16_8x8((int16x8_t *)&p7, (int16x8_t *)&p6, (int16x8_t *)&p5, + (int16x8_t *)&p4, (int16x8_t *)&p3, (int16x8_t *)&p2, + (int16x8_t *)&p1, (int16x8_t *)&p0); + load_8x8(s, p, &q0, &q1, &q2, &q3, &q4, &q5, &q6, &q7); + transpose_s16_8x8((int16x8_t *)&q0, (int16x8_t *)&q1, (int16x8_t *)&q2, + (int16x8_t *)&q3, (int16x8_t *)&q4, (int16x8_t *)&q5, + (int16x8_t *)&q6, (int16x8_t *)&q7); + mask = filter_flat_hev_mask(limit_vec, blimit_vec, thresh_vec, p3, p2, p1, p0, + q0, q1, q2, q3, &flat, &flat_status, &hev, bd); + flat2 = flat_mask5(p7, p6, p5, p4, p0, q0, q4, q5, q6, q7, flat, + &flat2_status, bd); + filter16(mask, flat, flat_status, flat2, flat2_status, hev, p7, p6, p5, p4, + p3, p2, p1, p0, q0, q1, q2, q3, q4, q5, q6, q7, &op6, &op5, &op4, + &op3, &op2, &op1, &op0, &oq0, &oq1, &oq2, &oq3, &oq4, &oq5, &oq6, + bd); + if (flat_status) { + if (flat2_status) { + store_7x8(s - 3, p, op6, op5, op4, op3, op2, op1, op0); + store_7x8(s + 4, p, oq0, oq1, oq2, oq3, oq4, oq5, oq6); + } else { + // Note: store_6x8() is faster than transpose + store_8x8(). + store_6x8(s, p, op2, op1, op0, oq0, oq1, oq2); + } + } else { + store_4x8(s - 2, p, op1, op0, oq0, oq1); + } +} + +void vpx_highbd_lpf_horizontal_16_neon(uint16_t *s, int p, + const uint8_t *blimit, + const uint8_t *limit, + const uint8_t *thresh, int bd) { + uint16x8_t blimit_vec, limit_vec, thresh_vec; + load_thresh(blimit, limit, thresh, &blimit_vec, &limit_vec, &thresh_vec, bd); + lpf_horizontal_16_kernel(s, p, blimit_vec, limit_vec, thresh_vec, bd); +} + +void vpx_highbd_lpf_horizontal_16_dual_neon(uint16_t *s, int p, + const uint8_t *blimit, + const uint8_t *limit, + const uint8_t *thresh, int bd) { + uint16x8_t blimit_vec, limit_vec, thresh_vec; + load_thresh(blimit, limit, thresh, &blimit_vec, &limit_vec, &thresh_vec, bd); + lpf_horizontal_16_kernel(s, p, blimit_vec, limit_vec, thresh_vec, bd); + lpf_horizontal_16_kernel(s + 8, p, blimit_vec, limit_vec, thresh_vec, bd); +} + +void vpx_highbd_lpf_vertical_16_neon(uint16_t *s, int p, const uint8_t *blimit, + const uint8_t *limit, + const uint8_t *thresh, int bd) { + uint16x8_t blimit_vec, limit_vec, thresh_vec; + load_thresh(blimit, limit, thresh, &blimit_vec, &limit_vec, &thresh_vec, bd); + lpf_vertical_16_kernel(s, p, blimit_vec, limit_vec, thresh_vec, bd); +} + +void vpx_highbd_lpf_vertical_16_dual_neon(uint16_t *s, int p, + const uint8_t *blimit, + const uint8_t *limit, + const uint8_t *thresh, int bd) { + uint16x8_t blimit_vec, limit_vec, thresh_vec; + load_thresh(blimit, limit, thresh, &blimit_vec, &limit_vec, &thresh_vec, bd); + lpf_vertical_16_kernel(s, p, blimit_vec, limit_vec, thresh_vec, bd); + lpf_vertical_16_kernel(s + 8 * p, p, blimit_vec, limit_vec, thresh_vec, bd); +} diff --git a/vpx_dsp/arm/highbd_vpx_convolve8_neon.c b/vpx_dsp/arm/highbd_vpx_convolve8_neon.c new file mode 100644 index 0000000..c46c016 --- /dev/null +++ b/vpx_dsp/arm/highbd_vpx_convolve8_neon.c @@ -0,0 +1,931 @@ +/* + * Copyright (c) 2016 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include + +#include "./vpx_config.h" +#include "./vpx_dsp_rtcd.h" +#include "vpx/vpx_integer.h" +#include "vpx_dsp/arm/transpose_neon.h" +#include "vpx_ports/mem.h" + +static INLINE void load_4x4(const int16_t *s, const ptrdiff_t p, + int16x4_t *const s0, int16x4_t *const s1, + int16x4_t *const s2, int16x4_t *const s3) { + *s0 = vld1_s16(s); + s += p; + *s1 = vld1_s16(s); + s += p; + *s2 = vld1_s16(s); + s += p; + *s3 = vld1_s16(s); +} + +static INLINE void load_8x4(const uint16_t *s, const ptrdiff_t p, + uint16x8_t *const s0, uint16x8_t *const s1, + uint16x8_t *const s2, uint16x8_t *const s3) { + *s0 = vld1q_u16(s); + s += p; + *s1 = vld1q_u16(s); + s += p; + *s2 = vld1q_u16(s); + s += p; + *s3 = vld1q_u16(s); +} + +static INLINE void load_8x8(const int16_t *s, const ptrdiff_t p, + int16x8_t *const s0, int16x8_t *const s1, + int16x8_t *const s2, int16x8_t *const s3, + int16x8_t *const s4, int16x8_t *const s5, + int16x8_t *const s6, int16x8_t *const s7) { + *s0 = vld1q_s16(s); + s += p; + *s1 = vld1q_s16(s); + s += p; + *s2 = vld1q_s16(s); + s += p; + *s3 = vld1q_s16(s); + s += p; + *s4 = vld1q_s16(s); + s += p; + *s5 = vld1q_s16(s); + s += p; + *s6 = vld1q_s16(s); + s += p; + *s7 = vld1q_s16(s); +} + +static INLINE void store_8x8(uint16_t *s, const ptrdiff_t p, + const uint16x8_t s0, const uint16x8_t s1, + const uint16x8_t s2, const uint16x8_t s3, + const uint16x8_t s4, const uint16x8_t s5, + const uint16x8_t s6, const uint16x8_t s7) { + vst1q_u16(s, s0); + s += p; + vst1q_u16(s, s1); + s += p; + vst1q_u16(s, s2); + s += p; + vst1q_u16(s, s3); + s += p; + vst1q_u16(s, s4); + s += p; + vst1q_u16(s, s5); + s += p; + vst1q_u16(s, s6); + s += p; + vst1q_u16(s, s7); +} + +static INLINE int32x4_t highbd_convolve8_4( + const int16x4_t s0, const int16x4_t s1, const int16x4_t s2, + const int16x4_t s3, const int16x4_t s4, const int16x4_t s5, + const int16x4_t s6, const int16x4_t s7, const int16x8_t filters) { + const int16x4_t filters_lo = vget_low_s16(filters); + const int16x4_t filters_hi = vget_high_s16(filters); + int32x4_t sum; + + sum = vmull_lane_s16(s0, filters_lo, 0); + sum = vmlal_lane_s16(sum, s1, filters_lo, 1); + sum = vmlal_lane_s16(sum, s2, filters_lo, 2); + sum = vmlal_lane_s16(sum, s3, filters_lo, 3); + sum = vmlal_lane_s16(sum, s4, filters_hi, 0); + sum = vmlal_lane_s16(sum, s5, filters_hi, 1); + sum = vmlal_lane_s16(sum, s6, filters_hi, 2); + sum = vmlal_lane_s16(sum, s7, filters_hi, 3); + return sum; +} + +static INLINE uint16x8_t +highbd_convolve8_8(const int16x8_t s0, const int16x8_t s1, const int16x8_t s2, + const int16x8_t s3, const int16x8_t s4, const int16x8_t s5, + const int16x8_t s6, const int16x8_t s7, + const int16x8_t filters, const uint16x8_t max) { + const int16x4_t filters_lo = vget_low_s16(filters); + const int16x4_t filters_hi = vget_high_s16(filters); + int32x4_t sum0, sum1; + uint16x8_t d; + + sum0 = vmull_lane_s16(vget_low_s16(s0), filters_lo, 0); + sum0 = vmlal_lane_s16(sum0, vget_low_s16(s1), filters_lo, 1); + sum0 = vmlal_lane_s16(sum0, vget_low_s16(s2), filters_lo, 2); + sum0 = vmlal_lane_s16(sum0, vget_low_s16(s3), filters_lo, 3); + sum0 = vmlal_lane_s16(sum0, vget_low_s16(s4), filters_hi, 0); + sum0 = vmlal_lane_s16(sum0, vget_low_s16(s5), filters_hi, 1); + sum0 = vmlal_lane_s16(sum0, vget_low_s16(s6), filters_hi, 2); + sum0 = vmlal_lane_s16(sum0, vget_low_s16(s7), filters_hi, 3); + sum1 = vmull_lane_s16(vget_high_s16(s0), filters_lo, 0); + sum1 = vmlal_lane_s16(sum1, vget_high_s16(s1), filters_lo, 1); + sum1 = vmlal_lane_s16(sum1, vget_high_s16(s2), filters_lo, 2); + sum1 = vmlal_lane_s16(sum1, vget_high_s16(s3), filters_lo, 3); + sum1 = vmlal_lane_s16(sum1, vget_high_s16(s4), filters_hi, 0); + sum1 = vmlal_lane_s16(sum1, vget_high_s16(s5), filters_hi, 1); + sum1 = vmlal_lane_s16(sum1, vget_high_s16(s6), filters_hi, 2); + sum1 = vmlal_lane_s16(sum1, vget_high_s16(s7), filters_hi, 3); + d = vcombine_u16(vqrshrun_n_s32(sum0, 7), vqrshrun_n_s32(sum1, 7)); + d = vminq_u16(d, max); + return d; +} + +void vpx_highbd_convolve8_horiz_neon(const uint16_t *src, ptrdiff_t src_stride, + uint16_t *dst, ptrdiff_t dst_stride, + const InterpKernel *filter, int x0_q4, + int x_step_q4, int y0_q4, int y_step_q4, + int w, int h, int bd) { + if (x_step_q4 != 16) { + vpx_highbd_convolve8_horiz_c(src, src_stride, dst, dst_stride, filter, + x0_q4, x_step_q4, y0_q4, y_step_q4, w, h, bd); + } else { + const int16x8_t filters = vld1q_s16(filter[x0_q4]); + const uint16x8_t max = vdupq_n_u16((1 << bd) - 1); + uint16x8_t t0, t1, t2, t3; + + assert(!((intptr_t)dst & 3)); + assert(!(dst_stride & 3)); + + src -= 3; + + if (h == 4) { + int16x4_t s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10; + int32x4_t d0, d1, d2, d3; + uint16x8_t d01, d23; + + __builtin_prefetch(src + 0 * src_stride); + __builtin_prefetch(src + 1 * src_stride); + __builtin_prefetch(src + 2 * src_stride); + __builtin_prefetch(src + 3 * src_stride); + load_8x4(src, src_stride, &t0, &t1, &t2, &t3); + transpose_u16_8x4(&t0, &t1, &t2, &t3); + s0 = vreinterpret_s16_u16(vget_low_u16(t0)); + s1 = vreinterpret_s16_u16(vget_low_u16(t1)); + s2 = vreinterpret_s16_u16(vget_low_u16(t2)); + s3 = vreinterpret_s16_u16(vget_low_u16(t3)); + s4 = vreinterpret_s16_u16(vget_high_u16(t0)); + s5 = vreinterpret_s16_u16(vget_high_u16(t1)); + s6 = vreinterpret_s16_u16(vget_high_u16(t2)); + __builtin_prefetch(dst + 0 * dst_stride); + __builtin_prefetch(dst + 1 * dst_stride); + __builtin_prefetch(dst + 2 * dst_stride); + __builtin_prefetch(dst + 3 * dst_stride); + src += 7; + + do { + load_4x4((const int16_t *)src, src_stride, &s7, &s8, &s9, &s10); + transpose_s16_4x4d(&s7, &s8, &s9, &s10); + + d0 = highbd_convolve8_4(s0, s1, s2, s3, s4, s5, s6, s7, filters); + d1 = highbd_convolve8_4(s1, s2, s3, s4, s5, s6, s7, s8, filters); + d2 = highbd_convolve8_4(s2, s3, s4, s5, s6, s7, s8, s9, filters); + d3 = highbd_convolve8_4(s3, s4, s5, s6, s7, s8, s9, s10, filters); + + d01 = vcombine_u16(vqrshrun_n_s32(d0, 7), vqrshrun_n_s32(d1, 7)); + d23 = vcombine_u16(vqrshrun_n_s32(d2, 7), vqrshrun_n_s32(d3, 7)); + d01 = vminq_u16(d01, max); + d23 = vminq_u16(d23, max); + transpose_u16_4x4q(&d01, &d23); + + vst1_u16(dst + 0 * dst_stride, vget_low_u16(d01)); + vst1_u16(dst + 1 * dst_stride, vget_low_u16(d23)); + vst1_u16(dst + 2 * dst_stride, vget_high_u16(d01)); + vst1_u16(dst + 3 * dst_stride, vget_high_u16(d23)); + + s0 = s4; + s1 = s5; + s2 = s6; + s3 = s7; + s4 = s8; + s5 = s9; + s6 = s10; + src += 4; + dst += 4; + w -= 4; + } while (w > 0); + } else { + int16x8_t t4, t5, t6, t7; + int16x8_t s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10; + uint16x8_t d0, d1, d2, d3; + + if (w == 4) { + do { + load_8x8((const int16_t *)src, src_stride, &s0, &s1, &s2, &s3, &s4, + &s5, &s6, &s7); + transpose_s16_8x8(&s0, &s1, &s2, &s3, &s4, &s5, &s6, &s7); + + load_8x8((const int16_t *)(src + 7), src_stride, &s7, &s8, &s9, &s10, + &t4, &t5, &t6, &t7); + src += 8 * src_stride; + __builtin_prefetch(dst + 0 * dst_stride); + __builtin_prefetch(dst + 1 * dst_stride); + __builtin_prefetch(dst + 2 * dst_stride); + __builtin_prefetch(dst + 3 * dst_stride); + __builtin_prefetch(dst + 4 * dst_stride); + __builtin_prefetch(dst + 5 * dst_stride); + __builtin_prefetch(dst + 6 * dst_stride); + __builtin_prefetch(dst + 7 * dst_stride); + transpose_s16_8x8(&s7, &s8, &s9, &s10, &t4, &t5, &t6, &t7); + + __builtin_prefetch(src + 0 * src_stride); + __builtin_prefetch(src + 1 * src_stride); + __builtin_prefetch(src + 2 * src_stride); + __builtin_prefetch(src + 3 * src_stride); + __builtin_prefetch(src + 4 * src_stride); + __builtin_prefetch(src + 5 * src_stride); + __builtin_prefetch(src + 6 * src_stride); + __builtin_prefetch(src + 7 * src_stride); + d0 = highbd_convolve8_8(s0, s1, s2, s3, s4, s5, s6, s7, filters, max); + d1 = highbd_convolve8_8(s1, s2, s3, s4, s5, s6, s7, s8, filters, max); + d2 = highbd_convolve8_8(s2, s3, s4, s5, s6, s7, s8, s9, filters, max); + d3 = + highbd_convolve8_8(s3, s4, s5, s6, s7, s8, s9, s10, filters, max); + + transpose_u16_8x4(&d0, &d1, &d2, &d3); + vst1_u16(dst, vget_low_u16(d0)); + dst += dst_stride; + vst1_u16(dst, vget_low_u16(d1)); + dst += dst_stride; + vst1_u16(dst, vget_low_u16(d2)); + dst += dst_stride; + vst1_u16(dst, vget_low_u16(d3)); + dst += dst_stride; + vst1_u16(dst, vget_high_u16(d0)); + dst += dst_stride; + vst1_u16(dst, vget_high_u16(d1)); + dst += dst_stride; + vst1_u16(dst, vget_high_u16(d2)); + dst += dst_stride; + vst1_u16(dst, vget_high_u16(d3)); + dst += dst_stride; + h -= 8; + } while (h > 0); + } else { + int width; + const uint16_t *s; + uint16_t *d; + int16x8_t s11, s12, s13, s14; + uint16x8_t d4, d5, d6, d7; + + do { + __builtin_prefetch(src + 0 * src_stride); + __builtin_prefetch(src + 1 * src_stride); + __builtin_prefetch(src + 2 * src_stride); + __builtin_prefetch(src + 3 * src_stride); + __builtin_prefetch(src + 4 * src_stride); + __builtin_prefetch(src + 5 * src_stride); + __builtin_prefetch(src + 6 * src_stride); + __builtin_prefetch(src + 7 * src_stride); + load_8x8((const int16_t *)src, src_stride, &s0, &s1, &s2, &s3, &s4, + &s5, &s6, &s7); + transpose_s16_8x8(&s0, &s1, &s2, &s3, &s4, &s5, &s6, &s7); + + width = w; + s = src + 7; + d = dst; + __builtin_prefetch(dst + 0 * dst_stride); + __builtin_prefetch(dst + 1 * dst_stride); + __builtin_prefetch(dst + 2 * dst_stride); + __builtin_prefetch(dst + 3 * dst_stride); + __builtin_prefetch(dst + 4 * dst_stride); + __builtin_prefetch(dst + 5 * dst_stride); + __builtin_prefetch(dst + 6 * dst_stride); + __builtin_prefetch(dst + 7 * dst_stride); + + do { + load_8x8((const int16_t *)s, src_stride, &s7, &s8, &s9, &s10, &s11, + &s12, &s13, &s14); + transpose_s16_8x8(&s7, &s8, &s9, &s10, &s11, &s12, &s13, &s14); + + d0 = highbd_convolve8_8(s0, s1, s2, s3, s4, s5, s6, s7, filters, + max); + d1 = highbd_convolve8_8(s1, s2, s3, s4, s5, s6, s7, s8, filters, + max); + d2 = highbd_convolve8_8(s2, s3, s4, s5, s6, s7, s8, s9, filters, + max); + d3 = highbd_convolve8_8(s3, s4, s5, s6, s7, s8, s9, s10, filters, + max); + d4 = highbd_convolve8_8(s4, s5, s6, s7, s8, s9, s10, s11, filters, + max); + d5 = highbd_convolve8_8(s5, s6, s7, s8, s9, s10, s11, s12, filters, + max); + d6 = highbd_convolve8_8(s6, s7, s8, s9, s10, s11, s12, s13, filters, + max); + d7 = highbd_convolve8_8(s7, s8, s9, s10, s11, s12, s13, s14, + filters, max); + + transpose_u16_8x8(&d0, &d1, &d2, &d3, &d4, &d5, &d6, &d7); + store_8x8(d, dst_stride, d0, d1, d2, d3, d4, d5, d6, d7); + + s0 = s8; + s1 = s9; + s2 = s10; + s3 = s11; + s4 = s12; + s5 = s13; + s6 = s14; + s += 8; + d += 8; + width -= 8; + } while (width > 0); + src += 8 * src_stride; + dst += 8 * dst_stride; + h -= 8; + } while (h > 0); + } + } + } +} + +void vpx_highbd_convolve8_avg_horiz_neon(const uint16_t *src, + ptrdiff_t src_stride, uint16_t *dst, + ptrdiff_t dst_stride, + const InterpKernel *filter, int x0_q4, + int x_step_q4, int y0_q4, + int y_step_q4, int w, int h, int bd) { + if (x_step_q4 != 16) { + vpx_highbd_convolve8_avg_horiz_c(src, src_stride, dst, dst_stride, filter, + x0_q4, x_step_q4, y0_q4, y_step_q4, w, h, + bd); + } else { + const int16x8_t filters = vld1q_s16(filter[x0_q4]); + const uint16x8_t max = vdupq_n_u16((1 << bd) - 1); + uint16x8_t t0, t1, t2, t3; + + assert(!((intptr_t)dst & 3)); + assert(!(dst_stride & 3)); + + src -= 3; + + if (h == 4) { + int16x4_t s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10; + int32x4_t d0, d1, d2, d3; + uint16x8_t d01, d23, t01, t23; + + __builtin_prefetch(src + 0 * src_stride); + __builtin_prefetch(src + 1 * src_stride); + __builtin_prefetch(src + 2 * src_stride); + __builtin_prefetch(src + 3 * src_stride); + load_8x4(src, src_stride, &t0, &t1, &t2, &t3); + transpose_u16_8x4(&t0, &t1, &t2, &t3); + s0 = vreinterpret_s16_u16(vget_low_u16(t0)); + s1 = vreinterpret_s16_u16(vget_low_u16(t1)); + s2 = vreinterpret_s16_u16(vget_low_u16(t2)); + s3 = vreinterpret_s16_u16(vget_low_u16(t3)); + s4 = vreinterpret_s16_u16(vget_high_u16(t0)); + s5 = vreinterpret_s16_u16(vget_high_u16(t1)); + s6 = vreinterpret_s16_u16(vget_high_u16(t2)); + __builtin_prefetch(dst + 0 * dst_stride); + __builtin_prefetch(dst + 1 * dst_stride); + __builtin_prefetch(dst + 2 * dst_stride); + __builtin_prefetch(dst + 3 * dst_stride); + src += 7; + + do { + load_4x4((const int16_t *)src, src_stride, &s7, &s8, &s9, &s10); + transpose_s16_4x4d(&s7, &s8, &s9, &s10); + + d0 = highbd_convolve8_4(s0, s1, s2, s3, s4, s5, s6, s7, filters); + d1 = highbd_convolve8_4(s1, s2, s3, s4, s5, s6, s7, s8, filters); + d2 = highbd_convolve8_4(s2, s3, s4, s5, s6, s7, s8, s9, filters); + d3 = highbd_convolve8_4(s3, s4, s5, s6, s7, s8, s9, s10, filters); + + t01 = vcombine_u16(vqrshrun_n_s32(d0, 7), vqrshrun_n_s32(d1, 7)); + t23 = vcombine_u16(vqrshrun_n_s32(d2, 7), vqrshrun_n_s32(d3, 7)); + t01 = vminq_u16(t01, max); + t23 = vminq_u16(t23, max); + transpose_u16_4x4q(&t01, &t23); + + d01 = vcombine_u16(vld1_u16(dst + 0 * dst_stride), + vld1_u16(dst + 2 * dst_stride)); + d23 = vcombine_u16(vld1_u16(dst + 1 * dst_stride), + vld1_u16(dst + 3 * dst_stride)); + d01 = vrhaddq_u16(d01, t01); + d23 = vrhaddq_u16(d23, t23); + + vst1_u16(dst + 0 * dst_stride, vget_low_u16(d01)); + vst1_u16(dst + 1 * dst_stride, vget_low_u16(d23)); + vst1_u16(dst + 2 * dst_stride, vget_high_u16(d01)); + vst1_u16(dst + 3 * dst_stride, vget_high_u16(d23)); + + s0 = s4; + s1 = s5; + s2 = s6; + s3 = s7; + s4 = s8; + s5 = s9; + s6 = s10; + src += 4; + dst += 4; + w -= 4; + } while (w > 0); + } else { + int16x8_t t4, t5, t6, t7; + int16x8_t s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10; + uint16x8_t d0, d1, d2, d3, t0, t1, t2, t3; + + if (w == 4) { + do { + load_8x8((const int16_t *)src, src_stride, &s0, &s1, &s2, &s3, &s4, + &s5, &s6, &s7); + transpose_s16_8x8(&s0, &s1, &s2, &s3, &s4, &s5, &s6, &s7); + + load_8x8((const int16_t *)(src + 7), src_stride, &s7, &s8, &s9, &s10, + &t4, &t5, &t6, &t7); + src += 8 * src_stride; + __builtin_prefetch(dst + 0 * dst_stride); + __builtin_prefetch(dst + 1 * dst_stride); + __builtin_prefetch(dst + 2 * dst_stride); + __builtin_prefetch(dst + 3 * dst_stride); + __builtin_prefetch(dst + 4 * dst_stride); + __builtin_prefetch(dst + 5 * dst_stride); + __builtin_prefetch(dst + 6 * dst_stride); + __builtin_prefetch(dst + 7 * dst_stride); + transpose_s16_8x8(&s7, &s8, &s9, &s10, &t4, &t5, &t6, &t7); + + __builtin_prefetch(src + 0 * src_stride); + __builtin_prefetch(src + 1 * src_stride); + __builtin_prefetch(src + 2 * src_stride); + __builtin_prefetch(src + 3 * src_stride); + __builtin_prefetch(src + 4 * src_stride); + __builtin_prefetch(src + 5 * src_stride); + __builtin_prefetch(src + 6 * src_stride); + __builtin_prefetch(src + 7 * src_stride); + t0 = highbd_convolve8_8(s0, s1, s2, s3, s4, s5, s6, s7, filters, max); + t1 = highbd_convolve8_8(s1, s2, s3, s4, s5, s6, s7, s8, filters, max); + t2 = highbd_convolve8_8(s2, s3, s4, s5, s6, s7, s8, s9, filters, max); + t3 = + highbd_convolve8_8(s3, s4, s5, s6, s7, s8, s9, s10, filters, max); + transpose_u16_8x4(&t0, &t1, &t2, &t3); + + d0 = vcombine_u16(vld1_u16(dst + 0 * dst_stride), + vld1_u16(dst + 4 * dst_stride)); + d1 = vcombine_u16(vld1_u16(dst + 1 * dst_stride), + vld1_u16(dst + 5 * dst_stride)); + d2 = vcombine_u16(vld1_u16(dst + 2 * dst_stride), + vld1_u16(dst + 6 * dst_stride)); + d3 = vcombine_u16(vld1_u16(dst + 3 * dst_stride), + vld1_u16(dst + 7 * dst_stride)); + d0 = vrhaddq_u16(d0, t0); + d1 = vrhaddq_u16(d1, t1); + d2 = vrhaddq_u16(d2, t2); + d3 = vrhaddq_u16(d3, t3); + + vst1_u16(dst, vget_low_u16(d0)); + dst += dst_stride; + vst1_u16(dst, vget_low_u16(d1)); + dst += dst_stride; + vst1_u16(dst, vget_low_u16(d2)); + dst += dst_stride; + vst1_u16(dst, vget_low_u16(d3)); + dst += dst_stride; + vst1_u16(dst, vget_high_u16(d0)); + dst += dst_stride; + vst1_u16(dst, vget_high_u16(d1)); + dst += dst_stride; + vst1_u16(dst, vget_high_u16(d2)); + dst += dst_stride; + vst1_u16(dst, vget_high_u16(d3)); + dst += dst_stride; + h -= 8; + } while (h > 0); + } else { + int width; + const uint16_t *s; + uint16_t *d; + int16x8_t s11, s12, s13, s14; + uint16x8_t d4, d5, d6, d7; + + do { + __builtin_prefetch(src + 0 * src_stride); + __builtin_prefetch(src + 1 * src_stride); + __builtin_prefetch(src + 2 * src_stride); + __builtin_prefetch(src + 3 * src_stride); + __builtin_prefetch(src + 4 * src_stride); + __builtin_prefetch(src + 5 * src_stride); + __builtin_prefetch(src + 6 * src_stride); + __builtin_prefetch(src + 7 * src_stride); + load_8x8((const int16_t *)src, src_stride, &s0, &s1, &s2, &s3, &s4, + &s5, &s6, &s7); + transpose_s16_8x8(&s0, &s1, &s2, &s3, &s4, &s5, &s6, &s7); + + width = w; + s = src + 7; + d = dst; + __builtin_prefetch(dst + 0 * dst_stride); + __builtin_prefetch(dst + 1 * dst_stride); + __builtin_prefetch(dst + 2 * dst_stride); + __builtin_prefetch(dst + 3 * dst_stride); + __builtin_prefetch(dst + 4 * dst_stride); + __builtin_prefetch(dst + 5 * dst_stride); + __builtin_prefetch(dst + 6 * dst_stride); + __builtin_prefetch(dst + 7 * dst_stride); + + do { + load_8x8((const int16_t *)s, src_stride, &s7, &s8, &s9, &s10, &s11, + &s12, &s13, &s14); + transpose_s16_8x8(&s7, &s8, &s9, &s10, &s11, &s12, &s13, &s14); + + d0 = highbd_convolve8_8(s0, s1, s2, s3, s4, s5, s6, s7, filters, + max); + d1 = highbd_convolve8_8(s1, s2, s3, s4, s5, s6, s7, s8, filters, + max); + d2 = highbd_convolve8_8(s2, s3, s4, s5, s6, s7, s8, s9, filters, + max); + d3 = highbd_convolve8_8(s3, s4, s5, s6, s7, s8, s9, s10, filters, + max); + d4 = highbd_convolve8_8(s4, s5, s6, s7, s8, s9, s10, s11, filters, + max); + d5 = highbd_convolve8_8(s5, s6, s7, s8, s9, s10, s11, s12, filters, + max); + d6 = highbd_convolve8_8(s6, s7, s8, s9, s10, s11, s12, s13, filters, + max); + d7 = highbd_convolve8_8(s7, s8, s9, s10, s11, s12, s13, s14, + filters, max); + + transpose_u16_8x8(&d0, &d1, &d2, &d3, &d4, &d5, &d6, &d7); + + d0 = vrhaddq_u16(d0, vld1q_u16(d + 0 * dst_stride)); + d1 = vrhaddq_u16(d1, vld1q_u16(d + 1 * dst_stride)); + d2 = vrhaddq_u16(d2, vld1q_u16(d + 2 * dst_stride)); + d3 = vrhaddq_u16(d3, vld1q_u16(d + 3 * dst_stride)); + d4 = vrhaddq_u16(d4, vld1q_u16(d + 4 * dst_stride)); + d5 = vrhaddq_u16(d5, vld1q_u16(d + 5 * dst_stride)); + d6 = vrhaddq_u16(d6, vld1q_u16(d + 6 * dst_stride)); + d7 = vrhaddq_u16(d7, vld1q_u16(d + 7 * dst_stride)); + + store_8x8(d, dst_stride, d0, d1, d2, d3, d4, d5, d6, d7); + + s0 = s8; + s1 = s9; + s2 = s10; + s3 = s11; + s4 = s12; + s5 = s13; + s6 = s14; + s += 8; + d += 8; + width -= 8; + } while (width > 0); + src += 8 * src_stride; + dst += 8 * dst_stride; + h -= 8; + } while (h > 0); + } + } + } +} + +void vpx_highbd_convolve8_vert_neon(const uint16_t *src, ptrdiff_t src_stride, + uint16_t *dst, ptrdiff_t dst_stride, + const InterpKernel *filter, int x0_q4, + int x_step_q4, int y0_q4, int y_step_q4, + int w, int h, int bd) { + if (y_step_q4 != 16) { + vpx_highbd_convolve8_vert_c(src, src_stride, dst, dst_stride, filter, x0_q4, + x_step_q4, y0_q4, y_step_q4, w, h, bd); + } else { + const int16x8_t filters = vld1q_s16(filter[y0_q4]); + const uint16x8_t max = vdupq_n_u16((1 << bd) - 1); + + assert(!((intptr_t)dst & 3)); + assert(!(dst_stride & 3)); + + src -= 3 * src_stride; + + if (w == 4) { + int16x4_t s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10; + int32x4_t d0, d1, d2, d3; + uint16x8_t d01, d23; + + s0 = vreinterpret_s16_u16(vld1_u16(src)); + src += src_stride; + s1 = vreinterpret_s16_u16(vld1_u16(src)); + src += src_stride; + s2 = vreinterpret_s16_u16(vld1_u16(src)); + src += src_stride; + s3 = vreinterpret_s16_u16(vld1_u16(src)); + src += src_stride; + s4 = vreinterpret_s16_u16(vld1_u16(src)); + src += src_stride; + s5 = vreinterpret_s16_u16(vld1_u16(src)); + src += src_stride; + s6 = vreinterpret_s16_u16(vld1_u16(src)); + src += src_stride; + + do { + s7 = vreinterpret_s16_u16(vld1_u16(src)); + src += src_stride; + s8 = vreinterpret_s16_u16(vld1_u16(src)); + src += src_stride; + s9 = vreinterpret_s16_u16(vld1_u16(src)); + src += src_stride; + s10 = vreinterpret_s16_u16(vld1_u16(src)); + src += src_stride; + + __builtin_prefetch(dst + 0 * dst_stride); + __builtin_prefetch(dst + 1 * dst_stride); + __builtin_prefetch(dst + 2 * dst_stride); + __builtin_prefetch(dst + 3 * dst_stride); + __builtin_prefetch(src + 0 * src_stride); + __builtin_prefetch(src + 1 * src_stride); + __builtin_prefetch(src + 2 * src_stride); + __builtin_prefetch(src + 3 * src_stride); + d0 = highbd_convolve8_4(s0, s1, s2, s3, s4, s5, s6, s7, filters); + d1 = highbd_convolve8_4(s1, s2, s3, s4, s5, s6, s7, s8, filters); + d2 = highbd_convolve8_4(s2, s3, s4, s5, s6, s7, s8, s9, filters); + d3 = highbd_convolve8_4(s3, s4, s5, s6, s7, s8, s9, s10, filters); + + d01 = vcombine_u16(vqrshrun_n_s32(d0, 7), vqrshrun_n_s32(d1, 7)); + d23 = vcombine_u16(vqrshrun_n_s32(d2, 7), vqrshrun_n_s32(d3, 7)); + d01 = vminq_u16(d01, max); + d23 = vminq_u16(d23, max); + vst1_u16(dst, vget_low_u16(d01)); + dst += dst_stride; + vst1_u16(dst, vget_high_u16(d01)); + dst += dst_stride; + vst1_u16(dst, vget_low_u16(d23)); + dst += dst_stride; + vst1_u16(dst, vget_high_u16(d23)); + dst += dst_stride; + + s0 = s4; + s1 = s5; + s2 = s6; + s3 = s7; + s4 = s8; + s5 = s9; + s6 = s10; + h -= 4; + } while (h > 0); + } else { + int height; + const uint16_t *s; + uint16_t *d; + int16x8_t s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10; + uint16x8_t d0, d1, d2, d3; + + do { + __builtin_prefetch(src + 0 * src_stride); + __builtin_prefetch(src + 1 * src_stride); + __builtin_prefetch(src + 2 * src_stride); + __builtin_prefetch(src + 3 * src_stride); + __builtin_prefetch(src + 4 * src_stride); + __builtin_prefetch(src + 5 * src_stride); + __builtin_prefetch(src + 6 * src_stride); + s = src; + s0 = vreinterpretq_s16_u16(vld1q_u16(s)); + s += src_stride; + s1 = vreinterpretq_s16_u16(vld1q_u16(s)); + s += src_stride; + s2 = vreinterpretq_s16_u16(vld1q_u16(s)); + s += src_stride; + s3 = vreinterpretq_s16_u16(vld1q_u16(s)); + s += src_stride; + s4 = vreinterpretq_s16_u16(vld1q_u16(s)); + s += src_stride; + s5 = vreinterpretq_s16_u16(vld1q_u16(s)); + s += src_stride; + s6 = vreinterpretq_s16_u16(vld1q_u16(s)); + s += src_stride; + d = dst; + height = h; + + do { + s7 = vreinterpretq_s16_u16(vld1q_u16(s)); + s += src_stride; + s8 = vreinterpretq_s16_u16(vld1q_u16(s)); + s += src_stride; + s9 = vreinterpretq_s16_u16(vld1q_u16(s)); + s += src_stride; + s10 = vreinterpretq_s16_u16(vld1q_u16(s)); + s += src_stride; + + __builtin_prefetch(d + 0 * dst_stride); + __builtin_prefetch(d + 1 * dst_stride); + __builtin_prefetch(d + 2 * dst_stride); + __builtin_prefetch(d + 3 * dst_stride); + __builtin_prefetch(s + 0 * src_stride); + __builtin_prefetch(s + 1 * src_stride); + __builtin_prefetch(s + 2 * src_stride); + __builtin_prefetch(s + 3 * src_stride); + d0 = highbd_convolve8_8(s0, s1, s2, s3, s4, s5, s6, s7, filters, max); + d1 = highbd_convolve8_8(s1, s2, s3, s4, s5, s6, s7, s8, filters, max); + d2 = highbd_convolve8_8(s2, s3, s4, s5, s6, s7, s8, s9, filters, max); + d3 = + highbd_convolve8_8(s3, s4, s5, s6, s7, s8, s9, s10, filters, max); + + vst1q_u16(d, d0); + d += dst_stride; + vst1q_u16(d, d1); + d += dst_stride; + vst1q_u16(d, d2); + d += dst_stride; + vst1q_u16(d, d3); + d += dst_stride; + + s0 = s4; + s1 = s5; + s2 = s6; + s3 = s7; + s4 = s8; + s5 = s9; + s6 = s10; + height -= 4; + } while (height > 0); + src += 8; + dst += 8; + w -= 8; + } while (w > 0); + } + } +} + +void vpx_highbd_convolve8_avg_vert_neon(const uint16_t *src, + ptrdiff_t src_stride, uint16_t *dst, + ptrdiff_t dst_stride, + const InterpKernel *filter, int x0_q4, + int x_step_q4, int y0_q4, int y_step_q4, + int w, int h, int bd) { + if (y_step_q4 != 16) { + vpx_highbd_convolve8_avg_vert_c(src, src_stride, dst, dst_stride, filter, + x0_q4, x_step_q4, y0_q4, y_step_q4, w, h, + bd); + } else { + const int16x8_t filters = vld1q_s16(filter[y0_q4]); + const uint16x8_t max = vdupq_n_u16((1 << bd) - 1); + + assert(!((intptr_t)dst & 3)); + assert(!(dst_stride & 3)); + + src -= 3 * src_stride; + + if (w == 4) { + int16x4_t s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10; + int32x4_t d0, d1, d2, d3; + uint16x8_t d01, d23, t01, t23; + + s0 = vreinterpret_s16_u16(vld1_u16(src)); + src += src_stride; + s1 = vreinterpret_s16_u16(vld1_u16(src)); + src += src_stride; + s2 = vreinterpret_s16_u16(vld1_u16(src)); + src += src_stride; + s3 = vreinterpret_s16_u16(vld1_u16(src)); + src += src_stride; + s4 = vreinterpret_s16_u16(vld1_u16(src)); + src += src_stride; + s5 = vreinterpret_s16_u16(vld1_u16(src)); + src += src_stride; + s6 = vreinterpret_s16_u16(vld1_u16(src)); + src += src_stride; + + do { + s7 = vreinterpret_s16_u16(vld1_u16(src)); + src += src_stride; + s8 = vreinterpret_s16_u16(vld1_u16(src)); + src += src_stride; + s9 = vreinterpret_s16_u16(vld1_u16(src)); + src += src_stride; + s10 = vreinterpret_s16_u16(vld1_u16(src)); + src += src_stride; + + __builtin_prefetch(dst + 0 * dst_stride); + __builtin_prefetch(dst + 1 * dst_stride); + __builtin_prefetch(dst + 2 * dst_stride); + __builtin_prefetch(dst + 3 * dst_stride); + __builtin_prefetch(src + 0 * src_stride); + __builtin_prefetch(src + 1 * src_stride); + __builtin_prefetch(src + 2 * src_stride); + __builtin_prefetch(src + 3 * src_stride); + d0 = highbd_convolve8_4(s0, s1, s2, s3, s4, s5, s6, s7, filters); + d1 = highbd_convolve8_4(s1, s2, s3, s4, s5, s6, s7, s8, filters); + d2 = highbd_convolve8_4(s2, s3, s4, s5, s6, s7, s8, s9, filters); + d3 = highbd_convolve8_4(s3, s4, s5, s6, s7, s8, s9, s10, filters); + + t01 = vcombine_u16(vqrshrun_n_s32(d0, 7), vqrshrun_n_s32(d1, 7)); + t23 = vcombine_u16(vqrshrun_n_s32(d2, 7), vqrshrun_n_s32(d3, 7)); + t01 = vminq_u16(t01, max); + t23 = vminq_u16(t23, max); + + d01 = vcombine_u16(vld1_u16(dst + 0 * dst_stride), + vld1_u16(dst + 1 * dst_stride)); + d23 = vcombine_u16(vld1_u16(dst + 2 * dst_stride), + vld1_u16(dst + 3 * dst_stride)); + d01 = vrhaddq_u16(d01, t01); + d23 = vrhaddq_u16(d23, t23); + + vst1_u16(dst, vget_low_u16(d01)); + dst += dst_stride; + vst1_u16(dst, vget_high_u16(d01)); + dst += dst_stride; + vst1_u16(dst, vget_low_u16(d23)); + dst += dst_stride; + vst1_u16(dst, vget_high_u16(d23)); + dst += dst_stride; + + s0 = s4; + s1 = s5; + s2 = s6; + s3 = s7; + s4 = s8; + s5 = s9; + s6 = s10; + h -= 4; + } while (h > 0); + } else { + int height; + const uint16_t *s; + uint16_t *d; + int16x8_t s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10; + uint16x8_t d0, d1, d2, d3, t0, t1, t2, t3; + + do { + __builtin_prefetch(src + 0 * src_stride); + __builtin_prefetch(src + 1 * src_stride); + __builtin_prefetch(src + 2 * src_stride); + __builtin_prefetch(src + 3 * src_stride); + __builtin_prefetch(src + 4 * src_stride); + __builtin_prefetch(src + 5 * src_stride); + __builtin_prefetch(src + 6 * src_stride); + s = src; + s0 = vreinterpretq_s16_u16(vld1q_u16(s)); + s += src_stride; + s1 = vreinterpretq_s16_u16(vld1q_u16(s)); + s += src_stride; + s2 = vreinterpretq_s16_u16(vld1q_u16(s)); + s += src_stride; + s3 = vreinterpretq_s16_u16(vld1q_u16(s)); + s += src_stride; + s4 = vreinterpretq_s16_u16(vld1q_u16(s)); + s += src_stride; + s5 = vreinterpretq_s16_u16(vld1q_u16(s)); + s += src_stride; + s6 = vreinterpretq_s16_u16(vld1q_u16(s)); + s += src_stride; + d = dst; + height = h; + + do { + s7 = vreinterpretq_s16_u16(vld1q_u16(s)); + s += src_stride; + s8 = vreinterpretq_s16_u16(vld1q_u16(s)); + s += src_stride; + s9 = vreinterpretq_s16_u16(vld1q_u16(s)); + s += src_stride; + s10 = vreinterpretq_s16_u16(vld1q_u16(s)); + s += src_stride; + + __builtin_prefetch(d + 0 * dst_stride); + __builtin_prefetch(d + 1 * dst_stride); + __builtin_prefetch(d + 2 * dst_stride); + __builtin_prefetch(d + 3 * dst_stride); + __builtin_prefetch(s + 0 * src_stride); + __builtin_prefetch(s + 1 * src_stride); + __builtin_prefetch(s + 2 * src_stride); + __builtin_prefetch(s + 3 * src_stride); + t0 = highbd_convolve8_8(s0, s1, s2, s3, s4, s5, s6, s7, filters, max); + t1 = highbd_convolve8_8(s1, s2, s3, s4, s5, s6, s7, s8, filters, max); + t2 = highbd_convolve8_8(s2, s3, s4, s5, s6, s7, s8, s9, filters, max); + t3 = + highbd_convolve8_8(s3, s4, s5, s6, s7, s8, s9, s10, filters, max); + + d0 = vld1q_u16(d + 0 * dst_stride); + d1 = vld1q_u16(d + 1 * dst_stride); + d2 = vld1q_u16(d + 2 * dst_stride); + d3 = vld1q_u16(d + 3 * dst_stride); + d0 = vrhaddq_u16(d0, t0); + d1 = vrhaddq_u16(d1, t1); + d2 = vrhaddq_u16(d2, t2); + d3 = vrhaddq_u16(d3, t3); + + vst1q_u16(d, d0); + d += dst_stride; + vst1q_u16(d, d1); + d += dst_stride; + vst1q_u16(d, d2); + d += dst_stride; + vst1q_u16(d, d3); + d += dst_stride; + + s0 = s4; + s1 = s5; + s2 = s6; + s3 = s7; + s4 = s8; + s5 = s9; + s6 = s10; + height -= 4; + } while (height > 0); + src += 8; + dst += 8; + w -= 8; + } while (w > 0); + } + } +} diff --git a/vpx_dsp/arm/highbd_vpx_convolve_avg_neon.c b/vpx_dsp/arm/highbd_vpx_convolve_avg_neon.c new file mode 100644 index 0000000..765a054 --- /dev/null +++ b/vpx_dsp/arm/highbd_vpx_convolve_avg_neon.c @@ -0,0 +1,183 @@ +/* + * Copyright (c) 2016 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include + +#include "./vpx_dsp_rtcd.h" +#include "vpx/vpx_integer.h" + +void vpx_highbd_convolve_avg_neon(const uint16_t *src, ptrdiff_t src_stride, + uint16_t *dst, ptrdiff_t dst_stride, + const InterpKernel *filter, int x0_q4, + int x_step_q4, int y0_q4, int y_step_q4, + int w, int h, int bd) { + (void)filter; + (void)x0_q4; + (void)x_step_q4; + (void)y0_q4; + (void)y_step_q4; + (void)bd; + + if (w < 8) { // avg4 + uint16x4_t s0, s1, d0, d1; + uint16x8_t s01, d01; + do { + s0 = vld1_u16(src); + d0 = vld1_u16(dst); + src += src_stride; + s1 = vld1_u16(src); + d1 = vld1_u16(dst + dst_stride); + src += src_stride; + s01 = vcombine_u16(s0, s1); + d01 = vcombine_u16(d0, d1); + d01 = vrhaddq_u16(s01, d01); + vst1_u16(dst, vget_low_u16(d01)); + dst += dst_stride; + vst1_u16(dst, vget_high_u16(d01)); + dst += dst_stride; + h -= 2; + } while (h > 0); + } else if (w == 8) { // avg8 + uint16x8_t s0, s1, d0, d1; + do { + s0 = vld1q_u16(src); + d0 = vld1q_u16(dst); + src += src_stride; + s1 = vld1q_u16(src); + d1 = vld1q_u16(dst + dst_stride); + src += src_stride; + + d0 = vrhaddq_u16(s0, d0); + d1 = vrhaddq_u16(s1, d1); + + vst1q_u16(dst, d0); + dst += dst_stride; + vst1q_u16(dst, d1); + dst += dst_stride; + h -= 2; + } while (h > 0); + } else if (w < 32) { // avg16 + uint16x8_t s0l, s0h, s1l, s1h, d0l, d0h, d1l, d1h; + do { + s0l = vld1q_u16(src); + s0h = vld1q_u16(src + 8); + d0l = vld1q_u16(dst); + d0h = vld1q_u16(dst + 8); + src += src_stride; + s1l = vld1q_u16(src); + s1h = vld1q_u16(src + 8); + d1l = vld1q_u16(dst + dst_stride); + d1h = vld1q_u16(dst + dst_stride + 8); + src += src_stride; + + d0l = vrhaddq_u16(s0l, d0l); + d0h = vrhaddq_u16(s0h, d0h); + d1l = vrhaddq_u16(s1l, d1l); + d1h = vrhaddq_u16(s1h, d1h); + + vst1q_u16(dst, d0l); + vst1q_u16(dst + 8, d0h); + dst += dst_stride; + vst1q_u16(dst, d1l); + vst1q_u16(dst + 8, d1h); + dst += dst_stride; + h -= 2; + } while (h > 0); + } else if (w == 32) { // avg32 + uint16x8_t s0, s1, s2, s3, d0, d1, d2, d3; + do { + s0 = vld1q_u16(src); + s1 = vld1q_u16(src + 8); + s2 = vld1q_u16(src + 16); + s3 = vld1q_u16(src + 24); + d0 = vld1q_u16(dst); + d1 = vld1q_u16(dst + 8); + d2 = vld1q_u16(dst + 16); + d3 = vld1q_u16(dst + 24); + src += src_stride; + + d0 = vrhaddq_u16(s0, d0); + d1 = vrhaddq_u16(s1, d1); + d2 = vrhaddq_u16(s2, d2); + d3 = vrhaddq_u16(s3, d3); + + vst1q_u16(dst, d0); + vst1q_u16(dst + 8, d1); + vst1q_u16(dst + 16, d2); + vst1q_u16(dst + 24, d3); + dst += dst_stride; + + s0 = vld1q_u16(src); + s1 = vld1q_u16(src + 8); + s2 = vld1q_u16(src + 16); + s3 = vld1q_u16(src + 24); + d0 = vld1q_u16(dst); + d1 = vld1q_u16(dst + 8); + d2 = vld1q_u16(dst + 16); + d3 = vld1q_u16(dst + 24); + src += src_stride; + + d0 = vrhaddq_u16(s0, d0); + d1 = vrhaddq_u16(s1, d1); + d2 = vrhaddq_u16(s2, d2); + d3 = vrhaddq_u16(s3, d3); + + vst1q_u16(dst, d0); + vst1q_u16(dst + 8, d1); + vst1q_u16(dst + 16, d2); + vst1q_u16(dst + 24, d3); + dst += dst_stride; + h -= 2; + } while (h > 0); + } else { // avg64 + uint16x8_t s0, s1, s2, s3, d0, d1, d2, d3; + do { + s0 = vld1q_u16(src); + s1 = vld1q_u16(src + 8); + s2 = vld1q_u16(src + 16); + s3 = vld1q_u16(src + 24); + d0 = vld1q_u16(dst); + d1 = vld1q_u16(dst + 8); + d2 = vld1q_u16(dst + 16); + d3 = vld1q_u16(dst + 24); + + d0 = vrhaddq_u16(s0, d0); + d1 = vrhaddq_u16(s1, d1); + d2 = vrhaddq_u16(s2, d2); + d3 = vrhaddq_u16(s3, d3); + + vst1q_u16(dst, d0); + vst1q_u16(dst + 8, d1); + vst1q_u16(dst + 16, d2); + vst1q_u16(dst + 24, d3); + + s0 = vld1q_u16(src + 32); + s1 = vld1q_u16(src + 40); + s2 = vld1q_u16(src + 48); + s3 = vld1q_u16(src + 56); + d0 = vld1q_u16(dst + 32); + d1 = vld1q_u16(dst + 40); + d2 = vld1q_u16(dst + 48); + d3 = vld1q_u16(dst + 56); + + d0 = vrhaddq_u16(s0, d0); + d1 = vrhaddq_u16(s1, d1); + d2 = vrhaddq_u16(s2, d2); + d3 = vrhaddq_u16(s3, d3); + + vst1q_u16(dst + 32, d0); + vst1q_u16(dst + 40, d1); + vst1q_u16(dst + 48, d2); + vst1q_u16(dst + 56, d3); + src += src_stride; + dst += dst_stride; + } while (--h); + } +} diff --git a/vpx_dsp/arm/highbd_vpx_convolve_copy_neon.c b/vpx_dsp/arm/highbd_vpx_convolve_copy_neon.c new file mode 100644 index 0000000..9d2752e --- /dev/null +++ b/vpx_dsp/arm/highbd_vpx_convolve_copy_neon.c @@ -0,0 +1,101 @@ +/* + * Copyright (c) 2016 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include + +#include "./vpx_dsp_rtcd.h" +#include "vpx/vpx_integer.h" + +void vpx_highbd_convolve_copy_neon(const uint16_t *src, ptrdiff_t src_stride, + uint16_t *dst, ptrdiff_t dst_stride, + const InterpKernel *filter, int x0_q4, + int x_step_q4, int y0_q4, int y_step_q4, + int w, int h, int bd) { + (void)filter; + (void)x0_q4; + (void)x_step_q4; + (void)y0_q4; + (void)y_step_q4; + (void)bd; + + if (w < 8) { // copy4 + do { + vst1_u16(dst, vld1_u16(src)); + src += src_stride; + dst += dst_stride; + vst1_u16(dst, vld1_u16(src)); + src += src_stride; + dst += dst_stride; + h -= 2; + } while (h > 0); + } else if (w == 8) { // copy8 + do { + vst1q_u16(dst, vld1q_u16(src)); + src += src_stride; + dst += dst_stride; + vst1q_u16(dst, vld1q_u16(src)); + src += src_stride; + dst += dst_stride; + h -= 2; + } while (h > 0); + } else if (w < 32) { // copy16 + do { + vst2q_u16(dst, vld2q_u16(src)); + src += src_stride; + dst += dst_stride; + vst2q_u16(dst, vld2q_u16(src)); + src += src_stride; + dst += dst_stride; + vst2q_u16(dst, vld2q_u16(src)); + src += src_stride; + dst += dst_stride; + vst2q_u16(dst, vld2q_u16(src)); + src += src_stride; + dst += dst_stride; + h -= 4; + } while (h > 0); + } else if (w == 32) { // copy32 + do { + vst4q_u16(dst, vld4q_u16(src)); + src += src_stride; + dst += dst_stride; + vst4q_u16(dst, vld4q_u16(src)); + src += src_stride; + dst += dst_stride; + vst4q_u16(dst, vld4q_u16(src)); + src += src_stride; + dst += dst_stride; + vst4q_u16(dst, vld4q_u16(src)); + src += src_stride; + dst += dst_stride; + h -= 4; + } while (h > 0); + } else { // copy64 + do { + vst4q_u16(dst, vld4q_u16(src)); + vst4q_u16(dst + 32, vld4q_u16(src + 32)); + src += src_stride; + dst += dst_stride; + vst4q_u16(dst, vld4q_u16(src)); + vst4q_u16(dst + 32, vld4q_u16(src + 32)); + src += src_stride; + dst += dst_stride; + vst4q_u16(dst, vld4q_u16(src)); + vst4q_u16(dst + 32, vld4q_u16(src + 32)); + src += src_stride; + dst += dst_stride; + vst4q_u16(dst, vld4q_u16(src)); + vst4q_u16(dst + 32, vld4q_u16(src + 32)); + src += src_stride; + dst += dst_stride; + h -= 4; + } while (h > 0); + } +} diff --git a/vpx_dsp/arm/highbd_vpx_convolve_neon.c b/vpx_dsp/arm/highbd_vpx_convolve_neon.c new file mode 100644 index 0000000..414ade3 --- /dev/null +++ b/vpx_dsp/arm/highbd_vpx_convolve_neon.c @@ -0,0 +1,58 @@ +/* + * Copyright (c) 2016 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "./vpx_dsp_rtcd.h" +#include "vpx_dsp/vpx_dsp_common.h" +#include "vpx_dsp/vpx_filter.h" +#include "vpx_ports/mem.h" + +void vpx_highbd_convolve8_neon(const uint16_t *src, ptrdiff_t src_stride, + uint16_t *dst, ptrdiff_t dst_stride, + const InterpKernel *filter, int x0_q4, + int x_step_q4, int y0_q4, int y_step_q4, int w, + int h, int bd) { + // + 1 to make it divisible by 4 + uint16_t temp[64 * 136]; + const int intermediate_height = + (((h - 1) * y_step_q4 + y0_q4) >> SUBPEL_BITS) + SUBPEL_TAPS; + + /* Filter starting 3 lines back. The neon implementation will ignore the given + * height and filter a multiple of 4 lines. Since this goes in to the temp + * buffer which has lots of extra room and is subsequently discarded this is + * safe if somewhat less than ideal. */ + vpx_highbd_convolve8_horiz_neon(src - src_stride * 3, src_stride, temp, w, + filter, x0_q4, x_step_q4, y0_q4, y_step_q4, w, + intermediate_height, bd); + + /* Step into the temp buffer 3 lines to get the actual frame data */ + vpx_highbd_convolve8_vert_neon(temp + w * 3, w, dst, dst_stride, filter, + x0_q4, x_step_q4, y0_q4, y_step_q4, w, h, bd); +} + +void vpx_highbd_convolve8_avg_neon(const uint16_t *src, ptrdiff_t src_stride, + uint16_t *dst, ptrdiff_t dst_stride, + const InterpKernel *filter, int x0_q4, + int x_step_q4, int y0_q4, int y_step_q4, + int w, int h, int bd) { + // + 1 to make it divisible by 4 + uint16_t temp[64 * 136]; + const int intermediate_height = + (((h - 1) * y_step_q4 + y0_q4) >> SUBPEL_BITS) + SUBPEL_TAPS; + + /* This implementation has the same issues as above. In addition, we only want + * to average the values after both passes. + */ + vpx_highbd_convolve8_horiz_neon(src - src_stride * 3, src_stride, temp, w, + filter, x0_q4, x_step_q4, y0_q4, y_step_q4, w, + intermediate_height, bd); + vpx_highbd_convolve8_avg_vert_neon(temp + w * 3, w, dst, dst_stride, filter, + x0_q4, x_step_q4, y0_q4, y_step_q4, w, h, + bd); +} diff --git a/vpx_dsp/arm/idct16x16_1_add_neon.c b/vpx_dsp/arm/idct16x16_1_add_neon.c new file mode 100644 index 0000000..bf5192a --- /dev/null +++ b/vpx_dsp/arm/idct16x16_1_add_neon.c @@ -0,0 +1,77 @@ +/* + * Copyright (c) 2014 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include + +#include "./vpx_dsp_rtcd.h" +#include "vpx_dsp/arm/idct_neon.h" +#include "vpx_dsp/inv_txfm.h" + +static INLINE void idct16x16_1_add_pos_kernel(uint8_t **dest, const int stride, + const uint8x16_t res) { + const uint8x16_t a = vld1q_u8(*dest); + const uint8x16_t b = vqaddq_u8(a, res); + vst1q_u8(*dest, b); + *dest += stride; +} + +static INLINE void idct16x16_1_add_neg_kernel(uint8_t **dest, const int stride, + const uint8x16_t res) { + const uint8x16_t a = vld1q_u8(*dest); + const uint8x16_t b = vqsubq_u8(a, res); + vst1q_u8(*dest, b); + *dest += stride; +} + +void vpx_idct16x16_1_add_neon(const tran_low_t *input, uint8_t *dest, + int stride) { + const int16_t out0 = + WRAPLOW(dct_const_round_shift((int16_t)input[0] * cospi_16_64)); + const int16_t out1 = WRAPLOW(dct_const_round_shift(out0 * cospi_16_64)); + const int16_t a1 = ROUND_POWER_OF_TWO(out1, 6); + + if (a1 >= 0) { + const uint8x16_t dc = create_dcq(a1); + idct16x16_1_add_pos_kernel(&dest, stride, dc); + idct16x16_1_add_pos_kernel(&dest, stride, dc); + idct16x16_1_add_pos_kernel(&dest, stride, dc); + idct16x16_1_add_pos_kernel(&dest, stride, dc); + idct16x16_1_add_pos_kernel(&dest, stride, dc); + idct16x16_1_add_pos_kernel(&dest, stride, dc); + idct16x16_1_add_pos_kernel(&dest, stride, dc); + idct16x16_1_add_pos_kernel(&dest, stride, dc); + idct16x16_1_add_pos_kernel(&dest, stride, dc); + idct16x16_1_add_pos_kernel(&dest, stride, dc); + idct16x16_1_add_pos_kernel(&dest, stride, dc); + idct16x16_1_add_pos_kernel(&dest, stride, dc); + idct16x16_1_add_pos_kernel(&dest, stride, dc); + idct16x16_1_add_pos_kernel(&dest, stride, dc); + idct16x16_1_add_pos_kernel(&dest, stride, dc); + idct16x16_1_add_pos_kernel(&dest, stride, dc); + } else { + const uint8x16_t dc = create_dcq(-a1); + idct16x16_1_add_neg_kernel(&dest, stride, dc); + idct16x16_1_add_neg_kernel(&dest, stride, dc); + idct16x16_1_add_neg_kernel(&dest, stride, dc); + idct16x16_1_add_neg_kernel(&dest, stride, dc); + idct16x16_1_add_neg_kernel(&dest, stride, dc); + idct16x16_1_add_neg_kernel(&dest, stride, dc); + idct16x16_1_add_neg_kernel(&dest, stride, dc); + idct16x16_1_add_neg_kernel(&dest, stride, dc); + idct16x16_1_add_neg_kernel(&dest, stride, dc); + idct16x16_1_add_neg_kernel(&dest, stride, dc); + idct16x16_1_add_neg_kernel(&dest, stride, dc); + idct16x16_1_add_neg_kernel(&dest, stride, dc); + idct16x16_1_add_neg_kernel(&dest, stride, dc); + idct16x16_1_add_neg_kernel(&dest, stride, dc); + idct16x16_1_add_neg_kernel(&dest, stride, dc); + idct16x16_1_add_neg_kernel(&dest, stride, dc); + } +} diff --git a/vpx_dsp/arm/idct16x16_add_neon.c b/vpx_dsp/arm/idct16x16_add_neon.c new file mode 100644 index 0000000..5c5963d --- /dev/null +++ b/vpx_dsp/arm/idct16x16_add_neon.c @@ -0,0 +1,823 @@ +/* + * Copyright (c) 2014 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include + +#include "./vpx_dsp_rtcd.h" +#include "vpx_dsp/arm/idct_neon.h" +#include "vpx_dsp/arm/mem_neon.h" +#include "vpx_dsp/txfm_common.h" + +static INLINE void wrap_low_4x2(const int32x4_t *const t32, int16x4_t *const d0, + int16x4_t *const d1) { + *d0 = vrshrn_n_s32(t32[0], DCT_CONST_BITS); + *d1 = vrshrn_n_s32(t32[1], DCT_CONST_BITS); +} + +static INLINE void idct_cospi_8_24_d_kernel(const int16x4_t s0, + const int16x4_t s1, + const int16x4_t cospi_0_8_16_24, + int32x4_t *const t32) { + t32[0] = vmull_lane_s16(s0, cospi_0_8_16_24, 3); + t32[1] = vmull_lane_s16(s1, cospi_0_8_16_24, 3); + t32[0] = vmlsl_lane_s16(t32[0], s1, cospi_0_8_16_24, 1); + t32[1] = vmlal_lane_s16(t32[1], s0, cospi_0_8_16_24, 1); +} + +static INLINE void idct_cospi_8_24_d(const int16x4_t s0, const int16x4_t s1, + const int16x4_t cospi_0_8_16_24, + int16x4_t *const d0, int16x4_t *const d1) { + int32x4_t t32[2]; + + idct_cospi_8_24_d_kernel(s0, s1, cospi_0_8_16_24, t32); + wrap_low_4x2(t32, d0, d1); +} + +static INLINE void idct_cospi_8_24_neg_d(const int16x4_t s0, const int16x4_t s1, + const int16x4_t cospi_0_8_16_24, + int16x4_t *const d0, + int16x4_t *const d1) { + int32x4_t t32[2]; + + idct_cospi_8_24_d_kernel(s0, s1, cospi_0_8_16_24, t32); + t32[1] = vnegq_s32(t32[1]); + wrap_low_4x2(t32, d0, d1); +} + +static INLINE void idct_cospi_16_16_d(const int16x4_t s0, const int16x4_t s1, + const int16x4_t cospi_0_8_16_24, + int16x4_t *const d0, + int16x4_t *const d1) { + int32x4_t t32[3]; + + t32[2] = vmull_lane_s16(s1, cospi_0_8_16_24, 2); + t32[0] = vmlsl_lane_s16(t32[2], s0, cospi_0_8_16_24, 2); + t32[1] = vmlal_lane_s16(t32[2], s0, cospi_0_8_16_24, 2); + wrap_low_4x2(t32, d0, d1); +} + +static INLINE void idct16x16_add_store(const int16x8_t *const out, + uint8_t *dest, const int stride) { + // Add the result to dest + idct16x16_add8x1(out[0], &dest, stride); + idct16x16_add8x1(out[1], &dest, stride); + idct16x16_add8x1(out[2], &dest, stride); + idct16x16_add8x1(out[3], &dest, stride); + idct16x16_add8x1(out[4], &dest, stride); + idct16x16_add8x1(out[5], &dest, stride); + idct16x16_add8x1(out[6], &dest, stride); + idct16x16_add8x1(out[7], &dest, stride); + idct16x16_add8x1(out[8], &dest, stride); + idct16x16_add8x1(out[9], &dest, stride); + idct16x16_add8x1(out[10], &dest, stride); + idct16x16_add8x1(out[11], &dest, stride); + idct16x16_add8x1(out[12], &dest, stride); + idct16x16_add8x1(out[13], &dest, stride); + idct16x16_add8x1(out[14], &dest, stride); + idct16x16_add8x1(out[15], &dest, stride); +} + +static INLINE void idct16x16_add_store_bd8(int16x8_t *const out, uint16_t *dest, + const int stride) { + // Add the result to dest + const int16x8_t max = vdupq_n_s16((1 << 8) - 1); + out[0] = vrshrq_n_s16(out[0], 6); + out[1] = vrshrq_n_s16(out[1], 6); + out[2] = vrshrq_n_s16(out[2], 6); + out[3] = vrshrq_n_s16(out[3], 6); + out[4] = vrshrq_n_s16(out[4], 6); + out[5] = vrshrq_n_s16(out[5], 6); + out[6] = vrshrq_n_s16(out[6], 6); + out[7] = vrshrq_n_s16(out[7], 6); + out[8] = vrshrq_n_s16(out[8], 6); + out[9] = vrshrq_n_s16(out[9], 6); + out[10] = vrshrq_n_s16(out[10], 6); + out[11] = vrshrq_n_s16(out[11], 6); + out[12] = vrshrq_n_s16(out[12], 6); + out[13] = vrshrq_n_s16(out[13], 6); + out[14] = vrshrq_n_s16(out[14], 6); + out[15] = vrshrq_n_s16(out[15], 6); + highbd_idct16x16_add8x1(out[0], max, &dest, stride); + highbd_idct16x16_add8x1(out[1], max, &dest, stride); + highbd_idct16x16_add8x1(out[2], max, &dest, stride); + highbd_idct16x16_add8x1(out[3], max, &dest, stride); + highbd_idct16x16_add8x1(out[4], max, &dest, stride); + highbd_idct16x16_add8x1(out[5], max, &dest, stride); + highbd_idct16x16_add8x1(out[6], max, &dest, stride); + highbd_idct16x16_add8x1(out[7], max, &dest, stride); + highbd_idct16x16_add8x1(out[8], max, &dest, stride); + highbd_idct16x16_add8x1(out[9], max, &dest, stride); + highbd_idct16x16_add8x1(out[10], max, &dest, stride); + highbd_idct16x16_add8x1(out[11], max, &dest, stride); + highbd_idct16x16_add8x1(out[12], max, &dest, stride); + highbd_idct16x16_add8x1(out[13], max, &dest, stride); + highbd_idct16x16_add8x1(out[14], max, &dest, stride); + highbd_idct16x16_add8x1(out[15], max, &dest, stride); +} + +void vpx_idct16x16_256_add_half1d(const void *const input, int16_t *output, + void *const dest, const int stride, + const int highbd_flag) { + const int16x8_t cospis0 = vld1q_s16(kCospi); + const int16x8_t cospis1 = vld1q_s16(kCospi + 8); + const int16x4_t cospi_0_8_16_24 = vget_low_s16(cospis0); + const int16x4_t cospi_4_12_20N_28 = vget_high_s16(cospis0); + const int16x4_t cospi_2_30_10_22 = vget_low_s16(cospis1); + const int16x4_t cospi_6_26N_14_18N = vget_high_s16(cospis1); + int16x8_t in[16], step1[16], step2[16], out[16]; + + // Load input (16x8) + if (output) { + const tran_low_t *inputT = (const tran_low_t *)input; + in[0] = load_tran_low_to_s16q(inputT); + inputT += 8; + in[8] = load_tran_low_to_s16q(inputT); + inputT += 8; + in[1] = load_tran_low_to_s16q(inputT); + inputT += 8; + in[9] = load_tran_low_to_s16q(inputT); + inputT += 8; + in[2] = load_tran_low_to_s16q(inputT); + inputT += 8; + in[10] = load_tran_low_to_s16q(inputT); + inputT += 8; + in[3] = load_tran_low_to_s16q(inputT); + inputT += 8; + in[11] = load_tran_low_to_s16q(inputT); + inputT += 8; + in[4] = load_tran_low_to_s16q(inputT); + inputT += 8; + in[12] = load_tran_low_to_s16q(inputT); + inputT += 8; + in[5] = load_tran_low_to_s16q(inputT); + inputT += 8; + in[13] = load_tran_low_to_s16q(inputT); + inputT += 8; + in[6] = load_tran_low_to_s16q(inputT); + inputT += 8; + in[14] = load_tran_low_to_s16q(inputT); + inputT += 8; + in[7] = load_tran_low_to_s16q(inputT); + inputT += 8; + in[15] = load_tran_low_to_s16q(inputT); + } else { + const int16_t *inputT = (const int16_t *)input; + in[0] = vld1q_s16(inputT); + inputT += 8; + in[8] = vld1q_s16(inputT); + inputT += 8; + in[1] = vld1q_s16(inputT); + inputT += 8; + in[9] = vld1q_s16(inputT); + inputT += 8; + in[2] = vld1q_s16(inputT); + inputT += 8; + in[10] = vld1q_s16(inputT); + inputT += 8; + in[3] = vld1q_s16(inputT); + inputT += 8; + in[11] = vld1q_s16(inputT); + inputT += 8; + in[4] = vld1q_s16(inputT); + inputT += 8; + in[12] = vld1q_s16(inputT); + inputT += 8; + in[5] = vld1q_s16(inputT); + inputT += 8; + in[13] = vld1q_s16(inputT); + inputT += 8; + in[6] = vld1q_s16(inputT); + inputT += 8; + in[14] = vld1q_s16(inputT); + inputT += 8; + in[7] = vld1q_s16(inputT); + inputT += 8; + in[15] = vld1q_s16(inputT); + } + + // Transpose + transpose_s16_8x8(&in[0], &in[1], &in[2], &in[3], &in[4], &in[5], &in[6], + &in[7]); + transpose_s16_8x8(&in[8], &in[9], &in[10], &in[11], &in[12], &in[13], &in[14], + &in[15]); + + // stage 1 + step1[0] = in[0 / 2]; + step1[1] = in[16 / 2]; + step1[2] = in[8 / 2]; + step1[3] = in[24 / 2]; + step1[4] = in[4 / 2]; + step1[5] = in[20 / 2]; + step1[6] = in[12 / 2]; + step1[7] = in[28 / 2]; + step1[8] = in[2 / 2]; + step1[9] = in[18 / 2]; + step1[10] = in[10 / 2]; + step1[11] = in[26 / 2]; + step1[12] = in[6 / 2]; + step1[13] = in[22 / 2]; + step1[14] = in[14 / 2]; + step1[15] = in[30 / 2]; + + // stage 2 + step2[0] = step1[0]; + step2[1] = step1[1]; + step2[2] = step1[2]; + step2[3] = step1[3]; + step2[4] = step1[4]; + step2[5] = step1[5]; + step2[6] = step1[6]; + step2[7] = step1[7]; + idct_cospi_2_30(step1[8], step1[15], cospi_2_30_10_22, &step2[8], &step2[15]); + idct_cospi_14_18(step1[9], step1[14], cospi_6_26N_14_18N, &step2[9], + &step2[14]); + idct_cospi_10_22(step1[10], step1[13], cospi_2_30_10_22, &step2[10], + &step2[13]); + idct_cospi_6_26(step1[11], step1[12], cospi_6_26N_14_18N, &step2[11], + &step2[12]); + + // stage 3 + step1[0] = step2[0]; + step1[1] = step2[1]; + step1[2] = step2[2]; + step1[3] = step2[3]; + idct_cospi_4_28(step2[4], step2[7], cospi_4_12_20N_28, &step1[4], &step1[7]); + idct_cospi_12_20(step2[5], step2[6], cospi_4_12_20N_28, &step1[5], &step1[6]); + step1[8] = vaddq_s16(step2[8], step2[9]); + step1[9] = vsubq_s16(step2[8], step2[9]); + step1[10] = vsubq_s16(step2[11], step2[10]); + step1[11] = vaddq_s16(step2[11], step2[10]); + step1[12] = vaddq_s16(step2[12], step2[13]); + step1[13] = vsubq_s16(step2[12], step2[13]); + step1[14] = vsubq_s16(step2[15], step2[14]); + step1[15] = vaddq_s16(step2[15], step2[14]); + + // stage 4 + idct_cospi_16_16_q(step1[1], step1[0], cospi_0_8_16_24, &step2[1], &step2[0]); + idct_cospi_8_24_q(step1[2], step1[3], cospi_0_8_16_24, &step2[2], &step2[3]); + step2[4] = vaddq_s16(step1[4], step1[5]); + step2[5] = vsubq_s16(step1[4], step1[5]); + step2[6] = vsubq_s16(step1[7], step1[6]); + step2[7] = vaddq_s16(step1[7], step1[6]); + step2[8] = step1[8]; + idct_cospi_8_24_q(step1[14], step1[9], cospi_0_8_16_24, &step2[9], + &step2[14]); + idct_cospi_8_24_neg_q(step1[13], step1[10], cospi_0_8_16_24, &step2[13], + &step2[10]); + step2[11] = step1[11]; + step2[12] = step1[12]; + step2[15] = step1[15]; + + // stage 5 + step1[0] = vaddq_s16(step2[0], step2[3]); + step1[1] = vaddq_s16(step2[1], step2[2]); + step1[2] = vsubq_s16(step2[1], step2[2]); + step1[3] = vsubq_s16(step2[0], step2[3]); + step1[4] = step2[4]; + idct_cospi_16_16_q(step2[5], step2[6], cospi_0_8_16_24, &step1[5], &step1[6]); + step1[7] = step2[7]; + step1[8] = vaddq_s16(step2[8], step2[11]); + step1[9] = vaddq_s16(step2[9], step2[10]); + step1[10] = vsubq_s16(step2[9], step2[10]); + step1[11] = vsubq_s16(step2[8], step2[11]); + step1[12] = vsubq_s16(step2[15], step2[12]); + step1[13] = vsubq_s16(step2[14], step2[13]); + step1[14] = vaddq_s16(step2[14], step2[13]); + step1[15] = vaddq_s16(step2[15], step2[12]); + + // stage 6 + step2[0] = vaddq_s16(step1[0], step1[7]); + step2[1] = vaddq_s16(step1[1], step1[6]); + step2[2] = vaddq_s16(step1[2], step1[5]); + step2[3] = vaddq_s16(step1[3], step1[4]); + step2[4] = vsubq_s16(step1[3], step1[4]); + step2[5] = vsubq_s16(step1[2], step1[5]); + step2[6] = vsubq_s16(step1[1], step1[6]); + step2[7] = vsubq_s16(step1[0], step1[7]); + idct_cospi_16_16_q(step1[10], step1[13], cospi_0_8_16_24, &step2[10], + &step2[13]); + idct_cospi_16_16_q(step1[11], step1[12], cospi_0_8_16_24, &step2[11], + &step2[12]); + step2[8] = step1[8]; + step2[9] = step1[9]; + step2[14] = step1[14]; + step2[15] = step1[15]; + + // stage 7 + idct16x16_add_stage7(step2, out); + + if (output) { + idct16x16_store_pass1(out, output); + } else { + if (highbd_flag) { + idct16x16_add_store_bd8(out, dest, stride); + } else { + idct16x16_add_store(out, dest, stride); + } + } +} + +void vpx_idct16x16_38_add_half1d(const void *const input, int16_t *const output, + void *const dest, const int stride, + const int highbd_flag) { + const int16x8_t cospis0 = vld1q_s16(kCospi); + const int16x8_t cospis1 = vld1q_s16(kCospi + 8); + const int16x8_t cospisd0 = vaddq_s16(cospis0, cospis0); + const int16x8_t cospisd1 = vaddq_s16(cospis1, cospis1); + const int16x4_t cospi_0_8_16_24 = vget_low_s16(cospis0); + const int16x4_t cospid_0_8_16_24 = vget_low_s16(cospisd0); + const int16x4_t cospid_4_12_20N_28 = vget_high_s16(cospisd0); + const int16x4_t cospid_2_30_10_22 = vget_low_s16(cospisd1); + const int16x4_t cospid_6_26_14_18N = vget_high_s16(cospisd1); + int16x8_t in[8], step1[16], step2[16], out[16]; + + // Load input (8x8) + if (output) { + const tran_low_t *inputT = (const tran_low_t *)input; + in[0] = load_tran_low_to_s16q(inputT); + inputT += 16; + in[1] = load_tran_low_to_s16q(inputT); + inputT += 16; + in[2] = load_tran_low_to_s16q(inputT); + inputT += 16; + in[3] = load_tran_low_to_s16q(inputT); + inputT += 16; + in[4] = load_tran_low_to_s16q(inputT); + inputT += 16; + in[5] = load_tran_low_to_s16q(inputT); + inputT += 16; + in[6] = load_tran_low_to_s16q(inputT); + inputT += 16; + in[7] = load_tran_low_to_s16q(inputT); + } else { + const int16_t *inputT = (const int16_t *)input; + in[0] = vld1q_s16(inputT); + inputT += 16; + in[1] = vld1q_s16(inputT); + inputT += 16; + in[2] = vld1q_s16(inputT); + inputT += 16; + in[3] = vld1q_s16(inputT); + inputT += 16; + in[4] = vld1q_s16(inputT); + inputT += 16; + in[5] = vld1q_s16(inputT); + inputT += 16; + in[6] = vld1q_s16(inputT); + inputT += 16; + in[7] = vld1q_s16(inputT); + } + + // Transpose + transpose_s16_8x8(&in[0], &in[1], &in[2], &in[3], &in[4], &in[5], &in[6], + &in[7]); + + // stage 1 + step1[0] = in[0 / 2]; + step1[2] = in[8 / 2]; + step1[4] = in[4 / 2]; + step1[6] = in[12 / 2]; + step1[8] = in[2 / 2]; + step1[10] = in[10 / 2]; + step1[12] = in[6 / 2]; + step1[14] = in[14 / 2]; // 0 in pass 1 + + // stage 2 + step2[0] = step1[0]; + step2[2] = step1[2]; + step2[4] = step1[4]; + step2[6] = step1[6]; + step2[8] = vqrdmulhq_lane_s16(step1[8], cospid_2_30_10_22, 1); + step2[9] = vqrdmulhq_lane_s16(step1[14], cospid_6_26_14_18N, 3); + step2[10] = vqrdmulhq_lane_s16(step1[10], cospid_2_30_10_22, 3); + step2[11] = vqrdmulhq_lane_s16(step1[12], cospid_6_26_14_18N, 1); + step2[12] = vqrdmulhq_lane_s16(step1[12], cospid_6_26_14_18N, 0); + step2[13] = vqrdmulhq_lane_s16(step1[10], cospid_2_30_10_22, 2); + step2[14] = vqrdmulhq_lane_s16(step1[14], cospid_6_26_14_18N, 2); + step2[15] = vqrdmulhq_lane_s16(step1[8], cospid_2_30_10_22, 0); + + // stage 3 + step1[0] = step2[0]; + step1[2] = step2[2]; + step1[4] = vqrdmulhq_lane_s16(step2[4], cospid_4_12_20N_28, 3); + step1[5] = vqrdmulhq_lane_s16(step2[6], cospid_4_12_20N_28, 2); + step1[6] = vqrdmulhq_lane_s16(step2[6], cospid_4_12_20N_28, 1); + step1[7] = vqrdmulhq_lane_s16(step2[4], cospid_4_12_20N_28, 0); + step1[8] = vaddq_s16(step2[8], step2[9]); + step1[9] = vsubq_s16(step2[8], step2[9]); + step1[10] = vsubq_s16(step2[11], step2[10]); + step1[11] = vaddq_s16(step2[11], step2[10]); + step1[12] = vaddq_s16(step2[12], step2[13]); + step1[13] = vsubq_s16(step2[12], step2[13]); + step1[14] = vsubq_s16(step2[15], step2[14]); + step1[15] = vaddq_s16(step2[15], step2[14]); + + // stage 4 + step2[0] = step2[1] = vqrdmulhq_lane_s16(step1[0], cospid_0_8_16_24, 2); + step2[2] = vqrdmulhq_lane_s16(step1[2], cospid_0_8_16_24, 3); + step2[3] = vqrdmulhq_lane_s16(step1[2], cospid_0_8_16_24, 1); + step2[4] = vaddq_s16(step1[4], step1[5]); + step2[5] = vsubq_s16(step1[4], step1[5]); + step2[6] = vsubq_s16(step1[7], step1[6]); + step2[7] = vaddq_s16(step1[7], step1[6]); + step2[8] = step1[8]; + idct_cospi_8_24_q(step1[14], step1[9], cospi_0_8_16_24, &step2[9], + &step2[14]); + idct_cospi_8_24_neg_q(step1[13], step1[10], cospi_0_8_16_24, &step2[13], + &step2[10]); + step2[11] = step1[11]; + step2[12] = step1[12]; + step2[15] = step1[15]; + + // stage 5 + step1[0] = vaddq_s16(step2[0], step2[3]); + step1[1] = vaddq_s16(step2[1], step2[2]); + step1[2] = vsubq_s16(step2[1], step2[2]); + step1[3] = vsubq_s16(step2[0], step2[3]); + step1[4] = step2[4]; + idct_cospi_16_16_q(step2[5], step2[6], cospi_0_8_16_24, &step1[5], &step1[6]); + step1[7] = step2[7]; + step1[8] = vaddq_s16(step2[8], step2[11]); + step1[9] = vaddq_s16(step2[9], step2[10]); + step1[10] = vsubq_s16(step2[9], step2[10]); + step1[11] = vsubq_s16(step2[8], step2[11]); + step1[12] = vsubq_s16(step2[15], step2[12]); + step1[13] = vsubq_s16(step2[14], step2[13]); + step1[14] = vaddq_s16(step2[14], step2[13]); + step1[15] = vaddq_s16(step2[15], step2[12]); + + // stage 6 + step2[0] = vaddq_s16(step1[0], step1[7]); + step2[1] = vaddq_s16(step1[1], step1[6]); + step2[2] = vaddq_s16(step1[2], step1[5]); + step2[3] = vaddq_s16(step1[3], step1[4]); + step2[4] = vsubq_s16(step1[3], step1[4]); + step2[5] = vsubq_s16(step1[2], step1[5]); + step2[6] = vsubq_s16(step1[1], step1[6]); + step2[7] = vsubq_s16(step1[0], step1[7]); + idct_cospi_16_16_q(step1[10], step1[13], cospi_0_8_16_24, &step2[10], + &step2[13]); + idct_cospi_16_16_q(step1[11], step1[12], cospi_0_8_16_24, &step2[11], + &step2[12]); + step2[8] = step1[8]; + step2[9] = step1[9]; + step2[14] = step1[14]; + step2[15] = step1[15]; + + // stage 7 + idct16x16_add_stage7(step2, out); + + if (output) { + idct16x16_store_pass1(out, output); + } else { + if (highbd_flag) { + idct16x16_add_store_bd8(out, dest, stride); + } else { + idct16x16_add_store(out, dest, stride); + } + } +} + +void vpx_idct16x16_10_add_half1d_pass1(const tran_low_t *input, + int16_t *output) { + const int16x8_t cospis0 = vld1q_s16(kCospi); + const int16x8_t cospis1 = vld1q_s16(kCospi + 8); + const int16x8_t cospisd0 = vaddq_s16(cospis0, cospis0); + const int16x8_t cospisd1 = vaddq_s16(cospis1, cospis1); + const int16x4_t cospi_0_8_16_24 = vget_low_s16(cospis0); + const int16x4_t cospid_0_8_16_24 = vget_low_s16(cospisd0); + const int16x4_t cospid_4_12_20N_28 = vget_high_s16(cospisd0); + const int16x4_t cospid_2_30_10_22 = vget_low_s16(cospisd1); + const int16x4_t cospid_6_26_14_18N = vget_high_s16(cospisd1); + int16x4_t in[4], step1[16], step2[16], out[16]; + + // Load input (4x4) + in[0] = load_tran_low_to_s16d(input); + input += 16; + in[1] = load_tran_low_to_s16d(input); + input += 16; + in[2] = load_tran_low_to_s16d(input); + input += 16; + in[3] = load_tran_low_to_s16d(input); + + // Transpose + transpose_s16_4x4d(&in[0], &in[1], &in[2], &in[3]); + + // stage 1 + step1[0] = in[0 / 2]; + step1[4] = in[4 / 2]; + step1[8] = in[2 / 2]; + step1[12] = in[6 / 2]; + + // stage 2 + step2[0] = step1[0]; + step2[4] = step1[4]; + step2[8] = vqrdmulh_lane_s16(step1[8], cospid_2_30_10_22, 1); + step2[11] = vqrdmulh_lane_s16(step1[12], cospid_6_26_14_18N, 1); + step2[12] = vqrdmulh_lane_s16(step1[12], cospid_6_26_14_18N, 0); + step2[15] = vqrdmulh_lane_s16(step1[8], cospid_2_30_10_22, 0); + + // stage 3 + step1[0] = step2[0]; + step1[4] = vqrdmulh_lane_s16(step2[4], cospid_4_12_20N_28, 3); + step1[7] = vqrdmulh_lane_s16(step2[4], cospid_4_12_20N_28, 0); + step1[8] = step2[8]; + step1[9] = step2[8]; + step1[10] = step2[11]; + step1[11] = step2[11]; + step1[12] = step2[12]; + step1[13] = step2[12]; + step1[14] = step2[15]; + step1[15] = step2[15]; + + // stage 4 + step2[0] = step2[1] = vqrdmulh_lane_s16(step1[0], cospid_0_8_16_24, 2); + step2[4] = step1[4]; + step2[5] = step1[4]; + step2[6] = step1[7]; + step2[7] = step1[7]; + step2[8] = step1[8]; + idct_cospi_8_24_d(step1[14], step1[9], cospi_0_8_16_24, &step2[9], + &step2[14]); + idct_cospi_8_24_neg_d(step1[13], step1[10], cospi_0_8_16_24, &step2[13], + &step2[10]); + step2[11] = step1[11]; + step2[12] = step1[12]; + step2[15] = step1[15]; + + // stage 5 + step1[0] = step2[0]; + step1[1] = step2[1]; + step1[2] = step2[1]; + step1[3] = step2[0]; + step1[4] = step2[4]; + idct_cospi_16_16_d(step2[5], step2[6], cospi_0_8_16_24, &step1[5], &step1[6]); + step1[7] = step2[7]; + step1[8] = vadd_s16(step2[8], step2[11]); + step1[9] = vadd_s16(step2[9], step2[10]); + step1[10] = vsub_s16(step2[9], step2[10]); + step1[11] = vsub_s16(step2[8], step2[11]); + step1[12] = vsub_s16(step2[15], step2[12]); + step1[13] = vsub_s16(step2[14], step2[13]); + step1[14] = vadd_s16(step2[14], step2[13]); + step1[15] = vadd_s16(step2[15], step2[12]); + + // stage 6 + step2[0] = vadd_s16(step1[0], step1[7]); + step2[1] = vadd_s16(step1[1], step1[6]); + step2[2] = vadd_s16(step1[2], step1[5]); + step2[3] = vadd_s16(step1[3], step1[4]); + step2[4] = vsub_s16(step1[3], step1[4]); + step2[5] = vsub_s16(step1[2], step1[5]); + step2[6] = vsub_s16(step1[1], step1[6]); + step2[7] = vsub_s16(step1[0], step1[7]); + idct_cospi_16_16_d(step1[10], step1[13], cospi_0_8_16_24, &step2[10], + &step2[13]); + idct_cospi_16_16_d(step1[11], step1[12], cospi_0_8_16_24, &step2[11], + &step2[12]); + step2[8] = step1[8]; + step2[9] = step1[9]; + step2[14] = step1[14]; + step2[15] = step1[15]; + + // stage 7 + out[0] = vadd_s16(step2[0], step2[15]); + out[1] = vadd_s16(step2[1], step2[14]); + out[2] = vadd_s16(step2[2], step2[13]); + out[3] = vadd_s16(step2[3], step2[12]); + out[4] = vadd_s16(step2[4], step2[11]); + out[5] = vadd_s16(step2[5], step2[10]); + out[6] = vadd_s16(step2[6], step2[9]); + out[7] = vadd_s16(step2[7], step2[8]); + out[8] = vsub_s16(step2[7], step2[8]); + out[9] = vsub_s16(step2[6], step2[9]); + out[10] = vsub_s16(step2[5], step2[10]); + out[11] = vsub_s16(step2[4], step2[11]); + out[12] = vsub_s16(step2[3], step2[12]); + out[13] = vsub_s16(step2[2], step2[13]); + out[14] = vsub_s16(step2[1], step2[14]); + out[15] = vsub_s16(step2[0], step2[15]); + + // pass 1: save the result into output + vst1_s16(output, out[0]); + output += 4; + vst1_s16(output, out[1]); + output += 4; + vst1_s16(output, out[2]); + output += 4; + vst1_s16(output, out[3]); + output += 4; + vst1_s16(output, out[4]); + output += 4; + vst1_s16(output, out[5]); + output += 4; + vst1_s16(output, out[6]); + output += 4; + vst1_s16(output, out[7]); + output += 4; + vst1_s16(output, out[8]); + output += 4; + vst1_s16(output, out[9]); + output += 4; + vst1_s16(output, out[10]); + output += 4; + vst1_s16(output, out[11]); + output += 4; + vst1_s16(output, out[12]); + output += 4; + vst1_s16(output, out[13]); + output += 4; + vst1_s16(output, out[14]); + output += 4; + vst1_s16(output, out[15]); +} + +void vpx_idct16x16_10_add_half1d_pass2(const int16_t *input, + int16_t *const output, void *const dest, + const int stride, + const int highbd_flag) { + const int16x8_t cospis0 = vld1q_s16(kCospi); + const int16x8_t cospis1 = vld1q_s16(kCospi + 8); + const int16x8_t cospisd0 = vaddq_s16(cospis0, cospis0); + const int16x8_t cospisd1 = vaddq_s16(cospis1, cospis1); + const int16x4_t cospi_0_8_16_24 = vget_low_s16(cospis0); + const int16x4_t cospid_0_8_16_24 = vget_low_s16(cospisd0); + const int16x4_t cospid_4_12_20N_28 = vget_high_s16(cospisd0); + const int16x4_t cospid_2_30_10_22 = vget_low_s16(cospisd1); + const int16x4_t cospid_6_26_14_18N = vget_high_s16(cospisd1); + int16x4_t ind[8]; + int16x8_t in[4], step1[16], step2[16], out[16]; + + // Load input (4x8) + ind[0] = vld1_s16(input); + input += 4; + ind[1] = vld1_s16(input); + input += 4; + ind[2] = vld1_s16(input); + input += 4; + ind[3] = vld1_s16(input); + input += 4; + ind[4] = vld1_s16(input); + input += 4; + ind[5] = vld1_s16(input); + input += 4; + ind[6] = vld1_s16(input); + input += 4; + ind[7] = vld1_s16(input); + + // Transpose + transpose_s16_4x8(ind[0], ind[1], ind[2], ind[3], ind[4], ind[5], ind[6], + ind[7], &in[0], &in[1], &in[2], &in[3]); + + // stage 1 + step1[0] = in[0 / 2]; + step1[4] = in[4 / 2]; + step1[8] = in[2 / 2]; + step1[12] = in[6 / 2]; + + // stage 2 + step2[0] = step1[0]; + step2[4] = step1[4]; + step2[8] = vqrdmulhq_lane_s16(step1[8], cospid_2_30_10_22, 1); + step2[11] = vqrdmulhq_lane_s16(step1[12], cospid_6_26_14_18N, 1); + step2[12] = vqrdmulhq_lane_s16(step1[12], cospid_6_26_14_18N, 0); + step2[15] = vqrdmulhq_lane_s16(step1[8], cospid_2_30_10_22, 0); + + // stage 3 + step1[0] = step2[0]; + step1[4] = vqrdmulhq_lane_s16(step2[4], cospid_4_12_20N_28, 3); + step1[7] = vqrdmulhq_lane_s16(step2[4], cospid_4_12_20N_28, 0); + step1[8] = step2[8]; + step1[9] = step2[8]; + step1[10] = step2[11]; + step1[11] = step2[11]; + step1[12] = step2[12]; + step1[13] = step2[12]; + step1[14] = step2[15]; + step1[15] = step2[15]; + + // stage 4 + step2[0] = step2[1] = vqrdmulhq_lane_s16(step1[0], cospid_0_8_16_24, 2); + step2[4] = step1[4]; + step2[5] = step1[4]; + step2[6] = step1[7]; + step2[7] = step1[7]; + step2[8] = step1[8]; + idct_cospi_8_24_q(step1[14], step1[9], cospi_0_8_16_24, &step2[9], + &step2[14]); + idct_cospi_8_24_neg_q(step1[13], step1[10], cospi_0_8_16_24, &step2[13], + &step2[10]); + step2[11] = step1[11]; + step2[12] = step1[12]; + step2[15] = step1[15]; + + // stage 5 + step1[0] = step2[0]; + step1[1] = step2[1]; + step1[2] = step2[1]; + step1[3] = step2[0]; + step1[4] = step2[4]; + idct_cospi_16_16_q(step2[5], step2[6], cospi_0_8_16_24, &step1[5], &step1[6]); + step1[7] = step2[7]; + step1[8] = vaddq_s16(step2[8], step2[11]); + step1[9] = vaddq_s16(step2[9], step2[10]); + step1[10] = vsubq_s16(step2[9], step2[10]); + step1[11] = vsubq_s16(step2[8], step2[11]); + step1[12] = vsubq_s16(step2[15], step2[12]); + step1[13] = vsubq_s16(step2[14], step2[13]); + step1[14] = vaddq_s16(step2[14], step2[13]); + step1[15] = vaddq_s16(step2[15], step2[12]); + + // stage 6 + step2[0] = vaddq_s16(step1[0], step1[7]); + step2[1] = vaddq_s16(step1[1], step1[6]); + step2[2] = vaddq_s16(step1[2], step1[5]); + step2[3] = vaddq_s16(step1[3], step1[4]); + step2[4] = vsubq_s16(step1[3], step1[4]); + step2[5] = vsubq_s16(step1[2], step1[5]); + step2[6] = vsubq_s16(step1[1], step1[6]); + step2[7] = vsubq_s16(step1[0], step1[7]); + idct_cospi_16_16_q(step1[10], step1[13], cospi_0_8_16_24, &step2[10], + &step2[13]); + idct_cospi_16_16_q(step1[11], step1[12], cospi_0_8_16_24, &step2[11], + &step2[12]); + step2[8] = step1[8]; + step2[9] = step1[9]; + step2[14] = step1[14]; + step2[15] = step1[15]; + + // stage 7 + idct16x16_add_stage7(step2, out); + + if (output) { + idct16x16_store_pass1(out, output); + } else { + if (highbd_flag) { + idct16x16_add_store_bd8(out, dest, stride); + } else { + idct16x16_add_store(out, dest, stride); + } + } +} + +void vpx_idct16x16_256_add_neon(const tran_low_t *input, uint8_t *dest, + int stride) { + int16_t row_idct_output[16 * 16]; + + // pass 1 + // Parallel idct on the upper 8 rows + vpx_idct16x16_256_add_half1d(input, row_idct_output, dest, stride, 0); + + // Parallel idct on the lower 8 rows + vpx_idct16x16_256_add_half1d(input + 8 * 16, row_idct_output + 8, dest, + stride, 0); + + // pass 2 + // Parallel idct to get the left 8 columns + vpx_idct16x16_256_add_half1d(row_idct_output, NULL, dest, stride, 0); + + // Parallel idct to get the right 8 columns + vpx_idct16x16_256_add_half1d(row_idct_output + 16 * 8, NULL, dest + 8, stride, + 0); +} + +void vpx_idct16x16_38_add_neon(const tran_low_t *input, uint8_t *dest, + int stride) { + int16_t row_idct_output[16 * 16]; + + // pass 1 + // Parallel idct on the upper 8 rows + vpx_idct16x16_38_add_half1d(input, row_idct_output, dest, stride, 0); + + // pass 2 + // Parallel idct to get the left 8 columns + vpx_idct16x16_38_add_half1d(row_idct_output, NULL, dest, stride, 0); + + // Parallel idct to get the right 8 columns + vpx_idct16x16_38_add_half1d(row_idct_output + 16 * 8, NULL, dest + 8, stride, + 0); +} + +void vpx_idct16x16_10_add_neon(const tran_low_t *input, uint8_t *dest, + int stride) { + int16_t row_idct_output[4 * 16]; + + // pass 1 + // Parallel idct on the upper 8 rows + vpx_idct16x16_10_add_half1d_pass1(input, row_idct_output); + + // pass 2 + // Parallel idct to get the left 8 columns + vpx_idct16x16_10_add_half1d_pass2(row_idct_output, NULL, dest, stride, 0); + + // Parallel idct to get the right 8 columns + vpx_idct16x16_10_add_half1d_pass2(row_idct_output + 4 * 8, NULL, dest + 8, + stride, 0); +} diff --git a/vpx_dsp/arm/idct32x32_135_add_neon.c b/vpx_dsp/arm/idct32x32_135_add_neon.c new file mode 100644 index 0000000..021211b --- /dev/null +++ b/vpx_dsp/arm/idct32x32_135_add_neon.c @@ -0,0 +1,678 @@ +/* + * Copyright (c) 2016 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include + +#include "./vpx_config.h" +#include "./vpx_dsp_rtcd.h" +#include "vpx_dsp/arm/idct_neon.h" +#include "vpx_dsp/arm/mem_neon.h" +#include "vpx_dsp/arm/transpose_neon.h" +#include "vpx_dsp/txfm_common.h" + +static INLINE void load_8x8_s16(const tran_low_t *input, int16x8_t *const in0, + int16x8_t *const in1, int16x8_t *const in2, + int16x8_t *const in3, int16x8_t *const in4, + int16x8_t *const in5, int16x8_t *const in6, + int16x8_t *const in7) { + *in0 = load_tran_low_to_s16q(input); + input += 32; + *in1 = load_tran_low_to_s16q(input); + input += 32; + *in2 = load_tran_low_to_s16q(input); + input += 32; + *in3 = load_tran_low_to_s16q(input); + input += 32; + *in4 = load_tran_low_to_s16q(input); + input += 32; + *in5 = load_tran_low_to_s16q(input); + input += 32; + *in6 = load_tran_low_to_s16q(input); + input += 32; + *in7 = load_tran_low_to_s16q(input); +} + +static INLINE void load_4x8_s16(const tran_low_t *input, int16x4_t *const in0, + int16x4_t *const in1, int16x4_t *const in2, + int16x4_t *const in3, int16x4_t *const in4, + int16x4_t *const in5, int16x4_t *const in6, + int16x4_t *const in7) { + *in0 = load_tran_low_to_s16d(input); + input += 32; + *in1 = load_tran_low_to_s16d(input); + input += 32; + *in2 = load_tran_low_to_s16d(input); + input += 32; + *in3 = load_tran_low_to_s16d(input); + input += 32; + *in4 = load_tran_low_to_s16d(input); + input += 32; + *in5 = load_tran_low_to_s16d(input); + input += 32; + *in6 = load_tran_low_to_s16d(input); + input += 32; + *in7 = load_tran_low_to_s16d(input); +} + +// Only for the first pass of the _135_ variant. Since it only uses values from +// the top left 16x16 it can safely assume all the remaining values are 0 and +// skip an awful lot of calculations. In fact, only the first 12 columns make +// the cut. None of the elements in the 13th, 14th, 15th or 16th columns are +// used so it skips any calls to input[12|13|14|15] too. +// In C this does a single row of 32 for each call. Here it transposes the top +// left 12x8 to allow using SIMD. + +// vp9/common/vp9_scan.c:vp9_default_iscan_32x32 arranges the first 135 non-zero +// coefficients as follows: +// 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 +// 0 0 2 5 10 17 25 38 47 62 83 101 121 +// 1 1 4 8 15 22 30 45 58 74 92 112 133 +// 2 3 7 12 18 28 36 52 64 82 102 118 +// 3 6 11 16 23 31 43 60 73 90 109 126 +// 4 9 14 19 29 37 50 65 78 98 116 134 +// 5 13 20 26 35 44 54 72 85 105 123 +// 6 21 27 33 42 53 63 80 94 113 132 +// 7 24 32 39 48 57 71 88 104 120 +// 8 34 40 46 56 68 81 96 111 130 +// 9 41 49 55 67 77 91 107 124 +// 10 51 59 66 76 89 99 119 131 +// 11 61 69 75 87 100 114 129 +// 12 70 79 86 97 108 122 +// 13 84 93 103 110 125 +// 14 98 106 115 127 +// 15 117 128 +void vpx_idct32_12_neon(const tran_low_t *const input, int16_t *output) { + int16x4_t tmp[8]; + int16x8_t in[12], s1[32], s2[32], s3[32], s4[32], s5[32], s6[32], s7[32]; + + load_8x8_s16(input, &in[0], &in[1], &in[2], &in[3], &in[4], &in[5], &in[6], + &in[7]); + transpose_s16_8x8(&in[0], &in[1], &in[2], &in[3], &in[4], &in[5], &in[6], + &in[7]); + + load_4x8_s16(input + 8, &tmp[0], &tmp[1], &tmp[2], &tmp[3], &tmp[4], &tmp[5], + &tmp[6], &tmp[7]); + transpose_s16_4x8(tmp[0], tmp[1], tmp[2], tmp[3], tmp[4], tmp[5], tmp[6], + tmp[7], &in[8], &in[9], &in[10], &in[11]); + + // stage 1 + s1[16] = multiply_shift_and_narrow_s16(in[1], cospi_31_64); + s1[31] = multiply_shift_and_narrow_s16(in[1], cospi_1_64); + + s1[18] = multiply_shift_and_narrow_s16(in[9], cospi_23_64); + s1[29] = multiply_shift_and_narrow_s16(in[9], cospi_9_64); + + s1[19] = multiply_shift_and_narrow_s16(in[7], -cospi_25_64); + s1[28] = multiply_shift_and_narrow_s16(in[7], cospi_7_64); + + s1[20] = multiply_shift_and_narrow_s16(in[5], cospi_27_64); + s1[27] = multiply_shift_and_narrow_s16(in[5], cospi_5_64); + + s1[21] = multiply_shift_and_narrow_s16(in[11], -cospi_21_64); + s1[26] = multiply_shift_and_narrow_s16(in[11], cospi_11_64); + + s1[23] = multiply_shift_and_narrow_s16(in[3], -cospi_29_64); + s1[24] = multiply_shift_and_narrow_s16(in[3], cospi_3_64); + + // stage 2 + s2[8] = multiply_shift_and_narrow_s16(in[2], cospi_30_64); + s2[15] = multiply_shift_and_narrow_s16(in[2], cospi_2_64); + + s2[10] = multiply_shift_and_narrow_s16(in[10], cospi_22_64); + s2[13] = multiply_shift_and_narrow_s16(in[10], cospi_10_64); + + s2[11] = multiply_shift_and_narrow_s16(in[6], -cospi_26_64); + s2[12] = multiply_shift_and_narrow_s16(in[6], cospi_6_64); + + s2[18] = vsubq_s16(s1[19], s1[18]); + s2[19] = vaddq_s16(s1[18], s1[19]); + s2[20] = vaddq_s16(s1[20], s1[21]); + s2[21] = vsubq_s16(s1[20], s1[21]); + s2[26] = vsubq_s16(s1[27], s1[26]); + s2[27] = vaddq_s16(s1[26], s1[27]); + s2[28] = vaddq_s16(s1[28], s1[29]); + s2[29] = vsubq_s16(s1[28], s1[29]); + + // stage 3 + s3[4] = multiply_shift_and_narrow_s16(in[4], cospi_28_64); + s3[7] = multiply_shift_and_narrow_s16(in[4], cospi_4_64); + + s3[10] = vsubq_s16(s2[11], s2[10]); + s3[11] = vaddq_s16(s2[10], s2[11]); + s3[12] = vaddq_s16(s2[12], s2[13]); + s3[13] = vsubq_s16(s2[12], s2[13]); + + s3[17] = multiply_accumulate_shift_and_narrow_s16(s1[16], -cospi_4_64, s1[31], + cospi_28_64); + s3[30] = multiply_accumulate_shift_and_narrow_s16(s1[16], cospi_28_64, s1[31], + cospi_4_64); + + s3[18] = multiply_accumulate_shift_and_narrow_s16(s2[18], -cospi_28_64, + s2[29], -cospi_4_64); + s3[29] = multiply_accumulate_shift_and_narrow_s16(s2[18], -cospi_4_64, s2[29], + cospi_28_64); + + s3[21] = multiply_accumulate_shift_and_narrow_s16(s2[21], -cospi_20_64, + s2[26], cospi_12_64); + s3[26] = multiply_accumulate_shift_and_narrow_s16(s2[21], cospi_12_64, s2[26], + cospi_20_64); + + s3[22] = multiply_accumulate_shift_and_narrow_s16(s1[23], -cospi_12_64, + s1[24], -cospi_20_64); + s3[25] = multiply_accumulate_shift_and_narrow_s16(s1[23], -cospi_20_64, + s1[24], cospi_12_64); + + // stage 4 + s4[0] = multiply_shift_and_narrow_s16(in[0], cospi_16_64); + s4[2] = multiply_shift_and_narrow_s16(in[8], cospi_24_64); + s4[3] = multiply_shift_and_narrow_s16(in[8], cospi_8_64); + + s4[9] = multiply_accumulate_shift_and_narrow_s16(s2[8], -cospi_8_64, s2[15], + cospi_24_64); + s4[14] = multiply_accumulate_shift_and_narrow_s16(s2[8], cospi_24_64, s2[15], + cospi_8_64); + + s4[10] = multiply_accumulate_shift_and_narrow_s16(s3[10], -cospi_24_64, + s3[13], -cospi_8_64); + s4[13] = multiply_accumulate_shift_and_narrow_s16(s3[10], -cospi_8_64, s3[13], + cospi_24_64); + + s4[16] = vaddq_s16(s1[16], s2[19]); + s4[17] = vaddq_s16(s3[17], s3[18]); + s4[18] = vsubq_s16(s3[17], s3[18]); + s4[19] = vsubq_s16(s1[16], s2[19]); + s4[20] = vsubq_s16(s1[23], s2[20]); + s4[21] = vsubq_s16(s3[22], s3[21]); + s4[22] = vaddq_s16(s3[21], s3[22]); + s4[23] = vaddq_s16(s2[20], s1[23]); + s4[24] = vaddq_s16(s1[24], s2[27]); + s4[25] = vaddq_s16(s3[25], s3[26]); + s4[26] = vsubq_s16(s3[25], s3[26]); + s4[27] = vsubq_s16(s1[24], s2[27]); + s4[28] = vsubq_s16(s1[31], s2[28]); + s4[29] = vsubq_s16(s3[30], s3[29]); + s4[30] = vaddq_s16(s3[29], s3[30]); + s4[31] = vaddq_s16(s2[28], s1[31]); + + // stage 5 + s5[0] = vaddq_s16(s4[0], s4[3]); + s5[1] = vaddq_s16(s4[0], s4[2]); + s5[2] = vsubq_s16(s4[0], s4[2]); + s5[3] = vsubq_s16(s4[0], s4[3]); + + s5[5] = sub_multiply_shift_and_narrow_s16(s3[7], s3[4], cospi_16_64); + s5[6] = add_multiply_shift_and_narrow_s16(s3[4], s3[7], cospi_16_64); + + s5[8] = vaddq_s16(s2[8], s3[11]); + s5[9] = vaddq_s16(s4[9], s4[10]); + s5[10] = vsubq_s16(s4[9], s4[10]); + s5[11] = vsubq_s16(s2[8], s3[11]); + s5[12] = vsubq_s16(s2[15], s3[12]); + s5[13] = vsubq_s16(s4[14], s4[13]); + s5[14] = vaddq_s16(s4[13], s4[14]); + s5[15] = vaddq_s16(s2[15], s3[12]); + + s5[18] = multiply_accumulate_shift_and_narrow_s16(s4[18], -cospi_8_64, s4[29], + cospi_24_64); + s5[29] = multiply_accumulate_shift_and_narrow_s16(s4[18], cospi_24_64, s4[29], + cospi_8_64); + + s5[19] = multiply_accumulate_shift_and_narrow_s16(s4[19], -cospi_8_64, s4[28], + cospi_24_64); + s5[28] = multiply_accumulate_shift_and_narrow_s16(s4[19], cospi_24_64, s4[28], + cospi_8_64); + + s5[20] = multiply_accumulate_shift_and_narrow_s16(s4[20], -cospi_24_64, + s4[27], -cospi_8_64); + s5[27] = multiply_accumulate_shift_and_narrow_s16(s4[20], -cospi_8_64, s4[27], + cospi_24_64); + + s5[21] = multiply_accumulate_shift_and_narrow_s16(s4[21], -cospi_24_64, + s4[26], -cospi_8_64); + s5[26] = multiply_accumulate_shift_and_narrow_s16(s4[21], -cospi_8_64, s4[26], + cospi_24_64); + + // stage 6 + s6[0] = vaddq_s16(s5[0], s3[7]); + s6[1] = vaddq_s16(s5[1], s5[6]); + s6[2] = vaddq_s16(s5[2], s5[5]); + s6[3] = vaddq_s16(s5[3], s3[4]); + s6[4] = vsubq_s16(s5[3], s3[4]); + s6[5] = vsubq_s16(s5[2], s5[5]); + s6[6] = vsubq_s16(s5[1], s5[6]); + s6[7] = vsubq_s16(s5[0], s3[7]); + + s6[10] = sub_multiply_shift_and_narrow_s16(s5[13], s5[10], cospi_16_64); + s6[13] = add_multiply_shift_and_narrow_s16(s5[10], s5[13], cospi_16_64); + + s6[11] = sub_multiply_shift_and_narrow_s16(s5[12], s5[11], cospi_16_64); + s6[12] = add_multiply_shift_and_narrow_s16(s5[11], s5[12], cospi_16_64); + + s6[16] = vaddq_s16(s4[16], s4[23]); + s6[17] = vaddq_s16(s4[17], s4[22]); + s6[18] = vaddq_s16(s5[18], s5[21]); + s6[19] = vaddq_s16(s5[19], s5[20]); + s6[20] = vsubq_s16(s5[19], s5[20]); + s6[21] = vsubq_s16(s5[18], s5[21]); + s6[22] = vsubq_s16(s4[17], s4[22]); + s6[23] = vsubq_s16(s4[16], s4[23]); + + s6[24] = vsubq_s16(s4[31], s4[24]); + s6[25] = vsubq_s16(s4[30], s4[25]); + s6[26] = vsubq_s16(s5[29], s5[26]); + s6[27] = vsubq_s16(s5[28], s5[27]); + s6[28] = vaddq_s16(s5[27], s5[28]); + s6[29] = vaddq_s16(s5[26], s5[29]); + s6[30] = vaddq_s16(s4[25], s4[30]); + s6[31] = vaddq_s16(s4[24], s4[31]); + + // stage 7 + s7[0] = vaddq_s16(s6[0], s5[15]); + s7[1] = vaddq_s16(s6[1], s5[14]); + s7[2] = vaddq_s16(s6[2], s6[13]); + s7[3] = vaddq_s16(s6[3], s6[12]); + s7[4] = vaddq_s16(s6[4], s6[11]); + s7[5] = vaddq_s16(s6[5], s6[10]); + s7[6] = vaddq_s16(s6[6], s5[9]); + s7[7] = vaddq_s16(s6[7], s5[8]); + s7[8] = vsubq_s16(s6[7], s5[8]); + s7[9] = vsubq_s16(s6[6], s5[9]); + s7[10] = vsubq_s16(s6[5], s6[10]); + s7[11] = vsubq_s16(s6[4], s6[11]); + s7[12] = vsubq_s16(s6[3], s6[12]); + s7[13] = vsubq_s16(s6[2], s6[13]); + s7[14] = vsubq_s16(s6[1], s5[14]); + s7[15] = vsubq_s16(s6[0], s5[15]); + + s7[20] = sub_multiply_shift_and_narrow_s16(s6[27], s6[20], cospi_16_64); + s7[27] = add_multiply_shift_and_narrow_s16(s6[20], s6[27], cospi_16_64); + + s7[21] = sub_multiply_shift_and_narrow_s16(s6[26], s6[21], cospi_16_64); + s7[26] = add_multiply_shift_and_narrow_s16(s6[21], s6[26], cospi_16_64); + + s7[22] = sub_multiply_shift_and_narrow_s16(s6[25], s6[22], cospi_16_64); + s7[25] = add_multiply_shift_and_narrow_s16(s6[22], s6[25], cospi_16_64); + + s7[23] = sub_multiply_shift_and_narrow_s16(s6[24], s6[23], cospi_16_64); + s7[24] = add_multiply_shift_and_narrow_s16(s6[23], s6[24], cospi_16_64); + + // final stage + vst1q_s16(output, vaddq_s16(s7[0], s6[31])); + output += 16; + vst1q_s16(output, vaddq_s16(s7[1], s6[30])); + output += 16; + vst1q_s16(output, vaddq_s16(s7[2], s6[29])); + output += 16; + vst1q_s16(output, vaddq_s16(s7[3], s6[28])); + output += 16; + vst1q_s16(output, vaddq_s16(s7[4], s7[27])); + output += 16; + vst1q_s16(output, vaddq_s16(s7[5], s7[26])); + output += 16; + vst1q_s16(output, vaddq_s16(s7[6], s7[25])); + output += 16; + vst1q_s16(output, vaddq_s16(s7[7], s7[24])); + output += 16; + + vst1q_s16(output, vaddq_s16(s7[8], s7[23])); + output += 16; + vst1q_s16(output, vaddq_s16(s7[9], s7[22])); + output += 16; + vst1q_s16(output, vaddq_s16(s7[10], s7[21])); + output += 16; + vst1q_s16(output, vaddq_s16(s7[11], s7[20])); + output += 16; + vst1q_s16(output, vaddq_s16(s7[12], s6[19])); + output += 16; + vst1q_s16(output, vaddq_s16(s7[13], s6[18])); + output += 16; + vst1q_s16(output, vaddq_s16(s7[14], s6[17])); + output += 16; + vst1q_s16(output, vaddq_s16(s7[15], s6[16])); + output += 16; + + vst1q_s16(output, vsubq_s16(s7[15], s6[16])); + output += 16; + vst1q_s16(output, vsubq_s16(s7[14], s6[17])); + output += 16; + vst1q_s16(output, vsubq_s16(s7[13], s6[18])); + output += 16; + vst1q_s16(output, vsubq_s16(s7[12], s6[19])); + output += 16; + vst1q_s16(output, vsubq_s16(s7[11], s7[20])); + output += 16; + vst1q_s16(output, vsubq_s16(s7[10], s7[21])); + output += 16; + vst1q_s16(output, vsubq_s16(s7[9], s7[22])); + output += 16; + vst1q_s16(output, vsubq_s16(s7[8], s7[23])); + output += 16; + + vst1q_s16(output, vsubq_s16(s7[7], s7[24])); + output += 16; + vst1q_s16(output, vsubq_s16(s7[6], s7[25])); + output += 16; + vst1q_s16(output, vsubq_s16(s7[5], s7[26])); + output += 16; + vst1q_s16(output, vsubq_s16(s7[4], s7[27])); + output += 16; + vst1q_s16(output, vsubq_s16(s7[3], s6[28])); + output += 16; + vst1q_s16(output, vsubq_s16(s7[2], s6[29])); + output += 16; + vst1q_s16(output, vsubq_s16(s7[1], s6[30])); + output += 16; + vst1q_s16(output, vsubq_s16(s7[0], s6[31])); +} + +void vpx_idct32_16_neon(const int16_t *const input, void *const output, + const int stride, const int highbd_flag) { + int16x8_t in[16], s1[32], s2[32], s3[32], s4[32], s5[32], s6[32], s7[32], + out[32]; + + load_and_transpose_s16_8x8(input, 16, &in[0], &in[1], &in[2], &in[3], &in[4], + &in[5], &in[6], &in[7]); + + load_and_transpose_s16_8x8(input + 8, 16, &in[8], &in[9], &in[10], &in[11], + &in[12], &in[13], &in[14], &in[15]); + + // stage 1 + s1[16] = multiply_shift_and_narrow_s16(in[1], cospi_31_64); + s1[31] = multiply_shift_and_narrow_s16(in[1], cospi_1_64); + + s1[17] = multiply_shift_and_narrow_s16(in[15], -cospi_17_64); + s1[30] = multiply_shift_and_narrow_s16(in[15], cospi_15_64); + + s1[18] = multiply_shift_and_narrow_s16(in[9], cospi_23_64); + s1[29] = multiply_shift_and_narrow_s16(in[9], cospi_9_64); + + s1[19] = multiply_shift_and_narrow_s16(in[7], -cospi_25_64); + s1[28] = multiply_shift_and_narrow_s16(in[7], cospi_7_64); + + s1[20] = multiply_shift_and_narrow_s16(in[5], cospi_27_64); + s1[27] = multiply_shift_and_narrow_s16(in[5], cospi_5_64); + + s1[21] = multiply_shift_and_narrow_s16(in[11], -cospi_21_64); + s1[26] = multiply_shift_and_narrow_s16(in[11], cospi_11_64); + + s1[22] = multiply_shift_and_narrow_s16(in[13], cospi_19_64); + s1[25] = multiply_shift_and_narrow_s16(in[13], cospi_13_64); + + s1[23] = multiply_shift_and_narrow_s16(in[3], -cospi_29_64); + s1[24] = multiply_shift_and_narrow_s16(in[3], cospi_3_64); + + // stage 2 + s2[8] = multiply_shift_and_narrow_s16(in[2], cospi_30_64); + s2[15] = multiply_shift_and_narrow_s16(in[2], cospi_2_64); + + s2[9] = multiply_shift_and_narrow_s16(in[14], -cospi_18_64); + s2[14] = multiply_shift_and_narrow_s16(in[14], cospi_14_64); + + s2[10] = multiply_shift_and_narrow_s16(in[10], cospi_22_64); + s2[13] = multiply_shift_and_narrow_s16(in[10], cospi_10_64); + + s2[11] = multiply_shift_and_narrow_s16(in[6], -cospi_26_64); + s2[12] = multiply_shift_and_narrow_s16(in[6], cospi_6_64); + + s2[16] = vaddq_s16(s1[16], s1[17]); + s2[17] = vsubq_s16(s1[16], s1[17]); + s2[18] = vsubq_s16(s1[19], s1[18]); + s2[19] = vaddq_s16(s1[18], s1[19]); + s2[20] = vaddq_s16(s1[20], s1[21]); + s2[21] = vsubq_s16(s1[20], s1[21]); + s2[22] = vsubq_s16(s1[23], s1[22]); + s2[23] = vaddq_s16(s1[22], s1[23]); + s2[24] = vaddq_s16(s1[24], s1[25]); + s2[25] = vsubq_s16(s1[24], s1[25]); + s2[26] = vsubq_s16(s1[27], s1[26]); + s2[27] = vaddq_s16(s1[26], s1[27]); + s2[28] = vaddq_s16(s1[28], s1[29]); + s2[29] = vsubq_s16(s1[28], s1[29]); + s2[30] = vsubq_s16(s1[31], s1[30]); + s2[31] = vaddq_s16(s1[30], s1[31]); + + // stage 3 + s3[4] = multiply_shift_and_narrow_s16(in[4], cospi_28_64); + s3[7] = multiply_shift_and_narrow_s16(in[4], cospi_4_64); + + s3[5] = multiply_shift_and_narrow_s16(in[12], -cospi_20_64); + s3[6] = multiply_shift_and_narrow_s16(in[12], cospi_12_64); + + s3[8] = vaddq_s16(s2[8], s2[9]); + s3[9] = vsubq_s16(s2[8], s2[9]); + s3[10] = vsubq_s16(s2[11], s2[10]); + s3[11] = vaddq_s16(s2[10], s2[11]); + s3[12] = vaddq_s16(s2[12], s2[13]); + s3[13] = vsubq_s16(s2[12], s2[13]); + s3[14] = vsubq_s16(s2[15], s2[14]); + s3[15] = vaddq_s16(s2[14], s2[15]); + + s3[17] = multiply_accumulate_shift_and_narrow_s16(s2[17], -cospi_4_64, s2[30], + cospi_28_64); + s3[30] = multiply_accumulate_shift_and_narrow_s16(s2[17], cospi_28_64, s2[30], + cospi_4_64); + + s3[18] = multiply_accumulate_shift_and_narrow_s16(s2[18], -cospi_28_64, + s2[29], -cospi_4_64); + s3[29] = multiply_accumulate_shift_and_narrow_s16(s2[18], -cospi_4_64, s2[29], + cospi_28_64); + + s3[21] = multiply_accumulate_shift_and_narrow_s16(s2[21], -cospi_20_64, + s2[26], cospi_12_64); + s3[26] = multiply_accumulate_shift_and_narrow_s16(s2[21], cospi_12_64, s2[26], + cospi_20_64); + + s3[22] = multiply_accumulate_shift_and_narrow_s16(s2[22], -cospi_12_64, + s2[25], -cospi_20_64); + s3[25] = multiply_accumulate_shift_and_narrow_s16(s2[22], -cospi_20_64, + s2[25], cospi_12_64); + + // stage 4 + s4[0] = multiply_shift_and_narrow_s16(in[0], cospi_16_64); + s4[2] = multiply_shift_and_narrow_s16(in[8], cospi_24_64); + s4[3] = multiply_shift_and_narrow_s16(in[8], cospi_8_64); + + s4[4] = vaddq_s16(s3[4], s3[5]); + s4[5] = vsubq_s16(s3[4], s3[5]); + s4[6] = vsubq_s16(s3[7], s3[6]); + s4[7] = vaddq_s16(s3[6], s3[7]); + + s4[9] = multiply_accumulate_shift_and_narrow_s16(s3[9], -cospi_8_64, s3[14], + cospi_24_64); + s4[14] = multiply_accumulate_shift_and_narrow_s16(s3[9], cospi_24_64, s3[14], + cospi_8_64); + + s4[10] = multiply_accumulate_shift_and_narrow_s16(s3[10], -cospi_24_64, + s3[13], -cospi_8_64); + s4[13] = multiply_accumulate_shift_and_narrow_s16(s3[10], -cospi_8_64, s3[13], + cospi_24_64); + + s4[16] = vaddq_s16(s2[16], s2[19]); + s4[17] = vaddq_s16(s3[17], s3[18]); + s4[18] = vsubq_s16(s3[17], s3[18]); + s4[19] = vsubq_s16(s2[16], s2[19]); + s4[20] = vsubq_s16(s2[23], s2[20]); + s4[21] = vsubq_s16(s3[22], s3[21]); + s4[22] = vaddq_s16(s3[21], s3[22]); + s4[23] = vaddq_s16(s2[20], s2[23]); + s4[24] = vaddq_s16(s2[24], s2[27]); + s4[25] = vaddq_s16(s3[25], s3[26]); + s4[26] = vsubq_s16(s3[25], s3[26]); + s4[27] = vsubq_s16(s2[24], s2[27]); + s4[28] = vsubq_s16(s2[31], s2[28]); + s4[29] = vsubq_s16(s3[30], s3[29]); + s4[30] = vaddq_s16(s3[29], s3[30]); + s4[31] = vaddq_s16(s2[28], s2[31]); + + // stage 5 + s5[0] = vaddq_s16(s4[0], s4[3]); + s5[1] = vaddq_s16(s4[0], s4[2]); + s5[2] = vsubq_s16(s4[0], s4[2]); + s5[3] = vsubq_s16(s4[0], s4[3]); + + s5[5] = sub_multiply_shift_and_narrow_s16(s4[6], s4[5], cospi_16_64); + s5[6] = add_multiply_shift_and_narrow_s16(s4[5], s4[6], cospi_16_64); + + s5[8] = vaddq_s16(s3[8], s3[11]); + s5[9] = vaddq_s16(s4[9], s4[10]); + s5[10] = vsubq_s16(s4[9], s4[10]); + s5[11] = vsubq_s16(s3[8], s3[11]); + s5[12] = vsubq_s16(s3[15], s3[12]); + s5[13] = vsubq_s16(s4[14], s4[13]); + s5[14] = vaddq_s16(s4[13], s4[14]); + s5[15] = vaddq_s16(s3[15], s3[12]); + + s5[18] = multiply_accumulate_shift_and_narrow_s16(s4[18], -cospi_8_64, s4[29], + cospi_24_64); + s5[29] = multiply_accumulate_shift_and_narrow_s16(s4[18], cospi_24_64, s4[29], + cospi_8_64); + + s5[19] = multiply_accumulate_shift_and_narrow_s16(s4[19], -cospi_8_64, s4[28], + cospi_24_64); + s5[28] = multiply_accumulate_shift_and_narrow_s16(s4[19], cospi_24_64, s4[28], + cospi_8_64); + + s5[20] = multiply_accumulate_shift_and_narrow_s16(s4[20], -cospi_24_64, + s4[27], -cospi_8_64); + s5[27] = multiply_accumulate_shift_and_narrow_s16(s4[20], -cospi_8_64, s4[27], + cospi_24_64); + + s5[21] = multiply_accumulate_shift_and_narrow_s16(s4[21], -cospi_24_64, + s4[26], -cospi_8_64); + s5[26] = multiply_accumulate_shift_and_narrow_s16(s4[21], -cospi_8_64, s4[26], + cospi_24_64); + + // stage 6 + s6[0] = vaddq_s16(s5[0], s4[7]); + s6[1] = vaddq_s16(s5[1], s5[6]); + s6[2] = vaddq_s16(s5[2], s5[5]); + s6[3] = vaddq_s16(s5[3], s4[4]); + s6[4] = vsubq_s16(s5[3], s4[4]); + s6[5] = vsubq_s16(s5[2], s5[5]); + s6[6] = vsubq_s16(s5[1], s5[6]); + s6[7] = vsubq_s16(s5[0], s4[7]); + + s6[10] = sub_multiply_shift_and_narrow_s16(s5[13], s5[10], cospi_16_64); + s6[13] = add_multiply_shift_and_narrow_s16(s5[10], s5[13], cospi_16_64); + + s6[11] = sub_multiply_shift_and_narrow_s16(s5[12], s5[11], cospi_16_64); + s6[12] = add_multiply_shift_and_narrow_s16(s5[11], s5[12], cospi_16_64); + + s6[16] = vaddq_s16(s4[16], s4[23]); + s6[17] = vaddq_s16(s4[17], s4[22]); + s6[18] = vaddq_s16(s5[18], s5[21]); + s6[19] = vaddq_s16(s5[19], s5[20]); + s6[20] = vsubq_s16(s5[19], s5[20]); + s6[21] = vsubq_s16(s5[18], s5[21]); + s6[22] = vsubq_s16(s4[17], s4[22]); + s6[23] = vsubq_s16(s4[16], s4[23]); + s6[24] = vsubq_s16(s4[31], s4[24]); + s6[25] = vsubq_s16(s4[30], s4[25]); + s6[26] = vsubq_s16(s5[29], s5[26]); + s6[27] = vsubq_s16(s5[28], s5[27]); + s6[28] = vaddq_s16(s5[27], s5[28]); + s6[29] = vaddq_s16(s5[26], s5[29]); + s6[30] = vaddq_s16(s4[25], s4[30]); + s6[31] = vaddq_s16(s4[24], s4[31]); + + // stage 7 + s7[0] = vaddq_s16(s6[0], s5[15]); + s7[1] = vaddq_s16(s6[1], s5[14]); + s7[2] = vaddq_s16(s6[2], s6[13]); + s7[3] = vaddq_s16(s6[3], s6[12]); + s7[4] = vaddq_s16(s6[4], s6[11]); + s7[5] = vaddq_s16(s6[5], s6[10]); + s7[6] = vaddq_s16(s6[6], s5[9]); + s7[7] = vaddq_s16(s6[7], s5[8]); + s7[8] = vsubq_s16(s6[7], s5[8]); + s7[9] = vsubq_s16(s6[6], s5[9]); + s7[10] = vsubq_s16(s6[5], s6[10]); + s7[11] = vsubq_s16(s6[4], s6[11]); + s7[12] = vsubq_s16(s6[3], s6[12]); + s7[13] = vsubq_s16(s6[2], s6[13]); + s7[14] = vsubq_s16(s6[1], s5[14]); + s7[15] = vsubq_s16(s6[0], s5[15]); + + s7[20] = sub_multiply_shift_and_narrow_s16(s6[27], s6[20], cospi_16_64); + s7[27] = add_multiply_shift_and_narrow_s16(s6[20], s6[27], cospi_16_64); + + s7[21] = sub_multiply_shift_and_narrow_s16(s6[26], s6[21], cospi_16_64); + s7[26] = add_multiply_shift_and_narrow_s16(s6[21], s6[26], cospi_16_64); + + s7[22] = sub_multiply_shift_and_narrow_s16(s6[25], s6[22], cospi_16_64); + s7[25] = add_multiply_shift_and_narrow_s16(s6[22], s6[25], cospi_16_64); + + s7[23] = sub_multiply_shift_and_narrow_s16(s6[24], s6[23], cospi_16_64); + s7[24] = add_multiply_shift_and_narrow_s16(s6[23], s6[24], cospi_16_64); + + // final stage + out[0] = final_add(s7[0], s6[31]); + out[1] = final_add(s7[1], s6[30]); + out[2] = final_add(s7[2], s6[29]); + out[3] = final_add(s7[3], s6[28]); + out[4] = final_add(s7[4], s7[27]); + out[5] = final_add(s7[5], s7[26]); + out[6] = final_add(s7[6], s7[25]); + out[7] = final_add(s7[7], s7[24]); + out[8] = final_add(s7[8], s7[23]); + out[9] = final_add(s7[9], s7[22]); + out[10] = final_add(s7[10], s7[21]); + out[11] = final_add(s7[11], s7[20]); + out[12] = final_add(s7[12], s6[19]); + out[13] = final_add(s7[13], s6[18]); + out[14] = final_add(s7[14], s6[17]); + out[15] = final_add(s7[15], s6[16]); + out[16] = final_sub(s7[15], s6[16]); + out[17] = final_sub(s7[14], s6[17]); + out[18] = final_sub(s7[13], s6[18]); + out[19] = final_sub(s7[12], s6[19]); + out[20] = final_sub(s7[11], s7[20]); + out[21] = final_sub(s7[10], s7[21]); + out[22] = final_sub(s7[9], s7[22]); + out[23] = final_sub(s7[8], s7[23]); + out[24] = final_sub(s7[7], s7[24]); + out[25] = final_sub(s7[6], s7[25]); + out[26] = final_sub(s7[5], s7[26]); + out[27] = final_sub(s7[4], s7[27]); + out[28] = final_sub(s7[3], s6[28]); + out[29] = final_sub(s7[2], s6[29]); + out[30] = final_sub(s7[1], s6[30]); + out[31] = final_sub(s7[0], s6[31]); + + if (highbd_flag) { + highbd_add_and_store_bd8(out, output, stride); + } else { + uint8_t *const outputT = (uint8_t *)output; + add_and_store_u8_s16(out[0], out[1], out[2], out[3], out[4], out[5], out[6], + out[7], outputT, stride); + add_and_store_u8_s16(out[8], out[9], out[10], out[11], out[12], out[13], + out[14], out[15], outputT + (8 * stride), stride); + add_and_store_u8_s16(out[16], out[17], out[18], out[19], out[20], out[21], + out[22], out[23], outputT + (16 * stride), stride); + add_and_store_u8_s16(out[24], out[25], out[26], out[27], out[28], out[29], + out[30], out[31], outputT + (24 * stride), stride); + } +} + +void vpx_idct32x32_135_add_neon(const tran_low_t *input, uint8_t *dest, + int stride) { + int i; + int16_t temp[32 * 16]; + int16_t *t = temp; + + vpx_idct32_12_neon(input, temp); + vpx_idct32_12_neon(input + 32 * 8, temp + 8); + + for (i = 0; i < 32; i += 8) { + vpx_idct32_16_neon(t, dest, stride, 0); + t += (16 * 8); + dest += 8; + } +} diff --git a/vpx_dsp/arm/idct32x32_1_add_neon.c b/vpx_dsp/arm/idct32x32_1_add_neon.c new file mode 100644 index 0000000..8920b93 --- /dev/null +++ b/vpx_dsp/arm/idct32x32_1_add_neon.c @@ -0,0 +1,58 @@ +/* + * Copyright (c) 2014 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include + +#include "./vpx_dsp_rtcd.h" +#include "vpx_dsp/arm/idct_neon.h" +#include "vpx_dsp/inv_txfm.h" + +static INLINE void idct32x32_1_add_pos_kernel(uint8_t **dest, const int stride, + const uint8x16_t res) { + const uint8x16_t a0 = vld1q_u8(*dest); + const uint8x16_t a1 = vld1q_u8(*dest + 16); + const uint8x16_t b0 = vqaddq_u8(a0, res); + const uint8x16_t b1 = vqaddq_u8(a1, res); + vst1q_u8(*dest, b0); + vst1q_u8(*dest + 16, b1); + *dest += stride; +} + +static INLINE void idct32x32_1_add_neg_kernel(uint8_t **dest, const int stride, + const uint8x16_t res) { + const uint8x16_t a0 = vld1q_u8(*dest); + const uint8x16_t a1 = vld1q_u8(*dest + 16); + const uint8x16_t b0 = vqsubq_u8(a0, res); + const uint8x16_t b1 = vqsubq_u8(a1, res); + vst1q_u8(*dest, b0); + vst1q_u8(*dest + 16, b1); + *dest += stride; +} + +void vpx_idct32x32_1_add_neon(const tran_low_t *input, uint8_t *dest, + int stride) { + int i; + const int16_t out0 = + WRAPLOW(dct_const_round_shift((int16_t)input[0] * cospi_16_64)); + const int16_t out1 = WRAPLOW(dct_const_round_shift(out0 * cospi_16_64)); + const int16_t a1 = ROUND_POWER_OF_TWO(out1, 6); + + if (a1 >= 0) { + const uint8x16_t dc = create_dcq(a1); + for (i = 0; i < 32; i++) { + idct32x32_1_add_pos_kernel(&dest, stride, dc); + } + } else { + const uint8x16_t dc = create_dcq(-a1); + for (i = 0; i < 32; i++) { + idct32x32_1_add_neg_kernel(&dest, stride, dc); + } + } +} diff --git a/vpx_dsp/arm/idct32x32_34_add_neon.c b/vpx_dsp/arm/idct32x32_34_add_neon.c new file mode 100644 index 0000000..f3c336f --- /dev/null +++ b/vpx_dsp/arm/idct32x32_34_add_neon.c @@ -0,0 +1,517 @@ +/* + * Copyright (c) 2016 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include + +#include "./vpx_config.h" +#include "./vpx_dsp_rtcd.h" +#include "vpx_dsp/arm/idct_neon.h" +#include "vpx_dsp/arm/mem_neon.h" +#include "vpx_dsp/arm/transpose_neon.h" +#include "vpx_dsp/txfm_common.h" + +// Only for the first pass of the _34_ variant. Since it only uses values from +// the top left 8x8 it can safely assume all the remaining values are 0 and skip +// an awful lot of calculations. In fact, only the first 6 columns make the cut. +// None of the elements in the 7th or 8th column are used so it skips any calls +// to input[67] too. +// In C this does a single row of 32 for each call. Here it transposes the top +// left 8x8 to allow using SIMD. + +// vp9/common/vp9_scan.c:vp9_default_iscan_32x32 arranges the first 34 non-zero +// coefficients as follows: +// 0 1 2 3 4 5 6 7 +// 0 0 2 5 10 17 25 +// 1 1 4 8 15 22 30 +// 2 3 7 12 18 28 +// 3 6 11 16 23 31 +// 4 9 14 19 29 +// 5 13 20 26 +// 6 21 27 33 +// 7 24 32 +void vpx_idct32_6_neon(const tran_low_t *input, int16_t *output) { + int16x8_t in[8], s1[32], s2[32], s3[32]; + + in[0] = load_tran_low_to_s16q(input); + input += 32; + in[1] = load_tran_low_to_s16q(input); + input += 32; + in[2] = load_tran_low_to_s16q(input); + input += 32; + in[3] = load_tran_low_to_s16q(input); + input += 32; + in[4] = load_tran_low_to_s16q(input); + input += 32; + in[5] = load_tran_low_to_s16q(input); + input += 32; + in[6] = load_tran_low_to_s16q(input); + input += 32; + in[7] = load_tran_low_to_s16q(input); + transpose_s16_8x8(&in[0], &in[1], &in[2], &in[3], &in[4], &in[5], &in[6], + &in[7]); + + // stage 1 + // input[1] * cospi_31_64 - input[31] * cospi_1_64 (but input[31] == 0) + s1[16] = multiply_shift_and_narrow_s16(in[1], cospi_31_64); + // input[1] * cospi_1_64 + input[31] * cospi_31_64 (but input[31] == 0) + s1[31] = multiply_shift_and_narrow_s16(in[1], cospi_1_64); + + s1[20] = multiply_shift_and_narrow_s16(in[5], cospi_27_64); + s1[27] = multiply_shift_and_narrow_s16(in[5], cospi_5_64); + + s1[23] = multiply_shift_and_narrow_s16(in[3], -cospi_29_64); + s1[24] = multiply_shift_and_narrow_s16(in[3], cospi_3_64); + + // stage 2 + s2[8] = multiply_shift_and_narrow_s16(in[2], cospi_30_64); + s2[15] = multiply_shift_and_narrow_s16(in[2], cospi_2_64); + + // stage 3 + s1[4] = multiply_shift_and_narrow_s16(in[4], cospi_28_64); + s1[7] = multiply_shift_and_narrow_s16(in[4], cospi_4_64); + + s1[17] = multiply_accumulate_shift_and_narrow_s16(s1[16], -cospi_4_64, s1[31], + cospi_28_64); + s1[30] = multiply_accumulate_shift_and_narrow_s16(s1[16], cospi_28_64, s1[31], + cospi_4_64); + + s1[21] = multiply_accumulate_shift_and_narrow_s16(s1[20], -cospi_20_64, + s1[27], cospi_12_64); + s1[26] = multiply_accumulate_shift_and_narrow_s16(s1[20], cospi_12_64, s1[27], + cospi_20_64); + + s1[22] = multiply_accumulate_shift_and_narrow_s16(s1[23], -cospi_12_64, + s1[24], -cospi_20_64); + s1[25] = multiply_accumulate_shift_and_narrow_s16(s1[23], -cospi_20_64, + s1[24], cospi_12_64); + + // stage 4 + s1[0] = multiply_shift_and_narrow_s16(in[0], cospi_16_64); + + s2[9] = multiply_accumulate_shift_and_narrow_s16(s2[8], -cospi_8_64, s2[15], + cospi_24_64); + s2[14] = multiply_accumulate_shift_and_narrow_s16(s2[8], cospi_24_64, s2[15], + cospi_8_64); + + s2[20] = vsubq_s16(s1[23], s1[20]); + s2[21] = vsubq_s16(s1[22], s1[21]); + s2[22] = vaddq_s16(s1[21], s1[22]); + s2[23] = vaddq_s16(s1[20], s1[23]); + s2[24] = vaddq_s16(s1[24], s1[27]); + s2[25] = vaddq_s16(s1[25], s1[26]); + s2[26] = vsubq_s16(s1[25], s1[26]); + s2[27] = vsubq_s16(s1[24], s1[27]); + + // stage 5 + s1[5] = sub_multiply_shift_and_narrow_s16(s1[7], s1[4], cospi_16_64); + s1[6] = add_multiply_shift_and_narrow_s16(s1[4], s1[7], cospi_16_64); + + s1[18] = multiply_accumulate_shift_and_narrow_s16(s1[17], -cospi_8_64, s1[30], + cospi_24_64); + s1[29] = multiply_accumulate_shift_and_narrow_s16(s1[17], cospi_24_64, s1[30], + cospi_8_64); + + s1[19] = multiply_accumulate_shift_and_narrow_s16(s1[16], -cospi_8_64, s1[31], + cospi_24_64); + s1[28] = multiply_accumulate_shift_and_narrow_s16(s1[16], cospi_24_64, s1[31], + cospi_8_64); + + s1[20] = multiply_accumulate_shift_and_narrow_s16(s2[20], -cospi_24_64, + s2[27], -cospi_8_64); + s1[27] = multiply_accumulate_shift_and_narrow_s16(s2[20], -cospi_8_64, s2[27], + cospi_24_64); + + s1[21] = multiply_accumulate_shift_and_narrow_s16(s2[21], -cospi_24_64, + s2[26], -cospi_8_64); + s1[26] = multiply_accumulate_shift_and_narrow_s16(s2[21], -cospi_8_64, s2[26], + cospi_24_64); + + // stage 6 + s2[0] = vaddq_s16(s1[0], s1[7]); + s2[1] = vaddq_s16(s1[0], s1[6]); + s2[2] = vaddq_s16(s1[0], s1[5]); + s2[3] = vaddq_s16(s1[0], s1[4]); + s2[4] = vsubq_s16(s1[0], s1[4]); + s2[5] = vsubq_s16(s1[0], s1[5]); + s2[6] = vsubq_s16(s1[0], s1[6]); + s2[7] = vsubq_s16(s1[0], s1[7]); + + s2[10] = sub_multiply_shift_and_narrow_s16(s2[14], s2[9], cospi_16_64); + s2[13] = add_multiply_shift_and_narrow_s16(s2[9], s2[14], cospi_16_64); + + s2[11] = sub_multiply_shift_and_narrow_s16(s2[15], s2[8], cospi_16_64); + s2[12] = add_multiply_shift_and_narrow_s16(s2[8], s2[15], cospi_16_64); + + s2[16] = vaddq_s16(s1[16], s2[23]); + s2[17] = vaddq_s16(s1[17], s2[22]); + s2[18] = vaddq_s16(s1[18], s1[21]); + s2[19] = vaddq_s16(s1[19], s1[20]); + s2[20] = vsubq_s16(s1[19], s1[20]); + s2[21] = vsubq_s16(s1[18], s1[21]); + s2[22] = vsubq_s16(s1[17], s2[22]); + s2[23] = vsubq_s16(s1[16], s2[23]); + + s3[24] = vsubq_s16(s1[31], s2[24]); + s3[25] = vsubq_s16(s1[30], s2[25]); + s3[26] = vsubq_s16(s1[29], s1[26]); + s3[27] = vsubq_s16(s1[28], s1[27]); + s2[28] = vaddq_s16(s1[27], s1[28]); + s2[29] = vaddq_s16(s1[26], s1[29]); + s2[30] = vaddq_s16(s2[25], s1[30]); + s2[31] = vaddq_s16(s2[24], s1[31]); + + // stage 7 + s1[0] = vaddq_s16(s2[0], s2[15]); + s1[1] = vaddq_s16(s2[1], s2[14]); + s1[2] = vaddq_s16(s2[2], s2[13]); + s1[3] = vaddq_s16(s2[3], s2[12]); + s1[4] = vaddq_s16(s2[4], s2[11]); + s1[5] = vaddq_s16(s2[5], s2[10]); + s1[6] = vaddq_s16(s2[6], s2[9]); + s1[7] = vaddq_s16(s2[7], s2[8]); + s1[8] = vsubq_s16(s2[7], s2[8]); + s1[9] = vsubq_s16(s2[6], s2[9]); + s1[10] = vsubq_s16(s2[5], s2[10]); + s1[11] = vsubq_s16(s2[4], s2[11]); + s1[12] = vsubq_s16(s2[3], s2[12]); + s1[13] = vsubq_s16(s2[2], s2[13]); + s1[14] = vsubq_s16(s2[1], s2[14]); + s1[15] = vsubq_s16(s2[0], s2[15]); + + s1[20] = sub_multiply_shift_and_narrow_s16(s3[27], s2[20], cospi_16_64); + s1[27] = add_multiply_shift_and_narrow_s16(s2[20], s3[27], cospi_16_64); + + s1[21] = sub_multiply_shift_and_narrow_s16(s3[26], s2[21], cospi_16_64); + s1[26] = add_multiply_shift_and_narrow_s16(s2[21], s3[26], cospi_16_64); + + s1[22] = sub_multiply_shift_and_narrow_s16(s3[25], s2[22], cospi_16_64); + s1[25] = add_multiply_shift_and_narrow_s16(s2[22], s3[25], cospi_16_64); + + s1[23] = sub_multiply_shift_and_narrow_s16(s3[24], s2[23], cospi_16_64); + s1[24] = add_multiply_shift_and_narrow_s16(s2[23], s3[24], cospi_16_64); + + // final stage + vst1q_s16(output, vaddq_s16(s1[0], s2[31])); + output += 8; + vst1q_s16(output, vaddq_s16(s1[1], s2[30])); + output += 8; + vst1q_s16(output, vaddq_s16(s1[2], s2[29])); + output += 8; + vst1q_s16(output, vaddq_s16(s1[3], s2[28])); + output += 8; + vst1q_s16(output, vaddq_s16(s1[4], s1[27])); + output += 8; + vst1q_s16(output, vaddq_s16(s1[5], s1[26])); + output += 8; + vst1q_s16(output, vaddq_s16(s1[6], s1[25])); + output += 8; + vst1q_s16(output, vaddq_s16(s1[7], s1[24])); + output += 8; + + vst1q_s16(output, vaddq_s16(s1[8], s1[23])); + output += 8; + vst1q_s16(output, vaddq_s16(s1[9], s1[22])); + output += 8; + vst1q_s16(output, vaddq_s16(s1[10], s1[21])); + output += 8; + vst1q_s16(output, vaddq_s16(s1[11], s1[20])); + output += 8; + vst1q_s16(output, vaddq_s16(s1[12], s2[19])); + output += 8; + vst1q_s16(output, vaddq_s16(s1[13], s2[18])); + output += 8; + vst1q_s16(output, vaddq_s16(s1[14], s2[17])); + output += 8; + vst1q_s16(output, vaddq_s16(s1[15], s2[16])); + output += 8; + + vst1q_s16(output, vsubq_s16(s1[15], s2[16])); + output += 8; + vst1q_s16(output, vsubq_s16(s1[14], s2[17])); + output += 8; + vst1q_s16(output, vsubq_s16(s1[13], s2[18])); + output += 8; + vst1q_s16(output, vsubq_s16(s1[12], s2[19])); + output += 8; + vst1q_s16(output, vsubq_s16(s1[11], s1[20])); + output += 8; + vst1q_s16(output, vsubq_s16(s1[10], s1[21])); + output += 8; + vst1q_s16(output, vsubq_s16(s1[9], s1[22])); + output += 8; + vst1q_s16(output, vsubq_s16(s1[8], s1[23])); + output += 8; + + vst1q_s16(output, vsubq_s16(s1[7], s1[24])); + output += 8; + vst1q_s16(output, vsubq_s16(s1[6], s1[25])); + output += 8; + vst1q_s16(output, vsubq_s16(s1[5], s1[26])); + output += 8; + vst1q_s16(output, vsubq_s16(s1[4], s1[27])); + output += 8; + vst1q_s16(output, vsubq_s16(s1[3], s2[28])); + output += 8; + vst1q_s16(output, vsubq_s16(s1[2], s2[29])); + output += 8; + vst1q_s16(output, vsubq_s16(s1[1], s2[30])); + output += 8; + vst1q_s16(output, vsubq_s16(s1[0], s2[31])); +} + +void vpx_idct32_8_neon(const int16_t *input, void *const output, int stride, + const int highbd_flag) { + int16x8_t in[8], s1[32], s2[32], s3[32], out[32]; + + load_and_transpose_s16_8x8(input, 8, &in[0], &in[1], &in[2], &in[3], &in[4], + &in[5], &in[6], &in[7]); + + // stage 1 + s1[16] = multiply_shift_and_narrow_s16(in[1], cospi_31_64); + s1[31] = multiply_shift_and_narrow_s16(in[1], cospi_1_64); + + // Different for _8_ + s1[19] = multiply_shift_and_narrow_s16(in[7], -cospi_25_64); + s1[28] = multiply_shift_and_narrow_s16(in[7], cospi_7_64); + + s1[20] = multiply_shift_and_narrow_s16(in[5], cospi_27_64); + s1[27] = multiply_shift_and_narrow_s16(in[5], cospi_5_64); + + s1[23] = multiply_shift_and_narrow_s16(in[3], -cospi_29_64); + s1[24] = multiply_shift_and_narrow_s16(in[3], cospi_3_64); + + // stage 2 + s2[8] = multiply_shift_and_narrow_s16(in[2], cospi_30_64); + s2[15] = multiply_shift_and_narrow_s16(in[2], cospi_2_64); + + s2[11] = multiply_shift_and_narrow_s16(in[6], -cospi_26_64); + s2[12] = multiply_shift_and_narrow_s16(in[6], cospi_6_64); + + // stage 3 + s1[4] = multiply_shift_and_narrow_s16(in[4], cospi_28_64); + s1[7] = multiply_shift_and_narrow_s16(in[4], cospi_4_64); + + s1[17] = multiply_accumulate_shift_and_narrow_s16(s1[16], -cospi_4_64, s1[31], + cospi_28_64); + s1[30] = multiply_accumulate_shift_and_narrow_s16(s1[16], cospi_28_64, s1[31], + cospi_4_64); + + // Different for _8_ + s1[18] = multiply_accumulate_shift_and_narrow_s16(s1[19], -cospi_28_64, + s1[28], -cospi_4_64); + s1[29] = multiply_accumulate_shift_and_narrow_s16(s1[19], -cospi_4_64, s1[28], + cospi_28_64); + + s1[21] = multiply_accumulate_shift_and_narrow_s16(s1[20], -cospi_20_64, + s1[27], cospi_12_64); + s1[26] = multiply_accumulate_shift_and_narrow_s16(s1[20], cospi_12_64, s1[27], + cospi_20_64); + + s1[22] = multiply_accumulate_shift_and_narrow_s16(s1[23], -cospi_12_64, + s1[24], -cospi_20_64); + s1[25] = multiply_accumulate_shift_and_narrow_s16(s1[23], -cospi_20_64, + s1[24], cospi_12_64); + + // stage 4 + s1[0] = multiply_shift_and_narrow_s16(in[0], cospi_16_64); + + s2[9] = multiply_accumulate_shift_and_narrow_s16(s2[8], -cospi_8_64, s2[15], + cospi_24_64); + s2[14] = multiply_accumulate_shift_and_narrow_s16(s2[8], cospi_24_64, s2[15], + cospi_8_64); + + s2[10] = multiply_accumulate_shift_and_narrow_s16(s2[11], -cospi_24_64, + s2[12], -cospi_8_64); + s2[13] = multiply_accumulate_shift_and_narrow_s16(s2[11], -cospi_8_64, s2[12], + cospi_24_64); + + s2[16] = vaddq_s16(s1[16], s1[19]); + + s2[17] = vaddq_s16(s1[17], s1[18]); + s2[18] = vsubq_s16(s1[17], s1[18]); + + s2[19] = vsubq_s16(s1[16], s1[19]); + + s2[20] = vsubq_s16(s1[23], s1[20]); + s2[21] = vsubq_s16(s1[22], s1[21]); + + s2[22] = vaddq_s16(s1[21], s1[22]); + s2[23] = vaddq_s16(s1[20], s1[23]); + + s2[24] = vaddq_s16(s1[24], s1[27]); + s2[25] = vaddq_s16(s1[25], s1[26]); + s2[26] = vsubq_s16(s1[25], s1[26]); + s2[27] = vsubq_s16(s1[24], s1[27]); + + s2[28] = vsubq_s16(s1[31], s1[28]); + s2[29] = vsubq_s16(s1[30], s1[29]); + s2[30] = vaddq_s16(s1[29], s1[30]); + s2[31] = vaddq_s16(s1[28], s1[31]); + + // stage 5 + s1[5] = sub_multiply_shift_and_narrow_s16(s1[7], s1[4], cospi_16_64); + s1[6] = add_multiply_shift_and_narrow_s16(s1[4], s1[7], cospi_16_64); + + s1[8] = vaddq_s16(s2[8], s2[11]); + s1[9] = vaddq_s16(s2[9], s2[10]); + s1[10] = vsubq_s16(s2[9], s2[10]); + s1[11] = vsubq_s16(s2[8], s2[11]); + s1[12] = vsubq_s16(s2[15], s2[12]); + s1[13] = vsubq_s16(s2[14], s2[13]); + s1[14] = vaddq_s16(s2[13], s2[14]); + s1[15] = vaddq_s16(s2[12], s2[15]); + + s1[18] = multiply_accumulate_shift_and_narrow_s16(s2[18], -cospi_8_64, s2[29], + cospi_24_64); + s1[29] = multiply_accumulate_shift_and_narrow_s16(s2[18], cospi_24_64, s2[29], + cospi_8_64); + + s1[19] = multiply_accumulate_shift_and_narrow_s16(s2[19], -cospi_8_64, s2[28], + cospi_24_64); + s1[28] = multiply_accumulate_shift_and_narrow_s16(s2[19], cospi_24_64, s2[28], + cospi_8_64); + + s1[20] = multiply_accumulate_shift_and_narrow_s16(s2[20], -cospi_24_64, + s2[27], -cospi_8_64); + s1[27] = multiply_accumulate_shift_and_narrow_s16(s2[20], -cospi_8_64, s2[27], + cospi_24_64); + + s1[21] = multiply_accumulate_shift_and_narrow_s16(s2[21], -cospi_24_64, + s2[26], -cospi_8_64); + s1[26] = multiply_accumulate_shift_and_narrow_s16(s2[21], -cospi_8_64, s2[26], + cospi_24_64); + + // stage 6 + s2[0] = vaddq_s16(s1[0], s1[7]); + s2[1] = vaddq_s16(s1[0], s1[6]); + s2[2] = vaddq_s16(s1[0], s1[5]); + s2[3] = vaddq_s16(s1[0], s1[4]); + s2[4] = vsubq_s16(s1[0], s1[4]); + s2[5] = vsubq_s16(s1[0], s1[5]); + s2[6] = vsubq_s16(s1[0], s1[6]); + s2[7] = vsubq_s16(s1[0], s1[7]); + + s2[10] = sub_multiply_shift_and_narrow_s16(s1[13], s1[10], cospi_16_64); + s2[13] = add_multiply_shift_and_narrow_s16(s1[10], s1[13], cospi_16_64); + + s2[11] = sub_multiply_shift_and_narrow_s16(s1[12], s1[11], cospi_16_64); + s2[12] = add_multiply_shift_and_narrow_s16(s1[11], s1[12], cospi_16_64); + + s1[16] = vaddq_s16(s2[16], s2[23]); + s1[17] = vaddq_s16(s2[17], s2[22]); + s2[18] = vaddq_s16(s1[18], s1[21]); + s2[19] = vaddq_s16(s1[19], s1[20]); + s2[20] = vsubq_s16(s1[19], s1[20]); + s2[21] = vsubq_s16(s1[18], s1[21]); + s1[22] = vsubq_s16(s2[17], s2[22]); + s1[23] = vsubq_s16(s2[16], s2[23]); + + s3[24] = vsubq_s16(s2[31], s2[24]); + s3[25] = vsubq_s16(s2[30], s2[25]); + s3[26] = vsubq_s16(s1[29], s1[26]); + s3[27] = vsubq_s16(s1[28], s1[27]); + s2[28] = vaddq_s16(s1[27], s1[28]); + s2[29] = vaddq_s16(s1[26], s1[29]); + s2[30] = vaddq_s16(s2[25], s2[30]); + s2[31] = vaddq_s16(s2[24], s2[31]); + + // stage 7 + s1[0] = vaddq_s16(s2[0], s1[15]); + s1[1] = vaddq_s16(s2[1], s1[14]); + s1[2] = vaddq_s16(s2[2], s2[13]); + s1[3] = vaddq_s16(s2[3], s2[12]); + s1[4] = vaddq_s16(s2[4], s2[11]); + s1[5] = vaddq_s16(s2[5], s2[10]); + s1[6] = vaddq_s16(s2[6], s1[9]); + s1[7] = vaddq_s16(s2[7], s1[8]); + s1[8] = vsubq_s16(s2[7], s1[8]); + s1[9] = vsubq_s16(s2[6], s1[9]); + s1[10] = vsubq_s16(s2[5], s2[10]); + s1[11] = vsubq_s16(s2[4], s2[11]); + s1[12] = vsubq_s16(s2[3], s2[12]); + s1[13] = vsubq_s16(s2[2], s2[13]); + s1[14] = vsubq_s16(s2[1], s1[14]); + s1[15] = vsubq_s16(s2[0], s1[15]); + + s1[20] = sub_multiply_shift_and_narrow_s16(s3[27], s2[20], cospi_16_64); + s1[27] = add_multiply_shift_and_narrow_s16(s2[20], s3[27], cospi_16_64); + + s1[21] = sub_multiply_shift_and_narrow_s16(s3[26], s2[21], cospi_16_64); + s1[26] = add_multiply_shift_and_narrow_s16(s2[21], s3[26], cospi_16_64); + + s2[22] = sub_multiply_shift_and_narrow_s16(s3[25], s1[22], cospi_16_64); + s1[25] = add_multiply_shift_and_narrow_s16(s1[22], s3[25], cospi_16_64); + + s2[23] = sub_multiply_shift_and_narrow_s16(s3[24], s1[23], cospi_16_64); + s1[24] = add_multiply_shift_and_narrow_s16(s1[23], s3[24], cospi_16_64); + + // final stage + out[0] = final_add(s1[0], s2[31]); + out[1] = final_add(s1[1], s2[30]); + out[2] = final_add(s1[2], s2[29]); + out[3] = final_add(s1[3], s2[28]); + out[4] = final_add(s1[4], s1[27]); + out[5] = final_add(s1[5], s1[26]); + out[6] = final_add(s1[6], s1[25]); + out[7] = final_add(s1[7], s1[24]); + out[8] = final_add(s1[8], s2[23]); + out[9] = final_add(s1[9], s2[22]); + out[10] = final_add(s1[10], s1[21]); + out[11] = final_add(s1[11], s1[20]); + out[12] = final_add(s1[12], s2[19]); + out[13] = final_add(s1[13], s2[18]); + out[14] = final_add(s1[14], s1[17]); + out[15] = final_add(s1[15], s1[16]); + out[16] = final_sub(s1[15], s1[16]); + out[17] = final_sub(s1[14], s1[17]); + out[18] = final_sub(s1[13], s2[18]); + out[19] = final_sub(s1[12], s2[19]); + out[20] = final_sub(s1[11], s1[20]); + out[21] = final_sub(s1[10], s1[21]); + out[22] = final_sub(s1[9], s2[22]); + out[23] = final_sub(s1[8], s2[23]); + out[24] = final_sub(s1[7], s1[24]); + out[25] = final_sub(s1[6], s1[25]); + out[26] = final_sub(s1[5], s1[26]); + out[27] = final_sub(s1[4], s1[27]); + out[28] = final_sub(s1[3], s2[28]); + out[29] = final_sub(s1[2], s2[29]); + out[30] = final_sub(s1[1], s2[30]); + out[31] = final_sub(s1[0], s2[31]); + + if (highbd_flag) { + highbd_add_and_store_bd8(out, output, stride); + } else { + uint8_t *const outputT = (uint8_t *)output; + add_and_store_u8_s16(out[0], out[1], out[2], out[3], out[4], out[5], out[6], + out[7], outputT, stride); + add_and_store_u8_s16(out[8], out[9], out[10], out[11], out[12], out[13], + out[14], out[15], outputT + (8 * stride), stride); + add_and_store_u8_s16(out[16], out[17], out[18], out[19], out[20], out[21], + out[22], out[23], outputT + (16 * stride), stride); + add_and_store_u8_s16(out[24], out[25], out[26], out[27], out[28], out[29], + out[30], out[31], outputT + (24 * stride), stride); + } +} + +void vpx_idct32x32_34_add_neon(const tran_low_t *input, uint8_t *dest, + int stride) { + int i; + int16_t temp[32 * 8]; + int16_t *t = temp; + + vpx_idct32_6_neon(input, t); + + for (i = 0; i < 32; i += 8) { + vpx_idct32_8_neon(t, dest, stride, 0); + t += (8 * 8); + dest += 8; + } +} diff --git a/vpx_dsp/arm/idct32x32_add_neon.c b/vpx_dsp/arm/idct32x32_add_neon.c new file mode 100644 index 0000000..9f4589e --- /dev/null +++ b/vpx_dsp/arm/idct32x32_add_neon.c @@ -0,0 +1,776 @@ +/* + * Copyright (c) 2014 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include + +#include "./vpx_config.h" +#include "./vpx_dsp_rtcd.h" +#include "vpx_dsp/arm/idct_neon.h" +#include "vpx_dsp/arm/mem_neon.h" +#include "vpx_dsp/arm/transpose_neon.h" +#include "vpx_dsp/txfm_common.h" + +static INLINE void load_from_transformed(const int16_t *const trans_buf, + const int first, const int second, + int16x8_t *const q0, + int16x8_t *const q1) { + *q0 = vld1q_s16(trans_buf + first * 8); + *q1 = vld1q_s16(trans_buf + second * 8); +} + +static INLINE void load_from_output(const int16_t *const out, const int first, + const int second, int16x8_t *const q0, + int16x8_t *const q1) { + *q0 = vld1q_s16(out + first * 32); + *q1 = vld1q_s16(out + second * 32); +} + +static INLINE void store_in_output(int16_t *const out, const int first, + const int second, const int16x8_t q0, + const int16x8_t q1) { + vst1q_s16(out + first * 32, q0); + vst1q_s16(out + second * 32, q1); +} + +static INLINE void store_combine_results(uint8_t *p1, uint8_t *p2, + const int stride, int16x8_t q0, + int16x8_t q1, int16x8_t q2, + int16x8_t q3) { + uint8x8_t d[4]; + + d[0] = vld1_u8(p1); + p1 += stride; + d[1] = vld1_u8(p1); + d[3] = vld1_u8(p2); + p2 -= stride; + d[2] = vld1_u8(p2); + + q0 = vrshrq_n_s16(q0, 6); + q1 = vrshrq_n_s16(q1, 6); + q2 = vrshrq_n_s16(q2, 6); + q3 = vrshrq_n_s16(q3, 6); + + q0 = vreinterpretq_s16_u16(vaddw_u8(vreinterpretq_u16_s16(q0), d[0])); + q1 = vreinterpretq_s16_u16(vaddw_u8(vreinterpretq_u16_s16(q1), d[1])); + q2 = vreinterpretq_s16_u16(vaddw_u8(vreinterpretq_u16_s16(q2), d[2])); + q3 = vreinterpretq_s16_u16(vaddw_u8(vreinterpretq_u16_s16(q3), d[3])); + + d[0] = vqmovun_s16(q0); + d[1] = vqmovun_s16(q1); + d[2] = vqmovun_s16(q2); + d[3] = vqmovun_s16(q3); + + vst1_u8(p1, d[1]); + p1 -= stride; + vst1_u8(p1, d[0]); + vst1_u8(p2, d[2]); + p2 += stride; + vst1_u8(p2, d[3]); +} + +static INLINE void highbd_store_combine_results_bd8(uint16_t *p1, uint16_t *p2, + const int stride, + int16x8_t q0, int16x8_t q1, + int16x8_t q2, + int16x8_t q3) { + uint16x8_t d[4]; + + d[0] = vld1q_u16(p1); + p1 += stride; + d[1] = vld1q_u16(p1); + d[3] = vld1q_u16(p2); + p2 -= stride; + d[2] = vld1q_u16(p2); + + q0 = vrshrq_n_s16(q0, 6); + q1 = vrshrq_n_s16(q1, 6); + q2 = vrshrq_n_s16(q2, 6); + q3 = vrshrq_n_s16(q3, 6); + + q0 = vaddq_s16(q0, vreinterpretq_s16_u16(d[0])); + q1 = vaddq_s16(q1, vreinterpretq_s16_u16(d[1])); + q2 = vaddq_s16(q2, vreinterpretq_s16_u16(d[2])); + q3 = vaddq_s16(q3, vreinterpretq_s16_u16(d[3])); + + d[0] = vmovl_u8(vqmovun_s16(q0)); + d[1] = vmovl_u8(vqmovun_s16(q1)); + d[2] = vmovl_u8(vqmovun_s16(q2)); + d[3] = vmovl_u8(vqmovun_s16(q3)); + + vst1q_u16(p1, d[1]); + p1 -= stride; + vst1q_u16(p1, d[0]); + vst1q_u16(p2, d[2]); + p2 += stride; + vst1q_u16(p2, d[3]); +} + +static INLINE void do_butterfly(const int16x8_t qIn0, const int16x8_t qIn1, + const int16_t first_const, + const int16_t second_const, + int16x8_t *const qOut0, + int16x8_t *const qOut1) { + int32x4_t q[4]; + int16x4_t d[6]; + + d[0] = vget_low_s16(qIn0); + d[1] = vget_high_s16(qIn0); + d[2] = vget_low_s16(qIn1); + d[3] = vget_high_s16(qIn1); + + // Note: using v{mul, mla, mls}l_n_s16 here slows down 35% with gcc 4.9. + d[4] = vdup_n_s16(first_const); + d[5] = vdup_n_s16(second_const); + + q[0] = vmull_s16(d[0], d[4]); + q[1] = vmull_s16(d[1], d[4]); + q[0] = vmlsl_s16(q[0], d[2], d[5]); + q[1] = vmlsl_s16(q[1], d[3], d[5]); + + q[2] = vmull_s16(d[0], d[5]); + q[3] = vmull_s16(d[1], d[5]); + q[2] = vmlal_s16(q[2], d[2], d[4]); + q[3] = vmlal_s16(q[3], d[3], d[4]); + + *qOut0 = vcombine_s16(vrshrn_n_s32(q[0], DCT_CONST_BITS), + vrshrn_n_s32(q[1], DCT_CONST_BITS)); + *qOut1 = vcombine_s16(vrshrn_n_s32(q[2], DCT_CONST_BITS), + vrshrn_n_s32(q[3], DCT_CONST_BITS)); +} + +static INLINE void load_s16x8q(const int16_t *in, int16x8_t *const s0, + int16x8_t *const s1, int16x8_t *const s2, + int16x8_t *const s3, int16x8_t *const s4, + int16x8_t *const s5, int16x8_t *const s6, + int16x8_t *const s7) { + *s0 = vld1q_s16(in); + in += 32; + *s1 = vld1q_s16(in); + in += 32; + *s2 = vld1q_s16(in); + in += 32; + *s3 = vld1q_s16(in); + in += 32; + *s4 = vld1q_s16(in); + in += 32; + *s5 = vld1q_s16(in); + in += 32; + *s6 = vld1q_s16(in); + in += 32; + *s7 = vld1q_s16(in); +} + +static INLINE void transpose_and_store_s16_8x8(int16x8_t a0, int16x8_t a1, + int16x8_t a2, int16x8_t a3, + int16x8_t a4, int16x8_t a5, + int16x8_t a6, int16x8_t a7, + int16_t **out) { + transpose_s16_8x8(&a0, &a1, &a2, &a3, &a4, &a5, &a6, &a7); + + vst1q_s16(*out, a0); + *out += 8; + vst1q_s16(*out, a1); + *out += 8; + vst1q_s16(*out, a2); + *out += 8; + vst1q_s16(*out, a3); + *out += 8; + vst1q_s16(*out, a4); + *out += 8; + vst1q_s16(*out, a5); + *out += 8; + vst1q_s16(*out, a6); + *out += 8; + vst1q_s16(*out, a7); + *out += 8; +} + +static INLINE void idct32_transpose_pair(const int16_t *input, int16_t *t_buf) { + int i; + int16x8_t s0, s1, s2, s3, s4, s5, s6, s7; + + for (i = 0; i < 4; i++, input += 8) { + load_s16x8q(input, &s0, &s1, &s2, &s3, &s4, &s5, &s6, &s7); + transpose_and_store_s16_8x8(s0, s1, s2, s3, s4, s5, s6, s7, &t_buf); + } +} + +#if CONFIG_VP9_HIGHBITDEPTH +static INLINE void load_s16x8q_tran_low( + const tran_low_t *in, int16x8_t *const s0, int16x8_t *const s1, + int16x8_t *const s2, int16x8_t *const s3, int16x8_t *const s4, + int16x8_t *const s5, int16x8_t *const s6, int16x8_t *const s7) { + *s0 = load_tran_low_to_s16q(in); + in += 32; + *s1 = load_tran_low_to_s16q(in); + in += 32; + *s2 = load_tran_low_to_s16q(in); + in += 32; + *s3 = load_tran_low_to_s16q(in); + in += 32; + *s4 = load_tran_low_to_s16q(in); + in += 32; + *s5 = load_tran_low_to_s16q(in); + in += 32; + *s6 = load_tran_low_to_s16q(in); + in += 32; + *s7 = load_tran_low_to_s16q(in); +} + +static INLINE void idct32_transpose_pair_tran_low(const tran_low_t *input, + int16_t *t_buf) { + int i; + int16x8_t s0, s1, s2, s3, s4, s5, s6, s7; + + for (i = 0; i < 4; i++, input += 8) { + load_s16x8q_tran_low(input, &s0, &s1, &s2, &s3, &s4, &s5, &s6, &s7); + transpose_and_store_s16_8x8(s0, s1, s2, s3, s4, s5, s6, s7, &t_buf); + } +} +#else // !CONFIG_VP9_HIGHBITDEPTH +#define idct32_transpose_pair_tran_low idct32_transpose_pair +#endif // CONFIG_VP9_HIGHBITDEPTH + +static INLINE void idct32_bands_end_1st_pass(int16_t *const out, + int16x8_t *const q) { + store_in_output(out, 16, 17, q[6], q[7]); + store_in_output(out, 14, 15, q[8], q[9]); + + load_from_output(out, 30, 31, &q[0], &q[1]); + q[4] = vaddq_s16(q[2], q[1]); + q[5] = vaddq_s16(q[3], q[0]); + q[6] = vsubq_s16(q[3], q[0]); + q[7] = vsubq_s16(q[2], q[1]); + store_in_output(out, 30, 31, q[6], q[7]); + store_in_output(out, 0, 1, q[4], q[5]); + + load_from_output(out, 12, 13, &q[0], &q[1]); + q[2] = vaddq_s16(q[10], q[1]); + q[3] = vaddq_s16(q[11], q[0]); + q[4] = vsubq_s16(q[11], q[0]); + q[5] = vsubq_s16(q[10], q[1]); + + load_from_output(out, 18, 19, &q[0], &q[1]); + q[8] = vaddq_s16(q[4], q[1]); + q[9] = vaddq_s16(q[5], q[0]); + q[6] = vsubq_s16(q[5], q[0]); + q[7] = vsubq_s16(q[4], q[1]); + store_in_output(out, 18, 19, q[6], q[7]); + store_in_output(out, 12, 13, q[8], q[9]); + + load_from_output(out, 28, 29, &q[0], &q[1]); + q[4] = vaddq_s16(q[2], q[1]); + q[5] = vaddq_s16(q[3], q[0]); + q[6] = vsubq_s16(q[3], q[0]); + q[7] = vsubq_s16(q[2], q[1]); + store_in_output(out, 28, 29, q[6], q[7]); + store_in_output(out, 2, 3, q[4], q[5]); + + load_from_output(out, 10, 11, &q[0], &q[1]); + q[2] = vaddq_s16(q[12], q[1]); + q[3] = vaddq_s16(q[13], q[0]); + q[4] = vsubq_s16(q[13], q[0]); + q[5] = vsubq_s16(q[12], q[1]); + + load_from_output(out, 20, 21, &q[0], &q[1]); + q[8] = vaddq_s16(q[4], q[1]); + q[9] = vaddq_s16(q[5], q[0]); + q[6] = vsubq_s16(q[5], q[0]); + q[7] = vsubq_s16(q[4], q[1]); + store_in_output(out, 20, 21, q[6], q[7]); + store_in_output(out, 10, 11, q[8], q[9]); + + load_from_output(out, 26, 27, &q[0], &q[1]); + q[4] = vaddq_s16(q[2], q[1]); + q[5] = vaddq_s16(q[3], q[0]); + q[6] = vsubq_s16(q[3], q[0]); + q[7] = vsubq_s16(q[2], q[1]); + store_in_output(out, 26, 27, q[6], q[7]); + store_in_output(out, 4, 5, q[4], q[5]); + + load_from_output(out, 8, 9, &q[0], &q[1]); + q[2] = vaddq_s16(q[14], q[1]); + q[3] = vaddq_s16(q[15], q[0]); + q[4] = vsubq_s16(q[15], q[0]); + q[5] = vsubq_s16(q[14], q[1]); + + load_from_output(out, 22, 23, &q[0], &q[1]); + q[8] = vaddq_s16(q[4], q[1]); + q[9] = vaddq_s16(q[5], q[0]); + q[6] = vsubq_s16(q[5], q[0]); + q[7] = vsubq_s16(q[4], q[1]); + store_in_output(out, 22, 23, q[6], q[7]); + store_in_output(out, 8, 9, q[8], q[9]); + + load_from_output(out, 24, 25, &q[0], &q[1]); + q[4] = vaddq_s16(q[2], q[1]); + q[5] = vaddq_s16(q[3], q[0]); + q[6] = vsubq_s16(q[3], q[0]); + q[7] = vsubq_s16(q[2], q[1]); + store_in_output(out, 24, 25, q[6], q[7]); + store_in_output(out, 6, 7, q[4], q[5]); +} + +static INLINE void idct32_bands_end_2nd_pass(const int16_t *const out, + uint8_t *const dest, + const int stride, + int16x8_t *const q) { + uint8_t *dest0 = dest + 0 * stride; + uint8_t *dest1 = dest + 31 * stride; + uint8_t *dest2 = dest + 16 * stride; + uint8_t *dest3 = dest + 15 * stride; + const int str2 = stride << 1; + + store_combine_results(dest2, dest3, stride, q[6], q[7], q[8], q[9]); + dest2 += str2; + dest3 -= str2; + + load_from_output(out, 30, 31, &q[0], &q[1]); + q[4] = final_add(q[2], q[1]); + q[5] = final_add(q[3], q[0]); + q[6] = final_sub(q[3], q[0]); + q[7] = final_sub(q[2], q[1]); + store_combine_results(dest0, dest1, stride, q[4], q[5], q[6], q[7]); + dest0 += str2; + dest1 -= str2; + + load_from_output(out, 12, 13, &q[0], &q[1]); + q[2] = vaddq_s16(q[10], q[1]); + q[3] = vaddq_s16(q[11], q[0]); + q[4] = vsubq_s16(q[11], q[0]); + q[5] = vsubq_s16(q[10], q[1]); + + load_from_output(out, 18, 19, &q[0], &q[1]); + q[8] = final_add(q[4], q[1]); + q[9] = final_add(q[5], q[0]); + q[6] = final_sub(q[5], q[0]); + q[7] = final_sub(q[4], q[1]); + store_combine_results(dest2, dest3, stride, q[6], q[7], q[8], q[9]); + dest2 += str2; + dest3 -= str2; + + load_from_output(out, 28, 29, &q[0], &q[1]); + q[4] = final_add(q[2], q[1]); + q[5] = final_add(q[3], q[0]); + q[6] = final_sub(q[3], q[0]); + q[7] = final_sub(q[2], q[1]); + store_combine_results(dest0, dest1, stride, q[4], q[5], q[6], q[7]); + dest0 += str2; + dest1 -= str2; + + load_from_output(out, 10, 11, &q[0], &q[1]); + q[2] = vaddq_s16(q[12], q[1]); + q[3] = vaddq_s16(q[13], q[0]); + q[4] = vsubq_s16(q[13], q[0]); + q[5] = vsubq_s16(q[12], q[1]); + + load_from_output(out, 20, 21, &q[0], &q[1]); + q[8] = final_add(q[4], q[1]); + q[9] = final_add(q[5], q[0]); + q[6] = final_sub(q[5], q[0]); + q[7] = final_sub(q[4], q[1]); + store_combine_results(dest2, dest3, stride, q[6], q[7], q[8], q[9]); + dest2 += str2; + dest3 -= str2; + + load_from_output(out, 26, 27, &q[0], &q[1]); + q[4] = final_add(q[2], q[1]); + q[5] = final_add(q[3], q[0]); + q[6] = final_sub(q[3], q[0]); + q[7] = final_sub(q[2], q[1]); + store_combine_results(dest0, dest1, stride, q[4], q[5], q[6], q[7]); + dest0 += str2; + dest1 -= str2; + + load_from_output(out, 8, 9, &q[0], &q[1]); + q[2] = vaddq_s16(q[14], q[1]); + q[3] = vaddq_s16(q[15], q[0]); + q[4] = vsubq_s16(q[15], q[0]); + q[5] = vsubq_s16(q[14], q[1]); + + load_from_output(out, 22, 23, &q[0], &q[1]); + q[8] = final_add(q[4], q[1]); + q[9] = final_add(q[5], q[0]); + q[6] = final_sub(q[5], q[0]); + q[7] = final_sub(q[4], q[1]); + store_combine_results(dest2, dest3, stride, q[6], q[7], q[8], q[9]); + + load_from_output(out, 24, 25, &q[0], &q[1]); + q[4] = final_add(q[2], q[1]); + q[5] = final_add(q[3], q[0]); + q[6] = final_sub(q[3], q[0]); + q[7] = final_sub(q[2], q[1]); + store_combine_results(dest0, dest1, stride, q[4], q[5], q[6], q[7]); +} + +static INLINE void highbd_idct32_bands_end_2nd_pass_bd8( + const int16_t *const out, uint16_t *const dest, const int stride, + int16x8_t *const q) { + uint16_t *dest0 = dest + 0 * stride; + uint16_t *dest1 = dest + 31 * stride; + uint16_t *dest2 = dest + 16 * stride; + uint16_t *dest3 = dest + 15 * stride; + const int str2 = stride << 1; + + highbd_store_combine_results_bd8(dest2, dest3, stride, q[6], q[7], q[8], + q[9]); + dest2 += str2; + dest3 -= str2; + + load_from_output(out, 30, 31, &q[0], &q[1]); + q[4] = final_add(q[2], q[1]); + q[5] = final_add(q[3], q[0]); + q[6] = final_sub(q[3], q[0]); + q[7] = final_sub(q[2], q[1]); + highbd_store_combine_results_bd8(dest0, dest1, stride, q[4], q[5], q[6], + q[7]); + dest0 += str2; + dest1 -= str2; + + load_from_output(out, 12, 13, &q[0], &q[1]); + q[2] = vaddq_s16(q[10], q[1]); + q[3] = vaddq_s16(q[11], q[0]); + q[4] = vsubq_s16(q[11], q[0]); + q[5] = vsubq_s16(q[10], q[1]); + + load_from_output(out, 18, 19, &q[0], &q[1]); + q[8] = final_add(q[4], q[1]); + q[9] = final_add(q[5], q[0]); + q[6] = final_sub(q[5], q[0]); + q[7] = final_sub(q[4], q[1]); + highbd_store_combine_results_bd8(dest2, dest3, stride, q[6], q[7], q[8], + q[9]); + dest2 += str2; + dest3 -= str2; + + load_from_output(out, 28, 29, &q[0], &q[1]); + q[4] = final_add(q[2], q[1]); + q[5] = final_add(q[3], q[0]); + q[6] = final_sub(q[3], q[0]); + q[7] = final_sub(q[2], q[1]); + highbd_store_combine_results_bd8(dest0, dest1, stride, q[4], q[5], q[6], + q[7]); + dest0 += str2; + dest1 -= str2; + + load_from_output(out, 10, 11, &q[0], &q[1]); + q[2] = vaddq_s16(q[12], q[1]); + q[3] = vaddq_s16(q[13], q[0]); + q[4] = vsubq_s16(q[13], q[0]); + q[5] = vsubq_s16(q[12], q[1]); + + load_from_output(out, 20, 21, &q[0], &q[1]); + q[8] = final_add(q[4], q[1]); + q[9] = final_add(q[5], q[0]); + q[6] = final_sub(q[5], q[0]); + q[7] = final_sub(q[4], q[1]); + highbd_store_combine_results_bd8(dest2, dest3, stride, q[6], q[7], q[8], + q[9]); + dest2 += str2; + dest3 -= str2; + + load_from_output(out, 26, 27, &q[0], &q[1]); + q[4] = final_add(q[2], q[1]); + q[5] = final_add(q[3], q[0]); + q[6] = final_sub(q[3], q[0]); + q[7] = final_sub(q[2], q[1]); + highbd_store_combine_results_bd8(dest0, dest1, stride, q[4], q[5], q[6], + q[7]); + dest0 += str2; + dest1 -= str2; + + load_from_output(out, 8, 9, &q[0], &q[1]); + q[2] = vaddq_s16(q[14], q[1]); + q[3] = vaddq_s16(q[15], q[0]); + q[4] = vsubq_s16(q[15], q[0]); + q[5] = vsubq_s16(q[14], q[1]); + + load_from_output(out, 22, 23, &q[0], &q[1]); + q[8] = final_add(q[4], q[1]); + q[9] = final_add(q[5], q[0]); + q[6] = final_sub(q[5], q[0]); + q[7] = final_sub(q[4], q[1]); + highbd_store_combine_results_bd8(dest2, dest3, stride, q[6], q[7], q[8], + q[9]); + + load_from_output(out, 24, 25, &q[0], &q[1]); + q[4] = final_add(q[2], q[1]); + q[5] = final_add(q[3], q[0]); + q[6] = final_sub(q[3], q[0]); + q[7] = final_sub(q[2], q[1]); + highbd_store_combine_results_bd8(dest0, dest1, stride, q[4], q[5], q[6], + q[7]); +} + +void vpx_idct32_32_neon(const tran_low_t *input, uint8_t *dest, + const int stride, const int highbd_flag) { + int i, idct32_pass_loop; + int16_t trans_buf[32 * 8]; + int16_t pass1[32 * 32]; + int16_t pass2[32 * 32]; + const int16_t *input_pass2 = pass1; // input of pass2 is the result of pass1 + int16_t *out; + int16x8_t q[16]; + uint16_t *dst = CAST_TO_SHORTPTR(dest); + + for (idct32_pass_loop = 0, out = pass1; idct32_pass_loop < 2; + idct32_pass_loop++, out = pass2) { + for (i = 0; i < 4; i++, out += 8) { // idct32_bands_loop + if (idct32_pass_loop == 0) { + idct32_transpose_pair_tran_low(input, trans_buf); + input += 32 * 8; + } else { + idct32_transpose_pair(input_pass2, trans_buf); + input_pass2 += 32 * 8; + } + + // ----------------------------------------- + // BLOCK A: 16-19,28-31 + // ----------------------------------------- + // generate 16,17,30,31 + // part of stage 1 + load_from_transformed(trans_buf, 1, 31, &q[14], &q[13]); + do_butterfly(q[14], q[13], cospi_31_64, cospi_1_64, &q[0], &q[2]); + load_from_transformed(trans_buf, 17, 15, &q[14], &q[13]); + do_butterfly(q[14], q[13], cospi_15_64, cospi_17_64, &q[1], &q[3]); + // part of stage 2 + q[4] = vaddq_s16(q[0], q[1]); + q[13] = vsubq_s16(q[0], q[1]); + q[6] = vaddq_s16(q[2], q[3]); + q[14] = vsubq_s16(q[2], q[3]); + // part of stage 3 + do_butterfly(q[14], q[13], cospi_28_64, cospi_4_64, &q[5], &q[7]); + + // generate 18,19,28,29 + // part of stage 1 + load_from_transformed(trans_buf, 9, 23, &q[14], &q[13]); + do_butterfly(q[14], q[13], cospi_23_64, cospi_9_64, &q[0], &q[2]); + load_from_transformed(trans_buf, 25, 7, &q[14], &q[13]); + do_butterfly(q[14], q[13], cospi_7_64, cospi_25_64, &q[1], &q[3]); + // part of stage 2 + q[13] = vsubq_s16(q[3], q[2]); + q[3] = vaddq_s16(q[3], q[2]); + q[14] = vsubq_s16(q[1], q[0]); + q[2] = vaddq_s16(q[1], q[0]); + // part of stage 3 + do_butterfly(q[14], q[13], -cospi_4_64, -cospi_28_64, &q[1], &q[0]); + // part of stage 4 + q[8] = vaddq_s16(q[4], q[2]); + q[9] = vaddq_s16(q[5], q[0]); + q[10] = vaddq_s16(q[7], q[1]); + q[15] = vaddq_s16(q[6], q[3]); + q[13] = vsubq_s16(q[5], q[0]); + q[14] = vsubq_s16(q[7], q[1]); + store_in_output(out, 16, 31, q[8], q[15]); + store_in_output(out, 17, 30, q[9], q[10]); + // part of stage 5 + do_butterfly(q[14], q[13], cospi_24_64, cospi_8_64, &q[0], &q[1]); + store_in_output(out, 29, 18, q[1], q[0]); + // part of stage 4 + q[13] = vsubq_s16(q[4], q[2]); + q[14] = vsubq_s16(q[6], q[3]); + // part of stage 5 + do_butterfly(q[14], q[13], cospi_24_64, cospi_8_64, &q[4], &q[6]); + store_in_output(out, 19, 28, q[4], q[6]); + + // ----------------------------------------- + // BLOCK B: 20-23,24-27 + // ----------------------------------------- + // generate 20,21,26,27 + // part of stage 1 + load_from_transformed(trans_buf, 5, 27, &q[14], &q[13]); + do_butterfly(q[14], q[13], cospi_27_64, cospi_5_64, &q[0], &q[2]); + load_from_transformed(trans_buf, 21, 11, &q[14], &q[13]); + do_butterfly(q[14], q[13], cospi_11_64, cospi_21_64, &q[1], &q[3]); + // part of stage 2 + q[13] = vsubq_s16(q[0], q[1]); + q[0] = vaddq_s16(q[0], q[1]); + q[14] = vsubq_s16(q[2], q[3]); + q[2] = vaddq_s16(q[2], q[3]); + // part of stage 3 + do_butterfly(q[14], q[13], cospi_12_64, cospi_20_64, &q[1], &q[3]); + + // generate 22,23,24,25 + // part of stage 1 + load_from_transformed(trans_buf, 13, 19, &q[14], &q[13]); + do_butterfly(q[14], q[13], cospi_19_64, cospi_13_64, &q[5], &q[7]); + load_from_transformed(trans_buf, 29, 3, &q[14], &q[13]); + do_butterfly(q[14], q[13], cospi_3_64, cospi_29_64, &q[4], &q[6]); + // part of stage 2 + q[14] = vsubq_s16(q[4], q[5]); + q[5] = vaddq_s16(q[4], q[5]); + q[13] = vsubq_s16(q[6], q[7]); + q[6] = vaddq_s16(q[6], q[7]); + // part of stage 3 + do_butterfly(q[14], q[13], -cospi_20_64, -cospi_12_64, &q[4], &q[7]); + // part of stage 4 + q[10] = vaddq_s16(q[7], q[1]); + q[11] = vaddq_s16(q[5], q[0]); + q[12] = vaddq_s16(q[6], q[2]); + q[15] = vaddq_s16(q[4], q[3]); + // part of stage 6 + load_from_output(out, 16, 17, &q[14], &q[13]); + q[8] = vaddq_s16(q[14], q[11]); + q[9] = vaddq_s16(q[13], q[10]); + q[13] = vsubq_s16(q[13], q[10]); + q[11] = vsubq_s16(q[14], q[11]); + store_in_output(out, 17, 16, q[9], q[8]); + load_from_output(out, 30, 31, &q[14], &q[9]); + q[8] = vsubq_s16(q[9], q[12]); + q[10] = vaddq_s16(q[14], q[15]); + q[14] = vsubq_s16(q[14], q[15]); + q[12] = vaddq_s16(q[9], q[12]); + store_in_output(out, 30, 31, q[10], q[12]); + // part of stage 7 + do_butterfly(q[14], q[13], cospi_16_64, cospi_16_64, &q[13], &q[14]); + store_in_output(out, 25, 22, q[14], q[13]); + do_butterfly(q[8], q[11], cospi_16_64, cospi_16_64, &q[13], &q[14]); + store_in_output(out, 24, 23, q[14], q[13]); + // part of stage 4 + q[14] = vsubq_s16(q[5], q[0]); + q[13] = vsubq_s16(q[6], q[2]); + do_butterfly(q[14], q[13], -cospi_8_64, -cospi_24_64, &q[5], &q[6]); + q[14] = vsubq_s16(q[7], q[1]); + q[13] = vsubq_s16(q[4], q[3]); + do_butterfly(q[14], q[13], -cospi_8_64, -cospi_24_64, &q[0], &q[1]); + // part of stage 6 + load_from_output(out, 18, 19, &q[14], &q[13]); + q[8] = vaddq_s16(q[14], q[1]); + q[9] = vaddq_s16(q[13], q[6]); + q[13] = vsubq_s16(q[13], q[6]); + q[1] = vsubq_s16(q[14], q[1]); + store_in_output(out, 18, 19, q[8], q[9]); + load_from_output(out, 28, 29, &q[8], &q[9]); + q[14] = vsubq_s16(q[8], q[5]); + q[10] = vaddq_s16(q[8], q[5]); + q[11] = vaddq_s16(q[9], q[0]); + q[0] = vsubq_s16(q[9], q[0]); + store_in_output(out, 28, 29, q[10], q[11]); + // part of stage 7 + do_butterfly(q[14], q[13], cospi_16_64, cospi_16_64, &q[13], &q[14]); + store_in_output(out, 20, 27, q[13], q[14]); + do_butterfly(q[0], q[1], cospi_16_64, cospi_16_64, &q[1], &q[0]); + store_in_output(out, 21, 26, q[1], q[0]); + + // ----------------------------------------- + // BLOCK C: 8-10,11-15 + // ----------------------------------------- + // generate 8,9,14,15 + // part of stage 2 + load_from_transformed(trans_buf, 2, 30, &q[14], &q[13]); + do_butterfly(q[14], q[13], cospi_30_64, cospi_2_64, &q[0], &q[2]); + load_from_transformed(trans_buf, 18, 14, &q[14], &q[13]); + do_butterfly(q[14], q[13], cospi_14_64, cospi_18_64, &q[1], &q[3]); + // part of stage 3 + q[13] = vsubq_s16(q[0], q[1]); + q[0] = vaddq_s16(q[0], q[1]); + q[14] = vsubq_s16(q[2], q[3]); + q[2] = vaddq_s16(q[2], q[3]); + // part of stage 4 + do_butterfly(q[14], q[13], cospi_24_64, cospi_8_64, &q[1], &q[3]); + + // generate 10,11,12,13 + // part of stage 2 + load_from_transformed(trans_buf, 10, 22, &q[14], &q[13]); + do_butterfly(q[14], q[13], cospi_22_64, cospi_10_64, &q[5], &q[7]); + load_from_transformed(trans_buf, 26, 6, &q[14], &q[13]); + do_butterfly(q[14], q[13], cospi_6_64, cospi_26_64, &q[4], &q[6]); + // part of stage 3 + q[14] = vsubq_s16(q[4], q[5]); + q[5] = vaddq_s16(q[4], q[5]); + q[13] = vsubq_s16(q[6], q[7]); + q[6] = vaddq_s16(q[6], q[7]); + // part of stage 4 + do_butterfly(q[14], q[13], -cospi_8_64, -cospi_24_64, &q[4], &q[7]); + // part of stage 5 + q[8] = vaddq_s16(q[0], q[5]); + q[9] = vaddq_s16(q[1], q[7]); + q[13] = vsubq_s16(q[1], q[7]); + q[14] = vsubq_s16(q[3], q[4]); + q[10] = vaddq_s16(q[3], q[4]); + q[15] = vaddq_s16(q[2], q[6]); + store_in_output(out, 8, 15, q[8], q[15]); + store_in_output(out, 9, 14, q[9], q[10]); + // part of stage 6 + do_butterfly(q[14], q[13], cospi_16_64, cospi_16_64, &q[1], &q[3]); + store_in_output(out, 13, 10, q[3], q[1]); + q[13] = vsubq_s16(q[0], q[5]); + q[14] = vsubq_s16(q[2], q[6]); + do_butterfly(q[14], q[13], cospi_16_64, cospi_16_64, &q[1], &q[3]); + store_in_output(out, 11, 12, q[1], q[3]); + + // ----------------------------------------- + // BLOCK D: 0-3,4-7 + // ----------------------------------------- + // generate 4,5,6,7 + // part of stage 3 + load_from_transformed(trans_buf, 4, 28, &q[14], &q[13]); + do_butterfly(q[14], q[13], cospi_28_64, cospi_4_64, &q[0], &q[2]); + load_from_transformed(trans_buf, 20, 12, &q[14], &q[13]); + do_butterfly(q[14], q[13], cospi_12_64, cospi_20_64, &q[1], &q[3]); + // part of stage 4 + q[13] = vsubq_s16(q[0], q[1]); + q[0] = vaddq_s16(q[0], q[1]); + q[14] = vsubq_s16(q[2], q[3]); + q[2] = vaddq_s16(q[2], q[3]); + // part of stage 5 + do_butterfly(q[14], q[13], cospi_16_64, cospi_16_64, &q[1], &q[3]); + + // generate 0,1,2,3 + // part of stage 4 + load_from_transformed(trans_buf, 0, 16, &q[14], &q[13]); + do_butterfly(q[14], q[13], cospi_16_64, cospi_16_64, &q[5], &q[7]); + load_from_transformed(trans_buf, 8, 24, &q[14], &q[13]); + do_butterfly(q[14], q[13], cospi_24_64, cospi_8_64, &q[14], &q[6]); + // part of stage 5 + q[4] = vaddq_s16(q[7], q[6]); + q[7] = vsubq_s16(q[7], q[6]); + q[6] = vsubq_s16(q[5], q[14]); + q[5] = vaddq_s16(q[5], q[14]); + // part of stage 6 + q[8] = vaddq_s16(q[4], q[2]); + q[9] = vaddq_s16(q[5], q[3]); + q[10] = vaddq_s16(q[6], q[1]); + q[11] = vaddq_s16(q[7], q[0]); + q[12] = vsubq_s16(q[7], q[0]); + q[13] = vsubq_s16(q[6], q[1]); + q[14] = vsubq_s16(q[5], q[3]); + q[15] = vsubq_s16(q[4], q[2]); + // part of stage 7 + load_from_output(out, 14, 15, &q[0], &q[1]); + q[2] = vaddq_s16(q[8], q[1]); + q[3] = vaddq_s16(q[9], q[0]); + q[4] = vsubq_s16(q[9], q[0]); + q[5] = vsubq_s16(q[8], q[1]); + load_from_output(out, 16, 17, &q[0], &q[1]); + q[8] = final_add(q[4], q[1]); + q[9] = final_add(q[5], q[0]); + q[6] = final_sub(q[5], q[0]); + q[7] = final_sub(q[4], q[1]); + + if (idct32_pass_loop == 0) { + idct32_bands_end_1st_pass(out, q); + } else { + if (highbd_flag) { + highbd_idct32_bands_end_2nd_pass_bd8(out, dst, stride, q); + dst += 8; + } else { + idct32_bands_end_2nd_pass(out, dest, stride, q); + dest += 8; + } + } + } + } +} + +void vpx_idct32x32_1024_add_neon(const tran_low_t *input, uint8_t *dest, + int stride) { + vpx_idct32_32_neon(input, dest, stride, 0); +} diff --git a/vpx_dsp/arm/idct4x4_1_add_neon.asm b/vpx_dsp/arm/idct4x4_1_add_neon.asm new file mode 100644 index 0000000..d83421e --- /dev/null +++ b/vpx_dsp/arm/idct4x4_1_add_neon.asm @@ -0,0 +1,66 @@ +; +; Copyright (c) 2013 The WebM project authors. All Rights Reserved. +; +; Use of this source code is governed by a BSD-style license and patent +; grant that can be found in the LICENSE file in the root of the source +; tree. All contributing project authors may be found in the AUTHORS +; file in the root of the source tree. +; + + + EXPORT |vpx_idct4x4_1_add_neon| + ARM + REQUIRE8 + PRESERVE8 + + AREA ||.text||, CODE, READONLY, ALIGN=2 + +;void vpx_idct4x4_1_add_neon(int16_t *input, uint8_t *dest, int stride) +; +; r0 int16_t input +; r1 uint8_t *dest +; r2 int stride) + +|vpx_idct4x4_1_add_neon| PROC + ldrsh r0, [r0] + + ; cospi_16_64 = 11585 + movw r12, #0x2d41 + + ; out = dct_const_round_shift(input[0] * cospi_16_64) + mul r0, r0, r12 ; input[0] * cospi_16_64 + add r0, r0, #0x2000 ; +(1 << ((DCT_CONST_BITS) - 1)) + asr r0, r0, #14 ; >> DCT_CONST_BITS + + ; out = dct_const_round_shift(out * cospi_16_64) + mul r0, r0, r12 ; out * cospi_16_64 + mov r12, r1 ; save dest + add r0, r0, #0x2000 ; +(1 << ((DCT_CONST_BITS) - 1)) + asr r0, r0, #14 ; >> DCT_CONST_BITS + + ; a1 = ROUND_POWER_OF_TWO(out, 4) + add r0, r0, #8 ; + (1 <<((4) - 1)) + asr r0, r0, #4 ; >> 4 + + vdup.s16 q0, r0 ; duplicate a1 + + vld1.32 {d2[0]}, [r1], r2 + vld1.32 {d2[1]}, [r1], r2 + vld1.32 {d4[0]}, [r1], r2 + vld1.32 {d4[1]}, [r1] + + vaddw.u8 q8, q0, d2 ; dest[x] + a1 + vaddw.u8 q9, q0, d4 + + vqmovun.s16 d6, q8 ; clip_pixel + vqmovun.s16 d7, q9 + + vst1.32 {d6[0]}, [r12], r2 + vst1.32 {d6[1]}, [r12], r2 + vst1.32 {d7[0]}, [r12], r2 + vst1.32 {d7[1]}, [r12] + + bx lr + ENDP ; |vpx_idct4x4_1_add_neon| + + END diff --git a/vpx_dsp/arm/idct4x4_1_add_neon.c b/vpx_dsp/arm/idct4x4_1_add_neon.c new file mode 100644 index 0000000..a14b895 --- /dev/null +++ b/vpx_dsp/arm/idct4x4_1_add_neon.c @@ -0,0 +1,47 @@ +/* + * Copyright (c) 2014 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include + +#include "./vpx_dsp_rtcd.h" +#include "vpx_dsp/arm/mem_neon.h" +#include "vpx_dsp/inv_txfm.h" + +static INLINE void idct4x4_1_add_kernel(uint8_t **dest, const int stride, + const int16x8_t res, + uint32x2_t *const d) { + uint16x8_t a; + uint8x8_t b; + *d = vld1_lane_u32((const uint32_t *)*dest, *d, 0); + *d = vld1_lane_u32((const uint32_t *)(*dest + stride), *d, 1); + a = vaddw_u8(vreinterpretq_u16_s16(res), vreinterpret_u8_u32(*d)); + b = vqmovun_s16(vreinterpretq_s16_u16(a)); + vst1_lane_u32((uint32_t *)*dest, vreinterpret_u32_u8(b), 0); + *dest += stride; + vst1_lane_u32((uint32_t *)*dest, vreinterpret_u32_u8(b), 1); + *dest += stride; +} + +void vpx_idct4x4_1_add_neon(const tran_low_t *input, uint8_t *dest, + int stride) { + const int16_t out0 = + WRAPLOW(dct_const_round_shift((int16_t)input[0] * cospi_16_64)); + const int16_t out1 = WRAPLOW(dct_const_round_shift(out0 * cospi_16_64)); + const int16_t a1 = ROUND_POWER_OF_TWO(out1, 4); + const int16x8_t dc = vdupq_n_s16(a1); + uint32x2_t d = vdup_n_u32(0); + + assert(!((intptr_t)dest % sizeof(uint32_t))); + assert(!(stride % sizeof(uint32_t))); + + idct4x4_1_add_kernel(&dest, stride, dc, &d); + idct4x4_1_add_kernel(&dest, stride, dc, &d); +} diff --git a/vpx_dsp/arm/idct4x4_add_neon.asm b/vpx_dsp/arm/idct4x4_add_neon.asm new file mode 100644 index 0000000..184d218 --- /dev/null +++ b/vpx_dsp/arm/idct4x4_add_neon.asm @@ -0,0 +1,188 @@ +; +; Copyright (c) 2013 The WebM project authors. All Rights Reserved. +; +; Use of this source code is governed by a BSD-style license +; that can be found in the LICENSE file in the root of the source +; tree. An additional intellectual property rights grant can be found +; in the file PATENTS. All contributing project authors may +; be found in the AUTHORS file in the root of the source tree. +; + + EXPORT |vpx_idct4x4_16_add_neon| + ARM + REQUIRE8 + PRESERVE8 + + AREA ||.text||, CODE, READONLY, ALIGN=2 + + INCLUDE vpx_dsp/arm/idct_neon.asm.S + + AREA Block, CODE, READONLY ; name this block of code +;void vpx_idct4x4_16_add_neon(int16_t *input, uint8_t *dest, int stride) +; +; r0 int16_t input +; r1 uint8_t *dest +; r2 int stride) + +|vpx_idct4x4_16_add_neon| PROC + + ; The 2D transform is done with two passes which are actually pretty + ; similar. We first transform the rows. This is done by transposing + ; the inputs, doing an SIMD column transform (the columns are the + ; transposed rows) and then transpose the results (so that it goes back + ; in normal/row positions). Then, we transform the columns by doing + ; another SIMD column transform. + ; So, two passes of a transpose followed by a column transform. + + ; load the inputs into q8-q9, d16-d19 + LOAD_TRAN_LOW_TO_S16 d16, d17, d18, d19, r0 + + ; generate scalar constants + ; cospi_8_64 = 15137 + movw r0, #0x3b21 + ; cospi_16_64 = 11585 + movw r3, #0x2d41 + ; cospi_24_64 = 6270 + movw r12, #0x187e + + ; transpose the input data + ; 00 01 02 03 d16 + ; 10 11 12 13 d17 + ; 20 21 22 23 d18 + ; 30 31 32 33 d19 + vtrn.16 d16, d17 + vtrn.16 d18, d19 + + ; generate constant vectors + vdup.16 d20, r0 ; replicate cospi_8_64 + vdup.16 d21, r3 ; replicate cospi_16_64 + + ; 00 10 02 12 d16 + ; 01 11 03 13 d17 + ; 20 30 22 32 d18 + ; 21 31 23 33 d19 + vtrn.32 q8, q9 + ; 00 10 20 30 d16 + ; 01 11 21 31 d17 + ; 02 12 22 32 d18 + ; 03 13 23 33 d19 + + vdup.16 d22, r12 ; replicate cospi_24_64 + + ; do the transform on transposed rows + + ; stage 1 + vmull.s16 q15, d17, d22 ; input[1] * cospi_24_64 + vmull.s16 q1, d17, d20 ; input[1] * cospi_8_64 + + ; (input[0] + input[2]) * cospi_16_64; + ; (input[0] - input[2]) * cospi_16_64; + vmull.s16 q8, d16, d21 + vmull.s16 q14, d18, d21 + vadd.s32 q13, q8, q14 + vsub.s32 q14, q8, q14 + + ; input[1] * cospi_24_64 - input[3] * cospi_8_64; + ; input[1] * cospi_8_64 + input[3] * cospi_24_64; + vmlsl.s16 q15, d19, d20 + vmlal.s16 q1, d19, d22 + + ; dct_const_round_shift + vrshrn.s32 d26, q13, #14 + vrshrn.s32 d27, q14, #14 + vrshrn.s32 d29, q15, #14 + vrshrn.s32 d28, q1, #14 + + ; stage 2 + ; output[0] = step[0] + step[3]; + ; output[1] = step[1] + step[2]; + ; output[3] = step[0] - step[3]; + ; output[2] = step[1] - step[2]; + vadd.s16 q8, q13, q14 + vsub.s16 q9, q13, q14 + vswp d18, d19 + + ; transpose the results + ; 00 01 02 03 d16 + ; 10 11 12 13 d17 + ; 20 21 22 23 d18 + ; 30 31 32 33 d19 + vtrn.16 d16, d17 + vtrn.16 d18, d19 + ; 00 10 02 12 d16 + ; 01 11 03 13 d17 + ; 20 30 22 32 d18 + ; 21 31 23 33 d19 + vtrn.32 q8, q9 + ; 00 10 20 30 d16 + ; 01 11 21 31 d17 + ; 02 12 22 32 d18 + ; 03 13 23 33 d19 + + ; do the transform on columns + + ; stage 1 + vadd.s16 d23, d16, d18 ; (input[0] + input[2]) + vsub.s16 d24, d16, d18 ; (input[0] - input[2]) + + vmull.s16 q15, d17, d22 ; input[1] * cospi_24_64 + vmull.s16 q1, d17, d20 ; input[1] * cospi_8_64 + + ; (input[0] + input[2]) * cospi_16_64; + ; (input[0] - input[2]) * cospi_16_64; + vmull.s16 q13, d23, d21 + vmull.s16 q14, d24, d21 + + ; input[1] * cospi_24_64 - input[3] * cospi_8_64; + ; input[1] * cospi_8_64 + input[3] * cospi_24_64; + vmlsl.s16 q15, d19, d20 + vmlal.s16 q1, d19, d22 + + ; dct_const_round_shift + vrshrn.s32 d26, q13, #14 + vrshrn.s32 d27, q14, #14 + vrshrn.s32 d29, q15, #14 + vrshrn.s32 d28, q1, #14 + + ; stage 2 + ; output[0] = step[0] + step[3]; + ; output[1] = step[1] + step[2]; + ; output[3] = step[0] - step[3]; + ; output[2] = step[1] - step[2]; + vadd.s16 q8, q13, q14 + vsub.s16 q9, q13, q14 + + ; The results are in two registers, one of them being swapped. This will + ; be taken care of by loading the 'dest' value in a swapped fashion and + ; also storing them in the same swapped fashion. + ; temp_out[0, 1] = d16, d17 = q8 + ; temp_out[2, 3] = d19, d18 = q9 swapped + + ; ROUND_POWER_OF_TWO(temp_out[j], 4) + vrshr.s16 q8, q8, #4 + vrshr.s16 q9, q9, #4 + + vld1.32 {d26[0]}, [r1], r2 + vld1.32 {d26[1]}, [r1], r2 + vld1.32 {d27[1]}, [r1], r2 + vld1.32 {d27[0]}, [r1] ; no post-increment + + ; ROUND_POWER_OF_TWO(temp_out[j], 4) + dest[j * stride + i] + vaddw.u8 q8, q8, d26 + vaddw.u8 q9, q9, d27 + + ; clip_pixel + vqmovun.s16 d26, q8 + vqmovun.s16 d27, q9 + + ; do the stores in reverse order with negative post-increment, by changing + ; the sign of the stride + rsb r2, r2, #0 + vst1.32 {d27[0]}, [r1], r2 + vst1.32 {d27[1]}, [r1], r2 + vst1.32 {d26[1]}, [r1], r2 + vst1.32 {d26[0]}, [r1] ; no post-increment + bx lr + ENDP ; |vpx_idct4x4_16_add_neon| + + END diff --git a/vpx_dsp/arm/idct4x4_add_neon.c b/vpx_dsp/arm/idct4x4_add_neon.c new file mode 100644 index 0000000..673a368 --- /dev/null +++ b/vpx_dsp/arm/idct4x4_add_neon.c @@ -0,0 +1,62 @@ +/* + * Copyright (c) 2014 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include + +#include "./vpx_dsp_rtcd.h" +#include "vpx_dsp/arm/idct_neon.h" +#include "vpx_dsp/arm/mem_neon.h" +#include "vpx_dsp/txfm_common.h" + +void vpx_idct4x4_16_add_neon(const tran_low_t *input, uint8_t *dest, + int stride) { + const uint8_t *dst = dest; + const int16x4_t cospis = vld1_s16(kCospi); + uint8x8_t dest01_u8; + uint32x2_t dest32_u32 = vdup_n_u32(0); + int16x8_t a0, a1; + uint8x8_t d01, d32; + uint16x8_t d01_u16, d32_u16; + + assert(!((intptr_t)dest % sizeof(uint32_t))); + assert(!(stride % sizeof(uint32_t))); + + // Rows + a0 = load_tran_low_to_s16q(input); + a1 = load_tran_low_to_s16q(input + 8); + idct4x4_16_kernel_bd8(cospis, &a0, &a1); + + // Columns + a1 = vcombine_s16(vget_high_s16(a1), vget_low_s16(a1)); + idct4x4_16_kernel_bd8(cospis, &a0, &a1); + a0 = vrshrq_n_s16(a0, 4); + a1 = vrshrq_n_s16(a1, 4); + + dest01_u8 = load_u8(dst, stride); + dst += 2 * stride; + // The elements are loaded in reverse order. + dest32_u32 = vld1_lane_u32((const uint32_t *)dst, dest32_u32, 1); + dst += stride; + dest32_u32 = vld1_lane_u32((const uint32_t *)dst, dest32_u32, 0); + + d01_u16 = vaddw_u8(vreinterpretq_u16_s16(a0), dest01_u8); + d32_u16 = + vaddw_u8(vreinterpretq_u16_s16(a1), vreinterpret_u8_u32(dest32_u32)); + d01 = vqmovun_s16(vreinterpretq_s16_u16(d01_u16)); + d32 = vqmovun_s16(vreinterpretq_s16_u16(d32_u16)); + + store_u8(dest, stride, d01); + dest += 2 * stride; + // The elements are stored in reverse order. + vst1_lane_u32((uint32_t *)dest, vreinterpret_u32_u8(d32), 1); + dest += stride; + vst1_lane_u32((uint32_t *)dest, vreinterpret_u32_u8(d32), 0); +} diff --git a/vpx_dsp/arm/idct8x8_1_add_neon.c b/vpx_dsp/arm/idct8x8_1_add_neon.c new file mode 100644 index 0000000..ce9b459 --- /dev/null +++ b/vpx_dsp/arm/idct8x8_1_add_neon.c @@ -0,0 +1,65 @@ +/* + * Copyright (c) 2014 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include + +#include "./vpx_dsp_rtcd.h" +#include "vpx_dsp/inv_txfm.h" + +static INLINE uint8x8_t create_dcd(const int16_t dc) { + int16x8_t t = vdupq_n_s16(dc); + return vqmovun_s16(t); +} + +static INLINE void idct8x8_1_add_pos_kernel(uint8_t **dest, const int stride, + const uint8x8_t res) { + const uint8x8_t a = vld1_u8(*dest); + const uint8x8_t b = vqadd_u8(a, res); + vst1_u8(*dest, b); + *dest += stride; +} + +static INLINE void idct8x8_1_add_neg_kernel(uint8_t **dest, const int stride, + const uint8x8_t res) { + const uint8x8_t a = vld1_u8(*dest); + const uint8x8_t b = vqsub_u8(a, res); + vst1_u8(*dest, b); + *dest += stride; +} + +void vpx_idct8x8_1_add_neon(const tran_low_t *input, uint8_t *dest, + int stride) { + const int16_t out0 = + WRAPLOW(dct_const_round_shift((int16_t)input[0] * cospi_16_64)); + const int16_t out1 = WRAPLOW(dct_const_round_shift(out0 * cospi_16_64)); + const int16_t a1 = ROUND_POWER_OF_TWO(out1, 5); + + if (a1 >= 0) { + const uint8x8_t dc = create_dcd(a1); + idct8x8_1_add_pos_kernel(&dest, stride, dc); + idct8x8_1_add_pos_kernel(&dest, stride, dc); + idct8x8_1_add_pos_kernel(&dest, stride, dc); + idct8x8_1_add_pos_kernel(&dest, stride, dc); + idct8x8_1_add_pos_kernel(&dest, stride, dc); + idct8x8_1_add_pos_kernel(&dest, stride, dc); + idct8x8_1_add_pos_kernel(&dest, stride, dc); + idct8x8_1_add_pos_kernel(&dest, stride, dc); + } else { + const uint8x8_t dc = create_dcd(-a1); + idct8x8_1_add_neg_kernel(&dest, stride, dc); + idct8x8_1_add_neg_kernel(&dest, stride, dc); + idct8x8_1_add_neg_kernel(&dest, stride, dc); + idct8x8_1_add_neg_kernel(&dest, stride, dc); + idct8x8_1_add_neg_kernel(&dest, stride, dc); + idct8x8_1_add_neg_kernel(&dest, stride, dc); + idct8x8_1_add_neg_kernel(&dest, stride, dc); + idct8x8_1_add_neg_kernel(&dest, stride, dc); + } +} diff --git a/vpx_dsp/arm/idct8x8_add_neon.c b/vpx_dsp/arm/idct8x8_add_neon.c new file mode 100644 index 0000000..1121ade --- /dev/null +++ b/vpx_dsp/arm/idct8x8_add_neon.c @@ -0,0 +1,127 @@ +/* + * Copyright (c) 2014 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include + +#include "./vpx_config.h" +#include "./vpx_dsp_rtcd.h" +#include "vpx_dsp/arm/idct_neon.h" +#include "vpx_dsp/arm/mem_neon.h" +#include "vpx_dsp/arm/transpose_neon.h" +#include "vpx_dsp/txfm_common.h" + +static INLINE void add8x8(int16x8_t a0, int16x8_t a1, int16x8_t a2, + int16x8_t a3, int16x8_t a4, int16x8_t a5, + int16x8_t a6, int16x8_t a7, uint8_t *dest, + const int stride) { + const uint8_t *dst = dest; + uint8x8_t d0, d1, d2, d3, d4, d5, d6, d7; + uint16x8_t d0_u16, d1_u16, d2_u16, d3_u16, d4_u16, d5_u16, d6_u16, d7_u16; + + a0 = vrshrq_n_s16(a0, 5); + a1 = vrshrq_n_s16(a1, 5); + a2 = vrshrq_n_s16(a2, 5); + a3 = vrshrq_n_s16(a3, 5); + a4 = vrshrq_n_s16(a4, 5); + a5 = vrshrq_n_s16(a5, 5); + a6 = vrshrq_n_s16(a6, 5); + a7 = vrshrq_n_s16(a7, 5); + + d0 = vld1_u8(dst); + dst += stride; + d1 = vld1_u8(dst); + dst += stride; + d2 = vld1_u8(dst); + dst += stride; + d3 = vld1_u8(dst); + dst += stride; + d4 = vld1_u8(dst); + dst += stride; + d5 = vld1_u8(dst); + dst += stride; + d6 = vld1_u8(dst); + dst += stride; + d7 = vld1_u8(dst); + + d0_u16 = vaddw_u8(vreinterpretq_u16_s16(a0), d0); + d1_u16 = vaddw_u8(vreinterpretq_u16_s16(a1), d1); + d2_u16 = vaddw_u8(vreinterpretq_u16_s16(a2), d2); + d3_u16 = vaddw_u8(vreinterpretq_u16_s16(a3), d3); + d4_u16 = vaddw_u8(vreinterpretq_u16_s16(a4), d4); + d5_u16 = vaddw_u8(vreinterpretq_u16_s16(a5), d5); + d6_u16 = vaddw_u8(vreinterpretq_u16_s16(a6), d6); + d7_u16 = vaddw_u8(vreinterpretq_u16_s16(a7), d7); + + d0 = vqmovun_s16(vreinterpretq_s16_u16(d0_u16)); + d1 = vqmovun_s16(vreinterpretq_s16_u16(d1_u16)); + d2 = vqmovun_s16(vreinterpretq_s16_u16(d2_u16)); + d3 = vqmovun_s16(vreinterpretq_s16_u16(d3_u16)); + d4 = vqmovun_s16(vreinterpretq_s16_u16(d4_u16)); + d5 = vqmovun_s16(vreinterpretq_s16_u16(d5_u16)); + d6 = vqmovun_s16(vreinterpretq_s16_u16(d6_u16)); + d7 = vqmovun_s16(vreinterpretq_s16_u16(d7_u16)); + + vst1_u8(dest, d0); + dest += stride; + vst1_u8(dest, d1); + dest += stride; + vst1_u8(dest, d2); + dest += stride; + vst1_u8(dest, d3); + dest += stride; + vst1_u8(dest, d4); + dest += stride; + vst1_u8(dest, d5); + dest += stride; + vst1_u8(dest, d6); + dest += stride; + vst1_u8(dest, d7); +} + +void vpx_idct8x8_64_add_neon(const tran_low_t *input, uint8_t *dest, + int stride) { + const int16x8_t cospis = vld1q_s16(kCospi); + const int16x4_t cospis0 = vget_low_s16(cospis); // cospi 0, 8, 16, 24 + const int16x4_t cospis1 = vget_high_s16(cospis); // cospi 4, 12, 20, 28 + int16x8_t a0 = load_tran_low_to_s16q(input); + int16x8_t a1 = load_tran_low_to_s16q(input + 8); + int16x8_t a2 = load_tran_low_to_s16q(input + 16); + int16x8_t a3 = load_tran_low_to_s16q(input + 24); + int16x8_t a4 = load_tran_low_to_s16q(input + 32); + int16x8_t a5 = load_tran_low_to_s16q(input + 40); + int16x8_t a6 = load_tran_low_to_s16q(input + 48); + int16x8_t a7 = load_tran_low_to_s16q(input + 56); + + idct8x8_64_1d_bd8(cospis0, cospis1, &a0, &a1, &a2, &a3, &a4, &a5, &a6, &a7); + idct8x8_64_1d_bd8(cospis0, cospis1, &a0, &a1, &a2, &a3, &a4, &a5, &a6, &a7); + add8x8(a0, a1, a2, a3, a4, a5, a6, a7, dest, stride); +} + +void vpx_idct8x8_12_add_neon(const tran_low_t *input, uint8_t *dest, + int stride) { + const int16x8_t cospis = vld1q_s16(kCospi); + const int16x8_t cospisd = vaddq_s16(cospis, cospis); + const int16x4_t cospis0 = vget_low_s16(cospis); // cospi 0, 8, 16, 24 + const int16x4_t cospisd0 = vget_low_s16(cospisd); // doubled 0, 8, 16, 24 + const int16x4_t cospisd1 = vget_high_s16(cospisd); // doubled 4, 12, 20, 28 + int16x4_t a0, a1, a2, a3, a4, a5, a6, a7; + int16x8_t b0, b1, b2, b3, b4, b5, b6, b7; + + a0 = load_tran_low_to_s16d(input); + a1 = load_tran_low_to_s16d(input + 8); + a2 = load_tran_low_to_s16d(input + 16); + a3 = load_tran_low_to_s16d(input + 24); + + idct8x8_12_pass1_bd8(cospis0, cospisd0, cospisd1, &a0, &a1, &a2, &a3, &a4, + &a5, &a6, &a7); + idct8x8_12_pass2_bd8(cospis0, cospisd0, cospisd1, a0, a1, a2, a3, a4, a5, a6, + a7, &b0, &b1, &b2, &b3, &b4, &b5, &b6, &b7); + add8x8(b0, b1, b2, b3, b4, b5, b6, b7, dest, stride); +} diff --git a/vpx_dsp/arm/idct_neon.asm b/vpx_dsp/arm/idct_neon.asm new file mode 100644 index 0000000..5dd9bdc --- /dev/null +++ b/vpx_dsp/arm/idct_neon.asm @@ -0,0 +1,46 @@ +; +; Copyright (c) 2016 The WebM project authors. All Rights Reserved. +; +; Use of this source code is governed by a BSD-style license +; that can be found in the LICENSE file in the root of the source +; tree. An additional intellectual property rights grant can be found +; in the file PATENTS. All contributing project authors may +; be found in the AUTHORS file in the root of the source tree. +; + + INCLUDE ./vpx_config.asm + + ; Helper functions used to load tran_low_t into int16, narrowing if + ; necessary. + + ; $dst0..3 are d registers with the pairs assumed to be contiguous in + ; non-high-bitdepth builds. q0-q3 are used as temporaries in high-bitdepth. + MACRO + LOAD_TRAN_LOW_TO_S16 $dst0, $dst1, $dst2, $dst3, $src + IF CONFIG_VP9_HIGHBITDEPTH + vld1.s32 {q0,q1}, [$src]! + vld1.s32 {q2,q3}, [$src]! + vmovn.i32 $dst0, q0 + vmovn.i32 $dst1, q1 + vmovn.i32 $dst2, q2 + vmovn.i32 $dst3, q3 + ELSE + vld1.s16 {$dst0-$dst1,$dst2-$dst3}, [$src]! + ENDIF + MEND + + ; $dst0..3 are d registers. q0-q3 are used as temporaries in high-bitdepth. + MACRO + LOAD_TRAN_LOW_TO_S16X2 $dst0, $dst1, $dst2, $dst3, $src + IF CONFIG_VP9_HIGHBITDEPTH + vld2.s32 {q0,q1}, [$src]! + vld2.s32 {q2,q3}, [$src]! + vmovn.i32 $dst0, q0 + vmovn.i32 $dst1, q2 + vmovn.i32 $dst2, q1 + vmovn.i32 $dst3, q3 + ELSE + vld2.s16 {$dst0,$dst1,$dst2,$dst3}, [$src]! + ENDIF + MEND + END diff --git a/vpx_dsp/arm/idct_neon.h b/vpx_dsp/arm/idct_neon.h new file mode 100644 index 0000000..6ed02af --- /dev/null +++ b/vpx_dsp/arm/idct_neon.h @@ -0,0 +1,940 @@ +/* + * Copyright (c) 2016 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VPX_DSP_ARM_IDCT_NEON_H_ +#define VPX_DSP_ARM_IDCT_NEON_H_ + +#include + +#include "./vpx_config.h" +#include "vpx_dsp/arm/transpose_neon.h" +#include "vpx_dsp/txfm_common.h" +#include "vpx_dsp/vpx_dsp_common.h" + +static const int16_t kCospi[16] = { + 16384 /* cospi_0_64 */, 15137 /* cospi_8_64 */, + 11585 /* cospi_16_64 */, 6270 /* cospi_24_64 */, + 16069 /* cospi_4_64 */, 13623 /* cospi_12_64 */, + -9102 /* -cospi_20_64 */, 3196 /* cospi_28_64 */, + 16305 /* cospi_2_64 */, 1606 /* cospi_30_64 */, + 14449 /* cospi_10_64 */, 7723 /* cospi_22_64 */, + 15679 /* cospi_6_64 */, -4756 /* -cospi_26_64 */, + 12665 /* cospi_14_64 */, -10394 /* -cospi_18_64 */ +}; + +static const int32_t kCospi32[16] = { + 16384 /* cospi_0_64 */, 15137 /* cospi_8_64 */, + 11585 /* cospi_16_64 */, 6270 /* cospi_24_64 */, + 16069 /* cospi_4_64 */, 13623 /* cospi_12_64 */, + -9102 /* -cospi_20_64 */, 3196 /* cospi_28_64 */, + 16305 /* cospi_2_64 */, 1606 /* cospi_30_64 */, + 14449 /* cospi_10_64 */, 7723 /* cospi_22_64 */, + 15679 /* cospi_6_64 */, -4756 /* -cospi_26_64 */, + 12665 /* cospi_14_64 */, -10394 /* -cospi_18_64 */ +}; + +//------------------------------------------------------------------------------ +// Use saturating add/sub to avoid overflow in 2nd pass in high bit-depth +static INLINE int16x8_t final_add(const int16x8_t a, const int16x8_t b) { +#if CONFIG_VP9_HIGHBITDEPTH + return vqaddq_s16(a, b); +#else + return vaddq_s16(a, b); +#endif +} + +static INLINE int16x8_t final_sub(const int16x8_t a, const int16x8_t b) { +#if CONFIG_VP9_HIGHBITDEPTH + return vqsubq_s16(a, b); +#else + return vsubq_s16(a, b); +#endif +} + +//------------------------------------------------------------------------------ + +static INLINE int32x4x2_t highbd_idct_add_dual(const int32x4x2_t s0, + const int32x4x2_t s1) { + int32x4x2_t t; + t.val[0] = vaddq_s32(s0.val[0], s1.val[0]); + t.val[1] = vaddq_s32(s0.val[1], s1.val[1]); + return t; +} + +static INLINE int32x4x2_t highbd_idct_sub_dual(const int32x4x2_t s0, + const int32x4x2_t s1) { + int32x4x2_t t; + t.val[0] = vsubq_s32(s0.val[0], s1.val[0]); + t.val[1] = vsubq_s32(s0.val[1], s1.val[1]); + return t; +} + +//------------------------------------------------------------------------------ + +// Multiply a by a_const. Saturate, shift and narrow by DCT_CONST_BITS. +static INLINE int16x8_t multiply_shift_and_narrow_s16(const int16x8_t a, + const int16_t a_const) { + // Shift by DCT_CONST_BITS + rounding will be within 16 bits for well formed + // streams. See WRAPLOW and dct_const_round_shift for details. + // This instruction doubles the result and returns the high half, essentially + // resulting in a right shift by 15. By multiplying the constant first that + // becomes a right shift by DCT_CONST_BITS. + // The largest possible value used here is + // vpx_dsp/txfm_common.h:cospi_1_64 = 16364 (* 2 = 32728) a which falls *just* + // within the range of int16_t (+32767 / -32768) even when negated. + return vqrdmulhq_n_s16(a, a_const * 2); +} + +// Add a and b, then multiply by ab_const. Shift and narrow by DCT_CONST_BITS. +static INLINE int16x8_t add_multiply_shift_and_narrow_s16( + const int16x8_t a, const int16x8_t b, const int16_t ab_const) { + // In both add_ and it's pair, sub_, the input for well-formed streams will be + // well within 16 bits (input to the idct is the difference between two frames + // and will be within -255 to 255, or 9 bits) + // However, for inputs over about 25,000 (valid for int16_t, but not for idct + // input) this function can not use vaddq_s16. + // In order to match existing behavior and intentionally out of range tests, + // expand the addition up to 32 bits to prevent truncation. + int32x4_t temp_low = vaddl_s16(vget_low_s16(a), vget_low_s16(b)); + int32x4_t temp_high = vaddl_s16(vget_high_s16(a), vget_high_s16(b)); + temp_low = vmulq_n_s32(temp_low, ab_const); + temp_high = vmulq_n_s32(temp_high, ab_const); + return vcombine_s16(vrshrn_n_s32(temp_low, DCT_CONST_BITS), + vrshrn_n_s32(temp_high, DCT_CONST_BITS)); +} + +// Subtract b from a, then multiply by ab_const. Shift and narrow by +// DCT_CONST_BITS. +static INLINE int16x8_t sub_multiply_shift_and_narrow_s16( + const int16x8_t a, const int16x8_t b, const int16_t ab_const) { + int32x4_t temp_low = vsubl_s16(vget_low_s16(a), vget_low_s16(b)); + int32x4_t temp_high = vsubl_s16(vget_high_s16(a), vget_high_s16(b)); + temp_low = vmulq_n_s32(temp_low, ab_const); + temp_high = vmulq_n_s32(temp_high, ab_const); + return vcombine_s16(vrshrn_n_s32(temp_low, DCT_CONST_BITS), + vrshrn_n_s32(temp_high, DCT_CONST_BITS)); +} + +// Multiply a by a_const and b by b_const, then accumulate. Shift and narrow by +// DCT_CONST_BITS. +static INLINE int16x8_t multiply_accumulate_shift_and_narrow_s16( + const int16x8_t a, const int16_t a_const, const int16x8_t b, + const int16_t b_const) { + int32x4_t temp_low = vmull_n_s16(vget_low_s16(a), a_const); + int32x4_t temp_high = vmull_n_s16(vget_high_s16(a), a_const); + temp_low = vmlal_n_s16(temp_low, vget_low_s16(b), b_const); + temp_high = vmlal_n_s16(temp_high, vget_high_s16(b), b_const); + return vcombine_s16(vrshrn_n_s32(temp_low, DCT_CONST_BITS), + vrshrn_n_s32(temp_high, DCT_CONST_BITS)); +} + +//------------------------------------------------------------------------------ + +// Note: The following 4 functions could use 32-bit operations for bit-depth 10. +// However, although it's 20% faster with gcc, it's 20% slower with clang. +// Use 64-bit operations for now. + +// Multiply a by a_const. Saturate, shift and narrow by DCT_CONST_BITS. +static INLINE int32x4x2_t +multiply_shift_and_narrow_s32_dual(const int32x4x2_t a, const int32_t a_const) { + int64x2_t b[4]; + int32x4x2_t c; + b[0] = vmull_n_s32(vget_low_s32(a.val[0]), a_const); + b[1] = vmull_n_s32(vget_high_s32(a.val[0]), a_const); + b[2] = vmull_n_s32(vget_low_s32(a.val[1]), a_const); + b[3] = vmull_n_s32(vget_high_s32(a.val[1]), a_const); + c.val[0] = vcombine_s32(vrshrn_n_s64(b[0], DCT_CONST_BITS), + vrshrn_n_s64(b[1], DCT_CONST_BITS)); + c.val[1] = vcombine_s32(vrshrn_n_s64(b[2], DCT_CONST_BITS), + vrshrn_n_s64(b[3], DCT_CONST_BITS)); + return c; +} + +// Add a and b, then multiply by ab_const. Shift and narrow by DCT_CONST_BITS. +static INLINE int32x4x2_t add_multiply_shift_and_narrow_s32_dual( + const int32x4x2_t a, const int32x4x2_t b, const int32_t ab_const) { + const int32x4_t temp_low = vaddq_s32(a.val[0], b.val[0]); + const int32x4_t temp_high = vaddq_s32(a.val[1], b.val[1]); + int64x2_t c[4]; + int32x4x2_t d; + c[0] = vmull_n_s32(vget_low_s32(temp_low), ab_const); + c[1] = vmull_n_s32(vget_high_s32(temp_low), ab_const); + c[2] = vmull_n_s32(vget_low_s32(temp_high), ab_const); + c[3] = vmull_n_s32(vget_high_s32(temp_high), ab_const); + d.val[0] = vcombine_s32(vrshrn_n_s64(c[0], DCT_CONST_BITS), + vrshrn_n_s64(c[1], DCT_CONST_BITS)); + d.val[1] = vcombine_s32(vrshrn_n_s64(c[2], DCT_CONST_BITS), + vrshrn_n_s64(c[3], DCT_CONST_BITS)); + return d; +} + +// Subtract b from a, then multiply by ab_const. Shift and narrow by +// DCT_CONST_BITS. +static INLINE int32x4x2_t sub_multiply_shift_and_narrow_s32_dual( + const int32x4x2_t a, const int32x4x2_t b, const int32_t ab_const) { + const int32x4_t temp_low = vsubq_s32(a.val[0], b.val[0]); + const int32x4_t temp_high = vsubq_s32(a.val[1], b.val[1]); + int64x2_t c[4]; + int32x4x2_t d; + c[0] = vmull_n_s32(vget_low_s32(temp_low), ab_const); + c[1] = vmull_n_s32(vget_high_s32(temp_low), ab_const); + c[2] = vmull_n_s32(vget_low_s32(temp_high), ab_const); + c[3] = vmull_n_s32(vget_high_s32(temp_high), ab_const); + d.val[0] = vcombine_s32(vrshrn_n_s64(c[0], DCT_CONST_BITS), + vrshrn_n_s64(c[1], DCT_CONST_BITS)); + d.val[1] = vcombine_s32(vrshrn_n_s64(c[2], DCT_CONST_BITS), + vrshrn_n_s64(c[3], DCT_CONST_BITS)); + return d; +} + +// Multiply a by a_const and b by b_const, then accumulate. Shift and narrow by +// DCT_CONST_BITS. +static INLINE int32x4x2_t multiply_accumulate_shift_and_narrow_s32_dual( + const int32x4x2_t a, const int32_t a_const, const int32x4x2_t b, + const int32_t b_const) { + int64x2_t c[4]; + int32x4x2_t d; + c[0] = vmull_n_s32(vget_low_s32(a.val[0]), a_const); + c[1] = vmull_n_s32(vget_high_s32(a.val[0]), a_const); + c[2] = vmull_n_s32(vget_low_s32(a.val[1]), a_const); + c[3] = vmull_n_s32(vget_high_s32(a.val[1]), a_const); + c[0] = vmlal_n_s32(c[0], vget_low_s32(b.val[0]), b_const); + c[1] = vmlal_n_s32(c[1], vget_high_s32(b.val[0]), b_const); + c[2] = vmlal_n_s32(c[2], vget_low_s32(b.val[1]), b_const); + c[3] = vmlal_n_s32(c[3], vget_high_s32(b.val[1]), b_const); + d.val[0] = vcombine_s32(vrshrn_n_s64(c[0], DCT_CONST_BITS), + vrshrn_n_s64(c[1], DCT_CONST_BITS)); + d.val[1] = vcombine_s32(vrshrn_n_s64(c[2], DCT_CONST_BITS), + vrshrn_n_s64(c[3], DCT_CONST_BITS)); + return d; +} + +// Shift the output down by 6 and add it to the destination buffer. +static INLINE void add_and_store_u8_s16(const int16x8_t a0, const int16x8_t a1, + const int16x8_t a2, const int16x8_t a3, + const int16x8_t a4, const int16x8_t a5, + const int16x8_t a6, const int16x8_t a7, + uint8_t *b, const int b_stride) { + uint8x8_t b0, b1, b2, b3, b4, b5, b6, b7; + int16x8_t c0, c1, c2, c3, c4, c5, c6, c7; + b0 = vld1_u8(b); + b += b_stride; + b1 = vld1_u8(b); + b += b_stride; + b2 = vld1_u8(b); + b += b_stride; + b3 = vld1_u8(b); + b += b_stride; + b4 = vld1_u8(b); + b += b_stride; + b5 = vld1_u8(b); + b += b_stride; + b6 = vld1_u8(b); + b += b_stride; + b7 = vld1_u8(b); + b -= (7 * b_stride); + + // c = b + (a >> 6) + c0 = vrsraq_n_s16(vreinterpretq_s16_u16(vmovl_u8(b0)), a0, 6); + c1 = vrsraq_n_s16(vreinterpretq_s16_u16(vmovl_u8(b1)), a1, 6); + c2 = vrsraq_n_s16(vreinterpretq_s16_u16(vmovl_u8(b2)), a2, 6); + c3 = vrsraq_n_s16(vreinterpretq_s16_u16(vmovl_u8(b3)), a3, 6); + c4 = vrsraq_n_s16(vreinterpretq_s16_u16(vmovl_u8(b4)), a4, 6); + c5 = vrsraq_n_s16(vreinterpretq_s16_u16(vmovl_u8(b5)), a5, 6); + c6 = vrsraq_n_s16(vreinterpretq_s16_u16(vmovl_u8(b6)), a6, 6); + c7 = vrsraq_n_s16(vreinterpretq_s16_u16(vmovl_u8(b7)), a7, 6); + + b0 = vqmovun_s16(c0); + b1 = vqmovun_s16(c1); + b2 = vqmovun_s16(c2); + b3 = vqmovun_s16(c3); + b4 = vqmovun_s16(c4); + b5 = vqmovun_s16(c5); + b6 = vqmovun_s16(c6); + b7 = vqmovun_s16(c7); + + vst1_u8(b, b0); + b += b_stride; + vst1_u8(b, b1); + b += b_stride; + vst1_u8(b, b2); + b += b_stride; + vst1_u8(b, b3); + b += b_stride; + vst1_u8(b, b4); + b += b_stride; + vst1_u8(b, b5); + b += b_stride; + vst1_u8(b, b6); + b += b_stride; + vst1_u8(b, b7); +} + +static INLINE uint8x16_t create_dcq(const int16_t dc) { + // Clip both sides and gcc may compile to assembly 'usat'. + const int16_t t = (dc < 0) ? 0 : ((dc > 255) ? 255 : dc); + return vdupq_n_u8((uint8_t)t); +} + +static INLINE void idct4x4_16_kernel_bd8(const int16x4_t cospis, + int16x8_t *const a0, + int16x8_t *const a1) { + int16x4_t b0, b1, b2, b3; + int32x4_t c0, c1, c2, c3; + int16x8_t d0, d1; + + transpose_s16_4x4q(a0, a1); + b0 = vget_low_s16(*a0); + b1 = vget_high_s16(*a0); + b2 = vget_low_s16(*a1); + b3 = vget_high_s16(*a1); + c0 = vmull_lane_s16(b0, cospis, 2); + c2 = vmull_lane_s16(b1, cospis, 2); + c1 = vsubq_s32(c0, c2); + c0 = vaddq_s32(c0, c2); + c2 = vmull_lane_s16(b2, cospis, 3); + c3 = vmull_lane_s16(b2, cospis, 1); + c2 = vmlsl_lane_s16(c2, b3, cospis, 1); + c3 = vmlal_lane_s16(c3, b3, cospis, 3); + b0 = vrshrn_n_s32(c0, DCT_CONST_BITS); + b1 = vrshrn_n_s32(c1, DCT_CONST_BITS); + b2 = vrshrn_n_s32(c2, DCT_CONST_BITS); + b3 = vrshrn_n_s32(c3, DCT_CONST_BITS); + d0 = vcombine_s16(b0, b1); + d1 = vcombine_s16(b3, b2); + *a0 = vaddq_s16(d0, d1); + *a1 = vsubq_s16(d0, d1); +} + +static INLINE void idct8x8_12_pass1_bd8( + const int16x4_t cospis0, const int16x4_t cospisd0, const int16x4_t cospisd1, + int16x4_t *const io0, int16x4_t *const io1, int16x4_t *const io2, + int16x4_t *const io3, int16x4_t *const io4, int16x4_t *const io5, + int16x4_t *const io6, int16x4_t *const io7) { + int16x4_t step1[8], step2[8]; + int32x4_t t32[2]; + + transpose_s16_4x4d(io0, io1, io2, io3); + + // stage 1 + step1[4] = vqrdmulh_lane_s16(*io1, cospisd1, 3); + step1[5] = vqrdmulh_lane_s16(*io3, cospisd1, 2); + step1[6] = vqrdmulh_lane_s16(*io3, cospisd1, 1); + step1[7] = vqrdmulh_lane_s16(*io1, cospisd1, 0); + + // stage 2 + step2[1] = vqrdmulh_lane_s16(*io0, cospisd0, 2); + step2[2] = vqrdmulh_lane_s16(*io2, cospisd0, 3); + step2[3] = vqrdmulh_lane_s16(*io2, cospisd0, 1); + + step2[4] = vadd_s16(step1[4], step1[5]); + step2[5] = vsub_s16(step1[4], step1[5]); + step2[6] = vsub_s16(step1[7], step1[6]); + step2[7] = vadd_s16(step1[7], step1[6]); + + // stage 3 + step1[0] = vadd_s16(step2[1], step2[3]); + step1[1] = vadd_s16(step2[1], step2[2]); + step1[2] = vsub_s16(step2[1], step2[2]); + step1[3] = vsub_s16(step2[1], step2[3]); + + t32[1] = vmull_lane_s16(step2[6], cospis0, 2); + t32[0] = vmlsl_lane_s16(t32[1], step2[5], cospis0, 2); + t32[1] = vmlal_lane_s16(t32[1], step2[5], cospis0, 2); + step1[5] = vrshrn_n_s32(t32[0], DCT_CONST_BITS); + step1[6] = vrshrn_n_s32(t32[1], DCT_CONST_BITS); + + // stage 4 + *io0 = vadd_s16(step1[0], step2[7]); + *io1 = vadd_s16(step1[1], step1[6]); + *io2 = vadd_s16(step1[2], step1[5]); + *io3 = vadd_s16(step1[3], step2[4]); + *io4 = vsub_s16(step1[3], step2[4]); + *io5 = vsub_s16(step1[2], step1[5]); + *io6 = vsub_s16(step1[1], step1[6]); + *io7 = vsub_s16(step1[0], step2[7]); +} + +static INLINE void idct8x8_12_pass2_bd8( + const int16x4_t cospis0, const int16x4_t cospisd0, const int16x4_t cospisd1, + const int16x4_t input0, const int16x4_t input1, const int16x4_t input2, + const int16x4_t input3, const int16x4_t input4, const int16x4_t input5, + const int16x4_t input6, const int16x4_t input7, int16x8_t *const output0, + int16x8_t *const output1, int16x8_t *const output2, + int16x8_t *const output3, int16x8_t *const output4, + int16x8_t *const output5, int16x8_t *const output6, + int16x8_t *const output7) { + int16x8_t in[4]; + int16x8_t step1[8], step2[8]; + int32x4_t t32[8]; + int16x4_t t16[8]; + + transpose_s16_4x8(input0, input1, input2, input3, input4, input5, input6, + input7, &in[0], &in[1], &in[2], &in[3]); + + // stage 1 + step1[4] = vqrdmulhq_lane_s16(in[1], cospisd1, 3); + step1[5] = vqrdmulhq_lane_s16(in[3], cospisd1, 2); + step1[6] = vqrdmulhq_lane_s16(in[3], cospisd1, 1); + step1[7] = vqrdmulhq_lane_s16(in[1], cospisd1, 0); + + // stage 2 + step2[1] = vqrdmulhq_lane_s16(in[0], cospisd0, 2); + step2[2] = vqrdmulhq_lane_s16(in[2], cospisd0, 3); + step2[3] = vqrdmulhq_lane_s16(in[2], cospisd0, 1); + + step2[4] = vaddq_s16(step1[4], step1[5]); + step2[5] = vsubq_s16(step1[4], step1[5]); + step2[6] = vsubq_s16(step1[7], step1[6]); + step2[7] = vaddq_s16(step1[7], step1[6]); + + // stage 3 + step1[0] = vaddq_s16(step2[1], step2[3]); + step1[1] = vaddq_s16(step2[1], step2[2]); + step1[2] = vsubq_s16(step2[1], step2[2]); + step1[3] = vsubq_s16(step2[1], step2[3]); + + t32[2] = vmull_lane_s16(vget_low_s16(step2[6]), cospis0, 2); + t32[3] = vmull_lane_s16(vget_high_s16(step2[6]), cospis0, 2); + t32[0] = vmlsl_lane_s16(t32[2], vget_low_s16(step2[5]), cospis0, 2); + t32[1] = vmlsl_lane_s16(t32[3], vget_high_s16(step2[5]), cospis0, 2); + t32[2] = vmlal_lane_s16(t32[2], vget_low_s16(step2[5]), cospis0, 2); + t32[3] = vmlal_lane_s16(t32[3], vget_high_s16(step2[5]), cospis0, 2); + t16[0] = vrshrn_n_s32(t32[0], DCT_CONST_BITS); + t16[1] = vrshrn_n_s32(t32[1], DCT_CONST_BITS); + t16[2] = vrshrn_n_s32(t32[2], DCT_CONST_BITS); + t16[3] = vrshrn_n_s32(t32[3], DCT_CONST_BITS); + step1[5] = vcombine_s16(t16[0], t16[1]); + step1[6] = vcombine_s16(t16[2], t16[3]); + + // stage 4 + *output0 = vaddq_s16(step1[0], step2[7]); + *output1 = vaddq_s16(step1[1], step1[6]); + *output2 = vaddq_s16(step1[2], step1[5]); + *output3 = vaddq_s16(step1[3], step2[4]); + *output4 = vsubq_s16(step1[3], step2[4]); + *output5 = vsubq_s16(step1[2], step1[5]); + *output6 = vsubq_s16(step1[1], step1[6]); + *output7 = vsubq_s16(step1[0], step2[7]); +} + +static INLINE void idct8x8_64_1d_bd8(const int16x4_t cospis0, + const int16x4_t cospis1, + int16x8_t *const io0, int16x8_t *const io1, + int16x8_t *const io2, int16x8_t *const io3, + int16x8_t *const io4, int16x8_t *const io5, + int16x8_t *const io6, + int16x8_t *const io7) { + int16x4_t input_1l, input_1h, input_3l, input_3h, input_5l, input_5h, + input_7l, input_7h; + int16x4_t step1l[4], step1h[4]; + int16x8_t step1[8], step2[8]; + int32x4_t t32[8]; + int16x4_t t16[8]; + + transpose_s16_8x8(io0, io1, io2, io3, io4, io5, io6, io7); + + // stage 1 + input_1l = vget_low_s16(*io1); + input_1h = vget_high_s16(*io1); + input_3l = vget_low_s16(*io3); + input_3h = vget_high_s16(*io3); + input_5l = vget_low_s16(*io5); + input_5h = vget_high_s16(*io5); + input_7l = vget_low_s16(*io7); + input_7h = vget_high_s16(*io7); + step1l[0] = vget_low_s16(*io0); + step1h[0] = vget_high_s16(*io0); + step1l[1] = vget_low_s16(*io2); + step1h[1] = vget_high_s16(*io2); + step1l[2] = vget_low_s16(*io4); + step1h[2] = vget_high_s16(*io4); + step1l[3] = vget_low_s16(*io6); + step1h[3] = vget_high_s16(*io6); + + t32[0] = vmull_lane_s16(input_1l, cospis1, 3); + t32[1] = vmull_lane_s16(input_1h, cospis1, 3); + t32[2] = vmull_lane_s16(input_3l, cospis1, 2); + t32[3] = vmull_lane_s16(input_3h, cospis1, 2); + t32[4] = vmull_lane_s16(input_3l, cospis1, 1); + t32[5] = vmull_lane_s16(input_3h, cospis1, 1); + t32[6] = vmull_lane_s16(input_1l, cospis1, 0); + t32[7] = vmull_lane_s16(input_1h, cospis1, 0); + t32[0] = vmlsl_lane_s16(t32[0], input_7l, cospis1, 0); + t32[1] = vmlsl_lane_s16(t32[1], input_7h, cospis1, 0); + t32[2] = vmlal_lane_s16(t32[2], input_5l, cospis1, 1); + t32[3] = vmlal_lane_s16(t32[3], input_5h, cospis1, 1); + t32[4] = vmlsl_lane_s16(t32[4], input_5l, cospis1, 2); + t32[5] = vmlsl_lane_s16(t32[5], input_5h, cospis1, 2); + t32[6] = vmlal_lane_s16(t32[6], input_7l, cospis1, 3); + t32[7] = vmlal_lane_s16(t32[7], input_7h, cospis1, 3); + t16[0] = vrshrn_n_s32(t32[0], DCT_CONST_BITS); + t16[1] = vrshrn_n_s32(t32[1], DCT_CONST_BITS); + t16[2] = vrshrn_n_s32(t32[2], DCT_CONST_BITS); + t16[3] = vrshrn_n_s32(t32[3], DCT_CONST_BITS); + t16[4] = vrshrn_n_s32(t32[4], DCT_CONST_BITS); + t16[5] = vrshrn_n_s32(t32[5], DCT_CONST_BITS); + t16[6] = vrshrn_n_s32(t32[6], DCT_CONST_BITS); + t16[7] = vrshrn_n_s32(t32[7], DCT_CONST_BITS); + step1[4] = vcombine_s16(t16[0], t16[1]); + step1[5] = vcombine_s16(t16[2], t16[3]); + step1[6] = vcombine_s16(t16[4], t16[5]); + step1[7] = vcombine_s16(t16[6], t16[7]); + + // stage 2 + t32[2] = vmull_lane_s16(step1l[0], cospis0, 2); + t32[3] = vmull_lane_s16(step1h[0], cospis0, 2); + t32[4] = vmull_lane_s16(step1l[1], cospis0, 3); + t32[5] = vmull_lane_s16(step1h[1], cospis0, 3); + t32[6] = vmull_lane_s16(step1l[1], cospis0, 1); + t32[7] = vmull_lane_s16(step1h[1], cospis0, 1); + t32[0] = vmlal_lane_s16(t32[2], step1l[2], cospis0, 2); + t32[1] = vmlal_lane_s16(t32[3], step1h[2], cospis0, 2); + t32[2] = vmlsl_lane_s16(t32[2], step1l[2], cospis0, 2); + t32[3] = vmlsl_lane_s16(t32[3], step1h[2], cospis0, 2); + t32[4] = vmlsl_lane_s16(t32[4], step1l[3], cospis0, 1); + t32[5] = vmlsl_lane_s16(t32[5], step1h[3], cospis0, 1); + t32[6] = vmlal_lane_s16(t32[6], step1l[3], cospis0, 3); + t32[7] = vmlal_lane_s16(t32[7], step1h[3], cospis0, 3); + t16[0] = vrshrn_n_s32(t32[0], DCT_CONST_BITS); + t16[1] = vrshrn_n_s32(t32[1], DCT_CONST_BITS); + t16[2] = vrshrn_n_s32(t32[2], DCT_CONST_BITS); + t16[3] = vrshrn_n_s32(t32[3], DCT_CONST_BITS); + t16[4] = vrshrn_n_s32(t32[4], DCT_CONST_BITS); + t16[5] = vrshrn_n_s32(t32[5], DCT_CONST_BITS); + t16[6] = vrshrn_n_s32(t32[6], DCT_CONST_BITS); + t16[7] = vrshrn_n_s32(t32[7], DCT_CONST_BITS); + step2[0] = vcombine_s16(t16[0], t16[1]); + step2[1] = vcombine_s16(t16[2], t16[3]); + step2[2] = vcombine_s16(t16[4], t16[5]); + step2[3] = vcombine_s16(t16[6], t16[7]); + + step2[4] = vaddq_s16(step1[4], step1[5]); + step2[5] = vsubq_s16(step1[4], step1[5]); + step2[6] = vsubq_s16(step1[7], step1[6]); + step2[7] = vaddq_s16(step1[7], step1[6]); + + // stage 3 + step1[0] = vaddq_s16(step2[0], step2[3]); + step1[1] = vaddq_s16(step2[1], step2[2]); + step1[2] = vsubq_s16(step2[1], step2[2]); + step1[3] = vsubq_s16(step2[0], step2[3]); + + t32[2] = vmull_lane_s16(vget_low_s16(step2[6]), cospis0, 2); + t32[3] = vmull_lane_s16(vget_high_s16(step2[6]), cospis0, 2); + t32[0] = vmlsl_lane_s16(t32[2], vget_low_s16(step2[5]), cospis0, 2); + t32[1] = vmlsl_lane_s16(t32[3], vget_high_s16(step2[5]), cospis0, 2); + t32[2] = vmlal_lane_s16(t32[2], vget_low_s16(step2[5]), cospis0, 2); + t32[3] = vmlal_lane_s16(t32[3], vget_high_s16(step2[5]), cospis0, 2); + t16[0] = vrshrn_n_s32(t32[0], DCT_CONST_BITS); + t16[1] = vrshrn_n_s32(t32[1], DCT_CONST_BITS); + t16[2] = vrshrn_n_s32(t32[2], DCT_CONST_BITS); + t16[3] = vrshrn_n_s32(t32[3], DCT_CONST_BITS); + step1[5] = vcombine_s16(t16[0], t16[1]); + step1[6] = vcombine_s16(t16[2], t16[3]); + + // stage 4 + *io0 = vaddq_s16(step1[0], step2[7]); + *io1 = vaddq_s16(step1[1], step1[6]); + *io2 = vaddq_s16(step1[2], step1[5]); + *io3 = vaddq_s16(step1[3], step2[4]); + *io4 = vsubq_s16(step1[3], step2[4]); + *io5 = vsubq_s16(step1[2], step1[5]); + *io6 = vsubq_s16(step1[1], step1[6]); + *io7 = vsubq_s16(step1[0], step2[7]); +} + +static INLINE void idct16x16_add_wrap_low_8x2(const int32x4_t *const t32, + int16x8_t *const d0, + int16x8_t *const d1) { + int16x4_t t16[4]; + + t16[0] = vrshrn_n_s32(t32[0], DCT_CONST_BITS); + t16[1] = vrshrn_n_s32(t32[1], DCT_CONST_BITS); + t16[2] = vrshrn_n_s32(t32[2], DCT_CONST_BITS); + t16[3] = vrshrn_n_s32(t32[3], DCT_CONST_BITS); + *d0 = vcombine_s16(t16[0], t16[1]); + *d1 = vcombine_s16(t16[2], t16[3]); +} + +static INLINE void idct_cospi_8_24_q_kernel(const int16x8_t s0, + const int16x8_t s1, + const int16x4_t cospi_0_8_16_24, + int32x4_t *const t32) { + t32[0] = vmull_lane_s16(vget_low_s16(s0), cospi_0_8_16_24, 3); + t32[1] = vmull_lane_s16(vget_high_s16(s0), cospi_0_8_16_24, 3); + t32[2] = vmull_lane_s16(vget_low_s16(s1), cospi_0_8_16_24, 3); + t32[3] = vmull_lane_s16(vget_high_s16(s1), cospi_0_8_16_24, 3); + t32[0] = vmlsl_lane_s16(t32[0], vget_low_s16(s1), cospi_0_8_16_24, 1); + t32[1] = vmlsl_lane_s16(t32[1], vget_high_s16(s1), cospi_0_8_16_24, 1); + t32[2] = vmlal_lane_s16(t32[2], vget_low_s16(s0), cospi_0_8_16_24, 1); + t32[3] = vmlal_lane_s16(t32[3], vget_high_s16(s0), cospi_0_8_16_24, 1); +} + +static INLINE void idct_cospi_8_24_q(const int16x8_t s0, const int16x8_t s1, + const int16x4_t cospi_0_8_16_24, + int16x8_t *const d0, int16x8_t *const d1) { + int32x4_t t32[4]; + + idct_cospi_8_24_q_kernel(s0, s1, cospi_0_8_16_24, t32); + idct16x16_add_wrap_low_8x2(t32, d0, d1); +} + +static INLINE void idct_cospi_8_24_neg_q(const int16x8_t s0, const int16x8_t s1, + const int16x4_t cospi_0_8_16_24, + int16x8_t *const d0, + int16x8_t *const d1) { + int32x4_t t32[4]; + + idct_cospi_8_24_q_kernel(s0, s1, cospi_0_8_16_24, t32); + t32[2] = vnegq_s32(t32[2]); + t32[3] = vnegq_s32(t32[3]); + idct16x16_add_wrap_low_8x2(t32, d0, d1); +} + +static INLINE void idct_cospi_16_16_q(const int16x8_t s0, const int16x8_t s1, + const int16x4_t cospi_0_8_16_24, + int16x8_t *const d0, + int16x8_t *const d1) { + int32x4_t t32[6]; + + t32[4] = vmull_lane_s16(vget_low_s16(s1), cospi_0_8_16_24, 2); + t32[5] = vmull_lane_s16(vget_high_s16(s1), cospi_0_8_16_24, 2); + t32[0] = vmlsl_lane_s16(t32[4], vget_low_s16(s0), cospi_0_8_16_24, 2); + t32[1] = vmlsl_lane_s16(t32[5], vget_high_s16(s0), cospi_0_8_16_24, 2); + t32[2] = vmlal_lane_s16(t32[4], vget_low_s16(s0), cospi_0_8_16_24, 2); + t32[3] = vmlal_lane_s16(t32[5], vget_high_s16(s0), cospi_0_8_16_24, 2); + idct16x16_add_wrap_low_8x2(t32, d0, d1); +} + +static INLINE void idct_cospi_2_30(const int16x8_t s0, const int16x8_t s1, + const int16x4_t cospi_2_30_10_22, + int16x8_t *const d0, int16x8_t *const d1) { + int32x4_t t32[4]; + + t32[0] = vmull_lane_s16(vget_low_s16(s0), cospi_2_30_10_22, 1); + t32[1] = vmull_lane_s16(vget_high_s16(s0), cospi_2_30_10_22, 1); + t32[2] = vmull_lane_s16(vget_low_s16(s1), cospi_2_30_10_22, 1); + t32[3] = vmull_lane_s16(vget_high_s16(s1), cospi_2_30_10_22, 1); + t32[0] = vmlsl_lane_s16(t32[0], vget_low_s16(s1), cospi_2_30_10_22, 0); + t32[1] = vmlsl_lane_s16(t32[1], vget_high_s16(s1), cospi_2_30_10_22, 0); + t32[2] = vmlal_lane_s16(t32[2], vget_low_s16(s0), cospi_2_30_10_22, 0); + t32[3] = vmlal_lane_s16(t32[3], vget_high_s16(s0), cospi_2_30_10_22, 0); + idct16x16_add_wrap_low_8x2(t32, d0, d1); +} + +static INLINE void idct_cospi_4_28(const int16x8_t s0, const int16x8_t s1, + const int16x4_t cospi_4_12_20N_28, + int16x8_t *const d0, int16x8_t *const d1) { + int32x4_t t32[4]; + + t32[0] = vmull_lane_s16(vget_low_s16(s0), cospi_4_12_20N_28, 3); + t32[1] = vmull_lane_s16(vget_high_s16(s0), cospi_4_12_20N_28, 3); + t32[2] = vmull_lane_s16(vget_low_s16(s1), cospi_4_12_20N_28, 3); + t32[3] = vmull_lane_s16(vget_high_s16(s1), cospi_4_12_20N_28, 3); + t32[0] = vmlsl_lane_s16(t32[0], vget_low_s16(s1), cospi_4_12_20N_28, 0); + t32[1] = vmlsl_lane_s16(t32[1], vget_high_s16(s1), cospi_4_12_20N_28, 0); + t32[2] = vmlal_lane_s16(t32[2], vget_low_s16(s0), cospi_4_12_20N_28, 0); + t32[3] = vmlal_lane_s16(t32[3], vget_high_s16(s0), cospi_4_12_20N_28, 0); + idct16x16_add_wrap_low_8x2(t32, d0, d1); +} + +static INLINE void idct_cospi_6_26(const int16x8_t s0, const int16x8_t s1, + const int16x4_t cospi_6_26N_14_18N, + int16x8_t *const d0, int16x8_t *const d1) { + int32x4_t t32[4]; + + t32[0] = vmull_lane_s16(vget_low_s16(s0), cospi_6_26N_14_18N, 0); + t32[1] = vmull_lane_s16(vget_high_s16(s0), cospi_6_26N_14_18N, 0); + t32[2] = vmull_lane_s16(vget_low_s16(s1), cospi_6_26N_14_18N, 0); + t32[3] = vmull_lane_s16(vget_high_s16(s1), cospi_6_26N_14_18N, 0); + t32[0] = vmlal_lane_s16(t32[0], vget_low_s16(s1), cospi_6_26N_14_18N, 1); + t32[1] = vmlal_lane_s16(t32[1], vget_high_s16(s1), cospi_6_26N_14_18N, 1); + t32[2] = vmlsl_lane_s16(t32[2], vget_low_s16(s0), cospi_6_26N_14_18N, 1); + t32[3] = vmlsl_lane_s16(t32[3], vget_high_s16(s0), cospi_6_26N_14_18N, 1); + idct16x16_add_wrap_low_8x2(t32, d0, d1); +} + +static INLINE void idct_cospi_10_22(const int16x8_t s0, const int16x8_t s1, + const int16x4_t cospi_2_30_10_22, + int16x8_t *const d0, int16x8_t *const d1) { + int32x4_t t32[4]; + + t32[0] = vmull_lane_s16(vget_low_s16(s0), cospi_2_30_10_22, 3); + t32[1] = vmull_lane_s16(vget_high_s16(s0), cospi_2_30_10_22, 3); + t32[2] = vmull_lane_s16(vget_low_s16(s1), cospi_2_30_10_22, 3); + t32[3] = vmull_lane_s16(vget_high_s16(s1), cospi_2_30_10_22, 3); + t32[0] = vmlsl_lane_s16(t32[0], vget_low_s16(s1), cospi_2_30_10_22, 2); + t32[1] = vmlsl_lane_s16(t32[1], vget_high_s16(s1), cospi_2_30_10_22, 2); + t32[2] = vmlal_lane_s16(t32[2], vget_low_s16(s0), cospi_2_30_10_22, 2); + t32[3] = vmlal_lane_s16(t32[3], vget_high_s16(s0), cospi_2_30_10_22, 2); + idct16x16_add_wrap_low_8x2(t32, d0, d1); +} + +static INLINE void idct_cospi_12_20(const int16x8_t s0, const int16x8_t s1, + const int16x4_t cospi_4_12_20N_28, + int16x8_t *const d0, int16x8_t *const d1) { + int32x4_t t32[4]; + + t32[0] = vmull_lane_s16(vget_low_s16(s0), cospi_4_12_20N_28, 1); + t32[1] = vmull_lane_s16(vget_high_s16(s0), cospi_4_12_20N_28, 1); + t32[2] = vmull_lane_s16(vget_low_s16(s1), cospi_4_12_20N_28, 1); + t32[3] = vmull_lane_s16(vget_high_s16(s1), cospi_4_12_20N_28, 1); + t32[0] = vmlal_lane_s16(t32[0], vget_low_s16(s1), cospi_4_12_20N_28, 2); + t32[1] = vmlal_lane_s16(t32[1], vget_high_s16(s1), cospi_4_12_20N_28, 2); + t32[2] = vmlsl_lane_s16(t32[2], vget_low_s16(s0), cospi_4_12_20N_28, 2); + t32[3] = vmlsl_lane_s16(t32[3], vget_high_s16(s0), cospi_4_12_20N_28, 2); + idct16x16_add_wrap_low_8x2(t32, d0, d1); +} + +static INLINE void idct_cospi_14_18(const int16x8_t s0, const int16x8_t s1, + const int16x4_t cospi_6_26N_14_18N, + int16x8_t *const d0, int16x8_t *const d1) { + int32x4_t t32[4]; + + t32[0] = vmull_lane_s16(vget_low_s16(s0), cospi_6_26N_14_18N, 2); + t32[1] = vmull_lane_s16(vget_high_s16(s0), cospi_6_26N_14_18N, 2); + t32[2] = vmull_lane_s16(vget_low_s16(s1), cospi_6_26N_14_18N, 2); + t32[3] = vmull_lane_s16(vget_high_s16(s1), cospi_6_26N_14_18N, 2); + t32[0] = vmlal_lane_s16(t32[0], vget_low_s16(s1), cospi_6_26N_14_18N, 3); + t32[1] = vmlal_lane_s16(t32[1], vget_high_s16(s1), cospi_6_26N_14_18N, 3); + t32[2] = vmlsl_lane_s16(t32[2], vget_low_s16(s0), cospi_6_26N_14_18N, 3); + t32[3] = vmlsl_lane_s16(t32[3], vget_high_s16(s0), cospi_6_26N_14_18N, 3); + idct16x16_add_wrap_low_8x2(t32, d0, d1); +} + +static INLINE void idct16x16_add_stage7(const int16x8_t *const step2, + int16x8_t *const out) { +#if CONFIG_VP9_HIGHBITDEPTH + // Use saturating add/sub to avoid overflow in 2nd pass + out[0] = vqaddq_s16(step2[0], step2[15]); + out[1] = vqaddq_s16(step2[1], step2[14]); + out[2] = vqaddq_s16(step2[2], step2[13]); + out[3] = vqaddq_s16(step2[3], step2[12]); + out[4] = vqaddq_s16(step2[4], step2[11]); + out[5] = vqaddq_s16(step2[5], step2[10]); + out[6] = vqaddq_s16(step2[6], step2[9]); + out[7] = vqaddq_s16(step2[7], step2[8]); + out[8] = vqsubq_s16(step2[7], step2[8]); + out[9] = vqsubq_s16(step2[6], step2[9]); + out[10] = vqsubq_s16(step2[5], step2[10]); + out[11] = vqsubq_s16(step2[4], step2[11]); + out[12] = vqsubq_s16(step2[3], step2[12]); + out[13] = vqsubq_s16(step2[2], step2[13]); + out[14] = vqsubq_s16(step2[1], step2[14]); + out[15] = vqsubq_s16(step2[0], step2[15]); +#else + out[0] = vaddq_s16(step2[0], step2[15]); + out[1] = vaddq_s16(step2[1], step2[14]); + out[2] = vaddq_s16(step2[2], step2[13]); + out[3] = vaddq_s16(step2[3], step2[12]); + out[4] = vaddq_s16(step2[4], step2[11]); + out[5] = vaddq_s16(step2[5], step2[10]); + out[6] = vaddq_s16(step2[6], step2[9]); + out[7] = vaddq_s16(step2[7], step2[8]); + out[8] = vsubq_s16(step2[7], step2[8]); + out[9] = vsubq_s16(step2[6], step2[9]); + out[10] = vsubq_s16(step2[5], step2[10]); + out[11] = vsubq_s16(step2[4], step2[11]); + out[12] = vsubq_s16(step2[3], step2[12]); + out[13] = vsubq_s16(step2[2], step2[13]); + out[14] = vsubq_s16(step2[1], step2[14]); + out[15] = vsubq_s16(step2[0], step2[15]); +#endif +} + +static INLINE void idct16x16_store_pass1(const int16x8_t *const out, + int16_t *output) { + // Save the result into output + vst1q_s16(output, out[0]); + output += 16; + vst1q_s16(output, out[1]); + output += 16; + vst1q_s16(output, out[2]); + output += 16; + vst1q_s16(output, out[3]); + output += 16; + vst1q_s16(output, out[4]); + output += 16; + vst1q_s16(output, out[5]); + output += 16; + vst1q_s16(output, out[6]); + output += 16; + vst1q_s16(output, out[7]); + output += 16; + vst1q_s16(output, out[8]); + output += 16; + vst1q_s16(output, out[9]); + output += 16; + vst1q_s16(output, out[10]); + output += 16; + vst1q_s16(output, out[11]); + output += 16; + vst1q_s16(output, out[12]); + output += 16; + vst1q_s16(output, out[13]); + output += 16; + vst1q_s16(output, out[14]); + output += 16; + vst1q_s16(output, out[15]); +} + +static INLINE void idct16x16_add8x1(int16x8_t res, uint8_t **dest, + const int stride) { + uint8x8_t d = vld1_u8(*dest); + uint16x8_t q; + + res = vrshrq_n_s16(res, 6); + q = vaddw_u8(vreinterpretq_u16_s16(res), d); + d = vqmovun_s16(vreinterpretq_s16_u16(q)); + vst1_u8(*dest, d); + *dest += stride; +} + +static INLINE void highbd_idct16x16_add8x1(int16x8_t res, const int16x8_t max, + uint16_t **dest, const int stride) { + uint16x8_t d = vld1q_u16(*dest); + + res = vqaddq_s16(res, vreinterpretq_s16_u16(d)); + res = vminq_s16(res, max); + d = vqshluq_n_s16(res, 0); + vst1q_u16(*dest, d); + *dest += stride; +} + +static INLINE void highbd_idct16x16_add8x1_bd8(int16x8_t res, uint16_t **dest, + const int stride) { + uint16x8_t d = vld1q_u16(*dest); + + res = vrsraq_n_s16(vreinterpretq_s16_u16(d), res, 6); + d = vmovl_u8(vqmovun_s16(res)); + vst1q_u16(*dest, d); + *dest += stride; +} + +static INLINE void highbd_add_and_store_bd8(const int16x8_t *const a, + uint16_t *out, const int b_stride) { + highbd_idct16x16_add8x1_bd8(a[0], &out, b_stride); + highbd_idct16x16_add8x1_bd8(a[1], &out, b_stride); + highbd_idct16x16_add8x1_bd8(a[2], &out, b_stride); + highbd_idct16x16_add8x1_bd8(a[3], &out, b_stride); + highbd_idct16x16_add8x1_bd8(a[4], &out, b_stride); + highbd_idct16x16_add8x1_bd8(a[5], &out, b_stride); + highbd_idct16x16_add8x1_bd8(a[6], &out, b_stride); + highbd_idct16x16_add8x1_bd8(a[7], &out, b_stride); + highbd_idct16x16_add8x1_bd8(a[8], &out, b_stride); + highbd_idct16x16_add8x1_bd8(a[9], &out, b_stride); + highbd_idct16x16_add8x1_bd8(a[10], &out, b_stride); + highbd_idct16x16_add8x1_bd8(a[11], &out, b_stride); + highbd_idct16x16_add8x1_bd8(a[12], &out, b_stride); + highbd_idct16x16_add8x1_bd8(a[13], &out, b_stride); + highbd_idct16x16_add8x1_bd8(a[14], &out, b_stride); + highbd_idct16x16_add8x1_bd8(a[15], &out, b_stride); + highbd_idct16x16_add8x1_bd8(a[16], &out, b_stride); + highbd_idct16x16_add8x1_bd8(a[17], &out, b_stride); + highbd_idct16x16_add8x1_bd8(a[18], &out, b_stride); + highbd_idct16x16_add8x1_bd8(a[19], &out, b_stride); + highbd_idct16x16_add8x1_bd8(a[20], &out, b_stride); + highbd_idct16x16_add8x1_bd8(a[21], &out, b_stride); + highbd_idct16x16_add8x1_bd8(a[22], &out, b_stride); + highbd_idct16x16_add8x1_bd8(a[23], &out, b_stride); + highbd_idct16x16_add8x1_bd8(a[24], &out, b_stride); + highbd_idct16x16_add8x1_bd8(a[25], &out, b_stride); + highbd_idct16x16_add8x1_bd8(a[26], &out, b_stride); + highbd_idct16x16_add8x1_bd8(a[27], &out, b_stride); + highbd_idct16x16_add8x1_bd8(a[28], &out, b_stride); + highbd_idct16x16_add8x1_bd8(a[29], &out, b_stride); + highbd_idct16x16_add8x1_bd8(a[30], &out, b_stride); + highbd_idct16x16_add8x1_bd8(a[31], &out, b_stride); +} + +static INLINE void highbd_idct16x16_add_store(const int32x4x2_t *const out, + uint16_t *dest, const int stride, + const int bd) { + // Add the result to dest + const int16x8_t max = vdupq_n_s16((1 << bd) - 1); + int16x8_t o[16]; + o[0] = vcombine_s16(vrshrn_n_s32(out[0].val[0], 6), + vrshrn_n_s32(out[0].val[1], 6)); + o[1] = vcombine_s16(vrshrn_n_s32(out[1].val[0], 6), + vrshrn_n_s32(out[1].val[1], 6)); + o[2] = vcombine_s16(vrshrn_n_s32(out[2].val[0], 6), + vrshrn_n_s32(out[2].val[1], 6)); + o[3] = vcombine_s16(vrshrn_n_s32(out[3].val[0], 6), + vrshrn_n_s32(out[3].val[1], 6)); + o[4] = vcombine_s16(vrshrn_n_s32(out[4].val[0], 6), + vrshrn_n_s32(out[4].val[1], 6)); + o[5] = vcombine_s16(vrshrn_n_s32(out[5].val[0], 6), + vrshrn_n_s32(out[5].val[1], 6)); + o[6] = vcombine_s16(vrshrn_n_s32(out[6].val[0], 6), + vrshrn_n_s32(out[6].val[1], 6)); + o[7] = vcombine_s16(vrshrn_n_s32(out[7].val[0], 6), + vrshrn_n_s32(out[7].val[1], 6)); + o[8] = vcombine_s16(vrshrn_n_s32(out[8].val[0], 6), + vrshrn_n_s32(out[8].val[1], 6)); + o[9] = vcombine_s16(vrshrn_n_s32(out[9].val[0], 6), + vrshrn_n_s32(out[9].val[1], 6)); + o[10] = vcombine_s16(vrshrn_n_s32(out[10].val[0], 6), + vrshrn_n_s32(out[10].val[1], 6)); + o[11] = vcombine_s16(vrshrn_n_s32(out[11].val[0], 6), + vrshrn_n_s32(out[11].val[1], 6)); + o[12] = vcombine_s16(vrshrn_n_s32(out[12].val[0], 6), + vrshrn_n_s32(out[12].val[1], 6)); + o[13] = vcombine_s16(vrshrn_n_s32(out[13].val[0], 6), + vrshrn_n_s32(out[13].val[1], 6)); + o[14] = vcombine_s16(vrshrn_n_s32(out[14].val[0], 6), + vrshrn_n_s32(out[14].val[1], 6)); + o[15] = vcombine_s16(vrshrn_n_s32(out[15].val[0], 6), + vrshrn_n_s32(out[15].val[1], 6)); + highbd_idct16x16_add8x1(o[0], max, &dest, stride); + highbd_idct16x16_add8x1(o[1], max, &dest, stride); + highbd_idct16x16_add8x1(o[2], max, &dest, stride); + highbd_idct16x16_add8x1(o[3], max, &dest, stride); + highbd_idct16x16_add8x1(o[4], max, &dest, stride); + highbd_idct16x16_add8x1(o[5], max, &dest, stride); + highbd_idct16x16_add8x1(o[6], max, &dest, stride); + highbd_idct16x16_add8x1(o[7], max, &dest, stride); + highbd_idct16x16_add8x1(o[8], max, &dest, stride); + highbd_idct16x16_add8x1(o[9], max, &dest, stride); + highbd_idct16x16_add8x1(o[10], max, &dest, stride); + highbd_idct16x16_add8x1(o[11], max, &dest, stride); + highbd_idct16x16_add8x1(o[12], max, &dest, stride); + highbd_idct16x16_add8x1(o[13], max, &dest, stride); + highbd_idct16x16_add8x1(o[14], max, &dest, stride); + highbd_idct16x16_add8x1(o[15], max, &dest, stride); +} + +void vpx_idct16x16_256_add_half1d(const void *const input, int16_t *output, + void *const dest, const int stride, + const int highbd_flag); + +void vpx_idct16x16_38_add_half1d(const void *const input, int16_t *const output, + void *const dest, const int stride, + const int highbd_flag); + +void vpx_idct16x16_10_add_half1d_pass1(const tran_low_t *input, + int16_t *output); + +void vpx_idct16x16_10_add_half1d_pass2(const int16_t *input, + int16_t *const output, void *const dest, + const int stride, const int highbd_flag); + +void vpx_idct32_32_neon(const tran_low_t *input, uint8_t *dest, + const int stride, const int highbd_flag); + +void vpx_idct32_12_neon(const tran_low_t *const input, int16_t *output); +void vpx_idct32_16_neon(const int16_t *const input, void *const output, + const int stride, const int highbd_flag); + +void vpx_idct32_6_neon(const tran_low_t *input, int16_t *output); +void vpx_idct32_8_neon(const int16_t *input, void *const output, int stride, + const int highbd_flag); + +#endif // VPX_DSP_ARM_IDCT_NEON_H_ diff --git a/vpx_dsp/arm/intrapred_neon.c b/vpx_dsp/arm/intrapred_neon.c new file mode 100644 index 0000000..fb1fa6b --- /dev/null +++ b/vpx_dsp/arm/intrapred_neon.c @@ -0,0 +1,1043 @@ +/* + * Copyright (c) 2014 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include + +#include "./vpx_config.h" +#include "./vpx_dsp_rtcd.h" +#include "vpx/vpx_integer.h" + +//------------------------------------------------------------------------------ +// DC 4x4 + +static INLINE uint16x4_t dc_sum_4(const uint8_t *ref) { + const uint8x8_t ref_u8 = vld1_u8(ref); + const uint16x4_t p0 = vpaddl_u8(ref_u8); + return vpadd_u16(p0, p0); +} + +static INLINE void dc_store_4x4(uint8_t *dst, ptrdiff_t stride, + const uint8x8_t dc) { + const uint8x8_t dc_dup = vdup_lane_u8(dc, 0); + int i; + for (i = 0; i < 4; ++i, dst += stride) { + vst1_lane_u32((uint32_t *)dst, vreinterpret_u32_u8(dc_dup), 0); + } +} + +void vpx_dc_predictor_4x4_neon(uint8_t *dst, ptrdiff_t stride, + const uint8_t *above, const uint8_t *left) { + const uint8x8_t a = vld1_u8(above); + const uint8x8_t l = vld1_u8(left); + const uint16x8_t al = vaddl_u8(a, l); + uint16x4_t sum; + uint8x8_t dc; + sum = vpadd_u16(vget_low_u16(al), vget_low_u16(al)); + sum = vpadd_u16(sum, sum); + dc = vreinterpret_u8_u16(vrshr_n_u16(sum, 3)); + dc_store_4x4(dst, stride, dc); +} + +void vpx_dc_left_predictor_4x4_neon(uint8_t *dst, ptrdiff_t stride, + const uint8_t *above, const uint8_t *left) { + const uint16x4_t sum = dc_sum_4(left); + const uint8x8_t dc = vreinterpret_u8_u16(vrshr_n_u16(sum, 2)); + (void)above; + dc_store_4x4(dst, stride, dc); +} + +void vpx_dc_top_predictor_4x4_neon(uint8_t *dst, ptrdiff_t stride, + const uint8_t *above, const uint8_t *left) { + const uint16x4_t sum = dc_sum_4(above); + const uint8x8_t dc = vreinterpret_u8_u16(vrshr_n_u16(sum, 2)); + (void)left; + dc_store_4x4(dst, stride, dc); +} + +void vpx_dc_128_predictor_4x4_neon(uint8_t *dst, ptrdiff_t stride, + const uint8_t *above, const uint8_t *left) { + const uint8x8_t dc = vdup_n_u8(0x80); + (void)above; + (void)left; + dc_store_4x4(dst, stride, dc); +} + +//------------------------------------------------------------------------------ +// DC 8x8 + +static INLINE uint16x4_t dc_sum_8(const uint8_t *ref) { + const uint8x8_t ref_u8 = vld1_u8(ref); + uint16x4_t sum = vpaddl_u8(ref_u8); + sum = vpadd_u16(sum, sum); + return vpadd_u16(sum, sum); +} + +static INLINE void dc_store_8x8(uint8_t *dst, ptrdiff_t stride, + const uint8x8_t dc) { + const uint8x8_t dc_dup = vdup_lane_u8(dc, 0); + int i; + for (i = 0; i < 8; ++i, dst += stride) { + vst1_u8(dst, dc_dup); + } +} + +void vpx_dc_predictor_8x8_neon(uint8_t *dst, ptrdiff_t stride, + const uint8_t *above, const uint8_t *left) { + const uint8x8_t above_u8 = vld1_u8(above); + const uint8x8_t left_u8 = vld1_u8(left); + const uint8x16_t above_and_left = vcombine_u8(above_u8, left_u8); + const uint16x8_t p0 = vpaddlq_u8(above_and_left); + uint16x4_t sum = vadd_u16(vget_low_u16(p0), vget_high_u16(p0)); + uint8x8_t dc; + sum = vpadd_u16(sum, sum); + sum = vpadd_u16(sum, sum); + dc = vreinterpret_u8_u16(vrshr_n_u16(sum, 4)); + dc_store_8x8(dst, stride, dc); +} + +void vpx_dc_left_predictor_8x8_neon(uint8_t *dst, ptrdiff_t stride, + const uint8_t *above, const uint8_t *left) { + const uint16x4_t sum = dc_sum_8(left); + const uint8x8_t dc = vreinterpret_u8_u16(vrshr_n_u16(sum, 3)); + (void)above; + dc_store_8x8(dst, stride, dc); +} + +void vpx_dc_top_predictor_8x8_neon(uint8_t *dst, ptrdiff_t stride, + const uint8_t *above, const uint8_t *left) { + const uint16x4_t sum = dc_sum_8(above); + const uint8x8_t dc = vreinterpret_u8_u16(vrshr_n_u16(sum, 3)); + (void)left; + dc_store_8x8(dst, stride, dc); +} + +void vpx_dc_128_predictor_8x8_neon(uint8_t *dst, ptrdiff_t stride, + const uint8_t *above, const uint8_t *left) { + const uint8x8_t dc = vdup_n_u8(0x80); + (void)above; + (void)left; + dc_store_8x8(dst, stride, dc); +} + +//------------------------------------------------------------------------------ +// DC 16x16 + +static INLINE uint16x4_t dc_sum_16(const uint8_t *ref) { + const uint8x16_t ref_u8 = vld1q_u8(ref); + const uint16x8_t p0 = vpaddlq_u8(ref_u8); + uint16x4_t sum = vadd_u16(vget_low_u16(p0), vget_high_u16(p0)); + sum = vpadd_u16(sum, sum); + return vpadd_u16(sum, sum); +} + +static INLINE void dc_store_16x16(uint8_t *dst, ptrdiff_t stride, + const uint8x8_t dc) { + const uint8x16_t dc_dup = vdupq_lane_u8(dc, 0); + int i; + for (i = 0; i < 16; ++i, dst += stride) { + vst1q_u8(dst, dc_dup); + } +} + +void vpx_dc_predictor_16x16_neon(uint8_t *dst, ptrdiff_t stride, + const uint8_t *above, const uint8_t *left) { + const uint8x16_t ref0 = vld1q_u8(above); + const uint8x16_t ref1 = vld1q_u8(left); + const uint16x8_t p0 = vpaddlq_u8(ref0); + const uint16x8_t p1 = vpaddlq_u8(ref1); + const uint16x8_t p2 = vaddq_u16(p0, p1); + uint16x4_t sum = vadd_u16(vget_low_u16(p2), vget_high_u16(p2)); + uint8x8_t dc; + sum = vpadd_u16(sum, sum); + sum = vpadd_u16(sum, sum); + dc = vreinterpret_u8_u16(vrshr_n_u16(sum, 5)); + dc_store_16x16(dst, stride, dc); +} + +void vpx_dc_left_predictor_16x16_neon(uint8_t *dst, ptrdiff_t stride, + const uint8_t *above, + const uint8_t *left) { + const uint16x4_t sum = dc_sum_16(left); + const uint8x8_t dc = vreinterpret_u8_u16(vrshr_n_u16(sum, 4)); + (void)above; + dc_store_16x16(dst, stride, dc); +} + +void vpx_dc_top_predictor_16x16_neon(uint8_t *dst, ptrdiff_t stride, + const uint8_t *above, + const uint8_t *left) { + const uint16x4_t sum = dc_sum_16(above); + const uint8x8_t dc = vreinterpret_u8_u16(vrshr_n_u16(sum, 4)); + (void)left; + dc_store_16x16(dst, stride, dc); +} + +void vpx_dc_128_predictor_16x16_neon(uint8_t *dst, ptrdiff_t stride, + const uint8_t *above, + const uint8_t *left) { + const uint8x8_t dc = vdup_n_u8(0x80); + (void)above; + (void)left; + dc_store_16x16(dst, stride, dc); +} + +//------------------------------------------------------------------------------ +// DC 32x32 + +static INLINE uint16x4_t dc_sum_32(const uint8_t *ref) { + const uint8x16x2_t r = vld2q_u8(ref); + const uint16x8_t p0 = vpaddlq_u8(r.val[0]); + const uint16x8_t p1 = vpaddlq_u8(r.val[1]); + const uint16x8_t p2 = vaddq_u16(p0, p1); + uint16x4_t sum = vadd_u16(vget_low_u16(p2), vget_high_u16(p2)); + sum = vpadd_u16(sum, sum); + return vpadd_u16(sum, sum); +} + +static INLINE void dc_store_32x32(uint8_t *dst, ptrdiff_t stride, + const uint8x8_t dc) { + uint8x16x2_t dc_dup; + int i; + dc_dup.val[0] = dc_dup.val[1] = vdupq_lane_u8(dc, 0); + + for (i = 0; i < 32; ++i, dst += stride) { + vst2q_u8(dst, dc_dup); + } +} + +void vpx_dc_predictor_32x32_neon(uint8_t *dst, ptrdiff_t stride, + const uint8_t *above, const uint8_t *left) { + const uint8x16x2_t a = vld2q_u8(above); + const uint8x16x2_t l = vld2q_u8(left); + const uint16x8_t pa0 = vpaddlq_u8(a.val[0]); + const uint16x8_t pl0 = vpaddlq_u8(l.val[0]); + const uint16x8_t pa1 = vpaddlq_u8(a.val[1]); + const uint16x8_t pl1 = vpaddlq_u8(l.val[1]); + const uint16x8_t pa = vaddq_u16(pa0, pa1); + const uint16x8_t pl = vaddq_u16(pl0, pl1); + const uint16x8_t pal = vaddq_u16(pa, pl); + uint16x4_t sum = vadd_u16(vget_low_u16(pal), vget_high_u16(pal)); + uint8x8_t dc; + sum = vpadd_u16(sum, sum); + sum = vpadd_u16(sum, sum); + dc = vreinterpret_u8_u16(vrshr_n_u16(sum, 6)); + dc_store_32x32(dst, stride, dc); +} + +void vpx_dc_left_predictor_32x32_neon(uint8_t *dst, ptrdiff_t stride, + const uint8_t *above, + const uint8_t *left) { + const uint16x4_t sum = dc_sum_32(left); + const uint8x8_t dc = vreinterpret_u8_u16(vrshr_n_u16(sum, 5)); + (void)above; + dc_store_32x32(dst, stride, dc); +} + +void vpx_dc_top_predictor_32x32_neon(uint8_t *dst, ptrdiff_t stride, + const uint8_t *above, + const uint8_t *left) { + const uint16x4_t sum = dc_sum_32(above); + const uint8x8_t dc = vreinterpret_u8_u16(vrshr_n_u16(sum, 5)); + (void)left; + dc_store_32x32(dst, stride, dc); +} + +void vpx_dc_128_predictor_32x32_neon(uint8_t *dst, ptrdiff_t stride, + const uint8_t *above, + const uint8_t *left) { + const uint8x8_t dc = vdup_n_u8(0x80); + (void)above; + (void)left; + dc_store_32x32(dst, stride, dc); +} + +// ----------------------------------------------------------------------------- + +void vpx_d45_predictor_4x4_neon(uint8_t *dst, ptrdiff_t stride, + const uint8_t *above, const uint8_t *left) { + const uint8x8_t ABCDEFGH = vld1_u8(above); + const uint64x1_t A1 = vshr_n_u64(vreinterpret_u64_u8(ABCDEFGH), 8); + const uint64x1_t A2 = vshr_n_u64(vreinterpret_u64_u8(ABCDEFGH), 16); + const uint8x8_t BCDEFGH0 = vreinterpret_u8_u64(A1); + const uint8x8_t CDEFGH00 = vreinterpret_u8_u64(A2); + const uint8x8_t avg1 = vhadd_u8(ABCDEFGH, CDEFGH00); + const uint8x8_t avg2 = vrhadd_u8(avg1, BCDEFGH0); + const uint64x1_t avg2_u64 = vreinterpret_u64_u8(avg2); + const uint32x2_t r0 = vreinterpret_u32_u8(avg2); + const uint32x2_t r1 = vreinterpret_u32_u64(vshr_n_u64(avg2_u64, 8)); + const uint32x2_t r2 = vreinterpret_u32_u64(vshr_n_u64(avg2_u64, 16)); + const uint32x2_t r3 = vreinterpret_u32_u64(vshr_n_u64(avg2_u64, 24)); + (void)left; + vst1_lane_u32((uint32_t *)(dst + 0 * stride), r0, 0); + vst1_lane_u32((uint32_t *)(dst + 1 * stride), r1, 0); + vst1_lane_u32((uint32_t *)(dst + 2 * stride), r2, 0); + vst1_lane_u32((uint32_t *)(dst + 3 * stride), r3, 0); + vst1_lane_u8(dst + 3 * stride + 3, ABCDEFGH, 7); +} + +static INLINE void d45_store_8(uint8_t **dst, const ptrdiff_t stride, + const uint8x8_t above_right, uint8x8_t *row) { + *row = vext_u8(*row, above_right, 1); + vst1_u8(*dst, *row); + *dst += stride; +} + +void vpx_d45_predictor_8x8_neon(uint8_t *dst, ptrdiff_t stride, + const uint8_t *above, const uint8_t *left) { + const uint8x8_t A0 = vld1_u8(above); + const uint8x8_t above_right = vdup_lane_u8(A0, 7); + const uint8x8_t A1 = vext_u8(A0, above_right, 1); + const uint8x8_t A2 = vext_u8(A0, above_right, 2); + const uint8x8_t avg1 = vhadd_u8(A0, A2); + uint8x8_t row = vrhadd_u8(avg1, A1); + (void)left; + + vst1_u8(dst, row); + dst += stride; + d45_store_8(&dst, stride, above_right, &row); + d45_store_8(&dst, stride, above_right, &row); + d45_store_8(&dst, stride, above_right, &row); + d45_store_8(&dst, stride, above_right, &row); + d45_store_8(&dst, stride, above_right, &row); + d45_store_8(&dst, stride, above_right, &row); + vst1_u8(dst, above_right); +} + +static INLINE void d45_store_16(uint8_t **dst, const ptrdiff_t stride, + const uint8x16_t above_right, uint8x16_t *row) { + *row = vextq_u8(*row, above_right, 1); + vst1q_u8(*dst, *row); + *dst += stride; +} + +void vpx_d45_predictor_16x16_neon(uint8_t *dst, ptrdiff_t stride, + const uint8_t *above, const uint8_t *left) { + const uint8x16_t A0 = vld1q_u8(above); + const uint8x16_t above_right = vdupq_lane_u8(vget_high_u8(A0), 7); + const uint8x16_t A1 = vextq_u8(A0, above_right, 1); + const uint8x16_t A2 = vextq_u8(A0, above_right, 2); + const uint8x16_t avg1 = vhaddq_u8(A0, A2); + uint8x16_t row = vrhaddq_u8(avg1, A1); + (void)left; + + vst1q_u8(dst, row); + dst += stride; + d45_store_16(&dst, stride, above_right, &row); + d45_store_16(&dst, stride, above_right, &row); + d45_store_16(&dst, stride, above_right, &row); + d45_store_16(&dst, stride, above_right, &row); + d45_store_16(&dst, stride, above_right, &row); + d45_store_16(&dst, stride, above_right, &row); + d45_store_16(&dst, stride, above_right, &row); + d45_store_16(&dst, stride, above_right, &row); + d45_store_16(&dst, stride, above_right, &row); + d45_store_16(&dst, stride, above_right, &row); + d45_store_16(&dst, stride, above_right, &row); + d45_store_16(&dst, stride, above_right, &row); + d45_store_16(&dst, stride, above_right, &row); + d45_store_16(&dst, stride, above_right, &row); + vst1q_u8(dst, above_right); +} + +void vpx_d45_predictor_32x32_neon(uint8_t *dst, ptrdiff_t stride, + const uint8_t *above, const uint8_t *left) { + const uint8x16_t A0_0 = vld1q_u8(above); + const uint8x16_t A0_1 = vld1q_u8(above + 16); + const uint8x16_t above_right = vdupq_lane_u8(vget_high_u8(A0_1), 7); + const uint8x16_t A1_0 = vld1q_u8(above + 1); + const uint8x16_t A1_1 = vld1q_u8(above + 17); + const uint8x16_t A2_0 = vld1q_u8(above + 2); + const uint8x16_t A2_1 = vld1q_u8(above + 18); + const uint8x16_t avg_0 = vhaddq_u8(A0_0, A2_0); + const uint8x16_t avg_1 = vhaddq_u8(A0_1, A2_1); + uint8x16_t row_0 = vrhaddq_u8(avg_0, A1_0); + uint8x16_t row_1 = vrhaddq_u8(avg_1, A1_1); + int i; + (void)left; + + vst1q_u8(dst, row_0); + dst += 16; + vst1q_u8(dst, row_1); + dst += stride - 16; + + for (i = 0; i < 30; ++i) { + row_0 = vextq_u8(row_0, row_1, 1); + row_1 = vextq_u8(row_1, above_right, 1); + vst1q_u8(dst, row_0); + dst += 16; + vst1q_u8(dst, row_1); + dst += stride - 16; + } + + vst1q_u8(dst, above_right); + dst += 16; + vst1q_u8(dst, row_1); +} + +// ----------------------------------------------------------------------------- + +void vpx_d135_predictor_4x4_neon(uint8_t *dst, ptrdiff_t stride, + const uint8_t *above, const uint8_t *left) { + const uint8x8_t XA0123 = vld1_u8(above - 1); + const uint8x8_t L0123 = vld1_u8(left); + const uint8x8_t L3210 = vrev64_u8(L0123); + const uint8x8_t L3210XA012 = vext_u8(L3210, XA0123, 4); + const uint8x8_t L210XA0123 = vext_u8(L3210, XA0123, 5); + const uint8x8_t L10XA0123_ = + vreinterpret_u8_u64(vshr_n_u64(vreinterpret_u64_u8(L210XA0123), 8)); + const uint8x8_t avg1 = vhadd_u8(L10XA0123_, L3210XA012); + const uint8x8_t avg2 = vrhadd_u8(avg1, L210XA0123); + const uint64x1_t avg2_u64 = vreinterpret_u64_u8(avg2); + const uint32x2_t r3 = vreinterpret_u32_u8(avg2); + const uint32x2_t r2 = vreinterpret_u32_u64(vshr_n_u64(avg2_u64, 8)); + const uint32x2_t r1 = vreinterpret_u32_u64(vshr_n_u64(avg2_u64, 16)); + const uint32x2_t r0 = vreinterpret_u32_u64(vshr_n_u64(avg2_u64, 24)); + vst1_lane_u32((uint32_t *)dst, r0, 0); + dst += stride; + vst1_lane_u32((uint32_t *)dst, r1, 0); + dst += stride; + vst1_lane_u32((uint32_t *)dst, r2, 0); + dst += stride; + vst1_lane_u32((uint32_t *)dst, r3, 0); +} + +void vpx_d135_predictor_8x8_neon(uint8_t *dst, ptrdiff_t stride, + const uint8_t *above, const uint8_t *left) { + const uint8x8_t XA0123456 = vld1_u8(above - 1); + const uint8x8_t A01234567 = vld1_u8(above); + const uint8x8_t A1234567_ = vld1_u8(above + 1); + const uint8x8_t L01234567 = vld1_u8(left); + const uint8x8_t L76543210 = vrev64_u8(L01234567); + const uint8x8_t L6543210X = vext_u8(L76543210, XA0123456, 1); + const uint8x8_t L543210XA0 = vext_u8(L76543210, XA0123456, 2); + const uint8x16_t L76543210XA0123456 = vcombine_u8(L76543210, XA0123456); + const uint8x16_t L6543210XA01234567 = vcombine_u8(L6543210X, A01234567); + const uint8x16_t L543210XA01234567_ = vcombine_u8(L543210XA0, A1234567_); + const uint8x16_t avg = vhaddq_u8(L76543210XA0123456, L543210XA01234567_); + const uint8x16_t row = vrhaddq_u8(avg, L6543210XA01234567); + const uint8x8_t row_0 = vget_low_u8(row); + const uint8x8_t row_1 = vget_high_u8(row); + const uint8x8_t r0 = vext_u8(row_0, row_1, 7); + const uint8x8_t r1 = vext_u8(row_0, row_1, 6); + const uint8x8_t r2 = vext_u8(row_0, row_1, 5); + const uint8x8_t r3 = vext_u8(row_0, row_1, 4); + const uint8x8_t r4 = vext_u8(row_0, row_1, 3); + const uint8x8_t r5 = vext_u8(row_0, row_1, 2); + const uint8x8_t r6 = vext_u8(row_0, row_1, 1); + + vst1_u8(dst, r0); + dst += stride; + vst1_u8(dst, r1); + dst += stride; + vst1_u8(dst, r2); + dst += stride; + vst1_u8(dst, r3); + dst += stride; + vst1_u8(dst, r4); + dst += stride; + vst1_u8(dst, r5); + dst += stride; + vst1_u8(dst, r6); + dst += stride; + vst1_u8(dst, row_0); +} + +static INLINE void d135_store_16x8( + uint8_t **dst, const ptrdiff_t stride, const uint8x16_t row_0, + const uint8x16_t row_1, const uint8x16_t row_2, const uint8x16_t row_3, + const uint8x16_t row_4, const uint8x16_t row_5, const uint8x16_t row_6, + const uint8x16_t row_7) { + vst1q_u8(*dst, row_0); + *dst += stride; + vst1q_u8(*dst, row_1); + *dst += stride; + vst1q_u8(*dst, row_2); + *dst += stride; + vst1q_u8(*dst, row_3); + *dst += stride; + vst1q_u8(*dst, row_4); + *dst += stride; + vst1q_u8(*dst, row_5); + *dst += stride; + vst1q_u8(*dst, row_6); + *dst += stride; + vst1q_u8(*dst, row_7); + *dst += stride; +} + +void vpx_d135_predictor_16x16_neon(uint8_t *dst, ptrdiff_t stride, + const uint8_t *above, const uint8_t *left) { + const uint8x16_t XA0123456789abcde = vld1q_u8(above - 1); + const uint8x16_t A0123456789abcdef = vld1q_u8(above); + const uint8x16_t A123456789abcdef_ = vld1q_u8(above + 1); + const uint8x16_t L0123456789abcdef = vld1q_u8(left); + const uint8x8_t L76543210 = vrev64_u8(vget_low_u8(L0123456789abcdef)); + const uint8x8_t Lfedcba98 = vrev64_u8(vget_high_u8(L0123456789abcdef)); + const uint8x16_t Lfedcba9876543210 = vcombine_u8(Lfedcba98, L76543210); + const uint8x16_t Ledcba9876543210X = + vextq_u8(Lfedcba9876543210, XA0123456789abcde, 1); + const uint8x16_t Ldcba9876543210XA0 = + vextq_u8(Lfedcba9876543210, XA0123456789abcde, 2); + const uint8x16_t avg_0 = vhaddq_u8(Lfedcba9876543210, Ldcba9876543210XA0); + const uint8x16_t avg_1 = vhaddq_u8(XA0123456789abcde, A123456789abcdef_); + const uint8x16_t row_0 = vrhaddq_u8(avg_0, Ledcba9876543210X); + const uint8x16_t row_1 = vrhaddq_u8(avg_1, A0123456789abcdef); + const uint8x16_t r_0 = vextq_u8(row_0, row_1, 15); + const uint8x16_t r_1 = vextq_u8(row_0, row_1, 14); + const uint8x16_t r_2 = vextq_u8(row_0, row_1, 13); + const uint8x16_t r_3 = vextq_u8(row_0, row_1, 12); + const uint8x16_t r_4 = vextq_u8(row_0, row_1, 11); + const uint8x16_t r_5 = vextq_u8(row_0, row_1, 10); + const uint8x16_t r_6 = vextq_u8(row_0, row_1, 9); + const uint8x16_t r_7 = vcombine_u8(vget_high_u8(row_0), vget_low_u8(row_1)); + const uint8x16_t r_8 = vextq_u8(row_0, row_1, 7); + const uint8x16_t r_9 = vextq_u8(row_0, row_1, 6); + const uint8x16_t r_a = vextq_u8(row_0, row_1, 5); + const uint8x16_t r_b = vextq_u8(row_0, row_1, 4); + const uint8x16_t r_c = vextq_u8(row_0, row_1, 3); + const uint8x16_t r_d = vextq_u8(row_0, row_1, 2); + const uint8x16_t r_e = vextq_u8(row_0, row_1, 1); + + d135_store_16x8(&dst, stride, r_0, r_1, r_2, r_3, r_4, r_5, r_6, r_7); + d135_store_16x8(&dst, stride, r_8, r_9, r_a, r_b, r_c, r_d, r_e, row_0); +} + +static INLINE void d135_store_32x2(uint8_t **dst, const ptrdiff_t stride, + const uint8x16_t row_0, + const uint8x16_t row_1, + const uint8x16_t row_2) { + uint8_t *dst2 = *dst; + vst1q_u8(dst2, row_1); + dst2 += 16; + vst1q_u8(dst2, row_2); + dst2 += 16 * stride - 16; + vst1q_u8(dst2, row_0); + dst2 += 16; + vst1q_u8(dst2, row_1); + *dst += stride; +} + +void vpx_d135_predictor_32x32_neon(uint8_t *dst, ptrdiff_t stride, + const uint8_t *above, const uint8_t *left) { + const uint8x16_t LL0123456789abcdef = vld1q_u8(left + 16); + const uint8x16_t LU0123456789abcdef = vld1q_u8(left); + const uint8x8_t LL76543210 = vrev64_u8(vget_low_u8(LL0123456789abcdef)); + const uint8x8_t LU76543210 = vrev64_u8(vget_low_u8(LU0123456789abcdef)); + const uint8x8_t LLfedcba98 = vrev64_u8(vget_high_u8(LL0123456789abcdef)); + const uint8x8_t LUfedcba98 = vrev64_u8(vget_high_u8(LU0123456789abcdef)); + const uint8x16_t LLfedcba9876543210 = vcombine_u8(LLfedcba98, LL76543210); + const uint8x16_t LUfedcba9876543210 = vcombine_u8(LUfedcba98, LU76543210); + const uint8x16_t LLedcba9876543210Uf = + vextq_u8(LLfedcba9876543210, LUfedcba9876543210, 1); + const uint8x16_t LLdcba9876543210Ufe = + vextq_u8(LLfedcba9876543210, LUfedcba9876543210, 2); + const uint8x16_t avg_0 = vhaddq_u8(LLfedcba9876543210, LLdcba9876543210Ufe); + const uint8x16_t row_0 = vrhaddq_u8(avg_0, LLedcba9876543210Uf); + + const uint8x16_t XAL0123456789abcde = vld1q_u8(above - 1); + const uint8x16_t LUedcba9876543210X = + vextq_u8(LUfedcba9876543210, XAL0123456789abcde, 1); + const uint8x16_t LUdcba9876543210XA0 = + vextq_u8(LUfedcba9876543210, XAL0123456789abcde, 2); + const uint8x16_t avg_1 = vhaddq_u8(LUfedcba9876543210, LUdcba9876543210XA0); + const uint8x16_t row_1 = vrhaddq_u8(avg_1, LUedcba9876543210X); + + const uint8x16_t AL0123456789abcdef = vld1q_u8(above); + const uint8x16_t AL123456789abcdefg = vld1q_u8(above + 1); + const uint8x16_t ALfR0123456789abcde = vld1q_u8(above + 15); + const uint8x16_t AR0123456789abcdef = vld1q_u8(above + 16); + const uint8x16_t AR123456789abcdef_ = vld1q_u8(above + 17); + const uint8x16_t avg_2 = vhaddq_u8(XAL0123456789abcde, AL123456789abcdefg); + const uint8x16_t row_2 = vrhaddq_u8(avg_2, AL0123456789abcdef); + const uint8x16_t avg_3 = vhaddq_u8(ALfR0123456789abcde, AR123456789abcdef_); + const uint8x16_t row_3 = vrhaddq_u8(avg_3, AR0123456789abcdef); + + { + const uint8x16_t r_0 = vextq_u8(row_0, row_1, 15); + const uint8x16_t r_1 = vextq_u8(row_1, row_2, 15); + const uint8x16_t r_2 = vextq_u8(row_2, row_3, 15); + d135_store_32x2(&dst, stride, r_0, r_1, r_2); + } + + { + const uint8x16_t r_0 = vextq_u8(row_0, row_1, 14); + const uint8x16_t r_1 = vextq_u8(row_1, row_2, 14); + const uint8x16_t r_2 = vextq_u8(row_2, row_3, 14); + d135_store_32x2(&dst, stride, r_0, r_1, r_2); + } + + { + const uint8x16_t r_0 = vextq_u8(row_0, row_1, 13); + const uint8x16_t r_1 = vextq_u8(row_1, row_2, 13); + const uint8x16_t r_2 = vextq_u8(row_2, row_3, 13); + d135_store_32x2(&dst, stride, r_0, r_1, r_2); + } + + { + const uint8x16_t r_0 = vextq_u8(row_0, row_1, 12); + const uint8x16_t r_1 = vextq_u8(row_1, row_2, 12); + const uint8x16_t r_2 = vextq_u8(row_2, row_3, 12); + d135_store_32x2(&dst, stride, r_0, r_1, r_2); + } + + { + const uint8x16_t r_0 = vextq_u8(row_0, row_1, 11); + const uint8x16_t r_1 = vextq_u8(row_1, row_2, 11); + const uint8x16_t r_2 = vextq_u8(row_2, row_3, 11); + d135_store_32x2(&dst, stride, r_0, r_1, r_2); + } + + { + const uint8x16_t r_0 = vextq_u8(row_0, row_1, 10); + const uint8x16_t r_1 = vextq_u8(row_1, row_2, 10); + const uint8x16_t r_2 = vextq_u8(row_2, row_3, 10); + d135_store_32x2(&dst, stride, r_0, r_1, r_2); + } + + { + const uint8x16_t r_0 = vextq_u8(row_0, row_1, 9); + const uint8x16_t r_1 = vextq_u8(row_1, row_2, 9); + const uint8x16_t r_2 = vextq_u8(row_2, row_3, 9); + d135_store_32x2(&dst, stride, r_0, r_1, r_2); + } + + { + const uint8x16_t r_0 = vextq_u8(row_0, row_1, 8); + const uint8x16_t r_1 = vextq_u8(row_1, row_2, 8); + const uint8x16_t r_2 = vextq_u8(row_2, row_3, 8); + d135_store_32x2(&dst, stride, r_0, r_1, r_2); + } + + { + const uint8x16_t r_0 = vextq_u8(row_0, row_1, 7); + const uint8x16_t r_1 = vextq_u8(row_1, row_2, 7); + const uint8x16_t r_2 = vextq_u8(row_2, row_3, 7); + d135_store_32x2(&dst, stride, r_0, r_1, r_2); + } + + { + const uint8x16_t r_0 = vextq_u8(row_0, row_1, 6); + const uint8x16_t r_1 = vextq_u8(row_1, row_2, 6); + const uint8x16_t r_2 = vextq_u8(row_2, row_3, 6); + d135_store_32x2(&dst, stride, r_0, r_1, r_2); + } + + { + const uint8x16_t r_0 = vextq_u8(row_0, row_1, 5); + const uint8x16_t r_1 = vextq_u8(row_1, row_2, 5); + const uint8x16_t r_2 = vextq_u8(row_2, row_3, 5); + d135_store_32x2(&dst, stride, r_0, r_1, r_2); + } + + { + const uint8x16_t r_0 = vextq_u8(row_0, row_1, 4); + const uint8x16_t r_1 = vextq_u8(row_1, row_2, 4); + const uint8x16_t r_2 = vextq_u8(row_2, row_3, 4); + d135_store_32x2(&dst, stride, r_0, r_1, r_2); + } + + { + const uint8x16_t r_0 = vextq_u8(row_0, row_1, 3); + const uint8x16_t r_1 = vextq_u8(row_1, row_2, 3); + const uint8x16_t r_2 = vextq_u8(row_2, row_3, 3); + d135_store_32x2(&dst, stride, r_0, r_1, r_2); + } + + { + const uint8x16_t r_0 = vextq_u8(row_0, row_1, 2); + const uint8x16_t r_1 = vextq_u8(row_1, row_2, 2); + const uint8x16_t r_2 = vextq_u8(row_2, row_3, 2); + d135_store_32x2(&dst, stride, r_0, r_1, r_2); + } + + { + const uint8x16_t r_0 = vextq_u8(row_0, row_1, 1); + const uint8x16_t r_1 = vextq_u8(row_1, row_2, 1); + const uint8x16_t r_2 = vextq_u8(row_2, row_3, 1); + d135_store_32x2(&dst, stride, r_0, r_1, r_2); + } + + d135_store_32x2(&dst, stride, row_0, row_1, row_2); +} + +// ----------------------------------------------------------------------------- + +#if !HAVE_NEON_ASM + +void vpx_v_predictor_4x4_neon(uint8_t *dst, ptrdiff_t stride, + const uint8_t *above, const uint8_t *left) { + const uint32_t d = *(const uint32_t *)above; + int i; + (void)left; + + for (i = 0; i < 4; i++, dst += stride) { + *(uint32_t *)dst = d; + } +} + +void vpx_v_predictor_8x8_neon(uint8_t *dst, ptrdiff_t stride, + const uint8_t *above, const uint8_t *left) { + const uint8x8_t d = vld1_u8(above); + int i; + (void)left; + + for (i = 0; i < 8; i++, dst += stride) { + vst1_u8(dst, d); + } +} + +void vpx_v_predictor_16x16_neon(uint8_t *dst, ptrdiff_t stride, + const uint8_t *above, const uint8_t *left) { + const uint8x16_t d = vld1q_u8(above); + int i; + (void)left; + + for (i = 0; i < 16; i++, dst += stride) { + vst1q_u8(dst, d); + } +} + +void vpx_v_predictor_32x32_neon(uint8_t *dst, ptrdiff_t stride, + const uint8_t *above, const uint8_t *left) { + const uint8x16_t d0 = vld1q_u8(above); + const uint8x16_t d1 = vld1q_u8(above + 16); + int i; + (void)left; + + for (i = 0; i < 32; i++) { + // Note: performance was worse using vst2q_u8 under gcc-4.9 & clang-3.8. + // clang-3.8 unrolled the loop fully with no filler so the cause is likely + // the latency of the instruction. + vst1q_u8(dst, d0); + dst += 16; + vst1q_u8(dst, d1); + dst += stride - 16; + } +} + +// ----------------------------------------------------------------------------- + +void vpx_h_predictor_4x4_neon(uint8_t *dst, ptrdiff_t stride, + const uint8_t *above, const uint8_t *left) { + const uint32x2_t zero = vdup_n_u32(0); + const uint8x8_t left_u8 = + vreinterpret_u8_u32(vld1_lane_u32((const uint32_t *)left, zero, 0)); + uint8x8_t d; + (void)above; + + d = vdup_lane_u8(left_u8, 0); + vst1_lane_u32((uint32_t *)dst, vreinterpret_u32_u8(d), 0); + dst += stride; + d = vdup_lane_u8(left_u8, 1); + vst1_lane_u32((uint32_t *)dst, vreinterpret_u32_u8(d), 0); + dst += stride; + d = vdup_lane_u8(left_u8, 2); + vst1_lane_u32((uint32_t *)dst, vreinterpret_u32_u8(d), 0); + dst += stride; + d = vdup_lane_u8(left_u8, 3); + vst1_lane_u32((uint32_t *)dst, vreinterpret_u32_u8(d), 0); +} + +void vpx_h_predictor_8x8_neon(uint8_t *dst, ptrdiff_t stride, + const uint8_t *above, const uint8_t *left) { + const uint8x8_t left_u8 = vld1_u8(left); + uint8x8_t d; + (void)above; + + d = vdup_lane_u8(left_u8, 0); + vst1_u8(dst, d); + dst += stride; + d = vdup_lane_u8(left_u8, 1); + vst1_u8(dst, d); + dst += stride; + d = vdup_lane_u8(left_u8, 2); + vst1_u8(dst, d); + dst += stride; + d = vdup_lane_u8(left_u8, 3); + vst1_u8(dst, d); + dst += stride; + d = vdup_lane_u8(left_u8, 4); + vst1_u8(dst, d); + dst += stride; + d = vdup_lane_u8(left_u8, 5); + vst1_u8(dst, d); + dst += stride; + d = vdup_lane_u8(left_u8, 6); + vst1_u8(dst, d); + dst += stride; + d = vdup_lane_u8(left_u8, 7); + vst1_u8(dst, d); +} + +static INLINE void h_store_16x8(uint8_t **dst, const ptrdiff_t stride, + const uint8x8_t left) { + const uint8x16_t row_0 = vdupq_lane_u8(left, 0); + const uint8x16_t row_1 = vdupq_lane_u8(left, 1); + const uint8x16_t row_2 = vdupq_lane_u8(left, 2); + const uint8x16_t row_3 = vdupq_lane_u8(left, 3); + const uint8x16_t row_4 = vdupq_lane_u8(left, 4); + const uint8x16_t row_5 = vdupq_lane_u8(left, 5); + const uint8x16_t row_6 = vdupq_lane_u8(left, 6); + const uint8x16_t row_7 = vdupq_lane_u8(left, 7); + + vst1q_u8(*dst, row_0); + *dst += stride; + vst1q_u8(*dst, row_1); + *dst += stride; + vst1q_u8(*dst, row_2); + *dst += stride; + vst1q_u8(*dst, row_3); + *dst += stride; + vst1q_u8(*dst, row_4); + *dst += stride; + vst1q_u8(*dst, row_5); + *dst += stride; + vst1q_u8(*dst, row_6); + *dst += stride; + vst1q_u8(*dst, row_7); + *dst += stride; +} + +void vpx_h_predictor_16x16_neon(uint8_t *dst, ptrdiff_t stride, + const uint8_t *above, const uint8_t *left) { + const uint8x16_t left_u8q = vld1q_u8(left); + (void)above; + + h_store_16x8(&dst, stride, vget_low_u8(left_u8q)); + h_store_16x8(&dst, stride, vget_high_u8(left_u8q)); +} + +static INLINE void h_store_32x8(uint8_t **dst, const ptrdiff_t stride, + const uint8x8_t left) { + const uint8x16_t row_0 = vdupq_lane_u8(left, 0); + const uint8x16_t row_1 = vdupq_lane_u8(left, 1); + const uint8x16_t row_2 = vdupq_lane_u8(left, 2); + const uint8x16_t row_3 = vdupq_lane_u8(left, 3); + const uint8x16_t row_4 = vdupq_lane_u8(left, 4); + const uint8x16_t row_5 = vdupq_lane_u8(left, 5); + const uint8x16_t row_6 = vdupq_lane_u8(left, 6); + const uint8x16_t row_7 = vdupq_lane_u8(left, 7); + + vst1q_u8(*dst, row_0); // Note clang-3.8 produced poor code w/vst2q_u8 + *dst += 16; + vst1q_u8(*dst, row_0); + *dst += stride - 16; + vst1q_u8(*dst, row_1); + *dst += 16; + vst1q_u8(*dst, row_1); + *dst += stride - 16; + vst1q_u8(*dst, row_2); + *dst += 16; + vst1q_u8(*dst, row_2); + *dst += stride - 16; + vst1q_u8(*dst, row_3); + *dst += 16; + vst1q_u8(*dst, row_3); + *dst += stride - 16; + vst1q_u8(*dst, row_4); + *dst += 16; + vst1q_u8(*dst, row_4); + *dst += stride - 16; + vst1q_u8(*dst, row_5); + *dst += 16; + vst1q_u8(*dst, row_5); + *dst += stride - 16; + vst1q_u8(*dst, row_6); + *dst += 16; + vst1q_u8(*dst, row_6); + *dst += stride - 16; + vst1q_u8(*dst, row_7); + *dst += 16; + vst1q_u8(*dst, row_7); + *dst += stride - 16; +} + +void vpx_h_predictor_32x32_neon(uint8_t *dst, ptrdiff_t stride, + const uint8_t *above, const uint8_t *left) { + int i; + (void)above; + + for (i = 0; i < 2; i++, left += 16) { + const uint8x16_t left_u8 = vld1q_u8(left); + h_store_32x8(&dst, stride, vget_low_u8(left_u8)); + h_store_32x8(&dst, stride, vget_high_u8(left_u8)); + } +} + +// ----------------------------------------------------------------------------- + +static INLINE int16x8_t convert_u8_to_s16(uint8x8_t v) { + return vreinterpretq_s16_u16(vmovl_u8(v)); +} + +void vpx_tm_predictor_4x4_neon(uint8_t *dst, ptrdiff_t stride, + const uint8_t *above, const uint8_t *left) { + const uint8x8_t top_left = vld1_dup_u8(above - 1); + const uint8x8_t left_u8 = vld1_u8(left); + const uint8x8_t above_u8 = vld1_u8(above); + const int16x4_t left_s16 = vget_low_s16(convert_u8_to_s16(left_u8)); + int16x8_t sub, sum; + uint32x2_t d; + + sub = vreinterpretq_s16_u16(vsubl_u8(above_u8, top_left)); + // Avoid vcombine_s16() which generates lots of redundant code with clang-3.8. + sub = vreinterpretq_s16_s64( + vdupq_lane_s64(vreinterpret_s64_s16(vget_low_s16(sub)), 0)); + + sum = vcombine_s16(vdup_lane_s16(left_s16, 0), vdup_lane_s16(left_s16, 1)); + sum = vaddq_s16(sum, sub); + d = vreinterpret_u32_u8(vqmovun_s16(sum)); + vst1_lane_u32((uint32_t *)dst, d, 0); + dst += stride; + vst1_lane_u32((uint32_t *)dst, d, 1); + dst += stride; + + sum = vcombine_s16(vdup_lane_s16(left_s16, 2), vdup_lane_s16(left_s16, 3)); + sum = vaddq_s16(sum, sub); + d = vreinterpret_u32_u8(vqmovun_s16(sum)); + vst1_lane_u32((uint32_t *)dst, d, 0); + dst += stride; + vst1_lane_u32((uint32_t *)dst, d, 1); +} + +static INLINE void tm_8_kernel(uint8_t **dst, const ptrdiff_t stride, + const int16x8_t left_dup, const int16x8_t sub) { + const int16x8_t sum = vaddq_s16(left_dup, sub); + const uint8x8_t d = vqmovun_s16(sum); + vst1_u8(*dst, d); + *dst += stride; +} + +void vpx_tm_predictor_8x8_neon(uint8_t *dst, ptrdiff_t stride, + const uint8_t *above, const uint8_t *left) { + const uint8x8_t top_left = vld1_dup_u8(above - 1); + const uint8x8_t above_u8 = vld1_u8(above); + const uint8x8_t left_u8 = vld1_u8(left); + const int16x8_t left_s16q = convert_u8_to_s16(left_u8); + const int16x8_t sub = vreinterpretq_s16_u16(vsubl_u8(above_u8, top_left)); + int16x4_t left_s16d = vget_low_s16(left_s16q); + int i; + + for (i = 0; i < 2; i++, left_s16d = vget_high_s16(left_s16q)) { + int16x8_t left_dup; + + left_dup = vdupq_lane_s16(left_s16d, 0); + tm_8_kernel(&dst, stride, left_dup, sub); + left_dup = vdupq_lane_s16(left_s16d, 1); + tm_8_kernel(&dst, stride, left_dup, sub); + left_dup = vdupq_lane_s16(left_s16d, 2); + tm_8_kernel(&dst, stride, left_dup, sub); + left_dup = vdupq_lane_s16(left_s16d, 3); + tm_8_kernel(&dst, stride, left_dup, sub); + } +} + +static INLINE void tm_16_kernel(uint8_t **dst, const ptrdiff_t stride, + const int16x8_t left_dup, const int16x8_t sub0, + const int16x8_t sub1) { + const int16x8_t sum0 = vaddq_s16(left_dup, sub0); + const int16x8_t sum1 = vaddq_s16(left_dup, sub1); + const uint8x8_t d0 = vqmovun_s16(sum0); + const uint8x8_t d1 = vqmovun_s16(sum1); + vst1_u8(*dst, d0); + *dst += 8; + vst1_u8(*dst, d1); + *dst += stride - 8; +} + +void vpx_tm_predictor_16x16_neon(uint8_t *dst, ptrdiff_t stride, + const uint8_t *above, const uint8_t *left) { + const uint8x16_t top_left = vld1q_dup_u8(above - 1); + const uint8x16_t above_u8 = vld1q_u8(above); + const int16x8_t sub0 = vreinterpretq_s16_u16( + vsubl_u8(vget_low_u8(above_u8), vget_low_u8(top_left))); + const int16x8_t sub1 = vreinterpretq_s16_u16( + vsubl_u8(vget_high_u8(above_u8), vget_high_u8(top_left))); + int16x8_t left_dup; + int i; + + for (i = 0; i < 2; i++, left += 8) { + const uint8x8_t left_u8 = vld1_u8(left); + const int16x8_t left_s16q = convert_u8_to_s16(left_u8); + const int16x4_t left_low = vget_low_s16(left_s16q); + const int16x4_t left_high = vget_high_s16(left_s16q); + + left_dup = vdupq_lane_s16(left_low, 0); + tm_16_kernel(&dst, stride, left_dup, sub0, sub1); + left_dup = vdupq_lane_s16(left_low, 1); + tm_16_kernel(&dst, stride, left_dup, sub0, sub1); + left_dup = vdupq_lane_s16(left_low, 2); + tm_16_kernel(&dst, stride, left_dup, sub0, sub1); + left_dup = vdupq_lane_s16(left_low, 3); + tm_16_kernel(&dst, stride, left_dup, sub0, sub1); + + left_dup = vdupq_lane_s16(left_high, 0); + tm_16_kernel(&dst, stride, left_dup, sub0, sub1); + left_dup = vdupq_lane_s16(left_high, 1); + tm_16_kernel(&dst, stride, left_dup, sub0, sub1); + left_dup = vdupq_lane_s16(left_high, 2); + tm_16_kernel(&dst, stride, left_dup, sub0, sub1); + left_dup = vdupq_lane_s16(left_high, 3); + tm_16_kernel(&dst, stride, left_dup, sub0, sub1); + } +} + +static INLINE void tm_32_kernel(uint8_t **dst, const ptrdiff_t stride, + const int16x8_t left_dup, const int16x8_t sub0, + const int16x8_t sub1, const int16x8_t sub2, + const int16x8_t sub3) { + const int16x8_t sum0 = vaddq_s16(left_dup, sub0); + const int16x8_t sum1 = vaddq_s16(left_dup, sub1); + const int16x8_t sum2 = vaddq_s16(left_dup, sub2); + const int16x8_t sum3 = vaddq_s16(left_dup, sub3); + const uint8x8_t d0 = vqmovun_s16(sum0); + const uint8x8_t d1 = vqmovun_s16(sum1); + const uint8x8_t d2 = vqmovun_s16(sum2); + const uint8x8_t d3 = vqmovun_s16(sum3); + + vst1q_u8(*dst, vcombine_u8(d0, d1)); + *dst += 16; + vst1q_u8(*dst, vcombine_u8(d2, d3)); + *dst += stride - 16; +} + +void vpx_tm_predictor_32x32_neon(uint8_t *dst, ptrdiff_t stride, + const uint8_t *above, const uint8_t *left) { + const uint8x16_t top_left = vld1q_dup_u8(above - 1); + const uint8x16_t above_low = vld1q_u8(above); + const uint8x16_t above_high = vld1q_u8(above + 16); + const int16x8_t sub0 = vreinterpretq_s16_u16( + vsubl_u8(vget_low_u8(above_low), vget_low_u8(top_left))); + const int16x8_t sub1 = vreinterpretq_s16_u16( + vsubl_u8(vget_high_u8(above_low), vget_high_u8(top_left))); + const int16x8_t sub2 = vreinterpretq_s16_u16( + vsubl_u8(vget_low_u8(above_high), vget_low_u8(top_left))); + const int16x8_t sub3 = vreinterpretq_s16_u16( + vsubl_u8(vget_high_u8(above_high), vget_high_u8(top_left))); + int16x8_t left_dup; + int i, j; + + for (j = 0; j < 4; j++, left += 8) { + const uint8x8_t left_u8 = vld1_u8(left); + const int16x8_t left_s16q = convert_u8_to_s16(left_u8); + int16x4_t left_s16d = vget_low_s16(left_s16q); + for (i = 0; i < 2; i++, left_s16d = vget_high_s16(left_s16q)) { + left_dup = vdupq_lane_s16(left_s16d, 0); + tm_32_kernel(&dst, stride, left_dup, sub0, sub1, sub2, sub3); + left_dup = vdupq_lane_s16(left_s16d, 1); + tm_32_kernel(&dst, stride, left_dup, sub0, sub1, sub2, sub3); + left_dup = vdupq_lane_s16(left_s16d, 2); + tm_32_kernel(&dst, stride, left_dup, sub0, sub1, sub2, sub3); + left_dup = vdupq_lane_s16(left_s16d, 3); + tm_32_kernel(&dst, stride, left_dup, sub0, sub1, sub2, sub3); + } + } +} +#endif // !HAVE_NEON_ASM diff --git a/vpx_dsp/arm/intrapred_neon_asm.asm b/vpx_dsp/arm/intrapred_neon_asm.asm new file mode 100644 index 0000000..115790d --- /dev/null +++ b/vpx_dsp/arm/intrapred_neon_asm.asm @@ -0,0 +1,630 @@ +; +; Copyright (c) 2014 The WebM project authors. All Rights Reserved. +; +; Use of this source code is governed by a BSD-style license +; that can be found in the LICENSE file in the root of the source +; tree. An additional intellectual property rights grant can be found +; in the file PATENTS. All contributing project authors may +; be found in the AUTHORS file in the root of the source tree. +; + + EXPORT |vpx_v_predictor_4x4_neon| + EXPORT |vpx_v_predictor_8x8_neon| + EXPORT |vpx_v_predictor_16x16_neon| + EXPORT |vpx_v_predictor_32x32_neon| + EXPORT |vpx_h_predictor_4x4_neon| + EXPORT |vpx_h_predictor_8x8_neon| + EXPORT |vpx_h_predictor_16x16_neon| + EXPORT |vpx_h_predictor_32x32_neon| + EXPORT |vpx_tm_predictor_4x4_neon| + EXPORT |vpx_tm_predictor_8x8_neon| + EXPORT |vpx_tm_predictor_16x16_neon| + EXPORT |vpx_tm_predictor_32x32_neon| + ARM + REQUIRE8 + PRESERVE8 + + AREA ||.text||, CODE, READONLY, ALIGN=2 + +;void vpx_v_predictor_4x4_neon(uint8_t *dst, ptrdiff_t y_stride, +; const uint8_t *above, +; const uint8_t *left) +; r0 uint8_t *dst +; r1 ptrdiff_t y_stride +; r2 const uint8_t *above +; r3 const uint8_t *left + +|vpx_v_predictor_4x4_neon| PROC + vld1.32 {d0[0]}, [r2] + vst1.32 {d0[0]}, [r0], r1 + vst1.32 {d0[0]}, [r0], r1 + vst1.32 {d0[0]}, [r0], r1 + vst1.32 {d0[0]}, [r0], r1 + bx lr + ENDP ; |vpx_v_predictor_4x4_neon| + +;void vpx_v_predictor_8x8_neon(uint8_t *dst, ptrdiff_t y_stride, +; const uint8_t *above, +; const uint8_t *left) +; r0 uint8_t *dst +; r1 ptrdiff_t y_stride +; r2 const uint8_t *above +; r3 const uint8_t *left + +|vpx_v_predictor_8x8_neon| PROC + vld1.8 {d0}, [r2] + vst1.8 {d0}, [r0], r1 + vst1.8 {d0}, [r0], r1 + vst1.8 {d0}, [r0], r1 + vst1.8 {d0}, [r0], r1 + vst1.8 {d0}, [r0], r1 + vst1.8 {d0}, [r0], r1 + vst1.8 {d0}, [r0], r1 + vst1.8 {d0}, [r0], r1 + bx lr + ENDP ; |vpx_v_predictor_8x8_neon| + +;void vpx_v_predictor_16x16_neon(uint8_t *dst, ptrdiff_t y_stride, +; const uint8_t *above, +; const uint8_t *left) +; r0 uint8_t *dst +; r1 ptrdiff_t y_stride +; r2 const uint8_t *above +; r3 const uint8_t *left + +|vpx_v_predictor_16x16_neon| PROC + vld1.8 {q0}, [r2] + vst1.8 {q0}, [r0], r1 + vst1.8 {q0}, [r0], r1 + vst1.8 {q0}, [r0], r1 + vst1.8 {q0}, [r0], r1 + vst1.8 {q0}, [r0], r1 + vst1.8 {q0}, [r0], r1 + vst1.8 {q0}, [r0], r1 + vst1.8 {q0}, [r0], r1 + vst1.8 {q0}, [r0], r1 + vst1.8 {q0}, [r0], r1 + vst1.8 {q0}, [r0], r1 + vst1.8 {q0}, [r0], r1 + vst1.8 {q0}, [r0], r1 + vst1.8 {q0}, [r0], r1 + vst1.8 {q0}, [r0], r1 + vst1.8 {q0}, [r0], r1 + bx lr + ENDP ; |vpx_v_predictor_16x16_neon| + +;void vpx_v_predictor_32x32_neon(uint8_t *dst, ptrdiff_t y_stride, +; const uint8_t *above, +; const uint8_t *left) +; r0 uint8_t *dst +; r1 ptrdiff_t y_stride +; r2 const uint8_t *above +; r3 const uint8_t *left + +|vpx_v_predictor_32x32_neon| PROC + vld1.8 {q0, q1}, [r2] + mov r2, #2 +loop_v + vst1.8 {q0, q1}, [r0], r1 + vst1.8 {q0, q1}, [r0], r1 + vst1.8 {q0, q1}, [r0], r1 + vst1.8 {q0, q1}, [r0], r1 + vst1.8 {q0, q1}, [r0], r1 + vst1.8 {q0, q1}, [r0], r1 + vst1.8 {q0, q1}, [r0], r1 + vst1.8 {q0, q1}, [r0], r1 + vst1.8 {q0, q1}, [r0], r1 + vst1.8 {q0, q1}, [r0], r1 + vst1.8 {q0, q1}, [r0], r1 + vst1.8 {q0, q1}, [r0], r1 + vst1.8 {q0, q1}, [r0], r1 + vst1.8 {q0, q1}, [r0], r1 + vst1.8 {q0, q1}, [r0], r1 + vst1.8 {q0, q1}, [r0], r1 + subs r2, r2, #1 + bgt loop_v + bx lr + ENDP ; |vpx_v_predictor_32x32_neon| + +;void vpx_h_predictor_4x4_neon(uint8_t *dst, ptrdiff_t y_stride, +; const uint8_t *above, +; const uint8_t *left) +; r0 uint8_t *dst +; r1 ptrdiff_t y_stride +; r2 const uint8_t *above +; r3 const uint8_t *left + +|vpx_h_predictor_4x4_neon| PROC + vld1.32 {d1[0]}, [r3] + vdup.8 d0, d1[0] + vst1.32 {d0[0]}, [r0], r1 + vdup.8 d0, d1[1] + vst1.32 {d0[0]}, [r0], r1 + vdup.8 d0, d1[2] + vst1.32 {d0[0]}, [r0], r1 + vdup.8 d0, d1[3] + vst1.32 {d0[0]}, [r0], r1 + bx lr + ENDP ; |vpx_h_predictor_4x4_neon| + +;void vpx_h_predictor_8x8_neon(uint8_t *dst, ptrdiff_t y_stride, +; const uint8_t *above, +; const uint8_t *left) +; r0 uint8_t *dst +; r1 ptrdiff_t y_stride +; r2 const uint8_t *above +; r3 const uint8_t *left + +|vpx_h_predictor_8x8_neon| PROC + vld1.64 {d1}, [r3] + vdup.8 d0, d1[0] + vst1.64 {d0}, [r0], r1 + vdup.8 d0, d1[1] + vst1.64 {d0}, [r0], r1 + vdup.8 d0, d1[2] + vst1.64 {d0}, [r0], r1 + vdup.8 d0, d1[3] + vst1.64 {d0}, [r0], r1 + vdup.8 d0, d1[4] + vst1.64 {d0}, [r0], r1 + vdup.8 d0, d1[5] + vst1.64 {d0}, [r0], r1 + vdup.8 d0, d1[6] + vst1.64 {d0}, [r0], r1 + vdup.8 d0, d1[7] + vst1.64 {d0}, [r0], r1 + bx lr + ENDP ; |vpx_h_predictor_8x8_neon| + +;void vpx_h_predictor_16x16_neon(uint8_t *dst, ptrdiff_t y_stride, +; const uint8_t *above, +; const uint8_t *left) +; r0 uint8_t *dst +; r1 ptrdiff_t y_stride +; r2 const uint8_t *above +; r3 const uint8_t *left + +|vpx_h_predictor_16x16_neon| PROC + vld1.8 {q1}, [r3] + vdup.8 q0, d2[0] + vst1.8 {q0}, [r0], r1 + vdup.8 q0, d2[1] + vst1.8 {q0}, [r0], r1 + vdup.8 q0, d2[2] + vst1.8 {q0}, [r0], r1 + vdup.8 q0, d2[3] + vst1.8 {q0}, [r0], r1 + vdup.8 q0, d2[4] + vst1.8 {q0}, [r0], r1 + vdup.8 q0, d2[5] + vst1.8 {q0}, [r0], r1 + vdup.8 q0, d2[6] + vst1.8 {q0}, [r0], r1 + vdup.8 q0, d2[7] + vst1.8 {q0}, [r0], r1 + vdup.8 q0, d3[0] + vst1.8 {q0}, [r0], r1 + vdup.8 q0, d3[1] + vst1.8 {q0}, [r0], r1 + vdup.8 q0, d3[2] + vst1.8 {q0}, [r0], r1 + vdup.8 q0, d3[3] + vst1.8 {q0}, [r0], r1 + vdup.8 q0, d3[4] + vst1.8 {q0}, [r0], r1 + vdup.8 q0, d3[5] + vst1.8 {q0}, [r0], r1 + vdup.8 q0, d3[6] + vst1.8 {q0}, [r0], r1 + vdup.8 q0, d3[7] + vst1.8 {q0}, [r0], r1 + bx lr + ENDP ; |vpx_h_predictor_16x16_neon| + +;void vpx_h_predictor_32x32_neon(uint8_t *dst, ptrdiff_t y_stride, +; const uint8_t *above, +; const uint8_t *left) +; r0 uint8_t *dst +; r1 ptrdiff_t y_stride +; r2 const uint8_t *above +; r3 const uint8_t *left + +|vpx_h_predictor_32x32_neon| PROC + sub r1, r1, #16 + mov r2, #2 +loop_h + vld1.8 {q1}, [r3]! + vdup.8 q0, d2[0] + vst1.8 {q0}, [r0]! + vst1.8 {q0}, [r0], r1 + vdup.8 q0, d2[1] + vst1.8 {q0}, [r0]! + vst1.8 {q0}, [r0], r1 + vdup.8 q0, d2[2] + vst1.8 {q0}, [r0]! + vst1.8 {q0}, [r0], r1 + vdup.8 q0, d2[3] + vst1.8 {q0}, [r0]! + vst1.8 {q0}, [r0], r1 + vdup.8 q0, d2[4] + vst1.8 {q0}, [r0]! + vst1.8 {q0}, [r0], r1 + vdup.8 q0, d2[5] + vst1.8 {q0}, [r0]! + vst1.8 {q0}, [r0], r1 + vdup.8 q0, d2[6] + vst1.8 {q0}, [r0]! + vst1.8 {q0}, [r0], r1 + vdup.8 q0, d2[7] + vst1.8 {q0}, [r0]! + vst1.8 {q0}, [r0], r1 + vdup.8 q0, d3[0] + vst1.8 {q0}, [r0]! + vst1.8 {q0}, [r0], r1 + vdup.8 q0, d3[1] + vst1.8 {q0}, [r0]! + vst1.8 {q0}, [r0], r1 + vdup.8 q0, d3[2] + vst1.8 {q0}, [r0]! + vst1.8 {q0}, [r0], r1 + vdup.8 q0, d3[3] + vst1.8 {q0}, [r0]! + vst1.8 {q0}, [r0], r1 + vdup.8 q0, d3[4] + vst1.8 {q0}, [r0]! + vst1.8 {q0}, [r0], r1 + vdup.8 q0, d3[5] + vst1.8 {q0}, [r0]! + vst1.8 {q0}, [r0], r1 + vdup.8 q0, d3[6] + vst1.8 {q0}, [r0]! + vst1.8 {q0}, [r0], r1 + vdup.8 q0, d3[7] + vst1.8 {q0}, [r0]! + vst1.8 {q0}, [r0], r1 + subs r2, r2, #1 + bgt loop_h + bx lr + ENDP ; |vpx_h_predictor_32x32_neon| + +;void vpx_tm_predictor_4x4_neon (uint8_t *dst, ptrdiff_t y_stride, +; const uint8_t *above, +; const uint8_t *left) +; r0 uint8_t *dst +; r1 ptrdiff_t y_stride +; r2 const uint8_t *above +; r3 const uint8_t *left + +|vpx_tm_predictor_4x4_neon| PROC + ; Load ytop_left = above[-1]; + sub r12, r2, #1 + vld1.u8 {d0[]}, [r12] + + ; Load above 4 pixels + vld1.32 {d2[0]}, [r2] + + ; Compute above - ytop_left + vsubl.u8 q3, d2, d0 + + ; Load left row by row and compute left + (above - ytop_left) + ; 1st row and 2nd row + vld1.u8 {d2[]}, [r3]! + vld1.u8 {d4[]}, [r3]! + vmovl.u8 q1, d2 + vmovl.u8 q2, d4 + vadd.s16 q1, q1, q3 + vadd.s16 q2, q2, q3 + vqmovun.s16 d0, q1 + vqmovun.s16 d1, q2 + vst1.32 {d0[0]}, [r0], r1 + vst1.32 {d1[0]}, [r0], r1 + + ; 3rd row and 4th row + vld1.u8 {d2[]}, [r3]! + vld1.u8 {d4[]}, [r3] + vmovl.u8 q1, d2 + vmovl.u8 q2, d4 + vadd.s16 q1, q1, q3 + vadd.s16 q2, q2, q3 + vqmovun.s16 d0, q1 + vqmovun.s16 d1, q2 + vst1.32 {d0[0]}, [r0], r1 + vst1.32 {d1[0]}, [r0], r1 + bx lr + ENDP ; |vpx_tm_predictor_4x4_neon| + +;void vpx_tm_predictor_8x8_neon (uint8_t *dst, ptrdiff_t y_stride, +; const uint8_t *above, +; const uint8_t *left) +; r0 uint8_t *dst +; r1 ptrdiff_t y_stride +; r2 const uint8_t *above +; r3 const uint8_t *left + +|vpx_tm_predictor_8x8_neon| PROC + ; Load ytop_left = above[-1]; + sub r12, r2, #1 + vld1.8 {d0[]}, [r12] + + ; preload 8 left + vld1.8 {d30}, [r3] + + ; Load above 8 pixels + vld1.64 {d2}, [r2] + + vmovl.u8 q10, d30 + + ; Compute above - ytop_left + vsubl.u8 q3, d2, d0 + + ; Load left row by row and compute left + (above - ytop_left) + ; 1st row and 2nd row + vdup.16 q0, d20[0] + vdup.16 q1, d20[1] + vadd.s16 q0, q3, q0 + vadd.s16 q1, q3, q1 + + ; 3rd row and 4th row + vdup.16 q8, d20[2] + vdup.16 q9, d20[3] + vadd.s16 q8, q3, q8 + vadd.s16 q9, q3, q9 + + vqmovun.s16 d0, q0 + vqmovun.s16 d1, q1 + vqmovun.s16 d2, q8 + vqmovun.s16 d3, q9 + + vst1.64 {d0}, [r0], r1 + vst1.64 {d1}, [r0], r1 + vst1.64 {d2}, [r0], r1 + vst1.64 {d3}, [r0], r1 + + ; 5th row and 6th row + vdup.16 q0, d21[0] + vdup.16 q1, d21[1] + vadd.s16 q0, q3, q0 + vadd.s16 q1, q3, q1 + + ; 7th row and 8th row + vdup.16 q8, d21[2] + vdup.16 q9, d21[3] + vadd.s16 q8, q3, q8 + vadd.s16 q9, q3, q9 + + vqmovun.s16 d0, q0 + vqmovun.s16 d1, q1 + vqmovun.s16 d2, q8 + vqmovun.s16 d3, q9 + + vst1.64 {d0}, [r0], r1 + vst1.64 {d1}, [r0], r1 + vst1.64 {d2}, [r0], r1 + vst1.64 {d3}, [r0], r1 + + bx lr + ENDP ; |vpx_tm_predictor_8x8_neon| + +;void vpx_tm_predictor_16x16_neon (uint8_t *dst, ptrdiff_t y_stride, +; const uint8_t *above, +; const uint8_t *left) +; r0 uint8_t *dst +; r1 ptrdiff_t y_stride +; r2 const uint8_t *above +; r3 const uint8_t *left + +|vpx_tm_predictor_16x16_neon| PROC + ; Load ytop_left = above[-1]; + sub r12, r2, #1 + vld1.8 {d0[]}, [r12] + + ; Load above 8 pixels + vld1.8 {q1}, [r2] + + ; preload 8 left into r12 + vld1.8 {d18}, [r3]! + + ; Compute above - ytop_left + vsubl.u8 q2, d2, d0 + vsubl.u8 q3, d3, d0 + + vmovl.u8 q10, d18 + + ; Load left row by row and compute left + (above - ytop_left) + ; Process 8 rows in each single loop and loop 2 times to process 16 rows. + mov r2, #2 + +loop_16x16_neon + ; Process two rows. + vdup.16 q0, d20[0] + vdup.16 q8, d20[1] + vadd.s16 q1, q0, q2 + vadd.s16 q0, q0, q3 + vadd.s16 q11, q8, q2 + vadd.s16 q8, q8, q3 + vqmovun.s16 d2, q1 + vqmovun.s16 d3, q0 + vqmovun.s16 d22, q11 + vqmovun.s16 d23, q8 + vdup.16 q0, d20[2] ; proload next 2 rows data + vdup.16 q8, d20[3] + vst1.64 {d2,d3}, [r0], r1 + vst1.64 {d22,d23}, [r0], r1 + + ; Process two rows. + vadd.s16 q1, q0, q2 + vadd.s16 q0, q0, q3 + vadd.s16 q11, q8, q2 + vadd.s16 q8, q8, q3 + vqmovun.s16 d2, q1 + vqmovun.s16 d3, q0 + vqmovun.s16 d22, q11 + vqmovun.s16 d23, q8 + vdup.16 q0, d21[0] ; proload next 2 rows data + vdup.16 q8, d21[1] + vst1.64 {d2,d3}, [r0], r1 + vst1.64 {d22,d23}, [r0], r1 + + vadd.s16 q1, q0, q2 + vadd.s16 q0, q0, q3 + vadd.s16 q11, q8, q2 + vadd.s16 q8, q8, q3 + vqmovun.s16 d2, q1 + vqmovun.s16 d3, q0 + vqmovun.s16 d22, q11 + vqmovun.s16 d23, q8 + vdup.16 q0, d21[2] ; proload next 2 rows data + vdup.16 q8, d21[3] + vst1.64 {d2,d3}, [r0], r1 + vst1.64 {d22,d23}, [r0], r1 + + + vadd.s16 q1, q0, q2 + vadd.s16 q0, q0, q3 + vadd.s16 q11, q8, q2 + vadd.s16 q8, q8, q3 + vqmovun.s16 d2, q1 + vqmovun.s16 d3, q0 + vqmovun.s16 d22, q11 + vqmovun.s16 d23, q8 + vld1.8 {d18}, [r3]! ; preload 8 left into r12 + vmovl.u8 q10, d18 + vst1.64 {d2,d3}, [r0], r1 + vst1.64 {d22,d23}, [r0], r1 + + subs r2, r2, #1 + bgt loop_16x16_neon + + bx lr + ENDP ; |vpx_tm_predictor_16x16_neon| + +;void vpx_tm_predictor_32x32_neon (uint8_t *dst, ptrdiff_t y_stride, +; const uint8_t *above, +; const uint8_t *left) +; r0 uint8_t *dst +; r1 ptrdiff_t y_stride +; r2 const uint8_t *above +; r3 const uint8_t *left + +|vpx_tm_predictor_32x32_neon| PROC + ; Load ytop_left = above[-1]; + sub r12, r2, #1 + vld1.8 {d0[]}, [r12] + + ; Load above 32 pixels + vld1.8 {q1}, [r2]! + vld1.8 {q2}, [r2] + + ; preload 8 left pixels + vld1.8 {d26}, [r3]! + + ; Compute above - ytop_left + vsubl.u8 q8, d2, d0 + vsubl.u8 q9, d3, d0 + vsubl.u8 q10, d4, d0 + vsubl.u8 q11, d5, d0 + + vmovl.u8 q3, d26 + + ; Load left row by row and compute left + (above - ytop_left) + ; Process 8 rows in each single loop and loop 4 times to process 32 rows. + mov r2, #4 + +loop_32x32_neon + ; Process two rows. + vdup.16 q0, d6[0] + vdup.16 q2, d6[1] + vadd.s16 q12, q0, q8 + vadd.s16 q13, q0, q9 + vadd.s16 q14, q0, q10 + vadd.s16 q15, q0, q11 + vqmovun.s16 d0, q12 + vqmovun.s16 d1, q13 + vadd.s16 q12, q2, q8 + vadd.s16 q13, q2, q9 + vqmovun.s16 d2, q14 + vqmovun.s16 d3, q15 + vadd.s16 q14, q2, q10 + vadd.s16 q15, q2, q11 + vst1.64 {d0-d3}, [r0], r1 + vqmovun.s16 d24, q12 + vqmovun.s16 d25, q13 + vqmovun.s16 d26, q14 + vqmovun.s16 d27, q15 + vdup.16 q1, d6[2] + vdup.16 q2, d6[3] + vst1.64 {d24-d27}, [r0], r1 + + ; Process two rows. + vadd.s16 q12, q1, q8 + vadd.s16 q13, q1, q9 + vadd.s16 q14, q1, q10 + vadd.s16 q15, q1, q11 + vqmovun.s16 d0, q12 + vqmovun.s16 d1, q13 + vadd.s16 q12, q2, q8 + vadd.s16 q13, q2, q9 + vqmovun.s16 d2, q14 + vqmovun.s16 d3, q15 + vadd.s16 q14, q2, q10 + vadd.s16 q15, q2, q11 + vst1.64 {d0-d3}, [r0], r1 + vqmovun.s16 d24, q12 + vqmovun.s16 d25, q13 + vqmovun.s16 d26, q14 + vqmovun.s16 d27, q15 + vdup.16 q0, d7[0] + vdup.16 q2, d7[1] + vst1.64 {d24-d27}, [r0], r1 + + ; Process two rows. + vadd.s16 q12, q0, q8 + vadd.s16 q13, q0, q9 + vadd.s16 q14, q0, q10 + vadd.s16 q15, q0, q11 + vqmovun.s16 d0, q12 + vqmovun.s16 d1, q13 + vadd.s16 q12, q2, q8 + vadd.s16 q13, q2, q9 + vqmovun.s16 d2, q14 + vqmovun.s16 d3, q15 + vadd.s16 q14, q2, q10 + vadd.s16 q15, q2, q11 + vst1.64 {d0-d3}, [r0], r1 + vqmovun.s16 d24, q12 + vqmovun.s16 d25, q13 + vqmovun.s16 d26, q14 + vqmovun.s16 d27, q15 + vdup.16 q0, d7[2] + vdup.16 q2, d7[3] + vst1.64 {d24-d27}, [r0], r1 + + ; Process two rows. + vadd.s16 q12, q0, q8 + vadd.s16 q13, q0, q9 + vadd.s16 q14, q0, q10 + vadd.s16 q15, q0, q11 + vqmovun.s16 d0, q12 + vqmovun.s16 d1, q13 + vadd.s16 q12, q2, q8 + vadd.s16 q13, q2, q9 + vqmovun.s16 d2, q14 + vqmovun.s16 d3, q15 + vadd.s16 q14, q2, q10 + vadd.s16 q15, q2, q11 + vst1.64 {d0-d3}, [r0], r1 + vqmovun.s16 d24, q12 + vqmovun.s16 d25, q13 + vld1.8 {d0}, [r3]! ; preload 8 left pixels + vqmovun.s16 d26, q14 + vqmovun.s16 d27, q15 + vmovl.u8 q3, d0 + vst1.64 {d24-d27}, [r0], r1 + + subs r2, r2, #1 + bgt loop_32x32_neon + + bx lr + ENDP ; |vpx_tm_predictor_32x32_neon| + + END diff --git a/vpx_dsp/arm/loopfilter_16_neon.asm b/vpx_dsp/arm/loopfilter_16_neon.asm new file mode 100644 index 0000000..730c40d --- /dev/null +++ b/vpx_dsp/arm/loopfilter_16_neon.asm @@ -0,0 +1,666 @@ +; +; Copyright (c) 2013 The WebM project authors. All Rights Reserved. +; +; Use of this source code is governed by a BSD-style license +; that can be found in the LICENSE file in the root of the source +; tree. An additional intellectual property rights grant can be found +; in the file PATENTS. All contributing project authors may +; be found in the AUTHORS file in the root of the source tree. +; + + EXPORT |vpx_lpf_horizontal_16_neon| + EXPORT |vpx_lpf_horizontal_16_dual_neon| + EXPORT |vpx_lpf_vertical_16_neon| + EXPORT |vpx_lpf_vertical_16_dual_neon| + ARM + + AREA ||.text||, CODE, READONLY, ALIGN=2 + +; void mb_lpf_horizontal_edge(uint8_t *s, int p, +; const uint8_t *blimit, +; const uint8_t *limit, +; const uint8_t *thresh, +; int count) +; r0 uint8_t *s, +; r1 int p, /* pitch */ +; r2 const uint8_t *blimit, +; r3 const uint8_t *limit, +; sp const uint8_t *thresh, +; r12 int count +|mb_lpf_horizontal_edge| PROC + push {r4-r8, lr} + vpush {d8-d15} + ldr r4, [sp, #88] ; load thresh + +h_count + vld1.8 {d16[]}, [r2] ; load *blimit + vld1.8 {d17[]}, [r3] ; load *limit + vld1.8 {d18[]}, [r4] ; load *thresh + + sub r8, r0, r1, lsl #3 ; move src pointer down by 8 lines + + vld1.u8 {d0}, [r8@64], r1 ; p7 + vld1.u8 {d1}, [r8@64], r1 ; p6 + vld1.u8 {d2}, [r8@64], r1 ; p5 + vld1.u8 {d3}, [r8@64], r1 ; p4 + vld1.u8 {d4}, [r8@64], r1 ; p3 + vld1.u8 {d5}, [r8@64], r1 ; p2 + vld1.u8 {d6}, [r8@64], r1 ; p1 + vld1.u8 {d7}, [r8@64], r1 ; p0 + vld1.u8 {d8}, [r8@64], r1 ; q0 + vld1.u8 {d9}, [r8@64], r1 ; q1 + vld1.u8 {d10}, [r8@64], r1 ; q2 + vld1.u8 {d11}, [r8@64], r1 ; q3 + vld1.u8 {d12}, [r8@64], r1 ; q4 + vld1.u8 {d13}, [r8@64], r1 ; q5 + vld1.u8 {d14}, [r8@64], r1 ; q6 + vld1.u8 {d15}, [r8@64], r1 ; q7 + + bl vpx_wide_mbfilter_neon + + tst r7, #1 + beq h_mbfilter + + ; flat && mask were not set for any of the channels. Just store the values + ; from filter. + sub r8, r0, r1, lsl #1 + + vst1.u8 {d25}, [r8@64], r1 ; store op1 + vst1.u8 {d24}, [r8@64], r1 ; store op0 + vst1.u8 {d23}, [r8@64], r1 ; store oq0 + vst1.u8 {d26}, [r8@64], r1 ; store oq1 + + b h_next + +h_mbfilter + tst r7, #2 + beq h_wide_mbfilter + + ; flat2 was not set for any of the channels. Just store the values from + ; mbfilter. + sub r8, r0, r1, lsl #1 + sub r8, r8, r1 + + vst1.u8 {d18}, [r8@64], r1 ; store op2 + vst1.u8 {d19}, [r8@64], r1 ; store op1 + vst1.u8 {d20}, [r8@64], r1 ; store op0 + vst1.u8 {d21}, [r8@64], r1 ; store oq0 + vst1.u8 {d22}, [r8@64], r1 ; store oq1 + vst1.u8 {d23}, [r8@64], r1 ; store oq2 + + b h_next + +h_wide_mbfilter + sub r8, r0, r1, lsl #3 + add r8, r8, r1 + + vst1.u8 {d16}, [r8@64], r1 ; store op6 + vst1.u8 {d24}, [r8@64], r1 ; store op5 + vst1.u8 {d25}, [r8@64], r1 ; store op4 + vst1.u8 {d26}, [r8@64], r1 ; store op3 + vst1.u8 {d27}, [r8@64], r1 ; store op2 + vst1.u8 {d18}, [r8@64], r1 ; store op1 + vst1.u8 {d19}, [r8@64], r1 ; store op0 + vst1.u8 {d20}, [r8@64], r1 ; store oq0 + vst1.u8 {d21}, [r8@64], r1 ; store oq1 + vst1.u8 {d22}, [r8@64], r1 ; store oq2 + vst1.u8 {d23}, [r8@64], r1 ; store oq3 + vst1.u8 {d1}, [r8@64], r1 ; store oq4 + vst1.u8 {d2}, [r8@64], r1 ; store oq5 + vst1.u8 {d3}, [r8@64], r1 ; store oq6 + +h_next + add r0, r0, #8 + subs r12, r12, #1 + bne h_count + + vpop {d8-d15} + pop {r4-r8, pc} + + ENDP ; |mb_lpf_horizontal_edge| + +; void vpx_lpf_horizontal_16_neon(uint8_t *s, int pitch, +; const uint8_t *blimit, +; const uint8_t *limit, +; const uint8_t *thresh) +; r0 uint8_t *s, +; r1 int pitch, +; r2 const uint8_t *blimit, +; r3 const uint8_t *limit, +; sp const uint8_t *thresh +|vpx_lpf_horizontal_16_neon| PROC + mov r12, #1 + b mb_lpf_horizontal_edge + ENDP ; |vpx_lpf_horizontal_16_neon| + +; void vpx_lpf_horizontal_16_dual_neon(uint8_t *s, int pitch, +; const uint8_t *blimit, +; const uint8_t *limit, +; const uint8_t *thresh) +; r0 uint8_t *s, +; r1 int pitch, +; r2 const uint8_t *blimit, +; r3 const uint8_t *limit, +; sp const uint8_t *thresh +|vpx_lpf_horizontal_16_dual_neon| PROC + mov r12, #2 + b mb_lpf_horizontal_edge + ENDP ; |vpx_lpf_horizontal_16_dual_neon| + +; void mb_lpf_vertical_edge_w(uint8_t *s, int p, const uint8_t *blimit, +; const uint8_t *limit, const uint8_t *thresh, +; int count) { +; r0 uint8_t *s, +; r1 int p, /* pitch */ +; r2 const uint8_t *blimit, +; r3 const uint8_t *limit, +; sp const uint8_t *thresh, +; r12 int count +|mb_lpf_vertical_edge_w| PROC + push {r4-r8, lr} + vpush {d8-d15} + ldr r4, [sp, #88] ; load thresh + +v_count + vld1.8 {d16[]}, [r2] ; load *blimit + vld1.8 {d17[]}, [r3] ; load *limit + vld1.8 {d18[]}, [r4] ; load *thresh + + sub r8, r0, #8 + + vld1.8 {d0}, [r8@64], r1 + vld1.8 {d8}, [r0@64], r1 + vld1.8 {d1}, [r8@64], r1 + vld1.8 {d9}, [r0@64], r1 + vld1.8 {d2}, [r8@64], r1 + vld1.8 {d10}, [r0@64], r1 + vld1.8 {d3}, [r8@64], r1 + vld1.8 {d11}, [r0@64], r1 + vld1.8 {d4}, [r8@64], r1 + vld1.8 {d12}, [r0@64], r1 + vld1.8 {d5}, [r8@64], r1 + vld1.8 {d13}, [r0@64], r1 + vld1.8 {d6}, [r8@64], r1 + vld1.8 {d14}, [r0@64], r1 + vld1.8 {d7}, [r8@64], r1 + vld1.8 {d15}, [r0@64], r1 + + sub r0, r0, r1, lsl #3 + + vtrn.32 q0, q2 + vtrn.32 q1, q3 + vtrn.32 q4, q6 + vtrn.32 q5, q7 + + vtrn.16 q0, q1 + vtrn.16 q2, q3 + vtrn.16 q4, q5 + vtrn.16 q6, q7 + + vtrn.8 d0, d1 + vtrn.8 d2, d3 + vtrn.8 d4, d5 + vtrn.8 d6, d7 + + vtrn.8 d8, d9 + vtrn.8 d10, d11 + vtrn.8 d12, d13 + vtrn.8 d14, d15 + + bl vpx_wide_mbfilter_neon + + tst r7, #1 + beq v_mbfilter + + ; flat && mask were not set for any of the channels. Just store the values + ; from filter. + sub r0, #2 + + vswp d23, d25 + + vst4.8 {d23[0], d24[0], d25[0], d26[0]}, [r0], r1 + vst4.8 {d23[1], d24[1], d25[1], d26[1]}, [r0], r1 + vst4.8 {d23[2], d24[2], d25[2], d26[2]}, [r0], r1 + vst4.8 {d23[3], d24[3], d25[3], d26[3]}, [r0], r1 + vst4.8 {d23[4], d24[4], d25[4], d26[4]}, [r0], r1 + vst4.8 {d23[5], d24[5], d25[5], d26[5]}, [r0], r1 + vst4.8 {d23[6], d24[6], d25[6], d26[6]}, [r0], r1 + vst4.8 {d23[7], d24[7], d25[7], d26[7]}, [r0], r1 + add r0, #2 + + b v_next + +v_mbfilter + tst r7, #2 + beq v_wide_mbfilter + + ; flat2 was not set for any of the channels. Just store the values from + ; mbfilter. + sub r8, r0, #3 + + vst3.8 {d18[0], d19[0], d20[0]}, [r8], r1 + vst3.8 {d21[0], d22[0], d23[0]}, [r0], r1 + vst3.8 {d18[1], d19[1], d20[1]}, [r8], r1 + vst3.8 {d21[1], d22[1], d23[1]}, [r0], r1 + vst3.8 {d18[2], d19[2], d20[2]}, [r8], r1 + vst3.8 {d21[2], d22[2], d23[2]}, [r0], r1 + vst3.8 {d18[3], d19[3], d20[3]}, [r8], r1 + vst3.8 {d21[3], d22[3], d23[3]}, [r0], r1 + vst3.8 {d18[4], d19[4], d20[4]}, [r8], r1 + vst3.8 {d21[4], d22[4], d23[4]}, [r0], r1 + vst3.8 {d18[5], d19[5], d20[5]}, [r8], r1 + vst3.8 {d21[5], d22[5], d23[5]}, [r0], r1 + vst3.8 {d18[6], d19[6], d20[6]}, [r8], r1 + vst3.8 {d21[6], d22[6], d23[6]}, [r0], r1 + vst3.8 {d18[7], d19[7], d20[7]}, [r8], r1 + vst3.8 {d21[7], d22[7], d23[7]}, [r0], r1 + + b v_next + +v_wide_mbfilter + sub r8, r0, #8 + + vtrn.32 d0, d26 + vtrn.32 d16, d27 + vtrn.32 d24, d18 + vtrn.32 d25, d19 + + vtrn.16 d0, d24 + vtrn.16 d16, d25 + vtrn.16 d26, d18 + vtrn.16 d27, d19 + + vtrn.8 d0, d16 + vtrn.8 d24, d25 + vtrn.8 d26, d27 + vtrn.8 d18, d19 + + vtrn.32 d20, d1 + vtrn.32 d21, d2 + vtrn.32 d22, d3 + vtrn.32 d23, d15 + + vtrn.16 d20, d22 + vtrn.16 d21, d23 + vtrn.16 d1, d3 + vtrn.16 d2, d15 + + vtrn.8 d20, d21 + vtrn.8 d22, d23 + vtrn.8 d1, d2 + vtrn.8 d3, d15 + + vst1.8 {d0}, [r8@64], r1 + vst1.8 {d20}, [r0@64], r1 + vst1.8 {d16}, [r8@64], r1 + vst1.8 {d21}, [r0@64], r1 + vst1.8 {d24}, [r8@64], r1 + vst1.8 {d22}, [r0@64], r1 + vst1.8 {d25}, [r8@64], r1 + vst1.8 {d23}, [r0@64], r1 + vst1.8 {d26}, [r8@64], r1 + vst1.8 {d1}, [r0@64], r1 + vst1.8 {d27}, [r8@64], r1 + vst1.8 {d2}, [r0@64], r1 + vst1.8 {d18}, [r8@64], r1 + vst1.8 {d3}, [r0@64], r1 + vst1.8 {d19}, [r8@64], r1 + vst1.8 {d15}, [r0@64], r1 + +v_next + subs r12, #1 + bne v_count + + vpop {d8-d15} + pop {r4-r8, pc} + + ENDP ; |mb_lpf_vertical_edge_w| + +; void vpx_lpf_vertical_16_neon(uint8_t *s, int p, const uint8_t *blimit, +; const uint8_t *limit, const uint8_t *thresh) +; r0 uint8_t *s, +; r1 int p, /* pitch */ +; r2 const uint8_t *blimit, +; r3 const uint8_t *limit, +; sp const uint8_t *thresh +|vpx_lpf_vertical_16_neon| PROC + mov r12, #1 + b mb_lpf_vertical_edge_w + ENDP ; |vpx_lpf_vertical_16_neon| + +; void vpx_lpf_vertical_16_dual_neon(uint8_t *s, int p, const uint8_t *blimit, +; const uint8_t *limit, +; const uint8_t *thresh) +; r0 uint8_t *s, +; r1 int p, /* pitch */ +; r2 const uint8_t *blimit, +; r3 const uint8_t *limit, +; sp const uint8_t *thresh +|vpx_lpf_vertical_16_dual_neon| PROC + mov r12, #2 + b mb_lpf_vertical_edge_w + ENDP ; |vpx_lpf_vertical_16_dual_neon| + +; void vpx_wide_mbfilter_neon(); +; This is a helper function for the loopfilters. The invidual functions do the +; necessary load, transpose (if necessary) and store. +; +; r0-r3 PRESERVE +; d16 blimit +; d17 limit +; d18 thresh +; d0 p7 +; d1 p6 +; d2 p5 +; d3 p4 +; d4 p3 +; d5 p2 +; d6 p1 +; d7 p0 +; d8 q0 +; d9 q1 +; d10 q2 +; d11 q3 +; d12 q4 +; d13 q5 +; d14 q6 +; d15 q7 +|vpx_wide_mbfilter_neon| PROC + mov r7, #0 + + ; filter_mask + vabd.u8 d19, d4, d5 ; abs(p3 - p2) + vabd.u8 d20, d5, d6 ; abs(p2 - p1) + vabd.u8 d21, d6, d7 ; abs(p1 - p0) + vabd.u8 d22, d9, d8 ; abs(q1 - q0) + vabd.u8 d23, d10, d9 ; abs(q2 - q1) + vabd.u8 d24, d11, d10 ; abs(q3 - q2) + + ; only compare the largest value to limit + vmax.u8 d19, d19, d20 ; max(abs(p3 - p2), abs(p2 - p1)) + vmax.u8 d20, d21, d22 ; max(abs(p1 - p0), abs(q1 - q0)) + vmax.u8 d23, d23, d24 ; max(abs(q2 - q1), abs(q3 - q2)) + vmax.u8 d19, d19, d20 + + vabd.u8 d24, d7, d8 ; abs(p0 - q0) + + vmax.u8 d19, d19, d23 + + vabd.u8 d23, d6, d9 ; a = abs(p1 - q1) + vqadd.u8 d24, d24, d24 ; b = abs(p0 - q0) * 2 + + ; abs () > limit + vcge.u8 d19, d17, d19 + + ; flatmask4 + vabd.u8 d25, d7, d5 ; abs(p0 - p2) + vabd.u8 d26, d8, d10 ; abs(q0 - q2) + vabd.u8 d27, d4, d7 ; abs(p3 - p0) + vabd.u8 d28, d11, d8 ; abs(q3 - q0) + + ; only compare the largest value to thresh + vmax.u8 d25, d25, d26 ; max(abs(p0 - p2), abs(q0 - q2)) + vmax.u8 d26, d27, d28 ; max(abs(p3 - p0), abs(q3 - q0)) + vmax.u8 d25, d25, d26 + vmax.u8 d20, d20, d25 + + vshr.u8 d23, d23, #1 ; a = a / 2 + vqadd.u8 d24, d24, d23 ; a = b + a + + vmov.u8 d30, #1 + vcge.u8 d24, d16, d24 ; (a > blimit * 2 + limit) * -1 + + vcge.u8 d20, d30, d20 ; flat + + vand d19, d19, d24 ; mask + + ; hevmask + vcgt.u8 d21, d21, d18 ; (abs(p1 - p0) > thresh)*-1 + vcgt.u8 d22, d22, d18 ; (abs(q1 - q0) > thresh)*-1 + vorr d21, d21, d22 ; hev + + vand d16, d20, d19 ; flat && mask + vmov r5, r6, d16 + + ; flatmask5(1, p7, p6, p5, p4, p0, q0, q4, q5, q6, q7) + vabd.u8 d22, d3, d7 ; abs(p4 - p0) + vabd.u8 d23, d12, d8 ; abs(q4 - q0) + vabd.u8 d24, d7, d2 ; abs(p0 - p5) + vabd.u8 d25, d8, d13 ; abs(q0 - q5) + vabd.u8 d26, d1, d7 ; abs(p6 - p0) + vabd.u8 d27, d14, d8 ; abs(q6 - q0) + vabd.u8 d28, d0, d7 ; abs(p7 - p0) + vabd.u8 d29, d15, d8 ; abs(q7 - q0) + + ; only compare the largest value to thresh + vmax.u8 d22, d22, d23 ; max(abs(p4 - p0), abs(q4 - q0)) + vmax.u8 d23, d24, d25 ; max(abs(p0 - p5), abs(q0 - q5)) + vmax.u8 d24, d26, d27 ; max(abs(p6 - p0), abs(q6 - q0)) + vmax.u8 d25, d28, d29 ; max(abs(p7 - p0), abs(q7 - q0)) + + vmax.u8 d26, d22, d23 + vmax.u8 d27, d24, d25 + vmax.u8 d23, d26, d27 + + vcge.u8 d18, d30, d23 ; flat2 + + vmov.u8 d22, #0x80 + + orrs r5, r5, r6 ; Check for 0 + orreq r7, r7, #1 ; Only do filter branch + + vand d17, d18, d16 ; flat2 && flat && mask + vmov r5, r6, d17 + + ; mbfilter() function + + ; filter() function + ; convert to signed + veor d23, d8, d22 ; qs0 + veor d24, d7, d22 ; ps0 + veor d25, d6, d22 ; ps1 + veor d26, d9, d22 ; qs1 + + vmov.u8 d27, #3 + + vsub.s8 d28, d23, d24 ; ( qs0 - ps0) + vqsub.s8 d29, d25, d26 ; filter = clamp(ps1-qs1) + vmull.s8 q15, d28, d27 ; 3 * ( qs0 - ps0) + vand d29, d29, d21 ; filter &= hev + vaddw.s8 q15, q15, d29 ; filter + 3 * (qs0 - ps0) + vmov.u8 d29, #4 + + ; filter = clamp(filter + 3 * ( qs0 - ps0)) + vqmovn.s16 d28, q15 + + vand d28, d28, d19 ; filter &= mask + + vqadd.s8 d30, d28, d27 ; filter2 = clamp(filter+3) + vqadd.s8 d29, d28, d29 ; filter1 = clamp(filter+4) + vshr.s8 d30, d30, #3 ; filter2 >>= 3 + vshr.s8 d29, d29, #3 ; filter1 >>= 3 + + + vqadd.s8 d24, d24, d30 ; op0 = clamp(ps0 + filter2) + vqsub.s8 d23, d23, d29 ; oq0 = clamp(qs0 - filter1) + + ; outer tap adjustments: ++filter1 >> 1 + vrshr.s8 d29, d29, #1 + vbic d29, d29, d21 ; filter &= ~hev + + vqadd.s8 d25, d25, d29 ; op1 = clamp(ps1 + filter) + vqsub.s8 d26, d26, d29 ; oq1 = clamp(qs1 - filter) + + veor d24, d24, d22 ; *f_op0 = u^0x80 + veor d23, d23, d22 ; *f_oq0 = u^0x80 + veor d25, d25, d22 ; *f_op1 = u^0x80 + veor d26, d26, d22 ; *f_oq1 = u^0x80 + + tst r7, #1 + bxne lr + + orrs r5, r5, r6 ; Check for 0 + orreq r7, r7, #2 ; Only do mbfilter branch + + ; mbfilter flat && mask branch + ; TODO(fgalligan): Can I decrease the cycles shifting to consective d's + ; and using vibt on the q's? + vmov.u8 d29, #2 + vaddl.u8 q15, d7, d8 ; op2 = p0 + q0 + vmlal.u8 q15, d4, d27 ; op2 = p0 + q0 + p3 * 3 + vmlal.u8 q15, d5, d29 ; op2 = p0 + q0 + p3 * 3 + p2 * 2 + vaddl.u8 q10, d4, d5 + vaddw.u8 q15, d6 ; op2=p1 + p0 + q0 + p3 * 3 + p2 *2 + vaddl.u8 q14, d6, d9 + vqrshrn.u16 d18, q15, #3 ; r_op2 + + vsub.i16 q15, q10 + vaddl.u8 q10, d4, d6 + vadd.i16 q15, q14 + vaddl.u8 q14, d7, d10 + vqrshrn.u16 d19, q15, #3 ; r_op1 + + vsub.i16 q15, q10 + vadd.i16 q15, q14 + vaddl.u8 q14, d8, d11 + vqrshrn.u16 d20, q15, #3 ; r_op0 + + vsubw.u8 q15, d4 ; oq0 = op0 - p3 + vsubw.u8 q15, d7 ; oq0 -= p0 + vadd.i16 q15, q14 + vaddl.u8 q14, d9, d11 + vqrshrn.u16 d21, q15, #3 ; r_oq0 + + vsubw.u8 q15, d5 ; oq1 = oq0 - p2 + vsubw.u8 q15, d8 ; oq1 -= q0 + vadd.i16 q15, q14 + vaddl.u8 q14, d10, d11 + vqrshrn.u16 d22, q15, #3 ; r_oq1 + + vsubw.u8 q15, d6 ; oq2 = oq0 - p1 + vsubw.u8 q15, d9 ; oq2 -= q1 + vadd.i16 q15, q14 + vqrshrn.u16 d27, q15, #3 ; r_oq2 + + ; Filter does not set op2 or oq2, so use p2 and q2. + vbif d18, d5, d16 ; t_op2 |= p2 & ~(flat & mask) + vbif d19, d25, d16 ; t_op1 |= f_op1 & ~(flat & mask) + vbif d20, d24, d16 ; t_op0 |= f_op0 & ~(flat & mask) + vbif d21, d23, d16 ; t_oq0 |= f_oq0 & ~(flat & mask) + vbif d22, d26, d16 ; t_oq1 |= f_oq1 & ~(flat & mask) + + vbit d23, d27, d16 ; t_oq2 |= r_oq2 & (flat & mask) + vbif d23, d10, d16 ; t_oq2 |= q2 & ~(flat & mask) + + tst r7, #2 + bxne lr + + ; wide_mbfilter flat2 && flat && mask branch + vmov.u8 d16, #7 + vaddl.u8 q15, d7, d8 ; op6 = p0 + q0 + vaddl.u8 q12, d2, d3 + vaddl.u8 q13, d4, d5 + vaddl.u8 q14, d1, d6 + vmlal.u8 q15, d0, d16 ; op6 += p7 * 3 + vadd.i16 q12, q13 + vadd.i16 q15, q14 + vaddl.u8 q14, d2, d9 + vadd.i16 q15, q12 + vaddl.u8 q12, d0, d1 + vaddw.u8 q15, d1 + vaddl.u8 q13, d0, d2 + vadd.i16 q14, q15, q14 + vqrshrn.u16 d16, q15, #4 ; w_op6 + + vsub.i16 q15, q14, q12 + vaddl.u8 q14, d3, d10 + vqrshrn.u16 d24, q15, #4 ; w_op5 + + vsub.i16 q15, q13 + vaddl.u8 q13, d0, d3 + vadd.i16 q15, q14 + vaddl.u8 q14, d4, d11 + vqrshrn.u16 d25, q15, #4 ; w_op4 + + vadd.i16 q15, q14 + vaddl.u8 q14, d0, d4 + vsub.i16 q15, q13 + vsub.i16 q14, q15, q14 + vqrshrn.u16 d26, q15, #4 ; w_op3 + + vaddw.u8 q15, q14, d5 ; op2 += p2 + vaddl.u8 q14, d0, d5 + vaddw.u8 q15, d12 ; op2 += q4 + vbif d26, d4, d17 ; op3 |= p3 & ~(f2 & f & m) + vqrshrn.u16 d27, q15, #4 ; w_op2 + + vsub.i16 q15, q14 + vaddl.u8 q14, d0, d6 + vaddw.u8 q15, d6 ; op1 += p1 + vaddw.u8 q15, d13 ; op1 += q5 + vbif d27, d18, d17 ; op2 |= t_op2 & ~(f2 & f & m) + vqrshrn.u16 d18, q15, #4 ; w_op1 + + vsub.i16 q15, q14 + vaddl.u8 q14, d0, d7 + vaddw.u8 q15, d7 ; op0 += p0 + vaddw.u8 q15, d14 ; op0 += q6 + vbif d18, d19, d17 ; op1 |= t_op1 & ~(f2 & f & m) + vqrshrn.u16 d19, q15, #4 ; w_op0 + + vsub.i16 q15, q14 + vaddl.u8 q14, d1, d8 + vaddw.u8 q15, d8 ; oq0 += q0 + vaddw.u8 q15, d15 ; oq0 += q7 + vbif d19, d20, d17 ; op0 |= t_op0 & ~(f2 & f & m) + vqrshrn.u16 d20, q15, #4 ; w_oq0 + + vsub.i16 q15, q14 + vaddl.u8 q14, d2, d9 + vaddw.u8 q15, d9 ; oq1 += q1 + vaddl.u8 q4, d10, d15 + vaddw.u8 q15, d15 ; oq1 += q7 + vbif d20, d21, d17 ; oq0 |= t_oq0 & ~(f2 & f & m) + vqrshrn.u16 d21, q15, #4 ; w_oq1 + + vsub.i16 q15, q14 + vaddl.u8 q14, d3, d10 + vadd.i16 q15, q4 + vaddl.u8 q4, d11, d15 + vbif d21, d22, d17 ; oq1 |= t_oq1 & ~(f2 & f & m) + vqrshrn.u16 d22, q15, #4 ; w_oq2 + + vsub.i16 q15, q14 + vaddl.u8 q14, d4, d11 + vadd.i16 q15, q4 + vaddl.u8 q4, d12, d15 + vbif d22, d23, d17 ; oq2 |= t_oq2 & ~(f2 & f & m) + vqrshrn.u16 d23, q15, #4 ; w_oq3 + + vsub.i16 q15, q14 + vaddl.u8 q14, d5, d12 + vadd.i16 q15, q4 + vaddl.u8 q4, d13, d15 + vbif d16, d1, d17 ; op6 |= p6 & ~(f2 & f & m) + vqrshrn.u16 d1, q15, #4 ; w_oq4 + + vsub.i16 q15, q14 + vaddl.u8 q14, d6, d13 + vadd.i16 q15, q4 + vaddl.u8 q4, d14, d15 + vbif d24, d2, d17 ; op5 |= p5 & ~(f2 & f & m) + vqrshrn.u16 d2, q15, #4 ; w_oq5 + + vsub.i16 q15, q14 + vbif d25, d3, d17 ; op4 |= p4 & ~(f2 & f & m) + vadd.i16 q15, q4 + vbif d23, d11, d17 ; oq3 |= q3 & ~(f2 & f & m) + vqrshrn.u16 d3, q15, #4 ; w_oq6 + vbif d1, d12, d17 ; oq4 |= q4 & ~(f2 & f & m) + vbif d2, d13, d17 ; oq5 |= q5 & ~(f2 & f & m) + vbif d3, d14, d17 ; oq6 |= q6 & ~(f2 & f & m) + + bx lr + ENDP ; |vpx_wide_mbfilter_neon| + + END diff --git a/vpx_dsp/arm/loopfilter_4_neon.asm b/vpx_dsp/arm/loopfilter_4_neon.asm new file mode 100644 index 0000000..907e918 --- /dev/null +++ b/vpx_dsp/arm/loopfilter_4_neon.asm @@ -0,0 +1,549 @@ +; +; Copyright (c) 2013 The WebM project authors. All Rights Reserved. +; +; Use of this source code is governed by a BSD-style license +; that can be found in the LICENSE file in the root of the source +; tree. An additional intellectual property rights grant can be found +; in the file PATENTS. All contributing project authors may +; be found in the AUTHORS file in the root of the source tree. +; + + EXPORT |vpx_lpf_horizontal_4_neon| + EXPORT |vpx_lpf_vertical_4_neon| + EXPORT |vpx_lpf_horizontal_4_dual_neon| + EXPORT |vpx_lpf_vertical_4_dual_neon| + ARM + + AREA ||.text||, CODE, READONLY, ALIGN=2 + +; Currently vpx only works on iterations 8 at a time. The vp8 loop filter +; works on 16 iterations at a time. +; +; void vpx_lpf_horizontal_4_neon(uint8_t *s, +; int p /* pitch */, +; const uint8_t *blimit, +; const uint8_t *limit, +; const uint8_t *thresh) +; +; r0 uint8_t *s, +; r1 int p, /* pitch */ +; r2 const uint8_t *blimit, +; r3 const uint8_t *limit, +; sp const uint8_t *thresh, +|vpx_lpf_horizontal_4_neon| PROC + push {lr} + + vld1.8 {d0[]}, [r2] ; duplicate *blimit + ldr r2, [sp, #4] ; load thresh + add r1, r1, r1 ; double pitch + + vld1.8 {d1[]}, [r3] ; duplicate *limit + vld1.8 {d2[]}, [r2] ; duplicate *thresh + + sub r2, r0, r1, lsl #1 ; move src pointer down by 4 lines + add r3, r2, r1, lsr #1 ; set to 3 lines down + + vld1.u8 {d3}, [r2@64], r1 ; p3 + vld1.u8 {d4}, [r3@64], r1 ; p2 + vld1.u8 {d5}, [r2@64], r1 ; p1 + vld1.u8 {d6}, [r3@64], r1 ; p0 + vld1.u8 {d7}, [r2@64], r1 ; q0 + vld1.u8 {d16}, [r3@64], r1 ; q1 + vld1.u8 {d17}, [r2@64] ; q2 + vld1.u8 {d18}, [r3@64] ; q3 + + sub r2, r2, r1, lsl #1 + sub r3, r3, r1, lsl #1 + + bl filter4_8 + + vst1.u8 {d4}, [r2@64], r1 ; store op1 + vst1.u8 {d5}, [r3@64], r1 ; store op0 + vst1.u8 {d6}, [r2@64], r1 ; store oq0 + vst1.u8 {d7}, [r3@64], r1 ; store oq1 + + pop {pc} + ENDP ; |vpx_lpf_horizontal_4_neon| + +; Currently vpx only works on iterations 8 at a time. The vp8 loop filter +; works on 16 iterations at a time. +; +; void vpx_lpf_vertical_4_neon(uint8_t *s, +; int p /* pitch */, +; const uint8_t *blimit, +; const uint8_t *limit, +; const uint8_t *thresh) +; +; r0 uint8_t *s, +; r1 int p, /* pitch */ +; r2 const uint8_t *blimit, +; r3 const uint8_t *limit, +; sp const uint8_t *thresh, +|vpx_lpf_vertical_4_neon| PROC + push {lr} + + vld1.8 {d0[]}, [r2] ; duplicate *blimit + vld1.8 {d1[]}, [r3] ; duplicate *limit + + ldr r3, [sp, #4] ; load thresh + sub r2, r0, #4 ; move s pointer down by 4 columns + + vld1.8 {d2[]}, [r3] ; duplicate *thresh + + vld1.u8 {d3}, [r2], r1 ; load s data + vld1.u8 {d4}, [r2], r1 + vld1.u8 {d5}, [r2], r1 + vld1.u8 {d6}, [r2], r1 + vld1.u8 {d7}, [r2], r1 + vld1.u8 {d16}, [r2], r1 + vld1.u8 {d17}, [r2], r1 + vld1.u8 {d18}, [r2] + + ;transpose to 8x16 matrix + vtrn.32 d3, d7 + vtrn.32 d4, d16 + vtrn.32 d5, d17 + vtrn.32 d6, d18 + + vtrn.16 d3, d5 + vtrn.16 d4, d6 + vtrn.16 d7, d17 + vtrn.16 d16, d18 + + vtrn.8 d3, d4 + vtrn.8 d5, d6 + vtrn.8 d7, d16 + vtrn.8 d17, d18 + + bl filter4_8 + + sub r0, r0, #2 + + ;store op1, op0, oq0, oq1 + vst4.8 {d4[0], d5[0], d6[0], d7[0]}, [r0], r1 + vst4.8 {d4[1], d5[1], d6[1], d7[1]}, [r0], r1 + vst4.8 {d4[2], d5[2], d6[2], d7[2]}, [r0], r1 + vst4.8 {d4[3], d5[3], d6[3], d7[3]}, [r0], r1 + vst4.8 {d4[4], d5[4], d6[4], d7[4]}, [r0], r1 + vst4.8 {d4[5], d5[5], d6[5], d7[5]}, [r0], r1 + vst4.8 {d4[6], d5[6], d6[6], d7[6]}, [r0], r1 + vst4.8 {d4[7], d5[7], d6[7], d7[7]}, [r0] + + pop {pc} + ENDP ; |vpx_lpf_vertical_4_neon| + +; void filter4_8(); +; This is a helper function for the loopfilters. The invidual functions do the +; necessary load, transpose (if necessary) and store. The function does not use +; registers d8-d15. +; +; Inputs: +; r0-r3, r12 PRESERVE +; d0 blimit +; d1 limit +; d2 thresh +; d3 p3 +; d4 p2 +; d5 p1 +; d6 p0 +; d7 q0 +; d16 q1 +; d17 q2 +; d18 q3 +; +; Outputs: +; d4 op1 +; d5 op0 +; d6 oq0 +; d7 oq1 +|filter4_8| PROC + ; filter_mask + vabd.u8 d19, d3, d4 ; m1 = abs(p3 - p2) + vabd.u8 d20, d4, d5 ; m2 = abs(p2 - p1) + vabd.u8 d21, d5, d6 ; m3 = abs(p1 - p0) + vabd.u8 d22, d16, d7 ; m4 = abs(q1 - q0) + vabd.u8 d3, d17, d16 ; m5 = abs(q2 - q1) + vabd.u8 d4, d18, d17 ; m6 = abs(q3 - q2) + + ; only compare the largest value to limit + vmax.u8 d19, d19, d20 ; m1 = max(m1, m2) + vmax.u8 d20, d21, d22 ; m2 = max(m3, m4) + + vabd.u8 d17, d6, d7 ; abs(p0 - q0) + + vmax.u8 d3, d3, d4 ; m3 = max(m5, m6) + + vmov.u8 d18, #0x80 + + vmax.u8 d23, d19, d20 ; m1 = max(m1, m2) + + ; hevmask + vcgt.u8 d21, d21, d2 ; (abs(p1 - p0) > thresh)*-1 + vcgt.u8 d22, d22, d2 ; (abs(q1 - q0) > thresh)*-1 + vmax.u8 d23, d23, d3 ; m1 = max(m1, m3) + + vabd.u8 d28, d5, d16 ; a = abs(p1 - q1) + vqadd.u8 d17, d17, d17 ; b = abs(p0 - q0) * 2 + + veor d7, d7, d18 ; qs0 + + vcge.u8 d23, d1, d23 ; abs(m1) > limit + + ; filter() function + ; convert to signed + + vshr.u8 d28, d28, #1 ; a = a / 2 + veor d6, d6, d18 ; ps0 + + veor d5, d5, d18 ; ps1 + vqadd.u8 d17, d17, d28 ; a = b + a + + veor d16, d16, d18 ; qs1 + + vmov.u8 d19, #3 + + vsub.s8 d28, d7, d6 ; ( qs0 - ps0) + + vcge.u8 d17, d0, d17 ; a > blimit + + vqsub.s8 d27, d5, d16 ; filter = clamp(ps1-qs1) + vorr d22, d21, d22 ; hevmask + + vmull.s8 q12, d28, d19 ; 3 * ( qs0 - ps0) + + vand d27, d27, d22 ; filter &= hev + vand d23, d23, d17 ; filter_mask + + vaddw.s8 q12, q12, d27 ; filter + 3 * (qs0 - ps0) + + vmov.u8 d17, #4 + + ; filter = clamp(filter + 3 * ( qs0 - ps0)) + vqmovn.s16 d27, q12 + + vand d27, d27, d23 ; filter &= mask + + vqadd.s8 d28, d27, d19 ; filter2 = clamp(filter+3) + vqadd.s8 d27, d27, d17 ; filter1 = clamp(filter+4) + vshr.s8 d28, d28, #3 ; filter2 >>= 3 + vshr.s8 d27, d27, #3 ; filter1 >>= 3 + + vqadd.s8 d19, d6, d28 ; u = clamp(ps0 + filter2) + vqsub.s8 d26, d7, d27 ; u = clamp(qs0 - filter1) + + ; outer tap adjustments + vrshr.s8 d27, d27, #1 ; filter = ++filter1 >> 1 + + veor d6, d26, d18 ; *oq0 = u^0x80 + + vbic d27, d27, d22 ; filter &= ~hev + + vqadd.s8 d21, d5, d27 ; u = clamp(ps1 + filter) + vqsub.s8 d20, d16, d27 ; u = clamp(qs1 - filter) + + veor d5, d19, d18 ; *op0 = u^0x80 + veor d4, d21, d18 ; *op1 = u^0x80 + veor d7, d20, d18 ; *oq1 = u^0x80 + + bx lr + ENDP ; |filter4_8| + +;void vpx_lpf_horizontal_4_dual_neon(uint8_t *s, int p, +; const uint8_t *blimit0, +; const uint8_t *limit0, +; const uint8_t *thresh0, +; const uint8_t *blimit1, +; const uint8_t *limit1, +; const uint8_t *thresh1) +; r0 uint8_t *s, +; r1 int p, +; r2 const uint8_t *blimit0, +; r3 const uint8_t *limit0, +; sp const uint8_t *thresh0, +; sp+4 const uint8_t *blimit1, +; sp+8 const uint8_t *limit1, +; sp+12 const uint8_t *thresh1, + +|vpx_lpf_horizontal_4_dual_neon| PROC + push {lr} + + ldr r12, [sp, #4] ; load thresh0 + vld1.8 {d0}, [r2] ; load blimit0 to first half q + vld1.8 {d2}, [r3] ; load limit0 to first half q + + add r1, r1, r1 ; double pitch + ldr r2, [sp, #8] ; load blimit1 + + vld1.8 {d4}, [r12] ; load thresh0 to first half q + + ldr r3, [sp, #12] ; load limit1 + ldr r12, [sp, #16] ; load thresh1 + vld1.8 {d1}, [r2] ; load blimit1 to 2nd half q + + sub r2, r0, r1, lsl #1 ; s[-4 * p] + + vld1.8 {d3}, [r3] ; load limit1 to 2nd half q + vld1.8 {d5}, [r12] ; load thresh1 to 2nd half q + + vpush {d8-d15} ; save neon registers + + add r3, r2, r1, lsr #1 ; s[-3 * p] + + vld1.u8 {q3}, [r2@64], r1 ; p3 + vld1.u8 {q4}, [r3@64], r1 ; p2 + vld1.u8 {q5}, [r2@64], r1 ; p1 + vld1.u8 {q6}, [r3@64], r1 ; p0 + vld1.u8 {q7}, [r2@64], r1 ; q0 + vld1.u8 {q8}, [r3@64], r1 ; q1 + vld1.u8 {q9}, [r2@64] ; q2 + vld1.u8 {q10}, [r3@64] ; q3 + + sub r2, r2, r1, lsl #1 + sub r3, r3, r1, lsl #1 + + bl filter4_16 + + vst1.u8 {q5}, [r2@64], r1 ; store op1 + vst1.u8 {q6}, [r3@64], r1 ; store op0 + vst1.u8 {q7}, [r2@64], r1 ; store oq0 + vst1.u8 {q8}, [r3@64], r1 ; store oq1 + + vpop {d8-d15} ; restore neon registers + + pop {pc} + ENDP ; |vpx_lpf_horizontal_4_dual_neon| + +;void vpx_lpf_vertical_4_dual_neon(uint8_t *s, int p, +; const uint8_t *blimit0, +; const uint8_t *limit0, +; const uint8_t *thresh0, +; const uint8_t *blimit1, +; const uint8_t *limit1, +; const uint8_t *thresh1) +; r0 uint8_t *s, +; r1 int p, +; r2 const uint8_t *blimit0, +; r3 const uint8_t *limit0, +; sp const uint8_t *thresh0, +; sp+4 const uint8_t *blimit1, +; sp+8 const uint8_t *limit1, +; sp+12 const uint8_t *thresh1, + +|vpx_lpf_vertical_4_dual_neon| PROC + push {lr} + + ldr r12, [sp, #4] ; load thresh0 + vld1.8 {d0}, [r2] ; load blimit0 to first half q + vld1.8 {d2}, [r3] ; load limit0 to first half q + + ldr r2, [sp, #8] ; load blimit1 + + vld1.8 {d4}, [r12] ; load thresh0 to first half q + + ldr r3, [sp, #12] ; load limit1 + ldr r12, [sp, #16] ; load thresh1 + vld1.8 {d1}, [r2] ; load blimit1 to 2nd half q + + sub r2, r0, #4 ; s[-4] + + vld1.8 {d3}, [r3] ; load limit1 to 2nd half q + vld1.8 {d5}, [r12] ; load thresh1 to 2nd half q + + vpush {d8-d15} ; save neon registers + + vld1.u8 {d6}, [r2], r1 ; 00 01 02 03 04 05 06 07 + vld1.u8 {d8}, [r2], r1 ; 10 11 12 13 14 15 16 17 + vld1.u8 {d10}, [r2], r1 ; 20 21 22 23 24 25 26 27 + vld1.u8 {d12}, [r2], r1 ; 30 31 32 33 34 35 36 37 + vld1.u8 {d14}, [r2], r1 ; 40 41 42 43 44 45 46 47 + vld1.u8 {d16}, [r2], r1 ; 50 51 52 53 54 55 56 57 + vld1.u8 {d18}, [r2], r1 ; 60 61 62 63 64 65 66 67 + vld1.u8 {d20}, [r2], r1 ; 70 71 72 73 74 75 76 77 + vld1.u8 {d7}, [r2], r1 ; 80 81 82 83 84 85 86 87 + vld1.u8 {d9}, [r2], r1 ; 90 91 92 93 94 95 96 97 + vld1.u8 {d11}, [r2], r1 ; A0 A1 A2 A3 A4 A5 A6 A7 + vld1.u8 {d13}, [r2], r1 ; B0 B1 B2 B3 B4 B5 B6 B7 + vld1.u8 {d15}, [r2], r1 ; C0 C1 C2 C3 C4 C5 C6 C7 + vld1.u8 {d17}, [r2], r1 ; D0 D1 D2 D3 D4 D5 D6 D7 + vld1.u8 {d19}, [r2], r1 ; E0 E1 E2 E3 E4 E5 E6 E7 + vld1.u8 {d21}, [r2] ; F0 F1 F2 F3 F4 F5 F6 F7 + + vtrn.8 q3, q4 ; q3 : 00 10 02 12 04 14 06 16 80 90 82 92 84 94 86 96 + ; q4 : 01 11 03 13 05 15 07 17 81 91 83 93 85 95 87 97 + vtrn.8 q5, q6 ; q5 : 20 30 22 32 24 34 26 36 A0 B0 A2 B2 A4 B4 A6 B6 + ; q6 : 21 31 23 33 25 35 27 37 A1 B1 A3 B3 A5 B5 A7 B7 + vtrn.8 q7, q8 ; q7 : 40 50 42 52 44 54 46 56 C0 D0 C2 D2 C4 D4 C6 D6 + ; q8 : 41 51 43 53 45 55 47 57 C1 D1 C3 D3 C5 D5 C7 D7 + vtrn.8 q9, q10 ; q9 : 60 70 62 72 64 74 66 76 E0 F0 E2 F2 E4 F4 E6 F6 + ; q10: 61 71 63 73 65 75 67 77 E1 F1 E3 F3 E5 F5 E7 F7 + + vtrn.16 q3, q5 ; q3 : 00 10 20 30 04 14 24 34 80 90 A0 B0 84 94 A4 B4 + ; q5 : 02 12 22 32 06 16 26 36 82 92 A2 B2 86 96 A6 B6 + vtrn.16 q4, q6 ; q4 : 01 11 21 31 05 15 25 35 81 91 A1 B1 85 95 A5 B5 + ; q6 : 03 13 23 33 07 17 27 37 83 93 A3 B3 87 97 A7 B7 + vtrn.16 q7, q9 ; q7 : 40 50 60 70 44 54 64 74 C0 D0 E0 F0 C4 D4 E4 F4 + ; q9 : 42 52 62 72 46 56 66 76 C2 D2 E2 F2 C6 D6 E6 F6 + vtrn.16 q8, q10 ; q8 : 41 51 61 71 45 55 65 75 C1 D1 E1 F1 C5 D5 E5 F5 + ; q10: 43 53 63 73 47 57 67 77 C3 D3 E3 F3 C7 D7 E7 F7 + + vtrn.32 q3, q7 ; q3 : 00 10 20 30 40 50 60 70 80 90 A0 B0 C0 D0 E0 F0 + ; q7 : 04 14 24 34 44 54 64 74 84 94 A4 B4 C4 D4 E4 F4 + vtrn.32 q5, q9 ; q5 : 02 12 22 32 42 52 62 72 82 92 A2 B2 C2 D2 E2 F2 + ; q9 : 06 16 26 36 46 56 66 76 86 96 A6 B6 C6 D6 E6 F6 + vtrn.32 q4, q8 ; q4 : 01 11 21 31 41 51 61 71 81 91 A1 B1 C1 D1 E1 F1 + ; q8 : 05 15 25 35 45 55 65 75 85 95 A5 B5 C5 D5 E5 F5 + vtrn.32 q6, q10 ; q6 : 03 13 23 33 43 53 63 73 83 93 A3 B3 C3 D3 E3 F3 + ; q10: 07 17 27 37 47 57 67 77 87 97 A7 B7 C7 D7 E7 F7 + + bl filter4_16 + + sub r0, #2 + + vmov d0, d11 + vmov d1, d13 + vmov d2, d15 + vmov d3, d17 + vmov d11, d12 + vmov d12, d14 + vmov d13, d16 + vst4.8 {d10[0], d11[0], d12[0], d13[0]}, [r0], r1 + vst4.8 {d10[1], d11[1], d12[1], d13[1]}, [r0], r1 + vst4.8 {d10[2], d11[2], d12[2], d13[2]}, [r0], r1 + vst4.8 {d10[3], d11[3], d12[3], d13[3]}, [r0], r1 + vst4.8 {d10[4], d11[4], d12[4], d13[4]}, [r0], r1 + vst4.8 {d10[5], d11[5], d12[5], d13[5]}, [r0], r1 + vst4.8 {d10[6], d11[6], d12[6], d13[6]}, [r0], r1 + vst4.8 {d10[7], d11[7], d12[7], d13[7]}, [r0], r1 + vst4.8 {d0[0], d1[0], d2[0], d3[0]}, [r0], r1 + vst4.8 {d0[1], d1[1], d2[1], d3[1]}, [r0], r1 + vst4.8 {d0[2], d1[2], d2[2], d3[2]}, [r0], r1 + vst4.8 {d0[3], d1[3], d2[3], d3[3]}, [r0], r1 + vst4.8 {d0[4], d1[4], d2[4], d3[4]}, [r0], r1 + vst4.8 {d0[5], d1[5], d2[5], d3[5]}, [r0], r1 + vst4.8 {d0[6], d1[6], d2[6], d3[6]}, [r0], r1 + vst4.8 {d0[7], d1[7], d2[7], d3[7]}, [r0] + + vpop {d8-d15} ; restore neon registers + + pop {pc} + ENDP ; |vpx_lpf_vertical_4_dual_neon| + +; void filter4_16(); +; This is a helper function for the loopfilters. The invidual functions do the +; necessary load, transpose (if necessary) and store. This function uses +; registers d8-d15, so the calling function must save those registers. +; +; r0-r3, r12 PRESERVE +; q0 blimit +; q1 limit +; q2 thresh +; q3 p3 +; q4 p2 +; q5 p1 +; q6 p0 +; q7 q0 +; q8 q1 +; q9 q2 +; q10 q3 +; +; Outputs: +; q5 op1 +; q6 op0 +; q7 oq0 +; q8 oq1 +|filter4_16| PROC + + ; filter_mask + vabd.u8 q11, q3, q4 ; m1 = abs(p3 - p2) + vabd.u8 q12, q4, q5 ; m2 = abs(p2 - p1) + vabd.u8 q13, q5, q6 ; m3 = abs(p1 - p0) + vabd.u8 q14, q8, q7 ; m4 = abs(q1 - q0) + vabd.u8 q3, q9, q8 ; m5 = abs(q2 - q1) + vabd.u8 q4, q10, q9 ; m6 = abs(q3 - q2) + + ; only compare the largest value to limit + vmax.u8 q11, q11, q12 ; m7 = max(m1, m2) + vmax.u8 q12, q13, q14 ; m8 = max(m3, m4) + + vabd.u8 q9, q6, q7 ; abs(p0 - q0) + + vmax.u8 q3, q3, q4 ; m9 = max(m5, m6) + + vmov.u8 q10, #0x80 + + vmax.u8 q15, q11, q12 ; m10 = max(m7, m8) + + vcgt.u8 q13, q13, q2 ; (abs(p1 - p0) > thresh)*-1 + vcgt.u8 q14, q14, q2 ; (abs(q1 - q0) > thresh)*-1 + vmax.u8 q15, q15, q3 ; m11 = max(m10, m9) + + vabd.u8 q2, q5, q8 ; a = abs(p1 - q1) + vqadd.u8 q9, q9, q9 ; b = abs(p0 - q0) * 2 + + veor q7, q7, q10 ; qs0 + + vcge.u8 q15, q1, q15 ; abs(m11) > limit + + vshr.u8 q2, q2, #1 ; a = a / 2 + veor q6, q6, q10 ; ps0 + + veor q5, q5, q10 ; ps1 + vqadd.u8 q9, q9, q2 ; a = b + a + + veor q8, q8, q10 ; qs1 + + vmov.u16 q4, #3 + + vsubl.s8 q2, d14, d12 ; ( qs0 - ps0) + vsubl.s8 q11, d15, d13 + + vcge.u8 q9, q0, q9 ; a > blimit + + vqsub.s8 q1, q5, q8 ; filter = clamp(ps1-qs1) + vorr q14, q13, q14 ; hev + + vmul.i16 q2, q2, q4 ; 3 * ( qs0 - ps0) + vmul.i16 q11, q11, q4 + + vand q1, q1, q14 ; filter &= hev + vand q15, q15, q9 ; mask + + vmov.u8 q4, #3 + + vaddw.s8 q2, q2, d2 ; filter + 3 * (qs0 - ps0) + vaddw.s8 q11, q11, d3 + + vmov.u8 q9, #4 + + ; filter = clamp(filter + 3 * ( qs0 - ps0)) + vqmovn.s16 d2, q2 + vqmovn.s16 d3, q11 + vand q1, q1, q15 ; filter &= mask + + vqadd.s8 q2, q1, q4 ; filter2 = clamp(filter+3) + vqadd.s8 q1, q1, q9 ; filter1 = clamp(filter+4) + vshr.s8 q2, q2, #3 ; filter2 >>= 3 + vshr.s8 q1, q1, #3 ; filter1 >>= 3 + + + vqadd.s8 q11, q6, q2 ; u = clamp(ps0 + filter2) + vqsub.s8 q0, q7, q1 ; u = clamp(qs0 - filter1) + + ; outer tap adjustments + vrshr.s8 q1, q1, #1 ; filter = ++filter1 >> 1 + + veor q7, q0, q10 ; *oq0 = u^0x80 + + vbic q1, q1, q14 ; filter &= ~hev + + vqadd.s8 q13, q5, q1 ; u = clamp(ps1 + filter) + vqsub.s8 q12, q8, q1 ; u = clamp(qs1 - filter) + + veor q6, q11, q10 ; *op0 = u^0x80 + veor q5, q13, q10 ; *op1 = u^0x80 + veor q8, q12, q10 ; *oq1 = u^0x80 + + bx lr + ENDP ; |filter4_16| + + END diff --git a/vpx_dsp/arm/loopfilter_8_neon.asm b/vpx_dsp/arm/loopfilter_8_neon.asm new file mode 100644 index 0000000..a042d40 --- /dev/null +++ b/vpx_dsp/arm/loopfilter_8_neon.asm @@ -0,0 +1,491 @@ +; +; Copyright (c) 2013 The WebM project authors. All Rights Reserved. +; +; Use of this source code is governed by a BSD-style license +; that can be found in the LICENSE file in the root of the source +; tree. An additional intellectual property rights grant can be found +; in the file PATENTS. All contributing project authors may +; be found in the AUTHORS file in the root of the source tree. +; + + EXPORT |vpx_lpf_horizontal_8_neon| + EXPORT |vpx_lpf_horizontal_8_dual_neon| + EXPORT |vpx_lpf_vertical_8_neon| + EXPORT |vpx_lpf_vertical_8_dual_neon| + ARM + + AREA ||.text||, CODE, READONLY, ALIGN=2 + +; Currently vpx only works on iterations 8 at a time. The vp8 loop filter +; works on 16 iterations at a time. +; +; void vpx_lpf_horizontal_8_neon(uint8_t *s, int p, +; const uint8_t *blimit, +; const uint8_t *limit, +; const uint8_t *thresh) +; r0 uint8_t *s, +; r1 int p, /* pitch */ +; r2 const uint8_t *blimit, +; r3 const uint8_t *limit, +; sp const uint8_t *thresh, +|vpx_lpf_horizontal_8_neon| PROC + push {r4-r5, lr} + + vld1.8 {d0[]}, [r2] ; duplicate *blimit + ldr r2, [sp, #12] ; load thresh + add r1, r1, r1 ; double pitch + + vld1.8 {d1[]}, [r3] ; duplicate *limit + vld1.8 {d2[]}, [r2] ; duplicate *thresh + + sub r3, r0, r1, lsl #1 ; move src pointer down by 4 lines + add r2, r3, r1, lsr #1 ; set to 3 lines down + + vld1.u8 {d3}, [r3@64], r1 ; p3 + vld1.u8 {d4}, [r2@64], r1 ; p2 + vld1.u8 {d5}, [r3@64], r1 ; p1 + vld1.u8 {d6}, [r2@64], r1 ; p0 + vld1.u8 {d7}, [r3@64], r1 ; q0 + vld1.u8 {d16}, [r2@64], r1 ; q1 + vld1.u8 {d17}, [r3@64] ; q2 + vld1.u8 {d18}, [r2@64], r1 ; q3 + + sub r3, r3, r1, lsl #1 + sub r2, r2, r1, lsl #2 + + bl vpx_mbloop_filter_neon + + vst1.u8 {d0}, [r2@64], r1 ; store op2 + vst1.u8 {d1}, [r3@64], r1 ; store op1 + vst1.u8 {d2}, [r2@64], r1 ; store op0 + vst1.u8 {d3}, [r3@64], r1 ; store oq0 + vst1.u8 {d4}, [r2@64], r1 ; store oq1 + vst1.u8 {d5}, [r3@64], r1 ; store oq2 + + pop {r4-r5, pc} + + ENDP ; |vpx_lpf_horizontal_8_neon| + +;void vpx_lpf_horizontal_8_dual_neon(uint8_t *s, +; int p, +; const uint8_t *blimit0, +; const uint8_t *limit0, +; const uint8_t *thresh0, +; const uint8_t *blimit1, +; const uint8_t *limit1, +; const uint8_t *thresh1) +; r0 uint8_t *s, +; r1 int p, /* pitch */ +; r2 const uint8_t *blimit0, +; r3 const uint8_t *limit0, +; sp const uint8_t *thresh0, +; sp + 4 const uint8_t *blimit1, +; sp + 8 const uint8_t *limit1, +; sp + 12 const uint8_t *thresh1, +|vpx_lpf_horizontal_8_dual_neon| PROC + push {r0-r1, lr} + ldr lr, [sp, #12] + push {lr} ; thresh0 + bl vpx_lpf_horizontal_8_neon + + ldr r2, [sp, #20] ; blimit1 + ldr r3, [sp, #24] ; limit1 + ldr lr, [sp, #28] + str lr, [sp, #16] ; thresh1 + add sp, #4 + pop {r0-r1, lr} + add r0, #8 ; s + 8 + b vpx_lpf_horizontal_8_neon + ENDP ; |vpx_lpf_horizontal_8_dual_neon| + +; void vpx_lpf_vertical_8_neon(uint8_t *s, +; int pitch, +; const uint8_t *blimit, +; const uint8_t *limit, +; const uint8_t *thresh) +; +; r0 uint8_t *s, +; r1 int pitch, +; r2 const uint8_t *blimit, +; r3 const uint8_t *limit, +; sp const uint8_t *thresh, +|vpx_lpf_vertical_8_neon| PROC + push {r4-r5, lr} + + vld1.8 {d0[]}, [r2] ; duplicate *blimit + vld1.8 {d1[]}, [r3] ; duplicate *limit + + ldr r3, [sp, #12] ; load thresh + sub r2, r0, #4 ; move s pointer down by 4 columns + + vld1.8 {d2[]}, [r3] ; duplicate *thresh + + vld1.u8 {d3}, [r2], r1 ; load s data + vld1.u8 {d4}, [r2], r1 + vld1.u8 {d5}, [r2], r1 + vld1.u8 {d6}, [r2], r1 + vld1.u8 {d7}, [r2], r1 + vld1.u8 {d16}, [r2], r1 + vld1.u8 {d17}, [r2], r1 + vld1.u8 {d18}, [r2] + + ;transpose to 8x16 matrix + vtrn.32 d3, d7 + vtrn.32 d4, d16 + vtrn.32 d5, d17 + vtrn.32 d6, d18 + + vtrn.16 d3, d5 + vtrn.16 d4, d6 + vtrn.16 d7, d17 + vtrn.16 d16, d18 + + vtrn.8 d3, d4 + vtrn.8 d5, d6 + vtrn.8 d7, d16 + vtrn.8 d17, d18 + + sub r2, r0, #3 + add r3, r0, #1 + + bl vpx_mbloop_filter_neon + + ;store op2, op1, op0, oq0 + vst4.8 {d0[0], d1[0], d2[0], d3[0]}, [r2], r1 + vst4.8 {d0[1], d1[1], d2[1], d3[1]}, [r2], r1 + vst4.8 {d0[2], d1[2], d2[2], d3[2]}, [r2], r1 + vst4.8 {d0[3], d1[3], d2[3], d3[3]}, [r2], r1 + vst4.8 {d0[4], d1[4], d2[4], d3[4]}, [r2], r1 + vst4.8 {d0[5], d1[5], d2[5], d3[5]}, [r2], r1 + vst4.8 {d0[6], d1[6], d2[6], d3[6]}, [r2], r1 + vst4.8 {d0[7], d1[7], d2[7], d3[7]}, [r2] + + ;store oq1, oq2 + vst2.8 {d4[0], d5[0]}, [r3], r1 + vst2.8 {d4[1], d5[1]}, [r3], r1 + vst2.8 {d4[2], d5[2]}, [r3], r1 + vst2.8 {d4[3], d5[3]}, [r3], r1 + vst2.8 {d4[4], d5[4]}, [r3], r1 + vst2.8 {d4[5], d5[5]}, [r3], r1 + vst2.8 {d4[6], d5[6]}, [r3], r1 + vst2.8 {d4[7], d5[7]}, [r3] + + pop {r4-r5, pc} + ENDP ; |vpx_lpf_vertical_8_neon| + +;void vpx_lpf_vertical_8_dual_neon(uint8_t *s, +; int pitch, +; const uint8_t *blimit0, +; const uint8_t *limit0, +; const uint8_t *thresh0, +; const uint8_t *blimit1, +; const uint8_t *limit1, +; const uint8_t *thresh1) +; r0 uint8_t *s, +; r1 int pitch +; r2 const uint8_t *blimit0, +; r3 const uint8_t *limit0, +; sp const uint8_t *thresh0, +; sp + 4 const uint8_t *blimit1, +; sp + 8 const uint8_t *limit1, +; sp + 12 const uint8_t *thresh1, +|vpx_lpf_vertical_8_dual_neon| PROC + push {r0-r1, lr} + ldr lr, [sp, #12] + push {lr} ; thresh0 + bl vpx_lpf_vertical_8_neon + + ldr r2, [sp, #20] ; blimit1 + ldr r3, [sp, #24] ; limit1 + ldr lr, [sp, #28] + str lr, [sp, #16] ; thresh1 + add sp, #4 + pop {r0-r1, lr} + add r0, r1, lsl #3 ; s + 8 * pitch + b vpx_lpf_vertical_8_neon + ENDP ; |vpx_lpf_vertical_8_dual_neon| + +; void vpx_mbloop_filter_neon(); +; This is a helper function for the loopfilters. The invidual functions do the +; necessary load, transpose (if necessary) and store. The function does not use +; registers d8-d15. +; +; Inputs: +; r0-r3, r12 PRESERVE +; d0 blimit +; d1 limit +; d2 thresh +; d3 p3 +; d4 p2 +; d5 p1 +; d6 p0 +; d7 q0 +; d16 q1 +; d17 q2 +; d18 q3 +; +; Outputs: +; d0 op2 +; d1 op1 +; d2 op0 +; d3 oq0 +; d4 oq1 +; d5 oq2 +|vpx_mbloop_filter_neon| PROC + ; filter_mask + vabd.u8 d19, d3, d4 ; m1 = abs(p3 - p2) + vabd.u8 d20, d4, d5 ; m2 = abs(p2 - p1) + vabd.u8 d21, d5, d6 ; m3 = abs(p1 - p0) + vabd.u8 d22, d16, d7 ; m4 = abs(q1 - q0) + vabd.u8 d23, d17, d16 ; m5 = abs(q2 - q1) + vabd.u8 d24, d18, d17 ; m6 = abs(q3 - q2) + + ; only compare the largest value to limit + vmax.u8 d19, d19, d20 ; m1 = max(m1, m2) + vmax.u8 d20, d21, d22 ; m2 = max(m3, m4) + + vabd.u8 d25, d6, d4 ; m7 = abs(p0 - p2) + + vmax.u8 d23, d23, d24 ; m3 = max(m5, m6) + + vabd.u8 d26, d7, d17 ; m8 = abs(q0 - q2) + + vmax.u8 d19, d19, d20 + + vabd.u8 d24, d6, d7 ; m9 = abs(p0 - q0) + vabd.u8 d27, d3, d6 ; m10 = abs(p3 - p0) + vabd.u8 d28, d18, d7 ; m11 = abs(q3 - q0) + + vmax.u8 d19, d19, d23 + + vabd.u8 d23, d5, d16 ; a = abs(p1 - q1) + vqadd.u8 d24, d24, d24 ; b = abs(p0 - q0) * 2 + + ; abs () > limit + vcge.u8 d19, d1, d19 + + ; only compare the largest value to thresh + vmax.u8 d25, d25, d26 ; m4 = max(m7, m8) + vmax.u8 d26, d27, d28 ; m5 = max(m10, m11) + + vshr.u8 d23, d23, #1 ; a = a / 2 + + vmax.u8 d25, d25, d26 ; m4 = max(m4, m5) + + vqadd.u8 d24, d24, d23 ; a = b + a + + vmax.u8 d20, d20, d25 ; m2 = max(m2, m4) + + vmov.u8 d23, #1 + vcge.u8 d24, d0, d24 ; a > blimit + + vcgt.u8 d21, d21, d2 ; (abs(p1 - p0) > thresh)*-1 + + vcge.u8 d20, d23, d20 ; flat + + vand d19, d19, d24 ; mask + + vcgt.u8 d23, d22, d2 ; (abs(q1 - q0) > thresh)*-1 + + vand d20, d20, d19 ; flat & mask + + vmov.u8 d22, #0x80 + + vorr d23, d21, d23 ; hev + + ; This instruction will truncate the "flat & mask" masks down to 4 bits + ; each to fit into one 32 bit arm register. The values are stored in + ; q10.64[0]. + vshrn.u16 d30, q10, #4 + vmov.u32 r4, d30[0] ; flat & mask 4bits + + adds r5, r4, #1 ; Check for all 1's + + ; If mask and flat are 1's for all vectors, then we only need to execute + ; the power branch for all vectors. + beq power_branch_only + + cmp r4, #0 ; Check for 0, set flag for later + + ; mbfilter() function + ; filter() function + ; convert to signed + veor d21, d7, d22 ; qs0 + veor d24, d6, d22 ; ps0 + veor d25, d5, d22 ; ps1 + veor d26, d16, d22 ; qs1 + + vmov.u8 d27, #3 + + vsub.s8 d28, d21, d24 ; ( qs0 - ps0) + + vqsub.s8 d29, d25, d26 ; filter = clamp(ps1-qs1) + + vmull.s8 q15, d28, d27 ; 3 * ( qs0 - ps0) + + vand d29, d29, d23 ; filter &= hev + + vaddw.s8 q15, q15, d29 ; filter + 3 * (qs0 - ps0) + + vmov.u8 d29, #4 + + ; filter = clamp(filter + 3 * ( qs0 - ps0)) + vqmovn.s16 d28, q15 + + vand d28, d28, d19 ; filter &= mask + + vqadd.s8 d30, d28, d27 ; filter2 = clamp(filter+3) + vqadd.s8 d29, d28, d29 ; filter1 = clamp(filter+4) + vshr.s8 d30, d30, #3 ; filter2 >>= 3 + vshr.s8 d29, d29, #3 ; filter1 >>= 3 + + vqadd.s8 d24, d24, d30 ; op0 = clamp(ps0 + filter2) + vqsub.s8 d21, d21, d29 ; oq0 = clamp(qs0 - filter1) + + ; outer tap adjustments: ++filter1 >> 1 + vrshr.s8 d29, d29, #1 + vbic d29, d29, d23 ; filter &= ~hev + + vqadd.s8 d25, d25, d29 ; op1 = clamp(ps1 + filter) + vqsub.s8 d26, d26, d29 ; oq1 = clamp(qs1 - filter) + + ; If mask and flat are 0's for all vectors, then we only need to execute + ; the filter branch for all vectors. + beq filter_branch_only + + ; If mask and flat are mixed then we must perform both branches and + ; combine the data. + veor d24, d24, d22 ; *f_op0 = u^0x80 + veor d21, d21, d22 ; *f_oq0 = u^0x80 + veor d25, d25, d22 ; *f_op1 = u^0x80 + veor d26, d26, d22 ; *f_oq1 = u^0x80 + + ; At this point we have already executed the filter branch. The filter + ; branch does not set op2 or oq2, so use p2 and q2. Execute the power + ; branch and combine the data. + vmov.u8 d23, #2 + vaddl.u8 q14, d6, d7 ; r_op2 = p0 + q0 + vmlal.u8 q14, d3, d27 ; r_op2 += p3 * 3 + vmlal.u8 q14, d4, d23 ; r_op2 += p2 * 2 + + vbif d0, d4, d20 ; op2 |= p2 & ~(flat & mask) + + vaddw.u8 q14, d5 ; r_op2 += p1 + + vbif d1, d25, d20 ; op1 |= f_op1 & ~(flat & mask) + + vqrshrn.u16 d30, q14, #3 ; r_op2 + + vsubw.u8 q14, d3 ; r_op1 = r_op2 - p3 + vsubw.u8 q14, d4 ; r_op1 -= p2 + vaddw.u8 q14, d5 ; r_op1 += p1 + vaddw.u8 q14, d16 ; r_op1 += q1 + + vbif d2, d24, d20 ; op0 |= f_op0 & ~(flat & mask) + + vqrshrn.u16 d31, q14, #3 ; r_op1 + + vsubw.u8 q14, d3 ; r_op0 = r_op1 - p3 + vsubw.u8 q14, d5 ; r_op0 -= p1 + vaddw.u8 q14, d6 ; r_op0 += p0 + vaddw.u8 q14, d17 ; r_op0 += q2 + + vbit d0, d30, d20 ; op2 |= r_op2 & (flat & mask) + + vqrshrn.u16 d23, q14, #3 ; r_op0 + + vsubw.u8 q14, d3 ; r_oq0 = r_op0 - p3 + vsubw.u8 q14, d6 ; r_oq0 -= p0 + vaddw.u8 q14, d7 ; r_oq0 += q0 + + vbit d1, d31, d20 ; op1 |= r_op1 & (flat & mask) + + vaddw.u8 q14, d18 ; oq0 += q3 + + vbit d2, d23, d20 ; op0 |= r_op0 & (flat & mask) + + vqrshrn.u16 d22, q14, #3 ; r_oq0 + + vsubw.u8 q14, d4 ; r_oq1 = r_oq0 - p2 + vsubw.u8 q14, d7 ; r_oq1 -= q0 + vaddw.u8 q14, d16 ; r_oq1 += q1 + + vbif d3, d21, d20 ; oq0 |= f_oq0 & ~(flat & mask) + + vaddw.u8 q14, d18 ; r_oq1 += q3 + + vbif d4, d26, d20 ; oq1 |= f_oq1 & ~(flat & mask) + + vqrshrn.u16 d6, q14, #3 ; r_oq1 + + vsubw.u8 q14, d5 ; r_oq2 = r_oq1 - p1 + vsubw.u8 q14, d16 ; r_oq2 -= q1 + vaddw.u8 q14, d17 ; r_oq2 += q2 + vaddw.u8 q14, d18 ; r_oq2 += q3 + + vbif d5, d17, d20 ; oq2 |= q2 & ~(flat & mask) + + vqrshrn.u16 d7, q14, #3 ; r_oq2 + + vbit d3, d22, d20 ; oq0 |= r_oq0 & (flat & mask) + vbit d4, d6, d20 ; oq1 |= r_oq1 & (flat & mask) + vbit d5, d7, d20 ; oq2 |= r_oq2 & (flat & mask) + + bx lr + +power_branch_only + vmov.u8 d27, #3 + vmov.u8 d21, #2 + vaddl.u8 q14, d6, d7 ; op2 = p0 + q0 + vmlal.u8 q14, d3, d27 ; op2 += p3 * 3 + vmlal.u8 q14, d4, d21 ; op2 += p2 * 2 + vaddw.u8 q14, d5 ; op2 += p1 + vqrshrn.u16 d0, q14, #3 ; op2 + + vsubw.u8 q14, d3 ; op1 = op2 - p3 + vsubw.u8 q14, d4 ; op1 -= p2 + vaddw.u8 q14, d5 ; op1 += p1 + vaddw.u8 q14, d16 ; op1 += q1 + vqrshrn.u16 d1, q14, #3 ; op1 + + vsubw.u8 q14, d3 ; op0 = op1 - p3 + vsubw.u8 q14, d5 ; op0 -= p1 + vaddw.u8 q14, d6 ; op0 += p0 + vaddw.u8 q14, d17 ; op0 += q2 + vqrshrn.u16 d2, q14, #3 ; op0 + + vsubw.u8 q14, d3 ; oq0 = op0 - p3 + vsubw.u8 q14, d6 ; oq0 -= p0 + vaddw.u8 q14, d7 ; oq0 += q0 + vaddw.u8 q14, d18 ; oq0 += q3 + vqrshrn.u16 d3, q14, #3 ; oq0 + + vsubw.u8 q14, d4 ; oq1 = oq0 - p2 + vsubw.u8 q14, d7 ; oq1 -= q0 + vaddw.u8 q14, d16 ; oq1 += q1 + vaddw.u8 q14, d18 ; oq1 += q3 + vqrshrn.u16 d4, q14, #3 ; oq1 + + vsubw.u8 q14, d5 ; oq2 = oq1 - p1 + vsubw.u8 q14, d16 ; oq2 -= q1 + vaddw.u8 q14, d17 ; oq2 += q2 + vaddw.u8 q14, d18 ; oq2 += q3 + vqrshrn.u16 d5, q14, #3 ; oq2 + + bx lr + +filter_branch_only + ; TODO(fgalligan): See if we can rearange registers so we do not need to + ; do the 2 vswp. + vswp d0, d4 ; op2 + vswp d5, d17 ; oq2 + veor d2, d24, d22 ; *op0 = u^0x80 + veor d3, d21, d22 ; *oq0 = u^0x80 + veor d1, d25, d22 ; *op1 = u^0x80 + veor d4, d26, d22 ; *oq1 = u^0x80 + + bx lr + + ENDP ; |vpx_mbloop_filter_neon| + + END diff --git a/vpx_dsp/arm/loopfilter_neon.c b/vpx_dsp/arm/loopfilter_neon.c new file mode 100644 index 0000000..7419cea --- /dev/null +++ b/vpx_dsp/arm/loopfilter_neon.c @@ -0,0 +1,1092 @@ +/* + * Copyright (c) 2016 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include "./vpx_config.h" +#include "./vpx_dsp_rtcd.h" +#include "vpx_dsp/arm/transpose_neon.h" + +// For all the static inline functions, the functions ending with '_8' process +// 8 samples in a bunch, and the functions ending with '_16' process 16 samples +// in a bunch. + +#define FUN_LOAD_THRESH(w, r) \ + static INLINE void load_thresh_##w( \ + const uint8_t *blimit, const uint8_t *limit, const uint8_t *thresh, \ + uint8x##w##_t *blimit_vec, uint8x##w##_t *limit_vec, \ + uint8x##w##_t *thresh_vec) { \ + *blimit_vec = vld1##r##dup_u8(blimit); \ + *limit_vec = vld1##r##dup_u8(limit); \ + *thresh_vec = vld1##r##dup_u8(thresh); \ + } + +FUN_LOAD_THRESH(8, _) // load_thresh_8 +FUN_LOAD_THRESH(16, q_) // load_thresh_16 +#undef FUN_LOAD_THRESH + +static INLINE void load_thresh_8_dual( + const uint8_t *blimit0, const uint8_t *limit0, const uint8_t *thresh0, + const uint8_t *blimit1, const uint8_t *limit1, const uint8_t *thresh1, + uint8x16_t *blimit_vec, uint8x16_t *limit_vec, uint8x16_t *thresh_vec) { + *blimit_vec = vcombine_u8(vld1_dup_u8(blimit0), vld1_dup_u8(blimit1)); + *limit_vec = vcombine_u8(vld1_dup_u8(limit0), vld1_dup_u8(limit1)); + *thresh_vec = vcombine_u8(vld1_dup_u8(thresh0), vld1_dup_u8(thresh1)); +} + +// Here flat is 64-bit long, with each 8-bit (or 4-bit) chunk being a mask of a +// pixel. When used to control filter branches, we only detect whether it is all +// 0s or all 1s. We pairwise add flat to a 32-bit long number flat_status. +// flat equals 0 if and only if flat_status equals 0. +// flat equals -1 (all 1s) if and only if flat_status equals -2. (This is true +// because each mask occupies more than 1 bit.) +static INLINE uint32_t calc_flat_status_8(uint8x8_t flat) { + return vget_lane_u32( + vreinterpret_u32_u64(vpaddl_u32(vreinterpret_u32_u8(flat))), 0); +} + +// Here flat is 128-bit long, with each 8-bit chunk being a mask of a pixel. +// When used to control filter branches, we only detect whether it is all 0s or +// all 1s. We narrowing shift right each 16-bit chunk by 4 arithmetically, so +// we get a 64-bit long number, with each 4-bit chunk being a mask of a pixel. +// Then we pairwise add flat to a 32-bit long number flat_status. +// flat equals 0 if and only if flat_status equals 0. +// flat equals -1 (all 1s) if and only if flat_status equals -2. (This is true +// because each mask occupies more than 1 bit.) +static INLINE uint32_t calc_flat_status_16(uint8x16_t flat) { + const uint8x8_t flat_4bit = + vreinterpret_u8_s8(vshrn_n_s16(vreinterpretq_s16_u8(flat), 4)); + return calc_flat_status_8(flat_4bit); +} + +#define FUN_FILTER_HEV_MASK4(w, r) \ + static INLINE uint8x##w##_t filter_hev_mask4_##w( \ + const uint8x##w##_t limit, const uint8x##w##_t blimit, \ + const uint8x##w##_t thresh, const uint8x##w##_t p3, \ + const uint8x##w##_t p2, const uint8x##w##_t p1, const uint8x##w##_t p0, \ + const uint8x##w##_t q0, const uint8x##w##_t q1, const uint8x##w##_t q2, \ + const uint8x##w##_t q3, uint8x##w##_t *hev, uint8x##w##_t *mask) { \ + uint8x##w##_t max, t0, t1; \ + \ + max = vabd##r##u8(p1, p0); \ + max = vmax##r##u8(max, vabd##r##u8(q1, q0)); \ + *hev = vcgt##r##u8(max, thresh); \ + *mask = vmax##r##u8(max, vabd##r##u8(p3, p2)); \ + *mask = vmax##r##u8(*mask, vabd##r##u8(p2, p1)); \ + *mask = vmax##r##u8(*mask, vabd##r##u8(q2, q1)); \ + *mask = vmax##r##u8(*mask, vabd##r##u8(q3, q2)); \ + t0 = vabd##r##u8(p0, q0); \ + t1 = vabd##r##u8(p1, q1); \ + t0 = vqadd##r##u8(t0, t0); \ + t1 = vshr##r##n_u8(t1, 1); \ + t0 = vqadd##r##u8(t0, t1); \ + *mask = vcle##r##u8(*mask, limit); \ + t0 = vcle##r##u8(t0, blimit); \ + *mask = vand##r##u8(*mask, t0); \ + \ + return max; \ + } + +FUN_FILTER_HEV_MASK4(8, _) // filter_hev_mask4_8 +FUN_FILTER_HEV_MASK4(16, q_) // filter_hev_mask4_16 +#undef FUN_FILTER_HEV_MASK4 + +#define FUN_FILTER_FLAT_HEV_MASK(w, r) \ + static INLINE uint8x##w##_t filter_flat_hev_mask_##w( \ + const uint8x##w##_t limit, const uint8x##w##_t blimit, \ + const uint8x##w##_t thresh, const uint8x##w##_t p3, \ + const uint8x##w##_t p2, const uint8x##w##_t p1, const uint8x##w##_t p0, \ + const uint8x##w##_t q0, const uint8x##w##_t q1, const uint8x##w##_t q2, \ + const uint8x##w##_t q3, uint8x##w##_t *flat, uint32_t *flat_status, \ + uint8x##w##_t *hev) { \ + uint8x##w##_t max, mask; \ + \ + max = filter_hev_mask4_##w(limit, blimit, thresh, p3, p2, p1, p0, q0, q1, \ + q2, q3, hev, &mask); \ + *flat = vmax##r##u8(max, vabd##r##u8(p2, p0)); \ + *flat = vmax##r##u8(*flat, vabd##r##u8(q2, q0)); \ + *flat = vmax##r##u8(*flat, vabd##r##u8(p3, p0)); \ + *flat = vmax##r##u8(*flat, vabd##r##u8(q3, q0)); \ + *flat = vcle##r##u8(*flat, vdup##r##n_u8(1)); /* flat_mask4() */ \ + *flat = vand##r##u8(*flat, mask); \ + *flat_status = calc_flat_status_##w(*flat); \ + \ + return mask; \ + } + +FUN_FILTER_FLAT_HEV_MASK(8, _) // filter_flat_hev_mask_8 +FUN_FILTER_FLAT_HEV_MASK(16, q_) // filter_flat_hev_mask_16 +#undef FUN_FILTER_FLAT_HEV_MASK + +#define FUN_FLAT_MASK5(w, r) \ + static INLINE uint8x##w##_t flat_mask5_##w( \ + const uint8x##w##_t p4, const uint8x##w##_t p3, const uint8x##w##_t p2, \ + const uint8x##w##_t p1, const uint8x##w##_t p0, const uint8x##w##_t q0, \ + const uint8x##w##_t q1, const uint8x##w##_t q2, const uint8x##w##_t q3, \ + const uint8x##w##_t q4, const uint8x##w##_t flat, \ + uint32_t *flat2_status) { \ + uint8x##w##_t flat2 = vabd##r##u8(p4, p0); \ + flat2 = vmax##r##u8(flat2, vabd##r##u8(p3, p0)); \ + flat2 = vmax##r##u8(flat2, vabd##r##u8(p2, p0)); \ + flat2 = vmax##r##u8(flat2, vabd##r##u8(p1, p0)); \ + flat2 = vmax##r##u8(flat2, vabd##r##u8(q1, q0)); \ + flat2 = vmax##r##u8(flat2, vabd##r##u8(q2, q0)); \ + flat2 = vmax##r##u8(flat2, vabd##r##u8(q3, q0)); \ + flat2 = vmax##r##u8(flat2, vabd##r##u8(q4, q0)); \ + flat2 = vcle##r##u8(flat2, vdup##r##n_u8(1)); \ + flat2 = vand##r##u8(flat2, flat); \ + *flat2_status = calc_flat_status_##w(flat2); \ + \ + return flat2; \ + } + +FUN_FLAT_MASK5(8, _) // flat_mask5_8 +FUN_FLAT_MASK5(16, q_) // flat_mask5_16 +#undef FUN_FLAT_MASK5 + +#define FUN_FLIP_SIGN(w, r) \ + static INLINE int8x##w##_t flip_sign_##w(const uint8x##w##_t v) { \ + const uint8x##w##_t sign_bit = vdup##r##n_u8(0x80); \ + return vreinterpret##r##s8_u8(veor##r##u8(v, sign_bit)); \ + } + +FUN_FLIP_SIGN(8, _) // flip_sign_8 +FUN_FLIP_SIGN(16, q_) // flip_sign_16 +#undef FUN_FLIP_SIGN + +#define FUN_FLIP_SIGN_BACK(w, r) \ + static INLINE uint8x##w##_t flip_sign_back_##w(const int8x##w##_t v) { \ + const int8x##w##_t sign_bit = vdup##r##n_s8(0x80); \ + return vreinterpret##r##u8_s8(veor##r##s8(v, sign_bit)); \ + } + +FUN_FLIP_SIGN_BACK(8, _) // flip_sign_back_8 +FUN_FLIP_SIGN_BACK(16, q_) // flip_sign_back_16 +#undef FUN_FLIP_SIGN_BACK + +static INLINE void filter_update_8(const uint8x8_t sub0, const uint8x8_t sub1, + const uint8x8_t add0, const uint8x8_t add1, + uint16x8_t *sum) { + *sum = vsubw_u8(*sum, sub0); + *sum = vsubw_u8(*sum, sub1); + *sum = vaddw_u8(*sum, add0); + *sum = vaddw_u8(*sum, add1); +} + +static INLINE void filter_update_16(const uint8x16_t sub0, + const uint8x16_t sub1, + const uint8x16_t add0, + const uint8x16_t add1, uint16x8_t *sum0, + uint16x8_t *sum1) { + *sum0 = vsubw_u8(*sum0, vget_low_u8(sub0)); + *sum1 = vsubw_u8(*sum1, vget_high_u8(sub0)); + *sum0 = vsubw_u8(*sum0, vget_low_u8(sub1)); + *sum1 = vsubw_u8(*sum1, vget_high_u8(sub1)); + *sum0 = vaddw_u8(*sum0, vget_low_u8(add0)); + *sum1 = vaddw_u8(*sum1, vget_high_u8(add0)); + *sum0 = vaddw_u8(*sum0, vget_low_u8(add1)); + *sum1 = vaddw_u8(*sum1, vget_high_u8(add1)); +} + +static INLINE uint8x8_t calc_7_tap_filter_8_kernel(const uint8x8_t sub0, + const uint8x8_t sub1, + const uint8x8_t add0, + const uint8x8_t add1, + uint16x8_t *sum) { + filter_update_8(sub0, sub1, add0, add1, sum); + return vrshrn_n_u16(*sum, 3); +} + +static INLINE uint8x16_t calc_7_tap_filter_16_kernel( + const uint8x16_t sub0, const uint8x16_t sub1, const uint8x16_t add0, + const uint8x16_t add1, uint16x8_t *sum0, uint16x8_t *sum1) { + filter_update_16(sub0, sub1, add0, add1, sum0, sum1); + return vcombine_u8(vrshrn_n_u16(*sum0, 3), vrshrn_n_u16(*sum1, 3)); +} + +static INLINE uint8x8_t apply_15_tap_filter_8_kernel( + const uint8x8_t flat, const uint8x8_t sub0, const uint8x8_t sub1, + const uint8x8_t add0, const uint8x8_t add1, const uint8x8_t in, + uint16x8_t *sum) { + filter_update_8(sub0, sub1, add0, add1, sum); + return vbsl_u8(flat, vrshrn_n_u16(*sum, 4), in); +} + +static INLINE uint8x16_t apply_15_tap_filter_16_kernel( + const uint8x16_t flat, const uint8x16_t sub0, const uint8x16_t sub1, + const uint8x16_t add0, const uint8x16_t add1, const uint8x16_t in, + uint16x8_t *sum0, uint16x8_t *sum1) { + uint8x16_t t; + filter_update_16(sub0, sub1, add0, add1, sum0, sum1); + t = vcombine_u8(vrshrn_n_u16(*sum0, 4), vrshrn_n_u16(*sum1, 4)); + return vbslq_u8(flat, t, in); +} + +// 7-tap filter [1, 1, 1, 2, 1, 1, 1] +static INLINE void calc_7_tap_filter_8(const uint8x8_t p3, const uint8x8_t p2, + const uint8x8_t p1, const uint8x8_t p0, + const uint8x8_t q0, const uint8x8_t q1, + const uint8x8_t q2, const uint8x8_t q3, + uint8x8_t *op2, uint8x8_t *op1, + uint8x8_t *op0, uint8x8_t *oq0, + uint8x8_t *oq1, uint8x8_t *oq2) { + uint16x8_t sum; + sum = vaddl_u8(p3, p3); // 2*p3 + sum = vaddw_u8(sum, p3); // 3*p3 + sum = vaddw_u8(sum, p2); // 3*p3+p2 + sum = vaddw_u8(sum, p2); // 3*p3+2*p2 + sum = vaddw_u8(sum, p1); // 3*p3+2*p2+p1 + sum = vaddw_u8(sum, p0); // 3*p3+2*p2+p1+p0 + sum = vaddw_u8(sum, q0); // 3*p3+2*p2+p1+p0+q0 + *op2 = vrshrn_n_u16(sum, 3); + *op1 = calc_7_tap_filter_8_kernel(p3, p2, p1, q1, &sum); + *op0 = calc_7_tap_filter_8_kernel(p3, p1, p0, q2, &sum); + *oq0 = calc_7_tap_filter_8_kernel(p3, p0, q0, q3, &sum); + *oq1 = calc_7_tap_filter_8_kernel(p2, q0, q1, q3, &sum); + *oq2 = calc_7_tap_filter_8_kernel(p1, q1, q2, q3, &sum); +} + +static INLINE void calc_7_tap_filter_16( + const uint8x16_t p3, const uint8x16_t p2, const uint8x16_t p1, + const uint8x16_t p0, const uint8x16_t q0, const uint8x16_t q1, + const uint8x16_t q2, const uint8x16_t q3, uint8x16_t *op2, uint8x16_t *op1, + uint8x16_t *op0, uint8x16_t *oq0, uint8x16_t *oq1, uint8x16_t *oq2) { + uint16x8_t sum0, sum1; + sum0 = vaddl_u8(vget_low_u8(p3), vget_low_u8(p3)); // 2*p3 + sum1 = vaddl_u8(vget_high_u8(p3), vget_high_u8(p3)); // 2*p3 + sum0 = vaddw_u8(sum0, vget_low_u8(p3)); // 3*p3 + sum1 = vaddw_u8(sum1, vget_high_u8(p3)); // 3*p3 + sum0 = vaddw_u8(sum0, vget_low_u8(p2)); // 3*p3+p2 + sum1 = vaddw_u8(sum1, vget_high_u8(p2)); // 3*p3+p2 + sum0 = vaddw_u8(sum0, vget_low_u8(p2)); // 3*p3+2*p2 + sum1 = vaddw_u8(sum1, vget_high_u8(p2)); // 3*p3+2*p2 + sum0 = vaddw_u8(sum0, vget_low_u8(p1)); // 3*p3+2*p2+p1 + sum1 = vaddw_u8(sum1, vget_high_u8(p1)); // 3*p3+2*p2+p1 + sum0 = vaddw_u8(sum0, vget_low_u8(p0)); // 3*p3+2*p2+p1+p0 + sum1 = vaddw_u8(sum1, vget_high_u8(p0)); // 3*p3+2*p2+p1+p0 + sum0 = vaddw_u8(sum0, vget_low_u8(q0)); // 3*p3+2*p2+p1+p0+q0 + sum1 = vaddw_u8(sum1, vget_high_u8(q0)); // 3*p3+2*p2+p1+p0+q0 + *op2 = vcombine_u8(vrshrn_n_u16(sum0, 3), vrshrn_n_u16(sum1, 3)); + *op1 = calc_7_tap_filter_16_kernel(p3, p2, p1, q1, &sum0, &sum1); + *op0 = calc_7_tap_filter_16_kernel(p3, p1, p0, q2, &sum0, &sum1); + *oq0 = calc_7_tap_filter_16_kernel(p3, p0, q0, q3, &sum0, &sum1); + *oq1 = calc_7_tap_filter_16_kernel(p2, q0, q1, q3, &sum0, &sum1); + *oq2 = calc_7_tap_filter_16_kernel(p1, q1, q2, q3, &sum0, &sum1); +} + +#define FUN_APPLY_7_TAP_FILTER(w, r) \ + static INLINE void apply_7_tap_filter_##w( \ + const uint8x##w##_t flat, const uint8x##w##_t p3, \ + const uint8x##w##_t p2, const uint8x##w##_t p1, const uint8x##w##_t p0, \ + const uint8x##w##_t q0, const uint8x##w##_t q1, const uint8x##w##_t q2, \ + const uint8x##w##_t q3, uint8x##w##_t *op2, uint8x##w##_t *op1, \ + uint8x##w##_t *op0, uint8x##w##_t *oq0, uint8x##w##_t *oq1, \ + uint8x##w##_t *oq2) { \ + uint8x##w##_t tp1, tp0, tq0, tq1; \ + calc_7_tap_filter_##w(p3, p2, p1, p0, q0, q1, q2, q3, op2, &tp1, &tp0, \ + &tq0, &tq1, oq2); \ + *op2 = vbsl##r##u8(flat, *op2, p2); \ + *op1 = vbsl##r##u8(flat, tp1, *op1); \ + *op0 = vbsl##r##u8(flat, tp0, *op0); \ + *oq0 = vbsl##r##u8(flat, tq0, *oq0); \ + *oq1 = vbsl##r##u8(flat, tq1, *oq1); \ + *oq2 = vbsl##r##u8(flat, *oq2, q2); \ + } + +FUN_APPLY_7_TAP_FILTER(8, _) // apply_7_tap_filter_8 +FUN_APPLY_7_TAP_FILTER(16, q_) // apply_7_tap_filter_16 +#undef FUN_APPLY_7_TAP_FILTER + +// 15-tap filter [1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1] +static INLINE void apply_15_tap_filter_8( + const uint8x8_t flat2, const uint8x8_t p7, const uint8x8_t p6, + const uint8x8_t p5, const uint8x8_t p4, const uint8x8_t p3, + const uint8x8_t p2, const uint8x8_t p1, const uint8x8_t p0, + const uint8x8_t q0, const uint8x8_t q1, const uint8x8_t q2, + const uint8x8_t q3, const uint8x8_t q4, const uint8x8_t q5, + const uint8x8_t q6, const uint8x8_t q7, uint8x8_t *op6, uint8x8_t *op5, + uint8x8_t *op4, uint8x8_t *op3, uint8x8_t *op2, uint8x8_t *op1, + uint8x8_t *op0, uint8x8_t *oq0, uint8x8_t *oq1, uint8x8_t *oq2, + uint8x8_t *oq3, uint8x8_t *oq4, uint8x8_t *oq5, uint8x8_t *oq6) { + uint16x8_t sum; + sum = vshll_n_u8(p7, 3); // 8*p7 + sum = vsubw_u8(sum, p7); // 7*p7 + sum = vaddw_u8(sum, p6); // 7*p7+p6 + sum = vaddw_u8(sum, p6); // 7*p7+2*p6 + sum = vaddw_u8(sum, p5); // 7*p7+2*p6+p5 + sum = vaddw_u8(sum, p4); // 7*p7+2*p6+p5+p4 + sum = vaddw_u8(sum, p3); // 7*p7+2*p6+p5+p4+p3 + sum = vaddw_u8(sum, p2); // 7*p7+2*p6+p5+p4+p3+p2 + sum = vaddw_u8(sum, p1); // 7*p7+2*p6+p5+p4+p3+p2+p1 + sum = vaddw_u8(sum, p0); // 7*p7+2*p6+p5+p4+p3+p2+p1+p0 + sum = vaddw_u8(sum, q0); // 7*p7+2*p6+p5+p4+p3+p2+p1+p0+q0 + *op6 = vbsl_u8(flat2, vrshrn_n_u16(sum, 4), p6); + *op5 = apply_15_tap_filter_8_kernel(flat2, p7, p6, p5, q1, p5, &sum); + *op4 = apply_15_tap_filter_8_kernel(flat2, p7, p5, p4, q2, p4, &sum); + *op3 = apply_15_tap_filter_8_kernel(flat2, p7, p4, p3, q3, p3, &sum); + *op2 = apply_15_tap_filter_8_kernel(flat2, p7, p3, p2, q4, *op2, &sum); + *op1 = apply_15_tap_filter_8_kernel(flat2, p7, p2, p1, q5, *op1, &sum); + *op0 = apply_15_tap_filter_8_kernel(flat2, p7, p1, p0, q6, *op0, &sum); + *oq0 = apply_15_tap_filter_8_kernel(flat2, p7, p0, q0, q7, *oq0, &sum); + *oq1 = apply_15_tap_filter_8_kernel(flat2, p6, q0, q1, q7, *oq1, &sum); + *oq2 = apply_15_tap_filter_8_kernel(flat2, p5, q1, q2, q7, *oq2, &sum); + *oq3 = apply_15_tap_filter_8_kernel(flat2, p4, q2, q3, q7, q3, &sum); + *oq4 = apply_15_tap_filter_8_kernel(flat2, p3, q3, q4, q7, q4, &sum); + *oq5 = apply_15_tap_filter_8_kernel(flat2, p2, q4, q5, q7, q5, &sum); + *oq6 = apply_15_tap_filter_8_kernel(flat2, p1, q5, q6, q7, q6, &sum); +} + +static INLINE void apply_15_tap_filter_16( + const uint8x16_t flat2, const uint8x16_t p7, const uint8x16_t p6, + const uint8x16_t p5, const uint8x16_t p4, const uint8x16_t p3, + const uint8x16_t p2, const uint8x16_t p1, const uint8x16_t p0, + const uint8x16_t q0, const uint8x16_t q1, const uint8x16_t q2, + const uint8x16_t q3, const uint8x16_t q4, const uint8x16_t q5, + const uint8x16_t q6, const uint8x16_t q7, uint8x16_t *op6, uint8x16_t *op5, + uint8x16_t *op4, uint8x16_t *op3, uint8x16_t *op2, uint8x16_t *op1, + uint8x16_t *op0, uint8x16_t *oq0, uint8x16_t *oq1, uint8x16_t *oq2, + uint8x16_t *oq3, uint8x16_t *oq4, uint8x16_t *oq5, uint8x16_t *oq6) { + uint16x8_t sum0, sum1; + uint8x16_t t; + sum0 = vshll_n_u8(vget_low_u8(p7), 3); // 8*p7 + sum1 = vshll_n_u8(vget_high_u8(p7), 3); // 8*p7 + sum0 = vsubw_u8(sum0, vget_low_u8(p7)); // 7*p7 + sum1 = vsubw_u8(sum1, vget_high_u8(p7)); // 7*p7 + sum0 = vaddw_u8(sum0, vget_low_u8(p6)); // 7*p7+p6 + sum1 = vaddw_u8(sum1, vget_high_u8(p6)); // 7*p7+p6 + sum0 = vaddw_u8(sum0, vget_low_u8(p6)); // 7*p7+2*p6 + sum1 = vaddw_u8(sum1, vget_high_u8(p6)); // 7*p7+2*p6 + sum0 = vaddw_u8(sum0, vget_low_u8(p5)); // 7*p7+2*p6+p5 + sum1 = vaddw_u8(sum1, vget_high_u8(p5)); // 7*p7+2*p6+p5 + sum0 = vaddw_u8(sum0, vget_low_u8(p4)); // 7*p7+2*p6+p5+p4 + sum1 = vaddw_u8(sum1, vget_high_u8(p4)); // 7*p7+2*p6+p5+p4 + sum0 = vaddw_u8(sum0, vget_low_u8(p3)); // 7*p7+2*p6+p5+p4+p3 + sum1 = vaddw_u8(sum1, vget_high_u8(p3)); // 7*p7+2*p6+p5+p4+p3 + sum0 = vaddw_u8(sum0, vget_low_u8(p2)); // 7*p7+2*p6+p5+p4+p3+p2 + sum1 = vaddw_u8(sum1, vget_high_u8(p2)); // 7*p7+2*p6+p5+p4+p3+p2 + sum0 = vaddw_u8(sum0, vget_low_u8(p1)); // 7*p7+2*p6+p5+p4+p3+p2+p1 + sum1 = vaddw_u8(sum1, vget_high_u8(p1)); // 7*p7+2*p6+p5+p4+p3+p2+p1 + sum0 = vaddw_u8(sum0, vget_low_u8(p0)); // 7*p7+2*p6+p5+p4+p3+p2+p1+p0 + sum1 = vaddw_u8(sum1, vget_high_u8(p0)); // 7*p7+2*p6+p5+p4+p3+p2+p1+p0 + sum0 = vaddw_u8(sum0, vget_low_u8(q0)); // 7*p7+2*p6+p5+p4+p3+p2+p1+p0+q0 + sum1 = vaddw_u8(sum1, vget_high_u8(q0)); // 7*p7+2*p6+p5+p4+p3+p2+p1+p0+q0 + t = vcombine_u8(vrshrn_n_u16(sum0, 4), vrshrn_n_u16(sum1, 4)); + *op6 = vbslq_u8(flat2, t, p6); + *op5 = apply_15_tap_filter_16_kernel(flat2, p7, p6, p5, q1, p5, &sum0, &sum1); + *op4 = apply_15_tap_filter_16_kernel(flat2, p7, p5, p4, q2, p4, &sum0, &sum1); + *op3 = apply_15_tap_filter_16_kernel(flat2, p7, p4, p3, q3, p3, &sum0, &sum1); + *op2 = + apply_15_tap_filter_16_kernel(flat2, p7, p3, p2, q4, *op2, &sum0, &sum1); + *op1 = + apply_15_tap_filter_16_kernel(flat2, p7, p2, p1, q5, *op1, &sum0, &sum1); + *op0 = + apply_15_tap_filter_16_kernel(flat2, p7, p1, p0, q6, *op0, &sum0, &sum1); + *oq0 = + apply_15_tap_filter_16_kernel(flat2, p7, p0, q0, q7, *oq0, &sum0, &sum1); + *oq1 = + apply_15_tap_filter_16_kernel(flat2, p6, q0, q1, q7, *oq1, &sum0, &sum1); + *oq2 = + apply_15_tap_filter_16_kernel(flat2, p5, q1, q2, q7, *oq2, &sum0, &sum1); + *oq3 = apply_15_tap_filter_16_kernel(flat2, p4, q2, q3, q7, q3, &sum0, &sum1); + *oq4 = apply_15_tap_filter_16_kernel(flat2, p3, q3, q4, q7, q4, &sum0, &sum1); + *oq5 = apply_15_tap_filter_16_kernel(flat2, p2, q4, q5, q7, q5, &sum0, &sum1); + *oq6 = apply_15_tap_filter_16_kernel(flat2, p1, q5, q6, q7, q6, &sum0, &sum1); +} + +#define FUN_FILTER4(w, r) \ + static INLINE void filter4_##w( \ + const uint8x##w##_t mask, const uint8x##w##_t hev, \ + const uint8x##w##_t p1, const uint8x##w##_t p0, const uint8x##w##_t q0, \ + const uint8x##w##_t q1, uint8x##w##_t *op1, uint8x##w##_t *op0, \ + uint8x##w##_t *oq0, uint8x##w##_t *oq1) { \ + int8x##w##_t filter, filter1, filter2, t; \ + int8x##w##_t ps1 = flip_sign_##w(p1); \ + int8x##w##_t ps0 = flip_sign_##w(p0); \ + int8x##w##_t qs0 = flip_sign_##w(q0); \ + int8x##w##_t qs1 = flip_sign_##w(q1); \ + \ + /* add outer taps if we have high edge variance */ \ + filter = vqsub##r##s8(ps1, qs1); \ + filter = vand##r##s8(filter, vreinterpret##r##s8_u8(hev)); \ + t = vqsub##r##s8(qs0, ps0); \ + \ + /* inner taps */ \ + filter = vqadd##r##s8(filter, t); \ + filter = vqadd##r##s8(filter, t); \ + filter = vqadd##r##s8(filter, t); \ + filter = vand##r##s8(filter, vreinterpret##r##s8_u8(mask)); \ + \ + /* save bottom 3 bits so that we round one side +4 and the other +3 */ \ + /* if it equals 4 we'll set it to adjust by -1 to account for the fact */ \ + /* we'd round it by 3 the other way */ \ + filter1 = vshr##r##n_s8(vqadd##r##s8(filter, vdup##r##n_s8(4)), 3); \ + filter2 = vshr##r##n_s8(vqadd##r##s8(filter, vdup##r##n_s8(3)), 3); \ + \ + qs0 = vqsub##r##s8(qs0, filter1); \ + ps0 = vqadd##r##s8(ps0, filter2); \ + *oq0 = flip_sign_back_##w(qs0); \ + *op0 = flip_sign_back_##w(ps0); \ + \ + /* outer tap adjustments */ \ + filter = vrshr##r##n_s8(filter1, 1); \ + filter = vbic##r##s8(filter, vreinterpret##r##s8_u8(hev)); \ + \ + qs1 = vqsub##r##s8(qs1, filter); \ + ps1 = vqadd##r##s8(ps1, filter); \ + *oq1 = flip_sign_back_##w(qs1); \ + *op1 = flip_sign_back_##w(ps1); \ + } + +FUN_FILTER4(8, _) // filter4_8 +FUN_FILTER4(16, q_) // filter4_16 +#undef FUN_FILTER4 + +#define FUN_FILTER8(w) \ + static INLINE void filter8_##w( \ + const uint8x##w##_t mask, const uint8x##w##_t flat, \ + const uint32_t flat_status, const uint8x##w##_t hev, \ + const uint8x##w##_t p3, const uint8x##w##_t p2, const uint8x##w##_t p1, \ + const uint8x##w##_t p0, const uint8x##w##_t q0, const uint8x##w##_t q1, \ + const uint8x##w##_t q2, const uint8x##w##_t q3, uint8x##w##_t *op2, \ + uint8x##w##_t *op1, uint8x##w##_t *op0, uint8x##w##_t *oq0, \ + uint8x##w##_t *oq1, uint8x##w##_t *oq2) { \ + if (flat_status != (uint32_t)-2) { \ + filter4_##w(mask, hev, p1, p0, q0, q1, op1, op0, oq0, oq1); \ + *op2 = p2; \ + *oq2 = q2; \ + if (flat_status) { \ + apply_7_tap_filter_##w(flat, p3, p2, p1, p0, q0, q1, q2, q3, op2, op1, \ + op0, oq0, oq1, oq2); \ + } \ + } else { \ + calc_7_tap_filter_##w(p3, p2, p1, p0, q0, q1, q2, q3, op2, op1, op0, \ + oq0, oq1, oq2); \ + } \ + } + +FUN_FILTER8(8) // filter8_8 +FUN_FILTER8(16) // filter8_16 +#undef FUN_FILTER8 + +#define FUN_FILTER16(w) \ + static INLINE void filter16_##w( \ + const uint8x##w##_t mask, const uint8x##w##_t flat, \ + const uint32_t flat_status, const uint8x##w##_t flat2, \ + const uint32_t flat2_status, const uint8x##w##_t hev, \ + const uint8x##w##_t p7, const uint8x##w##_t p6, const uint8x##w##_t p5, \ + const uint8x##w##_t p4, const uint8x##w##_t p3, const uint8x##w##_t p2, \ + const uint8x##w##_t p1, const uint8x##w##_t p0, const uint8x##w##_t q0, \ + const uint8x##w##_t q1, const uint8x##w##_t q2, const uint8x##w##_t q3, \ + const uint8x##w##_t q4, const uint8x##w##_t q5, const uint8x##w##_t q6, \ + const uint8x##w##_t q7, uint8x##w##_t *op6, uint8x##w##_t *op5, \ + uint8x##w##_t *op4, uint8x##w##_t *op3, uint8x##w##_t *op2, \ + uint8x##w##_t *op1, uint8x##w##_t *op0, uint8x##w##_t *oq0, \ + uint8x##w##_t *oq1, uint8x##w##_t *oq2, uint8x##w##_t *oq3, \ + uint8x##w##_t *oq4, uint8x##w##_t *oq5, uint8x##w##_t *oq6) { \ + if (flat_status != (uint32_t)-2) { \ + filter4_##w(mask, hev, p1, p0, q0, q1, op1, op0, oq0, oq1); \ + } \ + \ + if (flat_status) { \ + *op2 = p2; \ + *oq2 = q2; \ + if (flat2_status != (uint32_t)-2) { \ + apply_7_tap_filter_##w(flat, p3, p2, p1, p0, q0, q1, q2, q3, op2, op1, \ + op0, oq0, oq1, oq2); \ + } \ + if (flat2_status) { \ + apply_15_tap_filter_##w(flat2, p7, p6, p5, p4, p3, p2, p1, p0, q0, q1, \ + q2, q3, q4, q5, q6, q7, op6, op5, op4, op3, \ + op2, op1, op0, oq0, oq1, oq2, oq3, oq4, oq5, \ + oq6); \ + } \ + } \ + } + +FUN_FILTER16(8) // filter16_8 +FUN_FILTER16(16) // filter16_16 +#undef FUN_FILTER16 + +#define FUN_LOAD8(w, r) \ + static INLINE void load_##w##x8( \ + const uint8_t *s, const int p, uint8x##w##_t *p3, uint8x##w##_t *p2, \ + uint8x##w##_t *p1, uint8x##w##_t *p0, uint8x##w##_t *q0, \ + uint8x##w##_t *q1, uint8x##w##_t *q2, uint8x##w##_t *q3) { \ + *p3 = vld1##r##u8(s); \ + s += p; \ + *p2 = vld1##r##u8(s); \ + s += p; \ + *p1 = vld1##r##u8(s); \ + s += p; \ + *p0 = vld1##r##u8(s); \ + s += p; \ + *q0 = vld1##r##u8(s); \ + s += p; \ + *q1 = vld1##r##u8(s); \ + s += p; \ + *q2 = vld1##r##u8(s); \ + s += p; \ + *q3 = vld1##r##u8(s); \ + } + +FUN_LOAD8(8, _) // load_8x8 +FUN_LOAD8(16, q_) // load_16x8 +#undef FUN_LOAD8 + +#define FUN_LOAD16(w, r) \ + static INLINE void load_##w##x16( \ + const uint8_t *s, const int p, uint8x##w##_t *s0, uint8x##w##_t *s1, \ + uint8x##w##_t *s2, uint8x##w##_t *s3, uint8x##w##_t *s4, \ + uint8x##w##_t *s5, uint8x##w##_t *s6, uint8x##w##_t *s7, \ + uint8x##w##_t *s8, uint8x##w##_t *s9, uint8x##w##_t *s10, \ + uint8x##w##_t *s11, uint8x##w##_t *s12, uint8x##w##_t *s13, \ + uint8x##w##_t *s14, uint8x##w##_t *s15) { \ + *s0 = vld1##r##u8(s); \ + s += p; \ + *s1 = vld1##r##u8(s); \ + s += p; \ + *s2 = vld1##r##u8(s); \ + s += p; \ + *s3 = vld1##r##u8(s); \ + s += p; \ + *s4 = vld1##r##u8(s); \ + s += p; \ + *s5 = vld1##r##u8(s); \ + s += p; \ + *s6 = vld1##r##u8(s); \ + s += p; \ + *s7 = vld1##r##u8(s); \ + s += p; \ + *s8 = vld1##r##u8(s); \ + s += p; \ + *s9 = vld1##r##u8(s); \ + s += p; \ + *s10 = vld1##r##u8(s); \ + s += p; \ + *s11 = vld1##r##u8(s); \ + s += p; \ + *s12 = vld1##r##u8(s); \ + s += p; \ + *s13 = vld1##r##u8(s); \ + s += p; \ + *s14 = vld1##r##u8(s); \ + s += p; \ + *s15 = vld1##r##u8(s); \ + } + +FUN_LOAD16(8, _) // load_8x16 +FUN_LOAD16(16, q_) // load_16x16 +#undef FUN_LOAD16 + +#define FUN_STORE4(w, r) \ + static INLINE void store_##w##x4( \ + uint8_t *s, const int p, const uint8x##w##_t s0, const uint8x##w##_t s1, \ + const uint8x##w##_t s2, const uint8x##w##_t s3) { \ + vst1##r##u8(s, s0); \ + s += p; \ + vst1##r##u8(s, s1); \ + s += p; \ + vst1##r##u8(s, s2); \ + s += p; \ + vst1##r##u8(s, s3); \ + } + +FUN_STORE4(8, _) // store_8x4 +FUN_STORE4(16, q_) // store_16x4 +#undef FUN_STORE4 + +#define FUN_STORE6(w, r) \ + static INLINE void store_##w##x6( \ + uint8_t *s, const int p, const uint8x##w##_t s0, const uint8x##w##_t s1, \ + const uint8x##w##_t s2, const uint8x##w##_t s3, const uint8x##w##_t s4, \ + const uint8x##w##_t s5) { \ + vst1##r##u8(s, s0); \ + s += p; \ + vst1##r##u8(s, s1); \ + s += p; \ + vst1##r##u8(s, s2); \ + s += p; \ + vst1##r##u8(s, s3); \ + s += p; \ + vst1##r##u8(s, s4); \ + s += p; \ + vst1##r##u8(s, s5); \ + } + +FUN_STORE6(8, _) // store_8x6 +FUN_STORE6(16, q_) // store_16x6 +#undef FUN_STORE6 + +static INLINE void store_4x8(uint8_t *s, const int p, const uint8x8_t p1, + const uint8x8_t p0, const uint8x8_t q0, + const uint8x8_t q1) { + uint8x8x4_t o; + + o.val[0] = p1; + o.val[1] = p0; + o.val[2] = q0; + o.val[3] = q1; + vst4_lane_u8(s, o, 0); + s += p; + vst4_lane_u8(s, o, 1); + s += p; + vst4_lane_u8(s, o, 2); + s += p; + vst4_lane_u8(s, o, 3); + s += p; + vst4_lane_u8(s, o, 4); + s += p; + vst4_lane_u8(s, o, 5); + s += p; + vst4_lane_u8(s, o, 6); + s += p; + vst4_lane_u8(s, o, 7); +} + +static INLINE void store_6x8(uint8_t *s, const int p, const uint8x8_t s0, + const uint8x8_t s1, const uint8x8_t s2, + const uint8x8_t s3, const uint8x8_t s4, + const uint8x8_t s5) { + uint8x8x3_t o0, o1; + + o0.val[0] = s0; + o0.val[1] = s1; + o0.val[2] = s2; + o1.val[0] = s3; + o1.val[1] = s4; + o1.val[2] = s5; + vst3_lane_u8(s - 3, o0, 0); + vst3_lane_u8(s + 0, o1, 0); + s += p; + vst3_lane_u8(s - 3, o0, 1); + vst3_lane_u8(s + 0, o1, 1); + s += p; + vst3_lane_u8(s - 3, o0, 2); + vst3_lane_u8(s + 0, o1, 2); + s += p; + vst3_lane_u8(s - 3, o0, 3); + vst3_lane_u8(s + 0, o1, 3); + s += p; + vst3_lane_u8(s - 3, o0, 4); + vst3_lane_u8(s + 0, o1, 4); + s += p; + vst3_lane_u8(s - 3, o0, 5); + vst3_lane_u8(s + 0, o1, 5); + s += p; + vst3_lane_u8(s - 3, o0, 6); + vst3_lane_u8(s + 0, o1, 6); + s += p; + vst3_lane_u8(s - 3, o0, 7); + vst3_lane_u8(s + 0, o1, 7); +} + +#define FUN_STORE8(w, r) \ + static INLINE void store_##w##x8( \ + uint8_t *s, const int p, const uint8x##w##_t s0, const uint8x##w##_t s1, \ + const uint8x##w##_t s2, const uint8x##w##_t s3, const uint8x##w##_t s4, \ + const uint8x##w##_t s5, const uint8x##w##_t s6, \ + const uint8x##w##_t s7) { \ + vst1##r##u8(s, s0); \ + s += p; \ + vst1##r##u8(s, s1); \ + s += p; \ + vst1##r##u8(s, s2); \ + s += p; \ + vst1##r##u8(s, s3); \ + s += p; \ + vst1##r##u8(s, s4); \ + s += p; \ + vst1##r##u8(s, s5); \ + s += p; \ + vst1##r##u8(s, s6); \ + s += p; \ + vst1##r##u8(s, s7); \ + } + +FUN_STORE8(8, _) // store_8x8 +FUN_STORE8(16, q_) // store_16x8 +#undef FUN_STORE8 + +#define FUN_STORE14(w, r) \ + static INLINE void store_##w##x14( \ + uint8_t *s, const int p, const uint8x##w##_t p6, const uint8x##w##_t p5, \ + const uint8x##w##_t p4, const uint8x##w##_t p3, const uint8x##w##_t p2, \ + const uint8x##w##_t p1, const uint8x##w##_t p0, const uint8x##w##_t q0, \ + const uint8x##w##_t q1, const uint8x##w##_t q2, const uint8x##w##_t q3, \ + const uint8x##w##_t q4, const uint8x##w##_t q5, const uint8x##w##_t q6, \ + const uint32_t flat_status, const uint32_t flat2_status) { \ + if (flat_status) { \ + if (flat2_status) { \ + vst1##r##u8(s - 7 * p, p6); \ + vst1##r##u8(s - 6 * p, p5); \ + vst1##r##u8(s - 5 * p, p4); \ + vst1##r##u8(s - 4 * p, p3); \ + vst1##r##u8(s + 3 * p, q3); \ + vst1##r##u8(s + 4 * p, q4); \ + vst1##r##u8(s + 5 * p, q5); \ + vst1##r##u8(s + 6 * p, q6); \ + } \ + vst1##r##u8(s - 3 * p, p2); \ + vst1##r##u8(s + 2 * p, q2); \ + } \ + vst1##r##u8(s - 2 * p, p1); \ + vst1##r##u8(s - 1 * p, p0); \ + vst1##r##u8(s + 0 * p, q0); \ + vst1##r##u8(s + 1 * p, q1); \ + } + +FUN_STORE14(8, _) // store_8x14 +FUN_STORE14(16, q_) // store_16x14 +#undef FUN_STORE14 + +static INLINE void store_16x16(uint8_t *s, const int p, const uint8x16_t s0, + const uint8x16_t s1, const uint8x16_t s2, + const uint8x16_t s3, const uint8x16_t s4, + const uint8x16_t s5, const uint8x16_t s6, + const uint8x16_t s7, const uint8x16_t s8, + const uint8x16_t s9, const uint8x16_t s10, + const uint8x16_t s11, const uint8x16_t s12, + const uint8x16_t s13, const uint8x16_t s14, + const uint8x16_t s15) { + vst1q_u8(s, s0); + s += p; + vst1q_u8(s, s1); + s += p; + vst1q_u8(s, s2); + s += p; + vst1q_u8(s, s3); + s += p; + vst1q_u8(s, s4); + s += p; + vst1q_u8(s, s5); + s += p; + vst1q_u8(s, s6); + s += p; + vst1q_u8(s, s7); + s += p; + vst1q_u8(s, s8); + s += p; + vst1q_u8(s, s9); + s += p; + vst1q_u8(s, s10); + s += p; + vst1q_u8(s, s11); + s += p; + vst1q_u8(s, s12); + s += p; + vst1q_u8(s, s13); + s += p; + vst1q_u8(s, s14); + s += p; + vst1q_u8(s, s15); +} + +#define FUN_HOR_4_KERNEL(name, w) \ + static INLINE void lpf_horizontal_4##name##kernel( \ + uint8_t *s, const int p, const uint8x##w##_t blimit, \ + const uint8x##w##_t limit, const uint8x##w##_t thresh) { \ + uint8x##w##_t p3, p2, p1, p0, q0, q1, q2, q3, mask, hev; \ + \ + load_##w##x8(s - 4 * p, p, &p3, &p2, &p1, &p0, &q0, &q1, &q2, &q3); \ + filter_hev_mask4_##w(limit, blimit, thresh, p3, p2, p1, p0, q0, q1, q2, \ + q3, &hev, &mask); \ + filter4_##w(mask, hev, p1, p0, q0, q1, &p1, &p0, &q0, &q1); \ + store_##w##x4(s - 2 * p, p, p1, p0, q0, q1); \ + } + +FUN_HOR_4_KERNEL(_, 8) // lpf_horizontal_4_kernel +FUN_HOR_4_KERNEL(_dual_, 16) // lpf_horizontal_4_dual_kernel +#undef FUN_HOR_4_KERNEL + +void vpx_lpf_horizontal_4_neon(uint8_t *s, int p, const uint8_t *blimit, + const uint8_t *limit, const uint8_t *thresh) { + uint8x8_t blimit_vec, limit_vec, thresh_vec; + load_thresh_8(blimit, limit, thresh, &blimit_vec, &limit_vec, &thresh_vec); + lpf_horizontal_4_kernel(s, p, blimit_vec, limit_vec, thresh_vec); +} + +void vpx_lpf_horizontal_4_dual_neon(uint8_t *s, int p, const uint8_t *blimit0, + const uint8_t *limit0, + const uint8_t *thresh0, + const uint8_t *blimit1, + const uint8_t *limit1, + const uint8_t *thresh1) { + uint8x16_t blimit_vec, limit_vec, thresh_vec; + load_thresh_8_dual(blimit0, limit0, thresh0, blimit1, limit1, thresh1, + &blimit_vec, &limit_vec, &thresh_vec); + lpf_horizontal_4_dual_kernel(s, p, blimit_vec, limit_vec, thresh_vec); +} + +void vpx_lpf_vertical_4_neon(uint8_t *s, int p, const uint8_t *blimit, + const uint8_t *limit, const uint8_t *thresh) { + uint8x8_t blimit_vec, limit_vec, thresh_vec, p3, p2, p1, p0, q0, q1, q2, q3, + mask, hev; + load_thresh_8(blimit, limit, thresh, &blimit_vec, &limit_vec, &thresh_vec); + load_8x8(s - 4, p, &p3, &p2, &p1, &p0, &q0, &q1, &q2, &q3); + transpose_u8_8x8(&p3, &p2, &p1, &p0, &q0, &q1, &q2, &q3); + filter_hev_mask4_8(limit_vec, blimit_vec, thresh_vec, p3, p2, p1, p0, q0, q1, + q2, q3, &hev, &mask); + filter4_8(mask, hev, p1, p0, q0, q1, &p1, &p0, &q0, &q1); + store_4x8(s - 2, p, p1, p0, q0, q1); +} + +void vpx_lpf_vertical_4_dual_neon(uint8_t *s, int p, const uint8_t *blimit0, + const uint8_t *limit0, const uint8_t *thresh0, + const uint8_t *blimit1, const uint8_t *limit1, + const uint8_t *thresh1) { + uint8x16_t blimit_vec, limit_vec, thresh_vec, p3, p2, p1, p0, q0, q1, q2, q3, + mask, hev; + uint8x8_t s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12, s13, s14, + s15; + + load_thresh_8_dual(blimit0, limit0, thresh0, blimit1, limit1, thresh1, + &blimit_vec, &limit_vec, &thresh_vec); + load_8x16(s - 4, p, &s0, &s1, &s2, &s3, &s4, &s5, &s6, &s7, &s8, &s9, &s10, + &s11, &s12, &s13, &s14, &s15); + transpose_u8_8x16(s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12, s13, + s14, s15, &p3, &p2, &p1, &p0, &q0, &q1, &q2, &q3); + filter_hev_mask4_16(limit_vec, blimit_vec, thresh_vec, p3, p2, p1, p0, q0, q1, + q2, q3, &hev, &mask); + filter4_16(mask, hev, p1, p0, q0, q1, &p1, &p0, &q0, &q1); + s -= 2; + store_4x8(s, p, vget_low_u8(p1), vget_low_u8(p0), vget_low_u8(q0), + vget_low_u8(q1)); + store_4x8(s + 8 * p, p, vget_high_u8(p1), vget_high_u8(p0), vget_high_u8(q0), + vget_high_u8(q1)); +} + +void vpx_lpf_horizontal_8_neon(uint8_t *s, int p, const uint8_t *blimit, + const uint8_t *limit, const uint8_t *thresh) { + uint8x8_t blimit_vec, limit_vec, thresh_vec, p3, p2, p1, p0, q0, q1, q2, q3, + op2, op1, op0, oq0, oq1, oq2, mask, flat, hev; + uint32_t flat_status; + + load_thresh_8(blimit, limit, thresh, &blimit_vec, &limit_vec, &thresh_vec); + load_8x8(s - 4 * p, p, &p3, &p2, &p1, &p0, &q0, &q1, &q2, &q3); + mask = filter_flat_hev_mask_8(limit_vec, blimit_vec, thresh_vec, p3, p2, p1, + p0, q0, q1, q2, q3, &flat, &flat_status, &hev); + filter8_8(mask, flat, flat_status, hev, p3, p2, p1, p0, q0, q1, q2, q3, &op2, + &op1, &op0, &oq0, &oq1, &oq2); + store_8x6(s - 3 * p, p, op2, op1, op0, oq0, oq1, oq2); +} + +void vpx_lpf_horizontal_8_dual_neon(uint8_t *s, int p, const uint8_t *blimit0, + const uint8_t *limit0, + const uint8_t *thresh0, + const uint8_t *blimit1, + const uint8_t *limit1, + const uint8_t *thresh1) { + uint8x16_t blimit_vec, limit_vec, thresh_vec, p3, p2, p1, p0, q0, q1, q2, q3, + op2, op1, op0, oq0, oq1, oq2, mask, flat, hev; + uint32_t flat_status; + + load_thresh_8_dual(blimit0, limit0, thresh0, blimit1, limit1, thresh1, + &blimit_vec, &limit_vec, &thresh_vec); + load_16x8(s - 4 * p, p, &p3, &p2, &p1, &p0, &q0, &q1, &q2, &q3); + mask = filter_flat_hev_mask_16(limit_vec, blimit_vec, thresh_vec, p3, p2, p1, + p0, q0, q1, q2, q3, &flat, &flat_status, &hev); + filter8_16(mask, flat, flat_status, hev, p3, p2, p1, p0, q0, q1, q2, q3, &op2, + &op1, &op0, &oq0, &oq1, &oq2); + store_16x6(s - 3 * p, p, op2, op1, op0, oq0, oq1, oq2); +} + +void vpx_lpf_vertical_8_neon(uint8_t *s, int p, const uint8_t *blimit, + const uint8_t *limit, const uint8_t *thresh) { + uint8x8_t blimit_vec, limit_vec, thresh_vec, p3, p2, p1, p0, q0, q1, q2, q3, + op2, op1, op0, oq0, oq1, oq2, mask, flat, hev; + uint32_t flat_status; + + load_thresh_8(blimit, limit, thresh, &blimit_vec, &limit_vec, &thresh_vec); + load_8x8(s - 4, p, &p3, &p2, &p1, &p0, &q0, &q1, &q2, &q3); + transpose_u8_8x8(&p3, &p2, &p1, &p0, &q0, &q1, &q2, &q3); + mask = filter_flat_hev_mask_8(limit_vec, blimit_vec, thresh_vec, p3, p2, p1, + p0, q0, q1, q2, q3, &flat, &flat_status, &hev); + filter8_8(mask, flat, flat_status, hev, p3, p2, p1, p0, q0, q1, q2, q3, &op2, + &op1, &op0, &oq0, &oq1, &oq2); + // Note: transpose + store_8x8() is faster than store_6x8(). + transpose_u8_8x8(&p3, &op2, &op1, &op0, &oq0, &oq1, &oq2, &q3); + store_8x8(s - 4, p, p3, op2, op1, op0, oq0, oq1, oq2, q3); +} + +void vpx_lpf_vertical_8_dual_neon(uint8_t *s, int p, const uint8_t *blimit0, + const uint8_t *limit0, const uint8_t *thresh0, + const uint8_t *blimit1, const uint8_t *limit1, + const uint8_t *thresh1) { + uint8x16_t blimit_vec, limit_vec, thresh_vec, p3, p2, p1, p0, q0, q1, q2, q3, + op2, op1, op0, oq0, oq1, oq2, mask, flat, hev; + uint8x8_t s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12, s13, s14, + s15; + uint32_t flat_status; + + load_thresh_8_dual(blimit0, limit0, thresh0, blimit1, limit1, thresh1, + &blimit_vec, &limit_vec, &thresh_vec); + load_8x16(s - 4, p, &s0, &s1, &s2, &s3, &s4, &s5, &s6, &s7, &s8, &s9, &s10, + &s11, &s12, &s13, &s14, &s15); + transpose_u8_8x16(s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12, s13, + s14, s15, &p3, &p2, &p1, &p0, &q0, &q1, &q2, &q3); + mask = filter_flat_hev_mask_16(limit_vec, blimit_vec, thresh_vec, p3, p2, p1, + p0, q0, q1, q2, q3, &flat, &flat_status, &hev); + filter8_16(mask, flat, flat_status, hev, p3, p2, p1, p0, q0, q1, q2, q3, &op2, + &op1, &op0, &oq0, &oq1, &oq2); + // Note: store_6x8() twice is faster than transpose + store_8x16(). + store_6x8(s, p, vget_low_u8(op2), vget_low_u8(op1), vget_low_u8(op0), + vget_low_u8(oq0), vget_low_u8(oq1), vget_low_u8(oq2)); + store_6x8(s + 8 * p, p, vget_high_u8(op2), vget_high_u8(op1), + vget_high_u8(op0), vget_high_u8(oq0), vget_high_u8(oq1), + vget_high_u8(oq2)); +} + +#define FUN_LPF_16_KERNEL(name, w) \ + static INLINE void lpf_16##name##kernel( \ + const uint8_t *blimit, const uint8_t *limit, const uint8_t *thresh, \ + const uint8x##w##_t p7, const uint8x##w##_t p6, const uint8x##w##_t p5, \ + const uint8x##w##_t p4, const uint8x##w##_t p3, const uint8x##w##_t p2, \ + const uint8x##w##_t p1, const uint8x##w##_t p0, const uint8x##w##_t q0, \ + const uint8x##w##_t q1, const uint8x##w##_t q2, const uint8x##w##_t q3, \ + const uint8x##w##_t q4, const uint8x##w##_t q5, const uint8x##w##_t q6, \ + const uint8x##w##_t q7, uint8x##w##_t *op6, uint8x##w##_t *op5, \ + uint8x##w##_t *op4, uint8x##w##_t *op3, uint8x##w##_t *op2, \ + uint8x##w##_t *op1, uint8x##w##_t *op0, uint8x##w##_t *oq0, \ + uint8x##w##_t *oq1, uint8x##w##_t *oq2, uint8x##w##_t *oq3, \ + uint8x##w##_t *oq4, uint8x##w##_t *oq5, uint8x##w##_t *oq6, \ + uint32_t *flat_status, uint32_t *flat2_status) { \ + uint8x##w##_t blimit_vec, limit_vec, thresh_vec, mask, flat, flat2, hev; \ + \ + load_thresh_##w(blimit, limit, thresh, &blimit_vec, &limit_vec, \ + &thresh_vec); \ + mask = filter_flat_hev_mask_##w(limit_vec, blimit_vec, thresh_vec, p3, p2, \ + p1, p0, q0, q1, q2, q3, &flat, \ + flat_status, &hev); \ + flat2 = flat_mask5_##w(p7, p6, p5, p4, p0, q0, q4, q5, q6, q7, flat, \ + flat2_status); \ + filter16_##w(mask, flat, *flat_status, flat2, *flat2_status, hev, p7, p6, \ + p5, p4, p3, p2, p1, p0, q0, q1, q2, q3, q4, q5, q6, q7, op6, \ + op5, op4, op3, op2, op1, op0, oq0, oq1, oq2, oq3, oq4, oq5, \ + oq6); \ + } + +FUN_LPF_16_KERNEL(_, 8) // lpf_16_kernel +FUN_LPF_16_KERNEL(_dual_, 16) // lpf_16_dual_kernel +#undef FUN_LPF_16_KERNEL + +void vpx_lpf_horizontal_16_neon(uint8_t *s, int p, const uint8_t *blimit, + const uint8_t *limit, const uint8_t *thresh) { + uint8x8_t p7, p6, p5, p4, p3, p2, p1, p0, q0, q1, q2, q3, q4, q5, q6, q7, op6, + op5, op4, op3, op2, op1, op0, oq0, oq1, oq2, oq3, oq4, oq5, oq6; + uint32_t flat_status, flat2_status; + + load_8x16(s - 8 * p, p, &p7, &p6, &p5, &p4, &p3, &p2, &p1, &p0, &q0, &q1, &q2, + &q3, &q4, &q5, &q6, &q7); + lpf_16_kernel(blimit, limit, thresh, p7, p6, p5, p4, p3, p2, p1, p0, q0, q1, + q2, q3, q4, q5, q6, q7, &op6, &op5, &op4, &op3, &op2, &op1, + &op0, &oq0, &oq1, &oq2, &oq3, &oq4, &oq5, &oq6, &flat_status, + &flat2_status); + store_8x14(s, p, op6, op5, op4, op3, op2, op1, op0, oq0, oq1, oq2, oq3, oq4, + oq5, oq6, flat_status, flat2_status); +} + +void vpx_lpf_horizontal_16_dual_neon(uint8_t *s, int p, const uint8_t *blimit, + const uint8_t *limit, + const uint8_t *thresh) { + uint8x16_t p7, p6, p5, p4, p3, p2, p1, p0, q0, q1, q2, q3, q4, q5, q6, q7, + op6, op5, op4, op3, op2, op1, op0, oq0, oq1, oq2, oq3, oq4, oq5, oq6; + uint32_t flat_status, flat2_status; + + load_16x8(s - 4 * p, p, &p3, &p2, &p1, &p0, &q0, &q1, &q2, &q3); + p7 = vld1q_u8(s - 8 * p); + p6 = vld1q_u8(s - 7 * p); + p5 = vld1q_u8(s - 6 * p); + p4 = vld1q_u8(s - 5 * p); + q4 = vld1q_u8(s + 4 * p); + q5 = vld1q_u8(s + 5 * p); + q6 = vld1q_u8(s + 6 * p); + q7 = vld1q_u8(s + 7 * p); + lpf_16_dual_kernel(blimit, limit, thresh, p7, p6, p5, p4, p3, p2, p1, p0, q0, + q1, q2, q3, q4, q5, q6, q7, &op6, &op5, &op4, &op3, &op2, + &op1, &op0, &oq0, &oq1, &oq2, &oq3, &oq4, &oq5, &oq6, + &flat_status, &flat2_status); + store_16x14(s, p, op6, op5, op4, op3, op2, op1, op0, oq0, oq1, oq2, oq3, oq4, + oq5, oq6, flat_status, flat2_status); +} + +void vpx_lpf_vertical_16_neon(uint8_t *s, int p, const uint8_t *blimit, + const uint8_t *limit, const uint8_t *thresh) { + uint8x8_t p7, p6, p5, p4, p3, p2, p1, p0, q0, q1, q2, q3, q4, q5, q6, q7, op6, + op5, op4, op3, op2, op1, op0, oq0, oq1, oq2, oq3, oq4, oq5, oq6; + uint8x16_t s0, s1, s2, s3, s4, s5, s6, s7; + uint32_t flat_status, flat2_status; + + s -= 8; + load_16x8(s, p, &s0, &s1, &s2, &s3, &s4, &s5, &s6, &s7); + transpose_u8_16x8(s0, s1, s2, s3, s4, s5, s6, s7, &p7, &p6, &p5, &p4, &p3, + &p2, &p1, &p0, &q0, &q1, &q2, &q3, &q4, &q5, &q6, &q7); + lpf_16_kernel(blimit, limit, thresh, p7, p6, p5, p4, p3, p2, p1, p0, q0, q1, + q2, q3, q4, q5, q6, q7, &op6, &op5, &op4, &op3, &op2, &op1, + &op0, &oq0, &oq1, &oq2, &oq3, &oq4, &oq5, &oq6, &flat_status, + &flat2_status); + if (flat_status) { + if (flat2_status) { + transpose_u8_8x16(p7, op6, op5, op4, op3, op2, op1, op0, oq0, oq1, oq2, + oq3, oq4, oq5, oq6, q7, &s0, &s1, &s2, &s3, &s4, &s5, + &s6, &s7); + store_16x8(s, p, s0, s1, s2, s3, s4, s5, s6, s7); + } else { + // Note: transpose + store_8x8() is faster than store_6x8(). + transpose_u8_8x8(&p3, &op2, &op1, &op0, &oq0, &oq1, &oq2, &q3); + store_8x8(s + 4, p, p3, op2, op1, op0, oq0, oq1, oq2, q3); + } + } else { + store_4x8(s + 6, p, op1, op0, oq0, oq1); + } +} + +void vpx_lpf_vertical_16_dual_neon(uint8_t *s, int p, const uint8_t *blimit, + const uint8_t *limit, + const uint8_t *thresh) { + uint8x16_t p7, p6, p5, p4, p3, p2, p1, p0, q0, q1, q2, q3, q4, q5, q6, q7, + op6, op5, op4, op3, op2, op1, op0, oq0, oq1, oq2, oq3, oq4, oq5, oq6; + uint8x16_t s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12, s13, s14, + s15; + uint32_t flat_status, flat2_status; + + s -= 8; + load_16x16(s, p, &s0, &s1, &s2, &s3, &s4, &s5, &s6, &s7, &s8, &s9, &s10, &s11, + &s12, &s13, &s14, &s15); + transpose_u8_16x16(s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12, s13, + s14, s15, &p7, &p6, &p5, &p4, &p3, &p2, &p1, &p0, &q0, &q1, + &q2, &q3, &q4, &q5, &q6, &q7); + lpf_16_dual_kernel(blimit, limit, thresh, p7, p6, p5, p4, p3, p2, p1, p0, q0, + q1, q2, q3, q4, q5, q6, q7, &op6, &op5, &op4, &op3, &op2, + &op1, &op0, &oq0, &oq1, &oq2, &oq3, &oq4, &oq5, &oq6, + &flat_status, &flat2_status); + if (flat_status) { + if (flat2_status) { + transpose_u8_16x16(p7, op6, op5, op4, op3, op2, op1, op0, oq0, oq1, oq2, + oq3, oq4, oq5, oq6, q7, &s0, &s1, &s2, &s3, &s4, &s5, + &s6, &s7, &s8, &s9, &s10, &s11, &s12, &s13, &s14, + &s15); + store_16x16(s, p, s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12, + s13, s14, s15); + } else { + // Note: store_6x8() twice is faster than transpose + store_8x16(). + s += 8; + store_6x8(s, p, vget_low_u8(op2), vget_low_u8(op1), vget_low_u8(op0), + vget_low_u8(oq0), vget_low_u8(oq1), vget_low_u8(oq2)); + store_6x8(s + 8 * p, p, vget_high_u8(op2), vget_high_u8(op1), + vget_high_u8(op0), vget_high_u8(oq0), vget_high_u8(oq1), + vget_high_u8(oq2)); + } + } else { + s += 6; + store_4x8(s, p, vget_low_u8(op1), vget_low_u8(op0), vget_low_u8(oq0), + vget_low_u8(oq1)); + store_4x8(s + 8 * p, p, vget_high_u8(op1), vget_high_u8(op0), + vget_high_u8(oq0), vget_high_u8(oq1)); + } +} diff --git a/vpx_dsp/arm/mem_neon.h b/vpx_dsp/arm/mem_neon.h new file mode 100644 index 0000000..4efad53 --- /dev/null +++ b/vpx_dsp/arm/mem_neon.h @@ -0,0 +1,169 @@ +/* + * Copyright (c) 2017 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VPX_DSP_ARM_MEM_NEON_H_ +#define VPX_DSP_ARM_MEM_NEON_H_ + +#include +#include +#include + +#include "./vpx_config.h" +#include "vpx/vpx_integer.h" +#include "vpx_dsp/vpx_dsp_common.h" + +// Helper functions used to load tran_low_t into int16, narrowing if necessary. +static INLINE int16x8x2_t load_tran_low_to_s16x2q(const tran_low_t *buf) { +#if CONFIG_VP9_HIGHBITDEPTH + const int32x4x2_t v0 = vld2q_s32(buf); + const int32x4x2_t v1 = vld2q_s32(buf + 8); + const int16x4_t s0 = vmovn_s32(v0.val[0]); + const int16x4_t s1 = vmovn_s32(v0.val[1]); + const int16x4_t s2 = vmovn_s32(v1.val[0]); + const int16x4_t s3 = vmovn_s32(v1.val[1]); + int16x8x2_t res; + res.val[0] = vcombine_s16(s0, s2); + res.val[1] = vcombine_s16(s1, s3); + return res; +#else + return vld2q_s16(buf); +#endif +} + +static INLINE int16x8_t load_tran_low_to_s16q(const tran_low_t *buf) { +#if CONFIG_VP9_HIGHBITDEPTH + const int32x4_t v0 = vld1q_s32(buf); + const int32x4_t v1 = vld1q_s32(buf + 4); + const int16x4_t s0 = vmovn_s32(v0); + const int16x4_t s1 = vmovn_s32(v1); + return vcombine_s16(s0, s1); +#else + return vld1q_s16(buf); +#endif +} + +static INLINE int16x4_t load_tran_low_to_s16d(const tran_low_t *buf) { +#if CONFIG_VP9_HIGHBITDEPTH + const int32x4_t v0 = vld1q_s32(buf); + return vmovn_s32(v0); +#else + return vld1_s16(buf); +#endif +} + +static INLINE void store_s16q_to_tran_low(tran_low_t *buf, const int16x8_t a) { +#if CONFIG_VP9_HIGHBITDEPTH + const int32x4_t v0 = vmovl_s16(vget_low_s16(a)); + const int32x4_t v1 = vmovl_s16(vget_high_s16(a)); + vst1q_s32(buf, v0); + vst1q_s32(buf + 4, v1); +#else + vst1q_s16(buf, a); +#endif +} + +// Propagate type information to the compiler. Without this the compiler may +// assume the required alignment of uint32_t (4 bytes) and add alignment hints +// to the memory access. +// +// This is used for functions operating on uint8_t which wish to load or store 4 +// values at a time but which may not be on 4 byte boundaries. +static INLINE void uint32_to_mem(uint8_t *buf, uint32_t a) { + memcpy(buf, &a, 4); +} + +// Load 2 sets of 4 bytes when alignment is not guaranteed. +static INLINE uint8x8_t load_unaligned_u8(const uint8_t *buf, int stride) { + uint32_t a; + uint32x2_t a_u32 = vdup_n_u32(0); + if (stride == 4) return vld1_u8(buf); + memcpy(&a, buf, 4); + buf += stride; + a_u32 = vld1_lane_u32(&a, a_u32, 0); + memcpy(&a, buf, 4); + a_u32 = vld1_lane_u32(&a, a_u32, 1); + return vreinterpret_u8_u32(a_u32); +} + +// Store 2 sets of 4 bytes when alignment is not guaranteed. +static INLINE void store_unaligned_u8(uint8_t *buf, int stride, + const uint8x8_t a) { + const uint32x2_t a_u32 = vreinterpret_u32_u8(a); + if (stride == 4) { + vst1_u8(buf, a); + return; + } + uint32_to_mem(buf, vget_lane_u32(a_u32, 0)); + buf += stride; + uint32_to_mem(buf, vget_lane_u32(a_u32, 1)); +} + +// Load 4 sets of 4 bytes when alignment is not guaranteed. +static INLINE uint8x16_t load_unaligned_u8q(const uint8_t *buf, int stride) { + uint32_t a; + uint32x4_t a_u32 = vdupq_n_u32(0); + if (stride == 4) return vld1q_u8(buf); + memcpy(&a, buf, 4); + buf += stride; + a_u32 = vld1q_lane_u32(&a, a_u32, 0); + memcpy(&a, buf, 4); + buf += stride; + a_u32 = vld1q_lane_u32(&a, a_u32, 1); + memcpy(&a, buf, 4); + buf += stride; + a_u32 = vld1q_lane_u32(&a, a_u32, 2); + memcpy(&a, buf, 4); + buf += stride; + a_u32 = vld1q_lane_u32(&a, a_u32, 3); + return vreinterpretq_u8_u32(a_u32); +} + +// Store 4 sets of 4 bytes when alignment is not guaranteed. +static INLINE void store_unaligned_u8q(uint8_t *buf, int stride, + const uint8x16_t a) { + const uint32x4_t a_u32 = vreinterpretq_u32_u8(a); + if (stride == 4) { + vst1q_u8(buf, a); + return; + } + uint32_to_mem(buf, vgetq_lane_u32(a_u32, 0)); + buf += stride; + uint32_to_mem(buf, vgetq_lane_u32(a_u32, 1)); + buf += stride; + uint32_to_mem(buf, vgetq_lane_u32(a_u32, 2)); + buf += stride; + uint32_to_mem(buf, vgetq_lane_u32(a_u32, 3)); +} + +// Load 2 sets of 4 bytes when alignment is guaranteed. +static INLINE uint8x8_t load_u8(const uint8_t *buf, int stride) { + uint32x2_t a = vdup_n_u32(0); + + assert(!((intptr_t)buf % sizeof(uint32_t))); + assert(!(stride % sizeof(uint32_t))); + + a = vld1_lane_u32((const uint32_t *)buf, a, 0); + buf += stride; + a = vld1_lane_u32((const uint32_t *)buf, a, 1); + return vreinterpret_u8_u32(a); +} + +// Store 2 sets of 4 bytes when alignment is guaranteed. +static INLINE void store_u8(uint8_t *buf, int stride, const uint8x8_t a) { + uint32x2_t a_u32 = vreinterpret_u32_u8(a); + + assert(!((intptr_t)buf % sizeof(uint32_t))); + assert(!(stride % sizeof(uint32_t))); + + vst1_lane_u32((uint32_t *)buf, a_u32, 0); + buf += stride; + vst1_lane_u32((uint32_t *)buf, a_u32, 1); +} +#endif // VPX_DSP_ARM_MEM_NEON_H_ diff --git a/vpx_dsp/arm/quantize_neon.c b/vpx_dsp/arm/quantize_neon.c new file mode 100644 index 0000000..a0a1e6d --- /dev/null +++ b/vpx_dsp/arm/quantize_neon.c @@ -0,0 +1,296 @@ +/* + * Copyright (c) 2017 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include + +#include "./vpx_config.h" +#include "./vpx_dsp_rtcd.h" +#include "vpx_dsp/arm/mem_neon.h" + +void vpx_quantize_b_neon(const tran_low_t *coeff_ptr, intptr_t n_coeffs, + int skip_block, const int16_t *zbin_ptr, + const int16_t *round_ptr, const int16_t *quant_ptr, + const int16_t *quant_shift_ptr, tran_low_t *qcoeff_ptr, + tran_low_t *dqcoeff_ptr, const int16_t *dequant_ptr, + uint16_t *eob_ptr, const int16_t *scan_ptr, + const int16_t *iscan_ptr) { + const int16x8_t one = vdupq_n_s16(1); + const int16x8_t neg_one = vdupq_n_s16(-1); + uint16x8_t eob_max; + (void)scan_ptr; + (void)skip_block; + assert(!skip_block); + + // Process first 8 values which include a dc component. + { + // Only the first element of each vector is DC. + const int16x8_t zbin = vld1q_s16(zbin_ptr); + const int16x8_t round = vld1q_s16(round_ptr); + const int16x8_t quant = vld1q_s16(quant_ptr); + const int16x8_t quant_shift = vld1q_s16(quant_shift_ptr); + const int16x8_t dequant = vld1q_s16(dequant_ptr); + // Add one because the eob does not index from 0. + const uint16x8_t iscan = + vreinterpretq_u16_s16(vaddq_s16(vld1q_s16(iscan_ptr), one)); + + const int16x8_t coeff = load_tran_low_to_s16q(coeff_ptr); + const int16x8_t coeff_sign = vshrq_n_s16(coeff, 15); + const int16x8_t coeff_abs = vabsq_s16(coeff); + + const int16x8_t zbin_mask = + vreinterpretq_s16_u16(vcgeq_s16(coeff_abs, zbin)); + + const int16x8_t rounded = vqaddq_s16(coeff_abs, round); + + // (round * quant * 2) >> 16 >> 1 == (round * quant) >> 16 + int16x8_t qcoeff = vshrq_n_s16(vqdmulhq_s16(rounded, quant), 1); + + qcoeff = vaddq_s16(qcoeff, rounded); + + // (qcoeff * quant_shift * 2) >> 16 >> 1 == (qcoeff * quant_shift) >> 16 + qcoeff = vshrq_n_s16(vqdmulhq_s16(qcoeff, quant_shift), 1); + + // Restore the sign bit. + qcoeff = veorq_s16(qcoeff, coeff_sign); + qcoeff = vsubq_s16(qcoeff, coeff_sign); + + qcoeff = vandq_s16(qcoeff, zbin_mask); + + // Set non-zero elements to -1 and use that to extract values for eob. + eob_max = vandq_u16(vtstq_s16(qcoeff, neg_one), iscan); + + coeff_ptr += 8; + iscan_ptr += 8; + + store_s16q_to_tran_low(qcoeff_ptr, qcoeff); + qcoeff_ptr += 8; + + qcoeff = vmulq_s16(qcoeff, dequant); + + store_s16q_to_tran_low(dqcoeff_ptr, qcoeff); + dqcoeff_ptr += 8; + } + + n_coeffs -= 8; + + { + const int16x8_t zbin = vdupq_n_s16(zbin_ptr[1]); + const int16x8_t round = vdupq_n_s16(round_ptr[1]); + const int16x8_t quant = vdupq_n_s16(quant_ptr[1]); + const int16x8_t quant_shift = vdupq_n_s16(quant_shift_ptr[1]); + const int16x8_t dequant = vdupq_n_s16(dequant_ptr[1]); + + do { + // Add one because the eob is not its index. + const uint16x8_t iscan = + vreinterpretq_u16_s16(vaddq_s16(vld1q_s16(iscan_ptr), one)); + + const int16x8_t coeff = load_tran_low_to_s16q(coeff_ptr); + const int16x8_t coeff_sign = vshrq_n_s16(coeff, 15); + const int16x8_t coeff_abs = vabsq_s16(coeff); + + const int16x8_t zbin_mask = + vreinterpretq_s16_u16(vcgeq_s16(coeff_abs, zbin)); + + const int16x8_t rounded = vqaddq_s16(coeff_abs, round); + + // (round * quant * 2) >> 16 >> 1 == (round * quant) >> 16 + int16x8_t qcoeff = vshrq_n_s16(vqdmulhq_s16(rounded, quant), 1); + + qcoeff = vaddq_s16(qcoeff, rounded); + + // (qcoeff * quant_shift * 2) >> 16 >> 1 == (qcoeff * quant_shift) >> 16 + qcoeff = vshrq_n_s16(vqdmulhq_s16(qcoeff, quant_shift), 1); + + // Restore the sign bit. + qcoeff = veorq_s16(qcoeff, coeff_sign); + qcoeff = vsubq_s16(qcoeff, coeff_sign); + + qcoeff = vandq_s16(qcoeff, zbin_mask); + + // Set non-zero elements to -1 and use that to extract values for eob. + eob_max = + vmaxq_u16(eob_max, vandq_u16(vtstq_s16(qcoeff, neg_one), iscan)); + + coeff_ptr += 8; + iscan_ptr += 8; + + store_s16q_to_tran_low(qcoeff_ptr, qcoeff); + qcoeff_ptr += 8; + + qcoeff = vmulq_s16(qcoeff, dequant); + + store_s16q_to_tran_low(dqcoeff_ptr, qcoeff); + dqcoeff_ptr += 8; + + n_coeffs -= 8; + } while (n_coeffs > 0); + } + + { + const uint16x4_t eob_max_0 = + vmax_u16(vget_low_u16(eob_max), vget_high_u16(eob_max)); + const uint16x4_t eob_max_1 = vpmax_u16(eob_max_0, eob_max_0); + const uint16x4_t eob_max_2 = vpmax_u16(eob_max_1, eob_max_1); + vst1_lane_u16(eob_ptr, eob_max_2, 0); + } +} + +static INLINE int32x4_t extract_sign_bit(int32x4_t a) { + return vreinterpretq_s32_u32(vshrq_n_u32(vreinterpretq_u32_s32(a), 31)); +} + +// Main difference is that zbin values are halved before comparison and dqcoeff +// values are divided by 2. zbin is rounded but dqcoeff is not. +void vpx_quantize_b_32x32_neon( + const tran_low_t *coeff_ptr, intptr_t n_coeffs, int skip_block, + const int16_t *zbin_ptr, const int16_t *round_ptr, const int16_t *quant_ptr, + const int16_t *quant_shift_ptr, tran_low_t *qcoeff_ptr, + tran_low_t *dqcoeff_ptr, const int16_t *dequant_ptr, uint16_t *eob_ptr, + const int16_t *scan_ptr, const int16_t *iscan_ptr) { + const int16x8_t one = vdupq_n_s16(1); + const int16x8_t neg_one = vdupq_n_s16(-1); + uint16x8_t eob_max; + int i; + (void)scan_ptr; + (void)n_coeffs; // Because we will always calculate 32*32. + (void)skip_block; + assert(!skip_block); + + // Process first 8 values which include a dc component. + { + // Only the first element of each vector is DC. + const int16x8_t zbin = vrshrq_n_s16(vld1q_s16(zbin_ptr), 1); + const int16x8_t round = vrshrq_n_s16(vld1q_s16(round_ptr), 1); + const int16x8_t quant = vld1q_s16(quant_ptr); + const int16x8_t quant_shift = vld1q_s16(quant_shift_ptr); + const int16x8_t dequant = vld1q_s16(dequant_ptr); + // Add one because the eob does not index from 0. + const uint16x8_t iscan = + vreinterpretq_u16_s16(vaddq_s16(vld1q_s16(iscan_ptr), one)); + + const int16x8_t coeff = load_tran_low_to_s16q(coeff_ptr); + const int16x8_t coeff_sign = vshrq_n_s16(coeff, 15); + const int16x8_t coeff_abs = vabsq_s16(coeff); + + const int16x8_t zbin_mask = + vreinterpretq_s16_u16(vcgeq_s16(coeff_abs, zbin)); + + const int16x8_t rounded = vqaddq_s16(coeff_abs, round); + + // (round * quant * 2) >> 16 >> 1 == (round * quant) >> 16 + int16x8_t qcoeff = vshrq_n_s16(vqdmulhq_s16(rounded, quant), 1); + int16x8_t dqcoeff; + int32x4_t dqcoeff_0, dqcoeff_1; + + qcoeff = vaddq_s16(qcoeff, rounded); + + // (qcoeff * quant_shift * 2) >> 16 == (qcoeff * quant_shift) >> 15 + qcoeff = vqdmulhq_s16(qcoeff, quant_shift); + + // Restore the sign bit. + qcoeff = veorq_s16(qcoeff, coeff_sign); + qcoeff = vsubq_s16(qcoeff, coeff_sign); + + qcoeff = vandq_s16(qcoeff, zbin_mask); + + // Set non-zero elements to -1 and use that to extract values for eob. + eob_max = vandq_u16(vtstq_s16(qcoeff, neg_one), iscan); + + coeff_ptr += 8; + iscan_ptr += 8; + + store_s16q_to_tran_low(qcoeff_ptr, qcoeff); + qcoeff_ptr += 8; + + dqcoeff_0 = vmull_s16(vget_low_s16(qcoeff), vget_low_s16(dequant)); + dqcoeff_1 = vmull_s16(vget_high_s16(qcoeff), vget_high_s16(dequant)); + + // Add 1 if negative to round towards zero because the C uses division. + dqcoeff_0 = vaddq_s32(dqcoeff_0, extract_sign_bit(dqcoeff_0)); + dqcoeff_1 = vaddq_s32(dqcoeff_1, extract_sign_bit(dqcoeff_1)); + + dqcoeff = + vcombine_s16(vshrn_n_s32(dqcoeff_0, 1), vshrn_n_s32(dqcoeff_1, 1)); + + store_s16q_to_tran_low(dqcoeff_ptr, dqcoeff); + dqcoeff_ptr += 8; + } + + { + const int16x8_t zbin = vrshrq_n_s16(vdupq_n_s16(zbin_ptr[1]), 1); + const int16x8_t round = vrshrq_n_s16(vdupq_n_s16(round_ptr[1]), 1); + const int16x8_t quant = vdupq_n_s16(quant_ptr[1]); + const int16x8_t quant_shift = vdupq_n_s16(quant_shift_ptr[1]); + const int16x8_t dequant = vdupq_n_s16(dequant_ptr[1]); + + for (i = 1; i < 32 * 32 / 8; ++i) { + // Add one because the eob is not its index. + const uint16x8_t iscan = + vreinterpretq_u16_s16(vaddq_s16(vld1q_s16(iscan_ptr), one)); + + const int16x8_t coeff = load_tran_low_to_s16q(coeff_ptr); + const int16x8_t coeff_sign = vshrq_n_s16(coeff, 15); + const int16x8_t coeff_abs = vabsq_s16(coeff); + + const int16x8_t zbin_mask = + vreinterpretq_s16_u16(vcgeq_s16(coeff_abs, zbin)); + + const int16x8_t rounded = vqaddq_s16(coeff_abs, round); + + // (round * quant * 2) >> 16 >> 1 == (round * quant) >> 16 + int16x8_t qcoeff = vshrq_n_s16(vqdmulhq_s16(rounded, quant), 1); + int16x8_t dqcoeff; + int32x4_t dqcoeff_0, dqcoeff_1; + + qcoeff = vaddq_s16(qcoeff, rounded); + + // (qcoeff * quant_shift * 2) >> 16 == (qcoeff * quant_shift) >> 15 + qcoeff = vqdmulhq_s16(qcoeff, quant_shift); + + // Restore the sign bit. + qcoeff = veorq_s16(qcoeff, coeff_sign); + qcoeff = vsubq_s16(qcoeff, coeff_sign); + + qcoeff = vandq_s16(qcoeff, zbin_mask); + + // Set non-zero elements to -1 and use that to extract values for eob. + eob_max = + vmaxq_u16(eob_max, vandq_u16(vtstq_s16(qcoeff, neg_one), iscan)); + + coeff_ptr += 8; + iscan_ptr += 8; + + store_s16q_to_tran_low(qcoeff_ptr, qcoeff); + qcoeff_ptr += 8; + + dqcoeff_0 = vmull_s16(vget_low_s16(qcoeff), vget_low_s16(dequant)); + dqcoeff_1 = vmull_s16(vget_high_s16(qcoeff), vget_high_s16(dequant)); + + dqcoeff_0 = vaddq_s32(dqcoeff_0, extract_sign_bit(dqcoeff_0)); + dqcoeff_1 = vaddq_s32(dqcoeff_1, extract_sign_bit(dqcoeff_1)); + + dqcoeff = + vcombine_s16(vshrn_n_s32(dqcoeff_0, 1), vshrn_n_s32(dqcoeff_1, 1)); + + store_s16q_to_tran_low(dqcoeff_ptr, dqcoeff); + dqcoeff_ptr += 8; + } + } + + { + const uint16x4_t eob_max_0 = + vmax_u16(vget_low_u16(eob_max), vget_high_u16(eob_max)); + const uint16x4_t eob_max_1 = vpmax_u16(eob_max_0, eob_max_0); + const uint16x4_t eob_max_2 = vpmax_u16(eob_max_1, eob_max_1); + vst1_lane_u16(eob_ptr, eob_max_2, 0); + } +} diff --git a/vpx_dsp/arm/sad4d_neon.c b/vpx_dsp/arm/sad4d_neon.c new file mode 100644 index 0000000..b04de3a --- /dev/null +++ b/vpx_dsp/arm/sad4d_neon.c @@ -0,0 +1,242 @@ +/* + * Copyright (c) 2015 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include + +#include "./vpx_config.h" +#include "./vpx_dsp_rtcd.h" +#include "vpx/vpx_integer.h" +#include "vpx_dsp/arm/mem_neon.h" +#include "vpx_dsp/arm/sum_neon.h" + +void vpx_sad4x4x4d_neon(const uint8_t *src, int src_stride, + const uint8_t *const ref[4], int ref_stride, + uint32_t *res) { + int i; + const uint8x16_t src_u8 = load_unaligned_u8q(src, src_stride); + for (i = 0; i < 4; ++i) { + const uint8x16_t ref_u8 = load_unaligned_u8q(ref[i], ref_stride); + uint16x8_t abs = vabdl_u8(vget_low_u8(src_u8), vget_low_u8(ref_u8)); + abs = vabal_u8(abs, vget_high_u8(src_u8), vget_high_u8(ref_u8)); + res[i] = vget_lane_u32(horizontal_add_uint16x8(abs), 0); + } +} + +void vpx_sad4x8x4d_neon(const uint8_t *src, int src_stride, + const uint8_t *const ref[4], int ref_stride, + uint32_t *res) { + int i; + const uint8x16_t src_0 = load_unaligned_u8q(src, src_stride); + const uint8x16_t src_1 = load_unaligned_u8q(src + 4 * src_stride, src_stride); + for (i = 0; i < 4; ++i) { + const uint8x16_t ref_0 = load_unaligned_u8q(ref[i], ref_stride); + const uint8x16_t ref_1 = + load_unaligned_u8q(ref[i] + 4 * ref_stride, ref_stride); + uint16x8_t abs = vabdl_u8(vget_low_u8(src_0), vget_low_u8(ref_0)); + abs = vabal_u8(abs, vget_high_u8(src_0), vget_high_u8(ref_0)); + abs = vabal_u8(abs, vget_low_u8(src_1), vget_low_u8(ref_1)); + abs = vabal_u8(abs, vget_high_u8(src_1), vget_high_u8(ref_1)); + res[i] = vget_lane_u32(horizontal_add_uint16x8(abs), 0); + } +} + +static INLINE void sad8x_4d(const uint8_t *a, int a_stride, + const uint8_t *const b[4], int b_stride, + uint32_t *result, const int height) { + int i, j; + uint16x8_t sum[4] = { vdupq_n_u16(0), vdupq_n_u16(0), vdupq_n_u16(0), + vdupq_n_u16(0) }; + const uint8_t *b_loop[4] = { b[0], b[1], b[2], b[3] }; + + for (i = 0; i < height; ++i) { + const uint8x8_t a_u8 = vld1_u8(a); + a += a_stride; + for (j = 0; j < 4; ++j) { + const uint8x8_t b_u8 = vld1_u8(b_loop[j]); + b_loop[j] += b_stride; + sum[j] = vabal_u8(sum[j], a_u8, b_u8); + } + } + + for (j = 0; j < 4; ++j) { + result[j] = vget_lane_u32(horizontal_add_uint16x8(sum[j]), 0); + } +} + +void vpx_sad8x4x4d_neon(const uint8_t *src, int src_stride, + const uint8_t *const ref[4], int ref_stride, + uint32_t *res) { + sad8x_4d(src, src_stride, ref, ref_stride, res, 4); +} + +void vpx_sad8x8x4d_neon(const uint8_t *src, int src_stride, + const uint8_t *const ref[4], int ref_stride, + uint32_t *res) { + sad8x_4d(src, src_stride, ref, ref_stride, res, 8); +} + +void vpx_sad8x16x4d_neon(const uint8_t *src, int src_stride, + const uint8_t *const ref[4], int ref_stride, + uint32_t *res) { + sad8x_4d(src, src_stride, ref, ref_stride, res, 16); +} + +static INLINE void sad16x_4d(const uint8_t *a, int a_stride, + const uint8_t *const b[4], int b_stride, + uint32_t *result, const int height) { + int i, j; + uint16x8_t sum[4] = { vdupq_n_u16(0), vdupq_n_u16(0), vdupq_n_u16(0), + vdupq_n_u16(0) }; + const uint8_t *b_loop[4] = { b[0], b[1], b[2], b[3] }; + + for (i = 0; i < height; ++i) { + const uint8x16_t a_u8 = vld1q_u8(a); + a += a_stride; + for (j = 0; j < 4; ++j) { + const uint8x16_t b_u8 = vld1q_u8(b_loop[j]); + b_loop[j] += b_stride; + sum[j] = vabal_u8(sum[j], vget_low_u8(a_u8), vget_low_u8(b_u8)); + sum[j] = vabal_u8(sum[j], vget_high_u8(a_u8), vget_high_u8(b_u8)); + } + } + + for (j = 0; j < 4; ++j) { + result[j] = vget_lane_u32(horizontal_add_uint16x8(sum[j]), 0); + } +} + +void vpx_sad16x8x4d_neon(const uint8_t *src, int src_stride, + const uint8_t *const ref[4], int ref_stride, + uint32_t *res) { + sad16x_4d(src, src_stride, ref, ref_stride, res, 8); +} + +void vpx_sad16x16x4d_neon(const uint8_t *src, int src_stride, + const uint8_t *const ref[4], int ref_stride, + uint32_t *res) { + sad16x_4d(src, src_stride, ref, ref_stride, res, 16); +} + +void vpx_sad16x32x4d_neon(const uint8_t *src, int src_stride, + const uint8_t *const ref[4], int ref_stride, + uint32_t *res) { + sad16x_4d(src, src_stride, ref, ref_stride, res, 32); +} + +static INLINE void sad32x_4d(const uint8_t *a, int a_stride, + const uint8_t *const b[4], int b_stride, + uint32_t *result, const int height) { + int i, j; + uint16x8_t sum[4] = { vdupq_n_u16(0), vdupq_n_u16(0), vdupq_n_u16(0), + vdupq_n_u16(0) }; + const uint8_t *b_loop[4] = { b[0], b[1], b[2], b[3] }; + + for (i = 0; i < height; ++i) { + const uint8x16_t a_0 = vld1q_u8(a); + const uint8x16_t a_1 = vld1q_u8(a + 16); + a += a_stride; + for (j = 0; j < 4; ++j) { + const uint8x16_t b_0 = vld1q_u8(b_loop[j]); + const uint8x16_t b_1 = vld1q_u8(b_loop[j] + 16); + b_loop[j] += b_stride; + sum[j] = vabal_u8(sum[j], vget_low_u8(a_0), vget_low_u8(b_0)); + sum[j] = vabal_u8(sum[j], vget_high_u8(a_0), vget_high_u8(b_0)); + sum[j] = vabal_u8(sum[j], vget_low_u8(a_1), vget_low_u8(b_1)); + sum[j] = vabal_u8(sum[j], vget_high_u8(a_1), vget_high_u8(b_1)); + } + } + + for (j = 0; j < 4; ++j) { + result[j] = vget_lane_u32(horizontal_add_uint16x8(sum[j]), 0); + } +} + +void vpx_sad32x16x4d_neon(const uint8_t *src, int src_stride, + const uint8_t *const ref[4], int ref_stride, + uint32_t *res) { + sad32x_4d(src, src_stride, ref, ref_stride, res, 16); +} + +void vpx_sad32x32x4d_neon(const uint8_t *src, int src_stride, + const uint8_t *const ref[4], int ref_stride, + uint32_t *res) { + sad32x_4d(src, src_stride, ref, ref_stride, res, 32); +} + +void vpx_sad32x64x4d_neon(const uint8_t *src, int src_stride, + const uint8_t *const ref[4], int ref_stride, + uint32_t *res) { + sad32x_4d(src, src_stride, ref, ref_stride, res, 64); +} + +static INLINE void sum64x(const uint8x16_t a_0, const uint8x16_t a_1, + const uint8x16_t b_0, const uint8x16_t b_1, + uint16x8_t *sum) { + *sum = vabal_u8(*sum, vget_low_u8(a_0), vget_low_u8(b_0)); + *sum = vabal_u8(*sum, vget_high_u8(a_0), vget_high_u8(b_0)); + *sum = vabal_u8(*sum, vget_low_u8(a_1), vget_low_u8(b_1)); + *sum = vabal_u8(*sum, vget_high_u8(a_1), vget_high_u8(b_1)); +} + +static INLINE void sad64x_4d(const uint8_t *a, int a_stride, + const uint8_t *const b[4], int b_stride, + uint32_t *result, const int height) { + int i; + uint16x8_t sum_0 = vdupq_n_u16(0); + uint16x8_t sum_1 = vdupq_n_u16(0); + uint16x8_t sum_2 = vdupq_n_u16(0); + uint16x8_t sum_3 = vdupq_n_u16(0); + uint16x8_t sum_4 = vdupq_n_u16(0); + uint16x8_t sum_5 = vdupq_n_u16(0); + uint16x8_t sum_6 = vdupq_n_u16(0); + uint16x8_t sum_7 = vdupq_n_u16(0); + const uint8_t *b_loop[4] = { b[0], b[1], b[2], b[3] }; + + for (i = 0; i < height; ++i) { + const uint8x16_t a_0 = vld1q_u8(a); + const uint8x16_t a_1 = vld1q_u8(a + 16); + const uint8x16_t a_2 = vld1q_u8(a + 32); + const uint8x16_t a_3 = vld1q_u8(a + 48); + a += a_stride; + sum64x(a_0, a_1, vld1q_u8(b_loop[0]), vld1q_u8(b_loop[0] + 16), &sum_0); + sum64x(a_2, a_3, vld1q_u8(b_loop[0] + 32), vld1q_u8(b_loop[0] + 48), + &sum_1); + b_loop[0] += b_stride; + sum64x(a_0, a_1, vld1q_u8(b_loop[1]), vld1q_u8(b_loop[1] + 16), &sum_2); + sum64x(a_2, a_3, vld1q_u8(b_loop[1] + 32), vld1q_u8(b_loop[1] + 48), + &sum_3); + b_loop[1] += b_stride; + sum64x(a_0, a_1, vld1q_u8(b_loop[2]), vld1q_u8(b_loop[2] + 16), &sum_4); + sum64x(a_2, a_3, vld1q_u8(b_loop[2] + 32), vld1q_u8(b_loop[2] + 48), + &sum_5); + b_loop[2] += b_stride; + sum64x(a_0, a_1, vld1q_u8(b_loop[3]), vld1q_u8(b_loop[3] + 16), &sum_6); + sum64x(a_2, a_3, vld1q_u8(b_loop[3] + 32), vld1q_u8(b_loop[3] + 48), + &sum_7); + b_loop[3] += b_stride; + } + + result[0] = vget_lane_u32(horizontal_add_long_uint16x8(sum_0, sum_1), 0); + result[1] = vget_lane_u32(horizontal_add_long_uint16x8(sum_2, sum_3), 0); + result[2] = vget_lane_u32(horizontal_add_long_uint16x8(sum_4, sum_5), 0); + result[3] = vget_lane_u32(horizontal_add_long_uint16x8(sum_6, sum_7), 0); +} + +void vpx_sad64x32x4d_neon(const uint8_t *src, int src_stride, + const uint8_t *const ref[4], int ref_stride, + uint32_t *res) { + sad64x_4d(src, src_stride, ref, ref_stride, res, 32); +} + +void vpx_sad64x64x4d_neon(const uint8_t *src, int src_stride, + const uint8_t *const ref[4], int ref_stride, + uint32_t *res) { + sad64x_4d(src, src_stride, ref, ref_stride, res, 64); +} diff --git a/vpx_dsp/arm/sad_neon.c b/vpx_dsp/arm/sad_neon.c new file mode 100644 index 0000000..9518a16 --- /dev/null +++ b/vpx_dsp/arm/sad_neon.c @@ -0,0 +1,344 @@ +/* + * Copyright (c) 2014 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include + +#include "./vpx_config.h" + +#include "vpx/vpx_integer.h" +#include "vpx_dsp/arm/mem_neon.h" +#include "vpx_dsp/arm/sum_neon.h" + +uint32_t vpx_sad4x4_neon(const uint8_t *src_ptr, int src_stride, + const uint8_t *ref_ptr, int ref_stride) { + const uint8x16_t src_u8 = load_unaligned_u8q(src_ptr, src_stride); + const uint8x16_t ref_u8 = load_unaligned_u8q(ref_ptr, ref_stride); + uint16x8_t abs = vabdl_u8(vget_low_u8(src_u8), vget_low_u8(ref_u8)); + abs = vabal_u8(abs, vget_high_u8(src_u8), vget_high_u8(ref_u8)); + return vget_lane_u32(horizontal_add_uint16x8(abs), 0); +} + +uint32_t vpx_sad4x4_avg_neon(const uint8_t *src_ptr, int src_stride, + const uint8_t *ref_ptr, int ref_stride, + const uint8_t *second_pred) { + const uint8x16_t src_u8 = load_unaligned_u8q(src_ptr, src_stride); + const uint8x16_t ref_u8 = load_unaligned_u8q(ref_ptr, ref_stride); + const uint8x16_t second_pred_u8 = vld1q_u8(second_pred); + const uint8x16_t avg = vrhaddq_u8(ref_u8, second_pred_u8); + uint16x8_t abs = vabdl_u8(vget_low_u8(src_u8), vget_low_u8(avg)); + abs = vabal_u8(abs, vget_high_u8(src_u8), vget_high_u8(avg)); + return vget_lane_u32(horizontal_add_uint16x8(abs), 0); +} + +uint32_t vpx_sad4x8_neon(const uint8_t *src_ptr, int src_stride, + const uint8_t *ref_ptr, int ref_stride) { + int i; + uint16x8_t abs = vdupq_n_u16(0); + for (i = 0; i < 8; i += 4) { + const uint8x16_t src_u8 = load_unaligned_u8q(src_ptr, src_stride); + const uint8x16_t ref_u8 = load_unaligned_u8q(ref_ptr, ref_stride); + src_ptr += 4 * src_stride; + ref_ptr += 4 * ref_stride; + abs = vabal_u8(abs, vget_low_u8(src_u8), vget_low_u8(ref_u8)); + abs = vabal_u8(abs, vget_high_u8(src_u8), vget_high_u8(ref_u8)); + } + + return vget_lane_u32(horizontal_add_uint16x8(abs), 0); +} + +uint32_t vpx_sad4x8_avg_neon(const uint8_t *src_ptr, int src_stride, + const uint8_t *ref_ptr, int ref_stride, + const uint8_t *second_pred) { + int i; + uint16x8_t abs = vdupq_n_u16(0); + for (i = 0; i < 8; i += 4) { + const uint8x16_t src_u8 = load_unaligned_u8q(src_ptr, src_stride); + const uint8x16_t ref_u8 = load_unaligned_u8q(ref_ptr, ref_stride); + const uint8x16_t second_pred_u8 = vld1q_u8(second_pred); + const uint8x16_t avg = vrhaddq_u8(ref_u8, second_pred_u8); + src_ptr += 4 * src_stride; + ref_ptr += 4 * ref_stride; + second_pred += 16; + abs = vabal_u8(abs, vget_low_u8(src_u8), vget_low_u8(avg)); + abs = vabal_u8(abs, vget_high_u8(src_u8), vget_high_u8(avg)); + } + + return vget_lane_u32(horizontal_add_uint16x8(abs), 0); +} + +static INLINE uint16x8_t sad8x(const uint8_t *a, int a_stride, const uint8_t *b, + int b_stride, const int height) { + int i; + uint16x8_t abs = vdupq_n_u16(0); + + for (i = 0; i < height; ++i) { + const uint8x8_t a_u8 = vld1_u8(a); + const uint8x8_t b_u8 = vld1_u8(b); + a += a_stride; + b += b_stride; + abs = vabal_u8(abs, a_u8, b_u8); + } + return abs; +} + +static INLINE uint16x8_t sad8x_avg(const uint8_t *a, int a_stride, + const uint8_t *b, int b_stride, + const uint8_t *c, const int height) { + int i; + uint16x8_t abs = vdupq_n_u16(0); + + for (i = 0; i < height; ++i) { + const uint8x8_t a_u8 = vld1_u8(a); + const uint8x8_t b_u8 = vld1_u8(b); + const uint8x8_t c_u8 = vld1_u8(c); + const uint8x8_t avg = vrhadd_u8(b_u8, c_u8); + a += a_stride; + b += b_stride; + c += 8; + abs = vabal_u8(abs, a_u8, avg); + } + return abs; +} + +#define sad8xN(n) \ + uint32_t vpx_sad8x##n##_neon(const uint8_t *src, int src_stride, \ + const uint8_t *ref, int ref_stride) { \ + const uint16x8_t abs = sad8x(src, src_stride, ref, ref_stride, n); \ + return vget_lane_u32(horizontal_add_uint16x8(abs), 0); \ + } \ + \ + uint32_t vpx_sad8x##n##_avg_neon(const uint8_t *src, int src_stride, \ + const uint8_t *ref, int ref_stride, \ + const uint8_t *second_pred) { \ + const uint16x8_t abs = \ + sad8x_avg(src, src_stride, ref, ref_stride, second_pred, n); \ + return vget_lane_u32(horizontal_add_uint16x8(abs), 0); \ + } + +sad8xN(4); +sad8xN(8); +sad8xN(16); + +static INLINE uint16x8_t sad16x(const uint8_t *a, int a_stride, + const uint8_t *b, int b_stride, + const int height) { + int i; + uint16x8_t abs = vdupq_n_u16(0); + + for (i = 0; i < height; ++i) { + const uint8x16_t a_u8 = vld1q_u8(a); + const uint8x16_t b_u8 = vld1q_u8(b); + a += a_stride; + b += b_stride; + abs = vabal_u8(abs, vget_low_u8(a_u8), vget_low_u8(b_u8)); + abs = vabal_u8(abs, vget_high_u8(a_u8), vget_high_u8(b_u8)); + } + return abs; +} + +static INLINE uint16x8_t sad16x_avg(const uint8_t *a, int a_stride, + const uint8_t *b, int b_stride, + const uint8_t *c, const int height) { + int i; + uint16x8_t abs = vdupq_n_u16(0); + + for (i = 0; i < height; ++i) { + const uint8x16_t a_u8 = vld1q_u8(a); + const uint8x16_t b_u8 = vld1q_u8(b); + const uint8x16_t c_u8 = vld1q_u8(c); + const uint8x16_t avg = vrhaddq_u8(b_u8, c_u8); + a += a_stride; + b += b_stride; + c += 16; + abs = vabal_u8(abs, vget_low_u8(a_u8), vget_low_u8(avg)); + abs = vabal_u8(abs, vget_high_u8(a_u8), vget_high_u8(avg)); + } + return abs; +} + +#define sad16xN(n) \ + uint32_t vpx_sad16x##n##_neon(const uint8_t *src, int src_stride, \ + const uint8_t *ref, int ref_stride) { \ + const uint16x8_t abs = sad16x(src, src_stride, ref, ref_stride, n); \ + return vget_lane_u32(horizontal_add_uint16x8(abs), 0); \ + } \ + \ + uint32_t vpx_sad16x##n##_avg_neon(const uint8_t *src, int src_stride, \ + const uint8_t *ref, int ref_stride, \ + const uint8_t *second_pred) { \ + const uint16x8_t abs = \ + sad16x_avg(src, src_stride, ref, ref_stride, second_pred, n); \ + return vget_lane_u32(horizontal_add_uint16x8(abs), 0); \ + } + +sad16xN(8); +sad16xN(16); +sad16xN(32); + +static INLINE uint16x8_t sad32x(const uint8_t *a, int a_stride, + const uint8_t *b, int b_stride, + const int height) { + int i; + uint16x8_t abs = vdupq_n_u16(0); + + for (i = 0; i < height; ++i) { + const uint8x16_t a_lo = vld1q_u8(a); + const uint8x16_t a_hi = vld1q_u8(a + 16); + const uint8x16_t b_lo = vld1q_u8(b); + const uint8x16_t b_hi = vld1q_u8(b + 16); + a += a_stride; + b += b_stride; + abs = vabal_u8(abs, vget_low_u8(a_lo), vget_low_u8(b_lo)); + abs = vabal_u8(abs, vget_high_u8(a_lo), vget_high_u8(b_lo)); + abs = vabal_u8(abs, vget_low_u8(a_hi), vget_low_u8(b_hi)); + abs = vabal_u8(abs, vget_high_u8(a_hi), vget_high_u8(b_hi)); + } + return abs; +} + +static INLINE uint16x8_t sad32x_avg(const uint8_t *a, int a_stride, + const uint8_t *b, int b_stride, + const uint8_t *c, const int height) { + int i; + uint16x8_t abs = vdupq_n_u16(0); + + for (i = 0; i < height; ++i) { + const uint8x16_t a_lo = vld1q_u8(a); + const uint8x16_t a_hi = vld1q_u8(a + 16); + const uint8x16_t b_lo = vld1q_u8(b); + const uint8x16_t b_hi = vld1q_u8(b + 16); + const uint8x16_t c_lo = vld1q_u8(c); + const uint8x16_t c_hi = vld1q_u8(c + 16); + const uint8x16_t avg_lo = vrhaddq_u8(b_lo, c_lo); + const uint8x16_t avg_hi = vrhaddq_u8(b_hi, c_hi); + a += a_stride; + b += b_stride; + c += 32; + abs = vabal_u8(abs, vget_low_u8(a_lo), vget_low_u8(avg_lo)); + abs = vabal_u8(abs, vget_high_u8(a_lo), vget_high_u8(avg_lo)); + abs = vabal_u8(abs, vget_low_u8(a_hi), vget_low_u8(avg_hi)); + abs = vabal_u8(abs, vget_high_u8(a_hi), vget_high_u8(avg_hi)); + } + return abs; +} + +#define sad32xN(n) \ + uint32_t vpx_sad32x##n##_neon(const uint8_t *src, int src_stride, \ + const uint8_t *ref, int ref_stride) { \ + const uint16x8_t abs = sad32x(src, src_stride, ref, ref_stride, n); \ + return vget_lane_u32(horizontal_add_uint16x8(abs), 0); \ + } \ + \ + uint32_t vpx_sad32x##n##_avg_neon(const uint8_t *src, int src_stride, \ + const uint8_t *ref, int ref_stride, \ + const uint8_t *second_pred) { \ + const uint16x8_t abs = \ + sad32x_avg(src, src_stride, ref, ref_stride, second_pred, n); \ + return vget_lane_u32(horizontal_add_uint16x8(abs), 0); \ + } + +sad32xN(16); +sad32xN(32); +sad32xN(64); + +static INLINE uint32x4_t sad64x(const uint8_t *a, int a_stride, + const uint8_t *b, int b_stride, + const int height) { + int i; + uint16x8_t abs_0 = vdupq_n_u16(0); + uint16x8_t abs_1 = vdupq_n_u16(0); + + for (i = 0; i < height; ++i) { + const uint8x16_t a_0 = vld1q_u8(a); + const uint8x16_t a_1 = vld1q_u8(a + 16); + const uint8x16_t a_2 = vld1q_u8(a + 32); + const uint8x16_t a_3 = vld1q_u8(a + 48); + const uint8x16_t b_0 = vld1q_u8(b); + const uint8x16_t b_1 = vld1q_u8(b + 16); + const uint8x16_t b_2 = vld1q_u8(b + 32); + const uint8x16_t b_3 = vld1q_u8(b + 48); + a += a_stride; + b += b_stride; + abs_0 = vabal_u8(abs_0, vget_low_u8(a_0), vget_low_u8(b_0)); + abs_0 = vabal_u8(abs_0, vget_high_u8(a_0), vget_high_u8(b_0)); + abs_0 = vabal_u8(abs_0, vget_low_u8(a_1), vget_low_u8(b_1)); + abs_0 = vabal_u8(abs_0, vget_high_u8(a_1), vget_high_u8(b_1)); + abs_1 = vabal_u8(abs_1, vget_low_u8(a_2), vget_low_u8(b_2)); + abs_1 = vabal_u8(abs_1, vget_high_u8(a_2), vget_high_u8(b_2)); + abs_1 = vabal_u8(abs_1, vget_low_u8(a_3), vget_low_u8(b_3)); + abs_1 = vabal_u8(abs_1, vget_high_u8(a_3), vget_high_u8(b_3)); + } + + { + const uint32x4_t sum = vpaddlq_u16(abs_0); + return vpadalq_u16(sum, abs_1); + } +} + +static INLINE uint32x4_t sad64x_avg(const uint8_t *a, int a_stride, + const uint8_t *b, int b_stride, + const uint8_t *c, const int height) { + int i; + uint16x8_t abs_0 = vdupq_n_u16(0); + uint16x8_t abs_1 = vdupq_n_u16(0); + + for (i = 0; i < height; ++i) { + const uint8x16_t a_0 = vld1q_u8(a); + const uint8x16_t a_1 = vld1q_u8(a + 16); + const uint8x16_t a_2 = vld1q_u8(a + 32); + const uint8x16_t a_3 = vld1q_u8(a + 48); + const uint8x16_t b_0 = vld1q_u8(b); + const uint8x16_t b_1 = vld1q_u8(b + 16); + const uint8x16_t b_2 = vld1q_u8(b + 32); + const uint8x16_t b_3 = vld1q_u8(b + 48); + const uint8x16_t c_0 = vld1q_u8(c); + const uint8x16_t c_1 = vld1q_u8(c + 16); + const uint8x16_t c_2 = vld1q_u8(c + 32); + const uint8x16_t c_3 = vld1q_u8(c + 48); + const uint8x16_t avg_0 = vrhaddq_u8(b_0, c_0); + const uint8x16_t avg_1 = vrhaddq_u8(b_1, c_1); + const uint8x16_t avg_2 = vrhaddq_u8(b_2, c_2); + const uint8x16_t avg_3 = vrhaddq_u8(b_3, c_3); + a += a_stride; + b += b_stride; + c += 64; + abs_0 = vabal_u8(abs_0, vget_low_u8(a_0), vget_low_u8(avg_0)); + abs_0 = vabal_u8(abs_0, vget_high_u8(a_0), vget_high_u8(avg_0)); + abs_0 = vabal_u8(abs_0, vget_low_u8(a_1), vget_low_u8(avg_1)); + abs_0 = vabal_u8(abs_0, vget_high_u8(a_1), vget_high_u8(avg_1)); + abs_1 = vabal_u8(abs_1, vget_low_u8(a_2), vget_low_u8(avg_2)); + abs_1 = vabal_u8(abs_1, vget_high_u8(a_2), vget_high_u8(avg_2)); + abs_1 = vabal_u8(abs_1, vget_low_u8(a_3), vget_low_u8(avg_3)); + abs_1 = vabal_u8(abs_1, vget_high_u8(a_3), vget_high_u8(avg_3)); + } + + { + const uint32x4_t sum = vpaddlq_u16(abs_0); + return vpadalq_u16(sum, abs_1); + } +} + +#define sad64xN(n) \ + uint32_t vpx_sad64x##n##_neon(const uint8_t *src, int src_stride, \ + const uint8_t *ref, int ref_stride) { \ + const uint32x4_t abs = sad64x(src, src_stride, ref, ref_stride, n); \ + return vget_lane_u32(horizontal_add_uint32x4(abs), 0); \ + } \ + \ + uint32_t vpx_sad64x##n##_avg_neon(const uint8_t *src, int src_stride, \ + const uint8_t *ref, int ref_stride, \ + const uint8_t *second_pred) { \ + const uint32x4_t abs = \ + sad64x_avg(src, src_stride, ref, ref_stride, second_pred, n); \ + return vget_lane_u32(horizontal_add_uint32x4(abs), 0); \ + } + +sad64xN(32); +sad64xN(64); diff --git a/vpx_dsp/arm/save_reg_neon.asm b/vpx_dsp/arm/save_reg_neon.asm new file mode 100644 index 0000000..9811cd5 --- /dev/null +++ b/vpx_dsp/arm/save_reg_neon.asm @@ -0,0 +1,34 @@ +; +; Copyright (c) 2010 The WebM project authors. All Rights Reserved. +; +; Use of this source code is governed by a BSD-style license +; that can be found in the LICENSE file in the root of the source +; tree. An additional intellectual property rights grant can be found +; in the file PATENTS. All contributing project authors may +; be found in the AUTHORS file in the root of the source tree. +; + + + EXPORT |vpx_push_neon| + EXPORT |vpx_pop_neon| + + ARM + REQUIRE8 + PRESERVE8 + + AREA ||.text||, CODE, READONLY, ALIGN=2 + +|vpx_push_neon| PROC + vstm r0!, {d8-d15} + bx lr + + ENDP + +|vpx_pop_neon| PROC + vldm r0!, {d8-d15} + bx lr + + ENDP + + END + diff --git a/vpx_dsp/arm/subpel_variance_neon.c b/vpx_dsp/arm/subpel_variance_neon.c new file mode 100644 index 0000000..4f58a78 --- /dev/null +++ b/vpx_dsp/arm/subpel_variance_neon.c @@ -0,0 +1,184 @@ +/* + * Copyright (c) 2014 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include "./vpx_dsp_rtcd.h" +#include "./vpx_config.h" + +#include "vpx/vpx_integer.h" + +#include "vpx_dsp/variance.h" +#include "vpx_dsp/arm/mem_neon.h" + +static const uint8_t bilinear_filters[8][2] = { + { 128, 0 }, { 112, 16 }, { 96, 32 }, { 80, 48 }, + { 64, 64 }, { 48, 80 }, { 32, 96 }, { 16, 112 }, +}; + +// Process a block exactly 4 wide and a multiple of 2 high. +static void var_filter_block2d_bil_w4(const uint8_t *src_ptr, + uint8_t *output_ptr, + unsigned int src_pixels_per_line, + int pixel_step, + unsigned int output_height, + const uint8_t *filter) { + const uint8x8_t f0 = vdup_n_u8(filter[0]); + const uint8x8_t f1 = vdup_n_u8(filter[1]); + unsigned int i; + for (i = 0; i < output_height; i += 2) { + const uint8x8_t src_0 = load_unaligned_u8(src_ptr, src_pixels_per_line); + const uint8x8_t src_1 = + load_unaligned_u8(src_ptr + pixel_step, src_pixels_per_line); + const uint16x8_t a = vmull_u8(src_0, f0); + const uint16x8_t b = vmlal_u8(a, src_1, f1); + const uint8x8_t out = vrshrn_n_u16(b, FILTER_BITS); + vst1_u8(output_ptr, out); + src_ptr += 2 * src_pixels_per_line; + output_ptr += 8; + } +} + +// Process a block exactly 8 wide and any height. +static void var_filter_block2d_bil_w8(const uint8_t *src_ptr, + uint8_t *output_ptr, + unsigned int src_pixels_per_line, + int pixel_step, + unsigned int output_height, + const uint8_t *filter) { + const uint8x8_t f0 = vdup_n_u8(filter[0]); + const uint8x8_t f1 = vdup_n_u8(filter[1]); + unsigned int i; + for (i = 0; i < output_height; ++i) { + const uint8x8_t src_0 = vld1_u8(&src_ptr[0]); + const uint8x8_t src_1 = vld1_u8(&src_ptr[pixel_step]); + const uint16x8_t a = vmull_u8(src_0, f0); + const uint16x8_t b = vmlal_u8(a, src_1, f1); + const uint8x8_t out = vrshrn_n_u16(b, FILTER_BITS); + vst1_u8(output_ptr, out); + src_ptr += src_pixels_per_line; + output_ptr += 8; + } +} + +// Process a block which is a mutiple of 16 wide and any height. +static void var_filter_block2d_bil_w16(const uint8_t *src_ptr, + uint8_t *output_ptr, + unsigned int src_pixels_per_line, + int pixel_step, + unsigned int output_height, + unsigned int output_width, + const uint8_t *filter) { + const uint8x8_t f0 = vdup_n_u8(filter[0]); + const uint8x8_t f1 = vdup_n_u8(filter[1]); + unsigned int i, j; + for (i = 0; i < output_height; ++i) { + for (j = 0; j < output_width; j += 16) { + const uint8x16_t src_0 = vld1q_u8(&src_ptr[j]); + const uint8x16_t src_1 = vld1q_u8(&src_ptr[j + pixel_step]); + const uint16x8_t a = vmull_u8(vget_low_u8(src_0), f0); + const uint16x8_t b = vmlal_u8(a, vget_low_u8(src_1), f1); + const uint8x8_t out_lo = vrshrn_n_u16(b, FILTER_BITS); + const uint16x8_t c = vmull_u8(vget_high_u8(src_0), f0); + const uint16x8_t d = vmlal_u8(c, vget_high_u8(src_1), f1); + const uint8x8_t out_hi = vrshrn_n_u16(d, FILTER_BITS); + vst1q_u8(output_ptr + j, vcombine_u8(out_lo, out_hi)); + } + src_ptr += src_pixels_per_line; + output_ptr += output_width; + } +} + +// 4xM filter writes an extra row to fdata because it processes two rows at a +// time. +#define sub_pixel_varianceNxM(n, m) \ + uint32_t vpx_sub_pixel_variance##n##x##m##_neon( \ + const uint8_t *a, int a_stride, int xoffset, int yoffset, \ + const uint8_t *b, int b_stride, uint32_t *sse) { \ + uint8_t temp0[n * (m + (n == 4 ? 2 : 1))]; \ + uint8_t temp1[n * m]; \ + \ + if (n == 4) { \ + var_filter_block2d_bil_w4(a, temp0, a_stride, 1, (m + 2), \ + bilinear_filters[xoffset]); \ + var_filter_block2d_bil_w4(temp0, temp1, n, n, m, \ + bilinear_filters[yoffset]); \ + } else if (n == 8) { \ + var_filter_block2d_bil_w8(a, temp0, a_stride, 1, (m + 1), \ + bilinear_filters[xoffset]); \ + var_filter_block2d_bil_w8(temp0, temp1, n, n, m, \ + bilinear_filters[yoffset]); \ + } else { \ + var_filter_block2d_bil_w16(a, temp0, a_stride, 1, (m + 1), n, \ + bilinear_filters[xoffset]); \ + var_filter_block2d_bil_w16(temp0, temp1, n, n, m, n, \ + bilinear_filters[yoffset]); \ + } \ + return vpx_variance##n##x##m(temp1, n, b, b_stride, sse); \ + } + +sub_pixel_varianceNxM(4, 4); +sub_pixel_varianceNxM(4, 8); +sub_pixel_varianceNxM(8, 4); +sub_pixel_varianceNxM(8, 8); +sub_pixel_varianceNxM(8, 16); +sub_pixel_varianceNxM(16, 8); +sub_pixel_varianceNxM(16, 16); +sub_pixel_varianceNxM(16, 32); +sub_pixel_varianceNxM(32, 16); +sub_pixel_varianceNxM(32, 32); +sub_pixel_varianceNxM(32, 64); +sub_pixel_varianceNxM(64, 32); +sub_pixel_varianceNxM(64, 64); + +// 4xM filter writes an extra row to fdata because it processes two rows at a +// time. +#define sub_pixel_avg_varianceNxM(n, m) \ + uint32_t vpx_sub_pixel_avg_variance##n##x##m##_neon( \ + const uint8_t *a, int a_stride, int xoffset, int yoffset, \ + const uint8_t *b, int b_stride, uint32_t *sse, \ + const uint8_t *second_pred) { \ + uint8_t temp0[n * (m + (n == 4 ? 2 : 1))]; \ + uint8_t temp1[n * m]; \ + \ + if (n == 4) { \ + var_filter_block2d_bil_w4(a, temp0, a_stride, 1, (m + 2), \ + bilinear_filters[xoffset]); \ + var_filter_block2d_bil_w4(temp0, temp1, n, n, m, \ + bilinear_filters[yoffset]); \ + } else if (n == 8) { \ + var_filter_block2d_bil_w8(a, temp0, a_stride, 1, (m + 1), \ + bilinear_filters[xoffset]); \ + var_filter_block2d_bil_w8(temp0, temp1, n, n, m, \ + bilinear_filters[yoffset]); \ + } else { \ + var_filter_block2d_bil_w16(a, temp0, a_stride, 1, (m + 1), n, \ + bilinear_filters[xoffset]); \ + var_filter_block2d_bil_w16(temp0, temp1, n, n, m, n, \ + bilinear_filters[yoffset]); \ + } \ + \ + vpx_comp_avg_pred(temp0, second_pred, n, m, temp1, n); \ + \ + return vpx_variance##n##x##m(temp0, n, b, b_stride, sse); \ + } + +sub_pixel_avg_varianceNxM(4, 4); +sub_pixel_avg_varianceNxM(4, 8); +sub_pixel_avg_varianceNxM(8, 4); +sub_pixel_avg_varianceNxM(8, 8); +sub_pixel_avg_varianceNxM(8, 16); +sub_pixel_avg_varianceNxM(16, 8); +sub_pixel_avg_varianceNxM(16, 16); +sub_pixel_avg_varianceNxM(16, 32); +sub_pixel_avg_varianceNxM(32, 16); +sub_pixel_avg_varianceNxM(32, 32); +sub_pixel_avg_varianceNxM(32, 64); +sub_pixel_avg_varianceNxM(64, 32); +sub_pixel_avg_varianceNxM(64, 64); diff --git a/vpx_dsp/arm/subtract_neon.c b/vpx_dsp/arm/subtract_neon.c new file mode 100644 index 0000000..ce81fb6 --- /dev/null +++ b/vpx_dsp/arm/subtract_neon.c @@ -0,0 +1,79 @@ +/* + * Copyright (c) 2014 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include + +#include "./vpx_config.h" +#include "vpx/vpx_integer.h" + +void vpx_subtract_block_neon(int rows, int cols, int16_t *diff, + ptrdiff_t diff_stride, const uint8_t *src, + ptrdiff_t src_stride, const uint8_t *pred, + ptrdiff_t pred_stride) { + int r, c; + + if (cols > 16) { + for (r = 0; r < rows; ++r) { + for (c = 0; c < cols; c += 32) { + const uint8x16_t v_src_00 = vld1q_u8(&src[c + 0]); + const uint8x16_t v_src_16 = vld1q_u8(&src[c + 16]); + const uint8x16_t v_pred_00 = vld1q_u8(&pred[c + 0]); + const uint8x16_t v_pred_16 = vld1q_u8(&pred[c + 16]); + const uint16x8_t v_diff_lo_00 = + vsubl_u8(vget_low_u8(v_src_00), vget_low_u8(v_pred_00)); + const uint16x8_t v_diff_hi_00 = + vsubl_u8(vget_high_u8(v_src_00), vget_high_u8(v_pred_00)); + const uint16x8_t v_diff_lo_16 = + vsubl_u8(vget_low_u8(v_src_16), vget_low_u8(v_pred_16)); + const uint16x8_t v_diff_hi_16 = + vsubl_u8(vget_high_u8(v_src_16), vget_high_u8(v_pred_16)); + vst1q_s16(&diff[c + 0], vreinterpretq_s16_u16(v_diff_lo_00)); + vst1q_s16(&diff[c + 8], vreinterpretq_s16_u16(v_diff_hi_00)); + vst1q_s16(&diff[c + 16], vreinterpretq_s16_u16(v_diff_lo_16)); + vst1q_s16(&diff[c + 24], vreinterpretq_s16_u16(v_diff_hi_16)); + } + diff += diff_stride; + pred += pred_stride; + src += src_stride; + } + } else if (cols > 8) { + for (r = 0; r < rows; ++r) { + const uint8x16_t v_src = vld1q_u8(&src[0]); + const uint8x16_t v_pred = vld1q_u8(&pred[0]); + const uint16x8_t v_diff_lo = + vsubl_u8(vget_low_u8(v_src), vget_low_u8(v_pred)); + const uint16x8_t v_diff_hi = + vsubl_u8(vget_high_u8(v_src), vget_high_u8(v_pred)); + vst1q_s16(&diff[0], vreinterpretq_s16_u16(v_diff_lo)); + vst1q_s16(&diff[8], vreinterpretq_s16_u16(v_diff_hi)); + diff += diff_stride; + pred += pred_stride; + src += src_stride; + } + } else if (cols > 4) { + for (r = 0; r < rows; ++r) { + const uint8x8_t v_src = vld1_u8(&src[0]); + const uint8x8_t v_pred = vld1_u8(&pred[0]); + const uint16x8_t v_diff = vsubl_u8(v_src, v_pred); + vst1q_s16(&diff[0], vreinterpretq_s16_u16(v_diff)); + diff += diff_stride; + pred += pred_stride; + src += src_stride; + } + } else { + for (r = 0; r < rows; ++r) { + for (c = 0; c < cols; ++c) diff[c] = src[c] - pred[c]; + + diff += diff_stride; + pred += pred_stride; + src += src_stride; + } + } +} diff --git a/vpx_dsp/arm/sum_neon.h b/vpx_dsp/arm/sum_neon.h new file mode 100644 index 0000000..d74fe0c --- /dev/null +++ b/vpx_dsp/arm/sum_neon.h @@ -0,0 +1,47 @@ +/* + * Copyright (c) 2017 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VPX_DSP_ARM_SUM_NEON_H_ +#define VPX_DSP_ARM_SUM_NEON_H_ + +#include + +#include "./vpx_config.h" +#include "vpx/vpx_integer.h" + +static INLINE int32x2_t horizontal_add_int16x8(const int16x8_t a) { + const int32x4_t b = vpaddlq_s16(a); + const int64x2_t c = vpaddlq_s32(b); + return vadd_s32(vreinterpret_s32_s64(vget_low_s64(c)), + vreinterpret_s32_s64(vget_high_s64(c))); +} + +static INLINE uint32x2_t horizontal_add_uint16x8(const uint16x8_t a) { + const uint32x4_t b = vpaddlq_u16(a); + const uint64x2_t c = vpaddlq_u32(b); + return vadd_u32(vreinterpret_u32_u64(vget_low_u64(c)), + vreinterpret_u32_u64(vget_high_u64(c))); +} + +static INLINE uint32x2_t horizontal_add_long_uint16x8(const uint16x8_t a, + const uint16x8_t b) { + const uint32x4_t c = vpaddlq_u16(a); + const uint32x4_t d = vpadalq_u16(c, b); + const uint64x2_t e = vpaddlq_u32(d); + return vadd_u32(vreinterpret_u32_u64(vget_low_u64(e)), + vreinterpret_u32_u64(vget_high_u64(e))); +} + +static INLINE uint32x2_t horizontal_add_uint32x4(const uint32x4_t a) { + const uint64x2_t b = vpaddlq_u32(a); + return vadd_u32(vreinterpret_u32_u64(vget_low_u64(b)), + vreinterpret_u32_u64(vget_high_u64(b))); +} +#endif // VPX_DSP_ARM_SUM_NEON_H_ diff --git a/vpx_dsp/arm/transpose_neon.h b/vpx_dsp/arm/transpose_neon.h new file mode 100644 index 0000000..d85cbce --- /dev/null +++ b/vpx_dsp/arm/transpose_neon.h @@ -0,0 +1,1316 @@ +/* + * Copyright (c) 2016 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VPX_DSP_ARM_TRANSPOSE_NEON_H_ +#define VPX_DSP_ARM_TRANSPOSE_NEON_H_ + +#include + +#include "./vpx_config.h" + +// Transpose 64 bit elements as follows: +// a0: 00 01 02 03 04 05 06 07 +// a1: 16 17 18 19 20 21 22 23 +// +// b0.val[0]: 00 01 02 03 16 17 18 19 +// b0.val[1]: 04 05 06 07 20 21 22 23 +static INLINE int16x8x2_t vpx_vtrnq_s64_to_s16(int32x4_t a0, int32x4_t a1) { + int16x8x2_t b0; + b0.val[0] = vcombine_s16(vreinterpret_s16_s32(vget_low_s32(a0)), + vreinterpret_s16_s32(vget_low_s32(a1))); + b0.val[1] = vcombine_s16(vreinterpret_s16_s32(vget_high_s32(a0)), + vreinterpret_s16_s32(vget_high_s32(a1))); + return b0; +} + +static INLINE int32x4x2_t vpx_vtrnq_s64_to_s32(int32x4_t a0, int32x4_t a1) { + int32x4x2_t b0; + b0.val[0] = vcombine_s32(vget_low_s32(a0), vget_low_s32(a1)); + b0.val[1] = vcombine_s32(vget_high_s32(a0), vget_high_s32(a1)); + return b0; +} + +static INLINE int64x2x2_t vpx_vtrnq_s64(int32x4_t a0, int32x4_t a1) { + int64x2x2_t b0; + b0.val[0] = vcombine_s64(vreinterpret_s64_s32(vget_low_s32(a0)), + vreinterpret_s64_s32(vget_low_s32(a1))); + b0.val[1] = vcombine_s64(vreinterpret_s64_s32(vget_high_s32(a0)), + vreinterpret_s64_s32(vget_high_s32(a1))); + return b0; +} + +static INLINE uint8x16x2_t vpx_vtrnq_u64_to_u8(uint32x4_t a0, uint32x4_t a1) { + uint8x16x2_t b0; + b0.val[0] = vcombine_u8(vreinterpret_u8_u32(vget_low_u32(a0)), + vreinterpret_u8_u32(vget_low_u32(a1))); + b0.val[1] = vcombine_u8(vreinterpret_u8_u32(vget_high_u32(a0)), + vreinterpret_u8_u32(vget_high_u32(a1))); + return b0; +} + +static INLINE uint16x8x2_t vpx_vtrnq_u64_to_u16(uint32x4_t a0, uint32x4_t a1) { + uint16x8x2_t b0; + b0.val[0] = vcombine_u16(vreinterpret_u16_u32(vget_low_u32(a0)), + vreinterpret_u16_u32(vget_low_u32(a1))); + b0.val[1] = vcombine_u16(vreinterpret_u16_u32(vget_high_u32(a0)), + vreinterpret_u16_u32(vget_high_u32(a1))); + return b0; +} + +static INLINE void transpose_u8_4x4(uint8x8_t *a0, uint8x8_t *a1) { + // Swap 16 bit elements. Goes from: + // a0: 00 01 02 03 10 11 12 13 + // a1: 20 21 22 23 30 31 32 33 + // to: + // b0.val[0]: 00 01 20 21 10 11 30 31 + // b0.val[1]: 02 03 22 23 12 13 32 33 + + const uint16x4x2_t b0 = + vtrn_u16(vreinterpret_u16_u8(*a0), vreinterpret_u16_u8(*a1)); + + // Swap 32 bit elements resulting in: + // c0.val[0]: 00 01 20 21 02 03 22 23 + // c0.val[1]: 10 11 30 31 12 13 32 33 + + const uint32x2x2_t c0 = vtrn_u32(vreinterpret_u32_u16(b0.val[0]), + vreinterpret_u32_u16(b0.val[1])); + + // Swap 8 bit elements resulting in: + // d0.val[0]: 00 10 20 30 02 12 22 32 + // d0.val[1]: 01 11 21 31 03 13 23 33 + + const uint8x8x2_t d0 = + vtrn_u8(vreinterpret_u8_u32(c0.val[0]), vreinterpret_u8_u32(c0.val[1])); + + *a0 = d0.val[0]; + *a1 = d0.val[1]; +} + +static INLINE void transpose_s16_4x4d(int16x4_t *a0, int16x4_t *a1, + int16x4_t *a2, int16x4_t *a3) { + // Swap 16 bit elements. Goes from: + // a0: 00 01 02 03 + // a1: 10 11 12 13 + // a2: 20 21 22 23 + // a3: 30 31 32 33 + // to: + // b0.val[0]: 00 10 02 12 + // b0.val[1]: 01 11 03 13 + // b1.val[0]: 20 30 22 32 + // b1.val[1]: 21 31 23 33 + + const int16x4x2_t b0 = vtrn_s16(*a0, *a1); + const int16x4x2_t b1 = vtrn_s16(*a2, *a3); + + // Swap 32 bit elements resulting in: + // c0.val[0]: 00 10 20 30 + // c0.val[1]: 02 12 22 32 + // c1.val[0]: 01 11 21 31 + // c1.val[1]: 03 13 23 33 + + const int32x2x2_t c0 = vtrn_s32(vreinterpret_s32_s16(b0.val[0]), + vreinterpret_s32_s16(b1.val[0])); + const int32x2x2_t c1 = vtrn_s32(vreinterpret_s32_s16(b0.val[1]), + vreinterpret_s32_s16(b1.val[1])); + + *a0 = vreinterpret_s16_s32(c0.val[0]); + *a1 = vreinterpret_s16_s32(c1.val[0]); + *a2 = vreinterpret_s16_s32(c0.val[1]); + *a3 = vreinterpret_s16_s32(c1.val[1]); +} + +static INLINE void transpose_s16_4x4q(int16x8_t *a0, int16x8_t *a1) { + // Swap 32 bit elements. Goes from: + // a0: 00 01 02 03 10 11 12 13 + // a1: 20 21 22 23 30 31 32 33 + // to: + // b0.val[0]: 00 01 20 21 10 11 30 31 + // b0.val[1]: 02 03 22 23 12 13 32 33 + + const int32x4x2_t b0 = + vtrnq_s32(vreinterpretq_s32_s16(*a0), vreinterpretq_s32_s16(*a1)); + + // Swap 64 bit elements resulting in: + // c0.val[0]: 00 01 20 21 02 03 22 23 + // c0.val[1]: 10 11 30 31 12 13 32 33 + + const int32x4_t c0 = + vcombine_s32(vget_low_s32(b0.val[0]), vget_low_s32(b0.val[1])); + const int32x4_t c1 = + vcombine_s32(vget_high_s32(b0.val[0]), vget_high_s32(b0.val[1])); + + // Swap 16 bit elements resulting in: + // d0.val[0]: 00 10 20 30 02 12 22 32 + // d0.val[1]: 01 11 21 31 03 13 23 33 + + const int16x8x2_t d0 = + vtrnq_s16(vreinterpretq_s16_s32(c0), vreinterpretq_s16_s32(c1)); + + *a0 = d0.val[0]; + *a1 = d0.val[1]; +} + +static INLINE void transpose_u16_4x4q(uint16x8_t *a0, uint16x8_t *a1) { + // Swap 32 bit elements. Goes from: + // a0: 00 01 02 03 10 11 12 13 + // a1: 20 21 22 23 30 31 32 33 + // to: + // b0.val[0]: 00 01 20 21 10 11 30 31 + // b0.val[1]: 02 03 22 23 12 13 32 33 + + const uint32x4x2_t b0 = + vtrnq_u32(vreinterpretq_u32_u16(*a0), vreinterpretq_u32_u16(*a1)); + + // Swap 64 bit elements resulting in: + // c0.val[0]: 00 01 20 21 02 03 22 23 + // c0.val[1]: 10 11 30 31 12 13 32 33 + + const uint32x4_t c0 = + vcombine_u32(vget_low_u32(b0.val[0]), vget_low_u32(b0.val[1])); + const uint32x4_t c1 = + vcombine_u32(vget_high_u32(b0.val[0]), vget_high_u32(b0.val[1])); + + // Swap 16 bit elements resulting in: + // d0.val[0]: 00 10 20 30 02 12 22 32 + // d0.val[1]: 01 11 21 31 03 13 23 33 + + const uint16x8x2_t d0 = + vtrnq_u16(vreinterpretq_u16_u32(c0), vreinterpretq_u16_u32(c1)); + + *a0 = d0.val[0]; + *a1 = d0.val[1]; +} + +static INLINE void transpose_u8_4x8(uint8x8_t *a0, uint8x8_t *a1, uint8x8_t *a2, + uint8x8_t *a3, const uint8x8_t a4, + const uint8x8_t a5, const uint8x8_t a6, + const uint8x8_t a7) { + // Swap 32 bit elements. Goes from: + // a0: 00 01 02 03 XX XX XX XX + // a1: 10 11 12 13 XX XX XX XX + // a2: 20 21 22 23 XX XX XX XX + // a3; 30 31 32 33 XX XX XX XX + // a4: 40 41 42 43 XX XX XX XX + // a5: 50 51 52 53 XX XX XX XX + // a6: 60 61 62 63 XX XX XX XX + // a7: 70 71 72 73 XX XX XX XX + // to: + // b0.val[0]: 00 01 02 03 40 41 42 43 + // b1.val[0]: 10 11 12 13 50 51 52 53 + // b2.val[0]: 20 21 22 23 60 61 62 63 + // b3.val[0]: 30 31 32 33 70 71 72 73 + + const uint32x2x2_t b0 = + vtrn_u32(vreinterpret_u32_u8(*a0), vreinterpret_u32_u8(a4)); + const uint32x2x2_t b1 = + vtrn_u32(vreinterpret_u32_u8(*a1), vreinterpret_u32_u8(a5)); + const uint32x2x2_t b2 = + vtrn_u32(vreinterpret_u32_u8(*a2), vreinterpret_u32_u8(a6)); + const uint32x2x2_t b3 = + vtrn_u32(vreinterpret_u32_u8(*a3), vreinterpret_u32_u8(a7)); + + // Swap 16 bit elements resulting in: + // c0.val[0]: 00 01 20 21 40 41 60 61 + // c0.val[1]: 02 03 22 23 42 43 62 63 + // c1.val[0]: 10 11 30 31 50 51 70 71 + // c1.val[1]: 12 13 32 33 52 53 72 73 + + const uint16x4x2_t c0 = vtrn_u16(vreinterpret_u16_u32(b0.val[0]), + vreinterpret_u16_u32(b2.val[0])); + const uint16x4x2_t c1 = vtrn_u16(vreinterpret_u16_u32(b1.val[0]), + vreinterpret_u16_u32(b3.val[0])); + + // Swap 8 bit elements resulting in: + // d0.val[0]: 00 10 20 30 40 50 60 70 + // d0.val[1]: 01 11 21 31 41 51 61 71 + // d1.val[0]: 02 12 22 32 42 52 62 72 + // d1.val[1]: 03 13 23 33 43 53 63 73 + + const uint8x8x2_t d0 = + vtrn_u8(vreinterpret_u8_u16(c0.val[0]), vreinterpret_u8_u16(c1.val[0])); + const uint8x8x2_t d1 = + vtrn_u8(vreinterpret_u8_u16(c0.val[1]), vreinterpret_u8_u16(c1.val[1])); + + *a0 = d0.val[0]; + *a1 = d0.val[1]; + *a2 = d1.val[0]; + *a3 = d1.val[1]; +} + +static INLINE void transpose_s32_4x4(int32x4_t *a0, int32x4_t *a1, + int32x4_t *a2, int32x4_t *a3) { + // Swap 32 bit elements. Goes from: + // a0: 00 01 02 03 + // a1: 10 11 12 13 + // a2: 20 21 22 23 + // a3: 30 31 32 33 + // to: + // b0.val[0]: 00 10 02 12 + // b0.val[1]: 01 11 03 13 + // b1.val[0]: 20 30 22 32 + // b1.val[1]: 21 31 23 33 + + const int32x4x2_t b0 = vtrnq_s32(*a0, *a1); + const int32x4x2_t b1 = vtrnq_s32(*a2, *a3); + + // Swap 64 bit elements resulting in: + // c0.val[0]: 00 10 20 30 + // c0.val[1]: 02 12 22 32 + // c1.val[0]: 01 11 21 31 + // c1.val[1]: 03 13 23 33 + + const int32x4x2_t c0 = vpx_vtrnq_s64_to_s32(b0.val[0], b1.val[0]); + const int32x4x2_t c1 = vpx_vtrnq_s64_to_s32(b0.val[1], b1.val[1]); + + *a0 = c0.val[0]; + *a1 = c1.val[0]; + *a2 = c0.val[1]; + *a3 = c1.val[1]; +} + +static INLINE void transpose_s16_4x8(const int16x4_t a0, const int16x4_t a1, + const int16x4_t a2, const int16x4_t a3, + const int16x4_t a4, const int16x4_t a5, + const int16x4_t a6, const int16x4_t a7, + int16x8_t *const o0, int16x8_t *const o1, + int16x8_t *const o2, int16x8_t *const o3) { + // Swap 16 bit elements. Goes from: + // a0: 00 01 02 03 + // a1: 10 11 12 13 + // a2: 20 21 22 23 + // a3: 30 31 32 33 + // a4: 40 41 42 43 + // a5: 50 51 52 53 + // a6: 60 61 62 63 + // a7: 70 71 72 73 + // to: + // b0.val[0]: 00 10 02 12 + // b0.val[1]: 01 11 03 13 + // b1.val[0]: 20 30 22 32 + // b1.val[1]: 21 31 23 33 + // b2.val[0]: 40 50 42 52 + // b2.val[1]: 41 51 43 53 + // b3.val[0]: 60 70 62 72 + // b3.val[1]: 61 71 63 73 + + const int16x4x2_t b0 = vtrn_s16(a0, a1); + const int16x4x2_t b1 = vtrn_s16(a2, a3); + const int16x4x2_t b2 = vtrn_s16(a4, a5); + const int16x4x2_t b3 = vtrn_s16(a6, a7); + + // Swap 32 bit elements resulting in: + // c0.val[0]: 00 10 20 30 + // c0.val[1]: 02 12 22 32 + // c1.val[0]: 01 11 21 31 + // c1.val[1]: 03 13 23 33 + // c2.val[0]: 40 50 60 70 + // c2.val[1]: 42 52 62 72 + // c3.val[0]: 41 51 61 71 + // c3.val[1]: 43 53 63 73 + + const int32x2x2_t c0 = vtrn_s32(vreinterpret_s32_s16(b0.val[0]), + vreinterpret_s32_s16(b1.val[0])); + const int32x2x2_t c1 = vtrn_s32(vreinterpret_s32_s16(b0.val[1]), + vreinterpret_s32_s16(b1.val[1])); + const int32x2x2_t c2 = vtrn_s32(vreinterpret_s32_s16(b2.val[0]), + vreinterpret_s32_s16(b3.val[0])); + const int32x2x2_t c3 = vtrn_s32(vreinterpret_s32_s16(b2.val[1]), + vreinterpret_s32_s16(b3.val[1])); + + // Swap 64 bit elements resulting in: + // o0: 00 10 20 30 40 50 60 70 + // o1: 01 11 21 31 41 51 61 71 + // o2: 02 12 22 32 42 52 62 72 + // o3: 03 13 23 33 43 53 63 73 + + *o0 = vcombine_s16(vreinterpret_s16_s32(c0.val[0]), + vreinterpret_s16_s32(c2.val[0])); + *o1 = vcombine_s16(vreinterpret_s16_s32(c1.val[0]), + vreinterpret_s16_s32(c3.val[0])); + *o2 = vcombine_s16(vreinterpret_s16_s32(c0.val[1]), + vreinterpret_s16_s32(c2.val[1])); + *o3 = vcombine_s16(vreinterpret_s16_s32(c1.val[1]), + vreinterpret_s16_s32(c3.val[1])); +} + +static INLINE void transpose_s32_4x8(int32x4_t *const a0, int32x4_t *const a1, + int32x4_t *const a2, int32x4_t *const a3, + int32x4_t *const a4, int32x4_t *const a5, + int32x4_t *const a6, int32x4_t *const a7) { + // Swap 32 bit elements. Goes from: + // a0: 00 01 02 03 + // a1: 10 11 12 13 + // a2: 20 21 22 23 + // a3: 30 31 32 33 + // a4: 40 41 42 43 + // a5: 50 51 52 53 + // a6: 60 61 62 63 + // a7: 70 71 72 73 + // to: + // b0.val[0]: 00 10 02 12 + // b0.val[1]: 01 11 03 13 + // b1.val[0]: 20 30 22 32 + // b1.val[1]: 21 31 23 33 + // b2.val[0]: 40 50 42 52 + // b2.val[1]: 41 51 43 53 + // b3.val[0]: 60 70 62 72 + // b3.val[1]: 61 71 63 73 + + const int32x4x2_t b0 = vtrnq_s32(*a0, *a1); + const int32x4x2_t b1 = vtrnq_s32(*a2, *a3); + const int32x4x2_t b2 = vtrnq_s32(*a4, *a5); + const int32x4x2_t b3 = vtrnq_s32(*a6, *a7); + + // Swap 64 bit elements resulting in: + // c0.val[0]: 00 10 20 30 + // c0.val[1]: 02 12 22 32 + // c1.val[0]: 01 11 21 31 + // c1.val[1]: 03 13 23 33 + // c2.val[0]: 40 50 60 70 + // c2.val[1]: 42 52 62 72 + // c3.val[0]: 41 51 61 71 + // c3.val[1]: 43 53 63 73 + + const int64x2x2_t c0 = vpx_vtrnq_s64(b0.val[0], b1.val[0]); + const int64x2x2_t c1 = vpx_vtrnq_s64(b0.val[1], b1.val[1]); + const int64x2x2_t c2 = vpx_vtrnq_s64(b2.val[0], b3.val[0]); + const int64x2x2_t c3 = vpx_vtrnq_s64(b2.val[1], b3.val[1]); + + *a0 = vreinterpretq_s32_s64(c0.val[0]); + *a1 = vreinterpretq_s32_s64(c2.val[0]); + *a2 = vreinterpretq_s32_s64(c1.val[0]); + *a3 = vreinterpretq_s32_s64(c3.val[0]); + *a4 = vreinterpretq_s32_s64(c0.val[1]); + *a5 = vreinterpretq_s32_s64(c2.val[1]); + *a6 = vreinterpretq_s32_s64(c1.val[1]); + *a7 = vreinterpretq_s32_s64(c3.val[1]); +} + +static INLINE void transpose_u8_8x4(uint8x8_t *a0, uint8x8_t *a1, uint8x8_t *a2, + uint8x8_t *a3) { + // Swap 8 bit elements. Goes from: + // a0: 00 01 02 03 04 05 06 07 + // a1: 10 11 12 13 14 15 16 17 + // a2: 20 21 22 23 24 25 26 27 + // a3: 30 31 32 33 34 35 36 37 + // to: + // b0.val[0]: 00 10 02 12 04 14 06 16 + // b0.val[1]: 01 11 03 13 05 15 07 17 + // b1.val[0]: 20 30 22 32 24 34 26 36 + // b1.val[1]: 21 31 23 33 25 35 27 37 + + const uint8x8x2_t b0 = vtrn_u8(*a0, *a1); + const uint8x8x2_t b1 = vtrn_u8(*a2, *a3); + + // Swap 16 bit elements resulting in: + // c0.val[0]: 00 10 20 30 04 14 24 34 + // c0.val[1]: 02 12 22 32 06 16 26 36 + // c1.val[0]: 01 11 21 31 05 15 25 35 + // c1.val[1]: 03 13 23 33 07 17 27 37 + + const uint16x4x2_t c0 = + vtrn_u16(vreinterpret_u16_u8(b0.val[0]), vreinterpret_u16_u8(b1.val[0])); + const uint16x4x2_t c1 = + vtrn_u16(vreinterpret_u16_u8(b0.val[1]), vreinterpret_u16_u8(b1.val[1])); + + *a0 = vreinterpret_u8_u16(c0.val[0]); + *a1 = vreinterpret_u8_u16(c1.val[0]); + *a2 = vreinterpret_u8_u16(c0.val[1]); + *a3 = vreinterpret_u8_u16(c1.val[1]); +} + +static INLINE void transpose_u16_8x4(uint16x8_t *a0, uint16x8_t *a1, + uint16x8_t *a2, uint16x8_t *a3) { + // Swap 16 bit elements. Goes from: + // a0: 00 01 02 03 04 05 06 07 + // a1: 10 11 12 13 14 15 16 17 + // a2: 20 21 22 23 24 25 26 27 + // a3: 30 31 32 33 34 35 36 37 + // to: + // b0.val[0]: 00 10 02 12 04 14 06 16 + // b0.val[1]: 01 11 03 13 05 15 07 17 + // b1.val[0]: 20 30 22 32 24 34 26 36 + // b1.val[1]: 21 31 23 33 25 35 27 37 + + const uint16x8x2_t b0 = vtrnq_u16(*a0, *a1); + const uint16x8x2_t b1 = vtrnq_u16(*a2, *a3); + + // Swap 32 bit elements resulting in: + // c0.val[0]: 00 10 20 30 04 14 24 34 + // c0.val[1]: 02 12 22 32 06 16 26 36 + // c1.val[0]: 01 11 21 31 05 15 25 35 + // c1.val[1]: 03 13 23 33 07 17 27 37 + + const uint32x4x2_t c0 = vtrnq_u32(vreinterpretq_u32_u16(b0.val[0]), + vreinterpretq_u32_u16(b1.val[0])); + const uint32x4x2_t c1 = vtrnq_u32(vreinterpretq_u32_u16(b0.val[1]), + vreinterpretq_u32_u16(b1.val[1])); + + *a0 = vreinterpretq_u16_u32(c0.val[0]); + *a1 = vreinterpretq_u16_u32(c1.val[0]); + *a2 = vreinterpretq_u16_u32(c0.val[1]); + *a3 = vreinterpretq_u16_u32(c1.val[1]); +} + +static INLINE void transpose_s32_8x4(int32x4_t *const a0, int32x4_t *const a1, + int32x4_t *const a2, int32x4_t *const a3, + int32x4_t *const a4, int32x4_t *const a5, + int32x4_t *const a6, int32x4_t *const a7) { + // Swap 32 bit elements. Goes from: + // a0: 00 01 02 03 + // a1: 04 05 06 07 + // a2: 10 11 12 13 + // a3: 14 15 16 17 + // a4: 20 21 22 23 + // a5: 24 25 26 27 + // a6: 30 31 32 33 + // a7: 34 35 36 37 + // to: + // b0.val[0]: 00 10 02 12 + // b0.val[1]: 01 11 03 13 + // b1.val[0]: 04 14 06 16 + // b1.val[1]: 05 15 07 17 + // b2.val[0]: 20 30 22 32 + // b2.val[1]: 21 31 23 33 + // b3.val[0]: 24 34 26 36 + // b3.val[1]: 25 35 27 37 + + const int32x4x2_t b0 = vtrnq_s32(*a0, *a2); + const int32x4x2_t b1 = vtrnq_s32(*a1, *a3); + const int32x4x2_t b2 = vtrnq_s32(*a4, *a6); + const int32x4x2_t b3 = vtrnq_s32(*a5, *a7); + + // Swap 64 bit elements resulting in: + // c0.val[0]: 00 10 20 30 + // c0.val[1]: 02 12 22 32 + // c1.val[0]: 01 11 21 31 + // c1.val[1]: 03 13 23 33 + // c2.val[0]: 04 14 24 34 + // c2.val[1]: 06 16 26 36 + // c3.val[0]: 05 15 25 35 + // c3.val[1]: 07 17 27 37 + + const int64x2x2_t c0 = vpx_vtrnq_s64(b0.val[0], b2.val[0]); + const int64x2x2_t c1 = vpx_vtrnq_s64(b0.val[1], b2.val[1]); + const int64x2x2_t c2 = vpx_vtrnq_s64(b1.val[0], b3.val[0]); + const int64x2x2_t c3 = vpx_vtrnq_s64(b1.val[1], b3.val[1]); + + *a0 = vreinterpretq_s32_s64(c0.val[0]); + *a1 = vreinterpretq_s32_s64(c1.val[0]); + *a2 = vreinterpretq_s32_s64(c0.val[1]); + *a3 = vreinterpretq_s32_s64(c1.val[1]); + *a4 = vreinterpretq_s32_s64(c2.val[0]); + *a5 = vreinterpretq_s32_s64(c3.val[0]); + *a6 = vreinterpretq_s32_s64(c2.val[1]); + *a7 = vreinterpretq_s32_s64(c3.val[1]); +} + +// Note: Using 'd' registers or 'q' registers has almost identical speed. We use +// 'q' registers here to save some instructions. +static INLINE void transpose_u8_8x8(uint8x8_t *a0, uint8x8_t *a1, uint8x8_t *a2, + uint8x8_t *a3, uint8x8_t *a4, uint8x8_t *a5, + uint8x8_t *a6, uint8x8_t *a7) { + // Swap 8 bit elements. Goes from: + // a0: 00 01 02 03 04 05 06 07 + // a1: 10 11 12 13 14 15 16 17 + // a2: 20 21 22 23 24 25 26 27 + // a3: 30 31 32 33 34 35 36 37 + // a4: 40 41 42 43 44 45 46 47 + // a5: 50 51 52 53 54 55 56 57 + // a6: 60 61 62 63 64 65 66 67 + // a7: 70 71 72 73 74 75 76 77 + // to: + // b0.val[0]: 00 10 02 12 04 14 06 16 40 50 42 52 44 54 46 56 + // b0.val[1]: 01 11 03 13 05 15 07 17 41 51 43 53 45 55 47 57 + // b1.val[0]: 20 30 22 32 24 34 26 36 60 70 62 72 64 74 66 76 + // b1.val[1]: 21 31 23 33 25 35 27 37 61 71 63 73 65 75 67 77 + + const uint8x16x2_t b0 = + vtrnq_u8(vcombine_u8(*a0, *a4), vcombine_u8(*a1, *a5)); + const uint8x16x2_t b1 = + vtrnq_u8(vcombine_u8(*a2, *a6), vcombine_u8(*a3, *a7)); + + // Swap 16 bit elements resulting in: + // c0.val[0]: 00 10 20 30 04 14 24 34 40 50 60 70 44 54 64 74 + // c0.val[1]: 02 12 22 32 06 16 26 36 42 52 62 72 46 56 66 76 + // c1.val[0]: 01 11 21 31 05 15 25 35 41 51 61 71 45 55 65 75 + // c1.val[1]: 03 13 23 33 07 17 27 37 43 53 63 73 47 57 67 77 + + const uint16x8x2_t c0 = vtrnq_u16(vreinterpretq_u16_u8(b0.val[0]), + vreinterpretq_u16_u8(b1.val[0])); + const uint16x8x2_t c1 = vtrnq_u16(vreinterpretq_u16_u8(b0.val[1]), + vreinterpretq_u16_u8(b1.val[1])); + + // Unzip 32 bit elements resulting in: + // d0.val[0]: 00 10 20 30 40 50 60 70 01 11 21 31 41 51 61 71 + // d0.val[1]: 04 14 24 34 44 54 64 74 05 15 25 35 45 55 65 75 + // d1.val[0]: 02 12 22 32 42 52 62 72 03 13 23 33 43 53 63 73 + // d1.val[1]: 06 16 26 36 46 56 66 76 07 17 27 37 47 57 67 77 + const uint32x4x2_t d0 = vuzpq_u32(vreinterpretq_u32_u16(c0.val[0]), + vreinterpretq_u32_u16(c1.val[0])); + const uint32x4x2_t d1 = vuzpq_u32(vreinterpretq_u32_u16(c0.val[1]), + vreinterpretq_u32_u16(c1.val[1])); + + *a0 = vreinterpret_u8_u32(vget_low_u32(d0.val[0])); + *a1 = vreinterpret_u8_u32(vget_high_u32(d0.val[0])); + *a2 = vreinterpret_u8_u32(vget_low_u32(d1.val[0])); + *a3 = vreinterpret_u8_u32(vget_high_u32(d1.val[0])); + *a4 = vreinterpret_u8_u32(vget_low_u32(d0.val[1])); + *a5 = vreinterpret_u8_u32(vget_high_u32(d0.val[1])); + *a6 = vreinterpret_u8_u32(vget_low_u32(d1.val[1])); + *a7 = vreinterpret_u8_u32(vget_high_u32(d1.val[1])); +} + +static INLINE void transpose_s16_8x8(int16x8_t *a0, int16x8_t *a1, + int16x8_t *a2, int16x8_t *a3, + int16x8_t *a4, int16x8_t *a5, + int16x8_t *a6, int16x8_t *a7) { + // Swap 16 bit elements. Goes from: + // a0: 00 01 02 03 04 05 06 07 + // a1: 10 11 12 13 14 15 16 17 + // a2: 20 21 22 23 24 25 26 27 + // a3: 30 31 32 33 34 35 36 37 + // a4: 40 41 42 43 44 45 46 47 + // a5: 50 51 52 53 54 55 56 57 + // a6: 60 61 62 63 64 65 66 67 + // a7: 70 71 72 73 74 75 76 77 + // to: + // b0.val[0]: 00 10 02 12 04 14 06 16 + // b0.val[1]: 01 11 03 13 05 15 07 17 + // b1.val[0]: 20 30 22 32 24 34 26 36 + // b1.val[1]: 21 31 23 33 25 35 27 37 + // b2.val[0]: 40 50 42 52 44 54 46 56 + // b2.val[1]: 41 51 43 53 45 55 47 57 + // b3.val[0]: 60 70 62 72 64 74 66 76 + // b3.val[1]: 61 71 63 73 65 75 67 77 + + const int16x8x2_t b0 = vtrnq_s16(*a0, *a1); + const int16x8x2_t b1 = vtrnq_s16(*a2, *a3); + const int16x8x2_t b2 = vtrnq_s16(*a4, *a5); + const int16x8x2_t b3 = vtrnq_s16(*a6, *a7); + + // Swap 32 bit elements resulting in: + // c0.val[0]: 00 10 20 30 04 14 24 34 + // c0.val[1]: 02 12 22 32 06 16 26 36 + // c1.val[0]: 01 11 21 31 05 15 25 35 + // c1.val[1]: 03 13 23 33 07 17 27 37 + // c2.val[0]: 40 50 60 70 44 54 64 74 + // c2.val[1]: 42 52 62 72 46 56 66 76 + // c3.val[0]: 41 51 61 71 45 55 65 75 + // c3.val[1]: 43 53 63 73 47 57 67 77 + + const int32x4x2_t c0 = vtrnq_s32(vreinterpretq_s32_s16(b0.val[0]), + vreinterpretq_s32_s16(b1.val[0])); + const int32x4x2_t c1 = vtrnq_s32(vreinterpretq_s32_s16(b0.val[1]), + vreinterpretq_s32_s16(b1.val[1])); + const int32x4x2_t c2 = vtrnq_s32(vreinterpretq_s32_s16(b2.val[0]), + vreinterpretq_s32_s16(b3.val[0])); + const int32x4x2_t c3 = vtrnq_s32(vreinterpretq_s32_s16(b2.val[1]), + vreinterpretq_s32_s16(b3.val[1])); + + // Swap 64 bit elements resulting in: + // d0.val[0]: 00 10 20 30 40 50 60 70 + // d0.val[1]: 04 14 24 34 44 54 64 74 + // d1.val[0]: 01 11 21 31 41 51 61 71 + // d1.val[1]: 05 15 25 35 45 55 65 75 + // d2.val[0]: 02 12 22 32 42 52 62 72 + // d2.val[1]: 06 16 26 36 46 56 66 76 + // d3.val[0]: 03 13 23 33 43 53 63 73 + // d3.val[1]: 07 17 27 37 47 57 67 77 + const int16x8x2_t d0 = vpx_vtrnq_s64_to_s16(c0.val[0], c2.val[0]); + const int16x8x2_t d1 = vpx_vtrnq_s64_to_s16(c1.val[0], c3.val[0]); + const int16x8x2_t d2 = vpx_vtrnq_s64_to_s16(c0.val[1], c2.val[1]); + const int16x8x2_t d3 = vpx_vtrnq_s64_to_s16(c1.val[1], c3.val[1]); + + *a0 = d0.val[0]; + *a1 = d1.val[0]; + *a2 = d2.val[0]; + *a3 = d3.val[0]; + *a4 = d0.val[1]; + *a5 = d1.val[1]; + *a6 = d2.val[1]; + *a7 = d3.val[1]; +} + +static INLINE void transpose_u16_8x8(uint16x8_t *a0, uint16x8_t *a1, + uint16x8_t *a2, uint16x8_t *a3, + uint16x8_t *a4, uint16x8_t *a5, + uint16x8_t *a6, uint16x8_t *a7) { + // Swap 16 bit elements. Goes from: + // a0: 00 01 02 03 04 05 06 07 + // a1: 10 11 12 13 14 15 16 17 + // a2: 20 21 22 23 24 25 26 27 + // a3: 30 31 32 33 34 35 36 37 + // a4: 40 41 42 43 44 45 46 47 + // a5: 50 51 52 53 54 55 56 57 + // a6: 60 61 62 63 64 65 66 67 + // a7: 70 71 72 73 74 75 76 77 + // to: + // b0.val[0]: 00 10 02 12 04 14 06 16 + // b0.val[1]: 01 11 03 13 05 15 07 17 + // b1.val[0]: 20 30 22 32 24 34 26 36 + // b1.val[1]: 21 31 23 33 25 35 27 37 + // b2.val[0]: 40 50 42 52 44 54 46 56 + // b2.val[1]: 41 51 43 53 45 55 47 57 + // b3.val[0]: 60 70 62 72 64 74 66 76 + // b3.val[1]: 61 71 63 73 65 75 67 77 + + const uint16x8x2_t b0 = vtrnq_u16(*a0, *a1); + const uint16x8x2_t b1 = vtrnq_u16(*a2, *a3); + const uint16x8x2_t b2 = vtrnq_u16(*a4, *a5); + const uint16x8x2_t b3 = vtrnq_u16(*a6, *a7); + + // Swap 32 bit elements resulting in: + // c0.val[0]: 00 10 20 30 04 14 24 34 + // c0.val[1]: 02 12 22 32 06 16 26 36 + // c1.val[0]: 01 11 21 31 05 15 25 35 + // c1.val[1]: 03 13 23 33 07 17 27 37 + // c2.val[0]: 40 50 60 70 44 54 64 74 + // c2.val[1]: 42 52 62 72 46 56 66 76 + // c3.val[0]: 41 51 61 71 45 55 65 75 + // c3.val[1]: 43 53 63 73 47 57 67 77 + + const uint32x4x2_t c0 = vtrnq_u32(vreinterpretq_u32_u16(b0.val[0]), + vreinterpretq_u32_u16(b1.val[0])); + const uint32x4x2_t c1 = vtrnq_u32(vreinterpretq_u32_u16(b0.val[1]), + vreinterpretq_u32_u16(b1.val[1])); + const uint32x4x2_t c2 = vtrnq_u32(vreinterpretq_u32_u16(b2.val[0]), + vreinterpretq_u32_u16(b3.val[0])); + const uint32x4x2_t c3 = vtrnq_u32(vreinterpretq_u32_u16(b2.val[1]), + vreinterpretq_u32_u16(b3.val[1])); + + // Swap 64 bit elements resulting in: + // d0.val[0]: 00 10 20 30 40 50 60 70 + // d0.val[1]: 04 14 24 34 44 54 64 74 + // d1.val[0]: 01 11 21 31 41 51 61 71 + // d1.val[1]: 05 15 25 35 45 55 65 75 + // d2.val[0]: 02 12 22 32 42 52 62 72 + // d2.val[1]: 06 16 26 36 46 56 66 76 + // d3.val[0]: 03 13 23 33 43 53 63 73 + // d3.val[1]: 07 17 27 37 47 57 67 77 + const uint16x8x2_t d0 = vpx_vtrnq_u64_to_u16(c0.val[0], c2.val[0]); + const uint16x8x2_t d1 = vpx_vtrnq_u64_to_u16(c1.val[0], c3.val[0]); + const uint16x8x2_t d2 = vpx_vtrnq_u64_to_u16(c0.val[1], c2.val[1]); + const uint16x8x2_t d3 = vpx_vtrnq_u64_to_u16(c1.val[1], c3.val[1]); + + *a0 = d0.val[0]; + *a1 = d1.val[0]; + *a2 = d2.val[0]; + *a3 = d3.val[0]; + *a4 = d0.val[1]; + *a5 = d1.val[1]; + *a6 = d2.val[1]; + *a7 = d3.val[1]; +} + +static INLINE void transpose_s32_8x8(int32x4x2_t *a0, int32x4x2_t *a1, + int32x4x2_t *a2, int32x4x2_t *a3, + int32x4x2_t *a4, int32x4x2_t *a5, + int32x4x2_t *a6, int32x4x2_t *a7) { + // Swap 32 bit elements. Goes from: + // a0: 00 01 02 03 04 05 06 07 + // a1: 10 11 12 13 14 15 16 17 + // a2: 20 21 22 23 24 25 26 27 + // a3: 30 31 32 33 34 35 36 37 + // a4: 40 41 42 43 44 45 46 47 + // a5: 50 51 52 53 54 55 56 57 + // a6: 60 61 62 63 64 65 66 67 + // a7: 70 71 72 73 74 75 76 77 + // to: + // b0: 00 10 02 12 01 11 03 13 + // b1: 20 30 22 32 21 31 23 33 + // b2: 40 50 42 52 41 51 43 53 + // b3: 60 70 62 72 61 71 63 73 + // b4: 04 14 06 16 05 15 07 17 + // b5: 24 34 26 36 25 35 27 37 + // b6: 44 54 46 56 45 55 47 57 + // b7: 64 74 66 76 65 75 67 77 + + const int32x4x2_t b0 = vtrnq_s32(a0->val[0], a1->val[0]); + const int32x4x2_t b1 = vtrnq_s32(a2->val[0], a3->val[0]); + const int32x4x2_t b2 = vtrnq_s32(a4->val[0], a5->val[0]); + const int32x4x2_t b3 = vtrnq_s32(a6->val[0], a7->val[0]); + const int32x4x2_t b4 = vtrnq_s32(a0->val[1], a1->val[1]); + const int32x4x2_t b5 = vtrnq_s32(a2->val[1], a3->val[1]); + const int32x4x2_t b6 = vtrnq_s32(a4->val[1], a5->val[1]); + const int32x4x2_t b7 = vtrnq_s32(a6->val[1], a7->val[1]); + + // Swap 64 bit elements resulting in: + // c0: 00 10 20 30 02 12 22 32 + // c1: 01 11 21 31 03 13 23 33 + // c2: 40 50 60 70 42 52 62 72 + // c3: 41 51 61 71 43 53 63 73 + // c4: 04 14 24 34 06 16 26 36 + // c5: 05 15 25 35 07 17 27 37 + // c6: 44 54 64 74 46 56 66 76 + // c7: 45 55 65 75 47 57 67 77 + const int32x4x2_t c0 = vpx_vtrnq_s64_to_s32(b0.val[0], b1.val[0]); + const int32x4x2_t c1 = vpx_vtrnq_s64_to_s32(b0.val[1], b1.val[1]); + const int32x4x2_t c2 = vpx_vtrnq_s64_to_s32(b2.val[0], b3.val[0]); + const int32x4x2_t c3 = vpx_vtrnq_s64_to_s32(b2.val[1], b3.val[1]); + const int32x4x2_t c4 = vpx_vtrnq_s64_to_s32(b4.val[0], b5.val[0]); + const int32x4x2_t c5 = vpx_vtrnq_s64_to_s32(b4.val[1], b5.val[1]); + const int32x4x2_t c6 = vpx_vtrnq_s64_to_s32(b6.val[0], b7.val[0]); + const int32x4x2_t c7 = vpx_vtrnq_s64_to_s32(b6.val[1], b7.val[1]); + + // Swap 128 bit elements resulting in: + // a0: 00 10 20 30 40 50 60 70 + // a1: 01 11 21 31 41 51 61 71 + // a2: 02 12 22 32 42 52 62 72 + // a3: 03 13 23 33 43 53 63 73 + // a4: 04 14 24 34 44 54 64 74 + // a5: 05 15 25 35 45 55 65 75 + // a6: 06 16 26 36 46 56 66 76 + // a7: 07 17 27 37 47 57 67 77 + a0->val[0] = c0.val[0]; + a0->val[1] = c2.val[0]; + a1->val[0] = c1.val[0]; + a1->val[1] = c3.val[0]; + a2->val[0] = c0.val[1]; + a2->val[1] = c2.val[1]; + a3->val[0] = c1.val[1]; + a3->val[1] = c3.val[1]; + a4->val[0] = c4.val[0]; + a4->val[1] = c6.val[0]; + a5->val[0] = c5.val[0]; + a5->val[1] = c7.val[0]; + a6->val[0] = c4.val[1]; + a6->val[1] = c6.val[1]; + a7->val[0] = c5.val[1]; + a7->val[1] = c7.val[1]; +} + +static INLINE void transpose_u8_16x8( + const uint8x16_t i0, const uint8x16_t i1, const uint8x16_t i2, + const uint8x16_t i3, const uint8x16_t i4, const uint8x16_t i5, + const uint8x16_t i6, const uint8x16_t i7, uint8x8_t *o0, uint8x8_t *o1, + uint8x8_t *o2, uint8x8_t *o3, uint8x8_t *o4, uint8x8_t *o5, uint8x8_t *o6, + uint8x8_t *o7, uint8x8_t *o8, uint8x8_t *o9, uint8x8_t *o10, uint8x8_t *o11, + uint8x8_t *o12, uint8x8_t *o13, uint8x8_t *o14, uint8x8_t *o15) { + // Swap 8 bit elements. Goes from: + // i0: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F + // i1: 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F + // i2: 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F + // i3: 30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F + // i4: 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F + // i5: 50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F + // i6: 60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F + // i7: 70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F + // to: + // b0.val[0]: 00 10 02 12 04 14 06 16 08 18 0A 1A 0C 1C 0E 1E + // b0.val[1]: 01 11 03 13 05 15 07 17 09 19 0B 1B 0D 1D 0F 1F + // b1.val[0]: 20 30 22 32 24 34 26 36 28 38 2A 3A 2C 3C 2E 3E + // b1.val[1]: 21 31 23 33 25 35 27 37 29 39 2B 3B 2D 3D 2F 3F + // b2.val[0]: 40 50 42 52 44 54 46 56 48 58 4A 5A 4C 5C 4E 5E + // b2.val[1]: 41 51 43 53 45 55 47 57 49 59 4B 5B 4D 5D 4F 5F + // b3.val[0]: 60 70 62 72 64 74 66 76 68 78 6A 7A 6C 7C 6E 7E + // b3.val[1]: 61 71 63 73 65 75 67 77 69 79 6B 7B 6D 7D 6F 7F + const uint8x16x2_t b0 = vtrnq_u8(i0, i1); + const uint8x16x2_t b1 = vtrnq_u8(i2, i3); + const uint8x16x2_t b2 = vtrnq_u8(i4, i5); + const uint8x16x2_t b3 = vtrnq_u8(i6, i7); + + // Swap 16 bit elements resulting in: + // c0.val[0]: 00 10 20 30 04 14 24 34 08 18 28 38 0C 1C 2C 3C + // c0.val[1]: 02 12 22 32 06 16 26 36 0A 1A 2A 3A 0E 1E 2E 3E + // c1.val[0]: 01 11 21 31 05 15 25 35 09 19 29 39 0D 1D 2D 3D + // c1.val[1]: 03 13 23 33 07 17 27 37 0B 1B 2B 3B 0F 1F 2F 3F + // c2.val[0]: 40 50 60 70 44 54 64 74 48 58 68 78 4C 5C 6C 7C + // c2.val[1]: 42 52 62 72 46 56 66 76 4A 5A 6A 7A 4E 5E 6E 7E + // c3.val[0]: 41 51 61 71 45 55 65 75 49 59 69 79 4D 5D 6D 7D + // c3.val[1]: 43 53 63 73 47 57 67 77 4B 5B 6B 7B 4F 5F 6F 7F + const uint16x8x2_t c0 = vtrnq_u16(vreinterpretq_u16_u8(b0.val[0]), + vreinterpretq_u16_u8(b1.val[0])); + const uint16x8x2_t c1 = vtrnq_u16(vreinterpretq_u16_u8(b0.val[1]), + vreinterpretq_u16_u8(b1.val[1])); + const uint16x8x2_t c2 = vtrnq_u16(vreinterpretq_u16_u8(b2.val[0]), + vreinterpretq_u16_u8(b3.val[0])); + const uint16x8x2_t c3 = vtrnq_u16(vreinterpretq_u16_u8(b2.val[1]), + vreinterpretq_u16_u8(b3.val[1])); + + // Swap 32 bit elements resulting in: + // d0.val[0]: 00 10 20 30 40 50 60 70 08 18 28 38 48 58 68 78 + // d0.val[1]: 04 14 24 34 44 54 64 74 0C 1C 2C 3C 4C 5C 6C 7C + // d1.val[0]: 02 12 22 32 42 52 62 72 0A 1A 2A 3A 4A 5A 6A 7A + // d1.val[1]: 06 16 26 36 46 56 66 76 0E 1E 2E 3E 4E 5E 6E 7E + // d2.val[0]: 01 11 21 31 41 51 61 71 09 19 29 39 49 59 69 79 + // d2.val[1]: 05 15 25 35 45 55 65 75 0D 1D 2D 3D 4D 5D 6D 7D + // d3.val[0]: 03 13 23 33 43 53 63 73 0B 1B 2B 3B 4B 5B 6B 7B + // d3.val[1]: 07 17 27 37 47 57 67 77 0F 1F 2F 3F 4F 5F 6F 7F + const uint32x4x2_t d0 = vtrnq_u32(vreinterpretq_u32_u16(c0.val[0]), + vreinterpretq_u32_u16(c2.val[0])); + const uint32x4x2_t d1 = vtrnq_u32(vreinterpretq_u32_u16(c0.val[1]), + vreinterpretq_u32_u16(c2.val[1])); + const uint32x4x2_t d2 = vtrnq_u32(vreinterpretq_u32_u16(c1.val[0]), + vreinterpretq_u32_u16(c3.val[0])); + const uint32x4x2_t d3 = vtrnq_u32(vreinterpretq_u32_u16(c1.val[1]), + vreinterpretq_u32_u16(c3.val[1])); + + // Output: + // o0 : 00 10 20 30 40 50 60 70 + // o1 : 01 11 21 31 41 51 61 71 + // o2 : 02 12 22 32 42 52 62 72 + // o3 : 03 13 23 33 43 53 63 73 + // o4 : 04 14 24 34 44 54 64 74 + // o5 : 05 15 25 35 45 55 65 75 + // o6 : 06 16 26 36 46 56 66 76 + // o7 : 07 17 27 37 47 57 67 77 + // o8 : 08 18 28 38 48 58 68 78 + // o9 : 09 19 29 39 49 59 69 79 + // o10: 0A 1A 2A 3A 4A 5A 6A 7A + // o11: 0B 1B 2B 3B 4B 5B 6B 7B + // o12: 0C 1C 2C 3C 4C 5C 6C 7C + // o13: 0D 1D 2D 3D 4D 5D 6D 7D + // o14: 0E 1E 2E 3E 4E 5E 6E 7E + // o15: 0F 1F 2F 3F 4F 5F 6F 7F + *o0 = vget_low_u8(vreinterpretq_u8_u32(d0.val[0])); + *o1 = vget_low_u8(vreinterpretq_u8_u32(d2.val[0])); + *o2 = vget_low_u8(vreinterpretq_u8_u32(d1.val[0])); + *o3 = vget_low_u8(vreinterpretq_u8_u32(d3.val[0])); + *o4 = vget_low_u8(vreinterpretq_u8_u32(d0.val[1])); + *o5 = vget_low_u8(vreinterpretq_u8_u32(d2.val[1])); + *o6 = vget_low_u8(vreinterpretq_u8_u32(d1.val[1])); + *o7 = vget_low_u8(vreinterpretq_u8_u32(d3.val[1])); + *o8 = vget_high_u8(vreinterpretq_u8_u32(d0.val[0])); + *o9 = vget_high_u8(vreinterpretq_u8_u32(d2.val[0])); + *o10 = vget_high_u8(vreinterpretq_u8_u32(d1.val[0])); + *o11 = vget_high_u8(vreinterpretq_u8_u32(d3.val[0])); + *o12 = vget_high_u8(vreinterpretq_u8_u32(d0.val[1])); + *o13 = vget_high_u8(vreinterpretq_u8_u32(d2.val[1])); + *o14 = vget_high_u8(vreinterpretq_u8_u32(d1.val[1])); + *o15 = vget_high_u8(vreinterpretq_u8_u32(d3.val[1])); +} + +static INLINE void transpose_u8_8x16( + const uint8x8_t i0, const uint8x8_t i1, const uint8x8_t i2, + const uint8x8_t i3, const uint8x8_t i4, const uint8x8_t i5, + const uint8x8_t i6, const uint8x8_t i7, const uint8x8_t i8, + const uint8x8_t i9, const uint8x8_t i10, const uint8x8_t i11, + const uint8x8_t i12, const uint8x8_t i13, const uint8x8_t i14, + const uint8x8_t i15, uint8x16_t *o0, uint8x16_t *o1, uint8x16_t *o2, + uint8x16_t *o3, uint8x16_t *o4, uint8x16_t *o5, uint8x16_t *o6, + uint8x16_t *o7) { + // Combine 8 bit elements. Goes from: + // i0 : 00 01 02 03 04 05 06 07 + // i1 : 10 11 12 13 14 15 16 17 + // i2 : 20 21 22 23 24 25 26 27 + // i3 : 30 31 32 33 34 35 36 37 + // i4 : 40 41 42 43 44 45 46 47 + // i5 : 50 51 52 53 54 55 56 57 + // i6 : 60 61 62 63 64 65 66 67 + // i7 : 70 71 72 73 74 75 76 77 + // i8 : 80 81 82 83 84 85 86 87 + // i9 : 90 91 92 93 94 95 96 97 + // i10: A0 A1 A2 A3 A4 A5 A6 A7 + // i11: B0 B1 B2 B3 B4 B5 B6 B7 + // i12: C0 C1 C2 C3 C4 C5 C6 C7 + // i13: D0 D1 D2 D3 D4 D5 D6 D7 + // i14: E0 E1 E2 E3 E4 E5 E6 E7 + // i15: F0 F1 F2 F3 F4 F5 F6 F7 + // to: + // a0: 00 01 02 03 04 05 06 07 80 81 82 83 84 85 86 87 + // a1: 10 11 12 13 14 15 16 17 90 91 92 93 94 95 96 97 + // a2: 20 21 22 23 24 25 26 27 A0 A1 A2 A3 A4 A5 A6 A7 + // a3: 30 31 32 33 34 35 36 37 B0 B1 B2 B3 B4 B5 B6 B7 + // a4: 40 41 42 43 44 45 46 47 C0 C1 C2 C3 C4 C5 C6 C7 + // a5: 50 51 52 53 54 55 56 57 D0 D1 D2 D3 D4 D5 D6 D7 + // a6: 60 61 62 63 64 65 66 67 E0 E1 E2 E3 E4 E5 E6 E7 + // a7: 70 71 72 73 74 75 76 77 F0 F1 F2 F3 F4 F5 F6 F7 + const uint8x16_t a0 = vcombine_u8(i0, i8); + const uint8x16_t a1 = vcombine_u8(i1, i9); + const uint8x16_t a2 = vcombine_u8(i2, i10); + const uint8x16_t a3 = vcombine_u8(i3, i11); + const uint8x16_t a4 = vcombine_u8(i4, i12); + const uint8x16_t a5 = vcombine_u8(i5, i13); + const uint8x16_t a6 = vcombine_u8(i6, i14); + const uint8x16_t a7 = vcombine_u8(i7, i15); + + // Swap 8 bit elements resulting in: + // b0.val[0]: 00 10 02 12 04 14 06 16 80 90 82 92 84 94 86 96 + // b0.val[1]: 01 11 03 13 05 15 07 17 81 91 83 93 85 95 87 97 + // b1.val[0]: 20 30 22 32 24 34 26 36 A0 B0 A2 B2 A4 B4 A6 B6 + // b1.val[1]: 21 31 23 33 25 35 27 37 A1 B1 A3 B3 A5 B5 A7 B7 + // b2.val[0]: 40 50 42 52 44 54 46 56 C0 D0 C2 D2 C4 D4 C6 D6 + // b2.val[1]: 41 51 43 53 45 55 47 57 C1 D1 C3 D3 C5 D5 C7 D7 + // b3.val[0]: 60 70 62 72 64 74 66 76 E0 F0 E2 F2 E4 F4 E6 F6 + // b3.val[1]: 61 71 63 73 65 75 67 77 E1 F1 E3 F3 E5 F5 E7 F7 + const uint8x16x2_t b0 = vtrnq_u8(a0, a1); + const uint8x16x2_t b1 = vtrnq_u8(a2, a3); + const uint8x16x2_t b2 = vtrnq_u8(a4, a5); + const uint8x16x2_t b3 = vtrnq_u8(a6, a7); + + // Swap 16 bit elements resulting in: + // c0.val[0]: 00 10 20 30 04 14 24 34 80 90 A0 B0 84 94 A4 B4 + // c0.val[1]: 02 12 22 32 06 16 26 36 82 92 A2 B2 86 96 A6 B6 + // c1.val[0]: 01 11 21 31 05 15 25 35 81 91 A1 B1 85 95 A5 B5 + // c1.val[1]: 03 13 23 33 07 17 27 37 83 93 A3 B3 87 97 A7 B7 + // c2.val[0]: 40 50 60 70 44 54 64 74 C0 D0 E0 F0 C4 D4 E4 F4 + // c2.val[1]: 42 52 62 72 46 56 66 76 C2 D2 E2 F2 C6 D6 E6 F6 + // c3.val[0]: 41 51 61 71 45 55 65 75 C1 D1 E1 F1 C5 D5 E5 F5 + // c3.val[1]: 43 53 63 73 47 57 67 77 C3 D3 E3 F3 C7 D7 E7 F7 + const uint16x8x2_t c0 = vtrnq_u16(vreinterpretq_u16_u8(b0.val[0]), + vreinterpretq_u16_u8(b1.val[0])); + const uint16x8x2_t c1 = vtrnq_u16(vreinterpretq_u16_u8(b0.val[1]), + vreinterpretq_u16_u8(b1.val[1])); + const uint16x8x2_t c2 = vtrnq_u16(vreinterpretq_u16_u8(b2.val[0]), + vreinterpretq_u16_u8(b3.val[0])); + const uint16x8x2_t c3 = vtrnq_u16(vreinterpretq_u16_u8(b2.val[1]), + vreinterpretq_u16_u8(b3.val[1])); + + // Swap 32 bit elements resulting in: + // d0.val[0]: 00 10 20 30 40 50 60 70 80 90 A0 B0 C0 D0 E0 F0 + // d0.val[1]: 04 14 24 34 44 54 64 74 84 94 A4 B4 C4 D4 E4 F4 + // d1.val[0]: 02 12 22 32 42 52 62 72 82 92 A2 B2 C2 D2 E2 F2 + // d1.val[1]: 06 16 26 36 46 56 66 76 86 96 A6 B6 C6 D6 E6 F6 + // d2.val[0]: 01 11 21 31 41 51 61 71 81 91 A1 B1 C1 D1 E1 F1 + // d2.val[1]: 05 15 25 35 45 55 65 75 85 95 A5 B5 C5 D5 E5 F5 + // d3.val[0]: 03 13 23 33 43 53 63 73 83 93 A3 B3 C3 D3 E3 F3 + // d3.val[1]: 07 17 27 37 47 57 67 77 87 97 A7 B7 C7 D7 E7 F7 + const uint32x4x2_t d0 = vtrnq_u32(vreinterpretq_u32_u16(c0.val[0]), + vreinterpretq_u32_u16(c2.val[0])); + const uint32x4x2_t d1 = vtrnq_u32(vreinterpretq_u32_u16(c0.val[1]), + vreinterpretq_u32_u16(c2.val[1])); + const uint32x4x2_t d2 = vtrnq_u32(vreinterpretq_u32_u16(c1.val[0]), + vreinterpretq_u32_u16(c3.val[0])); + const uint32x4x2_t d3 = vtrnq_u32(vreinterpretq_u32_u16(c1.val[1]), + vreinterpretq_u32_u16(c3.val[1])); + + // Output: + // o0: 00 10 20 30 40 50 60 70 80 90 A0 B0 C0 D0 E0 F0 + // o1: 01 11 21 31 41 51 61 71 81 91 A1 B1 C1 D1 E1 F1 + // o2: 02 12 22 32 42 52 62 72 82 92 A2 B2 C2 D2 E2 F2 + // o3: 03 13 23 33 43 53 63 73 83 93 A3 B3 C3 D3 E3 F3 + // o4: 04 14 24 34 44 54 64 74 84 94 A4 B4 C4 D4 E4 F4 + // o5: 05 15 25 35 45 55 65 75 85 95 A5 B5 C5 D5 E5 F5 + // o6: 06 16 26 36 46 56 66 76 86 96 A6 B6 C6 D6 E6 F6 + // o7: 07 17 27 37 47 57 67 77 87 97 A7 B7 C7 D7 E7 F7 + *o0 = vreinterpretq_u8_u32(d0.val[0]); + *o1 = vreinterpretq_u8_u32(d2.val[0]); + *o2 = vreinterpretq_u8_u32(d1.val[0]); + *o3 = vreinterpretq_u8_u32(d3.val[0]); + *o4 = vreinterpretq_u8_u32(d0.val[1]); + *o5 = vreinterpretq_u8_u32(d2.val[1]); + *o6 = vreinterpretq_u8_u32(d1.val[1]); + *o7 = vreinterpretq_u8_u32(d3.val[1]); +} + +static INLINE void transpose_u8_16x16( + const uint8x16_t i0, const uint8x16_t i1, const uint8x16_t i2, + const uint8x16_t i3, const uint8x16_t i4, const uint8x16_t i5, + const uint8x16_t i6, const uint8x16_t i7, const uint8x16_t i8, + const uint8x16_t i9, const uint8x16_t i10, const uint8x16_t i11, + const uint8x16_t i12, const uint8x16_t i13, const uint8x16_t i14, + const uint8x16_t i15, uint8x16_t *o0, uint8x16_t *o1, uint8x16_t *o2, + uint8x16_t *o3, uint8x16_t *o4, uint8x16_t *o5, uint8x16_t *o6, + uint8x16_t *o7, uint8x16_t *o8, uint8x16_t *o9, uint8x16_t *o10, + uint8x16_t *o11, uint8x16_t *o12, uint8x16_t *o13, uint8x16_t *o14, + uint8x16_t *o15) { + // Swap 8 bit elements. Goes from: + // i0: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F + // i1: 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F + // i2: 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F + // i3: 30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F + // i4: 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F + // i5: 50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F + // i6: 60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F + // i7: 70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F + // i8: 80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F + // i9: 90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F + // i10: A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF + // i11: B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF + // i12: C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF + // i13: D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF + // i14: E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF + // i15: F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF + // to: + // b0.val[0]: 00 10 02 12 04 14 06 16 08 18 0A 1A 0C 1C 0E 1E + // b0.val[1]: 01 11 03 13 05 15 07 17 09 19 0B 1B 0D 1D 0F 1F + // b1.val[0]: 20 30 22 32 24 34 26 36 28 38 2A 3A 2C 3C 2E 3E + // b1.val[1]: 21 31 23 33 25 35 27 37 29 39 2B 3B 2D 3D 2F 3F + // b2.val[0]: 40 50 42 52 44 54 46 56 48 58 4A 5A 4C 5C 4E 5E + // b2.val[1]: 41 51 43 53 45 55 47 57 49 59 4B 5B 4D 5D 4F 5F + // b3.val[0]: 60 70 62 72 64 74 66 76 68 78 6A 7A 6C 7C 6E 7E + // b3.val[1]: 61 71 63 73 65 75 67 77 69 79 6B 7B 6D 7D 6F 7F + // b4.val[0]: 80 90 82 92 84 94 86 96 88 98 8A 9A 8C 9C 8E 9E + // b4.val[1]: 81 91 83 93 85 95 87 97 89 99 8B 9B 8D 9D 8F 9F + // b5.val[0]: A0 B0 A2 B2 A4 B4 A6 B6 A8 B8 AA BA AC BC AE BE + // b5.val[1]: A1 B1 A3 B3 A5 B5 A7 B7 A9 B9 AB BB AD BD AF BF + // b6.val[0]: C0 D0 C2 D2 C4 D4 C6 D6 C8 D8 CA DA CC DC CE DE + // b6.val[1]: C1 D1 C3 D3 C5 D5 C7 D7 C9 D9 CB DB CD DD CF DF + // b7.val[0]: E0 F0 E2 F2 E4 F4 E6 F6 E8 F8 EA FA EC FC EE FE + // b7.val[1]: E1 F1 E3 F3 E5 F5 E7 F7 E9 F9 EB FB ED FD EF FF + const uint8x16x2_t b0 = vtrnq_u8(i0, i1); + const uint8x16x2_t b1 = vtrnq_u8(i2, i3); + const uint8x16x2_t b2 = vtrnq_u8(i4, i5); + const uint8x16x2_t b3 = vtrnq_u8(i6, i7); + const uint8x16x2_t b4 = vtrnq_u8(i8, i9); + const uint8x16x2_t b5 = vtrnq_u8(i10, i11); + const uint8x16x2_t b6 = vtrnq_u8(i12, i13); + const uint8x16x2_t b7 = vtrnq_u8(i14, i15); + + // Swap 16 bit elements resulting in: + // c0.val[0]: 00 10 20 30 04 14 24 34 08 18 28 38 0C 1C 2C 3C + // c0.val[1]: 02 12 22 32 06 16 26 36 0A 1A 2A 3A 0E 1E 2E 3E + // c1.val[0]: 01 11 21 31 05 15 25 35 09 19 29 39 0D 1D 2D 3D + // c1.val[1]: 03 13 23 33 07 17 27 37 0B 1B 2B 3B 0F 1F 2F 3F + // c2.val[0]: 40 50 60 70 44 54 64 74 48 58 68 78 4C 5C 6C 7C + // c2.val[1]: 42 52 62 72 46 56 66 76 4A 5A 6A 7A 4E 5E 6E 7E + // c3.val[0]: 41 51 61 71 45 55 65 75 49 59 69 79 4D 5D 6D 7D + // c3.val[1]: 43 53 63 73 47 57 67 77 4B 5B 6B 7B 4F 5F 6F 7F + // c4.val[0]: 80 90 A0 B0 84 94 A4 B4 88 98 A8 B8 8C 9C AC BC + // c4.val[1]: 82 92 A2 B2 86 96 A6 B6 8A 9A AA BA 8E 9E AE BE + // c5.val[0]: 81 91 A1 B1 85 95 A5 B5 89 99 A9 B9 8D 9D AD BD + // c5.val[1]: 83 93 A3 B3 87 97 A7 B7 8B 9B AB BB 8F 9F AF BF + // c6.val[0]: C0 D0 E0 F0 C4 D4 E4 F4 C8 D8 E8 F8 CC DC EC FC + // c6.val[1]: C2 D2 E2 F2 C6 D6 E6 F6 CA DA EA FA CE DE EE FE + // c7.val[0]: C1 D1 E1 F1 C5 D5 E5 F5 C9 D9 E9 F9 CD DD ED FD + // c7.val[1]: C3 D3 E3 F3 C7 D7 E7 F7 CB DB EB FB CF DF EF FF + const uint16x8x2_t c0 = vtrnq_u16(vreinterpretq_u16_u8(b0.val[0]), + vreinterpretq_u16_u8(b1.val[0])); + const uint16x8x2_t c1 = vtrnq_u16(vreinterpretq_u16_u8(b0.val[1]), + vreinterpretq_u16_u8(b1.val[1])); + const uint16x8x2_t c2 = vtrnq_u16(vreinterpretq_u16_u8(b2.val[0]), + vreinterpretq_u16_u8(b3.val[0])); + const uint16x8x2_t c3 = vtrnq_u16(vreinterpretq_u16_u8(b2.val[1]), + vreinterpretq_u16_u8(b3.val[1])); + const uint16x8x2_t c4 = vtrnq_u16(vreinterpretq_u16_u8(b4.val[0]), + vreinterpretq_u16_u8(b5.val[0])); + const uint16x8x2_t c5 = vtrnq_u16(vreinterpretq_u16_u8(b4.val[1]), + vreinterpretq_u16_u8(b5.val[1])); + const uint16x8x2_t c6 = vtrnq_u16(vreinterpretq_u16_u8(b6.val[0]), + vreinterpretq_u16_u8(b7.val[0])); + const uint16x8x2_t c7 = vtrnq_u16(vreinterpretq_u16_u8(b6.val[1]), + vreinterpretq_u16_u8(b7.val[1])); + + // Swap 32 bit elements resulting in: + // d0.val[0]: 00 10 20 30 40 50 60 70 08 18 28 38 48 58 68 78 + // d0.val[1]: 04 14 24 34 44 54 64 74 0C 1C 2C 3C 4C 5C 6C 7C + // d1.val[0]: 02 12 22 32 42 52 62 72 0A 1A 2A 3A 4A 5A 6A 7A + // d1.val[1]: 06 16 26 36 46 56 66 76 0E 1E 2E 3E 4E 5E 6E 7E + // d2.val[0]: 01 11 21 31 41 51 61 71 09 19 29 39 49 59 69 79 + // d2.val[1]: 05 15 25 35 45 55 65 75 0D 1D 2D 3D 4D 5D 6D 7D + // d3.val[0]: 03 13 23 33 43 53 63 73 0B 1B 2B 3B 4B 5B 6B 7B + // d3.val[1]: 07 17 27 37 47 57 67 77 0F 1F 2F 3F 4F 5F 6F 7F + // d4.val[0]: 80 90 A0 B0 C0 D0 E0 F0 88 98 A8 B8 C8 D8 E8 F8 + // d4.val[1]: 84 94 A4 B4 C4 D4 E4 F4 8C 9C AC BC CC DC EC FC + // d5.val[0]: 82 92 A2 B2 C2 D2 E2 F2 8A 9A AA BA CA DA EA FA + // d5.val[1]: 86 96 A6 B6 C6 D6 E6 F6 8E 9E AE BE CE DE EE FE + // d6.val[0]: 81 91 A1 B1 C1 D1 E1 F1 89 99 A9 B9 C9 D9 E9 F9 + // d6.val[1]: 85 95 A5 B5 C5 D5 E5 F5 8D 9D AD BD CD DD ED FD + // d7.val[0]: 83 93 A3 B3 C3 D3 E3 F3 8B 9B AB BB CB DB EB FB + // d7.val[1]: 87 97 A7 B7 C7 D7 E7 F7 8F 9F AF BF CF DF EF FF + const uint32x4x2_t d0 = vtrnq_u32(vreinterpretq_u32_u16(c0.val[0]), + vreinterpretq_u32_u16(c2.val[0])); + const uint32x4x2_t d1 = vtrnq_u32(vreinterpretq_u32_u16(c0.val[1]), + vreinterpretq_u32_u16(c2.val[1])); + const uint32x4x2_t d2 = vtrnq_u32(vreinterpretq_u32_u16(c1.val[0]), + vreinterpretq_u32_u16(c3.val[0])); + const uint32x4x2_t d3 = vtrnq_u32(vreinterpretq_u32_u16(c1.val[1]), + vreinterpretq_u32_u16(c3.val[1])); + const uint32x4x2_t d4 = vtrnq_u32(vreinterpretq_u32_u16(c4.val[0]), + vreinterpretq_u32_u16(c6.val[0])); + const uint32x4x2_t d5 = vtrnq_u32(vreinterpretq_u32_u16(c4.val[1]), + vreinterpretq_u32_u16(c6.val[1])); + const uint32x4x2_t d6 = vtrnq_u32(vreinterpretq_u32_u16(c5.val[0]), + vreinterpretq_u32_u16(c7.val[0])); + const uint32x4x2_t d7 = vtrnq_u32(vreinterpretq_u32_u16(c5.val[1]), + vreinterpretq_u32_u16(c7.val[1])); + + // Swap 64 bit elements resulting in: + // e0.val[0]: 00 10 20 30 40 50 60 70 80 90 A0 B0 C0 D0 E0 F0 + // e0.val[1]: 08 18 28 38 48 58 68 78 88 98 A8 B8 C8 D8 E8 F8 + // e1.val[0]: 01 11 21 31 41 51 61 71 84 94 A4 B4 C4 D4 E4 F4 + // e1.val[1]: 09 19 29 39 49 59 69 79 89 99 A9 B9 C9 D9 E9 F9 + // e2.val[0]: 02 12 22 32 42 52 62 72 82 92 A2 B2 C2 D2 E2 F2 + // e2.val[1]: 0A 1A 2A 3A 4A 5A 6A 7A 8A 9A AA BA CA DA EA FA + // e3.val[0]: 03 13 23 33 43 53 63 73 86 96 A6 B6 C6 D6 E6 F6 + // e3.val[1]: 0B 1B 2B 3B 4B 5B 6B 7B 8B 9B AB BB CB DB EB FB + // e4.val[0]: 04 14 24 34 44 54 64 74 81 91 A1 B1 C1 D1 E1 F1 + // e4.val[1]: 0C 1C 2C 3C 4C 5C 6C 7C 8C 9C AC BC CC DC EC FC + // e5.val[0]: 05 15 25 35 45 55 65 75 85 95 A5 B5 C5 D5 E5 F5 + // e5.val[1]: 0D 1D 2D 3D 4D 5D 6D 7D 8D 9D AD BD CD DD ED FD + // e6.val[0]: 06 16 26 36 46 56 66 76 83 93 A3 B3 C3 D3 E3 F3 + // e6.val[1]: 0E 1E 2E 3E 4E 5E 6E 7E 8E 9E AE BE CE DE EE FE + // e7.val[0]: 07 17 27 37 47 57 67 77 87 97 A7 B7 C7 D7 E7 F7 + // e7.val[1]: 0F 1F 2F 3F 4F 5F 6F 7F 8F 9F AF BF CF DF EF FF + const uint8x16x2_t e0 = vpx_vtrnq_u64_to_u8(d0.val[0], d4.val[0]); + const uint8x16x2_t e1 = vpx_vtrnq_u64_to_u8(d2.val[0], d6.val[0]); + const uint8x16x2_t e2 = vpx_vtrnq_u64_to_u8(d1.val[0], d5.val[0]); + const uint8x16x2_t e3 = vpx_vtrnq_u64_to_u8(d3.val[0], d7.val[0]); + const uint8x16x2_t e4 = vpx_vtrnq_u64_to_u8(d0.val[1], d4.val[1]); + const uint8x16x2_t e5 = vpx_vtrnq_u64_to_u8(d2.val[1], d6.val[1]); + const uint8x16x2_t e6 = vpx_vtrnq_u64_to_u8(d1.val[1], d5.val[1]); + const uint8x16x2_t e7 = vpx_vtrnq_u64_to_u8(d3.val[1], d7.val[1]); + + // Output: + // o0 : 00 10 20 30 40 50 60 70 80 90 A0 B0 C0 D0 E0 F0 + // o1 : 01 11 21 31 41 51 61 71 84 94 A4 B4 C4 D4 E4 F4 + // o2 : 02 12 22 32 42 52 62 72 82 92 A2 B2 C2 D2 E2 F2 + // o3 : 03 13 23 33 43 53 63 73 86 96 A6 B6 C6 D6 E6 F6 + // o4 : 04 14 24 34 44 54 64 74 81 91 A1 B1 C1 D1 E1 F1 + // o5 : 05 15 25 35 45 55 65 75 85 95 A5 B5 C5 D5 E5 F5 + // o6 : 06 16 26 36 46 56 66 76 83 93 A3 B3 C3 D3 E3 F3 + // o7 : 07 17 27 37 47 57 67 77 87 97 A7 B7 C7 D7 E7 F7 + // o8 : 08 18 28 38 48 58 68 78 88 98 A8 B8 C8 D8 E8 F8 + // o9 : 09 19 29 39 49 59 69 79 89 99 A9 B9 C9 D9 E9 F9 + // o10: 0A 1A 2A 3A 4A 5A 6A 7A 8A 9A AA BA CA DA EA FA + // o11: 0B 1B 2B 3B 4B 5B 6B 7B 8B 9B AB BB CB DB EB FB + // o12: 0C 1C 2C 3C 4C 5C 6C 7C 8C 9C AC BC CC DC EC FC + // o13: 0D 1D 2D 3D 4D 5D 6D 7D 8D 9D AD BD CD DD ED FD + // o14: 0E 1E 2E 3E 4E 5E 6E 7E 8E 9E AE BE CE DE EE FE + // o15: 0F 1F 2F 3F 4F 5F 6F 7F 8F 9F AF BF CF DF EF FF + *o0 = e0.val[0]; + *o1 = e1.val[0]; + *o2 = e2.val[0]; + *o3 = e3.val[0]; + *o4 = e4.val[0]; + *o5 = e5.val[0]; + *o6 = e6.val[0]; + *o7 = e7.val[0]; + *o8 = e0.val[1]; + *o9 = e1.val[1]; + *o10 = e2.val[1]; + *o11 = e3.val[1]; + *o12 = e4.val[1]; + *o13 = e5.val[1]; + *o14 = e6.val[1]; + *o15 = e7.val[1]; +} + +static INLINE void load_and_transpose_u8_4x8(const uint8_t *a, + const int a_stride, uint8x8_t *a0, + uint8x8_t *a1, uint8x8_t *a2, + uint8x8_t *a3) { + uint8x8_t a4, a5, a6, a7; + *a0 = vld1_u8(a); + a += a_stride; + *a1 = vld1_u8(a); + a += a_stride; + *a2 = vld1_u8(a); + a += a_stride; + *a3 = vld1_u8(a); + a += a_stride; + a4 = vld1_u8(a); + a += a_stride; + a5 = vld1_u8(a); + a += a_stride; + a6 = vld1_u8(a); + a += a_stride; + a7 = vld1_u8(a); + + transpose_u8_4x8(a0, a1, a2, a3, a4, a5, a6, a7); +} + +static INLINE void load_and_transpose_u8_8x8(const uint8_t *a, + const int a_stride, uint8x8_t *a0, + uint8x8_t *a1, uint8x8_t *a2, + uint8x8_t *a3, uint8x8_t *a4, + uint8x8_t *a5, uint8x8_t *a6, + uint8x8_t *a7) { + *a0 = vld1_u8(a); + a += a_stride; + *a1 = vld1_u8(a); + a += a_stride; + *a2 = vld1_u8(a); + a += a_stride; + *a3 = vld1_u8(a); + a += a_stride; + *a4 = vld1_u8(a); + a += a_stride; + *a5 = vld1_u8(a); + a += a_stride; + *a6 = vld1_u8(a); + a += a_stride; + *a7 = vld1_u8(a); + + transpose_u8_8x8(a0, a1, a2, a3, a4, a5, a6, a7); +} + +static INLINE void transpose_and_store_u8_8x8(uint8_t *a, const int a_stride, + uint8x8_t a0, uint8x8_t a1, + uint8x8_t a2, uint8x8_t a3, + uint8x8_t a4, uint8x8_t a5, + uint8x8_t a6, uint8x8_t a7) { + transpose_u8_8x8(&a0, &a1, &a2, &a3, &a4, &a5, &a6, &a7); + + vst1_u8(a, a0); + a += a_stride; + vst1_u8(a, a1); + a += a_stride; + vst1_u8(a, a2); + a += a_stride; + vst1_u8(a, a3); + a += a_stride; + vst1_u8(a, a4); + a += a_stride; + vst1_u8(a, a5); + a += a_stride; + vst1_u8(a, a6); + a += a_stride; + vst1_u8(a, a7); +} + +static INLINE void load_and_transpose_s16_8x8(const int16_t *a, + const int a_stride, int16x8_t *a0, + int16x8_t *a1, int16x8_t *a2, + int16x8_t *a3, int16x8_t *a4, + int16x8_t *a5, int16x8_t *a6, + int16x8_t *a7) { + *a0 = vld1q_s16(a); + a += a_stride; + *a1 = vld1q_s16(a); + a += a_stride; + *a2 = vld1q_s16(a); + a += a_stride; + *a3 = vld1q_s16(a); + a += a_stride; + *a4 = vld1q_s16(a); + a += a_stride; + *a5 = vld1q_s16(a); + a += a_stride; + *a6 = vld1q_s16(a); + a += a_stride; + *a7 = vld1q_s16(a); + + transpose_s16_8x8(a0, a1, a2, a3, a4, a5, a6, a7); +} + +static INLINE void load_and_transpose_s32_8x8( + const int32_t *a, const int a_stride, int32x4x2_t *const a0, + int32x4x2_t *const a1, int32x4x2_t *const a2, int32x4x2_t *const a3, + int32x4x2_t *const a4, int32x4x2_t *const a5, int32x4x2_t *const a6, + int32x4x2_t *const a7) { + a0->val[0] = vld1q_s32(a); + a0->val[1] = vld1q_s32(a + 4); + a += a_stride; + a1->val[0] = vld1q_s32(a); + a1->val[1] = vld1q_s32(a + 4); + a += a_stride; + a2->val[0] = vld1q_s32(a); + a2->val[1] = vld1q_s32(a + 4); + a += a_stride; + a3->val[0] = vld1q_s32(a); + a3->val[1] = vld1q_s32(a + 4); + a += a_stride; + a4->val[0] = vld1q_s32(a); + a4->val[1] = vld1q_s32(a + 4); + a += a_stride; + a5->val[0] = vld1q_s32(a); + a5->val[1] = vld1q_s32(a + 4); + a += a_stride; + a6->val[0] = vld1q_s32(a); + a6->val[1] = vld1q_s32(a + 4); + a += a_stride; + a7->val[0] = vld1q_s32(a); + a7->val[1] = vld1q_s32(a + 4); + + transpose_s32_8x8(a0, a1, a2, a3, a4, a5, a6, a7); +} +#endif // VPX_DSP_ARM_TRANSPOSE_NEON_H_ diff --git a/vpx_dsp/arm/variance_neon.c b/vpx_dsp/arm/variance_neon.c new file mode 100644 index 0000000..61c2c16 --- /dev/null +++ b/vpx_dsp/arm/variance_neon.c @@ -0,0 +1,366 @@ +/* + * Copyright (c) 2014 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include + +#include "./vpx_dsp_rtcd.h" +#include "./vpx_config.h" + +#include "vpx/vpx_integer.h" +#include "vpx_dsp/arm/mem_neon.h" +#include "vpx_dsp/arm/sum_neon.h" +#include "vpx_ports/mem.h" + +// The variance helper functions use int16_t for sum. 8 values are accumulated +// and then added (at which point they expand up to int32_t). To avoid overflow, +// there can be no more than 32767 / 255 ~= 128 values accumulated in each +// column. For a 32x32 buffer, this results in 32 / 8 = 4 values per row * 32 +// rows = 128. Asserts have been added to each function to warn against reaching +// this limit. + +// Process a block of width 4 four rows at a time. +static void variance_neon_w4x4(const uint8_t *a, int a_stride, const uint8_t *b, + int b_stride, int h, uint32_t *sse, int *sum) { + int i; + int16x8_t sum_s16 = vdupq_n_s16(0); + int32x4_t sse_lo_s32 = vdupq_n_s32(0); + int32x4_t sse_hi_s32 = vdupq_n_s32(0); + + // Since width is only 4, sum_s16 only loads a half row per loop. + assert(h <= 256); + + for (i = 0; i < h; i += 4) { + const uint8x16_t a_u8 = load_unaligned_u8q(a, a_stride); + const uint8x16_t b_u8 = load_unaligned_u8q(b, b_stride); + const uint16x8_t diff_lo_u16 = + vsubl_u8(vget_low_u8(a_u8), vget_low_u8(b_u8)); + const uint16x8_t diff_hi_u16 = + vsubl_u8(vget_high_u8(a_u8), vget_high_u8(b_u8)); + + const int16x8_t diff_lo_s16 = vreinterpretq_s16_u16(diff_lo_u16); + const int16x8_t diff_hi_s16 = vreinterpretq_s16_u16(diff_hi_u16); + + sum_s16 = vaddq_s16(sum_s16, diff_lo_s16); + sum_s16 = vaddq_s16(sum_s16, diff_hi_s16); + + sse_lo_s32 = vmlal_s16(sse_lo_s32, vget_low_s16(diff_lo_s16), + vget_low_s16(diff_lo_s16)); + sse_lo_s32 = vmlal_s16(sse_lo_s32, vget_high_s16(diff_lo_s16), + vget_high_s16(diff_lo_s16)); + + sse_hi_s32 = vmlal_s16(sse_hi_s32, vget_low_s16(diff_hi_s16), + vget_low_s16(diff_hi_s16)); + sse_hi_s32 = vmlal_s16(sse_hi_s32, vget_high_s16(diff_hi_s16), + vget_high_s16(diff_hi_s16)); + + a += 4 * a_stride; + b += 4 * b_stride; + } + + *sum = vget_lane_s32(horizontal_add_int16x8(sum_s16), 0); + *sse = vget_lane_u32(horizontal_add_uint32x4(vreinterpretq_u32_s32( + vaddq_s32(sse_lo_s32, sse_hi_s32))), + 0); +} + +// Process a block of any size where the width is divisible by 16. +static void variance_neon_w16(const uint8_t *a, int a_stride, const uint8_t *b, + int b_stride, int w, int h, uint32_t *sse, + int *sum) { + int i, j; + int16x8_t sum_s16 = vdupq_n_s16(0); + int32x4_t sse_lo_s32 = vdupq_n_s32(0); + int32x4_t sse_hi_s32 = vdupq_n_s32(0); + + // The loop loads 16 values at a time but doubles them up when accumulating + // into sum_s16. + assert(w / 8 * h <= 128); + + for (i = 0; i < h; ++i) { + for (j = 0; j < w; j += 16) { + const uint8x16_t a_u8 = vld1q_u8(a + j); + const uint8x16_t b_u8 = vld1q_u8(b + j); + + const uint16x8_t diff_lo_u16 = + vsubl_u8(vget_low_u8(a_u8), vget_low_u8(b_u8)); + const uint16x8_t diff_hi_u16 = + vsubl_u8(vget_high_u8(a_u8), vget_high_u8(b_u8)); + + const int16x8_t diff_lo_s16 = vreinterpretq_s16_u16(diff_lo_u16); + const int16x8_t diff_hi_s16 = vreinterpretq_s16_u16(diff_hi_u16); + + sum_s16 = vaddq_s16(sum_s16, diff_lo_s16); + sum_s16 = vaddq_s16(sum_s16, diff_hi_s16); + + sse_lo_s32 = vmlal_s16(sse_lo_s32, vget_low_s16(diff_lo_s16), + vget_low_s16(diff_lo_s16)); + sse_lo_s32 = vmlal_s16(sse_lo_s32, vget_high_s16(diff_lo_s16), + vget_high_s16(diff_lo_s16)); + + sse_hi_s32 = vmlal_s16(sse_hi_s32, vget_low_s16(diff_hi_s16), + vget_low_s16(diff_hi_s16)); + sse_hi_s32 = vmlal_s16(sse_hi_s32, vget_high_s16(diff_hi_s16), + vget_high_s16(diff_hi_s16)); + } + a += a_stride; + b += b_stride; + } + + *sum = vget_lane_s32(horizontal_add_int16x8(sum_s16), 0); + *sse = vget_lane_u32(horizontal_add_uint32x4(vreinterpretq_u32_s32( + vaddq_s32(sse_lo_s32, sse_hi_s32))), + 0); +} + +// Process a block of width 8 two rows at a time. +static void variance_neon_w8x2(const uint8_t *a, int a_stride, const uint8_t *b, + int b_stride, int h, uint32_t *sse, int *sum) { + int i = 0; + int16x8_t sum_s16 = vdupq_n_s16(0); + int32x4_t sse_lo_s32 = vdupq_n_s32(0); + int32x4_t sse_hi_s32 = vdupq_n_s32(0); + + // Each column has it's own accumulator entry in sum_s16. + assert(h <= 128); + + do { + const uint8x8_t a_0_u8 = vld1_u8(a); + const uint8x8_t a_1_u8 = vld1_u8(a + a_stride); + const uint8x8_t b_0_u8 = vld1_u8(b); + const uint8x8_t b_1_u8 = vld1_u8(b + b_stride); + const uint16x8_t diff_0_u16 = vsubl_u8(a_0_u8, b_0_u8); + const uint16x8_t diff_1_u16 = vsubl_u8(a_1_u8, b_1_u8); + const int16x8_t diff_0_s16 = vreinterpretq_s16_u16(diff_0_u16); + const int16x8_t diff_1_s16 = vreinterpretq_s16_u16(diff_1_u16); + sum_s16 = vaddq_s16(sum_s16, diff_0_s16); + sum_s16 = vaddq_s16(sum_s16, diff_1_s16); + sse_lo_s32 = vmlal_s16(sse_lo_s32, vget_low_s16(diff_0_s16), + vget_low_s16(diff_0_s16)); + sse_lo_s32 = vmlal_s16(sse_lo_s32, vget_low_s16(diff_1_s16), + vget_low_s16(diff_1_s16)); + sse_hi_s32 = vmlal_s16(sse_hi_s32, vget_high_s16(diff_0_s16), + vget_high_s16(diff_0_s16)); + sse_hi_s32 = vmlal_s16(sse_hi_s32, vget_high_s16(diff_1_s16), + vget_high_s16(diff_1_s16)); + a += a_stride + a_stride; + b += b_stride + b_stride; + i += 2; + } while (i < h); + + *sum = vget_lane_s32(horizontal_add_int16x8(sum_s16), 0); + *sse = vget_lane_u32(horizontal_add_uint32x4(vreinterpretq_u32_s32( + vaddq_s32(sse_lo_s32, sse_hi_s32))), + 0); +} + +void vpx_get8x8var_neon(const uint8_t *a, int a_stride, const uint8_t *b, + int b_stride, unsigned int *sse, int *sum) { + variance_neon_w8x2(a, a_stride, b, b_stride, 8, sse, sum); +} + +void vpx_get16x16var_neon(const uint8_t *a, int a_stride, const uint8_t *b, + int b_stride, unsigned int *sse, int *sum) { + variance_neon_w16(a, a_stride, b, b_stride, 16, 16, sse, sum); +} + +#define varianceNxM(n, m, shift) \ + unsigned int vpx_variance##n##x##m##_neon(const uint8_t *a, int a_stride, \ + const uint8_t *b, int b_stride, \ + unsigned int *sse) { \ + int sum; \ + if (n == 4) \ + variance_neon_w4x4(a, a_stride, b, b_stride, m, sse, &sum); \ + else if (n == 8) \ + variance_neon_w8x2(a, a_stride, b, b_stride, m, sse, &sum); \ + else \ + variance_neon_w16(a, a_stride, b, b_stride, n, m, sse, &sum); \ + if (n * m < 16 * 16) \ + return *sse - ((sum * sum) >> shift); \ + else \ + return *sse - (uint32_t)(((int64_t)sum * sum) >> shift); \ + } + +varianceNxM(4, 4, 4); +varianceNxM(4, 8, 5); +varianceNxM(8, 4, 5); +varianceNxM(8, 8, 6); +varianceNxM(8, 16, 7); +varianceNxM(16, 8, 7); +varianceNxM(16, 16, 8); +varianceNxM(16, 32, 9); +varianceNxM(32, 16, 9); +varianceNxM(32, 32, 10); + +unsigned int vpx_variance32x64_neon(const uint8_t *a, int a_stride, + const uint8_t *b, int b_stride, + unsigned int *sse) { + int sum1, sum2; + uint32_t sse1, sse2; + variance_neon_w16(a, a_stride, b, b_stride, 32, 32, &sse1, &sum1); + variance_neon_w16(a + (32 * a_stride), a_stride, b + (32 * b_stride), + b_stride, 32, 32, &sse2, &sum2); + *sse = sse1 + sse2; + sum1 += sum2; + return *sse - (unsigned int)(((int64_t)sum1 * sum1) >> 11); +} + +unsigned int vpx_variance64x32_neon(const uint8_t *a, int a_stride, + const uint8_t *b, int b_stride, + unsigned int *sse) { + int sum1, sum2; + uint32_t sse1, sse2; + variance_neon_w16(a, a_stride, b, b_stride, 64, 16, &sse1, &sum1); + variance_neon_w16(a + (16 * a_stride), a_stride, b + (16 * b_stride), + b_stride, 64, 16, &sse2, &sum2); + *sse = sse1 + sse2; + sum1 += sum2; + return *sse - (unsigned int)(((int64_t)sum1 * sum1) >> 11); +} + +unsigned int vpx_variance64x64_neon(const uint8_t *a, int a_stride, + const uint8_t *b, int b_stride, + unsigned int *sse) { + int sum1, sum2; + uint32_t sse1, sse2; + + variance_neon_w16(a, a_stride, b, b_stride, 64, 16, &sse1, &sum1); + variance_neon_w16(a + (16 * a_stride), a_stride, b + (16 * b_stride), + b_stride, 64, 16, &sse2, &sum2); + sse1 += sse2; + sum1 += sum2; + + variance_neon_w16(a + (16 * 2 * a_stride), a_stride, b + (16 * 2 * b_stride), + b_stride, 64, 16, &sse2, &sum2); + sse1 += sse2; + sum1 += sum2; + + variance_neon_w16(a + (16 * 3 * a_stride), a_stride, b + (16 * 3 * b_stride), + b_stride, 64, 16, &sse2, &sum2); + *sse = sse1 + sse2; + sum1 += sum2; + return *sse - (unsigned int)(((int64_t)sum1 * sum1) >> 12); +} + +unsigned int vpx_mse16x16_neon(const unsigned char *src_ptr, int source_stride, + const unsigned char *ref_ptr, int recon_stride, + unsigned int *sse) { + int i; + int16x4_t d22s16, d23s16, d24s16, d25s16, d26s16, d27s16, d28s16, d29s16; + int64x1_t d0s64; + uint8x16_t q0u8, q1u8, q2u8, q3u8; + int32x4_t q7s32, q8s32, q9s32, q10s32; + uint16x8_t q11u16, q12u16, q13u16, q14u16; + int64x2_t q1s64; + + q7s32 = vdupq_n_s32(0); + q8s32 = vdupq_n_s32(0); + q9s32 = vdupq_n_s32(0); + q10s32 = vdupq_n_s32(0); + + for (i = 0; i < 8; i++) { // mse16x16_neon_loop + q0u8 = vld1q_u8(src_ptr); + src_ptr += source_stride; + q1u8 = vld1q_u8(src_ptr); + src_ptr += source_stride; + q2u8 = vld1q_u8(ref_ptr); + ref_ptr += recon_stride; + q3u8 = vld1q_u8(ref_ptr); + ref_ptr += recon_stride; + + q11u16 = vsubl_u8(vget_low_u8(q0u8), vget_low_u8(q2u8)); + q12u16 = vsubl_u8(vget_high_u8(q0u8), vget_high_u8(q2u8)); + q13u16 = vsubl_u8(vget_low_u8(q1u8), vget_low_u8(q3u8)); + q14u16 = vsubl_u8(vget_high_u8(q1u8), vget_high_u8(q3u8)); + + d22s16 = vreinterpret_s16_u16(vget_low_u16(q11u16)); + d23s16 = vreinterpret_s16_u16(vget_high_u16(q11u16)); + q7s32 = vmlal_s16(q7s32, d22s16, d22s16); + q8s32 = vmlal_s16(q8s32, d23s16, d23s16); + + d24s16 = vreinterpret_s16_u16(vget_low_u16(q12u16)); + d25s16 = vreinterpret_s16_u16(vget_high_u16(q12u16)); + q9s32 = vmlal_s16(q9s32, d24s16, d24s16); + q10s32 = vmlal_s16(q10s32, d25s16, d25s16); + + d26s16 = vreinterpret_s16_u16(vget_low_u16(q13u16)); + d27s16 = vreinterpret_s16_u16(vget_high_u16(q13u16)); + q7s32 = vmlal_s16(q7s32, d26s16, d26s16); + q8s32 = vmlal_s16(q8s32, d27s16, d27s16); + + d28s16 = vreinterpret_s16_u16(vget_low_u16(q14u16)); + d29s16 = vreinterpret_s16_u16(vget_high_u16(q14u16)); + q9s32 = vmlal_s16(q9s32, d28s16, d28s16); + q10s32 = vmlal_s16(q10s32, d29s16, d29s16); + } + + q7s32 = vaddq_s32(q7s32, q8s32); + q9s32 = vaddq_s32(q9s32, q10s32); + q10s32 = vaddq_s32(q7s32, q9s32); + + q1s64 = vpaddlq_s32(q10s32); + d0s64 = vadd_s64(vget_low_s64(q1s64), vget_high_s64(q1s64)); + + vst1_lane_u32((uint32_t *)sse, vreinterpret_u32_s64(d0s64), 0); + return vget_lane_u32(vreinterpret_u32_s64(d0s64), 0); +} + +unsigned int vpx_get4x4sse_cs_neon(const unsigned char *src_ptr, + int source_stride, + const unsigned char *ref_ptr, + int recon_stride) { + int16x4_t d22s16, d24s16, d26s16, d28s16; + int64x1_t d0s64; + uint8x8_t d0u8, d1u8, d2u8, d3u8, d4u8, d5u8, d6u8, d7u8; + int32x4_t q7s32, q8s32, q9s32, q10s32; + uint16x8_t q11u16, q12u16, q13u16, q14u16; + int64x2_t q1s64; + + d0u8 = vld1_u8(src_ptr); + src_ptr += source_stride; + d4u8 = vld1_u8(ref_ptr); + ref_ptr += recon_stride; + d1u8 = vld1_u8(src_ptr); + src_ptr += source_stride; + d5u8 = vld1_u8(ref_ptr); + ref_ptr += recon_stride; + d2u8 = vld1_u8(src_ptr); + src_ptr += source_stride; + d6u8 = vld1_u8(ref_ptr); + ref_ptr += recon_stride; + d3u8 = vld1_u8(src_ptr); + src_ptr += source_stride; + d7u8 = vld1_u8(ref_ptr); + ref_ptr += recon_stride; + + q11u16 = vsubl_u8(d0u8, d4u8); + q12u16 = vsubl_u8(d1u8, d5u8); + q13u16 = vsubl_u8(d2u8, d6u8); + q14u16 = vsubl_u8(d3u8, d7u8); + + d22s16 = vget_low_s16(vreinterpretq_s16_u16(q11u16)); + d24s16 = vget_low_s16(vreinterpretq_s16_u16(q12u16)); + d26s16 = vget_low_s16(vreinterpretq_s16_u16(q13u16)); + d28s16 = vget_low_s16(vreinterpretq_s16_u16(q14u16)); + + q7s32 = vmull_s16(d22s16, d22s16); + q8s32 = vmull_s16(d24s16, d24s16); + q9s32 = vmull_s16(d26s16, d26s16); + q10s32 = vmull_s16(d28s16, d28s16); + + q7s32 = vaddq_s32(q7s32, q8s32); + q9s32 = vaddq_s32(q9s32, q10s32); + q9s32 = vaddq_s32(q7s32, q9s32); + + q1s64 = vpaddlq_s32(q9s32); + d0s64 = vadd_s64(vget_low_s64(q1s64), vget_high_s64(q1s64)); + + return vget_lane_u32(vreinterpret_u32_s64(d0s64), 0); +} diff --git a/vpx_dsp/arm/vpx_convolve8_avg_neon_asm.asm b/vpx_dsp/arm/vpx_convolve8_avg_neon_asm.asm new file mode 100644 index 0000000..1c2ee50 --- /dev/null +++ b/vpx_dsp/arm/vpx_convolve8_avg_neon_asm.asm @@ -0,0 +1,295 @@ +; +; Copyright (c) 2013 The WebM project authors. All Rights Reserved. +; +; Use of this source code is governed by a BSD-style license +; that can be found in the LICENSE file in the root of the source +; tree. An additional intellectual property rights grant can be found +; in the file PATENTS. All contributing project authors may +; be found in the AUTHORS file in the root of the source tree. +; + + + ; These functions are only valid when: + ; x_step_q4 == 16 + ; w%4 == 0 + ; h%4 == 0 + ; taps == 8 + ; VP9_FILTER_WEIGHT == 128 + ; VP9_FILTER_SHIFT == 7 + + EXPORT |vpx_convolve8_avg_horiz_neon| + EXPORT |vpx_convolve8_avg_vert_neon| + ARM + REQUIRE8 + PRESERVE8 + + AREA ||.text||, CODE, READONLY, ALIGN=2 + + ; Multiply and accumulate by q0 + MACRO + MULTIPLY_BY_Q0 $dst, $src0, $src1, $src2, $src3, $src4, $src5, $src6, $src7 + vmull.s16 $dst, $src0, d0[0] + vmlal.s16 $dst, $src1, d0[1] + vmlal.s16 $dst, $src2, d0[2] + vmlal.s16 $dst, $src3, d0[3] + vmlal.s16 $dst, $src4, d1[0] + vmlal.s16 $dst, $src5, d1[1] + vmlal.s16 $dst, $src6, d1[2] + vmlal.s16 $dst, $src7, d1[3] + MEND + +; r0 const uint8_t *src +; r1 int src_stride +; r2 uint8_t *dst +; r3 int dst_stride +; sp[]const int16_t *filter +; sp[]int x0_q4 +; sp[]int x_step_q4 ; unused +; sp[]int y0_q4 +; sp[]int y_step_q4 ; unused +; sp[]int w +; sp[]int h + +|vpx_convolve8_avg_horiz_neon| PROC + push {r4-r10, lr} + + sub r0, r0, #3 ; adjust for taps + + ldrd r4, r5, [sp, #32] ; filter, x0_q4 + add r4, r5, lsl #4 + ldrd r6, r7, [sp, #52] ; w, h + + vld1.s16 {q0}, [r4] ; filter + + sub r8, r1, r1, lsl #2 ; -src_stride * 3 + add r8, r8, #4 ; -src_stride * 3 + 4 + + sub r4, r3, r3, lsl #2 ; -dst_stride * 3 + add r4, r4, #4 ; -dst_stride * 3 + 4 + + rsb r9, r6, r1, lsl #2 ; reset src for outer loop + sub r9, r9, #7 + rsb r12, r6, r3, lsl #2 ; reset dst for outer loop + + mov r10, r6 ; w loop counter + +vpx_convolve8_avg_loop_horiz_v + vld1.8 {d24}, [r0], r1 + vld1.8 {d25}, [r0], r1 + vld1.8 {d26}, [r0], r1 + vld1.8 {d27}, [r0], r8 + + vtrn.16 q12, q13 + vtrn.8 d24, d25 + vtrn.8 d26, d27 + + pld [r0, r1, lsl #2] + + vmovl.u8 q8, d24 + vmovl.u8 q9, d25 + vmovl.u8 q10, d26 + vmovl.u8 q11, d27 + + ; save a few instructions in the inner loop + vswp d17, d18 + vmov d23, d21 + + add r0, r0, #3 + +vpx_convolve8_avg_loop_horiz + add r5, r0, #64 + + vld1.32 {d28[]}, [r0], r1 + vld1.32 {d29[]}, [r0], r1 + vld1.32 {d31[]}, [r0], r1 + vld1.32 {d30[]}, [r0], r8 + + pld [r5] + + vtrn.16 d28, d31 + vtrn.16 d29, d30 + vtrn.8 d28, d29 + vtrn.8 d31, d30 + + pld [r5, r1] + + ; extract to s16 + vtrn.32 q14, q15 + vmovl.u8 q12, d28 + vmovl.u8 q13, d29 + + pld [r5, r1, lsl #1] + + ; slightly out of order load to match the existing data + vld1.u32 {d6[0]}, [r2], r3 + vld1.u32 {d7[0]}, [r2], r3 + vld1.u32 {d6[1]}, [r2], r3 + vld1.u32 {d7[1]}, [r2], r3 + + sub r2, r2, r3, lsl #2 ; reset for store + + ; src[] * filter + MULTIPLY_BY_Q0 q1, d16, d17, d20, d22, d18, d19, d23, d24 + MULTIPLY_BY_Q0 q2, d17, d20, d22, d18, d19, d23, d24, d26 + MULTIPLY_BY_Q0 q14, d20, d22, d18, d19, d23, d24, d26, d27 + MULTIPLY_BY_Q0 q15, d22, d18, d19, d23, d24, d26, d27, d25 + + pld [r5, -r8] + + ; += 64 >> 7 + vqrshrun.s32 d2, q1, #7 + vqrshrun.s32 d3, q2, #7 + vqrshrun.s32 d4, q14, #7 + vqrshrun.s32 d5, q15, #7 + + ; saturate + vqmovn.u16 d2, q1 + vqmovn.u16 d3, q2 + + ; transpose + vtrn.16 d2, d3 + vtrn.32 d2, d3 + vtrn.8 d2, d3 + + ; average the new value and the dst value + vrhadd.u8 q1, q1, q3 + + vst1.u32 {d2[0]}, [r2@32], r3 + vst1.u32 {d3[0]}, [r2@32], r3 + vst1.u32 {d2[1]}, [r2@32], r3 + vst1.u32 {d3[1]}, [r2@32], r4 + + vmov q8, q9 + vmov d20, d23 + vmov q11, q12 + vmov q9, q13 + + subs r6, r6, #4 ; w -= 4 + bgt vpx_convolve8_avg_loop_horiz + + ; outer loop + mov r6, r10 ; restore w counter + add r0, r0, r9 ; src += src_stride * 4 - w + add r2, r2, r12 ; dst += dst_stride * 4 - w + subs r7, r7, #4 ; h -= 4 + bgt vpx_convolve8_avg_loop_horiz_v + + pop {r4-r10, pc} + + ENDP + +|vpx_convolve8_avg_vert_neon| PROC + push {r4-r8, lr} + + ; adjust for taps + sub r0, r0, r1 + sub r0, r0, r1, lsl #1 + + ldr r4, [sp, #24] ; filter + ldr r5, [sp, #36] ; y0_q4 + add r4, r5, lsl #4 + ldr r6, [sp, #44] ; w + ldr lr, [sp, #48] ; h + + vld1.s16 {q0}, [r4] ; filter + + lsl r1, r1, #1 + lsl r3, r3, #1 + +vpx_convolve8_avg_loop_vert_h + mov r4, r0 + add r7, r0, r1, asr #1 + mov r5, r2 + add r8, r2, r3, asr #1 + mov r12, lr ; h loop counter + + vld1.u32 {d16[0]}, [r4], r1 + vld1.u32 {d16[1]}, [r7], r1 + vld1.u32 {d18[0]}, [r4], r1 + vld1.u32 {d18[1]}, [r7], r1 + vld1.u32 {d20[0]}, [r4], r1 + vld1.u32 {d20[1]}, [r7], r1 + vld1.u32 {d22[0]}, [r4], r1 + + vmovl.u8 q8, d16 + vmovl.u8 q9, d18 + vmovl.u8 q10, d20 + vmovl.u8 q11, d22 + +vpx_convolve8_avg_loop_vert + ; always process a 4x4 block at a time + vld1.u32 {d24[0]}, [r7], r1 + vld1.u32 {d26[0]}, [r4], r1 + vld1.u32 {d26[1]}, [r7], r1 + vld1.u32 {d24[1]}, [r4], r1 + + ; extract to s16 + vmovl.u8 q12, d24 + vmovl.u8 q13, d26 + + vld1.u32 {d6[0]}, [r5@32], r3 + vld1.u32 {d6[1]}, [r8@32], r3 + vld1.u32 {d7[0]}, [r5@32], r3 + vld1.u32 {d7[1]}, [r8@32], r3 + + pld [r7] + pld [r4] + + ; src[] * filter + MULTIPLY_BY_Q0 q1, d16, d17, d18, d19, d20, d21, d22, d24 + + pld [r7, r1] + pld [r4, r1] + + MULTIPLY_BY_Q0 q2, d17, d18, d19, d20, d21, d22, d24, d26 + + pld [r5] + pld [r8] + + MULTIPLY_BY_Q0 q14, d18, d19, d20, d21, d22, d24, d26, d27 + + pld [r5, r3] + pld [r8, r3] + + MULTIPLY_BY_Q0 q15, d19, d20, d21, d22, d24, d26, d27, d25 + + ; += 64 >> 7 + vqrshrun.s32 d2, q1, #7 + vqrshrun.s32 d3, q2, #7 + vqrshrun.s32 d4, q14, #7 + vqrshrun.s32 d5, q15, #7 + + ; saturate + vqmovn.u16 d2, q1 + vqmovn.u16 d3, q2 + + ; average the new value and the dst value + vrhadd.u8 q1, q1, q3 + + sub r5, r5, r3, lsl #1 ; reset for store + sub r8, r8, r3, lsl #1 + + vst1.u32 {d2[0]}, [r5@32], r3 + vst1.u32 {d2[1]}, [r8@32], r3 + vst1.u32 {d3[0]}, [r5@32], r3 + vst1.u32 {d3[1]}, [r8@32], r3 + + vmov q8, q10 + vmov d18, d22 + vmov d19, d24 + vmov q10, q13 + vmov d22, d25 + + subs r12, r12, #4 ; h -= 4 + bgt vpx_convolve8_avg_loop_vert + + ; outer loop + add r0, r0, #4 + add r2, r2, #4 + subs r6, r6, #4 ; w -= 4 + bgt vpx_convolve8_avg_loop_vert_h + + pop {r4-r8, pc} + + ENDP + END diff --git a/vpx_dsp/arm/vpx_convolve8_neon.c b/vpx_dsp/arm/vpx_convolve8_neon.c new file mode 100644 index 0000000..08ae17d --- /dev/null +++ b/vpx_dsp/arm/vpx_convolve8_neon.c @@ -0,0 +1,959 @@ +/* + * Copyright (c) 2014 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include + +#include "./vpx_config.h" +#include "./vpx_dsp_rtcd.h" +#include "vpx/vpx_integer.h" +#include "vpx_dsp/arm/transpose_neon.h" +#include "vpx_dsp/arm/vpx_convolve8_neon.h" +#include "vpx_ports/mem.h" + +// Note: +// 1. src is not always 32-bit aligned, so don't call vld1_lane_u32(src). +// 2. After refactoring the shared code in kernel loops with inline functions, +// the decoder speed dropped a lot when using gcc compiler. Therefore there is +// no refactoring for those parts by now. +// 3. For horizontal convolve, there is an alternative optimization that +// convolves a single row in each loop. For each row, 8 sample banks with 4 or 8 +// samples in each are read from memory: src, (src+1), (src+2), (src+3), +// (src+4), (src+5), (src+6), (src+7), or prepared by vector extract +// instructions. This optimization is much faster in speed unit test, but slowed +// down the whole decoder by 5%. + +static INLINE void store_u8_8x8(uint8_t *s, const ptrdiff_t p, + const uint8x8_t s0, const uint8x8_t s1, + const uint8x8_t s2, const uint8x8_t s3, + const uint8x8_t s4, const uint8x8_t s5, + const uint8x8_t s6, const uint8x8_t s7) { + vst1_u8(s, s0); + s += p; + vst1_u8(s, s1); + s += p; + vst1_u8(s, s2); + s += p; + vst1_u8(s, s3); + s += p; + vst1_u8(s, s4); + s += p; + vst1_u8(s, s5); + s += p; + vst1_u8(s, s6); + s += p; + vst1_u8(s, s7); +} + +void vpx_convolve8_horiz_neon(const uint8_t *src, ptrdiff_t src_stride, + uint8_t *dst, ptrdiff_t dst_stride, + const InterpKernel *filter, int x0_q4, + int x_step_q4, int y0_q4, int y_step_q4, int w, + int h) { + const int16x8_t filters = vld1q_s16(filter[x0_q4]); + uint8x8_t t0, t1, t2, t3; + + assert(!((intptr_t)dst & 3)); + assert(!(dst_stride & 3)); + assert(x_step_q4 == 16); + + (void)x_step_q4; + (void)y0_q4; + (void)y_step_q4; + + src -= 3; + + if (h == 4) { + uint8x8_t d01, d23; + int16x4_t filter3, filter4, s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, d0, + d1, d2, d3; + int16x8_t tt0, tt1, tt2, tt3; + + __builtin_prefetch(src + 0 * src_stride); + __builtin_prefetch(src + 1 * src_stride); + __builtin_prefetch(src + 2 * src_stride); + __builtin_prefetch(src + 3 * src_stride); + filter3 = vdup_lane_s16(vget_low_s16(filters), 3); + filter4 = vdup_lane_s16(vget_high_s16(filters), 0); + load_u8_8x4(src, src_stride, &t0, &t1, &t2, &t3); + transpose_u8_8x4(&t0, &t1, &t2, &t3); + tt0 = vreinterpretq_s16_u16(vmovl_u8(t0)); + tt1 = vreinterpretq_s16_u16(vmovl_u8(t1)); + tt2 = vreinterpretq_s16_u16(vmovl_u8(t2)); + tt3 = vreinterpretq_s16_u16(vmovl_u8(t3)); + s0 = vget_low_s16(tt0); + s1 = vget_low_s16(tt1); + s2 = vget_low_s16(tt2); + s3 = vget_low_s16(tt3); + s4 = vget_high_s16(tt0); + s5 = vget_high_s16(tt1); + s6 = vget_high_s16(tt2); + __builtin_prefetch(dst + 0 * dst_stride); + __builtin_prefetch(dst + 1 * dst_stride); + __builtin_prefetch(dst + 2 * dst_stride); + __builtin_prefetch(dst + 3 * dst_stride); + src += 7; + + do { + load_u8_8x4(src, src_stride, &t0, &t1, &t2, &t3); + transpose_u8_8x4(&t0, &t1, &t2, &t3); + tt0 = vreinterpretq_s16_u16(vmovl_u8(t0)); + tt1 = vreinterpretq_s16_u16(vmovl_u8(t1)); + tt2 = vreinterpretq_s16_u16(vmovl_u8(t2)); + tt3 = vreinterpretq_s16_u16(vmovl_u8(t3)); + s7 = vget_low_s16(tt0); + s8 = vget_low_s16(tt1); + s9 = vget_low_s16(tt2); + s10 = vget_low_s16(tt3); + + d0 = convolve8_4(s0, s1, s2, s3, s4, s5, s6, s7, filters, filter3, + filter4); + d1 = convolve8_4(s1, s2, s3, s4, s5, s6, s7, s8, filters, filter3, + filter4); + d2 = convolve8_4(s2, s3, s4, s5, s6, s7, s8, s9, filters, filter3, + filter4); + d3 = convolve8_4(s3, s4, s5, s6, s7, s8, s9, s10, filters, filter3, + filter4); + + d01 = vqrshrun_n_s16(vcombine_s16(d0, d1), 7); + d23 = vqrshrun_n_s16(vcombine_s16(d2, d3), 7); + transpose_u8_4x4(&d01, &d23); + + vst1_lane_u32((uint32_t *)(dst + 0 * dst_stride), + vreinterpret_u32_u8(d01), 0); + vst1_lane_u32((uint32_t *)(dst + 1 * dst_stride), + vreinterpret_u32_u8(d23), 0); + vst1_lane_u32((uint32_t *)(dst + 2 * dst_stride), + vreinterpret_u32_u8(d01), 1); + vst1_lane_u32((uint32_t *)(dst + 3 * dst_stride), + vreinterpret_u32_u8(d23), 1); + + s0 = s4; + s1 = s5; + s2 = s6; + s3 = s7; + s4 = s8; + s5 = s9; + s6 = s10; + src += 4; + dst += 4; + w -= 4; + } while (w > 0); + } else { + const int16x8_t filter3 = vdupq_lane_s16(vget_low_s16(filters), 3); + const int16x8_t filter4 = vdupq_lane_s16(vget_high_s16(filters), 0); + int width; + const uint8_t *s; + uint8x8_t t4, t5, t6, t7; + int16x8_t s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10; + + if (w == 4) { + do { + load_u8_8x8(src, src_stride, &t0, &t1, &t2, &t3, &t4, &t5, &t6, &t7); + transpose_u8_8x8(&t0, &t1, &t2, &t3, &t4, &t5, &t6, &t7); + s0 = vreinterpretq_s16_u16(vmovl_u8(t0)); + s1 = vreinterpretq_s16_u16(vmovl_u8(t1)); + s2 = vreinterpretq_s16_u16(vmovl_u8(t2)); + s3 = vreinterpretq_s16_u16(vmovl_u8(t3)); + s4 = vreinterpretq_s16_u16(vmovl_u8(t4)); + s5 = vreinterpretq_s16_u16(vmovl_u8(t5)); + s6 = vreinterpretq_s16_u16(vmovl_u8(t6)); + + load_u8_8x8(src + 7, src_stride, &t0, &t1, &t2, &t3, &t4, &t5, &t6, + &t7); + src += 8 * src_stride; + __builtin_prefetch(dst + 0 * dst_stride); + __builtin_prefetch(dst + 1 * dst_stride); + __builtin_prefetch(dst + 2 * dst_stride); + __builtin_prefetch(dst + 3 * dst_stride); + __builtin_prefetch(dst + 4 * dst_stride); + __builtin_prefetch(dst + 5 * dst_stride); + __builtin_prefetch(dst + 6 * dst_stride); + __builtin_prefetch(dst + 7 * dst_stride); + transpose_u8_4x8(&t0, &t1, &t2, &t3, t4, t5, t6, t7); + s7 = vreinterpretq_s16_u16(vmovl_u8(t0)); + s8 = vreinterpretq_s16_u16(vmovl_u8(t1)); + s9 = vreinterpretq_s16_u16(vmovl_u8(t2)); + s10 = vreinterpretq_s16_u16(vmovl_u8(t3)); + + __builtin_prefetch(src + 0 * src_stride); + __builtin_prefetch(src + 1 * src_stride); + __builtin_prefetch(src + 2 * src_stride); + __builtin_prefetch(src + 3 * src_stride); + __builtin_prefetch(src + 4 * src_stride); + __builtin_prefetch(src + 5 * src_stride); + __builtin_prefetch(src + 6 * src_stride); + __builtin_prefetch(src + 7 * src_stride); + t0 = convolve8_8(s0, s1, s2, s3, s4, s5, s6, s7, filters, filter3, + filter4); + t1 = convolve8_8(s1, s2, s3, s4, s5, s6, s7, s8, filters, filter3, + filter4); + t2 = convolve8_8(s2, s3, s4, s5, s6, s7, s8, s9, filters, filter3, + filter4); + t3 = convolve8_8(s3, s4, s5, s6, s7, s8, s9, s10, filters, filter3, + filter4); + + transpose_u8_8x4(&t0, &t1, &t2, &t3); + vst1_lane_u32((uint32_t *)dst, vreinterpret_u32_u8(t0), 0); + dst += dst_stride; + vst1_lane_u32((uint32_t *)dst, vreinterpret_u32_u8(t1), 0); + dst += dst_stride; + vst1_lane_u32((uint32_t *)dst, vreinterpret_u32_u8(t2), 0); + dst += dst_stride; + vst1_lane_u32((uint32_t *)dst, vreinterpret_u32_u8(t3), 0); + dst += dst_stride; + vst1_lane_u32((uint32_t *)dst, vreinterpret_u32_u8(t0), 1); + dst += dst_stride; + vst1_lane_u32((uint32_t *)dst, vreinterpret_u32_u8(t1), 1); + dst += dst_stride; + vst1_lane_u32((uint32_t *)dst, vreinterpret_u32_u8(t2), 1); + dst += dst_stride; + vst1_lane_u32((uint32_t *)dst, vreinterpret_u32_u8(t3), 1); + dst += dst_stride; + h -= 8; + } while (h > 0); + } else { + uint8_t *d; + int16x8_t s11, s12, s13, s14; + + do { + __builtin_prefetch(src + 0 * src_stride); + __builtin_prefetch(src + 1 * src_stride); + __builtin_prefetch(src + 2 * src_stride); + __builtin_prefetch(src + 3 * src_stride); + __builtin_prefetch(src + 4 * src_stride); + __builtin_prefetch(src + 5 * src_stride); + __builtin_prefetch(src + 6 * src_stride); + __builtin_prefetch(src + 7 * src_stride); + load_u8_8x8(src, src_stride, &t0, &t1, &t2, &t3, &t4, &t5, &t6, &t7); + transpose_u8_8x8(&t0, &t1, &t2, &t3, &t4, &t5, &t6, &t7); + s0 = vreinterpretq_s16_u16(vmovl_u8(t0)); + s1 = vreinterpretq_s16_u16(vmovl_u8(t1)); + s2 = vreinterpretq_s16_u16(vmovl_u8(t2)); + s3 = vreinterpretq_s16_u16(vmovl_u8(t3)); + s4 = vreinterpretq_s16_u16(vmovl_u8(t4)); + s5 = vreinterpretq_s16_u16(vmovl_u8(t5)); + s6 = vreinterpretq_s16_u16(vmovl_u8(t6)); + + width = w; + s = src + 7; + d = dst; + __builtin_prefetch(dst + 0 * dst_stride); + __builtin_prefetch(dst + 1 * dst_stride); + __builtin_prefetch(dst + 2 * dst_stride); + __builtin_prefetch(dst + 3 * dst_stride); + __builtin_prefetch(dst + 4 * dst_stride); + __builtin_prefetch(dst + 5 * dst_stride); + __builtin_prefetch(dst + 6 * dst_stride); + __builtin_prefetch(dst + 7 * dst_stride); + + do { + load_u8_8x8(s, src_stride, &t0, &t1, &t2, &t3, &t4, &t5, &t6, &t7); + transpose_u8_8x8(&t0, &t1, &t2, &t3, &t4, &t5, &t6, &t7); + s7 = vreinterpretq_s16_u16(vmovl_u8(t0)); + s8 = vreinterpretq_s16_u16(vmovl_u8(t1)); + s9 = vreinterpretq_s16_u16(vmovl_u8(t2)); + s10 = vreinterpretq_s16_u16(vmovl_u8(t3)); + s11 = vreinterpretq_s16_u16(vmovl_u8(t4)); + s12 = vreinterpretq_s16_u16(vmovl_u8(t5)); + s13 = vreinterpretq_s16_u16(vmovl_u8(t6)); + s14 = vreinterpretq_s16_u16(vmovl_u8(t7)); + + t0 = convolve8_8(s0, s1, s2, s3, s4, s5, s6, s7, filters, filter3, + filter4); + t1 = convolve8_8(s1, s2, s3, s4, s5, s6, s7, s8, filters, filter3, + filter4); + t2 = convolve8_8(s2, s3, s4, s5, s6, s7, s8, s9, filters, filter3, + filter4); + t3 = convolve8_8(s3, s4, s5, s6, s7, s8, s9, s10, filters, filter3, + filter4); + t4 = convolve8_8(s4, s5, s6, s7, s8, s9, s10, s11, filters, filter3, + filter4); + t5 = convolve8_8(s5, s6, s7, s8, s9, s10, s11, s12, filters, filter3, + filter4); + t6 = convolve8_8(s6, s7, s8, s9, s10, s11, s12, s13, filters, filter3, + filter4); + t7 = convolve8_8(s7, s8, s9, s10, s11, s12, s13, s14, filters, + filter3, filter4); + + transpose_u8_8x8(&t0, &t1, &t2, &t3, &t4, &t5, &t6, &t7); + store_u8_8x8(d, dst_stride, t0, t1, t2, t3, t4, t5, t6, t7); + + s0 = s8; + s1 = s9; + s2 = s10; + s3 = s11; + s4 = s12; + s5 = s13; + s6 = s14; + s += 8; + d += 8; + width -= 8; + } while (width > 0); + src += 8 * src_stride; + dst += 8 * dst_stride; + h -= 8; + } while (h > 0); + } + } +} + +void vpx_convolve8_avg_horiz_neon(const uint8_t *src, ptrdiff_t src_stride, + uint8_t *dst, ptrdiff_t dst_stride, + const InterpKernel *filter, int x0_q4, + int x_step_q4, int y0_q4, int y_step_q4, + int w, int h) { + const int16x8_t filters = vld1q_s16(filter[x0_q4]); + uint8x8_t t0, t1, t2, t3; + + assert(!((intptr_t)dst & 3)); + assert(!(dst_stride & 3)); + assert(x_step_q4 == 16); + + (void)x_step_q4; + (void)y0_q4; + (void)y_step_q4; + + src -= 3; + + if (h == 4) { + uint8x8_t d01, d23; + int16x4_t filter3, filter4, s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, d0, + d1, d2, d3; + int16x8_t tt0, tt1, tt2, tt3; + uint32x4_t d0123 = vdupq_n_u32(0); + + __builtin_prefetch(src + 0 * src_stride); + __builtin_prefetch(src + 1 * src_stride); + __builtin_prefetch(src + 2 * src_stride); + __builtin_prefetch(src + 3 * src_stride); + filter3 = vdup_lane_s16(vget_low_s16(filters), 3); + filter4 = vdup_lane_s16(vget_high_s16(filters), 0); + load_u8_8x4(src, src_stride, &t0, &t1, &t2, &t3); + transpose_u8_8x4(&t0, &t1, &t2, &t3); + tt0 = vreinterpretq_s16_u16(vmovl_u8(t0)); + tt1 = vreinterpretq_s16_u16(vmovl_u8(t1)); + tt2 = vreinterpretq_s16_u16(vmovl_u8(t2)); + tt3 = vreinterpretq_s16_u16(vmovl_u8(t3)); + s0 = vget_low_s16(tt0); + s1 = vget_low_s16(tt1); + s2 = vget_low_s16(tt2); + s3 = vget_low_s16(tt3); + s4 = vget_high_s16(tt0); + s5 = vget_high_s16(tt1); + s6 = vget_high_s16(tt2); + __builtin_prefetch(dst + 0 * dst_stride); + __builtin_prefetch(dst + 1 * dst_stride); + __builtin_prefetch(dst + 2 * dst_stride); + __builtin_prefetch(dst + 3 * dst_stride); + src += 7; + + do { + load_u8_8x4(src, src_stride, &t0, &t1, &t2, &t3); + transpose_u8_8x4(&t0, &t1, &t2, &t3); + tt0 = vreinterpretq_s16_u16(vmovl_u8(t0)); + tt1 = vreinterpretq_s16_u16(vmovl_u8(t1)); + tt2 = vreinterpretq_s16_u16(vmovl_u8(t2)); + tt3 = vreinterpretq_s16_u16(vmovl_u8(t3)); + s7 = vget_low_s16(tt0); + s8 = vget_low_s16(tt1); + s9 = vget_low_s16(tt2); + s10 = vget_low_s16(tt3); + + d0 = convolve8_4(s0, s1, s2, s3, s4, s5, s6, s7, filters, filter3, + filter4); + d1 = convolve8_4(s1, s2, s3, s4, s5, s6, s7, s8, filters, filter3, + filter4); + d2 = convolve8_4(s2, s3, s4, s5, s6, s7, s8, s9, filters, filter3, + filter4); + d3 = convolve8_4(s3, s4, s5, s6, s7, s8, s9, s10, filters, filter3, + filter4); + + d01 = vqrshrun_n_s16(vcombine_s16(d0, d1), 7); + d23 = vqrshrun_n_s16(vcombine_s16(d2, d3), 7); + transpose_u8_4x4(&d01, &d23); + + d0123 = vld1q_lane_u32((uint32_t *)(dst + 0 * dst_stride), d0123, 0); + d0123 = vld1q_lane_u32((uint32_t *)(dst + 1 * dst_stride), d0123, 2); + d0123 = vld1q_lane_u32((uint32_t *)(dst + 2 * dst_stride), d0123, 1); + d0123 = vld1q_lane_u32((uint32_t *)(dst + 3 * dst_stride), d0123, 3); + d0123 = vreinterpretq_u32_u8( + vrhaddq_u8(vreinterpretq_u8_u32(d0123), vcombine_u8(d01, d23))); + + vst1q_lane_u32((uint32_t *)(dst + 0 * dst_stride), d0123, 0); + vst1q_lane_u32((uint32_t *)(dst + 1 * dst_stride), d0123, 2); + vst1q_lane_u32((uint32_t *)(dst + 2 * dst_stride), d0123, 1); + vst1q_lane_u32((uint32_t *)(dst + 3 * dst_stride), d0123, 3); + + s0 = s4; + s1 = s5; + s2 = s6; + s3 = s7; + s4 = s8; + s5 = s9; + s6 = s10; + src += 4; + dst += 4; + w -= 4; + } while (w > 0); + } else { + const int16x8_t filter3 = vdupq_lane_s16(vget_low_s16(filters), 3); + const int16x8_t filter4 = vdupq_lane_s16(vget_high_s16(filters), 0); + int width; + const uint8_t *s; + uint8x8_t t4, t5, t6, t7; + int16x8_t s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10; + + if (w == 4) { + uint32x4_t d0415 = vdupq_n_u32(0); + uint32x4_t d2637 = vdupq_n_u32(0); + do { + load_u8_8x8(src, src_stride, &t0, &t1, &t2, &t3, &t4, &t5, &t6, &t7); + transpose_u8_8x8(&t0, &t1, &t2, &t3, &t4, &t5, &t6, &t7); + s0 = vreinterpretq_s16_u16(vmovl_u8(t0)); + s1 = vreinterpretq_s16_u16(vmovl_u8(t1)); + s2 = vreinterpretq_s16_u16(vmovl_u8(t2)); + s3 = vreinterpretq_s16_u16(vmovl_u8(t3)); + s4 = vreinterpretq_s16_u16(vmovl_u8(t4)); + s5 = vreinterpretq_s16_u16(vmovl_u8(t5)); + s6 = vreinterpretq_s16_u16(vmovl_u8(t6)); + + load_u8_8x8(src + 7, src_stride, &t0, &t1, &t2, &t3, &t4, &t5, &t6, + &t7); + src += 8 * src_stride; + __builtin_prefetch(dst + 0 * dst_stride); + __builtin_prefetch(dst + 1 * dst_stride); + __builtin_prefetch(dst + 2 * dst_stride); + __builtin_prefetch(dst + 3 * dst_stride); + __builtin_prefetch(dst + 4 * dst_stride); + __builtin_prefetch(dst + 5 * dst_stride); + __builtin_prefetch(dst + 6 * dst_stride); + __builtin_prefetch(dst + 7 * dst_stride); + transpose_u8_4x8(&t0, &t1, &t2, &t3, t4, t5, t6, t7); + s7 = vreinterpretq_s16_u16(vmovl_u8(t0)); + s8 = vreinterpretq_s16_u16(vmovl_u8(t1)); + s9 = vreinterpretq_s16_u16(vmovl_u8(t2)); + s10 = vreinterpretq_s16_u16(vmovl_u8(t3)); + + __builtin_prefetch(src + 0 * src_stride); + __builtin_prefetch(src + 1 * src_stride); + __builtin_prefetch(src + 2 * src_stride); + __builtin_prefetch(src + 3 * src_stride); + __builtin_prefetch(src + 4 * src_stride); + __builtin_prefetch(src + 5 * src_stride); + __builtin_prefetch(src + 6 * src_stride); + __builtin_prefetch(src + 7 * src_stride); + t0 = convolve8_8(s0, s1, s2, s3, s4, s5, s6, s7, filters, filter3, + filter4); + t1 = convolve8_8(s1, s2, s3, s4, s5, s6, s7, s8, filters, filter3, + filter4); + t2 = convolve8_8(s2, s3, s4, s5, s6, s7, s8, s9, filters, filter3, + filter4); + t3 = convolve8_8(s3, s4, s5, s6, s7, s8, s9, s10, filters, filter3, + filter4); + + transpose_u8_8x4(&t0, &t1, &t2, &t3); + + d0415 = vld1q_lane_u32((uint32_t *)(dst + 0 * dst_stride), d0415, 0); + d0415 = vld1q_lane_u32((uint32_t *)(dst + 1 * dst_stride), d0415, 2); + d2637 = vld1q_lane_u32((uint32_t *)(dst + 2 * dst_stride), d2637, 0); + d2637 = vld1q_lane_u32((uint32_t *)(dst + 3 * dst_stride), d2637, 2); + d0415 = vld1q_lane_u32((uint32_t *)(dst + 4 * dst_stride), d0415, 1); + d0415 = vld1q_lane_u32((uint32_t *)(dst + 5 * dst_stride), d0415, 3); + d2637 = vld1q_lane_u32((uint32_t *)(dst + 6 * dst_stride), d2637, 1); + d2637 = vld1q_lane_u32((uint32_t *)(dst + 7 * dst_stride), d2637, 3); + d0415 = vreinterpretq_u32_u8( + vrhaddq_u8(vreinterpretq_u8_u32(d0415), vcombine_u8(t0, t1))); + d2637 = vreinterpretq_u32_u8( + vrhaddq_u8(vreinterpretq_u8_u32(d2637), vcombine_u8(t2, t3))); + + vst1q_lane_u32((uint32_t *)dst, d0415, 0); + dst += dst_stride; + vst1q_lane_u32((uint32_t *)dst, d0415, 2); + dst += dst_stride; + vst1q_lane_u32((uint32_t *)dst, d2637, 0); + dst += dst_stride; + vst1q_lane_u32((uint32_t *)dst, d2637, 2); + dst += dst_stride; + vst1q_lane_u32((uint32_t *)dst, d0415, 1); + dst += dst_stride; + vst1q_lane_u32((uint32_t *)dst, d0415, 3); + dst += dst_stride; + vst1q_lane_u32((uint32_t *)dst, d2637, 1); + dst += dst_stride; + vst1q_lane_u32((uint32_t *)dst, d2637, 3); + dst += dst_stride; + h -= 8; + } while (h > 0); + } else { + uint8_t *d; + int16x8_t s11, s12, s13, s14; + uint8x16_t d01, d23, d45, d67; + + do { + __builtin_prefetch(src + 0 * src_stride); + __builtin_prefetch(src + 1 * src_stride); + __builtin_prefetch(src + 2 * src_stride); + __builtin_prefetch(src + 3 * src_stride); + __builtin_prefetch(src + 4 * src_stride); + __builtin_prefetch(src + 5 * src_stride); + __builtin_prefetch(src + 6 * src_stride); + __builtin_prefetch(src + 7 * src_stride); + load_u8_8x8(src, src_stride, &t0, &t1, &t2, &t3, &t4, &t5, &t6, &t7); + transpose_u8_8x8(&t0, &t1, &t2, &t3, &t4, &t5, &t6, &t7); + s0 = vreinterpretq_s16_u16(vmovl_u8(t0)); + s1 = vreinterpretq_s16_u16(vmovl_u8(t1)); + s2 = vreinterpretq_s16_u16(vmovl_u8(t2)); + s3 = vreinterpretq_s16_u16(vmovl_u8(t3)); + s4 = vreinterpretq_s16_u16(vmovl_u8(t4)); + s5 = vreinterpretq_s16_u16(vmovl_u8(t5)); + s6 = vreinterpretq_s16_u16(vmovl_u8(t6)); + + width = w; + s = src + 7; + d = dst; + __builtin_prefetch(dst + 0 * dst_stride); + __builtin_prefetch(dst + 1 * dst_stride); + __builtin_prefetch(dst + 2 * dst_stride); + __builtin_prefetch(dst + 3 * dst_stride); + __builtin_prefetch(dst + 4 * dst_stride); + __builtin_prefetch(dst + 5 * dst_stride); + __builtin_prefetch(dst + 6 * dst_stride); + __builtin_prefetch(dst + 7 * dst_stride); + + do { + load_u8_8x8(s, src_stride, &t0, &t1, &t2, &t3, &t4, &t5, &t6, &t7); + transpose_u8_8x8(&t0, &t1, &t2, &t3, &t4, &t5, &t6, &t7); + s7 = vreinterpretq_s16_u16(vmovl_u8(t0)); + s8 = vreinterpretq_s16_u16(vmovl_u8(t1)); + s9 = vreinterpretq_s16_u16(vmovl_u8(t2)); + s10 = vreinterpretq_s16_u16(vmovl_u8(t3)); + s11 = vreinterpretq_s16_u16(vmovl_u8(t4)); + s12 = vreinterpretq_s16_u16(vmovl_u8(t5)); + s13 = vreinterpretq_s16_u16(vmovl_u8(t6)); + s14 = vreinterpretq_s16_u16(vmovl_u8(t7)); + + t0 = convolve8_8(s0, s1, s2, s3, s4, s5, s6, s7, filters, filter3, + filter4); + t1 = convolve8_8(s1, s2, s3, s4, s5, s6, s7, s8, filters, filter3, + filter4); + t2 = convolve8_8(s2, s3, s4, s5, s6, s7, s8, s9, filters, filter3, + filter4); + t3 = convolve8_8(s3, s4, s5, s6, s7, s8, s9, s10, filters, filter3, + filter4); + t4 = convolve8_8(s4, s5, s6, s7, s8, s9, s10, s11, filters, filter3, + filter4); + t5 = convolve8_8(s5, s6, s7, s8, s9, s10, s11, s12, filters, filter3, + filter4); + t6 = convolve8_8(s6, s7, s8, s9, s10, s11, s12, s13, filters, filter3, + filter4); + t7 = convolve8_8(s7, s8, s9, s10, s11, s12, s13, s14, filters, + filter3, filter4); + + transpose_u8_8x8(&t0, &t1, &t2, &t3, &t4, &t5, &t6, &t7); + + d01 = vcombine_u8(vld1_u8(d + 0 * dst_stride), + vld1_u8(d + 1 * dst_stride)); + d23 = vcombine_u8(vld1_u8(d + 2 * dst_stride), + vld1_u8(d + 3 * dst_stride)); + d45 = vcombine_u8(vld1_u8(d + 4 * dst_stride), + vld1_u8(d + 5 * dst_stride)); + d67 = vcombine_u8(vld1_u8(d + 6 * dst_stride), + vld1_u8(d + 7 * dst_stride)); + d01 = vrhaddq_u8(d01, vcombine_u8(t0, t1)); + d23 = vrhaddq_u8(d23, vcombine_u8(t2, t3)); + d45 = vrhaddq_u8(d45, vcombine_u8(t4, t5)); + d67 = vrhaddq_u8(d67, vcombine_u8(t6, t7)); + + store_u8_8x8(d, dst_stride, vget_low_u8(d01), vget_high_u8(d01), + vget_low_u8(d23), vget_high_u8(d23), vget_low_u8(d45), + vget_high_u8(d45), vget_low_u8(d67), vget_high_u8(d67)); + + s0 = s8; + s1 = s9; + s2 = s10; + s3 = s11; + s4 = s12; + s5 = s13; + s6 = s14; + s += 8; + d += 8; + width -= 8; + } while (width > 0); + src += 8 * src_stride; + dst += 8 * dst_stride; + h -= 8; + } while (h > 0); + } + } +} + +void vpx_convolve8_vert_neon(const uint8_t *src, ptrdiff_t src_stride, + uint8_t *dst, ptrdiff_t dst_stride, + const InterpKernel *filter, int x0_q4, + int x_step_q4, int y0_q4, int y_step_q4, int w, + int h) { + const int16x8_t filters = vld1q_s16(filter[y0_q4]); + + assert(!((intptr_t)dst & 3)); + assert(!(dst_stride & 3)); + assert(y_step_q4 == 16); + + (void)x0_q4; + (void)x_step_q4; + (void)y_step_q4; + + src -= 3 * src_stride; + + if (w == 4) { + const int16x4_t filter3 = vdup_lane_s16(vget_low_s16(filters), 3); + const int16x4_t filter4 = vdup_lane_s16(vget_high_s16(filters), 0); + uint8x8_t d01, d23; + int16x4_t s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, d0, d1, d2, d3; + + s0 = vreinterpret_s16_u16(vget_low_u16(vmovl_u8(vld1_u8(src)))); + src += src_stride; + s1 = vreinterpret_s16_u16(vget_low_u16(vmovl_u8(vld1_u8(src)))); + src += src_stride; + s2 = vreinterpret_s16_u16(vget_low_u16(vmovl_u8(vld1_u8(src)))); + src += src_stride; + s3 = vreinterpret_s16_u16(vget_low_u16(vmovl_u8(vld1_u8(src)))); + src += src_stride; + s4 = vreinterpret_s16_u16(vget_low_u16(vmovl_u8(vld1_u8(src)))); + src += src_stride; + s5 = vreinterpret_s16_u16(vget_low_u16(vmovl_u8(vld1_u8(src)))); + src += src_stride; + s6 = vreinterpret_s16_u16(vget_low_u16(vmovl_u8(vld1_u8(src)))); + src += src_stride; + + do { + s7 = vreinterpret_s16_u16(vget_low_u16(vmovl_u8(vld1_u8(src)))); + src += src_stride; + s8 = vreinterpret_s16_u16(vget_low_u16(vmovl_u8(vld1_u8(src)))); + src += src_stride; + s9 = vreinterpret_s16_u16(vget_low_u16(vmovl_u8(vld1_u8(src)))); + src += src_stride; + s10 = vreinterpret_s16_u16(vget_low_u16(vmovl_u8(vld1_u8(src)))); + src += src_stride; + + __builtin_prefetch(dst + 0 * dst_stride); + __builtin_prefetch(dst + 1 * dst_stride); + __builtin_prefetch(dst + 2 * dst_stride); + __builtin_prefetch(dst + 3 * dst_stride); + __builtin_prefetch(src + 0 * src_stride); + __builtin_prefetch(src + 1 * src_stride); + __builtin_prefetch(src + 2 * src_stride); + __builtin_prefetch(src + 3 * src_stride); + d0 = convolve8_4(s0, s1, s2, s3, s4, s5, s6, s7, filters, filter3, + filter4); + d1 = convolve8_4(s1, s2, s3, s4, s5, s6, s7, s8, filters, filter3, + filter4); + d2 = convolve8_4(s2, s3, s4, s5, s6, s7, s8, s9, filters, filter3, + filter4); + d3 = convolve8_4(s3, s4, s5, s6, s7, s8, s9, s10, filters, filter3, + filter4); + + d01 = vqrshrun_n_s16(vcombine_s16(d0, d1), 7); + d23 = vqrshrun_n_s16(vcombine_s16(d2, d3), 7); + vst1_lane_u32((uint32_t *)dst, vreinterpret_u32_u8(d01), 0); + dst += dst_stride; + vst1_lane_u32((uint32_t *)dst, vreinterpret_u32_u8(d01), 1); + dst += dst_stride; + vst1_lane_u32((uint32_t *)dst, vreinterpret_u32_u8(d23), 0); + dst += dst_stride; + vst1_lane_u32((uint32_t *)dst, vreinterpret_u32_u8(d23), 1); + dst += dst_stride; + + s0 = s4; + s1 = s5; + s2 = s6; + s3 = s7; + s4 = s8; + s5 = s9; + s6 = s10; + h -= 4; + } while (h > 0); + } else { + const int16x8_t filter3 = vdupq_lane_s16(vget_low_s16(filters), 3); + const int16x8_t filter4 = vdupq_lane_s16(vget_high_s16(filters), 0); + int height; + const uint8_t *s; + uint8_t *d; + uint8x8_t t0, t1, t2, t3; + int16x8_t s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10; + + do { + __builtin_prefetch(src + 0 * src_stride); + __builtin_prefetch(src + 1 * src_stride); + __builtin_prefetch(src + 2 * src_stride); + __builtin_prefetch(src + 3 * src_stride); + __builtin_prefetch(src + 4 * src_stride); + __builtin_prefetch(src + 5 * src_stride); + __builtin_prefetch(src + 6 * src_stride); + s = src; + s0 = vreinterpretq_s16_u16(vmovl_u8(vld1_u8(s))); + s += src_stride; + s1 = vreinterpretq_s16_u16(vmovl_u8(vld1_u8(s))); + s += src_stride; + s2 = vreinterpretq_s16_u16(vmovl_u8(vld1_u8(s))); + s += src_stride; + s3 = vreinterpretq_s16_u16(vmovl_u8(vld1_u8(s))); + s += src_stride; + s4 = vreinterpretq_s16_u16(vmovl_u8(vld1_u8(s))); + s += src_stride; + s5 = vreinterpretq_s16_u16(vmovl_u8(vld1_u8(s))); + s += src_stride; + s6 = vreinterpretq_s16_u16(vmovl_u8(vld1_u8(s))); + s += src_stride; + d = dst; + height = h; + + do { + s7 = vreinterpretq_s16_u16(vmovl_u8(vld1_u8(s))); + s += src_stride; + s8 = vreinterpretq_s16_u16(vmovl_u8(vld1_u8(s))); + s += src_stride; + s9 = vreinterpretq_s16_u16(vmovl_u8(vld1_u8(s))); + s += src_stride; + s10 = vreinterpretq_s16_u16(vmovl_u8(vld1_u8(s))); + s += src_stride; + + __builtin_prefetch(d + 0 * dst_stride); + __builtin_prefetch(d + 1 * dst_stride); + __builtin_prefetch(d + 2 * dst_stride); + __builtin_prefetch(d + 3 * dst_stride); + __builtin_prefetch(s + 0 * src_stride); + __builtin_prefetch(s + 1 * src_stride); + __builtin_prefetch(s + 2 * src_stride); + __builtin_prefetch(s + 3 * src_stride); + t0 = convolve8_8(s0, s1, s2, s3, s4, s5, s6, s7, filters, filter3, + filter4); + t1 = convolve8_8(s1, s2, s3, s4, s5, s6, s7, s8, filters, filter3, + filter4); + t2 = convolve8_8(s2, s3, s4, s5, s6, s7, s8, s9, filters, filter3, + filter4); + t3 = convolve8_8(s3, s4, s5, s6, s7, s8, s9, s10, filters, filter3, + filter4); + + vst1_u8(d, t0); + d += dst_stride; + vst1_u8(d, t1); + d += dst_stride; + vst1_u8(d, t2); + d += dst_stride; + vst1_u8(d, t3); + d += dst_stride; + + s0 = s4; + s1 = s5; + s2 = s6; + s3 = s7; + s4 = s8; + s5 = s9; + s6 = s10; + height -= 4; + } while (height > 0); + src += 8; + dst += 8; + w -= 8; + } while (w > 0); + } +} + +void vpx_convolve8_avg_vert_neon(const uint8_t *src, ptrdiff_t src_stride, + uint8_t *dst, ptrdiff_t dst_stride, + const InterpKernel *filter, int x0_q4, + int x_step_q4, int y0_q4, int y_step_q4, int w, + int h) { + const int16x8_t filters = vld1q_s16(filter[y0_q4]); + + assert(!((intptr_t)dst & 3)); + assert(!(dst_stride & 3)); + assert(y_step_q4 == 16); + + (void)x0_q4; + (void)x_step_q4; + (void)y_step_q4; + + src -= 3 * src_stride; + + if (w == 4) { + const int16x4_t filter3 = vdup_lane_s16(vget_low_s16(filters), 3); + const int16x4_t filter4 = vdup_lane_s16(vget_high_s16(filters), 0); + uint8x8_t d01, d23; + int16x4_t s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, d0, d1, d2, d3; + uint32x4_t d0123 = vdupq_n_u32(0); + + s0 = vreinterpret_s16_u16(vget_low_u16(vmovl_u8(vld1_u8(src)))); + src += src_stride; + s1 = vreinterpret_s16_u16(vget_low_u16(vmovl_u8(vld1_u8(src)))); + src += src_stride; + s2 = vreinterpret_s16_u16(vget_low_u16(vmovl_u8(vld1_u8(src)))); + src += src_stride; + s3 = vreinterpret_s16_u16(vget_low_u16(vmovl_u8(vld1_u8(src)))); + src += src_stride; + s4 = vreinterpret_s16_u16(vget_low_u16(vmovl_u8(vld1_u8(src)))); + src += src_stride; + s5 = vreinterpret_s16_u16(vget_low_u16(vmovl_u8(vld1_u8(src)))); + src += src_stride; + s6 = vreinterpret_s16_u16(vget_low_u16(vmovl_u8(vld1_u8(src)))); + src += src_stride; + + do { + s7 = vreinterpret_s16_u16(vget_low_u16(vmovl_u8(vld1_u8(src)))); + src += src_stride; + s8 = vreinterpret_s16_u16(vget_low_u16(vmovl_u8(vld1_u8(src)))); + src += src_stride; + s9 = vreinterpret_s16_u16(vget_low_u16(vmovl_u8(vld1_u8(src)))); + src += src_stride; + s10 = vreinterpret_s16_u16(vget_low_u16(vmovl_u8(vld1_u8(src)))); + src += src_stride; + + __builtin_prefetch(dst + 0 * dst_stride); + __builtin_prefetch(dst + 1 * dst_stride); + __builtin_prefetch(dst + 2 * dst_stride); + __builtin_prefetch(dst + 3 * dst_stride); + __builtin_prefetch(src + 0 * src_stride); + __builtin_prefetch(src + 1 * src_stride); + __builtin_prefetch(src + 2 * src_stride); + __builtin_prefetch(src + 3 * src_stride); + d0 = convolve8_4(s0, s1, s2, s3, s4, s5, s6, s7, filters, filter3, + filter4); + d1 = convolve8_4(s1, s2, s3, s4, s5, s6, s7, s8, filters, filter3, + filter4); + d2 = convolve8_4(s2, s3, s4, s5, s6, s7, s8, s9, filters, filter3, + filter4); + d3 = convolve8_4(s3, s4, s5, s6, s7, s8, s9, s10, filters, filter3, + filter4); + + d01 = vqrshrun_n_s16(vcombine_s16(d0, d1), 7); + d23 = vqrshrun_n_s16(vcombine_s16(d2, d3), 7); + + d0123 = vld1q_lane_u32((uint32_t *)(dst + 0 * dst_stride), d0123, 0); + d0123 = vld1q_lane_u32((uint32_t *)(dst + 1 * dst_stride), d0123, 1); + d0123 = vld1q_lane_u32((uint32_t *)(dst + 2 * dst_stride), d0123, 2); + d0123 = vld1q_lane_u32((uint32_t *)(dst + 3 * dst_stride), d0123, 3); + d0123 = vreinterpretq_u32_u8( + vrhaddq_u8(vreinterpretq_u8_u32(d0123), vcombine_u8(d01, d23))); + + vst1q_lane_u32((uint32_t *)dst, d0123, 0); + dst += dst_stride; + vst1q_lane_u32((uint32_t *)dst, d0123, 1); + dst += dst_stride; + vst1q_lane_u32((uint32_t *)dst, d0123, 2); + dst += dst_stride; + vst1q_lane_u32((uint32_t *)dst, d0123, 3); + dst += dst_stride; + + s0 = s4; + s1 = s5; + s2 = s6; + s3 = s7; + s4 = s8; + s5 = s9; + s6 = s10; + h -= 4; + } while (h > 0); + } else { + const int16x8_t filter3 = vdupq_lane_s16(vget_low_s16(filters), 3); + const int16x8_t filter4 = vdupq_lane_s16(vget_high_s16(filters), 0); + int height; + const uint8_t *s; + uint8_t *d; + uint8x8_t t0, t1, t2, t3; + uint8x16_t d01, d23, dd01, dd23; + int16x8_t s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10; + + do { + __builtin_prefetch(src + 0 * src_stride); + __builtin_prefetch(src + 1 * src_stride); + __builtin_prefetch(src + 2 * src_stride); + __builtin_prefetch(src + 3 * src_stride); + __builtin_prefetch(src + 4 * src_stride); + __builtin_prefetch(src + 5 * src_stride); + __builtin_prefetch(src + 6 * src_stride); + s = src; + s0 = vreinterpretq_s16_u16(vmovl_u8(vld1_u8(s))); + s += src_stride; + s1 = vreinterpretq_s16_u16(vmovl_u8(vld1_u8(s))); + s += src_stride; + s2 = vreinterpretq_s16_u16(vmovl_u8(vld1_u8(s))); + s += src_stride; + s3 = vreinterpretq_s16_u16(vmovl_u8(vld1_u8(s))); + s += src_stride; + s4 = vreinterpretq_s16_u16(vmovl_u8(vld1_u8(s))); + s += src_stride; + s5 = vreinterpretq_s16_u16(vmovl_u8(vld1_u8(s))); + s += src_stride; + s6 = vreinterpretq_s16_u16(vmovl_u8(vld1_u8(s))); + s += src_stride; + d = dst; + height = h; + + do { + s7 = vreinterpretq_s16_u16(vmovl_u8(vld1_u8(s))); + s += src_stride; + s8 = vreinterpretq_s16_u16(vmovl_u8(vld1_u8(s))); + s += src_stride; + s9 = vreinterpretq_s16_u16(vmovl_u8(vld1_u8(s))); + s += src_stride; + s10 = vreinterpretq_s16_u16(vmovl_u8(vld1_u8(s))); + s += src_stride; + + __builtin_prefetch(d + 0 * dst_stride); + __builtin_prefetch(d + 1 * dst_stride); + __builtin_prefetch(d + 2 * dst_stride); + __builtin_prefetch(d + 3 * dst_stride); + __builtin_prefetch(s + 0 * src_stride); + __builtin_prefetch(s + 1 * src_stride); + __builtin_prefetch(s + 2 * src_stride); + __builtin_prefetch(s + 3 * src_stride); + t0 = convolve8_8(s0, s1, s2, s3, s4, s5, s6, s7, filters, filter3, + filter4); + t1 = convolve8_8(s1, s2, s3, s4, s5, s6, s7, s8, filters, filter3, + filter4); + t2 = convolve8_8(s2, s3, s4, s5, s6, s7, s8, s9, filters, filter3, + filter4); + t3 = convolve8_8(s3, s4, s5, s6, s7, s8, s9, s10, filters, filter3, + filter4); + + d01 = vcombine_u8(t0, t1); + d23 = vcombine_u8(t2, t3); + dd01 = vcombine_u8(vld1_u8(d + 0 * dst_stride), + vld1_u8(d + 1 * dst_stride)); + dd23 = vcombine_u8(vld1_u8(d + 2 * dst_stride), + vld1_u8(d + 3 * dst_stride)); + dd01 = vrhaddq_u8(dd01, d01); + dd23 = vrhaddq_u8(dd23, d23); + + vst1_u8(d, vget_low_u8(dd01)); + d += dst_stride; + vst1_u8(d, vget_high_u8(dd01)); + d += dst_stride; + vst1_u8(d, vget_low_u8(dd23)); + d += dst_stride; + vst1_u8(d, vget_high_u8(dd23)); + d += dst_stride; + + s0 = s4; + s1 = s5; + s2 = s6; + s3 = s7; + s4 = s8; + s5 = s9; + s6 = s10; + height -= 4; + } while (height > 0); + src += 8; + dst += 8; + w -= 8; + } while (w > 0); + } +} diff --git a/vpx_dsp/arm/vpx_convolve8_neon.h b/vpx_dsp/arm/vpx_convolve8_neon.h new file mode 100644 index 0000000..c1634ed --- /dev/null +++ b/vpx_dsp/arm/vpx_convolve8_neon.h @@ -0,0 +1,133 @@ +/* + * Copyright (c) 2014 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include + +#include "./vpx_config.h" +#include "./vpx_dsp_rtcd.h" + +static INLINE void load_u8_8x4(const uint8_t *s, const ptrdiff_t p, + uint8x8_t *const s0, uint8x8_t *const s1, + uint8x8_t *const s2, uint8x8_t *const s3) { + *s0 = vld1_u8(s); + s += p; + *s1 = vld1_u8(s); + s += p; + *s2 = vld1_u8(s); + s += p; + *s3 = vld1_u8(s); +} + +static INLINE void load_u8_8x8(const uint8_t *s, const ptrdiff_t p, + uint8x8_t *const s0, uint8x8_t *const s1, + uint8x8_t *const s2, uint8x8_t *const s3, + uint8x8_t *const s4, uint8x8_t *const s5, + uint8x8_t *const s6, uint8x8_t *const s7) { + *s0 = vld1_u8(s); + s += p; + *s1 = vld1_u8(s); + s += p; + *s2 = vld1_u8(s); + s += p; + *s3 = vld1_u8(s); + s += p; + *s4 = vld1_u8(s); + s += p; + *s5 = vld1_u8(s); + s += p; + *s6 = vld1_u8(s); + s += p; + *s7 = vld1_u8(s); +} + +static INLINE void load_u8_16x8(const uint8_t *s, const ptrdiff_t p, + uint8x16_t *const s0, uint8x16_t *const s1, + uint8x16_t *const s2, uint8x16_t *const s3, + uint8x16_t *const s4, uint8x16_t *const s5, + uint8x16_t *const s6, uint8x16_t *const s7) { + *s0 = vld1q_u8(s); + s += p; + *s1 = vld1q_u8(s); + s += p; + *s2 = vld1q_u8(s); + s += p; + *s3 = vld1q_u8(s); + s += p; + *s4 = vld1q_u8(s); + s += p; + *s5 = vld1q_u8(s); + s += p; + *s6 = vld1q_u8(s); + s += p; + *s7 = vld1q_u8(s); +} + +static INLINE int16x4_t convolve8_4(const int16x4_t s0, const int16x4_t s1, + const int16x4_t s2, const int16x4_t s3, + const int16x4_t s4, const int16x4_t s5, + const int16x4_t s6, const int16x4_t s7, + const int16x8_t filters, + const int16x4_t filter3, + const int16x4_t filter4) { + const int16x4_t filters_lo = vget_low_s16(filters); + const int16x4_t filters_hi = vget_high_s16(filters); + int16x4_t sum; + + sum = vmul_lane_s16(s0, filters_lo, 0); + sum = vmla_lane_s16(sum, s1, filters_lo, 1); + sum = vmla_lane_s16(sum, s2, filters_lo, 2); + sum = vmla_lane_s16(sum, s5, filters_hi, 1); + sum = vmla_lane_s16(sum, s6, filters_hi, 2); + sum = vmla_lane_s16(sum, s7, filters_hi, 3); + sum = vqadd_s16(sum, vmul_s16(s3, filter3)); + sum = vqadd_s16(sum, vmul_s16(s4, filter4)); + return sum; +} + +static INLINE uint8x8_t convolve8_8(const int16x8_t s0, const int16x8_t s1, + const int16x8_t s2, const int16x8_t s3, + const int16x8_t s4, const int16x8_t s5, + const int16x8_t s6, const int16x8_t s7, + const int16x8_t filters, + const int16x8_t filter3, + const int16x8_t filter4) { + const int16x4_t filters_lo = vget_low_s16(filters); + const int16x4_t filters_hi = vget_high_s16(filters); + int16x8_t sum; + + sum = vmulq_lane_s16(s0, filters_lo, 0); + sum = vmlaq_lane_s16(sum, s1, filters_lo, 1); + sum = vmlaq_lane_s16(sum, s2, filters_lo, 2); + sum = vmlaq_lane_s16(sum, s5, filters_hi, 1); + sum = vmlaq_lane_s16(sum, s6, filters_hi, 2); + sum = vmlaq_lane_s16(sum, s7, filters_hi, 3); + sum = vqaddq_s16(sum, vmulq_s16(s3, filter3)); + sum = vqaddq_s16(sum, vmulq_s16(s4, filter4)); + return vqrshrun_n_s16(sum, 7); +} + +static INLINE uint8x8_t scale_filter_8(const uint8x8_t *const s, + const int16x8_t filters) { + const int16x8_t filter3 = vdupq_lane_s16(vget_low_s16(filters), 3); + const int16x8_t filter4 = vdupq_lane_s16(vget_high_s16(filters), 0); + int16x8_t ss[8]; + + ss[0] = vreinterpretq_s16_u16(vmovl_u8(s[0])); + ss[1] = vreinterpretq_s16_u16(vmovl_u8(s[1])); + ss[2] = vreinterpretq_s16_u16(vmovl_u8(s[2])); + ss[3] = vreinterpretq_s16_u16(vmovl_u8(s[3])); + ss[4] = vreinterpretq_s16_u16(vmovl_u8(s[4])); + ss[5] = vreinterpretq_s16_u16(vmovl_u8(s[5])); + ss[6] = vreinterpretq_s16_u16(vmovl_u8(s[6])); + ss[7] = vreinterpretq_s16_u16(vmovl_u8(s[7])); + + return convolve8_8(ss[0], ss[1], ss[2], ss[3], ss[4], ss[5], ss[6], ss[7], + filters, filter3, filter4); +} diff --git a/vpx_dsp/arm/vpx_convolve8_neon_asm.asm b/vpx_dsp/arm/vpx_convolve8_neon_asm.asm new file mode 100644 index 0000000..5eee156 --- /dev/null +++ b/vpx_dsp/arm/vpx_convolve8_neon_asm.asm @@ -0,0 +1,273 @@ +; +; Copyright (c) 2013 The WebM project authors. All Rights Reserved. +; +; Use of this source code is governed by a BSD-style license +; that can be found in the LICENSE file in the root of the source +; tree. An additional intellectual property rights grant can be found +; in the file PATENTS. All contributing project authors may +; be found in the AUTHORS file in the root of the source tree. +; + + + ; These functions are only valid when: + ; x_step_q4 == 16 + ; w%4 == 0 + ; h%4 == 0 + ; taps == 8 + ; VP9_FILTER_WEIGHT == 128 + ; VP9_FILTER_SHIFT == 7 + + EXPORT |vpx_convolve8_horiz_neon| + EXPORT |vpx_convolve8_vert_neon| + ARM + REQUIRE8 + PRESERVE8 + + AREA ||.text||, CODE, READONLY, ALIGN=2 + + ; Multiply and accumulate by q0 + MACRO + MULTIPLY_BY_Q0 $dst, $src0, $src1, $src2, $src3, $src4, $src5, $src6, $src7 + vmull.s16 $dst, $src0, d0[0] + vmlal.s16 $dst, $src1, d0[1] + vmlal.s16 $dst, $src2, d0[2] + vmlal.s16 $dst, $src3, d0[3] + vmlal.s16 $dst, $src4, d1[0] + vmlal.s16 $dst, $src5, d1[1] + vmlal.s16 $dst, $src6, d1[2] + vmlal.s16 $dst, $src7, d1[3] + MEND + +; r0 const uint8_t *src +; r1 int src_stride +; r2 uint8_t *dst +; r3 int dst_stride +; sp[]const int16_t *filter +; sp[]int x0_q4 +; sp[]int x_step_q4 ; unused +; sp[]int y0_q4 +; sp[]int y_step_q4 ; unused +; sp[]int w +; sp[]int h + +|vpx_convolve8_horiz_neon| PROC + push {r4-r10, lr} + + sub r0, r0, #3 ; adjust for taps + + ldrd r4, r5, [sp, #32] ; filter, x0_q4 + add r4, r5, lsl #4 + ldrd r6, r7, [sp, #52] ; w, h + + vld1.s16 {q0}, [r4] ; filter + + sub r8, r1, r1, lsl #2 ; -src_stride * 3 + add r8, r8, #4 ; -src_stride * 3 + 4 + + sub r4, r3, r3, lsl #2 ; -dst_stride * 3 + add r4, r4, #4 ; -dst_stride * 3 + 4 + + rsb r9, r6, r1, lsl #2 ; reset src for outer loop + sub r9, r9, #7 + rsb r12, r6, r3, lsl #2 ; reset dst for outer loop + + mov r10, r6 ; w loop counter + +vpx_convolve8_loop_horiz_v + vld1.8 {d24}, [r0], r1 + vld1.8 {d25}, [r0], r1 + vld1.8 {d26}, [r0], r1 + vld1.8 {d27}, [r0], r8 + + vtrn.16 q12, q13 + vtrn.8 d24, d25 + vtrn.8 d26, d27 + + pld [r0, r1, lsl #2] + + vmovl.u8 q8, d24 + vmovl.u8 q9, d25 + vmovl.u8 q10, d26 + vmovl.u8 q11, d27 + + ; save a few instructions in the inner loop + vswp d17, d18 + vmov d23, d21 + + add r0, r0, #3 + +vpx_convolve8_loop_horiz + add r5, r0, #64 + + vld1.32 {d28[]}, [r0], r1 + vld1.32 {d29[]}, [r0], r1 + vld1.32 {d31[]}, [r0], r1 + vld1.32 {d30[]}, [r0], r8 + + pld [r5] + + vtrn.16 d28, d31 + vtrn.16 d29, d30 + vtrn.8 d28, d29 + vtrn.8 d31, d30 + + pld [r5, r1] + + ; extract to s16 + vtrn.32 q14, q15 + vmovl.u8 q12, d28 + vmovl.u8 q13, d29 + + pld [r5, r1, lsl #1] + + ; src[] * filter + MULTIPLY_BY_Q0 q1, d16, d17, d20, d22, d18, d19, d23, d24 + MULTIPLY_BY_Q0 q2, d17, d20, d22, d18, d19, d23, d24, d26 + MULTIPLY_BY_Q0 q14, d20, d22, d18, d19, d23, d24, d26, d27 + MULTIPLY_BY_Q0 q15, d22, d18, d19, d23, d24, d26, d27, d25 + + pld [r5, -r8] + + ; += 64 >> 7 + vqrshrun.s32 d2, q1, #7 + vqrshrun.s32 d3, q2, #7 + vqrshrun.s32 d4, q14, #7 + vqrshrun.s32 d5, q15, #7 + + ; saturate + vqmovn.u16 d2, q1 + vqmovn.u16 d3, q2 + + ; transpose + vtrn.16 d2, d3 + vtrn.32 d2, d3 + vtrn.8 d2, d3 + + vst1.u32 {d2[0]}, [r2@32], r3 + vst1.u32 {d3[0]}, [r2@32], r3 + vst1.u32 {d2[1]}, [r2@32], r3 + vst1.u32 {d3[1]}, [r2@32], r4 + + vmov q8, q9 + vmov d20, d23 + vmov q11, q12 + vmov q9, q13 + + subs r6, r6, #4 ; w -= 4 + bgt vpx_convolve8_loop_horiz + + ; outer loop + mov r6, r10 ; restore w counter + add r0, r0, r9 ; src += src_stride * 4 - w + add r2, r2, r12 ; dst += dst_stride * 4 - w + subs r7, r7, #4 ; h -= 4 + bgt vpx_convolve8_loop_horiz_v + + pop {r4-r10, pc} + + ENDP + +|vpx_convolve8_vert_neon| PROC + push {r4-r8, lr} + + ; adjust for taps + sub r0, r0, r1 + sub r0, r0, r1, lsl #1 + + ldr r4, [sp, #24] ; filter + ldr r5, [sp, #36] ; y0_q4 + add r4, r5, lsl #4 + ldr r6, [sp, #44] ; w + ldr lr, [sp, #48] ; h + + vld1.s16 {q0}, [r4] ; filter + + lsl r1, r1, #1 + lsl r3, r3, #1 + +vpx_convolve8_loop_vert_h + mov r4, r0 + add r7, r0, r1, asr #1 + mov r5, r2 + add r8, r2, r3, asr #1 + mov r12, lr ; h loop counter + + vld1.u32 {d16[0]}, [r4], r1 + vld1.u32 {d16[1]}, [r7], r1 + vld1.u32 {d18[0]}, [r4], r1 + vld1.u32 {d18[1]}, [r7], r1 + vld1.u32 {d20[0]}, [r4], r1 + vld1.u32 {d20[1]}, [r7], r1 + vld1.u32 {d22[0]}, [r4], r1 + + vmovl.u8 q8, d16 + vmovl.u8 q9, d18 + vmovl.u8 q10, d20 + vmovl.u8 q11, d22 + +vpx_convolve8_loop_vert + ; always process a 4x4 block at a time + vld1.u32 {d24[0]}, [r7], r1 + vld1.u32 {d26[0]}, [r4], r1 + vld1.u32 {d26[1]}, [r7], r1 + vld1.u32 {d24[1]}, [r4], r1 + + ; extract to s16 + vmovl.u8 q12, d24 + vmovl.u8 q13, d26 + + pld [r5] + pld [r8] + + ; src[] * filter + MULTIPLY_BY_Q0 q1, d16, d17, d18, d19, d20, d21, d22, d24 + + pld [r5, r3] + pld [r8, r3] + + MULTIPLY_BY_Q0 q2, d17, d18, d19, d20, d21, d22, d24, d26 + + pld [r7] + pld [r4] + + MULTIPLY_BY_Q0 q14, d18, d19, d20, d21, d22, d24, d26, d27 + + pld [r7, r1] + pld [r4, r1] + + MULTIPLY_BY_Q0 q15, d19, d20, d21, d22, d24, d26, d27, d25 + + ; += 64 >> 7 + vqrshrun.s32 d2, q1, #7 + vqrshrun.s32 d3, q2, #7 + vqrshrun.s32 d4, q14, #7 + vqrshrun.s32 d5, q15, #7 + + ; saturate + vqmovn.u16 d2, q1 + vqmovn.u16 d3, q2 + + vst1.u32 {d2[0]}, [r5@32], r3 + vst1.u32 {d2[1]}, [r8@32], r3 + vst1.u32 {d3[0]}, [r5@32], r3 + vst1.u32 {d3[1]}, [r8@32], r3 + + vmov q8, q10 + vmov d18, d22 + vmov d19, d24 + vmov q10, q13 + vmov d22, d25 + + subs r12, r12, #4 ; h -= 4 + bgt vpx_convolve8_loop_vert + + ; outer loop + add r0, r0, #4 + add r2, r2, #4 + subs r6, r6, #4 ; w -= 4 + bgt vpx_convolve8_loop_vert_h + + pop {r4-r8, pc} + + ENDP + END diff --git a/vpx_dsp/arm/vpx_convolve_avg_neon.c b/vpx_dsp/arm/vpx_convolve_avg_neon.c new file mode 100644 index 0000000..07349d0 --- /dev/null +++ b/vpx_dsp/arm/vpx_convolve_avg_neon.c @@ -0,0 +1,139 @@ +/* + * Copyright (c) 2014 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include + +#include "./vpx_dsp_rtcd.h" +#include "vpx/vpx_integer.h" + +void vpx_convolve_avg_neon(const uint8_t *src, ptrdiff_t src_stride, + uint8_t *dst, ptrdiff_t dst_stride, + const InterpKernel *filter, int x0_q4, int x_step_q4, + int y0_q4, int y_step_q4, int w, int h) { + (void)filter; + (void)x0_q4; + (void)x_step_q4; + (void)y0_q4; + (void)y_step_q4; + + if (w < 8) { // avg4 + uint8x8_t s0, s1; + uint8x8_t dd0 = vdup_n_u8(0); + uint32x2x2_t s01; + do { + s0 = vld1_u8(src); + src += src_stride; + s1 = vld1_u8(src); + src += src_stride; + s01 = vzip_u32(vreinterpret_u32_u8(s0), vreinterpret_u32_u8(s1)); + dd0 = vreinterpret_u8_u32( + vld1_lane_u32((const uint32_t *)dst, vreinterpret_u32_u8(dd0), 0)); + dd0 = vreinterpret_u8_u32(vld1_lane_u32( + (const uint32_t *)(dst + dst_stride), vreinterpret_u32_u8(dd0), 1)); + dd0 = vrhadd_u8(vreinterpret_u8_u32(s01.val[0]), dd0); + vst1_lane_u32((uint32_t *)dst, vreinterpret_u32_u8(dd0), 0); + dst += dst_stride; + vst1_lane_u32((uint32_t *)dst, vreinterpret_u32_u8(dd0), 1); + dst += dst_stride; + h -= 2; + } while (h > 0); + } else if (w == 8) { // avg8 + uint8x8_t s0, s1, d0, d1; + uint8x16_t s01, d01; + do { + s0 = vld1_u8(src); + src += src_stride; + s1 = vld1_u8(src); + src += src_stride; + d0 = vld1_u8(dst); + d1 = vld1_u8(dst + dst_stride); + + s01 = vcombine_u8(s0, s1); + d01 = vcombine_u8(d0, d1); + d01 = vrhaddq_u8(s01, d01); + + vst1_u8(dst, vget_low_u8(d01)); + dst += dst_stride; + vst1_u8(dst, vget_high_u8(d01)); + dst += dst_stride; + h -= 2; + } while (h > 0); + } else if (w < 32) { // avg16 + uint8x16_t s0, s1, d0, d1; + do { + s0 = vld1q_u8(src); + src += src_stride; + s1 = vld1q_u8(src); + src += src_stride; + d0 = vld1q_u8(dst); + d1 = vld1q_u8(dst + dst_stride); + + d0 = vrhaddq_u8(s0, d0); + d1 = vrhaddq_u8(s1, d1); + + vst1q_u8(dst, d0); + dst += dst_stride; + vst1q_u8(dst, d1); + dst += dst_stride; + h -= 2; + } while (h > 0); + } else if (w == 32) { // avg32 + uint8x16_t s0, s1, s2, s3, d0, d1, d2, d3; + do { + s0 = vld1q_u8(src); + s1 = vld1q_u8(src + 16); + src += src_stride; + s2 = vld1q_u8(src); + s3 = vld1q_u8(src + 16); + src += src_stride; + d0 = vld1q_u8(dst); + d1 = vld1q_u8(dst + 16); + d2 = vld1q_u8(dst + dst_stride); + d3 = vld1q_u8(dst + dst_stride + 16); + + d0 = vrhaddq_u8(s0, d0); + d1 = vrhaddq_u8(s1, d1); + d2 = vrhaddq_u8(s2, d2); + d3 = vrhaddq_u8(s3, d3); + + vst1q_u8(dst, d0); + vst1q_u8(dst + 16, d1); + dst += dst_stride; + vst1q_u8(dst, d2); + vst1q_u8(dst + 16, d3); + dst += dst_stride; + h -= 2; + } while (h > 0); + } else { // avg64 + uint8x16_t s0, s1, s2, s3, d0, d1, d2, d3; + do { + s0 = vld1q_u8(src); + s1 = vld1q_u8(src + 16); + s2 = vld1q_u8(src + 32); + s3 = vld1q_u8(src + 48); + src += src_stride; + d0 = vld1q_u8(dst); + d1 = vld1q_u8(dst + 16); + d2 = vld1q_u8(dst + 32); + d3 = vld1q_u8(dst + 48); + + d0 = vrhaddq_u8(s0, d0); + d1 = vrhaddq_u8(s1, d1); + d2 = vrhaddq_u8(s2, d2); + d3 = vrhaddq_u8(s3, d3); + + vst1q_u8(dst, d0); + vst1q_u8(dst + 16, d1); + vst1q_u8(dst + 32, d2); + vst1q_u8(dst + 48, d3); + dst += dst_stride; + } while (--h); + } +} diff --git a/vpx_dsp/arm/vpx_convolve_avg_neon_asm.asm b/vpx_dsp/arm/vpx_convolve_avg_neon_asm.asm new file mode 100644 index 0000000..efd6574 --- /dev/null +++ b/vpx_dsp/arm/vpx_convolve_avg_neon_asm.asm @@ -0,0 +1,116 @@ +; +; Copyright (c) 2013 The WebM project authors. All Rights Reserved. +; +; Use of this source code is governed by a BSD-style license +; that can be found in the LICENSE file in the root of the source +; tree. An additional intellectual property rights grant can be found +; in the file PATENTS. All contributing project authors may +; be found in the AUTHORS file in the root of the source tree. +; + + EXPORT |vpx_convolve_avg_neon| + ARM + REQUIRE8 + PRESERVE8 + + AREA ||.text||, CODE, READONLY, ALIGN=2 + +|vpx_convolve_avg_neon| PROC + push {r4-r6, lr} + ldrd r4, r5, [sp, #36] + mov r6, r2 + + cmp r4, #32 + bgt avg64 + beq avg32 + cmp r4, #8 + bgt avg16 + beq avg8 + b avg4 + +avg64 + sub lr, r1, #32 + sub r4, r3, #32 +avg64_h + pld [r0, r1, lsl #1] + vld1.8 {q0-q1}, [r0]! + vld1.8 {q2-q3}, [r0], lr + pld [r2, r3] + vld1.8 {q8-q9}, [r6@128]! + vld1.8 {q10-q11}, [r6@128], r4 + vrhadd.u8 q0, q0, q8 + vrhadd.u8 q1, q1, q9 + vrhadd.u8 q2, q2, q10 + vrhadd.u8 q3, q3, q11 + vst1.8 {q0-q1}, [r2@128]! + vst1.8 {q2-q3}, [r2@128], r4 + subs r5, r5, #1 + bgt avg64_h + pop {r4-r6, pc} + +avg32 + vld1.8 {q0-q1}, [r0], r1 + vld1.8 {q2-q3}, [r0], r1 + vld1.8 {q8-q9}, [r6@128], r3 + vld1.8 {q10-q11}, [r6@128], r3 + pld [r0] + vrhadd.u8 q0, q0, q8 + pld [r0, r1] + vrhadd.u8 q1, q1, q9 + pld [r6] + vrhadd.u8 q2, q2, q10 + pld [r6, r3] + vrhadd.u8 q3, q3, q11 + vst1.8 {q0-q1}, [r2@128], r3 + vst1.8 {q2-q3}, [r2@128], r3 + subs r5, r5, #2 + bgt avg32 + pop {r4-r6, pc} + +avg16 + vld1.8 {q0}, [r0], r1 + vld1.8 {q1}, [r0], r1 + vld1.8 {q2}, [r6@128], r3 + vld1.8 {q3}, [r6@128], r3 + pld [r0] + pld [r0, r1] + vrhadd.u8 q0, q0, q2 + pld [r6] + pld [r6, r3] + vrhadd.u8 q1, q1, q3 + vst1.8 {q0}, [r2@128], r3 + vst1.8 {q1}, [r2@128], r3 + subs r5, r5, #2 + bgt avg16 + pop {r4-r6, pc} + +avg8 + vld1.8 {d0}, [r0], r1 + vld1.8 {d1}, [r0], r1 + vld1.8 {d2}, [r6@64], r3 + vld1.8 {d3}, [r6@64], r3 + pld [r0] + pld [r0, r1] + vrhadd.u8 q0, q0, q1 + pld [r6] + pld [r6, r3] + vst1.8 {d0}, [r2@64], r3 + vst1.8 {d1}, [r2@64], r3 + subs r5, r5, #2 + bgt avg8 + pop {r4-r6, pc} + +avg4 + vld1.32 {d0[0]}, [r0], r1 + vld1.32 {d0[1]}, [r0], r1 + vld1.32 {d2[0]}, [r6@32], r3 + vld1.32 {d2[1]}, [r6@32], r3 + vrhadd.u8 d0, d0, d2 + vst1.32 {d0[0]}, [r2@32], r3 + vst1.32 {d0[1]}, [r2@32], r3 + subs r5, r5, #2 + bgt avg4 + pop {r4-r6, pc} + ENDP + + END diff --git a/vpx_dsp/arm/vpx_convolve_copy_neon.c b/vpx_dsp/arm/vpx_convolve_copy_neon.c new file mode 100644 index 0000000..7abed67 --- /dev/null +++ b/vpx_dsp/arm/vpx_convolve_copy_neon.c @@ -0,0 +1,99 @@ +/* + * Copyright (c) 2014 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include + +#include "./vpx_dsp_rtcd.h" +#include "vpx/vpx_integer.h" + +void vpx_convolve_copy_neon(const uint8_t *src, ptrdiff_t src_stride, + uint8_t *dst, ptrdiff_t dst_stride, + const InterpKernel *filter, int x0_q4, + int x_step_q4, int y0_q4, int y_step_q4, int w, + int h) { + (void)filter; + (void)x0_q4; + (void)x_step_q4; + (void)y0_q4; + (void)y_step_q4; + + if (w < 8) { // copy4 + do { + *(uint32_t *)dst = *(const uint32_t *)src; + src += src_stride; + dst += dst_stride; + *(uint32_t *)dst = *(const uint32_t *)src; + src += src_stride; + dst += dst_stride; + h -= 2; + } while (h > 0); + } else if (w == 8) { // copy8 + uint8x8_t s0, s1; + do { + s0 = vld1_u8(src); + src += src_stride; + s1 = vld1_u8(src); + src += src_stride; + + vst1_u8(dst, s0); + dst += dst_stride; + vst1_u8(dst, s1); + dst += dst_stride; + h -= 2; + } while (h > 0); + } else if (w < 32) { // copy16 + uint8x16_t s0, s1; + do { + s0 = vld1q_u8(src); + src += src_stride; + s1 = vld1q_u8(src); + src += src_stride; + + vst1q_u8(dst, s0); + dst += dst_stride; + vst1q_u8(dst, s1); + dst += dst_stride; + h -= 2; + } while (h > 0); + } else if (w == 32) { // copy32 + uint8x16_t s0, s1, s2, s3; + do { + s0 = vld1q_u8(src); + s1 = vld1q_u8(src + 16); + src += src_stride; + s2 = vld1q_u8(src); + s3 = vld1q_u8(src + 16); + src += src_stride; + + vst1q_u8(dst, s0); + vst1q_u8(dst + 16, s1); + dst += dst_stride; + vst1q_u8(dst, s2); + vst1q_u8(dst + 16, s3); + dst += dst_stride; + h -= 2; + } while (h > 0); + } else { // copy64 + uint8x16_t s0, s1, s2, s3; + do { + s0 = vld1q_u8(src); + s1 = vld1q_u8(src + 16); + s2 = vld1q_u8(src + 32); + s3 = vld1q_u8(src + 48); + src += src_stride; + + vst1q_u8(dst, s0); + vst1q_u8(dst + 16, s1); + vst1q_u8(dst + 32, s2); + vst1q_u8(dst + 48, s3); + dst += dst_stride; + } while (--h); + } +} diff --git a/vpx_dsp/arm/vpx_convolve_copy_neon_asm.asm b/vpx_dsp/arm/vpx_convolve_copy_neon_asm.asm new file mode 100644 index 0000000..7a66e3c --- /dev/null +++ b/vpx_dsp/arm/vpx_convolve_copy_neon_asm.asm @@ -0,0 +1,84 @@ +; +; Copyright (c) 2013 The WebM project authors. All Rights Reserved. +; +; Use of this source code is governed by a BSD-style license +; that can be found in the LICENSE file in the root of the source +; tree. An additional intellectual property rights grant can be found +; in the file PATENTS. All contributing project authors may +; be found in the AUTHORS file in the root of the source tree. +; + + EXPORT |vpx_convolve_copy_neon| + ARM + REQUIRE8 + PRESERVE8 + + AREA ||.text||, CODE, READONLY, ALIGN=2 + +|vpx_convolve_copy_neon| PROC + push {r4-r5, lr} + ldrd r4, r5, [sp, #32] + + cmp r4, #32 + bgt copy64 + beq copy32 + cmp r4, #8 + bgt copy16 + beq copy8 + b copy4 + +copy64 + sub lr, r1, #32 + sub r3, r3, #32 +copy64_h + pld [r0, r1, lsl #1] + vld1.8 {q0-q1}, [r0]! + vld1.8 {q2-q3}, [r0], lr + vst1.8 {q0-q1}, [r2@128]! + vst1.8 {q2-q3}, [r2@128], r3 + subs r5, r5, #1 + bgt copy64_h + pop {r4-r5, pc} + +copy32 + pld [r0, r1, lsl #1] + vld1.8 {q0-q1}, [r0], r1 + pld [r0, r1, lsl #1] + vld1.8 {q2-q3}, [r0], r1 + vst1.8 {q0-q1}, [r2@128], r3 + vst1.8 {q2-q3}, [r2@128], r3 + subs r5, r5, #2 + bgt copy32 + pop {r4-r5, pc} + +copy16 + pld [r0, r1, lsl #1] + vld1.8 {q0}, [r0], r1 + pld [r0, r1, lsl #1] + vld1.8 {q1}, [r0], r1 + vst1.8 {q0}, [r2@128], r3 + vst1.8 {q1}, [r2@128], r3 + subs r5, r5, #2 + bgt copy16 + pop {r4-r5, pc} + +copy8 + pld [r0, r1, lsl #1] + vld1.8 {d0}, [r0], r1 + pld [r0, r1, lsl #1] + vld1.8 {d2}, [r0], r1 + vst1.8 {d0}, [r2@64], r3 + vst1.8 {d2}, [r2@64], r3 + subs r5, r5, #2 + bgt copy8 + pop {r4-r5, pc} + +copy4 + ldr r12, [r0], r1 + str r12, [r2], r3 + subs r5, r5, #1 + bgt copy4 + pop {r4-r5, pc} + ENDP + + END diff --git a/vpx_dsp/arm/vpx_convolve_neon.c b/vpx_dsp/arm/vpx_convolve_neon.c new file mode 100644 index 0000000..2bf2d89 --- /dev/null +++ b/vpx_dsp/arm/vpx_convolve_neon.c @@ -0,0 +1,64 @@ +/* + * Copyright (c) 2013 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include + +#include "./vpx_dsp_rtcd.h" +#include "vpx_dsp/vpx_dsp_common.h" +#include "vpx_ports/mem.h" + +void vpx_convolve8_neon(const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst, + ptrdiff_t dst_stride, const InterpKernel *filter, + int x0_q4, int x_step_q4, int y0_q4, int y_step_q4, + int w, int h) { + /* Given our constraints: w <= 64, h <= 64, taps == 8 we can reduce the + * maximum buffer size to 64 * 64 + 7 (+ 1 to make it divisible by 4). + */ + uint8_t temp[64 * 72]; + + // Account for the vertical phase needing 3 lines prior and 4 lines post + const int intermediate_height = h + 7; + + assert(y_step_q4 == 16); + assert(x_step_q4 == 16); + + /* Filter starting 3 lines back. The neon implementation will ignore the given + * height and filter a multiple of 4 lines. Since this goes in to the temp + * buffer which has lots of extra room and is subsequently discarded this is + * safe if somewhat less than ideal. */ + vpx_convolve8_horiz_neon(src - src_stride * 3, src_stride, temp, w, filter, + x0_q4, x_step_q4, y0_q4, y_step_q4, w, + intermediate_height); + + /* Step into the temp buffer 3 lines to get the actual frame data */ + vpx_convolve8_vert_neon(temp + w * 3, w, dst, dst_stride, filter, x0_q4, + x_step_q4, y0_q4, y_step_q4, w, h); +} + +void vpx_convolve8_avg_neon(const uint8_t *src, ptrdiff_t src_stride, + uint8_t *dst, ptrdiff_t dst_stride, + const InterpKernel *filter, int x0_q4, + int x_step_q4, int y0_q4, int y_step_q4, int w, + int h) { + uint8_t temp[64 * 72]; + const int intermediate_height = h + 7; + + assert(y_step_q4 == 16); + assert(x_step_q4 == 16); + + /* This implementation has the same issues as above. In addition, we only want + * to average the values after both passes. + */ + vpx_convolve8_horiz_neon(src - src_stride * 3, src_stride, temp, w, filter, + x0_q4, x_step_q4, y0_q4, y_step_q4, w, + intermediate_height); + vpx_convolve8_avg_vert_neon(temp + w * 3, w, dst, dst_stride, filter, x0_q4, + x_step_q4, y0_q4, y_step_q4, w, h); +} diff --git a/vpx_dsp/arm/vpx_scaled_convolve8_neon.c b/vpx_dsp/arm/vpx_scaled_convolve8_neon.c new file mode 100644 index 0000000..8edf8a6 --- /dev/null +++ b/vpx_dsp/arm/vpx_scaled_convolve8_neon.c @@ -0,0 +1,324 @@ +/* + * Copyright (c) 2017 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include +#include + +#include "./vpx_config.h" +#include "./vpx_dsp_rtcd.h" +#include "vpx/vpx_integer.h" +#include "vpx_dsp/arm/transpose_neon.h" +#include "vpx_dsp/arm/vpx_convolve8_neon.h" +#include "vpx_ports/mem.h" + +static INLINE void scaledconvolve_horiz_w4( + const uint8_t *src, const ptrdiff_t src_stride, uint8_t *dst, + const ptrdiff_t dst_stride, const InterpKernel *const x_filters, + const int x0_q4, const int x_step_q4, const int w, const int h) { + DECLARE_ALIGNED(16, uint8_t, temp[4 * 4]); + int x, y, z; + + src -= SUBPEL_TAPS / 2 - 1; + + y = h; + do { + int x_q4 = x0_q4; + x = 0; + do { + // process 4 src_x steps + for (z = 0; z < 4; ++z) { + const uint8_t *const src_x = &src[x_q4 >> SUBPEL_BITS]; + if (x_q4 & SUBPEL_MASK) { + const int16x8_t filters = vld1q_s16(x_filters[x_q4 & SUBPEL_MASK]); + const int16x4_t filter3 = vdup_lane_s16(vget_low_s16(filters), 3); + const int16x4_t filter4 = vdup_lane_s16(vget_high_s16(filters), 0); + uint8x8_t s[8], d; + int16x8_t ss[4]; + int16x4_t t[8], tt; + + load_u8_8x4(src_x, src_stride, &s[0], &s[1], &s[2], &s[3]); + transpose_u8_8x4(&s[0], &s[1], &s[2], &s[3]); + + ss[0] = vreinterpretq_s16_u16(vmovl_u8(s[0])); + ss[1] = vreinterpretq_s16_u16(vmovl_u8(s[1])); + ss[2] = vreinterpretq_s16_u16(vmovl_u8(s[2])); + ss[3] = vreinterpretq_s16_u16(vmovl_u8(s[3])); + t[0] = vget_low_s16(ss[0]); + t[1] = vget_low_s16(ss[1]); + t[2] = vget_low_s16(ss[2]); + t[3] = vget_low_s16(ss[3]); + t[4] = vget_high_s16(ss[0]); + t[5] = vget_high_s16(ss[1]); + t[6] = vget_high_s16(ss[2]); + t[7] = vget_high_s16(ss[3]); + + tt = convolve8_4(t[0], t[1], t[2], t[3], t[4], t[5], t[6], t[7], + filters, filter3, filter4); + d = vqrshrun_n_s16(vcombine_s16(tt, tt), 7); + vst1_lane_u32((uint32_t *)&temp[4 * z], vreinterpret_u32_u8(d), 0); + } else { + int i; + for (i = 0; i < 4; ++i) { + temp[z * 4 + i] = src_x[i * src_stride + 3]; + } + } + x_q4 += x_step_q4; + } + + // transpose the 4x4 filters values back to dst + { + const uint8x8x4_t d4 = vld4_u8(temp); + vst1_lane_u32((uint32_t *)&dst[x + 0 * dst_stride], + vreinterpret_u32_u8(d4.val[0]), 0); + vst1_lane_u32((uint32_t *)&dst[x + 1 * dst_stride], + vreinterpret_u32_u8(d4.val[1]), 0); + vst1_lane_u32((uint32_t *)&dst[x + 2 * dst_stride], + vreinterpret_u32_u8(d4.val[2]), 0); + vst1_lane_u32((uint32_t *)&dst[x + 3 * dst_stride], + vreinterpret_u32_u8(d4.val[3]), 0); + } + x += 4; + } while (x < w); + + src += src_stride * 4; + dst += dst_stride * 4; + y -= 4; + } while (y > 0); +} + +static INLINE void scaledconvolve_horiz_w8( + const uint8_t *src, const ptrdiff_t src_stride, uint8_t *dst, + const ptrdiff_t dst_stride, const InterpKernel *const x_filters, + const int x0_q4, const int x_step_q4, const int w, const int h) { + DECLARE_ALIGNED(16, uint8_t, temp[8 * 8]); + int x, y, z; + src -= SUBPEL_TAPS / 2 - 1; + + // This function processes 8x8 areas. The intermediate height is not always + // a multiple of 8, so force it to be a multiple of 8 here. + y = (h + 7) & ~7; + + do { + int x_q4 = x0_q4; + x = 0; + do { + uint8x8_t d[8]; + // process 8 src_x steps + for (z = 0; z < 8; ++z) { + const uint8_t *const src_x = &src[x_q4 >> SUBPEL_BITS]; + + if (x_q4 & SUBPEL_MASK) { + const int16x8_t filters = vld1q_s16(x_filters[x_q4 & SUBPEL_MASK]); + uint8x8_t s[8]; + load_u8_8x8(src_x, src_stride, &s[0], &s[1], &s[2], &s[3], &s[4], + &s[5], &s[6], &s[7]); + transpose_u8_8x8(&s[0], &s[1], &s[2], &s[3], &s[4], &s[5], &s[6], + &s[7]); + d[0] = scale_filter_8(s, filters); + vst1_u8(&temp[8 * z], d[0]); + } else { + int i; + for (i = 0; i < 8; ++i) { + temp[z * 8 + i] = src_x[i * src_stride + 3]; + } + } + x_q4 += x_step_q4; + } + + // transpose the 8x8 filters values back to dst + load_u8_8x8(temp, 8, &d[0], &d[1], &d[2], &d[3], &d[4], &d[5], &d[6], + &d[7]); + transpose_u8_8x8(&d[0], &d[1], &d[2], &d[3], &d[4], &d[5], &d[6], &d[7]); + vst1_u8(&dst[x + 0 * dst_stride], d[0]); + vst1_u8(&dst[x + 1 * dst_stride], d[1]); + vst1_u8(&dst[x + 2 * dst_stride], d[2]); + vst1_u8(&dst[x + 3 * dst_stride], d[3]); + vst1_u8(&dst[x + 4 * dst_stride], d[4]); + vst1_u8(&dst[x + 5 * dst_stride], d[5]); + vst1_u8(&dst[x + 6 * dst_stride], d[6]); + vst1_u8(&dst[x + 7 * dst_stride], d[7]); + x += 8; + } while (x < w); + + src += src_stride * 8; + dst += dst_stride * 8; + } while (y -= 8); +} + +static INLINE void scaledconvolve_vert_w4( + const uint8_t *src, const ptrdiff_t src_stride, uint8_t *dst, + const ptrdiff_t dst_stride, const InterpKernel *const y_filters, + const int y0_q4, const int y_step_q4, const int w, const int h) { + int y; + int y_q4 = y0_q4; + + src -= src_stride * (SUBPEL_TAPS / 2 - 1); + y = h; + do { + const unsigned char *src_y = &src[(y_q4 >> SUBPEL_BITS) * src_stride]; + + if (y_q4 & SUBPEL_MASK) { + const int16x8_t filters = vld1q_s16(y_filters[y_q4 & SUBPEL_MASK]); + const int16x4_t filter3 = vdup_lane_s16(vget_low_s16(filters), 3); + const int16x4_t filter4 = vdup_lane_s16(vget_high_s16(filters), 0); + uint8x8_t s[8], d; + int16x4_t t[8], tt; + + load_u8_8x8(src_y, src_stride, &s[0], &s[1], &s[2], &s[3], &s[4], &s[5], + &s[6], &s[7]); + t[0] = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(s[0]))); + t[1] = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(s[1]))); + t[2] = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(s[2]))); + t[3] = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(s[3]))); + t[4] = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(s[4]))); + t[5] = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(s[5]))); + t[6] = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(s[6]))); + t[7] = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(s[7]))); + + tt = convolve8_4(t[0], t[1], t[2], t[3], t[4], t[5], t[6], t[7], filters, + filter3, filter4); + d = vqrshrun_n_s16(vcombine_s16(tt, tt), 7); + vst1_lane_u32((uint32_t *)dst, vreinterpret_u32_u8(d), 0); + } else { + memcpy(dst, &src_y[3 * src_stride], w); + } + + dst += dst_stride; + y_q4 += y_step_q4; + } while (--y); +} + +static INLINE void scaledconvolve_vert_w8( + const uint8_t *src, const ptrdiff_t src_stride, uint8_t *dst, + const ptrdiff_t dst_stride, const InterpKernel *const y_filters, + const int y0_q4, const int y_step_q4, const int w, const int h) { + int y; + int y_q4 = y0_q4; + + src -= src_stride * (SUBPEL_TAPS / 2 - 1); + y = h; + do { + const unsigned char *src_y = &src[(y_q4 >> SUBPEL_BITS) * src_stride]; + if (y_q4 & SUBPEL_MASK) { + const int16x8_t filters = vld1q_s16(y_filters[y_q4 & SUBPEL_MASK]); + uint8x8_t s[8], d; + load_u8_8x8(src_y, src_stride, &s[0], &s[1], &s[2], &s[3], &s[4], &s[5], + &s[6], &s[7]); + d = scale_filter_8(s, filters); + vst1_u8(dst, d); + } else { + memcpy(dst, &src_y[3 * src_stride], w); + } + dst += dst_stride; + y_q4 += y_step_q4; + } while (--y); +} + +static INLINE void scaledconvolve_vert_w16( + const uint8_t *src, const ptrdiff_t src_stride, uint8_t *dst, + const ptrdiff_t dst_stride, const InterpKernel *const y_filters, + const int y0_q4, const int y_step_q4, const int w, const int h) { + int x, y; + int y_q4 = y0_q4; + + src -= src_stride * (SUBPEL_TAPS / 2 - 1); + y = h; + do { + const unsigned char *src_y = &src[(y_q4 >> SUBPEL_BITS) * src_stride]; + if (y_q4 & SUBPEL_MASK) { + x = 0; + do { + const int16x8_t filters = vld1q_s16(y_filters[y_q4 & SUBPEL_MASK]); + uint8x16_t ss[8]; + uint8x8_t s[8], d[2]; + load_u8_16x8(src_y, src_stride, &ss[0], &ss[1], &ss[2], &ss[3], &ss[4], + &ss[5], &ss[6], &ss[7]); + s[0] = vget_low_u8(ss[0]); + s[1] = vget_low_u8(ss[1]); + s[2] = vget_low_u8(ss[2]); + s[3] = vget_low_u8(ss[3]); + s[4] = vget_low_u8(ss[4]); + s[5] = vget_low_u8(ss[5]); + s[6] = vget_low_u8(ss[6]); + s[7] = vget_low_u8(ss[7]); + d[0] = scale_filter_8(s, filters); + + s[0] = vget_high_u8(ss[0]); + s[1] = vget_high_u8(ss[1]); + s[2] = vget_high_u8(ss[2]); + s[3] = vget_high_u8(ss[3]); + s[4] = vget_high_u8(ss[4]); + s[5] = vget_high_u8(ss[5]); + s[6] = vget_high_u8(ss[6]); + s[7] = vget_high_u8(ss[7]); + d[1] = scale_filter_8(s, filters); + vst1q_u8(&dst[x], vcombine_u8(d[0], d[1])); + src_y += 16; + x += 16; + } while (x < w); + } else { + memcpy(dst, &src_y[3 * src_stride], w); + } + dst += dst_stride; + y_q4 += y_step_q4; + } while (--y); +} + +void vpx_scaled_2d_neon(const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst, + ptrdiff_t dst_stride, const InterpKernel *filter, + int x0_q4, int x_step_q4, int y0_q4, int y_step_q4, + int w, int h) { + // Note: Fixed size intermediate buffer, temp, places limits on parameters. + // 2d filtering proceeds in 2 steps: + // (1) Interpolate horizontally into an intermediate buffer, temp. + // (2) Interpolate temp vertically to derive the sub-pixel result. + // Deriving the maximum number of rows in the temp buffer (135): + // --Smallest scaling factor is x1/2 ==> y_step_q4 = 32 (Normative). + // --Largest block size is 64x64 pixels. + // --64 rows in the downscaled frame span a distance of (64 - 1) * 32 in the + // original frame (in 1/16th pixel units). + // --Must round-up because block may be located at sub-pixel position. + // --Require an additional SUBPEL_TAPS rows for the 8-tap filter tails. + // --((64 - 1) * 32 + 15) >> 4 + 8 = 135. + // --Require an additional 8 rows for the horiz_w8 transpose tail. + // When calling in frame scaling function, the smallest scaling factor is x1/4 + // ==> y_step_q4 = 64. Since w and h are at most 16, the temp buffer is still + // big enough. + DECLARE_ALIGNED(16, uint8_t, temp[(135 + 8) * 64]); + const int intermediate_height = + (((h - 1) * y_step_q4 + y0_q4) >> SUBPEL_BITS) + SUBPEL_TAPS; + + assert(w <= 64); + assert(h <= 64); + assert(y_step_q4 <= 32 || (y_step_q4 <= 64 && h <= 32)); + assert(x_step_q4 <= 64); + + if (w >= 8) { + scaledconvolve_horiz_w8(src - src_stride * (SUBPEL_TAPS / 2 - 1), + src_stride, temp, 64, filter, x0_q4, x_step_q4, w, + intermediate_height); + } else { + scaledconvolve_horiz_w4(src - src_stride * (SUBPEL_TAPS / 2 - 1), + src_stride, temp, 64, filter, x0_q4, x_step_q4, w, + intermediate_height); + } + + if (w >= 16) { + scaledconvolve_vert_w16(temp + 64 * (SUBPEL_TAPS / 2 - 1), 64, dst, + dst_stride, filter, y0_q4, y_step_q4, w, h); + } else if (w == 8) { + scaledconvolve_vert_w8(temp + 64 * (SUBPEL_TAPS / 2 - 1), 64, dst, + dst_stride, filter, y0_q4, y_step_q4, w, h); + } else { + scaledconvolve_vert_w4(temp + 64 * (SUBPEL_TAPS / 2 - 1), 64, dst, + dst_stride, filter, y0_q4, y_step_q4, w, h); + } +} diff --git a/vpx_dsp/avg.c b/vpx_dsp/avg.c new file mode 100644 index 0000000..a7ac6d9 --- /dev/null +++ b/vpx_dsp/avg.c @@ -0,0 +1,234 @@ +/* + * Copyright (c) 2014 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ +#include + +#include "./vpx_dsp_rtcd.h" +#include "vpx_ports/mem.h" + +unsigned int vpx_avg_8x8_c(const uint8_t *s, int p) { + int i, j; + int sum = 0; + for (i = 0; i < 8; ++i, s += p) + for (j = 0; j < 8; sum += s[j], ++j) { + } + + return (sum + 32) >> 6; +} + +unsigned int vpx_avg_4x4_c(const uint8_t *s, int p) { + int i, j; + int sum = 0; + for (i = 0; i < 4; ++i, s += p) + for (j = 0; j < 4; sum += s[j], ++j) { + } + + return (sum + 8) >> 4; +} + +// src_diff: first pass, 9 bit, dynamic range [-255, 255] +// second pass, 12 bit, dynamic range [-2040, 2040] +static void hadamard_col8(const int16_t *src_diff, ptrdiff_t src_stride, + int16_t *coeff) { + int16_t b0 = src_diff[0 * src_stride] + src_diff[1 * src_stride]; + int16_t b1 = src_diff[0 * src_stride] - src_diff[1 * src_stride]; + int16_t b2 = src_diff[2 * src_stride] + src_diff[3 * src_stride]; + int16_t b3 = src_diff[2 * src_stride] - src_diff[3 * src_stride]; + int16_t b4 = src_diff[4 * src_stride] + src_diff[5 * src_stride]; + int16_t b5 = src_diff[4 * src_stride] - src_diff[5 * src_stride]; + int16_t b6 = src_diff[6 * src_stride] + src_diff[7 * src_stride]; + int16_t b7 = src_diff[6 * src_stride] - src_diff[7 * src_stride]; + + int16_t c0 = b0 + b2; + int16_t c1 = b1 + b3; + int16_t c2 = b0 - b2; + int16_t c3 = b1 - b3; + int16_t c4 = b4 + b6; + int16_t c5 = b5 + b7; + int16_t c6 = b4 - b6; + int16_t c7 = b5 - b7; + + coeff[0] = c0 + c4; + coeff[7] = c1 + c5; + coeff[3] = c2 + c6; + coeff[4] = c3 + c7; + coeff[2] = c0 - c4; + coeff[6] = c1 - c5; + coeff[1] = c2 - c6; + coeff[5] = c3 - c7; +} + +// The order of the output coeff of the hadamard is not important. For +// optimization purposes the final transpose may be skipped. +void vpx_hadamard_8x8_c(const int16_t *src_diff, ptrdiff_t src_stride, + tran_low_t *coeff) { + int idx; + int16_t buffer[64]; + int16_t buffer2[64]; + int16_t *tmp_buf = &buffer[0]; + for (idx = 0; idx < 8; ++idx) { + hadamard_col8(src_diff, src_stride, tmp_buf); // src_diff: 9 bit + // dynamic range [-255, 255] + tmp_buf += 8; + ++src_diff; + } + + tmp_buf = &buffer[0]; + for (idx = 0; idx < 8; ++idx) { + hadamard_col8(tmp_buf, 8, buffer2 + 8 * idx); // tmp_buf: 12 bit + // dynamic range [-2040, 2040] + // buffer2: 15 bit + // dynamic range [-16320, 16320] + ++tmp_buf; + } + + for (idx = 0; idx < 64; ++idx) coeff[idx] = (tran_low_t)buffer2[idx]; +} + +// In place 16x16 2D Hadamard transform +void vpx_hadamard_16x16_c(const int16_t *src_diff, ptrdiff_t src_stride, + tran_low_t *coeff) { + int idx; + for (idx = 0; idx < 4; ++idx) { + // src_diff: 9 bit, dynamic range [-255, 255] + const int16_t *src_ptr = + src_diff + (idx >> 1) * 8 * src_stride + (idx & 0x01) * 8; + vpx_hadamard_8x8_c(src_ptr, src_stride, coeff + idx * 64); + } + + // coeff: 15 bit, dynamic range [-16320, 16320] + for (idx = 0; idx < 64; ++idx) { + tran_low_t a0 = coeff[0]; + tran_low_t a1 = coeff[64]; + tran_low_t a2 = coeff[128]; + tran_low_t a3 = coeff[192]; + + tran_low_t b0 = (a0 + a1) >> 1; // (a0 + a1): 16 bit, [-32640, 32640] + tran_low_t b1 = (a0 - a1) >> 1; // b0-b3: 15 bit, dynamic range + tran_low_t b2 = (a2 + a3) >> 1; // [-16320, 16320] + tran_low_t b3 = (a2 - a3) >> 1; + + coeff[0] = b0 + b2; // 16 bit, [-32640, 32640] + coeff[64] = b1 + b3; + coeff[128] = b0 - b2; + coeff[192] = b1 - b3; + + ++coeff; + } +} + +// coeff: 16 bits, dynamic range [-32640, 32640]. +// length: value range {16, 64, 256, 1024}. +int vpx_satd_c(const tran_low_t *coeff, int length) { + int i; + int satd = 0; + for (i = 0; i < length; ++i) satd += abs(coeff[i]); + + // satd: 26 bits, dynamic range [-32640 * 1024, 32640 * 1024] + return satd; +} + +// Integer projection onto row vectors. +// height: value range {16, 32, 64}. +void vpx_int_pro_row_c(int16_t hbuf[16], const uint8_t *ref, + const int ref_stride, const int height) { + int idx; + const int norm_factor = height >> 1; + for (idx = 0; idx < 16; ++idx) { + int i; + hbuf[idx] = 0; + // hbuf[idx]: 14 bit, dynamic range [0, 16320]. + for (i = 0; i < height; ++i) hbuf[idx] += ref[i * ref_stride]; + // hbuf[idx]: 9 bit, dynamic range [0, 510]. + hbuf[idx] /= norm_factor; + ++ref; + } +} + +// width: value range {16, 32, 64}. +int16_t vpx_int_pro_col_c(const uint8_t *ref, const int width) { + int idx; + int16_t sum = 0; + // sum: 14 bit, dynamic range [0, 16320] + for (idx = 0; idx < width; ++idx) sum += ref[idx]; + return sum; +} + +// ref: [0 - 510] +// src: [0 - 510] +// bwl: {2, 3, 4} +int vpx_vector_var_c(const int16_t *ref, const int16_t *src, const int bwl) { + int i; + int width = 4 << bwl; + int sse = 0, mean = 0, var; + + for (i = 0; i < width; ++i) { + int diff = ref[i] - src[i]; // diff: dynamic range [-510, 510], 10 bits. + mean += diff; // mean: dynamic range 16 bits. + sse += diff * diff; // sse: dynamic range 26 bits. + } + + // (mean * mean): dynamic range 31 bits. + var = sse - ((mean * mean) >> (bwl + 2)); + return var; +} + +void vpx_minmax_8x8_c(const uint8_t *s, int p, const uint8_t *d, int dp, + int *min, int *max) { + int i, j; + *min = 255; + *max = 0; + for (i = 0; i < 8; ++i, s += p, d += dp) { + for (j = 0; j < 8; ++j) { + int diff = abs(s[j] - d[j]); + *min = diff < *min ? diff : *min; + *max = diff > *max ? diff : *max; + } + } +} + +#if CONFIG_VP9_HIGHBITDEPTH +unsigned int vpx_highbd_avg_8x8_c(const uint8_t *s8, int p) { + int i, j; + int sum = 0; + const uint16_t *s = CONVERT_TO_SHORTPTR(s8); + for (i = 0; i < 8; ++i, s += p) + for (j = 0; j < 8; sum += s[j], ++j) { + } + + return (sum + 32) >> 6; +} + +unsigned int vpx_highbd_avg_4x4_c(const uint8_t *s8, int p) { + int i, j; + int sum = 0; + const uint16_t *s = CONVERT_TO_SHORTPTR(s8); + for (i = 0; i < 4; ++i, s += p) + for (j = 0; j < 4; sum += s[j], ++j) { + } + + return (sum + 8) >> 4; +} + +void vpx_highbd_minmax_8x8_c(const uint8_t *s8, int p, const uint8_t *d8, + int dp, int *min, int *max) { + int i, j; + const uint16_t *s = CONVERT_TO_SHORTPTR(s8); + const uint16_t *d = CONVERT_TO_SHORTPTR(d8); + *min = 255; + *max = 0; + for (i = 0; i < 8; ++i, s += p, d += dp) { + for (j = 0; j < 8; ++j) { + int diff = abs(s[j] - d[j]); + *min = diff < *min ? diff : *min; + *max = diff > *max ? diff : *max; + } + } +} +#endif // CONFIG_VP9_HIGHBITDEPTH diff --git a/vpx_dsp/bitreader.c b/vpx_dsp/bitreader.c new file mode 100644 index 0000000..90cbbba --- /dev/null +++ b/vpx_dsp/bitreader.c @@ -0,0 +1,100 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ +#include + +#include "./vpx_config.h" + +#include "vpx_dsp/bitreader.h" +#include "vpx_dsp/prob.h" +#include "vpx_dsp/vpx_dsp_common.h" +#include "vpx_ports/mem.h" +#include "vpx_mem/vpx_mem.h" +#include "vpx_util/endian_inl.h" + +int vpx_reader_init(vpx_reader *r, const uint8_t *buffer, size_t size, + vpx_decrypt_cb decrypt_cb, void *decrypt_state) { + if (size && !buffer) { + return 1; + } else { + r->buffer_end = buffer + size; + r->buffer = buffer; + r->value = 0; + r->count = -8; + r->range = 255; + r->decrypt_cb = decrypt_cb; + r->decrypt_state = decrypt_state; + vpx_reader_fill(r); + return vpx_read_bit(r) != 0; // marker bit + } +} + +void vpx_reader_fill(vpx_reader *r) { + const uint8_t *const buffer_end = r->buffer_end; + const uint8_t *buffer = r->buffer; + const uint8_t *buffer_start = buffer; + BD_VALUE value = r->value; + int count = r->count; + const size_t bytes_left = buffer_end - buffer; + const size_t bits_left = bytes_left * CHAR_BIT; + int shift = BD_VALUE_SIZE - CHAR_BIT - (count + CHAR_BIT); + + if (r->decrypt_cb) { + size_t n = VPXMIN(sizeof(r->clear_buffer), bytes_left); + r->decrypt_cb(r->decrypt_state, buffer, r->clear_buffer, (int)n); + buffer = r->clear_buffer; + buffer_start = r->clear_buffer; + } + if (bits_left > BD_VALUE_SIZE) { + const int bits = (shift & 0xfffffff8) + CHAR_BIT; + BD_VALUE nv; + BD_VALUE big_endian_values; + memcpy(&big_endian_values, buffer, sizeof(BD_VALUE)); +#if SIZE_MAX == 0xffffffffffffffffULL + big_endian_values = HToBE64(big_endian_values); +#else + big_endian_values = HToBE32(big_endian_values); +#endif + nv = big_endian_values >> (BD_VALUE_SIZE - bits); + count += bits; + buffer += (bits >> 3); + value = r->value | (nv << (shift & 0x7)); + } else { + const int bits_over = (int)(shift + CHAR_BIT - (int)bits_left); + int loop_end = 0; + if (bits_over >= 0) { + count += LOTS_OF_BITS; + loop_end = bits_over; + } + + if (bits_over < 0 || bits_left) { + while (shift >= loop_end) { + count += CHAR_BIT; + value |= (BD_VALUE)*buffer++ << shift; + shift -= CHAR_BIT; + } + } + } + + // NOTE: Variable 'buffer' may not relate to 'r->buffer' after decryption, + // so we increase 'r->buffer' by the amount that 'buffer' moved, rather than + // assign 'buffer' to 'r->buffer'. + r->buffer += buffer - buffer_start; + r->value = value; + r->count = count; +} + +const uint8_t *vpx_reader_find_end(vpx_reader *r) { + // Find the end of the coded buffer + while (r->count > CHAR_BIT && r->count < BD_VALUE_SIZE) { + r->count -= CHAR_BIT; + r->buffer--; + } + return r->buffer; +} diff --git a/vpx_dsp/bitreader.h b/vpx_dsp/bitreader.h new file mode 100644 index 0000000..6ee2a58 --- /dev/null +++ b/vpx_dsp/bitreader.h @@ -0,0 +1,134 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VPX_DSP_BITREADER_H_ +#define VPX_DSP_BITREADER_H_ + +#include +#include + +#include "./vpx_config.h" +#include "vpx_ports/mem.h" +#include "vpx/vp8dx.h" +#include "vpx/vpx_integer.h" +#include "vpx_dsp/prob.h" + +#ifdef __cplusplus +extern "C" { +#endif + +typedef size_t BD_VALUE; + +#define BD_VALUE_SIZE ((int)sizeof(BD_VALUE) * CHAR_BIT) + +// This is meant to be a large, positive constant that can still be efficiently +// loaded as an immediate (on platforms like ARM, for example). +// Even relatively modest values like 100 would work fine. +#define LOTS_OF_BITS 0x40000000 + +typedef struct { + // Be careful when reordering this struct, it may impact the cache negatively. + BD_VALUE value; + unsigned int range; + int count; + const uint8_t *buffer_end; + const uint8_t *buffer; + vpx_decrypt_cb decrypt_cb; + void *decrypt_state; + uint8_t clear_buffer[sizeof(BD_VALUE) + 1]; +} vpx_reader; + +int vpx_reader_init(vpx_reader *r, const uint8_t *buffer, size_t size, + vpx_decrypt_cb decrypt_cb, void *decrypt_state); + +void vpx_reader_fill(vpx_reader *r); + +const uint8_t *vpx_reader_find_end(vpx_reader *r); + +static INLINE int vpx_reader_has_error(vpx_reader *r) { + // Check if we have reached the end of the buffer. + // + // Variable 'count' stores the number of bits in the 'value' buffer, minus + // 8. The top byte is part of the algorithm, and the remainder is buffered + // to be shifted into it. So if count == 8, the top 16 bits of 'value' are + // occupied, 8 for the algorithm and 8 in the buffer. + // + // When reading a byte from the user's buffer, count is filled with 8 and + // one byte is filled into the value buffer. When we reach the end of the + // data, count is additionally filled with LOTS_OF_BITS. So when + // count == LOTS_OF_BITS - 1, the user's data has been exhausted. + // + // 1 if we have tried to decode bits after the end of stream was encountered. + // 0 No error. + return r->count > BD_VALUE_SIZE && r->count < LOTS_OF_BITS; +} + +static INLINE int vpx_read(vpx_reader *r, int prob) { + unsigned int bit = 0; + BD_VALUE value; + BD_VALUE bigsplit; + int count; + unsigned int range; + unsigned int split = (r->range * prob + (256 - prob)) >> CHAR_BIT; + + if (r->count < 0) vpx_reader_fill(r); + + value = r->value; + count = r->count; + + bigsplit = (BD_VALUE)split << (BD_VALUE_SIZE - CHAR_BIT); + + range = split; + + if (value >= bigsplit) { + range = r->range - split; + value = value - bigsplit; + bit = 1; + } + + { + register int shift = vpx_norm[range]; + range <<= shift; + value <<= shift; + count -= shift; + } + r->value = value; + r->count = count; + r->range = range; + + return bit; +} + +static INLINE int vpx_read_bit(vpx_reader *r) { + return vpx_read(r, 128); // vpx_prob_half +} + +static INLINE int vpx_read_literal(vpx_reader *r, int bits) { + int literal = 0, bit; + + for (bit = bits - 1; bit >= 0; bit--) literal |= vpx_read_bit(r) << bit; + + return literal; +} + +static INLINE int vpx_read_tree(vpx_reader *r, const vpx_tree_index *tree, + const vpx_prob *probs) { + vpx_tree_index i = 0; + + while ((i = tree[i + vpx_read(r, probs[i >> 1])]) > 0) continue; + + return -i; +} + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VPX_DSP_BITREADER_H_ diff --git a/vpx_dsp/bitreader_buffer.c b/vpx_dsp/bitreader_buffer.c new file mode 100644 index 0000000..3e16bfa --- /dev/null +++ b/vpx_dsp/bitreader_buffer.c @@ -0,0 +1,44 @@ +/* + * Copyright (c) 2013 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ +#include "./vpx_config.h" +#include "./bitreader_buffer.h" + +size_t vpx_rb_bytes_read(struct vpx_read_bit_buffer *rb) { + return (rb->bit_offset + 7) >> 3; +} + +int vpx_rb_read_bit(struct vpx_read_bit_buffer *rb) { + const size_t off = rb->bit_offset; + const size_t p = off >> 3; + const int q = 7 - (int)(off & 0x7); + if (rb->bit_buffer + p < rb->bit_buffer_end) { + const int bit = (rb->bit_buffer[p] >> q) & 1; + rb->bit_offset = off + 1; + return bit; + } else { + rb->error_handler(rb->error_handler_data); + return 0; + } +} + +int vpx_rb_read_literal(struct vpx_read_bit_buffer *rb, int bits) { + int value = 0, bit; + for (bit = bits - 1; bit >= 0; bit--) value |= vpx_rb_read_bit(rb) << bit; + return value; +} + +int vpx_rb_read_signed_literal(struct vpx_read_bit_buffer *rb, int bits) { + const int value = vpx_rb_read_literal(rb, bits); + return vpx_rb_read_bit(rb) ? -value : value; +} + +int vpx_rb_read_inv_signed_literal(struct vpx_read_bit_buffer *rb, int bits) { + return vpx_rb_read_signed_literal(rb, bits); +} diff --git a/vpx_dsp/bitreader_buffer.h b/vpx_dsp/bitreader_buffer.h new file mode 100644 index 0000000..8a48a95 --- /dev/null +++ b/vpx_dsp/bitreader_buffer.h @@ -0,0 +1,47 @@ +/* + * Copyright (c) 2013 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VPX_DSP_BITREADER_BUFFER_H_ +#define VPX_DSP_BITREADER_BUFFER_H_ + +#include + +#include "vpx/vpx_integer.h" + +#ifdef __cplusplus +extern "C" { +#endif + +typedef void (*vpx_rb_error_handler)(void *data); + +struct vpx_read_bit_buffer { + const uint8_t *bit_buffer; + const uint8_t *bit_buffer_end; + size_t bit_offset; + + void *error_handler_data; + vpx_rb_error_handler error_handler; +}; + +size_t vpx_rb_bytes_read(struct vpx_read_bit_buffer *rb); + +int vpx_rb_read_bit(struct vpx_read_bit_buffer *rb); + +int vpx_rb_read_literal(struct vpx_read_bit_buffer *rb, int bits); + +int vpx_rb_read_signed_literal(struct vpx_read_bit_buffer *rb, int bits); + +int vpx_rb_read_inv_signed_literal(struct vpx_read_bit_buffer *rb, int bits); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VPX_DSP_BITREADER_BUFFER_H_ diff --git a/vpx_dsp/bitwriter.c b/vpx_dsp/bitwriter.c new file mode 100644 index 0000000..81e28b3 --- /dev/null +++ b/vpx_dsp/bitwriter.c @@ -0,0 +1,31 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include + +#include "./bitwriter.h" + +void vpx_start_encode(vpx_writer *br, uint8_t *source) { + br->lowvalue = 0; + br->range = 255; + br->count = -24; + br->buffer = source; + br->pos = 0; + vpx_write_bit(br, 0); +} + +void vpx_stop_encode(vpx_writer *br) { + int i; + + for (i = 0; i < 32; i++) vpx_write_bit(br, 0); + + // Ensure there's no ambigous collision with any index marker bytes + if ((br->buffer[br->pos - 1] & 0xe0) == 0xc0) br->buffer[br->pos++] = 0; +} diff --git a/vpx_dsp/bitwriter.h b/vpx_dsp/bitwriter.h new file mode 100644 index 0000000..41040cf --- /dev/null +++ b/vpx_dsp/bitwriter.h @@ -0,0 +1,97 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VPX_DSP_BITWRITER_H_ +#define VPX_DSP_BITWRITER_H_ + +#include "vpx_ports/mem.h" + +#include "vpx_dsp/prob.h" + +#ifdef __cplusplus +extern "C" { +#endif + +typedef struct vpx_writer { + unsigned int lowvalue; + unsigned int range; + int count; + unsigned int pos; + uint8_t *buffer; +} vpx_writer; + +void vpx_start_encode(vpx_writer *bc, uint8_t *buffer); +void vpx_stop_encode(vpx_writer *bc); + +static INLINE void vpx_write(vpx_writer *br, int bit, int probability) { + unsigned int split; + int count = br->count; + unsigned int range = br->range; + unsigned int lowvalue = br->lowvalue; + register int shift; + + split = 1 + (((range - 1) * probability) >> 8); + + range = split; + + if (bit) { + lowvalue += split; + range = br->range - split; + } + + shift = vpx_norm[range]; + + range <<= shift; + count += shift; + + if (count >= 0) { + int offset = shift - count; + + if ((lowvalue << (offset - 1)) & 0x80000000) { + int x = br->pos - 1; + + while (x >= 0 && br->buffer[x] == 0xff) { + br->buffer[x] = 0; + x--; + } + + br->buffer[x] += 1; + } + + br->buffer[br->pos++] = (lowvalue >> (24 - offset)); + lowvalue <<= offset; + shift = count; + lowvalue &= 0xffffff; + count -= 8; + } + + lowvalue <<= shift; + br->count = count; + br->lowvalue = lowvalue; + br->range = range; +} + +static INLINE void vpx_write_bit(vpx_writer *w, int bit) { + vpx_write(w, bit, 128); // vpx_prob_half +} + +static INLINE void vpx_write_literal(vpx_writer *w, int data, int bits) { + int bit; + + for (bit = bits - 1; bit >= 0; bit--) vpx_write_bit(w, 1 & (data >> bit)); +} + +#define vpx_write_prob(w, v) vpx_write_literal((w), (v), 8) + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VPX_DSP_BITWRITER_H_ diff --git a/vpx_dsp/bitwriter_buffer.c b/vpx_dsp/bitwriter_buffer.c new file mode 100644 index 0000000..7a7e96f --- /dev/null +++ b/vpx_dsp/bitwriter_buffer.c @@ -0,0 +1,43 @@ +/* + * Copyright (c) 2013 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include + +#include "./vpx_config.h" +#include "./bitwriter_buffer.h" + +size_t vpx_wb_bytes_written(const struct vpx_write_bit_buffer *wb) { + return wb->bit_offset / CHAR_BIT + (wb->bit_offset % CHAR_BIT > 0); +} + +void vpx_wb_write_bit(struct vpx_write_bit_buffer *wb, int bit) { + const int off = (int)wb->bit_offset; + const int p = off / CHAR_BIT; + const int q = CHAR_BIT - 1 - off % CHAR_BIT; + if (q == CHAR_BIT - 1) { + wb->bit_buffer[p] = bit << q; + } else { + wb->bit_buffer[p] &= ~(1 << q); + wb->bit_buffer[p] |= bit << q; + } + wb->bit_offset = off + 1; +} + +void vpx_wb_write_literal(struct vpx_write_bit_buffer *wb, int data, int bits) { + int bit; + for (bit = bits - 1; bit >= 0; bit--) vpx_wb_write_bit(wb, (data >> bit) & 1); +} + +void vpx_wb_write_inv_signed_literal(struct vpx_write_bit_buffer *wb, int data, + int bits) { + vpx_wb_write_literal(wb, abs(data), bits); + vpx_wb_write_bit(wb, data < 0); +} diff --git a/vpx_dsp/bitwriter_buffer.h b/vpx_dsp/bitwriter_buffer.h new file mode 100644 index 0000000..a123a2f --- /dev/null +++ b/vpx_dsp/bitwriter_buffer.h @@ -0,0 +1,38 @@ +/* + * Copyright (c) 2013 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VPX_DSP_BITWRITER_BUFFER_H_ +#define VPX_DSP_BITWRITER_BUFFER_H_ + +#include "vpx/vpx_integer.h" + +#ifdef __cplusplus +extern "C" { +#endif + +struct vpx_write_bit_buffer { + uint8_t *bit_buffer; + size_t bit_offset; +}; + +size_t vpx_wb_bytes_written(const struct vpx_write_bit_buffer *wb); + +void vpx_wb_write_bit(struct vpx_write_bit_buffer *wb, int bit); + +void vpx_wb_write_literal(struct vpx_write_bit_buffer *wb, int data, int bits); + +void vpx_wb_write_inv_signed_literal(struct vpx_write_bit_buffer *wb, int data, + int bits); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VPX_DSP_BITWRITER_BUFFER_H_ diff --git a/vpx_dsp/deblock.c b/vpx_dsp/deblock.c new file mode 100644 index 0000000..94acbb3 --- /dev/null +++ b/vpx_dsp/deblock.c @@ -0,0 +1,195 @@ +/* + * Copyright (c) 2016 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ +#include +#include +#include "./vpx_dsp_rtcd.h" +#include "vpx/vpx_integer.h" + +const int16_t vpx_rv[] = { + 8, 5, 2, 2, 8, 12, 4, 9, 8, 3, 0, 3, 9, 0, 0, 0, 8, 3, 14, + 4, 10, 1, 11, 14, 1, 14, 9, 6, 12, 11, 8, 6, 10, 0, 0, 8, 9, 0, + 3, 14, 8, 11, 13, 4, 2, 9, 0, 3, 9, 6, 1, 2, 3, 14, 13, 1, 8, + 2, 9, 7, 3, 3, 1, 13, 13, 6, 6, 5, 2, 7, 11, 9, 11, 8, 7, 3, + 2, 0, 13, 13, 14, 4, 12, 5, 12, 10, 8, 10, 13, 10, 4, 14, 4, 10, 0, + 8, 11, 1, 13, 7, 7, 14, 6, 14, 13, 2, 13, 5, 4, 4, 0, 10, 0, 5, + 13, 2, 12, 7, 11, 13, 8, 0, 4, 10, 7, 2, 7, 2, 2, 5, 3, 4, 7, + 3, 3, 14, 14, 5, 9, 13, 3, 14, 3, 6, 3, 0, 11, 8, 13, 1, 13, 1, + 12, 0, 10, 9, 7, 6, 2, 8, 5, 2, 13, 7, 1, 13, 14, 7, 6, 7, 9, + 6, 10, 11, 7, 8, 7, 5, 14, 8, 4, 4, 0, 8, 7, 10, 0, 8, 14, 11, + 3, 12, 5, 7, 14, 3, 14, 5, 2, 6, 11, 12, 12, 8, 0, 11, 13, 1, 2, + 0, 5, 10, 14, 7, 8, 0, 4, 11, 0, 8, 0, 3, 10, 5, 8, 0, 11, 6, + 7, 8, 10, 7, 13, 9, 2, 5, 1, 5, 10, 2, 4, 3, 5, 6, 10, 8, 9, + 4, 11, 14, 0, 10, 0, 5, 13, 2, 12, 7, 11, 13, 8, 0, 4, 10, 7, 2, + 7, 2, 2, 5, 3, 4, 7, 3, 3, 14, 14, 5, 9, 13, 3, 14, 3, 6, 3, + 0, 11, 8, 13, 1, 13, 1, 12, 0, 10, 9, 7, 6, 2, 8, 5, 2, 13, 7, + 1, 13, 14, 7, 6, 7, 9, 6, 10, 11, 7, 8, 7, 5, 14, 8, 4, 4, 0, + 8, 7, 10, 0, 8, 14, 11, 3, 12, 5, 7, 14, 3, 14, 5, 2, 6, 11, 12, + 12, 8, 0, 11, 13, 1, 2, 0, 5, 10, 14, 7, 8, 0, 4, 11, 0, 8, 0, + 3, 10, 5, 8, 0, 11, 6, 7, 8, 10, 7, 13, 9, 2, 5, 1, 5, 10, 2, + 4, 3, 5, 6, 10, 8, 9, 4, 11, 14, 3, 8, 3, 7, 8, 5, 11, 4, 12, + 3, 11, 9, 14, 8, 14, 13, 4, 3, 1, 2, 14, 6, 5, 4, 4, 11, 4, 6, + 2, 1, 5, 8, 8, 12, 13, 5, 14, 10, 12, 13, 0, 9, 5, 5, 11, 10, 13, + 9, 10, 13, +}; + +void vpx_post_proc_down_and_across_mb_row_c(unsigned char *src_ptr, + unsigned char *dst_ptr, + int src_pixels_per_line, + int dst_pixels_per_line, int cols, + unsigned char *f, int size) { + unsigned char *p_src, *p_dst; + int row; + int col; + unsigned char v; + unsigned char d[4]; + + assert(size >= 8); + assert(cols >= 8); + + for (row = 0; row < size; row++) { + /* post_proc_down for one row */ + p_src = src_ptr; + p_dst = dst_ptr; + + for (col = 0; col < cols; col++) { + unsigned char p_above2 = p_src[col - 2 * src_pixels_per_line]; + unsigned char p_above1 = p_src[col - src_pixels_per_line]; + unsigned char p_below1 = p_src[col + src_pixels_per_line]; + unsigned char p_below2 = p_src[col + 2 * src_pixels_per_line]; + + v = p_src[col]; + + if ((abs(v - p_above2) < f[col]) && (abs(v - p_above1) < f[col]) && + (abs(v - p_below1) < f[col]) && (abs(v - p_below2) < f[col])) { + unsigned char k1, k2, k3; + k1 = (p_above2 + p_above1 + 1) >> 1; + k2 = (p_below2 + p_below1 + 1) >> 1; + k3 = (k1 + k2 + 1) >> 1; + v = (k3 + v + 1) >> 1; + } + + p_dst[col] = v; + } + + /* now post_proc_across */ + p_src = dst_ptr; + p_dst = dst_ptr; + + p_src[-2] = p_src[-1] = p_src[0]; + p_src[cols] = p_src[cols + 1] = p_src[cols - 1]; + + for (col = 0; col < cols; col++) { + v = p_src[col]; + + if ((abs(v - p_src[col - 2]) < f[col]) && + (abs(v - p_src[col - 1]) < f[col]) && + (abs(v - p_src[col + 1]) < f[col]) && + (abs(v - p_src[col + 2]) < f[col])) { + unsigned char k1, k2, k3; + k1 = (p_src[col - 2] + p_src[col - 1] + 1) >> 1; + k2 = (p_src[col + 2] + p_src[col + 1] + 1) >> 1; + k3 = (k1 + k2 + 1) >> 1; + v = (k3 + v + 1) >> 1; + } + + d[col & 3] = v; + + if (col >= 2) p_dst[col - 2] = d[(col - 2) & 3]; + } + + /* handle the last two pixels */ + p_dst[col - 2] = d[(col - 2) & 3]; + p_dst[col - 1] = d[(col - 1) & 3]; + + /* next row */ + src_ptr += src_pixels_per_line; + dst_ptr += dst_pixels_per_line; + } +} + +void vpx_mbpost_proc_across_ip_c(unsigned char *src, int pitch, int rows, + int cols, int flimit) { + int r, c, i; + + unsigned char *s = src; + unsigned char d[16]; + + for (r = 0; r < rows; r++) { + int sumsq = 16; + int sum = 0; + + for (i = -8; i < 0; i++) s[i] = s[0]; + + /* 17 avoids valgrind warning - we buffer values in c in d + * and only write them when we've read 8 ahead... + */ + for (i = 0; i < 17; i++) s[i + cols] = s[cols - 1]; + + for (i = -8; i <= 6; i++) { + sumsq += s[i] * s[i]; + sum += s[i]; + d[i + 8] = 0; + } + + for (c = 0; c < cols + 8; c++) { + int x = s[c + 7] - s[c - 8]; + int y = s[c + 7] + s[c - 8]; + + sum += x; + sumsq += x * y; + + d[c & 15] = s[c]; + + if (sumsq * 15 - sum * sum < flimit) { + d[c & 15] = (8 + sum + s[c]) >> 4; + } + + s[c - 8] = d[(c - 8) & 15]; + } + + s += pitch; + } +} + +void vpx_mbpost_proc_down_c(unsigned char *dst, int pitch, int rows, int cols, + int flimit) { + int r, c, i; + + for (c = 0; c < cols; c++) { + unsigned char *s = &dst[c]; + int sumsq = 0; + int sum = 0; + unsigned char d[16]; + + for (i = -8; i < 0; i++) s[i * pitch] = s[0]; + + /* 17 avoids valgrind warning - we buffer values in c in d + * and only write them when we've read 8 ahead... + */ + for (i = 0; i < 17; i++) s[(i + rows) * pitch] = s[(rows - 1) * pitch]; + + for (i = -8; i <= 6; i++) { + sumsq += s[i * pitch] * s[i * pitch]; + sum += s[i * pitch]; + } + + for (r = 0; r < rows + 8; r++) { + sumsq += s[7 * pitch] * s[7 * pitch] - s[-8 * pitch] * s[-8 * pitch]; + sum += s[7 * pitch] - s[-8 * pitch]; + d[r & 15] = s[0]; + + if (sumsq * 15 - sum * sum < flimit) { + d[r & 15] = (vpx_rv[(r & 127) + (c & 7)] + sum + s[0]) >> 4; + } + if (r >= 8) s[-8 * pitch] = d[(r - 8) & 15]; + s += pitch; + } + } +} diff --git a/vpx_dsp/fastssim.c b/vpx_dsp/fastssim.c new file mode 100644 index 0000000..0469071 --- /dev/null +++ b/vpx_dsp/fastssim.c @@ -0,0 +1,492 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + * + * This code was originally written by: Nathan E. Egge, at the Daala + * project. + */ +#include +#include +#include +#include +#include "./vpx_config.h" +#include "./vpx_dsp_rtcd.h" +#include "vpx_dsp/ssim.h" +#include "vpx_ports/system_state.h" + +typedef struct fs_level fs_level; +typedef struct fs_ctx fs_ctx; + +#define SSIM_C1 (255 * 255 * 0.01 * 0.01) +#define SSIM_C2 (255 * 255 * 0.03 * 0.03) +#if CONFIG_VP9_HIGHBITDEPTH +#define SSIM_C1_10 (1023 * 1023 * 0.01 * 0.01) +#define SSIM_C1_12 (4095 * 4095 * 0.01 * 0.01) +#define SSIM_C2_10 (1023 * 1023 * 0.03 * 0.03) +#define SSIM_C2_12 (4095 * 4095 * 0.03 * 0.03) +#endif +#define FS_MINI(_a, _b) ((_a) < (_b) ? (_a) : (_b)) +#define FS_MAXI(_a, _b) ((_a) > (_b) ? (_a) : (_b)) + +struct fs_level { + uint32_t *im1; + uint32_t *im2; + double *ssim; + int w; + int h; +}; + +struct fs_ctx { + fs_level *level; + int nlevels; + unsigned *col_buf; +}; + +static void fs_ctx_init(fs_ctx *_ctx, int _w, int _h, int _nlevels) { + unsigned char *data; + size_t data_size; + int lw; + int lh; + int l; + lw = (_w + 1) >> 1; + lh = (_h + 1) >> 1; + data_size = + _nlevels * sizeof(fs_level) + 2 * (lw + 8) * 8 * sizeof(*_ctx->col_buf); + for (l = 0; l < _nlevels; l++) { + size_t im_size; + size_t level_size; + im_size = lw * (size_t)lh; + level_size = 2 * im_size * sizeof(*_ctx->level[l].im1); + level_size += sizeof(*_ctx->level[l].ssim) - 1; + level_size /= sizeof(*_ctx->level[l].ssim); + level_size += im_size; + level_size *= sizeof(*_ctx->level[l].ssim); + data_size += level_size; + lw = (lw + 1) >> 1; + lh = (lh + 1) >> 1; + } + data = (unsigned char *)malloc(data_size); + _ctx->level = (fs_level *)data; + _ctx->nlevels = _nlevels; + data += _nlevels * sizeof(*_ctx->level); + lw = (_w + 1) >> 1; + lh = (_h + 1) >> 1; + for (l = 0; l < _nlevels; l++) { + size_t im_size; + size_t level_size; + _ctx->level[l].w = lw; + _ctx->level[l].h = lh; + im_size = lw * (size_t)lh; + level_size = 2 * im_size * sizeof(*_ctx->level[l].im1); + level_size += sizeof(*_ctx->level[l].ssim) - 1; + level_size /= sizeof(*_ctx->level[l].ssim); + level_size *= sizeof(*_ctx->level[l].ssim); + _ctx->level[l].im1 = (uint32_t *)data; + _ctx->level[l].im2 = _ctx->level[l].im1 + im_size; + data += level_size; + _ctx->level[l].ssim = (double *)data; + data += im_size * sizeof(*_ctx->level[l].ssim); + lw = (lw + 1) >> 1; + lh = (lh + 1) >> 1; + } + _ctx->col_buf = (unsigned *)data; +} + +static void fs_ctx_clear(fs_ctx *_ctx) { free(_ctx->level); } + +static void fs_downsample_level(fs_ctx *_ctx, int _l) { + const uint32_t *src1; + const uint32_t *src2; + uint32_t *dst1; + uint32_t *dst2; + int w2; + int h2; + int w; + int h; + int i; + int j; + w = _ctx->level[_l].w; + h = _ctx->level[_l].h; + dst1 = _ctx->level[_l].im1; + dst2 = _ctx->level[_l].im2; + w2 = _ctx->level[_l - 1].w; + h2 = _ctx->level[_l - 1].h; + src1 = _ctx->level[_l - 1].im1; + src2 = _ctx->level[_l - 1].im2; + for (j = 0; j < h; j++) { + int j0offs; + int j1offs; + j0offs = 2 * j * w2; + j1offs = FS_MINI(2 * j + 1, h2) * w2; + for (i = 0; i < w; i++) { + int i0; + int i1; + i0 = 2 * i; + i1 = FS_MINI(i0 + 1, w2); + dst1[j * w + i] = src1[j0offs + i0] + src1[j0offs + i1] + + src1[j1offs + i0] + src1[j1offs + i1]; + dst2[j * w + i] = src2[j0offs + i0] + src2[j0offs + i1] + + src2[j1offs + i0] + src2[j1offs + i1]; + } + } +} + +static void fs_downsample_level0(fs_ctx *_ctx, const uint8_t *_src1, + int _s1ystride, const uint8_t *_src2, + int _s2ystride, int _w, int _h, uint32_t bd, + uint32_t shift) { + uint32_t *dst1; + uint32_t *dst2; + int w; + int h; + int i; + int j; + w = _ctx->level[0].w; + h = _ctx->level[0].h; + dst1 = _ctx->level[0].im1; + dst2 = _ctx->level[0].im2; + for (j = 0; j < h; j++) { + int j0; + int j1; + j0 = 2 * j; + j1 = FS_MINI(j0 + 1, _h); + for (i = 0; i < w; i++) { + int i0; + int i1; + i0 = 2 * i; + i1 = FS_MINI(i0 + 1, _w); + if (bd == 8 && shift == 0) { + dst1[j * w + i] = + _src1[j0 * _s1ystride + i0] + _src1[j0 * _s1ystride + i1] + + _src1[j1 * _s1ystride + i0] + _src1[j1 * _s1ystride + i1]; + dst2[j * w + i] = + _src2[j0 * _s2ystride + i0] + _src2[j0 * _s2ystride + i1] + + _src2[j1 * _s2ystride + i0] + _src2[j1 * _s2ystride + i1]; + } else { + uint16_t *src1s = CONVERT_TO_SHORTPTR(_src1); + uint16_t *src2s = CONVERT_TO_SHORTPTR(_src2); + dst1[j * w + i] = (src1s[j0 * _s1ystride + i0] >> shift) + + (src1s[j0 * _s1ystride + i1] >> shift) + + (src1s[j1 * _s1ystride + i0] >> shift) + + (src1s[j1 * _s1ystride + i1] >> shift); + dst2[j * w + i] = (src2s[j0 * _s2ystride + i0] >> shift) + + (src2s[j0 * _s2ystride + i1] >> shift) + + (src2s[j1 * _s2ystride + i0] >> shift) + + (src2s[j1 * _s2ystride + i1] >> shift); + } + } + } +} + +static void fs_apply_luminance(fs_ctx *_ctx, int _l, int bit_depth) { + unsigned *col_sums_x; + unsigned *col_sums_y; + uint32_t *im1; + uint32_t *im2; + double *ssim; + double c1; + int w; + int h; + int j0offs; + int j1offs; + int i; + int j; + double ssim_c1 = SSIM_C1; +#if CONFIG_VP9_HIGHBITDEPTH + if (bit_depth == 10) ssim_c1 = SSIM_C1_10; + if (bit_depth == 12) ssim_c1 = SSIM_C1_12; +#else + assert(bit_depth == 8); + (void)bit_depth; +#endif + w = _ctx->level[_l].w; + h = _ctx->level[_l].h; + col_sums_x = _ctx->col_buf; + col_sums_y = col_sums_x + w; + im1 = _ctx->level[_l].im1; + im2 = _ctx->level[_l].im2; + for (i = 0; i < w; i++) col_sums_x[i] = 5 * im1[i]; + for (i = 0; i < w; i++) col_sums_y[i] = 5 * im2[i]; + for (j = 1; j < 4; j++) { + j1offs = FS_MINI(j, h - 1) * w; + for (i = 0; i < w; i++) col_sums_x[i] += im1[j1offs + i]; + for (i = 0; i < w; i++) col_sums_y[i] += im2[j1offs + i]; + } + ssim = _ctx->level[_l].ssim; + c1 = (double)(ssim_c1 * 4096 * (1 << 4 * _l)); + for (j = 0; j < h; j++) { + unsigned mux; + unsigned muy; + int i0; + int i1; + mux = 5 * col_sums_x[0]; + muy = 5 * col_sums_y[0]; + for (i = 1; i < 4; i++) { + i1 = FS_MINI(i, w - 1); + mux += col_sums_x[i1]; + muy += col_sums_y[i1]; + } + for (i = 0; i < w; i++) { + ssim[j * w + i] *= (2 * mux * (double)muy + c1) / + (mux * (double)mux + muy * (double)muy + c1); + if (i + 1 < w) { + i0 = FS_MAXI(0, i - 4); + i1 = FS_MINI(i + 4, w - 1); + mux += col_sums_x[i1] - col_sums_x[i0]; + muy += col_sums_x[i1] - col_sums_x[i0]; + } + } + if (j + 1 < h) { + j0offs = FS_MAXI(0, j - 4) * w; + for (i = 0; i < w; i++) col_sums_x[i] -= im1[j0offs + i]; + for (i = 0; i < w; i++) col_sums_y[i] -= im2[j0offs + i]; + j1offs = FS_MINI(j + 4, h - 1) * w; + for (i = 0; i < w; i++) col_sums_x[i] += im1[j1offs + i]; + for (i = 0; i < w; i++) col_sums_y[i] += im2[j1offs + i]; + } + } +} + +#define FS_COL_SET(_col, _joffs, _ioffs) \ + do { \ + unsigned gx; \ + unsigned gy; \ + gx = gx_buf[((j + (_joffs)) & 7) * stride + i + (_ioffs)]; \ + gy = gy_buf[((j + (_joffs)) & 7) * stride + i + (_ioffs)]; \ + col_sums_gx2[(_col)] = gx * (double)gx; \ + col_sums_gy2[(_col)] = gy * (double)gy; \ + col_sums_gxgy[(_col)] = gx * (double)gy; \ + } while (0) + +#define FS_COL_ADD(_col, _joffs, _ioffs) \ + do { \ + unsigned gx; \ + unsigned gy; \ + gx = gx_buf[((j + (_joffs)) & 7) * stride + i + (_ioffs)]; \ + gy = gy_buf[((j + (_joffs)) & 7) * stride + i + (_ioffs)]; \ + col_sums_gx2[(_col)] += gx * (double)gx; \ + col_sums_gy2[(_col)] += gy * (double)gy; \ + col_sums_gxgy[(_col)] += gx * (double)gy; \ + } while (0) + +#define FS_COL_SUB(_col, _joffs, _ioffs) \ + do { \ + unsigned gx; \ + unsigned gy; \ + gx = gx_buf[((j + (_joffs)) & 7) * stride + i + (_ioffs)]; \ + gy = gy_buf[((j + (_joffs)) & 7) * stride + i + (_ioffs)]; \ + col_sums_gx2[(_col)] -= gx * (double)gx; \ + col_sums_gy2[(_col)] -= gy * (double)gy; \ + col_sums_gxgy[(_col)] -= gx * (double)gy; \ + } while (0) + +#define FS_COL_COPY(_col1, _col2) \ + do { \ + col_sums_gx2[(_col1)] = col_sums_gx2[(_col2)]; \ + col_sums_gy2[(_col1)] = col_sums_gy2[(_col2)]; \ + col_sums_gxgy[(_col1)] = col_sums_gxgy[(_col2)]; \ + } while (0) + +#define FS_COL_HALVE(_col1, _col2) \ + do { \ + col_sums_gx2[(_col1)] = col_sums_gx2[(_col2)] * 0.5; \ + col_sums_gy2[(_col1)] = col_sums_gy2[(_col2)] * 0.5; \ + col_sums_gxgy[(_col1)] = col_sums_gxgy[(_col2)] * 0.5; \ + } while (0) + +#define FS_COL_DOUBLE(_col1, _col2) \ + do { \ + col_sums_gx2[(_col1)] = col_sums_gx2[(_col2)] * 2; \ + col_sums_gy2[(_col1)] = col_sums_gy2[(_col2)] * 2; \ + col_sums_gxgy[(_col1)] = col_sums_gxgy[(_col2)] * 2; \ + } while (0) + +static void fs_calc_structure(fs_ctx *_ctx, int _l, int bit_depth) { + uint32_t *im1; + uint32_t *im2; + unsigned *gx_buf; + unsigned *gy_buf; + double *ssim; + double col_sums_gx2[8]; + double col_sums_gy2[8]; + double col_sums_gxgy[8]; + double c2; + int stride; + int w; + int h; + int i; + int j; + double ssim_c2 = SSIM_C2; +#if CONFIG_VP9_HIGHBITDEPTH + if (bit_depth == 10) ssim_c2 = SSIM_C2_10; + if (bit_depth == 12) ssim_c2 = SSIM_C2_12; +#else + assert(bit_depth == 8); + (void)bit_depth; +#endif + + w = _ctx->level[_l].w; + h = _ctx->level[_l].h; + im1 = _ctx->level[_l].im1; + im2 = _ctx->level[_l].im2; + ssim = _ctx->level[_l].ssim; + gx_buf = _ctx->col_buf; + stride = w + 8; + gy_buf = gx_buf + 8 * stride; + memset(gx_buf, 0, 2 * 8 * stride * sizeof(*gx_buf)); + c2 = ssim_c2 * (1 << 4 * _l) * 16 * 104; + for (j = 0; j < h + 4; j++) { + if (j < h - 1) { + for (i = 0; i < w - 1; i++) { + unsigned g1; + unsigned g2; + unsigned gx; + unsigned gy; + g1 = abs((int)im1[(j + 1) * w + i + 1] - (int)im1[j * w + i]); + g2 = abs((int)im1[(j + 1) * w + i] - (int)im1[j * w + i + 1]); + gx = 4 * FS_MAXI(g1, g2) + FS_MINI(g1, g2); + g1 = abs((int)im2[(j + 1) * w + i + 1] - (int)im2[j * w + i]); + g2 = abs((int)im2[(j + 1) * w + i] - (int)im2[j * w + i + 1]); + gy = 4 * FS_MAXI(g1, g2) + FS_MINI(g1, g2); + gx_buf[(j & 7) * stride + i + 4] = gx; + gy_buf[(j & 7) * stride + i + 4] = gy; + } + } else { + memset(gx_buf + (j & 7) * stride, 0, stride * sizeof(*gx_buf)); + memset(gy_buf + (j & 7) * stride, 0, stride * sizeof(*gy_buf)); + } + if (j >= 4) { + int k; + col_sums_gx2[3] = col_sums_gx2[2] = col_sums_gx2[1] = col_sums_gx2[0] = 0; + col_sums_gy2[3] = col_sums_gy2[2] = col_sums_gy2[1] = col_sums_gy2[0] = 0; + col_sums_gxgy[3] = col_sums_gxgy[2] = col_sums_gxgy[1] = + col_sums_gxgy[0] = 0; + for (i = 4; i < 8; i++) { + FS_COL_SET(i, -1, 0); + FS_COL_ADD(i, 0, 0); + for (k = 1; k < 8 - i; k++) { + FS_COL_DOUBLE(i, i); + FS_COL_ADD(i, -k - 1, 0); + FS_COL_ADD(i, k, 0); + } + } + for (i = 0; i < w; i++) { + double mugx2; + double mugy2; + double mugxgy; + mugx2 = col_sums_gx2[0]; + for (k = 1; k < 8; k++) mugx2 += col_sums_gx2[k]; + mugy2 = col_sums_gy2[0]; + for (k = 1; k < 8; k++) mugy2 += col_sums_gy2[k]; + mugxgy = col_sums_gxgy[0]; + for (k = 1; k < 8; k++) mugxgy += col_sums_gxgy[k]; + ssim[(j - 4) * w + i] = (2 * mugxgy + c2) / (mugx2 + mugy2 + c2); + if (i + 1 < w) { + FS_COL_SET(0, -1, 1); + FS_COL_ADD(0, 0, 1); + FS_COL_SUB(2, -3, 2); + FS_COL_SUB(2, 2, 2); + FS_COL_HALVE(1, 2); + FS_COL_SUB(3, -4, 3); + FS_COL_SUB(3, 3, 3); + FS_COL_HALVE(2, 3); + FS_COL_COPY(3, 4); + FS_COL_DOUBLE(4, 5); + FS_COL_ADD(4, -4, 5); + FS_COL_ADD(4, 3, 5); + FS_COL_DOUBLE(5, 6); + FS_COL_ADD(5, -3, 6); + FS_COL_ADD(5, 2, 6); + FS_COL_DOUBLE(6, 7); + FS_COL_ADD(6, -2, 7); + FS_COL_ADD(6, 1, 7); + FS_COL_SET(7, -1, 8); + FS_COL_ADD(7, 0, 8); + } + } + } + } +} + +#define FS_NLEVELS (4) + +/*These weights were derived from the default weights found in Wang's original + Matlab implementation: {0.0448, 0.2856, 0.2363, 0.1333}. + We drop the finest scale and renormalize the rest to sum to 1.*/ + +static const double FS_WEIGHTS[FS_NLEVELS] = { + 0.2989654541015625, 0.3141326904296875, 0.2473602294921875, 0.1395416259765625 +}; + +static double fs_average(fs_ctx *_ctx, int _l) { + double *ssim; + double ret; + int w; + int h; + int i; + int j; + w = _ctx->level[_l].w; + h = _ctx->level[_l].h; + ssim = _ctx->level[_l].ssim; + ret = 0; + for (j = 0; j < h; j++) + for (i = 0; i < w; i++) ret += ssim[j * w + i]; + return pow(ret / (w * h), FS_WEIGHTS[_l]); +} + +static double convert_ssim_db(double _ssim, double _weight) { + assert(_weight >= _ssim); + if ((_weight - _ssim) < 1e-10) return MAX_SSIM_DB; + return 10 * (log10(_weight) - log10(_weight - _ssim)); +} + +static double calc_ssim(const uint8_t *_src, int _systride, const uint8_t *_dst, + int _dystride, int _w, int _h, uint32_t _bd, + uint32_t _shift) { + fs_ctx ctx; + double ret; + int l; + ret = 1; + fs_ctx_init(&ctx, _w, _h, FS_NLEVELS); + fs_downsample_level0(&ctx, _src, _systride, _dst, _dystride, _w, _h, _bd, + _shift); + for (l = 0; l < FS_NLEVELS - 1; l++) { + fs_calc_structure(&ctx, l, _bd); + ret *= fs_average(&ctx, l); + fs_downsample_level(&ctx, l + 1); + } + fs_calc_structure(&ctx, l, _bd); + fs_apply_luminance(&ctx, l, _bd); + ret *= fs_average(&ctx, l); + fs_ctx_clear(&ctx); + return ret; +} + +double vpx_calc_fastssim(const YV12_BUFFER_CONFIG *source, + const YV12_BUFFER_CONFIG *dest, double *ssim_y, + double *ssim_u, double *ssim_v, uint32_t bd, + uint32_t in_bd) { + double ssimv; + uint32_t bd_shift = 0; + vpx_clear_system_state(); + assert(bd >= in_bd); + bd_shift = bd - in_bd; + + *ssim_y = calc_ssim(source->y_buffer, source->y_stride, dest->y_buffer, + dest->y_stride, source->y_crop_width, + source->y_crop_height, in_bd, bd_shift); + *ssim_u = calc_ssim(source->u_buffer, source->uv_stride, dest->u_buffer, + dest->uv_stride, source->uv_crop_width, + source->uv_crop_height, in_bd, bd_shift); + *ssim_v = calc_ssim(source->v_buffer, source->uv_stride, dest->v_buffer, + dest->uv_stride, source->uv_crop_width, + source->uv_crop_height, in_bd, bd_shift); + + ssimv = (*ssim_y) * .8 + .1 * ((*ssim_u) + (*ssim_v)); + return convert_ssim_db(ssimv, 1.0); +} diff --git a/vpx_dsp/fwd_txfm.c b/vpx_dsp/fwd_txfm.c new file mode 100644 index 0000000..6dcb3ba --- /dev/null +++ b/vpx_dsp/fwd_txfm.c @@ -0,0 +1,808 @@ +/* + * Copyright (c) 2015 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include "./vpx_dsp_rtcd.h" +#include "vpx_dsp/fwd_txfm.h" + +void vpx_fdct4x4_c(const int16_t *input, tran_low_t *output, int stride) { + // The 2D transform is done with two passes which are actually pretty + // similar. In the first one, we transform the columns and transpose + // the results. In the second one, we transform the rows. To achieve that, + // as the first pass results are transposed, we transpose the columns (that + // is the transposed rows) and transpose the results (so that it goes back + // in normal/row positions). + int pass; + // We need an intermediate buffer between passes. + tran_low_t intermediate[4 * 4]; + const tran_low_t *in_low = NULL; + tran_low_t *out = intermediate; + // Do the two transform/transpose passes + for (pass = 0; pass < 2; ++pass) { + tran_high_t in_high[4]; // canbe16 + tran_high_t step[4]; // canbe16 + tran_high_t temp1, temp2; // needs32 + int i; + for (i = 0; i < 4; ++i) { + // Load inputs. + if (pass == 0) { + in_high[0] = input[0 * stride] * 16; + in_high[1] = input[1 * stride] * 16; + in_high[2] = input[2 * stride] * 16; + in_high[3] = input[3 * stride] * 16; + if (i == 0 && in_high[0]) { + ++in_high[0]; + } + } else { + assert(in_low != NULL); + in_high[0] = in_low[0 * 4]; + in_high[1] = in_low[1 * 4]; + in_high[2] = in_low[2 * 4]; + in_high[3] = in_low[3 * 4]; + ++in_low; + } + // Transform. + step[0] = in_high[0] + in_high[3]; + step[1] = in_high[1] + in_high[2]; + step[2] = in_high[1] - in_high[2]; + step[3] = in_high[0] - in_high[3]; + temp1 = (step[0] + step[1]) * cospi_16_64; + temp2 = (step[0] - step[1]) * cospi_16_64; + out[0] = (tran_low_t)fdct_round_shift(temp1); + out[2] = (tran_low_t)fdct_round_shift(temp2); + temp1 = step[2] * cospi_24_64 + step[3] * cospi_8_64; + temp2 = -step[2] * cospi_8_64 + step[3] * cospi_24_64; + out[1] = (tran_low_t)fdct_round_shift(temp1); + out[3] = (tran_low_t)fdct_round_shift(temp2); + // Do next column (which is a transposed row in second/horizontal pass) + ++input; + out += 4; + } + // Setup in/out for next pass. + in_low = intermediate; + out = output; + } + + { + int i, j; + for (i = 0; i < 4; ++i) { + for (j = 0; j < 4; ++j) output[j + i * 4] = (output[j + i * 4] + 1) >> 2; + } + } +} + +void vpx_fdct4x4_1_c(const int16_t *input, tran_low_t *output, int stride) { + int r, c; + tran_low_t sum = 0; + for (r = 0; r < 4; ++r) + for (c = 0; c < 4; ++c) sum += input[r * stride + c]; + + output[0] = sum * 2; +} + +void vpx_fdct8x8_c(const int16_t *input, tran_low_t *final_output, int stride) { + int i, j; + tran_low_t intermediate[64]; + int pass; + tran_low_t *output = intermediate; + const tran_low_t *in = NULL; + + // Transform columns + for (pass = 0; pass < 2; ++pass) { + tran_high_t s0, s1, s2, s3, s4, s5, s6, s7; // canbe16 + tran_high_t t0, t1, t2, t3; // needs32 + tran_high_t x0, x1, x2, x3; // canbe16 + + for (i = 0; i < 8; i++) { + // stage 1 + if (pass == 0) { + s0 = (input[0 * stride] + input[7 * stride]) * 4; + s1 = (input[1 * stride] + input[6 * stride]) * 4; + s2 = (input[2 * stride] + input[5 * stride]) * 4; + s3 = (input[3 * stride] + input[4 * stride]) * 4; + s4 = (input[3 * stride] - input[4 * stride]) * 4; + s5 = (input[2 * stride] - input[5 * stride]) * 4; + s6 = (input[1 * stride] - input[6 * stride]) * 4; + s7 = (input[0 * stride] - input[7 * stride]) * 4; + ++input; + } else { + s0 = in[0 * 8] + in[7 * 8]; + s1 = in[1 * 8] + in[6 * 8]; + s2 = in[2 * 8] + in[5 * 8]; + s3 = in[3 * 8] + in[4 * 8]; + s4 = in[3 * 8] - in[4 * 8]; + s5 = in[2 * 8] - in[5 * 8]; + s6 = in[1 * 8] - in[6 * 8]; + s7 = in[0 * 8] - in[7 * 8]; + ++in; + } + + // fdct4(step, step); + x0 = s0 + s3; + x1 = s1 + s2; + x2 = s1 - s2; + x3 = s0 - s3; + t0 = (x0 + x1) * cospi_16_64; + t1 = (x0 - x1) * cospi_16_64; + t2 = x2 * cospi_24_64 + x3 * cospi_8_64; + t3 = -x2 * cospi_8_64 + x3 * cospi_24_64; + output[0] = (tran_low_t)fdct_round_shift(t0); + output[2] = (tran_low_t)fdct_round_shift(t2); + output[4] = (tran_low_t)fdct_round_shift(t1); + output[6] = (tran_low_t)fdct_round_shift(t3); + + // Stage 2 + t0 = (s6 - s5) * cospi_16_64; + t1 = (s6 + s5) * cospi_16_64; + t2 = fdct_round_shift(t0); + t3 = fdct_round_shift(t1); + + // Stage 3 + x0 = s4 + t2; + x1 = s4 - t2; + x2 = s7 - t3; + x3 = s7 + t3; + + // Stage 4 + t0 = x0 * cospi_28_64 + x3 * cospi_4_64; + t1 = x1 * cospi_12_64 + x2 * cospi_20_64; + t2 = x2 * cospi_12_64 + x1 * -cospi_20_64; + t3 = x3 * cospi_28_64 + x0 * -cospi_4_64; + output[1] = (tran_low_t)fdct_round_shift(t0); + output[3] = (tran_low_t)fdct_round_shift(t2); + output[5] = (tran_low_t)fdct_round_shift(t1); + output[7] = (tran_low_t)fdct_round_shift(t3); + output += 8; + } + in = intermediate; + output = final_output; + } + + // Rows + for (i = 0; i < 8; ++i) { + for (j = 0; j < 8; ++j) final_output[j + i * 8] /= 2; + } +} + +void vpx_fdct8x8_1_c(const int16_t *input, tran_low_t *output, int stride) { + int r, c; + tran_low_t sum = 0; + for (r = 0; r < 8; ++r) + for (c = 0; c < 8; ++c) sum += input[r * stride + c]; + + output[0] = sum; +} + +void vpx_fdct16x16_c(const int16_t *input, tran_low_t *output, int stride) { + // The 2D transform is done with two passes which are actually pretty + // similar. In the first one, we transform the columns and transpose + // the results. In the second one, we transform the rows. To achieve that, + // as the first pass results are transposed, we transpose the columns (that + // is the transposed rows) and transpose the results (so that it goes back + // in normal/row positions). + int pass; + // We need an intermediate buffer between passes. + tran_low_t intermediate[256]; + const tran_low_t *in_low = NULL; + tran_low_t *out = intermediate; + // Do the two transform/transpose passes + for (pass = 0; pass < 2; ++pass) { + tran_high_t step1[8]; // canbe16 + tran_high_t step2[8]; // canbe16 + tran_high_t step3[8]; // canbe16 + tran_high_t in_high[8]; // canbe16 + tran_high_t temp1, temp2; // needs32 + int i; + for (i = 0; i < 16; i++) { + if (0 == pass) { + // Calculate input for the first 8 results. + in_high[0] = (input[0 * stride] + input[15 * stride]) * 4; + in_high[1] = (input[1 * stride] + input[14 * stride]) * 4; + in_high[2] = (input[2 * stride] + input[13 * stride]) * 4; + in_high[3] = (input[3 * stride] + input[12 * stride]) * 4; + in_high[4] = (input[4 * stride] + input[11 * stride]) * 4; + in_high[5] = (input[5 * stride] + input[10 * stride]) * 4; + in_high[6] = (input[6 * stride] + input[9 * stride]) * 4; + in_high[7] = (input[7 * stride] + input[8 * stride]) * 4; + // Calculate input for the next 8 results. + step1[0] = (input[7 * stride] - input[8 * stride]) * 4; + step1[1] = (input[6 * stride] - input[9 * stride]) * 4; + step1[2] = (input[5 * stride] - input[10 * stride]) * 4; + step1[3] = (input[4 * stride] - input[11 * stride]) * 4; + step1[4] = (input[3 * stride] - input[12 * stride]) * 4; + step1[5] = (input[2 * stride] - input[13 * stride]) * 4; + step1[6] = (input[1 * stride] - input[14 * stride]) * 4; + step1[7] = (input[0 * stride] - input[15 * stride]) * 4; + } else { + // Calculate input for the first 8 results. + assert(in_low != NULL); + in_high[0] = ((in_low[0 * 16] + 1) >> 2) + ((in_low[15 * 16] + 1) >> 2); + in_high[1] = ((in_low[1 * 16] + 1) >> 2) + ((in_low[14 * 16] + 1) >> 2); + in_high[2] = ((in_low[2 * 16] + 1) >> 2) + ((in_low[13 * 16] + 1) >> 2); + in_high[3] = ((in_low[3 * 16] + 1) >> 2) + ((in_low[12 * 16] + 1) >> 2); + in_high[4] = ((in_low[4 * 16] + 1) >> 2) + ((in_low[11 * 16] + 1) >> 2); + in_high[5] = ((in_low[5 * 16] + 1) >> 2) + ((in_low[10 * 16] + 1) >> 2); + in_high[6] = ((in_low[6 * 16] + 1) >> 2) + ((in_low[9 * 16] + 1) >> 2); + in_high[7] = ((in_low[7 * 16] + 1) >> 2) + ((in_low[8 * 16] + 1) >> 2); + // Calculate input for the next 8 results. + step1[0] = ((in_low[7 * 16] + 1) >> 2) - ((in_low[8 * 16] + 1) >> 2); + step1[1] = ((in_low[6 * 16] + 1) >> 2) - ((in_low[9 * 16] + 1) >> 2); + step1[2] = ((in_low[5 * 16] + 1) >> 2) - ((in_low[10 * 16] + 1) >> 2); + step1[3] = ((in_low[4 * 16] + 1) >> 2) - ((in_low[11 * 16] + 1) >> 2); + step1[4] = ((in_low[3 * 16] + 1) >> 2) - ((in_low[12 * 16] + 1) >> 2); + step1[5] = ((in_low[2 * 16] + 1) >> 2) - ((in_low[13 * 16] + 1) >> 2); + step1[6] = ((in_low[1 * 16] + 1) >> 2) - ((in_low[14 * 16] + 1) >> 2); + step1[7] = ((in_low[0 * 16] + 1) >> 2) - ((in_low[15 * 16] + 1) >> 2); + in_low++; + } + // Work on the first eight values; fdct8(input, even_results); + { + tran_high_t s0, s1, s2, s3, s4, s5, s6, s7; // canbe16 + tran_high_t t0, t1, t2, t3; // needs32 + tran_high_t x0, x1, x2, x3; // canbe16 + + // stage 1 + s0 = in_high[0] + in_high[7]; + s1 = in_high[1] + in_high[6]; + s2 = in_high[2] + in_high[5]; + s3 = in_high[3] + in_high[4]; + s4 = in_high[3] - in_high[4]; + s5 = in_high[2] - in_high[5]; + s6 = in_high[1] - in_high[6]; + s7 = in_high[0] - in_high[7]; + + // fdct4(step, step); + x0 = s0 + s3; + x1 = s1 + s2; + x2 = s1 - s2; + x3 = s0 - s3; + t0 = (x0 + x1) * cospi_16_64; + t1 = (x0 - x1) * cospi_16_64; + t2 = x3 * cospi_8_64 + x2 * cospi_24_64; + t3 = x3 * cospi_24_64 - x2 * cospi_8_64; + out[0] = (tran_low_t)fdct_round_shift(t0); + out[4] = (tran_low_t)fdct_round_shift(t2); + out[8] = (tran_low_t)fdct_round_shift(t1); + out[12] = (tran_low_t)fdct_round_shift(t3); + + // Stage 2 + t0 = (s6 - s5) * cospi_16_64; + t1 = (s6 + s5) * cospi_16_64; + t2 = fdct_round_shift(t0); + t3 = fdct_round_shift(t1); + + // Stage 3 + x0 = s4 + t2; + x1 = s4 - t2; + x2 = s7 - t3; + x3 = s7 + t3; + + // Stage 4 + t0 = x0 * cospi_28_64 + x3 * cospi_4_64; + t1 = x1 * cospi_12_64 + x2 * cospi_20_64; + t2 = x2 * cospi_12_64 + x1 * -cospi_20_64; + t3 = x3 * cospi_28_64 + x0 * -cospi_4_64; + out[2] = (tran_low_t)fdct_round_shift(t0); + out[6] = (tran_low_t)fdct_round_shift(t2); + out[10] = (tran_low_t)fdct_round_shift(t1); + out[14] = (tran_low_t)fdct_round_shift(t3); + } + // Work on the next eight values; step1 -> odd_results + { + // step 2 + temp1 = (step1[5] - step1[2]) * cospi_16_64; + temp2 = (step1[4] - step1[3]) * cospi_16_64; + step2[2] = fdct_round_shift(temp1); + step2[3] = fdct_round_shift(temp2); + temp1 = (step1[4] + step1[3]) * cospi_16_64; + temp2 = (step1[5] + step1[2]) * cospi_16_64; + step2[4] = fdct_round_shift(temp1); + step2[5] = fdct_round_shift(temp2); + // step 3 + step3[0] = step1[0] + step2[3]; + step3[1] = step1[1] + step2[2]; + step3[2] = step1[1] - step2[2]; + step3[3] = step1[0] - step2[3]; + step3[4] = step1[7] - step2[4]; + step3[5] = step1[6] - step2[5]; + step3[6] = step1[6] + step2[5]; + step3[7] = step1[7] + step2[4]; + // step 4 + temp1 = step3[1] * -cospi_8_64 + step3[6] * cospi_24_64; + temp2 = step3[2] * cospi_24_64 + step3[5] * cospi_8_64; + step2[1] = fdct_round_shift(temp1); + step2[2] = fdct_round_shift(temp2); + temp1 = step3[2] * cospi_8_64 - step3[5] * cospi_24_64; + temp2 = step3[1] * cospi_24_64 + step3[6] * cospi_8_64; + step2[5] = fdct_round_shift(temp1); + step2[6] = fdct_round_shift(temp2); + // step 5 + step1[0] = step3[0] + step2[1]; + step1[1] = step3[0] - step2[1]; + step1[2] = step3[3] + step2[2]; + step1[3] = step3[3] - step2[2]; + step1[4] = step3[4] - step2[5]; + step1[5] = step3[4] + step2[5]; + step1[6] = step3[7] - step2[6]; + step1[7] = step3[7] + step2[6]; + // step 6 + temp1 = step1[0] * cospi_30_64 + step1[7] * cospi_2_64; + temp2 = step1[1] * cospi_14_64 + step1[6] * cospi_18_64; + out[1] = (tran_low_t)fdct_round_shift(temp1); + out[9] = (tran_low_t)fdct_round_shift(temp2); + temp1 = step1[2] * cospi_22_64 + step1[5] * cospi_10_64; + temp2 = step1[3] * cospi_6_64 + step1[4] * cospi_26_64; + out[5] = (tran_low_t)fdct_round_shift(temp1); + out[13] = (tran_low_t)fdct_round_shift(temp2); + temp1 = step1[3] * -cospi_26_64 + step1[4] * cospi_6_64; + temp2 = step1[2] * -cospi_10_64 + step1[5] * cospi_22_64; + out[3] = (tran_low_t)fdct_round_shift(temp1); + out[11] = (tran_low_t)fdct_round_shift(temp2); + temp1 = step1[1] * -cospi_18_64 + step1[6] * cospi_14_64; + temp2 = step1[0] * -cospi_2_64 + step1[7] * cospi_30_64; + out[7] = (tran_low_t)fdct_round_shift(temp1); + out[15] = (tran_low_t)fdct_round_shift(temp2); + } + // Do next column (which is a transposed row in second/horizontal pass) + input++; + out += 16; + } + // Setup in/out for next pass. + in_low = intermediate; + out = output; + } +} + +void vpx_fdct16x16_1_c(const int16_t *input, tran_low_t *output, int stride) { + int r, c; + int sum = 0; + for (r = 0; r < 16; ++r) + for (c = 0; c < 16; ++c) sum += input[r * stride + c]; + + output[0] = (tran_low_t)(sum >> 1); +} + +static INLINE tran_high_t dct_32_round(tran_high_t input) { + tran_high_t rv = ROUND_POWER_OF_TWO(input, DCT_CONST_BITS); + // TODO(debargha, peter.derivaz): Find new bounds for this assert, + // and make the bounds consts. + // assert(-131072 <= rv && rv <= 131071); + return rv; +} + +static INLINE tran_high_t half_round_shift(tran_high_t input) { + tran_high_t rv = (input + 1 + (input < 0)) >> 2; + return rv; +} + +void vpx_fdct32(const tran_high_t *input, tran_high_t *output, int round) { + tran_high_t step[32]; + // Stage 1 + step[0] = input[0] + input[(32 - 1)]; + step[1] = input[1] + input[(32 - 2)]; + step[2] = input[2] + input[(32 - 3)]; + step[3] = input[3] + input[(32 - 4)]; + step[4] = input[4] + input[(32 - 5)]; + step[5] = input[5] + input[(32 - 6)]; + step[6] = input[6] + input[(32 - 7)]; + step[7] = input[7] + input[(32 - 8)]; + step[8] = input[8] + input[(32 - 9)]; + step[9] = input[9] + input[(32 - 10)]; + step[10] = input[10] + input[(32 - 11)]; + step[11] = input[11] + input[(32 - 12)]; + step[12] = input[12] + input[(32 - 13)]; + step[13] = input[13] + input[(32 - 14)]; + step[14] = input[14] + input[(32 - 15)]; + step[15] = input[15] + input[(32 - 16)]; + step[16] = -input[16] + input[(32 - 17)]; + step[17] = -input[17] + input[(32 - 18)]; + step[18] = -input[18] + input[(32 - 19)]; + step[19] = -input[19] + input[(32 - 20)]; + step[20] = -input[20] + input[(32 - 21)]; + step[21] = -input[21] + input[(32 - 22)]; + step[22] = -input[22] + input[(32 - 23)]; + step[23] = -input[23] + input[(32 - 24)]; + step[24] = -input[24] + input[(32 - 25)]; + step[25] = -input[25] + input[(32 - 26)]; + step[26] = -input[26] + input[(32 - 27)]; + step[27] = -input[27] + input[(32 - 28)]; + step[28] = -input[28] + input[(32 - 29)]; + step[29] = -input[29] + input[(32 - 30)]; + step[30] = -input[30] + input[(32 - 31)]; + step[31] = -input[31] + input[(32 - 32)]; + + // Stage 2 + output[0] = step[0] + step[16 - 1]; + output[1] = step[1] + step[16 - 2]; + output[2] = step[2] + step[16 - 3]; + output[3] = step[3] + step[16 - 4]; + output[4] = step[4] + step[16 - 5]; + output[5] = step[5] + step[16 - 6]; + output[6] = step[6] + step[16 - 7]; + output[7] = step[7] + step[16 - 8]; + output[8] = -step[8] + step[16 - 9]; + output[9] = -step[9] + step[16 - 10]; + output[10] = -step[10] + step[16 - 11]; + output[11] = -step[11] + step[16 - 12]; + output[12] = -step[12] + step[16 - 13]; + output[13] = -step[13] + step[16 - 14]; + output[14] = -step[14] + step[16 - 15]; + output[15] = -step[15] + step[16 - 16]; + + output[16] = step[16]; + output[17] = step[17]; + output[18] = step[18]; + output[19] = step[19]; + + output[20] = dct_32_round((-step[20] + step[27]) * cospi_16_64); + output[21] = dct_32_round((-step[21] + step[26]) * cospi_16_64); + output[22] = dct_32_round((-step[22] + step[25]) * cospi_16_64); + output[23] = dct_32_round((-step[23] + step[24]) * cospi_16_64); + + output[24] = dct_32_round((step[24] + step[23]) * cospi_16_64); + output[25] = dct_32_round((step[25] + step[22]) * cospi_16_64); + output[26] = dct_32_round((step[26] + step[21]) * cospi_16_64); + output[27] = dct_32_round((step[27] + step[20]) * cospi_16_64); + + output[28] = step[28]; + output[29] = step[29]; + output[30] = step[30]; + output[31] = step[31]; + + // dump the magnitude by 4, hence the intermediate values are within + // the range of 16 bits. + if (round) { + output[0] = half_round_shift(output[0]); + output[1] = half_round_shift(output[1]); + output[2] = half_round_shift(output[2]); + output[3] = half_round_shift(output[3]); + output[4] = half_round_shift(output[4]); + output[5] = half_round_shift(output[5]); + output[6] = half_round_shift(output[6]); + output[7] = half_round_shift(output[7]); + output[8] = half_round_shift(output[8]); + output[9] = half_round_shift(output[9]); + output[10] = half_round_shift(output[10]); + output[11] = half_round_shift(output[11]); + output[12] = half_round_shift(output[12]); + output[13] = half_round_shift(output[13]); + output[14] = half_round_shift(output[14]); + output[15] = half_round_shift(output[15]); + + output[16] = half_round_shift(output[16]); + output[17] = half_round_shift(output[17]); + output[18] = half_round_shift(output[18]); + output[19] = half_round_shift(output[19]); + output[20] = half_round_shift(output[20]); + output[21] = half_round_shift(output[21]); + output[22] = half_round_shift(output[22]); + output[23] = half_round_shift(output[23]); + output[24] = half_round_shift(output[24]); + output[25] = half_round_shift(output[25]); + output[26] = half_round_shift(output[26]); + output[27] = half_round_shift(output[27]); + output[28] = half_round_shift(output[28]); + output[29] = half_round_shift(output[29]); + output[30] = half_round_shift(output[30]); + output[31] = half_round_shift(output[31]); + } + + // Stage 3 + step[0] = output[0] + output[(8 - 1)]; + step[1] = output[1] + output[(8 - 2)]; + step[2] = output[2] + output[(8 - 3)]; + step[3] = output[3] + output[(8 - 4)]; + step[4] = -output[4] + output[(8 - 5)]; + step[5] = -output[5] + output[(8 - 6)]; + step[6] = -output[6] + output[(8 - 7)]; + step[7] = -output[7] + output[(8 - 8)]; + step[8] = output[8]; + step[9] = output[9]; + step[10] = dct_32_round((-output[10] + output[13]) * cospi_16_64); + step[11] = dct_32_round((-output[11] + output[12]) * cospi_16_64); + step[12] = dct_32_round((output[12] + output[11]) * cospi_16_64); + step[13] = dct_32_round((output[13] + output[10]) * cospi_16_64); + step[14] = output[14]; + step[15] = output[15]; + + step[16] = output[16] + output[23]; + step[17] = output[17] + output[22]; + step[18] = output[18] + output[21]; + step[19] = output[19] + output[20]; + step[20] = -output[20] + output[19]; + step[21] = -output[21] + output[18]; + step[22] = -output[22] + output[17]; + step[23] = -output[23] + output[16]; + step[24] = -output[24] + output[31]; + step[25] = -output[25] + output[30]; + step[26] = -output[26] + output[29]; + step[27] = -output[27] + output[28]; + step[28] = output[28] + output[27]; + step[29] = output[29] + output[26]; + step[30] = output[30] + output[25]; + step[31] = output[31] + output[24]; + + // Stage 4 + output[0] = step[0] + step[3]; + output[1] = step[1] + step[2]; + output[2] = -step[2] + step[1]; + output[3] = -step[3] + step[0]; + output[4] = step[4]; + output[5] = dct_32_round((-step[5] + step[6]) * cospi_16_64); + output[6] = dct_32_round((step[6] + step[5]) * cospi_16_64); + output[7] = step[7]; + output[8] = step[8] + step[11]; + output[9] = step[9] + step[10]; + output[10] = -step[10] + step[9]; + output[11] = -step[11] + step[8]; + output[12] = -step[12] + step[15]; + output[13] = -step[13] + step[14]; + output[14] = step[14] + step[13]; + output[15] = step[15] + step[12]; + + output[16] = step[16]; + output[17] = step[17]; + output[18] = dct_32_round(step[18] * -cospi_8_64 + step[29] * cospi_24_64); + output[19] = dct_32_round(step[19] * -cospi_8_64 + step[28] * cospi_24_64); + output[20] = dct_32_round(step[20] * -cospi_24_64 + step[27] * -cospi_8_64); + output[21] = dct_32_round(step[21] * -cospi_24_64 + step[26] * -cospi_8_64); + output[22] = step[22]; + output[23] = step[23]; + output[24] = step[24]; + output[25] = step[25]; + output[26] = dct_32_round(step[26] * cospi_24_64 + step[21] * -cospi_8_64); + output[27] = dct_32_round(step[27] * cospi_24_64 + step[20] * -cospi_8_64); + output[28] = dct_32_round(step[28] * cospi_8_64 + step[19] * cospi_24_64); + output[29] = dct_32_round(step[29] * cospi_8_64 + step[18] * cospi_24_64); + output[30] = step[30]; + output[31] = step[31]; + + // Stage 5 + step[0] = dct_32_round((output[0] + output[1]) * cospi_16_64); + step[1] = dct_32_round((-output[1] + output[0]) * cospi_16_64); + step[2] = dct_32_round(output[2] * cospi_24_64 + output[3] * cospi_8_64); + step[3] = dct_32_round(output[3] * cospi_24_64 - output[2] * cospi_8_64); + step[4] = output[4] + output[5]; + step[5] = -output[5] + output[4]; + step[6] = -output[6] + output[7]; + step[7] = output[7] + output[6]; + step[8] = output[8]; + step[9] = dct_32_round(output[9] * -cospi_8_64 + output[14] * cospi_24_64); + step[10] = dct_32_round(output[10] * -cospi_24_64 + output[13] * -cospi_8_64); + step[11] = output[11]; + step[12] = output[12]; + step[13] = dct_32_round(output[13] * cospi_24_64 + output[10] * -cospi_8_64); + step[14] = dct_32_round(output[14] * cospi_8_64 + output[9] * cospi_24_64); + step[15] = output[15]; + + step[16] = output[16] + output[19]; + step[17] = output[17] + output[18]; + step[18] = -output[18] + output[17]; + step[19] = -output[19] + output[16]; + step[20] = -output[20] + output[23]; + step[21] = -output[21] + output[22]; + step[22] = output[22] + output[21]; + step[23] = output[23] + output[20]; + step[24] = output[24] + output[27]; + step[25] = output[25] + output[26]; + step[26] = -output[26] + output[25]; + step[27] = -output[27] + output[24]; + step[28] = -output[28] + output[31]; + step[29] = -output[29] + output[30]; + step[30] = output[30] + output[29]; + step[31] = output[31] + output[28]; + + // Stage 6 + output[0] = step[0]; + output[1] = step[1]; + output[2] = step[2]; + output[3] = step[3]; + output[4] = dct_32_round(step[4] * cospi_28_64 + step[7] * cospi_4_64); + output[5] = dct_32_round(step[5] * cospi_12_64 + step[6] * cospi_20_64); + output[6] = dct_32_round(step[6] * cospi_12_64 + step[5] * -cospi_20_64); + output[7] = dct_32_round(step[7] * cospi_28_64 + step[4] * -cospi_4_64); + output[8] = step[8] + step[9]; + output[9] = -step[9] + step[8]; + output[10] = -step[10] + step[11]; + output[11] = step[11] + step[10]; + output[12] = step[12] + step[13]; + output[13] = -step[13] + step[12]; + output[14] = -step[14] + step[15]; + output[15] = step[15] + step[14]; + + output[16] = step[16]; + output[17] = dct_32_round(step[17] * -cospi_4_64 + step[30] * cospi_28_64); + output[18] = dct_32_round(step[18] * -cospi_28_64 + step[29] * -cospi_4_64); + output[19] = step[19]; + output[20] = step[20]; + output[21] = dct_32_round(step[21] * -cospi_20_64 + step[26] * cospi_12_64); + output[22] = dct_32_round(step[22] * -cospi_12_64 + step[25] * -cospi_20_64); + output[23] = step[23]; + output[24] = step[24]; + output[25] = dct_32_round(step[25] * cospi_12_64 + step[22] * -cospi_20_64); + output[26] = dct_32_round(step[26] * cospi_20_64 + step[21] * cospi_12_64); + output[27] = step[27]; + output[28] = step[28]; + output[29] = dct_32_round(step[29] * cospi_28_64 + step[18] * -cospi_4_64); + output[30] = dct_32_round(step[30] * cospi_4_64 + step[17] * cospi_28_64); + output[31] = step[31]; + + // Stage 7 + step[0] = output[0]; + step[1] = output[1]; + step[2] = output[2]; + step[3] = output[3]; + step[4] = output[4]; + step[5] = output[5]; + step[6] = output[6]; + step[7] = output[7]; + step[8] = dct_32_round(output[8] * cospi_30_64 + output[15] * cospi_2_64); + step[9] = dct_32_round(output[9] * cospi_14_64 + output[14] * cospi_18_64); + step[10] = dct_32_round(output[10] * cospi_22_64 + output[13] * cospi_10_64); + step[11] = dct_32_round(output[11] * cospi_6_64 + output[12] * cospi_26_64); + step[12] = dct_32_round(output[12] * cospi_6_64 + output[11] * -cospi_26_64); + step[13] = dct_32_round(output[13] * cospi_22_64 + output[10] * -cospi_10_64); + step[14] = dct_32_round(output[14] * cospi_14_64 + output[9] * -cospi_18_64); + step[15] = dct_32_round(output[15] * cospi_30_64 + output[8] * -cospi_2_64); + + step[16] = output[16] + output[17]; + step[17] = -output[17] + output[16]; + step[18] = -output[18] + output[19]; + step[19] = output[19] + output[18]; + step[20] = output[20] + output[21]; + step[21] = -output[21] + output[20]; + step[22] = -output[22] + output[23]; + step[23] = output[23] + output[22]; + step[24] = output[24] + output[25]; + step[25] = -output[25] + output[24]; + step[26] = -output[26] + output[27]; + step[27] = output[27] + output[26]; + step[28] = output[28] + output[29]; + step[29] = -output[29] + output[28]; + step[30] = -output[30] + output[31]; + step[31] = output[31] + output[30]; + + // Final stage --- outputs indices are bit-reversed. + output[0] = step[0]; + output[16] = step[1]; + output[8] = step[2]; + output[24] = step[3]; + output[4] = step[4]; + output[20] = step[5]; + output[12] = step[6]; + output[28] = step[7]; + output[2] = step[8]; + output[18] = step[9]; + output[10] = step[10]; + output[26] = step[11]; + output[6] = step[12]; + output[22] = step[13]; + output[14] = step[14]; + output[30] = step[15]; + + output[1] = dct_32_round(step[16] * cospi_31_64 + step[31] * cospi_1_64); + output[17] = dct_32_round(step[17] * cospi_15_64 + step[30] * cospi_17_64); + output[9] = dct_32_round(step[18] * cospi_23_64 + step[29] * cospi_9_64); + output[25] = dct_32_round(step[19] * cospi_7_64 + step[28] * cospi_25_64); + output[5] = dct_32_round(step[20] * cospi_27_64 + step[27] * cospi_5_64); + output[21] = dct_32_round(step[21] * cospi_11_64 + step[26] * cospi_21_64); + output[13] = dct_32_round(step[22] * cospi_19_64 + step[25] * cospi_13_64); + output[29] = dct_32_round(step[23] * cospi_3_64 + step[24] * cospi_29_64); + output[3] = dct_32_round(step[24] * cospi_3_64 + step[23] * -cospi_29_64); + output[19] = dct_32_round(step[25] * cospi_19_64 + step[22] * -cospi_13_64); + output[11] = dct_32_round(step[26] * cospi_11_64 + step[21] * -cospi_21_64); + output[27] = dct_32_round(step[27] * cospi_27_64 + step[20] * -cospi_5_64); + output[7] = dct_32_round(step[28] * cospi_7_64 + step[19] * -cospi_25_64); + output[23] = dct_32_round(step[29] * cospi_23_64 + step[18] * -cospi_9_64); + output[15] = dct_32_round(step[30] * cospi_15_64 + step[17] * -cospi_17_64); + output[31] = dct_32_round(step[31] * cospi_31_64 + step[16] * -cospi_1_64); +} + +void vpx_fdct32x32_c(const int16_t *input, tran_low_t *out, int stride) { + int i, j; + tran_high_t output[32 * 32]; + + // Columns + for (i = 0; i < 32; ++i) { + tran_high_t temp_in[32], temp_out[32]; + for (j = 0; j < 32; ++j) temp_in[j] = input[j * stride + i] * 4; + vpx_fdct32(temp_in, temp_out, 0); + for (j = 0; j < 32; ++j) + output[j * 32 + i] = (temp_out[j] + 1 + (temp_out[j] > 0)) >> 2; + } + + // Rows + for (i = 0; i < 32; ++i) { + tran_high_t temp_in[32], temp_out[32]; + for (j = 0; j < 32; ++j) temp_in[j] = output[j + i * 32]; + vpx_fdct32(temp_in, temp_out, 0); + for (j = 0; j < 32; ++j) + out[j + i * 32] = + (tran_low_t)((temp_out[j] + 1 + (temp_out[j] < 0)) >> 2); + } +} + +// Note that although we use dct_32_round in dct32 computation flow, +// this 2d fdct32x32 for rate-distortion optimization loop is operating +// within 16 bits precision. +void vpx_fdct32x32_rd_c(const int16_t *input, tran_low_t *out, int stride) { + int i, j; + tran_high_t output[32 * 32]; + + // Columns + for (i = 0; i < 32; ++i) { + tran_high_t temp_in[32], temp_out[32]; + for (j = 0; j < 32; ++j) temp_in[j] = input[j * stride + i] * 4; + vpx_fdct32(temp_in, temp_out, 0); + for (j = 0; j < 32; ++j) + // TODO(cd): see quality impact of only doing + // output[j * 32 + i] = (temp_out[j] + 1) >> 2; + // PS: also change code in vpx_dsp/x86/vpx_dct_sse2.c + output[j * 32 + i] = (temp_out[j] + 1 + (temp_out[j] > 0)) >> 2; + } + + // Rows + for (i = 0; i < 32; ++i) { + tran_high_t temp_in[32], temp_out[32]; + for (j = 0; j < 32; ++j) temp_in[j] = output[j + i * 32]; + vpx_fdct32(temp_in, temp_out, 1); + for (j = 0; j < 32; ++j) out[j + i * 32] = (tran_low_t)temp_out[j]; + } +} + +void vpx_fdct32x32_1_c(const int16_t *input, tran_low_t *output, int stride) { + int r, c; + int sum = 0; + for (r = 0; r < 32; ++r) + for (c = 0; c < 32; ++c) sum += input[r * stride + c]; + + output[0] = (tran_low_t)(sum >> 3); +} + +#if CONFIG_VP9_HIGHBITDEPTH +void vpx_highbd_fdct4x4_c(const int16_t *input, tran_low_t *output, + int stride) { + vpx_fdct4x4_c(input, output, stride); +} + +void vpx_highbd_fdct8x8_c(const int16_t *input, tran_low_t *final_output, + int stride) { + vpx_fdct8x8_c(input, final_output, stride); +} + +void vpx_highbd_fdct8x8_1_c(const int16_t *input, tran_low_t *final_output, + int stride) { + vpx_fdct8x8_1_c(input, final_output, stride); +} + +void vpx_highbd_fdct16x16_c(const int16_t *input, tran_low_t *output, + int stride) { + vpx_fdct16x16_c(input, output, stride); +} + +void vpx_highbd_fdct16x16_1_c(const int16_t *input, tran_low_t *output, + int stride) { + vpx_fdct16x16_1_c(input, output, stride); +} + +void vpx_highbd_fdct32x32_c(const int16_t *input, tran_low_t *out, int stride) { + vpx_fdct32x32_c(input, out, stride); +} + +void vpx_highbd_fdct32x32_rd_c(const int16_t *input, tran_low_t *out, + int stride) { + vpx_fdct32x32_rd_c(input, out, stride); +} + +void vpx_highbd_fdct32x32_1_c(const int16_t *input, tran_low_t *out, + int stride) { + vpx_fdct32x32_1_c(input, out, stride); +} +#endif // CONFIG_VP9_HIGHBITDEPTH diff --git a/vpx_dsp/fwd_txfm.h b/vpx_dsp/fwd_txfm.h new file mode 100644 index 0000000..29e139c --- /dev/null +++ b/vpx_dsp/fwd_txfm.h @@ -0,0 +1,25 @@ +/* + * Copyright (c) 2015 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VPX_DSP_FWD_TXFM_H_ +#define VPX_DSP_FWD_TXFM_H_ + +#include "vpx_dsp/txfm_common.h" + +static INLINE tran_high_t fdct_round_shift(tran_high_t input) { + tran_high_t rv = ROUND_POWER_OF_TWO(input, DCT_CONST_BITS); + // TODO(debargha, peter.derivaz): Find new bounds for this assert + // and make the bounds consts. + // assert(INT16_MIN <= rv && rv <= INT16_MAX); + return rv; +} + +void vpx_fdct32(const tran_high_t *input, tran_high_t *output, int round); +#endif // VPX_DSP_FWD_TXFM_H_ diff --git a/vpx_dsp/intrapred.c b/vpx_dsp/intrapred.c new file mode 100644 index 0000000..400e632 --- /dev/null +++ b/vpx_dsp/intrapred.c @@ -0,0 +1,917 @@ +/* + * Copyright (c) 2015 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "./vpx_config.h" +#include "./vpx_dsp_rtcd.h" + +#include "vpx_dsp/vpx_dsp_common.h" +#include "vpx_mem/vpx_mem.h" + +#define DST(x, y) dst[(x) + (y)*stride] +#define AVG3(a, b, c) (((a) + 2 * (b) + (c) + 2) >> 2) +#define AVG2(a, b) (((a) + (b) + 1) >> 1) + +static INLINE void d207_predictor(uint8_t *dst, ptrdiff_t stride, int bs, + const uint8_t *above, const uint8_t *left) { + int r, c; + (void)above; + // first column + for (r = 0; r < bs - 1; ++r) dst[r * stride] = AVG2(left[r], left[r + 1]); + dst[(bs - 1) * stride] = left[bs - 1]; + dst++; + + // second column + for (r = 0; r < bs - 2; ++r) + dst[r * stride] = AVG3(left[r], left[r + 1], left[r + 2]); + dst[(bs - 2) * stride] = AVG3(left[bs - 2], left[bs - 1], left[bs - 1]); + dst[(bs - 1) * stride] = left[bs - 1]; + dst++; + + // rest of last row + for (c = 0; c < bs - 2; ++c) dst[(bs - 1) * stride + c] = left[bs - 1]; + + for (r = bs - 2; r >= 0; --r) + for (c = 0; c < bs - 2; ++c) + dst[r * stride + c] = dst[(r + 1) * stride + c - 2]; +} + +static INLINE void d63_predictor(uint8_t *dst, ptrdiff_t stride, int bs, + const uint8_t *above, const uint8_t *left) { + int r, c; + int size; + (void)left; + for (c = 0; c < bs; ++c) { + dst[c] = AVG2(above[c], above[c + 1]); + dst[stride + c] = AVG3(above[c], above[c + 1], above[c + 2]); + } + for (r = 2, size = bs - 2; r < bs; r += 2, --size) { + memcpy(dst + (r + 0) * stride, dst + (r >> 1), size); + memset(dst + (r + 0) * stride + size, above[bs - 1], bs - size); + memcpy(dst + (r + 1) * stride, dst + stride + (r >> 1), size); + memset(dst + (r + 1) * stride + size, above[bs - 1], bs - size); + } +} + +static INLINE void d45_predictor(uint8_t *dst, ptrdiff_t stride, int bs, + const uint8_t *above, const uint8_t *left) { + const uint8_t above_right = above[bs - 1]; + const uint8_t *const dst_row0 = dst; + int x, size; + (void)left; + + for (x = 0; x < bs - 1; ++x) { + dst[x] = AVG3(above[x], above[x + 1], above[x + 2]); + } + dst[bs - 1] = above_right; + dst += stride; + for (x = 1, size = bs - 2; x < bs; ++x, --size) { + memcpy(dst, dst_row0 + x, size); + memset(dst + size, above_right, x + 1); + dst += stride; + } +} + +static INLINE void d117_predictor(uint8_t *dst, ptrdiff_t stride, int bs, + const uint8_t *above, const uint8_t *left) { + int r, c; + + // first row + for (c = 0; c < bs; c++) dst[c] = AVG2(above[c - 1], above[c]); + dst += stride; + + // second row + dst[0] = AVG3(left[0], above[-1], above[0]); + for (c = 1; c < bs; c++) dst[c] = AVG3(above[c - 2], above[c - 1], above[c]); + dst += stride; + + // the rest of first col + dst[0] = AVG3(above[-1], left[0], left[1]); + for (r = 3; r < bs; ++r) + dst[(r - 2) * stride] = AVG3(left[r - 3], left[r - 2], left[r - 1]); + + // the rest of the block + for (r = 2; r < bs; ++r) { + for (c = 1; c < bs; c++) dst[c] = dst[-2 * stride + c - 1]; + dst += stride; + } +} + +static INLINE void d135_predictor(uint8_t *dst, ptrdiff_t stride, int bs, + const uint8_t *above, const uint8_t *left) { + int i; +#if defined(__GNUC__) && __GNUC__ == 4 && __GNUC_MINOR__ > 7 + // silence a spurious -Warray-bounds warning, possibly related to: + // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=56273 + uint8_t border[69]; +#else + uint8_t border[32 + 32 - 1]; // outer border from bottom-left to top-right +#endif + + // dst(bs, bs - 2)[0], i.e., border starting at bottom-left + for (i = 0; i < bs - 2; ++i) { + border[i] = AVG3(left[bs - 3 - i], left[bs - 2 - i], left[bs - 1 - i]); + } + border[bs - 2] = AVG3(above[-1], left[0], left[1]); + border[bs - 1] = AVG3(left[0], above[-1], above[0]); + border[bs - 0] = AVG3(above[-1], above[0], above[1]); + // dst[0][2, size), i.e., remaining top border ascending + for (i = 0; i < bs - 2; ++i) { + border[bs + 1 + i] = AVG3(above[i], above[i + 1], above[i + 2]); + } + + for (i = 0; i < bs; ++i) { + memcpy(dst + i * stride, border + bs - 1 - i, bs); + } +} + +static INLINE void d153_predictor(uint8_t *dst, ptrdiff_t stride, int bs, + const uint8_t *above, const uint8_t *left) { + int r, c; + dst[0] = AVG2(above[-1], left[0]); + for (r = 1; r < bs; r++) dst[r * stride] = AVG2(left[r - 1], left[r]); + dst++; + + dst[0] = AVG3(left[0], above[-1], above[0]); + dst[stride] = AVG3(above[-1], left[0], left[1]); + for (r = 2; r < bs; r++) + dst[r * stride] = AVG3(left[r - 2], left[r - 1], left[r]); + dst++; + + for (c = 0; c < bs - 2; c++) + dst[c] = AVG3(above[c - 1], above[c], above[c + 1]); + dst += stride; + + for (r = 1; r < bs; ++r) { + for (c = 0; c < bs - 2; c++) dst[c] = dst[-stride + c - 2]; + dst += stride; + } +} + +static INLINE void v_predictor(uint8_t *dst, ptrdiff_t stride, int bs, + const uint8_t *above, const uint8_t *left) { + int r; + (void)left; + + for (r = 0; r < bs; r++) { + memcpy(dst, above, bs); + dst += stride; + } +} + +static INLINE void h_predictor(uint8_t *dst, ptrdiff_t stride, int bs, + const uint8_t *above, const uint8_t *left) { + int r; + (void)above; + + for (r = 0; r < bs; r++) { + memset(dst, left[r], bs); + dst += stride; + } +} + +static INLINE void tm_predictor(uint8_t *dst, ptrdiff_t stride, int bs, + const uint8_t *above, const uint8_t *left) { + int r, c; + int ytop_left = above[-1]; + + for (r = 0; r < bs; r++) { + for (c = 0; c < bs; c++) + dst[c] = clip_pixel(left[r] + above[c] - ytop_left); + dst += stride; + } +} + +static INLINE void dc_128_predictor(uint8_t *dst, ptrdiff_t stride, int bs, + const uint8_t *above, const uint8_t *left) { + int r; + (void)above; + (void)left; + + for (r = 0; r < bs; r++) { + memset(dst, 128, bs); + dst += stride; + } +} + +static INLINE void dc_left_predictor(uint8_t *dst, ptrdiff_t stride, int bs, + const uint8_t *above, + const uint8_t *left) { + int i, r, expected_dc, sum = 0; + (void)above; + + for (i = 0; i < bs; i++) sum += left[i]; + expected_dc = (sum + (bs >> 1)) / bs; + + for (r = 0; r < bs; r++) { + memset(dst, expected_dc, bs); + dst += stride; + } +} + +static INLINE void dc_top_predictor(uint8_t *dst, ptrdiff_t stride, int bs, + const uint8_t *above, const uint8_t *left) { + int i, r, expected_dc, sum = 0; + (void)left; + + for (i = 0; i < bs; i++) sum += above[i]; + expected_dc = (sum + (bs >> 1)) / bs; + + for (r = 0; r < bs; r++) { + memset(dst, expected_dc, bs); + dst += stride; + } +} + +static INLINE void dc_predictor(uint8_t *dst, ptrdiff_t stride, int bs, + const uint8_t *above, const uint8_t *left) { + int i, r, expected_dc, sum = 0; + const int count = 2 * bs; + + for (i = 0; i < bs; i++) { + sum += above[i]; + sum += left[i]; + } + + expected_dc = (sum + (count >> 1)) / count; + + for (r = 0; r < bs; r++) { + memset(dst, expected_dc, bs); + dst += stride; + } +} + +void vpx_he_predictor_4x4_c(uint8_t *dst, ptrdiff_t stride, + const uint8_t *above, const uint8_t *left) { + const int H = above[-1]; + const int I = left[0]; + const int J = left[1]; + const int K = left[2]; + const int L = left[3]; + + memset(dst + stride * 0, AVG3(H, I, J), 4); + memset(dst + stride * 1, AVG3(I, J, K), 4); + memset(dst + stride * 2, AVG3(J, K, L), 4); + memset(dst + stride * 3, AVG3(K, L, L), 4); +} + +void vpx_ve_predictor_4x4_c(uint8_t *dst, ptrdiff_t stride, + const uint8_t *above, const uint8_t *left) { + const int H = above[-1]; + const int I = above[0]; + const int J = above[1]; + const int K = above[2]; + const int L = above[3]; + const int M = above[4]; + (void)left; + + dst[0] = AVG3(H, I, J); + dst[1] = AVG3(I, J, K); + dst[2] = AVG3(J, K, L); + dst[3] = AVG3(K, L, M); + memcpy(dst + stride * 1, dst, 4); + memcpy(dst + stride * 2, dst, 4); + memcpy(dst + stride * 3, dst, 4); +} + +void vpx_d207_predictor_4x4_c(uint8_t *dst, ptrdiff_t stride, + const uint8_t *above, const uint8_t *left) { + const int I = left[0]; + const int J = left[1]; + const int K = left[2]; + const int L = left[3]; + (void)above; + DST(0, 0) = AVG2(I, J); + DST(2, 0) = DST(0, 1) = AVG2(J, K); + DST(2, 1) = DST(0, 2) = AVG2(K, L); + DST(1, 0) = AVG3(I, J, K); + DST(3, 0) = DST(1, 1) = AVG3(J, K, L); + DST(3, 1) = DST(1, 2) = AVG3(K, L, L); + DST(3, 2) = DST(2, 2) = DST(0, 3) = DST(1, 3) = DST(2, 3) = DST(3, 3) = L; +} + +void vpx_d63_predictor_4x4_c(uint8_t *dst, ptrdiff_t stride, + const uint8_t *above, const uint8_t *left) { + const int A = above[0]; + const int B = above[1]; + const int C = above[2]; + const int D = above[3]; + const int E = above[4]; + const int F = above[5]; + const int G = above[6]; + (void)left; + DST(0, 0) = AVG2(A, B); + DST(1, 0) = DST(0, 2) = AVG2(B, C); + DST(2, 0) = DST(1, 2) = AVG2(C, D); + DST(3, 0) = DST(2, 2) = AVG2(D, E); + DST(3, 2) = AVG2(E, F); // differs from vp8 + + DST(0, 1) = AVG3(A, B, C); + DST(1, 1) = DST(0, 3) = AVG3(B, C, D); + DST(2, 1) = DST(1, 3) = AVG3(C, D, E); + DST(3, 1) = DST(2, 3) = AVG3(D, E, F); + DST(3, 3) = AVG3(E, F, G); // differs from vp8 +} + +void vpx_d63e_predictor_4x4_c(uint8_t *dst, ptrdiff_t stride, + const uint8_t *above, const uint8_t *left) { + const int A = above[0]; + const int B = above[1]; + const int C = above[2]; + const int D = above[3]; + const int E = above[4]; + const int F = above[5]; + const int G = above[6]; + const int H = above[7]; + (void)left; + DST(0, 0) = AVG2(A, B); + DST(1, 0) = DST(0, 2) = AVG2(B, C); + DST(2, 0) = DST(1, 2) = AVG2(C, D); + DST(3, 0) = DST(2, 2) = AVG2(D, E); + DST(3, 2) = AVG3(E, F, G); + + DST(0, 1) = AVG3(A, B, C); + DST(1, 1) = DST(0, 3) = AVG3(B, C, D); + DST(2, 1) = DST(1, 3) = AVG3(C, D, E); + DST(3, 1) = DST(2, 3) = AVG3(D, E, F); + DST(3, 3) = AVG3(F, G, H); +} + +void vpx_d45_predictor_4x4_c(uint8_t *dst, ptrdiff_t stride, + const uint8_t *above, const uint8_t *left) { + const int A = above[0]; + const int B = above[1]; + const int C = above[2]; + const int D = above[3]; + const int E = above[4]; + const int F = above[5]; + const int G = above[6]; + const int H = above[7]; + (void)stride; + (void)left; + DST(0, 0) = AVG3(A, B, C); + DST(1, 0) = DST(0, 1) = AVG3(B, C, D); + DST(2, 0) = DST(1, 1) = DST(0, 2) = AVG3(C, D, E); + DST(3, 0) = DST(2, 1) = DST(1, 2) = DST(0, 3) = AVG3(D, E, F); + DST(3, 1) = DST(2, 2) = DST(1, 3) = AVG3(E, F, G); + DST(3, 2) = DST(2, 3) = AVG3(F, G, H); + DST(3, 3) = H; // differs from vp8 +} + +void vpx_d45e_predictor_4x4_c(uint8_t *dst, ptrdiff_t stride, + const uint8_t *above, const uint8_t *left) { + const int A = above[0]; + const int B = above[1]; + const int C = above[2]; + const int D = above[3]; + const int E = above[4]; + const int F = above[5]; + const int G = above[6]; + const int H = above[7]; + (void)stride; + (void)left; + DST(0, 0) = AVG3(A, B, C); + DST(1, 0) = DST(0, 1) = AVG3(B, C, D); + DST(2, 0) = DST(1, 1) = DST(0, 2) = AVG3(C, D, E); + DST(3, 0) = DST(2, 1) = DST(1, 2) = DST(0, 3) = AVG3(D, E, F); + DST(3, 1) = DST(2, 2) = DST(1, 3) = AVG3(E, F, G); + DST(3, 2) = DST(2, 3) = AVG3(F, G, H); + DST(3, 3) = AVG3(G, H, H); +} + +void vpx_d117_predictor_4x4_c(uint8_t *dst, ptrdiff_t stride, + const uint8_t *above, const uint8_t *left) { + const int I = left[0]; + const int J = left[1]; + const int K = left[2]; + const int X = above[-1]; + const int A = above[0]; + const int B = above[1]; + const int C = above[2]; + const int D = above[3]; + DST(0, 0) = DST(1, 2) = AVG2(X, A); + DST(1, 0) = DST(2, 2) = AVG2(A, B); + DST(2, 0) = DST(3, 2) = AVG2(B, C); + DST(3, 0) = AVG2(C, D); + + DST(0, 3) = AVG3(K, J, I); + DST(0, 2) = AVG3(J, I, X); + DST(0, 1) = DST(1, 3) = AVG3(I, X, A); + DST(1, 1) = DST(2, 3) = AVG3(X, A, B); + DST(2, 1) = DST(3, 3) = AVG3(A, B, C); + DST(3, 1) = AVG3(B, C, D); +} + +void vpx_d135_predictor_4x4_c(uint8_t *dst, ptrdiff_t stride, + const uint8_t *above, const uint8_t *left) { + const int I = left[0]; + const int J = left[1]; + const int K = left[2]; + const int L = left[3]; + const int X = above[-1]; + const int A = above[0]; + const int B = above[1]; + const int C = above[2]; + const int D = above[3]; + (void)stride; + DST(0, 3) = AVG3(J, K, L); + DST(1, 3) = DST(0, 2) = AVG3(I, J, K); + DST(2, 3) = DST(1, 2) = DST(0, 1) = AVG3(X, I, J); + DST(3, 3) = DST(2, 2) = DST(1, 1) = DST(0, 0) = AVG3(A, X, I); + DST(3, 2) = DST(2, 1) = DST(1, 0) = AVG3(B, A, X); + DST(3, 1) = DST(2, 0) = AVG3(C, B, A); + DST(3, 0) = AVG3(D, C, B); +} + +void vpx_d153_predictor_4x4_c(uint8_t *dst, ptrdiff_t stride, + const uint8_t *above, const uint8_t *left) { + const int I = left[0]; + const int J = left[1]; + const int K = left[2]; + const int L = left[3]; + const int X = above[-1]; + const int A = above[0]; + const int B = above[1]; + const int C = above[2]; + + DST(0, 0) = DST(2, 1) = AVG2(I, X); + DST(0, 1) = DST(2, 2) = AVG2(J, I); + DST(0, 2) = DST(2, 3) = AVG2(K, J); + DST(0, 3) = AVG2(L, K); + + DST(3, 0) = AVG3(A, B, C); + DST(2, 0) = AVG3(X, A, B); + DST(1, 0) = DST(3, 1) = AVG3(I, X, A); + DST(1, 1) = DST(3, 2) = AVG3(J, I, X); + DST(1, 2) = DST(3, 3) = AVG3(K, J, I); + DST(1, 3) = AVG3(L, K, J); +} + +#if CONFIG_VP9_HIGHBITDEPTH +static INLINE void highbd_d207_predictor(uint16_t *dst, ptrdiff_t stride, + int bs, const uint16_t *above, + const uint16_t *left, int bd) { + int r, c; + (void)above; + (void)bd; + + // First column. + for (r = 0; r < bs - 1; ++r) { + dst[r * stride] = AVG2(left[r], left[r + 1]); + } + dst[(bs - 1) * stride] = left[bs - 1]; + dst++; + + // Second column. + for (r = 0; r < bs - 2; ++r) { + dst[r * stride] = AVG3(left[r], left[r + 1], left[r + 2]); + } + dst[(bs - 2) * stride] = AVG3(left[bs - 2], left[bs - 1], left[bs - 1]); + dst[(bs - 1) * stride] = left[bs - 1]; + dst++; + + // Rest of last row. + for (c = 0; c < bs - 2; ++c) dst[(bs - 1) * stride + c] = left[bs - 1]; + + for (r = bs - 2; r >= 0; --r) { + for (c = 0; c < bs - 2; ++c) + dst[r * stride + c] = dst[(r + 1) * stride + c - 2]; + } +} + +static INLINE void highbd_d63_predictor(uint16_t *dst, ptrdiff_t stride, int bs, + const uint16_t *above, + const uint16_t *left, int bd) { + int r, c; + int size; + (void)left; + (void)bd; + for (c = 0; c < bs; ++c) { + dst[c] = AVG2(above[c], above[c + 1]); + dst[stride + c] = AVG3(above[c], above[c + 1], above[c + 2]); + } + for (r = 2, size = bs - 2; r < bs; r += 2, --size) { + memcpy(dst + (r + 0) * stride, dst + (r >> 1), size * sizeof(*dst)); + vpx_memset16(dst + (r + 0) * stride + size, above[bs - 1], bs - size); + memcpy(dst + (r + 1) * stride, dst + stride + (r >> 1), + size * sizeof(*dst)); + vpx_memset16(dst + (r + 1) * stride + size, above[bs - 1], bs - size); + } +} + +static INLINE void highbd_d45_predictor(uint16_t *dst, ptrdiff_t stride, int bs, + const uint16_t *above, + const uint16_t *left, int bd) { + const uint16_t above_right = above[bs - 1]; + const uint16_t *const dst_row0 = dst; + int x, size; + (void)left; + (void)bd; + + for (x = 0; x < bs - 1; ++x) { + dst[x] = AVG3(above[x], above[x + 1], above[x + 2]); + } + dst[bs - 1] = above_right; + dst += stride; + for (x = 1, size = bs - 2; x < bs; ++x, --size) { + memcpy(dst, dst_row0 + x, size * sizeof(*dst)); + vpx_memset16(dst + size, above_right, x + 1); + dst += stride; + } +} + +static INLINE void highbd_d117_predictor(uint16_t *dst, ptrdiff_t stride, + int bs, const uint16_t *above, + const uint16_t *left, int bd) { + int r, c; + (void)bd; + + // first row + for (c = 0; c < bs; c++) dst[c] = AVG2(above[c - 1], above[c]); + dst += stride; + + // second row + dst[0] = AVG3(left[0], above[-1], above[0]); + for (c = 1; c < bs; c++) dst[c] = AVG3(above[c - 2], above[c - 1], above[c]); + dst += stride; + + // the rest of first col + dst[0] = AVG3(above[-1], left[0], left[1]); + for (r = 3; r < bs; ++r) + dst[(r - 2) * stride] = AVG3(left[r - 3], left[r - 2], left[r - 1]); + + // the rest of the block + for (r = 2; r < bs; ++r) { + for (c = 1; c < bs; c++) dst[c] = dst[-2 * stride + c - 1]; + dst += stride; + } +} + +static INLINE void highbd_d135_predictor(uint16_t *dst, ptrdiff_t stride, + int bs, const uint16_t *above, + const uint16_t *left, int bd) { + int i; +#if defined(__GNUC__) && __GNUC__ == 4 && __GNUC_MINOR__ > 7 + // silence a spurious -Warray-bounds warning, possibly related to: + // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=56273 + uint16_t border[69]; +#else + uint16_t border[32 + 32 - 1]; // outer border from bottom-left to top-right +#endif + (void)bd; + + // dst(bs, bs - 2)[0], i.e., border starting at bottom-left + for (i = 0; i < bs - 2; ++i) { + border[i] = AVG3(left[bs - 3 - i], left[bs - 2 - i], left[bs - 1 - i]); + } + border[bs - 2] = AVG3(above[-1], left[0], left[1]); + border[bs - 1] = AVG3(left[0], above[-1], above[0]); + border[bs - 0] = AVG3(above[-1], above[0], above[1]); + // dst[0][2, size), i.e., remaining top border ascending + for (i = 0; i < bs - 2; ++i) { + border[bs + 1 + i] = AVG3(above[i], above[i + 1], above[i + 2]); + } + + for (i = 0; i < bs; ++i) { + memcpy(dst + i * stride, border + bs - 1 - i, bs * sizeof(dst[0])); + } +} + +static INLINE void highbd_d153_predictor(uint16_t *dst, ptrdiff_t stride, + int bs, const uint16_t *above, + const uint16_t *left, int bd) { + int r, c; + (void)bd; + dst[0] = AVG2(above[-1], left[0]); + for (r = 1; r < bs; r++) dst[r * stride] = AVG2(left[r - 1], left[r]); + dst++; + + dst[0] = AVG3(left[0], above[-1], above[0]); + dst[stride] = AVG3(above[-1], left[0], left[1]); + for (r = 2; r < bs; r++) + dst[r * stride] = AVG3(left[r - 2], left[r - 1], left[r]); + dst++; + + for (c = 0; c < bs - 2; c++) + dst[c] = AVG3(above[c - 1], above[c], above[c + 1]); + dst += stride; + + for (r = 1; r < bs; ++r) { + for (c = 0; c < bs - 2; c++) dst[c] = dst[-stride + c - 2]; + dst += stride; + } +} + +static INLINE void highbd_v_predictor(uint16_t *dst, ptrdiff_t stride, int bs, + const uint16_t *above, + const uint16_t *left, int bd) { + int r; + (void)left; + (void)bd; + for (r = 0; r < bs; r++) { + memcpy(dst, above, bs * sizeof(uint16_t)); + dst += stride; + } +} + +static INLINE void highbd_h_predictor(uint16_t *dst, ptrdiff_t stride, int bs, + const uint16_t *above, + const uint16_t *left, int bd) { + int r; + (void)above; + (void)bd; + for (r = 0; r < bs; r++) { + vpx_memset16(dst, left[r], bs); + dst += stride; + } +} + +static INLINE void highbd_tm_predictor(uint16_t *dst, ptrdiff_t stride, int bs, + const uint16_t *above, + const uint16_t *left, int bd) { + int r, c; + int ytop_left = above[-1]; + (void)bd; + + for (r = 0; r < bs; r++) { + for (c = 0; c < bs; c++) + dst[c] = clip_pixel_highbd(left[r] + above[c] - ytop_left, bd); + dst += stride; + } +} + +static INLINE void highbd_dc_128_predictor(uint16_t *dst, ptrdiff_t stride, + int bs, const uint16_t *above, + const uint16_t *left, int bd) { + int r; + (void)above; + (void)left; + + for (r = 0; r < bs; r++) { + vpx_memset16(dst, 128 << (bd - 8), bs); + dst += stride; + } +} + +static INLINE void highbd_dc_left_predictor(uint16_t *dst, ptrdiff_t stride, + int bs, const uint16_t *above, + const uint16_t *left, int bd) { + int i, r, expected_dc, sum = 0; + (void)above; + (void)bd; + + for (i = 0; i < bs; i++) sum += left[i]; + expected_dc = (sum + (bs >> 1)) / bs; + + for (r = 0; r < bs; r++) { + vpx_memset16(dst, expected_dc, bs); + dst += stride; + } +} + +static INLINE void highbd_dc_top_predictor(uint16_t *dst, ptrdiff_t stride, + int bs, const uint16_t *above, + const uint16_t *left, int bd) { + int i, r, expected_dc, sum = 0; + (void)left; + (void)bd; + + for (i = 0; i < bs; i++) sum += above[i]; + expected_dc = (sum + (bs >> 1)) / bs; + + for (r = 0; r < bs; r++) { + vpx_memset16(dst, expected_dc, bs); + dst += stride; + } +} + +static INLINE void highbd_dc_predictor(uint16_t *dst, ptrdiff_t stride, int bs, + const uint16_t *above, + const uint16_t *left, int bd) { + int i, r, expected_dc, sum = 0; + const int count = 2 * bs; + (void)bd; + + for (i = 0; i < bs; i++) { + sum += above[i]; + sum += left[i]; + } + + expected_dc = (sum + (count >> 1)) / count; + + for (r = 0; r < bs; r++) { + vpx_memset16(dst, expected_dc, bs); + dst += stride; + } +} + +void vpx_highbd_d207_predictor_4x4_c(uint16_t *dst, ptrdiff_t stride, + const uint16_t *above, + const uint16_t *left, int bd) { + const int I = left[0]; + const int J = left[1]; + const int K = left[2]; + const int L = left[3]; + (void)above; + (void)bd; + DST(0, 0) = AVG2(I, J); + DST(2, 0) = DST(0, 1) = AVG2(J, K); + DST(2, 1) = DST(0, 2) = AVG2(K, L); + DST(1, 0) = AVG3(I, J, K); + DST(3, 0) = DST(1, 1) = AVG3(J, K, L); + DST(3, 1) = DST(1, 2) = AVG3(K, L, L); + DST(3, 2) = DST(2, 2) = DST(0, 3) = DST(1, 3) = DST(2, 3) = DST(3, 3) = L; +} + +void vpx_highbd_d63_predictor_4x4_c(uint16_t *dst, ptrdiff_t stride, + const uint16_t *above, const uint16_t *left, + int bd) { + const int A = above[0]; + const int B = above[1]; + const int C = above[2]; + const int D = above[3]; + const int E = above[4]; + const int F = above[5]; + const int G = above[6]; + (void)left; + (void)bd; + DST(0, 0) = AVG2(A, B); + DST(1, 0) = DST(0, 2) = AVG2(B, C); + DST(2, 0) = DST(1, 2) = AVG2(C, D); + DST(3, 0) = DST(2, 2) = AVG2(D, E); + DST(3, 2) = AVG2(E, F); // differs from vp8 + + DST(0, 1) = AVG3(A, B, C); + DST(1, 1) = DST(0, 3) = AVG3(B, C, D); + DST(2, 1) = DST(1, 3) = AVG3(C, D, E); + DST(3, 1) = DST(2, 3) = AVG3(D, E, F); + DST(3, 3) = AVG3(E, F, G); // differs from vp8 +} + +void vpx_highbd_d45_predictor_4x4_c(uint16_t *dst, ptrdiff_t stride, + const uint16_t *above, const uint16_t *left, + int bd) { + const int A = above[0]; + const int B = above[1]; + const int C = above[2]; + const int D = above[3]; + const int E = above[4]; + const int F = above[5]; + const int G = above[6]; + const int H = above[7]; + (void)left; + (void)bd; + DST(0, 0) = AVG3(A, B, C); + DST(1, 0) = DST(0, 1) = AVG3(B, C, D); + DST(2, 0) = DST(1, 1) = DST(0, 2) = AVG3(C, D, E); + DST(3, 0) = DST(2, 1) = DST(1, 2) = DST(0, 3) = AVG3(D, E, F); + DST(3, 1) = DST(2, 2) = DST(1, 3) = AVG3(E, F, G); + DST(3, 2) = DST(2, 3) = AVG3(F, G, H); + DST(3, 3) = H; // differs from vp8 +} + +void vpx_highbd_d117_predictor_4x4_c(uint16_t *dst, ptrdiff_t stride, + const uint16_t *above, + const uint16_t *left, int bd) { + const int I = left[0]; + const int J = left[1]; + const int K = left[2]; + const int X = above[-1]; + const int A = above[0]; + const int B = above[1]; + const int C = above[2]; + const int D = above[3]; + (void)bd; + DST(0, 0) = DST(1, 2) = AVG2(X, A); + DST(1, 0) = DST(2, 2) = AVG2(A, B); + DST(2, 0) = DST(3, 2) = AVG2(B, C); + DST(3, 0) = AVG2(C, D); + + DST(0, 3) = AVG3(K, J, I); + DST(0, 2) = AVG3(J, I, X); + DST(0, 1) = DST(1, 3) = AVG3(I, X, A); + DST(1, 1) = DST(2, 3) = AVG3(X, A, B); + DST(2, 1) = DST(3, 3) = AVG3(A, B, C); + DST(3, 1) = AVG3(B, C, D); +} + +void vpx_highbd_d135_predictor_4x4_c(uint16_t *dst, ptrdiff_t stride, + const uint16_t *above, + const uint16_t *left, int bd) { + const int I = left[0]; + const int J = left[1]; + const int K = left[2]; + const int L = left[3]; + const int X = above[-1]; + const int A = above[0]; + const int B = above[1]; + const int C = above[2]; + const int D = above[3]; + (void)bd; + DST(0, 3) = AVG3(J, K, L); + DST(1, 3) = DST(0, 2) = AVG3(I, J, K); + DST(2, 3) = DST(1, 2) = DST(0, 1) = AVG3(X, I, J); + DST(3, 3) = DST(2, 2) = DST(1, 1) = DST(0, 0) = AVG3(A, X, I); + DST(3, 2) = DST(2, 1) = DST(1, 0) = AVG3(B, A, X); + DST(3, 1) = DST(2, 0) = AVG3(C, B, A); + DST(3, 0) = AVG3(D, C, B); +} + +void vpx_highbd_d153_predictor_4x4_c(uint16_t *dst, ptrdiff_t stride, + const uint16_t *above, + const uint16_t *left, int bd) { + const int I = left[0]; + const int J = left[1]; + const int K = left[2]; + const int L = left[3]; + const int X = above[-1]; + const int A = above[0]; + const int B = above[1]; + const int C = above[2]; + (void)bd; + + DST(0, 0) = DST(2, 1) = AVG2(I, X); + DST(0, 1) = DST(2, 2) = AVG2(J, I); + DST(0, 2) = DST(2, 3) = AVG2(K, J); + DST(0, 3) = AVG2(L, K); + + DST(3, 0) = AVG3(A, B, C); + DST(2, 0) = AVG3(X, A, B); + DST(1, 0) = DST(3, 1) = AVG3(I, X, A); + DST(1, 1) = DST(3, 2) = AVG3(J, I, X); + DST(1, 2) = DST(3, 3) = AVG3(K, J, I); + DST(1, 3) = AVG3(L, K, J); +} +#endif // CONFIG_VP9_HIGHBITDEPTH + +// This serves as a wrapper function, so that all the prediction functions +// can be unified and accessed as a pointer array. Note that the boundary +// above and left are not necessarily used all the time. +#define intra_pred_sized(type, size) \ + void vpx_##type##_predictor_##size##x##size##_c( \ + uint8_t *dst, ptrdiff_t stride, const uint8_t *above, \ + const uint8_t *left) { \ + type##_predictor(dst, stride, size, above, left); \ + } + +#if CONFIG_VP9_HIGHBITDEPTH +#define intra_pred_highbd_sized(type, size) \ + void vpx_highbd_##type##_predictor_##size##x##size##_c( \ + uint16_t *dst, ptrdiff_t stride, const uint16_t *above, \ + const uint16_t *left, int bd) { \ + highbd_##type##_predictor(dst, stride, size, above, left, bd); \ + } + +/* clang-format off */ +#define intra_pred_allsizes(type) \ + intra_pred_sized(type, 4) \ + intra_pred_sized(type, 8) \ + intra_pred_sized(type, 16) \ + intra_pred_sized(type, 32) \ + intra_pred_highbd_sized(type, 4) \ + intra_pred_highbd_sized(type, 8) \ + intra_pred_highbd_sized(type, 16) \ + intra_pred_highbd_sized(type, 32) + +#define intra_pred_no_4x4(type) \ + intra_pred_sized(type, 8) \ + intra_pred_sized(type, 16) \ + intra_pred_sized(type, 32) \ + intra_pred_highbd_sized(type, 8) \ + intra_pred_highbd_sized(type, 16) \ + intra_pred_highbd_sized(type, 32) + +#else +#define intra_pred_allsizes(type) \ + intra_pred_sized(type, 4) \ + intra_pred_sized(type, 8) \ + intra_pred_sized(type, 16) \ + intra_pred_sized(type, 32) + +#define intra_pred_no_4x4(type) \ + intra_pred_sized(type, 8) \ + intra_pred_sized(type, 16) \ + intra_pred_sized(type, 32) +#endif // CONFIG_VP9_HIGHBITDEPTH + +intra_pred_no_4x4(d207) +intra_pred_no_4x4(d63) +intra_pred_no_4x4(d45) +intra_pred_no_4x4(d117) +intra_pred_no_4x4(d135) +intra_pred_no_4x4(d153) +intra_pred_allsizes(v) +intra_pred_allsizes(h) +intra_pred_allsizes(tm) +intra_pred_allsizes(dc_128) +intra_pred_allsizes(dc_left) +intra_pred_allsizes(dc_top) +intra_pred_allsizes(dc) +/* clang-format on */ +#undef intra_pred_allsizes diff --git a/vpx_dsp/inv_txfm.c b/vpx_dsp/inv_txfm.c new file mode 100644 index 0000000..0194aa1 --- /dev/null +++ b/vpx_dsp/inv_txfm.c @@ -0,0 +1,2701 @@ +/* + * Copyright (c) 2015 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include +#include + +#include "./vpx_dsp_rtcd.h" +#include "vpx_dsp/inv_txfm.h" + +void vpx_iwht4x4_16_add_c(const tran_low_t *input, uint8_t *dest, int stride) { + /* 4-point reversible, orthonormal inverse Walsh-Hadamard in 3.5 adds, + 0.5 shifts per pixel. */ + int i; + tran_low_t output[16]; + tran_high_t a1, b1, c1, d1, e1; + const tran_low_t *ip = input; + tran_low_t *op = output; + + for (i = 0; i < 4; i++) { + a1 = ip[0] >> UNIT_QUANT_SHIFT; + c1 = ip[1] >> UNIT_QUANT_SHIFT; + d1 = ip[2] >> UNIT_QUANT_SHIFT; + b1 = ip[3] >> UNIT_QUANT_SHIFT; + a1 += c1; + d1 -= b1; + e1 = (a1 - d1) >> 1; + b1 = e1 - b1; + c1 = e1 - c1; + a1 -= b1; + d1 += c1; + op[0] = WRAPLOW(a1); + op[1] = WRAPLOW(b1); + op[2] = WRAPLOW(c1); + op[3] = WRAPLOW(d1); + ip += 4; + op += 4; + } + + ip = output; + for (i = 0; i < 4; i++) { + a1 = ip[4 * 0]; + c1 = ip[4 * 1]; + d1 = ip[4 * 2]; + b1 = ip[4 * 3]; + a1 += c1; + d1 -= b1; + e1 = (a1 - d1) >> 1; + b1 = e1 - b1; + c1 = e1 - c1; + a1 -= b1; + d1 += c1; + dest[stride * 0] = clip_pixel_add(dest[stride * 0], WRAPLOW(a1)); + dest[stride * 1] = clip_pixel_add(dest[stride * 1], WRAPLOW(b1)); + dest[stride * 2] = clip_pixel_add(dest[stride * 2], WRAPLOW(c1)); + dest[stride * 3] = clip_pixel_add(dest[stride * 3], WRAPLOW(d1)); + + ip++; + dest++; + } +} + +void vpx_iwht4x4_1_add_c(const tran_low_t *in, uint8_t *dest, int stride) { + int i; + tran_high_t a1, e1; + tran_low_t tmp[4]; + const tran_low_t *ip = in; + tran_low_t *op = tmp; + + a1 = ip[0] >> UNIT_QUANT_SHIFT; + e1 = a1 >> 1; + a1 -= e1; + op[0] = WRAPLOW(a1); + op[1] = op[2] = op[3] = WRAPLOW(e1); + + ip = tmp; + for (i = 0; i < 4; i++) { + e1 = ip[0] >> 1; + a1 = ip[0] - e1; + dest[stride * 0] = clip_pixel_add(dest[stride * 0], a1); + dest[stride * 1] = clip_pixel_add(dest[stride * 1], e1); + dest[stride * 2] = clip_pixel_add(dest[stride * 2], e1); + dest[stride * 3] = clip_pixel_add(dest[stride * 3], e1); + ip++; + dest++; + } +} + +void iadst4_c(const tran_low_t *input, tran_low_t *output) { + tran_high_t s0, s1, s2, s3, s4, s5, s6, s7; + tran_low_t x0 = input[0]; + tran_low_t x1 = input[1]; + tran_low_t x2 = input[2]; + tran_low_t x3 = input[3]; + + if (!(x0 | x1 | x2 | x3)) { + memset(output, 0, 4 * sizeof(*output)); + return; + } + + // 32-bit result is enough for the following multiplications. + s0 = sinpi_1_9 * x0; + s1 = sinpi_2_9 * x0; + s2 = sinpi_3_9 * x1; + s3 = sinpi_4_9 * x2; + s4 = sinpi_1_9 * x2; + s5 = sinpi_2_9 * x3; + s6 = sinpi_4_9 * x3; + s7 = WRAPLOW(x0 - x2 + x3); + + s0 = s0 + s3 + s5; + s1 = s1 - s4 - s6; + s3 = s2; + s2 = sinpi_3_9 * s7; + + // 1-D transform scaling factor is sqrt(2). + // The overall dynamic range is 14b (input) + 14b (multiplication scaling) + // + 1b (addition) = 29b. + // Hence the output bit depth is 15b. + output[0] = WRAPLOW(dct_const_round_shift(s0 + s3)); + output[1] = WRAPLOW(dct_const_round_shift(s1 + s3)); + output[2] = WRAPLOW(dct_const_round_shift(s2)); + output[3] = WRAPLOW(dct_const_round_shift(s0 + s1 - s3)); +} + +void idct4_c(const tran_low_t *input, tran_low_t *output) { + int16_t step[4]; + tran_high_t temp1, temp2; + + // stage 1 + temp1 = ((int16_t)input[0] + (int16_t)input[2]) * cospi_16_64; + temp2 = ((int16_t)input[0] - (int16_t)input[2]) * cospi_16_64; + step[0] = WRAPLOW(dct_const_round_shift(temp1)); + step[1] = WRAPLOW(dct_const_round_shift(temp2)); + temp1 = (int16_t)input[1] * cospi_24_64 - (int16_t)input[3] * cospi_8_64; + temp2 = (int16_t)input[1] * cospi_8_64 + (int16_t)input[3] * cospi_24_64; + step[2] = WRAPLOW(dct_const_round_shift(temp1)); + step[3] = WRAPLOW(dct_const_round_shift(temp2)); + + // stage 2 + output[0] = WRAPLOW(step[0] + step[3]); + output[1] = WRAPLOW(step[1] + step[2]); + output[2] = WRAPLOW(step[1] - step[2]); + output[3] = WRAPLOW(step[0] - step[3]); +} + +void vpx_idct4x4_16_add_c(const tran_low_t *input, uint8_t *dest, int stride) { + int i, j; + tran_low_t out[4 * 4]; + tran_low_t *outptr = out; + tran_low_t temp_in[4], temp_out[4]; + + // Rows + for (i = 0; i < 4; ++i) { + idct4_c(input, outptr); + input += 4; + outptr += 4; + } + + // Columns + for (i = 0; i < 4; ++i) { + for (j = 0; j < 4; ++j) temp_in[j] = out[j * 4 + i]; + idct4_c(temp_in, temp_out); + for (j = 0; j < 4; ++j) { + dest[j * stride + i] = clip_pixel_add(dest[j * stride + i], + ROUND_POWER_OF_TWO(temp_out[j], 4)); + } + } +} + +void vpx_idct4x4_1_add_c(const tran_low_t *input, uint8_t *dest, int stride) { + int i; + tran_high_t a1; + tran_low_t out = + WRAPLOW(dct_const_round_shift((int16_t)input[0] * cospi_16_64)); + + out = WRAPLOW(dct_const_round_shift(out * cospi_16_64)); + a1 = ROUND_POWER_OF_TWO(out, 4); + + for (i = 0; i < 4; i++) { + dest[0] = clip_pixel_add(dest[0], a1); + dest[1] = clip_pixel_add(dest[1], a1); + dest[2] = clip_pixel_add(dest[2], a1); + dest[3] = clip_pixel_add(dest[3], a1); + dest += stride; + } +} + +void iadst8_c(const tran_low_t *input, tran_low_t *output) { + int s0, s1, s2, s3, s4, s5, s6, s7; + tran_high_t x0 = input[7]; + tran_high_t x1 = input[0]; + tran_high_t x2 = input[5]; + tran_high_t x3 = input[2]; + tran_high_t x4 = input[3]; + tran_high_t x5 = input[4]; + tran_high_t x6 = input[1]; + tran_high_t x7 = input[6]; + + if (!(x0 | x1 | x2 | x3 | x4 | x5 | x6 | x7)) { + memset(output, 0, 8 * sizeof(*output)); + return; + } + + // stage 1 + s0 = (int)(cospi_2_64 * x0 + cospi_30_64 * x1); + s1 = (int)(cospi_30_64 * x0 - cospi_2_64 * x1); + s2 = (int)(cospi_10_64 * x2 + cospi_22_64 * x3); + s3 = (int)(cospi_22_64 * x2 - cospi_10_64 * x3); + s4 = (int)(cospi_18_64 * x4 + cospi_14_64 * x5); + s5 = (int)(cospi_14_64 * x4 - cospi_18_64 * x5); + s6 = (int)(cospi_26_64 * x6 + cospi_6_64 * x7); + s7 = (int)(cospi_6_64 * x6 - cospi_26_64 * x7); + + x0 = WRAPLOW(dct_const_round_shift(s0 + s4)); + x1 = WRAPLOW(dct_const_round_shift(s1 + s5)); + x2 = WRAPLOW(dct_const_round_shift(s2 + s6)); + x3 = WRAPLOW(dct_const_round_shift(s3 + s7)); + x4 = WRAPLOW(dct_const_round_shift(s0 - s4)); + x5 = WRAPLOW(dct_const_round_shift(s1 - s5)); + x6 = WRAPLOW(dct_const_round_shift(s2 - s6)); + x7 = WRAPLOW(dct_const_round_shift(s3 - s7)); + + // stage 2 + s0 = (int)x0; + s1 = (int)x1; + s2 = (int)x2; + s3 = (int)x3; + s4 = (int)(cospi_8_64 * x4 + cospi_24_64 * x5); + s5 = (int)(cospi_24_64 * x4 - cospi_8_64 * x5); + s6 = (int)(-cospi_24_64 * x6 + cospi_8_64 * x7); + s7 = (int)(cospi_8_64 * x6 + cospi_24_64 * x7); + + x0 = WRAPLOW(s0 + s2); + x1 = WRAPLOW(s1 + s3); + x2 = WRAPLOW(s0 - s2); + x3 = WRAPLOW(s1 - s3); + x4 = WRAPLOW(dct_const_round_shift(s4 + s6)); + x5 = WRAPLOW(dct_const_round_shift(s5 + s7)); + x6 = WRAPLOW(dct_const_round_shift(s4 - s6)); + x7 = WRAPLOW(dct_const_round_shift(s5 - s7)); + + // stage 3 + s2 = (int)(cospi_16_64 * (x2 + x3)); + s3 = (int)(cospi_16_64 * (x2 - x3)); + s6 = (int)(cospi_16_64 * (x6 + x7)); + s7 = (int)(cospi_16_64 * (x6 - x7)); + + x2 = WRAPLOW(dct_const_round_shift(s2)); + x3 = WRAPLOW(dct_const_round_shift(s3)); + x6 = WRAPLOW(dct_const_round_shift(s6)); + x7 = WRAPLOW(dct_const_round_shift(s7)); + + output[0] = WRAPLOW(x0); + output[1] = WRAPLOW(-x4); + output[2] = WRAPLOW(x6); + output[3] = WRAPLOW(-x2); + output[4] = WRAPLOW(x3); + output[5] = WRAPLOW(-x7); + output[6] = WRAPLOW(x5); + output[7] = WRAPLOW(-x1); +} + +void idct8_c(const tran_low_t *input, tran_low_t *output) { + int16_t step1[8], step2[8]; + tran_high_t temp1, temp2; + + // stage 1 + step1[0] = (int16_t)input[0]; + step1[2] = (int16_t)input[4]; + step1[1] = (int16_t)input[2]; + step1[3] = (int16_t)input[6]; + temp1 = (int16_t)input[1] * cospi_28_64 - (int16_t)input[7] * cospi_4_64; + temp2 = (int16_t)input[1] * cospi_4_64 + (int16_t)input[7] * cospi_28_64; + step1[4] = WRAPLOW(dct_const_round_shift(temp1)); + step1[7] = WRAPLOW(dct_const_round_shift(temp2)); + temp1 = (int16_t)input[5] * cospi_12_64 - (int16_t)input[3] * cospi_20_64; + temp2 = (int16_t)input[5] * cospi_20_64 + (int16_t)input[3] * cospi_12_64; + step1[5] = WRAPLOW(dct_const_round_shift(temp1)); + step1[6] = WRAPLOW(dct_const_round_shift(temp2)); + + // stage 2 + temp1 = (step1[0] + step1[2]) * cospi_16_64; + temp2 = (step1[0] - step1[2]) * cospi_16_64; + step2[0] = WRAPLOW(dct_const_round_shift(temp1)); + step2[1] = WRAPLOW(dct_const_round_shift(temp2)); + temp1 = step1[1] * cospi_24_64 - step1[3] * cospi_8_64; + temp2 = step1[1] * cospi_8_64 + step1[3] * cospi_24_64; + step2[2] = WRAPLOW(dct_const_round_shift(temp1)); + step2[3] = WRAPLOW(dct_const_round_shift(temp2)); + step2[4] = WRAPLOW(step1[4] + step1[5]); + step2[5] = WRAPLOW(step1[4] - step1[5]); + step2[6] = WRAPLOW(-step1[6] + step1[7]); + step2[7] = WRAPLOW(step1[6] + step1[7]); + + // stage 3 + step1[0] = WRAPLOW(step2[0] + step2[3]); + step1[1] = WRAPLOW(step2[1] + step2[2]); + step1[2] = WRAPLOW(step2[1] - step2[2]); + step1[3] = WRAPLOW(step2[0] - step2[3]); + step1[4] = step2[4]; + temp1 = (step2[6] - step2[5]) * cospi_16_64; + temp2 = (step2[5] + step2[6]) * cospi_16_64; + step1[5] = WRAPLOW(dct_const_round_shift(temp1)); + step1[6] = WRAPLOW(dct_const_round_shift(temp2)); + step1[7] = step2[7]; + + // stage 4 + output[0] = WRAPLOW(step1[0] + step1[7]); + output[1] = WRAPLOW(step1[1] + step1[6]); + output[2] = WRAPLOW(step1[2] + step1[5]); + output[3] = WRAPLOW(step1[3] + step1[4]); + output[4] = WRAPLOW(step1[3] - step1[4]); + output[5] = WRAPLOW(step1[2] - step1[5]); + output[6] = WRAPLOW(step1[1] - step1[6]); + output[7] = WRAPLOW(step1[0] - step1[7]); +} + +void vpx_idct8x8_64_add_c(const tran_low_t *input, uint8_t *dest, int stride) { + int i, j; + tran_low_t out[8 * 8]; + tran_low_t *outptr = out; + tran_low_t temp_in[8], temp_out[8]; + + // First transform rows + for (i = 0; i < 8; ++i) { + idct8_c(input, outptr); + input += 8; + outptr += 8; + } + + // Then transform columns + for (i = 0; i < 8; ++i) { + for (j = 0; j < 8; ++j) temp_in[j] = out[j * 8 + i]; + idct8_c(temp_in, temp_out); + for (j = 0; j < 8; ++j) { + dest[j * stride + i] = clip_pixel_add(dest[j * stride + i], + ROUND_POWER_OF_TWO(temp_out[j], 5)); + } + } +} + +void vpx_idct8x8_12_add_c(const tran_low_t *input, uint8_t *dest, int stride) { + int i, j; + tran_low_t out[8 * 8] = { 0 }; + tran_low_t *outptr = out; + tran_low_t temp_in[8], temp_out[8]; + + // First transform rows + // Only first 4 row has non-zero coefs + for (i = 0; i < 4; ++i) { + idct8_c(input, outptr); + input += 8; + outptr += 8; + } + + // Then transform columns + for (i = 0; i < 8; ++i) { + for (j = 0; j < 8; ++j) temp_in[j] = out[j * 8 + i]; + idct8_c(temp_in, temp_out); + for (j = 0; j < 8; ++j) { + dest[j * stride + i] = clip_pixel_add(dest[j * stride + i], + ROUND_POWER_OF_TWO(temp_out[j], 5)); + } + } +} + +void vpx_idct8x8_1_add_c(const tran_low_t *input, uint8_t *dest, int stride) { + int i, j; + tran_high_t a1; + tran_low_t out = + WRAPLOW(dct_const_round_shift((int16_t)input[0] * cospi_16_64)); + + out = WRAPLOW(dct_const_round_shift(out * cospi_16_64)); + a1 = ROUND_POWER_OF_TWO(out, 5); + for (j = 0; j < 8; ++j) { + for (i = 0; i < 8; ++i) dest[i] = clip_pixel_add(dest[i], a1); + dest += stride; + } +} + +void iadst16_c(const tran_low_t *input, tran_low_t *output) { + tran_high_t s0, s1, s2, s3, s4, s5, s6, s7, s8; + tran_high_t s9, s10, s11, s12, s13, s14, s15; + tran_high_t x0 = input[15]; + tran_high_t x1 = input[0]; + tran_high_t x2 = input[13]; + tran_high_t x3 = input[2]; + tran_high_t x4 = input[11]; + tran_high_t x5 = input[4]; + tran_high_t x6 = input[9]; + tran_high_t x7 = input[6]; + tran_high_t x8 = input[7]; + tran_high_t x9 = input[8]; + tran_high_t x10 = input[5]; + tran_high_t x11 = input[10]; + tran_high_t x12 = input[3]; + tran_high_t x13 = input[12]; + tran_high_t x14 = input[1]; + tran_high_t x15 = input[14]; + + if (!(x0 | x1 | x2 | x3 | x4 | x5 | x6 | x7 | x8 | x9 | x10 | x11 | x12 | + x13 | x14 | x15)) { + memset(output, 0, 16 * sizeof(*output)); + return; + } + + // stage 1 + s0 = x0 * cospi_1_64 + x1 * cospi_31_64; + s1 = x0 * cospi_31_64 - x1 * cospi_1_64; + s2 = x2 * cospi_5_64 + x3 * cospi_27_64; + s3 = x2 * cospi_27_64 - x3 * cospi_5_64; + s4 = x4 * cospi_9_64 + x5 * cospi_23_64; + s5 = x4 * cospi_23_64 - x5 * cospi_9_64; + s6 = x6 * cospi_13_64 + x7 * cospi_19_64; + s7 = x6 * cospi_19_64 - x7 * cospi_13_64; + s8 = x8 * cospi_17_64 + x9 * cospi_15_64; + s9 = x8 * cospi_15_64 - x9 * cospi_17_64; + s10 = x10 * cospi_21_64 + x11 * cospi_11_64; + s11 = x10 * cospi_11_64 - x11 * cospi_21_64; + s12 = x12 * cospi_25_64 + x13 * cospi_7_64; + s13 = x12 * cospi_7_64 - x13 * cospi_25_64; + s14 = x14 * cospi_29_64 + x15 * cospi_3_64; + s15 = x14 * cospi_3_64 - x15 * cospi_29_64; + + x0 = WRAPLOW(dct_const_round_shift(s0 + s8)); + x1 = WRAPLOW(dct_const_round_shift(s1 + s9)); + x2 = WRAPLOW(dct_const_round_shift(s2 + s10)); + x3 = WRAPLOW(dct_const_round_shift(s3 + s11)); + x4 = WRAPLOW(dct_const_round_shift(s4 + s12)); + x5 = WRAPLOW(dct_const_round_shift(s5 + s13)); + x6 = WRAPLOW(dct_const_round_shift(s6 + s14)); + x7 = WRAPLOW(dct_const_round_shift(s7 + s15)); + x8 = WRAPLOW(dct_const_round_shift(s0 - s8)); + x9 = WRAPLOW(dct_const_round_shift(s1 - s9)); + x10 = WRAPLOW(dct_const_round_shift(s2 - s10)); + x11 = WRAPLOW(dct_const_round_shift(s3 - s11)); + x12 = WRAPLOW(dct_const_round_shift(s4 - s12)); + x13 = WRAPLOW(dct_const_round_shift(s5 - s13)); + x14 = WRAPLOW(dct_const_round_shift(s6 - s14)); + x15 = WRAPLOW(dct_const_round_shift(s7 - s15)); + + // stage 2 + s0 = x0; + s1 = x1; + s2 = x2; + s3 = x3; + s4 = x4; + s5 = x5; + s6 = x6; + s7 = x7; + s8 = x8 * cospi_4_64 + x9 * cospi_28_64; + s9 = x8 * cospi_28_64 - x9 * cospi_4_64; + s10 = x10 * cospi_20_64 + x11 * cospi_12_64; + s11 = x10 * cospi_12_64 - x11 * cospi_20_64; + s12 = -x12 * cospi_28_64 + x13 * cospi_4_64; + s13 = x12 * cospi_4_64 + x13 * cospi_28_64; + s14 = -x14 * cospi_12_64 + x15 * cospi_20_64; + s15 = x14 * cospi_20_64 + x15 * cospi_12_64; + + x0 = WRAPLOW(s0 + s4); + x1 = WRAPLOW(s1 + s5); + x2 = WRAPLOW(s2 + s6); + x3 = WRAPLOW(s3 + s7); + x4 = WRAPLOW(s0 - s4); + x5 = WRAPLOW(s1 - s5); + x6 = WRAPLOW(s2 - s6); + x7 = WRAPLOW(s3 - s7); + x8 = WRAPLOW(dct_const_round_shift(s8 + s12)); + x9 = WRAPLOW(dct_const_round_shift(s9 + s13)); + x10 = WRAPLOW(dct_const_round_shift(s10 + s14)); + x11 = WRAPLOW(dct_const_round_shift(s11 + s15)); + x12 = WRAPLOW(dct_const_round_shift(s8 - s12)); + x13 = WRAPLOW(dct_const_round_shift(s9 - s13)); + x14 = WRAPLOW(dct_const_round_shift(s10 - s14)); + x15 = WRAPLOW(dct_const_round_shift(s11 - s15)); + + // stage 3 + s0 = x0; + s1 = x1; + s2 = x2; + s3 = x3; + s4 = x4 * cospi_8_64 + x5 * cospi_24_64; + s5 = x4 * cospi_24_64 - x5 * cospi_8_64; + s6 = -x6 * cospi_24_64 + x7 * cospi_8_64; + s7 = x6 * cospi_8_64 + x7 * cospi_24_64; + s8 = x8; + s9 = x9; + s10 = x10; + s11 = x11; + s12 = x12 * cospi_8_64 + x13 * cospi_24_64; + s13 = x12 * cospi_24_64 - x13 * cospi_8_64; + s14 = -x14 * cospi_24_64 + x15 * cospi_8_64; + s15 = x14 * cospi_8_64 + x15 * cospi_24_64; + + x0 = WRAPLOW(s0 + s2); + x1 = WRAPLOW(s1 + s3); + x2 = WRAPLOW(s0 - s2); + x3 = WRAPLOW(s1 - s3); + x4 = WRAPLOW(dct_const_round_shift(s4 + s6)); + x5 = WRAPLOW(dct_const_round_shift(s5 + s7)); + x6 = WRAPLOW(dct_const_round_shift(s4 - s6)); + x7 = WRAPLOW(dct_const_round_shift(s5 - s7)); + x8 = WRAPLOW(s8 + s10); + x9 = WRAPLOW(s9 + s11); + x10 = WRAPLOW(s8 - s10); + x11 = WRAPLOW(s9 - s11); + x12 = WRAPLOW(dct_const_round_shift(s12 + s14)); + x13 = WRAPLOW(dct_const_round_shift(s13 + s15)); + x14 = WRAPLOW(dct_const_round_shift(s12 - s14)); + x15 = WRAPLOW(dct_const_round_shift(s13 - s15)); + + // stage 4 + s2 = (-cospi_16_64) * (x2 + x3); + s3 = cospi_16_64 * (x2 - x3); + s6 = cospi_16_64 * (x6 + x7); + s7 = cospi_16_64 * (-x6 + x7); + s10 = cospi_16_64 * (x10 + x11); + s11 = cospi_16_64 * (-x10 + x11); + s14 = (-cospi_16_64) * (x14 + x15); + s15 = cospi_16_64 * (x14 - x15); + + x2 = WRAPLOW(dct_const_round_shift(s2)); + x3 = WRAPLOW(dct_const_round_shift(s3)); + x6 = WRAPLOW(dct_const_round_shift(s6)); + x7 = WRAPLOW(dct_const_round_shift(s7)); + x10 = WRAPLOW(dct_const_round_shift(s10)); + x11 = WRAPLOW(dct_const_round_shift(s11)); + x14 = WRAPLOW(dct_const_round_shift(s14)); + x15 = WRAPLOW(dct_const_round_shift(s15)); + + output[0] = WRAPLOW(x0); + output[1] = WRAPLOW(-x8); + output[2] = WRAPLOW(x12); + output[3] = WRAPLOW(-x4); + output[4] = WRAPLOW(x6); + output[5] = WRAPLOW(x14); + output[6] = WRAPLOW(x10); + output[7] = WRAPLOW(x2); + output[8] = WRAPLOW(x3); + output[9] = WRAPLOW(x11); + output[10] = WRAPLOW(x15); + output[11] = WRAPLOW(x7); + output[12] = WRAPLOW(x5); + output[13] = WRAPLOW(-x13); + output[14] = WRAPLOW(x9); + output[15] = WRAPLOW(-x1); +} + +void idct16_c(const tran_low_t *input, tran_low_t *output) { + int16_t step1[16], step2[16]; + tran_high_t temp1, temp2; + + // stage 1 + step1[0] = (int16_t)input[0 / 2]; + step1[1] = (int16_t)input[16 / 2]; + step1[2] = (int16_t)input[8 / 2]; + step1[3] = (int16_t)input[24 / 2]; + step1[4] = (int16_t)input[4 / 2]; + step1[5] = (int16_t)input[20 / 2]; + step1[6] = (int16_t)input[12 / 2]; + step1[7] = (int16_t)input[28 / 2]; + step1[8] = (int16_t)input[2 / 2]; + step1[9] = (int16_t)input[18 / 2]; + step1[10] = (int16_t)input[10 / 2]; + step1[11] = (int16_t)input[26 / 2]; + step1[12] = (int16_t)input[6 / 2]; + step1[13] = (int16_t)input[22 / 2]; + step1[14] = (int16_t)input[14 / 2]; + step1[15] = (int16_t)input[30 / 2]; + + // stage 2 + step2[0] = step1[0]; + step2[1] = step1[1]; + step2[2] = step1[2]; + step2[3] = step1[3]; + step2[4] = step1[4]; + step2[5] = step1[5]; + step2[6] = step1[6]; + step2[7] = step1[7]; + + temp1 = step1[8] * cospi_30_64 - step1[15] * cospi_2_64; + temp2 = step1[8] * cospi_2_64 + step1[15] * cospi_30_64; + step2[8] = WRAPLOW(dct_const_round_shift(temp1)); + step2[15] = WRAPLOW(dct_const_round_shift(temp2)); + + temp1 = step1[9] * cospi_14_64 - step1[14] * cospi_18_64; + temp2 = step1[9] * cospi_18_64 + step1[14] * cospi_14_64; + step2[9] = WRAPLOW(dct_const_round_shift(temp1)); + step2[14] = WRAPLOW(dct_const_round_shift(temp2)); + + temp1 = step1[10] * cospi_22_64 - step1[13] * cospi_10_64; + temp2 = step1[10] * cospi_10_64 + step1[13] * cospi_22_64; + step2[10] = WRAPLOW(dct_const_round_shift(temp1)); + step2[13] = WRAPLOW(dct_const_round_shift(temp2)); + + temp1 = step1[11] * cospi_6_64 - step1[12] * cospi_26_64; + temp2 = step1[11] * cospi_26_64 + step1[12] * cospi_6_64; + step2[11] = WRAPLOW(dct_const_round_shift(temp1)); + step2[12] = WRAPLOW(dct_const_round_shift(temp2)); + + // stage 3 + step1[0] = step2[0]; + step1[1] = step2[1]; + step1[2] = step2[2]; + step1[3] = step2[3]; + + temp1 = step2[4] * cospi_28_64 - step2[7] * cospi_4_64; + temp2 = step2[4] * cospi_4_64 + step2[7] * cospi_28_64; + step1[4] = WRAPLOW(dct_const_round_shift(temp1)); + step1[7] = WRAPLOW(dct_const_round_shift(temp2)); + temp1 = step2[5] * cospi_12_64 - step2[6] * cospi_20_64; + temp2 = step2[5] * cospi_20_64 + step2[6] * cospi_12_64; + step1[5] = WRAPLOW(dct_const_round_shift(temp1)); + step1[6] = WRAPLOW(dct_const_round_shift(temp2)); + + step1[8] = WRAPLOW(step2[8] + step2[9]); + step1[9] = WRAPLOW(step2[8] - step2[9]); + step1[10] = WRAPLOW(-step2[10] + step2[11]); + step1[11] = WRAPLOW(step2[10] + step2[11]); + step1[12] = WRAPLOW(step2[12] + step2[13]); + step1[13] = WRAPLOW(step2[12] - step2[13]); + step1[14] = WRAPLOW(-step2[14] + step2[15]); + step1[15] = WRAPLOW(step2[14] + step2[15]); + + // stage 4 + temp1 = (step1[0] + step1[1]) * cospi_16_64; + temp2 = (step1[0] - step1[1]) * cospi_16_64; + step2[0] = WRAPLOW(dct_const_round_shift(temp1)); + step2[1] = WRAPLOW(dct_const_round_shift(temp2)); + temp1 = step1[2] * cospi_24_64 - step1[3] * cospi_8_64; + temp2 = step1[2] * cospi_8_64 + step1[3] * cospi_24_64; + step2[2] = WRAPLOW(dct_const_round_shift(temp1)); + step2[3] = WRAPLOW(dct_const_round_shift(temp2)); + step2[4] = WRAPLOW(step1[4] + step1[5]); + step2[5] = WRAPLOW(step1[4] - step1[5]); + step2[6] = WRAPLOW(-step1[6] + step1[7]); + step2[7] = WRAPLOW(step1[6] + step1[7]); + + step2[8] = step1[8]; + step2[15] = step1[15]; + temp1 = -step1[9] * cospi_8_64 + step1[14] * cospi_24_64; + temp2 = step1[9] * cospi_24_64 + step1[14] * cospi_8_64; + step2[9] = WRAPLOW(dct_const_round_shift(temp1)); + step2[14] = WRAPLOW(dct_const_round_shift(temp2)); + temp1 = -step1[10] * cospi_24_64 - step1[13] * cospi_8_64; + temp2 = -step1[10] * cospi_8_64 + step1[13] * cospi_24_64; + step2[10] = WRAPLOW(dct_const_round_shift(temp1)); + step2[13] = WRAPLOW(dct_const_round_shift(temp2)); + step2[11] = step1[11]; + step2[12] = step1[12]; + + // stage 5 + step1[0] = WRAPLOW(step2[0] + step2[3]); + step1[1] = WRAPLOW(step2[1] + step2[2]); + step1[2] = WRAPLOW(step2[1] - step2[2]); + step1[3] = WRAPLOW(step2[0] - step2[3]); + step1[4] = step2[4]; + temp1 = (step2[6] - step2[5]) * cospi_16_64; + temp2 = (step2[5] + step2[6]) * cospi_16_64; + step1[5] = WRAPLOW(dct_const_round_shift(temp1)); + step1[6] = WRAPLOW(dct_const_round_shift(temp2)); + step1[7] = step2[7]; + + step1[8] = WRAPLOW(step2[8] + step2[11]); + step1[9] = WRAPLOW(step2[9] + step2[10]); + step1[10] = WRAPLOW(step2[9] - step2[10]); + step1[11] = WRAPLOW(step2[8] - step2[11]); + step1[12] = WRAPLOW(-step2[12] + step2[15]); + step1[13] = WRAPLOW(-step2[13] + step2[14]); + step1[14] = WRAPLOW(step2[13] + step2[14]); + step1[15] = WRAPLOW(step2[12] + step2[15]); + + // stage 6 + step2[0] = WRAPLOW(step1[0] + step1[7]); + step2[1] = WRAPLOW(step1[1] + step1[6]); + step2[2] = WRAPLOW(step1[2] + step1[5]); + step2[3] = WRAPLOW(step1[3] + step1[4]); + step2[4] = WRAPLOW(step1[3] - step1[4]); + step2[5] = WRAPLOW(step1[2] - step1[5]); + step2[6] = WRAPLOW(step1[1] - step1[6]); + step2[7] = WRAPLOW(step1[0] - step1[7]); + step2[8] = step1[8]; + step2[9] = step1[9]; + temp1 = (-step1[10] + step1[13]) * cospi_16_64; + temp2 = (step1[10] + step1[13]) * cospi_16_64; + step2[10] = WRAPLOW(dct_const_round_shift(temp1)); + step2[13] = WRAPLOW(dct_const_round_shift(temp2)); + temp1 = (-step1[11] + step1[12]) * cospi_16_64; + temp2 = (step1[11] + step1[12]) * cospi_16_64; + step2[11] = WRAPLOW(dct_const_round_shift(temp1)); + step2[12] = WRAPLOW(dct_const_round_shift(temp2)); + step2[14] = step1[14]; + step2[15] = step1[15]; + + // stage 7 + output[0] = WRAPLOW(step2[0] + step2[15]); + output[1] = WRAPLOW(step2[1] + step2[14]); + output[2] = WRAPLOW(step2[2] + step2[13]); + output[3] = WRAPLOW(step2[3] + step2[12]); + output[4] = WRAPLOW(step2[4] + step2[11]); + output[5] = WRAPLOW(step2[5] + step2[10]); + output[6] = WRAPLOW(step2[6] + step2[9]); + output[7] = WRAPLOW(step2[7] + step2[8]); + output[8] = WRAPLOW(step2[7] - step2[8]); + output[9] = WRAPLOW(step2[6] - step2[9]); + output[10] = WRAPLOW(step2[5] - step2[10]); + output[11] = WRAPLOW(step2[4] - step2[11]); + output[12] = WRAPLOW(step2[3] - step2[12]); + output[13] = WRAPLOW(step2[2] - step2[13]); + output[14] = WRAPLOW(step2[1] - step2[14]); + output[15] = WRAPLOW(step2[0] - step2[15]); +} + +void vpx_idct16x16_256_add_c(const tran_low_t *input, uint8_t *dest, + int stride) { + int i, j; + tran_low_t out[16 * 16]; + tran_low_t *outptr = out; + tran_low_t temp_in[16], temp_out[16]; + + // First transform rows + for (i = 0; i < 16; ++i) { + idct16_c(input, outptr); + input += 16; + outptr += 16; + } + + // Then transform columns + for (i = 0; i < 16; ++i) { + for (j = 0; j < 16; ++j) temp_in[j] = out[j * 16 + i]; + idct16_c(temp_in, temp_out); + for (j = 0; j < 16; ++j) { + dest[j * stride + i] = clip_pixel_add(dest[j * stride + i], + ROUND_POWER_OF_TWO(temp_out[j], 6)); + } + } +} + +void vpx_idct16x16_38_add_c(const tran_low_t *input, uint8_t *dest, + int stride) { + int i, j; + tran_low_t out[16 * 16] = { 0 }; + tran_low_t *outptr = out; + tran_low_t temp_in[16], temp_out[16]; + + // First transform rows. Since all non-zero dct coefficients are in + // upper-left 8x8 area, we only need to calculate first 8 rows here. + for (i = 0; i < 8; ++i) { + idct16_c(input, outptr); + input += 16; + outptr += 16; + } + + // Then transform columns + for (i = 0; i < 16; ++i) { + for (j = 0; j < 16; ++j) temp_in[j] = out[j * 16 + i]; + idct16_c(temp_in, temp_out); + for (j = 0; j < 16; ++j) { + dest[j * stride + i] = clip_pixel_add(dest[j * stride + i], + ROUND_POWER_OF_TWO(temp_out[j], 6)); + } + } +} + +void vpx_idct16x16_10_add_c(const tran_low_t *input, uint8_t *dest, + int stride) { + int i, j; + tran_low_t out[16 * 16] = { 0 }; + tran_low_t *outptr = out; + tran_low_t temp_in[16], temp_out[16]; + + // First transform rows. Since all non-zero dct coefficients are in + // upper-left 4x4 area, we only need to calculate first 4 rows here. + for (i = 0; i < 4; ++i) { + idct16_c(input, outptr); + input += 16; + outptr += 16; + } + + // Then transform columns + for (i = 0; i < 16; ++i) { + for (j = 0; j < 16; ++j) temp_in[j] = out[j * 16 + i]; + idct16_c(temp_in, temp_out); + for (j = 0; j < 16; ++j) { + dest[j * stride + i] = clip_pixel_add(dest[j * stride + i], + ROUND_POWER_OF_TWO(temp_out[j], 6)); + } + } +} + +void vpx_idct16x16_1_add_c(const tran_low_t *input, uint8_t *dest, int stride) { + int i, j; + tran_high_t a1; + tran_low_t out = + WRAPLOW(dct_const_round_shift((int16_t)input[0] * cospi_16_64)); + + out = WRAPLOW(dct_const_round_shift(out * cospi_16_64)); + a1 = ROUND_POWER_OF_TWO(out, 6); + for (j = 0; j < 16; ++j) { + for (i = 0; i < 16; ++i) dest[i] = clip_pixel_add(dest[i], a1); + dest += stride; + } +} + +void idct32_c(const tran_low_t *input, tran_low_t *output) { + int16_t step1[32], step2[32]; + tran_high_t temp1, temp2; + + // stage 1 + step1[0] = (int16_t)input[0]; + step1[1] = (int16_t)input[16]; + step1[2] = (int16_t)input[8]; + step1[3] = (int16_t)input[24]; + step1[4] = (int16_t)input[4]; + step1[5] = (int16_t)input[20]; + step1[6] = (int16_t)input[12]; + step1[7] = (int16_t)input[28]; + step1[8] = (int16_t)input[2]; + step1[9] = (int16_t)input[18]; + step1[10] = (int16_t)input[10]; + step1[11] = (int16_t)input[26]; + step1[12] = (int16_t)input[6]; + step1[13] = (int16_t)input[22]; + step1[14] = (int16_t)input[14]; + step1[15] = (int16_t)input[30]; + + temp1 = (int16_t)input[1] * cospi_31_64 - (int16_t)input[31] * cospi_1_64; + temp2 = (int16_t)input[1] * cospi_1_64 + (int16_t)input[31] * cospi_31_64; + step1[16] = WRAPLOW(dct_const_round_shift(temp1)); + step1[31] = WRAPLOW(dct_const_round_shift(temp2)); + + temp1 = (int16_t)input[17] * cospi_15_64 - (int16_t)input[15] * cospi_17_64; + temp2 = (int16_t)input[17] * cospi_17_64 + (int16_t)input[15] * cospi_15_64; + step1[17] = WRAPLOW(dct_const_round_shift(temp1)); + step1[30] = WRAPLOW(dct_const_round_shift(temp2)); + + temp1 = (int16_t)input[9] * cospi_23_64 - (int16_t)input[23] * cospi_9_64; + temp2 = (int16_t)input[9] * cospi_9_64 + (int16_t)input[23] * cospi_23_64; + step1[18] = WRAPLOW(dct_const_round_shift(temp1)); + step1[29] = WRAPLOW(dct_const_round_shift(temp2)); + + temp1 = (int16_t)input[25] * cospi_7_64 - (int16_t)input[7] * cospi_25_64; + temp2 = (int16_t)input[25] * cospi_25_64 + (int16_t)input[7] * cospi_7_64; + step1[19] = WRAPLOW(dct_const_round_shift(temp1)); + step1[28] = WRAPLOW(dct_const_round_shift(temp2)); + + temp1 = (int16_t)input[5] * cospi_27_64 - (int16_t)input[27] * cospi_5_64; + temp2 = (int16_t)input[5] * cospi_5_64 + (int16_t)input[27] * cospi_27_64; + step1[20] = WRAPLOW(dct_const_round_shift(temp1)); + step1[27] = WRAPLOW(dct_const_round_shift(temp2)); + + temp1 = (int16_t)input[21] * cospi_11_64 - (int16_t)input[11] * cospi_21_64; + temp2 = (int16_t)input[21] * cospi_21_64 + (int16_t)input[11] * cospi_11_64; + step1[21] = WRAPLOW(dct_const_round_shift(temp1)); + step1[26] = WRAPLOW(dct_const_round_shift(temp2)); + + temp1 = (int16_t)input[13] * cospi_19_64 - (int16_t)input[19] * cospi_13_64; + temp2 = (int16_t)input[13] * cospi_13_64 + (int16_t)input[19] * cospi_19_64; + step1[22] = WRAPLOW(dct_const_round_shift(temp1)); + step1[25] = WRAPLOW(dct_const_round_shift(temp2)); + + temp1 = (int16_t)input[29] * cospi_3_64 - (int16_t)input[3] * cospi_29_64; + temp2 = (int16_t)input[29] * cospi_29_64 + (int16_t)input[3] * cospi_3_64; + step1[23] = WRAPLOW(dct_const_round_shift(temp1)); + step1[24] = WRAPLOW(dct_const_round_shift(temp2)); + + // stage 2 + step2[0] = step1[0]; + step2[1] = step1[1]; + step2[2] = step1[2]; + step2[3] = step1[3]; + step2[4] = step1[4]; + step2[5] = step1[5]; + step2[6] = step1[6]; + step2[7] = step1[7]; + + temp1 = step1[8] * cospi_30_64 - step1[15] * cospi_2_64; + temp2 = step1[8] * cospi_2_64 + step1[15] * cospi_30_64; + step2[8] = WRAPLOW(dct_const_round_shift(temp1)); + step2[15] = WRAPLOW(dct_const_round_shift(temp2)); + + temp1 = step1[9] * cospi_14_64 - step1[14] * cospi_18_64; + temp2 = step1[9] * cospi_18_64 + step1[14] * cospi_14_64; + step2[9] = WRAPLOW(dct_const_round_shift(temp1)); + step2[14] = WRAPLOW(dct_const_round_shift(temp2)); + + temp1 = step1[10] * cospi_22_64 - step1[13] * cospi_10_64; + temp2 = step1[10] * cospi_10_64 + step1[13] * cospi_22_64; + step2[10] = WRAPLOW(dct_const_round_shift(temp1)); + step2[13] = WRAPLOW(dct_const_round_shift(temp2)); + + temp1 = step1[11] * cospi_6_64 - step1[12] * cospi_26_64; + temp2 = step1[11] * cospi_26_64 + step1[12] * cospi_6_64; + step2[11] = WRAPLOW(dct_const_round_shift(temp1)); + step2[12] = WRAPLOW(dct_const_round_shift(temp2)); + + step2[16] = WRAPLOW(step1[16] + step1[17]); + step2[17] = WRAPLOW(step1[16] - step1[17]); + step2[18] = WRAPLOW(-step1[18] + step1[19]); + step2[19] = WRAPLOW(step1[18] + step1[19]); + step2[20] = WRAPLOW(step1[20] + step1[21]); + step2[21] = WRAPLOW(step1[20] - step1[21]); + step2[22] = WRAPLOW(-step1[22] + step1[23]); + step2[23] = WRAPLOW(step1[22] + step1[23]); + step2[24] = WRAPLOW(step1[24] + step1[25]); + step2[25] = WRAPLOW(step1[24] - step1[25]); + step2[26] = WRAPLOW(-step1[26] + step1[27]); + step2[27] = WRAPLOW(step1[26] + step1[27]); + step2[28] = WRAPLOW(step1[28] + step1[29]); + step2[29] = WRAPLOW(step1[28] - step1[29]); + step2[30] = WRAPLOW(-step1[30] + step1[31]); + step2[31] = WRAPLOW(step1[30] + step1[31]); + + // stage 3 + step1[0] = step2[0]; + step1[1] = step2[1]; + step1[2] = step2[2]; + step1[3] = step2[3]; + + temp1 = step2[4] * cospi_28_64 - step2[7] * cospi_4_64; + temp2 = step2[4] * cospi_4_64 + step2[7] * cospi_28_64; + step1[4] = WRAPLOW(dct_const_round_shift(temp1)); + step1[7] = WRAPLOW(dct_const_round_shift(temp2)); + temp1 = step2[5] * cospi_12_64 - step2[6] * cospi_20_64; + temp2 = step2[5] * cospi_20_64 + step2[6] * cospi_12_64; + step1[5] = WRAPLOW(dct_const_round_shift(temp1)); + step1[6] = WRAPLOW(dct_const_round_shift(temp2)); + + step1[8] = WRAPLOW(step2[8] + step2[9]); + step1[9] = WRAPLOW(step2[8] - step2[9]); + step1[10] = WRAPLOW(-step2[10] + step2[11]); + step1[11] = WRAPLOW(step2[10] + step2[11]); + step1[12] = WRAPLOW(step2[12] + step2[13]); + step1[13] = WRAPLOW(step2[12] - step2[13]); + step1[14] = WRAPLOW(-step2[14] + step2[15]); + step1[15] = WRAPLOW(step2[14] + step2[15]); + + step1[16] = step2[16]; + step1[31] = step2[31]; + temp1 = -step2[17] * cospi_4_64 + step2[30] * cospi_28_64; + temp2 = step2[17] * cospi_28_64 + step2[30] * cospi_4_64; + step1[17] = WRAPLOW(dct_const_round_shift(temp1)); + step1[30] = WRAPLOW(dct_const_round_shift(temp2)); + temp1 = -step2[18] * cospi_28_64 - step2[29] * cospi_4_64; + temp2 = -step2[18] * cospi_4_64 + step2[29] * cospi_28_64; + step1[18] = WRAPLOW(dct_const_round_shift(temp1)); + step1[29] = WRAPLOW(dct_const_round_shift(temp2)); + step1[19] = step2[19]; + step1[20] = step2[20]; + temp1 = -step2[21] * cospi_20_64 + step2[26] * cospi_12_64; + temp2 = step2[21] * cospi_12_64 + step2[26] * cospi_20_64; + step1[21] = WRAPLOW(dct_const_round_shift(temp1)); + step1[26] = WRAPLOW(dct_const_round_shift(temp2)); + temp1 = -step2[22] * cospi_12_64 - step2[25] * cospi_20_64; + temp2 = -step2[22] * cospi_20_64 + step2[25] * cospi_12_64; + step1[22] = WRAPLOW(dct_const_round_shift(temp1)); + step1[25] = WRAPLOW(dct_const_round_shift(temp2)); + step1[23] = step2[23]; + step1[24] = step2[24]; + step1[27] = step2[27]; + step1[28] = step2[28]; + + // stage 4 + temp1 = (step1[0] + step1[1]) * cospi_16_64; + temp2 = (step1[0] - step1[1]) * cospi_16_64; + step2[0] = WRAPLOW(dct_const_round_shift(temp1)); + step2[1] = WRAPLOW(dct_const_round_shift(temp2)); + temp1 = step1[2] * cospi_24_64 - step1[3] * cospi_8_64; + temp2 = step1[2] * cospi_8_64 + step1[3] * cospi_24_64; + step2[2] = WRAPLOW(dct_const_round_shift(temp1)); + step2[3] = WRAPLOW(dct_const_round_shift(temp2)); + step2[4] = WRAPLOW(step1[4] + step1[5]); + step2[5] = WRAPLOW(step1[4] - step1[5]); + step2[6] = WRAPLOW(-step1[6] + step1[7]); + step2[7] = WRAPLOW(step1[6] + step1[7]); + + step2[8] = step1[8]; + step2[15] = step1[15]; + temp1 = -step1[9] * cospi_8_64 + step1[14] * cospi_24_64; + temp2 = step1[9] * cospi_24_64 + step1[14] * cospi_8_64; + step2[9] = WRAPLOW(dct_const_round_shift(temp1)); + step2[14] = WRAPLOW(dct_const_round_shift(temp2)); + temp1 = -step1[10] * cospi_24_64 - step1[13] * cospi_8_64; + temp2 = -step1[10] * cospi_8_64 + step1[13] * cospi_24_64; + step2[10] = WRAPLOW(dct_const_round_shift(temp1)); + step2[13] = WRAPLOW(dct_const_round_shift(temp2)); + step2[11] = step1[11]; + step2[12] = step1[12]; + + step2[16] = WRAPLOW(step1[16] + step1[19]); + step2[17] = WRAPLOW(step1[17] + step1[18]); + step2[18] = WRAPLOW(step1[17] - step1[18]); + step2[19] = WRAPLOW(step1[16] - step1[19]); + step2[20] = WRAPLOW(-step1[20] + step1[23]); + step2[21] = WRAPLOW(-step1[21] + step1[22]); + step2[22] = WRAPLOW(step1[21] + step1[22]); + step2[23] = WRAPLOW(step1[20] + step1[23]); + + step2[24] = WRAPLOW(step1[24] + step1[27]); + step2[25] = WRAPLOW(step1[25] + step1[26]); + step2[26] = WRAPLOW(step1[25] - step1[26]); + step2[27] = WRAPLOW(step1[24] - step1[27]); + step2[28] = WRAPLOW(-step1[28] + step1[31]); + step2[29] = WRAPLOW(-step1[29] + step1[30]); + step2[30] = WRAPLOW(step1[29] + step1[30]); + step2[31] = WRAPLOW(step1[28] + step1[31]); + + // stage 5 + step1[0] = WRAPLOW(step2[0] + step2[3]); + step1[1] = WRAPLOW(step2[1] + step2[2]); + step1[2] = WRAPLOW(step2[1] - step2[2]); + step1[3] = WRAPLOW(step2[0] - step2[3]); + step1[4] = step2[4]; + temp1 = (step2[6] - step2[5]) * cospi_16_64; + temp2 = (step2[5] + step2[6]) * cospi_16_64; + step1[5] = WRAPLOW(dct_const_round_shift(temp1)); + step1[6] = WRAPLOW(dct_const_round_shift(temp2)); + step1[7] = step2[7]; + + step1[8] = WRAPLOW(step2[8] + step2[11]); + step1[9] = WRAPLOW(step2[9] + step2[10]); + step1[10] = WRAPLOW(step2[9] - step2[10]); + step1[11] = WRAPLOW(step2[8] - step2[11]); + step1[12] = WRAPLOW(-step2[12] + step2[15]); + step1[13] = WRAPLOW(-step2[13] + step2[14]); + step1[14] = WRAPLOW(step2[13] + step2[14]); + step1[15] = WRAPLOW(step2[12] + step2[15]); + + step1[16] = step2[16]; + step1[17] = step2[17]; + temp1 = -step2[18] * cospi_8_64 + step2[29] * cospi_24_64; + temp2 = step2[18] * cospi_24_64 + step2[29] * cospi_8_64; + step1[18] = WRAPLOW(dct_const_round_shift(temp1)); + step1[29] = WRAPLOW(dct_const_round_shift(temp2)); + temp1 = -step2[19] * cospi_8_64 + step2[28] * cospi_24_64; + temp2 = step2[19] * cospi_24_64 + step2[28] * cospi_8_64; + step1[19] = WRAPLOW(dct_const_round_shift(temp1)); + step1[28] = WRAPLOW(dct_const_round_shift(temp2)); + temp1 = -step2[20] * cospi_24_64 - step2[27] * cospi_8_64; + temp2 = -step2[20] * cospi_8_64 + step2[27] * cospi_24_64; + step1[20] = WRAPLOW(dct_const_round_shift(temp1)); + step1[27] = WRAPLOW(dct_const_round_shift(temp2)); + temp1 = -step2[21] * cospi_24_64 - step2[26] * cospi_8_64; + temp2 = -step2[21] * cospi_8_64 + step2[26] * cospi_24_64; + step1[21] = WRAPLOW(dct_const_round_shift(temp1)); + step1[26] = WRAPLOW(dct_const_round_shift(temp2)); + step1[22] = step2[22]; + step1[23] = step2[23]; + step1[24] = step2[24]; + step1[25] = step2[25]; + step1[30] = step2[30]; + step1[31] = step2[31]; + + // stage 6 + step2[0] = WRAPLOW(step1[0] + step1[7]); + step2[1] = WRAPLOW(step1[1] + step1[6]); + step2[2] = WRAPLOW(step1[2] + step1[5]); + step2[3] = WRAPLOW(step1[3] + step1[4]); + step2[4] = WRAPLOW(step1[3] - step1[4]); + step2[5] = WRAPLOW(step1[2] - step1[5]); + step2[6] = WRAPLOW(step1[1] - step1[6]); + step2[7] = WRAPLOW(step1[0] - step1[7]); + step2[8] = step1[8]; + step2[9] = step1[9]; + temp1 = (-step1[10] + step1[13]) * cospi_16_64; + temp2 = (step1[10] + step1[13]) * cospi_16_64; + step2[10] = WRAPLOW(dct_const_round_shift(temp1)); + step2[13] = WRAPLOW(dct_const_round_shift(temp2)); + temp1 = (-step1[11] + step1[12]) * cospi_16_64; + temp2 = (step1[11] + step1[12]) * cospi_16_64; + step2[11] = WRAPLOW(dct_const_round_shift(temp1)); + step2[12] = WRAPLOW(dct_const_round_shift(temp2)); + step2[14] = step1[14]; + step2[15] = step1[15]; + + step2[16] = WRAPLOW(step1[16] + step1[23]); + step2[17] = WRAPLOW(step1[17] + step1[22]); + step2[18] = WRAPLOW(step1[18] + step1[21]); + step2[19] = WRAPLOW(step1[19] + step1[20]); + step2[20] = WRAPLOW(step1[19] - step1[20]); + step2[21] = WRAPLOW(step1[18] - step1[21]); + step2[22] = WRAPLOW(step1[17] - step1[22]); + step2[23] = WRAPLOW(step1[16] - step1[23]); + + step2[24] = WRAPLOW(-step1[24] + step1[31]); + step2[25] = WRAPLOW(-step1[25] + step1[30]); + step2[26] = WRAPLOW(-step1[26] + step1[29]); + step2[27] = WRAPLOW(-step1[27] + step1[28]); + step2[28] = WRAPLOW(step1[27] + step1[28]); + step2[29] = WRAPLOW(step1[26] + step1[29]); + step2[30] = WRAPLOW(step1[25] + step1[30]); + step2[31] = WRAPLOW(step1[24] + step1[31]); + + // stage 7 + step1[0] = WRAPLOW(step2[0] + step2[15]); + step1[1] = WRAPLOW(step2[1] + step2[14]); + step1[2] = WRAPLOW(step2[2] + step2[13]); + step1[3] = WRAPLOW(step2[3] + step2[12]); + step1[4] = WRAPLOW(step2[4] + step2[11]); + step1[5] = WRAPLOW(step2[5] + step2[10]); + step1[6] = WRAPLOW(step2[6] + step2[9]); + step1[7] = WRAPLOW(step2[7] + step2[8]); + step1[8] = WRAPLOW(step2[7] - step2[8]); + step1[9] = WRAPLOW(step2[6] - step2[9]); + step1[10] = WRAPLOW(step2[5] - step2[10]); + step1[11] = WRAPLOW(step2[4] - step2[11]); + step1[12] = WRAPLOW(step2[3] - step2[12]); + step1[13] = WRAPLOW(step2[2] - step2[13]); + step1[14] = WRAPLOW(step2[1] - step2[14]); + step1[15] = WRAPLOW(step2[0] - step2[15]); + + step1[16] = step2[16]; + step1[17] = step2[17]; + step1[18] = step2[18]; + step1[19] = step2[19]; + temp1 = (-step2[20] + step2[27]) * cospi_16_64; + temp2 = (step2[20] + step2[27]) * cospi_16_64; + step1[20] = WRAPLOW(dct_const_round_shift(temp1)); + step1[27] = WRAPLOW(dct_const_round_shift(temp2)); + temp1 = (-step2[21] + step2[26]) * cospi_16_64; + temp2 = (step2[21] + step2[26]) * cospi_16_64; + step1[21] = WRAPLOW(dct_const_round_shift(temp1)); + step1[26] = WRAPLOW(dct_const_round_shift(temp2)); + temp1 = (-step2[22] + step2[25]) * cospi_16_64; + temp2 = (step2[22] + step2[25]) * cospi_16_64; + step1[22] = WRAPLOW(dct_const_round_shift(temp1)); + step1[25] = WRAPLOW(dct_const_round_shift(temp2)); + temp1 = (-step2[23] + step2[24]) * cospi_16_64; + temp2 = (step2[23] + step2[24]) * cospi_16_64; + step1[23] = WRAPLOW(dct_const_round_shift(temp1)); + step1[24] = WRAPLOW(dct_const_round_shift(temp2)); + step1[28] = step2[28]; + step1[29] = step2[29]; + step1[30] = step2[30]; + step1[31] = step2[31]; + + // final stage + output[0] = WRAPLOW(step1[0] + step1[31]); + output[1] = WRAPLOW(step1[1] + step1[30]); + output[2] = WRAPLOW(step1[2] + step1[29]); + output[3] = WRAPLOW(step1[3] + step1[28]); + output[4] = WRAPLOW(step1[4] + step1[27]); + output[5] = WRAPLOW(step1[5] + step1[26]); + output[6] = WRAPLOW(step1[6] + step1[25]); + output[7] = WRAPLOW(step1[7] + step1[24]); + output[8] = WRAPLOW(step1[8] + step1[23]); + output[9] = WRAPLOW(step1[9] + step1[22]); + output[10] = WRAPLOW(step1[10] + step1[21]); + output[11] = WRAPLOW(step1[11] + step1[20]); + output[12] = WRAPLOW(step1[12] + step1[19]); + output[13] = WRAPLOW(step1[13] + step1[18]); + output[14] = WRAPLOW(step1[14] + step1[17]); + output[15] = WRAPLOW(step1[15] + step1[16]); + output[16] = WRAPLOW(step1[15] - step1[16]); + output[17] = WRAPLOW(step1[14] - step1[17]); + output[18] = WRAPLOW(step1[13] - step1[18]); + output[19] = WRAPLOW(step1[12] - step1[19]); + output[20] = WRAPLOW(step1[11] - step1[20]); + output[21] = WRAPLOW(step1[10] - step1[21]); + output[22] = WRAPLOW(step1[9] - step1[22]); + output[23] = WRAPLOW(step1[8] - step1[23]); + output[24] = WRAPLOW(step1[7] - step1[24]); + output[25] = WRAPLOW(step1[6] - step1[25]); + output[26] = WRAPLOW(step1[5] - step1[26]); + output[27] = WRAPLOW(step1[4] - step1[27]); + output[28] = WRAPLOW(step1[3] - step1[28]); + output[29] = WRAPLOW(step1[2] - step1[29]); + output[30] = WRAPLOW(step1[1] - step1[30]); + output[31] = WRAPLOW(step1[0] - step1[31]); +} + +void vpx_idct32x32_1024_add_c(const tran_low_t *input, uint8_t *dest, + int stride) { + int i, j; + tran_low_t out[32 * 32]; + tran_low_t *outptr = out; + tran_low_t temp_in[32], temp_out[32]; + + // Rows + for (i = 0; i < 32; ++i) { + int16_t zero_coeff = 0; + for (j = 0; j < 32; ++j) zero_coeff |= input[j]; + + if (zero_coeff) + idct32_c(input, outptr); + else + memset(outptr, 0, sizeof(tran_low_t) * 32); + input += 32; + outptr += 32; + } + + // Columns + for (i = 0; i < 32; ++i) { + for (j = 0; j < 32; ++j) temp_in[j] = out[j * 32 + i]; + idct32_c(temp_in, temp_out); + for (j = 0; j < 32; ++j) { + dest[j * stride + i] = clip_pixel_add(dest[j * stride + i], + ROUND_POWER_OF_TWO(temp_out[j], 6)); + } + } +} + +void vpx_idct32x32_135_add_c(const tran_low_t *input, uint8_t *dest, + int stride) { + int i, j; + tran_low_t out[32 * 32] = { 0 }; + tran_low_t *outptr = out; + tran_low_t temp_in[32], temp_out[32]; + + // Rows + // Only upper-left 16x16 has non-zero coeff + for (i = 0; i < 16; ++i) { + idct32_c(input, outptr); + input += 32; + outptr += 32; + } + + // Columns + for (i = 0; i < 32; ++i) { + for (j = 0; j < 32; ++j) temp_in[j] = out[j * 32 + i]; + idct32_c(temp_in, temp_out); + for (j = 0; j < 32; ++j) { + dest[j * stride + i] = clip_pixel_add(dest[j * stride + i], + ROUND_POWER_OF_TWO(temp_out[j], 6)); + } + } +} + +void vpx_idct32x32_34_add_c(const tran_low_t *input, uint8_t *dest, + int stride) { + int i, j; + tran_low_t out[32 * 32] = { 0 }; + tran_low_t *outptr = out; + tran_low_t temp_in[32], temp_out[32]; + + // Rows + // Only upper-left 8x8 has non-zero coeff + for (i = 0; i < 8; ++i) { + idct32_c(input, outptr); + input += 32; + outptr += 32; + } + + // Columns + for (i = 0; i < 32; ++i) { + for (j = 0; j < 32; ++j) temp_in[j] = out[j * 32 + i]; + idct32_c(temp_in, temp_out); + for (j = 0; j < 32; ++j) { + dest[j * stride + i] = clip_pixel_add(dest[j * stride + i], + ROUND_POWER_OF_TWO(temp_out[j], 6)); + } + } +} + +void vpx_idct32x32_1_add_c(const tran_low_t *input, uint8_t *dest, int stride) { + int i, j; + tran_high_t a1; + tran_low_t out = + WRAPLOW(dct_const_round_shift((int16_t)input[0] * cospi_16_64)); + + out = WRAPLOW(dct_const_round_shift(out * cospi_16_64)); + a1 = ROUND_POWER_OF_TWO(out, 6); + + for (j = 0; j < 32; ++j) { + for (i = 0; i < 32; ++i) dest[i] = clip_pixel_add(dest[i], a1); + dest += stride; + } +} + +#if CONFIG_VP9_HIGHBITDEPTH + +// 12 signal input bits + 7 2D forward transform amplify bits + 5 1D inverse +// transform amplify bits + 1 bit for contingency in rounding and quantizing +#define HIGHBD_VALID_TXFM_MAGNITUDE_RANGE (1 << 25) + +static INLINE int detect_invalid_highbd_input(const tran_low_t *input, + int size) { + int i; + for (i = 0; i < size; ++i) + if (abs(input[i]) >= HIGHBD_VALID_TXFM_MAGNITUDE_RANGE) return 1; + return 0; +} + +void vpx_highbd_iwht4x4_16_add_c(const tran_low_t *input, uint16_t *dest, + int stride, int bd) { + /* 4-point reversible, orthonormal inverse Walsh-Hadamard in 3.5 adds, + 0.5 shifts per pixel. */ + int i; + tran_low_t output[16]; + tran_high_t a1, b1, c1, d1, e1; + const tran_low_t *ip = input; + tran_low_t *op = output; + + for (i = 0; i < 4; i++) { + a1 = ip[0] >> UNIT_QUANT_SHIFT; + c1 = ip[1] >> UNIT_QUANT_SHIFT; + d1 = ip[2] >> UNIT_QUANT_SHIFT; + b1 = ip[3] >> UNIT_QUANT_SHIFT; + a1 += c1; + d1 -= b1; + e1 = (a1 - d1) >> 1; + b1 = e1 - b1; + c1 = e1 - c1; + a1 -= b1; + d1 += c1; + op[0] = HIGHBD_WRAPLOW(a1, bd); + op[1] = HIGHBD_WRAPLOW(b1, bd); + op[2] = HIGHBD_WRAPLOW(c1, bd); + op[3] = HIGHBD_WRAPLOW(d1, bd); + ip += 4; + op += 4; + } + + ip = output; + for (i = 0; i < 4; i++) { + a1 = ip[4 * 0]; + c1 = ip[4 * 1]; + d1 = ip[4 * 2]; + b1 = ip[4 * 3]; + a1 += c1; + d1 -= b1; + e1 = (a1 - d1) >> 1; + b1 = e1 - b1; + c1 = e1 - c1; + a1 -= b1; + d1 += c1; + dest[stride * 0] = + highbd_clip_pixel_add(dest[stride * 0], HIGHBD_WRAPLOW(a1, bd), bd); + dest[stride * 1] = + highbd_clip_pixel_add(dest[stride * 1], HIGHBD_WRAPLOW(b1, bd), bd); + dest[stride * 2] = + highbd_clip_pixel_add(dest[stride * 2], HIGHBD_WRAPLOW(c1, bd), bd); + dest[stride * 3] = + highbd_clip_pixel_add(dest[stride * 3], HIGHBD_WRAPLOW(d1, bd), bd); + + ip++; + dest++; + } +} + +void vpx_highbd_iwht4x4_1_add_c(const tran_low_t *in, uint16_t *dest, + int stride, int bd) { + int i; + tran_high_t a1, e1; + tran_low_t tmp[4]; + const tran_low_t *ip = in; + tran_low_t *op = tmp; + (void)bd; + + a1 = ip[0] >> UNIT_QUANT_SHIFT; + e1 = a1 >> 1; + a1 -= e1; + op[0] = HIGHBD_WRAPLOW(a1, bd); + op[1] = op[2] = op[3] = HIGHBD_WRAPLOW(e1, bd); + + ip = tmp; + for (i = 0; i < 4; i++) { + e1 = ip[0] >> 1; + a1 = ip[0] - e1; + dest[stride * 0] = highbd_clip_pixel_add(dest[stride * 0], a1, bd); + dest[stride * 1] = highbd_clip_pixel_add(dest[stride * 1], e1, bd); + dest[stride * 2] = highbd_clip_pixel_add(dest[stride * 2], e1, bd); + dest[stride * 3] = highbd_clip_pixel_add(dest[stride * 3], e1, bd); + ip++; + dest++; + } +} + +void vpx_highbd_iadst4_c(const tran_low_t *input, tran_low_t *output, int bd) { + tran_high_t s0, s1, s2, s3, s4, s5, s6, s7; + tran_low_t x0 = input[0]; + tran_low_t x1 = input[1]; + tran_low_t x2 = input[2]; + tran_low_t x3 = input[3]; + (void)bd; + + if (detect_invalid_highbd_input(input, 4)) { +#if CONFIG_COEFFICIENT_RANGE_CHECKING + assert(0 && "invalid highbd txfm input"); +#endif // CONFIG_COEFFICIENT_RANGE_CHECKING + memset(output, 0, sizeof(*output) * 4); + return; + } + + if (!(x0 | x1 | x2 | x3)) { + memset(output, 0, 4 * sizeof(*output)); + return; + } + + s0 = (tran_high_t)sinpi_1_9 * x0; + s1 = (tran_high_t)sinpi_2_9 * x0; + s2 = (tran_high_t)sinpi_3_9 * x1; + s3 = (tran_high_t)sinpi_4_9 * x2; + s4 = (tran_high_t)sinpi_1_9 * x2; + s5 = (tran_high_t)sinpi_2_9 * x3; + s6 = (tran_high_t)sinpi_4_9 * x3; + s7 = (tran_high_t)HIGHBD_WRAPLOW(x0 - x2 + x3, bd); + + s0 = s0 + s3 + s5; + s1 = s1 - s4 - s6; + s3 = s2; + s2 = sinpi_3_9 * s7; + + // 1-D transform scaling factor is sqrt(2). + // The overall dynamic range is 14b (input) + 14b (multiplication scaling) + // + 1b (addition) = 29b. + // Hence the output bit depth is 15b. + output[0] = HIGHBD_WRAPLOW(dct_const_round_shift(s0 + s3), bd); + output[1] = HIGHBD_WRAPLOW(dct_const_round_shift(s1 + s3), bd); + output[2] = HIGHBD_WRAPLOW(dct_const_round_shift(s2), bd); + output[3] = HIGHBD_WRAPLOW(dct_const_round_shift(s0 + s1 - s3), bd); +} + +void vpx_highbd_idct4_c(const tran_low_t *input, tran_low_t *output, int bd) { + tran_low_t step[4]; + tran_high_t temp1, temp2; + (void)bd; + + if (detect_invalid_highbd_input(input, 4)) { +#if CONFIG_COEFFICIENT_RANGE_CHECKING + assert(0 && "invalid highbd txfm input"); +#endif // CONFIG_COEFFICIENT_RANGE_CHECKING + memset(output, 0, sizeof(*output) * 4); + return; + } + + // stage 1 + temp1 = (input[0] + input[2]) * (tran_high_t)cospi_16_64; + temp2 = (input[0] - input[2]) * (tran_high_t)cospi_16_64; + step[0] = HIGHBD_WRAPLOW(dct_const_round_shift(temp1), bd); + step[1] = HIGHBD_WRAPLOW(dct_const_round_shift(temp2), bd); + temp1 = + input[1] * (tran_high_t)cospi_24_64 - input[3] * (tran_high_t)cospi_8_64; + temp2 = + input[1] * (tran_high_t)cospi_8_64 + input[3] * (tran_high_t)cospi_24_64; + step[2] = HIGHBD_WRAPLOW(dct_const_round_shift(temp1), bd); + step[3] = HIGHBD_WRAPLOW(dct_const_round_shift(temp2), bd); + + // stage 2 + output[0] = HIGHBD_WRAPLOW(step[0] + step[3], bd); + output[1] = HIGHBD_WRAPLOW(step[1] + step[2], bd); + output[2] = HIGHBD_WRAPLOW(step[1] - step[2], bd); + output[3] = HIGHBD_WRAPLOW(step[0] - step[3], bd); +} + +void vpx_highbd_idct4x4_16_add_c(const tran_low_t *input, uint16_t *dest, + int stride, int bd) { + int i, j; + tran_low_t out[4 * 4]; + tran_low_t *outptr = out; + tran_low_t temp_in[4], temp_out[4]; + + // Rows + for (i = 0; i < 4; ++i) { + vpx_highbd_idct4_c(input, outptr, bd); + input += 4; + outptr += 4; + } + + // Columns + for (i = 0; i < 4; ++i) { + for (j = 0; j < 4; ++j) temp_in[j] = out[j * 4 + i]; + vpx_highbd_idct4_c(temp_in, temp_out, bd); + for (j = 0; j < 4; ++j) { + dest[j * stride + i] = highbd_clip_pixel_add( + dest[j * stride + i], ROUND_POWER_OF_TWO(temp_out[j], 4), bd); + } + } +} + +void vpx_highbd_idct4x4_1_add_c(const tran_low_t *input, uint16_t *dest, + int stride, int bd) { + int i; + tran_high_t a1; + tran_low_t out = HIGHBD_WRAPLOW( + dct_const_round_shift(input[0] * (tran_high_t)cospi_16_64), bd); + + out = + HIGHBD_WRAPLOW(dct_const_round_shift(out * (tran_high_t)cospi_16_64), bd); + a1 = ROUND_POWER_OF_TWO(out, 4); + + for (i = 0; i < 4; i++) { + dest[0] = highbd_clip_pixel_add(dest[0], a1, bd); + dest[1] = highbd_clip_pixel_add(dest[1], a1, bd); + dest[2] = highbd_clip_pixel_add(dest[2], a1, bd); + dest[3] = highbd_clip_pixel_add(dest[3], a1, bd); + dest += stride; + } +} + +void vpx_highbd_iadst8_c(const tran_low_t *input, tran_low_t *output, int bd) { + tran_high_t s0, s1, s2, s3, s4, s5, s6, s7; + tran_low_t x0 = input[7]; + tran_low_t x1 = input[0]; + tran_low_t x2 = input[5]; + tran_low_t x3 = input[2]; + tran_low_t x4 = input[3]; + tran_low_t x5 = input[4]; + tran_low_t x6 = input[1]; + tran_low_t x7 = input[6]; + (void)bd; + + if (detect_invalid_highbd_input(input, 8)) { +#if CONFIG_COEFFICIENT_RANGE_CHECKING + assert(0 && "invalid highbd txfm input"); +#endif // CONFIG_COEFFICIENT_RANGE_CHECKING + memset(output, 0, sizeof(*output) * 8); + return; + } + + if (!(x0 | x1 | x2 | x3 | x4 | x5 | x6 | x7)) { + memset(output, 0, 8 * sizeof(*output)); + return; + } + + // stage 1 + s0 = (tran_high_t)cospi_2_64 * x0 + (tran_high_t)cospi_30_64 * x1; + s1 = (tran_high_t)cospi_30_64 * x0 - (tran_high_t)cospi_2_64 * x1; + s2 = (tran_high_t)cospi_10_64 * x2 + (tran_high_t)cospi_22_64 * x3; + s3 = (tran_high_t)cospi_22_64 * x2 - (tran_high_t)cospi_10_64 * x3; + s4 = (tran_high_t)cospi_18_64 * x4 + (tran_high_t)cospi_14_64 * x5; + s5 = (tran_high_t)cospi_14_64 * x4 - (tran_high_t)cospi_18_64 * x5; + s6 = (tran_high_t)cospi_26_64 * x6 + (tran_high_t)cospi_6_64 * x7; + s7 = (tran_high_t)cospi_6_64 * x6 - (tran_high_t)cospi_26_64 * x7; + + x0 = HIGHBD_WRAPLOW(dct_const_round_shift(s0 + s4), bd); + x1 = HIGHBD_WRAPLOW(dct_const_round_shift(s1 + s5), bd); + x2 = HIGHBD_WRAPLOW(dct_const_round_shift(s2 + s6), bd); + x3 = HIGHBD_WRAPLOW(dct_const_round_shift(s3 + s7), bd); + x4 = HIGHBD_WRAPLOW(dct_const_round_shift(s0 - s4), bd); + x5 = HIGHBD_WRAPLOW(dct_const_round_shift(s1 - s5), bd); + x6 = HIGHBD_WRAPLOW(dct_const_round_shift(s2 - s6), bd); + x7 = HIGHBD_WRAPLOW(dct_const_round_shift(s3 - s7), bd); + + // stage 2 + s0 = x0; + s1 = x1; + s2 = x2; + s3 = x3; + s4 = (tran_high_t)cospi_8_64 * x4 + (tran_high_t)cospi_24_64 * x5; + s5 = (tran_high_t)cospi_24_64 * x4 - (tran_high_t)cospi_8_64 * x5; + s6 = (tran_high_t)(-cospi_24_64) * x6 + (tran_high_t)cospi_8_64 * x7; + s7 = (tran_high_t)cospi_8_64 * x6 + (tran_high_t)cospi_24_64 * x7; + + x0 = HIGHBD_WRAPLOW(s0 + s2, bd); + x1 = HIGHBD_WRAPLOW(s1 + s3, bd); + x2 = HIGHBD_WRAPLOW(s0 - s2, bd); + x3 = HIGHBD_WRAPLOW(s1 - s3, bd); + x4 = HIGHBD_WRAPLOW(dct_const_round_shift(s4 + s6), bd); + x5 = HIGHBD_WRAPLOW(dct_const_round_shift(s5 + s7), bd); + x6 = HIGHBD_WRAPLOW(dct_const_round_shift(s4 - s6), bd); + x7 = HIGHBD_WRAPLOW(dct_const_round_shift(s5 - s7), bd); + + // stage 3 + s2 = (tran_high_t)cospi_16_64 * (x2 + x3); + s3 = (tran_high_t)cospi_16_64 * (x2 - x3); + s6 = (tran_high_t)cospi_16_64 * (x6 + x7); + s7 = (tran_high_t)cospi_16_64 * (x6 - x7); + + x2 = HIGHBD_WRAPLOW(dct_const_round_shift(s2), bd); + x3 = HIGHBD_WRAPLOW(dct_const_round_shift(s3), bd); + x6 = HIGHBD_WRAPLOW(dct_const_round_shift(s6), bd); + x7 = HIGHBD_WRAPLOW(dct_const_round_shift(s7), bd); + + output[0] = HIGHBD_WRAPLOW(x0, bd); + output[1] = HIGHBD_WRAPLOW(-x4, bd); + output[2] = HIGHBD_WRAPLOW(x6, bd); + output[3] = HIGHBD_WRAPLOW(-x2, bd); + output[4] = HIGHBD_WRAPLOW(x3, bd); + output[5] = HIGHBD_WRAPLOW(-x7, bd); + output[6] = HIGHBD_WRAPLOW(x5, bd); + output[7] = HIGHBD_WRAPLOW(-x1, bd); +} + +void vpx_highbd_idct8_c(const tran_low_t *input, tran_low_t *output, int bd) { + tran_low_t step1[8], step2[8]; + tran_high_t temp1, temp2; + + if (detect_invalid_highbd_input(input, 8)) { +#if CONFIG_COEFFICIENT_RANGE_CHECKING + assert(0 && "invalid highbd txfm input"); +#endif // CONFIG_COEFFICIENT_RANGE_CHECKING + memset(output, 0, sizeof(*output) * 8); + return; + } + + // stage 1 + step1[0] = input[0]; + step1[2] = input[4]; + step1[1] = input[2]; + step1[3] = input[6]; + temp1 = + input[1] * (tran_high_t)cospi_28_64 - input[7] * (tran_high_t)cospi_4_64; + temp2 = + input[1] * (tran_high_t)cospi_4_64 + input[7] * (tran_high_t)cospi_28_64; + step1[4] = HIGHBD_WRAPLOW(dct_const_round_shift(temp1), bd); + step1[7] = HIGHBD_WRAPLOW(dct_const_round_shift(temp2), bd); + temp1 = + input[5] * (tran_high_t)cospi_12_64 - input[3] * (tran_high_t)cospi_20_64; + temp2 = + input[5] * (tran_high_t)cospi_20_64 + input[3] * (tran_high_t)cospi_12_64; + step1[5] = HIGHBD_WRAPLOW(dct_const_round_shift(temp1), bd); + step1[6] = HIGHBD_WRAPLOW(dct_const_round_shift(temp2), bd); + + // stage 2 & stage 3 - even half + vpx_highbd_idct4_c(step1, step1, bd); + + // stage 2 - odd half + step2[4] = HIGHBD_WRAPLOW(step1[4] + step1[5], bd); + step2[5] = HIGHBD_WRAPLOW(step1[4] - step1[5], bd); + step2[6] = HIGHBD_WRAPLOW(-step1[6] + step1[7], bd); + step2[7] = HIGHBD_WRAPLOW(step1[6] + step1[7], bd); + + // stage 3 - odd half + step1[4] = step2[4]; + temp1 = (step2[6] - step2[5]) * (tran_high_t)cospi_16_64; + temp2 = (step2[5] + step2[6]) * (tran_high_t)cospi_16_64; + step1[5] = HIGHBD_WRAPLOW(dct_const_round_shift(temp1), bd); + step1[6] = HIGHBD_WRAPLOW(dct_const_round_shift(temp2), bd); + step1[7] = step2[7]; + + // stage 4 + output[0] = HIGHBD_WRAPLOW(step1[0] + step1[7], bd); + output[1] = HIGHBD_WRAPLOW(step1[1] + step1[6], bd); + output[2] = HIGHBD_WRAPLOW(step1[2] + step1[5], bd); + output[3] = HIGHBD_WRAPLOW(step1[3] + step1[4], bd); + output[4] = HIGHBD_WRAPLOW(step1[3] - step1[4], bd); + output[5] = HIGHBD_WRAPLOW(step1[2] - step1[5], bd); + output[6] = HIGHBD_WRAPLOW(step1[1] - step1[6], bd); + output[7] = HIGHBD_WRAPLOW(step1[0] - step1[7], bd); +} + +void vpx_highbd_idct8x8_64_add_c(const tran_low_t *input, uint16_t *dest, + int stride, int bd) { + int i, j; + tran_low_t out[8 * 8]; + tran_low_t *outptr = out; + tran_low_t temp_in[8], temp_out[8]; + + // First transform rows + for (i = 0; i < 8; ++i) { + vpx_highbd_idct8_c(input, outptr, bd); + input += 8; + outptr += 8; + } + + // Then transform columns + for (i = 0; i < 8; ++i) { + for (j = 0; j < 8; ++j) temp_in[j] = out[j * 8 + i]; + vpx_highbd_idct8_c(temp_in, temp_out, bd); + for (j = 0; j < 8; ++j) { + dest[j * stride + i] = highbd_clip_pixel_add( + dest[j * stride + i], ROUND_POWER_OF_TWO(temp_out[j], 5), bd); + } + } +} + +void vpx_highbd_idct8x8_12_add_c(const tran_low_t *input, uint16_t *dest, + int stride, int bd) { + int i, j; + tran_low_t out[8 * 8] = { 0 }; + tran_low_t *outptr = out; + tran_low_t temp_in[8], temp_out[8]; + + // First transform rows + // Only first 4 row has non-zero coefs + for (i = 0; i < 4; ++i) { + vpx_highbd_idct8_c(input, outptr, bd); + input += 8; + outptr += 8; + } + + // Then transform columns + for (i = 0; i < 8; ++i) { + for (j = 0; j < 8; ++j) temp_in[j] = out[j * 8 + i]; + vpx_highbd_idct8_c(temp_in, temp_out, bd); + for (j = 0; j < 8; ++j) { + dest[j * stride + i] = highbd_clip_pixel_add( + dest[j * stride + i], ROUND_POWER_OF_TWO(temp_out[j], 5), bd); + } + } +} + +void vpx_highbd_idct8x8_1_add_c(const tran_low_t *input, uint16_t *dest, + int stride, int bd) { + int i, j; + tran_high_t a1; + tran_low_t out = HIGHBD_WRAPLOW( + dct_const_round_shift(input[0] * (tran_high_t)cospi_16_64), bd); + + out = + HIGHBD_WRAPLOW(dct_const_round_shift(out * (tran_high_t)cospi_16_64), bd); + a1 = ROUND_POWER_OF_TWO(out, 5); + for (j = 0; j < 8; ++j) { + for (i = 0; i < 8; ++i) dest[i] = highbd_clip_pixel_add(dest[i], a1, bd); + dest += stride; + } +} + +void vpx_highbd_iadst16_c(const tran_low_t *input, tran_low_t *output, int bd) { + tran_high_t s0, s1, s2, s3, s4, s5, s6, s7, s8; + tran_high_t s9, s10, s11, s12, s13, s14, s15; + tran_low_t x0 = input[15]; + tran_low_t x1 = input[0]; + tran_low_t x2 = input[13]; + tran_low_t x3 = input[2]; + tran_low_t x4 = input[11]; + tran_low_t x5 = input[4]; + tran_low_t x6 = input[9]; + tran_low_t x7 = input[6]; + tran_low_t x8 = input[7]; + tran_low_t x9 = input[8]; + tran_low_t x10 = input[5]; + tran_low_t x11 = input[10]; + tran_low_t x12 = input[3]; + tran_low_t x13 = input[12]; + tran_low_t x14 = input[1]; + tran_low_t x15 = input[14]; + (void)bd; + + if (detect_invalid_highbd_input(input, 16)) { +#if CONFIG_COEFFICIENT_RANGE_CHECKING + assert(0 && "invalid highbd txfm input"); +#endif // CONFIG_COEFFICIENT_RANGE_CHECKING + memset(output, 0, sizeof(*output) * 16); + return; + } + + if (!(x0 | x1 | x2 | x3 | x4 | x5 | x6 | x7 | x8 | x9 | x10 | x11 | x12 | + x13 | x14 | x15)) { + memset(output, 0, 16 * sizeof(*output)); + return; + } + + // stage 1 + s0 = x0 * (tran_high_t)cospi_1_64 + x1 * (tran_high_t)cospi_31_64; + s1 = x0 * (tran_high_t)cospi_31_64 - x1 * (tran_high_t)cospi_1_64; + s2 = x2 * (tran_high_t)cospi_5_64 + x3 * (tran_high_t)cospi_27_64; + s3 = x2 * (tran_high_t)cospi_27_64 - x3 * (tran_high_t)cospi_5_64; + s4 = x4 * (tran_high_t)cospi_9_64 + x5 * (tran_high_t)cospi_23_64; + s5 = x4 * (tran_high_t)cospi_23_64 - x5 * (tran_high_t)cospi_9_64; + s6 = x6 * (tran_high_t)cospi_13_64 + x7 * (tran_high_t)cospi_19_64; + s7 = x6 * (tran_high_t)cospi_19_64 - x7 * (tran_high_t)cospi_13_64; + s8 = x8 * (tran_high_t)cospi_17_64 + x9 * (tran_high_t)cospi_15_64; + s9 = x8 * (tran_high_t)cospi_15_64 - x9 * (tran_high_t)cospi_17_64; + s10 = x10 * (tran_high_t)cospi_21_64 + x11 * (tran_high_t)cospi_11_64; + s11 = x10 * (tran_high_t)cospi_11_64 - x11 * (tran_high_t)cospi_21_64; + s12 = x12 * (tran_high_t)cospi_25_64 + x13 * (tran_high_t)cospi_7_64; + s13 = x12 * (tran_high_t)cospi_7_64 - x13 * (tran_high_t)cospi_25_64; + s14 = x14 * (tran_high_t)cospi_29_64 + x15 * (tran_high_t)cospi_3_64; + s15 = x14 * (tran_high_t)cospi_3_64 - x15 * (tran_high_t)cospi_29_64; + + x0 = HIGHBD_WRAPLOW(dct_const_round_shift(s0 + s8), bd); + x1 = HIGHBD_WRAPLOW(dct_const_round_shift(s1 + s9), bd); + x2 = HIGHBD_WRAPLOW(dct_const_round_shift(s2 + s10), bd); + x3 = HIGHBD_WRAPLOW(dct_const_round_shift(s3 + s11), bd); + x4 = HIGHBD_WRAPLOW(dct_const_round_shift(s4 + s12), bd); + x5 = HIGHBD_WRAPLOW(dct_const_round_shift(s5 + s13), bd); + x6 = HIGHBD_WRAPLOW(dct_const_round_shift(s6 + s14), bd); + x7 = HIGHBD_WRAPLOW(dct_const_round_shift(s7 + s15), bd); + x8 = HIGHBD_WRAPLOW(dct_const_round_shift(s0 - s8), bd); + x9 = HIGHBD_WRAPLOW(dct_const_round_shift(s1 - s9), bd); + x10 = HIGHBD_WRAPLOW(dct_const_round_shift(s2 - s10), bd); + x11 = HIGHBD_WRAPLOW(dct_const_round_shift(s3 - s11), bd); + x12 = HIGHBD_WRAPLOW(dct_const_round_shift(s4 - s12), bd); + x13 = HIGHBD_WRAPLOW(dct_const_round_shift(s5 - s13), bd); + x14 = HIGHBD_WRAPLOW(dct_const_round_shift(s6 - s14), bd); + x15 = HIGHBD_WRAPLOW(dct_const_round_shift(s7 - s15), bd); + + // stage 2 + s0 = x0; + s1 = x1; + s2 = x2; + s3 = x3; + s4 = x4; + s5 = x5; + s6 = x6; + s7 = x7; + s8 = x8 * (tran_high_t)cospi_4_64 + x9 * (tran_high_t)cospi_28_64; + s9 = x8 * (tran_high_t)cospi_28_64 - x9 * (tran_high_t)cospi_4_64; + s10 = x10 * (tran_high_t)cospi_20_64 + x11 * (tran_high_t)cospi_12_64; + s11 = x10 * (tran_high_t)cospi_12_64 - x11 * (tran_high_t)cospi_20_64; + s12 = -x12 * (tran_high_t)cospi_28_64 + x13 * (tran_high_t)cospi_4_64; + s13 = x12 * (tran_high_t)cospi_4_64 + x13 * (tran_high_t)cospi_28_64; + s14 = -x14 * (tran_high_t)cospi_12_64 + x15 * (tran_high_t)cospi_20_64; + s15 = x14 * (tran_high_t)cospi_20_64 + x15 * (tran_high_t)cospi_12_64; + + x0 = HIGHBD_WRAPLOW(s0 + s4, bd); + x1 = HIGHBD_WRAPLOW(s1 + s5, bd); + x2 = HIGHBD_WRAPLOW(s2 + s6, bd); + x3 = HIGHBD_WRAPLOW(s3 + s7, bd); + x4 = HIGHBD_WRAPLOW(s0 - s4, bd); + x5 = HIGHBD_WRAPLOW(s1 - s5, bd); + x6 = HIGHBD_WRAPLOW(s2 - s6, bd); + x7 = HIGHBD_WRAPLOW(s3 - s7, bd); + x8 = HIGHBD_WRAPLOW(dct_const_round_shift(s8 + s12), bd); + x9 = HIGHBD_WRAPLOW(dct_const_round_shift(s9 + s13), bd); + x10 = HIGHBD_WRAPLOW(dct_const_round_shift(s10 + s14), bd); + x11 = HIGHBD_WRAPLOW(dct_const_round_shift(s11 + s15), bd); + x12 = HIGHBD_WRAPLOW(dct_const_round_shift(s8 - s12), bd); + x13 = HIGHBD_WRAPLOW(dct_const_round_shift(s9 - s13), bd); + x14 = HIGHBD_WRAPLOW(dct_const_round_shift(s10 - s14), bd); + x15 = HIGHBD_WRAPLOW(dct_const_round_shift(s11 - s15), bd); + + // stage 3 + s0 = x0; + s1 = x1; + s2 = x2; + s3 = x3; + s4 = x4 * (tran_high_t)cospi_8_64 + x5 * (tran_high_t)cospi_24_64; + s5 = x4 * (tran_high_t)cospi_24_64 - x5 * (tran_high_t)cospi_8_64; + s6 = -x6 * (tran_high_t)cospi_24_64 + x7 * (tran_high_t)cospi_8_64; + s7 = x6 * (tran_high_t)cospi_8_64 + x7 * (tran_high_t)cospi_24_64; + s8 = x8; + s9 = x9; + s10 = x10; + s11 = x11; + s12 = x12 * (tran_high_t)cospi_8_64 + x13 * (tran_high_t)cospi_24_64; + s13 = x12 * (tran_high_t)cospi_24_64 - x13 * (tran_high_t)cospi_8_64; + s14 = -x14 * (tran_high_t)cospi_24_64 + x15 * (tran_high_t)cospi_8_64; + s15 = x14 * (tran_high_t)cospi_8_64 + x15 * (tran_high_t)cospi_24_64; + + x0 = HIGHBD_WRAPLOW(s0 + s2, bd); + x1 = HIGHBD_WRAPLOW(s1 + s3, bd); + x2 = HIGHBD_WRAPLOW(s0 - s2, bd); + x3 = HIGHBD_WRAPLOW(s1 - s3, bd); + x4 = HIGHBD_WRAPLOW(dct_const_round_shift(s4 + s6), bd); + x5 = HIGHBD_WRAPLOW(dct_const_round_shift(s5 + s7), bd); + x6 = HIGHBD_WRAPLOW(dct_const_round_shift(s4 - s6), bd); + x7 = HIGHBD_WRAPLOW(dct_const_round_shift(s5 - s7), bd); + x8 = HIGHBD_WRAPLOW(s8 + s10, bd); + x9 = HIGHBD_WRAPLOW(s9 + s11, bd); + x10 = HIGHBD_WRAPLOW(s8 - s10, bd); + x11 = HIGHBD_WRAPLOW(s9 - s11, bd); + x12 = HIGHBD_WRAPLOW(dct_const_round_shift(s12 + s14), bd); + x13 = HIGHBD_WRAPLOW(dct_const_round_shift(s13 + s15), bd); + x14 = HIGHBD_WRAPLOW(dct_const_round_shift(s12 - s14), bd); + x15 = HIGHBD_WRAPLOW(dct_const_round_shift(s13 - s15), bd); + + // stage 4 + s2 = (tran_high_t)(-cospi_16_64) * (x2 + x3); + s3 = (tran_high_t)cospi_16_64 * (x2 - x3); + s6 = (tran_high_t)cospi_16_64 * (x6 + x7); + s7 = (tran_high_t)cospi_16_64 * (-x6 + x7); + s10 = (tran_high_t)cospi_16_64 * (x10 + x11); + s11 = (tran_high_t)cospi_16_64 * (-x10 + x11); + s14 = (tran_high_t)(-cospi_16_64) * (x14 + x15); + s15 = (tran_high_t)cospi_16_64 * (x14 - x15); + + x2 = HIGHBD_WRAPLOW(dct_const_round_shift(s2), bd); + x3 = HIGHBD_WRAPLOW(dct_const_round_shift(s3), bd); + x6 = HIGHBD_WRAPLOW(dct_const_round_shift(s6), bd); + x7 = HIGHBD_WRAPLOW(dct_const_round_shift(s7), bd); + x10 = HIGHBD_WRAPLOW(dct_const_round_shift(s10), bd); + x11 = HIGHBD_WRAPLOW(dct_const_round_shift(s11), bd); + x14 = HIGHBD_WRAPLOW(dct_const_round_shift(s14), bd); + x15 = HIGHBD_WRAPLOW(dct_const_round_shift(s15), bd); + + output[0] = HIGHBD_WRAPLOW(x0, bd); + output[1] = HIGHBD_WRAPLOW(-x8, bd); + output[2] = HIGHBD_WRAPLOW(x12, bd); + output[3] = HIGHBD_WRAPLOW(-x4, bd); + output[4] = HIGHBD_WRAPLOW(x6, bd); + output[5] = HIGHBD_WRAPLOW(x14, bd); + output[6] = HIGHBD_WRAPLOW(x10, bd); + output[7] = HIGHBD_WRAPLOW(x2, bd); + output[8] = HIGHBD_WRAPLOW(x3, bd); + output[9] = HIGHBD_WRAPLOW(x11, bd); + output[10] = HIGHBD_WRAPLOW(x15, bd); + output[11] = HIGHBD_WRAPLOW(x7, bd); + output[12] = HIGHBD_WRAPLOW(x5, bd); + output[13] = HIGHBD_WRAPLOW(-x13, bd); + output[14] = HIGHBD_WRAPLOW(x9, bd); + output[15] = HIGHBD_WRAPLOW(-x1, bd); +} + +void vpx_highbd_idct16_c(const tran_low_t *input, tran_low_t *output, int bd) { + tran_low_t step1[16], step2[16]; + tran_high_t temp1, temp2; + (void)bd; + + if (detect_invalid_highbd_input(input, 16)) { +#if CONFIG_COEFFICIENT_RANGE_CHECKING + assert(0 && "invalid highbd txfm input"); +#endif // CONFIG_COEFFICIENT_RANGE_CHECKING + memset(output, 0, sizeof(*output) * 16); + return; + } + + // stage 1 + step1[0] = input[0 / 2]; + step1[1] = input[16 / 2]; + step1[2] = input[8 / 2]; + step1[3] = input[24 / 2]; + step1[4] = input[4 / 2]; + step1[5] = input[20 / 2]; + step1[6] = input[12 / 2]; + step1[7] = input[28 / 2]; + step1[8] = input[2 / 2]; + step1[9] = input[18 / 2]; + step1[10] = input[10 / 2]; + step1[11] = input[26 / 2]; + step1[12] = input[6 / 2]; + step1[13] = input[22 / 2]; + step1[14] = input[14 / 2]; + step1[15] = input[30 / 2]; + + // stage 2 + step2[0] = step1[0]; + step2[1] = step1[1]; + step2[2] = step1[2]; + step2[3] = step1[3]; + step2[4] = step1[4]; + step2[5] = step1[5]; + step2[6] = step1[6]; + step2[7] = step1[7]; + + temp1 = + step1[8] * (tran_high_t)cospi_30_64 - step1[15] * (tran_high_t)cospi_2_64; + temp2 = + step1[8] * (tran_high_t)cospi_2_64 + step1[15] * (tran_high_t)cospi_30_64; + step2[8] = HIGHBD_WRAPLOW(dct_const_round_shift(temp1), bd); + step2[15] = HIGHBD_WRAPLOW(dct_const_round_shift(temp2), bd); + + temp1 = step1[9] * (tran_high_t)cospi_14_64 - + step1[14] * (tran_high_t)cospi_18_64; + temp2 = step1[9] * (tran_high_t)cospi_18_64 + + step1[14] * (tran_high_t)cospi_14_64; + step2[9] = HIGHBD_WRAPLOW(dct_const_round_shift(temp1), bd); + step2[14] = HIGHBD_WRAPLOW(dct_const_round_shift(temp2), bd); + + temp1 = step1[10] * (tran_high_t)cospi_22_64 - + step1[13] * (tran_high_t)cospi_10_64; + temp2 = step1[10] * (tran_high_t)cospi_10_64 + + step1[13] * (tran_high_t)cospi_22_64; + step2[10] = HIGHBD_WRAPLOW(dct_const_round_shift(temp1), bd); + step2[13] = HIGHBD_WRAPLOW(dct_const_round_shift(temp2), bd); + + temp1 = step1[11] * (tran_high_t)cospi_6_64 - + step1[12] * (tran_high_t)cospi_26_64; + temp2 = step1[11] * (tran_high_t)cospi_26_64 + + step1[12] * (tran_high_t)cospi_6_64; + step2[11] = HIGHBD_WRAPLOW(dct_const_round_shift(temp1), bd); + step2[12] = HIGHBD_WRAPLOW(dct_const_round_shift(temp2), bd); + + // stage 3 + step1[0] = step2[0]; + step1[1] = step2[1]; + step1[2] = step2[2]; + step1[3] = step2[3]; + + temp1 = + step2[4] * (tran_high_t)cospi_28_64 - step2[7] * (tran_high_t)cospi_4_64; + temp2 = + step2[4] * (tran_high_t)cospi_4_64 + step2[7] * (tran_high_t)cospi_28_64; + step1[4] = HIGHBD_WRAPLOW(dct_const_round_shift(temp1), bd); + step1[7] = HIGHBD_WRAPLOW(dct_const_round_shift(temp2), bd); + temp1 = + step2[5] * (tran_high_t)cospi_12_64 - step2[6] * (tran_high_t)cospi_20_64; + temp2 = + step2[5] * (tran_high_t)cospi_20_64 + step2[6] * (tran_high_t)cospi_12_64; + step1[5] = HIGHBD_WRAPLOW(dct_const_round_shift(temp1), bd); + step1[6] = HIGHBD_WRAPLOW(dct_const_round_shift(temp2), bd); + + step1[8] = HIGHBD_WRAPLOW(step2[8] + step2[9], bd); + step1[9] = HIGHBD_WRAPLOW(step2[8] - step2[9], bd); + step1[10] = HIGHBD_WRAPLOW(-step2[10] + step2[11], bd); + step1[11] = HIGHBD_WRAPLOW(step2[10] + step2[11], bd); + step1[12] = HIGHBD_WRAPLOW(step2[12] + step2[13], bd); + step1[13] = HIGHBD_WRAPLOW(step2[12] - step2[13], bd); + step1[14] = HIGHBD_WRAPLOW(-step2[14] + step2[15], bd); + step1[15] = HIGHBD_WRAPLOW(step2[14] + step2[15], bd); + + // stage 4 + temp1 = (step1[0] + step1[1]) * (tran_high_t)cospi_16_64; + temp2 = (step1[0] - step1[1]) * (tran_high_t)cospi_16_64; + step2[0] = HIGHBD_WRAPLOW(dct_const_round_shift(temp1), bd); + step2[1] = HIGHBD_WRAPLOW(dct_const_round_shift(temp2), bd); + temp1 = + step1[2] * (tran_high_t)cospi_24_64 - step1[3] * (tran_high_t)cospi_8_64; + temp2 = + step1[2] * (tran_high_t)cospi_8_64 + step1[3] * (tran_high_t)cospi_24_64; + step2[2] = HIGHBD_WRAPLOW(dct_const_round_shift(temp1), bd); + step2[3] = HIGHBD_WRAPLOW(dct_const_round_shift(temp2), bd); + step2[4] = HIGHBD_WRAPLOW(step1[4] + step1[5], bd); + step2[5] = HIGHBD_WRAPLOW(step1[4] - step1[5], bd); + step2[6] = HIGHBD_WRAPLOW(-step1[6] + step1[7], bd); + step2[7] = HIGHBD_WRAPLOW(step1[6] + step1[7], bd); + + step2[8] = step1[8]; + step2[15] = step1[15]; + temp1 = -step1[9] * (tran_high_t)cospi_8_64 + + step1[14] * (tran_high_t)cospi_24_64; + temp2 = + step1[9] * (tran_high_t)cospi_24_64 + step1[14] * (tran_high_t)cospi_8_64; + step2[9] = HIGHBD_WRAPLOW(dct_const_round_shift(temp1), bd); + step2[14] = HIGHBD_WRAPLOW(dct_const_round_shift(temp2), bd); + temp1 = -step1[10] * (tran_high_t)cospi_24_64 - + step1[13] * (tran_high_t)cospi_8_64; + temp2 = -step1[10] * (tran_high_t)cospi_8_64 + + step1[13] * (tran_high_t)cospi_24_64; + step2[10] = HIGHBD_WRAPLOW(dct_const_round_shift(temp1), bd); + step2[13] = HIGHBD_WRAPLOW(dct_const_round_shift(temp2), bd); + step2[11] = step1[11]; + step2[12] = step1[12]; + + // stage 5 + step1[0] = HIGHBD_WRAPLOW(step2[0] + step2[3], bd); + step1[1] = HIGHBD_WRAPLOW(step2[1] + step2[2], bd); + step1[2] = HIGHBD_WRAPLOW(step2[1] - step2[2], bd); + step1[3] = HIGHBD_WRAPLOW(step2[0] - step2[3], bd); + step1[4] = step2[4]; + temp1 = (step2[6] - step2[5]) * (tran_high_t)cospi_16_64; + temp2 = (step2[5] + step2[6]) * (tran_high_t)cospi_16_64; + step1[5] = HIGHBD_WRAPLOW(dct_const_round_shift(temp1), bd); + step1[6] = HIGHBD_WRAPLOW(dct_const_round_shift(temp2), bd); + step1[7] = step2[7]; + + step1[8] = HIGHBD_WRAPLOW(step2[8] + step2[11], bd); + step1[9] = HIGHBD_WRAPLOW(step2[9] + step2[10], bd); + step1[10] = HIGHBD_WRAPLOW(step2[9] - step2[10], bd); + step1[11] = HIGHBD_WRAPLOW(step2[8] - step2[11], bd); + step1[12] = HIGHBD_WRAPLOW(-step2[12] + step2[15], bd); + step1[13] = HIGHBD_WRAPLOW(-step2[13] + step2[14], bd); + step1[14] = HIGHBD_WRAPLOW(step2[13] + step2[14], bd); + step1[15] = HIGHBD_WRAPLOW(step2[12] + step2[15], bd); + + // stage 6 + step2[0] = HIGHBD_WRAPLOW(step1[0] + step1[7], bd); + step2[1] = HIGHBD_WRAPLOW(step1[1] + step1[6], bd); + step2[2] = HIGHBD_WRAPLOW(step1[2] + step1[5], bd); + step2[3] = HIGHBD_WRAPLOW(step1[3] + step1[4], bd); + step2[4] = HIGHBD_WRAPLOW(step1[3] - step1[4], bd); + step2[5] = HIGHBD_WRAPLOW(step1[2] - step1[5], bd); + step2[6] = HIGHBD_WRAPLOW(step1[1] - step1[6], bd); + step2[7] = HIGHBD_WRAPLOW(step1[0] - step1[7], bd); + step2[8] = step1[8]; + step2[9] = step1[9]; + temp1 = (-step1[10] + step1[13]) * (tran_high_t)cospi_16_64; + temp2 = (step1[10] + step1[13]) * (tran_high_t)cospi_16_64; + step2[10] = HIGHBD_WRAPLOW(dct_const_round_shift(temp1), bd); + step2[13] = HIGHBD_WRAPLOW(dct_const_round_shift(temp2), bd); + temp1 = (-step1[11] + step1[12]) * (tran_high_t)cospi_16_64; + temp2 = (step1[11] + step1[12]) * (tran_high_t)cospi_16_64; + step2[11] = HIGHBD_WRAPLOW(dct_const_round_shift(temp1), bd); + step2[12] = HIGHBD_WRAPLOW(dct_const_round_shift(temp2), bd); + step2[14] = step1[14]; + step2[15] = step1[15]; + + // stage 7 + output[0] = HIGHBD_WRAPLOW(step2[0] + step2[15], bd); + output[1] = HIGHBD_WRAPLOW(step2[1] + step2[14], bd); + output[2] = HIGHBD_WRAPLOW(step2[2] + step2[13], bd); + output[3] = HIGHBD_WRAPLOW(step2[3] + step2[12], bd); + output[4] = HIGHBD_WRAPLOW(step2[4] + step2[11], bd); + output[5] = HIGHBD_WRAPLOW(step2[5] + step2[10], bd); + output[6] = HIGHBD_WRAPLOW(step2[6] + step2[9], bd); + output[7] = HIGHBD_WRAPLOW(step2[7] + step2[8], bd); + output[8] = HIGHBD_WRAPLOW(step2[7] - step2[8], bd); + output[9] = HIGHBD_WRAPLOW(step2[6] - step2[9], bd); + output[10] = HIGHBD_WRAPLOW(step2[5] - step2[10], bd); + output[11] = HIGHBD_WRAPLOW(step2[4] - step2[11], bd); + output[12] = HIGHBD_WRAPLOW(step2[3] - step2[12], bd); + output[13] = HIGHBD_WRAPLOW(step2[2] - step2[13], bd); + output[14] = HIGHBD_WRAPLOW(step2[1] - step2[14], bd); + output[15] = HIGHBD_WRAPLOW(step2[0] - step2[15], bd); +} + +void vpx_highbd_idct16x16_256_add_c(const tran_low_t *input, uint16_t *dest, + int stride, int bd) { + int i, j; + tran_low_t out[16 * 16]; + tran_low_t *outptr = out; + tran_low_t temp_in[16], temp_out[16]; + + // First transform rows + for (i = 0; i < 16; ++i) { + vpx_highbd_idct16_c(input, outptr, bd); + input += 16; + outptr += 16; + } + + // Then transform columns + for (i = 0; i < 16; ++i) { + for (j = 0; j < 16; ++j) temp_in[j] = out[j * 16 + i]; + vpx_highbd_idct16_c(temp_in, temp_out, bd); + for (j = 0; j < 16; ++j) { + dest[j * stride + i] = highbd_clip_pixel_add( + dest[j * stride + i], ROUND_POWER_OF_TWO(temp_out[j], 6), bd); + } + } +} + +void vpx_highbd_idct16x16_38_add_c(const tran_low_t *input, uint16_t *dest, + int stride, int bd) { + int i, j; + tran_low_t out[16 * 16] = { 0 }; + tran_low_t *outptr = out; + tran_low_t temp_in[16], temp_out[16]; + + // First transform rows. Since all non-zero dct coefficients are in + // upper-left 8x8 area, we only need to calculate first 8 rows here. + for (i = 0; i < 8; ++i) { + vpx_highbd_idct16_c(input, outptr, bd); + input += 16; + outptr += 16; + } + + // Then transform columns + for (i = 0; i < 16; ++i) { + uint16_t *destT = dest; + for (j = 0; j < 16; ++j) temp_in[j] = out[j * 16 + i]; + vpx_highbd_idct16_c(temp_in, temp_out, bd); + for (j = 0; j < 16; ++j) { + destT[i] = highbd_clip_pixel_add(destT[i], + ROUND_POWER_OF_TWO(temp_out[j], 6), bd); + destT += stride; + } + } +} + +void vpx_highbd_idct16x16_10_add_c(const tran_low_t *input, uint16_t *dest, + int stride, int bd) { + int i, j; + tran_low_t out[16 * 16] = { 0 }; + tran_low_t *outptr = out; + tran_low_t temp_in[16], temp_out[16]; + + // First transform rows. Since all non-zero dct coefficients are in + // upper-left 4x4 area, we only need to calculate first 4 rows here. + for (i = 0; i < 4; ++i) { + vpx_highbd_idct16_c(input, outptr, bd); + input += 16; + outptr += 16; + } + + // Then transform columns + for (i = 0; i < 16; ++i) { + for (j = 0; j < 16; ++j) temp_in[j] = out[j * 16 + i]; + vpx_highbd_idct16_c(temp_in, temp_out, bd); + for (j = 0; j < 16; ++j) { + dest[j * stride + i] = highbd_clip_pixel_add( + dest[j * stride + i], ROUND_POWER_OF_TWO(temp_out[j], 6), bd); + } + } +} + +void vpx_highbd_idct16x16_1_add_c(const tran_low_t *input, uint16_t *dest, + int stride, int bd) { + int i, j; + tran_high_t a1; + tran_low_t out = HIGHBD_WRAPLOW( + dct_const_round_shift(input[0] * (tran_high_t)cospi_16_64), bd); + + out = + HIGHBD_WRAPLOW(dct_const_round_shift(out * (tran_high_t)cospi_16_64), bd); + a1 = ROUND_POWER_OF_TWO(out, 6); + for (j = 0; j < 16; ++j) { + for (i = 0; i < 16; ++i) dest[i] = highbd_clip_pixel_add(dest[i], a1, bd); + dest += stride; + } +} + +static void highbd_idct32_c(const tran_low_t *input, tran_low_t *output, + int bd) { + tran_low_t step1[32], step2[32]; + tran_high_t temp1, temp2; + (void)bd; + + if (detect_invalid_highbd_input(input, 32)) { +#if CONFIG_COEFFICIENT_RANGE_CHECKING + assert(0 && "invalid highbd txfm input"); +#endif // CONFIG_COEFFICIENT_RANGE_CHECKING + memset(output, 0, sizeof(*output) * 32); + return; + } + + // stage 1 + step1[0] = input[0]; + step1[1] = input[16]; + step1[2] = input[8]; + step1[3] = input[24]; + step1[4] = input[4]; + step1[5] = input[20]; + step1[6] = input[12]; + step1[7] = input[28]; + step1[8] = input[2]; + step1[9] = input[18]; + step1[10] = input[10]; + step1[11] = input[26]; + step1[12] = input[6]; + step1[13] = input[22]; + step1[14] = input[14]; + step1[15] = input[30]; + + temp1 = + input[1] * (tran_high_t)cospi_31_64 - input[31] * (tran_high_t)cospi_1_64; + temp2 = + input[1] * (tran_high_t)cospi_1_64 + input[31] * (tran_high_t)cospi_31_64; + step1[16] = HIGHBD_WRAPLOW(dct_const_round_shift(temp1), bd); + step1[31] = HIGHBD_WRAPLOW(dct_const_round_shift(temp2), bd); + + temp1 = input[17] * (tran_high_t)cospi_15_64 - + input[15] * (tran_high_t)cospi_17_64; + temp2 = input[17] * (tran_high_t)cospi_17_64 + + input[15] * (tran_high_t)cospi_15_64; + step1[17] = HIGHBD_WRAPLOW(dct_const_round_shift(temp1), bd); + step1[30] = HIGHBD_WRAPLOW(dct_const_round_shift(temp2), bd); + + temp1 = + input[9] * (tran_high_t)cospi_23_64 - input[23] * (tran_high_t)cospi_9_64; + temp2 = + input[9] * (tran_high_t)cospi_9_64 + input[23] * (tran_high_t)cospi_23_64; + step1[18] = HIGHBD_WRAPLOW(dct_const_round_shift(temp1), bd); + step1[29] = HIGHBD_WRAPLOW(dct_const_round_shift(temp2), bd); + + temp1 = + input[25] * (tran_high_t)cospi_7_64 - input[7] * (tran_high_t)cospi_25_64; + temp2 = + input[25] * (tran_high_t)cospi_25_64 + input[7] * (tran_high_t)cospi_7_64; + step1[19] = HIGHBD_WRAPLOW(dct_const_round_shift(temp1), bd); + step1[28] = HIGHBD_WRAPLOW(dct_const_round_shift(temp2), bd); + + temp1 = + input[5] * (tran_high_t)cospi_27_64 - input[27] * (tran_high_t)cospi_5_64; + temp2 = + input[5] * (tran_high_t)cospi_5_64 + input[27] * (tran_high_t)cospi_27_64; + step1[20] = HIGHBD_WRAPLOW(dct_const_round_shift(temp1), bd); + step1[27] = HIGHBD_WRAPLOW(dct_const_round_shift(temp2), bd); + + temp1 = input[21] * (tran_high_t)cospi_11_64 - + input[11] * (tran_high_t)cospi_21_64; + temp2 = input[21] * (tran_high_t)cospi_21_64 + + input[11] * (tran_high_t)cospi_11_64; + step1[21] = HIGHBD_WRAPLOW(dct_const_round_shift(temp1), bd); + step1[26] = HIGHBD_WRAPLOW(dct_const_round_shift(temp2), bd); + + temp1 = input[13] * (tran_high_t)cospi_19_64 - + input[19] * (tran_high_t)cospi_13_64; + temp2 = input[13] * (tran_high_t)cospi_13_64 + + input[19] * (tran_high_t)cospi_19_64; + step1[22] = HIGHBD_WRAPLOW(dct_const_round_shift(temp1), bd); + step1[25] = HIGHBD_WRAPLOW(dct_const_round_shift(temp2), bd); + + temp1 = + input[29] * (tran_high_t)cospi_3_64 - input[3] * (tran_high_t)cospi_29_64; + temp2 = + input[29] * (tran_high_t)cospi_29_64 + input[3] * (tran_high_t)cospi_3_64; + step1[23] = HIGHBD_WRAPLOW(dct_const_round_shift(temp1), bd); + step1[24] = HIGHBD_WRAPLOW(dct_const_round_shift(temp2), bd); + + // stage 2 + step2[0] = step1[0]; + step2[1] = step1[1]; + step2[2] = step1[2]; + step2[3] = step1[3]; + step2[4] = step1[4]; + step2[5] = step1[5]; + step2[6] = step1[6]; + step2[7] = step1[7]; + + temp1 = + step1[8] * (tran_high_t)cospi_30_64 - step1[15] * (tran_high_t)cospi_2_64; + temp2 = + step1[8] * (tran_high_t)cospi_2_64 + step1[15] * (tran_high_t)cospi_30_64; + step2[8] = HIGHBD_WRAPLOW(dct_const_round_shift(temp1), bd); + step2[15] = HIGHBD_WRAPLOW(dct_const_round_shift(temp2), bd); + + temp1 = step1[9] * (tran_high_t)cospi_14_64 - + step1[14] * (tran_high_t)cospi_18_64; + temp2 = step1[9] * (tran_high_t)cospi_18_64 + + step1[14] * (tran_high_t)cospi_14_64; + step2[9] = HIGHBD_WRAPLOW(dct_const_round_shift(temp1), bd); + step2[14] = HIGHBD_WRAPLOW(dct_const_round_shift(temp2), bd); + + temp1 = step1[10] * (tran_high_t)cospi_22_64 - + step1[13] * (tran_high_t)cospi_10_64; + temp2 = step1[10] * (tran_high_t)cospi_10_64 + + step1[13] * (tran_high_t)cospi_22_64; + step2[10] = HIGHBD_WRAPLOW(dct_const_round_shift(temp1), bd); + step2[13] = HIGHBD_WRAPLOW(dct_const_round_shift(temp2), bd); + + temp1 = step1[11] * (tran_high_t)cospi_6_64 - + step1[12] * (tran_high_t)cospi_26_64; + temp2 = step1[11] * (tran_high_t)cospi_26_64 + + step1[12] * (tran_high_t)cospi_6_64; + step2[11] = HIGHBD_WRAPLOW(dct_const_round_shift(temp1), bd); + step2[12] = HIGHBD_WRAPLOW(dct_const_round_shift(temp2), bd); + + step2[16] = HIGHBD_WRAPLOW(step1[16] + step1[17], bd); + step2[17] = HIGHBD_WRAPLOW(step1[16] - step1[17], bd); + step2[18] = HIGHBD_WRAPLOW(-step1[18] + step1[19], bd); + step2[19] = HIGHBD_WRAPLOW(step1[18] + step1[19], bd); + step2[20] = HIGHBD_WRAPLOW(step1[20] + step1[21], bd); + step2[21] = HIGHBD_WRAPLOW(step1[20] - step1[21], bd); + step2[22] = HIGHBD_WRAPLOW(-step1[22] + step1[23], bd); + step2[23] = HIGHBD_WRAPLOW(step1[22] + step1[23], bd); + step2[24] = HIGHBD_WRAPLOW(step1[24] + step1[25], bd); + step2[25] = HIGHBD_WRAPLOW(step1[24] - step1[25], bd); + step2[26] = HIGHBD_WRAPLOW(-step1[26] + step1[27], bd); + step2[27] = HIGHBD_WRAPLOW(step1[26] + step1[27], bd); + step2[28] = HIGHBD_WRAPLOW(step1[28] + step1[29], bd); + step2[29] = HIGHBD_WRAPLOW(step1[28] - step1[29], bd); + step2[30] = HIGHBD_WRAPLOW(-step1[30] + step1[31], bd); + step2[31] = HIGHBD_WRAPLOW(step1[30] + step1[31], bd); + + // stage 3 + step1[0] = step2[0]; + step1[1] = step2[1]; + step1[2] = step2[2]; + step1[3] = step2[3]; + + temp1 = + step2[4] * (tran_high_t)cospi_28_64 - step2[7] * (tran_high_t)cospi_4_64; + temp2 = + step2[4] * (tran_high_t)cospi_4_64 + step2[7] * (tran_high_t)cospi_28_64; + step1[4] = HIGHBD_WRAPLOW(dct_const_round_shift(temp1), bd); + step1[7] = HIGHBD_WRAPLOW(dct_const_round_shift(temp2), bd); + temp1 = + step2[5] * (tran_high_t)cospi_12_64 - step2[6] * (tran_high_t)cospi_20_64; + temp2 = + step2[5] * (tran_high_t)cospi_20_64 + step2[6] * (tran_high_t)cospi_12_64; + step1[5] = HIGHBD_WRAPLOW(dct_const_round_shift(temp1), bd); + step1[6] = HIGHBD_WRAPLOW(dct_const_round_shift(temp2), bd); + + step1[8] = HIGHBD_WRAPLOW(step2[8] + step2[9], bd); + step1[9] = HIGHBD_WRAPLOW(step2[8] - step2[9], bd); + step1[10] = HIGHBD_WRAPLOW(-step2[10] + step2[11], bd); + step1[11] = HIGHBD_WRAPLOW(step2[10] + step2[11], bd); + step1[12] = HIGHBD_WRAPLOW(step2[12] + step2[13], bd); + step1[13] = HIGHBD_WRAPLOW(step2[12] - step2[13], bd); + step1[14] = HIGHBD_WRAPLOW(-step2[14] + step2[15], bd); + step1[15] = HIGHBD_WRAPLOW(step2[14] + step2[15], bd); + + step1[16] = step2[16]; + step1[31] = step2[31]; + temp1 = -step2[17] * (tran_high_t)cospi_4_64 + + step2[30] * (tran_high_t)cospi_28_64; + temp2 = step2[17] * (tran_high_t)cospi_28_64 + + step2[30] * (tran_high_t)cospi_4_64; + step1[17] = HIGHBD_WRAPLOW(dct_const_round_shift(temp1), bd); + step1[30] = HIGHBD_WRAPLOW(dct_const_round_shift(temp2), bd); + temp1 = -step2[18] * (tran_high_t)cospi_28_64 - + step2[29] * (tran_high_t)cospi_4_64; + temp2 = -step2[18] * (tran_high_t)cospi_4_64 + + step2[29] * (tran_high_t)cospi_28_64; + step1[18] = HIGHBD_WRAPLOW(dct_const_round_shift(temp1), bd); + step1[29] = HIGHBD_WRAPLOW(dct_const_round_shift(temp2), bd); + step1[19] = step2[19]; + step1[20] = step2[20]; + temp1 = -step2[21] * (tran_high_t)cospi_20_64 + + step2[26] * (tran_high_t)cospi_12_64; + temp2 = step2[21] * (tran_high_t)cospi_12_64 + + step2[26] * (tran_high_t)cospi_20_64; + step1[21] = HIGHBD_WRAPLOW(dct_const_round_shift(temp1), bd); + step1[26] = HIGHBD_WRAPLOW(dct_const_round_shift(temp2), bd); + temp1 = -step2[22] * (tran_high_t)cospi_12_64 - + step2[25] * (tran_high_t)cospi_20_64; + temp2 = -step2[22] * (tran_high_t)cospi_20_64 + + step2[25] * (tran_high_t)cospi_12_64; + step1[22] = HIGHBD_WRAPLOW(dct_const_round_shift(temp1), bd); + step1[25] = HIGHBD_WRAPLOW(dct_const_round_shift(temp2), bd); + step1[23] = step2[23]; + step1[24] = step2[24]; + step1[27] = step2[27]; + step1[28] = step2[28]; + + // stage 4 + temp1 = (step1[0] + step1[1]) * (tran_high_t)cospi_16_64; + temp2 = (step1[0] - step1[1]) * (tran_high_t)cospi_16_64; + step2[0] = HIGHBD_WRAPLOW(dct_const_round_shift(temp1), bd); + step2[1] = HIGHBD_WRAPLOW(dct_const_round_shift(temp2), bd); + temp1 = + step1[2] * (tran_high_t)cospi_24_64 - step1[3] * (tran_high_t)cospi_8_64; + temp2 = + step1[2] * (tran_high_t)cospi_8_64 + step1[3] * (tran_high_t)cospi_24_64; + step2[2] = HIGHBD_WRAPLOW(dct_const_round_shift(temp1), bd); + step2[3] = HIGHBD_WRAPLOW(dct_const_round_shift(temp2), bd); + step2[4] = HIGHBD_WRAPLOW(step1[4] + step1[5], bd); + step2[5] = HIGHBD_WRAPLOW(step1[4] - step1[5], bd); + step2[6] = HIGHBD_WRAPLOW(-step1[6] + step1[7], bd); + step2[7] = HIGHBD_WRAPLOW(step1[6] + step1[7], bd); + + step2[8] = step1[8]; + step2[15] = step1[15]; + temp1 = -step1[9] * (tran_high_t)cospi_8_64 + + step1[14] * (tran_high_t)cospi_24_64; + temp2 = + step1[9] * (tran_high_t)cospi_24_64 + step1[14] * (tran_high_t)cospi_8_64; + step2[9] = HIGHBD_WRAPLOW(dct_const_round_shift(temp1), bd); + step2[14] = HIGHBD_WRAPLOW(dct_const_round_shift(temp2), bd); + temp1 = -step1[10] * (tran_high_t)cospi_24_64 - + step1[13] * (tran_high_t)cospi_8_64; + temp2 = -step1[10] * (tran_high_t)cospi_8_64 + + step1[13] * (tran_high_t)cospi_24_64; + step2[10] = HIGHBD_WRAPLOW(dct_const_round_shift(temp1), bd); + step2[13] = HIGHBD_WRAPLOW(dct_const_round_shift(temp2), bd); + step2[11] = step1[11]; + step2[12] = step1[12]; + + step2[16] = HIGHBD_WRAPLOW(step1[16] + step1[19], bd); + step2[17] = HIGHBD_WRAPLOW(step1[17] + step1[18], bd); + step2[18] = HIGHBD_WRAPLOW(step1[17] - step1[18], bd); + step2[19] = HIGHBD_WRAPLOW(step1[16] - step1[19], bd); + step2[20] = HIGHBD_WRAPLOW(-step1[20] + step1[23], bd); + step2[21] = HIGHBD_WRAPLOW(-step1[21] + step1[22], bd); + step2[22] = HIGHBD_WRAPLOW(step1[21] + step1[22], bd); + step2[23] = HIGHBD_WRAPLOW(step1[20] + step1[23], bd); + + step2[24] = HIGHBD_WRAPLOW(step1[24] + step1[27], bd); + step2[25] = HIGHBD_WRAPLOW(step1[25] + step1[26], bd); + step2[26] = HIGHBD_WRAPLOW(step1[25] - step1[26], bd); + step2[27] = HIGHBD_WRAPLOW(step1[24] - step1[27], bd); + step2[28] = HIGHBD_WRAPLOW(-step1[28] + step1[31], bd); + step2[29] = HIGHBD_WRAPLOW(-step1[29] + step1[30], bd); + step2[30] = HIGHBD_WRAPLOW(step1[29] + step1[30], bd); + step2[31] = HIGHBD_WRAPLOW(step1[28] + step1[31], bd); + + // stage 5 + step1[0] = HIGHBD_WRAPLOW(step2[0] + step2[3], bd); + step1[1] = HIGHBD_WRAPLOW(step2[1] + step2[2], bd); + step1[2] = HIGHBD_WRAPLOW(step2[1] - step2[2], bd); + step1[3] = HIGHBD_WRAPLOW(step2[0] - step2[3], bd); + step1[4] = step2[4]; + temp1 = (step2[6] - step2[5]) * (tran_high_t)cospi_16_64; + temp2 = (step2[5] + step2[6]) * (tran_high_t)cospi_16_64; + step1[5] = HIGHBD_WRAPLOW(dct_const_round_shift(temp1), bd); + step1[6] = HIGHBD_WRAPLOW(dct_const_round_shift(temp2), bd); + step1[7] = step2[7]; + + step1[8] = HIGHBD_WRAPLOW(step2[8] + step2[11], bd); + step1[9] = HIGHBD_WRAPLOW(step2[9] + step2[10], bd); + step1[10] = HIGHBD_WRAPLOW(step2[9] - step2[10], bd); + step1[11] = HIGHBD_WRAPLOW(step2[8] - step2[11], bd); + step1[12] = HIGHBD_WRAPLOW(-step2[12] + step2[15], bd); + step1[13] = HIGHBD_WRAPLOW(-step2[13] + step2[14], bd); + step1[14] = HIGHBD_WRAPLOW(step2[13] + step2[14], bd); + step1[15] = HIGHBD_WRAPLOW(step2[12] + step2[15], bd); + + step1[16] = step2[16]; + step1[17] = step2[17]; + temp1 = -step2[18] * (tran_high_t)cospi_8_64 + + step2[29] * (tran_high_t)cospi_24_64; + temp2 = step2[18] * (tran_high_t)cospi_24_64 + + step2[29] * (tran_high_t)cospi_8_64; + step1[18] = HIGHBD_WRAPLOW(dct_const_round_shift(temp1), bd); + step1[29] = HIGHBD_WRAPLOW(dct_const_round_shift(temp2), bd); + temp1 = -step2[19] * (tran_high_t)cospi_8_64 + + step2[28] * (tran_high_t)cospi_24_64; + temp2 = step2[19] * (tran_high_t)cospi_24_64 + + step2[28] * (tran_high_t)cospi_8_64; + step1[19] = HIGHBD_WRAPLOW(dct_const_round_shift(temp1), bd); + step1[28] = HIGHBD_WRAPLOW(dct_const_round_shift(temp2), bd); + temp1 = -step2[20] * (tran_high_t)cospi_24_64 - + step2[27] * (tran_high_t)cospi_8_64; + temp2 = -step2[20] * (tran_high_t)cospi_8_64 + + step2[27] * (tran_high_t)cospi_24_64; + step1[20] = HIGHBD_WRAPLOW(dct_const_round_shift(temp1), bd); + step1[27] = HIGHBD_WRAPLOW(dct_const_round_shift(temp2), bd); + temp1 = -step2[21] * (tran_high_t)cospi_24_64 - + step2[26] * (tran_high_t)cospi_8_64; + temp2 = -step2[21] * (tran_high_t)cospi_8_64 + + step2[26] * (tran_high_t)cospi_24_64; + step1[21] = HIGHBD_WRAPLOW(dct_const_round_shift(temp1), bd); + step1[26] = HIGHBD_WRAPLOW(dct_const_round_shift(temp2), bd); + step1[22] = step2[22]; + step1[23] = step2[23]; + step1[24] = step2[24]; + step1[25] = step2[25]; + step1[30] = step2[30]; + step1[31] = step2[31]; + + // stage 6 + step2[0] = HIGHBD_WRAPLOW(step1[0] + step1[7], bd); + step2[1] = HIGHBD_WRAPLOW(step1[1] + step1[6], bd); + step2[2] = HIGHBD_WRAPLOW(step1[2] + step1[5], bd); + step2[3] = HIGHBD_WRAPLOW(step1[3] + step1[4], bd); + step2[4] = HIGHBD_WRAPLOW(step1[3] - step1[4], bd); + step2[5] = HIGHBD_WRAPLOW(step1[2] - step1[5], bd); + step2[6] = HIGHBD_WRAPLOW(step1[1] - step1[6], bd); + step2[7] = HIGHBD_WRAPLOW(step1[0] - step1[7], bd); + step2[8] = step1[8]; + step2[9] = step1[9]; + temp1 = (-step1[10] + step1[13]) * (tran_high_t)cospi_16_64; + temp2 = (step1[10] + step1[13]) * (tran_high_t)cospi_16_64; + step2[10] = HIGHBD_WRAPLOW(dct_const_round_shift(temp1), bd); + step2[13] = HIGHBD_WRAPLOW(dct_const_round_shift(temp2), bd); + temp1 = (-step1[11] + step1[12]) * (tran_high_t)cospi_16_64; + temp2 = (step1[11] + step1[12]) * (tran_high_t)cospi_16_64; + step2[11] = HIGHBD_WRAPLOW(dct_const_round_shift(temp1), bd); + step2[12] = HIGHBD_WRAPLOW(dct_const_round_shift(temp2), bd); + step2[14] = step1[14]; + step2[15] = step1[15]; + + step2[16] = HIGHBD_WRAPLOW(step1[16] + step1[23], bd); + step2[17] = HIGHBD_WRAPLOW(step1[17] + step1[22], bd); + step2[18] = HIGHBD_WRAPLOW(step1[18] + step1[21], bd); + step2[19] = HIGHBD_WRAPLOW(step1[19] + step1[20], bd); + step2[20] = HIGHBD_WRAPLOW(step1[19] - step1[20], bd); + step2[21] = HIGHBD_WRAPLOW(step1[18] - step1[21], bd); + step2[22] = HIGHBD_WRAPLOW(step1[17] - step1[22], bd); + step2[23] = HIGHBD_WRAPLOW(step1[16] - step1[23], bd); + + step2[24] = HIGHBD_WRAPLOW(-step1[24] + step1[31], bd); + step2[25] = HIGHBD_WRAPLOW(-step1[25] + step1[30], bd); + step2[26] = HIGHBD_WRAPLOW(-step1[26] + step1[29], bd); + step2[27] = HIGHBD_WRAPLOW(-step1[27] + step1[28], bd); + step2[28] = HIGHBD_WRAPLOW(step1[27] + step1[28], bd); + step2[29] = HIGHBD_WRAPLOW(step1[26] + step1[29], bd); + step2[30] = HIGHBD_WRAPLOW(step1[25] + step1[30], bd); + step2[31] = HIGHBD_WRAPLOW(step1[24] + step1[31], bd); + + // stage 7 + step1[0] = HIGHBD_WRAPLOW(step2[0] + step2[15], bd); + step1[1] = HIGHBD_WRAPLOW(step2[1] + step2[14], bd); + step1[2] = HIGHBD_WRAPLOW(step2[2] + step2[13], bd); + step1[3] = HIGHBD_WRAPLOW(step2[3] + step2[12], bd); + step1[4] = HIGHBD_WRAPLOW(step2[4] + step2[11], bd); + step1[5] = HIGHBD_WRAPLOW(step2[5] + step2[10], bd); + step1[6] = HIGHBD_WRAPLOW(step2[6] + step2[9], bd); + step1[7] = HIGHBD_WRAPLOW(step2[7] + step2[8], bd); + step1[8] = HIGHBD_WRAPLOW(step2[7] - step2[8], bd); + step1[9] = HIGHBD_WRAPLOW(step2[6] - step2[9], bd); + step1[10] = HIGHBD_WRAPLOW(step2[5] - step2[10], bd); + step1[11] = HIGHBD_WRAPLOW(step2[4] - step2[11], bd); + step1[12] = HIGHBD_WRAPLOW(step2[3] - step2[12], bd); + step1[13] = HIGHBD_WRAPLOW(step2[2] - step2[13], bd); + step1[14] = HIGHBD_WRAPLOW(step2[1] - step2[14], bd); + step1[15] = HIGHBD_WRAPLOW(step2[0] - step2[15], bd); + + step1[16] = step2[16]; + step1[17] = step2[17]; + step1[18] = step2[18]; + step1[19] = step2[19]; + temp1 = (-step2[20] + step2[27]) * (tran_high_t)cospi_16_64; + temp2 = (step2[20] + step2[27]) * (tran_high_t)cospi_16_64; + step1[20] = HIGHBD_WRAPLOW(dct_const_round_shift(temp1), bd); + step1[27] = HIGHBD_WRAPLOW(dct_const_round_shift(temp2), bd); + temp1 = (-step2[21] + step2[26]) * (tran_high_t)cospi_16_64; + temp2 = (step2[21] + step2[26]) * (tran_high_t)cospi_16_64; + step1[21] = HIGHBD_WRAPLOW(dct_const_round_shift(temp1), bd); + step1[26] = HIGHBD_WRAPLOW(dct_const_round_shift(temp2), bd); + temp1 = (-step2[22] + step2[25]) * (tran_high_t)cospi_16_64; + temp2 = (step2[22] + step2[25]) * (tran_high_t)cospi_16_64; + step1[22] = HIGHBD_WRAPLOW(dct_const_round_shift(temp1), bd); + step1[25] = HIGHBD_WRAPLOW(dct_const_round_shift(temp2), bd); + temp1 = (-step2[23] + step2[24]) * (tran_high_t)cospi_16_64; + temp2 = (step2[23] + step2[24]) * (tran_high_t)cospi_16_64; + step1[23] = HIGHBD_WRAPLOW(dct_const_round_shift(temp1), bd); + step1[24] = HIGHBD_WRAPLOW(dct_const_round_shift(temp2), bd); + step1[28] = step2[28]; + step1[29] = step2[29]; + step1[30] = step2[30]; + step1[31] = step2[31]; + + // final stage + output[0] = HIGHBD_WRAPLOW(step1[0] + step1[31], bd); + output[1] = HIGHBD_WRAPLOW(step1[1] + step1[30], bd); + output[2] = HIGHBD_WRAPLOW(step1[2] + step1[29], bd); + output[3] = HIGHBD_WRAPLOW(step1[3] + step1[28], bd); + output[4] = HIGHBD_WRAPLOW(step1[4] + step1[27], bd); + output[5] = HIGHBD_WRAPLOW(step1[5] + step1[26], bd); + output[6] = HIGHBD_WRAPLOW(step1[6] + step1[25], bd); + output[7] = HIGHBD_WRAPLOW(step1[7] + step1[24], bd); + output[8] = HIGHBD_WRAPLOW(step1[8] + step1[23], bd); + output[9] = HIGHBD_WRAPLOW(step1[9] + step1[22], bd); + output[10] = HIGHBD_WRAPLOW(step1[10] + step1[21], bd); + output[11] = HIGHBD_WRAPLOW(step1[11] + step1[20], bd); + output[12] = HIGHBD_WRAPLOW(step1[12] + step1[19], bd); + output[13] = HIGHBD_WRAPLOW(step1[13] + step1[18], bd); + output[14] = HIGHBD_WRAPLOW(step1[14] + step1[17], bd); + output[15] = HIGHBD_WRAPLOW(step1[15] + step1[16], bd); + output[16] = HIGHBD_WRAPLOW(step1[15] - step1[16], bd); + output[17] = HIGHBD_WRAPLOW(step1[14] - step1[17], bd); + output[18] = HIGHBD_WRAPLOW(step1[13] - step1[18], bd); + output[19] = HIGHBD_WRAPLOW(step1[12] - step1[19], bd); + output[20] = HIGHBD_WRAPLOW(step1[11] - step1[20], bd); + output[21] = HIGHBD_WRAPLOW(step1[10] - step1[21], bd); + output[22] = HIGHBD_WRAPLOW(step1[9] - step1[22], bd); + output[23] = HIGHBD_WRAPLOW(step1[8] - step1[23], bd); + output[24] = HIGHBD_WRAPLOW(step1[7] - step1[24], bd); + output[25] = HIGHBD_WRAPLOW(step1[6] - step1[25], bd); + output[26] = HIGHBD_WRAPLOW(step1[5] - step1[26], bd); + output[27] = HIGHBD_WRAPLOW(step1[4] - step1[27], bd); + output[28] = HIGHBD_WRAPLOW(step1[3] - step1[28], bd); + output[29] = HIGHBD_WRAPLOW(step1[2] - step1[29], bd); + output[30] = HIGHBD_WRAPLOW(step1[1] - step1[30], bd); + output[31] = HIGHBD_WRAPLOW(step1[0] - step1[31], bd); +} + +void vpx_highbd_idct32x32_1024_add_c(const tran_low_t *input, uint16_t *dest, + int stride, int bd) { + int i, j; + tran_low_t out[32 * 32]; + tran_low_t *outptr = out; + tran_low_t temp_in[32], temp_out[32]; + + // Rows + for (i = 0; i < 32; ++i) { + tran_low_t zero_coeff = 0; + for (j = 0; j < 32; ++j) zero_coeff |= input[j]; + + if (zero_coeff) + highbd_idct32_c(input, outptr, bd); + else + memset(outptr, 0, sizeof(tran_low_t) * 32); + input += 32; + outptr += 32; + } + + // Columns + for (i = 0; i < 32; ++i) { + for (j = 0; j < 32; ++j) temp_in[j] = out[j * 32 + i]; + highbd_idct32_c(temp_in, temp_out, bd); + for (j = 0; j < 32; ++j) { + dest[j * stride + i] = highbd_clip_pixel_add( + dest[j * stride + i], ROUND_POWER_OF_TWO(temp_out[j], 6), bd); + } + } +} + +void vpx_highbd_idct32x32_135_add_c(const tran_low_t *input, uint16_t *dest, + int stride, int bd) { + int i, j; + tran_low_t out[32 * 32] = { 0 }; + tran_low_t *outptr = out; + tran_low_t temp_in[32], temp_out[32]; + + // Rows + // Only upper-left 16x16 has non-zero coeff + for (i = 0; i < 16; ++i) { + highbd_idct32_c(input, outptr, bd); + input += 32; + outptr += 32; + } + + // Columns + for (i = 0; i < 32; ++i) { + uint16_t *destT = dest; + for (j = 0; j < 32; ++j) temp_in[j] = out[j * 32 + i]; + highbd_idct32_c(temp_in, temp_out, bd); + for (j = 0; j < 32; ++j) { + destT[i] = highbd_clip_pixel_add(destT[i], + ROUND_POWER_OF_TWO(temp_out[j], 6), bd); + destT += stride; + } + } +} + +void vpx_highbd_idct32x32_34_add_c(const tran_low_t *input, uint16_t *dest, + int stride, int bd) { + int i, j; + tran_low_t out[32 * 32] = { 0 }; + tran_low_t *outptr = out; + tran_low_t temp_in[32], temp_out[32]; + + // Rows + // Only upper-left 8x8 has non-zero coeff + for (i = 0; i < 8; ++i) { + highbd_idct32_c(input, outptr, bd); + input += 32; + outptr += 32; + } + + // Columns + for (i = 0; i < 32; ++i) { + for (j = 0; j < 32; ++j) temp_in[j] = out[j * 32 + i]; + highbd_idct32_c(temp_in, temp_out, bd); + for (j = 0; j < 32; ++j) { + dest[j * stride + i] = highbd_clip_pixel_add( + dest[j * stride + i], ROUND_POWER_OF_TWO(temp_out[j], 6), bd); + } + } +} + +void vpx_highbd_idct32x32_1_add_c(const tran_low_t *input, uint16_t *dest, + int stride, int bd) { + int i, j; + int a1; + tran_low_t out = HIGHBD_WRAPLOW( + dct_const_round_shift(input[0] * (tran_high_t)cospi_16_64), bd); + + out = + HIGHBD_WRAPLOW(dct_const_round_shift(out * (tran_high_t)cospi_16_64), bd); + a1 = ROUND_POWER_OF_TWO(out, 6); + + for (j = 0; j < 32; ++j) { + for (i = 0; i < 32; ++i) dest[i] = highbd_clip_pixel_add(dest[i], a1, bd); + dest += stride; + } +} + +#endif // CONFIG_VP9_HIGHBITDEPTH diff --git a/vpx_dsp/inv_txfm.h b/vpx_dsp/inv_txfm.h new file mode 100644 index 0000000..1313765 --- /dev/null +++ b/vpx_dsp/inv_txfm.h @@ -0,0 +1,126 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VPX_DSP_INV_TXFM_H_ +#define VPX_DSP_INV_TXFM_H_ + +#include + +#include "./vpx_config.h" +#include "vpx_dsp/txfm_common.h" +#include "vpx_ports/mem.h" + +#ifdef __cplusplus +extern "C" { +#endif + +static INLINE tran_high_t check_range(tran_high_t input) { +#if CONFIG_COEFFICIENT_RANGE_CHECKING + // For valid VP9 input streams, intermediate stage coefficients should always + // stay within the range of a signed 16 bit integer. Coefficients can go out + // of this range for invalid/corrupt VP9 streams. However, strictly checking + // this range for every intermediate coefficient can burdensome for a decoder, + // therefore the following assertion is only enabled when configured with + // --enable-coefficient-range-checking. + assert(INT16_MIN <= input); + assert(input <= INT16_MAX); +#endif // CONFIG_COEFFICIENT_RANGE_CHECKING + return input; +} + +static INLINE tran_high_t dct_const_round_shift(tran_high_t input) { + tran_high_t rv = ROUND_POWER_OF_TWO(input, DCT_CONST_BITS); + return (tran_high_t)rv; +} + +#if CONFIG_VP9_HIGHBITDEPTH +static INLINE tran_high_t highbd_check_range(tran_high_t input, int bd) { +#if CONFIG_COEFFICIENT_RANGE_CHECKING + // For valid highbitdepth VP9 streams, intermediate stage coefficients will + // stay within the ranges: + // - 8 bit: signed 16 bit integer + // - 10 bit: signed 18 bit integer + // - 12 bit: signed 20 bit integer + const int32_t int_max = (1 << (7 + bd)) - 1; + const int32_t int_min = -int_max - 1; + assert(int_min <= input); + assert(input <= int_max); + (void)int_min; +#endif // CONFIG_COEFFICIENT_RANGE_CHECKING + (void)bd; + return input; +} +#endif // CONFIG_VP9_HIGHBITDEPTH + +#if CONFIG_EMULATE_HARDWARE +// When CONFIG_EMULATE_HARDWARE is 1 the transform performs a +// non-normative method to handle overflows. A stream that causes +// overflows in the inverse transform is considered invalid in VP9, +// and a hardware implementer is free to choose any reasonable +// method to handle overflows. However to aid in hardware +// verification they can use a specific implementation of the +// WRAPLOW() macro below that is identical to their intended +// hardware implementation (and also use configure options to trigger +// the C-implementation of the transform). +// +// The particular WRAPLOW implementation below performs strict +// overflow wrapping to match common hardware implementations. +// bd of 8 uses trans_low with 16bits, need to remove 16bits +// bd of 10 uses trans_low with 18bits, need to remove 14bits +// bd of 12 uses trans_low with 20bits, need to remove 12bits +// bd of x uses trans_low with 8+x bits, need to remove 24-x bits + +#define WRAPLOW(x) ((((int32_t)check_range(x)) << 16) >> 16) +#if CONFIG_VP9_HIGHBITDEPTH +#define HIGHBD_WRAPLOW(x, bd) \ + ((((int32_t)highbd_check_range((x), bd)) << (24 - bd)) >> (24 - bd)) +#endif // CONFIG_VP9_HIGHBITDEPTH + +#else // CONFIG_EMULATE_HARDWARE + +#define WRAPLOW(x) ((int32_t)check_range(x)) +#if CONFIG_VP9_HIGHBITDEPTH +#define HIGHBD_WRAPLOW(x, bd) ((int32_t)highbd_check_range((x), bd)) +#endif // CONFIG_VP9_HIGHBITDEPTH +#endif // CONFIG_EMULATE_HARDWARE + +void idct4_c(const tran_low_t *input, tran_low_t *output); +void idct8_c(const tran_low_t *input, tran_low_t *output); +void idct16_c(const tran_low_t *input, tran_low_t *output); +void idct32_c(const tran_low_t *input, tran_low_t *output); +void iadst4_c(const tran_low_t *input, tran_low_t *output); +void iadst8_c(const tran_low_t *input, tran_low_t *output); +void iadst16_c(const tran_low_t *input, tran_low_t *output); + +#if CONFIG_VP9_HIGHBITDEPTH +void vpx_highbd_idct4_c(const tran_low_t *input, tran_low_t *output, int bd); +void vpx_highbd_idct8_c(const tran_low_t *input, tran_low_t *output, int bd); +void vpx_highbd_idct16_c(const tran_low_t *input, tran_low_t *output, int bd); + +void vpx_highbd_iadst4_c(const tran_low_t *input, tran_low_t *output, int bd); +void vpx_highbd_iadst8_c(const tran_low_t *input, tran_low_t *output, int bd); +void vpx_highbd_iadst16_c(const tran_low_t *input, tran_low_t *output, int bd); + +static INLINE uint16_t highbd_clip_pixel_add(uint16_t dest, tran_high_t trans, + int bd) { + trans = HIGHBD_WRAPLOW(trans, bd); + return clip_pixel_highbd(dest + (int)trans, bd); +} +#endif + +static INLINE uint8_t clip_pixel_add(uint8_t dest, tran_high_t trans) { + trans = WRAPLOW(trans); + return clip_pixel(dest + (int)trans); +} +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VPX_DSP_INV_TXFM_H_ diff --git a/vpx_dsp/loopfilter.c b/vpx_dsp/loopfilter.c new file mode 100644 index 0000000..9866ea3 --- /dev/null +++ b/vpx_dsp/loopfilter.c @@ -0,0 +1,731 @@ +/* + * Copyright (c) 2015 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include + +#include "./vpx_config.h" +#include "./vpx_dsp_rtcd.h" +#include "vpx_dsp/vpx_dsp_common.h" +#include "vpx_ports/mem.h" + +static INLINE int8_t signed_char_clamp(int t) { + return (int8_t)clamp(t, -128, 127); +} + +#if CONFIG_VP9_HIGHBITDEPTH +static INLINE int16_t signed_char_clamp_high(int t, int bd) { + switch (bd) { + case 10: return (int16_t)clamp(t, -128 * 4, 128 * 4 - 1); + case 12: return (int16_t)clamp(t, -128 * 16, 128 * 16 - 1); + case 8: + default: return (int16_t)clamp(t, -128, 128 - 1); + } +} +#endif + +// Should we apply any filter at all: 11111111 yes, 00000000 no +static INLINE int8_t filter_mask(uint8_t limit, uint8_t blimit, uint8_t p3, + uint8_t p2, uint8_t p1, uint8_t p0, uint8_t q0, + uint8_t q1, uint8_t q2, uint8_t q3) { + int8_t mask = 0; + mask |= (abs(p3 - p2) > limit) * -1; + mask |= (abs(p2 - p1) > limit) * -1; + mask |= (abs(p1 - p0) > limit) * -1; + mask |= (abs(q1 - q0) > limit) * -1; + mask |= (abs(q2 - q1) > limit) * -1; + mask |= (abs(q3 - q2) > limit) * -1; + mask |= (abs(p0 - q0) * 2 + abs(p1 - q1) / 2 > blimit) * -1; + return ~mask; +} + +static INLINE int8_t flat_mask4(uint8_t thresh, uint8_t p3, uint8_t p2, + uint8_t p1, uint8_t p0, uint8_t q0, uint8_t q1, + uint8_t q2, uint8_t q3) { + int8_t mask = 0; + mask |= (abs(p1 - p0) > thresh) * -1; + mask |= (abs(q1 - q0) > thresh) * -1; + mask |= (abs(p2 - p0) > thresh) * -1; + mask |= (abs(q2 - q0) > thresh) * -1; + mask |= (abs(p3 - p0) > thresh) * -1; + mask |= (abs(q3 - q0) > thresh) * -1; + return ~mask; +} + +static INLINE int8_t flat_mask5(uint8_t thresh, uint8_t p4, uint8_t p3, + uint8_t p2, uint8_t p1, uint8_t p0, uint8_t q0, + uint8_t q1, uint8_t q2, uint8_t q3, + uint8_t q4) { + int8_t mask = ~flat_mask4(thresh, p3, p2, p1, p0, q0, q1, q2, q3); + mask |= (abs(p4 - p0) > thresh) * -1; + mask |= (abs(q4 - q0) > thresh) * -1; + return ~mask; +} + +// Is there high edge variance internal edge: 11111111 yes, 00000000 no +static INLINE int8_t hev_mask(uint8_t thresh, uint8_t p1, uint8_t p0, + uint8_t q0, uint8_t q1) { + int8_t hev = 0; + hev |= (abs(p1 - p0) > thresh) * -1; + hev |= (abs(q1 - q0) > thresh) * -1; + return hev; +} + +static INLINE void filter4(int8_t mask, uint8_t thresh, uint8_t *op1, + uint8_t *op0, uint8_t *oq0, uint8_t *oq1) { + int8_t filter1, filter2; + + const int8_t ps1 = (int8_t)*op1 ^ 0x80; + const int8_t ps0 = (int8_t)*op0 ^ 0x80; + const int8_t qs0 = (int8_t)*oq0 ^ 0x80; + const int8_t qs1 = (int8_t)*oq1 ^ 0x80; + const uint8_t hev = hev_mask(thresh, *op1, *op0, *oq0, *oq1); + + // add outer taps if we have high edge variance + int8_t filter = signed_char_clamp(ps1 - qs1) & hev; + + // inner taps + filter = signed_char_clamp(filter + 3 * (qs0 - ps0)) & mask; + + // save bottom 3 bits so that we round one side +4 and the other +3 + // if it equals 4 we'll set it to adjust by -1 to account for the fact + // we'd round it by 3 the other way + filter1 = signed_char_clamp(filter + 4) >> 3; + filter2 = signed_char_clamp(filter + 3) >> 3; + + *oq0 = signed_char_clamp(qs0 - filter1) ^ 0x80; + *op0 = signed_char_clamp(ps0 + filter2) ^ 0x80; + + // outer tap adjustments + filter = ROUND_POWER_OF_TWO(filter1, 1) & ~hev; + + *oq1 = signed_char_clamp(qs1 - filter) ^ 0x80; + *op1 = signed_char_clamp(ps1 + filter) ^ 0x80; +} + +void vpx_lpf_horizontal_4_c(uint8_t *s, int p /* pitch */, + const uint8_t *blimit, const uint8_t *limit, + const uint8_t *thresh) { + int i; + + // loop filter designed to work using chars so that we can make maximum use + // of 8 bit simd instructions. + for (i = 0; i < 8; ++i) { + const uint8_t p3 = s[-4 * p], p2 = s[-3 * p], p1 = s[-2 * p], p0 = s[-p]; + const uint8_t q0 = s[0 * p], q1 = s[1 * p], q2 = s[2 * p], q3 = s[3 * p]; + const int8_t mask = + filter_mask(*limit, *blimit, p3, p2, p1, p0, q0, q1, q2, q3); + filter4(mask, *thresh, s - 2 * p, s - 1 * p, s, s + 1 * p); + ++s; + } +} + +void vpx_lpf_horizontal_4_dual_c(uint8_t *s, int p, const uint8_t *blimit0, + const uint8_t *limit0, const uint8_t *thresh0, + const uint8_t *blimit1, const uint8_t *limit1, + const uint8_t *thresh1) { + vpx_lpf_horizontal_4_c(s, p, blimit0, limit0, thresh0); + vpx_lpf_horizontal_4_c(s + 8, p, blimit1, limit1, thresh1); +} + +void vpx_lpf_vertical_4_c(uint8_t *s, int pitch, const uint8_t *blimit, + const uint8_t *limit, const uint8_t *thresh) { + int i; + + // loop filter designed to work using chars so that we can make maximum use + // of 8 bit simd instructions. + for (i = 0; i < 8; ++i) { + const uint8_t p3 = s[-4], p2 = s[-3], p1 = s[-2], p0 = s[-1]; + const uint8_t q0 = s[0], q1 = s[1], q2 = s[2], q3 = s[3]; + const int8_t mask = + filter_mask(*limit, *blimit, p3, p2, p1, p0, q0, q1, q2, q3); + filter4(mask, *thresh, s - 2, s - 1, s, s + 1); + s += pitch; + } +} + +void vpx_lpf_vertical_4_dual_c(uint8_t *s, int pitch, const uint8_t *blimit0, + const uint8_t *limit0, const uint8_t *thresh0, + const uint8_t *blimit1, const uint8_t *limit1, + const uint8_t *thresh1) { + vpx_lpf_vertical_4_c(s, pitch, blimit0, limit0, thresh0); + vpx_lpf_vertical_4_c(s + 8 * pitch, pitch, blimit1, limit1, thresh1); +} + +static INLINE void filter8(int8_t mask, uint8_t thresh, uint8_t flat, + uint8_t *op3, uint8_t *op2, uint8_t *op1, + uint8_t *op0, uint8_t *oq0, uint8_t *oq1, + uint8_t *oq2, uint8_t *oq3) { + if (flat && mask) { + const uint8_t p3 = *op3, p2 = *op2, p1 = *op1, p0 = *op0; + const uint8_t q0 = *oq0, q1 = *oq1, q2 = *oq2, q3 = *oq3; + + // 7-tap filter [1, 1, 1, 2, 1, 1, 1] + *op2 = ROUND_POWER_OF_TWO(p3 + p3 + p3 + 2 * p2 + p1 + p0 + q0, 3); + *op1 = ROUND_POWER_OF_TWO(p3 + p3 + p2 + 2 * p1 + p0 + q0 + q1, 3); + *op0 = ROUND_POWER_OF_TWO(p3 + p2 + p1 + 2 * p0 + q0 + q1 + q2, 3); + *oq0 = ROUND_POWER_OF_TWO(p2 + p1 + p0 + 2 * q0 + q1 + q2 + q3, 3); + *oq1 = ROUND_POWER_OF_TWO(p1 + p0 + q0 + 2 * q1 + q2 + q3 + q3, 3); + *oq2 = ROUND_POWER_OF_TWO(p0 + q0 + q1 + 2 * q2 + q3 + q3 + q3, 3); + } else { + filter4(mask, thresh, op1, op0, oq0, oq1); + } +} + +void vpx_lpf_horizontal_8_c(uint8_t *s, int p, const uint8_t *blimit, + const uint8_t *limit, const uint8_t *thresh) { + int i; + + // loop filter designed to work using chars so that we can make maximum use + // of 8 bit simd instructions. + for (i = 0; i < 8; ++i) { + const uint8_t p3 = s[-4 * p], p2 = s[-3 * p], p1 = s[-2 * p], p0 = s[-p]; + const uint8_t q0 = s[0 * p], q1 = s[1 * p], q2 = s[2 * p], q3 = s[3 * p]; + + const int8_t mask = + filter_mask(*limit, *blimit, p3, p2, p1, p0, q0, q1, q2, q3); + const int8_t flat = flat_mask4(1, p3, p2, p1, p0, q0, q1, q2, q3); + filter8(mask, *thresh, flat, s - 4 * p, s - 3 * p, s - 2 * p, s - 1 * p, s, + s + 1 * p, s + 2 * p, s + 3 * p); + ++s; + } +} + +void vpx_lpf_horizontal_8_dual_c(uint8_t *s, int p, const uint8_t *blimit0, + const uint8_t *limit0, const uint8_t *thresh0, + const uint8_t *blimit1, const uint8_t *limit1, + const uint8_t *thresh1) { + vpx_lpf_horizontal_8_c(s, p, blimit0, limit0, thresh0); + vpx_lpf_horizontal_8_c(s + 8, p, blimit1, limit1, thresh1); +} + +void vpx_lpf_vertical_8_c(uint8_t *s, int pitch, const uint8_t *blimit, + const uint8_t *limit, const uint8_t *thresh) { + int i; + + for (i = 0; i < 8; ++i) { + const uint8_t p3 = s[-4], p2 = s[-3], p1 = s[-2], p0 = s[-1]; + const uint8_t q0 = s[0], q1 = s[1], q2 = s[2], q3 = s[3]; + const int8_t mask = + filter_mask(*limit, *blimit, p3, p2, p1, p0, q0, q1, q2, q3); + const int8_t flat = flat_mask4(1, p3, p2, p1, p0, q0, q1, q2, q3); + filter8(mask, *thresh, flat, s - 4, s - 3, s - 2, s - 1, s, s + 1, s + 2, + s + 3); + s += pitch; + } +} + +void vpx_lpf_vertical_8_dual_c(uint8_t *s, int pitch, const uint8_t *blimit0, + const uint8_t *limit0, const uint8_t *thresh0, + const uint8_t *blimit1, const uint8_t *limit1, + const uint8_t *thresh1) { + vpx_lpf_vertical_8_c(s, pitch, blimit0, limit0, thresh0); + vpx_lpf_vertical_8_c(s + 8 * pitch, pitch, blimit1, limit1, thresh1); +} + +static INLINE void filter16(int8_t mask, uint8_t thresh, uint8_t flat, + uint8_t flat2, uint8_t *op7, uint8_t *op6, + uint8_t *op5, uint8_t *op4, uint8_t *op3, + uint8_t *op2, uint8_t *op1, uint8_t *op0, + uint8_t *oq0, uint8_t *oq1, uint8_t *oq2, + uint8_t *oq3, uint8_t *oq4, uint8_t *oq5, + uint8_t *oq6, uint8_t *oq7) { + if (flat2 && flat && mask) { + const uint8_t p7 = *op7, p6 = *op6, p5 = *op5, p4 = *op4, p3 = *op3, + p2 = *op2, p1 = *op1, p0 = *op0; + + const uint8_t q0 = *oq0, q1 = *oq1, q2 = *oq2, q3 = *oq3, q4 = *oq4, + q5 = *oq5, q6 = *oq6, q7 = *oq7; + + // 15-tap filter [1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1] + *op6 = ROUND_POWER_OF_TWO( + p7 * 7 + p6 * 2 + p5 + p4 + p3 + p2 + p1 + p0 + q0, 4); + *op5 = ROUND_POWER_OF_TWO( + p7 * 6 + p6 + p5 * 2 + p4 + p3 + p2 + p1 + p0 + q0 + q1, 4); + *op4 = ROUND_POWER_OF_TWO( + p7 * 5 + p6 + p5 + p4 * 2 + p3 + p2 + p1 + p0 + q0 + q1 + q2, 4); + *op3 = ROUND_POWER_OF_TWO( + p7 * 4 + p6 + p5 + p4 + p3 * 2 + p2 + p1 + p0 + q0 + q1 + q2 + q3, 4); + *op2 = ROUND_POWER_OF_TWO( + p7 * 3 + p6 + p5 + p4 + p3 + p2 * 2 + p1 + p0 + q0 + q1 + q2 + q3 + q4, + 4); + *op1 = ROUND_POWER_OF_TWO(p7 * 2 + p6 + p5 + p4 + p3 + p2 + p1 * 2 + p0 + + q0 + q1 + q2 + q3 + q4 + q5, + 4); + *op0 = ROUND_POWER_OF_TWO(p7 + p6 + p5 + p4 + p3 + p2 + p1 + p0 * 2 + q0 + + q1 + q2 + q3 + q4 + q5 + q6, + 4); + *oq0 = ROUND_POWER_OF_TWO(p6 + p5 + p4 + p3 + p2 + p1 + p0 + q0 * 2 + q1 + + q2 + q3 + q4 + q5 + q6 + q7, + 4); + *oq1 = ROUND_POWER_OF_TWO(p5 + p4 + p3 + p2 + p1 + p0 + q0 + q1 * 2 + q2 + + q3 + q4 + q5 + q6 + q7 * 2, + 4); + *oq2 = ROUND_POWER_OF_TWO( + p4 + p3 + p2 + p1 + p0 + q0 + q1 + q2 * 2 + q3 + q4 + q5 + q6 + q7 * 3, + 4); + *oq3 = ROUND_POWER_OF_TWO( + p3 + p2 + p1 + p0 + q0 + q1 + q2 + q3 * 2 + q4 + q5 + q6 + q7 * 4, 4); + *oq4 = ROUND_POWER_OF_TWO( + p2 + p1 + p0 + q0 + q1 + q2 + q3 + q4 * 2 + q5 + q6 + q7 * 5, 4); + *oq5 = ROUND_POWER_OF_TWO( + p1 + p0 + q0 + q1 + q2 + q3 + q4 + q5 * 2 + q6 + q7 * 6, 4); + *oq6 = ROUND_POWER_OF_TWO( + p0 + q0 + q1 + q2 + q3 + q4 + q5 + q6 * 2 + q7 * 7, 4); + } else { + filter8(mask, thresh, flat, op3, op2, op1, op0, oq0, oq1, oq2, oq3); + } +} + +static void mb_lpf_horizontal_edge_w(uint8_t *s, int p, const uint8_t *blimit, + const uint8_t *limit, + const uint8_t *thresh, int count) { + int i; + + // loop filter designed to work using chars so that we can make maximum use + // of 8 bit simd instructions. + for (i = 0; i < 8 * count; ++i) { + const uint8_t p3 = s[-4 * p], p2 = s[-3 * p], p1 = s[-2 * p], p0 = s[-p]; + const uint8_t q0 = s[0 * p], q1 = s[1 * p], q2 = s[2 * p], q3 = s[3 * p]; + const int8_t mask = + filter_mask(*limit, *blimit, p3, p2, p1, p0, q0, q1, q2, q3); + const int8_t flat = flat_mask4(1, p3, p2, p1, p0, q0, q1, q2, q3); + const int8_t flat2 = + flat_mask5(1, s[-8 * p], s[-7 * p], s[-6 * p], s[-5 * p], p0, q0, + s[4 * p], s[5 * p], s[6 * p], s[7 * p]); + + filter16(mask, *thresh, flat, flat2, s - 8 * p, s - 7 * p, s - 6 * p, + s - 5 * p, s - 4 * p, s - 3 * p, s - 2 * p, s - 1 * p, s, + s + 1 * p, s + 2 * p, s + 3 * p, s + 4 * p, s + 5 * p, s + 6 * p, + s + 7 * p); + ++s; + } +} + +void vpx_lpf_horizontal_16_c(uint8_t *s, int p, const uint8_t *blimit, + const uint8_t *limit, const uint8_t *thresh) { + mb_lpf_horizontal_edge_w(s, p, blimit, limit, thresh, 1); +} + +void vpx_lpf_horizontal_16_dual_c(uint8_t *s, int p, const uint8_t *blimit, + const uint8_t *limit, const uint8_t *thresh) { + mb_lpf_horizontal_edge_w(s, p, blimit, limit, thresh, 2); +} + +static void mb_lpf_vertical_edge_w(uint8_t *s, int p, const uint8_t *blimit, + const uint8_t *limit, const uint8_t *thresh, + int count) { + int i; + + for (i = 0; i < count; ++i) { + const uint8_t p3 = s[-4], p2 = s[-3], p1 = s[-2], p0 = s[-1]; + const uint8_t q0 = s[0], q1 = s[1], q2 = s[2], q3 = s[3]; + const int8_t mask = + filter_mask(*limit, *blimit, p3, p2, p1, p0, q0, q1, q2, q3); + const int8_t flat = flat_mask4(1, p3, p2, p1, p0, q0, q1, q2, q3); + const int8_t flat2 = flat_mask5(1, s[-8], s[-7], s[-6], s[-5], p0, q0, s[4], + s[5], s[6], s[7]); + + filter16(mask, *thresh, flat, flat2, s - 8, s - 7, s - 6, s - 5, s - 4, + s - 3, s - 2, s - 1, s, s + 1, s + 2, s + 3, s + 4, s + 5, s + 6, + s + 7); + s += p; + } +} + +void vpx_lpf_vertical_16_c(uint8_t *s, int p, const uint8_t *blimit, + const uint8_t *limit, const uint8_t *thresh) { + mb_lpf_vertical_edge_w(s, p, blimit, limit, thresh, 8); +} + +void vpx_lpf_vertical_16_dual_c(uint8_t *s, int p, const uint8_t *blimit, + const uint8_t *limit, const uint8_t *thresh) { + mb_lpf_vertical_edge_w(s, p, blimit, limit, thresh, 16); +} + +#if CONFIG_VP9_HIGHBITDEPTH +// Should we apply any filter at all: 11111111 yes, 00000000 no ? +static INLINE int8_t highbd_filter_mask(uint8_t limit, uint8_t blimit, + uint16_t p3, uint16_t p2, uint16_t p1, + uint16_t p0, uint16_t q0, uint16_t q1, + uint16_t q2, uint16_t q3, int bd) { + int8_t mask = 0; + int16_t limit16 = (uint16_t)limit << (bd - 8); + int16_t blimit16 = (uint16_t)blimit << (bd - 8); + mask |= (abs(p3 - p2) > limit16) * -1; + mask |= (abs(p2 - p1) > limit16) * -1; + mask |= (abs(p1 - p0) > limit16) * -1; + mask |= (abs(q1 - q0) > limit16) * -1; + mask |= (abs(q2 - q1) > limit16) * -1; + mask |= (abs(q3 - q2) > limit16) * -1; + mask |= (abs(p0 - q0) * 2 + abs(p1 - q1) / 2 > blimit16) * -1; + return ~mask; +} + +static INLINE int8_t highbd_flat_mask4(uint8_t thresh, uint16_t p3, uint16_t p2, + uint16_t p1, uint16_t p0, uint16_t q0, + uint16_t q1, uint16_t q2, uint16_t q3, + int bd) { + int8_t mask = 0; + int16_t thresh16 = (uint16_t)thresh << (bd - 8); + mask |= (abs(p1 - p0) > thresh16) * -1; + mask |= (abs(q1 - q0) > thresh16) * -1; + mask |= (abs(p2 - p0) > thresh16) * -1; + mask |= (abs(q2 - q0) > thresh16) * -1; + mask |= (abs(p3 - p0) > thresh16) * -1; + mask |= (abs(q3 - q0) > thresh16) * -1; + return ~mask; +} + +static INLINE int8_t highbd_flat_mask5(uint8_t thresh, uint16_t p4, uint16_t p3, + uint16_t p2, uint16_t p1, uint16_t p0, + uint16_t q0, uint16_t q1, uint16_t q2, + uint16_t q3, uint16_t q4, int bd) { + int8_t mask = ~highbd_flat_mask4(thresh, p3, p2, p1, p0, q0, q1, q2, q3, bd); + int16_t thresh16 = (uint16_t)thresh << (bd - 8); + mask |= (abs(p4 - p0) > thresh16) * -1; + mask |= (abs(q4 - q0) > thresh16) * -1; + return ~mask; +} + +// Is there high edge variance internal edge: +// 11111111_11111111 yes, 00000000_00000000 no ? +static INLINE int16_t highbd_hev_mask(uint8_t thresh, uint16_t p1, uint16_t p0, + uint16_t q0, uint16_t q1, int bd) { + int16_t hev = 0; + int16_t thresh16 = (uint16_t)thresh << (bd - 8); + hev |= (abs(p1 - p0) > thresh16) * -1; + hev |= (abs(q1 - q0) > thresh16) * -1; + return hev; +} + +static INLINE void highbd_filter4(int8_t mask, uint8_t thresh, uint16_t *op1, + uint16_t *op0, uint16_t *oq0, uint16_t *oq1, + int bd) { + int16_t filter1, filter2; + // ^0x80 equivalent to subtracting 0x80 from the values to turn them + // into -128 to +127 instead of 0 to 255. + int shift = bd - 8; + const int16_t ps1 = (int16_t)*op1 - (0x80 << shift); + const int16_t ps0 = (int16_t)*op0 - (0x80 << shift); + const int16_t qs0 = (int16_t)*oq0 - (0x80 << shift); + const int16_t qs1 = (int16_t)*oq1 - (0x80 << shift); + const uint16_t hev = highbd_hev_mask(thresh, *op1, *op0, *oq0, *oq1, bd); + + // Add outer taps if we have high edge variance. + int16_t filter = signed_char_clamp_high(ps1 - qs1, bd) & hev; + + // Inner taps. + filter = signed_char_clamp_high(filter + 3 * (qs0 - ps0), bd) & mask; + + // Save bottom 3 bits so that we round one side +4 and the other +3 + // if it equals 4 we'll set it to adjust by -1 to account for the fact + // we'd round it by 3 the other way. + filter1 = signed_char_clamp_high(filter + 4, bd) >> 3; + filter2 = signed_char_clamp_high(filter + 3, bd) >> 3; + + *oq0 = signed_char_clamp_high(qs0 - filter1, bd) + (0x80 << shift); + *op0 = signed_char_clamp_high(ps0 + filter2, bd) + (0x80 << shift); + + // Outer tap adjustments. + filter = ROUND_POWER_OF_TWO(filter1, 1) & ~hev; + + *oq1 = signed_char_clamp_high(qs1 - filter, bd) + (0x80 << shift); + *op1 = signed_char_clamp_high(ps1 + filter, bd) + (0x80 << shift); +} + +void vpx_highbd_lpf_horizontal_4_c(uint16_t *s, int p /* pitch */, + const uint8_t *blimit, const uint8_t *limit, + const uint8_t *thresh, int bd) { + int i; + + // loop filter designed to work using chars so that we can make maximum use + // of 8 bit simd instructions. + for (i = 0; i < 8; ++i) { + const uint16_t p3 = s[-4 * p]; + const uint16_t p2 = s[-3 * p]; + const uint16_t p1 = s[-2 * p]; + const uint16_t p0 = s[-p]; + const uint16_t q0 = s[0 * p]; + const uint16_t q1 = s[1 * p]; + const uint16_t q2 = s[2 * p]; + const uint16_t q3 = s[3 * p]; + const int8_t mask = + highbd_filter_mask(*limit, *blimit, p3, p2, p1, p0, q0, q1, q2, q3, bd); + highbd_filter4(mask, *thresh, s - 2 * p, s - 1 * p, s, s + 1 * p, bd); + ++s; + } +} + +void vpx_highbd_lpf_horizontal_4_dual_c( + uint16_t *s, int p, const uint8_t *blimit0, const uint8_t *limit0, + const uint8_t *thresh0, const uint8_t *blimit1, const uint8_t *limit1, + const uint8_t *thresh1, int bd) { + vpx_highbd_lpf_horizontal_4_c(s, p, blimit0, limit0, thresh0, bd); + vpx_highbd_lpf_horizontal_4_c(s + 8, p, blimit1, limit1, thresh1, bd); +} + +void vpx_highbd_lpf_vertical_4_c(uint16_t *s, int pitch, const uint8_t *blimit, + const uint8_t *limit, const uint8_t *thresh, + int bd) { + int i; + + // loop filter designed to work using chars so that we can make maximum use + // of 8 bit simd instructions. + for (i = 0; i < 8; ++i) { + const uint16_t p3 = s[-4], p2 = s[-3], p1 = s[-2], p0 = s[-1]; + const uint16_t q0 = s[0], q1 = s[1], q2 = s[2], q3 = s[3]; + const int8_t mask = + highbd_filter_mask(*limit, *blimit, p3, p2, p1, p0, q0, q1, q2, q3, bd); + highbd_filter4(mask, *thresh, s - 2, s - 1, s, s + 1, bd); + s += pitch; + } +} + +void vpx_highbd_lpf_vertical_4_dual_c( + uint16_t *s, int pitch, const uint8_t *blimit0, const uint8_t *limit0, + const uint8_t *thresh0, const uint8_t *blimit1, const uint8_t *limit1, + const uint8_t *thresh1, int bd) { + vpx_highbd_lpf_vertical_4_c(s, pitch, blimit0, limit0, thresh0, bd); + vpx_highbd_lpf_vertical_4_c(s + 8 * pitch, pitch, blimit1, limit1, thresh1, + bd); +} + +static INLINE void highbd_filter8(int8_t mask, uint8_t thresh, uint8_t flat, + uint16_t *op3, uint16_t *op2, uint16_t *op1, + uint16_t *op0, uint16_t *oq0, uint16_t *oq1, + uint16_t *oq2, uint16_t *oq3, int bd) { + if (flat && mask) { + const uint16_t p3 = *op3, p2 = *op2, p1 = *op1, p0 = *op0; + const uint16_t q0 = *oq0, q1 = *oq1, q2 = *oq2, q3 = *oq3; + + // 7-tap filter [1, 1, 1, 2, 1, 1, 1] + *op2 = ROUND_POWER_OF_TWO(p3 + p3 + p3 + 2 * p2 + p1 + p0 + q0, 3); + *op1 = ROUND_POWER_OF_TWO(p3 + p3 + p2 + 2 * p1 + p0 + q0 + q1, 3); + *op0 = ROUND_POWER_OF_TWO(p3 + p2 + p1 + 2 * p0 + q0 + q1 + q2, 3); + *oq0 = ROUND_POWER_OF_TWO(p2 + p1 + p0 + 2 * q0 + q1 + q2 + q3, 3); + *oq1 = ROUND_POWER_OF_TWO(p1 + p0 + q0 + 2 * q1 + q2 + q3 + q3, 3); + *oq2 = ROUND_POWER_OF_TWO(p0 + q0 + q1 + 2 * q2 + q3 + q3 + q3, 3); + } else { + highbd_filter4(mask, thresh, op1, op0, oq0, oq1, bd); + } +} + +void vpx_highbd_lpf_horizontal_8_c(uint16_t *s, int p, const uint8_t *blimit, + const uint8_t *limit, const uint8_t *thresh, + int bd) { + int i; + + // loop filter designed to work using chars so that we can make maximum use + // of 8 bit simd instructions. + for (i = 0; i < 8; ++i) { + const uint16_t p3 = s[-4 * p], p2 = s[-3 * p], p1 = s[-2 * p], p0 = s[-p]; + const uint16_t q0 = s[0 * p], q1 = s[1 * p], q2 = s[2 * p], q3 = s[3 * p]; + + const int8_t mask = + highbd_filter_mask(*limit, *blimit, p3, p2, p1, p0, q0, q1, q2, q3, bd); + const int8_t flat = + highbd_flat_mask4(1, p3, p2, p1, p0, q0, q1, q2, q3, bd); + highbd_filter8(mask, *thresh, flat, s - 4 * p, s - 3 * p, s - 2 * p, + s - 1 * p, s, s + 1 * p, s + 2 * p, s + 3 * p, bd); + ++s; + } +} + +void vpx_highbd_lpf_horizontal_8_dual_c( + uint16_t *s, int p, const uint8_t *blimit0, const uint8_t *limit0, + const uint8_t *thresh0, const uint8_t *blimit1, const uint8_t *limit1, + const uint8_t *thresh1, int bd) { + vpx_highbd_lpf_horizontal_8_c(s, p, blimit0, limit0, thresh0, bd); + vpx_highbd_lpf_horizontal_8_c(s + 8, p, blimit1, limit1, thresh1, bd); +} + +void vpx_highbd_lpf_vertical_8_c(uint16_t *s, int pitch, const uint8_t *blimit, + const uint8_t *limit, const uint8_t *thresh, + int bd) { + int i; + + for (i = 0; i < 8; ++i) { + const uint16_t p3 = s[-4], p2 = s[-3], p1 = s[-2], p0 = s[-1]; + const uint16_t q0 = s[0], q1 = s[1], q2 = s[2], q3 = s[3]; + const int8_t mask = + highbd_filter_mask(*limit, *blimit, p3, p2, p1, p0, q0, q1, q2, q3, bd); + const int8_t flat = + highbd_flat_mask4(1, p3, p2, p1, p0, q0, q1, q2, q3, bd); + highbd_filter8(mask, *thresh, flat, s - 4, s - 3, s - 2, s - 1, s, s + 1, + s + 2, s + 3, bd); + s += pitch; + } +} + +void vpx_highbd_lpf_vertical_8_dual_c( + uint16_t *s, int pitch, const uint8_t *blimit0, const uint8_t *limit0, + const uint8_t *thresh0, const uint8_t *blimit1, const uint8_t *limit1, + const uint8_t *thresh1, int bd) { + vpx_highbd_lpf_vertical_8_c(s, pitch, blimit0, limit0, thresh0, bd); + vpx_highbd_lpf_vertical_8_c(s + 8 * pitch, pitch, blimit1, limit1, thresh1, + bd); +} + +static INLINE void highbd_filter16(int8_t mask, uint8_t thresh, uint8_t flat, + uint8_t flat2, uint16_t *op7, uint16_t *op6, + uint16_t *op5, uint16_t *op4, uint16_t *op3, + uint16_t *op2, uint16_t *op1, uint16_t *op0, + uint16_t *oq0, uint16_t *oq1, uint16_t *oq2, + uint16_t *oq3, uint16_t *oq4, uint16_t *oq5, + uint16_t *oq6, uint16_t *oq7, int bd) { + if (flat2 && flat && mask) { + const uint16_t p7 = *op7; + const uint16_t p6 = *op6; + const uint16_t p5 = *op5; + const uint16_t p4 = *op4; + const uint16_t p3 = *op3; + const uint16_t p2 = *op2; + const uint16_t p1 = *op1; + const uint16_t p0 = *op0; + const uint16_t q0 = *oq0; + const uint16_t q1 = *oq1; + const uint16_t q2 = *oq2; + const uint16_t q3 = *oq3; + const uint16_t q4 = *oq4; + const uint16_t q5 = *oq5; + const uint16_t q6 = *oq6; + const uint16_t q7 = *oq7; + + // 15-tap filter [1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1] + *op6 = ROUND_POWER_OF_TWO( + p7 * 7 + p6 * 2 + p5 + p4 + p3 + p2 + p1 + p0 + q0, 4); + *op5 = ROUND_POWER_OF_TWO( + p7 * 6 + p6 + p5 * 2 + p4 + p3 + p2 + p1 + p0 + q0 + q1, 4); + *op4 = ROUND_POWER_OF_TWO( + p7 * 5 + p6 + p5 + p4 * 2 + p3 + p2 + p1 + p0 + q0 + q1 + q2, 4); + *op3 = ROUND_POWER_OF_TWO( + p7 * 4 + p6 + p5 + p4 + p3 * 2 + p2 + p1 + p0 + q0 + q1 + q2 + q3, 4); + *op2 = ROUND_POWER_OF_TWO( + p7 * 3 + p6 + p5 + p4 + p3 + p2 * 2 + p1 + p0 + q0 + q1 + q2 + q3 + q4, + 4); + *op1 = ROUND_POWER_OF_TWO(p7 * 2 + p6 + p5 + p4 + p3 + p2 + p1 * 2 + p0 + + q0 + q1 + q2 + q3 + q4 + q5, + 4); + *op0 = ROUND_POWER_OF_TWO(p7 + p6 + p5 + p4 + p3 + p2 + p1 + p0 * 2 + q0 + + q1 + q2 + q3 + q4 + q5 + q6, + 4); + *oq0 = ROUND_POWER_OF_TWO(p6 + p5 + p4 + p3 + p2 + p1 + p0 + q0 * 2 + q1 + + q2 + q3 + q4 + q5 + q6 + q7, + 4); + *oq1 = ROUND_POWER_OF_TWO(p5 + p4 + p3 + p2 + p1 + p0 + q0 + q1 * 2 + q2 + + q3 + q4 + q5 + q6 + q7 * 2, + 4); + *oq2 = ROUND_POWER_OF_TWO( + p4 + p3 + p2 + p1 + p0 + q0 + q1 + q2 * 2 + q3 + q4 + q5 + q6 + q7 * 3, + 4); + *oq3 = ROUND_POWER_OF_TWO( + p3 + p2 + p1 + p0 + q0 + q1 + q2 + q3 * 2 + q4 + q5 + q6 + q7 * 4, 4); + *oq4 = ROUND_POWER_OF_TWO( + p2 + p1 + p0 + q0 + q1 + q2 + q3 + q4 * 2 + q5 + q6 + q7 * 5, 4); + *oq5 = ROUND_POWER_OF_TWO( + p1 + p0 + q0 + q1 + q2 + q3 + q4 + q5 * 2 + q6 + q7 * 6, 4); + *oq6 = ROUND_POWER_OF_TWO( + p0 + q0 + q1 + q2 + q3 + q4 + q5 + q6 * 2 + q7 * 7, 4); + } else { + highbd_filter8(mask, thresh, flat, op3, op2, op1, op0, oq0, oq1, oq2, oq3, + bd); + } +} + +static void highbd_mb_lpf_horizontal_edge_w(uint16_t *s, int p, + const uint8_t *blimit, + const uint8_t *limit, + const uint8_t *thresh, int count, + int bd) { + int i; + + // loop filter designed to work using chars so that we can make maximum use + // of 8 bit simd instructions. + for (i = 0; i < 8 * count; ++i) { + const uint16_t p3 = s[-4 * p]; + const uint16_t p2 = s[-3 * p]; + const uint16_t p1 = s[-2 * p]; + const uint16_t p0 = s[-p]; + const uint16_t q0 = s[0 * p]; + const uint16_t q1 = s[1 * p]; + const uint16_t q2 = s[2 * p]; + const uint16_t q3 = s[3 * p]; + const int8_t mask = + highbd_filter_mask(*limit, *blimit, p3, p2, p1, p0, q0, q1, q2, q3, bd); + const int8_t flat = + highbd_flat_mask4(1, p3, p2, p1, p0, q0, q1, q2, q3, bd); + const int8_t flat2 = + highbd_flat_mask5(1, s[-8 * p], s[-7 * p], s[-6 * p], s[-5 * p], p0, q0, + s[4 * p], s[5 * p], s[6 * p], s[7 * p], bd); + + highbd_filter16(mask, *thresh, flat, flat2, s - 8 * p, s - 7 * p, s - 6 * p, + s - 5 * p, s - 4 * p, s - 3 * p, s - 2 * p, s - 1 * p, s, + s + 1 * p, s + 2 * p, s + 3 * p, s + 4 * p, s + 5 * p, + s + 6 * p, s + 7 * p, bd); + ++s; + } +} + +void vpx_highbd_lpf_horizontal_16_c(uint16_t *s, int p, const uint8_t *blimit, + const uint8_t *limit, const uint8_t *thresh, + int bd) { + highbd_mb_lpf_horizontal_edge_w(s, p, blimit, limit, thresh, 1, bd); +} + +void vpx_highbd_lpf_horizontal_16_dual_c(uint16_t *s, int p, + const uint8_t *blimit, + const uint8_t *limit, + const uint8_t *thresh, int bd) { + highbd_mb_lpf_horizontal_edge_w(s, p, blimit, limit, thresh, 2, bd); +} + +static void highbd_mb_lpf_vertical_edge_w(uint16_t *s, int p, + const uint8_t *blimit, + const uint8_t *limit, + const uint8_t *thresh, int count, + int bd) { + int i; + + for (i = 0; i < count; ++i) { + const uint16_t p3 = s[-4]; + const uint16_t p2 = s[-3]; + const uint16_t p1 = s[-2]; + const uint16_t p0 = s[-1]; + const uint16_t q0 = s[0]; + const uint16_t q1 = s[1]; + const uint16_t q2 = s[2]; + const uint16_t q3 = s[3]; + const int8_t mask = + highbd_filter_mask(*limit, *blimit, p3, p2, p1, p0, q0, q1, q2, q3, bd); + const int8_t flat = + highbd_flat_mask4(1, p3, p2, p1, p0, q0, q1, q2, q3, bd); + const int8_t flat2 = highbd_flat_mask5(1, s[-8], s[-7], s[-6], s[-5], p0, + q0, s[4], s[5], s[6], s[7], bd); + + highbd_filter16(mask, *thresh, flat, flat2, s - 8, s - 7, s - 6, s - 5, + s - 4, s - 3, s - 2, s - 1, s, s + 1, s + 2, s + 3, s + 4, + s + 5, s + 6, s + 7, bd); + s += p; + } +} + +void vpx_highbd_lpf_vertical_16_c(uint16_t *s, int p, const uint8_t *blimit, + const uint8_t *limit, const uint8_t *thresh, + int bd) { + highbd_mb_lpf_vertical_edge_w(s, p, blimit, limit, thresh, 8, bd); +} + +void vpx_highbd_lpf_vertical_16_dual_c(uint16_t *s, int p, + const uint8_t *blimit, + const uint8_t *limit, + const uint8_t *thresh, int bd) { + highbd_mb_lpf_vertical_edge_w(s, p, blimit, limit, thresh, 16, bd); +} +#endif // CONFIG_VP9_HIGHBITDEPTH diff --git a/vpx_dsp/mips/add_noise_msa.c b/vpx_dsp/mips/add_noise_msa.c new file mode 100644 index 0000000..43d2c11 --- /dev/null +++ b/vpx_dsp/mips/add_noise_msa.c @@ -0,0 +1,52 @@ +/* + * Copyright (c) 2015 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include "./macros_msa.h" + +void vpx_plane_add_noise_msa(uint8_t *start_ptr, const int8_t *noise, + int blackclamp, int whiteclamp, int width, + int height, int32_t pitch) { + int i, j; + v16u8 pos0, pos1, ref0, ref1; + v16i8 black_clamp, white_clamp, both_clamp; + + black_clamp = __msa_fill_b(blackclamp); + white_clamp = __msa_fill_b(whiteclamp); + both_clamp = black_clamp + white_clamp; + both_clamp = -both_clamp; + + for (i = 0; i < height / 2; ++i) { + uint8_t *pos0_ptr = start_ptr + (2 * i) * pitch; + const int8_t *ref0_ptr = noise + (rand() & 0xff); + uint8_t *pos1_ptr = start_ptr + (2 * i + 1) * pitch; + const int8_t *ref1_ptr = noise + (rand() & 0xff); + for (j = width / 16; j--;) { + pos0 = LD_UB(pos0_ptr); + ref0 = LD_UB(ref0_ptr); + pos1 = LD_UB(pos1_ptr); + ref1 = LD_UB(ref1_ptr); + pos0 = __msa_subsus_u_b(pos0, black_clamp); + pos1 = __msa_subsus_u_b(pos1, black_clamp); + pos0 = __msa_subsus_u_b(pos0, both_clamp); + pos1 = __msa_subsus_u_b(pos1, both_clamp); + pos0 = __msa_subsus_u_b(pos0, white_clamp); + pos1 = __msa_subsus_u_b(pos1, white_clamp); + pos0 += ref0; + ST_UB(pos0, pos0_ptr); + pos1 += ref1; + ST_UB(pos1, pos1_ptr); + pos0_ptr += 16; + pos1_ptr += 16; + ref0_ptr += 16; + ref1_ptr += 16; + } + } +} diff --git a/vpx_dsp/mips/avg_msa.c b/vpx_dsp/mips/avg_msa.c new file mode 100644 index 0000000..d0ac7b8 --- /dev/null +++ b/vpx_dsp/mips/avg_msa.c @@ -0,0 +1,728 @@ +/* + * Copyright (c) 2015 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ +#include + +#include "./vpx_dsp_rtcd.h" +#include "vpx_dsp/mips/macros_msa.h" + +uint32_t vpx_avg_8x8_msa(const uint8_t *src, int32_t src_stride) { + uint32_t sum_out; + v16u8 src0, src1, src2, src3, src4, src5, src6, src7; + v8u16 sum0, sum1, sum2, sum3, sum4, sum5, sum6, sum7; + v4u32 sum = { 0 }; + + LD_UB8(src, src_stride, src0, src1, src2, src3, src4, src5, src6, src7); + HADD_UB4_UH(src0, src1, src2, src3, sum0, sum1, sum2, sum3); + HADD_UB4_UH(src4, src5, src6, src7, sum4, sum5, sum6, sum7); + ADD4(sum0, sum1, sum2, sum3, sum4, sum5, sum6, sum7, sum0, sum2, sum4, sum6); + ADD2(sum0, sum2, sum4, sum6, sum0, sum4); + sum0 += sum4; + + sum = __msa_hadd_u_w(sum0, sum0); + sum0 = (v8u16)__msa_pckev_h((v8i16)sum, (v8i16)sum); + sum = __msa_hadd_u_w(sum0, sum0); + sum = (v4u32)__msa_srari_w((v4i32)sum, 6); + sum_out = __msa_copy_u_w((v4i32)sum, 0); + + return sum_out; +} + +uint32_t vpx_avg_4x4_msa(const uint8_t *src, int32_t src_stride) { + uint32_t sum_out; + uint32_t src0, src1, src2, src3; + v16u8 vec = { 0 }; + v8u16 sum0; + v4u32 sum1; + v2u64 sum2; + + LW4(src, src_stride, src0, src1, src2, src3); + INSERT_W4_UB(src0, src1, src2, src3, vec); + + sum0 = __msa_hadd_u_h(vec, vec); + sum1 = __msa_hadd_u_w(sum0, sum0); + sum0 = (v8u16)__msa_pckev_h((v8i16)sum1, (v8i16)sum1); + sum1 = __msa_hadd_u_w(sum0, sum0); + sum2 = __msa_hadd_u_d(sum1, sum1); + sum1 = (v4u32)__msa_srari_w((v4i32)sum2, 4); + sum_out = __msa_copy_u_w((v4i32)sum1, 0); + + return sum_out; +} + +void vpx_hadamard_8x8_msa(const int16_t *src, ptrdiff_t src_stride, + int16_t *dst) { + v8i16 src0, src1, src2, src3, src4, src5, src6, src7; + v8i16 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; + + LD_SH8(src, src_stride, src0, src1, src2, src3, src4, src5, src6, src7); + BUTTERFLY_8(src0, src2, src4, src6, src7, src5, src3, src1, tmp0, tmp2, tmp4, + tmp6, tmp7, tmp5, tmp3, tmp1); + BUTTERFLY_8(tmp0, tmp1, tmp4, tmp5, tmp7, tmp6, tmp3, tmp2, src0, src1, src4, + src5, src7, src6, src3, src2); + BUTTERFLY_8(src0, src1, src2, src3, src7, src6, src5, src4, tmp0, tmp7, tmp3, + tmp4, tmp5, tmp1, tmp6, tmp2); + TRANSPOSE8x8_SH_SH(tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7, src0, src1, + src2, src3, src4, src5, src6, src7); + BUTTERFLY_8(src0, src2, src4, src6, src7, src5, src3, src1, tmp0, tmp2, tmp4, + tmp6, tmp7, tmp5, tmp3, tmp1); + BUTTERFLY_8(tmp0, tmp1, tmp4, tmp5, tmp7, tmp6, tmp3, tmp2, src0, src1, src4, + src5, src7, src6, src3, src2); + BUTTERFLY_8(src0, src1, src2, src3, src7, src6, src5, src4, tmp0, tmp7, tmp3, + tmp4, tmp5, tmp1, tmp6, tmp2); + TRANSPOSE8x8_SH_SH(tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7, src0, src1, + src2, src3, src4, src5, src6, src7); + ST_SH8(src0, src1, src2, src3, src4, src5, src6, src7, dst, 8); +} + +void vpx_hadamard_16x16_msa(const int16_t *src, ptrdiff_t src_stride, + int16_t *dst) { + v8i16 src0, src1, src2, src3, src4, src5, src6, src7, src8, src9, src10; + v8i16 src11, src12, src13, src14, src15, tmp0, tmp1, tmp2, tmp3, tmp4, tmp5; + v8i16 tmp6, tmp7, tmp8, tmp9, tmp10, tmp11, tmp12, tmp13, tmp14, tmp15; + v8i16 res0, res1, res2, res3, res4, res5, res6, res7; + + LD_SH2(src, 8, src0, src8); + src += src_stride; + LD_SH2(src, 8, src1, src9); + src += src_stride; + LD_SH2(src, 8, src2, src10); + src += src_stride; + LD_SH2(src, 8, src3, src11); + src += src_stride; + LD_SH2(src, 8, src4, src12); + src += src_stride; + LD_SH2(src, 8, src5, src13); + src += src_stride; + LD_SH2(src, 8, src6, src14); + src += src_stride; + LD_SH2(src, 8, src7, src15); + src += src_stride; + + BUTTERFLY_8(src0, src2, src4, src6, src7, src5, src3, src1, tmp0, tmp2, tmp4, + tmp6, tmp7, tmp5, tmp3, tmp1); + BUTTERFLY_8(src8, src10, src12, src14, src15, src13, src11, src9, tmp8, tmp10, + tmp12, tmp14, tmp15, tmp13, tmp11, tmp9); + + BUTTERFLY_8(tmp0, tmp1, tmp4, tmp5, tmp7, tmp6, tmp3, tmp2, src0, src1, src4, + src5, src7, src6, src3, src2); + BUTTERFLY_8(src0, src1, src2, src3, src7, src6, src5, src4, tmp0, tmp7, tmp3, + tmp4, tmp5, tmp1, tmp6, tmp2); + TRANSPOSE8x8_SH_SH(tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7, src0, src1, + src2, src3, src4, src5, src6, src7); + BUTTERFLY_8(src0, src2, src4, src6, src7, src5, src3, src1, tmp0, tmp2, tmp4, + tmp6, tmp7, tmp5, tmp3, tmp1); + BUTTERFLY_8(tmp0, tmp1, tmp4, tmp5, tmp7, tmp6, tmp3, tmp2, src0, src1, src4, + src5, src7, src6, src3, src2); + BUTTERFLY_8(src0, src1, src2, src3, src7, src6, src5, src4, tmp0, tmp7, tmp3, + tmp4, tmp5, tmp1, tmp6, tmp2); + TRANSPOSE8x8_SH_SH(tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7, src0, src1, + src2, src11, src4, src5, src6, src7); + ST_SH8(src0, src1, src2, src11, src4, src5, src6, src7, dst, 8); + + BUTTERFLY_8(tmp8, tmp9, tmp12, tmp13, tmp15, tmp14, tmp11, tmp10, src8, src9, + src12, src13, src15, src14, src11, src10); + BUTTERFLY_8(src8, src9, src10, src11, src15, src14, src13, src12, tmp8, tmp15, + tmp11, tmp12, tmp13, tmp9, tmp14, tmp10); + TRANSPOSE8x8_SH_SH(tmp8, tmp9, tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, src8, + src9, src10, src11, src12, src13, src14, src15); + BUTTERFLY_8(src8, src10, src12, src14, src15, src13, src11, src9, tmp8, tmp10, + tmp12, tmp14, tmp15, tmp13, tmp11, tmp9); + BUTTERFLY_8(tmp8, tmp9, tmp12, tmp13, tmp15, tmp14, tmp11, tmp10, src8, src9, + src12, src13, src15, src14, src11, src10); + BUTTERFLY_8(src8, src9, src10, src11, src15, src14, src13, src12, tmp8, tmp15, + tmp11, tmp12, tmp13, tmp9, tmp14, tmp10); + TRANSPOSE8x8_SH_SH(tmp8, tmp9, tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, res0, + res1, res2, res3, res4, res5, res6, res7); + + LD_SH2(src, 8, src0, src8); + src += src_stride; + LD_SH2(src, 8, src1, src9); + src += src_stride; + LD_SH2(src, 8, src2, src10); + src += src_stride; + LD_SH2(src, 8, src3, src11); + src += src_stride; + + ST_SH8(res0, res1, res2, res3, res4, res5, res6, res7, dst + 64, 8); + + LD_SH2(src, 8, src4, src12); + src += src_stride; + LD_SH2(src, 8, src5, src13); + src += src_stride; + LD_SH2(src, 8, src6, src14); + src += src_stride; + LD_SH2(src, 8, src7, src15); + src += src_stride; + + BUTTERFLY_8(src0, src2, src4, src6, src7, src5, src3, src1, tmp0, tmp2, tmp4, + tmp6, tmp7, tmp5, tmp3, tmp1); + BUTTERFLY_8(src8, src10, src12, src14, src15, src13, src11, src9, tmp8, tmp10, + tmp12, tmp14, tmp15, tmp13, tmp11, tmp9); + + BUTTERFLY_8(tmp0, tmp1, tmp4, tmp5, tmp7, tmp6, tmp3, tmp2, src0, src1, src4, + src5, src7, src6, src3, src2); + BUTTERFLY_8(src0, src1, src2, src3, src7, src6, src5, src4, tmp0, tmp7, tmp3, + tmp4, tmp5, tmp1, tmp6, tmp2); + TRANSPOSE8x8_SH_SH(tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7, src0, src1, + src2, src3, src4, src5, src6, src7); + BUTTERFLY_8(src0, src2, src4, src6, src7, src5, src3, src1, tmp0, tmp2, tmp4, + tmp6, tmp7, tmp5, tmp3, tmp1); + BUTTERFLY_8(tmp0, tmp1, tmp4, tmp5, tmp7, tmp6, tmp3, tmp2, src0, src1, src4, + src5, src7, src6, src3, src2); + BUTTERFLY_8(src0, src1, src2, src3, src7, src6, src5, src4, tmp0, tmp7, tmp3, + tmp4, tmp5, tmp1, tmp6, tmp2); + TRANSPOSE8x8_SH_SH(tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7, src0, src1, + src2, src3, src4, src5, src6, src7); + ST_SH8(src0, src1, src2, src3, src4, src5, src6, src7, dst + 2 * 64, 8); + + BUTTERFLY_8(tmp8, tmp9, tmp12, tmp13, tmp15, tmp14, tmp11, tmp10, src8, src9, + src12, src13, src15, src14, src11, src10); + BUTTERFLY_8(src8, src9, src10, src11, src15, src14, src13, src12, tmp8, tmp15, + tmp11, tmp12, tmp13, tmp9, tmp14, tmp10); + TRANSPOSE8x8_SH_SH(tmp8, tmp9, tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, src8, + src9, src10, src11, src12, src13, src14, src15); + BUTTERFLY_8(src8, src10, src12, src14, src15, src13, src11, src9, tmp8, tmp10, + tmp12, tmp14, tmp15, tmp13, tmp11, tmp9); + BUTTERFLY_8(tmp8, tmp9, tmp12, tmp13, tmp15, tmp14, tmp11, tmp10, src8, src9, + src12, src13, src15, src14, src11, src10); + BUTTERFLY_8(src8, src9, src10, src11, src15, src14, src13, src12, tmp8, tmp15, + tmp11, tmp12, tmp13, tmp9, tmp14, tmp10); + TRANSPOSE8x8_SH_SH(tmp8, tmp9, tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, res0, + res1, res2, res3, res4, res5, res6, res7); + ST_SH8(res0, res1, res2, res3, res4, res5, res6, res7, dst + 3 * 64, 8); + + LD_SH4(dst, 64, src0, src1, src2, src3); + LD_SH4(dst + 8, 64, src4, src5, src6, src7); + + BUTTERFLY_8(src0, src2, src4, src6, src7, src5, src3, src1, tmp0, tmp2, tmp4, + tmp6, tmp7, tmp5, tmp3, tmp1); + SRA_4V(tmp0, tmp1, tmp2, tmp3, 1); + SRA_4V(tmp4, tmp5, tmp6, tmp7, 1); + BUTTERFLY_8(tmp0, tmp1, tmp4, tmp5, tmp7, tmp6, tmp3, tmp2, src0, src1, src4, + src5, src7, src6, src3, src2); + + ST_SH4(src0, src1, src2, src3, dst, 64); + ST_SH4(src4, src5, src6, src7, dst + 8, 64); + dst += 16; + + LD_SH4(dst, 64, src0, src1, src2, src3); + LD_SH4(dst + 8, 64, src4, src5, src6, src7); + + BUTTERFLY_8(src0, src2, src4, src6, src7, src5, src3, src1, tmp0, tmp2, tmp4, + tmp6, tmp7, tmp5, tmp3, tmp1); + SRA_4V(tmp0, tmp1, tmp2, tmp3, 1); + SRA_4V(tmp4, tmp5, tmp6, tmp7, 1); + BUTTERFLY_8(tmp0, tmp1, tmp4, tmp5, tmp7, tmp6, tmp3, tmp2, src0, src1, src4, + src5, src7, src6, src3, src2); + + ST_SH4(src0, src1, src2, src3, dst, 64); + ST_SH4(src4, src5, src6, src7, dst + 8, 64); + dst += 16; + + LD_SH4(dst, 64, src0, src1, src2, src3); + LD_SH4(dst + 8, 64, src4, src5, src6, src7); + + BUTTERFLY_8(src0, src2, src4, src6, src7, src5, src3, src1, tmp0, tmp2, tmp4, + tmp6, tmp7, tmp5, tmp3, tmp1); + SRA_4V(tmp0, tmp1, tmp2, tmp3, 1); + SRA_4V(tmp4, tmp5, tmp6, tmp7, 1); + BUTTERFLY_8(tmp0, tmp1, tmp4, tmp5, tmp7, tmp6, tmp3, tmp2, src0, src1, src4, + src5, src7, src6, src3, src2); + + ST_SH4(src0, src1, src2, src3, dst, 64); + ST_SH4(src4, src5, src6, src7, dst + 8, 64); + dst += 16; + + LD_SH4(dst, 64, src0, src1, src2, src3); + LD_SH4(dst + 8, 64, src4, src5, src6, src7); + + BUTTERFLY_8(src0, src2, src4, src6, src7, src5, src3, src1, tmp0, tmp2, tmp4, + tmp6, tmp7, tmp5, tmp3, tmp1); + SRA_4V(tmp0, tmp1, tmp2, tmp3, 1); + SRA_4V(tmp4, tmp5, tmp6, tmp7, 1); + BUTTERFLY_8(tmp0, tmp1, tmp4, tmp5, tmp7, tmp6, tmp3, tmp2, src0, src1, src4, + src5, src7, src6, src3, src2); + + ST_SH4(src0, src1, src2, src3, dst, 64); + ST_SH4(src4, src5, src6, src7, dst + 8, 64); +} + +int vpx_satd_msa(const int16_t *data, int length) { + int i, satd; + v8i16 src0, src1, src2, src3, src4, src5, src6, src7; + v8i16 src8, src9, src10, src11, src12, src13, src14, src15; + v8i16 zero = { 0 }; + v8u16 tmp0_h, tmp1_h, tmp2_h, tmp3_h, tmp4_h, tmp5_h, tmp6_h, tmp7_h; + v4u32 tmp0_w = { 0 }; + + if (16 == length) { + LD_SH2(data, 8, src0, src1); + tmp0_h = (v8u16)__msa_asub_s_h(src0, zero); + tmp1_h = (v8u16)__msa_asub_s_h(src1, zero); + tmp0_w = __msa_hadd_u_w(tmp0_h, tmp0_h); + tmp0_w += __msa_hadd_u_w(tmp1_h, tmp1_h); + satd = HADD_UW_U32(tmp0_w); + } else if (64 == length) { + LD_SH8(data, 8, src0, src1, src2, src3, src4, src5, src6, src7); + + tmp0_h = (v8u16)__msa_asub_s_h(src0, zero); + tmp1_h = (v8u16)__msa_asub_s_h(src1, zero); + tmp2_h = (v8u16)__msa_asub_s_h(src2, zero); + tmp3_h = (v8u16)__msa_asub_s_h(src3, zero); + tmp4_h = (v8u16)__msa_asub_s_h(src4, zero); + tmp5_h = (v8u16)__msa_asub_s_h(src5, zero); + tmp6_h = (v8u16)__msa_asub_s_h(src6, zero); + tmp7_h = (v8u16)__msa_asub_s_h(src7, zero); + + tmp0_w = __msa_hadd_u_w(tmp0_h, tmp0_h); + tmp0_w += __msa_hadd_u_w(tmp1_h, tmp1_h); + tmp0_w += __msa_hadd_u_w(tmp2_h, tmp2_h); + tmp0_w += __msa_hadd_u_w(tmp3_h, tmp3_h); + tmp0_w += __msa_hadd_u_w(tmp4_h, tmp4_h); + tmp0_w += __msa_hadd_u_w(tmp5_h, tmp5_h); + tmp0_w += __msa_hadd_u_w(tmp6_h, tmp6_h); + tmp0_w += __msa_hadd_u_w(tmp7_h, tmp7_h); + + satd = HADD_UW_U32(tmp0_w); + } else if (256 == length) { + for (i = 0; i < 2; ++i) { + LD_SH8(data, 8, src0, src1, src2, src3, src4, src5, src6, src7); + data += 8 * 8; + LD_SH8(data, 8, src8, src9, src10, src11, src12, src13, src14, src15); + data += 8 * 8; + + tmp0_h = (v8u16)__msa_asub_s_h(src0, zero); + tmp1_h = (v8u16)__msa_asub_s_h(src1, zero); + tmp2_h = (v8u16)__msa_asub_s_h(src2, zero); + tmp3_h = (v8u16)__msa_asub_s_h(src3, zero); + tmp4_h = (v8u16)__msa_asub_s_h(src4, zero); + tmp5_h = (v8u16)__msa_asub_s_h(src5, zero); + tmp6_h = (v8u16)__msa_asub_s_h(src6, zero); + tmp7_h = (v8u16)__msa_asub_s_h(src7, zero); + + tmp0_w += __msa_hadd_u_w(tmp0_h, tmp0_h); + tmp0_w += __msa_hadd_u_w(tmp1_h, tmp1_h); + tmp0_w += __msa_hadd_u_w(tmp2_h, tmp2_h); + tmp0_w += __msa_hadd_u_w(tmp3_h, tmp3_h); + tmp0_w += __msa_hadd_u_w(tmp4_h, tmp4_h); + tmp0_w += __msa_hadd_u_w(tmp5_h, tmp5_h); + tmp0_w += __msa_hadd_u_w(tmp6_h, tmp6_h); + tmp0_w += __msa_hadd_u_w(tmp7_h, tmp7_h); + + tmp0_h = (v8u16)__msa_asub_s_h(src8, zero); + tmp1_h = (v8u16)__msa_asub_s_h(src9, zero); + tmp2_h = (v8u16)__msa_asub_s_h(src10, zero); + tmp3_h = (v8u16)__msa_asub_s_h(src11, zero); + tmp4_h = (v8u16)__msa_asub_s_h(src12, zero); + tmp5_h = (v8u16)__msa_asub_s_h(src13, zero); + tmp6_h = (v8u16)__msa_asub_s_h(src14, zero); + tmp7_h = (v8u16)__msa_asub_s_h(src15, zero); + + tmp0_w += __msa_hadd_u_w(tmp0_h, tmp0_h); + tmp0_w += __msa_hadd_u_w(tmp1_h, tmp1_h); + tmp0_w += __msa_hadd_u_w(tmp2_h, tmp2_h); + tmp0_w += __msa_hadd_u_w(tmp3_h, tmp3_h); + tmp0_w += __msa_hadd_u_w(tmp4_h, tmp4_h); + tmp0_w += __msa_hadd_u_w(tmp5_h, tmp5_h); + tmp0_w += __msa_hadd_u_w(tmp6_h, tmp6_h); + tmp0_w += __msa_hadd_u_w(tmp7_h, tmp7_h); + } + + satd = HADD_UW_U32(tmp0_w); + } else if (1024 == length) { + for (i = 0; i < 8; ++i) { + LD_SH8(data, 8, src0, src1, src2, src3, src4, src5, src6, src7); + data += 8 * 8; + LD_SH8(data, 8, src8, src9, src10, src11, src12, src13, src14, src15); + data += 8 * 8; + + tmp0_h = (v8u16)__msa_asub_s_h(src0, zero); + tmp1_h = (v8u16)__msa_asub_s_h(src1, zero); + tmp2_h = (v8u16)__msa_asub_s_h(src2, zero); + tmp3_h = (v8u16)__msa_asub_s_h(src3, zero); + tmp4_h = (v8u16)__msa_asub_s_h(src4, zero); + tmp5_h = (v8u16)__msa_asub_s_h(src5, zero); + tmp6_h = (v8u16)__msa_asub_s_h(src6, zero); + tmp7_h = (v8u16)__msa_asub_s_h(src7, zero); + + tmp0_w += __msa_hadd_u_w(tmp0_h, tmp0_h); + tmp0_w += __msa_hadd_u_w(tmp1_h, tmp1_h); + tmp0_w += __msa_hadd_u_w(tmp2_h, tmp2_h); + tmp0_w += __msa_hadd_u_w(tmp3_h, tmp3_h); + tmp0_w += __msa_hadd_u_w(tmp4_h, tmp4_h); + tmp0_w += __msa_hadd_u_w(tmp5_h, tmp5_h); + tmp0_w += __msa_hadd_u_w(tmp6_h, tmp6_h); + tmp0_w += __msa_hadd_u_w(tmp7_h, tmp7_h); + + tmp0_h = (v8u16)__msa_asub_s_h(src8, zero); + tmp1_h = (v8u16)__msa_asub_s_h(src9, zero); + tmp2_h = (v8u16)__msa_asub_s_h(src10, zero); + tmp3_h = (v8u16)__msa_asub_s_h(src11, zero); + tmp4_h = (v8u16)__msa_asub_s_h(src12, zero); + tmp5_h = (v8u16)__msa_asub_s_h(src13, zero); + tmp6_h = (v8u16)__msa_asub_s_h(src14, zero); + tmp7_h = (v8u16)__msa_asub_s_h(src15, zero); + + tmp0_w += __msa_hadd_u_w(tmp0_h, tmp0_h); + tmp0_w += __msa_hadd_u_w(tmp1_h, tmp1_h); + tmp0_w += __msa_hadd_u_w(tmp2_h, tmp2_h); + tmp0_w += __msa_hadd_u_w(tmp3_h, tmp3_h); + tmp0_w += __msa_hadd_u_w(tmp4_h, tmp4_h); + tmp0_w += __msa_hadd_u_w(tmp5_h, tmp5_h); + tmp0_w += __msa_hadd_u_w(tmp6_h, tmp6_h); + tmp0_w += __msa_hadd_u_w(tmp7_h, tmp7_h); + } + + satd = HADD_UW_U32(tmp0_w); + } else { + satd = 0; + + for (i = 0; i < length; ++i) { + satd += abs(data[i]); + } + } + + return satd; +} + +void vpx_int_pro_row_msa(int16_t hbuf[16], const uint8_t *ref, + const int ref_stride, const int height) { + int i; + v16u8 ref0, ref1, ref2, ref3, ref4, ref5, ref6, ref7; + v8i16 hbuf_r = { 0 }; + v8i16 hbuf_l = { 0 }; + v8i16 ref0_r, ref0_l, ref1_r, ref1_l, ref2_r, ref2_l, ref3_r, ref3_l; + v8i16 ref4_r, ref4_l, ref5_r, ref5_l, ref6_r, ref6_l, ref7_r, ref7_l; + + if (16 == height) { + for (i = 2; i--;) { + LD_UB8(ref, ref_stride, ref0, ref1, ref2, ref3, ref4, ref5, ref6, ref7); + ref += 8 * ref_stride; + UNPCK_UB_SH(ref0, ref0_r, ref0_l); + UNPCK_UB_SH(ref1, ref1_r, ref1_l); + UNPCK_UB_SH(ref2, ref2_r, ref2_l); + UNPCK_UB_SH(ref3, ref3_r, ref3_l); + UNPCK_UB_SH(ref4, ref4_r, ref4_l); + UNPCK_UB_SH(ref5, ref5_r, ref5_l); + UNPCK_UB_SH(ref6, ref6_r, ref6_l); + UNPCK_UB_SH(ref7, ref7_r, ref7_l); + ADD4(hbuf_r, ref0_r, hbuf_l, ref0_l, hbuf_r, ref1_r, hbuf_l, ref1_l, + hbuf_r, hbuf_l, hbuf_r, hbuf_l); + ADD4(hbuf_r, ref2_r, hbuf_l, ref2_l, hbuf_r, ref3_r, hbuf_l, ref3_l, + hbuf_r, hbuf_l, hbuf_r, hbuf_l); + ADD4(hbuf_r, ref4_r, hbuf_l, ref4_l, hbuf_r, ref5_r, hbuf_l, ref5_l, + hbuf_r, hbuf_l, hbuf_r, hbuf_l); + ADD4(hbuf_r, ref6_r, hbuf_l, ref6_l, hbuf_r, ref7_r, hbuf_l, ref7_l, + hbuf_r, hbuf_l, hbuf_r, hbuf_l); + } + + SRA_2V(hbuf_r, hbuf_l, 3); + ST_SH2(hbuf_r, hbuf_l, hbuf, 8); + } else if (32 == height) { + for (i = 2; i--;) { + LD_UB8(ref, ref_stride, ref0, ref1, ref2, ref3, ref4, ref5, ref6, ref7); + ref += 8 * ref_stride; + UNPCK_UB_SH(ref0, ref0_r, ref0_l); + UNPCK_UB_SH(ref1, ref1_r, ref1_l); + UNPCK_UB_SH(ref2, ref2_r, ref2_l); + UNPCK_UB_SH(ref3, ref3_r, ref3_l); + UNPCK_UB_SH(ref4, ref4_r, ref4_l); + UNPCK_UB_SH(ref5, ref5_r, ref5_l); + UNPCK_UB_SH(ref6, ref6_r, ref6_l); + UNPCK_UB_SH(ref7, ref7_r, ref7_l); + ADD4(hbuf_r, ref0_r, hbuf_l, ref0_l, hbuf_r, ref1_r, hbuf_l, ref1_l, + hbuf_r, hbuf_l, hbuf_r, hbuf_l); + ADD4(hbuf_r, ref2_r, hbuf_l, ref2_l, hbuf_r, ref3_r, hbuf_l, ref3_l, + hbuf_r, hbuf_l, hbuf_r, hbuf_l); + ADD4(hbuf_r, ref4_r, hbuf_l, ref4_l, hbuf_r, ref5_r, hbuf_l, ref5_l, + hbuf_r, hbuf_l, hbuf_r, hbuf_l); + ADD4(hbuf_r, ref6_r, hbuf_l, ref6_l, hbuf_r, ref7_r, hbuf_l, ref7_l, + hbuf_r, hbuf_l, hbuf_r, hbuf_l); + LD_UB8(ref, ref_stride, ref0, ref1, ref2, ref3, ref4, ref5, ref6, ref7); + ref += 8 * ref_stride; + UNPCK_UB_SH(ref0, ref0_r, ref0_l); + UNPCK_UB_SH(ref1, ref1_r, ref1_l); + UNPCK_UB_SH(ref2, ref2_r, ref2_l); + UNPCK_UB_SH(ref3, ref3_r, ref3_l); + UNPCK_UB_SH(ref4, ref4_r, ref4_l); + UNPCK_UB_SH(ref5, ref5_r, ref5_l); + UNPCK_UB_SH(ref6, ref6_r, ref6_l); + UNPCK_UB_SH(ref7, ref7_r, ref7_l); + ADD4(hbuf_r, ref0_r, hbuf_l, ref0_l, hbuf_r, ref1_r, hbuf_l, ref1_l, + hbuf_r, hbuf_l, hbuf_r, hbuf_l); + ADD4(hbuf_r, ref2_r, hbuf_l, ref2_l, hbuf_r, ref3_r, hbuf_l, ref3_l, + hbuf_r, hbuf_l, hbuf_r, hbuf_l); + ADD4(hbuf_r, ref4_r, hbuf_l, ref4_l, hbuf_r, ref5_r, hbuf_l, ref5_l, + hbuf_r, hbuf_l, hbuf_r, hbuf_l); + ADD4(hbuf_r, ref6_r, hbuf_l, ref6_l, hbuf_r, ref7_r, hbuf_l, ref7_l, + hbuf_r, hbuf_l, hbuf_r, hbuf_l); + } + + SRA_2V(hbuf_r, hbuf_l, 4); + ST_SH2(hbuf_r, hbuf_l, hbuf, 8); + } else if (64 == height) { + for (i = 4; i--;) { + LD_UB8(ref, ref_stride, ref0, ref1, ref2, ref3, ref4, ref5, ref6, ref7); + ref += 8 * ref_stride; + UNPCK_UB_SH(ref0, ref0_r, ref0_l); + UNPCK_UB_SH(ref1, ref1_r, ref1_l); + UNPCK_UB_SH(ref2, ref2_r, ref2_l); + UNPCK_UB_SH(ref3, ref3_r, ref3_l); + UNPCK_UB_SH(ref4, ref4_r, ref4_l); + UNPCK_UB_SH(ref5, ref5_r, ref5_l); + UNPCK_UB_SH(ref6, ref6_r, ref6_l); + UNPCK_UB_SH(ref7, ref7_r, ref7_l); + ADD4(hbuf_r, ref0_r, hbuf_l, ref0_l, hbuf_r, ref1_r, hbuf_l, ref1_l, + hbuf_r, hbuf_l, hbuf_r, hbuf_l); + ADD4(hbuf_r, ref2_r, hbuf_l, ref2_l, hbuf_r, ref3_r, hbuf_l, ref3_l, + hbuf_r, hbuf_l, hbuf_r, hbuf_l); + ADD4(hbuf_r, ref4_r, hbuf_l, ref4_l, hbuf_r, ref5_r, hbuf_l, ref5_l, + hbuf_r, hbuf_l, hbuf_r, hbuf_l); + ADD4(hbuf_r, ref6_r, hbuf_l, ref6_l, hbuf_r, ref7_r, hbuf_l, ref7_l, + hbuf_r, hbuf_l, hbuf_r, hbuf_l); + LD_UB8(ref, ref_stride, ref0, ref1, ref2, ref3, ref4, ref5, ref6, ref7); + ref += 8 * ref_stride; + UNPCK_UB_SH(ref0, ref0_r, ref0_l); + UNPCK_UB_SH(ref1, ref1_r, ref1_l); + UNPCK_UB_SH(ref2, ref2_r, ref2_l); + UNPCK_UB_SH(ref3, ref3_r, ref3_l); + UNPCK_UB_SH(ref4, ref4_r, ref4_l); + UNPCK_UB_SH(ref5, ref5_r, ref5_l); + UNPCK_UB_SH(ref6, ref6_r, ref6_l); + UNPCK_UB_SH(ref7, ref7_r, ref7_l); + ADD4(hbuf_r, ref0_r, hbuf_l, ref0_l, hbuf_r, ref1_r, hbuf_l, ref1_l, + hbuf_r, hbuf_l, hbuf_r, hbuf_l); + ADD4(hbuf_r, ref2_r, hbuf_l, ref2_l, hbuf_r, ref3_r, hbuf_l, ref3_l, + hbuf_r, hbuf_l, hbuf_r, hbuf_l); + ADD4(hbuf_r, ref4_r, hbuf_l, ref4_l, hbuf_r, ref5_r, hbuf_l, ref5_l, + hbuf_r, hbuf_l, hbuf_r, hbuf_l); + ADD4(hbuf_r, ref6_r, hbuf_l, ref6_l, hbuf_r, ref7_r, hbuf_l, ref7_l, + hbuf_r, hbuf_l, hbuf_r, hbuf_l); + } + + SRA_2V(hbuf_r, hbuf_l, 5); + ST_SH2(hbuf_r, hbuf_l, hbuf, 8); + } else { + const int norm_factor = height >> 1; + int cnt; + + for (cnt = 0; cnt < 16; cnt++) { + hbuf[cnt] = 0; + } + + for (i = 0; i < height; ++i) { + for (cnt = 0; cnt < 16; cnt++) { + hbuf[cnt] += ref[cnt]; + } + + ref += ref_stride; + } + + for (cnt = 0; cnt < 16; cnt++) { + hbuf[cnt] /= norm_factor; + } + } +} + +int16_t vpx_int_pro_col_msa(const uint8_t *ref, const int width) { + int16_t sum; + v16u8 ref0, ref1, ref2, ref3; + v8u16 ref0_h; + + if (16 == width) { + ref0 = LD_UB(ref); + ref0_h = __msa_hadd_u_h(ref0, ref0); + sum = HADD_UH_U32(ref0_h); + } else if (32 == width) { + LD_UB2(ref, 16, ref0, ref1); + ref0_h = __msa_hadd_u_h(ref0, ref0); + ref0_h += __msa_hadd_u_h(ref1, ref1); + sum = HADD_UH_U32(ref0_h); + } else if (64 == width) { + LD_UB4(ref, 16, ref0, ref1, ref2, ref3); + ref0_h = __msa_hadd_u_h(ref0, ref0); + ref0_h += __msa_hadd_u_h(ref1, ref1); + ref0_h += __msa_hadd_u_h(ref2, ref2); + ref0_h += __msa_hadd_u_h(ref3, ref3); + sum = HADD_UH_U32(ref0_h); + } else { + int idx; + + sum = 0; + for (idx = 0; idx < width; ++idx) { + sum += ref[idx]; + } + } + + return sum; +} + +int vpx_vector_var_msa(const int16_t *ref, const int16_t *src, const int bwl) { + int sse, mean, var; + v8i16 src0, src1, src2, src3, src4, src5, src6, src7, ref0, ref1, ref2; + v8i16 ref3, ref4, ref5, ref6, ref7, src_l0_m, src_l1_m, src_l2_m, src_l3_m; + v8i16 src_l4_m, src_l5_m, src_l6_m, src_l7_m; + v4i32 res_l0_m, res_l1_m, res_l2_m, res_l3_m, res_l4_m, res_l5_m, res_l6_m; + v4i32 res_l7_m, mean_v; + v2i64 sse_v; + + if (2 == bwl) { + LD_SH2(src, 8, src0, src1); + LD_SH2(ref, 8, ref0, ref1); + + ILVRL_H2_SH(src0, ref0, src_l0_m, src_l1_m); + ILVRL_H2_SH(src1, ref1, src_l2_m, src_l3_m); + HSUB_UH2_SW(src_l0_m, src_l1_m, res_l0_m, res_l1_m); + HSUB_UH2_SW(src_l2_m, src_l3_m, res_l2_m, res_l3_m); + sse_v = __msa_dotp_s_d(res_l0_m, res_l0_m); + sse_v = __msa_dpadd_s_d(sse_v, res_l1_m, res_l1_m); + DPADD_SD2_SD(res_l2_m, res_l3_m, sse_v, sse_v); + mean_v = res_l0_m + res_l1_m; + mean_v += res_l2_m + res_l3_m; + + sse_v += __msa_splati_d(sse_v, 1); + sse = __msa_copy_s_w((v4i32)sse_v, 0); + + mean = HADD_SW_S32(mean_v); + } else if (3 == bwl) { + LD_SH4(src, 8, src0, src1, src2, src3); + LD_SH4(ref, 8, ref0, ref1, ref2, ref3); + + ILVRL_H2_SH(src0, ref0, src_l0_m, src_l1_m); + ILVRL_H2_SH(src1, ref1, src_l2_m, src_l3_m); + ILVRL_H2_SH(src2, ref2, src_l4_m, src_l5_m); + ILVRL_H2_SH(src3, ref3, src_l6_m, src_l7_m); + HSUB_UH2_SW(src_l0_m, src_l1_m, res_l0_m, res_l1_m); + HSUB_UH2_SW(src_l2_m, src_l3_m, res_l2_m, res_l3_m); + HSUB_UH2_SW(src_l4_m, src_l5_m, res_l4_m, res_l5_m); + HSUB_UH2_SW(src_l6_m, src_l7_m, res_l6_m, res_l7_m); + sse_v = __msa_dotp_s_d(res_l0_m, res_l0_m); + sse_v = __msa_dpadd_s_d(sse_v, res_l1_m, res_l1_m); + DPADD_SD2_SD(res_l2_m, res_l3_m, sse_v, sse_v); + DPADD_SD2_SD(res_l4_m, res_l5_m, sse_v, sse_v); + DPADD_SD2_SD(res_l6_m, res_l7_m, sse_v, sse_v); + mean_v = res_l0_m + res_l1_m; + mean_v += res_l2_m + res_l3_m; + mean_v += res_l4_m + res_l5_m; + mean_v += res_l6_m + res_l7_m; + + sse_v += __msa_splati_d(sse_v, 1); + sse = __msa_copy_s_w((v4i32)sse_v, 0); + + mean = HADD_SW_S32(mean_v); + } else if (4 == bwl) { + LD_SH8(src, 8, src0, src1, src2, src3, src4, src5, src6, src7); + LD_SH8(ref, 8, ref0, ref1, ref2, ref3, ref4, ref5, ref6, ref7); + + ILVRL_H2_SH(src0, ref0, src_l0_m, src_l1_m); + ILVRL_H2_SH(src1, ref1, src_l2_m, src_l3_m); + ILVRL_H2_SH(src2, ref2, src_l4_m, src_l5_m); + ILVRL_H2_SH(src3, ref3, src_l6_m, src_l7_m); + HSUB_UH2_SW(src_l0_m, src_l1_m, res_l0_m, res_l1_m); + HSUB_UH2_SW(src_l2_m, src_l3_m, res_l2_m, res_l3_m); + HSUB_UH2_SW(src_l4_m, src_l5_m, res_l4_m, res_l5_m); + HSUB_UH2_SW(src_l6_m, src_l7_m, res_l6_m, res_l7_m); + sse_v = __msa_dotp_s_d(res_l0_m, res_l0_m); + sse_v = __msa_dpadd_s_d(sse_v, res_l1_m, res_l1_m); + DPADD_SD2_SD(res_l2_m, res_l3_m, sse_v, sse_v); + DPADD_SD2_SD(res_l4_m, res_l5_m, sse_v, sse_v); + DPADD_SD2_SD(res_l6_m, res_l7_m, sse_v, sse_v); + mean_v = res_l0_m + res_l1_m; + mean_v += res_l2_m + res_l3_m; + mean_v += res_l4_m + res_l5_m; + mean_v += res_l6_m + res_l7_m; + + ILVRL_H2_SH(src4, ref4, src_l0_m, src_l1_m); + ILVRL_H2_SH(src5, ref5, src_l2_m, src_l3_m); + ILVRL_H2_SH(src6, ref6, src_l4_m, src_l5_m); + ILVRL_H2_SH(src7, ref7, src_l6_m, src_l7_m); + HSUB_UH2_SW(src_l0_m, src_l1_m, res_l0_m, res_l1_m); + HSUB_UH2_SW(src_l2_m, src_l3_m, res_l2_m, res_l3_m); + HSUB_UH2_SW(src_l4_m, src_l5_m, res_l4_m, res_l5_m); + HSUB_UH2_SW(src_l6_m, src_l7_m, res_l6_m, res_l7_m); + DPADD_SD2_SD(res_l0_m, res_l1_m, sse_v, sse_v); + DPADD_SD2_SD(res_l2_m, res_l3_m, sse_v, sse_v); + DPADD_SD2_SD(res_l4_m, res_l5_m, sse_v, sse_v); + DPADD_SD2_SD(res_l6_m, res_l7_m, sse_v, sse_v); + mean_v += res_l0_m + res_l1_m; + mean_v += res_l2_m + res_l3_m; + mean_v += res_l4_m + res_l5_m; + mean_v += res_l6_m + res_l7_m; + + sse_v += __msa_splati_d(sse_v, 1); + sse = __msa_copy_s_w((v4i32)sse_v, 0); + + mean = HADD_SW_S32(mean_v); + } else { + int i; + const int width = 4 << bwl; + + sse = 0; + mean = 0; + + for (i = 0; i < width; ++i) { + const int diff = ref[i] - src[i]; + + mean += diff; + sse += diff * diff; + } + } + + var = sse - ((mean * mean) >> (bwl + 2)); + + return var; +} + +void vpx_minmax_8x8_msa(const uint8_t *s, int p, const uint8_t *d, int dp, + int *min, int *max) { + v16u8 s0, s1, s2, s3, s4, s5, s6, s7, d0, d1, d2, d3, d4, d5, d6, d7; + v16u8 diff0, diff1, diff2, diff3, min0, min1, max0, max1; + + LD_UB8(s, p, s0, s1, s2, s3, s4, s5, s6, s7); + LD_UB8(d, dp, d0, d1, d2, d3, d4, d5, d6, d7); + PCKEV_D4_UB(s1, s0, s3, s2, s5, s4, s7, s6, s0, s1, s2, s3); + PCKEV_D4_UB(d1, d0, d3, d2, d5, d4, d7, d6, d0, d1, d2, d3); + + diff0 = __msa_asub_u_b(s0, d0); + diff1 = __msa_asub_u_b(s1, d1); + diff2 = __msa_asub_u_b(s2, d2); + diff3 = __msa_asub_u_b(s3, d3); + + min0 = __msa_min_u_b(diff0, diff1); + min1 = __msa_min_u_b(diff2, diff3); + min0 = __msa_min_u_b(min0, min1); + + max0 = __msa_max_u_b(diff0, diff1); + max1 = __msa_max_u_b(diff2, diff3); + max0 = __msa_max_u_b(max0, max1); + + min1 = (v16u8)__msa_sldi_b((v16i8)min1, (v16i8)min0, 8); + min0 = __msa_min_u_b(min0, min1); + max1 = (v16u8)__msa_sldi_b((v16i8)max1, (v16i8)max0, 8); + max0 = __msa_max_u_b(max0, max1); + + min1 = (v16u8)__msa_sldi_b((v16i8)min1, (v16i8)min0, 4); + min0 = __msa_min_u_b(min0, min1); + max1 = (v16u8)__msa_sldi_b((v16i8)max1, (v16i8)max0, 4); + max0 = __msa_max_u_b(max0, max1); + + min1 = (v16u8)__msa_sldi_b((v16i8)min1, (v16i8)min0, 2); + min0 = __msa_min_u_b(min0, min1); + max1 = (v16u8)__msa_sldi_b((v16i8)max1, (v16i8)max0, 2); + max0 = __msa_max_u_b(max0, max1); + + min1 = (v16u8)__msa_sldi_b((v16i8)min1, (v16i8)min0, 1); + min0 = __msa_min_u_b(min0, min1); + max1 = (v16u8)__msa_sldi_b((v16i8)max1, (v16i8)max0, 1); + max0 = __msa_max_u_b(max0, max1); + + *min = min0[0]; + *max = max0[0]; +} diff --git a/vpx_dsp/mips/common_dspr2.c b/vpx_dsp/mips/common_dspr2.c new file mode 100644 index 0000000..b22f084 --- /dev/null +++ b/vpx_dsp/mips/common_dspr2.c @@ -0,0 +1,30 @@ +/* + * Copyright (c) 2015 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "vpx_dsp/mips/common_dspr2.h" + +#if HAVE_DSPR2 +uint8_t vpx_ff_cropTbl_a[256 + 2 * CROP_WIDTH]; +uint8_t *vpx_ff_cropTbl; + +void vpx_dsputil_static_init(void) { + int i; + + for (i = 0; i < 256; i++) vpx_ff_cropTbl_a[i + CROP_WIDTH] = i; + + for (i = 0; i < CROP_WIDTH; i++) { + vpx_ff_cropTbl_a[i] = 0; + vpx_ff_cropTbl_a[i + CROP_WIDTH + 256] = 255; + } + + vpx_ff_cropTbl = &vpx_ff_cropTbl_a[CROP_WIDTH]; +} + +#endif diff --git a/vpx_dsp/mips/common_dspr2.h b/vpx_dsp/mips/common_dspr2.h new file mode 100644 index 0000000..0a42f5c --- /dev/null +++ b/vpx_dsp/mips/common_dspr2.h @@ -0,0 +1,48 @@ +/* + * Copyright (c) 2013 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VPX_COMMON_MIPS_DSPR2_H_ +#define VPX_COMMON_MIPS_DSPR2_H_ + +#include +#include "./vpx_config.h" +#include "vpx/vpx_integer.h" + +#ifdef __cplusplus +extern "C" { +#endif +#if HAVE_DSPR2 +#define CROP_WIDTH 512 + +extern uint8_t *vpx_ff_cropTbl; // From "vpx_dsp/mips/intrapred4_dspr2.c" + +static INLINE void prefetch_load(const unsigned char *src) { + __asm__ __volatile__("pref 0, 0(%[src]) \n\t" : : [src] "r"(src)); +} + +/* prefetch data for store */ +static INLINE void prefetch_store(unsigned char *dst) { + __asm__ __volatile__("pref 1, 0(%[dst]) \n\t" : : [dst] "r"(dst)); +} + +static INLINE void prefetch_load_streamed(const unsigned char *src) { + __asm__ __volatile__("pref 4, 0(%[src]) \n\t" : : [src] "r"(src)); +} + +/* prefetch data for store */ +static INLINE void prefetch_store_streamed(unsigned char *dst) { + __asm__ __volatile__("pref 5, 0(%[dst]) \n\t" : : [dst] "r"(dst)); +} +#endif // #if HAVE_DSPR2 +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VPX_COMMON_MIPS_DSPR2_H_ diff --git a/vpx_dsp/mips/convolve2_avg_dspr2.c b/vpx_dsp/mips/convolve2_avg_dspr2.c new file mode 100644 index 0000000..18e7d53 --- /dev/null +++ b/vpx_dsp/mips/convolve2_avg_dspr2.c @@ -0,0 +1,256 @@ +/* + * Copyright (c) 2013 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include + +#include "./vpx_dsp_rtcd.h" +#include "vpx_dsp/mips/convolve_common_dspr2.h" +#include "vpx_dsp/vpx_convolve.h" +#include "vpx_dsp/vpx_dsp_common.h" +#include "vpx_ports/mem.h" + +#if HAVE_DSPR2 +static void convolve_bi_avg_vert_4_dspr2(const uint8_t *src, int32_t src_stride, + uint8_t *dst, int32_t dst_stride, + const int16_t *filter_y, int32_t w, + int32_t h) { + int32_t x, y; + const uint8_t *src_ptr; + uint8_t *dst_ptr; + uint8_t *cm = vpx_ff_cropTbl; + uint32_t vector4a = 64; + uint32_t load1, load2; + uint32_t p1, p2; + uint32_t scratch1, scratch2; + uint32_t store1, store2; + int32_t Temp1, Temp2; + const int16_t *filter = &filter_y[3]; + uint32_t filter45; + + filter45 = ((const int32_t *)filter)[0]; + + for (y = h; y--;) { + /* prefetch data to cache memory */ + prefetch_store(dst + dst_stride); + + for (x = 0; x < w; x += 4) { + src_ptr = src + x; + dst_ptr = dst + x; + + __asm__ __volatile__( + "ulw %[load1], 0(%[src_ptr]) \n\t" + "add %[src_ptr], %[src_ptr], %[src_stride] \n\t" + "ulw %[load2], 0(%[src_ptr]) \n\t" + + "mtlo %[vector4a], $ac0 \n\t" + "mtlo %[vector4a], $ac1 \n\t" + "mtlo %[vector4a], $ac2 \n\t" + "mtlo %[vector4a], $ac3 \n\t" + "mthi $zero, $ac0 \n\t" + "mthi $zero, $ac1 \n\t" + "mthi $zero, $ac2 \n\t" + "mthi $zero, $ac3 \n\t" + + "preceu.ph.qbr %[scratch1], %[load1] \n\t" + "preceu.ph.qbr %[p1], %[load2] \n\t" + "precrq.ph.w %[p2], %[p1], %[scratch1] \n\t" /* pixel 2 */ + "append %[p1], %[scratch1], 16 \n\t" /* pixel 1 */ + + "dpa.w.ph $ac0, %[p1], %[filter45] \n\t" + "dpa.w.ph $ac1, %[p2], %[filter45] \n\t" + + "preceu.ph.qbl %[scratch1], %[load1] \n\t" + "preceu.ph.qbl %[p1], %[load2] \n\t" + "precrq.ph.w %[p2], %[p1], %[scratch1] \n\t" /* pixel 2 */ + "append %[p1], %[scratch1], 16 \n\t" /* pixel 1 */ + + "dpa.w.ph $ac2, %[p1], %[filter45] \n\t" + "dpa.w.ph $ac3, %[p2], %[filter45] \n\t" + + "extp %[Temp1], $ac0, 31 \n\t" + "extp %[Temp2], $ac1, 31 \n\t" + + "lbu %[scratch1], 0(%[dst_ptr]) \n\t" + "lbu %[scratch2], 1(%[dst_ptr]) \n\t" + + "lbux %[store1], %[Temp1](%[cm]) \n\t" + "addqh_r.w %[store1], %[store1], %[scratch1] \n\t" /* pixel 1 */ + "extp %[Temp1], $ac2, 31 \n\t" + + "lbux %[store2], %[Temp2](%[cm]) \n\t" + "addqh_r.w %[store2], %[store2], %[scratch2] \n\t" /* pixel 2 */ + "extp %[Temp2], $ac3, 31 \n\t" + "lbu %[scratch1], 2(%[dst_ptr]) \n\t" + + "sb %[store1], 0(%[dst_ptr]) \n\t" + "sb %[store2], 1(%[dst_ptr]) \n\t" + "lbu %[scratch2], 3(%[dst_ptr]) \n\t" + + "lbux %[store1], %[Temp1](%[cm]) \n\t" + "lbux %[store2], %[Temp2](%[cm]) \n\t" + "addqh_r.w %[store1], %[store1], %[scratch1] \n\t" /* pixel 3 */ + "addqh_r.w %[store2], %[store2], %[scratch2] \n\t" /* pixel 4 */ + + "sb %[store1], 2(%[dst_ptr]) \n\t" + "sb %[store2], 3(%[dst_ptr]) \n\t" + + : [load1] "=&r"(load1), [load2] "=&r"(load2), [p1] "=&r"(p1), + [p2] "=&r"(p2), [scratch1] "=&r"(scratch1), + [scratch2] "=&r"(scratch2), [Temp1] "=&r"(Temp1), + [Temp2] "=&r"(Temp2), [store1] "=&r"(store1), + [store2] "=&r"(store2), [src_ptr] "+r"(src_ptr) + : [filter45] "r"(filter45), [vector4a] "r"(vector4a), + [src_stride] "r"(src_stride), [cm] "r"(cm), [dst_ptr] "r"(dst_ptr)); + } + + /* Next row... */ + src += src_stride; + dst += dst_stride; + } +} + +static void convolve_bi_avg_vert_64_dspr2(const uint8_t *src, + int32_t src_stride, uint8_t *dst, + int32_t dst_stride, + const int16_t *filter_y, int32_t h) { + int32_t x, y; + const uint8_t *src_ptr; + uint8_t *dst_ptr; + uint8_t *cm = vpx_ff_cropTbl; + uint32_t vector4a = 64; + uint32_t load1, load2; + uint32_t p1, p2; + uint32_t scratch1, scratch2; + uint32_t store1, store2; + int32_t Temp1, Temp2; + const int16_t *filter = &filter_y[3]; + uint32_t filter45; + + filter45 = ((const int32_t *)filter)[0]; + + for (y = h; y--;) { + /* prefetch data to cache memory */ + prefetch_store(dst + dst_stride); + prefetch_store(dst + dst_stride + 32); + + for (x = 0; x < 64; x += 4) { + src_ptr = src + x; + dst_ptr = dst + x; + + __asm__ __volatile__( + "ulw %[load1], 0(%[src_ptr]) \n\t" + "add %[src_ptr], %[src_ptr], %[src_stride] \n\t" + "ulw %[load2], 0(%[src_ptr]) \n\t" + + "mtlo %[vector4a], $ac0 \n\t" + "mtlo %[vector4a], $ac1 \n\t" + "mtlo %[vector4a], $ac2 \n\t" + "mtlo %[vector4a], $ac3 \n\t" + "mthi $zero, $ac0 \n\t" + "mthi $zero, $ac1 \n\t" + "mthi $zero, $ac2 \n\t" + "mthi $zero, $ac3 \n\t" + + "preceu.ph.qbr %[scratch1], %[load1] \n\t" + "preceu.ph.qbr %[p1], %[load2] \n\t" + "precrq.ph.w %[p2], %[p1], %[scratch1] \n\t" /* pixel 2 */ + "append %[p1], %[scratch1], 16 \n\t" /* pixel 1 */ + + "dpa.w.ph $ac0, %[p1], %[filter45] \n\t" + "dpa.w.ph $ac1, %[p2], %[filter45] \n\t" + + "preceu.ph.qbl %[scratch1], %[load1] \n\t" + "preceu.ph.qbl %[p1], %[load2] \n\t" + "precrq.ph.w %[p2], %[p1], %[scratch1] \n\t" /* pixel 2 */ + "append %[p1], %[scratch1], 16 \n\t" /* pixel 1 */ + + "dpa.w.ph $ac2, %[p1], %[filter45] \n\t" + "dpa.w.ph $ac3, %[p2], %[filter45] \n\t" + + "extp %[Temp1], $ac0, 31 \n\t" + "extp %[Temp2], $ac1, 31 \n\t" + + "lbu %[scratch1], 0(%[dst_ptr]) \n\t" + "lbu %[scratch2], 1(%[dst_ptr]) \n\t" + + "lbux %[store1], %[Temp1](%[cm]) \n\t" + "addqh_r.w %[store1], %[store1], %[scratch1] \n\t" /* pixel 1 */ + "extp %[Temp1], $ac2, 31 \n\t" + + "lbux %[store2], %[Temp2](%[cm]) \n\t" + "addqh_r.w %[store2], %[store2], %[scratch2] \n\t" /* pixel 2 */ + "extp %[Temp2], $ac3, 31 \n\t" + "lbu %[scratch1], 2(%[dst_ptr]) \n\t" + + "sb %[store1], 0(%[dst_ptr]) \n\t" + "sb %[store2], 1(%[dst_ptr]) \n\t" + "lbu %[scratch2], 3(%[dst_ptr]) \n\t" + + "lbux %[store1], %[Temp1](%[cm]) \n\t" + "lbux %[store2], %[Temp2](%[cm]) \n\t" + "addqh_r.w %[store1], %[store1], %[scratch1] \n\t" /* pixel 3 */ + "addqh_r.w %[store2], %[store2], %[scratch2] \n\t" /* pixel 4 */ + + "sb %[store1], 2(%[dst_ptr]) \n\t" + "sb %[store2], 3(%[dst_ptr]) \n\t" + + : [load1] "=&r"(load1), [load2] "=&r"(load2), [p1] "=&r"(p1), + [p2] "=&r"(p2), [scratch1] "=&r"(scratch1), + [scratch2] "=&r"(scratch2), [Temp1] "=&r"(Temp1), + [Temp2] "=&r"(Temp2), [store1] "=&r"(store1), + [store2] "=&r"(store2), [src_ptr] "+r"(src_ptr) + : [filter45] "r"(filter45), [vector4a] "r"(vector4a), + [src_stride] "r"(src_stride), [cm] "r"(cm), [dst_ptr] "r"(dst_ptr)); + } + + /* Next row... */ + src += src_stride; + dst += dst_stride; + } +} + +void vpx_convolve2_avg_vert_dspr2(const uint8_t *src, ptrdiff_t src_stride, + uint8_t *dst, ptrdiff_t dst_stride, + const InterpKernel *filter, int x0_q4, + int32_t x_step_q4, int y0_q4, int y_step_q4, + int w, int h) { + const int16_t *const filter_y = filter[y0_q4]; + uint32_t pos = 38; + + assert(y_step_q4 == 16); + + /* bit positon for extract from acc */ + __asm__ __volatile__("wrdsp %[pos], 1 \n\t" + : + : [pos] "r"(pos)); + + prefetch_store(dst); + + switch (w) { + case 4: + case 8: + case 16: + case 32: + convolve_bi_avg_vert_4_dspr2(src, src_stride, dst, dst_stride, filter_y, + w, h); + break; + case 64: + prefetch_store(dst + 32); + convolve_bi_avg_vert_64_dspr2(src, src_stride, dst, dst_stride, filter_y, + h); + break; + default: + vpx_convolve8_avg_vert_c(src, src_stride, dst, dst_stride, filter, x0_q4, + x_step_q4, y0_q4, y_step_q4, w, h); + break; + } +} +#endif diff --git a/vpx_dsp/mips/convolve2_avg_horiz_dspr2.c b/vpx_dsp/mips/convolve2_avg_horiz_dspr2.c new file mode 100644 index 0000000..7dcb662 --- /dev/null +++ b/vpx_dsp/mips/convolve2_avg_horiz_dspr2.c @@ -0,0 +1,802 @@ +/* + * Copyright (c) 2013 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include + +#include "./vpx_dsp_rtcd.h" +#include "vpx_dsp/mips/convolve_common_dspr2.h" +#include "vpx_dsp/vpx_convolve.h" +#include "vpx_dsp/vpx_dsp_common.h" +#include "vpx_ports/mem.h" + +#if HAVE_DSPR2 +static void convolve_bi_avg_horiz_4_dspr2(const uint8_t *src, + int32_t src_stride, uint8_t *dst, + int32_t dst_stride, + const int16_t *filter_x0, int32_t h) { + int32_t y; + uint8_t *cm = vpx_ff_cropTbl; + int32_t Temp1, Temp2, Temp3, Temp4; + uint32_t vector4a = 64; + uint32_t tp1, tp2; + uint32_t p1, p2, p3; + uint32_t tn1, tn2; + const int16_t *filter = &filter_x0[3]; + uint32_t filter45; + + filter45 = ((const int32_t *)filter)[0]; + + for (y = h; y--;) { + /* prefetch data to cache memory */ + prefetch_load(src + src_stride); + prefetch_load(src + src_stride + 32); + prefetch_store(dst + dst_stride); + + __asm__ __volatile__( + "ulw %[tp1], 0(%[src]) \n\t" + "ulw %[tp2], 4(%[src]) \n\t" + + /* even 1. pixel */ + "mtlo %[vector4a], $ac3 \n\t" + "mthi $zero, $ac3 \n\t" + "preceu.ph.qbr %[p1], %[tp1] \n\t" + "preceu.ph.qbl %[p2], %[tp1] \n\t" + "dpa.w.ph $ac3, %[p1], %[filter45] \n\t" + "extp %[Temp1], $ac3, 31 \n\t" + + /* even 2. pixel */ + "mtlo %[vector4a], $ac2 \n\t" + "mthi $zero, $ac2 \n\t" + "balign %[tp2], %[tp1], 3 \n\t" + "dpa.w.ph $ac2, %[p2], %[filter45] \n\t" + "extp %[Temp3], $ac2, 31 \n\t" + + "lbu %[p2], 3(%[dst]) \n\t" /* load odd 2 */ + + /* odd 1. pixel */ + "lbux %[tp1], %[Temp1](%[cm]) \n\t" /* even 1 */ + "mtlo %[vector4a], $ac3 \n\t" + "mthi $zero, $ac3 \n\t" + "lbu %[Temp1], 1(%[dst]) \n\t" /* load odd 1 */ + "preceu.ph.qbr %[p1], %[tp2] \n\t" + "preceu.ph.qbl %[p3], %[tp2] \n\t" + "dpa.w.ph $ac3, %[p1], %[filter45] \n\t" + "extp %[Temp2], $ac3, 31 \n\t" + + "lbu %[tn2], 0(%[dst]) \n\t" /* load even 1 */ + + /* odd 2. pixel */ + "lbux %[tp2], %[Temp3](%[cm]) \n\t" /* even 2 */ + "mtlo %[vector4a], $ac2 \n\t" + "mthi $zero, $ac2 \n\t" + "lbux %[tn1], %[Temp2](%[cm]) \n\t" /* odd 1 */ + "addqh_r.w %[tn2], %[tn2], %[tp1] \n\t" /* average even 1 */ + "dpa.w.ph $ac2, %[p3], %[filter45] \n\t" + "extp %[Temp4], $ac2, 31 \n\t" + + "lbu %[tp1], 2(%[dst]) \n\t" /* load even 2 */ + "sb %[tn2], 0(%[dst]) \n\t" /* store even 1 */ + + /* clamp */ + "addqh_r.w %[Temp1], %[Temp1], %[tn1] \n\t" /* average odd 1 */ + "lbux %[p3], %[Temp4](%[cm]) \n\t" /* odd 2 */ + "sb %[Temp1], 1(%[dst]) \n\t" /* store odd 1 */ + + "addqh_r.w %[tp1], %[tp1], %[tp2] \n\t" /* average even 2 */ + "sb %[tp1], 2(%[dst]) \n\t" /* store even 2 */ + + "addqh_r.w %[p2], %[p2], %[p3] \n\t" /* average odd 2 */ + "sb %[p2], 3(%[dst]) \n\t" /* store odd 2 */ + + : [tp1] "=&r"(tp1), [tp2] "=&r"(tp2), [tn1] "=&r"(tn1), + [tn2] "=&r"(tn2), [p1] "=&r"(p1), [p2] "=&r"(p2), [p3] "=&r"(p3), + [Temp1] "=&r"(Temp1), [Temp2] "=&r"(Temp2), [Temp3] "=&r"(Temp3), + [Temp4] "=&r"(Temp4) + : [filter45] "r"(filter45), [vector4a] "r"(vector4a), [cm] "r"(cm), + [dst] "r"(dst), [src] "r"(src)); + + /* Next row... */ + src += src_stride; + dst += dst_stride; + } +} + +static void convolve_bi_avg_horiz_8_dspr2(const uint8_t *src, + int32_t src_stride, uint8_t *dst, + int32_t dst_stride, + const int16_t *filter_x0, int32_t h) { + int32_t y; + uint8_t *cm = vpx_ff_cropTbl; + uint32_t vector4a = 64; + int32_t Temp1, Temp2, Temp3; + uint32_t tp1, tp2, tp3, tp4; + uint32_t p1, p2, p3, p4, n1; + uint32_t st0, st1; + const int16_t *filter = &filter_x0[3]; + uint32_t filter45; + + filter45 = ((const int32_t *)filter)[0]; + + for (y = h; y--;) { + /* prefetch data to cache memory */ + prefetch_load(src + src_stride); + prefetch_load(src + src_stride + 32); + prefetch_store(dst + dst_stride); + + __asm__ __volatile__( + "ulw %[tp1], 0(%[src]) \n\t" + "ulw %[tp2], 4(%[src]) \n\t" + + /* even 1. pixel */ + "mtlo %[vector4a], $ac3 \n\t" + "mthi $zero, $ac3 \n\t" + "mtlo %[vector4a], $ac2 \n\t" + "mthi $zero, $ac2 \n\t" + "preceu.ph.qbr %[p1], %[tp1] \n\t" + "preceu.ph.qbl %[p2], %[tp1] \n\t" + "preceu.ph.qbr %[p3], %[tp2] \n\t" + "preceu.ph.qbl %[p4], %[tp2] \n\t" + "ulw %[tp3], 8(%[src]) \n\t" + "dpa.w.ph $ac3, %[p1], %[filter45] \n\t" + "extp %[Temp1], $ac3, 31 \n\t" + "lbu %[Temp2], 0(%[dst]) \n\t" + "lbu %[tp4], 2(%[dst]) \n\t" + + /* even 2. pixel */ + "dpa.w.ph $ac2, %[p2], %[filter45] \n\t" + "extp %[Temp3], $ac2, 31 \n\t" + + /* even 3. pixel */ + "lbux %[st0], %[Temp1](%[cm]) \n\t" + "mtlo %[vector4a], $ac1 \n\t" + "mthi $zero, $ac1 \n\t" + "lbux %[st1], %[Temp3](%[cm]) \n\t" + "dpa.w.ph $ac1, %[p3], %[filter45] \n\t" + "extp %[Temp1], $ac1, 31 \n\t" + + "addqh_r.w %[Temp2], %[Temp2], %[st0] \n\t" + "addqh_r.w %[tp4], %[tp4], %[st1] \n\t" + "sb %[Temp2], 0(%[dst]) \n\t" + "sb %[tp4], 2(%[dst]) \n\t" + + /* even 4. pixel */ + "mtlo %[vector4a], $ac2 \n\t" + "mthi $zero, $ac2 \n\t" + "mtlo %[vector4a], $ac3 \n\t" + "mthi $zero, $ac3 \n\t" + + "balign %[tp3], %[tp2], 3 \n\t" + "balign %[tp2], %[tp1], 3 \n\t" + + "lbux %[st0], %[Temp1](%[cm]) \n\t" + "lbu %[Temp2], 4(%[dst]) \n\t" + "addqh_r.w %[Temp2], %[Temp2], %[st0] \n\t" + + "dpa.w.ph $ac2, %[p4], %[filter45] \n\t" + "extp %[Temp3], $ac2, 31 \n\t" + + /* odd 1. pixel */ + "mtlo %[vector4a], $ac1 \n\t" + "mthi $zero, $ac1 \n\t" + "sb %[Temp2], 4(%[dst]) \n\t" + "preceu.ph.qbr %[p1], %[tp2] \n\t" + "preceu.ph.qbl %[p2], %[tp2] \n\t" + "preceu.ph.qbr %[p3], %[tp3] \n\t" + "preceu.ph.qbl %[p4], %[tp3] \n\t" + "dpa.w.ph $ac3, %[p1], %[filter45] \n\t" + "extp %[Temp2], $ac3, 31 \n\t" + + "lbu %[tp1], 6(%[dst]) \n\t" + + /* odd 2. pixel */ + "mtlo %[vector4a], $ac3 \n\t" + "mthi $zero, $ac3 \n\t" + "mtlo %[vector4a], $ac2 \n\t" + "mthi $zero, $ac2 \n\t" + "lbux %[st0], %[Temp3](%[cm]) \n\t" + "dpa.w.ph $ac1, %[p2], %[filter45] \n\t" + "extp %[Temp3], $ac1, 31 \n\t" + + "lbu %[tp2], 1(%[dst]) \n\t" + "lbu %[tp3], 3(%[dst]) \n\t" + "addqh_r.w %[tp1], %[tp1], %[st0] \n\t" + + /* odd 3. pixel */ + "lbux %[st1], %[Temp2](%[cm]) \n\t" + "dpa.w.ph $ac3, %[p3], %[filter45] \n\t" + "addqh_r.w %[tp2], %[tp2], %[st1] \n\t" + "extp %[Temp2], $ac3, 31 \n\t" + + "lbu %[tp4], 5(%[dst]) \n\t" + + /* odd 4. pixel */ + "sb %[tp2], 1(%[dst]) \n\t" + "sb %[tp1], 6(%[dst]) \n\t" + "dpa.w.ph $ac2, %[p4], %[filter45] \n\t" + "extp %[Temp1], $ac2, 31 \n\t" + + "lbu %[tp1], 7(%[dst]) \n\t" + + /* clamp */ + "lbux %[p4], %[Temp3](%[cm]) \n\t" + "addqh_r.w %[tp3], %[tp3], %[p4] \n\t" + + "lbux %[p2], %[Temp2](%[cm]) \n\t" + "addqh_r.w %[tp4], %[tp4], %[p2] \n\t" + + "lbux %[p1], %[Temp1](%[cm]) \n\t" + "addqh_r.w %[tp1], %[tp1], %[p1] \n\t" + + /* store bytes */ + "sb %[tp3], 3(%[dst]) \n\t" + "sb %[tp4], 5(%[dst]) \n\t" + "sb %[tp1], 7(%[dst]) \n\t" + + : [tp1] "=&r"(tp1), [tp2] "=&r"(tp2), [tp3] "=&r"(tp3), + [tp4] "=&r"(tp4), [st0] "=&r"(st0), [st1] "=&r"(st1), [p1] "=&r"(p1), + [p2] "=&r"(p2), [p3] "=&r"(p3), [p4] "=&r"(p4), [n1] "=&r"(n1), + [Temp1] "=&r"(Temp1), [Temp2] "=&r"(Temp2), [Temp3] "=&r"(Temp3) + : [filter45] "r"(filter45), [vector4a] "r"(vector4a), [cm] "r"(cm), + [dst] "r"(dst), [src] "r"(src)); + + /* Next row... */ + src += src_stride; + dst += dst_stride; + } +} + +static void convolve_bi_avg_horiz_16_dspr2(const uint8_t *src_ptr, + int32_t src_stride, uint8_t *dst_ptr, + int32_t dst_stride, + const int16_t *filter_x0, int32_t h, + int32_t count) { + int32_t y, c; + const uint8_t *src; + uint8_t *dst; + uint8_t *cm = vpx_ff_cropTbl; + uint32_t vector_64 = 64; + int32_t Temp1, Temp2, Temp3; + uint32_t qload1, qload2, qload3; + uint32_t p1, p2, p3, p4, p5; + uint32_t st1, st2, st3; + const int16_t *filter = &filter_x0[3]; + uint32_t filter45; + + filter45 = ((const int32_t *)filter)[0]; + + for (y = h; y--;) { + src = src_ptr; + dst = dst_ptr; + + /* prefetch data to cache memory */ + prefetch_load(src_ptr + src_stride); + prefetch_load(src_ptr + src_stride + 32); + prefetch_store(dst_ptr + dst_stride); + + for (c = 0; c < count; c++) { + __asm__ __volatile__( + "ulw %[qload1], 0(%[src]) \n\t" + "ulw %[qload2], 4(%[src]) \n\t" + + /* even 1. pixel */ + "mtlo %[vector_64], $ac1 \n\t" /* even 1 */ + "mthi $zero, $ac1 \n\t" + "mtlo %[vector_64], $ac2 \n\t" /* even 2 */ + "mthi $zero, $ac2 \n\t" + "preceu.ph.qbr %[p1], %[qload1] \n\t" + "preceu.ph.qbl %[p2], %[qload1] \n\t" + "preceu.ph.qbr %[p3], %[qload2] \n\t" + "preceu.ph.qbl %[p4], %[qload2] \n\t" + "ulw %[qload3], 8(%[src]) \n\t" + "dpa.w.ph $ac1, %[p1], %[filter45] \n\t" /* even 1 */ + "extp %[Temp1], $ac1, 31 \n\t" /* even 1 */ + "lbu %[st2], 0(%[dst]) \n\t" /* load even 1 from dst */ + + /* even 2. pixel */ + "mtlo %[vector_64], $ac3 \n\t" /* even 3 */ + "mthi $zero, $ac3 \n\t" + "preceu.ph.qbr %[p1], %[qload3] \n\t" + "preceu.ph.qbl %[p5], %[qload3] \n\t" + "ulw %[qload1], 12(%[src]) \n\t" + "dpa.w.ph $ac2, %[p2], %[filter45] \n\t" /* even 1 */ + "extp %[Temp2], $ac2, 31 \n\t" /* even 1 */ + "lbux %[st1], %[Temp1](%[cm]) \n\t" /* even 1 */ + + "lbu %[qload3], 2(%[dst]) \n\t" /* load even 2 from dst */ + + /* even 3. pixel */ + "mtlo %[vector_64], $ac1 \n\t" /* even 4 */ + "mthi $zero, $ac1 \n\t" + "addqh_r.w %[st2], %[st2], %[st1] \n\t" /* average even 1 */ + "preceu.ph.qbr %[p2], %[qload1] \n\t" + "sb %[st2], 0(%[dst]) \n\t" /* store even 1 to dst */ + "dpa.w.ph $ac3, %[p3], %[filter45] \n\t" /* even 3 */ + "extp %[Temp3], $ac3, 31 \n\t" /* even 3 */ + "lbux %[st2], %[Temp2](%[cm]) \n\t" /* even 1 */ + + /* even 4. pixel */ + "mtlo %[vector_64], $ac2 \n\t" /* even 5 */ + "mthi $zero, $ac2 \n\t" + "addqh_r.w %[qload3], %[qload3], %[st2] \n\t" /* average even 2 */ + "preceu.ph.qbl %[p3], %[qload1] \n\t" + "sb %[qload3], 2(%[dst]) \n\t" /* store even 2 to dst */ + "lbu %[qload3], 4(%[dst]) \n\t" /* load even 3 from dst */ + "lbu %[qload1], 6(%[dst]) \n\t" /* load even 4 from dst */ + "dpa.w.ph $ac1, %[p4], %[filter45] \n\t" /* even 4 */ + "extp %[Temp1], $ac1, 31 \n\t" /* even 4 */ + "lbux %[st3], %[Temp3](%[cm]) \n\t" /* even 3 */ + + /* even 5. pixel */ + "mtlo %[vector_64], $ac3 \n\t" /* even 6 */ + "mthi $zero, $ac3 \n\t" + "addqh_r.w %[qload3], %[qload3], %[st3] \n\t" /* average even 3 */ + "sb %[qload3], 4(%[dst]) \n\t" /* store even 3 to dst */ + "dpa.w.ph $ac2, %[p1], %[filter45] \n\t" /* even 5 */ + "extp %[Temp2], $ac2, 31 \n\t" /* even 5 */ + "lbux %[st1], %[Temp1](%[cm]) \n\t" /* even 4 */ + + /* even 6. pixel */ + "mtlo %[vector_64], $ac1 \n\t" /* even 7 */ + "mthi $zero, $ac1 \n\t" + "addqh_r.w %[qload1], %[qload1], %[st1] \n\t" /* average even 4 */ + "sb %[qload1], 6(%[dst]) \n\t" /* store even 4 to dst */ + "dpa.w.ph $ac3, %[p5], %[filter45] \n\t" /* even 6 */ + "lbu %[qload2], 8(%[dst]) \n\t" /* load even 5 from dst */ + "extp %[Temp3], $ac3, 31 \n\t" /* even 6 */ + "lbux %[st2], %[Temp2](%[cm]) \n\t" /* even 5 */ + + /* even 7. pixel */ + "mtlo %[vector_64], $ac2 \n\t" /* even 8 */ + "mthi $zero, $ac2 \n\t" + "addqh_r.w %[qload2], %[qload2], %[st2] \n\t" /* average even 5 */ + "sb %[qload2], 8(%[dst]) \n\t" /* store even 5 to dst */ + "dpa.w.ph $ac1, %[p2], %[filter45] \n\t" /* even 7 */ + "lbu %[qload3], 10(%[dst]) \n\t" /* load even 6 from dst */ + "extp %[Temp1], $ac1, 31 \n\t" /* even 7 */ + "lbux %[st3], %[Temp3](%[cm]) \n\t" /* even 6 */ + + "lbu %[st2], 12(%[dst]) \n\t" /* load even 7 from dst */ + + /* even 8. pixel */ + "mtlo %[vector_64], $ac3 \n\t" /* odd 1 */ + "mthi $zero, $ac3 \n\t" + "addqh_r.w %[qload3], %[qload3], %[st3] \n\t" /* average even 6 */ + "dpa.w.ph $ac2, %[p3], %[filter45] \n\t" /* even 8 */ + "sb %[qload3], 10(%[dst]) \n\t" /* store even 6 to dst */ + "extp %[Temp2], $ac2, 31 \n\t" /* even 8 */ + "lbux %[st1], %[Temp1](%[cm]) \n\t" /* even 7 */ + + /* ODD pixels */ + "ulw %[qload1], 1(%[src]) \n\t" + "ulw %[qload2], 5(%[src]) \n\t" + + "addqh_r.w %[st2], %[st2], %[st1] \n\t" /* average even 7 */ + + /* odd 1. pixel */ + "mtlo %[vector_64], $ac1 \n\t" /* odd 2 */ + "mthi $zero, $ac1 \n\t" + "preceu.ph.qbr %[p1], %[qload1] \n\t" + "preceu.ph.qbl %[p2], %[qload1] \n\t" + "preceu.ph.qbr %[p3], %[qload2] \n\t" + "preceu.ph.qbl %[p4], %[qload2] \n\t" + "sb %[st2], 12(%[dst]) \n\t" /* store even 7 to dst */ + "ulw %[qload3], 9(%[src]) \n\t" + "dpa.w.ph $ac3, %[p1], %[filter45] \n\t" /* odd 1 */ + "lbu %[qload2], 14(%[dst]) \n\t" /* load even 8 from dst */ + "extp %[Temp3], $ac3, 31 \n\t" /* odd 1 */ + "lbux %[st2], %[Temp2](%[cm]) \n\t" /* even 8 */ + + "lbu %[st1], 1(%[dst]) \n\t" /* load odd 1 from dst */ + + /* odd 2. pixel */ + "mtlo %[vector_64], $ac2 \n\t" /* odd 3 */ + "mthi $zero, $ac2 \n\t" + "addqh_r.w %[qload2], %[qload2], %[st2] \n\t" /* average even 8 */ + "preceu.ph.qbr %[p1], %[qload3] \n\t" + "preceu.ph.qbl %[p5], %[qload3] \n\t" + "sb %[qload2], 14(%[dst]) \n\t" /* store even 8 to dst */ + "ulw %[qload1], 13(%[src]) \n\t" + "dpa.w.ph $ac1, %[p2], %[filter45] \n\t" /* odd 2 */ + "lbu %[qload3], 3(%[dst]) \n\t" /* load odd 2 from dst */ + "extp %[Temp1], $ac1, 31 \n\t" /* odd 2 */ + "lbux %[st3], %[Temp3](%[cm]) \n\t" /* odd 1 */ + + /* odd 3. pixel */ + "mtlo %[vector_64], $ac3 \n\t" /* odd 4 */ + "mthi $zero, $ac3 \n\t" + "addqh_r.w %[st3], %[st3], %[st1] \n\t" /* average odd 1 */ + "preceu.ph.qbr %[p2], %[qload1] \n\t" + "dpa.w.ph $ac2, %[p3], %[filter45] \n\t" /* odd 3 */ + "sb %[st3], 1(%[dst]) \n\t" /* store odd 1 to dst */ + "extp %[Temp2], $ac2, 31 \n\t" /* odd 3 */ + "lbux %[st1], %[Temp1](%[cm]) \n\t" /* odd 2 */ + + /* odd 4. pixel */ + "mtlo %[vector_64], $ac1 \n\t" /* odd 5 */ + "mthi $zero, $ac1 \n\t" + "addqh_r.w %[qload3], %[qload3], %[st1] \n\t" /* average odd 2 */ + "preceu.ph.qbl %[p3], %[qload1] \n\t" + "sb %[qload3], 3(%[dst]) \n\t" /* store odd 2 to dst */ + "lbu %[qload1], 5(%[dst]) \n\t" /* load odd 3 from dst */ + "dpa.w.ph $ac3, %[p4], %[filter45] \n\t" /* odd 4 */ + "extp %[Temp3], $ac3, 31 \n\t" /* odd 4 */ + "lbux %[st2], %[Temp2](%[cm]) \n\t" /* odd 3 */ + + "lbu %[st1], 7(%[dst]) \n\t" /* load odd 4 from dst */ + + /* odd 5. pixel */ + "mtlo %[vector_64], $ac2 \n\t" /* odd 6 */ + "mthi $zero, $ac2 \n\t" + "addqh_r.w %[qload1], %[qload1], %[st2] \n\t" /* average odd 3 */ + "sb %[qload1], 5(%[dst]) \n\t" /* store odd 3 to dst */ + "dpa.w.ph $ac1, %[p1], %[filter45] \n\t" /* odd 5 */ + "extp %[Temp1], $ac1, 31 \n\t" /* odd 5 */ + "lbux %[st3], %[Temp3](%[cm]) \n\t" /* odd 4 */ + + "lbu %[qload1], 9(%[dst]) \n\t" /* load odd 5 from dst */ + + /* odd 6. pixel */ + "mtlo %[vector_64], $ac3 \n\t" /* odd 7 */ + "mthi $zero, $ac3 \n\t" + "addqh_r.w %[st1], %[st1], %[st3] \n\t" /* average odd 4 */ + "sb %[st1], 7(%[dst]) \n\t" /* store odd 4 to dst */ + "dpa.w.ph $ac2, %[p5], %[filter45] \n\t" /* odd 6 */ + "extp %[Temp2], $ac2, 31 \n\t" /* odd 6 */ + "lbux %[st1], %[Temp1](%[cm]) \n\t" /* odd 5 */ + + /* odd 7. pixel */ + "mtlo %[vector_64], $ac1 \n\t" /* odd 8 */ + "mthi $zero, $ac1 \n\t" + "addqh_r.w %[qload1], %[qload1], %[st1] \n\t" /* average odd 5 */ + "sb %[qload1], 9(%[dst]) \n\t" /* store odd 5 to dst */ + "lbu %[qload2], 11(%[dst]) \n\t" /* load odd 6 from dst */ + "dpa.w.ph $ac3, %[p2], %[filter45] \n\t" /* odd 7 */ + "extp %[Temp3], $ac3, 31 \n\t" /* odd 7 */ + + "lbu %[qload3], 13(%[dst]) \n\t" /* load odd 7 from dst */ + + /* odd 8. pixel */ + "dpa.w.ph $ac1, %[p3], %[filter45] \n\t" /* odd 8 */ + "extp %[Temp1], $ac1, 31 \n\t" /* odd 8 */ + + "lbu %[qload1], 15(%[dst]) \n\t" /* load odd 8 from dst */ + + "lbux %[st2], %[Temp2](%[cm]) \n\t" /* odd 6 */ + "addqh_r.w %[qload2], %[qload2], %[st2] \n\t" /* average odd 6 */ + + "lbux %[st3], %[Temp3](%[cm]) \n\t" /* odd 7 */ + "addqh_r.w %[qload3], %[qload3], %[st3] \n\t" /* average odd 7 */ + + "lbux %[st1], %[Temp1](%[cm]) \n\t" /* odd 8 */ + "addqh_r.w %[qload1], %[qload1], %[st1] \n\t" /* average odd 8 */ + + "sb %[qload2], 11(%[dst]) \n\t" /* store odd 6 to dst */ + "sb %[qload3], 13(%[dst]) \n\t" /* store odd 7 to dst */ + "sb %[qload1], 15(%[dst]) \n\t" /* store odd 8 to dst */ + + : [qload1] "=&r"(qload1), [qload2] "=&r"(qload2), [st1] "=&r"(st1), + [st2] "=&r"(st2), [st3] "=&r"(st3), [p1] "=&r"(p1), [p2] "=&r"(p2), + [p3] "=&r"(p3), [p4] "=&r"(p4), [qload3] "=&r"(qload3), + [p5] "=&r"(p5), [Temp1] "=&r"(Temp1), [Temp2] "=&r"(Temp2), + [Temp3] "=&r"(Temp3) + : [filter45] "r"(filter45), [vector_64] "r"(vector_64), [cm] "r"(cm), + [dst] "r"(dst), [src] "r"(src)); + + src += 16; + dst += 16; + } + + /* Next row... */ + src_ptr += src_stride; + dst_ptr += dst_stride; + } +} + +static void convolve_bi_avg_horiz_64_dspr2(const uint8_t *src_ptr, + int32_t src_stride, uint8_t *dst_ptr, + int32_t dst_stride, + const int16_t *filter_x0, + int32_t h) { + int32_t y, c; + const uint8_t *src; + uint8_t *dst; + uint8_t *cm = vpx_ff_cropTbl; + uint32_t vector_64 = 64; + int32_t Temp1, Temp2, Temp3; + uint32_t qload1, qload2, qload3; + uint32_t p1, p2, p3, p4, p5; + uint32_t st1, st2, st3; + const int16_t *filter = &filter_x0[3]; + uint32_t filter45; + + filter45 = ((const int32_t *)filter)[0]; + + for (y = h; y--;) { + src = src_ptr; + dst = dst_ptr; + + /* prefetch data to cache memory */ + prefetch_load(src_ptr + src_stride); + prefetch_load(src_ptr + src_stride + 32); + prefetch_load(src_ptr + src_stride + 64); + prefetch_store(dst_ptr + dst_stride); + prefetch_store(dst_ptr + dst_stride + 32); + + for (c = 0; c < 4; c++) { + __asm__ __volatile__( + "ulw %[qload1], 0(%[src]) \n\t" + "ulw %[qload2], 4(%[src]) \n\t" + + /* even 1. pixel */ + "mtlo %[vector_64], $ac1 \n\t" /* even 1 */ + "mthi $zero, $ac1 \n\t" + "mtlo %[vector_64], $ac2 \n\t" /* even 2 */ + "mthi $zero, $ac2 \n\t" + "preceu.ph.qbr %[p1], %[qload1] \n\t" + "preceu.ph.qbl %[p2], %[qload1] \n\t" + "preceu.ph.qbr %[p3], %[qload2] \n\t" + "preceu.ph.qbl %[p4], %[qload2] \n\t" + "ulw %[qload3], 8(%[src]) \n\t" + "dpa.w.ph $ac1, %[p1], %[filter45] \n\t" /* even 1 */ + "extp %[Temp1], $ac1, 31 \n\t" /* even 1 */ + "lbu %[st2], 0(%[dst]) \n\t" /* load even 1 from dst */ + + /* even 2. pixel */ + "mtlo %[vector_64], $ac3 \n\t" /* even 3 */ + "mthi $zero, $ac3 \n\t" + "preceu.ph.qbr %[p1], %[qload3] \n\t" + "preceu.ph.qbl %[p5], %[qload3] \n\t" + "ulw %[qload1], 12(%[src]) \n\t" + "dpa.w.ph $ac2, %[p2], %[filter45] \n\t" /* even 1 */ + "extp %[Temp2], $ac2, 31 \n\t" /* even 1 */ + "lbux %[st1], %[Temp1](%[cm]) \n\t" /* even 1 */ + + "lbu %[qload3], 2(%[dst]) \n\t" /* load even 2 from dst */ + + /* even 3. pixel */ + "mtlo %[vector_64], $ac1 \n\t" /* even 4 */ + "mthi $zero, $ac1 \n\t" + "addqh_r.w %[st2], %[st2], %[st1] \n\t" /* average even 1 */ + "preceu.ph.qbr %[p2], %[qload1] \n\t" + "sb %[st2], 0(%[dst]) \n\t" /* store even 1 to dst */ + "dpa.w.ph $ac3, %[p3], %[filter45] \n\t" /* even 3 */ + "extp %[Temp3], $ac3, 31 \n\t" /* even 3 */ + "lbux %[st2], %[Temp2](%[cm]) \n\t" /* even 1 */ + + /* even 4. pixel */ + "mtlo %[vector_64], $ac2 \n\t" /* even 5 */ + "mthi $zero, $ac2 \n\t" + "addqh_r.w %[qload3], %[qload3], %[st2] \n\t" /* average even 2 */ + "preceu.ph.qbl %[p3], %[qload1] \n\t" + "sb %[qload3], 2(%[dst]) \n\t" /* store even 2 to dst */ + "lbu %[qload3], 4(%[dst]) \n\t" /* load even 3 from dst */ + "lbu %[qload1], 6(%[dst]) \n\t" /* load even 4 from dst */ + "dpa.w.ph $ac1, %[p4], %[filter45] \n\t" /* even 4 */ + "extp %[Temp1], $ac1, 31 \n\t" /* even 4 */ + "lbux %[st3], %[Temp3](%[cm]) \n\t" /* even 3 */ + + /* even 5. pixel */ + "mtlo %[vector_64], $ac3 \n\t" /* even 6 */ + "mthi $zero, $ac3 \n\t" + "addqh_r.w %[qload3], %[qload3], %[st3] \n\t" /* average even 3 */ + "sb %[qload3], 4(%[dst]) \n\t" /* store even 3 to dst */ + "dpa.w.ph $ac2, %[p1], %[filter45] \n\t" /* even 5 */ + "extp %[Temp2], $ac2, 31 \n\t" /* even 5 */ + "lbux %[st1], %[Temp1](%[cm]) \n\t" /* even 4 */ + + /* even 6. pixel */ + "mtlo %[vector_64], $ac1 \n\t" /* even 7 */ + "mthi $zero, $ac1 \n\t" + "addqh_r.w %[qload1], %[qload1], %[st1] \n\t" /* average even 4 */ + "sb %[qload1], 6(%[dst]) \n\t" /* store even 4 to dst */ + "dpa.w.ph $ac3, %[p5], %[filter45] \n\t" /* even 6 */ + "lbu %[qload2], 8(%[dst]) \n\t" /* load even 5 from dst */ + "extp %[Temp3], $ac3, 31 \n\t" /* even 6 */ + "lbux %[st2], %[Temp2](%[cm]) \n\t" /* even 5 */ + + /* even 7. pixel */ + "mtlo %[vector_64], $ac2 \n\t" /* even 8 */ + "mthi $zero, $ac2 \n\t" + "addqh_r.w %[qload2], %[qload2], %[st2] \n\t" /* average even 5 */ + "sb %[qload2], 8(%[dst]) \n\t" /* store even 5 to dst */ + "dpa.w.ph $ac1, %[p2], %[filter45] \n\t" /* even 7 */ + "lbu %[qload3], 10(%[dst]) \n\t" /* load even 6 from dst */ + "extp %[Temp1], $ac1, 31 \n\t" /* even 7 */ + "lbux %[st3], %[Temp3](%[cm]) \n\t" /* even 6 */ + + "lbu %[st2], 12(%[dst]) \n\t" /* load even 7 from dst */ + + /* even 8. pixel */ + "mtlo %[vector_64], $ac3 \n\t" /* odd 1 */ + "mthi $zero, $ac3 \n\t" + "addqh_r.w %[qload3], %[qload3], %[st3] \n\t" /* average even 6 */ + "dpa.w.ph $ac2, %[p3], %[filter45] \n\t" /* even 8 */ + "sb %[qload3], 10(%[dst]) \n\t" /* store even 6 to dst */ + "extp %[Temp2], $ac2, 31 \n\t" /* even 8 */ + "lbux %[st1], %[Temp1](%[cm]) \n\t" /* even 7 */ + + /* ODD pixels */ + "ulw %[qload1], 1(%[src]) \n\t" + "ulw %[qload2], 5(%[src]) \n\t" + + "addqh_r.w %[st2], %[st2], %[st1] \n\t" /* average even 7 */ + + /* odd 1. pixel */ + "mtlo %[vector_64], $ac1 \n\t" /* odd 2 */ + "mthi $zero, $ac1 \n\t" + "preceu.ph.qbr %[p1], %[qload1] \n\t" + "preceu.ph.qbl %[p2], %[qload1] \n\t" + "preceu.ph.qbr %[p3], %[qload2] \n\t" + "preceu.ph.qbl %[p4], %[qload2] \n\t" + "sb %[st2], 12(%[dst]) \n\t" /* store even 7 to dst */ + "ulw %[qload3], 9(%[src]) \n\t" + "dpa.w.ph $ac3, %[p1], %[filter45] \n\t" /* odd 1 */ + "lbu %[qload2], 14(%[dst]) \n\t" /* load even 8 from dst */ + "extp %[Temp3], $ac3, 31 \n\t" /* odd 1 */ + "lbux %[st2], %[Temp2](%[cm]) \n\t" /* even 8 */ + + "lbu %[st1], 1(%[dst]) \n\t" /* load odd 1 from dst */ + + /* odd 2. pixel */ + "mtlo %[vector_64], $ac2 \n\t" /* odd 3 */ + "mthi $zero, $ac2 \n\t" + "addqh_r.w %[qload2], %[qload2], %[st2] \n\t" /* average even 8 */ + "preceu.ph.qbr %[p1], %[qload3] \n\t" + "preceu.ph.qbl %[p5], %[qload3] \n\t" + "sb %[qload2], 14(%[dst]) \n\t" /* store even 8 to dst */ + "ulw %[qload1], 13(%[src]) \n\t" + "dpa.w.ph $ac1, %[p2], %[filter45] \n\t" /* odd 2 */ + "lbu %[qload3], 3(%[dst]) \n\t" /* load odd 2 from dst */ + "extp %[Temp1], $ac1, 31 \n\t" /* odd 2 */ + "lbux %[st3], %[Temp3](%[cm]) \n\t" /* odd 1 */ + + /* odd 3. pixel */ + "mtlo %[vector_64], $ac3 \n\t" /* odd 4 */ + "mthi $zero, $ac3 \n\t" + "addqh_r.w %[st3], %[st3], %[st1] \n\t" /* average odd 1 */ + "preceu.ph.qbr %[p2], %[qload1] \n\t" + "dpa.w.ph $ac2, %[p3], %[filter45] \n\t" /* odd 3 */ + "sb %[st3], 1(%[dst]) \n\t" /* store odd 1 to dst */ + "extp %[Temp2], $ac2, 31 \n\t" /* odd 3 */ + "lbux %[st1], %[Temp1](%[cm]) \n\t" /* odd 2 */ + + /* odd 4. pixel */ + "mtlo %[vector_64], $ac1 \n\t" /* odd 5 */ + "mthi $zero, $ac1 \n\t" + "addqh_r.w %[qload3], %[qload3], %[st1] \n\t" /* average odd 2 */ + "preceu.ph.qbl %[p3], %[qload1] \n\t" + "sb %[qload3], 3(%[dst]) \n\t" /* store odd 2 to dst */ + "lbu %[qload1], 5(%[dst]) \n\t" /* load odd 3 from dst */ + "dpa.w.ph $ac3, %[p4], %[filter45] \n\t" /* odd 4 */ + "extp %[Temp3], $ac3, 31 \n\t" /* odd 4 */ + "lbux %[st2], %[Temp2](%[cm]) \n\t" /* odd 3 */ + + "lbu %[st1], 7(%[dst]) \n\t" /* load odd 4 from dst */ + + /* odd 5. pixel */ + "mtlo %[vector_64], $ac2 \n\t" /* odd 6 */ + "mthi $zero, $ac2 \n\t" + "addqh_r.w %[qload1], %[qload1], %[st2] \n\t" /* average odd 3 */ + "sb %[qload1], 5(%[dst]) \n\t" /* store odd 3 to dst */ + "dpa.w.ph $ac1, %[p1], %[filter45] \n\t" /* odd 5 */ + "extp %[Temp1], $ac1, 31 \n\t" /* odd 5 */ + "lbux %[st3], %[Temp3](%[cm]) \n\t" /* odd 4 */ + + "lbu %[qload1], 9(%[dst]) \n\t" /* load odd 5 from dst */ + + /* odd 6. pixel */ + "mtlo %[vector_64], $ac3 \n\t" /* odd 7 */ + "mthi $zero, $ac3 \n\t" + "addqh_r.w %[st1], %[st1], %[st3] \n\t" /* average odd 4 */ + "sb %[st1], 7(%[dst]) \n\t" /* store odd 4 to dst */ + "dpa.w.ph $ac2, %[p5], %[filter45] \n\t" /* odd 6 */ + "extp %[Temp2], $ac2, 31 \n\t" /* odd 6 */ + "lbux %[st1], %[Temp1](%[cm]) \n\t" /* odd 5 */ + + /* odd 7. pixel */ + "mtlo %[vector_64], $ac1 \n\t" /* odd 8 */ + "mthi $zero, $ac1 \n\t" + "addqh_r.w %[qload1], %[qload1], %[st1] \n\t" /* average odd 5 */ + "sb %[qload1], 9(%[dst]) \n\t" /* store odd 5 to dst */ + "lbu %[qload2], 11(%[dst]) \n\t" /* load odd 6 from dst */ + "dpa.w.ph $ac3, %[p2], %[filter45] \n\t" /* odd 7 */ + "extp %[Temp3], $ac3, 31 \n\t" /* odd 7 */ + + "lbu %[qload3], 13(%[dst]) \n\t" /* load odd 7 from dst */ + + /* odd 8. pixel */ + "dpa.w.ph $ac1, %[p3], %[filter45] \n\t" /* odd 8 */ + "extp %[Temp1], $ac1, 31 \n\t" /* odd 8 */ + + "lbu %[qload1], 15(%[dst]) \n\t" /* load odd 8 from dst */ + + "lbux %[st2], %[Temp2](%[cm]) \n\t" /* odd 6 */ + "addqh_r.w %[qload2], %[qload2], %[st2] \n\t" /* average odd 6 */ + + "lbux %[st3], %[Temp3](%[cm]) \n\t" /* odd 7 */ + "addqh_r.w %[qload3], %[qload3], %[st3] \n\t" /* average odd 7 */ + + "lbux %[st1], %[Temp1](%[cm]) \n\t" /* odd 8 */ + "addqh_r.w %[qload1], %[qload1], %[st1] \n\t" /* average odd 8 */ + + "sb %[qload2], 11(%[dst]) \n\t" /* store odd 6 to dst */ + "sb %[qload3], 13(%[dst]) \n\t" /* store odd 7 to dst */ + "sb %[qload1], 15(%[dst]) \n\t" /* store odd 8 to dst */ + + : [qload1] "=&r"(qload1), [qload2] "=&r"(qload2), [st1] "=&r"(st1), + [st2] "=&r"(st2), [st3] "=&r"(st3), [p1] "=&r"(p1), [p2] "=&r"(p2), + [p3] "=&r"(p3), [p4] "=&r"(p4), [qload3] "=&r"(qload3), + [p5] "=&r"(p5), [Temp1] "=&r"(Temp1), [Temp2] "=&r"(Temp2), + [Temp3] "=&r"(Temp3) + : [filter45] "r"(filter45), [vector_64] "r"(vector_64), [cm] "r"(cm), + [dst] "r"(dst), [src] "r"(src)); + + src += 16; + dst += 16; + } + + /* Next row... */ + src_ptr += src_stride; + dst_ptr += dst_stride; + } +} + +void vpx_convolve2_avg_horiz_dspr2(const uint8_t *src, ptrdiff_t src_stride, + uint8_t *dst, ptrdiff_t dst_stride, + const InterpKernel *filter, int x0_q4, + int32_t x_step_q4, int y0_q4, int y_step_q4, + int w, int h) { + const int16_t *const filter_x = filter[x0_q4]; + uint32_t pos = 38; + + assert(x_step_q4 == 16); + + /* bit positon for extract from acc */ + __asm__ __volatile__("wrdsp %[pos], 1 \n\t" + : + : [pos] "r"(pos)); + + /* prefetch data to cache memory */ + prefetch_load(src); + prefetch_load(src + 32); + prefetch_store(dst); + + switch (w) { + case 4: + convolve_bi_avg_horiz_4_dspr2(src, src_stride, dst, dst_stride, filter_x, + h); + break; + case 8: + convolve_bi_avg_horiz_8_dspr2(src, src_stride, dst, dst_stride, filter_x, + h); + break; + case 16: + convolve_bi_avg_horiz_16_dspr2(src, src_stride, dst, dst_stride, filter_x, + h, 1); + break; + case 32: + convolve_bi_avg_horiz_16_dspr2(src, src_stride, dst, dst_stride, filter_x, + h, 2); + break; + case 64: + prefetch_load(src + 64); + prefetch_store(dst + 32); + + convolve_bi_avg_horiz_64_dspr2(src, src_stride, dst, dst_stride, filter_x, + h); + break; + default: + vpx_convolve8_avg_horiz_c(src, src_stride, dst, dst_stride, filter, x0_q4, + x_step_q4, y0_q4, y_step_q4, w, h); + break; + } +} +#endif diff --git a/vpx_dsp/mips/convolve2_dspr2.c b/vpx_dsp/mips/convolve2_dspr2.c new file mode 100644 index 0000000..e355ba3 --- /dev/null +++ b/vpx_dsp/mips/convolve2_dspr2.c @@ -0,0 +1,1029 @@ +/* + * Copyright (c) 2013 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include + +#include "./vpx_dsp_rtcd.h" +#include "vpx_dsp/mips/convolve_common_dspr2.h" +#include "vpx_dsp/vpx_dsp_common.h" +#include "vpx_dsp/vpx_filter.h" +#include "vpx_ports/mem.h" + +#if HAVE_DSPR2 +static void convolve_bi_horiz_4_transposed_dspr2( + const uint8_t *src, int32_t src_stride, uint8_t *dst, int32_t dst_stride, + const int16_t *filter_x0, int32_t h) { + int32_t y; + uint8_t *cm = vpx_ff_cropTbl; + uint8_t *dst_ptr; + int32_t Temp1, Temp2; + uint32_t vector4a = 64; + uint32_t tp1, tp2; + uint32_t p1, p2; + const int16_t *filter = &filter_x0[3]; + uint32_t filter45; + + filter45 = ((const int32_t *)filter)[0]; + + for (y = h; y--;) { + dst_ptr = dst; + /* prefetch data to cache memory */ + prefetch_load(src + src_stride); + prefetch_load(src + src_stride + 32); + + __asm__ __volatile__( + "ulw %[tp1], 0(%[src]) \n\t" + "ulw %[tp2], 4(%[src]) \n\t" + + /* even 1. pixel */ + "mtlo %[vector4a], $ac3 \n\t" + "mthi $zero, $ac3 \n\t" + "preceu.ph.qbr %[p1], %[tp1] \n\t" + "preceu.ph.qbl %[p2], %[tp1] \n\t" + "dpa.w.ph $ac3, %[p1], %[filter45] \n\t" + "extp %[Temp1], $ac3, 31 \n\t" + + /* even 2. pixel */ + "mtlo %[vector4a], $ac2 \n\t" + "mthi $zero, $ac2 \n\t" + "balign %[tp2], %[tp1], 3 \n\t" + "dpa.w.ph $ac2, %[p2], %[filter45] \n\t" + "extp %[Temp2], $ac2, 31 \n\t" + + /* odd 1. pixel */ + "lbux %[tp1], %[Temp1](%[cm]) \n\t" + "mtlo %[vector4a], $ac3 \n\t" + "mthi $zero, $ac3 \n\t" + "preceu.ph.qbr %[p1], %[tp2] \n\t" + "preceu.ph.qbl %[p2], %[tp2] \n\t" + "dpa.w.ph $ac3, %[p1], %[filter45] \n\t" + "extp %[Temp1], $ac3, 31 \n\t" + + /* odd 2. pixel */ + "lbux %[tp2], %[Temp2](%[cm]) \n\t" + "mtlo %[vector4a], $ac2 \n\t" + "mthi $zero, $ac2 \n\t" + "dpa.w.ph $ac2, %[p2], %[filter45] \n\t" + "extp %[Temp2], $ac2, 31 \n\t" + + /* clamp */ + "lbux %[p1], %[Temp1](%[cm]) \n\t" + "lbux %[p2], %[Temp2](%[cm]) \n\t" + + /* store bytes */ + "sb %[tp1], 0(%[dst_ptr]) \n\t" + "addu %[dst_ptr], %[dst_ptr], %[dst_stride] \n\t" + + "sb %[p1], 0(%[dst_ptr]) \n\t" + "addu %[dst_ptr], %[dst_ptr], %[dst_stride] \n\t" + + "sb %[tp2], 0(%[dst_ptr]) \n\t" + "addu %[dst_ptr], %[dst_ptr], %[dst_stride] \n\t" + + "sb %[p2], 0(%[dst_ptr]) \n\t" + "addu %[dst_ptr], %[dst_ptr], %[dst_stride] \n\t" + + : [tp1] "=&r"(tp1), [tp2] "=&r"(tp2), [p1] "=&r"(p1), [p2] "=&r"(p2), + [Temp1] "=&r"(Temp1), [Temp2] "=&r"(Temp2), [dst_ptr] "+r"(dst_ptr) + : [filter45] "r"(filter45), [vector4a] "r"(vector4a), [cm] "r"(cm), + [src] "r"(src), [dst_stride] "r"(dst_stride)); + + /* Next row... */ + src += src_stride; + dst += 1; + } +} + +static void convolve_bi_horiz_8_transposed_dspr2( + const uint8_t *src, int32_t src_stride, uint8_t *dst, int32_t dst_stride, + const int16_t *filter_x0, int32_t h) { + int32_t y; + uint8_t *cm = vpx_ff_cropTbl; + uint8_t *dst_ptr; + uint32_t vector4a = 64; + int32_t Temp1, Temp2, Temp3; + uint32_t tp1, tp2, tp3; + uint32_t p1, p2, p3, p4; + uint8_t *odd_dst; + uint32_t dst_pitch_2 = (dst_stride << 1); + const int16_t *filter = &filter_x0[3]; + uint32_t filter45; + + filter45 = ((const int32_t *)filter)[0]; + + for (y = h; y--;) { + /* prefetch data to cache memory */ + prefetch_load(src + src_stride); + prefetch_load(src + src_stride + 32); + + dst_ptr = dst; + odd_dst = (dst_ptr + dst_stride); + + __asm__ __volatile__( + "ulw %[tp1], 0(%[src]) \n\t" + "ulw %[tp2], 4(%[src]) \n\t" + + /* even 1. pixel */ + "mtlo %[vector4a], $ac3 \n\t" + "mthi $zero, $ac3 \n\t" + "mtlo %[vector4a], $ac2 \n\t" + "mthi $zero, $ac2 \n\t" + "preceu.ph.qbr %[p1], %[tp1] \n\t" + "preceu.ph.qbl %[p2], %[tp1] \n\t" + "preceu.ph.qbr %[p3], %[tp2] \n\t" + "preceu.ph.qbl %[p4], %[tp2] \n\t" + "ulw %[tp3], 8(%[src]) \n\t" + "dpa.w.ph $ac3, %[p1], %[filter45] \n\t" + "extp %[Temp1], $ac3, 31 \n\t" + + /* even 2. pixel */ + "dpa.w.ph $ac2, %[p2], %[filter45] \n\t" + "extp %[Temp3], $ac2, 31 \n\t" + + /* even 3. pixel */ + "lbux %[Temp2], %[Temp1](%[cm]) \n\t" + "mtlo %[vector4a], $ac1 \n\t" + "mthi $zero, $ac1 \n\t" + "balign %[tp3], %[tp2], 3 \n\t" + "balign %[tp2], %[tp1], 3 \n\t" + "dpa.w.ph $ac1, %[p3], %[filter45] \n\t" + "lbux %[tp1], %[Temp3](%[cm]) \n\t" + "extp %[p3], $ac1, 31 \n\t" + + /* even 4. pixel */ + "mtlo %[vector4a], $ac2 \n\t" + "mthi $zero, $ac2 \n\t" + "mtlo %[vector4a], $ac3 \n\t" + "mthi $zero, $ac3 \n\t" + "sb %[Temp2], 0(%[dst_ptr]) \n\t" + "addu %[dst_ptr], %[dst_ptr], %[dst_pitch_2] \n\t" + "sb %[tp1], 0(%[dst_ptr]) \n\t" + "addu %[dst_ptr], %[dst_ptr], %[dst_pitch_2] \n\t" + + "dpa.w.ph $ac2, %[p4], %[filter45] \n\t" + "extp %[Temp3], $ac2, 31 \n\t" + + "lbux %[Temp1], %[p3](%[cm]) " + "\n\t" + + /* odd 1. pixel */ + "mtlo %[vector4a], $ac1 \n\t" + "mthi $zero, $ac1 \n\t" + "preceu.ph.qbr %[p1], %[tp2] \n\t" + "preceu.ph.qbl %[p2], %[tp2] \n\t" + "preceu.ph.qbr %[p3], %[tp3] \n\t" + "preceu.ph.qbl %[p4], %[tp3] \n\t" + "sb %[Temp1], 0(%[dst_ptr]) \n\t" + "addu %[dst_ptr], %[dst_ptr], %[dst_pitch_2] \n\t" + + "dpa.w.ph $ac3, %[p1], %[filter45] \n\t" + "extp %[Temp2], $ac3, 31 \n\t" + + /* odd 2. pixel */ + "lbux %[tp1], %[Temp3](%[cm]) \n\t" + "mtlo %[vector4a], $ac3 \n\t" + "mthi $zero, $ac3 \n\t" + "mtlo %[vector4a], $ac2 \n\t" + "mthi $zero, $ac2 \n\t" + "dpa.w.ph $ac1, %[p2], %[filter45] \n\t" + "sb %[tp1], 0(%[dst_ptr]) \n\t" + "addu %[dst_ptr], %[dst_ptr], %[dst_pitch_2] \n\t" + "extp %[Temp3], $ac1, 31 \n\t" + + /* odd 3. pixel */ + "lbux %[tp3], %[Temp2](%[cm]) \n\t" + "dpa.w.ph $ac3, %[p3], %[filter45] \n\t" + "extp %[Temp2], $ac3, 31 \n\t" + + /* odd 4. pixel */ + "sb %[tp3], 0(%[odd_dst]) \n\t" + "addu %[odd_dst], %[odd_dst], %[dst_pitch_2] \n\t" + "dpa.w.ph $ac2, %[p4], %[filter45] \n\t" + "extp %[Temp1], $ac2, 31 \n\t" + + /* clamp */ + "lbux %[p4], %[Temp3](%[cm]) \n\t" + "lbux %[p2], %[Temp2](%[cm]) \n\t" + "lbux %[p1], %[Temp1](%[cm]) \n\t" + + /* store bytes */ + "sb %[p4], 0(%[odd_dst]) \n\t" + "addu %[odd_dst], %[odd_dst], %[dst_pitch_2] \n\t" + + "sb %[p2], 0(%[odd_dst]) \n\t" + "addu %[odd_dst], %[odd_dst], %[dst_pitch_2] \n\t" + + "sb %[p1], 0(%[odd_dst]) \n\t" + + : [tp1] "=&r"(tp1), [tp2] "=&r"(tp2), [tp3] "=&r"(tp3), [p1] "=&r"(p1), + [p2] "=&r"(p2), [p3] "=&r"(p3), [p4] "=&r"(p4), [Temp1] "=&r"(Temp1), + [Temp2] "=&r"(Temp2), [Temp3] "=&r"(Temp3), [dst_ptr] "+r"(dst_ptr), + [odd_dst] "+r"(odd_dst) + : [filter45] "r"(filter45), [vector4a] "r"(vector4a), [cm] "r"(cm), + [src] "r"(src), [dst_pitch_2] "r"(dst_pitch_2)); + + /* Next row... */ + src += src_stride; + dst += 1; + } +} + +static void convolve_bi_horiz_16_transposed_dspr2( + const uint8_t *src_ptr, int32_t src_stride, uint8_t *dst_ptr, + int32_t dst_stride, const int16_t *filter_x0, int32_t h, int32_t count) { + int32_t c, y; + const uint8_t *src; + uint8_t *dst; + uint8_t *cm = vpx_ff_cropTbl; + uint32_t vector_64 = 64; + int32_t Temp1, Temp2, Temp3; + uint32_t qload1, qload2; + uint32_t p1, p2, p3, p4, p5; + uint32_t st1, st2, st3; + uint32_t dst_pitch_2 = (dst_stride << 1); + uint8_t *odd_dst; + const int16_t *filter = &filter_x0[3]; + uint32_t filter45; + + filter45 = ((const int32_t *)filter)[0]; + + for (y = h; y--;) { + /* prefetch data to cache memory */ + prefetch_load(src_ptr + src_stride); + prefetch_load(src_ptr + src_stride + 32); + + src = src_ptr; + dst = dst_ptr; + + odd_dst = (dst + dst_stride); + + for (c = 0; c < count; c++) { + __asm__ __volatile__( + "ulw %[qload1], 0(%[src]) " + "\n\t" + "ulw %[qload2], 4(%[src]) " + "\n\t" + + /* even 1. pixel */ + "mtlo %[vector_64], $ac1 " + "\n\t" /* even 1 */ + "mthi $zero, $ac1 " + "\n\t" + "mtlo %[vector_64], $ac2 " + "\n\t" /* even 2 */ + "mthi $zero, $ac2 " + "\n\t" + "preceu.ph.qbr %[p1], %[qload1] " + "\n\t" + "preceu.ph.qbl %[p2], %[qload1] " + "\n\t" + "preceu.ph.qbr %[p3], %[qload2] " + "\n\t" + "preceu.ph.qbl %[p4], %[qload2] " + "\n\t" + "ulw %[qload1], 8(%[src]) " + "\n\t" + "dpa.w.ph $ac1, %[p1], %[filter45] " + "\n\t" /* even 1 */ + "extp %[Temp1], $ac1, 31 " + "\n\t" /* even 1 */ + + /* even 2. pixel */ + "mtlo %[vector_64], $ac3 " + "\n\t" /* even 3 */ + "mthi $zero, $ac3 " + "\n\t" + "preceu.ph.qbr %[p1], %[qload1] " + "\n\t" + "preceu.ph.qbl %[p5], %[qload1] " + "\n\t" + "ulw %[qload2], 12(%[src]) " + "\n\t" + "dpa.w.ph $ac2, %[p2], %[filter45] " + "\n\t" /* even 1 */ + "lbux %[st1], %[Temp1](%[cm]) " + "\n\t" /* even 1 */ + "extp %[Temp2], $ac2, 31 " + "\n\t" /* even 1 */ + + /* even 3. pixel */ + "mtlo %[vector_64], $ac1 " + "\n\t" /* even 4 */ + "mthi $zero, $ac1 " + "\n\t" + "preceu.ph.qbr %[p2], %[qload2] " + "\n\t" + "sb %[st1], 0(%[dst]) " + "\n\t" /* even 1 */ + "addu %[dst], %[dst], %[dst_pitch_2] " + " \n\t" + "dpa.w.ph $ac3, %[p3], %[filter45] " + "\n\t" /* even 3 */ + "extp %[Temp3], $ac3, 31 " + "\n\t" /* even 3 */ + "lbux %[st2], %[Temp2](%[cm]) " + "\n\t" /* even 1 */ + + /* even 4. pixel */ + "mtlo %[vector_64], $ac2 " + "\n\t" /* even 5 */ + "mthi $zero, $ac2 " + "\n\t" + "preceu.ph.qbl %[p3], %[qload2] " + "\n\t" + "sb %[st2], 0(%[dst]) " + "\n\t" /* even 2 */ + "addu %[dst], %[dst], %[dst_pitch_2] " + "\n\t" + "dpa.w.ph $ac1, %[p4], %[filter45] " + "\n\t" /* even 4 */ + "extp %[Temp1], $ac1, 31 " + "\n\t" /* even 4 */ + "lbux %[st3], %[Temp3](%[cm]) " + "\n\t" /* even 3 */ + + /* even 5. pixel */ + "mtlo %[vector_64], $ac3 " + "\n\t" /* even 6 */ + "mthi $zero, $ac3 " + "\n\t" + "sb %[st3], 0(%[dst]) " + "\n\t" /* even 3 */ + "addu %[dst], %[dst], %[dst_pitch_2] " + "\n\t" + "dpa.w.ph $ac2, %[p1], %[filter45] " + "\n\t" /* even 5 */ + "extp %[Temp2], $ac2, 31 " + "\n\t" /* even 5 */ + "lbux %[st1], %[Temp1](%[cm]) " + "\n\t" /* even 4 */ + + /* even 6. pixel */ + "mtlo %[vector_64], $ac1 " + "\n\t" /* even 7 */ + "mthi $zero, $ac1 " + "\n\t" + "sb %[st1], 0(%[dst]) " + "\n\t" /* even 4 */ + "addu %[dst], %[dst], %[dst_pitch_2] " + "\n\t" + "ulw %[qload1], 20(%[src]) " + "\n\t" + "dpa.w.ph $ac3, %[p5], %[filter45] " + "\n\t" /* even 6 */ + "extp %[Temp3], $ac3, 31 " + "\n\t" /* even 6 */ + "lbux %[st2], %[Temp2](%[cm]) " + "\n\t" /* even 5 */ + + /* even 7. pixel */ + "mtlo %[vector_64], $ac2 " + "\n\t" /* even 8 */ + "mthi $zero, $ac2 " + "\n\t" + "preceu.ph.qbr %[p5], %[qload1] " + "\n\t" + "sb %[st2], 0(%[dst]) " + "\n\t" /* even 5 */ + "addu %[dst], %[dst], %[dst_pitch_2] " + "\n\t" + "dpa.w.ph $ac1, %[p2], %[filter45] " + "\n\t" /* even 7 */ + "extp %[Temp1], $ac1, 31 " + "\n\t" /* even 7 */ + "lbux %[st3], %[Temp3](%[cm]) " + "\n\t" /* even 6 */ + + /* even 8. pixel */ + "mtlo %[vector_64], $ac3 " + "\n\t" /* odd 1 */ + "mthi $zero, $ac3 " + "\n\t" + "dpa.w.ph $ac2, %[p3], %[filter45] " + "\n\t" /* even 8 */ + "sb %[st3], 0(%[dst]) " + "\n\t" /* even 6 */ + "addu %[dst], %[dst], %[dst_pitch_2] " + "\n\t" + "extp %[Temp2], $ac2, 31 " + "\n\t" /* even 8 */ + "lbux %[st1], %[Temp1](%[cm]) " + "\n\t" /* even 7 */ + + /* ODD pixels */ + "ulw %[qload1], 1(%[src]) " + "\n\t" + "ulw %[qload2], 5(%[src]) " + "\n\t" + + /* odd 1. pixel */ + "mtlo %[vector_64], $ac1 " + "\n\t" /* odd 2 */ + "mthi $zero, $ac1 " + "\n\t" + "preceu.ph.qbr %[p1], %[qload1] " + "\n\t" + "preceu.ph.qbl %[p2], %[qload1] " + "\n\t" + "preceu.ph.qbr %[p3], %[qload2] " + "\n\t" + "preceu.ph.qbl %[p4], %[qload2] " + "\n\t" + "sb %[st1], 0(%[dst]) " + "\n\t" /* even 7 */ + "addu %[dst], %[dst], %[dst_pitch_2] " + "\n\t" + "ulw %[qload2], 9(%[src]) " + "\n\t" + "dpa.w.ph $ac3, %[p1], %[filter45] " + "\n\t" /* odd 1 */ + "extp %[Temp3], $ac3, 31 " + "\n\t" /* odd 1 */ + "lbux %[st2], %[Temp2](%[cm]) " + "\n\t" /* even 8 */ + + /* odd 2. pixel */ + "mtlo %[vector_64], $ac2 " + "\n\t" /* odd 3 */ + "mthi $zero, $ac2 " + "\n\t" + "preceu.ph.qbr %[p1], %[qload2] " + "\n\t" + "preceu.ph.qbl %[p5], %[qload2] " + "\n\t" + "sb %[st2], 0(%[dst]) " + "\n\t" /* even 8 */ + "ulw %[qload1], 13(%[src]) " + "\n\t" + "dpa.w.ph $ac1, %[p2], %[filter45] " + "\n\t" /* odd 2 */ + "extp %[Temp1], $ac1, 31 " + "\n\t" /* odd 2 */ + "lbux %[st3], %[Temp3](%[cm]) " + "\n\t" /* odd 1 */ + + /* odd 3. pixel */ + "mtlo %[vector_64], $ac3 " + "\n\t" /* odd 4 */ + "mthi $zero, $ac3 " + "\n\t" + "preceu.ph.qbr %[p2], %[qload1] " + "\n\t" + "sb %[st3], 0(%[odd_dst]) " + "\n\t" /* odd 1 */ + "addu %[odd_dst], %[odd_dst], %[dst_pitch_2] " + "\n\t" + "dpa.w.ph $ac2, %[p3], %[filter45] " + "\n\t" /* odd 3 */ + "extp %[Temp2], $ac2, 31 " + "\n\t" /* odd 3 */ + "lbux %[st1], %[Temp1](%[cm]) " + "\n\t" /* odd 2 */ + + /* odd 4. pixel */ + "mtlo %[vector_64], $ac1 " + "\n\t" /* odd 5 */ + "mthi $zero, $ac1 " + "\n\t" + "preceu.ph.qbl %[p3], %[qload1] " + "\n\t" + "sb %[st1], 0(%[odd_dst]) " + "\n\t" /* odd 2 */ + "addu %[odd_dst], %[odd_dst], %[dst_pitch_2] " + "\n\t" + "dpa.w.ph $ac3, %[p4], %[filter45] " + "\n\t" /* odd 4 */ + "extp %[Temp3], $ac3, 31 " + "\n\t" /* odd 4 */ + "lbux %[st2], %[Temp2](%[cm]) " + "\n\t" /* odd 3 */ + + /* odd 5. pixel */ + "mtlo %[vector_64], $ac2 " + "\n\t" /* odd 6 */ + "mthi $zero, $ac2 " + "\n\t" + "sb %[st2], 0(%[odd_dst]) " + "\n\t" /* odd 3 */ + "addu %[odd_dst], %[odd_dst], %[dst_pitch_2] " + "\n\t" + "dpa.w.ph $ac1, %[p1], %[filter45] " + "\n\t" /* odd 5 */ + "extp %[Temp1], $ac1, 31 " + "\n\t" /* odd 5 */ + "lbux %[st3], %[Temp3](%[cm]) " + "\n\t" /* odd 4 */ + + /* odd 6. pixel */ + "mtlo %[vector_64], $ac3 " + "\n\t" /* odd 7 */ + "mthi $zero, $ac3 " + "\n\t" + "sb %[st3], 0(%[odd_dst]) " + "\n\t" /* odd 4 */ + "addu %[odd_dst], %[odd_dst], %[dst_pitch_2] " + "\n\t" + "ulw %[qload1], 21(%[src]) " + "\n\t" + "dpa.w.ph $ac2, %[p5], %[filter45] " + "\n\t" /* odd 6 */ + "extp %[Temp2], $ac2, 31 " + "\n\t" /* odd 6 */ + "lbux %[st1], %[Temp1](%[cm]) " + "\n\t" /* odd 5 */ + + /* odd 7. pixel */ + "mtlo %[vector_64], $ac1 " + "\n\t" /* odd 8 */ + "mthi $zero, $ac1 " + "\n\t" + "preceu.ph.qbr %[p5], %[qload1] " + "\n\t" + "sb %[st1], 0(%[odd_dst]) " + "\n\t" /* odd 5 */ + "addu %[odd_dst], %[odd_dst], %[dst_pitch_2] " + "\n\t" + "dpa.w.ph $ac3, %[p2], %[filter45] " + "\n\t" /* odd 7 */ + "extp %[Temp3], $ac3, 31 " + "\n\t" /* odd 7 */ + + /* odd 8. pixel */ + "dpa.w.ph $ac1, %[p3], %[filter45] " + "\n\t" /* odd 8 */ + "extp %[Temp1], $ac1, 31 " + "\n\t" /* odd 8 */ + + "lbux %[st2], %[Temp2](%[cm]) " + "\n\t" /* odd 6 */ + "lbux %[st3], %[Temp3](%[cm]) " + "\n\t" /* odd 7 */ + "lbux %[st1], %[Temp1](%[cm]) " + "\n\t" /* odd 8 */ + + "sb %[st2], 0(%[odd_dst]) " + "\n\t" /* odd 6 */ + "addu %[odd_dst], %[odd_dst], %[dst_pitch_2] " + "\n\t" + + "sb %[st3], 0(%[odd_dst]) " + "\n\t" /* odd 7 */ + "addu %[odd_dst], %[odd_dst], %[dst_pitch_2] " + "\n\t" + + "sb %[st1], 0(%[odd_dst]) " + "\n\t" /* odd 8 */ + + : [qload1] "=&r"(qload1), [qload2] "=&r"(qload2), [p5] "=&r"(p5), + [st1] "=&r"(st1), [st2] "=&r"(st2), [st3] "=&r"(st3), + [p1] "=&r"(p1), [p2] "=&r"(p2), [p3] "=&r"(p3), [p4] "=&r"(p4), + [Temp1] "=&r"(Temp1), [Temp2] "=&r"(Temp2), [Temp3] "=&r"(Temp3), + [dst] "+r"(dst), [odd_dst] "+r"(odd_dst) + : [filter45] "r"(filter45), [vector_64] "r"(vector_64), [cm] "r"(cm), + [src] "r"(src), [dst_pitch_2] "r"(dst_pitch_2)); + + src += 16; + dst = (dst_ptr + ((c + 1) * 16 * dst_stride)); + odd_dst = (dst + dst_stride); + } + + /* Next row... */ + src_ptr += src_stride; + dst_ptr += 1; + } +} + +static void convolve_bi_horiz_64_transposed_dspr2( + const uint8_t *src_ptr, int32_t src_stride, uint8_t *dst_ptr, + int32_t dst_stride, const int16_t *filter_x0, int32_t h) { + int32_t c, y; + const uint8_t *src; + uint8_t *dst; + uint8_t *cm = vpx_ff_cropTbl; + uint32_t vector_64 = 64; + int32_t Temp1, Temp2, Temp3; + uint32_t qload1, qload2; + uint32_t p1, p2, p3, p4, p5; + uint32_t st1, st2, st3; + uint32_t dst_pitch_2 = (dst_stride << 1); + uint8_t *odd_dst; + const int16_t *filter = &filter_x0[3]; + uint32_t filter45; + + filter45 = ((const int32_t *)filter)[0]; + + for (y = h; y--;) { + /* prefetch data to cache memory */ + prefetch_load(src_ptr + src_stride); + prefetch_load(src_ptr + src_stride + 32); + prefetch_load(src_ptr + src_stride + 64); + + src = src_ptr; + dst = dst_ptr; + + odd_dst = (dst + dst_stride); + + for (c = 0; c < 4; c++) { + __asm__ __volatile__( + "ulw %[qload1], 0(%[src]) " + "\n\t" + "ulw %[qload2], 4(%[src]) " + "\n\t" + + /* even 1. pixel */ + "mtlo %[vector_64], $ac1 " + "\n\t" /* even 1 */ + "mthi $zero, $ac1 " + "\n\t" + "mtlo %[vector_64], $ac2 " + "\n\t" /* even 2 */ + "mthi $zero, $ac2 " + "\n\t" + "preceu.ph.qbr %[p1], %[qload1] " + "\n\t" + "preceu.ph.qbl %[p2], %[qload1] " + "\n\t" + "preceu.ph.qbr %[p3], %[qload2] " + "\n\t" + "preceu.ph.qbl %[p4], %[qload2] " + "\n\t" + "ulw %[qload1], 8(%[src]) " + "\n\t" + "dpa.w.ph $ac1, %[p1], %[filter45] " + "\n\t" /* even 1 */ + "extp %[Temp1], $ac1, 31 " + "\n\t" /* even 1 */ + + /* even 2. pixel */ + "mtlo %[vector_64], $ac3 " + "\n\t" /* even 3 */ + "mthi $zero, $ac3 " + "\n\t" + "preceu.ph.qbr %[p1], %[qload1] " + "\n\t" + "preceu.ph.qbl %[p5], %[qload1] " + "\n\t" + "ulw %[qload2], 12(%[src]) " + "\n\t" + "dpa.w.ph $ac2, %[p2], %[filter45] " + "\n\t" /* even 1 */ + "lbux %[st1], %[Temp1](%[cm]) " + "\n\t" /* even 1 */ + "extp %[Temp2], $ac2, 31 " + "\n\t" /* even 1 */ + + /* even 3. pixel */ + "mtlo %[vector_64], $ac1 " + "\n\t" /* even 4 */ + "mthi $zero, $ac1 " + "\n\t" + "preceu.ph.qbr %[p2], %[qload2] " + "\n\t" + "sb %[st1], 0(%[dst]) " + "\n\t" /* even 1 */ + "addu %[dst], %[dst], %[dst_pitch_2] " + " \n\t" + "dpa.w.ph $ac3, %[p3], %[filter45] " + "\n\t" /* even 3 */ + "extp %[Temp3], $ac3, 31 " + "\n\t" /* even 3 */ + "lbux %[st2], %[Temp2](%[cm]) " + "\n\t" /* even 1 */ + + /* even 4. pixel */ + "mtlo %[vector_64], $ac2 " + "\n\t" /* even 5 */ + "mthi $zero, $ac2 " + "\n\t" + "preceu.ph.qbl %[p3], %[qload2] " + "\n\t" + "sb %[st2], 0(%[dst]) " + "\n\t" /* even 2 */ + "addu %[dst], %[dst], %[dst_pitch_2] " + "\n\t" + "dpa.w.ph $ac1, %[p4], %[filter45] " + "\n\t" /* even 4 */ + "extp %[Temp1], $ac1, 31 " + "\n\t" /* even 4 */ + "lbux %[st3], %[Temp3](%[cm]) " + "\n\t" /* even 3 */ + + /* even 5. pixel */ + "mtlo %[vector_64], $ac3 " + "\n\t" /* even 6 */ + "mthi $zero, $ac3 " + "\n\t" + "sb %[st3], 0(%[dst]) " + "\n\t" /* even 3 */ + "addu %[dst], %[dst], %[dst_pitch_2] " + "\n\t" + "dpa.w.ph $ac2, %[p1], %[filter45] " + "\n\t" /* even 5 */ + "extp %[Temp2], $ac2, 31 " + "\n\t" /* even 5 */ + "lbux %[st1], %[Temp1](%[cm]) " + "\n\t" /* even 4 */ + + /* even 6. pixel */ + "mtlo %[vector_64], $ac1 " + "\n\t" /* even 7 */ + "mthi $zero, $ac1 " + "\n\t" + "sb %[st1], 0(%[dst]) " + "\n\t" /* even 4 */ + "addu %[dst], %[dst], %[dst_pitch_2] " + "\n\t" + "ulw %[qload1], 20(%[src]) " + "\n\t" + "dpa.w.ph $ac3, %[p5], %[filter45] " + "\n\t" /* even 6 */ + "extp %[Temp3], $ac3, 31 " + "\n\t" /* even 6 */ + "lbux %[st2], %[Temp2](%[cm]) " + "\n\t" /* even 5 */ + + /* even 7. pixel */ + "mtlo %[vector_64], $ac2 " + "\n\t" /* even 8 */ + "mthi $zero, $ac2 " + "\n\t" + "preceu.ph.qbr %[p5], %[qload1] " + "\n\t" + "sb %[st2], 0(%[dst]) " + "\n\t" /* even 5 */ + "addu %[dst], %[dst], %[dst_pitch_2] " + "\n\t" + "dpa.w.ph $ac1, %[p2], %[filter45] " + "\n\t" /* even 7 */ + "extp %[Temp1], $ac1, 31 " + "\n\t" /* even 7 */ + "lbux %[st3], %[Temp3](%[cm]) " + "\n\t" /* even 6 */ + + /* even 8. pixel */ + "mtlo %[vector_64], $ac3 " + "\n\t" /* odd 1 */ + "mthi $zero, $ac3 " + "\n\t" + "dpa.w.ph $ac2, %[p3], %[filter45] " + "\n\t" /* even 8 */ + "sb %[st3], 0(%[dst]) " + "\n\t" /* even 6 */ + "addu %[dst], %[dst], %[dst_pitch_2] " + "\n\t" + "extp %[Temp2], $ac2, 31 " + "\n\t" /* even 8 */ + "lbux %[st1], %[Temp1](%[cm]) " + "\n\t" /* even 7 */ + + /* ODD pixels */ + "ulw %[qload1], 1(%[src]) " + "\n\t" + "ulw %[qload2], 5(%[src]) " + "\n\t" + + /* odd 1. pixel */ + "mtlo %[vector_64], $ac1 " + "\n\t" /* odd 2 */ + "mthi $zero, $ac1 " + "\n\t" + "preceu.ph.qbr %[p1], %[qload1] " + "\n\t" + "preceu.ph.qbl %[p2], %[qload1] " + "\n\t" + "preceu.ph.qbr %[p3], %[qload2] " + "\n\t" + "preceu.ph.qbl %[p4], %[qload2] " + "\n\t" + "sb %[st1], 0(%[dst]) " + "\n\t" /* even 7 */ + "addu %[dst], %[dst], %[dst_pitch_2] " + "\n\t" + "ulw %[qload2], 9(%[src]) " + "\n\t" + "dpa.w.ph $ac3, %[p1], %[filter45] " + "\n\t" /* odd 1 */ + "extp %[Temp3], $ac3, 31 " + "\n\t" /* odd 1 */ + "lbux %[st2], %[Temp2](%[cm]) " + "\n\t" /* even 8 */ + + /* odd 2. pixel */ + "mtlo %[vector_64], $ac2 " + "\n\t" /* odd 3 */ + "mthi $zero, $ac2 " + "\n\t" + "preceu.ph.qbr %[p1], %[qload2] " + "\n\t" + "preceu.ph.qbl %[p5], %[qload2] " + "\n\t" + "sb %[st2], 0(%[dst]) " + "\n\t" /* even 8 */ + "ulw %[qload1], 13(%[src]) " + "\n\t" + "dpa.w.ph $ac1, %[p2], %[filter45] " + "\n\t" /* odd 2 */ + "extp %[Temp1], $ac1, 31 " + "\n\t" /* odd 2 */ + "lbux %[st3], %[Temp3](%[cm]) " + "\n\t" /* odd 1 */ + + /* odd 3. pixel */ + "mtlo %[vector_64], $ac3 " + "\n\t" /* odd 4 */ + "mthi $zero, $ac3 " + "\n\t" + "preceu.ph.qbr %[p2], %[qload1] " + "\n\t" + "sb %[st3], 0(%[odd_dst]) " + "\n\t" /* odd 1 */ + "addu %[odd_dst], %[odd_dst], %[dst_pitch_2] " + "\n\t" + "dpa.w.ph $ac2, %[p3], %[filter45] " + "\n\t" /* odd 3 */ + "extp %[Temp2], $ac2, 31 " + "\n\t" /* odd 3 */ + "lbux %[st1], %[Temp1](%[cm]) " + "\n\t" /* odd 2 */ + + /* odd 4. pixel */ + "mtlo %[vector_64], $ac1 " + "\n\t" /* odd 5 */ + "mthi $zero, $ac1 " + "\n\t" + "preceu.ph.qbl %[p3], %[qload1] " + "\n\t" + "sb %[st1], 0(%[odd_dst]) " + "\n\t" /* odd 2 */ + "addu %[odd_dst], %[odd_dst], %[dst_pitch_2] " + "\n\t" + "dpa.w.ph $ac3, %[p4], %[filter45] " + "\n\t" /* odd 4 */ + "extp %[Temp3], $ac3, 31 " + "\n\t" /* odd 4 */ + "lbux %[st2], %[Temp2](%[cm]) " + "\n\t" /* odd 3 */ + + /* odd 5. pixel */ + "mtlo %[vector_64], $ac2 " + "\n\t" /* odd 6 */ + "mthi $zero, $ac2 " + "\n\t" + "sb %[st2], 0(%[odd_dst]) " + "\n\t" /* odd 3 */ + "addu %[odd_dst], %[odd_dst], %[dst_pitch_2] " + "\n\t" + "dpa.w.ph $ac1, %[p1], %[filter45] " + "\n\t" /* odd 5 */ + "extp %[Temp1], $ac1, 31 " + "\n\t" /* odd 5 */ + "lbux %[st3], %[Temp3](%[cm]) " + "\n\t" /* odd 4 */ + + /* odd 6. pixel */ + "mtlo %[vector_64], $ac3 " + "\n\t" /* odd 7 */ + "mthi $zero, $ac3 " + "\n\t" + "sb %[st3], 0(%[odd_dst]) " + "\n\t" /* odd 4 */ + "addu %[odd_dst], %[odd_dst], %[dst_pitch_2] " + "\n\t" + "ulw %[qload1], 21(%[src]) " + "\n\t" + "dpa.w.ph $ac2, %[p5], %[filter45] " + "\n\t" /* odd 6 */ + "extp %[Temp2], $ac2, 31 " + "\n\t" /* odd 6 */ + "lbux %[st1], %[Temp1](%[cm]) " + "\n\t" /* odd 5 */ + + /* odd 7. pixel */ + "mtlo %[vector_64], $ac1 " + "\n\t" /* odd 8 */ + "mthi $zero, $ac1 " + "\n\t" + "preceu.ph.qbr %[p5], %[qload1] " + "\n\t" + "sb %[st1], 0(%[odd_dst]) " + "\n\t" /* odd 5 */ + "addu %[odd_dst], %[odd_dst], %[dst_pitch_2] " + "\n\t" + "dpa.w.ph $ac3, %[p2], %[filter45] " + "\n\t" /* odd 7 */ + "extp %[Temp3], $ac3, 31 " + "\n\t" /* odd 7 */ + + /* odd 8. pixel */ + "dpa.w.ph $ac1, %[p3], %[filter45] " + "\n\t" /* odd 8 */ + "extp %[Temp1], $ac1, 31 " + "\n\t" /* odd 8 */ + + "lbux %[st2], %[Temp2](%[cm]) " + "\n\t" /* odd 6 */ + "lbux %[st3], %[Temp3](%[cm]) " + "\n\t" /* odd 7 */ + "lbux %[st1], %[Temp1](%[cm]) " + "\n\t" /* odd 8 */ + + "sb %[st2], 0(%[odd_dst]) " + "\n\t" /* odd 6 */ + "addu %[odd_dst], %[odd_dst], %[dst_pitch_2] " + "\n\t" + + "sb %[st3], 0(%[odd_dst]) " + "\n\t" /* odd 7 */ + "addu %[odd_dst], %[odd_dst], %[dst_pitch_2] " + "\n\t" + + "sb %[st1], 0(%[odd_dst]) " + "\n\t" /* odd 8 */ + + : [qload1] "=&r"(qload1), [qload2] "=&r"(qload2), [p5] "=&r"(p5), + [st1] "=&r"(st1), [st2] "=&r"(st2), [st3] "=&r"(st3), + [p1] "=&r"(p1), [p2] "=&r"(p2), [p3] "=&r"(p3), [p4] "=&r"(p4), + [Temp1] "=&r"(Temp1), [Temp2] "=&r"(Temp2), [Temp3] "=&r"(Temp3), + [dst] "+r"(dst), [odd_dst] "+r"(odd_dst) + : [filter45] "r"(filter45), [vector_64] "r"(vector_64), [cm] "r"(cm), + [src] "r"(src), [dst_pitch_2] "r"(dst_pitch_2)); + + src += 16; + dst = (dst_ptr + ((c + 1) * 16 * dst_stride)); + odd_dst = (dst + dst_stride); + } + + /* Next row... */ + src_ptr += src_stride; + dst_ptr += 1; + } +} + +void convolve_bi_horiz_transposed(const uint8_t *src, ptrdiff_t src_stride, + uint8_t *dst, ptrdiff_t dst_stride, + const int16_t *filter, int w, int h) { + int x, y; + + for (y = 0; y < h; ++y) { + for (x = 0; x < w; ++x) { + int sum = 0; + + sum += src[x] * filter[3]; + sum += src[x + 1] * filter[4]; + + dst[x * dst_stride] = clip_pixel(ROUND_POWER_OF_TWO(sum, FILTER_BITS)); + } + + src += src_stride; + dst += 1; + } +} + +void vpx_convolve2_dspr2(const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst, + ptrdiff_t dst_stride, const int16_t *filter, int w, + int h) { + uint32_t pos = 38; + + /* bit positon for extract from acc */ + __asm__ __volatile__("wrdsp %[pos], 1 \n\t" + : + : [pos] "r"(pos)); + + /* prefetch data to cache memory */ + prefetch_load(src); + prefetch_load(src + 32); + + switch (w) { + case 4: + convolve_bi_horiz_4_transposed_dspr2(src, src_stride, dst, dst_stride, + filter, h); + break; + case 8: + convolve_bi_horiz_8_transposed_dspr2(src, src_stride, dst, dst_stride, + filter, h); + break; + case 16: + case 32: + convolve_bi_horiz_16_transposed_dspr2(src, src_stride, dst, dst_stride, + filter, h, (w / 16)); + break; + case 64: + prefetch_load(src + 32); + convolve_bi_horiz_64_transposed_dspr2(src, src_stride, dst, dst_stride, + filter, h); + break; + default: + convolve_bi_horiz_transposed(src, src_stride, dst, dst_stride, filter, w, + h); + break; + } +} +#endif diff --git a/vpx_dsp/mips/convolve2_horiz_dspr2.c b/vpx_dsp/mips/convolve2_horiz_dspr2.c new file mode 100644 index 0000000..9e65a8f --- /dev/null +++ b/vpx_dsp/mips/convolve2_horiz_dspr2.c @@ -0,0 +1,681 @@ +/* + * Copyright (c) 2013 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include + +#include "./vpx_dsp_rtcd.h" +#include "vpx_dsp/mips/convolve_common_dspr2.h" +#include "vpx_dsp/vpx_convolve.h" +#include "vpx_dsp/vpx_dsp_common.h" +#include "vpx_ports/mem.h" + +#if HAVE_DSPR2 +static void convolve_bi_horiz_4_dspr2(const uint8_t *src, int32_t src_stride, + uint8_t *dst, int32_t dst_stride, + const int16_t *filter_x0, int32_t h) { + int32_t y; + uint8_t *cm = vpx_ff_cropTbl; + int32_t Temp1, Temp2, Temp3, Temp4; + uint32_t vector4a = 64; + uint32_t tp1, tp2; + uint32_t p1, p2; + const int16_t *filter = &filter_x0[3]; + uint32_t filter45; + + filter45 = ((const int32_t *)filter)[0]; + + for (y = h; y--;) { + /* prefetch data to cache memory */ + prefetch_load(src + src_stride); + prefetch_load(src + src_stride + 32); + prefetch_store(dst + dst_stride); + + __asm__ __volatile__( + "ulw %[tp1], 0(%[src]) \n\t" + "ulw %[tp2], 4(%[src]) \n\t" + + /* even 1. pixel */ + "mtlo %[vector4a], $ac3 \n\t" + "mthi $zero, $ac3 \n\t" + "preceu.ph.qbr %[p1], %[tp1] \n\t" + "preceu.ph.qbl %[p2], %[tp1] \n\t" + "dpa.w.ph $ac3, %[p1], %[filter45] \n\t" + "extp %[Temp1], $ac3, 31 \n\t" + + /* even 2. pixel */ + "mtlo %[vector4a], $ac2 \n\t" + "mthi $zero, $ac2 \n\t" + "balign %[tp2], %[tp1], 3 \n\t" + "dpa.w.ph $ac2, %[p2], %[filter45] \n\t" + "extp %[Temp3], $ac2, 31 \n\t" + + /* odd 1. pixel */ + "lbux %[tp1], %[Temp1](%[cm]) \n\t" + "mtlo %[vector4a], $ac3 \n\t" + "mthi $zero, $ac3 \n\t" + "preceu.ph.qbr %[p1], %[tp2] \n\t" + "preceu.ph.qbl %[p2], %[tp2] \n\t" + "dpa.w.ph $ac3, %[p1], %[filter45] \n\t" + "extp %[Temp2], $ac3, 31 \n\t" + + /* odd 2. pixel */ + "lbux %[tp2], %[Temp3](%[cm]) \n\t" + "mtlo %[vector4a], $ac2 \n\t" + "mthi $zero, $ac2 \n\t" + "dpa.w.ph $ac2, %[p2], %[filter45] \n\t" + "extp %[Temp4], $ac2, 31 \n\t" + + /* clamp */ + "lbux %[p1], %[Temp2](%[cm]) \n\t" + "lbux %[p2], %[Temp4](%[cm]) \n\t" + + /* store bytes */ + "sb %[tp1], 0(%[dst]) \n\t" + "sb %[p1], 1(%[dst]) \n\t" + "sb %[tp2], 2(%[dst]) \n\t" + "sb %[p2], 3(%[dst]) \n\t" + + : [tp1] "=&r"(tp1), [tp2] "=&r"(tp2), [p1] "=&r"(p1), [p2] "=&r"(p2), + [Temp1] "=&r"(Temp1), [Temp2] "=&r"(Temp2), [Temp3] "=&r"(Temp3), + [Temp4] "=&r"(Temp4) + : [filter45] "r"(filter45), [vector4a] "r"(vector4a), [cm] "r"(cm), + [dst] "r"(dst), [src] "r"(src)); + + /* Next row... */ + src += src_stride; + dst += dst_stride; + } +} + +static void convolve_bi_horiz_8_dspr2(const uint8_t *src, int32_t src_stride, + uint8_t *dst, int32_t dst_stride, + const int16_t *filter_x0, int32_t h) { + int32_t y; + uint8_t *cm = vpx_ff_cropTbl; + uint32_t vector4a = 64; + int32_t Temp1, Temp2, Temp3; + uint32_t tp1, tp2, tp3; + uint32_t p1, p2, p3, p4; + uint32_t st0, st1; + const int16_t *filter = &filter_x0[3]; + uint32_t filter45; + + filter45 = ((const int32_t *)filter)[0]; + + for (y = h; y--;) { + /* prefetch data to cache memory */ + prefetch_load(src + src_stride); + prefetch_load(src + src_stride + 32); + prefetch_store(dst + dst_stride); + + __asm__ __volatile__( + "ulw %[tp1], 0(%[src]) \n\t" + "ulw %[tp2], 4(%[src]) \n\t" + + /* even 1. pixel */ + "mtlo %[vector4a], $ac3 \n\t" + "mthi $zero, $ac3 \n\t" + "mtlo %[vector4a], $ac2 \n\t" + "mthi $zero, $ac2 \n\t" + "preceu.ph.qbr %[p1], %[tp1] \n\t" + "preceu.ph.qbl %[p2], %[tp1] \n\t" + "preceu.ph.qbr %[p3], %[tp2] \n\t" + "preceu.ph.qbl %[p4], %[tp2] \n\t" + "ulw %[tp3], 8(%[src]) \n\t" + "dpa.w.ph $ac3, %[p1], %[filter45] \n\t" + "extp %[Temp1], $ac3, 31 \n\t" + + /* even 2. pixel */ + "dpa.w.ph $ac2, %[p2], %[filter45] \n\t" + "extp %[Temp3], $ac2, 31 \n\t" + + /* even 3. pixel */ + "lbux %[st0], %[Temp1](%[cm]) \n\t" + "mtlo %[vector4a], $ac1 \n\t" + "mthi $zero, $ac1 \n\t" + "dpa.w.ph $ac1, %[p3], %[filter45] \n\t" + "extp %[Temp1], $ac1, 31 \n\t" + + /* even 4. pixel */ + "mtlo %[vector4a], $ac2 \n\t" + "mthi $zero, $ac2 \n\t" + "mtlo %[vector4a], $ac3 \n\t" + "mthi $zero, $ac3 \n\t" + "sb %[st0], 0(%[dst]) \n\t" + "lbux %[st1], %[Temp3](%[cm]) \n\t" + + "balign %[tp3], %[tp2], 3 \n\t" + "balign %[tp2], %[tp1], 3 \n\t" + + "dpa.w.ph $ac2, %[p4], %[filter45] \n\t" + "extp %[Temp3], $ac2, 31 \n\t" + + "lbux %[st0], %[Temp1](%[cm]) \n\t" + + /* odd 1. pixel */ + "mtlo %[vector4a], $ac1 \n\t" + "mthi $zero, $ac1 \n\t" + "sb %[st1], 2(%[dst]) \n\t" + "preceu.ph.qbr %[p1], %[tp2] \n\t" + "preceu.ph.qbl %[p2], %[tp2] \n\t" + "preceu.ph.qbr %[p3], %[tp3] \n\t" + "preceu.ph.qbl %[p4], %[tp3] \n\t" + "sb %[st0], 4(%[dst]) \n\t" + "dpa.w.ph $ac3, %[p1], %[filter45] \n\t" + "extp %[Temp2], $ac3, 31 \n\t" + + /* odd 2. pixel */ + "mtlo %[vector4a], $ac3 \n\t" + "mthi $zero, $ac3 \n\t" + "mtlo %[vector4a], $ac2 \n\t" + "mthi $zero, $ac2 \n\t" + "lbux %[st0], %[Temp3](%[cm]) \n\t" + "dpa.w.ph $ac1, %[p2], %[filter45] \n\t" + "extp %[Temp3], $ac1, 31 \n\t" + + /* odd 3. pixel */ + "lbux %[st1], %[Temp2](%[cm]) \n\t" + "dpa.w.ph $ac3, %[p3], %[filter45] \n\t" + "extp %[Temp2], $ac3, 31 \n\t" + + /* odd 4. pixel */ + "sb %[st1], 1(%[dst]) \n\t" + "sb %[st0], 6(%[dst]) \n\t" + "dpa.w.ph $ac2, %[p4], %[filter45] \n\t" + "extp %[Temp1], $ac2, 31 \n\t" + + /* clamp */ + "lbux %[p4], %[Temp3](%[cm]) \n\t" + "lbux %[p2], %[Temp2](%[cm]) \n\t" + "lbux %[p1], %[Temp1](%[cm]) \n\t" + + /* store bytes */ + "sb %[p4], 3(%[dst]) \n\t" + "sb %[p2], 5(%[dst]) \n\t" + "sb %[p1], 7(%[dst]) \n\t" + + : [tp1] "=&r"(tp1), [tp2] "=&r"(tp2), [tp3] "=&r"(tp3), + [st0] "=&r"(st0), [st1] "=&r"(st1), [p1] "=&r"(p1), [p2] "=&r"(p2), + [p3] "=&r"(p3), [p4] "=&r"(p4), [Temp1] "=&r"(Temp1), + [Temp2] "=&r"(Temp2), [Temp3] "=&r"(Temp3) + : [filter45] "r"(filter45), [vector4a] "r"(vector4a), [cm] "r"(cm), + [dst] "r"(dst), [src] "r"(src)); + + /* Next row... */ + src += src_stride; + dst += dst_stride; + } +} + +static void convolve_bi_horiz_16_dspr2(const uint8_t *src_ptr, + int32_t src_stride, uint8_t *dst_ptr, + int32_t dst_stride, + const int16_t *filter_x0, int32_t h, + int32_t count) { + int32_t y, c; + const uint8_t *src; + uint8_t *dst; + uint8_t *cm = vpx_ff_cropTbl; + uint32_t vector_64 = 64; + int32_t Temp1, Temp2, Temp3; + uint32_t qload1, qload2, qload3; + uint32_t p1, p2, p3, p4, p5; + uint32_t st1, st2, st3; + const int16_t *filter = &filter_x0[3]; + uint32_t filter45; + + filter45 = ((const int32_t *)filter)[0]; + + for (y = h; y--;) { + src = src_ptr; + dst = dst_ptr; + + /* prefetch data to cache memory */ + prefetch_load(src_ptr + src_stride); + prefetch_load(src_ptr + src_stride + 32); + prefetch_store(dst_ptr + dst_stride); + + for (c = 0; c < count; c++) { + __asm__ __volatile__( + "ulw %[qload1], 0(%[src]) \n\t" + "ulw %[qload2], 4(%[src]) \n\t" + + /* even 1. pixel */ + "mtlo %[vector_64], $ac1 \n\t" /* even 1 */ + "mthi $zero, $ac1 \n\t" + "mtlo %[vector_64], $ac2 \n\t" /* even 2 */ + "mthi $zero, $ac2 \n\t" + "preceu.ph.qbr %[p1], %[qload1] \n\t" + "preceu.ph.qbl %[p2], %[qload1] \n\t" + "preceu.ph.qbr %[p3], %[qload2] \n\t" + "preceu.ph.qbl %[p4], %[qload2] \n\t" + "ulw %[qload3], 8(%[src]) \n\t" + "dpa.w.ph $ac1, %[p1], %[filter45] \n\t" /* even 1 */ + "extp %[Temp1], $ac1, 31 \n\t" /* even 1 */ + + /* even 2. pixel */ + "mtlo %[vector_64], $ac3 \n\t" /* even 3 */ + "mthi $zero, $ac3 \n\t" + "preceu.ph.qbr %[p1], %[qload3] \n\t" + "preceu.ph.qbl %[p5], %[qload3] \n\t" + "ulw %[qload1], 12(%[src]) \n\t" + "dpa.w.ph $ac2, %[p2], %[filter45] \n\t" /* even 1 */ + "extp %[Temp2], $ac2, 31 \n\t" /* even 1 */ + "lbux %[st1], %[Temp1](%[cm]) \n\t" /* even 1 */ + + /* even 3. pixel */ + "mtlo %[vector_64], $ac1 \n\t" /* even 4 */ + "mthi $zero, $ac1 \n\t" + "preceu.ph.qbr %[p2], %[qload1] \n\t" + "sb %[st1], 0(%[dst]) \n\t" /* even 1 */ + "dpa.w.ph $ac3, %[p3], %[filter45] \n\t" /* even 3 */ + "extp %[Temp3], $ac3, 31 \n\t" /* even 3 */ + "lbux %[st2], %[Temp2](%[cm]) \n\t" /* even 1 */ + + /* even 4. pixel */ + "mtlo %[vector_64], $ac2 \n\t" /* even 5 */ + "mthi $zero, $ac2 \n\t" + "preceu.ph.qbl %[p3], %[qload1] \n\t" + "sb %[st2], 2(%[dst]) \n\t" /* even 1 */ + "dpa.w.ph $ac1, %[p4], %[filter45] \n\t" /* even 4 */ + "extp %[Temp1], $ac1, 31 \n\t" /* even 4 */ + "lbux %[st3], %[Temp3](%[cm]) \n\t" /* even 3 */ + + /* even 5. pixel */ + "mtlo %[vector_64], $ac3 \n\t" /* even 6 */ + "mthi $zero, $ac3 \n\t" + "sb %[st3], 4(%[dst]) \n\t" /* even 3 */ + "dpa.w.ph $ac2, %[p1], %[filter45] \n\t" /* even 5 */ + "extp %[Temp2], $ac2, 31 \n\t" /* even 5 */ + "lbux %[st1], %[Temp1](%[cm]) \n\t" /* even 4 */ + + /* even 6. pixel */ + "mtlo %[vector_64], $ac1 \n\t" /* even 7 */ + "mthi $zero, $ac1 \n\t" + "sb %[st1], 6(%[dst]) \n\t" /* even 4 */ + "dpa.w.ph $ac3, %[p5], %[filter45] \n\t" /* even 6 */ + "extp %[Temp3], $ac3, 31 \n\t" /* even 6 */ + "lbux %[st2], %[Temp2](%[cm]) \n\t" /* even 5 */ + + /* even 7. pixel */ + "mtlo %[vector_64], $ac2 \n\t" /* even 8 */ + "mthi $zero, $ac2 \n\t" + "sb %[st2], 8(%[dst]) \n\t" /* even 5 */ + "dpa.w.ph $ac1, %[p2], %[filter45] \n\t" /* even 7 */ + "extp %[Temp1], $ac1, 31 \n\t" /* even 7 */ + "lbux %[st3], %[Temp3](%[cm]) \n\t" /* even 6 */ + + /* even 8. pixel */ + "mtlo %[vector_64], $ac3 \n\t" /* odd 1 */ + "mthi $zero, $ac3 \n\t" + "dpa.w.ph $ac2, %[p3], %[filter45] \n\t" /* even 8 */ + "sb %[st3], 10(%[dst]) \n\t" /* even 6 */ + "extp %[Temp2], $ac2, 31 \n\t" /* even 8 */ + "lbux %[st1], %[Temp1](%[cm]) \n\t" /* even 7 */ + + /* ODD pixels */ + "ulw %[qload1], 1(%[src]) \n\t" + "ulw %[qload2], 5(%[src]) \n\t" + + /* odd 1. pixel */ + "mtlo %[vector_64], $ac1 \n\t" /* odd 2 */ + "mthi $zero, $ac1 \n\t" + "preceu.ph.qbr %[p1], %[qload1] \n\t" + "preceu.ph.qbl %[p2], %[qload1] \n\t" + "preceu.ph.qbr %[p3], %[qload2] \n\t" + "preceu.ph.qbl %[p4], %[qload2] \n\t" + "sb %[st1], 12(%[dst]) \n\t" /* even 7 */ + "ulw %[qload3], 9(%[src]) \n\t" + "dpa.w.ph $ac3, %[p1], %[filter45] \n\t" /* odd 1 */ + "extp %[Temp3], $ac3, 31 \n\t" /* odd 1 */ + "lbux %[st2], %[Temp2](%[cm]) \n\t" /* even 8 */ + + /* odd 2. pixel */ + "mtlo %[vector_64], $ac2 \n\t" /* odd 3 */ + "mthi $zero, $ac2 \n\t" + "preceu.ph.qbr %[p1], %[qload3] \n\t" + "preceu.ph.qbl %[p5], %[qload3] \n\t" + "sb %[st2], 14(%[dst]) \n\t" /* even 8 */ + "ulw %[qload1], 13(%[src]) \n\t" + "dpa.w.ph $ac1, %[p2], %[filter45] \n\t" /* odd 2 */ + "extp %[Temp1], $ac1, 31 \n\t" /* odd 2 */ + "lbux %[st3], %[Temp3](%[cm]) \n\t" /* odd 1 */ + + /* odd 3. pixel */ + "mtlo %[vector_64], $ac3 \n\t" /* odd 4 */ + "mthi $zero, $ac3 \n\t" + "preceu.ph.qbr %[p2], %[qload1] \n\t" + "sb %[st3], 1(%[dst]) \n\t" /* odd 1 */ + "dpa.w.ph $ac2, %[p3], %[filter45] \n\t" /* odd 3 */ + "extp %[Temp2], $ac2, 31 \n\t" /* odd 3 */ + "lbux %[st1], %[Temp1](%[cm]) \n\t" /* odd 2 */ + + /* odd 4. pixel */ + "mtlo %[vector_64], $ac1 \n\t" /* odd 5 */ + "mthi $zero, $ac1 \n\t" + "preceu.ph.qbl %[p3], %[qload1] \n\t" + "sb %[st1], 3(%[dst]) \n\t" /* odd 2 */ + "dpa.w.ph $ac3, %[p4], %[filter45] \n\t" /* odd 4 */ + "extp %[Temp3], $ac3, 31 \n\t" /* odd 4 */ + "lbux %[st2], %[Temp2](%[cm]) \n\t" /* odd 3 */ + + /* odd 5. pixel */ + "mtlo %[vector_64], $ac2 \n\t" /* odd 6 */ + "mthi $zero, $ac2 \n\t" + "sb %[st2], 5(%[dst]) \n\t" /* odd 3 */ + "dpa.w.ph $ac1, %[p1], %[filter45] \n\t" /* odd 5 */ + "extp %[Temp1], $ac1, 31 \n\t" /* odd 5 */ + "lbux %[st3], %[Temp3](%[cm]) \n\t" /* odd 4 */ + + /* odd 6. pixel */ + "mtlo %[vector_64], $ac3 \n\t" /* odd 7 */ + "mthi $zero, $ac3 \n\t" + "sb %[st3], 7(%[dst]) \n\t" /* odd 4 */ + "dpa.w.ph $ac2, %[p5], %[filter45] \n\t" /* odd 6 */ + "extp %[Temp2], $ac2, 31 \n\t" /* odd 6 */ + "lbux %[st1], %[Temp1](%[cm]) \n\t" /* odd 5 */ + + /* odd 7. pixel */ + "mtlo %[vector_64], $ac1 \n\t" /* odd 8 */ + "mthi $zero, $ac1 \n\t" + "sb %[st1], 9(%[dst]) \n\t" /* odd 5 */ + "dpa.w.ph $ac3, %[p2], %[filter45] \n\t" /* odd 7 */ + "extp %[Temp3], $ac3, 31 \n\t" /* odd 7 */ + + /* odd 8. pixel */ + "dpa.w.ph $ac1, %[p3], %[filter45] \n\t" /* odd 8 */ + "extp %[Temp1], $ac1, 31 \n\t" /* odd 8 */ + + "lbux %[st2], %[Temp2](%[cm]) \n\t" /* odd 6 */ + "lbux %[st3], %[Temp3](%[cm]) \n\t" /* odd 7 */ + "lbux %[st1], %[Temp1](%[cm]) \n\t" /* odd 8 */ + + "sb %[st2], 11(%[dst]) \n\t" /* odd 6 */ + "sb %[st3], 13(%[dst]) \n\t" /* odd 7 */ + "sb %[st1], 15(%[dst]) \n\t" /* odd 8 */ + + : [qload1] "=&r"(qload1), [qload2] "=&r"(qload2), + [qload3] "=&r"(qload3), [st1] "=&r"(st1), [st2] "=&r"(st2), + [st3] "=&r"(st3), [p1] "=&r"(p1), [p2] "=&r"(p2), [p3] "=&r"(p3), + [p4] "=&r"(p4), [p5] "=&r"(p5), [Temp1] "=&r"(Temp1), + [Temp2] "=&r"(Temp2), [Temp3] "=&r"(Temp3) + : [filter45] "r"(filter45), [vector_64] "r"(vector_64), [cm] "r"(cm), + [dst] "r"(dst), [src] "r"(src)); + + src += 16; + dst += 16; + } + + /* Next row... */ + src_ptr += src_stride; + dst_ptr += dst_stride; + } +} + +static void convolve_bi_horiz_64_dspr2(const uint8_t *src_ptr, + int32_t src_stride, uint8_t *dst_ptr, + int32_t dst_stride, + const int16_t *filter_x0, int32_t h) { + int32_t y, c; + const uint8_t *src; + uint8_t *dst; + uint8_t *cm = vpx_ff_cropTbl; + uint32_t vector_64 = 64; + int32_t Temp1, Temp2, Temp3; + uint32_t qload1, qload2, qload3; + uint32_t p1, p2, p3, p4, p5; + uint32_t st1, st2, st3; + const int16_t *filter = &filter_x0[3]; + uint32_t filter45; + + filter45 = ((const int32_t *)filter)[0]; + + for (y = h; y--;) { + src = src_ptr; + dst = dst_ptr; + + /* prefetch data to cache memory */ + prefetch_load(src_ptr + src_stride); + prefetch_load(src_ptr + src_stride + 32); + prefetch_load(src_ptr + src_stride + 64); + prefetch_store(dst_ptr + dst_stride); + prefetch_store(dst_ptr + dst_stride + 32); + + for (c = 0; c < 4; c++) { + __asm__ __volatile__( + "ulw %[qload1], 0(%[src]) \n\t" + "ulw %[qload2], 4(%[src]) \n\t" + + /* even 1. pixel */ + "mtlo %[vector_64], $ac1 \n\t" /* even 1 */ + "mthi $zero, $ac1 \n\t" + "mtlo %[vector_64], $ac2 \n\t" /* even 2 */ + "mthi $zero, $ac2 \n\t" + "preceu.ph.qbr %[p1], %[qload1] \n\t" + "preceu.ph.qbl %[p2], %[qload1] \n\t" + "preceu.ph.qbr %[p3], %[qload2] \n\t" + "preceu.ph.qbl %[p4], %[qload2] \n\t" + "ulw %[qload3], 8(%[src]) \n\t" + "dpa.w.ph $ac1, %[p1], %[filter45] \n\t" /* even 1 */ + "extp %[Temp1], $ac1, 31 \n\t" /* even 1 */ + + /* even 2. pixel */ + "mtlo %[vector_64], $ac3 \n\t" /* even 3 */ + "mthi $zero, $ac3 \n\t" + "preceu.ph.qbr %[p1], %[qload3] \n\t" + "preceu.ph.qbl %[p5], %[qload3] \n\t" + "ulw %[qload1], 12(%[src]) \n\t" + "dpa.w.ph $ac2, %[p2], %[filter45] \n\t" /* even 1 */ + "extp %[Temp2], $ac2, 31 \n\t" /* even 1 */ + "lbux %[st1], %[Temp1](%[cm]) \n\t" /* even 1 */ + + /* even 3. pixel */ + "mtlo %[vector_64], $ac1 \n\t" /* even 4 */ + "mthi $zero, $ac1 \n\t" + "preceu.ph.qbr %[p2], %[qload1] \n\t" + "sb %[st1], 0(%[dst]) \n\t" /* even 1 */ + "dpa.w.ph $ac3, %[p3], %[filter45] \n\t" /* even 3 */ + "extp %[Temp3], $ac3, 31 \n\t" /* even 3 */ + "lbux %[st2], %[Temp2](%[cm]) \n\t" /* even 1 */ + + /* even 4. pixel */ + "mtlo %[vector_64], $ac2 \n\t" /* even 5 */ + "mthi $zero, $ac2 \n\t" + "preceu.ph.qbl %[p3], %[qload1] \n\t" + "sb %[st2], 2(%[dst]) \n\t" /* even 1 */ + "dpa.w.ph $ac1, %[p4], %[filter45] \n\t" /* even 4 */ + "extp %[Temp1], $ac1, 31 \n\t" /* even 4 */ + "lbux %[st3], %[Temp3](%[cm]) \n\t" /* even 3 */ + + /* even 5. pixel */ + "mtlo %[vector_64], $ac3 \n\t" /* even 6 */ + "mthi $zero, $ac3 \n\t" + "sb %[st3], 4(%[dst]) \n\t" /* even 3 */ + "dpa.w.ph $ac2, %[p1], %[filter45] \n\t" /* even 5 */ + "extp %[Temp2], $ac2, 31 \n\t" /* even 5 */ + "lbux %[st1], %[Temp1](%[cm]) \n\t" /* even 4 */ + + /* even 6. pixel */ + "mtlo %[vector_64], $ac1 \n\t" /* even 7 */ + "mthi $zero, $ac1 \n\t" + "sb %[st1], 6(%[dst]) \n\t" /* even 4 */ + "dpa.w.ph $ac3, %[p5], %[filter45] \n\t" /* even 6 */ + "extp %[Temp3], $ac3, 31 \n\t" /* even 6 */ + "lbux %[st2], %[Temp2](%[cm]) \n\t" /* even 5 */ + + /* even 7. pixel */ + "mtlo %[vector_64], $ac2 \n\t" /* even 8 */ + "mthi $zero, $ac2 \n\t" + "sb %[st2], 8(%[dst]) \n\t" /* even 5 */ + "dpa.w.ph $ac1, %[p2], %[filter45] \n\t" /* even 7 */ + "extp %[Temp1], $ac1, 31 \n\t" /* even 7 */ + "lbux %[st3], %[Temp3](%[cm]) \n\t" /* even 6 */ + + /* even 8. pixel */ + "mtlo %[vector_64], $ac3 \n\t" /* odd 1 */ + "mthi $zero, $ac3 \n\t" + "dpa.w.ph $ac2, %[p3], %[filter45] \n\t" /* even 8 */ + "sb %[st3], 10(%[dst]) \n\t" /* even 6 */ + "extp %[Temp2], $ac2, 31 \n\t" /* even 8 */ + "lbux %[st1], %[Temp1](%[cm]) \n\t" /* even 7 */ + + /* ODD pixels */ + "ulw %[qload1], 1(%[src]) \n\t" + "ulw %[qload2], 5(%[src]) \n\t" + + /* odd 1. pixel */ + "mtlo %[vector_64], $ac1 \n\t" /* odd 2 */ + "mthi $zero, $ac1 \n\t" + "preceu.ph.qbr %[p1], %[qload1] \n\t" + "preceu.ph.qbl %[p2], %[qload1] \n\t" + "preceu.ph.qbr %[p3], %[qload2] \n\t" + "preceu.ph.qbl %[p4], %[qload2] \n\t" + "sb %[st1], 12(%[dst]) \n\t" /* even 7 */ + "ulw %[qload3], 9(%[src]) \n\t" + "dpa.w.ph $ac3, %[p1], %[filter45] \n\t" /* odd 1 */ + "extp %[Temp3], $ac3, 31 \n\t" /* odd 1 */ + "lbux %[st2], %[Temp2](%[cm]) \n\t" /* even 8 */ + + /* odd 2. pixel */ + "mtlo %[vector_64], $ac2 \n\t" /* odd 3 */ + "mthi $zero, $ac2 \n\t" + "preceu.ph.qbr %[p1], %[qload3] \n\t" + "preceu.ph.qbl %[p5], %[qload3] \n\t" + "sb %[st2], 14(%[dst]) \n\t" /* even 8 */ + "ulw %[qload1], 13(%[src]) \n\t" + "dpa.w.ph $ac1, %[p2], %[filter45] \n\t" /* odd 2 */ + "extp %[Temp1], $ac1, 31 \n\t" /* odd 2 */ + "lbux %[st3], %[Temp3](%[cm]) \n\t" /* odd 1 */ + + /* odd 3. pixel */ + "mtlo %[vector_64], $ac3 \n\t" /* odd 4 */ + "mthi $zero, $ac3 \n\t" + "preceu.ph.qbr %[p2], %[qload1] \n\t" + "sb %[st3], 1(%[dst]) \n\t" /* odd 1 */ + "dpa.w.ph $ac2, %[p3], %[filter45] \n\t" /* odd 3 */ + "extp %[Temp2], $ac2, 31 \n\t" /* odd 3 */ + "lbux %[st1], %[Temp1](%[cm]) \n\t" /* odd 2 */ + + /* odd 4. pixel */ + "mtlo %[vector_64], $ac1 \n\t" /* odd 5 */ + "mthi $zero, $ac1 \n\t" + "preceu.ph.qbl %[p3], %[qload1] \n\t" + "sb %[st1], 3(%[dst]) \n\t" /* odd 2 */ + "dpa.w.ph $ac3, %[p4], %[filter45] \n\t" /* odd 4 */ + "extp %[Temp3], $ac3, 31 \n\t" /* odd 4 */ + "lbux %[st2], %[Temp2](%[cm]) \n\t" /* odd 3 */ + + /* odd 5. pixel */ + "mtlo %[vector_64], $ac2 \n\t" /* odd 6 */ + "mthi $zero, $ac2 \n\t" + "sb %[st2], 5(%[dst]) \n\t" /* odd 3 */ + "dpa.w.ph $ac1, %[p1], %[filter45] \n\t" /* odd 5 */ + "extp %[Temp1], $ac1, 31 \n\t" /* odd 5 */ + "lbux %[st3], %[Temp3](%[cm]) \n\t" /* odd 4 */ + + /* odd 6. pixel */ + "mtlo %[vector_64], $ac3 \n\t" /* odd 7 */ + "mthi $zero, $ac3 \n\t" + "sb %[st3], 7(%[dst]) \n\t" /* odd 4 */ + "dpa.w.ph $ac2, %[p5], %[filter45] \n\t" /* odd 6 */ + "extp %[Temp2], $ac2, 31 \n\t" /* odd 6 */ + "lbux %[st1], %[Temp1](%[cm]) \n\t" /* odd 5 */ + + /* odd 7. pixel */ + "mtlo %[vector_64], $ac1 \n\t" /* odd 8 */ + "mthi $zero, $ac1 \n\t" + "sb %[st1], 9(%[dst]) \n\t" /* odd 5 */ + "dpa.w.ph $ac3, %[p2], %[filter45] \n\t" /* odd 7 */ + "extp %[Temp3], $ac3, 31 \n\t" /* odd 7 */ + + /* odd 8. pixel */ + "dpa.w.ph $ac1, %[p3], %[filter45] \n\t" /* odd 8 */ + "extp %[Temp1], $ac1, 31 \n\t" /* odd 8 */ + + "lbux %[st2], %[Temp2](%[cm]) \n\t" /* odd 6 */ + "lbux %[st3], %[Temp3](%[cm]) \n\t" /* odd 7 */ + "lbux %[st1], %[Temp1](%[cm]) \n\t" /* odd 8 */ + + "sb %[st2], 11(%[dst]) \n\t" /* odd 6 */ + "sb %[st3], 13(%[dst]) \n\t" /* odd 7 */ + "sb %[st1], 15(%[dst]) \n\t" /* odd 8 */ + + : [qload1] "=&r"(qload1), [qload2] "=&r"(qload2), + [qload3] "=&r"(qload3), [st1] "=&r"(st1), [st2] "=&r"(st2), + [st3] "=&r"(st3), [p1] "=&r"(p1), [p2] "=&r"(p2), [p3] "=&r"(p3), + [p4] "=&r"(p4), [p5] "=&r"(p5), [Temp1] "=&r"(Temp1), + [Temp2] "=&r"(Temp2), [Temp3] "=&r"(Temp3) + : [filter45] "r"(filter45), [vector_64] "r"(vector_64), [cm] "r"(cm), + [dst] "r"(dst), [src] "r"(src)); + + src += 16; + dst += 16; + } + + /* Next row... */ + src_ptr += src_stride; + dst_ptr += dst_stride; + } +} + +void vpx_convolve2_horiz_dspr2(const uint8_t *src, ptrdiff_t src_stride, + uint8_t *dst, ptrdiff_t dst_stride, + const InterpKernel *filter, int x0_q4, + int32_t x_step_q4, int y0_q4, int y_step_q4, + int w, int h) { + const int16_t *const filter_x = filter[x0_q4]; + uint32_t pos = 38; + + assert(x_step_q4 == 16); + + prefetch_load((const uint8_t *)filter_x); + + /* bit positon for extract from acc */ + __asm__ __volatile__("wrdsp %[pos], 1 \n\t" + : + : [pos] "r"(pos)); + + /* prefetch data to cache memory */ + prefetch_load(src); + prefetch_load(src + 32); + prefetch_store(dst); + + switch (w) { + case 4: + convolve_bi_horiz_4_dspr2(src, (int32_t)src_stride, dst, + (int32_t)dst_stride, filter_x, (int32_t)h); + break; + case 8: + convolve_bi_horiz_8_dspr2(src, (int32_t)src_stride, dst, + (int32_t)dst_stride, filter_x, (int32_t)h); + break; + case 16: + convolve_bi_horiz_16_dspr2(src, (int32_t)src_stride, dst, + (int32_t)dst_stride, filter_x, (int32_t)h, 1); + break; + case 32: + convolve_bi_horiz_16_dspr2(src, (int32_t)src_stride, dst, + (int32_t)dst_stride, filter_x, (int32_t)h, 2); + break; + case 64: + prefetch_load(src + 64); + prefetch_store(dst + 32); + + convolve_bi_horiz_64_dspr2(src, (int32_t)src_stride, dst, + (int32_t)dst_stride, filter_x, (int32_t)h); + break; + default: + vpx_convolve8_horiz_c(src, src_stride, dst, dst_stride, filter, x0_q4, + x_step_q4, y0_q4, y_step_q4, w, h); + break; + } +} +#endif diff --git a/vpx_dsp/mips/convolve2_vert_dspr2.c b/vpx_dsp/mips/convolve2_vert_dspr2.c new file mode 100644 index 0000000..a3e967b --- /dev/null +++ b/vpx_dsp/mips/convolve2_vert_dspr2.c @@ -0,0 +1,237 @@ +/* + * Copyright (c) 2013 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include + +#include "./vpx_dsp_rtcd.h" +#include "vpx_dsp/mips/convolve_common_dspr2.h" +#include "vpx_dsp/vpx_convolve.h" +#include "vpx_dsp/vpx_dsp_common.h" +#include "vpx_ports/mem.h" + +#if HAVE_DSPR2 +static void convolve_bi_vert_4_dspr2(const uint8_t *src, int32_t src_stride, + uint8_t *dst, int32_t dst_stride, + const int16_t *filter_y, int32_t w, + int32_t h) { + int32_t x, y; + const uint8_t *src_ptr; + uint8_t *dst_ptr; + uint8_t *cm = vpx_ff_cropTbl; + uint32_t vector4a = 64; + uint32_t load1, load2; + uint32_t p1, p2; + uint32_t scratch1; + uint32_t store1, store2; + int32_t Temp1, Temp2; + const int16_t *filter = &filter_y[3]; + uint32_t filter45; + + filter45 = ((const int32_t *)filter)[0]; + + for (y = h; y--;) { + /* prefetch data to cache memory */ + prefetch_store(dst + dst_stride); + + for (x = 0; x < w; x += 4) { + src_ptr = src + x; + dst_ptr = dst + x; + + __asm__ __volatile__( + "ulw %[load1], 0(%[src_ptr]) \n\t" + "add %[src_ptr], %[src_ptr], %[src_stride] \n\t" + "ulw %[load2], 0(%[src_ptr]) \n\t" + + "mtlo %[vector4a], $ac0 \n\t" + "mtlo %[vector4a], $ac1 \n\t" + "mtlo %[vector4a], $ac2 \n\t" + "mtlo %[vector4a], $ac3 \n\t" + "mthi $zero, $ac0 \n\t" + "mthi $zero, $ac1 \n\t" + "mthi $zero, $ac2 \n\t" + "mthi $zero, $ac3 \n\t" + + "preceu.ph.qbr %[scratch1], %[load1] \n\t" + "preceu.ph.qbr %[p1], %[load2] \n\t" + + "precrq.ph.w %[p2], %[p1], %[scratch1] \n\t" /* pixel 2 */ + "append %[p1], %[scratch1], 16 \n\t" /* pixel 1 */ + + "dpa.w.ph $ac0, %[p1], %[filter45] \n\t" + "dpa.w.ph $ac1, %[p2], %[filter45] \n\t" + + "preceu.ph.qbl %[scratch1], %[load1] \n\t" + "preceu.ph.qbl %[p1], %[load2] \n\t" + + "precrq.ph.w %[p2], %[p1], %[scratch1] \n\t" /* pixel 2 */ + "append %[p1], %[scratch1], 16 \n\t" /* pixel 1 */ + + "dpa.w.ph $ac2, %[p1], %[filter45] \n\t" + "dpa.w.ph $ac3, %[p2], %[filter45] \n\t" + + "extp %[Temp1], $ac0, 31 \n\t" + "extp %[Temp2], $ac1, 31 \n\t" + + "lbux %[store1], %[Temp1](%[cm]) \n\t" + "extp %[Temp1], $ac2, 31 \n\t" + + "lbux %[store2], %[Temp2](%[cm]) \n\t" + "extp %[Temp2], $ac3, 31 \n\t" + + "sb %[store1], 0(%[dst_ptr]) \n\t" + "sb %[store2], 1(%[dst_ptr]) \n\t" + + "lbux %[store1], %[Temp1](%[cm]) \n\t" + "lbux %[store2], %[Temp2](%[cm]) \n\t" + + "sb %[store1], 2(%[dst_ptr]) \n\t" + "sb %[store2], 3(%[dst_ptr]) \n\t" + + : [load1] "=&r"(load1), [load2] "=&r"(load2), [p1] "=&r"(p1), + [p2] "=&r"(p2), [scratch1] "=&r"(scratch1), [Temp1] "=&r"(Temp1), + [Temp2] "=&r"(Temp2), [store1] "=&r"(store1), + [store2] "=&r"(store2), [src_ptr] "+r"(src_ptr) + : [filter45] "r"(filter45), [vector4a] "r"(vector4a), + [src_stride] "r"(src_stride), [cm] "r"(cm), [dst_ptr] "r"(dst_ptr)); + } + + /* Next row... */ + src += src_stride; + dst += dst_stride; + } +} + +static void convolve_bi_vert_64_dspr2(const uint8_t *src, int32_t src_stride, + uint8_t *dst, int32_t dst_stride, + const int16_t *filter_y, int32_t h) { + int32_t x, y; + const uint8_t *src_ptr; + uint8_t *dst_ptr; + uint8_t *cm = vpx_ff_cropTbl; + uint32_t vector4a = 64; + uint32_t load1, load2; + uint32_t p1, p2; + uint32_t scratch1; + uint32_t store1, store2; + int32_t Temp1, Temp2; + const int16_t *filter = &filter_y[3]; + uint32_t filter45; + + filter45 = ((const int32_t *)filter)[0]; + + for (y = h; y--;) { + /* prefetch data to cache memory */ + prefetch_store(dst + dst_stride); + + for (x = 0; x < 64; x += 4) { + src_ptr = src + x; + dst_ptr = dst + x; + + __asm__ __volatile__( + "ulw %[load1], 0(%[src_ptr]) \n\t" + "add %[src_ptr], %[src_ptr], %[src_stride] \n\t" + "ulw %[load2], 0(%[src_ptr]) \n\t" + + "mtlo %[vector4a], $ac0 \n\t" + "mtlo %[vector4a], $ac1 \n\t" + "mtlo %[vector4a], $ac2 \n\t" + "mtlo %[vector4a], $ac3 \n\t" + "mthi $zero, $ac0 \n\t" + "mthi $zero, $ac1 \n\t" + "mthi $zero, $ac2 \n\t" + "mthi $zero, $ac3 \n\t" + + "preceu.ph.qbr %[scratch1], %[load1] \n\t" + "preceu.ph.qbr %[p1], %[load2] \n\t" + + "precrq.ph.w %[p2], %[p1], %[scratch1] \n\t" /* pixel 2 */ + "append %[p1], %[scratch1], 16 \n\t" /* pixel 1 */ + + "dpa.w.ph $ac0, %[p1], %[filter45] \n\t" + "dpa.w.ph $ac1, %[p2], %[filter45] \n\t" + + "preceu.ph.qbl %[scratch1], %[load1] \n\t" + "preceu.ph.qbl %[p1], %[load2] \n\t" + + "precrq.ph.w %[p2], %[p1], %[scratch1] \n\t" /* pixel 2 */ + "append %[p1], %[scratch1], 16 \n\t" /* pixel 1 */ + + "dpa.w.ph $ac2, %[p1], %[filter45] \n\t" + "dpa.w.ph $ac3, %[p2], %[filter45] \n\t" + + "extp %[Temp1], $ac0, 31 \n\t" + "extp %[Temp2], $ac1, 31 \n\t" + + "lbux %[store1], %[Temp1](%[cm]) \n\t" + "extp %[Temp1], $ac2, 31 \n\t" + + "lbux %[store2], %[Temp2](%[cm]) \n\t" + "extp %[Temp2], $ac3, 31 \n\t" + + "sb %[store1], 0(%[dst_ptr]) \n\t" + "sb %[store2], 1(%[dst_ptr]) \n\t" + + "lbux %[store1], %[Temp1](%[cm]) \n\t" + "lbux %[store2], %[Temp2](%[cm]) \n\t" + + "sb %[store1], 2(%[dst_ptr]) \n\t" + "sb %[store2], 3(%[dst_ptr]) \n\t" + + : [load1] "=&r"(load1), [load2] "=&r"(load2), [p1] "=&r"(p1), + [p2] "=&r"(p2), [scratch1] "=&r"(scratch1), [Temp1] "=&r"(Temp1), + [Temp2] "=&r"(Temp2), [store1] "=&r"(store1), + [store2] "=&r"(store2), [src_ptr] "+r"(src_ptr) + : [filter45] "r"(filter45), [vector4a] "r"(vector4a), + [src_stride] "r"(src_stride), [cm] "r"(cm), [dst_ptr] "r"(dst_ptr)); + } + + /* Next row... */ + src += src_stride; + dst += dst_stride; + } +} + +void vpx_convolve2_vert_dspr2(const uint8_t *src, ptrdiff_t src_stride, + uint8_t *dst, ptrdiff_t dst_stride, + const InterpKernel *filter, int x0_q4, + int32_t x_step_q4, int y0_q4, int y_step_q4, + int w, int h) { + const int16_t *const filter_y = filter[y0_q4]; + uint32_t pos = 38; + + assert(y_step_q4 == 16); + + /* bit positon for extract from acc */ + __asm__ __volatile__("wrdsp %[pos], 1 \n\t" + : + : [pos] "r"(pos)); + + prefetch_store(dst); + + switch (w) { + case 4: + case 8: + case 16: + case 32: + convolve_bi_vert_4_dspr2(src, src_stride, dst, dst_stride, filter_y, w, + h); + break; + case 64: + prefetch_store(dst + 32); + convolve_bi_vert_64_dspr2(src, src_stride, dst, dst_stride, filter_y, h); + break; + default: + vpx_convolve8_vert_c(src, src_stride, dst, dst_stride, filter, x0_q4, + x_step_q4, y0_q4, y_step_q4, w, h); + break; + } +} +#endif diff --git a/vpx_dsp/mips/convolve8_avg_dspr2.c b/vpx_dsp/mips/convolve8_avg_dspr2.c new file mode 100644 index 0000000..d9c2bef --- /dev/null +++ b/vpx_dsp/mips/convolve8_avg_dspr2.c @@ -0,0 +1,646 @@ +/* + * Copyright (c) 2013 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include + +#include "./vpx_dsp_rtcd.h" +#include "vpx_dsp/mips/convolve_common_dspr2.h" +#include "vpx_dsp/vpx_convolve.h" +#include "vpx_dsp/vpx_dsp_common.h" +#include "vpx_ports/mem.h" + +#if HAVE_DSPR2 +static void convolve_avg_vert_4_dspr2(const uint8_t *src, int32_t src_stride, + uint8_t *dst, int32_t dst_stride, + const int16_t *filter_y, int32_t w, + int32_t h) { + int32_t x, y; + const uint8_t *src_ptr; + uint8_t *dst_ptr; + uint8_t *cm = vpx_ff_cropTbl; + uint32_t vector4a = 64; + uint32_t load1, load2, load3, load4; + uint32_t p1, p2; + uint32_t n1, n2; + uint32_t scratch1, scratch2; + uint32_t store1, store2; + int32_t vector1b, vector2b, vector3b, vector4b; + int32_t Temp1, Temp2; + + vector1b = ((const int32_t *)filter_y)[0]; + vector2b = ((const int32_t *)filter_y)[1]; + vector3b = ((const int32_t *)filter_y)[2]; + vector4b = ((const int32_t *)filter_y)[3]; + + src -= 3 * src_stride; + + for (y = h; y--;) { + /* prefetch data to cache memory */ + prefetch_store(dst + dst_stride); + + for (x = 0; x < w; x += 4) { + src_ptr = src + x; + dst_ptr = dst + x; + + __asm__ __volatile__( + "ulw %[load1], 0(%[src_ptr]) \n\t" + "add %[src_ptr], %[src_ptr], %[src_stride] \n\t" + "ulw %[load2], 0(%[src_ptr]) \n\t" + "add %[src_ptr], %[src_ptr], %[src_stride] \n\t" + "ulw %[load3], 0(%[src_ptr]) \n\t" + "add %[src_ptr], %[src_ptr], %[src_stride] \n\t" + "ulw %[load4], 0(%[src_ptr]) \n\t" + + "mtlo %[vector4a], $ac0 \n\t" + "mtlo %[vector4a], $ac1 \n\t" + "mtlo %[vector4a], $ac2 \n\t" + "mtlo %[vector4a], $ac3 \n\t" + "mthi $zero, $ac0 \n\t" + "mthi $zero, $ac1 \n\t" + "mthi $zero, $ac2 \n\t" + "mthi $zero, $ac3 \n\t" + + "preceu.ph.qbr %[scratch1], %[load1] \n\t" + "preceu.ph.qbr %[p1], %[load2] \n\t" + "precrq.ph.w %[n1], %[p1], %[scratch1] \n\t" /* pixel 2 */ + "append %[p1], %[scratch1], 16 \n\t" /* pixel 1 */ + "preceu.ph.qbr %[scratch2], %[load3] \n\t" + "preceu.ph.qbr %[p2], %[load4] \n\t" + "precrq.ph.w %[n2], %[p2], %[scratch2] \n\t" /* pixel 2 */ + "append %[p2], %[scratch2], 16 \n\t" /* pixel 1 */ + + "dpa.w.ph $ac0, %[p1], %[vector1b] \n\t" + "dpa.w.ph $ac0, %[p2], %[vector2b] \n\t" + "dpa.w.ph $ac1, %[n1], %[vector1b] \n\t" + "dpa.w.ph $ac1, %[n2], %[vector2b] \n\t" + + "preceu.ph.qbl %[scratch1], %[load1] \n\t" + "preceu.ph.qbl %[p1], %[load2] \n\t" + "precrq.ph.w %[n1], %[p1], %[scratch1] \n\t" /* pixel 2 */ + "append %[p1], %[scratch1], 16 \n\t" /* pixel 1 */ + "preceu.ph.qbl %[scratch2], %[load3] \n\t" + "preceu.ph.qbl %[p2], %[load4] \n\t" + "precrq.ph.w %[n2], %[p2], %[scratch2] \n\t" /* pixel 2 */ + "append %[p2], %[scratch2], 16 \n\t" /* pixel 1 */ + + "dpa.w.ph $ac2, %[p1], %[vector1b] \n\t" + "dpa.w.ph $ac2, %[p2], %[vector2b] \n\t" + "dpa.w.ph $ac3, %[n1], %[vector1b] \n\t" + "dpa.w.ph $ac3, %[n2], %[vector2b] \n\t" + + "add %[src_ptr], %[src_ptr], %[src_stride] \n\t" + "ulw %[load1], 0(%[src_ptr]) \n\t" + "add %[src_ptr], %[src_ptr], %[src_stride] \n\t" + "ulw %[load2], 0(%[src_ptr]) \n\t" + "add %[src_ptr], %[src_ptr], %[src_stride] \n\t" + "ulw %[load3], 0(%[src_ptr]) \n\t" + "add %[src_ptr], %[src_ptr], %[src_stride] \n\t" + "ulw %[load4], 0(%[src_ptr]) \n\t" + + "preceu.ph.qbr %[scratch1], %[load1] \n\t" + "preceu.ph.qbr %[p1], %[load2] \n\t" + "precrq.ph.w %[n1], %[p1], %[scratch1] \n\t" /* pixel 2 */ + "append %[p1], %[scratch1], 16 \n\t" /* pixel 1 */ + "preceu.ph.qbr %[scratch2], %[load3] \n\t" + "preceu.ph.qbr %[p2], %[load4] \n\t" + "precrq.ph.w %[n2], %[p2], %[scratch2] \n\t" /* pixel 2 */ + "append %[p2], %[scratch2], 16 \n\t" /* pixel 1 */ + + "dpa.w.ph $ac0, %[p1], %[vector3b] \n\t" + "dpa.w.ph $ac0, %[p2], %[vector4b] \n\t" + "extp %[Temp1], $ac0, 31 \n\t" + "dpa.w.ph $ac1, %[n1], %[vector3b] \n\t" + "dpa.w.ph $ac1, %[n2], %[vector4b] \n\t" + "extp %[Temp2], $ac1, 31 \n\t" + + "preceu.ph.qbl %[scratch1], %[load1] \n\t" + "preceu.ph.qbl %[p1], %[load2] \n\t" + "precrq.ph.w %[n1], %[p1], %[scratch1] \n\t" /* pixel 2 */ + "append %[p1], %[scratch1], 16 \n\t" /* pixel 1 */ + "lbu %[scratch1], 0(%[dst_ptr]) \n\t" + "preceu.ph.qbl %[scratch2], %[load3] \n\t" + "preceu.ph.qbl %[p2], %[load4] \n\t" + "precrq.ph.w %[n2], %[p2], %[scratch2] \n\t" /* pixel 2 */ + "append %[p2], %[scratch2], 16 \n\t" /* pixel 1 */ + "lbu %[scratch2], 1(%[dst_ptr]) \n\t" + + "lbux %[store1], %[Temp1](%[cm]) \n\t" + "dpa.w.ph $ac2, %[p1], %[vector3b] \n\t" + "dpa.w.ph $ac2, %[p2], %[vector4b] \n\t" + "addqh_r.w %[store1], %[store1], %[scratch1] \n\t" /* pixel 1 */ + "extp %[Temp1], $ac2, 31 \n\t" + + "lbux %[store2], %[Temp2](%[cm]) \n\t" + "dpa.w.ph $ac3, %[n1], %[vector3b] \n\t" + "dpa.w.ph $ac3, %[n2], %[vector4b] \n\t" + "addqh_r.w %[store2], %[store2], %[scratch2] \n\t" /* pixel 2 */ + "extp %[Temp2], $ac3, 31 \n\t" + "lbu %[scratch1], 2(%[dst_ptr]) \n\t" + + "sb %[store1], 0(%[dst_ptr]) \n\t" + "sb %[store2], 1(%[dst_ptr]) \n\t" + "lbu %[scratch2], 3(%[dst_ptr]) \n\t" + + "lbux %[store1], %[Temp1](%[cm]) \n\t" + "lbux %[store2], %[Temp2](%[cm]) \n\t" + "addqh_r.w %[store1], %[store1], %[scratch1] \n\t" /* pixel 3 */ + "addqh_r.w %[store2], %[store2], %[scratch2] \n\t" /* pixel 4 */ + + "sb %[store1], 2(%[dst_ptr]) \n\t" + "sb %[store2], 3(%[dst_ptr]) \n\t" + + : [load1] "=&r"(load1), [load2] "=&r"(load2), [load3] "=&r"(load3), + [load4] "=&r"(load4), [p1] "=&r"(p1), [p2] "=&r"(p2), + [n1] "=&r"(n1), [n2] "=&r"(n2), [scratch1] "=&r"(scratch1), + [scratch2] "=&r"(scratch2), [Temp1] "=&r"(Temp1), + [Temp2] "=&r"(Temp2), [store1] "=&r"(store1), + [store2] "=&r"(store2), [src_ptr] "+r"(src_ptr) + : [vector1b] "r"(vector1b), [vector2b] "r"(vector2b), + [vector3b] "r"(vector3b), [vector4b] "r"(vector4b), + [vector4a] "r"(vector4a), [src_stride] "r"(src_stride), + [cm] "r"(cm), [dst_ptr] "r"(dst_ptr)); + } + + /* Next row... */ + src += src_stride; + dst += dst_stride; + } +} + +static void convolve_avg_vert_64_dspr2(const uint8_t *src, int32_t src_stride, + uint8_t *dst, int32_t dst_stride, + const int16_t *filter_y, int32_t h) { + int32_t x, y; + const uint8_t *src_ptr; + uint8_t *dst_ptr; + uint8_t *cm = vpx_ff_cropTbl; + uint32_t vector4a = 64; + uint32_t load1, load2, load3, load4; + uint32_t p1, p2; + uint32_t n1, n2; + uint32_t scratch1, scratch2; + uint32_t store1, store2; + int32_t vector1b, vector2b, vector3b, vector4b; + int32_t Temp1, Temp2; + + vector1b = ((const int32_t *)filter_y)[0]; + vector2b = ((const int32_t *)filter_y)[1]; + vector3b = ((const int32_t *)filter_y)[2]; + vector4b = ((const int32_t *)filter_y)[3]; + + src -= 3 * src_stride; + + for (y = h; y--;) { + /* prefetch data to cache memory */ + prefetch_store(dst + dst_stride); + prefetch_store(dst + dst_stride + 32); + + for (x = 0; x < 64; x += 4) { + src_ptr = src + x; + dst_ptr = dst + x; + + __asm__ __volatile__( + "ulw %[load1], 0(%[src_ptr]) \n\t" + "add %[src_ptr], %[src_ptr], %[src_stride] \n\t" + "ulw %[load2], 0(%[src_ptr]) \n\t" + "add %[src_ptr], %[src_ptr], %[src_stride] \n\t" + "ulw %[load3], 0(%[src_ptr]) \n\t" + "add %[src_ptr], %[src_ptr], %[src_stride] \n\t" + "ulw %[load4], 0(%[src_ptr]) \n\t" + + "mtlo %[vector4a], $ac0 \n\t" + "mtlo %[vector4a], $ac1 \n\t" + "mtlo %[vector4a], $ac2 \n\t" + "mtlo %[vector4a], $ac3 \n\t" + "mthi $zero, $ac0 \n\t" + "mthi $zero, $ac1 \n\t" + "mthi $zero, $ac2 \n\t" + "mthi $zero, $ac3 \n\t" + + "preceu.ph.qbr %[scratch1], %[load1] \n\t" + "preceu.ph.qbr %[p1], %[load2] \n\t" + "precrq.ph.w %[n1], %[p1], %[scratch1] \n\t" /* pixel 2 */ + "append %[p1], %[scratch1], 16 \n\t" /* pixel 1 */ + "preceu.ph.qbr %[scratch2], %[load3] \n\t" + "preceu.ph.qbr %[p2], %[load4] \n\t" + "precrq.ph.w %[n2], %[p2], %[scratch2] \n\t" /* pixel 2 */ + "append %[p2], %[scratch2], 16 \n\t" /* pixel 1 */ + + "dpa.w.ph $ac0, %[p1], %[vector1b] \n\t" + "dpa.w.ph $ac0, %[p2], %[vector2b] \n\t" + "dpa.w.ph $ac1, %[n1], %[vector1b] \n\t" + "dpa.w.ph $ac1, %[n2], %[vector2b] \n\t" + + "preceu.ph.qbl %[scratch1], %[load1] \n\t" + "preceu.ph.qbl %[p1], %[load2] \n\t" + "precrq.ph.w %[n1], %[p1], %[scratch1] \n\t" /* pixel 2 */ + "append %[p1], %[scratch1], 16 \n\t" /* pixel 1 */ + "preceu.ph.qbl %[scratch2], %[load3] \n\t" + "preceu.ph.qbl %[p2], %[load4] \n\t" + "precrq.ph.w %[n2], %[p2], %[scratch2] \n\t" /* pixel 2 */ + "append %[p2], %[scratch2], 16 \n\t" /* pixel 1 */ + + "dpa.w.ph $ac2, %[p1], %[vector1b] \n\t" + "dpa.w.ph $ac2, %[p2], %[vector2b] \n\t" + "dpa.w.ph $ac3, %[n1], %[vector1b] \n\t" + "dpa.w.ph $ac3, %[n2], %[vector2b] \n\t" + + "add %[src_ptr], %[src_ptr], %[src_stride] \n\t" + "ulw %[load1], 0(%[src_ptr]) \n\t" + "add %[src_ptr], %[src_ptr], %[src_stride] \n\t" + "ulw %[load2], 0(%[src_ptr]) \n\t" + "add %[src_ptr], %[src_ptr], %[src_stride] \n\t" + "ulw %[load3], 0(%[src_ptr]) \n\t" + "add %[src_ptr], %[src_ptr], %[src_stride] \n\t" + "ulw %[load4], 0(%[src_ptr]) \n\t" + + "preceu.ph.qbr %[scratch1], %[load1] \n\t" + "preceu.ph.qbr %[p1], %[load2] \n\t" + "precrq.ph.w %[n1], %[p1], %[scratch1] \n\t" /* pixel 2 */ + "append %[p1], %[scratch1], 16 \n\t" /* pixel 1 */ + "preceu.ph.qbr %[scratch2], %[load3] \n\t" + "preceu.ph.qbr %[p2], %[load4] \n\t" + "precrq.ph.w %[n2], %[p2], %[scratch2] \n\t" /* pixel 2 */ + "append %[p2], %[scratch2], 16 \n\t" /* pixel 1 */ + + "dpa.w.ph $ac0, %[p1], %[vector3b] \n\t" + "dpa.w.ph $ac0, %[p2], %[vector4b] \n\t" + "extp %[Temp1], $ac0, 31 \n\t" + "dpa.w.ph $ac1, %[n1], %[vector3b] \n\t" + "dpa.w.ph $ac1, %[n2], %[vector4b] \n\t" + "extp %[Temp2], $ac1, 31 \n\t" + + "preceu.ph.qbl %[scratch1], %[load1] \n\t" + "preceu.ph.qbl %[p1], %[load2] \n\t" + "precrq.ph.w %[n1], %[p1], %[scratch1] \n\t" /* pixel 2 */ + "append %[p1], %[scratch1], 16 \n\t" /* pixel 1 */ + "lbu %[scratch1], 0(%[dst_ptr]) \n\t" + "preceu.ph.qbl %[scratch2], %[load3] \n\t" + "preceu.ph.qbl %[p2], %[load4] \n\t" + "precrq.ph.w %[n2], %[p2], %[scratch2] \n\t" /* pixel 2 */ + "append %[p2], %[scratch2], 16 \n\t" /* pixel 1 */ + "lbu %[scratch2], 1(%[dst_ptr]) \n\t" + + "lbux %[store1], %[Temp1](%[cm]) \n\t" + "dpa.w.ph $ac2, %[p1], %[vector3b] \n\t" + "dpa.w.ph $ac2, %[p2], %[vector4b] \n\t" + "addqh_r.w %[store1], %[store1], %[scratch1] \n\t" /* pixel 1 */ + "extp %[Temp1], $ac2, 31 \n\t" + + "lbux %[store2], %[Temp2](%[cm]) \n\t" + "dpa.w.ph $ac3, %[n1], %[vector3b] \n\t" + "dpa.w.ph $ac3, %[n2], %[vector4b] \n\t" + "addqh_r.w %[store2], %[store2], %[scratch2] \n\t" /* pixel 2 */ + "extp %[Temp2], $ac3, 31 \n\t" + "lbu %[scratch1], 2(%[dst_ptr]) \n\t" + + "sb %[store1], 0(%[dst_ptr]) \n\t" + "sb %[store2], 1(%[dst_ptr]) \n\t" + "lbu %[scratch2], 3(%[dst_ptr]) \n\t" + + "lbux %[store1], %[Temp1](%[cm]) \n\t" + "lbux %[store2], %[Temp2](%[cm]) \n\t" + "addqh_r.w %[store1], %[store1], %[scratch1] \n\t" /* pixel 3 */ + "addqh_r.w %[store2], %[store2], %[scratch2] \n\t" /* pixel 4 */ + + "sb %[store1], 2(%[dst_ptr]) \n\t" + "sb %[store2], 3(%[dst_ptr]) \n\t" + + : [load1] "=&r"(load1), [load2] "=&r"(load2), [load3] "=&r"(load3), + [load4] "=&r"(load4), [p1] "=&r"(p1), [p2] "=&r"(p2), + [n1] "=&r"(n1), [n2] "=&r"(n2), [scratch1] "=&r"(scratch1), + [scratch2] "=&r"(scratch2), [Temp1] "=&r"(Temp1), + [Temp2] "=&r"(Temp2), [store1] "=&r"(store1), + [store2] "=&r"(store2), [src_ptr] "+r"(src_ptr) + : [vector1b] "r"(vector1b), [vector2b] "r"(vector2b), + [vector3b] "r"(vector3b), [vector4b] "r"(vector4b), + [vector4a] "r"(vector4a), [src_stride] "r"(src_stride), + [cm] "r"(cm), [dst_ptr] "r"(dst_ptr)); + } + + /* Next row... */ + src += src_stride; + dst += dst_stride; + } +} + +void vpx_convolve8_avg_vert_dspr2(const uint8_t *src, ptrdiff_t src_stride, + uint8_t *dst, ptrdiff_t dst_stride, + const InterpKernel *filter, int x0_q4, + int32_t x_step_q4, int y0_q4, int y_step_q4, + int w, int h) { + const int16_t *const filter_y = filter[y0_q4]; + assert(y_step_q4 == 16); + assert(((const int32_t *)filter_y)[1] != 0x800000); + + if (((const int32_t *)filter_y)[0] == 0) { + vpx_convolve2_avg_vert_dspr2(src, src_stride, dst, dst_stride, filter, + x0_q4, x_step_q4, y0_q4, y_step_q4, w, h); + } else { + uint32_t pos = 38; + + /* bit positon for extract from acc */ + __asm__ __volatile__("wrdsp %[pos], 1 \n\t" + : + : [pos] "r"(pos)); + + prefetch_store(dst); + + switch (w) { + case 4: + case 8: + case 16: + case 32: + convolve_avg_vert_4_dspr2(src, src_stride, dst, dst_stride, filter_y, w, + h); + break; + case 64: + prefetch_store(dst + 32); + convolve_avg_vert_64_dspr2(src, src_stride, dst, dst_stride, filter_y, + h); + break; + default: + vpx_convolve8_avg_vert_c(src, src_stride, dst, dst_stride, filter, + x0_q4, x_step_q4, y0_q4, y_step_q4, w, h); + break; + } + } +} + +void vpx_convolve8_avg_dspr2(const uint8_t *src, ptrdiff_t src_stride, + uint8_t *dst, ptrdiff_t dst_stride, + const InterpKernel *filter, int x0_q4, + int32_t x_step_q4, int y0_q4, int y_step_q4, int w, + int h) { + /* Fixed size intermediate buffer places limits on parameters. */ + DECLARE_ALIGNED(32, uint8_t, temp[64 * 135]); + int32_t intermediate_height = ((h * y_step_q4) >> 4) + 7; + + assert(w <= 64); + assert(h <= 64); + assert(x_step_q4 == 16); + assert(y_step_q4 == 16); + + if (intermediate_height < h) intermediate_height = h; + + vpx_convolve8_horiz(src - (src_stride * 3), src_stride, temp, 64, filter, + x0_q4, x_step_q4, y0_q4, y_step_q4, w, + intermediate_height); + + vpx_convolve8_avg_vert(temp + 64 * 3, 64, dst, dst_stride, filter, x0_q4, + x_step_q4, y0_q4, y_step_q4, w, h); +} + +void vpx_convolve_avg_dspr2(const uint8_t *src, ptrdiff_t src_stride, + uint8_t *dst, ptrdiff_t dst_stride, + const InterpKernel *filter, int x0_q4, + int32_t x_step_q4, int y0_q4, int y_step_q4, int w, + int h) { + int x, y; + uint32_t tp1, tp2, tn1, tp3, tp4, tn2; + (void)filter; + (void)x0_q4; + (void)x_step_q4; + (void)y0_q4; + (void)y_step_q4; + + /* prefetch data to cache memory */ + prefetch_load(src); + prefetch_load(src + 32); + prefetch_store(dst); + + switch (w) { + case 4: + /* 1 word storage */ + for (y = h; y--;) { + prefetch_load(src + src_stride); + prefetch_load(src + src_stride + 32); + prefetch_store(dst + dst_stride); + + __asm__ __volatile__( + "ulw %[tp1], 0(%[src]) \n\t" + "ulw %[tp2], 0(%[dst]) \n\t" + "adduh_r.qb %[tn1], %[tp2], %[tp1] \n\t" /* average */ + "sw %[tn1], 0(%[dst]) \n\t" /* store */ + + : [tn1] "=&r"(tn1), [tp1] "=&r"(tp1), [tp2] "=&r"(tp2) + : [src] "r"(src), [dst] "r"(dst)); + + src += src_stride; + dst += dst_stride; + } + break; + case 8: + /* 2 word storage */ + for (y = h; y--;) { + prefetch_load(src + src_stride); + prefetch_load(src + src_stride + 32); + prefetch_store(dst + dst_stride); + + __asm__ __volatile__( + "ulw %[tp1], 0(%[src]) \n\t" + "ulw %[tp2], 0(%[dst]) \n\t" + "ulw %[tp3], 4(%[src]) \n\t" + "ulw %[tp4], 4(%[dst]) \n\t" + "adduh_r.qb %[tn1], %[tp2], %[tp1] \n\t" /* average */ + "sw %[tn1], 0(%[dst]) \n\t" /* store */ + "adduh_r.qb %[tn2], %[tp3], %[tp4] \n\t" /* average */ + "sw %[tn2], 4(%[dst]) \n\t" /* store */ + + : [tp1] "=&r"(tp1), [tp2] "=&r"(tp2), [tp3] "=&r"(tp3), + [tp4] "=&r"(tp4), [tn1] "=&r"(tn1), [tn2] "=&r"(tn2) + : [src] "r"(src), [dst] "r"(dst)); + + src += src_stride; + dst += dst_stride; + } + break; + case 16: + /* 4 word storage */ + for (y = h; y--;) { + prefetch_load(src + src_stride); + prefetch_load(src + src_stride + 32); + prefetch_store(dst + dst_stride); + + __asm__ __volatile__( + "ulw %[tp1], 0(%[src]) \n\t" + "ulw %[tp2], 0(%[dst]) \n\t" + "ulw %[tp3], 4(%[src]) \n\t" + "ulw %[tp4], 4(%[dst]) \n\t" + "adduh_r.qb %[tn1], %[tp2], %[tp1] \n\t" /* average */ + "ulw %[tp1], 8(%[src]) \n\t" + "ulw %[tp2], 8(%[dst]) \n\t" + "sw %[tn1], 0(%[dst]) \n\t" /* store */ + "adduh_r.qb %[tn2], %[tp3], %[tp4] \n\t" /* average */ + "sw %[tn2], 4(%[dst]) \n\t" /* store */ + "ulw %[tp3], 12(%[src]) \n\t" + "ulw %[tp4], 12(%[dst]) \n\t" + "adduh_r.qb %[tn1], %[tp2], %[tp1] \n\t" /* average */ + "sw %[tn1], 8(%[dst]) \n\t" /* store */ + "adduh_r.qb %[tn2], %[tp3], %[tp4] \n\t" /* average */ + "sw %[tn2], 12(%[dst]) \n\t" /* store */ + + : [tp1] "=&r"(tp1), [tp2] "=&r"(tp2), [tp3] "=&r"(tp3), + [tp4] "=&r"(tp4), [tn1] "=&r"(tn1), [tn2] "=&r"(tn2) + : [src] "r"(src), [dst] "r"(dst)); + + src += src_stride; + dst += dst_stride; + } + break; + case 32: + /* 8 word storage */ + for (y = h; y--;) { + prefetch_load(src + src_stride); + prefetch_load(src + src_stride + 32); + prefetch_store(dst + dst_stride); + + __asm__ __volatile__( + "ulw %[tp1], 0(%[src]) \n\t" + "ulw %[tp2], 0(%[dst]) \n\t" + "ulw %[tp3], 4(%[src]) \n\t" + "ulw %[tp4], 4(%[dst]) \n\t" + "adduh_r.qb %[tn1], %[tp2], %[tp1] \n\t" /* average */ + "ulw %[tp1], 8(%[src]) \n\t" + "ulw %[tp2], 8(%[dst]) \n\t" + "sw %[tn1], 0(%[dst]) \n\t" /* store */ + "adduh_r.qb %[tn2], %[tp3], %[tp4] \n\t" /* average */ + "sw %[tn2], 4(%[dst]) \n\t" /* store */ + "ulw %[tp3], 12(%[src]) \n\t" + "ulw %[tp4], 12(%[dst]) \n\t" + "adduh_r.qb %[tn1], %[tp2], %[tp1] \n\t" /* average */ + "ulw %[tp1], 16(%[src]) \n\t" + "ulw %[tp2], 16(%[dst]) \n\t" + "sw %[tn1], 8(%[dst]) \n\t" /* store */ + "adduh_r.qb %[tn2], %[tp3], %[tp4] \n\t" /* average */ + "sw %[tn2], 12(%[dst]) \n\t" /* store */ + "ulw %[tp3], 20(%[src]) \n\t" + "ulw %[tp4], 20(%[dst]) \n\t" + "adduh_r.qb %[tn1], %[tp2], %[tp1] \n\t" /* average */ + "ulw %[tp1], 24(%[src]) \n\t" + "ulw %[tp2], 24(%[dst]) \n\t" + "sw %[tn1], 16(%[dst]) \n\t" /* store */ + "adduh_r.qb %[tn2], %[tp3], %[tp4] \n\t" /* average */ + "sw %[tn2], 20(%[dst]) \n\t" /* store */ + "ulw %[tp3], 28(%[src]) \n\t" + "ulw %[tp4], 28(%[dst]) \n\t" + "adduh_r.qb %[tn1], %[tp2], %[tp1] \n\t" /* average */ + "sw %[tn1], 24(%[dst]) \n\t" /* store */ + "adduh_r.qb %[tn2], %[tp3], %[tp4] \n\t" /* average */ + "sw %[tn2], 28(%[dst]) \n\t" /* store */ + + : [tp1] "=&r"(tp1), [tp2] "=&r"(tp2), [tp3] "=&r"(tp3), + [tp4] "=&r"(tp4), [tn1] "=&r"(tn1), [tn2] "=&r"(tn2) + : [src] "r"(src), [dst] "r"(dst)); + + src += src_stride; + dst += dst_stride; + } + break; + case 64: + prefetch_load(src + 64); + prefetch_store(dst + 32); + + /* 16 word storage */ + for (y = h; y--;) { + prefetch_load(src + src_stride); + prefetch_load(src + src_stride + 32); + prefetch_load(src + src_stride + 64); + prefetch_store(dst + dst_stride); + prefetch_store(dst + dst_stride + 32); + + __asm__ __volatile__( + "ulw %[tp1], 0(%[src]) \n\t" + "ulw %[tp2], 0(%[dst]) \n\t" + "ulw %[tp3], 4(%[src]) \n\t" + "ulw %[tp4], 4(%[dst]) \n\t" + "adduh_r.qb %[tn1], %[tp2], %[tp1] \n\t" /* average */ + "ulw %[tp1], 8(%[src]) \n\t" + "ulw %[tp2], 8(%[dst]) \n\t" + "sw %[tn1], 0(%[dst]) \n\t" /* store */ + "adduh_r.qb %[tn2], %[tp3], %[tp4] \n\t" /* average */ + "sw %[tn2], 4(%[dst]) \n\t" /* store */ + "ulw %[tp3], 12(%[src]) \n\t" + "ulw %[tp4], 12(%[dst]) \n\t" + "adduh_r.qb %[tn1], %[tp2], %[tp1] \n\t" /* average */ + "ulw %[tp1], 16(%[src]) \n\t" + "ulw %[tp2], 16(%[dst]) \n\t" + "sw %[tn1], 8(%[dst]) \n\t" /* store */ + "adduh_r.qb %[tn2], %[tp3], %[tp4] \n\t" /* average */ + "sw %[tn2], 12(%[dst]) \n\t" /* store */ + "ulw %[tp3], 20(%[src]) \n\t" + "ulw %[tp4], 20(%[dst]) \n\t" + "adduh_r.qb %[tn1], %[tp2], %[tp1] \n\t" /* average */ + "ulw %[tp1], 24(%[src]) \n\t" + "ulw %[tp2], 24(%[dst]) \n\t" + "sw %[tn1], 16(%[dst]) \n\t" /* store */ + "adduh_r.qb %[tn2], %[tp3], %[tp4] \n\t" /* average */ + "sw %[tn2], 20(%[dst]) \n\t" /* store */ + "ulw %[tp3], 28(%[src]) \n\t" + "ulw %[tp4], 28(%[dst]) \n\t" + "adduh_r.qb %[tn1], %[tp2], %[tp1] \n\t" /* average */ + "ulw %[tp1], 32(%[src]) \n\t" + "ulw %[tp2], 32(%[dst]) \n\t" + "sw %[tn1], 24(%[dst]) \n\t" /* store */ + "adduh_r.qb %[tn2], %[tp3], %[tp4] \n\t" /* average */ + "sw %[tn2], 28(%[dst]) \n\t" /* store */ + "ulw %[tp3], 36(%[src]) \n\t" + "ulw %[tp4], 36(%[dst]) \n\t" + "adduh_r.qb %[tn1], %[tp2], %[tp1] \n\t" /* average */ + "ulw %[tp1], 40(%[src]) \n\t" + "ulw %[tp2], 40(%[dst]) \n\t" + "sw %[tn1], 32(%[dst]) \n\t" /* store */ + "adduh_r.qb %[tn2], %[tp3], %[tp4] \n\t" /* average */ + "sw %[tn2], 36(%[dst]) \n\t" /* store */ + "ulw %[tp3], 44(%[src]) \n\t" + "ulw %[tp4], 44(%[dst]) \n\t" + "adduh_r.qb %[tn1], %[tp2], %[tp1] \n\t" /* average */ + "ulw %[tp1], 48(%[src]) \n\t" + "ulw %[tp2], 48(%[dst]) \n\t" + "sw %[tn1], 40(%[dst]) \n\t" /* store */ + "adduh_r.qb %[tn2], %[tp3], %[tp4] \n\t" /* average */ + "sw %[tn2], 44(%[dst]) \n\t" /* store */ + "ulw %[tp3], 52(%[src]) \n\t" + "ulw %[tp4], 52(%[dst]) \n\t" + "adduh_r.qb %[tn1], %[tp2], %[tp1] \n\t" /* average */ + "ulw %[tp1], 56(%[src]) \n\t" + "ulw %[tp2], 56(%[dst]) \n\t" + "sw %[tn1], 48(%[dst]) \n\t" /* store */ + "adduh_r.qb %[tn2], %[tp3], %[tp4] \n\t" /* average */ + "sw %[tn2], 52(%[dst]) \n\t" /* store */ + "ulw %[tp3], 60(%[src]) \n\t" + "ulw %[tp4], 60(%[dst]) \n\t" + "adduh_r.qb %[tn1], %[tp2], %[tp1] \n\t" /* average */ + "sw %[tn1], 56(%[dst]) \n\t" /* store */ + "adduh_r.qb %[tn2], %[tp3], %[tp4] \n\t" /* average */ + "sw %[tn2], 60(%[dst]) \n\t" /* store */ + + : [tp1] "=&r"(tp1), [tp2] "=&r"(tp2), [tp3] "=&r"(tp3), + [tp4] "=&r"(tp4), [tn1] "=&r"(tn1), [tn2] "=&r"(tn2) + : [src] "r"(src), [dst] "r"(dst)); + + src += src_stride; + dst += dst_stride; + } + break; + default: + for (y = h; y > 0; --y) { + for (x = 0; x < w; ++x) { + dst[x] = (dst[x] + src[x] + 1) >> 1; + } + + src += src_stride; + dst += dst_stride; + } + break; + } +} +#endif diff --git a/vpx_dsp/mips/convolve8_avg_horiz_dspr2.c b/vpx_dsp/mips/convolve8_avg_horiz_dspr2.c new file mode 100644 index 0000000..fb68ad8 --- /dev/null +++ b/vpx_dsp/mips/convolve8_avg_horiz_dspr2.c @@ -0,0 +1,997 @@ +/* + * Copyright (c) 2013 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include + +#include "./vpx_dsp_rtcd.h" +#include "vpx_dsp/mips/convolve_common_dspr2.h" +#include "vpx_dsp/vpx_convolve.h" +#include "vpx_dsp/vpx_dsp_common.h" +#include "vpx_ports/mem.h" + +#if HAVE_DSPR2 +static void convolve_avg_horiz_4_dspr2(const uint8_t *src, int32_t src_stride, + uint8_t *dst, int32_t dst_stride, + const int16_t *filter_x0, int32_t h) { + int32_t y; + uint8_t *cm = vpx_ff_cropTbl; + int32_t vector1b, vector2b, vector3b, vector4b; + int32_t Temp1, Temp2, Temp3, Temp4; + uint32_t vector4a = 64; + uint32_t tp1, tp2; + uint32_t p1, p2, p3, p4; + uint32_t n1, n2, n3, n4; + uint32_t tn1, tn2; + + vector1b = ((const int32_t *)filter_x0)[0]; + vector2b = ((const int32_t *)filter_x0)[1]; + vector3b = ((const int32_t *)filter_x0)[2]; + vector4b = ((const int32_t *)filter_x0)[3]; + + for (y = h; y--;) { + /* prefetch data to cache memory */ + prefetch_load(src + src_stride); + prefetch_load(src + src_stride + 32); + prefetch_store(dst + dst_stride); + + __asm__ __volatile__( + "ulw %[tp1], 0(%[src]) \n\t" + "ulw %[tp2], 4(%[src]) \n\t" + + /* even 1. pixel */ + "mtlo %[vector4a], $ac3 \n\t" + "mthi $zero, $ac3 \n\t" + "preceu.ph.qbr %[p1], %[tp1] \n\t" + "preceu.ph.qbl %[p2], %[tp1] \n\t" + "preceu.ph.qbr %[p3], %[tp2] \n\t" + "preceu.ph.qbl %[p4], %[tp2] \n\t" + "dpa.w.ph $ac3, %[p1], %[vector1b] \n\t" + "dpa.w.ph $ac3, %[p2], %[vector2b] \n\t" + "dpa.w.ph $ac3, %[p3], %[vector3b] \n\t" + "ulw %[tn2], 8(%[src]) \n\t" + "dpa.w.ph $ac3, %[p4], %[vector4b] \n\t" + "extp %[Temp1], $ac3, 31 \n\t" + + /* even 2. pixel */ + "mtlo %[vector4a], $ac2 \n\t" + "mthi $zero, $ac2 \n\t" + "preceu.ph.qbr %[p1], %[tn2] \n\t" + "balign %[tn1], %[tn2], 3 \n\t" + "balign %[tn2], %[tp2], 3 \n\t" + "balign %[tp2], %[tp1], 3 \n\t" + "dpa.w.ph $ac2, %[p2], %[vector1b] \n\t" + "dpa.w.ph $ac2, %[p3], %[vector2b] \n\t" + "dpa.w.ph $ac2, %[p4], %[vector3b] \n\t" + "dpa.w.ph $ac2, %[p1], %[vector4b] \n\t" + "extp %[Temp3], $ac2, 31 \n\t" + + "lbu %[p2], 3(%[dst]) \n\t" /* load odd 2 */ + + /* odd 1. pixel */ + "lbux %[tp1], %[Temp1](%[cm]) \n\t" /* even 1 */ + "mtlo %[vector4a], $ac3 \n\t" + "mthi $zero, $ac3 \n\t" + "lbu %[Temp1], 1(%[dst]) \n\t" /* load odd 1 */ + "preceu.ph.qbr %[n1], %[tp2] \n\t" + "preceu.ph.qbl %[n2], %[tp2] \n\t" + "preceu.ph.qbr %[n3], %[tn2] \n\t" + "preceu.ph.qbl %[n4], %[tn2] \n\t" + "dpa.w.ph $ac3, %[n1], %[vector1b] \n\t" + "dpa.w.ph $ac3, %[n2], %[vector2b] \n\t" + "dpa.w.ph $ac3, %[n3], %[vector3b] \n\t" + "dpa.w.ph $ac3, %[n4], %[vector4b] \n\t" + "extp %[Temp2], $ac3, 31 \n\t" + + "lbu %[tn2], 0(%[dst]) \n\t" /* load even 1 */ + + /* odd 2. pixel */ + "lbux %[tp2], %[Temp3](%[cm]) \n\t" /* even 2 */ + "mtlo %[vector4a], $ac2 \n\t" + "mthi $zero, $ac2 \n\t" + "preceu.ph.qbr %[n1], %[tn1] \n\t" + "lbux %[tn1], %[Temp2](%[cm]) \n\t" /* odd 1 */ + "addqh_r.w %[tn2], %[tn2], %[tp1] \n\t" /* average even 1 */ + "dpa.w.ph $ac2, %[n2], %[vector1b] \n\t" + "dpa.w.ph $ac2, %[n3], %[vector2b] \n\t" + "dpa.w.ph $ac2, %[n4], %[vector3b] \n\t" + "dpa.w.ph $ac2, %[n1], %[vector4b] \n\t" + "extp %[Temp4], $ac2, 31 \n\t" + + "lbu %[tp1], 2(%[dst]) \n\t" /* load even 2 */ + "sb %[tn2], 0(%[dst]) \n\t" /* store even 1 */ + + /* clamp */ + "addqh_r.w %[Temp1], %[Temp1], %[tn1] \n\t" /* average odd 1 */ + "lbux %[n2], %[Temp4](%[cm]) \n\t" /* odd 2 */ + "sb %[Temp1], 1(%[dst]) \n\t" /* store odd 1 */ + + "addqh_r.w %[tp1], %[tp1], %[tp2] \n\t" /* average even 2 */ + "sb %[tp1], 2(%[dst]) \n\t" /* store even 2 */ + + "addqh_r.w %[p2], %[p2], %[n2] \n\t" /* average odd 2 */ + "sb %[p2], 3(%[dst]) \n\t" /* store odd 2 */ + + : [tp1] "=&r"(tp1), [tp2] "=&r"(tp2), [tn1] "=&r"(tn1), + [tn2] "=&r"(tn2), [p1] "=&r"(p1), [p2] "=&r"(p2), [p3] "=&r"(p3), + [p4] "=&r"(p4), [n1] "=&r"(n1), [n2] "=&r"(n2), [n3] "=&r"(n3), + [n4] "=&r"(n4), [Temp1] "=&r"(Temp1), [Temp2] "=&r"(Temp2), + [Temp3] "=&r"(Temp3), [Temp4] "=&r"(Temp4) + : [vector1b] "r"(vector1b), [vector2b] "r"(vector2b), + [vector3b] "r"(vector3b), [vector4b] "r"(vector4b), + [vector4a] "r"(vector4a), [cm] "r"(cm), [dst] "r"(dst), + [src] "r"(src)); + + /* Next row... */ + src += src_stride; + dst += dst_stride; + } +} + +static void convolve_avg_horiz_8_dspr2(const uint8_t *src, int32_t src_stride, + uint8_t *dst, int32_t dst_stride, + const int16_t *filter_x0, int32_t h) { + int32_t y; + uint8_t *cm = vpx_ff_cropTbl; + uint32_t vector4a = 64; + int32_t vector1b, vector2b, vector3b, vector4b; + int32_t Temp1, Temp2, Temp3; + uint32_t tp1, tp2; + uint32_t p1, p2, p3, p4, n1; + uint32_t tn1, tn2, tn3; + uint32_t st0, st1; + + vector1b = ((const int32_t *)filter_x0)[0]; + vector2b = ((const int32_t *)filter_x0)[1]; + vector3b = ((const int32_t *)filter_x0)[2]; + vector4b = ((const int32_t *)filter_x0)[3]; + + for (y = h; y--;) { + /* prefetch data to cache memory */ + prefetch_load(src + src_stride); + prefetch_load(src + src_stride + 32); + prefetch_store(dst + dst_stride); + + __asm__ __volatile__( + "ulw %[tp1], 0(%[src]) \n\t" + "ulw %[tp2], 4(%[src]) \n\t" + + /* even 1. pixel */ + "mtlo %[vector4a], $ac3 \n\t" + "mthi $zero, $ac3 \n\t" + "mtlo %[vector4a], $ac2 \n\t" + "mthi $zero, $ac2 \n\t" + "preceu.ph.qbr %[p1], %[tp1] \n\t" + "preceu.ph.qbl %[p2], %[tp1] \n\t" + "preceu.ph.qbr %[p3], %[tp2] \n\t" + "preceu.ph.qbl %[p4], %[tp2] \n\t" + "ulw %[tn2], 8(%[src]) \n\t" + "dpa.w.ph $ac3, %[p1], %[vector1b] \n\t" + "dpa.w.ph $ac3, %[p2], %[vector2b] \n\t" + "dpa.w.ph $ac3, %[p3], %[vector3b] \n\t" + "dpa.w.ph $ac3, %[p4], %[vector4b] \n\t" + "extp %[Temp1], $ac3, 31 \n\t" + "lbu %[Temp2], 0(%[dst]) \n\t" + "lbu %[tn3], 2(%[dst]) \n\t" + + /* even 2. pixel */ + "preceu.ph.qbr %[p1], %[tn2] \n\t" + "preceu.ph.qbl %[n1], %[tn2] \n\t" + "ulw %[tn1], 12(%[src]) \n\t" + "dpa.w.ph $ac2, %[p2], %[vector1b] \n\t" + "dpa.w.ph $ac2, %[p3], %[vector2b] \n\t" + "dpa.w.ph $ac2, %[p4], %[vector3b] \n\t" + "dpa.w.ph $ac2, %[p1], %[vector4b] \n\t" + "extp %[Temp3], $ac2, 31 \n\t" + + /* even 3. pixel */ + "lbux %[st0], %[Temp1](%[cm]) \n\t" + "mtlo %[vector4a], $ac1 \n\t" + "mthi $zero, $ac1 \n\t" + "preceu.ph.qbr %[p2], %[tn1] \n\t" + "lbux %[st1], %[Temp3](%[cm]) \n\t" + "dpa.w.ph $ac1, %[p3], %[vector1b] \n\t" + "dpa.w.ph $ac1, %[p4], %[vector2b] \n\t" + "dpa.w.ph $ac1, %[p1], %[vector3b] \n\t" + "dpa.w.ph $ac1, %[n1], %[vector4b] \n\t" + "extp %[Temp1], $ac1, 31 \n\t" + + "addqh_r.w %[Temp2], %[Temp2], %[st0] \n\t" + "addqh_r.w %[tn3], %[tn3], %[st1] \n\t" + "sb %[Temp2], 0(%[dst]) \n\t" + "sb %[tn3], 2(%[dst]) \n\t" + + /* even 4. pixel */ + "mtlo %[vector4a], $ac2 \n\t" + "mthi $zero, $ac2 \n\t" + "mtlo %[vector4a], $ac3 \n\t" + "mthi $zero, $ac3 \n\t" + + "balign %[tn3], %[tn1], 3 \n\t" + "balign %[tn1], %[tn2], 3 \n\t" + "balign %[tn2], %[tp2], 3 \n\t" + "balign %[tp2], %[tp1], 3 \n\t" + + "lbux %[st0], %[Temp1](%[cm]) \n\t" + "lbu %[Temp2], 4(%[dst]) \n\t" + "addqh_r.w %[Temp2], %[Temp2], %[st0] \n\t" + + "dpa.w.ph $ac2, %[p4], %[vector1b] \n\t" + "dpa.w.ph $ac2, %[p1], %[vector2b] \n\t" + "dpa.w.ph $ac2, %[n1], %[vector3b] \n\t" + "dpa.w.ph $ac2, %[p2], %[vector4b] \n\t" + "extp %[Temp3], $ac2, 31 \n\t" + + /* odd 1. pixel */ + "mtlo %[vector4a], $ac1 \n\t" + "mthi $zero, $ac1 \n\t" + "sb %[Temp2], 4(%[dst]) \n\t" + "preceu.ph.qbr %[p1], %[tp2] \n\t" + "preceu.ph.qbl %[p2], %[tp2] \n\t" + "preceu.ph.qbr %[p3], %[tn2] \n\t" + "preceu.ph.qbl %[p4], %[tn2] \n\t" + "dpa.w.ph $ac3, %[p1], %[vector1b] \n\t" + "dpa.w.ph $ac3, %[p2], %[vector2b] \n\t" + "dpa.w.ph $ac3, %[p3], %[vector3b] \n\t" + "dpa.w.ph $ac3, %[p4], %[vector4b] \n\t" + "extp %[Temp2], $ac3, 31 \n\t" + + "lbu %[tp1], 6(%[dst]) \n\t" + + /* odd 2. pixel */ + "mtlo %[vector4a], $ac3 \n\t" + "mthi $zero, $ac3 \n\t" + "mtlo %[vector4a], $ac2 \n\t" + "mthi $zero, $ac2 \n\t" + "preceu.ph.qbr %[p1], %[tn1] \n\t" + "preceu.ph.qbl %[n1], %[tn1] \n\t" + "lbux %[st0], %[Temp3](%[cm]) \n\t" + "dpa.w.ph $ac1, %[p2], %[vector1b] \n\t" + "dpa.w.ph $ac1, %[p3], %[vector2b] \n\t" + "dpa.w.ph $ac1, %[p4], %[vector3b] \n\t" + "dpa.w.ph $ac1, %[p1], %[vector4b] \n\t" + "extp %[Temp3], $ac1, 31 \n\t" + + "lbu %[tp2], 1(%[dst]) \n\t" + "lbu %[tn2], 3(%[dst]) \n\t" + "addqh_r.w %[tp1], %[tp1], %[st0] \n\t" + + /* odd 3. pixel */ + "lbux %[st1], %[Temp2](%[cm]) \n\t" + "preceu.ph.qbr %[p2], %[tn3] \n\t" + "dpa.w.ph $ac3, %[p3], %[vector1b] \n\t" + "dpa.w.ph $ac3, %[p4], %[vector2b] \n\t" + "dpa.w.ph $ac3, %[p1], %[vector3b] \n\t" + "dpa.w.ph $ac3, %[n1], %[vector4b] \n\t" + "addqh_r.w %[tp2], %[tp2], %[st1] \n\t" + "extp %[Temp2], $ac3, 31 \n\t" + + "lbu %[tn3], 5(%[dst]) \n\t" + + /* odd 4. pixel */ + "sb %[tp2], 1(%[dst]) \n\t" + "sb %[tp1], 6(%[dst]) \n\t" + "dpa.w.ph $ac2, %[p4], %[vector1b] \n\t" + "dpa.w.ph $ac2, %[p1], %[vector2b] \n\t" + "dpa.w.ph $ac2, %[n1], %[vector3b] \n\t" + "dpa.w.ph $ac2, %[p2], %[vector4b] \n\t" + "extp %[Temp1], $ac2, 31 \n\t" + + "lbu %[tn1], 7(%[dst]) \n\t" + + /* clamp */ + "lbux %[p4], %[Temp3](%[cm]) \n\t" + "addqh_r.w %[tn2], %[tn2], %[p4] \n\t" + + "lbux %[p2], %[Temp2](%[cm]) \n\t" + "addqh_r.w %[tn3], %[tn3], %[p2] \n\t" + + "lbux %[n1], %[Temp1](%[cm]) \n\t" + "addqh_r.w %[tn1], %[tn1], %[n1] \n\t" + + /* store bytes */ + "sb %[tn2], 3(%[dst]) \n\t" + "sb %[tn3], 5(%[dst]) \n\t" + "sb %[tn1], 7(%[dst]) \n\t" + + : [tp1] "=&r"(tp1), [tp2] "=&r"(tp2), [tn1] "=&r"(tn1), + [tn2] "=&r"(tn2), [tn3] "=&r"(tn3), [st0] "=&r"(st0), + [st1] "=&r"(st1), [p1] "=&r"(p1), [p2] "=&r"(p2), [p3] "=&r"(p3), + [p4] "=&r"(p4), [n1] "=&r"(n1), [Temp1] "=&r"(Temp1), + [Temp2] "=&r"(Temp2), [Temp3] "=&r"(Temp3) + : [vector1b] "r"(vector1b), [vector2b] "r"(vector2b), + [vector3b] "r"(vector3b), [vector4b] "r"(vector4b), + [vector4a] "r"(vector4a), [cm] "r"(cm), [dst] "r"(dst), + [src] "r"(src)); + + /* Next row... */ + src += src_stride; + dst += dst_stride; + } +} + +static void convolve_avg_horiz_16_dspr2(const uint8_t *src_ptr, + int32_t src_stride, uint8_t *dst_ptr, + int32_t dst_stride, + const int16_t *filter_x0, int32_t h, + int32_t count) { + int32_t y, c; + const uint8_t *src; + uint8_t *dst; + uint8_t *cm = vpx_ff_cropTbl; + uint32_t vector_64 = 64; + int32_t filter12, filter34, filter56, filter78; + int32_t Temp1, Temp2, Temp3; + uint32_t qload1, qload2, qload3; + uint32_t p1, p2, p3, p4, p5; + uint32_t st1, st2, st3; + + filter12 = ((const int32_t *)filter_x0)[0]; + filter34 = ((const int32_t *)filter_x0)[1]; + filter56 = ((const int32_t *)filter_x0)[2]; + filter78 = ((const int32_t *)filter_x0)[3]; + + for (y = h; y--;) { + src = src_ptr; + dst = dst_ptr; + + /* prefetch data to cache memory */ + prefetch_load(src_ptr + src_stride); + prefetch_load(src_ptr + src_stride + 32); + prefetch_store(dst_ptr + dst_stride); + + for (c = 0; c < count; c++) { + __asm__ __volatile__( + "ulw %[qload1], 0(%[src]) \n\t" + "ulw %[qload2], 4(%[src]) \n\t" + + /* even 1. pixel */ + "mtlo %[vector_64], $ac1 \n\t" /* even 1 */ + "mthi $zero, $ac1 \n\t" + "mtlo %[vector_64], $ac2 \n\t" /* even 2 */ + "mthi $zero, $ac2 \n\t" + "preceu.ph.qbr %[p1], %[qload1] \n\t" + "preceu.ph.qbl %[p2], %[qload1] \n\t" + "preceu.ph.qbr %[p3], %[qload2] \n\t" + "preceu.ph.qbl %[p4], %[qload2] \n\t" + "ulw %[qload3], 8(%[src]) \n\t" + "dpa.w.ph $ac1, %[p1], %[filter12] \n\t" /* even 1 */ + "dpa.w.ph $ac1, %[p2], %[filter34] \n\t" /* even 1 */ + "dpa.w.ph $ac1, %[p3], %[filter56] \n\t" /* even 1 */ + "dpa.w.ph $ac1, %[p4], %[filter78] \n\t" /* even 1 */ + "extp %[Temp1], $ac1, 31 \n\t" /* even 1 */ + "lbu %[st2], 0(%[dst]) \n\t" /* load even 1 from dst */ + + /* even 2. pixel */ + "mtlo %[vector_64], $ac3 \n\t" /* even 3 */ + "mthi $zero, $ac3 \n\t" + "preceu.ph.qbr %[p1], %[qload3] \n\t" + "preceu.ph.qbl %[p5], %[qload3] \n\t" + "ulw %[qload1], 12(%[src]) \n\t" + "dpa.w.ph $ac2, %[p2], %[filter12] \n\t" /* even 1 */ + "dpa.w.ph $ac2, %[p3], %[filter34] \n\t" /* even 1 */ + "dpa.w.ph $ac2, %[p4], %[filter56] \n\t" /* even 1 */ + "dpa.w.ph $ac2, %[p1], %[filter78] \n\t" /* even 1 */ + "extp %[Temp2], $ac2, 31 \n\t" /* even 1 */ + "lbux %[st1], %[Temp1](%[cm]) \n\t" /* even 1 */ + + "lbu %[qload3], 2(%[dst]) \n\t" /* load even 2 from dst */ + + /* even 3. pixel */ + "mtlo %[vector_64], $ac1 \n\t" /* even 4 */ + "mthi $zero, $ac1 \n\t" + "addqh_r.w %[st2], %[st2], %[st1] \n\t" /* average even 1 */ + "preceu.ph.qbr %[p2], %[qload1] \n\t" + "sb %[st2], 0(%[dst]) \n\t" /* store even 1 to dst */ + "dpa.w.ph $ac3, %[p3], %[filter12] \n\t" /* even 3 */ + "dpa.w.ph $ac3, %[p4], %[filter34] \n\t" /* even 3 */ + "dpa.w.ph $ac3, %[p1], %[filter56] \n\t" /* even 3 */ + "dpa.w.ph $ac3, %[p5], %[filter78] \n\t" /* even 3 */ + "extp %[Temp3], $ac3, 31 \n\t" /* even 3 */ + "lbux %[st2], %[Temp2](%[cm]) \n\t" /* even 1 */ + + /* even 4. pixel */ + "mtlo %[vector_64], $ac2 \n\t" /* even 5 */ + "mthi $zero, $ac2 \n\t" + "addqh_r.w %[qload3], %[qload3], %[st2] \n\t" /* average even 2 */ + "preceu.ph.qbl %[p3], %[qload1] \n\t" + "sb %[qload3], 2(%[dst]) \n\t" /* store even 2 to dst */ + "ulw %[qload2], 16(%[src]) \n\t" + "lbu %[qload3], 4(%[dst]) \n\t" /* load even 3 from dst */ + "lbu %[qload1], 6(%[dst]) \n\t" /* load even 4 from dst */ + "dpa.w.ph $ac1, %[p4], %[filter12] \n\t" /* even 4 */ + "dpa.w.ph $ac1, %[p1], %[filter34] \n\t" /* even 4 */ + "dpa.w.ph $ac1, %[p5], %[filter56] \n\t" /* even 4 */ + "dpa.w.ph $ac1, %[p2], %[filter78] \n\t" /* even 4 */ + "extp %[Temp1], $ac1, 31 \n\t" /* even 4 */ + "lbux %[st3], %[Temp3](%[cm]) \n\t" /* even 3 */ + + /* even 5. pixel */ + "mtlo %[vector_64], $ac3 \n\t" /* even 6 */ + "mthi $zero, $ac3 \n\t" + "addqh_r.w %[qload3], %[qload3], %[st3] \n\t" /* average even 3 */ + "preceu.ph.qbr %[p4], %[qload2] \n\t" + "sb %[qload3], 4(%[dst]) \n\t" /* store even 3 to dst */ + "dpa.w.ph $ac2, %[p1], %[filter12] \n\t" /* even 5 */ + "dpa.w.ph $ac2, %[p5], %[filter34] \n\t" /* even 5 */ + "dpa.w.ph $ac2, %[p2], %[filter56] \n\t" /* even 5 */ + "dpa.w.ph $ac2, %[p3], %[filter78] \n\t" /* even 5 */ + "extp %[Temp2], $ac2, 31 \n\t" /* even 5 */ + "lbux %[st1], %[Temp1](%[cm]) \n\t" /* even 4 */ + + /* even 6. pixel */ + "mtlo %[vector_64], $ac1 \n\t" /* even 7 */ + "mthi $zero, $ac1 \n\t" + "addqh_r.w %[qload1], %[qload1], %[st1] \n\t" /* average even 4 */ + "preceu.ph.qbl %[p1], %[qload2] \n\t" + "sb %[qload1], 6(%[dst]) \n\t" /* store even 4 to dst */ + "ulw %[qload3], 20(%[src]) \n\t" + "dpa.w.ph $ac3, %[p5], %[filter12] \n\t" /* even 6 */ + "dpa.w.ph $ac3, %[p2], %[filter34] \n\t" /* even 6 */ + "dpa.w.ph $ac3, %[p3], %[filter56] \n\t" /* even 6 */ + "dpa.w.ph $ac3, %[p4], %[filter78] \n\t" /* even 6 */ + "lbu %[qload2], 8(%[dst]) \n\t" /* load even 5 from dst */ + "extp %[Temp3], $ac3, 31 \n\t" /* even 6 */ + "lbux %[st2], %[Temp2](%[cm]) \n\t" /* even 5 */ + + /* even 7. pixel */ + "mtlo %[vector_64], $ac2 \n\t" /* even 8 */ + "mthi $zero, $ac2 \n\t" + "addqh_r.w %[qload2], %[qload2], %[st2] \n\t" /* average even 5 */ + "preceu.ph.qbr %[p5], %[qload3] \n\t" + "sb %[qload2], 8(%[dst]) \n\t" /* store even 5 to dst */ + "dpa.w.ph $ac1, %[p2], %[filter12] \n\t" /* even 7 */ + "dpa.w.ph $ac1, %[p3], %[filter34] \n\t" /* even 7 */ + "dpa.w.ph $ac1, %[p4], %[filter56] \n\t" /* even 7 */ + "dpa.w.ph $ac1, %[p1], %[filter78] \n\t" /* even 7 */ + "lbu %[qload3], 10(%[dst]) \n\t" /* load even 6 from dst */ + "extp %[Temp1], $ac1, 31 \n\t" /* even 7 */ + "lbux %[st3], %[Temp3](%[cm]) \n\t" /* even 6 */ + + "lbu %[st2], 12(%[dst]) \n\t" /* load even 7 from dst */ + + /* even 8. pixel */ + "mtlo %[vector_64], $ac3 \n\t" /* odd 1 */ + "mthi $zero, $ac3 \n\t" + "addqh_r.w %[qload3], %[qload3], %[st3] \n\t" /* average even 6 */ + "dpa.w.ph $ac2, %[p3], %[filter12] \n\t" /* even 8 */ + "dpa.w.ph $ac2, %[p4], %[filter34] \n\t" /* even 8 */ + "sb %[qload3], 10(%[dst]) \n\t" /* store even 6 to dst */ + "dpa.w.ph $ac2, %[p1], %[filter56] \n\t" /* even 8 */ + "dpa.w.ph $ac2, %[p5], %[filter78] \n\t" /* even 8 */ + "extp %[Temp2], $ac2, 31 \n\t" /* even 8 */ + "lbux %[st1], %[Temp1](%[cm]) \n\t" /* even 7 */ + + /* ODD pixels */ + "ulw %[qload1], 1(%[src]) \n\t" + "ulw %[qload2], 5(%[src]) \n\t" + + "addqh_r.w %[st2], %[st2], %[st1] \n\t" /* average even 7 */ + + /* odd 1. pixel */ + "mtlo %[vector_64], $ac1 \n\t" /* odd 2 */ + "mthi $zero, $ac1 \n\t" + "preceu.ph.qbr %[p1], %[qload1] \n\t" + "preceu.ph.qbl %[p2], %[qload1] \n\t" + "preceu.ph.qbr %[p3], %[qload2] \n\t" + "preceu.ph.qbl %[p4], %[qload2] \n\t" + "sb %[st2], 12(%[dst]) \n\t" /* store even 7 to dst */ + "ulw %[qload3], 9(%[src]) \n\t" + "dpa.w.ph $ac3, %[p1], %[filter12] \n\t" /* odd 1 */ + "dpa.w.ph $ac3, %[p2], %[filter34] \n\t" /* odd 1 */ + "lbu %[qload2], 14(%[dst]) \n\t" /* load even 8 from dst */ + "dpa.w.ph $ac3, %[p3], %[filter56] \n\t" /* odd 1 */ + "dpa.w.ph $ac3, %[p4], %[filter78] \n\t" /* odd 1 */ + "extp %[Temp3], $ac3, 31 \n\t" /* odd 1 */ + "lbux %[st2], %[Temp2](%[cm]) \n\t" /* even 8 */ + + "lbu %[st1], 1(%[dst]) \n\t" /* load odd 1 from dst */ + + /* odd 2. pixel */ + "mtlo %[vector_64], $ac2 \n\t" /* odd 3 */ + "mthi $zero, $ac2 \n\t" + "addqh_r.w %[qload2], %[qload2], %[st2] \n\t" /* average even 8 */ + "preceu.ph.qbr %[p1], %[qload3] \n\t" + "preceu.ph.qbl %[p5], %[qload3] \n\t" + "sb %[qload2], 14(%[dst]) \n\t" /* store even 8 to dst */ + "ulw %[qload1], 13(%[src]) \n\t" + "dpa.w.ph $ac1, %[p2], %[filter12] \n\t" /* odd 2 */ + "dpa.w.ph $ac1, %[p3], %[filter34] \n\t" /* odd 2 */ + "dpa.w.ph $ac1, %[p4], %[filter56] \n\t" /* odd 2 */ + "dpa.w.ph $ac1, %[p1], %[filter78] \n\t" /* odd 2 */ + "lbu %[qload3], 3(%[dst]) \n\t" /* load odd 2 from dst */ + "extp %[Temp1], $ac1, 31 \n\t" /* odd 2 */ + "lbux %[st3], %[Temp3](%[cm]) \n\t" /* odd 1 */ + + /* odd 3. pixel */ + "mtlo %[vector_64], $ac3 \n\t" /* odd 4 */ + "mthi $zero, $ac3 \n\t" + "addqh_r.w %[st3], %[st3], %[st1] \n\t" /* average odd 1 */ + "preceu.ph.qbr %[p2], %[qload1] \n\t" + "dpa.w.ph $ac2, %[p3], %[filter12] \n\t" /* odd 3 */ + "dpa.w.ph $ac2, %[p4], %[filter34] \n\t" /* odd 3 */ + "dpa.w.ph $ac2, %[p1], %[filter56] \n\t" /* odd 3 */ + "dpa.w.ph $ac2, %[p5], %[filter78] \n\t" /* odd 3 */ + "sb %[st3], 1(%[dst]) \n\t" /* store odd 1 to dst */ + "extp %[Temp2], $ac2, 31 \n\t" /* odd 3 */ + "lbux %[st1], %[Temp1](%[cm]) \n\t" /* odd 2 */ + + /* odd 4. pixel */ + "mtlo %[vector_64], $ac1 \n\t" /* odd 5 */ + "mthi $zero, $ac1 \n\t" + "addqh_r.w %[qload3], %[qload3], %[st1] \n\t" /* average odd 2 */ + "preceu.ph.qbl %[p3], %[qload1] \n\t" + "sb %[qload3], 3(%[dst]) \n\t" /* store odd 2 to dst */ + "lbu %[qload1], 5(%[dst]) \n\t" /* load odd 3 from dst */ + "ulw %[qload2], 17(%[src]) \n\t" + "dpa.w.ph $ac3, %[p4], %[filter12] \n\t" /* odd 4 */ + "dpa.w.ph $ac3, %[p1], %[filter34] \n\t" /* odd 4 */ + "dpa.w.ph $ac3, %[p5], %[filter56] \n\t" /* odd 4 */ + "dpa.w.ph $ac3, %[p2], %[filter78] \n\t" /* odd 4 */ + "extp %[Temp3], $ac3, 31 \n\t" /* odd 4 */ + "lbux %[st2], %[Temp2](%[cm]) \n\t" /* odd 3 */ + + "lbu %[st1], 7(%[dst]) \n\t" /* load odd 4 from dst */ + + /* odd 5. pixel */ + "mtlo %[vector_64], $ac2 \n\t" /* odd 6 */ + "mthi $zero, $ac2 \n\t" + "addqh_r.w %[qload1], %[qload1], %[st2] \n\t" /* average odd 3 */ + "preceu.ph.qbr %[p4], %[qload2] \n\t" + "sb %[qload1], 5(%[dst]) \n\t" /* store odd 3 to dst */ + "dpa.w.ph $ac1, %[p1], %[filter12] \n\t" /* odd 5 */ + "dpa.w.ph $ac1, %[p5], %[filter34] \n\t" /* odd 5 */ + "dpa.w.ph $ac1, %[p2], %[filter56] \n\t" /* odd 5 */ + "dpa.w.ph $ac1, %[p3], %[filter78] \n\t" /* odd 5 */ + "extp %[Temp1], $ac1, 31 \n\t" /* odd 5 */ + "lbux %[st3], %[Temp3](%[cm]) \n\t" /* odd 4 */ + + "lbu %[qload1], 9(%[dst]) \n\t" /* load odd 5 from dst */ + + /* odd 6. pixel */ + "mtlo %[vector_64], $ac3 \n\t" /* odd 7 */ + "mthi $zero, $ac3 \n\t" + "addqh_r.w %[st1], %[st1], %[st3] \n\t" /* average odd 4 */ + "preceu.ph.qbl %[p1], %[qload2] \n\t" + "sb %[st1], 7(%[dst]) \n\t" /* store odd 4 to dst */ + "ulw %[qload3], 21(%[src]) \n\t" + "dpa.w.ph $ac2, %[p5], %[filter12] \n\t" /* odd 6 */ + "dpa.w.ph $ac2, %[p2], %[filter34] \n\t" /* odd 6 */ + "dpa.w.ph $ac2, %[p3], %[filter56] \n\t" /* odd 6 */ + "dpa.w.ph $ac2, %[p4], %[filter78] \n\t" /* odd 6 */ + "extp %[Temp2], $ac2, 31 \n\t" /* odd 6 */ + "lbux %[st1], %[Temp1](%[cm]) \n\t" /* odd 5 */ + + /* odd 7. pixel */ + "mtlo %[vector_64], $ac1 \n\t" /* odd 8 */ + "mthi $zero, $ac1 \n\t" + "addqh_r.w %[qload1], %[qload1], %[st1] \n\t" /* average odd 5 */ + "preceu.ph.qbr %[p5], %[qload3] \n\t" + "sb %[qload1], 9(%[dst]) \n\t" /* store odd 5 to dst */ + "lbu %[qload2], 11(%[dst]) \n\t" /* load odd 6 from dst */ + "dpa.w.ph $ac3, %[p2], %[filter12] \n\t" /* odd 7 */ + "dpa.w.ph $ac3, %[p3], %[filter34] \n\t" /* odd 7 */ + "dpa.w.ph $ac3, %[p4], %[filter56] \n\t" /* odd 7 */ + "dpa.w.ph $ac3, %[p1], %[filter78] \n\t" /* odd 7 */ + "extp %[Temp3], $ac3, 31 \n\t" /* odd 7 */ + + "lbu %[qload3], 13(%[dst]) \n\t" /* load odd 7 from dst */ + + /* odd 8. pixel */ + "dpa.w.ph $ac1, %[p3], %[filter12] \n\t" /* odd 8 */ + "dpa.w.ph $ac1, %[p4], %[filter34] \n\t" /* odd 8 */ + "dpa.w.ph $ac1, %[p1], %[filter56] \n\t" /* odd 8 */ + "dpa.w.ph $ac1, %[p5], %[filter78] \n\t" /* odd 8 */ + "extp %[Temp1], $ac1, 31 \n\t" /* odd 8 */ + + "lbu %[qload1], 15(%[dst]) \n\t" /* load odd 8 from dst */ + + "lbux %[st2], %[Temp2](%[cm]) \n\t" /* odd 6 */ + "addqh_r.w %[qload2], %[qload2], %[st2] \n\t" /* average odd 6 */ + + "lbux %[st3], %[Temp3](%[cm]) \n\t" /* odd 7 */ + "addqh_r.w %[qload3], %[qload3], %[st3] \n\t" /* average odd 7 */ + + "lbux %[st1], %[Temp1](%[cm]) \n\t" /* odd 8 */ + "addqh_r.w %[qload1], %[qload1], %[st1] \n\t" /* average odd 8 */ + + "sb %[qload2], 11(%[dst]) \n\t" /* store odd 6 to dst */ + "sb %[qload3], 13(%[dst]) \n\t" /* store odd 7 to dst */ + "sb %[qload1], 15(%[dst]) \n\t" /* store odd 8 to dst */ + + : [qload1] "=&r"(qload1), [qload2] "=&r"(qload2), [st1] "=&r"(st1), + [st2] "=&r"(st2), [st3] "=&r"(st3), [p1] "=&r"(p1), [p2] "=&r"(p2), + [p3] "=&r"(p3), [p4] "=&r"(p4), [qload3] "=&r"(qload3), + [p5] "=&r"(p5), [Temp1] "=&r"(Temp1), [Temp2] "=&r"(Temp2), + [Temp3] "=&r"(Temp3) + : [filter12] "r"(filter12), [filter34] "r"(filter34), + [filter56] "r"(filter56), [filter78] "r"(filter78), + [vector_64] "r"(vector_64), [cm] "r"(cm), [dst] "r"(dst), + [src] "r"(src)); + + src += 16; + dst += 16; + } + + /* Next row... */ + src_ptr += src_stride; + dst_ptr += dst_stride; + } +} + +static void convolve_avg_horiz_64_dspr2(const uint8_t *src_ptr, + int32_t src_stride, uint8_t *dst_ptr, + int32_t dst_stride, + const int16_t *filter_x0, int32_t h) { + int32_t y, c; + const uint8_t *src; + uint8_t *dst; + uint8_t *cm = vpx_ff_cropTbl; + uint32_t vector_64 = 64; + int32_t filter12, filter34, filter56, filter78; + int32_t Temp1, Temp2, Temp3; + uint32_t qload1, qload2, qload3; + uint32_t p1, p2, p3, p4, p5; + uint32_t st1, st2, st3; + + filter12 = ((const int32_t *)filter_x0)[0]; + filter34 = ((const int32_t *)filter_x0)[1]; + filter56 = ((const int32_t *)filter_x0)[2]; + filter78 = ((const int32_t *)filter_x0)[3]; + + for (y = h; y--;) { + src = src_ptr; + dst = dst_ptr; + + /* prefetch data to cache memory */ + prefetch_load(src_ptr + src_stride); + prefetch_load(src_ptr + src_stride + 32); + prefetch_load(src_ptr + src_stride + 64); + prefetch_store(dst_ptr + dst_stride); + prefetch_store(dst_ptr + dst_stride + 32); + + for (c = 0; c < 4; c++) { + __asm__ __volatile__( + "ulw %[qload1], 0(%[src]) \n\t" + "ulw %[qload2], 4(%[src]) \n\t" + + /* even 1. pixel */ + "mtlo %[vector_64], $ac1 \n\t" /* even 1 */ + "mthi $zero, $ac1 \n\t" + "mtlo %[vector_64], $ac2 \n\t" /* even 2 */ + "mthi $zero, $ac2 \n\t" + "preceu.ph.qbr %[p1], %[qload1] \n\t" + "preceu.ph.qbl %[p2], %[qload1] \n\t" + "preceu.ph.qbr %[p3], %[qload2] \n\t" + "preceu.ph.qbl %[p4], %[qload2] \n\t" + "ulw %[qload3], 8(%[src]) \n\t" + "dpa.w.ph $ac1, %[p1], %[filter12] \n\t" /* even 1 */ + "dpa.w.ph $ac1, %[p2], %[filter34] \n\t" /* even 1 */ + "dpa.w.ph $ac1, %[p3], %[filter56] \n\t" /* even 1 */ + "dpa.w.ph $ac1, %[p4], %[filter78] \n\t" /* even 1 */ + "extp %[Temp1], $ac1, 31 \n\t" /* even 1 */ + "lbu %[st2], 0(%[dst]) \n\t" /* load even 1 from dst */ + + /* even 2. pixel */ + "mtlo %[vector_64], $ac3 \n\t" /* even 3 */ + "mthi $zero, $ac3 \n\t" + "preceu.ph.qbr %[p1], %[qload3] \n\t" + "preceu.ph.qbl %[p5], %[qload3] \n\t" + "ulw %[qload1], 12(%[src]) \n\t" + "dpa.w.ph $ac2, %[p2], %[filter12] \n\t" /* even 1 */ + "dpa.w.ph $ac2, %[p3], %[filter34] \n\t" /* even 1 */ + "dpa.w.ph $ac2, %[p4], %[filter56] \n\t" /* even 1 */ + "dpa.w.ph $ac2, %[p1], %[filter78] \n\t" /* even 1 */ + "extp %[Temp2], $ac2, 31 \n\t" /* even 1 */ + "lbux %[st1], %[Temp1](%[cm]) \n\t" /* even 1 */ + + "lbu %[qload3], 2(%[dst]) \n\t" /* load even 2 from dst */ + + /* even 3. pixel */ + "mtlo %[vector_64], $ac1 \n\t" /* even 4 */ + "mthi $zero, $ac1 \n\t" + "addqh_r.w %[st2], %[st2], %[st1] \n\t" /* average even 1 */ + "preceu.ph.qbr %[p2], %[qload1] \n\t" + "sb %[st2], 0(%[dst]) \n\t" /* store even 1 to dst */ + "dpa.w.ph $ac3, %[p3], %[filter12] \n\t" /* even 3 */ + "dpa.w.ph $ac3, %[p4], %[filter34] \n\t" /* even 3 */ + "dpa.w.ph $ac3, %[p1], %[filter56] \n\t" /* even 3 */ + "dpa.w.ph $ac3, %[p5], %[filter78] \n\t" /* even 3 */ + "extp %[Temp3], $ac3, 31 \n\t" /* even 3 */ + "lbux %[st2], %[Temp2](%[cm]) \n\t" /* even 1 */ + + /* even 4. pixel */ + "mtlo %[vector_64], $ac2 \n\t" /* even 5 */ + "mthi $zero, $ac2 \n\t" + "addqh_r.w %[qload3], %[qload3], %[st2] \n\t" /* average even 2 */ + "preceu.ph.qbl %[p3], %[qload1] \n\t" + "sb %[qload3], 2(%[dst]) \n\t" /* store even 2 to dst */ + "ulw %[qload2], 16(%[src]) \n\t" + "lbu %[qload3], 4(%[dst]) \n\t" /* load even 3 from dst */ + "lbu %[qload1], 6(%[dst]) \n\t" /* load even 4 from dst */ + "dpa.w.ph $ac1, %[p4], %[filter12] \n\t" /* even 4 */ + "dpa.w.ph $ac1, %[p1], %[filter34] \n\t" /* even 4 */ + "dpa.w.ph $ac1, %[p5], %[filter56] \n\t" /* even 4 */ + "dpa.w.ph $ac1, %[p2], %[filter78] \n\t" /* even 4 */ + "extp %[Temp1], $ac1, 31 \n\t" /* even 4 */ + "lbux %[st3], %[Temp3](%[cm]) \n\t" /* even 3 */ + + /* even 5. pixel */ + "mtlo %[vector_64], $ac3 \n\t" /* even 6 */ + "mthi $zero, $ac3 \n\t" + "addqh_r.w %[qload3], %[qload3], %[st3] \n\t" /* average even 3 */ + "preceu.ph.qbr %[p4], %[qload2] \n\t" + "sb %[qload3], 4(%[dst]) \n\t" /* store even 3 to dst */ + "dpa.w.ph $ac2, %[p1], %[filter12] \n\t" /* even 5 */ + "dpa.w.ph $ac2, %[p5], %[filter34] \n\t" /* even 5 */ + "dpa.w.ph $ac2, %[p2], %[filter56] \n\t" /* even 5 */ + "dpa.w.ph $ac2, %[p3], %[filter78] \n\t" /* even 5 */ + "extp %[Temp2], $ac2, 31 \n\t" /* even 5 */ + "lbux %[st1], %[Temp1](%[cm]) \n\t" /* even 4 */ + + /* even 6. pixel */ + "mtlo %[vector_64], $ac1 \n\t" /* even 7 */ + "mthi $zero, $ac1 \n\t" + "addqh_r.w %[qload1], %[qload1], %[st1] \n\t" /* average even 4 */ + "preceu.ph.qbl %[p1], %[qload2] \n\t" + "sb %[qload1], 6(%[dst]) \n\t" /* store even 4 to dst */ + "ulw %[qload3], 20(%[src]) \n\t" + "dpa.w.ph $ac3, %[p5], %[filter12] \n\t" /* even 6 */ + "dpa.w.ph $ac3, %[p2], %[filter34] \n\t" /* even 6 */ + "dpa.w.ph $ac3, %[p3], %[filter56] \n\t" /* even 6 */ + "dpa.w.ph $ac3, %[p4], %[filter78] \n\t" /* even 6 */ + "lbu %[qload2], 8(%[dst]) \n\t" /* load even 5 from dst */ + "extp %[Temp3], $ac3, 31 \n\t" /* even 6 */ + "lbux %[st2], %[Temp2](%[cm]) \n\t" /* even 5 */ + + /* even 7. pixel */ + "mtlo %[vector_64], $ac2 \n\t" /* even 8 */ + "mthi $zero, $ac2 \n\t" + "addqh_r.w %[qload2], %[qload2], %[st2] \n\t" /* average even 5 */ + "preceu.ph.qbr %[p5], %[qload3] \n\t" + "sb %[qload2], 8(%[dst]) \n\t" /* store even 5 to dst */ + "dpa.w.ph $ac1, %[p2], %[filter12] \n\t" /* even 7 */ + "dpa.w.ph $ac1, %[p3], %[filter34] \n\t" /* even 7 */ + "dpa.w.ph $ac1, %[p4], %[filter56] \n\t" /* even 7 */ + "dpa.w.ph $ac1, %[p1], %[filter78] \n\t" /* even 7 */ + "lbu %[qload3], 10(%[dst]) \n\t" /* load even 6 from dst */ + "extp %[Temp1], $ac1, 31 \n\t" /* even 7 */ + "lbux %[st3], %[Temp3](%[cm]) \n\t" /* even 6 */ + + "lbu %[st2], 12(%[dst]) \n\t" /* load even 7 from dst */ + + /* even 8. pixel */ + "mtlo %[vector_64], $ac3 \n\t" /* odd 1 */ + "mthi $zero, $ac3 \n\t" + "addqh_r.w %[qload3], %[qload3], %[st3] \n\t" /* average even 6 */ + "dpa.w.ph $ac2, %[p3], %[filter12] \n\t" /* even 8 */ + "dpa.w.ph $ac2, %[p4], %[filter34] \n\t" /* even 8 */ + "sb %[qload3], 10(%[dst]) \n\t" /* store even 6 to dst */ + "dpa.w.ph $ac2, %[p1], %[filter56] \n\t" /* even 8 */ + "dpa.w.ph $ac2, %[p5], %[filter78] \n\t" /* even 8 */ + "extp %[Temp2], $ac2, 31 \n\t" /* even 8 */ + "lbux %[st1], %[Temp1](%[cm]) \n\t" /* even 7 */ + + /* ODD pixels */ + "ulw %[qload1], 1(%[src]) \n\t" + "ulw %[qload2], 5(%[src]) \n\t" + + "addqh_r.w %[st2], %[st2], %[st1] \n\t" /* average even 7 */ + + /* odd 1. pixel */ + "mtlo %[vector_64], $ac1 \n\t" /* odd 2 */ + "mthi $zero, $ac1 \n\t" + "preceu.ph.qbr %[p1], %[qload1] \n\t" + "preceu.ph.qbl %[p2], %[qload1] \n\t" + "preceu.ph.qbr %[p3], %[qload2] \n\t" + "preceu.ph.qbl %[p4], %[qload2] \n\t" + "sb %[st2], 12(%[dst]) \n\t" /* store even 7 to dst */ + "ulw %[qload3], 9(%[src]) \n\t" + "dpa.w.ph $ac3, %[p1], %[filter12] \n\t" /* odd 1 */ + "dpa.w.ph $ac3, %[p2], %[filter34] \n\t" /* odd 1 */ + "lbu %[qload2], 14(%[dst]) \n\t" /* load even 8 from dst */ + "dpa.w.ph $ac3, %[p3], %[filter56] \n\t" /* odd 1 */ + "dpa.w.ph $ac3, %[p4], %[filter78] \n\t" /* odd 1 */ + "extp %[Temp3], $ac3, 31 \n\t" /* odd 1 */ + "lbux %[st2], %[Temp2](%[cm]) \n\t" /* even 8 */ + + "lbu %[st1], 1(%[dst]) \n\t" /* load odd 1 from dst */ + + /* odd 2. pixel */ + "mtlo %[vector_64], $ac2 \n\t" /* odd 3 */ + "mthi $zero, $ac2 \n\t" + "addqh_r.w %[qload2], %[qload2], %[st2] \n\t" /* average even 8 */ + "preceu.ph.qbr %[p1], %[qload3] \n\t" + "preceu.ph.qbl %[p5], %[qload3] \n\t" + "sb %[qload2], 14(%[dst]) \n\t" /* store even 8 to dst */ + "ulw %[qload1], 13(%[src]) \n\t" + "dpa.w.ph $ac1, %[p2], %[filter12] \n\t" /* odd 2 */ + "dpa.w.ph $ac1, %[p3], %[filter34] \n\t" /* odd 2 */ + "dpa.w.ph $ac1, %[p4], %[filter56] \n\t" /* odd 2 */ + "dpa.w.ph $ac1, %[p1], %[filter78] \n\t" /* odd 2 */ + "lbu %[qload3], 3(%[dst]) \n\t" /* load odd 2 from dst */ + "extp %[Temp1], $ac1, 31 \n\t" /* odd 2 */ + "lbux %[st3], %[Temp3](%[cm]) \n\t" /* odd 1 */ + + /* odd 3. pixel */ + "mtlo %[vector_64], $ac3 \n\t" /* odd 4 */ + "mthi $zero, $ac3 \n\t" + "addqh_r.w %[st3], %[st3], %[st1] \n\t" /* average odd 1 */ + "preceu.ph.qbr %[p2], %[qload1] \n\t" + "dpa.w.ph $ac2, %[p3], %[filter12] \n\t" /* odd 3 */ + "dpa.w.ph $ac2, %[p4], %[filter34] \n\t" /* odd 3 */ + "dpa.w.ph $ac2, %[p1], %[filter56] \n\t" /* odd 3 */ + "dpa.w.ph $ac2, %[p5], %[filter78] \n\t" /* odd 3 */ + "sb %[st3], 1(%[dst]) \n\t" /* store odd 1 to dst */ + "extp %[Temp2], $ac2, 31 \n\t" /* odd 3 */ + "lbux %[st1], %[Temp1](%[cm]) \n\t" /* odd 2 */ + + /* odd 4. pixel */ + "mtlo %[vector_64], $ac1 \n\t" /* odd 5 */ + "mthi $zero, $ac1 \n\t" + "addqh_r.w %[qload3], %[qload3], %[st1] \n\t" /* average odd 2 */ + "preceu.ph.qbl %[p3], %[qload1] \n\t" + "sb %[qload3], 3(%[dst]) \n\t" /* store odd 2 to dst */ + "lbu %[qload1], 5(%[dst]) \n\t" /* load odd 3 from dst */ + "ulw %[qload2], 17(%[src]) \n\t" + "dpa.w.ph $ac3, %[p4], %[filter12] \n\t" /* odd 4 */ + "dpa.w.ph $ac3, %[p1], %[filter34] \n\t" /* odd 4 */ + "dpa.w.ph $ac3, %[p5], %[filter56] \n\t" /* odd 4 */ + "dpa.w.ph $ac3, %[p2], %[filter78] \n\t" /* odd 4 */ + "extp %[Temp3], $ac3, 31 \n\t" /* odd 4 */ + "lbux %[st2], %[Temp2](%[cm]) \n\t" /* odd 3 */ + + "lbu %[st1], 7(%[dst]) \n\t" /* load odd 4 from dst */ + + /* odd 5. pixel */ + "mtlo %[vector_64], $ac2 \n\t" /* odd 6 */ + "mthi $zero, $ac2 \n\t" + "addqh_r.w %[qload1], %[qload1], %[st2] \n\t" /* average odd 3 */ + "preceu.ph.qbr %[p4], %[qload2] \n\t" + "sb %[qload1], 5(%[dst]) \n\t" /* store odd 3 to dst */ + "dpa.w.ph $ac1, %[p1], %[filter12] \n\t" /* odd 5 */ + "dpa.w.ph $ac1, %[p5], %[filter34] \n\t" /* odd 5 */ + "dpa.w.ph $ac1, %[p2], %[filter56] \n\t" /* odd 5 */ + "dpa.w.ph $ac1, %[p3], %[filter78] \n\t" /* odd 5 */ + "extp %[Temp1], $ac1, 31 \n\t" /* odd 5 */ + "lbux %[st3], %[Temp3](%[cm]) \n\t" /* odd 4 */ + + "lbu %[qload1], 9(%[dst]) \n\t" /* load odd 5 from dst */ + + /* odd 6. pixel */ + "mtlo %[vector_64], $ac3 \n\t" /* odd 7 */ + "mthi $zero, $ac3 \n\t" + "addqh_r.w %[st1], %[st1], %[st3] \n\t" /* average odd 4 */ + "preceu.ph.qbl %[p1], %[qload2] \n\t" + "sb %[st1], 7(%[dst]) \n\t" /* store odd 4 to dst */ + "ulw %[qload3], 21(%[src]) \n\t" + "dpa.w.ph $ac2, %[p5], %[filter12] \n\t" /* odd 6 */ + "dpa.w.ph $ac2, %[p2], %[filter34] \n\t" /* odd 6 */ + "dpa.w.ph $ac2, %[p3], %[filter56] \n\t" /* odd 6 */ + "dpa.w.ph $ac2, %[p4], %[filter78] \n\t" /* odd 6 */ + "extp %[Temp2], $ac2, 31 \n\t" /* odd 6 */ + "lbux %[st1], %[Temp1](%[cm]) \n\t" /* odd 5 */ + + /* odd 7. pixel */ + "mtlo %[vector_64], $ac1 \n\t" /* odd 8 */ + "mthi $zero, $ac1 \n\t" + "addqh_r.w %[qload1], %[qload1], %[st1] \n\t" /* average odd 5 */ + "preceu.ph.qbr %[p5], %[qload3] \n\t" + "sb %[qload1], 9(%[dst]) \n\t" /* store odd 5 to dst */ + "lbu %[qload2], 11(%[dst]) \n\t" /* load odd 6 from dst */ + "dpa.w.ph $ac3, %[p2], %[filter12] \n\t" /* odd 7 */ + "dpa.w.ph $ac3, %[p3], %[filter34] \n\t" /* odd 7 */ + "dpa.w.ph $ac3, %[p4], %[filter56] \n\t" /* odd 7 */ + "dpa.w.ph $ac3, %[p1], %[filter78] \n\t" /* odd 7 */ + "extp %[Temp3], $ac3, 31 \n\t" /* odd 7 */ + + "lbu %[qload3], 13(%[dst]) \n\t" /* load odd 7 from dst */ + + /* odd 8. pixel */ + "dpa.w.ph $ac1, %[p3], %[filter12] \n\t" /* odd 8 */ + "dpa.w.ph $ac1, %[p4], %[filter34] \n\t" /* odd 8 */ + "dpa.w.ph $ac1, %[p1], %[filter56] \n\t" /* odd 8 */ + "dpa.w.ph $ac1, %[p5], %[filter78] \n\t" /* odd 8 */ + "extp %[Temp1], $ac1, 31 \n\t" /* odd 8 */ + + "lbu %[qload1], 15(%[dst]) \n\t" /* load odd 8 from dst */ + + "lbux %[st2], %[Temp2](%[cm]) \n\t" /* odd 6 */ + "addqh_r.w %[qload2], %[qload2], %[st2] \n\t" /* average odd 6 */ + + "lbux %[st3], %[Temp3](%[cm]) \n\t" /* odd 7 */ + "addqh_r.w %[qload3], %[qload3], %[st3] \n\t" /* average odd 7 */ + + "lbux %[st1], %[Temp1](%[cm]) \n\t" /* odd 8 */ + "addqh_r.w %[qload1], %[qload1], %[st1] \n\t" /* average odd 8 */ + + "sb %[qload2], 11(%[dst]) \n\t" /* store odd 6 to dst */ + "sb %[qload3], 13(%[dst]) \n\t" /* store odd 7 to dst */ + "sb %[qload1], 15(%[dst]) \n\t" /* store odd 8 to dst */ + + : [qload1] "=&r"(qload1), [qload2] "=&r"(qload2), [st1] "=&r"(st1), + [st2] "=&r"(st2), [st3] "=&r"(st3), [p1] "=&r"(p1), [p2] "=&r"(p2), + [p3] "=&r"(p3), [p4] "=&r"(p4), [qload3] "=&r"(qload3), + [p5] "=&r"(p5), [Temp1] "=&r"(Temp1), [Temp2] "=&r"(Temp2), + [Temp3] "=&r"(Temp3) + : [filter12] "r"(filter12), [filter34] "r"(filter34), + [filter56] "r"(filter56), [filter78] "r"(filter78), + [vector_64] "r"(vector_64), [cm] "r"(cm), [dst] "r"(dst), + [src] "r"(src)); + + src += 16; + dst += 16; + } + + /* Next row... */ + src_ptr += src_stride; + dst_ptr += dst_stride; + } +} + +void vpx_convolve8_avg_horiz_dspr2(const uint8_t *src, ptrdiff_t src_stride, + uint8_t *dst, ptrdiff_t dst_stride, + const InterpKernel *filter, int x0_q4, + int32_t x_step_q4, int y0_q4, int y_step_q4, + int w, int h) { + const int16_t *const filter_x = filter[x0_q4]; + assert(x_step_q4 == 16); + assert(((const int32_t *)filter_x)[1] != 0x800000); + + if (((const int32_t *)filter_x)[0] == 0) { + vpx_convolve2_avg_horiz_dspr2(src, src_stride, dst, dst_stride, filter, + x0_q4, x_step_q4, y0_q4, y_step_q4, w, h); + } else { + uint32_t pos = 38; + + src -= 3; + + /* bit positon for extract from acc */ + __asm__ __volatile__("wrdsp %[pos], 1 \n\t" + : + : [pos] "r"(pos)); + + /* prefetch data to cache memory */ + prefetch_load(src); + prefetch_load(src + 32); + prefetch_store(dst); + + switch (w) { + case 4: + convolve_avg_horiz_4_dspr2(src, src_stride, dst, dst_stride, filter_x, + h); + break; + case 8: + convolve_avg_horiz_8_dspr2(src, src_stride, dst, dst_stride, filter_x, + h); + break; + case 16: + convolve_avg_horiz_16_dspr2(src, src_stride, dst, dst_stride, filter_x, + h, 1); + break; + case 32: + convolve_avg_horiz_16_dspr2(src, src_stride, dst, dst_stride, filter_x, + h, 2); + break; + case 64: + prefetch_load(src + 64); + prefetch_store(dst + 32); + + convolve_avg_horiz_64_dspr2(src, src_stride, dst, dst_stride, filter_x, + h); + break; + default: + vpx_convolve8_avg_horiz_c(src + 3, src_stride, dst, dst_stride, filter, + x0_q4, x_step_q4, y0_q4, y_step_q4, w, h); + break; + } + } +} +#endif diff --git a/vpx_dsp/mips/convolve8_dspr2.c b/vpx_dsp/mips/convolve8_dspr2.c new file mode 100644 index 0000000..89f0f41 --- /dev/null +++ b/vpx_dsp/mips/convolve8_dspr2.c @@ -0,0 +1,1602 @@ +/* + * Copyright (c) 2013 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include + +#include "./vpx_dsp_rtcd.h" +#include "vpx_dsp/mips/convolve_common_dspr2.h" +#include "vpx_dsp/vpx_dsp_common.h" +#include "vpx_dsp/vpx_filter.h" +#include "vpx_ports/mem.h" + +#if HAVE_DSPR2 +static void convolve_horiz_4_transposed_dspr2(const uint8_t *src, + int32_t src_stride, uint8_t *dst, + int32_t dst_stride, + const int16_t *filter_x0, + int32_t h) { + int32_t y; + uint8_t *cm = vpx_ff_cropTbl; + uint8_t *dst_ptr; + int32_t vector1b, vector2b, vector3b, vector4b; + int32_t Temp1, Temp2, Temp3, Temp4; + uint32_t vector4a = 64; + uint32_t tp1, tp2; + uint32_t p1, p2, p3, p4; + uint32_t tn1, tn2; + + vector1b = ((const int32_t *)filter_x0)[0]; + vector2b = ((const int32_t *)filter_x0)[1]; + vector3b = ((const int32_t *)filter_x0)[2]; + vector4b = ((const int32_t *)filter_x0)[3]; + + for (y = h; y--;) { + dst_ptr = dst; + /* prefetch data to cache memory */ + prefetch_load(src + src_stride); + prefetch_load(src + src_stride + 32); + + __asm__ __volatile__( + "ulw %[tp1], 0(%[src]) \n\t" + "ulw %[tp2], 4(%[src]) \n\t" + + /* even 1. pixel */ + "mtlo %[vector4a], $ac3 \n\t" + "mthi $zero, $ac3 \n\t" + "preceu.ph.qbr %[p1], %[tp1] \n\t" + "preceu.ph.qbl %[p2], %[tp1] \n\t" + "preceu.ph.qbr %[p3], %[tp2] \n\t" + "preceu.ph.qbl %[p4], %[tp2] \n\t" + "dpa.w.ph $ac3, %[p1], %[vector1b] \n\t" + "dpa.w.ph $ac3, %[p2], %[vector2b] \n\t" + "dpa.w.ph $ac3, %[p3], %[vector3b] \n\t" + "ulw %[tn2], 8(%[src]) \n\t" + "dpa.w.ph $ac3, %[p4], %[vector4b] \n\t" + "extp %[Temp1], $ac3, 31 \n\t" + + /* even 2. pixel */ + "mtlo %[vector4a], $ac2 \n\t" + "mthi $zero, $ac2 \n\t" + "preceu.ph.qbr %[p1], %[tn2] \n\t" + "balign %[tn1], %[tn2], 3 \n\t" + "balign %[tn2], %[tp2], 3 \n\t" + "balign %[tp2], %[tp1], 3 \n\t" + "dpa.w.ph $ac2, %[p2], %[vector1b] \n\t" + "dpa.w.ph $ac2, %[p3], %[vector2b] \n\t" + "dpa.w.ph $ac2, %[p4], %[vector3b] \n\t" + "dpa.w.ph $ac2, %[p1], %[vector4b] \n\t" + "extp %[Temp3], $ac2, 31 \n\t" + + /* odd 1. pixel */ + "lbux %[tp1], %[Temp1](%[cm]) \n\t" + "mtlo %[vector4a], $ac3 \n\t" + "mthi $zero, $ac3 \n\t" + "preceu.ph.qbr %[p1], %[tp2] \n\t" + "preceu.ph.qbl %[p2], %[tp2] \n\t" + "preceu.ph.qbr %[p3], %[tn2] \n\t" + "preceu.ph.qbl %[p4], %[tn2] \n\t" + "dpa.w.ph $ac3, %[p1], %[vector1b] \n\t" + "dpa.w.ph $ac3, %[p2], %[vector2b] \n\t" + "dpa.w.ph $ac3, %[p3], %[vector3b] \n\t" + "dpa.w.ph $ac3, %[p4], %[vector4b] \n\t" + "extp %[Temp2], $ac3, 31 \n\t" + + /* odd 2. pixel */ + "lbux %[tp2], %[Temp3](%[cm]) \n\t" + "mtlo %[vector4a], $ac2 \n\t" + "mthi $zero, $ac2 \n\t" + "preceu.ph.qbr %[p1], %[tn1] \n\t" + "dpa.w.ph $ac2, %[p2], %[vector1b] \n\t" + "dpa.w.ph $ac2, %[p3], %[vector2b] \n\t" + "dpa.w.ph $ac2, %[p4], %[vector3b] \n\t" + "dpa.w.ph $ac2, %[p1], %[vector4b] \n\t" + "extp %[Temp4], $ac2, 31 \n\t" + + /* clamp */ + "lbux %[tn1], %[Temp2](%[cm]) \n\t" + "lbux %[p2], %[Temp4](%[cm]) \n\t" + + /* store bytes */ + "sb %[tp1], 0(%[dst_ptr]) \n\t" + "addu %[dst_ptr], %[dst_ptr], %[dst_stride] \n\t" + + "sb %[tn1], 0(%[dst_ptr]) \n\t" + "addu %[dst_ptr], %[dst_ptr], %[dst_stride] \n\t" + + "sb %[tp2], 0(%[dst_ptr]) \n\t" + "addu %[dst_ptr], %[dst_ptr], %[dst_stride] \n\t" + + "sb %[p2], 0(%[dst_ptr]) \n\t" + "addu %[dst_ptr], %[dst_ptr], %[dst_stride] \n\t" + + : [tp1] "=&r"(tp1), [tp2] "=&r"(tp2), [tn1] "=&r"(tn1), + [tn2] "=&r"(tn2), [p1] "=&r"(p1), [p2] "=&r"(p2), [p3] "=&r"(p3), + [p4] "=&r"(p4), [Temp1] "=&r"(Temp1), [Temp2] "=&r"(Temp2), + [Temp3] "=&r"(Temp3), [Temp4] "=&r"(Temp4), [dst_ptr] "+r"(dst_ptr) + : [vector1b] "r"(vector1b), [vector2b] "r"(vector2b), + [vector3b] "r"(vector3b), [vector4b] "r"(vector4b), + [vector4a] "r"(vector4a), [cm] "r"(cm), [src] "r"(src), + [dst_stride] "r"(dst_stride)); + + /* Next row... */ + src += src_stride; + dst += 1; + } +} + +static void convolve_horiz_8_transposed_dspr2(const uint8_t *src, + int32_t src_stride, uint8_t *dst, + int32_t dst_stride, + const int16_t *filter_x0, + int32_t h) { + int32_t y; + uint8_t *cm = vpx_ff_cropTbl; + uint8_t *dst_ptr; + uint32_t vector4a = 64; + int32_t vector1b, vector2b, vector3b, vector4b; + int32_t Temp1, Temp2, Temp3; + uint32_t tp1, tp2, tp3; + uint32_t p1, p2, p3, p4, n1; + uint8_t *odd_dst; + uint32_t dst_pitch_2 = (dst_stride << 1); + + vector1b = ((const int32_t *)filter_x0)[0]; + vector2b = ((const int32_t *)filter_x0)[1]; + vector3b = ((const int32_t *)filter_x0)[2]; + vector4b = ((const int32_t *)filter_x0)[3]; + + for (y = h; y--;) { + /* prefetch data to cache memory */ + prefetch_load(src + src_stride); + prefetch_load(src + src_stride + 32); + + dst_ptr = dst; + odd_dst = (dst_ptr + dst_stride); + + __asm__ __volatile__( + "ulw %[tp2], 0(%[src]) \n\t" + "ulw %[tp1], 4(%[src]) \n\t" + + /* even 1. pixel */ + "mtlo %[vector4a], $ac3 \n\t" + "mthi $zero, $ac3 \n\t" + "mtlo %[vector4a], $ac2 \n\t" + "mthi $zero, $ac2 \n\t" + "preceu.ph.qbr %[p1], %[tp2] \n\t" + "preceu.ph.qbl %[p2], %[tp2] \n\t" + "preceu.ph.qbr %[p3], %[tp1] \n\t" + "preceu.ph.qbl %[p4], %[tp1] \n\t" + "ulw %[tp3], 8(%[src]) \n\t" + "dpa.w.ph $ac3, %[p1], %[vector1b] \n\t" + "dpa.w.ph $ac3, %[p2], %[vector2b] \n\t" + "dpa.w.ph $ac3, %[p3], %[vector3b] \n\t" + "dpa.w.ph $ac3, %[p4], %[vector4b] \n\t" + "extp %[Temp1], $ac3, 31 \n\t" + + /* even 2. pixel */ + "preceu.ph.qbr %[p1], %[tp3] \n\t" + "preceu.ph.qbl %[n1], %[tp3] \n\t" + "ulw %[tp2], 12(%[src]) \n\t" + "dpa.w.ph $ac2, %[p2], %[vector1b] \n\t" + "dpa.w.ph $ac2, %[p3], %[vector2b] \n\t" + "dpa.w.ph $ac2, %[p4], %[vector3b] \n\t" + "dpa.w.ph $ac2, %[p1], %[vector4b] \n\t" + "extp %[Temp3], $ac2, 31 \n\t" + + /* even 3. pixel */ + "lbux %[Temp2], %[Temp1](%[cm]) \n\t" + "mtlo %[vector4a], $ac1 \n\t" + "mthi $zero, $ac1 \n\t" + "preceu.ph.qbr %[p2], %[tp2] \n\t" + "dpa.w.ph $ac1, %[p3], %[vector1b] \n\t" + "dpa.w.ph $ac1, %[p4], %[vector2b] \n\t" + "dpa.w.ph $ac1, %[p1], %[vector3b] \n\t" + "lbux %[tp3], %[Temp3](%[cm]) \n\t" + "dpa.w.ph $ac1, %[n1], %[vector4b] \n\t" + "extp %[p3], $ac1, 31 \n\t" + + /* even 4. pixel */ + "mtlo %[vector4a], $ac2 \n\t" + "mthi $zero, $ac2 \n\t" + "mtlo %[vector4a], $ac3 \n\t" + "mthi $zero, $ac3 \n\t" + "sb %[Temp2], 0(%[dst_ptr]) \n\t" + "addu %[dst_ptr], %[dst_ptr], %[dst_pitch_2] \n\t" + "sb %[tp3], 0(%[dst_ptr]) \n\t" + "addu %[dst_ptr], %[dst_ptr], %[dst_pitch_2] \n\t" + + "ulw %[tp1], 1(%[src]) \n\t" + "ulw %[tp3], 5(%[src]) \n\t" + + "dpa.w.ph $ac2, %[p4], %[vector1b] \n\t" + "dpa.w.ph $ac2, %[p1], %[vector2b] \n\t" + "dpa.w.ph $ac2, %[n1], %[vector3b] \n\t" + "dpa.w.ph $ac2, %[p2], %[vector4b] \n\t" + "extp %[Temp3], $ac2, 31 \n\t" + + "lbux %[tp2], %[p3](%[cm]) \n\t" + + /* odd 1. pixel */ + "mtlo %[vector4a], $ac1 \n\t" + "mthi $zero, $ac1 \n\t" + "preceu.ph.qbr %[p1], %[tp1] \n\t" + "preceu.ph.qbl %[p2], %[tp1] \n\t" + "preceu.ph.qbr %[p3], %[tp3] \n\t" + "preceu.ph.qbl %[p4], %[tp3] \n\t" + "sb %[tp2], 0(%[dst_ptr]) \n\t" + "addu %[dst_ptr], %[dst_ptr], %[dst_pitch_2] \n\t" + "ulw %[tp2], 9(%[src]) \n\t" + + "dpa.w.ph $ac3, %[p1], %[vector1b] \n\t" + "dpa.w.ph $ac3, %[p2], %[vector2b] \n\t" + "dpa.w.ph $ac3, %[p3], %[vector3b] \n\t" + "dpa.w.ph $ac3, %[p4], %[vector4b] \n\t" + "extp %[Temp2], $ac3, 31 \n\t" + + /* odd 2. pixel */ + "lbux %[tp1], %[Temp3](%[cm]) \n\t" + "mtlo %[vector4a], $ac3 \n\t" + "mthi $zero, $ac3 \n\t" + "mtlo %[vector4a], $ac2 \n\t" + "mthi $zero, $ac2 \n\t" + "preceu.ph.qbr %[p1], %[tp2] \n\t" + "preceu.ph.qbl %[n1], %[tp2] \n\t" + "ulw %[Temp1], 13(%[src]) \n\t" + "dpa.w.ph $ac1, %[p2], %[vector1b] \n\t" + "sb %[tp1], 0(%[dst_ptr]) \n\t" + "addu %[dst_ptr], %[dst_ptr], %[dst_pitch_2] \n\t" + "dpa.w.ph $ac1, %[p3], %[vector2b] \n\t" + "dpa.w.ph $ac1, %[p4], %[vector3b] \n\t" + "dpa.w.ph $ac1, %[p1], %[vector4b] \n\t" + "extp %[Temp3], $ac1, 31 \n\t" + + /* odd 3. pixel */ + "lbux %[tp3], %[Temp2](%[cm]) \n\t" + "preceu.ph.qbr %[p2], %[Temp1] \n\t" + "dpa.w.ph $ac3, %[p3], %[vector1b] \n\t" + "dpa.w.ph $ac3, %[p4], %[vector2b] \n\t" + "dpa.w.ph $ac3, %[p1], %[vector3b] \n\t" + "dpa.w.ph $ac3, %[n1], %[vector4b] \n\t" + "extp %[Temp2], $ac3, 31 \n\t" + + /* odd 4. pixel */ + "sb %[tp3], 0(%[odd_dst]) \n\t" + "addu %[odd_dst], %[odd_dst], %[dst_pitch_2] \n\t" + "dpa.w.ph $ac2, %[p4], %[vector1b] \n\t" + "dpa.w.ph $ac2, %[p1], %[vector2b] \n\t" + "dpa.w.ph $ac2, %[n1], %[vector3b] \n\t" + "dpa.w.ph $ac2, %[p2], %[vector4b] \n\t" + "extp %[Temp1], $ac2, 31 \n\t" + + /* clamp */ + "lbux %[p4], %[Temp3](%[cm]) \n\t" + "lbux %[p2], %[Temp2](%[cm]) \n\t" + "lbux %[n1], %[Temp1](%[cm]) \n\t" + + /* store bytes */ + "sb %[p4], 0(%[odd_dst]) \n\t" + "addu %[odd_dst], %[odd_dst], %[dst_pitch_2] \n\t" + + "sb %[p2], 0(%[odd_dst]) \n\t" + "addu %[odd_dst], %[odd_dst], %[dst_pitch_2] \n\t" + + "sb %[n1], 0(%[odd_dst]) \n\t" + + : [tp1] "=&r"(tp1), [tp2] "=&r"(tp2), [tp3] "=&r"(tp3), [p1] "=&r"(p1), + [p2] "=&r"(p2), [p3] "=&r"(p3), [p4] "=&r"(p4), [n1] "=&r"(n1), + [Temp1] "=&r"(Temp1), [Temp2] "=&r"(Temp2), [Temp3] "=&r"(Temp3), + [dst_ptr] "+r"(dst_ptr), [odd_dst] "+r"(odd_dst) + : [vector1b] "r"(vector1b), [vector2b] "r"(vector2b), + [vector3b] "r"(vector3b), [vector4b] "r"(vector4b), + [vector4a] "r"(vector4a), [cm] "r"(cm), [src] "r"(src), + [dst_pitch_2] "r"(dst_pitch_2)); + + /* Next row... */ + src += src_stride; + dst += 1; + } +} + +static void convolve_horiz_16_transposed_dspr2( + const uint8_t *src_ptr, int32_t src_stride, uint8_t *dst_ptr, + int32_t dst_stride, const int16_t *filter_x0, int32_t h, int32_t count) { + int32_t c, y; + const uint8_t *src; + uint8_t *dst; + uint8_t *cm = vpx_ff_cropTbl; + uint32_t vector_64 = 64; + int32_t filter12, filter34, filter56, filter78; + int32_t Temp1, Temp2, Temp3; + uint32_t qload1, qload2; + uint32_t p1, p2, p3, p4, p5; + uint32_t st1, st2, st3; + uint32_t dst_pitch_2 = (dst_stride << 1); + uint8_t *odd_dst; + + filter12 = ((const int32_t *)filter_x0)[0]; + filter34 = ((const int32_t *)filter_x0)[1]; + filter56 = ((const int32_t *)filter_x0)[2]; + filter78 = ((const int32_t *)filter_x0)[3]; + + for (y = h; y--;) { + /* prefetch data to cache memory */ + prefetch_load(src_ptr + src_stride); + prefetch_load(src_ptr + src_stride + 32); + + src = src_ptr; + dst = dst_ptr; + + odd_dst = (dst + dst_stride); + + for (c = 0; c < count; c++) { + __asm__ __volatile__( + "ulw %[qload1], 0(%[src]) " + "\n\t" + "ulw %[qload2], 4(%[src]) " + "\n\t" + + /* even 1. pixel */ + "mtlo %[vector_64], $ac1 " + "\n\t" /* even 1 */ + "mthi $zero, $ac1 " + "\n\t" + "mtlo %[vector_64], $ac2 " + "\n\t" /* even 2 */ + "mthi $zero, $ac2 " + "\n\t" + "preceu.ph.qbr %[p3], %[qload2] " + "\n\t" + "preceu.ph.qbl %[p4], %[qload2] " + "\n\t" + "preceu.ph.qbr %[p1], %[qload1] " + "\n\t" + "preceu.ph.qbl %[p2], %[qload1] " + "\n\t" + "ulw %[qload2], 8(%[src]) " + "\n\t" + "dpa.w.ph $ac1, %[p1], %[filter12] " + "\n\t" /* even 1 */ + "dpa.w.ph $ac1, %[p2], %[filter34] " + "\n\t" /* even 1 */ + "dpa.w.ph $ac1, %[p3], %[filter56] " + "\n\t" /* even 1 */ + "dpa.w.ph $ac1, %[p4], %[filter78] " + "\n\t" /* even 1 */ + "extp %[Temp1], $ac1, 31 " + "\n\t" /* even 1 */ + + /* even 2. pixel */ + "mtlo %[vector_64], $ac3 " + "\n\t" /* even 3 */ + "mthi $zero, $ac3 " + "\n\t" + "preceu.ph.qbr %[p1], %[qload2] " + "\n\t" + "preceu.ph.qbl %[p5], %[qload2] " + "\n\t" + "ulw %[qload1], 12(%[src]) " + "\n\t" + "dpa.w.ph $ac2, %[p2], %[filter12] " + "\n\t" /* even 1 */ + "dpa.w.ph $ac2, %[p3], %[filter34] " + "\n\t" /* even 1 */ + "dpa.w.ph $ac2, %[p4], %[filter56] " + "\n\t" /* even 1 */ + "dpa.w.ph $ac2, %[p1], %[filter78] " + "\n\t" /* even 1 */ + "lbux %[st1], %[Temp1](%[cm]) " + "\n\t" /* even 1 */ + "extp %[Temp2], $ac2, 31 " + "\n\t" /* even 1 */ + + /* even 3. pixel */ + "mtlo %[vector_64], $ac1 " + "\n\t" /* even 4 */ + "mthi $zero, $ac1 " + "\n\t" + "preceu.ph.qbr %[p2], %[qload1] " + "\n\t" + "sb %[st1], 0(%[dst]) " + "\n\t" /* even 1 */ + "addu %[dst], %[dst], %[dst_pitch_2] " + " \n\t" + "dpa.w.ph $ac3, %[p3], %[filter12] " + "\n\t" /* even 3 */ + "dpa.w.ph $ac3, %[p4], %[filter34] " + "\n\t" /* even 3 */ + "dpa.w.ph $ac3, %[p1], %[filter56] " + "\n\t" /* even 3 */ + "dpa.w.ph $ac3, %[p5], %[filter78] " + "\n\t" /* even 3 */ + "extp %[Temp3], $ac3, 31 " + "\n\t" /* even 3 */ + "lbux %[st2], %[Temp2](%[cm]) " + "\n\t" /* even 1 */ + + /* even 4. pixel */ + "mtlo %[vector_64], $ac2 " + "\n\t" /* even 5 */ + "mthi $zero, $ac2 " + "\n\t" + "preceu.ph.qbl %[p3], %[qload1] " + "\n\t" + "sb %[st2], 0(%[dst]) " + "\n\t" /* even 2 */ + "addu %[dst], %[dst], %[dst_pitch_2] " + "\n\t" + "ulw %[qload2], 16(%[src]) " + "\n\t" + "dpa.w.ph $ac1, %[p4], %[filter12] " + "\n\t" /* even 4 */ + "dpa.w.ph $ac1, %[p1], %[filter34] " + "\n\t" /* even 4 */ + "dpa.w.ph $ac1, %[p5], %[filter56] " + "\n\t" /* even 4 */ + "dpa.w.ph $ac1, %[p2], %[filter78] " + "\n\t" /* even 4 */ + "extp %[Temp1], $ac1, 31 " + "\n\t" /* even 4 */ + "lbux %[st3], %[Temp3](%[cm]) " + "\n\t" /* even 3 */ + + /* even 5. pixel */ + "mtlo %[vector_64], $ac3 " + "\n\t" /* even 6 */ + "mthi $zero, $ac3 " + "\n\t" + "preceu.ph.qbr %[p4], %[qload2] " + "\n\t" + "sb %[st3], 0(%[dst]) " + "\n\t" /* even 3 */ + "addu %[dst], %[dst], %[dst_pitch_2] " + "\n\t" + "dpa.w.ph $ac2, %[p1], %[filter12] " + "\n\t" /* even 5 */ + "dpa.w.ph $ac2, %[p5], %[filter34] " + "\n\t" /* even 5 */ + "dpa.w.ph $ac2, %[p2], %[filter56] " + "\n\t" /* even 5 */ + "dpa.w.ph $ac2, %[p3], %[filter78] " + "\n\t" /* even 5 */ + "extp %[Temp2], $ac2, 31 " + "\n\t" /* even 5 */ + "lbux %[st1], %[Temp1](%[cm]) " + "\n\t" /* even 4 */ + + /* even 6. pixel */ + "mtlo %[vector_64], $ac1 " + "\n\t" /* even 7 */ + "mthi $zero, $ac1 " + "\n\t" + "preceu.ph.qbl %[p1], %[qload2] " + "\n\t" + "sb %[st1], 0(%[dst]) " + "\n\t" /* even 4 */ + "addu %[dst], %[dst], %[dst_pitch_2] " + "\n\t" + "ulw %[qload1], 20(%[src]) " + "\n\t" + "dpa.w.ph $ac3, %[p5], %[filter12] " + "\n\t" /* even 6 */ + "dpa.w.ph $ac3, %[p2], %[filter34] " + "\n\t" /* even 6 */ + "dpa.w.ph $ac3, %[p3], %[filter56] " + "\n\t" /* even 6 */ + "dpa.w.ph $ac3, %[p4], %[filter78] " + "\n\t" /* even 6 */ + "extp %[Temp3], $ac3, 31 " + "\n\t" /* even 6 */ + "lbux %[st2], %[Temp2](%[cm]) " + "\n\t" /* even 5 */ + + /* even 7. pixel */ + "mtlo %[vector_64], $ac2 " + "\n\t" /* even 8 */ + "mthi $zero, $ac2 " + "\n\t" + "preceu.ph.qbr %[p5], %[qload1] " + "\n\t" + "sb %[st2], 0(%[dst]) " + "\n\t" /* even 5 */ + "addu %[dst], %[dst], %[dst_pitch_2] " + "\n\t" + "dpa.w.ph $ac1, %[p2], %[filter12] " + "\n\t" /* even 7 */ + "dpa.w.ph $ac1, %[p3], %[filter34] " + "\n\t" /* even 7 */ + "dpa.w.ph $ac1, %[p4], %[filter56] " + "\n\t" /* even 7 */ + "dpa.w.ph $ac1, %[p1], %[filter78] " + "\n\t" /* even 7 */ + "extp %[Temp1], $ac1, 31 " + "\n\t" /* even 7 */ + "lbux %[st3], %[Temp3](%[cm]) " + "\n\t" /* even 6 */ + + /* even 8. pixel */ + "mtlo %[vector_64], $ac3 " + "\n\t" /* odd 1 */ + "mthi $zero, $ac3 " + "\n\t" + "dpa.w.ph $ac2, %[p3], %[filter12] " + "\n\t" /* even 8 */ + "dpa.w.ph $ac2, %[p4], %[filter34] " + "\n\t" /* even 8 */ + "sb %[st3], 0(%[dst]) " + "\n\t" /* even 6 */ + "addu %[dst], %[dst], %[dst_pitch_2] " + "\n\t" + "dpa.w.ph $ac2, %[p1], %[filter56] " + "\n\t" /* even 8 */ + "dpa.w.ph $ac2, %[p5], %[filter78] " + "\n\t" /* even 8 */ + "extp %[Temp2], $ac2, 31 " + "\n\t" /* even 8 */ + "lbux %[st1], %[Temp1](%[cm]) " + "\n\t" /* even 7 */ + + /* ODD pixels */ + "ulw %[qload1], 1(%[src]) " + "\n\t" + "ulw %[qload2], 5(%[src]) " + "\n\t" + + /* odd 1. pixel */ + "mtlo %[vector_64], $ac1 " + "\n\t" /* odd 2 */ + "mthi $zero, $ac1 " + "\n\t" + "preceu.ph.qbr %[p1], %[qload1] " + "\n\t" + "preceu.ph.qbl %[p2], %[qload1] " + "\n\t" + "preceu.ph.qbr %[p3], %[qload2] " + "\n\t" + "preceu.ph.qbl %[p4], %[qload2] " + "\n\t" + "sb %[st1], 0(%[dst]) " + "\n\t" /* even 7 */ + "addu %[dst], %[dst], %[dst_pitch_2] " + "\n\t" + "ulw %[qload2], 9(%[src]) " + "\n\t" + "dpa.w.ph $ac3, %[p1], %[filter12] " + "\n\t" /* odd 1 */ + "dpa.w.ph $ac3, %[p2], %[filter34] " + "\n\t" /* odd 1 */ + "dpa.w.ph $ac3, %[p3], %[filter56] " + "\n\t" /* odd 1 */ + "dpa.w.ph $ac3, %[p4], %[filter78] " + "\n\t" /* odd 1 */ + "extp %[Temp3], $ac3, 31 " + "\n\t" /* odd 1 */ + "lbux %[st2], %[Temp2](%[cm]) " + "\n\t" /* even 8 */ + + /* odd 2. pixel */ + "mtlo %[vector_64], $ac2 " + "\n\t" /* odd 3 */ + "mthi $zero, $ac2 " + "\n\t" + "preceu.ph.qbr %[p1], %[qload2] " + "\n\t" + "preceu.ph.qbl %[p5], %[qload2] " + "\n\t" + "sb %[st2], 0(%[dst]) " + "\n\t" /* even 8 */ + "ulw %[qload1], 13(%[src]) " + "\n\t" + "dpa.w.ph $ac1, %[p2], %[filter12] " + "\n\t" /* odd 2 */ + "dpa.w.ph $ac1, %[p3], %[filter34] " + "\n\t" /* odd 2 */ + "dpa.w.ph $ac1, %[p4], %[filter56] " + "\n\t" /* odd 2 */ + "dpa.w.ph $ac1, %[p1], %[filter78] " + "\n\t" /* odd 2 */ + "extp %[Temp1], $ac1, 31 " + "\n\t" /* odd 2 */ + "lbux %[st3], %[Temp3](%[cm]) " + "\n\t" /* odd 1 */ + + /* odd 3. pixel */ + "mtlo %[vector_64], $ac3 " + "\n\t" /* odd 4 */ + "mthi $zero, $ac3 " + "\n\t" + "preceu.ph.qbr %[p2], %[qload1] " + "\n\t" + "sb %[st3], 0(%[odd_dst]) " + "\n\t" /* odd 1 */ + "addu %[odd_dst], %[odd_dst], %[dst_pitch_2] " + "\n\t" + "dpa.w.ph $ac2, %[p3], %[filter12] " + "\n\t" /* odd 3 */ + "dpa.w.ph $ac2, %[p4], %[filter34] " + "\n\t" /* odd 3 */ + "dpa.w.ph $ac2, %[p1], %[filter56] " + "\n\t" /* odd 3 */ + "dpa.w.ph $ac2, %[p5], %[filter78] " + "\n\t" /* odd 3 */ + "extp %[Temp2], $ac2, 31 " + "\n\t" /* odd 3 */ + "lbux %[st1], %[Temp1](%[cm]) " + "\n\t" /* odd 2 */ + + /* odd 4. pixel */ + "mtlo %[vector_64], $ac1 " + "\n\t" /* odd 5 */ + "mthi $zero, $ac1 " + "\n\t" + "preceu.ph.qbl %[p3], %[qload1] " + "\n\t" + "sb %[st1], 0(%[odd_dst]) " + "\n\t" /* odd 2 */ + "addu %[odd_dst], %[odd_dst], %[dst_pitch_2] " + "\n\t" + "ulw %[qload2], 17(%[src]) " + "\n\t" + "dpa.w.ph $ac3, %[p4], %[filter12] " + "\n\t" /* odd 4 */ + "dpa.w.ph $ac3, %[p1], %[filter34] " + "\n\t" /* odd 4 */ + "dpa.w.ph $ac3, %[p5], %[filter56] " + "\n\t" /* odd 4 */ + "dpa.w.ph $ac3, %[p2], %[filter78] " + "\n\t" /* odd 4 */ + "extp %[Temp3], $ac3, 31 " + "\n\t" /* odd 4 */ + "lbux %[st2], %[Temp2](%[cm]) " + "\n\t" /* odd 3 */ + + /* odd 5. pixel */ + "mtlo %[vector_64], $ac2 " + "\n\t" /* odd 6 */ + "mthi $zero, $ac2 " + "\n\t" + "preceu.ph.qbr %[p4], %[qload2] " + "\n\t" + "sb %[st2], 0(%[odd_dst]) " + "\n\t" /* odd 3 */ + "addu %[odd_dst], %[odd_dst], %[dst_pitch_2] " + "\n\t" + "dpa.w.ph $ac1, %[p1], %[filter12] " + "\n\t" /* odd 5 */ + "dpa.w.ph $ac1, %[p5], %[filter34] " + "\n\t" /* odd 5 */ + "dpa.w.ph $ac1, %[p2], %[filter56] " + "\n\t" /* odd 5 */ + "dpa.w.ph $ac1, %[p3], %[filter78] " + "\n\t" /* odd 5 */ + "extp %[Temp1], $ac1, 31 " + "\n\t" /* odd 5 */ + "lbux %[st3], %[Temp3](%[cm]) " + "\n\t" /* odd 4 */ + + /* odd 6. pixel */ + "mtlo %[vector_64], $ac3 " + "\n\t" /* odd 7 */ + "mthi $zero, $ac3 " + "\n\t" + "preceu.ph.qbl %[p1], %[qload2] " + "\n\t" + "sb %[st3], 0(%[odd_dst]) " + "\n\t" /* odd 4 */ + "addu %[odd_dst], %[odd_dst], %[dst_pitch_2] " + "\n\t" + "ulw %[qload1], 21(%[src]) " + "\n\t" + "dpa.w.ph $ac2, %[p5], %[filter12] " + "\n\t" /* odd 6 */ + "dpa.w.ph $ac2, %[p2], %[filter34] " + "\n\t" /* odd 6 */ + "dpa.w.ph $ac2, %[p3], %[filter56] " + "\n\t" /* odd 6 */ + "dpa.w.ph $ac2, %[p4], %[filter78] " + "\n\t" /* odd 6 */ + "extp %[Temp2], $ac2, 31 " + "\n\t" /* odd 6 */ + "lbux %[st1], %[Temp1](%[cm]) " + "\n\t" /* odd 5 */ + + /* odd 7. pixel */ + "mtlo %[vector_64], $ac1 " + "\n\t" /* odd 8 */ + "mthi $zero, $ac1 " + "\n\t" + "preceu.ph.qbr %[p5], %[qload1] " + "\n\t" + "sb %[st1], 0(%[odd_dst]) " + "\n\t" /* odd 5 */ + "addu %[odd_dst], %[odd_dst], %[dst_pitch_2] " + "\n\t" + "dpa.w.ph $ac3, %[p2], %[filter12] " + "\n\t" /* odd 7 */ + "dpa.w.ph $ac3, %[p3], %[filter34] " + "\n\t" /* odd 7 */ + "dpa.w.ph $ac3, %[p4], %[filter56] " + "\n\t" /* odd 7 */ + "dpa.w.ph $ac3, %[p1], %[filter78] " + "\n\t" /* odd 7 */ + "extp %[Temp3], $ac3, 31 " + "\n\t" /* odd 7 */ + + /* odd 8. pixel */ + "dpa.w.ph $ac1, %[p3], %[filter12] " + "\n\t" /* odd 8 */ + "dpa.w.ph $ac1, %[p4], %[filter34] " + "\n\t" /* odd 8 */ + "dpa.w.ph $ac1, %[p1], %[filter56] " + "\n\t" /* odd 8 */ + "dpa.w.ph $ac1, %[p5], %[filter78] " + "\n\t" /* odd 8 */ + "extp %[Temp1], $ac1, 31 " + "\n\t" /* odd 8 */ + + "lbux %[st2], %[Temp2](%[cm]) " + "\n\t" /* odd 6 */ + "lbux %[st3], %[Temp3](%[cm]) " + "\n\t" /* odd 7 */ + "lbux %[st1], %[Temp1](%[cm]) " + "\n\t" /* odd 8 */ + + "sb %[st2], 0(%[odd_dst]) " + "\n\t" /* odd 6 */ + "addu %[odd_dst], %[odd_dst], %[dst_pitch_2] " + "\n\t" + + "sb %[st3], 0(%[odd_dst]) " + "\n\t" /* odd 7 */ + "addu %[odd_dst], %[odd_dst], %[dst_pitch_2] " + "\n\t" + + "sb %[st1], 0(%[odd_dst]) " + "\n\t" /* odd 8 */ + + : [qload1] "=&r"(qload1), [qload2] "=&r"(qload2), [p5] "=&r"(p5), + [st1] "=&r"(st1), [st2] "=&r"(st2), [st3] "=&r"(st3), + [p1] "=&r"(p1), [p2] "=&r"(p2), [p3] "=&r"(p3), [p4] "=&r"(p4), + [Temp1] "=&r"(Temp1), [Temp2] "=&r"(Temp2), [Temp3] "=&r"(Temp3), + [dst] "+r"(dst), [odd_dst] "+r"(odd_dst) + : [filter12] "r"(filter12), [filter34] "r"(filter34), + [filter56] "r"(filter56), [filter78] "r"(filter78), + [vector_64] "r"(vector_64), [cm] "r"(cm), [src] "r"(src), + [dst_pitch_2] "r"(dst_pitch_2)); + + src += 16; + dst = (dst_ptr + ((c + 1) * 16 * dst_stride)); + odd_dst = (dst + dst_stride); + } + + /* Next row... */ + src_ptr += src_stride; + + dst_ptr += 1; + } +} + +static void convolve_horiz_64_transposed_dspr2( + const uint8_t *src_ptr, int32_t src_stride, uint8_t *dst_ptr, + int32_t dst_stride, const int16_t *filter_x0, int32_t h) { + int32_t c, y; + const uint8_t *src; + uint8_t *dst; + uint8_t *cm = vpx_ff_cropTbl; + uint32_t vector_64 = 64; + int32_t filter12, filter34, filter56, filter78; + int32_t Temp1, Temp2, Temp3; + uint32_t qload1, qload2; + uint32_t p1, p2, p3, p4, p5; + uint32_t st1, st2, st3; + uint32_t dst_pitch_2 = (dst_stride << 1); + uint8_t *odd_dst; + + filter12 = ((const int32_t *)filter_x0)[0]; + filter34 = ((const int32_t *)filter_x0)[1]; + filter56 = ((const int32_t *)filter_x0)[2]; + filter78 = ((const int32_t *)filter_x0)[3]; + + for (y = h; y--;) { + /* prefetch data to cache memory */ + prefetch_load(src_ptr + src_stride); + prefetch_load(src_ptr + src_stride + 32); + prefetch_load(src_ptr + src_stride + 64); + + src = src_ptr; + dst = dst_ptr; + + odd_dst = (dst + dst_stride); + + for (c = 0; c < 4; c++) { + __asm__ __volatile__( + "ulw %[qload1], 0(%[src]) " + "\n\t" + "ulw %[qload2], 4(%[src]) " + "\n\t" + + /* even 1. pixel */ + "mtlo %[vector_64], $ac1 " + "\n\t" /* even 1 */ + "mthi $zero, $ac1 " + "\n\t" + "mtlo %[vector_64], $ac2 " + "\n\t" /* even 2 */ + "mthi $zero, $ac2 " + "\n\t" + "preceu.ph.qbr %[p3], %[qload2] " + "\n\t" + "preceu.ph.qbl %[p4], %[qload2] " + "\n\t" + "preceu.ph.qbr %[p1], %[qload1] " + "\n\t" + "preceu.ph.qbl %[p2], %[qload1] " + "\n\t" + "ulw %[qload2], 8(%[src]) " + "\n\t" + "dpa.w.ph $ac1, %[p1], %[filter12] " + "\n\t" /* even 1 */ + "dpa.w.ph $ac1, %[p2], %[filter34] " + "\n\t" /* even 1 */ + "dpa.w.ph $ac1, %[p3], %[filter56] " + "\n\t" /* even 1 */ + "dpa.w.ph $ac1, %[p4], %[filter78] " + "\n\t" /* even 1 */ + "extp %[Temp1], $ac1, 31 " + "\n\t" /* even 1 */ + + /* even 2. pixel */ + "mtlo %[vector_64], $ac3 " + "\n\t" /* even 3 */ + "mthi $zero, $ac3 " + "\n\t" + "preceu.ph.qbr %[p1], %[qload2] " + "\n\t" + "preceu.ph.qbl %[p5], %[qload2] " + "\n\t" + "ulw %[qload1], 12(%[src]) " + "\n\t" + "dpa.w.ph $ac2, %[p2], %[filter12] " + "\n\t" /* even 1 */ + "dpa.w.ph $ac2, %[p3], %[filter34] " + "\n\t" /* even 1 */ + "dpa.w.ph $ac2, %[p4], %[filter56] " + "\n\t" /* even 1 */ + "dpa.w.ph $ac2, %[p1], %[filter78] " + "\n\t" /* even 1 */ + "lbux %[st1], %[Temp1](%[cm]) " + "\n\t" /* even 1 */ + "extp %[Temp2], $ac2, 31 " + "\n\t" /* even 1 */ + + /* even 3. pixel */ + "mtlo %[vector_64], $ac1 " + "\n\t" /* even 4 */ + "mthi $zero, $ac1 " + "\n\t" + "preceu.ph.qbr %[p2], %[qload1] " + "\n\t" + "sb %[st1], 0(%[dst]) " + "\n\t" /* even 1 */ + "addu %[dst], %[dst], %[dst_pitch_2] " + " \n\t" + "dpa.w.ph $ac3, %[p3], %[filter12] " + "\n\t" /* even 3 */ + "dpa.w.ph $ac3, %[p4], %[filter34] " + "\n\t" /* even 3 */ + "dpa.w.ph $ac3, %[p1], %[filter56] " + "\n\t" /* even 3 */ + "dpa.w.ph $ac3, %[p5], %[filter78] " + "\n\t" /* even 3 */ + "extp %[Temp3], $ac3, 31 " + "\n\t" /* even 3 */ + "lbux %[st2], %[Temp2](%[cm]) " + "\n\t" /* even 1 */ + + /* even 4. pixel */ + "mtlo %[vector_64], $ac2 " + "\n\t" /* even 5 */ + "mthi $zero, $ac2 " + "\n\t" + "preceu.ph.qbl %[p3], %[qload1] " + "\n\t" + "sb %[st2], 0(%[dst]) " + "\n\t" /* even 2 */ + "addu %[dst], %[dst], %[dst_pitch_2] " + "\n\t" + "ulw %[qload2], 16(%[src]) " + "\n\t" + "dpa.w.ph $ac1, %[p4], %[filter12] " + "\n\t" /* even 4 */ + "dpa.w.ph $ac1, %[p1], %[filter34] " + "\n\t" /* even 4 */ + "dpa.w.ph $ac1, %[p5], %[filter56] " + "\n\t" /* even 4 */ + "dpa.w.ph $ac1, %[p2], %[filter78] " + "\n\t" /* even 4 */ + "extp %[Temp1], $ac1, 31 " + "\n\t" /* even 4 */ + "lbux %[st3], %[Temp3](%[cm]) " + "\n\t" /* even 3 */ + + /* even 5. pixel */ + "mtlo %[vector_64], $ac3 " + "\n\t" /* even 6 */ + "mthi $zero, $ac3 " + "\n\t" + "preceu.ph.qbr %[p4], %[qload2] " + "\n\t" + "sb %[st3], 0(%[dst]) " + "\n\t" /* even 3 */ + "addu %[dst], %[dst], %[dst_pitch_2] " + "\n\t" + "dpa.w.ph $ac2, %[p1], %[filter12] " + "\n\t" /* even 5 */ + "dpa.w.ph $ac2, %[p5], %[filter34] " + "\n\t" /* even 5 */ + "dpa.w.ph $ac2, %[p2], %[filter56] " + "\n\t" /* even 5 */ + "dpa.w.ph $ac2, %[p3], %[filter78] " + "\n\t" /* even 5 */ + "extp %[Temp2], $ac2, 31 " + "\n\t" /* even 5 */ + "lbux %[st1], %[Temp1](%[cm]) " + "\n\t" /* even 4 */ + + /* even 6. pixel */ + "mtlo %[vector_64], $ac1 " + "\n\t" /* even 7 */ + "mthi $zero, $ac1 " + "\n\t" + "preceu.ph.qbl %[p1], %[qload2] " + "\n\t" + "sb %[st1], 0(%[dst]) " + "\n\t" /* even 4 */ + "addu %[dst], %[dst], %[dst_pitch_2] " + "\n\t" + "ulw %[qload1], 20(%[src]) " + "\n\t" + "dpa.w.ph $ac3, %[p5], %[filter12] " + "\n\t" /* even 6 */ + "dpa.w.ph $ac3, %[p2], %[filter34] " + "\n\t" /* even 6 */ + "dpa.w.ph $ac3, %[p3], %[filter56] " + "\n\t" /* even 6 */ + "dpa.w.ph $ac3, %[p4], %[filter78] " + "\n\t" /* even 6 */ + "extp %[Temp3], $ac3, 31 " + "\n\t" /* even 6 */ + "lbux %[st2], %[Temp2](%[cm]) " + "\n\t" /* even 5 */ + + /* even 7. pixel */ + "mtlo %[vector_64], $ac2 " + "\n\t" /* even 8 */ + "mthi $zero, $ac2 " + "\n\t" + "preceu.ph.qbr %[p5], %[qload1] " + "\n\t" + "sb %[st2], 0(%[dst]) " + "\n\t" /* even 5 */ + "addu %[dst], %[dst], %[dst_pitch_2] " + "\n\t" + "dpa.w.ph $ac1, %[p2], %[filter12] " + "\n\t" /* even 7 */ + "dpa.w.ph $ac1, %[p3], %[filter34] " + "\n\t" /* even 7 */ + "dpa.w.ph $ac1, %[p4], %[filter56] " + "\n\t" /* even 7 */ + "dpa.w.ph $ac1, %[p1], %[filter78] " + "\n\t" /* even 7 */ + "extp %[Temp1], $ac1, 31 " + "\n\t" /* even 7 */ + "lbux %[st3], %[Temp3](%[cm]) " + "\n\t" /* even 6 */ + + /* even 8. pixel */ + "mtlo %[vector_64], $ac3 " + "\n\t" /* odd 1 */ + "mthi $zero, $ac3 " + "\n\t" + "dpa.w.ph $ac2, %[p3], %[filter12] " + "\n\t" /* even 8 */ + "dpa.w.ph $ac2, %[p4], %[filter34] " + "\n\t" /* even 8 */ + "sb %[st3], 0(%[dst]) " + "\n\t" /* even 6 */ + "addu %[dst], %[dst], %[dst_pitch_2] " + "\n\t" + "dpa.w.ph $ac2, %[p1], %[filter56] " + "\n\t" /* even 8 */ + "dpa.w.ph $ac2, %[p5], %[filter78] " + "\n\t" /* even 8 */ + "extp %[Temp2], $ac2, 31 " + "\n\t" /* even 8 */ + "lbux %[st1], %[Temp1](%[cm]) " + "\n\t" /* even 7 */ + + /* ODD pixels */ + "ulw %[qload1], 1(%[src]) " + "\n\t" + "ulw %[qload2], 5(%[src]) " + "\n\t" + + /* odd 1. pixel */ + "mtlo %[vector_64], $ac1 " + "\n\t" /* odd 2 */ + "mthi $zero, $ac1 " + "\n\t" + "preceu.ph.qbr %[p1], %[qload1] " + "\n\t" + "preceu.ph.qbl %[p2], %[qload1] " + "\n\t" + "preceu.ph.qbr %[p3], %[qload2] " + "\n\t" + "preceu.ph.qbl %[p4], %[qload2] " + "\n\t" + "sb %[st1], 0(%[dst]) " + "\n\t" /* even 7 */ + "addu %[dst], %[dst], %[dst_pitch_2] " + "\n\t" + "ulw %[qload2], 9(%[src]) " + "\n\t" + "dpa.w.ph $ac3, %[p1], %[filter12] " + "\n\t" /* odd 1 */ + "dpa.w.ph $ac3, %[p2], %[filter34] " + "\n\t" /* odd 1 */ + "dpa.w.ph $ac3, %[p3], %[filter56] " + "\n\t" /* odd 1 */ + "dpa.w.ph $ac3, %[p4], %[filter78] " + "\n\t" /* odd 1 */ + "extp %[Temp3], $ac3, 31 " + "\n\t" /* odd 1 */ + "lbux %[st2], %[Temp2](%[cm]) " + "\n\t" /* even 8 */ + + /* odd 2. pixel */ + "mtlo %[vector_64], $ac2 " + "\n\t" /* odd 3 */ + "mthi $zero, $ac2 " + "\n\t" + "preceu.ph.qbr %[p1], %[qload2] " + "\n\t" + "preceu.ph.qbl %[p5], %[qload2] " + "\n\t" + "sb %[st2], 0(%[dst]) " + "\n\t" /* even 8 */ + "ulw %[qload1], 13(%[src]) " + "\n\t" + "dpa.w.ph $ac1, %[p2], %[filter12] " + "\n\t" /* odd 2 */ + "dpa.w.ph $ac1, %[p3], %[filter34] " + "\n\t" /* odd 2 */ + "dpa.w.ph $ac1, %[p4], %[filter56] " + "\n\t" /* odd 2 */ + "dpa.w.ph $ac1, %[p1], %[filter78] " + "\n\t" /* odd 2 */ + "extp %[Temp1], $ac1, 31 " + "\n\t" /* odd 2 */ + "lbux %[st3], %[Temp3](%[cm]) " + "\n\t" /* odd 1 */ + + /* odd 3. pixel */ + "mtlo %[vector_64], $ac3 " + "\n\t" /* odd 4 */ + "mthi $zero, $ac3 " + "\n\t" + "preceu.ph.qbr %[p2], %[qload1] " + "\n\t" + "sb %[st3], 0(%[odd_dst]) " + "\n\t" /* odd 1 */ + "addu %[odd_dst], %[odd_dst], %[dst_pitch_2] " + "\n\t" + "dpa.w.ph $ac2, %[p3], %[filter12] " + "\n\t" /* odd 3 */ + "dpa.w.ph $ac2, %[p4], %[filter34] " + "\n\t" /* odd 3 */ + "dpa.w.ph $ac2, %[p1], %[filter56] " + "\n\t" /* odd 3 */ + "dpa.w.ph $ac2, %[p5], %[filter78] " + "\n\t" /* odd 3 */ + "extp %[Temp2], $ac2, 31 " + "\n\t" /* odd 3 */ + "lbux %[st1], %[Temp1](%[cm]) " + "\n\t" /* odd 2 */ + + /* odd 4. pixel */ + "mtlo %[vector_64], $ac1 " + "\n\t" /* odd 5 */ + "mthi $zero, $ac1 " + "\n\t" + "preceu.ph.qbl %[p3], %[qload1] " + "\n\t" + "sb %[st1], 0(%[odd_dst]) " + "\n\t" /* odd 2 */ + "addu %[odd_dst], %[odd_dst], %[dst_pitch_2] " + "\n\t" + "ulw %[qload2], 17(%[src]) " + "\n\t" + "dpa.w.ph $ac3, %[p4], %[filter12] " + "\n\t" /* odd 4 */ + "dpa.w.ph $ac3, %[p1], %[filter34] " + "\n\t" /* odd 4 */ + "dpa.w.ph $ac3, %[p5], %[filter56] " + "\n\t" /* odd 4 */ + "dpa.w.ph $ac3, %[p2], %[filter78] " + "\n\t" /* odd 4 */ + "extp %[Temp3], $ac3, 31 " + "\n\t" /* odd 4 */ + "lbux %[st2], %[Temp2](%[cm]) " + "\n\t" /* odd 3 */ + + /* odd 5. pixel */ + "mtlo %[vector_64], $ac2 " + "\n\t" /* odd 6 */ + "mthi $zero, $ac2 " + "\n\t" + "preceu.ph.qbr %[p4], %[qload2] " + "\n\t" + "sb %[st2], 0(%[odd_dst]) " + "\n\t" /* odd 3 */ + "addu %[odd_dst], %[odd_dst], %[dst_pitch_2] " + "\n\t" + "dpa.w.ph $ac1, %[p1], %[filter12] " + "\n\t" /* odd 5 */ + "dpa.w.ph $ac1, %[p5], %[filter34] " + "\n\t" /* odd 5 */ + "dpa.w.ph $ac1, %[p2], %[filter56] " + "\n\t" /* odd 5 */ + "dpa.w.ph $ac1, %[p3], %[filter78] " + "\n\t" /* odd 5 */ + "extp %[Temp1], $ac1, 31 " + "\n\t" /* odd 5 */ + "lbux %[st3], %[Temp3](%[cm]) " + "\n\t" /* odd 4 */ + + /* odd 6. pixel */ + "mtlo %[vector_64], $ac3 " + "\n\t" /* odd 7 */ + "mthi $zero, $ac3 " + "\n\t" + "preceu.ph.qbl %[p1], %[qload2] " + "\n\t" + "sb %[st3], 0(%[odd_dst]) " + "\n\t" /* odd 4 */ + "addu %[odd_dst], %[odd_dst], %[dst_pitch_2] " + "\n\t" + "ulw %[qload1], 21(%[src]) " + "\n\t" + "dpa.w.ph $ac2, %[p5], %[filter12] " + "\n\t" /* odd 6 */ + "dpa.w.ph $ac2, %[p2], %[filter34] " + "\n\t" /* odd 6 */ + "dpa.w.ph $ac2, %[p3], %[filter56] " + "\n\t" /* odd 6 */ + "dpa.w.ph $ac2, %[p4], %[filter78] " + "\n\t" /* odd 6 */ + "extp %[Temp2], $ac2, 31 " + "\n\t" /* odd 6 */ + "lbux %[st1], %[Temp1](%[cm]) " + "\n\t" /* odd 5 */ + + /* odd 7. pixel */ + "mtlo %[vector_64], $ac1 " + "\n\t" /* odd 8 */ + "mthi $zero, $ac1 " + "\n\t" + "preceu.ph.qbr %[p5], %[qload1] " + "\n\t" + "sb %[st1], 0(%[odd_dst]) " + "\n\t" /* odd 5 */ + "addu %[odd_dst], %[odd_dst], %[dst_pitch_2] " + "\n\t" + "dpa.w.ph $ac3, %[p2], %[filter12] " + "\n\t" /* odd 7 */ + "dpa.w.ph $ac3, %[p3], %[filter34] " + "\n\t" /* odd 7 */ + "dpa.w.ph $ac3, %[p4], %[filter56] " + "\n\t" /* odd 7 */ + "dpa.w.ph $ac3, %[p1], %[filter78] " + "\n\t" /* odd 7 */ + "extp %[Temp3], $ac3, 31 " + "\n\t" /* odd 7 */ + + /* odd 8. pixel */ + "dpa.w.ph $ac1, %[p3], %[filter12] " + "\n\t" /* odd 8 */ + "dpa.w.ph $ac1, %[p4], %[filter34] " + "\n\t" /* odd 8 */ + "dpa.w.ph $ac1, %[p1], %[filter56] " + "\n\t" /* odd 8 */ + "dpa.w.ph $ac1, %[p5], %[filter78] " + "\n\t" /* odd 8 */ + "extp %[Temp1], $ac1, 31 " + "\n\t" /* odd 8 */ + + "lbux %[st2], %[Temp2](%[cm]) " + "\n\t" /* odd 6 */ + "lbux %[st3], %[Temp3](%[cm]) " + "\n\t" /* odd 7 */ + "lbux %[st1], %[Temp1](%[cm]) " + "\n\t" /* odd 8 */ + + "sb %[st2], 0(%[odd_dst]) " + "\n\t" /* odd 6 */ + "addu %[odd_dst], %[odd_dst], %[dst_pitch_2] " + "\n\t" + + "sb %[st3], 0(%[odd_dst]) " + "\n\t" /* odd 7 */ + "addu %[odd_dst], %[odd_dst], %[dst_pitch_2] " + "\n\t" + + "sb %[st1], 0(%[odd_dst]) " + "\n\t" /* odd 8 */ + + : [qload1] "=&r"(qload1), [qload2] "=&r"(qload2), [p5] "=&r"(p5), + [st1] "=&r"(st1), [st2] "=&r"(st2), [st3] "=&r"(st3), + [p1] "=&r"(p1), [p2] "=&r"(p2), [p3] "=&r"(p3), [p4] "=&r"(p4), + [Temp1] "=&r"(Temp1), [Temp2] "=&r"(Temp2), [Temp3] "=&r"(Temp3), + [dst] "+r"(dst), [odd_dst] "+r"(odd_dst) + : [filter12] "r"(filter12), [filter34] "r"(filter34), + [filter56] "r"(filter56), [filter78] "r"(filter78), + [vector_64] "r"(vector_64), [cm] "r"(cm), [src] "r"(src), + [dst_pitch_2] "r"(dst_pitch_2)); + + src += 16; + dst = (dst_ptr + ((c + 1) * 16 * dst_stride)); + odd_dst = (dst + dst_stride); + } + + /* Next row... */ + src_ptr += src_stride; + + dst_ptr += 1; + } +} + +void convolve_horiz_transposed(const uint8_t *src, ptrdiff_t src_stride, + uint8_t *dst, ptrdiff_t dst_stride, + const int16_t *filter, int w, int h) { + int x, y, k; + + for (y = 0; y < h; ++y) { + for (x = 0; x < w; ++x) { + int sum = 0; + + for (k = 0; k < 8; ++k) sum += src[x + k] * filter[k]; + + dst[x * dst_stride] = clip_pixel(ROUND_POWER_OF_TWO(sum, FILTER_BITS)); + } + + src += src_stride; + dst += 1; + } +} + +void copy_horiz_transposed(const uint8_t *src, ptrdiff_t src_stride, + uint8_t *dst, ptrdiff_t dst_stride, int w, int h) { + int x, y; + + for (y = 0; y < h; ++y) { + for (x = 0; x < w; ++x) { + dst[x * dst_stride] = src[x]; + } + + src += src_stride; + dst += 1; + } +} + +void vpx_convolve8_dspr2(const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst, + ptrdiff_t dst_stride, const InterpKernel *filter, + int x0_q4, int32_t x_step_q4, int y0_q4, int y_step_q4, + int w, int h) { + const int16_t *const filter_x = filter[x0_q4]; + const int16_t *const filter_y = filter[y0_q4]; + DECLARE_ALIGNED(32, uint8_t, temp[64 * 135]); + int32_t intermediate_height = ((h * y_step_q4) >> 4) + 7; + uint32_t pos = 38; + + assert(x_step_q4 == 16); + assert(y_step_q4 == 16); + assert(((const int32_t *)filter_x)[1] != 0x800000); + assert(((const int32_t *)filter_y)[1] != 0x800000); + (void)x_step_q4; + + /* bit positon for extract from acc */ + __asm__ __volatile__("wrdsp %[pos], 1 \n\t" + : + : [pos] "r"(pos)); + + if (intermediate_height < h) intermediate_height = h; + + /* copy the src to dst */ + if (filter_x[3] == 0x80) { + copy_horiz_transposed(src - src_stride * 3, src_stride, temp, + intermediate_height, w, intermediate_height); + } else if (((const int32_t *)filter_x)[0] == 0) { + vpx_convolve2_dspr2(src - src_stride * 3, src_stride, temp, + intermediate_height, filter_x, w, intermediate_height); + } else { + src -= (src_stride * 3 + 3); + + /* prefetch data to cache memory */ + prefetch_load(src); + prefetch_load(src + 32); + + switch (w) { + case 4: + convolve_horiz_4_transposed_dspr2(src, src_stride, temp, + intermediate_height, filter_x, + intermediate_height); + break; + case 8: + convolve_horiz_8_transposed_dspr2(src, src_stride, temp, + intermediate_height, filter_x, + intermediate_height); + break; + case 16: + case 32: + convolve_horiz_16_transposed_dspr2(src, src_stride, temp, + intermediate_height, filter_x, + intermediate_height, (w / 16)); + break; + case 64: + prefetch_load(src + 32); + convolve_horiz_64_transposed_dspr2(src, src_stride, temp, + intermediate_height, filter_x, + intermediate_height); + break; + default: + convolve_horiz_transposed(src, src_stride, temp, intermediate_height, + filter_x, w, intermediate_height); + break; + } + } + + /* copy the src to dst */ + if (filter_y[3] == 0x80) { + copy_horiz_transposed(temp + 3, intermediate_height, dst, dst_stride, h, w); + } else if (((const int32_t *)filter_y)[0] == 0) { + vpx_convolve2_dspr2(temp + 3, intermediate_height, dst, dst_stride, + filter_y, h, w); + } else { + switch (h) { + case 4: + convolve_horiz_4_transposed_dspr2(temp, intermediate_height, dst, + dst_stride, filter_y, w); + break; + case 8: + convolve_horiz_8_transposed_dspr2(temp, intermediate_height, dst, + dst_stride, filter_y, w); + break; + case 16: + case 32: + convolve_horiz_16_transposed_dspr2(temp, intermediate_height, dst, + dst_stride, filter_y, w, (h / 16)); + break; + case 64: + convolve_horiz_64_transposed_dspr2(temp, intermediate_height, dst, + dst_stride, filter_y, w); + break; + default: + convolve_horiz_transposed(temp, intermediate_height, dst, dst_stride, + filter_y, h, w); + break; + } + } +} + +void vpx_convolve_copy_dspr2(const uint8_t *src, ptrdiff_t src_stride, + uint8_t *dst, ptrdiff_t dst_stride, + const InterpKernel *filter, int x0_q4, + int x_step_q4, int y0_q4, int y_step_q4, int w, + int h) { + int x, y; + (void)filter; + (void)x0_q4; + (void)x_step_q4; + (void)y0_q4; + (void)y_step_q4; + + /* prefetch data to cache memory */ + prefetch_load(src); + prefetch_load(src + 32); + prefetch_store(dst); + + switch (w) { + case 4: { + uint32_t tp1; + + /* 1 word storage */ + for (y = h; y--;) { + prefetch_load(src + src_stride); + prefetch_load(src + src_stride + 32); + prefetch_store(dst + dst_stride); + + __asm__ __volatile__( + "ulw %[tp1], (%[src]) \n\t" + "sw %[tp1], (%[dst]) \n\t" /* store */ + + : [tp1] "=&r"(tp1) + : [src] "r"(src), [dst] "r"(dst)); + + src += src_stride; + dst += dst_stride; + } + break; + } + case 8: { + uint32_t tp1, tp2; + + /* 2 word storage */ + for (y = h; y--;) { + prefetch_load(src + src_stride); + prefetch_load(src + src_stride + 32); + prefetch_store(dst + dst_stride); + + __asm__ __volatile__( + "ulw %[tp1], 0(%[src]) \n\t" + "ulw %[tp2], 4(%[src]) \n\t" + "sw %[tp1], 0(%[dst]) \n\t" /* store */ + "sw %[tp2], 4(%[dst]) \n\t" /* store */ + + : [tp1] "=&r"(tp1), [tp2] "=&r"(tp2) + : [src] "r"(src), [dst] "r"(dst)); + + src += src_stride; + dst += dst_stride; + } + break; + } + case 16: { + uint32_t tp1, tp2, tp3, tp4; + + /* 4 word storage */ + for (y = h; y--;) { + prefetch_load(src + src_stride); + prefetch_load(src + src_stride + 32); + prefetch_store(dst + dst_stride); + + __asm__ __volatile__( + "ulw %[tp1], 0(%[src]) \n\t" + "ulw %[tp2], 4(%[src]) \n\t" + "ulw %[tp3], 8(%[src]) \n\t" + "ulw %[tp4], 12(%[src]) \n\t" + + "sw %[tp1], 0(%[dst]) \n\t" /* store */ + "sw %[tp2], 4(%[dst]) \n\t" /* store */ + "sw %[tp3], 8(%[dst]) \n\t" /* store */ + "sw %[tp4], 12(%[dst]) \n\t" /* store */ + + : [tp1] "=&r"(tp1), [tp2] "=&r"(tp2), [tp3] "=&r"(tp3), + [tp4] "=&r"(tp4) + : [src] "r"(src), [dst] "r"(dst)); + + src += src_stride; + dst += dst_stride; + } + break; + } + case 32: { + uint32_t tp1, tp2, tp3, tp4; + uint32_t tp5, tp6, tp7, tp8; + + /* 8 word storage */ + for (y = h; y--;) { + prefetch_load(src + src_stride); + prefetch_load(src + src_stride + 32); + prefetch_store(dst + dst_stride); + + __asm__ __volatile__( + "ulw %[tp1], 0(%[src]) \n\t" + "ulw %[tp2], 4(%[src]) \n\t" + "ulw %[tp3], 8(%[src]) \n\t" + "ulw %[tp4], 12(%[src]) \n\t" + "ulw %[tp5], 16(%[src]) \n\t" + "ulw %[tp6], 20(%[src]) \n\t" + "ulw %[tp7], 24(%[src]) \n\t" + "ulw %[tp8], 28(%[src]) \n\t" + + "sw %[tp1], 0(%[dst]) \n\t" /* store */ + "sw %[tp2], 4(%[dst]) \n\t" /* store */ + "sw %[tp3], 8(%[dst]) \n\t" /* store */ + "sw %[tp4], 12(%[dst]) \n\t" /* store */ + "sw %[tp5], 16(%[dst]) \n\t" /* store */ + "sw %[tp6], 20(%[dst]) \n\t" /* store */ + "sw %[tp7], 24(%[dst]) \n\t" /* store */ + "sw %[tp8], 28(%[dst]) \n\t" /* store */ + + : [tp1] "=&r"(tp1), [tp2] "=&r"(tp2), [tp3] "=&r"(tp3), + [tp4] "=&r"(tp4), [tp5] "=&r"(tp5), [tp6] "=&r"(tp6), + [tp7] "=&r"(tp7), [tp8] "=&r"(tp8) + : [src] "r"(src), [dst] "r"(dst)); + + src += src_stride; + dst += dst_stride; + } + break; + } + case 64: { + uint32_t tp1, tp2, tp3, tp4; + uint32_t tp5, tp6, tp7, tp8; + + prefetch_load(src + 64); + prefetch_store(dst + 32); + + /* 16 word storage */ + for (y = h; y--;) { + prefetch_load(src + src_stride); + prefetch_load(src + src_stride + 32); + prefetch_load(src + src_stride + 64); + prefetch_store(dst + dst_stride); + prefetch_store(dst + dst_stride + 32); + + __asm__ __volatile__( + "ulw %[tp1], 0(%[src]) \n\t" + "ulw %[tp2], 4(%[src]) \n\t" + "ulw %[tp3], 8(%[src]) \n\t" + "ulw %[tp4], 12(%[src]) \n\t" + "ulw %[tp5], 16(%[src]) \n\t" + "ulw %[tp6], 20(%[src]) \n\t" + "ulw %[tp7], 24(%[src]) \n\t" + "ulw %[tp8], 28(%[src]) \n\t" + + "sw %[tp1], 0(%[dst]) \n\t" /* store */ + "sw %[tp2], 4(%[dst]) \n\t" /* store */ + "sw %[tp3], 8(%[dst]) \n\t" /* store */ + "sw %[tp4], 12(%[dst]) \n\t" /* store */ + "sw %[tp5], 16(%[dst]) \n\t" /* store */ + "sw %[tp6], 20(%[dst]) \n\t" /* store */ + "sw %[tp7], 24(%[dst]) \n\t" /* store */ + "sw %[tp8], 28(%[dst]) \n\t" /* store */ + + "ulw %[tp1], 32(%[src]) \n\t" + "ulw %[tp2], 36(%[src]) \n\t" + "ulw %[tp3], 40(%[src]) \n\t" + "ulw %[tp4], 44(%[src]) \n\t" + "ulw %[tp5], 48(%[src]) \n\t" + "ulw %[tp6], 52(%[src]) \n\t" + "ulw %[tp7], 56(%[src]) \n\t" + "ulw %[tp8], 60(%[src]) \n\t" + + "sw %[tp1], 32(%[dst]) \n\t" /* store */ + "sw %[tp2], 36(%[dst]) \n\t" /* store */ + "sw %[tp3], 40(%[dst]) \n\t" /* store */ + "sw %[tp4], 44(%[dst]) \n\t" /* store */ + "sw %[tp5], 48(%[dst]) \n\t" /* store */ + "sw %[tp6], 52(%[dst]) \n\t" /* store */ + "sw %[tp7], 56(%[dst]) \n\t" /* store */ + "sw %[tp8], 60(%[dst]) \n\t" /* store */ + + : [tp1] "=&r"(tp1), [tp2] "=&r"(tp2), [tp3] "=&r"(tp3), + [tp4] "=&r"(tp4), [tp5] "=&r"(tp5), [tp6] "=&r"(tp6), + [tp7] "=&r"(tp7), [tp8] "=&r"(tp8) + : [src] "r"(src), [dst] "r"(dst)); + + src += src_stride; + dst += dst_stride; + } + break; + } + default: + for (y = h; y--;) { + for (x = 0; x < w; ++x) { + dst[x] = src[x]; + } + + src += src_stride; + dst += dst_stride; + } + break; + } +} +#endif diff --git a/vpx_dsp/mips/convolve8_horiz_dspr2.c b/vpx_dsp/mips/convolve8_horiz_dspr2.c new file mode 100644 index 0000000..77e95c8 --- /dev/null +++ b/vpx_dsp/mips/convolve8_horiz_dspr2.c @@ -0,0 +1,878 @@ +/* + * Copyright (c) 2013 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include + +#include "./vpx_dsp_rtcd.h" +#include "vpx_dsp/mips/convolve_common_dspr2.h" +#include "vpx_dsp/vpx_dsp_common.h" +#include "vpx_dsp/vpx_filter.h" +#include "vpx_ports/mem.h" + +#if HAVE_DSPR2 +static void convolve_horiz_4_dspr2(const uint8_t *src, int32_t src_stride, + uint8_t *dst, int32_t dst_stride, + const int16_t *filter_x0, int32_t h) { + int32_t y; + uint8_t *cm = vpx_ff_cropTbl; + int32_t vector1b, vector2b, vector3b, vector4b; + int32_t Temp1, Temp2, Temp3, Temp4; + uint32_t vector4a = 64; + uint32_t tp1, tp2; + uint32_t p1, p2, p3, p4; + uint32_t n1, n2, n3, n4; + uint32_t tn1, tn2; + + vector1b = ((const int32_t *)filter_x0)[0]; + vector2b = ((const int32_t *)filter_x0)[1]; + vector3b = ((const int32_t *)filter_x0)[2]; + vector4b = ((const int32_t *)filter_x0)[3]; + + for (y = h; y--;) { + /* prefetch data to cache memory */ + prefetch_load(src + src_stride); + prefetch_load(src + src_stride + 32); + prefetch_store(dst + dst_stride); + + __asm__ __volatile__( + "ulw %[tp1], 0(%[src]) \n\t" + "ulw %[tp2], 4(%[src]) \n\t" + + /* even 1. pixel */ + "mtlo %[vector4a], $ac3 \n\t" + "mthi $zero, $ac3 \n\t" + "preceu.ph.qbr %[p1], %[tp1] \n\t" + "preceu.ph.qbl %[p2], %[tp1] \n\t" + "preceu.ph.qbr %[p3], %[tp2] \n\t" + "preceu.ph.qbl %[p4], %[tp2] \n\t" + "dpa.w.ph $ac3, %[p1], %[vector1b] \n\t" + "dpa.w.ph $ac3, %[p2], %[vector2b] \n\t" + "dpa.w.ph $ac3, %[p3], %[vector3b] \n\t" + "ulw %[tn2], 8(%[src]) \n\t" + "dpa.w.ph $ac3, %[p4], %[vector4b] \n\t" + "extp %[Temp1], $ac3, 31 \n\t" + + /* even 2. pixel */ + "mtlo %[vector4a], $ac2 \n\t" + "mthi $zero, $ac2 \n\t" + "preceu.ph.qbr %[p1], %[tn2] \n\t" + "balign %[tn1], %[tn2], 3 \n\t" + "balign %[tn2], %[tp2], 3 \n\t" + "balign %[tp2], %[tp1], 3 \n\t" + "dpa.w.ph $ac2, %[p2], %[vector1b] \n\t" + "dpa.w.ph $ac2, %[p3], %[vector2b] \n\t" + "dpa.w.ph $ac2, %[p4], %[vector3b] \n\t" + "dpa.w.ph $ac2, %[p1], %[vector4b] \n\t" + "extp %[Temp3], $ac2, 31 \n\t" + + /* odd 1. pixel */ + "lbux %[tp1], %[Temp1](%[cm]) \n\t" + "mtlo %[vector4a], $ac3 \n\t" + "mthi $zero, $ac3 \n\t" + "preceu.ph.qbr %[n1], %[tp2] \n\t" + "preceu.ph.qbl %[n2], %[tp2] \n\t" + "preceu.ph.qbr %[n3], %[tn2] \n\t" + "preceu.ph.qbl %[n4], %[tn2] \n\t" + "dpa.w.ph $ac3, %[n1], %[vector1b] \n\t" + "dpa.w.ph $ac3, %[n2], %[vector2b] \n\t" + "dpa.w.ph $ac3, %[n3], %[vector3b] \n\t" + "dpa.w.ph $ac3, %[n4], %[vector4b] \n\t" + "extp %[Temp2], $ac3, 31 \n\t" + + /* odd 2. pixel */ + "lbux %[tp2], %[Temp3](%[cm]) \n\t" + "mtlo %[vector4a], $ac2 \n\t" + "mthi $zero, $ac2 \n\t" + "preceu.ph.qbr %[n1], %[tn1] \n\t" + "dpa.w.ph $ac2, %[n2], %[vector1b] \n\t" + "dpa.w.ph $ac2, %[n3], %[vector2b] \n\t" + "dpa.w.ph $ac2, %[n4], %[vector3b] \n\t" + "dpa.w.ph $ac2, %[n1], %[vector4b] \n\t" + "extp %[Temp4], $ac2, 31 \n\t" + + /* clamp */ + "lbux %[tn1], %[Temp2](%[cm]) \n\t" + "lbux %[n2], %[Temp4](%[cm]) \n\t" + + /* store bytes */ + "sb %[tp1], 0(%[dst]) \n\t" + "sb %[tn1], 1(%[dst]) \n\t" + "sb %[tp2], 2(%[dst]) \n\t" + "sb %[n2], 3(%[dst]) \n\t" + + : [tp1] "=&r"(tp1), [tp2] "=&r"(tp2), [tn1] "=&r"(tn1), + [tn2] "=&r"(tn2), [p1] "=&r"(p1), [p2] "=&r"(p2), [p3] "=&r"(p3), + [p4] "=&r"(p4), [n1] "=&r"(n1), [n2] "=&r"(n2), [n3] "=&r"(n3), + [n4] "=&r"(n4), [Temp1] "=&r"(Temp1), [Temp2] "=&r"(Temp2), + [Temp3] "=&r"(Temp3), [Temp4] "=&r"(Temp4) + : [vector1b] "r"(vector1b), [vector2b] "r"(vector2b), + [vector3b] "r"(vector3b), [vector4b] "r"(vector4b), + [vector4a] "r"(vector4a), [cm] "r"(cm), [dst] "r"(dst), + [src] "r"(src)); + + /* Next row... */ + src += src_stride; + dst += dst_stride; + } +} + +static void convolve_horiz_8_dspr2(const uint8_t *src, int32_t src_stride, + uint8_t *dst, int32_t dst_stride, + const int16_t *filter_x0, int32_t h) { + int32_t y; + uint8_t *cm = vpx_ff_cropTbl; + uint32_t vector4a = 64; + int32_t vector1b, vector2b, vector3b, vector4b; + int32_t Temp1, Temp2, Temp3; + uint32_t tp1, tp2; + uint32_t p1, p2, p3, p4, n1; + uint32_t tn1, tn2, tn3; + uint32_t st0, st1; + + vector1b = ((const int32_t *)filter_x0)[0]; + vector2b = ((const int32_t *)filter_x0)[1]; + vector3b = ((const int32_t *)filter_x0)[2]; + vector4b = ((const int32_t *)filter_x0)[3]; + + for (y = h; y--;) { + /* prefetch data to cache memory */ + prefetch_load(src + src_stride); + prefetch_load(src + src_stride + 32); + prefetch_store(dst + dst_stride); + + __asm__ __volatile__( + "ulw %[tp1], 0(%[src]) \n\t" + "ulw %[tp2], 4(%[src]) \n\t" + + /* even 1. pixel */ + "mtlo %[vector4a], $ac3 \n\t" + "mthi $zero, $ac3 \n\t" + "mtlo %[vector4a], $ac2 \n\t" + "mthi $zero, $ac2 \n\t" + "preceu.ph.qbr %[p1], %[tp1] \n\t" + "preceu.ph.qbl %[p2], %[tp1] \n\t" + "preceu.ph.qbr %[p3], %[tp2] \n\t" + "preceu.ph.qbl %[p4], %[tp2] \n\t" + "ulw %[tn2], 8(%[src]) \n\t" + "dpa.w.ph $ac3, %[p1], %[vector1b] \n\t" + "dpa.w.ph $ac3, %[p2], %[vector2b] \n\t" + "dpa.w.ph $ac3, %[p3], %[vector3b] \n\t" + "dpa.w.ph $ac3, %[p4], %[vector4b] \n\t" + "extp %[Temp1], $ac3, 31 \n\t" + + /* even 2. pixel */ + "preceu.ph.qbr %[p1], %[tn2] \n\t" + "preceu.ph.qbl %[n1], %[tn2] \n\t" + "ulw %[tn1], 12(%[src]) \n\t" + "dpa.w.ph $ac2, %[p2], %[vector1b] \n\t" + "dpa.w.ph $ac2, %[p3], %[vector2b] \n\t" + "dpa.w.ph $ac2, %[p4], %[vector3b] \n\t" + "dpa.w.ph $ac2, %[p1], %[vector4b] \n\t" + "extp %[Temp3], $ac2, 31 \n\t" + + /* even 3. pixel */ + "lbux %[st0], %[Temp1](%[cm]) \n\t" + "mtlo %[vector4a], $ac1 \n\t" + "mthi $zero, $ac1 \n\t" + "preceu.ph.qbr %[p2], %[tn1] \n\t" + "dpa.w.ph $ac1, %[p3], %[vector1b] \n\t" + "dpa.w.ph $ac1, %[p4], %[vector2b] \n\t" + "dpa.w.ph $ac1, %[p1], %[vector3b] \n\t" + "dpa.w.ph $ac1, %[n1], %[vector4b] \n\t" + "extp %[Temp1], $ac1, 31 \n\t" + + /* even 4. pixel */ + "mtlo %[vector4a], $ac2 \n\t" + "mthi $zero, $ac2 \n\t" + "mtlo %[vector4a], $ac3 \n\t" + "mthi $zero, $ac3 \n\t" + "sb %[st0], 0(%[dst]) \n\t" + "lbux %[st1], %[Temp3](%[cm]) \n\t" + + "balign %[tn3], %[tn1], 3 \n\t" + "balign %[tn1], %[tn2], 3 \n\t" + "balign %[tn2], %[tp2], 3 \n\t" + "balign %[tp2], %[tp1], 3 \n\t" + + "dpa.w.ph $ac2, %[p4], %[vector1b] \n\t" + "dpa.w.ph $ac2, %[p1], %[vector2b] \n\t" + "dpa.w.ph $ac2, %[n1], %[vector3b] \n\t" + "dpa.w.ph $ac2, %[p2], %[vector4b] \n\t" + "extp %[Temp3], $ac2, 31 \n\t" + + "lbux %[st0], %[Temp1](%[cm]) \n\t" + + /* odd 1. pixel */ + "mtlo %[vector4a], $ac1 \n\t" + "mthi $zero, $ac1 \n\t" + "sb %[st1], 2(%[dst]) \n\t" + "preceu.ph.qbr %[p1], %[tp2] \n\t" + "preceu.ph.qbl %[p2], %[tp2] \n\t" + "preceu.ph.qbr %[p3], %[tn2] \n\t" + "preceu.ph.qbl %[p4], %[tn2] \n\t" + "sb %[st0], 4(%[dst]) \n\t" + "dpa.w.ph $ac3, %[p1], %[vector1b] \n\t" + "dpa.w.ph $ac3, %[p2], %[vector2b] \n\t" + "dpa.w.ph $ac3, %[p3], %[vector3b] \n\t" + "dpa.w.ph $ac3, %[p4], %[vector4b] \n\t" + "extp %[Temp2], $ac3, 31 \n\t" + + /* odd 2. pixel */ + "mtlo %[vector4a], $ac3 \n\t" + "mthi $zero, $ac3 \n\t" + "mtlo %[vector4a], $ac2 \n\t" + "mthi $zero, $ac2 \n\t" + "preceu.ph.qbr %[p1], %[tn1] \n\t" + "preceu.ph.qbl %[n1], %[tn1] \n\t" + "lbux %[st0], %[Temp3](%[cm]) \n\t" + "dpa.w.ph $ac1, %[p2], %[vector1b] \n\t" + "dpa.w.ph $ac1, %[p3], %[vector2b] \n\t" + "dpa.w.ph $ac1, %[p4], %[vector3b] \n\t" + "dpa.w.ph $ac1, %[p1], %[vector4b] \n\t" + "extp %[Temp3], $ac1, 31 \n\t" + + /* odd 3. pixel */ + "lbux %[st1], %[Temp2](%[cm]) \n\t" + "preceu.ph.qbr %[p2], %[tn3] \n\t" + "dpa.w.ph $ac3, %[p3], %[vector1b] \n\t" + "dpa.w.ph $ac3, %[p4], %[vector2b] \n\t" + "dpa.w.ph $ac3, %[p1], %[vector3b] \n\t" + "dpa.w.ph $ac3, %[n1], %[vector4b] \n\t" + "extp %[Temp2], $ac3, 31 \n\t" + + /* odd 4. pixel */ + "sb %[st1], 1(%[dst]) \n\t" + "sb %[st0], 6(%[dst]) \n\t" + "dpa.w.ph $ac2, %[p4], %[vector1b] \n\t" + "dpa.w.ph $ac2, %[p1], %[vector2b] \n\t" + "dpa.w.ph $ac2, %[n1], %[vector3b] \n\t" + "dpa.w.ph $ac2, %[p2], %[vector4b] \n\t" + "extp %[Temp1], $ac2, 31 \n\t" + + /* clamp */ + "lbux %[p4], %[Temp3](%[cm]) \n\t" + "lbux %[p2], %[Temp2](%[cm]) \n\t" + "lbux %[n1], %[Temp1](%[cm]) \n\t" + + /* store bytes */ + "sb %[p4], 3(%[dst]) \n\t" + "sb %[p2], 5(%[dst]) \n\t" + "sb %[n1], 7(%[dst]) \n\t" + + : [tp1] "=&r"(tp1), [tp2] "=&r"(tp2), [tn1] "=&r"(tn1), + [tn2] "=&r"(tn2), [tn3] "=&r"(tn3), [st0] "=&r"(st0), + [st1] "=&r"(st1), [p1] "=&r"(p1), [p2] "=&r"(p2), [p3] "=&r"(p3), + [p4] "=&r"(p4), [n1] "=&r"(n1), [Temp1] "=&r"(Temp1), + [Temp2] "=&r"(Temp2), [Temp3] "=&r"(Temp3) + : [vector1b] "r"(vector1b), [vector2b] "r"(vector2b), + [vector3b] "r"(vector3b), [vector4b] "r"(vector4b), + [vector4a] "r"(vector4a), [cm] "r"(cm), [dst] "r"(dst), + [src] "r"(src)); + + /* Next row... */ + src += src_stride; + dst += dst_stride; + } +} + +static void convolve_horiz_16_dspr2(const uint8_t *src_ptr, int32_t src_stride, + uint8_t *dst_ptr, int32_t dst_stride, + const int16_t *filter_x0, int32_t h, + int32_t count) { + int32_t y, c; + const uint8_t *src; + uint8_t *dst; + uint8_t *cm = vpx_ff_cropTbl; + uint32_t vector_64 = 64; + int32_t filter12, filter34, filter56, filter78; + int32_t Temp1, Temp2, Temp3; + uint32_t qload1, qload2, qload3; + uint32_t p1, p2, p3, p4, p5; + uint32_t st1, st2, st3; + + filter12 = ((const int32_t *)filter_x0)[0]; + filter34 = ((const int32_t *)filter_x0)[1]; + filter56 = ((const int32_t *)filter_x0)[2]; + filter78 = ((const int32_t *)filter_x0)[3]; + + for (y = h; y--;) { + src = src_ptr; + dst = dst_ptr; + + /* prefetch data to cache memory */ + prefetch_load(src_ptr + src_stride); + prefetch_load(src_ptr + src_stride + 32); + prefetch_store(dst_ptr + dst_stride); + + for (c = 0; c < count; c++) { + __asm__ __volatile__( + "ulw %[qload1], 0(%[src]) \n\t" + "ulw %[qload2], 4(%[src]) \n\t" + + /* even 1. pixel */ + "mtlo %[vector_64], $ac1 \n\t" /* even 1 */ + "mthi $zero, $ac1 \n\t" + "mtlo %[vector_64], $ac2 \n\t" /* even 2 */ + "mthi $zero, $ac2 \n\t" + "preceu.ph.qbr %[p1], %[qload1] \n\t" + "preceu.ph.qbl %[p2], %[qload1] \n\t" + "preceu.ph.qbr %[p3], %[qload2] \n\t" + "preceu.ph.qbl %[p4], %[qload2] \n\t" + "ulw %[qload3], 8(%[src]) \n\t" + "dpa.w.ph $ac1, %[p1], %[filter12] \n\t" /* even 1 */ + "dpa.w.ph $ac1, %[p2], %[filter34] \n\t" /* even 1 */ + "dpa.w.ph $ac1, %[p3], %[filter56] \n\t" /* even 1 */ + "dpa.w.ph $ac1, %[p4], %[filter78] \n\t" /* even 1 */ + "extp %[Temp1], $ac1, 31 \n\t" /* even 1 */ + + /* even 2. pixel */ + "mtlo %[vector_64], $ac3 \n\t" /* even 3 */ + "mthi $zero, $ac3 \n\t" + "preceu.ph.qbr %[p1], %[qload3] \n\t" + "preceu.ph.qbl %[p5], %[qload3] \n\t" + "ulw %[qload1], 12(%[src]) \n\t" + "dpa.w.ph $ac2, %[p2], %[filter12] \n\t" /* even 1 */ + "dpa.w.ph $ac2, %[p3], %[filter34] \n\t" /* even 1 */ + "dpa.w.ph $ac2, %[p4], %[filter56] \n\t" /* even 1 */ + "dpa.w.ph $ac2, %[p1], %[filter78] \n\t" /* even 1 */ + "extp %[Temp2], $ac2, 31 \n\t" /* even 1 */ + "lbux %[st1], %[Temp1](%[cm]) \n\t" /* even 1 */ + + /* even 3. pixel */ + "mtlo %[vector_64], $ac1 \n\t" /* even 4 */ + "mthi $zero, $ac1 \n\t" + "preceu.ph.qbr %[p2], %[qload1] \n\t" + "sb %[st1], 0(%[dst]) \n\t" /* even 1 */ + "dpa.w.ph $ac3, %[p3], %[filter12] \n\t" /* even 3 */ + "dpa.w.ph $ac3, %[p4], %[filter34] \n\t" /* even 3 */ + "dpa.w.ph $ac3, %[p1], %[filter56] \n\t" /* even 3 */ + "dpa.w.ph $ac3, %[p5], %[filter78] \n\t" /* even 3 */ + "extp %[Temp3], $ac3, 31 \n\t" /* even 3 */ + "lbux %[st2], %[Temp2](%[cm]) \n\t" /* even 1 */ + + /* even 4. pixel */ + "mtlo %[vector_64], $ac2 \n\t" /* even 5 */ + "mthi $zero, $ac2 \n\t" + "preceu.ph.qbl %[p3], %[qload1] \n\t" + "sb %[st2], 2(%[dst]) \n\t" /* even 1 */ + "ulw %[qload2], 16(%[src]) \n\t" + "dpa.w.ph $ac1, %[p4], %[filter12] \n\t" /* even 4 */ + "dpa.w.ph $ac1, %[p1], %[filter34] \n\t" /* even 4 */ + "dpa.w.ph $ac1, %[p5], %[filter56] \n\t" /* even 4 */ + "dpa.w.ph $ac1, %[p2], %[filter78] \n\t" /* even 4 */ + "extp %[Temp1], $ac1, 31 \n\t" /* even 4 */ + "lbux %[st3], %[Temp3](%[cm]) \n\t" /* even 3 */ + + /* even 5. pixel */ + "mtlo %[vector_64], $ac3 \n\t" /* even 6 */ + "mthi $zero, $ac3 \n\t" + "preceu.ph.qbr %[p4], %[qload2] \n\t" + "sb %[st3], 4(%[dst]) \n\t" /* even 3 */ + "dpa.w.ph $ac2, %[p1], %[filter12] \n\t" /* even 5 */ + "dpa.w.ph $ac2, %[p5], %[filter34] \n\t" /* even 5 */ + "dpa.w.ph $ac2, %[p2], %[filter56] \n\t" /* even 5 */ + "dpa.w.ph $ac2, %[p3], %[filter78] \n\t" /* even 5 */ + "extp %[Temp2], $ac2, 31 \n\t" /* even 5 */ + "lbux %[st1], %[Temp1](%[cm]) \n\t" /* even 4 */ + + /* even 6. pixel */ + "mtlo %[vector_64], $ac1 \n\t" /* even 7 */ + "mthi $zero, $ac1 \n\t" + "preceu.ph.qbl %[p1], %[qload2] \n\t" + "sb %[st1], 6(%[dst]) \n\t" /* even 4 */ + "ulw %[qload3], 20(%[src]) \n\t" + "dpa.w.ph $ac3, %[p5], %[filter12] \n\t" /* even 6 */ + "dpa.w.ph $ac3, %[p2], %[filter34] \n\t" /* even 6 */ + "dpa.w.ph $ac3, %[p3], %[filter56] \n\t" /* even 6 */ + "dpa.w.ph $ac3, %[p4], %[filter78] \n\t" /* even 6 */ + "extp %[Temp3], $ac3, 31 \n\t" /* even 6 */ + "lbux %[st2], %[Temp2](%[cm]) \n\t" /* even 5 */ + + /* even 7. pixel */ + "mtlo %[vector_64], $ac2 \n\t" /* even 8 */ + "mthi $zero, $ac2 \n\t" + "preceu.ph.qbr %[p5], %[qload3] \n\t" + "sb %[st2], 8(%[dst]) \n\t" /* even 5 */ + "dpa.w.ph $ac1, %[p2], %[filter12] \n\t" /* even 7 */ + "dpa.w.ph $ac1, %[p3], %[filter34] \n\t" /* even 7 */ + "dpa.w.ph $ac1, %[p4], %[filter56] \n\t" /* even 7 */ + "dpa.w.ph $ac1, %[p1], %[filter78] \n\t" /* even 7 */ + "extp %[Temp1], $ac1, 31 \n\t" /* even 7 */ + "lbux %[st3], %[Temp3](%[cm]) \n\t" /* even 6 */ + + /* even 8. pixel */ + "mtlo %[vector_64], $ac3 \n\t" /* odd 1 */ + "mthi $zero, $ac3 \n\t" + "dpa.w.ph $ac2, %[p3], %[filter12] \n\t" /* even 8 */ + "dpa.w.ph $ac2, %[p4], %[filter34] \n\t" /* even 8 */ + "sb %[st3], 10(%[dst]) \n\t" /* even 6 */ + "dpa.w.ph $ac2, %[p1], %[filter56] \n\t" /* even 8 */ + "dpa.w.ph $ac2, %[p5], %[filter78] \n\t" /* even 8 */ + "extp %[Temp2], $ac2, 31 \n\t" /* even 8 */ + "lbux %[st1], %[Temp1](%[cm]) \n\t" /* even 7 */ + + /* ODD pixels */ + "ulw %[qload1], 1(%[src]) \n\t" + "ulw %[qload2], 5(%[src]) \n\t" + + /* odd 1. pixel */ + "mtlo %[vector_64], $ac1 \n\t" /* odd 2 */ + "mthi $zero, $ac1 \n\t" + "preceu.ph.qbr %[p1], %[qload1] \n\t" + "preceu.ph.qbl %[p2], %[qload1] \n\t" + "preceu.ph.qbr %[p3], %[qload2] \n\t" + "preceu.ph.qbl %[p4], %[qload2] \n\t" + "sb %[st1], 12(%[dst]) \n\t" /* even 7 */ + "ulw %[qload3], 9(%[src]) \n\t" + "dpa.w.ph $ac3, %[p1], %[filter12] \n\t" /* odd 1 */ + "dpa.w.ph $ac3, %[p2], %[filter34] \n\t" /* odd 1 */ + "dpa.w.ph $ac3, %[p3], %[filter56] \n\t" /* odd 1 */ + "dpa.w.ph $ac3, %[p4], %[filter78] \n\t" /* odd 1 */ + "extp %[Temp3], $ac3, 31 \n\t" /* odd 1 */ + "lbux %[st2], %[Temp2](%[cm]) \n\t" /* even 8 */ + + /* odd 2. pixel */ + "mtlo %[vector_64], $ac2 \n\t" /* odd 3 */ + "mthi $zero, $ac2 \n\t" + "preceu.ph.qbr %[p1], %[qload3] \n\t" + "preceu.ph.qbl %[p5], %[qload3] \n\t" + "sb %[st2], 14(%[dst]) \n\t" /* even 8 */ + "ulw %[qload1], 13(%[src]) \n\t" + "dpa.w.ph $ac1, %[p2], %[filter12] \n\t" /* odd 2 */ + "dpa.w.ph $ac1, %[p3], %[filter34] \n\t" /* odd 2 */ + "dpa.w.ph $ac1, %[p4], %[filter56] \n\t" /* odd 2 */ + "dpa.w.ph $ac1, %[p1], %[filter78] \n\t" /* odd 2 */ + "extp %[Temp1], $ac1, 31 \n\t" /* odd 2 */ + "lbux %[st3], %[Temp3](%[cm]) \n\t" /* odd 1 */ + + /* odd 3. pixel */ + "mtlo %[vector_64], $ac3 \n\t" /* odd 4 */ + "mthi $zero, $ac3 \n\t" + "preceu.ph.qbr %[p2], %[qload1] \n\t" + "sb %[st3], 1(%[dst]) \n\t" /* odd 1 */ + "dpa.w.ph $ac2, %[p3], %[filter12] \n\t" /* odd 3 */ + "dpa.w.ph $ac2, %[p4], %[filter34] \n\t" /* odd 3 */ + "dpa.w.ph $ac2, %[p1], %[filter56] \n\t" /* odd 3 */ + "dpa.w.ph $ac2, %[p5], %[filter78] \n\t" /* odd 3 */ + "extp %[Temp2], $ac2, 31 \n\t" /* odd 3 */ + "lbux %[st1], %[Temp1](%[cm]) \n\t" /* odd 2 */ + + /* odd 4. pixel */ + "mtlo %[vector_64], $ac1 \n\t" /* odd 5 */ + "mthi $zero, $ac1 \n\t" + "preceu.ph.qbl %[p3], %[qload1] \n\t" + "sb %[st1], 3(%[dst]) \n\t" /* odd 2 */ + "ulw %[qload2], 17(%[src]) \n\t" + "dpa.w.ph $ac3, %[p4], %[filter12] \n\t" /* odd 4 */ + "dpa.w.ph $ac3, %[p1], %[filter34] \n\t" /* odd 4 */ + "dpa.w.ph $ac3, %[p5], %[filter56] \n\t" /* odd 4 */ + "dpa.w.ph $ac3, %[p2], %[filter78] \n\t" /* odd 4 */ + "extp %[Temp3], $ac3, 31 \n\t" /* odd 4 */ + "lbux %[st2], %[Temp2](%[cm]) \n\t" /* odd 3 */ + + /* odd 5. pixel */ + "mtlo %[vector_64], $ac2 \n\t" /* odd 6 */ + "mthi $zero, $ac2 \n\t" + "preceu.ph.qbr %[p4], %[qload2] \n\t" + "sb %[st2], 5(%[dst]) \n\t" /* odd 3 */ + "dpa.w.ph $ac1, %[p1], %[filter12] \n\t" /* odd 5 */ + "dpa.w.ph $ac1, %[p5], %[filter34] \n\t" /* odd 5 */ + "dpa.w.ph $ac1, %[p2], %[filter56] \n\t" /* odd 5 */ + "dpa.w.ph $ac1, %[p3], %[filter78] \n\t" /* odd 5 */ + "extp %[Temp1], $ac1, 31 \n\t" /* odd 5 */ + "lbux %[st3], %[Temp3](%[cm]) \n\t" /* odd 4 */ + + /* odd 6. pixel */ + "mtlo %[vector_64], $ac3 \n\t" /* odd 7 */ + "mthi $zero, $ac3 \n\t" + "preceu.ph.qbl %[p1], %[qload2] \n\t" + "sb %[st3], 7(%[dst]) \n\t" /* odd 4 */ + "ulw %[qload3], 21(%[src]) \n\t" + "dpa.w.ph $ac2, %[p5], %[filter12] \n\t" /* odd 6 */ + "dpa.w.ph $ac2, %[p2], %[filter34] \n\t" /* odd 6 */ + "dpa.w.ph $ac2, %[p3], %[filter56] \n\t" /* odd 6 */ + "dpa.w.ph $ac2, %[p4], %[filter78] \n\t" /* odd 6 */ + "extp %[Temp2], $ac2, 31 \n\t" /* odd 6 */ + "lbux %[st1], %[Temp1](%[cm]) \n\t" /* odd 5 */ + + /* odd 7. pixel */ + "mtlo %[vector_64], $ac1 \n\t" /* odd 8 */ + "mthi $zero, $ac1 \n\t" + "preceu.ph.qbr %[p5], %[qload3] \n\t" + "sb %[st1], 9(%[dst]) \n\t" /* odd 5 */ + "dpa.w.ph $ac3, %[p2], %[filter12] \n\t" /* odd 7 */ + "dpa.w.ph $ac3, %[p3], %[filter34] \n\t" /* odd 7 */ + "dpa.w.ph $ac3, %[p4], %[filter56] \n\t" /* odd 7 */ + "dpa.w.ph $ac3, %[p1], %[filter78] \n\t" /* odd 7 */ + "extp %[Temp3], $ac3, 31 \n\t" /* odd 7 */ + + /* odd 8. pixel */ + "dpa.w.ph $ac1, %[p3], %[filter12] \n\t" /* odd 8 */ + "dpa.w.ph $ac1, %[p4], %[filter34] \n\t" /* odd 8 */ + "dpa.w.ph $ac1, %[p1], %[filter56] \n\t" /* odd 8 */ + "dpa.w.ph $ac1, %[p5], %[filter78] \n\t" /* odd 8 */ + "extp %[Temp1], $ac1, 31 \n\t" /* odd 8 */ + + "lbux %[st2], %[Temp2](%[cm]) \n\t" /* odd 6 */ + "lbux %[st3], %[Temp3](%[cm]) \n\t" /* odd 7 */ + "lbux %[st1], %[Temp1](%[cm]) \n\t" /* odd 8 */ + + "sb %[st2], 11(%[dst]) \n\t" /* odd 6 */ + "sb %[st3], 13(%[dst]) \n\t" /* odd 7 */ + "sb %[st1], 15(%[dst]) \n\t" /* odd 8 */ + + : [qload1] "=&r"(qload1), [qload2] "=&r"(qload2), + [qload3] "=&r"(qload3), [st1] "=&r"(st1), [st2] "=&r"(st2), + [st3] "=&r"(st3), [p1] "=&r"(p1), [p2] "=&r"(p2), [p3] "=&r"(p3), + [p4] "=&r"(p4), [p5] "=&r"(p5), [Temp1] "=&r"(Temp1), + [Temp2] "=&r"(Temp2), [Temp3] "=&r"(Temp3) + : [filter12] "r"(filter12), [filter34] "r"(filter34), + [filter56] "r"(filter56), [filter78] "r"(filter78), + [vector_64] "r"(vector_64), [cm] "r"(cm), [dst] "r"(dst), + [src] "r"(src)); + + src += 16; + dst += 16; + } + + /* Next row... */ + src_ptr += src_stride; + dst_ptr += dst_stride; + } +} + +static void convolve_horiz_64_dspr2(const uint8_t *src_ptr, int32_t src_stride, + uint8_t *dst_ptr, int32_t dst_stride, + const int16_t *filter_x0, int32_t h) { + int32_t y, c; + const uint8_t *src; + uint8_t *dst; + uint8_t *cm = vpx_ff_cropTbl; + uint32_t vector_64 = 64; + int32_t filter12, filter34, filter56, filter78; + int32_t Temp1, Temp2, Temp3; + uint32_t qload1, qload2, qload3; + uint32_t p1, p2, p3, p4, p5; + uint32_t st1, st2, st3; + + filter12 = ((const int32_t *)filter_x0)[0]; + filter34 = ((const int32_t *)filter_x0)[1]; + filter56 = ((const int32_t *)filter_x0)[2]; + filter78 = ((const int32_t *)filter_x0)[3]; + + for (y = h; y--;) { + src = src_ptr; + dst = dst_ptr; + + /* prefetch data to cache memory */ + prefetch_load(src_ptr + src_stride); + prefetch_load(src_ptr + src_stride + 32); + prefetch_load(src_ptr + src_stride + 64); + prefetch_store(dst_ptr + dst_stride); + prefetch_store(dst_ptr + dst_stride + 32); + + for (c = 0; c < 4; c++) { + __asm__ __volatile__( + "ulw %[qload1], 0(%[src]) \n\t" + "ulw %[qload2], 4(%[src]) \n\t" + + /* even 1. pixel */ + "mtlo %[vector_64], $ac1 \n\t" /* even 1 */ + "mthi $zero, $ac1 \n\t" + "mtlo %[vector_64], $ac2 \n\t" /* even 2 */ + "mthi $zero, $ac2 \n\t" + "preceu.ph.qbr %[p1], %[qload1] \n\t" + "preceu.ph.qbl %[p2], %[qload1] \n\t" + "preceu.ph.qbr %[p3], %[qload2] \n\t" + "preceu.ph.qbl %[p4], %[qload2] \n\t" + "ulw %[qload3], 8(%[src]) \n\t" + "dpa.w.ph $ac1, %[p1], %[filter12] \n\t" /* even 1 */ + "dpa.w.ph $ac1, %[p2], %[filter34] \n\t" /* even 1 */ + "dpa.w.ph $ac1, %[p3], %[filter56] \n\t" /* even 1 */ + "dpa.w.ph $ac1, %[p4], %[filter78] \n\t" /* even 1 */ + "extp %[Temp1], $ac1, 31 \n\t" /* even 1 */ + + /* even 2. pixel */ + "mtlo %[vector_64], $ac3 \n\t" /* even 3 */ + "mthi $zero, $ac3 \n\t" + "preceu.ph.qbr %[p1], %[qload3] \n\t" + "preceu.ph.qbl %[p5], %[qload3] \n\t" + "ulw %[qload1], 12(%[src]) \n\t" + "dpa.w.ph $ac2, %[p2], %[filter12] \n\t" /* even 1 */ + "dpa.w.ph $ac2, %[p3], %[filter34] \n\t" /* even 1 */ + "dpa.w.ph $ac2, %[p4], %[filter56] \n\t" /* even 1 */ + "dpa.w.ph $ac2, %[p1], %[filter78] \n\t" /* even 1 */ + "extp %[Temp2], $ac2, 31 \n\t" /* even 1 */ + "lbux %[st1], %[Temp1](%[cm]) \n\t" /* even 1 */ + + /* even 3. pixel */ + "mtlo %[vector_64], $ac1 \n\t" /* even 4 */ + "mthi $zero, $ac1 \n\t" + "preceu.ph.qbr %[p2], %[qload1] \n\t" + "sb %[st1], 0(%[dst]) \n\t" /* even 1 */ + "dpa.w.ph $ac3, %[p3], %[filter12] \n\t" /* even 3 */ + "dpa.w.ph $ac3, %[p4], %[filter34] \n\t" /* even 3 */ + "dpa.w.ph $ac3, %[p1], %[filter56] \n\t" /* even 3 */ + "dpa.w.ph $ac3, %[p5], %[filter78] \n\t" /* even 3 */ + "extp %[Temp3], $ac3, 31 \n\t" /* even 3 */ + "lbux %[st2], %[Temp2](%[cm]) \n\t" /* even 1 */ + + /* even 4. pixel */ + "mtlo %[vector_64], $ac2 \n\t" /* even 5 */ + "mthi $zero, $ac2 \n\t" + "preceu.ph.qbl %[p3], %[qload1] \n\t" + "sb %[st2], 2(%[dst]) \n\t" /* even 1 */ + "ulw %[qload2], 16(%[src]) \n\t" + "dpa.w.ph $ac1, %[p4], %[filter12] \n\t" /* even 4 */ + "dpa.w.ph $ac1, %[p1], %[filter34] \n\t" /* even 4 */ + "dpa.w.ph $ac1, %[p5], %[filter56] \n\t" /* even 4 */ + "dpa.w.ph $ac1, %[p2], %[filter78] \n\t" /* even 4 */ + "extp %[Temp1], $ac1, 31 \n\t" /* even 4 */ + "lbux %[st3], %[Temp3](%[cm]) \n\t" /* even 3 */ + + /* even 5. pixel */ + "mtlo %[vector_64], $ac3 \n\t" /* even 6 */ + "mthi $zero, $ac3 \n\t" + "preceu.ph.qbr %[p4], %[qload2] \n\t" + "sb %[st3], 4(%[dst]) \n\t" /* even 3 */ + "dpa.w.ph $ac2, %[p1], %[filter12] \n\t" /* even 5 */ + "dpa.w.ph $ac2, %[p5], %[filter34] \n\t" /* even 5 */ + "dpa.w.ph $ac2, %[p2], %[filter56] \n\t" /* even 5 */ + "dpa.w.ph $ac2, %[p3], %[filter78] \n\t" /* even 5 */ + "extp %[Temp2], $ac2, 31 \n\t" /* even 5 */ + "lbux %[st1], %[Temp1](%[cm]) \n\t" /* even 4 */ + + /* even 6. pixel */ + "mtlo %[vector_64], $ac1 \n\t" /* even 7 */ + "mthi $zero, $ac1 \n\t" + "preceu.ph.qbl %[p1], %[qload2] \n\t" + "sb %[st1], 6(%[dst]) \n\t" /* even 4 */ + "ulw %[qload3], 20(%[src]) \n\t" + "dpa.w.ph $ac3, %[p5], %[filter12] \n\t" /* even 6 */ + "dpa.w.ph $ac3, %[p2], %[filter34] \n\t" /* even 6 */ + "dpa.w.ph $ac3, %[p3], %[filter56] \n\t" /* even 6 */ + "dpa.w.ph $ac3, %[p4], %[filter78] \n\t" /* even 6 */ + "extp %[Temp3], $ac3, 31 \n\t" /* even 6 */ + "lbux %[st2], %[Temp2](%[cm]) \n\t" /* even 5 */ + + /* even 7. pixel */ + "mtlo %[vector_64], $ac2 \n\t" /* even 8 */ + "mthi $zero, $ac2 \n\t" + "preceu.ph.qbr %[p5], %[qload3] \n\t" + "sb %[st2], 8(%[dst]) \n\t" /* even 5 */ + "dpa.w.ph $ac1, %[p2], %[filter12] \n\t" /* even 7 */ + "dpa.w.ph $ac1, %[p3], %[filter34] \n\t" /* even 7 */ + "dpa.w.ph $ac1, %[p4], %[filter56] \n\t" /* even 7 */ + "dpa.w.ph $ac1, %[p1], %[filter78] \n\t" /* even 7 */ + "extp %[Temp1], $ac1, 31 \n\t" /* even 7 */ + "lbux %[st3], %[Temp3](%[cm]) \n\t" /* even 6 */ + + /* even 8. pixel */ + "mtlo %[vector_64], $ac3 \n\t" /* odd 1 */ + "mthi $zero, $ac3 \n\t" + "dpa.w.ph $ac2, %[p3], %[filter12] \n\t" /* even 8 */ + "dpa.w.ph $ac2, %[p4], %[filter34] \n\t" /* even 8 */ + "sb %[st3], 10(%[dst]) \n\t" /* even 6 */ + "dpa.w.ph $ac2, %[p1], %[filter56] \n\t" /* even 8 */ + "dpa.w.ph $ac2, %[p5], %[filter78] \n\t" /* even 8 */ + "extp %[Temp2], $ac2, 31 \n\t" /* even 8 */ + "lbux %[st1], %[Temp1](%[cm]) \n\t" /* even 7 */ + + /* ODD pixels */ + "ulw %[qload1], 1(%[src]) \n\t" + "ulw %[qload2], 5(%[src]) \n\t" + + /* odd 1. pixel */ + "mtlo %[vector_64], $ac1 \n\t" /* odd 2 */ + "mthi $zero, $ac1 \n\t" + "preceu.ph.qbr %[p1], %[qload1] \n\t" + "preceu.ph.qbl %[p2], %[qload1] \n\t" + "preceu.ph.qbr %[p3], %[qload2] \n\t" + "preceu.ph.qbl %[p4], %[qload2] \n\t" + "sb %[st1], 12(%[dst]) \n\t" /* even 7 */ + "ulw %[qload3], 9(%[src]) \n\t" + "dpa.w.ph $ac3, %[p1], %[filter12] \n\t" /* odd 1 */ + "dpa.w.ph $ac3, %[p2], %[filter34] \n\t" /* odd 1 */ + "dpa.w.ph $ac3, %[p3], %[filter56] \n\t" /* odd 1 */ + "dpa.w.ph $ac3, %[p4], %[filter78] \n\t" /* odd 1 */ + "extp %[Temp3], $ac3, 31 \n\t" /* odd 1 */ + "lbux %[st2], %[Temp2](%[cm]) \n\t" /* even 8 */ + + /* odd 2. pixel */ + "mtlo %[vector_64], $ac2 \n\t" /* odd 3 */ + "mthi $zero, $ac2 \n\t" + "preceu.ph.qbr %[p1], %[qload3] \n\t" + "preceu.ph.qbl %[p5], %[qload3] \n\t" + "sb %[st2], 14(%[dst]) \n\t" /* even 8 */ + "ulw %[qload1], 13(%[src]) \n\t" + "dpa.w.ph $ac1, %[p2], %[filter12] \n\t" /* odd 2 */ + "dpa.w.ph $ac1, %[p3], %[filter34] \n\t" /* odd 2 */ + "dpa.w.ph $ac1, %[p4], %[filter56] \n\t" /* odd 2 */ + "dpa.w.ph $ac1, %[p1], %[filter78] \n\t" /* odd 2 */ + "extp %[Temp1], $ac1, 31 \n\t" /* odd 2 */ + "lbux %[st3], %[Temp3](%[cm]) \n\t" /* odd 1 */ + + /* odd 3. pixel */ + "mtlo %[vector_64], $ac3 \n\t" /* odd 4 */ + "mthi $zero, $ac3 \n\t" + "preceu.ph.qbr %[p2], %[qload1] \n\t" + "sb %[st3], 1(%[dst]) \n\t" /* odd 1 */ + "dpa.w.ph $ac2, %[p3], %[filter12] \n\t" /* odd 3 */ + "dpa.w.ph $ac2, %[p4], %[filter34] \n\t" /* odd 3 */ + "dpa.w.ph $ac2, %[p1], %[filter56] \n\t" /* odd 3 */ + "dpa.w.ph $ac2, %[p5], %[filter78] \n\t" /* odd 3 */ + "extp %[Temp2], $ac2, 31 \n\t" /* odd 3 */ + "lbux %[st1], %[Temp1](%[cm]) \n\t" /* odd 2 */ + + /* odd 4. pixel */ + "mtlo %[vector_64], $ac1 \n\t" /* odd 5 */ + "mthi $zero, $ac1 \n\t" + "preceu.ph.qbl %[p3], %[qload1] \n\t" + "sb %[st1], 3(%[dst]) \n\t" /* odd 2 */ + "ulw %[qload2], 17(%[src]) \n\t" + "dpa.w.ph $ac3, %[p4], %[filter12] \n\t" /* odd 4 */ + "dpa.w.ph $ac3, %[p1], %[filter34] \n\t" /* odd 4 */ + "dpa.w.ph $ac3, %[p5], %[filter56] \n\t" /* odd 4 */ + "dpa.w.ph $ac3, %[p2], %[filter78] \n\t" /* odd 4 */ + "extp %[Temp3], $ac3, 31 \n\t" /* odd 4 */ + "lbux %[st2], %[Temp2](%[cm]) \n\t" /* odd 3 */ + + /* odd 5. pixel */ + "mtlo %[vector_64], $ac2 \n\t" /* odd 6 */ + "mthi $zero, $ac2 \n\t" + "preceu.ph.qbr %[p4], %[qload2] \n\t" + "sb %[st2], 5(%[dst]) \n\t" /* odd 3 */ + "dpa.w.ph $ac1, %[p1], %[filter12] \n\t" /* odd 5 */ + "dpa.w.ph $ac1, %[p5], %[filter34] \n\t" /* odd 5 */ + "dpa.w.ph $ac1, %[p2], %[filter56] \n\t" /* odd 5 */ + "dpa.w.ph $ac1, %[p3], %[filter78] \n\t" /* odd 5 */ + "extp %[Temp1], $ac1, 31 \n\t" /* odd 5 */ + "lbux %[st3], %[Temp3](%[cm]) \n\t" /* odd 4 */ + + /* odd 6. pixel */ + "mtlo %[vector_64], $ac3 \n\t" /* odd 7 */ + "mthi $zero, $ac3 \n\t" + "preceu.ph.qbl %[p1], %[qload2] \n\t" + "sb %[st3], 7(%[dst]) \n\t" /* odd 4 */ + "ulw %[qload3], 21(%[src]) \n\t" + "dpa.w.ph $ac2, %[p5], %[filter12] \n\t" /* odd 6 */ + "dpa.w.ph $ac2, %[p2], %[filter34] \n\t" /* odd 6 */ + "dpa.w.ph $ac2, %[p3], %[filter56] \n\t" /* odd 6 */ + "dpa.w.ph $ac2, %[p4], %[filter78] \n\t" /* odd 6 */ + "extp %[Temp2], $ac2, 31 \n\t" /* odd 6 */ + "lbux %[st1], %[Temp1](%[cm]) \n\t" /* odd 5 */ + + /* odd 7. pixel */ + "mtlo %[vector_64], $ac1 \n\t" /* odd 8 */ + "mthi $zero, $ac1 \n\t" + "preceu.ph.qbr %[p5], %[qload3] \n\t" + "sb %[st1], 9(%[dst]) \n\t" /* odd 5 */ + "dpa.w.ph $ac3, %[p2], %[filter12] \n\t" /* odd 7 */ + "dpa.w.ph $ac3, %[p3], %[filter34] \n\t" /* odd 7 */ + "dpa.w.ph $ac3, %[p4], %[filter56] \n\t" /* odd 7 */ + "dpa.w.ph $ac3, %[p1], %[filter78] \n\t" /* odd 7 */ + "extp %[Temp3], $ac3, 31 \n\t" /* odd 7 */ + + /* odd 8. pixel */ + "dpa.w.ph $ac1, %[p3], %[filter12] \n\t" /* odd 8 */ + "dpa.w.ph $ac1, %[p4], %[filter34] \n\t" /* odd 8 */ + "dpa.w.ph $ac1, %[p1], %[filter56] \n\t" /* odd 8 */ + "dpa.w.ph $ac1, %[p5], %[filter78] \n\t" /* odd 8 */ + "extp %[Temp1], $ac1, 31 \n\t" /* odd 8 */ + + "lbux %[st2], %[Temp2](%[cm]) \n\t" /* odd 6 */ + "lbux %[st3], %[Temp3](%[cm]) \n\t" /* odd 7 */ + "lbux %[st1], %[Temp1](%[cm]) \n\t" /* odd 8 */ + + "sb %[st2], 11(%[dst]) \n\t" /* odd 6 */ + "sb %[st3], 13(%[dst]) \n\t" /* odd 7 */ + "sb %[st1], 15(%[dst]) \n\t" /* odd 8 */ + + : [qload1] "=&r"(qload1), [qload2] "=&r"(qload2), + [qload3] "=&r"(qload3), [st1] "=&r"(st1), [st2] "=&r"(st2), + [st3] "=&r"(st3), [p1] "=&r"(p1), [p2] "=&r"(p2), [p3] "=&r"(p3), + [p4] "=&r"(p4), [p5] "=&r"(p5), [Temp1] "=&r"(Temp1), + [Temp2] "=&r"(Temp2), [Temp3] "=&r"(Temp3) + : [filter12] "r"(filter12), [filter34] "r"(filter34), + [filter56] "r"(filter56), [filter78] "r"(filter78), + [vector_64] "r"(vector_64), [cm] "r"(cm), [dst] "r"(dst), + [src] "r"(src)); + + src += 16; + dst += 16; + } + + /* Next row... */ + src_ptr += src_stride; + dst_ptr += dst_stride; + } +} + +void vpx_convolve8_horiz_dspr2(const uint8_t *src, ptrdiff_t src_stride, + uint8_t *dst, ptrdiff_t dst_stride, + const InterpKernel *filter, int x0_q4, + int x_step_q4, int y0_q4, int y_step_q4, int w, + int h) { + const int16_t *const filter_x = filter[x0_q4]; + assert(x_step_q4 == 16); + assert(((const int32_t *)filter_x)[1] != 0x800000); + + if (((const int32_t *)filter_x)[0] == 0) { + vpx_convolve2_horiz_dspr2(src, src_stride, dst, dst_stride, filter, x0_q4, + x_step_q4, y0_q4, y_step_q4, w, h); + } else { + uint32_t pos = 38; + + prefetch_load((const uint8_t *)filter_x); + src -= 3; + + /* bit positon for extract from acc */ + __asm__ __volatile__("wrdsp %[pos], 1 \n\t" + : + : [pos] "r"(pos)); + + /* prefetch data to cache memory */ + prefetch_load(src); + prefetch_load(src + 32); + prefetch_store(dst); + + switch (w) { + case 4: + convolve_horiz_4_dspr2(src, (int32_t)src_stride, dst, + (int32_t)dst_stride, filter_x, (int32_t)h); + break; + case 8: + convolve_horiz_8_dspr2(src, (int32_t)src_stride, dst, + (int32_t)dst_stride, filter_x, (int32_t)h); + break; + case 16: + convolve_horiz_16_dspr2(src, (int32_t)src_stride, dst, + (int32_t)dst_stride, filter_x, (int32_t)h, 1); + break; + case 32: + convolve_horiz_16_dspr2(src, (int32_t)src_stride, dst, + (int32_t)dst_stride, filter_x, (int32_t)h, 2); + break; + case 64: + prefetch_load(src + 64); + prefetch_store(dst + 32); + + convolve_horiz_64_dspr2(src, (int32_t)src_stride, dst, + (int32_t)dst_stride, filter_x, (int32_t)h); + break; + default: + vpx_convolve8_horiz_c(src + 3, src_stride, dst, dst_stride, filter, + x0_q4, x_step_q4, y0_q4, y_step_q4, w, h); + break; + } + } +} +#endif diff --git a/vpx_dsp/mips/convolve8_vert_dspr2.c b/vpx_dsp/mips/convolve8_vert_dspr2.c new file mode 100644 index 0000000..c329f71 --- /dev/null +++ b/vpx_dsp/mips/convolve8_vert_dspr2.c @@ -0,0 +1,360 @@ +/* + * Copyright (c) 2013 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include + +#include "./vpx_dsp_rtcd.h" +#include "vpx_dsp/mips/convolve_common_dspr2.h" +#include "vpx_dsp/vpx_dsp_common.h" +#include "vpx_dsp/vpx_filter.h" +#include "vpx_ports/mem.h" + +#if HAVE_DSPR2 +static void convolve_vert_4_dspr2(const uint8_t *src, int32_t src_stride, + uint8_t *dst, int32_t dst_stride, + const int16_t *filter_y, int32_t w, + int32_t h) { + int32_t x, y; + const uint8_t *src_ptr; + uint8_t *dst_ptr; + uint8_t *cm = vpx_ff_cropTbl; + uint32_t vector4a = 64; + uint32_t load1, load2, load3, load4; + uint32_t p1, p2; + uint32_t n1, n2; + uint32_t scratch1, scratch2; + uint32_t store1, store2; + int32_t vector1b, vector2b, vector3b, vector4b; + int32_t Temp1, Temp2; + + vector1b = ((const int32_t *)filter_y)[0]; + vector2b = ((const int32_t *)filter_y)[1]; + vector3b = ((const int32_t *)filter_y)[2]; + vector4b = ((const int32_t *)filter_y)[3]; + + src -= 3 * src_stride; + + for (y = h; y--;) { + /* prefetch data to cache memory */ + prefetch_store(dst + dst_stride); + + for (x = 0; x < w; x += 4) { + src_ptr = src + x; + dst_ptr = dst + x; + + __asm__ __volatile__( + "ulw %[load1], 0(%[src_ptr]) \n\t" + "add %[src_ptr], %[src_ptr], %[src_stride] \n\t" + "ulw %[load2], 0(%[src_ptr]) \n\t" + "add %[src_ptr], %[src_ptr], %[src_stride] \n\t" + "ulw %[load3], 0(%[src_ptr]) \n\t" + "add %[src_ptr], %[src_ptr], %[src_stride] \n\t" + "ulw %[load4], 0(%[src_ptr]) \n\t" + + "mtlo %[vector4a], $ac0 \n\t" + "mtlo %[vector4a], $ac1 \n\t" + "mtlo %[vector4a], $ac2 \n\t" + "mtlo %[vector4a], $ac3 \n\t" + "mthi $zero, $ac0 \n\t" + "mthi $zero, $ac1 \n\t" + "mthi $zero, $ac2 \n\t" + "mthi $zero, $ac3 \n\t" + + "preceu.ph.qbr %[scratch1], %[load1] \n\t" + "preceu.ph.qbr %[p1], %[load2] \n\t" + "precrq.ph.w %[n1], %[p1], %[scratch1] \n\t" /* pixel 2 */ + "append %[p1], %[scratch1], 16 \n\t" /* pixel 1 */ + "preceu.ph.qbr %[scratch2], %[load3] \n\t" + "preceu.ph.qbr %[p2], %[load4] \n\t" + "precrq.ph.w %[n2], %[p2], %[scratch2] \n\t" /* pixel 2 */ + "append %[p2], %[scratch2], 16 \n\t" /* pixel 1 */ + + "dpa.w.ph $ac0, %[p1], %[vector1b] \n\t" + "dpa.w.ph $ac0, %[p2], %[vector2b] \n\t" + "dpa.w.ph $ac1, %[n1], %[vector1b] \n\t" + "dpa.w.ph $ac1, %[n2], %[vector2b] \n\t" + + "preceu.ph.qbl %[scratch1], %[load1] \n\t" + "preceu.ph.qbl %[p1], %[load2] \n\t" + "precrq.ph.w %[n1], %[p1], %[scratch1] \n\t" /* pixel 2 */ + "append %[p1], %[scratch1], 16 \n\t" /* pixel 1 */ + "preceu.ph.qbl %[scratch2], %[load3] \n\t" + "preceu.ph.qbl %[p2], %[load4] \n\t" + "precrq.ph.w %[n2], %[p2], %[scratch2] \n\t" /* pixel 2 */ + "append %[p2], %[scratch2], 16 \n\t" /* pixel 1 */ + + "dpa.w.ph $ac2, %[p1], %[vector1b] \n\t" + "dpa.w.ph $ac2, %[p2], %[vector2b] \n\t" + "dpa.w.ph $ac3, %[n1], %[vector1b] \n\t" + "dpa.w.ph $ac3, %[n2], %[vector2b] \n\t" + + "add %[src_ptr], %[src_ptr], %[src_stride] \n\t" + "ulw %[load1], 0(%[src_ptr]) \n\t" + "add %[src_ptr], %[src_ptr], %[src_stride] \n\t" + "ulw %[load2], 0(%[src_ptr]) \n\t" + "add %[src_ptr], %[src_ptr], %[src_stride] \n\t" + "ulw %[load3], 0(%[src_ptr]) \n\t" + "add %[src_ptr], %[src_ptr], %[src_stride] \n\t" + "ulw %[load4], 0(%[src_ptr]) \n\t" + + "preceu.ph.qbr %[scratch1], %[load1] \n\t" + "preceu.ph.qbr %[p1], %[load2] \n\t" + "precrq.ph.w %[n1], %[p1], %[scratch1] \n\t" /* pixel 2 */ + "append %[p1], %[scratch1], 16 \n\t" /* pixel 1 */ + "preceu.ph.qbr %[scratch2], %[load3] \n\t" + "preceu.ph.qbr %[p2], %[load4] \n\t" + "precrq.ph.w %[n2], %[p2], %[scratch2] \n\t" /* pixel 2 */ + "append %[p2], %[scratch2], 16 \n\t" /* pixel 1 */ + + "dpa.w.ph $ac0, %[p1], %[vector3b] \n\t" + "dpa.w.ph $ac0, %[p2], %[vector4b] \n\t" + "extp %[Temp1], $ac0, 31 \n\t" + "dpa.w.ph $ac1, %[n1], %[vector3b] \n\t" + "dpa.w.ph $ac1, %[n2], %[vector4b] \n\t" + "extp %[Temp2], $ac1, 31 \n\t" + + "preceu.ph.qbl %[scratch1], %[load1] \n\t" + "preceu.ph.qbl %[p1], %[load2] \n\t" + "precrq.ph.w %[n1], %[p1], %[scratch1] \n\t" /* pixel 2 */ + "append %[p1], %[scratch1], 16 \n\t" /* pixel 1 */ + "preceu.ph.qbl %[scratch2], %[load3] \n\t" + "preceu.ph.qbl %[p2], %[load4] \n\t" + "precrq.ph.w %[n2], %[p2], %[scratch2] \n\t" /* pixel 2 */ + "append %[p2], %[scratch2], 16 \n\t" /* pixel 1 */ + + "lbux %[store1], %[Temp1](%[cm]) \n\t" + "dpa.w.ph $ac2, %[p1], %[vector3b] \n\t" + "dpa.w.ph $ac2, %[p2], %[vector4b] \n\t" + "extp %[Temp1], $ac2, 31 \n\t" + + "lbux %[store2], %[Temp2](%[cm]) \n\t" + "dpa.w.ph $ac3, %[n1], %[vector3b] \n\t" + "dpa.w.ph $ac3, %[n2], %[vector4b] \n\t" + "extp %[Temp2], $ac3, 31 \n\t" + + "sb %[store1], 0(%[dst_ptr]) \n\t" + "sb %[store2], 1(%[dst_ptr]) \n\t" + + "lbux %[store1], %[Temp1](%[cm]) \n\t" + "lbux %[store2], %[Temp2](%[cm]) \n\t" + + "sb %[store1], 2(%[dst_ptr]) \n\t" + "sb %[store2], 3(%[dst_ptr]) \n\t" + + : [load1] "=&r"(load1), [load2] "=&r"(load2), [load3] "=&r"(load3), + [load4] "=&r"(load4), [p1] "=&r"(p1), [p2] "=&r"(p2), + [n1] "=&r"(n1), [n2] "=&r"(n2), [scratch1] "=&r"(scratch1), + [scratch2] "=&r"(scratch2), [Temp1] "=&r"(Temp1), + [Temp2] "=&r"(Temp2), [store1] "=&r"(store1), + [store2] "=&r"(store2), [src_ptr] "+r"(src_ptr) + : [vector1b] "r"(vector1b), [vector2b] "r"(vector2b), + [vector3b] "r"(vector3b), [vector4b] "r"(vector4b), + [vector4a] "r"(vector4a), [src_stride] "r"(src_stride), + [cm] "r"(cm), [dst_ptr] "r"(dst_ptr)); + } + + /* Next row... */ + src += src_stride; + dst += dst_stride; + } +} + +static void convolve_vert_64_dspr2(const uint8_t *src, int32_t src_stride, + uint8_t *dst, int32_t dst_stride, + const int16_t *filter_y, int32_t h) { + int32_t x, y; + const uint8_t *src_ptr; + uint8_t *dst_ptr; + uint8_t *cm = vpx_ff_cropTbl; + uint32_t vector4a = 64; + uint32_t load1, load2, load3, load4; + uint32_t p1, p2; + uint32_t n1, n2; + uint32_t scratch1, scratch2; + uint32_t store1, store2; + int32_t vector1b, vector2b, vector3b, vector4b; + int32_t Temp1, Temp2; + + vector1b = ((const int32_t *)filter_y)[0]; + vector2b = ((const int32_t *)filter_y)[1]; + vector3b = ((const int32_t *)filter_y)[2]; + vector4b = ((const int32_t *)filter_y)[3]; + + src -= 3 * src_stride; + + for (y = h; y--;) { + /* prefetch data to cache memory */ + prefetch_store(dst + dst_stride); + prefetch_store(dst + dst_stride + 32); + + for (x = 0; x < 64; x += 4) { + src_ptr = src + x; + dst_ptr = dst + x; + + __asm__ __volatile__( + "ulw %[load1], 0(%[src_ptr]) \n\t" + "add %[src_ptr], %[src_ptr], %[src_stride] \n\t" + "ulw %[load2], 0(%[src_ptr]) \n\t" + "add %[src_ptr], %[src_ptr], %[src_stride] \n\t" + "ulw %[load3], 0(%[src_ptr]) \n\t" + "add %[src_ptr], %[src_ptr], %[src_stride] \n\t" + "ulw %[load4], 0(%[src_ptr]) \n\t" + + "mtlo %[vector4a], $ac0 \n\t" + "mtlo %[vector4a], $ac1 \n\t" + "mtlo %[vector4a], $ac2 \n\t" + "mtlo %[vector4a], $ac3 \n\t" + "mthi $zero, $ac0 \n\t" + "mthi $zero, $ac1 \n\t" + "mthi $zero, $ac2 \n\t" + "mthi $zero, $ac3 \n\t" + + "preceu.ph.qbr %[scratch1], %[load1] \n\t" + "preceu.ph.qbr %[p1], %[load2] \n\t" + "precrq.ph.w %[n1], %[p1], %[scratch1] \n\t" /* pixel 2 */ + "append %[p1], %[scratch1], 16 \n\t" /* pixel 1 */ + "preceu.ph.qbr %[scratch2], %[load3] \n\t" + "preceu.ph.qbr %[p2], %[load4] \n\t" + "precrq.ph.w %[n2], %[p2], %[scratch2] \n\t" /* pixel 2 */ + "append %[p2], %[scratch2], 16 \n\t" /* pixel 1 */ + + "dpa.w.ph $ac0, %[p1], %[vector1b] \n\t" + "dpa.w.ph $ac0, %[p2], %[vector2b] \n\t" + "dpa.w.ph $ac1, %[n1], %[vector1b] \n\t" + "dpa.w.ph $ac1, %[n2], %[vector2b] \n\t" + + "preceu.ph.qbl %[scratch1], %[load1] \n\t" + "preceu.ph.qbl %[p1], %[load2] \n\t" + "precrq.ph.w %[n1], %[p1], %[scratch1] \n\t" /* pixel 2 */ + "append %[p1], %[scratch1], 16 \n\t" /* pixel 1 */ + "preceu.ph.qbl %[scratch2], %[load3] \n\t" + "preceu.ph.qbl %[p2], %[load4] \n\t" + "precrq.ph.w %[n2], %[p2], %[scratch2] \n\t" /* pixel 2 */ + "append %[p2], %[scratch2], 16 \n\t" /* pixel 1 */ + + "dpa.w.ph $ac2, %[p1], %[vector1b] \n\t" + "dpa.w.ph $ac2, %[p2], %[vector2b] \n\t" + "dpa.w.ph $ac3, %[n1], %[vector1b] \n\t" + "dpa.w.ph $ac3, %[n2], %[vector2b] \n\t" + + "add %[src_ptr], %[src_ptr], %[src_stride] \n\t" + "ulw %[load1], 0(%[src_ptr]) \n\t" + "add %[src_ptr], %[src_ptr], %[src_stride] \n\t" + "ulw %[load2], 0(%[src_ptr]) \n\t" + "add %[src_ptr], %[src_ptr], %[src_stride] \n\t" + "ulw %[load3], 0(%[src_ptr]) \n\t" + "add %[src_ptr], %[src_ptr], %[src_stride] \n\t" + "ulw %[load4], 0(%[src_ptr]) \n\t" + + "preceu.ph.qbr %[scratch1], %[load1] \n\t" + "preceu.ph.qbr %[p1], %[load2] \n\t" + "precrq.ph.w %[n1], %[p1], %[scratch1] \n\t" /* pixel 2 */ + "append %[p1], %[scratch1], 16 \n\t" /* pixel 1 */ + "preceu.ph.qbr %[scratch2], %[load3] \n\t" + "preceu.ph.qbr %[p2], %[load4] \n\t" + "precrq.ph.w %[n2], %[p2], %[scratch2] \n\t" /* pixel 2 */ + "append %[p2], %[scratch2], 16 \n\t" /* pixel 1 */ + + "dpa.w.ph $ac0, %[p1], %[vector3b] \n\t" + "dpa.w.ph $ac0, %[p2], %[vector4b] \n\t" + "extp %[Temp1], $ac0, 31 \n\t" + "dpa.w.ph $ac1, %[n1], %[vector3b] \n\t" + "dpa.w.ph $ac1, %[n2], %[vector4b] \n\t" + "extp %[Temp2], $ac1, 31 \n\t" + + "preceu.ph.qbl %[scratch1], %[load1] \n\t" + "preceu.ph.qbl %[p1], %[load2] \n\t" + "precrq.ph.w %[n1], %[p1], %[scratch1] \n\t" /* pixel 2 */ + "append %[p1], %[scratch1], 16 \n\t" /* pixel 1 */ + "preceu.ph.qbl %[scratch2], %[load3] \n\t" + "preceu.ph.qbl %[p2], %[load4] \n\t" + "precrq.ph.w %[n2], %[p2], %[scratch2] \n\t" /* pixel 2 */ + "append %[p2], %[scratch2], 16 \n\t" /* pixel 1 */ + + "lbux %[store1], %[Temp1](%[cm]) \n\t" + "dpa.w.ph $ac2, %[p1], %[vector3b] \n\t" + "dpa.w.ph $ac2, %[p2], %[vector4b] \n\t" + "extp %[Temp1], $ac2, 31 \n\t" + + "lbux %[store2], %[Temp2](%[cm]) \n\t" + "dpa.w.ph $ac3, %[n1], %[vector3b] \n\t" + "dpa.w.ph $ac3, %[n2], %[vector4b] \n\t" + "extp %[Temp2], $ac3, 31 \n\t" + + "sb %[store1], 0(%[dst_ptr]) \n\t" + "sb %[store2], 1(%[dst_ptr]) \n\t" + + "lbux %[store1], %[Temp1](%[cm]) \n\t" + "lbux %[store2], %[Temp2](%[cm]) \n\t" + + "sb %[store1], 2(%[dst_ptr]) \n\t" + "sb %[store2], 3(%[dst_ptr]) \n\t" + + : [load1] "=&r"(load1), [load2] "=&r"(load2), [load3] "=&r"(load3), + [load4] "=&r"(load4), [p1] "=&r"(p1), [p2] "=&r"(p2), + [n1] "=&r"(n1), [n2] "=&r"(n2), [scratch1] "=&r"(scratch1), + [scratch2] "=&r"(scratch2), [Temp1] "=&r"(Temp1), + [Temp2] "=&r"(Temp2), [store1] "=&r"(store1), + [store2] "=&r"(store2), [src_ptr] "+r"(src_ptr) + : [vector1b] "r"(vector1b), [vector2b] "r"(vector2b), + [vector3b] "r"(vector3b), [vector4b] "r"(vector4b), + [vector4a] "r"(vector4a), [src_stride] "r"(src_stride), + [cm] "r"(cm), [dst_ptr] "r"(dst_ptr)); + } + + /* Next row... */ + src += src_stride; + dst += dst_stride; + } +} + +void vpx_convolve8_vert_dspr2(const uint8_t *src, ptrdiff_t src_stride, + uint8_t *dst, ptrdiff_t dst_stride, + const InterpKernel *filter, int x0_q4, + int x_step_q4, int y0_q4, int y_step_q4, int w, + int h) { + const int16_t *const filter_y = filter[y0_q4]; + assert(y_step_q4 == 16); + assert(((const int32_t *)filter_y)[1] != 0x800000); + + if (((const int32_t *)filter_y)[0] == 0) { + vpx_convolve2_vert_dspr2(src, src_stride, dst, dst_stride, filter, x0_q4, + x_step_q4, y0_q4, y_step_q4, w, h); + } else { + uint32_t pos = 38; + + /* bit positon for extract from acc */ + __asm__ __volatile__("wrdsp %[pos], 1 \n\t" + : + : [pos] "r"(pos)); + + prefetch_store(dst); + + switch (w) { + case 4: + case 8: + case 16: + case 32: + convolve_vert_4_dspr2(src, src_stride, dst, dst_stride, filter_y, w, h); + break; + case 64: + prefetch_store(dst + 32); + convolve_vert_64_dspr2(src, src_stride, dst, dst_stride, filter_y, h); + break; + default: + vpx_convolve8_vert_c(src, src_stride, dst, dst_stride, filter, x0_q4, + x_step_q4, y0_q4, y_step_q4, w, h); + break; + } + } +} + +#endif diff --git a/vpx_dsp/mips/convolve_common_dspr2.h b/vpx_dsp/mips/convolve_common_dspr2.h new file mode 100644 index 0000000..48e440d --- /dev/null +++ b/vpx_dsp/mips/convolve_common_dspr2.h @@ -0,0 +1,58 @@ +/* + * Copyright (c) 2013 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VPX_DSP_MIPS_VPX_COMMON_DSPR2_H_ +#define VPX_DSP_MIPS_VPX_COMMON_DSPR2_H_ + +#include + +#include "./vpx_config.h" +#include "vpx/vpx_integer.h" +#include "vpx_dsp/mips/common_dspr2.h" + +#ifdef __cplusplus +extern "C" { +#endif + +#if HAVE_DSPR2 +void vpx_convolve2_horiz_dspr2(const uint8_t *src, ptrdiff_t src_stride, + uint8_t *dst, ptrdiff_t dst_stride, + const InterpKernel *filter, int x0_q4, + int32_t x_step_q4, int y0_q4, int y_step_q4, + int w, int h); + +void vpx_convolve2_avg_horiz_dspr2(const uint8_t *src, ptrdiff_t src_stride, + uint8_t *dst, ptrdiff_t dst_stride, + const InterpKernel *filter, int x0_q4, + int32_t x_step_q4, int y0_q4, int y_step_q4, + int w, int h); + +void vpx_convolve2_avg_vert_dspr2(const uint8_t *src, ptrdiff_t src_stride, + uint8_t *dst, ptrdiff_t dst_stride, + const InterpKernel *filter, int x0_q4, + int32_t x_step_q4, int y0_q4, int y_step_q4, + int w, int h); + +void vpx_convolve2_dspr2(const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst, + ptrdiff_t dst_stride, const int16_t *filter, int w, + int h); + +void vpx_convolve2_vert_dspr2(const uint8_t *src, ptrdiff_t src_stride, + uint8_t *dst, ptrdiff_t dst_stride, + const InterpKernel *filter, int x0_q4, + int32_t x_step_q4, int y0_q4, int y_step_q4, + int w, int h); + +#endif // #if HAVE_DSPR2 +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VPX_DSP_MIPS_VPX_COMMON_DSPR2_H_ diff --git a/vpx_dsp/mips/deblock_msa.c b/vpx_dsp/mips/deblock_msa.c new file mode 100644 index 0000000..aafa272 --- /dev/null +++ b/vpx_dsp/mips/deblock_msa.c @@ -0,0 +1,742 @@ +/* + * Copyright (c) 2016 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include + +#include "./macros_msa.h" + +extern const int16_t vpx_rv[]; + +#define VPX_TRANSPOSE8x16_UB_UB(in0, in1, in2, in3, in4, in5, in6, in7, out0, \ + out1, out2, out3, out4, out5, out6, out7, \ + out8, out9, out10, out11, out12, out13, out14, \ + out15) \ + { \ + v8i16 temp0, temp1, temp2, temp3, temp4; \ + v8i16 temp5, temp6, temp7, temp8, temp9; \ + \ + ILVR_B4_SH(in1, in0, in3, in2, in5, in4, in7, in6, temp0, temp1, temp2, \ + temp3); \ + ILVR_H2_SH(temp1, temp0, temp3, temp2, temp4, temp5); \ + ILVRL_W2_SH(temp5, temp4, temp6, temp7); \ + ILVL_H2_SH(temp1, temp0, temp3, temp2, temp4, temp5); \ + ILVRL_W2_SH(temp5, temp4, temp8, temp9); \ + ILVL_B4_SH(in1, in0, in3, in2, in5, in4, in7, in6, temp0, temp1, temp2, \ + temp3); \ + ILVR_H2_SH(temp1, temp0, temp3, temp2, temp4, temp5); \ + ILVRL_W2_UB(temp5, temp4, out8, out10); \ + ILVL_H2_SH(temp1, temp0, temp3, temp2, temp4, temp5); \ + ILVRL_W2_UB(temp5, temp4, out12, out14); \ + out0 = (v16u8)temp6; \ + out2 = (v16u8)temp7; \ + out4 = (v16u8)temp8; \ + out6 = (v16u8)temp9; \ + out9 = (v16u8)__msa_ilvl_d((v2i64)out8, (v2i64)out8); \ + out11 = (v16u8)__msa_ilvl_d((v2i64)out10, (v2i64)out10); \ + out13 = (v16u8)__msa_ilvl_d((v2i64)out12, (v2i64)out12); \ + out15 = (v16u8)__msa_ilvl_d((v2i64)out14, (v2i64)out14); \ + out1 = (v16u8)__msa_ilvl_d((v2i64)out0, (v2i64)out0); \ + out3 = (v16u8)__msa_ilvl_d((v2i64)out2, (v2i64)out2); \ + out5 = (v16u8)__msa_ilvl_d((v2i64)out4, (v2i64)out4); \ + out7 = (v16u8)__msa_ilvl_d((v2i64)out6, (v2i64)out6); \ + } + +#define VPX_AVER_IF_RETAIN(above2_in, above1_in, src_in, below1_in, below2_in, \ + ref, out) \ + { \ + v16u8 temp0, temp1; \ + \ + temp1 = __msa_aver_u_b(above2_in, above1_in); \ + temp0 = __msa_aver_u_b(below2_in, below1_in); \ + temp1 = __msa_aver_u_b(temp1, temp0); \ + out = __msa_aver_u_b(src_in, temp1); \ + temp0 = __msa_asub_u_b(src_in, above2_in); \ + temp1 = __msa_asub_u_b(src_in, above1_in); \ + temp0 = (temp0 < ref); \ + temp1 = (temp1 < ref); \ + temp0 = temp0 & temp1; \ + temp1 = __msa_asub_u_b(src_in, below1_in); \ + temp1 = (temp1 < ref); \ + temp0 = temp0 & temp1; \ + temp1 = __msa_asub_u_b(src_in, below2_in); \ + temp1 = (temp1 < ref); \ + temp0 = temp0 & temp1; \ + out = __msa_bmz_v(out, src_in, temp0); \ + } + +#define TRANSPOSE12x16_B(in0, in1, in2, in3, in4, in5, in6, in7, in8, in9, \ + in10, in11, in12, in13, in14, in15) \ + { \ + v8i16 temp0, temp1, temp2, temp3, temp4; \ + v8i16 temp5, temp6, temp7, temp8, temp9; \ + \ + ILVR_B2_SH(in1, in0, in3, in2, temp0, temp1); \ + ILVRL_H2_SH(temp1, temp0, temp2, temp3); \ + ILVR_B2_SH(in5, in4, in7, in6, temp0, temp1); \ + ILVRL_H2_SH(temp1, temp0, temp4, temp5); \ + ILVRL_W2_SH(temp4, temp2, temp0, temp1); \ + ILVRL_W2_SH(temp5, temp3, temp2, temp3); \ + ILVR_B2_SH(in9, in8, in11, in10, temp4, temp5); \ + ILVR_B2_SH(in9, in8, in11, in10, temp4, temp5); \ + ILVRL_H2_SH(temp5, temp4, temp6, temp7); \ + ILVR_B2_SH(in13, in12, in15, in14, temp4, temp5); \ + ILVRL_H2_SH(temp5, temp4, temp8, temp9); \ + ILVRL_W2_SH(temp8, temp6, temp4, temp5); \ + ILVRL_W2_SH(temp9, temp7, temp6, temp7); \ + ILVL_B2_SH(in1, in0, in3, in2, temp8, temp9); \ + ILVR_D2_UB(temp4, temp0, temp5, temp1, in0, in2); \ + in1 = (v16u8)__msa_ilvl_d((v2i64)temp4, (v2i64)temp0); \ + in3 = (v16u8)__msa_ilvl_d((v2i64)temp5, (v2i64)temp1); \ + ILVL_B2_SH(in5, in4, in7, in6, temp0, temp1); \ + ILVR_D2_UB(temp6, temp2, temp7, temp3, in4, in6); \ + in5 = (v16u8)__msa_ilvl_d((v2i64)temp6, (v2i64)temp2); \ + in7 = (v16u8)__msa_ilvl_d((v2i64)temp7, (v2i64)temp3); \ + ILVL_B4_SH(in9, in8, in11, in10, in13, in12, in15, in14, temp2, temp3, \ + temp4, temp5); \ + ILVR_H4_SH(temp9, temp8, temp1, temp0, temp3, temp2, temp5, temp4, temp6, \ + temp7, temp8, temp9); \ + ILVR_W2_SH(temp7, temp6, temp9, temp8, temp0, temp1); \ + in8 = (v16u8)__msa_ilvr_d((v2i64)temp1, (v2i64)temp0); \ + in9 = (v16u8)__msa_ilvl_d((v2i64)temp1, (v2i64)temp0); \ + ILVL_W2_SH(temp7, temp6, temp9, temp8, temp2, temp3); \ + in10 = (v16u8)__msa_ilvr_d((v2i64)temp3, (v2i64)temp2); \ + in11 = (v16u8)__msa_ilvl_d((v2i64)temp3, (v2i64)temp2); \ + } + +#define VPX_TRANSPOSE12x8_UB_UB(in0, in1, in2, in3, in4, in5, in6, in7, in8, \ + in9, in10, in11) \ + { \ + v8i16 temp0, temp1, temp2, temp3; \ + v8i16 temp4, temp5, temp6, temp7; \ + \ + ILVR_B2_SH(in1, in0, in3, in2, temp0, temp1); \ + ILVRL_H2_SH(temp1, temp0, temp2, temp3); \ + ILVR_B2_SH(in5, in4, in7, in6, temp0, temp1); \ + ILVRL_H2_SH(temp1, temp0, temp4, temp5); \ + ILVRL_W2_SH(temp4, temp2, temp0, temp1); \ + ILVRL_W2_SH(temp5, temp3, temp2, temp3); \ + ILVL_B2_SH(in1, in0, in3, in2, temp4, temp5); \ + temp4 = __msa_ilvr_h(temp5, temp4); \ + ILVL_B2_SH(in5, in4, in7, in6, temp6, temp7); \ + temp5 = __msa_ilvr_h(temp7, temp6); \ + ILVRL_W2_SH(temp5, temp4, temp6, temp7); \ + in0 = (v16u8)temp0; \ + in2 = (v16u8)temp1; \ + in4 = (v16u8)temp2; \ + in6 = (v16u8)temp3; \ + in8 = (v16u8)temp6; \ + in10 = (v16u8)temp7; \ + in1 = (v16u8)__msa_ilvl_d((v2i64)temp0, (v2i64)temp0); \ + in3 = (v16u8)__msa_ilvl_d((v2i64)temp1, (v2i64)temp1); \ + in5 = (v16u8)__msa_ilvl_d((v2i64)temp2, (v2i64)temp2); \ + in7 = (v16u8)__msa_ilvl_d((v2i64)temp3, (v2i64)temp3); \ + in9 = (v16u8)__msa_ilvl_d((v2i64)temp6, (v2i64)temp6); \ + in11 = (v16u8)__msa_ilvl_d((v2i64)temp7, (v2i64)temp7); \ + } + +static void postproc_down_across_chroma_msa(uint8_t *src_ptr, uint8_t *dst_ptr, + int32_t src_stride, + int32_t dst_stride, int32_t cols, + uint8_t *f) { + uint8_t *p_src = src_ptr; + uint8_t *p_dst = dst_ptr; + uint8_t *f_orig = f; + uint8_t *p_dst_st = dst_ptr; + uint16_t col; + uint64_t out0, out1, out2, out3; + v16u8 above2, above1, below2, below1, src, ref, ref_temp; + v16u8 inter0, inter1, inter2, inter3, inter4, inter5; + v16u8 inter6, inter7, inter8, inter9, inter10, inter11; + + for (col = (cols / 16); col--;) { + ref = LD_UB(f); + LD_UB2(p_src - 2 * src_stride, src_stride, above2, above1); + src = LD_UB(p_src); + LD_UB2(p_src + 1 * src_stride, src_stride, below1, below2); + VPX_AVER_IF_RETAIN(above2, above1, src, below1, below2, ref, inter0); + above2 = LD_UB(p_src + 3 * src_stride); + VPX_AVER_IF_RETAIN(above1, src, below1, below2, above2, ref, inter1); + above1 = LD_UB(p_src + 4 * src_stride); + VPX_AVER_IF_RETAIN(src, below1, below2, above2, above1, ref, inter2); + src = LD_UB(p_src + 5 * src_stride); + VPX_AVER_IF_RETAIN(below1, below2, above2, above1, src, ref, inter3); + below1 = LD_UB(p_src + 6 * src_stride); + VPX_AVER_IF_RETAIN(below2, above2, above1, src, below1, ref, inter4); + below2 = LD_UB(p_src + 7 * src_stride); + VPX_AVER_IF_RETAIN(above2, above1, src, below1, below2, ref, inter5); + above2 = LD_UB(p_src + 8 * src_stride); + VPX_AVER_IF_RETAIN(above1, src, below1, below2, above2, ref, inter6); + above1 = LD_UB(p_src + 9 * src_stride); + VPX_AVER_IF_RETAIN(src, below1, below2, above2, above1, ref, inter7); + ST_UB8(inter0, inter1, inter2, inter3, inter4, inter5, inter6, inter7, + p_dst, dst_stride); + + p_dst += 16; + p_src += 16; + f += 16; + } + + if (0 != (cols / 16)) { + ref = LD_UB(f); + LD_UB2(p_src - 2 * src_stride, src_stride, above2, above1); + src = LD_UB(p_src); + LD_UB2(p_src + 1 * src_stride, src_stride, below1, below2); + VPX_AVER_IF_RETAIN(above2, above1, src, below1, below2, ref, inter0); + above2 = LD_UB(p_src + 3 * src_stride); + VPX_AVER_IF_RETAIN(above1, src, below1, below2, above2, ref, inter1); + above1 = LD_UB(p_src + 4 * src_stride); + VPX_AVER_IF_RETAIN(src, below1, below2, above2, above1, ref, inter2); + src = LD_UB(p_src + 5 * src_stride); + VPX_AVER_IF_RETAIN(below1, below2, above2, above1, src, ref, inter3); + below1 = LD_UB(p_src + 6 * src_stride); + VPX_AVER_IF_RETAIN(below2, above2, above1, src, below1, ref, inter4); + below2 = LD_UB(p_src + 7 * src_stride); + VPX_AVER_IF_RETAIN(above2, above1, src, below1, below2, ref, inter5); + above2 = LD_UB(p_src + 8 * src_stride); + VPX_AVER_IF_RETAIN(above1, src, below1, below2, above2, ref, inter6); + above1 = LD_UB(p_src + 9 * src_stride); + VPX_AVER_IF_RETAIN(src, below1, below2, above2, above1, ref, inter7); + out0 = __msa_copy_u_d((v2i64)inter0, 0); + out1 = __msa_copy_u_d((v2i64)inter1, 0); + out2 = __msa_copy_u_d((v2i64)inter2, 0); + out3 = __msa_copy_u_d((v2i64)inter3, 0); + SD4(out0, out1, out2, out3, p_dst, dst_stride); + + out0 = __msa_copy_u_d((v2i64)inter4, 0); + out1 = __msa_copy_u_d((v2i64)inter5, 0); + out2 = __msa_copy_u_d((v2i64)inter6, 0); + out3 = __msa_copy_u_d((v2i64)inter7, 0); + SD4(out0, out1, out2, out3, p_dst + 4 * dst_stride, dst_stride); + } + + f = f_orig; + p_dst = dst_ptr - 2; + LD_UB8(p_dst, dst_stride, inter0, inter1, inter2, inter3, inter4, inter5, + inter6, inter7); + + for (col = 0; col < (cols / 8); ++col) { + ref = LD_UB(f); + f += 8; + VPX_TRANSPOSE12x8_UB_UB(inter0, inter1, inter2, inter3, inter4, inter5, + inter6, inter7, inter8, inter9, inter10, inter11); + if (0 == col) { + above2 = inter2; + above1 = inter2; + } else { + above2 = inter0; + above1 = inter1; + } + src = inter2; + below1 = inter3; + below2 = inter4; + ref_temp = (v16u8)__msa_splati_b((v16i8)ref, 0); + VPX_AVER_IF_RETAIN(above2, above1, src, below1, below2, ref_temp, inter2); + above2 = inter5; + ref_temp = (v16u8)__msa_splati_b((v16i8)ref, 1); + VPX_AVER_IF_RETAIN(above1, src, below1, below2, above2, ref_temp, inter3); + above1 = inter6; + ref_temp = (v16u8)__msa_splati_b((v16i8)ref, 2); + VPX_AVER_IF_RETAIN(src, below1, below2, above2, above1, ref_temp, inter4); + src = inter7; + ref_temp = (v16u8)__msa_splati_b((v16i8)ref, 3); + VPX_AVER_IF_RETAIN(below1, below2, above2, above1, src, ref_temp, inter5); + below1 = inter8; + ref_temp = (v16u8)__msa_splati_b((v16i8)ref, 4); + VPX_AVER_IF_RETAIN(below2, above2, above1, src, below1, ref_temp, inter6); + below2 = inter9; + ref_temp = (v16u8)__msa_splati_b((v16i8)ref, 5); + VPX_AVER_IF_RETAIN(above2, above1, src, below1, below2, ref_temp, inter7); + if (col == (cols / 8 - 1)) { + above2 = inter9; + } else { + above2 = inter10; + } + ref_temp = (v16u8)__msa_splati_b((v16i8)ref, 6); + VPX_AVER_IF_RETAIN(above1, src, below1, below2, above2, ref_temp, inter8); + if (col == (cols / 8 - 1)) { + above1 = inter9; + } else { + above1 = inter11; + } + ref_temp = (v16u8)__msa_splati_b((v16i8)ref, 7); + VPX_AVER_IF_RETAIN(src, below1, below2, above2, above1, ref_temp, inter9); + TRANSPOSE8x8_UB_UB(inter2, inter3, inter4, inter5, inter6, inter7, inter8, + inter9, inter2, inter3, inter4, inter5, inter6, inter7, + inter8, inter9); + p_dst += 8; + LD_UB2(p_dst, dst_stride, inter0, inter1); + ST8x1_UB(inter2, p_dst_st); + ST8x1_UB(inter3, (p_dst_st + 1 * dst_stride)); + LD_UB2(p_dst + 2 * dst_stride, dst_stride, inter2, inter3); + ST8x1_UB(inter4, (p_dst_st + 2 * dst_stride)); + ST8x1_UB(inter5, (p_dst_st + 3 * dst_stride)); + LD_UB2(p_dst + 4 * dst_stride, dst_stride, inter4, inter5); + ST8x1_UB(inter6, (p_dst_st + 4 * dst_stride)); + ST8x1_UB(inter7, (p_dst_st + 5 * dst_stride)); + LD_UB2(p_dst + 6 * dst_stride, dst_stride, inter6, inter7); + ST8x1_UB(inter8, (p_dst_st + 6 * dst_stride)); + ST8x1_UB(inter9, (p_dst_st + 7 * dst_stride)); + p_dst_st += 8; + } +} + +static void postproc_down_across_luma_msa(uint8_t *src_ptr, uint8_t *dst_ptr, + int32_t src_stride, + int32_t dst_stride, int32_t cols, + uint8_t *f) { + uint8_t *p_src = src_ptr; + uint8_t *p_dst = dst_ptr; + uint8_t *p_dst_st = dst_ptr; + uint8_t *f_orig = f; + uint16_t col; + uint64_t out0, out1, out2, out3; + v16u8 above2, above1, below2, below1; + v16u8 src, ref, ref_temp; + v16u8 inter0, inter1, inter2, inter3, inter4, inter5, inter6; + v16u8 inter7, inter8, inter9, inter10, inter11; + v16u8 inter12, inter13, inter14, inter15; + + for (col = (cols / 16); col--;) { + ref = LD_UB(f); + LD_UB2(p_src - 2 * src_stride, src_stride, above2, above1); + src = LD_UB(p_src); + LD_UB2(p_src + 1 * src_stride, src_stride, below1, below2); + VPX_AVER_IF_RETAIN(above2, above1, src, below1, below2, ref, inter0); + above2 = LD_UB(p_src + 3 * src_stride); + VPX_AVER_IF_RETAIN(above1, src, below1, below2, above2, ref, inter1); + above1 = LD_UB(p_src + 4 * src_stride); + VPX_AVER_IF_RETAIN(src, below1, below2, above2, above1, ref, inter2); + src = LD_UB(p_src + 5 * src_stride); + VPX_AVER_IF_RETAIN(below1, below2, above2, above1, src, ref, inter3); + below1 = LD_UB(p_src + 6 * src_stride); + VPX_AVER_IF_RETAIN(below2, above2, above1, src, below1, ref, inter4); + below2 = LD_UB(p_src + 7 * src_stride); + VPX_AVER_IF_RETAIN(above2, above1, src, below1, below2, ref, inter5); + above2 = LD_UB(p_src + 8 * src_stride); + VPX_AVER_IF_RETAIN(above1, src, below1, below2, above2, ref, inter6); + above1 = LD_UB(p_src + 9 * src_stride); + VPX_AVER_IF_RETAIN(src, below1, below2, above2, above1, ref, inter7); + src = LD_UB(p_src + 10 * src_stride); + VPX_AVER_IF_RETAIN(below1, below2, above2, above1, src, ref, inter8); + below1 = LD_UB(p_src + 11 * src_stride); + VPX_AVER_IF_RETAIN(below2, above2, above1, src, below1, ref, inter9); + below2 = LD_UB(p_src + 12 * src_stride); + VPX_AVER_IF_RETAIN(above2, above1, src, below1, below2, ref, inter10); + above2 = LD_UB(p_src + 13 * src_stride); + VPX_AVER_IF_RETAIN(above1, src, below1, below2, above2, ref, inter11); + above1 = LD_UB(p_src + 14 * src_stride); + VPX_AVER_IF_RETAIN(src, below1, below2, above2, above1, ref, inter12); + src = LD_UB(p_src + 15 * src_stride); + VPX_AVER_IF_RETAIN(below1, below2, above2, above1, src, ref, inter13); + below1 = LD_UB(p_src + 16 * src_stride); + VPX_AVER_IF_RETAIN(below2, above2, above1, src, below1, ref, inter14); + below2 = LD_UB(p_src + 17 * src_stride); + VPX_AVER_IF_RETAIN(above2, above1, src, below1, below2, ref, inter15); + ST_UB8(inter0, inter1, inter2, inter3, inter4, inter5, inter6, inter7, + p_dst, dst_stride); + ST_UB8(inter8, inter9, inter10, inter11, inter12, inter13, inter14, inter15, + p_dst + 8 * dst_stride, dst_stride); + p_src += 16; + p_dst += 16; + f += 16; + } + + if (0 != (cols / 16)) { + ref = LD_UB(f); + LD_UB2(p_src - 2 * src_stride, src_stride, above2, above1); + src = LD_UB(p_src); + LD_UB2(p_src + 1 * src_stride, src_stride, below1, below2); + VPX_AVER_IF_RETAIN(above2, above1, src, below1, below2, ref, inter0); + above2 = LD_UB(p_src + 3 * src_stride); + VPX_AVER_IF_RETAIN(above1, src, below1, below2, above2, ref, inter1); + above1 = LD_UB(p_src + 4 * src_stride); + VPX_AVER_IF_RETAIN(src, below1, below2, above2, above1, ref, inter2); + src = LD_UB(p_src + 5 * src_stride); + VPX_AVER_IF_RETAIN(below1, below2, above2, above1, src, ref, inter3); + below1 = LD_UB(p_src + 6 * src_stride); + VPX_AVER_IF_RETAIN(below2, above2, above1, src, below1, ref, inter4); + below2 = LD_UB(p_src + 7 * src_stride); + VPX_AVER_IF_RETAIN(above2, above1, src, below1, below2, ref, inter5); + above2 = LD_UB(p_src + 8 * src_stride); + VPX_AVER_IF_RETAIN(above1, src, below1, below2, above2, ref, inter6); + above1 = LD_UB(p_src + 9 * src_stride); + VPX_AVER_IF_RETAIN(src, below1, below2, above2, above1, ref, inter7); + src = LD_UB(p_src + 10 * src_stride); + VPX_AVER_IF_RETAIN(below1, below2, above2, above1, src, ref, inter8); + below1 = LD_UB(p_src + 11 * src_stride); + VPX_AVER_IF_RETAIN(below2, above2, above1, src, below1, ref, inter9); + below2 = LD_UB(p_src + 12 * src_stride); + VPX_AVER_IF_RETAIN(above2, above1, src, below1, below2, ref, inter10); + above2 = LD_UB(p_src + 13 * src_stride); + VPX_AVER_IF_RETAIN(above1, src, below1, below2, above2, ref, inter11); + above1 = LD_UB(p_src + 14 * src_stride); + VPX_AVER_IF_RETAIN(src, below1, below2, above2, above1, ref, inter12); + src = LD_UB(p_src + 15 * src_stride); + VPX_AVER_IF_RETAIN(below1, below2, above2, above1, src, ref, inter13); + below1 = LD_UB(p_src + 16 * src_stride); + VPX_AVER_IF_RETAIN(below2, above2, above1, src, below1, ref, inter14); + below2 = LD_UB(p_src + 17 * src_stride); + VPX_AVER_IF_RETAIN(above2, above1, src, below1, below2, ref, inter15); + out0 = __msa_copy_u_d((v2i64)inter0, 0); + out1 = __msa_copy_u_d((v2i64)inter1, 0); + out2 = __msa_copy_u_d((v2i64)inter2, 0); + out3 = __msa_copy_u_d((v2i64)inter3, 0); + SD4(out0, out1, out2, out3, p_dst, dst_stride); + + out0 = __msa_copy_u_d((v2i64)inter4, 0); + out1 = __msa_copy_u_d((v2i64)inter5, 0); + out2 = __msa_copy_u_d((v2i64)inter6, 0); + out3 = __msa_copy_u_d((v2i64)inter7, 0); + SD4(out0, out1, out2, out3, p_dst + 4 * dst_stride, dst_stride); + + out0 = __msa_copy_u_d((v2i64)inter8, 0); + out1 = __msa_copy_u_d((v2i64)inter9, 0); + out2 = __msa_copy_u_d((v2i64)inter10, 0); + out3 = __msa_copy_u_d((v2i64)inter11, 0); + SD4(out0, out1, out2, out3, p_dst + 8 * dst_stride, dst_stride); + + out0 = __msa_copy_u_d((v2i64)inter12, 0); + out1 = __msa_copy_u_d((v2i64)inter13, 0); + out2 = __msa_copy_u_d((v2i64)inter14, 0); + out3 = __msa_copy_u_d((v2i64)inter15, 0); + SD4(out0, out1, out2, out3, p_dst + 12 * dst_stride, dst_stride); + } + + f = f_orig; + p_dst = dst_ptr - 2; + LD_UB8(p_dst, dst_stride, inter0, inter1, inter2, inter3, inter4, inter5, + inter6, inter7); + LD_UB8(p_dst + 8 * dst_stride, dst_stride, inter8, inter9, inter10, inter11, + inter12, inter13, inter14, inter15); + + for (col = 0; col < cols / 8; ++col) { + ref = LD_UB(f); + f += 8; + TRANSPOSE12x16_B(inter0, inter1, inter2, inter3, inter4, inter5, inter6, + inter7, inter8, inter9, inter10, inter11, inter12, inter13, + inter14, inter15); + if (0 == col) { + above2 = inter2; + above1 = inter2; + } else { + above2 = inter0; + above1 = inter1; + } + + src = inter2; + below1 = inter3; + below2 = inter4; + ref_temp = (v16u8)__msa_splati_b((v16i8)ref, 0); + VPX_AVER_IF_RETAIN(above2, above1, src, below1, below2, ref_temp, inter2); + above2 = inter5; + ref_temp = (v16u8)__msa_splati_b((v16i8)ref, 1); + VPX_AVER_IF_RETAIN(above1, src, below1, below2, above2, ref_temp, inter3); + above1 = inter6; + ref_temp = (v16u8)__msa_splati_b((v16i8)ref, 2); + VPX_AVER_IF_RETAIN(src, below1, below2, above2, above1, ref_temp, inter4); + src = inter7; + ref_temp = (v16u8)__msa_splati_b((v16i8)ref, 3); + VPX_AVER_IF_RETAIN(below1, below2, above2, above1, src, ref_temp, inter5); + below1 = inter8; + ref_temp = (v16u8)__msa_splati_b((v16i8)ref, 4); + VPX_AVER_IF_RETAIN(below2, above2, above1, src, below1, ref_temp, inter6); + below2 = inter9; + ref_temp = (v16u8)__msa_splati_b((v16i8)ref, 5); + VPX_AVER_IF_RETAIN(above2, above1, src, below1, below2, ref_temp, inter7); + if (col == (cols / 8 - 1)) { + above2 = inter9; + } else { + above2 = inter10; + } + ref_temp = (v16u8)__msa_splati_b((v16i8)ref, 6); + VPX_AVER_IF_RETAIN(above1, src, below1, below2, above2, ref_temp, inter8); + if (col == (cols / 8 - 1)) { + above1 = inter9; + } else { + above1 = inter11; + } + ref_temp = (v16u8)__msa_splati_b((v16i8)ref, 7); + VPX_AVER_IF_RETAIN(src, below1, below2, above2, above1, ref_temp, inter9); + VPX_TRANSPOSE8x16_UB_UB(inter2, inter3, inter4, inter5, inter6, inter7, + inter8, inter9, inter2, inter3, inter4, inter5, + inter6, inter7, inter8, inter9, inter10, inter11, + inter12, inter13, inter14, inter15, above2, above1); + + p_dst += 8; + LD_UB2(p_dst, dst_stride, inter0, inter1); + ST8x1_UB(inter2, p_dst_st); + ST8x1_UB(inter3, (p_dst_st + 1 * dst_stride)); + LD_UB2(p_dst + 2 * dst_stride, dst_stride, inter2, inter3); + ST8x1_UB(inter4, (p_dst_st + 2 * dst_stride)); + ST8x1_UB(inter5, (p_dst_st + 3 * dst_stride)); + LD_UB2(p_dst + 4 * dst_stride, dst_stride, inter4, inter5); + ST8x1_UB(inter6, (p_dst_st + 4 * dst_stride)); + ST8x1_UB(inter7, (p_dst_st + 5 * dst_stride)); + LD_UB2(p_dst + 6 * dst_stride, dst_stride, inter6, inter7); + ST8x1_UB(inter8, (p_dst_st + 6 * dst_stride)); + ST8x1_UB(inter9, (p_dst_st + 7 * dst_stride)); + LD_UB2(p_dst + 8 * dst_stride, dst_stride, inter8, inter9); + ST8x1_UB(inter10, (p_dst_st + 8 * dst_stride)); + ST8x1_UB(inter11, (p_dst_st + 9 * dst_stride)); + LD_UB2(p_dst + 10 * dst_stride, dst_stride, inter10, inter11); + ST8x1_UB(inter12, (p_dst_st + 10 * dst_stride)); + ST8x1_UB(inter13, (p_dst_st + 11 * dst_stride)); + LD_UB2(p_dst + 12 * dst_stride, dst_stride, inter12, inter13); + ST8x1_UB(inter14, (p_dst_st + 12 * dst_stride)); + ST8x1_UB(inter15, (p_dst_st + 13 * dst_stride)); + LD_UB2(p_dst + 14 * dst_stride, dst_stride, inter14, inter15); + ST8x1_UB(above2, (p_dst_st + 14 * dst_stride)); + ST8x1_UB(above1, (p_dst_st + 15 * dst_stride)); + p_dst_st += 8; + } +} + +void vpx_post_proc_down_and_across_mb_row_msa(uint8_t *src, uint8_t *dst, + int32_t src_stride, + int32_t dst_stride, int32_t cols, + uint8_t *f, int32_t size) { + if (8 == size) { + postproc_down_across_chroma_msa(src, dst, src_stride, dst_stride, cols, f); + } else if (16 == size) { + postproc_down_across_luma_msa(src, dst, src_stride, dst_stride, cols, f); + } +} + +void vpx_mbpost_proc_across_ip_msa(uint8_t *src_ptr, int32_t pitch, + int32_t rows, int32_t cols, int32_t flimit) { + int32_t row, col, cnt; + uint8_t *src_dup = src_ptr; + v16u8 src0, src, tmp_orig; + v16u8 tmp = { 0 }; + v16i8 zero = { 0 }; + v8u16 sum_h, src_r_h, src_l_h; + v4u32 src_r_w; + v4i32 flimit_vec; + + flimit_vec = __msa_fill_w(flimit); + for (row = rows; row--;) { + int32_t sum_sq; + int32_t sum = 0; + src0 = (v16u8)__msa_fill_b(src_dup[0]); + ST8x1_UB(src0, (src_dup - 8)); + + src0 = (v16u8)__msa_fill_b(src_dup[cols - 1]); + ST_UB(src0, src_dup + cols); + src_dup[cols + 16] = src_dup[cols - 1]; + tmp_orig = (v16u8)__msa_ldi_b(0); + tmp_orig[15] = tmp[15]; + src = LD_UB(src_dup - 8); + src[15] = 0; + ILVRL_B2_UH(zero, src, src_r_h, src_l_h); + src_r_w = __msa_dotp_u_w(src_r_h, src_r_h); + src_r_w += __msa_dotp_u_w(src_l_h, src_l_h); + sum_sq = HADD_SW_S32(src_r_w) + 16; + sum_h = __msa_hadd_u_h(src, src); + sum = HADD_UH_U32(sum_h); + { + v16u8 src7, src8, src_r, src_l; + v16i8 mask; + v8u16 add_r, add_l; + v8i16 sub_r, sub_l, sum_r, sum_l, mask0, mask1; + v4i32 sum_sq0, sum_sq1, sum_sq2, sum_sq3; + v4i32 sub0, sub1, sub2, sub3; + v4i32 sum0_w, sum1_w, sum2_w, sum3_w; + v4i32 mul0, mul1, mul2, mul3; + v4i32 total0, total1, total2, total3; + v8i16 const8 = __msa_fill_h(8); + + src7 = LD_UB(src_dup + 7); + src8 = LD_UB(src_dup - 8); + for (col = 0; col < (cols >> 4); ++col) { + ILVRL_B2_UB(src7, src8, src_r, src_l); + HSUB_UB2_SH(src_r, src_l, sub_r, sub_l); + + sum_r[0] = sum + sub_r[0]; + for (cnt = 0; cnt < 7; ++cnt) { + sum_r[cnt + 1] = sum_r[cnt] + sub_r[cnt + 1]; + } + sum_l[0] = sum_r[7] + sub_l[0]; + for (cnt = 0; cnt < 7; ++cnt) { + sum_l[cnt + 1] = sum_l[cnt] + sub_l[cnt + 1]; + } + sum = sum_l[7]; + src = LD_UB(src_dup + 16 * col); + ILVRL_B2_UH(zero, src, src_r_h, src_l_h); + src7 = (v16u8)((const8 + sum_r + (v8i16)src_r_h) >> 4); + src8 = (v16u8)((const8 + sum_l + (v8i16)src_l_h) >> 4); + tmp = (v16u8)__msa_pckev_b((v16i8)src8, (v16i8)src7); + + HADD_UB2_UH(src_r, src_l, add_r, add_l); + UNPCK_SH_SW(sub_r, sub0, sub1); + UNPCK_SH_SW(sub_l, sub2, sub3); + ILVR_H2_SW(zero, add_r, zero, add_l, sum0_w, sum2_w); + ILVL_H2_SW(zero, add_r, zero, add_l, sum1_w, sum3_w); + MUL4(sum0_w, sub0, sum1_w, sub1, sum2_w, sub2, sum3_w, sub3, mul0, mul1, + mul2, mul3); + sum_sq0[0] = sum_sq + mul0[0]; + for (cnt = 0; cnt < 3; ++cnt) { + sum_sq0[cnt + 1] = sum_sq0[cnt] + mul0[cnt + 1]; + } + sum_sq1[0] = sum_sq0[3] + mul1[0]; + for (cnt = 0; cnt < 3; ++cnt) { + sum_sq1[cnt + 1] = sum_sq1[cnt] + mul1[cnt + 1]; + } + sum_sq2[0] = sum_sq1[3] + mul2[0]; + for (cnt = 0; cnt < 3; ++cnt) { + sum_sq2[cnt + 1] = sum_sq2[cnt] + mul2[cnt + 1]; + } + sum_sq3[0] = sum_sq2[3] + mul3[0]; + for (cnt = 0; cnt < 3; ++cnt) { + sum_sq3[cnt + 1] = sum_sq3[cnt] + mul3[cnt + 1]; + } + sum_sq = sum_sq3[3]; + + UNPCK_SH_SW(sum_r, sum0_w, sum1_w); + UNPCK_SH_SW(sum_l, sum2_w, sum3_w); + total0 = sum_sq0 * __msa_ldi_w(15); + total0 -= sum0_w * sum0_w; + total1 = sum_sq1 * __msa_ldi_w(15); + total1 -= sum1_w * sum1_w; + total2 = sum_sq2 * __msa_ldi_w(15); + total2 -= sum2_w * sum2_w; + total3 = sum_sq3 * __msa_ldi_w(15); + total3 -= sum3_w * sum3_w; + total0 = (total0 < flimit_vec); + total1 = (total1 < flimit_vec); + total2 = (total2 < flimit_vec); + total3 = (total3 < flimit_vec); + PCKEV_H2_SH(total1, total0, total3, total2, mask0, mask1); + mask = __msa_pckev_b((v16i8)mask1, (v16i8)mask0); + tmp = __msa_bmz_v(tmp, src, (v16u8)mask); + + if (col == 0) { + uint64_t src_d; + + src_d = __msa_copy_u_d((v2i64)tmp_orig, 1); + SD(src_d, (src_dup - 8)); + } + + src7 = LD_UB(src_dup + 16 * (col + 1) + 7); + src8 = LD_UB(src_dup + 16 * (col + 1) - 8); + ST_UB(tmp, (src_dup + (16 * col))); + } + + src_dup += pitch; + } + } +} + +void vpx_mbpost_proc_down_msa(uint8_t *dst_ptr, int32_t pitch, int32_t rows, + int32_t cols, int32_t flimit) { + int32_t row, col, cnt, i; + v4i32 flimit_vec; + v16u8 dst7, dst8, dst_r_b, dst_l_b; + v16i8 mask; + v8u16 add_r, add_l; + v8i16 dst_r_h, dst_l_h, sub_r, sub_l, mask0, mask1; + v4i32 sub0, sub1, sub2, sub3, total0, total1, total2, total3; + + flimit_vec = __msa_fill_w(flimit); + + for (col = 0; col < (cols >> 4); ++col) { + uint8_t *dst_tmp = &dst_ptr[col << 4]; + v16u8 dst; + v16i8 zero = { 0 }; + v16u8 tmp[16]; + v8i16 mult0, mult1, rv2_0, rv2_1; + v8i16 sum0_h = { 0 }; + v8i16 sum1_h = { 0 }; + v4i32 mul0 = { 0 }; + v4i32 mul1 = { 0 }; + v4i32 mul2 = { 0 }; + v4i32 mul3 = { 0 }; + v4i32 sum0_w, sum1_w, sum2_w, sum3_w; + v4i32 add0, add1, add2, add3; + const int16_t *rv2[16]; + + dst = LD_UB(dst_tmp); + for (cnt = (col << 4), i = 0; i < 16; ++cnt) { + rv2[i] = vpx_rv + (i & 7); + ++i; + } + for (cnt = -8; cnt < 0; ++cnt) { + ST_UB(dst, dst_tmp + cnt * pitch); + } + + dst = LD_UB((dst_tmp + (rows - 1) * pitch)); + for (cnt = rows; cnt < rows + 17; ++cnt) { + ST_UB(dst, dst_tmp + cnt * pitch); + } + for (cnt = -8; cnt <= 6; ++cnt) { + dst = LD_UB(dst_tmp + (cnt * pitch)); + UNPCK_UB_SH(dst, dst_r_h, dst_l_h); + MUL2(dst_r_h, dst_r_h, dst_l_h, dst_l_h, mult0, mult1); + mul0 += (v4i32)__msa_ilvr_h((v8i16)zero, (v8i16)mult0); + mul1 += (v4i32)__msa_ilvl_h((v8i16)zero, (v8i16)mult0); + mul2 += (v4i32)__msa_ilvr_h((v8i16)zero, (v8i16)mult1); + mul3 += (v4i32)__msa_ilvl_h((v8i16)zero, (v8i16)mult1); + ADD2(sum0_h, dst_r_h, sum1_h, dst_l_h, sum0_h, sum1_h); + } + + for (row = 0; row < (rows + 8); ++row) { + for (i = 0; i < 8; ++i) { + rv2_0[i] = *(rv2[i] + (row & 127)); + rv2_1[i] = *(rv2[i + 8] + (row & 127)); + } + dst7 = LD_UB(dst_tmp + (7 * pitch)); + dst8 = LD_UB(dst_tmp - (8 * pitch)); + ILVRL_B2_UB(dst7, dst8, dst_r_b, dst_l_b); + + HSUB_UB2_SH(dst_r_b, dst_l_b, sub_r, sub_l); + UNPCK_SH_SW(sub_r, sub0, sub1); + UNPCK_SH_SW(sub_l, sub2, sub3); + sum0_h += sub_r; + sum1_h += sub_l; + + HADD_UB2_UH(dst_r_b, dst_l_b, add_r, add_l); + + ILVRL_H2_SW(zero, add_r, add0, add1); + ILVRL_H2_SW(zero, add_l, add2, add3); + mul0 += add0 * sub0; + mul1 += add1 * sub1; + mul2 += add2 * sub2; + mul3 += add3 * sub3; + dst = LD_UB(dst_tmp); + ILVRL_B2_SH(zero, dst, dst_r_h, dst_l_h); + dst7 = (v16u8)((rv2_0 + sum0_h + dst_r_h) >> 4); + dst8 = (v16u8)((rv2_1 + sum1_h + dst_l_h) >> 4); + tmp[row & 15] = (v16u8)__msa_pckev_b((v16i8)dst8, (v16i8)dst7); + + UNPCK_SH_SW(sum0_h, sum0_w, sum1_w); + UNPCK_SH_SW(sum1_h, sum2_w, sum3_w); + total0 = mul0 * __msa_ldi_w(15); + total0 -= sum0_w * sum0_w; + total1 = mul1 * __msa_ldi_w(15); + total1 -= sum1_w * sum1_w; + total2 = mul2 * __msa_ldi_w(15); + total2 -= sum2_w * sum2_w; + total3 = mul3 * __msa_ldi_w(15); + total3 -= sum3_w * sum3_w; + total0 = (total0 < flimit_vec); + total1 = (total1 < flimit_vec); + total2 = (total2 < flimit_vec); + total3 = (total3 < flimit_vec); + PCKEV_H2_SH(total1, total0, total3, total2, mask0, mask1); + mask = __msa_pckev_b((v16i8)mask1, (v16i8)mask0); + tmp[row & 15] = __msa_bmz_v(tmp[row & 15], dst, (v16u8)mask); + + if (row >= 8) { + ST_UB(tmp[(row - 8) & 15], (dst_tmp - 8 * pitch)); + } + + dst_tmp += pitch; + } + } +} diff --git a/vpx_dsp/mips/fwd_dct32x32_msa.c b/vpx_dsp/mips/fwd_dct32x32_msa.c new file mode 100644 index 0000000..06fdc95 --- /dev/null +++ b/vpx_dsp/mips/fwd_dct32x32_msa.c @@ -0,0 +1,947 @@ +/* + * Copyright (c) 2015 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "vpx_dsp/mips/fwd_txfm_msa.h" + +static void fdct8x32_1d_column_load_butterfly(const int16_t *input, + int32_t src_stride, + int16_t *temp_buff) { + v8i16 in0, in1, in2, in3, in4, in5, in6, in7; + v8i16 step0, step1, step2, step3; + v8i16 in0_1, in1_1, in2_1, in3_1, in4_1, in5_1, in6_1, in7_1; + v8i16 step0_1, step1_1, step2_1, step3_1; + + /* 1st and 2nd set */ + LD_SH4(input, src_stride, in0, in1, in2, in3); + LD_SH4(input + (28 * src_stride), src_stride, in4, in5, in6, in7); + LD_SH4(input + (4 * src_stride), src_stride, in0_1, in1_1, in2_1, in3_1); + LD_SH4(input + (24 * src_stride), src_stride, in4_1, in5_1, in6_1, in7_1); + SLLI_4V(in0, in1, in2, in3, 2); + SLLI_4V(in4, in5, in6, in7, 2); + SLLI_4V(in0_1, in1_1, in2_1, in3_1, 2); + SLLI_4V(in4_1, in5_1, in6_1, in7_1, 2); + BUTTERFLY_8(in0, in1, in2, in3, in4, in5, in6, in7, step0, step1, step2, + step3, in4, in5, in6, in7); + BUTTERFLY_8(in0_1, in1_1, in2_1, in3_1, in4_1, in5_1, in6_1, in7_1, step0_1, + step1_1, step2_1, step3_1, in4_1, in5_1, in6_1, in7_1); + ST_SH4(step0, step1, step2, step3, temp_buff, 8); + ST_SH4(in4, in5, in6, in7, temp_buff + (28 * 8), 8); + ST_SH4(step0_1, step1_1, step2_1, step3_1, temp_buff + (4 * 8), 8); + ST_SH4(in4_1, in5_1, in6_1, in7_1, temp_buff + (24 * 8), 8); + + /* 3rd and 4th set */ + LD_SH4(input + (8 * src_stride), src_stride, in0, in1, in2, in3); + LD_SH4(input + (20 * src_stride), src_stride, in4, in5, in6, in7); + LD_SH4(input + (12 * src_stride), src_stride, in0_1, in1_1, in2_1, in3_1); + LD_SH4(input + (16 * src_stride), src_stride, in4_1, in5_1, in6_1, in7_1); + SLLI_4V(in0, in1, in2, in3, 2); + SLLI_4V(in4, in5, in6, in7, 2); + SLLI_4V(in0_1, in1_1, in2_1, in3_1, 2); + SLLI_4V(in4_1, in5_1, in6_1, in7_1, 2); + BUTTERFLY_8(in0, in1, in2, in3, in4, in5, in6, in7, step0, step1, step2, + step3, in4, in5, in6, in7); + BUTTERFLY_8(in0_1, in1_1, in2_1, in3_1, in4_1, in5_1, in6_1, in7_1, step0_1, + step1_1, step2_1, step3_1, in4_1, in5_1, in6_1, in7_1); + ST_SH4(step0, step1, step2, step3, temp_buff + (8 * 8), 8); + ST_SH4(in4, in5, in6, in7, temp_buff + (20 * 8), 8); + ST_SH4(step0_1, step1_1, step2_1, step3_1, temp_buff + (12 * 8), 8); + ST_SH4(in4_1, in5_1, in6_1, in7_1, temp_buff + (15 * 8) + 8, 8); +} + +static void fdct8x32_1d_column_even_store(int16_t *input, int16_t *temp) { + v8i16 in0, in1, in2, in3, in4, in5, in6, in7; + v8i16 in8, in9, in10, in11, in12, in13, in14, in15; + v8i16 vec0, vec1, vec2, vec3, vec4, vec5, vec6, vec7; + v8i16 temp0, temp1; + + /* fdct even */ + LD_SH4(input, 8, in0, in1, in2, in3); + LD_SH4(input + 96, 8, in12, in13, in14, in15); + BUTTERFLY_8(in0, in1, in2, in3, in12, in13, in14, in15, vec0, vec1, vec2, + vec3, in12, in13, in14, in15); + LD_SH4(input + 32, 8, in4, in5, in6, in7); + LD_SH4(input + 64, 8, in8, in9, in10, in11); + BUTTERFLY_8(in4, in5, in6, in7, in8, in9, in10, in11, vec4, vec5, vec6, vec7, + in8, in9, in10, in11); + + /* Stage 3 */ + ADD4(vec0, vec7, vec1, vec6, vec2, vec5, vec3, vec4, in0, in1, in2, in3); + BUTTERFLY_4(in0, in1, in2, in3, temp0, in4, in1, in0); + DOTP_CONST_PAIR(temp0, in4, cospi_16_64, cospi_16_64, temp1, temp0); + FDCT32_POSTPROC_2V_POS_H(temp0, temp1); + ST_SH(temp0, temp); + ST_SH(temp1, temp + 512); + + DOTP_CONST_PAIR(in0, in1, cospi_24_64, cospi_8_64, temp1, temp0); + FDCT32_POSTPROC_2V_POS_H(temp0, temp1); + ST_SH(temp0, temp + 256); + ST_SH(temp1, temp + 768); + + SUB4(vec0, vec7, vec1, vec6, vec2, vec5, vec3, vec4, vec7, vec6, vec5, vec4); + DOTP_CONST_PAIR(vec6, vec5, cospi_16_64, cospi_16_64, vec5, vec6); + ADD2(vec4, vec5, vec7, vec6, vec0, vec1); + DOTP_CONST_PAIR(vec1, vec0, cospi_28_64, cospi_4_64, temp1, temp0); + FDCT32_POSTPROC_2V_POS_H(temp0, temp1); + ST_SH(temp0, temp + 128); + ST_SH(temp1, temp + 896); + + SUB2(vec4, vec5, vec7, vec6, vec4, vec7); + DOTP_CONST_PAIR(vec7, vec4, cospi_12_64, cospi_20_64, temp1, temp0); + FDCT32_POSTPROC_2V_POS_H(temp0, temp1); + ST_SH(temp0, temp + 640); + ST_SH(temp1, temp + 384); + + DOTP_CONST_PAIR(in13, in10, cospi_16_64, cospi_16_64, vec2, vec5); + DOTP_CONST_PAIR(in12, in11, cospi_16_64, cospi_16_64, vec3, vec4); + ADD4(in8, vec3, in9, vec2, in14, vec5, in15, vec4, in0, vec1, vec6, in2); + DOTP_CONST_PAIR(vec6, vec1, cospi_24_64, cospi_8_64, in1, in3); + ADD2(in0, in1, in2, in3, vec0, vec7); + DOTP_CONST_PAIR(vec7, vec0, cospi_30_64, cospi_2_64, temp1, temp0); + FDCT32_POSTPROC_2V_POS_H(temp0, temp1); + ST_SH(temp0, temp + 64); + ST_SH(temp1, temp + 960); + + SUB2(in0, in1, in2, in3, in0, in2); + DOTP_CONST_PAIR(in2, in0, cospi_14_64, cospi_18_64, temp1, temp0); + FDCT32_POSTPROC_2V_POS_H(temp0, temp1); + ST_SH(temp0, temp + 576); + ST_SH(temp1, temp + 448); + + SUB2(in9, vec2, in14, vec5, vec2, vec5); + DOTP_CONST_PAIR((-vec2), vec5, cospi_24_64, cospi_8_64, in2, in1); + SUB4(in8, vec3, in15, vec4, in3, in2, in0, in1, in3, in0, vec2, vec5); + DOTP_CONST_PAIR(vec5, vec2, cospi_22_64, cospi_10_64, temp1, temp0); + FDCT32_POSTPROC_2V_POS_H(temp0, temp1); + ST_SH(temp0, temp + 320); + ST_SH(temp1, temp + 704); + + ADD2(in3, in2, in0, in1, vec3, vec4); + DOTP_CONST_PAIR(vec4, vec3, cospi_6_64, cospi_26_64, temp0, temp1); + FDCT32_POSTPROC_2V_POS_H(temp0, temp1); + ST_SH(temp0, temp + 192); + ST_SH(temp1, temp + 832); +} + +static void fdct8x32_1d_column_odd_store(int16_t *input, int16_t *temp_ptr) { + v8i16 in16, in17, in18, in19, in20, in21, in22, in23; + v8i16 in24, in25, in26, in27, in28, in29, in30, in31, vec4, vec5; + + in20 = LD_SH(input + 32); + in21 = LD_SH(input + 40); + in26 = LD_SH(input + 80); + in27 = LD_SH(input + 88); + + DOTP_CONST_PAIR(in27, in20, cospi_16_64, cospi_16_64, in20, in27); + DOTP_CONST_PAIR(in26, in21, cospi_16_64, cospi_16_64, in21, in26); + + in18 = LD_SH(input + 16); + in19 = LD_SH(input + 24); + in28 = LD_SH(input + 96); + in29 = LD_SH(input + 104); + + vec4 = in19 - in20; + ST_SH(vec4, input + 32); + vec4 = in18 - in21; + ST_SH(vec4, input + 40); + vec4 = in29 - in26; + ST_SH(vec4, input + 80); + vec4 = in28 - in27; + ST_SH(vec4, input + 88); + + in21 = in18 + in21; + in20 = in19 + in20; + in27 = in28 + in27; + in26 = in29 + in26; + + LD_SH4(input + 48, 8, in22, in23, in24, in25); + DOTP_CONST_PAIR(in25, in22, cospi_16_64, cospi_16_64, in22, in25); + DOTP_CONST_PAIR(in24, in23, cospi_16_64, cospi_16_64, in23, in24); + + in16 = LD_SH(input); + in17 = LD_SH(input + 8); + in30 = LD_SH(input + 112); + in31 = LD_SH(input + 120); + + vec4 = in17 - in22; + ST_SH(vec4, input + 16); + vec4 = in16 - in23; + ST_SH(vec4, input + 24); + vec4 = in31 - in24; + ST_SH(vec4, input + 96); + vec4 = in30 - in25; + ST_SH(vec4, input + 104); + + ADD4(in16, in23, in17, in22, in30, in25, in31, in24, in16, in17, in30, in31); + DOTP_CONST_PAIR(in26, in21, cospi_24_64, cospi_8_64, in18, in29); + DOTP_CONST_PAIR(in27, in20, cospi_24_64, cospi_8_64, in19, in28); + ADD4(in16, in19, in17, in18, in30, in29, in31, in28, in27, in22, in21, in25); + DOTP_CONST_PAIR(in21, in22, cospi_28_64, cospi_4_64, in26, in24); + ADD2(in27, in26, in25, in24, in23, in20); + DOTP_CONST_PAIR(in20, in23, cospi_31_64, cospi_1_64, vec4, vec5); + FDCT32_POSTPROC_2V_POS_H(vec5, vec4); + ST_SH(vec5, temp_ptr); + ST_SH(vec4, temp_ptr + 960); + + SUB2(in27, in26, in25, in24, in22, in21); + DOTP_CONST_PAIR(in21, in22, cospi_15_64, cospi_17_64, vec5, vec4); + FDCT32_POSTPROC_2V_POS_H(vec5, vec4); + ST_SH(vec5, temp_ptr + 448); + ST_SH(vec4, temp_ptr + 512); + + SUB4(in17, in18, in16, in19, in31, in28, in30, in29, in23, in26, in24, in20); + DOTP_CONST_PAIR((-in23), in20, cospi_28_64, cospi_4_64, in27, in25); + SUB2(in26, in27, in24, in25, in23, in20); + DOTP_CONST_PAIR(in20, in23, cospi_23_64, cospi_9_64, vec4, vec5); + FDCT32_POSTPROC_2V_POS_H(vec5, vec4); + ST_SH(vec4, temp_ptr + 704); + ST_SH(vec5, temp_ptr + 256); + + ADD2(in26, in27, in24, in25, in22, in21); + DOTP_CONST_PAIR(in21, in22, cospi_7_64, cospi_25_64, vec4, vec5); + FDCT32_POSTPROC_2V_POS_H(vec5, vec4); + ST_SH(vec4, temp_ptr + 192); + ST_SH(vec5, temp_ptr + 768); + + LD_SH4(input + 16, 8, in22, in23, in20, in21); + LD_SH4(input + 80, 8, in26, in27, in24, in25); + in16 = in20; + in17 = in21; + DOTP_CONST_PAIR(-in16, in27, cospi_24_64, cospi_8_64, in20, in27); + DOTP_CONST_PAIR(-in17, in26, cospi_24_64, cospi_8_64, in21, in26); + SUB4(in23, in20, in22, in21, in25, in26, in24, in27, in28, in17, in18, in31); + DOTP_CONST_PAIR(in18, in17, cospi_12_64, cospi_20_64, in29, in30); + ADD2(in28, in29, in31, in30, in16, in19); + DOTP_CONST_PAIR(in19, in16, cospi_27_64, cospi_5_64, vec5, vec4); + FDCT32_POSTPROC_2V_POS_H(vec5, vec4); + ST_SH(vec5, temp_ptr + 832); + ST_SH(vec4, temp_ptr + 128); + + SUB2(in28, in29, in31, in30, in17, in18); + DOTP_CONST_PAIR(in18, in17, cospi_11_64, cospi_21_64, vec5, vec4); + FDCT32_POSTPROC_2V_POS_H(vec5, vec4); + ST_SH(vec5, temp_ptr + 320); + ST_SH(vec4, temp_ptr + 640); + ADD4(in22, in21, in23, in20, in24, in27, in25, in26, in16, in29, in30, in19); + DOTP_CONST_PAIR(-in16, in19, cospi_12_64, cospi_20_64, in28, in31); + SUB2(in29, in28, in30, in31, in16, in19); + DOTP_CONST_PAIR(in19, in16, cospi_19_64, cospi_13_64, vec5, vec4); + FDCT32_POSTPROC_2V_POS_H(vec5, vec4); + ST_SH(vec5, temp_ptr + 576); + ST_SH(vec4, temp_ptr + 384); + + ADD2(in29, in28, in30, in31, in17, in18); + DOTP_CONST_PAIR(in18, in17, cospi_3_64, cospi_29_64, vec5, vec4); + FDCT32_POSTPROC_2V_POS_H(vec5, vec4); + ST_SH(vec5, temp_ptr + 64); + ST_SH(vec4, temp_ptr + 896); +} + +static void fdct8x32_1d_column(const int16_t *input, int32_t src_stride, + int16_t *tmp_buf, int16_t *tmp_buf_big) { + fdct8x32_1d_column_load_butterfly(input, src_stride, tmp_buf); + fdct8x32_1d_column_even_store(tmp_buf, tmp_buf_big); + fdct8x32_1d_column_odd_store(tmp_buf + 128, (tmp_buf_big + 32)); +} + +static void fdct8x32_1d_row_load_butterfly(int16_t *temp_buff, + int16_t *output) { + v8i16 in0, in1, in2, in3, in4, in5, in6, in7; + v8i16 in8, in9, in10, in11, in12, in13, in14, in15; + v8i16 step0, step1, step2, step3, step4, step5, step6, step7; + + LD_SH8(temp_buff, 32, in0, in1, in2, in3, in4, in5, in6, in7); + LD_SH8(temp_buff + 24, 32, in8, in9, in10, in11, in12, in13, in14, in15); + TRANSPOSE8x8_SH_SH(in0, in1, in2, in3, in4, in5, in6, in7, in0, in1, in2, in3, + in4, in5, in6, in7); + TRANSPOSE8x8_SH_SH(in8, in9, in10, in11, in12, in13, in14, in15, in8, in9, + in10, in11, in12, in13, in14, in15); + BUTTERFLY_16(in0, in1, in2, in3, in4, in5, in6, in7, in8, in9, in10, in11, + in12, in13, in14, in15, step0, step1, step2, step3, step4, step5, + step6, step7, in8, in9, in10, in11, in12, in13, in14, in15); + ST_SH8(step0, step1, step2, step3, step4, step5, step6, step7, output, 8); + ST_SH8(in8, in9, in10, in11, in12, in13, in14, in15, (output + 24 * 8), 8); + + /* 2nd set */ + LD_SH8(temp_buff + 8, 32, in0, in1, in2, in3, in4, in5, in6, in7); + LD_SH8(temp_buff + 16, 32, in8, in9, in10, in11, in12, in13, in14, in15); + TRANSPOSE8x8_SH_SH(in0, in1, in2, in3, in4, in5, in6, in7, in0, in1, in2, in3, + in4, in5, in6, in7); + TRANSPOSE8x8_SH_SH(in8, in9, in10, in11, in12, in13, in14, in15, in8, in9, + in10, in11, in12, in13, in14, in15); + BUTTERFLY_16(in0, in1, in2, in3, in4, in5, in6, in7, in8, in9, in10, in11, + in12, in13, in14, in15, step0, step1, step2, step3, step4, step5, + step6, step7, in8, in9, in10, in11, in12, in13, in14, in15); + ST_SH8(step0, step1, step2, step3, step4, step5, step6, step7, + (output + 8 * 8), 8); + ST_SH8(in8, in9, in10, in11, in12, in13, in14, in15, (output + 16 * 8), 8); +} + +static void fdct8x32_1d_row_even_4x(int16_t *input, int16_t *interm_ptr, + int16_t *out) { + v8i16 in0, in1, in2, in3, in4, in5, in6, in7; + v8i16 in8, in9, in10, in11, in12, in13, in14, in15; + v8i16 vec0, vec1, vec2, vec3, vec4, vec5, vec6, vec7; + v4i32 vec0_l, vec1_l, vec2_l, vec3_l, vec4_l, vec5_l, vec6_l, vec7_l; + v4i32 vec0_r, vec1_r, vec2_r, vec3_r, vec4_r, vec5_r, vec6_r, vec7_r; + v4i32 tmp0_w, tmp1_w, tmp2_w, tmp3_w; + + /* fdct32 even */ + /* stage 2 */ + LD_SH8(input, 8, in0, in1, in2, in3, in4, in5, in6, in7); + LD_SH8(input + 64, 8, in8, in9, in10, in11, in12, in13, in14, in15); + + BUTTERFLY_16(in0, in1, in2, in3, in4, in5, in6, in7, in8, in9, in10, in11, + in12, in13, in14, in15, vec0, vec1, vec2, vec3, vec4, vec5, vec6, + vec7, in8, in9, in10, in11, in12, in13, in14, in15); + ST_SH8(vec0, vec1, vec2, vec3, vec4, vec5, vec6, vec7, interm_ptr, 8); + ST_SH8(in8, in9, in10, in11, in12, in13, in14, in15, interm_ptr + 64, 8); + + /* Stage 3 */ + UNPCK_SH_SW(vec0, vec0_l, vec0_r); + UNPCK_SH_SW(vec1, vec1_l, vec1_r); + UNPCK_SH_SW(vec2, vec2_l, vec2_r); + UNPCK_SH_SW(vec3, vec3_l, vec3_r); + UNPCK_SH_SW(vec4, vec4_l, vec4_r); + UNPCK_SH_SW(vec5, vec5_l, vec5_r); + UNPCK_SH_SW(vec6, vec6_l, vec6_r); + UNPCK_SH_SW(vec7, vec7_l, vec7_r); + ADD4(vec0_r, vec7_r, vec1_r, vec6_r, vec2_r, vec5_r, vec3_r, vec4_r, tmp0_w, + tmp1_w, tmp2_w, tmp3_w); + BUTTERFLY_4(tmp0_w, tmp1_w, tmp2_w, tmp3_w, vec4_r, vec6_r, vec7_r, vec5_r); + ADD4(vec0_l, vec7_l, vec1_l, vec6_l, vec2_l, vec5_l, vec3_l, vec4_l, vec0_r, + vec1_r, vec2_r, vec3_r); + + tmp3_w = vec0_r + vec3_r; + vec0_r = vec0_r - vec3_r; + vec3_r = vec1_r + vec2_r; + vec1_r = vec1_r - vec2_r; + + DOTP_CONST_PAIR_W(vec4_r, vec6_r, tmp3_w, vec3_r, cospi_16_64, cospi_16_64, + vec4_r, tmp3_w, vec6_r, vec3_r); + FDCT32_POSTPROC_NEG_W(vec4_r); + FDCT32_POSTPROC_NEG_W(tmp3_w); + FDCT32_POSTPROC_NEG_W(vec6_r); + FDCT32_POSTPROC_NEG_W(vec3_r); + PCKEV_H2_SH(vec4_r, tmp3_w, vec6_r, vec3_r, vec4, vec5); + ST_SH2(vec5, vec4, out, 8); + + DOTP_CONST_PAIR_W(vec5_r, vec7_r, vec0_r, vec1_r, cospi_24_64, cospi_8_64, + vec4_r, tmp3_w, vec6_r, vec3_r); + FDCT32_POSTPROC_NEG_W(vec4_r); + FDCT32_POSTPROC_NEG_W(tmp3_w); + FDCT32_POSTPROC_NEG_W(vec6_r); + FDCT32_POSTPROC_NEG_W(vec3_r); + PCKEV_H2_SH(vec4_r, tmp3_w, vec6_r, vec3_r, vec4, vec5); + ST_SH2(vec5, vec4, out + 16, 8); + + LD_SH8(interm_ptr, 8, vec0, vec1, vec2, vec3, vec4, vec5, vec6, vec7); + SUB4(vec3, vec4, vec2, vec5, vec1, vec6, vec0, vec7, vec4, vec5, vec6, vec7); + DOTP_CONST_PAIR(vec6, vec5, cospi_16_64, cospi_16_64, vec5, vec6); + ADD2(vec4, vec5, vec7, vec6, vec0, vec1); + DOTP_CONST_PAIR(vec1, vec0, cospi_28_64, cospi_4_64, in5, in4); + FDCT_POSTPROC_2V_NEG_H(in4, in5); + ST_SH(in4, out + 32); + ST_SH(in5, out + 56); + + SUB2(vec4, vec5, vec7, vec6, vec4, vec7); + DOTP_CONST_PAIR(vec7, vec4, cospi_12_64, cospi_20_64, in5, in4); + FDCT_POSTPROC_2V_NEG_H(in4, in5); + ST_SH(in4, out + 40); + ST_SH(in5, out + 48); + + LD_SH8(interm_ptr + 64, 8, in8, in9, in10, in11, in12, in13, in14, in15); + DOTP_CONST_PAIR(in13, in10, cospi_16_64, cospi_16_64, vec2, vec5); + DOTP_CONST_PAIR(in12, in11, cospi_16_64, cospi_16_64, vec3, vec4); + ADD4(in8, vec3, in9, vec2, in14, vec5, in15, vec4, in0, vec1, vec6, in2); + DOTP_CONST_PAIR(vec6, vec1, cospi_24_64, cospi_8_64, in1, in3); + ADD2(in0, in1, in2, in3, vec0, vec7); + DOTP_CONST_PAIR(vec7, vec0, cospi_30_64, cospi_2_64, in5, in4); + FDCT_POSTPROC_2V_NEG_H(in4, in5); + ST_SH(in4, out + 64); + ST_SH(in5, out + 120); + + SUB2(in0, in1, in2, in3, in0, in2); + DOTP_CONST_PAIR(in2, in0, cospi_14_64, cospi_18_64, in5, in4); + FDCT_POSTPROC_2V_NEG_H(in4, in5); + ST_SH(in4, out + 72); + ST_SH(in5, out + 112); + + SUB2(in9, vec2, in14, vec5, vec2, vec5); + DOTP_CONST_PAIR((-vec2), vec5, cospi_24_64, cospi_8_64, in2, in1); + SUB4(in8, vec3, in15, vec4, in3, in2, in0, in1, in3, in0, vec2, vec5); + DOTP_CONST_PAIR(vec5, vec2, cospi_22_64, cospi_10_64, in5, in4); + FDCT_POSTPROC_2V_NEG_H(in4, in5); + ST_SH(in4, out + 80); + ST_SH(in5, out + 104); + + ADD2(in3, in2, in0, in1, vec3, vec4); + DOTP_CONST_PAIR(vec4, vec3, cospi_6_64, cospi_26_64, in4, in5); + FDCT_POSTPROC_2V_NEG_H(in4, in5); + ST_SH(in4, out + 96); + ST_SH(in5, out + 88); +} + +static void fdct8x32_1d_row_even(int16_t *temp, int16_t *out) { + v8i16 in0, in1, in2, in3, in4, in5, in6, in7; + v8i16 in8, in9, in10, in11, in12, in13, in14, in15; + v8i16 vec0, vec1, vec2, vec3, vec4, vec5, vec6, vec7, temp0, temp1; + + /* fdct32 even */ + /* stage 2 */ + LD_SH8(temp, 8, in0, in1, in2, in3, in4, in5, in6, in7); + LD_SH8(temp + 64, 8, in8, in9, in10, in11, in12, in13, in14, in15); + + BUTTERFLY_16(in0, in1, in2, in3, in4, in5, in6, in7, in8, in9, in10, in11, + in12, in13, in14, in15, vec0, vec1, vec2, vec3, vec4, vec5, vec6, + vec7, in8, in9, in10, in11, in12, in13, in14, in15); + + /* Stage 3 */ + ADD4(vec0, vec7, vec1, vec6, vec2, vec5, vec3, vec4, in0, in1, in2, in3); + BUTTERFLY_4(in0, in1, in2, in3, temp0, in4, in1, in0); + DOTP_CONST_PAIR(temp0, in4, cospi_16_64, cospi_16_64, temp1, temp0); + FDCT_POSTPROC_2V_NEG_H(temp0, temp1); + ST_SH(temp0, out); + ST_SH(temp1, out + 8); + + DOTP_CONST_PAIR(in0, in1, cospi_24_64, cospi_8_64, temp1, temp0); + FDCT_POSTPROC_2V_NEG_H(temp0, temp1); + ST_SH(temp0, out + 16); + ST_SH(temp1, out + 24); + + SUB4(vec3, vec4, vec2, vec5, vec1, vec6, vec0, vec7, vec4, vec5, vec6, vec7); + DOTP_CONST_PAIR(vec6, vec5, cospi_16_64, cospi_16_64, vec5, vec6); + ADD2(vec4, vec5, vec7, vec6, vec0, vec1); + DOTP_CONST_PAIR(vec1, vec0, cospi_28_64, cospi_4_64, temp1, temp0); + FDCT_POSTPROC_2V_NEG_H(temp0, temp1); + ST_SH(temp0, out + 32); + ST_SH(temp1, out + 56); + + SUB2(vec4, vec5, vec7, vec6, vec4, vec7); + DOTP_CONST_PAIR(vec7, vec4, cospi_12_64, cospi_20_64, temp1, temp0); + FDCT_POSTPROC_2V_NEG_H(temp0, temp1); + ST_SH(temp0, out + 40); + ST_SH(temp1, out + 48); + + DOTP_CONST_PAIR(in13, in10, cospi_16_64, cospi_16_64, vec2, vec5); + DOTP_CONST_PAIR(in12, in11, cospi_16_64, cospi_16_64, vec3, vec4); + ADD4(in8, vec3, in9, vec2, in14, vec5, in15, vec4, in0, vec1, vec6, in2); + DOTP_CONST_PAIR(vec6, vec1, cospi_24_64, cospi_8_64, in1, in3); + ADD2(in0, in1, in2, in3, vec0, vec7); + DOTP_CONST_PAIR(vec7, vec0, cospi_30_64, cospi_2_64, temp1, temp0); + FDCT_POSTPROC_2V_NEG_H(temp0, temp1); + ST_SH(temp0, out + 64); + ST_SH(temp1, out + 120); + + SUB2(in0, in1, in2, in3, in0, in2); + DOTP_CONST_PAIR(in2, in0, cospi_14_64, cospi_18_64, temp1, temp0); + FDCT_POSTPROC_2V_NEG_H(temp0, temp1); + ST_SH(temp0, out + 72); + ST_SH(temp1, out + 112); + + SUB2(in9, vec2, in14, vec5, vec2, vec5); + DOTP_CONST_PAIR((-vec2), vec5, cospi_24_64, cospi_8_64, in2, in1); + SUB4(in8, vec3, in15, vec4, in3, in2, in0, in1, in3, in0, vec2, vec5) + DOTP_CONST_PAIR(vec5, vec2, cospi_22_64, cospi_10_64, temp1, temp0); + FDCT_POSTPROC_2V_NEG_H(temp0, temp1); + ST_SH(temp0, out + 80); + ST_SH(temp1, out + 104); + + ADD2(in3, in2, in0, in1, vec3, vec4); + DOTP_CONST_PAIR(vec4, vec3, cospi_6_64, cospi_26_64, temp0, temp1); + FDCT_POSTPROC_2V_NEG_H(temp0, temp1); + ST_SH(temp0, out + 96); + ST_SH(temp1, out + 88); +} + +static void fdct8x32_1d_row_odd(int16_t *temp, int16_t *interm_ptr, + int16_t *out) { + v8i16 in16, in17, in18, in19, in20, in21, in22, in23; + v8i16 in24, in25, in26, in27, in28, in29, in30, in31, vec4, vec5; + + in20 = LD_SH(temp + 32); + in21 = LD_SH(temp + 40); + in26 = LD_SH(temp + 80); + in27 = LD_SH(temp + 88); + + DOTP_CONST_PAIR(in27, in20, cospi_16_64, cospi_16_64, in20, in27); + DOTP_CONST_PAIR(in26, in21, cospi_16_64, cospi_16_64, in21, in26); + + in18 = LD_SH(temp + 16); + in19 = LD_SH(temp + 24); + in28 = LD_SH(temp + 96); + in29 = LD_SH(temp + 104); + + vec4 = in19 - in20; + ST_SH(vec4, interm_ptr + 32); + vec4 = in18 - in21; + ST_SH(vec4, interm_ptr + 88); + vec4 = in28 - in27; + ST_SH(vec4, interm_ptr + 56); + vec4 = in29 - in26; + ST_SH(vec4, interm_ptr + 64); + + ADD4(in18, in21, in19, in20, in28, in27, in29, in26, in21, in20, in27, in26); + + in22 = LD_SH(temp + 48); + in23 = LD_SH(temp + 56); + in24 = LD_SH(temp + 64); + in25 = LD_SH(temp + 72); + + DOTP_CONST_PAIR(in25, in22, cospi_16_64, cospi_16_64, in22, in25); + DOTP_CONST_PAIR(in24, in23, cospi_16_64, cospi_16_64, in23, in24); + + in16 = LD_SH(temp); + in17 = LD_SH(temp + 8); + in30 = LD_SH(temp + 112); + in31 = LD_SH(temp + 120); + + vec4 = in17 - in22; + ST_SH(vec4, interm_ptr + 40); + vec4 = in30 - in25; + ST_SH(vec4, interm_ptr + 48); + vec4 = in31 - in24; + ST_SH(vec4, interm_ptr + 72); + vec4 = in16 - in23; + ST_SH(vec4, interm_ptr + 80); + + ADD4(in16, in23, in17, in22, in30, in25, in31, in24, in16, in17, in30, in31); + DOTP_CONST_PAIR(in26, in21, cospi_24_64, cospi_8_64, in18, in29); + DOTP_CONST_PAIR(in27, in20, cospi_24_64, cospi_8_64, in19, in28); + + ADD4(in16, in19, in17, in18, in30, in29, in31, in28, in27, in22, in21, in25); + DOTP_CONST_PAIR(in21, in22, cospi_28_64, cospi_4_64, in26, in24); + ADD2(in27, in26, in25, in24, in23, in20); + + DOTP_CONST_PAIR(in20, in23, cospi_31_64, cospi_1_64, vec4, vec5); + FDCT_POSTPROC_2V_NEG_H(vec5, vec4); + ST_SH(vec5, out); + ST_SH(vec4, out + 120); + + SUB2(in27, in26, in25, in24, in22, in21); + + DOTP_CONST_PAIR(in21, in22, cospi_15_64, cospi_17_64, vec5, vec4); + FDCT_POSTPROC_2V_NEG_H(vec5, vec4); + ST_SH(vec5, out + 112); + ST_SH(vec4, out + 8); + + SUB4(in17, in18, in16, in19, in31, in28, in30, in29, in23, in26, in24, in20); + DOTP_CONST_PAIR((-in23), in20, cospi_28_64, cospi_4_64, in27, in25); + SUB2(in26, in27, in24, in25, in23, in20); + + DOTP_CONST_PAIR(in20, in23, cospi_23_64, cospi_9_64, vec4, vec5); + FDCT_POSTPROC_2V_NEG_H(vec5, vec4); + ST_SH(vec4, out + 16); + ST_SH(vec5, out + 104); + + ADD2(in26, in27, in24, in25, in22, in21); + DOTP_CONST_PAIR(in21, in22, cospi_7_64, cospi_25_64, vec4, vec5); + FDCT_POSTPROC_2V_NEG_H(vec5, vec4); + ST_SH(vec4, out + 24); + ST_SH(vec5, out + 96); + + in20 = LD_SH(interm_ptr + 32); + in21 = LD_SH(interm_ptr + 88); + in27 = LD_SH(interm_ptr + 56); + in26 = LD_SH(interm_ptr + 64); + + in16 = in20; + in17 = in21; + DOTP_CONST_PAIR(-in16, in27, cospi_24_64, cospi_8_64, in20, in27); + DOTP_CONST_PAIR(-in17, in26, cospi_24_64, cospi_8_64, in21, in26); + + in22 = LD_SH(interm_ptr + 40); + in25 = LD_SH(interm_ptr + 48); + in24 = LD_SH(interm_ptr + 72); + in23 = LD_SH(interm_ptr + 80); + + SUB4(in23, in20, in22, in21, in25, in26, in24, in27, in28, in17, in18, in31); + DOTP_CONST_PAIR(in18, in17, cospi_12_64, cospi_20_64, in29, in30); + ADD2(in28, in29, in31, in30, in16, in19); + DOTP_CONST_PAIR(in19, in16, cospi_27_64, cospi_5_64, vec5, vec4); + FDCT_POSTPROC_2V_NEG_H(vec5, vec4); + ST_SH(vec5, out + 32); + ST_SH(vec4, out + 88); + + SUB2(in28, in29, in31, in30, in17, in18); + DOTP_CONST_PAIR(in18, in17, cospi_11_64, cospi_21_64, vec5, vec4); + FDCT_POSTPROC_2V_NEG_H(vec5, vec4); + ST_SH(vec5, out + 40); + ST_SH(vec4, out + 80); + + ADD4(in22, in21, in23, in20, in24, in27, in25, in26, in16, in29, in30, in19); + DOTP_CONST_PAIR(-in16, in19, cospi_12_64, cospi_20_64, in28, in31); + SUB2(in29, in28, in30, in31, in16, in19); + + DOTP_CONST_PAIR(in19, in16, cospi_19_64, cospi_13_64, vec5, vec4); + FDCT_POSTPROC_2V_NEG_H(vec5, vec4); + ST_SH(vec5, out + 72); + ST_SH(vec4, out + 48); + + ADD2(in29, in28, in30, in31, in17, in18); + + DOTP_CONST_PAIR(in18, in17, cospi_3_64, cospi_29_64, vec5, vec4); + FDCT_POSTPROC_2V_NEG_H(vec5, vec4); + ST_SH(vec4, out + 56); + ST_SH(vec5, out + 64); +} + +static void fdct8x32_1d_row_transpose_store(int16_t *temp, int16_t *output) { + v8i16 in0, in1, in2, in3, in4, in5, in6, in7; + v8i16 in0_1, in1_1, in2_1, in3_1, in4_1, in5_1, in6_1, in7_1; + + /* 1st set */ + in0 = LD_SH(temp); + in4 = LD_SH(temp + 32); + in2 = LD_SH(temp + 64); + in6 = LD_SH(temp + 96); + in1 = LD_SH(temp + 128); + in7 = LD_SH(temp + 152); + in3 = LD_SH(temp + 192); + in5 = LD_SH(temp + 216); + + TRANSPOSE8x8_SH_SH(in0, in1, in2, in3, in4, in5, in6, in7, in0, in1, in2, in3, + in4, in5, in6, in7); + + /* 2nd set */ + in0_1 = LD_SH(temp + 16); + in1_1 = LD_SH(temp + 232); + in2_1 = LD_SH(temp + 80); + in3_1 = LD_SH(temp + 168); + in4_1 = LD_SH(temp + 48); + in5_1 = LD_SH(temp + 176); + in6_1 = LD_SH(temp + 112); + in7_1 = LD_SH(temp + 240); + + ST_SH8(in0, in1, in2, in3, in4, in5, in6, in7, output, 32); + TRANSPOSE8x8_SH_SH(in0_1, in1_1, in2_1, in3_1, in4_1, in5_1, in6_1, in7_1, + in0_1, in1_1, in2_1, in3_1, in4_1, in5_1, in6_1, in7_1); + + /* 3rd set */ + in0 = LD_SH(temp + 8); + in1 = LD_SH(temp + 136); + in2 = LD_SH(temp + 72); + in3 = LD_SH(temp + 200); + in4 = LD_SH(temp + 40); + in5 = LD_SH(temp + 208); + in6 = LD_SH(temp + 104); + in7 = LD_SH(temp + 144); + + ST_SH8(in0_1, in1_1, in2_1, in3_1, in4_1, in5_1, in6_1, in7_1, output + 8, + 32); + TRANSPOSE8x8_SH_SH(in0, in1, in2, in3, in4, in5, in6, in7, in0, in1, in2, in3, + in4, in5, in6, in7); + ST_SH8(in0, in1, in2, in3, in4, in5, in6, in7, output + 16, 32); + + /* 4th set */ + in0_1 = LD_SH(temp + 24); + in1_1 = LD_SH(temp + 224); + in2_1 = LD_SH(temp + 88); + in3_1 = LD_SH(temp + 160); + in4_1 = LD_SH(temp + 56); + in5_1 = LD_SH(temp + 184); + in6_1 = LD_SH(temp + 120); + in7_1 = LD_SH(temp + 248); + + TRANSPOSE8x8_SH_SH(in0_1, in1_1, in2_1, in3_1, in4_1, in5_1, in6_1, in7_1, + in0_1, in1_1, in2_1, in3_1, in4_1, in5_1, in6_1, in7_1); + ST_SH8(in0_1, in1_1, in2_1, in3_1, in4_1, in5_1, in6_1, in7_1, output + 24, + 32); +} + +static void fdct32x8_1d_row(int16_t *temp, int16_t *temp_buf, int16_t *output) { + fdct8x32_1d_row_load_butterfly(temp, temp_buf); + fdct8x32_1d_row_even(temp_buf, temp_buf); + fdct8x32_1d_row_odd(temp_buf + 128, temp, temp_buf + 128); + fdct8x32_1d_row_transpose_store(temp_buf, output); +} + +static void fdct32x8_1d_row_4x(int16_t *tmp_buf_big, int16_t *tmp_buf, + int16_t *output) { + fdct8x32_1d_row_load_butterfly(tmp_buf_big, tmp_buf); + fdct8x32_1d_row_even_4x(tmp_buf, tmp_buf_big, tmp_buf); + fdct8x32_1d_row_odd(tmp_buf + 128, tmp_buf_big, tmp_buf + 128); + fdct8x32_1d_row_transpose_store(tmp_buf, output); +} + +void vpx_fdct32x32_msa(const int16_t *input, int16_t *output, + int32_t src_stride) { + int32_t i; + DECLARE_ALIGNED(32, int16_t, tmp_buf_big[1024]); + DECLARE_ALIGNED(32, int16_t, tmp_buf[256]); + + /* column transform */ + for (i = 0; i < 4; ++i) { + fdct8x32_1d_column(input + (8 * i), src_stride, tmp_buf, + tmp_buf_big + (8 * i)); + } + + /* row transform */ + fdct32x8_1d_row_4x(tmp_buf_big, tmp_buf, output); + + /* row transform */ + for (i = 1; i < 4; ++i) { + fdct32x8_1d_row(tmp_buf_big + (i * 256), tmp_buf, output + (i * 256)); + } +} + +static void fdct8x32_1d_row_even_rd(int16_t *temp, int16_t *out) { + v8i16 in0, in1, in2, in3, in4, in5, in6, in7; + v8i16 in8, in9, in10, in11, in12, in13, in14, in15; + v8i16 vec0, vec1, vec2, vec3, vec4, vec5, vec6, vec7, temp0, temp1; + + /* fdct32 even */ + /* stage 2 */ + LD_SH8(temp, 8, in0, in1, in2, in3, in4, in5, in6, in7); + LD_SH8(temp + 64, 8, in8, in9, in10, in11, in12, in13, in14, in15); + + BUTTERFLY_16(in0, in1, in2, in3, in4, in5, in6, in7, in8, in9, in10, in11, + in12, in13, in14, in15, vec0, vec1, vec2, vec3, vec4, vec5, vec6, + vec7, in8, in9, in10, in11, in12, in13, in14, in15); + FDCT_POSTPROC_2V_NEG_H(vec0, vec1); + FDCT_POSTPROC_2V_NEG_H(vec2, vec3); + FDCT_POSTPROC_2V_NEG_H(vec4, vec5); + FDCT_POSTPROC_2V_NEG_H(vec6, vec7); + FDCT_POSTPROC_2V_NEG_H(in8, in9); + FDCT_POSTPROC_2V_NEG_H(in10, in11); + FDCT_POSTPROC_2V_NEG_H(in12, in13); + FDCT_POSTPROC_2V_NEG_H(in14, in15); + + /* Stage 3 */ + ADD4(vec0, vec7, vec1, vec6, vec2, vec5, vec3, vec4, in0, in1, in2, in3); + + temp0 = in0 + in3; + in0 = in0 - in3; + in3 = in1 + in2; + in1 = in1 - in2; + + DOTP_CONST_PAIR(temp0, in3, cospi_16_64, cospi_16_64, temp1, temp0); + ST_SH(temp0, out); + ST_SH(temp1, out + 8); + + DOTP_CONST_PAIR(in0, in1, cospi_24_64, cospi_8_64, temp1, temp0); + ST_SH(temp0, out + 16); + ST_SH(temp1, out + 24); + + SUB4(vec3, vec4, vec2, vec5, vec1, vec6, vec0, vec7, vec4, vec5, vec6, vec7); + DOTP_CONST_PAIR(vec6, vec5, cospi_16_64, cospi_16_64, vec5, vec6); + ADD2(vec4, vec5, vec7, vec6, vec0, vec1); + DOTP_CONST_PAIR(vec1, vec0, cospi_28_64, cospi_4_64, temp1, temp0); + ST_SH(temp0, out + 32); + ST_SH(temp1, out + 56); + + SUB2(vec4, vec5, vec7, vec6, vec4, vec7); + DOTP_CONST_PAIR(vec7, vec4, cospi_12_64, cospi_20_64, temp1, temp0); + ST_SH(temp0, out + 40); + ST_SH(temp1, out + 48); + + DOTP_CONST_PAIR(in13, in10, cospi_16_64, cospi_16_64, vec2, vec5); + DOTP_CONST_PAIR(in12, in11, cospi_16_64, cospi_16_64, vec3, vec4); + ADD4(in8, vec3, in9, vec2, in14, vec5, in15, vec4, in0, vec1, vec6, in2); + DOTP_CONST_PAIR(vec6, vec1, cospi_24_64, cospi_8_64, in1, in3); + ADD2(in0, in1, in2, in3, vec0, vec7); + DOTP_CONST_PAIR(vec7, vec0, cospi_30_64, cospi_2_64, temp1, temp0); + ST_SH(temp0, out + 64); + ST_SH(temp1, out + 120); + + SUB2(in0, in1, in2, in3, in0, in2); + DOTP_CONST_PAIR(in2, in0, cospi_14_64, cospi_18_64, temp1, temp0); + ST_SH(temp0, out + 72); + ST_SH(temp1, out + 112); + + SUB2(in9, vec2, in14, vec5, vec2, vec5); + DOTP_CONST_PAIR((-vec2), vec5, cospi_24_64, cospi_8_64, in2, in1); + SUB4(in8, vec3, in15, vec4, in3, in2, in0, in1, in3, in0, vec2, vec5); + DOTP_CONST_PAIR(vec5, vec2, cospi_22_64, cospi_10_64, temp1, temp0); + ST_SH(temp0, out + 80); + ST_SH(temp1, out + 104); + + ADD2(in3, in2, in0, in1, vec3, vec4); + DOTP_CONST_PAIR(vec4, vec3, cospi_6_64, cospi_26_64, temp0, temp1); + ST_SH(temp0, out + 96); + ST_SH(temp1, out + 88); +} + +static void fdct8x32_1d_row_odd_rd(int16_t *temp, int16_t *interm_ptr, + int16_t *out) { + v8i16 in16, in17, in18, in19, in20, in21, in22, in23; + v8i16 in24, in25, in26, in27, in28, in29, in30, in31; + v8i16 vec4, vec5; + + in20 = LD_SH(temp + 32); + in21 = LD_SH(temp + 40); + in26 = LD_SH(temp + 80); + in27 = LD_SH(temp + 88); + + DOTP_CONST_PAIR(in27, in20, cospi_16_64, cospi_16_64, in20, in27); + DOTP_CONST_PAIR(in26, in21, cospi_16_64, cospi_16_64, in21, in26); + + FDCT_POSTPROC_2V_NEG_H(in20, in21); + FDCT_POSTPROC_2V_NEG_H(in26, in27); + + in18 = LD_SH(temp + 16); + in19 = LD_SH(temp + 24); + in28 = LD_SH(temp + 96); + in29 = LD_SH(temp + 104); + + FDCT_POSTPROC_2V_NEG_H(in18, in19); + FDCT_POSTPROC_2V_NEG_H(in28, in29); + + vec4 = in19 - in20; + ST_SH(vec4, interm_ptr + 32); + vec4 = in18 - in21; + ST_SH(vec4, interm_ptr + 88); + vec4 = in29 - in26; + ST_SH(vec4, interm_ptr + 64); + vec4 = in28 - in27; + ST_SH(vec4, interm_ptr + 56); + + ADD4(in18, in21, in19, in20, in28, in27, in29, in26, in21, in20, in27, in26); + + in22 = LD_SH(temp + 48); + in23 = LD_SH(temp + 56); + in24 = LD_SH(temp + 64); + in25 = LD_SH(temp + 72); + + DOTP_CONST_PAIR(in25, in22, cospi_16_64, cospi_16_64, in22, in25); + DOTP_CONST_PAIR(in24, in23, cospi_16_64, cospi_16_64, in23, in24); + FDCT_POSTPROC_2V_NEG_H(in22, in23); + FDCT_POSTPROC_2V_NEG_H(in24, in25); + + in16 = LD_SH(temp); + in17 = LD_SH(temp + 8); + in30 = LD_SH(temp + 112); + in31 = LD_SH(temp + 120); + + FDCT_POSTPROC_2V_NEG_H(in16, in17); + FDCT_POSTPROC_2V_NEG_H(in30, in31); + + vec4 = in17 - in22; + ST_SH(vec4, interm_ptr + 40); + vec4 = in30 - in25; + ST_SH(vec4, interm_ptr + 48); + vec4 = in31 - in24; + ST_SH(vec4, interm_ptr + 72); + vec4 = in16 - in23; + ST_SH(vec4, interm_ptr + 80); + + ADD4(in16, in23, in17, in22, in30, in25, in31, in24, in16, in17, in30, in31); + DOTP_CONST_PAIR(in26, in21, cospi_24_64, cospi_8_64, in18, in29); + DOTP_CONST_PAIR(in27, in20, cospi_24_64, cospi_8_64, in19, in28); + ADD4(in16, in19, in17, in18, in30, in29, in31, in28, in27, in22, in21, in25); + DOTP_CONST_PAIR(in21, in22, cospi_28_64, cospi_4_64, in26, in24); + ADD2(in27, in26, in25, in24, in23, in20); + DOTP_CONST_PAIR(in20, in23, cospi_31_64, cospi_1_64, vec4, vec5); + ST_SH(vec5, out); + ST_SH(vec4, out + 120); + + SUB2(in27, in26, in25, in24, in22, in21); + DOTP_CONST_PAIR(in21, in22, cospi_15_64, cospi_17_64, vec5, vec4); + ST_SH(vec5, out + 112); + ST_SH(vec4, out + 8); + + SUB4(in17, in18, in16, in19, in31, in28, in30, in29, in23, in26, in24, in20); + DOTP_CONST_PAIR((-in23), in20, cospi_28_64, cospi_4_64, in27, in25); + SUB2(in26, in27, in24, in25, in23, in20); + DOTP_CONST_PAIR(in20, in23, cospi_23_64, cospi_9_64, vec4, vec5); + ST_SH(vec4, out + 16); + ST_SH(vec5, out + 104); + + ADD2(in26, in27, in24, in25, in22, in21); + DOTP_CONST_PAIR(in21, in22, cospi_7_64, cospi_25_64, vec4, vec5); + ST_SH(vec4, out + 24); + ST_SH(vec5, out + 96); + + in20 = LD_SH(interm_ptr + 32); + in21 = LD_SH(interm_ptr + 88); + in27 = LD_SH(interm_ptr + 56); + in26 = LD_SH(interm_ptr + 64); + + in16 = in20; + in17 = in21; + DOTP_CONST_PAIR(-in16, in27, cospi_24_64, cospi_8_64, in20, in27); + DOTP_CONST_PAIR(-in17, in26, cospi_24_64, cospi_8_64, in21, in26); + + in22 = LD_SH(interm_ptr + 40); + in25 = LD_SH(interm_ptr + 48); + in24 = LD_SH(interm_ptr + 72); + in23 = LD_SH(interm_ptr + 80); + + SUB4(in23, in20, in22, in21, in25, in26, in24, in27, in28, in17, in18, in31); + DOTP_CONST_PAIR(in18, in17, cospi_12_64, cospi_20_64, in29, in30); + in16 = in28 + in29; + in19 = in31 + in30; + DOTP_CONST_PAIR(in19, in16, cospi_27_64, cospi_5_64, vec5, vec4); + ST_SH(vec5, out + 32); + ST_SH(vec4, out + 88); + + SUB2(in28, in29, in31, in30, in17, in18); + DOTP_CONST_PAIR(in18, in17, cospi_11_64, cospi_21_64, vec5, vec4); + ST_SH(vec5, out + 40); + ST_SH(vec4, out + 80); + + ADD4(in22, in21, in23, in20, in24, in27, in25, in26, in16, in29, in30, in19); + DOTP_CONST_PAIR(-in16, in19, cospi_12_64, cospi_20_64, in28, in31); + SUB2(in29, in28, in30, in31, in16, in19); + DOTP_CONST_PAIR(in19, in16, cospi_19_64, cospi_13_64, vec5, vec4); + ST_SH(vec5, out + 72); + ST_SH(vec4, out + 48); + + ADD2(in29, in28, in30, in31, in17, in18); + DOTP_CONST_PAIR(in18, in17, cospi_3_64, cospi_29_64, vec5, vec4); + ST_SH(vec4, out + 56); + ST_SH(vec5, out + 64); +} + +static void fdct32x8_1d_row_rd(int16_t *tmp_buf_big, int16_t *tmp_buf, + int16_t *output) { + fdct8x32_1d_row_load_butterfly(tmp_buf_big, tmp_buf); + fdct8x32_1d_row_even_rd(tmp_buf, tmp_buf); + fdct8x32_1d_row_odd_rd((tmp_buf + 128), tmp_buf_big, (tmp_buf + 128)); + fdct8x32_1d_row_transpose_store(tmp_buf, output); +} + +void vpx_fdct32x32_rd_msa(const int16_t *input, int16_t *out, + int32_t src_stride) { + int32_t i; + DECLARE_ALIGNED(32, int16_t, tmp_buf_big[1024]); + DECLARE_ALIGNED(32, int16_t, tmp_buf[256]); + + /* column transform */ + for (i = 0; i < 4; ++i) { + fdct8x32_1d_column(input + (8 * i), src_stride, &tmp_buf[0], + &tmp_buf_big[0] + (8 * i)); + } + + /* row transform */ + for (i = 0; i < 4; ++i) { + fdct32x8_1d_row_rd(&tmp_buf_big[0] + (8 * i * 32), &tmp_buf[0], + out + (8 * i * 32)); + } +} + +void vpx_fdct32x32_1_msa(const int16_t *input, int16_t *out, int32_t stride) { + int sum, i; + v8i16 in0, in1, in2, in3, in4, in5, in6, in7; + v4i32 vec_w = { 0 }; + + for (i = 0; i < 16; ++i) { + LD_SH4(input, 8, in0, in1, in2, in3); + input += stride; + LD_SH4(input, 8, in4, in5, in6, in7); + input += stride; + ADD4(in0, in1, in2, in3, in4, in5, in6, in7, in0, in2, in4, in6); + ADD2(in0, in2, in4, in6, in0, in4); + vec_w += __msa_hadd_s_w(in0, in0); + vec_w += __msa_hadd_s_w(in4, in4); + } + + sum = HADD_SW_S32(vec_w); + out[0] = (int16_t)(sum >> 3); +} diff --git a/vpx_dsp/mips/fwd_txfm_msa.c b/vpx_dsp/mips/fwd_txfm_msa.c new file mode 100644 index 0000000..5a6dfce --- /dev/null +++ b/vpx_dsp/mips/fwd_txfm_msa.c @@ -0,0 +1,272 @@ +/* + * Copyright (c) 2015 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "./vpx_dsp_rtcd.h" +#include "vpx_dsp/mips/fwd_txfm_msa.h" + +void vpx_fdct8x8_1_msa(const int16_t *input, tran_low_t *out, int32_t stride) { + v8i16 in0, in1, in2, in3, in4, in5, in6, in7; + v4i32 vec_w; + + LD_SH8(input, stride, in0, in1, in2, in3, in4, in5, in6, in7); + ADD4(in0, in1, in2, in3, in4, in5, in6, in7, in0, in2, in4, in6); + ADD2(in0, in2, in4, in6, in0, in4); + vec_w = __msa_hadd_s_w(in0, in0); + vec_w += __msa_hadd_s_w(in4, in4); + out[0] = HADD_SW_S32(vec_w); + out[1] = 0; +} + +#if !CONFIG_VP9_HIGHBITDEPTH +void fdct8x16_1d_column(const int16_t *input, int16_t *tmp_ptr, + int32_t src_stride) { + v8i16 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; + v8i16 in0, in1, in2, in3, in4, in5, in6, in7; + v8i16 in8, in9, in10, in11, in12, in13, in14, in15; + v8i16 stp21, stp22, stp23, stp24, stp25, stp26, stp30; + v8i16 stp31, stp32, stp33, stp34, stp35, stp36, stp37; + v8i16 vec0, vec1, vec2, vec3, vec4, vec5, cnst0, cnst1, cnst4, cnst5; + v8i16 coeff = { cospi_16_64, -cospi_16_64, cospi_8_64, cospi_24_64, + -cospi_8_64, -cospi_24_64, cospi_12_64, cospi_20_64 }; + v8i16 coeff1 = { cospi_2_64, cospi_30_64, cospi_14_64, cospi_18_64, + cospi_10_64, cospi_22_64, cospi_6_64, cospi_26_64 }; + v8i16 coeff2 = { + -cospi_2_64, -cospi_10_64, -cospi_18_64, -cospi_26_64, 0, 0, 0, 0 + }; + + LD_SH16(input, src_stride, in0, in1, in2, in3, in4, in5, in6, in7, in8, in9, + in10, in11, in12, in13, in14, in15); + SLLI_4V(in0, in1, in2, in3, 2); + SLLI_4V(in4, in5, in6, in7, 2); + SLLI_4V(in8, in9, in10, in11, 2); + SLLI_4V(in12, in13, in14, in15, 2); + ADD4(in0, in15, in1, in14, in2, in13, in3, in12, tmp0, tmp1, tmp2, tmp3); + ADD4(in4, in11, in5, in10, in6, in9, in7, in8, tmp4, tmp5, tmp6, tmp7); + FDCT8x16_EVEN(tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7, tmp0, tmp1, + tmp2, tmp3, tmp4, tmp5, tmp6, tmp7); + ST_SH8(tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7, tmp_ptr, 32); + SUB4(in0, in15, in1, in14, in2, in13, in3, in12, in15, in14, in13, in12); + SUB4(in4, in11, in5, in10, in6, in9, in7, in8, in11, in10, in9, in8); + + tmp_ptr += 16; + + /* stp 1 */ + ILVL_H2_SH(in10, in13, in11, in12, vec2, vec4); + ILVR_H2_SH(in10, in13, in11, in12, vec3, vec5); + + cnst4 = __msa_splati_h(coeff, 0); + stp25 = DOT_SHIFT_RIGHT_PCK_H(vec2, vec3, cnst4); + + cnst5 = __msa_splati_h(coeff, 1); + cnst5 = __msa_ilvev_h(cnst5, cnst4); + stp22 = DOT_SHIFT_RIGHT_PCK_H(vec2, vec3, cnst5); + stp24 = DOT_SHIFT_RIGHT_PCK_H(vec4, vec5, cnst4); + stp23 = DOT_SHIFT_RIGHT_PCK_H(vec4, vec5, cnst5); + + /* stp2 */ + BUTTERFLY_4(in8, in9, stp22, stp23, stp30, stp31, stp32, stp33); + BUTTERFLY_4(in15, in14, stp25, stp24, stp37, stp36, stp35, stp34); + ILVL_H2_SH(stp36, stp31, stp35, stp32, vec2, vec4); + ILVR_H2_SH(stp36, stp31, stp35, stp32, vec3, vec5); + SPLATI_H2_SH(coeff, 2, 3, cnst0, cnst1); + cnst0 = __msa_ilvev_h(cnst0, cnst1); + stp26 = DOT_SHIFT_RIGHT_PCK_H(vec2, vec3, cnst0); + + cnst0 = __msa_splati_h(coeff, 4); + cnst1 = __msa_ilvev_h(cnst1, cnst0); + stp21 = DOT_SHIFT_RIGHT_PCK_H(vec2, vec3, cnst1); + + BUTTERFLY_4(stp30, stp37, stp26, stp21, in8, in15, in14, in9); + ILVRL_H2_SH(in15, in8, vec1, vec0); + SPLATI_H2_SH(coeff1, 0, 1, cnst0, cnst1); + cnst0 = __msa_ilvev_h(cnst0, cnst1); + + in8 = DOT_SHIFT_RIGHT_PCK_H(vec0, vec1, cnst0); + ST_SH(in8, tmp_ptr); + + cnst0 = __msa_splati_h(coeff2, 0); + cnst0 = __msa_ilvev_h(cnst1, cnst0); + in8 = DOT_SHIFT_RIGHT_PCK_H(vec0, vec1, cnst0); + ST_SH(in8, tmp_ptr + 224); + + ILVRL_H2_SH(in14, in9, vec1, vec0); + SPLATI_H2_SH(coeff1, 2, 3, cnst0, cnst1); + cnst1 = __msa_ilvev_h(cnst1, cnst0); + + in8 = DOT_SHIFT_RIGHT_PCK_H(vec0, vec1, cnst1); + ST_SH(in8, tmp_ptr + 128); + + cnst1 = __msa_splati_h(coeff2, 2); + cnst0 = __msa_ilvev_h(cnst0, cnst1); + in8 = DOT_SHIFT_RIGHT_PCK_H(vec0, vec1, cnst0); + ST_SH(in8, tmp_ptr + 96); + + SPLATI_H2_SH(coeff, 2, 5, cnst0, cnst1); + cnst1 = __msa_ilvev_h(cnst1, cnst0); + + stp25 = DOT_SHIFT_RIGHT_PCK_H(vec4, vec5, cnst1); + + cnst1 = __msa_splati_h(coeff, 3); + cnst1 = __msa_ilvev_h(cnst0, cnst1); + stp22 = DOT_SHIFT_RIGHT_PCK_H(vec4, vec5, cnst1); + + /* stp4 */ + ADD2(stp34, stp25, stp33, stp22, in13, in10); + + ILVRL_H2_SH(in13, in10, vec1, vec0); + SPLATI_H2_SH(coeff1, 4, 5, cnst0, cnst1); + cnst0 = __msa_ilvev_h(cnst0, cnst1); + in8 = DOT_SHIFT_RIGHT_PCK_H(vec0, vec1, cnst0); + ST_SH(in8, tmp_ptr + 64); + + cnst0 = __msa_splati_h(coeff2, 1); + cnst0 = __msa_ilvev_h(cnst1, cnst0); + in8 = DOT_SHIFT_RIGHT_PCK_H(vec0, vec1, cnst0); + ST_SH(in8, tmp_ptr + 160); + + SUB2(stp34, stp25, stp33, stp22, in12, in11); + ILVRL_H2_SH(in12, in11, vec1, vec0); + SPLATI_H2_SH(coeff1, 6, 7, cnst0, cnst1); + cnst1 = __msa_ilvev_h(cnst1, cnst0); + + in8 = DOT_SHIFT_RIGHT_PCK_H(vec0, vec1, cnst1); + ST_SH(in8, tmp_ptr + 192); + + cnst1 = __msa_splati_h(coeff2, 3); + cnst0 = __msa_ilvev_h(cnst0, cnst1); + in8 = DOT_SHIFT_RIGHT_PCK_H(vec0, vec1, cnst0); + ST_SH(in8, tmp_ptr + 32); +} + +void fdct16x8_1d_row(int16_t *input, int16_t *output) { + v8i16 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; + v8i16 in0, in1, in2, in3, in4, in5, in6, in7; + v8i16 in8, in9, in10, in11, in12, in13, in14, in15; + + LD_SH8(input, 16, in0, in1, in2, in3, in4, in5, in6, in7); + LD_SH8((input + 8), 16, in8, in9, in10, in11, in12, in13, in14, in15); + TRANSPOSE8x8_SH_SH(in0, in1, in2, in3, in4, in5, in6, in7, in0, in1, in2, in3, + in4, in5, in6, in7); + TRANSPOSE8x8_SH_SH(in8, in9, in10, in11, in12, in13, in14, in15, in8, in9, + in10, in11, in12, in13, in14, in15); + ADD4(in0, 1, in1, 1, in2, 1, in3, 1, in0, in1, in2, in3); + ADD4(in4, 1, in5, 1, in6, 1, in7, 1, in4, in5, in6, in7); + ADD4(in8, 1, in9, 1, in10, 1, in11, 1, in8, in9, in10, in11); + ADD4(in12, 1, in13, 1, in14, 1, in15, 1, in12, in13, in14, in15); + SRA_4V(in0, in1, in2, in3, 2); + SRA_4V(in4, in5, in6, in7, 2); + SRA_4V(in8, in9, in10, in11, 2); + SRA_4V(in12, in13, in14, in15, 2); + BUTTERFLY_16(in0, in1, in2, in3, in4, in5, in6, in7, in8, in9, in10, in11, + in12, in13, in14, in15, tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, + tmp7, in8, in9, in10, in11, in12, in13, in14, in15); + ST_SH8(in8, in9, in10, in11, in12, in13, in14, in15, input, 16); + FDCT8x16_EVEN(tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7, tmp0, tmp1, + tmp2, tmp3, tmp4, tmp5, tmp6, tmp7); + LD_SH8(input, 16, in8, in9, in10, in11, in12, in13, in14, in15); + FDCT8x16_ODD(in8, in9, in10, in11, in12, in13, in14, in15, in0, in1, in2, in3, + in4, in5, in6, in7); + TRANSPOSE8x8_SH_SH(tmp0, in0, tmp1, in1, tmp2, in2, tmp3, in3, tmp0, in0, + tmp1, in1, tmp2, in2, tmp3, in3); + ST_SH8(tmp0, in0, tmp1, in1, tmp2, in2, tmp3, in3, output, 16); + TRANSPOSE8x8_SH_SH(tmp4, in4, tmp5, in5, tmp6, in6, tmp7, in7, tmp4, in4, + tmp5, in5, tmp6, in6, tmp7, in7); + ST_SH8(tmp4, in4, tmp5, in5, tmp6, in6, tmp7, in7, output + 8, 16); +} + +void vpx_fdct4x4_msa(const int16_t *input, int16_t *output, + int32_t src_stride) { + v8i16 in0, in1, in2, in3; + + LD_SH4(input, src_stride, in0, in1, in2, in3); + + /* fdct4 pre-process */ + { + v8i16 vec, mask; + v16i8 zero = { 0 }; + v16i8 one = __msa_ldi_b(1); + + mask = (v8i16)__msa_sldi_b(zero, one, 15); + SLLI_4V(in0, in1, in2, in3, 4); + vec = __msa_ceqi_h(in0, 0); + vec = vec ^ 255; + vec = mask & vec; + in0 += vec; + } + + VP9_FDCT4(in0, in1, in2, in3, in0, in1, in2, in3); + TRANSPOSE4x4_SH_SH(in0, in1, in2, in3, in0, in1, in2, in3); + VP9_FDCT4(in0, in1, in2, in3, in0, in1, in2, in3); + TRANSPOSE4x4_SH_SH(in0, in1, in2, in3, in0, in1, in2, in3); + ADD4(in0, 1, in1, 1, in2, 1, in3, 1, in0, in1, in2, in3); + SRA_4V(in0, in1, in2, in3, 2); + PCKEV_D2_SH(in1, in0, in3, in2, in0, in2); + ST_SH2(in0, in2, output, 8); +} + +void vpx_fdct8x8_msa(const int16_t *input, int16_t *output, + int32_t src_stride) { + v8i16 in0, in1, in2, in3, in4, in5, in6, in7; + + LD_SH8(input, src_stride, in0, in1, in2, in3, in4, in5, in6, in7); + SLLI_4V(in0, in1, in2, in3, 2); + SLLI_4V(in4, in5, in6, in7, 2); + VP9_FDCT8(in0, in1, in2, in3, in4, in5, in6, in7, in0, in1, in2, in3, in4, + in5, in6, in7); + TRANSPOSE8x8_SH_SH(in0, in1, in2, in3, in4, in5, in6, in7, in0, in1, in2, in3, + in4, in5, in6, in7); + VP9_FDCT8(in0, in1, in2, in3, in4, in5, in6, in7, in0, in1, in2, in3, in4, + in5, in6, in7); + TRANSPOSE8x8_SH_SH(in0, in1, in2, in3, in4, in5, in6, in7, in0, in1, in2, in3, + in4, in5, in6, in7); + SRLI_AVE_S_4V_H(in0, in1, in2, in3, in4, in5, in6, in7); + ST_SH8(in0, in1, in2, in3, in4, in5, in6, in7, output, 8); +} + +void vpx_fdct16x16_msa(const int16_t *input, int16_t *output, + int32_t src_stride) { + int32_t i; + DECLARE_ALIGNED(32, int16_t, tmp_buf[16 * 16]); + + /* column transform */ + for (i = 0; i < 2; ++i) { + fdct8x16_1d_column((input + 8 * i), (&tmp_buf[0] + 8 * i), src_stride); + } + + /* row transform */ + for (i = 0; i < 2; ++i) { + fdct16x8_1d_row((&tmp_buf[0] + (128 * i)), (output + (128 * i))); + } +} + +void vpx_fdct16x16_1_msa(const int16_t *input, int16_t *out, int32_t stride) { + int sum, i; + v8i16 in0, in1, in2, in3, in4, in5, in6, in7; + v4i32 vec_w = { 0 }; + + for (i = 0; i < 4; ++i) { + LD_SH2(input, 8, in0, in1); + input += stride; + LD_SH2(input, 8, in2, in3); + input += stride; + LD_SH2(input, 8, in4, in5); + input += stride; + LD_SH2(input, 8, in6, in7); + input += stride; + ADD4(in0, in1, in2, in3, in4, in5, in6, in7, in0, in2, in4, in6); + ADD2(in0, in2, in4, in6, in0, in4); + vec_w += __msa_hadd_s_w(in0, in0); + vec_w += __msa_hadd_s_w(in4, in4); + } + + sum = HADD_SW_S32(vec_w); + out[0] = (int16_t)(sum >> 1); +} +#endif // !CONFIG_VP9_HIGHBITDEPTH diff --git a/vpx_dsp/mips/fwd_txfm_msa.h b/vpx_dsp/mips/fwd_txfm_msa.h new file mode 100644 index 0000000..fd58922 --- /dev/null +++ b/vpx_dsp/mips/fwd_txfm_msa.h @@ -0,0 +1,364 @@ +/* + * Copyright (c) 2015 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VPX_DSP_MIPS_FWD_TXFM_MSA_H_ +#define VPX_DSP_MIPS_FWD_TXFM_MSA_H_ + +#include "vpx_dsp/mips/txfm_macros_msa.h" +#include "vpx_dsp/txfm_common.h" + +#define VP9_FDCT4(in0, in1, in2, in3, out0, out1, out2, out3) \ + { \ + v8i16 cnst0_m, cnst1_m, cnst2_m, cnst3_m; \ + v8i16 vec0_m, vec1_m, vec2_m, vec3_m; \ + v4i32 vec4_m, vec5_m, vec6_m, vec7_m; \ + v8i16 coeff_m = { \ + cospi_16_64, -cospi_16_64, cospi_8_64, cospi_24_64, -cospi_8_64, 0, 0, 0 \ + }; \ + \ + BUTTERFLY_4(in0, in1, in2, in3, vec0_m, vec1_m, vec2_m, vec3_m); \ + ILVR_H2_SH(vec1_m, vec0_m, vec3_m, vec2_m, vec0_m, vec2_m); \ + SPLATI_H2_SH(coeff_m, 0, 1, cnst0_m, cnst1_m); \ + cnst1_m = __msa_ilvev_h(cnst1_m, cnst0_m); \ + vec5_m = __msa_dotp_s_w(vec0_m, cnst1_m); \ + \ + SPLATI_H2_SH(coeff_m, 4, 3, cnst2_m, cnst3_m); \ + cnst2_m = __msa_ilvev_h(cnst3_m, cnst2_m); \ + vec7_m = __msa_dotp_s_w(vec2_m, cnst2_m); \ + \ + vec4_m = __msa_dotp_s_w(vec0_m, cnst0_m); \ + cnst2_m = __msa_splati_h(coeff_m, 2); \ + cnst2_m = __msa_ilvev_h(cnst2_m, cnst3_m); \ + vec6_m = __msa_dotp_s_w(vec2_m, cnst2_m); \ + \ + SRARI_W4_SW(vec4_m, vec5_m, vec6_m, vec7_m, DCT_CONST_BITS); \ + PCKEV_H4_SH(vec4_m, vec4_m, vec5_m, vec5_m, vec6_m, vec6_m, vec7_m, \ + vec7_m, out0, out2, out1, out3); \ + } + +#define SRLI_AVE_S_4V_H(in0, in1, in2, in3, in4, in5, in6, in7) \ + { \ + v8i16 vec0_m, vec1_m, vec2_m, vec3_m, vec4_m, vec5_m, vec6_m, vec7_m; \ + \ + SRLI_H4_SH(in0, in1, in2, in3, vec0_m, vec1_m, vec2_m, vec3_m, 15); \ + SRLI_H4_SH(in4, in5, in6, in7, vec4_m, vec5_m, vec6_m, vec7_m, 15); \ + AVE_SH4_SH(vec0_m, in0, vec1_m, in1, vec2_m, in2, vec3_m, in3, in0, in1, \ + in2, in3); \ + AVE_SH4_SH(vec4_m, in4, vec5_m, in5, vec6_m, in6, vec7_m, in7, in4, in5, \ + in6, in7); \ + } + +#define VP9_FDCT8(in0, in1, in2, in3, in4, in5, in6, in7, out0, out1, out2, \ + out3, out4, out5, out6, out7) \ + { \ + v8i16 s0_m, s1_m, s2_m, s3_m, s4_m, s5_m, s6_m; \ + v8i16 s7_m, x0_m, x1_m, x2_m, x3_m; \ + v8i16 coeff_m = { cospi_16_64, -cospi_16_64, cospi_8_64, cospi_24_64, \ + cospi_4_64, cospi_28_64, cospi_12_64, cospi_20_64 }; \ + \ + /* FDCT stage1 */ \ + BUTTERFLY_8(in0, in1, in2, in3, in4, in5, in6, in7, s0_m, s1_m, s2_m, \ + s3_m, s4_m, s5_m, s6_m, s7_m); \ + BUTTERFLY_4(s0_m, s1_m, s2_m, s3_m, x0_m, x1_m, x2_m, x3_m); \ + ILVL_H2_SH(x1_m, x0_m, x3_m, x2_m, s0_m, s2_m); \ + ILVR_H2_SH(x1_m, x0_m, x3_m, x2_m, s1_m, s3_m); \ + SPLATI_H2_SH(coeff_m, 0, 1, x0_m, x1_m); \ + x1_m = __msa_ilvev_h(x1_m, x0_m); \ + out4 = DOT_SHIFT_RIGHT_PCK_H(s0_m, s1_m, x1_m); \ + \ + SPLATI_H2_SH(coeff_m, 2, 3, x2_m, x3_m); \ + x2_m = -x2_m; \ + x2_m = __msa_ilvev_h(x3_m, x2_m); \ + out6 = DOT_SHIFT_RIGHT_PCK_H(s2_m, s3_m, x2_m); \ + \ + out0 = DOT_SHIFT_RIGHT_PCK_H(s0_m, s1_m, x0_m); \ + x2_m = __msa_splati_h(coeff_m, 2); \ + x2_m = __msa_ilvev_h(x2_m, x3_m); \ + out2 = DOT_SHIFT_RIGHT_PCK_H(s2_m, s3_m, x2_m); \ + \ + /* stage2 */ \ + ILVRL_H2_SH(s5_m, s6_m, s1_m, s0_m); \ + \ + s6_m = DOT_SHIFT_RIGHT_PCK_H(s0_m, s1_m, x0_m); \ + s5_m = DOT_SHIFT_RIGHT_PCK_H(s0_m, s1_m, x1_m); \ + \ + /* stage3 */ \ + BUTTERFLY_4(s4_m, s7_m, s6_m, s5_m, x0_m, x3_m, x2_m, x1_m); \ + \ + /* stage4 */ \ + ILVL_H2_SH(x3_m, x0_m, x2_m, x1_m, s4_m, s6_m); \ + ILVR_H2_SH(x3_m, x0_m, x2_m, x1_m, s5_m, s7_m); \ + \ + SPLATI_H2_SH(coeff_m, 4, 5, x0_m, x1_m); \ + x1_m = __msa_ilvev_h(x0_m, x1_m); \ + out1 = DOT_SHIFT_RIGHT_PCK_H(s4_m, s5_m, x1_m); \ + \ + SPLATI_H2_SH(coeff_m, 6, 7, x2_m, x3_m); \ + x2_m = __msa_ilvev_h(x3_m, x2_m); \ + out5 = DOT_SHIFT_RIGHT_PCK_H(s6_m, s7_m, x2_m); \ + \ + x1_m = __msa_splati_h(coeff_m, 5); \ + x0_m = -x0_m; \ + x0_m = __msa_ilvev_h(x1_m, x0_m); \ + out7 = DOT_SHIFT_RIGHT_PCK_H(s4_m, s5_m, x0_m); \ + \ + x2_m = __msa_splati_h(coeff_m, 6); \ + x3_m = -x3_m; \ + x2_m = __msa_ilvev_h(x2_m, x3_m); \ + out3 = DOT_SHIFT_RIGHT_PCK_H(s6_m, s7_m, x2_m); \ + } + +#define FDCT8x16_EVEN(in0, in1, in2, in3, in4, in5, in6, in7, out0, out1, \ + out2, out3, out4, out5, out6, out7) \ + { \ + v8i16 s0_m, s1_m, s2_m, s3_m, s4_m, s5_m, s6_m, s7_m; \ + v8i16 x0_m, x1_m, x2_m, x3_m; \ + v8i16 coeff_m = { cospi_16_64, -cospi_16_64, cospi_8_64, cospi_24_64, \ + cospi_4_64, cospi_28_64, cospi_12_64, cospi_20_64 }; \ + \ + /* FDCT stage1 */ \ + BUTTERFLY_8(in0, in1, in2, in3, in4, in5, in6, in7, s0_m, s1_m, s2_m, \ + s3_m, s4_m, s5_m, s6_m, s7_m); \ + BUTTERFLY_4(s0_m, s1_m, s2_m, s3_m, x0_m, x1_m, x2_m, x3_m); \ + ILVL_H2_SH(x1_m, x0_m, x3_m, x2_m, s0_m, s2_m); \ + ILVR_H2_SH(x1_m, x0_m, x3_m, x2_m, s1_m, s3_m); \ + SPLATI_H2_SH(coeff_m, 0, 1, x0_m, x1_m); \ + x1_m = __msa_ilvev_h(x1_m, x0_m); \ + out4 = DOT_SHIFT_RIGHT_PCK_H(s0_m, s1_m, x1_m); \ + \ + SPLATI_H2_SH(coeff_m, 2, 3, x2_m, x3_m); \ + x2_m = -x2_m; \ + x2_m = __msa_ilvev_h(x3_m, x2_m); \ + out6 = DOT_SHIFT_RIGHT_PCK_H(s2_m, s3_m, x2_m); \ + \ + out0 = DOT_SHIFT_RIGHT_PCK_H(s0_m, s1_m, x0_m); \ + x2_m = __msa_splati_h(coeff_m, 2); \ + x2_m = __msa_ilvev_h(x2_m, x3_m); \ + out2 = DOT_SHIFT_RIGHT_PCK_H(s2_m, s3_m, x2_m); \ + \ + /* stage2 */ \ + ILVRL_H2_SH(s5_m, s6_m, s1_m, s0_m); \ + \ + s6_m = DOT_SHIFT_RIGHT_PCK_H(s0_m, s1_m, x0_m); \ + s5_m = DOT_SHIFT_RIGHT_PCK_H(s0_m, s1_m, x1_m); \ + \ + /* stage3 */ \ + BUTTERFLY_4(s4_m, s7_m, s6_m, s5_m, x0_m, x3_m, x2_m, x1_m); \ + \ + /* stage4 */ \ + ILVL_H2_SH(x3_m, x0_m, x2_m, x1_m, s4_m, s6_m); \ + ILVR_H2_SH(x3_m, x0_m, x2_m, x1_m, s5_m, s7_m); \ + \ + SPLATI_H2_SH(coeff_m, 4, 5, x0_m, x1_m); \ + x1_m = __msa_ilvev_h(x0_m, x1_m); \ + out1 = DOT_SHIFT_RIGHT_PCK_H(s4_m, s5_m, x1_m); \ + \ + SPLATI_H2_SH(coeff_m, 6, 7, x2_m, x3_m); \ + x2_m = __msa_ilvev_h(x3_m, x2_m); \ + out5 = DOT_SHIFT_RIGHT_PCK_H(s6_m, s7_m, x2_m); \ + \ + x1_m = __msa_splati_h(coeff_m, 5); \ + x0_m = -x0_m; \ + x0_m = __msa_ilvev_h(x1_m, x0_m); \ + out7 = DOT_SHIFT_RIGHT_PCK_H(s4_m, s5_m, x0_m); \ + \ + x2_m = __msa_splati_h(coeff_m, 6); \ + x3_m = -x3_m; \ + x2_m = __msa_ilvev_h(x2_m, x3_m); \ + out3 = DOT_SHIFT_RIGHT_PCK_H(s6_m, s7_m, x2_m); \ + } + +#define FDCT8x16_ODD(input0, input1, input2, input3, input4, input5, input6, \ + input7, out1, out3, out5, out7, out9, out11, out13, \ + out15) \ + { \ + v8i16 stp21_m, stp22_m, stp23_m, stp24_m, stp25_m, stp26_m; \ + v8i16 stp30_m, stp31_m, stp32_m, stp33_m, stp34_m, stp35_m; \ + v8i16 stp36_m, stp37_m, vec0_m, vec1_m; \ + v8i16 vec2_m, vec3_m, vec4_m, vec5_m, vec6_m; \ + v8i16 cnst0_m, cnst1_m, cnst4_m, cnst5_m; \ + v8i16 coeff_m = { cospi_16_64, -cospi_16_64, cospi_8_64, cospi_24_64, \ + -cospi_8_64, -cospi_24_64, cospi_12_64, cospi_20_64 }; \ + v8i16 coeff1_m = { cospi_2_64, cospi_30_64, cospi_14_64, cospi_18_64, \ + cospi_10_64, cospi_22_64, cospi_6_64, cospi_26_64 }; \ + v8i16 coeff2_m = { \ + -cospi_2_64, -cospi_10_64, -cospi_18_64, -cospi_26_64, 0, 0, 0, 0 \ + }; \ + \ + /* stp 1 */ \ + ILVL_H2_SH(input2, input5, input3, input4, vec2_m, vec4_m); \ + ILVR_H2_SH(input2, input5, input3, input4, vec3_m, vec5_m); \ + \ + cnst4_m = __msa_splati_h(coeff_m, 0); \ + stp25_m = DOT_SHIFT_RIGHT_PCK_H(vec2_m, vec3_m, cnst4_m); \ + \ + cnst5_m = __msa_splati_h(coeff_m, 1); \ + cnst5_m = __msa_ilvev_h(cnst5_m, cnst4_m); \ + stp22_m = DOT_SHIFT_RIGHT_PCK_H(vec2_m, vec3_m, cnst5_m); \ + stp24_m = DOT_SHIFT_RIGHT_PCK_H(vec4_m, vec5_m, cnst4_m); \ + stp23_m = DOT_SHIFT_RIGHT_PCK_H(vec4_m, vec5_m, cnst5_m); \ + \ + /* stp2 */ \ + BUTTERFLY_4(input0, input1, stp22_m, stp23_m, stp30_m, stp31_m, stp32_m, \ + stp33_m); \ + BUTTERFLY_4(input7, input6, stp25_m, stp24_m, stp37_m, stp36_m, stp35_m, \ + stp34_m); \ + \ + ILVL_H2_SH(stp36_m, stp31_m, stp35_m, stp32_m, vec2_m, vec4_m); \ + ILVR_H2_SH(stp36_m, stp31_m, stp35_m, stp32_m, vec3_m, vec5_m); \ + \ + SPLATI_H2_SH(coeff_m, 2, 3, cnst0_m, cnst1_m); \ + cnst0_m = __msa_ilvev_h(cnst0_m, cnst1_m); \ + stp26_m = DOT_SHIFT_RIGHT_PCK_H(vec2_m, vec3_m, cnst0_m); \ + \ + cnst0_m = __msa_splati_h(coeff_m, 4); \ + cnst1_m = __msa_ilvev_h(cnst1_m, cnst0_m); \ + stp21_m = DOT_SHIFT_RIGHT_PCK_H(vec2_m, vec3_m, cnst1_m); \ + \ + SPLATI_H2_SH(coeff_m, 5, 2, cnst0_m, cnst1_m); \ + cnst1_m = __msa_ilvev_h(cnst0_m, cnst1_m); \ + stp25_m = DOT_SHIFT_RIGHT_PCK_H(vec4_m, vec5_m, cnst1_m); \ + \ + cnst0_m = __msa_splati_h(coeff_m, 3); \ + cnst1_m = __msa_ilvev_h(cnst1_m, cnst0_m); \ + stp22_m = DOT_SHIFT_RIGHT_PCK_H(vec4_m, vec5_m, cnst1_m); \ + \ + /* stp4 */ \ + BUTTERFLY_4(stp30_m, stp37_m, stp26_m, stp21_m, vec6_m, vec2_m, vec4_m, \ + vec5_m); \ + BUTTERFLY_4(stp33_m, stp34_m, stp25_m, stp22_m, stp21_m, stp23_m, stp24_m, \ + stp31_m); \ + \ + ILVRL_H2_SH(vec2_m, vec6_m, vec1_m, vec0_m); \ + SPLATI_H2_SH(coeff1_m, 0, 1, cnst0_m, cnst1_m); \ + cnst0_m = __msa_ilvev_h(cnst0_m, cnst1_m); \ + \ + out1 = DOT_SHIFT_RIGHT_PCK_H(vec0_m, vec1_m, cnst0_m); \ + \ + cnst0_m = __msa_splati_h(coeff2_m, 0); \ + cnst0_m = __msa_ilvev_h(cnst1_m, cnst0_m); \ + out15 = DOT_SHIFT_RIGHT_PCK_H(vec0_m, vec1_m, cnst0_m); \ + \ + ILVRL_H2_SH(vec4_m, vec5_m, vec1_m, vec0_m); \ + SPLATI_H2_SH(coeff1_m, 2, 3, cnst0_m, cnst1_m); \ + cnst1_m = __msa_ilvev_h(cnst1_m, cnst0_m); \ + \ + out9 = DOT_SHIFT_RIGHT_PCK_H(vec0_m, vec1_m, cnst1_m); \ + \ + cnst1_m = __msa_splati_h(coeff2_m, 2); \ + cnst0_m = __msa_ilvev_h(cnst0_m, cnst1_m); \ + out7 = DOT_SHIFT_RIGHT_PCK_H(vec0_m, vec1_m, cnst0_m); \ + \ + ILVRL_H2_SH(stp23_m, stp21_m, vec1_m, vec0_m); \ + SPLATI_H2_SH(coeff1_m, 4, 5, cnst0_m, cnst1_m); \ + cnst0_m = __msa_ilvev_h(cnst0_m, cnst1_m); \ + out5 = DOT_SHIFT_RIGHT_PCK_H(vec0_m, vec1_m, cnst0_m); \ + \ + cnst0_m = __msa_splati_h(coeff2_m, 1); \ + cnst0_m = __msa_ilvev_h(cnst1_m, cnst0_m); \ + out11 = DOT_SHIFT_RIGHT_PCK_H(vec0_m, vec1_m, cnst0_m); \ + \ + ILVRL_H2_SH(stp24_m, stp31_m, vec1_m, vec0_m); \ + SPLATI_H2_SH(coeff1_m, 6, 7, cnst0_m, cnst1_m); \ + cnst1_m = __msa_ilvev_h(cnst1_m, cnst0_m); \ + \ + out13 = DOT_SHIFT_RIGHT_PCK_H(vec0_m, vec1_m, cnst1_m); \ + \ + cnst1_m = __msa_splati_h(coeff2_m, 3); \ + cnst0_m = __msa_ilvev_h(cnst0_m, cnst1_m); \ + out3 = DOT_SHIFT_RIGHT_PCK_H(vec0_m, vec1_m, cnst0_m); \ + } + +#define FDCT_POSTPROC_2V_NEG_H(vec0, vec1) \ + { \ + v8i16 tp0_m, tp1_m; \ + v8i16 one_m = __msa_ldi_h(1); \ + \ + tp0_m = __msa_clti_s_h(vec0, 0); \ + tp1_m = __msa_clti_s_h(vec1, 0); \ + vec0 += 1; \ + vec1 += 1; \ + tp0_m = one_m & tp0_m; \ + tp1_m = one_m & tp1_m; \ + vec0 += tp0_m; \ + vec1 += tp1_m; \ + vec0 >>= 2; \ + vec1 >>= 2; \ + } + +#define FDCT32_POSTPROC_NEG_W(vec) \ + { \ + v4i32 temp_m; \ + v4i32 one_m = __msa_ldi_w(1); \ + \ + temp_m = __msa_clti_s_w(vec, 0); \ + vec += 1; \ + temp_m = one_m & temp_m; \ + vec += temp_m; \ + vec >>= 2; \ + } + +#define FDCT32_POSTPROC_2V_POS_H(vec0, vec1) \ + { \ + v8i16 tp0_m, tp1_m; \ + v8i16 one = __msa_ldi_h(1); \ + \ + tp0_m = __msa_clei_s_h(vec0, 0); \ + tp1_m = __msa_clei_s_h(vec1, 0); \ + tp0_m = (v8i16)__msa_xori_b((v16u8)tp0_m, 255); \ + tp1_m = (v8i16)__msa_xori_b((v16u8)tp1_m, 255); \ + vec0 += 1; \ + vec1 += 1; \ + tp0_m = one & tp0_m; \ + tp1_m = one & tp1_m; \ + vec0 += tp0_m; \ + vec1 += tp1_m; \ + vec0 >>= 2; \ + vec1 >>= 2; \ + } + +#define DOTP_CONST_PAIR_W(reg0_left, reg1_left, reg0_right, reg1_right, \ + const0, const1, out0, out1, out2, out3) \ + { \ + v4i32 s0_m, s1_m, s2_m, s3_m, s4_m, s5_m, s6_m, s7_m; \ + v2i64 tp0_m, tp1_m, tp2_m, tp3_m; \ + v4i32 k0_m = __msa_fill_w((int32_t)const0); \ + \ + s0_m = __msa_fill_w((int32_t)const1); \ + k0_m = __msa_ilvev_w(s0_m, k0_m); \ + \ + ILVRL_W2_SW(-reg1_left, reg0_left, s1_m, s0_m); \ + ILVRL_W2_SW(reg0_left, reg1_left, s3_m, s2_m); \ + ILVRL_W2_SW(-reg1_right, reg0_right, s5_m, s4_m); \ + ILVRL_W2_SW(reg0_right, reg1_right, s7_m, s6_m); \ + \ + DOTP_SW2_SD(s0_m, s1_m, k0_m, k0_m, tp0_m, tp1_m); \ + DOTP_SW2_SD(s4_m, s5_m, k0_m, k0_m, tp2_m, tp3_m); \ + tp0_m = __msa_srari_d(tp0_m, DCT_CONST_BITS); \ + tp1_m = __msa_srari_d(tp1_m, DCT_CONST_BITS); \ + tp2_m = __msa_srari_d(tp2_m, DCT_CONST_BITS); \ + tp3_m = __msa_srari_d(tp3_m, DCT_CONST_BITS); \ + out0 = __msa_pckev_w((v4i32)tp0_m, (v4i32)tp1_m); \ + out1 = __msa_pckev_w((v4i32)tp2_m, (v4i32)tp3_m); \ + \ + DOTP_SW2_SD(s2_m, s3_m, k0_m, k0_m, tp0_m, tp1_m); \ + DOTP_SW2_SD(s6_m, s7_m, k0_m, k0_m, tp2_m, tp3_m); \ + tp0_m = __msa_srari_d(tp0_m, DCT_CONST_BITS); \ + tp1_m = __msa_srari_d(tp1_m, DCT_CONST_BITS); \ + tp2_m = __msa_srari_d(tp2_m, DCT_CONST_BITS); \ + tp3_m = __msa_srari_d(tp3_m, DCT_CONST_BITS); \ + out2 = __msa_pckev_w((v4i32)tp0_m, (v4i32)tp1_m); \ + out3 = __msa_pckev_w((v4i32)tp2_m, (v4i32)tp3_m); \ + } + +void fdct8x16_1d_column(const int16_t *input, int16_t *tmp_ptr, + int32_t src_stride); +void fdct16x8_1d_row(int16_t *input, int16_t *output); +#endif // VPX_DSP_MIPS_FWD_TXFM_MSA_H_ diff --git a/vpx_dsp/mips/idct16x16_msa.c b/vpx_dsp/mips/idct16x16_msa.c new file mode 100644 index 0000000..2a211c5 --- /dev/null +++ b/vpx_dsp/mips/idct16x16_msa.c @@ -0,0 +1,485 @@ +/* + * Copyright (c) 2015 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "vpx_dsp/mips/inv_txfm_msa.h" + +void vpx_idct16_1d_rows_msa(const int16_t *input, int16_t *output) { + v8i16 loc0, loc1, loc2, loc3; + v8i16 reg0, reg2, reg4, reg6, reg8, reg10, reg12, reg14; + v8i16 reg3, reg13, reg11, reg5, reg7, reg9, reg1, reg15; + v8i16 tmp5, tmp6, tmp7; + + LD_SH8(input, 16, reg0, reg1, reg2, reg3, reg4, reg5, reg6, reg7); + input += 8; + LD_SH8(input, 16, reg8, reg9, reg10, reg11, reg12, reg13, reg14, reg15); + + TRANSPOSE8x8_SH_SH(reg0, reg1, reg2, reg3, reg4, reg5, reg6, reg7, reg0, reg1, + reg2, reg3, reg4, reg5, reg6, reg7); + TRANSPOSE8x8_SH_SH(reg8, reg9, reg10, reg11, reg12, reg13, reg14, reg15, reg8, + reg9, reg10, reg11, reg12, reg13, reg14, reg15); + DOTP_CONST_PAIR(reg2, reg14, cospi_28_64, cospi_4_64, reg2, reg14); + DOTP_CONST_PAIR(reg10, reg6, cospi_12_64, cospi_20_64, reg10, reg6); + BUTTERFLY_4(reg2, reg14, reg6, reg10, loc0, loc1, reg14, reg2); + DOTP_CONST_PAIR(reg14, reg2, cospi_16_64, cospi_16_64, loc2, loc3); + DOTP_CONST_PAIR(reg0, reg8, cospi_16_64, cospi_16_64, reg0, reg8); + DOTP_CONST_PAIR(reg4, reg12, cospi_24_64, cospi_8_64, reg4, reg12); + BUTTERFLY_4(reg8, reg0, reg4, reg12, reg2, reg6, reg10, reg14); + SUB4(reg2, loc1, reg14, loc0, reg6, loc3, reg10, loc2, reg0, reg12, reg4, + reg8); + ADD4(reg2, loc1, reg14, loc0, reg6, loc3, reg10, loc2, reg2, reg14, reg6, + reg10); + + /* stage 2 */ + DOTP_CONST_PAIR(reg1, reg15, cospi_30_64, cospi_2_64, reg1, reg15); + DOTP_CONST_PAIR(reg9, reg7, cospi_14_64, cospi_18_64, loc2, loc3); + + reg9 = reg1 - loc2; + reg1 = reg1 + loc2; + reg7 = reg15 - loc3; + reg15 = reg15 + loc3; + + DOTP_CONST_PAIR(reg5, reg11, cospi_22_64, cospi_10_64, reg5, reg11); + DOTP_CONST_PAIR(reg13, reg3, cospi_6_64, cospi_26_64, loc0, loc1); + BUTTERFLY_4(loc0, loc1, reg11, reg5, reg13, reg3, reg11, reg5); + + loc1 = reg15 + reg3; + reg3 = reg15 - reg3; + loc2 = reg2 + loc1; + reg15 = reg2 - loc1; + + loc1 = reg1 + reg13; + reg13 = reg1 - reg13; + loc0 = reg0 + loc1; + loc1 = reg0 - loc1; + tmp6 = loc0; + tmp7 = loc1; + reg0 = loc2; + + DOTP_CONST_PAIR(reg7, reg9, cospi_24_64, cospi_8_64, reg7, reg9); + DOTP_CONST_PAIR((-reg5), (-reg11), cospi_8_64, cospi_24_64, reg5, reg11); + + loc0 = reg9 + reg5; + reg5 = reg9 - reg5; + reg2 = reg6 + loc0; + reg1 = reg6 - loc0; + + loc0 = reg7 + reg11; + reg11 = reg7 - reg11; + loc1 = reg4 + loc0; + loc2 = reg4 - loc0; + tmp5 = loc1; + + DOTP_CONST_PAIR(reg5, reg11, cospi_16_64, cospi_16_64, reg5, reg11); + BUTTERFLY_4(reg8, reg10, reg11, reg5, loc0, reg4, reg9, loc1); + + reg10 = loc0; + reg11 = loc1; + + DOTP_CONST_PAIR(reg3, reg13, cospi_16_64, cospi_16_64, reg3, reg13); + BUTTERFLY_4(reg12, reg14, reg13, reg3, reg8, reg6, reg7, reg5); + + reg13 = loc2; + + /* Transpose and store the output */ + reg12 = tmp5; + reg14 = tmp6; + reg3 = tmp7; + + /* transpose block */ + TRANSPOSE8x8_SH_SH(reg0, reg2, reg4, reg6, reg8, reg10, reg12, reg14, reg0, + reg2, reg4, reg6, reg8, reg10, reg12, reg14); + ST_SH8(reg0, reg2, reg4, reg6, reg8, reg10, reg12, reg14, output, 16); + + /* transpose block */ + TRANSPOSE8x8_SH_SH(reg3, reg13, reg11, reg5, reg7, reg9, reg1, reg15, reg3, + reg13, reg11, reg5, reg7, reg9, reg1, reg15); + ST_SH8(reg3, reg13, reg11, reg5, reg7, reg9, reg1, reg15, (output + 8), 16); +} + +void vpx_idct16_1d_columns_addblk_msa(int16_t *input, uint8_t *dst, + int32_t dst_stride) { + v8i16 loc0, loc1, loc2, loc3; + v8i16 reg0, reg2, reg4, reg6, reg8, reg10, reg12, reg14; + v8i16 reg3, reg13, reg11, reg5, reg7, reg9, reg1, reg15; + v8i16 tmp5, tmp6, tmp7; + + /* load up 8x8 */ + LD_SH8(input, 16, reg0, reg1, reg2, reg3, reg4, reg5, reg6, reg7); + input += 8 * 16; + /* load bottom 8x8 */ + LD_SH8(input, 16, reg8, reg9, reg10, reg11, reg12, reg13, reg14, reg15); + + DOTP_CONST_PAIR(reg2, reg14, cospi_28_64, cospi_4_64, reg2, reg14); + DOTP_CONST_PAIR(reg10, reg6, cospi_12_64, cospi_20_64, reg10, reg6); + BUTTERFLY_4(reg2, reg14, reg6, reg10, loc0, loc1, reg14, reg2); + DOTP_CONST_PAIR(reg14, reg2, cospi_16_64, cospi_16_64, loc2, loc3); + DOTP_CONST_PAIR(reg0, reg8, cospi_16_64, cospi_16_64, reg0, reg8); + DOTP_CONST_PAIR(reg4, reg12, cospi_24_64, cospi_8_64, reg4, reg12); + BUTTERFLY_4(reg8, reg0, reg4, reg12, reg2, reg6, reg10, reg14); + + reg0 = reg2 - loc1; + reg2 = reg2 + loc1; + reg12 = reg14 - loc0; + reg14 = reg14 + loc0; + reg4 = reg6 - loc3; + reg6 = reg6 + loc3; + reg8 = reg10 - loc2; + reg10 = reg10 + loc2; + + /* stage 2 */ + DOTP_CONST_PAIR(reg1, reg15, cospi_30_64, cospi_2_64, reg1, reg15); + DOTP_CONST_PAIR(reg9, reg7, cospi_14_64, cospi_18_64, loc2, loc3); + + reg9 = reg1 - loc2; + reg1 = reg1 + loc2; + reg7 = reg15 - loc3; + reg15 = reg15 + loc3; + + DOTP_CONST_PAIR(reg5, reg11, cospi_22_64, cospi_10_64, reg5, reg11); + DOTP_CONST_PAIR(reg13, reg3, cospi_6_64, cospi_26_64, loc0, loc1); + BUTTERFLY_4(loc0, loc1, reg11, reg5, reg13, reg3, reg11, reg5); + + loc1 = reg15 + reg3; + reg3 = reg15 - reg3; + loc2 = reg2 + loc1; + reg15 = reg2 - loc1; + + loc1 = reg1 + reg13; + reg13 = reg1 - reg13; + loc0 = reg0 + loc1; + loc1 = reg0 - loc1; + tmp6 = loc0; + tmp7 = loc1; + reg0 = loc2; + + DOTP_CONST_PAIR(reg7, reg9, cospi_24_64, cospi_8_64, reg7, reg9); + DOTP_CONST_PAIR((-reg5), (-reg11), cospi_8_64, cospi_24_64, reg5, reg11); + + loc0 = reg9 + reg5; + reg5 = reg9 - reg5; + reg2 = reg6 + loc0; + reg1 = reg6 - loc0; + + loc0 = reg7 + reg11; + reg11 = reg7 - reg11; + loc1 = reg4 + loc0; + loc2 = reg4 - loc0; + tmp5 = loc1; + + DOTP_CONST_PAIR(reg5, reg11, cospi_16_64, cospi_16_64, reg5, reg11); + BUTTERFLY_4(reg8, reg10, reg11, reg5, loc0, reg4, reg9, loc1); + + reg10 = loc0; + reg11 = loc1; + + DOTP_CONST_PAIR(reg3, reg13, cospi_16_64, cospi_16_64, reg3, reg13); + BUTTERFLY_4(reg12, reg14, reg13, reg3, reg8, reg6, reg7, reg5); + reg13 = loc2; + + /* Transpose and store the output */ + reg12 = tmp5; + reg14 = tmp6; + reg3 = tmp7; + + SRARI_H4_SH(reg0, reg2, reg4, reg6, 6); + VP9_ADDBLK_ST8x4_UB(dst, dst_stride, reg0, reg2, reg4, reg6); + dst += (4 * dst_stride); + SRARI_H4_SH(reg8, reg10, reg12, reg14, 6); + VP9_ADDBLK_ST8x4_UB(dst, dst_stride, reg8, reg10, reg12, reg14); + dst += (4 * dst_stride); + SRARI_H4_SH(reg3, reg13, reg11, reg5, 6); + VP9_ADDBLK_ST8x4_UB(dst, dst_stride, reg3, reg13, reg11, reg5); + dst += (4 * dst_stride); + SRARI_H4_SH(reg7, reg9, reg1, reg15, 6); + VP9_ADDBLK_ST8x4_UB(dst, dst_stride, reg7, reg9, reg1, reg15); +} + +void vpx_idct16x16_256_add_msa(const int16_t *input, uint8_t *dst, + int32_t dst_stride) { + int32_t i; + DECLARE_ALIGNED(32, int16_t, out_arr[16 * 16]); + int16_t *out = out_arr; + + /* transform rows */ + for (i = 0; i < 2; ++i) { + /* process 16 * 8 block */ + vpx_idct16_1d_rows_msa((input + (i << 7)), (out + (i << 7))); + } + + /* transform columns */ + for (i = 0; i < 2; ++i) { + /* process 8 * 16 block */ + vpx_idct16_1d_columns_addblk_msa((out + (i << 3)), (dst + (i << 3)), + dst_stride); + } +} + +void vpx_idct16x16_10_add_msa(const int16_t *input, uint8_t *dst, + int32_t dst_stride) { + uint8_t i; + DECLARE_ALIGNED(32, int16_t, out_arr[16 * 16]); + int16_t *out = out_arr; + + /* process 16 * 8 block */ + vpx_idct16_1d_rows_msa(input, out); + + /* short case just considers top 4 rows as valid output */ + out += 4 * 16; + for (i = 12; i--;) { + __asm__ __volatile__( + "sw $zero, 0(%[out]) \n\t" + "sw $zero, 4(%[out]) \n\t" + "sw $zero, 8(%[out]) \n\t" + "sw $zero, 12(%[out]) \n\t" + "sw $zero, 16(%[out]) \n\t" + "sw $zero, 20(%[out]) \n\t" + "sw $zero, 24(%[out]) \n\t" + "sw $zero, 28(%[out]) \n\t" + + : + : [out] "r"(out)); + + out += 16; + } + + out = out_arr; + + /* transform columns */ + for (i = 0; i < 2; ++i) { + /* process 8 * 16 block */ + vpx_idct16_1d_columns_addblk_msa((out + (i << 3)), (dst + (i << 3)), + dst_stride); + } +} + +void vpx_idct16x16_1_add_msa(const int16_t *input, uint8_t *dst, + int32_t dst_stride) { + uint8_t i; + int16_t out; + v8i16 vec, res0, res1, res2, res3, res4, res5, res6, res7; + v16u8 dst0, dst1, dst2, dst3, tmp0, tmp1, tmp2, tmp3; + + out = ROUND_POWER_OF_TWO((input[0] * cospi_16_64), DCT_CONST_BITS); + out = ROUND_POWER_OF_TWO((out * cospi_16_64), DCT_CONST_BITS); + out = ROUND_POWER_OF_TWO(out, 6); + + vec = __msa_fill_h(out); + + for (i = 4; i--;) { + LD_UB4(dst, dst_stride, dst0, dst1, dst2, dst3); + UNPCK_UB_SH(dst0, res0, res4); + UNPCK_UB_SH(dst1, res1, res5); + UNPCK_UB_SH(dst2, res2, res6); + UNPCK_UB_SH(dst3, res3, res7); + ADD4(res0, vec, res1, vec, res2, vec, res3, vec, res0, res1, res2, res3); + ADD4(res4, vec, res5, vec, res6, vec, res7, vec, res4, res5, res6, res7); + CLIP_SH4_0_255(res0, res1, res2, res3); + CLIP_SH4_0_255(res4, res5, res6, res7); + PCKEV_B4_UB(res4, res0, res5, res1, res6, res2, res7, res3, tmp0, tmp1, + tmp2, tmp3); + ST_UB4(tmp0, tmp1, tmp2, tmp3, dst, dst_stride); + dst += (4 * dst_stride); + } +} + +void vpx_iadst16_1d_rows_msa(const int16_t *input, int16_t *output) { + v8i16 r0, r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15; + v8i16 l0, l1, l2, l3, l4, l5, l6, l7, l8, l9, l10, l11, l12, l13, l14, l15; + + /* load input data */ + LD_SH16(input, 8, l0, l8, l1, l9, l2, l10, l3, l11, l4, l12, l5, l13, l6, l14, + l7, l15); + TRANSPOSE8x8_SH_SH(l0, l1, l2, l3, l4, l5, l6, l7, l0, l1, l2, l3, l4, l5, l6, + l7); + TRANSPOSE8x8_SH_SH(l8, l9, l10, l11, l12, l13, l14, l15, l8, l9, l10, l11, + l12, l13, l14, l15); + + /* ADST in horizontal */ + VP9_IADST8x16_1D(l0, l1, l2, l3, l4, l5, l6, l7, l8, l9, l10, l11, l12, l13, + l14, l15, r0, r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, + r12, r13, r14, r15); + + l1 = -r8; + l3 = -r4; + l13 = -r13; + l15 = -r1; + + TRANSPOSE8x8_SH_SH(r0, l1, r12, l3, r6, r14, r10, r2, l0, l1, l2, l3, l4, l5, + l6, l7); + ST_SH8(l0, l1, l2, l3, l4, l5, l6, l7, output, 16); + TRANSPOSE8x8_SH_SH(r3, r11, r15, r7, r5, l13, r9, l15, l8, l9, l10, l11, l12, + l13, l14, l15); + ST_SH8(l8, l9, l10, l11, l12, l13, l14, l15, (output + 8), 16); +} + +void vpx_iadst16_1d_columns_addblk_msa(int16_t *input, uint8_t *dst, + int32_t dst_stride) { + v8i16 v0, v2, v4, v6, k0, k1, k2, k3; + v8i16 r0, r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15; + v8i16 out0, out1, out2, out3, out4, out5, out6, out7; + v8i16 out8, out9, out10, out11, out12, out13, out14, out15; + v8i16 g0, g1, g2, g3, g4, g5, g6, g7, g8, g9, g10, g11, g12, g13, g14, g15; + v8i16 h0, h1, h2, h3, h4, h5, h6, h7, h8, h9, h10, h11; + v8i16 res0, res1, res2, res3, res4, res5, res6, res7; + v8i16 res8, res9, res10, res11, res12, res13, res14, res15; + v16u8 dst0, dst1, dst2, dst3, dst4, dst5, dst6, dst7; + v16u8 dst8, dst9, dst10, dst11, dst12, dst13, dst14, dst15; + v16i8 zero = { 0 }; + + r0 = LD_SH(input + 0 * 16); + r3 = LD_SH(input + 3 * 16); + r4 = LD_SH(input + 4 * 16); + r7 = LD_SH(input + 7 * 16); + r8 = LD_SH(input + 8 * 16); + r11 = LD_SH(input + 11 * 16); + r12 = LD_SH(input + 12 * 16); + r15 = LD_SH(input + 15 * 16); + + /* stage 1 */ + k0 = VP9_SET_COSPI_PAIR(cospi_1_64, cospi_31_64); + k1 = VP9_SET_COSPI_PAIR(cospi_31_64, -cospi_1_64); + k2 = VP9_SET_COSPI_PAIR(cospi_17_64, cospi_15_64); + k3 = VP9_SET_COSPI_PAIR(cospi_15_64, -cospi_17_64); + MADD_BF(r15, r0, r7, r8, k0, k1, k2, k3, g0, g1, g2, g3); + k0 = VP9_SET_COSPI_PAIR(cospi_9_64, cospi_23_64); + k1 = VP9_SET_COSPI_PAIR(cospi_23_64, -cospi_9_64); + k2 = VP9_SET_COSPI_PAIR(cospi_25_64, cospi_7_64); + k3 = VP9_SET_COSPI_PAIR(cospi_7_64, -cospi_25_64); + MADD_BF(r11, r4, r3, r12, k0, k1, k2, k3, g8, g9, g10, g11); + BUTTERFLY_4(g0, g2, g10, g8, h8, h9, v2, v0); + k0 = VP9_SET_COSPI_PAIR(cospi_4_64, cospi_28_64); + k1 = VP9_SET_COSPI_PAIR(cospi_28_64, -cospi_4_64); + k2 = VP9_SET_COSPI_PAIR(-cospi_28_64, cospi_4_64); + MADD_BF(g1, g3, g9, g11, k0, k1, k2, k0, h0, h1, h2, h3); + + r1 = LD_SH(input + 1 * 16); + r2 = LD_SH(input + 2 * 16); + r5 = LD_SH(input + 5 * 16); + r6 = LD_SH(input + 6 * 16); + r9 = LD_SH(input + 9 * 16); + r10 = LD_SH(input + 10 * 16); + r13 = LD_SH(input + 13 * 16); + r14 = LD_SH(input + 14 * 16); + + k0 = VP9_SET_COSPI_PAIR(cospi_5_64, cospi_27_64); + k1 = VP9_SET_COSPI_PAIR(cospi_27_64, -cospi_5_64); + k2 = VP9_SET_COSPI_PAIR(cospi_21_64, cospi_11_64); + k3 = VP9_SET_COSPI_PAIR(cospi_11_64, -cospi_21_64); + MADD_BF(r13, r2, r5, r10, k0, k1, k2, k3, g4, g5, g6, g7); + k0 = VP9_SET_COSPI_PAIR(cospi_13_64, cospi_19_64); + k1 = VP9_SET_COSPI_PAIR(cospi_19_64, -cospi_13_64); + k2 = VP9_SET_COSPI_PAIR(cospi_29_64, cospi_3_64); + k3 = VP9_SET_COSPI_PAIR(cospi_3_64, -cospi_29_64); + MADD_BF(r9, r6, r1, r14, k0, k1, k2, k3, g12, g13, g14, g15); + BUTTERFLY_4(g4, g6, g14, g12, h10, h11, v6, v4); + BUTTERFLY_4(h8, h9, h11, h10, out0, out1, h11, h10); + out1 = -out1; + SRARI_H2_SH(out0, out1, 6); + dst0 = LD_UB(dst + 0 * dst_stride); + dst1 = LD_UB(dst + 15 * dst_stride); + ILVR_B2_SH(zero, dst0, zero, dst1, res0, res1); + ADD2(res0, out0, res1, out1, res0, res1); + CLIP_SH2_0_255(res0, res1); + PCKEV_B2_SH(res0, res0, res1, res1, res0, res1); + ST8x1_UB(res0, dst); + ST8x1_UB(res1, dst + 15 * dst_stride); + + k0 = VP9_SET_COSPI_PAIR(cospi_12_64, cospi_20_64); + k1 = VP9_SET_COSPI_PAIR(-cospi_20_64, cospi_12_64); + k2 = VP9_SET_COSPI_PAIR(cospi_20_64, -cospi_12_64); + MADD_BF(g7, g5, g15, g13, k0, k1, k2, k0, h4, h5, h6, h7); + BUTTERFLY_4(h0, h2, h6, h4, out8, out9, out11, out10); + out8 = -out8; + + SRARI_H2_SH(out8, out9, 6); + dst8 = LD_UB(dst + 1 * dst_stride); + dst9 = LD_UB(dst + 14 * dst_stride); + ILVR_B2_SH(zero, dst8, zero, dst9, res8, res9); + ADD2(res8, out8, res9, out9, res8, res9); + CLIP_SH2_0_255(res8, res9); + PCKEV_B2_SH(res8, res8, res9, res9, res8, res9); + ST8x1_UB(res8, dst + dst_stride); + ST8x1_UB(res9, dst + 14 * dst_stride); + + k0 = VP9_SET_COSPI_PAIR(cospi_8_64, cospi_24_64); + k1 = VP9_SET_COSPI_PAIR(cospi_24_64, -cospi_8_64); + k2 = VP9_SET_COSPI_PAIR(-cospi_24_64, cospi_8_64); + MADD_BF(v0, v2, v4, v6, k0, k1, k2, k0, out4, out6, out5, out7); + out4 = -out4; + SRARI_H2_SH(out4, out5, 6); + dst4 = LD_UB(dst + 3 * dst_stride); + dst5 = LD_UB(dst + 12 * dst_stride); + ILVR_B2_SH(zero, dst4, zero, dst5, res4, res5); + ADD2(res4, out4, res5, out5, res4, res5); + CLIP_SH2_0_255(res4, res5); + PCKEV_B2_SH(res4, res4, res5, res5, res4, res5); + ST8x1_UB(res4, dst + 3 * dst_stride); + ST8x1_UB(res5, dst + 12 * dst_stride); + + MADD_BF(h1, h3, h5, h7, k0, k1, k2, k0, out12, out14, out13, out15); + out13 = -out13; + SRARI_H2_SH(out12, out13, 6); + dst12 = LD_UB(dst + 2 * dst_stride); + dst13 = LD_UB(dst + 13 * dst_stride); + ILVR_B2_SH(zero, dst12, zero, dst13, res12, res13); + ADD2(res12, out12, res13, out13, res12, res13); + CLIP_SH2_0_255(res12, res13); + PCKEV_B2_SH(res12, res12, res13, res13, res12, res13); + ST8x1_UB(res12, dst + 2 * dst_stride); + ST8x1_UB(res13, dst + 13 * dst_stride); + + k0 = VP9_SET_COSPI_PAIR(cospi_16_64, cospi_16_64); + k3 = VP9_SET_COSPI_PAIR(-cospi_16_64, cospi_16_64); + MADD_SHORT(out6, out7, k0, k3, out6, out7); + SRARI_H2_SH(out6, out7, 6); + dst6 = LD_UB(dst + 4 * dst_stride); + dst7 = LD_UB(dst + 11 * dst_stride); + ILVR_B2_SH(zero, dst6, zero, dst7, res6, res7); + ADD2(res6, out6, res7, out7, res6, res7); + CLIP_SH2_0_255(res6, res7); + PCKEV_B2_SH(res6, res6, res7, res7, res6, res7); + ST8x1_UB(res6, dst + 4 * dst_stride); + ST8x1_UB(res7, dst + 11 * dst_stride); + + MADD_SHORT(out10, out11, k0, k3, out10, out11); + SRARI_H2_SH(out10, out11, 6); + dst10 = LD_UB(dst + 6 * dst_stride); + dst11 = LD_UB(dst + 9 * dst_stride); + ILVR_B2_SH(zero, dst10, zero, dst11, res10, res11); + ADD2(res10, out10, res11, out11, res10, res11); + CLIP_SH2_0_255(res10, res11); + PCKEV_B2_SH(res10, res10, res11, res11, res10, res11); + ST8x1_UB(res10, dst + 6 * dst_stride); + ST8x1_UB(res11, dst + 9 * dst_stride); + + k1 = VP9_SET_COSPI_PAIR(-cospi_16_64, -cospi_16_64); + k2 = VP9_SET_COSPI_PAIR(cospi_16_64, -cospi_16_64); + MADD_SHORT(h10, h11, k1, k2, out2, out3); + SRARI_H2_SH(out2, out3, 6); + dst2 = LD_UB(dst + 7 * dst_stride); + dst3 = LD_UB(dst + 8 * dst_stride); + ILVR_B2_SH(zero, dst2, zero, dst3, res2, res3); + ADD2(res2, out2, res3, out3, res2, res3); + CLIP_SH2_0_255(res2, res3); + PCKEV_B2_SH(res2, res2, res3, res3, res2, res3); + ST8x1_UB(res2, dst + 7 * dst_stride); + ST8x1_UB(res3, dst + 8 * dst_stride); + + MADD_SHORT(out14, out15, k1, k2, out14, out15); + SRARI_H2_SH(out14, out15, 6); + dst14 = LD_UB(dst + 5 * dst_stride); + dst15 = LD_UB(dst + 10 * dst_stride); + ILVR_B2_SH(zero, dst14, zero, dst15, res14, res15); + ADD2(res14, out14, res15, out15, res14, res15); + CLIP_SH2_0_255(res14, res15); + PCKEV_B2_SH(res14, res14, res15, res15, res14, res15); + ST8x1_UB(res14, dst + 5 * dst_stride); + ST8x1_UB(res15, dst + 10 * dst_stride); +} diff --git a/vpx_dsp/mips/idct32x32_msa.c b/vpx_dsp/mips/idct32x32_msa.c new file mode 100644 index 0000000..2ea6136 --- /dev/null +++ b/vpx_dsp/mips/idct32x32_msa.c @@ -0,0 +1,729 @@ +/* + * Copyright (c) 2015 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "vpx_dsp/mips/inv_txfm_msa.h" + +static void idct32x8_row_transpose_store(const int16_t *input, + int16_t *tmp_buf) { + v8i16 m0, m1, m2, m3, m4, m5, m6, m7, n0, n1, n2, n3, n4, n5, n6, n7; + + /* 1st & 2nd 8x8 */ + LD_SH8(input, 32, m0, n0, m1, n1, m2, n2, m3, n3); + LD_SH8((input + 8), 32, m4, n4, m5, n5, m6, n6, m7, n7); + TRANSPOSE8x8_SH_SH(m0, n0, m1, n1, m2, n2, m3, n3, m0, n0, m1, n1, m2, n2, m3, + n3); + TRANSPOSE8x8_SH_SH(m4, n4, m5, n5, m6, n6, m7, n7, m4, n4, m5, n5, m6, n6, m7, + n7); + ST_SH8(m0, n0, m1, n1, m2, n2, m3, n3, (tmp_buf), 8); + ST_SH4(m4, n4, m5, n5, (tmp_buf + 8 * 8), 8); + ST_SH4(m6, n6, m7, n7, (tmp_buf + 12 * 8), 8); + + /* 3rd & 4th 8x8 */ + LD_SH8((input + 16), 32, m0, n0, m1, n1, m2, n2, m3, n3); + LD_SH8((input + 24), 32, m4, n4, m5, n5, m6, n6, m7, n7); + TRANSPOSE8x8_SH_SH(m0, n0, m1, n1, m2, n2, m3, n3, m0, n0, m1, n1, m2, n2, m3, + n3); + TRANSPOSE8x8_SH_SH(m4, n4, m5, n5, m6, n6, m7, n7, m4, n4, m5, n5, m6, n6, m7, + n7); + ST_SH4(m0, n0, m1, n1, (tmp_buf + 16 * 8), 8); + ST_SH4(m2, n2, m3, n3, (tmp_buf + 20 * 8), 8); + ST_SH4(m4, n4, m5, n5, (tmp_buf + 24 * 8), 8); + ST_SH4(m6, n6, m7, n7, (tmp_buf + 28 * 8), 8); +} + +static void idct32x8_row_even_process_store(int16_t *tmp_buf, + int16_t *tmp_eve_buf) { + v8i16 vec0, vec1, vec2, vec3, loc0, loc1, loc2, loc3; + v8i16 reg0, reg1, reg2, reg3, reg4, reg5, reg6, reg7; + v8i16 stp0, stp1, stp2, stp3, stp4, stp5, stp6, stp7; + + /* Even stage 1 */ + LD_SH8(tmp_buf, 32, reg0, reg1, reg2, reg3, reg4, reg5, reg6, reg7); + + DOTP_CONST_PAIR(reg1, reg7, cospi_28_64, cospi_4_64, reg1, reg7); + DOTP_CONST_PAIR(reg5, reg3, cospi_12_64, cospi_20_64, reg5, reg3); + BUTTERFLY_4(reg1, reg7, reg3, reg5, vec1, vec3, vec2, vec0); + DOTP_CONST_PAIR(vec2, vec0, cospi_16_64, cospi_16_64, loc2, loc3); + + loc1 = vec3; + loc0 = vec1; + + DOTP_CONST_PAIR(reg0, reg4, cospi_16_64, cospi_16_64, reg0, reg4); + DOTP_CONST_PAIR(reg2, reg6, cospi_24_64, cospi_8_64, reg2, reg6); + BUTTERFLY_4(reg4, reg0, reg2, reg6, vec1, vec3, vec2, vec0); + BUTTERFLY_4(vec0, vec1, loc1, loc0, stp3, stp0, stp7, stp4); + BUTTERFLY_4(vec2, vec3, loc3, loc2, stp2, stp1, stp6, stp5); + + /* Even stage 2 */ + LD_SH8((tmp_buf + 16), 32, reg0, reg1, reg2, reg3, reg4, reg5, reg6, reg7); + DOTP_CONST_PAIR(reg0, reg7, cospi_30_64, cospi_2_64, reg0, reg7); + DOTP_CONST_PAIR(reg4, reg3, cospi_14_64, cospi_18_64, reg4, reg3); + DOTP_CONST_PAIR(reg2, reg5, cospi_22_64, cospi_10_64, reg2, reg5); + DOTP_CONST_PAIR(reg6, reg1, cospi_6_64, cospi_26_64, reg6, reg1); + + vec0 = reg0 + reg4; + reg0 = reg0 - reg4; + reg4 = reg6 + reg2; + reg6 = reg6 - reg2; + reg2 = reg1 + reg5; + reg1 = reg1 - reg5; + reg5 = reg7 + reg3; + reg7 = reg7 - reg3; + reg3 = vec0; + + vec1 = reg2; + reg2 = reg3 + reg4; + reg3 = reg3 - reg4; + reg4 = reg5 - vec1; + reg5 = reg5 + vec1; + + DOTP_CONST_PAIR(reg7, reg0, cospi_24_64, cospi_8_64, reg0, reg7); + DOTP_CONST_PAIR((-reg6), reg1, cospi_24_64, cospi_8_64, reg6, reg1); + + vec0 = reg0 - reg6; + reg0 = reg0 + reg6; + vec1 = reg7 - reg1; + reg7 = reg7 + reg1; + + DOTP_CONST_PAIR(vec1, vec0, cospi_16_64, cospi_16_64, reg6, reg1); + DOTP_CONST_PAIR(reg4, reg3, cospi_16_64, cospi_16_64, reg3, reg4); + + /* Even stage 3 : Dependency on Even stage 1 & Even stage 2 */ + BUTTERFLY_4(stp0, stp1, reg7, reg5, loc1, loc3, loc2, loc0); + ST_SH(loc0, (tmp_eve_buf + 15 * 8)); + ST_SH(loc1, (tmp_eve_buf)); + ST_SH(loc2, (tmp_eve_buf + 14 * 8)); + ST_SH(loc3, (tmp_eve_buf + 8)); + + BUTTERFLY_4(stp2, stp3, reg4, reg1, loc1, loc3, loc2, loc0); + ST_SH(loc0, (tmp_eve_buf + 13 * 8)); + ST_SH(loc1, (tmp_eve_buf + 2 * 8)); + ST_SH(loc2, (tmp_eve_buf + 12 * 8)); + ST_SH(loc3, (tmp_eve_buf + 3 * 8)); + + /* Store 8 */ + BUTTERFLY_4(stp4, stp5, reg6, reg3, loc1, loc3, loc2, loc0); + ST_SH(loc0, (tmp_eve_buf + 11 * 8)); + ST_SH(loc1, (tmp_eve_buf + 4 * 8)); + ST_SH(loc2, (tmp_eve_buf + 10 * 8)); + ST_SH(loc3, (tmp_eve_buf + 5 * 8)); + + BUTTERFLY_4(stp6, stp7, reg2, reg0, loc1, loc3, loc2, loc0); + ST_SH(loc0, (tmp_eve_buf + 9 * 8)); + ST_SH(loc1, (tmp_eve_buf + 6 * 8)); + ST_SH(loc2, (tmp_eve_buf + 8 * 8)); + ST_SH(loc3, (tmp_eve_buf + 7 * 8)); +} + +static void idct32x8_row_odd_process_store(int16_t *tmp_buf, + int16_t *tmp_odd_buf) { + v8i16 vec0, vec1, vec2, vec3, loc0, loc1, loc2, loc3; + v8i16 reg0, reg1, reg2, reg3, reg4, reg5, reg6, reg7; + + /* Odd stage 1 */ + reg0 = LD_SH(tmp_buf + 8); + reg1 = LD_SH(tmp_buf + 7 * 8); + reg2 = LD_SH(tmp_buf + 9 * 8); + reg3 = LD_SH(tmp_buf + 15 * 8); + reg4 = LD_SH(tmp_buf + 17 * 8); + reg5 = LD_SH(tmp_buf + 23 * 8); + reg6 = LD_SH(tmp_buf + 25 * 8); + reg7 = LD_SH(tmp_buf + 31 * 8); + + DOTP_CONST_PAIR(reg0, reg7, cospi_31_64, cospi_1_64, reg0, reg7); + DOTP_CONST_PAIR(reg4, reg3, cospi_15_64, cospi_17_64, reg3, reg4); + DOTP_CONST_PAIR(reg2, reg5, cospi_23_64, cospi_9_64, reg2, reg5); + DOTP_CONST_PAIR(reg6, reg1, cospi_7_64, cospi_25_64, reg1, reg6); + + vec0 = reg0 + reg3; + reg0 = reg0 - reg3; + reg3 = reg7 + reg4; + reg7 = reg7 - reg4; + reg4 = reg1 + reg2; + reg1 = reg1 - reg2; + reg2 = reg6 + reg5; + reg6 = reg6 - reg5; + reg5 = vec0; + + /* 4 Stores */ + ADD2(reg5, reg4, reg3, reg2, vec0, vec1); + ST_SH2(vec0, vec1, (tmp_odd_buf + 4 * 8), 8); + + SUB2(reg5, reg4, reg3, reg2, vec0, vec1); + DOTP_CONST_PAIR(vec1, vec0, cospi_24_64, cospi_8_64, vec0, vec1); + ST_SH2(vec0, vec1, (tmp_odd_buf), 8); + + /* 4 Stores */ + DOTP_CONST_PAIR(reg7, reg0, cospi_28_64, cospi_4_64, reg0, reg7); + DOTP_CONST_PAIR(reg6, reg1, -cospi_4_64, cospi_28_64, reg1, reg6); + BUTTERFLY_4(reg0, reg7, reg6, reg1, vec0, vec1, vec2, vec3); + ST_SH2(vec0, vec1, (tmp_odd_buf + 6 * 8), 8); + + DOTP_CONST_PAIR(vec2, vec3, cospi_24_64, cospi_8_64, vec2, vec3); + ST_SH2(vec2, vec3, (tmp_odd_buf + 2 * 8), 8); + + /* Odd stage 2 */ + /* 8 loads */ + reg0 = LD_SH(tmp_buf + 3 * 8); + reg1 = LD_SH(tmp_buf + 5 * 8); + reg2 = LD_SH(tmp_buf + 11 * 8); + reg3 = LD_SH(tmp_buf + 13 * 8); + reg4 = LD_SH(tmp_buf + 19 * 8); + reg5 = LD_SH(tmp_buf + 21 * 8); + reg6 = LD_SH(tmp_buf + 27 * 8); + reg7 = LD_SH(tmp_buf + 29 * 8); + + DOTP_CONST_PAIR(reg1, reg6, cospi_27_64, cospi_5_64, reg1, reg6); + DOTP_CONST_PAIR(reg5, reg2, cospi_11_64, cospi_21_64, reg2, reg5); + DOTP_CONST_PAIR(reg3, reg4, cospi_19_64, cospi_13_64, reg3, reg4); + DOTP_CONST_PAIR(reg7, reg0, cospi_3_64, cospi_29_64, reg0, reg7); + + /* 4 Stores */ + SUB4(reg1, reg2, reg6, reg5, reg0, reg3, reg7, reg4, vec0, vec1, vec2, vec3); + DOTP_CONST_PAIR(vec1, vec0, cospi_12_64, cospi_20_64, loc0, loc1); + DOTP_CONST_PAIR(vec3, vec2, -cospi_20_64, cospi_12_64, loc2, loc3); + + BUTTERFLY_4(loc3, loc2, loc0, loc1, vec1, vec0, vec2, vec3); + ST_SH2(vec0, vec1, (tmp_odd_buf + 12 * 8), 3 * 8); + + DOTP_CONST_PAIR(vec3, vec2, -cospi_8_64, cospi_24_64, vec0, vec1); + ST_SH2(vec0, vec1, (tmp_odd_buf + 10 * 8), 8); + + /* 4 Stores */ + ADD4(reg1, reg2, reg6, reg5, reg0, reg3, reg7, reg4, vec1, vec2, vec0, vec3); + BUTTERFLY_4(vec0, vec3, vec2, vec1, reg0, reg1, reg3, reg2); + ST_SH(reg0, (tmp_odd_buf + 13 * 8)); + ST_SH(reg1, (tmp_odd_buf + 14 * 8)); + + DOTP_CONST_PAIR(reg3, reg2, -cospi_8_64, cospi_24_64, reg0, reg1); + ST_SH2(reg0, reg1, (tmp_odd_buf + 8 * 8), 8); + + /* Odd stage 3 : Dependency on Odd stage 1 & Odd stage 2 */ + + /* Load 8 & Store 8 */ + LD_SH4(tmp_odd_buf, 8, reg0, reg1, reg2, reg3); + LD_SH4((tmp_odd_buf + 8 * 8), 8, reg4, reg5, reg6, reg7); + + ADD4(reg0, reg4, reg1, reg5, reg2, reg6, reg3, reg7, loc0, loc1, loc2, loc3); + ST_SH4(loc0, loc1, loc2, loc3, tmp_odd_buf, 8); + + SUB2(reg0, reg4, reg1, reg5, vec0, vec1); + DOTP_CONST_PAIR(vec1, vec0, cospi_16_64, cospi_16_64, loc0, loc1); + + SUB2(reg2, reg6, reg3, reg7, vec0, vec1); + DOTP_CONST_PAIR(vec1, vec0, cospi_16_64, cospi_16_64, loc2, loc3); + ST_SH4(loc0, loc1, loc2, loc3, (tmp_odd_buf + 8 * 8), 8); + + /* Load 8 & Store 8 */ + LD_SH4((tmp_odd_buf + 4 * 8), 8, reg1, reg2, reg0, reg3); + LD_SH4((tmp_odd_buf + 12 * 8), 8, reg4, reg5, reg6, reg7); + + ADD4(reg0, reg4, reg1, reg5, reg2, reg6, reg3, reg7, loc0, loc1, loc2, loc3); + ST_SH4(loc0, loc1, loc2, loc3, (tmp_odd_buf + 4 * 8), 8); + + SUB2(reg0, reg4, reg3, reg7, vec0, vec1); + DOTP_CONST_PAIR(vec1, vec0, cospi_16_64, cospi_16_64, loc0, loc1); + + SUB2(reg1, reg5, reg2, reg6, vec0, vec1); + DOTP_CONST_PAIR(vec1, vec0, cospi_16_64, cospi_16_64, loc2, loc3); + ST_SH4(loc0, loc1, loc2, loc3, (tmp_odd_buf + 12 * 8), 8); +} + +static void idct_butterfly_transpose_store(int16_t *tmp_buf, + int16_t *tmp_eve_buf, + int16_t *tmp_odd_buf, int16_t *dst) { + v8i16 vec0, vec1, vec2, vec3, loc0, loc1, loc2, loc3; + v8i16 m0, m1, m2, m3, m4, m5, m6, m7, n0, n1, n2, n3, n4, n5, n6, n7; + + /* FINAL BUTTERFLY : Dependency on Even & Odd */ + vec0 = LD_SH(tmp_odd_buf); + vec1 = LD_SH(tmp_odd_buf + 9 * 8); + vec2 = LD_SH(tmp_odd_buf + 14 * 8); + vec3 = LD_SH(tmp_odd_buf + 6 * 8); + loc0 = LD_SH(tmp_eve_buf); + loc1 = LD_SH(tmp_eve_buf + 8 * 8); + loc2 = LD_SH(tmp_eve_buf + 4 * 8); + loc3 = LD_SH(tmp_eve_buf + 12 * 8); + + ADD4(loc0, vec3, loc1, vec2, loc2, vec1, loc3, vec0, m0, m4, m2, m6); + + ST_SH((loc0 - vec3), (tmp_buf + 31 * 8)); + ST_SH((loc1 - vec2), (tmp_buf + 23 * 8)); + ST_SH((loc2 - vec1), (tmp_buf + 27 * 8)); + ST_SH((loc3 - vec0), (tmp_buf + 19 * 8)); + + /* Load 8 & Store 8 */ + vec0 = LD_SH(tmp_odd_buf + 4 * 8); + vec1 = LD_SH(tmp_odd_buf + 13 * 8); + vec2 = LD_SH(tmp_odd_buf + 10 * 8); + vec3 = LD_SH(tmp_odd_buf + 3 * 8); + loc0 = LD_SH(tmp_eve_buf + 2 * 8); + loc1 = LD_SH(tmp_eve_buf + 10 * 8); + loc2 = LD_SH(tmp_eve_buf + 6 * 8); + loc3 = LD_SH(tmp_eve_buf + 14 * 8); + + ADD4(loc0, vec3, loc1, vec2, loc2, vec1, loc3, vec0, m1, m5, m3, m7); + + ST_SH((loc0 - vec3), (tmp_buf + 29 * 8)); + ST_SH((loc1 - vec2), (tmp_buf + 21 * 8)); + ST_SH((loc2 - vec1), (tmp_buf + 25 * 8)); + ST_SH((loc3 - vec0), (tmp_buf + 17 * 8)); + + /* Load 8 & Store 8 */ + vec0 = LD_SH(tmp_odd_buf + 2 * 8); + vec1 = LD_SH(tmp_odd_buf + 11 * 8); + vec2 = LD_SH(tmp_odd_buf + 12 * 8); + vec3 = LD_SH(tmp_odd_buf + 7 * 8); + loc0 = LD_SH(tmp_eve_buf + 1 * 8); + loc1 = LD_SH(tmp_eve_buf + 9 * 8); + loc2 = LD_SH(tmp_eve_buf + 5 * 8); + loc3 = LD_SH(tmp_eve_buf + 13 * 8); + + ADD4(loc0, vec3, loc1, vec2, loc2, vec1, loc3, vec0, n0, n4, n2, n6); + + ST_SH((loc0 - vec3), (tmp_buf + 30 * 8)); + ST_SH((loc1 - vec2), (tmp_buf + 22 * 8)); + ST_SH((loc2 - vec1), (tmp_buf + 26 * 8)); + ST_SH((loc3 - vec0), (tmp_buf + 18 * 8)); + + /* Load 8 & Store 8 */ + vec0 = LD_SH(tmp_odd_buf + 5 * 8); + vec1 = LD_SH(tmp_odd_buf + 15 * 8); + vec2 = LD_SH(tmp_odd_buf + 8 * 8); + vec3 = LD_SH(tmp_odd_buf + 1 * 8); + loc0 = LD_SH(tmp_eve_buf + 3 * 8); + loc1 = LD_SH(tmp_eve_buf + 11 * 8); + loc2 = LD_SH(tmp_eve_buf + 7 * 8); + loc3 = LD_SH(tmp_eve_buf + 15 * 8); + + ADD4(loc0, vec3, loc1, vec2, loc2, vec1, loc3, vec0, n1, n5, n3, n7); + + ST_SH((loc0 - vec3), (tmp_buf + 28 * 8)); + ST_SH((loc1 - vec2), (tmp_buf + 20 * 8)); + ST_SH((loc2 - vec1), (tmp_buf + 24 * 8)); + ST_SH((loc3 - vec0), (tmp_buf + 16 * 8)); + + /* Transpose : 16 vectors */ + /* 1st & 2nd 8x8 */ + TRANSPOSE8x8_SH_SH(m0, n0, m1, n1, m2, n2, m3, n3, m0, n0, m1, n1, m2, n2, m3, + n3); + ST_SH4(m0, n0, m1, n1, (dst + 0), 32); + ST_SH4(m2, n2, m3, n3, (dst + 4 * 32), 32); + + TRANSPOSE8x8_SH_SH(m4, n4, m5, n5, m6, n6, m7, n7, m4, n4, m5, n5, m6, n6, m7, + n7); + ST_SH4(m4, n4, m5, n5, (dst + 8), 32); + ST_SH4(m6, n6, m7, n7, (dst + 8 + 4 * 32), 32); + + /* 3rd & 4th 8x8 */ + LD_SH8((tmp_buf + 8 * 16), 8, m0, n0, m1, n1, m2, n2, m3, n3); + LD_SH8((tmp_buf + 12 * 16), 8, m4, n4, m5, n5, m6, n6, m7, n7); + TRANSPOSE8x8_SH_SH(m0, n0, m1, n1, m2, n2, m3, n3, m0, n0, m1, n1, m2, n2, m3, + n3); + ST_SH4(m0, n0, m1, n1, (dst + 16), 32); + ST_SH4(m2, n2, m3, n3, (dst + 16 + 4 * 32), 32); + + TRANSPOSE8x8_SH_SH(m4, n4, m5, n5, m6, n6, m7, n7, m4, n4, m5, n5, m6, n6, m7, + n7); + ST_SH4(m4, n4, m5, n5, (dst + 24), 32); + ST_SH4(m6, n6, m7, n7, (dst + 24 + 4 * 32), 32); +} + +static void idct32x8_1d_rows_msa(const int16_t *input, int16_t *output) { + DECLARE_ALIGNED(32, int16_t, tmp_buf[8 * 32]); + DECLARE_ALIGNED(32, int16_t, tmp_odd_buf[16 * 8]); + DECLARE_ALIGNED(32, int16_t, tmp_eve_buf[16 * 8]); + + idct32x8_row_transpose_store(input, &tmp_buf[0]); + idct32x8_row_even_process_store(&tmp_buf[0], &tmp_eve_buf[0]); + idct32x8_row_odd_process_store(&tmp_buf[0], &tmp_odd_buf[0]); + idct_butterfly_transpose_store(&tmp_buf[0], &tmp_eve_buf[0], &tmp_odd_buf[0], + output); +} + +static void idct8x32_column_even_process_store(int16_t *tmp_buf, + int16_t *tmp_eve_buf) { + v8i16 vec0, vec1, vec2, vec3, loc0, loc1, loc2, loc3; + v8i16 reg0, reg1, reg2, reg3, reg4, reg5, reg6, reg7; + v8i16 stp0, stp1, stp2, stp3, stp4, stp5, stp6, stp7; + + /* Even stage 1 */ + LD_SH8(tmp_buf, (4 * 32), reg0, reg1, reg2, reg3, reg4, reg5, reg6, reg7); + tmp_buf += (2 * 32); + + DOTP_CONST_PAIR(reg1, reg7, cospi_28_64, cospi_4_64, reg1, reg7); + DOTP_CONST_PAIR(reg5, reg3, cospi_12_64, cospi_20_64, reg5, reg3); + BUTTERFLY_4(reg1, reg7, reg3, reg5, vec1, vec3, vec2, vec0); + DOTP_CONST_PAIR(vec2, vec0, cospi_16_64, cospi_16_64, loc2, loc3); + + loc1 = vec3; + loc0 = vec1; + + DOTP_CONST_PAIR(reg0, reg4, cospi_16_64, cospi_16_64, reg0, reg4); + DOTP_CONST_PAIR(reg2, reg6, cospi_24_64, cospi_8_64, reg2, reg6); + BUTTERFLY_4(reg4, reg0, reg2, reg6, vec1, vec3, vec2, vec0); + BUTTERFLY_4(vec0, vec1, loc1, loc0, stp3, stp0, stp7, stp4); + BUTTERFLY_4(vec2, vec3, loc3, loc2, stp2, stp1, stp6, stp5); + + /* Even stage 2 */ + /* Load 8 */ + LD_SH8(tmp_buf, (4 * 32), reg0, reg1, reg2, reg3, reg4, reg5, reg6, reg7); + + DOTP_CONST_PAIR(reg0, reg7, cospi_30_64, cospi_2_64, reg0, reg7); + DOTP_CONST_PAIR(reg4, reg3, cospi_14_64, cospi_18_64, reg4, reg3); + DOTP_CONST_PAIR(reg2, reg5, cospi_22_64, cospi_10_64, reg2, reg5); + DOTP_CONST_PAIR(reg6, reg1, cospi_6_64, cospi_26_64, reg6, reg1); + + vec0 = reg0 + reg4; + reg0 = reg0 - reg4; + reg4 = reg6 + reg2; + reg6 = reg6 - reg2; + reg2 = reg1 + reg5; + reg1 = reg1 - reg5; + reg5 = reg7 + reg3; + reg7 = reg7 - reg3; + reg3 = vec0; + + vec1 = reg2; + reg2 = reg3 + reg4; + reg3 = reg3 - reg4; + reg4 = reg5 - vec1; + reg5 = reg5 + vec1; + + DOTP_CONST_PAIR(reg7, reg0, cospi_24_64, cospi_8_64, reg0, reg7); + DOTP_CONST_PAIR((-reg6), reg1, cospi_24_64, cospi_8_64, reg6, reg1); + + vec0 = reg0 - reg6; + reg0 = reg0 + reg6; + vec1 = reg7 - reg1; + reg7 = reg7 + reg1; + + DOTP_CONST_PAIR(vec1, vec0, cospi_16_64, cospi_16_64, reg6, reg1); + DOTP_CONST_PAIR(reg4, reg3, cospi_16_64, cospi_16_64, reg3, reg4); + + /* Even stage 3 : Dependency on Even stage 1 & Even stage 2 */ + /* Store 8 */ + BUTTERFLY_4(stp0, stp1, reg7, reg5, loc1, loc3, loc2, loc0); + ST_SH2(loc1, loc3, tmp_eve_buf, 8); + ST_SH2(loc2, loc0, (tmp_eve_buf + 14 * 8), 8); + + BUTTERFLY_4(stp2, stp3, reg4, reg1, loc1, loc3, loc2, loc0); + ST_SH2(loc1, loc3, (tmp_eve_buf + 2 * 8), 8); + ST_SH2(loc2, loc0, (tmp_eve_buf + 12 * 8), 8); + + /* Store 8 */ + BUTTERFLY_4(stp4, stp5, reg6, reg3, loc1, loc3, loc2, loc0); + ST_SH2(loc1, loc3, (tmp_eve_buf + 4 * 8), 8); + ST_SH2(loc2, loc0, (tmp_eve_buf + 10 * 8), 8); + + BUTTERFLY_4(stp6, stp7, reg2, reg0, loc1, loc3, loc2, loc0); + ST_SH2(loc1, loc3, (tmp_eve_buf + 6 * 8), 8); + ST_SH2(loc2, loc0, (tmp_eve_buf + 8 * 8), 8); +} + +static void idct8x32_column_odd_process_store(int16_t *tmp_buf, + int16_t *tmp_odd_buf) { + v8i16 vec0, vec1, vec2, vec3, loc0, loc1, loc2, loc3; + v8i16 reg0, reg1, reg2, reg3, reg4, reg5, reg6, reg7; + + /* Odd stage 1 */ + reg0 = LD_SH(tmp_buf + 32); + reg1 = LD_SH(tmp_buf + 7 * 32); + reg2 = LD_SH(tmp_buf + 9 * 32); + reg3 = LD_SH(tmp_buf + 15 * 32); + reg4 = LD_SH(tmp_buf + 17 * 32); + reg5 = LD_SH(tmp_buf + 23 * 32); + reg6 = LD_SH(tmp_buf + 25 * 32); + reg7 = LD_SH(tmp_buf + 31 * 32); + + DOTP_CONST_PAIR(reg0, reg7, cospi_31_64, cospi_1_64, reg0, reg7); + DOTP_CONST_PAIR(reg4, reg3, cospi_15_64, cospi_17_64, reg3, reg4); + DOTP_CONST_PAIR(reg2, reg5, cospi_23_64, cospi_9_64, reg2, reg5); + DOTP_CONST_PAIR(reg6, reg1, cospi_7_64, cospi_25_64, reg1, reg6); + + vec0 = reg0 + reg3; + reg0 = reg0 - reg3; + reg3 = reg7 + reg4; + reg7 = reg7 - reg4; + reg4 = reg1 + reg2; + reg1 = reg1 - reg2; + reg2 = reg6 + reg5; + reg6 = reg6 - reg5; + reg5 = vec0; + + /* 4 Stores */ + ADD2(reg5, reg4, reg3, reg2, vec0, vec1); + ST_SH2(vec0, vec1, (tmp_odd_buf + 4 * 8), 8); + SUB2(reg5, reg4, reg3, reg2, vec0, vec1); + DOTP_CONST_PAIR(vec1, vec0, cospi_24_64, cospi_8_64, vec0, vec1); + ST_SH2(vec0, vec1, tmp_odd_buf, 8); + + /* 4 Stores */ + DOTP_CONST_PAIR(reg7, reg0, cospi_28_64, cospi_4_64, reg0, reg7); + DOTP_CONST_PAIR(reg6, reg1, -cospi_4_64, cospi_28_64, reg1, reg6); + BUTTERFLY_4(reg0, reg7, reg6, reg1, vec0, vec1, vec2, vec3); + ST_SH2(vec0, vec1, (tmp_odd_buf + 6 * 8), 8); + DOTP_CONST_PAIR(vec2, vec3, cospi_24_64, cospi_8_64, vec2, vec3); + ST_SH2(vec2, vec3, (tmp_odd_buf + 2 * 8), 8); + + /* Odd stage 2 */ + /* 8 loads */ + reg0 = LD_SH(tmp_buf + 3 * 32); + reg1 = LD_SH(tmp_buf + 5 * 32); + reg2 = LD_SH(tmp_buf + 11 * 32); + reg3 = LD_SH(tmp_buf + 13 * 32); + reg4 = LD_SH(tmp_buf + 19 * 32); + reg5 = LD_SH(tmp_buf + 21 * 32); + reg6 = LD_SH(tmp_buf + 27 * 32); + reg7 = LD_SH(tmp_buf + 29 * 32); + + DOTP_CONST_PAIR(reg1, reg6, cospi_27_64, cospi_5_64, reg1, reg6); + DOTP_CONST_PAIR(reg5, reg2, cospi_11_64, cospi_21_64, reg2, reg5); + DOTP_CONST_PAIR(reg3, reg4, cospi_19_64, cospi_13_64, reg3, reg4); + DOTP_CONST_PAIR(reg7, reg0, cospi_3_64, cospi_29_64, reg0, reg7); + + /* 4 Stores */ + SUB4(reg1, reg2, reg6, reg5, reg0, reg3, reg7, reg4, vec0, vec1, vec2, vec3); + DOTP_CONST_PAIR(vec1, vec0, cospi_12_64, cospi_20_64, loc0, loc1); + DOTP_CONST_PAIR(vec3, vec2, -cospi_20_64, cospi_12_64, loc2, loc3); + BUTTERFLY_4(loc2, loc3, loc1, loc0, vec0, vec1, vec3, vec2); + ST_SH2(vec0, vec1, (tmp_odd_buf + 12 * 8), 3 * 8); + DOTP_CONST_PAIR(vec3, vec2, -cospi_8_64, cospi_24_64, vec0, vec1); + ST_SH2(vec0, vec1, (tmp_odd_buf + 10 * 8), 8); + + /* 4 Stores */ + ADD4(reg0, reg3, reg1, reg2, reg5, reg6, reg4, reg7, vec0, vec1, vec2, vec3); + BUTTERFLY_4(vec0, vec3, vec2, vec1, reg0, reg1, reg3, reg2); + ST_SH2(reg0, reg1, (tmp_odd_buf + 13 * 8), 8); + DOTP_CONST_PAIR(reg3, reg2, -cospi_8_64, cospi_24_64, reg0, reg1); + ST_SH2(reg0, reg1, (tmp_odd_buf + 8 * 8), 8); + + /* Odd stage 3 : Dependency on Odd stage 1 & Odd stage 2 */ + /* Load 8 & Store 8 */ + LD_SH4(tmp_odd_buf, 8, reg0, reg1, reg2, reg3); + LD_SH4((tmp_odd_buf + 8 * 8), 8, reg4, reg5, reg6, reg7); + + ADD4(reg0, reg4, reg1, reg5, reg2, reg6, reg3, reg7, loc0, loc1, loc2, loc3); + ST_SH4(loc0, loc1, loc2, loc3, tmp_odd_buf, 8); + + SUB2(reg0, reg4, reg1, reg5, vec0, vec1); + DOTP_CONST_PAIR(vec1, vec0, cospi_16_64, cospi_16_64, loc0, loc1); + + SUB2(reg2, reg6, reg3, reg7, vec0, vec1); + DOTP_CONST_PAIR(vec1, vec0, cospi_16_64, cospi_16_64, loc2, loc3); + ST_SH4(loc0, loc1, loc2, loc3, (tmp_odd_buf + 8 * 8), 8); + + /* Load 8 & Store 8 */ + LD_SH4((tmp_odd_buf + 4 * 8), 8, reg1, reg2, reg0, reg3); + LD_SH4((tmp_odd_buf + 12 * 8), 8, reg4, reg5, reg6, reg7); + + ADD4(reg0, reg4, reg1, reg5, reg2, reg6, reg3, reg7, loc0, loc1, loc2, loc3); + ST_SH4(loc0, loc1, loc2, loc3, (tmp_odd_buf + 4 * 8), 8); + + SUB2(reg0, reg4, reg3, reg7, vec0, vec1); + DOTP_CONST_PAIR(vec1, vec0, cospi_16_64, cospi_16_64, loc0, loc1); + + SUB2(reg1, reg5, reg2, reg6, vec0, vec1); + DOTP_CONST_PAIR(vec1, vec0, cospi_16_64, cospi_16_64, loc2, loc3); + ST_SH4(loc0, loc1, loc2, loc3, (tmp_odd_buf + 12 * 8), 8); +} + +static void idct8x32_column_butterfly_addblk(int16_t *tmp_eve_buf, + int16_t *tmp_odd_buf, uint8_t *dst, + int32_t dst_stride) { + v8i16 vec0, vec1, vec2, vec3, loc0, loc1, loc2, loc3; + v8i16 m0, m1, m2, m3, m4, m5, m6, m7, n0, n1, n2, n3, n4, n5, n6, n7; + + /* FINAL BUTTERFLY : Dependency on Even & Odd */ + vec0 = LD_SH(tmp_odd_buf); + vec1 = LD_SH(tmp_odd_buf + 9 * 8); + vec2 = LD_SH(tmp_odd_buf + 14 * 8); + vec3 = LD_SH(tmp_odd_buf + 6 * 8); + loc0 = LD_SH(tmp_eve_buf); + loc1 = LD_SH(tmp_eve_buf + 8 * 8); + loc2 = LD_SH(tmp_eve_buf + 4 * 8); + loc3 = LD_SH(tmp_eve_buf + 12 * 8); + + ADD4(loc0, vec3, loc1, vec2, loc2, vec1, loc3, vec0, m0, m4, m2, m6); + SRARI_H4_SH(m0, m2, m4, m6, 6); + VP9_ADDBLK_ST8x4_UB(dst, (4 * dst_stride), m0, m2, m4, m6); + + SUB4(loc0, vec3, loc1, vec2, loc2, vec1, loc3, vec0, m6, m2, m4, m0); + SRARI_H4_SH(m0, m2, m4, m6, 6); + VP9_ADDBLK_ST8x4_UB((dst + 19 * dst_stride), (4 * dst_stride), m0, m2, m4, + m6); + + /* Load 8 & Store 8 */ + vec0 = LD_SH(tmp_odd_buf + 4 * 8); + vec1 = LD_SH(tmp_odd_buf + 13 * 8); + vec2 = LD_SH(tmp_odd_buf + 10 * 8); + vec3 = LD_SH(tmp_odd_buf + 3 * 8); + loc0 = LD_SH(tmp_eve_buf + 2 * 8); + loc1 = LD_SH(tmp_eve_buf + 10 * 8); + loc2 = LD_SH(tmp_eve_buf + 6 * 8); + loc3 = LD_SH(tmp_eve_buf + 14 * 8); + + ADD4(loc0, vec3, loc1, vec2, loc2, vec1, loc3, vec0, m1, m5, m3, m7); + SRARI_H4_SH(m1, m3, m5, m7, 6); + VP9_ADDBLK_ST8x4_UB((dst + 2 * dst_stride), (4 * dst_stride), m1, m3, m5, m7); + + SUB4(loc0, vec3, loc1, vec2, loc2, vec1, loc3, vec0, m7, m3, m5, m1); + SRARI_H4_SH(m1, m3, m5, m7, 6); + VP9_ADDBLK_ST8x4_UB((dst + 17 * dst_stride), (4 * dst_stride), m1, m3, m5, + m7); + + /* Load 8 & Store 8 */ + vec0 = LD_SH(tmp_odd_buf + 2 * 8); + vec1 = LD_SH(tmp_odd_buf + 11 * 8); + vec2 = LD_SH(tmp_odd_buf + 12 * 8); + vec3 = LD_SH(tmp_odd_buf + 7 * 8); + loc0 = LD_SH(tmp_eve_buf + 1 * 8); + loc1 = LD_SH(tmp_eve_buf + 9 * 8); + loc2 = LD_SH(tmp_eve_buf + 5 * 8); + loc3 = LD_SH(tmp_eve_buf + 13 * 8); + + ADD4(loc0, vec3, loc1, vec2, loc2, vec1, loc3, vec0, n0, n4, n2, n6); + SRARI_H4_SH(n0, n2, n4, n6, 6); + VP9_ADDBLK_ST8x4_UB((dst + 1 * dst_stride), (4 * dst_stride), n0, n2, n4, n6); + + SUB4(loc0, vec3, loc1, vec2, loc2, vec1, loc3, vec0, n6, n2, n4, n0); + SRARI_H4_SH(n0, n2, n4, n6, 6); + VP9_ADDBLK_ST8x4_UB((dst + 18 * dst_stride), (4 * dst_stride), n0, n2, n4, + n6); + + /* Load 8 & Store 8 */ + vec0 = LD_SH(tmp_odd_buf + 5 * 8); + vec1 = LD_SH(tmp_odd_buf + 15 * 8); + vec2 = LD_SH(tmp_odd_buf + 8 * 8); + vec3 = LD_SH(tmp_odd_buf + 1 * 8); + loc0 = LD_SH(tmp_eve_buf + 3 * 8); + loc1 = LD_SH(tmp_eve_buf + 11 * 8); + loc2 = LD_SH(tmp_eve_buf + 7 * 8); + loc3 = LD_SH(tmp_eve_buf + 15 * 8); + + ADD4(loc0, vec3, loc1, vec2, loc2, vec1, loc3, vec0, n1, n5, n3, n7); + SRARI_H4_SH(n1, n3, n5, n7, 6); + VP9_ADDBLK_ST8x4_UB((dst + 3 * dst_stride), (4 * dst_stride), n1, n3, n5, n7); + + SUB4(loc0, vec3, loc1, vec2, loc2, vec1, loc3, vec0, n7, n3, n5, n1); + SRARI_H4_SH(n1, n3, n5, n7, 6); + VP9_ADDBLK_ST8x4_UB((dst + 16 * dst_stride), (4 * dst_stride), n1, n3, n5, + n7); +} + +static void idct8x32_1d_columns_addblk_msa(int16_t *input, uint8_t *dst, + int32_t dst_stride) { + DECLARE_ALIGNED(32, int16_t, tmp_odd_buf[16 * 8]); + DECLARE_ALIGNED(32, int16_t, tmp_eve_buf[16 * 8]); + + idct8x32_column_even_process_store(input, &tmp_eve_buf[0]); + idct8x32_column_odd_process_store(input, &tmp_odd_buf[0]); + idct8x32_column_butterfly_addblk(&tmp_eve_buf[0], &tmp_odd_buf[0], dst, + dst_stride); +} + +void vpx_idct32x32_1024_add_msa(const int16_t *input, uint8_t *dst, + int32_t dst_stride) { + int32_t i; + DECLARE_ALIGNED(32, int16_t, out_arr[32 * 32]); + int16_t *out_ptr = out_arr; + + /* transform rows */ + for (i = 0; i < 4; ++i) { + /* process 32 * 8 block */ + idct32x8_1d_rows_msa((input + (i << 8)), (out_ptr + (i << 8))); + } + + /* transform columns */ + for (i = 0; i < 4; ++i) { + /* process 8 * 32 block */ + idct8x32_1d_columns_addblk_msa((out_ptr + (i << 3)), (dst + (i << 3)), + dst_stride); + } +} + +void vpx_idct32x32_34_add_msa(const int16_t *input, uint8_t *dst, + int32_t dst_stride) { + int32_t i; + DECLARE_ALIGNED(32, int16_t, out_arr[32 * 32]); + int16_t *out_ptr = out_arr; + + for (i = 32; i--;) { + __asm__ __volatile__( + "sw $zero, 0(%[out_ptr]) \n\t" + "sw $zero, 4(%[out_ptr]) \n\t" + "sw $zero, 8(%[out_ptr]) \n\t" + "sw $zero, 12(%[out_ptr]) \n\t" + "sw $zero, 16(%[out_ptr]) \n\t" + "sw $zero, 20(%[out_ptr]) \n\t" + "sw $zero, 24(%[out_ptr]) \n\t" + "sw $zero, 28(%[out_ptr]) \n\t" + "sw $zero, 32(%[out_ptr]) \n\t" + "sw $zero, 36(%[out_ptr]) \n\t" + "sw $zero, 40(%[out_ptr]) \n\t" + "sw $zero, 44(%[out_ptr]) \n\t" + "sw $zero, 48(%[out_ptr]) \n\t" + "sw $zero, 52(%[out_ptr]) \n\t" + "sw $zero, 56(%[out_ptr]) \n\t" + "sw $zero, 60(%[out_ptr]) \n\t" + + : + : [out_ptr] "r"(out_ptr)); + + out_ptr += 32; + } + + out_ptr = out_arr; + + /* rows: only upper-left 8x8 has non-zero coeff */ + idct32x8_1d_rows_msa(input, out_ptr); + + /* transform columns */ + for (i = 0; i < 4; ++i) { + /* process 8 * 32 block */ + idct8x32_1d_columns_addblk_msa((out_ptr + (i << 3)), (dst + (i << 3)), + dst_stride); + } +} + +void vpx_idct32x32_1_add_msa(const int16_t *input, uint8_t *dst, + int32_t dst_stride) { + int32_t i; + int16_t out; + v16u8 dst0, dst1, dst2, dst3, tmp0, tmp1, tmp2, tmp3; + v8i16 res0, res1, res2, res3, res4, res5, res6, res7, vec; + + out = ROUND_POWER_OF_TWO((input[0] * cospi_16_64), DCT_CONST_BITS); + out = ROUND_POWER_OF_TWO((out * cospi_16_64), DCT_CONST_BITS); + out = ROUND_POWER_OF_TWO(out, 6); + + vec = __msa_fill_h(out); + + for (i = 16; i--;) { + LD_UB2(dst, 16, dst0, dst1); + LD_UB2(dst + dst_stride, 16, dst2, dst3); + + UNPCK_UB_SH(dst0, res0, res4); + UNPCK_UB_SH(dst1, res1, res5); + UNPCK_UB_SH(dst2, res2, res6); + UNPCK_UB_SH(dst3, res3, res7); + ADD4(res0, vec, res1, vec, res2, vec, res3, vec, res0, res1, res2, res3); + ADD4(res4, vec, res5, vec, res6, vec, res7, vec, res4, res5, res6, res7); + CLIP_SH4_0_255(res0, res1, res2, res3); + CLIP_SH4_0_255(res4, res5, res6, res7); + PCKEV_B4_UB(res4, res0, res5, res1, res6, res2, res7, res3, tmp0, tmp1, + tmp2, tmp3); + + ST_UB2(tmp0, tmp1, dst, 16); + dst += dst_stride; + ST_UB2(tmp2, tmp3, dst, 16); + dst += dst_stride; + } +} diff --git a/vpx_dsp/mips/idct4x4_msa.c b/vpx_dsp/mips/idct4x4_msa.c new file mode 100644 index 0000000..0a85742 --- /dev/null +++ b/vpx_dsp/mips/idct4x4_msa.c @@ -0,0 +1,98 @@ +/* + * Copyright (c) 2015 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "vpx_dsp/mips/inv_txfm_msa.h" + +void vpx_iwht4x4_16_add_msa(const int16_t *input, uint8_t *dst, + int32_t dst_stride) { + v8i16 in0, in1, in2, in3; + v4i32 in0_r, in1_r, in2_r, in3_r, in4_r; + + /* load vector elements of 4x4 block */ + LD4x4_SH(input, in0, in2, in3, in1); + TRANSPOSE4x4_SH_SH(in0, in2, in3, in1, in0, in2, in3, in1); + UNPCK_R_SH_SW(in0, in0_r); + UNPCK_R_SH_SW(in2, in2_r); + UNPCK_R_SH_SW(in3, in3_r); + UNPCK_R_SH_SW(in1, in1_r); + SRA_4V(in0_r, in1_r, in2_r, in3_r, UNIT_QUANT_SHIFT); + + in0_r += in2_r; + in3_r -= in1_r; + in4_r = (in0_r - in3_r) >> 1; + in1_r = in4_r - in1_r; + in2_r = in4_r - in2_r; + in0_r -= in1_r; + in3_r += in2_r; + + TRANSPOSE4x4_SW_SW(in0_r, in1_r, in2_r, in3_r, in0_r, in1_r, in2_r, in3_r); + + in0_r += in1_r; + in2_r -= in3_r; + in4_r = (in0_r - in2_r) >> 1; + in3_r = in4_r - in3_r; + in1_r = in4_r - in1_r; + in0_r -= in3_r; + in2_r += in1_r; + + PCKEV_H4_SH(in0_r, in0_r, in1_r, in1_r, in2_r, in2_r, in3_r, in3_r, in0, in1, + in2, in3); + ADDBLK_ST4x4_UB(in0, in3, in1, in2, dst, dst_stride); +} + +void vpx_iwht4x4_1_add_msa(const int16_t *input, uint8_t *dst, + int32_t dst_stride) { + int16_t a1, e1; + v8i16 in1, in0 = { 0 }; + + a1 = input[0] >> UNIT_QUANT_SHIFT; + e1 = a1 >> 1; + a1 -= e1; + + in0 = __msa_insert_h(in0, 0, a1); + in0 = __msa_insert_h(in0, 1, e1); + in0 = __msa_insert_h(in0, 2, e1); + in0 = __msa_insert_h(in0, 3, e1); + + in1 = in0 >> 1; + in0 -= in1; + + ADDBLK_ST4x4_UB(in0, in1, in1, in1, dst, dst_stride); +} + +void vpx_idct4x4_16_add_msa(const int16_t *input, uint8_t *dst, + int32_t dst_stride) { + v8i16 in0, in1, in2, in3; + + /* load vector elements of 4x4 block */ + LD4x4_SH(input, in0, in1, in2, in3); + /* rows */ + TRANSPOSE4x4_SH_SH(in0, in1, in2, in3, in0, in1, in2, in3); + VP9_IDCT4x4(in0, in1, in2, in3, in0, in1, in2, in3); + /* columns */ + TRANSPOSE4x4_SH_SH(in0, in1, in2, in3, in0, in1, in2, in3); + VP9_IDCT4x4(in0, in1, in2, in3, in0, in1, in2, in3); + /* rounding (add 2^3, divide by 2^4) */ + SRARI_H4_SH(in0, in1, in2, in3, 4); + ADDBLK_ST4x4_UB(in0, in1, in2, in3, dst, dst_stride); +} + +void vpx_idct4x4_1_add_msa(const int16_t *input, uint8_t *dst, + int32_t dst_stride) { + int16_t out; + v8i16 vec; + + out = ROUND_POWER_OF_TWO((input[0] * cospi_16_64), DCT_CONST_BITS); + out = ROUND_POWER_OF_TWO((out * cospi_16_64), DCT_CONST_BITS); + out = ROUND_POWER_OF_TWO(out, 4); + vec = __msa_fill_h(out); + + ADDBLK_ST4x4_UB(vec, vec, vec, vec, dst, dst_stride); +} diff --git a/vpx_dsp/mips/idct8x8_msa.c b/vpx_dsp/mips/idct8x8_msa.c new file mode 100644 index 0000000..7f77d20 --- /dev/null +++ b/vpx_dsp/mips/idct8x8_msa.c @@ -0,0 +1,116 @@ +/* + * Copyright (c) 2015 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "vpx_dsp/mips/inv_txfm_msa.h" + +void vpx_idct8x8_64_add_msa(const int16_t *input, uint8_t *dst, + int32_t dst_stride) { + v8i16 in0, in1, in2, in3, in4, in5, in6, in7; + + /* load vector elements of 8x8 block */ + LD_SH8(input, 8, in0, in1, in2, in3, in4, in5, in6, in7); + + /* rows transform */ + TRANSPOSE8x8_SH_SH(in0, in1, in2, in3, in4, in5, in6, in7, in0, in1, in2, in3, + in4, in5, in6, in7); + /* 1D idct8x8 */ + VP9_IDCT8x8_1D(in0, in1, in2, in3, in4, in5, in6, in7, in0, in1, in2, in3, + in4, in5, in6, in7); + /* columns transform */ + TRANSPOSE8x8_SH_SH(in0, in1, in2, in3, in4, in5, in6, in7, in0, in1, in2, in3, + in4, in5, in6, in7); + /* 1D idct8x8 */ + VP9_IDCT8x8_1D(in0, in1, in2, in3, in4, in5, in6, in7, in0, in1, in2, in3, + in4, in5, in6, in7); + /* final rounding (add 2^4, divide by 2^5) and shift */ + SRARI_H4_SH(in0, in1, in2, in3, 5); + SRARI_H4_SH(in4, in5, in6, in7, 5); + /* add block and store 8x8 */ + VP9_ADDBLK_ST8x4_UB(dst, dst_stride, in0, in1, in2, in3); + dst += (4 * dst_stride); + VP9_ADDBLK_ST8x4_UB(dst, dst_stride, in4, in5, in6, in7); +} + +void vpx_idct8x8_12_add_msa(const int16_t *input, uint8_t *dst, + int32_t dst_stride) { + v8i16 in0, in1, in2, in3, in4, in5, in6, in7; + v8i16 s0, s1, s2, s3, s4, s5, s6, s7, k0, k1, k2, k3, m0, m1, m2, m3; + v4i32 tmp0, tmp1, tmp2, tmp3; + v8i16 zero = { 0 }; + + /* load vector elements of 8x8 block */ + LD_SH8(input, 8, in0, in1, in2, in3, in4, in5, in6, in7); + TRANSPOSE8X4_SH_SH(in0, in1, in2, in3, in0, in1, in2, in3); + + /* stage1 */ + ILVL_H2_SH(in3, in0, in2, in1, s0, s1); + k0 = VP9_SET_COSPI_PAIR(cospi_28_64, -cospi_4_64); + k1 = VP9_SET_COSPI_PAIR(cospi_4_64, cospi_28_64); + k2 = VP9_SET_COSPI_PAIR(-cospi_20_64, cospi_12_64); + k3 = VP9_SET_COSPI_PAIR(cospi_12_64, cospi_20_64); + DOTP_SH4_SW(s0, s0, s1, s1, k0, k1, k2, k3, tmp0, tmp1, tmp2, tmp3); + SRARI_W4_SW(tmp0, tmp1, tmp2, tmp3, DCT_CONST_BITS); + PCKEV_H2_SH(zero, tmp0, zero, tmp1, s0, s1); + PCKEV_H2_SH(zero, tmp2, zero, tmp3, s2, s3); + BUTTERFLY_4(s0, s1, s3, s2, s4, s7, s6, s5); + + /* stage2 */ + ILVR_H2_SH(in3, in1, in2, in0, s1, s0); + k0 = VP9_SET_COSPI_PAIR(cospi_16_64, cospi_16_64); + k1 = VP9_SET_COSPI_PAIR(cospi_16_64, -cospi_16_64); + k2 = VP9_SET_COSPI_PAIR(cospi_24_64, -cospi_8_64); + k3 = VP9_SET_COSPI_PAIR(cospi_8_64, cospi_24_64); + DOTP_SH4_SW(s0, s0, s1, s1, k0, k1, k2, k3, tmp0, tmp1, tmp2, tmp3); + SRARI_W4_SW(tmp0, tmp1, tmp2, tmp3, DCT_CONST_BITS); + PCKEV_H2_SH(zero, tmp0, zero, tmp1, s0, s1); + PCKEV_H2_SH(zero, tmp2, zero, tmp3, s2, s3); + BUTTERFLY_4(s0, s1, s2, s3, m0, m1, m2, m3); + + /* stage3 */ + s0 = __msa_ilvr_h(s6, s5); + + k1 = VP9_SET_COSPI_PAIR(-cospi_16_64, cospi_16_64); + DOTP_SH2_SW(s0, s0, k1, k0, tmp0, tmp1); + SRARI_W2_SW(tmp0, tmp1, DCT_CONST_BITS); + PCKEV_H2_SH(zero, tmp0, zero, tmp1, s2, s3); + + /* stage4 */ + BUTTERFLY_8(m0, m1, m2, m3, s4, s2, s3, s7, in0, in1, in2, in3, in4, in5, in6, + in7); + TRANSPOSE4X8_SH_SH(in0, in1, in2, in3, in4, in5, in6, in7, in0, in1, in2, in3, + in4, in5, in6, in7); + VP9_IDCT8x8_1D(in0, in1, in2, in3, in4, in5, in6, in7, in0, in1, in2, in3, + in4, in5, in6, in7); + + /* final rounding (add 2^4, divide by 2^5) and shift */ + SRARI_H4_SH(in0, in1, in2, in3, 5); + SRARI_H4_SH(in4, in5, in6, in7, 5); + + /* add block and store 8x8 */ + VP9_ADDBLK_ST8x4_UB(dst, dst_stride, in0, in1, in2, in3); + dst += (4 * dst_stride); + VP9_ADDBLK_ST8x4_UB(dst, dst_stride, in4, in5, in6, in7); +} + +void vpx_idct8x8_1_add_msa(const int16_t *input, uint8_t *dst, + int32_t dst_stride) { + int16_t out; + int32_t val; + v8i16 vec; + + out = ROUND_POWER_OF_TWO((input[0] * cospi_16_64), DCT_CONST_BITS); + out = ROUND_POWER_OF_TWO((out * cospi_16_64), DCT_CONST_BITS); + val = ROUND_POWER_OF_TWO(out, 5); + vec = __msa_fill_h(val); + + VP9_ADDBLK_ST8x4_UB(dst, dst_stride, vec, vec, vec, vec); + dst += (4 * dst_stride); + VP9_ADDBLK_ST8x4_UB(dst, dst_stride, vec, vec, vec, vec); +} diff --git a/vpx_dsp/mips/intrapred16_dspr2.c b/vpx_dsp/mips/intrapred16_dspr2.c new file mode 100644 index 0000000..835e10e --- /dev/null +++ b/vpx_dsp/mips/intrapred16_dspr2.c @@ -0,0 +1,325 @@ +/* + * Copyright (c) 2015 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "vpx_dsp/mips/common_dspr2.h" + +#if HAVE_DSPR2 +void vpx_h_predictor_16x16_dspr2(uint8_t *dst, ptrdiff_t stride, + const uint8_t *above, const uint8_t *left) { + int32_t tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7, tmp8; + int32_t tmp9, tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16; + (void)above; + + __asm__ __volatile__( + "lb %[tmp1], (%[left]) \n\t" + "lb %[tmp2], 1(%[left]) \n\t" + "lb %[tmp3], 2(%[left]) \n\t" + "lb %[tmp4], 3(%[left]) \n\t" + "lb %[tmp5], 4(%[left]) \n\t" + "lb %[tmp6], 5(%[left]) \n\t" + "lb %[tmp7], 6(%[left]) \n\t" + "lb %[tmp8], 7(%[left]) \n\t" + "lb %[tmp9], 8(%[left]) \n\t" + "lb %[tmp10], 9(%[left]) \n\t" + "lb %[tmp11], 10(%[left]) \n\t" + "lb %[tmp12], 11(%[left]) \n\t" + "lb %[tmp13], 12(%[left]) \n\t" + "lb %[tmp14], 13(%[left]) \n\t" + "lb %[tmp15], 14(%[left]) \n\t" + "lb %[tmp16], 15(%[left]) \n\t" + + "replv.qb %[tmp1], %[tmp1] \n\t" + "replv.qb %[tmp2], %[tmp2] \n\t" + "replv.qb %[tmp3], %[tmp3] \n\t" + "replv.qb %[tmp4], %[tmp4] \n\t" + "replv.qb %[tmp5], %[tmp5] \n\t" + "replv.qb %[tmp6], %[tmp6] \n\t" + "replv.qb %[tmp7], %[tmp7] \n\t" + "replv.qb %[tmp8], %[tmp8] \n\t" + "replv.qb %[tmp9], %[tmp9] \n\t" + "replv.qb %[tmp10], %[tmp10] \n\t" + "replv.qb %[tmp11], %[tmp11] \n\t" + "replv.qb %[tmp12], %[tmp12] \n\t" + "replv.qb %[tmp13], %[tmp13] \n\t" + "replv.qb %[tmp14], %[tmp14] \n\t" + "replv.qb %[tmp15], %[tmp15] \n\t" + "replv.qb %[tmp16], %[tmp16] \n\t" + + "sw %[tmp1], (%[dst]) \n\t" + "sw %[tmp1], 4(%[dst]) \n\t" + "sw %[tmp1], 8(%[dst]) \n\t" + "sw %[tmp1], 12(%[dst]) \n\t" + + "add %[dst], %[dst], %[stride] \n\t" + "sw %[tmp2], (%[dst]) \n\t" + "sw %[tmp2], 4(%[dst]) \n\t" + "sw %[tmp2], 8(%[dst]) \n\t" + "sw %[tmp2], 12(%[dst]) \n\t" + + "add %[dst], %[dst], %[stride] \n\t" + "sw %[tmp3], (%[dst]) \n\t" + "sw %[tmp3], 4(%[dst]) \n\t" + "sw %[tmp3], 8(%[dst]) \n\t" + "sw %[tmp3], 12(%[dst]) \n\t" + + "add %[dst], %[dst], %[stride] \n\t" + "sw %[tmp4], (%[dst]) \n\t" + "sw %[tmp4], 4(%[dst]) \n\t" + "sw %[tmp4], 8(%[dst]) \n\t" + "sw %[tmp4], 12(%[dst]) \n\t" + + "add %[dst], %[dst], %[stride] \n\t" + "sw %[tmp5], (%[dst]) \n\t" + "sw %[tmp5], 4(%[dst]) \n\t" + "sw %[tmp5], 8(%[dst]) \n\t" + "sw %[tmp5], 12(%[dst]) \n\t" + + "add %[dst], %[dst], %[stride] \n\t" + "sw %[tmp6], (%[dst]) \n\t" + "sw %[tmp6], 4(%[dst]) \n\t" + "sw %[tmp6], 8(%[dst]) \n\t" + "sw %[tmp6], 12(%[dst]) \n\t" + + "add %[dst], %[dst], %[stride] \n\t" + "sw %[tmp7], (%[dst]) \n\t" + "sw %[tmp7], 4(%[dst]) \n\t" + "sw %[tmp7], 8(%[dst]) \n\t" + "sw %[tmp7], 12(%[dst]) \n\t" + + "add %[dst], %[dst], %[stride] \n\t" + "sw %[tmp8], (%[dst]) \n\t" + "sw %[tmp8], 4(%[dst]) \n\t" + "sw %[tmp8], 8(%[dst]) \n\t" + "sw %[tmp8], 12(%[dst]) \n\t" + + "add %[dst], %[dst], %[stride] \n\t" + "sw %[tmp9], (%[dst]) \n\t" + "sw %[tmp9], 4(%[dst]) \n\t" + "sw %[tmp9], 8(%[dst]) \n\t" + "sw %[tmp9], 12(%[dst]) \n\t" + + "add %[dst], %[dst], %[stride] \n\t" + "sw %[tmp10], (%[dst]) \n\t" + "sw %[tmp10], 4(%[dst]) \n\t" + "sw %[tmp10], 8(%[dst]) \n\t" + "sw %[tmp10], 12(%[dst]) \n\t" + + "add %[dst], %[dst], %[stride] \n\t" + "sw %[tmp11], (%[dst]) \n\t" + "sw %[tmp11], 4(%[dst]) \n\t" + "sw %[tmp11], 8(%[dst]) \n\t" + "sw %[tmp11], 12(%[dst]) \n\t" + + "add %[dst], %[dst], %[stride] \n\t" + "sw %[tmp12], (%[dst]) \n\t" + "sw %[tmp12], 4(%[dst]) \n\t" + "sw %[tmp12], 8(%[dst]) \n\t" + "sw %[tmp12], 12(%[dst]) \n\t" + + "add %[dst], %[dst], %[stride] \n\t" + "sw %[tmp13], (%[dst]) \n\t" + "sw %[tmp13], 4(%[dst]) \n\t" + "sw %[tmp13], 8(%[dst]) \n\t" + "sw %[tmp13], 12(%[dst]) \n\t" + + "add %[dst], %[dst], %[stride] \n\t" + "sw %[tmp14], (%[dst]) \n\t" + "sw %[tmp14], 4(%[dst]) \n\t" + "sw %[tmp14], 8(%[dst]) \n\t" + "sw %[tmp14], 12(%[dst]) \n\t" + + "add %[dst], %[dst], %[stride] \n\t" + "sw %[tmp15], (%[dst]) \n\t" + "sw %[tmp15], 4(%[dst]) \n\t" + "sw %[tmp15], 8(%[dst]) \n\t" + "sw %[tmp15], 12(%[dst]) \n\t" + + "add %[dst], %[dst], %[stride] \n\t" + "sw %[tmp16], (%[dst]) \n\t" + "sw %[tmp16], 4(%[dst]) \n\t" + "sw %[tmp16], 8(%[dst]) \n\t" + "sw %[tmp16], 12(%[dst]) \n\t" + + : [tmp1] "=&r"(tmp1), [tmp2] "=&r"(tmp2), [tmp3] "=&r"(tmp3), + [tmp4] "=&r"(tmp4), [tmp5] "=&r"(tmp5), [tmp7] "=&r"(tmp7), + [tmp6] "=&r"(tmp6), [tmp8] "=&r"(tmp8), [tmp9] "=&r"(tmp9), + [tmp10] "=&r"(tmp10), [tmp11] "=&r"(tmp11), [tmp12] "=&r"(tmp12), + [tmp13] "=&r"(tmp13), [tmp14] "=&r"(tmp14), [tmp15] "=&r"(tmp15), + [tmp16] "=&r"(tmp16) + : [left] "r"(left), [dst] "r"(dst), [stride] "r"(stride)); +} + +void vpx_dc_predictor_16x16_dspr2(uint8_t *dst, ptrdiff_t stride, + const uint8_t *above, const uint8_t *left) { + int32_t expected_dc; + int32_t average; + int32_t tmp, above1, above_l1, above_r1, left1, left_r1, left_l1; + int32_t above2, left2; + + __asm__ __volatile__( + "lw %[above1], (%[above]) \n\t" + "lw %[above2], 4(%[above]) \n\t" + "lw %[left1], (%[left]) \n\t" + "lw %[left2], 4(%[left]) \n\t" + + "preceu.ph.qbl %[above_l1], %[above1] \n\t" + "preceu.ph.qbr %[above_r1], %[above1] \n\t" + "preceu.ph.qbl %[left_l1], %[left1] \n\t" + "preceu.ph.qbr %[left_r1], %[left1] \n\t" + + "addu.ph %[average], %[above_r1], %[above_l1] \n\t" + "addu.ph %[average], %[average], %[left_l1] \n\t" + "addu.ph %[average], %[average], %[left_r1] \n\t" + + "preceu.ph.qbl %[above_l1], %[above2] \n\t" + "preceu.ph.qbr %[above_r1], %[above2] \n\t" + "preceu.ph.qbl %[left_l1], %[left2] \n\t" + "preceu.ph.qbr %[left_r1], %[left2] \n\t" + + "addu.ph %[average], %[average], %[above_l1] \n\t" + "addu.ph %[average], %[average], %[above_r1] \n\t" + "addu.ph %[average], %[average], %[left_l1] \n\t" + "addu.ph %[average], %[average], %[left_r1] \n\t" + + "lw %[above1], 8(%[above]) \n\t" + "lw %[above2], 12(%[above]) \n\t" + "lw %[left1], 8(%[left]) \n\t" + "lw %[left2], 12(%[left]) \n\t" + + "preceu.ph.qbl %[above_l1], %[above1] \n\t" + "preceu.ph.qbr %[above_r1], %[above1] \n\t" + "preceu.ph.qbl %[left_l1], %[left1] \n\t" + "preceu.ph.qbr %[left_r1], %[left1] \n\t" + + "addu.ph %[average], %[average], %[above_l1] \n\t" + "addu.ph %[average], %[average], %[above_r1] \n\t" + "addu.ph %[average], %[average], %[left_l1] \n\t" + "addu.ph %[average], %[average], %[left_r1] \n\t" + + "preceu.ph.qbl %[above_l1], %[above2] \n\t" + "preceu.ph.qbr %[above_r1], %[above2] \n\t" + "preceu.ph.qbl %[left_l1], %[left2] \n\t" + "preceu.ph.qbr %[left_r1], %[left2] \n\t" + + "addu.ph %[average], %[average], %[above_l1] \n\t" + "addu.ph %[average], %[average], %[above_r1] \n\t" + "addu.ph %[average], %[average], %[left_l1] \n\t" + "addu.ph %[average], %[average], %[left_r1] \n\t" + + "addiu %[average], %[average], 16 \n\t" + "srl %[tmp], %[average], 16 \n\t" + "addu.ph %[average], %[tmp], %[average] \n\t" + "srl %[expected_dc], %[average], 5 \n\t" + "replv.qb %[expected_dc], %[expected_dc] \n\t" + + "sw %[expected_dc], (%[dst]) \n\t" + "sw %[expected_dc], 4(%[dst]) \n\t" + "sw %[expected_dc], 8(%[dst]) \n\t" + "sw %[expected_dc], 12(%[dst]) \n\t" + + "add %[dst], %[dst], %[stride] \n\t" + "sw %[expected_dc], (%[dst]) \n\t" + "sw %[expected_dc], 4(%[dst]) \n\t" + "sw %[expected_dc], 8(%[dst]) \n\t" + "sw %[expected_dc], 12(%[dst]) \n\t" + + "add %[dst], %[dst], %[stride] \n\t" + "sw %[expected_dc], (%[dst]) \n\t" + "sw %[expected_dc], 4(%[dst]) \n\t" + "sw %[expected_dc], 8(%[dst]) \n\t" + "sw %[expected_dc], 12(%[dst]) \n\t" + + "add %[dst], %[dst], %[stride] \n\t" + "sw %[expected_dc], (%[dst]) \n\t" + "sw %[expected_dc], 4(%[dst]) \n\t" + "sw %[expected_dc], 8(%[dst]) \n\t" + "sw %[expected_dc], 12(%[dst]) \n\t" + + "add %[dst], %[dst], %[stride] \n\t" + "sw %[expected_dc], (%[dst]) \n\t" + "sw %[expected_dc], 4(%[dst]) \n\t" + "sw %[expected_dc], 8(%[dst]) \n\t" + "sw %[expected_dc], 12(%[dst]) \n\t" + + "add %[dst], %[dst], %[stride] \n\t" + "sw %[expected_dc], (%[dst]) \n\t" + "sw %[expected_dc], 4(%[dst]) \n\t" + "sw %[expected_dc], 8(%[dst]) \n\t" + "sw %[expected_dc], 12(%[dst]) \n\t" + + "add %[dst], %[dst], %[stride] \n\t" + "sw %[expected_dc], (%[dst]) \n\t" + "sw %[expected_dc], 4(%[dst]) \n\t" + "sw %[expected_dc], 8(%[dst]) \n\t" + "sw %[expected_dc], 12(%[dst]) \n\t" + + "add %[dst], %[dst], %[stride] \n\t" + "sw %[expected_dc], (%[dst]) \n\t" + "sw %[expected_dc], 4(%[dst]) \n\t" + "sw %[expected_dc], 8(%[dst]) \n\t" + "sw %[expected_dc], 12(%[dst]) \n\t" + + "add %[dst], %[dst], %[stride] \n\t" + "sw %[expected_dc], (%[dst]) \n\t" + "sw %[expected_dc], 4(%[dst]) \n\t" + "sw %[expected_dc], 8(%[dst]) \n\t" + "sw %[expected_dc], 12(%[dst]) \n\t" + + "add %[dst], %[dst], %[stride] \n\t" + "sw %[expected_dc], (%[dst]) \n\t" + "sw %[expected_dc], 4(%[dst]) \n\t" + "sw %[expected_dc], 8(%[dst]) \n\t" + "sw %[expected_dc], 12(%[dst]) \n\t" + + "add %[dst], %[dst], %[stride] \n\t" + "sw %[expected_dc], (%[dst]) \n\t" + "sw %[expected_dc], 4(%[dst]) \n\t" + "sw %[expected_dc], 8(%[dst]) \n\t" + "sw %[expected_dc], 12(%[dst]) \n\t" + + "add %[dst], %[dst], %[stride] \n\t" + "sw %[expected_dc], (%[dst]) \n\t" + "sw %[expected_dc], 4(%[dst]) \n\t" + "sw %[expected_dc], 8(%[dst]) \n\t" + "sw %[expected_dc], 12(%[dst]) \n\t" + + "add %[dst], %[dst], %[stride] \n\t" + "sw %[expected_dc], (%[dst]) \n\t" + "sw %[expected_dc], 4(%[dst]) \n\t" + "sw %[expected_dc], 8(%[dst]) \n\t" + "sw %[expected_dc], 12(%[dst]) \n\t" + + "add %[dst], %[dst], %[stride] \n\t" + "sw %[expected_dc], (%[dst]) \n\t" + "sw %[expected_dc], 4(%[dst]) \n\t" + "sw %[expected_dc], 8(%[dst]) \n\t" + "sw %[expected_dc], 12(%[dst]) \n\t" + + "add %[dst], %[dst], %[stride] \n\t" + "sw %[expected_dc], (%[dst]) \n\t" + "sw %[expected_dc], 4(%[dst]) \n\t" + "sw %[expected_dc], 8(%[dst]) \n\t" + "sw %[expected_dc], 12(%[dst]) \n\t" + + "add %[dst], %[dst], %[stride] \n\t" + "sw %[expected_dc], (%[dst]) \n\t" + "sw %[expected_dc], 4(%[dst]) \n\t" + "sw %[expected_dc], 8(%[dst]) \n\t" + "sw %[expected_dc], 12(%[dst]) \n\t" + + : [left1] "=&r"(left1), [above1] "=&r"(above1), [left_l1] "=&r"(left_l1), + [above_l1] "=&r"(above_l1), [left_r1] "=&r"(left_r1), + [above_r1] "=&r"(above_r1), [above2] "=&r"(above2), + [left2] "=&r"(left2), [average] "=&r"(average), [tmp] "=&r"(tmp), + [expected_dc] "=&r"(expected_dc) + : [above] "r"(above), [left] "r"(left), [dst] "r"(dst), + [stride] "r"(stride)); +} +#endif // #if HAVE_DSPR2 diff --git a/vpx_dsp/mips/intrapred4_dspr2.c b/vpx_dsp/mips/intrapred4_dspr2.c new file mode 100644 index 0000000..dce03a2 --- /dev/null +++ b/vpx_dsp/mips/intrapred4_dspr2.c @@ -0,0 +1,225 @@ +/* + * Copyright (c) 2015 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "vpx_dsp/mips/common_dspr2.h" + +#if HAVE_DSPR2 +void vpx_h_predictor_4x4_dspr2(uint8_t *dst, ptrdiff_t stride, + const uint8_t *above, const uint8_t *left) { + int32_t tmp1, tmp2, tmp3, tmp4; + (void)above; + + __asm__ __volatile__( + "lb %[tmp1], (%[left]) \n\t" + "lb %[tmp2], 1(%[left]) \n\t" + "lb %[tmp3], 2(%[left]) \n\t" + "lb %[tmp4], 3(%[left]) \n\t" + "replv.qb %[tmp1], %[tmp1] \n\t" + "replv.qb %[tmp2], %[tmp2] \n\t" + "replv.qb %[tmp3], %[tmp3] \n\t" + "replv.qb %[tmp4], %[tmp4] \n\t" + "sw %[tmp1], (%[dst]) \n\t" + "add %[dst], %[dst], %[stride] \n\t" + "sw %[tmp2], (%[dst]) \n\t" + "add %[dst], %[dst], %[stride] \n\t" + "sw %[tmp3], (%[dst]) \n\t" + "add %[dst], %[dst], %[stride] \n\t" + "sw %[tmp4], (%[dst]) \n\t" + + : [tmp1] "=&r"(tmp1), [tmp2] "=&r"(tmp2), [tmp3] "=&r"(tmp3), + [tmp4] "=&r"(tmp4) + : [left] "r"(left), [dst] "r"(dst), [stride] "r"(stride)); +} + +void vpx_dc_predictor_4x4_dspr2(uint8_t *dst, ptrdiff_t stride, + const uint8_t *above, const uint8_t *left) { + int32_t expected_dc; + int32_t average; + int32_t tmp, above_c, above_l, above_r, left_c, left_r, left_l; + + __asm__ __volatile__( + "lw %[above_c], (%[above]) \n\t" + "lw %[left_c], (%[left]) \n\t" + + "preceu.ph.qbl %[above_l], %[above_c] \n\t" + "preceu.ph.qbr %[above_r], %[above_c] \n\t" + "preceu.ph.qbl %[left_l], %[left_c] \n\t" + "preceu.ph.qbr %[left_r], %[left_c] \n\t" + + "addu.ph %[average], %[above_r], %[above_l] \n\t" + "addu.ph %[average], %[average], %[left_l] \n\t" + "addu.ph %[average], %[average], %[left_r] \n\t" + "addiu %[average], %[average], 4 \n\t" + "srl %[tmp], %[average], 16 \n\t" + "addu.ph %[average], %[tmp], %[average] \n\t" + "srl %[expected_dc], %[average], 3 \n\t" + "replv.qb %[expected_dc], %[expected_dc] \n\t" + + "sw %[expected_dc], (%[dst]) \n\t" + "add %[dst], %[dst], %[stride] \n\t" + "sw %[expected_dc], (%[dst]) \n\t" + "add %[dst], %[dst], %[stride] \n\t" + "sw %[expected_dc], (%[dst]) \n\t" + "add %[dst], %[dst], %[stride] \n\t" + "sw %[expected_dc], (%[dst]) \n\t" + + : [above_c] "=&r"(above_c), [above_l] "=&r"(above_l), + [above_r] "=&r"(above_r), [left_c] "=&r"(left_c), + [left_l] "=&r"(left_l), [left_r] "=&r"(left_r), + [average] "=&r"(average), [tmp] "=&r"(tmp), + [expected_dc] "=&r"(expected_dc) + : [above] "r"(above), [left] "r"(left), [dst] "r"(dst), + [stride] "r"(stride)); +} + +void vpx_tm_predictor_4x4_dspr2(uint8_t *dst, ptrdiff_t stride, + const uint8_t *above, const uint8_t *left) { + int32_t abovel, abover; + int32_t left0, left1, left2, left3; + int32_t res0, res1; + int32_t resl; + int32_t resr; + int32_t top_left; + uint8_t *cm = vpx_ff_cropTbl; + + __asm__ __volatile__( + "ulw %[resl], (%[above]) \n\t" + + "lbu %[left0], (%[left]) \n\t" + "lbu %[left1], 1(%[left]) \n\t" + "lbu %[left2], 2(%[left]) \n\t" + "lbu %[left3], 3(%[left]) \n\t" + + "lbu %[top_left], -1(%[above]) \n\t" + + "preceu.ph.qbl %[abovel], %[resl] \n\t" + "preceu.ph.qbr %[abover], %[resl] \n\t" + + "replv.ph %[left0], %[left0] \n\t" + "replv.ph %[left1], %[left1] \n\t" + "replv.ph %[left2], %[left2] \n\t" + "replv.ph %[left3], %[left3] \n\t" + + "replv.ph %[top_left], %[top_left] \n\t" + + "addu.ph %[resl], %[abovel], %[left0] \n\t" + "subu.ph %[resl], %[resl], %[top_left] \n\t" + + "addu.ph %[resr], %[abover], %[left0] \n\t" + "subu.ph %[resr], %[resr], %[top_left] \n\t" + + "sll %[res0], %[resr], 16 \n\t" + "sra %[res0], %[res0], 16 \n\t" + "lbux %[res0], %[res0](%[cm]) \n\t" + + "sra %[res1], %[resr], 16 \n\t" + "lbux %[res1], %[res1](%[cm]) \n\t" + "sb %[res0], (%[dst]) \n\t" + + "sll %[res0], %[resl], 16 \n\t" + "sra %[res0], %[res0], 16 \n\t" + "lbux %[res0], %[res0](%[cm]) \n\t" + "sb %[res1], 1(%[dst]) \n\t" + + "sra %[res1], %[resl], 16 \n\t" + "lbux %[res1], %[res1](%[cm]) \n\t" + + "addu.ph %[resl], %[abovel], %[left1] \n\t" + "subu.ph %[resl], %[resl], %[top_left] \n\t" + + "addu.ph %[resr], %[abover], %[left1] \n\t" + "subu.ph %[resr], %[resr], %[top_left] \n\t" + + "sb %[res0], 2(%[dst]) \n\t" + "sb %[res1], 3(%[dst]) \n\t" + + "add %[dst], %[dst], %[stride] \n\t" + + "sll %[res0], %[resr], 16 \n\t" + "sra %[res0], %[res0], 16 \n\t" + "lbux %[res0], %[res0](%[cm]) \n\t" + + "sra %[res1], %[resr], 16 \n\t" + "lbux %[res1], %[res1](%[cm]) \n\t" + "sb %[res0], (%[dst]) \n\t" + + "sll %[res0], %[resl], 16 \n\t" + "sra %[res0], %[res0], 16 \n\t" + "lbux %[res0], %[res0](%[cm]) \n\t" + + "sb %[res1], 1(%[dst]) \n\t" + "sra %[res1], %[resl], 16 \n\t" + "lbux %[res1], %[res1](%[cm]) \n\t" + + "addu.ph %[resl], %[abovel], %[left2] \n\t" + "subu.ph %[resl], %[resl], %[top_left] \n\t" + + "addu.ph %[resr], %[abover], %[left2] \n\t" + "subu.ph %[resr], %[resr], %[top_left] \n\t" + + "sb %[res0], 2(%[dst]) \n\t" + "sb %[res1], 3(%[dst]) \n\t" + + "add %[dst], %[dst], %[stride] \n\t" + + "sll %[res0], %[resr], 16 \n\t" + "sra %[res0], %[res0], 16 \n\t" + "lbux %[res0], %[res0](%[cm]) \n\t" + + "sra %[res1], %[resr], 16 \n\t" + "lbux %[res1], %[res1](%[cm]) \n\t" + "sb %[res0], (%[dst]) \n\t" + + "sll %[res0], %[resl], 16 \n\t" + "sra %[res0], %[res0], 16 \n\t" + "lbux %[res0], %[res0](%[cm]) \n\t" + + "sb %[res1], 1(%[dst]) \n\t" + "sra %[res1], %[resl], 16 \n\t" + "lbux %[res1], %[res1](%[cm]) \n\t" + + "addu.ph %[resl], %[abovel], %[left3] \n\t" + "subu.ph %[resl], %[resl], %[top_left] \n\t" + + "addu.ph %[resr], %[abover], %[left3] \n\t" + "subu.ph %[resr], %[resr], %[top_left] \n\t" + + "sb %[res0], 2(%[dst]) \n\t" + "sb %[res1], 3(%[dst]) \n\t" + + "add %[dst], %[dst], %[stride] \n\t" + + "sll %[res0], %[resr], 16 \n\t" + "sra %[res0], %[res0], 16 \n\t" + "lbux %[res0], %[res0](%[cm]) \n\t" + + "sra %[res1], %[resr], 16 \n\t" + "lbux %[res1], %[res1](%[cm]) \n\t" + "sb %[res0], (%[dst]) \n\t" + + "sll %[res0], %[resl], 16 \n\t" + "sra %[res0], %[res0], 16 \n\t" + "lbux %[res0], %[res0](%[cm]) \n\t" + "sb %[res1], 1(%[dst]) \n\t" + + "sra %[res1], %[resl], 16 \n\t" + "lbux %[res1], %[res1](%[cm]) \n\t" + + "sb %[res0], 2(%[dst]) \n\t" + "sb %[res1], 3(%[dst]) \n\t" + + : [abovel] "=&r"(abovel), [abover] "=&r"(abover), [left0] "=&r"(left0), + [left1] "=&r"(left1), [left2] "=&r"(left2), [res0] "=&r"(res0), + [res1] "=&r"(res1), [left3] "=&r"(left3), [resl] "=&r"(resl), + [resr] "=&r"(resr), [top_left] "=&r"(top_left) + : [above] "r"(above), [left] "r"(left), [dst] "r"(dst), + [stride] "r"(stride), [cm] "r"(cm)); +} +#endif // #if HAVE_DSPR2 diff --git a/vpx_dsp/mips/intrapred8_dspr2.c b/vpx_dsp/mips/intrapred8_dspr2.c new file mode 100644 index 0000000..16e7fc5 --- /dev/null +++ b/vpx_dsp/mips/intrapred8_dspr2.c @@ -0,0 +1,603 @@ +/* + * Copyright (c) 2015 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "vpx_dsp/mips/common_dspr2.h" + +#if HAVE_DSPR2 +void vpx_h_predictor_8x8_dspr2(uint8_t *dst, ptrdiff_t stride, + const uint8_t *above, const uint8_t *left) { + int32_t tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7, tmp8; + (void)above; + + __asm__ __volatile__( + "lb %[tmp1], (%[left]) \n\t" + "lb %[tmp2], 1(%[left]) \n\t" + "lb %[tmp3], 2(%[left]) \n\t" + "lb %[tmp4], 3(%[left]) \n\t" + "lb %[tmp5], 4(%[left]) \n\t" + "lb %[tmp6], 5(%[left]) \n\t" + "lb %[tmp7], 6(%[left]) \n\t" + "lb %[tmp8], 7(%[left]) \n\t" + + "replv.qb %[tmp1], %[tmp1] \n\t" + "replv.qb %[tmp2], %[tmp2] \n\t" + "replv.qb %[tmp3], %[tmp3] \n\t" + "replv.qb %[tmp4], %[tmp4] \n\t" + "replv.qb %[tmp5], %[tmp5] \n\t" + "replv.qb %[tmp6], %[tmp6] \n\t" + "replv.qb %[tmp7], %[tmp7] \n\t" + "replv.qb %[tmp8], %[tmp8] \n\t" + + "sw %[tmp1], (%[dst]) \n\t" + "sw %[tmp1], 4(%[dst]) \n\t" + "add %[dst], %[dst], %[stride] \n\t" + "sw %[tmp2], (%[dst]) \n\t" + "sw %[tmp2], 4(%[dst]) \n\t" + "add %[dst], %[dst], %[stride] \n\t" + "sw %[tmp3], (%[dst]) \n\t" + "sw %[tmp3], 4(%[dst]) \n\t" + "add %[dst], %[dst], %[stride] \n\t" + "sw %[tmp4], (%[dst]) \n\t" + "sw %[tmp4], 4(%[dst]) \n\t" + "add %[dst], %[dst], %[stride] \n\t" + "sw %[tmp5], (%[dst]) \n\t" + "sw %[tmp5], 4(%[dst]) \n\t" + "add %[dst], %[dst], %[stride] \n\t" + "sw %[tmp6], (%[dst]) \n\t" + "sw %[tmp6], 4(%[dst]) \n\t" + "add %[dst], %[dst], %[stride] \n\t" + "sw %[tmp7], (%[dst]) \n\t" + "sw %[tmp7], 4(%[dst]) \n\t" + "add %[dst], %[dst], %[stride] \n\t" + "sw %[tmp8], (%[dst]) \n\t" + "sw %[tmp8], 4(%[dst]) \n\t" + + : [tmp1] "=&r"(tmp1), [tmp2] "=&r"(tmp2), [tmp3] "=&r"(tmp3), + [tmp4] "=&r"(tmp4), [tmp5] "=&r"(tmp5), [tmp7] "=&r"(tmp7), + [tmp6] "=&r"(tmp6), [tmp8] "=&r"(tmp8) + : [left] "r"(left), [dst] "r"(dst), [stride] "r"(stride)); +} + +void vpx_dc_predictor_8x8_dspr2(uint8_t *dst, ptrdiff_t stride, + const uint8_t *above, const uint8_t *left) { + int32_t expected_dc; + int32_t average; + int32_t tmp, above1, above_l1, above_r1, left1, left_r1, left_l1; + int32_t above2, above_l2, above_r2, left2, left_r2, left_l2; + + __asm__ __volatile__( + "lw %[above1], (%[above]) \n\t" + "lw %[above2], 4(%[above]) \n\t" + "lw %[left1], (%[left]) \n\t" + "lw %[left2], 4(%[left]) \n\t" + + "preceu.ph.qbl %[above_l1], %[above1] \n\t" + "preceu.ph.qbr %[above_r1], %[above1] \n\t" + "preceu.ph.qbl %[left_l1], %[left1] \n\t" + "preceu.ph.qbr %[left_r1], %[left1] \n\t" + + "preceu.ph.qbl %[above_l2], %[above2] \n\t" + "preceu.ph.qbr %[above_r2], %[above2] \n\t" + "preceu.ph.qbl %[left_l2], %[left2] \n\t" + "preceu.ph.qbr %[left_r2], %[left2] \n\t" + + "addu.ph %[average], %[above_r1], %[above_l1] \n\t" + "addu.ph %[average], %[average], %[left_l1] \n\t" + "addu.ph %[average], %[average], %[left_r1] \n\t" + + "addu.ph %[average], %[average], %[above_l2] \n\t" + "addu.ph %[average], %[average], %[above_r2] \n\t" + "addu.ph %[average], %[average], %[left_l2] \n\t" + "addu.ph %[average], %[average], %[left_r2] \n\t" + + "addiu %[average], %[average], 8 \n\t" + + "srl %[tmp], %[average], 16 \n\t" + "addu.ph %[average], %[tmp], %[average] \n\t" + "srl %[expected_dc], %[average], 4 \n\t" + "replv.qb %[expected_dc], %[expected_dc] \n\t" + + "sw %[expected_dc], (%[dst]) \n\t" + "sw %[expected_dc], 4(%[dst]) \n\t" + + "add %[dst], %[dst], %[stride] \n\t" + "sw %[expected_dc], (%[dst]) \n\t" + "sw %[expected_dc], 4(%[dst]) \n\t" + + "add %[dst], %[dst], %[stride] \n\t" + "sw %[expected_dc], (%[dst]) \n\t" + "sw %[expected_dc], 4(%[dst]) \n\t" + + "add %[dst], %[dst], %[stride] \n\t" + "sw %[expected_dc], (%[dst]) \n\t" + "sw %[expected_dc], 4(%[dst]) \n\t" + + "add %[dst], %[dst], %[stride] \n\t" + "sw %[expected_dc], (%[dst]) \n\t" + "sw %[expected_dc], 4(%[dst]) \n\t" + + "add %[dst], %[dst], %[stride] \n\t" + "sw %[expected_dc], (%[dst]) \n\t" + "sw %[expected_dc], 4(%[dst]) \n\t" + + "add %[dst], %[dst], %[stride] \n\t" + "sw %[expected_dc], (%[dst]) \n\t" + "sw %[expected_dc], 4(%[dst]) \n\t" + + "add %[dst], %[dst], %[stride] \n\t" + "sw %[expected_dc], (%[dst]) \n\t" + "sw %[expected_dc], 4(%[dst]) \n\t" + + : [above1] "=&r"(above1), [above_l1] "=&r"(above_l1), + [above_r1] "=&r"(above_r1), [left1] "=&r"(left1), + [left_l1] "=&r"(left_l1), [left_r1] "=&r"(left_r1), + [above2] "=&r"(above2), [above_l2] "=&r"(above_l2), + [above_r2] "=&r"(above_r2), [left2] "=&r"(left2), + [left_l2] "=&r"(left_l2), [left_r2] "=&r"(left_r2), + [average] "=&r"(average), [tmp] "=&r"(tmp), + [expected_dc] "=&r"(expected_dc) + : [above] "r"(above), [left] "r"(left), [dst] "r"(dst), + [stride] "r"(stride)); +} + +void vpx_tm_predictor_8x8_dspr2(uint8_t *dst, ptrdiff_t stride, + const uint8_t *above, const uint8_t *left) { + int32_t abovel, abover; + int32_t abovel_1, abover_1; + int32_t left0; + int32_t res0, res1, res2, res3; + int32_t reshw; + int32_t top_left; + uint8_t *cm = vpx_ff_cropTbl; + + __asm__ __volatile__( + "ulw %[reshw], (%[above]) \n\t" + "ulw %[top_left], 4(%[above]) \n\t" + + "lbu %[left0], (%[left]) \n\t" + + "preceu.ph.qbl %[abovel], %[reshw] \n\t" + "preceu.ph.qbr %[abover], %[reshw] \n\t" + "preceu.ph.qbl %[abovel_1], %[top_left] \n\t" + "preceu.ph.qbr %[abover_1], %[top_left] \n\t" + + "lbu %[top_left], -1(%[above]) \n\t" + "replv.ph %[left0], %[left0] \n\t" + + "replv.ph %[top_left], %[top_left] \n\t" + + "addu.ph %[reshw], %[abovel], %[left0] \n\t" + "subu.ph %[reshw], %[reshw], %[top_left] \n\t" + + "sll %[res2], %[reshw], 16 \n\t" + "sra %[res2], %[res2], 16 \n\t" + "sra %[res3], %[reshw], 16 \n\t" + + "addu.ph %[reshw], %[abover], %[left0] \n\t" + "subu.ph %[reshw], %[reshw], %[top_left] \n\t" + + "sll %[res0], %[reshw], 16 \n\t" + "sra %[res0], %[res0], 16 \n\t" + "sra %[res1], %[reshw], 16 \n\t" + + "lbux %[res0], %[res0](%[cm]) \n\t" + "lbux %[res1], %[res1](%[cm]) \n\t" + "lbux %[res2], %[res2](%[cm]) \n\t" + "lbux %[res3], %[res3](%[cm]) \n\t" + + "sb %[res0], (%[dst]) \n\t" + "sb %[res1], 1(%[dst]) \n\t" + "sb %[res2], 2(%[dst]) \n\t" + "sb %[res3], 3(%[dst]) \n\t" + + "addu.ph %[reshw], %[abovel_1], %[left0] \n\t" + "subu.ph %[reshw], %[reshw], %[top_left] \n\t" + + "sll %[res2], %[reshw], 16 \n\t" + "sra %[res2], %[res2], 16 \n\t" + "sra %[res3], %[reshw], 16 \n\t" + + "addu.ph %[reshw], %[abover_1], %[left0] \n\t" + "subu.ph %[reshw], %[reshw], %[top_left] \n\t" + + "sll %[res0], %[reshw], 16 \n\t" + "sra %[res0], %[res0], 16 \n\t" + "sra %[res1], %[reshw], 16 \n\t" + + "lbu %[left0], 1(%[left]) \n\t" + + "lbux %[res0], %[res0](%[cm]) \n\t" + "lbux %[res1], %[res1](%[cm]) \n\t" + "lbux %[res2], %[res2](%[cm]) \n\t" + "lbux %[res3], %[res3](%[cm]) \n\t" + + "sb %[res0], 4(%[dst]) \n\t" + "sb %[res1], 5(%[dst]) \n\t" + "sb %[res2], 6(%[dst]) \n\t" + "sb %[res3], 7(%[dst]) \n\t" + + "replv.ph %[left0], %[left0] \n\t" + "add %[dst], %[dst], %[stride] \n\t" + + "addu.ph %[reshw], %[abovel], %[left0] \n\t" + "subu.ph %[reshw], %[reshw], %[top_left] \n\t" + + "sll %[res2], %[reshw], 16 \n\t" + "sra %[res2], %[res2], 16 \n\t" + "sra %[res3], %[reshw], 16 \n\t" + + "addu.ph %[reshw], %[abover], %[left0] \n\t" + "subu.ph %[reshw], %[reshw], %[top_left] \n\t" + + "sll %[res0], %[reshw], 16 \n\t" + "sra %[res0], %[res0], 16 \n\t" + "sra %[res1], %[reshw], 16 \n\t" + + "lbux %[res0], %[res0](%[cm]) \n\t" + "lbux %[res1], %[res1](%[cm]) \n\t" + "lbux %[res2], %[res2](%[cm]) \n\t" + "lbux %[res3], %[res3](%[cm]) \n\t" + + "sb %[res0], (%[dst]) \n\t" + "sb %[res1], 1(%[dst]) \n\t" + "sb %[res2], 2(%[dst]) \n\t" + "sb %[res3], 3(%[dst]) \n\t" + + "addu.ph %[reshw], %[abovel_1], %[left0] \n\t" + "subu.ph %[reshw], %[reshw], %[top_left] \n\t" + + "sll %[res2], %[reshw], 16 \n\t" + "sra %[res2], %[res2], 16 \n\t" + "sra %[res3], %[reshw], 16 \n\t" + + "addu.ph %[reshw], %[abover_1], %[left0] \n\t" + "subu.ph %[reshw], %[reshw], %[top_left] \n\t" + + "sll %[res0], %[reshw], 16 \n\t" + "sra %[res0], %[res0], 16 \n\t" + "sra %[res1], %[reshw], 16 \n\t" + + "lbu %[left0], 2(%[left]) \n\t" + + "lbux %[res0], %[res0](%[cm]) \n\t" + "lbux %[res1], %[res1](%[cm]) \n\t" + "lbux %[res2], %[res2](%[cm]) \n\t" + "lbux %[res3], %[res3](%[cm]) \n\t" + + "sb %[res0], 4(%[dst]) \n\t" + "sb %[res1], 5(%[dst]) \n\t" + "sb %[res2], 6(%[dst]) \n\t" + "sb %[res3], 7(%[dst]) \n\t" + + "replv.ph %[left0], %[left0] \n\t" + "add %[dst], %[dst], %[stride] \n\t" + + "addu.ph %[reshw], %[abovel], %[left0] \n\t" + "subu.ph %[reshw], %[reshw], %[top_left] \n\t" + + "sll %[res2], %[reshw], 16 \n\t" + "sra %[res2], %[res2], 16 \n\t" + "sra %[res3], %[reshw], 16 \n\t" + + "addu.ph %[reshw], %[abover], %[left0] \n\t" + "subu.ph %[reshw], %[reshw], %[top_left] \n\t" + + "sll %[res0], %[reshw], 16 \n\t" + "sra %[res0], %[res0], 16 \n\t" + "sra %[res1], %[reshw], 16 \n\t" + + "lbux %[res0], %[res0](%[cm]) \n\t" + "lbux %[res1], %[res1](%[cm]) \n\t" + "lbux %[res2], %[res2](%[cm]) \n\t" + "lbux %[res3], %[res3](%[cm]) \n\t" + + "sb %[res0], (%[dst]) \n\t" + "sb %[res1], 1(%[dst]) \n\t" + "sb %[res2], 2(%[dst]) \n\t" + "sb %[res3], 3(%[dst]) \n\t" + + "addu.ph %[reshw], %[abovel_1], %[left0] \n\t" + "subu.ph %[reshw], %[reshw], %[top_left] \n\t" + + "sll %[res2], %[reshw], 16 \n\t" + "sra %[res2], %[res2], 16 \n\t" + "sra %[res3], %[reshw], 16 \n\t" + + "addu.ph %[reshw], %[abover_1], %[left0] \n\t" + "subu.ph %[reshw], %[reshw], %[top_left] \n\t" + + "sll %[res0], %[reshw], 16 \n\t" + "sra %[res0], %[res0], 16 \n\t" + "sra %[res1], %[reshw], 16 \n\t" + + "lbu %[left0], 3(%[left]) \n\t" + + "lbux %[res0], %[res0](%[cm]) \n\t" + "lbux %[res1], %[res1](%[cm]) \n\t" + "lbux %[res2], %[res2](%[cm]) \n\t" + "lbux %[res3], %[res3](%[cm]) \n\t" + + "sb %[res0], 4(%[dst]) \n\t" + "sb %[res1], 5(%[dst]) \n\t" + "sb %[res2], 6(%[dst]) \n\t" + "sb %[res3], 7(%[dst]) \n\t" + + "replv.ph %[left0], %[left0] \n\t" + "add %[dst], %[dst], %[stride] \n\t" + + "addu.ph %[reshw], %[abovel], %[left0] \n\t" + "subu.ph %[reshw], %[reshw], %[top_left] \n\t" + + "sll %[res2], %[reshw], 16 \n\t" + "sra %[res2], %[res2], 16 \n\t" + "sra %[res3], %[reshw], 16 \n\t" + + "addu.ph %[reshw], %[abover], %[left0] \n\t" + "subu.ph %[reshw], %[reshw], %[top_left] \n\t" + + "sll %[res0], %[reshw], 16 \n\t" + "sra %[res0], %[res0], 16 \n\t" + "sra %[res1], %[reshw], 16 \n\t" + + "lbux %[res0], %[res0](%[cm]) \n\t" + "lbux %[res1], %[res1](%[cm]) \n\t" + "lbux %[res2], %[res2](%[cm]) \n\t" + "lbux %[res3], %[res3](%[cm]) \n\t" + + "sb %[res0], (%[dst]) \n\t" + "sb %[res1], 1(%[dst]) \n\t" + "sb %[res2], 2(%[dst]) \n\t" + "sb %[res3], 3(%[dst]) \n\t" + + "addu.ph %[reshw], %[abovel_1], %[left0] \n\t" + "subu.ph %[reshw], %[reshw], %[top_left] \n\t" + + "sll %[res2], %[reshw], 16 \n\t" + "sra %[res2], %[res2], 16 \n\t" + "sra %[res3], %[reshw], 16 \n\t" + + "addu.ph %[reshw], %[abover_1], %[left0] \n\t" + "subu.ph %[reshw], %[reshw], %[top_left] \n\t" + + "sll %[res0], %[reshw], 16 \n\t" + "sra %[res0], %[res0], 16 \n\t" + "sra %[res1], %[reshw], 16 \n\t" + + "lbu %[left0], 4(%[left]) \n\t" + + "lbux %[res0], %[res0](%[cm]) \n\t" + "lbux %[res1], %[res1](%[cm]) \n\t" + "lbux %[res2], %[res2](%[cm]) \n\t" + "lbux %[res3], %[res3](%[cm]) \n\t" + + "sb %[res0], 4(%[dst]) \n\t" + "sb %[res1], 5(%[dst]) \n\t" + "sb %[res2], 6(%[dst]) \n\t" + "sb %[res3], 7(%[dst]) \n\t" + + "replv.ph %[left0], %[left0] \n\t" + "add %[dst], %[dst], %[stride] \n\t" + + "addu.ph %[reshw], %[abovel], %[left0] \n\t" + "subu.ph %[reshw], %[reshw], %[top_left] \n\t" + + "sll %[res2], %[reshw], 16 \n\t" + "sra %[res2], %[res2], 16 \n\t" + "sra %[res3], %[reshw], 16 \n\t" + + "addu.ph %[reshw], %[abover], %[left0] \n\t" + "subu.ph %[reshw], %[reshw], %[top_left] \n\t" + + "sll %[res0], %[reshw], 16 \n\t" + "sra %[res0], %[res0], 16 \n\t" + "sra %[res1], %[reshw], 16 \n\t" + + "lbux %[res0], %[res0](%[cm]) \n\t" + "lbux %[res1], %[res1](%[cm]) \n\t" + "lbux %[res2], %[res2](%[cm]) \n\t" + "lbux %[res3], %[res3](%[cm]) \n\t" + + "sb %[res0], (%[dst]) \n\t" + "sb %[res1], 1(%[dst]) \n\t" + "sb %[res2], 2(%[dst]) \n\t" + "sb %[res3], 3(%[dst]) \n\t" + + "addu.ph %[reshw], %[abovel_1], %[left0] \n\t" + "subu.ph %[reshw], %[reshw], %[top_left] \n\t" + + "sll %[res2], %[reshw], 16 \n\t" + "sra %[res2], %[res2], 16 \n\t" + "sra %[res3], %[reshw], 16 \n\t" + + "addu.ph %[reshw], %[abover_1], %[left0] \n\t" + "subu.ph %[reshw], %[reshw], %[top_left] \n\t" + + "sll %[res0], %[reshw], 16 \n\t" + "sra %[res0], %[res0], 16 \n\t" + "sra %[res1], %[reshw], 16 \n\t" + + "lbu %[left0], 5(%[left]) \n\t" + + "lbux %[res0], %[res0](%[cm]) \n\t" + "lbux %[res1], %[res1](%[cm]) \n\t" + "lbux %[res2], %[res2](%[cm]) \n\t" + "lbux %[res3], %[res3](%[cm]) \n\t" + + "sb %[res0], 4(%[dst]) \n\t" + "sb %[res1], 5(%[dst]) \n\t" + "sb %[res2], 6(%[dst]) \n\t" + "sb %[res3], 7(%[dst]) \n\t" + + "replv.ph %[left0], %[left0] \n\t" + "add %[dst], %[dst], %[stride] \n\t" + + "addu.ph %[reshw], %[abovel], %[left0] \n\t" + "subu.ph %[reshw], %[reshw], %[top_left] \n\t" + + "sll %[res2], %[reshw], 16 \n\t" + "sra %[res2], %[res2], 16 \n\t" + "sra %[res3], %[reshw], 16 \n\t" + + "addu.ph %[reshw], %[abover], %[left0] \n\t" + "subu.ph %[reshw], %[reshw], %[top_left] \n\t" + + "sll %[res0], %[reshw], 16 \n\t" + "sra %[res0], %[res0], 16 \n\t" + "sra %[res1], %[reshw], 16 \n\t" + + "lbux %[res0], %[res0](%[cm]) \n\t" + "lbux %[res1], %[res1](%[cm]) \n\t" + "lbux %[res2], %[res2](%[cm]) \n\t" + "lbux %[res3], %[res3](%[cm]) \n\t" + + "sb %[res0], (%[dst]) \n\t" + "sb %[res1], 1(%[dst]) \n\t" + "sb %[res2], 2(%[dst]) \n\t" + "sb %[res3], 3(%[dst]) \n\t" + + "addu.ph %[reshw], %[abovel_1], %[left0] \n\t" + "subu.ph %[reshw], %[reshw], %[top_left] \n\t" + + "sll %[res2], %[reshw], 16 \n\t" + "sra %[res2], %[res2], 16 \n\t" + "sra %[res3], %[reshw], 16 \n\t" + + "addu.ph %[reshw], %[abover_1], %[left0] \n\t" + "subu.ph %[reshw], %[reshw], %[top_left] \n\t" + + "sll %[res0], %[reshw], 16 \n\t" + "sra %[res0], %[res0], 16 \n\t" + "sra %[res1], %[reshw], 16 \n\t" + + "lbu %[left0], 6(%[left]) \n\t" + + "lbux %[res0], %[res0](%[cm]) \n\t" + "lbux %[res1], %[res1](%[cm]) \n\t" + "lbux %[res2], %[res2](%[cm]) \n\t" + "lbux %[res3], %[res3](%[cm]) \n\t" + + "sb %[res0], 4(%[dst]) \n\t" + "sb %[res1], 5(%[dst]) \n\t" + "sb %[res2], 6(%[dst]) \n\t" + "sb %[res3], 7(%[dst]) \n\t" + + "replv.ph %[left0], %[left0] \n\t" + "add %[dst], %[dst], %[stride] \n\t" + + "addu.ph %[reshw], %[abovel], %[left0] \n\t" + "subu.ph %[reshw], %[reshw], %[top_left] \n\t" + + "sll %[res2], %[reshw], 16 \n\t" + "sra %[res2], %[res2], 16 \n\t" + "sra %[res3], %[reshw], 16 \n\t" + + "addu.ph %[reshw], %[abover], %[left0] \n\t" + "subu.ph %[reshw], %[reshw], %[top_left] \n\t" + + "sll %[res0], %[reshw], 16 \n\t" + "sra %[res0], %[res0], 16 \n\t" + "sra %[res1], %[reshw], 16 \n\t" + + "lbux %[res0], %[res0](%[cm]) \n\t" + "lbux %[res1], %[res1](%[cm]) \n\t" + "lbux %[res2], %[res2](%[cm]) \n\t" + "lbux %[res3], %[res3](%[cm]) \n\t" + + "sb %[res0], (%[dst]) \n\t" + "sb %[res1], 1(%[dst]) \n\t" + "sb %[res2], 2(%[dst]) \n\t" + "sb %[res3], 3(%[dst]) \n\t" + + "addu.ph %[reshw], %[abovel_1], %[left0] \n\t" + "subu.ph %[reshw], %[reshw], %[top_left] \n\t" + + "sll %[res2], %[reshw], 16 \n\t" + "sra %[res2], %[res2], 16 \n\t" + "sra %[res3], %[reshw], 16 \n\t" + + "addu.ph %[reshw], %[abover_1], %[left0] \n\t" + "subu.ph %[reshw], %[reshw], %[top_left] \n\t" + + "sll %[res0], %[reshw], 16 \n\t" + "sra %[res0], %[res0], 16 \n\t" + "sra %[res1], %[reshw], 16 \n\t" + + "lbu %[left0], 7(%[left]) \n\t" + + "lbux %[res0], %[res0](%[cm]) \n\t" + "lbux %[res1], %[res1](%[cm]) \n\t" + "lbux %[res2], %[res2](%[cm]) \n\t" + "lbux %[res3], %[res3](%[cm]) \n\t" + + "sb %[res0], 4(%[dst]) \n\t" + "sb %[res1], 5(%[dst]) \n\t" + "sb %[res2], 6(%[dst]) \n\t" + "sb %[res3], 7(%[dst]) \n\t" + + "replv.ph %[left0], %[left0] \n\t" + "add %[dst], %[dst], %[stride] \n\t" + + "addu.ph %[reshw], %[abovel], %[left0] \n\t" + "subu.ph %[reshw], %[reshw], %[top_left] \n\t" + + "sll %[res2], %[reshw], 16 \n\t" + "sra %[res2], %[res2], 16 \n\t" + "sra %[res3], %[reshw], 16 \n\t" + + "addu.ph %[reshw], %[abover], %[left0] \n\t" + "subu.ph %[reshw], %[reshw], %[top_left] \n\t" + + "sll %[res0], %[reshw], 16 \n\t" + "sra %[res0], %[res0], 16 \n\t" + "sra %[res1], %[reshw], 16 \n\t" + + "lbux %[res0], %[res0](%[cm]) \n\t" + "lbux %[res1], %[res1](%[cm]) \n\t" + "lbux %[res2], %[res2](%[cm]) \n\t" + "lbux %[res3], %[res3](%[cm]) \n\t" + + "sb %[res0], (%[dst]) \n\t" + "sb %[res1], 1(%[dst]) \n\t" + "sb %[res2], 2(%[dst]) \n\t" + "sb %[res3], 3(%[dst]) \n\t" + + "addu.ph %[reshw], %[abovel_1], %[left0] \n\t" + "subu.ph %[reshw], %[reshw], %[top_left] \n\t" + + "sll %[res2], %[reshw], 16 \n\t" + "sra %[res2], %[res2], 16 \n\t" + "sra %[res3], %[reshw], 16 \n\t" + + "addu.ph %[reshw], %[abover_1], %[left0] \n\t" + "subu.ph %[reshw], %[reshw], %[top_left] \n\t" + + "sll %[res0], %[reshw], 16 \n\t" + "sra %[res0], %[res0], 16 \n\t" + "sra %[res1], %[reshw], 16 \n\t" + + "lbux %[res0], %[res0](%[cm]) \n\t" + "lbux %[res1], %[res1](%[cm]) \n\t" + "lbux %[res2], %[res2](%[cm]) \n\t" + "lbux %[res3], %[res3](%[cm]) \n\t" + + "sb %[res0], 4(%[dst]) \n\t" + "sb %[res1], 5(%[dst]) \n\t" + "sb %[res2], 6(%[dst]) \n\t" + "sb %[res3], 7(%[dst]) \n\t" + + : [abovel] "=&r"(abovel), [abover] "=&r"(abover), + [abovel_1] "=&r"(abovel_1), [abover_1] "=&r"(abover_1), + [left0] "=&r"(left0), [res2] "=&r"(res2), [res3] "=&r"(res3), + [res0] "=&r"(res0), [res1] "=&r"(res1), [reshw] "=&r"(reshw), + [top_left] "=&r"(top_left) + : [above] "r"(above), [left] "r"(left), [dst] "r"(dst), + [stride] "r"(stride), [cm] "r"(cm)); +} +#endif // #if HAVE_DSPR2 diff --git a/vpx_dsp/mips/intrapred_msa.c b/vpx_dsp/mips/intrapred_msa.c new file mode 100644 index 0000000..b5ee943 --- /dev/null +++ b/vpx_dsp/mips/intrapred_msa.c @@ -0,0 +1,738 @@ +/* + * Copyright (c) 2015 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "./vpx_dsp_rtcd.h" +#include "vpx_dsp/mips/macros_msa.h" + +#define IPRED_SUBS_UH2_UH(in0, in1, out0, out1) \ + { \ + out0 = __msa_subs_u_h(out0, in0); \ + out1 = __msa_subs_u_h(out1, in1); \ + } + +static void intra_predict_vert_4x4_msa(const uint8_t *src, uint8_t *dst, + int32_t dst_stride) { + uint32_t src_data; + + src_data = LW(src); + + SW4(src_data, src_data, src_data, src_data, dst, dst_stride); +} + +static void intra_predict_vert_8x8_msa(const uint8_t *src, uint8_t *dst, + int32_t dst_stride) { + uint32_t row; + uint32_t src_data1, src_data2; + + src_data1 = LW(src); + src_data2 = LW(src + 4); + + for (row = 8; row--;) { + SW(src_data1, dst); + SW(src_data2, (dst + 4)); + dst += dst_stride; + } +} + +static void intra_predict_vert_16x16_msa(const uint8_t *src, uint8_t *dst, + int32_t dst_stride) { + uint32_t row; + v16u8 src0; + + src0 = LD_UB(src); + + for (row = 16; row--;) { + ST_UB(src0, dst); + dst += dst_stride; + } +} + +static void intra_predict_vert_32x32_msa(const uint8_t *src, uint8_t *dst, + int32_t dst_stride) { + uint32_t row; + v16u8 src1, src2; + + src1 = LD_UB(src); + src2 = LD_UB(src + 16); + + for (row = 32; row--;) { + ST_UB2(src1, src2, dst, 16); + dst += dst_stride; + } +} + +static void intra_predict_horiz_4x4_msa(const uint8_t *src, uint8_t *dst, + int32_t dst_stride) { + uint32_t out0, out1, out2, out3; + + out0 = src[0] * 0x01010101; + out1 = src[1] * 0x01010101; + out2 = src[2] * 0x01010101; + out3 = src[3] * 0x01010101; + + SW4(out0, out1, out2, out3, dst, dst_stride); +} + +static void intra_predict_horiz_8x8_msa(const uint8_t *src, uint8_t *dst, + int32_t dst_stride) { + uint64_t out0, out1, out2, out3, out4, out5, out6, out7; + + out0 = src[0] * 0x0101010101010101ull; + out1 = src[1] * 0x0101010101010101ull; + out2 = src[2] * 0x0101010101010101ull; + out3 = src[3] * 0x0101010101010101ull; + out4 = src[4] * 0x0101010101010101ull; + out5 = src[5] * 0x0101010101010101ull; + out6 = src[6] * 0x0101010101010101ull; + out7 = src[7] * 0x0101010101010101ull; + + SD4(out0, out1, out2, out3, dst, dst_stride); + dst += (4 * dst_stride); + SD4(out4, out5, out6, out7, dst, dst_stride); +} + +static void intra_predict_horiz_16x16_msa(const uint8_t *src, uint8_t *dst, + int32_t dst_stride) { + uint32_t row; + uint8_t inp0, inp1, inp2, inp3; + v16u8 src0, src1, src2, src3; + + for (row = 4; row--;) { + inp0 = src[0]; + inp1 = src[1]; + inp2 = src[2]; + inp3 = src[3]; + src += 4; + + src0 = (v16u8)__msa_fill_b(inp0); + src1 = (v16u8)__msa_fill_b(inp1); + src2 = (v16u8)__msa_fill_b(inp2); + src3 = (v16u8)__msa_fill_b(inp3); + + ST_UB4(src0, src1, src2, src3, dst, dst_stride); + dst += (4 * dst_stride); + } +} + +static void intra_predict_horiz_32x32_msa(const uint8_t *src, uint8_t *dst, + int32_t dst_stride) { + uint32_t row; + uint8_t inp0, inp1, inp2, inp3; + v16u8 src0, src1, src2, src3; + + for (row = 8; row--;) { + inp0 = src[0]; + inp1 = src[1]; + inp2 = src[2]; + inp3 = src[3]; + src += 4; + + src0 = (v16u8)__msa_fill_b(inp0); + src1 = (v16u8)__msa_fill_b(inp1); + src2 = (v16u8)__msa_fill_b(inp2); + src3 = (v16u8)__msa_fill_b(inp3); + + ST_UB2(src0, src0, dst, 16); + dst += dst_stride; + ST_UB2(src1, src1, dst, 16); + dst += dst_stride; + ST_UB2(src2, src2, dst, 16); + dst += dst_stride; + ST_UB2(src3, src3, dst, 16); + dst += dst_stride; + } +} + +static void intra_predict_dc_4x4_msa(const uint8_t *src_top, + const uint8_t *src_left, uint8_t *dst, + int32_t dst_stride) { + uint32_t val0, val1; + v16i8 store, src = { 0 }; + v8u16 sum_h; + v4u32 sum_w; + v2u64 sum_d; + + val0 = LW(src_top); + val1 = LW(src_left); + INSERT_W2_SB(val0, val1, src); + sum_h = __msa_hadd_u_h((v16u8)src, (v16u8)src); + sum_w = __msa_hadd_u_w(sum_h, sum_h); + sum_d = __msa_hadd_u_d(sum_w, sum_w); + sum_w = (v4u32)__msa_srari_w((v4i32)sum_d, 3); + store = __msa_splati_b((v16i8)sum_w, 0); + val0 = __msa_copy_u_w((v4i32)store, 0); + + SW4(val0, val0, val0, val0, dst, dst_stride); +} + +static void intra_predict_dc_tl_4x4_msa(const uint8_t *src, uint8_t *dst, + int32_t dst_stride) { + uint32_t val0; + v16i8 store, data = { 0 }; + v8u16 sum_h; + v4u32 sum_w; + + val0 = LW(src); + data = (v16i8)__msa_insert_w((v4i32)data, 0, val0); + sum_h = __msa_hadd_u_h((v16u8)data, (v16u8)data); + sum_w = __msa_hadd_u_w(sum_h, sum_h); + sum_w = (v4u32)__msa_srari_w((v4i32)sum_w, 2); + store = __msa_splati_b((v16i8)sum_w, 0); + val0 = __msa_copy_u_w((v4i32)store, 0); + + SW4(val0, val0, val0, val0, dst, dst_stride); +} + +static void intra_predict_128dc_4x4_msa(uint8_t *dst, int32_t dst_stride) { + uint32_t out; + const v16i8 store = __msa_ldi_b(128); + + out = __msa_copy_u_w((v4i32)store, 0); + + SW4(out, out, out, out, dst, dst_stride); +} + +static void intra_predict_dc_8x8_msa(const uint8_t *src_top, + const uint8_t *src_left, uint8_t *dst, + int32_t dst_stride) { + uint64_t val0, val1; + v16i8 store; + v16u8 src = { 0 }; + v8u16 sum_h; + v4u32 sum_w; + v2u64 sum_d; + + val0 = LD(src_top); + val1 = LD(src_left); + INSERT_D2_UB(val0, val1, src); + sum_h = __msa_hadd_u_h(src, src); + sum_w = __msa_hadd_u_w(sum_h, sum_h); + sum_d = __msa_hadd_u_d(sum_w, sum_w); + sum_w = (v4u32)__msa_pckev_w((v4i32)sum_d, (v4i32)sum_d); + sum_d = __msa_hadd_u_d(sum_w, sum_w); + sum_w = (v4u32)__msa_srari_w((v4i32)sum_d, 4); + store = __msa_splati_b((v16i8)sum_w, 0); + val0 = __msa_copy_u_d((v2i64)store, 0); + + SD4(val0, val0, val0, val0, dst, dst_stride); + dst += (4 * dst_stride); + SD4(val0, val0, val0, val0, dst, dst_stride); +} + +static void intra_predict_dc_tl_8x8_msa(const uint8_t *src, uint8_t *dst, + int32_t dst_stride) { + uint64_t val0; + v16i8 store; + v16u8 data = { 0 }; + v8u16 sum_h; + v4u32 sum_w; + v2u64 sum_d; + + val0 = LD(src); + data = (v16u8)__msa_insert_d((v2i64)data, 0, val0); + sum_h = __msa_hadd_u_h(data, data); + sum_w = __msa_hadd_u_w(sum_h, sum_h); + sum_d = __msa_hadd_u_d(sum_w, sum_w); + sum_w = (v4u32)__msa_srari_w((v4i32)sum_d, 3); + store = __msa_splati_b((v16i8)sum_w, 0); + val0 = __msa_copy_u_d((v2i64)store, 0); + + SD4(val0, val0, val0, val0, dst, dst_stride); + dst += (4 * dst_stride); + SD4(val0, val0, val0, val0, dst, dst_stride); +} + +static void intra_predict_128dc_8x8_msa(uint8_t *dst, int32_t dst_stride) { + uint64_t out; + const v16i8 store = __msa_ldi_b(128); + + out = __msa_copy_u_d((v2i64)store, 0); + + SD4(out, out, out, out, dst, dst_stride); + dst += (4 * dst_stride); + SD4(out, out, out, out, dst, dst_stride); +} + +static void intra_predict_dc_16x16_msa(const uint8_t *src_top, + const uint8_t *src_left, uint8_t *dst, + int32_t dst_stride) { + v16u8 top, left, out; + v8u16 sum_h, sum_top, sum_left; + v4u32 sum_w; + v2u64 sum_d; + + top = LD_UB(src_top); + left = LD_UB(src_left); + HADD_UB2_UH(top, left, sum_top, sum_left); + sum_h = sum_top + sum_left; + sum_w = __msa_hadd_u_w(sum_h, sum_h); + sum_d = __msa_hadd_u_d(sum_w, sum_w); + sum_w = (v4u32)__msa_pckev_w((v4i32)sum_d, (v4i32)sum_d); + sum_d = __msa_hadd_u_d(sum_w, sum_w); + sum_w = (v4u32)__msa_srari_w((v4i32)sum_d, 5); + out = (v16u8)__msa_splati_b((v16i8)sum_w, 0); + + ST_UB8(out, out, out, out, out, out, out, out, dst, dst_stride); + dst += (8 * dst_stride); + ST_UB8(out, out, out, out, out, out, out, out, dst, dst_stride); +} + +static void intra_predict_dc_tl_16x16_msa(const uint8_t *src, uint8_t *dst, + int32_t dst_stride) { + v16u8 data, out; + v8u16 sum_h; + v4u32 sum_w; + v2u64 sum_d; + + data = LD_UB(src); + sum_h = __msa_hadd_u_h(data, data); + sum_w = __msa_hadd_u_w(sum_h, sum_h); + sum_d = __msa_hadd_u_d(sum_w, sum_w); + sum_w = (v4u32)__msa_pckev_w((v4i32)sum_d, (v4i32)sum_d); + sum_d = __msa_hadd_u_d(sum_w, sum_w); + sum_w = (v4u32)__msa_srari_w((v4i32)sum_d, 4); + out = (v16u8)__msa_splati_b((v16i8)sum_w, 0); + + ST_UB8(out, out, out, out, out, out, out, out, dst, dst_stride); + dst += (8 * dst_stride); + ST_UB8(out, out, out, out, out, out, out, out, dst, dst_stride); +} + +static void intra_predict_128dc_16x16_msa(uint8_t *dst, int32_t dst_stride) { + const v16u8 out = (v16u8)__msa_ldi_b(128); + + ST_UB8(out, out, out, out, out, out, out, out, dst, dst_stride); + dst += (8 * dst_stride); + ST_UB8(out, out, out, out, out, out, out, out, dst, dst_stride); +} + +static void intra_predict_dc_32x32_msa(const uint8_t *src_top, + const uint8_t *src_left, uint8_t *dst, + int32_t dst_stride) { + uint32_t row; + v16u8 top0, top1, left0, left1, out; + v8u16 sum_h, sum_top0, sum_top1, sum_left0, sum_left1; + v4u32 sum_w; + v2u64 sum_d; + + LD_UB2(src_top, 16, top0, top1); + LD_UB2(src_left, 16, left0, left1); + HADD_UB2_UH(top0, top1, sum_top0, sum_top1); + HADD_UB2_UH(left0, left1, sum_left0, sum_left1); + sum_h = sum_top0 + sum_top1; + sum_h += sum_left0 + sum_left1; + sum_w = __msa_hadd_u_w(sum_h, sum_h); + sum_d = __msa_hadd_u_d(sum_w, sum_w); + sum_w = (v4u32)__msa_pckev_w((v4i32)sum_d, (v4i32)sum_d); + sum_d = __msa_hadd_u_d(sum_w, sum_w); + sum_w = (v4u32)__msa_srari_w((v4i32)sum_d, 6); + out = (v16u8)__msa_splati_b((v16i8)sum_w, 0); + + for (row = 16; row--;) { + ST_UB2(out, out, dst, 16); + dst += dst_stride; + ST_UB2(out, out, dst, 16); + dst += dst_stride; + } +} + +static void intra_predict_dc_tl_32x32_msa(const uint8_t *src, uint8_t *dst, + int32_t dst_stride) { + uint32_t row; + v16u8 data0, data1, out; + v8u16 sum_h, sum_data0, sum_data1; + v4u32 sum_w; + v2u64 sum_d; + + LD_UB2(src, 16, data0, data1); + HADD_UB2_UH(data0, data1, sum_data0, sum_data1); + sum_h = sum_data0 + sum_data1; + sum_w = __msa_hadd_u_w(sum_h, sum_h); + sum_d = __msa_hadd_u_d(sum_w, sum_w); + sum_w = (v4u32)__msa_pckev_w((v4i32)sum_d, (v4i32)sum_d); + sum_d = __msa_hadd_u_d(sum_w, sum_w); + sum_w = (v4u32)__msa_srari_w((v4i32)sum_d, 5); + out = (v16u8)__msa_splati_b((v16i8)sum_w, 0); + + for (row = 16; row--;) { + ST_UB2(out, out, dst, 16); + dst += dst_stride; + ST_UB2(out, out, dst, 16); + dst += dst_stride; + } +} + +static void intra_predict_128dc_32x32_msa(uint8_t *dst, int32_t dst_stride) { + uint32_t row; + const v16u8 out = (v16u8)__msa_ldi_b(128); + + for (row = 16; row--;) { + ST_UB2(out, out, dst, 16); + dst += dst_stride; + ST_UB2(out, out, dst, 16); + dst += dst_stride; + } +} + +static void intra_predict_tm_4x4_msa(const uint8_t *src_top_ptr, + const uint8_t *src_left, uint8_t *dst, + int32_t dst_stride) { + uint32_t val; + uint8_t top_left = src_top_ptr[-1]; + v16i8 src_left0, src_left1, src_left2, src_left3, tmp0, tmp1, src_top = { 0 }; + v16u8 src0, src1, src2, src3; + v8u16 src_top_left, vec0, vec1, vec2, vec3; + + src_top_left = (v8u16)__msa_fill_h(top_left); + val = LW(src_top_ptr); + src_top = (v16i8)__msa_insert_w((v4i32)src_top, 0, val); + + src_left0 = __msa_fill_b(src_left[0]); + src_left1 = __msa_fill_b(src_left[1]); + src_left2 = __msa_fill_b(src_left[2]); + src_left3 = __msa_fill_b(src_left[3]); + + ILVR_B4_UB(src_left0, src_top, src_left1, src_top, src_left2, src_top, + src_left3, src_top, src0, src1, src2, src3); + HADD_UB4_UH(src0, src1, src2, src3, vec0, vec1, vec2, vec3); + IPRED_SUBS_UH2_UH(src_top_left, src_top_left, vec0, vec1); + IPRED_SUBS_UH2_UH(src_top_left, src_top_left, vec2, vec3); + SAT_UH4_UH(vec0, vec1, vec2, vec3, 7); + PCKEV_B2_SB(vec1, vec0, vec3, vec2, tmp0, tmp1); + ST4x4_UB(tmp0, tmp1, 0, 2, 0, 2, dst, dst_stride); +} + +static void intra_predict_tm_8x8_msa(const uint8_t *src_top_ptr, + const uint8_t *src_left, uint8_t *dst, + int32_t dst_stride) { + uint64_t val; + uint8_t top_left = src_top_ptr[-1]; + uint32_t loop_cnt; + v16i8 src_left0, src_left1, src_left2, src_left3, tmp0, tmp1, src_top = { 0 }; + v8u16 src_top_left, vec0, vec1, vec2, vec3; + v16u8 src0, src1, src2, src3; + + val = LD(src_top_ptr); + src_top = (v16i8)__msa_insert_d((v2i64)src_top, 0, val); + src_top_left = (v8u16)__msa_fill_h(top_left); + + for (loop_cnt = 2; loop_cnt--;) { + src_left0 = __msa_fill_b(src_left[0]); + src_left1 = __msa_fill_b(src_left[1]); + src_left2 = __msa_fill_b(src_left[2]); + src_left3 = __msa_fill_b(src_left[3]); + src_left += 4; + + ILVR_B4_UB(src_left0, src_top, src_left1, src_top, src_left2, src_top, + src_left3, src_top, src0, src1, src2, src3); + HADD_UB4_UH(src0, src1, src2, src3, vec0, vec1, vec2, vec3); + IPRED_SUBS_UH2_UH(src_top_left, src_top_left, vec0, vec1); + IPRED_SUBS_UH2_UH(src_top_left, src_top_left, vec2, vec3); + SAT_UH4_UH(vec0, vec1, vec2, vec3, 7); + PCKEV_B2_SB(vec1, vec0, vec3, vec2, tmp0, tmp1); + ST8x4_UB(tmp0, tmp1, dst, dst_stride); + dst += (4 * dst_stride); + } +} + +static void intra_predict_tm_16x16_msa(const uint8_t *src_top_ptr, + const uint8_t *src_left, uint8_t *dst, + int32_t dst_stride) { + uint8_t top_left = src_top_ptr[-1]; + uint32_t loop_cnt; + v16i8 src_top, src_left0, src_left1, src_left2, src_left3; + v8u16 src_top_left, res_r, res_l; + + src_top = LD_SB(src_top_ptr); + src_top_left = (v8u16)__msa_fill_h(top_left); + + for (loop_cnt = 4; loop_cnt--;) { + src_left0 = __msa_fill_b(src_left[0]); + src_left1 = __msa_fill_b(src_left[1]); + src_left2 = __msa_fill_b(src_left[2]); + src_left3 = __msa_fill_b(src_left[3]); + src_left += 4; + + ILVRL_B2_UH(src_left0, src_top, res_r, res_l); + HADD_UB2_UH(res_r, res_l, res_r, res_l); + IPRED_SUBS_UH2_UH(src_top_left, src_top_left, res_r, res_l); + + SAT_UH2_UH(res_r, res_l, 7); + PCKEV_ST_SB(res_r, res_l, dst); + dst += dst_stride; + + ILVRL_B2_UH(src_left1, src_top, res_r, res_l); + HADD_UB2_UH(res_r, res_l, res_r, res_l); + IPRED_SUBS_UH2_UH(src_top_left, src_top_left, res_r, res_l); + SAT_UH2_UH(res_r, res_l, 7); + PCKEV_ST_SB(res_r, res_l, dst); + dst += dst_stride; + + ILVRL_B2_UH(src_left2, src_top, res_r, res_l); + HADD_UB2_UH(res_r, res_l, res_r, res_l); + IPRED_SUBS_UH2_UH(src_top_left, src_top_left, res_r, res_l); + SAT_UH2_UH(res_r, res_l, 7); + PCKEV_ST_SB(res_r, res_l, dst); + dst += dst_stride; + + ILVRL_B2_UH(src_left3, src_top, res_r, res_l); + HADD_UB2_UH(res_r, res_l, res_r, res_l); + IPRED_SUBS_UH2_UH(src_top_left, src_top_left, res_r, res_l); + SAT_UH2_UH(res_r, res_l, 7); + PCKEV_ST_SB(res_r, res_l, dst); + dst += dst_stride; + } +} + +static void intra_predict_tm_32x32_msa(const uint8_t *src_top, + const uint8_t *src_left, uint8_t *dst, + int32_t dst_stride) { + uint8_t top_left = src_top[-1]; + uint32_t loop_cnt; + v16i8 src_top0, src_top1, src_left0, src_left1, src_left2, src_left3; + v8u16 src_top_left, res_r0, res_r1, res_l0, res_l1; + + LD_SB2(src_top, 16, src_top0, src_top1); + src_top_left = (v8u16)__msa_fill_h(top_left); + + for (loop_cnt = 8; loop_cnt--;) { + src_left0 = __msa_fill_b(src_left[0]); + src_left1 = __msa_fill_b(src_left[1]); + src_left2 = __msa_fill_b(src_left[2]); + src_left3 = __msa_fill_b(src_left[3]); + src_left += 4; + + ILVR_B2_UH(src_left0, src_top0, src_left0, src_top1, res_r0, res_r1); + ILVL_B2_UH(src_left0, src_top0, src_left0, src_top1, res_l0, res_l1); + HADD_UB4_UH(res_r0, res_l0, res_r1, res_l1, res_r0, res_l0, res_r1, res_l1); + IPRED_SUBS_UH2_UH(src_top_left, src_top_left, res_r0, res_l0); + IPRED_SUBS_UH2_UH(src_top_left, src_top_left, res_r1, res_l1); + SAT_UH4_UH(res_r0, res_l0, res_r1, res_l1, 7); + PCKEV_ST_SB(res_r0, res_l0, dst); + PCKEV_ST_SB(res_r1, res_l1, dst + 16); + dst += dst_stride; + + ILVR_B2_UH(src_left1, src_top0, src_left1, src_top1, res_r0, res_r1); + ILVL_B2_UH(src_left1, src_top0, src_left1, src_top1, res_l0, res_l1); + HADD_UB4_UH(res_r0, res_l0, res_r1, res_l1, res_r0, res_l0, res_r1, res_l1); + IPRED_SUBS_UH2_UH(src_top_left, src_top_left, res_r0, res_l0); + IPRED_SUBS_UH2_UH(src_top_left, src_top_left, res_r1, res_l1); + SAT_UH4_UH(res_r0, res_l0, res_r1, res_l1, 7); + PCKEV_ST_SB(res_r0, res_l0, dst); + PCKEV_ST_SB(res_r1, res_l1, dst + 16); + dst += dst_stride; + + ILVR_B2_UH(src_left2, src_top0, src_left2, src_top1, res_r0, res_r1); + ILVL_B2_UH(src_left2, src_top0, src_left2, src_top1, res_l0, res_l1); + HADD_UB4_UH(res_r0, res_l0, res_r1, res_l1, res_r0, res_l0, res_r1, res_l1); + IPRED_SUBS_UH2_UH(src_top_left, src_top_left, res_r0, res_l0); + IPRED_SUBS_UH2_UH(src_top_left, src_top_left, res_r1, res_l1); + SAT_UH4_UH(res_r0, res_l0, res_r1, res_l1, 7); + PCKEV_ST_SB(res_r0, res_l0, dst); + PCKEV_ST_SB(res_r1, res_l1, dst + 16); + dst += dst_stride; + + ILVR_B2_UH(src_left3, src_top0, src_left3, src_top1, res_r0, res_r1); + ILVL_B2_UH(src_left3, src_top0, src_left3, src_top1, res_l0, res_l1); + HADD_UB4_UH(res_r0, res_l0, res_r1, res_l1, res_r0, res_l0, res_r1, res_l1); + IPRED_SUBS_UH2_UH(src_top_left, src_top_left, res_r0, res_l0); + IPRED_SUBS_UH2_UH(src_top_left, src_top_left, res_r1, res_l1); + SAT_UH4_UH(res_r0, res_l0, res_r1, res_l1, 7); + PCKEV_ST_SB(res_r0, res_l0, dst); + PCKEV_ST_SB(res_r1, res_l1, dst + 16); + dst += dst_stride; + } +} + +void vpx_v_predictor_4x4_msa(uint8_t *dst, ptrdiff_t y_stride, + const uint8_t *above, const uint8_t *left) { + (void)left; + + intra_predict_vert_4x4_msa(above, dst, y_stride); +} + +void vpx_v_predictor_8x8_msa(uint8_t *dst, ptrdiff_t y_stride, + const uint8_t *above, const uint8_t *left) { + (void)left; + + intra_predict_vert_8x8_msa(above, dst, y_stride); +} + +void vpx_v_predictor_16x16_msa(uint8_t *dst, ptrdiff_t y_stride, + const uint8_t *above, const uint8_t *left) { + (void)left; + + intra_predict_vert_16x16_msa(above, dst, y_stride); +} + +void vpx_v_predictor_32x32_msa(uint8_t *dst, ptrdiff_t y_stride, + const uint8_t *above, const uint8_t *left) { + (void)left; + + intra_predict_vert_32x32_msa(above, dst, y_stride); +} + +void vpx_h_predictor_4x4_msa(uint8_t *dst, ptrdiff_t y_stride, + const uint8_t *above, const uint8_t *left) { + (void)above; + + intra_predict_horiz_4x4_msa(left, dst, y_stride); +} + +void vpx_h_predictor_8x8_msa(uint8_t *dst, ptrdiff_t y_stride, + const uint8_t *above, const uint8_t *left) { + (void)above; + + intra_predict_horiz_8x8_msa(left, dst, y_stride); +} + +void vpx_h_predictor_16x16_msa(uint8_t *dst, ptrdiff_t y_stride, + const uint8_t *above, const uint8_t *left) { + (void)above; + + intra_predict_horiz_16x16_msa(left, dst, y_stride); +} + +void vpx_h_predictor_32x32_msa(uint8_t *dst, ptrdiff_t y_stride, + const uint8_t *above, const uint8_t *left) { + (void)above; + + intra_predict_horiz_32x32_msa(left, dst, y_stride); +} + +void vpx_dc_predictor_4x4_msa(uint8_t *dst, ptrdiff_t y_stride, + const uint8_t *above, const uint8_t *left) { + intra_predict_dc_4x4_msa(above, left, dst, y_stride); +} + +void vpx_dc_predictor_8x8_msa(uint8_t *dst, ptrdiff_t y_stride, + const uint8_t *above, const uint8_t *left) { + intra_predict_dc_8x8_msa(above, left, dst, y_stride); +} + +void vpx_dc_predictor_16x16_msa(uint8_t *dst, ptrdiff_t y_stride, + const uint8_t *above, const uint8_t *left) { + intra_predict_dc_16x16_msa(above, left, dst, y_stride); +} + +void vpx_dc_predictor_32x32_msa(uint8_t *dst, ptrdiff_t y_stride, + const uint8_t *above, const uint8_t *left) { + intra_predict_dc_32x32_msa(above, left, dst, y_stride); +} + +void vpx_dc_top_predictor_4x4_msa(uint8_t *dst, ptrdiff_t y_stride, + const uint8_t *above, const uint8_t *left) { + (void)left; + + intra_predict_dc_tl_4x4_msa(above, dst, y_stride); +} + +void vpx_dc_top_predictor_8x8_msa(uint8_t *dst, ptrdiff_t y_stride, + const uint8_t *above, const uint8_t *left) { + (void)left; + + intra_predict_dc_tl_8x8_msa(above, dst, y_stride); +} + +void vpx_dc_top_predictor_16x16_msa(uint8_t *dst, ptrdiff_t y_stride, + const uint8_t *above, const uint8_t *left) { + (void)left; + + intra_predict_dc_tl_16x16_msa(above, dst, y_stride); +} + +void vpx_dc_top_predictor_32x32_msa(uint8_t *dst, ptrdiff_t y_stride, + const uint8_t *above, const uint8_t *left) { + (void)left; + + intra_predict_dc_tl_32x32_msa(above, dst, y_stride); +} + +void vpx_dc_left_predictor_4x4_msa(uint8_t *dst, ptrdiff_t y_stride, + const uint8_t *above, const uint8_t *left) { + (void)above; + + intra_predict_dc_tl_4x4_msa(left, dst, y_stride); +} + +void vpx_dc_left_predictor_8x8_msa(uint8_t *dst, ptrdiff_t y_stride, + const uint8_t *above, const uint8_t *left) { + (void)above; + + intra_predict_dc_tl_8x8_msa(left, dst, y_stride); +} + +void vpx_dc_left_predictor_16x16_msa(uint8_t *dst, ptrdiff_t y_stride, + const uint8_t *above, + const uint8_t *left) { + (void)above; + + intra_predict_dc_tl_16x16_msa(left, dst, y_stride); +} + +void vpx_dc_left_predictor_32x32_msa(uint8_t *dst, ptrdiff_t y_stride, + const uint8_t *above, + const uint8_t *left) { + (void)above; + + intra_predict_dc_tl_32x32_msa(left, dst, y_stride); +} + +void vpx_dc_128_predictor_4x4_msa(uint8_t *dst, ptrdiff_t y_stride, + const uint8_t *above, const uint8_t *left) { + (void)above; + (void)left; + + intra_predict_128dc_4x4_msa(dst, y_stride); +} + +void vpx_dc_128_predictor_8x8_msa(uint8_t *dst, ptrdiff_t y_stride, + const uint8_t *above, const uint8_t *left) { + (void)above; + (void)left; + + intra_predict_128dc_8x8_msa(dst, y_stride); +} + +void vpx_dc_128_predictor_16x16_msa(uint8_t *dst, ptrdiff_t y_stride, + const uint8_t *above, const uint8_t *left) { + (void)above; + (void)left; + + intra_predict_128dc_16x16_msa(dst, y_stride); +} + +void vpx_dc_128_predictor_32x32_msa(uint8_t *dst, ptrdiff_t y_stride, + const uint8_t *above, const uint8_t *left) { + (void)above; + (void)left; + + intra_predict_128dc_32x32_msa(dst, y_stride); +} + +void vpx_tm_predictor_4x4_msa(uint8_t *dst, ptrdiff_t y_stride, + const uint8_t *above, const uint8_t *left) { + intra_predict_tm_4x4_msa(above, left, dst, y_stride); +} + +void vpx_tm_predictor_8x8_msa(uint8_t *dst, ptrdiff_t y_stride, + const uint8_t *above, const uint8_t *left) { + intra_predict_tm_8x8_msa(above, left, dst, y_stride); +} + +void vpx_tm_predictor_16x16_msa(uint8_t *dst, ptrdiff_t y_stride, + const uint8_t *above, const uint8_t *left) { + intra_predict_tm_16x16_msa(above, left, dst, y_stride); +} + +void vpx_tm_predictor_32x32_msa(uint8_t *dst, ptrdiff_t y_stride, + const uint8_t *above, const uint8_t *left) { + intra_predict_tm_32x32_msa(above, left, dst, y_stride); +} diff --git a/vpx_dsp/mips/inv_txfm_dspr2.h b/vpx_dsp/mips/inv_txfm_dspr2.h new file mode 100644 index 0000000..27881f0 --- /dev/null +++ b/vpx_dsp/mips/inv_txfm_dspr2.h @@ -0,0 +1,76 @@ +/* + * Copyright (c) 2013 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VPX_DSP_MIPS_INV_TXFM_DSPR2_H_ +#define VPX_DSP_MIPS_INV_TXFM_DSPR2_H_ + +#include + +#include "./vpx_config.h" +#include "vpx/vpx_integer.h" +#include "vpx_dsp/inv_txfm.h" +#include "vpx_dsp/mips/common_dspr2.h" + +#ifdef __cplusplus +extern "C" { +#endif + +#if HAVE_DSPR2 +#define DCT_CONST_ROUND_SHIFT_TWICE_COSPI_16_64(input) \ + ({ \ + \ + int32_t tmp, out; \ + int dct_cost_rounding = DCT_CONST_ROUNDING; \ + int in = input; \ + \ + __asm__ __volatile__(/* out = dct_const_round_shift(dc * cospi_16_64); */ \ + "mtlo %[dct_cost_rounding], $ac1 " \ + " \n\t" \ + "mthi $zero, $ac1 " \ + " \n\t" \ + "madd $ac1, %[in], " \ + "%[cospi_16_64] \n\t" \ + "extp %[tmp], $ac1, " \ + "31 \n\t" \ + \ + /* out = dct_const_round_shift(out * cospi_16_64); */ \ + "mtlo %[dct_cost_rounding], $ac2 " \ + " \n\t" \ + "mthi $zero, $ac2 " \ + " \n\t" \ + "madd $ac2, %[tmp], " \ + "%[cospi_16_64] \n\t" \ + "extp %[out], $ac2, " \ + "31 \n\t" \ + \ + : [tmp] "=&r"(tmp), [out] "=r"(out) \ + : [in] "r"(in), \ + [dct_cost_rounding] "r"(dct_cost_rounding), \ + [cospi_16_64] "r"(cospi_16_64)); \ + out; \ + }) + +void vpx_idct32_cols_add_blk_dspr2(int16_t *input, uint8_t *dest, int stride); +void vpx_idct4_rows_dspr2(const int16_t *input, int16_t *output); +void vpx_idct4_columns_add_blk_dspr2(int16_t *input, uint8_t *dest, int stride); +void iadst4_dspr2(const int16_t *input, int16_t *output); +void idct8_rows_dspr2(const int16_t *input, int16_t *output, uint32_t no_rows); +void idct8_columns_add_blk_dspr2(int16_t *input, uint8_t *dest, int stride); +void iadst8_dspr2(const int16_t *input, int16_t *output); +void idct16_rows_dspr2(const int16_t *input, int16_t *output, uint32_t no_rows); +void idct16_cols_add_blk_dspr2(int16_t *input, uint8_t *dest, int stride); +void iadst16_dspr2(const int16_t *input, int16_t *output); + +#endif // #if HAVE_DSPR2 +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VPX_DSP_MIPS_INV_TXFM_DSPR2_H_ diff --git a/vpx_dsp/mips/inv_txfm_msa.h b/vpx_dsp/mips/inv_txfm_msa.h new file mode 100644 index 0000000..1fe9b28 --- /dev/null +++ b/vpx_dsp/mips/inv_txfm_msa.h @@ -0,0 +1,411 @@ +/* + * Copyright (c) 2015 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VPX_DSP_MIPS_INV_TXFM_MSA_H_ +#define VPX_DSP_MIPS_INV_TXFM_MSA_H_ + +#include "vpx_dsp/mips/macros_msa.h" +#include "vpx_dsp/mips/txfm_macros_msa.h" +#include "vpx_dsp/txfm_common.h" + +#define VP9_ADST8(in0, in1, in2, in3, in4, in5, in6, in7, out0, out1, out2, \ + out3, out4, out5, out6, out7) \ + { \ + v8i16 cnst0_m, cnst1_m, cnst2_m, cnst3_m, cnst4_m; \ + v8i16 vec0_m, vec1_m, vec2_m, vec3_m, s0_m, s1_m; \ + v8i16 coeff0_m = { cospi_2_64, cospi_6_64, cospi_10_64, cospi_14_64, \ + cospi_18_64, cospi_22_64, cospi_26_64, cospi_30_64 }; \ + v8i16 coeff1_m = { cospi_8_64, -cospi_8_64, cospi_16_64, -cospi_16_64, \ + cospi_24_64, -cospi_24_64, 0, 0 }; \ + \ + SPLATI_H2_SH(coeff0_m, 0, 7, cnst0_m, cnst1_m); \ + cnst2_m = -cnst0_m; \ + ILVEV_H2_SH(cnst0_m, cnst1_m, cnst1_m, cnst2_m, cnst0_m, cnst1_m); \ + SPLATI_H2_SH(coeff0_m, 4, 3, cnst2_m, cnst3_m); \ + cnst4_m = -cnst2_m; \ + ILVEV_H2_SH(cnst2_m, cnst3_m, cnst3_m, cnst4_m, cnst2_m, cnst3_m); \ + \ + ILVRL_H2_SH(in0, in7, vec1_m, vec0_m); \ + ILVRL_H2_SH(in4, in3, vec3_m, vec2_m); \ + DOT_ADD_SUB_SRARI_PCK(vec0_m, vec1_m, vec2_m, vec3_m, cnst0_m, cnst1_m, \ + cnst2_m, cnst3_m, in7, in0, in4, in3); \ + \ + SPLATI_H2_SH(coeff0_m, 2, 5, cnst0_m, cnst1_m); \ + cnst2_m = -cnst0_m; \ + ILVEV_H2_SH(cnst0_m, cnst1_m, cnst1_m, cnst2_m, cnst0_m, cnst1_m); \ + SPLATI_H2_SH(coeff0_m, 6, 1, cnst2_m, cnst3_m); \ + cnst4_m = -cnst2_m; \ + ILVEV_H2_SH(cnst2_m, cnst3_m, cnst3_m, cnst4_m, cnst2_m, cnst3_m); \ + \ + ILVRL_H2_SH(in2, in5, vec1_m, vec0_m); \ + ILVRL_H2_SH(in6, in1, vec3_m, vec2_m); \ + \ + DOT_ADD_SUB_SRARI_PCK(vec0_m, vec1_m, vec2_m, vec3_m, cnst0_m, cnst1_m, \ + cnst2_m, cnst3_m, in5, in2, in6, in1); \ + BUTTERFLY_4(in7, in0, in2, in5, s1_m, s0_m, in2, in5); \ + out7 = -s0_m; \ + out0 = s1_m; \ + \ + SPLATI_H4_SH(coeff1_m, 0, 4, 1, 5, cnst0_m, cnst1_m, cnst2_m, cnst3_m); \ + \ + ILVEV_H2_SH(cnst3_m, cnst0_m, cnst1_m, cnst2_m, cnst3_m, cnst2_m); \ + cnst0_m = __msa_ilvev_h(cnst1_m, cnst0_m); \ + cnst1_m = cnst0_m; \ + \ + ILVRL_H2_SH(in4, in3, vec1_m, vec0_m); \ + ILVRL_H2_SH(in6, in1, vec3_m, vec2_m); \ + DOT_ADD_SUB_SRARI_PCK(vec0_m, vec1_m, vec2_m, vec3_m, cnst0_m, cnst2_m, \ + cnst3_m, cnst1_m, out1, out6, s0_m, s1_m); \ + \ + SPLATI_H2_SH(coeff1_m, 2, 3, cnst0_m, cnst1_m); \ + cnst1_m = __msa_ilvev_h(cnst1_m, cnst0_m); \ + \ + ILVRL_H2_SH(in2, in5, vec1_m, vec0_m); \ + ILVRL_H2_SH(s0_m, s1_m, vec3_m, vec2_m); \ + out3 = DOT_SHIFT_RIGHT_PCK_H(vec0_m, vec1_m, cnst0_m); \ + out4 = DOT_SHIFT_RIGHT_PCK_H(vec0_m, vec1_m, cnst1_m); \ + out2 = DOT_SHIFT_RIGHT_PCK_H(vec2_m, vec3_m, cnst0_m); \ + out5 = DOT_SHIFT_RIGHT_PCK_H(vec2_m, vec3_m, cnst1_m); \ + \ + out1 = -out1; \ + out3 = -out3; \ + out5 = -out5; \ + } + +#define VP9_SET_COSPI_PAIR(c0_h, c1_h) \ + ({ \ + v8i16 out0_m, r0_m, r1_m; \ + \ + r0_m = __msa_fill_h(c0_h); \ + r1_m = __msa_fill_h(c1_h); \ + out0_m = __msa_ilvev_h(r1_m, r0_m); \ + \ + out0_m; \ + }) + +#define VP9_ADDBLK_ST8x4_UB(dst, dst_stride, in0, in1, in2, in3) \ + { \ + uint8_t *dst_m = (uint8_t *)(dst); \ + v16u8 dst0_m, dst1_m, dst2_m, dst3_m; \ + v16i8 tmp0_m, tmp1_m; \ + v16i8 zero_m = { 0 }; \ + v8i16 res0_m, res1_m, res2_m, res3_m; \ + \ + LD_UB4(dst_m, dst_stride, dst0_m, dst1_m, dst2_m, dst3_m); \ + ILVR_B4_SH(zero_m, dst0_m, zero_m, dst1_m, zero_m, dst2_m, zero_m, dst3_m, \ + res0_m, res1_m, res2_m, res3_m); \ + ADD4(res0_m, in0, res1_m, in1, res2_m, in2, res3_m, in3, res0_m, res1_m, \ + res2_m, res3_m); \ + CLIP_SH4_0_255(res0_m, res1_m, res2_m, res3_m); \ + PCKEV_B2_SB(res1_m, res0_m, res3_m, res2_m, tmp0_m, tmp1_m); \ + ST8x4_UB(tmp0_m, tmp1_m, dst_m, dst_stride); \ + } + +#define VP9_IDCT4x4(in0, in1, in2, in3, out0, out1, out2, out3) \ + { \ + v8i16 c0_m, c1_m, c2_m, c3_m; \ + v8i16 step0_m, step1_m; \ + v4i32 tmp0_m, tmp1_m, tmp2_m, tmp3_m; \ + \ + c0_m = VP9_SET_COSPI_PAIR(cospi_16_64, cospi_16_64); \ + c1_m = VP9_SET_COSPI_PAIR(cospi_16_64, -cospi_16_64); \ + step0_m = __msa_ilvr_h(in2, in0); \ + DOTP_SH2_SW(step0_m, step0_m, c0_m, c1_m, tmp0_m, tmp1_m); \ + \ + c2_m = VP9_SET_COSPI_PAIR(cospi_24_64, -cospi_8_64); \ + c3_m = VP9_SET_COSPI_PAIR(cospi_8_64, cospi_24_64); \ + step1_m = __msa_ilvr_h(in3, in1); \ + DOTP_SH2_SW(step1_m, step1_m, c2_m, c3_m, tmp2_m, tmp3_m); \ + SRARI_W4_SW(tmp0_m, tmp1_m, tmp2_m, tmp3_m, DCT_CONST_BITS); \ + \ + PCKEV_H2_SW(tmp1_m, tmp0_m, tmp3_m, tmp2_m, tmp0_m, tmp2_m); \ + SLDI_B2_0_SW(tmp0_m, tmp2_m, tmp1_m, tmp3_m, 8); \ + BUTTERFLY_4((v8i16)tmp0_m, (v8i16)tmp1_m, (v8i16)tmp2_m, (v8i16)tmp3_m, \ + out0, out1, out2, out3); \ + } + +#define VP9_IADST4x4(in0, in1, in2, in3, out0, out1, out2, out3) \ + { \ + v8i16 res0_m, res1_m, c0_m, c1_m; \ + v8i16 k1_m, k2_m, k3_m, k4_m; \ + v8i16 zero_m = { 0 }; \ + v4i32 tmp0_m, tmp1_m, tmp2_m, tmp3_m; \ + v4i32 int0_m, int1_m, int2_m, int3_m; \ + v8i16 mask_m = { sinpi_1_9, sinpi_2_9, sinpi_3_9, sinpi_4_9, \ + -sinpi_1_9, -sinpi_2_9, -sinpi_3_9, -sinpi_4_9 }; \ + \ + SPLATI_H4_SH(mask_m, 3, 0, 1, 2, c0_m, c1_m, k1_m, k2_m); \ + ILVEV_H2_SH(c0_m, c1_m, k1_m, k2_m, c0_m, c1_m); \ + ILVR_H2_SH(in0, in2, in1, in3, res0_m, res1_m); \ + DOTP_SH2_SW(res0_m, res1_m, c0_m, c1_m, tmp2_m, tmp1_m); \ + int0_m = tmp2_m + tmp1_m; \ + \ + SPLATI_H2_SH(mask_m, 4, 7, k4_m, k3_m); \ + ILVEV_H2_SH(k4_m, k1_m, k3_m, k2_m, c0_m, c1_m); \ + DOTP_SH2_SW(res0_m, res1_m, c0_m, c1_m, tmp0_m, tmp1_m); \ + int1_m = tmp0_m + tmp1_m; \ + \ + c0_m = __msa_splati_h(mask_m, 6); \ + ILVL_H2_SH(k2_m, c0_m, zero_m, k2_m, c0_m, c1_m); \ + ILVR_H2_SH(in0, in2, in1, in3, res0_m, res1_m); \ + DOTP_SH2_SW(res0_m, res1_m, c0_m, c1_m, tmp0_m, tmp1_m); \ + int2_m = tmp0_m + tmp1_m; \ + \ + c0_m = __msa_splati_h(mask_m, 6); \ + c0_m = __msa_ilvev_h(c0_m, k1_m); \ + \ + res0_m = __msa_ilvr_h((in1), (in3)); \ + tmp0_m = __msa_dotp_s_w(res0_m, c0_m); \ + int3_m = tmp2_m + tmp0_m; \ + \ + res0_m = __msa_ilvr_h((in2), (in3)); \ + c1_m = __msa_ilvev_h(k4_m, k3_m); \ + \ + tmp2_m = __msa_dotp_s_w(res0_m, c1_m); \ + res1_m = __msa_ilvr_h((in0), (in2)); \ + c1_m = __msa_ilvev_h(k1_m, zero_m); \ + \ + tmp3_m = __msa_dotp_s_w(res1_m, c1_m); \ + int3_m += tmp2_m; \ + int3_m += tmp3_m; \ + \ + SRARI_W4_SW(int0_m, int1_m, int2_m, int3_m, DCT_CONST_BITS); \ + PCKEV_H2_SH(int0_m, int0_m, int1_m, int1_m, out0, out1); \ + PCKEV_H2_SH(int2_m, int2_m, int3_m, int3_m, out2, out3); \ + } + +#define VP9_SET_CONST_PAIR(mask_h, idx1_h, idx2_h) \ + ({ \ + v8i16 c0_m, c1_m; \ + \ + SPLATI_H2_SH(mask_h, idx1_h, idx2_h, c0_m, c1_m); \ + c0_m = __msa_ilvev_h(c1_m, c0_m); \ + \ + c0_m; \ + }) + +/* multiply and add macro */ +#define VP9_MADD(inp0, inp1, inp2, inp3, cst0, cst1, cst2, cst3, out0, out1, \ + out2, out3) \ + { \ + v8i16 madd_s0_m, madd_s1_m, madd_s2_m, madd_s3_m; \ + v4i32 tmp0_madd, tmp1_madd, tmp2_madd, tmp3_madd; \ + \ + ILVRL_H2_SH(inp1, inp0, madd_s1_m, madd_s0_m); \ + ILVRL_H2_SH(inp3, inp2, madd_s3_m, madd_s2_m); \ + DOTP_SH4_SW(madd_s1_m, madd_s0_m, madd_s1_m, madd_s0_m, cst0, cst0, cst1, \ + cst1, tmp0_madd, tmp1_madd, tmp2_madd, tmp3_madd); \ + SRARI_W4_SW(tmp0_madd, tmp1_madd, tmp2_madd, tmp3_madd, DCT_CONST_BITS); \ + PCKEV_H2_SH(tmp1_madd, tmp0_madd, tmp3_madd, tmp2_madd, out0, out1); \ + DOTP_SH4_SW(madd_s3_m, madd_s2_m, madd_s3_m, madd_s2_m, cst2, cst2, cst3, \ + cst3, tmp0_madd, tmp1_madd, tmp2_madd, tmp3_madd); \ + SRARI_W4_SW(tmp0_madd, tmp1_madd, tmp2_madd, tmp3_madd, DCT_CONST_BITS); \ + PCKEV_H2_SH(tmp1_madd, tmp0_madd, tmp3_madd, tmp2_madd, out2, out3); \ + } + +/* idct 8x8 macro */ +#define VP9_IDCT8x8_1D(in0, in1, in2, in3, in4, in5, in6, in7, out0, out1, \ + out2, out3, out4, out5, out6, out7) \ + { \ + v8i16 tp0_m, tp1_m, tp2_m, tp3_m, tp4_m, tp5_m, tp6_m, tp7_m; \ + v8i16 k0_m, k1_m, k2_m, k3_m, res0_m, res1_m, res2_m, res3_m; \ + v4i32 tmp0_m, tmp1_m, tmp2_m, tmp3_m; \ + v8i16 mask_m = { cospi_28_64, cospi_4_64, cospi_20_64, cospi_12_64, \ + cospi_16_64, -cospi_4_64, -cospi_20_64, -cospi_16_64 }; \ + \ + k0_m = VP9_SET_CONST_PAIR(mask_m, 0, 5); \ + k1_m = VP9_SET_CONST_PAIR(mask_m, 1, 0); \ + k2_m = VP9_SET_CONST_PAIR(mask_m, 6, 3); \ + k3_m = VP9_SET_CONST_PAIR(mask_m, 3, 2); \ + VP9_MADD(in1, in7, in3, in5, k0_m, k1_m, k2_m, k3_m, in1, in7, in3, in5); \ + SUB2(in1, in3, in7, in5, res0_m, res1_m); \ + k0_m = VP9_SET_CONST_PAIR(mask_m, 4, 7); \ + k1_m = __msa_splati_h(mask_m, 4); \ + \ + ILVRL_H2_SH(res0_m, res1_m, res2_m, res3_m); \ + DOTP_SH4_SW(res2_m, res3_m, res2_m, res3_m, k0_m, k0_m, k1_m, k1_m, \ + tmp0_m, tmp1_m, tmp2_m, tmp3_m); \ + SRARI_W4_SW(tmp0_m, tmp1_m, tmp2_m, tmp3_m, DCT_CONST_BITS); \ + tp4_m = in1 + in3; \ + PCKEV_H2_SH(tmp1_m, tmp0_m, tmp3_m, tmp2_m, tp5_m, tp6_m); \ + tp7_m = in7 + in5; \ + k2_m = VP9_SET_COSPI_PAIR(cospi_24_64, -cospi_8_64); \ + k3_m = VP9_SET_COSPI_PAIR(cospi_8_64, cospi_24_64); \ + VP9_MADD(in0, in4, in2, in6, k1_m, k0_m, k2_m, k3_m, in0, in4, in2, in6); \ + BUTTERFLY_4(in0, in4, in2, in6, tp0_m, tp1_m, tp2_m, tp3_m); \ + BUTTERFLY_8(tp0_m, tp1_m, tp2_m, tp3_m, tp4_m, tp5_m, tp6_m, tp7_m, out0, \ + out1, out2, out3, out4, out5, out6, out7); \ + } + +#define VP9_IADST8x8_1D(in0, in1, in2, in3, in4, in5, in6, in7, out0, out1, \ + out2, out3, out4, out5, out6, out7) \ + { \ + v4i32 r0_m, r1_m, r2_m, r3_m, r4_m, r5_m, r6_m, r7_m; \ + v4i32 m0_m, m1_m, m2_m, m3_m, t0_m, t1_m; \ + v8i16 res0_m, res1_m, res2_m, res3_m, k0_m, k1_m, in_s0, in_s1; \ + v8i16 mask1_m = { cospi_2_64, cospi_30_64, -cospi_2_64, cospi_10_64, \ + cospi_22_64, -cospi_10_64, cospi_18_64, cospi_14_64 }; \ + v8i16 mask2_m = { cospi_14_64, -cospi_18_64, cospi_26_64, cospi_6_64, \ + -cospi_26_64, cospi_8_64, cospi_24_64, -cospi_8_64 }; \ + v8i16 mask3_m = { \ + -cospi_24_64, cospi_8_64, cospi_16_64, -cospi_16_64, 0, 0, 0, 0 \ + }; \ + \ + k0_m = VP9_SET_CONST_PAIR(mask1_m, 0, 1); \ + k1_m = VP9_SET_CONST_PAIR(mask1_m, 1, 2); \ + ILVRL_H2_SH(in1, in0, in_s1, in_s0); \ + DOTP_SH4_SW(in_s1, in_s0, in_s1, in_s0, k0_m, k0_m, k1_m, k1_m, r0_m, \ + r1_m, r2_m, r3_m); \ + k0_m = VP9_SET_CONST_PAIR(mask1_m, 6, 7); \ + k1_m = VP9_SET_CONST_PAIR(mask2_m, 0, 1); \ + ILVRL_H2_SH(in5, in4, in_s1, in_s0); \ + DOTP_SH4_SW(in_s1, in_s0, in_s1, in_s0, k0_m, k0_m, k1_m, k1_m, r4_m, \ + r5_m, r6_m, r7_m); \ + ADD4(r0_m, r4_m, r1_m, r5_m, r2_m, r6_m, r3_m, r7_m, m0_m, m1_m, m2_m, \ + m3_m); \ + SRARI_W4_SW(m0_m, m1_m, m2_m, m3_m, DCT_CONST_BITS); \ + PCKEV_H2_SH(m1_m, m0_m, m3_m, m2_m, res0_m, res1_m); \ + SUB4(r0_m, r4_m, r1_m, r5_m, r2_m, r6_m, r3_m, r7_m, m0_m, m1_m, m2_m, \ + m3_m); \ + SRARI_W4_SW(m0_m, m1_m, m2_m, m3_m, DCT_CONST_BITS); \ + PCKEV_H2_SW(m1_m, m0_m, m3_m, m2_m, t0_m, t1_m); \ + k0_m = VP9_SET_CONST_PAIR(mask1_m, 3, 4); \ + k1_m = VP9_SET_CONST_PAIR(mask1_m, 4, 5); \ + ILVRL_H2_SH(in3, in2, in_s1, in_s0); \ + DOTP_SH4_SW(in_s1, in_s0, in_s1, in_s0, k0_m, k0_m, k1_m, k1_m, r0_m, \ + r1_m, r2_m, r3_m); \ + k0_m = VP9_SET_CONST_PAIR(mask2_m, 2, 3); \ + k1_m = VP9_SET_CONST_PAIR(mask2_m, 3, 4); \ + ILVRL_H2_SH(in7, in6, in_s1, in_s0); \ + DOTP_SH4_SW(in_s1, in_s0, in_s1, in_s0, k0_m, k0_m, k1_m, k1_m, r4_m, \ + r5_m, r6_m, r7_m); \ + ADD4(r0_m, r4_m, r1_m, r5_m, r2_m, r6_m, r3_m, r7_m, m0_m, m1_m, m2_m, \ + m3_m); \ + SRARI_W4_SW(m0_m, m1_m, m2_m, m3_m, DCT_CONST_BITS); \ + PCKEV_H2_SH(m1_m, m0_m, m3_m, m2_m, res2_m, res3_m); \ + SUB4(r0_m, r4_m, r1_m, r5_m, r2_m, r6_m, r3_m, r7_m, m0_m, m1_m, m2_m, \ + m3_m); \ + SRARI_W4_SW(m0_m, m1_m, m2_m, m3_m, DCT_CONST_BITS); \ + PCKEV_H2_SW(m1_m, m0_m, m3_m, m2_m, r2_m, r3_m); \ + ILVRL_H2_SW(r3_m, r2_m, m2_m, m3_m); \ + BUTTERFLY_4(res0_m, res1_m, res3_m, res2_m, out0, in7, in4, in3); \ + k0_m = VP9_SET_CONST_PAIR(mask2_m, 5, 6); \ + k1_m = VP9_SET_CONST_PAIR(mask2_m, 6, 7); \ + ILVRL_H2_SH(t1_m, t0_m, in_s1, in_s0); \ + DOTP_SH4_SW(in_s1, in_s0, in_s1, in_s0, k0_m, k0_m, k1_m, k1_m, r0_m, \ + r1_m, r2_m, r3_m); \ + k1_m = VP9_SET_CONST_PAIR(mask3_m, 0, 1); \ + DOTP_SH4_SW(m2_m, m3_m, m2_m, m3_m, k0_m, k0_m, k1_m, k1_m, r4_m, r5_m, \ + r6_m, r7_m); \ + ADD4(r0_m, r6_m, r1_m, r7_m, r2_m, r4_m, r3_m, r5_m, m0_m, m1_m, m2_m, \ + m3_m); \ + SRARI_W4_SW(m0_m, m1_m, m2_m, m3_m, DCT_CONST_BITS); \ + PCKEV_H2_SH(m1_m, m0_m, m3_m, m2_m, in1, out6); \ + SUB4(r0_m, r6_m, r1_m, r7_m, r2_m, r4_m, r3_m, r5_m, m0_m, m1_m, m2_m, \ + m3_m); \ + SRARI_W4_SW(m0_m, m1_m, m2_m, m3_m, DCT_CONST_BITS); \ + PCKEV_H2_SH(m1_m, m0_m, m3_m, m2_m, in2, in5); \ + k0_m = VP9_SET_CONST_PAIR(mask3_m, 2, 2); \ + k1_m = VP9_SET_CONST_PAIR(mask3_m, 2, 3); \ + ILVRL_H2_SH(in4, in3, in_s1, in_s0); \ + DOTP_SH4_SW(in_s1, in_s0, in_s1, in_s0, k0_m, k0_m, k1_m, k1_m, m0_m, \ + m1_m, m2_m, m3_m); \ + SRARI_W4_SW(m0_m, m1_m, m2_m, m3_m, DCT_CONST_BITS); \ + PCKEV_H2_SH(m1_m, m0_m, m3_m, m2_m, in3, out4); \ + ILVRL_H2_SW(in5, in2, m2_m, m3_m); \ + DOTP_SH4_SW(m2_m, m3_m, m2_m, m3_m, k0_m, k0_m, k1_m, k1_m, m0_m, m1_m, \ + m2_m, m3_m); \ + SRARI_W4_SW(m0_m, m1_m, m2_m, m3_m, DCT_CONST_BITS); \ + PCKEV_H2_SH(m1_m, m0_m, m3_m, m2_m, out2, in5); \ + \ + out1 = -in1; \ + out3 = -in3; \ + out5 = -in5; \ + out7 = -in7; \ + } + +#define VP9_IADST8x16_1D(r0, r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, \ + r12, r13, r14, r15, out0, out1, out2, out3, out4, \ + out5, out6, out7, out8, out9, out10, out11, out12, \ + out13, out14, out15) \ + { \ + v8i16 g0_m, g1_m, g2_m, g3_m, g4_m, g5_m, g6_m, g7_m; \ + v8i16 g8_m, g9_m, g10_m, g11_m, g12_m, g13_m, g14_m, g15_m; \ + v8i16 h0_m, h1_m, h2_m, h3_m, h4_m, h5_m, h6_m, h7_m; \ + v8i16 h8_m, h9_m, h10_m, h11_m; \ + v8i16 k0_m, k1_m, k2_m, k3_m; \ + \ + /* stage 1 */ \ + k0_m = VP9_SET_COSPI_PAIR(cospi_1_64, cospi_31_64); \ + k1_m = VP9_SET_COSPI_PAIR(cospi_31_64, -cospi_1_64); \ + k2_m = VP9_SET_COSPI_PAIR(cospi_17_64, cospi_15_64); \ + k3_m = VP9_SET_COSPI_PAIR(cospi_15_64, -cospi_17_64); \ + MADD_BF(r15, r0, r7, r8, k0_m, k1_m, k2_m, k3_m, g0_m, g1_m, g2_m, g3_m); \ + k0_m = VP9_SET_COSPI_PAIR(cospi_5_64, cospi_27_64); \ + k1_m = VP9_SET_COSPI_PAIR(cospi_27_64, -cospi_5_64); \ + k2_m = VP9_SET_COSPI_PAIR(cospi_21_64, cospi_11_64); \ + k3_m = VP9_SET_COSPI_PAIR(cospi_11_64, -cospi_21_64); \ + MADD_BF(r13, r2, r5, r10, k0_m, k1_m, k2_m, k3_m, g4_m, g5_m, g6_m, g7_m); \ + k0_m = VP9_SET_COSPI_PAIR(cospi_9_64, cospi_23_64); \ + k1_m = VP9_SET_COSPI_PAIR(cospi_23_64, -cospi_9_64); \ + k2_m = VP9_SET_COSPI_PAIR(cospi_25_64, cospi_7_64); \ + k3_m = VP9_SET_COSPI_PAIR(cospi_7_64, -cospi_25_64); \ + MADD_BF(r11, r4, r3, r12, k0_m, k1_m, k2_m, k3_m, g8_m, g9_m, g10_m, \ + g11_m); \ + k0_m = VP9_SET_COSPI_PAIR(cospi_13_64, cospi_19_64); \ + k1_m = VP9_SET_COSPI_PAIR(cospi_19_64, -cospi_13_64); \ + k2_m = VP9_SET_COSPI_PAIR(cospi_29_64, cospi_3_64); \ + k3_m = VP9_SET_COSPI_PAIR(cospi_3_64, -cospi_29_64); \ + MADD_BF(r9, r6, r1, r14, k0_m, k1_m, k2_m, k3_m, g12_m, g13_m, g14_m, \ + g15_m); \ + \ + /* stage 2 */ \ + k0_m = VP9_SET_COSPI_PAIR(cospi_4_64, cospi_28_64); \ + k1_m = VP9_SET_COSPI_PAIR(cospi_28_64, -cospi_4_64); \ + k2_m = VP9_SET_COSPI_PAIR(-cospi_28_64, cospi_4_64); \ + MADD_BF(g1_m, g3_m, g9_m, g11_m, k0_m, k1_m, k2_m, k0_m, h0_m, h1_m, h2_m, \ + h3_m); \ + k0_m = VP9_SET_COSPI_PAIR(cospi_12_64, cospi_20_64); \ + k1_m = VP9_SET_COSPI_PAIR(-cospi_20_64, cospi_12_64); \ + k2_m = VP9_SET_COSPI_PAIR(cospi_20_64, -cospi_12_64); \ + MADD_BF(g7_m, g5_m, g15_m, g13_m, k0_m, k1_m, k2_m, k0_m, h4_m, h5_m, \ + h6_m, h7_m); \ + BUTTERFLY_4(h0_m, h2_m, h6_m, h4_m, out8, out9, out11, out10); \ + BUTTERFLY_8(g0_m, g2_m, g4_m, g6_m, g14_m, g12_m, g10_m, g8_m, h8_m, h9_m, \ + h10_m, h11_m, h6_m, h4_m, h2_m, h0_m); \ + \ + /* stage 3 */ \ + BUTTERFLY_4(h8_m, h9_m, h11_m, h10_m, out0, out1, h11_m, h10_m); \ + k0_m = VP9_SET_COSPI_PAIR(cospi_8_64, cospi_24_64); \ + k1_m = VP9_SET_COSPI_PAIR(cospi_24_64, -cospi_8_64); \ + k2_m = VP9_SET_COSPI_PAIR(-cospi_24_64, cospi_8_64); \ + MADD_BF(h0_m, h2_m, h4_m, h6_m, k0_m, k1_m, k2_m, k0_m, out4, out6, out5, \ + out7); \ + MADD_BF(h1_m, h3_m, h5_m, h7_m, k0_m, k1_m, k2_m, k0_m, out12, out14, \ + out13, out15); \ + \ + /* stage 4 */ \ + k0_m = VP9_SET_COSPI_PAIR(cospi_16_64, cospi_16_64); \ + k1_m = VP9_SET_COSPI_PAIR(-cospi_16_64, -cospi_16_64); \ + k2_m = VP9_SET_COSPI_PAIR(cospi_16_64, -cospi_16_64); \ + k3_m = VP9_SET_COSPI_PAIR(-cospi_16_64, cospi_16_64); \ + MADD_SHORT(h10_m, h11_m, k1_m, k2_m, out2, out3); \ + MADD_SHORT(out6, out7, k0_m, k3_m, out6, out7); \ + MADD_SHORT(out10, out11, k0_m, k3_m, out10, out11); \ + MADD_SHORT(out14, out15, k1_m, k2_m, out14, out15); \ + } + +void vpx_idct16_1d_columns_addblk_msa(int16_t *input, uint8_t *dst, + int32_t dst_stride); +void vpx_idct16_1d_rows_msa(const int16_t *input, int16_t *output); +void vpx_iadst16_1d_columns_addblk_msa(int16_t *input, uint8_t *dst, + int32_t dst_stride); +void vpx_iadst16_1d_rows_msa(const int16_t *input, int16_t *output); +#endif // VPX_DSP_MIPS_INV_TXFM_MSA_H_ diff --git a/vpx_dsp/mips/itrans16_dspr2.c b/vpx_dsp/mips/itrans16_dspr2.c new file mode 100644 index 0000000..44ba65c --- /dev/null +++ b/vpx_dsp/mips/itrans16_dspr2.c @@ -0,0 +1,1230 @@ +/* + * Copyright (c) 2015 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "./vpx_config.h" +#include "./vpx_dsp_rtcd.h" +#include "vpx_dsp/mips/inv_txfm_dspr2.h" +#include "vpx_dsp/txfm_common.h" + +#if HAVE_DSPR2 +void idct16_rows_dspr2(const int16_t *input, int16_t *output, + uint32_t no_rows) { + int i; + int step1_0, step1_1, step1_2, step1_3, step1_4, step1_5, step1_6, step1_7; + int step1_10, step1_11, step1_12, step1_13; + int step2_0, step2_1, step2_2, step2_3; + int step2_8, step2_9, step2_10, step2_11; + int step2_12, step2_13, step2_14, step2_15; + int load1, load2, load3, load4, load5, load6, load7, load8; + int result1, result2, result3, result4; + const int const_2_power_13 = 8192; + + for (i = no_rows; i--;) { + /* prefetch row */ + prefetch_load((const uint8_t *)(input + 16)); + + __asm__ __volatile__( + "lh %[load1], 0(%[input]) \n\t" + "lh %[load2], 16(%[input]) \n\t" + "lh %[load3], 8(%[input]) \n\t" + "lh %[load4], 24(%[input]) \n\t" + + "mtlo %[const_2_power_13], $ac1 \n\t" + "mthi $zero, $ac1 \n\t" + "mtlo %[const_2_power_13], $ac2 \n\t" + "mthi $zero, $ac2 \n\t" + "add %[result1], %[load1], %[load2] \n\t" + "sub %[result2], %[load1], %[load2] \n\t" + "madd $ac1, %[result1], %[cospi_16_64] \n\t" + "madd $ac2, %[result2], %[cospi_16_64] \n\t" + "extp %[step2_0], $ac1, 31 \n\t" + "extp %[step2_1], $ac2, 31 \n\t" + + "mtlo %[const_2_power_13], $ac3 \n\t" + "mthi $zero, $ac3 \n\t" + "madd $ac3, %[load3], %[cospi_24_64] \n\t" + "msub $ac3, %[load4], %[cospi_8_64] \n\t" + "extp %[step2_2], $ac3, 31 \n\t" + + "mtlo %[const_2_power_13], $ac1 \n\t" + "mthi $zero, $ac1 \n\t" + "madd $ac1, %[load3], %[cospi_8_64] \n\t" + "madd $ac1, %[load4], %[cospi_24_64] \n\t" + "extp %[step2_3], $ac1, 31 \n\t" + + "add %[step1_0], %[step2_0], %[step2_3] \n\t" + "add %[step1_1], %[step2_1], %[step2_2] \n\t" + "sub %[step1_2], %[step2_1], %[step2_2] \n\t" + "sub %[step1_3], %[step2_0], %[step2_3] \n\t" + + : [load1] "=&r"(load1), [load2] "=&r"(load2), [load3] "=&r"(load3), + [load4] "=&r"(load4), [result1] "=&r"(result1), + [result2] "=&r"(result2), [step2_0] "=&r"(step2_0), + [step2_1] "=&r"(step2_1), [step2_2] "=&r"(step2_2), + [step2_3] "=&r"(step2_3), [step1_0] "=r"(step1_0), + [step1_1] "=r"(step1_1), [step1_2] "=r"(step1_2), + [step1_3] "=r"(step1_3) + : [const_2_power_13] "r"(const_2_power_13), [input] "r"(input), + [cospi_24_64] "r"(cospi_24_64), [cospi_8_64] "r"(cospi_8_64), + [cospi_16_64] "r"(cospi_16_64)); + + __asm__ __volatile__( + "lh %[load5], 2(%[input]) \n\t" + "lh %[load6], 30(%[input]) \n\t" + "lh %[load7], 18(%[input]) \n\t" + "lh %[load8], 14(%[input]) \n\t" + + "mtlo %[const_2_power_13], $ac1 \n\t" + "mthi $zero, $ac1 \n\t" + "mtlo %[const_2_power_13], $ac3 \n\t" + "mthi $zero, $ac3 \n\t" + + "madd $ac1, %[load5], %[cospi_30_64] \n\t" + "msub $ac1, %[load6], %[cospi_2_64] \n\t" + "extp %[result1], $ac1, 31 \n\t" + + "madd $ac3, %[load7], %[cospi_14_64] \n\t" + "msub $ac3, %[load8], %[cospi_18_64] \n\t" + "extp %[result2], $ac3, 31 \n\t" + + "mtlo %[const_2_power_13], $ac1 \n\t" + "mthi $zero, $ac1 \n\t" + "mtlo %[const_2_power_13], $ac2 \n\t" + "mthi $zero, $ac2 \n\t" + + "madd $ac1, %[load7], %[cospi_18_64] \n\t" + "madd $ac1, %[load8], %[cospi_14_64] \n\t" + "extp %[result3], $ac1, 31 \n\t" + + "madd $ac2, %[load5], %[cospi_2_64] \n\t" + "madd $ac2, %[load6], %[cospi_30_64] \n\t" + "extp %[result4], $ac2, 31 \n\t" + + "sub %[load5], %[result1], %[result2] \n\t" + "sub %[load6], %[result4], %[result3] \n\t" + + "mtlo %[const_2_power_13], $ac1 \n\t" + "mthi $zero, $ac1 \n\t" + "mtlo %[const_2_power_13], $ac3 \n\t" + "mthi $zero, $ac3 \n\t" + + "madd $ac1, %[load6], %[cospi_24_64] \n\t" + "msub $ac1, %[load5], %[cospi_8_64] \n\t" + "madd $ac3, %[load5], %[cospi_24_64] \n\t" + "madd $ac3, %[load6], %[cospi_8_64] \n\t" + + "extp %[step2_9], $ac1, 31 \n\t" + "extp %[step2_14], $ac3, 31 \n\t" + "add %[step2_8], %[result1], %[result2] \n\t" + "add %[step2_15], %[result4], %[result3] \n\t" + + : [load5] "=&r"(load5), [load6] "=&r"(load6), [load7] "=&r"(load7), + [load8] "=&r"(load8), [result1] "=&r"(result1), + [result2] "=&r"(result2), [result3] "=&r"(result3), + [result4] "=&r"(result4), [step2_8] "=r"(step2_8), + [step2_15] "=r"(step2_15), [step2_9] "=r"(step2_9), + [step2_14] "=r"(step2_14) + : [const_2_power_13] "r"(const_2_power_13), [input] "r"(input), + [cospi_30_64] "r"(cospi_30_64), [cospi_2_64] "r"(cospi_2_64), + [cospi_14_64] "r"(cospi_14_64), [cospi_18_64] "r"(cospi_18_64), + [cospi_24_64] "r"(cospi_24_64), [cospi_8_64] "r"(cospi_8_64)); + + __asm__ __volatile__( + "lh %[load1], 10(%[input]) \n\t" + "lh %[load2], 22(%[input]) \n\t" + "lh %[load3], 26(%[input]) \n\t" + "lh %[load4], 6(%[input]) \n\t" + + "mtlo %[const_2_power_13], $ac1 \n\t" + "mthi $zero, $ac1 \n\t" + "mtlo %[const_2_power_13], $ac3 \n\t" + "mthi $zero, $ac3 \n\t" + + "madd $ac1, %[load1], %[cospi_22_64] \n\t" + "msub $ac1, %[load2], %[cospi_10_64] \n\t" + "extp %[result1], $ac1, 31 \n\t" + + "madd $ac3, %[load3], %[cospi_6_64] \n\t" + "msub $ac3, %[load4], %[cospi_26_64] \n\t" + "extp %[result2], $ac3, 31 \n\t" + + "mtlo %[const_2_power_13], $ac1 \n\t" + "mthi $zero, $ac1 \n\t" + "mtlo %[const_2_power_13], $ac2 \n\t" + "mthi $zero, $ac2 \n\t" + + "madd $ac1, %[load1], %[cospi_10_64] \n\t" + "madd $ac1, %[load2], %[cospi_22_64] \n\t" + "extp %[result3], $ac1, 31 \n\t" + + "madd $ac2, %[load3], %[cospi_26_64] \n\t" + "madd $ac2, %[load4], %[cospi_6_64] \n\t" + "extp %[result4], $ac2, 31 \n\t" + + "mtlo %[const_2_power_13], $ac1 \n\t" + "mthi $zero, $ac1 \n\t" + "mtlo %[const_2_power_13], $ac3 \n\t" + "mthi $zero, $ac3 \n\t" + + "sub %[load1], %[result2], %[result1] \n\t" + "sub %[load2], %[result4], %[result3] \n\t" + + "msub $ac1, %[load1], %[cospi_24_64] \n\t" + "msub $ac1, %[load2], %[cospi_8_64] \n\t" + "madd $ac3, %[load2], %[cospi_24_64] \n\t" + "msub $ac3, %[load1], %[cospi_8_64] \n\t" + + "extp %[step2_10], $ac1, 31 \n\t" + "extp %[step2_13], $ac3, 31 \n\t" + "add %[step2_11], %[result1], %[result2] \n\t" + "add %[step2_12], %[result4], %[result3] \n\t" + + : [load1] "=&r"(load1), [load2] "=&r"(load2), [load3] "=&r"(load3), + [load4] "=&r"(load4), [result1] "=&r"(result1), + [result2] "=&r"(result2), [result3] "=&r"(result3), + [result4] "=&r"(result4), [step2_10] "=r"(step2_10), + [step2_11] "=r"(step2_11), [step2_12] "=r"(step2_12), + [step2_13] "=r"(step2_13) + : [const_2_power_13] "r"(const_2_power_13), [input] "r"(input), + [cospi_22_64] "r"(cospi_22_64), [cospi_10_64] "r"(cospi_10_64), + [cospi_6_64] "r"(cospi_6_64), [cospi_26_64] "r"(cospi_26_64), + [cospi_24_64] "r"(cospi_24_64), [cospi_8_64] "r"(cospi_8_64)); + + __asm__ __volatile__( + "lh %[load5], 4(%[input]) \n\t" + "lh %[load6], 28(%[input]) \n\t" + "lh %[load7], 20(%[input]) \n\t" + "lh %[load8], 12(%[input]) \n\t" + + "mtlo %[const_2_power_13], $ac1 \n\t" + "mthi $zero, $ac1 \n\t" + "mtlo %[const_2_power_13], $ac3 \n\t" + "mthi $zero, $ac3 \n\t" + + "madd $ac1, %[load5], %[cospi_28_64] \n\t" + "msub $ac1, %[load6], %[cospi_4_64] \n\t" + "extp %[result1], $ac1, 31 \n\t" + + "madd $ac3, %[load7], %[cospi_12_64] \n\t" + "msub $ac3, %[load8], %[cospi_20_64] \n\t" + "extp %[result2], $ac3, 31 \n\t" + + "mtlo %[const_2_power_13], $ac1 \n\t" + "mthi $zero, $ac1 \n\t" + "mtlo %[const_2_power_13], $ac2 \n\t" + "mthi $zero, $ac2 \n\t" + + "madd $ac1, %[load7], %[cospi_20_64] \n\t" + "madd $ac1, %[load8], %[cospi_12_64] \n\t" + "extp %[result3], $ac1, 31 \n\t" + + "madd $ac2, %[load5], %[cospi_4_64] \n\t" + "madd $ac2, %[load6], %[cospi_28_64] \n\t" + "extp %[result4], $ac2, 31 \n\t" + + "mtlo %[const_2_power_13], $ac1 \n\t" + "mthi $zero, $ac1 \n\t" + "mtlo %[const_2_power_13], $ac3 \n\t" + "mthi $zero, $ac3 \n\t" + + "sub %[load5], %[result4], %[result3] \n\t" + "sub %[load5], %[load5], %[result1] \n\t" + "add %[load5], %[load5], %[result2] \n\t" + + "sub %[load6], %[result1], %[result2] \n\t" + "sub %[load6], %[load6], %[result3] \n\t" + "add %[load6], %[load6], %[result4] \n\t" + + "madd $ac1, %[load5], %[cospi_16_64] \n\t" + "madd $ac3, %[load6], %[cospi_16_64] \n\t" + + "extp %[step1_5], $ac1, 31 \n\t" + "extp %[step1_6], $ac3, 31 \n\t" + "add %[step1_4], %[result1], %[result2] \n\t" + "add %[step1_7], %[result4], %[result3] \n\t" + + : [load5] "=&r"(load5), [load6] "=&r"(load6), [load7] "=&r"(load7), + [load8] "=&r"(load8), [result1] "=&r"(result1), + [result2] "=&r"(result2), [result3] "=&r"(result3), + [result4] "=&r"(result4), [step1_4] "=r"(step1_4), + [step1_5] "=r"(step1_5), [step1_6] "=r"(step1_6), + [step1_7] "=r"(step1_7) + : [const_2_power_13] "r"(const_2_power_13), [input] "r"(input), + [cospi_20_64] "r"(cospi_20_64), [cospi_12_64] "r"(cospi_12_64), + [cospi_4_64] "r"(cospi_4_64), [cospi_28_64] "r"(cospi_28_64), + [cospi_16_64] "r"(cospi_16_64)); + + __asm__ __volatile__( + "mtlo %[const_2_power_13], $ac0 \n\t" + "mthi $zero, $ac0 \n\t" + "mtlo %[const_2_power_13], $ac1 \n\t" + "mthi $zero, $ac1 \n\t" + + "sub %[load5], %[step2_14], %[step2_13] \n\t" + "sub %[load5], %[load5], %[step2_9] \n\t" + "add %[load5], %[load5], %[step2_10] \n\t" + + "madd $ac0, %[load5], %[cospi_16_64] \n\t" + + "sub %[load6], %[step2_14], %[step2_13] \n\t" + "sub %[load6], %[load6], %[step2_10] \n\t" + "add %[load6], %[load6], %[step2_9] \n\t" + + "madd $ac1, %[load6], %[cospi_16_64] \n\t" + + "mtlo %[const_2_power_13], $ac2 \n\t" + "mthi $zero, $ac2 \n\t" + "mtlo %[const_2_power_13], $ac3 \n\t" + "mthi $zero, $ac3 \n\t" + + "sub %[load5], %[step2_15], %[step2_12] \n\t" + "sub %[load5], %[load5], %[step2_8] \n\t" + "add %[load5], %[load5], %[step2_11] \n\t" + + "madd $ac2, %[load5], %[cospi_16_64] \n\t" + + "sub %[load6], %[step2_15], %[step2_12] \n\t" + "sub %[load6], %[load6], %[step2_11] \n\t" + "add %[load6], %[load6], %[step2_8] \n\t" + + "madd $ac3, %[load6], %[cospi_16_64] \n\t" + + "extp %[step1_10], $ac0, 31 \n\t" + "extp %[step1_13], $ac1, 31 \n\t" + "extp %[step1_11], $ac2, 31 \n\t" + "extp %[step1_12], $ac3, 31 \n\t" + + : [load5] "=&r"(load5), [load6] "=&r"(load6), [step1_10] "=r"(step1_10), + [step1_11] "=r"(step1_11), [step1_12] "=r"(step1_12), + [step1_13] "=r"(step1_13) + : [const_2_power_13] "r"(const_2_power_13), [step2_14] "r"(step2_14), + [step2_13] "r"(step2_13), [step2_9] "r"(step2_9), + [step2_10] "r"(step2_10), [step2_15] "r"(step2_15), + [step2_12] "r"(step2_12), [step2_8] "r"(step2_8), + [step2_11] "r"(step2_11), [cospi_16_64] "r"(cospi_16_64)); + + __asm__ __volatile__( + "add %[load5], %[step1_0], %[step1_7] \n\t" + "add %[load5], %[load5], %[step2_12] \n\t" + "add %[load5], %[load5], %[step2_15] \n\t" + "add %[load6], %[step1_1], %[step1_6] \n\t" + "add %[load6], %[load6], %[step2_13] \n\t" + "add %[load6], %[load6], %[step2_14] \n\t" + "sh %[load5], 0(%[output]) \n\t" + "sh %[load6], 32(%[output]) \n\t" + "sub %[load5], %[step1_1], %[step1_6] \n\t" + "add %[load5], %[load5], %[step2_9] \n\t" + "add %[load5], %[load5], %[step2_10] \n\t" + "sub %[load6], %[step1_0], %[step1_7] \n\t" + "add %[load6], %[load6], %[step2_8] \n\t" + "add %[load6], %[load6], %[step2_11] \n\t" + "sh %[load5], 192(%[output]) \n\t" + "sh %[load6], 224(%[output]) \n\t" + "sub %[load5], %[step1_0], %[step1_7] \n\t" + "sub %[load5], %[load5], %[step2_8] \n\t" + "sub %[load5], %[load5], %[step2_11] \n\t" + "sub %[load6], %[step1_1], %[step1_6] \n\t" + "sub %[load6], %[load6], %[step2_9] \n\t" + "sub %[load6], %[load6], %[step2_10] \n\t" + "sh %[load5], 256(%[output]) \n\t" + "sh %[load6], 288(%[output]) \n\t" + "add %[load5], %[step1_1], %[step1_6] \n\t" + "sub %[load5], %[load5], %[step2_13] \n\t" + "sub %[load5], %[load5], %[step2_14] \n\t" + "add %[load6], %[step1_0], %[step1_7] \n\t" + "sub %[load6], %[load6], %[step2_12] \n\t" + "sub %[load6], %[load6], %[step2_15] \n\t" + "sh %[load5], 448(%[output]) \n\t" + "sh %[load6], 480(%[output]) \n\t" + + : [load5] "=&r"(load5), [load6] "=&r"(load6) + : [output] "r"(output), [step1_0] "r"(step1_0), [step1_1] "r"(step1_1), + [step1_6] "r"(step1_6), [step1_7] "r"(step1_7), + [step2_8] "r"(step2_8), [step2_9] "r"(step2_9), + [step2_10] "r"(step2_10), [step2_11] "r"(step2_11), + [step2_12] "r"(step2_12), [step2_13] "r"(step2_13), + [step2_14] "r"(step2_14), [step2_15] "r"(step2_15)); + + __asm__ __volatile__( + "add %[load5], %[step1_2], %[step1_5] \n\t" + "add %[load5], %[load5], %[step1_13] \n\t" + "add %[load6], %[step1_3], %[step1_4] \n\t" + "add %[load6], %[load6], %[step1_12] \n\t" + "sh %[load5], 64(%[output]) \n\t" + "sh %[load6], 96(%[output]) \n\t" + "sub %[load5], %[step1_3], %[step1_4] \n\t" + "add %[load5], %[load5], %[step1_11] \n\t" + "sub %[load6], %[step1_2], %[step1_5] \n\t" + "add %[load6], %[load6], %[step1_10] \n\t" + "sh %[load5], 128(%[output]) \n\t" + "sh %[load6], 160(%[output]) \n\t" + "sub %[load5], %[step1_2], %[step1_5] \n\t" + "sub %[load5], %[load5], %[step1_10] \n\t" + "sub %[load6], %[step1_3], %[step1_4] \n\t" + "sub %[load6], %[load6], %[step1_11] \n\t" + "sh %[load5], 320(%[output]) \n\t" + "sh %[load6], 352(%[output]) \n\t" + "add %[load5], %[step1_3], %[step1_4] \n\t" + "sub %[load5], %[load5], %[step1_12] \n\t" + "add %[load6], %[step1_2], %[step1_5] \n\t" + "sub %[load6], %[load6], %[step1_13] \n\t" + "sh %[load5], 384(%[output]) \n\t" + "sh %[load6], 416(%[output]) \n\t" + + : [load5] "=&r"(load5), [load6] "=&r"(load6) + : [output] "r"(output), [step1_2] "r"(step1_2), [step1_3] "r"(step1_3), + [step1_4] "r"(step1_4), [step1_5] "r"(step1_5), + [step1_10] "r"(step1_10), [step1_11] "r"(step1_11), + [step1_12] "r"(step1_12), [step1_13] "r"(step1_13)); + + input += 16; + output += 1; + } +} + +void idct16_cols_add_blk_dspr2(int16_t *input, uint8_t *dest, int stride) { + int i; + int step1_0, step1_1, step1_2, step1_3, step1_4, step1_5, step1_6, step1_7; + int step1_8, step1_9, step1_10, step1_11; + int step1_12, step1_13, step1_14, step1_15; + int step2_0, step2_1, step2_2, step2_3; + int step2_8, step2_9, step2_10, step2_11; + int step2_12, step2_13, step2_14, step2_15; + int load1, load2, load3, load4, load5, load6, load7, load8; + int result1, result2, result3, result4; + const int const_2_power_13 = 8192; + uint8_t *dest_pix; + uint8_t *cm = vpx_ff_cropTbl; + + /* prefetch vpx_ff_cropTbl */ + prefetch_load(vpx_ff_cropTbl); + prefetch_load(vpx_ff_cropTbl + 32); + prefetch_load(vpx_ff_cropTbl + 64); + prefetch_load(vpx_ff_cropTbl + 96); + prefetch_load(vpx_ff_cropTbl + 128); + prefetch_load(vpx_ff_cropTbl + 160); + prefetch_load(vpx_ff_cropTbl + 192); + prefetch_load(vpx_ff_cropTbl + 224); + + for (i = 0; i < 16; ++i) { + dest_pix = (dest + i); + __asm__ __volatile__( + "lh %[load1], 0(%[input]) \n\t" + "lh %[load2], 16(%[input]) \n\t" + "lh %[load3], 8(%[input]) \n\t" + "lh %[load4], 24(%[input]) \n\t" + + "mtlo %[const_2_power_13], $ac1 \n\t" + "mthi $zero, $ac1 \n\t" + "mtlo %[const_2_power_13], $ac2 \n\t" + "mthi $zero, $ac2 \n\t" + "add %[result1], %[load1], %[load2] \n\t" + "sub %[result2], %[load1], %[load2] \n\t" + "madd $ac1, %[result1], %[cospi_16_64] \n\t" + "madd $ac2, %[result2], %[cospi_16_64] \n\t" + "extp %[step2_0], $ac1, 31 \n\t" + "extp %[step2_1], $ac2, 31 \n\t" + + "mtlo %[const_2_power_13], $ac3 \n\t" + "mthi $zero, $ac3 \n\t" + "madd $ac3, %[load3], %[cospi_24_64] \n\t" + "msub $ac3, %[load4], %[cospi_8_64] \n\t" + "extp %[step2_2], $ac3, 31 \n\t" + + "mtlo %[const_2_power_13], $ac1 \n\t" + "mthi $zero, $ac1 \n\t" + "madd $ac1, %[load3], %[cospi_8_64] \n\t" + "madd $ac1, %[load4], %[cospi_24_64] \n\t" + "extp %[step2_3], $ac1, 31 \n\t" + + "add %[step1_0], %[step2_0], %[step2_3] \n\t" + "add %[step1_1], %[step2_1], %[step2_2] \n\t" + "sub %[step1_2], %[step2_1], %[step2_2] \n\t" + "sub %[step1_3], %[step2_0], %[step2_3] \n\t" + + : [load1] "=&r"(load1), [load2] "=&r"(load2), [load3] "=&r"(load3), + [load4] "=&r"(load4), [result1] "=&r"(result1), + [result2] "=&r"(result2), [step2_0] "=&r"(step2_0), + [step2_1] "=&r"(step2_1), [step2_2] "=&r"(step2_2), + [step2_3] "=&r"(step2_3), [step1_0] "=r"(step1_0), + [step1_1] "=r"(step1_1), [step1_2] "=r"(step1_2), + [step1_3] "=r"(step1_3) + : [const_2_power_13] "r"(const_2_power_13), [input] "r"(input), + [cospi_24_64] "r"(cospi_24_64), [cospi_8_64] "r"(cospi_8_64), + [cospi_16_64] "r"(cospi_16_64)); + + __asm__ __volatile__( + "lh %[load5], 2(%[input]) \n\t" + "lh %[load6], 30(%[input]) \n\t" + "lh %[load7], 18(%[input]) \n\t" + "lh %[load8], 14(%[input]) \n\t" + + "mtlo %[const_2_power_13], $ac1 \n\t" + "mthi $zero, $ac1 \n\t" + "mtlo %[const_2_power_13], $ac3 \n\t" + "mthi $zero, $ac3 \n\t" + + "madd $ac1, %[load5], %[cospi_30_64] \n\t" + "msub $ac1, %[load6], %[cospi_2_64] \n\t" + "extp %[result1], $ac1, 31 \n\t" + + "madd $ac3, %[load7], %[cospi_14_64] \n\t" + "msub $ac3, %[load8], %[cospi_18_64] \n\t" + "extp %[result2], $ac3, 31 \n\t" + + "mtlo %[const_2_power_13], $ac1 \n\t" + "mthi $zero, $ac1 \n\t" + "mtlo %[const_2_power_13], $ac2 \n\t" + "mthi $zero, $ac2 \n\t" + + "madd $ac1, %[load7], %[cospi_18_64] \n\t" + "madd $ac1, %[load8], %[cospi_14_64] \n\t" + "extp %[result3], $ac1, 31 \n\t" + + "madd $ac2, %[load5], %[cospi_2_64] \n\t" + "madd $ac2, %[load6], %[cospi_30_64] \n\t" + "extp %[result4], $ac2, 31 \n\t" + + "sub %[load5], %[result1], %[result2] \n\t" + "sub %[load6], %[result4], %[result3] \n\t" + + "mtlo %[const_2_power_13], $ac1 \n\t" + "mthi $zero, $ac1 \n\t" + "mtlo %[const_2_power_13], $ac3 \n\t" + "mthi $zero, $ac3 \n\t" + + "madd $ac1, %[load6], %[cospi_24_64] \n\t" + "msub $ac1, %[load5], %[cospi_8_64] \n\t" + "madd $ac3, %[load5], %[cospi_24_64] \n\t" + "madd $ac3, %[load6], %[cospi_8_64] \n\t" + + "extp %[step2_9], $ac1, 31 \n\t" + "extp %[step2_14], $ac3, 31 \n\t" + "add %[step2_8], %[result1], %[result2] \n\t" + "add %[step2_15], %[result4], %[result3] \n\t" + + : [load5] "=&r"(load5), [load6] "=&r"(load6), [load7] "=&r"(load7), + [load8] "=&r"(load8), [result1] "=&r"(result1), + [result2] "=&r"(result2), [result3] "=&r"(result3), + [result4] "=&r"(result4), [step2_8] "=r"(step2_8), + [step2_15] "=r"(step2_15), [step2_9] "=r"(step2_9), + [step2_14] "=r"(step2_14) + : [const_2_power_13] "r"(const_2_power_13), [input] "r"(input), + [cospi_30_64] "r"(cospi_30_64), [cospi_2_64] "r"(cospi_2_64), + [cospi_14_64] "r"(cospi_14_64), [cospi_18_64] "r"(cospi_18_64), + [cospi_24_64] "r"(cospi_24_64), [cospi_8_64] "r"(cospi_8_64)); + + __asm__ __volatile__( + "lh %[load1], 10(%[input]) \n\t" + "lh %[load2], 22(%[input]) \n\t" + "lh %[load3], 26(%[input]) \n\t" + "lh %[load4], 6(%[input]) \n\t" + + "mtlo %[const_2_power_13], $ac1 \n\t" + "mthi $zero, $ac1 \n\t" + "mtlo %[const_2_power_13], $ac3 \n\t" + "mthi $zero, $ac3 \n\t" + + "madd $ac1, %[load1], %[cospi_22_64] \n\t" + "msub $ac1, %[load2], %[cospi_10_64] \n\t" + "extp %[result1], $ac1, 31 \n\t" + + "madd $ac3, %[load3], %[cospi_6_64] \n\t" + "msub $ac3, %[load4], %[cospi_26_64] \n\t" + "extp %[result2], $ac3, 31 \n\t" + + "mtlo %[const_2_power_13], $ac1 \n\t" + "mthi $zero, $ac1 \n\t" + "mtlo %[const_2_power_13], $ac2 \n\t" + "mthi $zero, $ac2 \n\t" + + "madd $ac1, %[load1], %[cospi_10_64] \n\t" + "madd $ac1, %[load2], %[cospi_22_64] \n\t" + "extp %[result3], $ac1, 31 \n\t" + + "madd $ac2, %[load3], %[cospi_26_64] \n\t" + "madd $ac2, %[load4], %[cospi_6_64] \n\t" + "extp %[result4], $ac2, 31 \n\t" + + "mtlo %[const_2_power_13], $ac1 \n\t" + "mthi $zero, $ac1 \n\t" + "mtlo %[const_2_power_13], $ac3 \n\t" + "mthi $zero, $ac3 \n\t" + + "sub %[load1], %[result2], %[result1] \n\t" + "sub %[load2], %[result4], %[result3] \n\t" + + "msub $ac1, %[load1], %[cospi_24_64] \n\t" + "msub $ac1, %[load2], %[cospi_8_64] \n\t" + "madd $ac3, %[load2], %[cospi_24_64] \n\t" + "msub $ac3, %[load1], %[cospi_8_64] \n\t" + + "extp %[step2_10], $ac1, 31 \n\t" + "extp %[step2_13], $ac3, 31 \n\t" + "add %[step2_11], %[result1], %[result2] \n\t" + "add %[step2_12], %[result4], %[result3] \n\t" + + : [load1] "=&r"(load1), [load2] "=&r"(load2), [load3] "=&r"(load3), + [load4] "=&r"(load4), [result1] "=&r"(result1), + [result2] "=&r"(result2), [result3] "=&r"(result3), + [result4] "=&r"(result4), [step2_10] "=r"(step2_10), + [step2_11] "=r"(step2_11), [step2_12] "=r"(step2_12), + [step2_13] "=r"(step2_13) + : [const_2_power_13] "r"(const_2_power_13), [input] "r"(input), + [cospi_22_64] "r"(cospi_22_64), [cospi_10_64] "r"(cospi_10_64), + [cospi_6_64] "r"(cospi_6_64), [cospi_26_64] "r"(cospi_26_64), + [cospi_24_64] "r"(cospi_24_64), [cospi_8_64] "r"(cospi_8_64)); + + __asm__ __volatile__( + "lh %[load5], 4(%[input]) \n\t" + "lh %[load6], 28(%[input]) \n\t" + "lh %[load7], 20(%[input]) \n\t" + "lh %[load8], 12(%[input]) \n\t" + + "mtlo %[const_2_power_13], $ac1 \n\t" + "mthi $zero, $ac1 \n\t" + "mtlo %[const_2_power_13], $ac3 \n\t" + "mthi $zero, $ac3 \n\t" + + "madd $ac1, %[load5], %[cospi_28_64] \n\t" + "msub $ac1, %[load6], %[cospi_4_64] \n\t" + "extp %[result1], $ac1, 31 \n\t" + + "madd $ac3, %[load7], %[cospi_12_64] \n\t" + "msub $ac3, %[load8], %[cospi_20_64] \n\t" + "extp %[result2], $ac3, 31 \n\t" + + "mtlo %[const_2_power_13], $ac1 \n\t" + "mthi $zero, $ac1 \n\t" + "mtlo %[const_2_power_13], $ac2 \n\t" + "mthi $zero, $ac2 \n\t" + + "madd $ac1, %[load7], %[cospi_20_64] \n\t" + "madd $ac1, %[load8], %[cospi_12_64] \n\t" + "extp %[result3], $ac1, 31 \n\t" + + "madd $ac2, %[load5], %[cospi_4_64] \n\t" + "madd $ac2, %[load6], %[cospi_28_64] \n\t" + "extp %[result4], $ac2, 31 \n\t" + + "mtlo %[const_2_power_13], $ac1 \n\t" + "mthi $zero, $ac1 \n\t" + "mtlo %[const_2_power_13], $ac3 \n\t" + "mthi $zero, $ac3 \n\t" + + "sub %[load5], %[result4], %[result3] \n\t" + "sub %[load5], %[load5], %[result1] \n\t" + "add %[load5], %[load5], %[result2] \n\t" + + "sub %[load6], %[result1], %[result2] \n\t" + "sub %[load6], %[load6], %[result3] \n\t" + "add %[load6], %[load6], %[result4] \n\t" + + "madd $ac1, %[load5], %[cospi_16_64] \n\t" + "madd $ac3, %[load6], %[cospi_16_64] \n\t" + + "extp %[step1_5], $ac1, 31 \n\t" + "extp %[step1_6], $ac3, 31 \n\t" + + "add %[step1_4], %[result1], %[result2] \n\t" + "add %[step1_7], %[result4], %[result3] \n\t" + + : [load5] "=&r"(load5), [load6] "=&r"(load6), [load7] "=&r"(load7), + [load8] "=&r"(load8), [result1] "=&r"(result1), + [result2] "=&r"(result2), [result3] "=&r"(result3), + [result4] "=&r"(result4), [step1_4] "=r"(step1_4), + [step1_5] "=r"(step1_5), [step1_6] "=r"(step1_6), + [step1_7] "=r"(step1_7) + : [const_2_power_13] "r"(const_2_power_13), [input] "r"(input), + [cospi_20_64] "r"(cospi_20_64), [cospi_12_64] "r"(cospi_12_64), + [cospi_4_64] "r"(cospi_4_64), [cospi_28_64] "r"(cospi_28_64), + [cospi_16_64] "r"(cospi_16_64)); + + __asm__ __volatile__( + "mtlo %[const_2_power_13], $ac0 \n\t" + "mthi $zero, $ac0 \n\t" + "mtlo %[const_2_power_13], $ac1 \n\t" + "mthi $zero, $ac1 \n\t" + + "sub %[load5], %[step2_14], %[step2_13] \n\t" + "sub %[load5], %[load5], %[step2_9] \n\t" + "add %[load5], %[load5], %[step2_10] \n\t" + + "madd $ac0, %[load5], %[cospi_16_64] \n\t" + + "sub %[load6], %[step2_14], %[step2_13] \n\t" + "sub %[load6], %[load6], %[step2_10] \n\t" + "add %[load6], %[load6], %[step2_9] \n\t" + + "madd $ac1, %[load6], %[cospi_16_64] \n\t" + + "mtlo %[const_2_power_13], $ac2 \n\t" + "mthi $zero, $ac2 \n\t" + "mtlo %[const_2_power_13], $ac3 \n\t" + "mthi $zero, $ac3 \n\t" + + "sub %[load5], %[step2_15], %[step2_12] \n\t" + "sub %[load5], %[load5], %[step2_8] \n\t" + "add %[load5], %[load5], %[step2_11] \n\t" + + "madd $ac2, %[load5], %[cospi_16_64] \n\t" + + "sub %[load6], %[step2_15], %[step2_12] \n\t" + "sub %[load6], %[load6], %[step2_11] \n\t" + "add %[load6], %[load6], %[step2_8] \n\t" + + "madd $ac3, %[load6], %[cospi_16_64] \n\t" + + "extp %[step1_10], $ac0, 31 \n\t" + "extp %[step1_13], $ac1, 31 \n\t" + "extp %[step1_11], $ac2, 31 \n\t" + "extp %[step1_12], $ac3, 31 \n\t" + + : [load5] "=&r"(load5), [load6] "=&r"(load6), [step1_10] "=r"(step1_10), + [step1_11] "=r"(step1_11), [step1_12] "=r"(step1_12), + [step1_13] "=r"(step1_13) + : [const_2_power_13] "r"(const_2_power_13), [step2_14] "r"(step2_14), + [step2_13] "r"(step2_13), [step2_9] "r"(step2_9), + [step2_10] "r"(step2_10), [step2_15] "r"(step2_15), + [step2_12] "r"(step2_12), [step2_8] "r"(step2_8), + [step2_11] "r"(step2_11), [cospi_16_64] "r"(cospi_16_64)); + + step1_8 = step2_8 + step2_11; + step1_9 = step2_9 + step2_10; + step1_14 = step2_13 + step2_14; + step1_15 = step2_12 + step2_15; + + __asm__ __volatile__( + "lbu %[load7], 0(%[dest_pix]) \n\t" + "add %[load5], %[step1_0], %[step1_7] \n\t" + "add %[load5], %[load5], %[step1_15] \n\t" + "addi %[load5], %[load5], 32 \n\t" + "sra %[load5], %[load5], 6 \n\t" + "add %[load7], %[load7], %[load5] \n\t" + "lbux %[load5], %[load7](%[cm]) \n\t" + "add %[load6], %[step1_1], %[step1_6] \n\t" + "add %[load6], %[load6], %[step1_14] \n\t" + "sb %[load5], 0(%[dest_pix]) \n\t" + "addu %[dest_pix], %[dest_pix], %[stride] \n\t" + "lbu %[load8], 0(%[dest_pix]) \n\t" + "addi %[load6], %[load6], 32 \n\t" + "sra %[load6], %[load6], 6 \n\t" + "add %[load8], %[load8], %[load6] \n\t" + "lbux %[load6], %[load8](%[cm]) \n\t" + "sb %[load6], 0(%[dest_pix]) \n\t" + "addu %[dest_pix], %[dest_pix], %[stride] \n\t" + + "lbu %[load7], 0(%[dest_pix]) \n\t" + "add %[load5], %[step1_2], %[step1_5] \n\t" + "add %[load5], %[load5], %[step1_13] \n\t" + "addi %[load5], %[load5], 32 \n\t" + "sra %[load5], %[load5], 6 \n\t" + "add %[load7], %[load7], %[load5] \n\t" + "lbux %[load5], %[load7](%[cm]) \n\t" + "add %[load6], %[step1_3], %[step1_4] \n\t" + "add %[load6], %[load6], %[step1_12] \n\t" + "sb %[load5], 0(%[dest_pix]) \n\t" + "addu %[dest_pix], %[dest_pix], %[stride] \n\t" + "lbu %[load8], 0(%[dest_pix]) \n\t" + "addi %[load6], %[load6], 32 \n\t" + "sra %[load6], %[load6], 6 \n\t" + "add %[load8], %[load8], %[load6] \n\t" + "lbux %[load6], %[load8](%[cm]) \n\t" + "sb %[load6], 0(%[dest_pix]) \n\t" + "addu %[dest_pix], %[dest_pix], %[stride] \n\t" + + "lbu %[load7], 0(%[dest_pix]) \n\t" + "sub %[load5], %[step1_3], %[step1_4] \n\t" + "add %[load5], %[load5], %[step1_11] \n\t" + "addi %[load5], %[load5], 32 \n\t" + "sra %[load5], %[load5], 6 \n\t" + "add %[load7], %[load7], %[load5] \n\t" + "lbux %[load5], %[load7](%[cm]) \n\t" + "sub %[load6], %[step1_2], %[step1_5] \n\t" + "add %[load6], %[load6], %[step1_10] \n\t" + "sb %[load5], 0(%[dest_pix]) \n\t" + "addu %[dest_pix], %[dest_pix], %[stride] \n\t" + "lbu %[load8], 0(%[dest_pix]) \n\t" + "addi %[load6], %[load6], 32 \n\t" + "sra %[load6], %[load6], 6 \n\t" + "add %[load8], %[load8], %[load6] \n\t" + "lbux %[load6], %[load8](%[cm]) \n\t" + "sb %[load6], 0(%[dest_pix]) \n\t" + "addu %[dest_pix], %[dest_pix], %[stride] \n\t" + + "sub %[load5], %[step1_1], %[step1_6] \n\t" + "lbu %[load7], 0(%[dest_pix]) \n\t" + "add %[load5], %[load5], %[step1_9] \n\t" + "addi %[load5], %[load5], 32 \n\t" + "sra %[load5], %[load5], 6 \n\t" + "add %[load7], %[load7], %[load5] \n\t" + "lbux %[load5], %[load7](%[cm]) \n\t" + "sub %[load6], %[step1_0], %[step1_7] \n\t" + "add %[load6], %[load6], %[step1_8] \n\t" + "sb %[load5], 0(%[dest_pix]) \n\t" + "addu %[dest_pix], %[dest_pix], %[stride] \n\t" + "lbu %[load8], 0(%[dest_pix]) \n\t" + "addi %[load6], %[load6], 32 \n\t" + "sra %[load6], %[load6], 6 \n\t" + "add %[load8], %[load8], %[load6] \n\t" + "lbux %[load6], %[load8](%[cm]) \n\t" + "sb %[load6], 0(%[dest_pix]) \n\t" + "addu %[dest_pix], %[dest_pix], %[stride] \n\t" + + "lbu %[load7], 0(%[dest_pix]) \n\t" + "sub %[load5], %[step1_0], %[step1_7] \n\t" + "sub %[load5], %[load5], %[step1_8] \n\t" + "addi %[load5], %[load5], 32 \n\t" + "sra %[load5], %[load5], 6 \n\t" + "add %[load7], %[load7], %[load5] \n\t" + "lbux %[load5], %[load7](%[cm]) \n\t" + "sub %[load6], %[step1_1], %[step1_6] \n\t" + "sub %[load6], %[load6], %[step1_9] \n\t" + "sb %[load5], 0(%[dest_pix]) \n\t" + "addu %[dest_pix], %[dest_pix], %[stride] \n\t" + "lbu %[load8], 0(%[dest_pix]) \n\t" + "addi %[load6], %[load6], 32 \n\t" + "sra %[load6], %[load6], 6 \n\t" + "add %[load8], %[load8], %[load6] \n\t" + "lbux %[load6], %[load8](%[cm]) \n\t" + "sb %[load6], 0(%[dest_pix]) \n\t" + "addu %[dest_pix], %[dest_pix], %[stride] \n\t" + + "lbu %[load7], 0(%[dest_pix]) \n\t" + "sub %[load5], %[step1_2], %[step1_5] \n\t" + "sub %[load5], %[load5], %[step1_10] \n\t" + "addi %[load5], %[load5], 32 \n\t" + "sra %[load5], %[load5], 6 \n\t" + "add %[load7], %[load7], %[load5] \n\t" + "lbux %[load5], %[load7](%[cm]) \n\t" + "sub %[load6], %[step1_3], %[step1_4] \n\t" + "sub %[load6], %[load6], %[step1_11] \n\t" + "sb %[load5], 0(%[dest_pix]) \n\t" + "addu %[dest_pix], %[dest_pix], %[stride] \n\t" + "lbu %[load8], 0(%[dest_pix]) \n\t" + "addi %[load6], %[load6], 32 \n\t" + "sra %[load6], %[load6], 6 \n\t" + "add %[load8], %[load8], %[load6] \n\t" + "lbux %[load6], %[load8](%[cm]) \n\t" + "sb %[load6], 0(%[dest_pix]) \n\t" + "addu %[dest_pix], %[dest_pix], %[stride] \n\t" + + "lbu %[load7], 0(%[dest_pix]) \n\t" + "add %[load5], %[step1_3], %[step1_4] \n\t" + "sub %[load5], %[load5], %[step1_12] \n\t" + "addi %[load5], %[load5], 32 \n\t" + "sra %[load5], %[load5], 6 \n\t" + "add %[load7], %[load7], %[load5] \n\t" + "lbux %[load5], %[load7](%[cm]) \n\t" + "add %[load6], %[step1_2], %[step1_5] \n\t" + "sub %[load6], %[load6], %[step1_13] \n\t" + "sb %[load5], 0(%[dest_pix]) \n\t" + "addu %[dest_pix], %[dest_pix], %[stride] \n\t" + "lbu %[load8], 0(%[dest_pix]) \n\t" + "addi %[load6], %[load6], 32 \n\t" + "sra %[load6], %[load6], 6 \n\t" + "add %[load8], %[load8], %[load6] \n\t" + "lbux %[load6], %[load8](%[cm]) \n\t" + "sb %[load6], 0(%[dest_pix]) \n\t" + "addu %[dest_pix], %[dest_pix], %[stride] \n\t" + + "lbu %[load7], 0(%[dest_pix]) \n\t" + "add %[load5], %[step1_1], %[step1_6] \n\t" + "sub %[load5], %[load5], %[step1_14] \n\t" + "addi %[load5], %[load5], 32 \n\t" + "sra %[load5], %[load5], 6 \n\t" + "add %[load7], %[load7], %[load5] \n\t" + "lbux %[load5], %[load7](%[cm]) \n\t" + "add %[load6], %[step1_0], %[step1_7] \n\t" + "sub %[load6], %[load6], %[step1_15] \n\t" + "sb %[load5], 0(%[dest_pix]) \n\t" + "addu %[dest_pix], %[dest_pix], %[stride] \n\t" + "lbu %[load8], 0(%[dest_pix]) \n\t" + "addi %[load6], %[load6], 32 \n\t" + "sra %[load6], %[load6], 6 \n\t" + "add %[load8], %[load8], %[load6] \n\t" + "lbux %[load6], %[load8](%[cm]) \n\t" + "sb %[load6], 0(%[dest_pix]) \n\t" + + : [load5] "=&r"(load5), [load6] "=&r"(load6), [load7] "=&r"(load7), + [load8] "=&r"(load8), [dest_pix] "+r"(dest_pix) + : + [cm] "r"(cm), [stride] "r"(stride), [step1_0] "r"(step1_0), + [step1_1] "r"(step1_1), [step1_2] "r"(step1_2), [step1_3] "r"(step1_3), + [step1_4] "r"(step1_4), [step1_5] "r"(step1_5), [step1_6] "r"(step1_6), + [step1_7] "r"(step1_7), [step1_8] "r"(step1_8), [step1_9] "r"(step1_9), + [step1_10] "r"(step1_10), [step1_11] "r"(step1_11), + [step1_12] "r"(step1_12), [step1_13] "r"(step1_13), + [step1_14] "r"(step1_14), [step1_15] "r"(step1_15)); + + input += 16; + } +} + +void vpx_idct16x16_256_add_dspr2(const int16_t *input, uint8_t *dest, + int stride) { + DECLARE_ALIGNED(32, int16_t, out[16 * 16]); + uint32_t pos = 45; + + /* bit positon for extract from acc */ + __asm__ __volatile__("wrdsp %[pos], 1 \n\t" : : [pos] "r"(pos)); + + // First transform rows + idct16_rows_dspr2(input, out, 16); + + // Then transform columns and add to dest + idct16_cols_add_blk_dspr2(out, dest, stride); +} + +void vpx_idct16x16_10_add_dspr2(const int16_t *input, uint8_t *dest, + int stride) { + DECLARE_ALIGNED(32, int16_t, out[16 * 16]); + int16_t *outptr = out; + uint32_t i; + uint32_t pos = 45; + + /* bit positon for extract from acc */ + __asm__ __volatile__("wrdsp %[pos], 1 \n\t" : : [pos] "r"(pos)); + + // First transform rows. Since all non-zero dct coefficients are in + // upper-left 4x4 area, we only need to calculate first 4 rows here. + idct16_rows_dspr2(input, outptr, 4); + + outptr += 4; + for (i = 0; i < 6; ++i) { + __asm__ __volatile__( + "sw $zero, 0(%[outptr]) \n\t" + "sw $zero, 32(%[outptr]) \n\t" + "sw $zero, 64(%[outptr]) \n\t" + "sw $zero, 96(%[outptr]) \n\t" + "sw $zero, 128(%[outptr]) \n\t" + "sw $zero, 160(%[outptr]) \n\t" + "sw $zero, 192(%[outptr]) \n\t" + "sw $zero, 224(%[outptr]) \n\t" + "sw $zero, 256(%[outptr]) \n\t" + "sw $zero, 288(%[outptr]) \n\t" + "sw $zero, 320(%[outptr]) \n\t" + "sw $zero, 352(%[outptr]) \n\t" + "sw $zero, 384(%[outptr]) \n\t" + "sw $zero, 416(%[outptr]) \n\t" + "sw $zero, 448(%[outptr]) \n\t" + "sw $zero, 480(%[outptr]) \n\t" + + : + : [outptr] "r"(outptr)); + + outptr += 2; + } + + // Then transform columns + idct16_cols_add_blk_dspr2(out, dest, stride); +} + +void vpx_idct16x16_1_add_dspr2(const int16_t *input, uint8_t *dest, + int stride) { + uint32_t pos = 45; + int32_t out; + int32_t r; + int32_t a1, absa1; + int32_t vector_a1; + int32_t t1, t2, t3, t4; + int32_t vector_1, vector_2, vector_3, vector_4; + + /* bit positon for extract from acc */ + __asm__ __volatile__("wrdsp %[pos], 1 \n\t" + + : + : [pos] "r"(pos)); + + out = DCT_CONST_ROUND_SHIFT_TWICE_COSPI_16_64(input[0]); + __asm__ __volatile__( + "addi %[out], %[out], 32 \n\t" + "sra %[a1], %[out], 6 \n\t" + + : [out] "+r"(out), [a1] "=r"(a1) + :); + + if (a1 < 0) { + /* use quad-byte + * input and output memory are four byte aligned */ + __asm__ __volatile__( + "abs %[absa1], %[a1] \n\t" + "replv.qb %[vector_a1], %[absa1] \n\t" + + : [absa1] "=r"(absa1), [vector_a1] "=r"(vector_a1) + : [a1] "r"(a1)); + + for (r = 16; r--;) { + __asm__ __volatile__( + "lw %[t1], 0(%[dest]) \n\t" + "lw %[t2], 4(%[dest]) \n\t" + "lw %[t3], 8(%[dest]) \n\t" + "lw %[t4], 12(%[dest]) \n\t" + "subu_s.qb %[vector_1], %[t1], %[vector_a1] \n\t" + "subu_s.qb %[vector_2], %[t2], %[vector_a1] \n\t" + "subu_s.qb %[vector_3], %[t3], %[vector_a1] \n\t" + "subu_s.qb %[vector_4], %[t4], %[vector_a1] \n\t" + "sw %[vector_1], 0(%[dest]) \n\t" + "sw %[vector_2], 4(%[dest]) \n\t" + "sw %[vector_3], 8(%[dest]) \n\t" + "sw %[vector_4], 12(%[dest]) \n\t" + "add %[dest], %[dest], %[stride] \n\t" + + : [t1] "=&r"(t1), [t2] "=&r"(t2), [t3] "=&r"(t3), [t4] "=&r"(t4), + [vector_1] "=&r"(vector_1), [vector_2] "=&r"(vector_2), + [vector_3] "=&r"(vector_3), [vector_4] "=&r"(vector_4), + [dest] "+&r"(dest) + : [stride] "r"(stride), [vector_a1] "r"(vector_a1)); + } + } else if (a1 > 255) { + int32_t a11, a12, vector_a11, vector_a12; + + /* use quad-byte + * input and output memory are four byte aligned */ + a11 = a1 >> 1; + a12 = a1 - a11; + __asm__ __volatile__( + "replv.qb %[vector_a11], %[a11] \n\t" + "replv.qb %[vector_a12], %[a12] \n\t" + + : [vector_a11] "=&r"(vector_a11), [vector_a12] "=&r"(vector_a12) + : [a11] "r"(a11), [a12] "r"(a12)); + + for (r = 16; r--;) { + __asm__ __volatile__( + "lw %[t1], 0(%[dest]) \n\t" + "lw %[t2], 4(%[dest]) \n\t" + "lw %[t3], 8(%[dest]) \n\t" + "lw %[t4], 12(%[dest]) \n\t" + "addu_s.qb %[vector_1], %[t1], %[vector_a11] \n\t" + "addu_s.qb %[vector_2], %[t2], %[vector_a11] \n\t" + "addu_s.qb %[vector_3], %[t3], %[vector_a11] \n\t" + "addu_s.qb %[vector_4], %[t4], %[vector_a11] \n\t" + "addu_s.qb %[vector_1], %[vector_1], %[vector_a12] \n\t" + "addu_s.qb %[vector_2], %[vector_2], %[vector_a12] \n\t" + "addu_s.qb %[vector_3], %[vector_3], %[vector_a12] \n\t" + "addu_s.qb %[vector_4], %[vector_4], %[vector_a12] \n\t" + "sw %[vector_1], 0(%[dest]) \n\t" + "sw %[vector_2], 4(%[dest]) \n\t" + "sw %[vector_3], 8(%[dest]) \n\t" + "sw %[vector_4], 12(%[dest]) \n\t" + "add %[dest], %[dest], %[stride] \n\t" + + : [t1] "=&r"(t1), [t2] "=&r"(t2), [t3] "=&r"(t3), [t4] "=&r"(t4), + [vector_1] "=&r"(vector_1), [vector_2] "=&r"(vector_2), + [vector_3] "=&r"(vector_3), [vector_4] "=&r"(vector_4), + [dest] "+&r"(dest) + : [stride] "r"(stride), [vector_a11] "r"(vector_a11), + [vector_a12] "r"(vector_a12)); + } + } else { + /* use quad-byte + * input and output memory are four byte aligned */ + __asm__ __volatile__("replv.qb %[vector_a1], %[a1] \n\t" + + : [vector_a1] "=r"(vector_a1) + : [a1] "r"(a1)); + + for (r = 16; r--;) { + __asm__ __volatile__( + "lw %[t1], 0(%[dest]) \n\t" + "lw %[t2], 4(%[dest]) \n\t" + "lw %[t3], 8(%[dest]) \n\t" + "lw %[t4], 12(%[dest]) \n\t" + "addu_s.qb %[vector_1], %[t1], %[vector_a1] \n\t" + "addu_s.qb %[vector_2], %[t2], %[vector_a1] \n\t" + "addu_s.qb %[vector_3], %[t3], %[vector_a1] \n\t" + "addu_s.qb %[vector_4], %[t4], %[vector_a1] \n\t" + "sw %[vector_1], 0(%[dest]) \n\t" + "sw %[vector_2], 4(%[dest]) \n\t" + "sw %[vector_3], 8(%[dest]) \n\t" + "sw %[vector_4], 12(%[dest]) \n\t" + "add %[dest], %[dest], %[stride] \n\t" + + : [t1] "=&r"(t1), [t2] "=&r"(t2), [t3] "=&r"(t3), [t4] "=&r"(t4), + [vector_1] "=&r"(vector_1), [vector_2] "=&r"(vector_2), + [vector_3] "=&r"(vector_3), [vector_4] "=&r"(vector_4), + [dest] "+&r"(dest) + : [stride] "r"(stride), [vector_a1] "r"(vector_a1)); + } + } +} + +void iadst16_dspr2(const int16_t *input, int16_t *output) { + int s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12, s13, s14, s15; + + int x0 = input[15]; + int x1 = input[0]; + int x2 = input[13]; + int x3 = input[2]; + int x4 = input[11]; + int x5 = input[4]; + int x6 = input[9]; + int x7 = input[6]; + int x8 = input[7]; + int x9 = input[8]; + int x10 = input[5]; + int x11 = input[10]; + int x12 = input[3]; + int x13 = input[12]; + int x14 = input[1]; + int x15 = input[14]; + + if (!(x0 | x1 | x2 | x3 | x4 | x5 | x6 | x7 | x8 | x9 | x10 | x11 | x12 | + x13 | x14 | x15)) { + output[0] = output[1] = output[2] = output[3] = output[4] = output[5] = + output[6] = output[7] = output[8] = output[9] = output[10] = + output[11] = output[12] = output[13] = output[14] = output[15] = 0; + return; + } + + // stage 1 + s0 = x0 * cospi_1_64 + x1 * cospi_31_64; + s1 = x0 * cospi_31_64 - x1 * cospi_1_64; + s2 = x2 * cospi_5_64 + x3 * cospi_27_64; + s3 = x2 * cospi_27_64 - x3 * cospi_5_64; + s4 = x4 * cospi_9_64 + x5 * cospi_23_64; + s5 = x4 * cospi_23_64 - x5 * cospi_9_64; + s6 = x6 * cospi_13_64 + x7 * cospi_19_64; + s7 = x6 * cospi_19_64 - x7 * cospi_13_64; + s8 = x8 * cospi_17_64 + x9 * cospi_15_64; + s9 = x8 * cospi_15_64 - x9 * cospi_17_64; + s10 = x10 * cospi_21_64 + x11 * cospi_11_64; + s11 = x10 * cospi_11_64 - x11 * cospi_21_64; + s12 = x12 * cospi_25_64 + x13 * cospi_7_64; + s13 = x12 * cospi_7_64 - x13 * cospi_25_64; + s14 = x14 * cospi_29_64 + x15 * cospi_3_64; + s15 = x14 * cospi_3_64 - x15 * cospi_29_64; + + x0 = dct_const_round_shift(s0 + s8); + x1 = dct_const_round_shift(s1 + s9); + x2 = dct_const_round_shift(s2 + s10); + x3 = dct_const_round_shift(s3 + s11); + x4 = dct_const_round_shift(s4 + s12); + x5 = dct_const_round_shift(s5 + s13); + x6 = dct_const_round_shift(s6 + s14); + x7 = dct_const_round_shift(s7 + s15); + x8 = dct_const_round_shift(s0 - s8); + x9 = dct_const_round_shift(s1 - s9); + x10 = dct_const_round_shift(s2 - s10); + x11 = dct_const_round_shift(s3 - s11); + x12 = dct_const_round_shift(s4 - s12); + x13 = dct_const_round_shift(s5 - s13); + x14 = dct_const_round_shift(s6 - s14); + x15 = dct_const_round_shift(s7 - s15); + + // stage 2 + s0 = x0; + s1 = x1; + s2 = x2; + s3 = x3; + s4 = x4; + s5 = x5; + s6 = x6; + s7 = x7; + s8 = x8 * cospi_4_64 + x9 * cospi_28_64; + s9 = x8 * cospi_28_64 - x9 * cospi_4_64; + s10 = x10 * cospi_20_64 + x11 * cospi_12_64; + s11 = x10 * cospi_12_64 - x11 * cospi_20_64; + s12 = -x12 * cospi_28_64 + x13 * cospi_4_64; + s13 = x12 * cospi_4_64 + x13 * cospi_28_64; + s14 = -x14 * cospi_12_64 + x15 * cospi_20_64; + s15 = x14 * cospi_20_64 + x15 * cospi_12_64; + + x0 = s0 + s4; + x1 = s1 + s5; + x2 = s2 + s6; + x3 = s3 + s7; + x4 = s0 - s4; + x5 = s1 - s5; + x6 = s2 - s6; + x7 = s3 - s7; + x8 = dct_const_round_shift(s8 + s12); + x9 = dct_const_round_shift(s9 + s13); + x10 = dct_const_round_shift(s10 + s14); + x11 = dct_const_round_shift(s11 + s15); + x12 = dct_const_round_shift(s8 - s12); + x13 = dct_const_round_shift(s9 - s13); + x14 = dct_const_round_shift(s10 - s14); + x15 = dct_const_round_shift(s11 - s15); + + // stage 3 + s0 = x0; + s1 = x1; + s2 = x2; + s3 = x3; + s4 = x4 * cospi_8_64 + x5 * cospi_24_64; + s5 = x4 * cospi_24_64 - x5 * cospi_8_64; + s6 = -x6 * cospi_24_64 + x7 * cospi_8_64; + s7 = x6 * cospi_8_64 + x7 * cospi_24_64; + s8 = x8; + s9 = x9; + s10 = x10; + s11 = x11; + s12 = x12 * cospi_8_64 + x13 * cospi_24_64; + s13 = x12 * cospi_24_64 - x13 * cospi_8_64; + s14 = -x14 * cospi_24_64 + x15 * cospi_8_64; + s15 = x14 * cospi_8_64 + x15 * cospi_24_64; + + x0 = s0 + s2; + x1 = s1 + s3; + x2 = s0 - s2; + x3 = s1 - s3; + x4 = dct_const_round_shift(s4 + s6); + x5 = dct_const_round_shift(s5 + s7); + x6 = dct_const_round_shift(s4 - s6); + x7 = dct_const_round_shift(s5 - s7); + x8 = s8 + s10; + x9 = s9 + s11; + x10 = s8 - s10; + x11 = s9 - s11; + x12 = dct_const_round_shift(s12 + s14); + x13 = dct_const_round_shift(s13 + s15); + x14 = dct_const_round_shift(s12 - s14); + x15 = dct_const_round_shift(s13 - s15); + + // stage 4 + s2 = (-cospi_16_64) * (x2 + x3); + s3 = cospi_16_64 * (x2 - x3); + s6 = cospi_16_64 * (x6 + x7); + s7 = cospi_16_64 * (-x6 + x7); + s10 = cospi_16_64 * (x10 + x11); + s11 = cospi_16_64 * (-x10 + x11); + s14 = (-cospi_16_64) * (x14 + x15); + s15 = cospi_16_64 * (x14 - x15); + + x2 = dct_const_round_shift(s2); + x3 = dct_const_round_shift(s3); + x6 = dct_const_round_shift(s6); + x7 = dct_const_round_shift(s7); + x10 = dct_const_round_shift(s10); + x11 = dct_const_round_shift(s11); + x14 = dct_const_round_shift(s14); + x15 = dct_const_round_shift(s15); + + output[0] = x0; + output[1] = -x8; + output[2] = x12; + output[3] = -x4; + output[4] = x6; + output[5] = x14; + output[6] = x10; + output[7] = x2; + output[8] = x3; + output[9] = x11; + output[10] = x15; + output[11] = x7; + output[12] = x5; + output[13] = -x13; + output[14] = x9; + output[15] = -x1; +} + +#endif // HAVE_DSPR2 diff --git a/vpx_dsp/mips/itrans32_cols_dspr2.c b/vpx_dsp/mips/itrans32_cols_dspr2.c new file mode 100644 index 0000000..3f043b4 --- /dev/null +++ b/vpx_dsp/mips/itrans32_cols_dspr2.c @@ -0,0 +1,1119 @@ +/* + * Copyright (c) 2013 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "./vpx_config.h" +#include "vpx_dsp/mips/inv_txfm_dspr2.h" +#include "vpx_dsp/txfm_common.h" + +#if HAVE_DSPR2 +void vpx_idct32_cols_add_blk_dspr2(int16_t *input, uint8_t *dest, int stride) { + int step1_0, step1_1, step1_2, step1_3, step1_4, step1_5, step1_6; + int step1_7, step1_8, step1_9, step1_10, step1_11, step1_12, step1_13; + int step1_14, step1_15, step1_16, step1_17, step1_18, step1_19, step1_20; + int step1_21, step1_22, step1_23, step1_24, step1_25, step1_26, step1_27; + int step1_28, step1_29, step1_30, step1_31; + int step2_0, step2_1, step2_2, step2_3, step2_4, step2_5, step2_6; + int step2_7, step2_8, step2_9, step2_10, step2_11, step2_12, step2_13; + int step2_14, step2_15, step2_16, step2_17, step2_18, step2_19, step2_20; + int step2_21, step2_22, step2_23, step2_24, step2_25, step2_26, step2_27; + int step2_28, step2_29, step2_30, step2_31; + int step3_8, step3_9, step3_10, step3_11, step3_12, step3_13, step3_14; + int step3_15, step3_16, step3_17, step3_18, step3_19, step3_20, step3_21; + int step3_22, step3_23, step3_24, step3_25, step3_26, step3_27, step3_28; + int step3_29, step3_30, step3_31; + int temp0, temp1, temp2, temp3; + int load1, load2, load3, load4; + int result1, result2; + int i; + uint8_t *dest_pix, *dest_pix1; + const int const_2_power_13 = 8192; + uint8_t *cm = vpx_ff_cropTbl; + + /* prefetch vpx_ff_cropTbl */ + prefetch_load(vpx_ff_cropTbl); + prefetch_load(vpx_ff_cropTbl + 32); + prefetch_load(vpx_ff_cropTbl + 64); + prefetch_load(vpx_ff_cropTbl + 96); + prefetch_load(vpx_ff_cropTbl + 128); + prefetch_load(vpx_ff_cropTbl + 160); + prefetch_load(vpx_ff_cropTbl + 192); + prefetch_load(vpx_ff_cropTbl + 224); + + for (i = 0; i < 32; ++i) { + dest_pix = dest + i; + dest_pix1 = dest + i + 31 * stride; + + __asm__ __volatile__( + "lh %[load1], 2(%[input]) \n\t" + "lh %[load2], 62(%[input]) \n\t" + "lh %[load3], 34(%[input]) \n\t" + "lh %[load4], 30(%[input]) \n\t" + + "mtlo %[const_2_power_13], $ac1 \n\t" + "mthi $zero, $ac1 \n\t" + "mtlo %[const_2_power_13], $ac3 \n\t" + "mthi $zero, $ac3 \n\t" + + "madd $ac1, %[load1], %[cospi_31_64] \n\t" + "msub $ac1, %[load2], %[cospi_1_64] \n\t" + "extp %[temp0], $ac1, 31 \n\t" + + "madd $ac3, %[load1], %[cospi_1_64] \n\t" + "madd $ac3, %[load2], %[cospi_31_64] \n\t" + "extp %[temp3], $ac3, 31 \n\t" + + "mtlo %[const_2_power_13], $ac1 \n\t" + "mthi $zero, $ac1 \n\t" + "mtlo %[const_2_power_13], $ac2 \n\t" + "mthi $zero, $ac2 \n\t" + + "madd $ac2, %[load3], %[cospi_15_64] \n\t" + "msub $ac2, %[load4], %[cospi_17_64] \n\t" + "extp %[temp1], $ac2, 31 \n\t" + + "madd $ac1, %[load3], %[cospi_17_64] \n\t" + "madd $ac1, %[load4], %[cospi_15_64] \n\t" + "extp %[temp2], $ac1, 31 \n\t" + + "mtlo %[const_2_power_13], $ac1 \n\t" + "mthi $zero, $ac1 \n\t" + "mtlo %[const_2_power_13], $ac3 \n\t" + "mthi $zero, $ac3 \n\t" + + "sub %[load1], %[temp3], %[temp2] \n\t" + "sub %[load2], %[temp0], %[temp1] \n\t" + + "madd $ac1, %[load1], %[cospi_28_64] \n\t" + "msub $ac1, %[load2], %[cospi_4_64] \n\t" + "madd $ac3, %[load1], %[cospi_4_64] \n\t" + "madd $ac3, %[load2], %[cospi_28_64] \n\t" + + "extp %[step1_17], $ac1, 31 \n\t" + "extp %[step1_30], $ac3, 31 \n\t" + "add %[step1_16], %[temp0], %[temp1] \n\t" + "add %[step1_31], %[temp2], %[temp3] \n\t" + + : [load1] "=&r"(load1), [load2] "=&r"(load2), [load3] "=&r"(load3), + [load4] "=&r"(load4), [temp0] "=&r"(temp0), [temp1] "=&r"(temp1), + [temp2] "=&r"(temp2), [temp3] "=&r"(temp3), + [step1_16] "=&r"(step1_16), [step1_17] "=&r"(step1_17), + [step1_30] "=&r"(step1_30), [step1_31] "=&r"(step1_31) + : [const_2_power_13] "r"(const_2_power_13), [input] "r"(input), + [cospi_31_64] "r"(cospi_31_64), [cospi_1_64] "r"(cospi_1_64), + [cospi_4_64] "r"(cospi_4_64), [cospi_17_64] "r"(cospi_17_64), + [cospi_15_64] "r"(cospi_15_64), [cospi_28_64] "r"(cospi_28_64)); + + __asm__ __volatile__( + "lh %[load1], 18(%[input]) \n\t" + "lh %[load2], 46(%[input]) \n\t" + "lh %[load3], 50(%[input]) \n\t" + "lh %[load4], 14(%[input]) \n\t" + + "mtlo %[const_2_power_13], $ac1 \n\t" + "mthi $zero, $ac1 \n\t" + "mtlo %[const_2_power_13], $ac3 \n\t" + "mthi $zero, $ac3 \n\t" + + "madd $ac1, %[load1], %[cospi_23_64] \n\t" + "msub $ac1, %[load2], %[cospi_9_64] \n\t" + "extp %[temp0], $ac1, 31 \n\t" + + "madd $ac3, %[load1], %[cospi_9_64] \n\t" + "madd $ac3, %[load2], %[cospi_23_64] \n\t" + "extp %[temp3], $ac3, 31 \n\t" + + "mtlo %[const_2_power_13], $ac1 \n\t" + "mthi $zero, $ac1 \n\t" + "mtlo %[const_2_power_13], $ac2 \n\t" + "mthi $zero, $ac2 \n\t" + + "madd $ac2, %[load3], %[cospi_7_64] \n\t" + "msub $ac2, %[load4], %[cospi_25_64] \n\t" + "extp %[temp1], $ac2, 31 \n\t" + + "madd $ac1, %[load3], %[cospi_25_64] \n\t" + "madd $ac1, %[load4], %[cospi_7_64] \n\t" + "extp %[temp2], $ac1, 31 \n\t" + + "mtlo %[const_2_power_13], $ac1 \n\t" + "mthi $zero, $ac1 \n\t" + "mtlo %[const_2_power_13], $ac3 \n\t" + "mthi $zero, $ac3 \n\t" + + "sub %[load1], %[temp1], %[temp0] \n\t" + "sub %[load2], %[temp2], %[temp3] \n\t" + + "msub $ac1, %[load1], %[cospi_28_64] \n\t" + "msub $ac1, %[load2], %[cospi_4_64] \n\t" + "msub $ac3, %[load1], %[cospi_4_64] \n\t" + "madd $ac3, %[load2], %[cospi_28_64] \n\t" + + "extp %[step1_18], $ac1, 31 \n\t" + "extp %[step1_29], $ac3, 31 \n\t" + "add %[step1_19], %[temp0], %[temp1] \n\t" + "add %[step1_28], %[temp2], %[temp3] \n\t" + + : [load1] "=&r"(load1), [load2] "=&r"(load2), [load3] "=&r"(load3), + [load4] "=&r"(load4), [temp0] "=&r"(temp0), [temp1] "=&r"(temp1), + [temp2] "=&r"(temp2), [temp3] "=&r"(temp3), + [step1_18] "=&r"(step1_18), [step1_19] "=&r"(step1_19), + [step1_28] "=&r"(step1_28), [step1_29] "=&r"(step1_29) + : [const_2_power_13] "r"(const_2_power_13), [input] "r"(input), + [cospi_23_64] "r"(cospi_23_64), [cospi_9_64] "r"(cospi_9_64), + [cospi_4_64] "r"(cospi_4_64), [cospi_7_64] "r"(cospi_7_64), + [cospi_25_64] "r"(cospi_25_64), [cospi_28_64] "r"(cospi_28_64)); + + __asm__ __volatile__( + "lh %[load1], 10(%[input]) \n\t" + "lh %[load2], 54(%[input]) \n\t" + "lh %[load3], 42(%[input]) \n\t" + "lh %[load4], 22(%[input]) \n\t" + + "mtlo %[const_2_power_13], $ac1 \n\t" + "mthi $zero, $ac1 \n\t" + "mtlo %[const_2_power_13], $ac3 \n\t" + "mthi $zero, $ac3 \n\t" + + "madd $ac1, %[load1], %[cospi_27_64] \n\t" + "msub $ac1, %[load2], %[cospi_5_64] \n\t" + "extp %[temp0], $ac1, 31 \n\t" + + "madd $ac3, %[load1], %[cospi_5_64] \n\t" + "madd $ac3, %[load2], %[cospi_27_64] \n\t" + "extp %[temp3], $ac3, 31 \n\t" + + "mtlo %[const_2_power_13], $ac1 \n\t" + "mthi $zero, $ac1 \n\t" + "mtlo %[const_2_power_13], $ac2 \n\t" + "mthi $zero, $ac2 \n\t" + + "madd $ac2, %[load3], %[cospi_11_64] \n\t" + "msub $ac2, %[load4], %[cospi_21_64] \n\t" + "extp %[temp1], $ac2, 31 \n\t" + + "madd $ac1, %[load3], %[cospi_21_64] \n\t" + "madd $ac1, %[load4], %[cospi_11_64] \n\t" + "extp %[temp2], $ac1, 31 \n\t" + + "mtlo %[const_2_power_13], $ac1 \n\t" + "mthi $zero, $ac1 \n\t" + "mtlo %[const_2_power_13], $ac3 \n\t" + "mthi $zero, $ac3 \n\t" + + "sub %[load1], %[temp0], %[temp1] \n\t" + "sub %[load2], %[temp3], %[temp2] \n\t" + + "madd $ac1, %[load2], %[cospi_12_64] \n\t" + "msub $ac1, %[load1], %[cospi_20_64] \n\t" + "madd $ac3, %[load1], %[cospi_12_64] \n\t" + "madd $ac3, %[load2], %[cospi_20_64] \n\t" + + "extp %[step1_21], $ac1, 31 \n\t" + "extp %[step1_26], $ac3, 31 \n\t" + "add %[step1_20], %[temp0], %[temp1] \n\t" + "add %[step1_27], %[temp2], %[temp3] \n\t" + + : [load1] "=&r"(load1), [load2] "=&r"(load2), [load3] "=&r"(load3), + [load4] "=&r"(load4), [temp0] "=&r"(temp0), [temp1] "=&r"(temp1), + [temp2] "=&r"(temp2), [temp3] "=&r"(temp3), + [step1_20] "=&r"(step1_20), [step1_21] "=&r"(step1_21), + [step1_26] "=&r"(step1_26), [step1_27] "=&r"(step1_27) + : [const_2_power_13] "r"(const_2_power_13), [input] "r"(input), + [cospi_27_64] "r"(cospi_27_64), [cospi_5_64] "r"(cospi_5_64), + [cospi_11_64] "r"(cospi_11_64), [cospi_21_64] "r"(cospi_21_64), + [cospi_12_64] "r"(cospi_12_64), [cospi_20_64] "r"(cospi_20_64)); + + __asm__ __volatile__( + "lh %[load1], 26(%[input]) \n\t" + "lh %[load2], 38(%[input]) \n\t" + "lh %[load3], 58(%[input]) \n\t" + "lh %[load4], 6(%[input]) \n\t" + + "mtlo %[const_2_power_13], $ac1 \n\t" + "mthi $zero, $ac1 \n\t" + "mtlo %[const_2_power_13], $ac3 \n\t" + "mthi $zero, $ac3 \n\t" + + "madd $ac1, %[load1], %[cospi_19_64] \n\t" + "msub $ac1, %[load2], %[cospi_13_64] \n\t" + "extp %[temp0], $ac1, 31 \n\t" + "madd $ac3, %[load1], %[cospi_13_64] \n\t" + "madd $ac3, %[load2], %[cospi_19_64] \n\t" + "extp %[temp3], $ac3, 31 \n\t" + + "mtlo %[const_2_power_13], $ac1 \n\t" + "mthi $zero, $ac1 \n\t" + "mtlo %[const_2_power_13], $ac2 \n\t" + "mthi $zero, $ac2 \n\t" + + "madd $ac2, %[load3], %[cospi_3_64] \n\t" + "msub $ac2, %[load4], %[cospi_29_64] \n\t" + "extp %[temp1], $ac2, 31 \n\t" + "madd $ac1, %[load3], %[cospi_29_64] \n\t" + "madd $ac1, %[load4], %[cospi_3_64] \n\t" + "extp %[temp2], $ac1, 31 \n\t" + + "mtlo %[const_2_power_13], $ac1 \n\t" + "mthi $zero, $ac1 \n\t" + "mtlo %[const_2_power_13], $ac3 \n\t" + "mthi $zero, $ac3 \n\t" + + "sub %[load1], %[temp1], %[temp0] \n\t" + "sub %[load2], %[temp2], %[temp3] \n\t" + "msub $ac1, %[load1], %[cospi_12_64] \n\t" + "msub $ac1, %[load2], %[cospi_20_64] \n\t" + "msub $ac3, %[load1], %[cospi_20_64] \n\t" + "madd $ac3, %[load2], %[cospi_12_64] \n\t" + "extp %[step1_22], $ac1, 31 \n\t" + "extp %[step1_25], $ac3, 31 \n\t" + "add %[step1_23], %[temp0], %[temp1] \n\t" + "add %[step1_24], %[temp2], %[temp3] \n\t" + + : [load1] "=&r"(load1), [load2] "=&r"(load2), [load3] "=&r"(load3), + [load4] "=&r"(load4), [temp0] "=&r"(temp0), [temp1] "=&r"(temp1), + [temp2] "=&r"(temp2), [temp3] "=&r"(temp3), + [step1_22] "=&r"(step1_22), [step1_23] "=&r"(step1_23), + [step1_24] "=&r"(step1_24), [step1_25] "=&r"(step1_25) + : [const_2_power_13] "r"(const_2_power_13), [input] "r"(input), + [cospi_19_64] "r"(cospi_19_64), [cospi_13_64] "r"(cospi_13_64), + [cospi_3_64] "r"(cospi_3_64), [cospi_29_64] "r"(cospi_29_64), + [cospi_12_64] "r"(cospi_12_64), [cospi_20_64] "r"(cospi_20_64)); + + __asm__ __volatile__( + "lh %[load1], 4(%[input]) \n\t" + "lh %[load2], 60(%[input]) \n\t" + "lh %[load3], 36(%[input]) \n\t" + "lh %[load4], 28(%[input]) \n\t" + + "mtlo %[const_2_power_13], $ac1 \n\t" + "mthi $zero, $ac1 \n\t" + "mtlo %[const_2_power_13], $ac3 \n\t" + "mthi $zero, $ac3 \n\t" + + "madd $ac1, %[load1], %[cospi_30_64] \n\t" + "msub $ac1, %[load2], %[cospi_2_64] \n\t" + "extp %[temp0], $ac1, 31 \n\t" + "madd $ac3, %[load1], %[cospi_2_64] \n\t" + "madd $ac3, %[load2], %[cospi_30_64] \n\t" + "extp %[temp3], $ac3, 31 \n\t" + + "mtlo %[const_2_power_13], $ac1 \n\t" + "mthi $zero, $ac1 \n\t" + "mtlo %[const_2_power_13], $ac2 \n\t" + "mthi $zero, $ac2 \n\t" + + "madd $ac2, %[load3], %[cospi_14_64] \n\t" + "msub $ac2, %[load4], %[cospi_18_64] \n\t" + "extp %[temp1], $ac2, 31 \n\t" + "madd $ac1, %[load3], %[cospi_18_64] \n\t" + "madd $ac1, %[load4], %[cospi_14_64] \n\t" + "extp %[temp2], $ac1, 31 \n\t" + + "mtlo %[const_2_power_13], $ac1 \n\t" + "mthi $zero, $ac1 \n\t" + "mtlo %[const_2_power_13], $ac3 \n\t" + "mthi $zero, $ac3 \n\t" + + "sub %[load1], %[temp0], %[temp1] \n\t" + "sub %[load2], %[temp3], %[temp2] \n\t" + "msub $ac1, %[load1], %[cospi_8_64] \n\t" + "madd $ac1, %[load2], %[cospi_24_64] \n\t" + "madd $ac3, %[load1], %[cospi_24_64] \n\t" + "madd $ac3, %[load2], %[cospi_8_64] \n\t" + "extp %[step2_9], $ac1, 31 \n\t" + "extp %[step2_14], $ac3, 31 \n\t" + "add %[step2_8], %[temp0], %[temp1] \n\t" + "add %[step2_15], %[temp2], %[temp3] \n\t" + + : [load1] "=&r"(load1), [load2] "=&r"(load2), [load3] "=&r"(load3), + [load4] "=&r"(load4), [temp0] "=&r"(temp0), [temp1] "=&r"(temp1), + [temp2] "=&r"(temp2), [temp3] "=&r"(temp3), [step2_8] "=&r"(step2_8), + [step2_9] "=&r"(step2_9), [step2_14] "=&r"(step2_14), + [step2_15] "=&r"(step2_15) + : [const_2_power_13] "r"(const_2_power_13), [input] "r"(input), + [cospi_30_64] "r"(cospi_30_64), [cospi_2_64] "r"(cospi_2_64), + [cospi_14_64] "r"(cospi_14_64), [cospi_18_64] "r"(cospi_18_64), + [cospi_8_64] "r"(cospi_8_64), [cospi_24_64] "r"(cospi_24_64)); + + __asm__ __volatile__( + "lh %[load1], 20(%[input]) \n\t" + "lh %[load2], 44(%[input]) \n\t" + "lh %[load3], 52(%[input]) \n\t" + "lh %[load4], 12(%[input]) \n\t" + + "mtlo %[const_2_power_13], $ac1 \n\t" + "mthi $zero, $ac1 \n\t" + "mtlo %[const_2_power_13], $ac3 \n\t" + "mthi $zero, $ac3 \n\t" + + "madd $ac1, %[load1], %[cospi_22_64] \n\t" + "msub $ac1, %[load2], %[cospi_10_64] \n\t" + "extp %[temp0], $ac1, 31 \n\t" + "madd $ac3, %[load1], %[cospi_10_64] \n\t" + "madd $ac3, %[load2], %[cospi_22_64] \n\t" + "extp %[temp3], $ac3, 31 \n\t" + + "mtlo %[const_2_power_13], $ac1 \n\t" + "mthi $zero, $ac1 \n\t" + "mtlo %[const_2_power_13], $ac2 \n\t" + "mthi $zero, $ac2 \n\t" + + "madd $ac2, %[load3], %[cospi_6_64] \n\t" + "msub $ac2, %[load4], %[cospi_26_64] \n\t" + "extp %[temp1], $ac2, 31 \n\t" + "madd $ac1, %[load3], %[cospi_26_64] \n\t" + "madd $ac1, %[load4], %[cospi_6_64] \n\t" + "extp %[temp2], $ac1, 31 \n\t" + + "mtlo %[const_2_power_13], $ac1 \n\t" + "mthi $zero, $ac1 \n\t" + "mtlo %[const_2_power_13], $ac3 \n\t" + "mthi $zero, $ac3 \n\t" + + "sub %[load1], %[temp1], %[temp0] \n\t" + "sub %[load2], %[temp2], %[temp3] \n\t" + "msub $ac1, %[load1], %[cospi_24_64] \n\t" + "msub $ac1, %[load2], %[cospi_8_64] \n\t" + "madd $ac3, %[load2], %[cospi_24_64] \n\t" + "msub $ac3, %[load1], %[cospi_8_64] \n\t" + "extp %[step2_10], $ac1, 31 \n\t" + "extp %[step2_13], $ac3, 31 \n\t" + "add %[step2_11], %[temp0], %[temp1] \n\t" + "add %[step2_12], %[temp2], %[temp3] \n\t" + + : [load1] "=&r"(load1), [load2] "=&r"(load2), [load3] "=&r"(load3), + [load4] "=&r"(load4), [temp0] "=&r"(temp0), [temp1] "=&r"(temp1), + [temp2] "=&r"(temp2), [temp3] "=&r"(temp3), + [step2_10] "=&r"(step2_10), [step2_11] "=&r"(step2_11), + [step2_12] "=&r"(step2_12), [step2_13] "=&r"(step2_13) + : [const_2_power_13] "r"(const_2_power_13), [input] "r"(input), + [cospi_22_64] "r"(cospi_22_64), [cospi_10_64] "r"(cospi_10_64), + [cospi_6_64] "r"(cospi_6_64), [cospi_26_64] "r"(cospi_26_64), + [cospi_8_64] "r"(cospi_8_64), [cospi_24_64] "r"(cospi_24_64)); + + __asm__ __volatile__( + "mtlo %[const_2_power_13], $ac0 \n\t" + "mthi $zero, $ac0 \n\t" + "sub %[temp0], %[step2_14], %[step2_13] \n\t" + "sub %[temp0], %[temp0], %[step2_9] \n\t" + "add %[temp0], %[temp0], %[step2_10] \n\t" + "madd $ac0, %[temp0], %[cospi_16_64] \n\t" + "mtlo %[const_2_power_13], $ac1 \n\t" + "mthi $zero, $ac1 \n\t" + "sub %[temp1], %[step2_14], %[step2_13] \n\t" + "add %[temp1], %[temp1], %[step2_9] \n\t" + "sub %[temp1], %[temp1], %[step2_10] \n\t" + "madd $ac1, %[temp1], %[cospi_16_64] \n\t" + "mtlo %[const_2_power_13], $ac2 \n\t" + "mthi $zero, $ac2 \n\t" + "sub %[temp0], %[step2_15], %[step2_12] \n\t" + "sub %[temp0], %[temp0], %[step2_8] \n\t" + "add %[temp0], %[temp0], %[step2_11] \n\t" + "madd $ac2, %[temp0], %[cospi_16_64] \n\t" + "mtlo %[const_2_power_13], $ac3 \n\t" + "mthi $zero, $ac3 \n\t" + "sub %[temp1], %[step2_15], %[step2_12] \n\t" + "add %[temp1], %[temp1], %[step2_8] \n\t" + "sub %[temp1], %[temp1], %[step2_11] \n\t" + "madd $ac3, %[temp1], %[cospi_16_64] \n\t" + + "add %[step3_8], %[step2_8], %[step2_11] \n\t" + "add %[step3_9], %[step2_9], %[step2_10] \n\t" + "add %[step3_14], %[step2_13], %[step2_14] \n\t" + "add %[step3_15], %[step2_12], %[step2_15] \n\t" + "extp %[step3_10], $ac0, 31 \n\t" + "extp %[step3_13], $ac1, 31 \n\t" + "extp %[step3_11], $ac2, 31 \n\t" + "extp %[step3_12], $ac3, 31 \n\t" + + : [temp0] "=&r"(temp0), [temp1] "=&r"(temp1), [step3_8] "=&r"(step3_8), + [step3_9] "=&r"(step3_9), [step3_10] "=&r"(step3_10), + [step3_11] "=&r"(step3_11), [step3_12] "=&r"(step3_12), + [step3_13] "=&r"(step3_13), [step3_14] "=&r"(step3_14), + [step3_15] "=&r"(step3_15) + : [const_2_power_13] "r"(const_2_power_13), [step2_8] "r"(step2_8), + [step2_9] "r"(step2_9), [step2_10] "r"(step2_10), + [step2_11] "r"(step2_11), [step2_12] "r"(step2_12), + [step2_13] "r"(step2_13), [step2_14] "r"(step2_14), + [step2_15] "r"(step2_15), [cospi_16_64] "r"(cospi_16_64)); + + __asm__ __volatile__( + "mtlo %[const_2_power_13], $ac0 \n\t" + "mthi $zero, $ac0 \n\t" + "mtlo %[const_2_power_13], $ac1 \n\t" + "mthi $zero, $ac1 \n\t" + "sub %[temp0], %[step1_17], %[step1_18] \n\t" + "sub %[temp1], %[step1_30], %[step1_29] \n\t" + "add %[step3_17], %[step1_17], %[step1_18] \n\t" + "add %[step3_30], %[step1_30], %[step1_29] \n\t" + + "msub $ac0, %[temp0], %[cospi_8_64] \n\t" + "madd $ac0, %[temp1], %[cospi_24_64] \n\t" + "extp %[step3_18], $ac0, 31 \n\t" + "madd $ac1, %[temp0], %[cospi_24_64] \n\t" + "madd $ac1, %[temp1], %[cospi_8_64] \n\t" + "extp %[step3_29], $ac1, 31 \n\t" + + : [temp0] "=&r"(temp0), [temp1] "=&r"(temp1), + [step3_18] "=&r"(step3_18), [step3_29] "=&r"(step3_29), + [step3_17] "=&r"(step3_17), [step3_30] "=&r"(step3_30) + : [const_2_power_13] "r"(const_2_power_13), [step1_17] "r"(step1_17), + [step1_18] "r"(step1_18), [step1_30] "r"(step1_30), + [step1_29] "r"(step1_29), [cospi_24_64] "r"(cospi_24_64), + [cospi_8_64] "r"(cospi_8_64)); + + __asm__ __volatile__( + "mtlo %[const_2_power_13], $ac0 \n\t" + "mthi $zero, $ac0 \n\t" + "mtlo %[const_2_power_13], $ac1 \n\t" + "mthi $zero, $ac1 \n\t" + "sub %[temp0], %[step1_16], %[step1_19] \n\t" + "sub %[temp1], %[step1_31], %[step1_28] \n\t" + "add %[step3_16], %[step1_16], %[step1_19] \n\t" + "add %[step3_31], %[step1_31], %[step1_28] \n\t" + + "msub $ac0, %[temp0], %[cospi_8_64] \n\t" + "madd $ac0, %[temp1], %[cospi_24_64] \n\t" + "extp %[step3_19], $ac0, 31 \n\t" + "madd $ac1, %[temp0], %[cospi_24_64] \n\t" + "madd $ac1, %[temp1], %[cospi_8_64] \n\t" + "extp %[step3_28], $ac1, 31 \n\t" + + : [temp0] "=&r"(temp0), [temp1] "=&r"(temp1), + [step3_16] "=&r"(step3_16), [step3_31] "=&r"(step3_31), + [step3_19] "=&r"(step3_19), [step3_28] "=&r"(step3_28) + : [const_2_power_13] "r"(const_2_power_13), [step1_16] "r"(step1_16), + [step1_19] "r"(step1_19), [step1_31] "r"(step1_31), + [step1_28] "r"(step1_28), [cospi_24_64] "r"(cospi_24_64), + [cospi_8_64] "r"(cospi_8_64)); + + __asm__ __volatile__( + "mtlo %[const_2_power_13], $ac0 \n\t" + "mthi $zero, $ac0 \n\t" + "mtlo %[const_2_power_13], $ac1 \n\t" + "mthi $zero, $ac1 \n\t" + "sub %[temp0], %[step1_23], %[step1_20] \n\t" + "sub %[temp1], %[step1_24], %[step1_27] \n\t" + "add %[step3_23], %[step1_23], %[step1_20] \n\t" + "add %[step3_24], %[step1_24], %[step1_27] \n\t" + + "msub $ac0, %[temp0], %[cospi_8_64] \n\t" + "madd $ac0, %[temp1], %[cospi_24_64] \n\t" + "extp %[step3_27], $ac0, 31 \n\t" + "msub $ac1, %[temp0], %[cospi_24_64] \n\t" + "msub $ac1, %[temp1], %[cospi_8_64] \n\t" + "extp %[step3_20], $ac1, 31 \n\t" + + : [temp0] "=&r"(temp0), [temp1] "=&r"(temp1), + [step3_23] "=&r"(step3_23), [step3_24] "=&r"(step3_24), + [step3_20] "=&r"(step3_20), [step3_27] "=&r"(step3_27) + : [const_2_power_13] "r"(const_2_power_13), [step1_23] "r"(step1_23), + [step1_20] "r"(step1_20), [step1_24] "r"(step1_24), + [step1_27] "r"(step1_27), [cospi_24_64] "r"(cospi_24_64), + [cospi_8_64] "r"(cospi_8_64)); + + __asm__ __volatile__( + "mtlo %[const_2_power_13], $ac0 \n\t" + "mthi $zero, $ac0 \n\t" + "mtlo %[const_2_power_13], $ac1 \n\t" + "mthi $zero, $ac1 \n\t" + "sub %[temp0], %[step1_22], %[step1_21] \n\t" + "sub %[temp1], %[step1_25], %[step1_26] \n\t" + "add %[step3_22], %[step1_22], %[step1_21] \n\t" + "add %[step3_25], %[step1_25], %[step1_26] \n\t" + + "msub $ac0, %[temp0], %[cospi_24_64] \n\t" + "msub $ac0, %[temp1], %[cospi_8_64] \n\t" + "extp %[step3_21], $ac0, 31 \n\t" + "msub $ac1, %[temp0], %[cospi_8_64] \n\t" + "madd $ac1, %[temp1], %[cospi_24_64] \n\t" + "extp %[step3_26], $ac1, 31 \n\t" + + : [temp0] "=&r"(temp0), [temp1] "=&r"(temp1), + [step3_22] "=&r"(step3_22), [step3_25] "=&r"(step3_25), + [step3_21] "=&r"(step3_21), [step3_26] "=&r"(step3_26) + : [const_2_power_13] "r"(const_2_power_13), [step1_22] "r"(step1_22), + [step1_21] "r"(step1_21), [step1_25] "r"(step1_25), + [step1_26] "r"(step1_26), [cospi_24_64] "r"(cospi_24_64), + [cospi_8_64] "r"(cospi_8_64)); + + __asm__ __volatile__( + "add %[step2_16], %[step3_16], %[step3_23] \n\t" + "add %[step2_17], %[step3_17], %[step3_22] \n\t" + "add %[step2_18], %[step3_18], %[step3_21] \n\t" + "add %[step2_19], %[step3_19], %[step3_20] \n\t" + "sub %[step2_20], %[step3_19], %[step3_20] \n\t" + "sub %[step2_21], %[step3_18], %[step3_21] \n\t" + "sub %[step2_22], %[step3_17], %[step3_22] \n\t" + "sub %[step2_23], %[step3_16], %[step3_23] \n\t" + + : [step2_16] "=&r"(step2_16), [step2_17] "=&r"(step2_17), + [step2_18] "=&r"(step2_18), [step2_19] "=&r"(step2_19), + [step2_20] "=&r"(step2_20), [step2_21] "=&r"(step2_21), + [step2_22] "=&r"(step2_22), [step2_23] "=&r"(step2_23) + : [step3_16] "r"(step3_16), [step3_23] "r"(step3_23), + [step3_17] "r"(step3_17), [step3_22] "r"(step3_22), + [step3_18] "r"(step3_18), [step3_21] "r"(step3_21), + [step3_19] "r"(step3_19), [step3_20] "r"(step3_20)); + + __asm__ __volatile__( + "sub %[step2_24], %[step3_31], %[step3_24] \n\t" + "sub %[step2_25], %[step3_30], %[step3_25] \n\t" + "sub %[step2_26], %[step3_29], %[step3_26] \n\t" + "sub %[step2_27], %[step3_28], %[step3_27] \n\t" + "add %[step2_28], %[step3_28], %[step3_27] \n\t" + "add %[step2_29], %[step3_29], %[step3_26] \n\t" + "add %[step2_30], %[step3_30], %[step3_25] \n\t" + "add %[step2_31], %[step3_31], %[step3_24] \n\t" + + : [step2_24] "=&r"(step2_24), [step2_28] "=&r"(step2_28), + [step2_25] "=&r"(step2_25), [step2_29] "=&r"(step2_29), + [step2_26] "=&r"(step2_26), [step2_30] "=&r"(step2_30), + [step2_27] "=&r"(step2_27), [step2_31] "=&r"(step2_31) + : [step3_31] "r"(step3_31), [step3_24] "r"(step3_24), + [step3_30] "r"(step3_30), [step3_25] "r"(step3_25), + [step3_29] "r"(step3_29), [step3_26] "r"(step3_26), + [step3_28] "r"(step3_28), [step3_27] "r"(step3_27)); + + __asm__ __volatile__( + "lh %[load1], 0(%[input]) \n\t" + "lh %[load2], 32(%[input]) \n\t" + "lh %[load3], 16(%[input]) \n\t" + "lh %[load4], 48(%[input]) \n\t" + + "mtlo %[const_2_power_13], $ac1 \n\t" + "mthi $zero, $ac1 \n\t" + "mtlo %[const_2_power_13], $ac2 \n\t" + "mthi $zero, $ac2 \n\t" + "add %[result1], %[load1], %[load2] \n\t" + "sub %[result2], %[load1], %[load2] \n\t" + "madd $ac1, %[result1], %[cospi_16_64] \n\t" + "madd $ac2, %[result2], %[cospi_16_64] \n\t" + "extp %[temp0], $ac1, 31 \n\t" + "extp %[temp1], $ac2, 31 \n\t" + + "mtlo %[const_2_power_13], $ac3 \n\t" + "mthi $zero, $ac3 \n\t" + "madd $ac3, %[load3], %[cospi_24_64] \n\t" + "msub $ac3, %[load4], %[cospi_8_64] \n\t" + "extp %[temp2], $ac3, 31 \n\t" + "mtlo %[const_2_power_13], $ac1 \n\t" + "mthi $zero, $ac1 \n\t" + "madd $ac1, %[load3], %[cospi_8_64] \n\t" + "madd $ac1, %[load4], %[cospi_24_64] \n\t" + "extp %[temp3], $ac1, 31 \n\t" + "add %[step1_0], %[temp0], %[temp3] \n\t" + "add %[step1_1], %[temp1], %[temp2] \n\t" + "sub %[step1_2], %[temp1], %[temp2] \n\t" + "sub %[step1_3], %[temp0], %[temp3] \n\t" + + : [load1] "=&r"(load1), [load2] "=&r"(load2), [load3] "=&r"(load3), + [load4] "=&r"(load4), [result1] "=&r"(result1), + [result2] "=&r"(result2), [temp0] "=&r"(temp0), [temp1] "=&r"(temp1), + [temp2] "=&r"(temp2), [temp3] "=&r"(temp3), [step1_0] "=&r"(step1_0), + [step1_1] "=&r"(step1_1), [step1_2] "=&r"(step1_2), + [step1_3] "=&r"(step1_3) + : [const_2_power_13] "r"(const_2_power_13), [input] "r"(input), + [cospi_24_64] "r"(cospi_24_64), [cospi_8_64] "r"(cospi_8_64), + [cospi_16_64] "r"(cospi_16_64)); + + __asm__ __volatile__( + "lh %[load1], 8(%[input]) \n\t" + "lh %[load2], 56(%[input]) \n\t" + "lh %[load3], 40(%[input]) \n\t" + "lh %[load4], 24(%[input]) \n\t" + + "mtlo %[const_2_power_13], $ac1 \n\t" + "mthi $zero, $ac1 \n\t" + "mtlo %[const_2_power_13], $ac3 \n\t" + "mthi $zero, $ac3 \n\t" + + "madd $ac1, %[load1], %[cospi_28_64] \n\t" + "msub $ac1, %[load2], %[cospi_4_64] \n\t" + "extp %[temp0], $ac1, 31 \n\t" + "madd $ac3, %[load1], %[cospi_4_64] \n\t" + "madd $ac3, %[load2], %[cospi_28_64] \n\t" + "extp %[temp3], $ac3, 31 \n\t" + + "mtlo %[const_2_power_13], $ac1 \n\t" + "mthi $zero, $ac1 \n\t" + "mtlo %[const_2_power_13], $ac2 \n\t" + "mthi $zero, $ac2 \n\t" + + "madd $ac2, %[load3], %[cospi_12_64] \n\t" + "msub $ac2, %[load4], %[cospi_20_64] \n\t" + "extp %[temp1], $ac2, 31 \n\t" + "madd $ac1, %[load3], %[cospi_20_64] \n\t" + "madd $ac1, %[load4], %[cospi_12_64] \n\t" + "extp %[temp2], $ac1, 31 \n\t" + + "mtlo %[const_2_power_13], $ac1 \n\t" + "mthi $zero, $ac1 \n\t" + "mtlo %[const_2_power_13], $ac3 \n\t" + "mthi $zero, $ac3 \n\t" + + "sub %[load1], %[temp3], %[temp2] \n\t" + "sub %[load1], %[load1], %[temp0] \n\t" + "add %[load1], %[load1], %[temp1] \n\t" + "sub %[load2], %[temp0], %[temp1] \n\t" + "sub %[load2], %[load2], %[temp2] \n\t" + "add %[load2], %[load2], %[temp3] \n\t" + "madd $ac1, %[load1], %[cospi_16_64] \n\t" + "madd $ac3, %[load2], %[cospi_16_64] \n\t" + + "extp %[step1_5], $ac1, 31 \n\t" + "extp %[step1_6], $ac3, 31 \n\t" + "add %[step1_4], %[temp0], %[temp1] \n\t" + "add %[step1_7], %[temp3], %[temp2] \n\t" + + : [load1] "=&r"(load1), [load2] "=&r"(load2), [load3] "=&r"(load3), + [load4] "=&r"(load4), [temp0] "=&r"(temp0), [temp1] "=&r"(temp1), + [temp2] "=&r"(temp2), [temp3] "=&r"(temp3), [step1_4] "=&r"(step1_4), + [step1_5] "=&r"(step1_5), [step1_6] "=&r"(step1_6), + [step1_7] "=&r"(step1_7) + : [const_2_power_13] "r"(const_2_power_13), [input] "r"(input), + [cospi_20_64] "r"(cospi_20_64), [cospi_12_64] "r"(cospi_12_64), + [cospi_4_64] "r"(cospi_4_64), [cospi_28_64] "r"(cospi_28_64), + [cospi_16_64] "r"(cospi_16_64)); + + __asm__ __volatile__( + "add %[step2_0], %[step1_0], %[step1_7] \n\t" + "add %[step2_1], %[step1_1], %[step1_6] \n\t" + "add %[step2_2], %[step1_2], %[step1_5] \n\t" + "add %[step2_3], %[step1_3], %[step1_4] \n\t" + "sub %[step2_4], %[step1_3], %[step1_4] \n\t" + "sub %[step2_5], %[step1_2], %[step1_5] \n\t" + "sub %[step2_6], %[step1_1], %[step1_6] \n\t" + "sub %[step2_7], %[step1_0], %[step1_7] \n\t" + + : [step2_0] "=&r"(step2_0), [step2_4] "=&r"(step2_4), + [step2_1] "=&r"(step2_1), [step2_5] "=&r"(step2_5), + [step2_2] "=&r"(step2_2), [step2_6] "=&r"(step2_6), + [step2_3] "=&r"(step2_3), [step2_7] "=&r"(step2_7) + : [step1_0] "r"(step1_0), [step1_7] "r"(step1_7), + [step1_1] "r"(step1_1), [step1_6] "r"(step1_6), + [step1_2] "r"(step1_2), [step1_5] "r"(step1_5), + [step1_3] "r"(step1_3), [step1_4] "r"(step1_4)); + + // stage 7 + __asm__ __volatile__( + "add %[step1_0], %[step2_0], %[step3_15] \n\t" + "add %[step1_1], %[step2_1], %[step3_14] \n\t" + "add %[step1_2], %[step2_2], %[step3_13] \n\t" + "add %[step1_3], %[step2_3], %[step3_12] \n\t" + "sub %[step1_12], %[step2_3], %[step3_12] \n\t" + "sub %[step1_13], %[step2_2], %[step3_13] \n\t" + "sub %[step1_14], %[step2_1], %[step3_14] \n\t" + "sub %[step1_15], %[step2_0], %[step3_15] \n\t" + + : [step1_0] "=&r"(step1_0), [step1_12] "=&r"(step1_12), + [step1_1] "=&r"(step1_1), [step1_13] "=&r"(step1_13), + [step1_2] "=&r"(step1_2), [step1_14] "=&r"(step1_14), + [step1_3] "=&r"(step1_3), [step1_15] "=&r"(step1_15) + : [step2_0] "r"(step2_0), [step3_15] "r"(step3_15), + [step2_1] "r"(step2_1), [step3_14] "r"(step3_14), + [step2_2] "r"(step2_2), [step3_13] "r"(step3_13), + [step2_3] "r"(step2_3), [step3_12] "r"(step3_12)); + + __asm__ __volatile__( + "add %[step1_4], %[step2_4], %[step3_11] \n\t" + "add %[step1_5], %[step2_5], %[step3_10] \n\t" + "add %[step1_6], %[step2_6], %[step3_9] \n\t" + "add %[step1_7], %[step2_7], %[step3_8] \n\t" + "sub %[step1_8], %[step2_7], %[step3_8] \n\t" + "sub %[step1_9], %[step2_6], %[step3_9] \n\t" + "sub %[step1_10], %[step2_5], %[step3_10] \n\t" + "sub %[step1_11], %[step2_4], %[step3_11] \n\t" + + : [step1_4] "=&r"(step1_4), [step1_8] "=&r"(step1_8), + [step1_5] "=&r"(step1_5), [step1_9] "=&r"(step1_9), + [step1_6] "=&r"(step1_6), [step1_10] "=&r"(step1_10), + [step1_7] "=&r"(step1_7), [step1_11] "=&r"(step1_11) + : [step2_4] "r"(step2_4), [step3_11] "r"(step3_11), + [step2_5] "r"(step2_5), [step3_10] "r"(step3_10), + [step2_6] "r"(step2_6), [step3_9] "r"(step3_9), + [step2_7] "r"(step2_7), [step3_8] "r"(step3_8)); + + __asm__ __volatile__( + "sub %[temp0], %[step2_27], %[step2_20] \n\t" + "add %[temp1], %[step2_27], %[step2_20] \n\t" + "sub %[temp2], %[step2_26], %[step2_21] \n\t" + "add %[temp3], %[step2_26], %[step2_21] \n\t" + + "mtlo %[const_2_power_13], $ac0 \n\t" + "mthi $zero, $ac0 \n\t" + "mtlo %[const_2_power_13], $ac1 \n\t" + "mthi $zero, $ac1 \n\t" + "mtlo %[const_2_power_13], $ac2 \n\t" + "mthi $zero, $ac2 \n\t" + "mtlo %[const_2_power_13], $ac3 \n\t" + "mthi $zero, $ac3 \n\t" + + "madd $ac0, %[temp0], %[cospi_16_64] \n\t" + "madd $ac1, %[temp1], %[cospi_16_64] \n\t" + "madd $ac2, %[temp2], %[cospi_16_64] \n\t" + "madd $ac3, %[temp3], %[cospi_16_64] \n\t" + + "extp %[step1_20], $ac0, 31 \n\t" + "extp %[step1_27], $ac1, 31 \n\t" + "extp %[step1_21], $ac2, 31 \n\t" + "extp %[step1_26], $ac3, 31 \n\t" + + : [temp0] "=&r"(temp0), [temp1] "=&r"(temp1), [temp2] "=&r"(temp2), + [temp3] "=&r"(temp3), [step1_20] "=&r"(step1_20), + [step1_27] "=&r"(step1_27), [step1_21] "=&r"(step1_21), + [step1_26] "=&r"(step1_26) + : [const_2_power_13] "r"(const_2_power_13), [step2_20] "r"(step2_20), + [step2_27] "r"(step2_27), [step2_21] "r"(step2_21), + [step2_26] "r"(step2_26), [cospi_16_64] "r"(cospi_16_64)); + + __asm__ __volatile__( + "sub %[temp0], %[step2_25], %[step2_22] \n\t" + "add %[temp1], %[step2_25], %[step2_22] \n\t" + "sub %[temp2], %[step2_24], %[step2_23] \n\t" + "add %[temp3], %[step2_24], %[step2_23] \n\t" + + "mtlo %[const_2_power_13], $ac0 \n\t" + "mthi $zero, $ac0 \n\t" + "mtlo %[const_2_power_13], $ac1 \n\t" + "mthi $zero, $ac1 \n\t" + "mtlo %[const_2_power_13], $ac2 \n\t" + "mthi $zero, $ac2 \n\t" + "mtlo %[const_2_power_13], $ac3 \n\t" + "mthi $zero, $ac3 \n\t" + + "madd $ac0, %[temp0], %[cospi_16_64] \n\t" + "madd $ac1, %[temp1], %[cospi_16_64] \n\t" + "madd $ac2, %[temp2], %[cospi_16_64] \n\t" + "madd $ac3, %[temp3], %[cospi_16_64] \n\t" + + "extp %[step1_22], $ac0, 31 \n\t" + "extp %[step1_25], $ac1, 31 \n\t" + "extp %[step1_23], $ac2, 31 \n\t" + "extp %[step1_24], $ac3, 31 \n\t" + + : [temp0] "=&r"(temp0), [temp1] "=&r"(temp1), [temp2] "=&r"(temp2), + [temp3] "=&r"(temp3), [step1_22] "=&r"(step1_22), + [step1_25] "=&r"(step1_25), [step1_23] "=&r"(step1_23), + [step1_24] "=&r"(step1_24) + : [const_2_power_13] "r"(const_2_power_13), [step2_22] "r"(step2_22), + [step2_25] "r"(step2_25), [step2_23] "r"(step2_23), + [step2_24] "r"(step2_24), [cospi_16_64] "r"(cospi_16_64)); + + __asm__ __volatile__( + "lbu %[temp2], 0(%[dest_pix]) \n\t" + "add %[temp0], %[step1_0], %[step2_31] \n\t" + "addi %[temp0], %[temp0], 32 \n\t" + "sra %[temp0], %[temp0], 6 \n\t" + "add %[temp2], %[temp2], %[temp0] \n\t" + "lbux %[temp0], %[temp2](%[cm]) \n\t" + "add %[temp1], %[step1_1], %[step2_30] \n\t" + "sb %[temp0], 0(%[dest_pix]) \n\t" + "addu %[dest_pix], %[dest_pix], %[stride] \n\t" + "lbu %[temp3], 0(%[dest_pix]) \n\t" + "addi %[temp1], %[temp1], 32 \n\t" + "sra %[temp1], %[temp1], 6 \n\t" + "add %[temp3], %[temp3], %[temp1] \n\t" + "lbux %[temp1], %[temp3](%[cm]) \n\t" + "sb %[temp1], 0(%[dest_pix]) \n\t" + "addu %[dest_pix], %[dest_pix], %[stride] \n\t" + + "lbu %[temp2], 0(%[dest_pix]) \n\t" + "add %[temp0], %[step1_2], %[step2_29] \n\t" + "addi %[temp0], %[temp0], 32 \n\t" + "sra %[temp0], %[temp0], 6 \n\t" + "add %[temp2], %[temp2], %[temp0] \n\t" + "lbux %[temp0], %[temp2](%[cm]) \n\t" + "add %[temp1], %[step1_3], %[step2_28] \n\t" + "sb %[temp0], 0(%[dest_pix]) \n\t" + "addu %[dest_pix], %[dest_pix], %[stride] \n\t" + "lbu %[temp3], 0(%[dest_pix]) \n\t" + "addi %[temp1], %[temp1], 32 \n\t" + "sra %[temp1], %[temp1], 6 \n\t" + "add %[temp3], %[temp3], %[temp1] \n\t" + "lbux %[temp1], %[temp3](%[cm]) \n\t" + "sb %[temp1], 0(%[dest_pix]) \n\t" + "addu %[dest_pix], %[dest_pix], %[stride] \n\t" + + : [temp0] "=&r"(temp0), [temp1] "=&r"(temp1), [temp2] "=&r"(temp2), + [temp3] "=&r"(temp3), [dest_pix] "+r"(dest_pix) + : [cm] "r"(cm), [stride] "r"(stride), [step1_0] "r"(step1_0), + [step1_1] "r"(step1_1), [step1_2] "r"(step1_2), + [step1_3] "r"(step1_3), [step2_28] "r"(step2_28), + [step2_29] "r"(step2_29), [step2_30] "r"(step2_30), + [step2_31] "r"(step2_31)); + + step3_12 = ROUND_POWER_OF_TWO((step1_3 - step2_28), 6); + step3_13 = ROUND_POWER_OF_TWO((step1_2 - step2_29), 6); + step3_14 = ROUND_POWER_OF_TWO((step1_1 - step2_30), 6); + step3_15 = ROUND_POWER_OF_TWO((step1_0 - step2_31), 6); + + __asm__ __volatile__( + "lbu %[temp2], 0(%[dest_pix1]) \n\t" + "add %[temp2], %[temp2], %[step3_15] \n\t" + "lbux %[temp0], %[temp2](%[cm]) \n\t" + "sb %[temp0], 0(%[dest_pix1]) \n\t" + "subu %[dest_pix1], %[dest_pix1], %[stride] \n\t" + "lbu %[temp3], 0(%[dest_pix1]) \n\t" + "add %[temp3], %[temp3], %[step3_14] \n\t" + "lbux %[temp1], %[temp3](%[cm]) \n\t" + "sb %[temp1], 0(%[dest_pix1]) \n\t" + "subu %[dest_pix1], %[dest_pix1], %[stride] \n\t" + + "lbu %[temp2], 0(%[dest_pix1]) \n\t" + "add %[temp2], %[temp2], %[step3_13] \n\t" + "lbux %[temp0], %[temp2](%[cm]) \n\t" + "sb %[temp0], 0(%[dest_pix1]) \n\t" + "subu %[dest_pix1], %[dest_pix1], %[stride] \n\t" + "lbu %[temp3], 0(%[dest_pix1]) \n\t" + "add %[temp3], %[temp3], %[step3_12] \n\t" + "lbux %[temp1], %[temp3](%[cm]) \n\t" + "sb %[temp1], 0(%[dest_pix1]) \n\t" + "subu %[dest_pix1], %[dest_pix1], %[stride] \n\t" + + : [temp0] "=&r"(temp0), [temp1] "=&r"(temp1), [temp2] "=&r"(temp2), + [temp3] "=&r"(temp3), [dest_pix1] "+r"(dest_pix1) + : [cm] "r"(cm), [stride] "r"(stride), [step3_12] "r"(step3_12), + [step3_13] "r"(step3_13), [step3_14] "r"(step3_14), + [step3_15] "r"(step3_15)); + + __asm__ __volatile__( + "lbu %[temp2], 0(%[dest_pix]) \n\t" + "add %[temp0], %[step1_4], %[step1_27] \n\t" + "addi %[temp0], %[temp0], 32 \n\t" + "sra %[temp0], %[temp0], 6 \n\t" + "add %[temp2], %[temp2], %[temp0] \n\t" + "lbux %[temp0], %[temp2](%[cm]) \n\t" + "add %[temp1], %[step1_5], %[step1_26] \n\t" + "sb %[temp0], 0(%[dest_pix]) \n\t" + "addu %[dest_pix], %[dest_pix], %[stride] \n\t" + "lbu %[temp3], 0(%[dest_pix]) \n\t" + "addi %[temp1], %[temp1], 32 \n\t" + "sra %[temp1], %[temp1], 6 \n\t" + "add %[temp3], %[temp3], %[temp1] \n\t" + "lbux %[temp1], %[temp3](%[cm]) \n\t" + "sb %[temp1], 0(%[dest_pix]) \n\t" + "addu %[dest_pix], %[dest_pix], %[stride] \n\t" + + "lbu %[temp2], 0(%[dest_pix]) \n\t" + "add %[temp0], %[step1_6], %[step1_25] \n\t" + "addi %[temp0], %[temp0], 32 \n\t" + "sra %[temp0], %[temp0], 6 \n\t" + "add %[temp2], %[temp2], %[temp0] \n\t" + "lbux %[temp0], %[temp2](%[cm]) \n\t" + "add %[temp1], %[step1_7], %[step1_24] \n\t" + "sb %[temp0], 0(%[dest_pix]) \n\t" + "addu %[dest_pix], %[dest_pix], %[stride] \n\t" + "lbu %[temp3], 0(%[dest_pix]) \n\t" + "addi %[temp1], %[temp1], 32 \n\t" + "sra %[temp1], %[temp1], 6 \n\t" + "add %[temp3], %[temp3], %[temp1] \n\t" + "lbux %[temp1], %[temp3](%[cm]) \n\t" + "sb %[temp1], 0(%[dest_pix]) \n\t" + "addu %[dest_pix], %[dest_pix], %[stride] \n\t" + + : [temp0] "=&r"(temp0), [temp1] "=&r"(temp1), [temp2] "=&r"(temp2), + [temp3] "=&r"(temp3), [dest_pix] "+r"(dest_pix) + : [cm] "r"(cm), [stride] "r"(stride), [step1_4] "r"(step1_4), + [step1_5] "r"(step1_5), [step1_6] "r"(step1_6), + [step1_7] "r"(step1_7), [step1_24] "r"(step1_24), + [step1_25] "r"(step1_25), [step1_26] "r"(step1_26), + [step1_27] "r"(step1_27)); + + step3_12 = ROUND_POWER_OF_TWO((step1_7 - step1_24), 6); + step3_13 = ROUND_POWER_OF_TWO((step1_6 - step1_25), 6); + step3_14 = ROUND_POWER_OF_TWO((step1_5 - step1_26), 6); + step3_15 = ROUND_POWER_OF_TWO((step1_4 - step1_27), 6); + + __asm__ __volatile__( + "lbu %[temp2], 0(%[dest_pix1]) \n\t" + "add %[temp2], %[temp2], %[step3_15] \n\t" + "lbux %[temp0], %[temp2](%[cm]) \n\t" + "sb %[temp0], 0(%[dest_pix1]) \n\t" + "subu %[dest_pix1], %[dest_pix1], %[stride] \n\t" + "lbu %[temp3], 0(%[dest_pix1]) \n\t" + "add %[temp3], %[temp3], %[step3_14] \n\t" + "lbux %[temp1], %[temp3](%[cm]) \n\t" + "sb %[temp1], 0(%[dest_pix1]) \n\t" + "subu %[dest_pix1], %[dest_pix1], %[stride] \n\t" + + "lbu %[temp2], 0(%[dest_pix1]) \n\t" + "add %[temp2], %[temp2], %[step3_13] \n\t" + "lbux %[temp0], %[temp2](%[cm]) \n\t" + "sb %[temp0], 0(%[dest_pix1]) \n\t" + "subu %[dest_pix1], %[dest_pix1], %[stride] \n\t" + "lbu %[temp3], 0(%[dest_pix1]) \n\t" + "add %[temp3], %[temp3], %[step3_12] \n\t" + "lbux %[temp1], %[temp3](%[cm]) \n\t" + "sb %[temp1], 0(%[dest_pix1]) \n\t" + "subu %[dest_pix1], %[dest_pix1], %[stride] \n\t" + + : [temp0] "=&r"(temp0), [temp1] "=&r"(temp1), [temp2] "=&r"(temp2), + [temp3] "=&r"(temp3), [dest_pix1] "+r"(dest_pix1) + : [cm] "r"(cm), [stride] "r"(stride), [step3_12] "r"(step3_12), + [step3_13] "r"(step3_13), [step3_14] "r"(step3_14), + [step3_15] "r"(step3_15)); + + __asm__ __volatile__( + "lbu %[temp2], 0(%[dest_pix]) \n\t" + "add %[temp0], %[step1_8], %[step1_23] \n\t" + "addi %[temp0], %[temp0], 32 \n\t" + "sra %[temp0], %[temp0], 6 \n\t" + "add %[temp2], %[temp2], %[temp0] \n\t" + "lbux %[temp0], %[temp2](%[cm]) \n\t" + "add %[temp1], %[step1_9], %[step1_22] \n\t" + "sb %[temp0], 0(%[dest_pix]) \n\t" + "addu %[dest_pix], %[dest_pix], %[stride] \n\t" + "lbu %[temp3], 0(%[dest_pix]) \n\t" + "addi %[temp1], %[temp1], 32 \n\t" + "sra %[temp1], %[temp1], 6 \n\t" + "add %[temp3], %[temp3], %[temp1] \n\t" + "lbux %[temp1], %[temp3](%[cm]) \n\t" + "sb %[temp1], 0(%[dest_pix]) \n\t" + "addu %[dest_pix], %[dest_pix], %[stride] \n\t" + + "lbu %[temp2], 0(%[dest_pix]) \n\t" + "add %[temp0], %[step1_10], %[step1_21] \n\t" + "addi %[temp0], %[temp0], 32 \n\t" + "sra %[temp0], %[temp0], 6 \n\t" + "add %[temp2], %[temp2], %[temp0] \n\t" + "lbux %[temp0], %[temp2](%[cm]) \n\t" + "add %[temp1], %[step1_11], %[step1_20] \n\t" + "sb %[temp0], 0(%[dest_pix]) \n\t" + "addu %[dest_pix], %[dest_pix], %[stride] \n\t" + "lbu %[temp3], 0(%[dest_pix]) \n\t" + "addi %[temp1], %[temp1], 32 \n\t" + "sra %[temp1], %[temp1], 6 \n\t" + "add %[temp3], %[temp3], %[temp1] \n\t" + "lbux %[temp1], %[temp3](%[cm]) \n\t" + "sb %[temp1], 0(%[dest_pix]) \n\t" + "addu %[dest_pix], %[dest_pix], %[stride] \n\t" + + : [temp0] "=&r"(temp0), [temp1] "=&r"(temp1), [temp2] "=&r"(temp2), + [temp3] "=&r"(temp3), [dest_pix] "+r"(dest_pix) + : [cm] "r"(cm), [stride] "r"(stride), [step1_8] "r"(step1_8), + [step1_9] "r"(step1_9), [step1_10] "r"(step1_10), + [step1_11] "r"(step1_11), [step1_20] "r"(step1_20), + [step1_21] "r"(step1_21), [step1_22] "r"(step1_22), + [step1_23] "r"(step1_23)); + + step3_12 = ROUND_POWER_OF_TWO((step1_11 - step1_20), 6); + step3_13 = ROUND_POWER_OF_TWO((step1_10 - step1_21), 6); + step3_14 = ROUND_POWER_OF_TWO((step1_9 - step1_22), 6); + step3_15 = ROUND_POWER_OF_TWO((step1_8 - step1_23), 6); + + __asm__ __volatile__( + "lbu %[temp2], 0(%[dest_pix1]) \n\t" + "add %[temp2], %[temp2], %[step3_15] \n\t" + "lbux %[temp0], %[temp2](%[cm]) \n\t" + "sb %[temp0], 0(%[dest_pix1]) \n\t" + "subu %[dest_pix1], %[dest_pix1], %[stride] \n\t" + "lbu %[temp3], 0(%[dest_pix1]) \n\t" + "add %[temp3], %[temp3], %[step3_14] \n\t" + "lbux %[temp1], %[temp3](%[cm]) \n\t" + "sb %[temp1], 0(%[dest_pix1]) \n\t" + "subu %[dest_pix1], %[dest_pix1], %[stride] \n\t" + + "lbu %[temp2], 0(%[dest_pix1]) \n\t" + "add %[temp2], %[temp2], %[step3_13] \n\t" + "lbux %[temp0], %[temp2](%[cm]) \n\t" + "sb %[temp0], 0(%[dest_pix1]) \n\t" + "subu %[dest_pix1], %[dest_pix1], %[stride] \n\t" + "lbu %[temp3], 0(%[dest_pix1]) \n\t" + "add %[temp3], %[temp3], %[step3_12] \n\t" + "lbux %[temp1], %[temp3](%[cm]) \n\t" + "sb %[temp1], 0(%[dest_pix1]) \n\t" + "subu %[dest_pix1], %[dest_pix1], %[stride] \n\t" + + : [temp0] "=&r"(temp0), [temp1] "=&r"(temp1), [temp2] "=&r"(temp2), + [temp3] "=&r"(temp3), [dest_pix1] "+r"(dest_pix1) + : [cm] "r"(cm), [stride] "r"(stride), [step3_12] "r"(step3_12), + [step3_13] "r"(step3_13), [step3_14] "r"(step3_14), + [step3_15] "r"(step3_15)); + + __asm__ __volatile__( + "lbu %[temp2], 0(%[dest_pix]) \n\t" + "add %[temp0], %[step1_12], %[step2_19] \n\t" + "addi %[temp0], %[temp0], 32 \n\t" + "sra %[temp0], %[temp0], 6 \n\t" + "add %[temp2], %[temp2], %[temp0] \n\t" + "lbux %[temp0], %[temp2](%[cm]) \n\t" + "add %[temp1], %[step1_13], %[step2_18] \n\t" + "sb %[temp0], 0(%[dest_pix]) \n\t" + "addu %[dest_pix], %[dest_pix], %[stride] \n\t" + "lbu %[temp3], 0(%[dest_pix]) \n\t" + "addi %[temp1], %[temp1], 32 \n\t" + "sra %[temp1], %[temp1], 6 \n\t" + "add %[temp3], %[temp3], %[temp1] \n\t" + "lbux %[temp1], %[temp3](%[cm]) \n\t" + "sb %[temp1], 0(%[dest_pix]) \n\t" + "addu %[dest_pix], %[dest_pix], %[stride] \n\t" + + "lbu %[temp2], 0(%[dest_pix]) \n\t" + "add %[temp0], %[step1_14], %[step2_17] \n\t" + "addi %[temp0], %[temp0], 32 \n\t" + "sra %[temp0], %[temp0], 6 \n\t" + "add %[temp2], %[temp2], %[temp0] \n\t" + "lbux %[temp0], %[temp2](%[cm]) \n\t" + "add %[temp1], %[step1_15], %[step2_16] \n\t" + "sb %[temp0], 0(%[dest_pix]) \n\t" + "addu %[dest_pix], %[dest_pix], %[stride] \n\t" + "lbu %[temp3], 0(%[dest_pix]) \n\t" + "addi %[temp1], %[temp1], 32 \n\t" + "sra %[temp1], %[temp1], 6 \n\t" + "add %[temp3], %[temp3], %[temp1] \n\t" + "lbux %[temp1], %[temp3](%[cm]) \n\t" + "sb %[temp1], 0(%[dest_pix]) \n\t" + + : [temp0] "=&r"(temp0), [temp1] "=&r"(temp1), [temp2] "=&r"(temp2), + [temp3] "=&r"(temp3), [dest_pix] "+r"(dest_pix) + : [cm] "r"(cm), [stride] "r"(stride), [step1_12] "r"(step1_12), + [step1_13] "r"(step1_13), [step1_14] "r"(step1_14), + [step1_15] "r"(step1_15), [step2_16] "r"(step2_16), + [step2_17] "r"(step2_17), [step2_18] "r"(step2_18), + [step2_19] "r"(step2_19)); + + step3_12 = ROUND_POWER_OF_TWO((step1_15 - step2_16), 6); + step3_13 = ROUND_POWER_OF_TWO((step1_14 - step2_17), 6); + step3_14 = ROUND_POWER_OF_TWO((step1_13 - step2_18), 6); + step3_15 = ROUND_POWER_OF_TWO((step1_12 - step2_19), 6); + + __asm__ __volatile__( + "lbu %[temp2], 0(%[dest_pix1]) \n\t" + "add %[temp2], %[temp2], %[step3_15] \n\t" + "lbux %[temp0], %[temp2](%[cm]) \n\t" + "sb %[temp0], 0(%[dest_pix1]) \n\t" + "subu %[dest_pix1], %[dest_pix1], %[stride] \n\t" + "lbu %[temp3], 0(%[dest_pix1]) \n\t" + "add %[temp3], %[temp3], %[step3_14] \n\t" + "lbux %[temp1], %[temp3](%[cm]) \n\t" + "sb %[temp1], 0(%[dest_pix1]) \n\t" + "subu %[dest_pix1], %[dest_pix1], %[stride] \n\t" + + "lbu %[temp2], 0(%[dest_pix1]) \n\t" + "add %[temp2], %[temp2], %[step3_13] \n\t" + "lbux %[temp0], %[temp2](%[cm]) \n\t" + "sb %[temp0], 0(%[dest_pix1]) \n\t" + "subu %[dest_pix1], %[dest_pix1], %[stride] \n\t" + "lbu %[temp3], 0(%[dest_pix1]) \n\t" + "add %[temp3], %[temp3], %[step3_12] \n\t" + "lbux %[temp1], %[temp3](%[cm]) \n\t" + "sb %[temp1], 0(%[dest_pix1]) \n\t" + + : [temp0] "=&r"(temp0), [temp1] "=&r"(temp1), [temp2] "=&r"(temp2), + [temp3] "=&r"(temp3), [dest_pix1] "+r"(dest_pix1) + : [cm] "r"(cm), [stride] "r"(stride), [step3_12] "r"(step3_12), + [step3_13] "r"(step3_13), [step3_14] "r"(step3_14), + [step3_15] "r"(step3_15)); + + input += 32; + } +} +#endif // #if HAVE_DSPR2 diff --git a/vpx_dsp/mips/itrans32_dspr2.c b/vpx_dsp/mips/itrans32_dspr2.c new file mode 100644 index 0000000..3c0468c --- /dev/null +++ b/vpx_dsp/mips/itrans32_dspr2.c @@ -0,0 +1,1218 @@ +/* + * Copyright (c) 2013 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include + +#include "./vpx_config.h" +#include "vpx_dsp/mips/inv_txfm_dspr2.h" +#include "vpx_dsp/txfm_common.h" + +#if HAVE_DSPR2 +static void idct32_rows_dspr2(const int16_t *input, int16_t *output, + uint32_t no_rows) { + int step1_0, step1_1, step1_2, step1_3, step1_4, step1_5, step1_6; + int step1_7, step1_8, step1_9, step1_10, step1_11, step1_12, step1_13; + int step1_14, step1_15, step1_16, step1_17, step1_18, step1_19, step1_20; + int step1_21, step1_22, step1_23, step1_24, step1_25, step1_26, step1_27; + int step1_28, step1_29, step1_30, step1_31; + int step2_0, step2_1, step2_2, step2_3, step2_4, step2_5, step2_6; + int step2_7, step2_8, step2_9, step2_10, step2_11, step2_12, step2_13; + int step2_14, step2_15, step2_16, step2_17, step2_18, step2_19, step2_20; + int step2_21, step2_22, step2_23, step2_24, step2_25, step2_26, step2_27; + int step2_28, step2_29, step2_30, step2_31; + int step3_8, step3_9, step3_10, step3_11, step3_12, step3_13, step3_14; + int step3_15, step3_16, step3_17, step3_18, step3_19, step3_20, step3_21; + int step3_22, step3_23, step3_24, step3_25, step3_26, step3_27, step3_28; + int step3_29, step3_30, step3_31; + int temp0, temp1, temp2, temp3; + int load1, load2, load3, load4; + int result1, result2; + int i; + const int const_2_power_13 = 8192; + const int32_t *input_int; + + for (i = no_rows; i--;) { + input_int = (const int32_t *)input; + + if (!(input_int[0] | input_int[1] | input_int[2] | input_int[3] | + input_int[4] | input_int[5] | input_int[6] | input_int[7] | + input_int[8] | input_int[9] | input_int[10] | input_int[11] | + input_int[12] | input_int[13] | input_int[14] | input_int[15])) { + input += 32; + + __asm__ __volatile__( + "sh $zero, 0(%[output]) \n\t" + "sh $zero, 64(%[output]) \n\t" + "sh $zero, 128(%[output]) \n\t" + "sh $zero, 192(%[output]) \n\t" + "sh $zero, 256(%[output]) \n\t" + "sh $zero, 320(%[output]) \n\t" + "sh $zero, 384(%[output]) \n\t" + "sh $zero, 448(%[output]) \n\t" + "sh $zero, 512(%[output]) \n\t" + "sh $zero, 576(%[output]) \n\t" + "sh $zero, 640(%[output]) \n\t" + "sh $zero, 704(%[output]) \n\t" + "sh $zero, 768(%[output]) \n\t" + "sh $zero, 832(%[output]) \n\t" + "sh $zero, 896(%[output]) \n\t" + "sh $zero, 960(%[output]) \n\t" + "sh $zero, 1024(%[output]) \n\t" + "sh $zero, 1088(%[output]) \n\t" + "sh $zero, 1152(%[output]) \n\t" + "sh $zero, 1216(%[output]) \n\t" + "sh $zero, 1280(%[output]) \n\t" + "sh $zero, 1344(%[output]) \n\t" + "sh $zero, 1408(%[output]) \n\t" + "sh $zero, 1472(%[output]) \n\t" + "sh $zero, 1536(%[output]) \n\t" + "sh $zero, 1600(%[output]) \n\t" + "sh $zero, 1664(%[output]) \n\t" + "sh $zero, 1728(%[output]) \n\t" + "sh $zero, 1792(%[output]) \n\t" + "sh $zero, 1856(%[output]) \n\t" + "sh $zero, 1920(%[output]) \n\t" + "sh $zero, 1984(%[output]) \n\t" + + : + : [output] "r"(output)); + + output += 1; + + continue; + } + + /* prefetch row */ + prefetch_load((const uint8_t *)(input + 32)); + prefetch_load((const uint8_t *)(input + 48)); + + __asm__ __volatile__( + "lh %[load1], 2(%[input]) \n\t" + "lh %[load2], 62(%[input]) \n\t" + "lh %[load3], 34(%[input]) \n\t" + "lh %[load4], 30(%[input]) \n\t" + + "mtlo %[const_2_power_13], $ac1 \n\t" + "mthi $zero, $ac1 \n\t" + "mtlo %[const_2_power_13], $ac3 \n\t" + "mthi $zero, $ac3 \n\t" + + "madd $ac1, %[load1], %[cospi_31_64] \n\t" + "msub $ac1, %[load2], %[cospi_1_64] \n\t" + "extp %[temp0], $ac1, 31 \n\t" + + "madd $ac3, %[load1], %[cospi_1_64] \n\t" + "madd $ac3, %[load2], %[cospi_31_64] \n\t" + "extp %[temp3], $ac3, 31 \n\t" + + "mtlo %[const_2_power_13], $ac1 \n\t" + "mthi $zero, $ac1 \n\t" + "mtlo %[const_2_power_13], $ac2 \n\t" + "mthi $zero, $ac2 \n\t" + + "madd $ac2, %[load3], %[cospi_15_64] \n\t" + "msub $ac2, %[load4], %[cospi_17_64] \n\t" + "extp %[temp1], $ac2, 31 \n\t" + + "madd $ac1, %[load3], %[cospi_17_64] \n\t" + "madd $ac1, %[load4], %[cospi_15_64] \n\t" + "extp %[temp2], $ac1, 31 \n\t" + + "mtlo %[const_2_power_13], $ac1 \n\t" + "mthi $zero, $ac1 \n\t" + "mtlo %[const_2_power_13], $ac3 \n\t" + "mthi $zero, $ac3 \n\t" + + "sub %[load1], %[temp3], %[temp2] \n\t" + "sub %[load2], %[temp0], %[temp1] \n\t" + + "madd $ac1, %[load1], %[cospi_28_64] \n\t" + "msub $ac1, %[load2], %[cospi_4_64] \n\t" + "madd $ac3, %[load1], %[cospi_4_64] \n\t" + "madd $ac3, %[load2], %[cospi_28_64] \n\t" + + "extp %[step1_17], $ac1, 31 \n\t" + "extp %[step1_30], $ac3, 31 \n\t" + "add %[step1_16], %[temp0], %[temp1] \n\t" + "add %[step1_31], %[temp2], %[temp3] \n\t" + + : [load1] "=&r"(load1), [load2] "=&r"(load2), [load3] "=&r"(load3), + [load4] "=&r"(load4), [temp0] "=&r"(temp0), [temp1] "=&r"(temp1), + [temp2] "=&r"(temp2), [temp3] "=&r"(temp3), + [step1_16] "=&r"(step1_16), [step1_17] "=&r"(step1_17), + [step1_30] "=&r"(step1_30), [step1_31] "=&r"(step1_31) + : [const_2_power_13] "r"(const_2_power_13), [input] "r"(input), + [cospi_31_64] "r"(cospi_31_64), [cospi_1_64] "r"(cospi_1_64), + [cospi_4_64] "r"(cospi_4_64), [cospi_17_64] "r"(cospi_17_64), + [cospi_15_64] "r"(cospi_15_64), [cospi_28_64] "r"(cospi_28_64)); + + __asm__ __volatile__( + "lh %[load1], 18(%[input]) \n\t" + "lh %[load2], 46(%[input]) \n\t" + "lh %[load3], 50(%[input]) \n\t" + "lh %[load4], 14(%[input]) \n\t" + + "mtlo %[const_2_power_13], $ac1 \n\t" + "mthi $zero, $ac1 \n\t" + "mtlo %[const_2_power_13], $ac3 \n\t" + "mthi $zero, $ac3 \n\t" + + "madd $ac1, %[load1], %[cospi_23_64] \n\t" + "msub $ac1, %[load2], %[cospi_9_64] \n\t" + "extp %[temp0], $ac1, 31 \n\t" + + "madd $ac3, %[load1], %[cospi_9_64] \n\t" + "madd $ac3, %[load2], %[cospi_23_64] \n\t" + "extp %[temp3], $ac3, 31 \n\t" + + "mtlo %[const_2_power_13], $ac1 \n\t" + "mthi $zero, $ac1 \n\t" + "mtlo %[const_2_power_13], $ac2 \n\t" + "mthi $zero, $ac2 \n\t" + + "madd $ac2, %[load3], %[cospi_7_64] \n\t" + "msub $ac2, %[load4], %[cospi_25_64] \n\t" + "extp %[temp1], $ac2, 31 \n\t" + + "madd $ac1, %[load3], %[cospi_25_64] \n\t" + "madd $ac1, %[load4], %[cospi_7_64] \n\t" + "extp %[temp2], $ac1, 31 \n\t" + + "mtlo %[const_2_power_13], $ac1 \n\t" + "mthi $zero, $ac1 \n\t" + "mtlo %[const_2_power_13], $ac3 \n\t" + "mthi $zero, $ac3 \n\t" + + "sub %[load1], %[temp1], %[temp0] \n\t" + "sub %[load2], %[temp2], %[temp3] \n\t" + + "msub $ac1, %[load1], %[cospi_28_64] \n\t" + "msub $ac1, %[load2], %[cospi_4_64] \n\t" + "msub $ac3, %[load1], %[cospi_4_64] \n\t" + "madd $ac3, %[load2], %[cospi_28_64] \n\t" + + "extp %[step1_18], $ac1, 31 \n\t" + "extp %[step1_29], $ac3, 31 \n\t" + "add %[step1_19], %[temp0], %[temp1] \n\t" + "add %[step1_28], %[temp2], %[temp3] \n\t" + + : [load1] "=&r"(load1), [load2] "=&r"(load2), [load3] "=&r"(load3), + [load4] "=&r"(load4), [temp0] "=&r"(temp0), [temp1] "=&r"(temp1), + [temp2] "=&r"(temp2), [temp3] "=&r"(temp3), + [step1_18] "=&r"(step1_18), [step1_19] "=&r"(step1_19), + [step1_28] "=&r"(step1_28), [step1_29] "=&r"(step1_29) + : [const_2_power_13] "r"(const_2_power_13), [input] "r"(input), + [cospi_23_64] "r"(cospi_23_64), [cospi_9_64] "r"(cospi_9_64), + [cospi_4_64] "r"(cospi_4_64), [cospi_7_64] "r"(cospi_7_64), + [cospi_25_64] "r"(cospi_25_64), [cospi_28_64] "r"(cospi_28_64)); + + __asm__ __volatile__( + "lh %[load1], 10(%[input]) \n\t" + "lh %[load2], 54(%[input]) \n\t" + "lh %[load3], 42(%[input]) \n\t" + "lh %[load4], 22(%[input]) \n\t" + + "mtlo %[const_2_power_13], $ac1 \n\t" + "mthi $zero, $ac1 \n\t" + "mtlo %[const_2_power_13], $ac3 \n\t" + "mthi $zero, $ac3 \n\t" + + "madd $ac1, %[load1], %[cospi_27_64] \n\t" + "msub $ac1, %[load2], %[cospi_5_64] \n\t" + "extp %[temp0], $ac1, 31 \n\t" + + "madd $ac3, %[load1], %[cospi_5_64] \n\t" + "madd $ac3, %[load2], %[cospi_27_64] \n\t" + "extp %[temp3], $ac3, 31 \n\t" + + "mtlo %[const_2_power_13], $ac1 \n\t" + "mthi $zero, $ac1 \n\t" + "mtlo %[const_2_power_13], $ac2 \n\t" + "mthi $zero, $ac2 \n\t" + + "madd $ac2, %[load3], %[cospi_11_64] \n\t" + "msub $ac2, %[load4], %[cospi_21_64] \n\t" + "extp %[temp1], $ac2, 31 \n\t" + + "madd $ac1, %[load3], %[cospi_21_64] \n\t" + "madd $ac1, %[load4], %[cospi_11_64] \n\t" + "extp %[temp2], $ac1, 31 \n\t" + + "mtlo %[const_2_power_13], $ac1 \n\t" + "mthi $zero, $ac1 \n\t" + "mtlo %[const_2_power_13], $ac3 \n\t" + "mthi $zero, $ac3 \n\t" + + "sub %[load1], %[temp0], %[temp1] \n\t" + "sub %[load2], %[temp3], %[temp2] \n\t" + + "madd $ac1, %[load2], %[cospi_12_64] \n\t" + "msub $ac1, %[load1], %[cospi_20_64] \n\t" + "madd $ac3, %[load1], %[cospi_12_64] \n\t" + "madd $ac3, %[load2], %[cospi_20_64] \n\t" + + "extp %[step1_21], $ac1, 31 \n\t" + "extp %[step1_26], $ac3, 31 \n\t" + "add %[step1_20], %[temp0], %[temp1] \n\t" + "add %[step1_27], %[temp2], %[temp3] \n\t" + + : [load1] "=&r"(load1), [load2] "=&r"(load2), [load3] "=&r"(load3), + [load4] "=&r"(load4), [temp0] "=&r"(temp0), [temp1] "=&r"(temp1), + [temp2] "=&r"(temp2), [temp3] "=&r"(temp3), + [step1_20] "=&r"(step1_20), [step1_21] "=&r"(step1_21), + [step1_26] "=&r"(step1_26), [step1_27] "=&r"(step1_27) + : [const_2_power_13] "r"(const_2_power_13), [input] "r"(input), + [cospi_27_64] "r"(cospi_27_64), [cospi_5_64] "r"(cospi_5_64), + [cospi_11_64] "r"(cospi_11_64), [cospi_21_64] "r"(cospi_21_64), + [cospi_12_64] "r"(cospi_12_64), [cospi_20_64] "r"(cospi_20_64)); + + __asm__ __volatile__( + "lh %[load1], 26(%[input]) \n\t" + "lh %[load2], 38(%[input]) \n\t" + "lh %[load3], 58(%[input]) \n\t" + "lh %[load4], 6(%[input]) \n\t" + + "mtlo %[const_2_power_13], $ac1 \n\t" + "mthi $zero, $ac1 \n\t" + "mtlo %[const_2_power_13], $ac3 \n\t" + "mthi $zero, $ac3 \n\t" + + "madd $ac1, %[load1], %[cospi_19_64] \n\t" + "msub $ac1, %[load2], %[cospi_13_64] \n\t" + "extp %[temp0], $ac1, 31 \n\t" + "madd $ac3, %[load1], %[cospi_13_64] \n\t" + "madd $ac3, %[load2], %[cospi_19_64] \n\t" + "extp %[temp3], $ac3, 31 \n\t" + + "mtlo %[const_2_power_13], $ac1 \n\t" + "mthi $zero, $ac1 \n\t" + "mtlo %[const_2_power_13], $ac2 \n\t" + "mthi $zero, $ac2 \n\t" + + "madd $ac2, %[load3], %[cospi_3_64] \n\t" + "msub $ac2, %[load4], %[cospi_29_64] \n\t" + "extp %[temp1], $ac2, 31 \n\t" + "madd $ac1, %[load3], %[cospi_29_64] \n\t" + "madd $ac1, %[load4], %[cospi_3_64] \n\t" + "extp %[temp2], $ac1, 31 \n\t" + + "mtlo %[const_2_power_13], $ac1 \n\t" + "mthi $zero, $ac1 \n\t" + "mtlo %[const_2_power_13], $ac3 \n\t" + "mthi $zero, $ac3 \n\t" + + "sub %[load1], %[temp1], %[temp0] \n\t" + "sub %[load2], %[temp2], %[temp3] \n\t" + "msub $ac1, %[load1], %[cospi_12_64] \n\t" + "msub $ac1, %[load2], %[cospi_20_64] \n\t" + "msub $ac3, %[load1], %[cospi_20_64] \n\t" + "madd $ac3, %[load2], %[cospi_12_64] \n\t" + "extp %[step1_22], $ac1, 31 \n\t" + "extp %[step1_25], $ac3, 31 \n\t" + "add %[step1_23], %[temp0], %[temp1] \n\t" + "add %[step1_24], %[temp2], %[temp3] \n\t" + + : [load1] "=&r"(load1), [load2] "=&r"(load2), [load3] "=&r"(load3), + [load4] "=&r"(load4), [temp0] "=&r"(temp0), [temp1] "=&r"(temp1), + [temp2] "=&r"(temp2), [temp3] "=&r"(temp3), + [step1_22] "=&r"(step1_22), [step1_23] "=&r"(step1_23), + [step1_24] "=&r"(step1_24), [step1_25] "=&r"(step1_25) + : [const_2_power_13] "r"(const_2_power_13), [input] "r"(input), + [cospi_19_64] "r"(cospi_19_64), [cospi_13_64] "r"(cospi_13_64), + [cospi_3_64] "r"(cospi_3_64), [cospi_29_64] "r"(cospi_29_64), + [cospi_12_64] "r"(cospi_12_64), [cospi_20_64] "r"(cospi_20_64)); + + __asm__ __volatile__( + "lh %[load1], 4(%[input]) \n\t" + "lh %[load2], 60(%[input]) \n\t" + "lh %[load3], 36(%[input]) \n\t" + "lh %[load4], 28(%[input]) \n\t" + + "mtlo %[const_2_power_13], $ac1 \n\t" + "mthi $zero, $ac1 \n\t" + "mtlo %[const_2_power_13], $ac3 \n\t" + "mthi $zero, $ac3 \n\t" + + "madd $ac1, %[load1], %[cospi_30_64] \n\t" + "msub $ac1, %[load2], %[cospi_2_64] \n\t" + "extp %[temp0], $ac1, 31 \n\t" + "madd $ac3, %[load1], %[cospi_2_64] \n\t" + "madd $ac3, %[load2], %[cospi_30_64] \n\t" + "extp %[temp3], $ac3, 31 \n\t" + + "mtlo %[const_2_power_13], $ac1 \n\t" + "mthi $zero, $ac1 \n\t" + "mtlo %[const_2_power_13], $ac2 \n\t" + "mthi $zero, $ac2 \n\t" + + "madd $ac2, %[load3], %[cospi_14_64] \n\t" + "msub $ac2, %[load4], %[cospi_18_64] \n\t" + "extp %[temp1], $ac2, 31 \n\t" + "madd $ac1, %[load3], %[cospi_18_64] \n\t" + "madd $ac1, %[load4], %[cospi_14_64] \n\t" + "extp %[temp2], $ac1, 31 \n\t" + + "mtlo %[const_2_power_13], $ac1 \n\t" + "mthi $zero, $ac1 \n\t" + "mtlo %[const_2_power_13], $ac3 \n\t" + "mthi $zero, $ac3 \n\t" + + "sub %[load1], %[temp0], %[temp1] \n\t" + "sub %[load2], %[temp3], %[temp2] \n\t" + "msub $ac1, %[load1], %[cospi_8_64] \n\t" + "madd $ac1, %[load2], %[cospi_24_64] \n\t" + "madd $ac3, %[load1], %[cospi_24_64] \n\t" + "madd $ac3, %[load2], %[cospi_8_64] \n\t" + "extp %[step2_9], $ac1, 31 \n\t" + "extp %[step2_14], $ac3, 31 \n\t" + "add %[step2_8], %[temp0], %[temp1] \n\t" + "add %[step2_15], %[temp2], %[temp3] \n\t" + + : [load1] "=&r"(load1), [load2] "=&r"(load2), [load3] "=&r"(load3), + [load4] "=&r"(load4), [temp0] "=&r"(temp0), [temp1] "=&r"(temp1), + [temp2] "=&r"(temp2), [temp3] "=&r"(temp3), [step2_8] "=&r"(step2_8), + [step2_9] "=&r"(step2_9), [step2_14] "=&r"(step2_14), + [step2_15] "=&r"(step2_15) + : [const_2_power_13] "r"(const_2_power_13), [input] "r"(input), + [cospi_30_64] "r"(cospi_30_64), [cospi_2_64] "r"(cospi_2_64), + [cospi_14_64] "r"(cospi_14_64), [cospi_18_64] "r"(cospi_18_64), + [cospi_8_64] "r"(cospi_8_64), [cospi_24_64] "r"(cospi_24_64)); + + __asm__ __volatile__( + "lh %[load1], 20(%[input]) \n\t" + "lh %[load2], 44(%[input]) \n\t" + "lh %[load3], 52(%[input]) \n\t" + "lh %[load4], 12(%[input]) \n\t" + + "mtlo %[const_2_power_13], $ac1 \n\t" + "mthi $zero, $ac1 \n\t" + "mtlo %[const_2_power_13], $ac3 \n\t" + "mthi $zero, $ac3 \n\t" + + "madd $ac1, %[load1], %[cospi_22_64] \n\t" + "msub $ac1, %[load2], %[cospi_10_64] \n\t" + "extp %[temp0], $ac1, 31 \n\t" + "madd $ac3, %[load1], %[cospi_10_64] \n\t" + "madd $ac3, %[load2], %[cospi_22_64] \n\t" + "extp %[temp3], $ac3, 31 \n\t" + + "mtlo %[const_2_power_13], $ac1 \n\t" + "mthi $zero, $ac1 \n\t" + "mtlo %[const_2_power_13], $ac2 \n\t" + "mthi $zero, $ac2 \n\t" + + "madd $ac2, %[load3], %[cospi_6_64] \n\t" + "msub $ac2, %[load4], %[cospi_26_64] \n\t" + "extp %[temp1], $ac2, 31 \n\t" + "madd $ac1, %[load3], %[cospi_26_64] \n\t" + "madd $ac1, %[load4], %[cospi_6_64] \n\t" + "extp %[temp2], $ac1, 31 \n\t" + + "mtlo %[const_2_power_13], $ac1 \n\t" + "mthi $zero, $ac1 \n\t" + "mtlo %[const_2_power_13], $ac3 \n\t" + "mthi $zero, $ac3 \n\t" + + "sub %[load1], %[temp1], %[temp0] \n\t" + "sub %[load2], %[temp2], %[temp3] \n\t" + "msub $ac1, %[load1], %[cospi_24_64] \n\t" + "msub $ac1, %[load2], %[cospi_8_64] \n\t" + "madd $ac3, %[load2], %[cospi_24_64] \n\t" + "msub $ac3, %[load1], %[cospi_8_64] \n\t" + "extp %[step2_10], $ac1, 31 \n\t" + "extp %[step2_13], $ac3, 31 \n\t" + "add %[step2_11], %[temp0], %[temp1] \n\t" + "add %[step2_12], %[temp2], %[temp3] \n\t" + + : [load1] "=&r"(load1), [load2] "=&r"(load2), [load3] "=&r"(load3), + [load4] "=&r"(load4), [temp0] "=&r"(temp0), [temp1] "=&r"(temp1), + [temp2] "=&r"(temp2), [temp3] "=&r"(temp3), + [step2_10] "=&r"(step2_10), [step2_11] "=&r"(step2_11), + [step2_12] "=&r"(step2_12), [step2_13] "=&r"(step2_13) + : [const_2_power_13] "r"(const_2_power_13), [input] "r"(input), + [cospi_22_64] "r"(cospi_22_64), [cospi_10_64] "r"(cospi_10_64), + [cospi_6_64] "r"(cospi_6_64), [cospi_26_64] "r"(cospi_26_64), + [cospi_8_64] "r"(cospi_8_64), [cospi_24_64] "r"(cospi_24_64)); + + __asm__ __volatile__( + "mtlo %[const_2_power_13], $ac0 \n\t" + "mthi $zero, $ac0 \n\t" + "sub %[temp0], %[step2_14], %[step2_13] \n\t" + "sub %[temp0], %[temp0], %[step2_9] \n\t" + "add %[temp0], %[temp0], %[step2_10] \n\t" + "madd $ac0, %[temp0], %[cospi_16_64] \n\t" + "mtlo %[const_2_power_13], $ac1 \n\t" + "mthi $zero, $ac1 \n\t" + "sub %[temp1], %[step2_14], %[step2_13] \n\t" + "add %[temp1], %[temp1], %[step2_9] \n\t" + "sub %[temp1], %[temp1], %[step2_10] \n\t" + "madd $ac1, %[temp1], %[cospi_16_64] \n\t" + "mtlo %[const_2_power_13], $ac2 \n\t" + "mthi $zero, $ac2 \n\t" + "sub %[temp0], %[step2_15], %[step2_12] \n\t" + "sub %[temp0], %[temp0], %[step2_8] \n\t" + "add %[temp0], %[temp0], %[step2_11] \n\t" + "madd $ac2, %[temp0], %[cospi_16_64] \n\t" + "mtlo %[const_2_power_13], $ac3 \n\t" + "mthi $zero, $ac3 \n\t" + "sub %[temp1], %[step2_15], %[step2_12] \n\t" + "add %[temp1], %[temp1], %[step2_8] \n\t" + "sub %[temp1], %[temp1], %[step2_11] \n\t" + "madd $ac3, %[temp1], %[cospi_16_64] \n\t" + + "add %[step3_8], %[step2_8], %[step2_11] \n\t" + "add %[step3_9], %[step2_9], %[step2_10] \n\t" + "add %[step3_14], %[step2_13], %[step2_14] \n\t" + "add %[step3_15], %[step2_12], %[step2_15] \n\t" + "extp %[step3_10], $ac0, 31 \n\t" + "extp %[step3_13], $ac1, 31 \n\t" + "extp %[step3_11], $ac2, 31 \n\t" + "extp %[step3_12], $ac3, 31 \n\t" + + : [temp0] "=&r"(temp0), [temp1] "=&r"(temp1), [step3_8] "=&r"(step3_8), + [step3_9] "=&r"(step3_9), [step3_10] "=&r"(step3_10), + [step3_11] "=&r"(step3_11), [step3_12] "=&r"(step3_12), + [step3_13] "=&r"(step3_13), [step3_14] "=&r"(step3_14), + [step3_15] "=&r"(step3_15) + : [const_2_power_13] "r"(const_2_power_13), [step2_8] "r"(step2_8), + [step2_9] "r"(step2_9), [step2_10] "r"(step2_10), + [step2_11] "r"(step2_11), [step2_12] "r"(step2_12), + [step2_13] "r"(step2_13), [step2_14] "r"(step2_14), + [step2_15] "r"(step2_15), [cospi_16_64] "r"(cospi_16_64)); + + __asm__ __volatile__( + "mtlo %[const_2_power_13], $ac0 \n\t" + "mthi $zero, $ac0 \n\t" + "mtlo %[const_2_power_13], $ac1 \n\t" + "mthi $zero, $ac1 \n\t" + "sub %[temp0], %[step1_17], %[step1_18] \n\t" + "sub %[temp1], %[step1_30], %[step1_29] \n\t" + "add %[step3_17], %[step1_17], %[step1_18] \n\t" + "add %[step3_30], %[step1_30], %[step1_29] \n\t" + + "msub $ac0, %[temp0], %[cospi_8_64] \n\t" + "madd $ac0, %[temp1], %[cospi_24_64] \n\t" + "extp %[step3_18], $ac0, 31 \n\t" + "madd $ac1, %[temp0], %[cospi_24_64] \n\t" + "madd $ac1, %[temp1], %[cospi_8_64] \n\t" + "extp %[step3_29], $ac1, 31 \n\t" + + : [temp0] "=&r"(temp0), [temp1] "=&r"(temp1), + [step3_18] "=&r"(step3_18), [step3_29] "=&r"(step3_29), + [step3_17] "=&r"(step3_17), [step3_30] "=&r"(step3_30) + : [const_2_power_13] "r"(const_2_power_13), [step1_17] "r"(step1_17), + [step1_18] "r"(step1_18), [step1_30] "r"(step1_30), + [step1_29] "r"(step1_29), [cospi_24_64] "r"(cospi_24_64), + [cospi_8_64] "r"(cospi_8_64)); + + __asm__ __volatile__( + "mtlo %[const_2_power_13], $ac0 \n\t" + "mthi $zero, $ac0 \n\t" + "mtlo %[const_2_power_13], $ac1 \n\t" + "mthi $zero, $ac1 \n\t" + "sub %[temp0], %[step1_16], %[step1_19] \n\t" + "sub %[temp1], %[step1_31], %[step1_28] \n\t" + "add %[step3_16], %[step1_16], %[step1_19] \n\t" + "add %[step3_31], %[step1_31], %[step1_28] \n\t" + + "msub $ac0, %[temp0], %[cospi_8_64] \n\t" + "madd $ac0, %[temp1], %[cospi_24_64] \n\t" + "extp %[step3_19], $ac0, 31 \n\t" + "madd $ac1, %[temp0], %[cospi_24_64] \n\t" + "madd $ac1, %[temp1], %[cospi_8_64] \n\t" + "extp %[step3_28], $ac1, 31 \n\t" + + : [temp0] "=&r"(temp0), [temp1] "=&r"(temp1), + [step3_16] "=&r"(step3_16), [step3_31] "=&r"(step3_31), + [step3_19] "=&r"(step3_19), [step3_28] "=&r"(step3_28) + : [const_2_power_13] "r"(const_2_power_13), [step1_16] "r"(step1_16), + [step1_19] "r"(step1_19), [step1_31] "r"(step1_31), + [step1_28] "r"(step1_28), [cospi_24_64] "r"(cospi_24_64), + [cospi_8_64] "r"(cospi_8_64)); + + __asm__ __volatile__( + "mtlo %[const_2_power_13], $ac0 \n\t" + "mthi $zero, $ac0 \n\t" + "mtlo %[const_2_power_13], $ac1 \n\t" + "mthi $zero, $ac1 \n\t" + "sub %[temp0], %[step1_23], %[step1_20] \n\t" + "sub %[temp1], %[step1_24], %[step1_27] \n\t" + "add %[step3_23], %[step1_23], %[step1_20] \n\t" + "add %[step3_24], %[step1_24], %[step1_27] \n\t" + + "msub $ac0, %[temp0], %[cospi_8_64] \n\t" + "madd $ac0, %[temp1], %[cospi_24_64] \n\t" + "extp %[step3_27], $ac0, 31 \n\t" + "msub $ac1, %[temp0], %[cospi_24_64] \n\t" + "msub $ac1, %[temp1], %[cospi_8_64] \n\t" + "extp %[step3_20], $ac1, 31 \n\t" + + : [temp0] "=&r"(temp0), [temp1] "=&r"(temp1), + [step3_23] "=&r"(step3_23), [step3_24] "=&r"(step3_24), + [step3_20] "=&r"(step3_20), [step3_27] "=&r"(step3_27) + : [const_2_power_13] "r"(const_2_power_13), [step1_23] "r"(step1_23), + [step1_20] "r"(step1_20), [step1_24] "r"(step1_24), + [step1_27] "r"(step1_27), [cospi_24_64] "r"(cospi_24_64), + [cospi_8_64] "r"(cospi_8_64)); + + __asm__ __volatile__( + "mtlo %[const_2_power_13], $ac0 \n\t" + "mthi $zero, $ac0 \n\t" + "mtlo %[const_2_power_13], $ac1 \n\t" + "mthi $zero, $ac1 \n\t" + "sub %[temp0], %[step1_22], %[step1_21] \n\t" + "sub %[temp1], %[step1_25], %[step1_26] \n\t" + "add %[step3_22], %[step1_22], %[step1_21] \n\t" + "add %[step3_25], %[step1_25], %[step1_26] \n\t" + + "msub $ac0, %[temp0], %[cospi_24_64] \n\t" + "msub $ac0, %[temp1], %[cospi_8_64] \n\t" + "extp %[step3_21], $ac0, 31 \n\t" + "msub $ac1, %[temp0], %[cospi_8_64] \n\t" + "madd $ac1, %[temp1], %[cospi_24_64] \n\t" + "extp %[step3_26], $ac1, 31 \n\t" + + : [temp0] "=&r"(temp0), [temp1] "=&r"(temp1), + [step3_22] "=&r"(step3_22), [step3_25] "=&r"(step3_25), + [step3_21] "=&r"(step3_21), [step3_26] "=&r"(step3_26) + : [const_2_power_13] "r"(const_2_power_13), [step1_22] "r"(step1_22), + [step1_21] "r"(step1_21), [step1_25] "r"(step1_25), + [step1_26] "r"(step1_26), [cospi_24_64] "r"(cospi_24_64), + [cospi_8_64] "r"(cospi_8_64)); + + __asm__ __volatile__( + "add %[step2_16], %[step3_16], %[step3_23] \n\t" + "add %[step2_17], %[step3_17], %[step3_22] \n\t" + "add %[step2_18], %[step3_18], %[step3_21] \n\t" + "add %[step2_19], %[step3_19], %[step3_20] \n\t" + "sub %[step2_20], %[step3_19], %[step3_20] \n\t" + "sub %[step2_21], %[step3_18], %[step3_21] \n\t" + "sub %[step2_22], %[step3_17], %[step3_22] \n\t" + "sub %[step2_23], %[step3_16], %[step3_23] \n\t" + + : [step2_16] "=&r"(step2_16), [step2_17] "=&r"(step2_17), + [step2_18] "=&r"(step2_18), [step2_19] "=&r"(step2_19), + [step2_20] "=&r"(step2_20), [step2_21] "=&r"(step2_21), + [step2_22] "=&r"(step2_22), [step2_23] "=&r"(step2_23) + : [step3_16] "r"(step3_16), [step3_23] "r"(step3_23), + [step3_17] "r"(step3_17), [step3_22] "r"(step3_22), + [step3_18] "r"(step3_18), [step3_21] "r"(step3_21), + [step3_19] "r"(step3_19), [step3_20] "r"(step3_20)); + + __asm__ __volatile__( + "sub %[step2_24], %[step3_31], %[step3_24] \n\t" + "sub %[step2_25], %[step3_30], %[step3_25] \n\t" + "sub %[step2_26], %[step3_29], %[step3_26] \n\t" + "sub %[step2_27], %[step3_28], %[step3_27] \n\t" + "add %[step2_28], %[step3_28], %[step3_27] \n\t" + "add %[step2_29], %[step3_29], %[step3_26] \n\t" + "add %[step2_30], %[step3_30], %[step3_25] \n\t" + "add %[step2_31], %[step3_31], %[step3_24] \n\t" + + : [step2_24] "=&r"(step2_24), [step2_28] "=&r"(step2_28), + [step2_25] "=&r"(step2_25), [step2_29] "=&r"(step2_29), + [step2_26] "=&r"(step2_26), [step2_30] "=&r"(step2_30), + [step2_27] "=&r"(step2_27), [step2_31] "=&r"(step2_31) + : [step3_31] "r"(step3_31), [step3_24] "r"(step3_24), + [step3_30] "r"(step3_30), [step3_25] "r"(step3_25), + [step3_29] "r"(step3_29), [step3_26] "r"(step3_26), + [step3_28] "r"(step3_28), [step3_27] "r"(step3_27)); + + __asm__ __volatile__( + "lh %[load1], 0(%[input]) \n\t" + "lh %[load2], 32(%[input]) \n\t" + "lh %[load3], 16(%[input]) \n\t" + "lh %[load4], 48(%[input]) \n\t" + + "mtlo %[const_2_power_13], $ac1 \n\t" + "mthi $zero, $ac1 \n\t" + "mtlo %[const_2_power_13], $ac2 \n\t" + "mthi $zero, $ac2 \n\t" + "add %[result1], %[load1], %[load2] \n\t" + "sub %[result2], %[load1], %[load2] \n\t" + "madd $ac1, %[result1], %[cospi_16_64] \n\t" + "madd $ac2, %[result2], %[cospi_16_64] \n\t" + "extp %[temp0], $ac1, 31 \n\t" + "extp %[temp1], $ac2, 31 \n\t" + + "mtlo %[const_2_power_13], $ac3 \n\t" + "mthi $zero, $ac3 \n\t" + "madd $ac3, %[load3], %[cospi_24_64] \n\t" + "msub $ac3, %[load4], %[cospi_8_64] \n\t" + "extp %[temp2], $ac3, 31 \n\t" + "mtlo %[const_2_power_13], $ac1 \n\t" + "mthi $zero, $ac1 \n\t" + "madd $ac1, %[load3], %[cospi_8_64] \n\t" + "madd $ac1, %[load4], %[cospi_24_64] \n\t" + "extp %[temp3], $ac1, 31 \n\t" + "add %[step1_0], %[temp0], %[temp3] \n\t" + "add %[step1_1], %[temp1], %[temp2] \n\t" + "sub %[step1_2], %[temp1], %[temp2] \n\t" + "sub %[step1_3], %[temp0], %[temp3] \n\t" + + : [load1] "=&r"(load1), [load2] "=&r"(load2), [load3] "=&r"(load3), + [load4] "=&r"(load4), [result1] "=&r"(result1), + [result2] "=&r"(result2), [temp0] "=&r"(temp0), [temp1] "=&r"(temp1), + [temp2] "=&r"(temp2), [temp3] "=&r"(temp3), [step1_0] "=&r"(step1_0), + [step1_1] "=&r"(step1_1), [step1_2] "=&r"(step1_2), + [step1_3] "=&r"(step1_3) + : [const_2_power_13] "r"(const_2_power_13), [input] "r"(input), + [cospi_24_64] "r"(cospi_24_64), [cospi_8_64] "r"(cospi_8_64), + [cospi_16_64] "r"(cospi_16_64)); + + __asm__ __volatile__( + "lh %[load1], 8(%[input]) \n\t" + "lh %[load2], 56(%[input]) \n\t" + "lh %[load3], 40(%[input]) \n\t" + "lh %[load4], 24(%[input]) \n\t" + + "mtlo %[const_2_power_13], $ac1 \n\t" + "mthi $zero, $ac1 \n\t" + "mtlo %[const_2_power_13], $ac3 \n\t" + "mthi $zero, $ac3 \n\t" + + "madd $ac1, %[load1], %[cospi_28_64] \n\t" + "msub $ac1, %[load2], %[cospi_4_64] \n\t" + "extp %[temp0], $ac1, 31 \n\t" + "madd $ac3, %[load1], %[cospi_4_64] \n\t" + "madd $ac3, %[load2], %[cospi_28_64] \n\t" + "extp %[temp3], $ac3, 31 \n\t" + + "mtlo %[const_2_power_13], $ac1 \n\t" + "mthi $zero, $ac1 \n\t" + "mtlo %[const_2_power_13], $ac2 \n\t" + "mthi $zero, $ac2 \n\t" + + "madd $ac2, %[load3], %[cospi_12_64] \n\t" + "msub $ac2, %[load4], %[cospi_20_64] \n\t" + "extp %[temp1], $ac2, 31 \n\t" + "madd $ac1, %[load3], %[cospi_20_64] \n\t" + "madd $ac1, %[load4], %[cospi_12_64] \n\t" + "extp %[temp2], $ac1, 31 \n\t" + + "mtlo %[const_2_power_13], $ac1 \n\t" + "mthi $zero, $ac1 \n\t" + "mtlo %[const_2_power_13], $ac3 \n\t" + "mthi $zero, $ac3 \n\t" + + "sub %[load1], %[temp3], %[temp2] \n\t" + "sub %[load1], %[load1], %[temp0] \n\t" + "add %[load1], %[load1], %[temp1] \n\t" + "sub %[load2], %[temp0], %[temp1] \n\t" + "sub %[load2], %[load2], %[temp2] \n\t" + "add %[load2], %[load2], %[temp3] \n\t" + "madd $ac1, %[load1], %[cospi_16_64] \n\t" + "madd $ac3, %[load2], %[cospi_16_64] \n\t" + + "extp %[step1_5], $ac1, 31 \n\t" + "extp %[step1_6], $ac3, 31 \n\t" + "add %[step1_4], %[temp0], %[temp1] \n\t" + "add %[step1_7], %[temp3], %[temp2] \n\t" + + : [load1] "=&r"(load1), [load2] "=&r"(load2), [load3] "=&r"(load3), + [load4] "=&r"(load4), [temp0] "=&r"(temp0), [temp1] "=&r"(temp1), + [temp2] "=&r"(temp2), [temp3] "=&r"(temp3), [step1_4] "=&r"(step1_4), + [step1_5] "=&r"(step1_5), [step1_6] "=&r"(step1_6), + [step1_7] "=&r"(step1_7) + : [const_2_power_13] "r"(const_2_power_13), [input] "r"(input), + [cospi_20_64] "r"(cospi_20_64), [cospi_12_64] "r"(cospi_12_64), + [cospi_4_64] "r"(cospi_4_64), [cospi_28_64] "r"(cospi_28_64), + [cospi_16_64] "r"(cospi_16_64)); + + __asm__ __volatile__( + "add %[step2_0], %[step1_0], %[step1_7] \n\t" + "add %[step2_1], %[step1_1], %[step1_6] \n\t" + "add %[step2_2], %[step1_2], %[step1_5] \n\t" + "add %[step2_3], %[step1_3], %[step1_4] \n\t" + "sub %[step2_4], %[step1_3], %[step1_4] \n\t" + "sub %[step2_5], %[step1_2], %[step1_5] \n\t" + "sub %[step2_6], %[step1_1], %[step1_6] \n\t" + "sub %[step2_7], %[step1_0], %[step1_7] \n\t" + + : [step2_0] "=&r"(step2_0), [step2_4] "=&r"(step2_4), + [step2_1] "=&r"(step2_1), [step2_5] "=&r"(step2_5), + [step2_2] "=&r"(step2_2), [step2_6] "=&r"(step2_6), + [step2_3] "=&r"(step2_3), [step2_7] "=&r"(step2_7) + : [step1_0] "r"(step1_0), [step1_7] "r"(step1_7), + [step1_1] "r"(step1_1), [step1_6] "r"(step1_6), + [step1_2] "r"(step1_2), [step1_5] "r"(step1_5), + [step1_3] "r"(step1_3), [step1_4] "r"(step1_4)); + + // stage 7 + __asm__ __volatile__( + "add %[step1_0], %[step2_0], %[step3_15] \n\t" + "add %[step1_1], %[step2_1], %[step3_14] \n\t" + "add %[step1_2], %[step2_2], %[step3_13] \n\t" + "add %[step1_3], %[step2_3], %[step3_12] \n\t" + "sub %[step1_12], %[step2_3], %[step3_12] \n\t" + "sub %[step1_13], %[step2_2], %[step3_13] \n\t" + "sub %[step1_14], %[step2_1], %[step3_14] \n\t" + "sub %[step1_15], %[step2_0], %[step3_15] \n\t" + + : [step1_0] "=&r"(step1_0), [step1_12] "=&r"(step1_12), + [step1_1] "=&r"(step1_1), [step1_13] "=&r"(step1_13), + [step1_2] "=&r"(step1_2), [step1_14] "=&r"(step1_14), + [step1_3] "=&r"(step1_3), [step1_15] "=&r"(step1_15) + : [step2_0] "r"(step2_0), [step3_15] "r"(step3_15), + [step2_1] "r"(step2_1), [step3_14] "r"(step3_14), + [step2_2] "r"(step2_2), [step3_13] "r"(step3_13), + [step2_3] "r"(step2_3), [step3_12] "r"(step3_12)); + + __asm__ __volatile__( + "add %[step1_4], %[step2_4], %[step3_11] \n\t" + "add %[step1_5], %[step2_5], %[step3_10] \n\t" + "add %[step1_6], %[step2_6], %[step3_9] \n\t" + "add %[step1_7], %[step2_7], %[step3_8] \n\t" + "sub %[step1_8], %[step2_7], %[step3_8] \n\t" + "sub %[step1_9], %[step2_6], %[step3_9] \n\t" + "sub %[step1_10], %[step2_5], %[step3_10] \n\t" + "sub %[step1_11], %[step2_4], %[step3_11] \n\t" + + : [step1_4] "=&r"(step1_4), [step1_8] "=&r"(step1_8), + [step1_5] "=&r"(step1_5), [step1_9] "=&r"(step1_9), + [step1_6] "=&r"(step1_6), [step1_10] "=&r"(step1_10), + [step1_7] "=&r"(step1_7), [step1_11] "=&r"(step1_11) + : [step2_4] "r"(step2_4), [step3_11] "r"(step3_11), + [step2_5] "r"(step2_5), [step3_10] "r"(step3_10), + [step2_6] "r"(step2_6), [step3_9] "r"(step3_9), + [step2_7] "r"(step2_7), [step3_8] "r"(step3_8)); + + __asm__ __volatile__( + "sub %[temp0], %[step2_27], %[step2_20] \n\t" + "add %[temp1], %[step2_27], %[step2_20] \n\t" + "sub %[temp2], %[step2_26], %[step2_21] \n\t" + "add %[temp3], %[step2_26], %[step2_21] \n\t" + + "mtlo %[const_2_power_13], $ac0 \n\t" + "mthi $zero, $ac0 \n\t" + "mtlo %[const_2_power_13], $ac1 \n\t" + "mthi $zero, $ac1 \n\t" + "mtlo %[const_2_power_13], $ac2 \n\t" + "mthi $zero, $ac2 \n\t" + "mtlo %[const_2_power_13], $ac3 \n\t" + "mthi $zero, $ac3 \n\t" + + "madd $ac0, %[temp0], %[cospi_16_64] \n\t" + "madd $ac1, %[temp1], %[cospi_16_64] \n\t" + "madd $ac2, %[temp2], %[cospi_16_64] \n\t" + "madd $ac3, %[temp3], %[cospi_16_64] \n\t" + + "extp %[step1_20], $ac0, 31 \n\t" + "extp %[step1_27], $ac1, 31 \n\t" + "extp %[step1_21], $ac2, 31 \n\t" + "extp %[step1_26], $ac3, 31 \n\t" + + : [temp0] "=&r"(temp0), [temp1] "=&r"(temp1), [temp2] "=&r"(temp2), + [temp3] "=&r"(temp3), [step1_20] "=&r"(step1_20), + [step1_27] "=&r"(step1_27), [step1_21] "=&r"(step1_21), + [step1_26] "=&r"(step1_26) + : [const_2_power_13] "r"(const_2_power_13), [step2_20] "r"(step2_20), + [step2_27] "r"(step2_27), [step2_21] "r"(step2_21), + [step2_26] "r"(step2_26), [cospi_16_64] "r"(cospi_16_64)); + + __asm__ __volatile__( + "sub %[temp0], %[step2_25], %[step2_22] \n\t" + "add %[temp1], %[step2_25], %[step2_22] \n\t" + "sub %[temp2], %[step2_24], %[step2_23] \n\t" + "add %[temp3], %[step2_24], %[step2_23] \n\t" + + "mtlo %[const_2_power_13], $ac0 \n\t" + "mthi $zero, $ac0 \n\t" + "mtlo %[const_2_power_13], $ac1 \n\t" + "mthi $zero, $ac1 \n\t" + "mtlo %[const_2_power_13], $ac2 \n\t" + "mthi $zero, $ac2 \n\t" + "mtlo %[const_2_power_13], $ac3 \n\t" + "mthi $zero, $ac3 \n\t" + + "madd $ac0, %[temp0], %[cospi_16_64] \n\t" + "madd $ac1, %[temp1], %[cospi_16_64] \n\t" + "madd $ac2, %[temp2], %[cospi_16_64] \n\t" + "madd $ac3, %[temp3], %[cospi_16_64] \n\t" + + "extp %[step1_22], $ac0, 31 \n\t" + "extp %[step1_25], $ac1, 31 \n\t" + "extp %[step1_23], $ac2, 31 \n\t" + "extp %[step1_24], $ac3, 31 \n\t" + + : [temp0] "=&r"(temp0), [temp1] "=&r"(temp1), [temp2] "=&r"(temp2), + [temp3] "=&r"(temp3), [step1_22] "=&r"(step1_22), + [step1_25] "=&r"(step1_25), [step1_23] "=&r"(step1_23), + [step1_24] "=&r"(step1_24) + : [const_2_power_13] "r"(const_2_power_13), [step2_22] "r"(step2_22), + [step2_25] "r"(step2_25), [step2_23] "r"(step2_23), + [step2_24] "r"(step2_24), [cospi_16_64] "r"(cospi_16_64)); + + // final stage + __asm__ __volatile__( + "add %[temp0], %[step1_0], %[step2_31] \n\t" + "add %[temp1], %[step1_1], %[step2_30] \n\t" + "add %[temp2], %[step1_2], %[step2_29] \n\t" + "add %[temp3], %[step1_3], %[step2_28] \n\t" + "sub %[load1], %[step1_3], %[step2_28] \n\t" + "sub %[load2], %[step1_2], %[step2_29] \n\t" + "sub %[load3], %[step1_1], %[step2_30] \n\t" + "sub %[load4], %[step1_0], %[step2_31] \n\t" + "sh %[temp0], 0(%[output]) \n\t" + "sh %[temp1], 64(%[output]) \n\t" + "sh %[temp2], 128(%[output]) \n\t" + "sh %[temp3], 192(%[output]) \n\t" + "sh %[load1], 1792(%[output]) \n\t" + "sh %[load2], 1856(%[output]) \n\t" + "sh %[load3], 1920(%[output]) \n\t" + "sh %[load4], 1984(%[output]) \n\t" + + : [temp0] "=&r"(temp0), [load1] "=&r"(load1), [temp1] "=&r"(temp1), + [load2] "=&r"(load2), [temp2] "=&r"(temp2), [load3] "=&r"(load3), + [temp3] "=&r"(temp3), [load4] "=&r"(load4) + : [step1_0] "r"(step1_0), [step2_31] "r"(step2_31), + [step1_1] "r"(step1_1), [step2_30] "r"(step2_30), + [step1_2] "r"(step1_2), [step2_29] "r"(step2_29), + [step1_3] "r"(step1_3), [step2_28] "r"(step2_28), + [output] "r"(output)); + + __asm__ __volatile__( + "add %[temp0], %[step1_4], %[step1_27] \n\t" + "add %[temp1], %[step1_5], %[step1_26] \n\t" + "add %[temp2], %[step1_6], %[step1_25] \n\t" + "add %[temp3], %[step1_7], %[step1_24] \n\t" + "sub %[load1], %[step1_7], %[step1_24] \n\t" + "sub %[load2], %[step1_6], %[step1_25] \n\t" + "sub %[load3], %[step1_5], %[step1_26] \n\t" + "sub %[load4], %[step1_4], %[step1_27] \n\t" + "sh %[temp0], 256(%[output]) \n\t" + "sh %[temp1], 320(%[output]) \n\t" + "sh %[temp2], 384(%[output]) \n\t" + "sh %[temp3], 448(%[output]) \n\t" + "sh %[load1], 1536(%[output]) \n\t" + "sh %[load2], 1600(%[output]) \n\t" + "sh %[load3], 1664(%[output]) \n\t" + "sh %[load4], 1728(%[output]) \n\t" + + : [temp0] "=&r"(temp0), [load1] "=&r"(load1), [temp1] "=&r"(temp1), + [load2] "=&r"(load2), [temp2] "=&r"(temp2), [load3] "=&r"(load3), + [temp3] "=&r"(temp3), [load4] "=&r"(load4) + : [step1_4] "r"(step1_4), [step1_27] "r"(step1_27), + [step1_5] "r"(step1_5), [step1_26] "r"(step1_26), + [step1_6] "r"(step1_6), [step1_25] "r"(step1_25), + [step1_7] "r"(step1_7), [step1_24] "r"(step1_24), + [output] "r"(output)); + + __asm__ __volatile__( + "add %[temp0], %[step1_8], %[step1_23] \n\t" + "add %[temp1], %[step1_9], %[step1_22] \n\t" + "add %[temp2], %[step1_10], %[step1_21] \n\t" + "add %[temp3], %[step1_11], %[step1_20] \n\t" + "sub %[load1], %[step1_11], %[step1_20] \n\t" + "sub %[load2], %[step1_10], %[step1_21] \n\t" + "sub %[load3], %[step1_9], %[step1_22] \n\t" + "sub %[load4], %[step1_8], %[step1_23] \n\t" + "sh %[temp0], 512(%[output]) \n\t" + "sh %[temp1], 576(%[output]) \n\t" + "sh %[temp2], 640(%[output]) \n\t" + "sh %[temp3], 704(%[output]) \n\t" + "sh %[load1], 1280(%[output]) \n\t" + "sh %[load2], 1344(%[output]) \n\t" + "sh %[load3], 1408(%[output]) \n\t" + "sh %[load4], 1472(%[output]) \n\t" + + : [temp0] "=&r"(temp0), [load1] "=&r"(load1), [temp1] "=&r"(temp1), + [load2] "=&r"(load2), [temp2] "=&r"(temp2), [load3] "=&r"(load3), + [temp3] "=&r"(temp3), [load4] "=&r"(load4) + : [step1_8] "r"(step1_8), [step1_23] "r"(step1_23), + [step1_9] "r"(step1_9), [step1_22] "r"(step1_22), + [step1_10] "r"(step1_10), [step1_21] "r"(step1_21), + [step1_11] "r"(step1_11), [step1_20] "r"(step1_20), + [output] "r"(output)); + + __asm__ __volatile__( + "add %[temp0], %[step1_12], %[step2_19] \n\t" + "add %[temp1], %[step1_13], %[step2_18] \n\t" + "add %[temp2], %[step1_14], %[step2_17] \n\t" + "add %[temp3], %[step1_15], %[step2_16] \n\t" + "sub %[load1], %[step1_15], %[step2_16] \n\t" + "sub %[load2], %[step1_14], %[step2_17] \n\t" + "sub %[load3], %[step1_13], %[step2_18] \n\t" + "sub %[load4], %[step1_12], %[step2_19] \n\t" + "sh %[temp0], 768(%[output]) \n\t" + "sh %[temp1], 832(%[output]) \n\t" + "sh %[temp2], 896(%[output]) \n\t" + "sh %[temp3], 960(%[output]) \n\t" + "sh %[load1], 1024(%[output]) \n\t" + "sh %[load2], 1088(%[output]) \n\t" + "sh %[load3], 1152(%[output]) \n\t" + "sh %[load4], 1216(%[output]) \n\t" + + : [temp0] "=&r"(temp0), [load1] "=&r"(load1), [temp1] "=&r"(temp1), + [load2] "=&r"(load2), [temp2] "=&r"(temp2), [load3] "=&r"(load3), + [temp3] "=&r"(temp3), [load4] "=&r"(load4) + : [step1_12] "r"(step1_12), [step2_19] "r"(step2_19), + [step1_13] "r"(step1_13), [step2_18] "r"(step2_18), + [step1_14] "r"(step1_14), [step2_17] "r"(step2_17), + [step1_15] "r"(step1_15), [step2_16] "r"(step2_16), + [output] "r"(output)); + + input += 32; + output += 1; + } +} + +void vpx_idct32x32_1024_add_dspr2(const int16_t *input, uint8_t *dest, + int stride) { + DECLARE_ALIGNED(32, int16_t, out[32 * 32]); + int16_t *outptr = out; + uint32_t pos = 45; + + /* bit positon for extract from acc */ + __asm__ __volatile__("wrdsp %[pos], 1 \n\t" + : + : [pos] "r"(pos)); + + // Rows + idct32_rows_dspr2(input, outptr, 32); + + // Columns + vpx_idct32_cols_add_blk_dspr2(out, dest, stride); +} + +void vpx_idct32x32_34_add_dspr2(const int16_t *input, uint8_t *dest, + int stride) { + DECLARE_ALIGNED(32, int16_t, out[32 * 32]); + int16_t *outptr = out; + uint32_t i; + uint32_t pos = 45; + + /* bit positon for extract from acc */ + __asm__ __volatile__("wrdsp %[pos], 1 \n\t" + : + : [pos] "r"(pos)); + + // Rows + idct32_rows_dspr2(input, outptr, 8); + + outptr += 8; + __asm__ __volatile__( + "sw $zero, 0(%[outptr]) \n\t" + "sw $zero, 4(%[outptr]) \n\t" + "sw $zero, 8(%[outptr]) \n\t" + "sw $zero, 12(%[outptr]) \n\t" + "sw $zero, 16(%[outptr]) \n\t" + "sw $zero, 20(%[outptr]) \n\t" + "sw $zero, 24(%[outptr]) \n\t" + "sw $zero, 28(%[outptr]) \n\t" + "sw $zero, 32(%[outptr]) \n\t" + "sw $zero, 36(%[outptr]) \n\t" + "sw $zero, 40(%[outptr]) \n\t" + "sw $zero, 44(%[outptr]) \n\t" + + : + : [outptr] "r"(outptr)); + + for (i = 0; i < 31; ++i) { + outptr += 32; + + __asm__ __volatile__( + "sw $zero, 0(%[outptr]) \n\t" + "sw $zero, 4(%[outptr]) \n\t" + "sw $zero, 8(%[outptr]) \n\t" + "sw $zero, 12(%[outptr]) \n\t" + "sw $zero, 16(%[outptr]) \n\t" + "sw $zero, 20(%[outptr]) \n\t" + "sw $zero, 24(%[outptr]) \n\t" + "sw $zero, 28(%[outptr]) \n\t" + "sw $zero, 32(%[outptr]) \n\t" + "sw $zero, 36(%[outptr]) \n\t" + "sw $zero, 40(%[outptr]) \n\t" + "sw $zero, 44(%[outptr]) \n\t" + + : + : [outptr] "r"(outptr)); + } + + // Columns + vpx_idct32_cols_add_blk_dspr2(out, dest, stride); +} + +void vpx_idct32x32_1_add_dspr2(const int16_t *input, uint8_t *dest, + int stride) { + int r, out; + int32_t a1, absa1; + int32_t vector_a1; + int32_t t1, t2, t3, t4; + int32_t vector_1, vector_2, vector_3, vector_4; + uint32_t pos = 45; + + /* bit positon for extract from acc */ + __asm__ __volatile__("wrdsp %[pos], 1 \n\t" + + : + : [pos] "r"(pos)); + + out = DCT_CONST_ROUND_SHIFT_TWICE_COSPI_16_64(input[0]); + __asm__ __volatile__( + "addi %[out], %[out], 32 \n\t" + "sra %[a1], %[out], 6 \n\t" + + : [out] "+r"(out), [a1] "=r"(a1) + :); + + if (a1 < 0) { + /* use quad-byte + * input and output memory are four byte aligned */ + __asm__ __volatile__( + "abs %[absa1], %[a1] \n\t" + "replv.qb %[vector_a1], %[absa1] \n\t" + + : [absa1] "=&r"(absa1), [vector_a1] "=&r"(vector_a1) + : [a1] "r"(a1)); + + for (r = 32; r--;) { + __asm__ __volatile__( + "lw %[t1], 0(%[dest]) \n\t" + "lw %[t2], 4(%[dest]) \n\t" + "lw %[t3], 8(%[dest]) \n\t" + "lw %[t4], 12(%[dest]) \n\t" + "subu_s.qb %[vector_1], %[t1], %[vector_a1] \n\t" + "subu_s.qb %[vector_2], %[t2], %[vector_a1] \n\t" + "subu_s.qb %[vector_3], %[t3], %[vector_a1] \n\t" + "subu_s.qb %[vector_4], %[t4], %[vector_a1] \n\t" + "sw %[vector_1], 0(%[dest]) \n\t" + "sw %[vector_2], 4(%[dest]) \n\t" + "sw %[vector_3], 8(%[dest]) \n\t" + "sw %[vector_4], 12(%[dest]) \n\t" + + "lw %[t1], 16(%[dest]) \n\t" + "lw %[t2], 20(%[dest]) \n\t" + "lw %[t3], 24(%[dest]) \n\t" + "lw %[t4], 28(%[dest]) \n\t" + "subu_s.qb %[vector_1], %[t1], %[vector_a1] \n\t" + "subu_s.qb %[vector_2], %[t2], %[vector_a1] \n\t" + "subu_s.qb %[vector_3], %[t3], %[vector_a1] \n\t" + "subu_s.qb %[vector_4], %[t4], %[vector_a1] \n\t" + "sw %[vector_1], 16(%[dest]) \n\t" + "sw %[vector_2], 20(%[dest]) \n\t" + "sw %[vector_3], 24(%[dest]) \n\t" + "sw %[vector_4], 28(%[dest]) \n\t" + + "add %[dest], %[dest], %[stride] \n\t" + + : [t1] "=&r"(t1), [t2] "=&r"(t2), [t3] "=&r"(t3), [t4] "=&r"(t4), + [vector_1] "=&r"(vector_1), [vector_2] "=&r"(vector_2), + [vector_3] "=&r"(vector_3), [vector_4] "=&r"(vector_4), + [dest] "+&r"(dest) + : [stride] "r"(stride), [vector_a1] "r"(vector_a1)); + } + } else if (a1 > 255) { + int32_t a11, a12, vector_a11, vector_a12; + + /* use quad-byte + * input and output memory are four byte aligned */ + a11 = a1 >> 1; + a12 = a1 - a11; + __asm__ __volatile__( + "replv.qb %[vector_a11], %[a11] \n\t" + "replv.qb %[vector_a12], %[a12] \n\t" + + : [vector_a11] "=&r"(vector_a11), [vector_a12] "=&r"(vector_a12) + : [a11] "r"(a11), [a12] "r"(a12)); + + for (r = 32; r--;) { + __asm__ __volatile__( + "lw %[t1], 0(%[dest]) \n\t" + "lw %[t2], 4(%[dest]) \n\t" + "lw %[t3], 8(%[dest]) \n\t" + "lw %[t4], 12(%[dest]) \n\t" + "addu_s.qb %[vector_1], %[t1], %[vector_a11] \n\t" + "addu_s.qb %[vector_2], %[t2], %[vector_a11] \n\t" + "addu_s.qb %[vector_3], %[t3], %[vector_a11] \n\t" + "addu_s.qb %[vector_4], %[t4], %[vector_a11] \n\t" + "addu_s.qb %[vector_1], %[vector_1], %[vector_a12] \n\t" + "addu_s.qb %[vector_2], %[vector_2], %[vector_a12] \n\t" + "addu_s.qb %[vector_3], %[vector_3], %[vector_a12] \n\t" + "addu_s.qb %[vector_4], %[vector_4], %[vector_a12] \n\t" + "sw %[vector_1], 0(%[dest]) \n\t" + "sw %[vector_2], 4(%[dest]) \n\t" + "sw %[vector_3], 8(%[dest]) \n\t" + "sw %[vector_4], 12(%[dest]) \n\t" + + "lw %[t1], 16(%[dest]) \n\t" + "lw %[t2], 20(%[dest]) \n\t" + "lw %[t3], 24(%[dest]) \n\t" + "lw %[t4], 28(%[dest]) \n\t" + "addu_s.qb %[vector_1], %[t1], %[vector_a11] \n\t" + "addu_s.qb %[vector_2], %[t2], %[vector_a11] \n\t" + "addu_s.qb %[vector_3], %[t3], %[vector_a11] \n\t" + "addu_s.qb %[vector_4], %[t4], %[vector_a11] \n\t" + "addu_s.qb %[vector_1], %[vector_1], %[vector_a12] \n\t" + "addu_s.qb %[vector_2], %[vector_2], %[vector_a12] \n\t" + "addu_s.qb %[vector_3], %[vector_3], %[vector_a12] \n\t" + "addu_s.qb %[vector_4], %[vector_4], %[vector_a12] \n\t" + "sw %[vector_1], 16(%[dest]) \n\t" + "sw %[vector_2], 20(%[dest]) \n\t" + "sw %[vector_3], 24(%[dest]) \n\t" + "sw %[vector_4], 28(%[dest]) \n\t" + + "add %[dest], %[dest], %[stride] \n\t" + + : [t1] "=&r"(t1), [t2] "=&r"(t2), [t3] "=&r"(t3), [t4] "=&r"(t4), + [vector_1] "=&r"(vector_1), [vector_2] "=&r"(vector_2), + [vector_3] "=&r"(vector_3), [vector_4] "=&r"(vector_4), + [dest] "+&r"(dest) + : [stride] "r"(stride), [vector_a11] "r"(vector_a11), + [vector_a12] "r"(vector_a12)); + } + } else { + /* use quad-byte + * input and output memory are four byte aligned */ + __asm__ __volatile__("replv.qb %[vector_a1], %[a1] \n\t" + + : [vector_a1] "=&r"(vector_a1) + : [a1] "r"(a1)); + + for (r = 32; r--;) { + __asm__ __volatile__( + "lw %[t1], 0(%[dest]) \n\t" + "lw %[t2], 4(%[dest]) \n\t" + "lw %[t3], 8(%[dest]) \n\t" + "lw %[t4], 12(%[dest]) \n\t" + "addu_s.qb %[vector_1], %[t1], %[vector_a1] \n\t" + "addu_s.qb %[vector_2], %[t2], %[vector_a1] \n\t" + "addu_s.qb %[vector_3], %[t3], %[vector_a1] \n\t" + "addu_s.qb %[vector_4], %[t4], %[vector_a1] \n\t" + "sw %[vector_1], 0(%[dest]) \n\t" + "sw %[vector_2], 4(%[dest]) \n\t" + "sw %[vector_3], 8(%[dest]) \n\t" + "sw %[vector_4], 12(%[dest]) \n\t" + + "lw %[t1], 16(%[dest]) \n\t" + "lw %[t2], 20(%[dest]) \n\t" + "lw %[t3], 24(%[dest]) \n\t" + "lw %[t4], 28(%[dest]) \n\t" + "addu_s.qb %[vector_1], %[t1], %[vector_a1] \n\t" + "addu_s.qb %[vector_2], %[t2], %[vector_a1] \n\t" + "addu_s.qb %[vector_3], %[t3], %[vector_a1] \n\t" + "addu_s.qb %[vector_4], %[t4], %[vector_a1] \n\t" + "sw %[vector_1], 16(%[dest]) \n\t" + "sw %[vector_2], 20(%[dest]) \n\t" + "sw %[vector_3], 24(%[dest]) \n\t" + "sw %[vector_4], 28(%[dest]) \n\t" + + "add %[dest], %[dest], %[stride] \n\t" + + : [t1] "=&r"(t1), [t2] "=&r"(t2), [t3] "=&r"(t3), [t4] "=&r"(t4), + [vector_1] "=&r"(vector_1), [vector_2] "=&r"(vector_2), + [vector_3] "=&r"(vector_3), [vector_4] "=&r"(vector_4), + [dest] "+&r"(dest) + : [stride] "r"(stride), [vector_a1] "r"(vector_a1)); + } + } +} +#endif // #if HAVE_DSPR2 diff --git a/vpx_dsp/mips/itrans4_dspr2.c b/vpx_dsp/mips/itrans4_dspr2.c new file mode 100644 index 0000000..e214b53 --- /dev/null +++ b/vpx_dsp/mips/itrans4_dspr2.c @@ -0,0 +1,375 @@ +/* + * Copyright (c) 2015 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "./vpx_config.h" +#include "./vpx_dsp_rtcd.h" +#include "vpx_dsp/mips/inv_txfm_dspr2.h" +#include "vpx_dsp/txfm_common.h" + +#if HAVE_DSPR2 +void vpx_idct4_rows_dspr2(const int16_t *input, int16_t *output) { + int step_0, step_1, step_2, step_3; + int Temp0, Temp1, Temp2, Temp3; + const int const_2_power_13 = 8192; + int i; + + for (i = 4; i--;) { + __asm__ __volatile__( + /* + temp_1 = (input[0] + input[2]) * cospi_16_64; + step_0 = dct_const_round_shift(temp_1); + + temp_2 = (input[0] - input[2]) * cospi_16_64; + step_1 = dct_const_round_shift(temp_2); + */ + "lh %[Temp0], 0(%[input]) \n\t" + "lh %[Temp1], 4(%[input]) \n\t" + "mtlo %[const_2_power_13], $ac0 \n\t" + "mthi $zero, $ac0 \n\t" + "mtlo %[const_2_power_13], $ac1 \n\t" + "mthi $zero, $ac1 \n\t" + "add %[Temp2], %[Temp0], %[Temp1] \n\t" + "sub %[Temp3], %[Temp0], %[Temp1] \n\t" + "madd $ac0, %[Temp2], %[cospi_16_64] \n\t" + "lh %[Temp0], 2(%[input]) \n\t" + "lh %[Temp1], 6(%[input]) \n\t" + "extp %[step_0], $ac0, 31 \n\t" + "mtlo %[const_2_power_13], $ac0 \n\t" + "mthi $zero, $ac0 \n\t" + + "madd $ac1, %[Temp3], %[cospi_16_64] \n\t" + "extp %[step_1], $ac1, 31 \n\t" + "mtlo %[const_2_power_13], $ac1 \n\t" + "mthi $zero, $ac1 \n\t" + + /* + temp1 = input[1] * cospi_24_64 - input[3] * cospi_8_64; + step_2 = dct_const_round_shift(temp1); + */ + "madd $ac0, %[Temp0], %[cospi_24_64] \n\t" + "msub $ac0, %[Temp1], %[cospi_8_64] \n\t" + "extp %[step_2], $ac0, 31 \n\t" + + /* + temp2 = input[1] * cospi_8_64 + input[3] * cospi_24_64; + step_3 = dct_const_round_shift(temp2); + */ + "madd $ac1, %[Temp0], %[cospi_8_64] \n\t" + "madd $ac1, %[Temp1], %[cospi_24_64] \n\t" + "extp %[step_3], $ac1, 31 \n\t" + + /* + output[0] = step_0 + step_3; + output[4] = step_1 + step_2; + output[8] = step_1 - step_2; + output[12] = step_0 - step_3; + */ + "add %[Temp0], %[step_0], %[step_3] \n\t" + "sh %[Temp0], 0(%[output]) \n\t" + + "add %[Temp1], %[step_1], %[step_2] \n\t" + "sh %[Temp1], 8(%[output]) \n\t" + + "sub %[Temp2], %[step_1], %[step_2] \n\t" + "sh %[Temp2], 16(%[output]) \n\t" + + "sub %[Temp3], %[step_0], %[step_3] \n\t" + "sh %[Temp3], 24(%[output]) \n\t" + + : [Temp0] "=&r"(Temp0), [Temp1] "=&r"(Temp1), [Temp2] "=&r"(Temp2), + [Temp3] "=&r"(Temp3), [step_0] "=&r"(step_0), [step_1] "=&r"(step_1), + [step_2] "=&r"(step_2), [step_3] "=&r"(step_3), [output] "+r"(output) + : [const_2_power_13] "r"(const_2_power_13), + [cospi_8_64] "r"(cospi_8_64), [cospi_16_64] "r"(cospi_16_64), + [cospi_24_64] "r"(cospi_24_64), [input] "r"(input)); + + input += 4; + output += 1; + } +} + +void vpx_idct4_columns_add_blk_dspr2(int16_t *input, uint8_t *dest, + int stride) { + int step_0, step_1, step_2, step_3; + int Temp0, Temp1, Temp2, Temp3; + const int const_2_power_13 = 8192; + const int const_255 = 255; + int i; + uint8_t *dest_pix; + + for (i = 0; i < 4; ++i) { + dest_pix = (dest + i); + + __asm__ __volatile__( + /* + temp_1 = (input[0] + input[2]) * cospi_16_64; + step_0 = dct_const_round_shift(temp_1); + + temp_2 = (input[0] - input[2]) * cospi_16_64; + step_1 = dct_const_round_shift(temp_2); + */ + "lh %[Temp0], 0(%[input]) \n\t" + "lh %[Temp1], 4(%[input]) \n\t" + "mtlo %[const_2_power_13], $ac0 \n\t" + "mthi $zero, $ac0 \n\t" + "mtlo %[const_2_power_13], $ac1 \n\t" + "mthi $zero, $ac1 \n\t" + "add %[Temp2], %[Temp0], %[Temp1] \n\t" + "sub %[Temp3], %[Temp0], %[Temp1] \n\t" + "madd $ac0, %[Temp2], %[cospi_16_64] \n\t" + "lh %[Temp0], 2(%[input]) \n\t" + "lh %[Temp1], 6(%[input]) \n\t" + "extp %[step_0], $ac0, 31 \n\t" + "mtlo %[const_2_power_13], $ac0 \n\t" + "mthi $zero, $ac0 \n\t" + + "madd $ac1, %[Temp3], %[cospi_16_64] \n\t" + "extp %[step_1], $ac1, 31 \n\t" + "mtlo %[const_2_power_13], $ac1 \n\t" + "mthi $zero, $ac1 \n\t" + + /* + temp1 = input[1] * cospi_24_64 - input[3] * cospi_8_64; + step_2 = dct_const_round_shift(temp1); + */ + "madd $ac0, %[Temp0], %[cospi_24_64] \n\t" + "msub $ac0, %[Temp1], %[cospi_8_64] \n\t" + "extp %[step_2], $ac0, 31 \n\t" + + /* + temp2 = input[1] * cospi_8_64 + input[3] * cospi_24_64; + step_3 = dct_const_round_shift(temp2); + */ + "madd $ac1, %[Temp0], %[cospi_8_64] \n\t" + "madd $ac1, %[Temp1], %[cospi_24_64] \n\t" + "extp %[step_3], $ac1, 31 \n\t" + + /* + output[0] = step_0 + step_3; + output[4] = step_1 + step_2; + output[8] = step_1 - step_2; + output[12] = step_0 - step_3; + */ + "add %[Temp0], %[step_0], %[step_3] \n\t" + "addi %[Temp0], %[Temp0], 8 \n\t" + "sra %[Temp0], %[Temp0], 4 \n\t" + "lbu %[Temp1], 0(%[dest_pix]) \n\t" + "add %[Temp1], %[Temp1], %[Temp0] \n\t" + "slt %[Temp2], %[Temp1], %[const_255] \n\t" + "slt %[Temp3], $zero, %[Temp1] \n\t" + "movz %[Temp1], %[const_255], %[Temp2] \n\t" + "movz %[Temp1], $zero, %[Temp3] \n\t" + "sb %[Temp1], 0(%[dest_pix]) \n\t" + "addu %[dest_pix], %[dest_pix], %[stride] \n\t" + + "add %[Temp0], %[step_1], %[step_2] \n\t" + "addi %[Temp0], %[Temp0], 8 \n\t" + "sra %[Temp0], %[Temp0], 4 \n\t" + "lbu %[Temp1], 0(%[dest_pix]) \n\t" + "add %[Temp1], %[Temp1], %[Temp0] \n\t" + "slt %[Temp2], %[Temp1], %[const_255] \n\t" + "slt %[Temp3], $zero, %[Temp1] \n\t" + "movz %[Temp1], %[const_255], %[Temp2] \n\t" + "movz %[Temp1], $zero, %[Temp3] \n\t" + "sb %[Temp1], 0(%[dest_pix]) \n\t" + "addu %[dest_pix], %[dest_pix], %[stride] \n\t" + + "sub %[Temp0], %[step_1], %[step_2] \n\t" + "addi %[Temp0], %[Temp0], 8 \n\t" + "sra %[Temp0], %[Temp0], 4 \n\t" + "lbu %[Temp1], 0(%[dest_pix]) \n\t" + "add %[Temp1], %[Temp1], %[Temp0] \n\t" + "slt %[Temp2], %[Temp1], %[const_255] \n\t" + "slt %[Temp3], $zero, %[Temp1] \n\t" + "movz %[Temp1], %[const_255], %[Temp2] \n\t" + "movz %[Temp1], $zero, %[Temp3] \n\t" + "sb %[Temp1], 0(%[dest_pix]) \n\t" + "addu %[dest_pix], %[dest_pix], %[stride] \n\t" + + "sub %[Temp0], %[step_0], %[step_3] \n\t" + "addi %[Temp0], %[Temp0], 8 \n\t" + "sra %[Temp0], %[Temp0], 4 \n\t" + "lbu %[Temp1], 0(%[dest_pix]) \n\t" + "add %[Temp1], %[Temp1], %[Temp0] \n\t" + "slt %[Temp2], %[Temp1], %[const_255] \n\t" + "slt %[Temp3], $zero, %[Temp1] \n\t" + "movz %[Temp1], %[const_255], %[Temp2] \n\t" + "movz %[Temp1], $zero, %[Temp3] \n\t" + "sb %[Temp1], 0(%[dest_pix]) \n\t" + + : [Temp0] "=&r"(Temp0), [Temp1] "=&r"(Temp1), [Temp2] "=&r"(Temp2), + [Temp3] "=&r"(Temp3), [step_0] "=&r"(step_0), [step_1] "=&r"(step_1), + [step_2] "=&r"(step_2), [step_3] "=&r"(step_3), + [dest_pix] "+r"(dest_pix) + : [const_2_power_13] "r"(const_2_power_13), [const_255] "r"(const_255), + [cospi_8_64] "r"(cospi_8_64), [cospi_16_64] "r"(cospi_16_64), + [cospi_24_64] "r"(cospi_24_64), [input] "r"(input), + [stride] "r"(stride)); + + input += 4; + } +} + +void vpx_idct4x4_16_add_dspr2(const int16_t *input, uint8_t *dest, int stride) { + DECLARE_ALIGNED(32, int16_t, out[4 * 4]); + int16_t *outptr = out; + uint32_t pos = 45; + + /* bit positon for extract from acc */ + __asm__ __volatile__("wrdsp %[pos], 1 \n\t" + : + : [pos] "r"(pos)); + + // Rows + vpx_idct4_rows_dspr2(input, outptr); + + // Columns + vpx_idct4_columns_add_blk_dspr2(&out[0], dest, stride); +} + +void vpx_idct4x4_1_add_dspr2(const int16_t *input, uint8_t *dest, int stride) { + int a1, absa1; + int r; + int32_t out; + int t2, vector_a1, vector_a; + uint32_t pos = 45; + int16_t input_dc = input[0]; + + /* bit positon for extract from acc */ + __asm__ __volatile__("wrdsp %[pos], 1 \n\t" + + : + : [pos] "r"(pos)); + + out = DCT_CONST_ROUND_SHIFT_TWICE_COSPI_16_64(input_dc); + __asm__ __volatile__( + "addi %[out], %[out], 8 \n\t" + "sra %[a1], %[out], 4 \n\t" + + : [out] "+r"(out), [a1] "=r"(a1) + :); + + if (a1 < 0) { + /* use quad-byte + * input and output memory are four byte aligned */ + __asm__ __volatile__( + "abs %[absa1], %[a1] \n\t" + "replv.qb %[vector_a1], %[absa1] \n\t" + + : [absa1] "=r"(absa1), [vector_a1] "=r"(vector_a1) + : [a1] "r"(a1)); + + for (r = 4; r--;) { + __asm__ __volatile__( + "lw %[t2], 0(%[dest]) \n\t" + "subu_s.qb %[vector_a], %[t2], %[vector_a1] \n\t" + "sw %[vector_a], 0(%[dest]) \n\t" + "add %[dest], %[dest], %[stride] \n\t" + + : [t2] "=&r"(t2), [vector_a] "=&r"(vector_a), [dest] "+&r"(dest) + : [stride] "r"(stride), [vector_a1] "r"(vector_a1)); + } + } else if (a1 > 255) { + int32_t a11, a12, vector_a11, vector_a12; + + /* use quad-byte + * input and output memory are four byte aligned */ + a11 = a1 >> 3; + a12 = a1 - (a11 * 7); + + __asm__ __volatile__( + "replv.qb %[vector_a11], %[a11] \n\t" + "replv.qb %[vector_a12], %[a12] \n\t" + + : [vector_a11] "=&r"(vector_a11), [vector_a12] "=&r"(vector_a12) + : [a11] "r"(a11), [a12] "r"(a12)); + + for (r = 4; r--;) { + __asm__ __volatile__( + "lw %[t2], 4(%[dest]) \n\t" + "addu_s.qb %[vector_a], %[t2], %[vector_a11] \n\t" + "addu_s.qb %[vector_a], %[vector_a], %[vector_a11] \n\t" + "addu_s.qb %[vector_a], %[vector_a], %[vector_a11] \n\t" + "addu_s.qb %[vector_a], %[vector_a], %[vector_a11] \n\t" + "addu_s.qb %[vector_a], %[vector_a], %[vector_a11] \n\t" + "addu_s.qb %[vector_a], %[vector_a], %[vector_a11] \n\t" + "addu_s.qb %[vector_a], %[vector_a], %[vector_a11] \n\t" + "addu_s.qb %[vector_a], %[vector_a], %[vector_a12] \n\t" + "sw %[vector_a], 0(%[dest]) \n\t" + "add %[dest], %[dest], %[stride] \n\t" + + : [t2] "=&r"(t2), [vector_a] "=&r"(vector_a), [dest] "+&r"(dest) + : [stride] "r"(stride), [vector_a11] "r"(vector_a11), + [vector_a12] "r"(vector_a12)); + } + } else { + /* use quad-byte + * input and output memory are four byte aligned */ + __asm__ __volatile__("replv.qb %[vector_a1], %[a1] \n\t" + : [vector_a1] "=r"(vector_a1) + : [a1] "r"(a1)); + + for (r = 4; r--;) { + __asm__ __volatile__( + "lw %[t2], 0(%[dest]) \n\t" + "addu_s.qb %[vector_a], %[t2], %[vector_a1] \n\t" + "sw %[vector_a], 0(%[dest]) \n\t" + "add %[dest], %[dest], %[stride] \n\t" + + : [t2] "=&r"(t2), [vector_a] "=&r"(vector_a), [dest] "+&r"(dest) + : [stride] "r"(stride), [vector_a1] "r"(vector_a1)); + } + } +} + +void iadst4_dspr2(const int16_t *input, int16_t *output) { + int s0, s1, s2, s3, s4, s5, s6, s7; + int x0, x1, x2, x3; + + x0 = input[0]; + x1 = input[1]; + x2 = input[2]; + x3 = input[3]; + + if (!(x0 | x1 | x2 | x3)) { + output[0] = output[1] = output[2] = output[3] = 0; + return; + } + + // 32-bit result is enough for the following multiplications. + s0 = sinpi_1_9 * x0; + s1 = sinpi_2_9 * x0; + s2 = sinpi_3_9 * x1; + s3 = sinpi_4_9 * x2; + s4 = sinpi_1_9 * x2; + s5 = sinpi_2_9 * x3; + s6 = sinpi_4_9 * x3; + s7 = x0 - x2 + x3; + + x0 = s0 + s3 + s5; + x1 = s1 - s4 - s6; + x2 = sinpi_3_9 * s7; + x3 = s2; + + s0 = x0 + x3; + s1 = x1 + x3; + s2 = x2; + s3 = x0 + x1 - x3; + + // 1-D transform scaling factor is sqrt(2). + // The overall dynamic range is 14b (input) + 14b (multiplication scaling) + // + 1b (addition) = 29b. + // Hence the output bit depth is 15b. + output[0] = dct_const_round_shift(s0); + output[1] = dct_const_round_shift(s1); + output[2] = dct_const_round_shift(s2); + output[3] = dct_const_round_shift(s3); +} +#endif // #if HAVE_DSPR2 diff --git a/vpx_dsp/mips/itrans8_dspr2.c b/vpx_dsp/mips/itrans8_dspr2.c new file mode 100644 index 0000000..d4d2469 --- /dev/null +++ b/vpx_dsp/mips/itrans8_dspr2.c @@ -0,0 +1,690 @@ +/* + * Copyright (c) 2015 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "./vpx_config.h" +#include "./vpx_dsp_rtcd.h" +#include "vpx_dsp/mips/inv_txfm_dspr2.h" +#include "vpx_dsp/txfm_common.h" + +#if HAVE_DSPR2 +void idct8_rows_dspr2(const int16_t *input, int16_t *output, uint32_t no_rows) { + int step1_0, step1_1, step1_2, step1_3, step1_4, step1_5, step1_6, step1_7; + const int const_2_power_13 = 8192; + int Temp0, Temp1, Temp2, Temp3, Temp4; + int i; + + for (i = no_rows; i--;) { + __asm__ __volatile__( + /* + temp_1 = (input[0] + input[4]) * cospi_16_64; + step2_0 = dct_const_round_shift(temp_1); + + temp_2 = (input[0] - input[4]) * cospi_16_64; + step2_1 = dct_const_round_shift(temp_2); + */ + "lh %[Temp0], 0(%[input]) \n\t" + "lh %[Temp1], 8(%[input]) \n\t" + "mtlo %[const_2_power_13], $ac0 \n\t" + "mthi $zero, $ac0 \n\t" + "mtlo %[const_2_power_13], $ac1 \n\t" + "mthi $zero, $ac1 \n\t" + "add %[Temp2], %[Temp0], %[Temp1] \n\t" + "madd $ac0, %[Temp2], %[cospi_16_64] \n\t" + "extp %[Temp4], $ac0, 31 \n\t" + + "sub %[Temp3], %[Temp0], %[Temp1] \n\t" + "madd $ac1, %[Temp3], %[cospi_16_64] \n\t" + "mtlo %[const_2_power_13], $ac0 \n\t" + "mthi $zero, $ac0 \n\t" + "extp %[Temp2], $ac1, 31 \n\t" + + /* + temp_1 = input[2] * cospi_24_64 - input[6] * cospi_8_64; + step2_2 = dct_const_round_shift(temp_1); + */ + "lh %[Temp0], 4(%[input]) \n\t" + "lh %[Temp1], 12(%[input]) \n\t" + "madd $ac0, %[Temp0], %[cospi_24_64] \n\t" + "msub $ac0, %[Temp1], %[cospi_8_64] \n\t" + "mtlo %[const_2_power_13], $ac1 \n\t" + "mthi $zero, $ac1 \n\t" + "extp %[Temp3], $ac0, 31 \n\t" + + /* + step1_1 = step2_1 + step2_2; + step1_2 = step2_1 - step2_2; + */ + "add %[step1_1], %[Temp2], %[Temp3] \n\t" + "sub %[step1_2], %[Temp2], %[Temp3] \n\t" + + /* + temp_2 = input[2] * cospi_8_64 + input[6] * cospi_24_64; + step2_3 = dct_const_round_shift(temp_2); + */ + "madd $ac1, %[Temp0], %[cospi_8_64] \n\t" + "madd $ac1, %[Temp1], %[cospi_24_64] \n\t" + "extp %[Temp1], $ac1, 31 \n\t" + + "mtlo %[const_2_power_13], $ac0 \n\t" + "mthi $zero, $ac0 \n\t" + + /* + step1_0 = step2_0 + step2_3; + step1_3 = step2_0 - step2_3; + */ + "add %[step1_0], %[Temp4], %[Temp1] \n\t" + "sub %[step1_3], %[Temp4], %[Temp1] \n\t" + + /* + temp_1 = input[1] * cospi_28_64 - input[7] * cospi_4_64; + step1_4 = dct_const_round_shift(temp_1); + */ + "lh %[Temp0], 2(%[input]) \n\t" + "madd $ac0, %[Temp0], %[cospi_28_64] \n\t" + "mtlo %[const_2_power_13], $ac1 \n\t" + "mthi $zero, $ac1 \n\t" + "lh %[Temp1], 14(%[input]) \n\t" + "lh %[Temp0], 2(%[input]) \n\t" + "msub $ac0, %[Temp1], %[cospi_4_64] \n\t" + "extp %[step1_4], $ac0, 31 \n\t" + + /* + temp_2 = input[1] * cospi_4_64 + input[7] * cospi_28_64; + step1_7 = dct_const_round_shift(temp_2); + */ + "madd $ac1, %[Temp0], %[cospi_4_64] \n\t" + "madd $ac1, %[Temp1], %[cospi_28_64] \n\t" + "extp %[step1_7], $ac1, 31 \n\t" + + /* + temp_1 = input[5] * cospi_12_64 - input[3] * cospi_20_64; + step1_5 = dct_const_round_shift(temp_1); + */ + "mtlo %[const_2_power_13], $ac0 \n\t" + "mthi $zero, $ac0 \n\t" + "lh %[Temp0], 10(%[input]) \n\t" + "madd $ac0, %[Temp0], %[cospi_12_64] \n\t" + "lh %[Temp1], 6(%[input]) \n\t" + "msub $ac0, %[Temp1], %[cospi_20_64] \n\t" + "extp %[step1_5], $ac0, 31 \n\t" + + /* + temp_2 = input[5] * cospi_20_64 + input[3] * cospi_12_64; + step1_6 = dct_const_round_shift(temp_2); + */ + "mtlo %[const_2_power_13], $ac1 \n\t" + "mthi $zero, $ac1 \n\t" + "lh %[Temp0], 10(%[input]) \n\t" + "madd $ac1, %[Temp0], %[cospi_20_64] \n\t" + "lh %[Temp1], 6(%[input]) \n\t" + "madd $ac1, %[Temp1], %[cospi_12_64] \n\t" + "extp %[step1_6], $ac1, 31 \n\t" + + /* + temp_1 = (step1_7 - step1_6 - step1_4 + step1_5) * cospi_16_64; + temp_2 = (step1_4 - step1_5 - step1_6 + step1_7) * cospi_16_64; + */ + "sub %[Temp0], %[step1_7], %[step1_6] \n\t" + "sub %[Temp0], %[Temp0], %[step1_4] \n\t" + "add %[Temp0], %[Temp0], %[step1_5] \n\t" + "sub %[Temp1], %[step1_4], %[step1_5] \n\t" + "sub %[Temp1], %[Temp1], %[step1_6] \n\t" + "add %[Temp1], %[Temp1], %[step1_7] \n\t" + + "mtlo %[const_2_power_13], $ac0 \n\t" + "mthi $zero, $ac0 \n\t" + "mtlo %[const_2_power_13], $ac1 \n\t" + "mthi $zero, $ac1 \n\t" + + "madd $ac0, %[Temp0], %[cospi_16_64] \n\t" + "madd $ac1, %[Temp1], %[cospi_16_64] \n\t" + + /* + step1_4 = step1_4 + step1_5; + step1_7 = step1_6 + step1_7; + */ + "add %[step1_4], %[step1_4], %[step1_5] \n\t" + "add %[step1_7], %[step1_7], %[step1_6] \n\t" + + "extp %[step1_5], $ac0, 31 \n\t" + "extp %[step1_6], $ac1, 31 \n\t" + + "add %[Temp0], %[step1_0], %[step1_7] \n\t" + "sh %[Temp0], 0(%[output]) \n\t" + "add %[Temp1], %[step1_1], %[step1_6] \n\t" + "sh %[Temp1], 16(%[output]) \n\t" + "add %[Temp0], %[step1_2], %[step1_5] \n\t" + "sh %[Temp0], 32(%[output]) \n\t" + "add %[Temp1], %[step1_3], %[step1_4] \n\t" + "sh %[Temp1], 48(%[output]) \n\t" + + "sub %[Temp0], %[step1_3], %[step1_4] \n\t" + "sh %[Temp0], 64(%[output]) \n\t" + "sub %[Temp1], %[step1_2], %[step1_5] \n\t" + "sh %[Temp1], 80(%[output]) \n\t" + "sub %[Temp0], %[step1_1], %[step1_6] \n\t" + "sh %[Temp0], 96(%[output]) \n\t" + "sub %[Temp1], %[step1_0], %[step1_7] \n\t" + "sh %[Temp1], 112(%[output]) \n\t" + + : [step1_0] "=&r"(step1_0), [step1_1] "=&r"(step1_1), + [step1_2] "=&r"(step1_2), [step1_3] "=&r"(step1_3), + [step1_4] "=&r"(step1_4), [step1_5] "=&r"(step1_5), + [step1_6] "=&r"(step1_6), [step1_7] "=&r"(step1_7), + [Temp0] "=&r"(Temp0), [Temp1] "=&r"(Temp1), [Temp2] "=&r"(Temp2), + [Temp3] "=&r"(Temp3), [Temp4] "=&r"(Temp4) + : [const_2_power_13] "r"(const_2_power_13), + [cospi_16_64] "r"(cospi_16_64), [cospi_28_64] "r"(cospi_28_64), + [cospi_4_64] "r"(cospi_4_64), [cospi_12_64] "r"(cospi_12_64), + [cospi_20_64] "r"(cospi_20_64), [cospi_8_64] "r"(cospi_8_64), + [cospi_24_64] "r"(cospi_24_64), [output] "r"(output), + [input] "r"(input)); + + input += 8; + output += 1; + } +} + +void idct8_columns_add_blk_dspr2(int16_t *input, uint8_t *dest, int stride) { + int step1_0, step1_1, step1_2, step1_3, step1_4, step1_5, step1_6, step1_7; + int Temp0, Temp1, Temp2, Temp3; + int i; + const int const_2_power_13 = 8192; + const int const_255 = 255; + uint8_t *dest_pix; + + for (i = 0; i < 8; ++i) { + dest_pix = (dest + i); + + __asm__ __volatile__( + /* + temp_1 = (input[0] + input[4]) * cospi_16_64; + step2_0 = dct_const_round_shift(temp_1); + + temp_2 = (input[0] - input[4]) * cospi_16_64; + step2_1 = dct_const_round_shift(temp_2); + */ + "lh %[Temp0], 0(%[input]) \n\t" + "lh %[Temp1], 8(%[input]) \n\t" + "mtlo %[const_2_power_13], $ac0 \n\t" + "mthi $zero, $ac0 \n\t" + "mtlo %[const_2_power_13], $ac1 \n\t" + "mthi $zero, $ac1 \n\t" + "add %[Temp2], %[Temp0], %[Temp1] \n\t" + "madd $ac0, %[Temp2], %[cospi_16_64] \n\t" + "extp %[step1_6], $ac0, 31 \n\t" + + "sub %[Temp3], %[Temp0], %[Temp1] \n\t" + "madd $ac1, %[Temp3], %[cospi_16_64] \n\t" + "mtlo %[const_2_power_13], $ac0 \n\t" + "mthi $zero, $ac0 \n\t" + "extp %[Temp2], $ac1, 31 \n\t" + + /* + temp_1 = input[2] * cospi_24_64 - input[6] * cospi_8_64; + step2_2 = dct_const_round_shift(temp_1); + */ + "lh %[Temp0], 4(%[input]) \n\t" + "lh %[Temp1], 12(%[input]) \n\t" + "madd $ac0, %[Temp0], %[cospi_24_64] \n\t" + "msub $ac0, %[Temp1], %[cospi_8_64] \n\t" + "mtlo %[const_2_power_13], $ac1 \n\t" + "mthi $zero, $ac1 \n\t" + "extp %[Temp3], $ac0, 31 \n\t" + + /* + step1_1 = step2_1 + step2_2; + step1_2 = step2_1 - step2_2; + */ + "add %[step1_1], %[Temp2], %[Temp3] \n\t" + "sub %[step1_2], %[Temp2], %[Temp3] \n\t" + + /* + temp_2 = input[2] * cospi_8_64 + input[6] * cospi_24_64; + step2_3 = dct_const_round_shift(temp_2); + */ + "madd $ac1, %[Temp0], %[cospi_8_64] \n\t" + "madd $ac1, %[Temp1], %[cospi_24_64] \n\t" + "extp %[Temp1], $ac1, 31 \n\t" + + "mtlo %[const_2_power_13], $ac0 \n\t" + "mthi $zero, $ac0 \n\t" + + /* + step1_0 = step2_0 + step2_3; + step1_3 = step2_0 - step2_3; + */ + "add %[step1_0], %[step1_6], %[Temp1] \n\t" + "sub %[step1_3], %[step1_6], %[Temp1] \n\t" + + /* + temp_1 = input[1] * cospi_28_64 - input[7] * cospi_4_64; + step1_4 = dct_const_round_shift(temp_1); + */ + "lh %[Temp0], 2(%[input]) \n\t" + "madd $ac0, %[Temp0], %[cospi_28_64] \n\t" + "mtlo %[const_2_power_13], $ac1 \n\t" + "mthi $zero, $ac1 \n\t" + "lh %[Temp1], 14(%[input]) \n\t" + "lh %[Temp0], 2(%[input]) \n\t" + "msub $ac0, %[Temp1], %[cospi_4_64] \n\t" + "extp %[step1_4], $ac0, 31 \n\t" + + /* + temp_2 = input[1] * cospi_4_64 + input[7] * cospi_28_64; + step1_7 = dct_const_round_shift(temp_2); + */ + "madd $ac1, %[Temp0], %[cospi_4_64] \n\t" + "madd $ac1, %[Temp1], %[cospi_28_64] \n\t" + "extp %[step1_7], $ac1, 31 \n\t" + + /* + temp_1 = input[5] * cospi_12_64 - input[3] * cospi_20_64; + step1_5 = dct_const_round_shift(temp_1); + */ + "mtlo %[const_2_power_13], $ac0 \n\t" + "mthi $zero, $ac0 \n\t" + "lh %[Temp0], 10(%[input]) \n\t" + "madd $ac0, %[Temp0], %[cospi_12_64] \n\t" + "lh %[Temp1], 6(%[input]) \n\t" + "msub $ac0, %[Temp1], %[cospi_20_64] \n\t" + "extp %[step1_5], $ac0, 31 \n\t" + + /* + temp_2 = input[5] * cospi_20_64 + input[3] * cospi_12_64; + step1_6 = dct_const_round_shift(temp_2); + */ + "mtlo %[const_2_power_13], $ac1 \n\t" + "mthi $zero, $ac1 \n\t" + "lh %[Temp0], 10(%[input]) \n\t" + "madd $ac1, %[Temp0], %[cospi_20_64] \n\t" + "lh %[Temp1], 6(%[input]) \n\t" + "madd $ac1, %[Temp1], %[cospi_12_64] \n\t" + "extp %[step1_6], $ac1, 31 \n\t" + + /* + temp_1 = (step1_7 - step1_6 - step1_4 + step1_5) * cospi_16_64; + temp_2 = (step1_4 - step1_5 - step1_6 + step1_7) * cospi_16_64; + */ + "sub %[Temp0], %[step1_7], %[step1_6] \n\t" + "sub %[Temp0], %[Temp0], %[step1_4] \n\t" + "add %[Temp0], %[Temp0], %[step1_5] \n\t" + "sub %[Temp1], %[step1_4], %[step1_5] \n\t" + "sub %[Temp1], %[Temp1], %[step1_6] \n\t" + "add %[Temp1], %[Temp1], %[step1_7] \n\t" + + "mtlo %[const_2_power_13], $ac0 \n\t" + "mthi $zero, $ac0 \n\t" + "mtlo %[const_2_power_13], $ac1 \n\t" + "mthi $zero, $ac1 \n\t" + + "madd $ac0, %[Temp0], %[cospi_16_64] \n\t" + "madd $ac1, %[Temp1], %[cospi_16_64] \n\t" + + /* + step1_4 = step1_4 + step1_5; + step1_7 = step1_6 + step1_7; + */ + "add %[step1_4], %[step1_4], %[step1_5] \n\t" + "add %[step1_7], %[step1_7], %[step1_6] \n\t" + + "extp %[step1_5], $ac0, 31 \n\t" + "extp %[step1_6], $ac1, 31 \n\t" + + /* add block */ + "lbu %[Temp1], 0(%[dest_pix]) \n\t" + "add %[Temp0], %[step1_0], %[step1_7] \n\t" + "addi %[Temp0], %[Temp0], 16 \n\t" + "sra %[Temp0], %[Temp0], 5 \n\t" + "add %[Temp1], %[Temp1], %[Temp0] \n\t" + "add %[Temp0], %[step1_1], %[step1_6] \n\t" + "slt %[Temp2], %[Temp1], %[const_255] \n\t" + "slt %[Temp3], $zero, %[Temp1] \n\t" + "movz %[Temp1], %[const_255], %[Temp2] \n\t" + "movz %[Temp1], $zero, %[Temp3] \n\t" + "sb %[Temp1], 0(%[dest_pix]) \n\t" + "addu %[dest_pix], %[dest_pix], %[stride] \n\t" + + "lbu %[Temp1], 0(%[dest_pix]) \n\t" + "addi %[Temp0], %[Temp0], 16 \n\t" + "sra %[Temp0], %[Temp0], 5 \n\t" + "add %[Temp1], %[Temp1], %[Temp0] \n\t" + "add %[Temp0], %[step1_2], %[step1_5] \n\t" + "slt %[Temp2], %[Temp1], %[const_255] \n\t" + "slt %[Temp3], $zero, %[Temp1] \n\t" + "movz %[Temp1], %[const_255], %[Temp2] \n\t" + "movz %[Temp1], $zero, %[Temp3] \n\t" + "sb %[Temp1], 0(%[dest_pix]) \n\t" + "addu %[dest_pix], %[dest_pix], %[stride] \n\t" + + "lbu %[Temp1], 0(%[dest_pix]) \n\t" + "addi %[Temp0], %[Temp0], 16 \n\t" + "sra %[Temp0], %[Temp0], 5 \n\t" + "add %[Temp1], %[Temp1], %[Temp0] \n\t" + "add %[Temp0], %[step1_3], %[step1_4] \n\t" + "slt %[Temp2], %[Temp1], %[const_255] \n\t" + "slt %[Temp3], $zero, %[Temp1] \n\t" + "movz %[Temp1], %[const_255], %[Temp2] \n\t" + "movz %[Temp1], $zero, %[Temp3] \n\t" + "sb %[Temp1], 0(%[dest_pix]) \n\t" + "addu %[dest_pix], %[dest_pix], %[stride] \n\t" + + "lbu %[Temp1], 0(%[dest_pix]) \n\t" + "addi %[Temp0], %[Temp0], 16 \n\t" + "sra %[Temp0], %[Temp0], 5 \n\t" + "add %[Temp1], %[Temp1], %[Temp0] \n\t" + "sub %[Temp0], %[step1_3], %[step1_4] \n\t" + "slt %[Temp2], %[Temp1], %[const_255] \n\t" + "slt %[Temp3], $zero, %[Temp1] \n\t" + "movz %[Temp1], %[const_255], %[Temp2] \n\t" + "movz %[Temp1], $zero, %[Temp3] \n\t" + "sb %[Temp1], 0(%[dest_pix]) \n\t" + "addu %[dest_pix], %[dest_pix], %[stride] \n\t" + + "lbu %[Temp1], 0(%[dest_pix]) \n\t" + "addi %[Temp0], %[Temp0], 16 \n\t" + "sra %[Temp0], %[Temp0], 5 \n\t" + "add %[Temp1], %[Temp1], %[Temp0] \n\t" + "sub %[Temp0], %[step1_2], %[step1_5] \n\t" + "slt %[Temp2], %[Temp1], %[const_255] \n\t" + "slt %[Temp3], $zero, %[Temp1] \n\t" + "movz %[Temp1], %[const_255], %[Temp2] \n\t" + "movz %[Temp1], $zero, %[Temp3] \n\t" + "sb %[Temp1], 0(%[dest_pix]) \n\t" + "addu %[dest_pix], %[dest_pix], %[stride] \n\t" + + "lbu %[Temp1], 0(%[dest_pix]) \n\t" + "addi %[Temp0], %[Temp0], 16 \n\t" + "sra %[Temp0], %[Temp0], 5 \n\t" + "add %[Temp1], %[Temp1], %[Temp0] \n\t" + "sub %[Temp0], %[step1_1], %[step1_6] \n\t" + "slt %[Temp2], %[Temp1], %[const_255] \n\t" + "slt %[Temp3], $zero, %[Temp1] \n\t" + "movz %[Temp1], %[const_255], %[Temp2] \n\t" + "movz %[Temp1], $zero, %[Temp3] \n\t" + "sb %[Temp1], 0(%[dest_pix]) \n\t" + "addu %[dest_pix], %[dest_pix], %[stride] \n\t" + + "lbu %[Temp1], 0(%[dest_pix]) \n\t" + "addi %[Temp0], %[Temp0], 16 \n\t" + "sra %[Temp0], %[Temp0], 5 \n\t" + "add %[Temp1], %[Temp1], %[Temp0] \n\t" + "sub %[Temp0], %[step1_0], %[step1_7] \n\t" + "slt %[Temp2], %[Temp1], %[const_255] \n\t" + "slt %[Temp3], $zero, %[Temp1] \n\t" + "movz %[Temp1], %[const_255], %[Temp2] \n\t" + "movz %[Temp1], $zero, %[Temp3] \n\t" + "sb %[Temp1], 0(%[dest_pix]) \n\t" + "addu %[dest_pix], %[dest_pix], %[stride] \n\t" + + "lbu %[Temp1], 0(%[dest_pix]) \n\t" + "addi %[Temp0], %[Temp0], 16 \n\t" + "sra %[Temp0], %[Temp0], 5 \n\t" + "add %[Temp1], %[Temp1], %[Temp0] \n\t" + "slt %[Temp2], %[Temp1], %[const_255] \n\t" + "slt %[Temp3], $zero, %[Temp1] \n\t" + "movz %[Temp1], %[const_255], %[Temp2] \n\t" + "movz %[Temp1], $zero, %[Temp3] \n\t" + "sb %[Temp1], 0(%[dest_pix]) \n\t" + + : [step1_0] "=&r"(step1_0), [step1_1] "=&r"(step1_1), + [step1_2] "=&r"(step1_2), [step1_3] "=&r"(step1_3), + [step1_4] "=&r"(step1_4), [step1_5] "=&r"(step1_5), + [step1_6] "=&r"(step1_6), [step1_7] "=&r"(step1_7), + [Temp0] "=&r"(Temp0), [Temp1] "=&r"(Temp1), [Temp2] "=&r"(Temp2), + [Temp3] "=&r"(Temp3), [dest_pix] "+r"(dest_pix) + : [const_2_power_13] "r"(const_2_power_13), [const_255] "r"(const_255), + [cospi_16_64] "r"(cospi_16_64), [cospi_28_64] "r"(cospi_28_64), + [cospi_4_64] "r"(cospi_4_64), [cospi_12_64] "r"(cospi_12_64), + [cospi_20_64] "r"(cospi_20_64), [cospi_8_64] "r"(cospi_8_64), + [cospi_24_64] "r"(cospi_24_64), [input] "r"(input), + [stride] "r"(stride)); + + input += 8; + } +} + +void vpx_idct8x8_64_add_dspr2(const int16_t *input, uint8_t *dest, int stride) { + DECLARE_ALIGNED(32, int16_t, out[8 * 8]); + int16_t *outptr = out; + uint32_t pos = 45; + + /* bit positon for extract from acc */ + __asm__ __volatile__("wrdsp %[pos], 1 \n\t" : : [pos] "r"(pos)); + + // First transform rows + idct8_rows_dspr2(input, outptr, 8); + + // Then transform columns and add to dest + idct8_columns_add_blk_dspr2(&out[0], dest, stride); +} + +void vpx_idct8x8_12_add_dspr2(const int16_t *input, uint8_t *dest, int stride) { + DECLARE_ALIGNED(32, int16_t, out[8 * 8]); + int16_t *outptr = out; + uint32_t pos = 45; + + /* bit positon for extract from acc */ + __asm__ __volatile__("wrdsp %[pos], 1 \n\t" : : [pos] "r"(pos)); + + // First transform rows + idct8_rows_dspr2(input, outptr, 4); + + outptr += 4; + + __asm__ __volatile__( + "sw $zero, 0(%[outptr]) \n\t" + "sw $zero, 4(%[outptr]) \n\t" + "sw $zero, 16(%[outptr]) \n\t" + "sw $zero, 20(%[outptr]) \n\t" + "sw $zero, 32(%[outptr]) \n\t" + "sw $zero, 36(%[outptr]) \n\t" + "sw $zero, 48(%[outptr]) \n\t" + "sw $zero, 52(%[outptr]) \n\t" + "sw $zero, 64(%[outptr]) \n\t" + "sw $zero, 68(%[outptr]) \n\t" + "sw $zero, 80(%[outptr]) \n\t" + "sw $zero, 84(%[outptr]) \n\t" + "sw $zero, 96(%[outptr]) \n\t" + "sw $zero, 100(%[outptr]) \n\t" + "sw $zero, 112(%[outptr]) \n\t" + "sw $zero, 116(%[outptr]) \n\t" + + : + : [outptr] "r"(outptr)); + + // Then transform columns and add to dest + idct8_columns_add_blk_dspr2(&out[0], dest, stride); +} + +void vpx_idct8x8_1_add_dspr2(const int16_t *input, uint8_t *dest, int stride) { + uint32_t pos = 45; + int32_t out; + int32_t r; + int32_t a1, absa1; + int32_t t1, t2, vector_a1, vector_1, vector_2; + + /* bit positon for extract from acc */ + __asm__ __volatile__("wrdsp %[pos], 1 \n\t" + + : + : [pos] "r"(pos)); + + out = DCT_CONST_ROUND_SHIFT_TWICE_COSPI_16_64(input[0]); + __asm__ __volatile__( + "addi %[out], %[out], 16 \n\t" + "sra %[a1], %[out], 5 \n\t" + + : [out] "+r"(out), [a1] "=r"(a1) + :); + + if (a1 < 0) { + /* use quad-byte + * input and output memory are four byte aligned */ + __asm__ __volatile__( + "abs %[absa1], %[a1] \n\t" + "replv.qb %[vector_a1], %[absa1] \n\t" + + : [absa1] "=r"(absa1), [vector_a1] "=r"(vector_a1) + : [a1] "r"(a1)); + + for (r = 8; r--;) { + __asm__ __volatile__( + "lw %[t1], 0(%[dest]) \n\t" + "lw %[t2], 4(%[dest]) \n\t" + "subu_s.qb %[vector_1], %[t1], %[vector_a1] \n\t" + "subu_s.qb %[vector_2], %[t2], %[vector_a1] \n\t" + "sw %[vector_1], 0(%[dest]) \n\t" + "sw %[vector_2], 4(%[dest]) \n\t" + "add %[dest], %[dest], %[stride] \n\t" + + : [t1] "=&r"(t1), [t2] "=&r"(t2), [vector_1] "=&r"(vector_1), + [vector_2] "=&r"(vector_2), [dest] "+&r"(dest) + : [stride] "r"(stride), [vector_a1] "r"(vector_a1)); + } + } else if (a1 > 255) { + int32_t a11, a12, vector_a11, vector_a12; + + /* use quad-byte + * input and output memory are four byte aligned */ + a11 = a1 >> 2; + a12 = a1 - (a11 * 3); + + __asm__ __volatile__( + "replv.qb %[vector_a11], %[a11] \n\t" + "replv.qb %[vector_a12], %[a12] \n\t" + + : [vector_a11] "=&r"(vector_a11), [vector_a12] "=&r"(vector_a12) + : [a11] "r"(a11), [a12] "r"(a12)); + + for (r = 8; r--;) { + __asm__ __volatile__( + "lw %[t1], 0(%[dest]) \n\t" + "lw %[t2], 4(%[dest]) \n\t" + "addu_s.qb %[vector_1], %[t1], %[vector_a11] \n\t" + "addu_s.qb %[vector_2], %[t2], %[vector_a11] \n\t" + "addu_s.qb %[vector_1], %[vector_1], %[vector_a11] \n\t" + "addu_s.qb %[vector_2], %[vector_2], %[vector_a11] \n\t" + "addu_s.qb %[vector_1], %[vector_1], %[vector_a11] \n\t" + "addu_s.qb %[vector_2], %[vector_2], %[vector_a11] \n\t" + "addu_s.qb %[vector_1], %[vector_1], %[vector_a12] \n\t" + "addu_s.qb %[vector_2], %[vector_2], %[vector_a12] \n\t" + "sw %[vector_1], 0(%[dest]) \n\t" + "sw %[vector_2], 4(%[dest]) \n\t" + "add %[dest], %[dest], %[stride] \n\t" + + : [t1] "=&r"(t1), [t2] "=&r"(t2), [vector_1] "=&r"(vector_1), + [vector_2] "=&r"(vector_2), [dest] "+r"(dest) + : [stride] "r"(stride), [vector_a11] "r"(vector_a11), + [vector_a12] "r"(vector_a12)); + } + } else { + /* use quad-byte + * input and output memory are four byte aligned */ + __asm__ __volatile__("replv.qb %[vector_a1], %[a1] \n\t" + + : [vector_a1] "=r"(vector_a1) + : [a1] "r"(a1)); + + for (r = 8; r--;) { + __asm__ __volatile__( + "lw %[t1], 0(%[dest]) \n\t" + "lw %[t2], 4(%[dest]) \n\t" + "addu_s.qb %[vector_1], %[t1], %[vector_a1] \n\t" + "addu_s.qb %[vector_2], %[t2], %[vector_a1] \n\t" + "sw %[vector_1], 0(%[dest]) \n\t" + "sw %[vector_2], 4(%[dest]) \n\t" + "add %[dest], %[dest], %[stride] \n\t" + + : [t1] "=&r"(t1), [t2] "=&r"(t2), [vector_1] "=&r"(vector_1), + [vector_2] "=&r"(vector_2), [dest] "+r"(dest) + : [stride] "r"(stride), [vector_a1] "r"(vector_a1)); + } + } +} + +void iadst8_dspr2(const int16_t *input, int16_t *output) { + int s0, s1, s2, s3, s4, s5, s6, s7; + int x0, x1, x2, x3, x4, x5, x6, x7; + + x0 = input[7]; + x1 = input[0]; + x2 = input[5]; + x3 = input[2]; + x4 = input[3]; + x5 = input[4]; + x6 = input[1]; + x7 = input[6]; + + if (!(x0 | x1 | x2 | x3 | x4 | x5 | x6 | x7)) { + output[0] = output[1] = output[2] = output[3] = output[4] = output[5] = + output[6] = output[7] = 0; + return; + } + + // stage 1 + s0 = cospi_2_64 * x0 + cospi_30_64 * x1; + s1 = cospi_30_64 * x0 - cospi_2_64 * x1; + s2 = cospi_10_64 * x2 + cospi_22_64 * x3; + s3 = cospi_22_64 * x2 - cospi_10_64 * x3; + s4 = cospi_18_64 * x4 + cospi_14_64 * x5; + s5 = cospi_14_64 * x4 - cospi_18_64 * x5; + s6 = cospi_26_64 * x6 + cospi_6_64 * x7; + s7 = cospi_6_64 * x6 - cospi_26_64 * x7; + + x0 = ROUND_POWER_OF_TWO((s0 + s4), DCT_CONST_BITS); + x1 = ROUND_POWER_OF_TWO((s1 + s5), DCT_CONST_BITS); + x2 = ROUND_POWER_OF_TWO((s2 + s6), DCT_CONST_BITS); + x3 = ROUND_POWER_OF_TWO((s3 + s7), DCT_CONST_BITS); + x4 = ROUND_POWER_OF_TWO((s0 - s4), DCT_CONST_BITS); + x5 = ROUND_POWER_OF_TWO((s1 - s5), DCT_CONST_BITS); + x6 = ROUND_POWER_OF_TWO((s2 - s6), DCT_CONST_BITS); + x7 = ROUND_POWER_OF_TWO((s3 - s7), DCT_CONST_BITS); + + // stage 2 + s0 = x0; + s1 = x1; + s2 = x2; + s3 = x3; + s4 = cospi_8_64 * x4 + cospi_24_64 * x5; + s5 = cospi_24_64 * x4 - cospi_8_64 * x5; + s6 = -cospi_24_64 * x6 + cospi_8_64 * x7; + s7 = cospi_8_64 * x6 + cospi_24_64 * x7; + + x0 = s0 + s2; + x1 = s1 + s3; + x2 = s0 - s2; + x3 = s1 - s3; + x4 = ROUND_POWER_OF_TWO((s4 + s6), DCT_CONST_BITS); + x5 = ROUND_POWER_OF_TWO((s5 + s7), DCT_CONST_BITS); + x6 = ROUND_POWER_OF_TWO((s4 - s6), DCT_CONST_BITS); + x7 = ROUND_POWER_OF_TWO((s5 - s7), DCT_CONST_BITS); + + // stage 3 + s2 = cospi_16_64 * (x2 + x3); + s3 = cospi_16_64 * (x2 - x3); + s6 = cospi_16_64 * (x6 + x7); + s7 = cospi_16_64 * (x6 - x7); + + x2 = ROUND_POWER_OF_TWO((s2), DCT_CONST_BITS); + x3 = ROUND_POWER_OF_TWO((s3), DCT_CONST_BITS); + x6 = ROUND_POWER_OF_TWO((s6), DCT_CONST_BITS); + x7 = ROUND_POWER_OF_TWO((s7), DCT_CONST_BITS); + + output[0] = x0; + output[1] = -x4; + output[2] = x6; + output[3] = -x2; + output[4] = x3; + output[5] = -x7; + output[6] = x5; + output[7] = -x1; +} +#endif // HAVE_DSPR2 diff --git a/vpx_dsp/mips/loopfilter_16_msa.c b/vpx_dsp/mips/loopfilter_16_msa.c new file mode 100644 index 0000000..b1731f2 --- /dev/null +++ b/vpx_dsp/mips/loopfilter_16_msa.c @@ -0,0 +1,1489 @@ +/* + * Copyright (c) 2015 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "./vpx_dsp_rtcd.h" +#include "vpx_dsp/mips/loopfilter_msa.h" +#include "vpx_ports/mem.h" + +static int32_t hz_lpf_t4_and_t8_16w(uint8_t *src, int32_t pitch, + uint8_t *filter48, + const uint8_t *b_limit_ptr, + const uint8_t *limit_ptr, + const uint8_t *thresh_ptr) { + v16u8 p3, p2, p1, p0, q3, q2, q1, q0; + v16u8 p2_out, p1_out, p0_out, q0_out, q1_out, q2_out; + v16u8 flat, mask, hev, thresh, b_limit, limit; + v8u16 p3_r, p2_r, p1_r, p0_r, q0_r, q1_r, q2_r, q3_r; + v8u16 p3_l, p2_l, p1_l, p0_l, q0_l, q1_l, q2_l, q3_l; + v8i16 p2_filt8_r, p1_filt8_r, p0_filt8_r, q0_filt8_r, q1_filt8_r, q2_filt8_r; + v8i16 p2_filt8_l, p1_filt8_l, p0_filt8_l, q0_filt8_l, q1_filt8_l, q2_filt8_l; + v16u8 zero = { 0 }; + + /* load vector elements */ + LD_UB8(src - (4 * pitch), pitch, p3, p2, p1, p0, q0, q1, q2, q3); + + thresh = (v16u8)__msa_fill_b(*thresh_ptr); + b_limit = (v16u8)__msa_fill_b(*b_limit_ptr); + limit = (v16u8)__msa_fill_b(*limit_ptr); + + /* mask and hev */ + LPF_MASK_HEV(p3, p2, p1, p0, q0, q1, q2, q3, limit, b_limit, thresh, hev, + mask, flat); + VP9_FLAT4(p3, p2, p0, q0, q2, q3, flat); + VP9_LPF_FILTER4_4W(p1, p0, q0, q1, mask, hev, p1_out, p0_out, q0_out, q1_out); + + if (__msa_test_bz_v(flat)) { + ST_UB4(p1_out, p0_out, q0_out, q1_out, (src - 2 * pitch), pitch); + + return 1; + } else { + ILVR_B8_UH(zero, p3, zero, p2, zero, p1, zero, p0, zero, q0, zero, q1, zero, + q2, zero, q3, p3_r, p2_r, p1_r, p0_r, q0_r, q1_r, q2_r, q3_r); + VP9_FILTER8(p3_r, p2_r, p1_r, p0_r, q0_r, q1_r, q2_r, q3_r, p2_filt8_r, + p1_filt8_r, p0_filt8_r, q0_filt8_r, q1_filt8_r, q2_filt8_r); + + ILVL_B4_UH(zero, p3, zero, p2, zero, p1, zero, p0, p3_l, p2_l, p1_l, p0_l); + ILVL_B4_UH(zero, q0, zero, q1, zero, q2, zero, q3, q0_l, q1_l, q2_l, q3_l); + VP9_FILTER8(p3_l, p2_l, p1_l, p0_l, q0_l, q1_l, q2_l, q3_l, p2_filt8_l, + p1_filt8_l, p0_filt8_l, q0_filt8_l, q1_filt8_l, q2_filt8_l); + + /* convert 16 bit output data into 8 bit */ + PCKEV_B4_SH(p2_filt8_l, p2_filt8_r, p1_filt8_l, p1_filt8_r, p0_filt8_l, + p0_filt8_r, q0_filt8_l, q0_filt8_r, p2_filt8_r, p1_filt8_r, + p0_filt8_r, q0_filt8_r); + PCKEV_B2_SH(q1_filt8_l, q1_filt8_r, q2_filt8_l, q2_filt8_r, q1_filt8_r, + q2_filt8_r); + + /* store pixel values */ + p2_out = __msa_bmnz_v(p2, (v16u8)p2_filt8_r, flat); + p1_out = __msa_bmnz_v(p1_out, (v16u8)p1_filt8_r, flat); + p0_out = __msa_bmnz_v(p0_out, (v16u8)p0_filt8_r, flat); + q0_out = __msa_bmnz_v(q0_out, (v16u8)q0_filt8_r, flat); + q1_out = __msa_bmnz_v(q1_out, (v16u8)q1_filt8_r, flat); + q2_out = __msa_bmnz_v(q2, (v16u8)q2_filt8_r, flat); + + ST_UB4(p2_out, p1_out, p0_out, q0_out, filter48, 16); + filter48 += (4 * 16); + ST_UB2(q1_out, q2_out, filter48, 16); + filter48 += (2 * 16); + ST_UB(flat, filter48); + + return 0; + } +} + +static void hz_lpf_t16_16w(uint8_t *src, int32_t pitch, uint8_t *filter48) { + v16u8 flat, flat2, filter8; + v16i8 zero = { 0 }; + v16u8 p7, p6, p5, p4, p3, p2, p1, p0, q0, q1, q2, q3, q4, q5, q6, q7; + v8u16 p7_r_in, p6_r_in, p5_r_in, p4_r_in, p3_r_in, p2_r_in, p1_r_in, p0_r_in; + v8u16 q7_r_in, q6_r_in, q5_r_in, q4_r_in, q3_r_in, q2_r_in, q1_r_in, q0_r_in; + v8u16 p7_l_in, p6_l_in, p5_l_in, p4_l_in, p3_l_in, p2_l_in, p1_l_in, p0_l_in; + v8u16 q7_l_in, q6_l_in, q5_l_in, q4_l_in, q3_l_in, q2_l_in, q1_l_in, q0_l_in; + v8u16 tmp0_r, tmp1_r, tmp0_l, tmp1_l; + v8i16 l_out, r_out; + + flat = LD_UB(filter48 + 96); + + LD_UB8((src - 8 * pitch), pitch, p7, p6, p5, p4, p3, p2, p1, p0); + LD_UB8(src, pitch, q0, q1, q2, q3, q4, q5, q6, q7); + VP9_FLAT5(p7, p6, p5, p4, p0, q0, q4, q5, q6, q7, flat, flat2); + + if (__msa_test_bz_v(flat2)) { + LD_UB4(filter48, 16, p2, p1, p0, q0); + LD_UB2(filter48 + 4 * 16, 16, q1, q2); + + src -= 3 * pitch; + ST_UB4(p2, p1, p0, q0, src, pitch); + src += (4 * pitch); + ST_UB2(q1, q2, src, pitch); + } else { + src -= 7 * pitch; + + ILVR_B8_UH(zero, p7, zero, p6, zero, p5, zero, p4, zero, p3, zero, p2, zero, + p1, zero, p0, p7_r_in, p6_r_in, p5_r_in, p4_r_in, p3_r_in, + p2_r_in, p1_r_in, p0_r_in); + + q0_r_in = (v8u16)__msa_ilvr_b(zero, (v16i8)q0); + + tmp0_r = p7_r_in << 3; + tmp0_r -= p7_r_in; + tmp0_r += p6_r_in; + tmp0_r += q0_r_in; + tmp1_r = p6_r_in + p5_r_in; + tmp1_r += p4_r_in; + tmp1_r += p3_r_in; + tmp1_r += p2_r_in; + tmp1_r += p1_r_in; + tmp1_r += p0_r_in; + tmp1_r += tmp0_r; + r_out = __msa_srari_h((v8i16)tmp1_r, 4); + + ILVL_B4_UH(zero, p7, zero, p6, zero, p5, zero, p4, p7_l_in, p6_l_in, + p5_l_in, p4_l_in); + ILVL_B4_UH(zero, p3, zero, p2, zero, p1, zero, p0, p3_l_in, p2_l_in, + p1_l_in, p0_l_in); + q0_l_in = (v8u16)__msa_ilvl_b(zero, (v16i8)q0); + + tmp0_l = p7_l_in << 3; + tmp0_l -= p7_l_in; + tmp0_l += p6_l_in; + tmp0_l += q0_l_in; + tmp1_l = p6_l_in + p5_l_in; + tmp1_l += p4_l_in; + tmp1_l += p3_l_in; + tmp1_l += p2_l_in; + tmp1_l += p1_l_in; + tmp1_l += p0_l_in; + tmp1_l += tmp0_l; + l_out = __msa_srari_h((v8i16)tmp1_l, 4); + + r_out = (v8i16)__msa_pckev_b((v16i8)l_out, (v16i8)r_out); + p6 = __msa_bmnz_v(p6, (v16u8)r_out, flat2); + ST_UB(p6, src); + src += pitch; + + /* p5 */ + q1_r_in = (v8u16)__msa_ilvr_b(zero, (v16i8)q1); + tmp0_r = p5_r_in - p6_r_in; + tmp0_r += q1_r_in; + tmp0_r -= p7_r_in; + tmp1_r += tmp0_r; + r_out = __msa_srari_h((v8i16)tmp1_r, 4); + + q1_l_in = (v8u16)__msa_ilvl_b(zero, (v16i8)q1); + tmp0_l = p5_l_in - p6_l_in; + tmp0_l += q1_l_in; + tmp0_l -= p7_l_in; + tmp1_l += tmp0_l; + l_out = __msa_srari_h((v8i16)tmp1_l, 4); + + r_out = (v8i16)__msa_pckev_b((v16i8)l_out, (v16i8)r_out); + p5 = __msa_bmnz_v(p5, (v16u8)r_out, flat2); + ST_UB(p5, src); + src += pitch; + + /* p4 */ + q2_r_in = (v8u16)__msa_ilvr_b(zero, (v16i8)q2); + tmp0_r = p4_r_in - p5_r_in; + tmp0_r += q2_r_in; + tmp0_r -= p7_r_in; + tmp1_r += tmp0_r; + r_out = (v8i16)__msa_srari_h((v8i16)tmp1_r, 4); + + q2_l_in = (v8u16)__msa_ilvl_b(zero, (v16i8)q2); + tmp0_l = p4_l_in - p5_l_in; + tmp0_l += q2_l_in; + tmp0_l -= p7_l_in; + tmp1_l += tmp0_l; + l_out = __msa_srari_h((v8i16)tmp1_l, 4); + + r_out = (v8i16)__msa_pckev_b((v16i8)l_out, (v16i8)r_out); + p4 = __msa_bmnz_v(p4, (v16u8)r_out, flat2); + ST_UB(p4, src); + src += pitch; + + /* p3 */ + q3_r_in = (v8u16)__msa_ilvr_b(zero, (v16i8)q3); + tmp0_r = p3_r_in - p4_r_in; + tmp0_r += q3_r_in; + tmp0_r -= p7_r_in; + tmp1_r += tmp0_r; + r_out = __msa_srari_h((v8i16)tmp1_r, 4); + + q3_l_in = (v8u16)__msa_ilvl_b(zero, (v16i8)q3); + tmp0_l = p3_l_in - p4_l_in; + tmp0_l += q3_l_in; + tmp0_l -= p7_l_in; + tmp1_l += tmp0_l; + l_out = __msa_srari_h((v8i16)tmp1_l, 4); + + r_out = (v8i16)__msa_pckev_b((v16i8)l_out, (v16i8)r_out); + p3 = __msa_bmnz_v(p3, (v16u8)r_out, flat2); + ST_UB(p3, src); + src += pitch; + + /* p2 */ + q4_r_in = (v8u16)__msa_ilvr_b(zero, (v16i8)q4); + filter8 = LD_UB(filter48); + tmp0_r = p2_r_in - p3_r_in; + tmp0_r += q4_r_in; + tmp0_r -= p7_r_in; + tmp1_r += tmp0_r; + r_out = __msa_srari_h((v8i16)tmp1_r, 4); + + q4_l_in = (v8u16)__msa_ilvl_b(zero, (v16i8)q4); + tmp0_l = p2_l_in - p3_l_in; + tmp0_l += q4_l_in; + tmp0_l -= p7_l_in; + tmp1_l += tmp0_l; + l_out = __msa_srari_h((v8i16)tmp1_l, 4); + + r_out = (v8i16)__msa_pckev_b((v16i8)l_out, (v16i8)r_out); + filter8 = __msa_bmnz_v(filter8, (v16u8)r_out, flat2); + ST_UB(filter8, src); + src += pitch; + + /* p1 */ + q5_r_in = (v8u16)__msa_ilvr_b(zero, (v16i8)q5); + filter8 = LD_UB(filter48 + 16); + tmp0_r = p1_r_in - p2_r_in; + tmp0_r += q5_r_in; + tmp0_r -= p7_r_in; + tmp1_r += tmp0_r; + r_out = __msa_srari_h((v8i16)tmp1_r, 4); + + q5_l_in = (v8u16)__msa_ilvl_b(zero, (v16i8)q5); + tmp0_l = p1_l_in - p2_l_in; + tmp0_l += q5_l_in; + tmp0_l -= p7_l_in; + tmp1_l += tmp0_l; + l_out = __msa_srari_h((v8i16)tmp1_l, 4); + + r_out = (v8i16)__msa_pckev_b((v16i8)l_out, (v16i8)r_out); + filter8 = __msa_bmnz_v(filter8, (v16u8)r_out, flat2); + ST_UB(filter8, src); + src += pitch; + + /* p0 */ + q6_r_in = (v8u16)__msa_ilvr_b(zero, (v16i8)q6); + filter8 = LD_UB(filter48 + 32); + tmp0_r = p0_r_in - p1_r_in; + tmp0_r += q6_r_in; + tmp0_r -= p7_r_in; + tmp1_r += tmp0_r; + r_out = __msa_srari_h((v8i16)tmp1_r, 4); + + q6_l_in = (v8u16)__msa_ilvl_b(zero, (v16i8)q6); + tmp0_l = p0_l_in - p1_l_in; + tmp0_l += q6_l_in; + tmp0_l -= p7_l_in; + tmp1_l += tmp0_l; + l_out = __msa_srari_h((v8i16)tmp1_l, 4); + + r_out = (v8i16)__msa_pckev_b((v16i8)l_out, (v16i8)r_out); + filter8 = __msa_bmnz_v(filter8, (v16u8)r_out, flat2); + ST_UB(filter8, src); + src += pitch; + + /* q0 */ + q7_r_in = (v8u16)__msa_ilvr_b(zero, (v16i8)q7); + filter8 = LD_UB(filter48 + 48); + tmp0_r = q7_r_in - p0_r_in; + tmp0_r += q0_r_in; + tmp0_r -= p7_r_in; + tmp1_r += tmp0_r; + r_out = __msa_srari_h((v8i16)tmp1_r, 4); + + q7_l_in = (v8u16)__msa_ilvl_b(zero, (v16i8)q7); + tmp0_l = q7_l_in - p0_l_in; + tmp0_l += q0_l_in; + tmp0_l -= p7_l_in; + tmp1_l += tmp0_l; + l_out = __msa_srari_h((v8i16)tmp1_l, 4); + + r_out = (v8i16)__msa_pckev_b((v16i8)l_out, (v16i8)r_out); + filter8 = __msa_bmnz_v(filter8, (v16u8)r_out, flat2); + ST_UB(filter8, src); + src += pitch; + + /* q1 */ + filter8 = LD_UB(filter48 + 64); + tmp0_r = q7_r_in - q0_r_in; + tmp0_r += q1_r_in; + tmp0_r -= p6_r_in; + tmp1_r += tmp0_r; + r_out = __msa_srari_h((v8i16)tmp1_r, 4); + + tmp0_l = q7_l_in - q0_l_in; + tmp0_l += q1_l_in; + tmp0_l -= p6_l_in; + tmp1_l += tmp0_l; + l_out = __msa_srari_h((v8i16)tmp1_l, 4); + + r_out = (v8i16)__msa_pckev_b((v16i8)l_out, (v16i8)r_out); + filter8 = __msa_bmnz_v(filter8, (v16u8)r_out, flat2); + ST_UB(filter8, src); + src += pitch; + + /* q2 */ + filter8 = LD_UB(filter48 + 80); + tmp0_r = q7_r_in - q1_r_in; + tmp0_r += q2_r_in; + tmp0_r -= p5_r_in; + tmp1_r += tmp0_r; + r_out = __msa_srari_h((v8i16)tmp1_r, 4); + + tmp0_l = q7_l_in - q1_l_in; + tmp0_l += q2_l_in; + tmp0_l -= p5_l_in; + tmp1_l += tmp0_l; + l_out = __msa_srari_h((v8i16)tmp1_l, 4); + + r_out = (v8i16)__msa_pckev_b((v16i8)l_out, (v16i8)r_out); + filter8 = __msa_bmnz_v(filter8, (v16u8)r_out, flat2); + ST_UB(filter8, src); + src += pitch; + + /* q3 */ + tmp0_r = q7_r_in - q2_r_in; + tmp0_r += q3_r_in; + tmp0_r -= p4_r_in; + tmp1_r += tmp0_r; + r_out = __msa_srari_h((v8i16)tmp1_r, 4); + + tmp0_l = q7_l_in - q2_l_in; + tmp0_l += q3_l_in; + tmp0_l -= p4_l_in; + tmp1_l += tmp0_l; + l_out = __msa_srari_h((v8i16)tmp1_l, 4); + + r_out = (v8i16)__msa_pckev_b((v16i8)l_out, (v16i8)r_out); + q3 = __msa_bmnz_v(q3, (v16u8)r_out, flat2); + ST_UB(q3, src); + src += pitch; + + /* q4 */ + tmp0_r = q7_r_in - q3_r_in; + tmp0_r += q4_r_in; + tmp0_r -= p3_r_in; + tmp1_r += tmp0_r; + r_out = __msa_srari_h((v8i16)tmp1_r, 4); + + tmp0_l = q7_l_in - q3_l_in; + tmp0_l += q4_l_in; + tmp0_l -= p3_l_in; + tmp1_l += tmp0_l; + l_out = __msa_srari_h((v8i16)tmp1_l, 4); + + r_out = (v8i16)__msa_pckev_b((v16i8)l_out, (v16i8)r_out); + q4 = __msa_bmnz_v(q4, (v16u8)r_out, flat2); + ST_UB(q4, src); + src += pitch; + + /* q5 */ + tmp0_r = q7_r_in - q4_r_in; + tmp0_r += q5_r_in; + tmp0_r -= p2_r_in; + tmp1_r += tmp0_r; + r_out = __msa_srari_h((v8i16)tmp1_r, 4); + + tmp0_l = q7_l_in - q4_l_in; + tmp0_l += q5_l_in; + tmp0_l -= p2_l_in; + tmp1_l += tmp0_l; + l_out = __msa_srari_h((v8i16)tmp1_l, 4); + + r_out = (v8i16)__msa_pckev_b((v16i8)l_out, (v16i8)r_out); + q5 = __msa_bmnz_v(q5, (v16u8)r_out, flat2); + ST_UB(q5, src); + src += pitch; + + /* q6 */ + tmp0_r = q7_r_in - q5_r_in; + tmp0_r += q6_r_in; + tmp0_r -= p1_r_in; + tmp1_r += tmp0_r; + r_out = __msa_srari_h((v8i16)tmp1_r, 4); + + tmp0_l = q7_l_in - q5_l_in; + tmp0_l += q6_l_in; + tmp0_l -= p1_l_in; + tmp1_l += tmp0_l; + l_out = __msa_srari_h((v8i16)tmp1_l, 4); + + r_out = (v8i16)__msa_pckev_b((v16i8)l_out, (v16i8)r_out); + q6 = __msa_bmnz_v(q6, (v16u8)r_out, flat2); + ST_UB(q6, src); + } +} + +static void mb_lpf_horizontal_edge_dual(uint8_t *src, int32_t pitch, + const uint8_t *b_limit_ptr, + const uint8_t *limit_ptr, + const uint8_t *thresh_ptr, + int32_t count) { + DECLARE_ALIGNED(32, uint8_t, filter48[16 * 8]); + uint8_t early_exit = 0; + + (void)count; + + early_exit = hz_lpf_t4_and_t8_16w(src, pitch, &filter48[0], b_limit_ptr, + limit_ptr, thresh_ptr); + + if (0 == early_exit) { + hz_lpf_t16_16w(src, pitch, filter48); + } +} + +static void mb_lpf_horizontal_edge(uint8_t *src, int32_t pitch, + const uint8_t *b_limit_ptr, + const uint8_t *limit_ptr, + const uint8_t *thresh_ptr, int32_t count) { + if (1 == count) { + uint64_t p2_d, p1_d, p0_d, q0_d, q1_d, q2_d; + uint64_t dword0, dword1; + v16u8 flat2, mask, hev, flat, thresh, b_limit, limit; + v16u8 p3, p2, p1, p0, q3, q2, q1, q0, p7, p6, p5, p4, q4, q5, q6, q7; + v16u8 p2_out, p1_out, p0_out, q0_out, q1_out, q2_out; + v16u8 p0_filter16, p1_filter16; + v8i16 p2_filter8, p1_filter8, p0_filter8; + v8i16 q0_filter8, q1_filter8, q2_filter8; + v8u16 p7_r, p6_r, p5_r, p4_r, q7_r, q6_r, q5_r, q4_r; + v8u16 p3_r, p2_r, p1_r, p0_r, q3_r, q2_r, q1_r, q0_r; + v16i8 zero = { 0 }; + v8u16 tmp0, tmp1, tmp2; + + /* load vector elements */ + LD_UB8((src - 4 * pitch), pitch, p3, p2, p1, p0, q0, q1, q2, q3); + + thresh = (v16u8)__msa_fill_b(*thresh_ptr); + b_limit = (v16u8)__msa_fill_b(*b_limit_ptr); + limit = (v16u8)__msa_fill_b(*limit_ptr); + + LPF_MASK_HEV(p3, p2, p1, p0, q0, q1, q2, q3, limit, b_limit, thresh, hev, + mask, flat); + VP9_FLAT4(p3, p2, p0, q0, q2, q3, flat); + VP9_LPF_FILTER4_4W(p1, p0, q0, q1, mask, hev, p1_out, p0_out, q0_out, + q1_out); + + flat = (v16u8)__msa_ilvr_d((v2i64)zero, (v2i64)flat); + + if (__msa_test_bz_v(flat)) { + p1_d = __msa_copy_u_d((v2i64)p1_out, 0); + p0_d = __msa_copy_u_d((v2i64)p0_out, 0); + q0_d = __msa_copy_u_d((v2i64)q0_out, 0); + q1_d = __msa_copy_u_d((v2i64)q1_out, 0); + SD4(p1_d, p0_d, q0_d, q1_d, src - 2 * pitch, pitch); + } else { + /* convert 8 bit input data into 16 bit */ + ILVR_B8_UH(zero, p3, zero, p2, zero, p1, zero, p0, zero, q0, zero, q1, + zero, q2, zero, q3, p3_r, p2_r, p1_r, p0_r, q0_r, q1_r, q2_r, + q3_r); + VP9_FILTER8(p3_r, p2_r, p1_r, p0_r, q0_r, q1_r, q2_r, q3_r, p2_filter8, + p1_filter8, p0_filter8, q0_filter8, q1_filter8, q2_filter8); + + /* convert 16 bit output data into 8 bit */ + PCKEV_B4_SH(zero, p2_filter8, zero, p1_filter8, zero, p0_filter8, zero, + q0_filter8, p2_filter8, p1_filter8, p0_filter8, q0_filter8); + PCKEV_B2_SH(zero, q1_filter8, zero, q2_filter8, q1_filter8, q2_filter8); + + /* store pixel values */ + p2_out = __msa_bmnz_v(p2, (v16u8)p2_filter8, flat); + p1_out = __msa_bmnz_v(p1_out, (v16u8)p1_filter8, flat); + p0_out = __msa_bmnz_v(p0_out, (v16u8)p0_filter8, flat); + q0_out = __msa_bmnz_v(q0_out, (v16u8)q0_filter8, flat); + q1_out = __msa_bmnz_v(q1_out, (v16u8)q1_filter8, flat); + q2_out = __msa_bmnz_v(q2, (v16u8)q2_filter8, flat); + + /* load 16 vector elements */ + LD_UB4((src - 8 * pitch), pitch, p7, p6, p5, p4); + LD_UB4(src + (4 * pitch), pitch, q4, q5, q6, q7); + + VP9_FLAT5(p7, p6, p5, p4, p0, q0, q4, q5, q6, q7, flat, flat2); + + if (__msa_test_bz_v(flat2)) { + p2_d = __msa_copy_u_d((v2i64)p2_out, 0); + p1_d = __msa_copy_u_d((v2i64)p1_out, 0); + p0_d = __msa_copy_u_d((v2i64)p0_out, 0); + q0_d = __msa_copy_u_d((v2i64)q0_out, 0); + q1_d = __msa_copy_u_d((v2i64)q1_out, 0); + q2_d = __msa_copy_u_d((v2i64)q2_out, 0); + + SD4(p2_d, p1_d, p0_d, q0_d, src - 3 * pitch, pitch); + SD(q1_d, src + pitch); + SD(q2_d, src + 2 * pitch); + } else { + /* LSB(right) 8 pixel operation */ + ILVR_B8_UH(zero, p7, zero, p6, zero, p5, zero, p4, zero, q4, zero, q5, + zero, q6, zero, q7, p7_r, p6_r, p5_r, p4_r, q4_r, q5_r, q6_r, + q7_r); + + tmp0 = p7_r << 3; + tmp0 -= p7_r; + tmp0 += p6_r; + tmp0 += q0_r; + + src -= 7 * pitch; + + /* calculation of p6 and p5 */ + tmp1 = p6_r + p5_r + p4_r + p3_r; + tmp1 += (p2_r + p1_r + p0_r); + tmp1 += tmp0; + p0_filter16 = (v16u8)__msa_srari_h((v8i16)tmp1, 4); + tmp0 = p5_r - p6_r + q1_r - p7_r; + tmp1 += tmp0; + p1_filter16 = (v16u8)__msa_srari_h((v8i16)tmp1, 4); + PCKEV_B2_UB(zero, p0_filter16, zero, p1_filter16, p0_filter16, + p1_filter16); + p0_filter16 = __msa_bmnz_v(p6, p0_filter16, flat2); + p1_filter16 = __msa_bmnz_v(p5, p1_filter16, flat2); + dword0 = __msa_copy_u_d((v2i64)p0_filter16, 0); + dword1 = __msa_copy_u_d((v2i64)p1_filter16, 0); + SD(dword0, src); + src += pitch; + SD(dword1, src); + src += pitch; + + /* calculation of p4 and p3 */ + tmp0 = p4_r - p5_r + q2_r - p7_r; + tmp2 = p3_r - p4_r + q3_r - p7_r; + tmp1 += tmp0; + p0_filter16 = (v16u8)__msa_srari_h((v8i16)tmp1, 4); + tmp1 += tmp2; + p1_filter16 = (v16u8)__msa_srari_h((v8i16)tmp1, 4); + PCKEV_B2_UB(zero, p0_filter16, zero, p1_filter16, p0_filter16, + p1_filter16); + p0_filter16 = __msa_bmnz_v(p4, p0_filter16, flat2); + p1_filter16 = __msa_bmnz_v(p3, p1_filter16, flat2); + dword0 = __msa_copy_u_d((v2i64)p0_filter16, 0); + dword1 = __msa_copy_u_d((v2i64)p1_filter16, 0); + SD(dword0, src); + src += pitch; + SD(dword1, src); + src += pitch; + + /* calculation of p2 and p1 */ + tmp0 = p2_r - p3_r + q4_r - p7_r; + tmp2 = p1_r - p2_r + q5_r - p7_r; + tmp1 += tmp0; + p0_filter16 = (v16u8)__msa_srari_h((v8i16)tmp1, 4); + tmp1 += tmp2; + p1_filter16 = (v16u8)__msa_srari_h((v8i16)tmp1, 4); + PCKEV_B2_UB(zero, p0_filter16, zero, p1_filter16, p0_filter16, + p1_filter16); + p0_filter16 = __msa_bmnz_v(p2_out, p0_filter16, flat2); + p1_filter16 = __msa_bmnz_v(p1_out, p1_filter16, flat2); + dword0 = __msa_copy_u_d((v2i64)p0_filter16, 0); + dword1 = __msa_copy_u_d((v2i64)p1_filter16, 0); + SD(dword0, src); + src += pitch; + SD(dword1, src); + src += pitch; + + /* calculation of p0 and q0 */ + tmp0 = (p0_r - p1_r) + (q6_r - p7_r); + tmp2 = (q7_r - p0_r) + (q0_r - p7_r); + tmp1 += tmp0; + p0_filter16 = (v16u8)__msa_srari_h((v8i16)tmp1, 4); + tmp1 += tmp2; + p1_filter16 = (v16u8)__msa_srari_h((v8i16)tmp1, 4); + PCKEV_B2_UB(zero, p0_filter16, zero, p1_filter16, p0_filter16, + p1_filter16); + p0_filter16 = __msa_bmnz_v(p0_out, p0_filter16, flat2); + p1_filter16 = __msa_bmnz_v(q0_out, p1_filter16, flat2); + dword0 = __msa_copy_u_d((v2i64)p0_filter16, 0); + dword1 = __msa_copy_u_d((v2i64)p1_filter16, 0); + SD(dword0, src); + src += pitch; + SD(dword1, src); + src += pitch; + + /* calculation of q1 and q2 */ + tmp0 = q7_r - q0_r + q1_r - p6_r; + tmp2 = q7_r - q1_r + q2_r - p5_r; + tmp1 += tmp0; + p0_filter16 = (v16u8)__msa_srari_h((v8i16)tmp1, 4); + tmp1 += tmp2; + p1_filter16 = (v16u8)__msa_srari_h((v8i16)tmp1, 4); + PCKEV_B2_UB(zero, p0_filter16, zero, p1_filter16, p0_filter16, + p1_filter16); + p0_filter16 = __msa_bmnz_v(q1_out, p0_filter16, flat2); + p1_filter16 = __msa_bmnz_v(q2_out, p1_filter16, flat2); + dword0 = __msa_copy_u_d((v2i64)p0_filter16, 0); + dword1 = __msa_copy_u_d((v2i64)p1_filter16, 0); + SD(dword0, src); + src += pitch; + SD(dword1, src); + src += pitch; + + /* calculation of q3 and q4 */ + tmp0 = (q7_r - q2_r) + (q3_r - p4_r); + tmp2 = (q7_r - q3_r) + (q4_r - p3_r); + tmp1 += tmp0; + p0_filter16 = (v16u8)__msa_srari_h((v8i16)tmp1, 4); + tmp1 += tmp2; + p1_filter16 = (v16u8)__msa_srari_h((v8i16)tmp1, 4); + PCKEV_B2_UB(zero, p0_filter16, zero, p1_filter16, p0_filter16, + p1_filter16); + p0_filter16 = __msa_bmnz_v(q3, p0_filter16, flat2); + p1_filter16 = __msa_bmnz_v(q4, p1_filter16, flat2); + dword0 = __msa_copy_u_d((v2i64)p0_filter16, 0); + dword1 = __msa_copy_u_d((v2i64)p1_filter16, 0); + SD(dword0, src); + src += pitch; + SD(dword1, src); + src += pitch; + + /* calculation of q5 and q6 */ + tmp0 = (q7_r - q4_r) + (q5_r - p2_r); + tmp2 = (q7_r - q5_r) + (q6_r - p1_r); + tmp1 += tmp0; + p0_filter16 = (v16u8)__msa_srari_h((v8i16)tmp1, 4); + tmp1 += tmp2; + p1_filter16 = (v16u8)__msa_srari_h((v8i16)tmp1, 4); + PCKEV_B2_UB(zero, p0_filter16, zero, p1_filter16, p0_filter16, + p1_filter16); + p0_filter16 = __msa_bmnz_v(q5, p0_filter16, flat2); + p1_filter16 = __msa_bmnz_v(q6, p1_filter16, flat2); + dword0 = __msa_copy_u_d((v2i64)p0_filter16, 0); + dword1 = __msa_copy_u_d((v2i64)p1_filter16, 0); + SD(dword0, src); + src += pitch; + SD(dword1, src); + } + } + } else { + mb_lpf_horizontal_edge_dual(src, pitch, b_limit_ptr, limit_ptr, thresh_ptr, + count); + } +} + +void vpx_lpf_horizontal_16_msa(uint8_t *src, int32_t pitch, + const uint8_t *b_limit_ptr, + const uint8_t *limit_ptr, + const uint8_t *thresh_ptr) { + mb_lpf_horizontal_edge(src, pitch, b_limit_ptr, limit_ptr, thresh_ptr, 1); +} + +void vpx_lpf_horizontal_16_dual_msa(uint8_t *src, int32_t pitch, + const uint8_t *b_limit_ptr, + const uint8_t *limit_ptr, + const uint8_t *thresh_ptr) { + mb_lpf_horizontal_edge(src, pitch, b_limit_ptr, limit_ptr, thresh_ptr, 2); +} + +static void transpose_16x8_to_8x16(uint8_t *input, int32_t in_pitch, + uint8_t *output, int32_t out_pitch) { + v16u8 p7_org, p6_org, p5_org, p4_org, p3_org, p2_org, p1_org, p0_org; + v16i8 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; + v16u8 p7, p6, p5, p4, p3, p2, p1, p0, q0, q1, q2, q3, q4, q5, q6, q7; + + LD_UB8(input, in_pitch, p7_org, p6_org, p5_org, p4_org, p3_org, p2_org, + p1_org, p0_org); + /* 8x8 transpose */ + TRANSPOSE8x8_UB_UB(p7_org, p6_org, p5_org, p4_org, p3_org, p2_org, p1_org, + p0_org, p7, p6, p5, p4, p3, p2, p1, p0); + /* 8x8 transpose */ + ILVL_B4_SB(p5_org, p7_org, p4_org, p6_org, p1_org, p3_org, p0_org, p2_org, + tmp0, tmp1, tmp2, tmp3); + ILVR_B2_SB(tmp1, tmp0, tmp3, tmp2, tmp4, tmp6); + ILVL_B2_SB(tmp1, tmp0, tmp3, tmp2, tmp5, tmp7); + ILVR_W2_UB(tmp6, tmp4, tmp7, tmp5, q0, q4); + ILVL_W2_UB(tmp6, tmp4, tmp7, tmp5, q2, q6); + SLDI_B4_0_UB(q0, q2, q4, q6, q1, q3, q5, q7, 8); + + ST_UB8(p7, p6, p5, p4, p3, p2, p1, p0, output, out_pitch); + output += (8 * out_pitch); + ST_UB8(q0, q1, q2, q3, q4, q5, q6, q7, output, out_pitch); +} + +static void transpose_8x16_to_16x8(uint8_t *input, int32_t in_pitch, + uint8_t *output, int32_t out_pitch) { + v16u8 p7_o, p6_o, p5_o, p4_o, p3_o, p2_o, p1_o, p0_o; + v16u8 p7, p6, p5, p4, p3, p2, p1, p0, q0, q1, q2, q3, q4, q5, q6, q7; + + LD_UB8(input, in_pitch, p7, p6, p5, p4, p3, p2, p1, p0); + LD_UB8(input + (8 * in_pitch), in_pitch, q0, q1, q2, q3, q4, q5, q6, q7); + TRANSPOSE16x8_UB_UB(p7, p6, p5, p4, p3, p2, p1, p0, q0, q1, q2, q3, q4, q5, + q6, q7, p7_o, p6_o, p5_o, p4_o, p3_o, p2_o, p1_o, p0_o); + ST_UB8(p7_o, p6_o, p5_o, p4_o, p3_o, p2_o, p1_o, p0_o, output, out_pitch); +} + +static void transpose_16x16(uint8_t *input, int32_t in_pitch, uint8_t *output, + int32_t out_pitch) { + v16u8 row0, row1, row2, row3, row4, row5, row6, row7; + v16u8 row8, row9, row10, row11, row12, row13, row14, row15; + v16u8 p7, p6, p5, p4, p3, p2, p1, p0, q0, q1, q2, q3, q4, q5, q6, q7; + v8i16 tmp0, tmp1, tmp4, tmp5, tmp6, tmp7; + v4i32 tmp2, tmp3; + + LD_UB8(input, in_pitch, row0, row1, row2, row3, row4, row5, row6, row7); + input += (8 * in_pitch); + LD_UB8(input, in_pitch, row8, row9, row10, row11, row12, row13, row14, row15); + + TRANSPOSE16x8_UB_UB(row0, row1, row2, row3, row4, row5, row6, row7, row8, + row9, row10, row11, row12, row13, row14, row15, p7, p6, + p5, p4, p3, p2, p1, p0); + + /* transpose 16x8 matrix into 8x16 */ + /* total 8 intermediate register and 32 instructions */ + q7 = (v16u8)__msa_ilvod_d((v2i64)row8, (v2i64)row0); + q6 = (v16u8)__msa_ilvod_d((v2i64)row9, (v2i64)row1); + q5 = (v16u8)__msa_ilvod_d((v2i64)row10, (v2i64)row2); + q4 = (v16u8)__msa_ilvod_d((v2i64)row11, (v2i64)row3); + q3 = (v16u8)__msa_ilvod_d((v2i64)row12, (v2i64)row4); + q2 = (v16u8)__msa_ilvod_d((v2i64)row13, (v2i64)row5); + q1 = (v16u8)__msa_ilvod_d((v2i64)row14, (v2i64)row6); + q0 = (v16u8)__msa_ilvod_d((v2i64)row15, (v2i64)row7); + + ILVEV_B2_SH(q7, q6, q5, q4, tmp0, tmp1); + tmp4 = (v8i16)__msa_ilvod_b((v16i8)q6, (v16i8)q7); + tmp5 = (v8i16)__msa_ilvod_b((v16i8)q4, (v16i8)q5); + + ILVEV_B2_UB(q3, q2, q1, q0, q5, q7); + tmp6 = (v8i16)__msa_ilvod_b((v16i8)q2, (v16i8)q3); + tmp7 = (v8i16)__msa_ilvod_b((v16i8)q0, (v16i8)q1); + + ILVEV_H2_SW(tmp0, tmp1, q5, q7, tmp2, tmp3); + q0 = (v16u8)__msa_ilvev_w(tmp3, tmp2); + q4 = (v16u8)__msa_ilvod_w(tmp3, tmp2); + + tmp2 = (v4i32)__msa_ilvod_h(tmp1, tmp0); + tmp3 = (v4i32)__msa_ilvod_h((v8i16)q7, (v8i16)q5); + q2 = (v16u8)__msa_ilvev_w(tmp3, tmp2); + q6 = (v16u8)__msa_ilvod_w(tmp3, tmp2); + + ILVEV_H2_SW(tmp4, tmp5, tmp6, tmp7, tmp2, tmp3); + q1 = (v16u8)__msa_ilvev_w(tmp3, tmp2); + q5 = (v16u8)__msa_ilvod_w(tmp3, tmp2); + + tmp2 = (v4i32)__msa_ilvod_h(tmp5, tmp4); + tmp3 = (v4i32)__msa_ilvod_h(tmp7, tmp6); + q3 = (v16u8)__msa_ilvev_w(tmp3, tmp2); + q7 = (v16u8)__msa_ilvod_w(tmp3, tmp2); + + ST_UB8(p7, p6, p5, p4, p3, p2, p1, p0, output, out_pitch); + output += (8 * out_pitch); + ST_UB8(q0, q1, q2, q3, q4, q5, q6, q7, output, out_pitch); +} + +static int32_t vt_lpf_t4_and_t8_8w(uint8_t *src, uint8_t *filter48, + uint8_t *src_org, int32_t pitch_org, + const uint8_t *b_limit_ptr, + const uint8_t *limit_ptr, + const uint8_t *thresh_ptr) { + v16u8 p3, p2, p1, p0, q3, q2, q1, q0; + v16u8 p2_out, p1_out, p0_out, q0_out, q1_out, q2_out; + v16u8 flat, mask, hev, thresh, b_limit, limit; + v8u16 p3_r, p2_r, p1_r, p0_r, q0_r, q1_r, q2_r, q3_r; + v8i16 p2_filt8_r, p1_filt8_r, p0_filt8_r, q0_filt8_r, q1_filt8_r, q2_filt8_r; + v16i8 zero = { 0 }; + v8i16 vec0, vec1, vec2, vec3; + + /* load vector elements */ + LD_UB8(src - (4 * 16), 16, p3, p2, p1, p0, q0, q1, q2, q3); + + thresh = (v16u8)__msa_fill_b(*thresh_ptr); + b_limit = (v16u8)__msa_fill_b(*b_limit_ptr); + limit = (v16u8)__msa_fill_b(*limit_ptr); + + /* mask and hev */ + LPF_MASK_HEV(p3, p2, p1, p0, q0, q1, q2, q3, limit, b_limit, thresh, hev, + mask, flat); + /* flat4 */ + VP9_FLAT4(p3, p2, p0, q0, q2, q3, flat); + /* filter4 */ + VP9_LPF_FILTER4_4W(p1, p0, q0, q1, mask, hev, p1_out, p0_out, q0_out, q1_out); + + flat = (v16u8)__msa_ilvr_d((v2i64)zero, (v2i64)flat); + + if (__msa_test_bz_v(flat)) { + ILVR_B2_SH(p0_out, p1_out, q1_out, q0_out, vec0, vec1); + ILVRL_H2_SH(vec1, vec0, vec2, vec3); + ST4x8_UB(vec2, vec3, (src_org - 2), pitch_org); + return 1; + } else { + ILVR_B8_UH(zero, p3, zero, p2, zero, p1, zero, p0, zero, q0, zero, q1, zero, + q2, zero, q3, p3_r, p2_r, p1_r, p0_r, q0_r, q1_r, q2_r, q3_r); + VP9_FILTER8(p3_r, p2_r, p1_r, p0_r, q0_r, q1_r, q2_r, q3_r, p2_filt8_r, + p1_filt8_r, p0_filt8_r, q0_filt8_r, q1_filt8_r, q2_filt8_r); + + /* convert 16 bit output data into 8 bit */ + p2_r = (v8u16)__msa_pckev_b((v16i8)p2_filt8_r, (v16i8)p2_filt8_r); + p1_r = (v8u16)__msa_pckev_b((v16i8)p1_filt8_r, (v16i8)p1_filt8_r); + p0_r = (v8u16)__msa_pckev_b((v16i8)p0_filt8_r, (v16i8)p0_filt8_r); + q0_r = (v8u16)__msa_pckev_b((v16i8)q0_filt8_r, (v16i8)q0_filt8_r); + q1_r = (v8u16)__msa_pckev_b((v16i8)q1_filt8_r, (v16i8)q1_filt8_r); + q2_r = (v8u16)__msa_pckev_b((v16i8)q2_filt8_r, (v16i8)q2_filt8_r); + + /* store pixel values */ + p2_out = __msa_bmnz_v(p2, (v16u8)p2_r, flat); + p1_out = __msa_bmnz_v(p1_out, (v16u8)p1_r, flat); + p0_out = __msa_bmnz_v(p0_out, (v16u8)p0_r, flat); + q0_out = __msa_bmnz_v(q0_out, (v16u8)q0_r, flat); + q1_out = __msa_bmnz_v(q1_out, (v16u8)q1_r, flat); + q2_out = __msa_bmnz_v(q2, (v16u8)q2_r, flat); + + ST_UB4(p2_out, p1_out, p0_out, q0_out, filter48, 16); + filter48 += (4 * 16); + ST_UB2(q1_out, q2_out, filter48, 16); + filter48 += (2 * 16); + ST_UB(flat, filter48); + + return 0; + } +} + +static int32_t vt_lpf_t16_8w(uint8_t *src, uint8_t *src_org, int32_t pitch, + uint8_t *filter48) { + v16i8 zero = { 0 }; + v16u8 filter8, flat, flat2; + v16u8 p7, p6, p5, p4, p3, p2, p1, p0, q0, q1, q2, q3, q4, q5, q6, q7; + v8u16 p7_r_in, p6_r_in, p5_r_in, p4_r_in, p3_r_in, p2_r_in, p1_r_in, p0_r_in; + v8u16 q7_r_in, q6_r_in, q5_r_in, q4_r_in, q3_r_in, q2_r_in, q1_r_in, q0_r_in; + v8u16 tmp0_r, tmp1_r; + v8i16 r_out; + + flat = LD_UB(filter48 + 6 * 16); + + LD_UB8((src - 8 * 16), 16, p7, p6, p5, p4, p3, p2, p1, p0); + LD_UB8(src, 16, q0, q1, q2, q3, q4, q5, q6, q7); + + VP9_FLAT5(p7, p6, p5, p4, p0, q0, q4, q5, q6, q7, flat, flat2); + + if (__msa_test_bz_v(flat2)) { + v8i16 vec0, vec1, vec2, vec3, vec4; + + LD_UB4(filter48, 16, p2, p1, p0, q0); + LD_UB2(filter48 + 4 * 16, 16, q1, q2); + + ILVR_B2_SH(p1, p2, q0, p0, vec0, vec1); + ILVRL_H2_SH(vec1, vec0, vec3, vec4); + vec2 = (v8i16)__msa_ilvr_b((v16i8)q2, (v16i8)q1); + + src_org -= 3; + ST4x4_UB(vec3, vec3, 0, 1, 2, 3, src_org, pitch); + ST2x4_UB(vec2, 0, (src_org + 4), pitch); + src_org += (4 * pitch); + ST4x4_UB(vec4, vec4, 0, 1, 2, 3, src_org, pitch); + ST2x4_UB(vec2, 4, (src_org + 4), pitch); + + return 1; + } else { + src -= 7 * 16; + + ILVR_B8_UH(zero, p7, zero, p6, zero, p5, zero, p4, zero, p3, zero, p2, zero, + p1, zero, p0, p7_r_in, p6_r_in, p5_r_in, p4_r_in, p3_r_in, + p2_r_in, p1_r_in, p0_r_in); + q0_r_in = (v8u16)__msa_ilvr_b(zero, (v16i8)q0); + + tmp0_r = p7_r_in << 3; + tmp0_r -= p7_r_in; + tmp0_r += p6_r_in; + tmp0_r += q0_r_in; + tmp1_r = p6_r_in + p5_r_in; + tmp1_r += p4_r_in; + tmp1_r += p3_r_in; + tmp1_r += p2_r_in; + tmp1_r += p1_r_in; + tmp1_r += p0_r_in; + tmp1_r += tmp0_r; + + r_out = __msa_srari_h((v8i16)tmp1_r, 4); + r_out = (v8i16)__msa_pckev_b((v16i8)r_out, (v16i8)r_out); + p6 = __msa_bmnz_v(p6, (v16u8)r_out, flat2); + ST8x1_UB(p6, src); + src += 16; + + /* p5 */ + q1_r_in = (v8u16)__msa_ilvr_b(zero, (v16i8)q1); + tmp0_r = p5_r_in - p6_r_in; + tmp0_r += q1_r_in; + tmp0_r -= p7_r_in; + tmp1_r += tmp0_r; + r_out = __msa_srari_h((v8i16)tmp1_r, 4); + r_out = (v8i16)__msa_pckev_b((v16i8)r_out, (v16i8)r_out); + p5 = __msa_bmnz_v(p5, (v16u8)r_out, flat2); + ST8x1_UB(p5, src); + src += 16; + + /* p4 */ + q2_r_in = (v8u16)__msa_ilvr_b(zero, (v16i8)q2); + tmp0_r = p4_r_in - p5_r_in; + tmp0_r += q2_r_in; + tmp0_r -= p7_r_in; + tmp1_r += tmp0_r; + r_out = __msa_srari_h((v8i16)tmp1_r, 4); + r_out = (v8i16)__msa_pckev_b((v16i8)r_out, (v16i8)r_out); + p4 = __msa_bmnz_v(p4, (v16u8)r_out, flat2); + ST8x1_UB(p4, src); + src += 16; + + /* p3 */ + q3_r_in = (v8u16)__msa_ilvr_b(zero, (v16i8)q3); + tmp0_r = p3_r_in - p4_r_in; + tmp0_r += q3_r_in; + tmp0_r -= p7_r_in; + tmp1_r += tmp0_r; + r_out = __msa_srari_h((v8i16)tmp1_r, 4); + r_out = (v8i16)__msa_pckev_b((v16i8)r_out, (v16i8)r_out); + p3 = __msa_bmnz_v(p3, (v16u8)r_out, flat2); + ST8x1_UB(p3, src); + src += 16; + + /* p2 */ + q4_r_in = (v8u16)__msa_ilvr_b(zero, (v16i8)q4); + filter8 = LD_UB(filter48); + tmp0_r = p2_r_in - p3_r_in; + tmp0_r += q4_r_in; + tmp0_r -= p7_r_in; + tmp1_r += tmp0_r; + r_out = __msa_srari_h((v8i16)tmp1_r, 4); + r_out = (v8i16)__msa_pckev_b((v16i8)r_out, (v16i8)r_out); + filter8 = __msa_bmnz_v(filter8, (v16u8)r_out, flat2); + ST8x1_UB(filter8, src); + src += 16; + + /* p1 */ + q5_r_in = (v8u16)__msa_ilvr_b(zero, (v16i8)q5); + filter8 = LD_UB(filter48 + 16); + tmp0_r = p1_r_in - p2_r_in; + tmp0_r += q5_r_in; + tmp0_r -= p7_r_in; + tmp1_r += tmp0_r; + r_out = __msa_srari_h((v8i16)tmp1_r, 4); + r_out = (v8i16)__msa_pckev_b((v16i8)r_out, (v16i8)r_out); + filter8 = __msa_bmnz_v(filter8, (v16u8)r_out, flat2); + ST8x1_UB(filter8, src); + src += 16; + + /* p0 */ + q6_r_in = (v8u16)__msa_ilvr_b(zero, (v16i8)q6); + filter8 = LD_UB(filter48 + 32); + tmp0_r = p0_r_in - p1_r_in; + tmp0_r += q6_r_in; + tmp0_r -= p7_r_in; + tmp1_r += tmp0_r; + r_out = __msa_srari_h((v8i16)tmp1_r, 4); + r_out = (v8i16)__msa_pckev_b((v16i8)r_out, (v16i8)r_out); + filter8 = __msa_bmnz_v(filter8, (v16u8)r_out, flat2); + ST8x1_UB(filter8, src); + src += 16; + + /* q0 */ + q7_r_in = (v8u16)__msa_ilvr_b(zero, (v16i8)q7); + filter8 = LD_UB(filter48 + 48); + tmp0_r = q7_r_in - p0_r_in; + tmp0_r += q0_r_in; + tmp0_r -= p7_r_in; + tmp1_r += tmp0_r; + r_out = __msa_srari_h((v8i16)tmp1_r, 4); + r_out = (v8i16)__msa_pckev_b((v16i8)r_out, (v16i8)r_out); + filter8 = __msa_bmnz_v(filter8, (v16u8)r_out, flat2); + ST8x1_UB(filter8, src); + src += 16; + + /* q1 */ + filter8 = LD_UB(filter48 + 64); + tmp0_r = q7_r_in - q0_r_in; + tmp0_r += q1_r_in; + tmp0_r -= p6_r_in; + tmp1_r += tmp0_r; + r_out = __msa_srari_h((v8i16)tmp1_r, 4); + r_out = (v8i16)__msa_pckev_b((v16i8)r_out, (v16i8)r_out); + filter8 = __msa_bmnz_v(filter8, (v16u8)r_out, flat2); + ST8x1_UB(filter8, src); + src += 16; + + /* q2 */ + filter8 = LD_UB(filter48 + 80); + tmp0_r = q7_r_in - q1_r_in; + tmp0_r += q2_r_in; + tmp0_r -= p5_r_in; + tmp1_r += tmp0_r; + r_out = __msa_srari_h((v8i16)tmp1_r, 4); + r_out = (v8i16)__msa_pckev_b((v16i8)r_out, (v16i8)r_out); + filter8 = __msa_bmnz_v(filter8, (v16u8)r_out, flat2); + ST8x1_UB(filter8, src); + src += 16; + + /* q3 */ + tmp0_r = q7_r_in - q2_r_in; + tmp0_r += q3_r_in; + tmp0_r -= p4_r_in; + tmp1_r += tmp0_r; + r_out = __msa_srari_h((v8i16)tmp1_r, 4); + r_out = (v8i16)__msa_pckev_b((v16i8)r_out, (v16i8)r_out); + q3 = __msa_bmnz_v(q3, (v16u8)r_out, flat2); + ST8x1_UB(q3, src); + src += 16; + + /* q4 */ + tmp0_r = q7_r_in - q3_r_in; + tmp0_r += q4_r_in; + tmp0_r -= p3_r_in; + tmp1_r += tmp0_r; + r_out = __msa_srari_h((v8i16)tmp1_r, 4); + r_out = (v8i16)__msa_pckev_b((v16i8)r_out, (v16i8)r_out); + q4 = __msa_bmnz_v(q4, (v16u8)r_out, flat2); + ST8x1_UB(q4, src); + src += 16; + + /* q5 */ + tmp0_r = q7_r_in - q4_r_in; + tmp0_r += q5_r_in; + tmp0_r -= p2_r_in; + tmp1_r += tmp0_r; + r_out = __msa_srari_h((v8i16)tmp1_r, 4); + r_out = (v8i16)__msa_pckev_b((v16i8)r_out, (v16i8)r_out); + q5 = __msa_bmnz_v(q5, (v16u8)r_out, flat2); + ST8x1_UB(q5, src); + src += 16; + + /* q6 */ + tmp0_r = q7_r_in - q5_r_in; + tmp0_r += q6_r_in; + tmp0_r -= p1_r_in; + tmp1_r += tmp0_r; + r_out = __msa_srari_h((v8i16)tmp1_r, 4); + r_out = (v8i16)__msa_pckev_b((v16i8)r_out, (v16i8)r_out); + q6 = __msa_bmnz_v(q6, (v16u8)r_out, flat2); + ST8x1_UB(q6, src); + + return 0; + } +} + +void vpx_lpf_vertical_16_msa(uint8_t *src, int32_t pitch, + const uint8_t *b_limit_ptr, + const uint8_t *limit_ptr, + const uint8_t *thresh_ptr) { + uint8_t early_exit = 0; + DECLARE_ALIGNED(32, uint8_t, transposed_input[16 * 24]); + uint8_t *filter48 = &transposed_input[16 * 16]; + + transpose_16x8_to_8x16(src - 8, pitch, transposed_input, 16); + + early_exit = + vt_lpf_t4_and_t8_8w((transposed_input + 16 * 8), &filter48[0], src, pitch, + b_limit_ptr, limit_ptr, thresh_ptr); + + if (0 == early_exit) { + early_exit = + vt_lpf_t16_8w((transposed_input + 16 * 8), src, pitch, &filter48[0]); + + if (0 == early_exit) { + transpose_8x16_to_16x8(transposed_input, 16, src - 8, pitch); + } + } +} + +static int32_t vt_lpf_t4_and_t8_16w(uint8_t *src, uint8_t *filter48, + uint8_t *src_org, int32_t pitch, + const uint8_t *b_limit_ptr, + const uint8_t *limit_ptr, + const uint8_t *thresh_ptr) { + v16u8 p3, p2, p1, p0, q3, q2, q1, q0; + v16u8 p2_out, p1_out, p0_out, q0_out, q1_out, q2_out; + v16u8 flat, mask, hev, thresh, b_limit, limit; + v8u16 p3_r, p2_r, p1_r, p0_r, q0_r, q1_r, q2_r, q3_r; + v8u16 p3_l, p2_l, p1_l, p0_l, q0_l, q1_l, q2_l, q3_l; + v8i16 p2_filt8_r, p1_filt8_r, p0_filt8_r, q0_filt8_r, q1_filt8_r, q2_filt8_r; + v8i16 p2_filt8_l, p1_filt8_l, p0_filt8_l, q0_filt8_l, q1_filt8_l, q2_filt8_l; + v16i8 zero = { 0 }; + v8i16 vec0, vec1, vec2, vec3, vec4, vec5; + + /* load vector elements */ + LD_UB8(src - (4 * 16), 16, p3, p2, p1, p0, q0, q1, q2, q3); + + thresh = (v16u8)__msa_fill_b(*thresh_ptr); + b_limit = (v16u8)__msa_fill_b(*b_limit_ptr); + limit = (v16u8)__msa_fill_b(*limit_ptr); + + /* mask and hev */ + LPF_MASK_HEV(p3, p2, p1, p0, q0, q1, q2, q3, limit, b_limit, thresh, hev, + mask, flat); + /* flat4 */ + VP9_FLAT4(p3, p2, p0, q0, q2, q3, flat); + /* filter4 */ + VP9_LPF_FILTER4_4W(p1, p0, q0, q1, mask, hev, p1_out, p0_out, q0_out, q1_out); + + if (__msa_test_bz_v(flat)) { + ILVR_B2_SH(p0_out, p1_out, q1_out, q0_out, vec0, vec1); + ILVRL_H2_SH(vec1, vec0, vec2, vec3); + ILVL_B2_SH(p0_out, p1_out, q1_out, q0_out, vec0, vec1); + ILVRL_H2_SH(vec1, vec0, vec4, vec5); + + src_org -= 2; + ST4x8_UB(vec2, vec3, src_org, pitch); + src_org += 8 * pitch; + ST4x8_UB(vec4, vec5, src_org, pitch); + + return 1; + } else { + ILVR_B8_UH(zero, p3, zero, p2, zero, p1, zero, p0, zero, q0, zero, q1, zero, + q2, zero, q3, p3_r, p2_r, p1_r, p0_r, q0_r, q1_r, q2_r, q3_r); + VP9_FILTER8(p3_r, p2_r, p1_r, p0_r, q0_r, q1_r, q2_r, q3_r, p2_filt8_r, + p1_filt8_r, p0_filt8_r, q0_filt8_r, q1_filt8_r, q2_filt8_r); + ILVL_B4_UH(zero, p3, zero, p2, zero, p1, zero, p0, p3_l, p2_l, p1_l, p0_l); + ILVL_B4_UH(zero, q0, zero, q1, zero, q2, zero, q3, q0_l, q1_l, q2_l, q3_l); + VP9_FILTER8(p3_l, p2_l, p1_l, p0_l, q0_l, q1_l, q2_l, q3_l, p2_filt8_l, + p1_filt8_l, p0_filt8_l, q0_filt8_l, q1_filt8_l, q2_filt8_l); + + /* convert 16 bit output data into 8 bit */ + PCKEV_B4_SH(p2_filt8_l, p2_filt8_r, p1_filt8_l, p1_filt8_r, p0_filt8_l, + p0_filt8_r, q0_filt8_l, q0_filt8_r, p2_filt8_r, p1_filt8_r, + p0_filt8_r, q0_filt8_r); + PCKEV_B2_SH(q1_filt8_l, q1_filt8_r, q2_filt8_l, q2_filt8_r, q1_filt8_r, + q2_filt8_r); + + /* store pixel values */ + p2_out = __msa_bmnz_v(p2, (v16u8)p2_filt8_r, flat); + p1_out = __msa_bmnz_v(p1_out, (v16u8)p1_filt8_r, flat); + p0_out = __msa_bmnz_v(p0_out, (v16u8)p0_filt8_r, flat); + q0_out = __msa_bmnz_v(q0_out, (v16u8)q0_filt8_r, flat); + q1_out = __msa_bmnz_v(q1_out, (v16u8)q1_filt8_r, flat); + q2_out = __msa_bmnz_v(q2, (v16u8)q2_filt8_r, flat); + + ST_UB4(p2_out, p1_out, p0_out, q0_out, filter48, 16); + filter48 += (4 * 16); + ST_UB2(q1_out, q2_out, filter48, 16); + filter48 += (2 * 16); + ST_UB(flat, filter48); + + return 0; + } +} + +static int32_t vt_lpf_t16_16w(uint8_t *src, uint8_t *src_org, int32_t pitch, + uint8_t *filter48) { + v16u8 flat, flat2, filter8; + v16i8 zero = { 0 }; + v16u8 p7, p6, p5, p4, p3, p2, p1, p0, q0, q1, q2, q3, q4, q5, q6, q7; + v8u16 p7_r_in, p6_r_in, p5_r_in, p4_r_in, p3_r_in, p2_r_in, p1_r_in, p0_r_in; + v8u16 q7_r_in, q6_r_in, q5_r_in, q4_r_in, q3_r_in, q2_r_in, q1_r_in, q0_r_in; + v8u16 p7_l_in, p6_l_in, p5_l_in, p4_l_in, p3_l_in, p2_l_in, p1_l_in, p0_l_in; + v8u16 q7_l_in, q6_l_in, q5_l_in, q4_l_in, q3_l_in, q2_l_in, q1_l_in, q0_l_in; + v8u16 tmp0_r, tmp1_r, tmp0_l, tmp1_l; + v8i16 l_out, r_out; + + flat = LD_UB(filter48 + 6 * 16); + + LD_UB8((src - 8 * 16), 16, p7, p6, p5, p4, p3, p2, p1, p0); + LD_UB8(src, 16, q0, q1, q2, q3, q4, q5, q6, q7); + + VP9_FLAT5(p7, p6, p5, p4, p0, q0, q4, q5, q6, q7, flat, flat2); + + if (__msa_test_bz_v(flat2)) { + v8i16 vec0, vec1, vec2, vec3, vec4, vec5, vec6, vec7; + + LD_UB4(filter48, 16, p2, p1, p0, q0); + LD_UB2(filter48 + 4 * 16, 16, q1, q2); + + ILVR_B2_SH(p1, p2, q0, p0, vec0, vec1); + ILVRL_H2_SH(vec1, vec0, vec3, vec4); + ILVL_B2_SH(p1, p2, q0, p0, vec0, vec1); + ILVRL_H2_SH(vec1, vec0, vec6, vec7); + ILVRL_B2_SH(q2, q1, vec2, vec5); + + src_org -= 3; + ST4x4_UB(vec3, vec3, 0, 1, 2, 3, src_org, pitch); + ST2x4_UB(vec2, 0, (src_org + 4), pitch); + src_org += (4 * pitch); + ST4x4_UB(vec4, vec4, 0, 1, 2, 3, src_org, pitch); + ST2x4_UB(vec2, 4, (src_org + 4), pitch); + src_org += (4 * pitch); + ST4x4_UB(vec6, vec6, 0, 1, 2, 3, src_org, pitch); + ST2x4_UB(vec5, 0, (src_org + 4), pitch); + src_org += (4 * pitch); + ST4x4_UB(vec7, vec7, 0, 1, 2, 3, src_org, pitch); + ST2x4_UB(vec5, 4, (src_org + 4), pitch); + + return 1; + } else { + src -= 7 * 16; + + ILVR_B8_UH(zero, p7, zero, p6, zero, p5, zero, p4, zero, p3, zero, p2, zero, + p1, zero, p0, p7_r_in, p6_r_in, p5_r_in, p4_r_in, p3_r_in, + p2_r_in, p1_r_in, p0_r_in); + q0_r_in = (v8u16)__msa_ilvr_b(zero, (v16i8)q0); + + tmp0_r = p7_r_in << 3; + tmp0_r -= p7_r_in; + tmp0_r += p6_r_in; + tmp0_r += q0_r_in; + tmp1_r = p6_r_in + p5_r_in; + tmp1_r += p4_r_in; + tmp1_r += p3_r_in; + tmp1_r += p2_r_in; + tmp1_r += p1_r_in; + tmp1_r += p0_r_in; + tmp1_r += tmp0_r; + r_out = __msa_srari_h((v8i16)tmp1_r, 4); + + ILVL_B4_UH(zero, p7, zero, p6, zero, p5, zero, p4, p7_l_in, p6_l_in, + p5_l_in, p4_l_in); + ILVL_B4_UH(zero, p3, zero, p2, zero, p1, zero, p0, p3_l_in, p2_l_in, + p1_l_in, p0_l_in); + q0_l_in = (v8u16)__msa_ilvl_b(zero, (v16i8)q0); + + tmp0_l = p7_l_in << 3; + tmp0_l -= p7_l_in; + tmp0_l += p6_l_in; + tmp0_l += q0_l_in; + tmp1_l = p6_l_in + p5_l_in; + tmp1_l += p4_l_in; + tmp1_l += p3_l_in; + tmp1_l += p2_l_in; + tmp1_l += p1_l_in; + tmp1_l += p0_l_in; + tmp1_l += tmp0_l; + l_out = __msa_srari_h((v8i16)tmp1_l, 4); + + r_out = (v8i16)__msa_pckev_b((v16i8)l_out, (v16i8)r_out); + p6 = __msa_bmnz_v(p6, (v16u8)r_out, flat2); + ST_UB(p6, src); + src += 16; + + /* p5 */ + q1_r_in = (v8u16)__msa_ilvr_b(zero, (v16i8)q1); + tmp0_r = p5_r_in - p6_r_in; + tmp0_r += q1_r_in; + tmp0_r -= p7_r_in; + tmp1_r += tmp0_r; + r_out = __msa_srari_h((v8i16)tmp1_r, 4); + q1_l_in = (v8u16)__msa_ilvl_b(zero, (v16i8)q1); + tmp0_l = p5_l_in - p6_l_in; + tmp0_l += q1_l_in; + tmp0_l -= p7_l_in; + tmp1_l += tmp0_l; + l_out = __msa_srari_h((v8i16)tmp1_l, 4); + r_out = (v8i16)__msa_pckev_b((v16i8)l_out, (v16i8)r_out); + p5 = __msa_bmnz_v(p5, (v16u8)r_out, flat2); + ST_UB(p5, src); + src += 16; + + /* p4 */ + q2_r_in = (v8u16)__msa_ilvr_b(zero, (v16i8)q2); + tmp0_r = p4_r_in - p5_r_in; + tmp0_r += q2_r_in; + tmp0_r -= p7_r_in; + tmp1_r += tmp0_r; + r_out = __msa_srari_h((v8i16)tmp1_r, 4); + q2_l_in = (v8u16)__msa_ilvl_b(zero, (v16i8)q2); + tmp0_l = p4_l_in - p5_l_in; + tmp0_l += q2_l_in; + tmp0_l -= p7_l_in; + tmp1_l += tmp0_l; + l_out = __msa_srari_h((v8i16)tmp1_l, 4); + r_out = (v8i16)__msa_pckev_b((v16i8)l_out, (v16i8)r_out); + p4 = __msa_bmnz_v(p4, (v16u8)r_out, flat2); + ST_UB(p4, src); + src += 16; + + /* p3 */ + q3_r_in = (v8u16)__msa_ilvr_b(zero, (v16i8)q3); + tmp0_r = p3_r_in - p4_r_in; + tmp0_r += q3_r_in; + tmp0_r -= p7_r_in; + tmp1_r += tmp0_r; + r_out = __msa_srari_h((v8i16)tmp1_r, 4); + q3_l_in = (v8u16)__msa_ilvl_b(zero, (v16i8)q3); + tmp0_l = p3_l_in - p4_l_in; + tmp0_l += q3_l_in; + tmp0_l -= p7_l_in; + tmp1_l += tmp0_l; + l_out = __msa_srari_h((v8i16)tmp1_l, 4); + r_out = (v8i16)__msa_pckev_b((v16i8)l_out, (v16i8)r_out); + p3 = __msa_bmnz_v(p3, (v16u8)r_out, flat2); + ST_UB(p3, src); + src += 16; + + /* p2 */ + q4_r_in = (v8u16)__msa_ilvr_b(zero, (v16i8)q4); + filter8 = LD_UB(filter48); + tmp0_r = p2_r_in - p3_r_in; + tmp0_r += q4_r_in; + tmp0_r -= p7_r_in; + tmp1_r += tmp0_r; + r_out = __msa_srari_h((v8i16)tmp1_r, 4); + q4_l_in = (v8u16)__msa_ilvl_b(zero, (v16i8)q4); + tmp0_l = p2_l_in - p3_l_in; + tmp0_l += q4_l_in; + tmp0_l -= p7_l_in; + tmp1_l += tmp0_l; + l_out = __msa_srari_h((v8i16)tmp1_l, 4); + r_out = (v8i16)__msa_pckev_b((v16i8)l_out, (v16i8)r_out); + filter8 = __msa_bmnz_v(filter8, (v16u8)r_out, flat2); + ST_UB(filter8, src); + src += 16; + + /* p1 */ + q5_r_in = (v8u16)__msa_ilvr_b(zero, (v16i8)q5); + filter8 = LD_UB(filter48 + 16); + tmp0_r = p1_r_in - p2_r_in; + tmp0_r += q5_r_in; + tmp0_r -= p7_r_in; + tmp1_r += tmp0_r; + r_out = __msa_srari_h((v8i16)tmp1_r, 4); + q5_l_in = (v8u16)__msa_ilvl_b(zero, (v16i8)q5); + tmp0_l = p1_l_in - p2_l_in; + tmp0_l += q5_l_in; + tmp0_l -= p7_l_in; + tmp1_l += tmp0_l; + l_out = __msa_srari_h((v8i16)(tmp1_l), 4); + r_out = (v8i16)__msa_pckev_b((v16i8)l_out, (v16i8)r_out); + filter8 = __msa_bmnz_v(filter8, (v16u8)r_out, flat2); + ST_UB(filter8, src); + src += 16; + + /* p0 */ + q6_r_in = (v8u16)__msa_ilvr_b(zero, (v16i8)q6); + filter8 = LD_UB(filter48 + 32); + tmp0_r = p0_r_in - p1_r_in; + tmp0_r += q6_r_in; + tmp0_r -= p7_r_in; + tmp1_r += tmp0_r; + r_out = __msa_srari_h((v8i16)tmp1_r, 4); + q6_l_in = (v8u16)__msa_ilvl_b(zero, (v16i8)q6); + tmp0_l = p0_l_in - p1_l_in; + tmp0_l += q6_l_in; + tmp0_l -= p7_l_in; + tmp1_l += tmp0_l; + l_out = __msa_srari_h((v8i16)tmp1_l, 4); + r_out = (v8i16)__msa_pckev_b((v16i8)l_out, (v16i8)r_out); + filter8 = __msa_bmnz_v(filter8, (v16u8)r_out, flat2); + ST_UB(filter8, src); + src += 16; + + /* q0 */ + q7_r_in = (v8u16)__msa_ilvr_b(zero, (v16i8)q7); + filter8 = LD_UB(filter48 + 48); + tmp0_r = q7_r_in - p0_r_in; + tmp0_r += q0_r_in; + tmp0_r -= p7_r_in; + tmp1_r += tmp0_r; + r_out = __msa_srari_h((v8i16)tmp1_r, 4); + q7_l_in = (v8u16)__msa_ilvl_b(zero, (v16i8)q7); + tmp0_l = q7_l_in - p0_l_in; + tmp0_l += q0_l_in; + tmp0_l -= p7_l_in; + tmp1_l += tmp0_l; + l_out = __msa_srari_h((v8i16)tmp1_l, 4); + r_out = (v8i16)__msa_pckev_b((v16i8)l_out, (v16i8)r_out); + filter8 = __msa_bmnz_v(filter8, (v16u8)r_out, flat2); + ST_UB(filter8, src); + src += 16; + + /* q1 */ + filter8 = LD_UB(filter48 + 64); + tmp0_r = q7_r_in - q0_r_in; + tmp0_r += q1_r_in; + tmp0_r -= p6_r_in; + tmp1_r += tmp0_r; + r_out = __msa_srari_h((v8i16)tmp1_r, 4); + tmp0_l = q7_l_in - q0_l_in; + tmp0_l += q1_l_in; + tmp0_l -= p6_l_in; + tmp1_l += tmp0_l; + l_out = __msa_srari_h((v8i16)tmp1_l, 4); + r_out = (v8i16)__msa_pckev_b((v16i8)l_out, (v16i8)r_out); + filter8 = __msa_bmnz_v(filter8, (v16u8)r_out, flat2); + ST_UB(filter8, src); + src += 16; + + /* q2 */ + filter8 = LD_UB(filter48 + 80); + tmp0_r = q7_r_in - q1_r_in; + tmp0_r += q2_r_in; + tmp0_r -= p5_r_in; + tmp1_r += tmp0_r; + r_out = __msa_srari_h((v8i16)tmp1_r, 4); + tmp0_l = q7_l_in - q1_l_in; + tmp0_l += q2_l_in; + tmp0_l -= p5_l_in; + tmp1_l += tmp0_l; + l_out = __msa_srari_h((v8i16)tmp1_l, 4); + r_out = (v8i16)__msa_pckev_b((v16i8)l_out, (v16i8)r_out); + filter8 = __msa_bmnz_v(filter8, (v16u8)r_out, flat2); + ST_UB(filter8, src); + src += 16; + + /* q3 */ + tmp0_r = q7_r_in - q2_r_in; + tmp0_r += q3_r_in; + tmp0_r -= p4_r_in; + tmp1_r += tmp0_r; + r_out = __msa_srari_h((v8i16)tmp1_r, 4); + tmp0_l = q7_l_in - q2_l_in; + tmp0_l += q3_l_in; + tmp0_l -= p4_l_in; + tmp1_l += tmp0_l; + l_out = __msa_srari_h((v8i16)tmp1_l, 4); + r_out = (v8i16)__msa_pckev_b((v16i8)l_out, (v16i8)r_out); + q3 = __msa_bmnz_v(q3, (v16u8)r_out, flat2); + ST_UB(q3, src); + src += 16; + + /* q4 */ + tmp0_r = q7_r_in - q3_r_in; + tmp0_r += q4_r_in; + tmp0_r -= p3_r_in; + tmp1_r += tmp0_r; + r_out = __msa_srari_h((v8i16)tmp1_r, 4); + tmp0_l = q7_l_in - q3_l_in; + tmp0_l += q4_l_in; + tmp0_l -= p3_l_in; + tmp1_l += tmp0_l; + l_out = __msa_srari_h((v8i16)tmp1_l, 4); + r_out = (v8i16)__msa_pckev_b((v16i8)l_out, (v16i8)r_out); + q4 = __msa_bmnz_v(q4, (v16u8)r_out, flat2); + ST_UB(q4, src); + src += 16; + + /* q5 */ + tmp0_r = q7_r_in - q4_r_in; + tmp0_r += q5_r_in; + tmp0_r -= p2_r_in; + tmp1_r += tmp0_r; + r_out = __msa_srari_h((v8i16)tmp1_r, 4); + tmp0_l = q7_l_in - q4_l_in; + tmp0_l += q5_l_in; + tmp0_l -= p2_l_in; + tmp1_l += tmp0_l; + l_out = __msa_srari_h((v8i16)tmp1_l, 4); + r_out = (v8i16)__msa_pckev_b((v16i8)l_out, (v16i8)r_out); + q5 = __msa_bmnz_v(q5, (v16u8)r_out, flat2); + ST_UB(q5, src); + src += 16; + + /* q6 */ + tmp0_r = q7_r_in - q5_r_in; + tmp0_r += q6_r_in; + tmp0_r -= p1_r_in; + tmp1_r += tmp0_r; + r_out = __msa_srari_h((v8i16)tmp1_r, 4); + tmp0_l = q7_l_in - q5_l_in; + tmp0_l += q6_l_in; + tmp0_l -= p1_l_in; + tmp1_l += tmp0_l; + l_out = __msa_srari_h((v8i16)tmp1_l, 4); + r_out = (v8i16)__msa_pckev_b((v16i8)l_out, (v16i8)r_out); + q6 = __msa_bmnz_v(q6, (v16u8)r_out, flat2); + ST_UB(q6, src); + + return 0; + } +} + +void vpx_lpf_vertical_16_dual_msa(uint8_t *src, int32_t pitch, + const uint8_t *b_limit_ptr, + const uint8_t *limit_ptr, + const uint8_t *thresh_ptr) { + uint8_t early_exit = 0; + DECLARE_ALIGNED(32, uint8_t, transposed_input[16 * 24]); + uint8_t *filter48 = &transposed_input[16 * 16]; + + transpose_16x16((src - 8), pitch, &transposed_input[0], 16); + + early_exit = + vt_lpf_t4_and_t8_16w((transposed_input + 16 * 8), &filter48[0], src, + pitch, b_limit_ptr, limit_ptr, thresh_ptr); + + if (0 == early_exit) { + early_exit = + vt_lpf_t16_16w((transposed_input + 16 * 8), src, pitch, &filter48[0]); + + if (0 == early_exit) { + transpose_16x16(transposed_input, 16, (src - 8), pitch); + } + } +} diff --git a/vpx_dsp/mips/loopfilter_4_msa.c b/vpx_dsp/mips/loopfilter_4_msa.c new file mode 100644 index 0000000..0eff2b6 --- /dev/null +++ b/vpx_dsp/mips/loopfilter_4_msa.c @@ -0,0 +1,147 @@ +/* + * Copyright (c) 2015 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "./vpx_dsp_rtcd.h" +#include "vpx_dsp/mips/loopfilter_msa.h" + +void vpx_lpf_horizontal_4_msa(uint8_t *src, int32_t pitch, + const uint8_t *b_limit_ptr, + const uint8_t *limit_ptr, + const uint8_t *thresh_ptr) { + uint64_t p1_d, p0_d, q0_d, q1_d; + v16u8 mask, hev, flat, thresh, b_limit, limit; + v16u8 p3, p2, p1, p0, q3, q2, q1, q0, p1_out, p0_out, q0_out, q1_out; + + /* load vector elements */ + LD_UB8((src - 4 * pitch), pitch, p3, p2, p1, p0, q0, q1, q2, q3); + + thresh = (v16u8)__msa_fill_b(*thresh_ptr); + b_limit = (v16u8)__msa_fill_b(*b_limit_ptr); + limit = (v16u8)__msa_fill_b(*limit_ptr); + + LPF_MASK_HEV(p3, p2, p1, p0, q0, q1, q2, q3, limit, b_limit, thresh, hev, + mask, flat); + VP9_LPF_FILTER4_4W(p1, p0, q0, q1, mask, hev, p1_out, p0_out, q0_out, q1_out); + + p1_d = __msa_copy_u_d((v2i64)p1_out, 0); + p0_d = __msa_copy_u_d((v2i64)p0_out, 0); + q0_d = __msa_copy_u_d((v2i64)q0_out, 0); + q1_d = __msa_copy_u_d((v2i64)q1_out, 0); + SD4(p1_d, p0_d, q0_d, q1_d, (src - 2 * pitch), pitch); +} + +void vpx_lpf_horizontal_4_dual_msa(uint8_t *src, int32_t pitch, + const uint8_t *b_limit0_ptr, + const uint8_t *limit0_ptr, + const uint8_t *thresh0_ptr, + const uint8_t *b_limit1_ptr, + const uint8_t *limit1_ptr, + const uint8_t *thresh1_ptr) { + v16u8 mask, hev, flat, thresh0, b_limit0, limit0, thresh1, b_limit1, limit1; + v16u8 p3, p2, p1, p0, q3, q2, q1, q0; + + /* load vector elements */ + LD_UB8((src - 4 * pitch), pitch, p3, p2, p1, p0, q0, q1, q2, q3); + + thresh0 = (v16u8)__msa_fill_b(*thresh0_ptr); + thresh1 = (v16u8)__msa_fill_b(*thresh1_ptr); + thresh0 = (v16u8)__msa_ilvr_d((v2i64)thresh1, (v2i64)thresh0); + + b_limit0 = (v16u8)__msa_fill_b(*b_limit0_ptr); + b_limit1 = (v16u8)__msa_fill_b(*b_limit1_ptr); + b_limit0 = (v16u8)__msa_ilvr_d((v2i64)b_limit1, (v2i64)b_limit0); + + limit0 = (v16u8)__msa_fill_b(*limit0_ptr); + limit1 = (v16u8)__msa_fill_b(*limit1_ptr); + limit0 = (v16u8)__msa_ilvr_d((v2i64)limit1, (v2i64)limit0); + + LPF_MASK_HEV(p3, p2, p1, p0, q0, q1, q2, q3, limit0, b_limit0, thresh0, hev, + mask, flat); + VP9_LPF_FILTER4_4W(p1, p0, q0, q1, mask, hev, p1, p0, q0, q1); + + ST_UB4(p1, p0, q0, q1, (src - 2 * pitch), pitch); +} + +void vpx_lpf_vertical_4_msa(uint8_t *src, int32_t pitch, + const uint8_t *b_limit_ptr, + const uint8_t *limit_ptr, + const uint8_t *thresh_ptr) { + v16u8 mask, hev, flat, limit, thresh, b_limit; + v16u8 p3, p2, p1, p0, q3, q2, q1, q0; + v8i16 vec0, vec1, vec2, vec3; + + LD_UB8((src - 4), pitch, p3, p2, p1, p0, q0, q1, q2, q3); + + thresh = (v16u8)__msa_fill_b(*thresh_ptr); + b_limit = (v16u8)__msa_fill_b(*b_limit_ptr); + limit = (v16u8)__msa_fill_b(*limit_ptr); + + TRANSPOSE8x8_UB_UB(p3, p2, p1, p0, q0, q1, q2, q3, p3, p2, p1, p0, q0, q1, q2, + q3); + LPF_MASK_HEV(p3, p2, p1, p0, q0, q1, q2, q3, limit, b_limit, thresh, hev, + mask, flat); + VP9_LPF_FILTER4_4W(p1, p0, q0, q1, mask, hev, p1, p0, q0, q1); + ILVR_B2_SH(p0, p1, q1, q0, vec0, vec1); + ILVRL_H2_SH(vec1, vec0, vec2, vec3); + + src -= 2; + ST4x4_UB(vec2, vec2, 0, 1, 2, 3, src, pitch); + src += 4 * pitch; + ST4x4_UB(vec3, vec3, 0, 1, 2, 3, src, pitch); +} + +void vpx_lpf_vertical_4_dual_msa(uint8_t *src, int32_t pitch, + const uint8_t *b_limit0_ptr, + const uint8_t *limit0_ptr, + const uint8_t *thresh0_ptr, + const uint8_t *b_limit1_ptr, + const uint8_t *limit1_ptr, + const uint8_t *thresh1_ptr) { + v16u8 mask, hev, flat; + v16u8 thresh0, b_limit0, limit0, thresh1, b_limit1, limit1; + v16u8 p3, p2, p1, p0, q3, q2, q1, q0; + v16u8 row0, row1, row2, row3, row4, row5, row6, row7; + v16u8 row8, row9, row10, row11, row12, row13, row14, row15; + v8i16 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5; + + LD_UB8(src - 4, pitch, row0, row1, row2, row3, row4, row5, row6, row7); + LD_UB8(src - 4 + (8 * pitch), pitch, row8, row9, row10, row11, row12, row13, + row14, row15); + + TRANSPOSE16x8_UB_UB(row0, row1, row2, row3, row4, row5, row6, row7, row8, + row9, row10, row11, row12, row13, row14, row15, p3, p2, + p1, p0, q0, q1, q2, q3); + + thresh0 = (v16u8)__msa_fill_b(*thresh0_ptr); + thresh1 = (v16u8)__msa_fill_b(*thresh1_ptr); + thresh0 = (v16u8)__msa_ilvr_d((v2i64)thresh1, (v2i64)thresh0); + + b_limit0 = (v16u8)__msa_fill_b(*b_limit0_ptr); + b_limit1 = (v16u8)__msa_fill_b(*b_limit1_ptr); + b_limit0 = (v16u8)__msa_ilvr_d((v2i64)b_limit1, (v2i64)b_limit0); + + limit0 = (v16u8)__msa_fill_b(*limit0_ptr); + limit1 = (v16u8)__msa_fill_b(*limit1_ptr); + limit0 = (v16u8)__msa_ilvr_d((v2i64)limit1, (v2i64)limit0); + + LPF_MASK_HEV(p3, p2, p1, p0, q0, q1, q2, q3, limit0, b_limit0, thresh0, hev, + mask, flat); + VP9_LPF_FILTER4_4W(p1, p0, q0, q1, mask, hev, p1, p0, q0, q1); + ILVR_B2_SH(p0, p1, q1, q0, tmp0, tmp1); + ILVRL_H2_SH(tmp1, tmp0, tmp2, tmp3); + ILVL_B2_SH(p0, p1, q1, q0, tmp0, tmp1); + ILVRL_H2_SH(tmp1, tmp0, tmp4, tmp5); + + src -= 2; + + ST4x8_UB(tmp2, tmp3, src, pitch); + src += (8 * pitch); + ST4x8_UB(tmp4, tmp5, src, pitch); +} diff --git a/vpx_dsp/mips/loopfilter_8_msa.c b/vpx_dsp/mips/loopfilter_8_msa.c new file mode 100644 index 0000000..703fcce --- /dev/null +++ b/vpx_dsp/mips/loopfilter_8_msa.c @@ -0,0 +1,333 @@ +/* + * Copyright (c) 2015 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "./vpx_dsp_rtcd.h" +#include "vpx_dsp/mips/loopfilter_msa.h" + +void vpx_lpf_horizontal_8_msa(uint8_t *src, int32_t pitch, + const uint8_t *b_limit_ptr, + const uint8_t *limit_ptr, + const uint8_t *thresh_ptr) { + uint64_t p2_d, p1_d, p0_d, q0_d, q1_d, q2_d; + v16u8 mask, hev, flat, thresh, b_limit, limit; + v16u8 p3, p2, p1, p0, q3, q2, q1, q0; + v16u8 p2_out, p1_out, p0_out, q0_out, q1_out, q2_out; + v8i16 p2_filter8, p1_filter8, p0_filter8, q0_filter8, q1_filter8, q2_filter8; + v8u16 p3_r, p2_r, p1_r, p0_r, q3_r, q2_r, q1_r, q0_r; + v16i8 zero = { 0 }; + + /* load vector elements */ + LD_UB8((src - 4 * pitch), pitch, p3, p2, p1, p0, q0, q1, q2, q3); + + thresh = (v16u8)__msa_fill_b(*thresh_ptr); + b_limit = (v16u8)__msa_fill_b(*b_limit_ptr); + limit = (v16u8)__msa_fill_b(*limit_ptr); + + LPF_MASK_HEV(p3, p2, p1, p0, q0, q1, q2, q3, limit, b_limit, thresh, hev, + mask, flat); + VP9_FLAT4(p3, p2, p0, q0, q2, q3, flat); + VP9_LPF_FILTER4_4W(p1, p0, q0, q1, mask, hev, p1_out, p0_out, q0_out, q1_out); + + flat = (v16u8)__msa_ilvr_d((v2i64)zero, (v2i64)flat); + + if (__msa_test_bz_v(flat)) { + p1_d = __msa_copy_u_d((v2i64)p1_out, 0); + p0_d = __msa_copy_u_d((v2i64)p0_out, 0); + q0_d = __msa_copy_u_d((v2i64)q0_out, 0); + q1_d = __msa_copy_u_d((v2i64)q1_out, 0); + SD4(p1_d, p0_d, q0_d, q1_d, (src - 2 * pitch), pitch); + } else { + ILVR_B8_UH(zero, p3, zero, p2, zero, p1, zero, p0, zero, q0, zero, q1, zero, + q2, zero, q3, p3_r, p2_r, p1_r, p0_r, q0_r, q1_r, q2_r, q3_r); + VP9_FILTER8(p3_r, p2_r, p1_r, p0_r, q0_r, q1_r, q2_r, q3_r, p2_filter8, + p1_filter8, p0_filter8, q0_filter8, q1_filter8, q2_filter8); + + /* convert 16 bit output data into 8 bit */ + PCKEV_B4_SH(zero, p2_filter8, zero, p1_filter8, zero, p0_filter8, zero, + q0_filter8, p2_filter8, p1_filter8, p0_filter8, q0_filter8); + PCKEV_B2_SH(zero, q1_filter8, zero, q2_filter8, q1_filter8, q2_filter8); + + /* store pixel values */ + p2_out = __msa_bmnz_v(p2, (v16u8)p2_filter8, flat); + p1_out = __msa_bmnz_v(p1_out, (v16u8)p1_filter8, flat); + p0_out = __msa_bmnz_v(p0_out, (v16u8)p0_filter8, flat); + q0_out = __msa_bmnz_v(q0_out, (v16u8)q0_filter8, flat); + q1_out = __msa_bmnz_v(q1_out, (v16u8)q1_filter8, flat); + q2_out = __msa_bmnz_v(q2, (v16u8)q2_filter8, flat); + + p2_d = __msa_copy_u_d((v2i64)p2_out, 0); + p1_d = __msa_copy_u_d((v2i64)p1_out, 0); + p0_d = __msa_copy_u_d((v2i64)p0_out, 0); + q0_d = __msa_copy_u_d((v2i64)q0_out, 0); + q1_d = __msa_copy_u_d((v2i64)q1_out, 0); + q2_d = __msa_copy_u_d((v2i64)q2_out, 0); + + src -= 3 * pitch; + + SD4(p2_d, p1_d, p0_d, q0_d, src, pitch); + src += (4 * pitch); + SD(q1_d, src); + src += pitch; + SD(q2_d, src); + } +} + +void vpx_lpf_horizontal_8_dual_msa( + uint8_t *src, int32_t pitch, const uint8_t *b_limit0, const uint8_t *limit0, + const uint8_t *thresh0, const uint8_t *b_limit1, const uint8_t *limit1, + const uint8_t *thresh1) { + v16u8 p3, p2, p1, p0, q3, q2, q1, q0; + v16u8 p2_out, p1_out, p0_out, q0_out, q1_out, q2_out; + v16u8 flat, mask, hev, tmp, thresh, b_limit, limit; + v8u16 p3_r, p2_r, p1_r, p0_r, q0_r, q1_r, q2_r, q3_r; + v8u16 p3_l, p2_l, p1_l, p0_l, q0_l, q1_l, q2_l, q3_l; + v8i16 p2_filt8_r, p1_filt8_r, p0_filt8_r, q0_filt8_r, q1_filt8_r, q2_filt8_r; + v8i16 p2_filt8_l, p1_filt8_l, p0_filt8_l, q0_filt8_l, q1_filt8_l, q2_filt8_l; + v16u8 zero = { 0 }; + + /* load vector elements */ + LD_UB8(src - (4 * pitch), pitch, p3, p2, p1, p0, q0, q1, q2, q3); + + thresh = (v16u8)__msa_fill_b(*thresh0); + tmp = (v16u8)__msa_fill_b(*thresh1); + thresh = (v16u8)__msa_ilvr_d((v2i64)tmp, (v2i64)thresh); + + b_limit = (v16u8)__msa_fill_b(*b_limit0); + tmp = (v16u8)__msa_fill_b(*b_limit1); + b_limit = (v16u8)__msa_ilvr_d((v2i64)tmp, (v2i64)b_limit); + + limit = (v16u8)__msa_fill_b(*limit0); + tmp = (v16u8)__msa_fill_b(*limit1); + limit = (v16u8)__msa_ilvr_d((v2i64)tmp, (v2i64)limit); + + /* mask and hev */ + LPF_MASK_HEV(p3, p2, p1, p0, q0, q1, q2, q3, limit, b_limit, thresh, hev, + mask, flat); + VP9_FLAT4(p3, p2, p0, q0, q2, q3, flat); + VP9_LPF_FILTER4_4W(p1, p0, q0, q1, mask, hev, p1_out, p0_out, q0_out, q1_out); + + if (__msa_test_bz_v(flat)) { + ST_UB4(p1_out, p0_out, q0_out, q1_out, (src - 2 * pitch), pitch); + } else { + ILVR_B8_UH(zero, p3, zero, p2, zero, p1, zero, p0, zero, q0, zero, q1, zero, + q2, zero, q3, p3_r, p2_r, p1_r, p0_r, q0_r, q1_r, q2_r, q3_r); + VP9_FILTER8(p3_r, p2_r, p1_r, p0_r, q0_r, q1_r, q2_r, q3_r, p2_filt8_r, + p1_filt8_r, p0_filt8_r, q0_filt8_r, q1_filt8_r, q2_filt8_r); + + ILVL_B4_UH(zero, p3, zero, p2, zero, p1, zero, p0, p3_l, p2_l, p1_l, p0_l); + ILVL_B4_UH(zero, q0, zero, q1, zero, q2, zero, q3, q0_l, q1_l, q2_l, q3_l); + VP9_FILTER8(p3_l, p2_l, p1_l, p0_l, q0_l, q1_l, q2_l, q3_l, p2_filt8_l, + p1_filt8_l, p0_filt8_l, q0_filt8_l, q1_filt8_l, q2_filt8_l); + + /* convert 16 bit output data into 8 bit */ + PCKEV_B4_SH(p2_filt8_l, p2_filt8_r, p1_filt8_l, p1_filt8_r, p0_filt8_l, + p0_filt8_r, q0_filt8_l, q0_filt8_r, p2_filt8_r, p1_filt8_r, + p0_filt8_r, q0_filt8_r); + PCKEV_B2_SH(q1_filt8_l, q1_filt8_r, q2_filt8_l, q2_filt8_r, q1_filt8_r, + q2_filt8_r); + + /* store pixel values */ + p2_out = __msa_bmnz_v(p2, (v16u8)p2_filt8_r, flat); + p1_out = __msa_bmnz_v(p1_out, (v16u8)p1_filt8_r, flat); + p0_out = __msa_bmnz_v(p0_out, (v16u8)p0_filt8_r, flat); + q0_out = __msa_bmnz_v(q0_out, (v16u8)q0_filt8_r, flat); + q1_out = __msa_bmnz_v(q1_out, (v16u8)q1_filt8_r, flat); + q2_out = __msa_bmnz_v(q2, (v16u8)q2_filt8_r, flat); + + src -= 3 * pitch; + + ST_UB4(p2_out, p1_out, p0_out, q0_out, src, pitch); + src += (4 * pitch); + ST_UB2(q1_out, q2_out, src, pitch); + src += (2 * pitch); + } +} + +void vpx_lpf_vertical_8_msa(uint8_t *src, int32_t pitch, + const uint8_t *b_limit_ptr, + const uint8_t *limit_ptr, + const uint8_t *thresh_ptr) { + v16u8 p3, p2, p1, p0, q3, q2, q1, q0; + v16u8 p1_out, p0_out, q0_out, q1_out; + v16u8 flat, mask, hev, thresh, b_limit, limit; + v8u16 p3_r, p2_r, p1_r, p0_r, q0_r, q1_r, q2_r, q3_r; + v8i16 p2_filt8_r, p1_filt8_r, p0_filt8_r, q0_filt8_r, q1_filt8_r, q2_filt8_r; + v16u8 zero = { 0 }; + v8i16 vec0, vec1, vec2, vec3, vec4; + + /* load vector elements */ + LD_UB8(src - 4, pitch, p3, p2, p1, p0, q0, q1, q2, q3); + + TRANSPOSE8x8_UB_UB(p3, p2, p1, p0, q0, q1, q2, q3, p3, p2, p1, p0, q0, q1, q2, + q3); + + thresh = (v16u8)__msa_fill_b(*thresh_ptr); + b_limit = (v16u8)__msa_fill_b(*b_limit_ptr); + limit = (v16u8)__msa_fill_b(*limit_ptr); + + /* mask and hev */ + LPF_MASK_HEV(p3, p2, p1, p0, q0, q1, q2, q3, limit, b_limit, thresh, hev, + mask, flat); + /* flat4 */ + VP9_FLAT4(p3, p2, p0, q0, q2, q3, flat); + /* filter4 */ + VP9_LPF_FILTER4_4W(p1, p0, q0, q1, mask, hev, p1_out, p0_out, q0_out, q1_out); + + flat = (v16u8)__msa_ilvr_d((v2i64)zero, (v2i64)flat); + + if (__msa_test_bz_v(flat)) { + /* Store 4 pixels p1-_q1 */ + ILVR_B2_SH(p0_out, p1_out, q1_out, q0_out, vec0, vec1); + ILVRL_H2_SH(vec1, vec0, vec2, vec3); + + src -= 2; + ST4x4_UB(vec2, vec2, 0, 1, 2, 3, src, pitch); + src += 4 * pitch; + ST4x4_UB(vec3, vec3, 0, 1, 2, 3, src, pitch); + } else { + ILVR_B8_UH(zero, p3, zero, p2, zero, p1, zero, p0, zero, q0, zero, q1, zero, + q2, zero, q3, p3_r, p2_r, p1_r, p0_r, q0_r, q1_r, q2_r, q3_r); + VP9_FILTER8(p3_r, p2_r, p1_r, p0_r, q0_r, q1_r, q2_r, q3_r, p2_filt8_r, + p1_filt8_r, p0_filt8_r, q0_filt8_r, q1_filt8_r, q2_filt8_r); + /* convert 16 bit output data into 8 bit */ + PCKEV_B4_SH(p2_filt8_r, p2_filt8_r, p1_filt8_r, p1_filt8_r, p0_filt8_r, + p0_filt8_r, q0_filt8_r, q0_filt8_r, p2_filt8_r, p1_filt8_r, + p0_filt8_r, q0_filt8_r); + PCKEV_B2_SH(q1_filt8_r, q1_filt8_r, q2_filt8_r, q2_filt8_r, q1_filt8_r, + q2_filt8_r); + + /* store pixel values */ + p2 = __msa_bmnz_v(p2, (v16u8)p2_filt8_r, flat); + p1 = __msa_bmnz_v(p1_out, (v16u8)p1_filt8_r, flat); + p0 = __msa_bmnz_v(p0_out, (v16u8)p0_filt8_r, flat); + q0 = __msa_bmnz_v(q0_out, (v16u8)q0_filt8_r, flat); + q1 = __msa_bmnz_v(q1_out, (v16u8)q1_filt8_r, flat); + q2 = __msa_bmnz_v(q2, (v16u8)q2_filt8_r, flat); + + /* Store 6 pixels p2-_q2 */ + ILVR_B2_SH(p1, p2, q0, p0, vec0, vec1); + ILVRL_H2_SH(vec1, vec0, vec2, vec3); + vec4 = (v8i16)__msa_ilvr_b((v16i8)q2, (v16i8)q1); + + src -= 3; + ST4x4_UB(vec2, vec2, 0, 1, 2, 3, src, pitch); + ST2x4_UB(vec4, 0, src + 4, pitch); + src += (4 * pitch); + ST4x4_UB(vec3, vec3, 0, 1, 2, 3, src, pitch); + ST2x4_UB(vec4, 4, src + 4, pitch); + } +} + +void vpx_lpf_vertical_8_dual_msa(uint8_t *src, int32_t pitch, + const uint8_t *b_limit0, const uint8_t *limit0, + const uint8_t *thresh0, + const uint8_t *b_limit1, const uint8_t *limit1, + const uint8_t *thresh1) { + uint8_t *temp_src; + v16u8 p3, p2, p1, p0, q3, q2, q1, q0; + v16u8 p1_out, p0_out, q0_out, q1_out; + v16u8 flat, mask, hev, thresh, b_limit, limit; + v16u8 row4, row5, row6, row7, row12, row13, row14, row15; + v8u16 p3_r, p2_r, p1_r, p0_r, q0_r, q1_r, q2_r, q3_r; + v8u16 p3_l, p2_l, p1_l, p0_l, q0_l, q1_l, q2_l, q3_l; + v8i16 p2_filt8_r, p1_filt8_r, p0_filt8_r, q0_filt8_r, q1_filt8_r, q2_filt8_r; + v8i16 p2_filt8_l, p1_filt8_l, p0_filt8_l, q0_filt8_l, q1_filt8_l, q2_filt8_l; + v16u8 zero = { 0 }; + v8i16 vec0, vec1, vec2, vec3, vec4, vec5, vec6, vec7; + + temp_src = src - 4; + + LD_UB8(temp_src, pitch, p0, p1, p2, p3, row4, row5, row6, row7); + temp_src += (8 * pitch); + LD_UB8(temp_src, pitch, q3, q2, q1, q0, row12, row13, row14, row15); + + /* transpose 16x8 matrix into 8x16 */ + TRANSPOSE16x8_UB_UB(p0, p1, p2, p3, row4, row5, row6, row7, q3, q2, q1, q0, + row12, row13, row14, row15, p3, p2, p1, p0, q0, q1, q2, + q3); + + thresh = (v16u8)__msa_fill_b(*thresh0); + vec0 = (v8i16)__msa_fill_b(*thresh1); + thresh = (v16u8)__msa_ilvr_d((v2i64)vec0, (v2i64)thresh); + + b_limit = (v16u8)__msa_fill_b(*b_limit0); + vec0 = (v8i16)__msa_fill_b(*b_limit1); + b_limit = (v16u8)__msa_ilvr_d((v2i64)vec0, (v2i64)b_limit); + + limit = (v16u8)__msa_fill_b(*limit0); + vec0 = (v8i16)__msa_fill_b(*limit1); + limit = (v16u8)__msa_ilvr_d((v2i64)vec0, (v2i64)limit); + + /* mask and hev */ + LPF_MASK_HEV(p3, p2, p1, p0, q0, q1, q2, q3, limit, b_limit, thresh, hev, + mask, flat); + /* flat4 */ + VP9_FLAT4(p3, p2, p0, q0, q2, q3, flat); + /* filter4 */ + VP9_LPF_FILTER4_4W(p1, p0, q0, q1, mask, hev, p1_out, p0_out, q0_out, q1_out); + + if (__msa_test_bz_v(flat)) { + ILVR_B2_SH(p0_out, p1_out, q1_out, q0_out, vec0, vec1); + ILVRL_H2_SH(vec1, vec0, vec2, vec3); + ILVL_B2_SH(p0_out, p1_out, q1_out, q0_out, vec0, vec1); + ILVRL_H2_SH(vec1, vec0, vec4, vec5); + + src -= 2; + ST4x8_UB(vec2, vec3, src, pitch); + src += 8 * pitch; + ST4x8_UB(vec4, vec5, src, pitch); + } else { + ILVR_B8_UH(zero, p3, zero, p2, zero, p1, zero, p0, zero, q0, zero, q1, zero, + q2, zero, q3, p3_r, p2_r, p1_r, p0_r, q0_r, q1_r, q2_r, q3_r); + VP9_FILTER8(p3_r, p2_r, p1_r, p0_r, q0_r, q1_r, q2_r, q3_r, p2_filt8_r, + p1_filt8_r, p0_filt8_r, q0_filt8_r, q1_filt8_r, q2_filt8_r); + + ILVL_B4_UH(zero, p3, zero, p2, zero, p1, zero, p0, p3_l, p2_l, p1_l, p0_l); + ILVL_B4_UH(zero, q0, zero, q1, zero, q2, zero, q3, q0_l, q1_l, q2_l, q3_l); + + /* filter8 */ + VP9_FILTER8(p3_l, p2_l, p1_l, p0_l, q0_l, q1_l, q2_l, q3_l, p2_filt8_l, + p1_filt8_l, p0_filt8_l, q0_filt8_l, q1_filt8_l, q2_filt8_l); + + /* convert 16 bit output data into 8 bit */ + PCKEV_B4_SH(p2_filt8_l, p2_filt8_r, p1_filt8_l, p1_filt8_r, p0_filt8_l, + p0_filt8_r, q0_filt8_l, q0_filt8_r, p2_filt8_r, p1_filt8_r, + p0_filt8_r, q0_filt8_r); + PCKEV_B2_SH(q1_filt8_l, q1_filt8_r, q2_filt8_l, q2_filt8_r, q1_filt8_r, + q2_filt8_r); + + /* store pixel values */ + p2 = __msa_bmnz_v(p2, (v16u8)p2_filt8_r, flat); + p1 = __msa_bmnz_v(p1_out, (v16u8)p1_filt8_r, flat); + p0 = __msa_bmnz_v(p0_out, (v16u8)p0_filt8_r, flat); + q0 = __msa_bmnz_v(q0_out, (v16u8)q0_filt8_r, flat); + q1 = __msa_bmnz_v(q1_out, (v16u8)q1_filt8_r, flat); + q2 = __msa_bmnz_v(q2, (v16u8)q2_filt8_r, flat); + + ILVR_B2_SH(p1, p2, q0, p0, vec0, vec1); + ILVRL_H2_SH(vec1, vec0, vec3, vec4); + ILVL_B2_SH(p1, p2, q0, p0, vec0, vec1); + ILVRL_H2_SH(vec1, vec0, vec6, vec7); + ILVRL_B2_SH(q2, q1, vec2, vec5); + + src -= 3; + ST4x4_UB(vec3, vec3, 0, 1, 2, 3, src, pitch); + ST2x4_UB(vec2, 0, src + 4, pitch); + src += (4 * pitch); + ST4x4_UB(vec4, vec4, 0, 1, 2, 3, src, pitch); + ST2x4_UB(vec2, 4, src + 4, pitch); + src += (4 * pitch); + ST4x4_UB(vec6, vec6, 0, 1, 2, 3, src, pitch); + ST2x4_UB(vec5, 0, src + 4, pitch); + src += (4 * pitch); + ST4x4_UB(vec7, vec7, 0, 1, 2, 3, src, pitch); + ST2x4_UB(vec5, 4, src + 4, pitch); + } +} diff --git a/vpx_dsp/mips/loopfilter_filters_dspr2.c b/vpx_dsp/mips/loopfilter_filters_dspr2.c new file mode 100644 index 0000000..f174367 --- /dev/null +++ b/vpx_dsp/mips/loopfilter_filters_dspr2.c @@ -0,0 +1,326 @@ +/* + * Copyright (c) 2013 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include + +#include "./vpx_dsp_rtcd.h" +#include "vpx/vpx_integer.h" +#include "vpx_dsp/mips/common_dspr2.h" +#include "vpx_dsp/mips/loopfilter_filters_dspr2.h" +#include "vpx_dsp/mips/loopfilter_macros_dspr2.h" +#include "vpx_dsp/mips/loopfilter_masks_dspr2.h" +#include "vpx_mem/vpx_mem.h" + +#if HAVE_DSPR2 +void vpx_lpf_horizontal_4_dspr2(unsigned char *s, int pitch, + const uint8_t *blimit, const uint8_t *limit, + const uint8_t *thresh) { + uint8_t i; + uint32_t mask; + uint32_t hev; + uint32_t pm1, p0, p1, p2, p3, p4, p5, p6; + uint8_t *sm1, *s0, *s1, *s2, *s3, *s4, *s5, *s6; + uint32_t thresh_vec, flimit_vec, limit_vec; + uint32_t uflimit, ulimit, uthresh; + + uflimit = *blimit; + ulimit = *limit; + uthresh = *thresh; + + /* create quad-byte */ + __asm__ __volatile__( + "replv.qb %[thresh_vec], %[uthresh] \n\t" + "replv.qb %[flimit_vec], %[uflimit] \n\t" + "replv.qb %[limit_vec], %[ulimit] \n\t" + + : [thresh_vec] "=&r"(thresh_vec), [flimit_vec] "=&r"(flimit_vec), + [limit_vec] "=r"(limit_vec) + : [uthresh] "r"(uthresh), [uflimit] "r"(uflimit), [ulimit] "r"(ulimit)); + + /* prefetch data for store */ + prefetch_store(s); + + /* loop filter designed to work using chars so that we can make maximum use + of 8 bit simd instructions. */ + for (i = 0; i < 2; i++) { + sm1 = s - (pitch << 2); + s0 = sm1 + pitch; + s1 = s0 + pitch; + s2 = s - pitch; + s3 = s; + s4 = s + pitch; + s5 = s4 + pitch; + s6 = s5 + pitch; + + __asm__ __volatile__( + "lw %[p1], (%[s1]) \n\t" + "lw %[p2], (%[s2]) \n\t" + "lw %[p3], (%[s3]) \n\t" + "lw %[p4], (%[s4]) \n\t" + + : [p1] "=&r"(p1), [p2] "=&r"(p2), [p3] "=&r"(p3), [p4] "=&r"(p4) + : [s1] "r"(s1), [s2] "r"(s2), [s3] "r"(s3), [s4] "r"(s4)); + + /* if (p1 - p4 == 0) and (p2 - p3 == 0) + mask will be zero and filtering is not needed */ + if (!(((p1 - p4) == 0) && ((p2 - p3) == 0))) { + __asm__ __volatile__( + "lw %[pm1], (%[sm1]) \n\t" + "lw %[p0], (%[s0]) \n\t" + "lw %[p5], (%[s5]) \n\t" + "lw %[p6], (%[s6]) \n\t" + + : [pm1] "=&r"(pm1), [p0] "=&r"(p0), [p5] "=&r"(p5), [p6] "=&r"(p6) + : [sm1] "r"(sm1), [s0] "r"(s0), [s5] "r"(s5), [s6] "r"(s6)); + + filter_hev_mask_dspr2(limit_vec, flimit_vec, p1, p2, pm1, p0, p3, p4, p5, + p6, thresh_vec, &hev, &mask); + + /* if mask == 0 do filtering is not needed */ + if (mask) { + /* filtering */ + filter_dspr2(mask, hev, &p1, &p2, &p3, &p4); + + __asm__ __volatile__( + "sw %[p1], (%[s1]) \n\t" + "sw %[p2], (%[s2]) \n\t" + "sw %[p3], (%[s3]) \n\t" + "sw %[p4], (%[s4]) \n\t" + + : + : [p1] "r"(p1), [p2] "r"(p2), [p3] "r"(p3), [p4] "r"(p4), + [s1] "r"(s1), [s2] "r"(s2), [s3] "r"(s3), [s4] "r"(s4)); + } + } + + s = s + 4; + } +} + +void vpx_lpf_vertical_4_dspr2(unsigned char *s, int pitch, + const uint8_t *blimit, const uint8_t *limit, + const uint8_t *thresh) { + uint8_t i; + uint32_t mask, hev; + uint32_t pm1, p0, p1, p2, p3, p4, p5, p6; + uint8_t *s1, *s2, *s3, *s4; + uint32_t prim1, prim2, sec3, sec4, prim3, prim4; + uint32_t thresh_vec, flimit_vec, limit_vec; + uint32_t uflimit, ulimit, uthresh; + + uflimit = *blimit; + ulimit = *limit; + uthresh = *thresh; + + /* create quad-byte */ + __asm__ __volatile__( + "replv.qb %[thresh_vec], %[uthresh] \n\t" + "replv.qb %[flimit_vec], %[uflimit] \n\t" + "replv.qb %[limit_vec], %[ulimit] \n\t" + + : [thresh_vec] "=&r"(thresh_vec), [flimit_vec] "=&r"(flimit_vec), + [limit_vec] "=r"(limit_vec) + : [uthresh] "r"(uthresh), [uflimit] "r"(uflimit), [ulimit] "r"(ulimit)); + + /* prefetch data for store */ + prefetch_store(s + pitch); + + for (i = 0; i < 2; i++) { + s1 = s; + s2 = s + pitch; + s3 = s2 + pitch; + s4 = s3 + pitch; + s = s4 + pitch; + + /* load quad-byte vectors + * memory is 4 byte aligned + */ + p2 = *((uint32_t *)(s1 - 4)); + p6 = *((uint32_t *)(s1)); + p1 = *((uint32_t *)(s2 - 4)); + p5 = *((uint32_t *)(s2)); + p0 = *((uint32_t *)(s3 - 4)); + p4 = *((uint32_t *)(s3)); + pm1 = *((uint32_t *)(s4 - 4)); + p3 = *((uint32_t *)(s4)); + + /* transpose pm1, p0, p1, p2 */ + __asm__ __volatile__( + "precrq.qb.ph %[prim1], %[p2], %[p1] \n\t" + "precr.qb.ph %[prim2], %[p2], %[p1] \n\t" + "precrq.qb.ph %[prim3], %[p0], %[pm1] \n\t" + "precr.qb.ph %[prim4], %[p0], %[pm1] \n\t" + + "precrq.qb.ph %[p1], %[prim1], %[prim2] \n\t" + "precr.qb.ph %[pm1], %[prim1], %[prim2] \n\t" + "precrq.qb.ph %[sec3], %[prim3], %[prim4] \n\t" + "precr.qb.ph %[sec4], %[prim3], %[prim4] \n\t" + + "precrq.ph.w %[p2], %[p1], %[sec3] \n\t" + "precrq.ph.w %[p0], %[pm1], %[sec4] \n\t" + "append %[p1], %[sec3], 16 \n\t" + "append %[pm1], %[sec4], 16 \n\t" + + : [prim1] "=&r"(prim1), [prim2] "=&r"(prim2), [prim3] "=&r"(prim3), + [prim4] "=&r"(prim4), [p2] "+r"(p2), [p1] "+r"(p1), [p0] "+r"(p0), + [pm1] "+r"(pm1), [sec3] "=&r"(sec3), [sec4] "=&r"(sec4) + :); + + /* transpose p3, p4, p5, p6 */ + __asm__ __volatile__( + "precrq.qb.ph %[prim1], %[p6], %[p5] \n\t" + "precr.qb.ph %[prim2], %[p6], %[p5] \n\t" + "precrq.qb.ph %[prim3], %[p4], %[p3] \n\t" + "precr.qb.ph %[prim4], %[p4], %[p3] \n\t" + + "precrq.qb.ph %[p5], %[prim1], %[prim2] \n\t" + "precr.qb.ph %[p3], %[prim1], %[prim2] \n\t" + "precrq.qb.ph %[sec3], %[prim3], %[prim4] \n\t" + "precr.qb.ph %[sec4], %[prim3], %[prim4] \n\t" + + "precrq.ph.w %[p6], %[p5], %[sec3] \n\t" + "precrq.ph.w %[p4], %[p3], %[sec4] \n\t" + "append %[p5], %[sec3], 16 \n\t" + "append %[p3], %[sec4], 16 \n\t" + + : [prim1] "=&r"(prim1), [prim2] "=&r"(prim2), [prim3] "=&r"(prim3), + [prim4] "=&r"(prim4), [p6] "+r"(p6), [p5] "+r"(p5), [p4] "+r"(p4), + [p3] "+r"(p3), [sec3] "=&r"(sec3), [sec4] "=&r"(sec4) + :); + + /* if (p1 - p4 == 0) and (p2 - p3 == 0) + * mask will be zero and filtering is not needed + */ + if (!(((p1 - p4) == 0) && ((p2 - p3) == 0))) { + filter_hev_mask_dspr2(limit_vec, flimit_vec, p1, p2, pm1, p0, p3, p4, p5, + p6, thresh_vec, &hev, &mask); + + /* if mask == 0 do filtering is not needed */ + if (mask) { + /* filtering */ + filter_dspr2(mask, hev, &p1, &p2, &p3, &p4); + + /* unpack processed 4x4 neighborhood + * don't use transpose on output data + * because memory isn't aligned + */ + __asm__ __volatile__( + "sb %[p4], 1(%[s4]) \n\t" + "sb %[p3], 0(%[s4]) \n\t" + "sb %[p2], -1(%[s4]) \n\t" + "sb %[p1], -2(%[s4]) \n\t" + + : + : [p4] "r"(p4), [p3] "r"(p3), [p2] "r"(p2), [p1] "r"(p1), + [s4] "r"(s4)); + + __asm__ __volatile__( + "srl %[p4], %[p4], 8 \n\t" + "srl %[p3], %[p3], 8 \n\t" + "srl %[p2], %[p2], 8 \n\t" + "srl %[p1], %[p1], 8 \n\t" + + : [p4] "+r"(p4), [p3] "+r"(p3), [p2] "+r"(p2), [p1] "+r"(p1) + :); + + __asm__ __volatile__( + "sb %[p4], 1(%[s3]) \n\t" + "sb %[p3], 0(%[s3]) \n\t" + "sb %[p2], -1(%[s3]) \n\t" + "sb %[p1], -2(%[s3]) \n\t" + + : [p1] "+r"(p1) + : [p4] "r"(p4), [p3] "r"(p3), [p2] "r"(p2), [s3] "r"(s3)); + + __asm__ __volatile__( + "srl %[p4], %[p4], 8 \n\t" + "srl %[p3], %[p3], 8 \n\t" + "srl %[p2], %[p2], 8 \n\t" + "srl %[p1], %[p1], 8 \n\t" + + : [p4] "+r"(p4), [p3] "+r"(p3), [p2] "+r"(p2), [p1] "+r"(p1) + :); + + __asm__ __volatile__( + "sb %[p4], 1(%[s2]) \n\t" + "sb %[p3], 0(%[s2]) \n\t" + "sb %[p2], -1(%[s2]) \n\t" + "sb %[p1], -2(%[s2]) \n\t" + + : + : [p4] "r"(p4), [p3] "r"(p3), [p2] "r"(p2), [p1] "r"(p1), + [s2] "r"(s2)); + + __asm__ __volatile__( + "srl %[p4], %[p4], 8 \n\t" + "srl %[p3], %[p3], 8 \n\t" + "srl %[p2], %[p2], 8 \n\t" + "srl %[p1], %[p1], 8 \n\t" + + : [p4] "+r"(p4), [p3] "+r"(p3), [p2] "+r"(p2), [p1] "+r"(p1) + :); + + __asm__ __volatile__( + "sb %[p4], 1(%[s1]) \n\t" + "sb %[p3], 0(%[s1]) \n\t" + "sb %[p2], -1(%[s1]) \n\t" + "sb %[p1], -2(%[s1]) \n\t" + + : + : [p4] "r"(p4), [p3] "r"(p3), [p2] "r"(p2), [p1] "r"(p1), + [s1] "r"(s1)); + } + } + } +} + +void vpx_lpf_horizontal_4_dual_dspr2( + uint8_t *s, int p /* pitch */, const uint8_t *blimit0, + const uint8_t *limit0, const uint8_t *thresh0, const uint8_t *blimit1, + const uint8_t *limit1, const uint8_t *thresh1) { + vpx_lpf_horizontal_4_dspr2(s, p, blimit0, limit0, thresh0); + vpx_lpf_horizontal_4_dspr2(s + 8, p, blimit1, limit1, thresh1); +} + +void vpx_lpf_horizontal_8_dual_dspr2( + uint8_t *s, int p /* pitch */, const uint8_t *blimit0, + const uint8_t *limit0, const uint8_t *thresh0, const uint8_t *blimit1, + const uint8_t *limit1, const uint8_t *thresh1) { + vpx_lpf_horizontal_8_dspr2(s, p, blimit0, limit0, thresh0); + vpx_lpf_horizontal_8_dspr2(s + 8, p, blimit1, limit1, thresh1); +} + +void vpx_lpf_vertical_4_dual_dspr2(uint8_t *s, int p, const uint8_t *blimit0, + const uint8_t *limit0, + const uint8_t *thresh0, + const uint8_t *blimit1, + const uint8_t *limit1, + const uint8_t *thresh1) { + vpx_lpf_vertical_4_dspr2(s, p, blimit0, limit0, thresh0); + vpx_lpf_vertical_4_dspr2(s + 8 * p, p, blimit1, limit1, thresh1); +} + +void vpx_lpf_vertical_8_dual_dspr2(uint8_t *s, int p, const uint8_t *blimit0, + const uint8_t *limit0, + const uint8_t *thresh0, + const uint8_t *blimit1, + const uint8_t *limit1, + const uint8_t *thresh1) { + vpx_lpf_vertical_8_dspr2(s, p, blimit0, limit0, thresh0); + vpx_lpf_vertical_8_dspr2(s + 8 * p, p, blimit1, limit1, thresh1); +} + +void vpx_lpf_vertical_16_dual_dspr2(uint8_t *s, int p, const uint8_t *blimit, + const uint8_t *limit, + const uint8_t *thresh) { + vpx_lpf_vertical_16_dspr2(s, p, blimit, limit, thresh); + vpx_lpf_vertical_16_dspr2(s + 8 * p, p, blimit, limit, thresh); +} +#endif // #if HAVE_DSPR2 diff --git a/vpx_dsp/mips/loopfilter_filters_dspr2.h b/vpx_dsp/mips/loopfilter_filters_dspr2.h new file mode 100644 index 0000000..5b0c733 --- /dev/null +++ b/vpx_dsp/mips/loopfilter_filters_dspr2.h @@ -0,0 +1,734 @@ +/* + * Copyright (c) 2013 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP9_COMMON_MIPS_DSPR2_VP9_LOOPFILTER_FILTERS_DSPR2_H_ +#define VP9_COMMON_MIPS_DSPR2_VP9_LOOPFILTER_FILTERS_DSPR2_H_ + +#include + +#include "./vpx_dsp_rtcd.h" +#include "vpx/vpx_integer.h" +#include "vpx_mem/vpx_mem.h" +#include "vpx_ports/mem.h" + +#ifdef __cplusplus +extern "C" { +#endif + +#if HAVE_DSPR2 +/* inputs & outputs are quad-byte vectors */ +static INLINE void filter_dspr2(uint32_t mask, uint32_t hev, uint32_t *ps1, + uint32_t *ps0, uint32_t *qs0, uint32_t *qs1) { + int32_t vpx_filter_l, vpx_filter_r; + int32_t Filter1_l, Filter1_r, Filter2_l, Filter2_r; + int32_t subr_r, subr_l; + uint32_t t1, t2, HWM, t3; + uint32_t hev_l, hev_r, mask_l, mask_r, invhev_l, invhev_r; + int32_t vps1, vps0, vqs0, vqs1; + int32_t vps1_l, vps1_r, vps0_l, vps0_r, vqs0_l, vqs0_r, vqs1_l, vqs1_r; + uint32_t N128; + + N128 = 0x80808080; + t1 = 0x03000300; + t2 = 0x04000400; + t3 = 0x01000100; + HWM = 0xFF00FF00; + + vps0 = (*ps0) ^ N128; + vps1 = (*ps1) ^ N128; + vqs0 = (*qs0) ^ N128; + vqs1 = (*qs1) ^ N128; + + /* use halfword pairs instead quad-bytes because of accuracy */ + vps0_l = vps0 & HWM; + vps0_r = vps0 << 8; + vps0_r = vps0_r & HWM; + + vps1_l = vps1 & HWM; + vps1_r = vps1 << 8; + vps1_r = vps1_r & HWM; + + vqs0_l = vqs0 & HWM; + vqs0_r = vqs0 << 8; + vqs0_r = vqs0_r & HWM; + + vqs1_l = vqs1 & HWM; + vqs1_r = vqs1 << 8; + vqs1_r = vqs1_r & HWM; + + mask_l = mask & HWM; + mask_r = mask << 8; + mask_r = mask_r & HWM; + + hev_l = hev & HWM; + hev_r = hev << 8; + hev_r = hev_r & HWM; + + __asm__ __volatile__( + /* vpx_filter = vp8_signed_char_clamp(ps1 - qs1); */ + "subq_s.ph %[vpx_filter_l], %[vps1_l], %[vqs1_l] \n\t" + "subq_s.ph %[vpx_filter_r], %[vps1_r], %[vqs1_r] \n\t" + + /* qs0 - ps0 */ + "subq_s.ph %[subr_l], %[vqs0_l], %[vps0_l] \n\t" + "subq_s.ph %[subr_r], %[vqs0_r], %[vps0_r] \n\t" + + /* vpx_filter &= hev; */ + "and %[vpx_filter_l], %[vpx_filter_l], %[hev_l] \n\t" + "and %[vpx_filter_r], %[vpx_filter_r], %[hev_r] \n\t" + + /* vpx_filter = vp8_signed_char_clamp(vpx_filter + 3 * (qs0 - ps0)); */ + "addq_s.ph %[vpx_filter_l], %[vpx_filter_l], %[subr_l] \n\t" + "addq_s.ph %[vpx_filter_r], %[vpx_filter_r], %[subr_r] \n\t" + "xor %[invhev_l], %[hev_l], %[HWM] \n\t" + "addq_s.ph %[vpx_filter_l], %[vpx_filter_l], %[subr_l] \n\t" + "addq_s.ph %[vpx_filter_r], %[vpx_filter_r], %[subr_r] \n\t" + "xor %[invhev_r], %[hev_r], %[HWM] \n\t" + "addq_s.ph %[vpx_filter_l], %[vpx_filter_l], %[subr_l] \n\t" + "addq_s.ph %[vpx_filter_r], %[vpx_filter_r], %[subr_r] \n\t" + + /* vpx_filter &= mask; */ + "and %[vpx_filter_l], %[vpx_filter_l], %[mask_l] \n\t" + "and %[vpx_filter_r], %[vpx_filter_r], %[mask_r] \n\t" + + : [vpx_filter_l] "=&r"(vpx_filter_l), [vpx_filter_r] "=&r"(vpx_filter_r), + [subr_l] "=&r"(subr_l), [subr_r] "=&r"(subr_r), + [invhev_l] "=&r"(invhev_l), [invhev_r] "=&r"(invhev_r) + : [vps0_l] "r"(vps0_l), [vps0_r] "r"(vps0_r), [vps1_l] "r"(vps1_l), + [vps1_r] "r"(vps1_r), [vqs0_l] "r"(vqs0_l), [vqs0_r] "r"(vqs0_r), + [vqs1_l] "r"(vqs1_l), [vqs1_r] "r"(vqs1_r), [mask_l] "r"(mask_l), + [mask_r] "r"(mask_r), [hev_l] "r"(hev_l), [hev_r] "r"(hev_r), + [HWM] "r"(HWM)); + + /* save bottom 3 bits so that we round one side +4 and the other +3 */ + __asm__ __volatile__( + /* Filter2 = vp8_signed_char_clamp(vpx_filter + 3) >>= 3; */ + "addq_s.ph %[Filter1_l], %[vpx_filter_l], %[t2] \n\t" + "addq_s.ph %[Filter1_r], %[vpx_filter_r], %[t2] \n\t" + + /* Filter1 = vp8_signed_char_clamp(vpx_filter + 4) >>= 3; */ + "addq_s.ph %[Filter2_l], %[vpx_filter_l], %[t1] \n\t" + "addq_s.ph %[Filter2_r], %[vpx_filter_r], %[t1] \n\t" + "shra.ph %[Filter1_r], %[Filter1_r], 3 \n\t" + "shra.ph %[Filter1_l], %[Filter1_l], 3 \n\t" + + "shra.ph %[Filter2_l], %[Filter2_l], 3 \n\t" + "shra.ph %[Filter2_r], %[Filter2_r], 3 \n\t" + + "and %[Filter1_l], %[Filter1_l], %[HWM] \n\t" + "and %[Filter1_r], %[Filter1_r], %[HWM] \n\t" + + /* vps0 = vp8_signed_char_clamp(ps0 + Filter2); */ + "addq_s.ph %[vps0_l], %[vps0_l], %[Filter2_l] \n\t" + "addq_s.ph %[vps0_r], %[vps0_r], %[Filter2_r] \n\t" + + /* vqs0 = vp8_signed_char_clamp(qs0 - Filter1); */ + "subq_s.ph %[vqs0_l], %[vqs0_l], %[Filter1_l] \n\t" + "subq_s.ph %[vqs0_r], %[vqs0_r], %[Filter1_r] \n\t" + + : [Filter1_l] "=&r"(Filter1_l), [Filter1_r] "=&r"(Filter1_r), + [Filter2_l] "=&r"(Filter2_l), [Filter2_r] "=&r"(Filter2_r), + [vps0_l] "+r"(vps0_l), [vps0_r] "+r"(vps0_r), [vqs0_l] "+r"(vqs0_l), + [vqs0_r] "+r"(vqs0_r) + : [t1] "r"(t1), [t2] "r"(t2), [HWM] "r"(HWM), + [vpx_filter_l] "r"(vpx_filter_l), [vpx_filter_r] "r"(vpx_filter_r)); + + __asm__ __volatile__( + /* (vpx_filter += 1) >>= 1 */ + "addqh.ph %[Filter1_l], %[Filter1_l], %[t3] \n\t" + "addqh.ph %[Filter1_r], %[Filter1_r], %[t3] \n\t" + + /* vpx_filter &= ~hev; */ + "and %[Filter1_l], %[Filter1_l], %[invhev_l] \n\t" + "and %[Filter1_r], %[Filter1_r], %[invhev_r] \n\t" + + /* vps1 = vp8_signed_char_clamp(ps1 + vpx_filter); */ + "addq_s.ph %[vps1_l], %[vps1_l], %[Filter1_l] \n\t" + "addq_s.ph %[vps1_r], %[vps1_r], %[Filter1_r] \n\t" + + /* vqs1 = vp8_signed_char_clamp(qs1 - vpx_filter); */ + "subq_s.ph %[vqs1_l], %[vqs1_l], %[Filter1_l] \n\t" + "subq_s.ph %[vqs1_r], %[vqs1_r], %[Filter1_r] \n\t" + + : [Filter1_l] "+r"(Filter1_l), [Filter1_r] "+r"(Filter1_r), + [vps1_l] "+r"(vps1_l), [vps1_r] "+r"(vps1_r), [vqs1_l] "+r"(vqs1_l), + [vqs1_r] "+r"(vqs1_r) + : [t3] "r"(t3), [invhev_l] "r"(invhev_l), [invhev_r] "r"(invhev_r)); + + /* Create quad-bytes from halfword pairs */ + vqs0_l = vqs0_l & HWM; + vqs1_l = vqs1_l & HWM; + vps0_l = vps0_l & HWM; + vps1_l = vps1_l & HWM; + + __asm__ __volatile__( + "shrl.ph %[vqs0_r], %[vqs0_r], 8 \n\t" + "shrl.ph %[vps0_r], %[vps0_r], 8 \n\t" + "shrl.ph %[vqs1_r], %[vqs1_r], 8 \n\t" + "shrl.ph %[vps1_r], %[vps1_r], 8 \n\t" + + : [vps1_r] "+r"(vps1_r), [vqs1_r] "+r"(vqs1_r), [vps0_r] "+r"(vps0_r), + [vqs0_r] "+r"(vqs0_r) + :); + + vqs0 = vqs0_l | vqs0_r; + vqs1 = vqs1_l | vqs1_r; + vps0 = vps0_l | vps0_r; + vps1 = vps1_l | vps1_r; + + *ps0 = vps0 ^ N128; + *ps1 = vps1 ^ N128; + *qs0 = vqs0 ^ N128; + *qs1 = vqs1 ^ N128; +} + +static INLINE void filter1_dspr2(uint32_t mask, uint32_t hev, uint32_t ps1, + uint32_t ps0, uint32_t qs0, uint32_t qs1, + uint32_t *p1_f0, uint32_t *p0_f0, + uint32_t *q0_f0, uint32_t *q1_f0) { + int32_t vpx_filter_l, vpx_filter_r; + int32_t Filter1_l, Filter1_r, Filter2_l, Filter2_r; + int32_t subr_r, subr_l; + uint32_t t1, t2, HWM, t3; + uint32_t hev_l, hev_r, mask_l, mask_r, invhev_l, invhev_r; + int32_t vps1, vps0, vqs0, vqs1; + int32_t vps1_l, vps1_r, vps0_l, vps0_r, vqs0_l, vqs0_r, vqs1_l, vqs1_r; + uint32_t N128; + + N128 = 0x80808080; + t1 = 0x03000300; + t2 = 0x04000400; + t3 = 0x01000100; + HWM = 0xFF00FF00; + + vps0 = (ps0) ^ N128; + vps1 = (ps1) ^ N128; + vqs0 = (qs0) ^ N128; + vqs1 = (qs1) ^ N128; + + /* use halfword pairs instead quad-bytes because of accuracy */ + vps0_l = vps0 & HWM; + vps0_r = vps0 << 8; + vps0_r = vps0_r & HWM; + + vps1_l = vps1 & HWM; + vps1_r = vps1 << 8; + vps1_r = vps1_r & HWM; + + vqs0_l = vqs0 & HWM; + vqs0_r = vqs0 << 8; + vqs0_r = vqs0_r & HWM; + + vqs1_l = vqs1 & HWM; + vqs1_r = vqs1 << 8; + vqs1_r = vqs1_r & HWM; + + mask_l = mask & HWM; + mask_r = mask << 8; + mask_r = mask_r & HWM; + + hev_l = hev & HWM; + hev_r = hev << 8; + hev_r = hev_r & HWM; + + __asm__ __volatile__( + /* vpx_filter = vp8_signed_char_clamp(ps1 - qs1); */ + "subq_s.ph %[vpx_filter_l], %[vps1_l], %[vqs1_l] \n\t" + "subq_s.ph %[vpx_filter_r], %[vps1_r], %[vqs1_r] \n\t" + + /* qs0 - ps0 */ + "subq_s.ph %[subr_l], %[vqs0_l], %[vps0_l] \n\t" + "subq_s.ph %[subr_r], %[vqs0_r], %[vps0_r] \n\t" + + /* vpx_filter &= hev; */ + "and %[vpx_filter_l], %[vpx_filter_l], %[hev_l] \n\t" + "and %[vpx_filter_r], %[vpx_filter_r], %[hev_r] \n\t" + + /* vpx_filter = vp8_signed_char_clamp(vpx_filter + 3 * (qs0 - ps0)); */ + "addq_s.ph %[vpx_filter_l], %[vpx_filter_l], %[subr_l] \n\t" + "addq_s.ph %[vpx_filter_r], %[vpx_filter_r], %[subr_r] \n\t" + "xor %[invhev_l], %[hev_l], %[HWM] \n\t" + "addq_s.ph %[vpx_filter_l], %[vpx_filter_l], %[subr_l] \n\t" + "addq_s.ph %[vpx_filter_r], %[vpx_filter_r], %[subr_r] \n\t" + "xor %[invhev_r], %[hev_r], %[HWM] \n\t" + "addq_s.ph %[vpx_filter_l], %[vpx_filter_l], %[subr_l] \n\t" + "addq_s.ph %[vpx_filter_r], %[vpx_filter_r], %[subr_r] \n\t" + + /* vpx_filter &= mask; */ + "and %[vpx_filter_l], %[vpx_filter_l], %[mask_l] \n\t" + "and %[vpx_filter_r], %[vpx_filter_r], %[mask_r] \n\t" + + : [vpx_filter_l] "=&r"(vpx_filter_l), [vpx_filter_r] "=&r"(vpx_filter_r), + [subr_l] "=&r"(subr_l), [subr_r] "=&r"(subr_r), + [invhev_l] "=&r"(invhev_l), [invhev_r] "=&r"(invhev_r) + : [vps0_l] "r"(vps0_l), [vps0_r] "r"(vps0_r), [vps1_l] "r"(vps1_l), + [vps1_r] "r"(vps1_r), [vqs0_l] "r"(vqs0_l), [vqs0_r] "r"(vqs0_r), + [vqs1_l] "r"(vqs1_l), [vqs1_r] "r"(vqs1_r), [mask_l] "r"(mask_l), + [mask_r] "r"(mask_r), [hev_l] "r"(hev_l), [hev_r] "r"(hev_r), + [HWM] "r"(HWM)); + + /* save bottom 3 bits so that we round one side +4 and the other +3 */ + __asm__ __volatile__( + /* Filter2 = vp8_signed_char_clamp(vpx_filter + 3) >>= 3; */ + "addq_s.ph %[Filter1_l], %[vpx_filter_l], %[t2] \n\t" + "addq_s.ph %[Filter1_r], %[vpx_filter_r], %[t2] \n\t" + + /* Filter1 = vp8_signed_char_clamp(vpx_filter + 4) >>= 3; */ + "addq_s.ph %[Filter2_l], %[vpx_filter_l], %[t1] \n\t" + "addq_s.ph %[Filter2_r], %[vpx_filter_r], %[t1] \n\t" + "shra.ph %[Filter1_r], %[Filter1_r], 3 \n\t" + "shra.ph %[Filter1_l], %[Filter1_l], 3 \n\t" + + "shra.ph %[Filter2_l], %[Filter2_l], 3 \n\t" + "shra.ph %[Filter2_r], %[Filter2_r], 3 \n\t" + + "and %[Filter1_l], %[Filter1_l], %[HWM] \n\t" + "and %[Filter1_r], %[Filter1_r], %[HWM] \n\t" + + /* vps0 = vp8_signed_char_clamp(ps0 + Filter2); */ + "addq_s.ph %[vps0_l], %[vps0_l], %[Filter2_l] \n\t" + "addq_s.ph %[vps0_r], %[vps0_r], %[Filter2_r] \n\t" + + /* vqs0 = vp8_signed_char_clamp(qs0 - Filter1); */ + "subq_s.ph %[vqs0_l], %[vqs0_l], %[Filter1_l] \n\t" + "subq_s.ph %[vqs0_r], %[vqs0_r], %[Filter1_r] \n\t" + + : [Filter1_l] "=&r"(Filter1_l), [Filter1_r] "=&r"(Filter1_r), + [Filter2_l] "=&r"(Filter2_l), [Filter2_r] "=&r"(Filter2_r), + [vps0_l] "+r"(vps0_l), [vps0_r] "+r"(vps0_r), [vqs0_l] "+r"(vqs0_l), + [vqs0_r] "+r"(vqs0_r) + : [t1] "r"(t1), [t2] "r"(t2), [HWM] "r"(HWM), + [vpx_filter_l] "r"(vpx_filter_l), [vpx_filter_r] "r"(vpx_filter_r)); + + __asm__ __volatile__( + /* (vpx_filter += 1) >>= 1 */ + "addqh.ph %[Filter1_l], %[Filter1_l], %[t3] \n\t" + "addqh.ph %[Filter1_r], %[Filter1_r], %[t3] \n\t" + + /* vpx_filter &= ~hev; */ + "and %[Filter1_l], %[Filter1_l], %[invhev_l] \n\t" + "and %[Filter1_r], %[Filter1_r], %[invhev_r] \n\t" + + /* vps1 = vp8_signed_char_clamp(ps1 + vpx_filter); */ + "addq_s.ph %[vps1_l], %[vps1_l], %[Filter1_l] \n\t" + "addq_s.ph %[vps1_r], %[vps1_r], %[Filter1_r] \n\t" + + /* vqs1 = vp8_signed_char_clamp(qs1 - vpx_filter); */ + "subq_s.ph %[vqs1_l], %[vqs1_l], %[Filter1_l] \n\t" + "subq_s.ph %[vqs1_r], %[vqs1_r], %[Filter1_r] \n\t" + + : [Filter1_l] "+r"(Filter1_l), [Filter1_r] "+r"(Filter1_r), + [vps1_l] "+r"(vps1_l), [vps1_r] "+r"(vps1_r), [vqs1_l] "+r"(vqs1_l), + [vqs1_r] "+r"(vqs1_r) + : [t3] "r"(t3), [invhev_l] "r"(invhev_l), [invhev_r] "r"(invhev_r)); + + /* Create quad-bytes from halfword pairs */ + vqs0_l = vqs0_l & HWM; + vqs1_l = vqs1_l & HWM; + vps0_l = vps0_l & HWM; + vps1_l = vps1_l & HWM; + + __asm__ __volatile__( + "shrl.ph %[vqs0_r], %[vqs0_r], 8 \n\t" + "shrl.ph %[vps0_r], %[vps0_r], 8 \n\t" + "shrl.ph %[vqs1_r], %[vqs1_r], 8 \n\t" + "shrl.ph %[vps1_r], %[vps1_r], 8 \n\t" + + : [vps1_r] "+r"(vps1_r), [vqs1_r] "+r"(vqs1_r), [vps0_r] "+r"(vps0_r), + [vqs0_r] "+r"(vqs0_r) + :); + + vqs0 = vqs0_l | vqs0_r; + vqs1 = vqs1_l | vqs1_r; + vps0 = vps0_l | vps0_r; + vps1 = vps1_l | vps1_r; + + *p0_f0 = vps0 ^ N128; + *p1_f0 = vps1 ^ N128; + *q0_f0 = vqs0 ^ N128; + *q1_f0 = vqs1 ^ N128; +} + +static INLINE void mbfilter_dspr2(uint32_t *op3, uint32_t *op2, uint32_t *op1, + uint32_t *op0, uint32_t *oq0, uint32_t *oq1, + uint32_t *oq2, uint32_t *oq3) { + /* use a 7 tap filter [1, 1, 1, 2, 1, 1, 1] for flat line */ + const uint32_t p3 = *op3, p2 = *op2, p1 = *op1, p0 = *op0; + const uint32_t q0 = *oq0, q1 = *oq1, q2 = *oq2, q3 = *oq3; + uint32_t res_op2, res_op1, res_op0; + uint32_t res_oq0, res_oq1, res_oq2; + uint32_t tmp; + uint32_t add_p210_q012; + uint32_t u32Four = 0x00040004; + + /* *op2 = ROUND_POWER_OF_TWO(p3 + p3 + p3 + p2 + p2 + p1 + p0 + q0, 3) 1 */ + /* *op1 = ROUND_POWER_OF_TWO(p3 + p3 + p2 + p1 + p1 + p0 + q0 + q1, 3) 2 */ + /* *op0 = ROUND_POWER_OF_TWO(p3 + p2 + p1 + p0 + p0 + q0 + q1 + q2, 3) 3 */ + /* *oq0 = ROUND_POWER_OF_TWO(p2 + p1 + p0 + q0 + q0 + q1 + q2 + q3, 3) 4 */ + /* *oq1 = ROUND_POWER_OF_TWO(p1 + p0 + q0 + q1 + q1 + q2 + q3 + q3, 3) 5 */ + /* *oq2 = ROUND_POWER_OF_TWO(p0 + q0 + q1 + q2 + q2 + q3 + q3 + q3, 3) 6 */ + + __asm__ __volatile__( + "addu.ph %[add_p210_q012], %[p2], %[p1] \n\t" + "addu.ph %[add_p210_q012], %[add_p210_q012], %[p0] \n\t" + "addu.ph %[add_p210_q012], %[add_p210_q012], %[q0] \n\t" + "addu.ph %[add_p210_q012], %[add_p210_q012], %[q1] \n\t" + "addu.ph %[add_p210_q012], %[add_p210_q012], %[q2] \n\t" + "addu.ph %[add_p210_q012], %[add_p210_q012], %[u32Four] \n\t" + + "shll.ph %[tmp], %[p3], 1 \n\t" + "addu.ph %[res_op2], %[tmp], %[p3] \n\t" + "addu.ph %[res_op1], %[p3], %[p3] \n\t" + "addu.ph %[res_op2], %[res_op2], %[p2] \n\t" + "addu.ph %[res_op1], %[res_op1], %[p1] \n\t" + "addu.ph %[res_op2], %[res_op2], %[add_p210_q012] \n\t" + "addu.ph %[res_op1], %[res_op1], %[add_p210_q012] \n\t" + "subu.ph %[res_op2], %[res_op2], %[q1] \n\t" + "subu.ph %[res_op1], %[res_op1], %[q2] \n\t" + "subu.ph %[res_op2], %[res_op2], %[q2] \n\t" + "shrl.ph %[res_op1], %[res_op1], 3 \n\t" + "shrl.ph %[res_op2], %[res_op2], 3 \n\t" + "addu.ph %[res_op0], %[p3], %[p0] \n\t" + "addu.ph %[res_oq0], %[q0], %[q3] \n\t" + "addu.ph %[res_op0], %[res_op0], %[add_p210_q012] \n\t" + "addu.ph %[res_oq0], %[res_oq0], %[add_p210_q012] \n\t" + "addu.ph %[res_oq1], %[q3], %[q3] \n\t" + "shll.ph %[tmp], %[q3], 1 \n\t" + "addu.ph %[res_oq1], %[res_oq1], %[q1] \n\t" + "addu.ph %[res_oq2], %[tmp], %[q3] \n\t" + "addu.ph %[res_oq1], %[res_oq1], %[add_p210_q012] \n\t" + "addu.ph %[res_oq2], %[res_oq2], %[add_p210_q012] \n\t" + "subu.ph %[res_oq1], %[res_oq1], %[p2] \n\t" + "addu.ph %[res_oq2], %[res_oq2], %[q2] \n\t" + "shrl.ph %[res_oq1], %[res_oq1], 3 \n\t" + "subu.ph %[res_oq2], %[res_oq2], %[p2] \n\t" + "shrl.ph %[res_oq0], %[res_oq0], 3 \n\t" + "subu.ph %[res_oq2], %[res_oq2], %[p1] \n\t" + "shrl.ph %[res_op0], %[res_op0], 3 \n\t" + "shrl.ph %[res_oq2], %[res_oq2], 3 \n\t" + + : [add_p210_q012] "=&r"(add_p210_q012), [tmp] "=&r"(tmp), + [res_op2] "=&r"(res_op2), [res_op1] "=&r"(res_op1), + [res_op0] "=&r"(res_op0), [res_oq0] "=&r"(res_oq0), + [res_oq1] "=&r"(res_oq1), [res_oq2] "=&r"(res_oq2) + : [p0] "r"(p0), [q0] "r"(q0), [p1] "r"(p1), [q1] "r"(q1), [p2] "r"(p2), + [q2] "r"(q2), [p3] "r"(p3), [q3] "r"(q3), [u32Four] "r"(u32Four)); + + *op2 = res_op2; + *op1 = res_op1; + *op0 = res_op0; + *oq0 = res_oq0; + *oq1 = res_oq1; + *oq2 = res_oq2; +} + +static INLINE void mbfilter1_dspr2(uint32_t p3, uint32_t p2, uint32_t p1, + uint32_t p0, uint32_t q0, uint32_t q1, + uint32_t q2, uint32_t q3, uint32_t *op2_f1, + uint32_t *op1_f1, uint32_t *op0_f1, + uint32_t *oq0_f1, uint32_t *oq1_f1, + uint32_t *oq2_f1) { + /* use a 7 tap filter [1, 1, 1, 2, 1, 1, 1] for flat line */ + uint32_t res_op2, res_op1, res_op0; + uint32_t res_oq0, res_oq1, res_oq2; + uint32_t tmp; + uint32_t add_p210_q012; + uint32_t u32Four = 0x00040004; + + /* *op2 = ROUND_POWER_OF_TWO(p3 + p3 + p3 + p2 + p2 + p1 + p0 + q0, 3) 1 */ + /* *op1 = ROUND_POWER_OF_TWO(p3 + p3 + p2 + p1 + p1 + p0 + q0 + q1, 3) 2 */ + /* *op0 = ROUND_POWER_OF_TWO(p3 + p2 + p1 + p0 + p0 + q0 + q1 + q2, 3) 3 */ + /* *oq0 = ROUND_POWER_OF_TWO(p2 + p1 + p0 + q0 + q0 + q1 + q2 + q3, 3) 4 */ + /* *oq1 = ROUND_POWER_OF_TWO(p1 + p0 + q0 + q1 + q1 + q2 + q3 + q3, 3) 5 */ + /* *oq2 = ROUND_POWER_OF_TWO(p0 + q0 + q1 + q2 + q2 + q3 + q3 + q3, 3) 6 */ + + __asm__ __volatile__( + "addu.ph %[add_p210_q012], %[p2], %[p1] \n\t" + "addu.ph %[add_p210_q012], %[add_p210_q012], %[p0] \n\t" + "addu.ph %[add_p210_q012], %[add_p210_q012], %[q0] \n\t" + "addu.ph %[add_p210_q012], %[add_p210_q012], %[q1] \n\t" + "addu.ph %[add_p210_q012], %[add_p210_q012], %[q2] \n\t" + "addu.ph %[add_p210_q012], %[add_p210_q012], %[u32Four] \n\t" + + "shll.ph %[tmp], %[p3], 1 \n\t" + "addu.ph %[res_op2], %[tmp], %[p3] \n\t" + "addu.ph %[res_op1], %[p3], %[p3] \n\t" + "addu.ph %[res_op2], %[res_op2], %[p2] \n\t" + "addu.ph %[res_op1], %[res_op1], %[p1] \n\t" + "addu.ph %[res_op2], %[res_op2], %[add_p210_q012] \n\t" + "addu.ph %[res_op1], %[res_op1], %[add_p210_q012] \n\t" + "subu.ph %[res_op2], %[res_op2], %[q1] \n\t" + "subu.ph %[res_op1], %[res_op1], %[q2] \n\t" + "subu.ph %[res_op2], %[res_op2], %[q2] \n\t" + "shrl.ph %[res_op1], %[res_op1], 3 \n\t" + "shrl.ph %[res_op2], %[res_op2], 3 \n\t" + "addu.ph %[res_op0], %[p3], %[p0] \n\t" + "addu.ph %[res_oq0], %[q0], %[q3] \n\t" + "addu.ph %[res_op0], %[res_op0], %[add_p210_q012] \n\t" + "addu.ph %[res_oq0], %[res_oq0], %[add_p210_q012] \n\t" + "addu.ph %[res_oq1], %[q3], %[q3] \n\t" + "shll.ph %[tmp], %[q3], 1 \n\t" + "addu.ph %[res_oq1], %[res_oq1], %[q1] \n\t" + "addu.ph %[res_oq2], %[tmp], %[q3] \n\t" + "addu.ph %[res_oq1], %[res_oq1], %[add_p210_q012] \n\t" + "addu.ph %[res_oq2], %[res_oq2], %[add_p210_q012] \n\t" + "subu.ph %[res_oq1], %[res_oq1], %[p2] \n\t" + "addu.ph %[res_oq2], %[res_oq2], %[q2] \n\t" + "shrl.ph %[res_oq1], %[res_oq1], 3 \n\t" + "subu.ph %[res_oq2], %[res_oq2], %[p2] \n\t" + "shrl.ph %[res_oq0], %[res_oq0], 3 \n\t" + "subu.ph %[res_oq2], %[res_oq2], %[p1] \n\t" + "shrl.ph %[res_op0], %[res_op0], 3 \n\t" + "shrl.ph %[res_oq2], %[res_oq2], 3 \n\t" + + : [add_p210_q012] "=&r"(add_p210_q012), [tmp] "=&r"(tmp), + [res_op2] "=&r"(res_op2), [res_op1] "=&r"(res_op1), + [res_op0] "=&r"(res_op0), [res_oq0] "=&r"(res_oq0), + [res_oq1] "=&r"(res_oq1), [res_oq2] "=&r"(res_oq2) + : [p0] "r"(p0), [q0] "r"(q0), [p1] "r"(p1), [q1] "r"(q1), [p2] "r"(p2), + [q2] "r"(q2), [p3] "r"(p3), [q3] "r"(q3), [u32Four] "r"(u32Four)); + + *op2_f1 = res_op2; + *op1_f1 = res_op1; + *op0_f1 = res_op0; + *oq0_f1 = res_oq0; + *oq1_f1 = res_oq1; + *oq2_f1 = res_oq2; +} + +static INLINE void wide_mbfilter_dspr2( + uint32_t *op7, uint32_t *op6, uint32_t *op5, uint32_t *op4, uint32_t *op3, + uint32_t *op2, uint32_t *op1, uint32_t *op0, uint32_t *oq0, uint32_t *oq1, + uint32_t *oq2, uint32_t *oq3, uint32_t *oq4, uint32_t *oq5, uint32_t *oq6, + uint32_t *oq7) { + const uint32_t p7 = *op7, p6 = *op6, p5 = *op5, p4 = *op4; + const uint32_t p3 = *op3, p2 = *op2, p1 = *op1, p0 = *op0; + const uint32_t q0 = *oq0, q1 = *oq1, q2 = *oq2, q3 = *oq3; + const uint32_t q4 = *oq4, q5 = *oq5, q6 = *oq6, q7 = *oq7; + uint32_t res_op6, res_op5, res_op4, res_op3, res_op2, res_op1, res_op0; + uint32_t res_oq0, res_oq1, res_oq2, res_oq3, res_oq4, res_oq5, res_oq6; + uint32_t tmp; + uint32_t add_p6toq6; + uint32_t u32Eight = 0x00080008; + + __asm__ __volatile__( + /* addition of p6,p5,p4,p3,p2,p1,p0,q0,q1,q2,q3,q4,q5,q6 + which is used most of the time */ + "addu.ph %[add_p6toq6], %[p6], %[p5] \n\t" + "addu.ph %[add_p6toq6], %[add_p6toq6], %[p4] \n\t" + "addu.ph %[add_p6toq6], %[add_p6toq6], %[p3] \n\t" + "addu.ph %[add_p6toq6], %[add_p6toq6], %[p2] \n\t" + "addu.ph %[add_p6toq6], %[add_p6toq6], %[p1] \n\t" + "addu.ph %[add_p6toq6], %[add_p6toq6], %[p0] \n\t" + "addu.ph %[add_p6toq6], %[add_p6toq6], %[q0] \n\t" + "addu.ph %[add_p6toq6], %[add_p6toq6], %[q1] \n\t" + "addu.ph %[add_p6toq6], %[add_p6toq6], %[q2] \n\t" + "addu.ph %[add_p6toq6], %[add_p6toq6], %[q3] \n\t" + "addu.ph %[add_p6toq6], %[add_p6toq6], %[q4] \n\t" + "addu.ph %[add_p6toq6], %[add_p6toq6], %[q5] \n\t" + "addu.ph %[add_p6toq6], %[add_p6toq6], %[q6] \n\t" + "addu.ph %[add_p6toq6], %[add_p6toq6], %[u32Eight] \n\t" + + : [add_p6toq6] "=&r"(add_p6toq6) + : [p6] "r"(p6), [p5] "r"(p5), [p4] "r"(p4), [p3] "r"(p3), [p2] "r"(p2), + [p1] "r"(p1), [p0] "r"(p0), [q0] "r"(q0), [q1] "r"(q1), [q2] "r"(q2), + [q3] "r"(q3), [q4] "r"(q4), [q5] "r"(q5), [q6] "r"(q6), + [u32Eight] "r"(u32Eight)); + + __asm__ __volatile__( + /* *op6 = ROUND_POWER_OF_TWO(p7 * 7 + p6 * 2 + p5 + p4 + + p3 + p2 + p1 + p0 + q0, 4) */ + "shll.ph %[tmp], %[p7], 3 \n\t" + "subu.ph %[res_op6], %[tmp], %[p7] \n\t" + "addu.ph %[res_op6], %[res_op6], %[p6] \n\t" + "addu.ph %[res_op6], %[res_op6], %[add_p6toq6] \n\t" + "subu.ph %[res_op6], %[res_op6], %[q1] \n\t" + "subu.ph %[res_op6], %[res_op6], %[q2] \n\t" + "subu.ph %[res_op6], %[res_op6], %[q3] \n\t" + "subu.ph %[res_op6], %[res_op6], %[q4] \n\t" + "subu.ph %[res_op6], %[res_op6], %[q5] \n\t" + "subu.ph %[res_op6], %[res_op6], %[q6] \n\t" + "shrl.ph %[res_op6], %[res_op6], 4 \n\t" + + /* *op5 = ROUND_POWER_OF_TWO(p7 * 6 + p6 + p5 * 2 + p4 + p3 + + p2 + p1 + p0 + q0 + q1, 4) */ + "shll.ph %[tmp], %[p7], 2 \n\t" + "addu.ph %[res_op5], %[tmp], %[p7] \n\t" + "addu.ph %[res_op5], %[res_op5], %[p7] \n\t" + "addu.ph %[res_op5], %[res_op5], %[p5] \n\t" + "addu.ph %[res_op5], %[res_op5], %[add_p6toq6] \n\t" + "subu.ph %[res_op5], %[res_op5], %[q2] \n\t" + "subu.ph %[res_op5], %[res_op5], %[q3] \n\t" + "subu.ph %[res_op5], %[res_op5], %[q4] \n\t" + "subu.ph %[res_op5], %[res_op5], %[q5] \n\t" + "subu.ph %[res_op5], %[res_op5], %[q6] \n\t" + "shrl.ph %[res_op5], %[res_op5], 4 \n\t" + + /* *op4 = ROUND_POWER_OF_TWO(p7 * 5 + p6 + p5 + p4 * 2 + p3 + p2 + + p1 + p0 + q0 + q1 + q2, 4) */ + "shll.ph %[tmp], %[p7], 2 \n\t" + "addu.ph %[res_op4], %[tmp], %[p7] \n\t" + "addu.ph %[res_op4], %[res_op4], %[p4] \n\t" + "addu.ph %[res_op4], %[res_op4], %[add_p6toq6] \n\t" + "subu.ph %[res_op4], %[res_op4], %[q3] \n\t" + "subu.ph %[res_op4], %[res_op4], %[q4] \n\t" + "subu.ph %[res_op4], %[res_op4], %[q5] \n\t" + "subu.ph %[res_op4], %[res_op4], %[q6] \n\t" + "shrl.ph %[res_op4], %[res_op4], 4 \n\t" + + /* *op3 = ROUND_POWER_OF_TWO(p7 * 4 + p6 + p5 + p4 + p3 * 2 + p2 + + p1 + p0 + q0 + q1 + q2 + q3, 4) */ + "shll.ph %[tmp], %[p7], 2 \n\t" + "addu.ph %[res_op3], %[tmp], %[p3] \n\t" + "addu.ph %[res_op3], %[res_op3], %[add_p6toq6] \n\t" + "subu.ph %[res_op3], %[res_op3], %[q4] \n\t" + "subu.ph %[res_op3], %[res_op3], %[q5] \n\t" + "subu.ph %[res_op3], %[res_op3], %[q6] \n\t" + "shrl.ph %[res_op3], %[res_op3], 4 \n\t" + + /* *op2 = ROUND_POWER_OF_TWO(p7 * 3 + p6 + p5 + p4 + p3 + p2 * 2 + p1 + + p0 + q0 + q1 + q2 + q3 + q4, 4) */ + "shll.ph %[tmp], %[p7], 1 \n\t" + "addu.ph %[res_op2], %[tmp], %[p7] \n\t" + "addu.ph %[res_op2], %[res_op2], %[p2] \n\t" + "addu.ph %[res_op2], %[res_op2], %[add_p6toq6] \n\t" + "subu.ph %[res_op2], %[res_op2], %[q5] \n\t" + "subu.ph %[res_op2], %[res_op2], %[q6] \n\t" + "shrl.ph %[res_op2], %[res_op2], 4 \n\t" + + /* *op1 = ROUND_POWER_OF_TWO(p7 * 2 + p6 + p5 + p4 + p3 + p2 + p1 * 2 + + p0 + q0 + q1 + q2 + q3 + q4 + q5, 4); */ + "shll.ph %[tmp], %[p7], 1 \n\t" + "addu.ph %[res_op1], %[tmp], %[p1] \n\t" + "addu.ph %[res_op1], %[res_op1], %[add_p6toq6] \n\t" + "subu.ph %[res_op1], %[res_op1], %[q6] \n\t" + "shrl.ph %[res_op1], %[res_op1], 4 \n\t" + + /* *op0 = ROUND_POWER_OF_TWO(p7 + p6 + p5 + p4 + p3 + p2 + p1 + p0 * 2 + + q0 + q1 + q2 + q3 + q4 + q5 + q6, 4) */ + "addu.ph %[res_op0], %[p7], %[p0] \n\t" + "addu.ph %[res_op0], %[res_op0], %[add_p6toq6] \n\t" + "shrl.ph %[res_op0], %[res_op0], 4 \n\t" + + : [res_op6] "=&r"(res_op6), [res_op5] "=&r"(res_op5), + [res_op4] "=&r"(res_op4), [res_op3] "=&r"(res_op3), + [res_op2] "=&r"(res_op2), [res_op1] "=&r"(res_op1), + [res_op0] "=&r"(res_op0), [tmp] "=&r"(tmp) + : [p7] "r"(p7), [p6] "r"(p6), [p5] "r"(p5), [p4] "r"(p4), [p3] "r"(p3), + [p2] "r"(p2), [p1] "r"(p1), [p0] "r"(p0), [q2] "r"(q2), [q1] "r"(q1), + [q3] "r"(q3), [q4] "r"(q4), [q5] "r"(q5), [q6] "r"(q6), + [add_p6toq6] "r"(add_p6toq6)); + + *op6 = res_op6; + *op5 = res_op5; + *op4 = res_op4; + *op3 = res_op3; + *op2 = res_op2; + *op1 = res_op1; + *op0 = res_op0; + + __asm__ __volatile__( + /* *oq0 = ROUND_POWER_OF_TWO(p6 + p5 + p4 + p3 + p2 + p1 + p0 + q0 * 2 + + q1 + q2 + q3 + q4 + q5 + q6 + q7, 4); */ + "addu.ph %[res_oq0], %[q7], %[q0] \n\t" + "addu.ph %[res_oq0], %[res_oq0], %[add_p6toq6] \n\t" + "shrl.ph %[res_oq0], %[res_oq0], 4 \n\t" + + /* *oq1 = ROUND_POWER_OF_TWO(p5 + p4 + p3 + p2 + p1 + p0 + q0 + q1 * 2 + + q2 + q3 + q4 + q5 + q6 + q7 * 2, 4) */ + "shll.ph %[tmp], %[q7], 1 \n\t" + "addu.ph %[res_oq1], %[tmp], %[q1] \n\t" + "addu.ph %[res_oq1], %[res_oq1], %[add_p6toq6] \n\t" + "subu.ph %[res_oq1], %[res_oq1], %[p6] \n\t" + "shrl.ph %[res_oq1], %[res_oq1], 4 \n\t" + + /* *oq2 = ROUND_POWER_OF_TWO(p4 + p3 + p2 + p1 + p0 + q0 + q1 + q2 * 2 + + q3 + q4 + q5 + q6 + q7 * 3, 4) */ + "shll.ph %[tmp], %[q7], 1 \n\t" + "addu.ph %[res_oq2], %[tmp], %[q7] \n\t" + "addu.ph %[res_oq2], %[res_oq2], %[q2] \n\t" + "addu.ph %[res_oq2], %[res_oq2], %[add_p6toq6] \n\t" + "subu.ph %[res_oq2], %[res_oq2], %[p5] \n\t" + "subu.ph %[res_oq2], %[res_oq2], %[p6] \n\t" + "shrl.ph %[res_oq2], %[res_oq2], 4 \n\t" + + /* *oq3 = ROUND_POWER_OF_TWO(p3 + p2 + p1 + p0 + q0 + q1 + q2 + + q3 * 2 + q4 + q5 + q6 + q7 * 4, 4) */ + "shll.ph %[tmp], %[q7], 2 \n\t" + "addu.ph %[res_oq3], %[tmp], %[q3] \n\t" + "addu.ph %[res_oq3], %[res_oq3], %[add_p6toq6] \n\t" + "subu.ph %[res_oq3], %[res_oq3], %[p4] \n\t" + "subu.ph %[res_oq3], %[res_oq3], %[p5] \n\t" + "subu.ph %[res_oq3], %[res_oq3], %[p6] \n\t" + "shrl.ph %[res_oq3], %[res_oq3], 4 \n\t" + + /* *oq4 = ROUND_POWER_OF_TWO(p2 + p1 + p0 + q0 + q1 + q2 + q3 + + q4 * 2 + q5 + q6 + q7 * 5, 4) */ + "shll.ph %[tmp], %[q7], 2 \n\t" + "addu.ph %[res_oq4], %[tmp], %[q7] \n\t" + "addu.ph %[res_oq4], %[res_oq4], %[q4] \n\t" + "addu.ph %[res_oq4], %[res_oq4], %[add_p6toq6] \n\t" + "subu.ph %[res_oq4], %[res_oq4], %[p3] \n\t" + "subu.ph %[res_oq4], %[res_oq4], %[p4] \n\t" + "subu.ph %[res_oq4], %[res_oq4], %[p5] \n\t" + "subu.ph %[res_oq4], %[res_oq4], %[p6] \n\t" + "shrl.ph %[res_oq4], %[res_oq4], 4 \n\t" + + /* *oq5 = ROUND_POWER_OF_TWO(p1 + p0 + q0 + q1 + q2 + q3 + q4 + + q5 * 2 + q6 + q7 * 6, 4) */ + "shll.ph %[tmp], %[q7], 2 \n\t" + "addu.ph %[res_oq5], %[tmp], %[q7] \n\t" + "addu.ph %[res_oq5], %[res_oq5], %[q7] \n\t" + "addu.ph %[res_oq5], %[res_oq5], %[q5] \n\t" + "addu.ph %[res_oq5], %[res_oq5], %[add_p6toq6] \n\t" + "subu.ph %[res_oq5], %[res_oq5], %[p2] \n\t" + "subu.ph %[res_oq5], %[res_oq5], %[p3] \n\t" + "subu.ph %[res_oq5], %[res_oq5], %[p4] \n\t" + "subu.ph %[res_oq5], %[res_oq5], %[p5] \n\t" + "subu.ph %[res_oq5], %[res_oq5], %[p6] \n\t" + "shrl.ph %[res_oq5], %[res_oq5], 4 \n\t" + + /* *oq6 = ROUND_POWER_OF_TWO(p0 + q0 + q1 + q2 + q3 + + q4 + q5 + q6 * 2 + q7 * 7, 4) */ + "shll.ph %[tmp], %[q7], 3 \n\t" + "subu.ph %[res_oq6], %[tmp], %[q7] \n\t" + "addu.ph %[res_oq6], %[res_oq6], %[q6] \n\t" + "addu.ph %[res_oq6], %[res_oq6], %[add_p6toq6] \n\t" + "subu.ph %[res_oq6], %[res_oq6], %[p1] \n\t" + "subu.ph %[res_oq6], %[res_oq6], %[p2] \n\t" + "subu.ph %[res_oq6], %[res_oq6], %[p3] \n\t" + "subu.ph %[res_oq6], %[res_oq6], %[p4] \n\t" + "subu.ph %[res_oq6], %[res_oq6], %[p5] \n\t" + "subu.ph %[res_oq6], %[res_oq6], %[p6] \n\t" + "shrl.ph %[res_oq6], %[res_oq6], 4 \n\t" + + : [res_oq6] "=&r"(res_oq6), [res_oq5] "=&r"(res_oq5), + [res_oq4] "=&r"(res_oq4), [res_oq3] "=&r"(res_oq3), + [res_oq2] "=&r"(res_oq2), [res_oq1] "=&r"(res_oq1), + [res_oq0] "=&r"(res_oq0), [tmp] "=&r"(tmp) + : [q7] "r"(q7), [q6] "r"(q6), [q5] "r"(q5), [q4] "r"(q4), [q3] "r"(q3), + [q2] "r"(q2), [q1] "r"(q1), [q0] "r"(q0), [p1] "r"(p1), [p2] "r"(p2), + [p3] "r"(p3), [p4] "r"(p4), [p5] "r"(p5), [p6] "r"(p6), + [add_p6toq6] "r"(add_p6toq6)); + + *oq0 = res_oq0; + *oq1 = res_oq1; + *oq2 = res_oq2; + *oq3 = res_oq3; + *oq4 = res_oq4; + *oq5 = res_oq5; + *oq6 = res_oq6; +} +#endif // #if HAVE_DSPR2 +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP9_COMMON_MIPS_DSPR2_VP9_LOOPFILTER_FILTERS_DSPR2_H_ diff --git a/vpx_dsp/mips/loopfilter_macros_dspr2.h b/vpx_dsp/mips/loopfilter_macros_dspr2.h new file mode 100644 index 0000000..38ed0b2 --- /dev/null +++ b/vpx_dsp/mips/loopfilter_macros_dspr2.h @@ -0,0 +1,435 @@ +/* + * Copyright (c) 2013 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP9_COMMON_MIPS_DSPR2_VP9_LOOPFILTER_MACROS_DSPR2_H_ +#define VP9_COMMON_MIPS_DSPR2_VP9_LOOPFILTER_MACROS_DSPR2_H_ + +#include + +#include "./vpx_dsp_rtcd.h" +#include "vpx/vpx_integer.h" +#include "vpx_mem/vpx_mem.h" + +#ifdef __cplusplus +extern "C" { +#endif + +#if HAVE_DSPR2 +#define STORE_F0() \ + { \ + __asm__ __volatile__( \ + "sb %[q1_f0], 1(%[s4]) \n\t" \ + "sb %[q0_f0], 0(%[s4]) \n\t" \ + "sb %[p0_f0], -1(%[s4]) \n\t" \ + "sb %[p1_f0], -2(%[s4]) \n\t" \ + \ + : \ + : [q1_f0] "r"(q1_f0), [q0_f0] "r"(q0_f0), [p0_f0] "r"(p0_f0), \ + [p1_f0] "r"(p1_f0), [s4] "r"(s4)); \ + \ + __asm__ __volatile__( \ + "srl %[q1_f0], %[q1_f0], 8 \n\t" \ + "srl %[q0_f0], %[q0_f0], 8 \n\t" \ + "srl %[p0_f0], %[p0_f0], 8 \n\t" \ + "srl %[p1_f0], %[p1_f0], 8 \n\t" \ + \ + : [q1_f0] "+r"(q1_f0), [q0_f0] "+r"(q0_f0), [p0_f0] "+r"(p0_f0), \ + [p1_f0] "+r"(p1_f0) \ + :); \ + \ + __asm__ __volatile__( \ + "sb %[q1_f0], 1(%[s3]) \n\t" \ + "sb %[q0_f0], 0(%[s3]) \n\t" \ + "sb %[p0_f0], -1(%[s3]) \n\t" \ + "sb %[p1_f0], -2(%[s3]) \n\t" \ + \ + : [p1_f0] "+r"(p1_f0) \ + : [q1_f0] "r"(q1_f0), [q0_f0] "r"(q0_f0), [s3] "r"(s3), \ + [p0_f0] "r"(p0_f0)); \ + \ + __asm__ __volatile__( \ + "srl %[q1_f0], %[q1_f0], 8 \n\t" \ + "srl %[q0_f0], %[q0_f0], 8 \n\t" \ + "srl %[p0_f0], %[p0_f0], 8 \n\t" \ + "srl %[p1_f0], %[p1_f0], 8 \n\t" \ + \ + : [q1_f0] "+r"(q1_f0), [q0_f0] "+r"(q0_f0), [p0_f0] "+r"(p0_f0), \ + [p1_f0] "+r"(p1_f0) \ + :); \ + \ + __asm__ __volatile__( \ + "sb %[q1_f0], 1(%[s2]) \n\t" \ + "sb %[q0_f0], 0(%[s2]) \n\t" \ + "sb %[p0_f0], -1(%[s2]) \n\t" \ + "sb %[p1_f0], -2(%[s2]) \n\t" \ + \ + : \ + : [q1_f0] "r"(q1_f0), [q0_f0] "r"(q0_f0), [p0_f0] "r"(p0_f0), \ + [p1_f0] "r"(p1_f0), [s2] "r"(s2)); \ + \ + __asm__ __volatile__( \ + "srl %[q1_f0], %[q1_f0], 8 \n\t" \ + "srl %[q0_f0], %[q0_f0], 8 \n\t" \ + "srl %[p0_f0], %[p0_f0], 8 \n\t" \ + "srl %[p1_f0], %[p1_f0], 8 \n\t" \ + \ + : [q1_f0] "+r"(q1_f0), [q0_f0] "+r"(q0_f0), [p0_f0] "+r"(p0_f0), \ + [p1_f0] "+r"(p1_f0) \ + :); \ + \ + __asm__ __volatile__( \ + "sb %[q1_f0], 1(%[s1]) \n\t" \ + "sb %[q0_f0], 0(%[s1]) \n\t" \ + "sb %[p0_f0], -1(%[s1]) \n\t" \ + "sb %[p1_f0], -2(%[s1]) \n\t" \ + \ + : \ + : [q1_f0] "r"(q1_f0), [q0_f0] "r"(q0_f0), [p0_f0] "r"(p0_f0), \ + [p1_f0] "r"(p1_f0), [s1] "r"(s1)); \ + } + +#define STORE_F1() \ + { \ + __asm__ __volatile__( \ + "sb %[q2_r], 2(%[s4]) \n\t" \ + "sb %[q1_r], 1(%[s4]) \n\t" \ + "sb %[q0_r], 0(%[s4]) \n\t" \ + "sb %[p0_r], -1(%[s4]) \n\t" \ + "sb %[p1_r], -2(%[s4]) \n\t" \ + "sb %[p2_r], -3(%[s4]) \n\t" \ + \ + : \ + : [q2_r] "r"(q2_r), [q1_r] "r"(q1_r), [q0_r] "r"(q0_r), \ + [p0_r] "r"(p0_r), [p1_r] "r"(p1_r), [p2_r] "r"(p2_r), [s4] "r"(s4)); \ + \ + __asm__ __volatile__( \ + "srl %[q2_r], %[q2_r], 16 \n\t" \ + "srl %[q1_r], %[q1_r], 16 \n\t" \ + "srl %[q0_r], %[q0_r], 16 \n\t" \ + "srl %[p0_r], %[p0_r], 16 \n\t" \ + "srl %[p1_r], %[p1_r], 16 \n\t" \ + "srl %[p2_r], %[p2_r], 16 \n\t" \ + \ + : [q2_r] "+r"(q2_r), [q1_r] "+r"(q1_r), [q0_r] "+r"(q0_r), \ + [p0_r] "+r"(p0_r), [p1_r] "+r"(p1_r), [p2_r] "+r"(p2_r) \ + :); \ + \ + __asm__ __volatile__( \ + "sb %[q2_r], 2(%[s3]) \n\t" \ + "sb %[q1_r], 1(%[s3]) \n\t" \ + "sb %[q0_r], 0(%[s3]) \n\t" \ + "sb %[p0_r], -1(%[s3]) \n\t" \ + "sb %[p1_r], -2(%[s3]) \n\t" \ + "sb %[p2_r], -3(%[s3]) \n\t" \ + \ + : \ + : [q2_r] "r"(q2_r), [q1_r] "r"(q1_r), [q0_r] "r"(q0_r), \ + [p0_r] "r"(p0_r), [p1_r] "r"(p1_r), [p2_r] "r"(p2_r), [s3] "r"(s3)); \ + \ + __asm__ __volatile__( \ + "sb %[q2_l], 2(%[s2]) \n\t" \ + "sb %[q1_l], 1(%[s2]) \n\t" \ + "sb %[q0_l], 0(%[s2]) \n\t" \ + "sb %[p0_l], -1(%[s2]) \n\t" \ + "sb %[p1_l], -2(%[s2]) \n\t" \ + "sb %[p2_l], -3(%[s2]) \n\t" \ + \ + : \ + : [q2_l] "r"(q2_l), [q1_l] "r"(q1_l), [q0_l] "r"(q0_l), \ + [p0_l] "r"(p0_l), [p1_l] "r"(p1_l), [p2_l] "r"(p2_l), [s2] "r"(s2)); \ + \ + __asm__ __volatile__( \ + "srl %[q2_l], %[q2_l], 16 \n\t" \ + "srl %[q1_l], %[q1_l], 16 \n\t" \ + "srl %[q0_l], %[q0_l], 16 \n\t" \ + "srl %[p0_l], %[p0_l], 16 \n\t" \ + "srl %[p1_l], %[p1_l], 16 \n\t" \ + "srl %[p2_l], %[p2_l], 16 \n\t" \ + \ + : [q2_l] "+r"(q2_l), [q1_l] "+r"(q1_l), [q0_l] "+r"(q0_l), \ + [p0_l] "+r"(p0_l), [p1_l] "+r"(p1_l), [p2_l] "+r"(p2_l) \ + :); \ + \ + __asm__ __volatile__( \ + "sb %[q2_l], 2(%[s1]) \n\t" \ + "sb %[q1_l], 1(%[s1]) \n\t" \ + "sb %[q0_l], 0(%[s1]) \n\t" \ + "sb %[p0_l], -1(%[s1]) \n\t" \ + "sb %[p1_l], -2(%[s1]) \n\t" \ + "sb %[p2_l], -3(%[s1]) \n\t" \ + \ + : \ + : [q2_l] "r"(q2_l), [q1_l] "r"(q1_l), [q0_l] "r"(q0_l), \ + [p0_l] "r"(p0_l), [p1_l] "r"(p1_l), [p2_l] "r"(p2_l), [s1] "r"(s1)); \ + } + +#define STORE_F2() \ + { \ + __asm__ __volatile__( \ + "sb %[q6_r], 6(%[s4]) \n\t" \ + "sb %[q5_r], 5(%[s4]) \n\t" \ + "sb %[q4_r], 4(%[s4]) \n\t" \ + "sb %[q3_r], 3(%[s4]) \n\t" \ + "sb %[q2_r], 2(%[s4]) \n\t" \ + "sb %[q1_r], 1(%[s4]) \n\t" \ + "sb %[q0_r], 0(%[s4]) \n\t" \ + "sb %[p0_r], -1(%[s4]) \n\t" \ + "sb %[p1_r], -2(%[s4]) \n\t" \ + "sb %[p2_r], -3(%[s4]) \n\t" \ + "sb %[p3_r], -4(%[s4]) \n\t" \ + "sb %[p4_r], -5(%[s4]) \n\t" \ + "sb %[p5_r], -6(%[s4]) \n\t" \ + "sb %[p6_r], -7(%[s4]) \n\t" \ + \ + : \ + : [q6_r] "r"(q6_r), [q5_r] "r"(q5_r), [q4_r] "r"(q4_r), \ + [q3_r] "r"(q3_r), [q2_r] "r"(q2_r), [q1_r] "r"(q1_r), \ + [q0_r] "r"(q0_r), [p0_r] "r"(p0_r), [p1_r] "r"(p1_r), \ + [p2_r] "r"(p2_r), [p3_r] "r"(p3_r), [p4_r] "r"(p4_r), \ + [p5_r] "r"(p5_r), [p6_r] "r"(p6_r), [s4] "r"(s4)); \ + \ + __asm__ __volatile__( \ + "srl %[q6_r], %[q6_r], 16 \n\t" \ + "srl %[q5_r], %[q5_r], 16 \n\t" \ + "srl %[q4_r], %[q4_r], 16 \n\t" \ + "srl %[q3_r], %[q3_r], 16 \n\t" \ + "srl %[q2_r], %[q2_r], 16 \n\t" \ + "srl %[q1_r], %[q1_r], 16 \n\t" \ + "srl %[q0_r], %[q0_r], 16 \n\t" \ + "srl %[p0_r], %[p0_r], 16 \n\t" \ + "srl %[p1_r], %[p1_r], 16 \n\t" \ + "srl %[p2_r], %[p2_r], 16 \n\t" \ + "srl %[p3_r], %[p3_r], 16 \n\t" \ + "srl %[p4_r], %[p4_r], 16 \n\t" \ + "srl %[p5_r], %[p5_r], 16 \n\t" \ + "srl %[p6_r], %[p6_r], 16 \n\t" \ + \ + : [q6_r] "+r"(q6_r), [q5_r] "+r"(q5_r), [q4_r] "+r"(q4_r), \ + [q3_r] "+r"(q3_r), [q2_r] "+r"(q2_r), [q1_r] "+r"(q1_r), \ + [q0_r] "+r"(q0_r), [p0_r] "+r"(p0_r), [p1_r] "+r"(p1_r), \ + [p2_r] "+r"(p2_r), [p3_r] "+r"(p3_r), [p4_r] "+r"(p4_r), \ + [p5_r] "+r"(p5_r), [p6_r] "+r"(p6_r) \ + :); \ + \ + __asm__ __volatile__( \ + "sb %[q6_r], 6(%[s3]) \n\t" \ + "sb %[q5_r], 5(%[s3]) \n\t" \ + "sb %[q4_r], 4(%[s3]) \n\t" \ + "sb %[q3_r], 3(%[s3]) \n\t" \ + "sb %[q2_r], 2(%[s3]) \n\t" \ + "sb %[q1_r], 1(%[s3]) \n\t" \ + "sb %[q0_r], 0(%[s3]) \n\t" \ + "sb %[p0_r], -1(%[s3]) \n\t" \ + "sb %[p1_r], -2(%[s3]) \n\t" \ + "sb %[p2_r], -3(%[s3]) \n\t" \ + "sb %[p3_r], -4(%[s3]) \n\t" \ + "sb %[p4_r], -5(%[s3]) \n\t" \ + "sb %[p5_r], -6(%[s3]) \n\t" \ + "sb %[p6_r], -7(%[s3]) \n\t" \ + \ + : \ + : [q6_r] "r"(q6_r), [q5_r] "r"(q5_r), [q4_r] "r"(q4_r), \ + [q3_r] "r"(q3_r), [q2_r] "r"(q2_r), [q1_r] "r"(q1_r), \ + [q0_r] "r"(q0_r), [p0_r] "r"(p0_r), [p1_r] "r"(p1_r), \ + [p2_r] "r"(p2_r), [p3_r] "r"(p3_r), [p4_r] "r"(p4_r), \ + [p5_r] "r"(p5_r), [p6_r] "r"(p6_r), [s3] "r"(s3)); \ + \ + __asm__ __volatile__( \ + "sb %[q6_l], 6(%[s2]) \n\t" \ + "sb %[q5_l], 5(%[s2]) \n\t" \ + "sb %[q4_l], 4(%[s2]) \n\t" \ + "sb %[q3_l], 3(%[s2]) \n\t" \ + "sb %[q2_l], 2(%[s2]) \n\t" \ + "sb %[q1_l], 1(%[s2]) \n\t" \ + "sb %[q0_l], 0(%[s2]) \n\t" \ + "sb %[p0_l], -1(%[s2]) \n\t" \ + "sb %[p1_l], -2(%[s2]) \n\t" \ + "sb %[p2_l], -3(%[s2]) \n\t" \ + "sb %[p3_l], -4(%[s2]) \n\t" \ + "sb %[p4_l], -5(%[s2]) \n\t" \ + "sb %[p5_l], -6(%[s2]) \n\t" \ + "sb %[p6_l], -7(%[s2]) \n\t" \ + \ + : \ + : [q6_l] "r"(q6_l), [q5_l] "r"(q5_l), [q4_l] "r"(q4_l), \ + [q3_l] "r"(q3_l), [q2_l] "r"(q2_l), [q1_l] "r"(q1_l), \ + [q0_l] "r"(q0_l), [p0_l] "r"(p0_l), [p1_l] "r"(p1_l), \ + [p2_l] "r"(p2_l), [p3_l] "r"(p3_l), [p4_l] "r"(p4_l), \ + [p5_l] "r"(p5_l), [p6_l] "r"(p6_l), [s2] "r"(s2)); \ + \ + __asm__ __volatile__( \ + "srl %[q6_l], %[q6_l], 16 \n\t" \ + "srl %[q5_l], %[q5_l], 16 \n\t" \ + "srl %[q4_l], %[q4_l], 16 \n\t" \ + "srl %[q3_l], %[q3_l], 16 \n\t" \ + "srl %[q2_l], %[q2_l], 16 \n\t" \ + "srl %[q1_l], %[q1_l], 16 \n\t" \ + "srl %[q0_l], %[q0_l], 16 \n\t" \ + "srl %[p0_l], %[p0_l], 16 \n\t" \ + "srl %[p1_l], %[p1_l], 16 \n\t" \ + "srl %[p2_l], %[p2_l], 16 \n\t" \ + "srl %[p3_l], %[p3_l], 16 \n\t" \ + "srl %[p4_l], %[p4_l], 16 \n\t" \ + "srl %[p5_l], %[p5_l], 16 \n\t" \ + "srl %[p6_l], %[p6_l], 16 \n\t" \ + \ + : [q6_l] "+r"(q6_l), [q5_l] "+r"(q5_l), [q4_l] "+r"(q4_l), \ + [q3_l] "+r"(q3_l), [q2_l] "+r"(q2_l), [q1_l] "+r"(q1_l), \ + [q0_l] "+r"(q0_l), [p0_l] "+r"(p0_l), [p1_l] "+r"(p1_l), \ + [p2_l] "+r"(p2_l), [p3_l] "+r"(p3_l), [p4_l] "+r"(p4_l), \ + [p5_l] "+r"(p5_l), [p6_l] "+r"(p6_l) \ + :); \ + \ + __asm__ __volatile__( \ + "sb %[q6_l], 6(%[s1]) \n\t" \ + "sb %[q5_l], 5(%[s1]) \n\t" \ + "sb %[q4_l], 4(%[s1]) \n\t" \ + "sb %[q3_l], 3(%[s1]) \n\t" \ + "sb %[q2_l], 2(%[s1]) \n\t" \ + "sb %[q1_l], 1(%[s1]) \n\t" \ + "sb %[q0_l], 0(%[s1]) \n\t" \ + "sb %[p0_l], -1(%[s1]) \n\t" \ + "sb %[p1_l], -2(%[s1]) \n\t" \ + "sb %[p2_l], -3(%[s1]) \n\t" \ + "sb %[p3_l], -4(%[s1]) \n\t" \ + "sb %[p4_l], -5(%[s1]) \n\t" \ + "sb %[p5_l], -6(%[s1]) \n\t" \ + "sb %[p6_l], -7(%[s1]) \n\t" \ + \ + : \ + : [q6_l] "r"(q6_l), [q5_l] "r"(q5_l), [q4_l] "r"(q4_l), \ + [q3_l] "r"(q3_l), [q2_l] "r"(q2_l), [q1_l] "r"(q1_l), \ + [q0_l] "r"(q0_l), [p0_l] "r"(p0_l), [p1_l] "r"(p1_l), \ + [p2_l] "r"(p2_l), [p3_l] "r"(p3_l), [p4_l] "r"(p4_l), \ + [p5_l] "r"(p5_l), [p6_l] "r"(p6_l), [s1] "r"(s1)); \ + } + +#define PACK_LEFT_0TO3() \ + { \ + __asm__ __volatile__( \ + "preceu.ph.qbl %[p3_l], %[p3] \n\t" \ + "preceu.ph.qbl %[p2_l], %[p2] \n\t" \ + "preceu.ph.qbl %[p1_l], %[p1] \n\t" \ + "preceu.ph.qbl %[p0_l], %[p0] \n\t" \ + "preceu.ph.qbl %[q0_l], %[q0] \n\t" \ + "preceu.ph.qbl %[q1_l], %[q1] \n\t" \ + "preceu.ph.qbl %[q2_l], %[q2] \n\t" \ + "preceu.ph.qbl %[q3_l], %[q3] \n\t" \ + \ + : [p3_l] "=&r"(p3_l), [p2_l] "=&r"(p2_l), [p1_l] "=&r"(p1_l), \ + [p0_l] "=&r"(p0_l), [q0_l] "=&r"(q0_l), [q1_l] "=&r"(q1_l), \ + [q2_l] "=&r"(q2_l), [q3_l] "=&r"(q3_l) \ + : [p3] "r"(p3), [p2] "r"(p2), [p1] "r"(p1), [p0] "r"(p0), \ + [q0] "r"(q0), [q1] "r"(q1), [q2] "r"(q2), [q3] "r"(q3)); \ + } + +#define PACK_LEFT_4TO7() \ + { \ + __asm__ __volatile__( \ + "preceu.ph.qbl %[p7_l], %[p7] \n\t" \ + "preceu.ph.qbl %[p6_l], %[p6] \n\t" \ + "preceu.ph.qbl %[p5_l], %[p5] \n\t" \ + "preceu.ph.qbl %[p4_l], %[p4] \n\t" \ + "preceu.ph.qbl %[q4_l], %[q4] \n\t" \ + "preceu.ph.qbl %[q5_l], %[q5] \n\t" \ + "preceu.ph.qbl %[q6_l], %[q6] \n\t" \ + "preceu.ph.qbl %[q7_l], %[q7] \n\t" \ + \ + : [p7_l] "=&r"(p7_l), [p6_l] "=&r"(p6_l), [p5_l] "=&r"(p5_l), \ + [p4_l] "=&r"(p4_l), [q4_l] "=&r"(q4_l), [q5_l] "=&r"(q5_l), \ + [q6_l] "=&r"(q6_l), [q7_l] "=&r"(q7_l) \ + : [p7] "r"(p7), [p6] "r"(p6), [p5] "r"(p5), [p4] "r"(p4), \ + [q4] "r"(q4), [q5] "r"(q5), [q6] "r"(q6), [q7] "r"(q7)); \ + } + +#define PACK_RIGHT_0TO3() \ + { \ + __asm__ __volatile__( \ + "preceu.ph.qbr %[p3_r], %[p3] \n\t" \ + "preceu.ph.qbr %[p2_r], %[p2] \n\t" \ + "preceu.ph.qbr %[p1_r], %[p1] \n\t" \ + "preceu.ph.qbr %[p0_r], %[p0] \n\t" \ + "preceu.ph.qbr %[q0_r], %[q0] \n\t" \ + "preceu.ph.qbr %[q1_r], %[q1] \n\t" \ + "preceu.ph.qbr %[q2_r], %[q2] \n\t" \ + "preceu.ph.qbr %[q3_r], %[q3] \n\t" \ + \ + : [p3_r] "=&r"(p3_r), [p2_r] "=&r"(p2_r), [p1_r] "=&r"(p1_r), \ + [p0_r] "=&r"(p0_r), [q0_r] "=&r"(q0_r), [q1_r] "=&r"(q1_r), \ + [q2_r] "=&r"(q2_r), [q3_r] "=&r"(q3_r) \ + : [p3] "r"(p3), [p2] "r"(p2), [p1] "r"(p1), [p0] "r"(p0), \ + [q0] "r"(q0), [q1] "r"(q1), [q2] "r"(q2), [q3] "r"(q3)); \ + } + +#define PACK_RIGHT_4TO7() \ + { \ + __asm__ __volatile__( \ + "preceu.ph.qbr %[p7_r], %[p7] \n\t" \ + "preceu.ph.qbr %[p6_r], %[p6] \n\t" \ + "preceu.ph.qbr %[p5_r], %[p5] \n\t" \ + "preceu.ph.qbr %[p4_r], %[p4] \n\t" \ + "preceu.ph.qbr %[q4_r], %[q4] \n\t" \ + "preceu.ph.qbr %[q5_r], %[q5] \n\t" \ + "preceu.ph.qbr %[q6_r], %[q6] \n\t" \ + "preceu.ph.qbr %[q7_r], %[q7] \n\t" \ + \ + : [p7_r] "=&r"(p7_r), [p6_r] "=&r"(p6_r), [p5_r] "=&r"(p5_r), \ + [p4_r] "=&r"(p4_r), [q4_r] "=&r"(q4_r), [q5_r] "=&r"(q5_r), \ + [q6_r] "=&r"(q6_r), [q7_r] "=&r"(q7_r) \ + : [p7] "r"(p7), [p6] "r"(p6), [p5] "r"(p5), [p4] "r"(p4), \ + [q4] "r"(q4), [q5] "r"(q5), [q6] "r"(q6), [q7] "r"(q7)); \ + } + +#define COMBINE_LEFT_RIGHT_0TO2() \ + { \ + __asm__ __volatile__( \ + "precr.qb.ph %[p2], %[p2_l], %[p2_r] \n\t" \ + "precr.qb.ph %[p1], %[p1_l], %[p1_r] \n\t" \ + "precr.qb.ph %[p0], %[p0_l], %[p0_r] \n\t" \ + "precr.qb.ph %[q0], %[q0_l], %[q0_r] \n\t" \ + "precr.qb.ph %[q1], %[q1_l], %[q1_r] \n\t" \ + "precr.qb.ph %[q2], %[q2_l], %[q2_r] \n\t" \ + \ + : [p2] "=&r"(p2), [p1] "=&r"(p1), [p0] "=&r"(p0), [q0] "=&r"(q0), \ + [q1] "=&r"(q1), [q2] "=&r"(q2) \ + : [p2_l] "r"(p2_l), [p2_r] "r"(p2_r), [p1_l] "r"(p1_l), \ + [p1_r] "r"(p1_r), [p0_l] "r"(p0_l), [p0_r] "r"(p0_r), \ + [q0_l] "r"(q0_l), [q0_r] "r"(q0_r), [q1_l] "r"(q1_l), \ + [q1_r] "r"(q1_r), [q2_l] "r"(q2_l), [q2_r] "r"(q2_r)); \ + } + +#define COMBINE_LEFT_RIGHT_3TO6() \ + { \ + __asm__ __volatile__( \ + "precr.qb.ph %[p6], %[p6_l], %[p6_r] \n\t" \ + "precr.qb.ph %[p5], %[p5_l], %[p5_r] \n\t" \ + "precr.qb.ph %[p4], %[p4_l], %[p4_r] \n\t" \ + "precr.qb.ph %[p3], %[p3_l], %[p3_r] \n\t" \ + "precr.qb.ph %[q3], %[q3_l], %[q3_r] \n\t" \ + "precr.qb.ph %[q4], %[q4_l], %[q4_r] \n\t" \ + "precr.qb.ph %[q5], %[q5_l], %[q5_r] \n\t" \ + "precr.qb.ph %[q6], %[q6_l], %[q6_r] \n\t" \ + \ + : [p6] "=&r"(p6), [p5] "=&r"(p5), [p4] "=&r"(p4), [p3] "=&r"(p3), \ + [q3] "=&r"(q3), [q4] "=&r"(q4), [q5] "=&r"(q5), [q6] "=&r"(q6) \ + : [p6_l] "r"(p6_l), [p5_l] "r"(p5_l), [p4_l] "r"(p4_l), \ + [p3_l] "r"(p3_l), [p6_r] "r"(p6_r), [p5_r] "r"(p5_r), \ + [p4_r] "r"(p4_r), [p3_r] "r"(p3_r), [q3_l] "r"(q3_l), \ + [q4_l] "r"(q4_l), [q5_l] "r"(q5_l), [q6_l] "r"(q6_l), \ + [q3_r] "r"(q3_r), [q4_r] "r"(q4_r), [q5_r] "r"(q5_r), \ + [q6_r] "r"(q6_r)); \ + } + +#endif // #if HAVE_DSPR2 +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP9_COMMON_MIPS_DSPR2_VP9_LOOPFILTER_MACROS_DSPR2_H_ diff --git a/vpx_dsp/mips/loopfilter_masks_dspr2.h b/vpx_dsp/mips/loopfilter_masks_dspr2.h new file mode 100644 index 0000000..ee11142 --- /dev/null +++ b/vpx_dsp/mips/loopfilter_masks_dspr2.h @@ -0,0 +1,355 @@ +/* + * Copyright (c) 2013 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VP9_COMMON_MIPS_DSPR2_VP9_LOOPFILTER_MASKS_DSPR2_H_ +#define VP9_COMMON_MIPS_DSPR2_VP9_LOOPFILTER_MASKS_DSPR2_H_ + +#include + +#include "./vpx_dsp_rtcd.h" +#include "vpx/vpx_integer.h" +#include "vpx_mem/vpx_mem.h" + +#ifdef __cplusplus +extern "C" { +#endif + +#if HAVE_DSPR2 +/* processing 4 pixels at the same time + * compute hev and mask in the same function */ +static INLINE void filter_hev_mask_dspr2(uint32_t limit, uint32_t flimit, + uint32_t p1, uint32_t p0, uint32_t p3, + uint32_t p2, uint32_t q0, uint32_t q1, + uint32_t q2, uint32_t q3, + uint32_t thresh, uint32_t *hev, + uint32_t *mask) { + uint32_t c, r, r3, r_k; + uint32_t s1, s2, s3; + uint32_t ones = 0xFFFFFFFF; + uint32_t hev1; + + __asm__ __volatile__( + /* mask |= (abs(p3 - p2) > limit) */ + "subu_s.qb %[c], %[p3], %[p2] \n\t" + "subu_s.qb %[r_k], %[p2], %[p3] \n\t" + "or %[r_k], %[r_k], %[c] \n\t" + "cmpgu.lt.qb %[c], %[limit], %[r_k] \n\t" + "or %[r], $0, %[c] \n\t" + + /* mask |= (abs(p2 - p1) > limit) */ + "subu_s.qb %[c], %[p2], %[p1] \n\t" + "subu_s.qb %[r_k], %[p1], %[p2] \n\t" + "or %[r_k], %[r_k], %[c] \n\t" + "cmpgu.lt.qb %[c], %[limit], %[r_k] \n\t" + "or %[r], %[r], %[c] \n\t" + + /* mask |= (abs(p1 - p0) > limit) + * hev |= (abs(p1 - p0) > thresh) + */ + "subu_s.qb %[c], %[p1], %[p0] \n\t" + "subu_s.qb %[r_k], %[p0], %[p1] \n\t" + "or %[r_k], %[r_k], %[c] \n\t" + "cmpgu.lt.qb %[c], %[thresh], %[r_k] \n\t" + "or %[r3], $0, %[c] \n\t" + "cmpgu.lt.qb %[c], %[limit], %[r_k] \n\t" + "or %[r], %[r], %[c] \n\t" + + /* mask |= (abs(q1 - q0) > limit) + * hev |= (abs(q1 - q0) > thresh) + */ + "subu_s.qb %[c], %[q1], %[q0] \n\t" + "subu_s.qb %[r_k], %[q0], %[q1] \n\t" + "or %[r_k], %[r_k], %[c] \n\t" + "cmpgu.lt.qb %[c], %[thresh], %[r_k] \n\t" + "or %[r3], %[r3], %[c] \n\t" + "cmpgu.lt.qb %[c], %[limit], %[r_k] \n\t" + "or %[r], %[r], %[c] \n\t" + + /* mask |= (abs(q2 - q1) > limit) */ + "subu_s.qb %[c], %[q2], %[q1] \n\t" + "subu_s.qb %[r_k], %[q1], %[q2] \n\t" + "or %[r_k], %[r_k], %[c] \n\t" + "cmpgu.lt.qb %[c], %[limit], %[r_k] \n\t" + "or %[r], %[r], %[c] \n\t" + "sll %[r3], %[r3], 24 \n\t" + + /* mask |= (abs(q3 - q2) > limit) */ + "subu_s.qb %[c], %[q3], %[q2] \n\t" + "subu_s.qb %[r_k], %[q2], %[q3] \n\t" + "or %[r_k], %[r_k], %[c] \n\t" + "cmpgu.lt.qb %[c], %[limit], %[r_k] \n\t" + "or %[r], %[r], %[c] \n\t" + + : [c] "=&r"(c), [r_k] "=&r"(r_k), [r] "=&r"(r), [r3] "=&r"(r3) + : [limit] "r"(limit), [p3] "r"(p3), [p2] "r"(p2), [p1] "r"(p1), + [p0] "r"(p0), [q1] "r"(q1), [q0] "r"(q0), [q2] "r"(q2), [q3] "r"(q3), + [thresh] "r"(thresh)); + + __asm__ __volatile__( + /* abs(p0 - q0) */ + "subu_s.qb %[c], %[p0], %[q0] \n\t" + "subu_s.qb %[r_k], %[q0], %[p0] \n\t" + "wrdsp %[r3] \n\t" + "or %[s1], %[r_k], %[c] \n\t" + + /* abs(p1 - q1) */ + "subu_s.qb %[c], %[p1], %[q1] \n\t" + "addu_s.qb %[s3], %[s1], %[s1] \n\t" + "pick.qb %[hev1], %[ones], $0 \n\t" + "subu_s.qb %[r_k], %[q1], %[p1] \n\t" + "or %[s2], %[r_k], %[c] \n\t" + + /* abs(p0 - q0) * 2 + abs(p1 - q1) / 2 > flimit * 2 + limit */ + "shrl.qb %[s2], %[s2], 1 \n\t" + "addu_s.qb %[s1], %[s2], %[s3] \n\t" + "cmpgu.lt.qb %[c], %[flimit], %[s1] \n\t" + "or %[r], %[r], %[c] \n\t" + "sll %[r], %[r], 24 \n\t" + + "wrdsp %[r] \n\t" + "pick.qb %[s2], $0, %[ones] \n\t" + + : [c] "=&r"(c), [r_k] "=&r"(r_k), [s1] "=&r"(s1), [hev1] "=&r"(hev1), + [s2] "=&r"(s2), [r] "+r"(r), [s3] "=&r"(s3) + : [p0] "r"(p0), [q0] "r"(q0), [p1] "r"(p1), [r3] "r"(r3), [q1] "r"(q1), + [ones] "r"(ones), [flimit] "r"(flimit)); + + *hev = hev1; + *mask = s2; +} + +static INLINE void filter_hev_mask_flatmask4_dspr2( + uint32_t limit, uint32_t flimit, uint32_t thresh, uint32_t p1, uint32_t p0, + uint32_t p3, uint32_t p2, uint32_t q0, uint32_t q1, uint32_t q2, + uint32_t q3, uint32_t *hev, uint32_t *mask, uint32_t *flat) { + uint32_t c, r, r3, r_k, r_flat; + uint32_t s1, s2, s3; + uint32_t ones = 0xFFFFFFFF; + uint32_t flat_thresh = 0x01010101; + uint32_t hev1; + uint32_t flat1; + + __asm__ __volatile__( + /* mask |= (abs(p3 - p2) > limit) */ + "subu_s.qb %[c], %[p3], %[p2] \n\t" + "subu_s.qb %[r_k], %[p2], %[p3] \n\t" + "or %[r_k], %[r_k], %[c] \n\t" + "cmpgu.lt.qb %[c], %[limit], %[r_k] \n\t" + "or %[r], $0, %[c] \n\t" + + /* mask |= (abs(p2 - p1) > limit) */ + "subu_s.qb %[c], %[p2], %[p1] \n\t" + "subu_s.qb %[r_k], %[p1], %[p2] \n\t" + "or %[r_k], %[r_k], %[c] \n\t" + "cmpgu.lt.qb %[c], %[limit], %[r_k] \n\t" + "or %[r], %[r], %[c] \n\t" + + /* mask |= (abs(p1 - p0) > limit) + * hev |= (abs(p1 - p0) > thresh) + * flat |= (abs(p1 - p0) > thresh) + */ + "subu_s.qb %[c], %[p1], %[p0] \n\t" + "subu_s.qb %[r_k], %[p0], %[p1] \n\t" + "or %[r_k], %[r_k], %[c] \n\t" + "cmpgu.lt.qb %[c], %[thresh], %[r_k] \n\t" + "or %[r3], $0, %[c] \n\t" + "cmpgu.lt.qb %[c], %[limit], %[r_k] \n\t" + "or %[r], %[r], %[c] \n\t" + "cmpgu.lt.qb %[c], %[flat_thresh], %[r_k] \n\t" + "or %[r_flat], $0, %[c] \n\t" + + /* mask |= (abs(q1 - q0) > limit) + * hev |= (abs(q1 - q0) > thresh) + * flat |= (abs(q1 - q0) > thresh) + */ + "subu_s.qb %[c], %[q1], %[q0] \n\t" + "subu_s.qb %[r_k], %[q0], %[q1] \n\t" + "or %[r_k], %[r_k], %[c] \n\t" + "cmpgu.lt.qb %[c], %[thresh], %[r_k] \n\t" + "or %[r3], %[r3], %[c] \n\t" + "cmpgu.lt.qb %[c], %[limit], %[r_k] \n\t" + "or %[r], %[r], %[c] \n\t" + "cmpgu.lt.qb %[c], %[flat_thresh], %[r_k] \n\t" + "or %[r_flat], %[r_flat], %[c] \n\t" + + /* flat |= (abs(p0 - p2) > thresh) */ + "subu_s.qb %[c], %[p0], %[p2] \n\t" + "subu_s.qb %[r_k], %[p2], %[p0] \n\t" + "or %[r_k], %[r_k], %[c] \n\t" + "cmpgu.lt.qb %[c], %[flat_thresh], %[r_k] \n\t" + "or %[r_flat], %[r_flat], %[c] \n\t" + + /* flat |= (abs(q0 - q2) > thresh) */ + "subu_s.qb %[c], %[q0], %[q2] \n\t" + "subu_s.qb %[r_k], %[q2], %[q0] \n\t" + "or %[r_k], %[r_k], %[c] \n\t" + "cmpgu.lt.qb %[c], %[flat_thresh], %[r_k] \n\t" + "or %[r_flat], %[r_flat], %[c] \n\t" + + /* flat |= (abs(p3 - p0) > thresh) */ + "subu_s.qb %[c], %[p3], %[p0] \n\t" + "subu_s.qb %[r_k], %[p0], %[p3] \n\t" + "or %[r_k], %[r_k], %[c] \n\t" + "cmpgu.lt.qb %[c], %[flat_thresh], %[r_k] \n\t" + "or %[r_flat], %[r_flat], %[c] \n\t" + + /* flat |= (abs(q3 - q0) > thresh) */ + "subu_s.qb %[c], %[q3], %[q0] \n\t" + "subu_s.qb %[r_k], %[q0], %[q3] \n\t" + "or %[r_k], %[r_k], %[c] \n\t" + "cmpgu.lt.qb %[c], %[flat_thresh], %[r_k] \n\t" + "or %[r_flat], %[r_flat], %[c] \n\t" + "sll %[r_flat], %[r_flat], 24 \n\t" + /* look at stall here */ + "wrdsp %[r_flat] \n\t" + "pick.qb %[flat1], $0, %[ones] \n\t" + + /* mask |= (abs(q2 - q1) > limit) */ + "subu_s.qb %[c], %[q2], %[q1] \n\t" + "subu_s.qb %[r_k], %[q1], %[q2] \n\t" + "or %[r_k], %[r_k], %[c] \n\t" + "cmpgu.lt.qb %[c], %[limit], %[r_k] \n\t" + "or %[r], %[r], %[c] \n\t" + "sll %[r3], %[r3], 24 \n\t" + + /* mask |= (abs(q3 - q2) > limit) */ + "subu_s.qb %[c], %[q3], %[q2] \n\t" + "subu_s.qb %[r_k], %[q2], %[q3] \n\t" + "or %[r_k], %[r_k], %[c] \n\t" + "cmpgu.lt.qb %[c], %[limit], %[r_k] \n\t" + "or %[r], %[r], %[c] \n\t" + + : [c] "=&r"(c), [r_k] "=&r"(r_k), [r] "=&r"(r), [r3] "=&r"(r3), + [r_flat] "=&r"(r_flat), [flat1] "=&r"(flat1) + : [limit] "r"(limit), [p3] "r"(p3), [p2] "r"(p2), [p1] "r"(p1), + [p0] "r"(p0), [q1] "r"(q1), [q0] "r"(q0), [q2] "r"(q2), [q3] "r"(q3), + [thresh] "r"(thresh), [flat_thresh] "r"(flat_thresh), [ones] "r"(ones)); + + __asm__ __volatile__( + /* abs(p0 - q0) */ + "subu_s.qb %[c], %[p0], %[q0] \n\t" + "subu_s.qb %[r_k], %[q0], %[p0] \n\t" + "wrdsp %[r3] \n\t" + "or %[s1], %[r_k], %[c] \n\t" + + /* abs(p1 - q1) */ + "subu_s.qb %[c], %[p1], %[q1] \n\t" + "addu_s.qb %[s3], %[s1], %[s1] \n\t" + "pick.qb %[hev1], %[ones], $0 \n\t" + "subu_s.qb %[r_k], %[q1], %[p1] \n\t" + "or %[s2], %[r_k], %[c] \n\t" + + /* abs(p0 - q0) * 2 + abs(p1 - q1) / 2 > flimit * 2 + limit */ + "shrl.qb %[s2], %[s2], 1 \n\t" + "addu_s.qb %[s1], %[s2], %[s3] \n\t" + "cmpgu.lt.qb %[c], %[flimit], %[s1] \n\t" + "or %[r], %[r], %[c] \n\t" + "sll %[r], %[r], 24 \n\t" + + "wrdsp %[r] \n\t" + "pick.qb %[s2], $0, %[ones] \n\t" + + : [c] "=&r"(c), [r_k] "=&r"(r_k), [s1] "=&r"(s1), [hev1] "=&r"(hev1), + [s2] "=&r"(s2), [r] "+r"(r), [s3] "=&r"(s3) + : [p0] "r"(p0), [q0] "r"(q0), [p1] "r"(p1), [r3] "r"(r3), [q1] "r"(q1), + [ones] "r"(ones), [flimit] "r"(flimit)); + + *hev = hev1; + *mask = s2; + *flat = flat1; +} + +static INLINE void flatmask5(uint32_t p4, uint32_t p3, uint32_t p2, uint32_t p1, + uint32_t p0, uint32_t q0, uint32_t q1, uint32_t q2, + uint32_t q3, uint32_t q4, uint32_t *flat2) { + uint32_t c, r, r_k, r_flat; + uint32_t ones = 0xFFFFFFFF; + uint32_t flat_thresh = 0x01010101; + uint32_t flat1, flat3; + + __asm__ __volatile__( + /* flat |= (abs(p4 - p0) > thresh) */ + "subu_s.qb %[c], %[p4], %[p0] \n\t" + "subu_s.qb %[r_k], %[p0], %[p4] \n\t" + "or %[r_k], %[r_k], %[c] \n\t" + "cmpgu.lt.qb %[c], %[flat_thresh], %[r_k] \n\t" + "or %[r], $0, %[c] \n\t" + + /* flat |= (abs(q4 - q0) > thresh) */ + "subu_s.qb %[c], %[q4], %[q0] \n\t" + "subu_s.qb %[r_k], %[q0], %[q4] \n\t" + "or %[r_k], %[r_k], %[c] \n\t" + "cmpgu.lt.qb %[c], %[flat_thresh], %[r_k] \n\t" + "or %[r], %[r], %[c] \n\t" + "sll %[r], %[r], 24 \n\t" + "wrdsp %[r] \n\t" + "pick.qb %[flat3], $0, %[ones] \n\t" + + /* flat |= (abs(p1 - p0) > thresh) */ + "subu_s.qb %[c], %[p1], %[p0] \n\t" + "subu_s.qb %[r_k], %[p0], %[p1] \n\t" + "or %[r_k], %[r_k], %[c] \n\t" + "cmpgu.lt.qb %[c], %[flat_thresh], %[r_k] \n\t" + "or %[r_flat], $0, %[c] \n\t" + + /* flat |= (abs(q1 - q0) > thresh) */ + "subu_s.qb %[c], %[q1], %[q0] \n\t" + "subu_s.qb %[r_k], %[q0], %[q1] \n\t" + "or %[r_k], %[r_k], %[c] \n\t" + "cmpgu.lt.qb %[c], %[flat_thresh], %[r_k] \n\t" + "or %[r_flat], %[r_flat], %[c] \n\t" + + /* flat |= (abs(p0 - p2) > thresh) */ + "subu_s.qb %[c], %[p0], %[p2] \n\t" + "subu_s.qb %[r_k], %[p2], %[p0] \n\t" + "or %[r_k], %[r_k], %[c] \n\t" + "cmpgu.lt.qb %[c], %[flat_thresh], %[r_k] \n\t" + "or %[r_flat], %[r_flat], %[c] \n\t" + + /* flat |= (abs(q0 - q2) > thresh) */ + "subu_s.qb %[c], %[q0], %[q2] \n\t" + "subu_s.qb %[r_k], %[q2], %[q0] \n\t" + "or %[r_k], %[r_k], %[c] \n\t" + "cmpgu.lt.qb %[c], %[flat_thresh], %[r_k] \n\t" + "or %[r_flat], %[r_flat], %[c] \n\t" + + /* flat |= (abs(p3 - p0) > thresh) */ + "subu_s.qb %[c], %[p3], %[p0] \n\t" + "subu_s.qb %[r_k], %[p0], %[p3] \n\t" + "or %[r_k], %[r_k], %[c] \n\t" + "cmpgu.lt.qb %[c], %[flat_thresh], %[r_k] \n\t" + "or %[r_flat], %[r_flat], %[c] \n\t" + + /* flat |= (abs(q3 - q0) > thresh) */ + "subu_s.qb %[c], %[q3], %[q0] \n\t" + "subu_s.qb %[r_k], %[q0], %[q3] \n\t" + "or %[r_k], %[r_k], %[c] \n\t" + "cmpgu.lt.qb %[c], %[flat_thresh], %[r_k] \n\t" + "or %[r_flat], %[r_flat], %[c] \n\t" + "sll %[r_flat], %[r_flat], 24 \n\t" + "wrdsp %[r_flat] \n\t" + "pick.qb %[flat1], $0, %[ones] \n\t" + /* flat & flatmask4(thresh, p3, p2, p1, p0, q0, q1, q2, q3) */ + "and %[flat1], %[flat3], %[flat1] \n\t" + + : [c] "=&r"(c), [r_k] "=&r"(r_k), [r] "=&r"(r), [r_flat] "=&r"(r_flat), + [flat1] "=&r"(flat1), [flat3] "=&r"(flat3) + : [p4] "r"(p4), [p3] "r"(p3), [p2] "r"(p2), [p1] "r"(p1), [p0] "r"(p0), + [q0] "r"(q0), [q1] "r"(q1), [q2] "r"(q2), [q3] "r"(q3), [q4] "r"(q4), + [flat_thresh] "r"(flat_thresh), [ones] "r"(ones)); + + *flat2 = flat1; +} +#endif // #if HAVE_DSPR2 +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VP9_COMMON_MIPS_DSPR2_VP9_LOOPFILTER_MASKS_DSPR2_H_ diff --git a/vpx_dsp/mips/loopfilter_mb_dspr2.c b/vpx_dsp/mips/loopfilter_mb_dspr2.c new file mode 100644 index 0000000..e424792 --- /dev/null +++ b/vpx_dsp/mips/loopfilter_mb_dspr2.c @@ -0,0 +1,588 @@ +/* + * Copyright (c) 2013 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include + +#include "./vpx_dsp_rtcd.h" +#include "vpx/vpx_integer.h" +#include "vpx_dsp/mips/common_dspr2.h" +#include "vpx_dsp/mips/loopfilter_filters_dspr2.h" +#include "vpx_dsp/mips/loopfilter_macros_dspr2.h" +#include "vpx_dsp/mips/loopfilter_masks_dspr2.h" +#include "vpx_mem/vpx_mem.h" + +#if HAVE_DSPR2 +void vpx_lpf_horizontal_8_dspr2(unsigned char *s, int pitch, + const uint8_t *blimit, const uint8_t *limit, + const uint8_t *thresh) { + uint32_t mask; + uint32_t hev, flat; + uint8_t i; + uint8_t *sp3, *sp2, *sp1, *sp0, *sq0, *sq1, *sq2, *sq3; + uint32_t thresh_vec, flimit_vec, limit_vec; + uint32_t uflimit, ulimit, uthresh; + uint32_t p1_f0, p0_f0, q0_f0, q1_f0; + uint32_t p3, p2, p1, p0, q0, q1, q2, q3; + uint32_t p0_l, p1_l, p2_l, p3_l, q0_l, q1_l, q2_l, q3_l; + uint32_t p0_r, p1_r, p2_r, p3_r, q0_r, q1_r, q2_r, q3_r; + + uflimit = *blimit; + ulimit = *limit; + uthresh = *thresh; + + /* create quad-byte */ + __asm__ __volatile__( + "replv.qb %[thresh_vec], %[uthresh] \n\t" + "replv.qb %[flimit_vec], %[uflimit] \n\t" + "replv.qb %[limit_vec], %[ulimit] \n\t" + + : [thresh_vec] "=&r"(thresh_vec), [flimit_vec] "=&r"(flimit_vec), + [limit_vec] "=r"(limit_vec) + : [uthresh] "r"(uthresh), [uflimit] "r"(uflimit), [ulimit] "r"(ulimit)); + + /* prefetch data for store */ + prefetch_store(s); + + for (i = 0; i < 2; i++) { + sp3 = s - (pitch << 2); + sp2 = sp3 + pitch; + sp1 = sp2 + pitch; + sp0 = sp1 + pitch; + sq0 = s; + sq1 = s + pitch; + sq2 = sq1 + pitch; + sq3 = sq2 + pitch; + + __asm__ __volatile__( + "lw %[p3], (%[sp3]) \n\t" + "lw %[p2], (%[sp2]) \n\t" + "lw %[p1], (%[sp1]) \n\t" + "lw %[p0], (%[sp0]) \n\t" + "lw %[q0], (%[sq0]) \n\t" + "lw %[q1], (%[sq1]) \n\t" + "lw %[q2], (%[sq2]) \n\t" + "lw %[q3], (%[sq3]) \n\t" + + : [p3] "=&r"(p3), [p2] "=&r"(p2), [p1] "=&r"(p1), [p0] "=&r"(p0), + [q3] "=&r"(q3), [q2] "=&r"(q2), [q1] "=&r"(q1), [q0] "=&r"(q0) + : [sp3] "r"(sp3), [sp2] "r"(sp2), [sp1] "r"(sp1), [sp0] "r"(sp0), + [sq3] "r"(sq3), [sq2] "r"(sq2), [sq1] "r"(sq1), [sq0] "r"(sq0)); + + filter_hev_mask_flatmask4_dspr2(limit_vec, flimit_vec, thresh_vec, p1, p0, + p3, p2, q0, q1, q2, q3, &hev, &mask, &flat); + + if ((flat == 0) && (mask != 0)) { + filter1_dspr2(mask, hev, p1, p0, q0, q1, &p1_f0, &p0_f0, &q0_f0, &q1_f0); + + __asm__ __volatile__( + "sw %[p1_f0], (%[sp1]) \n\t" + "sw %[p0_f0], (%[sp0]) \n\t" + "sw %[q0_f0], (%[sq0]) \n\t" + "sw %[q1_f0], (%[sq1]) \n\t" + + : + : [p1_f0] "r"(p1_f0), [p0_f0] "r"(p0_f0), [q0_f0] "r"(q0_f0), + [q1_f0] "r"(q1_f0), [sp1] "r"(sp1), [sp0] "r"(sp0), [sq0] "r"(sq0), + [sq1] "r"(sq1)); + } else if ((mask & flat) == 0xFFFFFFFF) { + /* left 2 element operation */ + PACK_LEFT_0TO3() + mbfilter_dspr2(&p3_l, &p2_l, &p1_l, &p0_l, &q0_l, &q1_l, &q2_l, &q3_l); + + /* right 2 element operation */ + PACK_RIGHT_0TO3() + mbfilter_dspr2(&p3_r, &p2_r, &p1_r, &p0_r, &q0_r, &q1_r, &q2_r, &q3_r); + + COMBINE_LEFT_RIGHT_0TO2() + + __asm__ __volatile__( + "sw %[p2], (%[sp2]) \n\t" + "sw %[p1], (%[sp1]) \n\t" + "sw %[p0], (%[sp0]) \n\t" + "sw %[q0], (%[sq0]) \n\t" + "sw %[q1], (%[sq1]) \n\t" + "sw %[q2], (%[sq2]) \n\t" + + : + : [p2] "r"(p2), [p1] "r"(p1), [p0] "r"(p0), [q0] "r"(q0), + [q1] "r"(q1), [q2] "r"(q2), [sp2] "r"(sp2), [sp1] "r"(sp1), + [sp0] "r"(sp0), [sq0] "r"(sq0), [sq1] "r"(sq1), [sq2] "r"(sq2)); + } else if ((flat != 0) && (mask != 0)) { + /* filtering */ + filter1_dspr2(mask, hev, p1, p0, q0, q1, &p1_f0, &p0_f0, &q0_f0, &q1_f0); + + /* left 2 element operation */ + PACK_LEFT_0TO3() + mbfilter_dspr2(&p3_l, &p2_l, &p1_l, &p0_l, &q0_l, &q1_l, &q2_l, &q3_l); + + /* right 2 element operation */ + PACK_RIGHT_0TO3() + mbfilter_dspr2(&p3_r, &p2_r, &p1_r, &p0_r, &q0_r, &q1_r, &q2_r, &q3_r); + + if (mask & flat & 0x000000FF) { + __asm__ __volatile__( + "sb %[p2_r], (%[sp2]) \n\t" + "sb %[p1_r], (%[sp1]) \n\t" + "sb %[p0_r], (%[sp0]) \n\t" + "sb %[q0_r], (%[sq0]) \n\t" + "sb %[q1_r], (%[sq1]) \n\t" + "sb %[q2_r], (%[sq2]) \n\t" + + : + : [p2_r] "r"(p2_r), [p1_r] "r"(p1_r), [p0_r] "r"(p0_r), + [q0_r] "r"(q0_r), [q1_r] "r"(q1_r), [q2_r] "r"(q2_r), + [sp2] "r"(sp2), [sp1] "r"(sp1), [sp0] "r"(sp0), [sq0] "r"(sq0), + [sq1] "r"(sq1), [sq2] "r"(sq2)); + } else if (mask & 0x000000FF) { + __asm__ __volatile__( + "sb %[p1_f0], (%[sp1]) \n\t" + "sb %[p0_f0], (%[sp0]) \n\t" + "sb %[q0_f0], (%[sq0]) \n\t" + "sb %[q1_f0], (%[sq1]) \n\t" + + : + : [p1_f0] "r"(p1_f0), [p0_f0] "r"(p0_f0), [q0_f0] "r"(q0_f0), + [q1_f0] "r"(q1_f0), [sp1] "r"(sp1), [sp0] "r"(sp0), + [sq0] "r"(sq0), [sq1] "r"(sq1)); + } + + __asm__ __volatile__( + "srl %[p2_r], %[p2_r], 16 \n\t" + "srl %[p1_r], %[p1_r], 16 \n\t" + "srl %[p0_r], %[p0_r], 16 \n\t" + "srl %[q0_r], %[q0_r], 16 \n\t" + "srl %[q1_r], %[q1_r], 16 \n\t" + "srl %[q2_r], %[q2_r], 16 \n\t" + "srl %[p1_f0], %[p1_f0], 8 \n\t" + "srl %[p0_f0], %[p0_f0], 8 \n\t" + "srl %[q0_f0], %[q0_f0], 8 \n\t" + "srl %[q1_f0], %[q1_f0], 8 \n\t" + + : [p2_r] "+r"(p2_r), [p1_r] "+r"(p1_r), [p0_r] "+r"(p0_r), + [q0_r] "+r"(q0_r), [q1_r] "+r"(q1_r), [q2_r] "+r"(q2_r), + [p1_f0] "+r"(p1_f0), [p0_f0] "+r"(p0_f0), [q0_f0] "+r"(q0_f0), + [q1_f0] "+r"(q1_f0) + :); + + if (mask & flat & 0x0000FF00) { + __asm__ __volatile__( + "sb %[p2_r], +1(%[sp2]) \n\t" + "sb %[p1_r], +1(%[sp1]) \n\t" + "sb %[p0_r], +1(%[sp0]) \n\t" + "sb %[q0_r], +1(%[sq0]) \n\t" + "sb %[q1_r], +1(%[sq1]) \n\t" + "sb %[q2_r], +1(%[sq2]) \n\t" + + : + : [p2_r] "r"(p2_r), [p1_r] "r"(p1_r), [p0_r] "r"(p0_r), + [q0_r] "r"(q0_r), [q1_r] "r"(q1_r), [q2_r] "r"(q2_r), + [sp2] "r"(sp2), [sp1] "r"(sp1), [sp0] "r"(sp0), [sq0] "r"(sq0), + [sq1] "r"(sq1), [sq2] "r"(sq2)); + } else if (mask & 0x0000FF00) { + __asm__ __volatile__( + "sb %[p1_f0], +1(%[sp1]) \n\t" + "sb %[p0_f0], +1(%[sp0]) \n\t" + "sb %[q0_f0], +1(%[sq0]) \n\t" + "sb %[q1_f0], +1(%[sq1]) \n\t" + + : + : [p1_f0] "r"(p1_f0), [p0_f0] "r"(p0_f0), [q0_f0] "r"(q0_f0), + [q1_f0] "r"(q1_f0), [sp1] "r"(sp1), [sp0] "r"(sp0), + [sq0] "r"(sq0), [sq1] "r"(sq1)); + } + + __asm__ __volatile__( + "srl %[p1_f0], %[p1_f0], 8 \n\t" + "srl %[p0_f0], %[p0_f0], 8 \n\t" + "srl %[q0_f0], %[q0_f0], 8 \n\t" + "srl %[q1_f0], %[q1_f0], 8 \n\t" + + : [p2] "+r"(p2), [p1] "+r"(p1), [p0] "+r"(p0), [q0] "+r"(q0), + [q1] "+r"(q1), [q2] "+r"(q2), [p1_f0] "+r"(p1_f0), + [p0_f0] "+r"(p0_f0), [q0_f0] "+r"(q0_f0), [q1_f0] "+r"(q1_f0) + :); + + if (mask & flat & 0x00FF0000) { + __asm__ __volatile__( + "sb %[p2_l], +2(%[sp2]) \n\t" + "sb %[p1_l], +2(%[sp1]) \n\t" + "sb %[p0_l], +2(%[sp0]) \n\t" + "sb %[q0_l], +2(%[sq0]) \n\t" + "sb %[q1_l], +2(%[sq1]) \n\t" + "sb %[q2_l], +2(%[sq2]) \n\t" + + : + : [p2_l] "r"(p2_l), [p1_l] "r"(p1_l), [p0_l] "r"(p0_l), + [q0_l] "r"(q0_l), [q1_l] "r"(q1_l), [q2_l] "r"(q2_l), + [sp2] "r"(sp2), [sp1] "r"(sp1), [sp0] "r"(sp0), [sq0] "r"(sq0), + [sq1] "r"(sq1), [sq2] "r"(sq2)); + } else if (mask & 0x00FF0000) { + __asm__ __volatile__( + "sb %[p1_f0], +2(%[sp1]) \n\t" + "sb %[p0_f0], +2(%[sp0]) \n\t" + "sb %[q0_f0], +2(%[sq0]) \n\t" + "sb %[q1_f0], +2(%[sq1]) \n\t" + + : + : [p1_f0] "r"(p1_f0), [p0_f0] "r"(p0_f0), [q0_f0] "r"(q0_f0), + [q1_f0] "r"(q1_f0), [sp1] "r"(sp1), [sp0] "r"(sp0), + [sq0] "r"(sq0), [sq1] "r"(sq1)); + } + + __asm__ __volatile__( + "srl %[p2_l], %[p2_l], 16 \n\t" + "srl %[p1_l], %[p1_l], 16 \n\t" + "srl %[p0_l], %[p0_l], 16 \n\t" + "srl %[q0_l], %[q0_l], 16 \n\t" + "srl %[q1_l], %[q1_l], 16 \n\t" + "srl %[q2_l], %[q2_l], 16 \n\t" + "srl %[p1_f0], %[p1_f0], 8 \n\t" + "srl %[p0_f0], %[p0_f0], 8 \n\t" + "srl %[q0_f0], %[q0_f0], 8 \n\t" + "srl %[q1_f0], %[q1_f0], 8 \n\t" + + : [p2_l] "+r"(p2_l), [p1_l] "+r"(p1_l), [p0_l] "+r"(p0_l), + [q0_l] "+r"(q0_l), [q1_l] "+r"(q1_l), [q2_l] "+r"(q2_l), + [p1_f0] "+r"(p1_f0), [p0_f0] "+r"(p0_f0), [q0_f0] "+r"(q0_f0), + [q1_f0] "+r"(q1_f0) + :); + + if (mask & flat & 0xFF000000) { + __asm__ __volatile__( + "sb %[p2_l], +3(%[sp2]) \n\t" + "sb %[p1_l], +3(%[sp1]) \n\t" + "sb %[p0_l], +3(%[sp0]) \n\t" + "sb %[q0_l], +3(%[sq0]) \n\t" + "sb %[q1_l], +3(%[sq1]) \n\t" + "sb %[q2_l], +3(%[sq2]) \n\t" + + : + : [p2_l] "r"(p2_l), [p1_l] "r"(p1_l), [p0_l] "r"(p0_l), + [q0_l] "r"(q0_l), [q1_l] "r"(q1_l), [q2_l] "r"(q2_l), + [sp2] "r"(sp2), [sp1] "r"(sp1), [sp0] "r"(sp0), [sq0] "r"(sq0), + [sq1] "r"(sq1), [sq2] "r"(sq2)); + } else if (mask & 0xFF000000) { + __asm__ __volatile__( + "sb %[p1_f0], +3(%[sp1]) \n\t" + "sb %[p0_f0], +3(%[sp0]) \n\t" + "sb %[q0_f0], +3(%[sq0]) \n\t" + "sb %[q1_f0], +3(%[sq1]) \n\t" + + : + : [p1_f0] "r"(p1_f0), [p0_f0] "r"(p0_f0), [q0_f0] "r"(q0_f0), + [q1_f0] "r"(q1_f0), [sp1] "r"(sp1), [sp0] "r"(sp0), + [sq0] "r"(sq0), [sq1] "r"(sq1)); + } + } + + s = s + 4; + } +} + +void vpx_lpf_vertical_8_dspr2(unsigned char *s, int pitch, + const uint8_t *blimit, const uint8_t *limit, + const uint8_t *thresh) { + uint8_t i; + uint32_t mask, hev, flat; + uint8_t *s1, *s2, *s3, *s4; + uint32_t prim1, prim2, sec3, sec4, prim3, prim4; + uint32_t thresh_vec, flimit_vec, limit_vec; + uint32_t uflimit, ulimit, uthresh; + uint32_t p3, p2, p1, p0, q3, q2, q1, q0; + uint32_t p1_f0, p0_f0, q0_f0, q1_f0; + uint32_t p0_l, p1_l, p2_l, p3_l, q0_l, q1_l, q2_l, q3_l; + uint32_t p0_r, p1_r, p2_r, p3_r, q0_r, q1_r, q2_r, q3_r; + + uflimit = *blimit; + ulimit = *limit; + uthresh = *thresh; + + /* create quad-byte */ + __asm__ __volatile__( + "replv.qb %[thresh_vec], %[uthresh] \n\t" + "replv.qb %[flimit_vec], %[uflimit] \n\t" + "replv.qb %[limit_vec], %[ulimit] \n\t" + + : [thresh_vec] "=&r"(thresh_vec), [flimit_vec] "=&r"(flimit_vec), + [limit_vec] "=r"(limit_vec) + : [uthresh] "r"(uthresh), [uflimit] "r"(uflimit), [ulimit] "r"(ulimit)); + + prefetch_store(s + pitch); + + for (i = 0; i < 2; i++) { + s1 = s; + s2 = s + pitch; + s3 = s2 + pitch; + s4 = s3 + pitch; + s = s4 + pitch; + + __asm__ __volatile__( + "lw %[p0], -4(%[s1]) \n\t" + "lw %[p1], -4(%[s2]) \n\t" + "lw %[p2], -4(%[s3]) \n\t" + "lw %[p3], -4(%[s4]) \n\t" + "lw %[q3], (%[s1]) \n\t" + "lw %[q2], (%[s2]) \n\t" + "lw %[q1], (%[s3]) \n\t" + "lw %[q0], (%[s4]) \n\t" + + : [p3] "=&r"(p3), [p2] "=&r"(p2), [p1] "=&r"(p1), [p0] "=&r"(p0), + [q0] "=&r"(q0), [q1] "=&r"(q1), [q2] "=&r"(q2), [q3] "=&r"(q3) + : [s1] "r"(s1), [s2] "r"(s2), [s3] "r"(s3), [s4] "r"(s4)); + + /* transpose p3, p2, p1, p0 + original (when loaded from memory) + register -4 -3 -2 -1 + p0 p0_0 p0_1 p0_2 p0_3 + p1 p1_0 p1_1 p1_2 p1_3 + p2 p2_0 p2_1 p2_2 p2_3 + p3 p3_0 p3_1 p3_2 p3_3 + + after transpose + register + p0 p3_3 p2_3 p1_3 p0_3 + p1 p3_2 p2_2 p1_2 p0_2 + p2 p3_1 p2_1 p1_1 p0_1 + p3 p3_0 p2_0 p1_0 p0_0 + */ + __asm__ __volatile__( + "precrq.qb.ph %[prim1], %[p0], %[p1] \n\t" + "precr.qb.ph %[prim2], %[p0], %[p1] \n\t" + "precrq.qb.ph %[prim3], %[p2], %[p3] \n\t" + "precr.qb.ph %[prim4], %[p2], %[p3] \n\t" + + "precrq.qb.ph %[p1], %[prim1], %[prim2] \n\t" + "precr.qb.ph %[p3], %[prim1], %[prim2] \n\t" + "precrq.qb.ph %[sec3], %[prim3], %[prim4] \n\t" + "precr.qb.ph %[sec4], %[prim3], %[prim4] \n\t" + + "precrq.ph.w %[p0], %[p1], %[sec3] \n\t" + "precrq.ph.w %[p2], %[p3], %[sec4] \n\t" + "append %[p1], %[sec3], 16 \n\t" + "append %[p3], %[sec4], 16 \n\t" + + : [prim1] "=&r"(prim1), [prim2] "=&r"(prim2), [prim3] "=&r"(prim3), + [prim4] "=&r"(prim4), [p0] "+r"(p0), [p1] "+r"(p1), [p2] "+r"(p2), + [p3] "+r"(p3), [sec3] "=&r"(sec3), [sec4] "=&r"(sec4) + :); + + /* transpose q0, q1, q2, q3 + original (when loaded from memory) + register +1 +2 +3 +4 + q3 q3_0 q3_1 q3_2 q3_3 + q2 q2_0 q2_1 q2_2 q2_3 + q1 q1_0 q1_1 q1_2 q1_3 + q0 q0_0 q0_1 q0_2 q0_3 + + after transpose + register + q3 q0_3 q1_3 q2_3 q3_3 + q2 q0_2 q1_2 q2_2 q3_2 + q1 q0_1 q1_1 q2_1 q3_1 + q0 q0_0 q1_0 q2_0 q3_0 + */ + __asm__ __volatile__( + "precrq.qb.ph %[prim1], %[q3], %[q2] \n\t" + "precr.qb.ph %[prim2], %[q3], %[q2] \n\t" + "precrq.qb.ph %[prim3], %[q1], %[q0] \n\t" + "precr.qb.ph %[prim4], %[q1], %[q0] \n\t" + + "precrq.qb.ph %[q2], %[prim1], %[prim2] \n\t" + "precr.qb.ph %[q0], %[prim1], %[prim2] \n\t" + "precrq.qb.ph %[sec3], %[prim3], %[prim4] \n\t" + "precr.qb.ph %[sec4], %[prim3], %[prim4] \n\t" + + "precrq.ph.w %[q3], %[q2], %[sec3] \n\t" + "precrq.ph.w %[q1], %[q0], %[sec4] \n\t" + "append %[q2], %[sec3], 16 \n\t" + "append %[q0], %[sec4], 16 \n\t" + + : [prim1] "=&r"(prim1), [prim2] "=&r"(prim2), [prim3] "=&r"(prim3), + [prim4] "=&r"(prim4), [q3] "+r"(q3), [q2] "+r"(q2), [q1] "+r"(q1), + [q0] "+r"(q0), [sec3] "=&r"(sec3), [sec4] "=&r"(sec4) + :); + + filter_hev_mask_flatmask4_dspr2(limit_vec, flimit_vec, thresh_vec, p1, p0, + p3, p2, q0, q1, q2, q3, &hev, &mask, &flat); + + if ((flat == 0) && (mask != 0)) { + filter1_dspr2(mask, hev, p1, p0, q0, q1, &p1_f0, &p0_f0, &q0_f0, &q1_f0); + STORE_F0() + } else if ((mask & flat) == 0xFFFFFFFF) { + /* left 2 element operation */ + PACK_LEFT_0TO3() + mbfilter_dspr2(&p3_l, &p2_l, &p1_l, &p0_l, &q0_l, &q1_l, &q2_l, &q3_l); + + /* right 2 element operation */ + PACK_RIGHT_0TO3() + mbfilter_dspr2(&p3_r, &p2_r, &p1_r, &p0_r, &q0_r, &q1_r, &q2_r, &q3_r); + + STORE_F1() + } else if ((flat != 0) && (mask != 0)) { + filter1_dspr2(mask, hev, p1, p0, q0, q1, &p1_f0, &p0_f0, &q0_f0, &q1_f0); + + /* left 2 element operation */ + PACK_LEFT_0TO3() + mbfilter_dspr2(&p3_l, &p2_l, &p1_l, &p0_l, &q0_l, &q1_l, &q2_l, &q3_l); + + /* right 2 element operation */ + PACK_RIGHT_0TO3() + mbfilter_dspr2(&p3_r, &p2_r, &p1_r, &p0_r, &q0_r, &q1_r, &q2_r, &q3_r); + + if (mask & flat & 0x000000FF) { + __asm__ __volatile__( + "sb %[p2_r], -3(%[s4]) \n\t" + "sb %[p1_r], -2(%[s4]) \n\t" + "sb %[p0_r], -1(%[s4]) \n\t" + "sb %[q0_r], (%[s4]) \n\t" + "sb %[q1_r], +1(%[s4]) \n\t" + "sb %[q2_r], +2(%[s4]) \n\t" + + : + : [p2_r] "r"(p2_r), [p1_r] "r"(p1_r), [p0_r] "r"(p0_r), + [q0_r] "r"(q0_r), [q1_r] "r"(q1_r), [q2_r] "r"(q2_r), + [s4] "r"(s4)); + } else if (mask & 0x000000FF) { + __asm__ __volatile__( + "sb %[p1_f0], -2(%[s4]) \n\t" + "sb %[p0_f0], -1(%[s4]) \n\t" + "sb %[q0_f0], (%[s4]) \n\t" + "sb %[q1_f0], +1(%[s4]) \n\t" + + : + : [p1_f0] "r"(p1_f0), [p0_f0] "r"(p0_f0), [q0_f0] "r"(q0_f0), + [q1_f0] "r"(q1_f0), [s4] "r"(s4)); + } + + __asm__ __volatile__( + "srl %[p2_r], %[p2_r], 16 \n\t" + "srl %[p1_r], %[p1_r], 16 \n\t" + "srl %[p0_r], %[p0_r], 16 \n\t" + "srl %[q0_r], %[q0_r], 16 \n\t" + "srl %[q1_r], %[q1_r], 16 \n\t" + "srl %[q2_r], %[q2_r], 16 \n\t" + "srl %[p1_f0], %[p1_f0], 8 \n\t" + "srl %[p0_f0], %[p0_f0], 8 \n\t" + "srl %[q0_f0], %[q0_f0], 8 \n\t" + "srl %[q1_f0], %[q1_f0], 8 \n\t" + + : [p2_r] "+r"(p2_r), [p1_r] "+r"(p1_r), [p0_r] "+r"(p0_r), + [q0_r] "+r"(q0_r), [q1_r] "+r"(q1_r), [q2_r] "+r"(q2_r), + [p1_f0] "+r"(p1_f0), [p0_f0] "+r"(p0_f0), [q0_f0] "+r"(q0_f0), + [q1_f0] "+r"(q1_f0) + :); + + if (mask & flat & 0x0000FF00) { + __asm__ __volatile__( + "sb %[p2_r], -3(%[s3]) \n\t" + "sb %[p1_r], -2(%[s3]) \n\t" + "sb %[p0_r], -1(%[s3]) \n\t" + "sb %[q0_r], (%[s3]) \n\t" + "sb %[q1_r], +1(%[s3]) \n\t" + "sb %[q2_r], +2(%[s3]) \n\t" + + : + : [p2_r] "r"(p2_r), [p1_r] "r"(p1_r), [p0_r] "r"(p0_r), + [q0_r] "r"(q0_r), [q1_r] "r"(q1_r), [q2_r] "r"(q2_r), + [s3] "r"(s3)); + } else if (mask & 0x0000FF00) { + __asm__ __volatile__( + "sb %[p1_f0], -2(%[s3]) \n\t" + "sb %[p0_f0], -1(%[s3]) \n\t" + "sb %[q0_f0], (%[s3]) \n\t" + "sb %[q1_f0], +1(%[s3]) \n\t" + + : + : [p1_f0] "r"(p1_f0), [p0_f0] "r"(p0_f0), [q0_f0] "r"(q0_f0), + [q1_f0] "r"(q1_f0), [s3] "r"(s3)); + } + + __asm__ __volatile__( + "srl %[p1_f0], %[p1_f0], 8 \n\t" + "srl %[p0_f0], %[p0_f0], 8 \n\t" + "srl %[q0_f0], %[q0_f0], 8 \n\t" + "srl %[q1_f0], %[q1_f0], 8 \n\t" + + : [p2] "+r"(p2), [p1] "+r"(p1), [p0] "+r"(p0), [q0] "+r"(q0), + [q1] "+r"(q1), [q2] "+r"(q2), [p1_f0] "+r"(p1_f0), + [p0_f0] "+r"(p0_f0), [q0_f0] "+r"(q0_f0), [q1_f0] "+r"(q1_f0) + :); + + if (mask & flat & 0x00FF0000) { + __asm__ __volatile__( + "sb %[p2_l], -3(%[s2]) \n\t" + "sb %[p1_l], -2(%[s2]) \n\t" + "sb %[p0_l], -1(%[s2]) \n\t" + "sb %[q0_l], (%[s2]) \n\t" + "sb %[q1_l], +1(%[s2]) \n\t" + "sb %[q2_l], +2(%[s2]) \n\t" + + : + : [p2_l] "r"(p2_l), [p1_l] "r"(p1_l), [p0_l] "r"(p0_l), + [q0_l] "r"(q0_l), [q1_l] "r"(q1_l), [q2_l] "r"(q2_l), + [s2] "r"(s2)); + } else if (mask & 0x00FF0000) { + __asm__ __volatile__( + "sb %[p1_f0], -2(%[s2]) \n\t" + "sb %[p0_f0], -1(%[s2]) \n\t" + "sb %[q0_f0], (%[s2]) \n\t" + "sb %[q1_f0], +1(%[s2]) \n\t" + + : + : [p1_f0] "r"(p1_f0), [p0_f0] "r"(p0_f0), [q0_f0] "r"(q0_f0), + [q1_f0] "r"(q1_f0), [s2] "r"(s2)); + } + + __asm__ __volatile__( + "srl %[p2_l], %[p2_l], 16 \n\t" + "srl %[p1_l], %[p1_l], 16 \n\t" + "srl %[p0_l], %[p0_l], 16 \n\t" + "srl %[q0_l], %[q0_l], 16 \n\t" + "srl %[q1_l], %[q1_l], 16 \n\t" + "srl %[q2_l], %[q2_l], 16 \n\t" + "srl %[p1_f0], %[p1_f0], 8 \n\t" + "srl %[p0_f0], %[p0_f0], 8 \n\t" + "srl %[q0_f0], %[q0_f0], 8 \n\t" + "srl %[q1_f0], %[q1_f0], 8 \n\t" + + : [p2_l] "+r"(p2_l), [p1_l] "+r"(p1_l), [p0_l] "+r"(p0_l), + [q0_l] "+r"(q0_l), [q1_l] "+r"(q1_l), [q2_l] "+r"(q2_l), + [p1_f0] "+r"(p1_f0), [p0_f0] "+r"(p0_f0), [q0_f0] "+r"(q0_f0), + [q1_f0] "+r"(q1_f0) + :); + + if (mask & flat & 0xFF000000) { + __asm__ __volatile__( + "sb %[p2_l], -3(%[s1]) \n\t" + "sb %[p1_l], -2(%[s1]) \n\t" + "sb %[p0_l], -1(%[s1]) \n\t" + "sb %[q0_l], (%[s1]) \n\t" + "sb %[q1_l], +1(%[s1]) \n\t" + "sb %[q2_l], +2(%[s1]) \n\t" + + : + : [p2_l] "r"(p2_l), [p1_l] "r"(p1_l), [p0_l] "r"(p0_l), + [q0_l] "r"(q0_l), [q1_l] "r"(q1_l), [q2_l] "r"(q2_l), + [s1] "r"(s1)); + } else if (mask & 0xFF000000) { + __asm__ __volatile__( + "sb %[p1_f0], -2(%[s1]) \n\t" + "sb %[p0_f0], -1(%[s1]) \n\t" + "sb %[q0_f0], (%[s1]) \n\t" + "sb %[q1_f0], +1(%[s1]) \n\t" + + : + : [p1_f0] "r"(p1_f0), [p0_f0] "r"(p0_f0), [q0_f0] "r"(q0_f0), + [q1_f0] "r"(q1_f0), [s1] "r"(s1)); + } + } + } +} +#endif // #if HAVE_DSPR2 diff --git a/vpx_dsp/mips/loopfilter_mb_horiz_dspr2.c b/vpx_dsp/mips/loopfilter_mb_horiz_dspr2.c new file mode 100644 index 0000000..9c1f514 --- /dev/null +++ b/vpx_dsp/mips/loopfilter_mb_horiz_dspr2.c @@ -0,0 +1,732 @@ +/* + * Copyright (c) 2013 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include + +#include "./vpx_dsp_rtcd.h" +#include "vpx/vpx_integer.h" +#include "vpx_dsp/mips/common_dspr2.h" +#include "vpx_dsp/mips/loopfilter_filters_dspr2.h" +#include "vpx_dsp/mips/loopfilter_macros_dspr2.h" +#include "vpx_dsp/mips/loopfilter_masks_dspr2.h" +#include "vpx_mem/vpx_mem.h" + +#if HAVE_DSPR2 +static void mb_lpf_horizontal_edge(unsigned char *s, int pitch, + const uint8_t *blimit, const uint8_t *limit, + const uint8_t *thresh, int count) { + uint32_t mask; + uint32_t hev, flat, flat2; + uint8_t i; + uint8_t *sp7, *sp6, *sp5, *sp4, *sp3, *sp2, *sp1, *sp0; + uint8_t *sq0, *sq1, *sq2, *sq3, *sq4, *sq5, *sq6, *sq7; + uint32_t thresh_vec, flimit_vec, limit_vec; + uint32_t uflimit, ulimit, uthresh; + uint32_t p7, p6, p5, p4, p3, p2, p1, p0, q0, q1, q2, q3, q4, q5, q6, q7; + uint32_t p1_f0, p0_f0, q0_f0, q1_f0; + uint32_t p7_l, p6_l, p5_l, p4_l, p3_l, p2_l, p1_l, p0_l; + uint32_t q0_l, q1_l, q2_l, q3_l, q4_l, q5_l, q6_l, q7_l; + uint32_t p7_r, p6_r, p5_r, p4_r, p3_r, p2_r, p1_r, p0_r; + uint32_t q0_r, q1_r, q2_r, q3_r, q4_r, q5_r, q6_r, q7_r; + uint32_t p2_l_f1, p1_l_f1, p0_l_f1, p2_r_f1, p1_r_f1, p0_r_f1; + uint32_t q0_l_f1, q1_l_f1, q2_l_f1, q0_r_f1, q1_r_f1, q2_r_f1; + + uflimit = *blimit; + ulimit = *limit; + uthresh = *thresh; + + /* create quad-byte */ + __asm__ __volatile__( + "replv.qb %[thresh_vec], %[uthresh] \n\t" + "replv.qb %[flimit_vec], %[uflimit] \n\t" + "replv.qb %[limit_vec], %[ulimit] \n\t" + + : [thresh_vec] "=&r"(thresh_vec), [flimit_vec] "=&r"(flimit_vec), + [limit_vec] "=r"(limit_vec) + : [uthresh] "r"(uthresh), [uflimit] "r"(uflimit), [ulimit] "r"(ulimit)); + + /* prefetch data for store */ + prefetch_store(s); + + for (i = 0; i < (2 * count); i++) { + sp7 = s - (pitch << 3); + sp6 = sp7 + pitch; + sp5 = sp6 + pitch; + sp4 = sp5 + pitch; + sp3 = sp4 + pitch; + sp2 = sp3 + pitch; + sp1 = sp2 + pitch; + sp0 = sp1 + pitch; + sq0 = s; + sq1 = s + pitch; + sq2 = sq1 + pitch; + sq3 = sq2 + pitch; + sq4 = sq3 + pitch; + sq5 = sq4 + pitch; + sq6 = sq5 + pitch; + sq7 = sq6 + pitch; + + __asm__ __volatile__( + "lw %[p7], (%[sp7]) \n\t" + "lw %[p6], (%[sp6]) \n\t" + "lw %[p5], (%[sp5]) \n\t" + "lw %[p4], (%[sp4]) \n\t" + "lw %[p3], (%[sp3]) \n\t" + "lw %[p2], (%[sp2]) \n\t" + "lw %[p1], (%[sp1]) \n\t" + "lw %[p0], (%[sp0]) \n\t" + + : [p3] "=&r"(p3), [p2] "=&r"(p2), [p1] "=&r"(p1), [p0] "=&r"(p0), + [p7] "=&r"(p7), [p6] "=&r"(p6), [p5] "=&r"(p5), [p4] "=&r"(p4) + : [sp3] "r"(sp3), [sp2] "r"(sp2), [sp1] "r"(sp1), [sp0] "r"(sp0), + [sp4] "r"(sp4), [sp5] "r"(sp5), [sp6] "r"(sp6), [sp7] "r"(sp7)); + + __asm__ __volatile__( + "lw %[q0], (%[sq0]) \n\t" + "lw %[q1], (%[sq1]) \n\t" + "lw %[q2], (%[sq2]) \n\t" + "lw %[q3], (%[sq3]) \n\t" + "lw %[q4], (%[sq4]) \n\t" + "lw %[q5], (%[sq5]) \n\t" + "lw %[q6], (%[sq6]) \n\t" + "lw %[q7], (%[sq7]) \n\t" + + : [q3] "=&r"(q3), [q2] "=&r"(q2), [q1] "=&r"(q1), [q0] "=&r"(q0), + [q7] "=&r"(q7), [q6] "=&r"(q6), [q5] "=&r"(q5), [q4] "=&r"(q4) + : [sq3] "r"(sq3), [sq2] "r"(sq2), [sq1] "r"(sq1), [sq0] "r"(sq0), + [sq4] "r"(sq4), [sq5] "r"(sq5), [sq6] "r"(sq6), [sq7] "r"(sq7)); + + filter_hev_mask_flatmask4_dspr2(limit_vec, flimit_vec, thresh_vec, p1, p0, + p3, p2, q0, q1, q2, q3, &hev, &mask, &flat); + + flatmask5(p7, p6, p5, p4, p0, q0, q4, q5, q6, q7, &flat2); + + /* f0 */ + if (((flat2 == 0) && (flat == 0) && (mask != 0)) || + ((flat2 != 0) && (flat == 0) && (mask != 0))) { + filter1_dspr2(mask, hev, p1, p0, q0, q1, &p1_f0, &p0_f0, &q0_f0, &q1_f0); + + __asm__ __volatile__( + "sw %[p1_f0], (%[sp1]) \n\t" + "sw %[p0_f0], (%[sp0]) \n\t" + "sw %[q0_f0], (%[sq0]) \n\t" + "sw %[q1_f0], (%[sq1]) \n\t" + + : + : [p1_f0] "r"(p1_f0), [p0_f0] "r"(p0_f0), [q0_f0] "r"(q0_f0), + [q1_f0] "r"(q1_f0), [sp1] "r"(sp1), [sp0] "r"(sp0), [sq0] "r"(sq0), + [sq1] "r"(sq1)); + } else if ((flat2 == 0XFFFFFFFF) && (flat == 0xFFFFFFFF) && + (mask == 0xFFFFFFFF)) { + /* f2 */ + PACK_LEFT_0TO3() + PACK_LEFT_4TO7() + wide_mbfilter_dspr2(&p7_l, &p6_l, &p5_l, &p4_l, &p3_l, &p2_l, &p1_l, + &p0_l, &q0_l, &q1_l, &q2_l, &q3_l, &q4_l, &q5_l, + &q6_l, &q7_l); + + PACK_RIGHT_0TO3() + PACK_RIGHT_4TO7() + wide_mbfilter_dspr2(&p7_r, &p6_r, &p5_r, &p4_r, &p3_r, &p2_r, &p1_r, + &p0_r, &q0_r, &q1_r, &q2_r, &q3_r, &q4_r, &q5_r, + &q6_r, &q7_r); + + COMBINE_LEFT_RIGHT_0TO2() + COMBINE_LEFT_RIGHT_3TO6() + + __asm__ __volatile__( + "sw %[p6], (%[sp6]) \n\t" + "sw %[p5], (%[sp5]) \n\t" + "sw %[p4], (%[sp4]) \n\t" + "sw %[p3], (%[sp3]) \n\t" + "sw %[p2], (%[sp2]) \n\t" + "sw %[p1], (%[sp1]) \n\t" + "sw %[p0], (%[sp0]) \n\t" + + : + : [p6] "r"(p6), [p5] "r"(p5), [p4] "r"(p4), [p3] "r"(p3), + [p2] "r"(p2), [p1] "r"(p1), [p0] "r"(p0), [sp6] "r"(sp6), + [sp5] "r"(sp5), [sp4] "r"(sp4), [sp3] "r"(sp3), [sp2] "r"(sp2), + [sp1] "r"(sp1), [sp0] "r"(sp0)); + + __asm__ __volatile__( + "sw %[q6], (%[sq6]) \n\t" + "sw %[q5], (%[sq5]) \n\t" + "sw %[q4], (%[sq4]) \n\t" + "sw %[q3], (%[sq3]) \n\t" + "sw %[q2], (%[sq2]) \n\t" + "sw %[q1], (%[sq1]) \n\t" + "sw %[q0], (%[sq0]) \n\t" + + : + : [q6] "r"(q6), [q5] "r"(q5), [q4] "r"(q4), [q3] "r"(q3), + [q2] "r"(q2), [q1] "r"(q1), [q0] "r"(q0), [sq6] "r"(sq6), + [sq5] "r"(sq5), [sq4] "r"(sq4), [sq3] "r"(sq3), [sq2] "r"(sq2), + [sq1] "r"(sq1), [sq0] "r"(sq0)); + } else if ((flat2 == 0) && (flat == 0xFFFFFFFF) && (mask == 0xFFFFFFFF)) { + /* f1 */ + /* left 2 element operation */ + PACK_LEFT_0TO3() + mbfilter_dspr2(&p3_l, &p2_l, &p1_l, &p0_l, &q0_l, &q1_l, &q2_l, &q3_l); + + /* right 2 element operation */ + PACK_RIGHT_0TO3() + mbfilter_dspr2(&p3_r, &p2_r, &p1_r, &p0_r, &q0_r, &q1_r, &q2_r, &q3_r); + + COMBINE_LEFT_RIGHT_0TO2() + + __asm__ __volatile__( + "sw %[p2], (%[sp2]) \n\t" + "sw %[p1], (%[sp1]) \n\t" + "sw %[p0], (%[sp0]) \n\t" + "sw %[q0], (%[sq0]) \n\t" + "sw %[q1], (%[sq1]) \n\t" + "sw %[q2], (%[sq2]) \n\t" + + : + : [p2] "r"(p2), [p1] "r"(p1), [p0] "r"(p0), [q0] "r"(q0), + [q1] "r"(q1), [q2] "r"(q2), [sp2] "r"(sp2), [sp1] "r"(sp1), + [sp0] "r"(sp0), [sq0] "r"(sq0), [sq1] "r"(sq1), [sq2] "r"(sq2)); + } else if ((flat2 == 0) && (flat != 0) && (mask != 0)) { + /* f0+f1 */ + filter1_dspr2(mask, hev, p1, p0, q0, q1, &p1_f0, &p0_f0, &q0_f0, &q1_f0); + + /* left 2 element operation */ + PACK_LEFT_0TO3() + mbfilter_dspr2(&p3_l, &p2_l, &p1_l, &p0_l, &q0_l, &q1_l, &q2_l, &q3_l); + + /* right 2 element operation */ + PACK_RIGHT_0TO3() + mbfilter_dspr2(&p3_r, &p2_r, &p1_r, &p0_r, &q0_r, &q1_r, &q2_r, &q3_r); + + if (mask & flat & 0x000000FF) { + __asm__ __volatile__( + "sb %[p2_r], (%[sp2]) \n\t" + "sb %[p1_r], (%[sp1]) \n\t" + "sb %[p0_r], (%[sp0]) \n\t" + "sb %[q0_r], (%[sq0]) \n\t" + "sb %[q1_r], (%[sq1]) \n\t" + "sb %[q2_r], (%[sq2]) \n\t" + + : + : [p2_r] "r"(p2_r), [p1_r] "r"(p1_r), [p0_r] "r"(p0_r), + [q0_r] "r"(q0_r), [q1_r] "r"(q1_r), [q2_r] "r"(q2_r), + [sp2] "r"(sp2), [sp1] "r"(sp1), [sp0] "r"(sp0), [sq0] "r"(sq0), + [sq1] "r"(sq1), [sq2] "r"(sq2)); + } else if (mask & 0x000000FF) { + __asm__ __volatile__( + "sb %[p1_f0], (%[sp1]) \n\t" + "sb %[p0_f0], (%[sp0]) \n\t" + "sb %[q0_f0], (%[sq0]) \n\t" + "sb %[q1_f0], (%[sq1]) \n\t" + + : + : [p1_f0] "r"(p1_f0), [p0_f0] "r"(p0_f0), [q0_f0] "r"(q0_f0), + [q1_f0] "r"(q1_f0), [sp1] "r"(sp1), [sp0] "r"(sp0), + [sq0] "r"(sq0), [sq1] "r"(sq1)); + } + + __asm__ __volatile__( + "srl %[p2_r], %[p2_r], 16 \n\t" + "srl %[p1_r], %[p1_r], 16 \n\t" + "srl %[p0_r], %[p0_r], 16 \n\t" + "srl %[q0_r], %[q0_r], 16 \n\t" + "srl %[q1_r], %[q1_r], 16 \n\t" + "srl %[q2_r], %[q2_r], 16 \n\t" + "srl %[p1_f0], %[p1_f0], 8 \n\t" + "srl %[p0_f0], %[p0_f0], 8 \n\t" + "srl %[q0_f0], %[q0_f0], 8 \n\t" + "srl %[q1_f0], %[q1_f0], 8 \n\t" + + : [p2_r] "+r"(p2_r), [p1_r] "+r"(p1_r), [p0_r] "+r"(p0_r), + [q0_r] "+r"(q0_r), [q1_r] "+r"(q1_r), [q2_r] "+r"(q2_r), + [p1_f0] "+r"(p1_f0), [p0_f0] "+r"(p0_f0), [q0_f0] "+r"(q0_f0), + [q1_f0] "+r"(q1_f0) + :); + + if (mask & flat & 0x0000FF00) { + __asm__ __volatile__( + "sb %[p2_r], +1(%[sp2]) \n\t" + "sb %[p1_r], +1(%[sp1]) \n\t" + "sb %[p0_r], +1(%[sp0]) \n\t" + "sb %[q0_r], +1(%[sq0]) \n\t" + "sb %[q1_r], +1(%[sq1]) \n\t" + "sb %[q2_r], +1(%[sq2]) \n\t" + + : + : [p2_r] "r"(p2_r), [p1_r] "r"(p1_r), [p0_r] "r"(p0_r), + [q0_r] "r"(q0_r), [q1_r] "r"(q1_r), [q2_r] "r"(q2_r), + [sp2] "r"(sp2), [sp1] "r"(sp1), [sp0] "r"(sp0), [sq0] "r"(sq0), + [sq1] "r"(sq1), [sq2] "r"(sq2)); + } else if (mask & 0x0000FF00) { + __asm__ __volatile__( + "sb %[p1_f0], +1(%[sp1]) \n\t" + "sb %[p0_f0], +1(%[sp0]) \n\t" + "sb %[q0_f0], +1(%[sq0]) \n\t" + "sb %[q1_f0], +1(%[sq1]) \n\t" + + : + : [p1_f0] "r"(p1_f0), [p0_f0] "r"(p0_f0), [q0_f0] "r"(q0_f0), + [q1_f0] "r"(q1_f0), [sp1] "r"(sp1), [sp0] "r"(sp0), + [sq0] "r"(sq0), [sq1] "r"(sq1)); + } + + __asm__ __volatile__( + "srl %[p1_f0], %[p1_f0], 8 \n\t" + "srl %[p0_f0], %[p0_f0], 8 \n\t" + "srl %[q0_f0], %[q0_f0], 8 \n\t" + "srl %[q1_f0], %[q1_f0], 8 \n\t" + + : [p1_f0] "+r"(p1_f0), [p0_f0] "+r"(p0_f0), [q0_f0] "+r"(q0_f0), + [q1_f0] "+r"(q1_f0) + :); + + if (mask & flat & 0x00FF0000) { + __asm__ __volatile__( + "sb %[p2_l], +2(%[sp2]) \n\t" + "sb %[p1_l], +2(%[sp1]) \n\t" + "sb %[p0_l], +2(%[sp0]) \n\t" + "sb %[q0_l], +2(%[sq0]) \n\t" + "sb %[q1_l], +2(%[sq1]) \n\t" + "sb %[q2_l], +2(%[sq2]) \n\t" + + : + : [p2_l] "r"(p2_l), [p1_l] "r"(p1_l), [p0_l] "r"(p0_l), + [q0_l] "r"(q0_l), [q1_l] "r"(q1_l), [q2_l] "r"(q2_l), + [sp2] "r"(sp2), [sp1] "r"(sp1), [sp0] "r"(sp0), [sq0] "r"(sq0), + [sq1] "r"(sq1), [sq2] "r"(sq2)); + } else if (mask & 0x00FF0000) { + __asm__ __volatile__( + "sb %[p1_f0], +2(%[sp1]) \n\t" + "sb %[p0_f0], +2(%[sp0]) \n\t" + "sb %[q0_f0], +2(%[sq0]) \n\t" + "sb %[q1_f0], +2(%[sq1]) \n\t" + + : + : [p1_f0] "r"(p1_f0), [p0_f0] "r"(p0_f0), [q0_f0] "r"(q0_f0), + [q1_f0] "r"(q1_f0), [sp1] "r"(sp1), [sp0] "r"(sp0), + [sq0] "r"(sq0), [sq1] "r"(sq1)); + } + + __asm__ __volatile__( + "srl %[p2_l], %[p2_l], 16 \n\t" + "srl %[p1_l], %[p1_l], 16 \n\t" + "srl %[p0_l], %[p0_l], 16 \n\t" + "srl %[q0_l], %[q0_l], 16 \n\t" + "srl %[q1_l], %[q1_l], 16 \n\t" + "srl %[q2_l], %[q2_l], 16 \n\t" + "srl %[p1_f0], %[p1_f0], 8 \n\t" + "srl %[p0_f0], %[p0_f0], 8 \n\t" + "srl %[q0_f0], %[q0_f0], 8 \n\t" + "srl %[q1_f0], %[q1_f0], 8 \n\t" + + : [p2_l] "+r"(p2_l), [p1_l] "+r"(p1_l), [p0_l] "+r"(p0_l), + [q0_l] "+r"(q0_l), [q1_l] "+r"(q1_l), [q2_l] "+r"(q2_l), + [p1_f0] "+r"(p1_f0), [p0_f0] "+r"(p0_f0), [q0_f0] "+r"(q0_f0), + [q1_f0] "+r"(q1_f0) + :); + + if (mask & flat & 0xFF000000) { + __asm__ __volatile__( + "sb %[p2_l], +3(%[sp2]) \n\t" + "sb %[p1_l], +3(%[sp1]) \n\t" + "sb %[p0_l], +3(%[sp0]) \n\t" + "sb %[q0_l], +3(%[sq0]) \n\t" + "sb %[q1_l], +3(%[sq1]) \n\t" + "sb %[q2_l], +3(%[sq2]) \n\t" + + : + : [p2_l] "r"(p2_l), [p1_l] "r"(p1_l), [p0_l] "r"(p0_l), + [q0_l] "r"(q0_l), [q1_l] "r"(q1_l), [q2_l] "r"(q2_l), + [sp2] "r"(sp2), [sp1] "r"(sp1), [sp0] "r"(sp0), [sq0] "r"(sq0), + [sq1] "r"(sq1), [sq2] "r"(sq2)); + } else if (mask & 0xFF000000) { + __asm__ __volatile__( + "sb %[p1_f0], +3(%[sp1]) \n\t" + "sb %[p0_f0], +3(%[sp0]) \n\t" + "sb %[q0_f0], +3(%[sq0]) \n\t" + "sb %[q1_f0], +3(%[sq1]) \n\t" + + : + : [p1_f0] "r"(p1_f0), [p0_f0] "r"(p0_f0), [q0_f0] "r"(q0_f0), + [q1_f0] "r"(q1_f0), [sp1] "r"(sp1), [sp0] "r"(sp0), + [sq0] "r"(sq0), [sq1] "r"(sq1)); + } + } else if ((flat2 != 0) && (flat != 0) && (mask != 0)) { + /* f0 + f1 + f2 */ + /* f0 function */ + filter1_dspr2(mask, hev, p1, p0, q0, q1, &p1_f0, &p0_f0, &q0_f0, &q1_f0); + + /* f1 function */ + /* left 2 element operation */ + PACK_LEFT_0TO3() + mbfilter1_dspr2(p3_l, p2_l, p1_l, p0_l, q0_l, q1_l, q2_l, q3_l, &p2_l_f1, + &p1_l_f1, &p0_l_f1, &q0_l_f1, &q1_l_f1, &q2_l_f1); + + /* right 2 element operation */ + PACK_RIGHT_0TO3() + mbfilter1_dspr2(p3_r, p2_r, p1_r, p0_r, q0_r, q1_r, q2_r, q3_r, &p2_r_f1, + &p1_r_f1, &p0_r_f1, &q0_r_f1, &q1_r_f1, &q2_r_f1); + + /* f2 function */ + PACK_LEFT_4TO7() + wide_mbfilter_dspr2(&p7_l, &p6_l, &p5_l, &p4_l, &p3_l, &p2_l, &p1_l, + &p0_l, &q0_l, &q1_l, &q2_l, &q3_l, &q4_l, &q5_l, + &q6_l, &q7_l); + + PACK_RIGHT_4TO7() + wide_mbfilter_dspr2(&p7_r, &p6_r, &p5_r, &p4_r, &p3_r, &p2_r, &p1_r, + &p0_r, &q0_r, &q1_r, &q2_r, &q3_r, &q4_r, &q5_r, + &q6_r, &q7_r); + + if (mask & flat & flat2 & 0x000000FF) { + __asm__ __volatile__( + "sb %[p6_r], (%[sp6]) \n\t" + "sb %[p5_r], (%[sp5]) \n\t" + "sb %[p4_r], (%[sp4]) \n\t" + "sb %[p3_r], (%[sp3]) \n\t" + "sb %[p2_r], (%[sp2]) \n\t" + "sb %[p1_r], (%[sp1]) \n\t" + "sb %[p0_r], (%[sp0]) \n\t" + + : + : [p6_r] "r"(p6_r), [p5_r] "r"(p5_r), [p4_r] "r"(p4_r), + [p3_r] "r"(p3_r), [p2_r] "r"(p2_r), [p1_r] "r"(p1_r), + [sp6] "r"(sp6), [sp5] "r"(sp5), [sp4] "r"(sp4), [sp3] "r"(sp3), + [sp2] "r"(sp2), [sp1] "r"(sp1), [p0_r] "r"(p0_r), [sp0] "r"(sp0)); + + __asm__ __volatile__( + "sb %[q0_r], (%[sq0]) \n\t" + "sb %[q1_r], (%[sq1]) \n\t" + "sb %[q2_r], (%[sq2]) \n\t" + "sb %[q3_r], (%[sq3]) \n\t" + "sb %[q4_r], (%[sq4]) \n\t" + "sb %[q5_r], (%[sq5]) \n\t" + "sb %[q6_r], (%[sq6]) \n\t" + + : + : [q0_r] "r"(q0_r), [q1_r] "r"(q1_r), [q2_r] "r"(q2_r), + [q3_r] "r"(q3_r), [q4_r] "r"(q4_r), [q5_r] "r"(q5_r), + [q6_r] "r"(q6_r), [sq0] "r"(sq0), [sq1] "r"(sq1), [sq2] "r"(sq2), + [sq3] "r"(sq3), [sq4] "r"(sq4), [sq5] "r"(sq5), [sq6] "r"(sq6)); + } else if (mask & flat & 0x000000FF) { + __asm__ __volatile__( + "sb %[p2_r_f1], (%[sp2]) \n\t" + "sb %[p1_r_f1], (%[sp1]) \n\t" + "sb %[p0_r_f1], (%[sp0]) \n\t" + "sb %[q0_r_f1], (%[sq0]) \n\t" + "sb %[q1_r_f1], (%[sq1]) \n\t" + "sb %[q2_r_f1], (%[sq2]) \n\t" + + : + : [p2_r_f1] "r"(p2_r_f1), [p1_r_f1] "r"(p1_r_f1), + [p0_r_f1] "r"(p0_r_f1), [q0_r_f1] "r"(q0_r_f1), + [q1_r_f1] "r"(q1_r_f1), [q2_r_f1] "r"(q2_r_f1), [sp2] "r"(sp2), + [sp1] "r"(sp1), [sp0] "r"(sp0), [sq0] "r"(sq0), [sq1] "r"(sq1), + [sq2] "r"(sq2)); + } else if (mask & 0x000000FF) { + __asm__ __volatile__( + "sb %[p1_f0], (%[sp1]) \n\t" + "sb %[p0_f0], (%[sp0]) \n\t" + "sb %[q0_f0], (%[sq0]) \n\t" + "sb %[q1_f0], (%[sq1]) \n\t" + + : + : [p1_f0] "r"(p1_f0), [p0_f0] "r"(p0_f0), [q0_f0] "r"(q0_f0), + [q1_f0] "r"(q1_f0), [sp1] "r"(sp1), [sp0] "r"(sp0), + [sq0] "r"(sq0), [sq1] "r"(sq1)); + } + + __asm__ __volatile__( + "srl %[p6_r], %[p6_r], 16 \n\t" + "srl %[p5_r], %[p5_r], 16 \n\t" + "srl %[p4_r], %[p4_r], 16 \n\t" + "srl %[p3_r], %[p3_r], 16 \n\t" + "srl %[p2_r], %[p2_r], 16 \n\t" + "srl %[p1_r], %[p1_r], 16 \n\t" + "srl %[p0_r], %[p0_r], 16 \n\t" + "srl %[q0_r], %[q0_r], 16 \n\t" + "srl %[q1_r], %[q1_r], 16 \n\t" + "srl %[q2_r], %[q2_r], 16 \n\t" + "srl %[q3_r], %[q3_r], 16 \n\t" + "srl %[q4_r], %[q4_r], 16 \n\t" + "srl %[q5_r], %[q5_r], 16 \n\t" + "srl %[q6_r], %[q6_r], 16 \n\t" + + : [q0_r] "+r"(q0_r), [q1_r] "+r"(q1_r), [q2_r] "+r"(q2_r), + [q3_r] "+r"(q3_r), [q4_r] "+r"(q4_r), [q5_r] "+r"(q5_r), + [p6_r] "+r"(p6_r), [p5_r] "+r"(p5_r), [p4_r] "+r"(p4_r), + [p3_r] "+r"(p3_r), [p2_r] "+r"(p2_r), [p1_r] "+r"(p1_r), + [q6_r] "+r"(q6_r), [p0_r] "+r"(p0_r) + :); + + __asm__ __volatile__( + "srl %[p2_r_f1], %[p2_r_f1], 16 \n\t" + "srl %[p1_r_f1], %[p1_r_f1], 16 \n\t" + "srl %[p0_r_f1], %[p0_r_f1], 16 \n\t" + "srl %[q0_r_f1], %[q0_r_f1], 16 \n\t" + "srl %[q1_r_f1], %[q1_r_f1], 16 \n\t" + "srl %[q2_r_f1], %[q2_r_f1], 16 \n\t" + "srl %[p1_f0], %[p1_f0], 8 \n\t" + "srl %[p0_f0], %[p0_f0], 8 \n\t" + "srl %[q0_f0], %[q0_f0], 8 \n\t" + "srl %[q1_f0], %[q1_f0], 8 \n\t" + + : [p2_r_f1] "+r"(p2_r_f1), [p1_r_f1] "+r"(p1_r_f1), + [p0_r_f1] "+r"(p0_r_f1), [q0_r_f1] "+r"(q0_r_f1), + [q1_r_f1] "+r"(q1_r_f1), [q2_r_f1] "+r"(q2_r_f1), + [p1_f0] "+r"(p1_f0), [p0_f0] "+r"(p0_f0), [q0_f0] "+r"(q0_f0), + [q1_f0] "+r"(q1_f0) + :); + + if (mask & flat & flat2 & 0x0000FF00) { + __asm__ __volatile__( + "sb %[p6_r], +1(%[sp6]) \n\t" + "sb %[p5_r], +1(%[sp5]) \n\t" + "sb %[p4_r], +1(%[sp4]) \n\t" + "sb %[p3_r], +1(%[sp3]) \n\t" + "sb %[p2_r], +1(%[sp2]) \n\t" + "sb %[p1_r], +1(%[sp1]) \n\t" + "sb %[p0_r], +1(%[sp0]) \n\t" + + : + : [p6_r] "r"(p6_r), [p5_r] "r"(p5_r), [p4_r] "r"(p4_r), + [p3_r] "r"(p3_r), [p2_r] "r"(p2_r), [p1_r] "r"(p1_r), + [p0_r] "r"(p0_r), [sp6] "r"(sp6), [sp5] "r"(sp5), [sp4] "r"(sp4), + [sp3] "r"(sp3), [sp2] "r"(sp2), [sp1] "r"(sp1), [sp0] "r"(sp0)); + + __asm__ __volatile__( + "sb %[q0_r], +1(%[sq0]) \n\t" + "sb %[q1_r], +1(%[sq1]) \n\t" + "sb %[q2_r], +1(%[sq2]) \n\t" + "sb %[q3_r], +1(%[sq3]) \n\t" + "sb %[q4_r], +1(%[sq4]) \n\t" + "sb %[q5_r], +1(%[sq5]) \n\t" + "sb %[q6_r], +1(%[sq6]) \n\t" + + : + : [q0_r] "r"(q0_r), [q1_r] "r"(q1_r), [q2_r] "r"(q2_r), + [q3_r] "r"(q3_r), [q4_r] "r"(q4_r), [q5_r] "r"(q5_r), + [q6_r] "r"(q6_r), [sq0] "r"(sq0), [sq1] "r"(sq1), [sq2] "r"(sq2), + [sq3] "r"(sq3), [sq4] "r"(sq4), [sq5] "r"(sq5), [sq6] "r"(sq6)); + } else if (mask & flat & 0x0000FF00) { + __asm__ __volatile__( + "sb %[p2_r_f1], +1(%[sp2]) \n\t" + "sb %[p1_r_f1], +1(%[sp1]) \n\t" + "sb %[p0_r_f1], +1(%[sp0]) \n\t" + "sb %[q0_r_f1], +1(%[sq0]) \n\t" + "sb %[q1_r_f1], +1(%[sq1]) \n\t" + "sb %[q2_r_f1], +1(%[sq2]) \n\t" + + : + : [p2_r_f1] "r"(p2_r_f1), [p1_r_f1] "r"(p1_r_f1), + [p0_r_f1] "r"(p0_r_f1), [q0_r_f1] "r"(q0_r_f1), + [q1_r_f1] "r"(q1_r_f1), [q2_r_f1] "r"(q2_r_f1), [sp2] "r"(sp2), + [sp1] "r"(sp1), [sp0] "r"(sp0), [sq0] "r"(sq0), [sq1] "r"(sq1), + [sq2] "r"(sq2)); + } else if (mask & 0x0000FF00) { + __asm__ __volatile__( + "sb %[p1_f0], +1(%[sp1]) \n\t" + "sb %[p0_f0], +1(%[sp0]) \n\t" + "sb %[q0_f0], +1(%[sq0]) \n\t" + "sb %[q1_f0], +1(%[sq1]) \n\t" + + : + : [p1_f0] "r"(p1_f0), [p0_f0] "r"(p0_f0), [q0_f0] "r"(q0_f0), + [q1_f0] "r"(q1_f0), [sp1] "r"(sp1), [sp0] "r"(sp0), + [sq0] "r"(sq0), [sq1] "r"(sq1)); + } + + __asm__ __volatile__( + "srl %[p1_f0], %[p1_f0], 8 \n\t" + "srl %[p0_f0], %[p0_f0], 8 \n\t" + "srl %[q0_f0], %[q0_f0], 8 \n\t" + "srl %[q1_f0], %[q1_f0], 8 \n\t" + + : [p1_f0] "+r"(p1_f0), [p0_f0] "+r"(p0_f0), [q0_f0] "+r"(q0_f0), + [q1_f0] "+r"(q1_f0) + :); + + if (mask & flat & flat2 & 0x00FF0000) { + __asm__ __volatile__( + "sb %[p6_l], +2(%[sp6]) \n\t" + "sb %[p5_l], +2(%[sp5]) \n\t" + "sb %[p4_l], +2(%[sp4]) \n\t" + "sb %[p3_l], +2(%[sp3]) \n\t" + "sb %[p2_l], +2(%[sp2]) \n\t" + "sb %[p1_l], +2(%[sp1]) \n\t" + "sb %[p0_l], +2(%[sp0]) \n\t" + + : + : [p6_l] "r"(p6_l), [p5_l] "r"(p5_l), [p4_l] "r"(p4_l), + [p3_l] "r"(p3_l), [p2_l] "r"(p2_l), [p1_l] "r"(p1_l), + [p0_l] "r"(p0_l), [sp6] "r"(sp6), [sp5] "r"(sp5), [sp4] "r"(sp4), + [sp3] "r"(sp3), [sp2] "r"(sp2), [sp1] "r"(sp1), [sp0] "r"(sp0)); + + __asm__ __volatile__( + "sb %[q0_l], +2(%[sq0]) \n\t" + "sb %[q1_l], +2(%[sq1]) \n\t" + "sb %[q2_l], +2(%[sq2]) \n\t" + "sb %[q3_l], +2(%[sq3]) \n\t" + "sb %[q4_l], +2(%[sq4]) \n\t" + "sb %[q5_l], +2(%[sq5]) \n\t" + "sb %[q6_l], +2(%[sq6]) \n\t" + + : + : [q0_l] "r"(q0_l), [q1_l] "r"(q1_l), [q2_l] "r"(q2_l), + [q3_l] "r"(q3_l), [q4_l] "r"(q4_l), [q5_l] "r"(q5_l), + [q6_l] "r"(q6_l), [sq0] "r"(sq0), [sq1] "r"(sq1), [sq2] "r"(sq2), + [sq3] "r"(sq3), [sq4] "r"(sq4), [sq5] "r"(sq5), [sq6] "r"(sq6)); + } else if (mask & flat & 0x00FF0000) { + __asm__ __volatile__( + "sb %[p2_l_f1], +2(%[sp2]) \n\t" + "sb %[p1_l_f1], +2(%[sp1]) \n\t" + "sb %[p0_l_f1], +2(%[sp0]) \n\t" + "sb %[q0_l_f1], +2(%[sq0]) \n\t" + "sb %[q1_l_f1], +2(%[sq1]) \n\t" + "sb %[q2_l_f1], +2(%[sq2]) \n\t" + + : + : [p2_l_f1] "r"(p2_l_f1), [p1_l_f1] "r"(p1_l_f1), + [p0_l_f1] "r"(p0_l_f1), [q0_l_f1] "r"(q0_l_f1), + [q1_l_f1] "r"(q1_l_f1), [q2_l_f1] "r"(q2_l_f1), [sp2] "r"(sp2), + [sp1] "r"(sp1), [sp0] "r"(sp0), [sq0] "r"(sq0), [sq1] "r"(sq1), + [sq2] "r"(sq2)); + } else if (mask & 0x00FF0000) { + __asm__ __volatile__( + "sb %[p1_f0], +2(%[sp1]) \n\t" + "sb %[p0_f0], +2(%[sp0]) \n\t" + "sb %[q0_f0], +2(%[sq0]) \n\t" + "sb %[q1_f0], +2(%[sq1]) \n\t" + + : + : [p1_f0] "r"(p1_f0), [p0_f0] "r"(p0_f0), [q0_f0] "r"(q0_f0), + [q1_f0] "r"(q1_f0), [sp1] "r"(sp1), [sp0] "r"(sp0), + [sq0] "r"(sq0), [sq1] "r"(sq1)); + } + + __asm__ __volatile__( + "srl %[p6_l], %[p6_l], 16 \n\t" + "srl %[p5_l], %[p5_l], 16 \n\t" + "srl %[p4_l], %[p4_l], 16 \n\t" + "srl %[p3_l], %[p3_l], 16 \n\t" + "srl %[p2_l], %[p2_l], 16 \n\t" + "srl %[p1_l], %[p1_l], 16 \n\t" + "srl %[p0_l], %[p0_l], 16 \n\t" + "srl %[q0_l], %[q0_l], 16 \n\t" + "srl %[q1_l], %[q1_l], 16 \n\t" + "srl %[q2_l], %[q2_l], 16 \n\t" + "srl %[q3_l], %[q3_l], 16 \n\t" + "srl %[q4_l], %[q4_l], 16 \n\t" + "srl %[q5_l], %[q5_l], 16 \n\t" + "srl %[q6_l], %[q6_l], 16 \n\t" + + : [q0_l] "+r"(q0_l), [q1_l] "+r"(q1_l), [q2_l] "+r"(q2_l), + [q3_l] "+r"(q3_l), [q4_l] "+r"(q4_l), [q5_l] "+r"(q5_l), + [q6_l] "+r"(q6_l), [p6_l] "+r"(p6_l), [p5_l] "+r"(p5_l), + [p4_l] "+r"(p4_l), [p3_l] "+r"(p3_l), [p2_l] "+r"(p2_l), + [p1_l] "+r"(p1_l), [p0_l] "+r"(p0_l) + :); + + __asm__ __volatile__( + "srl %[p2_l_f1], %[p2_l_f1], 16 \n\t" + "srl %[p1_l_f1], %[p1_l_f1], 16 \n\t" + "srl %[p0_l_f1], %[p0_l_f1], 16 \n\t" + "srl %[q0_l_f1], %[q0_l_f1], 16 \n\t" + "srl %[q1_l_f1], %[q1_l_f1], 16 \n\t" + "srl %[q2_l_f1], %[q2_l_f1], 16 \n\t" + "srl %[p1_f0], %[p1_f0], 8 \n\t" + "srl %[p0_f0], %[p0_f0], 8 \n\t" + "srl %[q0_f0], %[q0_f0], 8 \n\t" + "srl %[q1_f0], %[q1_f0], 8 \n\t" + + : [p2_l_f1] "+r"(p2_l_f1), [p1_l_f1] "+r"(p1_l_f1), + [p0_l_f1] "+r"(p0_l_f1), [q0_l_f1] "+r"(q0_l_f1), + [q1_l_f1] "+r"(q1_l_f1), [q2_l_f1] "+r"(q2_l_f1), + [p1_f0] "+r"(p1_f0), [p0_f0] "+r"(p0_f0), [q0_f0] "+r"(q0_f0), + [q1_f0] "+r"(q1_f0) + :); + + if (mask & flat & flat2 & 0xFF000000) { + __asm__ __volatile__( + "sb %[p6_l], +3(%[sp6]) \n\t" + "sb %[p5_l], +3(%[sp5]) \n\t" + "sb %[p4_l], +3(%[sp4]) \n\t" + "sb %[p3_l], +3(%[sp3]) \n\t" + "sb %[p2_l], +3(%[sp2]) \n\t" + "sb %[p1_l], +3(%[sp1]) \n\t" + "sb %[p0_l], +3(%[sp0]) \n\t" + + : + : [p6_l] "r"(p6_l), [p5_l] "r"(p5_l), [p4_l] "r"(p4_l), + [p3_l] "r"(p3_l), [p2_l] "r"(p2_l), [p1_l] "r"(p1_l), + [p0_l] "r"(p0_l), [sp6] "r"(sp6), [sp5] "r"(sp5), [sp4] "r"(sp4), + [sp3] "r"(sp3), [sp2] "r"(sp2), [sp1] "r"(sp1), [sp0] "r"(sp0)); + + __asm__ __volatile__( + "sb %[q0_l], +3(%[sq0]) \n\t" + "sb %[q1_l], +3(%[sq1]) \n\t" + "sb %[q2_l], +3(%[sq2]) \n\t" + "sb %[q3_l], +3(%[sq3]) \n\t" + "sb %[q4_l], +3(%[sq4]) \n\t" + "sb %[q5_l], +3(%[sq5]) \n\t" + "sb %[q6_l], +3(%[sq6]) \n\t" + + : + : [q0_l] "r"(q0_l), [q1_l] "r"(q1_l), [q2_l] "r"(q2_l), + [q3_l] "r"(q3_l), [q4_l] "r"(q4_l), [q5_l] "r"(q5_l), + [sq0] "r"(sq0), [sq1] "r"(sq1), [sq2] "r"(sq2), [sq3] "r"(sq3), + [sq4] "r"(sq4), [sq5] "r"(sq5), [q6_l] "r"(q6_l), [sq6] "r"(sq6)); + } else if (mask & flat & 0xFF000000) { + __asm__ __volatile__( + "sb %[p2_l_f1], +3(%[sp2]) \n\t" + "sb %[p1_l_f1], +3(%[sp1]) \n\t" + "sb %[p0_l_f1], +3(%[sp0]) \n\t" + "sb %[q0_l_f1], +3(%[sq0]) \n\t" + "sb %[q1_l_f1], +3(%[sq1]) \n\t" + "sb %[q2_l_f1], +3(%[sq2]) \n\t" + + : + : [p2_l_f1] "r"(p2_l_f1), [p1_l_f1] "r"(p1_l_f1), + [p0_l_f1] "r"(p0_l_f1), [q0_l_f1] "r"(q0_l_f1), + [q1_l_f1] "r"(q1_l_f1), [q2_l_f1] "r"(q2_l_f1), [sp2] "r"(sp2), + [sp1] "r"(sp1), [sp0] "r"(sp0), [sq0] "r"(sq0), [sq1] "r"(sq1), + [sq2] "r"(sq2)); + } else if (mask & 0xFF000000) { + __asm__ __volatile__( + "sb %[p1_f0], +3(%[sp1]) \n\t" + "sb %[p0_f0], +3(%[sp0]) \n\t" + "sb %[q0_f0], +3(%[sq0]) \n\t" + "sb %[q1_f0], +3(%[sq1]) \n\t" + + : + : [p1_f0] "r"(p1_f0), [p0_f0] "r"(p0_f0), [q0_f0] "r"(q0_f0), + [q1_f0] "r"(q1_f0), [sp1] "r"(sp1), [sp0] "r"(sp0), + [sq0] "r"(sq0), [sq1] "r"(sq1)); + } + } + + s = s + 4; + } +} + +void vpx_lpf_horizontal_16_dspr2(unsigned char *s, int pitch, + const uint8_t *blimit, const uint8_t *limit, + const uint8_t *thresh) { + mb_lpf_horizontal_edge(s, pitch, blimit, limit, thresh, 1); +} + +void vpx_lpf_horizontal_16_dual_dspr2(unsigned char *s, int pitch, + const uint8_t *blimit, + const uint8_t *limit, + const uint8_t *thresh) { + mb_lpf_horizontal_edge(s, pitch, blimit, limit, thresh, 2); +} +#endif // #if HAVE_DSPR2 diff --git a/vpx_dsp/mips/loopfilter_mb_vert_dspr2.c b/vpx_dsp/mips/loopfilter_mb_vert_dspr2.c new file mode 100644 index 0000000..96e8d88 --- /dev/null +++ b/vpx_dsp/mips/loopfilter_mb_vert_dspr2.c @@ -0,0 +1,756 @@ +/* + * Copyright (c) 2013 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include + +#include "./vpx_dsp_rtcd.h" +#include "vpx/vpx_integer.h" +#include "vpx_dsp/mips/common_dspr2.h" +#include "vpx_dsp/mips/loopfilter_filters_dspr2.h" +#include "vpx_dsp/mips/loopfilter_macros_dspr2.h" +#include "vpx_dsp/mips/loopfilter_masks_dspr2.h" +#include "vpx_mem/vpx_mem.h" + +#if HAVE_DSPR2 +void vpx_lpf_vertical_16_dspr2(uint8_t *s, int pitch, const uint8_t *blimit, + const uint8_t *limit, const uint8_t *thresh) { + uint8_t i; + uint32_t mask, hev, flat, flat2; + uint8_t *s1, *s2, *s3, *s4; + uint32_t prim1, prim2, sec3, sec4, prim3, prim4; + uint32_t thresh_vec, flimit_vec, limit_vec; + uint32_t uflimit, ulimit, uthresh; + uint32_t p7, p6, p5, p4, p3, p2, p1, p0, q0, q1, q2, q3, q4, q5, q6, q7; + uint32_t p1_f0, p0_f0, q0_f0, q1_f0; + uint32_t p7_l, p6_l, p5_l, p4_l, p3_l, p2_l, p1_l, p0_l; + uint32_t q0_l, q1_l, q2_l, q3_l, q4_l, q5_l, q6_l, q7_l; + uint32_t p7_r, p6_r, p5_r, p4_r, p3_r, p2_r, p1_r, p0_r; + uint32_t q0_r, q1_r, q2_r, q3_r, q4_r, q5_r, q6_r, q7_r; + uint32_t p2_l_f1, p1_l_f1, p0_l_f1, p2_r_f1, p1_r_f1, p0_r_f1; + uint32_t q0_l_f1, q1_l_f1, q2_l_f1, q0_r_f1, q1_r_f1, q2_r_f1; + + uflimit = *blimit; + ulimit = *limit; + uthresh = *thresh; + + /* create quad-byte */ + __asm__ __volatile__( + "replv.qb %[thresh_vec], %[uthresh] \n\t" + "replv.qb %[flimit_vec], %[uflimit] \n\t" + "replv.qb %[limit_vec], %[ulimit] \n\t" + + : [thresh_vec] "=&r"(thresh_vec), [flimit_vec] "=&r"(flimit_vec), + [limit_vec] "=r"(limit_vec) + : [uthresh] "r"(uthresh), [uflimit] "r"(uflimit), [ulimit] "r"(ulimit)); + + prefetch_store(s + pitch); + + for (i = 0; i < 2; i++) { + s1 = s; + s2 = s + pitch; + s3 = s2 + pitch; + s4 = s3 + pitch; + s = s4 + pitch; + + __asm__ __volatile__( + "lw %[p0], -4(%[s1]) \n\t" + "lw %[p1], -4(%[s2]) \n\t" + "lw %[p2], -4(%[s3]) \n\t" + "lw %[p3], -4(%[s4]) \n\t" + "lw %[p4], -8(%[s1]) \n\t" + "lw %[p5], -8(%[s2]) \n\t" + "lw %[p6], -8(%[s3]) \n\t" + "lw %[p7], -8(%[s4]) \n\t" + + : [p3] "=&r"(p3), [p2] "=&r"(p2), [p1] "=&r"(p1), [p0] "=&r"(p0), + [p7] "=&r"(p7), [p6] "=&r"(p6), [p5] "=&r"(p5), [p4] "=&r"(p4) + : [s1] "r"(s1), [s2] "r"(s2), [s3] "r"(s3), [s4] "r"(s4)); + + __asm__ __volatile__( + "lw %[q3], (%[s1]) \n\t" + "lw %[q2], (%[s2]) \n\t" + "lw %[q1], (%[s3]) \n\t" + "lw %[q0], (%[s4]) \n\t" + "lw %[q7], +4(%[s1]) \n\t" + "lw %[q6], +4(%[s2]) \n\t" + "lw %[q5], +4(%[s3]) \n\t" + "lw %[q4], +4(%[s4]) \n\t" + + : [q3] "=&r"(q3), [q2] "=&r"(q2), [q1] "=&r"(q1), [q0] "=&r"(q0), + [q7] "=&r"(q7), [q6] "=&r"(q6), [q5] "=&r"(q5), [q4] "=&r"(q4) + : [s1] "r"(s1), [s2] "r"(s2), [s3] "r"(s3), [s4] "r"(s4)); + + /* transpose p3, p2, p1, p0 + original (when loaded from memory) + register -4 -3 -2 -1 + p0 p0_0 p0_1 p0_2 p0_3 + p1 p1_0 p1_1 p1_2 p1_3 + p2 p2_0 p2_1 p2_2 p2_3 + p3 p3_0 p3_1 p3_2 p3_3 + + after transpose + register + p0 p3_3 p2_3 p1_3 p0_3 + p1 p3_2 p2_2 p1_2 p0_2 + p2 p3_1 p2_1 p1_1 p0_1 + p3 p3_0 p2_0 p1_0 p0_0 + */ + __asm__ __volatile__( + "precrq.qb.ph %[prim1], %[p0], %[p1] \n\t" + "precr.qb.ph %[prim2], %[p0], %[p1] \n\t" + "precrq.qb.ph %[prim3], %[p2], %[p3] \n\t" + "precr.qb.ph %[prim4], %[p2], %[p3] \n\t" + + "precrq.qb.ph %[p1], %[prim1], %[prim2] \n\t" + "precr.qb.ph %[p3], %[prim1], %[prim2] \n\t" + "precrq.qb.ph %[sec3], %[prim3], %[prim4] \n\t" + "precr.qb.ph %[sec4], %[prim3], %[prim4] \n\t" + + "precrq.ph.w %[p0], %[p1], %[sec3] \n\t" + "precrq.ph.w %[p2], %[p3], %[sec4] \n\t" + "append %[p1], %[sec3], 16 \n\t" + "append %[p3], %[sec4], 16 \n\t" + + : [prim1] "=&r"(prim1), [prim2] "=&r"(prim2), [prim3] "=&r"(prim3), + [prim4] "=&r"(prim4), [p0] "+r"(p0), [p1] "+r"(p1), [p2] "+r"(p2), + [p3] "+r"(p3), [sec3] "=&r"(sec3), [sec4] "=&r"(sec4) + :); + + /* transpose q0, q1, q2, q3 + original (when loaded from memory) + register +1 +2 +3 +4 + q3 q3_0 q3_1 q3_2 q3_3 + q2 q2_0 q2_1 q2_2 q2_3 + q1 q1_0 q1_1 q1_2 q1_3 + q0 q0_0 q0_1 q0_2 q0_3 + + after transpose + register + q3 q0_3 q1_3 q2_3 q3_3 + q2 q0_2 q1_2 q2_2 q3_2 + q1 q0_1 q1_1 q2_1 q3_1 + q0 q0_0 q1_0 q2_0 q3_0 + */ + __asm__ __volatile__( + "precrq.qb.ph %[prim1], %[q3], %[q2] \n\t" + "precr.qb.ph %[prim2], %[q3], %[q2] \n\t" + "precrq.qb.ph %[prim3], %[q1], %[q0] \n\t" + "precr.qb.ph %[prim4], %[q1], %[q0] \n\t" + + "precrq.qb.ph %[q2], %[prim1], %[prim2] \n\t" + "precr.qb.ph %[q0], %[prim1], %[prim2] \n\t" + "precrq.qb.ph %[sec3], %[prim3], %[prim4] \n\t" + "precr.qb.ph %[sec4], %[prim3], %[prim4] \n\t" + + "precrq.ph.w %[q3], %[q2], %[sec3] \n\t" + "precrq.ph.w %[q1], %[q0], %[sec4] \n\t" + "append %[q2], %[sec3], 16 \n\t" + "append %[q0], %[sec4], 16 \n\t" + + : [prim1] "=&r"(prim1), [prim2] "=&r"(prim2), [prim3] "=&r"(prim3), + [prim4] "=&r"(prim4), [q3] "+r"(q3), [q2] "+r"(q2), [q1] "+r"(q1), + [q0] "+r"(q0), [sec3] "=&r"(sec3), [sec4] "=&r"(sec4) + :); + + /* transpose p7, p6, p5, p4 + original (when loaded from memory) + register -8 -7 -6 -5 + p4 p4_0 p4_1 p4_2 p4_3 + p5 p5_0 p5_1 p5_2 p5_3 + p6 p6_0 p6_1 p6_2 p6_3 + p7 p7_0 p7_1 p7_2 p7_3 + + after transpose + register + p4 p7_3 p6_3 p5_3 p4_3 + p5 p7_2 p6_2 p5_2 p4_2 + p6 p7_1 p6_1 p5_1 p4_1 + p7 p7_0 p6_0 p5_0 p4_0 + */ + __asm__ __volatile__( + "precrq.qb.ph %[prim1], %[p4], %[p5] \n\t" + "precr.qb.ph %[prim2], %[p4], %[p5] \n\t" + "precrq.qb.ph %[prim3], %[p6], %[p7] \n\t" + "precr.qb.ph %[prim4], %[p6], %[p7] \n\t" + + "precrq.qb.ph %[p5], %[prim1], %[prim2] \n\t" + "precr.qb.ph %[p7], %[prim1], %[prim2] \n\t" + "precrq.qb.ph %[sec3], %[prim3], %[prim4] \n\t" + "precr.qb.ph %[sec4], %[prim3], %[prim4] \n\t" + + "precrq.ph.w %[p4], %[p5], %[sec3] \n\t" + "precrq.ph.w %[p6], %[p7], %[sec4] \n\t" + "append %[p5], %[sec3], 16 \n\t" + "append %[p7], %[sec4], 16 \n\t" + + : [prim1] "=&r"(prim1), [prim2] "=&r"(prim2), [prim3] "=&r"(prim3), + [prim4] "=&r"(prim4), [p4] "+r"(p4), [p5] "+r"(p5), [p6] "+r"(p6), + [p7] "+r"(p7), [sec3] "=&r"(sec3), [sec4] "=&r"(sec4) + :); + + /* transpose q4, q5, q6, q7 + original (when loaded from memory) + register +5 +6 +7 +8 + q7 q7_0 q7_1 q7_2 q7_3 + q6 q6_0 q6_1 q6_2 q6_3 + q5 q5_0 q5_1 q5_2 q5_3 + q4 q4_0 q4_1 q4_2 q4_3 + + after transpose + register + q7 q4_3 q5_3 q26_3 q7_3 + q6 q4_2 q5_2 q26_2 q7_2 + q5 q4_1 q5_1 q26_1 q7_1 + q4 q4_0 q5_0 q26_0 q7_0 + */ + __asm__ __volatile__( + "precrq.qb.ph %[prim1], %[q7], %[q6] \n\t" + "precr.qb.ph %[prim2], %[q7], %[q6] \n\t" + "precrq.qb.ph %[prim3], %[q5], %[q4] \n\t" + "precr.qb.ph %[prim4], %[q5], %[q4] \n\t" + + "precrq.qb.ph %[q6], %[prim1], %[prim2] \n\t" + "precr.qb.ph %[q4], %[prim1], %[prim2] \n\t" + "precrq.qb.ph %[sec3], %[prim3], %[prim4] \n\t" + "precr.qb.ph %[sec4], %[prim3], %[prim4] \n\t" + + "precrq.ph.w %[q7], %[q6], %[sec3] \n\t" + "precrq.ph.w %[q5], %[q4], %[sec4] \n\t" + "append %[q6], %[sec3], 16 \n\t" + "append %[q4], %[sec4], 16 \n\t" + + : [prim1] "=&r"(prim1), [prim2] "=&r"(prim2), [prim3] "=&r"(prim3), + [prim4] "=&r"(prim4), [q7] "+r"(q7), [q6] "+r"(q6), [q5] "+r"(q5), + [q4] "+r"(q4), [sec3] "=&r"(sec3), [sec4] "=&r"(sec4) + :); + + filter_hev_mask_flatmask4_dspr2(limit_vec, flimit_vec, thresh_vec, p1, p0, + p3, p2, q0, q1, q2, q3, &hev, &mask, &flat); + + flatmask5(p7, p6, p5, p4, p0, q0, q4, q5, q6, q7, &flat2); + + /* f0 */ + if (((flat2 == 0) && (flat == 0) && (mask != 0)) || + ((flat2 != 0) && (flat == 0) && (mask != 0))) { + filter1_dspr2(mask, hev, p1, p0, q0, q1, &p1_f0, &p0_f0, &q0_f0, &q1_f0); + STORE_F0() + } else if ((flat2 == 0XFFFFFFFF) && (flat == 0xFFFFFFFF) && + (mask == 0xFFFFFFFF)) { + /* f2 */ + PACK_LEFT_0TO3() + PACK_LEFT_4TO7() + wide_mbfilter_dspr2(&p7_l, &p6_l, &p5_l, &p4_l, &p3_l, &p2_l, &p1_l, + &p0_l, &q0_l, &q1_l, &q2_l, &q3_l, &q4_l, &q5_l, + &q6_l, &q7_l); + + PACK_RIGHT_0TO3() + PACK_RIGHT_4TO7() + wide_mbfilter_dspr2(&p7_r, &p6_r, &p5_r, &p4_r, &p3_r, &p2_r, &p1_r, + &p0_r, &q0_r, &q1_r, &q2_r, &q3_r, &q4_r, &q5_r, + &q6_r, &q7_r); + + STORE_F2() + } else if ((flat2 == 0) && (flat == 0xFFFFFFFF) && (mask == 0xFFFFFFFF)) { + /* f1 */ + PACK_LEFT_0TO3() + mbfilter_dspr2(&p3_l, &p2_l, &p1_l, &p0_l, &q0_l, &q1_l, &q2_l, &q3_l); + + PACK_RIGHT_0TO3() + mbfilter_dspr2(&p3_r, &p2_r, &p1_r, &p0_r, &q0_r, &q1_r, &q2_r, &q3_r); + + STORE_F1() + } else if ((flat2 == 0) && (flat != 0) && (mask != 0)) { + /* f0 + f1 */ + filter1_dspr2(mask, hev, p1, p0, q0, q1, &p1_f0, &p0_f0, &q0_f0, &q1_f0); + + /* left 2 element operation */ + PACK_LEFT_0TO3() + mbfilter_dspr2(&p3_l, &p2_l, &p1_l, &p0_l, &q0_l, &q1_l, &q2_l, &q3_l); + + /* right 2 element operation */ + PACK_RIGHT_0TO3() + mbfilter_dspr2(&p3_r, &p2_r, &p1_r, &p0_r, &q0_r, &q1_r, &q2_r, &q3_r); + + if (mask & flat & 0x000000FF) { + __asm__ __volatile__( + "sb %[p2_r], -3(%[s4]) \n\t" + "sb %[p1_r], -2(%[s4]) \n\t" + "sb %[p0_r], -1(%[s4]) \n\t" + "sb %[q0_r], (%[s4]) \n\t" + "sb %[q1_r], +1(%[s4]) \n\t" + "sb %[q2_r], +2(%[s4]) \n\t" + + : + : [p2_r] "r"(p2_r), [p1_r] "r"(p1_r), [p0_r] "r"(p0_r), + [q0_r] "r"(q0_r), [q1_r] "r"(q1_r), [q2_r] "r"(q2_r), + [s4] "r"(s4)); + } else if (mask & 0x000000FF) { + __asm__ __volatile__( + "sb %[p1_f0], -2(%[s4]) \n\t" + "sb %[p0_f0], -1(%[s4]) \n\t" + "sb %[q0_f0], (%[s4]) \n\t" + "sb %[q1_f0], +1(%[s4]) \n\t" + + : + : [p1_f0] "r"(p1_f0), [p0_f0] "r"(p0_f0), [q0_f0] "r"(q0_f0), + [q1_f0] "r"(q1_f0), [s4] "r"(s4)); + } + + __asm__ __volatile__( + "srl %[p2_r], %[p2_r], 16 \n\t" + "srl %[p1_r], %[p1_r], 16 \n\t" + "srl %[p0_r], %[p0_r], 16 \n\t" + "srl %[q0_r], %[q0_r], 16 \n\t" + "srl %[q1_r], %[q1_r], 16 \n\t" + "srl %[q2_r], %[q2_r], 16 \n\t" + "srl %[p1_f0], %[p1_f0], 8 \n\t" + "srl %[p0_f0], %[p0_f0], 8 \n\t" + "srl %[q0_f0], %[q0_f0], 8 \n\t" + "srl %[q1_f0], %[q1_f0], 8 \n\t" + + : [p2_r] "+r"(p2_r), [p1_r] "+r"(p1_r), [p0_r] "+r"(p0_r), + [q0_r] "+r"(q0_r), [q1_r] "+r"(q1_r), [q2_r] "+r"(q2_r), + [p1_f0] "+r"(p1_f0), [p0_f0] "+r"(p0_f0), [q0_f0] "+r"(q0_f0), + [q1_f0] "+r"(q1_f0) + :); + + if (mask & flat & 0x0000FF00) { + __asm__ __volatile__( + "sb %[p2_r], -3(%[s3]) \n\t" + "sb %[p1_r], -2(%[s3]) \n\t" + "sb %[p0_r], -1(%[s3]) \n\t" + "sb %[q0_r], (%[s3]) \n\t" + "sb %[q1_r], +1(%[s3]) \n\t" + "sb %[q2_r], +2(%[s3]) \n\t" + + : + : [p2_r] "r"(p2_r), [p1_r] "r"(p1_r), [p0_r] "r"(p0_r), + [q0_r] "r"(q0_r), [q1_r] "r"(q1_r), [q2_r] "r"(q2_r), + [s3] "r"(s3)); + } else if (mask & 0x0000FF00) { + __asm__ __volatile__( + "sb %[p1_f0], -2(%[s3]) \n\t" + "sb %[p0_f0], -1(%[s3]) \n\t" + "sb %[q0_f0], (%[s3]) \n\t" + "sb %[q1_f0], +1(%[s3]) \n\t" + + : + : [p1_f0] "r"(p1_f0), [p0_f0] "r"(p0_f0), [q0_f0] "r"(q0_f0), + [q1_f0] "r"(q1_f0), [s3] "r"(s3)); + } + + __asm__ __volatile__( + "srl %[p1_f0], %[p1_f0], 8 \n\t" + "srl %[p0_f0], %[p0_f0], 8 \n\t" + "srl %[q0_f0], %[q0_f0], 8 \n\t" + "srl %[q1_f0], %[q1_f0], 8 \n\t" + + : [p1_f0] "+r"(p1_f0), [p0_f0] "+r"(p0_f0), [q0_f0] "+r"(q0_f0), + [q1_f0] "+r"(q1_f0) + :); + + if (mask & flat & 0x00FF0000) { + __asm__ __volatile__( + "sb %[p2_l], -3(%[s2]) \n\t" + "sb %[p1_l], -2(%[s2]) \n\t" + "sb %[p0_l], -1(%[s2]) \n\t" + "sb %[q0_l], (%[s2]) \n\t" + "sb %[q1_l], +1(%[s2]) \n\t" + "sb %[q2_l], +2(%[s2]) \n\t" + + : + : [p2_l] "r"(p2_l), [p1_l] "r"(p1_l), [p0_l] "r"(p0_l), + [q0_l] "r"(q0_l), [q1_l] "r"(q1_l), [q2_l] "r"(q2_l), + [s2] "r"(s2)); + } else if (mask & 0x00FF0000) { + __asm__ __volatile__( + "sb %[p1_f0], -2(%[s2]) \n\t" + "sb %[p0_f0], -1(%[s2]) \n\t" + "sb %[q0_f0], (%[s2]) \n\t" + "sb %[q1_f0], +1(%[s2]) \n\t" + + : + : [p1_f0] "r"(p1_f0), [p0_f0] "r"(p0_f0), [q0_f0] "r"(q0_f0), + [q1_f0] "r"(q1_f0), [s2] "r"(s2)); + } + + __asm__ __volatile__( + "srl %[p2_l], %[p2_l], 16 \n\t" + "srl %[p1_l], %[p1_l], 16 \n\t" + "srl %[p0_l], %[p0_l], 16 \n\t" + "srl %[q0_l], %[q0_l], 16 \n\t" + "srl %[q1_l], %[q1_l], 16 \n\t" + "srl %[q2_l], %[q2_l], 16 \n\t" + "srl %[p1_f0], %[p1_f0], 8 \n\t" + "srl %[p0_f0], %[p0_f0], 8 \n\t" + "srl %[q0_f0], %[q0_f0], 8 \n\t" + "srl %[q1_f0], %[q1_f0], 8 \n\t" + + : [p2_l] "+r"(p2_l), [p1_l] "+r"(p1_l), [p0_l] "+r"(p0_l), + [q0_l] "+r"(q0_l), [q1_l] "+r"(q1_l), [q2_l] "+r"(q2_l), + [p1_f0] "+r"(p1_f0), [p0_f0] "+r"(p0_f0), [q0_f0] "+r"(q0_f0), + [q1_f0] "+r"(q1_f0) + :); + + if (mask & flat & 0xFF000000) { + __asm__ __volatile__( + "sb %[p2_l], -3(%[s1]) \n\t" + "sb %[p1_l], -2(%[s1]) \n\t" + "sb %[p0_l], -1(%[s1]) \n\t" + "sb %[q0_l], (%[s1]) \n\t" + "sb %[q1_l], +1(%[s1]) \n\t" + "sb %[q2_l], +2(%[s1]) \n\t" + + : + : [p2_l] "r"(p2_l), [p1_l] "r"(p1_l), [p0_l] "r"(p0_l), + [q0_l] "r"(q0_l), [q1_l] "r"(q1_l), [q2_l] "r"(q2_l), + [s1] "r"(s1)); + } else if (mask & 0xFF000000) { + __asm__ __volatile__( + "sb %[p1_f0], -2(%[s1]) \n\t" + "sb %[p0_f0], -1(%[s1]) \n\t" + "sb %[q0_f0], (%[s1]) \n\t" + "sb %[q1_f0], +1(%[s1]) \n\t" + + : + : [p1_f0] "r"(p1_f0), [p0_f0] "r"(p0_f0), [q0_f0] "r"(q0_f0), + [q1_f0] "r"(q1_f0), [s1] "r"(s1)); + } + } else if ((flat2 != 0) && (flat != 0) && (mask != 0)) { + /* f0+f1+f2 */ + filter1_dspr2(mask, hev, p1, p0, q0, q1, &p1_f0, &p0_f0, &q0_f0, &q1_f0); + + PACK_LEFT_0TO3() + mbfilter1_dspr2(p3_l, p2_l, p1_l, p0_l, q0_l, q1_l, q2_l, q3_l, &p2_l_f1, + &p1_l_f1, &p0_l_f1, &q0_l_f1, &q1_l_f1, &q2_l_f1); + + PACK_RIGHT_0TO3() + mbfilter1_dspr2(p3_r, p2_r, p1_r, p0_r, q0_r, q1_r, q2_r, q3_r, &p2_r_f1, + &p1_r_f1, &p0_r_f1, &q0_r_f1, &q1_r_f1, &q2_r_f1); + + PACK_LEFT_4TO7() + wide_mbfilter_dspr2(&p7_l, &p6_l, &p5_l, &p4_l, &p3_l, &p2_l, &p1_l, + &p0_l, &q0_l, &q1_l, &q2_l, &q3_l, &q4_l, &q5_l, + &q6_l, &q7_l); + + PACK_RIGHT_4TO7() + wide_mbfilter_dspr2(&p7_r, &p6_r, &p5_r, &p4_r, &p3_r, &p2_r, &p1_r, + &p0_r, &q0_r, &q1_r, &q2_r, &q3_r, &q4_r, &q5_r, + &q6_r, &q7_r); + + if (mask & flat & flat2 & 0x000000FF) { + __asm__ __volatile__( + "sb %[p6_r], -7(%[s4]) \n\t" + "sb %[p5_r], -6(%[s4]) \n\t" + "sb %[p4_r], -5(%[s4]) \n\t" + "sb %[p3_r], -4(%[s4]) \n\t" + "sb %[p2_r], -3(%[s4]) \n\t" + "sb %[p1_r], -2(%[s4]) \n\t" + "sb %[p0_r], -1(%[s4]) \n\t" + + : + : [p6_r] "r"(p6_r), [p5_r] "r"(p5_r), [p4_r] "r"(p4_r), + [p3_r] "r"(p3_r), [p2_r] "r"(p2_r), [p1_r] "r"(p1_r), + [p0_r] "r"(p0_r), [s4] "r"(s4)); + + __asm__ __volatile__( + "sb %[q0_r], (%[s4]) \n\t" + "sb %[q1_r], +1(%[s4]) \n\t" + "sb %[q2_r], +2(%[s4]) \n\t" + "sb %[q3_r], +3(%[s4]) \n\t" + "sb %[q4_r], +4(%[s4]) \n\t" + "sb %[q5_r], +5(%[s4]) \n\t" + "sb %[q6_r], +6(%[s4]) \n\t" + + : + : [q0_r] "r"(q0_r), [q1_r] "r"(q1_r), [q2_r] "r"(q2_r), + [q3_r] "r"(q3_r), [q4_r] "r"(q4_r), [q5_r] "r"(q5_r), + [q6_r] "r"(q6_r), [s4] "r"(s4)); + } else if (mask & flat & 0x000000FF) { + __asm__ __volatile__( + "sb %[p2_r_f1], -3(%[s4]) \n\t" + "sb %[p1_r_f1], -2(%[s4]) \n\t" + "sb %[p0_r_f1], -1(%[s4]) \n\t" + "sb %[q0_r_f1], (%[s4]) \n\t" + "sb %[q1_r_f1], +1(%[s4]) \n\t" + "sb %[q2_r_f1], +2(%[s4]) \n\t" + + : + : [p2_r_f1] "r"(p2_r_f1), [p1_r_f1] "r"(p1_r_f1), + [p0_r_f1] "r"(p0_r_f1), [q0_r_f1] "r"(q0_r_f1), + [q1_r_f1] "r"(q1_r_f1), [q2_r_f1] "r"(q2_r_f1), [s4] "r"(s4)); + } else if (mask & 0x000000FF) { + __asm__ __volatile__( + "sb %[p1_f0], -2(%[s4]) \n\t" + "sb %[p0_f0], -1(%[s4]) \n\t" + "sb %[q0_f0], (%[s4]) \n\t" + "sb %[q1_f0], +1(%[s4]) \n\t" + + : + : [p1_f0] "r"(p1_f0), [p0_f0] "r"(p0_f0), [q0_f0] "r"(q0_f0), + [q1_f0] "r"(q1_f0), [s4] "r"(s4)); + } + + __asm__ __volatile__( + "srl %[p6_r], %[p6_r], 16 \n\t" + "srl %[p5_r], %[p5_r], 16 \n\t" + "srl %[p4_r], %[p4_r], 16 \n\t" + "srl %[p3_r], %[p3_r], 16 \n\t" + "srl %[p2_r], %[p2_r], 16 \n\t" + "srl %[p1_r], %[p1_r], 16 \n\t" + "srl %[p0_r], %[p0_r], 16 \n\t" + "srl %[q0_r], %[q0_r], 16 \n\t" + "srl %[q1_r], %[q1_r], 16 \n\t" + "srl %[q2_r], %[q2_r], 16 \n\t" + "srl %[q3_r], %[q3_r], 16 \n\t" + "srl %[q4_r], %[q4_r], 16 \n\t" + "srl %[q5_r], %[q5_r], 16 \n\t" + "srl %[q6_r], %[q6_r], 16 \n\t" + + : [q0_r] "+r"(q0_r), [q1_r] "+r"(q1_r), [q2_r] "+r"(q2_r), + [q3_r] "+r"(q3_r), [q4_r] "+r"(q4_r), [q5_r] "+r"(q5_r), + [q6_r] "+r"(q6_r), [p6_r] "+r"(p6_r), [p5_r] "+r"(p5_r), + [p4_r] "+r"(p4_r), [p3_r] "+r"(p3_r), [p2_r] "+r"(p2_r), + [p1_r] "+r"(p1_r), [p0_r] "+r"(p0_r) + :); + + __asm__ __volatile__( + "srl %[p2_r_f1], %[p2_r_f1], 16 \n\t" + "srl %[p1_r_f1], %[p1_r_f1], 16 \n\t" + "srl %[p0_r_f1], %[p0_r_f1], 16 \n\t" + "srl %[q0_r_f1], %[q0_r_f1], 16 \n\t" + "srl %[q1_r_f1], %[q1_r_f1], 16 \n\t" + "srl %[q2_r_f1], %[q2_r_f1], 16 \n\t" + "srl %[p1_f0], %[p1_f0], 8 \n\t" + "srl %[p0_f0], %[p0_f0], 8 \n\t" + "srl %[q0_f0], %[q0_f0], 8 \n\t" + "srl %[q1_f0], %[q1_f0], 8 \n\t" + + : [p2_r_f1] "+r"(p2_r_f1), [p1_r_f1] "+r"(p1_r_f1), + [p0_r_f1] "+r"(p0_r_f1), [q0_r_f1] "+r"(q0_r_f1), + [q1_r_f1] "+r"(q1_r_f1), [q2_r_f1] "+r"(q2_r_f1), + [p1_f0] "+r"(p1_f0), [p0_f0] "+r"(p0_f0), [q0_f0] "+r"(q0_f0), + [q1_f0] "+r"(q1_f0) + :); + + if (mask & flat & flat2 & 0x0000FF00) { + __asm__ __volatile__( + "sb %[p6_r], -7(%[s3]) \n\t" + "sb %[p5_r], -6(%[s3]) \n\t" + "sb %[p4_r], -5(%[s3]) \n\t" + "sb %[p3_r], -4(%[s3]) \n\t" + "sb %[p2_r], -3(%[s3]) \n\t" + "sb %[p1_r], -2(%[s3]) \n\t" + "sb %[p0_r], -1(%[s3]) \n\t" + + : + : [p6_r] "r"(p6_r), [p5_r] "r"(p5_r), [p4_r] "r"(p4_r), + [p3_r] "r"(p3_r), [p2_r] "r"(p2_r), [p1_r] "r"(p1_r), + [p0_r] "r"(p0_r), [s3] "r"(s3)); + + __asm__ __volatile__( + "sb %[q0_r], (%[s3]) \n\t" + "sb %[q1_r], +1(%[s3]) \n\t" + "sb %[q2_r], +2(%[s3]) \n\t" + "sb %[q3_r], +3(%[s3]) \n\t" + "sb %[q4_r], +4(%[s3]) \n\t" + "sb %[q5_r], +5(%[s3]) \n\t" + "sb %[q6_r], +6(%[s3]) \n\t" + + : + : [q0_r] "r"(q0_r), [q1_r] "r"(q1_r), [q2_r] "r"(q2_r), + [q3_r] "r"(q3_r), [q4_r] "r"(q4_r), [q5_r] "r"(q5_r), + [q6_r] "r"(q6_r), [s3] "r"(s3)); + } else if (mask & flat & 0x0000FF00) { + __asm__ __volatile__( + "sb %[p2_r_f1], -3(%[s3]) \n\t" + "sb %[p1_r_f1], -2(%[s3]) \n\t" + "sb %[p0_r_f1], -1(%[s3]) \n\t" + "sb %[q0_r_f1], (%[s3]) \n\t" + "sb %[q1_r_f1], +1(%[s3]) \n\t" + "sb %[q2_r_f1], +2(%[s3]) \n\t" + + : + : [p2_r_f1] "r"(p2_r_f1), [p1_r_f1] "r"(p1_r_f1), + [p0_r_f1] "r"(p0_r_f1), [q0_r_f1] "r"(q0_r_f1), + [q1_r_f1] "r"(q1_r_f1), [q2_r_f1] "r"(q2_r_f1), [s3] "r"(s3)); + } else if (mask & 0x0000FF00) { + __asm__ __volatile__( + "sb %[p1_f0], -2(%[s3]) \n\t" + "sb %[p0_f0], -1(%[s3]) \n\t" + "sb %[q0_f0], (%[s3]) \n\t" + "sb %[q1_f0], +1(%[s3]) \n\t" + + : + : [p1_f0] "r"(p1_f0), [p0_f0] "r"(p0_f0), [q0_f0] "r"(q0_f0), + [q1_f0] "r"(q1_f0), [s3] "r"(s3)); + } + + __asm__ __volatile__( + "srl %[p1_f0], %[p1_f0], 8 \n\t" + "srl %[p0_f0], %[p0_f0], 8 \n\t" + "srl %[q0_f0], %[q0_f0], 8 \n\t" + "srl %[q1_f0], %[q1_f0], 8 \n\t" + + : [p1_f0] "+r"(p1_f0), [p0_f0] "+r"(p0_f0), [q0_f0] "+r"(q0_f0), + [q1_f0] "+r"(q1_f0) + :); + + if (mask & flat & flat2 & 0x00FF0000) { + __asm__ __volatile__( + "sb %[p6_l], -7(%[s2]) \n\t" + "sb %[p5_l], -6(%[s2]) \n\t" + "sb %[p4_l], -5(%[s2]) \n\t" + "sb %[p3_l], -4(%[s2]) \n\t" + "sb %[p2_l], -3(%[s2]) \n\t" + "sb %[p1_l], -2(%[s2]) \n\t" + "sb %[p0_l], -1(%[s2]) \n\t" + + : + : [p6_l] "r"(p6_l), [p5_l] "r"(p5_l), [p4_l] "r"(p4_l), + [p3_l] "r"(p3_l), [p2_l] "r"(p2_l), [p1_l] "r"(p1_l), + [p0_l] "r"(p0_l), [s2] "r"(s2)); + + __asm__ __volatile__( + "sb %[q0_l], (%[s2]) \n\t" + "sb %[q1_l], +1(%[s2]) \n\t" + "sb %[q2_l], +2(%[s2]) \n\t" + "sb %[q3_l], +3(%[s2]) \n\t" + "sb %[q4_l], +4(%[s2]) \n\t" + "sb %[q5_l], +5(%[s2]) \n\t" + "sb %[q6_l], +6(%[s2]) \n\t" + + : + : [q0_l] "r"(q0_l), [q1_l] "r"(q1_l), [q2_l] "r"(q2_l), + [q3_l] "r"(q3_l), [q4_l] "r"(q4_l), [q5_l] "r"(q5_l), + [q6_l] "r"(q6_l), [s2] "r"(s2)); + } else if (mask & flat & 0x00FF0000) { + __asm__ __volatile__( + "sb %[p2_l_f1], -3(%[s2]) \n\t" + "sb %[p1_l_f1], -2(%[s2]) \n\t" + "sb %[p0_l_f1], -1(%[s2]) \n\t" + "sb %[q0_l_f1], (%[s2]) \n\t" + "sb %[q1_l_f1], +1(%[s2]) \n\t" + "sb %[q2_l_f1], +2(%[s2]) \n\t" + + : + : [p2_l_f1] "r"(p2_l_f1), [p1_l_f1] "r"(p1_l_f1), + [p0_l_f1] "r"(p0_l_f1), [q0_l_f1] "r"(q0_l_f1), + [q1_l_f1] "r"(q1_l_f1), [q2_l_f1] "r"(q2_l_f1), [s2] "r"(s2)); + } else if (mask & 0x00FF0000) { + __asm__ __volatile__( + "sb %[p1_f0], -2(%[s2]) \n\t" + "sb %[p0_f0], -1(%[s2]) \n\t" + "sb %[q0_f0], (%[s2]) \n\t" + "sb %[q1_f0], +1(%[s2]) \n\t" + + : + : [p1_f0] "r"(p1_f0), [p0_f0] "r"(p0_f0), [q0_f0] "r"(q0_f0), + [q1_f0] "r"(q1_f0), [s2] "r"(s2)); + } + + __asm__ __volatile__( + "srl %[p6_l], %[p6_l], 16 \n\t" + "srl %[p5_l], %[p5_l], 16 \n\t" + "srl %[p4_l], %[p4_l], 16 \n\t" + "srl %[p3_l], %[p3_l], 16 \n\t" + "srl %[p2_l], %[p2_l], 16 \n\t" + "srl %[p1_l], %[p1_l], 16 \n\t" + "srl %[p0_l], %[p0_l], 16 \n\t" + "srl %[q0_l], %[q0_l], 16 \n\t" + "srl %[q1_l], %[q1_l], 16 \n\t" + "srl %[q2_l], %[q2_l], 16 \n\t" + "srl %[q3_l], %[q3_l], 16 \n\t" + "srl %[q4_l], %[q4_l], 16 \n\t" + "srl %[q5_l], %[q5_l], 16 \n\t" + "srl %[q6_l], %[q6_l], 16 \n\t" + + : [q0_l] "+r"(q0_l), [q1_l] "+r"(q1_l), [q2_l] "+r"(q2_l), + [q3_l] "+r"(q3_l), [q4_l] "+r"(q4_l), [q5_l] "+r"(q5_l), + [q6_l] "+r"(q6_l), [p6_l] "+r"(p6_l), [p5_l] "+r"(p5_l), + [p4_l] "+r"(p4_l), [p3_l] "+r"(p3_l), [p2_l] "+r"(p2_l), + [p1_l] "+r"(p1_l), [p0_l] "+r"(p0_l) + :); + + __asm__ __volatile__( + "srl %[p2_l_f1], %[p2_l_f1], 16 \n\t" + "srl %[p1_l_f1], %[p1_l_f1], 16 \n\t" + "srl %[p0_l_f1], %[p0_l_f1], 16 \n\t" + "srl %[q0_l_f1], %[q0_l_f1], 16 \n\t" + "srl %[q1_l_f1], %[q1_l_f1], 16 \n\t" + "srl %[q2_l_f1], %[q2_l_f1], 16 \n\t" + "srl %[p1_f0], %[p1_f0], 8 \n\t" + "srl %[p0_f0], %[p0_f0], 8 \n\t" + "srl %[q0_f0], %[q0_f0], 8 \n\t" + "srl %[q1_f0], %[q1_f0], 8 \n\t" + + : [p2_l_f1] "+r"(p2_l_f1), [p1_l_f1] "+r"(p1_l_f1), + [p0_l_f1] "+r"(p0_l_f1), [q0_l_f1] "+r"(q0_l_f1), + [q1_l_f1] "+r"(q1_l_f1), [q2_l_f1] "+r"(q2_l_f1), + [p1_f0] "+r"(p1_f0), [p0_f0] "+r"(p0_f0), [q0_f0] "+r"(q0_f0), + [q1_f0] "+r"(q1_f0) + :); + + if (mask & flat & flat2 & 0xFF000000) { + __asm__ __volatile__( + "sb %[p6_l], -7(%[s1]) \n\t" + "sb %[p5_l], -6(%[s1]) \n\t" + "sb %[p4_l], -5(%[s1]) \n\t" + "sb %[p3_l], -4(%[s1]) \n\t" + "sb %[p2_l], -3(%[s1]) \n\t" + "sb %[p1_l], -2(%[s1]) \n\t" + "sb %[p0_l], -1(%[s1]) \n\t" + + : + : [p6_l] "r"(p6_l), [p5_l] "r"(p5_l), [p4_l] "r"(p4_l), + [p3_l] "r"(p3_l), [p2_l] "r"(p2_l), [p1_l] "r"(p1_l), + [p0_l] "r"(p0_l), [s1] "r"(s1)); + + __asm__ __volatile__( + "sb %[q0_l], (%[s1]) \n\t" + "sb %[q1_l], 1(%[s1]) \n\t" + "sb %[q2_l], 2(%[s1]) \n\t" + "sb %[q3_l], 3(%[s1]) \n\t" + "sb %[q4_l], 4(%[s1]) \n\t" + "sb %[q5_l], 5(%[s1]) \n\t" + "sb %[q6_l], 6(%[s1]) \n\t" + + : + : [q0_l] "r"(q0_l), [q1_l] "r"(q1_l), [q2_l] "r"(q2_l), + [q3_l] "r"(q3_l), [q4_l] "r"(q4_l), [q5_l] "r"(q5_l), + [q6_l] "r"(q6_l), [s1] "r"(s1)); + } else if (mask & flat & 0xFF000000) { + __asm__ __volatile__( + "sb %[p2_l_f1], -3(%[s1]) \n\t" + "sb %[p1_l_f1], -2(%[s1]) \n\t" + "sb %[p0_l_f1], -1(%[s1]) \n\t" + "sb %[q0_l_f1], (%[s1]) \n\t" + "sb %[q1_l_f1], +1(%[s1]) \n\t" + "sb %[q2_l_f1], +2(%[s1]) \n\t" + + : + : [p2_l_f1] "r"(p2_l_f1), [p1_l_f1] "r"(p1_l_f1), + [p0_l_f1] "r"(p0_l_f1), [q0_l_f1] "r"(q0_l_f1), + [q1_l_f1] "r"(q1_l_f1), [q2_l_f1] "r"(q2_l_f1), [s1] "r"(s1)); + } else if (mask & 0xFF000000) { + __asm__ __volatile__( + "sb %[p1_f0], -2(%[s1]) \n\t" + "sb %[p0_f0], -1(%[s1]) \n\t" + "sb %[q0_f0], (%[s1]) \n\t" + "sb %[q1_f0], +1(%[s1]) \n\t" + + : + : [p1_f0] "r"(p1_f0), [p0_f0] "r"(p0_f0), [q0_f0] "r"(q0_f0), + [q1_f0] "r"(q1_f0), [s1] "r"(s1)); + } + } + } +} +#endif // #if HAVE_DSPR2 diff --git a/vpx_dsp/mips/loopfilter_msa.h b/vpx_dsp/mips/loopfilter_msa.h new file mode 100644 index 0000000..49fd74c --- /dev/null +++ b/vpx_dsp/mips/loopfilter_msa.h @@ -0,0 +1,177 @@ +/* + * Copyright (c) 2015 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VPX_DSP_LOOPFILTER_MSA_H_ +#define VPX_DSP_LOOPFILTER_MSA_H_ + +#include "vpx_dsp/mips/macros_msa.h" + +#define VP9_LPF_FILTER4_4W(p1_in, p0_in, q0_in, q1_in, mask, hev, p1_out, \ + p0_out, q0_out, q1_out) \ + { \ + v16i8 p1_m, p0_m, q0_m, q1_m, filt, q0_sub_p0, t1, t2; \ + const v16i8 cnst4b = __msa_ldi_b(4); \ + const v16i8 cnst3b = __msa_ldi_b(3); \ + \ + p1_m = (v16i8)__msa_xori_b(p1_in, 0x80); \ + p0_m = (v16i8)__msa_xori_b(p0_in, 0x80); \ + q0_m = (v16i8)__msa_xori_b(q0_in, 0x80); \ + q1_m = (v16i8)__msa_xori_b(q1_in, 0x80); \ + \ + filt = __msa_subs_s_b(p1_m, q1_m); \ + filt &= hev; \ + q0_sub_p0 = __msa_subs_s_b(q0_m, p0_m); \ + filt = __msa_adds_s_b(filt, q0_sub_p0); \ + filt = __msa_adds_s_b(filt, q0_sub_p0); \ + filt = __msa_adds_s_b(filt, q0_sub_p0); \ + filt &= mask; \ + t1 = __msa_adds_s_b(filt, cnst4b); \ + t1 >>= cnst3b; \ + t2 = __msa_adds_s_b(filt, cnst3b); \ + t2 >>= cnst3b; \ + q0_m = __msa_subs_s_b(q0_m, t1); \ + q0_out = __msa_xori_b((v16u8)q0_m, 0x80); \ + p0_m = __msa_adds_s_b(p0_m, t2); \ + p0_out = __msa_xori_b((v16u8)p0_m, 0x80); \ + filt = __msa_srari_b(t1, 1); \ + hev = __msa_xori_b(hev, 0xff); \ + filt &= hev; \ + q1_m = __msa_subs_s_b(q1_m, filt); \ + q1_out = __msa_xori_b((v16u8)q1_m, 0x80); \ + p1_m = __msa_adds_s_b(p1_m, filt); \ + p1_out = __msa_xori_b((v16u8)p1_m, 0x80); \ + } + +#define VP9_FLAT4(p3_in, p2_in, p0_in, q0_in, q2_in, q3_in, flat_out) \ + { \ + v16u8 tmp_flat4, p2_a_sub_p0, q2_a_sub_q0, p3_a_sub_p0, q3_a_sub_q0; \ + v16u8 zero_in = { 0 }; \ + \ + tmp_flat4 = __msa_ori_b(zero_in, 1); \ + p2_a_sub_p0 = __msa_asub_u_b(p2_in, p0_in); \ + q2_a_sub_q0 = __msa_asub_u_b(q2_in, q0_in); \ + p3_a_sub_p0 = __msa_asub_u_b(p3_in, p0_in); \ + q3_a_sub_q0 = __msa_asub_u_b(q3_in, q0_in); \ + \ + p2_a_sub_p0 = __msa_max_u_b(p2_a_sub_p0, q2_a_sub_q0); \ + flat_out = __msa_max_u_b(p2_a_sub_p0, flat_out); \ + p3_a_sub_p0 = __msa_max_u_b(p3_a_sub_p0, q3_a_sub_q0); \ + flat_out = __msa_max_u_b(p3_a_sub_p0, flat_out); \ + \ + flat_out = (tmp_flat4 < (v16u8)flat_out); \ + flat_out = __msa_xori_b(flat_out, 0xff); \ + flat_out = flat_out & (mask); \ + } + +#define VP9_FLAT5(p7_in, p6_in, p5_in, p4_in, p0_in, q0_in, q4_in, q5_in, \ + q6_in, q7_in, flat_in, flat2_out) \ + { \ + v16u8 tmp_flat5, zero_in = { 0 }; \ + v16u8 p4_a_sub_p0, q4_a_sub_q0, p5_a_sub_p0, q5_a_sub_q0; \ + v16u8 p6_a_sub_p0, q6_a_sub_q0, p7_a_sub_p0, q7_a_sub_q0; \ + \ + tmp_flat5 = __msa_ori_b(zero_in, 1); \ + p4_a_sub_p0 = __msa_asub_u_b(p4_in, p0_in); \ + q4_a_sub_q0 = __msa_asub_u_b(q4_in, q0_in); \ + p5_a_sub_p0 = __msa_asub_u_b(p5_in, p0_in); \ + q5_a_sub_q0 = __msa_asub_u_b(q5_in, q0_in); \ + p6_a_sub_p0 = __msa_asub_u_b(p6_in, p0_in); \ + q6_a_sub_q0 = __msa_asub_u_b(q6_in, q0_in); \ + p7_a_sub_p0 = __msa_asub_u_b(p7_in, p0_in); \ + q7_a_sub_q0 = __msa_asub_u_b(q7_in, q0_in); \ + \ + p4_a_sub_p0 = __msa_max_u_b(p4_a_sub_p0, q4_a_sub_q0); \ + flat2_out = __msa_max_u_b(p5_a_sub_p0, q5_a_sub_q0); \ + flat2_out = __msa_max_u_b(p4_a_sub_p0, flat2_out); \ + p6_a_sub_p0 = __msa_max_u_b(p6_a_sub_p0, q6_a_sub_q0); \ + flat2_out = __msa_max_u_b(p6_a_sub_p0, flat2_out); \ + p7_a_sub_p0 = __msa_max_u_b(p7_a_sub_p0, q7_a_sub_q0); \ + flat2_out = __msa_max_u_b(p7_a_sub_p0, flat2_out); \ + \ + flat2_out = (tmp_flat5 < (v16u8)flat2_out); \ + flat2_out = __msa_xori_b(flat2_out, 0xff); \ + flat2_out = flat2_out & flat_in; \ + } + +#define VP9_FILTER8(p3_in, p2_in, p1_in, p0_in, q0_in, q1_in, q2_in, q3_in, \ + p2_filt8_out, p1_filt8_out, p0_filt8_out, q0_filt8_out, \ + q1_filt8_out, q2_filt8_out) \ + { \ + v8u16 tmp_filt8_0, tmp_filt8_1, tmp_filt8_2; \ + \ + tmp_filt8_2 = p2_in + p1_in + p0_in; \ + tmp_filt8_0 = p3_in << 1; \ + \ + tmp_filt8_0 = tmp_filt8_0 + tmp_filt8_2 + q0_in; \ + tmp_filt8_1 = tmp_filt8_0 + p3_in + p2_in; \ + p2_filt8_out = (v8i16)__msa_srari_h((v8i16)tmp_filt8_1, 3); \ + \ + tmp_filt8_1 = tmp_filt8_0 + p1_in + q1_in; \ + p1_filt8_out = (v8i16)__msa_srari_h((v8i16)tmp_filt8_1, 3); \ + \ + tmp_filt8_1 = q2_in + q1_in + q0_in; \ + tmp_filt8_2 = tmp_filt8_2 + tmp_filt8_1; \ + tmp_filt8_0 = tmp_filt8_2 + (p0_in); \ + tmp_filt8_0 = tmp_filt8_0 + (p3_in); \ + p0_filt8_out = (v8i16)__msa_srari_h((v8i16)tmp_filt8_0, 3); \ + \ + tmp_filt8_0 = q2_in + q3_in; \ + tmp_filt8_0 = p0_in + tmp_filt8_1 + tmp_filt8_0; \ + tmp_filt8_1 = q3_in + q3_in; \ + tmp_filt8_1 = tmp_filt8_1 + tmp_filt8_0; \ + q2_filt8_out = (v8i16)__msa_srari_h((v8i16)tmp_filt8_1, 3); \ + \ + tmp_filt8_0 = tmp_filt8_2 + q3_in; \ + tmp_filt8_1 = tmp_filt8_0 + q0_in; \ + q0_filt8_out = (v8i16)__msa_srari_h((v8i16)tmp_filt8_1, 3); \ + \ + tmp_filt8_1 = tmp_filt8_0 - p2_in; \ + tmp_filt8_0 = q1_in + q3_in; \ + tmp_filt8_1 = tmp_filt8_0 + tmp_filt8_1; \ + q1_filt8_out = (v8i16)__msa_srari_h((v8i16)tmp_filt8_1, 3); \ + } + +#define LPF_MASK_HEV(p3_in, p2_in, p1_in, p0_in, q0_in, q1_in, q2_in, q3_in, \ + limit_in, b_limit_in, thresh_in, hev_out, mask_out, \ + flat_out) \ + { \ + v16u8 p3_asub_p2_m, p2_asub_p1_m, p1_asub_p0_m, q1_asub_q0_m; \ + v16u8 p1_asub_q1_m, p0_asub_q0_m, q3_asub_q2_m, q2_asub_q1_m; \ + \ + /* absolute subtraction of pixel values */ \ + p3_asub_p2_m = __msa_asub_u_b(p3_in, p2_in); \ + p2_asub_p1_m = __msa_asub_u_b(p2_in, p1_in); \ + p1_asub_p0_m = __msa_asub_u_b(p1_in, p0_in); \ + q1_asub_q0_m = __msa_asub_u_b(q1_in, q0_in); \ + q2_asub_q1_m = __msa_asub_u_b(q2_in, q1_in); \ + q3_asub_q2_m = __msa_asub_u_b(q3_in, q2_in); \ + p0_asub_q0_m = __msa_asub_u_b(p0_in, q0_in); \ + p1_asub_q1_m = __msa_asub_u_b(p1_in, q1_in); \ + \ + /* calculation of hev */ \ + flat_out = __msa_max_u_b(p1_asub_p0_m, q1_asub_q0_m); \ + hev_out = thresh_in < (v16u8)flat_out; \ + \ + /* calculation of mask */ \ + p0_asub_q0_m = __msa_adds_u_b(p0_asub_q0_m, p0_asub_q0_m); \ + p1_asub_q1_m >>= 1; \ + p0_asub_q0_m = __msa_adds_u_b(p0_asub_q0_m, p1_asub_q1_m); \ + \ + mask_out = b_limit_in < p0_asub_q0_m; \ + mask_out = __msa_max_u_b(flat_out, mask_out); \ + p3_asub_p2_m = __msa_max_u_b(p3_asub_p2_m, p2_asub_p1_m); \ + mask_out = __msa_max_u_b(p3_asub_p2_m, mask_out); \ + q2_asub_q1_m = __msa_max_u_b(q2_asub_q1_m, q3_asub_q2_m); \ + mask_out = __msa_max_u_b(q2_asub_q1_m, mask_out); \ + \ + mask_out = limit_in < (v16u8)mask_out; \ + mask_out = __msa_xori_b(mask_out, 0xff); \ + } +#endif /* VPX_DSP_LOOPFILTER_MSA_H_ */ diff --git a/vpx_dsp/mips/macros_msa.h b/vpx_dsp/mips/macros_msa.h new file mode 100644 index 0000000..f9a446e --- /dev/null +++ b/vpx_dsp/mips/macros_msa.h @@ -0,0 +1,1969 @@ +/* + * Copyright (c) 2015 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VPX_DSP_MIPS_MACROS_MSA_H_ +#define VPX_DSP_MIPS_MACROS_MSA_H_ + +#include + +#include "./vpx_config.h" +#include "vpx/vpx_integer.h" + +#define LD_V(RTYPE, psrc) *((const RTYPE *)(psrc)) +#define LD_UB(...) LD_V(v16u8, __VA_ARGS__) +#define LD_SB(...) LD_V(v16i8, __VA_ARGS__) +#define LD_UH(...) LD_V(v8u16, __VA_ARGS__) +#define LD_SH(...) LD_V(v8i16, __VA_ARGS__) +#define LD_SW(...) LD_V(v4i32, __VA_ARGS__) + +#define ST_V(RTYPE, in, pdst) *((RTYPE *)(pdst)) = (in) +#define ST_UB(...) ST_V(v16u8, __VA_ARGS__) +#define ST_SB(...) ST_V(v16i8, __VA_ARGS__) +#define ST_SH(...) ST_V(v8i16, __VA_ARGS__) +#define ST_SW(...) ST_V(v4i32, __VA_ARGS__) + +#if (__mips_isa_rev >= 6) +#define LH(psrc) \ + ({ \ + uint16_t val_lh_m = *(const uint16_t *)(psrc); \ + val_lh_m; \ + }) + +#define LW(psrc) \ + ({ \ + uint32_t val_lw_m = *(const uint32_t *)(psrc); \ + val_lw_m; \ + }) + +#if (__mips == 64) +#define LD(psrc) \ + ({ \ + uint64_t val_ld_m = *(const uint64_t *)(psrc); \ + val_ld_m; \ + }) +#else // !(__mips == 64) +#define LD(psrc) \ + ({ \ + const uint8_t *psrc_ld_m = (const uint8_t *)(psrc); \ + uint32_t val0_ld_m, val1_ld_m; \ + uint64_t val_ld_m = 0; \ + \ + val0_ld_m = LW(psrc_ld_m); \ + val1_ld_m = LW(psrc_ld_m + 4); \ + \ + val_ld_m = (uint64_t)(val1_ld_m); \ + val_ld_m = (uint64_t)((val_ld_m << 32) & 0xFFFFFFFF00000000); \ + val_ld_m = (uint64_t)(val_ld_m | (uint64_t)val0_ld_m); \ + \ + val_ld_m; \ + }) +#endif // (__mips == 64) + +#define SH(val, pdst) *(uint16_t *)(pdst) = (val); +#define SW(val, pdst) *(uint32_t *)(pdst) = (val); +#define SD(val, pdst) *(uint64_t *)(pdst) = (val); +#else // !(__mips_isa_rev >= 6) +#define LH(psrc) \ + ({ \ + const uint8_t *psrc_lh_m = (const uint8_t *)(psrc); \ + uint16_t val_lh_m; \ + \ + __asm__ __volatile__("ulh %[val_lh_m], %[psrc_lh_m] \n\t" \ + \ + : [val_lh_m] "=r"(val_lh_m) \ + : [psrc_lh_m] "m"(*psrc_lh_m)); \ + \ + val_lh_m; \ + }) + +#define LW(psrc) \ + ({ \ + const uint8_t *psrc_lw_m = (const uint8_t *)(psrc); \ + uint32_t val_lw_m; \ + \ + __asm__ __volatile__("ulw %[val_lw_m], %[psrc_lw_m] \n\t" \ + \ + : [val_lw_m] "=r"(val_lw_m) \ + : [psrc_lw_m] "m"(*psrc_lw_m)); \ + \ + val_lw_m; \ + }) + +#if (__mips == 64) +#define LD(psrc) \ + ({ \ + const uint8_t *psrc_ld_m = (const uint8_t *)(psrc); \ + uint64_t val_ld_m = 0; \ + \ + __asm__ __volatile__("uld %[val_ld_m], %[psrc_ld_m] \n\t" \ + \ + : [val_ld_m] "=r"(val_ld_m) \ + : [psrc_ld_m] "m"(*psrc_ld_m)); \ + \ + val_ld_m; \ + }) +#else // !(__mips == 64) +#define LD(psrc) \ + ({ \ + const uint8_t *psrc_ld_m = (const uint8_t *)(psrc); \ + uint32_t val0_ld_m, val1_ld_m; \ + uint64_t val_ld_m = 0; \ + \ + val0_ld_m = LW(psrc_ld_m); \ + val1_ld_m = LW(psrc_ld_m + 4); \ + \ + val_ld_m = (uint64_t)(val1_ld_m); \ + val_ld_m = (uint64_t)((val_ld_m << 32) & 0xFFFFFFFF00000000); \ + val_ld_m = (uint64_t)(val_ld_m | (uint64_t)val0_ld_m); \ + \ + val_ld_m; \ + }) +#endif // (__mips == 64) + +#define SH(val, pdst) \ + { \ + uint8_t *pdst_sh_m = (uint8_t *)(pdst); \ + const uint16_t val_sh_m = (val); \ + \ + __asm__ __volatile__("ush %[val_sh_m], %[pdst_sh_m] \n\t" \ + \ + : [pdst_sh_m] "=m"(*pdst_sh_m) \ + : [val_sh_m] "r"(val_sh_m)); \ + } + +#define SW(val, pdst) \ + { \ + uint8_t *pdst_sw_m = (uint8_t *)(pdst); \ + const uint32_t val_sw_m = (val); \ + \ + __asm__ __volatile__("usw %[val_sw_m], %[pdst_sw_m] \n\t" \ + \ + : [pdst_sw_m] "=m"(*pdst_sw_m) \ + : [val_sw_m] "r"(val_sw_m)); \ + } + +#define SD(val, pdst) \ + { \ + uint8_t *pdst_sd_m = (uint8_t *)(pdst); \ + uint32_t val0_sd_m, val1_sd_m; \ + \ + val0_sd_m = (uint32_t)((val)&0x00000000FFFFFFFF); \ + val1_sd_m = (uint32_t)(((val) >> 32) & 0x00000000FFFFFFFF); \ + \ + SW(val0_sd_m, pdst_sd_m); \ + SW(val1_sd_m, pdst_sd_m + 4); \ + } +#endif // (__mips_isa_rev >= 6) + +/* Description : Load 4 words with stride + Arguments : Inputs - psrc, stride + Outputs - out0, out1, out2, out3 + Details : Load word in 'out0' from (psrc) + Load word in 'out1' from (psrc + stride) + Load word in 'out2' from (psrc + 2 * stride) + Load word in 'out3' from (psrc + 3 * stride) +*/ +#define LW4(psrc, stride, out0, out1, out2, out3) \ + { \ + out0 = LW((psrc)); \ + out1 = LW((psrc) + stride); \ + out2 = LW((psrc) + 2 * stride); \ + out3 = LW((psrc) + 3 * stride); \ + } + +/* Description : Load double words with stride + Arguments : Inputs - psrc, stride + Outputs - out0, out1 + Details : Load double word in 'out0' from (psrc) + Load double word in 'out1' from (psrc + stride) +*/ +#define LD2(psrc, stride, out0, out1) \ + { \ + out0 = LD((psrc)); \ + out1 = LD((psrc) + stride); \ + } +#define LD4(psrc, stride, out0, out1, out2, out3) \ + { \ + LD2((psrc), stride, out0, out1); \ + LD2((psrc) + 2 * stride, stride, out2, out3); \ + } + +/* Description : Store 4 words with stride + Arguments : Inputs - in0, in1, in2, in3, pdst, stride + Details : Store word from 'in0' to (pdst) + Store word from 'in1' to (pdst + stride) + Store word from 'in2' to (pdst + 2 * stride) + Store word from 'in3' to (pdst + 3 * stride) +*/ +#define SW4(in0, in1, in2, in3, pdst, stride) \ + { \ + SW(in0, (pdst)) \ + SW(in1, (pdst) + stride); \ + SW(in2, (pdst) + 2 * stride); \ + SW(in3, (pdst) + 3 * stride); \ + } + +/* Description : Store 4 double words with stride + Arguments : Inputs - in0, in1, in2, in3, pdst, stride + Details : Store double word from 'in0' to (pdst) + Store double word from 'in1' to (pdst + stride) + Store double word from 'in2' to (pdst + 2 * stride) + Store double word from 'in3' to (pdst + 3 * stride) +*/ +#define SD4(in0, in1, in2, in3, pdst, stride) \ + { \ + SD(in0, (pdst)) \ + SD(in1, (pdst) + stride); \ + SD(in2, (pdst) + 2 * stride); \ + SD(in3, (pdst) + 3 * stride); \ + } + +/* Description : Load vector elements with stride + Arguments : Inputs - psrc, stride + Outputs - out0, out1 + Return Type - as per RTYPE + Details : Load 16 byte elements in 'out0' from (psrc) + Load 16 byte elements in 'out1' from (psrc + stride) +*/ +#define LD_V2(RTYPE, psrc, stride, out0, out1) \ + { \ + out0 = LD_V(RTYPE, (psrc)); \ + out1 = LD_V(RTYPE, (psrc) + stride); \ + } +#define LD_UB2(...) LD_V2(v16u8, __VA_ARGS__) +#define LD_SB2(...) LD_V2(v16i8, __VA_ARGS__) +#define LD_SH2(...) LD_V2(v8i16, __VA_ARGS__) +#define LD_SW2(...) LD_V2(v4i32, __VA_ARGS__) + +#define LD_V3(RTYPE, psrc, stride, out0, out1, out2) \ + { \ + LD_V2(RTYPE, (psrc), stride, out0, out1); \ + out2 = LD_V(RTYPE, (psrc) + 2 * stride); \ + } +#define LD_UB3(...) LD_V3(v16u8, __VA_ARGS__) + +#define LD_V4(RTYPE, psrc, stride, out0, out1, out2, out3) \ + { \ + LD_V2(RTYPE, (psrc), stride, out0, out1); \ + LD_V2(RTYPE, (psrc) + 2 * stride, stride, out2, out3); \ + } +#define LD_UB4(...) LD_V4(v16u8, __VA_ARGS__) +#define LD_SB4(...) LD_V4(v16i8, __VA_ARGS__) +#define LD_SH4(...) LD_V4(v8i16, __VA_ARGS__) + +#define LD_V5(RTYPE, psrc, stride, out0, out1, out2, out3, out4) \ + { \ + LD_V4(RTYPE, (psrc), stride, out0, out1, out2, out3); \ + out4 = LD_V(RTYPE, (psrc) + 4 * stride); \ + } +#define LD_UB5(...) LD_V5(v16u8, __VA_ARGS__) +#define LD_SB5(...) LD_V5(v16i8, __VA_ARGS__) + +#define LD_V7(RTYPE, psrc, stride, out0, out1, out2, out3, out4, out5, out6) \ + { \ + LD_V5(RTYPE, (psrc), stride, out0, out1, out2, out3, out4); \ + LD_V2(RTYPE, (psrc) + 5 * stride, stride, out5, out6); \ + } +#define LD_SB7(...) LD_V7(v16i8, __VA_ARGS__) + +#define LD_V8(RTYPE, psrc, stride, out0, out1, out2, out3, out4, out5, out6, \ + out7) \ + { \ + LD_V4(RTYPE, (psrc), stride, out0, out1, out2, out3); \ + LD_V4(RTYPE, (psrc) + 4 * stride, stride, out4, out5, out6, out7); \ + } +#define LD_UB8(...) LD_V8(v16u8, __VA_ARGS__) +#define LD_SB8(...) LD_V8(v16i8, __VA_ARGS__) +#define LD_SH8(...) LD_V8(v8i16, __VA_ARGS__) + +#define LD_V16(RTYPE, psrc, stride, out0, out1, out2, out3, out4, out5, out6, \ + out7, out8, out9, out10, out11, out12, out13, out14, out15) \ + { \ + LD_V8(RTYPE, (psrc), stride, out0, out1, out2, out3, out4, out5, out6, \ + out7); \ + LD_V8(RTYPE, (psrc) + 8 * stride, stride, out8, out9, out10, out11, out12, \ + out13, out14, out15); \ + } +#define LD_SH16(...) LD_V16(v8i16, __VA_ARGS__) + +/* Description : Load 4x4 block of signed halfword elements from 1D source + data into 4 vectors (Each vector with 4 signed halfwords) + Arguments : Input - psrc + Outputs - out0, out1, out2, out3 +*/ +#define LD4x4_SH(psrc, out0, out1, out2, out3) \ + { \ + out0 = LD_SH(psrc); \ + out2 = LD_SH(psrc + 8); \ + out1 = (v8i16)__msa_ilvl_d((v2i64)out0, (v2i64)out0); \ + out3 = (v8i16)__msa_ilvl_d((v2i64)out2, (v2i64)out2); \ + } + +/* Description : Store vectors with stride + Arguments : Inputs - in0, in1, pdst, stride + Details : Store 16 byte elements from 'in0' to (pdst) + Store 16 byte elements from 'in1' to (pdst + stride) +*/ +#define ST_V2(RTYPE, in0, in1, pdst, stride) \ + { \ + ST_V(RTYPE, in0, (pdst)); \ + ST_V(RTYPE, in1, (pdst) + stride); \ + } +#define ST_UB2(...) ST_V2(v16u8, __VA_ARGS__) +#define ST_SH2(...) ST_V2(v8i16, __VA_ARGS__) +#define ST_SW2(...) ST_V2(v4i32, __VA_ARGS__) + +#define ST_V4(RTYPE, in0, in1, in2, in3, pdst, stride) \ + { \ + ST_V2(RTYPE, in0, in1, (pdst), stride); \ + ST_V2(RTYPE, in2, in3, (pdst) + 2 * stride, stride); \ + } +#define ST_UB4(...) ST_V4(v16u8, __VA_ARGS__) +#define ST_SH4(...) ST_V4(v8i16, __VA_ARGS__) + +#define ST_V8(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, pdst, stride) \ + { \ + ST_V4(RTYPE, in0, in1, in2, in3, pdst, stride); \ + ST_V4(RTYPE, in4, in5, in6, in7, (pdst) + 4 * stride, stride); \ + } +#define ST_UB8(...) ST_V8(v16u8, __VA_ARGS__) +#define ST_SH8(...) ST_V8(v8i16, __VA_ARGS__) + +/* Description : Store 2x4 byte block to destination memory from input vector + Arguments : Inputs - in, stidx, pdst, stride + Details : Index 'stidx' halfword element from 'in' vector is copied to + the GP register and stored to (pdst) + Index 'stidx+1' halfword element from 'in' vector is copied to + the GP register and stored to (pdst + stride) + Index 'stidx+2' halfword element from 'in' vector is copied to + the GP register and stored to (pdst + 2 * stride) + Index 'stidx+3' halfword element from 'in' vector is copied to + the GP register and stored to (pdst + 3 * stride) +*/ +#define ST2x4_UB(in, stidx, pdst, stride) \ + { \ + uint16_t out0_m, out1_m, out2_m, out3_m; \ + uint8_t *pblk_2x4_m = (uint8_t *)(pdst); \ + \ + out0_m = __msa_copy_u_h((v8i16)in, (stidx)); \ + out1_m = __msa_copy_u_h((v8i16)in, (stidx + 1)); \ + out2_m = __msa_copy_u_h((v8i16)in, (stidx + 2)); \ + out3_m = __msa_copy_u_h((v8i16)in, (stidx + 3)); \ + \ + SH(out0_m, pblk_2x4_m); \ + SH(out1_m, pblk_2x4_m + stride); \ + SH(out2_m, pblk_2x4_m + 2 * stride); \ + SH(out3_m, pblk_2x4_m + 3 * stride); \ + } + +/* Description : Store 4x2 byte block to destination memory from input vector + Arguments : Inputs - in, pdst, stride + Details : Index 0 word element from 'in' vector is copied to the GP + register and stored to (pdst) + Index 1 word element from 'in' vector is copied to the GP + register and stored to (pdst + stride) +*/ +#define ST4x2_UB(in, pdst, stride) \ + { \ + uint32_t out0_m, out1_m; \ + uint8_t *pblk_4x2_m = (uint8_t *)(pdst); \ + \ + out0_m = __msa_copy_u_w((v4i32)in, 0); \ + out1_m = __msa_copy_u_w((v4i32)in, 1); \ + \ + SW(out0_m, pblk_4x2_m); \ + SW(out1_m, pblk_4x2_m + stride); \ + } + +/* Description : Store 4x4 byte block to destination memory from input vector + Arguments : Inputs - in0, in1, pdst, stride + Details : 'Idx0' word element from input vector 'in0' is copied to the + GP register and stored to (pdst) + 'Idx1' word element from input vector 'in0' is copied to the + GP register and stored to (pdst + stride) + 'Idx2' word element from input vector 'in0' is copied to the + GP register and stored to (pdst + 2 * stride) + 'Idx3' word element from input vector 'in0' is copied to the + GP register and stored to (pdst + 3 * stride) +*/ +#define ST4x4_UB(in0, in1, idx0, idx1, idx2, idx3, pdst, stride) \ + { \ + uint32_t out0_m, out1_m, out2_m, out3_m; \ + uint8_t *pblk_4x4_m = (uint8_t *)(pdst); \ + \ + out0_m = __msa_copy_u_w((v4i32)in0, idx0); \ + out1_m = __msa_copy_u_w((v4i32)in0, idx1); \ + out2_m = __msa_copy_u_w((v4i32)in1, idx2); \ + out3_m = __msa_copy_u_w((v4i32)in1, idx3); \ + \ + SW4(out0_m, out1_m, out2_m, out3_m, pblk_4x4_m, stride); \ + } +#define ST4x8_UB(in0, in1, pdst, stride) \ + { \ + uint8_t *pblk_4x8 = (uint8_t *)(pdst); \ + \ + ST4x4_UB(in0, in0, 0, 1, 2, 3, pblk_4x8, stride); \ + ST4x4_UB(in1, in1, 0, 1, 2, 3, pblk_4x8 + 4 * stride, stride); \ + } + +/* Description : Store 8x1 byte block to destination memory from input vector + Arguments : Inputs - in, pdst + Details : Index 0 double word element from 'in' vector is copied to the + GP register and stored to (pdst) +*/ +#define ST8x1_UB(in, pdst) \ + { \ + uint64_t out0_m; \ + \ + out0_m = __msa_copy_u_d((v2i64)in, 0); \ + SD(out0_m, pdst); \ + } + +/* Description : Store 8x2 byte block to destination memory from input vector + Arguments : Inputs - in, pdst, stride + Details : Index 0 double word element from 'in' vector is copied to the + GP register and stored to (pdst) + Index 1 double word element from 'in' vector is copied to the + GP register and stored to (pdst + stride) +*/ +#define ST8x2_UB(in, pdst, stride) \ + { \ + uint64_t out0_m, out1_m; \ + uint8_t *pblk_8x2_m = (uint8_t *)(pdst); \ + \ + out0_m = __msa_copy_u_d((v2i64)in, 0); \ + out1_m = __msa_copy_u_d((v2i64)in, 1); \ + \ + SD(out0_m, pblk_8x2_m); \ + SD(out1_m, pblk_8x2_m + stride); \ + } + +/* Description : Store 8x4 byte block to destination memory from input + vectors + Arguments : Inputs - in0, in1, pdst, stride + Details : Index 0 double word element from 'in0' vector is copied to the + GP register and stored to (pdst) + Index 1 double word element from 'in0' vector is copied to the + GP register and stored to (pdst + stride) + Index 0 double word element from 'in1' vector is copied to the + GP register and stored to (pdst + 2 * stride) + Index 1 double word element from 'in1' vector is copied to the + GP register and stored to (pdst + 3 * stride) +*/ +#define ST8x4_UB(in0, in1, pdst, stride) \ + { \ + uint64_t out0_m, out1_m, out2_m, out3_m; \ + uint8_t *pblk_8x4_m = (uint8_t *)(pdst); \ + \ + out0_m = __msa_copy_u_d((v2i64)in0, 0); \ + out1_m = __msa_copy_u_d((v2i64)in0, 1); \ + out2_m = __msa_copy_u_d((v2i64)in1, 0); \ + out3_m = __msa_copy_u_d((v2i64)in1, 1); \ + \ + SD4(out0_m, out1_m, out2_m, out3_m, pblk_8x4_m, stride); \ + } + +/* Description : average with rounding (in0 + in1 + 1) / 2. + Arguments : Inputs - in0, in1, in2, in3, + Outputs - out0, out1 + Return Type - as per RTYPE + Details : Each unsigned byte element from 'in0' vector is added with + each unsigned byte element from 'in1' vector. Then the average + with rounding is calculated and written to 'out0' +*/ +#define AVER_UB2(RTYPE, in0, in1, in2, in3, out0, out1) \ + { \ + out0 = (RTYPE)__msa_aver_u_b((v16u8)in0, (v16u8)in1); \ + out1 = (RTYPE)__msa_aver_u_b((v16u8)in2, (v16u8)in3); \ + } +#define AVER_UB2_UB(...) AVER_UB2(v16u8, __VA_ARGS__) + +#define AVER_UB4(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, out0, out1, \ + out2, out3) \ + { \ + AVER_UB2(RTYPE, in0, in1, in2, in3, out0, out1) \ + AVER_UB2(RTYPE, in4, in5, in6, in7, out2, out3) \ + } +#define AVER_UB4_UB(...) AVER_UB4(v16u8, __VA_ARGS__) + +/* Description : Immediate number of elements to slide with zero + Arguments : Inputs - in0, in1, slide_val + Outputs - out0, out1 + Return Type - as per RTYPE + Details : Byte elements from 'zero_m' vector are slid into 'in0' by + value specified in the 'slide_val' +*/ +#define SLDI_B2_0(RTYPE, in0, in1, out0, out1, slide_val) \ + { \ + v16i8 zero_m = { 0 }; \ + out0 = (RTYPE)__msa_sldi_b((v16i8)zero_m, (v16i8)in0, slide_val); \ + out1 = (RTYPE)__msa_sldi_b((v16i8)zero_m, (v16i8)in1, slide_val); \ + } +#define SLDI_B2_0_SW(...) SLDI_B2_0(v4i32, __VA_ARGS__) + +#define SLDI_B4_0(RTYPE, in0, in1, in2, in3, out0, out1, out2, out3, \ + slide_val) \ + { \ + SLDI_B2_0(RTYPE, in0, in1, out0, out1, slide_val); \ + SLDI_B2_0(RTYPE, in2, in3, out2, out3, slide_val); \ + } +#define SLDI_B4_0_UB(...) SLDI_B4_0(v16u8, __VA_ARGS__) + +/* Description : Immediate number of elements to slide + Arguments : Inputs - in0_0, in0_1, in1_0, in1_1, slide_val + Outputs - out0, out1 + Return Type - as per RTYPE + Details : Byte elements from 'in0_0' vector are slid into 'in1_0' by + value specified in the 'slide_val' +*/ +#define SLDI_B2(RTYPE, in0_0, in0_1, in1_0, in1_1, out0, out1, slide_val) \ + { \ + out0 = (RTYPE)__msa_sldi_b((v16i8)in0_0, (v16i8)in1_0, slide_val); \ + out1 = (RTYPE)__msa_sldi_b((v16i8)in0_1, (v16i8)in1_1, slide_val); \ + } +#define SLDI_B2_UB(...) SLDI_B2(v16u8, __VA_ARGS__) +#define SLDI_B2_SH(...) SLDI_B2(v8i16, __VA_ARGS__) + +#define SLDI_B3(RTYPE, in0_0, in0_1, in0_2, in1_0, in1_1, in1_2, out0, out1, \ + out2, slide_val) \ + { \ + SLDI_B2(RTYPE, in0_0, in0_1, in1_0, in1_1, out0, out1, slide_val) \ + out2 = (RTYPE)__msa_sldi_b((v16i8)in0_2, (v16i8)in1_2, slide_val); \ + } +#define SLDI_B3_SB(...) SLDI_B3(v16i8, __VA_ARGS__) +#define SLDI_B3_UH(...) SLDI_B3(v8u16, __VA_ARGS__) + +/* Description : Shuffle byte vector elements as per mask vector + Arguments : Inputs - in0, in1, in2, in3, mask0, mask1 + Outputs - out0, out1 + Return Type - as per RTYPE + Details : Byte elements from 'in0' & 'in1' are copied selectively to + 'out0' as per control vector 'mask0' +*/ +#define VSHF_B2(RTYPE, in0, in1, in2, in3, mask0, mask1, out0, out1) \ + { \ + out0 = (RTYPE)__msa_vshf_b((v16i8)mask0, (v16i8)in1, (v16i8)in0); \ + out1 = (RTYPE)__msa_vshf_b((v16i8)mask1, (v16i8)in3, (v16i8)in2); \ + } +#define VSHF_B2_UB(...) VSHF_B2(v16u8, __VA_ARGS__) +#define VSHF_B2_SB(...) VSHF_B2(v16i8, __VA_ARGS__) +#define VSHF_B2_UH(...) VSHF_B2(v8u16, __VA_ARGS__) +#define VSHF_B2_SH(...) VSHF_B2(v8i16, __VA_ARGS__) + +#define VSHF_B4(RTYPE, in0, in1, mask0, mask1, mask2, mask3, out0, out1, out2, \ + out3) \ + { \ + VSHF_B2(RTYPE, in0, in1, in0, in1, mask0, mask1, out0, out1); \ + VSHF_B2(RTYPE, in0, in1, in0, in1, mask2, mask3, out2, out3); \ + } +#define VSHF_B4_SB(...) VSHF_B4(v16i8, __VA_ARGS__) +#define VSHF_B4_SH(...) VSHF_B4(v8i16, __VA_ARGS__) + +/* Description : Dot product of byte vector elements + Arguments : Inputs - mult0, mult1, cnst0, cnst1 + Outputs - out0, out1 + Return Type - as per RTYPE + Details : Unsigned byte elements from 'mult0' are multiplied with + unsigned byte elements from 'cnst0' producing a result + twice the size of input i.e. unsigned halfword. + The multiplication result of adjacent odd-even elements + are added together and written to the 'out0' vector +*/ +#define DOTP_UB2(RTYPE, mult0, mult1, cnst0, cnst1, out0, out1) \ + { \ + out0 = (RTYPE)__msa_dotp_u_h((v16u8)mult0, (v16u8)cnst0); \ + out1 = (RTYPE)__msa_dotp_u_h((v16u8)mult1, (v16u8)cnst1); \ + } +#define DOTP_UB2_UH(...) DOTP_UB2(v8u16, __VA_ARGS__) + +#define DOTP_UB4(RTYPE, mult0, mult1, mult2, mult3, cnst0, cnst1, cnst2, \ + cnst3, out0, out1, out2, out3) \ + { \ + DOTP_UB2(RTYPE, mult0, mult1, cnst0, cnst1, out0, out1); \ + DOTP_UB2(RTYPE, mult2, mult3, cnst2, cnst3, out2, out3); \ + } +#define DOTP_UB4_UH(...) DOTP_UB4(v8u16, __VA_ARGS__) + +/* Description : Dot product of byte vector elements + Arguments : Inputs - mult0, mult1, cnst0, cnst1 + Outputs - out0, out1 + Return Type - as per RTYPE + Details : Signed byte elements from 'mult0' are multiplied with + signed byte elements from 'cnst0' producing a result + twice the size of input i.e. signed halfword. + The multiplication result of adjacent odd-even elements + are added together and written to the 'out0' vector +*/ +#define DOTP_SB2(RTYPE, mult0, mult1, cnst0, cnst1, out0, out1) \ + { \ + out0 = (RTYPE)__msa_dotp_s_h((v16i8)mult0, (v16i8)cnst0); \ + out1 = (RTYPE)__msa_dotp_s_h((v16i8)mult1, (v16i8)cnst1); \ + } +#define DOTP_SB2_SH(...) DOTP_SB2(v8i16, __VA_ARGS__) + +#define DOTP_SB4(RTYPE, mult0, mult1, mult2, mult3, cnst0, cnst1, cnst2, \ + cnst3, out0, out1, out2, out3) \ + { \ + DOTP_SB2(RTYPE, mult0, mult1, cnst0, cnst1, out0, out1); \ + DOTP_SB2(RTYPE, mult2, mult3, cnst2, cnst3, out2, out3); \ + } +#define DOTP_SB4_SH(...) DOTP_SB4(v8i16, __VA_ARGS__) + +/* Description : Dot product of halfword vector elements + Arguments : Inputs - mult0, mult1, cnst0, cnst1 + Outputs - out0, out1 + Return Type - as per RTYPE + Details : Signed halfword elements from 'mult0' are multiplied with + signed halfword elements from 'cnst0' producing a result + twice the size of input i.e. signed word. + The multiplication result of adjacent odd-even elements + are added together and written to the 'out0' vector +*/ +#define DOTP_SH2(RTYPE, mult0, mult1, cnst0, cnst1, out0, out1) \ + { \ + out0 = (RTYPE)__msa_dotp_s_w((v8i16)mult0, (v8i16)cnst0); \ + out1 = (RTYPE)__msa_dotp_s_w((v8i16)mult1, (v8i16)cnst1); \ + } +#define DOTP_SH2_SW(...) DOTP_SH2(v4i32, __VA_ARGS__) + +#define DOTP_SH4(RTYPE, mult0, mult1, mult2, mult3, cnst0, cnst1, cnst2, \ + cnst3, out0, out1, out2, out3) \ + { \ + DOTP_SH2(RTYPE, mult0, mult1, cnst0, cnst1, out0, out1); \ + DOTP_SH2(RTYPE, mult2, mult3, cnst2, cnst3, out2, out3); \ + } +#define DOTP_SH4_SW(...) DOTP_SH4(v4i32, __VA_ARGS__) + +/* Description : Dot product of word vector elements + Arguments : Inputs - mult0, mult1, cnst0, cnst1 + Outputs - out0, out1 + Return Type - as per RTYPE + Details : Signed word elements from 'mult0' are multiplied with + signed word elements from 'cnst0' producing a result + twice the size of input i.e. signed double word. + The multiplication result of adjacent odd-even elements + are added together and written to the 'out0' vector +*/ +#define DOTP_SW2(RTYPE, mult0, mult1, cnst0, cnst1, out0, out1) \ + { \ + out0 = (RTYPE)__msa_dotp_s_d((v4i32)mult0, (v4i32)cnst0); \ + out1 = (RTYPE)__msa_dotp_s_d((v4i32)mult1, (v4i32)cnst1); \ + } +#define DOTP_SW2_SD(...) DOTP_SW2(v2i64, __VA_ARGS__) + +/* Description : Dot product & addition of byte vector elements + Arguments : Inputs - mult0, mult1, cnst0, cnst1 + Outputs - out0, out1 + Return Type - as per RTYPE + Details : Signed byte elements from 'mult0' are multiplied with + signed byte elements from 'cnst0' producing a result + twice the size of input i.e. signed halfword. + The multiplication result of adjacent odd-even elements + are added to the 'out0' vector +*/ +#define DPADD_SB2(RTYPE, mult0, mult1, cnst0, cnst1, out0, out1) \ + { \ + out0 = (RTYPE)__msa_dpadd_s_h((v8i16)out0, (v16i8)mult0, (v16i8)cnst0); \ + out1 = (RTYPE)__msa_dpadd_s_h((v8i16)out1, (v16i8)mult1, (v16i8)cnst1); \ + } +#define DPADD_SB2_SH(...) DPADD_SB2(v8i16, __VA_ARGS__) + +#define DPADD_SB4(RTYPE, mult0, mult1, mult2, mult3, cnst0, cnst1, cnst2, \ + cnst3, out0, out1, out2, out3) \ + { \ + DPADD_SB2(RTYPE, mult0, mult1, cnst0, cnst1, out0, out1); \ + DPADD_SB2(RTYPE, mult2, mult3, cnst2, cnst3, out2, out3); \ + } +#define DPADD_SB4_SH(...) DPADD_SB4(v8i16, __VA_ARGS__) + +/* Description : Dot product & addition of halfword vector elements + Arguments : Inputs - mult0, mult1, cnst0, cnst1 + Outputs - out0, out1 + Return Type - as per RTYPE + Details : Signed halfword elements from 'mult0' are multiplied with + signed halfword elements from 'cnst0' producing a result + twice the size of input i.e. signed word. + The multiplication result of adjacent odd-even elements + are added to the 'out0' vector +*/ +#define DPADD_SH2(RTYPE, mult0, mult1, cnst0, cnst1, out0, out1) \ + { \ + out0 = (RTYPE)__msa_dpadd_s_w((v4i32)out0, (v8i16)mult0, (v8i16)cnst0); \ + out1 = (RTYPE)__msa_dpadd_s_w((v4i32)out1, (v8i16)mult1, (v8i16)cnst1); \ + } +#define DPADD_SH2_SW(...) DPADD_SH2(v4i32, __VA_ARGS__) + +/* Description : Dot product & addition of double word vector elements + Arguments : Inputs - mult0, mult1 + Outputs - out0, out1 + Return Type - as per RTYPE + Details : Each signed word element from 'mult0' is multiplied with itself + producing an intermediate result twice the size of input + i.e. signed double word + The multiplication result of adjacent odd-even elements + are added to the 'out0' vector +*/ +#define DPADD_SD2(RTYPE, mult0, mult1, out0, out1) \ + { \ + out0 = (RTYPE)__msa_dpadd_s_d((v2i64)out0, (v4i32)mult0, (v4i32)mult0); \ + out1 = (RTYPE)__msa_dpadd_s_d((v2i64)out1, (v4i32)mult1, (v4i32)mult1); \ + } +#define DPADD_SD2_SD(...) DPADD_SD2(v2i64, __VA_ARGS__) + +/* Description : Minimum values between unsigned elements of + either vector are copied to the output vector + Arguments : Inputs - in0, in1, min_vec + Outputs - in place operation + Return Type - as per RTYPE + Details : Minimum of unsigned halfword element values from 'in0' and + 'min_vec' are written to output vector 'in0' +*/ +#define MIN_UH2(RTYPE, in0, in1, min_vec) \ + { \ + in0 = (RTYPE)__msa_min_u_h((v8u16)in0, min_vec); \ + in1 = (RTYPE)__msa_min_u_h((v8u16)in1, min_vec); \ + } +#define MIN_UH2_UH(...) MIN_UH2(v8u16, __VA_ARGS__) + +#define MIN_UH4(RTYPE, in0, in1, in2, in3, min_vec) \ + { \ + MIN_UH2(RTYPE, in0, in1, min_vec); \ + MIN_UH2(RTYPE, in2, in3, min_vec); \ + } +#define MIN_UH4_UH(...) MIN_UH4(v8u16, __VA_ARGS__) + +/* Description : Clips all signed halfword elements of input vector + between 0 & 255 + Arguments : Input - in + Output - out_m + Return Type - signed halfword +*/ +#define CLIP_SH_0_255(in) \ + ({ \ + v8i16 max_m = __msa_ldi_h(255); \ + v8i16 out_m; \ + \ + out_m = __msa_maxi_s_h((v8i16)in, 0); \ + out_m = __msa_min_s_h((v8i16)max_m, (v8i16)out_m); \ + out_m; \ + }) +#define CLIP_SH2_0_255(in0, in1) \ + { \ + in0 = CLIP_SH_0_255(in0); \ + in1 = CLIP_SH_0_255(in1); \ + } +#define CLIP_SH4_0_255(in0, in1, in2, in3) \ + { \ + CLIP_SH2_0_255(in0, in1); \ + CLIP_SH2_0_255(in2, in3); \ + } + +/* Description : Horizontal addition of 4 signed word elements of input vector + Arguments : Input - in (signed word vector) + Output - sum_m (i32 sum) + Return Type - signed word (GP) + Details : 4 signed word elements of 'in' vector are added together and + the resulting integer sum is returned +*/ +#define HADD_SW_S32(in) \ + ({ \ + v2i64 res0_m, res1_m; \ + int32_t sum_m; \ + \ + res0_m = __msa_hadd_s_d((v4i32)in, (v4i32)in); \ + res1_m = __msa_splati_d(res0_m, 1); \ + res0_m = res0_m + res1_m; \ + sum_m = __msa_copy_s_w((v4i32)res0_m, 0); \ + sum_m; \ + }) + +/* Description : Horizontal addition of 4 unsigned word elements + Arguments : Input - in (unsigned word vector) + Output - sum_m (u32 sum) + Return Type - unsigned word (GP) + Details : 4 unsigned word elements of 'in' vector are added together and + the resulting integer sum is returned +*/ +#define HADD_UW_U32(in) \ + ({ \ + v2u64 res0_m, res1_m; \ + uint32_t sum_m; \ + \ + res0_m = __msa_hadd_u_d((v4u32)in, (v4u32)in); \ + res1_m = (v2u64)__msa_splati_d((v2i64)res0_m, 1); \ + res0_m += res1_m; \ + sum_m = __msa_copy_u_w((v4i32)res0_m, 0); \ + sum_m; \ + }) + +/* Description : Horizontal addition of 8 unsigned halfword elements + Arguments : Input - in (unsigned halfword vector) + Output - sum_m (u32 sum) + Return Type - unsigned word + Details : 8 unsigned halfword elements of 'in' vector are added + together and the resulting integer sum is returned +*/ +#define HADD_UH_U32(in) \ + ({ \ + v4u32 res_m; \ + uint32_t sum_m; \ + \ + res_m = __msa_hadd_u_w((v8u16)in, (v8u16)in); \ + sum_m = HADD_UW_U32(res_m); \ + sum_m; \ + }) + +/* Description : Horizontal addition of unsigned byte vector elements + Arguments : Inputs - in0, in1 + Outputs - out0, out1 + Return Type - as per RTYPE + Details : Each unsigned odd byte element from 'in0' is added to + even unsigned byte element from 'in0' (pairwise) and the + halfword result is written to 'out0' +*/ +#define HADD_UB2(RTYPE, in0, in1, out0, out1) \ + { \ + out0 = (RTYPE)__msa_hadd_u_h((v16u8)in0, (v16u8)in0); \ + out1 = (RTYPE)__msa_hadd_u_h((v16u8)in1, (v16u8)in1); \ + } +#define HADD_UB2_UH(...) HADD_UB2(v8u16, __VA_ARGS__) + +#define HADD_UB4(RTYPE, in0, in1, in2, in3, out0, out1, out2, out3) \ + { \ + HADD_UB2(RTYPE, in0, in1, out0, out1); \ + HADD_UB2(RTYPE, in2, in3, out2, out3); \ + } +#define HADD_UB4_UH(...) HADD_UB4(v8u16, __VA_ARGS__) + +/* Description : Horizontal subtraction of unsigned byte vector elements + Arguments : Inputs - in0, in1 + Outputs - out0, out1 + Return Type - as per RTYPE + Details : Each unsigned odd byte element from 'in0' is subtracted from + even unsigned byte element from 'in0' (pairwise) and the + halfword result is written to 'out0' +*/ +#define HSUB_UB2(RTYPE, in0, in1, out0, out1) \ + { \ + out0 = (RTYPE)__msa_hsub_u_h((v16u8)in0, (v16u8)in0); \ + out1 = (RTYPE)__msa_hsub_u_h((v16u8)in1, (v16u8)in1); \ + } +#define HSUB_UB2_SH(...) HSUB_UB2(v8i16, __VA_ARGS__) + +/* Description : SAD (Sum of Absolute Difference) + Arguments : Inputs - in0, in1, ref0, ref1 + Outputs - sad_m (halfword vector) + Return Type - unsigned halfword + Details : Absolute difference of all the byte elements from 'in0' with + 'ref0' is calculated and preserved in 'diff0'. Then even-odd + pairs are added together to generate 8 halfword results. +*/ +#define SAD_UB2_UH(in0, in1, ref0, ref1) \ + ({ \ + v16u8 diff0_m, diff1_m; \ + v8u16 sad_m = { 0 }; \ + \ + diff0_m = __msa_asub_u_b((v16u8)in0, (v16u8)ref0); \ + diff1_m = __msa_asub_u_b((v16u8)in1, (v16u8)ref1); \ + \ + sad_m += __msa_hadd_u_h((v16u8)diff0_m, (v16u8)diff0_m); \ + sad_m += __msa_hadd_u_h((v16u8)diff1_m, (v16u8)diff1_m); \ + \ + sad_m; \ + }) + +/* Description : Horizontal subtraction of signed halfword vector elements + Arguments : Inputs - in0, in1 + Outputs - out0, out1 + Return Type - as per RTYPE + Details : Each signed odd halfword element from 'in0' is subtracted from + even signed halfword element from 'in0' (pairwise) and the + word result is written to 'out0' +*/ +#define HSUB_UH2(RTYPE, in0, in1, out0, out1) \ + { \ + out0 = (RTYPE)__msa_hsub_s_w((v8i16)in0, (v8i16)in0); \ + out1 = (RTYPE)__msa_hsub_s_w((v8i16)in1, (v8i16)in1); \ + } +#define HSUB_UH2_SW(...) HSUB_UH2(v4i32, __VA_ARGS__) + +/* Description : Set element n input vector to GPR value + Arguments : Inputs - in0, in1, in2, in3 + Output - out + Return Type - as per RTYPE + Details : Set element 0 in vector 'out' to value specified in 'in0' +*/ +#define INSERT_W2(RTYPE, in0, in1, out) \ + { \ + out = (RTYPE)__msa_insert_w((v4i32)out, 0, in0); \ + out = (RTYPE)__msa_insert_w((v4i32)out, 1, in1); \ + } +#define INSERT_W2_SB(...) INSERT_W2(v16i8, __VA_ARGS__) + +#define INSERT_W4(RTYPE, in0, in1, in2, in3, out) \ + { \ + out = (RTYPE)__msa_insert_w((v4i32)out, 0, in0); \ + out = (RTYPE)__msa_insert_w((v4i32)out, 1, in1); \ + out = (RTYPE)__msa_insert_w((v4i32)out, 2, in2); \ + out = (RTYPE)__msa_insert_w((v4i32)out, 3, in3); \ + } +#define INSERT_W4_UB(...) INSERT_W4(v16u8, __VA_ARGS__) +#define INSERT_W4_SB(...) INSERT_W4(v16i8, __VA_ARGS__) + +#define INSERT_D2(RTYPE, in0, in1, out) \ + { \ + out = (RTYPE)__msa_insert_d((v2i64)out, 0, in0); \ + out = (RTYPE)__msa_insert_d((v2i64)out, 1, in1); \ + } +#define INSERT_D2_UB(...) INSERT_D2(v16u8, __VA_ARGS__) +#define INSERT_D2_SB(...) INSERT_D2(v16i8, __VA_ARGS__) +#define INSERT_D2_SH(...) INSERT_D2(v8i16, __VA_ARGS__) + +/* Description : Interleave even byte elements from vectors + Arguments : Inputs - in0, in1, in2, in3 + Outputs - out0, out1 + Return Type - as per RTYPE + Details : Even byte elements of 'in0' and 'in1' are interleaved + and written to 'out0' +*/ +#define ILVEV_B2(RTYPE, in0, in1, in2, in3, out0, out1) \ + { \ + out0 = (RTYPE)__msa_ilvev_b((v16i8)in1, (v16i8)in0); \ + out1 = (RTYPE)__msa_ilvev_b((v16i8)in3, (v16i8)in2); \ + } +#define ILVEV_B2_UB(...) ILVEV_B2(v16u8, __VA_ARGS__) +#define ILVEV_B2_SH(...) ILVEV_B2(v8i16, __VA_ARGS__) + +/* Description : Interleave even halfword elements from vectors + Arguments : Inputs - in0, in1, in2, in3 + Outputs - out0, out1 + Return Type - as per RTYPE + Details : Even halfword elements of 'in0' and 'in1' are interleaved + and written to 'out0' +*/ +#define ILVEV_H2(RTYPE, in0, in1, in2, in3, out0, out1) \ + { \ + out0 = (RTYPE)__msa_ilvev_h((v8i16)in1, (v8i16)in0); \ + out1 = (RTYPE)__msa_ilvev_h((v8i16)in3, (v8i16)in2); \ + } +#define ILVEV_H2_UB(...) ILVEV_H2(v16u8, __VA_ARGS__) +#define ILVEV_H2_SH(...) ILVEV_H2(v8i16, __VA_ARGS__) +#define ILVEV_H2_SW(...) ILVEV_H2(v4i32, __VA_ARGS__) + +/* Description : Interleave even word elements from vectors + Arguments : Inputs - in0, in1, in2, in3 + Outputs - out0, out1 + Return Type - as per RTYPE + Details : Even word elements of 'in0' and 'in1' are interleaved + and written to 'out0' +*/ +#define ILVEV_W2(RTYPE, in0, in1, in2, in3, out0, out1) \ + { \ + out0 = (RTYPE)__msa_ilvev_w((v4i32)in1, (v4i32)in0); \ + out1 = (RTYPE)__msa_ilvev_w((v4i32)in3, (v4i32)in2); \ + } +#define ILVEV_W2_SB(...) ILVEV_W2(v16i8, __VA_ARGS__) + +/* Description : Interleave even double word elements from vectors + Arguments : Inputs - in0, in1, in2, in3 + Outputs - out0, out1 + Return Type - as per RTYPE + Details : Even double word elements of 'in0' and 'in1' are interleaved + and written to 'out0' +*/ +#define ILVEV_D2(RTYPE, in0, in1, in2, in3, out0, out1) \ + { \ + out0 = (RTYPE)__msa_ilvev_d((v2i64)in1, (v2i64)in0); \ + out1 = (RTYPE)__msa_ilvev_d((v2i64)in3, (v2i64)in2); \ + } +#define ILVEV_D2_UB(...) ILVEV_D2(v16u8, __VA_ARGS__) + +/* Description : Interleave left half of byte elements from vectors + Arguments : Inputs - in0, in1, in2, in3 + Outputs - out0, out1 + Return Type - as per RTYPE + Details : Left half of byte elements of 'in0' and 'in1' are interleaved + and written to 'out0'. +*/ +#define ILVL_B2(RTYPE, in0, in1, in2, in3, out0, out1) \ + { \ + out0 = (RTYPE)__msa_ilvl_b((v16i8)in0, (v16i8)in1); \ + out1 = (RTYPE)__msa_ilvl_b((v16i8)in2, (v16i8)in3); \ + } +#define ILVL_B2_UB(...) ILVL_B2(v16u8, __VA_ARGS__) +#define ILVL_B2_SB(...) ILVL_B2(v16i8, __VA_ARGS__) +#define ILVL_B2_UH(...) ILVL_B2(v8u16, __VA_ARGS__) +#define ILVL_B2_SH(...) ILVL_B2(v8i16, __VA_ARGS__) + +#define ILVL_B4(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, out0, out1, \ + out2, out3) \ + { \ + ILVL_B2(RTYPE, in0, in1, in2, in3, out0, out1); \ + ILVL_B2(RTYPE, in4, in5, in6, in7, out2, out3); \ + } +#define ILVL_B4_SB(...) ILVL_B4(v16i8, __VA_ARGS__) +#define ILVL_B4_SH(...) ILVL_B4(v8i16, __VA_ARGS__) +#define ILVL_B4_UH(...) ILVL_B4(v8u16, __VA_ARGS__) + +/* Description : Interleave left half of halfword elements from vectors + Arguments : Inputs - in0, in1, in2, in3 + Outputs - out0, out1 + Return Type - as per RTYPE + Details : Left half of halfword elements of 'in0' and 'in1' are + interleaved and written to 'out0'. +*/ +#define ILVL_H2(RTYPE, in0, in1, in2, in3, out0, out1) \ + { \ + out0 = (RTYPE)__msa_ilvl_h((v8i16)in0, (v8i16)in1); \ + out1 = (RTYPE)__msa_ilvl_h((v8i16)in2, (v8i16)in3); \ + } +#define ILVL_H2_SH(...) ILVL_H2(v8i16, __VA_ARGS__) +#define ILVL_H2_SW(...) ILVL_H2(v4i32, __VA_ARGS__) + +/* Description : Interleave left half of word elements from vectors + Arguments : Inputs - in0, in1, in2, in3 + Outputs - out0, out1 + Return Type - as per RTYPE + Details : Left half of word elements of 'in0' and 'in1' are interleaved + and written to 'out0'. +*/ +#define ILVL_W2(RTYPE, in0, in1, in2, in3, out0, out1) \ + { \ + out0 = (RTYPE)__msa_ilvl_w((v4i32)in0, (v4i32)in1); \ + out1 = (RTYPE)__msa_ilvl_w((v4i32)in2, (v4i32)in3); \ + } +#define ILVL_W2_UB(...) ILVL_W2(v16u8, __VA_ARGS__) +#define ILVL_W2_SH(...) ILVL_W2(v8i16, __VA_ARGS__) + +/* Description : Interleave right half of byte elements from vectors + Arguments : Inputs - in0, in1, in2, in3 + Outputs - out0, out1 + Return Type - as per RTYPE + Details : Right half of byte elements of 'in0' and 'in1' are interleaved + and written to out0. +*/ +#define ILVR_B2(RTYPE, in0, in1, in2, in3, out0, out1) \ + { \ + out0 = (RTYPE)__msa_ilvr_b((v16i8)in0, (v16i8)in1); \ + out1 = (RTYPE)__msa_ilvr_b((v16i8)in2, (v16i8)in3); \ + } +#define ILVR_B2_UB(...) ILVR_B2(v16u8, __VA_ARGS__) +#define ILVR_B2_SB(...) ILVR_B2(v16i8, __VA_ARGS__) +#define ILVR_B2_UH(...) ILVR_B2(v8u16, __VA_ARGS__) +#define ILVR_B2_SH(...) ILVR_B2(v8i16, __VA_ARGS__) + +#define ILVR_B4(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, out0, out1, \ + out2, out3) \ + { \ + ILVR_B2(RTYPE, in0, in1, in2, in3, out0, out1); \ + ILVR_B2(RTYPE, in4, in5, in6, in7, out2, out3); \ + } +#define ILVR_B4_UB(...) ILVR_B4(v16u8, __VA_ARGS__) +#define ILVR_B4_SB(...) ILVR_B4(v16i8, __VA_ARGS__) +#define ILVR_B4_UH(...) ILVR_B4(v8u16, __VA_ARGS__) +#define ILVR_B4_SH(...) ILVR_B4(v8i16, __VA_ARGS__) + +#define ILVR_B8(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, in8, in9, in10, \ + in11, in12, in13, in14, in15, out0, out1, out2, out3, out4, \ + out5, out6, out7) \ + { \ + ILVR_B4(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, out0, out1, out2, \ + out3); \ + ILVR_B4(RTYPE, in8, in9, in10, in11, in12, in13, in14, in15, out4, out5, \ + out6, out7); \ + } +#define ILVR_B8_UH(...) ILVR_B8(v8u16, __VA_ARGS__) + +/* Description : Interleave right half of halfword elements from vectors + Arguments : Inputs - in0, in1, in2, in3 + Outputs - out0, out1 + Return Type - as per RTYPE + Details : Right half of halfword elements of 'in0' and 'in1' are + interleaved and written to 'out0'. +*/ +#define ILVR_H2(RTYPE, in0, in1, in2, in3, out0, out1) \ + { \ + out0 = (RTYPE)__msa_ilvr_h((v8i16)in0, (v8i16)in1); \ + out1 = (RTYPE)__msa_ilvr_h((v8i16)in2, (v8i16)in3); \ + } +#define ILVR_H2_SH(...) ILVR_H2(v8i16, __VA_ARGS__) +#define ILVR_H2_SW(...) ILVR_H2(v4i32, __VA_ARGS__) + +#define ILVR_H4(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, out0, out1, \ + out2, out3) \ + { \ + ILVR_H2(RTYPE, in0, in1, in2, in3, out0, out1); \ + ILVR_H2(RTYPE, in4, in5, in6, in7, out2, out3); \ + } +#define ILVR_H4_SH(...) ILVR_H4(v8i16, __VA_ARGS__) + +#define ILVR_W2(RTYPE, in0, in1, in2, in3, out0, out1) \ + { \ + out0 = (RTYPE)__msa_ilvr_w((v4i32)in0, (v4i32)in1); \ + out1 = (RTYPE)__msa_ilvr_w((v4i32)in2, (v4i32)in3); \ + } +#define ILVR_W2_UB(...) ILVR_W2(v16u8, __VA_ARGS__) +#define ILVR_W2_SH(...) ILVR_W2(v8i16, __VA_ARGS__) + +#define ILVR_W4(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, out0, out1, \ + out2, out3) \ + { \ + ILVR_W2(RTYPE, in0, in1, in2, in3, out0, out1); \ + ILVR_W2(RTYPE, in4, in5, in6, in7, out2, out3); \ + } +#define ILVR_W4_UB(...) ILVR_W4(v16u8, __VA_ARGS__) + +/* Description : Interleave right half of double word elements from vectors + Arguments : Inputs - in0, in1, in2, in3 + Outputs - out0, out1 + Return Type - as per RTYPE + Details : Right half of double word elements of 'in0' and 'in1' are + interleaved and written to 'out0'. +*/ +#define ILVR_D2(RTYPE, in0, in1, in2, in3, out0, out1) \ + { \ + out0 = (RTYPE)__msa_ilvr_d((v2i64)(in0), (v2i64)(in1)); \ + out1 = (RTYPE)__msa_ilvr_d((v2i64)(in2), (v2i64)(in3)); \ + } +#define ILVR_D2_UB(...) ILVR_D2(v16u8, __VA_ARGS__) +#define ILVR_D2_SB(...) ILVR_D2(v16i8, __VA_ARGS__) +#define ILVR_D2_SH(...) ILVR_D2(v8i16, __VA_ARGS__) + +#define ILVR_D3(RTYPE, in0, in1, in2, in3, in4, in5, out0, out1, out2) \ + { \ + ILVR_D2(RTYPE, in0, in1, in2, in3, out0, out1); \ + out2 = (RTYPE)__msa_ilvr_d((v2i64)(in4), (v2i64)(in5)); \ + } +#define ILVR_D3_SB(...) ILVR_D3(v16i8, __VA_ARGS__) + +#define ILVR_D4(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, out0, out1, \ + out2, out3) \ + { \ + ILVR_D2(RTYPE, in0, in1, in2, in3, out0, out1); \ + ILVR_D2(RTYPE, in4, in5, in6, in7, out2, out3); \ + } +#define ILVR_D4_SB(...) ILVR_D4(v16i8, __VA_ARGS__) +#define ILVR_D4_UB(...) ILVR_D4(v16u8, __VA_ARGS__) + +/* Description : Interleave both left and right half of input vectors + Arguments : Inputs - in0, in1 + Outputs - out0, out1 + Return Type - as per RTYPE + Details : Right half of byte elements from 'in0' and 'in1' are + interleaved and written to 'out0' +*/ +#define ILVRL_B2(RTYPE, in0, in1, out0, out1) \ + { \ + out0 = (RTYPE)__msa_ilvr_b((v16i8)in0, (v16i8)in1); \ + out1 = (RTYPE)__msa_ilvl_b((v16i8)in0, (v16i8)in1); \ + } +#define ILVRL_B2_UB(...) ILVRL_B2(v16u8, __VA_ARGS__) +#define ILVRL_B2_SB(...) ILVRL_B2(v16i8, __VA_ARGS__) +#define ILVRL_B2_UH(...) ILVRL_B2(v8u16, __VA_ARGS__) +#define ILVRL_B2_SH(...) ILVRL_B2(v8i16, __VA_ARGS__) + +#define ILVRL_H2(RTYPE, in0, in1, out0, out1) \ + { \ + out0 = (RTYPE)__msa_ilvr_h((v8i16)in0, (v8i16)in1); \ + out1 = (RTYPE)__msa_ilvl_h((v8i16)in0, (v8i16)in1); \ + } +#define ILVRL_H2_SH(...) ILVRL_H2(v8i16, __VA_ARGS__) +#define ILVRL_H2_SW(...) ILVRL_H2(v4i32, __VA_ARGS__) + +#define ILVRL_W2(RTYPE, in0, in1, out0, out1) \ + { \ + out0 = (RTYPE)__msa_ilvr_w((v4i32)in0, (v4i32)in1); \ + out1 = (RTYPE)__msa_ilvl_w((v4i32)in0, (v4i32)in1); \ + } +#define ILVRL_W2_UB(...) ILVRL_W2(v16u8, __VA_ARGS__) +#define ILVRL_W2_SB(...) ILVRL_W2(v16i8, __VA_ARGS__) +#define ILVRL_W2_SH(...) ILVRL_W2(v8i16, __VA_ARGS__) +#define ILVRL_W2_SW(...) ILVRL_W2(v4i32, __VA_ARGS__) + +/* Description : Saturate the halfword element values to the max + unsigned value of (sat_val + 1) bits + The element data width remains unchanged + Arguments : Inputs - in0, in1, sat_val + Outputs - in place operation + Return Type - as per RTYPE + Details : Each unsigned halfword element from 'in0' is saturated to the + value generated with (sat_val + 1) bit range. + The results are written in place +*/ +#define SAT_UH2(RTYPE, in0, in1, sat_val) \ + { \ + in0 = (RTYPE)__msa_sat_u_h((v8u16)in0, sat_val); \ + in1 = (RTYPE)__msa_sat_u_h((v8u16)in1, sat_val); \ + } +#define SAT_UH2_UH(...) SAT_UH2(v8u16, __VA_ARGS__) + +#define SAT_UH4(RTYPE, in0, in1, in2, in3, sat_val) \ + { \ + SAT_UH2(RTYPE, in0, in1, sat_val); \ + SAT_UH2(RTYPE, in2, in3, sat_val) \ + } +#define SAT_UH4_UH(...) SAT_UH4(v8u16, __VA_ARGS__) + +/* Description : Saturate the halfword element values to the max + unsigned value of (sat_val + 1) bits + The element data width remains unchanged + Arguments : Inputs - in0, in1, sat_val + Outputs - in place operation + Return Type - as per RTYPE + Details : Each unsigned halfword element from 'in0' is saturated to the + value generated with (sat_val + 1) bit range + The results are written in place +*/ +#define SAT_SH2(RTYPE, in0, in1, sat_val) \ + { \ + in0 = (RTYPE)__msa_sat_s_h((v8i16)in0, sat_val); \ + in1 = (RTYPE)__msa_sat_s_h((v8i16)in1, sat_val); \ + } +#define SAT_SH2_SH(...) SAT_SH2(v8i16, __VA_ARGS__) + +#define SAT_SH4(RTYPE, in0, in1, in2, in3, sat_val) \ + { \ + SAT_SH2(RTYPE, in0, in1, sat_val); \ + SAT_SH2(RTYPE, in2, in3, sat_val); \ + } +#define SAT_SH4_SH(...) SAT_SH4(v8i16, __VA_ARGS__) + +/* Description : Indexed halfword element values are replicated to all + elements in output vector + Arguments : Inputs - in, idx0, idx1 + Outputs - out0, out1 + Return Type - as per RTYPE + Details : 'idx0' element value from 'in' vector is replicated to all + elements in 'out0' vector + Valid index range for halfword operation is 0-7 +*/ +#define SPLATI_H2(RTYPE, in, idx0, idx1, out0, out1) \ + { \ + out0 = (RTYPE)__msa_splati_h((v8i16)in, idx0); \ + out1 = (RTYPE)__msa_splati_h((v8i16)in, idx1); \ + } +#define SPLATI_H2_SH(...) SPLATI_H2(v8i16, __VA_ARGS__) + +#define SPLATI_H4(RTYPE, in, idx0, idx1, idx2, idx3, out0, out1, out2, out3) \ + { \ + SPLATI_H2(RTYPE, in, idx0, idx1, out0, out1); \ + SPLATI_H2(RTYPE, in, idx2, idx3, out2, out3); \ + } +#define SPLATI_H4_SB(...) SPLATI_H4(v16i8, __VA_ARGS__) +#define SPLATI_H4_SH(...) SPLATI_H4(v8i16, __VA_ARGS__) + +/* Description : Pack even byte elements of vector pairs + Arguments : Inputs - in0, in1, in2, in3 + Outputs - out0, out1 + Return Type - as per RTYPE + Details : Even byte elements of 'in0' are copied to the left half of + 'out0' & even byte elements of 'in1' are copied to the right + half of 'out0'. +*/ +#define PCKEV_B2(RTYPE, in0, in1, in2, in3, out0, out1) \ + { \ + out0 = (RTYPE)__msa_pckev_b((v16i8)in0, (v16i8)in1); \ + out1 = (RTYPE)__msa_pckev_b((v16i8)in2, (v16i8)in3); \ + } +#define PCKEV_B2_SB(...) PCKEV_B2(v16i8, __VA_ARGS__) +#define PCKEV_B2_UB(...) PCKEV_B2(v16u8, __VA_ARGS__) +#define PCKEV_B2_SH(...) PCKEV_B2(v8i16, __VA_ARGS__) + +#define PCKEV_B4(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, out0, out1, \ + out2, out3) \ + { \ + PCKEV_B2(RTYPE, in0, in1, in2, in3, out0, out1); \ + PCKEV_B2(RTYPE, in4, in5, in6, in7, out2, out3); \ + } +#define PCKEV_B4_SB(...) PCKEV_B4(v16i8, __VA_ARGS__) +#define PCKEV_B4_UB(...) PCKEV_B4(v16u8, __VA_ARGS__) +#define PCKEV_B4_SH(...) PCKEV_B4(v8i16, __VA_ARGS__) + +/* Description : Pack even halfword elements of vector pairs + Arguments : Inputs - in0, in1, in2, in3 + Outputs - out0, out1 + Return Type - as per RTYPE + Details : Even halfword elements of 'in0' are copied to the left half of + 'out0' & even halfword elements of 'in1' are copied to the + right half of 'out0'. +*/ +#define PCKEV_H2(RTYPE, in0, in1, in2, in3, out0, out1) \ + { \ + out0 = (RTYPE)__msa_pckev_h((v8i16)in0, (v8i16)in1); \ + out1 = (RTYPE)__msa_pckev_h((v8i16)in2, (v8i16)in3); \ + } +#define PCKEV_H2_SH(...) PCKEV_H2(v8i16, __VA_ARGS__) +#define PCKEV_H2_SW(...) PCKEV_H2(v4i32, __VA_ARGS__) + +#define PCKEV_H4(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, out0, out1, \ + out2, out3) \ + { \ + PCKEV_H2(RTYPE, in0, in1, in2, in3, out0, out1); \ + PCKEV_H2(RTYPE, in4, in5, in6, in7, out2, out3); \ + } +#define PCKEV_H4_SH(...) PCKEV_H4(v8i16, __VA_ARGS__) + +/* Description : Pack even double word elements of vector pairs + Arguments : Inputs - in0, in1, in2, in3 + Outputs - out0, out1 + Return Type - as per RTYPE + Details : Even double elements of 'in0' are copied to the left half of + 'out0' & even double elements of 'in1' are copied to the right + half of 'out0'. +*/ +#define PCKEV_D2(RTYPE, in0, in1, in2, in3, out0, out1) \ + { \ + out0 = (RTYPE)__msa_pckev_d((v2i64)in0, (v2i64)in1); \ + out1 = (RTYPE)__msa_pckev_d((v2i64)in2, (v2i64)in3); \ + } +#define PCKEV_D2_UB(...) PCKEV_D2(v16u8, __VA_ARGS__) +#define PCKEV_D2_SH(...) PCKEV_D2(v8i16, __VA_ARGS__) + +#define PCKEV_D4(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, out0, out1, \ + out2, out3) \ + { \ + PCKEV_D2(RTYPE, in0, in1, in2, in3, out0, out1); \ + PCKEV_D2(RTYPE, in4, in5, in6, in7, out2, out3); \ + } +#define PCKEV_D4_UB(...) PCKEV_D4(v16u8, __VA_ARGS__) + +/* Description : Each byte element is logically xor'ed with immediate 128 + Arguments : Inputs - in0, in1 + Outputs - in place operation + Return Type - as per RTYPE + Details : Each unsigned byte element from input vector 'in0' is + logically xor'ed with 128 and the result is stored in-place. +*/ +#define XORI_B2_128(RTYPE, in0, in1) \ + { \ + in0 = (RTYPE)__msa_xori_b((v16u8)in0, 128); \ + in1 = (RTYPE)__msa_xori_b((v16u8)in1, 128); \ + } +#define XORI_B2_128_UB(...) XORI_B2_128(v16u8, __VA_ARGS__) +#define XORI_B2_128_SB(...) XORI_B2_128(v16i8, __VA_ARGS__) + +#define XORI_B3_128(RTYPE, in0, in1, in2) \ + { \ + XORI_B2_128(RTYPE, in0, in1); \ + in2 = (RTYPE)__msa_xori_b((v16u8)in2, 128); \ + } +#define XORI_B3_128_SB(...) XORI_B3_128(v16i8, __VA_ARGS__) + +#define XORI_B4_128(RTYPE, in0, in1, in2, in3) \ + { \ + XORI_B2_128(RTYPE, in0, in1); \ + XORI_B2_128(RTYPE, in2, in3); \ + } +#define XORI_B4_128_UB(...) XORI_B4_128(v16u8, __VA_ARGS__) +#define XORI_B4_128_SB(...) XORI_B4_128(v16i8, __VA_ARGS__) + +#define XORI_B7_128(RTYPE, in0, in1, in2, in3, in4, in5, in6) \ + { \ + XORI_B4_128(RTYPE, in0, in1, in2, in3); \ + XORI_B3_128(RTYPE, in4, in5, in6); \ + } +#define XORI_B7_128_SB(...) XORI_B7_128(v16i8, __VA_ARGS__) + +/* Description : Average of signed halfword elements -> (a + b) / 2 + Arguments : Inputs - in0, in1, in2, in3, in4, in5, in6, in7 + Outputs - out0, out1, out2, out3 + Return Type - as per RTYPE + Details : Each signed halfword element from 'in0' is added to each + signed halfword element of 'in1' with full precision resulting + in one extra bit in the result. The result is then divided by + 2 and written to 'out0' +*/ +#define AVE_SH4(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, out0, out1, \ + out2, out3) \ + { \ + out0 = (RTYPE)__msa_ave_s_h((v8i16)in0, (v8i16)in1); \ + out1 = (RTYPE)__msa_ave_s_h((v8i16)in2, (v8i16)in3); \ + out2 = (RTYPE)__msa_ave_s_h((v8i16)in4, (v8i16)in5); \ + out3 = (RTYPE)__msa_ave_s_h((v8i16)in6, (v8i16)in7); \ + } +#define AVE_SH4_SH(...) AVE_SH4(v8i16, __VA_ARGS__) + +/* Description : Addition of signed halfword elements and signed saturation + Arguments : Inputs - in0, in1, in2, in3 + Outputs - out0, out1 + Return Type - as per RTYPE + Details : Signed halfword elements from 'in0' are added to signed + halfword elements of 'in1'. The result is then signed saturated + between halfword data type range +*/ +#define ADDS_SH2(RTYPE, in0, in1, in2, in3, out0, out1) \ + { \ + out0 = (RTYPE)__msa_adds_s_h((v8i16)in0, (v8i16)in1); \ + out1 = (RTYPE)__msa_adds_s_h((v8i16)in2, (v8i16)in3); \ + } +#define ADDS_SH2_SH(...) ADDS_SH2(v8i16, __VA_ARGS__) + +#define ADDS_SH4(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, out0, out1, \ + out2, out3) \ + { \ + ADDS_SH2(RTYPE, in0, in1, in2, in3, out0, out1); \ + ADDS_SH2(RTYPE, in4, in5, in6, in7, out2, out3); \ + } +#define ADDS_SH4_SH(...) ADDS_SH4(v8i16, __VA_ARGS__) + +/* Description : Shift left all elements of vector (generic for all data types) + Arguments : Inputs - in0, in1, in2, in3, shift + Outputs - in place operation + Return Type - as per input vector RTYPE + Details : Each element of vector 'in0' is left shifted by 'shift' and + the result is written in-place. +*/ +#define SLLI_4V(in0, in1, in2, in3, shift) \ + { \ + in0 = in0 << shift; \ + in1 = in1 << shift; \ + in2 = in2 << shift; \ + in3 = in3 << shift; \ + } + +/* Description : Arithmetic shift right all elements of vector + (generic for all data types) + Arguments : Inputs - in0, in1, in2, in3, shift + Outputs - in place operation + Return Type - as per input vector RTYPE + Details : Each element of vector 'in0' is right shifted by 'shift' and + the result is written in-place. 'shift' is a GP variable. +*/ +#define SRA_2V(in0, in1, shift) \ + { \ + in0 = in0 >> shift; \ + in1 = in1 >> shift; \ + } + +#define SRA_4V(in0, in1, in2, in3, shift) \ + { \ + in0 = in0 >> shift; \ + in1 = in1 >> shift; \ + in2 = in2 >> shift; \ + in3 = in3 >> shift; \ + } + +/* Description : Shift right arithmetic rounded words + Arguments : Inputs - in0, in1, shift + Outputs - in place operation + Return Type - as per RTYPE + Details : Each element of vector 'in0' is shifted right arithmetically by + the number of bits in the corresponding element in the vector + 'shift'. The last discarded bit is added to shifted value for + rounding and the result is written in-place. + 'shift' is a vector. +*/ +#define SRAR_W2(RTYPE, in0, in1, shift) \ + { \ + in0 = (RTYPE)__msa_srar_w((v4i32)in0, (v4i32)shift); \ + in1 = (RTYPE)__msa_srar_w((v4i32)in1, (v4i32)shift); \ + } + +#define SRAR_W4(RTYPE, in0, in1, in2, in3, shift) \ + { \ + SRAR_W2(RTYPE, in0, in1, shift) \ + SRAR_W2(RTYPE, in2, in3, shift) \ + } +#define SRAR_W4_SW(...) SRAR_W4(v4i32, __VA_ARGS__) + +/* Description : Shift right arithmetic rounded (immediate) + Arguments : Inputs - in0, in1, shift + Outputs - in place operation + Return Type - as per RTYPE + Details : Each element of vector 'in0' is shifted right arithmetically by + the value in 'shift'. The last discarded bit is added to the + shifted value for rounding and the result is written in-place. + 'shift' is an immediate value. +*/ +#define SRARI_H2(RTYPE, in0, in1, shift) \ + { \ + in0 = (RTYPE)__msa_srari_h((v8i16)in0, shift); \ + in1 = (RTYPE)__msa_srari_h((v8i16)in1, shift); \ + } +#define SRARI_H2_UH(...) SRARI_H2(v8u16, __VA_ARGS__) +#define SRARI_H2_SH(...) SRARI_H2(v8i16, __VA_ARGS__) + +#define SRARI_H4(RTYPE, in0, in1, in2, in3, shift) \ + { \ + SRARI_H2(RTYPE, in0, in1, shift); \ + SRARI_H2(RTYPE, in2, in3, shift); \ + } +#define SRARI_H4_UH(...) SRARI_H4(v8u16, __VA_ARGS__) +#define SRARI_H4_SH(...) SRARI_H4(v8i16, __VA_ARGS__) + +#define SRARI_W2(RTYPE, in0, in1, shift) \ + { \ + in0 = (RTYPE)__msa_srari_w((v4i32)in0, shift); \ + in1 = (RTYPE)__msa_srari_w((v4i32)in1, shift); \ + } +#define SRARI_W2_SW(...) SRARI_W2(v4i32, __VA_ARGS__) + +#define SRARI_W4(RTYPE, in0, in1, in2, in3, shift) \ + { \ + SRARI_W2(RTYPE, in0, in1, shift); \ + SRARI_W2(RTYPE, in2, in3, shift); \ + } +#define SRARI_W4_SW(...) SRARI_W4(v4i32, __VA_ARGS__) + +/* Description : Logical shift right all elements of vector (immediate) + Arguments : Inputs - in0, in1, in2, in3, shift + Outputs - out0, out1, out2, out3 + Return Type - as per RTYPE + Details : Each element of vector 'in0' is right shifted by 'shift' and + the result is written in-place. 'shift' is an immediate value. +*/ +#define SRLI_H4(RTYPE, in0, in1, in2, in3, out0, out1, out2, out3, shift) \ + { \ + out0 = (RTYPE)__msa_srli_h((v8i16)in0, shift); \ + out1 = (RTYPE)__msa_srli_h((v8i16)in1, shift); \ + out2 = (RTYPE)__msa_srli_h((v8i16)in2, shift); \ + out3 = (RTYPE)__msa_srli_h((v8i16)in3, shift); \ + } +#define SRLI_H4_SH(...) SRLI_H4(v8i16, __VA_ARGS__) + +/* Description : Multiplication of pairs of vectors + Arguments : Inputs - in0, in1, in2, in3 + Outputs - out0, out1 + Details : Each element from 'in0' is multiplied with elements from 'in1' + and the result is written to 'out0' +*/ +#define MUL2(in0, in1, in2, in3, out0, out1) \ + { \ + out0 = in0 * in1; \ + out1 = in2 * in3; \ + } +#define MUL4(in0, in1, in2, in3, in4, in5, in6, in7, out0, out1, out2, out3) \ + { \ + MUL2(in0, in1, in2, in3, out0, out1); \ + MUL2(in4, in5, in6, in7, out2, out3); \ + } + +/* Description : Addition of 2 pairs of vectors + Arguments : Inputs - in0, in1, in2, in3 + Outputs - out0, out1 + Details : Each element in 'in0' is added to 'in1' and result is written + to 'out0'. +*/ +#define ADD2(in0, in1, in2, in3, out0, out1) \ + { \ + out0 = in0 + in1; \ + out1 = in2 + in3; \ + } +#define ADD4(in0, in1, in2, in3, in4, in5, in6, in7, out0, out1, out2, out3) \ + { \ + ADD2(in0, in1, in2, in3, out0, out1); \ + ADD2(in4, in5, in6, in7, out2, out3); \ + } + +/* Description : Subtraction of 2 pairs of vectors + Arguments : Inputs - in0, in1, in2, in3 + Outputs - out0, out1 + Details : Each element in 'in1' is subtracted from 'in0' and result is + written to 'out0'. +*/ +#define SUB2(in0, in1, in2, in3, out0, out1) \ + { \ + out0 = in0 - in1; \ + out1 = in2 - in3; \ + } +#define SUB4(in0, in1, in2, in3, in4, in5, in6, in7, out0, out1, out2, out3) \ + { \ + out0 = in0 - in1; \ + out1 = in2 - in3; \ + out2 = in4 - in5; \ + out3 = in6 - in7; \ + } + +/* Description : Sign extend halfword elements from right half of the vector + Arguments : Input - in (halfword vector) + Output - out (sign extended word vector) + Return Type - signed word + Details : Sign bit of halfword elements from input vector 'in' is + extracted and interleaved with same vector 'in0' to generate + 4 word elements keeping sign intact +*/ +#define UNPCK_R_SH_SW(in, out) \ + { \ + v8i16 sign_m; \ + \ + sign_m = __msa_clti_s_h((v8i16)in, 0); \ + out = (v4i32)__msa_ilvr_h(sign_m, (v8i16)in); \ + } + +/* Description : Sign extend byte elements from input vector and return + halfword results in pair of vectors + Arguments : Input - in (byte vector) + Outputs - out0, out1 (sign extended halfword vectors) + Return Type - signed halfword + Details : Sign bit of byte elements from input vector 'in' is + extracted and interleaved right with same vector 'in0' to + generate 8 signed halfword elements in 'out0' + Then interleaved left with same vector 'in0' to + generate 8 signed halfword elements in 'out1' +*/ +#define UNPCK_SB_SH(in, out0, out1) \ + { \ + v16i8 tmp_m; \ + \ + tmp_m = __msa_clti_s_b((v16i8)in, 0); \ + ILVRL_B2_SH(tmp_m, in, out0, out1); \ + } + +/* Description : Zero extend unsigned byte elements to halfword elements + Arguments : Input - in (unsigned byte vector) + Outputs - out0, out1 (unsigned halfword vectors) + Return Type - signed halfword + Details : Zero extended right half of vector is returned in 'out0' + Zero extended left half of vector is returned in 'out1' +*/ +#define UNPCK_UB_SH(in, out0, out1) \ + { \ + v16i8 zero_m = { 0 }; \ + \ + ILVRL_B2_SH(zero_m, in, out0, out1); \ + } + +/* Description : Sign extend halfword elements from input vector and return + the result in pair of vectors + Arguments : Input - in (halfword vector) + Outputs - out0, out1 (sign extended word vectors) + Return Type - signed word + Details : Sign bit of halfword elements from input vector 'in' is + extracted and interleaved right with same vector 'in0' to + generate 4 signed word elements in 'out0' + Then interleaved left with same vector 'in0' to + generate 4 signed word elements in 'out1' +*/ +#define UNPCK_SH_SW(in, out0, out1) \ + { \ + v8i16 tmp_m; \ + \ + tmp_m = __msa_clti_s_h((v8i16)in, 0); \ + ILVRL_H2_SW(tmp_m, in, out0, out1); \ + } + +/* Description : Butterfly of 4 input vectors + Arguments : Inputs - in0, in1, in2, in3 + Outputs - out0, out1, out2, out3 + Details : Butterfly operation +*/ +#define BUTTERFLY_4(in0, in1, in2, in3, out0, out1, out2, out3) \ + { \ + out0 = in0 + in3; \ + out1 = in1 + in2; \ + \ + out2 = in1 - in2; \ + out3 = in0 - in3; \ + } + +/* Description : Butterfly of 8 input vectors + Arguments : Inputs - in0 ... in7 + Outputs - out0 .. out7 + Details : Butterfly operation +*/ +#define BUTTERFLY_8(in0, in1, in2, in3, in4, in5, in6, in7, out0, out1, out2, \ + out3, out4, out5, out6, out7) \ + { \ + out0 = in0 + in7; \ + out1 = in1 + in6; \ + out2 = in2 + in5; \ + out3 = in3 + in4; \ + \ + out4 = in3 - in4; \ + out5 = in2 - in5; \ + out6 = in1 - in6; \ + out7 = in0 - in7; \ + } + +/* Description : Butterfly of 16 input vectors + Arguments : Inputs - in0 ... in15 + Outputs - out0 .. out15 + Details : Butterfly operation +*/ +#define BUTTERFLY_16(in0, in1, in2, in3, in4, in5, in6, in7, in8, in9, in10, \ + in11, in12, in13, in14, in15, out0, out1, out2, out3, \ + out4, out5, out6, out7, out8, out9, out10, out11, out12, \ + out13, out14, out15) \ + { \ + out0 = in0 + in15; \ + out1 = in1 + in14; \ + out2 = in2 + in13; \ + out3 = in3 + in12; \ + out4 = in4 + in11; \ + out5 = in5 + in10; \ + out6 = in6 + in9; \ + out7 = in7 + in8; \ + \ + out8 = in7 - in8; \ + out9 = in6 - in9; \ + out10 = in5 - in10; \ + out11 = in4 - in11; \ + out12 = in3 - in12; \ + out13 = in2 - in13; \ + out14 = in1 - in14; \ + out15 = in0 - in15; \ + } + +/* Description : Transpose input 8x8 byte block + Arguments : Inputs - in0, in1, in2, in3, in4, in5, in6, in7 + Outputs - out0, out1, out2, out3, out4, out5, out6, out7 + Return Type - as per RTYPE +*/ +#define TRANSPOSE8x8_UB(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, out0, \ + out1, out2, out3, out4, out5, out6, out7) \ + { \ + v16i8 tmp0_m, tmp1_m, tmp2_m, tmp3_m; \ + v16i8 tmp4_m, tmp5_m, tmp6_m, tmp7_m; \ + \ + ILVR_B4_SB(in2, in0, in3, in1, in6, in4, in7, in5, tmp0_m, tmp1_m, tmp2_m, \ + tmp3_m); \ + ILVRL_B2_SB(tmp1_m, tmp0_m, tmp4_m, tmp5_m); \ + ILVRL_B2_SB(tmp3_m, tmp2_m, tmp6_m, tmp7_m); \ + ILVRL_W2(RTYPE, tmp6_m, tmp4_m, out0, out2); \ + ILVRL_W2(RTYPE, tmp7_m, tmp5_m, out4, out6); \ + SLDI_B2_0(RTYPE, out0, out2, out1, out3, 8); \ + SLDI_B2_0(RTYPE, out4, out6, out5, out7, 8); \ + } +#define TRANSPOSE8x8_UB_UB(...) TRANSPOSE8x8_UB(v16u8, __VA_ARGS__) + +/* Description : Transpose 16x8 block into 8x16 with byte elements in vectors + Arguments : Inputs - in0, in1, in2, in3, in4, in5, in6, in7, + in8, in9, in10, in11, in12, in13, in14, in15 + Outputs - out0, out1, out2, out3, out4, out5, out6, out7 + Return Type - unsigned byte +*/ +#define TRANSPOSE16x8_UB_UB(in0, in1, in2, in3, in4, in5, in6, in7, in8, in9, \ + in10, in11, in12, in13, in14, in15, out0, out1, \ + out2, out3, out4, out5, out6, out7) \ + { \ + v16u8 tmp0_m, tmp1_m, tmp2_m, tmp3_m; \ + v16u8 tmp4_m, tmp5_m, tmp6_m, tmp7_m; \ + \ + ILVEV_D2_UB(in0, in8, in1, in9, out7, out6); \ + ILVEV_D2_UB(in2, in10, in3, in11, out5, out4); \ + ILVEV_D2_UB(in4, in12, in5, in13, out3, out2); \ + ILVEV_D2_UB(in6, in14, in7, in15, out1, out0); \ + \ + tmp0_m = (v16u8)__msa_ilvev_b((v16i8)out6, (v16i8)out7); \ + tmp4_m = (v16u8)__msa_ilvod_b((v16i8)out6, (v16i8)out7); \ + tmp1_m = (v16u8)__msa_ilvev_b((v16i8)out4, (v16i8)out5); \ + tmp5_m = (v16u8)__msa_ilvod_b((v16i8)out4, (v16i8)out5); \ + out5 = (v16u8)__msa_ilvev_b((v16i8)out2, (v16i8)out3); \ + tmp6_m = (v16u8)__msa_ilvod_b((v16i8)out2, (v16i8)out3); \ + out7 = (v16u8)__msa_ilvev_b((v16i8)out0, (v16i8)out1); \ + tmp7_m = (v16u8)__msa_ilvod_b((v16i8)out0, (v16i8)out1); \ + \ + ILVEV_H2_UB(tmp0_m, tmp1_m, out5, out7, tmp2_m, tmp3_m); \ + out0 = (v16u8)__msa_ilvev_w((v4i32)tmp3_m, (v4i32)tmp2_m); \ + out4 = (v16u8)__msa_ilvod_w((v4i32)tmp3_m, (v4i32)tmp2_m); \ + \ + tmp2_m = (v16u8)__msa_ilvod_h((v8i16)tmp1_m, (v8i16)tmp0_m); \ + tmp3_m = (v16u8)__msa_ilvod_h((v8i16)out7, (v8i16)out5); \ + out2 = (v16u8)__msa_ilvev_w((v4i32)tmp3_m, (v4i32)tmp2_m); \ + out6 = (v16u8)__msa_ilvod_w((v4i32)tmp3_m, (v4i32)tmp2_m); \ + \ + ILVEV_H2_UB(tmp4_m, tmp5_m, tmp6_m, tmp7_m, tmp2_m, tmp3_m); \ + out1 = (v16u8)__msa_ilvev_w((v4i32)tmp3_m, (v4i32)tmp2_m); \ + out5 = (v16u8)__msa_ilvod_w((v4i32)tmp3_m, (v4i32)tmp2_m); \ + \ + tmp2_m = (v16u8)__msa_ilvod_h((v8i16)tmp5_m, (v8i16)tmp4_m); \ + tmp3_m = (v16u8)__msa_ilvod_h((v8i16)tmp7_m, (v8i16)tmp6_m); \ + out3 = (v16u8)__msa_ilvev_w((v4i32)tmp3_m, (v4i32)tmp2_m); \ + out7 = (v16u8)__msa_ilvod_w((v4i32)tmp3_m, (v4i32)tmp2_m); \ + } + +/* Description : Transpose 4x4 block with half word elements in vectors + Arguments : Inputs - in0, in1, in2, in3 + Outputs - out0, out1, out2, out3 + Return Type - signed halfword +*/ +#define TRANSPOSE4x4_SH_SH(in0, in1, in2, in3, out0, out1, out2, out3) \ + { \ + v8i16 s0_m, s1_m; \ + \ + ILVR_H2_SH(in1, in0, in3, in2, s0_m, s1_m); \ + ILVRL_W2_SH(s1_m, s0_m, out0, out2); \ + out1 = (v8i16)__msa_ilvl_d((v2i64)out0, (v2i64)out0); \ + out3 = (v8i16)__msa_ilvl_d((v2i64)out0, (v2i64)out2); \ + } + +/* Description : Transpose 4x8 block with half word elements in vectors + Arguments : Inputs - in0, in1, in2, in3, in4, in5, in6, in7 + Outputs - out0, out1, out2, out3, out4, out5, out6, out7 + Return Type - signed halfword +*/ +#define TRANSPOSE4X8_SH_SH(in0, in1, in2, in3, in4, in5, in6, in7, out0, out1, \ + out2, out3, out4, out5, out6, out7) \ + { \ + v8i16 tmp0_m, tmp1_m, tmp2_m, tmp3_m; \ + v8i16 tmp0_n, tmp1_n, tmp2_n, tmp3_n; \ + v8i16 zero_m = { 0 }; \ + \ + ILVR_H4_SH(in1, in0, in3, in2, in5, in4, in7, in6, tmp0_n, tmp1_n, tmp2_n, \ + tmp3_n); \ + ILVRL_W2_SH(tmp1_n, tmp0_n, tmp0_m, tmp2_m); \ + ILVRL_W2_SH(tmp3_n, tmp2_n, tmp1_m, tmp3_m); \ + \ + out0 = (v8i16)__msa_ilvr_d((v2i64)tmp1_m, (v2i64)tmp0_m); \ + out1 = (v8i16)__msa_ilvl_d((v2i64)tmp1_m, (v2i64)tmp0_m); \ + out2 = (v8i16)__msa_ilvr_d((v2i64)tmp3_m, (v2i64)tmp2_m); \ + out3 = (v8i16)__msa_ilvl_d((v2i64)tmp3_m, (v2i64)tmp2_m); \ + \ + out4 = zero_m; \ + out5 = zero_m; \ + out6 = zero_m; \ + out7 = zero_m; \ + } + +/* Description : Transpose 8x4 block with half word elements in vectors + Arguments : Inputs - in0, in1, in2, in3, in4, in5, in6, in7 + Outputs - out0, out1, out2, out3, out4, out5, out6, out7 + Return Type - signed halfword +*/ +#define TRANSPOSE8X4_SH_SH(in0, in1, in2, in3, out0, out1, out2, out3) \ + { \ + v8i16 tmp0_m, tmp1_m, tmp2_m, tmp3_m; \ + \ + ILVR_H2_SH(in1, in0, in3, in2, tmp0_m, tmp1_m); \ + ILVL_H2_SH(in1, in0, in3, in2, tmp2_m, tmp3_m); \ + ILVR_W2_SH(tmp1_m, tmp0_m, tmp3_m, tmp2_m, out0, out2); \ + ILVL_W2_SH(tmp1_m, tmp0_m, tmp3_m, tmp2_m, out1, out3); \ + } + +/* Description : Transpose 8x8 block with half word elements in vectors + Arguments : Inputs - in0, in1, in2, in3, in4, in5, in6, in7 + Outputs - out0, out1, out2, out3, out4, out5, out6, out7 + Return Type - as per RTYPE +*/ +#define TRANSPOSE8x8_H(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, out0, \ + out1, out2, out3, out4, out5, out6, out7) \ + { \ + v8i16 s0_m, s1_m; \ + v8i16 tmp0_m, tmp1_m, tmp2_m, tmp3_m; \ + v8i16 tmp4_m, tmp5_m, tmp6_m, tmp7_m; \ + \ + ILVR_H2_SH(in6, in4, in7, in5, s0_m, s1_m); \ + ILVRL_H2_SH(s1_m, s0_m, tmp0_m, tmp1_m); \ + ILVL_H2_SH(in6, in4, in7, in5, s0_m, s1_m); \ + ILVRL_H2_SH(s1_m, s0_m, tmp2_m, tmp3_m); \ + ILVR_H2_SH(in2, in0, in3, in1, s0_m, s1_m); \ + ILVRL_H2_SH(s1_m, s0_m, tmp4_m, tmp5_m); \ + ILVL_H2_SH(in2, in0, in3, in1, s0_m, s1_m); \ + ILVRL_H2_SH(s1_m, s0_m, tmp6_m, tmp7_m); \ + PCKEV_D4(RTYPE, tmp0_m, tmp4_m, tmp1_m, tmp5_m, tmp2_m, tmp6_m, tmp3_m, \ + tmp7_m, out0, out2, out4, out6); \ + out1 = (RTYPE)__msa_pckod_d((v2i64)tmp0_m, (v2i64)tmp4_m); \ + out3 = (RTYPE)__msa_pckod_d((v2i64)tmp1_m, (v2i64)tmp5_m); \ + out5 = (RTYPE)__msa_pckod_d((v2i64)tmp2_m, (v2i64)tmp6_m); \ + out7 = (RTYPE)__msa_pckod_d((v2i64)tmp3_m, (v2i64)tmp7_m); \ + } +#define TRANSPOSE8x8_SH_SH(...) TRANSPOSE8x8_H(v8i16, __VA_ARGS__) + +/* Description : Transpose 4x4 block with word elements in vectors + Arguments : Inputs - in0, in1, in2, in3 + Outputs - out0, out1, out2, out3 + Return Type - signed word +*/ +#define TRANSPOSE4x4_SW_SW(in0, in1, in2, in3, out0, out1, out2, out3) \ + { \ + v4i32 s0_m, s1_m, s2_m, s3_m; \ + \ + ILVRL_W2_SW(in1, in0, s0_m, s1_m); \ + ILVRL_W2_SW(in3, in2, s2_m, s3_m); \ + \ + out0 = (v4i32)__msa_ilvr_d((v2i64)s2_m, (v2i64)s0_m); \ + out1 = (v4i32)__msa_ilvl_d((v2i64)s2_m, (v2i64)s0_m); \ + out2 = (v4i32)__msa_ilvr_d((v2i64)s3_m, (v2i64)s1_m); \ + out3 = (v4i32)__msa_ilvl_d((v2i64)s3_m, (v2i64)s1_m); \ + } + +/* Description : Add block 4x4 + Arguments : Inputs - in0, in1, in2, in3, pdst, stride + Details : Least significant 4 bytes from each input vector are added to + the destination bytes, clipped between 0-255 and stored. +*/ +#define ADDBLK_ST4x4_UB(in0, in1, in2, in3, pdst, stride) \ + { \ + uint32_t src0_m, src1_m, src2_m, src3_m; \ + v8i16 inp0_m, inp1_m, res0_m, res1_m; \ + v16i8 dst0_m = { 0 }; \ + v16i8 dst1_m = { 0 }; \ + v16i8 zero_m = { 0 }; \ + \ + ILVR_D2_SH(in1, in0, in3, in2, inp0_m, inp1_m) \ + LW4(pdst, stride, src0_m, src1_m, src2_m, src3_m); \ + INSERT_W2_SB(src0_m, src1_m, dst0_m); \ + INSERT_W2_SB(src2_m, src3_m, dst1_m); \ + ILVR_B2_SH(zero_m, dst0_m, zero_m, dst1_m, res0_m, res1_m); \ + ADD2(res0_m, inp0_m, res1_m, inp1_m, res0_m, res1_m); \ + CLIP_SH2_0_255(res0_m, res1_m); \ + PCKEV_B2_SB(res0_m, res0_m, res1_m, res1_m, dst0_m, dst1_m); \ + ST4x4_UB(dst0_m, dst1_m, 0, 1, 0, 1, pdst, stride); \ + } + +/* Description : Pack even elements of input vectors & xor with 128 + Arguments : Inputs - in0, in1 + Output - out_m + Return Type - unsigned byte + Details : Signed byte even elements from 'in0' and 'in1' are packed + together in one vector and the resulting vector is xor'ed with + 128 to shift the range from signed to unsigned byte +*/ +#define PCKEV_XORI128_UB(in0, in1) \ + ({ \ + v16u8 out_m; \ + \ + out_m = (v16u8)__msa_pckev_b((v16i8)in1, (v16i8)in0); \ + out_m = (v16u8)__msa_xori_b((v16u8)out_m, 128); \ + out_m; \ + }) + +/* Description : Converts inputs to unsigned bytes, interleave, average & store + as 8x4 unsigned byte block + Arguments : Inputs - in0, in1, in2, in3, dst0, dst1, pdst, stride +*/ +#define CONVERT_UB_AVG_ST8x4_UB(in0, in1, in2, in3, dst0, dst1, pdst, stride) \ + { \ + v16u8 tmp0_m, tmp1_m; \ + uint8_t *pdst_m = (uint8_t *)(pdst); \ + \ + tmp0_m = PCKEV_XORI128_UB(in0, in1); \ + tmp1_m = PCKEV_XORI128_UB(in2, in3); \ + AVER_UB2_UB(tmp0_m, dst0, tmp1_m, dst1, tmp0_m, tmp1_m); \ + ST8x4_UB(tmp0_m, tmp1_m, pdst_m, stride); \ + } + +/* Description : Pack even byte elements and store byte vector in destination + memory + Arguments : Inputs - in0, in1, pdst +*/ +#define PCKEV_ST_SB(in0, in1, pdst) \ + { \ + v16i8 tmp_m; \ + \ + tmp_m = __msa_pckev_b((v16i8)in1, (v16i8)in0); \ + ST_SB(tmp_m, (pdst)); \ + } + +/* Description : Horizontal 2 tap filter kernel code + Arguments : Inputs - in0, in1, mask, coeff, shift +*/ +#define HORIZ_2TAP_FILT_UH(in0, in1, mask, coeff, shift) \ + ({ \ + v16i8 tmp0_m; \ + v8u16 tmp1_m; \ + \ + tmp0_m = __msa_vshf_b((v16i8)mask, (v16i8)in1, (v16i8)in0); \ + tmp1_m = __msa_dotp_u_h((v16u8)tmp0_m, (v16u8)coeff); \ + tmp1_m = (v8u16)__msa_srari_h((v8i16)tmp1_m, shift); \ + \ + tmp1_m; \ + }) +#endif /* VPX_DSP_MIPS_MACROS_MSA_H_ */ diff --git a/vpx_dsp/mips/sad_mmi.c b/vpx_dsp/mips/sad_mmi.c new file mode 100644 index 0000000..33bd3fe --- /dev/null +++ b/vpx_dsp/mips/sad_mmi.c @@ -0,0 +1,805 @@ +/* + * Copyright (c) 2017 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "./vpx_dsp_rtcd.h" +#include "vpx_ports/asmdefs_mmi.h" +#include "vpx/vpx_integer.h" +#include "vpx_ports/mem.h" + +#define SAD_SRC_REF_ABS_SUB_64 \ + "gsldlc1 %[ftmp1], 0x07(%[src]) \n\t" \ + "gsldrc1 %[ftmp1], 0x00(%[src]) \n\t" \ + "gsldlc1 %[ftmp2], 0x0f(%[src]) \n\t" \ + "gsldrc1 %[ftmp2], 0x08(%[src]) \n\t" \ + "gsldlc1 %[ftmp3], 0x07(%[ref]) \n\t" \ + "gsldrc1 %[ftmp3], 0x00(%[ref]) \n\t" \ + "gsldlc1 %[ftmp4], 0x0f(%[ref]) \n\t" \ + "gsldrc1 %[ftmp4], 0x08(%[ref]) \n\t" \ + "pasubub %[ftmp1], %[ftmp1], %[ftmp3] \n\t" \ + "pasubub %[ftmp2], %[ftmp2], %[ftmp4] \n\t" \ + "biadd %[ftmp1], %[ftmp1] \n\t" \ + "biadd %[ftmp2], %[ftmp2] \n\t" \ + "paddw %[ftmp5], %[ftmp5], %[ftmp1] \n\t" \ + "paddw %[ftmp5], %[ftmp5], %[ftmp2] \n\t" \ + "gsldlc1 %[ftmp1], 0x17(%[src]) \n\t" \ + "gsldrc1 %[ftmp1], 0x10(%[src]) \n\t" \ + "gsldlc1 %[ftmp2], 0x1f(%[src]) \n\t" \ + "gsldrc1 %[ftmp2], 0x18(%[src]) \n\t" \ + "gsldlc1 %[ftmp3], 0x17(%[ref]) \n\t" \ + "gsldrc1 %[ftmp3], 0x10(%[ref]) \n\t" \ + "gsldlc1 %[ftmp4], 0x1f(%[ref]) \n\t" \ + "gsldrc1 %[ftmp4], 0x18(%[ref]) \n\t" \ + "pasubub %[ftmp1], %[ftmp1], %[ftmp3] \n\t" \ + "pasubub %[ftmp2], %[ftmp2], %[ftmp4] \n\t" \ + "biadd %[ftmp1], %[ftmp1] \n\t" \ + "biadd %[ftmp2], %[ftmp2] \n\t" \ + "paddw %[ftmp5], %[ftmp5], %[ftmp1] \n\t" \ + "paddw %[ftmp5], %[ftmp5], %[ftmp2] \n\t" \ + "gsldlc1 %[ftmp1], 0x27(%[src]) \n\t" \ + "gsldrc1 %[ftmp1], 0x20(%[src]) \n\t" \ + "gsldlc1 %[ftmp2], 0x2f(%[src]) \n\t" \ + "gsldrc1 %[ftmp2], 0x28(%[src]) \n\t" \ + "gsldlc1 %[ftmp3], 0x27(%[ref]) \n\t" \ + "gsldrc1 %[ftmp3], 0x20(%[ref]) \n\t" \ + "gsldlc1 %[ftmp4], 0x2f(%[ref]) \n\t" \ + "gsldrc1 %[ftmp4], 0x28(%[ref]) \n\t" \ + "pasubub %[ftmp1], %[ftmp1], %[ftmp3] \n\t" \ + "pasubub %[ftmp2], %[ftmp2], %[ftmp4] \n\t" \ + "biadd %[ftmp1], %[ftmp1] \n\t" \ + "biadd %[ftmp2], %[ftmp2] \n\t" \ + "paddw %[ftmp5], %[ftmp5], %[ftmp1] \n\t" \ + "paddw %[ftmp5], %[ftmp5], %[ftmp2] \n\t" \ + "gsldlc1 %[ftmp1], 0x37(%[src]) \n\t" \ + "gsldrc1 %[ftmp1], 0x30(%[src]) \n\t" \ + "gsldlc1 %[ftmp2], 0x3f(%[src]) \n\t" \ + "gsldrc1 %[ftmp2], 0x38(%[src]) \n\t" \ + "gsldlc1 %[ftmp3], 0x37(%[ref]) \n\t" \ + "gsldrc1 %[ftmp3], 0x30(%[ref]) \n\t" \ + "gsldlc1 %[ftmp4], 0x3f(%[ref]) \n\t" \ + "gsldrc1 %[ftmp4], 0x38(%[ref]) \n\t" \ + "pasubub %[ftmp1], %[ftmp1], %[ftmp3] \n\t" \ + "pasubub %[ftmp2], %[ftmp2], %[ftmp4] \n\t" \ + "biadd %[ftmp1], %[ftmp1] \n\t" \ + "biadd %[ftmp2], %[ftmp2] \n\t" \ + "paddw %[ftmp5], %[ftmp5], %[ftmp1] \n\t" \ + "paddw %[ftmp5], %[ftmp5], %[ftmp2] \n\t" + +#define SAD_SRC_REF_ABS_SUB_32 \ + "gsldlc1 %[ftmp1], 0x07(%[src]) \n\t" \ + "gsldrc1 %[ftmp1], 0x00(%[src]) \n\t" \ + "gsldlc1 %[ftmp2], 0x0f(%[src]) \n\t" \ + "gsldrc1 %[ftmp2], 0x08(%[src]) \n\t" \ + "gsldlc1 %[ftmp3], 0x07(%[ref]) \n\t" \ + "gsldrc1 %[ftmp3], 0x00(%[ref]) \n\t" \ + "gsldlc1 %[ftmp4], 0x0f(%[ref]) \n\t" \ + "gsldrc1 %[ftmp4], 0x08(%[ref]) \n\t" \ + "pasubub %[ftmp1], %[ftmp1], %[ftmp3] \n\t" \ + "pasubub %[ftmp2], %[ftmp2], %[ftmp4] \n\t" \ + "biadd %[ftmp1], %[ftmp1] \n\t" \ + "biadd %[ftmp2], %[ftmp2] \n\t" \ + "paddw %[ftmp5], %[ftmp5], %[ftmp1] \n\t" \ + "paddw %[ftmp5], %[ftmp5], %[ftmp2] \n\t" \ + "gsldlc1 %[ftmp1], 0x17(%[src]) \n\t" \ + "gsldrc1 %[ftmp1], 0x10(%[src]) \n\t" \ + "gsldlc1 %[ftmp2], 0x1f(%[src]) \n\t" \ + "gsldrc1 %[ftmp2], 0x18(%[src]) \n\t" \ + "gsldlc1 %[ftmp3], 0x17(%[ref]) \n\t" \ + "gsldrc1 %[ftmp3], 0x10(%[ref]) \n\t" \ + "gsldlc1 %[ftmp4], 0x1f(%[ref]) \n\t" \ + "gsldrc1 %[ftmp4], 0x18(%[ref]) \n\t" \ + "pasubub %[ftmp1], %[ftmp1], %[ftmp3] \n\t" \ + "pasubub %[ftmp2], %[ftmp2], %[ftmp4] \n\t" \ + "biadd %[ftmp1], %[ftmp1] \n\t" \ + "biadd %[ftmp2], %[ftmp2] \n\t" \ + "paddw %[ftmp5], %[ftmp5], %[ftmp1] \n\t" \ + "paddw %[ftmp5], %[ftmp5], %[ftmp2] \n\t" + +#define SAD_SRC_REF_ABS_SUB_16 \ + "gsldlc1 %[ftmp1], 0x07(%[src]) \n\t" \ + "gsldrc1 %[ftmp1], 0x00(%[src]) \n\t" \ + "gsldlc1 %[ftmp2], 0x0f(%[src]) \n\t" \ + "gsldrc1 %[ftmp2], 0x08(%[src]) \n\t" \ + "gsldlc1 %[ftmp3], 0x07(%[ref]) \n\t" \ + "gsldrc1 %[ftmp3], 0x00(%[ref]) \n\t" \ + "gsldlc1 %[ftmp4], 0x0f(%[ref]) \n\t" \ + "gsldrc1 %[ftmp4], 0x08(%[ref]) \n\t" \ + "pasubub %[ftmp1], %[ftmp1], %[ftmp3] \n\t" \ + "pasubub %[ftmp2], %[ftmp2], %[ftmp4] \n\t" \ + "biadd %[ftmp1], %[ftmp1] \n\t" \ + "biadd %[ftmp2], %[ftmp2] \n\t" \ + "paddw %[ftmp5], %[ftmp5], %[ftmp1] \n\t" \ + "paddw %[ftmp5], %[ftmp5], %[ftmp2] \n\t" + +#define SAD_SRC_REF_ABS_SUB_8 \ + "gsldlc1 %[ftmp1], 0x07(%[src]) \n\t" \ + "gsldrc1 %[ftmp1], 0x00(%[src]) \n\t" \ + "gsldlc1 %[ftmp2], 0x07(%[ref]) \n\t" \ + "gsldrc1 %[ftmp2], 0x00(%[ref]) \n\t" \ + "pasubub %[ftmp1], %[ftmp1], %[ftmp2] \n\t" \ + "biadd %[ftmp1], %[ftmp1] \n\t" \ + "paddw %[ftmp3], %[ftmp3], %[ftmp1] \n\t" + +#if _MIPS_SIM == _ABIO32 +#define SAD_SRC_REF_ABS_SUB_4 \ + "ulw %[tmp0], 0x00(%[src]) \n\t" \ + "mtc1 %[tmp0], %[ftmp1] \n\t" \ + "ulw %[tmp0], 0x00(%[ref]) \n\t" \ + "mtc1 %[tmp0], %[ftmp2] \n\t" \ + "pasubub %[ftmp1], %[ftmp1], %[ftmp2] \n\t" \ + "mthc1 $0, %[ftmp1] \n\t" \ + "biadd %[ftmp1], %[ftmp1] \n\t" \ + "paddw %[ftmp3], %[ftmp3], %[ftmp1] \n\t" +#else /* _MIPS_SIM == _ABI64 || _MIPS_SIM == _ABIN32 */ +#define SAD_SRC_REF_ABS_SUB_4 \ + "gslwlc1 %[ftmp1], 0x03(%[src]) \n\t" \ + "gslwrc1 %[ftmp1], 0x00(%[src]) \n\t" \ + "gslwlc1 %[ftmp2], 0x03(%[ref]) \n\t" \ + "gslwrc1 %[ftmp2], 0x00(%[ref]) \n\t" \ + "pasubub %[ftmp1], %[ftmp1], %[ftmp2] \n\t" \ + "mthc1 $0, %[ftmp1] \n\t" \ + "biadd %[ftmp1], %[ftmp1] \n\t" \ + "paddw %[ftmp3], %[ftmp3], %[ftmp1] \n\t" +#endif /* _MIPS_SIM == _ABIO32 */ + +#define SAD_SRC_AVGREF_ABS_SUB_64 \ + "gsldlc1 %[ftmp1], 0x07(%[second_pred]) \n\t" \ + "gsldrc1 %[ftmp1], 0x00(%[second_pred]) \n\t" \ + "gsldlc1 %[ftmp2], 0x0f(%[second_pred]) \n\t" \ + "gsldrc1 %[ftmp2], 0x08(%[second_pred]) \n\t" \ + "gsldlc1 %[ftmp3], 0x07(%[ref]) \n\t" \ + "gsldrc1 %[ftmp3], 0x00(%[ref]) \n\t" \ + "gsldlc1 %[ftmp4], 0x0f(%[ref]) \n\t" \ + "gsldrc1 %[ftmp4], 0x08(%[ref]) \n\t" \ + "pavgb %[ftmp3], %[ftmp1], %[ftmp3] \n\t" \ + "pavgb %[ftmp4], %[ftmp2], %[ftmp4] \n\t" \ + "gsldlc1 %[ftmp1], 0x07(%[src]) \n\t" \ + "gsldrc1 %[ftmp1], 0x00(%[src]) \n\t" \ + "gsldlc1 %[ftmp2], 0x0f(%[src]) \n\t" \ + "gsldrc1 %[ftmp2], 0x08(%[src]) \n\t" \ + "pasubub %[ftmp1], %[ftmp1], %[ftmp3] \n\t" \ + "pasubub %[ftmp2], %[ftmp2], %[ftmp4] \n\t" \ + "biadd %[ftmp1], %[ftmp1] \n\t" \ + "biadd %[ftmp2], %[ftmp2] \n\t" \ + "paddw %[ftmp5], %[ftmp5], %[ftmp1] \n\t" \ + "paddw %[ftmp5], %[ftmp5], %[ftmp2] \n\t" \ + "gsldlc1 %[ftmp1], 0x17(%[second_pred]) \n\t" \ + "gsldrc1 %[ftmp1], 0x10(%[second_pred]) \n\t" \ + "gsldlc1 %[ftmp2], 0x1f(%[second_pred]) \n\t" \ + "gsldrc1 %[ftmp2], 0x18(%[second_pred]) \n\t" \ + "gsldlc1 %[ftmp3], 0x17(%[ref]) \n\t" \ + "gsldrc1 %[ftmp3], 0x10(%[ref]) \n\t" \ + "gsldlc1 %[ftmp4], 0x1f(%[ref]) \n\t" \ + "gsldrc1 %[ftmp4], 0x18(%[ref]) \n\t" \ + "pavgb %[ftmp3], %[ftmp1], %[ftmp3] \n\t" \ + "pavgb %[ftmp4], %[ftmp2], %[ftmp4] \n\t" \ + "gsldlc1 %[ftmp1], 0x17(%[src]) \n\t" \ + "gsldrc1 %[ftmp1], 0x10(%[src]) \n\t" \ + "gsldlc1 %[ftmp2], 0x1f(%[src]) \n\t" \ + "gsldrc1 %[ftmp2], 0x18(%[src]) \n\t" \ + "pasubub %[ftmp1], %[ftmp1], %[ftmp3] \n\t" \ + "pasubub %[ftmp2], %[ftmp2], %[ftmp4] \n\t" \ + "biadd %[ftmp1], %[ftmp1] \n\t" \ + "biadd %[ftmp2], %[ftmp2] \n\t" \ + "paddw %[ftmp5], %[ftmp5], %[ftmp1] \n\t" \ + "paddw %[ftmp5], %[ftmp5], %[ftmp2] \n\t" \ + "gsldlc1 %[ftmp1], 0x27(%[second_pred]) \n\t" \ + "gsldrc1 %[ftmp1], 0x20(%[second_pred]) \n\t" \ + "gsldlc1 %[ftmp2], 0x2f(%[second_pred]) \n\t" \ + "gsldrc1 %[ftmp2], 0x28(%[second_pred]) \n\t" \ + "gsldlc1 %[ftmp3], 0x27(%[ref]) \n\t" \ + "gsldrc1 %[ftmp3], 0x20(%[ref]) \n\t" \ + "gsldlc1 %[ftmp4], 0x2f(%[ref]) \n\t" \ + "gsldrc1 %[ftmp4], 0x28(%[ref]) \n\t" \ + "pavgb %[ftmp3], %[ftmp1], %[ftmp3] \n\t" \ + "pavgb %[ftmp4], %[ftmp2], %[ftmp4] \n\t" \ + "gsldlc1 %[ftmp1], 0x27(%[src]) \n\t" \ + "gsldrc1 %[ftmp1], 0x20(%[src]) \n\t" \ + "gsldlc1 %[ftmp2], 0x2f(%[src]) \n\t" \ + "gsldrc1 %[ftmp2], 0x28(%[src]) \n\t" \ + "pasubub %[ftmp1], %[ftmp1], %[ftmp3] \n\t" \ + "pasubub %[ftmp2], %[ftmp2], %[ftmp4] \n\t" \ + "biadd %[ftmp1], %[ftmp1] \n\t" \ + "biadd %[ftmp2], %[ftmp2] \n\t" \ + "paddw %[ftmp5], %[ftmp5], %[ftmp1] \n\t" \ + "paddw %[ftmp5], %[ftmp5], %[ftmp2] \n\t" \ + "gsldlc1 %[ftmp1], 0x37(%[second_pred]) \n\t" \ + "gsldrc1 %[ftmp1], 0x30(%[second_pred]) \n\t" \ + "gsldlc1 %[ftmp2], 0x3f(%[second_pred]) \n\t" \ + "gsldrc1 %[ftmp2], 0x38(%[second_pred]) \n\t" \ + "gsldlc1 %[ftmp3], 0x37(%[ref]) \n\t" \ + "gsldrc1 %[ftmp3], 0x30(%[ref]) \n\t" \ + "gsldlc1 %[ftmp4], 0x3f(%[ref]) \n\t" \ + "gsldrc1 %[ftmp4], 0x38(%[ref]) \n\t" \ + "pavgb %[ftmp3], %[ftmp1], %[ftmp3] \n\t" \ + "pavgb %[ftmp4], %[ftmp2], %[ftmp4] \n\t" \ + "gsldlc1 %[ftmp1], 0x37(%[src]) \n\t" \ + "gsldrc1 %[ftmp1], 0x30(%[src]) \n\t" \ + "gsldlc1 %[ftmp2], 0x3f(%[src]) \n\t" \ + "gsldrc1 %[ftmp2], 0x38(%[src]) \n\t" \ + "pasubub %[ftmp1], %[ftmp1], %[ftmp3] \n\t" \ + "pasubub %[ftmp2], %[ftmp2], %[ftmp4] \n\t" \ + "biadd %[ftmp1], %[ftmp1] \n\t" \ + "biadd %[ftmp2], %[ftmp2] \n\t" \ + "paddw %[ftmp5], %[ftmp5], %[ftmp1] \n\t" \ + "paddw %[ftmp5], %[ftmp5], %[ftmp2] \n\t" + +#define SAD_SRC_AVGREF_ABS_SUB_32 \ + "gsldlc1 %[ftmp1], 0x07(%[second_pred]) \n\t" \ + "gsldrc1 %[ftmp1], 0x00(%[second_pred]) \n\t" \ + "gsldlc1 %[ftmp2], 0x0f(%[second_pred]) \n\t" \ + "gsldrc1 %[ftmp2], 0x08(%[second_pred]) \n\t" \ + "gsldlc1 %[ftmp3], 0x07(%[ref]) \n\t" \ + "gsldrc1 %[ftmp3], 0x00(%[ref]) \n\t" \ + "gsldlc1 %[ftmp4], 0x0f(%[ref]) \n\t" \ + "gsldrc1 %[ftmp4], 0x08(%[ref]) \n\t" \ + "pavgb %[ftmp3], %[ftmp1], %[ftmp3] \n\t" \ + "pavgb %[ftmp4], %[ftmp2], %[ftmp4] \n\t" \ + "gsldlc1 %[ftmp1], 0x07(%[src]) \n\t" \ + "gsldrc1 %[ftmp1], 0x00(%[src]) \n\t" \ + "gsldlc1 %[ftmp2], 0x0f(%[src]) \n\t" \ + "gsldrc1 %[ftmp2], 0x08(%[src]) \n\t" \ + "pasubub %[ftmp1], %[ftmp1], %[ftmp3] \n\t" \ + "pasubub %[ftmp2], %[ftmp2], %[ftmp4] \n\t" \ + "biadd %[ftmp1], %[ftmp1] \n\t" \ + "biadd %[ftmp2], %[ftmp2] \n\t" \ + "paddw %[ftmp5], %[ftmp5], %[ftmp1] \n\t" \ + "paddw %[ftmp5], %[ftmp5], %[ftmp2] \n\t" \ + "gsldlc1 %[ftmp1], 0x17(%[second_pred]) \n\t" \ + "gsldrc1 %[ftmp1], 0x10(%[second_pred]) \n\t" \ + "gsldlc1 %[ftmp2], 0x1f(%[second_pred]) \n\t" \ + "gsldrc1 %[ftmp2], 0x18(%[second_pred]) \n\t" \ + "gsldlc1 %[ftmp3], 0x17(%[ref]) \n\t" \ + "gsldrc1 %[ftmp3], 0x10(%[ref]) \n\t" \ + "gsldlc1 %[ftmp4], 0x1f(%[ref]) \n\t" \ + "gsldrc1 %[ftmp4], 0x18(%[ref]) \n\t" \ + "pavgb %[ftmp3], %[ftmp1], %[ftmp3] \n\t" \ + "pavgb %[ftmp4], %[ftmp2], %[ftmp4] \n\t" \ + "gsldlc1 %[ftmp1], 0x17(%[src]) \n\t" \ + "gsldrc1 %[ftmp1], 0x10(%[src]) \n\t" \ + "gsldlc1 %[ftmp2], 0x1f(%[src]) \n\t" \ + "gsldrc1 %[ftmp2], 0x18(%[src]) \n\t" \ + "pasubub %[ftmp1], %[ftmp1], %[ftmp3] \n\t" \ + "pasubub %[ftmp2], %[ftmp2], %[ftmp4] \n\t" \ + "biadd %[ftmp1], %[ftmp1] \n\t" \ + "biadd %[ftmp2], %[ftmp2] \n\t" \ + "paddw %[ftmp5], %[ftmp5], %[ftmp1] \n\t" \ + "paddw %[ftmp5], %[ftmp5], %[ftmp2] \n\t" + +#define SAD_SRC_AVGREF_ABS_SUB_16 \ + "gsldlc1 %[ftmp1], 0x07(%[second_pred]) \n\t" \ + "gsldrc1 %[ftmp1], 0x00(%[second_pred]) \n\t" \ + "gsldlc1 %[ftmp2], 0x0f(%[second_pred]) \n\t" \ + "gsldrc1 %[ftmp2], 0x08(%[second_pred]) \n\t" \ + "gsldlc1 %[ftmp3], 0x07(%[ref]) \n\t" \ + "gsldrc1 %[ftmp3], 0x00(%[ref]) \n\t" \ + "gsldlc1 %[ftmp4], 0x0f(%[ref]) \n\t" \ + "gsldrc1 %[ftmp4], 0x08(%[ref]) \n\t" \ + "pavgb %[ftmp3], %[ftmp1], %[ftmp3] \n\t" \ + "pavgb %[ftmp4], %[ftmp2], %[ftmp4] \n\t" \ + "gsldlc1 %[ftmp1], 0x07(%[src]) \n\t" \ + "gsldrc1 %[ftmp1], 0x00(%[src]) \n\t" \ + "gsldlc1 %[ftmp2], 0x0f(%[src]) \n\t" \ + "gsldrc1 %[ftmp2], 0x08(%[src]) \n\t" \ + "pasubub %[ftmp1], %[ftmp1], %[ftmp3] \n\t" \ + "pasubub %[ftmp2], %[ftmp2], %[ftmp4] \n\t" \ + "biadd %[ftmp1], %[ftmp1] \n\t" \ + "biadd %[ftmp2], %[ftmp2] \n\t" \ + "paddw %[ftmp5], %[ftmp5], %[ftmp1] \n\t" \ + "paddw %[ftmp5], %[ftmp5], %[ftmp2] \n\t" + +#define SAD_SRC_AVGREF_ABS_SUB_8 \ + "gsldlc1 %[ftmp1], 0x07(%[second_pred]) \n\t" \ + "gsldrc1 %[ftmp1], 0x00(%[second_pred]) \n\t" \ + "gsldlc1 %[ftmp2], 0x07(%[ref]) \n\t" \ + "gsldrc1 %[ftmp2], 0x00(%[ref]) \n\t" \ + "pavgb %[ftmp2], %[ftmp1], %[ftmp2] \n\t" \ + "gsldlc1 %[ftmp1], 0x07(%[src]) \n\t" \ + "gsldrc1 %[ftmp1], 0x00(%[src]) \n\t" \ + "pasubub %[ftmp1], %[ftmp1], %[ftmp2] \n\t" \ + "biadd %[ftmp1], %[ftmp1] \n\t" \ + "paddw %[ftmp3], %[ftmp3], %[ftmp1] \n\t" + +#if _MIPS_SIM == _ABIO32 +#define SAD_SRC_AVGREF_ABS_SUB_4 \ + "ulw %[tmp0], 0x00(%[second_pred]) \n\t" \ + "mtc1 %[tmp0], %[ftmp1] \n\t" \ + "ulw %[tmp0], 0x00(%[ref]) \n\t" \ + "mtc1 %[tmp0], %[ftmp2] \n\t" \ + "pavgb %[ftmp2], %[ftmp1], %[ftmp2] \n\t" \ + "gsldlc1 %[ftmp1], 0x07(%[src]) \n\t" \ + "gsldrc1 %[ftmp1], 0x00(%[src]) \n\t" \ + "pasubub %[ftmp1], %[ftmp1], %[ftmp2] \n\t" \ + "mthc1 $0, %[ftmp1] \n\t" \ + "biadd %[ftmp1], %[ftmp1] \n\t" \ + "paddw %[ftmp3], %[ftmp3], %[ftmp1] \n\t" +#else /* _MIPS_SIM == _ABI64 || _MIPS_SIM == _ABIN32 */ +#define SAD_SRC_AVGREF_ABS_SUB_4 \ + "gslwlc1 %[ftmp1], 0x03(%[second_pred]) \n\t" \ + "gslwrc1 %[ftmp1], 0x00(%[second_pred]) \n\t" \ + "gslwlc1 %[ftmp2], 0x03(%[ref]) \n\t" \ + "gslwrc1 %[ftmp2], 0x00(%[ref]) \n\t" \ + "pavgb %[ftmp2], %[ftmp1], %[ftmp2] \n\t" \ + "gsldlc1 %[ftmp1], 0x07(%[src]) \n\t" \ + "gsldrc1 %[ftmp1], 0x00(%[src]) \n\t" \ + "pasubub %[ftmp1], %[ftmp1], %[ftmp2] \n\t" \ + "mthc1 $0, %[ftmp1] \n\t" \ + "biadd %[ftmp1], %[ftmp1] \n\t" \ + "paddw %[ftmp3], %[ftmp3], %[ftmp1] \n\t" +#endif /* _MIPS_SIM == _ABIO32 */ + +// depending on call sites, pass **ref_array to avoid & in subsequent call and +// de-dup with 4D below. +#define sadMxNxK_mmi(m, n, k) \ + void vpx_sad##m##x##n##x##k##_mmi(const uint8_t *src, int src_stride, \ + const uint8_t *ref_array, int ref_stride, \ + uint32_t *sad_array) { \ + int i; \ + for (i = 0; i < k; ++i) \ + sad_array[i] = \ + vpx_sad##m##x##n##_mmi(src, src_stride, &ref_array[i], ref_stride); \ + } + +// This appears to be equivalent to the above when k == 4 and refs is const +#define sadMxNx4D_mmi(m, n) \ + void vpx_sad##m##x##n##x4d_mmi(const uint8_t *src, int src_stride, \ + const uint8_t *const ref_array[], \ + int ref_stride, uint32_t *sad_array) { \ + int i; \ + for (i = 0; i < 4; ++i) \ + sad_array[i] = \ + vpx_sad##m##x##n##_mmi(src, src_stride, ref_array[i], ref_stride); \ + } + +static inline unsigned int vpx_sad64x(const uint8_t *src, int src_stride, + const uint8_t *ref, int ref_stride, + int counter) { + unsigned int sad; + double ftmp1, ftmp2, ftmp3, ftmp4, ftmp5; + mips_reg l_counter = counter; + + __asm__ volatile ( + "xor %[ftmp5], %[ftmp5], %[ftmp5] \n\t" + "1: \n\t" + // Include two loop body, to reduce loop time. + SAD_SRC_REF_ABS_SUB_64 + MMI_ADDU(%[src], %[src], %[src_stride]) + MMI_ADDU(%[ref], %[ref], %[ref_stride]) + SAD_SRC_REF_ABS_SUB_64 + MMI_ADDU(%[src], %[src], %[src_stride]) + MMI_ADDU(%[ref], %[ref], %[ref_stride]) + MMI_ADDIU(%[counter], %[counter], -0x02) + "bnez %[counter], 1b \n\t" + "mfc1 %[sad], %[ftmp5] \n\t" + : [ftmp1]"=&f"(ftmp1), [ftmp2]"=&f"(ftmp2), [ftmp3]"=&f"(ftmp3), + [ftmp4]"=&f"(ftmp4), [ftmp5]"=&f"(ftmp5), [counter]"+&r"(l_counter), + [src]"+&r"(src), [ref]"+&r"(ref), [sad]"=&r"(sad) + : [src_stride]"r"((mips_reg)src_stride), + [ref_stride]"r"((mips_reg)ref_stride) + ); + + return sad; +} + +#define vpx_sad64xN(H) \ + unsigned int vpx_sad64x##H##_mmi(const uint8_t *src, int src_stride, \ + const uint8_t *ref, int ref_stride) { \ + return vpx_sad64x(src, src_stride, ref, ref_stride, H); \ + } + +vpx_sad64xN(64); +vpx_sad64xN(32); +sadMxNx4D_mmi(64, 64); +sadMxNx4D_mmi(64, 32); + +static inline unsigned int vpx_sad_avg64x(const uint8_t *src, int src_stride, + const uint8_t *ref, int ref_stride, + const uint8_t *second_pred, + int counter) { + unsigned int sad; + double ftmp1, ftmp2, ftmp3, ftmp4, ftmp5; + mips_reg l_counter = counter; + + __asm__ volatile ( + "xor %[ftmp5], %[ftmp5], %[ftmp5] \n\t" + "1: \n\t" + // Include two loop body, to reduce loop time. + SAD_SRC_AVGREF_ABS_SUB_64 + MMI_ADDIU(%[second_pred], %[second_pred], 0x40) + MMI_ADDU(%[src], %[src], %[src_stride]) + MMI_ADDU(%[ref], %[ref], %[ref_stride]) + SAD_SRC_AVGREF_ABS_SUB_64 + MMI_ADDIU(%[second_pred], %[second_pred], 0x40) + MMI_ADDU(%[src], %[src], %[src_stride]) + MMI_ADDU(%[ref], %[ref], %[ref_stride]) + MMI_ADDIU(%[counter], %[counter], -0x02) + "bnez %[counter], 1b \n\t" + "mfc1 %[sad], %[ftmp5] \n\t" + : [ftmp1]"=&f"(ftmp1), [ftmp2]"=&f"(ftmp2), [ftmp3]"=&f"(ftmp3), + [ftmp4]"=&f"(ftmp4), [ftmp5]"=&f"(ftmp5), [counter]"+&r"(l_counter), + [src]"+&r"(src), [ref]"+&r"(ref), + [second_pred]"+&r"((mips_reg)second_pred), + [sad]"=&r"(sad) + : [src_stride]"r"((mips_reg)src_stride), + [ref_stride]"r"((mips_reg)ref_stride) + ); + + return sad; +} + +#define vpx_sad_avg64xN(H) \ + unsigned int vpx_sad64x##H##_avg_mmi(const uint8_t *src, int src_stride, \ + const uint8_t *ref, int ref_stride, \ + const uint8_t *second_pred) { \ + return vpx_sad_avg64x(src, src_stride, ref, ref_stride, second_pred, H); \ + } + +vpx_sad_avg64xN(64); +vpx_sad_avg64xN(32); + +static inline unsigned int vpx_sad32x(const uint8_t *src, int src_stride, + const uint8_t *ref, int ref_stride, + int counter) { + unsigned int sad; + double ftmp1, ftmp2, ftmp3, ftmp4, ftmp5; + mips_reg l_counter = counter; + + __asm__ volatile ( + "xor %[ftmp5], %[ftmp5], %[ftmp5] \n\t" + "1: \n\t" + // Include two loop body, to reduce loop time. + SAD_SRC_REF_ABS_SUB_32 + MMI_ADDU(%[src], %[src], %[src_stride]) + MMI_ADDU(%[ref], %[ref], %[ref_stride]) + SAD_SRC_REF_ABS_SUB_32 + MMI_ADDU(%[src], %[src], %[src_stride]) + MMI_ADDU(%[ref], %[ref], %[ref_stride]) + MMI_ADDIU(%[counter], %[counter], -0x02) + "bnez %[counter], 1b \n\t" + "mfc1 %[sad], %[ftmp5] \n\t" + : [ftmp1]"=&f"(ftmp1), [ftmp2]"=&f"(ftmp2), [ftmp3]"=&f"(ftmp3), + [ftmp4]"=&f"(ftmp4), [ftmp5]"=&f"(ftmp5), [counter]"+&r"(l_counter), + [src]"+&r"(src), [ref]"+&r"(ref), [sad]"=&r"(sad) + : [src_stride]"r"((mips_reg)src_stride), + [ref_stride]"r"((mips_reg)ref_stride) + ); + + return sad; +} + +#define vpx_sad32xN(H) \ + unsigned int vpx_sad32x##H##_mmi(const uint8_t *src, int src_stride, \ + const uint8_t *ref, int ref_stride) { \ + return vpx_sad32x(src, src_stride, ref, ref_stride, H); \ + } + +vpx_sad32xN(64); +vpx_sad32xN(32); +vpx_sad32xN(16); +sadMxNx4D_mmi(32, 64); +sadMxNx4D_mmi(32, 32); +sadMxNx4D_mmi(32, 16); + +static inline unsigned int vpx_sad_avg32x(const uint8_t *src, int src_stride, + const uint8_t *ref, int ref_stride, + const uint8_t *second_pred, + int counter) { + unsigned int sad; + double ftmp1, ftmp2, ftmp3, ftmp4, ftmp5; + mips_reg l_counter = counter; + + __asm__ volatile ( + "xor %[ftmp5], %[ftmp5], %[ftmp5] \n\t" + "1: \n\t" + // Include two loop body, to reduce loop time. + SAD_SRC_AVGREF_ABS_SUB_32 + MMI_ADDIU(%[second_pred], %[second_pred], 0x20) + MMI_ADDU(%[src], %[src], %[src_stride]) + MMI_ADDU(%[ref], %[ref], %[ref_stride]) + SAD_SRC_AVGREF_ABS_SUB_32 + MMI_ADDIU(%[second_pred], %[second_pred], 0x20) + MMI_ADDU(%[src], %[src], %[src_stride]) + MMI_ADDU(%[ref], %[ref], %[ref_stride]) + MMI_ADDIU(%[counter], %[counter], -0x02) + "bnez %[counter], 1b \n\t" + "mfc1 %[sad], %[ftmp5] \n\t" + : [ftmp1]"=&f"(ftmp1), [ftmp2]"=&f"(ftmp2), [ftmp3]"=&f"(ftmp3), + [ftmp4]"=&f"(ftmp4), [ftmp5]"=&f"(ftmp5), [counter]"+&r"(l_counter), + [src]"+&r"(src), [ref]"+&r"(ref), + [second_pred]"+&r"((mips_reg)second_pred), + [sad]"=&r"(sad) + : [src_stride]"r"((mips_reg)src_stride), + [ref_stride]"r"((mips_reg)ref_stride) + ); + + return sad; +} + +#define vpx_sad_avg32xN(H) \ + unsigned int vpx_sad32x##H##_avg_mmi(const uint8_t *src, int src_stride, \ + const uint8_t *ref, int ref_stride, \ + const uint8_t *second_pred) { \ + return vpx_sad_avg32x(src, src_stride, ref, ref_stride, second_pred, H); \ + } + +vpx_sad_avg32xN(64); +vpx_sad_avg32xN(32); +vpx_sad_avg32xN(16); + +static inline unsigned int vpx_sad16x(const uint8_t *src, int src_stride, + const uint8_t *ref, int ref_stride, + int counter) { + unsigned int sad; + double ftmp1, ftmp2, ftmp3, ftmp4, ftmp5; + mips_reg l_counter = counter; + + __asm__ volatile ( + "xor %[ftmp5], %[ftmp5], %[ftmp5] \n\t" + "1: \n\t" + // Include two loop body, to reduce loop time. + SAD_SRC_REF_ABS_SUB_16 + MMI_ADDU(%[src], %[src], %[src_stride]) + MMI_ADDU(%[ref], %[ref], %[ref_stride]) + SAD_SRC_REF_ABS_SUB_16 + MMI_ADDU(%[src], %[src], %[src_stride]) + MMI_ADDU(%[ref], %[ref], %[ref_stride]) + MMI_ADDIU(%[counter], %[counter], -0x02) + "bnez %[counter], 1b \n\t" + "mfc1 %[sad], %[ftmp5] \n\t" + : [ftmp1]"=&f"(ftmp1), [ftmp2]"=&f"(ftmp2), [ftmp3]"=&f"(ftmp3), + [ftmp4]"=&f"(ftmp4), [ftmp5]"=&f"(ftmp5), [counter]"+&r"(l_counter), + [src]"+&r"(src), [ref]"+&r"(ref), [sad]"=&r"(sad) + : [src_stride]"r"((mips_reg)src_stride), + [ref_stride]"r"((mips_reg)ref_stride) + ); + + return sad; +} + +#define vpx_sad16xN(H) \ + unsigned int vpx_sad16x##H##_mmi(const uint8_t *src, int src_stride, \ + const uint8_t *ref, int ref_stride) { \ + return vpx_sad16x(src, src_stride, ref, ref_stride, H); \ + } + +vpx_sad16xN(32); +vpx_sad16xN(16); +vpx_sad16xN(8); +sadMxNxK_mmi(16, 16, 3); +sadMxNxK_mmi(16, 16, 8); +sadMxNxK_mmi(16, 8, 3); +sadMxNxK_mmi(16, 8, 8); +sadMxNx4D_mmi(16, 32); +sadMxNx4D_mmi(16, 16); +sadMxNx4D_mmi(16, 8); + +static inline unsigned int vpx_sad_avg16x(const uint8_t *src, int src_stride, + const uint8_t *ref, int ref_stride, + const uint8_t *second_pred, + int counter) { + unsigned int sad; + double ftmp1, ftmp2, ftmp3, ftmp4, ftmp5; + mips_reg l_counter = counter; + + __asm__ volatile ( + "xor %[ftmp5], %[ftmp5], %[ftmp5] \n\t" + "1: \n\t" + // Include two loop body, to reduce loop time. + SAD_SRC_AVGREF_ABS_SUB_16 + MMI_ADDIU(%[second_pred], %[second_pred], 0x10) + MMI_ADDU(%[src], %[src], %[src_stride]) + MMI_ADDU(%[ref], %[ref], %[ref_stride]) + SAD_SRC_AVGREF_ABS_SUB_16 + MMI_ADDIU(%[second_pred], %[second_pred], 0x10) + MMI_ADDU(%[src], %[src], %[src_stride]) + MMI_ADDU(%[ref], %[ref], %[ref_stride]) + MMI_ADDIU(%[counter], %[counter], -0x02) + "bnez %[counter], 1b \n\t" + "mfc1 %[sad], %[ftmp5] \n\t" + : [ftmp1]"=&f"(ftmp1), [ftmp2]"=&f"(ftmp2), [ftmp3]"=&f"(ftmp3), + [ftmp4]"=&f"(ftmp4), [ftmp5]"=&f"(ftmp5), [counter]"+&r"(l_counter), + [src]"+&r"(src), [ref]"+&r"(ref), + [second_pred]"+&r"((mips_reg)second_pred), + [sad]"=&r"(sad) + : [src_stride]"r"((mips_reg)src_stride), + [ref_stride]"r"((mips_reg)ref_stride) + ); + + return sad; +} + +#define vpx_sad_avg16xN(H) \ + unsigned int vpx_sad16x##H##_avg_mmi(const uint8_t *src, int src_stride, \ + const uint8_t *ref, int ref_stride, \ + const uint8_t *second_pred) { \ + return vpx_sad_avg16x(src, src_stride, ref, ref_stride, second_pred, H); \ + } + +vpx_sad_avg16xN(32); +vpx_sad_avg16xN(16); +vpx_sad_avg16xN(8); + +static inline unsigned int vpx_sad8x(const uint8_t *src, int src_stride, + const uint8_t *ref, int ref_stride, + int counter) { + unsigned int sad; + double ftmp1, ftmp2, ftmp3; + mips_reg l_counter = counter; + + __asm__ volatile ( + "xor %[ftmp3], %[ftmp3], %[ftmp3] \n\t" + "1: \n\t" + // Include two loop body, to reduce loop time. + SAD_SRC_REF_ABS_SUB_8 + MMI_ADDU(%[src], %[src], %[src_stride]) + MMI_ADDU(%[ref], %[ref], %[ref_stride]) + SAD_SRC_REF_ABS_SUB_8 + MMI_ADDU(%[src], %[src], %[src_stride]) + MMI_ADDU(%[ref], %[ref], %[ref_stride]) + MMI_ADDIU(%[counter], %[counter], -0x02) + "bnez %[counter], 1b \n\t" + "mfc1 %[sad], %[ftmp3] \n\t" + : [ftmp1]"=&f"(ftmp1), [ftmp2]"=&f"(ftmp2), [ftmp3]"=&f"(ftmp3), + [counter]"+&r"(l_counter), [src]"+&r"(src), [ref]"+&r"(ref), + [sad]"=&r"(sad) + : [src_stride]"r"((mips_reg)src_stride), + [ref_stride]"r"((mips_reg)ref_stride) + ); + + return sad; +} + +#define vpx_sad8xN(H) \ + unsigned int vpx_sad8x##H##_mmi(const uint8_t *src, int src_stride, \ + const uint8_t *ref, int ref_stride) { \ + return vpx_sad8x(src, src_stride, ref, ref_stride, H); \ + } + +vpx_sad8xN(16); +vpx_sad8xN(8); +vpx_sad8xN(4); +sadMxNxK_mmi(8, 16, 3); +sadMxNxK_mmi(8, 16, 8); +sadMxNxK_mmi(8, 8, 3); +sadMxNxK_mmi(8, 8, 8); +sadMxNx4D_mmi(8, 16); +sadMxNx4D_mmi(8, 8); +sadMxNx4D_mmi(8, 4); + +static inline unsigned int vpx_sad_avg8x(const uint8_t *src, int src_stride, + const uint8_t *ref, int ref_stride, + const uint8_t *second_pred, + int counter) { + unsigned int sad; + double ftmp1, ftmp2, ftmp3; + mips_reg l_counter = counter; + + __asm__ volatile ( + "xor %[ftmp3], %[ftmp3], %[ftmp3] \n\t" + "1: \n\t" + // Include two loop body, to reduce loop time. + SAD_SRC_AVGREF_ABS_SUB_8 + MMI_ADDIU(%[second_pred], %[second_pred], 0x08) + MMI_ADDU(%[src], %[src], %[src_stride]) + MMI_ADDU(%[ref], %[ref], %[ref_stride]) + SAD_SRC_AVGREF_ABS_SUB_8 + MMI_ADDIU(%[second_pred], %[second_pred], 0x08) + MMI_ADDU(%[src], %[src], %[src_stride]) + MMI_ADDU(%[ref], %[ref], %[ref_stride]) + MMI_ADDIU(%[counter], %[counter], -0x02) + "bnez %[counter], 1b \n\t" + "mfc1 %[sad], %[ftmp3] \n\t" + : [ftmp1]"=&f"(ftmp1), [ftmp2]"=&f"(ftmp2), [ftmp3]"=&f"(ftmp3), + [counter]"+&r"(l_counter), [src]"+&r"(src), [ref]"+&r"(ref), + [second_pred]"+&r"((mips_reg)second_pred), + [sad]"=&r"(sad) + : [src_stride]"r"((mips_reg)src_stride), + [ref_stride]"r"((mips_reg)ref_stride) + ); + + return sad; +} + +#define vpx_sad_avg8xN(H) \ + unsigned int vpx_sad8x##H##_avg_mmi(const uint8_t *src, int src_stride, \ + const uint8_t *ref, int ref_stride, \ + const uint8_t *second_pred) { \ + return vpx_sad_avg8x(src, src_stride, ref, ref_stride, second_pred, H); \ + } + +vpx_sad_avg8xN(16); +vpx_sad_avg8xN(8); +vpx_sad_avg8xN(4); + +static inline unsigned int vpx_sad4x(const uint8_t *src, int src_stride, + const uint8_t *ref, int ref_stride, + int counter) { + unsigned int sad; + double ftmp1, ftmp2, ftmp3; + mips_reg l_counter = counter; + + __asm__ volatile ( + "xor %[ftmp3], %[ftmp3], %[ftmp3] \n\t" + "1: \n\t" + // Include two loop body, to reduce loop time. + SAD_SRC_REF_ABS_SUB_4 + MMI_ADDU(%[src], %[src], %[src_stride]) + MMI_ADDU(%[ref], %[ref], %[ref_stride]) + SAD_SRC_REF_ABS_SUB_4 + MMI_ADDU(%[src], %[src], %[src_stride]) + MMI_ADDU(%[ref], %[ref], %[ref_stride]) + MMI_ADDIU(%[counter], %[counter], -0x02) + "bnez %[counter], 1b \n\t" + "mfc1 %[sad], %[ftmp3] \n\t" + : [ftmp1]"=&f"(ftmp1), [ftmp2]"=&f"(ftmp2), [ftmp3]"=&f"(ftmp3), + [counter]"+&r"(l_counter), [src]"+&r"(src), [ref]"+&r"(ref), + [sad]"=&r"(sad) + : [src_stride]"r"((mips_reg)src_stride), + [ref_stride]"r"((mips_reg)ref_stride) + ); + + return sad; +} + +#define vpx_sad4xN(H) \ + unsigned int vpx_sad4x##H##_mmi(const uint8_t *src, int src_stride, \ + const uint8_t *ref, int ref_stride) { \ + return vpx_sad4x(src, src_stride, ref, ref_stride, H); \ + } + +vpx_sad4xN(8); +vpx_sad4xN(4); +sadMxNxK_mmi(4, 4, 3); +sadMxNxK_mmi(4, 4, 8); +sadMxNx4D_mmi(4, 8); +sadMxNx4D_mmi(4, 4); + +static inline unsigned int vpx_sad_avg4x(const uint8_t *src, int src_stride, + const uint8_t *ref, int ref_stride, + const uint8_t *second_pred, + int counter) { + unsigned int sad; + double ftmp1, ftmp2, ftmp3; + mips_reg l_counter = counter; + + __asm__ volatile ( + "xor %[ftmp3], %[ftmp3], %[ftmp3] \n\t" + "1: \n\t" + // Include two loop body, to reduce loop time. + SAD_SRC_AVGREF_ABS_SUB_4 + MMI_ADDIU(%[second_pred], %[second_pred], 0x04) + MMI_ADDU(%[src], %[src], %[src_stride]) + MMI_ADDU(%[ref], %[ref], %[ref_stride]) + SAD_SRC_AVGREF_ABS_SUB_4 + MMI_ADDIU(%[second_pred], %[second_pred], 0x04) + MMI_ADDU(%[src], %[src], %[src_stride]) + MMI_ADDU(%[ref], %[ref], %[ref_stride]) + MMI_ADDIU(%[counter], %[counter], -0x02) + "bnez %[counter], 1b \n\t" + "mfc1 %[sad], %[ftmp3] \n\t" + : [ftmp1]"=&f"(ftmp1), [ftmp2]"=&f"(ftmp2), [ftmp3]"=&f"(ftmp3), + [counter]"+&r"(l_counter), [src]"+&r"(src), [ref]"+&r"(ref), + [second_pred]"+&r"((mips_reg)second_pred), + [sad]"=&r"(sad) + : [src_stride]"r"((mips_reg)src_stride), + [ref_stride]"r"((mips_reg)ref_stride) + ); + + return sad; +} + +#define vpx_sad_avg4xN(H) \ + unsigned int vpx_sad4x##H##_avg_mmi(const uint8_t *src, int src_stride, \ + const uint8_t *ref, int ref_stride, \ + const uint8_t *second_pred) { \ + return vpx_sad_avg4x(src, src_stride, ref, ref_stride, second_pred, H); \ + } + +vpx_sad_avg4xN(8); +vpx_sad_avg4xN(4); diff --git a/vpx_dsp/mips/sad_msa.c b/vpx_dsp/mips/sad_msa.c new file mode 100644 index 0000000..ab681ae --- /dev/null +++ b/vpx_dsp/mips/sad_msa.c @@ -0,0 +1,1230 @@ +/* + * Copyright (c) 2015 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "./vpx_dsp_rtcd.h" +#include "vpx_dsp/mips/macros_msa.h" + +#define SAD_INSVE_W4(RTYPE, in0, in1, in2, in3, out) \ + { \ + out = (RTYPE)__msa_insve_w((v4i32)out, 0, (v4i32)in0); \ + out = (RTYPE)__msa_insve_w((v4i32)out, 1, (v4i32)in1); \ + out = (RTYPE)__msa_insve_w((v4i32)out, 2, (v4i32)in2); \ + out = (RTYPE)__msa_insve_w((v4i32)out, 3, (v4i32)in3); \ + } +#define SAD_INSVE_W4_UB(...) SAD_INSVE_W4(v16u8, __VA_ARGS__) + +static uint32_t sad_4width_msa(const uint8_t *src_ptr, int32_t src_stride, + const uint8_t *ref_ptr, int32_t ref_stride, + int32_t height) { + int32_t ht_cnt; + uint32_t src0, src1, src2, src3, ref0, ref1, ref2, ref3; + v16u8 src = { 0 }; + v16u8 ref = { 0 }; + v16u8 diff; + v8u16 sad = { 0 }; + + for (ht_cnt = (height >> 2); ht_cnt--;) { + LW4(src_ptr, src_stride, src0, src1, src2, src3); + src_ptr += (4 * src_stride); + LW4(ref_ptr, ref_stride, ref0, ref1, ref2, ref3); + ref_ptr += (4 * ref_stride); + + INSERT_W4_UB(src0, src1, src2, src3, src); + INSERT_W4_UB(ref0, ref1, ref2, ref3, ref); + + diff = __msa_asub_u_b(src, ref); + sad += __msa_hadd_u_h(diff, diff); + } + + return HADD_UH_U32(sad); +} + +static uint32_t sad_8width_msa(const uint8_t *src, int32_t src_stride, + const uint8_t *ref, int32_t ref_stride, + int32_t height) { + int32_t ht_cnt; + v16u8 src0, src1, src2, src3, ref0, ref1, ref2, ref3; + v8u16 sad = { 0 }; + + for (ht_cnt = (height >> 2); ht_cnt--;) { + LD_UB4(src, src_stride, src0, src1, src2, src3); + src += (4 * src_stride); + LD_UB4(ref, ref_stride, ref0, ref1, ref2, ref3); + ref += (4 * ref_stride); + + PCKEV_D4_UB(src1, src0, src3, src2, ref1, ref0, ref3, ref2, src0, src1, + ref0, ref1); + sad += SAD_UB2_UH(src0, src1, ref0, ref1); + } + + return HADD_UH_U32(sad); +} + +static uint32_t sad_16width_msa(const uint8_t *src, int32_t src_stride, + const uint8_t *ref, int32_t ref_stride, + int32_t height) { + int32_t ht_cnt; + v16u8 src0, src1, ref0, ref1; + v8u16 sad = { 0 }; + + for (ht_cnt = (height >> 2); ht_cnt--;) { + LD_UB2(src, src_stride, src0, src1); + src += (2 * src_stride); + LD_UB2(ref, ref_stride, ref0, ref1); + ref += (2 * ref_stride); + sad += SAD_UB2_UH(src0, src1, ref0, ref1); + + LD_UB2(src, src_stride, src0, src1); + src += (2 * src_stride); + LD_UB2(ref, ref_stride, ref0, ref1); + ref += (2 * ref_stride); + sad += SAD_UB2_UH(src0, src1, ref0, ref1); + } + + return HADD_UH_U32(sad); +} + +static uint32_t sad_32width_msa(const uint8_t *src, int32_t src_stride, + const uint8_t *ref, int32_t ref_stride, + int32_t height) { + int32_t ht_cnt; + v16u8 src0, src1, ref0, ref1; + v8u16 sad = { 0 }; + + for (ht_cnt = (height >> 2); ht_cnt--;) { + LD_UB2(src, 16, src0, src1); + src += src_stride; + LD_UB2(ref, 16, ref0, ref1); + ref += ref_stride; + sad += SAD_UB2_UH(src0, src1, ref0, ref1); + + LD_UB2(src, 16, src0, src1); + src += src_stride; + LD_UB2(ref, 16, ref0, ref1); + ref += ref_stride; + sad += SAD_UB2_UH(src0, src1, ref0, ref1); + + LD_UB2(src, 16, src0, src1); + src += src_stride; + LD_UB2(ref, 16, ref0, ref1); + ref += ref_stride; + sad += SAD_UB2_UH(src0, src1, ref0, ref1); + + LD_UB2(src, 16, src0, src1); + src += src_stride; + LD_UB2(ref, 16, ref0, ref1); + ref += ref_stride; + sad += SAD_UB2_UH(src0, src1, ref0, ref1); + } + + return HADD_UH_U32(sad); +} + +static uint32_t sad_64width_msa(const uint8_t *src, int32_t src_stride, + const uint8_t *ref, int32_t ref_stride, + int32_t height) { + int32_t ht_cnt; + uint32_t sad = 0; + v16u8 src0, src1, src2, src3; + v16u8 ref0, ref1, ref2, ref3; + v8u16 sad0 = { 0 }; + v8u16 sad1 = { 0 }; + + for (ht_cnt = (height >> 1); ht_cnt--;) { + LD_UB4(src, 16, src0, src1, src2, src3); + src += src_stride; + LD_UB4(ref, 16, ref0, ref1, ref2, ref3); + ref += ref_stride; + sad0 += SAD_UB2_UH(src0, src1, ref0, ref1); + sad1 += SAD_UB2_UH(src2, src3, ref2, ref3); + + LD_UB4(src, 16, src0, src1, src2, src3); + src += src_stride; + LD_UB4(ref, 16, ref0, ref1, ref2, ref3); + ref += ref_stride; + sad0 += SAD_UB2_UH(src0, src1, ref0, ref1); + sad1 += SAD_UB2_UH(src2, src3, ref2, ref3); + } + + sad = HADD_UH_U32(sad0); + sad += HADD_UH_U32(sad1); + + return sad; +} + +static void sad_4width_x3_msa(const uint8_t *src_ptr, int32_t src_stride, + const uint8_t *ref_ptr, int32_t ref_stride, + int32_t height, uint32_t *sad_array) { + int32_t ht_cnt; + uint32_t src0, src1, src2, src3; + v16u8 src = { 0 }; + v16u8 ref = { 0 }; + v16u8 ref0, ref1, ref2, ref3, diff; + v8u16 sad0 = { 0 }; + v8u16 sad1 = { 0 }; + v8u16 sad2 = { 0 }; + + for (ht_cnt = (height >> 2); ht_cnt--;) { + LW4(src_ptr, src_stride, src0, src1, src2, src3); + src_ptr += (4 * src_stride); + INSERT_W4_UB(src0, src1, src2, src3, src); + + LD_UB4(ref_ptr, ref_stride, ref0, ref1, ref2, ref3); + ref_ptr += (4 * ref_stride); + SAD_INSVE_W4_UB(ref0, ref1, ref2, ref3, ref); + diff = __msa_asub_u_b(src, ref); + sad0 += __msa_hadd_u_h(diff, diff); + + SLDI_B2_UB(ref0, ref1, ref0, ref1, ref0, ref1, 1); + SLDI_B2_UB(ref2, ref3, ref2, ref3, ref2, ref3, 1); + SAD_INSVE_W4_UB(ref0, ref1, ref2, ref3, ref); + diff = __msa_asub_u_b(src, ref); + sad1 += __msa_hadd_u_h(diff, diff); + + SLDI_B2_UB(ref0, ref1, ref0, ref1, ref0, ref1, 1); + SLDI_B2_UB(ref2, ref3, ref2, ref3, ref2, ref3, 1); + SAD_INSVE_W4_UB(ref0, ref1, ref2, ref3, ref); + diff = __msa_asub_u_b(src, ref); + sad2 += __msa_hadd_u_h(diff, diff); + } + + sad_array[0] = HADD_UH_U32(sad0); + sad_array[1] = HADD_UH_U32(sad1); + sad_array[2] = HADD_UH_U32(sad2); +} + +static void sad_8width_x3_msa(const uint8_t *src, int32_t src_stride, + const uint8_t *ref, int32_t ref_stride, + int32_t height, uint32_t *sad_array) { + int32_t ht_cnt; + v16u8 src0, src1, src2, src3; + v16u8 ref0, ref1, ref00, ref11, ref22, ref33; + v8u16 sad0 = { 0 }; + v8u16 sad1 = { 0 }; + v8u16 sad2 = { 0 }; + + for (ht_cnt = (height >> 2); ht_cnt--;) { + LD_UB4(src, src_stride, src0, src1, src2, src3); + src += (4 * src_stride); + LD_UB4(ref, ref_stride, ref00, ref11, ref22, ref33); + ref += (4 * ref_stride); + PCKEV_D4_UB(src1, src0, src3, src2, ref11, ref00, ref33, ref22, src0, src1, + ref0, ref1); + sad0 += SAD_UB2_UH(src0, src1, ref0, ref1); + + SLDI_B2_UB(ref00, ref11, ref00, ref11, ref00, ref11, 1); + SLDI_B2_UB(ref22, ref33, ref22, ref33, ref22, ref33, 1); + PCKEV_D2_UB(ref11, ref00, ref33, ref22, ref0, ref1); + sad1 += SAD_UB2_UH(src0, src1, ref0, ref1); + + SLDI_B2_UB(ref00, ref11, ref00, ref11, ref00, ref11, 1); + SLDI_B2_UB(ref22, ref33, ref22, ref33, ref22, ref33, 1); + PCKEV_D2_UB(ref11, ref00, ref33, ref22, ref0, ref1); + sad2 += SAD_UB2_UH(src0, src1, ref0, ref1); + } + + sad_array[0] = HADD_UH_U32(sad0); + sad_array[1] = HADD_UH_U32(sad1); + sad_array[2] = HADD_UH_U32(sad2); +} + +static void sad_16width_x3_msa(const uint8_t *src_ptr, int32_t src_stride, + const uint8_t *ref_ptr, int32_t ref_stride, + int32_t height, uint32_t *sad_array) { + int32_t ht_cnt; + v16u8 src, ref, ref0, ref1, diff; + v8u16 sad0 = { 0 }; + v8u16 sad1 = { 0 }; + v8u16 sad2 = { 0 }; + + for (ht_cnt = (height >> 1); ht_cnt--;) { + src = LD_UB(src_ptr); + src_ptr += src_stride; + LD_UB2(ref_ptr, 16, ref0, ref1); + ref_ptr += ref_stride; + + diff = __msa_asub_u_b(src, ref0); + sad0 += __msa_hadd_u_h(diff, diff); + + ref = (v16u8)__msa_sldi_b((v16i8)ref1, (v16i8)ref0, 1); + diff = __msa_asub_u_b(src, ref); + sad1 += __msa_hadd_u_h(diff, diff); + + ref = (v16u8)__msa_sldi_b((v16i8)ref1, (v16i8)ref0, 2); + diff = __msa_asub_u_b(src, ref); + sad2 += __msa_hadd_u_h(diff, diff); + + src = LD_UB(src_ptr); + src_ptr += src_stride; + LD_UB2(ref_ptr, 16, ref0, ref1); + ref_ptr += ref_stride; + + diff = __msa_asub_u_b(src, ref0); + sad0 += __msa_hadd_u_h(diff, diff); + + ref = (v16u8)__msa_sldi_b((v16i8)ref1, (v16i8)ref0, 1); + diff = __msa_asub_u_b(src, ref); + sad1 += __msa_hadd_u_h(diff, diff); + + ref = (v16u8)__msa_sldi_b((v16i8)ref1, (v16i8)ref0, 2); + diff = __msa_asub_u_b(src, ref); + sad2 += __msa_hadd_u_h(diff, diff); + } + + sad_array[0] = HADD_UH_U32(sad0); + sad_array[1] = HADD_UH_U32(sad1); + sad_array[2] = HADD_UH_U32(sad2); +} + +static void sad_4width_x8_msa(const uint8_t *src_ptr, int32_t src_stride, + const uint8_t *ref_ptr, int32_t ref_stride, + int32_t height, uint32_t *sad_array) { + int32_t ht_cnt; + uint32_t src0, src1, src2, src3; + v16u8 ref0, ref1, ref2, ref3, diff; + v16u8 src = { 0 }; + v16u8 ref = { 0 }; + v8u16 sad0 = { 0 }; + v8u16 sad1 = { 0 }; + v8u16 sad2 = { 0 }; + v8u16 sad3 = { 0 }; + v8u16 sad4 = { 0 }; + v8u16 sad5 = { 0 }; + v8u16 sad6 = { 0 }; + v8u16 sad7 = { 0 }; + + for (ht_cnt = (height >> 2); ht_cnt--;) { + LW4(src_ptr, src_stride, src0, src1, src2, src3); + INSERT_W4_UB(src0, src1, src2, src3, src); + src_ptr += (4 * src_stride); + LD_UB4(ref_ptr, ref_stride, ref0, ref1, ref2, ref3); + ref_ptr += (4 * ref_stride); + + SAD_INSVE_W4_UB(ref0, ref1, ref2, ref3, ref); + diff = __msa_asub_u_b(src, ref); + sad0 += __msa_hadd_u_h(diff, diff); + + SLDI_B2_UB(ref0, ref1, ref0, ref1, ref0, ref1, 1); + SLDI_B2_UB(ref2, ref3, ref2, ref3, ref2, ref3, 1); + SAD_INSVE_W4_UB(ref0, ref1, ref2, ref3, ref); + diff = __msa_asub_u_b(src, ref); + sad1 += __msa_hadd_u_h(diff, diff); + + SLDI_B2_UB(ref0, ref1, ref0, ref1, ref0, ref1, 1); + SLDI_B2_UB(ref2, ref3, ref2, ref3, ref2, ref3, 1); + SAD_INSVE_W4_UB(ref0, ref1, ref2, ref3, ref); + diff = __msa_asub_u_b(src, ref); + sad2 += __msa_hadd_u_h(diff, diff); + + SLDI_B2_UB(ref0, ref1, ref0, ref1, ref0, ref1, 1); + SLDI_B2_UB(ref2, ref3, ref2, ref3, ref2, ref3, 1); + SAD_INSVE_W4_UB(ref0, ref1, ref2, ref3, ref); + diff = __msa_asub_u_b(src, ref); + sad3 += __msa_hadd_u_h(diff, diff); + + SLDI_B2_UB(ref0, ref1, ref0, ref1, ref0, ref1, 1); + SLDI_B2_UB(ref2, ref3, ref2, ref3, ref2, ref3, 1); + SAD_INSVE_W4_UB(ref0, ref1, ref2, ref3, ref); + diff = __msa_asub_u_b(src, ref); + sad4 += __msa_hadd_u_h(diff, diff); + + SLDI_B2_UB(ref0, ref1, ref0, ref1, ref0, ref1, 1); + SLDI_B2_UB(ref2, ref3, ref2, ref3, ref2, ref3, 1); + SAD_INSVE_W4_UB(ref0, ref1, ref2, ref3, ref); + diff = __msa_asub_u_b(src, ref); + sad5 += __msa_hadd_u_h(diff, diff); + + SLDI_B2_UB(ref0, ref1, ref0, ref1, ref0, ref1, 1); + SLDI_B2_UB(ref2, ref3, ref2, ref3, ref2, ref3, 1); + SAD_INSVE_W4_UB(ref0, ref1, ref2, ref3, ref); + diff = __msa_asub_u_b(src, ref); + sad6 += __msa_hadd_u_h(diff, diff); + + SLDI_B2_UB(ref0, ref1, ref0, ref1, ref0, ref1, 1); + SLDI_B2_UB(ref2, ref3, ref2, ref3, ref2, ref3, 1); + SAD_INSVE_W4_UB(ref0, ref1, ref2, ref3, ref); + diff = __msa_asub_u_b(src, ref); + sad7 += __msa_hadd_u_h(diff, diff); + } + + sad_array[0] = HADD_UH_U32(sad0); + sad_array[1] = HADD_UH_U32(sad1); + sad_array[2] = HADD_UH_U32(sad2); + sad_array[3] = HADD_UH_U32(sad3); + sad_array[4] = HADD_UH_U32(sad4); + sad_array[5] = HADD_UH_U32(sad5); + sad_array[6] = HADD_UH_U32(sad6); + sad_array[7] = HADD_UH_U32(sad7); +} + +static void sad_8width_x8_msa(const uint8_t *src, int32_t src_stride, + const uint8_t *ref, int32_t ref_stride, + int32_t height, uint32_t *sad_array) { + int32_t ht_cnt; + v16u8 src0, src1, src2, src3; + v16u8 ref0, ref1, ref00, ref11, ref22, ref33; + v8u16 sad0 = { 0 }; + v8u16 sad1 = { 0 }; + v8u16 sad2 = { 0 }; + v8u16 sad3 = { 0 }; + v8u16 sad4 = { 0 }; + v8u16 sad5 = { 0 }; + v8u16 sad6 = { 0 }; + v8u16 sad7 = { 0 }; + + for (ht_cnt = (height >> 2); ht_cnt--;) { + LD_UB4(src, src_stride, src0, src1, src2, src3); + src += (4 * src_stride); + LD_UB4(ref, ref_stride, ref00, ref11, ref22, ref33); + ref += (4 * ref_stride); + PCKEV_D4_UB(src1, src0, src3, src2, ref11, ref00, ref33, ref22, src0, src1, + ref0, ref1); + sad0 += SAD_UB2_UH(src0, src1, ref0, ref1); + + SLDI_B2_UB(ref00, ref11, ref00, ref11, ref00, ref11, 1); + SLDI_B2_UB(ref22, ref33, ref22, ref33, ref22, ref33, 1); + PCKEV_D2_UB(ref11, ref00, ref33, ref22, ref0, ref1); + sad1 += SAD_UB2_UH(src0, src1, ref0, ref1); + + SLDI_B2_UB(ref00, ref11, ref00, ref11, ref00, ref11, 1); + SLDI_B2_UB(ref22, ref33, ref22, ref33, ref22, ref33, 1); + PCKEV_D2_UB(ref11, ref00, ref33, ref22, ref0, ref1); + sad2 += SAD_UB2_UH(src0, src1, ref0, ref1); + + SLDI_B2_UB(ref00, ref11, ref00, ref11, ref00, ref11, 1); + SLDI_B2_UB(ref22, ref33, ref22, ref33, ref22, ref33, 1); + PCKEV_D2_UB(ref11, ref00, ref33, ref22, ref0, ref1); + sad3 += SAD_UB2_UH(src0, src1, ref0, ref1); + + SLDI_B2_UB(ref00, ref11, ref00, ref11, ref00, ref11, 1); + SLDI_B2_UB(ref22, ref33, ref22, ref33, ref22, ref33, 1); + PCKEV_D2_UB(ref11, ref00, ref33, ref22, ref0, ref1); + sad4 += SAD_UB2_UH(src0, src1, ref0, ref1); + + SLDI_B2_UB(ref00, ref11, ref00, ref11, ref00, ref11, 1); + SLDI_B2_UB(ref22, ref33, ref22, ref33, ref22, ref33, 1); + PCKEV_D2_UB(ref11, ref00, ref33, ref22, ref0, ref1); + sad5 += SAD_UB2_UH(src0, src1, ref0, ref1); + + SLDI_B2_UB(ref00, ref11, ref00, ref11, ref00, ref11, 1); + SLDI_B2_UB(ref22, ref33, ref22, ref33, ref22, ref33, 1); + PCKEV_D2_UB(ref11, ref00, ref33, ref22, ref0, ref1); + sad6 += SAD_UB2_UH(src0, src1, ref0, ref1); + + SLDI_B2_UB(ref00, ref11, ref00, ref11, ref00, ref11, 1); + SLDI_B2_UB(ref22, ref33, ref22, ref33, ref22, ref33, 1); + PCKEV_D2_UB(ref11, ref00, ref33, ref22, ref0, ref1); + sad7 += SAD_UB2_UH(src0, src1, ref0, ref1); + } + + sad_array[0] = HADD_UH_U32(sad0); + sad_array[1] = HADD_UH_U32(sad1); + sad_array[2] = HADD_UH_U32(sad2); + sad_array[3] = HADD_UH_U32(sad3); + sad_array[4] = HADD_UH_U32(sad4); + sad_array[5] = HADD_UH_U32(sad5); + sad_array[6] = HADD_UH_U32(sad6); + sad_array[7] = HADD_UH_U32(sad7); +} + +static void sad_16width_x8_msa(const uint8_t *src_ptr, int32_t src_stride, + const uint8_t *ref_ptr, int32_t ref_stride, + int32_t height, uint32_t *sad_array) { + int32_t ht_cnt; + v16u8 src, ref0, ref1, ref; + v16u8 diff; + v8u16 sad0 = { 0 }; + v8u16 sad1 = { 0 }; + v8u16 sad2 = { 0 }; + v8u16 sad3 = { 0 }; + v8u16 sad4 = { 0 }; + v8u16 sad5 = { 0 }; + v8u16 sad6 = { 0 }; + v8u16 sad7 = { 0 }; + + for (ht_cnt = (height >> 1); ht_cnt--;) { + src = LD_UB(src_ptr); + src_ptr += src_stride; + LD_UB2(ref_ptr, 16, ref0, ref1); + ref_ptr += ref_stride; + + diff = __msa_asub_u_b(src, ref0); + sad0 += __msa_hadd_u_h(diff, diff); + + ref = (v16u8)__msa_sldi_b((v16i8)ref1, (v16i8)ref0, 1); + diff = __msa_asub_u_b(src, ref); + sad1 += __msa_hadd_u_h(diff, diff); + + ref = (v16u8)__msa_sldi_b((v16i8)ref1, (v16i8)ref0, 2); + diff = __msa_asub_u_b(src, ref); + sad2 += __msa_hadd_u_h(diff, diff); + + ref = (v16u8)__msa_sldi_b((v16i8)ref1, (v16i8)ref0, 3); + diff = __msa_asub_u_b(src, ref); + sad3 += __msa_hadd_u_h(diff, diff); + + ref = (v16u8)__msa_sldi_b((v16i8)ref1, (v16i8)ref0, 4); + diff = __msa_asub_u_b(src, ref); + sad4 += __msa_hadd_u_h(diff, diff); + + ref = (v16u8)__msa_sldi_b((v16i8)ref1, (v16i8)ref0, 5); + diff = __msa_asub_u_b(src, ref); + sad5 += __msa_hadd_u_h(diff, diff); + + ref = (v16u8)__msa_sldi_b((v16i8)ref1, (v16i8)ref0, 6); + diff = __msa_asub_u_b(src, ref); + sad6 += __msa_hadd_u_h(diff, diff); + + ref = (v16u8)__msa_sldi_b((v16i8)ref1, (v16i8)ref0, 7); + diff = __msa_asub_u_b(src, ref); + sad7 += __msa_hadd_u_h(diff, diff); + + src = LD_UB(src_ptr); + src_ptr += src_stride; + LD_UB2(ref_ptr, 16, ref0, ref1); + ref_ptr += ref_stride; + + diff = __msa_asub_u_b(src, ref0); + sad0 += __msa_hadd_u_h(diff, diff); + + ref = (v16u8)__msa_sldi_b((v16i8)ref1, (v16i8)ref0, 1); + diff = __msa_asub_u_b(src, ref); + sad1 += __msa_hadd_u_h(diff, diff); + + ref = (v16u8)__msa_sldi_b((v16i8)ref1, (v16i8)ref0, 2); + diff = __msa_asub_u_b(src, ref); + sad2 += __msa_hadd_u_h(diff, diff); + + ref = (v16u8)__msa_sldi_b((v16i8)ref1, (v16i8)ref0, 3); + diff = __msa_asub_u_b(src, ref); + sad3 += __msa_hadd_u_h(diff, diff); + + ref = (v16u8)__msa_sldi_b((v16i8)ref1, (v16i8)ref0, 4); + diff = __msa_asub_u_b(src, ref); + sad4 += __msa_hadd_u_h(diff, diff); + + ref = (v16u8)__msa_sldi_b((v16i8)ref1, (v16i8)ref0, 5); + diff = __msa_asub_u_b(src, ref); + sad5 += __msa_hadd_u_h(diff, diff); + + ref = (v16u8)__msa_sldi_b((v16i8)ref1, (v16i8)ref0, 6); + diff = __msa_asub_u_b(src, ref); + sad6 += __msa_hadd_u_h(diff, diff); + + ref = (v16u8)__msa_sldi_b((v16i8)ref1, (v16i8)ref0, 7); + diff = __msa_asub_u_b(src, ref); + sad7 += __msa_hadd_u_h(diff, diff); + } + + sad_array[0] = HADD_UH_U32(sad0); + sad_array[1] = HADD_UH_U32(sad1); + sad_array[2] = HADD_UH_U32(sad2); + sad_array[3] = HADD_UH_U32(sad3); + sad_array[4] = HADD_UH_U32(sad4); + sad_array[5] = HADD_UH_U32(sad5); + sad_array[6] = HADD_UH_U32(sad6); + sad_array[7] = HADD_UH_U32(sad7); +} + +static void sad_4width_x4d_msa(const uint8_t *src_ptr, int32_t src_stride, + const uint8_t *const aref_ptr[], + int32_t ref_stride, int32_t height, + uint32_t *sad_array) { + const uint8_t *ref0_ptr, *ref1_ptr, *ref2_ptr, *ref3_ptr; + int32_t ht_cnt; + uint32_t src0, src1, src2, src3; + uint32_t ref0, ref1, ref2, ref3; + v16u8 src = { 0 }; + v16u8 ref = { 0 }; + v16u8 diff; + v8u16 sad0 = { 0 }; + v8u16 sad1 = { 0 }; + v8u16 sad2 = { 0 }; + v8u16 sad3 = { 0 }; + + ref0_ptr = aref_ptr[0]; + ref1_ptr = aref_ptr[1]; + ref2_ptr = aref_ptr[2]; + ref3_ptr = aref_ptr[3]; + + for (ht_cnt = (height >> 2); ht_cnt--;) { + LW4(src_ptr, src_stride, src0, src1, src2, src3); + INSERT_W4_UB(src0, src1, src2, src3, src); + src_ptr += (4 * src_stride); + + LW4(ref0_ptr, ref_stride, ref0, ref1, ref2, ref3); + INSERT_W4_UB(ref0, ref1, ref2, ref3, ref); + ref0_ptr += (4 * ref_stride); + + diff = __msa_asub_u_b(src, ref); + sad0 += __msa_hadd_u_h(diff, diff); + + LW4(ref1_ptr, ref_stride, ref0, ref1, ref2, ref3); + INSERT_W4_UB(ref0, ref1, ref2, ref3, ref); + ref1_ptr += (4 * ref_stride); + + diff = __msa_asub_u_b(src, ref); + sad1 += __msa_hadd_u_h(diff, diff); + + LW4(ref2_ptr, ref_stride, ref0, ref1, ref2, ref3); + INSERT_W4_UB(ref0, ref1, ref2, ref3, ref); + ref2_ptr += (4 * ref_stride); + + diff = __msa_asub_u_b(src, ref); + sad2 += __msa_hadd_u_h(diff, diff); + + LW4(ref3_ptr, ref_stride, ref0, ref1, ref2, ref3); + INSERT_W4_UB(ref0, ref1, ref2, ref3, ref); + ref3_ptr += (4 * ref_stride); + + diff = __msa_asub_u_b(src, ref); + sad3 += __msa_hadd_u_h(diff, diff); + } + + sad_array[0] = HADD_UH_U32(sad0); + sad_array[1] = HADD_UH_U32(sad1); + sad_array[2] = HADD_UH_U32(sad2); + sad_array[3] = HADD_UH_U32(sad3); +} + +static void sad_8width_x4d_msa(const uint8_t *src_ptr, int32_t src_stride, + const uint8_t *const aref_ptr[], + int32_t ref_stride, int32_t height, + uint32_t *sad_array) { + int32_t ht_cnt; + const uint8_t *ref0_ptr, *ref1_ptr, *ref2_ptr, *ref3_ptr; + v16u8 src0, src1, src2, src3; + v16u8 ref0, ref1, ref2, ref3, ref4, ref5, ref6, ref7; + v16u8 ref8, ref9, ref10, ref11, ref12, ref13, ref14, ref15; + v8u16 sad0 = { 0 }; + v8u16 sad1 = { 0 }; + v8u16 sad2 = { 0 }; + v8u16 sad3 = { 0 }; + + ref0_ptr = aref_ptr[0]; + ref1_ptr = aref_ptr[1]; + ref2_ptr = aref_ptr[2]; + ref3_ptr = aref_ptr[3]; + + for (ht_cnt = (height >> 2); ht_cnt--;) { + LD_UB4(src_ptr, src_stride, src0, src1, src2, src3); + src_ptr += (4 * src_stride); + LD_UB4(ref0_ptr, ref_stride, ref0, ref1, ref2, ref3); + ref0_ptr += (4 * ref_stride); + LD_UB4(ref1_ptr, ref_stride, ref4, ref5, ref6, ref7); + ref1_ptr += (4 * ref_stride); + LD_UB4(ref2_ptr, ref_stride, ref8, ref9, ref10, ref11); + ref2_ptr += (4 * ref_stride); + LD_UB4(ref3_ptr, ref_stride, ref12, ref13, ref14, ref15); + ref3_ptr += (4 * ref_stride); + + PCKEV_D2_UB(src1, src0, src3, src2, src0, src1); + PCKEV_D2_UB(ref1, ref0, ref3, ref2, ref0, ref1); + sad0 += SAD_UB2_UH(src0, src1, ref0, ref1); + + PCKEV_D2_UB(ref5, ref4, ref7, ref6, ref0, ref1); + sad1 += SAD_UB2_UH(src0, src1, ref0, ref1); + + PCKEV_D2_UB(ref9, ref8, ref11, ref10, ref0, ref1); + sad2 += SAD_UB2_UH(src0, src1, ref0, ref1); + + PCKEV_D2_UB(ref13, ref12, ref15, ref14, ref0, ref1); + sad3 += SAD_UB2_UH(src0, src1, ref0, ref1); + } + + sad_array[0] = HADD_UH_U32(sad0); + sad_array[1] = HADD_UH_U32(sad1); + sad_array[2] = HADD_UH_U32(sad2); + sad_array[3] = HADD_UH_U32(sad3); +} + +static void sad_16width_x4d_msa(const uint8_t *src_ptr, int32_t src_stride, + const uint8_t *const aref_ptr[], + int32_t ref_stride, int32_t height, + uint32_t *sad_array) { + int32_t ht_cnt; + const uint8_t *ref0_ptr, *ref1_ptr, *ref2_ptr, *ref3_ptr; + v16u8 src, ref0, ref1, ref2, ref3, diff; + v8u16 sad0 = { 0 }; + v8u16 sad1 = { 0 }; + v8u16 sad2 = { 0 }; + v8u16 sad3 = { 0 }; + + ref0_ptr = aref_ptr[0]; + ref1_ptr = aref_ptr[1]; + ref2_ptr = aref_ptr[2]; + ref3_ptr = aref_ptr[3]; + + for (ht_cnt = (height >> 1); ht_cnt--;) { + src = LD_UB(src_ptr); + src_ptr += src_stride; + ref0 = LD_UB(ref0_ptr); + ref0_ptr += ref_stride; + ref1 = LD_UB(ref1_ptr); + ref1_ptr += ref_stride; + ref2 = LD_UB(ref2_ptr); + ref2_ptr += ref_stride; + ref3 = LD_UB(ref3_ptr); + ref3_ptr += ref_stride; + + diff = __msa_asub_u_b(src, ref0); + sad0 += __msa_hadd_u_h(diff, diff); + diff = __msa_asub_u_b(src, ref1); + sad1 += __msa_hadd_u_h(diff, diff); + diff = __msa_asub_u_b(src, ref2); + sad2 += __msa_hadd_u_h(diff, diff); + diff = __msa_asub_u_b(src, ref3); + sad3 += __msa_hadd_u_h(diff, diff); + + src = LD_UB(src_ptr); + src_ptr += src_stride; + ref0 = LD_UB(ref0_ptr); + ref0_ptr += ref_stride; + ref1 = LD_UB(ref1_ptr); + ref1_ptr += ref_stride; + ref2 = LD_UB(ref2_ptr); + ref2_ptr += ref_stride; + ref3 = LD_UB(ref3_ptr); + ref3_ptr += ref_stride; + + diff = __msa_asub_u_b(src, ref0); + sad0 += __msa_hadd_u_h(diff, diff); + diff = __msa_asub_u_b(src, ref1); + sad1 += __msa_hadd_u_h(diff, diff); + diff = __msa_asub_u_b(src, ref2); + sad2 += __msa_hadd_u_h(diff, diff); + diff = __msa_asub_u_b(src, ref3); + sad3 += __msa_hadd_u_h(diff, diff); + } + + sad_array[0] = HADD_UH_U32(sad0); + sad_array[1] = HADD_UH_U32(sad1); + sad_array[2] = HADD_UH_U32(sad2); + sad_array[3] = HADD_UH_U32(sad3); +} + +static void sad_32width_x4d_msa(const uint8_t *src, int32_t src_stride, + const uint8_t *const aref_ptr[], + int32_t ref_stride, int32_t height, + uint32_t *sad_array) { + const uint8_t *ref0_ptr, *ref1_ptr, *ref2_ptr, *ref3_ptr; + int32_t ht_cnt; + v16u8 src0, src1, ref0, ref1; + v8u16 sad0 = { 0 }; + v8u16 sad1 = { 0 }; + v8u16 sad2 = { 0 }; + v8u16 sad3 = { 0 }; + + ref0_ptr = aref_ptr[0]; + ref1_ptr = aref_ptr[1]; + ref2_ptr = aref_ptr[2]; + ref3_ptr = aref_ptr[3]; + + for (ht_cnt = height; ht_cnt--;) { + LD_UB2(src, 16, src0, src1); + src += src_stride; + + LD_UB2(ref0_ptr, 16, ref0, ref1); + ref0_ptr += ref_stride; + sad0 += SAD_UB2_UH(src0, src1, ref0, ref1); + + LD_UB2(ref1_ptr, 16, ref0, ref1); + ref1_ptr += ref_stride; + sad1 += SAD_UB2_UH(src0, src1, ref0, ref1); + + LD_UB2(ref2_ptr, 16, ref0, ref1); + ref2_ptr += ref_stride; + sad2 += SAD_UB2_UH(src0, src1, ref0, ref1); + + LD_UB2(ref3_ptr, 16, ref0, ref1); + ref3_ptr += ref_stride; + sad3 += SAD_UB2_UH(src0, src1, ref0, ref1); + } + + sad_array[0] = HADD_UH_U32(sad0); + sad_array[1] = HADD_UH_U32(sad1); + sad_array[2] = HADD_UH_U32(sad2); + sad_array[3] = HADD_UH_U32(sad3); +} + +static void sad_64width_x4d_msa(const uint8_t *src, int32_t src_stride, + const uint8_t *const aref_ptr[], + int32_t ref_stride, int32_t height, + uint32_t *sad_array) { + const uint8_t *ref0_ptr, *ref1_ptr, *ref2_ptr, *ref3_ptr; + int32_t ht_cnt; + v16u8 src0, src1, src2, src3; + v16u8 ref0, ref1, ref2, ref3; + v8u16 sad0_0 = { 0 }; + v8u16 sad0_1 = { 0 }; + v8u16 sad1_0 = { 0 }; + v8u16 sad1_1 = { 0 }; + v8u16 sad2_0 = { 0 }; + v8u16 sad2_1 = { 0 }; + v8u16 sad3_0 = { 0 }; + v8u16 sad3_1 = { 0 }; + v4u32 sad; + + ref0_ptr = aref_ptr[0]; + ref1_ptr = aref_ptr[1]; + ref2_ptr = aref_ptr[2]; + ref3_ptr = aref_ptr[3]; + + for (ht_cnt = height; ht_cnt--;) { + LD_UB4(src, 16, src0, src1, src2, src3); + src += src_stride; + + LD_UB4(ref0_ptr, 16, ref0, ref1, ref2, ref3); + ref0_ptr += ref_stride; + sad0_0 += SAD_UB2_UH(src0, src1, ref0, ref1); + sad0_1 += SAD_UB2_UH(src2, src3, ref2, ref3); + + LD_UB4(ref1_ptr, 16, ref0, ref1, ref2, ref3); + ref1_ptr += ref_stride; + sad1_0 += SAD_UB2_UH(src0, src1, ref0, ref1); + sad1_1 += SAD_UB2_UH(src2, src3, ref2, ref3); + + LD_UB4(ref2_ptr, 16, ref0, ref1, ref2, ref3); + ref2_ptr += ref_stride; + sad2_0 += SAD_UB2_UH(src0, src1, ref0, ref1); + sad2_1 += SAD_UB2_UH(src2, src3, ref2, ref3); + + LD_UB4(ref3_ptr, 16, ref0, ref1, ref2, ref3); + ref3_ptr += ref_stride; + sad3_0 += SAD_UB2_UH(src0, src1, ref0, ref1); + sad3_1 += SAD_UB2_UH(src2, src3, ref2, ref3); + } + + sad = __msa_hadd_u_w(sad0_0, sad0_0); + sad += __msa_hadd_u_w(sad0_1, sad0_1); + sad_array[0] = HADD_UW_U32(sad); + + sad = __msa_hadd_u_w(sad1_0, sad1_0); + sad += __msa_hadd_u_w(sad1_1, sad1_1); + sad_array[1] = HADD_UW_U32(sad); + + sad = __msa_hadd_u_w(sad2_0, sad2_0); + sad += __msa_hadd_u_w(sad2_1, sad2_1); + sad_array[2] = HADD_UW_U32(sad); + + sad = __msa_hadd_u_w(sad3_0, sad3_0); + sad += __msa_hadd_u_w(sad3_1, sad3_1); + sad_array[3] = HADD_UW_U32(sad); +} + +static uint32_t avgsad_4width_msa(const uint8_t *src_ptr, int32_t src_stride, + const uint8_t *ref_ptr, int32_t ref_stride, + int32_t height, const uint8_t *sec_pred) { + int32_t ht_cnt; + uint32_t src0, src1, src2, src3, ref0, ref1, ref2, ref3; + v16u8 src = { 0 }; + v16u8 ref = { 0 }; + v16u8 diff, pred, comp; + v8u16 sad = { 0 }; + + for (ht_cnt = (height >> 2); ht_cnt--;) { + LW4(src_ptr, src_stride, src0, src1, src2, src3); + src_ptr += (4 * src_stride); + LW4(ref_ptr, ref_stride, ref0, ref1, ref2, ref3); + ref_ptr += (4 * ref_stride); + pred = LD_UB(sec_pred); + sec_pred += 16; + + INSERT_W4_UB(src0, src1, src2, src3, src); + INSERT_W4_UB(ref0, ref1, ref2, ref3, ref); + + comp = __msa_aver_u_b(pred, ref); + diff = __msa_asub_u_b(src, comp); + sad += __msa_hadd_u_h(diff, diff); + } + + return HADD_UH_U32(sad); +} + +static uint32_t avgsad_8width_msa(const uint8_t *src, int32_t src_stride, + const uint8_t *ref, int32_t ref_stride, + int32_t height, const uint8_t *sec_pred) { + int32_t ht_cnt; + v16u8 src0, src1, src2, src3, ref0, ref1, ref2, ref3; + v16u8 diff0, diff1, pred0, pred1; + v8u16 sad = { 0 }; + + for (ht_cnt = (height >> 2); ht_cnt--;) { + LD_UB4(src, src_stride, src0, src1, src2, src3); + src += (4 * src_stride); + LD_UB4(ref, ref_stride, ref0, ref1, ref2, ref3); + ref += (4 * ref_stride); + LD_UB2(sec_pred, 16, pred0, pred1); + sec_pred += 32; + PCKEV_D4_UB(src1, src0, src3, src2, ref1, ref0, ref3, ref2, src0, src1, + ref0, ref1); + AVER_UB2_UB(pred0, ref0, pred1, ref1, diff0, diff1); + sad += SAD_UB2_UH(src0, src1, diff0, diff1); + } + + return HADD_UH_U32(sad); +} + +static uint32_t avgsad_16width_msa(const uint8_t *src, int32_t src_stride, + const uint8_t *ref, int32_t ref_stride, + int32_t height, const uint8_t *sec_pred) { + int32_t ht_cnt; + v16u8 src0, src1, src2, src3, ref0, ref1, ref2, ref3; + v16u8 pred0, pred1, pred2, pred3, comp0, comp1; + v8u16 sad = { 0 }; + + for (ht_cnt = (height >> 3); ht_cnt--;) { + LD_UB4(src, src_stride, src0, src1, src2, src3); + src += (4 * src_stride); + LD_UB4(ref, ref_stride, ref0, ref1, ref2, ref3); + ref += (4 * ref_stride); + LD_UB4(sec_pred, 16, pred0, pred1, pred2, pred3); + sec_pred += (4 * 16); + AVER_UB2_UB(pred0, ref0, pred1, ref1, comp0, comp1); + sad += SAD_UB2_UH(src0, src1, comp0, comp1); + AVER_UB2_UB(pred2, ref2, pred3, ref3, comp0, comp1); + sad += SAD_UB2_UH(src2, src3, comp0, comp1); + + LD_UB4(src, src_stride, src0, src1, src2, src3); + src += (4 * src_stride); + LD_UB4(ref, ref_stride, ref0, ref1, ref2, ref3); + ref += (4 * ref_stride); + LD_UB4(sec_pred, 16, pred0, pred1, pred2, pred3); + sec_pred += (4 * 16); + AVER_UB2_UB(pred0, ref0, pred1, ref1, comp0, comp1); + sad += SAD_UB2_UH(src0, src1, comp0, comp1); + AVER_UB2_UB(pred2, ref2, pred3, ref3, comp0, comp1); + sad += SAD_UB2_UH(src2, src3, comp0, comp1); + } + + return HADD_UH_U32(sad); +} + +static uint32_t avgsad_32width_msa(const uint8_t *src, int32_t src_stride, + const uint8_t *ref, int32_t ref_stride, + int32_t height, const uint8_t *sec_pred) { + int32_t ht_cnt; + v16u8 src0, src1, src2, src3, src4, src5, src6, src7; + v16u8 ref0, ref1, ref2, ref3, ref4, ref5, ref6, ref7; + v16u8 pred0, pred1, pred2, pred3, pred4, pred5, pred6, pred7; + v16u8 comp0, comp1; + v8u16 sad = { 0 }; + + for (ht_cnt = (height >> 2); ht_cnt--;) { + LD_UB4(src, src_stride, src0, src2, src4, src6); + LD_UB4(src + 16, src_stride, src1, src3, src5, src7); + src += (4 * src_stride); + + LD_UB4(ref, ref_stride, ref0, ref2, ref4, ref6); + LD_UB4(ref + 16, ref_stride, ref1, ref3, ref5, ref7); + ref += (4 * ref_stride); + + LD_UB4(sec_pred, 32, pred0, pred2, pred4, pred6); + LD_UB4(sec_pred + 16, 32, pred1, pred3, pred5, pred7); + sec_pred += (4 * 32); + + AVER_UB2_UB(pred0, ref0, pred1, ref1, comp0, comp1); + sad += SAD_UB2_UH(src0, src1, comp0, comp1); + AVER_UB2_UB(pred2, ref2, pred3, ref3, comp0, comp1); + sad += SAD_UB2_UH(src2, src3, comp0, comp1); + AVER_UB2_UB(pred4, ref4, pred5, ref5, comp0, comp1); + sad += SAD_UB2_UH(src4, src5, comp0, comp1); + AVER_UB2_UB(pred6, ref6, pred7, ref7, comp0, comp1); + sad += SAD_UB2_UH(src6, src7, comp0, comp1); + } + + return HADD_UH_U32(sad); +} + +static uint32_t avgsad_64width_msa(const uint8_t *src, int32_t src_stride, + const uint8_t *ref, int32_t ref_stride, + int32_t height, const uint8_t *sec_pred) { + int32_t ht_cnt; + v16u8 src0, src1, src2, src3; + v16u8 ref0, ref1, ref2, ref3; + v16u8 comp0, comp1, comp2, comp3; + v16u8 pred0, pred1, pred2, pred3; + v8u16 sad0 = { 0 }; + v8u16 sad1 = { 0 }; + v4u32 sad; + + for (ht_cnt = (height >> 2); ht_cnt--;) { + LD_UB4(src, 16, src0, src1, src2, src3); + src += src_stride; + LD_UB4(ref, 16, ref0, ref1, ref2, ref3); + ref += ref_stride; + LD_UB4(sec_pred, 16, pred0, pred1, pred2, pred3); + sec_pred += 64; + AVER_UB4_UB(pred0, ref0, pred1, ref1, pred2, ref2, pred3, ref3, comp0, + comp1, comp2, comp3); + sad0 += SAD_UB2_UH(src0, src1, comp0, comp1); + sad1 += SAD_UB2_UH(src2, src3, comp2, comp3); + + LD_UB4(src, 16, src0, src1, src2, src3); + src += src_stride; + LD_UB4(ref, 16, ref0, ref1, ref2, ref3); + ref += ref_stride; + LD_UB4(sec_pred, 16, pred0, pred1, pred2, pred3); + sec_pred += 64; + AVER_UB4_UB(pred0, ref0, pred1, ref1, pred2, ref2, pred3, ref3, comp0, + comp1, comp2, comp3); + sad0 += SAD_UB2_UH(src0, src1, comp0, comp1); + sad1 += SAD_UB2_UH(src2, src3, comp2, comp3); + + LD_UB4(src, 16, src0, src1, src2, src3); + src += src_stride; + LD_UB4(ref, 16, ref0, ref1, ref2, ref3); + ref += ref_stride; + LD_UB4(sec_pred, 16, pred0, pred1, pred2, pred3); + sec_pred += 64; + AVER_UB4_UB(pred0, ref0, pred1, ref1, pred2, ref2, pred3, ref3, comp0, + comp1, comp2, comp3); + sad0 += SAD_UB2_UH(src0, src1, comp0, comp1); + sad1 += SAD_UB2_UH(src2, src3, comp2, comp3); + + LD_UB4(src, 16, src0, src1, src2, src3); + src += src_stride; + LD_UB4(ref, 16, ref0, ref1, ref2, ref3); + ref += ref_stride; + LD_UB4(sec_pred, 16, pred0, pred1, pred2, pred3); + sec_pred += 64; + AVER_UB4_UB(pred0, ref0, pred1, ref1, pred2, ref2, pred3, ref3, comp0, + comp1, comp2, comp3); + sad0 += SAD_UB2_UH(src0, src1, comp0, comp1); + sad1 += SAD_UB2_UH(src2, src3, comp2, comp3); + } + + sad = __msa_hadd_u_w(sad0, sad0); + sad += __msa_hadd_u_w(sad1, sad1); + + return HADD_SW_S32(sad); +} + +#define VPX_SAD_4xHEIGHT_MSA(height) \ + uint32_t vpx_sad4x##height##_msa(const uint8_t *src, int32_t src_stride, \ + const uint8_t *ref, int32_t ref_stride) { \ + return sad_4width_msa(src, src_stride, ref, ref_stride, height); \ + } + +#define VPX_SAD_8xHEIGHT_MSA(height) \ + uint32_t vpx_sad8x##height##_msa(const uint8_t *src, int32_t src_stride, \ + const uint8_t *ref, int32_t ref_stride) { \ + return sad_8width_msa(src, src_stride, ref, ref_stride, height); \ + } + +#define VPX_SAD_16xHEIGHT_MSA(height) \ + uint32_t vpx_sad16x##height##_msa(const uint8_t *src, int32_t src_stride, \ + const uint8_t *ref, int32_t ref_stride) { \ + return sad_16width_msa(src, src_stride, ref, ref_stride, height); \ + } + +#define VPX_SAD_32xHEIGHT_MSA(height) \ + uint32_t vpx_sad32x##height##_msa(const uint8_t *src, int32_t src_stride, \ + const uint8_t *ref, int32_t ref_stride) { \ + return sad_32width_msa(src, src_stride, ref, ref_stride, height); \ + } + +#define VPX_SAD_64xHEIGHT_MSA(height) \ + uint32_t vpx_sad64x##height##_msa(const uint8_t *src, int32_t src_stride, \ + const uint8_t *ref, int32_t ref_stride) { \ + return sad_64width_msa(src, src_stride, ref, ref_stride, height); \ + } + +#define VPX_SAD_4xHEIGHTx3_MSA(height) \ + void vpx_sad4x##height##x3_msa(const uint8_t *src, int32_t src_stride, \ + const uint8_t *ref, int32_t ref_stride, \ + uint32_t *sads) { \ + sad_4width_x3_msa(src, src_stride, ref, ref_stride, height, sads); \ + } + +#define VPX_SAD_8xHEIGHTx3_MSA(height) \ + void vpx_sad8x##height##x3_msa(const uint8_t *src, int32_t src_stride, \ + const uint8_t *ref, int32_t ref_stride, \ + uint32_t *sads) { \ + sad_8width_x3_msa(src, src_stride, ref, ref_stride, height, sads); \ + } + +#define VPX_SAD_16xHEIGHTx3_MSA(height) \ + void vpx_sad16x##height##x3_msa(const uint8_t *src, int32_t src_stride, \ + const uint8_t *ref, int32_t ref_stride, \ + uint32_t *sads) { \ + sad_16width_x3_msa(src, src_stride, ref, ref_stride, height, sads); \ + } + +#define VPX_SAD_4xHEIGHTx8_MSA(height) \ + void vpx_sad4x##height##x8_msa(const uint8_t *src, int32_t src_stride, \ + const uint8_t *ref, int32_t ref_stride, \ + uint32_t *sads) { \ + sad_4width_x8_msa(src, src_stride, ref, ref_stride, height, sads); \ + } + +#define VPX_SAD_8xHEIGHTx8_MSA(height) \ + void vpx_sad8x##height##x8_msa(const uint8_t *src, int32_t src_stride, \ + const uint8_t *ref, int32_t ref_stride, \ + uint32_t *sads) { \ + sad_8width_x8_msa(src, src_stride, ref, ref_stride, height, sads); \ + } + +#define VPX_SAD_16xHEIGHTx8_MSA(height) \ + void vpx_sad16x##height##x8_msa(const uint8_t *src, int32_t src_stride, \ + const uint8_t *ref, int32_t ref_stride, \ + uint32_t *sads) { \ + sad_16width_x8_msa(src, src_stride, ref, ref_stride, height, sads); \ + } + +#define VPX_SAD_4xHEIGHTx4D_MSA(height) \ + void vpx_sad4x##height##x4d_msa(const uint8_t *src, int32_t src_stride, \ + const uint8_t *const refs[], \ + int32_t ref_stride, uint32_t *sads) { \ + sad_4width_x4d_msa(src, src_stride, refs, ref_stride, height, sads); \ + } + +#define VPX_SAD_8xHEIGHTx4D_MSA(height) \ + void vpx_sad8x##height##x4d_msa(const uint8_t *src, int32_t src_stride, \ + const uint8_t *const refs[], \ + int32_t ref_stride, uint32_t *sads) { \ + sad_8width_x4d_msa(src, src_stride, refs, ref_stride, height, sads); \ + } + +#define VPX_SAD_16xHEIGHTx4D_MSA(height) \ + void vpx_sad16x##height##x4d_msa(const uint8_t *src, int32_t src_stride, \ + const uint8_t *const refs[], \ + int32_t ref_stride, uint32_t *sads) { \ + sad_16width_x4d_msa(src, src_stride, refs, ref_stride, height, sads); \ + } + +#define VPX_SAD_32xHEIGHTx4D_MSA(height) \ + void vpx_sad32x##height##x4d_msa(const uint8_t *src, int32_t src_stride, \ + const uint8_t *const refs[], \ + int32_t ref_stride, uint32_t *sads) { \ + sad_32width_x4d_msa(src, src_stride, refs, ref_stride, height, sads); \ + } + +#define VPX_SAD_64xHEIGHTx4D_MSA(height) \ + void vpx_sad64x##height##x4d_msa(const uint8_t *src, int32_t src_stride, \ + const uint8_t *const refs[], \ + int32_t ref_stride, uint32_t *sads) { \ + sad_64width_x4d_msa(src, src_stride, refs, ref_stride, height, sads); \ + } + +#define VPX_AVGSAD_4xHEIGHT_MSA(height) \ + uint32_t vpx_sad4x##height##_avg_msa(const uint8_t *src, int32_t src_stride, \ + const uint8_t *ref, int32_t ref_stride, \ + const uint8_t *second_pred) { \ + return avgsad_4width_msa(src, src_stride, ref, ref_stride, height, \ + second_pred); \ + } + +#define VPX_AVGSAD_8xHEIGHT_MSA(height) \ + uint32_t vpx_sad8x##height##_avg_msa(const uint8_t *src, int32_t src_stride, \ + const uint8_t *ref, int32_t ref_stride, \ + const uint8_t *second_pred) { \ + return avgsad_8width_msa(src, src_stride, ref, ref_stride, height, \ + second_pred); \ + } + +#define VPX_AVGSAD_16xHEIGHT_MSA(height) \ + uint32_t vpx_sad16x##height##_avg_msa( \ + const uint8_t *src, int32_t src_stride, const uint8_t *ref, \ + int32_t ref_stride, const uint8_t *second_pred) { \ + return avgsad_16width_msa(src, src_stride, ref, ref_stride, height, \ + second_pred); \ + } + +#define VPX_AVGSAD_32xHEIGHT_MSA(height) \ + uint32_t vpx_sad32x##height##_avg_msa( \ + const uint8_t *src, int32_t src_stride, const uint8_t *ref, \ + int32_t ref_stride, const uint8_t *second_pred) { \ + return avgsad_32width_msa(src, src_stride, ref, ref_stride, height, \ + second_pred); \ + } + +#define VPX_AVGSAD_64xHEIGHT_MSA(height) \ + uint32_t vpx_sad64x##height##_avg_msa( \ + const uint8_t *src, int32_t src_stride, const uint8_t *ref, \ + int32_t ref_stride, const uint8_t *second_pred) { \ + return avgsad_64width_msa(src, src_stride, ref, ref_stride, height, \ + second_pred); \ + } + +// 64x64 +VPX_SAD_64xHEIGHT_MSA(64); +VPX_SAD_64xHEIGHTx4D_MSA(64); +VPX_AVGSAD_64xHEIGHT_MSA(64); + +// 64x32 +VPX_SAD_64xHEIGHT_MSA(32); +VPX_SAD_64xHEIGHTx4D_MSA(32); +VPX_AVGSAD_64xHEIGHT_MSA(32); + +// 32x64 +VPX_SAD_32xHEIGHT_MSA(64); +VPX_SAD_32xHEIGHTx4D_MSA(64); +VPX_AVGSAD_32xHEIGHT_MSA(64); + +// 32x32 +VPX_SAD_32xHEIGHT_MSA(32); +VPX_SAD_32xHEIGHTx4D_MSA(32); +VPX_AVGSAD_32xHEIGHT_MSA(32); + +// 32x16 +VPX_SAD_32xHEIGHT_MSA(16); +VPX_SAD_32xHEIGHTx4D_MSA(16); +VPX_AVGSAD_32xHEIGHT_MSA(16); + +// 16x32 +VPX_SAD_16xHEIGHT_MSA(32); +VPX_SAD_16xHEIGHTx4D_MSA(32); +VPX_AVGSAD_16xHEIGHT_MSA(32); + +// 16x16 +VPX_SAD_16xHEIGHT_MSA(16); +VPX_SAD_16xHEIGHTx3_MSA(16); +VPX_SAD_16xHEIGHTx8_MSA(16); +VPX_SAD_16xHEIGHTx4D_MSA(16); +VPX_AVGSAD_16xHEIGHT_MSA(16); + +// 16x8 +VPX_SAD_16xHEIGHT_MSA(8); +VPX_SAD_16xHEIGHTx3_MSA(8); +VPX_SAD_16xHEIGHTx8_MSA(8); +VPX_SAD_16xHEIGHTx4D_MSA(8); +VPX_AVGSAD_16xHEIGHT_MSA(8); + +// 8x16 +VPX_SAD_8xHEIGHT_MSA(16); +VPX_SAD_8xHEIGHTx3_MSA(16); +VPX_SAD_8xHEIGHTx8_MSA(16); +VPX_SAD_8xHEIGHTx4D_MSA(16); +VPX_AVGSAD_8xHEIGHT_MSA(16); + +// 8x8 +VPX_SAD_8xHEIGHT_MSA(8); +VPX_SAD_8xHEIGHTx3_MSA(8); +VPX_SAD_8xHEIGHTx8_MSA(8); +VPX_SAD_8xHEIGHTx4D_MSA(8); +VPX_AVGSAD_8xHEIGHT_MSA(8); + +// 8x4 +VPX_SAD_8xHEIGHT_MSA(4); +VPX_SAD_8xHEIGHTx4D_MSA(4); +VPX_AVGSAD_8xHEIGHT_MSA(4); + +// 4x8 +VPX_SAD_4xHEIGHT_MSA(8); +VPX_SAD_4xHEIGHTx4D_MSA(8); +VPX_AVGSAD_4xHEIGHT_MSA(8); + +// 4x4 +VPX_SAD_4xHEIGHT_MSA(4); +VPX_SAD_4xHEIGHTx3_MSA(4); +VPX_SAD_4xHEIGHTx8_MSA(4); +VPX_SAD_4xHEIGHTx4D_MSA(4); +VPX_AVGSAD_4xHEIGHT_MSA(4); diff --git a/vpx_dsp/mips/sub_pixel_variance_msa.c b/vpx_dsp/mips/sub_pixel_variance_msa.c new file mode 100644 index 0000000..313e06f --- /dev/null +++ b/vpx_dsp/mips/sub_pixel_variance_msa.c @@ -0,0 +1,1788 @@ +/* + * Copyright (c) 2015 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "./vpx_dsp_rtcd.h" +#include "vpx_ports/mem.h" +#include "vpx_dsp/mips/macros_msa.h" +#include "vpx_dsp/variance.h" + +static const uint8_t bilinear_filters_msa[8][2] = { + { 128, 0 }, { 112, 16 }, { 96, 32 }, { 80, 48 }, + { 64, 64 }, { 48, 80 }, { 32, 96 }, { 16, 112 }, +}; + +#define CALC_MSE_AVG_B(src, ref, var, sub) \ + { \ + v16u8 src_l0_m, src_l1_m; \ + v8i16 res_l0_m, res_l1_m; \ + \ + ILVRL_B2_UB(src, ref, src_l0_m, src_l1_m); \ + HSUB_UB2_SH(src_l0_m, src_l1_m, res_l0_m, res_l1_m); \ + DPADD_SH2_SW(res_l0_m, res_l1_m, res_l0_m, res_l1_m, var, var); \ + \ + sub += res_l0_m + res_l1_m; \ + } + +#define VARIANCE_WxH(sse, diff, shift) sse - (((uint32_t)diff * diff) >> shift) + +#define VARIANCE_LARGE_WxH(sse, diff, shift) \ + sse - (((int64_t)diff * diff) >> shift) + +static uint32_t avg_sse_diff_4width_msa(const uint8_t *src_ptr, + int32_t src_stride, + const uint8_t *ref_ptr, + int32_t ref_stride, + const uint8_t *sec_pred, int32_t height, + int32_t *diff) { + int32_t ht_cnt; + uint32_t src0, src1, src2, src3; + uint32_t ref0, ref1, ref2, ref3; + v16u8 pred, src = { 0 }; + v16u8 ref = { 0 }; + v8i16 avg = { 0 }; + v4i32 vec, var = { 0 }; + + for (ht_cnt = (height >> 2); ht_cnt--;) { + pred = LD_UB(sec_pred); + sec_pred += 16; + LW4(src_ptr, src_stride, src0, src1, src2, src3); + src_ptr += (4 * src_stride); + LW4(ref_ptr, ref_stride, ref0, ref1, ref2, ref3); + ref_ptr += (4 * ref_stride); + + INSERT_W4_UB(src0, src1, src2, src3, src); + INSERT_W4_UB(ref0, ref1, ref2, ref3, ref); + + src = __msa_aver_u_b(src, pred); + CALC_MSE_AVG_B(src, ref, var, avg); + } + + vec = __msa_hadd_s_w(avg, avg); + *diff = HADD_SW_S32(vec); + + return HADD_SW_S32(var); +} + +static uint32_t avg_sse_diff_8width_msa(const uint8_t *src_ptr, + int32_t src_stride, + const uint8_t *ref_ptr, + int32_t ref_stride, + const uint8_t *sec_pred, int32_t height, + int32_t *diff) { + int32_t ht_cnt; + v16u8 src0, src1, src2, src3; + v16u8 ref0, ref1, ref2, ref3; + v16u8 pred0, pred1; + v8i16 avg = { 0 }; + v4i32 vec, var = { 0 }; + + for (ht_cnt = (height >> 2); ht_cnt--;) { + LD_UB2(sec_pred, 16, pred0, pred1); + sec_pred += 32; + LD_UB4(src_ptr, src_stride, src0, src1, src2, src3); + src_ptr += (4 * src_stride); + LD_UB4(ref_ptr, ref_stride, ref0, ref1, ref2, ref3); + ref_ptr += (4 * ref_stride); + + PCKEV_D4_UB(src1, src0, src3, src2, ref1, ref0, ref3, ref2, src0, src1, + ref0, ref1); + AVER_UB2_UB(src0, pred0, src1, pred1, src0, src1); + CALC_MSE_AVG_B(src0, ref0, var, avg); + CALC_MSE_AVG_B(src1, ref1, var, avg); + } + + vec = __msa_hadd_s_w(avg, avg); + *diff = HADD_SW_S32(vec); + + return HADD_SW_S32(var); +} + +static uint32_t avg_sse_diff_16width_msa(const uint8_t *src_ptr, + int32_t src_stride, + const uint8_t *ref_ptr, + int32_t ref_stride, + const uint8_t *sec_pred, + int32_t height, int32_t *diff) { + int32_t ht_cnt; + v16u8 src, ref, pred; + v8i16 avg = { 0 }; + v4i32 vec, var = { 0 }; + + for (ht_cnt = (height >> 2); ht_cnt--;) { + pred = LD_UB(sec_pred); + sec_pred += 16; + src = LD_UB(src_ptr); + src_ptr += src_stride; + ref = LD_UB(ref_ptr); + ref_ptr += ref_stride; + src = __msa_aver_u_b(src, pred); + CALC_MSE_AVG_B(src, ref, var, avg); + + pred = LD_UB(sec_pred); + sec_pred += 16; + src = LD_UB(src_ptr); + src_ptr += src_stride; + ref = LD_UB(ref_ptr); + ref_ptr += ref_stride; + src = __msa_aver_u_b(src, pred); + CALC_MSE_AVG_B(src, ref, var, avg); + + pred = LD_UB(sec_pred); + sec_pred += 16; + src = LD_UB(src_ptr); + src_ptr += src_stride; + ref = LD_UB(ref_ptr); + ref_ptr += ref_stride; + src = __msa_aver_u_b(src, pred); + CALC_MSE_AVG_B(src, ref, var, avg); + + pred = LD_UB(sec_pred); + sec_pred += 16; + src = LD_UB(src_ptr); + src_ptr += src_stride; + ref = LD_UB(ref_ptr); + ref_ptr += ref_stride; + src = __msa_aver_u_b(src, pred); + CALC_MSE_AVG_B(src, ref, var, avg); + } + + vec = __msa_hadd_s_w(avg, avg); + *diff = HADD_SW_S32(vec); + + return HADD_SW_S32(var); +} + +static uint32_t avg_sse_diff_32width_msa(const uint8_t *src_ptr, + int32_t src_stride, + const uint8_t *ref_ptr, + int32_t ref_stride, + const uint8_t *sec_pred, + int32_t height, int32_t *diff) { + int32_t ht_cnt; + v16u8 src0, src1, ref0, ref1, pred0, pred1; + v8i16 avg = { 0 }; + v4i32 vec, var = { 0 }; + + for (ht_cnt = (height >> 2); ht_cnt--;) { + LD_UB2(sec_pred, 16, pred0, pred1); + sec_pred += 32; + LD_UB2(src_ptr, 16, src0, src1); + src_ptr += src_stride; + LD_UB2(ref_ptr, 16, ref0, ref1); + ref_ptr += ref_stride; + AVER_UB2_UB(src0, pred0, src1, pred1, src0, src1); + CALC_MSE_AVG_B(src0, ref0, var, avg); + CALC_MSE_AVG_B(src1, ref1, var, avg); + + LD_UB2(sec_pred, 16, pred0, pred1); + sec_pred += 32; + LD_UB2(src_ptr, 16, src0, src1); + src_ptr += src_stride; + LD_UB2(ref_ptr, 16, ref0, ref1); + ref_ptr += ref_stride; + AVER_UB2_UB(src0, pred0, src1, pred1, src0, src1); + CALC_MSE_AVG_B(src0, ref0, var, avg); + CALC_MSE_AVG_B(src1, ref1, var, avg); + + LD_UB2(sec_pred, 16, pred0, pred1); + sec_pred += 32; + LD_UB2(src_ptr, 16, src0, src1); + src_ptr += src_stride; + LD_UB2(ref_ptr, 16, ref0, ref1); + ref_ptr += ref_stride; + AVER_UB2_UB(src0, pred0, src1, pred1, src0, src1); + CALC_MSE_AVG_B(src0, ref0, var, avg); + CALC_MSE_AVG_B(src1, ref1, var, avg); + + LD_UB2(sec_pred, 16, pred0, pred1); + sec_pred += 32; + LD_UB2(src_ptr, 16, src0, src1); + src_ptr += src_stride; + LD_UB2(ref_ptr, 16, ref0, ref1); + ref_ptr += ref_stride; + AVER_UB2_UB(src0, pred0, src1, pred1, src0, src1); + CALC_MSE_AVG_B(src0, ref0, var, avg); + CALC_MSE_AVG_B(src1, ref1, var, avg); + } + + vec = __msa_hadd_s_w(avg, avg); + *diff = HADD_SW_S32(vec); + + return HADD_SW_S32(var); +} + +static uint32_t avg_sse_diff_32x64_msa(const uint8_t *src_ptr, + int32_t src_stride, + const uint8_t *ref_ptr, + int32_t ref_stride, + const uint8_t *sec_pred, int32_t *diff) { + int32_t ht_cnt; + v16u8 src0, src1, ref0, ref1, pred0, pred1; + v8i16 avg0 = { 0 }; + v8i16 avg1 = { 0 }; + v4i32 vec, var = { 0 }; + + for (ht_cnt = 16; ht_cnt--;) { + LD_UB2(sec_pred, 16, pred0, pred1); + sec_pred += 32; + LD_UB2(src_ptr, 16, src0, src1); + src_ptr += src_stride; + LD_UB2(ref_ptr, 16, ref0, ref1); + ref_ptr += ref_stride; + AVER_UB2_UB(src0, pred0, src1, pred1, src0, src1); + CALC_MSE_AVG_B(src0, ref0, var, avg0); + CALC_MSE_AVG_B(src1, ref1, var, avg1); + + LD_UB2(sec_pred, 16, pred0, pred1); + sec_pred += 32; + LD_UB2(src_ptr, 16, src0, src1); + src_ptr += src_stride; + LD_UB2(ref_ptr, 16, ref0, ref1); + ref_ptr += ref_stride; + AVER_UB2_UB(src0, pred0, src1, pred1, src0, src1); + CALC_MSE_AVG_B(src0, ref0, var, avg0); + CALC_MSE_AVG_B(src1, ref1, var, avg1); + + LD_UB2(sec_pred, 16, pred0, pred1); + sec_pred += 32; + LD_UB2(src_ptr, 16, src0, src1); + src_ptr += src_stride; + LD_UB2(ref_ptr, 16, ref0, ref1); + ref_ptr += ref_stride; + AVER_UB2_UB(src0, pred0, src1, pred1, src0, src1); + CALC_MSE_AVG_B(src0, ref0, var, avg0); + CALC_MSE_AVG_B(src1, ref1, var, avg1); + + LD_UB2(sec_pred, 16, pred0, pred1); + sec_pred += 32; + LD_UB2(src_ptr, 16, src0, src1); + src_ptr += src_stride; + LD_UB2(ref_ptr, 16, ref0, ref1); + ref_ptr += ref_stride; + AVER_UB2_UB(src0, pred0, src1, pred1, src0, src1); + CALC_MSE_AVG_B(src0, ref0, var, avg0); + CALC_MSE_AVG_B(src1, ref1, var, avg1); + } + + vec = __msa_hadd_s_w(avg0, avg0); + vec += __msa_hadd_s_w(avg1, avg1); + *diff = HADD_SW_S32(vec); + + return HADD_SW_S32(var); +} + +static uint32_t avg_sse_diff_64x32_msa(const uint8_t *src_ptr, + int32_t src_stride, + const uint8_t *ref_ptr, + int32_t ref_stride, + const uint8_t *sec_pred, int32_t *diff) { + int32_t ht_cnt; + v16u8 src0, src1, src2, src3; + v16u8 ref0, ref1, ref2, ref3; + v16u8 pred0, pred1, pred2, pred3; + v8i16 avg0 = { 0 }; + v8i16 avg1 = { 0 }; + v4i32 vec, var = { 0 }; + + for (ht_cnt = 16; ht_cnt--;) { + LD_UB4(sec_pred, 16, pred0, pred1, pred2, pred3); + sec_pred += 64; + LD_UB4(src_ptr, 16, src0, src1, src2, src3); + src_ptr += src_stride; + LD_UB4(ref_ptr, 16, ref0, ref1, ref2, ref3); + ref_ptr += ref_stride; + AVER_UB4_UB(src0, pred0, src1, pred1, src2, pred2, src3, pred3, src0, src1, + src2, src3); + CALC_MSE_AVG_B(src0, ref0, var, avg0); + CALC_MSE_AVG_B(src2, ref2, var, avg0); + CALC_MSE_AVG_B(src1, ref1, var, avg1); + CALC_MSE_AVG_B(src3, ref3, var, avg1); + + LD_UB4(sec_pred, 16, pred0, pred1, pred2, pred3); + sec_pred += 64; + LD_UB4(src_ptr, 16, src0, src1, src2, src3); + src_ptr += src_stride; + LD_UB4(ref_ptr, 16, ref0, ref1, ref2, ref3); + ref_ptr += ref_stride; + AVER_UB4_UB(src0, pred0, src1, pred1, src2, pred2, src3, pred3, src0, src1, + src2, src3); + CALC_MSE_AVG_B(src0, ref0, var, avg0); + CALC_MSE_AVG_B(src2, ref2, var, avg0); + CALC_MSE_AVG_B(src1, ref1, var, avg1); + CALC_MSE_AVG_B(src3, ref3, var, avg1); + } + + vec = __msa_hadd_s_w(avg0, avg0); + vec += __msa_hadd_s_w(avg1, avg1); + + *diff = HADD_SW_S32(vec); + + return HADD_SW_S32(var); +} + +static uint32_t avg_sse_diff_64x64_msa(const uint8_t *src_ptr, + int32_t src_stride, + const uint8_t *ref_ptr, + int32_t ref_stride, + const uint8_t *sec_pred, int32_t *diff) { + int32_t ht_cnt; + v16u8 src0, src1, src2, src3; + v16u8 ref0, ref1, ref2, ref3; + v16u8 pred0, pred1, pred2, pred3; + v8i16 avg0 = { 0 }; + v8i16 avg1 = { 0 }; + v8i16 avg2 = { 0 }; + v8i16 avg3 = { 0 }; + v4i32 vec, var = { 0 }; + + for (ht_cnt = 32; ht_cnt--;) { + LD_UB4(sec_pred, 16, pred0, pred1, pred2, pred3); + sec_pred += 64; + LD_UB4(src_ptr, 16, src0, src1, src2, src3); + src_ptr += src_stride; + LD_UB4(ref_ptr, 16, ref0, ref1, ref2, ref3); + ref_ptr += ref_stride; + AVER_UB4_UB(src0, pred0, src1, pred1, src2, pred2, src3, pred3, src0, src1, + src2, src3); + CALC_MSE_AVG_B(src0, ref0, var, avg0); + CALC_MSE_AVG_B(src1, ref1, var, avg1); + CALC_MSE_AVG_B(src2, ref2, var, avg2); + CALC_MSE_AVG_B(src3, ref3, var, avg3); + + LD_UB4(sec_pred, 16, pred0, pred1, pred2, pred3); + sec_pred += 64; + LD_UB4(src_ptr, 16, src0, src1, src2, src3); + src_ptr += src_stride; + LD_UB4(ref_ptr, 16, ref0, ref1, ref2, ref3); + ref_ptr += ref_stride; + AVER_UB4_UB(src0, pred0, src1, pred1, src2, pred2, src3, pred3, src0, src1, + src2, src3); + CALC_MSE_AVG_B(src0, ref0, var, avg0); + CALC_MSE_AVG_B(src1, ref1, var, avg1); + CALC_MSE_AVG_B(src2, ref2, var, avg2); + CALC_MSE_AVG_B(src3, ref3, var, avg3); + } + + vec = __msa_hadd_s_w(avg0, avg0); + vec += __msa_hadd_s_w(avg1, avg1); + vec += __msa_hadd_s_w(avg2, avg2); + vec += __msa_hadd_s_w(avg3, avg3); + *diff = HADD_SW_S32(vec); + + return HADD_SW_S32(var); +} + +static uint32_t sub_pixel_sse_diff_4width_h_msa( + const uint8_t *src, int32_t src_stride, const uint8_t *dst, + int32_t dst_stride, const uint8_t *filter, int32_t height, int32_t *diff) { + int16_t filtval; + uint32_t loop_cnt; + uint32_t ref0, ref1, ref2, ref3; + v16u8 filt0, ref = { 0 }; + v16i8 src0, src1, src2, src3; + v16i8 mask = { 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8 }; + v8u16 vec0, vec1, vec2, vec3; + v8i16 avg = { 0 }; + v4i32 vec, var = { 0 }; + + filtval = LH(filter); + filt0 = (v16u8)__msa_fill_h(filtval); + + for (loop_cnt = (height >> 2); loop_cnt--;) { + LD_SB4(src, src_stride, src0, src1, src2, src3); + src += (4 * src_stride); + LW4(dst, dst_stride, ref0, ref1, ref2, ref3); + dst += (4 * dst_stride); + INSERT_W4_UB(ref0, ref1, ref2, ref3, ref); + VSHF_B2_UH(src0, src0, src1, src1, mask, mask, vec0, vec1); + VSHF_B2_UH(src2, src2, src3, src3, mask, mask, vec2, vec3); + DOTP_UB4_UH(vec0, vec1, vec2, vec3, filt0, filt0, filt0, filt0, vec0, vec1, + vec2, vec3); + SRARI_H4_UH(vec0, vec1, vec2, vec3, FILTER_BITS); + PCKEV_B4_SB(vec0, vec0, vec1, vec1, vec2, vec2, vec3, vec3, src0, src1, + src2, src3); + ILVEV_W2_SB(src0, src1, src2, src3, src0, src2); + src0 = (v16i8)__msa_ilvev_d((v2i64)src2, (v2i64)src0); + CALC_MSE_AVG_B(src0, ref, var, avg); + } + + vec = __msa_hadd_s_w(avg, avg); + *diff = HADD_SW_S32(vec); + + return HADD_SW_S32(var); +} + +static uint32_t sub_pixel_sse_diff_8width_h_msa( + const uint8_t *src, int32_t src_stride, const uint8_t *dst, + int32_t dst_stride, const uint8_t *filter, int32_t height, int32_t *diff) { + int16_t filtval; + uint32_t loop_cnt; + v16u8 filt0, out, ref0, ref1, ref2, ref3; + v16i8 src0, src1, src2, src3; + v16i8 mask = { 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8 }; + v8u16 vec0, vec1, vec2, vec3; + v8i16 avg = { 0 }; + v4i32 vec, var = { 0 }; + + filtval = LH(filter); + filt0 = (v16u8)__msa_fill_h(filtval); + + for (loop_cnt = (height >> 2); loop_cnt--;) { + LD_SB4(src, src_stride, src0, src1, src2, src3); + src += (4 * src_stride); + LD_UB4(dst, dst_stride, ref0, ref1, ref2, ref3); + dst += (4 * dst_stride); + + PCKEV_D2_UB(ref1, ref0, ref3, ref2, ref0, ref1); + VSHF_B2_UH(src0, src0, src1, src1, mask, mask, vec0, vec1); + VSHF_B2_UH(src2, src2, src3, src3, mask, mask, vec2, vec3); + DOTP_UB4_UH(vec0, vec1, vec2, vec3, filt0, filt0, filt0, filt0, vec0, vec1, + vec2, vec3); + SRARI_H4_UH(vec0, vec1, vec2, vec3, FILTER_BITS); + PCKEV_B4_SB(vec0, vec0, vec1, vec1, vec2, vec2, vec3, vec3, src0, src1, + src2, src3); + out = (v16u8)__msa_ilvev_d((v2i64)src1, (v2i64)src0); + CALC_MSE_AVG_B(out, ref0, var, avg); + out = (v16u8)__msa_ilvev_d((v2i64)src3, (v2i64)src2); + CALC_MSE_AVG_B(out, ref1, var, avg); + } + + vec = __msa_hadd_s_w(avg, avg); + *diff = HADD_SW_S32(vec); + + return HADD_SW_S32(var); +} + +static uint32_t sub_pixel_sse_diff_16width_h_msa( + const uint8_t *src, int32_t src_stride, const uint8_t *dst, + int32_t dst_stride, const uint8_t *filter, int32_t height, int32_t *diff) { + int16_t filtval; + uint32_t loop_cnt; + v16i8 src0, src1, src2, src3, src4, src5, src6, src7; + v16i8 mask = { 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8 }; + v16u8 dst0, dst1, dst2, dst3, filt0; + v8u16 vec0, vec1, vec2, vec3, vec4, vec5, vec6, vec7; + v8u16 out0, out1, out2, out3, out4, out5, out6, out7; + v8i16 avg = { 0 }; + v4i32 vec, var = { 0 }; + + filtval = LH(filter); + filt0 = (v16u8)__msa_fill_h(filtval); + + for (loop_cnt = (height >> 2); loop_cnt--;) { + LD_SB4(src, src_stride, src0, src2, src4, src6); + LD_SB4(src + 8, src_stride, src1, src3, src5, src7); + src += (4 * src_stride); + LD_UB4(dst, dst_stride, dst0, dst1, dst2, dst3); + dst += (4 * dst_stride); + + VSHF_B2_UH(src0, src0, src1, src1, mask, mask, vec0, vec1); + VSHF_B2_UH(src2, src2, src3, src3, mask, mask, vec2, vec3); + VSHF_B2_UH(src4, src4, src5, src5, mask, mask, vec4, vec5); + VSHF_B2_UH(src6, src6, src7, src7, mask, mask, vec6, vec7); + DOTP_UB4_UH(vec0, vec1, vec2, vec3, filt0, filt0, filt0, filt0, out0, out1, + out2, out3); + DOTP_UB4_UH(vec4, vec5, vec6, vec7, filt0, filt0, filt0, filt0, out4, out5, + out6, out7); + SRARI_H4_UH(out0, out1, out2, out3, FILTER_BITS); + SRARI_H4_UH(out4, out5, out6, out7, FILTER_BITS); + PCKEV_B4_SB(out1, out0, out3, out2, out5, out4, out7, out6, src0, src1, + src2, src3); + CALC_MSE_AVG_B(src0, dst0, var, avg); + CALC_MSE_AVG_B(src1, dst1, var, avg); + CALC_MSE_AVG_B(src2, dst2, var, avg); + CALC_MSE_AVG_B(src3, dst3, var, avg); + } + + vec = __msa_hadd_s_w(avg, avg); + *diff = HADD_SW_S32(vec); + + return HADD_SW_S32(var); +} + +static uint32_t sub_pixel_sse_diff_32width_h_msa( + const uint8_t *src, int32_t src_stride, const uint8_t *dst, + int32_t dst_stride, const uint8_t *filter, int32_t height, int32_t *diff) { + uint32_t loop_cnt, sse = 0; + int32_t diff0[2]; + + for (loop_cnt = 0; loop_cnt < 2; ++loop_cnt) { + sse += sub_pixel_sse_diff_16width_h_msa(src, src_stride, dst, dst_stride, + filter, height, &diff0[loop_cnt]); + src += 16; + dst += 16; + } + + *diff = diff0[0] + diff0[1]; + + return sse; +} + +static uint32_t sub_pixel_sse_diff_64width_h_msa( + const uint8_t *src, int32_t src_stride, const uint8_t *dst, + int32_t dst_stride, const uint8_t *filter, int32_t height, int32_t *diff) { + uint32_t loop_cnt, sse = 0; + int32_t diff0[4]; + + for (loop_cnt = 0; loop_cnt < 4; ++loop_cnt) { + sse += sub_pixel_sse_diff_16width_h_msa(src, src_stride, dst, dst_stride, + filter, height, &diff0[loop_cnt]); + src += 16; + dst += 16; + } + + *diff = diff0[0] + diff0[1] + diff0[2] + diff0[3]; + + return sse; +} + +static uint32_t sub_pixel_sse_diff_4width_v_msa( + const uint8_t *src, int32_t src_stride, const uint8_t *dst, + int32_t dst_stride, const uint8_t *filter, int32_t height, int32_t *diff) { + int16_t filtval; + uint32_t loop_cnt; + uint32_t ref0, ref1, ref2, ref3; + v16u8 src0, src1, src2, src3, src4, out; + v16u8 src10_r, src32_r, src21_r, src43_r; + v16u8 ref = { 0 }; + v16u8 src2110, src4332; + v16u8 filt0; + v8i16 avg = { 0 }; + v4i32 vec, var = { 0 }; + v8u16 tmp0, tmp1; + + filtval = LH(filter); + filt0 = (v16u8)__msa_fill_h(filtval); + + src0 = LD_UB(src); + src += src_stride; + + for (loop_cnt = (height >> 2); loop_cnt--;) { + LD_UB4(src, src_stride, src1, src2, src3, src4); + src += (4 * src_stride); + LW4(dst, dst_stride, ref0, ref1, ref2, ref3); + dst += (4 * dst_stride); + + INSERT_W4_UB(ref0, ref1, ref2, ref3, ref); + ILVR_B4_UB(src1, src0, src2, src1, src3, src2, src4, src3, src10_r, src21_r, + src32_r, src43_r); + ILVR_D2_UB(src21_r, src10_r, src43_r, src32_r, src2110, src4332); + DOTP_UB2_UH(src2110, src4332, filt0, filt0, tmp0, tmp1); + SRARI_H2_UH(tmp0, tmp1, FILTER_BITS); + out = (v16u8)__msa_pckev_b((v16i8)tmp1, (v16i8)tmp0); + CALC_MSE_AVG_B(out, ref, var, avg); + src0 = src4; + } + + vec = __msa_hadd_s_w(avg, avg); + *diff = HADD_SW_S32(vec); + + return HADD_SW_S32(var); +} + +static uint32_t sub_pixel_sse_diff_8width_v_msa( + const uint8_t *src, int32_t src_stride, const uint8_t *dst, + int32_t dst_stride, const uint8_t *filter, int32_t height, int32_t *diff) { + int16_t filtval; + uint32_t loop_cnt; + v16u8 src0, src1, src2, src3, src4; + v16u8 ref0, ref1, ref2, ref3; + v8u16 vec0, vec1, vec2, vec3; + v8u16 tmp0, tmp1, tmp2, tmp3; + v16u8 filt0; + v8i16 avg = { 0 }; + v4i32 vec, var = { 0 }; + + filtval = LH(filter); + filt0 = (v16u8)__msa_fill_h(filtval); + + src0 = LD_UB(src); + src += src_stride; + + for (loop_cnt = (height >> 2); loop_cnt--;) { + LD_UB4(src, src_stride, src1, src2, src3, src4); + src += (4 * src_stride); + LD_UB4(dst, dst_stride, ref0, ref1, ref2, ref3); + dst += (4 * dst_stride); + + PCKEV_D2_UB(ref1, ref0, ref3, ref2, ref0, ref1); + ILVR_B4_UH(src1, src0, src2, src1, src3, src2, src4, src3, vec0, vec1, vec2, + vec3); + DOTP_UB4_UH(vec0, vec1, vec2, vec3, filt0, filt0, filt0, filt0, tmp0, tmp1, + tmp2, tmp3); + SRARI_H4_UH(tmp0, tmp1, tmp2, tmp3, FILTER_BITS); + PCKEV_B2_UB(tmp1, tmp0, tmp3, tmp2, src0, src1); + CALC_MSE_AVG_B(src0, ref0, var, avg); + CALC_MSE_AVG_B(src1, ref1, var, avg); + src0 = src4; + } + + vec = __msa_hadd_s_w(avg, avg); + *diff = HADD_SW_S32(vec); + + return HADD_SW_S32(var); +} + +static uint32_t sub_pixel_sse_diff_16width_v_msa( + const uint8_t *src, int32_t src_stride, const uint8_t *dst, + int32_t dst_stride, const uint8_t *filter, int32_t height, int32_t *diff) { + int16_t filtval; + uint32_t loop_cnt; + v16u8 ref0, ref1, ref2, ref3; + v16u8 src0, src1, src2, src3, src4; + v16u8 out0, out1, out2, out3; + v16u8 vec0, vec1, vec2, vec3, vec4, vec5, vec6, vec7; + v8u16 tmp0, tmp1, tmp2, tmp3; + v16u8 filt0; + v8i16 avg = { 0 }; + v4i32 vec, var = { 0 }; + + filtval = LH(filter); + filt0 = (v16u8)__msa_fill_h(filtval); + + src0 = LD_UB(src); + src += src_stride; + + for (loop_cnt = (height >> 2); loop_cnt--;) { + LD_UB4(src, src_stride, src1, src2, src3, src4); + src += (4 * src_stride); + LD_UB4(dst, dst_stride, ref0, ref1, ref2, ref3); + dst += (4 * dst_stride); + + ILVR_B2_UB(src1, src0, src2, src1, vec0, vec2); + ILVL_B2_UB(src1, src0, src2, src1, vec1, vec3); + DOTP_UB2_UH(vec0, vec1, filt0, filt0, tmp0, tmp1); + SRARI_H2_UH(tmp0, tmp1, FILTER_BITS); + out0 = (v16u8)__msa_pckev_b((v16i8)tmp1, (v16i8)tmp0); + + ILVR_B2_UB(src3, src2, src4, src3, vec4, vec6); + ILVL_B2_UB(src3, src2, src4, src3, vec5, vec7); + DOTP_UB2_UH(vec2, vec3, filt0, filt0, tmp2, tmp3); + SRARI_H2_UH(tmp2, tmp3, FILTER_BITS); + out1 = (v16u8)__msa_pckev_b((v16i8)tmp3, (v16i8)tmp2); + + DOTP_UB2_UH(vec4, vec5, filt0, filt0, tmp0, tmp1); + SRARI_H2_UH(tmp0, tmp1, FILTER_BITS); + out2 = (v16u8)__msa_pckev_b((v16i8)tmp1, (v16i8)tmp0); + DOTP_UB2_UH(vec6, vec7, filt0, filt0, tmp2, tmp3); + SRARI_H2_UH(tmp2, tmp3, FILTER_BITS); + out3 = (v16u8)__msa_pckev_b((v16i8)tmp3, (v16i8)tmp2); + + src0 = src4; + + CALC_MSE_AVG_B(out0, ref0, var, avg); + CALC_MSE_AVG_B(out1, ref1, var, avg); + CALC_MSE_AVG_B(out2, ref2, var, avg); + CALC_MSE_AVG_B(out3, ref3, var, avg); + } + + vec = __msa_hadd_s_w(avg, avg); + *diff = HADD_SW_S32(vec); + + return HADD_SW_S32(var); +} + +static uint32_t sub_pixel_sse_diff_32width_v_msa( + const uint8_t *src, int32_t src_stride, const uint8_t *dst, + int32_t dst_stride, const uint8_t *filter, int32_t height, int32_t *diff) { + uint32_t loop_cnt, sse = 0; + int32_t diff0[2]; + + for (loop_cnt = 0; loop_cnt < 2; ++loop_cnt) { + sse += sub_pixel_sse_diff_16width_v_msa(src, src_stride, dst, dst_stride, + filter, height, &diff0[loop_cnt]); + src += 16; + dst += 16; + } + + *diff = diff0[0] + diff0[1]; + + return sse; +} + +static uint32_t sub_pixel_sse_diff_64width_v_msa( + const uint8_t *src, int32_t src_stride, const uint8_t *dst, + int32_t dst_stride, const uint8_t *filter, int32_t height, int32_t *diff) { + uint32_t loop_cnt, sse = 0; + int32_t diff0[4]; + + for (loop_cnt = 0; loop_cnt < 4; ++loop_cnt) { + sse += sub_pixel_sse_diff_16width_v_msa(src, src_stride, dst, dst_stride, + filter, height, &diff0[loop_cnt]); + src += 16; + dst += 16; + } + + *diff = diff0[0] + diff0[1] + diff0[2] + diff0[3]; + + return sse; +} + +static uint32_t sub_pixel_sse_diff_4width_hv_msa( + const uint8_t *src, int32_t src_stride, const uint8_t *dst, + int32_t dst_stride, const uint8_t *filter_horiz, const uint8_t *filter_vert, + int32_t height, int32_t *diff) { + int16_t filtval; + uint32_t loop_cnt; + uint32_t ref0, ref1, ref2, ref3; + v16u8 src0, src1, src2, src3, src4; + v16u8 out, ref = { 0 }; + v16u8 filt_vt, filt_hz, vec0, vec1; + v16u8 mask = { 0, 1, 1, 2, 2, 3, 3, 4, 16, 17, 17, 18, 18, 19, 19, 20 }; + v8u16 hz_out0, hz_out1, hz_out2, hz_out3, hz_out4; + v8u16 tmp0, tmp1; + v8i16 avg = { 0 }; + v4i32 vec, var = { 0 }; + + filtval = LH(filter_horiz); + filt_hz = (v16u8)__msa_fill_h(filtval); + filtval = LH(filter_vert); + filt_vt = (v16u8)__msa_fill_h(filtval); + + src0 = LD_UB(src); + src += src_stride; + + for (loop_cnt = (height >> 2); loop_cnt--;) { + LD_UB4(src, src_stride, src1, src2, src3, src4); + src += (4 * src_stride); + LW4(dst, dst_stride, ref0, ref1, ref2, ref3); + dst += (4 * dst_stride); + INSERT_W4_UB(ref0, ref1, ref2, ref3, ref); + hz_out0 = HORIZ_2TAP_FILT_UH(src0, src1, mask, filt_hz, FILTER_BITS); + hz_out2 = HORIZ_2TAP_FILT_UH(src2, src3, mask, filt_hz, FILTER_BITS); + hz_out4 = HORIZ_2TAP_FILT_UH(src4, src4, mask, filt_hz, FILTER_BITS); + hz_out1 = (v8u16)__msa_sldi_b((v16i8)hz_out2, (v16i8)hz_out0, 8); + hz_out3 = (v8u16)__msa_pckod_d((v2i64)hz_out4, (v2i64)hz_out2); + ILVEV_B2_UB(hz_out0, hz_out1, hz_out2, hz_out3, vec0, vec1); + DOTP_UB2_UH(vec0, vec1, filt_vt, filt_vt, tmp0, tmp1); + SRARI_H2_UH(tmp0, tmp1, FILTER_BITS); + out = (v16u8)__msa_pckev_b((v16i8)tmp1, (v16i8)tmp0); + CALC_MSE_AVG_B(out, ref, var, avg); + src0 = src4; + } + + vec = __msa_hadd_s_w(avg, avg); + *diff = HADD_SW_S32(vec); + + return HADD_SW_S32(var); +} + +static uint32_t sub_pixel_sse_diff_8width_hv_msa( + const uint8_t *src, int32_t src_stride, const uint8_t *dst, + int32_t dst_stride, const uint8_t *filter_horiz, const uint8_t *filter_vert, + int32_t height, int32_t *diff) { + int16_t filtval; + uint32_t loop_cnt; + v16u8 ref0, ref1, ref2, ref3; + v16u8 src0, src1, src2, src3, src4; + v16u8 out0, out1; + v16u8 mask = { 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8 }; + v8u16 hz_out0, hz_out1; + v8u16 tmp0, tmp1, tmp2, tmp3; + v16u8 filt_vt, filt_hz, vec0; + v8i16 avg = { 0 }; + v4i32 vec, var = { 0 }; + + filtval = LH(filter_horiz); + filt_hz = (v16u8)__msa_fill_h(filtval); + filtval = LH(filter_vert); + filt_vt = (v16u8)__msa_fill_h(filtval); + + src0 = LD_UB(src); + src += src_stride; + hz_out0 = HORIZ_2TAP_FILT_UH(src0, src0, mask, filt_hz, FILTER_BITS); + + for (loop_cnt = (height >> 2); loop_cnt--;) { + LD_UB4(src, src_stride, src1, src2, src3, src4); + src += (4 * src_stride); + LD_UB4(dst, dst_stride, ref0, ref1, ref2, ref3); + dst += (4 * dst_stride); + + PCKEV_D2_UB(ref1, ref0, ref3, ref2, ref0, ref1); + hz_out1 = HORIZ_2TAP_FILT_UH(src1, src1, mask, filt_hz, FILTER_BITS); + vec0 = (v16u8)__msa_ilvev_b((v16i8)hz_out1, (v16i8)hz_out0); + tmp0 = __msa_dotp_u_h(vec0, filt_vt); + hz_out0 = HORIZ_2TAP_FILT_UH(src2, src2, mask, filt_hz, FILTER_BITS); + vec0 = (v16u8)__msa_ilvev_b((v16i8)hz_out0, (v16i8)hz_out1); + tmp1 = __msa_dotp_u_h(vec0, filt_vt); + SRARI_H2_UH(tmp0, tmp1, FILTER_BITS); + hz_out1 = HORIZ_2TAP_FILT_UH(src3, src3, mask, filt_hz, FILTER_BITS); + vec0 = (v16u8)__msa_ilvev_b((v16i8)hz_out1, (v16i8)hz_out0); + tmp2 = __msa_dotp_u_h(vec0, filt_vt); + hz_out0 = HORIZ_2TAP_FILT_UH(src4, src4, mask, filt_hz, FILTER_BITS); + vec0 = (v16u8)__msa_ilvev_b((v16i8)hz_out0, (v16i8)hz_out1); + tmp3 = __msa_dotp_u_h(vec0, filt_vt); + SRARI_H2_UH(tmp2, tmp3, FILTER_BITS); + PCKEV_B2_UB(tmp1, tmp0, tmp3, tmp2, out0, out1); + CALC_MSE_AVG_B(out0, ref0, var, avg); + CALC_MSE_AVG_B(out1, ref1, var, avg); + } + + vec = __msa_hadd_s_w(avg, avg); + *diff = HADD_SW_S32(vec); + + return HADD_SW_S32(var); +} + +static uint32_t sub_pixel_sse_diff_16width_hv_msa( + const uint8_t *src, int32_t src_stride, const uint8_t *dst, + int32_t dst_stride, const uint8_t *filter_horiz, const uint8_t *filter_vert, + int32_t height, int32_t *diff) { + int16_t filtval; + uint32_t loop_cnt; + v16u8 src0, src1, src2, src3, src4, src5, src6, src7; + v16u8 ref0, ref1, ref2, ref3; + v16u8 filt_hz, filt_vt, vec0, vec1; + v16u8 mask = { 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8 }; + v8u16 hz_out0, hz_out1, hz_out2, hz_out3; + v8u16 tmp0, tmp1; + v8i16 avg = { 0 }; + v4i32 vec, var = { 0 }; + + filtval = LH(filter_horiz); + filt_hz = (v16u8)__msa_fill_h(filtval); + filtval = LH(filter_vert); + filt_vt = (v16u8)__msa_fill_h(filtval); + + LD_UB2(src, 8, src0, src1); + src += src_stride; + + hz_out0 = HORIZ_2TAP_FILT_UH(src0, src0, mask, filt_hz, FILTER_BITS); + hz_out2 = HORIZ_2TAP_FILT_UH(src1, src1, mask, filt_hz, FILTER_BITS); + + for (loop_cnt = (height >> 2); loop_cnt--;) { + LD_UB4(src, src_stride, src0, src2, src4, src6); + LD_UB4(src + 8, src_stride, src1, src3, src5, src7); + src += (4 * src_stride); + LD_UB4(dst, dst_stride, ref0, ref1, ref2, ref3); + dst += (4 * dst_stride); + + hz_out1 = HORIZ_2TAP_FILT_UH(src0, src0, mask, filt_hz, FILTER_BITS); + hz_out3 = HORIZ_2TAP_FILT_UH(src1, src1, mask, filt_hz, FILTER_BITS); + ILVEV_B2_UB(hz_out0, hz_out1, hz_out2, hz_out3, vec0, vec1); + DOTP_UB2_UH(vec0, vec1, filt_vt, filt_vt, tmp0, tmp1); + SRARI_H2_UH(tmp0, tmp1, FILTER_BITS); + src0 = (v16u8)__msa_pckev_b((v16i8)tmp1, (v16i8)tmp0); + + hz_out0 = HORIZ_2TAP_FILT_UH(src2, src2, mask, filt_hz, FILTER_BITS); + hz_out2 = HORIZ_2TAP_FILT_UH(src3, src3, mask, filt_hz, FILTER_BITS); + ILVEV_B2_UB(hz_out1, hz_out0, hz_out3, hz_out2, vec0, vec1); + DOTP_UB2_UH(vec0, vec1, filt_vt, filt_vt, tmp0, tmp1); + SRARI_H2_UH(tmp0, tmp1, FILTER_BITS); + src1 = (v16u8)__msa_pckev_b((v16i8)tmp1, (v16i8)tmp0); + + hz_out1 = HORIZ_2TAP_FILT_UH(src4, src4, mask, filt_hz, FILTER_BITS); + hz_out3 = HORIZ_2TAP_FILT_UH(src5, src5, mask, filt_hz, FILTER_BITS); + ILVEV_B2_UB(hz_out0, hz_out1, hz_out2, hz_out3, vec0, vec1); + DOTP_UB2_UH(vec0, vec1, filt_vt, filt_vt, tmp0, tmp1); + SRARI_H2_UH(tmp0, tmp1, FILTER_BITS); + src2 = (v16u8)__msa_pckev_b((v16i8)tmp1, (v16i8)tmp0); + + hz_out0 = HORIZ_2TAP_FILT_UH(src6, src6, mask, filt_hz, FILTER_BITS); + hz_out2 = HORIZ_2TAP_FILT_UH(src7, src7, mask, filt_hz, FILTER_BITS); + ILVEV_B2_UB(hz_out1, hz_out0, hz_out3, hz_out2, vec0, vec1); + DOTP_UB2_UH(vec0, vec1, filt_vt, filt_vt, tmp0, tmp1); + SRARI_H2_UH(tmp0, tmp1, FILTER_BITS); + src3 = (v16u8)__msa_pckev_b((v16i8)tmp1, (v16i8)tmp0); + + CALC_MSE_AVG_B(src0, ref0, var, avg); + CALC_MSE_AVG_B(src1, ref1, var, avg); + CALC_MSE_AVG_B(src2, ref2, var, avg); + CALC_MSE_AVG_B(src3, ref3, var, avg); + } + + vec = __msa_hadd_s_w(avg, avg); + *diff = HADD_SW_S32(vec); + + return HADD_SW_S32(var); +} + +static uint32_t sub_pixel_sse_diff_32width_hv_msa( + const uint8_t *src, int32_t src_stride, const uint8_t *dst, + int32_t dst_stride, const uint8_t *filter_horiz, const uint8_t *filter_vert, + int32_t height, int32_t *diff) { + uint32_t loop_cnt, sse = 0; + int32_t diff0[2]; + + for (loop_cnt = 0; loop_cnt < 2; ++loop_cnt) { + sse += sub_pixel_sse_diff_16width_hv_msa(src, src_stride, dst, dst_stride, + filter_horiz, filter_vert, height, + &diff0[loop_cnt]); + src += 16; + dst += 16; + } + + *diff = diff0[0] + diff0[1]; + + return sse; +} + +static uint32_t sub_pixel_sse_diff_64width_hv_msa( + const uint8_t *src, int32_t src_stride, const uint8_t *dst, + int32_t dst_stride, const uint8_t *filter_horiz, const uint8_t *filter_vert, + int32_t height, int32_t *diff) { + uint32_t loop_cnt, sse = 0; + int32_t diff0[4]; + + for (loop_cnt = 0; loop_cnt < 4; ++loop_cnt) { + sse += sub_pixel_sse_diff_16width_hv_msa(src, src_stride, dst, dst_stride, + filter_horiz, filter_vert, height, + &diff0[loop_cnt]); + src += 16; + dst += 16; + } + + *diff = diff0[0] + diff0[1] + diff0[2] + diff0[3]; + + return sse; +} + +static uint32_t sub_pixel_avg_sse_diff_4width_h_msa( + const uint8_t *src, int32_t src_stride, const uint8_t *dst, + int32_t dst_stride, const uint8_t *sec_pred, const uint8_t *filter, + int32_t height, int32_t *diff) { + int16_t filtval; + uint32_t loop_cnt; + uint32_t ref0, ref1, ref2, ref3; + v16u8 out, pred, filt0, ref = { 0 }; + v16i8 src0, src1, src2, src3; + v16i8 mask = { 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8 }; + v8u16 vec0, vec1, vec2, vec3; + v8i16 avg = { 0 }; + v4i32 vec, var = { 0 }; + + filtval = LH(filter); + filt0 = (v16u8)__msa_fill_h(filtval); + + for (loop_cnt = (height >> 2); loop_cnt--;) { + LD_SB4(src, src_stride, src0, src1, src2, src3); + src += (4 * src_stride); + pred = LD_UB(sec_pred); + sec_pred += 16; + LW4(dst, dst_stride, ref0, ref1, ref2, ref3); + dst += (4 * dst_stride); + + INSERT_W4_UB(ref0, ref1, ref2, ref3, ref); + VSHF_B2_UH(src0, src0, src1, src1, mask, mask, vec0, vec1); + VSHF_B2_UH(src2, src2, src3, src3, mask, mask, vec2, vec3); + DOTP_UB4_UH(vec0, vec1, vec2, vec3, filt0, filt0, filt0, filt0, vec0, vec1, + vec2, vec3); + SRARI_H4_UH(vec0, vec1, vec2, vec3, FILTER_BITS); + PCKEV_B4_SB(vec0, vec0, vec1, vec1, vec2, vec2, vec3, vec3, src0, src1, + src2, src3); + ILVEV_W2_SB(src0, src1, src2, src3, src0, src2); + out = (v16u8)__msa_ilvev_d((v2i64)src2, (v2i64)src0); + out = __msa_aver_u_b(out, pred); + CALC_MSE_AVG_B(out, ref, var, avg); + } + + vec = __msa_hadd_s_w(avg, avg); + *diff = HADD_SW_S32(vec); + + return HADD_SW_S32(var); +} + +static uint32_t sub_pixel_avg_sse_diff_8width_h_msa( + const uint8_t *src, int32_t src_stride, const uint8_t *dst, + int32_t dst_stride, const uint8_t *sec_pred, const uint8_t *filter, + int32_t height, int32_t *diff) { + int16_t filtval; + uint32_t loop_cnt; + v16u8 out, pred, filt0; + v16u8 ref0, ref1, ref2, ref3; + v16i8 src0, src1, src2, src3; + v16i8 mask = { 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8 }; + v8u16 vec0, vec1, vec2, vec3; + v8i16 avg = { 0 }; + v4i32 vec, var = { 0 }; + + filtval = LH(filter); + filt0 = (v16u8)__msa_fill_h(filtval); + + for (loop_cnt = (height >> 2); loop_cnt--;) { + LD_SB4(src, src_stride, src0, src1, src2, src3); + src += (4 * src_stride); + LD_UB4(dst, dst_stride, ref0, ref1, ref2, ref3); + dst += (4 * dst_stride); + + PCKEV_D2_UB(ref1, ref0, ref3, ref2, ref0, ref1); + VSHF_B2_UH(src0, src0, src1, src1, mask, mask, vec0, vec1); + VSHF_B2_UH(src2, src2, src3, src3, mask, mask, vec2, vec3); + DOTP_UB4_UH(vec0, vec1, vec2, vec3, filt0, filt0, filt0, filt0, vec0, vec1, + vec2, vec3); + SRARI_H4_UH(vec0, vec1, vec2, vec3, FILTER_BITS); + PCKEV_B4_SB(vec0, vec0, vec1, vec1, vec2, vec2, vec3, vec3, src0, src1, + src2, src3); + out = (v16u8)__msa_ilvev_d((v2i64)src1, (v2i64)src0); + + pred = LD_UB(sec_pred); + sec_pred += 16; + out = __msa_aver_u_b(out, pred); + CALC_MSE_AVG_B(out, ref0, var, avg); + out = (v16u8)__msa_ilvev_d((v2i64)src3, (v2i64)src2); + pred = LD_UB(sec_pred); + sec_pred += 16; + out = __msa_aver_u_b(out, pred); + CALC_MSE_AVG_B(out, ref1, var, avg); + } + + vec = __msa_hadd_s_w(avg, avg); + *diff = HADD_SW_S32(vec); + + return HADD_SW_S32(var); +} + +static uint32_t subpel_avg_ssediff_16w_h_msa( + const uint8_t *src, int32_t src_stride, const uint8_t *dst, + int32_t dst_stride, const uint8_t *sec_pred, const uint8_t *filter, + int32_t height, int32_t *diff, int32_t width) { + int16_t filtval; + uint32_t loop_cnt; + v16i8 src0, src1, src2, src3, src4, src5, src6, src7; + v16i8 mask = { 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8 }; + v16u8 dst0, dst1, dst2, dst3; + v16u8 tmp0, tmp1, tmp2, tmp3; + v16u8 pred0, pred1, pred2, pred3, filt0; + v8u16 vec0, vec1, vec2, vec3, vec4, vec5, vec6, vec7; + v8u16 out0, out1, out2, out3, out4, out5, out6, out7; + v8i16 avg = { 0 }; + v4i32 vec, var = { 0 }; + + filtval = LH(filter); + filt0 = (v16u8)__msa_fill_h(filtval); + + for (loop_cnt = (height >> 2); loop_cnt--;) { + LD_SB4(src, src_stride, src0, src2, src4, src6); + LD_SB4(src + 8, src_stride, src1, src3, src5, src7); + src += (4 * src_stride); + LD_UB4(dst, dst_stride, dst0, dst1, dst2, dst3); + dst += (4 * dst_stride); + LD_UB4(sec_pred, width, pred0, pred1, pred2, pred3); + sec_pred += (4 * width); + + VSHF_B2_UH(src0, src0, src1, src1, mask, mask, vec0, vec1); + VSHF_B2_UH(src2, src2, src3, src3, mask, mask, vec2, vec3); + VSHF_B2_UH(src4, src4, src5, src5, mask, mask, vec4, vec5); + VSHF_B2_UH(src6, src6, src7, src7, mask, mask, vec6, vec7); + DOTP_UB4_UH(vec0, vec1, vec2, vec3, filt0, filt0, filt0, filt0, out0, out1, + out2, out3); + DOTP_UB4_UH(vec4, vec5, vec6, vec7, filt0, filt0, filt0, filt0, out4, out5, + out6, out7); + SRARI_H4_UH(out0, out1, out2, out3, FILTER_BITS); + SRARI_H4_UH(out4, out5, out6, out7, FILTER_BITS); + PCKEV_B4_UB(out1, out0, out3, out2, out5, out4, out7, out6, tmp0, tmp1, + tmp2, tmp3); + AVER_UB4_UB(tmp0, pred0, tmp1, pred1, tmp2, pred2, tmp3, pred3, tmp0, tmp1, + tmp2, tmp3); + + CALC_MSE_AVG_B(tmp0, dst0, var, avg); + CALC_MSE_AVG_B(tmp1, dst1, var, avg); + CALC_MSE_AVG_B(tmp2, dst2, var, avg); + CALC_MSE_AVG_B(tmp3, dst3, var, avg); + } + + vec = __msa_hadd_s_w(avg, avg); + *diff = HADD_SW_S32(vec); + + return HADD_SW_S32(var); +} + +static uint32_t sub_pixel_avg_sse_diff_16width_h_msa( + const uint8_t *src, int32_t src_stride, const uint8_t *dst, + int32_t dst_stride, const uint8_t *sec_pred, const uint8_t *filter, + int32_t height, int32_t *diff) { + return subpel_avg_ssediff_16w_h_msa(src, src_stride, dst, dst_stride, + sec_pred, filter, height, diff, 16); +} + +static uint32_t sub_pixel_avg_sse_diff_32width_h_msa( + const uint8_t *src, int32_t src_stride, const uint8_t *dst, + int32_t dst_stride, const uint8_t *sec_pred, const uint8_t *filter, + int32_t height, int32_t *diff) { + uint32_t loop_cnt, sse = 0; + int32_t diff0[2]; + + for (loop_cnt = 0; loop_cnt < 2; ++loop_cnt) { + sse += + subpel_avg_ssediff_16w_h_msa(src, src_stride, dst, dst_stride, sec_pred, + filter, height, &diff0[loop_cnt], 32); + src += 16; + dst += 16; + sec_pred += 16; + } + + *diff = diff0[0] + diff0[1]; + + return sse; +} + +static uint32_t sub_pixel_avg_sse_diff_64width_h_msa( + const uint8_t *src, int32_t src_stride, const uint8_t *dst, + int32_t dst_stride, const uint8_t *sec_pred, const uint8_t *filter, + int32_t height, int32_t *diff) { + uint32_t loop_cnt, sse = 0; + int32_t diff0[4]; + + for (loop_cnt = 0; loop_cnt < 4; ++loop_cnt) { + sse += + subpel_avg_ssediff_16w_h_msa(src, src_stride, dst, dst_stride, sec_pred, + filter, height, &diff0[loop_cnt], 64); + src += 16; + dst += 16; + sec_pred += 16; + } + + *diff = diff0[0] + diff0[1] + diff0[2] + diff0[3]; + + return sse; +} + +static uint32_t sub_pixel_avg_sse_diff_4width_v_msa( + const uint8_t *src, int32_t src_stride, const uint8_t *dst, + int32_t dst_stride, const uint8_t *sec_pred, const uint8_t *filter, + int32_t height, int32_t *diff) { + int16_t filtval; + uint32_t loop_cnt; + uint32_t ref0, ref1, ref2, ref3; + v16u8 src0, src1, src2, src3, src4; + v16u8 src10_r, src32_r, src21_r, src43_r; + v16u8 out, pred, ref = { 0 }; + v16u8 src2110, src4332, filt0; + v8i16 avg = { 0 }; + v4i32 vec, var = { 0 }; + v8u16 tmp0, tmp1; + + filtval = LH(filter); + filt0 = (v16u8)__msa_fill_h(filtval); + + src0 = LD_UB(src); + src += src_stride; + + for (loop_cnt = (height >> 2); loop_cnt--;) { + LD_UB4(src, src_stride, src1, src2, src3, src4); + src += (4 * src_stride); + pred = LD_UB(sec_pred); + sec_pred += 16; + LW4(dst, dst_stride, ref0, ref1, ref2, ref3); + dst += (4 * dst_stride); + + INSERT_W4_UB(ref0, ref1, ref2, ref3, ref); + ILVR_B4_UB(src1, src0, src2, src1, src3, src2, src4, src3, src10_r, src21_r, + src32_r, src43_r); + ILVR_D2_UB(src21_r, src10_r, src43_r, src32_r, src2110, src4332); + DOTP_UB2_UH(src2110, src4332, filt0, filt0, tmp0, tmp1); + SRARI_H2_UH(tmp0, tmp1, FILTER_BITS); + + out = (v16u8)__msa_pckev_b((v16i8)tmp1, (v16i8)tmp0); + out = __msa_aver_u_b(out, pred); + CALC_MSE_AVG_B(out, ref, var, avg); + src0 = src4; + } + + vec = __msa_hadd_s_w(avg, avg); + *diff = HADD_SW_S32(vec); + + return HADD_SW_S32(var); +} + +static uint32_t sub_pixel_avg_sse_diff_8width_v_msa( + const uint8_t *src, int32_t src_stride, const uint8_t *dst, + int32_t dst_stride, const uint8_t *sec_pred, const uint8_t *filter, + int32_t height, int32_t *diff) { + int16_t filtval; + uint32_t loop_cnt; + v16u8 src0, src1, src2, src3, src4; + v16u8 ref0, ref1, ref2, ref3; + v16u8 pred0, pred1, filt0; + v8u16 vec0, vec1, vec2, vec3; + v8u16 tmp0, tmp1, tmp2, tmp3; + v8i16 avg = { 0 }; + v4i32 vec, var = { 0 }; + + filtval = LH(filter); + filt0 = (v16u8)__msa_fill_h(filtval); + + src0 = LD_UB(src); + src += src_stride; + + for (loop_cnt = (height >> 2); loop_cnt--;) { + LD_UB4(src, src_stride, src1, src2, src3, src4); + src += (4 * src_stride); + LD_UB2(sec_pred, 16, pred0, pred1); + sec_pred += 32; + LD_UB4(dst, dst_stride, ref0, ref1, ref2, ref3); + dst += (4 * dst_stride); + PCKEV_D2_UB(ref1, ref0, ref3, ref2, ref0, ref1); + ILVR_B4_UH(src1, src0, src2, src1, src3, src2, src4, src3, vec0, vec1, vec2, + vec3); + DOTP_UB4_UH(vec0, vec1, vec2, vec3, filt0, filt0, filt0, filt0, tmp0, tmp1, + tmp2, tmp3); + SRARI_H4_UH(tmp0, tmp1, tmp2, tmp3, FILTER_BITS); + PCKEV_B2_UB(tmp1, tmp0, tmp3, tmp2, src0, src1); + AVER_UB2_UB(src0, pred0, src1, pred1, src0, src1); + CALC_MSE_AVG_B(src0, ref0, var, avg); + CALC_MSE_AVG_B(src1, ref1, var, avg); + + src0 = src4; + } + + vec = __msa_hadd_s_w(avg, avg); + *diff = HADD_SW_S32(vec); + + return HADD_SW_S32(var); +} + +static uint32_t subpel_avg_ssediff_16w_v_msa( + const uint8_t *src, int32_t src_stride, const uint8_t *dst, + int32_t dst_stride, const uint8_t *sec_pred, const uint8_t *filter, + int32_t height, int32_t *diff, int32_t width) { + int16_t filtval; + uint32_t loop_cnt; + v16u8 ref0, ref1, ref2, ref3; + v16u8 pred0, pred1, pred2, pred3; + v16u8 src0, src1, src2, src3, src4; + v16u8 out0, out1, out2, out3, filt0; + v8u16 vec0, vec1, vec2, vec3, vec4, vec5, vec6, vec7; + v8u16 tmp0, tmp1, tmp2, tmp3; + v8i16 avg = { 0 }; + v4i32 vec, var = { 0 }; + + filtval = LH(filter); + filt0 = (v16u8)__msa_fill_h(filtval); + + src0 = LD_UB(src); + src += src_stride; + + for (loop_cnt = (height >> 2); loop_cnt--;) { + LD_UB4(src, src_stride, src1, src2, src3, src4); + src += (4 * src_stride); + LD_UB4(sec_pred, width, pred0, pred1, pred2, pred3); + sec_pred += (4 * width); + + ILVR_B2_UH(src1, src0, src2, src1, vec0, vec2); + ILVL_B2_UH(src1, src0, src2, src1, vec1, vec3); + DOTP_UB2_UH(vec0, vec1, filt0, filt0, tmp0, tmp1); + SRARI_H2_UH(tmp0, tmp1, FILTER_BITS); + out0 = (v16u8)__msa_pckev_b((v16i8)tmp1, (v16i8)tmp0); + + ILVR_B2_UH(src3, src2, src4, src3, vec4, vec6); + ILVL_B2_UH(src3, src2, src4, src3, vec5, vec7); + DOTP_UB2_UH(vec2, vec3, filt0, filt0, tmp2, tmp3); + SRARI_H2_UH(tmp2, tmp3, FILTER_BITS); + out1 = (v16u8)__msa_pckev_b((v16i8)tmp3, (v16i8)tmp2); + + DOTP_UB2_UH(vec4, vec5, filt0, filt0, tmp0, tmp1); + SRARI_H2_UH(tmp0, tmp1, FILTER_BITS); + out2 = (v16u8)__msa_pckev_b((v16i8)tmp1, (v16i8)tmp0); + + DOTP_UB2_UH(vec6, vec7, filt0, filt0, tmp2, tmp3); + SRARI_H2_UH(tmp2, tmp3, FILTER_BITS); + out3 = (v16u8)__msa_pckev_b((v16i8)tmp3, (v16i8)tmp2); + + src0 = src4; + LD_UB4(dst, dst_stride, ref0, ref1, ref2, ref3); + dst += (4 * dst_stride); + + AVER_UB4_UB(out0, pred0, out1, pred1, out2, pred2, out3, pred3, out0, out1, + out2, out3); + + CALC_MSE_AVG_B(out0, ref0, var, avg); + CALC_MSE_AVG_B(out1, ref1, var, avg); + CALC_MSE_AVG_B(out2, ref2, var, avg); + CALC_MSE_AVG_B(out3, ref3, var, avg); + } + + vec = __msa_hadd_s_w(avg, avg); + *diff = HADD_SW_S32(vec); + + return HADD_SW_S32(var); +} + +static uint32_t sub_pixel_avg_sse_diff_16width_v_msa( + const uint8_t *src, int32_t src_stride, const uint8_t *dst, + int32_t dst_stride, const uint8_t *sec_pred, const uint8_t *filter, + int32_t height, int32_t *diff) { + return subpel_avg_ssediff_16w_v_msa(src, src_stride, dst, dst_stride, + sec_pred, filter, height, diff, 16); +} + +static uint32_t sub_pixel_avg_sse_diff_32width_v_msa( + const uint8_t *src, int32_t src_stride, const uint8_t *dst, + int32_t dst_stride, const uint8_t *sec_pred, const uint8_t *filter, + int32_t height, int32_t *diff) { + uint32_t loop_cnt, sse = 0; + int32_t diff0[2]; + + for (loop_cnt = 0; loop_cnt < 2; ++loop_cnt) { + sse += + subpel_avg_ssediff_16w_v_msa(src, src_stride, dst, dst_stride, sec_pred, + filter, height, &diff0[loop_cnt], 32); + src += 16; + dst += 16; + sec_pred += 16; + } + + *diff = diff0[0] + diff0[1]; + + return sse; +} + +static uint32_t sub_pixel_avg_sse_diff_64width_v_msa( + const uint8_t *src, int32_t src_stride, const uint8_t *dst, + int32_t dst_stride, const uint8_t *sec_pred, const uint8_t *filter, + int32_t height, int32_t *diff) { + uint32_t loop_cnt, sse = 0; + int32_t diff0[4]; + + for (loop_cnt = 0; loop_cnt < 4; ++loop_cnt) { + sse += + subpel_avg_ssediff_16w_v_msa(src, src_stride, dst, dst_stride, sec_pred, + filter, height, &diff0[loop_cnt], 64); + src += 16; + dst += 16; + sec_pred += 16; + } + + *diff = diff0[0] + diff0[1] + diff0[2] + diff0[3]; + + return sse; +} + +static uint32_t sub_pixel_avg_sse_diff_4width_hv_msa( + const uint8_t *src, int32_t src_stride, const uint8_t *dst, + int32_t dst_stride, const uint8_t *sec_pred, const uint8_t *filter_horiz, + const uint8_t *filter_vert, int32_t height, int32_t *diff) { + int16_t filtval; + uint32_t loop_cnt; + uint32_t ref0, ref1, ref2, ref3; + v16u8 src0, src1, src2, src3, src4; + v16u8 mask = { 0, 1, 1, 2, 2, 3, 3, 4, 16, 17, 17, 18, 18, 19, 19, 20 }; + v16u8 filt_hz, filt_vt, vec0, vec1; + v16u8 out, pred, ref = { 0 }; + v8u16 hz_out0, hz_out1, hz_out2, hz_out3, hz_out4, tmp0, tmp1; + v8i16 avg = { 0 }; + v4i32 vec, var = { 0 }; + + filtval = LH(filter_horiz); + filt_hz = (v16u8)__msa_fill_h(filtval); + filtval = LH(filter_vert); + filt_vt = (v16u8)__msa_fill_h(filtval); + + src0 = LD_UB(src); + src += src_stride; + + for (loop_cnt = (height >> 2); loop_cnt--;) { + LD_UB4(src, src_stride, src1, src2, src3, src4); + src += (4 * src_stride); + pred = LD_UB(sec_pred); + sec_pred += 16; + LW4(dst, dst_stride, ref0, ref1, ref2, ref3); + dst += (4 * dst_stride); + INSERT_W4_UB(ref0, ref1, ref2, ref3, ref); + hz_out0 = HORIZ_2TAP_FILT_UH(src0, src1, mask, filt_hz, FILTER_BITS); + hz_out2 = HORIZ_2TAP_FILT_UH(src2, src3, mask, filt_hz, FILTER_BITS); + hz_out4 = HORIZ_2TAP_FILT_UH(src4, src4, mask, filt_hz, FILTER_BITS); + hz_out1 = (v8u16)__msa_sldi_b((v16i8)hz_out2, (v16i8)hz_out0, 8); + hz_out3 = (v8u16)__msa_pckod_d((v2i64)hz_out4, (v2i64)hz_out2); + ILVEV_B2_UB(hz_out0, hz_out1, hz_out2, hz_out3, vec0, vec1); + DOTP_UB2_UH(vec0, vec1, filt_vt, filt_vt, tmp0, tmp1); + SRARI_H2_UH(tmp0, tmp1, FILTER_BITS); + out = (v16u8)__msa_pckev_b((v16i8)tmp1, (v16i8)tmp0); + out = __msa_aver_u_b(out, pred); + CALC_MSE_AVG_B(out, ref, var, avg); + src0 = src4; + } + + vec = __msa_hadd_s_w(avg, avg); + *diff = HADD_SW_S32(vec); + + return HADD_SW_S32(var); +} + +static uint32_t sub_pixel_avg_sse_diff_8width_hv_msa( + const uint8_t *src, int32_t src_stride, const uint8_t *dst, + int32_t dst_stride, const uint8_t *sec_pred, const uint8_t *filter_horiz, + const uint8_t *filter_vert, int32_t height, int32_t *diff) { + int16_t filtval; + uint32_t loop_cnt; + v16u8 ref0, ref1, ref2, ref3; + v16u8 src0, src1, src2, src3, src4; + v16u8 pred0, pred1, out0, out1; + v16u8 filt_hz, filt_vt, vec0; + v16u8 mask = { 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8 }; + v8u16 hz_out0, hz_out1, tmp0, tmp1, tmp2, tmp3; + v8i16 avg = { 0 }; + v4i32 vec, var = { 0 }; + + filtval = LH(filter_horiz); + filt_hz = (v16u8)__msa_fill_h(filtval); + filtval = LH(filter_vert); + filt_vt = (v16u8)__msa_fill_h(filtval); + + src0 = LD_UB(src); + src += src_stride; + hz_out0 = HORIZ_2TAP_FILT_UH(src0, src0, mask, filt_hz, FILTER_BITS); + + for (loop_cnt = (height >> 2); loop_cnt--;) { + LD_UB4(src, src_stride, src1, src2, src3, src4); + src += (4 * src_stride); + LD_UB2(sec_pred, 16, pred0, pred1); + sec_pred += 32; + LD_UB4(dst, dst_stride, ref0, ref1, ref2, ref3); + dst += (4 * dst_stride); + + PCKEV_D2_UB(ref1, ref0, ref3, ref2, ref0, ref1); + hz_out1 = HORIZ_2TAP_FILT_UH(src1, src1, mask, filt_hz, FILTER_BITS); + + vec0 = (v16u8)__msa_ilvev_b((v16i8)hz_out1, (v16i8)hz_out0); + tmp0 = __msa_dotp_u_h(vec0, filt_vt); + hz_out0 = HORIZ_2TAP_FILT_UH(src2, src2, mask, filt_hz, FILTER_BITS); + + vec0 = (v16u8)__msa_ilvev_b((v16i8)hz_out0, (v16i8)hz_out1); + tmp1 = __msa_dotp_u_h(vec0, filt_vt); + SRARI_H2_UH(tmp0, tmp1, FILTER_BITS); + hz_out1 = HORIZ_2TAP_FILT_UH(src3, src3, mask, filt_hz, FILTER_BITS); + + vec0 = (v16u8)__msa_ilvev_b((v16i8)hz_out1, (v16i8)hz_out0); + tmp2 = __msa_dotp_u_h(vec0, filt_vt); + hz_out0 = HORIZ_2TAP_FILT_UH(src4, src4, mask, filt_hz, FILTER_BITS); + + vec0 = (v16u8)__msa_ilvev_b((v16i8)hz_out0, (v16i8)hz_out1); + tmp3 = __msa_dotp_u_h(vec0, filt_vt); + + SRARI_H2_UH(tmp2, tmp3, FILTER_BITS); + PCKEV_B2_UB(tmp1, tmp0, tmp3, tmp2, out0, out1); + AVER_UB2_UB(out0, pred0, out1, pred1, out0, out1); + + CALC_MSE_AVG_B(out0, ref0, var, avg); + CALC_MSE_AVG_B(out1, ref1, var, avg); + } + + vec = __msa_hadd_s_w(avg, avg); + *diff = HADD_SW_S32(vec); + + return HADD_SW_S32(var); +} + +static uint32_t subpel_avg_ssediff_16w_hv_msa( + const uint8_t *src, int32_t src_stride, const uint8_t *dst, + int32_t dst_stride, const uint8_t *sec_pred, const uint8_t *filter_horiz, + const uint8_t *filter_vert, int32_t height, int32_t *diff, int32_t width) { + int16_t filtval; + uint32_t loop_cnt; + v16u8 src0, src1, src2, src3, src4, src5, src6, src7; + v16u8 ref0, ref1, ref2, ref3; + v16u8 pred0, pred1, pred2, pred3; + v16u8 out0, out1, out2, out3; + v16u8 filt_hz, filt_vt, vec0, vec1; + v16u8 mask = { 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8 }; + v8u16 hz_out0, hz_out1, hz_out2, hz_out3, tmp0, tmp1; + v8i16 avg = { 0 }; + v4i32 vec, var = { 0 }; + + filtval = LH(filter_horiz); + filt_hz = (v16u8)__msa_fill_h(filtval); + filtval = LH(filter_vert); + filt_vt = (v16u8)__msa_fill_h(filtval); + + LD_UB2(src, 8, src0, src1); + src += src_stride; + + hz_out0 = HORIZ_2TAP_FILT_UH(src0, src0, mask, filt_hz, FILTER_BITS); + hz_out2 = HORIZ_2TAP_FILT_UH(src1, src1, mask, filt_hz, FILTER_BITS); + + for (loop_cnt = (height >> 2); loop_cnt--;) { + LD_UB4(src, src_stride, src0, src2, src4, src6); + LD_UB4(src + 8, src_stride, src1, src3, src5, src7); + src += (4 * src_stride); + LD_UB4(sec_pred, width, pred0, pred1, pred2, pred3); + sec_pred += (4 * width); + + hz_out1 = HORIZ_2TAP_FILT_UH(src0, src0, mask, filt_hz, FILTER_BITS); + hz_out3 = HORIZ_2TAP_FILT_UH(src1, src1, mask, filt_hz, FILTER_BITS); + ILVEV_B2_UB(hz_out0, hz_out1, hz_out2, hz_out3, vec0, vec1); + DOTP_UB2_UH(vec0, vec1, filt_vt, filt_vt, tmp0, tmp1); + SRARI_H2_UH(tmp0, tmp1, FILTER_BITS); + out0 = (v16u8)__msa_pckev_b((v16i8)tmp1, (v16i8)tmp0); + + hz_out0 = HORIZ_2TAP_FILT_UH(src2, src2, mask, filt_hz, FILTER_BITS); + hz_out2 = HORIZ_2TAP_FILT_UH(src3, src3, mask, filt_hz, FILTER_BITS); + ILVEV_B2_UB(hz_out1, hz_out0, hz_out3, hz_out2, vec0, vec1); + DOTP_UB2_UH(vec0, vec1, filt_vt, filt_vt, tmp0, tmp1); + SRARI_H2_UH(tmp0, tmp1, FILTER_BITS); + out1 = (v16u8)__msa_pckev_b((v16i8)tmp1, (v16i8)tmp0); + + hz_out1 = HORIZ_2TAP_FILT_UH(src4, src4, mask, filt_hz, FILTER_BITS); + hz_out3 = HORIZ_2TAP_FILT_UH(src5, src5, mask, filt_hz, FILTER_BITS); + ILVEV_B2_UB(hz_out0, hz_out1, hz_out2, hz_out3, vec0, vec1); + DOTP_UB2_UH(vec0, vec1, filt_vt, filt_vt, tmp0, tmp1); + SRARI_H2_UH(tmp0, tmp1, FILTER_BITS); + out2 = (v16u8)__msa_pckev_b((v16i8)tmp1, (v16i8)tmp0); + + hz_out0 = HORIZ_2TAP_FILT_UH(src6, src6, mask, filt_hz, FILTER_BITS); + hz_out2 = HORIZ_2TAP_FILT_UH(src7, src7, mask, filt_hz, FILTER_BITS); + ILVEV_B2_UB(hz_out1, hz_out0, hz_out3, hz_out2, vec0, vec1); + DOTP_UB2_UH(vec0, vec1, filt_vt, filt_vt, tmp0, tmp1); + SRARI_H2_UH(tmp0, tmp1, FILTER_BITS); + out3 = (v16u8)__msa_pckev_b((v16i8)tmp1, (v16i8)tmp0); + + LD_UB4(dst, dst_stride, ref0, ref1, ref2, ref3); + dst += (4 * dst_stride); + + AVER_UB4_UB(out0, pred0, out1, pred1, out2, pred2, out3, pred3, out0, out1, + out2, out3); + + CALC_MSE_AVG_B(out0, ref0, var, avg); + CALC_MSE_AVG_B(out1, ref1, var, avg); + CALC_MSE_AVG_B(out2, ref2, var, avg); + CALC_MSE_AVG_B(out3, ref3, var, avg); + } + + vec = __msa_hadd_s_w(avg, avg); + *diff = HADD_SW_S32(vec); + + return HADD_SW_S32(var); +} + +static uint32_t sub_pixel_avg_sse_diff_16width_hv_msa( + const uint8_t *src, int32_t src_stride, const uint8_t *dst, + int32_t dst_stride, const uint8_t *sec_pred, const uint8_t *filter_horiz, + const uint8_t *filter_vert, int32_t height, int32_t *diff) { + return subpel_avg_ssediff_16w_hv_msa(src, src_stride, dst, dst_stride, + sec_pred, filter_horiz, filter_vert, + height, diff, 16); +} + +static uint32_t sub_pixel_avg_sse_diff_32width_hv_msa( + const uint8_t *src, int32_t src_stride, const uint8_t *dst, + int32_t dst_stride, const uint8_t *sec_pred, const uint8_t *filter_horiz, + const uint8_t *filter_vert, int32_t height, int32_t *diff) { + uint32_t loop_cnt, sse = 0; + int32_t diff0[2]; + + for (loop_cnt = 0; loop_cnt < 2; ++loop_cnt) { + sse += subpel_avg_ssediff_16w_hv_msa(src, src_stride, dst, dst_stride, + sec_pred, filter_horiz, filter_vert, + height, &diff0[loop_cnt], 32); + src += 16; + dst += 16; + sec_pred += 16; + } + + *diff = diff0[0] + diff0[1]; + + return sse; +} + +static uint32_t sub_pixel_avg_sse_diff_64width_hv_msa( + const uint8_t *src, int32_t src_stride, const uint8_t *dst, + int32_t dst_stride, const uint8_t *sec_pred, const uint8_t *filter_horiz, + const uint8_t *filter_vert, int32_t height, int32_t *diff) { + uint32_t loop_cnt, sse = 0; + int32_t diff0[4]; + + for (loop_cnt = 0; loop_cnt < 4; ++loop_cnt) { + sse += subpel_avg_ssediff_16w_hv_msa(src, src_stride, dst, dst_stride, + sec_pred, filter_horiz, filter_vert, + height, &diff0[loop_cnt], 64); + src += 16; + dst += 16; + sec_pred += 16; + } + + *diff = diff0[0] + diff0[1] + diff0[2] + diff0[3]; + + return sse; +} + +#define VARIANCE_4Wx4H(sse, diff) VARIANCE_WxH(sse, diff, 4); +#define VARIANCE_4Wx8H(sse, diff) VARIANCE_WxH(sse, diff, 5); +#define VARIANCE_8Wx4H(sse, diff) VARIANCE_WxH(sse, diff, 5); +#define VARIANCE_8Wx8H(sse, diff) VARIANCE_WxH(sse, diff, 6); +#define VARIANCE_8Wx16H(sse, diff) VARIANCE_WxH(sse, diff, 7); +#define VARIANCE_16Wx8H(sse, diff) VARIANCE_WxH(sse, diff, 7); +#define VARIANCE_16Wx16H(sse, diff) VARIANCE_WxH(sse, diff, 8); + +#define VARIANCE_16Wx32H(sse, diff) VARIANCE_LARGE_WxH(sse, diff, 9); +#define VARIANCE_32Wx16H(sse, diff) VARIANCE_LARGE_WxH(sse, diff, 9); +#define VARIANCE_32Wx32H(sse, diff) VARIANCE_LARGE_WxH(sse, diff, 10); +#define VARIANCE_32Wx64H(sse, diff) VARIANCE_LARGE_WxH(sse, diff, 11); +#define VARIANCE_64Wx32H(sse, diff) VARIANCE_LARGE_WxH(sse, diff, 11); +#define VARIANCE_64Wx64H(sse, diff) VARIANCE_LARGE_WxH(sse, diff, 12); + +#define VPX_SUB_PIXEL_VARIANCE_WDXHT_MSA(wd, ht) \ + uint32_t vpx_sub_pixel_variance##wd##x##ht##_msa( \ + const uint8_t *src, int32_t src_stride, int32_t xoffset, \ + int32_t yoffset, const uint8_t *ref, int32_t ref_stride, \ + uint32_t *sse) { \ + int32_t diff; \ + uint32_t var; \ + const uint8_t *h_filter = bilinear_filters_msa[xoffset]; \ + const uint8_t *v_filter = bilinear_filters_msa[yoffset]; \ + \ + if (yoffset) { \ + if (xoffset) { \ + *sse = sub_pixel_sse_diff_##wd##width_hv_msa( \ + src, src_stride, ref, ref_stride, h_filter, v_filter, ht, &diff); \ + } else { \ + *sse = sub_pixel_sse_diff_##wd##width_v_msa( \ + src, src_stride, ref, ref_stride, v_filter, ht, &diff); \ + } \ + \ + var = VARIANCE_##wd##Wx##ht##H(*sse, diff); \ + } else { \ + if (xoffset) { \ + *sse = sub_pixel_sse_diff_##wd##width_h_msa( \ + src, src_stride, ref, ref_stride, h_filter, ht, &diff); \ + \ + var = VARIANCE_##wd##Wx##ht##H(*sse, diff); \ + } else { \ + var = vpx_variance##wd##x##ht##_msa(src, src_stride, ref, ref_stride, \ + sse); \ + } \ + } \ + \ + return var; \ + } + +VPX_SUB_PIXEL_VARIANCE_WDXHT_MSA(4, 4); +VPX_SUB_PIXEL_VARIANCE_WDXHT_MSA(4, 8); + +VPX_SUB_PIXEL_VARIANCE_WDXHT_MSA(8, 4); +VPX_SUB_PIXEL_VARIANCE_WDXHT_MSA(8, 8); +VPX_SUB_PIXEL_VARIANCE_WDXHT_MSA(8, 16); + +VPX_SUB_PIXEL_VARIANCE_WDXHT_MSA(16, 8); +VPX_SUB_PIXEL_VARIANCE_WDXHT_MSA(16, 16); +VPX_SUB_PIXEL_VARIANCE_WDXHT_MSA(16, 32); + +VPX_SUB_PIXEL_VARIANCE_WDXHT_MSA(32, 16); +VPX_SUB_PIXEL_VARIANCE_WDXHT_MSA(32, 32); +VPX_SUB_PIXEL_VARIANCE_WDXHT_MSA(32, 64); + +VPX_SUB_PIXEL_VARIANCE_WDXHT_MSA(64, 32); +VPX_SUB_PIXEL_VARIANCE_WDXHT_MSA(64, 64); + +#define VPX_SUB_PIXEL_AVG_VARIANCE_WDXHT_MSA(wd, ht) \ + uint32_t vpx_sub_pixel_avg_variance##wd##x##ht##_msa( \ + const uint8_t *src_ptr, int32_t src_stride, int32_t xoffset, \ + int32_t yoffset, const uint8_t *ref_ptr, int32_t ref_stride, \ + uint32_t *sse, const uint8_t *sec_pred) { \ + int32_t diff; \ + const uint8_t *h_filter = bilinear_filters_msa[xoffset]; \ + const uint8_t *v_filter = bilinear_filters_msa[yoffset]; \ + \ + if (yoffset) { \ + if (xoffset) { \ + *sse = sub_pixel_avg_sse_diff_##wd##width_hv_msa( \ + src_ptr, src_stride, ref_ptr, ref_stride, sec_pred, h_filter, \ + v_filter, ht, &diff); \ + } else { \ + *sse = sub_pixel_avg_sse_diff_##wd##width_v_msa( \ + src_ptr, src_stride, ref_ptr, ref_stride, sec_pred, v_filter, ht, \ + &diff); \ + } \ + } else { \ + if (xoffset) { \ + *sse = sub_pixel_avg_sse_diff_##wd##width_h_msa( \ + src_ptr, src_stride, ref_ptr, ref_stride, sec_pred, h_filter, ht, \ + &diff); \ + } else { \ + *sse = avg_sse_diff_##wd##width_msa(src_ptr, src_stride, ref_ptr, \ + ref_stride, sec_pred, ht, &diff); \ + } \ + } \ + \ + return VARIANCE_##wd##Wx##ht##H(*sse, diff); \ + } + +VPX_SUB_PIXEL_AVG_VARIANCE_WDXHT_MSA(4, 4); +VPX_SUB_PIXEL_AVG_VARIANCE_WDXHT_MSA(4, 8); + +VPX_SUB_PIXEL_AVG_VARIANCE_WDXHT_MSA(8, 4); +VPX_SUB_PIXEL_AVG_VARIANCE_WDXHT_MSA(8, 8); +VPX_SUB_PIXEL_AVG_VARIANCE_WDXHT_MSA(8, 16); + +VPX_SUB_PIXEL_AVG_VARIANCE_WDXHT_MSA(16, 8); +VPX_SUB_PIXEL_AVG_VARIANCE_WDXHT_MSA(16, 16); +VPX_SUB_PIXEL_AVG_VARIANCE_WDXHT_MSA(16, 32); + +VPX_SUB_PIXEL_AVG_VARIANCE_WDXHT_MSA(32, 16); +VPX_SUB_PIXEL_AVG_VARIANCE_WDXHT_MSA(32, 32); + +uint32_t vpx_sub_pixel_avg_variance32x64_msa(const uint8_t *src_ptr, + int32_t src_stride, + int32_t xoffset, int32_t yoffset, + const uint8_t *ref_ptr, + int32_t ref_stride, uint32_t *sse, + const uint8_t *sec_pred) { + int32_t diff; + const uint8_t *h_filter = bilinear_filters_msa[xoffset]; + const uint8_t *v_filter = bilinear_filters_msa[yoffset]; + + if (yoffset) { + if (xoffset) { + *sse = sub_pixel_avg_sse_diff_32width_hv_msa( + src_ptr, src_stride, ref_ptr, ref_stride, sec_pred, h_filter, + v_filter, 64, &diff); + } else { + *sse = sub_pixel_avg_sse_diff_32width_v_msa(src_ptr, src_stride, ref_ptr, + ref_stride, sec_pred, + v_filter, 64, &diff); + } + } else { + if (xoffset) { + *sse = sub_pixel_avg_sse_diff_32width_h_msa(src_ptr, src_stride, ref_ptr, + ref_stride, sec_pred, + h_filter, 64, &diff); + } else { + *sse = avg_sse_diff_32x64_msa(src_ptr, src_stride, ref_ptr, ref_stride, + sec_pred, &diff); + } + } + + return VARIANCE_32Wx64H(*sse, diff); +} + +#define VPX_SUB_PIXEL_AVG_VARIANCE64XHEIGHT_MSA(ht) \ + uint32_t vpx_sub_pixel_avg_variance64x##ht##_msa( \ + const uint8_t *src_ptr, int32_t src_stride, int32_t xoffset, \ + int32_t yoffset, const uint8_t *ref_ptr, int32_t ref_stride, \ + uint32_t *sse, const uint8_t *sec_pred) { \ + int32_t diff; \ + const uint8_t *h_filter = bilinear_filters_msa[xoffset]; \ + const uint8_t *v_filter = bilinear_filters_msa[yoffset]; \ + \ + if (yoffset) { \ + if (xoffset) { \ + *sse = sub_pixel_avg_sse_diff_64width_hv_msa( \ + src_ptr, src_stride, ref_ptr, ref_stride, sec_pred, h_filter, \ + v_filter, ht, &diff); \ + } else { \ + *sse = sub_pixel_avg_sse_diff_64width_v_msa( \ + src_ptr, src_stride, ref_ptr, ref_stride, sec_pred, v_filter, ht, \ + &diff); \ + } \ + } else { \ + if (xoffset) { \ + *sse = sub_pixel_avg_sse_diff_64width_h_msa( \ + src_ptr, src_stride, ref_ptr, ref_stride, sec_pred, h_filter, ht, \ + &diff); \ + } else { \ + *sse = avg_sse_diff_64x##ht##_msa(src_ptr, src_stride, ref_ptr, \ + ref_stride, sec_pred, &diff); \ + } \ + } \ + \ + return VARIANCE_64Wx##ht##H(*sse, diff); \ + } + +VPX_SUB_PIXEL_AVG_VARIANCE64XHEIGHT_MSA(32); +VPX_SUB_PIXEL_AVG_VARIANCE64XHEIGHT_MSA(64); diff --git a/vpx_dsp/mips/subtract_mmi.c b/vpx_dsp/mips/subtract_mmi.c new file mode 100644 index 0000000..9f36170 --- /dev/null +++ b/vpx_dsp/mips/subtract_mmi.c @@ -0,0 +1,306 @@ +/* + * Copyright (c) 2017 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "./vpx_dsp_rtcd.h" +#include "vpx/vpx_integer.h" +#include "vpx_ports/mem.h" +#include "vpx_ports/asmdefs_mmi.h" + +void vpx_subtract_block_mmi(int rows, int cols, int16_t *diff, + ptrdiff_t diff_stride, const uint8_t *src, + ptrdiff_t src_stride, const uint8_t *pred, + ptrdiff_t pred_stride) { + double ftmp[13]; + uint32_t tmp[1]; + + if (rows == cols) { + switch (rows) { + case 4: + __asm__ volatile( + "xor %[ftmp0], %[ftmp0], %[ftmp0] \n\t" +#if _MIPS_SIM == _ABIO32 + "ulw %[tmp0], 0x00(%[src]) \n\t" + "mtc1 %[tmp0], %[ftmp1] \n\t" + "ulw %[tmp0], 0x00(%[pred]) \n\t" + "mtc1 %[tmp0], %[ftmp2] \n\t" +#else + "gslwlc1 %[ftmp1], 0x03(%[src]) \n\t" + "gslwrc1 %[ftmp1], 0x00(%[src]) \n\t" + "gslwlc1 %[ftmp2], 0x03(%[pred]) \n\t" + "gslwrc1 %[ftmp2], 0x00(%[pred]) \n\t" +#endif + MMI_ADDU(%[src], %[src], %[src_stride]) + MMI_ADDU(%[pred], %[pred], %[pred_stride]) + +#if _MIPS_SIM == _ABIO32 + "ulw %[tmp0], 0x00(%[src]) \n\t" + "mtc1 %[tmp0], %[ftmp3] \n\t" + "ulw %[tmp0], 0x00(%[pred]) \n\t" + "mtc1 %[tmp0], %[ftmp4] \n\t" +#else + "gslwlc1 %[ftmp3], 0x03(%[src]) \n\t" + "gslwrc1 %[ftmp3], 0x00(%[src]) \n\t" + "gslwlc1 %[ftmp4], 0x03(%[pred]) \n\t" + "gslwrc1 %[ftmp4], 0x00(%[pred]) \n\t" +#endif + MMI_ADDU(%[src], %[src], %[src_stride]) + MMI_ADDU(%[pred], %[pred], %[pred_stride]) + +#if _MIPS_SIM == _ABIO32 + "ulw %[tmp0], 0x00(%[src]) \n\t" + "mtc1 %[tmp0], %[ftmp5] \n\t" + "ulw %[tmp0], 0x00(%[pred]) \n\t" + "mtc1 %[tmp0], %[ftmp6] \n\t" +#else + "gslwlc1 %[ftmp5], 0x03(%[src]) \n\t" + "gslwrc1 %[ftmp5], 0x00(%[src]) \n\t" + "gslwlc1 %[ftmp6], 0x03(%[pred]) \n\t" + "gslwrc1 %[ftmp6], 0x00(%[pred]) \n\t" +#endif + MMI_ADDU(%[src], %[src], %[src_stride]) + MMI_ADDU(%[pred], %[pred], %[pred_stride]) + +#if _MIPS_SIM == _ABIO32 + "ulw %[tmp0], 0x00(%[src]) \n\t" + "mtc1 %[tmp0], %[ftmp7] \n\t" + "ulw %[tmp0], 0x00(%[pred]) \n\t" + "mtc1 %[tmp0], %[ftmp8] \n\t" +#else + "gslwlc1 %[ftmp7], 0x03(%[src]) \n\t" + "gslwrc1 %[ftmp7], 0x00(%[src]) \n\t" + "gslwlc1 %[ftmp8], 0x03(%[pred]) \n\t" + "gslwrc1 %[ftmp8], 0x00(%[pred]) \n\t" +#endif + "punpcklbh %[ftmp9], %[ftmp1], %[ftmp0] \n\t" + "punpcklbh %[ftmp10], %[ftmp2], %[ftmp0] \n\t" + "psubh %[ftmp11], %[ftmp9], %[ftmp10] \n\t" + "gssdlc1 %[ftmp11], 0x07(%[diff]) \n\t" + "gssdrc1 %[ftmp11], 0x00(%[diff]) \n\t" + MMI_ADDU(%[diff], %[diff], %[diff_stride]) + "punpcklbh %[ftmp9], %[ftmp3], %[ftmp0] \n\t" + "punpcklbh %[ftmp10], %[ftmp4], %[ftmp0] \n\t" + "psubh %[ftmp11], %[ftmp9], %[ftmp10] \n\t" + "gssdlc1 %[ftmp11], 0x07(%[diff]) \n\t" + "gssdrc1 %[ftmp11], 0x00(%[diff]) \n\t" + MMI_ADDU(%[diff], %[diff], %[diff_stride]) + "punpcklbh %[ftmp9], %[ftmp5], %[ftmp0] \n\t" + "punpcklbh %[ftmp10], %[ftmp6], %[ftmp0] \n\t" + "psubh %[ftmp11], %[ftmp9], %[ftmp10] \n\t" + "gssdlc1 %[ftmp11], 0x07(%[diff]) \n\t" + "gssdrc1 %[ftmp11], 0x00(%[diff]) \n\t" + MMI_ADDU(%[diff], %[diff], %[diff_stride]) + "punpcklbh %[ftmp9], %[ftmp7], %[ftmp0] \n\t" + "punpcklbh %[ftmp10], %[ftmp8], %[ftmp0] \n\t" + "psubh %[ftmp11], %[ftmp9], %[ftmp10] \n\t" + "gssdlc1 %[ftmp11], 0x07(%[diff]) \n\t" + "gssdrc1 %[ftmp11], 0x00(%[diff]) \n\t" + : [ftmp0] "=&f"(ftmp[0]), [ftmp1] "=&f"(ftmp[1]), + [ftmp2] "=&f"(ftmp[2]), [ftmp3] "=&f"(ftmp[3]), + [ftmp4] "=&f"(ftmp[4]), [ftmp5] "=&f"(ftmp[5]), + [ftmp6] "=&f"(ftmp[6]), [ftmp7] "=&f"(ftmp[7]), + [ftmp8] "=&f"(ftmp[8]), [ftmp9] "=&f"(ftmp[9]), + [ftmp10] "=&f"(ftmp[10]), [ftmp11] "=&f"(ftmp[11]), +#if _MIPS_SIM == _ABIO32 + [tmp0] "=&r"(tmp[0]), +#endif + [src] "+&r"(src), [pred] "+&r"(pred), [diff] "+&r"(diff) + : [src_stride] "r"((mips_reg)src_stride), + [pred_stride] "r"((mips_reg)pred_stride), + [diff_stride] "r"((mips_reg)(diff_stride * 2)) + : "memory"); + break; + case 8: + __asm__ volatile( + "xor %[ftmp0], %[ftmp0], %[ftmp0] \n\t" + "li %[tmp0], 0x02 \n\t" + "1: \n\t" + "gsldlc1 %[ftmp1], 0x07(%[src]) \n\t" + "gsldrc1 %[ftmp1], 0x00(%[src]) \n\t" + "gsldlc1 %[ftmp2], 0x07(%[pred]) \n\t" + "gsldrc1 %[ftmp2], 0x00(%[pred]) \n\t" + MMI_ADDU(%[src], %[src], %[src_stride]) + MMI_ADDU(%[pred], %[pred], %[pred_stride]) + "gsldlc1 %[ftmp3], 0x07(%[src]) \n\t" + "gsldrc1 %[ftmp3], 0x00(%[src]) \n\t" + "gsldlc1 %[ftmp4], 0x07(%[pred]) \n\t" + "gsldrc1 %[ftmp4], 0x00(%[pred]) \n\t" + MMI_ADDU(%[src], %[src], %[src_stride]) + MMI_ADDU(%[pred], %[pred], %[pred_stride]) + "gsldlc1 %[ftmp5], 0x07(%[src]) \n\t" + "gsldrc1 %[ftmp5], 0x00(%[src]) \n\t" + "gsldlc1 %[ftmp6], 0x07(%[pred]) \n\t" + "gsldrc1 %[ftmp6], 0x00(%[pred]) \n\t" + MMI_ADDU(%[src], %[src], %[src_stride]) + MMI_ADDU(%[pred], %[pred], %[pred_stride]) + "gsldlc1 %[ftmp7], 0x07(%[src]) \n\t" + "gsldrc1 %[ftmp7], 0x00(%[src]) \n\t" + "gsldlc1 %[ftmp8], 0x07(%[pred]) \n\t" + "gsldrc1 %[ftmp8], 0x00(%[pred]) \n\t" + MMI_ADDU(%[src], %[src], %[src_stride]) + MMI_ADDU(%[pred], %[pred], %[pred_stride]) + "punpcklbh %[ftmp9], %[ftmp1], %[ftmp0] \n\t" + "punpckhbh %[ftmp10], %[ftmp1], %[ftmp0] \n\t" + "punpcklbh %[ftmp11], %[ftmp2], %[ftmp0] \n\t" + "punpckhbh %[ftmp12], %[ftmp2], %[ftmp0] \n\t" + "psubsh %[ftmp9], %[ftmp9], %[ftmp11] \n\t" + "psubsh %[ftmp10], %[ftmp10], %[ftmp12] \n\t" + "gssdlc1 %[ftmp9], 0x07(%[diff]) \n\t" + "gssdrc1 %[ftmp9], 0x00(%[diff]) \n\t" + "gssdlc1 %[ftmp10], 0x0f(%[diff]) \n\t" + "gssdrc1 %[ftmp10], 0x08(%[diff]) \n\t" + MMI_ADDU(%[diff], %[diff], %[diff_stride]) + "punpcklbh %[ftmp9], %[ftmp3], %[ftmp0] \n\t" + "punpckhbh %[ftmp10], %[ftmp3], %[ftmp0] \n\t" + "punpcklbh %[ftmp11], %[ftmp4], %[ftmp0] \n\t" + "punpckhbh %[ftmp12], %[ftmp4], %[ftmp0] \n\t" + "psubsh %[ftmp9], %[ftmp9], %[ftmp11] \n\t" + "psubsh %[ftmp10], %[ftmp10], %[ftmp12] \n\t" + "gssdlc1 %[ftmp9], 0x07(%[diff]) \n\t" + "gssdrc1 %[ftmp9], 0x00(%[diff]) \n\t" + "gssdlc1 %[ftmp10], 0x0f(%[diff]) \n\t" + "gssdrc1 %[ftmp10], 0x08(%[diff]) \n\t" + MMI_ADDU(%[diff], %[diff], %[diff_stride]) + "punpcklbh %[ftmp9], %[ftmp5], %[ftmp0] \n\t" + "punpckhbh %[ftmp10], %[ftmp5], %[ftmp0] \n\t" + "punpcklbh %[ftmp11], %[ftmp6], %[ftmp0] \n\t" + "punpckhbh %[ftmp12], %[ftmp6], %[ftmp0] \n\t" + "psubsh %[ftmp9], %[ftmp9], %[ftmp11] \n\t" + "psubsh %[ftmp10], %[ftmp10], %[ftmp12] \n\t" + "gssdlc1 %[ftmp9], 0x07(%[diff]) \n\t" + "gssdrc1 %[ftmp9], 0x00(%[diff]) \n\t" + "gssdlc1 %[ftmp10], 0x0f(%[diff]) \n\t" + "gssdrc1 %[ftmp10], 0x08(%[diff]) \n\t" + MMI_ADDU(%[diff], %[diff], %[diff_stride]) + "punpcklbh %[ftmp9], %[ftmp7], %[ftmp0] \n\t" + "punpckhbh %[ftmp10], %[ftmp7], %[ftmp0] \n\t" + "punpcklbh %[ftmp11], %[ftmp8], %[ftmp0] \n\t" + "punpckhbh %[ftmp12], %[ftmp8], %[ftmp0] \n\t" + "psubsh %[ftmp9], %[ftmp9], %[ftmp11] \n\t" + "psubsh %[ftmp10], %[ftmp10], %[ftmp12] \n\t" + "gssdlc1 %[ftmp9], 0x07(%[diff]) \n\t" + "gssdrc1 %[ftmp9], 0x00(%[diff]) \n\t" + "gssdlc1 %[ftmp10], 0x0f(%[diff]) \n\t" + "gssdrc1 %[ftmp10], 0x08(%[diff]) \n\t" + MMI_ADDU(%[diff], %[diff], %[diff_stride]) + "addiu %[tmp0], %[tmp0], -0x01 \n\t" + "bnez %[tmp0], 1b \n\t" + : [ftmp0] "=&f"(ftmp[0]), [ftmp1] "=&f"(ftmp[1]), + [ftmp2] "=&f"(ftmp[2]), [ftmp3] "=&f"(ftmp[3]), + [ftmp4] "=&f"(ftmp[4]), [ftmp5] "=&f"(ftmp[5]), + [ftmp6] "=&f"(ftmp[6]), [ftmp7] "=&f"(ftmp[7]), + [ftmp8] "=&f"(ftmp[8]), [ftmp9] "=&f"(ftmp[9]), + [ftmp10] "=&f"(ftmp[10]), [ftmp11] "=&f"(ftmp[11]), + [ftmp12] "=&f"(ftmp[12]), [tmp0] "=&r"(tmp[0]), [src] "+&r"(src), + [pred] "+&r"(pred), [diff] "+&r"(diff) + : [pred_stride] "r"((mips_reg)pred_stride), + [src_stride] "r"((mips_reg)src_stride), + [diff_stride] "r"((mips_reg)(diff_stride * 2)) + : "memory"); + break; + case 16: + __asm__ volatile( + "xor %[ftmp0], %[ftmp0], %[ftmp0] \n\t" + "li %[tmp0], 0x08 \n\t" + "1: \n\t" + "gsldlc1 %[ftmp1], 0x07(%[src]) \n\t" + "gsldrc1 %[ftmp1], 0x00(%[src]) \n\t" + "gsldlc1 %[ftmp2], 0x07(%[pred]) \n\t" + "gsldrc1 %[ftmp2], 0x00(%[pred]) \n\t" + "gsldlc1 %[ftmp3], 0x0f(%[src]) \n\t" + "gsldrc1 %[ftmp3], 0x08(%[src]) \n\t" + "gsldlc1 %[ftmp4], 0x0f(%[pred]) \n\t" + "gsldrc1 %[ftmp4], 0x08(%[pred]) \n\t" + MMI_ADDU(%[src], %[src], %[src_stride]) + MMI_ADDU(%[pred], %[pred], %[pred_stride]) + "gsldlc1 %[ftmp5], 0x07(%[src]) \n\t" + "gsldrc1 %[ftmp5], 0x00(%[src]) \n\t" + "gsldlc1 %[ftmp6], 0x07(%[pred]) \n\t" + "gsldrc1 %[ftmp6], 0x00(%[pred]) \n\t" + "gsldlc1 %[ftmp7], 0x0f(%[src]) \n\t" + "gsldrc1 %[ftmp7], 0x08(%[src]) \n\t" + "gsldlc1 %[ftmp8], 0x0f(%[pred]) \n\t" + "gsldrc1 %[ftmp8], 0x08(%[pred]) \n\t" + MMI_ADDU(%[src], %[src], %[src_stride]) + MMI_ADDU(%[pred], %[pred], %[pred_stride]) + "punpcklbh %[ftmp9], %[ftmp1], %[ftmp0] \n\t" + "punpckhbh %[ftmp10], %[ftmp1], %[ftmp0] \n\t" + "punpcklbh %[ftmp11], %[ftmp2], %[ftmp0] \n\t" + "punpckhbh %[ftmp12], %[ftmp2], %[ftmp0] \n\t" + "psubsh %[ftmp9], %[ftmp9], %[ftmp11] \n\t" + "psubsh %[ftmp10], %[ftmp10], %[ftmp12] \n\t" + "gssdlc1 %[ftmp9], 0x07(%[diff]) \n\t" + "gssdrc1 %[ftmp9], 0x00(%[diff]) \n\t" + "gssdlc1 %[ftmp10], 0x0f(%[diff]) \n\t" + "gssdrc1 %[ftmp10], 0x08(%[diff]) \n\t" + "punpcklbh %[ftmp9], %[ftmp3], %[ftmp0] \n\t" + "punpckhbh %[ftmp10], %[ftmp3], %[ftmp0] \n\t" + "punpcklbh %[ftmp11], %[ftmp4], %[ftmp0] \n\t" + "punpckhbh %[ftmp12], %[ftmp4], %[ftmp0] \n\t" + "psubsh %[ftmp9], %[ftmp9], %[ftmp11] \n\t" + "psubsh %[ftmp10], %[ftmp10], %[ftmp12] \n\t" + "gssdlc1 %[ftmp9], 0x17(%[diff]) \n\t" + "gssdrc1 %[ftmp9], 0x10(%[diff]) \n\t" + "gssdlc1 %[ftmp10], 0x1f(%[diff]) \n\t" + "gssdrc1 %[ftmp10], 0x18(%[diff]) \n\t" + MMI_ADDU(%[diff], %[diff], %[diff_stride]) + "punpcklbh %[ftmp9], %[ftmp5], %[ftmp0] \n\t" + "punpckhbh %[ftmp10], %[ftmp5], %[ftmp0] \n\t" + "punpcklbh %[ftmp11], %[ftmp6], %[ftmp0] \n\t" + "punpckhbh %[ftmp12], %[ftmp6], %[ftmp0] \n\t" + "psubsh %[ftmp9], %[ftmp9], %[ftmp11] \n\t" + "psubsh %[ftmp10], %[ftmp10], %[ftmp12] \n\t" + "gssdlc1 %[ftmp9], 0x07(%[diff]) \n\t" + "gssdrc1 %[ftmp9], 0x00(%[diff]) \n\t" + "gssdlc1 %[ftmp10], 0x0f(%[diff]) \n\t" + "gssdrc1 %[ftmp10], 0x08(%[diff]) \n\t" + "punpcklbh %[ftmp9], %[ftmp7], %[ftmp0] \n\t" + "punpckhbh %[ftmp10], %[ftmp7], %[ftmp0] \n\t" + "punpcklbh %[ftmp11], %[ftmp8], %[ftmp0] \n\t" + "punpckhbh %[ftmp12], %[ftmp8], %[ftmp0] \n\t" + "psubsh %[ftmp9], %[ftmp9], %[ftmp11] \n\t" + "psubsh %[ftmp10], %[ftmp10], %[ftmp12] \n\t" + "gssdlc1 %[ftmp9], 0x17(%[diff]) \n\t" + "gssdrc1 %[ftmp9], 0x10(%[diff]) \n\t" + "gssdlc1 %[ftmp10], 0x1f(%[diff]) \n\t" + "gssdrc1 %[ftmp10], 0x18(%[diff]) \n\t" + MMI_ADDU(%[diff], %[diff], %[diff_stride]) + "addiu %[tmp0], %[tmp0], -0x01 \n\t" + "bnez %[tmp0], 1b \n\t" + : [ftmp0] "=&f"(ftmp[0]), [ftmp1] "=&f"(ftmp[1]), + [ftmp2] "=&f"(ftmp[2]), [ftmp3] "=&f"(ftmp[3]), + [ftmp4] "=&f"(ftmp[4]), [ftmp5] "=&f"(ftmp[5]), + [ftmp6] "=&f"(ftmp[6]), [ftmp7] "=&f"(ftmp[7]), + [ftmp8] "=&f"(ftmp[8]), [ftmp9] "=&f"(ftmp[9]), + [ftmp10] "=&f"(ftmp[10]), [ftmp11] "=&f"(ftmp[11]), + [ftmp12] "=&f"(ftmp[12]), [tmp0] "=&r"(tmp[0]), [src] "+&r"(src), + [pred] "+&r"(pred), [diff] "+&r"(diff) + : [pred_stride] "r"((mips_reg)pred_stride), + [src_stride] "r"((mips_reg)src_stride), + [diff_stride] "r"((mips_reg)(diff_stride * 2)) + : "memory"); + break; + case 32: + vpx_subtract_block_c(rows, cols, diff, diff_stride, src, src_stride, + pred, pred_stride); + break; + case 64: + vpx_subtract_block_c(rows, cols, diff, diff_stride, src, src_stride, + pred, pred_stride); + break; + default: + vpx_subtract_block_c(rows, cols, diff, diff_stride, src, src_stride, + pred, pred_stride); + break; + } + } else { + vpx_subtract_block_c(rows, cols, diff, diff_stride, src, src_stride, pred, + pred_stride); + } +} diff --git a/vpx_dsp/mips/subtract_msa.c b/vpx_dsp/mips/subtract_msa.c new file mode 100644 index 0000000..391a7eb --- /dev/null +++ b/vpx_dsp/mips/subtract_msa.c @@ -0,0 +1,264 @@ +/* + * Copyright (c) 2015 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "./vpx_dsp_rtcd.h" +#include "vpx_dsp/mips/macros_msa.h" + +static void sub_blk_4x4_msa(const uint8_t *src_ptr, int32_t src_stride, + const uint8_t *pred_ptr, int32_t pred_stride, + int16_t *diff_ptr, int32_t diff_stride) { + uint32_t src0, src1, src2, src3; + uint32_t pred0, pred1, pred2, pred3; + v16i8 src = { 0 }; + v16i8 pred = { 0 }; + v16u8 src_l0, src_l1; + v8i16 diff0, diff1; + + LW4(src_ptr, src_stride, src0, src1, src2, src3); + LW4(pred_ptr, pred_stride, pred0, pred1, pred2, pred3); + INSERT_W4_SB(src0, src1, src2, src3, src); + INSERT_W4_SB(pred0, pred1, pred2, pred3, pred); + ILVRL_B2_UB(src, pred, src_l0, src_l1); + HSUB_UB2_SH(src_l0, src_l1, diff0, diff1); + ST8x4_UB(diff0, diff1, diff_ptr, (2 * diff_stride)); +} + +static void sub_blk_8x8_msa(const uint8_t *src_ptr, int32_t src_stride, + const uint8_t *pred_ptr, int32_t pred_stride, + int16_t *diff_ptr, int32_t diff_stride) { + uint32_t loop_cnt; + uint64_t src0, src1, pred0, pred1; + v16i8 src = { 0 }; + v16i8 pred = { 0 }; + v16u8 src_l0, src_l1; + v8i16 diff0, diff1; + + for (loop_cnt = 4; loop_cnt--;) { + LD2(src_ptr, src_stride, src0, src1); + src_ptr += (2 * src_stride); + LD2(pred_ptr, pred_stride, pred0, pred1); + pred_ptr += (2 * pred_stride); + + INSERT_D2_SB(src0, src1, src); + INSERT_D2_SB(pred0, pred1, pred); + ILVRL_B2_UB(src, pred, src_l0, src_l1); + HSUB_UB2_SH(src_l0, src_l1, diff0, diff1); + ST_SH2(diff0, diff1, diff_ptr, diff_stride); + diff_ptr += (2 * diff_stride); + } +} + +static void sub_blk_16x16_msa(const uint8_t *src, int32_t src_stride, + const uint8_t *pred, int32_t pred_stride, + int16_t *diff, int32_t diff_stride) { + int8_t count; + v16i8 src0, src1, src2, src3, src4, src5, src6, src7; + v16i8 pred0, pred1, pred2, pred3, pred4, pred5, pred6, pred7; + v16u8 src_l0, src_l1; + v8i16 diff0, diff1; + + for (count = 2; count--;) { + LD_SB8(src, src_stride, src0, src1, src2, src3, src4, src5, src6, src7); + src += (8 * src_stride); + + LD_SB8(pred, pred_stride, pred0, pred1, pred2, pred3, pred4, pred5, pred6, + pred7); + pred += (8 * pred_stride); + + ILVRL_B2_UB(src0, pred0, src_l0, src_l1); + HSUB_UB2_SH(src_l0, src_l1, diff0, diff1); + ST_SH2(diff0, diff1, diff, 8); + diff += diff_stride; + + ILVRL_B2_UB(src1, pred1, src_l0, src_l1); + HSUB_UB2_SH(src_l0, src_l1, diff0, diff1); + ST_SH2(diff0, diff1, diff, 8); + diff += diff_stride; + + ILVRL_B2_UB(src2, pred2, src_l0, src_l1); + HSUB_UB2_SH(src_l0, src_l1, diff0, diff1); + ST_SH2(diff0, diff1, diff, 8); + diff += diff_stride; + + ILVRL_B2_UB(src3, pred3, src_l0, src_l1); + HSUB_UB2_SH(src_l0, src_l1, diff0, diff1); + ST_SH2(diff0, diff1, diff, 8); + diff += diff_stride; + + ILVRL_B2_UB(src4, pred4, src_l0, src_l1); + HSUB_UB2_SH(src_l0, src_l1, diff0, diff1); + ST_SH2(diff0, diff1, diff, 8); + diff += diff_stride; + + ILVRL_B2_UB(src5, pred5, src_l0, src_l1); + HSUB_UB2_SH(src_l0, src_l1, diff0, diff1); + ST_SH2(diff0, diff1, diff, 8); + diff += diff_stride; + + ILVRL_B2_UB(src6, pred6, src_l0, src_l1); + HSUB_UB2_SH(src_l0, src_l1, diff0, diff1); + ST_SH2(diff0, diff1, diff, 8); + diff += diff_stride; + + ILVRL_B2_UB(src7, pred7, src_l0, src_l1); + HSUB_UB2_SH(src_l0, src_l1, diff0, diff1); + ST_SH2(diff0, diff1, diff, 8); + diff += diff_stride; + } +} + +static void sub_blk_32x32_msa(const uint8_t *src, int32_t src_stride, + const uint8_t *pred, int32_t pred_stride, + int16_t *diff, int32_t diff_stride) { + uint32_t loop_cnt; + v16i8 src0, src1, src2, src3, src4, src5, src6, src7; + v16i8 pred0, pred1, pred2, pred3, pred4, pred5, pred6, pred7; + v16u8 src_l0, src_l1; + v8i16 diff0, diff1; + + for (loop_cnt = 8; loop_cnt--;) { + LD_SB2(src, 16, src0, src1); + src += src_stride; + LD_SB2(src, 16, src2, src3); + src += src_stride; + LD_SB2(src, 16, src4, src5); + src += src_stride; + LD_SB2(src, 16, src6, src7); + src += src_stride; + + LD_SB2(pred, 16, pred0, pred1); + pred += pred_stride; + LD_SB2(pred, 16, pred2, pred3); + pred += pred_stride; + LD_SB2(pred, 16, pred4, pred5); + pred += pred_stride; + LD_SB2(pred, 16, pred6, pred7); + pred += pred_stride; + + ILVRL_B2_UB(src0, pred0, src_l0, src_l1); + HSUB_UB2_SH(src_l0, src_l1, diff0, diff1); + ST_SH2(diff0, diff1, diff, 8); + ILVRL_B2_UB(src1, pred1, src_l0, src_l1); + HSUB_UB2_SH(src_l0, src_l1, diff0, diff1); + ST_SH2(diff0, diff1, diff + 16, 8); + diff += diff_stride; + + ILVRL_B2_UB(src2, pred2, src_l0, src_l1); + HSUB_UB2_SH(src_l0, src_l1, diff0, diff1); + ST_SH2(diff0, diff1, diff, 8); + ILVRL_B2_UB(src3, pred3, src_l0, src_l1); + HSUB_UB2_SH(src_l0, src_l1, diff0, diff1); + ST_SH2(diff0, diff1, diff + 16, 8); + diff += diff_stride; + + ILVRL_B2_UB(src4, pred4, src_l0, src_l1); + HSUB_UB2_SH(src_l0, src_l1, diff0, diff1); + ST_SH2(diff0, diff1, diff, 8); + ILVRL_B2_UB(src5, pred5, src_l0, src_l1); + HSUB_UB2_SH(src_l0, src_l1, diff0, diff1); + ST_SH2(diff0, diff1, diff + 16, 8); + diff += diff_stride; + + ILVRL_B2_UB(src6, pred6, src_l0, src_l1); + HSUB_UB2_SH(src_l0, src_l1, diff0, diff1); + ST_SH2(diff0, diff1, diff, 8); + ILVRL_B2_UB(src7, pred7, src_l0, src_l1); + HSUB_UB2_SH(src_l0, src_l1, diff0, diff1); + ST_SH2(diff0, diff1, diff + 16, 8); + diff += diff_stride; + } +} + +static void sub_blk_64x64_msa(const uint8_t *src, int32_t src_stride, + const uint8_t *pred, int32_t pred_stride, + int16_t *diff, int32_t diff_stride) { + uint32_t loop_cnt; + v16i8 src0, src1, src2, src3, src4, src5, src6, src7; + v16i8 pred0, pred1, pred2, pred3, pred4, pred5, pred6, pred7; + v16u8 src_l0, src_l1; + v8i16 diff0, diff1; + + for (loop_cnt = 32; loop_cnt--;) { + LD_SB4(src, 16, src0, src1, src2, src3); + src += src_stride; + LD_SB4(src, 16, src4, src5, src6, src7); + src += src_stride; + + LD_SB4(pred, 16, pred0, pred1, pred2, pred3); + pred += pred_stride; + LD_SB4(pred, 16, pred4, pred5, pred6, pred7); + pred += pred_stride; + + ILVRL_B2_UB(src0, pred0, src_l0, src_l1); + HSUB_UB2_SH(src_l0, src_l1, diff0, diff1); + ST_SH2(diff0, diff1, diff, 8); + ILVRL_B2_UB(src1, pred1, src_l0, src_l1); + HSUB_UB2_SH(src_l0, src_l1, diff0, diff1); + ST_SH2(diff0, diff1, diff + 16, 8); + ILVRL_B2_UB(src2, pred2, src_l0, src_l1); + HSUB_UB2_SH(src_l0, src_l1, diff0, diff1); + ST_SH2(diff0, diff1, diff + 32, 8); + ILVRL_B2_UB(src3, pred3, src_l0, src_l1); + HSUB_UB2_SH(src_l0, src_l1, diff0, diff1); + ST_SH2(diff0, diff1, diff + 48, 8); + diff += diff_stride; + + ILVRL_B2_UB(src4, pred4, src_l0, src_l1); + HSUB_UB2_SH(src_l0, src_l1, diff0, diff1); + ST_SH2(diff0, diff1, diff, 8); + ILVRL_B2_UB(src5, pred5, src_l0, src_l1); + HSUB_UB2_SH(src_l0, src_l1, diff0, diff1); + ST_SH2(diff0, diff1, diff + 16, 8); + ILVRL_B2_UB(src6, pred6, src_l0, src_l1); + HSUB_UB2_SH(src_l0, src_l1, diff0, diff1); + ST_SH2(diff0, diff1, diff + 32, 8); + ILVRL_B2_UB(src7, pred7, src_l0, src_l1); + HSUB_UB2_SH(src_l0, src_l1, diff0, diff1); + ST_SH2(diff0, diff1, diff + 48, 8); + diff += diff_stride; + } +} + +void vpx_subtract_block_msa(int32_t rows, int32_t cols, int16_t *diff_ptr, + ptrdiff_t diff_stride, const uint8_t *src_ptr, + ptrdiff_t src_stride, const uint8_t *pred_ptr, + ptrdiff_t pred_stride) { + if (rows == cols) { + switch (rows) { + case 4: + sub_blk_4x4_msa(src_ptr, src_stride, pred_ptr, pred_stride, diff_ptr, + diff_stride); + break; + case 8: + sub_blk_8x8_msa(src_ptr, src_stride, pred_ptr, pred_stride, diff_ptr, + diff_stride); + break; + case 16: + sub_blk_16x16_msa(src_ptr, src_stride, pred_ptr, pred_stride, diff_ptr, + diff_stride); + break; + case 32: + sub_blk_32x32_msa(src_ptr, src_stride, pred_ptr, pred_stride, diff_ptr, + diff_stride); + break; + case 64: + sub_blk_64x64_msa(src_ptr, src_stride, pred_ptr, pred_stride, diff_ptr, + diff_stride); + break; + default: + vpx_subtract_block_c(rows, cols, diff_ptr, diff_stride, src_ptr, + src_stride, pred_ptr, pred_stride); + break; + } + } else { + vpx_subtract_block_c(rows, cols, diff_ptr, diff_stride, src_ptr, src_stride, + pred_ptr, pred_stride); + } +} diff --git a/vpx_dsp/mips/sum_squares_msa.c b/vpx_dsp/mips/sum_squares_msa.c new file mode 100644 index 0000000..d4563dc --- /dev/null +++ b/vpx_dsp/mips/sum_squares_msa.c @@ -0,0 +1,129 @@ +/* + * Copyright (c) 2017 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "./vpx_dsp_rtcd.h" +#include "./macros_msa.h" + +uint64_t vpx_sum_squares_2d_i16_msa(const int16_t *src, int src_stride, + int size) { + int row, col; + uint64_t ss_res = 0; + v4i32 mul0, mul1; + v2i64 res0 = { 0 }; + + if (4 == size) { + uint64_t src0, src1, src2, src3; + v8i16 diff0 = { 0 }; + v8i16 diff1 = { 0 }; + + LD4(src, src_stride, src0, src1, src2, src3); + INSERT_D2_SH(src0, src1, diff0); + INSERT_D2_SH(src2, src3, diff1); + DOTP_SH2_SW(diff0, diff1, diff0, diff1, mul0, mul1); + mul0 += mul1; + res0 = __msa_hadd_s_d(mul0, mul0); + res0 += __msa_splati_d(res0, 1); + ss_res = (uint64_t)__msa_copy_s_d(res0, 0); + } else if (8 == size) { + v8i16 src0, src1, src2, src3, src4, src5, src6, src7; + + LD_SH8(src, src_stride, src0, src1, src2, src3, src4, src5, src6, src7); + DOTP_SH2_SW(src0, src1, src0, src1, mul0, mul1); + DPADD_SH2_SW(src2, src3, src2, src3, mul0, mul1); + DPADD_SH2_SW(src4, src5, src4, src5, mul0, mul1); + DPADD_SH2_SW(src6, src7, src6, src7, mul0, mul1); + mul0 += mul1; + res0 = __msa_hadd_s_d(mul0, mul0); + res0 += __msa_splati_d(res0, 1); + ss_res = (uint64_t)__msa_copy_s_d(res0, 0); + } else if (16 == size) { + v8i16 src0, src1, src2, src3, src4, src5, src6, src7; + + LD_SH8(src, src_stride, src0, src1, src2, src3, src4, src5, src6, src7); + DOTP_SH2_SW(src0, src1, src0, src1, mul0, mul1); + DPADD_SH2_SW(src2, src3, src2, src3, mul0, mul1); + DPADD_SH2_SW(src4, src5, src4, src5, mul0, mul1); + DPADD_SH2_SW(src6, src7, src6, src7, mul0, mul1); + LD_SH8(src + 8, src_stride, src0, src1, src2, src3, src4, src5, src6, src7); + src += 8 * src_stride; + DPADD_SH2_SW(src0, src1, src0, src1, mul0, mul1); + DPADD_SH2_SW(src2, src3, src2, src3, mul0, mul1); + DPADD_SH2_SW(src4, src5, src4, src5, mul0, mul1); + DPADD_SH2_SW(src6, src7, src6, src7, mul0, mul1); + LD_SH8(src, src_stride, src0, src1, src2, src3, src4, src5, src6, src7); + DPADD_SH2_SW(src0, src1, src0, src1, mul0, mul1); + DPADD_SH2_SW(src2, src3, src2, src3, mul0, mul1); + DPADD_SH2_SW(src4, src5, src4, src5, mul0, mul1); + DPADD_SH2_SW(src6, src7, src6, src7, mul0, mul1); + LD_SH8(src + 8, src_stride, src0, src1, src2, src3, src4, src5, src6, src7); + DPADD_SH2_SW(src0, src1, src0, src1, mul0, mul1); + DPADD_SH2_SW(src2, src3, src2, src3, mul0, mul1); + DPADD_SH2_SW(src4, src5, src4, src5, mul0, mul1); + DPADD_SH2_SW(src6, src7, src6, src7, mul0, mul1); + mul0 += mul1; + res0 += __msa_hadd_s_d(mul0, mul0); + + res0 += __msa_splati_d(res0, 1); + ss_res = (uint64_t)__msa_copy_s_d(res0, 0); + } else if (0 == (size % 16)) { + v8i16 src0, src1, src2, src3, src4, src5, src6, src7; + + for (row = 0; row < (size >> 4); row++) { + for (col = 0; col < size; col += 16) { + const int16_t *src_ptr = src + col; + LD_SH8(src_ptr, src_stride, src0, src1, src2, src3, src4, src5, src6, + src7); + DOTP_SH2_SW(src0, src1, src0, src1, mul0, mul1); + DPADD_SH2_SW(src2, src3, src2, src3, mul0, mul1); + DPADD_SH2_SW(src4, src5, src4, src5, mul0, mul1); + DPADD_SH2_SW(src6, src7, src6, src7, mul0, mul1); + LD_SH8(src_ptr + 8, src_stride, src0, src1, src2, src3, src4, src5, + src6, src7); + src_ptr += 8 * src_stride; + DPADD_SH2_SW(src0, src1, src0, src1, mul0, mul1); + DPADD_SH2_SW(src2, src3, src2, src3, mul0, mul1); + DPADD_SH2_SW(src4, src5, src4, src5, mul0, mul1); + DPADD_SH2_SW(src6, src7, src6, src7, mul0, mul1); + LD_SH8(src_ptr, src_stride, src0, src1, src2, src3, src4, src5, src6, + src7); + DPADD_SH2_SW(src0, src1, src0, src1, mul0, mul1); + DPADD_SH2_SW(src2, src3, src2, src3, mul0, mul1); + DPADD_SH2_SW(src4, src5, src4, src5, mul0, mul1); + DPADD_SH2_SW(src6, src7, src6, src7, mul0, mul1); + LD_SH8(src_ptr + 8, src_stride, src0, src1, src2, src3, src4, src5, + src6, src7); + DPADD_SH2_SW(src0, src1, src0, src1, mul0, mul1); + DPADD_SH2_SW(src2, src3, src2, src3, mul0, mul1); + DPADD_SH2_SW(src4, src5, src4, src5, mul0, mul1); + DPADD_SH2_SW(src6, src7, src6, src7, mul0, mul1); + mul0 += mul1; + res0 += __msa_hadd_s_d(mul0, mul0); + } + + src += 16 * src_stride; + } + + res0 += __msa_splati_d(res0, 1); + ss_res = (uint64_t)__msa_copy_s_d(res0, 0); + } else { + int16_t val; + + for (row = 0; row < size; row++) { + for (col = 0; col < size; col++) { + val = src[col]; + ss_res += val * val; + } + + src += src_stride; + } + } + + return ss_res; +} diff --git a/vpx_dsp/mips/txfm_macros_msa.h b/vpx_dsp/mips/txfm_macros_msa.h new file mode 100644 index 0000000..f077fa4 --- /dev/null +++ b/vpx_dsp/mips/txfm_macros_msa.h @@ -0,0 +1,101 @@ +/* + * Copyright (c) 2015 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VPX_DSP_MIPS_TXFM_MACROS_MIPS_MSA_H_ +#define VPX_DSP_MIPS_TXFM_MACROS_MIPS_MSA_H_ + +#include "vpx_dsp/mips/macros_msa.h" + +#define DOTP_CONST_PAIR(reg0, reg1, cnst0, cnst1, out0, out1) \ + { \ + v4i32 s0_m, s1_m, s2_m, s3_m, s4_m, s5_m; \ + v8i16 k0_m, k1_m, k2_m, zero = { 0 }; \ + \ + k0_m = __msa_fill_h(cnst0); \ + k1_m = __msa_fill_h(cnst1); \ + k2_m = __msa_ilvev_h((v8i16)k1_m, k0_m); \ + k0_m = __msa_ilvev_h((v8i16)zero, k0_m); \ + k1_m = __msa_ilvev_h(k1_m, (v8i16)zero); \ + \ + ILVRL_H2_SW(reg1, reg0, s5_m, s4_m); \ + ILVRL_H2_SW(reg0, reg1, s3_m, s2_m); \ + DOTP_SH2_SW(s5_m, s4_m, k0_m, k0_m, s1_m, s0_m); \ + s1_m = __msa_dpsub_s_w(s1_m, (v8i16)s5_m, k1_m); \ + s0_m = __msa_dpsub_s_w(s0_m, (v8i16)s4_m, k1_m); \ + SRARI_W2_SW(s1_m, s0_m, DCT_CONST_BITS); \ + out0 = __msa_pckev_h((v8i16)s0_m, (v8i16)s1_m); \ + \ + DOTP_SH2_SW(s3_m, s2_m, k2_m, k2_m, s1_m, s0_m); \ + SRARI_W2_SW(s1_m, s0_m, DCT_CONST_BITS); \ + out1 = __msa_pckev_h((v8i16)s0_m, (v8i16)s1_m); \ + } + +#define DOT_ADD_SUB_SRARI_PCK(in0, in1, in2, in3, in4, in5, in6, in7, dst0, \ + dst1, dst2, dst3) \ + { \ + v4i32 tp0_m, tp1_m, tp2_m, tp3_m, tp4_m; \ + v4i32 tp5_m, tp6_m, tp7_m, tp8_m, tp9_m; \ + \ + DOTP_SH4_SW(in0, in1, in0, in1, in4, in4, in5, in5, tp0_m, tp2_m, tp3_m, \ + tp4_m); \ + DOTP_SH4_SW(in2, in3, in2, in3, in6, in6, in7, in7, tp5_m, tp6_m, tp7_m, \ + tp8_m); \ + BUTTERFLY_4(tp0_m, tp3_m, tp7_m, tp5_m, tp1_m, tp9_m, tp7_m, tp5_m); \ + BUTTERFLY_4(tp2_m, tp4_m, tp8_m, tp6_m, tp3_m, tp0_m, tp4_m, tp2_m); \ + SRARI_W4_SW(tp1_m, tp9_m, tp7_m, tp5_m, DCT_CONST_BITS); \ + SRARI_W4_SW(tp3_m, tp0_m, tp4_m, tp2_m, DCT_CONST_BITS); \ + PCKEV_H4_SH(tp1_m, tp3_m, tp9_m, tp0_m, tp7_m, tp4_m, tp5_m, tp2_m, dst0, \ + dst1, dst2, dst3); \ + } + +#define DOT_SHIFT_RIGHT_PCK_H(in0, in1, in2) \ + ({ \ + v8i16 dst_m; \ + v4i32 tp0_m, tp1_m; \ + \ + DOTP_SH2_SW(in0, in1, in2, in2, tp1_m, tp0_m); \ + SRARI_W2_SW(tp1_m, tp0_m, DCT_CONST_BITS); \ + dst_m = __msa_pckev_h((v8i16)tp1_m, (v8i16)tp0_m); \ + \ + dst_m; \ + }) + +#define MADD_SHORT(m0, m1, c0, c1, res0, res1) \ + { \ + v4i32 madd0_m, madd1_m, madd2_m, madd3_m; \ + v8i16 madd_s0_m, madd_s1_m; \ + \ + ILVRL_H2_SH(m1, m0, madd_s0_m, madd_s1_m); \ + DOTP_SH4_SW(madd_s0_m, madd_s1_m, madd_s0_m, madd_s1_m, c0, c0, c1, c1, \ + madd0_m, madd1_m, madd2_m, madd3_m); \ + SRARI_W4_SW(madd0_m, madd1_m, madd2_m, madd3_m, DCT_CONST_BITS); \ + PCKEV_H2_SH(madd1_m, madd0_m, madd3_m, madd2_m, res0, res1); \ + } + +#define MADD_BF(inp0, inp1, inp2, inp3, cst0, cst1, cst2, cst3, out0, out1, \ + out2, out3) \ + { \ + v8i16 madd_s0_m, madd_s1_m, madd_s2_m, madd_s3_m; \ + v4i32 tmp0_m, tmp1_m, tmp2_m, tmp3_m, m4_m, m5_m; \ + \ + ILVRL_H2_SH(inp1, inp0, madd_s0_m, madd_s1_m); \ + ILVRL_H2_SH(inp3, inp2, madd_s2_m, madd_s3_m); \ + DOTP_SH4_SW(madd_s0_m, madd_s1_m, madd_s2_m, madd_s3_m, cst0, cst0, cst2, \ + cst2, tmp0_m, tmp1_m, tmp2_m, tmp3_m); \ + BUTTERFLY_4(tmp0_m, tmp1_m, tmp3_m, tmp2_m, m4_m, m5_m, tmp3_m, tmp2_m); \ + SRARI_W4_SW(m4_m, m5_m, tmp2_m, tmp3_m, DCT_CONST_BITS); \ + PCKEV_H2_SH(m5_m, m4_m, tmp3_m, tmp2_m, out0, out1); \ + DOTP_SH4_SW(madd_s0_m, madd_s1_m, madd_s2_m, madd_s3_m, cst1, cst1, cst3, \ + cst3, tmp0_m, tmp1_m, tmp2_m, tmp3_m); \ + BUTTERFLY_4(tmp0_m, tmp1_m, tmp3_m, tmp2_m, m4_m, m5_m, tmp3_m, tmp2_m); \ + SRARI_W4_SW(m4_m, m5_m, tmp2_m, tmp3_m, DCT_CONST_BITS); \ + PCKEV_H2_SH(m5_m, m4_m, tmp3_m, tmp2_m, out2, out3); \ + } +#endif // VPX_DSP_MIPS_TXFM_MACROS_MIPS_MSA_H_ diff --git a/vpx_dsp/mips/variance_mmi.c b/vpx_dsp/mips/variance_mmi.c new file mode 100644 index 0000000..4af60d3 --- /dev/null +++ b/vpx_dsp/mips/variance_mmi.c @@ -0,0 +1,1280 @@ +/* + * Copyright (c) 2017 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "./vpx_dsp_rtcd.h" +#include "vpx_dsp/variance.h" +#include "vpx_ports/mem.h" +#include "vpx/vpx_integer.h" +#include "vpx_ports/asmdefs_mmi.h" + +static const uint8_t bilinear_filters[8][2] = { + { 128, 0 }, { 112, 16 }, { 96, 32 }, { 80, 48 }, + { 64, 64 }, { 48, 80 }, { 32, 96 }, { 16, 112 }, +}; + +/* Use VARIANCE_SSE_SUM_8_FOR_W64 in vpx_variance64x64,vpx_variance64x32, + vpx_variance32x64. VARIANCE_SSE_SUM_8 will lead to sum overflow. */ +#define VARIANCE_SSE_SUM_8_FOR_W64 \ + /* sse */ \ + "pasubub %[ftmp3], %[ftmp1], %[ftmp2] \n\t" \ + "punpcklbh %[ftmp4], %[ftmp3], %[ftmp0] \n\t" \ + "punpckhbh %[ftmp5], %[ftmp3], %[ftmp0] \n\t" \ + "pmaddhw %[ftmp6], %[ftmp4], %[ftmp4] \n\t" \ + "pmaddhw %[ftmp7], %[ftmp5], %[ftmp5] \n\t" \ + "paddw %[ftmp10], %[ftmp10], %[ftmp6] \n\t" \ + "paddw %[ftmp10], %[ftmp10], %[ftmp7] \n\t" \ + \ + /* sum */ \ + "punpcklbh %[ftmp3], %[ftmp1], %[ftmp0] \n\t" \ + "punpckhbh %[ftmp4], %[ftmp1], %[ftmp0] \n\t" \ + "punpcklbh %[ftmp5], %[ftmp2], %[ftmp0] \n\t" \ + "punpckhbh %[ftmp6], %[ftmp2], %[ftmp0] \n\t" \ + "punpcklhw %[ftmp1], %[ftmp3], %[ftmp0] \n\t" \ + "punpckhhw %[ftmp2], %[ftmp3], %[ftmp0] \n\t" \ + "punpcklhw %[ftmp7], %[ftmp5], %[ftmp0] \n\t" \ + "punpckhhw %[ftmp8], %[ftmp5], %[ftmp0] \n\t" \ + "psubw %[ftmp3], %[ftmp1], %[ftmp7] \n\t" \ + "psubw %[ftmp5], %[ftmp2], %[ftmp8] \n\t" \ + "punpcklhw %[ftmp1], %[ftmp4], %[ftmp0] \n\t" \ + "punpckhhw %[ftmp2], %[ftmp4], %[ftmp0] \n\t" \ + "punpcklhw %[ftmp7], %[ftmp6], %[ftmp0] \n\t" \ + "punpckhhw %[ftmp8], %[ftmp6], %[ftmp0] \n\t" \ + "psubw %[ftmp4], %[ftmp1], %[ftmp7] \n\t" \ + "psubw %[ftmp6], %[ftmp2], %[ftmp8] \n\t" \ + "paddw %[ftmp9], %[ftmp9], %[ftmp3] \n\t" \ + "paddw %[ftmp9], %[ftmp9], %[ftmp4] \n\t" \ + "paddw %[ftmp9], %[ftmp9], %[ftmp5] \n\t" \ + "paddw %[ftmp9], %[ftmp9], %[ftmp6] \n\t" + +#define VARIANCE_SSE_SUM_4 \ + /* sse */ \ + "pasubub %[ftmp3], %[ftmp1], %[ftmp2] \n\t" \ + "punpcklbh %[ftmp4], %[ftmp3], %[ftmp0] \n\t" \ + "pmaddhw %[ftmp5], %[ftmp4], %[ftmp4] \n\t" \ + "paddw %[ftmp6], %[ftmp6], %[ftmp5] \n\t" \ + \ + /* sum */ \ + "punpcklbh %[ftmp3], %[ftmp1], %[ftmp0] \n\t" \ + "punpcklbh %[ftmp4], %[ftmp2], %[ftmp0] \n\t" \ + "paddh %[ftmp7], %[ftmp7], %[ftmp3] \n\t" \ + "paddh %[ftmp8], %[ftmp8], %[ftmp4] \n\t" + +#define VARIANCE_SSE_SUM_8 \ + /* sse */ \ + "pasubub %[ftmp3], %[ftmp1], %[ftmp2] \n\t" \ + "punpcklbh %[ftmp4], %[ftmp3], %[ftmp0] \n\t" \ + "punpckhbh %[ftmp5], %[ftmp3], %[ftmp0] \n\t" \ + "pmaddhw %[ftmp6], %[ftmp4], %[ftmp4] \n\t" \ + "pmaddhw %[ftmp7], %[ftmp5], %[ftmp5] \n\t" \ + "paddw %[ftmp8], %[ftmp8], %[ftmp6] \n\t" \ + "paddw %[ftmp8], %[ftmp8], %[ftmp7] \n\t" \ + \ + /* sum */ \ + "punpcklbh %[ftmp3], %[ftmp1], %[ftmp0] \n\t" \ + "punpckhbh %[ftmp4], %[ftmp1], %[ftmp0] \n\t" \ + "punpcklbh %[ftmp5], %[ftmp2], %[ftmp0] \n\t" \ + "punpckhbh %[ftmp6], %[ftmp2], %[ftmp0] \n\t" \ + "paddh %[ftmp10], %[ftmp10], %[ftmp3] \n\t" \ + "paddh %[ftmp10], %[ftmp10], %[ftmp4] \n\t" \ + "paddh %[ftmp12], %[ftmp12], %[ftmp5] \n\t" \ + "paddh %[ftmp12], %[ftmp12], %[ftmp6] \n\t" + +#define VARIANCE_SSE_8 \ + "gsldlc1 %[ftmp1], 0x07(%[a]) \n\t" \ + "gsldrc1 %[ftmp1], 0x00(%[a]) \n\t" \ + "gsldlc1 %[ftmp2], 0x07(%[b]) \n\t" \ + "gsldrc1 %[ftmp2], 0x00(%[b]) \n\t" \ + "pasubub %[ftmp3], %[ftmp1], %[ftmp2] \n\t" \ + "punpcklbh %[ftmp4], %[ftmp3], %[ftmp0] \n\t" \ + "punpckhbh %[ftmp5], %[ftmp3], %[ftmp0] \n\t" \ + "pmaddhw %[ftmp6], %[ftmp4], %[ftmp4] \n\t" \ + "pmaddhw %[ftmp7], %[ftmp5], %[ftmp5] \n\t" \ + "paddw %[ftmp8], %[ftmp8], %[ftmp6] \n\t" \ + "paddw %[ftmp8], %[ftmp8], %[ftmp7] \n\t" + +#define VARIANCE_SSE_16 \ + VARIANCE_SSE_8 \ + "gsldlc1 %[ftmp1], 0x0f(%[a]) \n\t" \ + "gsldrc1 %[ftmp1], 0x08(%[a]) \n\t" \ + "gsldlc1 %[ftmp2], 0x0f(%[b]) \n\t" \ + "gsldrc1 %[ftmp2], 0x08(%[b]) \n\t" \ + "pasubub %[ftmp3], %[ftmp1], %[ftmp2] \n\t" \ + "punpcklbh %[ftmp4], %[ftmp3], %[ftmp0] \n\t" \ + "punpckhbh %[ftmp5], %[ftmp3], %[ftmp0] \n\t" \ + "pmaddhw %[ftmp6], %[ftmp4], %[ftmp4] \n\t" \ + "pmaddhw %[ftmp7], %[ftmp5], %[ftmp5] \n\t" \ + "paddw %[ftmp8], %[ftmp8], %[ftmp6] \n\t" \ + "paddw %[ftmp8], %[ftmp8], %[ftmp7] \n\t" + +#define VAR_FILTER_BLOCK2D_BIL_FIRST_PASS_4_A \ + /* calculate fdata3[0]~fdata3[3], store at ftmp2*/ \ + "gsldlc1 %[ftmp1], 0x07(%[a]) \n\t" \ + "gsldrc1 %[ftmp1], 0x00(%[a]) \n\t" \ + "punpcklbh %[ftmp2], %[ftmp1], %[ftmp0] \n\t" \ + "gsldlc1 %[ftmp1], 0x08(%[a]) \n\t" \ + "gsldrc1 %[ftmp1], 0x01(%[a]) \n\t" \ + "punpcklbh %[ftmp3], %[ftmp1], %[ftmp0] \n\t" \ + "pmullh %[ftmp2], %[ftmp2], %[filter_x0] \n\t" \ + "paddh %[ftmp2], %[ftmp2], %[ff_ph_40] \n\t" \ + "pmullh %[ftmp3], %[ftmp3], %[filter_x1] \n\t" \ + "paddh %[ftmp2], %[ftmp2], %[ftmp3] \n\t" \ + "psrlh %[ftmp2], %[ftmp2], %[ftmp6] \n\t" + +#define VAR_FILTER_BLOCK2D_BIL_FIRST_PASS_4_B \ + /* calculate fdata3[0]~fdata3[3], store at ftmp4*/ \ + "gsldlc1 %[ftmp1], 0x07(%[a]) \n\t" \ + "gsldrc1 %[ftmp1], 0x00(%[a]) \n\t" \ + "punpcklbh %[ftmp4], %[ftmp1], %[ftmp0] \n\t" \ + "gsldlc1 %[ftmp1], 0x08(%[a]) \n\t" \ + "gsldrc1 %[ftmp1], 0x01(%[a]) \n\t" \ + "punpcklbh %[ftmp5], %[ftmp1], %[ftmp0] \n\t" \ + "pmullh %[ftmp4], %[ftmp4], %[filter_x0] \n\t" \ + "paddh %[ftmp4], %[ftmp4], %[ff_ph_40] \n\t" \ + "pmullh %[ftmp5], %[ftmp5], %[filter_x1] \n\t" \ + "paddh %[ftmp4], %[ftmp4], %[ftmp5] \n\t" \ + "psrlh %[ftmp4], %[ftmp4], %[ftmp6] \n\t" + +#define VAR_FILTER_BLOCK2D_BIL_SECOND_PASS_4_A \ + /* calculate: temp2[0] ~ temp2[3] */ \ + "pmullh %[ftmp2], %[ftmp2], %[filter_y0] \n\t" \ + "paddh %[ftmp2], %[ftmp2], %[ff_ph_40] \n\t" \ + "pmullh %[ftmp1], %[ftmp4], %[filter_y1] \n\t" \ + "paddh %[ftmp2], %[ftmp2], %[ftmp1] \n\t" \ + "psrlh %[ftmp2], %[ftmp2], %[ftmp6] \n\t" \ + \ + /* store: temp2[0] ~ temp2[3] */ \ + "and %[ftmp2], %[ftmp2], %[mask] \n\t" \ + "packushb %[ftmp2], %[ftmp2], %[ftmp0] \n\t" \ + "gssdrc1 %[ftmp2], 0x00(%[temp2_ptr]) \n\t" + +#define VAR_FILTER_BLOCK2D_BIL_SECOND_PASS_4_B \ + /* calculate: temp2[0] ~ temp2[3] */ \ + "pmullh %[ftmp4], %[ftmp4], %[filter_y0] \n\t" \ + "paddh %[ftmp4], %[ftmp4], %[ff_ph_40] \n\t" \ + "pmullh %[ftmp1], %[ftmp2], %[filter_y1] \n\t" \ + "paddh %[ftmp4], %[ftmp4], %[ftmp1] \n\t" \ + "psrlh %[ftmp4], %[ftmp4], %[ftmp6] \n\t" \ + \ + /* store: temp2[0] ~ temp2[3] */ \ + "and %[ftmp4], %[ftmp4], %[mask] \n\t" \ + "packushb %[ftmp4], %[ftmp4], %[ftmp0] \n\t" \ + "gssdrc1 %[ftmp4], 0x00(%[temp2_ptr]) \n\t" + +#define VAR_FILTER_BLOCK2D_BIL_FIRST_PASS_8_A \ + /* calculate fdata3[0]~fdata3[7], store at ftmp2 and ftmp3*/ \ + "gsldlc1 %[ftmp1], 0x07(%[a]) \n\t" \ + "gsldrc1 %[ftmp1], 0x00(%[a]) \n\t" \ + "punpcklbh %[ftmp2], %[ftmp1], %[ftmp0] \n\t" \ + "punpckhbh %[ftmp3], %[ftmp1], %[ftmp0] \n\t" \ + "gsldlc1 %[ftmp1], 0x08(%[a]) \n\t" \ + "gsldrc1 %[ftmp1], 0x01(%[a]) \n\t" \ + "punpcklbh %[ftmp4], %[ftmp1], %[ftmp0] \n\t" \ + "punpckhbh %[ftmp5], %[ftmp1], %[ftmp0] \n\t" \ + "pmullh %[ftmp2], %[ftmp2], %[filter_x0] \n\t" \ + "pmullh %[ftmp3], %[ftmp3], %[filter_x0] \n\t" \ + "paddh %[ftmp2], %[ftmp2], %[ff_ph_40] \n\t" \ + "paddh %[ftmp3], %[ftmp3], %[ff_ph_40] \n\t" \ + "pmullh %[ftmp4], %[ftmp4], %[filter_x1] \n\t" \ + "pmullh %[ftmp5], %[ftmp5], %[filter_x1] \n\t" \ + "paddh %[ftmp2], %[ftmp2], %[ftmp4] \n\t" \ + "paddh %[ftmp3], %[ftmp3], %[ftmp5] \n\t" \ + "psrlh %[ftmp2], %[ftmp2], %[ftmp14] \n\t" \ + "psrlh %[ftmp3], %[ftmp3], %[ftmp14] \n\t" + +#define VAR_FILTER_BLOCK2D_BIL_FIRST_PASS_8_B \ + /* calculate fdata3[0]~fdata3[7], store at ftmp8 and ftmp9*/ \ + "gsldlc1 %[ftmp1], 0x07(%[a]) \n\t" \ + "gsldrc1 %[ftmp1], 0x00(%[a]) \n\t" \ + "punpcklbh %[ftmp8], %[ftmp1], %[ftmp0] \n\t" \ + "punpckhbh %[ftmp9], %[ftmp1], %[ftmp0] \n\t" \ + "gsldlc1 %[ftmp1], 0x08(%[a]) \n\t" \ + "gsldrc1 %[ftmp1], 0x01(%[a]) \n\t" \ + "punpcklbh %[ftmp10], %[ftmp1], %[ftmp0] \n\t" \ + "punpckhbh %[ftmp11], %[ftmp1], %[ftmp0] \n\t" \ + "pmullh %[ftmp8], %[ftmp8], %[filter_x0] \n\t" \ + "pmullh %[ftmp9], %[ftmp9], %[filter_x0] \n\t" \ + "paddh %[ftmp8], %[ftmp8], %[ff_ph_40] \n\t" \ + "paddh %[ftmp9], %[ftmp9], %[ff_ph_40] \n\t" \ + "pmullh %[ftmp10], %[ftmp10], %[filter_x1] \n\t" \ + "pmullh %[ftmp11], %[ftmp11], %[filter_x1] \n\t" \ + "paddh %[ftmp8], %[ftmp8], %[ftmp10] \n\t" \ + "paddh %[ftmp9], %[ftmp9], %[ftmp11] \n\t" \ + "psrlh %[ftmp8], %[ftmp8], %[ftmp14] \n\t" \ + "psrlh %[ftmp9], %[ftmp9], %[ftmp14] \n\t" + +#define VAR_FILTER_BLOCK2D_BIL_SECOND_PASS_8_A \ + /* calculate: temp2[0] ~ temp2[3] */ \ + "pmullh %[ftmp2], %[ftmp2], %[filter_y0] \n\t" \ + "paddh %[ftmp2], %[ftmp2], %[ff_ph_40] \n\t" \ + "pmullh %[ftmp1], %[ftmp8], %[filter_y1] \n\t" \ + "paddh %[ftmp2], %[ftmp2], %[ftmp1] \n\t" \ + "psrlh %[ftmp2], %[ftmp2], %[ftmp14] \n\t" \ + \ + /* calculate: temp2[4] ~ temp2[7] */ \ + "pmullh %[ftmp3], %[ftmp3], %[filter_y0] \n\t" \ + "paddh %[ftmp3], %[ftmp3], %[ff_ph_40] \n\t" \ + "pmullh %[ftmp1], %[ftmp9], %[filter_y1] \n\t" \ + "paddh %[ftmp3], %[ftmp3], %[ftmp1] \n\t" \ + "psrlh %[ftmp3], %[ftmp3], %[ftmp14] \n\t" \ + \ + /* store: temp2[0] ~ temp2[7] */ \ + "and %[ftmp2], %[ftmp2], %[mask] \n\t" \ + "and %[ftmp3], %[ftmp3], %[mask] \n\t" \ + "packushb %[ftmp2], %[ftmp2], %[ftmp3] \n\t" \ + "gssdlc1 %[ftmp2], 0x07(%[temp2_ptr]) \n\t" \ + "gssdrc1 %[ftmp2], 0x00(%[temp2_ptr]) \n\t" + +#define VAR_FILTER_BLOCK2D_BIL_SECOND_PASS_8_B \ + /* calculate: temp2[0] ~ temp2[3] */ \ + "pmullh %[ftmp8], %[ftmp8], %[filter_y0] \n\t" \ + "paddh %[ftmp8], %[ftmp8], %[ff_ph_40] \n\t" \ + "pmullh %[ftmp1], %[ftmp2], %[filter_y1] \n\t" \ + "paddh %[ftmp8], %[ftmp8], %[ftmp1] \n\t" \ + "psrlh %[ftmp8], %[ftmp8], %[ftmp14] \n\t" \ + \ + /* calculate: temp2[4] ~ temp2[7] */ \ + "pmullh %[ftmp9], %[ftmp9], %[filter_y0] \n\t" \ + "paddh %[ftmp9], %[ftmp9], %[ff_ph_40] \n\t" \ + "pmullh %[ftmp1], %[ftmp3], %[filter_y1] \n\t" \ + "paddh %[ftmp9], %[ftmp9], %[ftmp1] \n\t" \ + "psrlh %[ftmp9], %[ftmp9], %[ftmp14] \n\t" \ + \ + /* store: temp2[0] ~ temp2[7] */ \ + "and %[ftmp8], %[ftmp8], %[mask] \n\t" \ + "and %[ftmp9], %[ftmp9], %[mask] \n\t" \ + "packushb %[ftmp8], %[ftmp8], %[ftmp9] \n\t" \ + "gssdlc1 %[ftmp8], 0x07(%[temp2_ptr]) \n\t" \ + "gssdrc1 %[ftmp8], 0x00(%[temp2_ptr]) \n\t" + +#define VAR_FILTER_BLOCK2D_BIL_FIRST_PASS_16_A \ + /* calculate fdata3[0]~fdata3[7], store at ftmp2 and ftmp3*/ \ + VAR_FILTER_BLOCK2D_BIL_FIRST_PASS_8_A \ + \ + /* calculate fdata3[8]~fdata3[15], store at ftmp4 and ftmp5*/ \ + "gsldlc1 %[ftmp1], 0x0f(%[a]) \n\t" \ + "gsldrc1 %[ftmp1], 0x08(%[a]) \n\t" \ + "punpcklbh %[ftmp4], %[ftmp1], %[ftmp0] \n\t" \ + "punpckhbh %[ftmp5], %[ftmp1], %[ftmp0] \n\t" \ + "gsldlc1 %[ftmp1], 0x10(%[a]) \n\t" \ + "gsldrc1 %[ftmp1], 0x09(%[a]) \n\t" \ + "punpcklbh %[ftmp6], %[ftmp1], %[ftmp0] \n\t" \ + "punpckhbh %[ftmp7], %[ftmp1], %[ftmp0] \n\t" \ + "pmullh %[ftmp4], %[ftmp4], %[filter_x0] \n\t" \ + "pmullh %[ftmp5], %[ftmp5], %[filter_x0] \n\t" \ + "paddh %[ftmp4], %[ftmp4], %[ff_ph_40] \n\t" \ + "paddh %[ftmp5], %[ftmp5], %[ff_ph_40] \n\t" \ + "pmullh %[ftmp6], %[ftmp6], %[filter_x1] \n\t" \ + "pmullh %[ftmp7], %[ftmp7], %[filter_x1] \n\t" \ + "paddh %[ftmp4], %[ftmp4], %[ftmp6] \n\t" \ + "paddh %[ftmp5], %[ftmp5], %[ftmp7] \n\t" \ + "psrlh %[ftmp4], %[ftmp4], %[ftmp14] \n\t" \ + "psrlh %[ftmp5], %[ftmp5], %[ftmp14] \n\t" + +#define VAR_FILTER_BLOCK2D_BIL_FIRST_PASS_16_B \ + /* calculate fdata3[0]~fdata3[7], store at ftmp8 and ftmp9*/ \ + VAR_FILTER_BLOCK2D_BIL_FIRST_PASS_8_B \ + \ + /* calculate fdata3[8]~fdata3[15], store at ftmp10 and ftmp11*/ \ + "gsldlc1 %[ftmp1], 0x0f(%[a]) \n\t" \ + "gsldrc1 %[ftmp1], 0x08(%[a]) \n\t" \ + "punpcklbh %[ftmp10], %[ftmp1], %[ftmp0] \n\t" \ + "punpckhbh %[ftmp11], %[ftmp1], %[ftmp0] \n\t" \ + "gsldlc1 %[ftmp1], 0x10(%[a]) \n\t" \ + "gsldrc1 %[ftmp1], 0x09(%[a]) \n\t" \ + "punpcklbh %[ftmp12], %[ftmp1], %[ftmp0] \n\t" \ + "punpckhbh %[ftmp13], %[ftmp1], %[ftmp0] \n\t" \ + "pmullh %[ftmp10], %[ftmp10], %[filter_x0] \n\t" \ + "pmullh %[ftmp11], %[ftmp11], %[filter_x0] \n\t" \ + "paddh %[ftmp10], %[ftmp10], %[ff_ph_40] \n\t" \ + "paddh %[ftmp11], %[ftmp11], %[ff_ph_40] \n\t" \ + "pmullh %[ftmp12], %[ftmp12], %[filter_x1] \n\t" \ + "pmullh %[ftmp13], %[ftmp13], %[filter_x1] \n\t" \ + "paddh %[ftmp10], %[ftmp10], %[ftmp12] \n\t" \ + "paddh %[ftmp11], %[ftmp11], %[ftmp13] \n\t" \ + "psrlh %[ftmp10], %[ftmp10], %[ftmp14] \n\t" \ + "psrlh %[ftmp11], %[ftmp11], %[ftmp14] \n\t" + +#define VAR_FILTER_BLOCK2D_BIL_SECOND_PASS_16_A \ + VAR_FILTER_BLOCK2D_BIL_SECOND_PASS_8_A \ + \ + /* calculate: temp2[8] ~ temp2[11] */ \ + "pmullh %[ftmp4], %[ftmp4], %[filter_y0] \n\t" \ + "paddh %[ftmp4], %[ftmp4], %[ff_ph_40] \n\t" \ + "pmullh %[ftmp1], %[ftmp10], %[filter_y1] \n\t" \ + "paddh %[ftmp4], %[ftmp4], %[ftmp1] \n\t" \ + "psrlh %[ftmp4], %[ftmp4], %[ftmp14] \n\t" \ + \ + /* calculate: temp2[12] ~ temp2[15] */ \ + "pmullh %[ftmp5], %[ftmp5], %[filter_y0] \n\t" \ + "paddh %[ftmp5], %[ftmp5], %[ff_ph_40] \n\t" \ + "pmullh %[ftmp1], %[ftmp11], %[filter_y1] \n\t" \ + "paddh %[ftmp5], %[ftmp5], %[ftmp1] \n\t" \ + "psrlh %[ftmp5], %[ftmp5], %[ftmp14] \n\t" \ + \ + /* store: temp2[8] ~ temp2[15] */ \ + "and %[ftmp4], %[ftmp4], %[mask] \n\t" \ + "and %[ftmp5], %[ftmp5], %[mask] \n\t" \ + "packushb %[ftmp4], %[ftmp4], %[ftmp5] \n\t" \ + "gssdlc1 %[ftmp4], 0x0f(%[temp2_ptr]) \n\t" \ + "gssdrc1 %[ftmp4], 0x08(%[temp2_ptr]) \n\t" + +#define VAR_FILTER_BLOCK2D_BIL_SECOND_PASS_16_B \ + VAR_FILTER_BLOCK2D_BIL_SECOND_PASS_8_B \ + \ + /* calculate: temp2[8] ~ temp2[11] */ \ + "pmullh %[ftmp10], %[ftmp10], %[filter_y0] \n\t" \ + "paddh %[ftmp10], %[ftmp10], %[ff_ph_40] \n\t" \ + "pmullh %[ftmp1], %[ftmp4], %[filter_y1] \n\t" \ + "paddh %[ftmp10], %[ftmp10], %[ftmp1] \n\t" \ + "psrlh %[ftmp10], %[ftmp10], %[ftmp14] \n\t" \ + \ + /* calculate: temp2[12] ~ temp2[15] */ \ + "pmullh %[ftmp11], %[ftmp11], %[filter_y0] \n\t" \ + "paddh %[ftmp11], %[ftmp11], %[ff_ph_40] \n\t" \ + "pmullh %[ftmp1], %[ftmp5], %[filter_y1] \n\t" \ + "paddh %[ftmp11], %[ftmp11], %[ftmp1] \n\t" \ + "psrlh %[ftmp11], %[ftmp11], %[ftmp14] \n\t" \ + \ + /* store: temp2[8] ~ temp2[15] */ \ + "and %[ftmp10], %[ftmp10], %[mask] \n\t" \ + "and %[ftmp11], %[ftmp11], %[mask] \n\t" \ + "packushb %[ftmp10], %[ftmp10], %[ftmp11] \n\t" \ + "gssdlc1 %[ftmp10], 0x0f(%[temp2_ptr]) \n\t" \ + "gssdrc1 %[ftmp10], 0x08(%[temp2_ptr]) \n\t" + +// Applies a 1-D 2-tap bilinear filter to the source block in either horizontal +// or vertical direction to produce the filtered output block. Used to implement +// the first-pass of 2-D separable filter. +// +// Produces int16_t output to retain precision for the next pass. Two filter +// taps should sum to FILTER_WEIGHT. pixel_step defines whether the filter is +// applied horizontally (pixel_step = 1) or vertically (pixel_step = stride). +// It defines the offset required to move from one input to the next. +static void var_filter_block2d_bil_first_pass(const uint8_t *a, uint16_t *b, + unsigned int src_pixels_per_line, + int pixel_step, + unsigned int output_height, + unsigned int output_width, + const uint8_t *filter) { + unsigned int i, j; + + for (i = 0; i < output_height; ++i) { + for (j = 0; j < output_width; ++j) { + b[j] = ROUND_POWER_OF_TWO( + (int)a[0] * filter[0] + (int)a[pixel_step] * filter[1], FILTER_BITS); + + ++a; + } + + a += src_pixels_per_line - output_width; + b += output_width; + } +} + +// Applies a 1-D 2-tap bilinear filter to the source block in either horizontal +// or vertical direction to produce the filtered output block. Used to implement +// the second-pass of 2-D separable filter. +// +// Requires 16-bit input as produced by filter_block2d_bil_first_pass. Two +// filter taps should sum to FILTER_WEIGHT. pixel_step defines whether the +// filter is applied horizontally (pixel_step = 1) or vertically +// (pixel_step = stride). It defines the offset required to move from one input +// to the next. Output is 8-bit. +static void var_filter_block2d_bil_second_pass(const uint16_t *a, uint8_t *b, + unsigned int src_pixels_per_line, + unsigned int pixel_step, + unsigned int output_height, + unsigned int output_width, + const uint8_t *filter) { + unsigned int i, j; + + for (i = 0; i < output_height; ++i) { + for (j = 0; j < output_width; ++j) { + b[j] = ROUND_POWER_OF_TWO( + (int)a[0] * filter[0] + (int)a[pixel_step] * filter[1], FILTER_BITS); + ++a; + } + + a += src_pixels_per_line - output_width; + b += output_width; + } +} + +static inline uint32_t vpx_variance64x(const uint8_t *a, int a_stride, + const uint8_t *b, int b_stride, + uint32_t *sse, int high) { + int sum; + double ftmp[12]; + uint32_t tmp[3]; + + *sse = 0; + + __asm__ volatile ( + "li %[tmp0], 0x20 \n\t" + "mtc1 %[tmp0], %[ftmp11] \n\t" + MMI_L(%[tmp0], %[high], 0x00) + "xor %[ftmp0], %[ftmp0], %[ftmp0] \n\t" + "xor %[ftmp9], %[ftmp9], %[ftmp9] \n\t" + "xor %[ftmp10], %[ftmp10], %[ftmp10] \n\t" + "1: \n\t" + "gsldlc1 %[ftmp1], 0x07(%[a]) \n\t" + "gsldrc1 %[ftmp1], 0x00(%[a]) \n\t" + "gsldlc1 %[ftmp2], 0x07(%[b]) \n\t" + "gsldrc1 %[ftmp2], 0x00(%[b]) \n\t" + VARIANCE_SSE_SUM_8_FOR_W64 + + "gsldlc1 %[ftmp1], 0x0f(%[a]) \n\t" + "gsldrc1 %[ftmp1], 0x08(%[a]) \n\t" + "gsldlc1 %[ftmp2], 0x0f(%[b]) \n\t" + "gsldrc1 %[ftmp2], 0x08(%[b]) \n\t" + VARIANCE_SSE_SUM_8_FOR_W64 + + "gsldlc1 %[ftmp1], 0x17(%[a]) \n\t" + "gsldrc1 %[ftmp1], 0x10(%[a]) \n\t" + "gsldlc1 %[ftmp2], 0x17(%[b]) \n\t" + "gsldrc1 %[ftmp2], 0x10(%[b]) \n\t" + VARIANCE_SSE_SUM_8_FOR_W64 + + "gsldlc1 %[ftmp1], 0x1f(%[a]) \n\t" + "gsldrc1 %[ftmp1], 0x18(%[a]) \n\t" + "gsldlc1 %[ftmp2], 0x1f(%[b]) \n\t" + "gsldrc1 %[ftmp2], 0x18(%[b]) \n\t" + VARIANCE_SSE_SUM_8_FOR_W64 + + "gsldlc1 %[ftmp1], 0x27(%[a]) \n\t" + "gsldrc1 %[ftmp1], 0x20(%[a]) \n\t" + "gsldlc1 %[ftmp2], 0x27(%[b]) \n\t" + "gsldrc1 %[ftmp2], 0x20(%[b]) \n\t" + VARIANCE_SSE_SUM_8_FOR_W64 + + "gsldlc1 %[ftmp1], 0x2f(%[a]) \n\t" + "gsldrc1 %[ftmp1], 0x28(%[a]) \n\t" + "gsldlc1 %[ftmp2], 0x2f(%[b]) \n\t" + "gsldrc1 %[ftmp2], 0x28(%[b]) \n\t" + VARIANCE_SSE_SUM_8_FOR_W64 + + "gsldlc1 %[ftmp1], 0x37(%[a]) \n\t" + "gsldrc1 %[ftmp1], 0x30(%[a]) \n\t" + "gsldlc1 %[ftmp2], 0x37(%[b]) \n\t" + "gsldrc1 %[ftmp2], 0x30(%[b]) \n\t" + VARIANCE_SSE_SUM_8_FOR_W64 + + "gsldlc1 %[ftmp1], 0x3f(%[a]) \n\t" + "gsldrc1 %[ftmp1], 0x38(%[a]) \n\t" + "gsldlc1 %[ftmp2], 0x3f(%[b]) \n\t" + "gsldrc1 %[ftmp2], 0x38(%[b]) \n\t" + VARIANCE_SSE_SUM_8_FOR_W64 + + "addiu %[tmp0], %[tmp0], -0x01 \n\t" + MMI_ADDU(%[a], %[a], %[a_stride]) + MMI_ADDU(%[b], %[b], %[b_stride]) + "bnez %[tmp0], 1b \n\t" + + "mfc1 %[tmp1], %[ftmp9] \n\t" + "mfhc1 %[tmp2], %[ftmp9] \n\t" + "addu %[sum], %[tmp1], %[tmp2] \n\t" + "dsrl %[ftmp1], %[ftmp10], %[ftmp11] \n\t" + "paddw %[ftmp1], %[ftmp1], %[ftmp10] \n\t" + "swc1 %[ftmp1], 0x00(%[sse]) \n\t" + : [ftmp0]"=&f"(ftmp[0]), [ftmp1]"=&f"(ftmp[1]), + [ftmp2]"=&f"(ftmp[2]), [ftmp3]"=&f"(ftmp[3]), + [ftmp4]"=&f"(ftmp[4]), [ftmp5]"=&f"(ftmp[5]), + [ftmp6]"=&f"(ftmp[6]), [ftmp7]"=&f"(ftmp[7]), + [ftmp8]"=&f"(ftmp[8]), [ftmp9]"=&f"(ftmp[9]), + [ftmp10]"=&f"(ftmp[10]), [ftmp11]"=&f"(ftmp[11]), + [tmp0]"=&r"(tmp[0]), [tmp1]"=&r"(tmp[1]), + [tmp2]"=&r"(tmp[2]), + [a]"+&r"(a), [b]"+&r"(b), + [sum]"=&r"(sum) + : [a_stride]"r"((mips_reg)a_stride),[b_stride]"r"((mips_reg)b_stride), + [high]"r"(&high), [sse]"r"(sse) + : "memory" + ); + + return *sse - (((int64_t)sum * sum) / (64 * high)); +} + +#define VPX_VARIANCE64XN(n) \ + uint32_t vpx_variance64x##n##_mmi(const uint8_t *a, int a_stride, \ + const uint8_t *b, int b_stride, \ + uint32_t *sse) { \ + return vpx_variance64x(a, a_stride, b, b_stride, sse, n); \ + } + +VPX_VARIANCE64XN(64) +VPX_VARIANCE64XN(32) + +uint32_t vpx_variance32x64_mmi(const uint8_t *a, int a_stride, const uint8_t *b, + int b_stride, uint32_t *sse) { + int sum; + double ftmp[12]; + uint32_t tmp[3]; + + *sse = 0; + + __asm__ volatile ( + "li %[tmp0], 0x20 \n\t" + "mtc1 %[tmp0], %[ftmp11] \n\t" + "li %[tmp0], 0x40 \n\t" + "xor %[ftmp0], %[ftmp0], %[ftmp0] \n\t" + "xor %[ftmp9], %[ftmp9], %[ftmp9] \n\t" + "xor %[ftmp10], %[ftmp10], %[ftmp10] \n\t" + "1: \n\t" + "gsldlc1 %[ftmp1], 0x07(%[a]) \n\t" + "gsldrc1 %[ftmp1], 0x00(%[a]) \n\t" + "gsldlc1 %[ftmp2], 0x07(%[b]) \n\t" + "gsldrc1 %[ftmp2], 0x00(%[b]) \n\t" + VARIANCE_SSE_SUM_8_FOR_W64 + + "gsldlc1 %[ftmp1], 0x0f(%[a]) \n\t" + "gsldrc1 %[ftmp1], 0x08(%[a]) \n\t" + "gsldlc1 %[ftmp2], 0x0f(%[b]) \n\t" + "gsldrc1 %[ftmp2], 0x08(%[b]) \n\t" + VARIANCE_SSE_SUM_8_FOR_W64 + + "gsldlc1 %[ftmp1], 0x17(%[a]) \n\t" + "gsldrc1 %[ftmp1], 0x10(%[a]) \n\t" + "gsldlc1 %[ftmp2], 0x17(%[b]) \n\t" + "gsldrc1 %[ftmp2], 0x10(%[b]) \n\t" + VARIANCE_SSE_SUM_8_FOR_W64 + + "gsldlc1 %[ftmp1], 0x1f(%[a]) \n\t" + "gsldrc1 %[ftmp1], 0x18(%[a]) \n\t" + "gsldlc1 %[ftmp2], 0x1f(%[b]) \n\t" + "gsldrc1 %[ftmp2], 0x18(%[b]) \n\t" + VARIANCE_SSE_SUM_8_FOR_W64 + + "addiu %[tmp0], %[tmp0], -0x01 \n\t" + MMI_ADDU(%[a], %[a], %[a_stride]) + MMI_ADDU(%[b], %[b], %[b_stride]) + "bnez %[tmp0], 1b \n\t" + + "mfc1 %[tmp1], %[ftmp9] \n\t" + "mfhc1 %[tmp2], %[ftmp9] \n\t" + "addu %[sum], %[tmp1], %[tmp2] \n\t" + "dsrl %[ftmp1], %[ftmp10], %[ftmp11] \n\t" + "paddw %[ftmp1], %[ftmp1], %[ftmp10] \n\t" + "swc1 %[ftmp1], 0x00(%[sse]) \n\t" + : [ftmp0]"=&f"(ftmp[0]), [ftmp1]"=&f"(ftmp[1]), + [ftmp2]"=&f"(ftmp[2]), [ftmp3]"=&f"(ftmp[3]), + [ftmp4]"=&f"(ftmp[4]), [ftmp5]"=&f"(ftmp[5]), + [ftmp6]"=&f"(ftmp[6]), [ftmp7]"=&f"(ftmp[7]), + [ftmp8]"=&f"(ftmp[8]), [ftmp9]"=&f"(ftmp[9]), + [ftmp10]"=&f"(ftmp[10]), [ftmp11]"=&f"(ftmp[11]), + [tmp0]"=&r"(tmp[0]), [tmp1]"=&r"(tmp[1]), + [tmp2]"=&r"(tmp[2]), + [a]"+&r"(a), [b]"+&r"(b), + [sum]"=&r"(sum) + : [a_stride]"r"((mips_reg)a_stride),[b_stride]"r"((mips_reg)b_stride), + [sse]"r"(sse) + : "memory" + ); + + return *sse - (((int64_t)sum * sum) / 2048); +} + +static inline uint32_t vpx_variance32x(const uint8_t *a, int a_stride, + const uint8_t *b, int b_stride, + uint32_t *sse, int high) { + int sum; + double ftmp[13]; + uint32_t tmp[3]; + + *sse = 0; + + __asm__ volatile ( + "li %[tmp0], 0x20 \n\t" + "mtc1 %[tmp0], %[ftmp11] \n\t" + MMI_L(%[tmp0], %[high], 0x00) + "xor %[ftmp0], %[ftmp0], %[ftmp0] \n\t" + "xor %[ftmp8], %[ftmp8], %[ftmp8] \n\t" + "xor %[ftmp10], %[ftmp10], %[ftmp10] \n\t" + "xor %[ftmp12], %[ftmp12], %[ftmp12] \n\t" + "1: \n\t" + "gsldlc1 %[ftmp1], 0x07(%[a]) \n\t" + "gsldrc1 %[ftmp1], 0x00(%[a]) \n\t" + "gsldlc1 %[ftmp2], 0x07(%[b]) \n\t" + "gsldrc1 %[ftmp2], 0x00(%[b]) \n\t" + VARIANCE_SSE_SUM_8 + "gsldlc1 %[ftmp1], 0x0f(%[a]) \n\t" + "gsldrc1 %[ftmp1], 0x08(%[a]) \n\t" + "gsldlc1 %[ftmp2], 0x0f(%[b]) \n\t" + "gsldrc1 %[ftmp2], 0x08(%[b]) \n\t" + VARIANCE_SSE_SUM_8 + "gsldlc1 %[ftmp1], 0x17(%[a]) \n\t" + "gsldrc1 %[ftmp1], 0x10(%[a]) \n\t" + "gsldlc1 %[ftmp2], 0x17(%[b]) \n\t" + "gsldrc1 %[ftmp2], 0x10(%[b]) \n\t" + VARIANCE_SSE_SUM_8 + "gsldlc1 %[ftmp1], 0x1f(%[a]) \n\t" + "gsldrc1 %[ftmp1], 0x18(%[a]) \n\t" + "gsldlc1 %[ftmp2], 0x1f(%[b]) \n\t" + "gsldrc1 %[ftmp2], 0x18(%[b]) \n\t" + VARIANCE_SSE_SUM_8 + + "addiu %[tmp0], %[tmp0], -0x01 \n\t" + MMI_ADDU(%[a], %[a], %[a_stride]) + MMI_ADDU(%[b], %[b], %[b_stride]) + "bnez %[tmp0], 1b \n\t" + + "dsrl %[ftmp9], %[ftmp8], %[ftmp11] \n\t" + "paddw %[ftmp9], %[ftmp9], %[ftmp8] \n\t" + "swc1 %[ftmp9], 0x00(%[sse]) \n\t" + + "punpcklhw %[ftmp3], %[ftmp10], %[ftmp0] \n\t" + "punpckhhw %[ftmp4], %[ftmp10], %[ftmp0] \n\t" + "punpcklhw %[ftmp5], %[ftmp12], %[ftmp0] \n\t" + "punpckhhw %[ftmp6], %[ftmp12], %[ftmp0] \n\t" + "paddw %[ftmp3], %[ftmp3], %[ftmp4] \n\t" + "psubw %[ftmp3], %[ftmp3], %[ftmp5] \n\t" + "psubw %[ftmp3], %[ftmp3], %[ftmp6] \n\t" + "dsrl %[ftmp0], %[ftmp3], %[ftmp11] \n\t" + "paddw %[ftmp0], %[ftmp0], %[ftmp3] \n\t" + "swc1 %[ftmp0], 0x00(%[sum]) \n\t" + + : [ftmp0]"=&f"(ftmp[0]), [ftmp1]"=&f"(ftmp[1]), + [ftmp2]"=&f"(ftmp[2]), [ftmp3]"=&f"(ftmp[3]), + [ftmp4]"=&f"(ftmp[4]), [ftmp5]"=&f"(ftmp[5]), + [ftmp6]"=&f"(ftmp[6]), [ftmp7]"=&f"(ftmp[7]), + [ftmp8]"=&f"(ftmp[8]), [ftmp9]"=&f"(ftmp[9]), + [ftmp10]"=&f"(ftmp[10]), [ftmp11]"=&f"(ftmp[11]), + [ftmp12]"=&f"(ftmp[12]), [tmp0]"=&r"(tmp[0]), + [a]"+&r"(a), [b]"+&r"(b) + : [a_stride]"r"((mips_reg)a_stride),[b_stride]"r"((mips_reg)b_stride), + [high]"r"(&high), [sse]"r"(sse), [sum]"r"(&sum) + : "memory" + ); + + return *sse - (((int64_t)sum * sum) / (32 * high)); +} + +#define VPX_VARIANCE32XN(n) \ + uint32_t vpx_variance32x##n##_mmi(const uint8_t *a, int a_stride, \ + const uint8_t *b, int b_stride, \ + uint32_t *sse) { \ + return vpx_variance32x(a, a_stride, b, b_stride, sse, n); \ + } + +VPX_VARIANCE32XN(32) +VPX_VARIANCE32XN(16) + +static inline uint32_t vpx_variance16x(const uint8_t *a, int a_stride, + const uint8_t *b, int b_stride, + uint32_t *sse, int high) { + int sum; + double ftmp[13]; + uint32_t tmp[3]; + + *sse = 0; + + __asm__ volatile ( + "li %[tmp0], 0x20 \n\t" + "mtc1 %[tmp0], %[ftmp11] \n\t" + MMI_L(%[tmp0], %[high], 0x00) + "xor %[ftmp0], %[ftmp0], %[ftmp0] \n\t" + "xor %[ftmp8], %[ftmp8], %[ftmp8] \n\t" + "xor %[ftmp10], %[ftmp10], %[ftmp10] \n\t" + "xor %[ftmp12], %[ftmp12], %[ftmp12] \n\t" + "1: \n\t" + "gsldlc1 %[ftmp1], 0x07(%[a]) \n\t" + "gsldrc1 %[ftmp1], 0x00(%[a]) \n\t" + "gsldlc1 %[ftmp2], 0x07(%[b]) \n\t" + "gsldrc1 %[ftmp2], 0x00(%[b]) \n\t" + VARIANCE_SSE_SUM_8 + "gsldlc1 %[ftmp1], 0x0f(%[a]) \n\t" + "gsldrc1 %[ftmp1], 0x08(%[a]) \n\t" + "gsldlc1 %[ftmp2], 0x0f(%[b]) \n\t" + "gsldrc1 %[ftmp2], 0x08(%[b]) \n\t" + VARIANCE_SSE_SUM_8 + + "addiu %[tmp0], %[tmp0], -0x01 \n\t" + MMI_ADDU(%[a], %[a], %[a_stride]) + MMI_ADDU(%[b], %[b], %[b_stride]) + "bnez %[tmp0], 1b \n\t" + + "dsrl %[ftmp9], %[ftmp8], %[ftmp11] \n\t" + "paddw %[ftmp9], %[ftmp9], %[ftmp8] \n\t" + "swc1 %[ftmp9], 0x00(%[sse]) \n\t" + + "punpcklhw %[ftmp3], %[ftmp10], %[ftmp0] \n\t" + "punpckhhw %[ftmp4], %[ftmp10], %[ftmp0] \n\t" + "punpcklhw %[ftmp5], %[ftmp12], %[ftmp0] \n\t" + "punpckhhw %[ftmp6], %[ftmp12], %[ftmp0] \n\t" + "paddw %[ftmp3], %[ftmp3], %[ftmp4] \n\t" + "psubw %[ftmp3], %[ftmp3], %[ftmp5] \n\t" + "psubw %[ftmp3], %[ftmp3], %[ftmp6] \n\t" + "dsrl %[ftmp0], %[ftmp3], %[ftmp11] \n\t" + "paddw %[ftmp0], %[ftmp0], %[ftmp3] \n\t" + "swc1 %[ftmp0], 0x00(%[sum]) \n\t" + + : [ftmp0]"=&f"(ftmp[0]), [ftmp1]"=&f"(ftmp[1]), + [ftmp2]"=&f"(ftmp[2]), [ftmp3]"=&f"(ftmp[3]), + [ftmp4]"=&f"(ftmp[4]), [ftmp5]"=&f"(ftmp[5]), + [ftmp6]"=&f"(ftmp[6]), [ftmp7]"=&f"(ftmp[7]), + [ftmp8]"=&f"(ftmp[8]), [ftmp9]"=&f"(ftmp[9]), + [ftmp10]"=&f"(ftmp[10]), [ftmp11]"=&f"(ftmp[11]), + [ftmp12]"=&f"(ftmp[12]), [tmp0]"=&r"(tmp[0]), + [a]"+&r"(a), [b]"+&r"(b) + : [a_stride]"r"((mips_reg)a_stride),[b_stride]"r"((mips_reg)b_stride), + [high]"r"(&high), [sse]"r"(sse), [sum]"r"(&sum) + : "memory" + ); + + return *sse - (((int64_t)sum * sum) / (16 * high)); +} + +#define VPX_VARIANCE16XN(n) \ + uint32_t vpx_variance16x##n##_mmi(const uint8_t *a, int a_stride, \ + const uint8_t *b, int b_stride, \ + uint32_t *sse) { \ + return vpx_variance16x(a, a_stride, b, b_stride, sse, n); \ + } + +VPX_VARIANCE16XN(32) +VPX_VARIANCE16XN(16) +VPX_VARIANCE16XN(8) + +static inline uint32_t vpx_variance8x(const uint8_t *a, int a_stride, + const uint8_t *b, int b_stride, + uint32_t *sse, int high) { + int sum; + double ftmp[13]; + uint32_t tmp[3]; + + *sse = 0; + + __asm__ volatile ( + "li %[tmp0], 0x20 \n\t" + "mtc1 %[tmp0], %[ftmp11] \n\t" + MMI_L(%[tmp0], %[high], 0x00) + "xor %[ftmp0], %[ftmp0], %[ftmp0] \n\t" + "xor %[ftmp8], %[ftmp8], %[ftmp8] \n\t" + "xor %[ftmp10], %[ftmp10], %[ftmp10] \n\t" + "xor %[ftmp12], %[ftmp12], %[ftmp12] \n\t" + "1: \n\t" + "gsldlc1 %[ftmp1], 0x07(%[a]) \n\t" + "gsldrc1 %[ftmp1], 0x00(%[a]) \n\t" + "gsldlc1 %[ftmp2], 0x07(%[b]) \n\t" + "gsldrc1 %[ftmp2], 0x00(%[b]) \n\t" + VARIANCE_SSE_SUM_8 + + "addiu %[tmp0], %[tmp0], -0x01 \n\t" + MMI_ADDU(%[a], %[a], %[a_stride]) + MMI_ADDU(%[b], %[b], %[b_stride]) + "bnez %[tmp0], 1b \n\t" + + "dsrl %[ftmp9], %[ftmp8], %[ftmp11] \n\t" + "paddw %[ftmp9], %[ftmp9], %[ftmp8] \n\t" + "swc1 %[ftmp9], 0x00(%[sse]) \n\t" + + "punpcklhw %[ftmp3], %[ftmp10], %[ftmp0] \n\t" + "punpckhhw %[ftmp4], %[ftmp10], %[ftmp0] \n\t" + "punpcklhw %[ftmp5], %[ftmp12], %[ftmp0] \n\t" + "punpckhhw %[ftmp6], %[ftmp12], %[ftmp0] \n\t" + "paddw %[ftmp3], %[ftmp3], %[ftmp4] \n\t" + "psubw %[ftmp3], %[ftmp3], %[ftmp5] \n\t" + "psubw %[ftmp3], %[ftmp3], %[ftmp6] \n\t" + "dsrl %[ftmp0], %[ftmp3], %[ftmp11] \n\t" + "paddw %[ftmp0], %[ftmp0], %[ftmp3] \n\t" + "swc1 %[ftmp0], 0x00(%[sum]) \n\t" + + : [ftmp0]"=&f"(ftmp[0]), [ftmp1]"=&f"(ftmp[1]), + [ftmp2]"=&f"(ftmp[2]), [ftmp3]"=&f"(ftmp[3]), + [ftmp4]"=&f"(ftmp[4]), [ftmp5]"=&f"(ftmp[5]), + [ftmp6]"=&f"(ftmp[6]), [ftmp7]"=&f"(ftmp[7]), + [ftmp8]"=&f"(ftmp[8]), [ftmp9]"=&f"(ftmp[9]), + [ftmp10]"=&f"(ftmp[10]), [ftmp11]"=&f"(ftmp[11]), + [ftmp12]"=&f"(ftmp[12]), [tmp0]"=&r"(tmp[0]), + [a]"+&r"(a), [b]"+&r"(b) + : [a_stride]"r"((mips_reg)a_stride),[b_stride]"r"((mips_reg)b_stride), + [high]"r"(&high), [sse]"r"(sse), [sum]"r"(&sum) + : "memory" + ); + + return *sse - (((int64_t)sum * sum) / (8 * high)); +} + +#define VPX_VARIANCE8XN(n) \ + uint32_t vpx_variance8x##n##_mmi(const uint8_t *a, int a_stride, \ + const uint8_t *b, int b_stride, \ + uint32_t *sse) { \ + return vpx_variance8x(a, a_stride, b, b_stride, sse, n); \ + } + +VPX_VARIANCE8XN(16) +VPX_VARIANCE8XN(8) +VPX_VARIANCE8XN(4) + +static inline uint32_t vpx_variance4x(const uint8_t *a, int a_stride, + const uint8_t *b, int b_stride, + uint32_t *sse, int high) { + int sum; + double ftmp[12]; + uint32_t tmp[3]; + + *sse = 0; + + __asm__ volatile ( + "li %[tmp0], 0x20 \n\t" + "mtc1 %[tmp0], %[ftmp10] \n\t" + MMI_L(%[tmp0], %[high], 0x00) + "xor %[ftmp0], %[ftmp0], %[ftmp0] \n\t" + "xor %[ftmp6], %[ftmp6], %[ftmp6] \n\t" + "xor %[ftmp7], %[ftmp7], %[ftmp7] \n\t" + "xor %[ftmp8], %[ftmp8], %[ftmp8] \n\t" + "1: \n\t" + "gsldlc1 %[ftmp1], 0x07(%[a]) \n\t" + "gsldrc1 %[ftmp1], 0x00(%[a]) \n\t" + "gsldlc1 %[ftmp2], 0x07(%[b]) \n\t" + "gsldrc1 %[ftmp2], 0x00(%[b]) \n\t" + VARIANCE_SSE_SUM_4 + + "addiu %[tmp0], %[tmp0], -0x01 \n\t" + MMI_ADDU(%[a], %[a], %[a_stride]) + MMI_ADDU(%[b], %[b], %[b_stride]) + "bnez %[tmp0], 1b \n\t" + + "dsrl %[ftmp9], %[ftmp6], %[ftmp10] \n\t" + "paddw %[ftmp9], %[ftmp9], %[ftmp6] \n\t" + "swc1 %[ftmp9], 0x00(%[sse]) \n\t" + + "punpcklhw %[ftmp3], %[ftmp7], %[ftmp0] \n\t" + "punpckhhw %[ftmp4], %[ftmp7], %[ftmp0] \n\t" + "punpcklhw %[ftmp5], %[ftmp8], %[ftmp0] \n\t" + "punpckhhw %[ftmp6], %[ftmp8], %[ftmp0] \n\t" + "paddw %[ftmp3], %[ftmp3], %[ftmp4] \n\t" + "psubw %[ftmp3], %[ftmp3], %[ftmp5] \n\t" + "psubw %[ftmp3], %[ftmp3], %[ftmp6] \n\t" + "dsrl %[ftmp0], %[ftmp3], %[ftmp10] \n\t" + "paddw %[ftmp0], %[ftmp0], %[ftmp3] \n\t" + "swc1 %[ftmp0], 0x00(%[sum]) \n\t" + : [ftmp0]"=&f"(ftmp[0]), [ftmp1]"=&f"(ftmp[1]), + [ftmp2]"=&f"(ftmp[2]), [ftmp3]"=&f"(ftmp[3]), + [ftmp4]"=&f"(ftmp[4]), [ftmp5]"=&f"(ftmp[5]), + [ftmp6]"=&f"(ftmp[6]), [ftmp7]"=&f"(ftmp[7]), + [ftmp8]"=&f"(ftmp[8]), [ftmp9]"=&f"(ftmp[9]), + [ftmp10]"=&f"(ftmp[10]), + [tmp0]"=&r"(tmp[0]), + [a]"+&r"(a), [b]"+&r"(b) + : [a_stride]"r"((mips_reg)a_stride),[b_stride]"r"((mips_reg)b_stride), + [high]"r"(&high), [sse]"r"(sse), [sum]"r"(&sum) + : "memory" + ); + + return *sse - (((int64_t)sum * sum) / (4 * high)); +} + +#define VPX_VARIANCE4XN(n) \ + uint32_t vpx_variance4x##n##_mmi(const uint8_t *a, int a_stride, \ + const uint8_t *b, int b_stride, \ + uint32_t *sse) { \ + return vpx_variance4x(a, a_stride, b, b_stride, sse, n); \ + } + +VPX_VARIANCE4XN(8) +VPX_VARIANCE4XN(4) + +static inline uint32_t vpx_mse16x(const uint8_t *a, int a_stride, + const uint8_t *b, int b_stride, uint32_t *sse, + uint64_t high) { + double ftmp[12]; + uint32_t tmp[1]; + + *sse = 0; + + __asm__ volatile ( + "li %[tmp0], 0x20 \n\t" + "mtc1 %[tmp0], %[ftmp11] \n\t" + MMI_L(%[tmp0], %[high], 0x00) + "xor %[ftmp0], %[ftmp0], %[ftmp0] \n\t" + "xor %[ftmp8], %[ftmp8], %[ftmp8] \n\t" + + "1: \n\t" + VARIANCE_SSE_16 + + "addiu %[tmp0], %[tmp0], -0x01 \n\t" + MMI_ADDU(%[a], %[a], %[a_stride]) + MMI_ADDU(%[b], %[b], %[b_stride]) + "bnez %[tmp0], 1b \n\t" + + "dsrl %[ftmp9], %[ftmp8], %[ftmp11] \n\t" + "paddw %[ftmp9], %[ftmp9], %[ftmp8] \n\t" + "swc1 %[ftmp9], 0x00(%[sse]) \n\t" + : [ftmp0]"=&f"(ftmp[0]), [ftmp1]"=&f"(ftmp[1]), + [ftmp2]"=&f"(ftmp[2]), [ftmp3]"=&f"(ftmp[3]), + [ftmp4]"=&f"(ftmp[4]), [ftmp5]"=&f"(ftmp[5]), + [ftmp6]"=&f"(ftmp[6]), [ftmp7]"=&f"(ftmp[7]), + [ftmp8]"=&f"(ftmp[8]), [ftmp9]"=&f"(ftmp[9]), + [ftmp10]"=&f"(ftmp[10]), [ftmp11]"=&f"(ftmp[11]), + [tmp0]"=&r"(tmp[0]), + [a]"+&r"(a), [b]"+&r"(b) + : [a_stride]"r"((mips_reg)a_stride),[b_stride]"r"((mips_reg)b_stride), + [high]"r"(&high), [sse]"r"(sse) + : "memory" + ); + + return *sse; +} + +#define vpx_mse16xN(n) \ + uint32_t vpx_mse16x##n##_mmi(const uint8_t *a, int a_stride, \ + const uint8_t *b, int b_stride, \ + uint32_t *sse) { \ + return vpx_mse16x(a, a_stride, b, b_stride, sse, n); \ + } + +vpx_mse16xN(16); +vpx_mse16xN(8); + +static inline uint32_t vpx_mse8x(const uint8_t *a, int a_stride, + const uint8_t *b, int b_stride, uint32_t *sse, + uint64_t high) { + double ftmp[12]; + uint32_t tmp[1]; + + *sse = 0; + + __asm__ volatile ( + "li %[tmp0], 0x20 \n\t" + "mtc1 %[tmp0], %[ftmp11] \n\t" + MMI_L(%[tmp0], %[high], 0x00) + "xor %[ftmp0], %[ftmp0], %[ftmp0] \n\t" + "xor %[ftmp8], %[ftmp8], %[ftmp8] \n\t" + + "1: \n\t" + VARIANCE_SSE_8 + + "addiu %[tmp0], %[tmp0], -0x01 \n\t" + MMI_ADDU(%[a], %[a], %[a_stride]) + MMI_ADDU(%[b], %[b], %[b_stride]) + "bnez %[tmp0], 1b \n\t" + + "dsrl %[ftmp9], %[ftmp8], %[ftmp11] \n\t" + "paddw %[ftmp9], %[ftmp9], %[ftmp8] \n\t" + "swc1 %[ftmp9], 0x00(%[sse]) \n\t" + : [ftmp0]"=&f"(ftmp[0]), [ftmp1]"=&f"(ftmp[1]), + [ftmp2]"=&f"(ftmp[2]), [ftmp3]"=&f"(ftmp[3]), + [ftmp4]"=&f"(ftmp[4]), [ftmp5]"=&f"(ftmp[5]), + [ftmp6]"=&f"(ftmp[6]), [ftmp7]"=&f"(ftmp[7]), + [ftmp8]"=&f"(ftmp[8]), [ftmp9]"=&f"(ftmp[9]), + [ftmp10]"=&f"(ftmp[10]), [ftmp11]"=&f"(ftmp[11]), + [tmp0]"=&r"(tmp[0]), + [a]"+&r"(a), [b]"+&r"(b) + : [a_stride]"r"((mips_reg)a_stride),[b_stride]"r"((mips_reg)b_stride), + [high]"r"(&high), [sse]"r"(sse) + : "memory" + ); + + return *sse; +} + +#define vpx_mse8xN(n) \ + uint32_t vpx_mse8x##n##_mmi(const uint8_t *a, int a_stride, \ + const uint8_t *b, int b_stride, uint32_t *sse) { \ + return vpx_mse8x(a, a_stride, b, b_stride, sse, n); \ + } + +vpx_mse8xN(16); +vpx_mse8xN(8); + +#define SUBPIX_VAR(W, H) \ + uint32_t vpx_sub_pixel_variance##W##x##H##_mmi( \ + const uint8_t *a, int a_stride, int xoffset, int yoffset, \ + const uint8_t *b, int b_stride, uint32_t *sse) { \ + uint16_t fdata3[(H + 1) * W]; \ + uint8_t temp2[H * W]; \ + \ + var_filter_block2d_bil_first_pass(a, fdata3, a_stride, 1, H + 1, W, \ + bilinear_filters[xoffset]); \ + var_filter_block2d_bil_second_pass(fdata3, temp2, W, W, H, W, \ + bilinear_filters[yoffset]); \ + \ + return vpx_variance##W##x##H##_mmi(temp2, W, b, b_stride, sse); \ + } + +SUBPIX_VAR(64, 64) +SUBPIX_VAR(64, 32) +SUBPIX_VAR(32, 64) +SUBPIX_VAR(32, 32) +SUBPIX_VAR(32, 16) +SUBPIX_VAR(16, 32) + +static inline void var_filter_block2d_bil_16x(const uint8_t *a, int a_stride, + int xoffset, int yoffset, + uint8_t *temp2, int counter) { + uint8_t *temp2_ptr = temp2; + mips_reg l_counter = counter; + double ftmp[15]; + mips_reg tmp[2]; + DECLARE_ALIGNED(8, const uint64_t, ff_ph_40) = { 0x0040004000400040ULL }; + DECLARE_ALIGNED(8, const uint64_t, mask) = { 0x00ff00ff00ff00ffULL }; + + const uint8_t *filter_x = bilinear_filters[xoffset]; + const uint8_t *filter_y = bilinear_filters[yoffset]; + + __asm__ volatile ( + "xor %[ftmp0], %[ftmp0], %[ftmp0] \n\t" + MMI_LI(%[tmp0], 0x07) + MMI_MTC1(%[tmp0], %[ftmp14]) + "pshufh %[filter_x0], %[filter_x0], %[ftmp0] \n\t" + "pshufh %[filter_x1], %[filter_x1], %[ftmp0] \n\t" + "pshufh %[filter_y0], %[filter_y0], %[ftmp0] \n\t" + "pshufh %[filter_y1], %[filter_y1], %[ftmp0] \n\t" + + // fdata3: fdata3[0] ~ fdata3[15] + VAR_FILTER_BLOCK2D_BIL_FIRST_PASS_16_A + + // fdata3 +a_stride*1: fdata3[0] ~ fdata3[15] + MMI_ADDU(%[a], %[a], %[a_stride]) + VAR_FILTER_BLOCK2D_BIL_FIRST_PASS_16_B + // temp2: temp2[0] ~ temp2[15] + VAR_FILTER_BLOCK2D_BIL_SECOND_PASS_16_A + + // fdata3 +a_stride*2: fdata3[0] ~ fdata3[15] + MMI_ADDU(%[a], %[a], %[a_stride]) + VAR_FILTER_BLOCK2D_BIL_FIRST_PASS_16_A + // temp2+16*1: temp2[0] ~ temp2[15] + MMI_ADDIU(%[temp2_ptr], %[temp2_ptr], 0x10) + VAR_FILTER_BLOCK2D_BIL_SECOND_PASS_16_B + + "1: \n\t" + MMI_ADDU(%[a], %[a], %[a_stride]) + VAR_FILTER_BLOCK2D_BIL_FIRST_PASS_16_B + MMI_ADDIU(%[temp2_ptr], %[temp2_ptr], 0x10) + VAR_FILTER_BLOCK2D_BIL_SECOND_PASS_16_A + + MMI_ADDU(%[a], %[a], %[a_stride]) + VAR_FILTER_BLOCK2D_BIL_FIRST_PASS_16_A + MMI_ADDIU(%[temp2_ptr], %[temp2_ptr], 0x10) + VAR_FILTER_BLOCK2D_BIL_SECOND_PASS_16_B + "addiu %[counter], %[counter], -0x01 \n\t" + "bnez %[counter], 1b \n\t" + : [ftmp0] "=&f"(ftmp[0]), [ftmp1] "=&f"(ftmp[1]), [ftmp2] "=&f"(ftmp[2]), + [ftmp3] "=&f"(ftmp[3]), [ftmp4] "=&f"(ftmp[4]), [ftmp5] "=&f"(ftmp[5]), + [ftmp6] "=&f"(ftmp[6]), [ftmp7] "=&f"(ftmp[7]), [ftmp8] "=&f"(ftmp[8]), + [ftmp9] "=&f"(ftmp[9]), [ftmp10] "=&f"(ftmp[10]), + [ftmp11] "=&f"(ftmp[11]), [ftmp12] "=&f"(ftmp[12]), + [ftmp13] "=&f"(ftmp[13]), [ftmp14] "=&f"(ftmp[14]), + [tmp0] "=&r"(tmp[0]), [a] "+&r"(a), [temp2_ptr] "+&r"(temp2_ptr), + [counter]"+&r"(l_counter) + : [filter_x0] "f"((uint64_t)filter_x[0]), + [filter_x1] "f"((uint64_t)filter_x[1]), + [filter_y0] "f"((uint64_t)filter_y[0]), + [filter_y1] "f"((uint64_t)filter_y[1]), + [a_stride] "r"((mips_reg)a_stride), [ff_ph_40] "f"(ff_ph_40), + [mask] "f"(mask) + : "memory" + ); +} + +#define SUBPIX_VAR16XN(H) \ + uint32_t vpx_sub_pixel_variance16x##H##_mmi( \ + const uint8_t *a, int a_stride, int xoffset, int yoffset, \ + const uint8_t *b, int b_stride, uint32_t *sse) { \ + uint8_t temp2[16 * H]; \ + var_filter_block2d_bil_16x(a, a_stride, xoffset, yoffset, temp2, \ + (H - 2) / 2); \ + \ + return vpx_variance16x##H##_mmi(temp2, 16, b, b_stride, sse); \ + } + +SUBPIX_VAR16XN(16) +SUBPIX_VAR16XN(8) + +static inline void var_filter_block2d_bil_8x(const uint8_t *a, int a_stride, + int xoffset, int yoffset, + uint8_t *temp2, int counter) { + uint8_t *temp2_ptr = temp2; + mips_reg l_counter = counter; + double ftmp[15]; + mips_reg tmp[2]; + DECLARE_ALIGNED(8, const uint64_t, ff_ph_40) = { 0x0040004000400040ULL }; + DECLARE_ALIGNED(8, const uint64_t, mask) = { 0x00ff00ff00ff00ffULL }; + const uint8_t *filter_x = bilinear_filters[xoffset]; + const uint8_t *filter_y = bilinear_filters[yoffset]; + + __asm__ volatile ( + "xor %[ftmp0], %[ftmp0], %[ftmp0] \n\t" + MMI_LI(%[tmp0], 0x07) + MMI_MTC1(%[tmp0], %[ftmp14]) + "pshufh %[filter_x0], %[filter_x0], %[ftmp0] \n\t" + "pshufh %[filter_x1], %[filter_x1], %[ftmp0] \n\t" + "pshufh %[filter_y0], %[filter_y0], %[ftmp0] \n\t" + "pshufh %[filter_y1], %[filter_y1], %[ftmp0] \n\t" + + // fdata3: fdata3[0] ~ fdata3[7] + VAR_FILTER_BLOCK2D_BIL_FIRST_PASS_8_A + + // fdata3 +a_stride*1: fdata3[0] ~ fdata3[7] + MMI_ADDU(%[a], %[a], %[a_stride]) + VAR_FILTER_BLOCK2D_BIL_FIRST_PASS_8_B + // temp2: temp2[0] ~ temp2[7] + VAR_FILTER_BLOCK2D_BIL_SECOND_PASS_8_A + + // fdata3 +a_stride*2: fdata3[0] ~ fdata3[7] + MMI_ADDU(%[a], %[a], %[a_stride]) + VAR_FILTER_BLOCK2D_BIL_FIRST_PASS_8_A + // temp2+8*1: temp2[0] ~ temp2[7] + MMI_ADDIU(%[temp2_ptr], %[temp2_ptr], 0x08) + VAR_FILTER_BLOCK2D_BIL_SECOND_PASS_8_B + + "1: \n\t" + MMI_ADDU(%[a], %[a], %[a_stride]) + VAR_FILTER_BLOCK2D_BIL_FIRST_PASS_8_B + MMI_ADDIU(%[temp2_ptr], %[temp2_ptr], 0x08) + VAR_FILTER_BLOCK2D_BIL_SECOND_PASS_8_A + + MMI_ADDU(%[a], %[a], %[a_stride]) + VAR_FILTER_BLOCK2D_BIL_FIRST_PASS_8_A + MMI_ADDIU(%[temp2_ptr], %[temp2_ptr], 0x08) + VAR_FILTER_BLOCK2D_BIL_SECOND_PASS_8_B + "addiu %[counter], %[counter], -0x01 \n\t" + "bnez %[counter], 1b \n\t" + : [ftmp0] "=&f"(ftmp[0]), [ftmp1] "=&f"(ftmp[1]), [ftmp2] "=&f"(ftmp[2]), + [ftmp3] "=&f"(ftmp[3]), [ftmp4] "=&f"(ftmp[4]), [ftmp5] "=&f"(ftmp[5]), + [ftmp6] "=&f"(ftmp[6]), [ftmp7] "=&f"(ftmp[7]), [ftmp8] "=&f"(ftmp[8]), + [ftmp9] "=&f"(ftmp[9]), [ftmp10] "=&f"(ftmp[10]), + [ftmp11] "=&f"(ftmp[11]), [ftmp12] "=&f"(ftmp[12]), + [ftmp13] "=&f"(ftmp[13]), [ftmp14] "=&f"(ftmp[14]), + [tmp0] "=&r"(tmp[0]), [a] "+&r"(a), [temp2_ptr] "+&r"(temp2_ptr), + [counter]"+&r"(l_counter) + : [filter_x0] "f"((uint64_t)filter_x[0]), + [filter_x1] "f"((uint64_t)filter_x[1]), + [filter_y0] "f"((uint64_t)filter_y[0]), + [filter_y1] "f"((uint64_t)filter_y[1]), + [a_stride] "r"((mips_reg)a_stride), [ff_ph_40] "f"(ff_ph_40), + [mask] "f"(mask) + : "memory" + ); +} + +#define SUBPIX_VAR8XN(H) \ + uint32_t vpx_sub_pixel_variance8x##H##_mmi( \ + const uint8_t *a, int a_stride, int xoffset, int yoffset, \ + const uint8_t *b, int b_stride, uint32_t *sse) { \ + uint8_t temp2[8 * H]; \ + var_filter_block2d_bil_8x(a, a_stride, xoffset, yoffset, temp2, \ + (H - 2) / 2); \ + \ + return vpx_variance8x##H##_mmi(temp2, 8, b, b_stride, sse); \ + } + +SUBPIX_VAR8XN(16) +SUBPIX_VAR8XN(8) +SUBPIX_VAR8XN(4) + +static inline void var_filter_block2d_bil_4x(const uint8_t *a, int a_stride, + int xoffset, int yoffset, + uint8_t *temp2, int counter) { + uint8_t *temp2_ptr = temp2; + mips_reg l_counter = counter; + double ftmp[7]; + mips_reg tmp[2]; + DECLARE_ALIGNED(8, const uint64_t, ff_ph_40) = { 0x0040004000400040ULL }; + DECLARE_ALIGNED(8, const uint64_t, mask) = { 0x00ff00ff00ff00ffULL }; + const uint8_t *filter_x = bilinear_filters[xoffset]; + const uint8_t *filter_y = bilinear_filters[yoffset]; + + __asm__ volatile ( + "xor %[ftmp0], %[ftmp0], %[ftmp0] \n\t" + MMI_LI(%[tmp0], 0x07) + MMI_MTC1(%[tmp0], %[ftmp6]) + "pshufh %[filter_x0], %[filter_x0], %[ftmp0] \n\t" + "pshufh %[filter_x1], %[filter_x1], %[ftmp0] \n\t" + "pshufh %[filter_y0], %[filter_y0], %[ftmp0] \n\t" + "pshufh %[filter_y1], %[filter_y1], %[ftmp0] \n\t" + // fdata3: fdata3[0] ~ fdata3[3] + VAR_FILTER_BLOCK2D_BIL_FIRST_PASS_4_A + + // fdata3 +a_stride*1: fdata3[0] ~ fdata3[3] + MMI_ADDU(%[a], %[a], %[a_stride]) + VAR_FILTER_BLOCK2D_BIL_FIRST_PASS_4_B + // temp2: temp2[0] ~ temp2[7] + VAR_FILTER_BLOCK2D_BIL_SECOND_PASS_4_A + + // fdata3 +a_stride*2: fdata3[0] ~ fdata3[3] + MMI_ADDU(%[a], %[a], %[a_stride]) + VAR_FILTER_BLOCK2D_BIL_FIRST_PASS_4_A + // temp2+4*1: temp2[0] ~ temp2[7] + MMI_ADDIU(%[temp2_ptr], %[temp2_ptr], 0x04) + VAR_FILTER_BLOCK2D_BIL_SECOND_PASS_4_B + + "1: \n\t" + MMI_ADDU(%[a], %[a], %[a_stride]) + VAR_FILTER_BLOCK2D_BIL_FIRST_PASS_4_B + MMI_ADDIU(%[temp2_ptr], %[temp2_ptr], 0x04) + VAR_FILTER_BLOCK2D_BIL_SECOND_PASS_4_A + + MMI_ADDU(%[a], %[a], %[a_stride]) + VAR_FILTER_BLOCK2D_BIL_FIRST_PASS_4_A + MMI_ADDIU(%[temp2_ptr], %[temp2_ptr], 0x04) + VAR_FILTER_BLOCK2D_BIL_SECOND_PASS_4_B + "addiu %[counter], %[counter], -0x01 \n\t" + "bnez %[counter], 1b \n\t" + : [ftmp0] "=&f"(ftmp[0]), [ftmp1] "=&f"(ftmp[1]), [ftmp2] "=&f"(ftmp[2]), + [ftmp3] "=&f"(ftmp[3]), [ftmp4] "=&f"(ftmp[4]), [ftmp5] "=&f"(ftmp[5]), + [ftmp6] "=&f"(ftmp[6]), [tmp0] "=&r"(tmp[0]), [a] "+&r"(a), + [temp2_ptr] "+&r"(temp2_ptr), [counter]"+&r"(l_counter) + : [filter_x0] "f"((uint64_t)filter_x[0]), + [filter_x1] "f"((uint64_t)filter_x[1]), + [filter_y0] "f"((uint64_t)filter_y[0]), + [filter_y1] "f"((uint64_t)filter_y[1]), + [a_stride] "r"((mips_reg)a_stride), [ff_ph_40] "f"(ff_ph_40), + [mask] "f"(mask) + : "memory" + ); +} + +#define SUBPIX_VAR4XN(H) \ + uint32_t vpx_sub_pixel_variance4x##H##_mmi( \ + const uint8_t *a, int a_stride, int xoffset, int yoffset, \ + const uint8_t *b, int b_stride, uint32_t *sse) { \ + uint8_t temp2[4 * H]; \ + var_filter_block2d_bil_4x(a, a_stride, xoffset, yoffset, temp2, \ + (H - 2) / 2); \ + \ + return vpx_variance4x##H##_mmi(temp2, 4, b, b_stride, sse); \ + } + +SUBPIX_VAR4XN(8) +SUBPIX_VAR4XN(4) + +#define SUBPIX_AVG_VAR(W, H) \ + uint32_t vpx_sub_pixel_avg_variance##W##x##H##_mmi( \ + const uint8_t *a, int a_stride, int xoffset, int yoffset, \ + const uint8_t *b, int b_stride, uint32_t *sse, \ + const uint8_t *second_pred) { \ + uint16_t fdata3[(H + 1) * W]; \ + uint8_t temp2[H * W]; \ + DECLARE_ALIGNED(16, uint8_t, temp3[H * W]); \ + \ + var_filter_block2d_bil_first_pass(a, fdata3, a_stride, 1, H + 1, W, \ + bilinear_filters[xoffset]); \ + var_filter_block2d_bil_second_pass(fdata3, temp2, W, W, H, W, \ + bilinear_filters[yoffset]); \ + \ + vpx_comp_avg_pred_c(temp3, second_pred, W, H, temp2, W); \ + \ + return vpx_variance##W##x##H##_mmi(temp3, W, b, b_stride, sse); \ + } + +SUBPIX_AVG_VAR(64, 64) +SUBPIX_AVG_VAR(64, 32) +SUBPIX_AVG_VAR(32, 64) +SUBPIX_AVG_VAR(32, 32) +SUBPIX_AVG_VAR(32, 16) +SUBPIX_AVG_VAR(16, 32) +SUBPIX_AVG_VAR(16, 16) +SUBPIX_AVG_VAR(16, 8) +SUBPIX_AVG_VAR(8, 16) +SUBPIX_AVG_VAR(8, 8) +SUBPIX_AVG_VAR(8, 4) +SUBPIX_AVG_VAR(4, 8) +SUBPIX_AVG_VAR(4, 4) diff --git a/vpx_dsp/mips/variance_msa.c b/vpx_dsp/mips/variance_msa.c new file mode 100644 index 0000000..49b2f99 --- /dev/null +++ b/vpx_dsp/mips/variance_msa.c @@ -0,0 +1,621 @@ +/* + * Copyright (c) 2015 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "./vpx_dsp_rtcd.h" +#include "vpx_dsp/mips/macros_msa.h" + +#define CALC_MSE_B(src, ref, var) \ + { \ + v16u8 src_l0_m, src_l1_m; \ + v8i16 res_l0_m, res_l1_m; \ + \ + ILVRL_B2_UB(src, ref, src_l0_m, src_l1_m); \ + HSUB_UB2_SH(src_l0_m, src_l1_m, res_l0_m, res_l1_m); \ + DPADD_SH2_SW(res_l0_m, res_l1_m, res_l0_m, res_l1_m, var, var); \ + } + +#define CALC_MSE_AVG_B(src, ref, var, sub) \ + { \ + v16u8 src_l0_m, src_l1_m; \ + v8i16 res_l0_m, res_l1_m; \ + \ + ILVRL_B2_UB(src, ref, src_l0_m, src_l1_m); \ + HSUB_UB2_SH(src_l0_m, src_l1_m, res_l0_m, res_l1_m); \ + DPADD_SH2_SW(res_l0_m, res_l1_m, res_l0_m, res_l1_m, var, var); \ + \ + sub += res_l0_m + res_l1_m; \ + } + +#define VARIANCE_WxH(sse, diff, shift) sse - (((uint32_t)diff * diff) >> shift) + +#define VARIANCE_LARGE_WxH(sse, diff, shift) \ + sse - (((int64_t)diff * diff) >> shift) + +static uint32_t sse_diff_4width_msa(const uint8_t *src_ptr, int32_t src_stride, + const uint8_t *ref_ptr, int32_t ref_stride, + int32_t height, int32_t *diff) { + uint32_t src0, src1, src2, src3; + uint32_t ref0, ref1, ref2, ref3; + int32_t ht_cnt; + v16u8 src = { 0 }; + v16u8 ref = { 0 }; + v8i16 avg = { 0 }; + v4i32 vec, var = { 0 }; + + for (ht_cnt = (height >> 2); ht_cnt--;) { + LW4(src_ptr, src_stride, src0, src1, src2, src3); + src_ptr += (4 * src_stride); + LW4(ref_ptr, ref_stride, ref0, ref1, ref2, ref3); + ref_ptr += (4 * ref_stride); + + INSERT_W4_UB(src0, src1, src2, src3, src); + INSERT_W4_UB(ref0, ref1, ref2, ref3, ref); + CALC_MSE_AVG_B(src, ref, var, avg); + } + + vec = __msa_hadd_s_w(avg, avg); + *diff = HADD_SW_S32(vec); + + return HADD_SW_S32(var); +} + +static uint32_t sse_diff_8width_msa(const uint8_t *src_ptr, int32_t src_stride, + const uint8_t *ref_ptr, int32_t ref_stride, + int32_t height, int32_t *diff) { + int32_t ht_cnt; + v16u8 src0, src1, src2, src3; + v16u8 ref0, ref1, ref2, ref3; + v8i16 avg = { 0 }; + v4i32 vec, var = { 0 }; + + for (ht_cnt = (height >> 2); ht_cnt--;) { + LD_UB4(src_ptr, src_stride, src0, src1, src2, src3); + src_ptr += (4 * src_stride); + LD_UB4(ref_ptr, ref_stride, ref0, ref1, ref2, ref3); + ref_ptr += (4 * ref_stride); + + PCKEV_D4_UB(src1, src0, src3, src2, ref1, ref0, ref3, ref2, src0, src1, + ref0, ref1); + CALC_MSE_AVG_B(src0, ref0, var, avg); + CALC_MSE_AVG_B(src1, ref1, var, avg); + } + + vec = __msa_hadd_s_w(avg, avg); + *diff = HADD_SW_S32(vec); + + return HADD_SW_S32(var); +} + +static uint32_t sse_diff_16width_msa(const uint8_t *src_ptr, int32_t src_stride, + const uint8_t *ref_ptr, int32_t ref_stride, + int32_t height, int32_t *diff) { + int32_t ht_cnt; + v16u8 src, ref; + v8i16 avg = { 0 }; + v4i32 vec, var = { 0 }; + + for (ht_cnt = (height >> 2); ht_cnt--;) { + src = LD_UB(src_ptr); + src_ptr += src_stride; + ref = LD_UB(ref_ptr); + ref_ptr += ref_stride; + CALC_MSE_AVG_B(src, ref, var, avg); + + src = LD_UB(src_ptr); + src_ptr += src_stride; + ref = LD_UB(ref_ptr); + ref_ptr += ref_stride; + CALC_MSE_AVG_B(src, ref, var, avg); + + src = LD_UB(src_ptr); + src_ptr += src_stride; + ref = LD_UB(ref_ptr); + ref_ptr += ref_stride; + CALC_MSE_AVG_B(src, ref, var, avg); + + src = LD_UB(src_ptr); + src_ptr += src_stride; + ref = LD_UB(ref_ptr); + ref_ptr += ref_stride; + CALC_MSE_AVG_B(src, ref, var, avg); + } + + vec = __msa_hadd_s_w(avg, avg); + *diff = HADD_SW_S32(vec); + + return HADD_SW_S32(var); +} + +static uint32_t sse_diff_32width_msa(const uint8_t *src_ptr, int32_t src_stride, + const uint8_t *ref_ptr, int32_t ref_stride, + int32_t height, int32_t *diff) { + int32_t ht_cnt; + v16u8 src0, src1, ref0, ref1; + v8i16 avg = { 0 }; + v4i32 vec, var = { 0 }; + + for (ht_cnt = (height >> 2); ht_cnt--;) { + LD_UB2(src_ptr, 16, src0, src1); + src_ptr += src_stride; + LD_UB2(ref_ptr, 16, ref0, ref1); + ref_ptr += ref_stride; + CALC_MSE_AVG_B(src0, ref0, var, avg); + CALC_MSE_AVG_B(src1, ref1, var, avg); + + LD_UB2(src_ptr, 16, src0, src1); + src_ptr += src_stride; + LD_UB2(ref_ptr, 16, ref0, ref1); + ref_ptr += ref_stride; + CALC_MSE_AVG_B(src0, ref0, var, avg); + CALC_MSE_AVG_B(src1, ref1, var, avg); + + LD_UB2(src_ptr, 16, src0, src1); + src_ptr += src_stride; + LD_UB2(ref_ptr, 16, ref0, ref1); + ref_ptr += ref_stride; + CALC_MSE_AVG_B(src0, ref0, var, avg); + CALC_MSE_AVG_B(src1, ref1, var, avg); + + LD_UB2(src_ptr, 16, src0, src1); + src_ptr += src_stride; + LD_UB2(ref_ptr, 16, ref0, ref1); + ref_ptr += ref_stride; + CALC_MSE_AVG_B(src0, ref0, var, avg); + CALC_MSE_AVG_B(src1, ref1, var, avg); + } + + vec = __msa_hadd_s_w(avg, avg); + *diff = HADD_SW_S32(vec); + + return HADD_SW_S32(var); +} + +static uint32_t sse_diff_32x64_msa(const uint8_t *src_ptr, int32_t src_stride, + const uint8_t *ref_ptr, int32_t ref_stride, + int32_t *diff) { + int32_t ht_cnt; + v16u8 src0, src1, ref0, ref1; + v8i16 avg0 = { 0 }; + v8i16 avg1 = { 0 }; + v4i32 vec, var = { 0 }; + + for (ht_cnt = 16; ht_cnt--;) { + LD_UB2(src_ptr, 16, src0, src1); + src_ptr += src_stride; + LD_UB2(ref_ptr, 16, ref0, ref1); + ref_ptr += ref_stride; + CALC_MSE_AVG_B(src0, ref0, var, avg0); + CALC_MSE_AVG_B(src1, ref1, var, avg1); + + LD_UB2(src_ptr, 16, src0, src1); + src_ptr += src_stride; + LD_UB2(ref_ptr, 16, ref0, ref1); + ref_ptr += ref_stride; + CALC_MSE_AVG_B(src0, ref0, var, avg0); + CALC_MSE_AVG_B(src1, ref1, var, avg1); + + LD_UB2(src_ptr, 16, src0, src1); + src_ptr += src_stride; + LD_UB2(ref_ptr, 16, ref0, ref1); + ref_ptr += ref_stride; + CALC_MSE_AVG_B(src0, ref0, var, avg0); + CALC_MSE_AVG_B(src1, ref1, var, avg1); + + LD_UB2(src_ptr, 16, src0, src1); + src_ptr += src_stride; + LD_UB2(ref_ptr, 16, ref0, ref1); + ref_ptr += ref_stride; + CALC_MSE_AVG_B(src0, ref0, var, avg0); + CALC_MSE_AVG_B(src1, ref1, var, avg1); + } + + vec = __msa_hadd_s_w(avg0, avg0); + vec += __msa_hadd_s_w(avg1, avg1); + *diff = HADD_SW_S32(vec); + + return HADD_SW_S32(var); +} + +static uint32_t sse_diff_64x32_msa(const uint8_t *src_ptr, int32_t src_stride, + const uint8_t *ref_ptr, int32_t ref_stride, + int32_t *diff) { + int32_t ht_cnt; + v16u8 src0, src1, src2, src3; + v16u8 ref0, ref1, ref2, ref3; + v8i16 avg0 = { 0 }; + v8i16 avg1 = { 0 }; + v4i32 vec, var = { 0 }; + + for (ht_cnt = 16; ht_cnt--;) { + LD_UB4(src_ptr, 16, src0, src1, src2, src3); + src_ptr += src_stride; + LD_UB4(ref_ptr, 16, ref0, ref1, ref2, ref3); + ref_ptr += ref_stride; + CALC_MSE_AVG_B(src0, ref0, var, avg0); + CALC_MSE_AVG_B(src2, ref2, var, avg0); + CALC_MSE_AVG_B(src1, ref1, var, avg1); + CALC_MSE_AVG_B(src3, ref3, var, avg1); + + LD_UB4(src_ptr, 16, src0, src1, src2, src3); + src_ptr += src_stride; + LD_UB4(ref_ptr, 16, ref0, ref1, ref2, ref3); + ref_ptr += ref_stride; + CALC_MSE_AVG_B(src0, ref0, var, avg0); + CALC_MSE_AVG_B(src2, ref2, var, avg0); + CALC_MSE_AVG_B(src1, ref1, var, avg1); + CALC_MSE_AVG_B(src3, ref3, var, avg1); + } + + vec = __msa_hadd_s_w(avg0, avg0); + vec += __msa_hadd_s_w(avg1, avg1); + *diff = HADD_SW_S32(vec); + + return HADD_SW_S32(var); +} + +static uint32_t sse_diff_64x64_msa(const uint8_t *src_ptr, int32_t src_stride, + const uint8_t *ref_ptr, int32_t ref_stride, + int32_t *diff) { + int32_t ht_cnt; + v16u8 src0, src1, src2, src3; + v16u8 ref0, ref1, ref2, ref3; + v8i16 avg0 = { 0 }; + v8i16 avg1 = { 0 }; + v8i16 avg2 = { 0 }; + v8i16 avg3 = { 0 }; + v4i32 vec, var = { 0 }; + + for (ht_cnt = 32; ht_cnt--;) { + LD_UB4(src_ptr, 16, src0, src1, src2, src3); + src_ptr += src_stride; + LD_UB4(ref_ptr, 16, ref0, ref1, ref2, ref3); + ref_ptr += ref_stride; + + CALC_MSE_AVG_B(src0, ref0, var, avg0); + CALC_MSE_AVG_B(src1, ref1, var, avg1); + CALC_MSE_AVG_B(src2, ref2, var, avg2); + CALC_MSE_AVG_B(src3, ref3, var, avg3); + LD_UB4(src_ptr, 16, src0, src1, src2, src3); + src_ptr += src_stride; + LD_UB4(ref_ptr, 16, ref0, ref1, ref2, ref3); + ref_ptr += ref_stride; + CALC_MSE_AVG_B(src0, ref0, var, avg0); + CALC_MSE_AVG_B(src1, ref1, var, avg1); + CALC_MSE_AVG_B(src2, ref2, var, avg2); + CALC_MSE_AVG_B(src3, ref3, var, avg3); + } + + vec = __msa_hadd_s_w(avg0, avg0); + vec += __msa_hadd_s_w(avg1, avg1); + vec += __msa_hadd_s_w(avg2, avg2); + vec += __msa_hadd_s_w(avg3, avg3); + *diff = HADD_SW_S32(vec); + + return HADD_SW_S32(var); +} + +static uint32_t get_mb_ss_msa(const int16_t *src) { + uint32_t sum, cnt; + v8i16 src0, src1, src2, src3; + v4i32 src0_l, src1_l, src2_l, src3_l; + v4i32 src0_r, src1_r, src2_r, src3_r; + v2i64 sq_src_l = { 0 }; + v2i64 sq_src_r = { 0 }; + + for (cnt = 8; cnt--;) { + LD_SH4(src, 8, src0, src1, src2, src3); + src += 4 * 8; + + UNPCK_SH_SW(src0, src0_l, src0_r); + UNPCK_SH_SW(src1, src1_l, src1_r); + UNPCK_SH_SW(src2, src2_l, src2_r); + UNPCK_SH_SW(src3, src3_l, src3_r); + + DPADD_SD2_SD(src0_l, src0_r, sq_src_l, sq_src_r); + DPADD_SD2_SD(src1_l, src1_r, sq_src_l, sq_src_r); + DPADD_SD2_SD(src2_l, src2_r, sq_src_l, sq_src_r); + DPADD_SD2_SD(src3_l, src3_r, sq_src_l, sq_src_r); + } + + sq_src_l += __msa_splati_d(sq_src_l, 1); + sq_src_r += __msa_splati_d(sq_src_r, 1); + + sum = __msa_copy_s_d(sq_src_l, 0); + sum += __msa_copy_s_d(sq_src_r, 0); + + return sum; +} + +static uint32_t sse_4width_msa(const uint8_t *src_ptr, int32_t src_stride, + const uint8_t *ref_ptr, int32_t ref_stride, + int32_t height) { + int32_t ht_cnt; + uint32_t src0, src1, src2, src3; + uint32_t ref0, ref1, ref2, ref3; + v16u8 src = { 0 }; + v16u8 ref = { 0 }; + v4i32 var = { 0 }; + + for (ht_cnt = (height >> 2); ht_cnt--;) { + LW4(src_ptr, src_stride, src0, src1, src2, src3); + src_ptr += (4 * src_stride); + LW4(ref_ptr, ref_stride, ref0, ref1, ref2, ref3); + ref_ptr += (4 * ref_stride); + + INSERT_W4_UB(src0, src1, src2, src3, src); + INSERT_W4_UB(ref0, ref1, ref2, ref3, ref); + CALC_MSE_B(src, ref, var); + } + + return HADD_SW_S32(var); +} + +static uint32_t sse_8width_msa(const uint8_t *src_ptr, int32_t src_stride, + const uint8_t *ref_ptr, int32_t ref_stride, + int32_t height) { + int32_t ht_cnt; + v16u8 src0, src1, src2, src3; + v16u8 ref0, ref1, ref2, ref3; + v4i32 var = { 0 }; + + for (ht_cnt = (height >> 2); ht_cnt--;) { + LD_UB4(src_ptr, src_stride, src0, src1, src2, src3); + src_ptr += (4 * src_stride); + LD_UB4(ref_ptr, ref_stride, ref0, ref1, ref2, ref3); + ref_ptr += (4 * ref_stride); + + PCKEV_D4_UB(src1, src0, src3, src2, ref1, ref0, ref3, ref2, src0, src1, + ref0, ref1); + CALC_MSE_B(src0, ref0, var); + CALC_MSE_B(src1, ref1, var); + } + + return HADD_SW_S32(var); +} + +static uint32_t sse_16width_msa(const uint8_t *src_ptr, int32_t src_stride, + const uint8_t *ref_ptr, int32_t ref_stride, + int32_t height) { + int32_t ht_cnt; + v16u8 src, ref; + v4i32 var = { 0 }; + + for (ht_cnt = (height >> 2); ht_cnt--;) { + src = LD_UB(src_ptr); + src_ptr += src_stride; + ref = LD_UB(ref_ptr); + ref_ptr += ref_stride; + CALC_MSE_B(src, ref, var); + + src = LD_UB(src_ptr); + src_ptr += src_stride; + ref = LD_UB(ref_ptr); + ref_ptr += ref_stride; + CALC_MSE_B(src, ref, var); + + src = LD_UB(src_ptr); + src_ptr += src_stride; + ref = LD_UB(ref_ptr); + ref_ptr += ref_stride; + CALC_MSE_B(src, ref, var); + + src = LD_UB(src_ptr); + src_ptr += src_stride; + ref = LD_UB(ref_ptr); + ref_ptr += ref_stride; + CALC_MSE_B(src, ref, var); + } + + return HADD_SW_S32(var); +} + +static uint32_t sse_32width_msa(const uint8_t *src_ptr, int32_t src_stride, + const uint8_t *ref_ptr, int32_t ref_stride, + int32_t height) { + int32_t ht_cnt; + v16u8 src0, src1, ref0, ref1; + v4i32 var = { 0 }; + + for (ht_cnt = (height >> 2); ht_cnt--;) { + LD_UB2(src_ptr, 16, src0, src1); + src_ptr += src_stride; + LD_UB2(ref_ptr, 16, ref0, ref1); + ref_ptr += ref_stride; + CALC_MSE_B(src0, ref0, var); + CALC_MSE_B(src1, ref1, var); + + LD_UB2(src_ptr, 16, src0, src1); + src_ptr += src_stride; + LD_UB2(ref_ptr, 16, ref0, ref1); + ref_ptr += ref_stride; + CALC_MSE_B(src0, ref0, var); + CALC_MSE_B(src1, ref1, var); + + LD_UB2(src_ptr, 16, src0, src1); + src_ptr += src_stride; + LD_UB2(ref_ptr, 16, ref0, ref1); + ref_ptr += ref_stride; + CALC_MSE_B(src0, ref0, var); + CALC_MSE_B(src1, ref1, var); + + LD_UB2(src_ptr, 16, src0, src1); + src_ptr += src_stride; + LD_UB2(ref_ptr, 16, ref0, ref1); + ref_ptr += ref_stride; + CALC_MSE_B(src0, ref0, var); + CALC_MSE_B(src1, ref1, var); + } + + return HADD_SW_S32(var); +} + +static uint32_t sse_64width_msa(const uint8_t *src_ptr, int32_t src_stride, + const uint8_t *ref_ptr, int32_t ref_stride, + int32_t height) { + int32_t ht_cnt; + v16u8 src0, src1, src2, src3; + v16u8 ref0, ref1, ref2, ref3; + v4i32 var = { 0 }; + + for (ht_cnt = height >> 1; ht_cnt--;) { + LD_UB4(src_ptr, 16, src0, src1, src2, src3); + src_ptr += src_stride; + LD_UB4(ref_ptr, 16, ref0, ref1, ref2, ref3); + ref_ptr += ref_stride; + CALC_MSE_B(src0, ref0, var); + CALC_MSE_B(src2, ref2, var); + CALC_MSE_B(src1, ref1, var); + CALC_MSE_B(src3, ref3, var); + + LD_UB4(src_ptr, 16, src0, src1, src2, src3); + src_ptr += src_stride; + LD_UB4(ref_ptr, 16, ref0, ref1, ref2, ref3); + ref_ptr += ref_stride; + CALC_MSE_B(src0, ref0, var); + CALC_MSE_B(src2, ref2, var); + CALC_MSE_B(src1, ref1, var); + CALC_MSE_B(src3, ref3, var); + } + + return HADD_SW_S32(var); +} + +uint32_t vpx_get4x4sse_cs_msa(const uint8_t *src_ptr, int32_t src_stride, + const uint8_t *ref_ptr, int32_t ref_stride) { + uint32_t src0, src1, src2, src3; + uint32_t ref0, ref1, ref2, ref3; + v16i8 src = { 0 }; + v16i8 ref = { 0 }; + v4i32 err0 = { 0 }; + + LW4(src_ptr, src_stride, src0, src1, src2, src3); + LW4(ref_ptr, ref_stride, ref0, ref1, ref2, ref3); + INSERT_W4_SB(src0, src1, src2, src3, src); + INSERT_W4_SB(ref0, ref1, ref2, ref3, ref); + CALC_MSE_B(src, ref, err0); + + return HADD_SW_S32(err0); +} + +#define VARIANCE_4Wx4H(sse, diff) VARIANCE_WxH(sse, diff, 4); +#define VARIANCE_4Wx8H(sse, diff) VARIANCE_WxH(sse, diff, 5); +#define VARIANCE_8Wx4H(sse, diff) VARIANCE_WxH(sse, diff, 5); +#define VARIANCE_8Wx8H(sse, diff) VARIANCE_WxH(sse, diff, 6); +#define VARIANCE_8Wx16H(sse, diff) VARIANCE_WxH(sse, diff, 7); +#define VARIANCE_16Wx8H(sse, diff) VARIANCE_WxH(sse, diff, 7); +#define VARIANCE_16Wx16H(sse, diff) VARIANCE_WxH(sse, diff, 8); + +#define VARIANCE_16Wx32H(sse, diff) VARIANCE_LARGE_WxH(sse, diff, 9); +#define VARIANCE_32Wx16H(sse, diff) VARIANCE_LARGE_WxH(sse, diff, 9); +#define VARIANCE_32Wx32H(sse, diff) VARIANCE_LARGE_WxH(sse, diff, 10); +#define VARIANCE_32Wx64H(sse, diff) VARIANCE_LARGE_WxH(sse, diff, 11); +#define VARIANCE_64Wx32H(sse, diff) VARIANCE_LARGE_WxH(sse, diff, 11); +#define VARIANCE_64Wx64H(sse, diff) VARIANCE_LARGE_WxH(sse, diff, 12); + +#define VPX_VARIANCE_WDXHT_MSA(wd, ht) \ + uint32_t vpx_variance##wd##x##ht##_msa( \ + const uint8_t *src, int32_t src_stride, const uint8_t *ref, \ + int32_t ref_stride, uint32_t *sse) { \ + int32_t diff; \ + \ + *sse = \ + sse_diff_##wd##width_msa(src, src_stride, ref, ref_stride, ht, &diff); \ + \ + return VARIANCE_##wd##Wx##ht##H(*sse, diff); \ + } + +VPX_VARIANCE_WDXHT_MSA(4, 4); +VPX_VARIANCE_WDXHT_MSA(4, 8); + +VPX_VARIANCE_WDXHT_MSA(8, 4) +VPX_VARIANCE_WDXHT_MSA(8, 8) +VPX_VARIANCE_WDXHT_MSA(8, 16) + +VPX_VARIANCE_WDXHT_MSA(16, 8) +VPX_VARIANCE_WDXHT_MSA(16, 16) +VPX_VARIANCE_WDXHT_MSA(16, 32) + +VPX_VARIANCE_WDXHT_MSA(32, 16) +VPX_VARIANCE_WDXHT_MSA(32, 32) + +uint32_t vpx_variance32x64_msa(const uint8_t *src, int32_t src_stride, + const uint8_t *ref, int32_t ref_stride, + uint32_t *sse) { + int32_t diff; + + *sse = sse_diff_32x64_msa(src, src_stride, ref, ref_stride, &diff); + + return VARIANCE_32Wx64H(*sse, diff); +} + +uint32_t vpx_variance64x32_msa(const uint8_t *src, int32_t src_stride, + const uint8_t *ref, int32_t ref_stride, + uint32_t *sse) { + int32_t diff; + + *sse = sse_diff_64x32_msa(src, src_stride, ref, ref_stride, &diff); + + return VARIANCE_64Wx32H(*sse, diff); +} + +uint32_t vpx_variance64x64_msa(const uint8_t *src, int32_t src_stride, + const uint8_t *ref, int32_t ref_stride, + uint32_t *sse) { + int32_t diff; + + *sse = sse_diff_64x64_msa(src, src_stride, ref, ref_stride, &diff); + + return VARIANCE_64Wx64H(*sse, diff); +} + +uint32_t vpx_mse8x8_msa(const uint8_t *src, int32_t src_stride, + const uint8_t *ref, int32_t ref_stride, uint32_t *sse) { + *sse = sse_8width_msa(src, src_stride, ref, ref_stride, 8); + + return *sse; +} + +uint32_t vpx_mse8x16_msa(const uint8_t *src, int32_t src_stride, + const uint8_t *ref, int32_t ref_stride, + uint32_t *sse) { + *sse = sse_8width_msa(src, src_stride, ref, ref_stride, 16); + + return *sse; +} + +uint32_t vpx_mse16x8_msa(const uint8_t *src, int32_t src_stride, + const uint8_t *ref, int32_t ref_stride, + uint32_t *sse) { + *sse = sse_16width_msa(src, src_stride, ref, ref_stride, 8); + + return *sse; +} + +uint32_t vpx_mse16x16_msa(const uint8_t *src, int32_t src_stride, + const uint8_t *ref, int32_t ref_stride, + uint32_t *sse) { + *sse = sse_16width_msa(src, src_stride, ref, ref_stride, 16); + + return *sse; +} + +void vpx_get8x8var_msa(const uint8_t *src, int32_t src_stride, + const uint8_t *ref, int32_t ref_stride, uint32_t *sse, + int32_t *sum) { + *sse = sse_diff_8width_msa(src, src_stride, ref, ref_stride, 8, sum); +} + +void vpx_get16x16var_msa(const uint8_t *src, int32_t src_stride, + const uint8_t *ref, int32_t ref_stride, uint32_t *sse, + int32_t *sum) { + *sse = sse_diff_16width_msa(src, src_stride, ref, ref_stride, 16, sum); +} + +uint32_t vpx_get_mb_ss_msa(const int16_t *src) { return get_mb_ss_msa(src); } diff --git a/vpx_dsp/mips/vpx_convolve8_avg_horiz_msa.c b/vpx_dsp/mips/vpx_convolve8_avg_horiz_msa.c new file mode 100644 index 0000000..187a013 --- /dev/null +++ b/vpx_dsp/mips/vpx_convolve8_avg_horiz_msa.c @@ -0,0 +1,716 @@ +/* + * Copyright (c) 2015 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include "./vpx_dsp_rtcd.h" +#include "vpx_dsp/mips/vpx_convolve_msa.h" + +static void common_hz_8t_and_aver_dst_4x4_msa(const uint8_t *src, + int32_t src_stride, uint8_t *dst, + int32_t dst_stride, + int8_t *filter) { + uint32_t tp0, tp1, tp2, tp3; + v16i8 src0, src1, src2, src3, filt0, filt1, filt2, filt3; + v16u8 dst0 = { 0 }, res; + v16u8 mask0, mask1, mask2, mask3; + v8i16 filt, res0, res1; + + mask0 = LD_UB(&mc_filt_mask_arr[16]); + src -= 3; + + /* rearranging filter */ + filt = LD_SH(filter); + SPLATI_H4_SB(filt, 0, 1, 2, 3, filt0, filt1, filt2, filt3); + + mask1 = mask0 + 2; + mask2 = mask0 + 4; + mask3 = mask0 + 6; + + LD_SB4(src, src_stride, src0, src1, src2, src3); + XORI_B4_128_SB(src0, src1, src2, src3); + HORIZ_8TAP_4WID_4VECS_FILT(src0, src1, src2, src3, mask0, mask1, mask2, mask3, + filt0, filt1, filt2, filt3, res0, res1); + LW4(dst, dst_stride, tp0, tp1, tp2, tp3); + INSERT_W4_UB(tp0, tp1, tp2, tp3, dst0); + SRARI_H2_SH(res0, res1, FILTER_BITS); + SAT_SH2_SH(res0, res1, 7); + res = PCKEV_XORI128_UB(res0, res1); + res = (v16u8)__msa_aver_u_b(res, dst0); + ST4x4_UB(res, res, 0, 1, 2, 3, dst, dst_stride); +} + +static void common_hz_8t_and_aver_dst_4x8_msa(const uint8_t *src, + int32_t src_stride, uint8_t *dst, + int32_t dst_stride, + int8_t *filter) { + uint32_t tp0, tp1, tp2, tp3; + v16i8 src0, src1, src2, src3, filt0, filt1, filt2, filt3; + v16u8 mask0, mask1, mask2, mask3, res0, res1, res2, res3; + v16u8 dst0 = { 0 }, dst1 = { 0 }; + v8i16 filt, vec0, vec1, vec2, vec3; + + mask0 = LD_UB(&mc_filt_mask_arr[16]); + src -= 3; + + /* rearranging filter */ + filt = LD_SH(filter); + SPLATI_H4_SB(filt, 0, 1, 2, 3, filt0, filt1, filt2, filt3); + + mask1 = mask0 + 2; + mask2 = mask0 + 4; + mask3 = mask0 + 6; + + LD_SB4(src, src_stride, src0, src1, src2, src3); + XORI_B4_128_SB(src0, src1, src2, src3); + src += (4 * src_stride); + LW4(dst, dst_stride, tp0, tp1, tp2, tp3); + INSERT_W4_UB(tp0, tp1, tp2, tp3, dst0); + LW4(dst + 4 * dst_stride, dst_stride, tp0, tp1, tp2, tp3); + INSERT_W4_UB(tp0, tp1, tp2, tp3, dst1); + HORIZ_8TAP_4WID_4VECS_FILT(src0, src1, src2, src3, mask0, mask1, mask2, mask3, + filt0, filt1, filt2, filt3, vec0, vec1); + LD_SB4(src, src_stride, src0, src1, src2, src3); + XORI_B4_128_SB(src0, src1, src2, src3); + HORIZ_8TAP_4WID_4VECS_FILT(src0, src1, src2, src3, mask0, mask1, mask2, mask3, + filt0, filt1, filt2, filt3, vec2, vec3); + SRARI_H4_SH(vec0, vec1, vec2, vec3, FILTER_BITS); + SAT_SH4_SH(vec0, vec1, vec2, vec3, 7); + PCKEV_B4_UB(vec0, vec0, vec1, vec1, vec2, vec2, vec3, vec3, res0, res1, res2, + res3); + ILVR_D2_UB(res1, res0, res3, res2, res0, res2); + XORI_B2_128_UB(res0, res2); + AVER_UB2_UB(res0, dst0, res2, dst1, res0, res2); + ST4x8_UB(res0, res2, dst, dst_stride); +} + +static void common_hz_8t_and_aver_dst_4w_msa(const uint8_t *src, + int32_t src_stride, uint8_t *dst, + int32_t dst_stride, int8_t *filter, + int32_t height) { + if (4 == height) { + common_hz_8t_and_aver_dst_4x4_msa(src, src_stride, dst, dst_stride, filter); + } else if (8 == height) { + common_hz_8t_and_aver_dst_4x8_msa(src, src_stride, dst, dst_stride, filter); + } +} + +static void common_hz_8t_and_aver_dst_8w_msa(const uint8_t *src, + int32_t src_stride, uint8_t *dst, + int32_t dst_stride, int8_t *filter, + int32_t height) { + int32_t loop_cnt; + int64_t tp0, tp1, tp2, tp3; + v16i8 src0, src1, src2, src3, filt0, filt1, filt2, filt3; + v16u8 mask0, mask1, mask2, mask3, dst0 = { 0 }, dst1 = { 0 }; + v8i16 filt, out0, out1, out2, out3; + + mask0 = LD_UB(&mc_filt_mask_arr[0]); + src -= 3; + + /* rearranging filter */ + filt = LD_SH(filter); + SPLATI_H4_SB(filt, 0, 1, 2, 3, filt0, filt1, filt2, filt3); + + mask1 = mask0 + 2; + mask2 = mask0 + 4; + mask3 = mask0 + 6; + + for (loop_cnt = (height >> 2); loop_cnt--;) { + LD_SB4(src, src_stride, src0, src1, src2, src3); + XORI_B4_128_SB(src0, src1, src2, src3); + src += (4 * src_stride); + HORIZ_8TAP_8WID_4VECS_FILT(src0, src1, src2, src3, mask0, mask1, mask2, + mask3, filt0, filt1, filt2, filt3, out0, out1, + out2, out3); + LD4(dst, dst_stride, tp0, tp1, tp2, tp3); + INSERT_D2_UB(tp0, tp1, dst0); + INSERT_D2_UB(tp2, tp3, dst1); + SRARI_H4_SH(out0, out1, out2, out3, FILTER_BITS); + SAT_SH4_SH(out0, out1, out2, out3, 7); + CONVERT_UB_AVG_ST8x4_UB(out0, out1, out2, out3, dst0, dst1, dst, + dst_stride); + dst += (4 * dst_stride); + } +} + +static void common_hz_8t_and_aver_dst_16w_msa(const uint8_t *src, + int32_t src_stride, uint8_t *dst, + int32_t dst_stride, + int8_t *filter, int32_t height) { + int32_t loop_cnt; + v16i8 src0, src1, src2, src3, filt0, filt1, filt2, filt3; + v16u8 mask0, mask1, mask2, mask3, dst0, dst1; + v8i16 filt, out0, out1, out2, out3; + v8i16 vec0, vec1, vec2, vec3, vec4, vec5, vec6, vec7; + v8i16 vec8, vec9, vec10, vec11, vec12, vec13, vec14, vec15; + + mask0 = LD_UB(&mc_filt_mask_arr[0]); + src -= 3; + + /* rearranging filter */ + filt = LD_SH(filter); + SPLATI_H4_SB(filt, 0, 1, 2, 3, filt0, filt1, filt2, filt3); + + mask1 = mask0 + 2; + mask2 = mask0 + 4; + mask3 = mask0 + 6; + + for (loop_cnt = height >> 1; loop_cnt--;) { + LD_SB2(src, src_stride, src0, src2); + LD_SB2(src + 8, src_stride, src1, src3); + src += (2 * src_stride); + + XORI_B4_128_SB(src0, src1, src2, src3); + VSHF_B4_SH(src0, src0, mask0, mask1, mask2, mask3, vec0, vec4, vec8, vec12); + VSHF_B4_SH(src1, src1, mask0, mask1, mask2, mask3, vec1, vec5, vec9, vec13); + VSHF_B4_SH(src2, src2, mask0, mask1, mask2, mask3, vec2, vec6, vec10, + vec14); + VSHF_B4_SH(src3, src3, mask0, mask1, mask2, mask3, vec3, vec7, vec11, + vec15); + DOTP_SB4_SH(vec0, vec1, vec2, vec3, filt0, filt0, filt0, filt0, vec0, vec1, + vec2, vec3); + DOTP_SB4_SH(vec8, vec9, vec10, vec11, filt2, filt2, filt2, filt2, vec8, + vec9, vec10, vec11); + DPADD_SB4_SH(vec4, vec5, vec6, vec7, filt1, filt1, filt1, filt1, vec0, vec1, + vec2, vec3); + DPADD_SB4_SH(vec12, vec13, vec14, vec15, filt3, filt3, filt3, filt3, vec8, + vec9, vec10, vec11); + ADDS_SH4_SH(vec0, vec8, vec1, vec9, vec2, vec10, vec3, vec11, out0, out1, + out2, out3); + LD_UB2(dst, dst_stride, dst0, dst1); + SRARI_H4_SH(out0, out1, out2, out3, FILTER_BITS); + SAT_SH4_SH(out0, out1, out2, out3, 7); + PCKEV_XORI128_AVG_ST_UB(out1, out0, dst0, dst); + dst += dst_stride; + PCKEV_XORI128_AVG_ST_UB(out3, out2, dst1, dst); + dst += dst_stride; + } +} + +static void common_hz_8t_and_aver_dst_32w_msa(const uint8_t *src, + int32_t src_stride, uint8_t *dst, + int32_t dst_stride, + int8_t *filter, int32_t height) { + uint32_t loop_cnt; + v16i8 src0, src1, src2, src3, filt0, filt1, filt2, filt3; + v16u8 dst1, dst2, mask0, mask1, mask2, mask3; + v8i16 filt, out0, out1, out2, out3; + v8i16 vec0, vec1, vec2, vec3, vec4, vec5, vec6, vec7; + v8i16 vec8, vec9, vec10, vec11, vec12, vec13, vec14, vec15; + + mask0 = LD_UB(&mc_filt_mask_arr[0]); + src -= 3; + + /* rearranging filter */ + filt = LD_SH(filter); + SPLATI_H4_SB(filt, 0, 1, 2, 3, filt0, filt1, filt2, filt3); + + mask1 = mask0 + 2; + mask2 = mask0 + 4; + mask3 = mask0 + 6; + + for (loop_cnt = height; loop_cnt--;) { + src0 = LD_SB(src); + src2 = LD_SB(src + 16); + src3 = LD_SB(src + 24); + src1 = __msa_sldi_b(src2, src0, 8); + src += src_stride; + + XORI_B4_128_SB(src0, src1, src2, src3); + VSHF_B4_SH(src0, src0, mask0, mask1, mask2, mask3, vec0, vec4, vec8, vec12); + VSHF_B4_SH(src1, src1, mask0, mask1, mask2, mask3, vec1, vec5, vec9, vec13); + VSHF_B4_SH(src2, src2, mask0, mask1, mask2, mask3, vec2, vec6, vec10, + vec14); + VSHF_B4_SH(src3, src3, mask0, mask1, mask2, mask3, vec3, vec7, vec11, + vec15); + DOTP_SB4_SH(vec0, vec1, vec2, vec3, filt0, filt0, filt0, filt0, vec0, vec1, + vec2, vec3); + DOTP_SB4_SH(vec8, vec9, vec10, vec11, filt2, filt2, filt2, filt2, vec8, + vec9, vec10, vec11); + DPADD_SB4_SH(vec4, vec5, vec6, vec7, filt1, filt1, filt1, filt1, vec0, vec1, + vec2, vec3); + DPADD_SB4_SH(vec12, vec13, vec14, vec15, filt3, filt3, filt3, filt3, vec8, + vec9, vec10, vec11); + ADDS_SH4_SH(vec0, vec8, vec1, vec9, vec2, vec10, vec3, vec11, out0, out1, + out2, out3); + SRARI_H4_SH(out0, out1, out2, out3, FILTER_BITS); + SAT_SH4_SH(out0, out1, out2, out3, 7); + LD_UB2(dst, 16, dst1, dst2); + PCKEV_XORI128_AVG_ST_UB(out1, out0, dst1, dst); + PCKEV_XORI128_AVG_ST_UB(out3, out2, dst2, dst + 16); + dst += dst_stride; + } +} + +static void common_hz_8t_and_aver_dst_64w_msa(const uint8_t *src, + int32_t src_stride, uint8_t *dst, + int32_t dst_stride, + int8_t *filter, int32_t height) { + uint32_t loop_cnt, cnt; + v16i8 src0, src1, src2, src3, filt0, filt1, filt2, filt3; + v16u8 dst1, dst2, mask0, mask1, mask2, mask3; + v8i16 filt, out0, out1, out2, out3; + v8i16 vec0, vec1, vec2, vec3, vec4, vec5, vec6, vec7; + v8i16 vec8, vec9, vec10, vec11, vec12, vec13, vec14, vec15; + + mask0 = LD_UB(&mc_filt_mask_arr[0]); + src -= 3; + + /* rearranging filter */ + filt = LD_SH(filter); + SPLATI_H4_SB(filt, 0, 1, 2, 3, filt0, filt1, filt2, filt3); + + mask1 = mask0 + 2; + mask2 = mask0 + 4; + mask3 = mask0 + 6; + + for (loop_cnt = height; loop_cnt--;) { + for (cnt = 0; cnt < 2; ++cnt) { + src0 = LD_SB(&src[cnt << 5]); + src2 = LD_SB(&src[16 + (cnt << 5)]); + src3 = LD_SB(&src[24 + (cnt << 5)]); + src1 = __msa_sldi_b(src2, src0, 8); + + XORI_B4_128_SB(src0, src1, src2, src3); + VSHF_B4_SH(src0, src0, mask0, mask1, mask2, mask3, vec0, vec4, vec8, + vec12); + VSHF_B4_SH(src1, src1, mask0, mask1, mask2, mask3, vec1, vec5, vec9, + vec13); + VSHF_B4_SH(src2, src2, mask0, mask1, mask2, mask3, vec2, vec6, vec10, + vec14); + VSHF_B4_SH(src3, src3, mask0, mask1, mask2, mask3, vec3, vec7, vec11, + vec15); + DOTP_SB4_SH(vec0, vec1, vec2, vec3, filt0, filt0, filt0, filt0, vec0, + vec1, vec2, vec3); + DOTP_SB4_SH(vec8, vec9, vec10, vec11, filt2, filt2, filt2, filt2, vec8, + vec9, vec10, vec11); + DPADD_SB4_SH(vec4, vec5, vec6, vec7, filt1, filt1, filt1, filt1, vec0, + vec1, vec2, vec3); + DPADD_SB4_SH(vec12, vec13, vec14, vec15, filt3, filt3, filt3, filt3, vec8, + vec9, vec10, vec11); + ADDS_SH4_SH(vec0, vec8, vec1, vec9, vec2, vec10, vec3, vec11, out0, out1, + out2, out3); + SRARI_H4_SH(out0, out1, out2, out3, FILTER_BITS); + SAT_SH4_SH(out0, out1, out2, out3, 7); + LD_UB2(&dst[cnt << 5], 16, dst1, dst2); + PCKEV_XORI128_AVG_ST_UB(out1, out0, dst1, &dst[cnt << 5]); + PCKEV_XORI128_AVG_ST_UB(out3, out2, dst2, &dst[16 + (cnt << 5)]); + } + + src += src_stride; + dst += dst_stride; + } +} + +static void common_hz_2t_and_aver_dst_4x4_msa(const uint8_t *src, + int32_t src_stride, uint8_t *dst, + int32_t dst_stride, + int8_t *filter) { + uint32_t tp0, tp1, tp2, tp3; + v16i8 src0, src1, src2, src3, mask; + v16u8 filt0, dst0 = { 0 }, vec0, vec1, res; + v8u16 vec2, vec3, filt; + + mask = LD_SB(&mc_filt_mask_arr[16]); + + /* rearranging filter */ + filt = LD_UH(filter); + filt0 = (v16u8)__msa_splati_h((v8i16)filt, 0); + + LD_SB4(src, src_stride, src0, src1, src2, src3); + LW4(dst, dst_stride, tp0, tp1, tp2, tp3); + INSERT_W4_UB(tp0, tp1, tp2, tp3, dst0); + VSHF_B2_UB(src0, src1, src2, src3, mask, mask, vec0, vec1); + DOTP_UB2_UH(vec0, vec1, filt0, filt0, vec2, vec3); + SRARI_H2_UH(vec2, vec3, FILTER_BITS); + res = (v16u8)__msa_pckev_b((v16i8)vec3, (v16i8)vec2); + res = (v16u8)__msa_aver_u_b(res, dst0); + ST4x4_UB(res, res, 0, 1, 2, 3, dst, dst_stride); +} + +static void common_hz_2t_and_aver_dst_4x8_msa(const uint8_t *src, + int32_t src_stride, uint8_t *dst, + int32_t dst_stride, + int8_t *filter) { + uint32_t tp0, tp1, tp2, tp3; + v16i8 src0, src1, src2, src3, src4, src5, src6, src7, mask; + v16u8 filt0, vec0, vec1, vec2, vec3, res0, res1, res2, res3; + v16u8 dst0 = { 0 }, dst1 = { 0 }; + v8u16 vec4, vec5, vec6, vec7, filt; + + mask = LD_SB(&mc_filt_mask_arr[16]); + + /* rearranging filter */ + filt = LD_UH(filter); + filt0 = (v16u8)__msa_splati_h((v8i16)filt, 0); + + LD_SB8(src, src_stride, src0, src1, src2, src3, src4, src5, src6, src7); + LW4(dst, dst_stride, tp0, tp1, tp2, tp3); + INSERT_W4_UB(tp0, tp1, tp2, tp3, dst0); + LW4(dst + 4 * dst_stride, dst_stride, tp0, tp1, tp2, tp3); + INSERT_W4_UB(tp0, tp1, tp2, tp3, dst1); + VSHF_B2_UB(src0, src1, src2, src3, mask, mask, vec0, vec1); + VSHF_B2_UB(src4, src5, src6, src7, mask, mask, vec2, vec3); + DOTP_UB4_UH(vec0, vec1, vec2, vec3, filt0, filt0, filt0, filt0, vec4, vec5, + vec6, vec7); + SRARI_H4_UH(vec4, vec5, vec6, vec7, FILTER_BITS); + PCKEV_B4_UB(vec4, vec4, vec5, vec5, vec6, vec6, vec7, vec7, res0, res1, res2, + res3); + ILVR_D2_UB(res1, res0, res3, res2, res0, res2); + AVER_UB2_UB(res0, dst0, res2, dst1, res0, res2); + ST4x8_UB(res0, res2, dst, dst_stride); +} + +static void common_hz_2t_and_aver_dst_4w_msa(const uint8_t *src, + int32_t src_stride, uint8_t *dst, + int32_t dst_stride, int8_t *filter, + int32_t height) { + if (4 == height) { + common_hz_2t_and_aver_dst_4x4_msa(src, src_stride, dst, dst_stride, filter); + } else if (8 == height) { + common_hz_2t_and_aver_dst_4x8_msa(src, src_stride, dst, dst_stride, filter); + } +} + +static void common_hz_2t_and_aver_dst_8x4_msa(const uint8_t *src, + int32_t src_stride, uint8_t *dst, + int32_t dst_stride, + int8_t *filter) { + int64_t tp0, tp1, tp2, tp3; + v16i8 src0, src1, src2, src3, mask; + v16u8 filt0, dst0 = { 0 }, dst1 = { 0 }; + v8u16 vec0, vec1, vec2, vec3, filt; + + mask = LD_SB(&mc_filt_mask_arr[0]); + + /* rearranging filter */ + filt = LD_UH(filter); + filt0 = (v16u8)__msa_splati_h((v8i16)filt, 0); + + LD_SB4(src, src_stride, src0, src1, src2, src3); + VSHF_B2_UH(src0, src0, src1, src1, mask, mask, vec0, vec1); + VSHF_B2_UH(src2, src2, src3, src3, mask, mask, vec2, vec3); + DOTP_UB4_UH(vec0, vec1, vec2, vec3, filt0, filt0, filt0, filt0, vec0, vec1, + vec2, vec3); + SRARI_H4_UH(vec0, vec1, vec2, vec3, FILTER_BITS); + LD4(dst, dst_stride, tp0, tp1, tp2, tp3); + INSERT_D2_UB(tp0, tp1, dst0); + INSERT_D2_UB(tp2, tp3, dst1); + PCKEV_AVG_ST8x4_UB(vec0, vec1, vec2, vec3, dst0, dst1, dst, dst_stride); +} + +static void common_hz_2t_and_aver_dst_8x8mult_msa( + const uint8_t *src, int32_t src_stride, uint8_t *dst, int32_t dst_stride, + int8_t *filter, int32_t height) { + int64_t tp0, tp1, tp2, tp3; + v16i8 src0, src1, src2, src3, mask; + v16u8 filt0, dst0 = { 0 }, dst1 = { 0 }; + v8u16 vec0, vec1, vec2, vec3, filt; + + mask = LD_SB(&mc_filt_mask_arr[0]); + + /* rearranging filter */ + filt = LD_UH(filter); + filt0 = (v16u8)__msa_splati_h((v8i16)filt, 0); + + LD_SB4(src, src_stride, src0, src1, src2, src3); + src += (4 * src_stride); + VSHF_B2_UH(src0, src0, src1, src1, mask, mask, vec0, vec1); + VSHF_B2_UH(src2, src2, src3, src3, mask, mask, vec2, vec3); + DOTP_UB4_UH(vec0, vec1, vec2, vec3, filt0, filt0, filt0, filt0, vec0, vec1, + vec2, vec3); + SRARI_H4_UH(vec0, vec1, vec2, vec3, FILTER_BITS); + LD4(dst, dst_stride, tp0, tp1, tp2, tp3); + INSERT_D2_UB(tp0, tp1, dst0); + INSERT_D2_UB(tp2, tp3, dst1); + LD_SB4(src, src_stride, src0, src1, src2, src3); + src += (4 * src_stride); + PCKEV_AVG_ST8x4_UB(vec0, vec1, vec2, vec3, dst0, dst1, dst, dst_stride); + dst += (4 * dst_stride); + + VSHF_B2_UH(src0, src0, src1, src1, mask, mask, vec0, vec1); + VSHF_B2_UH(src2, src2, src3, src3, mask, mask, vec2, vec3); + DOTP_UB4_UH(vec0, vec1, vec2, vec3, filt0, filt0, filt0, filt0, vec0, vec1, + vec2, vec3); + SRARI_H4_UH(vec0, vec1, vec2, vec3, FILTER_BITS); + LD4(dst, dst_stride, tp0, tp1, tp2, tp3); + INSERT_D2_UB(tp0, tp1, dst0); + INSERT_D2_UB(tp2, tp3, dst1); + PCKEV_AVG_ST8x4_UB(vec0, vec1, vec2, vec3, dst0, dst1, dst, dst_stride); + dst += (4 * dst_stride); + + if (16 == height) { + LD_SB4(src, src_stride, src0, src1, src2, src3); + src += (4 * src_stride); + + VSHF_B2_UH(src0, src0, src1, src1, mask, mask, vec0, vec1); + VSHF_B2_UH(src2, src2, src3, src3, mask, mask, vec2, vec3); + DOTP_UB4_UH(vec0, vec1, vec2, vec3, filt0, filt0, filt0, filt0, vec0, vec1, + vec2, vec3); + SRARI_H4_UH(vec0, vec1, vec2, vec3, FILTER_BITS); + LD4(dst, dst_stride, tp0, tp1, tp2, tp3); + INSERT_D2_UB(tp0, tp1, dst0); + INSERT_D2_UB(tp2, tp3, dst1); + LD_SB4(src, src_stride, src0, src1, src2, src3); + PCKEV_AVG_ST8x4_UB(vec0, vec1, vec2, vec3, dst0, dst1, dst, dst_stride); + dst += (4 * dst_stride); + + VSHF_B2_UH(src0, src0, src1, src1, mask, mask, vec0, vec1); + VSHF_B2_UH(src2, src2, src3, src3, mask, mask, vec2, vec3); + DOTP_UB4_UH(vec0, vec1, vec2, vec3, filt0, filt0, filt0, filt0, vec0, vec1, + vec2, vec3); + SRARI_H4_UH(vec0, vec1, vec2, vec3, FILTER_BITS); + LD4(dst, dst_stride, tp0, tp1, tp2, tp3); + INSERT_D2_UB(tp0, tp1, dst0); + INSERT_D2_UB(tp2, tp3, dst1); + PCKEV_AVG_ST8x4_UB(vec0, vec1, vec2, vec3, dst0, dst1, dst, dst_stride); + } +} + +static void common_hz_2t_and_aver_dst_8w_msa(const uint8_t *src, + int32_t src_stride, uint8_t *dst, + int32_t dst_stride, int8_t *filter, + int32_t height) { + if (4 == height) { + common_hz_2t_and_aver_dst_8x4_msa(src, src_stride, dst, dst_stride, filter); + } else { + common_hz_2t_and_aver_dst_8x8mult_msa(src, src_stride, dst, dst_stride, + filter, height); + } +} + +static void common_hz_2t_and_aver_dst_16w_msa(const uint8_t *src, + int32_t src_stride, uint8_t *dst, + int32_t dst_stride, + int8_t *filter, int32_t height) { + uint32_t loop_cnt; + v16i8 src0, src1, src2, src3, src4, src5, src6, src7, mask; + v16u8 filt0, dst0, dst1, dst2, dst3; + v16u8 vec0, vec1, vec2, vec3, vec4, vec5, vec6, vec7; + v8u16 res0, res1, res2, res3, res4, res5, res6, res7, filt; + + mask = LD_SB(&mc_filt_mask_arr[0]); + + /* rearranging filter */ + filt = LD_UH(filter); + filt0 = (v16u8)__msa_splati_h((v8i16)filt, 0); + + LD_SB4(src, src_stride, src0, src2, src4, src6); + LD_SB4(src + 8, src_stride, src1, src3, src5, src7); + src += (4 * src_stride); + + VSHF_B2_UB(src0, src0, src1, src1, mask, mask, vec0, vec1); + VSHF_B2_UB(src2, src2, src3, src3, mask, mask, vec2, vec3); + VSHF_B2_UB(src4, src4, src5, src5, mask, mask, vec4, vec5); + VSHF_B2_UB(src6, src6, src7, src7, mask, mask, vec6, vec7); + DOTP_UB4_UH(vec0, vec1, vec2, vec3, filt0, filt0, filt0, filt0, res0, res1, + res2, res3); + DOTP_UB4_UH(vec4, vec5, vec6, vec7, filt0, filt0, filt0, filt0, res4, res5, + res6, res7); + SRARI_H4_UH(res0, res1, res2, res3, FILTER_BITS); + SRARI_H4_UH(res4, res5, res6, res7, FILTER_BITS); + LD_UB4(dst, dst_stride, dst0, dst1, dst2, dst3); + PCKEV_AVG_ST_UB(res1, res0, dst0, dst); + dst += dst_stride; + PCKEV_AVG_ST_UB(res3, res2, dst1, dst); + dst += dst_stride; + PCKEV_AVG_ST_UB(res5, res4, dst2, dst); + dst += dst_stride; + PCKEV_AVG_ST_UB(res7, res6, dst3, dst); + dst += dst_stride; + + for (loop_cnt = (height >> 2) - 1; loop_cnt--;) { + LD_SB4(src, src_stride, src0, src2, src4, src6); + LD_SB4(src + 8, src_stride, src1, src3, src5, src7); + src += (4 * src_stride); + + VSHF_B2_UB(src0, src0, src1, src1, mask, mask, vec0, vec1); + VSHF_B2_UB(src2, src2, src3, src3, mask, mask, vec2, vec3); + VSHF_B2_UB(src4, src4, src5, src5, mask, mask, vec4, vec5); + VSHF_B2_UB(src6, src6, src7, src7, mask, mask, vec6, vec7); + DOTP_UB4_UH(vec0, vec1, vec2, vec3, filt0, filt0, filt0, filt0, res0, res1, + res2, res3); + DOTP_UB4_UH(vec4, vec5, vec6, vec7, filt0, filt0, filt0, filt0, res4, res5, + res6, res7); + SRARI_H4_UH(res0, res1, res2, res3, FILTER_BITS); + SRARI_H4_UH(res4, res5, res6, res7, FILTER_BITS); + LD_UB4(dst, dst_stride, dst0, dst1, dst2, dst3); + PCKEV_AVG_ST_UB(res1, res0, dst0, dst); + dst += dst_stride; + PCKEV_AVG_ST_UB(res3, res2, dst1, dst); + dst += dst_stride; + PCKEV_AVG_ST_UB(res5, res4, dst2, dst); + dst += dst_stride; + PCKEV_AVG_ST_UB(res7, res6, dst3, dst); + dst += dst_stride; + } +} + +static void common_hz_2t_and_aver_dst_32w_msa(const uint8_t *src, + int32_t src_stride, uint8_t *dst, + int32_t dst_stride, + int8_t *filter, int32_t height) { + uint32_t loop_cnt; + v16i8 src0, src1, src2, src3, src4, src5, src6, src7, mask; + v16u8 filt0, dst0, dst1, dst2, dst3; + v16u8 vec0, vec1, vec2, vec3, vec4, vec5, vec6, vec7; + v8u16 res0, res1, res2, res3, res4, res5, res6, res7, filt; + + mask = LD_SB(&mc_filt_mask_arr[0]); + + /* rearranging filter */ + filt = LD_UH(filter); + filt0 = (v16u8)__msa_splati_h((v8i16)filt, 0); + + for (loop_cnt = (height >> 1); loop_cnt--;) { + src0 = LD_SB(src); + src2 = LD_SB(src + 16); + src3 = LD_SB(src + 24); + src1 = __msa_sldi_b(src2, src0, 8); + src += src_stride; + src4 = LD_SB(src); + src6 = LD_SB(src + 16); + src7 = LD_SB(src + 24); + src5 = __msa_sldi_b(src6, src4, 8); + src += src_stride; + + VSHF_B2_UB(src0, src0, src1, src1, mask, mask, vec0, vec1); + VSHF_B2_UB(src2, src2, src3, src3, mask, mask, vec2, vec3); + VSHF_B2_UB(src4, src4, src5, src5, mask, mask, vec4, vec5); + VSHF_B2_UB(src6, src6, src7, src7, mask, mask, vec6, vec7); + DOTP_UB4_UH(vec0, vec1, vec2, vec3, filt0, filt0, filt0, filt0, res0, res1, + res2, res3); + DOTP_UB4_UH(vec4, vec5, vec6, vec7, filt0, filt0, filt0, filt0, res4, res5, + res6, res7); + SRARI_H4_UH(res0, res1, res2, res3, FILTER_BITS); + SRARI_H4_UH(res4, res5, res6, res7, FILTER_BITS); + LD_UB2(dst, 16, dst0, dst1); + PCKEV_AVG_ST_UB(res1, res0, dst0, dst); + PCKEV_AVG_ST_UB(res3, res2, dst1, (dst + 16)); + dst += dst_stride; + LD_UB2(dst, 16, dst2, dst3); + PCKEV_AVG_ST_UB(res5, res4, dst2, dst); + PCKEV_AVG_ST_UB(res7, res6, dst3, (dst + 16)); + dst += dst_stride; + } +} + +static void common_hz_2t_and_aver_dst_64w_msa(const uint8_t *src, + int32_t src_stride, uint8_t *dst, + int32_t dst_stride, + int8_t *filter, int32_t height) { + uint32_t loop_cnt; + v16i8 src0, src1, src2, src3, src4, src5, src6, src7, mask; + v16u8 filt0, dst0, dst1, dst2, dst3; + v16u8 vec0, vec1, vec2, vec3, vec4, vec5, vec6, vec7; + v8u16 out0, out1, out2, out3, out4, out5, out6, out7, filt; + + mask = LD_SB(&mc_filt_mask_arr[0]); + + /* rearranging filter */ + filt = LD_UH(filter); + filt0 = (v16u8)__msa_splati_h((v8i16)filt, 0); + + for (loop_cnt = height; loop_cnt--;) { + LD_SB4(src, 16, src0, src2, src4, src6); + src7 = LD_SB(src + 56); + SLDI_B3_SB(src2, src4, src6, src0, src2, src4, src1, src3, src5, 8); + src += src_stride; + + VSHF_B2_UB(src0, src0, src1, src1, mask, mask, vec0, vec1); + VSHF_B2_UB(src2, src2, src3, src3, mask, mask, vec2, vec3); + VSHF_B2_UB(src4, src4, src5, src5, mask, mask, vec4, vec5); + VSHF_B2_UB(src6, src6, src7, src7, mask, mask, vec6, vec7); + DOTP_UB4_UH(vec0, vec1, vec2, vec3, filt0, filt0, filt0, filt0, out0, out1, + out2, out3); + DOTP_UB4_UH(vec4, vec5, vec6, vec7, filt0, filt0, filt0, filt0, out4, out5, + out6, out7); + SRARI_H4_UH(out0, out1, out2, out3, FILTER_BITS); + SRARI_H4_UH(out4, out5, out6, out7, FILTER_BITS); + LD_UB4(dst, 16, dst0, dst1, dst2, dst3); + PCKEV_AVG_ST_UB(out1, out0, dst0, dst); + PCKEV_AVG_ST_UB(out3, out2, dst1, dst + 16); + PCKEV_AVG_ST_UB(out5, out4, dst2, dst + 32); + PCKEV_AVG_ST_UB(out7, out6, dst3, dst + 48); + dst += dst_stride; + } +} + +void vpx_convolve8_avg_horiz_msa(const uint8_t *src, ptrdiff_t src_stride, + uint8_t *dst, ptrdiff_t dst_stride, + const InterpKernel *filter, int x0_q4, + int x_step_q4, int y0_q4, int y_step_q4, int w, + int h) { + const int16_t *const filter_x = filter[x0_q4]; + int8_t cnt, filt_hor[8]; + + assert(x_step_q4 == 16); + assert(((const int32_t *)filter_x)[1] != 0x800000); + + for (cnt = 0; cnt < 8; ++cnt) { + filt_hor[cnt] = filter_x[cnt]; + } + + if (((const int32_t *)filter_x)[0] == 0) { + switch (w) { + case 4: + common_hz_2t_and_aver_dst_4w_msa(src, (int32_t)src_stride, dst, + (int32_t)dst_stride, &filt_hor[3], h); + break; + case 8: + common_hz_2t_and_aver_dst_8w_msa(src, (int32_t)src_stride, dst, + (int32_t)dst_stride, &filt_hor[3], h); + break; + case 16: + common_hz_2t_and_aver_dst_16w_msa(src, (int32_t)src_stride, dst, + (int32_t)dst_stride, &filt_hor[3], h); + break; + case 32: + common_hz_2t_and_aver_dst_32w_msa(src, (int32_t)src_stride, dst, + (int32_t)dst_stride, &filt_hor[3], h); + break; + case 64: + common_hz_2t_and_aver_dst_64w_msa(src, (int32_t)src_stride, dst, + (int32_t)dst_stride, &filt_hor[3], h); + break; + default: + vpx_convolve8_avg_horiz_c(src, src_stride, dst, dst_stride, filter, + x0_q4, x_step_q4, y0_q4, y_step_q4, w, h); + break; + } + } else { + switch (w) { + case 4: + common_hz_8t_and_aver_dst_4w_msa(src, (int32_t)src_stride, dst, + (int32_t)dst_stride, filt_hor, h); + break; + case 8: + common_hz_8t_and_aver_dst_8w_msa(src, (int32_t)src_stride, dst, + (int32_t)dst_stride, filt_hor, h); + break; + case 16: + common_hz_8t_and_aver_dst_16w_msa(src, (int32_t)src_stride, dst, + (int32_t)dst_stride, filt_hor, h); + break; + case 32: + common_hz_8t_and_aver_dst_32w_msa(src, (int32_t)src_stride, dst, + (int32_t)dst_stride, filt_hor, h); + break; + case 64: + common_hz_8t_and_aver_dst_64w_msa(src, (int32_t)src_stride, dst, + (int32_t)dst_stride, filt_hor, h); + break; + default: + vpx_convolve8_avg_horiz_c(src, src_stride, dst, dst_stride, filter, + x0_q4, x_step_q4, y0_q4, y_step_q4, w, h); + break; + } + } +} diff --git a/vpx_dsp/mips/vpx_convolve8_avg_msa.c b/vpx_dsp/mips/vpx_convolve8_avg_msa.c new file mode 100644 index 0000000..5187cea --- /dev/null +++ b/vpx_dsp/mips/vpx_convolve8_avg_msa.c @@ -0,0 +1,611 @@ +/* + * Copyright (c) 2015 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include "./vpx_dsp_rtcd.h" +#include "vpx_dsp/mips/vpx_convolve_msa.h" + +static void common_hv_8ht_8vt_and_aver_dst_4w_msa( + const uint8_t *src, int32_t src_stride, uint8_t *dst, int32_t dst_stride, + int8_t *filter_horiz, int8_t *filter_vert, int32_t height) { + uint32_t loop_cnt; + uint32_t tp0, tp1, tp2, tp3; + v16i8 src0, src1, src2, src3, src4, src5, src6, src7, src8, src9, src10; + v16u8 dst0 = { 0 }, mask0, mask1, mask2, mask3, res; + v16i8 filt_hz0, filt_hz1, filt_hz2, filt_hz3; + v8i16 hz_out0, hz_out1, hz_out2, hz_out3, hz_out4, hz_out5, hz_out6; + v8i16 hz_out7, hz_out8, hz_out9, res0, res1, vec0, vec1, vec2, vec3, vec4; + v8i16 filt, filt_vt0, filt_vt1, filt_vt2, filt_vt3; + + mask0 = LD_UB(&mc_filt_mask_arr[16]); + src -= (3 + 3 * src_stride); + + /* rearranging filter */ + filt = LD_SH(filter_horiz); + SPLATI_H4_SB(filt, 0, 1, 2, 3, filt_hz0, filt_hz1, filt_hz2, filt_hz3); + + mask1 = mask0 + 2; + mask2 = mask0 + 4; + mask3 = mask0 + 6; + + LD_SB7(src, src_stride, src0, src1, src2, src3, src4, src5, src6); + XORI_B7_128_SB(src0, src1, src2, src3, src4, src5, src6); + src += (7 * src_stride); + + hz_out0 = HORIZ_8TAP_FILT(src0, src1, mask0, mask1, mask2, mask3, filt_hz0, + filt_hz1, filt_hz2, filt_hz3); + hz_out2 = HORIZ_8TAP_FILT(src2, src3, mask0, mask1, mask2, mask3, filt_hz0, + filt_hz1, filt_hz2, filt_hz3); + hz_out4 = HORIZ_8TAP_FILT(src4, src5, mask0, mask1, mask2, mask3, filt_hz0, + filt_hz1, filt_hz2, filt_hz3); + hz_out5 = HORIZ_8TAP_FILT(src5, src6, mask0, mask1, mask2, mask3, filt_hz0, + filt_hz1, filt_hz2, filt_hz3); + SLDI_B2_SH(hz_out2, hz_out4, hz_out0, hz_out2, hz_out1, hz_out3, 8); + + filt = LD_SH(filter_vert); + SPLATI_H4_SH(filt, 0, 1, 2, 3, filt_vt0, filt_vt1, filt_vt2, filt_vt3); + + ILVEV_B2_SH(hz_out0, hz_out1, hz_out2, hz_out3, vec0, vec1); + vec2 = (v8i16)__msa_ilvev_b((v16i8)hz_out5, (v16i8)hz_out4); + + for (loop_cnt = (height >> 2); loop_cnt--;) { + LD_SB4(src, src_stride, src7, src8, src9, src10); + XORI_B4_128_SB(src7, src8, src9, src10); + src += (4 * src_stride); + + LW4(dst, dst_stride, tp0, tp1, tp2, tp3); + INSERT_W4_UB(tp0, tp1, tp2, tp3, dst0); + hz_out7 = HORIZ_8TAP_FILT(src7, src8, mask0, mask1, mask2, mask3, filt_hz0, + filt_hz1, filt_hz2, filt_hz3); + hz_out6 = (v8i16)__msa_sldi_b((v16i8)hz_out7, (v16i8)hz_out5, 8); + vec3 = (v8i16)__msa_ilvev_b((v16i8)hz_out7, (v16i8)hz_out6); + res0 = FILT_8TAP_DPADD_S_H(vec0, vec1, vec2, vec3, filt_vt0, filt_vt1, + filt_vt2, filt_vt3); + + hz_out9 = HORIZ_8TAP_FILT(src9, src10, mask0, mask1, mask2, mask3, filt_hz0, + filt_hz1, filt_hz2, filt_hz3); + hz_out8 = (v8i16)__msa_sldi_b((v16i8)hz_out9, (v16i8)hz_out7, 8); + vec4 = (v8i16)__msa_ilvev_b((v16i8)hz_out9, (v16i8)hz_out8); + res1 = FILT_8TAP_DPADD_S_H(vec1, vec2, vec3, vec4, filt_vt0, filt_vt1, + filt_vt2, filt_vt3); + + SRARI_H2_SH(res0, res1, FILTER_BITS); + SAT_SH2_SH(res0, res1, 7); + res = PCKEV_XORI128_UB(res0, res1); + res = (v16u8)__msa_aver_u_b(res, dst0); + ST4x4_UB(res, res, 0, 1, 2, 3, dst, dst_stride); + dst += (4 * dst_stride); + + hz_out5 = hz_out9; + vec0 = vec2; + vec1 = vec3; + vec2 = vec4; + } +} + +static void common_hv_8ht_8vt_and_aver_dst_8w_msa( + const uint8_t *src, int32_t src_stride, uint8_t *dst, int32_t dst_stride, + int8_t *filter_horiz, int8_t *filter_vert, int32_t height) { + uint32_t loop_cnt; + uint64_t tp0, tp1, tp2, tp3; + v16i8 src0, src1, src2, src3, src4, src5, src6, src7, src8, src9, src10; + v16i8 filt_hz0, filt_hz1, filt_hz2, filt_hz3; + v8i16 filt, filt_vt0, filt_vt1, filt_vt2, filt_vt3; + v16u8 dst0 = { 0 }, dst1 = { 0 }, mask0, mask1, mask2, mask3; + v8i16 hz_out0, hz_out1, hz_out2, hz_out3, hz_out4, hz_out5, hz_out6; + v8i16 hz_out7, hz_out8, hz_out9, hz_out10, tmp0, tmp1, tmp2, tmp3; + v8i16 out0, out1, out2, out3, out4, out5, out6, out7, out8, out9; + + mask0 = LD_UB(&mc_filt_mask_arr[0]); + src -= (3 + 3 * src_stride); + + /* rearranging filter */ + filt = LD_SH(filter_horiz); + SPLATI_H4_SB(filt, 0, 1, 2, 3, filt_hz0, filt_hz1, filt_hz2, filt_hz3); + + mask1 = mask0 + 2; + mask2 = mask0 + 4; + mask3 = mask0 + 6; + + LD_SB7(src, src_stride, src0, src1, src2, src3, src4, src5, src6); + src += (7 * src_stride); + + XORI_B7_128_SB(src0, src1, src2, src3, src4, src5, src6); + hz_out0 = HORIZ_8TAP_FILT(src0, src0, mask0, mask1, mask2, mask3, filt_hz0, + filt_hz1, filt_hz2, filt_hz3); + hz_out1 = HORIZ_8TAP_FILT(src1, src1, mask0, mask1, mask2, mask3, filt_hz0, + filt_hz1, filt_hz2, filt_hz3); + hz_out2 = HORIZ_8TAP_FILT(src2, src2, mask0, mask1, mask2, mask3, filt_hz0, + filt_hz1, filt_hz2, filt_hz3); + hz_out3 = HORIZ_8TAP_FILT(src3, src3, mask0, mask1, mask2, mask3, filt_hz0, + filt_hz1, filt_hz2, filt_hz3); + hz_out4 = HORIZ_8TAP_FILT(src4, src4, mask0, mask1, mask2, mask3, filt_hz0, + filt_hz1, filt_hz2, filt_hz3); + hz_out5 = HORIZ_8TAP_FILT(src5, src5, mask0, mask1, mask2, mask3, filt_hz0, + filt_hz1, filt_hz2, filt_hz3); + hz_out6 = HORIZ_8TAP_FILT(src6, src6, mask0, mask1, mask2, mask3, filt_hz0, + filt_hz1, filt_hz2, filt_hz3); + + filt = LD_SH(filter_vert); + SPLATI_H4_SH(filt, 0, 1, 2, 3, filt_vt0, filt_vt1, filt_vt2, filt_vt3); + + ILVEV_B2_SH(hz_out0, hz_out1, hz_out2, hz_out3, out0, out1); + ILVEV_B2_SH(hz_out4, hz_out5, hz_out1, hz_out2, out2, out4); + ILVEV_B2_SH(hz_out3, hz_out4, hz_out5, hz_out6, out5, out6); + + for (loop_cnt = (height >> 2); loop_cnt--;) { + LD_SB4(src, src_stride, src7, src8, src9, src10); + XORI_B4_128_SB(src7, src8, src9, src10); + src += (4 * src_stride); + + LD4(dst, dst_stride, tp0, tp1, tp2, tp3); + INSERT_D2_UB(tp0, tp1, dst0); + INSERT_D2_UB(tp2, tp3, dst1); + + hz_out7 = HORIZ_8TAP_FILT(src7, src7, mask0, mask1, mask2, mask3, filt_hz0, + filt_hz1, filt_hz2, filt_hz3); + out3 = (v8i16)__msa_ilvev_b((v16i8)hz_out7, (v16i8)hz_out6); + tmp0 = FILT_8TAP_DPADD_S_H(out0, out1, out2, out3, filt_vt0, filt_vt1, + filt_vt2, filt_vt3); + + hz_out8 = HORIZ_8TAP_FILT(src8, src8, mask0, mask1, mask2, mask3, filt_hz0, + filt_hz1, filt_hz2, filt_hz3); + out7 = (v8i16)__msa_ilvev_b((v16i8)hz_out8, (v16i8)hz_out7); + tmp1 = FILT_8TAP_DPADD_S_H(out4, out5, out6, out7, filt_vt0, filt_vt1, + filt_vt2, filt_vt3); + + hz_out9 = HORIZ_8TAP_FILT(src9, src9, mask0, mask1, mask2, mask3, filt_hz0, + filt_hz1, filt_hz2, filt_hz3); + out8 = (v8i16)__msa_ilvev_b((v16i8)hz_out9, (v16i8)hz_out8); + tmp2 = FILT_8TAP_DPADD_S_H(out1, out2, out3, out8, filt_vt0, filt_vt1, + filt_vt2, filt_vt3); + + hz_out10 = HORIZ_8TAP_FILT(src10, src10, mask0, mask1, mask2, mask3, + filt_hz0, filt_hz1, filt_hz2, filt_hz3); + out9 = (v8i16)__msa_ilvev_b((v16i8)hz_out10, (v16i8)hz_out9); + tmp3 = FILT_8TAP_DPADD_S_H(out5, out6, out7, out9, filt_vt0, filt_vt1, + filt_vt2, filt_vt3); + + SRARI_H4_SH(tmp0, tmp1, tmp2, tmp3, FILTER_BITS); + SAT_SH4_SH(tmp0, tmp1, tmp2, tmp3, 7); + CONVERT_UB_AVG_ST8x4_UB(tmp0, tmp1, tmp2, tmp3, dst0, dst1, dst, + dst_stride); + dst += (4 * dst_stride); + + hz_out6 = hz_out10; + out0 = out2; + out1 = out3; + out2 = out8; + out4 = out6; + out5 = out7; + out6 = out9; + } +} + +static void common_hv_8ht_8vt_and_aver_dst_16w_msa( + const uint8_t *src, int32_t src_stride, uint8_t *dst, int32_t dst_stride, + int8_t *filter_horiz, int8_t *filter_vert, int32_t height) { + int32_t multiple8_cnt; + for (multiple8_cnt = 2; multiple8_cnt--;) { + common_hv_8ht_8vt_and_aver_dst_8w_msa(src, src_stride, dst, dst_stride, + filter_horiz, filter_vert, height); + src += 8; + dst += 8; + } +} + +static void common_hv_8ht_8vt_and_aver_dst_32w_msa( + const uint8_t *src, int32_t src_stride, uint8_t *dst, int32_t dst_stride, + int8_t *filter_horiz, int8_t *filter_vert, int32_t height) { + int32_t multiple8_cnt; + for (multiple8_cnt = 4; multiple8_cnt--;) { + common_hv_8ht_8vt_and_aver_dst_8w_msa(src, src_stride, dst, dst_stride, + filter_horiz, filter_vert, height); + src += 8; + dst += 8; + } +} + +static void common_hv_8ht_8vt_and_aver_dst_64w_msa( + const uint8_t *src, int32_t src_stride, uint8_t *dst, int32_t dst_stride, + int8_t *filter_horiz, int8_t *filter_vert, int32_t height) { + int32_t multiple8_cnt; + for (multiple8_cnt = 8; multiple8_cnt--;) { + common_hv_8ht_8vt_and_aver_dst_8w_msa(src, src_stride, dst, dst_stride, + filter_horiz, filter_vert, height); + src += 8; + dst += 8; + } +} + +static void common_hv_2ht_2vt_and_aver_dst_4x4_msa( + const uint8_t *src, int32_t src_stride, uint8_t *dst, int32_t dst_stride, + int8_t *filter_horiz, int8_t *filter_vert) { + uint32_t tp0, tp1, tp2, tp3; + v16i8 src0, src1, src2, src3, src4, mask; + v16u8 filt_hz, filt_vt, vec0, vec1; + v16u8 dst0 = { 0 }, out; + v8u16 hz_out0, hz_out1, hz_out2, hz_out3, hz_out4, tmp0, tmp1, filt; + + mask = LD_SB(&mc_filt_mask_arr[16]); + + /* rearranging filter */ + filt = LD_UH(filter_horiz); + filt_hz = (v16u8)__msa_splati_h((v8i16)filt, 0); + + filt = LD_UH(filter_vert); + filt_vt = (v16u8)__msa_splati_h((v8i16)filt, 0); + + LD_SB5(src, src_stride, src0, src1, src2, src3, src4); + + hz_out0 = HORIZ_2TAP_FILT_UH(src0, src1, mask, filt_hz, FILTER_BITS); + hz_out2 = HORIZ_2TAP_FILT_UH(src2, src3, mask, filt_hz, FILTER_BITS); + hz_out4 = HORIZ_2TAP_FILT_UH(src4, src4, mask, filt_hz, FILTER_BITS); + hz_out1 = (v8u16)__msa_sldi_b((v16i8)hz_out2, (v16i8)hz_out0, 8); + hz_out3 = (v8u16)__msa_pckod_d((v2i64)hz_out4, (v2i64)hz_out2); + ILVEV_B2_UB(hz_out0, hz_out1, hz_out2, hz_out3, vec0, vec1); + + LW4(dst, dst_stride, tp0, tp1, tp2, tp3); + INSERT_W4_UB(tp0, tp1, tp2, tp3, dst0); + DOTP_UB2_UH(vec0, vec1, filt_vt, filt_vt, tmp0, tmp1); + SRARI_H2_UH(tmp0, tmp1, FILTER_BITS); + out = (v16u8)__msa_pckev_b((v16i8)tmp1, (v16i8)tmp0); + out = __msa_aver_u_b(out, dst0); + ST4x4_UB(out, out, 0, 1, 2, 3, dst, dst_stride); +} + +static void common_hv_2ht_2vt_and_aver_dst_4x8_msa( + const uint8_t *src, int32_t src_stride, uint8_t *dst, int32_t dst_stride, + int8_t *filter_horiz, int8_t *filter_vert) { + uint32_t tp0, tp1, tp2, tp3; + v16i8 src0, src1, src2, src3, src4, src5, src6, src7, src8, mask; + v16u8 filt_hz, filt_vt, vec0, vec1, vec2, vec3, res0, res1; + v16u8 dst0 = { 0 }, dst1 = { 0 }; + v8u16 hz_out0, hz_out1, hz_out2, hz_out3, hz_out4, hz_out5, hz_out6; + v8u16 hz_out7, hz_out8, tmp0, tmp1, tmp2, tmp3; + v8i16 filt; + + mask = LD_SB(&mc_filt_mask_arr[16]); + + /* rearranging filter */ + filt = LD_SH(filter_horiz); + filt_hz = (v16u8)__msa_splati_h(filt, 0); + + filt = LD_SH(filter_vert); + filt_vt = (v16u8)__msa_splati_h(filt, 0); + + LD_SB8(src, src_stride, src0, src1, src2, src3, src4, src5, src6, src7); + src += (8 * src_stride); + src8 = LD_SB(src); + + hz_out0 = HORIZ_2TAP_FILT_UH(src0, src1, mask, filt_hz, FILTER_BITS); + hz_out2 = HORIZ_2TAP_FILT_UH(src2, src3, mask, filt_hz, FILTER_BITS); + hz_out4 = HORIZ_2TAP_FILT_UH(src4, src5, mask, filt_hz, FILTER_BITS); + hz_out6 = HORIZ_2TAP_FILT_UH(src6, src7, mask, filt_hz, FILTER_BITS); + hz_out8 = HORIZ_2TAP_FILT_UH(src8, src8, mask, filt_hz, FILTER_BITS); + SLDI_B3_UH(hz_out2, hz_out4, hz_out6, hz_out0, hz_out2, hz_out4, hz_out1, + hz_out3, hz_out5, 8); + hz_out7 = (v8u16)__msa_pckod_d((v2i64)hz_out8, (v2i64)hz_out6); + + LW4(dst, dst_stride, tp0, tp1, tp2, tp3); + INSERT_W4_UB(tp0, tp1, tp2, tp3, dst0); + LW4(dst + 4 * dst_stride, dst_stride, tp0, tp1, tp2, tp3); + INSERT_W4_UB(tp0, tp1, tp2, tp3, dst1); + ILVEV_B2_UB(hz_out0, hz_out1, hz_out2, hz_out3, vec0, vec1); + ILVEV_B2_UB(hz_out4, hz_out5, hz_out6, hz_out7, vec2, vec3); + DOTP_UB4_UH(vec0, vec1, vec2, vec3, filt_vt, filt_vt, filt_vt, filt_vt, tmp0, + tmp1, tmp2, tmp3); + SRARI_H4_UH(tmp0, tmp1, tmp2, tmp3, FILTER_BITS); + PCKEV_B2_UB(tmp1, tmp0, tmp3, tmp2, res0, res1); + AVER_UB2_UB(res0, dst0, res1, dst1, res0, res1); + ST4x8_UB(res0, res1, dst, dst_stride); +} + +static void common_hv_2ht_2vt_and_aver_dst_4w_msa( + const uint8_t *src, int32_t src_stride, uint8_t *dst, int32_t dst_stride, + int8_t *filter_horiz, int8_t *filter_vert, int32_t height) { + if (4 == height) { + common_hv_2ht_2vt_and_aver_dst_4x4_msa(src, src_stride, dst, dst_stride, + filter_horiz, filter_vert); + } else if (8 == height) { + common_hv_2ht_2vt_and_aver_dst_4x8_msa(src, src_stride, dst, dst_stride, + filter_horiz, filter_vert); + } +} + +static void common_hv_2ht_2vt_and_aver_dst_8x4_msa( + const uint8_t *src, int32_t src_stride, uint8_t *dst, int32_t dst_stride, + int8_t *filter_horiz, int8_t *filter_vert) { + uint64_t tp0, tp1, tp2, tp3; + v16i8 src0, src1, src2, src3, src4, mask; + v16u8 filt_hz, filt_vt, dst0 = { 0 }, dst1 = { 0 }, vec0, vec1, vec2, vec3; + v8u16 hz_out0, hz_out1, tmp0, tmp1, tmp2, tmp3; + v8i16 filt; + + mask = LD_SB(&mc_filt_mask_arr[0]); + + /* rearranging filter */ + filt = LD_SH(filter_horiz); + filt_hz = (v16u8)__msa_splati_h(filt, 0); + + filt = LD_SH(filter_vert); + filt_vt = (v16u8)__msa_splati_h(filt, 0); + + LD_SB5(src, src_stride, src0, src1, src2, src3, src4); + src += (5 * src_stride); + + LD4(dst, dst_stride, tp0, tp1, tp2, tp3); + INSERT_D2_UB(tp0, tp1, dst0); + INSERT_D2_UB(tp2, tp3, dst1); + hz_out0 = HORIZ_2TAP_FILT_UH(src0, src0, mask, filt_hz, FILTER_BITS); + hz_out1 = HORIZ_2TAP_FILT_UH(src1, src1, mask, filt_hz, FILTER_BITS); + vec0 = (v16u8)__msa_ilvev_b((v16i8)hz_out1, (v16i8)hz_out0); + tmp0 = __msa_dotp_u_h(vec0, filt_vt); + + hz_out0 = HORIZ_2TAP_FILT_UH(src2, src2, mask, filt_hz, FILTER_BITS); + vec1 = (v16u8)__msa_ilvev_b((v16i8)hz_out0, (v16i8)hz_out1); + tmp1 = __msa_dotp_u_h(vec1, filt_vt); + + hz_out1 = HORIZ_2TAP_FILT_UH(src3, src3, mask, filt_hz, FILTER_BITS); + vec2 = (v16u8)__msa_ilvev_b((v16i8)hz_out1, (v16i8)hz_out0); + tmp2 = __msa_dotp_u_h(vec2, filt_vt); + + hz_out0 = HORIZ_2TAP_FILT_UH(src4, src4, mask, filt_hz, FILTER_BITS); + vec3 = (v16u8)__msa_ilvev_b((v16i8)hz_out0, (v16i8)hz_out1); + tmp3 = __msa_dotp_u_h(vec3, filt_vt); + + SRARI_H4_UH(tmp0, tmp1, tmp2, tmp3, FILTER_BITS); + PCKEV_AVG_ST8x4_UB(tmp0, tmp1, tmp2, tmp3, dst0, dst1, dst, dst_stride); +} + +static void common_hv_2ht_2vt_and_aver_dst_8x8mult_msa( + const uint8_t *src, int32_t src_stride, uint8_t *dst, int32_t dst_stride, + int8_t *filter_horiz, int8_t *filter_vert, int32_t height) { + uint32_t loop_cnt; + uint64_t tp0, tp1, tp2, tp3; + v16i8 src0, src1, src2, src3, src4, mask; + v16u8 filt_hz, filt_vt, vec0, dst0 = { 0 }, dst1 = { 0 }; + v8u16 hz_out0, hz_out1, tmp0, tmp1, tmp2, tmp3; + v8i16 filt; + + mask = LD_SB(&mc_filt_mask_arr[0]); + + /* rearranging filter */ + filt = LD_SH(filter_horiz); + filt_hz = (v16u8)__msa_splati_h(filt, 0); + + filt = LD_SH(filter_vert); + filt_vt = (v16u8)__msa_splati_h(filt, 0); + + src0 = LD_SB(src); + src += src_stride; + + hz_out0 = HORIZ_2TAP_FILT_UH(src0, src0, mask, filt_hz, FILTER_BITS); + + for (loop_cnt = (height >> 2); loop_cnt--;) { + LD_SB4(src, src_stride, src1, src2, src3, src4); + src += (4 * src_stride); + + hz_out1 = HORIZ_2TAP_FILT_UH(src1, src1, mask, filt_hz, FILTER_BITS); + vec0 = (v16u8)__msa_ilvev_b((v16i8)hz_out1, (v16i8)hz_out0); + tmp0 = __msa_dotp_u_h(vec0, filt_vt); + + hz_out0 = HORIZ_2TAP_FILT_UH(src2, src2, mask, filt_hz, FILTER_BITS); + vec0 = (v16u8)__msa_ilvev_b((v16i8)hz_out0, (v16i8)hz_out1); + tmp1 = __msa_dotp_u_h(vec0, filt_vt); + + SRARI_H2_UH(tmp0, tmp1, FILTER_BITS); + + hz_out1 = HORIZ_2TAP_FILT_UH(src3, src3, mask, filt_hz, FILTER_BITS); + vec0 = (v16u8)__msa_ilvev_b((v16i8)hz_out1, (v16i8)hz_out0); + tmp2 = __msa_dotp_u_h(vec0, filt_vt); + + hz_out0 = HORIZ_2TAP_FILT_UH(src4, src4, mask, filt_hz, FILTER_BITS); + vec0 = (v16u8)__msa_ilvev_b((v16i8)hz_out0, (v16i8)hz_out1); + tmp3 = __msa_dotp_u_h(vec0, filt_vt); + + SRARI_H2_UH(tmp2, tmp3, FILTER_BITS); + LD4(dst, dst_stride, tp0, tp1, tp2, tp3); + INSERT_D2_UB(tp0, tp1, dst0); + INSERT_D2_UB(tp2, tp3, dst1); + PCKEV_AVG_ST8x4_UB(tmp0, tmp1, tmp2, tmp3, dst0, dst1, dst, dst_stride); + dst += (4 * dst_stride); + } +} + +static void common_hv_2ht_2vt_and_aver_dst_8w_msa( + const uint8_t *src, int32_t src_stride, uint8_t *dst, int32_t dst_stride, + int8_t *filter_horiz, int8_t *filter_vert, int32_t height) { + if (4 == height) { + common_hv_2ht_2vt_and_aver_dst_8x4_msa(src, src_stride, dst, dst_stride, + filter_horiz, filter_vert); + } else { + common_hv_2ht_2vt_and_aver_dst_8x8mult_msa( + src, src_stride, dst, dst_stride, filter_horiz, filter_vert, height); + } +} + +static void common_hv_2ht_2vt_and_aver_dst_16w_msa( + const uint8_t *src, int32_t src_stride, uint8_t *dst, int32_t dst_stride, + int8_t *filter_horiz, int8_t *filter_vert, int32_t height) { + uint32_t loop_cnt; + v16i8 src0, src1, src2, src3, src4, src5, src6, src7, mask; + v16u8 filt_hz, filt_vt, vec0, vec1, dst0, dst1, dst2, dst3; + v8u16 hz_out0, hz_out1, hz_out2, hz_out3, tmp0, tmp1; + v8i16 filt; + + mask = LD_SB(&mc_filt_mask_arr[0]); + + /* rearranging filter */ + filt = LD_SH(filter_horiz); + filt_hz = (v16u8)__msa_splati_h(filt, 0); + + filt = LD_SH(filter_vert); + filt_vt = (v16u8)__msa_splati_h(filt, 0); + + LD_SB2(src, 8, src0, src1); + src += src_stride; + + hz_out0 = HORIZ_2TAP_FILT_UH(src0, src0, mask, filt_hz, FILTER_BITS); + hz_out2 = HORIZ_2TAP_FILT_UH(src1, src1, mask, filt_hz, FILTER_BITS); + + for (loop_cnt = (height >> 2); loop_cnt--;) { + LD_SB4(src, src_stride, src0, src2, src4, src6); + LD_SB4(src + 8, src_stride, src1, src3, src5, src7); + src += (4 * src_stride); + LD_UB4(dst, dst_stride, dst0, dst1, dst2, dst3); + + hz_out1 = HORIZ_2TAP_FILT_UH(src0, src0, mask, filt_hz, FILTER_BITS); + hz_out3 = HORIZ_2TAP_FILT_UH(src1, src1, mask, filt_hz, FILTER_BITS); + ILVEV_B2_UB(hz_out0, hz_out1, hz_out2, hz_out3, vec0, vec1); + DOTP_UB2_UH(vec0, vec1, filt_vt, filt_vt, tmp0, tmp1); + SRARI_H2_UH(tmp0, tmp1, FILTER_BITS); + PCKEV_AVG_ST_UB(tmp1, tmp0, dst0, dst); + dst += dst_stride; + + hz_out0 = HORIZ_2TAP_FILT_UH(src2, src2, mask, filt_hz, FILTER_BITS); + hz_out2 = HORIZ_2TAP_FILT_UH(src3, src3, mask, filt_hz, FILTER_BITS); + ILVEV_B2_UB(hz_out1, hz_out0, hz_out3, hz_out2, vec0, vec1); + DOTP_UB2_UH(vec0, vec1, filt_vt, filt_vt, tmp0, tmp1); + SRARI_H2_UH(tmp0, tmp1, FILTER_BITS); + PCKEV_AVG_ST_UB(tmp1, tmp0, dst1, dst); + dst += dst_stride; + + hz_out1 = HORIZ_2TAP_FILT_UH(src4, src4, mask, filt_hz, FILTER_BITS); + hz_out3 = HORIZ_2TAP_FILT_UH(src5, src5, mask, filt_hz, FILTER_BITS); + ILVEV_B2_UB(hz_out0, hz_out1, hz_out2, hz_out3, vec0, vec1); + DOTP_UB2_UH(vec0, vec1, filt_vt, filt_vt, tmp0, tmp1); + SRARI_H2_UH(tmp0, tmp1, FILTER_BITS); + PCKEV_AVG_ST_UB(tmp1, tmp0, dst2, dst); + dst += dst_stride; + + hz_out0 = HORIZ_2TAP_FILT_UH(src6, src6, mask, filt_hz, FILTER_BITS); + hz_out2 = HORIZ_2TAP_FILT_UH(src7, src7, mask, filt_hz, FILTER_BITS); + ILVEV_B2_UB(hz_out1, hz_out0, hz_out3, hz_out2, vec0, vec1); + DOTP_UB2_UH(vec0, vec1, filt_vt, filt_vt, tmp0, tmp1); + SRARI_H2_UH(tmp0, tmp1, FILTER_BITS); + PCKEV_AVG_ST_UB(tmp1, tmp0, dst3, dst); + dst += dst_stride; + } +} + +static void common_hv_2ht_2vt_and_aver_dst_32w_msa( + const uint8_t *src, int32_t src_stride, uint8_t *dst, int32_t dst_stride, + int8_t *filter_horiz, int8_t *filter_vert, int32_t height) { + int32_t multiple8_cnt; + for (multiple8_cnt = 2; multiple8_cnt--;) { + common_hv_2ht_2vt_and_aver_dst_16w_msa(src, src_stride, dst, dst_stride, + filter_horiz, filter_vert, height); + src += 16; + dst += 16; + } +} + +static void common_hv_2ht_2vt_and_aver_dst_64w_msa( + const uint8_t *src, int32_t src_stride, uint8_t *dst, int32_t dst_stride, + int8_t *filter_horiz, int8_t *filter_vert, int32_t height) { + int32_t multiple8_cnt; + for (multiple8_cnt = 4; multiple8_cnt--;) { + common_hv_2ht_2vt_and_aver_dst_16w_msa(src, src_stride, dst, dst_stride, + filter_horiz, filter_vert, height); + src += 16; + dst += 16; + } +} + +void vpx_convolve8_avg_msa(const uint8_t *src, ptrdiff_t src_stride, + uint8_t *dst, ptrdiff_t dst_stride, + const InterpKernel *filter, int x0_q4, int x_step_q4, + int y0_q4, int y_step_q4, int w, int h) { + const int16_t *const filter_x = filter[x0_q4]; + const int16_t *const filter_y = filter[y0_q4]; + int8_t cnt, filt_hor[8], filt_ver[8]; + + assert(x_step_q4 == 16); + assert(y_step_q4 == 16); + assert(((const int32_t *)filter_x)[1] != 0x800000); + assert(((const int32_t *)filter_y)[1] != 0x800000); + + for (cnt = 0; cnt < 8; ++cnt) { + filt_hor[cnt] = filter_x[cnt]; + filt_ver[cnt] = filter_y[cnt]; + } + + if (((const int32_t *)filter_x)[0] == 0 && + ((const int32_t *)filter_y)[0] == 0) { + switch (w) { + case 4: + common_hv_2ht_2vt_and_aver_dst_4w_msa(src, (int32_t)src_stride, dst, + (int32_t)dst_stride, &filt_hor[3], + &filt_ver[3], h); + break; + case 8: + common_hv_2ht_2vt_and_aver_dst_8w_msa(src, (int32_t)src_stride, dst, + (int32_t)dst_stride, &filt_hor[3], + &filt_ver[3], h); + break; + case 16: + common_hv_2ht_2vt_and_aver_dst_16w_msa(src, (int32_t)src_stride, dst, + (int32_t)dst_stride, + &filt_hor[3], &filt_ver[3], h); + break; + case 32: + common_hv_2ht_2vt_and_aver_dst_32w_msa(src, (int32_t)src_stride, dst, + (int32_t)dst_stride, + &filt_hor[3], &filt_ver[3], h); + break; + case 64: + common_hv_2ht_2vt_and_aver_dst_64w_msa(src, (int32_t)src_stride, dst, + (int32_t)dst_stride, + &filt_hor[3], &filt_ver[3], h); + break; + default: + vpx_convolve8_avg_c(src, src_stride, dst, dst_stride, filter, x0_q4, + x_step_q4, y0_q4, y_step_q4, w, h); + break; + } + } else if (((const int32_t *)filter_x)[0] == 0 || + ((const int32_t *)filter_y)[0] == 0) { + vpx_convolve8_avg_c(src, src_stride, dst, dst_stride, filter, x0_q4, + x_step_q4, y0_q4, y_step_q4, w, h); + } else { + switch (w) { + case 4: + common_hv_8ht_8vt_and_aver_dst_4w_msa(src, (int32_t)src_stride, dst, + (int32_t)dst_stride, filt_hor, + filt_ver, h); + break; + case 8: + common_hv_8ht_8vt_and_aver_dst_8w_msa(src, (int32_t)src_stride, dst, + (int32_t)dst_stride, filt_hor, + filt_ver, h); + break; + case 16: + common_hv_8ht_8vt_and_aver_dst_16w_msa(src, (int32_t)src_stride, dst, + (int32_t)dst_stride, filt_hor, + filt_ver, h); + break; + case 32: + common_hv_8ht_8vt_and_aver_dst_32w_msa(src, (int32_t)src_stride, dst, + (int32_t)dst_stride, filt_hor, + filt_ver, h); + break; + case 64: + common_hv_8ht_8vt_and_aver_dst_64w_msa(src, (int32_t)src_stride, dst, + (int32_t)dst_stride, filt_hor, + filt_ver, h); + break; + default: + vpx_convolve8_avg_c(src, src_stride, dst, dst_stride, filter, x0_q4, + x_step_q4, y0_q4, y_step_q4, w, h); + break; + } + } +} diff --git a/vpx_dsp/mips/vpx_convolve8_avg_vert_msa.c b/vpx_dsp/mips/vpx_convolve8_avg_vert_msa.c new file mode 100644 index 0000000..ef8c901 --- /dev/null +++ b/vpx_dsp/mips/vpx_convolve8_avg_vert_msa.c @@ -0,0 +1,684 @@ +/* + * Copyright (c) 2015 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include "./vpx_dsp_rtcd.h" +#include "vpx_dsp/mips/vpx_convolve_msa.h" + +static void common_vt_8t_and_aver_dst_4w_msa(const uint8_t *src, + int32_t src_stride, uint8_t *dst, + int32_t dst_stride, int8_t *filter, + int32_t height) { + uint32_t loop_cnt; + uint32_t tp0, tp1, tp2, tp3; + v16i8 src0, src1, src2, src3, src4, src5, src6, src7, src8, src9, src10; + v16u8 dst0 = { 0 }, out; + v16i8 src10_r, src32_r, src54_r, src76_r, src98_r, src21_r, src43_r; + v16i8 src65_r, src87_r, src109_r, src2110, src4332, src6554, src8776; + v16i8 src10998, filt0, filt1, filt2, filt3; + v8i16 filt, out10, out32; + + src -= (3 * src_stride); + + filt = LD_SH(filter); + SPLATI_H4_SB(filt, 0, 1, 2, 3, filt0, filt1, filt2, filt3); + + LD_SB7(src, src_stride, src0, src1, src2, src3, src4, src5, src6); + src += (7 * src_stride); + + ILVR_B4_SB(src1, src0, src3, src2, src5, src4, src2, src1, src10_r, src32_r, + src54_r, src21_r); + ILVR_B2_SB(src4, src3, src6, src5, src43_r, src65_r); + ILVR_D3_SB(src21_r, src10_r, src43_r, src32_r, src65_r, src54_r, src2110, + src4332, src6554); + XORI_B3_128_SB(src2110, src4332, src6554); + + for (loop_cnt = (height >> 2); loop_cnt--;) { + LD_SB4(src, src_stride, src7, src8, src9, src10); + src += (4 * src_stride); + + LW4(dst, dst_stride, tp0, tp1, tp2, tp3); + INSERT_W4_UB(tp0, tp1, tp2, tp3, dst0); + ILVR_B4_SB(src7, src6, src8, src7, src9, src8, src10, src9, src76_r, + src87_r, src98_r, src109_r); + ILVR_D2_SB(src87_r, src76_r, src109_r, src98_r, src8776, src10998); + XORI_B2_128_SB(src8776, src10998); + out10 = FILT_8TAP_DPADD_S_H(src2110, src4332, src6554, src8776, filt0, + filt1, filt2, filt3); + out32 = FILT_8TAP_DPADD_S_H(src4332, src6554, src8776, src10998, filt0, + filt1, filt2, filt3); + SRARI_H2_SH(out10, out32, FILTER_BITS); + SAT_SH2_SH(out10, out32, 7); + out = PCKEV_XORI128_UB(out10, out32); + out = __msa_aver_u_b(out, dst0); + + ST4x4_UB(out, out, 0, 1, 2, 3, dst, dst_stride); + dst += (4 * dst_stride); + + src2110 = src6554; + src4332 = src8776; + src6554 = src10998; + src6 = src10; + } +} + +static void common_vt_8t_and_aver_dst_8w_msa(const uint8_t *src, + int32_t src_stride, uint8_t *dst, + int32_t dst_stride, int8_t *filter, + int32_t height) { + uint32_t loop_cnt; + uint64_t tp0, tp1, tp2, tp3; + v16i8 src0, src1, src2, src3, src4, src5, src6, src7, src8, src9, src10; + v16u8 dst0 = { 0 }, dst1 = { 0 }; + v16i8 src10_r, src32_r, src54_r, src76_r, src98_r, src21_r, src43_r; + v16i8 src65_r, src87_r, src109_r, filt0, filt1, filt2, filt3; + v8i16 filt, out0, out1, out2, out3; + + src -= (3 * src_stride); + + filt = LD_SH(filter); + SPLATI_H4_SB(filt, 0, 1, 2, 3, filt0, filt1, filt2, filt3); + + LD_SB7(src, src_stride, src0, src1, src2, src3, src4, src5, src6); + src += (7 * src_stride); + + XORI_B7_128_SB(src0, src1, src2, src3, src4, src5, src6); + ILVR_B4_SB(src1, src0, src3, src2, src5, src4, src2, src1, src10_r, src32_r, + src54_r, src21_r); + ILVR_B2_SB(src4, src3, src6, src5, src43_r, src65_r); + + for (loop_cnt = (height >> 2); loop_cnt--;) { + LD_SB4(src, src_stride, src7, src8, src9, src10); + src += (4 * src_stride); + + LD4(dst, dst_stride, tp0, tp1, tp2, tp3); + INSERT_D2_UB(tp0, tp1, dst0); + INSERT_D2_UB(tp2, tp3, dst1); + XORI_B4_128_SB(src7, src8, src9, src10); + ILVR_B4_SB(src7, src6, src8, src7, src9, src8, src10, src9, src76_r, + src87_r, src98_r, src109_r); + out0 = FILT_8TAP_DPADD_S_H(src10_r, src32_r, src54_r, src76_r, filt0, filt1, + filt2, filt3); + out1 = FILT_8TAP_DPADD_S_H(src21_r, src43_r, src65_r, src87_r, filt0, filt1, + filt2, filt3); + out2 = FILT_8TAP_DPADD_S_H(src32_r, src54_r, src76_r, src98_r, filt0, filt1, + filt2, filt3); + out3 = FILT_8TAP_DPADD_S_H(src43_r, src65_r, src87_r, src109_r, filt0, + filt1, filt2, filt3); + SRARI_H4_SH(out0, out1, out2, out3, FILTER_BITS); + SAT_SH4_SH(out0, out1, out2, out3, 7); + CONVERT_UB_AVG_ST8x4_UB(out0, out1, out2, out3, dst0, dst1, dst, + dst_stride); + dst += (4 * dst_stride); + + src10_r = src54_r; + src32_r = src76_r; + src54_r = src98_r; + src21_r = src65_r; + src43_r = src87_r; + src65_r = src109_r; + src6 = src10; + } +} + +static void common_vt_8t_and_aver_dst_16w_mult_msa( + const uint8_t *src, int32_t src_stride, uint8_t *dst, int32_t dst_stride, + int8_t *filter, int32_t height, int32_t width) { + const uint8_t *src_tmp; + uint8_t *dst_tmp; + uint32_t loop_cnt, cnt; + v16i8 src0, src1, src2, src3, src4, src5, src6, src7, src8, src9, src10; + v16i8 src10_r, src32_r, src54_r, src76_r, src98_r, src21_r, src43_r; + v16i8 src65_r, src87_r, src109_r, src10_l, src32_l, src54_l, src76_l; + v16i8 src98_l, src21_l, src43_l, src65_l, src87_l, src109_l; + v16i8 filt0, filt1, filt2, filt3; + v16u8 dst0, dst1, dst2, dst3, tmp0, tmp1, tmp2, tmp3; + v8i16 out0_r, out1_r, out2_r, out3_r, out0_l, out1_l, out2_l, out3_l, filt; + + src -= (3 * src_stride); + + filt = LD_SH(filter); + SPLATI_H4_SB(filt, 0, 1, 2, 3, filt0, filt1, filt2, filt3); + + for (cnt = (width >> 4); cnt--;) { + src_tmp = src; + dst_tmp = dst; + + LD_SB7(src_tmp, src_stride, src0, src1, src2, src3, src4, src5, src6); + XORI_B7_128_SB(src0, src1, src2, src3, src4, src5, src6); + src_tmp += (7 * src_stride); + + ILVR_B4_SB(src1, src0, src3, src2, src5, src4, src2, src1, src10_r, src32_r, + src54_r, src21_r); + ILVR_B2_SB(src4, src3, src6, src5, src43_r, src65_r); + ILVL_B4_SB(src1, src0, src3, src2, src5, src4, src2, src1, src10_l, src32_l, + src54_l, src21_l); + ILVL_B2_SB(src4, src3, src6, src5, src43_l, src65_l); + + for (loop_cnt = (height >> 2); loop_cnt--;) { + LD_SB4(src_tmp, src_stride, src7, src8, src9, src10); + src_tmp += (4 * src_stride); + + LD_UB4(dst_tmp, dst_stride, dst0, dst1, dst2, dst3); + XORI_B4_128_SB(src7, src8, src9, src10); + ILVR_B4_SB(src7, src6, src8, src7, src9, src8, src10, src9, src76_r, + src87_r, src98_r, src109_r); + ILVL_B4_SB(src7, src6, src8, src7, src9, src8, src10, src9, src76_l, + src87_l, src98_l, src109_l); + out0_r = FILT_8TAP_DPADD_S_H(src10_r, src32_r, src54_r, src76_r, filt0, + filt1, filt2, filt3); + out1_r = FILT_8TAP_DPADD_S_H(src21_r, src43_r, src65_r, src87_r, filt0, + filt1, filt2, filt3); + out2_r = FILT_8TAP_DPADD_S_H(src32_r, src54_r, src76_r, src98_r, filt0, + filt1, filt2, filt3); + out3_r = FILT_8TAP_DPADD_S_H(src43_r, src65_r, src87_r, src109_r, filt0, + filt1, filt2, filt3); + out0_l = FILT_8TAP_DPADD_S_H(src10_l, src32_l, src54_l, src76_l, filt0, + filt1, filt2, filt3); + out1_l = FILT_8TAP_DPADD_S_H(src21_l, src43_l, src65_l, src87_l, filt0, + filt1, filt2, filt3); + out2_l = FILT_8TAP_DPADD_S_H(src32_l, src54_l, src76_l, src98_l, filt0, + filt1, filt2, filt3); + out3_l = FILT_8TAP_DPADD_S_H(src43_l, src65_l, src87_l, src109_l, filt0, + filt1, filt2, filt3); + SRARI_H4_SH(out0_r, out1_r, out2_r, out3_r, FILTER_BITS); + SRARI_H4_SH(out0_l, out1_l, out2_l, out3_l, FILTER_BITS); + SAT_SH4_SH(out0_r, out1_r, out2_r, out3_r, 7); + SAT_SH4_SH(out0_l, out1_l, out2_l, out3_l, 7); + PCKEV_B4_UB(out0_l, out0_r, out1_l, out1_r, out2_l, out2_r, out3_l, + out3_r, tmp0, tmp1, tmp2, tmp3); + XORI_B4_128_UB(tmp0, tmp1, tmp2, tmp3); + AVER_UB4_UB(tmp0, dst0, tmp1, dst1, tmp2, dst2, tmp3, dst3, dst0, dst1, + dst2, dst3); + ST_UB4(dst0, dst1, dst2, dst3, dst_tmp, dst_stride); + dst_tmp += (4 * dst_stride); + + src10_r = src54_r; + src32_r = src76_r; + src54_r = src98_r; + src21_r = src65_r; + src43_r = src87_r; + src65_r = src109_r; + src10_l = src54_l; + src32_l = src76_l; + src54_l = src98_l; + src21_l = src65_l; + src43_l = src87_l; + src65_l = src109_l; + src6 = src10; + } + + src += 16; + dst += 16; + } +} + +static void common_vt_8t_and_aver_dst_16w_msa(const uint8_t *src, + int32_t src_stride, uint8_t *dst, + int32_t dst_stride, + int8_t *filter, int32_t height) { + common_vt_8t_and_aver_dst_16w_mult_msa(src, src_stride, dst, dst_stride, + filter, height, 16); +} + +static void common_vt_8t_and_aver_dst_32w_msa(const uint8_t *src, + int32_t src_stride, uint8_t *dst, + int32_t dst_stride, + int8_t *filter, int32_t height) { + common_vt_8t_and_aver_dst_16w_mult_msa(src, src_stride, dst, dst_stride, + filter, height, 32); +} + +static void common_vt_8t_and_aver_dst_64w_msa(const uint8_t *src, + int32_t src_stride, uint8_t *dst, + int32_t dst_stride, + int8_t *filter, int32_t height) { + common_vt_8t_and_aver_dst_16w_mult_msa(src, src_stride, dst, dst_stride, + filter, height, 64); +} + +static void common_vt_2t_and_aver_dst_4x4_msa(const uint8_t *src, + int32_t src_stride, uint8_t *dst, + int32_t dst_stride, + int8_t *filter) { + uint32_t tp0, tp1, tp2, tp3; + v16i8 src0, src1, src2, src3, src4; + v16u8 dst0 = { 0 }, out, filt0, src2110, src4332; + v16i8 src10_r, src32_r, src21_r, src43_r; + v8i16 filt; + v8u16 tmp0, tmp1; + + filt = LD_SH(filter); + filt0 = (v16u8)__msa_splati_h(filt, 0); + + LD_SB4(src, src_stride, src0, src1, src2, src3); + src += (4 * src_stride); + + src4 = LD_SB(src); + src += src_stride; + + LW4(dst, dst_stride, tp0, tp1, tp2, tp3); + INSERT_W4_UB(tp0, tp1, tp2, tp3, dst0); + ILVR_B4_SB(src1, src0, src2, src1, src3, src2, src4, src3, src10_r, src21_r, + src32_r, src43_r); + ILVR_D2_UB(src21_r, src10_r, src43_r, src32_r, src2110, src4332); + DOTP_UB2_UH(src2110, src4332, filt0, filt0, tmp0, tmp1); + SRARI_H2_UH(tmp0, tmp1, FILTER_BITS); + + out = (v16u8)__msa_pckev_b((v16i8)tmp1, (v16i8)tmp0); + out = __msa_aver_u_b(out, dst0); + + ST4x4_UB(out, out, 0, 1, 2, 3, dst, dst_stride); +} + +static void common_vt_2t_and_aver_dst_4x8_msa(const uint8_t *src, + int32_t src_stride, uint8_t *dst, + int32_t dst_stride, + int8_t *filter) { + uint32_t tp0, tp1, tp2, tp3; + v16u8 dst0 = { 0 }, dst1 = { 0 }; + v16i8 src0, src1, src2, src3, src4, src5, src6, src7, src8, src87_r; + v16i8 src10_r, src32_r, src54_r, src76_r, src21_r, src43_r, src65_r; + v16u8 src2110, src4332, src6554, src8776, filt0; + v8u16 tmp0, tmp1, tmp2, tmp3; + v8i16 filt; + + filt = LD_SH(filter); + filt0 = (v16u8)__msa_splati_h(filt, 0); + + LD_SB8(src, src_stride, src0, src1, src2, src3, src4, src5, src6, src7); + src += (8 * src_stride); + src8 = LD_SB(src); + + LW4(dst, dst_stride, tp0, tp1, tp2, tp3); + INSERT_W4_UB(tp0, tp1, tp2, tp3, dst0); + LW4(dst + 4 * dst_stride, dst_stride, tp0, tp1, tp2, tp3); + INSERT_W4_UB(tp0, tp1, tp2, tp3, dst1); + ILVR_B4_SB(src1, src0, src2, src1, src3, src2, src4, src3, src10_r, src21_r, + src32_r, src43_r); + ILVR_B4_SB(src5, src4, src6, src5, src7, src6, src8, src7, src54_r, src65_r, + src76_r, src87_r); + ILVR_D4_UB(src21_r, src10_r, src43_r, src32_r, src65_r, src54_r, src87_r, + src76_r, src2110, src4332, src6554, src8776); + DOTP_UB4_UH(src2110, src4332, src6554, src8776, filt0, filt0, filt0, filt0, + tmp0, tmp1, tmp2, tmp3); + SRARI_H4_UH(tmp0, tmp1, tmp2, tmp3, FILTER_BITS); + PCKEV_B2_UB(tmp1, tmp0, tmp3, tmp2, src2110, src4332); + AVER_UB2_UB(src2110, dst0, src4332, dst1, src2110, src4332); + ST4x8_UB(src2110, src4332, dst, dst_stride); +} + +static void common_vt_2t_and_aver_dst_4w_msa(const uint8_t *src, + int32_t src_stride, uint8_t *dst, + int32_t dst_stride, int8_t *filter, + int32_t height) { + if (4 == height) { + common_vt_2t_and_aver_dst_4x4_msa(src, src_stride, dst, dst_stride, filter); + } else if (8 == height) { + common_vt_2t_and_aver_dst_4x8_msa(src, src_stride, dst, dst_stride, filter); + } +} + +static void common_vt_2t_and_aver_dst_8x4_msa(const uint8_t *src, + int32_t src_stride, uint8_t *dst, + int32_t dst_stride, + int8_t *filter) { + int64_t tp0, tp1, tp2, tp3; + v16u8 src0, src1, src2, src3, src4; + v16u8 dst0 = { 0 }, dst1 = { 0 }, vec0, vec1, vec2, vec3, filt0; + v8u16 tmp0, tmp1, tmp2, tmp3; + v8i16 filt; + + /* rearranging filter_y */ + filt = LD_SH(filter); + filt0 = (v16u8)__msa_splati_h(filt, 0); + + LD_UB5(src, src_stride, src0, src1, src2, src3, src4); + LD4(dst, dst_stride, tp0, tp1, tp2, tp3); + INSERT_D2_UB(tp0, tp1, dst0); + INSERT_D2_UB(tp2, tp3, dst1); + ILVR_B2_UB(src1, src0, src2, src1, vec0, vec1); + ILVR_B2_UB(src3, src2, src4, src3, vec2, vec3); + DOTP_UB4_UH(vec0, vec1, vec2, vec3, filt0, filt0, filt0, filt0, tmp0, tmp1, + tmp2, tmp3); + SRARI_H4_UH(tmp0, tmp1, tmp2, tmp3, FILTER_BITS); + PCKEV_AVG_ST8x4_UB(tmp0, tmp1, tmp2, tmp3, dst0, dst1, dst, dst_stride); +} + +static void common_vt_2t_and_aver_dst_8x8mult_msa( + const uint8_t *src, int32_t src_stride, uint8_t *dst, int32_t dst_stride, + int8_t *filter, int32_t height) { + uint32_t loop_cnt; + int64_t tp0, tp1, tp2, tp3; + v16u8 src0, src1, src2, src3, src4, src5, src6, src7, src8; + v16u8 dst0 = { 0 }, dst1 = { 0 }, dst2 = { 0 }, dst3 = { 0 }; + v16u8 vec0, vec1, vec2, vec3, vec4, vec5, vec6, vec7, filt0; + v8u16 tmp0, tmp1, tmp2, tmp3; + v8i16 filt; + + /* rearranging filter_y */ + filt = LD_SH(filter); + filt0 = (v16u8)__msa_splati_h(filt, 0); + + src0 = LD_UB(src); + src += src_stride; + + for (loop_cnt = (height >> 3); loop_cnt--;) { + LD_UB8(src, src_stride, src1, src2, src3, src4, src5, src6, src7, src8); + src += (8 * src_stride); + LD4(dst, dst_stride, tp0, tp1, tp2, tp3); + INSERT_D2_UB(tp0, tp1, dst0); + INSERT_D2_UB(tp2, tp3, dst1); + LD4(dst + 4 * dst_stride, dst_stride, tp0, tp1, tp2, tp3); + INSERT_D2_UB(tp0, tp1, dst2); + INSERT_D2_UB(tp2, tp3, dst3); + + ILVR_B4_UB(src1, src0, src2, src1, src3, src2, src4, src3, vec0, vec1, vec2, + vec3); + ILVR_B4_UB(src5, src4, src6, src5, src7, src6, src8, src7, vec4, vec5, vec6, + vec7); + DOTP_UB4_UH(vec0, vec1, vec2, vec3, filt0, filt0, filt0, filt0, tmp0, tmp1, + tmp2, tmp3); + SRARI_H4_UH(tmp0, tmp1, tmp2, tmp3, FILTER_BITS); + PCKEV_AVG_ST8x4_UB(tmp0, tmp1, tmp2, tmp3, dst0, dst1, dst, dst_stride); + dst += (4 * dst_stride); + + DOTP_UB4_UH(vec4, vec5, vec6, vec7, filt0, filt0, filt0, filt0, tmp0, tmp1, + tmp2, tmp3); + SRARI_H4_UH(tmp0, tmp1, tmp2, tmp3, FILTER_BITS); + PCKEV_AVG_ST8x4_UB(tmp0, tmp1, tmp2, tmp3, dst2, dst3, dst, dst_stride); + dst += (4 * dst_stride); + + src0 = src8; + } +} + +static void common_vt_2t_and_aver_dst_8w_msa(const uint8_t *src, + int32_t src_stride, uint8_t *dst, + int32_t dst_stride, int8_t *filter, + int32_t height) { + if (4 == height) { + common_vt_2t_and_aver_dst_8x4_msa(src, src_stride, dst, dst_stride, filter); + } else { + common_vt_2t_and_aver_dst_8x8mult_msa(src, src_stride, dst, dst_stride, + filter, height); + } +} + +static void common_vt_2t_and_aver_dst_16w_msa(const uint8_t *src, + int32_t src_stride, uint8_t *dst, + int32_t dst_stride, + int8_t *filter, int32_t height) { + uint32_t loop_cnt; + v16u8 src0, src1, src2, src3, src4, dst0, dst1, dst2, dst3, filt0; + v16u8 vec0, vec1, vec2, vec3, vec4, vec5, vec6, vec7; + v8u16 tmp0, tmp1, tmp2, tmp3, filt; + + /* rearranging filter_y */ + filt = LD_UH(filter); + filt0 = (v16u8)__msa_splati_h((v8i16)filt, 0); + + src0 = LD_UB(src); + src += src_stride; + + for (loop_cnt = (height >> 2); loop_cnt--;) { + LD_UB4(src, src_stride, src1, src2, src3, src4); + src += (4 * src_stride); + + LD_UB4(dst, dst_stride, dst0, dst1, dst2, dst3); + ILVR_B2_UB(src1, src0, src2, src1, vec0, vec2); + ILVL_B2_UB(src1, src0, src2, src1, vec1, vec3); + DOTP_UB2_UH(vec0, vec1, filt0, filt0, tmp0, tmp1); + SRARI_H2_UH(tmp0, tmp1, FILTER_BITS); + PCKEV_AVG_ST_UB(tmp1, tmp0, dst0, dst); + dst += dst_stride; + + ILVR_B2_UB(src3, src2, src4, src3, vec4, vec6); + ILVL_B2_UB(src3, src2, src4, src3, vec5, vec7); + DOTP_UB2_UH(vec2, vec3, filt0, filt0, tmp2, tmp3); + SRARI_H2_UH(tmp2, tmp3, FILTER_BITS); + PCKEV_AVG_ST_UB(tmp3, tmp2, dst1, dst); + dst += dst_stride; + + DOTP_UB2_UH(vec4, vec5, filt0, filt0, tmp0, tmp1); + SRARI_H2_UH(tmp0, tmp1, FILTER_BITS); + PCKEV_AVG_ST_UB(tmp1, tmp0, dst2, dst); + dst += dst_stride; + + DOTP_UB2_UH(vec6, vec7, filt0, filt0, tmp2, tmp3); + SRARI_H2_UH(tmp2, tmp3, FILTER_BITS); + PCKEV_AVG_ST_UB(tmp3, tmp2, dst3, dst); + dst += dst_stride; + + src0 = src4; + } +} + +static void common_vt_2t_and_aver_dst_32w_msa(const uint8_t *src, + int32_t src_stride, uint8_t *dst, + int32_t dst_stride, + int8_t *filter, int32_t height) { + uint32_t loop_cnt; + v16u8 src0, src1, src2, src3, src4, src5, src6, src7, src8, src9; + v16u8 dst0, dst1, dst2, dst3, dst4, dst5, dst6, dst7; + v16u8 vec0, vec1, vec2, vec3, vec4, vec5, vec6, vec7, filt0; + v8u16 tmp0, tmp1, tmp2, tmp3, filt; + + /* rearranging filter_y */ + filt = LD_UH(filter); + filt0 = (v16u8)__msa_splati_h((v8i16)filt, 0); + + LD_UB2(src, 16, src0, src5); + src += src_stride; + + for (loop_cnt = (height >> 2); loop_cnt--;) { + LD_UB4(src, src_stride, src1, src2, src3, src4); + LD_UB4(dst, dst_stride, dst0, dst1, dst2, dst3); + ILVR_B2_UB(src1, src0, src2, src1, vec0, vec2); + ILVL_B2_UB(src1, src0, src2, src1, vec1, vec3); + + LD_UB4(src + 16, src_stride, src6, src7, src8, src9); + LD_UB4(dst + 16, dst_stride, dst4, dst5, dst6, dst7); + src += (4 * src_stride); + + DOTP_UB2_UH(vec0, vec1, filt0, filt0, tmp0, tmp1); + SRARI_H2_UH(tmp0, tmp1, FILTER_BITS); + PCKEV_AVG_ST_UB(tmp1, tmp0, dst0, dst); + + DOTP_UB2_UH(vec2, vec3, filt0, filt0, tmp2, tmp3); + SRARI_H2_UH(tmp2, tmp3, FILTER_BITS); + PCKEV_AVG_ST_UB(tmp3, tmp2, dst1, dst + dst_stride); + + ILVR_B2_UB(src3, src2, src4, src3, vec4, vec6); + ILVL_B2_UB(src3, src2, src4, src3, vec5, vec7); + DOTP_UB2_UH(vec4, vec5, filt0, filt0, tmp0, tmp1); + SRARI_H2_UH(tmp0, tmp1, FILTER_BITS); + PCKEV_AVG_ST_UB(tmp1, tmp0, dst2, dst + 2 * dst_stride); + + DOTP_UB2_UH(vec6, vec7, filt0, filt0, tmp2, tmp3); + SRARI_H2_UH(tmp2, tmp3, FILTER_BITS); + PCKEV_AVG_ST_UB(tmp3, tmp2, dst3, dst + 3 * dst_stride); + + ILVR_B2_UB(src6, src5, src7, src6, vec0, vec2); + ILVL_B2_UB(src6, src5, src7, src6, vec1, vec3); + DOTP_UB2_UH(vec0, vec1, filt0, filt0, tmp0, tmp1); + SRARI_H2_UH(tmp0, tmp1, FILTER_BITS); + PCKEV_AVG_ST_UB(tmp1, tmp0, dst4, dst + 16); + + DOTP_UB2_UH(vec2, vec3, filt0, filt0, tmp2, tmp3); + SRARI_H2_UH(tmp2, tmp3, FILTER_BITS); + PCKEV_AVG_ST_UB(tmp3, tmp2, dst5, dst + 16 + dst_stride); + + ILVR_B2_UB(src8, src7, src9, src8, vec4, vec6); + ILVL_B2_UB(src8, src7, src9, src8, vec5, vec7); + DOTP_UB2_UH(vec4, vec5, filt0, filt0, tmp0, tmp1); + SRARI_H2_UH(tmp0, tmp1, FILTER_BITS); + PCKEV_AVG_ST_UB(tmp1, tmp0, dst6, dst + 16 + 2 * dst_stride); + + DOTP_UB2_UH(vec6, vec7, filt0, filt0, tmp2, tmp3); + SRARI_H2_UH(tmp2, tmp3, FILTER_BITS); + PCKEV_AVG_ST_UB(tmp3, tmp2, dst7, dst + 16 + 3 * dst_stride); + dst += (4 * dst_stride); + + src0 = src4; + src5 = src9; + } +} + +static void common_vt_2t_and_aver_dst_64w_msa(const uint8_t *src, + int32_t src_stride, uint8_t *dst, + int32_t dst_stride, + int8_t *filter, int32_t height) { + uint32_t loop_cnt; + v16u8 src0, src1, src2, src3, src4, src5; + v16u8 src6, src7, src8, src9, src10, src11, filt0; + v16u8 dst0, dst1, dst2, dst3, dst4, dst5, dst6, dst7; + v16u8 vec0, vec1, vec2, vec3, vec4, vec5, vec6, vec7; + v8u16 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; + v8u16 filt; + + /* rearranging filter_y */ + filt = LD_UH(filter); + filt0 = (v16u8)__msa_splati_h((v8i16)filt, 0); + + LD_UB4(src, 16, src0, src3, src6, src9); + src += src_stride; + + for (loop_cnt = (height >> 1); loop_cnt--;) { + LD_UB2(src, src_stride, src1, src2); + LD_UB2(dst, dst_stride, dst0, dst1); + LD_UB2(src + 16, src_stride, src4, src5); + LD_UB2(dst + 16, dst_stride, dst2, dst3); + LD_UB2(src + 32, src_stride, src7, src8); + LD_UB2(dst + 32, dst_stride, dst4, dst5); + LD_UB2(src + 48, src_stride, src10, src11); + LD_UB2(dst + 48, dst_stride, dst6, dst7); + src += (2 * src_stride); + + ILVR_B2_UB(src1, src0, src2, src1, vec0, vec2); + ILVL_B2_UB(src1, src0, src2, src1, vec1, vec3); + DOTP_UB2_UH(vec0, vec1, filt0, filt0, tmp0, tmp1); + SRARI_H2_UH(tmp0, tmp1, FILTER_BITS); + PCKEV_AVG_ST_UB(tmp1, tmp0, dst0, dst); + + DOTP_UB2_UH(vec2, vec3, filt0, filt0, tmp2, tmp3); + SRARI_H2_UH(tmp2, tmp3, FILTER_BITS); + PCKEV_AVG_ST_UB(tmp3, tmp2, dst1, dst + dst_stride); + + ILVR_B2_UB(src4, src3, src5, src4, vec4, vec6); + ILVL_B2_UB(src4, src3, src5, src4, vec5, vec7); + DOTP_UB2_UH(vec4, vec5, filt0, filt0, tmp4, tmp5); + SRARI_H2_UH(tmp4, tmp5, FILTER_BITS); + PCKEV_AVG_ST_UB(tmp5, tmp4, dst2, dst + 16); + + DOTP_UB2_UH(vec6, vec7, filt0, filt0, tmp6, tmp7); + SRARI_H2_UH(tmp6, tmp7, FILTER_BITS); + PCKEV_AVG_ST_UB(tmp7, tmp6, dst3, dst + 16 + dst_stride); + + ILVR_B2_UB(src7, src6, src8, src7, vec0, vec2); + ILVL_B2_UB(src7, src6, src8, src7, vec1, vec3); + DOTP_UB2_UH(vec0, vec1, filt0, filt0, tmp0, tmp1); + SRARI_H2_UH(tmp0, tmp1, FILTER_BITS); + PCKEV_AVG_ST_UB(tmp1, tmp0, dst4, dst + 32); + + DOTP_UB2_UH(vec2, vec3, filt0, filt0, tmp2, tmp3); + SRARI_H2_UH(tmp2, tmp3, FILTER_BITS); + PCKEV_AVG_ST_UB(tmp3, tmp2, dst5, dst + 32 + dst_stride); + + ILVR_B2_UB(src10, src9, src11, src10, vec4, vec6); + ILVL_B2_UB(src10, src9, src11, src10, vec5, vec7); + DOTP_UB2_UH(vec4, vec5, filt0, filt0, tmp4, tmp5); + SRARI_H2_UH(tmp4, tmp5, FILTER_BITS); + PCKEV_AVG_ST_UB(tmp5, tmp4, dst6, (dst + 48)); + + DOTP_UB2_UH(vec6, vec7, filt0, filt0, tmp6, tmp7); + SRARI_H2_UH(tmp6, tmp7, FILTER_BITS); + PCKEV_AVG_ST_UB(tmp7, tmp6, dst7, dst + 48 + dst_stride); + dst += (2 * dst_stride); + + src0 = src2; + src3 = src5; + src6 = src8; + src9 = src11; + } +} + +void vpx_convolve8_avg_vert_msa(const uint8_t *src, ptrdiff_t src_stride, + uint8_t *dst, ptrdiff_t dst_stride, + const InterpKernel *filter, int x0_q4, + int x_step_q4, int y0_q4, int y_step_q4, int w, + int h) { + const int16_t *const filter_y = filter[y0_q4]; + int8_t cnt, filt_ver[8]; + + assert(y_step_q4 == 16); + assert(((const int32_t *)filter_y)[1] != 0x800000); + + for (cnt = 0; cnt < 8; ++cnt) { + filt_ver[cnt] = filter_y[cnt]; + } + + if (((const int32_t *)filter_y)[0] == 0) { + switch (w) { + case 4: + common_vt_2t_and_aver_dst_4w_msa(src, (int32_t)src_stride, dst, + (int32_t)dst_stride, &filt_ver[3], h); + break; + case 8: + common_vt_2t_and_aver_dst_8w_msa(src, (int32_t)src_stride, dst, + (int32_t)dst_stride, &filt_ver[3], h); + break; + case 16: + common_vt_2t_and_aver_dst_16w_msa(src, (int32_t)src_stride, dst, + (int32_t)dst_stride, &filt_ver[3], h); + break; + case 32: + common_vt_2t_and_aver_dst_32w_msa(src, (int32_t)src_stride, dst, + (int32_t)dst_stride, &filt_ver[3], h); + break; + case 64: + common_vt_2t_and_aver_dst_64w_msa(src, (int32_t)src_stride, dst, + (int32_t)dst_stride, &filt_ver[3], h); + break; + default: + vpx_convolve8_avg_vert_c(src, src_stride, dst, dst_stride, filter, + x0_q4, x_step_q4, y0_q4, y_step_q4, w, h); + break; + } + } else { + switch (w) { + case 4: + common_vt_8t_and_aver_dst_4w_msa(src, (int32_t)src_stride, dst, + (int32_t)dst_stride, filt_ver, h); + break; + case 8: + common_vt_8t_and_aver_dst_8w_msa(src, (int32_t)src_stride, dst, + (int32_t)dst_stride, filt_ver, h); + break; + case 16: + common_vt_8t_and_aver_dst_16w_msa(src, (int32_t)src_stride, dst, + (int32_t)dst_stride, filt_ver, h); + + break; + case 32: + common_vt_8t_and_aver_dst_32w_msa(src, (int32_t)src_stride, dst, + (int32_t)dst_stride, filt_ver, h); + break; + case 64: + common_vt_8t_and_aver_dst_64w_msa(src, (int32_t)src_stride, dst, + (int32_t)dst_stride, filt_ver, h); + break; + default: + vpx_convolve8_avg_vert_c(src, src_stride, dst, dst_stride, filter, + x0_q4, x_step_q4, y0_q4, y_step_q4, w, h); + break; + } + } +} diff --git a/vpx_dsp/mips/vpx_convolve8_horiz_msa.c b/vpx_dsp/mips/vpx_convolve8_horiz_msa.c new file mode 100644 index 0000000..152dc26 --- /dev/null +++ b/vpx_dsp/mips/vpx_convolve8_horiz_msa.c @@ -0,0 +1,692 @@ +/* + * Copyright (c) 2015 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include "./vpx_dsp_rtcd.h" +#include "vpx_dsp/mips/vpx_convolve_msa.h" + +static void common_hz_8t_4x4_msa(const uint8_t *src, int32_t src_stride, + uint8_t *dst, int32_t dst_stride, + int8_t *filter) { + v16u8 mask0, mask1, mask2, mask3, out; + v16i8 src0, src1, src2, src3, filt0, filt1, filt2, filt3; + v8i16 filt, out0, out1; + + mask0 = LD_UB(&mc_filt_mask_arr[16]); + src -= 3; + + /* rearranging filter */ + filt = LD_SH(filter); + SPLATI_H4_SB(filt, 0, 1, 2, 3, filt0, filt1, filt2, filt3); + + mask1 = mask0 + 2; + mask2 = mask0 + 4; + mask3 = mask0 + 6; + + LD_SB4(src, src_stride, src0, src1, src2, src3); + XORI_B4_128_SB(src0, src1, src2, src3); + HORIZ_8TAP_4WID_4VECS_FILT(src0, src1, src2, src3, mask0, mask1, mask2, mask3, + filt0, filt1, filt2, filt3, out0, out1); + SRARI_H2_SH(out0, out1, FILTER_BITS); + SAT_SH2_SH(out0, out1, 7); + out = PCKEV_XORI128_UB(out0, out1); + ST4x4_UB(out, out, 0, 1, 2, 3, dst, dst_stride); +} + +static void common_hz_8t_4x8_msa(const uint8_t *src, int32_t src_stride, + uint8_t *dst, int32_t dst_stride, + int8_t *filter) { + v16i8 filt0, filt1, filt2, filt3; + v16i8 src0, src1, src2, src3; + v16u8 mask0, mask1, mask2, mask3, out; + v8i16 filt, out0, out1, out2, out3; + + mask0 = LD_UB(&mc_filt_mask_arr[16]); + src -= 3; + + /* rearranging filter */ + filt = LD_SH(filter); + SPLATI_H4_SB(filt, 0, 1, 2, 3, filt0, filt1, filt2, filt3); + + mask1 = mask0 + 2; + mask2 = mask0 + 4; + mask3 = mask0 + 6; + + LD_SB4(src, src_stride, src0, src1, src2, src3); + XORI_B4_128_SB(src0, src1, src2, src3); + src += (4 * src_stride); + HORIZ_8TAP_4WID_4VECS_FILT(src0, src1, src2, src3, mask0, mask1, mask2, mask3, + filt0, filt1, filt2, filt3, out0, out1); + LD_SB4(src, src_stride, src0, src1, src2, src3); + XORI_B4_128_SB(src0, src1, src2, src3); + HORIZ_8TAP_4WID_4VECS_FILT(src0, src1, src2, src3, mask0, mask1, mask2, mask3, + filt0, filt1, filt2, filt3, out2, out3); + SRARI_H4_SH(out0, out1, out2, out3, FILTER_BITS); + SAT_SH4_SH(out0, out1, out2, out3, 7); + out = PCKEV_XORI128_UB(out0, out1); + ST4x4_UB(out, out, 0, 1, 2, 3, dst, dst_stride); + dst += (4 * dst_stride); + out = PCKEV_XORI128_UB(out2, out3); + ST4x4_UB(out, out, 0, 1, 2, 3, dst, dst_stride); +} + +static void common_hz_8t_4w_msa(const uint8_t *src, int32_t src_stride, + uint8_t *dst, int32_t dst_stride, + int8_t *filter, int32_t height) { + if (4 == height) { + common_hz_8t_4x4_msa(src, src_stride, dst, dst_stride, filter); + } else if (8 == height) { + common_hz_8t_4x8_msa(src, src_stride, dst, dst_stride, filter); + } +} + +static void common_hz_8t_8x4_msa(const uint8_t *src, int32_t src_stride, + uint8_t *dst, int32_t dst_stride, + int8_t *filter) { + v16i8 src0, src1, src2, src3, filt0, filt1, filt2, filt3; + v16u8 mask0, mask1, mask2, mask3, tmp0, tmp1; + v8i16 filt, out0, out1, out2, out3; + + mask0 = LD_UB(&mc_filt_mask_arr[0]); + src -= 3; + + /* rearranging filter */ + filt = LD_SH(filter); + SPLATI_H4_SB(filt, 0, 1, 2, 3, filt0, filt1, filt2, filt3); + + mask1 = mask0 + 2; + mask2 = mask0 + 4; + mask3 = mask0 + 6; + + LD_SB4(src, src_stride, src0, src1, src2, src3); + XORI_B4_128_SB(src0, src1, src2, src3); + HORIZ_8TAP_8WID_4VECS_FILT(src0, src1, src2, src3, mask0, mask1, mask2, mask3, + filt0, filt1, filt2, filt3, out0, out1, out2, + out3); + SRARI_H4_SH(out0, out1, out2, out3, FILTER_BITS); + SAT_SH4_SH(out0, out1, out2, out3, 7); + tmp0 = PCKEV_XORI128_UB(out0, out1); + tmp1 = PCKEV_XORI128_UB(out2, out3); + ST8x4_UB(tmp0, tmp1, dst, dst_stride); +} + +static void common_hz_8t_8x8mult_msa(const uint8_t *src, int32_t src_stride, + uint8_t *dst, int32_t dst_stride, + int8_t *filter, int32_t height) { + uint32_t loop_cnt; + v16i8 src0, src1, src2, src3, filt0, filt1, filt2, filt3; + v16u8 mask0, mask1, mask2, mask3, tmp0, tmp1; + v8i16 filt, out0, out1, out2, out3; + + mask0 = LD_UB(&mc_filt_mask_arr[0]); + src -= 3; + + /* rearranging filter */ + filt = LD_SH(filter); + SPLATI_H4_SB(filt, 0, 1, 2, 3, filt0, filt1, filt2, filt3); + + mask1 = mask0 + 2; + mask2 = mask0 + 4; + mask3 = mask0 + 6; + + for (loop_cnt = (height >> 2); loop_cnt--;) { + LD_SB4(src, src_stride, src0, src1, src2, src3); + XORI_B4_128_SB(src0, src1, src2, src3); + src += (4 * src_stride); + HORIZ_8TAP_8WID_4VECS_FILT(src0, src1, src2, src3, mask0, mask1, mask2, + mask3, filt0, filt1, filt2, filt3, out0, out1, + out2, out3); + SRARI_H4_SH(out0, out1, out2, out3, FILTER_BITS); + SAT_SH4_SH(out0, out1, out2, out3, 7); + tmp0 = PCKEV_XORI128_UB(out0, out1); + tmp1 = PCKEV_XORI128_UB(out2, out3); + ST8x4_UB(tmp0, tmp1, dst, dst_stride); + dst += (4 * dst_stride); + } +} + +static void common_hz_8t_8w_msa(const uint8_t *src, int32_t src_stride, + uint8_t *dst, int32_t dst_stride, + int8_t *filter, int32_t height) { + if (4 == height) { + common_hz_8t_8x4_msa(src, src_stride, dst, dst_stride, filter); + } else { + common_hz_8t_8x8mult_msa(src, src_stride, dst, dst_stride, filter, height); + } +} + +static void common_hz_8t_16w_msa(const uint8_t *src, int32_t src_stride, + uint8_t *dst, int32_t dst_stride, + int8_t *filter, int32_t height) { + uint32_t loop_cnt; + v16i8 src0, src1, src2, src3, filt0, filt1, filt2, filt3; + v16u8 mask0, mask1, mask2, mask3, out; + v8i16 filt, out0, out1, out2, out3; + + mask0 = LD_UB(&mc_filt_mask_arr[0]); + src -= 3; + + /* rearranging filter */ + filt = LD_SH(filter); + SPLATI_H4_SB(filt, 0, 1, 2, 3, filt0, filt1, filt2, filt3); + + mask1 = mask0 + 2; + mask2 = mask0 + 4; + mask3 = mask0 + 6; + + for (loop_cnt = (height >> 1); loop_cnt--;) { + LD_SB2(src, src_stride, src0, src2); + LD_SB2(src + 8, src_stride, src1, src3); + XORI_B4_128_SB(src0, src1, src2, src3); + src += (2 * src_stride); + HORIZ_8TAP_8WID_4VECS_FILT(src0, src1, src2, src3, mask0, mask1, mask2, + mask3, filt0, filt1, filt2, filt3, out0, out1, + out2, out3); + SRARI_H4_SH(out0, out1, out2, out3, FILTER_BITS); + SAT_SH4_SH(out0, out1, out2, out3, 7); + out = PCKEV_XORI128_UB(out0, out1); + ST_UB(out, dst); + dst += dst_stride; + out = PCKEV_XORI128_UB(out2, out3); + ST_UB(out, dst); + dst += dst_stride; + } +} + +static void common_hz_8t_32w_msa(const uint8_t *src, int32_t src_stride, + uint8_t *dst, int32_t dst_stride, + int8_t *filter, int32_t height) { + uint32_t loop_cnt; + v16i8 src0, src1, src2, src3, filt0, filt1, filt2, filt3; + v16u8 mask0, mask1, mask2, mask3, out; + v8i16 filt, out0, out1, out2, out3; + + mask0 = LD_UB(&mc_filt_mask_arr[0]); + src -= 3; + + /* rearranging filter */ + filt = LD_SH(filter); + SPLATI_H4_SB(filt, 0, 1, 2, 3, filt0, filt1, filt2, filt3); + + mask1 = mask0 + 2; + mask2 = mask0 + 4; + mask3 = mask0 + 6; + + for (loop_cnt = (height >> 1); loop_cnt--;) { + src0 = LD_SB(src); + src2 = LD_SB(src + 16); + src3 = LD_SB(src + 24); + src1 = __msa_sldi_b(src2, src0, 8); + src += src_stride; + XORI_B4_128_SB(src0, src1, src2, src3); + HORIZ_8TAP_8WID_4VECS_FILT(src0, src1, src2, src3, mask0, mask1, mask2, + mask3, filt0, filt1, filt2, filt3, out0, out1, + out2, out3); + SRARI_H4_SH(out0, out1, out2, out3, FILTER_BITS); + SAT_SH4_SH(out0, out1, out2, out3, 7); + + src0 = LD_SB(src); + src2 = LD_SB(src + 16); + src3 = LD_SB(src + 24); + src1 = __msa_sldi_b(src2, src0, 8); + src += src_stride; + + out = PCKEV_XORI128_UB(out0, out1); + ST_UB(out, dst); + out = PCKEV_XORI128_UB(out2, out3); + ST_UB(out, dst + 16); + dst += dst_stride; + + XORI_B4_128_SB(src0, src1, src2, src3); + HORIZ_8TAP_8WID_4VECS_FILT(src0, src1, src2, src3, mask0, mask1, mask2, + mask3, filt0, filt1, filt2, filt3, out0, out1, + out2, out3); + SRARI_H4_SH(out0, out1, out2, out3, FILTER_BITS); + SAT_SH4_SH(out0, out1, out2, out3, 7); + out = PCKEV_XORI128_UB(out0, out1); + ST_UB(out, dst); + out = PCKEV_XORI128_UB(out2, out3); + ST_UB(out, dst + 16); + dst += dst_stride; + } +} + +static void common_hz_8t_64w_msa(const uint8_t *src, int32_t src_stride, + uint8_t *dst, int32_t dst_stride, + int8_t *filter, int32_t height) { + int32_t loop_cnt; + v16i8 src0, src1, src2, src3, filt0, filt1, filt2, filt3; + v16u8 mask0, mask1, mask2, mask3, out; + v8i16 filt, out0, out1, out2, out3; + + mask0 = LD_UB(&mc_filt_mask_arr[0]); + src -= 3; + + /* rearranging filter */ + filt = LD_SH(filter); + SPLATI_H4_SB(filt, 0, 1, 2, 3, filt0, filt1, filt2, filt3); + + mask1 = mask0 + 2; + mask2 = mask0 + 4; + mask3 = mask0 + 6; + + for (loop_cnt = height; loop_cnt--;) { + src0 = LD_SB(src); + src2 = LD_SB(src + 16); + src3 = LD_SB(src + 24); + src1 = __msa_sldi_b(src2, src0, 8); + + XORI_B4_128_SB(src0, src1, src2, src3); + HORIZ_8TAP_8WID_4VECS_FILT(src0, src1, src2, src3, mask0, mask1, mask2, + mask3, filt0, filt1, filt2, filt3, out0, out1, + out2, out3); + SRARI_H4_SH(out0, out1, out2, out3, FILTER_BITS); + SAT_SH4_SH(out0, out1, out2, out3, 7); + out = PCKEV_XORI128_UB(out0, out1); + ST_UB(out, dst); + out = PCKEV_XORI128_UB(out2, out3); + ST_UB(out, dst + 16); + + src0 = LD_SB(src + 32); + src2 = LD_SB(src + 48); + src3 = LD_SB(src + 56); + src1 = __msa_sldi_b(src2, src0, 8); + src += src_stride; + + XORI_B4_128_SB(src0, src1, src2, src3); + HORIZ_8TAP_8WID_4VECS_FILT(src0, src1, src2, src3, mask0, mask1, mask2, + mask3, filt0, filt1, filt2, filt3, out0, out1, + out2, out3); + SRARI_H4_SH(out0, out1, out2, out3, FILTER_BITS); + SAT_SH4_SH(out0, out1, out2, out3, 7); + out = PCKEV_XORI128_UB(out0, out1); + ST_UB(out, dst + 32); + out = PCKEV_XORI128_UB(out2, out3); + ST_UB(out, dst + 48); + dst += dst_stride; + } +} + +static void common_hz_2t_4x4_msa(const uint8_t *src, int32_t src_stride, + uint8_t *dst, int32_t dst_stride, + int8_t *filter) { + v16i8 src0, src1, src2, src3, mask; + v16u8 filt0, vec0, vec1, res0, res1; + v8u16 vec2, vec3, filt; + + mask = LD_SB(&mc_filt_mask_arr[16]); + + /* rearranging filter */ + filt = LD_UH(filter); + filt0 = (v16u8)__msa_splati_h((v8i16)filt, 0); + + LD_SB4(src, src_stride, src0, src1, src2, src3); + VSHF_B2_UB(src0, src1, src2, src3, mask, mask, vec0, vec1); + DOTP_UB2_UH(vec0, vec1, filt0, filt0, vec2, vec3); + SRARI_H2_UH(vec2, vec3, FILTER_BITS); + PCKEV_B2_UB(vec2, vec2, vec3, vec3, res0, res1); + ST4x4_UB(res0, res1, 0, 1, 0, 1, dst, dst_stride); +} + +static void common_hz_2t_4x8_msa(const uint8_t *src, int32_t src_stride, + uint8_t *dst, int32_t dst_stride, + int8_t *filter) { + v16u8 vec0, vec1, vec2, vec3, filt0; + v16i8 src0, src1, src2, src3, src4, src5, src6, src7, mask; + v16i8 res0, res1, res2, res3; + v8u16 vec4, vec5, vec6, vec7, filt; + + mask = LD_SB(&mc_filt_mask_arr[16]); + + /* rearranging filter */ + filt = LD_UH(filter); + filt0 = (v16u8)__msa_splati_h((v8i16)filt, 0); + + LD_SB8(src, src_stride, src0, src1, src2, src3, src4, src5, src6, src7); + VSHF_B2_UB(src0, src1, src2, src3, mask, mask, vec0, vec1); + VSHF_B2_UB(src4, src5, src6, src7, mask, mask, vec2, vec3); + DOTP_UB4_UH(vec0, vec1, vec2, vec3, filt0, filt0, filt0, filt0, vec4, vec5, + vec6, vec7); + SRARI_H4_UH(vec4, vec5, vec6, vec7, FILTER_BITS); + PCKEV_B4_SB(vec4, vec4, vec5, vec5, vec6, vec6, vec7, vec7, res0, res1, res2, + res3); + ST4x4_UB(res0, res1, 0, 1, 0, 1, dst, dst_stride); + dst += (4 * dst_stride); + ST4x4_UB(res2, res3, 0, 1, 0, 1, dst, dst_stride); +} + +static void common_hz_2t_4w_msa(const uint8_t *src, int32_t src_stride, + uint8_t *dst, int32_t dst_stride, + int8_t *filter, int32_t height) { + if (4 == height) { + common_hz_2t_4x4_msa(src, src_stride, dst, dst_stride, filter); + } else if (8 == height) { + common_hz_2t_4x8_msa(src, src_stride, dst, dst_stride, filter); + } +} + +static void common_hz_2t_8x4_msa(const uint8_t *src, int32_t src_stride, + uint8_t *dst, int32_t dst_stride, + int8_t *filter) { + v16u8 filt0; + v16i8 src0, src1, src2, src3, mask; + v8u16 vec0, vec1, vec2, vec3, filt; + + mask = LD_SB(&mc_filt_mask_arr[0]); + + /* rearranging filter */ + filt = LD_UH(filter); + filt0 = (v16u8)__msa_splati_h((v8i16)filt, 0); + + LD_SB4(src, src_stride, src0, src1, src2, src3); + VSHF_B2_UH(src0, src0, src1, src1, mask, mask, vec0, vec1); + VSHF_B2_UH(src2, src2, src3, src3, mask, mask, vec2, vec3); + DOTP_UB4_UH(vec0, vec1, vec2, vec3, filt0, filt0, filt0, filt0, vec0, vec1, + vec2, vec3); + SRARI_H4_UH(vec0, vec1, vec2, vec3, FILTER_BITS); + PCKEV_B2_SB(vec1, vec0, vec3, vec2, src0, src1); + ST8x4_UB(src0, src1, dst, dst_stride); +} + +static void common_hz_2t_8x8mult_msa(const uint8_t *src, int32_t src_stride, + uint8_t *dst, int32_t dst_stride, + int8_t *filter, int32_t height) { + v16u8 filt0; + v16i8 src0, src1, src2, src3, mask, out0, out1; + v8u16 vec0, vec1, vec2, vec3, filt; + + mask = LD_SB(&mc_filt_mask_arr[0]); + + /* rearranging filter */ + filt = LD_UH(filter); + filt0 = (v16u8)__msa_splati_h((v8i16)filt, 0); + + LD_SB4(src, src_stride, src0, src1, src2, src3); + src += (4 * src_stride); + + VSHF_B2_UH(src0, src0, src1, src1, mask, mask, vec0, vec1); + VSHF_B2_UH(src2, src2, src3, src3, mask, mask, vec2, vec3); + DOTP_UB4_UH(vec0, vec1, vec2, vec3, filt0, filt0, filt0, filt0, vec0, vec1, + vec2, vec3); + SRARI_H4_UH(vec0, vec1, vec2, vec3, FILTER_BITS); + + LD_SB4(src, src_stride, src0, src1, src2, src3); + src += (4 * src_stride); + + PCKEV_B2_SB(vec1, vec0, vec3, vec2, out0, out1); + ST8x4_UB(out0, out1, dst, dst_stride); + dst += (4 * dst_stride); + + VSHF_B2_UH(src0, src0, src1, src1, mask, mask, vec0, vec1); + VSHF_B2_UH(src2, src2, src3, src3, mask, mask, vec2, vec3); + DOTP_UB4_UH(vec0, vec1, vec2, vec3, filt0, filt0, filt0, filt0, vec0, vec1, + vec2, vec3); + SRARI_H4_UH(vec0, vec1, vec2, vec3, FILTER_BITS); + PCKEV_B2_SB(vec1, vec0, vec3, vec2, out0, out1); + ST8x4_UB(out0, out1, dst, dst_stride); + dst += (4 * dst_stride); + + if (16 == height) { + LD_SB4(src, src_stride, src0, src1, src2, src3); + src += (4 * src_stride); + + VSHF_B2_UH(src0, src0, src1, src1, mask, mask, vec0, vec1); + VSHF_B2_UH(src2, src2, src3, src3, mask, mask, vec2, vec3); + DOTP_UB4_UH(vec0, vec1, vec2, vec3, filt0, filt0, filt0, filt0, vec0, vec1, + vec2, vec3); + SRARI_H4_UH(vec0, vec1, vec2, vec3, FILTER_BITS); + LD_SB4(src, src_stride, src0, src1, src2, src3); + src += (4 * src_stride); + + PCKEV_B2_SB(vec1, vec0, vec3, vec2, out0, out1); + ST8x4_UB(out0, out1, dst, dst_stride); + + VSHF_B2_UH(src0, src0, src1, src1, mask, mask, vec0, vec1); + VSHF_B2_UH(src2, src2, src3, src3, mask, mask, vec2, vec3); + DOTP_UB4_UH(vec0, vec1, vec2, vec3, filt0, filt0, filt0, filt0, vec0, vec1, + vec2, vec3); + SRARI_H4_UH(vec0, vec1, vec2, vec3, FILTER_BITS); + PCKEV_B2_SB(vec1, vec0, vec3, vec2, out0, out1); + ST8x4_UB(out0, out1, dst + 4 * dst_stride, dst_stride); + } +} + +static void common_hz_2t_8w_msa(const uint8_t *src, int32_t src_stride, + uint8_t *dst, int32_t dst_stride, + int8_t *filter, int32_t height) { + if (4 == height) { + common_hz_2t_8x4_msa(src, src_stride, dst, dst_stride, filter); + } else { + common_hz_2t_8x8mult_msa(src, src_stride, dst, dst_stride, filter, height); + } +} + +static void common_hz_2t_16w_msa(const uint8_t *src, int32_t src_stride, + uint8_t *dst, int32_t dst_stride, + int8_t *filter, int32_t height) { + uint32_t loop_cnt; + v16i8 src0, src1, src2, src3, src4, src5, src6, src7, mask; + v16u8 filt0, vec0, vec1, vec2, vec3, vec4, vec5, vec6, vec7; + v8u16 out0, out1, out2, out3, out4, out5, out6, out7, filt; + + mask = LD_SB(&mc_filt_mask_arr[0]); + + loop_cnt = (height >> 2) - 1; + + /* rearranging filter */ + filt = LD_UH(filter); + filt0 = (v16u8)__msa_splati_h((v8i16)filt, 0); + + LD_SB4(src, src_stride, src0, src2, src4, src6); + LD_SB4(src + 8, src_stride, src1, src3, src5, src7); + src += (4 * src_stride); + + VSHF_B2_UB(src0, src0, src1, src1, mask, mask, vec0, vec1); + VSHF_B2_UB(src2, src2, src3, src3, mask, mask, vec2, vec3); + VSHF_B2_UB(src4, src4, src5, src5, mask, mask, vec4, vec5); + VSHF_B2_UB(src6, src6, src7, src7, mask, mask, vec6, vec7); + DOTP_UB4_UH(vec0, vec1, vec2, vec3, filt0, filt0, filt0, filt0, out0, out1, + out2, out3); + DOTP_UB4_UH(vec4, vec5, vec6, vec7, filt0, filt0, filt0, filt0, out4, out5, + out6, out7); + SRARI_H4_UH(out0, out1, out2, out3, FILTER_BITS); + SRARI_H4_UH(out4, out5, out6, out7, FILTER_BITS); + PCKEV_ST_SB(out0, out1, dst); + dst += dst_stride; + PCKEV_ST_SB(out2, out3, dst); + dst += dst_stride; + PCKEV_ST_SB(out4, out5, dst); + dst += dst_stride; + PCKEV_ST_SB(out6, out7, dst); + dst += dst_stride; + + for (; loop_cnt--;) { + LD_SB4(src, src_stride, src0, src2, src4, src6); + LD_SB4(src + 8, src_stride, src1, src3, src5, src7); + src += (4 * src_stride); + + VSHF_B2_UB(src0, src0, src1, src1, mask, mask, vec0, vec1); + VSHF_B2_UB(src2, src2, src3, src3, mask, mask, vec2, vec3); + VSHF_B2_UB(src4, src4, src5, src5, mask, mask, vec4, vec5); + VSHF_B2_UB(src6, src6, src7, src7, mask, mask, vec6, vec7); + DOTP_UB4_UH(vec0, vec1, vec2, vec3, filt0, filt0, filt0, filt0, out0, out1, + out2, out3); + DOTP_UB4_UH(vec4, vec5, vec6, vec7, filt0, filt0, filt0, filt0, out4, out5, + out6, out7); + SRARI_H4_UH(out0, out1, out2, out3, FILTER_BITS); + SRARI_H4_UH(out4, out5, out6, out7, FILTER_BITS); + PCKEV_ST_SB(out0, out1, dst); + dst += dst_stride; + PCKEV_ST_SB(out2, out3, dst); + dst += dst_stride; + PCKEV_ST_SB(out4, out5, dst); + dst += dst_stride; + PCKEV_ST_SB(out6, out7, dst); + dst += dst_stride; + } +} + +static void common_hz_2t_32w_msa(const uint8_t *src, int32_t src_stride, + uint8_t *dst, int32_t dst_stride, + int8_t *filter, int32_t height) { + uint32_t loop_cnt; + v16i8 src0, src1, src2, src3, src4, src5, src6, src7, mask; + v16u8 filt0, vec0, vec1, vec2, vec3, vec4, vec5, vec6, vec7; + v8u16 out0, out1, out2, out3, out4, out5, out6, out7, filt; + + mask = LD_SB(&mc_filt_mask_arr[0]); + + /* rearranging filter */ + filt = LD_UH(filter); + filt0 = (v16u8)__msa_splati_h((v8i16)filt, 0); + + for (loop_cnt = height >> 1; loop_cnt--;) { + src0 = LD_SB(src); + src2 = LD_SB(src + 16); + src3 = LD_SB(src + 24); + src1 = __msa_sldi_b(src2, src0, 8); + src += src_stride; + src4 = LD_SB(src); + src6 = LD_SB(src + 16); + src7 = LD_SB(src + 24); + src5 = __msa_sldi_b(src6, src4, 8); + src += src_stride; + + VSHF_B2_UB(src0, src0, src1, src1, mask, mask, vec0, vec1); + VSHF_B2_UB(src2, src2, src3, src3, mask, mask, vec2, vec3); + VSHF_B2_UB(src4, src4, src5, src5, mask, mask, vec4, vec5); + VSHF_B2_UB(src6, src6, src7, src7, mask, mask, vec6, vec7); + DOTP_UB4_UH(vec0, vec1, vec2, vec3, filt0, filt0, filt0, filt0, out0, out1, + out2, out3); + DOTP_UB4_UH(vec4, vec5, vec6, vec7, filt0, filt0, filt0, filt0, out4, out5, + out6, out7); + SRARI_H4_UH(out0, out1, out2, out3, FILTER_BITS); + SRARI_H4_UH(out4, out5, out6, out7, FILTER_BITS); + PCKEV_ST_SB(out0, out1, dst); + PCKEV_ST_SB(out2, out3, dst + 16); + dst += dst_stride; + PCKEV_ST_SB(out4, out5, dst); + PCKEV_ST_SB(out6, out7, dst + 16); + dst += dst_stride; + } +} + +static void common_hz_2t_64w_msa(const uint8_t *src, int32_t src_stride, + uint8_t *dst, int32_t dst_stride, + int8_t *filter, int32_t height) { + uint32_t loop_cnt; + v16i8 src0, src1, src2, src3, src4, src5, src6, src7, mask; + v16u8 filt0, vec0, vec1, vec2, vec3, vec4, vec5, vec6, vec7; + v8u16 out0, out1, out2, out3, out4, out5, out6, out7, filt; + + mask = LD_SB(&mc_filt_mask_arr[0]); + + /* rearranging filter */ + filt = LD_UH(filter); + filt0 = (v16u8)__msa_splati_h((v8i16)filt, 0); + + for (loop_cnt = height; loop_cnt--;) { + src0 = LD_SB(src); + src2 = LD_SB(src + 16); + src4 = LD_SB(src + 32); + src6 = LD_SB(src + 48); + src7 = LD_SB(src + 56); + SLDI_B3_SB(src2, src4, src6, src0, src2, src4, src1, src3, src5, 8); + src += src_stride; + + VSHF_B2_UB(src0, src0, src1, src1, mask, mask, vec0, vec1); + VSHF_B2_UB(src2, src2, src3, src3, mask, mask, vec2, vec3); + VSHF_B2_UB(src4, src4, src5, src5, mask, mask, vec4, vec5); + VSHF_B2_UB(src6, src6, src7, src7, mask, mask, vec6, vec7); + DOTP_UB4_UH(vec0, vec1, vec2, vec3, filt0, filt0, filt0, filt0, out0, out1, + out2, out3); + DOTP_UB4_UH(vec4, vec5, vec6, vec7, filt0, filt0, filt0, filt0, out4, out5, + out6, out7); + SRARI_H4_UH(out0, out1, out2, out3, FILTER_BITS); + SRARI_H4_UH(out4, out5, out6, out7, FILTER_BITS); + PCKEV_ST_SB(out0, out1, dst); + PCKEV_ST_SB(out2, out3, dst + 16); + PCKEV_ST_SB(out4, out5, dst + 32); + PCKEV_ST_SB(out6, out7, dst + 48); + dst += dst_stride; + } +} + +void vpx_convolve8_horiz_msa(const uint8_t *src, ptrdiff_t src_stride, + uint8_t *dst, ptrdiff_t dst_stride, + const InterpKernel *filter, int x0_q4, + int x_step_q4, int y0_q4, int y_step_q4, int w, + int h) { + const int16_t *const filter_x = filter[x0_q4]; + int8_t cnt, filt_hor[8]; + + assert(x_step_q4 == 16); + assert(((const int32_t *)filter_x)[1] != 0x800000); + + for (cnt = 0; cnt < 8; ++cnt) { + filt_hor[cnt] = filter_x[cnt]; + } + + if (((const int32_t *)filter_x)[0] == 0) { + switch (w) { + case 4: + common_hz_2t_4w_msa(src, (int32_t)src_stride, dst, (int32_t)dst_stride, + &filt_hor[3], h); + break; + case 8: + common_hz_2t_8w_msa(src, (int32_t)src_stride, dst, (int32_t)dst_stride, + &filt_hor[3], h); + break; + case 16: + common_hz_2t_16w_msa(src, (int32_t)src_stride, dst, (int32_t)dst_stride, + &filt_hor[3], h); + break; + case 32: + common_hz_2t_32w_msa(src, (int32_t)src_stride, dst, (int32_t)dst_stride, + &filt_hor[3], h); + break; + case 64: + common_hz_2t_64w_msa(src, (int32_t)src_stride, dst, (int32_t)dst_stride, + &filt_hor[3], h); + break; + default: + vpx_convolve8_horiz_c(src, src_stride, dst, dst_stride, filter, x0_q4, + x_step_q4, y0_q4, y_step_q4, w, h); + break; + } + } else { + switch (w) { + case 4: + common_hz_8t_4w_msa(src, (int32_t)src_stride, dst, (int32_t)dst_stride, + filt_hor, h); + break; + case 8: + common_hz_8t_8w_msa(src, (int32_t)src_stride, dst, (int32_t)dst_stride, + filt_hor, h); + break; + case 16: + common_hz_8t_16w_msa(src, (int32_t)src_stride, dst, (int32_t)dst_stride, + filt_hor, h); + break; + case 32: + common_hz_8t_32w_msa(src, (int32_t)src_stride, dst, (int32_t)dst_stride, + filt_hor, h); + break; + case 64: + common_hz_8t_64w_msa(src, (int32_t)src_stride, dst, (int32_t)dst_stride, + filt_hor, h); + break; + default: + vpx_convolve8_horiz_c(src, src_stride, dst, dst_stride, filter, x0_q4, + x_step_q4, y0_q4, y_step_q4, w, h); + break; + } + } +} diff --git a/vpx_dsp/mips/vpx_convolve8_msa.c b/vpx_dsp/mips/vpx_convolve8_msa.c new file mode 100644 index 0000000..d35a5a7 --- /dev/null +++ b/vpx_dsp/mips/vpx_convolve8_msa.c @@ -0,0 +1,1227 @@ +/* + * Copyright (c) 2015 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include "./vpx_dsp_rtcd.h" +#include "vpx_dsp/mips/vpx_convolve_msa.h" + +const uint8_t mc_filt_mask_arr[16 * 3] = { + /* 8 width cases */ + 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, + /* 4 width cases */ + 0, 1, 1, 2, 2, 3, 3, 4, 16, 17, 17, 18, 18, 19, 19, 20, + /* 4 width cases */ + 8, 9, 9, 10, 10, 11, 11, 12, 24, 25, 25, 26, 26, 27, 27, 28 +}; + +static void common_hv_8ht_8vt_4w_msa(const uint8_t *src, int32_t src_stride, + uint8_t *dst, int32_t dst_stride, + int8_t *filter_horiz, int8_t *filter_vert, + int32_t height) { + uint32_t loop_cnt; + v16i8 src0, src1, src2, src3, src4, src5, src6, src7, src8, src9, src10; + v16i8 filt_hz0, filt_hz1, filt_hz2, filt_hz3; + v16u8 mask0, mask1, mask2, mask3, out; + v8i16 hz_out0, hz_out1, hz_out2, hz_out3, hz_out4, hz_out5, hz_out6; + v8i16 hz_out7, hz_out8, hz_out9, tmp0, tmp1, out0, out1, out2, out3, out4; + v8i16 filt, filt_vt0, filt_vt1, filt_vt2, filt_vt3; + + mask0 = LD_UB(&mc_filt_mask_arr[16]); + src -= (3 + 3 * src_stride); + + /* rearranging filter */ + filt = LD_SH(filter_horiz); + SPLATI_H4_SB(filt, 0, 1, 2, 3, filt_hz0, filt_hz1, filt_hz2, filt_hz3); + + mask1 = mask0 + 2; + mask2 = mask0 + 4; + mask3 = mask0 + 6; + + LD_SB7(src, src_stride, src0, src1, src2, src3, src4, src5, src6); + XORI_B7_128_SB(src0, src1, src2, src3, src4, src5, src6); + src += (7 * src_stride); + + hz_out0 = HORIZ_8TAP_FILT(src0, src1, mask0, mask1, mask2, mask3, filt_hz0, + filt_hz1, filt_hz2, filt_hz3); + hz_out2 = HORIZ_8TAP_FILT(src2, src3, mask0, mask1, mask2, mask3, filt_hz0, + filt_hz1, filt_hz2, filt_hz3); + hz_out4 = HORIZ_8TAP_FILT(src4, src5, mask0, mask1, mask2, mask3, filt_hz0, + filt_hz1, filt_hz2, filt_hz3); + hz_out5 = HORIZ_8TAP_FILT(src5, src6, mask0, mask1, mask2, mask3, filt_hz0, + filt_hz1, filt_hz2, filt_hz3); + SLDI_B2_SH(hz_out2, hz_out4, hz_out0, hz_out2, hz_out1, hz_out3, 8); + + filt = LD_SH(filter_vert); + SPLATI_H4_SH(filt, 0, 1, 2, 3, filt_vt0, filt_vt1, filt_vt2, filt_vt3); + + ILVEV_B2_SH(hz_out0, hz_out1, hz_out2, hz_out3, out0, out1); + out2 = (v8i16)__msa_ilvev_b((v16i8)hz_out5, (v16i8)hz_out4); + + for (loop_cnt = (height >> 2); loop_cnt--;) { + LD_SB4(src, src_stride, src7, src8, src9, src10); + XORI_B4_128_SB(src7, src8, src9, src10); + src += (4 * src_stride); + + hz_out7 = HORIZ_8TAP_FILT(src7, src8, mask0, mask1, mask2, mask3, filt_hz0, + filt_hz1, filt_hz2, filt_hz3); + hz_out6 = (v8i16)__msa_sldi_b((v16i8)hz_out7, (v16i8)hz_out5, 8); + out3 = (v8i16)__msa_ilvev_b((v16i8)hz_out7, (v16i8)hz_out6); + tmp0 = FILT_8TAP_DPADD_S_H(out0, out1, out2, out3, filt_vt0, filt_vt1, + filt_vt2, filt_vt3); + + hz_out9 = HORIZ_8TAP_FILT(src9, src10, mask0, mask1, mask2, mask3, filt_hz0, + filt_hz1, filt_hz2, filt_hz3); + hz_out8 = (v8i16)__msa_sldi_b((v16i8)hz_out9, (v16i8)hz_out7, 8); + out4 = (v8i16)__msa_ilvev_b((v16i8)hz_out9, (v16i8)hz_out8); + tmp1 = FILT_8TAP_DPADD_S_H(out1, out2, out3, out4, filt_vt0, filt_vt1, + filt_vt2, filt_vt3); + SRARI_H2_SH(tmp0, tmp1, FILTER_BITS); + SAT_SH2_SH(tmp0, tmp1, 7); + out = PCKEV_XORI128_UB(tmp0, tmp1); + ST4x4_UB(out, out, 0, 1, 2, 3, dst, dst_stride); + dst += (4 * dst_stride); + + hz_out5 = hz_out9; + out0 = out2; + out1 = out3; + out2 = out4; + } +} + +static void common_hv_8ht_8vt_8w_msa(const uint8_t *src, int32_t src_stride, + uint8_t *dst, int32_t dst_stride, + int8_t *filter_horiz, int8_t *filter_vert, + int32_t height) { + uint32_t loop_cnt; + v16i8 src0, src1, src2, src3, src4, src5, src6, src7, src8, src9, src10; + v16i8 filt_hz0, filt_hz1, filt_hz2, filt_hz3; + v16u8 mask0, mask1, mask2, mask3, vec0, vec1; + v8i16 filt, filt_vt0, filt_vt1, filt_vt2, filt_vt3; + v8i16 hz_out0, hz_out1, hz_out2, hz_out3, hz_out4, hz_out5, hz_out6; + v8i16 hz_out7, hz_out8, hz_out9, hz_out10, tmp0, tmp1, tmp2, tmp3; + v8i16 out0, out1, out2, out3, out4, out5, out6, out7, out8, out9; + + mask0 = LD_UB(&mc_filt_mask_arr[0]); + src -= (3 + 3 * src_stride); + + /* rearranging filter */ + filt = LD_SH(filter_horiz); + SPLATI_H4_SB(filt, 0, 1, 2, 3, filt_hz0, filt_hz1, filt_hz2, filt_hz3); + + mask1 = mask0 + 2; + mask2 = mask0 + 4; + mask3 = mask0 + 6; + + LD_SB7(src, src_stride, src0, src1, src2, src3, src4, src5, src6); + src += (7 * src_stride); + + XORI_B7_128_SB(src0, src1, src2, src3, src4, src5, src6); + hz_out0 = HORIZ_8TAP_FILT(src0, src0, mask0, mask1, mask2, mask3, filt_hz0, + filt_hz1, filt_hz2, filt_hz3); + hz_out1 = HORIZ_8TAP_FILT(src1, src1, mask0, mask1, mask2, mask3, filt_hz0, + filt_hz1, filt_hz2, filt_hz3); + hz_out2 = HORIZ_8TAP_FILT(src2, src2, mask0, mask1, mask2, mask3, filt_hz0, + filt_hz1, filt_hz2, filt_hz3); + hz_out3 = HORIZ_8TAP_FILT(src3, src3, mask0, mask1, mask2, mask3, filt_hz0, + filt_hz1, filt_hz2, filt_hz3); + hz_out4 = HORIZ_8TAP_FILT(src4, src4, mask0, mask1, mask2, mask3, filt_hz0, + filt_hz1, filt_hz2, filt_hz3); + hz_out5 = HORIZ_8TAP_FILT(src5, src5, mask0, mask1, mask2, mask3, filt_hz0, + filt_hz1, filt_hz2, filt_hz3); + hz_out6 = HORIZ_8TAP_FILT(src6, src6, mask0, mask1, mask2, mask3, filt_hz0, + filt_hz1, filt_hz2, filt_hz3); + + filt = LD_SH(filter_vert); + SPLATI_H4_SH(filt, 0, 1, 2, 3, filt_vt0, filt_vt1, filt_vt2, filt_vt3); + + ILVEV_B2_SH(hz_out0, hz_out1, hz_out2, hz_out3, out0, out1); + ILVEV_B2_SH(hz_out4, hz_out5, hz_out1, hz_out2, out2, out4); + ILVEV_B2_SH(hz_out3, hz_out4, hz_out5, hz_out6, out5, out6); + + for (loop_cnt = (height >> 2); loop_cnt--;) { + LD_SB4(src, src_stride, src7, src8, src9, src10); + src += (4 * src_stride); + + XORI_B4_128_SB(src7, src8, src9, src10); + + hz_out7 = HORIZ_8TAP_FILT(src7, src7, mask0, mask1, mask2, mask3, filt_hz0, + filt_hz1, filt_hz2, filt_hz3); + out3 = (v8i16)__msa_ilvev_b((v16i8)hz_out7, (v16i8)hz_out6); + tmp0 = FILT_8TAP_DPADD_S_H(out0, out1, out2, out3, filt_vt0, filt_vt1, + filt_vt2, filt_vt3); + + hz_out8 = HORIZ_8TAP_FILT(src8, src8, mask0, mask1, mask2, mask3, filt_hz0, + filt_hz1, filt_hz2, filt_hz3); + out7 = (v8i16)__msa_ilvev_b((v16i8)hz_out8, (v16i8)hz_out7); + tmp1 = FILT_8TAP_DPADD_S_H(out4, out5, out6, out7, filt_vt0, filt_vt1, + filt_vt2, filt_vt3); + + hz_out9 = HORIZ_8TAP_FILT(src9, src9, mask0, mask1, mask2, mask3, filt_hz0, + filt_hz1, filt_hz2, filt_hz3); + out8 = (v8i16)__msa_ilvev_b((v16i8)hz_out9, (v16i8)hz_out8); + tmp2 = FILT_8TAP_DPADD_S_H(out1, out2, out3, out8, filt_vt0, filt_vt1, + filt_vt2, filt_vt3); + + hz_out10 = HORIZ_8TAP_FILT(src10, src10, mask0, mask1, mask2, mask3, + filt_hz0, filt_hz1, filt_hz2, filt_hz3); + out9 = (v8i16)__msa_ilvev_b((v16i8)hz_out10, (v16i8)hz_out9); + tmp3 = FILT_8TAP_DPADD_S_H(out5, out6, out7, out9, filt_vt0, filt_vt1, + filt_vt2, filt_vt3); + SRARI_H4_SH(tmp0, tmp1, tmp2, tmp3, FILTER_BITS); + SAT_SH4_SH(tmp0, tmp1, tmp2, tmp3, 7); + vec0 = PCKEV_XORI128_UB(tmp0, tmp1); + vec1 = PCKEV_XORI128_UB(tmp2, tmp3); + ST8x4_UB(vec0, vec1, dst, dst_stride); + dst += (4 * dst_stride); + + hz_out6 = hz_out10; + out0 = out2; + out1 = out3; + out2 = out8; + out4 = out6; + out5 = out7; + out6 = out9; + } +} + +static void common_hv_8ht_8vt_16w_msa(const uint8_t *src, int32_t src_stride, + uint8_t *dst, int32_t dst_stride, + int8_t *filter_horiz, int8_t *filter_vert, + int32_t height) { + int32_t multiple8_cnt; + for (multiple8_cnt = 2; multiple8_cnt--;) { + common_hv_8ht_8vt_8w_msa(src, src_stride, dst, dst_stride, filter_horiz, + filter_vert, height); + src += 8; + dst += 8; + } +} + +static void common_hv_8ht_8vt_32w_msa(const uint8_t *src, int32_t src_stride, + uint8_t *dst, int32_t dst_stride, + int8_t *filter_horiz, int8_t *filter_vert, + int32_t height) { + int32_t multiple8_cnt; + for (multiple8_cnt = 4; multiple8_cnt--;) { + common_hv_8ht_8vt_8w_msa(src, src_stride, dst, dst_stride, filter_horiz, + filter_vert, height); + src += 8; + dst += 8; + } +} + +static void common_hv_8ht_8vt_64w_msa(const uint8_t *src, int32_t src_stride, + uint8_t *dst, int32_t dst_stride, + int8_t *filter_horiz, int8_t *filter_vert, + int32_t height) { + int32_t multiple8_cnt; + for (multiple8_cnt = 8; multiple8_cnt--;) { + common_hv_8ht_8vt_8w_msa(src, src_stride, dst, dst_stride, filter_horiz, + filter_vert, height); + src += 8; + dst += 8; + } +} + +static void common_hv_2ht_2vt_4x4_msa(const uint8_t *src, int32_t src_stride, + uint8_t *dst, int32_t dst_stride, + int8_t *filter_horiz, + int8_t *filter_vert) { + v16i8 src0, src1, src2, src3, src4, mask; + v16u8 filt_vt, filt_hz, vec0, vec1, res0, res1; + v8u16 hz_out0, hz_out1, hz_out2, hz_out3, hz_out4, filt, tmp0, tmp1; + + mask = LD_SB(&mc_filt_mask_arr[16]); + + /* rearranging filter */ + filt = LD_UH(filter_horiz); + filt_hz = (v16u8)__msa_splati_h((v8i16)filt, 0); + + filt = LD_UH(filter_vert); + filt_vt = (v16u8)__msa_splati_h((v8i16)filt, 0); + + LD_SB5(src, src_stride, src0, src1, src2, src3, src4); + hz_out0 = HORIZ_2TAP_FILT_UH(src0, src1, mask, filt_hz, FILTER_BITS); + hz_out2 = HORIZ_2TAP_FILT_UH(src2, src3, mask, filt_hz, FILTER_BITS); + hz_out4 = HORIZ_2TAP_FILT_UH(src4, src4, mask, filt_hz, FILTER_BITS); + hz_out1 = (v8u16)__msa_sldi_b((v16i8)hz_out2, (v16i8)hz_out0, 8); + hz_out3 = (v8u16)__msa_pckod_d((v2i64)hz_out4, (v2i64)hz_out2); + + ILVEV_B2_UB(hz_out0, hz_out1, hz_out2, hz_out3, vec0, vec1); + DOTP_UB2_UH(vec0, vec1, filt_vt, filt_vt, tmp0, tmp1); + SRARI_H2_UH(tmp0, tmp1, FILTER_BITS); + PCKEV_B2_UB(tmp0, tmp0, tmp1, tmp1, res0, res1); + ST4x4_UB(res0, res1, 0, 1, 0, 1, dst, dst_stride); +} + +static void common_hv_2ht_2vt_4x8_msa(const uint8_t *src, int32_t src_stride, + uint8_t *dst, int32_t dst_stride, + int8_t *filter_horiz, + int8_t *filter_vert) { + v16i8 src0, src1, src2, src3, src4, src5, src6, src7, src8, mask; + v16i8 res0, res1, res2, res3; + v16u8 filt_hz, filt_vt, vec0, vec1, vec2, vec3; + v8u16 hz_out0, hz_out1, hz_out2, hz_out3, hz_out4, hz_out5, hz_out6; + v8u16 hz_out7, hz_out8, vec4, vec5, vec6, vec7, filt; + + mask = LD_SB(&mc_filt_mask_arr[16]); + + /* rearranging filter */ + filt = LD_UH(filter_horiz); + filt_hz = (v16u8)__msa_splati_h((v8i16)filt, 0); + + filt = LD_UH(filter_vert); + filt_vt = (v16u8)__msa_splati_h((v8i16)filt, 0); + + LD_SB8(src, src_stride, src0, src1, src2, src3, src4, src5, src6, src7); + src += (8 * src_stride); + src8 = LD_SB(src); + + hz_out0 = HORIZ_2TAP_FILT_UH(src0, src1, mask, filt_hz, FILTER_BITS); + hz_out2 = HORIZ_2TAP_FILT_UH(src2, src3, mask, filt_hz, FILTER_BITS); + hz_out4 = HORIZ_2TAP_FILT_UH(src4, src5, mask, filt_hz, FILTER_BITS); + hz_out6 = HORIZ_2TAP_FILT_UH(src6, src7, mask, filt_hz, FILTER_BITS); + hz_out8 = HORIZ_2TAP_FILT_UH(src8, src8, mask, filt_hz, FILTER_BITS); + SLDI_B3_UH(hz_out2, hz_out4, hz_out6, hz_out0, hz_out2, hz_out4, hz_out1, + hz_out3, hz_out5, 8); + hz_out7 = (v8u16)__msa_pckod_d((v2i64)hz_out8, (v2i64)hz_out6); + + ILVEV_B2_UB(hz_out0, hz_out1, hz_out2, hz_out3, vec0, vec1); + ILVEV_B2_UB(hz_out4, hz_out5, hz_out6, hz_out7, vec2, vec3); + DOTP_UB4_UH(vec0, vec1, vec2, vec3, filt_vt, filt_vt, filt_vt, filt_vt, vec4, + vec5, vec6, vec7); + SRARI_H4_UH(vec4, vec5, vec6, vec7, FILTER_BITS); + PCKEV_B4_SB(vec4, vec4, vec5, vec5, vec6, vec6, vec7, vec7, res0, res1, res2, + res3); + ST4x4_UB(res0, res1, 0, 1, 0, 1, dst, dst_stride); + dst += (4 * dst_stride); + ST4x4_UB(res2, res3, 0, 1, 0, 1, dst, dst_stride); +} + +static void common_hv_2ht_2vt_4w_msa(const uint8_t *src, int32_t src_stride, + uint8_t *dst, int32_t dst_stride, + int8_t *filter_horiz, int8_t *filter_vert, + int32_t height) { + if (4 == height) { + common_hv_2ht_2vt_4x4_msa(src, src_stride, dst, dst_stride, filter_horiz, + filter_vert); + } else if (8 == height) { + common_hv_2ht_2vt_4x8_msa(src, src_stride, dst, dst_stride, filter_horiz, + filter_vert); + } +} + +static void common_hv_2ht_2vt_8x4_msa(const uint8_t *src, int32_t src_stride, + uint8_t *dst, int32_t dst_stride, + int8_t *filter_horiz, + int8_t *filter_vert) { + v16i8 src0, src1, src2, src3, src4, mask, out0, out1; + v16u8 filt_hz, filt_vt, vec0, vec1, vec2, vec3; + v8u16 hz_out0, hz_out1, tmp0, tmp1, tmp2, tmp3; + v8i16 filt; + + mask = LD_SB(&mc_filt_mask_arr[0]); + + /* rearranging filter */ + filt = LD_SH(filter_horiz); + filt_hz = (v16u8)__msa_splati_h(filt, 0); + + filt = LD_SH(filter_vert); + filt_vt = (v16u8)__msa_splati_h(filt, 0); + + LD_SB5(src, src_stride, src0, src1, src2, src3, src4); + + hz_out0 = HORIZ_2TAP_FILT_UH(src0, src0, mask, filt_hz, FILTER_BITS); + hz_out1 = HORIZ_2TAP_FILT_UH(src1, src1, mask, filt_hz, FILTER_BITS); + vec0 = (v16u8)__msa_ilvev_b((v16i8)hz_out1, (v16i8)hz_out0); + tmp0 = __msa_dotp_u_h(vec0, filt_vt); + + hz_out0 = HORIZ_2TAP_FILT_UH(src2, src2, mask, filt_hz, FILTER_BITS); + vec1 = (v16u8)__msa_ilvev_b((v16i8)hz_out0, (v16i8)hz_out1); + tmp1 = __msa_dotp_u_h(vec1, filt_vt); + + hz_out1 = HORIZ_2TAP_FILT_UH(src3, src3, mask, filt_hz, FILTER_BITS); + vec2 = (v16u8)__msa_ilvev_b((v16i8)hz_out1, (v16i8)hz_out0); + tmp2 = __msa_dotp_u_h(vec2, filt_vt); + + hz_out0 = HORIZ_2TAP_FILT_UH(src4, src4, mask, filt_hz, FILTER_BITS); + vec3 = (v16u8)__msa_ilvev_b((v16i8)hz_out0, (v16i8)hz_out1); + tmp3 = __msa_dotp_u_h(vec3, filt_vt); + + SRARI_H4_UH(tmp0, tmp1, tmp2, tmp3, FILTER_BITS); + PCKEV_B2_SB(tmp1, tmp0, tmp3, tmp2, out0, out1); + ST8x4_UB(out0, out1, dst, dst_stride); +} + +static void common_hv_2ht_2vt_8x8mult_msa(const uint8_t *src, + int32_t src_stride, uint8_t *dst, + int32_t dst_stride, + int8_t *filter_horiz, + int8_t *filter_vert, int32_t height) { + uint32_t loop_cnt; + v16i8 src0, src1, src2, src3, src4, mask, out0, out1; + v16u8 filt_hz, filt_vt, vec0; + v8u16 hz_out0, hz_out1, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7, tmp8; + v8i16 filt; + + mask = LD_SB(&mc_filt_mask_arr[0]); + + /* rearranging filter */ + filt = LD_SH(filter_horiz); + filt_hz = (v16u8)__msa_splati_h(filt, 0); + + filt = LD_SH(filter_vert); + filt_vt = (v16u8)__msa_splati_h(filt, 0); + + src0 = LD_SB(src); + src += src_stride; + + hz_out0 = HORIZ_2TAP_FILT_UH(src0, src0, mask, filt_hz, FILTER_BITS); + + for (loop_cnt = (height >> 3); loop_cnt--;) { + LD_SB4(src, src_stride, src1, src2, src3, src4); + src += (4 * src_stride); + + hz_out1 = HORIZ_2TAP_FILT_UH(src1, src1, mask, filt_hz, FILTER_BITS); + vec0 = (v16u8)__msa_ilvev_b((v16i8)hz_out1, (v16i8)hz_out0); + tmp1 = __msa_dotp_u_h(vec0, filt_vt); + + hz_out0 = HORIZ_2TAP_FILT_UH(src2, src2, mask, filt_hz, FILTER_BITS); + vec0 = (v16u8)__msa_ilvev_b((v16i8)hz_out0, (v16i8)hz_out1); + tmp2 = __msa_dotp_u_h(vec0, filt_vt); + + SRARI_H2_UH(tmp1, tmp2, FILTER_BITS); + + hz_out1 = HORIZ_2TAP_FILT_UH(src3, src3, mask, filt_hz, FILTER_BITS); + vec0 = (v16u8)__msa_ilvev_b((v16i8)hz_out1, (v16i8)hz_out0); + tmp3 = __msa_dotp_u_h(vec0, filt_vt); + + hz_out0 = HORIZ_2TAP_FILT_UH(src4, src4, mask, filt_hz, FILTER_BITS); + LD_SB4(src, src_stride, src1, src2, src3, src4); + src += (4 * src_stride); + vec0 = (v16u8)__msa_ilvev_b((v16i8)hz_out0, (v16i8)hz_out1); + tmp4 = __msa_dotp_u_h(vec0, filt_vt); + + SRARI_H2_UH(tmp3, tmp4, FILTER_BITS); + PCKEV_B2_SB(tmp2, tmp1, tmp4, tmp3, out0, out1); + ST8x4_UB(out0, out1, dst, dst_stride); + dst += (4 * dst_stride); + + hz_out1 = HORIZ_2TAP_FILT_UH(src1, src1, mask, filt_hz, FILTER_BITS); + vec0 = (v16u8)__msa_ilvev_b((v16i8)hz_out1, (v16i8)hz_out0); + tmp5 = __msa_dotp_u_h(vec0, filt_vt); + + hz_out0 = HORIZ_2TAP_FILT_UH(src2, src2, mask, filt_hz, FILTER_BITS); + vec0 = (v16u8)__msa_ilvev_b((v16i8)hz_out0, (v16i8)hz_out1); + tmp6 = __msa_dotp_u_h(vec0, filt_vt); + + hz_out1 = HORIZ_2TAP_FILT_UH(src3, src3, mask, filt_hz, FILTER_BITS); + vec0 = (v16u8)__msa_ilvev_b((v16i8)hz_out1, (v16i8)hz_out0); + tmp7 = __msa_dotp_u_h(vec0, filt_vt); + + hz_out0 = HORIZ_2TAP_FILT_UH(src4, src4, mask, filt_hz, FILTER_BITS); + vec0 = (v16u8)__msa_ilvev_b((v16i8)hz_out0, (v16i8)hz_out1); + tmp8 = __msa_dotp_u_h(vec0, filt_vt); + + SRARI_H4_UH(tmp5, tmp6, tmp7, tmp8, FILTER_BITS); + PCKEV_B2_SB(tmp6, tmp5, tmp8, tmp7, out0, out1); + ST8x4_UB(out0, out1, dst, dst_stride); + dst += (4 * dst_stride); + } +} + +static void common_hv_2ht_2vt_8w_msa(const uint8_t *src, int32_t src_stride, + uint8_t *dst, int32_t dst_stride, + int8_t *filter_horiz, int8_t *filter_vert, + int32_t height) { + if (4 == height) { + common_hv_2ht_2vt_8x4_msa(src, src_stride, dst, dst_stride, filter_horiz, + filter_vert); + } else { + common_hv_2ht_2vt_8x8mult_msa(src, src_stride, dst, dst_stride, + filter_horiz, filter_vert, height); + } +} + +static void common_hv_2ht_2vt_16w_msa(const uint8_t *src, int32_t src_stride, + uint8_t *dst, int32_t dst_stride, + int8_t *filter_horiz, int8_t *filter_vert, + int32_t height) { + uint32_t loop_cnt; + v16i8 src0, src1, src2, src3, src4, src5, src6, src7, mask; + v16u8 filt_hz, filt_vt, vec0, vec1; + v8u16 tmp1, tmp2, hz_out0, hz_out1, hz_out2, hz_out3; + v8i16 filt; + + mask = LD_SB(&mc_filt_mask_arr[0]); + + /* rearranging filter */ + filt = LD_SH(filter_horiz); + filt_hz = (v16u8)__msa_splati_h(filt, 0); + + filt = LD_SH(filter_vert); + filt_vt = (v16u8)__msa_splati_h(filt, 0); + + LD_SB2(src, 8, src0, src1); + src += src_stride; + + hz_out0 = HORIZ_2TAP_FILT_UH(src0, src0, mask, filt_hz, FILTER_BITS); + hz_out2 = HORIZ_2TAP_FILT_UH(src1, src1, mask, filt_hz, FILTER_BITS); + + for (loop_cnt = (height >> 2); loop_cnt--;) { + LD_SB4(src, src_stride, src0, src2, src4, src6); + LD_SB4(src + 8, src_stride, src1, src3, src5, src7); + src += (4 * src_stride); + + hz_out1 = HORIZ_2TAP_FILT_UH(src0, src0, mask, filt_hz, FILTER_BITS); + hz_out3 = HORIZ_2TAP_FILT_UH(src1, src1, mask, filt_hz, FILTER_BITS); + ILVEV_B2_UB(hz_out0, hz_out1, hz_out2, hz_out3, vec0, vec1); + DOTP_UB2_UH(vec0, vec1, filt_vt, filt_vt, tmp1, tmp2); + SRARI_H2_UH(tmp1, tmp2, FILTER_BITS); + PCKEV_ST_SB(tmp1, tmp2, dst); + dst += dst_stride; + + hz_out0 = HORIZ_2TAP_FILT_UH(src2, src2, mask, filt_hz, FILTER_BITS); + hz_out2 = HORIZ_2TAP_FILT_UH(src3, src3, mask, filt_hz, FILTER_BITS); + ILVEV_B2_UB(hz_out1, hz_out0, hz_out3, hz_out2, vec0, vec1); + DOTP_UB2_UH(vec0, vec1, filt_vt, filt_vt, tmp1, tmp2); + SRARI_H2_UH(tmp1, tmp2, FILTER_BITS); + PCKEV_ST_SB(tmp1, tmp2, dst); + dst += dst_stride; + + hz_out1 = HORIZ_2TAP_FILT_UH(src4, src4, mask, filt_hz, FILTER_BITS); + hz_out3 = HORIZ_2TAP_FILT_UH(src5, src5, mask, filt_hz, FILTER_BITS); + ILVEV_B2_UB(hz_out0, hz_out1, hz_out2, hz_out3, vec0, vec1); + DOTP_UB2_UH(vec0, vec1, filt_vt, filt_vt, tmp1, tmp2); + SRARI_H2_UH(tmp1, tmp2, FILTER_BITS); + PCKEV_ST_SB(tmp1, tmp2, dst); + dst += dst_stride; + + hz_out0 = HORIZ_2TAP_FILT_UH(src6, src6, mask, filt_hz, FILTER_BITS); + hz_out2 = HORIZ_2TAP_FILT_UH(src7, src7, mask, filt_hz, FILTER_BITS); + ILVEV_B2_UB(hz_out1, hz_out0, hz_out3, hz_out2, vec0, vec1); + DOTP_UB2_UH(vec0, vec1, filt_vt, filt_vt, tmp1, tmp2); + SRARI_H2_UH(tmp1, tmp2, FILTER_BITS); + PCKEV_ST_SB(tmp1, tmp2, dst); + dst += dst_stride; + } +} + +static void common_hv_2ht_2vt_32w_msa(const uint8_t *src, int32_t src_stride, + uint8_t *dst, int32_t dst_stride, + int8_t *filter_horiz, int8_t *filter_vert, + int32_t height) { + int32_t multiple8_cnt; + for (multiple8_cnt = 2; multiple8_cnt--;) { + common_hv_2ht_2vt_16w_msa(src, src_stride, dst, dst_stride, filter_horiz, + filter_vert, height); + src += 16; + dst += 16; + } +} + +static void common_hv_2ht_2vt_64w_msa(const uint8_t *src, int32_t src_stride, + uint8_t *dst, int32_t dst_stride, + int8_t *filter_horiz, int8_t *filter_vert, + int32_t height) { + int32_t multiple8_cnt; + for (multiple8_cnt = 4; multiple8_cnt--;) { + common_hv_2ht_2vt_16w_msa(src, src_stride, dst, dst_stride, filter_horiz, + filter_vert, height); + src += 16; + dst += 16; + } +} + +void vpx_convolve8_msa(const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst, + ptrdiff_t dst_stride, const InterpKernel *filter, + int x0_q4, int32_t x_step_q4, int y0_q4, + int32_t y_step_q4, int32_t w, int32_t h) { + const int16_t *const filter_x = filter[x0_q4]; + const int16_t *const filter_y = filter[y0_q4]; + int8_t cnt, filt_hor[8], filt_ver[8]; + + assert(x_step_q4 == 16); + assert(y_step_q4 == 16); + assert(((const int32_t *)filter_x)[1] != 0x800000); + assert(((const int32_t *)filter_y)[1] != 0x800000); + + for (cnt = 0; cnt < 8; ++cnt) { + filt_hor[cnt] = filter_x[cnt]; + filt_ver[cnt] = filter_y[cnt]; + } + + if (((const int32_t *)filter_x)[0] == 0 && + ((const int32_t *)filter_y)[0] == 0) { + switch (w) { + case 4: + common_hv_2ht_2vt_4w_msa(src, (int32_t)src_stride, dst, + (int32_t)dst_stride, &filt_hor[3], + &filt_ver[3], (int32_t)h); + break; + case 8: + common_hv_2ht_2vt_8w_msa(src, (int32_t)src_stride, dst, + (int32_t)dst_stride, &filt_hor[3], + &filt_ver[3], (int32_t)h); + break; + case 16: + common_hv_2ht_2vt_16w_msa(src, (int32_t)src_stride, dst, + (int32_t)dst_stride, &filt_hor[3], + &filt_ver[3], (int32_t)h); + break; + case 32: + common_hv_2ht_2vt_32w_msa(src, (int32_t)src_stride, dst, + (int32_t)dst_stride, &filt_hor[3], + &filt_ver[3], (int32_t)h); + break; + case 64: + common_hv_2ht_2vt_64w_msa(src, (int32_t)src_stride, dst, + (int32_t)dst_stride, &filt_hor[3], + &filt_ver[3], (int32_t)h); + break; + default: + vpx_convolve8_c(src, src_stride, dst, dst_stride, filter, x0_q4, + x_step_q4, y0_q4, y_step_q4, w, h); + break; + } + } else if (((const int32_t *)filter_x)[0] == 0 || + ((const int32_t *)filter_y)[0] == 0) { + vpx_convolve8_c(src, src_stride, dst, dst_stride, filter, x0_q4, x_step_q4, + y0_q4, y_step_q4, w, h); + } else { + switch (w) { + case 4: + common_hv_8ht_8vt_4w_msa(src, (int32_t)src_stride, dst, + (int32_t)dst_stride, filt_hor, filt_ver, + (int32_t)h); + break; + case 8: + common_hv_8ht_8vt_8w_msa(src, (int32_t)src_stride, dst, + (int32_t)dst_stride, filt_hor, filt_ver, + (int32_t)h); + break; + case 16: + common_hv_8ht_8vt_16w_msa(src, (int32_t)src_stride, dst, + (int32_t)dst_stride, filt_hor, filt_ver, + (int32_t)h); + break; + case 32: + common_hv_8ht_8vt_32w_msa(src, (int32_t)src_stride, dst, + (int32_t)dst_stride, filt_hor, filt_ver, + (int32_t)h); + break; + case 64: + common_hv_8ht_8vt_64w_msa(src, (int32_t)src_stride, dst, + (int32_t)dst_stride, filt_hor, filt_ver, + (int32_t)h); + break; + default: + vpx_convolve8_c(src, src_stride, dst, dst_stride, filter, x0_q4, + x_step_q4, y0_q4, y_step_q4, w, h); + break; + } + } +} + +static void filter_horiz_w4_msa(const uint8_t *src_x, ptrdiff_t src_pitch, + uint8_t *dst, const int16_t *x_filter) { + uint64_t srcd0, srcd1, srcd2, srcd3; + uint32_t res; + v16u8 src0 = { 0 }, src1 = { 0 }, dst0; + v16i8 out0, out1; + v16i8 shf1 = { 0, 8, 16, 24, 4, 12, 20, 28, 1, 9, 17, 25, 5, 13, 21, 29 }; + v16i8 shf2 = shf1 + 2; + v16i8 filt_shf0 = { 0, 1, 0, 1, 0, 1, 0, 1, 8, 9, 8, 9, 8, 9, 8, 9 }; + v16i8 filt_shf1 = filt_shf0 + 2; + v16i8 filt_shf2 = filt_shf0 + 4; + v16i8 filt_shf3 = filt_shf0 + 6; + v8i16 filt, src0_h, src1_h, src2_h, src3_h, filt0, filt1, filt2, filt3; + + LD4(src_x, src_pitch, srcd0, srcd1, srcd2, srcd3); + INSERT_D2_UB(srcd0, srcd1, src0); + INSERT_D2_UB(srcd2, srcd3, src1); + VSHF_B2_SB(src0, src1, src0, src1, shf1, shf2, out0, out1); + XORI_B2_128_SB(out0, out1); + UNPCK_SB_SH(out0, src0_h, src1_h); + UNPCK_SB_SH(out1, src2_h, src3_h); + + filt = LD_SH(x_filter); + VSHF_B2_SH(filt, filt, filt, filt, filt_shf0, filt_shf1, filt0, filt1); + VSHF_B2_SH(filt, filt, filt, filt, filt_shf2, filt_shf3, filt2, filt3); + + src0_h *= filt0; + src0_h += src1_h * filt1; + src0_h += src2_h * filt2; + src0_h += src3_h * filt3; + + src1_h = (v8i16)__msa_sldi_b((v16i8)src0_h, (v16i8)src0_h, 8); + + src0_h = __msa_adds_s_h(src0_h, src1_h); + src0_h = __msa_srari_h(src0_h, FILTER_BITS); + src0_h = __msa_sat_s_h(src0_h, 7); + dst0 = PCKEV_XORI128_UB(src0_h, src0_h); + res = __msa_copy_u_w((v4i32)dst0, 0); + SW(res, dst); +} + +static void filter_horiz_w8_msa(const uint8_t *src_x, ptrdiff_t src_pitch, + uint8_t *dst, const int16_t *x_filter) { + uint64_t srcd0, srcd1, srcd2, srcd3; + v16u8 src0 = { 0 }, src1 = { 0 }, src2 = { 0 }, src3 = { 0 }; + v16u8 tmp0, tmp1, tmp2, tmp3, dst0; + v16i8 out0, out1, out2, out3; + v16i8 shf1 = { 0, 8, 16, 24, 1, 9, 17, 25, 2, 10, 18, 26, 3, 11, 19, 27 }; + v16i8 shf2 = shf1 + 4; + v8i16 filt, src0_h, src1_h, src2_h, src3_h, src4_h, src5_h, src6_h, src7_h; + v8i16 filt0, filt1, filt2, filt3, filt4, filt5, filt6, filt7; + + LD4(src_x, src_pitch, srcd0, srcd1, srcd2, srcd3); + INSERT_D2_UB(srcd0, srcd1, src0); + INSERT_D2_UB(srcd2, srcd3, src1); + LD4(src_x + 4 * src_pitch, src_pitch, srcd0, srcd1, srcd2, srcd3); + INSERT_D2_UB(srcd0, srcd1, src2); + INSERT_D2_UB(srcd2, srcd3, src3); + + filt = LD_SH(x_filter); + SPLATI_H4_SH(filt, 0, 1, 2, 3, filt0, filt1, filt2, filt3); + SPLATI_H4_SH(filt, 4, 5, 6, 7, filt4, filt5, filt6, filt7); + + // transpose + VSHF_B2_UB(src0, src1, src0, src1, shf1, shf2, tmp0, tmp1); + VSHF_B2_UB(src2, src3, src2, src3, shf1, shf2, tmp2, tmp3); + ILVRL_W2_SB(tmp2, tmp0, out0, out1); + ILVRL_W2_SB(tmp3, tmp1, out2, out3); + + XORI_B4_128_SB(out0, out1, out2, out3); + UNPCK_SB_SH(out0, src0_h, src1_h); + UNPCK_SB_SH(out1, src2_h, src3_h); + UNPCK_SB_SH(out2, src4_h, src5_h); + UNPCK_SB_SH(out3, src6_h, src7_h); + + src0_h *= filt0; + src4_h *= filt4; + src0_h += src1_h * filt1; + src4_h += src5_h * filt5; + src0_h += src2_h * filt2; + src4_h += src6_h * filt6; + src0_h += src3_h * filt3; + src4_h += src7_h * filt7; + + src0_h = __msa_adds_s_h(src0_h, src4_h); + src0_h = __msa_srari_h(src0_h, FILTER_BITS); + src0_h = __msa_sat_s_h(src0_h, 7); + dst0 = PCKEV_XORI128_UB(src0_h, src0_h); + ST8x1_UB(dst0, dst); +} + +static void filter_horiz_w16_msa(const uint8_t *src_x, ptrdiff_t src_pitch, + uint8_t *dst, const int16_t *x_filter) { + uint64_t srcd0, srcd1, srcd2, srcd3; + v16u8 src0 = { 0 }, src1 = { 0 }, src2 = { 0 }, src3 = { 0 }; + v16u8 src4 = { 0 }, src5 = { 0 }, src6 = { 0 }, src7 = { 0 }; + v16u8 tmp0, tmp1, tmp2, tmp3, dst0; + v16i8 out0, out1, out2, out3, out4, out5, out6, out7; + v16i8 shf1 = { 0, 8, 16, 24, 1, 9, 17, 25, 2, 10, 18, 26, 3, 11, 19, 27 }; + v16i8 shf2 = shf1 + 4; + v8i16 filt, src0_h, src1_h, src2_h, src3_h, src4_h, src5_h, src6_h, src7_h; + v8i16 filt0, filt1, filt2, filt3, filt4, filt5, filt6, filt7; + v8i16 dst0_h, dst1_h, dst2_h, dst3_h; + + LD4(src_x, src_pitch, srcd0, srcd1, srcd2, srcd3); + INSERT_D2_UB(srcd0, srcd1, src0); + INSERT_D2_UB(srcd2, srcd3, src1); + LD4(src_x + 4 * src_pitch, src_pitch, srcd0, srcd1, srcd2, srcd3); + INSERT_D2_UB(srcd0, srcd1, src2); + INSERT_D2_UB(srcd2, srcd3, src3); + LD4(src_x + 8 * src_pitch, src_pitch, srcd0, srcd1, srcd2, srcd3); + INSERT_D2_UB(srcd0, srcd1, src4); + INSERT_D2_UB(srcd2, srcd3, src5); + LD4(src_x + 12 * src_pitch, src_pitch, srcd0, srcd1, srcd2, srcd3); + INSERT_D2_UB(srcd0, srcd1, src6); + INSERT_D2_UB(srcd2, srcd3, src7); + + filt = LD_SH(x_filter); + SPLATI_H4_SH(filt, 0, 1, 2, 3, filt0, filt1, filt2, filt3); + SPLATI_H4_SH(filt, 4, 5, 6, 7, filt4, filt5, filt6, filt7); + + // transpose + VSHF_B2_UB(src0, src1, src0, src1, shf1, shf2, tmp0, tmp1); + VSHF_B2_UB(src2, src3, src2, src3, shf1, shf2, tmp2, tmp3); + ILVRL_W2_SB(tmp2, tmp0, out0, out1); + ILVRL_W2_SB(tmp3, tmp1, out2, out3); + XORI_B4_128_SB(out0, out1, out2, out3); + + UNPCK_SB_SH(out0, src0_h, src1_h); + UNPCK_SB_SH(out1, src2_h, src3_h); + UNPCK_SB_SH(out2, src4_h, src5_h); + UNPCK_SB_SH(out3, src6_h, src7_h); + + VSHF_B2_UB(src4, src5, src4, src5, shf1, shf2, tmp0, tmp1); + VSHF_B2_UB(src6, src7, src6, src7, shf1, shf2, tmp2, tmp3); + ILVRL_W2_SB(tmp2, tmp0, out4, out5); + ILVRL_W2_SB(tmp3, tmp1, out6, out7); + XORI_B4_128_SB(out4, out5, out6, out7); + + dst0_h = src0_h * filt0; + dst1_h = src4_h * filt4; + dst0_h += src1_h * filt1; + dst1_h += src5_h * filt5; + dst0_h += src2_h * filt2; + dst1_h += src6_h * filt6; + dst0_h += src3_h * filt3; + dst1_h += src7_h * filt7; + + UNPCK_SB_SH(out4, src0_h, src1_h); + UNPCK_SB_SH(out5, src2_h, src3_h); + UNPCK_SB_SH(out6, src4_h, src5_h); + UNPCK_SB_SH(out7, src6_h, src7_h); + + dst2_h = src0_h * filt0; + dst3_h = src4_h * filt4; + dst2_h += src1_h * filt1; + dst3_h += src5_h * filt5; + dst2_h += src2_h * filt2; + dst3_h += src6_h * filt6; + dst2_h += src3_h * filt3; + dst3_h += src7_h * filt7; + + ADDS_SH2_SH(dst0_h, dst1_h, dst2_h, dst3_h, dst0_h, dst2_h); + SRARI_H2_SH(dst0_h, dst2_h, FILTER_BITS); + SAT_SH2_SH(dst0_h, dst2_h, 7); + dst0 = PCKEV_XORI128_UB(dst0_h, dst2_h); + ST_UB(dst0, dst); +} + +static void transpose4x4_to_dst(const uint8_t *src, uint8_t *dst, + ptrdiff_t dst_stride) { + v16u8 in0; + v16i8 out0 = { 0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15 }; + + in0 = LD_UB(src); + out0 = __msa_vshf_b(out0, (v16i8)in0, (v16i8)in0); + ST4x4_UB(out0, out0, 0, 1, 2, 3, dst, dst_stride); +} + +static void transpose8x8_to_dst(const uint8_t *src, uint8_t *dst, + ptrdiff_t dst_stride) { + v16u8 in0, in1, in2, in3, out0, out1, out2, out3, tmp0, tmp1, tmp2, tmp3; + v16i8 shf1 = { 0, 8, 16, 24, 1, 9, 17, 25, 2, 10, 18, 26, 3, 11, 19, 27 }; + v16i8 shf2 = shf1 + 4; + + LD_UB4(src, 16, in0, in1, in2, in3); + VSHF_B2_UB(in0, in1, in0, in1, shf1, shf2, tmp0, tmp1); + VSHF_B2_UB(in2, in3, in2, in3, shf1, shf2, tmp2, tmp3); + ILVRL_W2_UB(tmp2, tmp0, out0, out1); + ILVRL_W2_UB(tmp3, tmp1, out2, out3); + ST8x4_UB(out0, out1, dst, dst_stride); + ST8x4_UB(out2, out3, dst + 4 * dst_stride, dst_stride); +} + +static void transpose16x16_to_dst(const uint8_t *src, uint8_t *dst, + ptrdiff_t dst_stride) { + v16u8 in0, in1, in2, in3, in4, in5, in6, in7, in8, in9, in10, in11, in12; + v16u8 in13, in14, in15, out0, out1, out2, out3, out4, out5, out6, out7, out8; + v16u8 out9, out10, out11, out12, out13, out14, out15; + + LD_UB8(src, 16, in0, in1, in2, in3, in4, in5, in6, in7); + LD_UB8(src + 16 * 8, 16, in8, in9, in10, in11, in12, in13, in14, in15); + + TRANSPOSE16x8_UB_UB(in0, in1, in2, in3, in4, in5, in6, in7, in8, in9, in10, + in11, in12, in13, in14, in15, out0, out1, out2, out3, + out4, out5, out6, out7); + ST_UB8(out0, out1, out2, out3, out4, out5, out6, out7, dst, dst_stride); + dst += 8 * dst_stride; + + SLDI_B4_0_UB(in0, in1, in2, in3, in0, in1, in2, in3, 8); + SLDI_B4_0_UB(in4, in5, in6, in7, in4, in5, in6, in7, 8); + SLDI_B4_0_UB(in8, in9, in10, in11, in8, in9, in10, in11, 8); + SLDI_B4_0_UB(in12, in13, in14, in15, in12, in13, in14, in15, 8); + + TRANSPOSE16x8_UB_UB(in0, in1, in2, in3, in4, in5, in6, in7, in8, in9, in10, + in11, in12, in13, in14, in15, out8, out9, out10, out11, + out12, out13, out14, out15); + ST_UB8(out8, out9, out10, out11, out12, out13, out14, out15, dst, dst_stride); +} + +static void scaledconvolve_horiz_w4(const uint8_t *src, ptrdiff_t src_stride, + uint8_t *dst, ptrdiff_t dst_stride, + const InterpKernel *x_filters, int x0_q4, + int x_step_q4, int h) { + DECLARE_ALIGNED(16, uint8_t, temp[4 * 4]); + int y, z, i; + src -= SUBPEL_TAPS / 2 - 1; + + for (y = 0; y < h; y += 4) { + int x_q4 = x0_q4; + for (z = 0; z < 4; ++z) { + const uint8_t *const src_x = &src[x_q4 >> SUBPEL_BITS]; + const int16_t *const x_filter = x_filters[x_q4 & SUBPEL_MASK]; + + if (x_q4 & SUBPEL_MASK) { + filter_horiz_w4_msa(src_x, src_stride, temp + (z * 4), x_filter); + } else { + for (i = 0; i < 4; ++i) { + temp[z * 4 + i] = src_x[i * src_stride + 3]; + } + } + + x_q4 += x_step_q4; + } + + transpose4x4_to_dst(temp, dst, dst_stride); + + src += src_stride * 4; + dst += dst_stride * 4; + } +} + +static void scaledconvolve_horiz_w8(const uint8_t *src, ptrdiff_t src_stride, + uint8_t *dst, ptrdiff_t dst_stride, + const InterpKernel *x_filters, int x0_q4, + int x_step_q4, int h) { + DECLARE_ALIGNED(16, uint8_t, temp[8 * 8]); + int y, z, i; + src -= SUBPEL_TAPS / 2 - 1; + + // This function processes 8x8 areas. The intermediate height is not always + // a multiple of 8, so force it to be a multiple of 8 here. + y = h + (8 - (h & 0x7)); + + do { + int x_q4 = x0_q4; + for (z = 0; z < 8; ++z) { + const uint8_t *const src_x = &src[x_q4 >> SUBPEL_BITS]; + const int16_t *const x_filter = x_filters[x_q4 & SUBPEL_MASK]; + + if (x_q4 & SUBPEL_MASK) { + filter_horiz_w8_msa(src_x, src_stride, temp + (z * 8), x_filter); + } else { + for (i = 0; i < 8; ++i) { + temp[z * 8 + i] = src_x[3 + i * src_stride]; + } + } + + x_q4 += x_step_q4; + } + + transpose8x8_to_dst(temp, dst, dst_stride); + + src += src_stride * 8; + dst += dst_stride * 8; + } while (y -= 8); +} + +static void scaledconvolve_horiz_mul16(const uint8_t *src, ptrdiff_t src_stride, + uint8_t *dst, ptrdiff_t dst_stride, + const InterpKernel *x_filters, int x0_q4, + int x_step_q4, int w, int h) { + DECLARE_ALIGNED(16, uint8_t, temp[16 * 16]); + int x, y, z, i; + + src -= SUBPEL_TAPS / 2 - 1; + + // This function processes 16x16 areas. The intermediate height is not always + // a multiple of 16, so force it to be a multiple of 8 here. + y = h + (16 - (h & 0xF)); + + do { + int x_q4 = x0_q4; + for (x = 0; x < w; x += 16) { + for (z = 0; z < 16; ++z) { + const uint8_t *const src_x = &src[x_q4 >> SUBPEL_BITS]; + const int16_t *const x_filter = x_filters[x_q4 & SUBPEL_MASK]; + + if (x_q4 & SUBPEL_MASK) { + filter_horiz_w16_msa(src_x, src_stride, temp + (z * 16), x_filter); + } else { + for (i = 0; i < 16; ++i) { + temp[z * 16 + i] = src_x[3 + i * src_stride]; + } + } + + x_q4 += x_step_q4; + } + + transpose16x16_to_dst(temp, dst + x, dst_stride); + } + + src += src_stride * 16; + dst += dst_stride * 16; + } while (y -= 16); +} + +static void filter_vert_w4_msa(const uint8_t *src_y, ptrdiff_t src_pitch, + uint8_t *dst, const int16_t *y_filter) { + uint32_t srcw0, srcw1, srcw2, srcw3, srcw4, srcw5, srcw6, srcw7; + uint32_t res; + v16u8 src0 = { 0 }, src1 = { 0 }, dst0; + v16i8 out0, out1; + v16i8 shf1 = { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 }; + v16i8 shf2 = shf1 + 8; + v16i8 filt_shf0 = { 0, 1, 0, 1, 0, 1, 0, 1, 8, 9, 8, 9, 8, 9, 8, 9 }; + v16i8 filt_shf1 = filt_shf0 + 2; + v16i8 filt_shf2 = filt_shf0 + 4; + v16i8 filt_shf3 = filt_shf0 + 6; + v8i16 filt, src0_h, src1_h, src2_h, src3_h; + v8i16 filt0, filt1, filt2, filt3; + + LW4(src_y, src_pitch, srcw0, srcw1, srcw2, srcw3); + LW4(src_y + 4 * src_pitch, src_pitch, srcw4, srcw5, srcw6, srcw7); + INSERT_W4_UB(srcw0, srcw1, srcw2, srcw3, src0); + INSERT_W4_UB(srcw4, srcw5, srcw6, srcw7, src1); + VSHF_B2_SB(src0, src1, src0, src1, shf1, shf2, out0, out1); + XORI_B2_128_SB(out0, out1); + UNPCK_SB_SH(out0, src0_h, src1_h); + UNPCK_SB_SH(out1, src2_h, src3_h); + + filt = LD_SH(y_filter); + VSHF_B2_SH(filt, filt, filt, filt, filt_shf0, filt_shf1, filt0, filt1); + VSHF_B2_SH(filt, filt, filt, filt, filt_shf2, filt_shf3, filt2, filt3); + + src0_h *= filt0; + src0_h += src1_h * filt1; + src0_h += src2_h * filt2; + src0_h += src3_h * filt3; + + src1_h = (v8i16)__msa_sldi_b((v16i8)src0_h, (v16i8)src0_h, 8); + + src0_h = __msa_adds_s_h(src0_h, src1_h); + src0_h = __msa_srari_h(src0_h, FILTER_BITS); + src0_h = __msa_sat_s_h(src0_h, 7); + dst0 = PCKEV_XORI128_UB(src0_h, src0_h); + res = __msa_copy_u_w((v4i32)dst0, 0); + SW(res, dst); +} + +static void filter_vert_w8_msa(const uint8_t *src_y, ptrdiff_t src_pitch, + uint8_t *dst, const int16_t *y_filter) { + uint64_t srcd0, srcd1, srcd2, srcd3; + v16u8 dst0; + v16i8 src0 = { 0 }, src1 = { 0 }, src2 = { 0 }, src3 = { 0 }; + v8i16 filt, src0_h, src1_h, src2_h, src3_h, src4_h, src5_h, src6_h, src7_h; + v8i16 filt0, filt1, filt2, filt3, filt4, filt5, filt6, filt7; + + LD4(src_y, src_pitch, srcd0, srcd1, srcd2, srcd3); + INSERT_D2_SB(srcd0, srcd1, src0); + INSERT_D2_SB(srcd2, srcd3, src1); + LD4(src_y + 4 * src_pitch, src_pitch, srcd0, srcd1, srcd2, srcd3); + INSERT_D2_SB(srcd0, srcd1, src2); + INSERT_D2_SB(srcd2, srcd3, src3); + + filt = LD_SH(y_filter); + SPLATI_H4_SH(filt, 0, 1, 2, 3, filt0, filt1, filt2, filt3); + SPLATI_H4_SH(filt, 4, 5, 6, 7, filt4, filt5, filt6, filt7); + + XORI_B4_128_SB(src0, src1, src2, src3); + UNPCK_SB_SH(src0, src0_h, src1_h); + UNPCK_SB_SH(src1, src2_h, src3_h); + UNPCK_SB_SH(src2, src4_h, src5_h); + UNPCK_SB_SH(src3, src6_h, src7_h); + + src0_h *= filt0; + src4_h *= filt4; + src0_h += src1_h * filt1; + src4_h += src5_h * filt5; + src0_h += src2_h * filt2; + src4_h += src6_h * filt6; + src0_h += src3_h * filt3; + src4_h += src7_h * filt7; + + src0_h = __msa_adds_s_h(src0_h, src4_h); + src0_h = __msa_srari_h(src0_h, FILTER_BITS); + src0_h = __msa_sat_s_h(src0_h, 7); + dst0 = PCKEV_XORI128_UB(src0_h, src0_h); + ST8x1_UB(dst0, dst); +} + +static void filter_vert_mul_w16_msa(const uint8_t *src_y, ptrdiff_t src_pitch, + uint8_t *dst, const int16_t *y_filter, + int w) { + int x; + v16u8 dst0; + v16i8 src0, src1, src2, src3, src4, src5, src6, src7; + v8i16 filt, src0_h, src1_h, src2_h, src3_h, src4_h, src5_h, src6_h, src7_h; + v8i16 src8_h, src9_h, src10_h, src11_h, src12_h, src13_h, src14_h, src15_h; + v8i16 filt0, filt1, filt2, filt3, filt4, filt5, filt6, filt7; + + filt = LD_SH(y_filter); + SPLATI_H4_SH(filt, 0, 1, 2, 3, filt0, filt1, filt2, filt3); + SPLATI_H4_SH(filt, 4, 5, 6, 7, filt4, filt5, filt6, filt7); + + for (x = 0; x < w; x += 16) { + LD_SB8(src_y, src_pitch, src0, src1, src2, src3, src4, src5, src6, src7); + src_y += 16; + + XORI_B4_128_SB(src0, src1, src2, src3); + XORI_B4_128_SB(src4, src5, src6, src7); + UNPCK_SB_SH(src0, src0_h, src1_h); + UNPCK_SB_SH(src1, src2_h, src3_h); + UNPCK_SB_SH(src2, src4_h, src5_h); + UNPCK_SB_SH(src3, src6_h, src7_h); + UNPCK_SB_SH(src4, src8_h, src9_h); + UNPCK_SB_SH(src5, src10_h, src11_h); + UNPCK_SB_SH(src6, src12_h, src13_h); + UNPCK_SB_SH(src7, src14_h, src15_h); + + src0_h *= filt0; + src1_h *= filt0; + src8_h *= filt4; + src9_h *= filt4; + src0_h += src2_h * filt1; + src1_h += src3_h * filt1; + src8_h += src10_h * filt5; + src9_h += src11_h * filt5; + src0_h += src4_h * filt2; + src1_h += src5_h * filt2; + src8_h += src12_h * filt6; + src9_h += src13_h * filt6; + src0_h += src6_h * filt3; + src1_h += src7_h * filt3; + src8_h += src14_h * filt7; + src9_h += src15_h * filt7; + + ADDS_SH2_SH(src0_h, src8_h, src1_h, src9_h, src0_h, src1_h); + SRARI_H2_SH(src0_h, src1_h, FILTER_BITS); + SAT_SH2_SH(src0_h, src1_h, 7); + dst0 = PCKEV_XORI128_UB(src0_h, src1_h); + ST_UB(dst0, dst); + dst += 16; + } +} + +static void scaledconvolve_vert_w4(const uint8_t *src, ptrdiff_t src_stride, + uint8_t *dst, ptrdiff_t dst_stride, + const InterpKernel *y_filters, int y0_q4, + int y_step_q4, int h) { + int y; + int y_q4 = y0_q4; + + src -= src_stride * (SUBPEL_TAPS / 2 - 1); + + for (y = 0; y < h; ++y) { + const uint8_t *src_y = &src[(y_q4 >> SUBPEL_BITS) * src_stride]; + const int16_t *const y_filter = y_filters[y_q4 & SUBPEL_MASK]; + + if (y_q4 & SUBPEL_MASK) { + filter_vert_w4_msa(src_y, src_stride, &dst[y * dst_stride], y_filter); + } else { + uint32_t srcd = LW(src_y + 3 * src_stride); + SW(srcd, dst + y * dst_stride); + } + + y_q4 += y_step_q4; + } +} + +static void scaledconvolve_vert_w8(const uint8_t *src, ptrdiff_t src_stride, + uint8_t *dst, ptrdiff_t dst_stride, + const InterpKernel *y_filters, int y0_q4, + int y_step_q4, int h) { + int y; + int y_q4 = y0_q4; + + src -= src_stride * (SUBPEL_TAPS / 2 - 1); + + for (y = 0; y < h; ++y) { + const uint8_t *src_y = &src[(y_q4 >> SUBPEL_BITS) * src_stride]; + const int16_t *const y_filter = y_filters[y_q4 & SUBPEL_MASK]; + + if (y_q4 & SUBPEL_MASK) { + filter_vert_w8_msa(src_y, src_stride, &dst[y * dst_stride], y_filter); + } else { + uint64_t srcd = LD(src_y + 3 * src_stride); + SD(srcd, dst + y * dst_stride); + } + + y_q4 += y_step_q4; + } +} + +static void scaledconvolve_vert_mul16(const uint8_t *src, ptrdiff_t src_stride, + uint8_t *dst, ptrdiff_t dst_stride, + const InterpKernel *y_filters, int y0_q4, + int y_step_q4, int w, int h) { + int x, y; + int y_q4 = y0_q4; + src -= src_stride * (SUBPEL_TAPS / 2 - 1); + + for (y = 0; y < h; ++y) { + const uint8_t *src_y = &src[(y_q4 >> SUBPEL_BITS) * src_stride]; + const int16_t *const y_filter = y_filters[y_q4 & SUBPEL_MASK]; + + if (y_q4 & SUBPEL_MASK) { + filter_vert_mul_w16_msa(src_y, src_stride, &dst[y * dst_stride], y_filter, + w); + } else { + for (x = 0; x < w; ++x) { + dst[x + y * dst_stride] = src_y[x + 3 * src_stride]; + } + } + + y_q4 += y_step_q4; + } +} + +void vpx_scaled_2d_msa(const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst, + ptrdiff_t dst_stride, const InterpKernel *filter, + int x0_q4, int x_step_q4, int y0_q4, int y_step_q4, + int w, int h) { + // Note: Fixed size intermediate buffer, temp, places limits on parameters. + // 2d filtering proceeds in 2 steps: + // (1) Interpolate horizontally into an intermediate buffer, temp. + // (2) Interpolate temp vertically to derive the sub-pixel result. + // Deriving the maximum number of rows in the temp buffer (135): + // --Smallest scaling factor is x1/2 ==> y_step_q4 = 32 (Normative). + // --Largest block size is 64x64 pixels. + // --64 rows in the downscaled frame span a distance of (64 - 1) * 32 in the + // original frame (in 1/16th pixel units). + // --Must round-up because block may be located at sub-pixel position. + // --Require an additional SUBPEL_TAPS rows for the 8-tap filter tails. + // --((64 - 1) * 32 + 15) >> 4 + 8 = 135. + // --Require an additional 8 rows for the horiz_w8 transpose tail. + DECLARE_ALIGNED(16, uint8_t, temp[(135 + 8) * 64]); + const int intermediate_height = + (((h - 1) * y_step_q4 + y0_q4) >> SUBPEL_BITS) + SUBPEL_TAPS; + + assert(w <= 64); + assert(h <= 64); + assert(y_step_q4 <= 32 || (y_step_q4 <= 64 && h <= 32)); + assert(x_step_q4 <= 64); + + if ((0 == x0_q4) && (16 == x_step_q4) && (0 == y0_q4) && (16 == y_step_q4)) { + vpx_convolve_copy_msa(src, src_stride, dst, dst_stride, filter, x0_q4, + x_step_q4, y0_q4, y_step_q4, w, h); + } else { + if (w >= 16) { + scaledconvolve_horiz_mul16(src - src_stride * (SUBPEL_TAPS / 2 - 1), + src_stride, temp, 64, filter, x0_q4, x_step_q4, + w, intermediate_height); + } else if (w == 8) { + scaledconvolve_horiz_w8(src - src_stride * (SUBPEL_TAPS / 2 - 1), + src_stride, temp, 64, filter, x0_q4, x_step_q4, + intermediate_height); + } else { + scaledconvolve_horiz_w4(src - src_stride * (SUBPEL_TAPS / 2 - 1), + src_stride, temp, 64, filter, x0_q4, x_step_q4, + intermediate_height); + } + + if (w >= 16) { + scaledconvolve_vert_mul16(temp + 64 * (SUBPEL_TAPS / 2 - 1), 64, dst, + dst_stride, filter, y0_q4, y_step_q4, w, h); + } else if (w == 8) { + scaledconvolve_vert_w8(temp + 64 * (SUBPEL_TAPS / 2 - 1), 64, dst, + dst_stride, filter, y0_q4, y_step_q4, h); + } else { + scaledconvolve_vert_w4(temp + 64 * (SUBPEL_TAPS / 2 - 1), 64, dst, + dst_stride, filter, y0_q4, y_step_q4, h); + } + } +} diff --git a/vpx_dsp/mips/vpx_convolve8_vert_msa.c b/vpx_dsp/mips/vpx_convolve8_vert_msa.c new file mode 100644 index 0000000..13fce00 --- /dev/null +++ b/vpx_dsp/mips/vpx_convolve8_vert_msa.c @@ -0,0 +1,699 @@ +/* + * Copyright (c) 2015 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include "./vpx_dsp_rtcd.h" +#include "vpx_dsp/mips/vpx_convolve_msa.h" + +static void common_vt_8t_4w_msa(const uint8_t *src, int32_t src_stride, + uint8_t *dst, int32_t dst_stride, + int8_t *filter, int32_t height) { + uint32_t loop_cnt; + v16i8 src0, src1, src2, src3, src4, src5, src6, src7, src8, src9, src10; + v16i8 src10_r, src32_r, src54_r, src76_r, src98_r, src21_r, src43_r; + v16i8 src65_r, src87_r, src109_r, src2110, src4332, src6554, src8776; + v16i8 src10998, filt0, filt1, filt2, filt3; + v16u8 out; + v8i16 filt, out10, out32; + + src -= (3 * src_stride); + + filt = LD_SH(filter); + SPLATI_H4_SB(filt, 0, 1, 2, 3, filt0, filt1, filt2, filt3); + + LD_SB7(src, src_stride, src0, src1, src2, src3, src4, src5, src6); + src += (7 * src_stride); + + ILVR_B4_SB(src1, src0, src3, src2, src5, src4, src2, src1, src10_r, src32_r, + src54_r, src21_r); + ILVR_B2_SB(src4, src3, src6, src5, src43_r, src65_r); + ILVR_D3_SB(src21_r, src10_r, src43_r, src32_r, src65_r, src54_r, src2110, + src4332, src6554); + XORI_B3_128_SB(src2110, src4332, src6554); + + for (loop_cnt = (height >> 2); loop_cnt--;) { + LD_SB4(src, src_stride, src7, src8, src9, src10); + src += (4 * src_stride); + + ILVR_B4_SB(src7, src6, src8, src7, src9, src8, src10, src9, src76_r, + src87_r, src98_r, src109_r); + ILVR_D2_SB(src87_r, src76_r, src109_r, src98_r, src8776, src10998); + XORI_B2_128_SB(src8776, src10998); + out10 = FILT_8TAP_DPADD_S_H(src2110, src4332, src6554, src8776, filt0, + filt1, filt2, filt3); + out32 = FILT_8TAP_DPADD_S_H(src4332, src6554, src8776, src10998, filt0, + filt1, filt2, filt3); + SRARI_H2_SH(out10, out32, FILTER_BITS); + SAT_SH2_SH(out10, out32, 7); + out = PCKEV_XORI128_UB(out10, out32); + ST4x4_UB(out, out, 0, 1, 2, 3, dst, dst_stride); + dst += (4 * dst_stride); + + src2110 = src6554; + src4332 = src8776; + src6554 = src10998; + src6 = src10; + } +} + +static void common_vt_8t_8w_msa(const uint8_t *src, int32_t src_stride, + uint8_t *dst, int32_t dst_stride, + int8_t *filter, int32_t height) { + uint32_t loop_cnt; + v16i8 src0, src1, src2, src3, src4, src5, src6, src7, src8, src9, src10; + v16i8 src10_r, src32_r, src54_r, src76_r, src98_r, src21_r, src43_r; + v16i8 src65_r, src87_r, src109_r, filt0, filt1, filt2, filt3; + v16u8 tmp0, tmp1; + v8i16 filt, out0_r, out1_r, out2_r, out3_r; + + src -= (3 * src_stride); + + filt = LD_SH(filter); + SPLATI_H4_SB(filt, 0, 1, 2, 3, filt0, filt1, filt2, filt3); + + LD_SB7(src, src_stride, src0, src1, src2, src3, src4, src5, src6); + XORI_B7_128_SB(src0, src1, src2, src3, src4, src5, src6); + src += (7 * src_stride); + ILVR_B4_SB(src1, src0, src3, src2, src5, src4, src2, src1, src10_r, src32_r, + src54_r, src21_r); + ILVR_B2_SB(src4, src3, src6, src5, src43_r, src65_r); + + for (loop_cnt = (height >> 2); loop_cnt--;) { + LD_SB4(src, src_stride, src7, src8, src9, src10); + XORI_B4_128_SB(src7, src8, src9, src10); + src += (4 * src_stride); + + ILVR_B4_SB(src7, src6, src8, src7, src9, src8, src10, src9, src76_r, + src87_r, src98_r, src109_r); + out0_r = FILT_8TAP_DPADD_S_H(src10_r, src32_r, src54_r, src76_r, filt0, + filt1, filt2, filt3); + out1_r = FILT_8TAP_DPADD_S_H(src21_r, src43_r, src65_r, src87_r, filt0, + filt1, filt2, filt3); + out2_r = FILT_8TAP_DPADD_S_H(src32_r, src54_r, src76_r, src98_r, filt0, + filt1, filt2, filt3); + out3_r = FILT_8TAP_DPADD_S_H(src43_r, src65_r, src87_r, src109_r, filt0, + filt1, filt2, filt3); + SRARI_H4_SH(out0_r, out1_r, out2_r, out3_r, FILTER_BITS); + SAT_SH4_SH(out0_r, out1_r, out2_r, out3_r, 7); + tmp0 = PCKEV_XORI128_UB(out0_r, out1_r); + tmp1 = PCKEV_XORI128_UB(out2_r, out3_r); + ST8x4_UB(tmp0, tmp1, dst, dst_stride); + dst += (4 * dst_stride); + + src10_r = src54_r; + src32_r = src76_r; + src54_r = src98_r; + src21_r = src65_r; + src43_r = src87_r; + src65_r = src109_r; + src6 = src10; + } +} + +static void common_vt_8t_16w_msa(const uint8_t *src, int32_t src_stride, + uint8_t *dst, int32_t dst_stride, + int8_t *filter, int32_t height) { + uint32_t loop_cnt; + v16i8 src0, src1, src2, src3, src4, src5, src6, src7, src8, src9, src10; + v16i8 filt0, filt1, filt2, filt3; + v16i8 src10_r, src32_r, src54_r, src76_r, src98_r, src21_r, src43_r; + v16i8 src65_r, src87_r, src109_r, src10_l, src32_l, src54_l, src76_l; + v16i8 src98_l, src21_l, src43_l, src65_l, src87_l, src109_l; + v16u8 tmp0, tmp1, tmp2, tmp3; + v8i16 filt, out0_r, out1_r, out2_r, out3_r, out0_l, out1_l, out2_l, out3_l; + + src -= (3 * src_stride); + + filt = LD_SH(filter); + SPLATI_H4_SB(filt, 0, 1, 2, 3, filt0, filt1, filt2, filt3); + + LD_SB7(src, src_stride, src0, src1, src2, src3, src4, src5, src6); + XORI_B7_128_SB(src0, src1, src2, src3, src4, src5, src6); + src += (7 * src_stride); + ILVR_B4_SB(src1, src0, src3, src2, src5, src4, src2, src1, src10_r, src32_r, + src54_r, src21_r); + ILVR_B2_SB(src4, src3, src6, src5, src43_r, src65_r); + ILVL_B4_SB(src1, src0, src3, src2, src5, src4, src2, src1, src10_l, src32_l, + src54_l, src21_l); + ILVL_B2_SB(src4, src3, src6, src5, src43_l, src65_l); + + for (loop_cnt = (height >> 2); loop_cnt--;) { + LD_SB4(src, src_stride, src7, src8, src9, src10); + XORI_B4_128_SB(src7, src8, src9, src10); + src += (4 * src_stride); + + ILVR_B4_SB(src7, src6, src8, src7, src9, src8, src10, src9, src76_r, + src87_r, src98_r, src109_r); + ILVL_B4_SB(src7, src6, src8, src7, src9, src8, src10, src9, src76_l, + src87_l, src98_l, src109_l); + out0_r = FILT_8TAP_DPADD_S_H(src10_r, src32_r, src54_r, src76_r, filt0, + filt1, filt2, filt3); + out1_r = FILT_8TAP_DPADD_S_H(src21_r, src43_r, src65_r, src87_r, filt0, + filt1, filt2, filt3); + out2_r = FILT_8TAP_DPADD_S_H(src32_r, src54_r, src76_r, src98_r, filt0, + filt1, filt2, filt3); + out3_r = FILT_8TAP_DPADD_S_H(src43_r, src65_r, src87_r, src109_r, filt0, + filt1, filt2, filt3); + out0_l = FILT_8TAP_DPADD_S_H(src10_l, src32_l, src54_l, src76_l, filt0, + filt1, filt2, filt3); + out1_l = FILT_8TAP_DPADD_S_H(src21_l, src43_l, src65_l, src87_l, filt0, + filt1, filt2, filt3); + out2_l = FILT_8TAP_DPADD_S_H(src32_l, src54_l, src76_l, src98_l, filt0, + filt1, filt2, filt3); + out3_l = FILT_8TAP_DPADD_S_H(src43_l, src65_l, src87_l, src109_l, filt0, + filt1, filt2, filt3); + SRARI_H4_SH(out0_r, out1_r, out2_r, out3_r, FILTER_BITS); + SRARI_H4_SH(out0_l, out1_l, out2_l, out3_l, FILTER_BITS); + SAT_SH4_SH(out0_r, out1_r, out2_r, out3_r, 7); + SAT_SH4_SH(out0_l, out1_l, out2_l, out3_l, 7); + PCKEV_B4_UB(out0_l, out0_r, out1_l, out1_r, out2_l, out2_r, out3_l, out3_r, + tmp0, tmp1, tmp2, tmp3); + XORI_B4_128_UB(tmp0, tmp1, tmp2, tmp3); + ST_UB4(tmp0, tmp1, tmp2, tmp3, dst, dst_stride); + dst += (4 * dst_stride); + + src10_r = src54_r; + src32_r = src76_r; + src54_r = src98_r; + src21_r = src65_r; + src43_r = src87_r; + src65_r = src109_r; + src10_l = src54_l; + src32_l = src76_l; + src54_l = src98_l; + src21_l = src65_l; + src43_l = src87_l; + src65_l = src109_l; + src6 = src10; + } +} + +static void common_vt_8t_16w_mult_msa(const uint8_t *src, int32_t src_stride, + uint8_t *dst, int32_t dst_stride, + int8_t *filter, int32_t height, + int32_t width) { + const uint8_t *src_tmp; + uint8_t *dst_tmp; + uint32_t loop_cnt, cnt; + v16i8 src0, src1, src2, src3, src4, src5, src6, src7, src8, src9, src10; + v16i8 filt0, filt1, filt2, filt3; + v16i8 src10_r, src32_r, src54_r, src76_r, src98_r, src21_r, src43_r; + v16i8 src65_r, src87_r, src109_r, src10_l, src32_l, src54_l, src76_l; + v16i8 src98_l, src21_l, src43_l, src65_l, src87_l, src109_l; + v16u8 tmp0, tmp1, tmp2, tmp3; + v8i16 filt, out0_r, out1_r, out2_r, out3_r, out0_l, out1_l, out2_l, out3_l; + + src -= (3 * src_stride); + + filt = LD_SH(filter); + SPLATI_H4_SB(filt, 0, 1, 2, 3, filt0, filt1, filt2, filt3); + + for (cnt = (width >> 4); cnt--;) { + src_tmp = src; + dst_tmp = dst; + + LD_SB7(src_tmp, src_stride, src0, src1, src2, src3, src4, src5, src6); + XORI_B7_128_SB(src0, src1, src2, src3, src4, src5, src6); + src_tmp += (7 * src_stride); + ILVR_B4_SB(src1, src0, src3, src2, src5, src4, src2, src1, src10_r, src32_r, + src54_r, src21_r); + ILVR_B2_SB(src4, src3, src6, src5, src43_r, src65_r); + ILVL_B4_SB(src1, src0, src3, src2, src5, src4, src2, src1, src10_l, src32_l, + src54_l, src21_l); + ILVL_B2_SB(src4, src3, src6, src5, src43_l, src65_l); + + for (loop_cnt = (height >> 2); loop_cnt--;) { + LD_SB4(src_tmp, src_stride, src7, src8, src9, src10); + XORI_B4_128_SB(src7, src8, src9, src10); + src_tmp += (4 * src_stride); + ILVR_B4_SB(src7, src6, src8, src7, src9, src8, src10, src9, src76_r, + src87_r, src98_r, src109_r); + ILVL_B4_SB(src7, src6, src8, src7, src9, src8, src10, src9, src76_l, + src87_l, src98_l, src109_l); + out0_r = FILT_8TAP_DPADD_S_H(src10_r, src32_r, src54_r, src76_r, filt0, + filt1, filt2, filt3); + out1_r = FILT_8TAP_DPADD_S_H(src21_r, src43_r, src65_r, src87_r, filt0, + filt1, filt2, filt3); + out2_r = FILT_8TAP_DPADD_S_H(src32_r, src54_r, src76_r, src98_r, filt0, + filt1, filt2, filt3); + out3_r = FILT_8TAP_DPADD_S_H(src43_r, src65_r, src87_r, src109_r, filt0, + filt1, filt2, filt3); + out0_l = FILT_8TAP_DPADD_S_H(src10_l, src32_l, src54_l, src76_l, filt0, + filt1, filt2, filt3); + out1_l = FILT_8TAP_DPADD_S_H(src21_l, src43_l, src65_l, src87_l, filt0, + filt1, filt2, filt3); + out2_l = FILT_8TAP_DPADD_S_H(src32_l, src54_l, src76_l, src98_l, filt0, + filt1, filt2, filt3); + out3_l = FILT_8TAP_DPADD_S_H(src43_l, src65_l, src87_l, src109_l, filt0, + filt1, filt2, filt3); + SRARI_H4_SH(out0_r, out1_r, out2_r, out3_r, FILTER_BITS); + SRARI_H4_SH(out0_l, out1_l, out2_l, out3_l, FILTER_BITS); + SAT_SH4_SH(out0_r, out1_r, out2_r, out3_r, 7); + SAT_SH4_SH(out0_l, out1_l, out2_l, out3_l, 7); + PCKEV_B4_UB(out0_l, out0_r, out1_l, out1_r, out2_l, out2_r, out3_l, + out3_r, tmp0, tmp1, tmp2, tmp3); + XORI_B4_128_UB(tmp0, tmp1, tmp2, tmp3); + ST_UB4(tmp0, tmp1, tmp2, tmp3, dst_tmp, dst_stride); + dst_tmp += (4 * dst_stride); + + src10_r = src54_r; + src32_r = src76_r; + src54_r = src98_r; + src21_r = src65_r; + src43_r = src87_r; + src65_r = src109_r; + src10_l = src54_l; + src32_l = src76_l; + src54_l = src98_l; + src21_l = src65_l; + src43_l = src87_l; + src65_l = src109_l; + src6 = src10; + } + + src += 16; + dst += 16; + } +} + +static void common_vt_8t_32w_msa(const uint8_t *src, int32_t src_stride, + uint8_t *dst, int32_t dst_stride, + int8_t *filter, int32_t height) { + common_vt_8t_16w_mult_msa(src, src_stride, dst, dst_stride, filter, height, + 32); +} + +static void common_vt_8t_64w_msa(const uint8_t *src, int32_t src_stride, + uint8_t *dst, int32_t dst_stride, + int8_t *filter, int32_t height) { + common_vt_8t_16w_mult_msa(src, src_stride, dst, dst_stride, filter, height, + 64); +} + +static void common_vt_2t_4x4_msa(const uint8_t *src, int32_t src_stride, + uint8_t *dst, int32_t dst_stride, + int8_t *filter) { + v16i8 src0, src1, src2, src3, src4; + v16i8 src10_r, src32_r, src21_r, src43_r, src2110, src4332; + v16u8 filt0; + v8i16 filt; + v8u16 tmp0, tmp1; + + filt = LD_SH(filter); + filt0 = (v16u8)__msa_splati_h(filt, 0); + + LD_SB5(src, src_stride, src0, src1, src2, src3, src4); + src += (5 * src_stride); + + ILVR_B4_SB(src1, src0, src2, src1, src3, src2, src4, src3, src10_r, src21_r, + src32_r, src43_r); + ILVR_D2_SB(src21_r, src10_r, src43_r, src32_r, src2110, src4332); + DOTP_UB2_UH(src2110, src4332, filt0, filt0, tmp0, tmp1); + SRARI_H2_UH(tmp0, tmp1, FILTER_BITS); + src2110 = __msa_pckev_b((v16i8)tmp1, (v16i8)tmp0); + ST4x4_UB(src2110, src2110, 0, 1, 2, 3, dst, dst_stride); +} + +static void common_vt_2t_4x8_msa(const uint8_t *src, int32_t src_stride, + uint8_t *dst, int32_t dst_stride, + int8_t *filter) { + v16i8 src0, src1, src2, src3, src4, src5, src6, src7, src8; + v16i8 src10_r, src32_r, src54_r, src76_r, src21_r, src43_r; + v16i8 src65_r, src87_r, src2110, src4332, src6554, src8776; + v8u16 tmp0, tmp1, tmp2, tmp3; + v16u8 filt0; + v8i16 filt; + + filt = LD_SH(filter); + filt0 = (v16u8)__msa_splati_h(filt, 0); + + LD_SB8(src, src_stride, src0, src1, src2, src3, src4, src5, src6, src7); + src += (8 * src_stride); + + src8 = LD_SB(src); + src += src_stride; + + ILVR_B4_SB(src1, src0, src2, src1, src3, src2, src4, src3, src10_r, src21_r, + src32_r, src43_r); + ILVR_B4_SB(src5, src4, src6, src5, src7, src6, src8, src7, src54_r, src65_r, + src76_r, src87_r); + ILVR_D4_SB(src21_r, src10_r, src43_r, src32_r, src65_r, src54_r, src87_r, + src76_r, src2110, src4332, src6554, src8776); + DOTP_UB4_UH(src2110, src4332, src6554, src8776, filt0, filt0, filt0, filt0, + tmp0, tmp1, tmp2, tmp3); + SRARI_H4_UH(tmp0, tmp1, tmp2, tmp3, FILTER_BITS); + PCKEV_B2_SB(tmp1, tmp0, tmp3, tmp2, src2110, src4332); + ST4x4_UB(src2110, src2110, 0, 1, 2, 3, dst, dst_stride); + ST4x4_UB(src4332, src4332, 0, 1, 2, 3, dst + 4 * dst_stride, dst_stride); +} + +static void common_vt_2t_4w_msa(const uint8_t *src, int32_t src_stride, + uint8_t *dst, int32_t dst_stride, + int8_t *filter, int32_t height) { + if (4 == height) { + common_vt_2t_4x4_msa(src, src_stride, dst, dst_stride, filter); + } else if (8 == height) { + common_vt_2t_4x8_msa(src, src_stride, dst, dst_stride, filter); + } +} + +static void common_vt_2t_8x4_msa(const uint8_t *src, int32_t src_stride, + uint8_t *dst, int32_t dst_stride, + int8_t *filter) { + v16u8 src0, src1, src2, src3, src4, vec0, vec1, vec2, vec3, filt0; + v16i8 out0, out1; + v8u16 tmp0, tmp1, tmp2, tmp3; + v8i16 filt; + + /* rearranging filter_y */ + filt = LD_SH(filter); + filt0 = (v16u8)__msa_splati_h(filt, 0); + + LD_UB5(src, src_stride, src0, src1, src2, src3, src4); + ILVR_B2_UB(src1, src0, src2, src1, vec0, vec1); + ILVR_B2_UB(src3, src2, src4, src3, vec2, vec3); + DOTP_UB4_UH(vec0, vec1, vec2, vec3, filt0, filt0, filt0, filt0, tmp0, tmp1, + tmp2, tmp3); + SRARI_H4_UH(tmp0, tmp1, tmp2, tmp3, FILTER_BITS); + PCKEV_B2_SB(tmp1, tmp0, tmp3, tmp2, out0, out1); + ST8x4_UB(out0, out1, dst, dst_stride); +} + +static void common_vt_2t_8x8mult_msa(const uint8_t *src, int32_t src_stride, + uint8_t *dst, int32_t dst_stride, + int8_t *filter, int32_t height) { + uint32_t loop_cnt; + v16u8 src0, src1, src2, src3, src4, src5, src6, src7, src8; + v16u8 vec0, vec1, vec2, vec3, vec4, vec5, vec6, vec7, filt0; + v16i8 out0, out1; + v8u16 tmp0, tmp1, tmp2, tmp3; + v8i16 filt; + + /* rearranging filter_y */ + filt = LD_SH(filter); + filt0 = (v16u8)__msa_splati_h(filt, 0); + + src0 = LD_UB(src); + src += src_stride; + + for (loop_cnt = (height >> 3); loop_cnt--;) { + LD_UB8(src, src_stride, src1, src2, src3, src4, src5, src6, src7, src8); + src += (8 * src_stride); + + ILVR_B4_UB(src1, src0, src2, src1, src3, src2, src4, src3, vec0, vec1, vec2, + vec3); + ILVR_B4_UB(src5, src4, src6, src5, src7, src6, src8, src7, vec4, vec5, vec6, + vec7); + DOTP_UB4_UH(vec0, vec1, vec2, vec3, filt0, filt0, filt0, filt0, tmp0, tmp1, + tmp2, tmp3); + SRARI_H4_UH(tmp0, tmp1, tmp2, tmp3, FILTER_BITS); + PCKEV_B2_SB(tmp1, tmp0, tmp3, tmp2, out0, out1); + ST8x4_UB(out0, out1, dst, dst_stride); + dst += (4 * dst_stride); + + DOTP_UB4_UH(vec4, vec5, vec6, vec7, filt0, filt0, filt0, filt0, tmp0, tmp1, + tmp2, tmp3); + SRARI_H4_UH(tmp0, tmp1, tmp2, tmp3, FILTER_BITS); + PCKEV_B2_SB(tmp1, tmp0, tmp3, tmp2, out0, out1); + ST8x4_UB(out0, out1, dst, dst_stride); + dst += (4 * dst_stride); + + src0 = src8; + } +} + +static void common_vt_2t_8w_msa(const uint8_t *src, int32_t src_stride, + uint8_t *dst, int32_t dst_stride, + int8_t *filter, int32_t height) { + if (4 == height) { + common_vt_2t_8x4_msa(src, src_stride, dst, dst_stride, filter); + } else { + common_vt_2t_8x8mult_msa(src, src_stride, dst, dst_stride, filter, height); + } +} + +static void common_vt_2t_16w_msa(const uint8_t *src, int32_t src_stride, + uint8_t *dst, int32_t dst_stride, + int8_t *filter, int32_t height) { + uint32_t loop_cnt; + v16u8 src0, src1, src2, src3, src4; + v16u8 vec0, vec1, vec2, vec3, vec4, vec5, vec6, vec7, filt0; + v8u16 tmp0, tmp1, tmp2, tmp3; + v8i16 filt; + + /* rearranging filter_y */ + filt = LD_SH(filter); + filt0 = (v16u8)__msa_splati_h(filt, 0); + + src0 = LD_UB(src); + src += src_stride; + + for (loop_cnt = (height >> 2); loop_cnt--;) { + LD_UB4(src, src_stride, src1, src2, src3, src4); + src += (4 * src_stride); + + ILVR_B2_UB(src1, src0, src2, src1, vec0, vec2); + ILVL_B2_UB(src1, src0, src2, src1, vec1, vec3); + DOTP_UB2_UH(vec0, vec1, filt0, filt0, tmp0, tmp1); + SRARI_H2_UH(tmp0, tmp1, FILTER_BITS); + PCKEV_ST_SB(tmp0, tmp1, dst); + dst += dst_stride; + + ILVR_B2_UB(src3, src2, src4, src3, vec4, vec6); + ILVL_B2_UB(src3, src2, src4, src3, vec5, vec7); + DOTP_UB2_UH(vec2, vec3, filt0, filt0, tmp2, tmp3); + SRARI_H2_UH(tmp2, tmp3, FILTER_BITS); + PCKEV_ST_SB(tmp2, tmp3, dst); + dst += dst_stride; + + DOTP_UB2_UH(vec4, vec5, filt0, filt0, tmp0, tmp1); + SRARI_H2_UH(tmp0, tmp1, FILTER_BITS); + PCKEV_ST_SB(tmp0, tmp1, dst); + dst += dst_stride; + + DOTP_UB2_UH(vec6, vec7, filt0, filt0, tmp2, tmp3); + SRARI_H2_UH(tmp2, tmp3, FILTER_BITS); + PCKEV_ST_SB(tmp2, tmp3, dst); + dst += dst_stride; + + src0 = src4; + } +} + +static void common_vt_2t_32w_msa(const uint8_t *src, int32_t src_stride, + uint8_t *dst, int32_t dst_stride, + int8_t *filter, int32_t height) { + uint32_t loop_cnt; + v16u8 src0, src1, src2, src3, src4, src5, src6, src7, src8, src9; + v16u8 vec0, vec1, vec2, vec3, vec4, vec5, vec6, vec7, filt0; + v8u16 tmp0, tmp1, tmp2, tmp3; + v8i16 filt; + + /* rearranging filter_y */ + filt = LD_SH(filter); + filt0 = (v16u8)__msa_splati_h(filt, 0); + + src0 = LD_UB(src); + src5 = LD_UB(src + 16); + src += src_stride; + + for (loop_cnt = (height >> 2); loop_cnt--;) { + LD_UB4(src, src_stride, src1, src2, src3, src4); + ILVR_B2_UB(src1, src0, src2, src1, vec0, vec2); + ILVL_B2_UB(src1, src0, src2, src1, vec1, vec3); + + LD_UB4(src + 16, src_stride, src6, src7, src8, src9); + src += (4 * src_stride); + + DOTP_UB2_UH(vec0, vec1, filt0, filt0, tmp0, tmp1); + SRARI_H2_UH(tmp0, tmp1, FILTER_BITS); + PCKEV_ST_SB(tmp0, tmp1, dst); + DOTP_UB2_UH(vec2, vec3, filt0, filt0, tmp2, tmp3); + SRARI_H2_UH(tmp2, tmp3, FILTER_BITS); + PCKEV_ST_SB(tmp2, tmp3, dst + dst_stride); + + ILVR_B2_UB(src3, src2, src4, src3, vec4, vec6); + ILVL_B2_UB(src3, src2, src4, src3, vec5, vec7); + DOTP_UB2_UH(vec4, vec5, filt0, filt0, tmp0, tmp1); + SRARI_H2_UH(tmp0, tmp1, FILTER_BITS); + PCKEV_ST_SB(tmp0, tmp1, dst + 2 * dst_stride); + + DOTP_UB2_UH(vec6, vec7, filt0, filt0, tmp2, tmp3); + SRARI_H2_UH(tmp2, tmp3, FILTER_BITS); + PCKEV_ST_SB(tmp2, tmp3, dst + 3 * dst_stride); + + ILVR_B2_UB(src6, src5, src7, src6, vec0, vec2); + ILVL_B2_UB(src6, src5, src7, src6, vec1, vec3); + DOTP_UB2_UH(vec0, vec1, filt0, filt0, tmp0, tmp1); + SRARI_H2_UH(tmp0, tmp1, FILTER_BITS); + PCKEV_ST_SB(tmp0, tmp1, dst + 16); + + DOTP_UB2_UH(vec2, vec3, filt0, filt0, tmp2, tmp3); + SRARI_H2_UH(tmp2, tmp3, FILTER_BITS); + PCKEV_ST_SB(tmp2, tmp3, dst + 16 + dst_stride); + + ILVR_B2_UB(src8, src7, src9, src8, vec4, vec6); + ILVL_B2_UB(src8, src7, src9, src8, vec5, vec7); + DOTP_UB2_UH(vec4, vec5, filt0, filt0, tmp0, tmp1); + SRARI_H2_UH(tmp0, tmp1, FILTER_BITS); + PCKEV_ST_SB(tmp0, tmp1, dst + 16 + 2 * dst_stride); + + DOTP_UB2_UH(vec6, vec7, filt0, filt0, tmp2, tmp3); + SRARI_H2_UH(tmp2, tmp3, FILTER_BITS); + PCKEV_ST_SB(tmp2, tmp3, dst + 16 + 3 * dst_stride); + dst += (4 * dst_stride); + + src0 = src4; + src5 = src9; + } +} + +static void common_vt_2t_64w_msa(const uint8_t *src, int32_t src_stride, + uint8_t *dst, int32_t dst_stride, + int8_t *filter, int32_t height) { + uint32_t loop_cnt; + v16u8 src0, src1, src2, src3, src4, src5, src6, src7, src8, src9, src10; + v16u8 src11, vec0, vec1, vec2, vec3, vec4, vec5, vec6, vec7, filt0; + v8u16 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; + v8i16 filt; + + /* rearranging filter_y */ + filt = LD_SH(filter); + filt0 = (v16u8)__msa_splati_h(filt, 0); + + LD_UB4(src, 16, src0, src3, src6, src9); + src += src_stride; + + for (loop_cnt = (height >> 1); loop_cnt--;) { + LD_UB2(src, src_stride, src1, src2); + LD_UB2(src + 16, src_stride, src4, src5); + LD_UB2(src + 32, src_stride, src7, src8); + LD_UB2(src + 48, src_stride, src10, src11); + src += (2 * src_stride); + + ILVR_B2_UB(src1, src0, src2, src1, vec0, vec2); + ILVL_B2_UB(src1, src0, src2, src1, vec1, vec3); + DOTP_UB2_UH(vec0, vec1, filt0, filt0, tmp0, tmp1); + SRARI_H2_UH(tmp0, tmp1, FILTER_BITS); + PCKEV_ST_SB(tmp0, tmp1, dst); + + DOTP_UB2_UH(vec2, vec3, filt0, filt0, tmp2, tmp3); + SRARI_H2_UH(tmp2, tmp3, FILTER_BITS); + PCKEV_ST_SB(tmp2, tmp3, dst + dst_stride); + + ILVR_B2_UB(src4, src3, src5, src4, vec4, vec6); + ILVL_B2_UB(src4, src3, src5, src4, vec5, vec7); + DOTP_UB2_UH(vec4, vec5, filt0, filt0, tmp4, tmp5); + SRARI_H2_UH(tmp4, tmp5, FILTER_BITS); + PCKEV_ST_SB(tmp4, tmp5, dst + 16); + + DOTP_UB2_UH(vec6, vec7, filt0, filt0, tmp6, tmp7); + SRARI_H2_UH(tmp6, tmp7, FILTER_BITS); + PCKEV_ST_SB(tmp6, tmp7, dst + 16 + dst_stride); + + ILVR_B2_UB(src7, src6, src8, src7, vec0, vec2); + ILVL_B2_UB(src7, src6, src8, src7, vec1, vec3); + DOTP_UB2_UH(vec0, vec1, filt0, filt0, tmp0, tmp1); + SRARI_H2_UH(tmp0, tmp1, FILTER_BITS); + PCKEV_ST_SB(tmp0, tmp1, dst + 32); + + DOTP_UB2_UH(vec2, vec3, filt0, filt0, tmp2, tmp3); + SRARI_H2_UH(tmp2, tmp3, FILTER_BITS); + PCKEV_ST_SB(tmp2, tmp3, dst + 32 + dst_stride); + + ILVR_B2_UB(src10, src9, src11, src10, vec4, vec6); + ILVL_B2_UB(src10, src9, src11, src10, vec5, vec7); + DOTP_UB2_UH(vec4, vec5, filt0, filt0, tmp4, tmp5); + SRARI_H2_UH(tmp4, tmp5, FILTER_BITS); + PCKEV_ST_SB(tmp4, tmp5, dst + 48); + + DOTP_UB2_UH(vec6, vec7, filt0, filt0, tmp6, tmp7); + SRARI_H2_UH(tmp6, tmp7, FILTER_BITS); + PCKEV_ST_SB(tmp6, tmp7, dst + 48 + dst_stride); + dst += (2 * dst_stride); + + src0 = src2; + src3 = src5; + src6 = src8; + src9 = src11; + } +} + +void vpx_convolve8_vert_msa(const uint8_t *src, ptrdiff_t src_stride, + uint8_t *dst, ptrdiff_t dst_stride, + const InterpKernel *filter, int x0_q4, + int32_t x_step_q4, int y0_q4, int y_step_q4, int w, + int h) { + const int16_t *const filter_y = filter[y0_q4]; + int8_t cnt, filt_ver[8]; + + assert(y_step_q4 == 16); + assert(((const int32_t *)filter_y)[1] != 0x800000); + + for (cnt = 8; cnt--;) { + filt_ver[cnt] = filter_y[cnt]; + } + + if (((const int32_t *)filter_y)[0] == 0) { + switch (w) { + case 4: + common_vt_2t_4w_msa(src, (int32_t)src_stride, dst, (int32_t)dst_stride, + &filt_ver[3], h); + break; + case 8: + common_vt_2t_8w_msa(src, (int32_t)src_stride, dst, (int32_t)dst_stride, + &filt_ver[3], h); + break; + case 16: + common_vt_2t_16w_msa(src, (int32_t)src_stride, dst, (int32_t)dst_stride, + &filt_ver[3], h); + break; + case 32: + common_vt_2t_32w_msa(src, (int32_t)src_stride, dst, (int32_t)dst_stride, + &filt_ver[3], h); + break; + case 64: + common_vt_2t_64w_msa(src, (int32_t)src_stride, dst, (int32_t)dst_stride, + &filt_ver[3], h); + break; + default: + vpx_convolve8_vert_c(src, src_stride, dst, dst_stride, filter, x0_q4, + x_step_q4, y0_q4, y_step_q4, w, h); + break; + } + } else { + switch (w) { + case 4: + common_vt_8t_4w_msa(src, (int32_t)src_stride, dst, (int32_t)dst_stride, + filt_ver, h); + break; + case 8: + common_vt_8t_8w_msa(src, (int32_t)src_stride, dst, (int32_t)dst_stride, + filt_ver, h); + break; + case 16: + common_vt_8t_16w_msa(src, (int32_t)src_stride, dst, (int32_t)dst_stride, + filt_ver, h); + break; + case 32: + common_vt_8t_32w_msa(src, (int32_t)src_stride, dst, (int32_t)dst_stride, + filt_ver, h); + break; + case 64: + common_vt_8t_64w_msa(src, (int32_t)src_stride, dst, (int32_t)dst_stride, + filt_ver, h); + break; + default: + vpx_convolve8_vert_c(src, src_stride, dst, dst_stride, filter, x0_q4, + x_step_q4, y0_q4, y_step_q4, w, h); + break; + } + } +} diff --git a/vpx_dsp/mips/vpx_convolve_avg_msa.c b/vpx_dsp/mips/vpx_convolve_avg_msa.c new file mode 100644 index 0000000..ce64993 --- /dev/null +++ b/vpx_dsp/mips/vpx_convolve_avg_msa.c @@ -0,0 +1,234 @@ +/* + * Copyright (c) 2015 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "./vpx_dsp_rtcd.h" +#include "vpx_dsp/mips/macros_msa.h" + +static void avg_width4_msa(const uint8_t *src, int32_t src_stride, uint8_t *dst, + int32_t dst_stride, int32_t height) { + int32_t cnt; + uint32_t out0, out1, out2, out3; + v16u8 src0, src1, src2, src3; + v16u8 dst0, dst1, dst2, dst3; + + if (0 == (height % 4)) { + for (cnt = (height / 4); cnt--;) { + LD_UB4(src, src_stride, src0, src1, src2, src3); + src += (4 * src_stride); + + LD_UB4(dst, dst_stride, dst0, dst1, dst2, dst3); + + AVER_UB4_UB(src0, dst0, src1, dst1, src2, dst2, src3, dst3, dst0, dst1, + dst2, dst3); + + out0 = __msa_copy_u_w((v4i32)dst0, 0); + out1 = __msa_copy_u_w((v4i32)dst1, 0); + out2 = __msa_copy_u_w((v4i32)dst2, 0); + out3 = __msa_copy_u_w((v4i32)dst3, 0); + SW4(out0, out1, out2, out3, dst, dst_stride); + dst += (4 * dst_stride); + } + } else if (0 == (height % 2)) { + for (cnt = (height / 2); cnt--;) { + LD_UB2(src, src_stride, src0, src1); + src += (2 * src_stride); + + LD_UB2(dst, dst_stride, dst0, dst1); + + AVER_UB2_UB(src0, dst0, src1, dst1, dst0, dst1); + + out0 = __msa_copy_u_w((v4i32)dst0, 0); + out1 = __msa_copy_u_w((v4i32)dst1, 0); + SW(out0, dst); + dst += dst_stride; + SW(out1, dst); + dst += dst_stride; + } + } +} + +static void avg_width8_msa(const uint8_t *src, int32_t src_stride, uint8_t *dst, + int32_t dst_stride, int32_t height) { + int32_t cnt; + uint64_t out0, out1, out2, out3; + v16u8 src0, src1, src2, src3; + v16u8 dst0, dst1, dst2, dst3; + + for (cnt = (height / 4); cnt--;) { + LD_UB4(src, src_stride, src0, src1, src2, src3); + src += (4 * src_stride); + LD_UB4(dst, dst_stride, dst0, dst1, dst2, dst3); + + AVER_UB4_UB(src0, dst0, src1, dst1, src2, dst2, src3, dst3, dst0, dst1, + dst2, dst3); + + out0 = __msa_copy_u_d((v2i64)dst0, 0); + out1 = __msa_copy_u_d((v2i64)dst1, 0); + out2 = __msa_copy_u_d((v2i64)dst2, 0); + out3 = __msa_copy_u_d((v2i64)dst3, 0); + SD4(out0, out1, out2, out3, dst, dst_stride); + dst += (4 * dst_stride); + } +} + +static void avg_width16_msa(const uint8_t *src, int32_t src_stride, + uint8_t *dst, int32_t dst_stride, int32_t height) { + int32_t cnt; + v16u8 src0, src1, src2, src3, src4, src5, src6, src7; + v16u8 dst0, dst1, dst2, dst3, dst4, dst5, dst6, dst7; + + for (cnt = (height / 8); cnt--;) { + LD_UB8(src, src_stride, src0, src1, src2, src3, src4, src5, src6, src7); + src += (8 * src_stride); + LD_UB8(dst, dst_stride, dst0, dst1, dst2, dst3, dst4, dst5, dst6, dst7); + + AVER_UB4_UB(src0, dst0, src1, dst1, src2, dst2, src3, dst3, dst0, dst1, + dst2, dst3); + AVER_UB4_UB(src4, dst4, src5, dst5, src6, dst6, src7, dst7, dst4, dst5, + dst6, dst7); + ST_UB8(dst0, dst1, dst2, dst3, dst4, dst5, dst6, dst7, dst, dst_stride); + dst += (8 * dst_stride); + } +} + +static void avg_width32_msa(const uint8_t *src, int32_t src_stride, + uint8_t *dst, int32_t dst_stride, int32_t height) { + int32_t cnt; + uint8_t *dst_dup = dst; + v16u8 src0, src1, src2, src3, src4, src5, src6, src7; + v16u8 src8, src9, src10, src11, src12, src13, src14, src15; + v16u8 dst0, dst1, dst2, dst3, dst4, dst5, dst6, dst7; + v16u8 dst8, dst9, dst10, dst11, dst12, dst13, dst14, dst15; + + for (cnt = (height / 8); cnt--;) { + LD_UB4(src, src_stride, src0, src2, src4, src6); + LD_UB4(src + 16, src_stride, src1, src3, src5, src7); + src += (4 * src_stride); + LD_UB4(dst_dup, dst_stride, dst0, dst2, dst4, dst6); + LD_UB4(dst_dup + 16, dst_stride, dst1, dst3, dst5, dst7); + dst_dup += (4 * dst_stride); + LD_UB4(src, src_stride, src8, src10, src12, src14); + LD_UB4(src + 16, src_stride, src9, src11, src13, src15); + src += (4 * src_stride); + LD_UB4(dst_dup, dst_stride, dst8, dst10, dst12, dst14); + LD_UB4(dst_dup + 16, dst_stride, dst9, dst11, dst13, dst15); + dst_dup += (4 * dst_stride); + + AVER_UB4_UB(src0, dst0, src1, dst1, src2, dst2, src3, dst3, dst0, dst1, + dst2, dst3); + AVER_UB4_UB(src4, dst4, src5, dst5, src6, dst6, src7, dst7, dst4, dst5, + dst6, dst7); + AVER_UB4_UB(src8, dst8, src9, dst9, src10, dst10, src11, dst11, dst8, dst9, + dst10, dst11); + AVER_UB4_UB(src12, dst12, src13, dst13, src14, dst14, src15, dst15, dst12, + dst13, dst14, dst15); + + ST_UB4(dst0, dst2, dst4, dst6, dst, dst_stride); + ST_UB4(dst1, dst3, dst5, dst7, dst + 16, dst_stride); + dst += (4 * dst_stride); + ST_UB4(dst8, dst10, dst12, dst14, dst, dst_stride); + ST_UB4(dst9, dst11, dst13, dst15, dst + 16, dst_stride); + dst += (4 * dst_stride); + } +} + +static void avg_width64_msa(const uint8_t *src, int32_t src_stride, + uint8_t *dst, int32_t dst_stride, int32_t height) { + int32_t cnt; + uint8_t *dst_dup = dst; + v16u8 src0, src1, src2, src3, src4, src5, src6, src7; + v16u8 src8, src9, src10, src11, src12, src13, src14, src15; + v16u8 dst0, dst1, dst2, dst3, dst4, dst5, dst6, dst7; + v16u8 dst8, dst9, dst10, dst11, dst12, dst13, dst14, dst15; + + for (cnt = (height / 4); cnt--;) { + LD_UB4(src, 16, src0, src1, src2, src3); + src += src_stride; + LD_UB4(src, 16, src4, src5, src6, src7); + src += src_stride; + LD_UB4(src, 16, src8, src9, src10, src11); + src += src_stride; + LD_UB4(src, 16, src12, src13, src14, src15); + src += src_stride; + + LD_UB4(dst_dup, 16, dst0, dst1, dst2, dst3); + dst_dup += dst_stride; + LD_UB4(dst_dup, 16, dst4, dst5, dst6, dst7); + dst_dup += dst_stride; + LD_UB4(dst_dup, 16, dst8, dst9, dst10, dst11); + dst_dup += dst_stride; + LD_UB4(dst_dup, 16, dst12, dst13, dst14, dst15); + dst_dup += dst_stride; + + AVER_UB4_UB(src0, dst0, src1, dst1, src2, dst2, src3, dst3, dst0, dst1, + dst2, dst3); + AVER_UB4_UB(src4, dst4, src5, dst5, src6, dst6, src7, dst7, dst4, dst5, + dst6, dst7); + AVER_UB4_UB(src8, dst8, src9, dst9, src10, dst10, src11, dst11, dst8, dst9, + dst10, dst11); + AVER_UB4_UB(src12, dst12, src13, dst13, src14, dst14, src15, dst15, dst12, + dst13, dst14, dst15); + + ST_UB4(dst0, dst1, dst2, dst3, dst, 16); + dst += dst_stride; + ST_UB4(dst4, dst5, dst6, dst7, dst, 16); + dst += dst_stride; + ST_UB4(dst8, dst9, dst10, dst11, dst, 16); + dst += dst_stride; + ST_UB4(dst12, dst13, dst14, dst15, dst, 16); + dst += dst_stride; + } +} + +void vpx_convolve_avg_msa(const uint8_t *src, ptrdiff_t src_stride, + uint8_t *dst, ptrdiff_t dst_stride, + const InterpKernel *filter, int x0_q4, + int32_t x_step_q4, int y0_q4, int32_t y_step_q4, + int32_t w, int32_t h) { + (void)filter; + (void)x0_q4; + (void)x_step_q4; + (void)y0_q4; + (void)y_step_q4; + + switch (w) { + case 4: { + avg_width4_msa(src, src_stride, dst, dst_stride, h); + break; + } + case 8: { + avg_width8_msa(src, src_stride, dst, dst_stride, h); + break; + } + case 16: { + avg_width16_msa(src, src_stride, dst, dst_stride, h); + break; + } + case 32: { + avg_width32_msa(src, src_stride, dst, dst_stride, h); + break; + } + case 64: { + avg_width64_msa(src, src_stride, dst, dst_stride, h); + break; + } + default: { + int32_t lp, cnt; + for (cnt = h; cnt--;) { + for (lp = 0; lp < w; ++lp) { + dst[lp] = (((dst[lp] + src[lp]) + 1) >> 1); + } + src += src_stride; + dst += dst_stride; + } + break; + } + } +} diff --git a/vpx_dsp/mips/vpx_convolve_copy_msa.c b/vpx_dsp/mips/vpx_convolve_copy_msa.c new file mode 100644 index 0000000..c2ab33a --- /dev/null +++ b/vpx_dsp/mips/vpx_convolve_copy_msa.c @@ -0,0 +1,249 @@ +/* + * Copyright (c) 2015 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include "./vpx_dsp_rtcd.h" +#include "vpx_dsp/mips/macros_msa.h" + +static void copy_width8_msa(const uint8_t *src, int32_t src_stride, + uint8_t *dst, int32_t dst_stride, int32_t height) { + int32_t cnt; + uint64_t out0, out1, out2, out3, out4, out5, out6, out7; + v16u8 src0, src1, src2, src3, src4, src5, src6, src7; + + if (0 == height % 12) { + for (cnt = (height / 12); cnt--;) { + LD_UB8(src, src_stride, src0, src1, src2, src3, src4, src5, src6, src7); + src += (8 * src_stride); + + out0 = __msa_copy_u_d((v2i64)src0, 0); + out1 = __msa_copy_u_d((v2i64)src1, 0); + out2 = __msa_copy_u_d((v2i64)src2, 0); + out3 = __msa_copy_u_d((v2i64)src3, 0); + out4 = __msa_copy_u_d((v2i64)src4, 0); + out5 = __msa_copy_u_d((v2i64)src5, 0); + out6 = __msa_copy_u_d((v2i64)src6, 0); + out7 = __msa_copy_u_d((v2i64)src7, 0); + + SD4(out0, out1, out2, out3, dst, dst_stride); + dst += (4 * dst_stride); + SD4(out4, out5, out6, out7, dst, dst_stride); + dst += (4 * dst_stride); + + LD_UB4(src, src_stride, src0, src1, src2, src3); + src += (4 * src_stride); + + out0 = __msa_copy_u_d((v2i64)src0, 0); + out1 = __msa_copy_u_d((v2i64)src1, 0); + out2 = __msa_copy_u_d((v2i64)src2, 0); + out3 = __msa_copy_u_d((v2i64)src3, 0); + SD4(out0, out1, out2, out3, dst, dst_stride); + dst += (4 * dst_stride); + } + } else if (0 == height % 8) { + for (cnt = height >> 3; cnt--;) { + LD_UB8(src, src_stride, src0, src1, src2, src3, src4, src5, src6, src7); + src += (8 * src_stride); + + out0 = __msa_copy_u_d((v2i64)src0, 0); + out1 = __msa_copy_u_d((v2i64)src1, 0); + out2 = __msa_copy_u_d((v2i64)src2, 0); + out3 = __msa_copy_u_d((v2i64)src3, 0); + out4 = __msa_copy_u_d((v2i64)src4, 0); + out5 = __msa_copy_u_d((v2i64)src5, 0); + out6 = __msa_copy_u_d((v2i64)src6, 0); + out7 = __msa_copy_u_d((v2i64)src7, 0); + + SD4(out0, out1, out2, out3, dst, dst_stride); + dst += (4 * dst_stride); + SD4(out4, out5, out6, out7, dst, dst_stride); + dst += (4 * dst_stride); + } + } else if (0 == height % 4) { + for (cnt = (height / 4); cnt--;) { + LD_UB4(src, src_stride, src0, src1, src2, src3); + src += (4 * src_stride); + out0 = __msa_copy_u_d((v2i64)src0, 0); + out1 = __msa_copy_u_d((v2i64)src1, 0); + out2 = __msa_copy_u_d((v2i64)src2, 0); + out3 = __msa_copy_u_d((v2i64)src3, 0); + + SD4(out0, out1, out2, out3, dst, dst_stride); + dst += (4 * dst_stride); + } + } else if (0 == height % 2) { + for (cnt = (height / 2); cnt--;) { + LD_UB2(src, src_stride, src0, src1); + src += (2 * src_stride); + out0 = __msa_copy_u_d((v2i64)src0, 0); + out1 = __msa_copy_u_d((v2i64)src1, 0); + + SD(out0, dst); + dst += dst_stride; + SD(out1, dst); + dst += dst_stride; + } + } +} + +static void copy_16multx8mult_msa(const uint8_t *src, int32_t src_stride, + uint8_t *dst, int32_t dst_stride, + int32_t height, int32_t width) { + int32_t cnt, loop_cnt; + const uint8_t *src_tmp; + uint8_t *dst_tmp; + v16u8 src0, src1, src2, src3, src4, src5, src6, src7; + + for (cnt = (width >> 4); cnt--;) { + src_tmp = src; + dst_tmp = dst; + + for (loop_cnt = (height >> 3); loop_cnt--;) { + LD_UB8(src_tmp, src_stride, src0, src1, src2, src3, src4, src5, src6, + src7); + src_tmp += (8 * src_stride); + + ST_UB8(src0, src1, src2, src3, src4, src5, src6, src7, dst_tmp, + dst_stride); + dst_tmp += (8 * dst_stride); + } + + src += 16; + dst += 16; + } +} + +static void copy_width16_msa(const uint8_t *src, int32_t src_stride, + uint8_t *dst, int32_t dst_stride, int32_t height) { + int32_t cnt; + v16u8 src0, src1, src2, src3, src4, src5, src6, src7; + + if (0 == height % 12) { + for (cnt = (height / 12); cnt--;) { + LD_UB8(src, src_stride, src0, src1, src2, src3, src4, src5, src6, src7); + src += (8 * src_stride); + ST_UB8(src0, src1, src2, src3, src4, src5, src6, src7, dst, dst_stride); + dst += (8 * dst_stride); + + LD_UB4(src, src_stride, src0, src1, src2, src3); + src += (4 * src_stride); + ST_UB4(src0, src1, src2, src3, dst, dst_stride); + dst += (4 * dst_stride); + } + } else if (0 == height % 8) { + copy_16multx8mult_msa(src, src_stride, dst, dst_stride, height, 16); + } else if (0 == height % 4) { + for (cnt = (height >> 2); cnt--;) { + LD_UB4(src, src_stride, src0, src1, src2, src3); + src += (4 * src_stride); + + ST_UB4(src0, src1, src2, src3, dst, dst_stride); + dst += (4 * dst_stride); + } + } +} + +static void copy_width32_msa(const uint8_t *src, int32_t src_stride, + uint8_t *dst, int32_t dst_stride, int32_t height) { + int32_t cnt; + v16u8 src0, src1, src2, src3, src4, src5, src6, src7; + + if (0 == height % 12) { + for (cnt = (height / 12); cnt--;) { + LD_UB4(src, src_stride, src0, src1, src2, src3); + LD_UB4(src + 16, src_stride, src4, src5, src6, src7); + src += (4 * src_stride); + ST_UB4(src0, src1, src2, src3, dst, dst_stride); + ST_UB4(src4, src5, src6, src7, dst + 16, dst_stride); + dst += (4 * dst_stride); + + LD_UB4(src, src_stride, src0, src1, src2, src3); + LD_UB4(src + 16, src_stride, src4, src5, src6, src7); + src += (4 * src_stride); + ST_UB4(src0, src1, src2, src3, dst, dst_stride); + ST_UB4(src4, src5, src6, src7, dst + 16, dst_stride); + dst += (4 * dst_stride); + + LD_UB4(src, src_stride, src0, src1, src2, src3); + LD_UB4(src + 16, src_stride, src4, src5, src6, src7); + src += (4 * src_stride); + ST_UB4(src0, src1, src2, src3, dst, dst_stride); + ST_UB4(src4, src5, src6, src7, dst + 16, dst_stride); + dst += (4 * dst_stride); + } + } else if (0 == height % 8) { + copy_16multx8mult_msa(src, src_stride, dst, dst_stride, height, 32); + } else if (0 == height % 4) { + for (cnt = (height >> 2); cnt--;) { + LD_UB4(src, src_stride, src0, src1, src2, src3); + LD_UB4(src + 16, src_stride, src4, src5, src6, src7); + src += (4 * src_stride); + ST_UB4(src0, src1, src2, src3, dst, dst_stride); + ST_UB4(src4, src5, src6, src7, dst + 16, dst_stride); + dst += (4 * dst_stride); + } + } +} + +static void copy_width64_msa(const uint8_t *src, int32_t src_stride, + uint8_t *dst, int32_t dst_stride, int32_t height) { + copy_16multx8mult_msa(src, src_stride, dst, dst_stride, height, 64); +} + +void vpx_convolve_copy_msa(const uint8_t *src, ptrdiff_t src_stride, + uint8_t *dst, ptrdiff_t dst_stride, + const InterpKernel *filter, int x0_q4, + int32_t x_step_q4, int y0_q4, int32_t y_step_q4, + int32_t w, int32_t h) { + (void)filter; + (void)x0_q4; + (void)x_step_q4; + (void)y0_q4; + (void)y_step_q4; + + switch (w) { + case 4: { + uint32_t cnt, tmp; + /* 1 word storage */ + for (cnt = h; cnt--;) { + tmp = LW(src); + SW(tmp, dst); + src += src_stride; + dst += dst_stride; + } + break; + } + case 8: { + copy_width8_msa(src, src_stride, dst, dst_stride, h); + break; + } + case 16: { + copy_width16_msa(src, src_stride, dst, dst_stride, h); + break; + } + case 32: { + copy_width32_msa(src, src_stride, dst, dst_stride, h); + break; + } + case 64: { + copy_width64_msa(src, src_stride, dst, dst_stride, h); + break; + } + default: { + uint32_t cnt; + for (cnt = h; cnt--;) { + memcpy(dst, src, w); + src += src_stride; + dst += dst_stride; + } + break; + } + } +} diff --git a/vpx_dsp/mips/vpx_convolve_msa.h b/vpx_dsp/mips/vpx_convolve_msa.h new file mode 100644 index 0000000..d532445 --- /dev/null +++ b/vpx_dsp/mips/vpx_convolve_msa.h @@ -0,0 +1,122 @@ +/* + * Copyright (c) 2015 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VPX_DSP_MIPS_VPX_CONVOLVE_MSA_H_ +#define VPX_DSP_MIPS_VPX_CONVOLVE_MSA_H_ + +#include "vpx_dsp/mips/macros_msa.h" +#include "vpx_dsp/vpx_filter.h" + +extern const uint8_t mc_filt_mask_arr[16 * 3]; + +#define FILT_8TAP_DPADD_S_H(vec0, vec1, vec2, vec3, filt0, filt1, filt2, \ + filt3) \ + ({ \ + v8i16 tmp_dpadd_0, tmp_dpadd_1; \ + \ + tmp_dpadd_0 = __msa_dotp_s_h((v16i8)vec0, (v16i8)filt0); \ + tmp_dpadd_0 = __msa_dpadd_s_h(tmp_dpadd_0, (v16i8)vec1, (v16i8)filt1); \ + tmp_dpadd_1 = __msa_dotp_s_h((v16i8)vec2, (v16i8)filt2); \ + tmp_dpadd_1 = __msa_dpadd_s_h(tmp_dpadd_1, (v16i8)vec3, (v16i8)filt3); \ + tmp_dpadd_0 = __msa_adds_s_h(tmp_dpadd_0, tmp_dpadd_1); \ + \ + tmp_dpadd_0; \ + }) + +#define HORIZ_8TAP_FILT(src0, src1, mask0, mask1, mask2, mask3, filt_h0, \ + filt_h1, filt_h2, filt_h3) \ + ({ \ + v16i8 vec0_m, vec1_m, vec2_m, vec3_m; \ + v8i16 hz_out_m; \ + \ + VSHF_B4_SB(src0, src1, mask0, mask1, mask2, mask3, vec0_m, vec1_m, vec2_m, \ + vec3_m); \ + hz_out_m = FILT_8TAP_DPADD_S_H(vec0_m, vec1_m, vec2_m, vec3_m, filt_h0, \ + filt_h1, filt_h2, filt_h3); \ + \ + hz_out_m = __msa_srari_h(hz_out_m, FILTER_BITS); \ + hz_out_m = __msa_sat_s_h(hz_out_m, 7); \ + \ + hz_out_m; \ + }) + +#define HORIZ_8TAP_4WID_4VECS_FILT(src0, src1, src2, src3, mask0, mask1, \ + mask2, mask3, filt0, filt1, filt2, filt3, \ + out0, out1) \ + { \ + v16i8 vec0_m, vec1_m, vec2_m, vec3_m, vec4_m, vec5_m, vec6_m, vec7_m; \ + v8i16 res0_m, res1_m, res2_m, res3_m; \ + \ + VSHF_B2_SB(src0, src1, src2, src3, mask0, mask0, vec0_m, vec1_m); \ + DOTP_SB2_SH(vec0_m, vec1_m, filt0, filt0, res0_m, res1_m); \ + VSHF_B2_SB(src0, src1, src2, src3, mask1, mask1, vec2_m, vec3_m); \ + DPADD_SB2_SH(vec2_m, vec3_m, filt1, filt1, res0_m, res1_m); \ + VSHF_B2_SB(src0, src1, src2, src3, mask2, mask2, vec4_m, vec5_m); \ + DOTP_SB2_SH(vec4_m, vec5_m, filt2, filt2, res2_m, res3_m); \ + VSHF_B2_SB(src0, src1, src2, src3, mask3, mask3, vec6_m, vec7_m); \ + DPADD_SB2_SH(vec6_m, vec7_m, filt3, filt3, res2_m, res3_m); \ + ADDS_SH2_SH(res0_m, res2_m, res1_m, res3_m, out0, out1); \ + } + +#define HORIZ_8TAP_8WID_4VECS_FILT(src0, src1, src2, src3, mask0, mask1, \ + mask2, mask3, filt0, filt1, filt2, filt3, \ + out0, out1, out2, out3) \ + { \ + v16i8 vec0_m, vec1_m, vec2_m, vec3_m, vec4_m, vec5_m, vec6_m, vec7_m; \ + v8i16 res0_m, res1_m, res2_m, res3_m, res4_m, res5_m, res6_m, res7_m; \ + \ + VSHF_B2_SB(src0, src0, src1, src1, mask0, mask0, vec0_m, vec1_m); \ + VSHF_B2_SB(src2, src2, src3, src3, mask0, mask0, vec2_m, vec3_m); \ + DOTP_SB4_SH(vec0_m, vec1_m, vec2_m, vec3_m, filt0, filt0, filt0, filt0, \ + res0_m, res1_m, res2_m, res3_m); \ + VSHF_B2_SB(src0, src0, src1, src1, mask2, mask2, vec0_m, vec1_m); \ + VSHF_B2_SB(src2, src2, src3, src3, mask2, mask2, vec2_m, vec3_m); \ + DOTP_SB4_SH(vec0_m, vec1_m, vec2_m, vec3_m, filt2, filt2, filt2, filt2, \ + res4_m, res5_m, res6_m, res7_m); \ + VSHF_B2_SB(src0, src0, src1, src1, mask1, mask1, vec4_m, vec5_m); \ + VSHF_B2_SB(src2, src2, src3, src3, mask1, mask1, vec6_m, vec7_m); \ + DPADD_SB4_SH(vec4_m, vec5_m, vec6_m, vec7_m, filt1, filt1, filt1, filt1, \ + res0_m, res1_m, res2_m, res3_m); \ + VSHF_B2_SB(src0, src0, src1, src1, mask3, mask3, vec4_m, vec5_m); \ + VSHF_B2_SB(src2, src2, src3, src3, mask3, mask3, vec6_m, vec7_m); \ + DPADD_SB4_SH(vec4_m, vec5_m, vec6_m, vec7_m, filt3, filt3, filt3, filt3, \ + res4_m, res5_m, res6_m, res7_m); \ + ADDS_SH4_SH(res0_m, res4_m, res1_m, res5_m, res2_m, res6_m, res3_m, \ + res7_m, out0, out1, out2, out3); \ + } + +#define PCKEV_XORI128_AVG_ST_UB(in0, in1, dst, pdst) \ + { \ + v16u8 tmp_m; \ + \ + tmp_m = PCKEV_XORI128_UB(in1, in0); \ + tmp_m = __msa_aver_u_b(tmp_m, (v16u8)dst); \ + ST_UB(tmp_m, (pdst)); \ + } + +#define PCKEV_AVG_ST_UB(in0, in1, dst, pdst) \ + { \ + v16u8 tmp_m; \ + \ + tmp_m = (v16u8)__msa_pckev_b((v16i8)in0, (v16i8)in1); \ + tmp_m = __msa_aver_u_b(tmp_m, (v16u8)dst); \ + ST_UB(tmp_m, (pdst)); \ + } + +#define PCKEV_AVG_ST8x4_UB(in0, in1, in2, in3, dst0, dst1, pdst, stride) \ + { \ + v16u8 tmp0_m, tmp1_m; \ + uint8_t *pdst_m = (uint8_t *)(pdst); \ + \ + PCKEV_B2_UB(in1, in0, in3, in2, tmp0_m, tmp1_m); \ + AVER_UB2_UB(tmp0_m, dst0, tmp1_m, dst1, tmp0_m, tmp1_m); \ + ST8x4_UB(tmp0_m, tmp1_m, pdst_m, stride); \ + } +#endif /* VPX_DSP_MIPS_VPX_CONVOLVE_MSA_H_ */ diff --git a/vpx_dsp/postproc.h b/vpx_dsp/postproc.h new file mode 100644 index 0000000..43cb5c8 --- /dev/null +++ b/vpx_dsp/postproc.h @@ -0,0 +1,25 @@ +/* + * Copyright (c) 2016 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VPX_DSP_POSTPROC_H_ +#define VPX_DSP_POSTPROC_H_ + +#ifdef __cplusplus +extern "C" { +#endif + +// Fills a noise buffer with gaussian noise strength determined by sigma. +int vpx_setup_noise(double sigma, int8_t *noise, int size); + +#ifdef __cplusplus +} +#endif + +#endif // VPX_DSP_POSTPROC_H_ diff --git a/vpx_dsp/ppc/bitdepth_conversion_vsx.h b/vpx_dsp/ppc/bitdepth_conversion_vsx.h new file mode 100644 index 0000000..2c5d9a4 --- /dev/null +++ b/vpx_dsp/ppc/bitdepth_conversion_vsx.h @@ -0,0 +1,47 @@ +/* + * Copyright (c) 2017 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VPX_DSP_PPC_BITDEPTH_CONVERSION_VSX_H_ +#define VPX_DSP_PPC_BITDEPTH_CONVERSION_VSX_H_ + +#include "./vpx_config.h" +#include "vpx/vpx_integer.h" +#include "vpx_dsp/vpx_dsp_common.h" +#include "vpx_dsp/ppc/types_vsx.h" + +// Load 8 16 bit values. If the source is 32 bits then pack down with +// saturation. +static INLINE int16x8_t load_tran_low(int32_t c, const tran_low_t *s) { +#if CONFIG_VP9_HIGHBITDEPTH + int32x4_t u = vec_vsx_ld(c, s); + int32x4_t v = vec_vsx_ld(c, s + 4); + return vec_packs(u, v); +#else + return vec_vsx_ld(c, s); +#endif +} + +// Store 8 16 bit values. If the destination is 32 bits then sign extend the +// values by multiplying by 1. +static INLINE void store_tran_low(int16x8_t v, int32_t c, tran_low_t *s) { +#if CONFIG_VP9_HIGHBITDEPTH + const int16x8_t one = vec_splat_s16(1); + const int32x4_t even = vec_mule(v, one); + const int32x4_t odd = vec_mulo(v, one); + const int32x4_t high = vec_mergeh(even, odd); + const int32x4_t low = vec_mergel(even, odd); + vec_vsx_st(high, c, s); + vec_vsx_st(low, c, s + 4); +#else + vec_vsx_st(v, c, s); +#endif +} + +#endif // VPX_DSP_PPC_BITDEPTH_CONVERSION_VSX_H_ diff --git a/vpx_dsp/ppc/hadamard_vsx.c b/vpx_dsp/ppc/hadamard_vsx.c new file mode 100644 index 0000000..e279b30 --- /dev/null +++ b/vpx_dsp/ppc/hadamard_vsx.c @@ -0,0 +1,119 @@ +/* + * Copyright (c) 2017 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "./vpx_dsp_rtcd.h" +#include "vpx_dsp/ppc/types_vsx.h" +#include "vpx_dsp/ppc/transpose_vsx.h" +#include "vpx_dsp/ppc/bitdepth_conversion_vsx.h" + +static void vpx_hadamard_s16_8x8_one_pass(int16x8_t v[8]) { + const int16x8_t b0 = vec_add(v[0], v[1]); + const int16x8_t b1 = vec_sub(v[0], v[1]); + const int16x8_t b2 = vec_add(v[2], v[3]); + const int16x8_t b3 = vec_sub(v[2], v[3]); + const int16x8_t b4 = vec_add(v[4], v[5]); + const int16x8_t b5 = vec_sub(v[4], v[5]); + const int16x8_t b6 = vec_add(v[6], v[7]); + const int16x8_t b7 = vec_sub(v[6], v[7]); + + const int16x8_t c0 = vec_add(b0, b2); + const int16x8_t c1 = vec_add(b1, b3); + const int16x8_t c2 = vec_sub(b0, b2); + const int16x8_t c3 = vec_sub(b1, b3); + const int16x8_t c4 = vec_add(b4, b6); + const int16x8_t c5 = vec_add(b5, b7); + const int16x8_t c6 = vec_sub(b4, b6); + const int16x8_t c7 = vec_sub(b5, b7); + + v[0] = vec_add(c0, c4); + v[1] = vec_sub(c2, c6); + v[2] = vec_sub(c0, c4); + v[3] = vec_add(c2, c6); + v[4] = vec_add(c3, c7); + v[5] = vec_sub(c3, c7); + v[6] = vec_sub(c1, c5); + v[7] = vec_add(c1, c5); +} + +void vpx_hadamard_8x8_vsx(const int16_t *src_diff, ptrdiff_t src_stride, + tran_low_t *coeff) { + int16x8_t v[8]; + + v[0] = vec_vsx_ld(0, src_diff); + v[1] = vec_vsx_ld(0, src_diff + src_stride); + v[2] = vec_vsx_ld(0, src_diff + (2 * src_stride)); + v[3] = vec_vsx_ld(0, src_diff + (3 * src_stride)); + v[4] = vec_vsx_ld(0, src_diff + (4 * src_stride)); + v[5] = vec_vsx_ld(0, src_diff + (5 * src_stride)); + v[6] = vec_vsx_ld(0, src_diff + (6 * src_stride)); + v[7] = vec_vsx_ld(0, src_diff + (7 * src_stride)); + + vpx_hadamard_s16_8x8_one_pass(v); + + vpx_transpose_s16_8x8(v); + + vpx_hadamard_s16_8x8_one_pass(v); + + store_tran_low(v[0], 0, coeff); + store_tran_low(v[1], 0, coeff + 8); + store_tran_low(v[2], 0, coeff + 16); + store_tran_low(v[3], 0, coeff + 24); + store_tran_low(v[4], 0, coeff + 32); + store_tran_low(v[5], 0, coeff + 40); + store_tran_low(v[6], 0, coeff + 48); + store_tran_low(v[7], 0, coeff + 56); +} + +void vpx_hadamard_16x16_vsx(const int16_t *src_diff, ptrdiff_t src_stride, + tran_low_t *coeff) { + int i; + const uint16x8_t ones = vec_splat_u16(1); + + /* Rearrange 16x16 to 8x32 and remove stride. + * Top left first. */ + vpx_hadamard_8x8_vsx(src_diff, src_stride, coeff); + /* Top right. */ + vpx_hadamard_8x8_vsx(src_diff + 8 + 0 * src_stride, src_stride, coeff + 64); + /* Bottom left. */ + vpx_hadamard_8x8_vsx(src_diff + 0 + 8 * src_stride, src_stride, coeff + 128); + /* Bottom right. */ + vpx_hadamard_8x8_vsx(src_diff + 8 + 8 * src_stride, src_stride, coeff + 192); + + /* Overlay the 8x8 blocks and combine. */ + for (i = 0; i < 64; i += 8) { + const int16x8_t a0 = load_tran_low(0, coeff); + const int16x8_t a1 = load_tran_low(0, coeff + 64); + const int16x8_t a2 = load_tran_low(0, coeff + 128); + const int16x8_t a3 = load_tran_low(0, coeff + 192); + + /* Prevent the result from escaping int16_t. */ + const int16x8_t b0 = vec_sra(a0, ones); + const int16x8_t b1 = vec_sra(a1, ones); + const int16x8_t b2 = vec_sra(a2, ones); + const int16x8_t b3 = vec_sra(a3, ones); + + const int16x8_t c0 = vec_add(b0, b1); + const int16x8_t c2 = vec_add(b2, b3); + const int16x8_t c1 = vec_sub(b0, b1); + const int16x8_t c3 = vec_sub(b2, b3); + + const int16x8_t d0 = vec_add(c0, c2); + const int16x8_t d1 = vec_add(c1, c3); + const int16x8_t d2 = vec_sub(c0, c2); + const int16x8_t d3 = vec_sub(c1, c3); + + store_tran_low(d0, 0, coeff); + store_tran_low(d1, 0, coeff + 64); + store_tran_low(d2, 0, coeff + 128); + store_tran_low(d3, 0, coeff + 192); + + coeff += 8; + } +} diff --git a/vpx_dsp/ppc/intrapred_vsx.c b/vpx_dsp/ppc/intrapred_vsx.c new file mode 100644 index 0000000..6273460 --- /dev/null +++ b/vpx_dsp/ppc/intrapred_vsx.c @@ -0,0 +1,749 @@ +/* + * Copyright (c) 2017 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "./vpx_dsp_rtcd.h" +#include "vpx_dsp/ppc/types_vsx.h" + +void vpx_v_predictor_16x16_vsx(uint8_t *dst, ptrdiff_t stride, + const uint8_t *above, const uint8_t *left) { + const uint8x16_t d = vec_vsx_ld(0, above); + int i; + (void)left; + + for (i = 0; i < 16; i++, dst += stride) { + vec_vsx_st(d, 0, dst); + } +} + +void vpx_v_predictor_32x32_vsx(uint8_t *dst, ptrdiff_t stride, + const uint8_t *above, const uint8_t *left) { + const uint8x16_t d0 = vec_vsx_ld(0, above); + const uint8x16_t d1 = vec_vsx_ld(16, above); + int i; + (void)left; + + for (i = 0; i < 32; i++, dst += stride) { + vec_vsx_st(d0, 0, dst); + vec_vsx_st(d1, 16, dst); + } +} + +static const uint32x4_t mask4 = { 0, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF }; + +void vpx_h_predictor_4x4_vsx(uint8_t *dst, ptrdiff_t stride, + const uint8_t *above, const uint8_t *left) { + const uint8x16_t d = vec_vsx_ld(0, left); + const uint8x16_t v0 = vec_splat(d, 0); + const uint8x16_t v1 = vec_splat(d, 1); + const uint8x16_t v2 = vec_splat(d, 2); + const uint8x16_t v3 = vec_splat(d, 3); + + (void)above; + + vec_vsx_st(vec_sel(v0, vec_vsx_ld(0, dst), (uint8x16_t)mask4), 0, dst); + dst += stride; + vec_vsx_st(vec_sel(v1, vec_vsx_ld(0, dst), (uint8x16_t)mask4), 0, dst); + dst += stride; + vec_vsx_st(vec_sel(v2, vec_vsx_ld(0, dst), (uint8x16_t)mask4), 0, dst); + dst += stride; + vec_vsx_st(vec_sel(v3, vec_vsx_ld(0, dst), (uint8x16_t)mask4), 0, dst); +} + +void vpx_h_predictor_8x8_vsx(uint8_t *dst, ptrdiff_t stride, + const uint8_t *above, const uint8_t *left) { + const uint8x16_t d = vec_vsx_ld(0, left); + const uint8x16_t v0 = vec_splat(d, 0); + const uint8x16_t v1 = vec_splat(d, 1); + const uint8x16_t v2 = vec_splat(d, 2); + const uint8x16_t v3 = vec_splat(d, 3); + + const uint8x16_t v4 = vec_splat(d, 4); + const uint8x16_t v5 = vec_splat(d, 5); + const uint8x16_t v6 = vec_splat(d, 6); + const uint8x16_t v7 = vec_splat(d, 7); + + (void)above; + + vec_vsx_st(xxpermdi(v0, vec_vsx_ld(0, dst), 1), 0, dst); + dst += stride; + vec_vsx_st(xxpermdi(v1, vec_vsx_ld(0, dst), 1), 0, dst); + dst += stride; + vec_vsx_st(xxpermdi(v2, vec_vsx_ld(0, dst), 1), 0, dst); + dst += stride; + vec_vsx_st(xxpermdi(v3, vec_vsx_ld(0, dst), 1), 0, dst); + dst += stride; + vec_vsx_st(xxpermdi(v4, vec_vsx_ld(0, dst), 1), 0, dst); + dst += stride; + vec_vsx_st(xxpermdi(v5, vec_vsx_ld(0, dst), 1), 0, dst); + dst += stride; + vec_vsx_st(xxpermdi(v6, vec_vsx_ld(0, dst), 1), 0, dst); + dst += stride; + vec_vsx_st(xxpermdi(v7, vec_vsx_ld(0, dst), 1), 0, dst); +} + +void vpx_h_predictor_16x16_vsx(uint8_t *dst, ptrdiff_t stride, + const uint8_t *above, const uint8_t *left) { + const uint8x16_t d = vec_vsx_ld(0, left); + const uint8x16_t v0 = vec_splat(d, 0); + const uint8x16_t v1 = vec_splat(d, 1); + const uint8x16_t v2 = vec_splat(d, 2); + const uint8x16_t v3 = vec_splat(d, 3); + + const uint8x16_t v4 = vec_splat(d, 4); + const uint8x16_t v5 = vec_splat(d, 5); + const uint8x16_t v6 = vec_splat(d, 6); + const uint8x16_t v7 = vec_splat(d, 7); + + const uint8x16_t v8 = vec_splat(d, 8); + const uint8x16_t v9 = vec_splat(d, 9); + const uint8x16_t v10 = vec_splat(d, 10); + const uint8x16_t v11 = vec_splat(d, 11); + + const uint8x16_t v12 = vec_splat(d, 12); + const uint8x16_t v13 = vec_splat(d, 13); + const uint8x16_t v14 = vec_splat(d, 14); + const uint8x16_t v15 = vec_splat(d, 15); + + (void)above; + + vec_vsx_st(v0, 0, dst); + dst += stride; + vec_vsx_st(v1, 0, dst); + dst += stride; + vec_vsx_st(v2, 0, dst); + dst += stride; + vec_vsx_st(v3, 0, dst); + dst += stride; + vec_vsx_st(v4, 0, dst); + dst += stride; + vec_vsx_st(v5, 0, dst); + dst += stride; + vec_vsx_st(v6, 0, dst); + dst += stride; + vec_vsx_st(v7, 0, dst); + dst += stride; + vec_vsx_st(v8, 0, dst); + dst += stride; + vec_vsx_st(v9, 0, dst); + dst += stride; + vec_vsx_st(v10, 0, dst); + dst += stride; + vec_vsx_st(v11, 0, dst); + dst += stride; + vec_vsx_st(v12, 0, dst); + dst += stride; + vec_vsx_st(v13, 0, dst); + dst += stride; + vec_vsx_st(v14, 0, dst); + dst += stride; + vec_vsx_st(v15, 0, dst); +} + +#define H_PREDICTOR_32(v) \ + vec_vsx_st(v, 0, dst); \ + vec_vsx_st(v, 16, dst); \ + dst += stride + +void vpx_h_predictor_32x32_vsx(uint8_t *dst, ptrdiff_t stride, + const uint8_t *above, const uint8_t *left) { + const uint8x16_t d0 = vec_vsx_ld(0, left); + const uint8x16_t d1 = vec_vsx_ld(16, left); + + const uint8x16_t v0_0 = vec_splat(d0, 0); + const uint8x16_t v1_0 = vec_splat(d0, 1); + const uint8x16_t v2_0 = vec_splat(d0, 2); + const uint8x16_t v3_0 = vec_splat(d0, 3); + const uint8x16_t v4_0 = vec_splat(d0, 4); + const uint8x16_t v5_0 = vec_splat(d0, 5); + const uint8x16_t v6_0 = vec_splat(d0, 6); + const uint8x16_t v7_0 = vec_splat(d0, 7); + const uint8x16_t v8_0 = vec_splat(d0, 8); + const uint8x16_t v9_0 = vec_splat(d0, 9); + const uint8x16_t v10_0 = vec_splat(d0, 10); + const uint8x16_t v11_0 = vec_splat(d0, 11); + const uint8x16_t v12_0 = vec_splat(d0, 12); + const uint8x16_t v13_0 = vec_splat(d0, 13); + const uint8x16_t v14_0 = vec_splat(d0, 14); + const uint8x16_t v15_0 = vec_splat(d0, 15); + + const uint8x16_t v0_1 = vec_splat(d1, 0); + const uint8x16_t v1_1 = vec_splat(d1, 1); + const uint8x16_t v2_1 = vec_splat(d1, 2); + const uint8x16_t v3_1 = vec_splat(d1, 3); + const uint8x16_t v4_1 = vec_splat(d1, 4); + const uint8x16_t v5_1 = vec_splat(d1, 5); + const uint8x16_t v6_1 = vec_splat(d1, 6); + const uint8x16_t v7_1 = vec_splat(d1, 7); + const uint8x16_t v8_1 = vec_splat(d1, 8); + const uint8x16_t v9_1 = vec_splat(d1, 9); + const uint8x16_t v10_1 = vec_splat(d1, 10); + const uint8x16_t v11_1 = vec_splat(d1, 11); + const uint8x16_t v12_1 = vec_splat(d1, 12); + const uint8x16_t v13_1 = vec_splat(d1, 13); + const uint8x16_t v14_1 = vec_splat(d1, 14); + const uint8x16_t v15_1 = vec_splat(d1, 15); + + (void)above; + + H_PREDICTOR_32(v0_0); + H_PREDICTOR_32(v1_0); + H_PREDICTOR_32(v2_0); + H_PREDICTOR_32(v3_0); + + H_PREDICTOR_32(v4_0); + H_PREDICTOR_32(v5_0); + H_PREDICTOR_32(v6_0); + H_PREDICTOR_32(v7_0); + + H_PREDICTOR_32(v8_0); + H_PREDICTOR_32(v9_0); + H_PREDICTOR_32(v10_0); + H_PREDICTOR_32(v11_0); + + H_PREDICTOR_32(v12_0); + H_PREDICTOR_32(v13_0); + H_PREDICTOR_32(v14_0); + H_PREDICTOR_32(v15_0); + + H_PREDICTOR_32(v0_1); + H_PREDICTOR_32(v1_1); + H_PREDICTOR_32(v2_1); + H_PREDICTOR_32(v3_1); + + H_PREDICTOR_32(v4_1); + H_PREDICTOR_32(v5_1); + H_PREDICTOR_32(v6_1); + H_PREDICTOR_32(v7_1); + + H_PREDICTOR_32(v8_1); + H_PREDICTOR_32(v9_1); + H_PREDICTOR_32(v10_1); + H_PREDICTOR_32(v11_1); + + H_PREDICTOR_32(v12_1); + H_PREDICTOR_32(v13_1); + H_PREDICTOR_32(v14_1); + H_PREDICTOR_32(v15_1); +} + +void vpx_tm_predictor_4x4_vsx(uint8_t *dst, ptrdiff_t stride, + const uint8_t *above, const uint8_t *left) { + const int16x8_t tl = unpack_to_s16_h(vec_splat(vec_vsx_ld(-1, above), 0)); + const int16x8_t l = unpack_to_s16_h(vec_vsx_ld(0, left)); + const int16x8_t a = unpack_to_s16_h(vec_vsx_ld(0, above)); + int16x8_t tmp, val; + uint8x16_t d; + + d = vec_vsx_ld(0, dst); + tmp = unpack_to_s16_l(d); + val = vec_sub(vec_add(vec_splat(l, 0), a), tl); + vec_vsx_st(vec_sel(vec_packsu(val, tmp), d, (uint8x16_t)mask4), 0, dst); + dst += stride; + + d = vec_vsx_ld(0, dst); + tmp = unpack_to_s16_l(d); + val = vec_sub(vec_add(vec_splat(l, 1), a), tl); + vec_vsx_st(vec_sel(vec_packsu(val, tmp), d, (uint8x16_t)mask4), 0, dst); + dst += stride; + + d = vec_vsx_ld(0, dst); + tmp = unpack_to_s16_l(d); + val = vec_sub(vec_add(vec_splat(l, 2), a), tl); + vec_vsx_st(vec_sel(vec_packsu(val, tmp), d, (uint8x16_t)mask4), 0, dst); + dst += stride; + + d = vec_vsx_ld(0, dst); + tmp = unpack_to_s16_l(d); + val = vec_sub(vec_add(vec_splat(l, 3), a), tl); + vec_vsx_st(vec_sel(vec_packsu(val, tmp), d, (uint8x16_t)mask4), 0, dst); +} + +void vpx_tm_predictor_8x8_vsx(uint8_t *dst, ptrdiff_t stride, + const uint8_t *above, const uint8_t *left) { + const int16x8_t tl = unpack_to_s16_h(vec_splat(vec_vsx_ld(-1, above), 0)); + const int16x8_t l = unpack_to_s16_h(vec_vsx_ld(0, left)); + const int16x8_t a = unpack_to_s16_h(vec_vsx_ld(0, above)); + int16x8_t tmp, val; + + tmp = unpack_to_s16_l(vec_vsx_ld(0, dst)); + val = vec_sub(vec_add(vec_splat(l, 0), a), tl); + vec_vsx_st(vec_packsu(val, tmp), 0, dst); + dst += stride; + + tmp = unpack_to_s16_l(vec_vsx_ld(0, dst)); + val = vec_sub(vec_add(vec_splat(l, 1), a), tl); + vec_vsx_st(vec_packsu(val, tmp), 0, dst); + dst += stride; + + tmp = unpack_to_s16_l(vec_vsx_ld(0, dst)); + val = vec_sub(vec_add(vec_splat(l, 2), a), tl); + vec_vsx_st(vec_packsu(val, tmp), 0, dst); + dst += stride; + + tmp = unpack_to_s16_l(vec_vsx_ld(0, dst)); + val = vec_sub(vec_add(vec_splat(l, 3), a), tl); + vec_vsx_st(vec_packsu(val, tmp), 0, dst); + dst += stride; + + tmp = unpack_to_s16_l(vec_vsx_ld(0, dst)); + val = vec_sub(vec_add(vec_splat(l, 4), a), tl); + vec_vsx_st(vec_packsu(val, tmp), 0, dst); + dst += stride; + + tmp = unpack_to_s16_l(vec_vsx_ld(0, dst)); + val = vec_sub(vec_add(vec_splat(l, 5), a), tl); + vec_vsx_st(vec_packsu(val, tmp), 0, dst); + dst += stride; + + tmp = unpack_to_s16_l(vec_vsx_ld(0, dst)); + val = vec_sub(vec_add(vec_splat(l, 6), a), tl); + vec_vsx_st(vec_packsu(val, tmp), 0, dst); + dst += stride; + + tmp = unpack_to_s16_l(vec_vsx_ld(0, dst)); + val = vec_sub(vec_add(vec_splat(l, 7), a), tl); + vec_vsx_st(vec_packsu(val, tmp), 0, dst); +} + +static void tm_predictor_16x8(uint8_t *dst, const ptrdiff_t stride, int16x8_t l, + int16x8_t ah, int16x8_t al, int16x8_t tl) { + int16x8_t vh, vl, ls; + + ls = vec_splat(l, 0); + vh = vec_sub(vec_add(ls, ah), tl); + vl = vec_sub(vec_add(ls, al), tl); + vec_vsx_st(vec_packsu(vh, vl), 0, dst); + dst += stride; + + ls = vec_splat(l, 1); + vh = vec_sub(vec_add(ls, ah), tl); + vl = vec_sub(vec_add(ls, al), tl); + vec_vsx_st(vec_packsu(vh, vl), 0, dst); + dst += stride; + + ls = vec_splat(l, 2); + vh = vec_sub(vec_add(ls, ah), tl); + vl = vec_sub(vec_add(ls, al), tl); + vec_vsx_st(vec_packsu(vh, vl), 0, dst); + dst += stride; + + ls = vec_splat(l, 3); + vh = vec_sub(vec_add(ls, ah), tl); + vl = vec_sub(vec_add(ls, al), tl); + vec_vsx_st(vec_packsu(vh, vl), 0, dst); + dst += stride; + + ls = vec_splat(l, 4); + vh = vec_sub(vec_add(ls, ah), tl); + vl = vec_sub(vec_add(ls, al), tl); + vec_vsx_st(vec_packsu(vh, vl), 0, dst); + dst += stride; + + ls = vec_splat(l, 5); + vh = vec_sub(vec_add(ls, ah), tl); + vl = vec_sub(vec_add(ls, al), tl); + vec_vsx_st(vec_packsu(vh, vl), 0, dst); + dst += stride; + + ls = vec_splat(l, 6); + vh = vec_sub(vec_add(ls, ah), tl); + vl = vec_sub(vec_add(ls, al), tl); + vec_vsx_st(vec_packsu(vh, vl), 0, dst); + dst += stride; + + ls = vec_splat(l, 7); + vh = vec_sub(vec_add(ls, ah), tl); + vl = vec_sub(vec_add(ls, al), tl); + vec_vsx_st(vec_packsu(vh, vl), 0, dst); +} + +void vpx_tm_predictor_16x16_vsx(uint8_t *dst, ptrdiff_t stride, + const uint8_t *above, const uint8_t *left) { + const int16x8_t tl = unpack_to_s16_h(vec_splat(vec_vsx_ld(-1, above), 0)); + const uint8x16_t l = vec_vsx_ld(0, left); + const int16x8_t lh = unpack_to_s16_h(l); + const int16x8_t ll = unpack_to_s16_l(l); + const uint8x16_t a = vec_vsx_ld(0, above); + const int16x8_t ah = unpack_to_s16_h(a); + const int16x8_t al = unpack_to_s16_l(a); + + tm_predictor_16x8(dst, stride, lh, ah, al, tl); + + dst += stride * 8; + + tm_predictor_16x8(dst, stride, ll, ah, al, tl); +} + +static INLINE void tm_predictor_32x1(uint8_t *dst, const int16x8_t ls, + const int16x8_t a0h, const int16x8_t a0l, + const int16x8_t a1h, const int16x8_t a1l, + const int16x8_t tl) { + int16x8_t vh, vl; + + vh = vec_sub(vec_add(ls, a0h), tl); + vl = vec_sub(vec_add(ls, a0l), tl); + vec_vsx_st(vec_packsu(vh, vl), 0, dst); + vh = vec_sub(vec_add(ls, a1h), tl); + vl = vec_sub(vec_add(ls, a1l), tl); + vec_vsx_st(vec_packsu(vh, vl), 16, dst); +} + +static void tm_predictor_32x8(uint8_t *dst, const ptrdiff_t stride, + const int16x8_t l, const uint8x16_t a0, + const uint8x16_t a1, const int16x8_t tl) { + const int16x8_t a0h = unpack_to_s16_h(a0); + const int16x8_t a0l = unpack_to_s16_l(a0); + const int16x8_t a1h = unpack_to_s16_h(a1); + const int16x8_t a1l = unpack_to_s16_l(a1); + + tm_predictor_32x1(dst, vec_splat(l, 0), a0h, a0l, a1h, a1l, tl); + dst += stride; + + tm_predictor_32x1(dst, vec_splat(l, 1), a0h, a0l, a1h, a1l, tl); + dst += stride; + + tm_predictor_32x1(dst, vec_splat(l, 2), a0h, a0l, a1h, a1l, tl); + dst += stride; + + tm_predictor_32x1(dst, vec_splat(l, 3), a0h, a0l, a1h, a1l, tl); + dst += stride; + + tm_predictor_32x1(dst, vec_splat(l, 4), a0h, a0l, a1h, a1l, tl); + dst += stride; + + tm_predictor_32x1(dst, vec_splat(l, 5), a0h, a0l, a1h, a1l, tl); + dst += stride; + + tm_predictor_32x1(dst, vec_splat(l, 6), a0h, a0l, a1h, a1l, tl); + dst += stride; + + tm_predictor_32x1(dst, vec_splat(l, 7), a0h, a0l, a1h, a1l, tl); +} + +void vpx_tm_predictor_32x32_vsx(uint8_t *dst, ptrdiff_t stride, + const uint8_t *above, const uint8_t *left) { + const int16x8_t tl = unpack_to_s16_h(vec_splat(vec_vsx_ld(-1, above), 0)); + const uint8x16_t l0 = vec_vsx_ld(0, left); + const uint8x16_t l1 = vec_vsx_ld(16, left); + const uint8x16_t a0 = vec_vsx_ld(0, above); + const uint8x16_t a1 = vec_vsx_ld(16, above); + + tm_predictor_32x8(dst, stride, unpack_to_s16_h(l0), a0, a1, tl); + dst += stride * 8; + + tm_predictor_32x8(dst, stride, unpack_to_s16_l(l0), a0, a1, tl); + dst += stride * 8; + + tm_predictor_32x8(dst, stride, unpack_to_s16_h(l1), a0, a1, tl); + dst += stride * 8; + + tm_predictor_32x8(dst, stride, unpack_to_s16_l(l1), a0, a1, tl); +} + +static INLINE void dc_fill_predictor_8x8(uint8_t *dst, const ptrdiff_t stride, + const uint8x16_t val) { + int i; + + for (i = 0; i < 8; i++, dst += stride) { + const uint8x16_t d = vec_vsx_ld(0, dst); + vec_vsx_st(xxpermdi(val, d, 1), 0, dst); + } +} + +static INLINE void dc_fill_predictor_16x16(uint8_t *dst, const ptrdiff_t stride, + const uint8x16_t val) { + int i; + + for (i = 0; i < 16; i++, dst += stride) { + vec_vsx_st(val, 0, dst); + } +} + +void vpx_dc_128_predictor_16x16_vsx(uint8_t *dst, ptrdiff_t stride, + const uint8_t *above, const uint8_t *left) { + const uint8x16_t v128 = vec_sl(vec_splat_u8(1), vec_splat_u8(7)); + (void)above; + (void)left; + + dc_fill_predictor_16x16(dst, stride, v128); +} + +static INLINE void dc_fill_predictor_32x32(uint8_t *dst, const ptrdiff_t stride, + const uint8x16_t val) { + int i; + + for (i = 0; i < 32; i++, dst += stride) { + vec_vsx_st(val, 0, dst); + vec_vsx_st(val, 16, dst); + } +} + +void vpx_dc_128_predictor_32x32_vsx(uint8_t *dst, ptrdiff_t stride, + const uint8_t *above, const uint8_t *left) { + const uint8x16_t v128 = vec_sl(vec_splat_u8(1), vec_splat_u8(7)); + (void)above; + (void)left; + + dc_fill_predictor_32x32(dst, stride, v128); +} + +static uint8x16_t avg16(const uint8_t *values) { + const int32x4_t sum4s = + (int32x4_t)vec_sum4s(vec_vsx_ld(0, values), vec_splat_u32(0)); + const uint32x4_t sum = (uint32x4_t)vec_sums(sum4s, vec_splat_s32(8)); + const uint32x4_t avg = (uint32x4_t)vec_sr(sum, vec_splat_u32(4)); + + return vec_splat(vec_pack(vec_pack(avg, vec_splat_u32(0)), vec_splat_u16(0)), + 3); +} + +void vpx_dc_left_predictor_16x16_vsx(uint8_t *dst, ptrdiff_t stride, + const uint8_t *above, + const uint8_t *left) { + (void)above; + + dc_fill_predictor_16x16(dst, stride, avg16(left)); +} + +void vpx_dc_top_predictor_16x16_vsx(uint8_t *dst, ptrdiff_t stride, + const uint8_t *above, const uint8_t *left) { + (void)left; + + dc_fill_predictor_16x16(dst, stride, avg16(above)); +} + +static uint8x16_t avg32(const uint8_t *values) { + const uint8x16_t v0 = vec_vsx_ld(0, values); + const uint8x16_t v1 = vec_vsx_ld(16, values); + const int32x4_t v16 = vec_sl(vec_splat_s32(1), vec_splat_u32(4)); + const int32x4_t sum4s = + (int32x4_t)vec_sum4s(v0, vec_sum4s(v1, vec_splat_u32(0))); + const uint32x4_t sum = (uint32x4_t)vec_sums(sum4s, v16); + const uint32x4_t avg = (uint32x4_t)vec_sr(sum, vec_splat_u32(5)); + + return vec_splat(vec_pack(vec_pack(avg, vec_splat_u32(0)), vec_splat_u16(0)), + 3); +} + +void vpx_dc_left_predictor_32x32_vsx(uint8_t *dst, ptrdiff_t stride, + const uint8_t *above, + const uint8_t *left) { + (void)above; + + dc_fill_predictor_32x32(dst, stride, avg32(left)); +} + +void vpx_dc_top_predictor_32x32_vsx(uint8_t *dst, ptrdiff_t stride, + const uint8_t *above, const uint8_t *left) { + (void)left; + + dc_fill_predictor_32x32(dst, stride, avg32(above)); +} + +static uint8x16_t dc_avg8(const uint8_t *above, const uint8_t *left) { + const uint8x16_t a0 = vec_vsx_ld(0, above); + const uint8x16_t l0 = vec_vsx_ld(0, left); + const int32x4_t sum4s = + (int32x4_t)vec_sum4s(l0, vec_sum4s(a0, vec_splat_u32(0))); + const int32x4_t sum4s8 = xxpermdi(sum4s, vec_splat_s32(0), 1); + const uint32x4_t sum = (uint32x4_t)vec_sums(sum4s8, vec_splat_s32(8)); + const uint32x4_t avg = (uint32x4_t)vec_sr(sum, vec_splat_u32(4)); + + return vec_splat(vec_pack(vec_pack(avg, vec_splat_u32(0)), vec_splat_u16(0)), + 3); +} + +static uint8x16_t dc_avg16(const uint8_t *above, const uint8_t *left) { + const uint8x16_t a0 = vec_vsx_ld(0, above); + const uint8x16_t l0 = vec_vsx_ld(0, left); + const int32x4_t v16 = vec_sl(vec_splat_s32(1), vec_splat_u32(4)); + const int32x4_t sum4s = + (int32x4_t)vec_sum4s(l0, vec_sum4s(a0, vec_splat_u32(0))); + const uint32x4_t sum = (uint32x4_t)vec_sums(sum4s, v16); + const uint32x4_t avg = (uint32x4_t)vec_sr(sum, vec_splat_u32(5)); + + return vec_splat(vec_pack(vec_pack(avg, vec_splat_u32(0)), vec_splat_u16(0)), + 3); +} + +void vpx_dc_predictor_8x8_vsx(uint8_t *dst, ptrdiff_t stride, + const uint8_t *above, const uint8_t *left) { + dc_fill_predictor_8x8(dst, stride, dc_avg8(above, left)); +} + +void vpx_dc_predictor_16x16_vsx(uint8_t *dst, ptrdiff_t stride, + const uint8_t *above, const uint8_t *left) { + dc_fill_predictor_16x16(dst, stride, dc_avg16(above, left)); +} + +static uint8x16_t dc_avg32(const uint8_t *above, const uint8_t *left) { + const uint8x16_t a0 = vec_vsx_ld(0, above); + const uint8x16_t a1 = vec_vsx_ld(16, above); + const uint8x16_t l0 = vec_vsx_ld(0, left); + const uint8x16_t l1 = vec_vsx_ld(16, left); + const int32x4_t v32 = vec_sl(vec_splat_s32(1), vec_splat_u32(5)); + const uint32x4_t a_sum = vec_sum4s(a0, vec_sum4s(a1, vec_splat_u32(0))); + const int32x4_t sum4s = (int32x4_t)vec_sum4s(l0, vec_sum4s(l1, a_sum)); + const uint32x4_t sum = (uint32x4_t)vec_sums(sum4s, v32); + const uint32x4_t avg = (uint32x4_t)vec_sr(sum, vec_splat_u32(6)); + + return vec_splat(vec_pack(vec_pack(avg, vec_splat_u32(0)), vec_splat_u16(0)), + 3); +} + +void vpx_dc_predictor_32x32_vsx(uint8_t *dst, ptrdiff_t stride, + const uint8_t *above, const uint8_t *left) { + dc_fill_predictor_32x32(dst, stride, dc_avg32(above, left)); +} + +static uint8x16_t avg3(const uint8x16_t a, const uint8x16_t b, + const uint8x16_t c) { + const uint8x16_t ac = + vec_adds(vec_and(a, c), vec_sr(vec_xor(a, c), vec_splat_u8(1))); + + return vec_avg(ac, b); +} + +// Workaround vec_sld/vec_xxsldi/vec_lsdoi being missing or broken. +static const uint8x16_t sl1 = { 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8, + 0x9, 0xA, 0xB, 0xC, 0xD, 0xE, 0xF, 0x10 }; + +void vpx_d45_predictor_8x8_vsx(uint8_t *dst, ptrdiff_t stride, + const uint8_t *above, const uint8_t *left) { + const uint8x16_t af = vec_vsx_ld(0, above); + const uint8x16_t above_right = vec_splat(af, 7); + const uint8x16_t a = xxpermdi(af, above_right, 1); + const uint8x16_t b = vec_perm(a, above_right, sl1); + const uint8x16_t c = vec_perm(b, above_right, sl1); + uint8x16_t row = avg3(a, b, c); + int i; + (void)left; + + for (i = 0; i < 8; i++) { + const uint8x16_t d = vec_vsx_ld(0, dst); + vec_vsx_st(xxpermdi(row, d, 1), 0, dst); + dst += stride; + row = vec_perm(row, above_right, sl1); + } +} + +void vpx_d45_predictor_16x16_vsx(uint8_t *dst, ptrdiff_t stride, + const uint8_t *above, const uint8_t *left) { + const uint8x16_t a = vec_vsx_ld(0, above); + const uint8x16_t above_right = vec_splat(a, 15); + const uint8x16_t b = vec_perm(a, above_right, sl1); + const uint8x16_t c = vec_perm(b, above_right, sl1); + uint8x16_t row = avg3(a, b, c); + int i; + (void)left; + + for (i = 0; i < 16; i++) { + vec_vsx_st(row, 0, dst); + dst += stride; + row = vec_perm(row, above_right, sl1); + } +} + +void vpx_d45_predictor_32x32_vsx(uint8_t *dst, ptrdiff_t stride, + const uint8_t *above, const uint8_t *left) { + const uint8x16_t a0 = vec_vsx_ld(0, above); + const uint8x16_t a1 = vec_vsx_ld(16, above); + const uint8x16_t above_right = vec_splat(a1, 15); + const uint8x16_t b0 = vec_perm(a0, a1, sl1); + const uint8x16_t b1 = vec_perm(a1, above_right, sl1); + const uint8x16_t c0 = vec_perm(b0, b1, sl1); + const uint8x16_t c1 = vec_perm(b1, above_right, sl1); + uint8x16_t row0 = avg3(a0, b0, c0); + uint8x16_t row1 = avg3(a1, b1, c1); + int i; + (void)left; + + for (i = 0; i < 32; i++) { + vec_vsx_st(row0, 0, dst); + vec_vsx_st(row1, 16, dst); + dst += stride; + row0 = vec_perm(row0, row1, sl1); + row1 = vec_perm(row1, above_right, sl1); + } +} + +void vpx_d63_predictor_8x8_vsx(uint8_t *dst, ptrdiff_t stride, + const uint8_t *above, const uint8_t *left) { + const uint8x16_t af = vec_vsx_ld(0, above); + const uint8x16_t above_right = vec_splat(af, 9); + const uint8x16_t a = xxpermdi(af, above_right, 1); + const uint8x16_t b = vec_perm(a, above_right, sl1); + const uint8x16_t c = vec_perm(b, above_right, sl1); + uint8x16_t row0 = vec_avg(a, b); + uint8x16_t row1 = avg3(a, b, c); + int i; + (void)left; + + for (i = 0; i < 4; i++) { + const uint8x16_t d0 = vec_vsx_ld(0, dst); + const uint8x16_t d1 = vec_vsx_ld(0, dst + stride); + vec_vsx_st(xxpermdi(row0, d0, 1), 0, dst); + vec_vsx_st(xxpermdi(row1, d1, 1), 0, dst + stride); + dst += stride * 2; + row0 = vec_perm(row0, above_right, sl1); + row1 = vec_perm(row1, above_right, sl1); + } +} + +void vpx_d63_predictor_16x16_vsx(uint8_t *dst, ptrdiff_t stride, + const uint8_t *above, const uint8_t *left) { + const uint8x16_t a0 = vec_vsx_ld(0, above); + const uint8x16_t a1 = vec_vsx_ld(16, above); + const uint8x16_t above_right = vec_splat(a1, 0); + const uint8x16_t b = vec_perm(a0, above_right, sl1); + const uint8x16_t c = vec_perm(b, above_right, sl1); + uint8x16_t row0 = vec_avg(a0, b); + uint8x16_t row1 = avg3(a0, b, c); + int i; + (void)left; + + for (i = 0; i < 8; i++) { + vec_vsx_st(row0, 0, dst); + vec_vsx_st(row1, 0, dst + stride); + dst += stride * 2; + row0 = vec_perm(row0, above_right, sl1); + row1 = vec_perm(row1, above_right, sl1); + } +} + +void vpx_d63_predictor_32x32_vsx(uint8_t *dst, ptrdiff_t stride, + const uint8_t *above, const uint8_t *left) { + const uint8x16_t a0 = vec_vsx_ld(0, above); + const uint8x16_t a1 = vec_vsx_ld(16, above); + const uint8x16_t a2 = vec_vsx_ld(32, above); + const uint8x16_t above_right = vec_splat(a2, 0); + const uint8x16_t b0 = vec_perm(a0, a1, sl1); + const uint8x16_t b1 = vec_perm(a1, above_right, sl1); + const uint8x16_t c0 = vec_perm(b0, b1, sl1); + const uint8x16_t c1 = vec_perm(b1, above_right, sl1); + uint8x16_t row0_0 = vec_avg(a0, b0); + uint8x16_t row0_1 = vec_avg(a1, b1); + uint8x16_t row1_0 = avg3(a0, b0, c0); + uint8x16_t row1_1 = avg3(a1, b1, c1); + int i; + (void)left; + + for (i = 0; i < 16; i++) { + vec_vsx_st(row0_0, 0, dst); + vec_vsx_st(row0_1, 16, dst); + vec_vsx_st(row1_0, 0, dst + stride); + vec_vsx_st(row1_1, 16, dst + stride); + dst += stride * 2; + row0_0 = vec_perm(row0_0, row0_1, sl1); + row0_1 = vec_perm(row0_1, above_right, sl1); + row1_0 = vec_perm(row1_0, row1_1, sl1); + row1_1 = vec_perm(row1_1, above_right, sl1); + } +} diff --git a/vpx_dsp/ppc/inv_txfm_vsx.c b/vpx_dsp/ppc/inv_txfm_vsx.c new file mode 100644 index 0000000..d43a9fd --- /dev/null +++ b/vpx_dsp/ppc/inv_txfm_vsx.c @@ -0,0 +1,1063 @@ +/* + * Copyright (c) 2015 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include +#include + +#include "vpx_dsp/ppc/bitdepth_conversion_vsx.h" +#include "vpx_dsp/ppc/types_vsx.h" + +#include "./vpx_dsp_rtcd.h" +#include "vpx_dsp/inv_txfm.h" + +static int16x8_t cospi1_v = { 16364, 16364, 16364, 16364, + 16364, 16364, 16364, 16364 }; +static int16x8_t cospi2_v = { 16305, 16305, 16305, 16305, + 16305, 16305, 16305, 16305 }; +static int16x8_t cospi3_v = { 16207, 16207, 16207, 16207, + 16207, 16207, 16207, 16207 }; +static int16x8_t cospi4_v = { 16069, 16069, 16069, 16069, + 16069, 16069, 16069, 16069 }; +static int16x8_t cospi4m_v = { -16069, -16069, -16069, -16069, + -16069, -16069, -16069, -16069 }; +static int16x8_t cospi5_v = { 15893, 15893, 15893, 15893, + 15893, 15893, 15893, 15893 }; +static int16x8_t cospi6_v = { 15679, 15679, 15679, 15679, + 15679, 15679, 15679, 15679 }; +static int16x8_t cospi7_v = { 15426, 15426, 15426, 15426, + 15426, 15426, 15426, 15426 }; +static int16x8_t cospi8_v = { 15137, 15137, 15137, 15137, + 15137, 15137, 15137, 15137 }; +static int16x8_t cospi8m_v = { -15137, -15137, -15137, -15137, + -15137, -15137, -15137, -15137 }; +static int16x8_t cospi9_v = { 14811, 14811, 14811, 14811, + 14811, 14811, 14811, 14811 }; +static int16x8_t cospi10_v = { 14449, 14449, 14449, 14449, + 14449, 14449, 14449, 14449 }; +static int16x8_t cospi11_v = { 14053, 14053, 14053, 14053, + 14053, 14053, 14053, 14053 }; +static int16x8_t cospi12_v = { 13623, 13623, 13623, 13623, + 13623, 13623, 13623, 13623 }; +static int16x8_t cospi13_v = { 13160, 13160, 13160, 13160, + 13160, 13160, 13160, 13160 }; +static int16x8_t cospi14_v = { 12665, 12665, 12665, 12665, + 12665, 12665, 12665, 12665 }; +static int16x8_t cospi15_v = { 12140, 12140, 12140, 12140, + 12140, 12140, 12140, 12140 }; +static int16x8_t cospi16_v = { 11585, 11585, 11585, 11585, + 11585, 11585, 11585, 11585 }; +static int16x8_t cospi17_v = { 11003, 11003, 11003, 11003, + 11003, 11003, 11003, 11003 }; +static int16x8_t cospi18_v = { 10394, 10394, 10394, 10394, + 10394, 10394, 10394, 10394 }; +static int16x8_t cospi19_v = { 9760, 9760, 9760, 9760, 9760, 9760, 9760, 9760 }; +static int16x8_t cospi20_v = { 9102, 9102, 9102, 9102, 9102, 9102, 9102, 9102 }; +static int16x8_t cospi20m_v = { -9102, -9102, -9102, -9102, + -9102, -9102, -9102, -9102 }; +static int16x8_t cospi21_v = { 8423, 8423, 8423, 8423, 8423, 8423, 8423, 8423 }; +static int16x8_t cospi22_v = { 7723, 7723, 7723, 7723, 7723, 7723, 7723, 7723 }; +static int16x8_t cospi23_v = { 7005, 7005, 7005, 7005, 7005, 7005, 7005, 7005 }; +static int16x8_t cospi24_v = { 6270, 6270, 6270, 6270, 6270, 6270, 6270, 6270 }; +static int16x8_t cospi24_mv = { -6270, -6270, -6270, -6270, + -6270, -6270, -6270, -6270 }; +static int16x8_t cospi25_v = { 5520, 5520, 5520, 5520, 5520, 5520, 5520, 5520 }; +static int16x8_t cospi26_v = { 4756, 4756, 4756, 4756, 4756, 4756, 4756, 4756 }; +static int16x8_t cospi27_v = { 3981, 3981, 3981, 3981, 3981, 3981, 3981, 3981 }; +static int16x8_t cospi28_v = { 3196, 3196, 3196, 3196, 3196, 3196, 3196, 3196 }; +static int16x8_t cospi29_v = { 2404, 2404, 2404, 2404, 2404, 2404, 2404, 2404 }; +static int16x8_t cospi30_v = { 1606, 1606, 1606, 1606, 1606, 1606, 1606, 1606 }; +static int16x8_t cospi31_v = { 804, 804, 804, 804, 804, 804, 804, 804 }; + +#define ROUND_SHIFT_INIT \ + const int32x4_t shift = vec_sl(vec_splat_s32(1), vec_splat_u32(13)); \ + const uint32x4_t shift14 = vec_splat_u32(14); + +#define DCT_CONST_ROUND_SHIFT(vec) vec = vec_sra(vec_add(vec, shift), shift14); + +#define PIXEL_ADD_INIT \ + int16x8_t add8 = vec_splat_s16(8); \ + uint16x8_t shift4 = vec_splat_u16(4); + +#define PIXEL_ADD4(out, in) out = vec_sra(vec_add(in, add8), shift4); + +#define IDCT4(in0, in1, out0, out1) \ + t0 = vec_add(in0, in1); \ + t1 = vec_sub(in0, in1); \ + tmp16_0 = vec_mergeh(t0, t1); \ + temp1 = vec_sra(vec_add(vec_mule(tmp16_0, cospi16_v), shift), shift14); \ + temp2 = vec_sra(vec_add(vec_mulo(tmp16_0, cospi16_v), shift), shift14); \ + \ + tmp16_0 = vec_mergel(in0, in1); \ + temp3 = vec_sub(vec_mule(tmp16_0, cospi24_v), vec_mulo(tmp16_0, cospi8_v)); \ + DCT_CONST_ROUND_SHIFT(temp3); \ + temp4 = vec_add(vec_mule(tmp16_0, cospi8_v), vec_mulo(tmp16_0, cospi24_v)); \ + DCT_CONST_ROUND_SHIFT(temp4); \ + \ + step0 = vec_packs(temp1, temp2); \ + step1 = vec_packs(temp4, temp3); \ + out0 = vec_add(step0, step1); \ + out1 = vec_sub(step0, step1); \ + out1 = vec_perm(out1, out1, mask0); + +void vpx_idct4x4_16_add_vsx(const tran_low_t *input, uint8_t *dest, + int stride) { + int32x4_t temp1, temp2, temp3, temp4; + int16x8_t step0, step1, tmp16_0, tmp16_1, t_out0, t_out1; + uint8x16_t mask0 = { 0x8, 0x9, 0xA, 0xB, 0xC, 0xD, 0xE, 0xF, + 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7 }; + uint8x16_t mask1 = { 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, + 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17 }; + int16x8_t v0 = load_tran_low(0, input); + int16x8_t v1 = load_tran_low(8 * sizeof(*input), input); + int16x8_t t0 = vec_mergeh(v0, v1); + int16x8_t t1 = vec_mergel(v0, v1); + + uint8x16_t dest0 = vec_vsx_ld(0, dest); + uint8x16_t dest1 = vec_vsx_ld(stride, dest); + uint8x16_t dest2 = vec_vsx_ld(2 * stride, dest); + uint8x16_t dest3 = vec_vsx_ld(3 * stride, dest); + uint8x16_t zerov = vec_splat_u8(0); + int16x8_t d_u0 = (int16x8_t)vec_mergeh(dest0, zerov); + int16x8_t d_u1 = (int16x8_t)vec_mergeh(dest1, zerov); + int16x8_t d_u2 = (int16x8_t)vec_mergeh(dest2, zerov); + int16x8_t d_u3 = (int16x8_t)vec_mergeh(dest3, zerov); + uint8x16_t output_v; + uint8_t tmp_dest[16]; + ROUND_SHIFT_INIT + PIXEL_ADD_INIT; + + v0 = vec_mergeh(t0, t1); + v1 = vec_mergel(t0, t1); + + IDCT4(v0, v1, t_out0, t_out1); + // transpose + t0 = vec_mergeh(t_out0, t_out1); + t1 = vec_mergel(t_out0, t_out1); + v0 = vec_mergeh(t0, t1); + v1 = vec_mergel(t0, t1); + IDCT4(v0, v1, t_out0, t_out1); + + PIXEL_ADD4(v0, t_out0); + PIXEL_ADD4(v1, t_out1); + tmp16_0 = vec_add(vec_perm(d_u0, d_u1, mask1), v0); + tmp16_1 = vec_add(vec_perm(d_u2, d_u3, mask1), v1); + output_v = vec_packsu(tmp16_0, tmp16_1); + + vec_vsx_st(output_v, 0, tmp_dest); + for (int i = 0; i < 4; i++) + for (int j = 0; j < 4; j++) dest[j * stride + i] = tmp_dest[j * 4 + i]; +} + +#define TRANSPOSE8x8(in0, in1, in2, in3, in4, in5, in6, in7, out0, out1, out2, \ + out3, out4, out5, out6, out7) \ + out0 = vec_mergeh(in0, in1); \ + out1 = vec_mergel(in0, in1); \ + out2 = vec_mergeh(in2, in3); \ + out3 = vec_mergel(in2, in3); \ + out4 = vec_mergeh(in4, in5); \ + out5 = vec_mergel(in4, in5); \ + out6 = vec_mergeh(in6, in7); \ + out7 = vec_mergel(in6, in7); \ + in0 = (int16x8_t)vec_mergeh((int32x4_t)out0, (int32x4_t)out2); \ + in1 = (int16x8_t)vec_mergel((int32x4_t)out0, (int32x4_t)out2); \ + in2 = (int16x8_t)vec_mergeh((int32x4_t)out1, (int32x4_t)out3); \ + in3 = (int16x8_t)vec_mergel((int32x4_t)out1, (int32x4_t)out3); \ + in4 = (int16x8_t)vec_mergeh((int32x4_t)out4, (int32x4_t)out6); \ + in5 = (int16x8_t)vec_mergel((int32x4_t)out4, (int32x4_t)out6); \ + in6 = (int16x8_t)vec_mergeh((int32x4_t)out5, (int32x4_t)out7); \ + in7 = (int16x8_t)vec_mergel((int32x4_t)out5, (int32x4_t)out7); \ + out0 = vec_perm(in0, in4, tr8_mask0); \ + out1 = vec_perm(in0, in4, tr8_mask1); \ + out2 = vec_perm(in1, in5, tr8_mask0); \ + out3 = vec_perm(in1, in5, tr8_mask1); \ + out4 = vec_perm(in2, in6, tr8_mask0); \ + out5 = vec_perm(in2, in6, tr8_mask1); \ + out6 = vec_perm(in3, in7, tr8_mask0); \ + out7 = vec_perm(in3, in7, tr8_mask1); + +/* for the: temp1 = step[x] * cospi_q - step[y] * cospi_z + * temp2 = step[x] * cospi_z + step[y] * cospi_q */ +#define STEP8_0(inpt0, inpt1, outpt0, outpt1, cospi0, cospi1) \ + tmp16_0 = vec_mergeh(inpt0, inpt1); \ + tmp16_1 = vec_mergel(inpt0, inpt1); \ + temp10 = vec_sub(vec_mule(tmp16_0, cospi0), vec_mulo(tmp16_0, cospi1)); \ + temp11 = vec_sub(vec_mule(tmp16_1, cospi0), vec_mulo(tmp16_1, cospi1)); \ + DCT_CONST_ROUND_SHIFT(temp10); \ + DCT_CONST_ROUND_SHIFT(temp11); \ + outpt0 = vec_packs(temp10, temp11); \ + temp10 = vec_add(vec_mule(tmp16_0, cospi1), vec_mulo(tmp16_0, cospi0)); \ + temp11 = vec_add(vec_mule(tmp16_1, cospi1), vec_mulo(tmp16_1, cospi0)); \ + DCT_CONST_ROUND_SHIFT(temp10); \ + DCT_CONST_ROUND_SHIFT(temp11); \ + outpt1 = vec_packs(temp10, temp11); + +#define STEP8_1(inpt0, inpt1, outpt0, outpt1, cospi) \ + tmp16_2 = vec_sub(inpt0, inpt1); \ + tmp16_3 = vec_add(inpt0, inpt1); \ + tmp16_0 = vec_mergeh(tmp16_2, tmp16_3); \ + tmp16_1 = vec_mergel(tmp16_2, tmp16_3); \ + temp10 = vec_mule(tmp16_0, cospi); \ + temp11 = vec_mule(tmp16_1, cospi); \ + DCT_CONST_ROUND_SHIFT(temp10); \ + DCT_CONST_ROUND_SHIFT(temp11); \ + outpt0 = vec_packs(temp10, temp11); \ + temp10 = vec_mulo(tmp16_0, cospi); \ + temp11 = vec_mulo(tmp16_1, cospi); \ + DCT_CONST_ROUND_SHIFT(temp10); \ + DCT_CONST_ROUND_SHIFT(temp11); \ + outpt1 = vec_packs(temp10, temp11); + +#define IDCT8(in0, in1, in2, in3, in4, in5, in6, in7) \ + /* stage 1 */ \ + step0 = in0; \ + step2 = in4; \ + step1 = in2; \ + step3 = in6; \ + \ + STEP8_0(in1, in7, step4, step7, cospi28_v, cospi4_v); \ + STEP8_0(in5, in3, step5, step6, cospi12_v, cospi20_v); \ + \ + /* stage 2 */ \ + STEP8_1(step0, step2, in1, in0, cospi16_v); \ + STEP8_0(step1, step3, in2, in3, cospi24_v, cospi8_v); \ + in4 = vec_add(step4, step5); \ + in5 = vec_sub(step4, step5); \ + in6 = vec_sub(step7, step6); \ + in7 = vec_add(step6, step7); \ + \ + /* stage 3 */ \ + step0 = vec_add(in0, in3); \ + step1 = vec_add(in1, in2); \ + step2 = vec_sub(in1, in2); \ + step3 = vec_sub(in0, in3); \ + step4 = in4; \ + STEP8_1(in6, in5, step5, step6, cospi16_v); \ + step7 = in7; \ + \ + /* stage 4 */ \ + in0 = vec_add(step0, step7); \ + in1 = vec_add(step1, step6); \ + in2 = vec_add(step2, step5); \ + in3 = vec_add(step3, step4); \ + in4 = vec_sub(step3, step4); \ + in5 = vec_sub(step2, step5); \ + in6 = vec_sub(step1, step6); \ + in7 = vec_sub(step0, step7); + +#define PIXEL_ADD(in, out, add, shiftx) \ + out = vec_add(vec_sra(vec_add(in, add), shiftx), out); + +static uint8x16_t tr8_mask0 = { + 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, + 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17 +}; +static uint8x16_t tr8_mask1 = { + 0x8, 0x9, 0xA, 0xB, 0xC, 0xD, 0xE, 0xF, + 0x18, 0x19, 0x1A, 0x1B, 0x1C, 0x1D, 0x1E, 0x1F +}; +void vpx_idct8x8_64_add_vsx(const tran_low_t *input, uint8_t *dest, + int stride) { + int32x4_t temp10, temp11; + int16x8_t step0, step1, step2, step3, step4, step5, step6, step7; + int16x8_t tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7, tmp16_0, tmp16_1, + tmp16_2, tmp16_3; + int16x8_t src0 = load_tran_low(0, input); + int16x8_t src1 = load_tran_low(8 * sizeof(*input), input); + int16x8_t src2 = load_tran_low(16 * sizeof(*input), input); + int16x8_t src3 = load_tran_low(24 * sizeof(*input), input); + int16x8_t src4 = load_tran_low(32 * sizeof(*input), input); + int16x8_t src5 = load_tran_low(40 * sizeof(*input), input); + int16x8_t src6 = load_tran_low(48 * sizeof(*input), input); + int16x8_t src7 = load_tran_low(56 * sizeof(*input), input); + uint8x16_t dest0 = vec_vsx_ld(0, dest); + uint8x16_t dest1 = vec_vsx_ld(stride, dest); + uint8x16_t dest2 = vec_vsx_ld(2 * stride, dest); + uint8x16_t dest3 = vec_vsx_ld(3 * stride, dest); + uint8x16_t dest4 = vec_vsx_ld(4 * stride, dest); + uint8x16_t dest5 = vec_vsx_ld(5 * stride, dest); + uint8x16_t dest6 = vec_vsx_ld(6 * stride, dest); + uint8x16_t dest7 = vec_vsx_ld(7 * stride, dest); + uint8x16_t zerov = vec_splat_u8(0); + int16x8_t d_u0 = (int16x8_t)vec_mergeh(dest0, zerov); + int16x8_t d_u1 = (int16x8_t)vec_mergeh(dest1, zerov); + int16x8_t d_u2 = (int16x8_t)vec_mergeh(dest2, zerov); + int16x8_t d_u3 = (int16x8_t)vec_mergeh(dest3, zerov); + int16x8_t d_u4 = (int16x8_t)vec_mergeh(dest4, zerov); + int16x8_t d_u5 = (int16x8_t)vec_mergeh(dest5, zerov); + int16x8_t d_u6 = (int16x8_t)vec_mergeh(dest6, zerov); + int16x8_t d_u7 = (int16x8_t)vec_mergeh(dest7, zerov); + int16x8_t add = vec_sl(vec_splat_s16(8), vec_splat_u16(1)); + uint16x8_t shift5 = vec_splat_u16(5); + uint8x16_t output0, output1, output2, output3; + ROUND_SHIFT_INIT; + + TRANSPOSE8x8(src0, src1, src2, src3, src4, src5, src6, src7, tmp0, tmp1, tmp2, + tmp3, tmp4, tmp5, tmp6, tmp7); + + IDCT8(tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7); + TRANSPOSE8x8(tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7, src0, src1, src2, + src3, src4, src5, src6, src7); + IDCT8(src0, src1, src2, src3, src4, src5, src6, src7); + PIXEL_ADD(src0, d_u0, add, shift5); + PIXEL_ADD(src1, d_u1, add, shift5); + PIXEL_ADD(src2, d_u2, add, shift5); + PIXEL_ADD(src3, d_u3, add, shift5); + PIXEL_ADD(src4, d_u4, add, shift5); + PIXEL_ADD(src5, d_u5, add, shift5); + PIXEL_ADD(src6, d_u6, add, shift5); + PIXEL_ADD(src7, d_u7, add, shift5); + output0 = vec_packsu(d_u0, d_u1); + output1 = vec_packsu(d_u2, d_u3); + output2 = vec_packsu(d_u4, d_u5); + output3 = vec_packsu(d_u6, d_u7); + + vec_vsx_st(xxpermdi(output0, dest0, 1), 0, dest); + vec_vsx_st(xxpermdi(output0, dest1, 3), stride, dest); + vec_vsx_st(xxpermdi(output1, dest2, 1), 2 * stride, dest); + vec_vsx_st(xxpermdi(output1, dest3, 3), 3 * stride, dest); + vec_vsx_st(xxpermdi(output2, dest4, 1), 4 * stride, dest); + vec_vsx_st(xxpermdi(output2, dest5, 3), 5 * stride, dest); + vec_vsx_st(xxpermdi(output3, dest6, 1), 6 * stride, dest); + vec_vsx_st(xxpermdi(output3, dest7, 3), 7 * stride, dest); +} + +#define LOAD_INPUT16(load, source, offset, step, in0, in1, in2, in3, in4, in5, \ + in6, in7, in8, in9, inA, inB, inC, inD, inE, inF) \ + in0 = load(offset, source); \ + in1 = load((step) + (offset), source); \ + in2 = load(2 * (step) + (offset), source); \ + in3 = load(3 * (step) + (offset), source); \ + in4 = load(4 * (step) + (offset), source); \ + in5 = load(5 * (step) + (offset), source); \ + in6 = load(6 * (step) + (offset), source); \ + in7 = load(7 * (step) + (offset), source); \ + in8 = load(8 * (step) + (offset), source); \ + in9 = load(9 * (step) + (offset), source); \ + inA = load(10 * (step) + (offset), source); \ + inB = load(11 * (step) + (offset), source); \ + inC = load(12 * (step) + (offset), source); \ + inD = load(13 * (step) + (offset), source); \ + inE = load(14 * (step) + (offset), source); \ + inF = load(15 * (step) + (offset), source); + +#define STEP16_1(inpt0, inpt1, outpt0, outpt1, cospi) \ + tmp16_0 = vec_mergeh(inpt0, inpt1); \ + tmp16_1 = vec_mergel(inpt0, inpt1); \ + temp10 = vec_mule(tmp16_0, cospi); \ + temp11 = vec_mule(tmp16_1, cospi); \ + temp20 = vec_mulo(tmp16_0, cospi); \ + temp21 = vec_mulo(tmp16_1, cospi); \ + temp30 = vec_sub(temp10, temp20); \ + temp10 = vec_add(temp10, temp20); \ + temp20 = vec_sub(temp11, temp21); \ + temp21 = vec_add(temp11, temp21); \ + DCT_CONST_ROUND_SHIFT(temp30); \ + DCT_CONST_ROUND_SHIFT(temp20); \ + outpt0 = vec_packs(temp30, temp20); \ + DCT_CONST_ROUND_SHIFT(temp10); \ + DCT_CONST_ROUND_SHIFT(temp21); \ + outpt1 = vec_packs(temp10, temp21); + +#define IDCT16(in0, in1, in2, in3, in4, in5, in6, in7, in8, in9, inA, inB, \ + inC, inD, inE, inF, out0, out1, out2, out3, out4, out5, out6, \ + out7, out8, out9, outA, outB, outC, outD, outE, outF) \ + /* stage 1 */ \ + /* out0 = in0; */ \ + out1 = in8; \ + out2 = in4; \ + out3 = inC; \ + out4 = in2; \ + out5 = inA; \ + out6 = in6; \ + out7 = inE; \ + out8 = in1; \ + out9 = in9; \ + outA = in5; \ + outB = inD; \ + outC = in3; \ + outD = inB; \ + outE = in7; \ + outF = inF; \ + \ + /* stage 2 */ \ + /* in0 = out0; */ \ + in1 = out1; \ + in2 = out2; \ + in3 = out3; \ + in4 = out4; \ + in5 = out5; \ + in6 = out6; \ + in7 = out7; \ + \ + STEP8_0(out8, outF, in8, inF, cospi30_v, cospi2_v); \ + STEP8_0(out9, outE, in9, inE, cospi14_v, cospi18_v); \ + STEP8_0(outA, outD, inA, inD, cospi22_v, cospi10_v); \ + STEP8_0(outB, outC, inB, inC, cospi6_v, cospi26_v); \ + \ + /* stage 3 */ \ + out0 = in0; \ + out1 = in1; \ + out2 = in2; \ + out3 = in3; \ + \ + STEP8_0(in4, in7, out4, out7, cospi28_v, cospi4_v); \ + STEP8_0(in5, in6, out5, out6, cospi12_v, cospi20_v); \ + \ + out8 = vec_add(in8, in9); \ + out9 = vec_sub(in8, in9); \ + outA = vec_sub(inB, inA); \ + outB = vec_add(inA, inB); \ + outC = vec_add(inC, inD); \ + outD = vec_sub(inC, inD); \ + outE = vec_sub(inF, inE); \ + outF = vec_add(inE, inF); \ + \ + /* stage 4 */ \ + STEP16_1(out0, out1, in1, in0, cospi16_v); \ + STEP8_0(out2, out3, in2, in3, cospi24_v, cospi8_v); \ + in4 = vec_add(out4, out5); \ + in5 = vec_sub(out4, out5); \ + in6 = vec_sub(out7, out6); \ + in7 = vec_add(out6, out7); \ + \ + in8 = out8; \ + inF = outF; \ + tmp16_0 = vec_mergeh(out9, outE); \ + tmp16_1 = vec_mergel(out9, outE); \ + temp10 = vec_sub(vec_mulo(tmp16_0, cospi24_v), vec_mule(tmp16_0, cospi8_v)); \ + temp11 = vec_sub(vec_mulo(tmp16_1, cospi24_v), vec_mule(tmp16_1, cospi8_v)); \ + DCT_CONST_ROUND_SHIFT(temp10); \ + DCT_CONST_ROUND_SHIFT(temp11); \ + in9 = vec_packs(temp10, temp11); \ + temp10 = vec_add(vec_mule(tmp16_0, cospi24_v), vec_mulo(tmp16_0, cospi8_v)); \ + temp11 = vec_add(vec_mule(tmp16_1, cospi24_v), vec_mulo(tmp16_1, cospi8_v)); \ + DCT_CONST_ROUND_SHIFT(temp10); \ + DCT_CONST_ROUND_SHIFT(temp11); \ + inE = vec_packs(temp10, temp11); \ + \ + tmp16_0 = vec_mergeh(outA, outD); \ + tmp16_1 = vec_mergel(outA, outD); \ + temp10 = \ + vec_sub(vec_mule(tmp16_0, cospi24_mv), vec_mulo(tmp16_0, cospi8_v)); \ + temp11 = \ + vec_sub(vec_mule(tmp16_1, cospi24_mv), vec_mulo(tmp16_1, cospi8_v)); \ + DCT_CONST_ROUND_SHIFT(temp10); \ + DCT_CONST_ROUND_SHIFT(temp11); \ + inA = vec_packs(temp10, temp11); \ + temp10 = vec_sub(vec_mulo(tmp16_0, cospi24_v), vec_mule(tmp16_0, cospi8_v)); \ + temp11 = vec_sub(vec_mulo(tmp16_1, cospi24_v), vec_mule(tmp16_1, cospi8_v)); \ + DCT_CONST_ROUND_SHIFT(temp10); \ + DCT_CONST_ROUND_SHIFT(temp11); \ + inD = vec_packs(temp10, temp11); \ + \ + inB = outB; \ + inC = outC; \ + \ + /* stage 5 */ \ + out0 = vec_add(in0, in3); \ + out1 = vec_add(in1, in2); \ + out2 = vec_sub(in1, in2); \ + out3 = vec_sub(in0, in3); \ + out4 = in4; \ + STEP16_1(in6, in5, out5, out6, cospi16_v); \ + out7 = in7; \ + \ + out8 = vec_add(in8, inB); \ + out9 = vec_add(in9, inA); \ + outA = vec_sub(in9, inA); \ + outB = vec_sub(in8, inB); \ + outC = vec_sub(inF, inC); \ + outD = vec_sub(inE, inD); \ + outE = vec_add(inD, inE); \ + outF = vec_add(inC, inF); \ + \ + /* stage 6 */ \ + in0 = vec_add(out0, out7); \ + in1 = vec_add(out1, out6); \ + in2 = vec_add(out2, out5); \ + in3 = vec_add(out3, out4); \ + in4 = vec_sub(out3, out4); \ + in5 = vec_sub(out2, out5); \ + in6 = vec_sub(out1, out6); \ + in7 = vec_sub(out0, out7); \ + in8 = out8; \ + in9 = out9; \ + STEP16_1(outD, outA, inA, inD, cospi16_v); \ + STEP16_1(outC, outB, inB, inC, cospi16_v); \ + inE = outE; \ + inF = outF; \ + \ + /* stage 7 */ \ + out0 = vec_add(in0, inF); \ + out1 = vec_add(in1, inE); \ + out2 = vec_add(in2, inD); \ + out3 = vec_add(in3, inC); \ + out4 = vec_add(in4, inB); \ + out5 = vec_add(in5, inA); \ + out6 = vec_add(in6, in9); \ + out7 = vec_add(in7, in8); \ + out8 = vec_sub(in7, in8); \ + out9 = vec_sub(in6, in9); \ + outA = vec_sub(in5, inA); \ + outB = vec_sub(in4, inB); \ + outC = vec_sub(in3, inC); \ + outD = vec_sub(in2, inD); \ + outE = vec_sub(in1, inE); \ + outF = vec_sub(in0, inF); + +#define PIXEL_ADD_STORE16(in0, in1, dst, offset) \ + d_uh = (int16x8_t)vec_mergeh(dst, zerov); \ + d_ul = (int16x8_t)vec_mergel(dst, zerov); \ + PIXEL_ADD(in0, d_uh, add, shift6); \ + PIXEL_ADD(in1, d_ul, add, shift6); \ + vec_vsx_st(vec_packsu(d_uh, d_ul), offset, dest); + +void vpx_idct16x16_256_add_vsx(const tran_low_t *input, uint8_t *dest, + int stride) { + int32x4_t temp10, temp11, temp20, temp21, temp30; + int16x8_t src00, src01, src02, src03, src04, src05, src06, src07, src10, + src11, src12, src13, src14, src15, src16, src17; + int16x8_t src20, src21, src22, src23, src24, src25, src26, src27, src30, + src31, src32, src33, src34, src35, src36, src37; + int16x8_t tmp00, tmp01, tmp02, tmp03, tmp04, tmp05, tmp06, tmp07, tmp10, + tmp11, tmp12, tmp13, tmp14, tmp15, tmp16, tmp17, tmp16_0, tmp16_1; + int16x8_t tmp20, tmp21, tmp22, tmp23, tmp24, tmp25, tmp26, tmp27, tmp30, + tmp31, tmp32, tmp33, tmp34, tmp35, tmp36, tmp37; + uint8x16_t dest0, dest1, dest2, dest3, dest4, dest5, dest6, dest7, dest8, + dest9, destA, destB, destC, destD, destE, destF; + int16x8_t d_uh, d_ul; + int16x8_t add = vec_sl(vec_splat_s16(8), vec_splat_u16(2)); + uint16x8_t shift6 = vec_splat_u16(6); + uint8x16_t zerov = vec_splat_u8(0); + ROUND_SHIFT_INIT; + + // transform rows + // load and transform the upper half of 16x16 matrix + LOAD_INPUT16(load_tran_low, input, 0, 8 * sizeof(*input), src00, src10, src01, + src11, src02, src12, src03, src13, src04, src14, src05, src15, + src06, src16, src07, src17); + TRANSPOSE8x8(src00, src01, src02, src03, src04, src05, src06, src07, tmp00, + tmp01, tmp02, tmp03, tmp04, tmp05, tmp06, tmp07); + TRANSPOSE8x8(src10, src11, src12, src13, src14, src15, src16, src17, tmp10, + tmp11, tmp12, tmp13, tmp14, tmp15, tmp16, tmp17); + IDCT16(tmp00, tmp01, tmp02, tmp03, tmp04, tmp05, tmp06, tmp07, tmp10, tmp11, + tmp12, tmp13, tmp14, tmp15, tmp16, tmp17, src00, src01, src02, src03, + src04, src05, src06, src07, src10, src11, src12, src13, src14, src15, + src16, src17); + TRANSPOSE8x8(src00, src01, src02, src03, src04, src05, src06, src07, tmp00, + tmp01, tmp02, tmp03, tmp04, tmp05, tmp06, tmp07); + TRANSPOSE8x8(src10, src11, src12, src13, src14, src15, src16, src17, tmp10, + tmp11, tmp12, tmp13, tmp14, tmp15, tmp16, tmp17); + + // load and transform the lower half of 16x16 matrix + LOAD_INPUT16(load_tran_low, input, 8 * 8 * 2 * sizeof(*input), + 8 * sizeof(*input), src20, src30, src21, src31, src22, src32, + src23, src33, src24, src34, src25, src35, src26, src36, src27, + src37); + TRANSPOSE8x8(src20, src21, src22, src23, src24, src25, src26, src27, tmp20, + tmp21, tmp22, tmp23, tmp24, tmp25, tmp26, tmp27); + TRANSPOSE8x8(src30, src31, src32, src33, src34, src35, src36, src37, tmp30, + tmp31, tmp32, tmp33, tmp34, tmp35, tmp36, tmp37); + IDCT16(tmp20, tmp21, tmp22, tmp23, tmp24, tmp25, tmp26, tmp27, tmp30, tmp31, + tmp32, tmp33, tmp34, tmp35, tmp36, tmp37, src20, src21, src22, src23, + src24, src25, src26, src27, src30, src31, src32, src33, src34, src35, + src36, src37); + TRANSPOSE8x8(src20, src21, src22, src23, src24, src25, src26, src27, tmp20, + tmp21, tmp22, tmp23, tmp24, tmp25, tmp26, tmp27); + TRANSPOSE8x8(src30, src31, src32, src33, src34, src35, src36, src37, tmp30, + tmp31, tmp32, tmp33, tmp34, tmp35, tmp36, tmp37); + + // transform columns + // left half first + IDCT16(tmp00, tmp01, tmp02, tmp03, tmp04, tmp05, tmp06, tmp07, tmp20, tmp21, + tmp22, tmp23, tmp24, tmp25, tmp26, tmp27, src00, src01, src02, src03, + src04, src05, src06, src07, src20, src21, src22, src23, src24, src25, + src26, src27); + // right half + IDCT16(tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16, tmp17, tmp30, tmp31, + tmp32, tmp33, tmp34, tmp35, tmp36, tmp37, src10, src11, src12, src13, + src14, src15, src16, src17, src30, src31, src32, src33, src34, src35, + src36, src37); + + // load dest + LOAD_INPUT16(vec_vsx_ld, dest, 0, stride, dest0, dest1, dest2, dest3, dest4, + dest5, dest6, dest7, dest8, dest9, destA, destB, destC, destD, + destE, destF); + + PIXEL_ADD_STORE16(src00, src10, dest0, 0); + PIXEL_ADD_STORE16(src01, src11, dest1, stride); + PIXEL_ADD_STORE16(src02, src12, dest2, 2 * stride); + PIXEL_ADD_STORE16(src03, src13, dest3, 3 * stride); + PIXEL_ADD_STORE16(src04, src14, dest4, 4 * stride); + PIXEL_ADD_STORE16(src05, src15, dest5, 5 * stride); + PIXEL_ADD_STORE16(src06, src16, dest6, 6 * stride); + PIXEL_ADD_STORE16(src07, src17, dest7, 7 * stride); + + PIXEL_ADD_STORE16(src20, src30, dest8, 8 * stride); + PIXEL_ADD_STORE16(src21, src31, dest9, 9 * stride); + PIXEL_ADD_STORE16(src22, src32, destA, 10 * stride); + PIXEL_ADD_STORE16(src23, src33, destB, 11 * stride); + PIXEL_ADD_STORE16(src24, src34, destC, 12 * stride); + PIXEL_ADD_STORE16(src25, src35, destD, 13 * stride); + PIXEL_ADD_STORE16(src26, src36, destE, 14 * stride); + PIXEL_ADD_STORE16(src27, src37, destF, 15 * stride); +} + +#define LOAD_8x32(load, in00, in01, in02, in03, in10, in11, in12, in13, in20, \ + in21, in22, in23, in30, in31, in32, in33, in40, in41, in42, \ + in43, in50, in51, in52, in53, in60, in61, in62, in63, in70, \ + in71, in72, in73, offset) \ + /* load the first row from the 8x32 block*/ \ + in00 = load(offset, input); \ + in01 = load(offset + 16, input); \ + in02 = load(offset + 2 * 16, input); \ + in03 = load(offset + 3 * 16, input); \ + \ + in10 = load(offset + 4 * 16, input); \ + in11 = load(offset + 5 * 16, input); \ + in12 = load(offset + 6 * 16, input); \ + in13 = load(offset + 7 * 16, input); \ + \ + in20 = load(offset + 8 * 16, input); \ + in21 = load(offset + 9 * 16, input); \ + in22 = load(offset + 10 * 16, input); \ + in23 = load(offset + 11 * 16, input); \ + \ + in30 = load(offset + 12 * 16, input); \ + in31 = load(offset + 13 * 16, input); \ + in32 = load(offset + 14 * 16, input); \ + in33 = load(offset + 15 * 16, input); \ + \ + in40 = load(offset + 16 * 16, input); \ + in41 = load(offset + 17 * 16, input); \ + in42 = load(offset + 18 * 16, input); \ + in43 = load(offset + 19 * 16, input); \ + \ + in50 = load(offset + 20 * 16, input); \ + in51 = load(offset + 21 * 16, input); \ + in52 = load(offset + 22 * 16, input); \ + in53 = load(offset + 23 * 16, input); \ + \ + in60 = load(offset + 24 * 16, input); \ + in61 = load(offset + 25 * 16, input); \ + in62 = load(offset + 26 * 16, input); \ + in63 = load(offset + 27 * 16, input); \ + \ + /* load the last row from the 8x32 block*/ \ + in70 = load(offset + 28 * 16, input); \ + in71 = load(offset + 29 * 16, input); \ + in72 = load(offset + 30 * 16, input); \ + in73 = load(offset + 31 * 16, input); + +/* for the: temp1 = -step[x] * cospi_q + step[y] * cospi_z + * temp2 = step[x] * cospi_z + step[y] * cospi_q */ +#define STEP32(inpt0, inpt1, outpt0, outpt1, cospi0, cospi1) \ + tmp16_0 = vec_mergeh(inpt0, inpt1); \ + tmp16_1 = vec_mergel(inpt0, inpt1); \ + temp10 = vec_sub(vec_mulo(tmp16_0, cospi1), vec_mule(tmp16_0, cospi0)); \ + temp11 = vec_sub(vec_mulo(tmp16_1, cospi1), vec_mule(tmp16_1, cospi0)); \ + DCT_CONST_ROUND_SHIFT(temp10); \ + DCT_CONST_ROUND_SHIFT(temp11); \ + outpt0 = vec_packs(temp10, temp11); \ + temp10 = vec_add(vec_mule(tmp16_0, cospi1), vec_mulo(tmp16_0, cospi0)); \ + temp11 = vec_add(vec_mule(tmp16_1, cospi1), vec_mulo(tmp16_1, cospi0)); \ + DCT_CONST_ROUND_SHIFT(temp10); \ + DCT_CONST_ROUND_SHIFT(temp11); \ + outpt1 = vec_packs(temp10, temp11); + +/* for the: temp1 = -step[x] * cospi_q - step[y] * cospi_z + * temp2 = -step[x] * cospi_z + step[y] * cospi_q */ +#define STEP32_1(inpt0, inpt1, outpt0, outpt1, cospi0, cospi1, cospi1m) \ + tmp16_0 = vec_mergeh(inpt0, inpt1); \ + tmp16_1 = vec_mergel(inpt0, inpt1); \ + temp10 = vec_sub(vec_mulo(tmp16_0, cospi1m), vec_mule(tmp16_0, cospi0)); \ + temp11 = vec_sub(vec_mulo(tmp16_1, cospi1m), vec_mule(tmp16_1, cospi0)); \ + DCT_CONST_ROUND_SHIFT(temp10); \ + DCT_CONST_ROUND_SHIFT(temp11); \ + outpt0 = vec_packs(temp10, temp11); \ + temp10 = vec_sub(vec_mulo(tmp16_0, cospi0), vec_mule(tmp16_0, cospi1)); \ + temp11 = vec_sub(vec_mulo(tmp16_1, cospi0), vec_mule(tmp16_1, cospi1)); \ + DCT_CONST_ROUND_SHIFT(temp10); \ + DCT_CONST_ROUND_SHIFT(temp11); \ + outpt1 = vec_packs(temp10, temp11); + +#define IDCT32(in0, in1, in2, in3, out) \ + \ + /* stage 1 */ \ + /* out[0][0] = in[0][0]; */ \ + out[0][1] = in2[0]; \ + out[0][2] = in1[0]; \ + out[0][3] = in3[0]; \ + out[0][4] = in0[4]; \ + out[0][5] = in2[4]; \ + out[0][6] = in1[4]; \ + out[0][7] = in3[4]; \ + out[1][0] = in0[2]; \ + out[1][1] = in2[2]; \ + out[1][2] = in1[2]; \ + out[1][3] = in3[2]; \ + out[1][4] = in0[6]; \ + out[1][5] = in2[6]; \ + out[1][6] = in1[6]; \ + out[1][7] = in3[6]; \ + \ + STEP8_0(in0[1], in3[7], out[2][0], out[3][7], cospi31_v, cospi1_v); \ + STEP8_0(in2[1], in1[7], out[2][1], out[3][6], cospi15_v, cospi17_v); \ + STEP8_0(in1[1], in2[7], out[2][2], out[3][5], cospi23_v, cospi9_v); \ + STEP8_0(in3[1], in0[7], out[2][3], out[3][4], cospi7_v, cospi25_v); \ + STEP8_0(in0[5], in3[3], out[2][4], out[3][3], cospi27_v, cospi5_v); \ + STEP8_0(in2[5], in1[3], out[2][5], out[3][2], cospi11_v, cospi21_v); \ + STEP8_0(in1[5], in2[3], out[2][6], out[3][1], cospi19_v, cospi13_v); \ + STEP8_0(in3[5], in0[3], out[2][7], out[3][0], cospi3_v, cospi29_v); \ + \ + /* stage 2 */ \ + /* in0[0] = out[0][0]; */ \ + in0[1] = out[0][1]; \ + in0[2] = out[0][2]; \ + in0[3] = out[0][3]; \ + in0[4] = out[0][4]; \ + in0[5] = out[0][5]; \ + in0[6] = out[0][6]; \ + in0[7] = out[0][7]; \ + \ + STEP8_0(out[1][0], out[1][7], in1[0], in1[7], cospi30_v, cospi2_v); \ + STEP8_0(out[1][1], out[1][6], in1[1], in1[6], cospi14_v, cospi18_v); \ + STEP8_0(out[1][2], out[1][5], in1[2], in1[5], cospi22_v, cospi10_v); \ + STEP8_0(out[1][3], out[1][4], in1[3], in1[4], cospi6_v, cospi26_v); \ + \ + in2[0] = vec_add(out[2][0], out[2][1]); \ + in2[1] = vec_sub(out[2][0], out[2][1]); \ + in2[2] = vec_sub(out[2][3], out[2][2]); \ + in2[3] = vec_add(out[2][3], out[2][2]); \ + in2[4] = vec_add(out[2][4], out[2][5]); \ + in2[5] = vec_sub(out[2][4], out[2][5]); \ + in2[6] = vec_sub(out[2][7], out[2][6]); \ + in2[7] = vec_add(out[2][7], out[2][6]); \ + in3[0] = vec_add(out[3][0], out[3][1]); \ + in3[1] = vec_sub(out[3][0], out[3][1]); \ + in3[2] = vec_sub(out[3][3], out[3][2]); \ + in3[3] = vec_add(out[3][3], out[3][2]); \ + in3[4] = vec_add(out[3][4], out[3][5]); \ + in3[5] = vec_sub(out[3][4], out[3][5]); \ + in3[6] = vec_sub(out[3][7], out[3][6]); \ + in3[7] = vec_add(out[3][6], out[3][7]); \ + \ + /* stage 3 */ \ + out[0][0] = in0[0]; \ + out[0][1] = in0[1]; \ + out[0][2] = in0[2]; \ + out[0][3] = in0[3]; \ + \ + STEP8_0(in0[4], in0[7], out[0][4], out[0][7], cospi28_v, cospi4_v); \ + STEP8_0(in0[5], in0[6], out[0][5], out[0][6], cospi12_v, cospi20_v); \ + \ + out[1][0] = vec_add(in1[0], in1[1]); \ + out[1][1] = vec_sub(in1[0], in1[1]); \ + out[1][2] = vec_sub(in1[3], in1[2]); \ + out[1][3] = vec_add(in1[2], in1[3]); \ + out[1][4] = vec_add(in1[4], in1[5]); \ + out[1][5] = vec_sub(in1[4], in1[5]); \ + out[1][6] = vec_sub(in1[7], in1[6]); \ + out[1][7] = vec_add(in1[6], in1[7]); \ + \ + out[2][0] = in2[0]; \ + out[3][7] = in3[7]; \ + STEP32(in2[1], in3[6], out[2][1], out[3][6], cospi4_v, cospi28_v); \ + STEP32_1(in2[2], in3[5], out[2][2], out[3][5], cospi28_v, cospi4_v, \ + cospi4m_v); \ + out[2][3] = in2[3]; \ + out[2][4] = in2[4]; \ + STEP32(in2[5], in3[2], out[2][5], out[3][2], cospi20_v, cospi12_v); \ + STEP32_1(in2[6], in3[1], out[2][6], out[3][1], cospi12_v, cospi20_v, \ + cospi20m_v); \ + out[2][7] = in2[7]; \ + out[3][0] = in3[0]; \ + out[3][3] = in3[3]; \ + out[3][4] = in3[4]; \ + \ + /* stage 4 */ \ + STEP16_1(out[0][0], out[0][1], in0[1], in0[0], cospi16_v); \ + STEP8_0(out[0][2], out[0][3], in0[2], in0[3], cospi24_v, cospi8_v); \ + in0[4] = vec_add(out[0][4], out[0][5]); \ + in0[5] = vec_sub(out[0][4], out[0][5]); \ + in0[6] = vec_sub(out[0][7], out[0][6]); \ + in0[7] = vec_add(out[0][7], out[0][6]); \ + \ + in1[0] = out[1][0]; \ + in1[7] = out[1][7]; \ + STEP32(out[1][1], out[1][6], in1[1], in1[6], cospi8_v, cospi24_v); \ + STEP32_1(out[1][2], out[1][5], in1[2], in1[5], cospi24_v, cospi8_v, \ + cospi8m_v); \ + in1[3] = out[1][3]; \ + in1[4] = out[1][4]; \ + \ + in2[0] = vec_add(out[2][0], out[2][3]); \ + in2[1] = vec_add(out[2][1], out[2][2]); \ + in2[2] = vec_sub(out[2][1], out[2][2]); \ + in2[3] = vec_sub(out[2][0], out[2][3]); \ + in2[4] = vec_sub(out[2][7], out[2][4]); \ + in2[5] = vec_sub(out[2][6], out[2][5]); \ + in2[6] = vec_add(out[2][5], out[2][6]); \ + in2[7] = vec_add(out[2][4], out[2][7]); \ + \ + in3[0] = vec_add(out[3][0], out[3][3]); \ + in3[1] = vec_add(out[3][1], out[3][2]); \ + in3[2] = vec_sub(out[3][1], out[3][2]); \ + in3[3] = vec_sub(out[3][0], out[3][3]); \ + in3[4] = vec_sub(out[3][7], out[3][4]); \ + in3[5] = vec_sub(out[3][6], out[3][5]); \ + in3[6] = vec_add(out[3][5], out[3][6]); \ + in3[7] = vec_add(out[3][4], out[3][7]); \ + \ + /* stage 5 */ \ + out[0][0] = vec_add(in0[0], in0[3]); \ + out[0][1] = vec_add(in0[1], in0[2]); \ + out[0][2] = vec_sub(in0[1], in0[2]); \ + out[0][3] = vec_sub(in0[0], in0[3]); \ + out[0][4] = in0[4]; \ + STEP16_1(in0[6], in0[5], out[0][5], out[0][6], cospi16_v); \ + out[0][7] = in0[7]; \ + \ + out[1][0] = vec_add(in1[0], in1[3]); \ + out[1][1] = vec_add(in1[1], in1[2]); \ + out[1][2] = vec_sub(in1[1], in1[2]); \ + out[1][3] = vec_sub(in1[0], in1[3]); \ + out[1][4] = vec_sub(in1[7], in1[4]); \ + out[1][5] = vec_sub(in1[6], in1[5]); \ + out[1][6] = vec_add(in1[5], in1[6]); \ + out[1][7] = vec_add(in1[4], in1[7]); \ + \ + out[2][0] = in2[0]; \ + out[2][1] = in2[1]; \ + STEP32(in2[2], in3[5], out[2][2], out[3][5], cospi8_v, cospi24_v); \ + STEP32(in2[3], in3[4], out[2][3], out[3][4], cospi8_v, cospi24_v); \ + STEP32_1(in2[4], in3[3], out[2][4], out[3][3], cospi24_v, cospi8_v, \ + cospi8m_v); \ + STEP32_1(in2[5], in3[2], out[2][5], out[3][2], cospi24_v, cospi8_v, \ + cospi8m_v); \ + out[2][6] = in2[6]; \ + out[2][7] = in2[7]; \ + out[3][0] = in3[0]; \ + out[3][1] = in3[1]; \ + out[3][6] = in3[6]; \ + out[3][7] = in3[7]; \ + \ + /* stage 6 */ \ + in0[0] = vec_add(out[0][0], out[0][7]); \ + in0[1] = vec_add(out[0][1], out[0][6]); \ + in0[2] = vec_add(out[0][2], out[0][5]); \ + in0[3] = vec_add(out[0][3], out[0][4]); \ + in0[4] = vec_sub(out[0][3], out[0][4]); \ + in0[5] = vec_sub(out[0][2], out[0][5]); \ + in0[6] = vec_sub(out[0][1], out[0][6]); \ + in0[7] = vec_sub(out[0][0], out[0][7]); \ + in1[0] = out[1][0]; \ + in1[1] = out[1][1]; \ + STEP16_1(out[1][5], out[1][2], in1[2], in1[5], cospi16_v); \ + STEP16_1(out[1][4], out[1][3], in1[3], in1[4], cospi16_v); \ + in1[6] = out[1][6]; \ + in1[7] = out[1][7]; \ + \ + in2[0] = vec_add(out[2][0], out[2][7]); \ + in2[1] = vec_add(out[2][1], out[2][6]); \ + in2[2] = vec_add(out[2][2], out[2][5]); \ + in2[3] = vec_add(out[2][3], out[2][4]); \ + in2[4] = vec_sub(out[2][3], out[2][4]); \ + in2[5] = vec_sub(out[2][2], out[2][5]); \ + in2[6] = vec_sub(out[2][1], out[2][6]); \ + in2[7] = vec_sub(out[2][0], out[2][7]); \ + \ + in3[0] = vec_sub(out[3][7], out[3][0]); \ + in3[1] = vec_sub(out[3][6], out[3][1]); \ + in3[2] = vec_sub(out[3][5], out[3][2]); \ + in3[3] = vec_sub(out[3][4], out[3][3]); \ + in3[4] = vec_add(out[3][4], out[3][3]); \ + in3[5] = vec_add(out[3][5], out[3][2]); \ + in3[6] = vec_add(out[3][6], out[3][1]); \ + in3[7] = vec_add(out[3][7], out[3][0]); \ + \ + /* stage 7 */ \ + out[0][0] = vec_add(in0[0], in1[7]); \ + out[0][1] = vec_add(in0[1], in1[6]); \ + out[0][2] = vec_add(in0[2], in1[5]); \ + out[0][3] = vec_add(in0[3], in1[4]); \ + out[0][4] = vec_add(in0[4], in1[3]); \ + out[0][5] = vec_add(in0[5], in1[2]); \ + out[0][6] = vec_add(in0[6], in1[1]); \ + out[0][7] = vec_add(in0[7], in1[0]); \ + out[1][0] = vec_sub(in0[7], in1[0]); \ + out[1][1] = vec_sub(in0[6], in1[1]); \ + out[1][2] = vec_sub(in0[5], in1[2]); \ + out[1][3] = vec_sub(in0[4], in1[3]); \ + out[1][4] = vec_sub(in0[3], in1[4]); \ + out[1][5] = vec_sub(in0[2], in1[5]); \ + out[1][6] = vec_sub(in0[1], in1[6]); \ + out[1][7] = vec_sub(in0[0], in1[7]); \ + \ + out[2][0] = in2[0]; \ + out[2][1] = in2[1]; \ + out[2][2] = in2[2]; \ + out[2][3] = in2[3]; \ + STEP16_1(in3[3], in2[4], out[2][4], out[3][3], cospi16_v); \ + STEP16_1(in3[2], in2[5], out[2][5], out[3][2], cospi16_v); \ + STEP16_1(in3[1], in2[6], out[2][6], out[3][1], cospi16_v); \ + STEP16_1(in3[0], in2[7], out[2][7], out[3][0], cospi16_v); \ + out[3][4] = in3[4]; \ + out[3][5] = in3[5]; \ + out[3][6] = in3[6]; \ + out[3][7] = in3[7]; \ + \ + /* final */ \ + in0[0] = vec_add(out[0][0], out[3][7]); \ + in0[1] = vec_add(out[0][1], out[3][6]); \ + in0[2] = vec_add(out[0][2], out[3][5]); \ + in0[3] = vec_add(out[0][3], out[3][4]); \ + in0[4] = vec_add(out[0][4], out[3][3]); \ + in0[5] = vec_add(out[0][5], out[3][2]); \ + in0[6] = vec_add(out[0][6], out[3][1]); \ + in0[7] = vec_add(out[0][7], out[3][0]); \ + in1[0] = vec_add(out[1][0], out[2][7]); \ + in1[1] = vec_add(out[1][1], out[2][6]); \ + in1[2] = vec_add(out[1][2], out[2][5]); \ + in1[3] = vec_add(out[1][3], out[2][4]); \ + in1[4] = vec_add(out[1][4], out[2][3]); \ + in1[5] = vec_add(out[1][5], out[2][2]); \ + in1[6] = vec_add(out[1][6], out[2][1]); \ + in1[7] = vec_add(out[1][7], out[2][0]); \ + in2[0] = vec_sub(out[1][7], out[2][0]); \ + in2[1] = vec_sub(out[1][6], out[2][1]); \ + in2[2] = vec_sub(out[1][5], out[2][2]); \ + in2[3] = vec_sub(out[1][4], out[2][3]); \ + in2[4] = vec_sub(out[1][3], out[2][4]); \ + in2[5] = vec_sub(out[1][2], out[2][5]); \ + in2[6] = vec_sub(out[1][1], out[2][6]); \ + in2[7] = vec_sub(out[1][0], out[2][7]); \ + in3[0] = vec_sub(out[0][7], out[3][0]); \ + in3[1] = vec_sub(out[0][6], out[3][1]); \ + in3[2] = vec_sub(out[0][5], out[3][2]); \ + in3[3] = vec_sub(out[0][4], out[3][3]); \ + in3[4] = vec_sub(out[0][3], out[3][4]); \ + in3[5] = vec_sub(out[0][2], out[3][5]); \ + in3[6] = vec_sub(out[0][1], out[3][6]); \ + in3[7] = vec_sub(out[0][0], out[3][7]); + +// NOT A FULL TRANSPOSE! Transposes just each 8x8 block in each row, +// does not transpose rows +#define TRANSPOSE_8x32(in, out) \ + /* transpose 4 of 8x8 blocks */ \ + TRANSPOSE8x8(in[0][0], in[0][1], in[0][2], in[0][3], in[0][4], in[0][5], \ + in[0][6], in[0][7], out[0][0], out[0][1], out[0][2], out[0][3], \ + out[0][4], out[0][5], out[0][6], out[0][7]); \ + TRANSPOSE8x8(in[1][0], in[1][1], in[1][2], in[1][3], in[1][4], in[1][5], \ + in[1][6], in[1][7], out[1][0], out[1][1], out[1][2], out[1][3], \ + out[1][4], out[1][5], out[1][6], out[1][7]); \ + TRANSPOSE8x8(in[2][0], in[2][1], in[2][2], in[2][3], in[2][4], in[2][5], \ + in[2][6], in[2][7], out[2][0], out[2][1], out[2][2], out[2][3], \ + out[2][4], out[2][5], out[2][6], out[2][7]); \ + TRANSPOSE8x8(in[3][0], in[3][1], in[3][2], in[3][3], in[3][4], in[3][5], \ + in[3][6], in[3][7], out[3][0], out[3][1], out[3][2], out[3][3], \ + out[3][4], out[3][5], out[3][6], out[3][7]); + +#define PIXEL_ADD_STORE32(in0, in1, in2, in3, step) \ + dst = vec_vsx_ld((step)*stride, dest); \ + d_uh = (int16x8_t)vec_mergeh(dst, zerov); \ + d_ul = (int16x8_t)vec_mergel(dst, zerov); \ + PIXEL_ADD(in0, d_uh, add, shift6); \ + PIXEL_ADD(in1, d_ul, add, shift6); \ + vec_vsx_st(vec_packsu(d_uh, d_ul), (step)*stride, dest); \ + dst = vec_vsx_ld((step)*stride + 16, dest); \ + d_uh = (int16x8_t)vec_mergeh(dst, zerov); \ + d_ul = (int16x8_t)vec_mergel(dst, zerov); \ + PIXEL_ADD(in2, d_uh, add, shift6); \ + PIXEL_ADD(in3, d_ul, add, shift6); \ + vec_vsx_st(vec_packsu(d_uh, d_ul), (step)*stride + 16, dest); + +#define ADD_STORE_BLOCK(in, offset) \ + PIXEL_ADD_STORE32(in[0][0], in[1][0], in[2][0], in[3][0], offset + 0); \ + PIXEL_ADD_STORE32(in[0][1], in[1][1], in[2][1], in[3][1], offset + 1); \ + PIXEL_ADD_STORE32(in[0][2], in[1][2], in[2][2], in[3][2], offset + 2); \ + PIXEL_ADD_STORE32(in[0][3], in[1][3], in[2][3], in[3][3], offset + 3); \ + PIXEL_ADD_STORE32(in[0][4], in[1][4], in[2][4], in[3][4], offset + 4); \ + PIXEL_ADD_STORE32(in[0][5], in[1][5], in[2][5], in[3][5], offset + 5); \ + PIXEL_ADD_STORE32(in[0][6], in[1][6], in[2][6], in[3][6], offset + 6); \ + PIXEL_ADD_STORE32(in[0][7], in[1][7], in[2][7], in[3][7], offset + 7); + +void vpx_idct32x32_1024_add_vsx(const tran_low_t *input, uint8_t *dest, + int stride) { + int16x8_t src0[4][8], src1[4][8], src2[4][8], src3[4][8], tmp[4][8]; + int16x8_t tmp16_0, tmp16_1; + int32x4_t temp10, temp11, temp20, temp21, temp30; + uint8x16_t dst; + int16x8_t d_uh, d_ul; + int16x8_t add = vec_sl(vec_splat_s16(8), vec_splat_u16(2)); + uint16x8_t shift6 = vec_splat_u16(6); + uint8x16_t zerov = vec_splat_u8(0); + + ROUND_SHIFT_INIT; + + LOAD_8x32(load_tran_low, src0[0][0], src0[1][0], src0[2][0], src0[3][0], + src0[0][1], src0[1][1], src0[2][1], src0[3][1], src0[0][2], + src0[1][2], src0[2][2], src0[3][2], src0[0][3], src0[1][3], + src0[2][3], src0[3][3], src0[0][4], src0[1][4], src0[2][4], + src0[3][4], src0[0][5], src0[1][5], src0[2][5], src0[3][5], + src0[0][6], src0[1][6], src0[2][6], src0[3][6], src0[0][7], + src0[1][7], src0[2][7], src0[3][7], 0); + // Rows + // transpose the first row of 8x8 blocks + TRANSPOSE_8x32(src0, tmp); + // transform the 32x8 column + IDCT32(tmp[0], tmp[1], tmp[2], tmp[3], src0); + TRANSPOSE_8x32(tmp, src0); + + LOAD_8x32(load_tran_low, src1[0][0], src1[1][0], src1[2][0], src1[3][0], + src1[0][1], src1[1][1], src1[2][1], src1[3][1], src1[0][2], + src1[1][2], src1[2][2], src1[3][2], src1[0][3], src1[1][3], + src1[2][3], src1[3][3], src1[0][4], src1[1][4], src1[2][4], + src1[3][4], src1[0][5], src1[1][5], src1[2][5], src1[3][5], + src1[0][6], src1[1][6], src1[2][6], src1[3][6], src1[0][7], + src1[1][7], src1[2][7], src1[3][7], 512); + TRANSPOSE_8x32(src1, tmp); + IDCT32(tmp[0], tmp[1], tmp[2], tmp[3], src1); + TRANSPOSE_8x32(tmp, src1); + + LOAD_8x32(load_tran_low, src2[0][0], src2[1][0], src2[2][0], src2[3][0], + src2[0][1], src2[1][1], src2[2][1], src2[3][1], src2[0][2], + src2[1][2], src2[2][2], src2[3][2], src2[0][3], src2[1][3], + src2[2][3], src2[3][3], src2[0][4], src2[1][4], src2[2][4], + src2[3][4], src2[0][5], src2[1][5], src2[2][5], src2[3][5], + src2[0][6], src2[1][6], src2[2][6], src2[3][6], src2[0][7], + src2[1][7], src2[2][7], src2[3][7], 1024); + TRANSPOSE_8x32(src2, tmp); + IDCT32(tmp[0], tmp[1], tmp[2], tmp[3], src2); + TRANSPOSE_8x32(tmp, src2); + + LOAD_8x32(load_tran_low, src3[0][0], src3[1][0], src3[2][0], src3[3][0], + src3[0][1], src3[1][1], src3[2][1], src3[3][1], src3[0][2], + src3[1][2], src3[2][2], src3[3][2], src3[0][3], src3[1][3], + src3[2][3], src3[3][3], src3[0][4], src3[1][4], src3[2][4], + src3[3][4], src3[0][5], src3[1][5], src3[2][5], src3[3][5], + src3[0][6], src3[1][6], src3[2][6], src3[3][6], src3[0][7], + src3[1][7], src3[2][7], src3[3][7], 1536); + TRANSPOSE_8x32(src3, tmp); + IDCT32(tmp[0], tmp[1], tmp[2], tmp[3], src3); + TRANSPOSE_8x32(tmp, src3); + + // Columns + IDCT32(src0[0], src1[0], src2[0], src3[0], tmp); + IDCT32(src0[1], src1[1], src2[1], src3[1], tmp); + IDCT32(src0[2], src1[2], src2[2], src3[2], tmp); + IDCT32(src0[3], src1[3], src2[3], src3[3], tmp); + + ADD_STORE_BLOCK(src0, 0); + ADD_STORE_BLOCK(src1, 8); + ADD_STORE_BLOCK(src2, 16); + ADD_STORE_BLOCK(src3, 24); +} diff --git a/vpx_dsp/ppc/sad_vsx.c b/vpx_dsp/ppc/sad_vsx.c new file mode 100644 index 0000000..bb49add --- /dev/null +++ b/vpx_dsp/ppc/sad_vsx.c @@ -0,0 +1,254 @@ +/* + * Copyright (c) 2017 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include + +#include "./vpx_dsp_rtcd.h" + +#include "vpx_dsp/ppc/types_vsx.h" + +#include "vpx/vpx_integer.h" +#include "vpx_ports/mem.h" + +#define PROCESS16(offset) \ + v_a = vec_vsx_ld(offset, a); \ + v_b = vec_vsx_ld(offset, b); \ + v_ah = unpack_to_s16_h(v_a); \ + v_al = unpack_to_s16_l(v_a); \ + v_bh = unpack_to_s16_h(v_b); \ + v_bl = unpack_to_s16_l(v_b); \ + v_subh = vec_sub(v_ah, v_bh); \ + v_subl = vec_sub(v_al, v_bl); \ + v_absh = vec_abs(v_subh); \ + v_absl = vec_abs(v_subl); \ + v_sad = vec_sum4s(v_absh, v_sad); \ + v_sad = vec_sum4s(v_absl, v_sad); + +#define SAD16(height) \ + unsigned int vpx_sad16x##height##_vsx(const uint8_t *a, int a_stride, \ + const uint8_t *b, int b_stride) { \ + int y; \ + unsigned int sad[4]; \ + uint8x16_t v_a, v_b; \ + int16x8_t v_ah, v_al, v_bh, v_bl, v_absh, v_absl, v_subh, v_subl; \ + int32x4_t v_sad = vec_splat_s32(0); \ + \ + for (y = 0; y < height; y++) { \ + PROCESS16(0); \ + \ + a += a_stride; \ + b += b_stride; \ + } \ + vec_vsx_st((uint32x4_t)v_sad, 0, sad); \ + \ + return sad[3] + sad[2] + sad[1] + sad[0]; \ + } + +#define SAD32(height) \ + unsigned int vpx_sad32x##height##_vsx(const uint8_t *a, int a_stride, \ + const uint8_t *b, int b_stride) { \ + int y; \ + unsigned int sad[4]; \ + uint8x16_t v_a, v_b; \ + int16x8_t v_ah, v_al, v_bh, v_bl, v_absh, v_absl, v_subh, v_subl; \ + int32x4_t v_sad = vec_splat_s32(0); \ + \ + for (y = 0; y < height; y++) { \ + PROCESS16(0); \ + PROCESS16(16); \ + \ + a += a_stride; \ + b += b_stride; \ + } \ + vec_vsx_st((uint32x4_t)v_sad, 0, sad); \ + \ + return sad[3] + sad[2] + sad[1] + sad[0]; \ + } + +#define SAD64(height) \ + unsigned int vpx_sad64x##height##_vsx(const uint8_t *a, int a_stride, \ + const uint8_t *b, int b_stride) { \ + int y; \ + unsigned int sad[4]; \ + uint8x16_t v_a, v_b; \ + int16x8_t v_ah, v_al, v_bh, v_bl, v_absh, v_absl, v_subh, v_subl; \ + int32x4_t v_sad = vec_splat_s32(0); \ + \ + for (y = 0; y < height; y++) { \ + PROCESS16(0); \ + PROCESS16(16); \ + PROCESS16(32); \ + PROCESS16(48); \ + \ + a += a_stride; \ + b += b_stride; \ + } \ + vec_vsx_st((uint32x4_t)v_sad, 0, sad); \ + \ + return sad[3] + sad[2] + sad[1] + sad[0]; \ + } + +SAD16(8); +SAD16(16); +SAD16(32); +SAD32(16); +SAD32(32); +SAD32(64); +SAD64(32); +SAD64(64); + +#define SAD16AVG(height) \ + unsigned int vpx_sad16x##height##_avg_vsx( \ + const uint8_t *src, int src_stride, const uint8_t *ref, int ref_stride, \ + const uint8_t *second_pred) { \ + DECLARE_ALIGNED(16, uint8_t, comp_pred[16 * height]); \ + vpx_comp_avg_pred_vsx(comp_pred, second_pred, 16, height, ref, \ + ref_stride); \ + \ + return vpx_sad16x##height##_vsx(src, src_stride, comp_pred, 16); \ + } + +#define SAD32AVG(height) \ + unsigned int vpx_sad32x##height##_avg_vsx( \ + const uint8_t *src, int src_stride, const uint8_t *ref, int ref_stride, \ + const uint8_t *second_pred) { \ + DECLARE_ALIGNED(32, uint8_t, comp_pred[32 * height]); \ + vpx_comp_avg_pred_vsx(comp_pred, second_pred, 32, height, ref, \ + ref_stride); \ + \ + return vpx_sad32x##height##_vsx(src, src_stride, comp_pred, 32); \ + } + +#define SAD64AVG(height) \ + unsigned int vpx_sad64x##height##_avg_vsx( \ + const uint8_t *src, int src_stride, const uint8_t *ref, int ref_stride, \ + const uint8_t *second_pred) { \ + DECLARE_ALIGNED(64, uint8_t, comp_pred[64 * height]); \ + vpx_comp_avg_pred_vsx(comp_pred, second_pred, 64, height, ref, \ + ref_stride); \ + return vpx_sad64x##height##_vsx(src, src_stride, comp_pred, 64); \ + } + +SAD16AVG(8); +SAD16AVG(16); +SAD16AVG(32); +SAD32AVG(16); +SAD32AVG(32); +SAD32AVG(64); +SAD64AVG(32); +SAD64AVG(64); + +#define PROCESS16_4D(offset, ref, v_h, v_l) \ + v_b = vec_vsx_ld(offset, ref); \ + v_bh = unpack_to_s16_h(v_b); \ + v_bl = unpack_to_s16_l(v_b); \ + v_subh = vec_sub(v_h, v_bh); \ + v_subl = vec_sub(v_l, v_bl); \ + v_absh = vec_abs(v_subh); \ + v_absl = vec_abs(v_subl); \ + v_sad = vec_sum4s(v_absh, v_sad); \ + v_sad = vec_sum4s(v_absl, v_sad); + +#define UNPACK_SRC(offset, srcv_h, srcv_l) \ + v_a = vec_vsx_ld(offset, src); \ + srcv_h = unpack_to_s16_h(v_a); \ + srcv_l = unpack_to_s16_l(v_a); + +#define SAD16_4D(height) \ + void vpx_sad16x##height##x4d_vsx(const uint8_t *src, int src_stride, \ + const uint8_t *const ref_array[], \ + int ref_stride, uint32_t *sad_array) { \ + int i; \ + int y; \ + unsigned int sad[4]; \ + uint8x16_t v_a, v_b; \ + int16x8_t v_ah, v_al, v_bh, v_bl, v_absh, v_absl, v_subh, v_subl; \ + \ + for (i = 0; i < 4; i++) sad_array[i] = 0; \ + \ + for (y = 0; y < height; y++) { \ + UNPACK_SRC(y *src_stride, v_ah, v_al); \ + for (i = 0; i < 4; i++) { \ + int32x4_t v_sad = vec_splat_s32(0); \ + PROCESS16_4D(y *ref_stride, ref_array[i], v_ah, v_al); \ + \ + vec_vsx_st((uint32x4_t)v_sad, 0, sad); \ + sad_array[i] += (sad[3] + sad[2] + sad[1] + sad[0]); \ + } \ + } \ + } + +#define SAD32_4D(height) \ + void vpx_sad32x##height##x4d_vsx(const uint8_t *src, int src_stride, \ + const uint8_t *const ref_array[], \ + int ref_stride, uint32_t *sad_array) { \ + int i; \ + int y; \ + unsigned int sad[4]; \ + uint8x16_t v_a, v_b; \ + int16x8_t v_ah1, v_al1, v_ah2, v_al2, v_bh, v_bl; \ + int16x8_t v_absh, v_absl, v_subh, v_subl; \ + \ + for (i = 0; i < 4; i++) sad_array[i] = 0; \ + \ + for (y = 0; y < height; y++) { \ + UNPACK_SRC(y *src_stride, v_ah1, v_al1); \ + UNPACK_SRC(y *src_stride + 16, v_ah2, v_al2); \ + for (i = 0; i < 4; i++) { \ + int32x4_t v_sad = vec_splat_s32(0); \ + PROCESS16_4D(y *ref_stride, ref_array[i], v_ah1, v_al1); \ + PROCESS16_4D(y *ref_stride + 16, ref_array[i], v_ah2, v_al2); \ + \ + vec_vsx_st((uint32x4_t)v_sad, 0, sad); \ + sad_array[i] += (sad[3] + sad[2] + sad[1] + sad[0]); \ + } \ + } \ + } + +#define SAD64_4D(height) \ + void vpx_sad64x##height##x4d_vsx(const uint8_t *src, int src_stride, \ + const uint8_t *const ref_array[], \ + int ref_stride, uint32_t *sad_array) { \ + int i; \ + int y; \ + unsigned int sad[4]; \ + uint8x16_t v_a, v_b; \ + int16x8_t v_ah1, v_al1, v_ah2, v_al2, v_bh, v_bl; \ + int16x8_t v_ah3, v_al3, v_ah4, v_al4; \ + int16x8_t v_absh, v_absl, v_subh, v_subl; \ + \ + for (i = 0; i < 4; i++) sad_array[i] = 0; \ + \ + for (y = 0; y < height; y++) { \ + UNPACK_SRC(y *src_stride, v_ah1, v_al1); \ + UNPACK_SRC(y *src_stride + 16, v_ah2, v_al2); \ + UNPACK_SRC(y *src_stride + 32, v_ah3, v_al3); \ + UNPACK_SRC(y *src_stride + 48, v_ah4, v_al4); \ + for (i = 0; i < 4; i++) { \ + int32x4_t v_sad = vec_splat_s32(0); \ + PROCESS16_4D(y *ref_stride, ref_array[i], v_ah1, v_al1); \ + PROCESS16_4D(y *ref_stride + 16, ref_array[i], v_ah2, v_al2); \ + PROCESS16_4D(y *ref_stride + 32, ref_array[i], v_ah3, v_al3); \ + PROCESS16_4D(y *ref_stride + 48, ref_array[i], v_ah4, v_al4); \ + \ + vec_vsx_st((uint32x4_t)v_sad, 0, sad); \ + sad_array[i] += (sad[3] + sad[2] + sad[1] + sad[0]); \ + } \ + } \ + } + +SAD16_4D(8); +SAD16_4D(16); +SAD16_4D(32); +SAD32_4D(16); +SAD32_4D(32); +SAD32_4D(64); +SAD64_4D(32); +SAD64_4D(64); diff --git a/vpx_dsp/ppc/transpose_vsx.h b/vpx_dsp/ppc/transpose_vsx.h new file mode 100644 index 0000000..f02556d --- /dev/null +++ b/vpx_dsp/ppc/transpose_vsx.h @@ -0,0 +1,101 @@ +/* + * Copyright (c) 2017 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VPX_DSP_PPC_TRANSPOSE_VSX_H_ +#define VPX_DSP_PPC_TRANSPOSE_VSX_H_ + +#include "./vpx_config.h" +#include "vpx_dsp/ppc/types_vsx.h" + +static INLINE void vpx_transpose_s16_8x8(int16x8_t v[8]) { + // d = vec_mergeh(a,b): + // The even elements of the result are obtained left-to-right, + // from the high elements of a. + // The odd elements of the result are obtained left-to-right, + // from the high elements of b. + // + // d = vec_mergel(a,b): + // The even elements of the result are obtained left-to-right, + // from the low elements of a. + // The odd elements of the result are obtained left-to-right, + // from the low elements of b. + + // Example, starting with: + // v[0]: 00 01 02 03 04 05 06 07 + // v[1]: 10 11 12 13 14 15 16 17 + // v[2]: 20 21 22 23 24 25 26 27 + // v[3]: 30 31 32 33 34 35 36 37 + // v[4]: 40 41 42 43 44 45 46 47 + // v[5]: 50 51 52 53 54 55 56 57 + // v[6]: 60 61 62 63 64 65 66 67 + // v[7]: 70 71 72 73 74 75 76 77 + + int16x8_t b0, b1, b2, b3, b4, b5, b6, b7; + int16x8_t c0, c1, c2, c3, c4, c5, c6, c7; + + b0 = vec_mergeh(v[0], v[4]); + b1 = vec_mergel(v[0], v[4]); + b2 = vec_mergeh(v[1], v[5]); + b3 = vec_mergel(v[1], v[5]); + b4 = vec_mergeh(v[2], v[6]); + b5 = vec_mergel(v[2], v[6]); + b6 = vec_mergeh(v[3], v[7]); + b7 = vec_mergel(v[3], v[7]); + + // After first merge operation + // b0: 00 40 01 41 02 42 03 43 + // b1: 04 44 05 45 06 46 07 47 + // b2: 10 50 11 51 12 52 13 53 + // b3: 14 54 15 55 16 56 17 57 + // b4: 20 60 21 61 22 62 23 63 + // b5: 24 64 25 65 26 66 27 67 + // b6: 30 70 31 71 32 62 33 73 + // b7: 34 74 35 75 36 76 37 77 + + c0 = vec_mergeh(b0, b4); + c1 = vec_mergel(b0, b4); + c2 = vec_mergeh(b1, b5); + c3 = vec_mergel(b1, b5); + c4 = vec_mergeh(b2, b6); + c5 = vec_mergel(b2, b6); + c6 = vec_mergeh(b3, b7); + c7 = vec_mergel(b3, b7); + + // After second merge operation + // c0: 00 20 40 60 01 21 41 61 + // c1: 02 22 42 62 03 23 43 63 + // c2: 04 24 44 64 05 25 45 65 + // c3: 06 26 46 66 07 27 47 67 + // c4: 10 30 50 70 11 31 51 71 + // c5: 12 32 52 72 13 33 53 73 + // c6: 14 34 54 74 15 35 55 75 + // c7: 16 36 56 76 17 37 57 77 + + v[0] = vec_mergeh(c0, c4); + v[1] = vec_mergel(c0, c4); + v[2] = vec_mergeh(c1, c5); + v[3] = vec_mergel(c1, c5); + v[4] = vec_mergeh(c2, c6); + v[5] = vec_mergel(c2, c6); + v[6] = vec_mergeh(c3, c7); + v[7] = vec_mergel(c3, c7); + + // After last merge operation + // v[0]: 00 10 20 30 40 50 60 70 + // v[1]: 01 11 21 31 41 51 61 71 + // v[2]: 02 12 22 32 42 52 62 72 + // v[3]: 03 13 23 33 43 53 63 73 + // v[4]: 04 14 24 34 44 54 64 74 + // v[5]: 05 15 25 35 45 55 65 75 + // v[6]: 06 16 26 36 46 56 66 76 + // v[7]: 07 17 27 37 47 57 67 77 +} + +#endif // VPX_DSP_PPC_TRANSPOSE_VSX_H_ diff --git a/vpx_dsp/ppc/types_vsx.h b/vpx_dsp/ppc/types_vsx.h new file mode 100644 index 0000000..f611d02 --- /dev/null +++ b/vpx_dsp/ppc/types_vsx.h @@ -0,0 +1,68 @@ +/* + * Copyright (c) 2017 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VPX_DSP_PPC_TYPES_VSX_H_ +#define VPX_DSP_PPC_TYPES_VSX_H_ + +#include + +typedef vector signed char int8x16_t; +typedef vector unsigned char uint8x16_t; +typedef vector signed short int16x8_t; +typedef vector unsigned short uint16x8_t; +typedef vector signed int int32x4_t; +typedef vector unsigned int uint32x4_t; + +#ifdef __clang__ +static const uint8x16_t xxpermdi0_perm = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, + 0x06, 0x07, 0x10, 0x11, 0x12, 0x13, + 0x14, 0x15, 0x16, 0x17 }; +static const uint8x16_t xxpermdi1_perm = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, + 0x06, 0x07, 0x18, 0x19, 0x1A, 0x1B, + 0x1C, 0x1D, 0x1E, 0x1F }; +static const uint8x16_t xxpermdi2_perm = { 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, + 0x0E, 0x0F, 0x10, 0x11, 0x12, 0x13, + 0x14, 0x15, 0x16, 0x17 }; +static const uint8x16_t xxpermdi3_perm = { 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, + 0x0E, 0x0F, 0x18, 0x19, 0x1A, 0x1B, + 0x1C, 0x1D, 0x1E, 0x1F }; +#define xxpermdi(a, b, c) vec_perm(a, b, xxpermdi##c##_perm) +#elif defined(__GNUC__) && \ + (__GNUC__ > 6 || (__GNUC__ == 6 && __GNUC_MINOR__ >= 3)) +#define xxpermdi(a, b, c) vec_xxpermdi(a, b, c) +#endif + +#ifdef WORDS_BIGENDIAN +#define unpack_to_u16_h(v) \ + (uint16x8_t) vec_mergeh(vec_splat_u8(0), (uint8x16_t)v) +#define unpack_to_u16_l(v) \ + (uint16x8_t) vec_mergel(vec_splat_u8(0), (uint8x16_t)v) +#define unpack_to_s16_h(v) \ + (int16x8_t) vec_mergeh(vec_splat_u8(0), (uint8x16_t)v) +#define unpack_to_s16_l(v) \ + (int16x8_t) vec_mergel(vec_splat_u8(0), (uint8x16_t)v) +#ifndef xxpermdi +#define xxpermdi(a, b, c) vec_xxpermdi(a, b, c) +#endif +#else +#define unpack_to_u16_h(v) \ + (uint16x8_t) vec_mergeh((uint8x16_t)v, vec_splat_u8(0)) +#define unpack_to_u16_l(v) \ + (uint16x8_t) vec_mergel((uint8x16_t)v, vec_splat_u8(0)) +#define unpack_to_s16_h(v) \ + (int16x8_t) vec_mergeh((uint8x16_t)v, vec_splat_u8(0)) +#define unpack_to_s16_l(v) \ + (int16x8_t) vec_mergel((uint8x16_t)v, vec_splat_u8(0)) +#ifndef xxpermdi +#define xxpermdi(a, b, c) vec_xxpermdi(b, a, ((c >> 1) | (c & 1) << 1) ^ 3) +#endif +#endif + +#endif // VPX_DSP_PPC_TYPES_VSX_H_ diff --git a/vpx_dsp/ppc/variance_vsx.c b/vpx_dsp/ppc/variance_vsx.c new file mode 100644 index 0000000..1efe2f0 --- /dev/null +++ b/vpx_dsp/ppc/variance_vsx.c @@ -0,0 +1,103 @@ +/* + * Copyright (c) 2017 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include + +#include "./vpx_dsp_rtcd.h" +#include "vpx_dsp/ppc/types_vsx.h" + +static inline uint8x16_t read4x2(const uint8_t *a, int stride) { + const uint32x4_t a0 = (uint32x4_t)vec_vsx_ld(0, a); + const uint32x4_t a1 = (uint32x4_t)vec_vsx_ld(0, a + stride); + + return (uint8x16_t)vec_mergeh(a0, a1); +} + +uint32_t vpx_get4x4sse_cs_vsx(const uint8_t *a, int a_stride, const uint8_t *b, + int b_stride) { + int distortion; + + const int16x8_t a0 = unpack_to_s16_h(read4x2(a, a_stride)); + const int16x8_t a1 = unpack_to_s16_h(read4x2(a + a_stride * 2, a_stride)); + const int16x8_t b0 = unpack_to_s16_h(read4x2(b, b_stride)); + const int16x8_t b1 = unpack_to_s16_h(read4x2(b + b_stride * 2, b_stride)); + const int16x8_t d0 = vec_sub(a0, b0); + const int16x8_t d1 = vec_sub(a1, b1); + const int32x4_t ds = vec_msum(d1, d1, vec_msum(d0, d0, vec_splat_s32(0))); + const int32x4_t d = vec_splat(vec_sums(ds, vec_splat_s32(0)), 3); + + vec_ste(d, 0, &distortion); + + return distortion; +} + +// TODO(lu_zero): Unroll +uint32_t vpx_get_mb_ss_vsx(const int16_t *a) { + unsigned int i, sum = 0; + int32x4_t s = vec_splat_s32(0); + + for (i = 0; i < 256; i += 8) { + const int16x8_t v = vec_vsx_ld(0, a + i); + s = vec_msum(v, v, s); + } + + s = vec_splat(vec_sums(s, vec_splat_s32(0)), 3); + + vec_ste((uint32x4_t)s, 0, &sum); + + return sum; +} + +void vpx_comp_avg_pred_vsx(uint8_t *comp_pred, const uint8_t *pred, int width, + int height, const uint8_t *ref, int ref_stride) { + int i, j; + /* comp_pred and pred must be 16 byte aligned. */ + assert(((intptr_t)comp_pred & 0xf) == 0); + assert(((intptr_t)pred & 0xf) == 0); + if (width >= 16) { + for (i = 0; i < height; ++i) { + for (j = 0; j < width; j += 16) { + const uint8x16_t v = vec_avg(vec_vsx_ld(j, pred), vec_vsx_ld(j, ref)); + vec_vsx_st(v, j, comp_pred); + } + comp_pred += width; + pred += width; + ref += ref_stride; + } + } else if (width == 8) { + // Process 2 lines at time + for (i = 0; i < height / 2; ++i) { + const uint8x16_t r0 = vec_vsx_ld(0, ref); + const uint8x16_t r1 = vec_vsx_ld(0, ref + ref_stride); + const uint8x16_t r = xxpermdi(r0, r1, 0); + const uint8x16_t v = vec_avg(vec_vsx_ld(0, pred), r); + vec_vsx_st(v, 0, comp_pred); + comp_pred += 16; // width * 2; + pred += 16; // width * 2; + ref += ref_stride * 2; + } + } else { + assert(width == 4); + // process 4 lines at time + for (i = 0; i < height / 4; ++i) { + const uint32x4_t r0 = (uint32x4_t)vec_vsx_ld(0, ref); + const uint32x4_t r1 = (uint32x4_t)vec_vsx_ld(0, ref + ref_stride); + const uint32x4_t r2 = (uint32x4_t)vec_vsx_ld(0, ref + ref_stride * 2); + const uint32x4_t r3 = (uint32x4_t)vec_vsx_ld(0, ref + ref_stride * 3); + const uint8x16_t r = + (uint8x16_t)xxpermdi(vec_mergeh(r0, r1), vec_mergeh(r2, r3), 0); + const uint8x16_t v = vec_avg(vec_vsx_ld(0, pred), r); + vec_vsx_st(v, 0, comp_pred); + comp_pred += 16; // width * 4; + pred += 16; // width * 4; + ref += ref_stride * 4; + } + } +} diff --git a/vpx_dsp/ppc/vpx_convolve_vsx.c b/vpx_dsp/ppc/vpx_convolve_vsx.c new file mode 100644 index 0000000..5c3ba45 --- /dev/null +++ b/vpx_dsp/ppc/vpx_convolve_vsx.c @@ -0,0 +1,394 @@ +/* + * Copyright (c) 2017 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ +#include +#include +#include "./vpx_dsp_rtcd.h" +#include "vpx_dsp/vpx_filter.h" +#include "vpx_dsp/ppc/types_vsx.h" + +// TODO(lu_zero): unroll +static inline void copy_w16(const uint8_t *src, ptrdiff_t src_stride, + uint8_t *dst, ptrdiff_t dst_stride, int32_t h) { + int i; + + for (i = h; i--;) { + vec_vsx_st(vec_vsx_ld(0, src), 0, dst); + src += src_stride; + dst += dst_stride; + } +} + +static inline void copy_w32(const uint8_t *src, ptrdiff_t src_stride, + uint8_t *dst, ptrdiff_t dst_stride, int32_t h) { + int i; + + for (i = h; i--;) { + vec_vsx_st(vec_vsx_ld(0, src), 0, dst); + vec_vsx_st(vec_vsx_ld(16, src), 16, dst); + src += src_stride; + dst += dst_stride; + } +} + +static inline void copy_w64(const uint8_t *src, ptrdiff_t src_stride, + uint8_t *dst, ptrdiff_t dst_stride, int32_t h) { + int i; + + for (i = h; i--;) { + vec_vsx_st(vec_vsx_ld(0, src), 0, dst); + vec_vsx_st(vec_vsx_ld(16, src), 16, dst); + vec_vsx_st(vec_vsx_ld(32, src), 32, dst); + vec_vsx_st(vec_vsx_ld(48, src), 48, dst); + src += src_stride; + dst += dst_stride; + } +} + +void vpx_convolve_copy_vsx(const uint8_t *src, ptrdiff_t src_stride, + uint8_t *dst, ptrdiff_t dst_stride, + const InterpKernel *filter, int x0_q4, int x_step_q4, + int y0_q4, int32_t y_step_q4, int32_t w, int32_t h) { + (void)filter; + (void)x0_q4; + (void)x_step_q4; + (void)y0_q4; + (void)y_step_q4; + + switch (w) { + case 16: { + copy_w16(src, src_stride, dst, dst_stride, h); + break; + } + case 32: { + copy_w32(src, src_stride, dst, dst_stride, h); + break; + } + case 64: { + copy_w64(src, src_stride, dst, dst_stride, h); + break; + } + default: { + int i; + for (i = h; i--;) { + memcpy(dst, src, w); + src += src_stride; + dst += dst_stride; + } + break; + } + } +} + +static inline void avg_w16(const uint8_t *src, ptrdiff_t src_stride, + uint8_t *dst, ptrdiff_t dst_stride, int32_t h) { + int i; + + for (i = h; i--;) { + const uint8x16_t v = vec_avg(vec_vsx_ld(0, src), vec_vsx_ld(0, dst)); + vec_vsx_st(v, 0, dst); + src += src_stride; + dst += dst_stride; + } +} + +static inline void avg_w32(const uint8_t *src, ptrdiff_t src_stride, + uint8_t *dst, ptrdiff_t dst_stride, int32_t h) { + int i; + + for (i = h; i--;) { + const uint8x16_t v0 = vec_avg(vec_vsx_ld(0, src), vec_vsx_ld(0, dst)); + const uint8x16_t v1 = vec_avg(vec_vsx_ld(16, src), vec_vsx_ld(16, dst)); + vec_vsx_st(v0, 0, dst); + vec_vsx_st(v1, 16, dst); + src += src_stride; + dst += dst_stride; + } +} + +static inline void avg_w64(const uint8_t *src, ptrdiff_t src_stride, + uint8_t *dst, ptrdiff_t dst_stride, int32_t h) { + int i; + + for (i = h; i--;) { + const uint8x16_t v0 = vec_avg(vec_vsx_ld(0, src), vec_vsx_ld(0, dst)); + const uint8x16_t v1 = vec_avg(vec_vsx_ld(16, src), vec_vsx_ld(16, dst)); + const uint8x16_t v2 = vec_avg(vec_vsx_ld(32, src), vec_vsx_ld(32, dst)); + const uint8x16_t v3 = vec_avg(vec_vsx_ld(48, src), vec_vsx_ld(48, dst)); + vec_vsx_st(v0, 0, dst); + vec_vsx_st(v1, 16, dst); + vec_vsx_st(v2, 32, dst); + vec_vsx_st(v3, 48, dst); + src += src_stride; + dst += dst_stride; + } +} + +void vpx_convolve_avg_vsx(const uint8_t *src, ptrdiff_t src_stride, + uint8_t *dst, ptrdiff_t dst_stride, + const InterpKernel *filter, int x0_q4, int x_step_q4, + int y0_q4, int32_t y_step_q4, int32_t w, int32_t h) { + switch (w) { + case 16: { + avg_w16(src, src_stride, dst, dst_stride, h); + break; + } + case 32: { + avg_w32(src, src_stride, dst, dst_stride, h); + break; + } + case 64: { + avg_w64(src, src_stride, dst, dst_stride, h); + break; + } + default: { + vpx_convolve_avg_c(src, src_stride, dst, dst_stride, filter, x0_q4, + x_step_q4, y0_q4, y_step_q4, w, h); + break; + } + } +} + +static inline void convolve_line(uint8_t *dst, const int16x8_t s, + const int16x8_t f) { + const int32x4_t sum = vec_msum(s, f, vec_splat_s32(0)); + const int32x4_t bias = + vec_sl(vec_splat_s32(1), vec_splat_u32(FILTER_BITS - 1)); + const int32x4_t avg = vec_sr(vec_sums(sum, bias), vec_splat_u32(FILTER_BITS)); + const uint8x16_t v = vec_splat( + vec_packsu(vec_pack(avg, vec_splat_s32(0)), vec_splat_s16(0)), 3); + vec_ste(v, 0, dst); +} + +static inline void convolve_line_h(uint8_t *dst, const uint8_t *const src_x, + const int16_t *const x_filter) { + const int16x8_t s = unpack_to_s16_h(vec_vsx_ld(0, src_x)); + const int16x8_t f = vec_vsx_ld(0, x_filter); + + convolve_line(dst, s, f); +} + +// TODO(lu_zero): Implement 8x8 and bigger block special cases +static inline void convolve_horiz(const uint8_t *src, ptrdiff_t src_stride, + uint8_t *dst, ptrdiff_t dst_stride, + const InterpKernel *x_filters, int x0_q4, + int x_step_q4, int w, int h) { + int x, y; + src -= SUBPEL_TAPS / 2 - 1; + + for (y = 0; y < h; ++y) { + int x_q4 = x0_q4; + for (x = 0; x < w; ++x) { + convolve_line_h(dst + x, &src[x_q4 >> SUBPEL_BITS], + x_filters[x_q4 & SUBPEL_MASK]); + x_q4 += x_step_q4; + } + src += src_stride; + dst += dst_stride; + } +} + +static inline void convolve_avg_horiz(const uint8_t *src, ptrdiff_t src_stride, + uint8_t *dst, ptrdiff_t dst_stride, + const InterpKernel *x_filters, int x0_q4, + int x_step_q4, int w, int h) { + int x, y; + src -= SUBPEL_TAPS / 2 - 1; + + for (y = 0; y < h; ++y) { + int x_q4 = x0_q4; + for (x = 0; x < w; ++x) { + uint8_t v; + convolve_line_h(&v, &src[x_q4 >> SUBPEL_BITS], + x_filters[x_q4 & SUBPEL_MASK]); + dst[x] = ROUND_POWER_OF_TWO(dst[x] + v, 1); + x_q4 += x_step_q4; + } + src += src_stride; + dst += dst_stride; + } +} + +static uint8x16_t transpose_line_u8_8x8(uint8x16_t a, uint8x16_t b, + uint8x16_t c, uint8x16_t d, + uint8x16_t e, uint8x16_t f, + uint8x16_t g, uint8x16_t h) { + uint16x8_t ab = (uint16x8_t)vec_mergeh(a, b); + uint16x8_t cd = (uint16x8_t)vec_mergeh(c, d); + uint16x8_t ef = (uint16x8_t)vec_mergeh(e, f); + uint16x8_t gh = (uint16x8_t)vec_mergeh(g, h); + + uint32x4_t abcd = (uint32x4_t)vec_mergeh(ab, cd); + uint32x4_t efgh = (uint32x4_t)vec_mergeh(ef, gh); + + return (uint8x16_t)vec_mergeh(abcd, efgh); +} + +static inline void convolve_line_v(uint8_t *dst, const uint8_t *const src_y, + ptrdiff_t src_stride, + const int16_t *const y_filter) { + uint8x16_t s0 = vec_vsx_ld(0, src_y + 0 * src_stride); + uint8x16_t s1 = vec_vsx_ld(0, src_y + 1 * src_stride); + uint8x16_t s2 = vec_vsx_ld(0, src_y + 2 * src_stride); + uint8x16_t s3 = vec_vsx_ld(0, src_y + 3 * src_stride); + uint8x16_t s4 = vec_vsx_ld(0, src_y + 4 * src_stride); + uint8x16_t s5 = vec_vsx_ld(0, src_y + 5 * src_stride); + uint8x16_t s6 = vec_vsx_ld(0, src_y + 6 * src_stride); + uint8x16_t s7 = vec_vsx_ld(0, src_y + 7 * src_stride); + const int16x8_t f = vec_vsx_ld(0, y_filter); + uint8_t buf[16]; + const uint8x16_t s = transpose_line_u8_8x8(s0, s1, s2, s3, s4, s5, s6, s7); + + vec_vsx_st(s, 0, buf); + + convolve_line(dst, unpack_to_s16_h(s), f); +} + +static inline void convolve_vert(const uint8_t *src, ptrdiff_t src_stride, + uint8_t *dst, ptrdiff_t dst_stride, + const InterpKernel *y_filters, int y0_q4, + int y_step_q4, int w, int h) { + int x, y; + src -= src_stride * (SUBPEL_TAPS / 2 - 1); + + for (x = 0; x < w; ++x) { + int y_q4 = y0_q4; + for (y = 0; y < h; ++y) { + convolve_line_v(dst + y * dst_stride, + &src[(y_q4 >> SUBPEL_BITS) * src_stride], src_stride, + y_filters[y_q4 & SUBPEL_MASK]); + y_q4 += y_step_q4; + } + ++src; + ++dst; + } +} + +static inline void convolve_avg_vert(const uint8_t *src, ptrdiff_t src_stride, + uint8_t *dst, ptrdiff_t dst_stride, + const InterpKernel *y_filters, int y0_q4, + int y_step_q4, int w, int h) { + int x, y; + src -= src_stride * (SUBPEL_TAPS / 2 - 1); + + for (x = 0; x < w; ++x) { + int y_q4 = y0_q4; + for (y = 0; y < h; ++y) { + uint8_t v; + convolve_line_v(&v, &src[(y_q4 >> SUBPEL_BITS) * src_stride], src_stride, + y_filters[y_q4 & SUBPEL_MASK]); + dst[y * dst_stride] = ROUND_POWER_OF_TWO(dst[y * dst_stride] + v, 1); + y_q4 += y_step_q4; + } + ++src; + ++dst; + } +} + +static inline void convolve(const uint8_t *src, ptrdiff_t src_stride, + uint8_t *dst, ptrdiff_t dst_stride, + const InterpKernel *const filter, int x0_q4, + int x_step_q4, int y0_q4, int y_step_q4, int w, + int h) { + // Note: Fixed size intermediate buffer, temp, places limits on parameters. + // 2d filtering proceeds in 2 steps: + // (1) Interpolate horizontally into an intermediate buffer, temp. + // (2) Interpolate temp vertically to derive the sub-pixel result. + // Deriving the maximum number of rows in the temp buffer (135): + // --Smallest scaling factor is x1/2 ==> y_step_q4 = 32 (Normative). + // --Largest block size is 64x64 pixels. + // --64 rows in the downscaled frame span a distance of (64 - 1) * 32 in the + // original frame (in 1/16th pixel units). + // --Must round-up because block may be located at sub-pixel position. + // --Require an additional SUBPEL_TAPS rows for the 8-tap filter tails. + // --((64 - 1) * 32 + 15) >> 4 + 8 = 135. + DECLARE_ALIGNED(16, uint8_t, temp[64 * 135]); + const int intermediate_height = + (((h - 1) * y_step_q4 + y0_q4) >> SUBPEL_BITS) + SUBPEL_TAPS; + + assert(w <= 64); + assert(h <= 64); + assert(y_step_q4 <= 32); + assert(x_step_q4 <= 32); + + convolve_horiz(src - src_stride * (SUBPEL_TAPS / 2 - 1), src_stride, temp, 64, + filter, x0_q4, x_step_q4, w, intermediate_height); + convolve_vert(temp + 64 * (SUBPEL_TAPS / 2 - 1), 64, dst, dst_stride, filter, + y0_q4, y_step_q4, w, h); +} + +void vpx_convolve8_horiz_vsx(const uint8_t *src, ptrdiff_t src_stride, + uint8_t *dst, ptrdiff_t dst_stride, + const InterpKernel *filter, int x0_q4, + int x_step_q4, int y0_q4, int y_step_q4, int w, + int h) { + (void)y0_q4; + (void)y_step_q4; + + convolve_horiz(src, src_stride, dst, dst_stride, filter, x0_q4, x_step_q4, w, + h); +} + +void vpx_convolve8_avg_horiz_vsx(const uint8_t *src, ptrdiff_t src_stride, + uint8_t *dst, ptrdiff_t dst_stride, + const InterpKernel *filter, int x0_q4, + int x_step_q4, int y0_q4, int y_step_q4, int w, + int h) { + (void)y0_q4; + (void)y_step_q4; + + convolve_avg_horiz(src, src_stride, dst, dst_stride, filter, x0_q4, x_step_q4, + w, h); +} + +void vpx_convolve8_vert_vsx(const uint8_t *src, ptrdiff_t src_stride, + uint8_t *dst, ptrdiff_t dst_stride, + const InterpKernel *filter, int x0_q4, + int x_step_q4, int y0_q4, int y_step_q4, int w, + int h) { + (void)x0_q4; + (void)x_step_q4; + + convolve_vert(src, src_stride, dst, dst_stride, filter, y0_q4, y_step_q4, w, + h); +} + +void vpx_convolve8_avg_vert_vsx(const uint8_t *src, ptrdiff_t src_stride, + uint8_t *dst, ptrdiff_t dst_stride, + const InterpKernel *filter, int x0_q4, + int x_step_q4, int y0_q4, int y_step_q4, int w, + int h) { + (void)x0_q4; + (void)x_step_q4; + + convolve_avg_vert(src, src_stride, dst, dst_stride, filter, y0_q4, y_step_q4, + w, h); +} + +void vpx_convolve8_vsx(const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst, + ptrdiff_t dst_stride, const InterpKernel *filter, + int x0_q4, int x_step_q4, int y0_q4, int y_step_q4, + int w, int h) { + convolve(src, src_stride, dst, dst_stride, filter, x0_q4, x_step_q4, y0_q4, + y_step_q4, w, h); +} + +void vpx_convolve8_avg_vsx(const uint8_t *src, ptrdiff_t src_stride, + uint8_t *dst, ptrdiff_t dst_stride, + const InterpKernel *filter, int x0_q4, int x_step_q4, + int y0_q4, int y_step_q4, int w, int h) { + // Fixed size intermediate buffer places limits on parameters. + DECLARE_ALIGNED(16, uint8_t, temp[64 * 64]); + assert(w <= 64); + assert(h <= 64); + + vpx_convolve8_vsx(src, src_stride, temp, 64, filter, x0_q4, x_step_q4, y0_q4, + y_step_q4, w, h); + vpx_convolve_avg_vsx(temp, 64, dst, dst_stride, NULL, 0, 0, 0, 0, w, h); +} diff --git a/vpx_dsp/prob.c b/vpx_dsp/prob.c new file mode 100644 index 0000000..819e950 --- /dev/null +++ b/vpx_dsp/prob.c @@ -0,0 +1,47 @@ +/* + * Copyright (c) 2013 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "./prob.h" + +const uint8_t vpx_norm[256] = { + 0, 7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, + 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 +}; + +static unsigned int tree_merge_probs_impl(unsigned int i, + const vpx_tree_index *tree, + const vpx_prob *pre_probs, + const unsigned int *counts, + vpx_prob *probs) { + const int l = tree[i]; + const unsigned int left_count = + (l <= 0) ? counts[-l] + : tree_merge_probs_impl(l, tree, pre_probs, counts, probs); + const int r = tree[i + 1]; + const unsigned int right_count = + (r <= 0) ? counts[-r] + : tree_merge_probs_impl(r, tree, pre_probs, counts, probs); + const unsigned int ct[2] = { left_count, right_count }; + probs[i >> 1] = mode_mv_merge_probs(pre_probs[i >> 1], ct); + return left_count + right_count; +} + +void vpx_tree_merge_probs(const vpx_tree_index *tree, const vpx_prob *pre_probs, + const unsigned int *counts, vpx_prob *probs) { + tree_merge_probs_impl(0, tree, pre_probs, counts, probs); +} diff --git a/vpx_dsp/prob.h b/vpx_dsp/prob.h new file mode 100644 index 0000000..f1cc0ea --- /dev/null +++ b/vpx_dsp/prob.h @@ -0,0 +1,106 @@ +/* + * Copyright (c) 2013 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VPX_DSP_PROB_H_ +#define VPX_DSP_PROB_H_ + +#include + +#include "./vpx_config.h" +#include "./vpx_dsp_common.h" + +#include "vpx_ports/mem.h" + +#ifdef __cplusplus +extern "C" { +#endif + +typedef uint8_t vpx_prob; + +#define MAX_PROB 255 + +#define vpx_prob_half ((vpx_prob)128) + +typedef int8_t vpx_tree_index; + +#define TREE_SIZE(leaf_count) (2 * (leaf_count)-2) + +#define vpx_complement(x) (255 - x) + +#define MODE_MV_COUNT_SAT 20 + +/* We build coding trees compactly in arrays. + Each node of the tree is a pair of vpx_tree_indices. + Array index often references a corresponding probability table. + Index <= 0 means done encoding/decoding and value = -Index, + Index > 0 means need another bit, specification at index. + Nonnegative indices are always even; processing begins at node 0. */ + +typedef const vpx_tree_index vpx_tree[]; + +static INLINE vpx_prob get_prob(unsigned int num, unsigned int den) { + assert(den != 0); + { + const int p = (int)(((uint64_t)num * 256 + (den >> 1)) / den); + // (p > 255) ? 255 : (p < 1) ? 1 : p; + const int clipped_prob = p | ((255 - p) >> 23) | (p == 0); + return (vpx_prob)clipped_prob; + } +} + +static INLINE vpx_prob get_binary_prob(unsigned int n0, unsigned int n1) { + const unsigned int den = n0 + n1; + if (den == 0) return 128u; + return get_prob(n0, den); +} + +/* This function assumes prob1 and prob2 are already within [1,255] range. */ +static INLINE vpx_prob weighted_prob(int prob1, int prob2, int factor) { + return ROUND_POWER_OF_TWO(prob1 * (256 - factor) + prob2 * factor, 8); +} + +static INLINE vpx_prob merge_probs(vpx_prob pre_prob, const unsigned int ct[2], + unsigned int count_sat, + unsigned int max_update_factor) { + const vpx_prob prob = get_binary_prob(ct[0], ct[1]); + const unsigned int count = VPXMIN(ct[0] + ct[1], count_sat); + const unsigned int factor = max_update_factor * count / count_sat; + return weighted_prob(pre_prob, prob, factor); +} + +// MODE_MV_MAX_UPDATE_FACTOR (128) * count / MODE_MV_COUNT_SAT; +static const int count_to_update_factor[MODE_MV_COUNT_SAT + 1] = { + 0, 6, 12, 19, 25, 32, 38, 44, 51, 57, 64, + 70, 76, 83, 89, 96, 102, 108, 115, 121, 128 +}; + +static INLINE vpx_prob mode_mv_merge_probs(vpx_prob pre_prob, + const unsigned int ct[2]) { + const unsigned int den = ct[0] + ct[1]; + if (den == 0) { + return pre_prob; + } else { + const unsigned int count = VPXMIN(den, MODE_MV_COUNT_SAT); + const unsigned int factor = count_to_update_factor[count]; + const vpx_prob prob = get_prob(ct[0], den); + return weighted_prob(pre_prob, prob, factor); + } +} + +void vpx_tree_merge_probs(const vpx_tree_index *tree, const vpx_prob *pre_probs, + const unsigned int *counts, vpx_prob *probs); + +DECLARE_ALIGNED(16, extern const uint8_t, vpx_norm[256]); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VPX_DSP_PROB_H_ diff --git a/vpx_dsp/psnr.c b/vpx_dsp/psnr.c new file mode 100644 index 0000000..47afd43 --- /dev/null +++ b/vpx_dsp/psnr.c @@ -0,0 +1,281 @@ +/* +* Copyright (c) 2016 The WebM project authors. All Rights Reserved. +* +* Use of this source code is governed by a BSD-style license +* that can be found in the LICENSE file in the root of the source +* tree. An additional intellectual property rights grant can be found +* in the file PATENTS. All contributing project authors may +* be found in the AUTHORS file in the root of the source tree. +*/ + +#include +#include +#include "./vpx_dsp_rtcd.h" +#include "vpx_dsp/psnr.h" +#include "vpx_scale/yv12config.h" + +double vpx_sse_to_psnr(double samples, double peak, double sse) { + if (sse > 0.0) { + const double psnr = 10.0 * log10(samples * peak * peak / sse); + return psnr > MAX_PSNR ? MAX_PSNR : psnr; + } else { + return MAX_PSNR; + } +} + +/* TODO(yaowu): The block_variance calls the unoptimized versions of variance() +* and highbd_8_variance(). It should not. +*/ +static void encoder_variance(const uint8_t *a, int a_stride, const uint8_t *b, + int b_stride, int w, int h, unsigned int *sse, + int *sum) { + int i, j; + + *sum = 0; + *sse = 0; + + for (i = 0; i < h; i++) { + for (j = 0; j < w; j++) { + const int diff = a[j] - b[j]; + *sum += diff; + *sse += diff * diff; + } + + a += a_stride; + b += b_stride; + } +} + +#if CONFIG_VP9_HIGHBITDEPTH +static void encoder_highbd_variance64(const uint8_t *a8, int a_stride, + const uint8_t *b8, int b_stride, int w, + int h, uint64_t *sse, int64_t *sum) { + int i, j; + + uint16_t *a = CONVERT_TO_SHORTPTR(a8); + uint16_t *b = CONVERT_TO_SHORTPTR(b8); + *sum = 0; + *sse = 0; + + for (i = 0; i < h; i++) { + for (j = 0; j < w; j++) { + const int diff = a[j] - b[j]; + *sum += diff; + *sse += diff * diff; + } + a += a_stride; + b += b_stride; + } +} + +static void encoder_highbd_8_variance(const uint8_t *a8, int a_stride, + const uint8_t *b8, int b_stride, int w, + int h, unsigned int *sse, int *sum) { + uint64_t sse_long = 0; + int64_t sum_long = 0; + encoder_highbd_variance64(a8, a_stride, b8, b_stride, w, h, &sse_long, + &sum_long); + *sse = (unsigned int)sse_long; + *sum = (int)sum_long; +} +#endif // CONFIG_VP9_HIGHBITDEPTH + +static int64_t get_sse(const uint8_t *a, int a_stride, const uint8_t *b, + int b_stride, int width, int height) { + const int dw = width % 16; + const int dh = height % 16; + int64_t total_sse = 0; + unsigned int sse = 0; + int sum = 0; + int x, y; + + if (dw > 0) { + encoder_variance(&a[width - dw], a_stride, &b[width - dw], b_stride, dw, + height, &sse, &sum); + total_sse += sse; + } + + if (dh > 0) { + encoder_variance(&a[(height - dh) * a_stride], a_stride, + &b[(height - dh) * b_stride], b_stride, width - dw, dh, + &sse, &sum); + total_sse += sse; + } + + for (y = 0; y < height / 16; ++y) { + const uint8_t *pa = a; + const uint8_t *pb = b; + for (x = 0; x < width / 16; ++x) { + vpx_mse16x16(pa, a_stride, pb, b_stride, &sse); + total_sse += sse; + + pa += 16; + pb += 16; + } + + a += 16 * a_stride; + b += 16 * b_stride; + } + + return total_sse; +} + +#if CONFIG_VP9_HIGHBITDEPTH +static int64_t highbd_get_sse_shift(const uint8_t *a8, int a_stride, + const uint8_t *b8, int b_stride, int width, + int height, unsigned int input_shift) { + const uint16_t *a = CONVERT_TO_SHORTPTR(a8); + const uint16_t *b = CONVERT_TO_SHORTPTR(b8); + int64_t total_sse = 0; + int x, y; + for (y = 0; y < height; ++y) { + for (x = 0; x < width; ++x) { + int64_t diff; + diff = (a[x] >> input_shift) - (b[x] >> input_shift); + total_sse += diff * diff; + } + a += a_stride; + b += b_stride; + } + return total_sse; +} + +static int64_t highbd_get_sse(const uint8_t *a, int a_stride, const uint8_t *b, + int b_stride, int width, int height) { + int64_t total_sse = 0; + int x, y; + const int dw = width % 16; + const int dh = height % 16; + unsigned int sse = 0; + int sum = 0; + if (dw > 0) { + encoder_highbd_8_variance(&a[width - dw], a_stride, &b[width - dw], + b_stride, dw, height, &sse, &sum); + total_sse += sse; + } + if (dh > 0) { + encoder_highbd_8_variance(&a[(height - dh) * a_stride], a_stride, + &b[(height - dh) * b_stride], b_stride, + width - dw, dh, &sse, &sum); + total_sse += sse; + } + for (y = 0; y < height / 16; ++y) { + const uint8_t *pa = a; + const uint8_t *pb = b; + for (x = 0; x < width / 16; ++x) { + vpx_highbd_8_mse16x16(pa, a_stride, pb, b_stride, &sse); + total_sse += sse; + pa += 16; + pb += 16; + } + a += 16 * a_stride; + b += 16 * b_stride; + } + return total_sse; +} +#endif // CONFIG_VP9_HIGHBITDEPTH + +int64_t vpx_get_y_sse(const YV12_BUFFER_CONFIG *a, + const YV12_BUFFER_CONFIG *b) { + assert(a->y_crop_width == b->y_crop_width); + assert(a->y_crop_height == b->y_crop_height); + + return get_sse(a->y_buffer, a->y_stride, b->y_buffer, b->y_stride, + a->y_crop_width, a->y_crop_height); +} + +#if CONFIG_VP9_HIGHBITDEPTH +int64_t vpx_highbd_get_y_sse(const YV12_BUFFER_CONFIG *a, + const YV12_BUFFER_CONFIG *b) { + assert(a->y_crop_width == b->y_crop_width); + assert(a->y_crop_height == b->y_crop_height); + assert((a->flags & YV12_FLAG_HIGHBITDEPTH) != 0); + assert((b->flags & YV12_FLAG_HIGHBITDEPTH) != 0); + + return highbd_get_sse(a->y_buffer, a->y_stride, b->y_buffer, b->y_stride, + a->y_crop_width, a->y_crop_height); +} +#endif // CONFIG_VP9_HIGHBITDEPTH + +#if CONFIG_VP9_HIGHBITDEPTH +void vpx_calc_highbd_psnr(const YV12_BUFFER_CONFIG *a, + const YV12_BUFFER_CONFIG *b, PSNR_STATS *psnr, + uint32_t bit_depth, uint32_t in_bit_depth) { + const int widths[3] = { a->y_crop_width, a->uv_crop_width, a->uv_crop_width }; + const int heights[3] = { a->y_crop_height, a->uv_crop_height, + a->uv_crop_height }; + const uint8_t *a_planes[3] = { a->y_buffer, a->u_buffer, a->v_buffer }; + const int a_strides[3] = { a->y_stride, a->uv_stride, a->uv_stride }; + const uint8_t *b_planes[3] = { b->y_buffer, b->u_buffer, b->v_buffer }; + const int b_strides[3] = { b->y_stride, b->uv_stride, b->uv_stride }; + int i; + uint64_t total_sse = 0; + uint32_t total_samples = 0; + const double peak = (double)((1 << in_bit_depth) - 1); + const unsigned int input_shift = bit_depth - in_bit_depth; + + for (i = 0; i < 3; ++i) { + const int w = widths[i]; + const int h = heights[i]; + const uint32_t samples = w * h; + uint64_t sse; + if (a->flags & YV12_FLAG_HIGHBITDEPTH) { + if (input_shift) { + sse = highbd_get_sse_shift(a_planes[i], a_strides[i], b_planes[i], + b_strides[i], w, h, input_shift); + } else { + sse = highbd_get_sse(a_planes[i], a_strides[i], b_planes[i], + b_strides[i], w, h); + } + } else { + sse = get_sse(a_planes[i], a_strides[i], b_planes[i], b_strides[i], w, h); + } + psnr->sse[1 + i] = sse; + psnr->samples[1 + i] = samples; + psnr->psnr[1 + i] = vpx_sse_to_psnr(samples, peak, (double)sse); + + total_sse += sse; + total_samples += samples; + } + + psnr->sse[0] = total_sse; + psnr->samples[0] = total_samples; + psnr->psnr[0] = + vpx_sse_to_psnr((double)total_samples, peak, (double)total_sse); +} + +#endif // !CONFIG_VP9_HIGHBITDEPTH + +void vpx_calc_psnr(const YV12_BUFFER_CONFIG *a, const YV12_BUFFER_CONFIG *b, + PSNR_STATS *psnr) { + static const double peak = 255.0; + const int widths[3] = { a->y_crop_width, a->uv_crop_width, a->uv_crop_width }; + const int heights[3] = { a->y_crop_height, a->uv_crop_height, + a->uv_crop_height }; + const uint8_t *a_planes[3] = { a->y_buffer, a->u_buffer, a->v_buffer }; + const int a_strides[3] = { a->y_stride, a->uv_stride, a->uv_stride }; + const uint8_t *b_planes[3] = { b->y_buffer, b->u_buffer, b->v_buffer }; + const int b_strides[3] = { b->y_stride, b->uv_stride, b->uv_stride }; + int i; + uint64_t total_sse = 0; + uint32_t total_samples = 0; + + for (i = 0; i < 3; ++i) { + const int w = widths[i]; + const int h = heights[i]; + const uint32_t samples = w * h; + const uint64_t sse = + get_sse(a_planes[i], a_strides[i], b_planes[i], b_strides[i], w, h); + psnr->sse[1 + i] = sse; + psnr->samples[1 + i] = samples; + psnr->psnr[1 + i] = vpx_sse_to_psnr(samples, peak, (double)sse); + + total_sse += sse; + total_samples += samples; + } + + psnr->sse[0] = total_sse; + psnr->samples[0] = total_samples; + psnr->psnr[0] = + vpx_sse_to_psnr((double)total_samples, peak, (double)total_sse); +} diff --git a/vpx_dsp/psnr.h b/vpx_dsp/psnr.h new file mode 100644 index 0000000..f321131 --- /dev/null +++ b/vpx_dsp/psnr.h @@ -0,0 +1,57 @@ +/* +* Copyright (c) 2016 The WebM project authors. All Rights Reserved. +* +* Use of this source code is governed by a BSD-style license +* that can be found in the LICENSE file in the root of the source +* tree. An additional intellectual property rights grant can be found +* in the file PATENTS. All contributing project authors may +* be found in the AUTHORS file in the root of the source tree. +*/ + +#ifndef VPX_DSP_PSNR_H_ +#define VPX_DSP_PSNR_H_ + +#include "vpx_scale/yv12config.h" + +#define MAX_PSNR 100.0 + +#ifdef __cplusplus +extern "C" { +#endif + +typedef struct { + double psnr[4]; // total/y/u/v + uint64_t sse[4]; // total/y/u/v + uint32_t samples[4]; // total/y/u/v +} PSNR_STATS; + +// TODO(dkovalev) change vpx_sse_to_psnr signature: double -> int64_t + +/*!\brief Converts SSE to PSNR +* +* Converts sum of squared errros (SSE) to peak signal-to-noise ratio (PNSR). +* +* \param[in] samples Number of samples +* \param[in] peak Max sample value +* \param[in] sse Sum of squared errors +*/ +double vpx_sse_to_psnr(double samples, double peak, double sse); +int64_t vpx_get_y_sse(const YV12_BUFFER_CONFIG *a, const YV12_BUFFER_CONFIG *b); +#if CONFIG_VP9_HIGHBITDEPTH +int64_t vpx_highbd_get_y_sse(const YV12_BUFFER_CONFIG *a, + const YV12_BUFFER_CONFIG *b); +void vpx_calc_highbd_psnr(const YV12_BUFFER_CONFIG *a, + const YV12_BUFFER_CONFIG *b, PSNR_STATS *psnr, + unsigned int bit_depth, unsigned int in_bit_depth); +#endif +void vpx_calc_psnr(const YV12_BUFFER_CONFIG *a, const YV12_BUFFER_CONFIG *b, + PSNR_STATS *psnr); + +double vpx_psnrhvs(const YV12_BUFFER_CONFIG *source, + const YV12_BUFFER_CONFIG *dest, double *phvs_y, + double *phvs_u, double *phvs_v, uint32_t bd, uint32_t in_bd); + +#ifdef __cplusplus +} // extern "C" +#endif +#endif // VPX_DSP_PSNR_H_ diff --git a/vpx_dsp/psnrhvs.c b/vpx_dsp/psnrhvs.c new file mode 100644 index 0000000..b391015 --- /dev/null +++ b/vpx_dsp/psnrhvs.c @@ -0,0 +1,275 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + * + * This code was originally written by: Gregory Maxwell, at the Daala + * project. + */ +#include +#include +#include +#include + +#include "./vpx_config.h" +#include "./vpx_dsp_rtcd.h" +#include "vpx_dsp/ssim.h" +#include "vpx_ports/system_state.h" +#include "vpx_dsp/psnr.h" + +#if !defined(M_PI) +#define M_PI (3.141592653589793238462643) +#endif +#include + +static void od_bin_fdct8x8(tran_low_t *y, int ystride, const int16_t *x, + int xstride) { + int i, j; + (void)xstride; + vpx_fdct8x8(x, y, ystride); + for (i = 0; i < 8; i++) + for (j = 0; j < 8; j++) + *(y + ystride * i + j) = (*(y + ystride * i + j) + 4) >> 3; +} +#if CONFIG_VP9_HIGHBITDEPTH +static void hbd_od_bin_fdct8x8(tran_low_t *y, int ystride, const int16_t *x, + int xstride) { + int i, j; + (void)xstride; + vpx_highbd_fdct8x8(x, y, ystride); + for (i = 0; i < 8; i++) + for (j = 0; j < 8; j++) + *(y + ystride * i + j) = (*(y + ystride * i + j) + 4) >> 3; +} +#endif + +/* Normalized inverse quantization matrix for 8x8 DCT at the point of + * transparency. This is not the JPEG based matrix from the paper, + this one gives a slightly higher MOS agreement.*/ +static const double csf_y[8][8] = { + { 1.6193873005, 2.2901594831, 2.08509755623, 1.48366094411, 1.00227514334, + 0.678296995242, 0.466224900598, 0.3265091542 }, + { 2.2901594831, 1.94321815382, 2.04793073064, 1.68731108984, 1.2305666963, + 0.868920337363, 0.61280991668, 0.436405793551 }, + { 2.08509755623, 2.04793073064, 1.34329019223, 1.09205635862, 0.875748795257, + 0.670882927016, 0.501731932449, 0.372504254596 }, + { 1.48366094411, 1.68731108984, 1.09205635862, 0.772819797575, 0.605636379554, + 0.48309405692, 0.380429446972, 0.295774038565 }, + { 1.00227514334, 1.2305666963, 0.875748795257, 0.605636379554, 0.448996256676, + 0.352889268808, 0.283006984131, 0.226951348204 }, + { 0.678296995242, 0.868920337363, 0.670882927016, 0.48309405692, + 0.352889268808, 0.27032073436, 0.215017739696, 0.17408067321 }, + { 0.466224900598, 0.61280991668, 0.501731932449, 0.380429446972, + 0.283006984131, 0.215017739696, 0.168869545842, 0.136153931001 }, + { 0.3265091542, 0.436405793551, 0.372504254596, 0.295774038565, + 0.226951348204, 0.17408067321, 0.136153931001, 0.109083846276 } +}; +static const double csf_cb420[8][8] = { + { 1.91113096927, 2.46074210438, 1.18284184739, 1.14982565193, 1.05017074788, + 0.898018824055, 0.74725392039, 0.615105596242 }, + { 2.46074210438, 1.58529308355, 1.21363250036, 1.38190029285, 1.33100189972, + 1.17428548929, 0.996404342439, 0.830890433625 }, + { 1.18284184739, 1.21363250036, 0.978712413627, 1.02624506078, 1.03145147362, + 0.960060382087, 0.849823426169, 0.731221236837 }, + { 1.14982565193, 1.38190029285, 1.02624506078, 0.861317501629, 0.801821139099, + 0.751437590932, 0.685398513368, 0.608694761374 }, + { 1.05017074788, 1.33100189972, 1.03145147362, 0.801821139099, 0.676555426187, + 0.605503172737, 0.55002013668, 0.495804539034 }, + { 0.898018824055, 1.17428548929, 0.960060382087, 0.751437590932, + 0.605503172737, 0.514674450957, 0.454353482512, 0.407050308965 }, + { 0.74725392039, 0.996404342439, 0.849823426169, 0.685398513368, + 0.55002013668, 0.454353482512, 0.389234902883, 0.342353999733 }, + { 0.615105596242, 0.830890433625, 0.731221236837, 0.608694761374, + 0.495804539034, 0.407050308965, 0.342353999733, 0.295530605237 } +}; +static const double csf_cr420[8][8] = { + { 2.03871978502, 2.62502345193, 1.26180942886, 1.11019789803, 1.01397751469, + 0.867069376285, 0.721500455585, 0.593906509971 }, + { 2.62502345193, 1.69112867013, 1.17180569821, 1.3342742857, 1.28513006198, + 1.13381474809, 0.962064122248, 0.802254508198 }, + { 1.26180942886, 1.17180569821, 0.944981930573, 0.990876405848, + 0.995903384143, 0.926972725286, 0.820534991409, 0.706020324706 }, + { 1.11019789803, 1.3342742857, 0.990876405848, 0.831632933426, 0.77418706195, + 0.725539939514, 0.661776842059, 0.587716619023 }, + { 1.01397751469, 1.28513006198, 0.995903384143, 0.77418706195, 0.653238524286, + 0.584635025748, 0.531064164893, 0.478717061273 }, + { 0.867069376285, 1.13381474809, 0.926972725286, 0.725539939514, + 0.584635025748, 0.496936637883, 0.438694579826, 0.393021669543 }, + { 0.721500455585, 0.962064122248, 0.820534991409, 0.661776842059, + 0.531064164893, 0.438694579826, 0.375820256136, 0.330555063063 }, + { 0.593906509971, 0.802254508198, 0.706020324706, 0.587716619023, + 0.478717061273, 0.393021669543, 0.330555063063, 0.285345396658 } +}; + +static double convert_score_db(double _score, double _weight, int bit_depth) { + int16_t pix_max = 255; + assert(_score * _weight >= 0.0); + if (bit_depth == 10) + pix_max = 1023; + else if (bit_depth == 12) + pix_max = 4095; + + if (_weight * _score < pix_max * pix_max * 1e-10) return MAX_PSNR; + return 10 * (log10(pix_max * pix_max) - log10(_weight * _score)); +} + +static double calc_psnrhvs(const unsigned char *src, int _systride, + const unsigned char *dst, int _dystride, double _par, + int _w, int _h, int _step, const double _csf[8][8], + uint32_t bit_depth, uint32_t _shift) { + double ret; + const uint8_t *_src8 = src; + const uint8_t *_dst8 = dst; + const uint16_t *_src16 = CONVERT_TO_SHORTPTR(src); + const uint16_t *_dst16 = CONVERT_TO_SHORTPTR(dst); + int16_t dct_s[8 * 8], dct_d[8 * 8]; + tran_low_t dct_s_coef[8 * 8], dct_d_coef[8 * 8]; + double mask[8][8]; + int pixels; + int x; + int y; + (void)_par; + ret = pixels = 0; + + /*In the PSNR-HVS-M paper[1] the authors describe the construction of + their masking table as "we have used the quantization table for the + color component Y of JPEG [6] that has been also obtained on the + basis of CSF. Note that the values in quantization table JPEG have + been normalized and then squared." Their CSF matrix (from PSNR-HVS) + was also constructed from the JPEG matrices. I can not find any obvious + scheme of normalizing to produce their table, but if I multiply their + CSF by 0.38857 and square the result I get their masking table. + I have no idea where this constant comes from, but deviating from it + too greatly hurts MOS agreement. + + [1] Nikolay Ponomarenko, Flavia Silvestri, Karen Egiazarian, Marco Carli, + Jaakko Astola, Vladimir Lukin, "On between-coefficient contrast masking + of DCT basis functions", CD-ROM Proceedings of the Third + International Workshop on Video Processing and Quality Metrics for Consumer + Electronics VPQM-07, Scottsdale, Arizona, USA, 25-26 January, 2007, 4 p.*/ + for (x = 0; x < 8; x++) + for (y = 0; y < 8; y++) + mask[x][y] = + (_csf[x][y] * 0.3885746225901003) * (_csf[x][y] * 0.3885746225901003); + for (y = 0; y < _h - 7; y += _step) { + for (x = 0; x < _w - 7; x += _step) { + int i; + int j; + double s_means[4]; + double d_means[4]; + double s_vars[4]; + double d_vars[4]; + double s_gmean = 0; + double d_gmean = 0; + double s_gvar = 0; + double d_gvar = 0; + double s_mask = 0; + double d_mask = 0; + for (i = 0; i < 4; i++) + s_means[i] = d_means[i] = s_vars[i] = d_vars[i] = 0; + for (i = 0; i < 8; i++) { + for (j = 0; j < 8; j++) { + int sub = ((i & 12) >> 2) + ((j & 12) >> 1); + if (bit_depth == 8 && _shift == 0) { + dct_s[i * 8 + j] = _src8[(y + i) * _systride + (j + x)]; + dct_d[i * 8 + j] = _dst8[(y + i) * _dystride + (j + x)]; + } else if (bit_depth == 10 || bit_depth == 12) { + dct_s[i * 8 + j] = _src16[(y + i) * _systride + (j + x)] >> _shift; + dct_d[i * 8 + j] = _dst16[(y + i) * _dystride + (j + x)] >> _shift; + } + s_gmean += dct_s[i * 8 + j]; + d_gmean += dct_d[i * 8 + j]; + s_means[sub] += dct_s[i * 8 + j]; + d_means[sub] += dct_d[i * 8 + j]; + } + } + s_gmean /= 64.f; + d_gmean /= 64.f; + for (i = 0; i < 4; i++) s_means[i] /= 16.f; + for (i = 0; i < 4; i++) d_means[i] /= 16.f; + for (i = 0; i < 8; i++) { + for (j = 0; j < 8; j++) { + int sub = ((i & 12) >> 2) + ((j & 12) >> 1); + s_gvar += (dct_s[i * 8 + j] - s_gmean) * (dct_s[i * 8 + j] - s_gmean); + d_gvar += (dct_d[i * 8 + j] - d_gmean) * (dct_d[i * 8 + j] - d_gmean); + s_vars[sub] += (dct_s[i * 8 + j] - s_means[sub]) * + (dct_s[i * 8 + j] - s_means[sub]); + d_vars[sub] += (dct_d[i * 8 + j] - d_means[sub]) * + (dct_d[i * 8 + j] - d_means[sub]); + } + } + s_gvar *= 1 / 63.f * 64; + d_gvar *= 1 / 63.f * 64; + for (i = 0; i < 4; i++) s_vars[i] *= 1 / 15.f * 16; + for (i = 0; i < 4; i++) d_vars[i] *= 1 / 15.f * 16; + if (s_gvar > 0) + s_gvar = (s_vars[0] + s_vars[1] + s_vars[2] + s_vars[3]) / s_gvar; + if (d_gvar > 0) + d_gvar = (d_vars[0] + d_vars[1] + d_vars[2] + d_vars[3]) / d_gvar; +#if CONFIG_VP9_HIGHBITDEPTH + if (bit_depth == 10 || bit_depth == 12) { + hbd_od_bin_fdct8x8(dct_s_coef, 8, dct_s, 8); + hbd_od_bin_fdct8x8(dct_d_coef, 8, dct_d, 8); + } +#endif + if (bit_depth == 8) { + od_bin_fdct8x8(dct_s_coef, 8, dct_s, 8); + od_bin_fdct8x8(dct_d_coef, 8, dct_d, 8); + } + for (i = 0; i < 8; i++) + for (j = (i == 0); j < 8; j++) + s_mask += dct_s_coef[i * 8 + j] * dct_s_coef[i * 8 + j] * mask[i][j]; + for (i = 0; i < 8; i++) + for (j = (i == 0); j < 8; j++) + d_mask += dct_d_coef[i * 8 + j] * dct_d_coef[i * 8 + j] * mask[i][j]; + s_mask = sqrt(s_mask * s_gvar) / 32.f; + d_mask = sqrt(d_mask * d_gvar) / 32.f; + if (d_mask > s_mask) s_mask = d_mask; + for (i = 0; i < 8; i++) { + for (j = 0; j < 8; j++) { + double err; + err = fabs((double)(dct_s_coef[i * 8 + j] - dct_d_coef[i * 8 + j])); + if (i != 0 || j != 0) + err = err < s_mask / mask[i][j] ? 0 : err - s_mask / mask[i][j]; + ret += (err * _csf[i][j]) * (err * _csf[i][j]); + pixels++; + } + } + } + } + if (pixels <= 0) return 0; + ret /= pixels; + return ret; +} + +double vpx_psnrhvs(const YV12_BUFFER_CONFIG *src, + const YV12_BUFFER_CONFIG *dest, double *y_psnrhvs, + double *u_psnrhvs, double *v_psnrhvs, uint32_t bd, + uint32_t in_bd) { + double psnrhvs; + const double par = 1.0; + const int step = 7; + uint32_t bd_shift = 0; + vpx_clear_system_state(); + + assert(bd == 8 || bd == 10 || bd == 12); + assert(bd >= in_bd); + + bd_shift = bd - in_bd; + + *y_psnrhvs = calc_psnrhvs(src->y_buffer, src->y_stride, dest->y_buffer, + dest->y_stride, par, src->y_crop_width, + src->y_crop_height, step, csf_y, bd, bd_shift); + *u_psnrhvs = calc_psnrhvs(src->u_buffer, src->uv_stride, dest->u_buffer, + dest->uv_stride, par, src->uv_crop_width, + src->uv_crop_height, step, csf_cb420, bd, bd_shift); + *v_psnrhvs = calc_psnrhvs(src->v_buffer, src->uv_stride, dest->v_buffer, + dest->uv_stride, par, src->uv_crop_width, + src->uv_crop_height, step, csf_cr420, bd, bd_shift); + psnrhvs = (*y_psnrhvs) * .8 + .1 * ((*u_psnrhvs) + (*v_psnrhvs)); + return convert_score_db(psnrhvs, 1.0, in_bd); +} diff --git a/vpx_dsp/quantize.c b/vpx_dsp/quantize.c new file mode 100644 index 0000000..e37ca92 --- /dev/null +++ b/vpx_dsp/quantize.c @@ -0,0 +1,317 @@ +/* + * Copyright (c) 2015 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include + +#include "./vpx_dsp_rtcd.h" +#include "vpx_dsp/quantize.h" +#include "vpx_mem/vpx_mem.h" + +void vpx_quantize_dc(const tran_low_t *coeff_ptr, int n_coeffs, int skip_block, + const int16_t *round_ptr, const int16_t quant, + tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr, + const int16_t dequant_ptr, uint16_t *eob_ptr) { + const int rc = 0; + const int coeff = coeff_ptr[rc]; + const int coeff_sign = (coeff >> 31); + const int abs_coeff = (coeff ^ coeff_sign) - coeff_sign; + int tmp, eob = -1; + + memset(qcoeff_ptr, 0, n_coeffs * sizeof(*qcoeff_ptr)); + memset(dqcoeff_ptr, 0, n_coeffs * sizeof(*dqcoeff_ptr)); + + if (!skip_block) { + tmp = clamp(abs_coeff + round_ptr[rc != 0], INT16_MIN, INT16_MAX); + tmp = (tmp * quant) >> 16; + qcoeff_ptr[rc] = (tmp ^ coeff_sign) - coeff_sign; + dqcoeff_ptr[rc] = qcoeff_ptr[rc] * dequant_ptr; + if (tmp) eob = 0; + } + *eob_ptr = eob + 1; +} + +#if CONFIG_VP9_HIGHBITDEPTH +void vpx_highbd_quantize_dc(const tran_low_t *coeff_ptr, int n_coeffs, + int skip_block, const int16_t *round_ptr, + const int16_t quant, tran_low_t *qcoeff_ptr, + tran_low_t *dqcoeff_ptr, const int16_t dequant_ptr, + uint16_t *eob_ptr) { + int eob = -1; + + memset(qcoeff_ptr, 0, n_coeffs * sizeof(*qcoeff_ptr)); + memset(dqcoeff_ptr, 0, n_coeffs * sizeof(*dqcoeff_ptr)); + + if (!skip_block) { + const int coeff = coeff_ptr[0]; + const int coeff_sign = (coeff >> 31); + const int abs_coeff = (coeff ^ coeff_sign) - coeff_sign; + const int64_t tmp = abs_coeff + round_ptr[0]; + const int abs_qcoeff = (int)((tmp * quant) >> 16); + qcoeff_ptr[0] = (tran_low_t)((abs_qcoeff ^ coeff_sign) - coeff_sign); + dqcoeff_ptr[0] = qcoeff_ptr[0] * dequant_ptr; + if (abs_qcoeff) eob = 0; + } + *eob_ptr = eob + 1; +} +#endif + +void vpx_quantize_dc_32x32(const tran_low_t *coeff_ptr, int skip_block, + const int16_t *round_ptr, const int16_t quant, + tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr, + const int16_t dequant_ptr, uint16_t *eob_ptr) { + const int n_coeffs = 1024; + const int rc = 0; + const int coeff = coeff_ptr[rc]; + const int coeff_sign = (coeff >> 31); + const int abs_coeff = (coeff ^ coeff_sign) - coeff_sign; + int tmp, eob = -1; + + memset(qcoeff_ptr, 0, n_coeffs * sizeof(*qcoeff_ptr)); + memset(dqcoeff_ptr, 0, n_coeffs * sizeof(*dqcoeff_ptr)); + + if (!skip_block) { + tmp = clamp(abs_coeff + ROUND_POWER_OF_TWO(round_ptr[rc != 0], 1), + INT16_MIN, INT16_MAX); + tmp = (tmp * quant) >> 15; + qcoeff_ptr[rc] = (tmp ^ coeff_sign) - coeff_sign; + dqcoeff_ptr[rc] = qcoeff_ptr[rc] * dequant_ptr / 2; + if (tmp) eob = 0; + } + *eob_ptr = eob + 1; +} + +#if CONFIG_VP9_HIGHBITDEPTH +void vpx_highbd_quantize_dc_32x32(const tran_low_t *coeff_ptr, int skip_block, + const int16_t *round_ptr, const int16_t quant, + tran_low_t *qcoeff_ptr, + tran_low_t *dqcoeff_ptr, + const int16_t dequant_ptr, + uint16_t *eob_ptr) { + const int n_coeffs = 1024; + int eob = -1; + + memset(qcoeff_ptr, 0, n_coeffs * sizeof(*qcoeff_ptr)); + memset(dqcoeff_ptr, 0, n_coeffs * sizeof(*dqcoeff_ptr)); + + if (!skip_block) { + const int coeff = coeff_ptr[0]; + const int coeff_sign = (coeff >> 31); + const int abs_coeff = (coeff ^ coeff_sign) - coeff_sign; + const int64_t tmp = abs_coeff + ROUND_POWER_OF_TWO(round_ptr[0], 1); + const int abs_qcoeff = (int)((tmp * quant) >> 15); + qcoeff_ptr[0] = (tran_low_t)((abs_qcoeff ^ coeff_sign) - coeff_sign); + dqcoeff_ptr[0] = qcoeff_ptr[0] * dequant_ptr / 2; + if (abs_qcoeff) eob = 0; + } + *eob_ptr = eob + 1; +} +#endif + +void vpx_quantize_b_c(const tran_low_t *coeff_ptr, intptr_t n_coeffs, + int skip_block, const int16_t *zbin_ptr, + const int16_t *round_ptr, const int16_t *quant_ptr, + const int16_t *quant_shift_ptr, tran_low_t *qcoeff_ptr, + tran_low_t *dqcoeff_ptr, const int16_t *dequant_ptr, + uint16_t *eob_ptr, const int16_t *scan, + const int16_t *iscan) { + int i, non_zero_count = (int)n_coeffs, eob = -1; + const int zbins[2] = { zbin_ptr[0], zbin_ptr[1] }; + const int nzbins[2] = { zbins[0] * -1, zbins[1] * -1 }; + (void)iscan; + (void)skip_block; + assert(!skip_block); + + memset(qcoeff_ptr, 0, n_coeffs * sizeof(*qcoeff_ptr)); + memset(dqcoeff_ptr, 0, n_coeffs * sizeof(*dqcoeff_ptr)); + + // Pre-scan pass + for (i = (int)n_coeffs - 1; i >= 0; i--) { + const int rc = scan[i]; + const int coeff = coeff_ptr[rc]; + + if (coeff < zbins[rc != 0] && coeff > nzbins[rc != 0]) + non_zero_count--; + else + break; + } + + // Quantization pass: All coefficients with index >= zero_flag are + // skippable. Note: zero_flag can be zero. + for (i = 0; i < non_zero_count; i++) { + const int rc = scan[i]; + const int coeff = coeff_ptr[rc]; + const int coeff_sign = (coeff >> 31); + const int abs_coeff = (coeff ^ coeff_sign) - coeff_sign; + + if (abs_coeff >= zbins[rc != 0]) { + int tmp = clamp(abs_coeff + round_ptr[rc != 0], INT16_MIN, INT16_MAX); + tmp = ((((tmp * quant_ptr[rc != 0]) >> 16) + tmp) * + quant_shift_ptr[rc != 0]) >> + 16; // quantization + qcoeff_ptr[rc] = (tmp ^ coeff_sign) - coeff_sign; + dqcoeff_ptr[rc] = qcoeff_ptr[rc] * dequant_ptr[rc != 0]; + + if (tmp) eob = i; + } + } + *eob_ptr = eob + 1; +} + +#if CONFIG_VP9_HIGHBITDEPTH +void vpx_highbd_quantize_b_c(const tran_low_t *coeff_ptr, intptr_t n_coeffs, + int skip_block, const int16_t *zbin_ptr, + const int16_t *round_ptr, const int16_t *quant_ptr, + const int16_t *quant_shift_ptr, + tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr, + const int16_t *dequant_ptr, uint16_t *eob_ptr, + const int16_t *scan, const int16_t *iscan) { + int i, non_zero_count = (int)n_coeffs, eob = -1; + const int zbins[2] = { zbin_ptr[0], zbin_ptr[1] }; + const int nzbins[2] = { zbins[0] * -1, zbins[1] * -1 }; + (void)iscan; + (void)skip_block; + assert(!skip_block); + + memset(qcoeff_ptr, 0, n_coeffs * sizeof(*qcoeff_ptr)); + memset(dqcoeff_ptr, 0, n_coeffs * sizeof(*dqcoeff_ptr)); + + // Pre-scan pass + for (i = (int)n_coeffs - 1; i >= 0; i--) { + const int rc = scan[i]; + const int coeff = coeff_ptr[rc]; + + if (coeff < zbins[rc != 0] && coeff > nzbins[rc != 0]) + non_zero_count--; + else + break; + } + + // Quantization pass: All coefficients with index >= zero_flag are + // skippable. Note: zero_flag can be zero. + for (i = 0; i < non_zero_count; i++) { + const int rc = scan[i]; + const int coeff = coeff_ptr[rc]; + const int coeff_sign = (coeff >> 31); + const int abs_coeff = (coeff ^ coeff_sign) - coeff_sign; + + if (abs_coeff >= zbins[rc != 0]) { + const int64_t tmp1 = abs_coeff + round_ptr[rc != 0]; + const int64_t tmp2 = ((tmp1 * quant_ptr[rc != 0]) >> 16) + tmp1; + const int abs_qcoeff = (int)((tmp2 * quant_shift_ptr[rc != 0]) >> 16); + qcoeff_ptr[rc] = (tran_low_t)((abs_qcoeff ^ coeff_sign) - coeff_sign); + dqcoeff_ptr[rc] = qcoeff_ptr[rc] * dequant_ptr[rc != 0]; + if (abs_qcoeff) eob = i; + } + } + *eob_ptr = eob + 1; +} +#endif + +void vpx_quantize_b_32x32_c(const tran_low_t *coeff_ptr, intptr_t n_coeffs, + int skip_block, const int16_t *zbin_ptr, + const int16_t *round_ptr, const int16_t *quant_ptr, + const int16_t *quant_shift_ptr, + tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr, + const int16_t *dequant_ptr, uint16_t *eob_ptr, + const int16_t *scan, const int16_t *iscan) { + const int zbins[2] = { ROUND_POWER_OF_TWO(zbin_ptr[0], 1), + ROUND_POWER_OF_TWO(zbin_ptr[1], 1) }; + const int nzbins[2] = { zbins[0] * -1, zbins[1] * -1 }; + + int idx = 0; + int idx_arr[1024]; + int i, eob = -1; + (void)iscan; + (void)skip_block; + assert(!skip_block); + + memset(qcoeff_ptr, 0, n_coeffs * sizeof(*qcoeff_ptr)); + memset(dqcoeff_ptr, 0, n_coeffs * sizeof(*dqcoeff_ptr)); + + // Pre-scan pass + for (i = 0; i < n_coeffs; i++) { + const int rc = scan[i]; + const int coeff = coeff_ptr[rc]; + + // If the coefficient is out of the base ZBIN range, keep it for + // quantization. + if (coeff >= zbins[rc != 0] || coeff <= nzbins[rc != 0]) idx_arr[idx++] = i; + } + + // Quantization pass: only process the coefficients selected in + // pre-scan pass. Note: idx can be zero. + for (i = 0; i < idx; i++) { + const int rc = scan[idx_arr[i]]; + const int coeff = coeff_ptr[rc]; + const int coeff_sign = (coeff >> 31); + int tmp; + int abs_coeff = (coeff ^ coeff_sign) - coeff_sign; + abs_coeff += ROUND_POWER_OF_TWO(round_ptr[rc != 0], 1); + abs_coeff = clamp(abs_coeff, INT16_MIN, INT16_MAX); + tmp = ((((abs_coeff * quant_ptr[rc != 0]) >> 16) + abs_coeff) * + quant_shift_ptr[rc != 0]) >> + 15; + + qcoeff_ptr[rc] = (tmp ^ coeff_sign) - coeff_sign; + dqcoeff_ptr[rc] = qcoeff_ptr[rc] * dequant_ptr[rc != 0] / 2; + + if (tmp) eob = idx_arr[i]; + } + *eob_ptr = eob + 1; +} + +#if CONFIG_VP9_HIGHBITDEPTH +void vpx_highbd_quantize_b_32x32_c( + const tran_low_t *coeff_ptr, intptr_t n_coeffs, int skip_block, + const int16_t *zbin_ptr, const int16_t *round_ptr, const int16_t *quant_ptr, + const int16_t *quant_shift_ptr, tran_low_t *qcoeff_ptr, + tran_low_t *dqcoeff_ptr, const int16_t *dequant_ptr, uint16_t *eob_ptr, + const int16_t *scan, const int16_t *iscan) { + const int zbins[2] = { ROUND_POWER_OF_TWO(zbin_ptr[0], 1), + ROUND_POWER_OF_TWO(zbin_ptr[1], 1) }; + const int nzbins[2] = { zbins[0] * -1, zbins[1] * -1 }; + + int idx = 0; + int idx_arr[1024]; + int i, eob = -1; + (void)iscan; + (void)skip_block; + assert(!skip_block); + + memset(qcoeff_ptr, 0, n_coeffs * sizeof(*qcoeff_ptr)); + memset(dqcoeff_ptr, 0, n_coeffs * sizeof(*dqcoeff_ptr)); + + // Pre-scan pass + for (i = 0; i < n_coeffs; i++) { + const int rc = scan[i]; + const int coeff = coeff_ptr[rc]; + + // If the coefficient is out of the base ZBIN range, keep it for + // quantization. + if (coeff >= zbins[rc != 0] || coeff <= nzbins[rc != 0]) idx_arr[idx++] = i; + } + + // Quantization pass: only process the coefficients selected in + // pre-scan pass. Note: idx can be zero. + for (i = 0; i < idx; i++) { + const int rc = scan[idx_arr[i]]; + const int coeff = coeff_ptr[rc]; + const int coeff_sign = (coeff >> 31); + const int abs_coeff = (coeff ^ coeff_sign) - coeff_sign; + const int64_t tmp1 = abs_coeff + ROUND_POWER_OF_TWO(round_ptr[rc != 0], 1); + const int64_t tmp2 = ((tmp1 * quant_ptr[rc != 0]) >> 16) + tmp1; + const int abs_qcoeff = (int)((tmp2 * quant_shift_ptr[rc != 0]) >> 15); + qcoeff_ptr[rc] = (tran_low_t)((abs_qcoeff ^ coeff_sign) - coeff_sign); + dqcoeff_ptr[rc] = qcoeff_ptr[rc] * dequant_ptr[rc != 0] / 2; + if (abs_qcoeff) eob = idx_arr[i]; + } + *eob_ptr = eob + 1; +} +#endif diff --git a/vpx_dsp/quantize.h b/vpx_dsp/quantize.h new file mode 100644 index 0000000..e132845 --- /dev/null +++ b/vpx_dsp/quantize.h @@ -0,0 +1,48 @@ +/* + * Copyright (c) 2015 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VPX_DSP_QUANTIZE_H_ +#define VPX_DSP_QUANTIZE_H_ + +#include "./vpx_config.h" +#include "vpx_dsp/vpx_dsp_common.h" + +#ifdef __cplusplus +extern "C" { +#endif + +void vpx_quantize_dc(const tran_low_t *coeff_ptr, int n_coeffs, int skip_block, + const int16_t *round_ptr, const int16_t quant_ptr, + tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr, + const int16_t dequant_ptr, uint16_t *eob_ptr); +void vpx_quantize_dc_32x32(const tran_low_t *coeff_ptr, int skip_block, + const int16_t *round_ptr, const int16_t quant_ptr, + tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr, + const int16_t dequant_ptr, uint16_t *eob_ptr); + +#if CONFIG_VP9_HIGHBITDEPTH +void vpx_highbd_quantize_dc(const tran_low_t *coeff_ptr, int n_coeffs, + int skip_block, const int16_t *round_ptr, + const int16_t quant_ptr, tran_low_t *qcoeff_ptr, + tran_low_t *dqcoeff_ptr, const int16_t dequant_ptr, + uint16_t *eob_ptr); +void vpx_highbd_quantize_dc_32x32(const tran_low_t *coeff_ptr, int skip_block, + const int16_t *round_ptr, + const int16_t quant_ptr, + tran_low_t *qcoeff_ptr, + tran_low_t *dqcoeff_ptr, + const int16_t dequant_ptr, uint16_t *eob_ptr); +#endif + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VPX_DSP_QUANTIZE_H_ diff --git a/vpx_dsp/sad.c b/vpx_dsp/sad.c new file mode 100644 index 0000000..18b6dc6 --- /dev/null +++ b/vpx_dsp/sad.c @@ -0,0 +1,245 @@ +/* + * Copyright (c) 2015 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include + +#include "./vpx_config.h" +#include "./vpx_dsp_rtcd.h" + +#include "vpx/vpx_integer.h" +#include "vpx_ports/mem.h" + +/* Sum the difference between every corresponding element of the buffers. */ +static INLINE unsigned int sad(const uint8_t *a, int a_stride, const uint8_t *b, + int b_stride, int width, int height) { + int y, x; + unsigned int sad = 0; + + for (y = 0; y < height; y++) { + for (x = 0; x < width; x++) sad += abs(a[x] - b[x]); + + a += a_stride; + b += b_stride; + } + return sad; +} + +#define sadMxN(m, n) \ + unsigned int vpx_sad##m##x##n##_c(const uint8_t *src, int src_stride, \ + const uint8_t *ref, int ref_stride) { \ + return sad(src, src_stride, ref, ref_stride, m, n); \ + } \ + unsigned int vpx_sad##m##x##n##_avg_c(const uint8_t *src, int src_stride, \ + const uint8_t *ref, int ref_stride, \ + const uint8_t *second_pred) { \ + DECLARE_ALIGNED(16, uint8_t, comp_pred[m * n]); \ + vpx_comp_avg_pred_c(comp_pred, second_pred, m, n, ref, ref_stride); \ + return sad(src, src_stride, comp_pred, m, m, n); \ + } + +// depending on call sites, pass **ref_array to avoid & in subsequent call and +// de-dup with 4D below. +#define sadMxNxK(m, n, k) \ + void vpx_sad##m##x##n##x##k##_c(const uint8_t *src, int src_stride, \ + const uint8_t *ref_array, int ref_stride, \ + uint32_t *sad_array) { \ + int i; \ + for (i = 0; i < k; ++i) \ + sad_array[i] = \ + vpx_sad##m##x##n##_c(src, src_stride, &ref_array[i], ref_stride); \ + } + +// This appears to be equivalent to the above when k == 4 and refs is const +#define sadMxNx4D(m, n) \ + void vpx_sad##m##x##n##x4d_c(const uint8_t *src, int src_stride, \ + const uint8_t *const ref_array[], \ + int ref_stride, uint32_t *sad_array) { \ + int i; \ + for (i = 0; i < 4; ++i) \ + sad_array[i] = \ + vpx_sad##m##x##n##_c(src, src_stride, ref_array[i], ref_stride); \ + } + +/* clang-format off */ +// 64x64 +sadMxN(64, 64) +sadMxNx4D(64, 64) + +// 64x32 +sadMxN(64, 32) +sadMxNx4D(64, 32) + +// 32x64 +sadMxN(32, 64) +sadMxNx4D(32, 64) + +// 32x32 +sadMxN(32, 32) +sadMxNx4D(32, 32) + +// 32x16 +sadMxN(32, 16) +sadMxNx4D(32, 16) + +// 16x32 +sadMxN(16, 32) +sadMxNx4D(16, 32) + +// 16x16 +sadMxN(16, 16) +sadMxNxK(16, 16, 3) +sadMxNxK(16, 16, 8) +sadMxNx4D(16, 16) + +// 16x8 +sadMxN(16, 8) +sadMxNxK(16, 8, 3) +sadMxNxK(16, 8, 8) +sadMxNx4D(16, 8) + +// 8x16 +sadMxN(8, 16) +sadMxNxK(8, 16, 3) +sadMxNxK(8, 16, 8) +sadMxNx4D(8, 16) + +// 8x8 +sadMxN(8, 8) +sadMxNxK(8, 8, 3) +sadMxNxK(8, 8, 8) +sadMxNx4D(8, 8) + +// 8x4 +sadMxN(8, 4) +sadMxNx4D(8, 4) + +// 4x8 +sadMxN(4, 8) +sadMxNx4D(4, 8) + +// 4x4 +sadMxN(4, 4) +sadMxNxK(4, 4, 3) +sadMxNxK(4, 4, 8) +sadMxNx4D(4, 4) +/* clang-format on */ + +#if CONFIG_VP9_HIGHBITDEPTH + static INLINE + unsigned int highbd_sad(const uint8_t *a8, int a_stride, const uint8_t *b8, + int b_stride, int width, int height) { + int y, x; + unsigned int sad = 0; + const uint16_t *a = CONVERT_TO_SHORTPTR(a8); + const uint16_t *b = CONVERT_TO_SHORTPTR(b8); + for (y = 0; y < height; y++) { + for (x = 0; x < width; x++) sad += abs(a[x] - b[x]); + + a += a_stride; + b += b_stride; + } + return sad; +} + +static INLINE unsigned int highbd_sadb(const uint8_t *a8, int a_stride, + const uint16_t *b, int b_stride, + int width, int height) { + int y, x; + unsigned int sad = 0; + const uint16_t *a = CONVERT_TO_SHORTPTR(a8); + for (y = 0; y < height; y++) { + for (x = 0; x < width; x++) sad += abs(a[x] - b[x]); + + a += a_stride; + b += b_stride; + } + return sad; +} + +#define highbd_sadMxN(m, n) \ + unsigned int vpx_highbd_sad##m##x##n##_c(const uint8_t *src, int src_stride, \ + const uint8_t *ref, \ + int ref_stride) { \ + return highbd_sad(src, src_stride, ref, ref_stride, m, n); \ + } \ + unsigned int vpx_highbd_sad##m##x##n##_avg_c( \ + const uint8_t *src, int src_stride, const uint8_t *ref, int ref_stride, \ + const uint8_t *second_pred) { \ + DECLARE_ALIGNED(16, uint16_t, comp_pred[m * n]); \ + vpx_highbd_comp_avg_pred_c(comp_pred, second_pred, m, n, ref, ref_stride); \ + return highbd_sadb(src, src_stride, comp_pred, m, m, n); \ + } + +#define highbd_sadMxNx4D(m, n) \ + void vpx_highbd_sad##m##x##n##x4d_c(const uint8_t *src, int src_stride, \ + const uint8_t *const ref_array[], \ + int ref_stride, uint32_t *sad_array) { \ + int i; \ + for (i = 0; i < 4; ++i) { \ + sad_array[i] = vpx_highbd_sad##m##x##n##_c(src, src_stride, \ + ref_array[i], ref_stride); \ + } \ + } + +/* clang-format off */ +// 64x64 +highbd_sadMxN(64, 64) +highbd_sadMxNx4D(64, 64) + +// 64x32 +highbd_sadMxN(64, 32) +highbd_sadMxNx4D(64, 32) + +// 32x64 +highbd_sadMxN(32, 64) +highbd_sadMxNx4D(32, 64) + +// 32x32 +highbd_sadMxN(32, 32) +highbd_sadMxNx4D(32, 32) + +// 32x16 +highbd_sadMxN(32, 16) +highbd_sadMxNx4D(32, 16) + +// 16x32 +highbd_sadMxN(16, 32) +highbd_sadMxNx4D(16, 32) + +// 16x16 +highbd_sadMxN(16, 16) +highbd_sadMxNx4D(16, 16) + +// 16x8 +highbd_sadMxN(16, 8) +highbd_sadMxNx4D(16, 8) + +// 8x16 +highbd_sadMxN(8, 16) +highbd_sadMxNx4D(8, 16) + +// 8x8 +highbd_sadMxN(8, 8) +highbd_sadMxNx4D(8, 8) + +// 8x4 +highbd_sadMxN(8, 4) +highbd_sadMxNx4D(8, 4) + +// 4x8 +highbd_sadMxN(4, 8) +highbd_sadMxNx4D(4, 8) + +// 4x4 +highbd_sadMxN(4, 4) +highbd_sadMxNx4D(4, 4) +/* clang-format on */ + +#endif // CONFIG_VP9_HIGHBITDEPTH diff --git a/vpx_dsp/skin_detection.c b/vpx_dsp/skin_detection.c new file mode 100644 index 0000000..bbbb6c3 --- /dev/null +++ b/vpx_dsp/skin_detection.c @@ -0,0 +1,79 @@ +/* + * Copyright (c) 2017 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "vpx_dsp/skin_detection.h" + +#define MODEL_MODE 1 + +// Fixed-point skin color model parameters. +static const int skin_mean[5][2] = { { 7463, 9614 }, + { 6400, 10240 }, + { 7040, 10240 }, + { 8320, 9280 }, + { 6800, 9614 } }; +static const int skin_inv_cov[4] = { 4107, 1663, 1663, 2157 }; // q16 +static const int skin_threshold[6] = { 1570636, 1400000, 800000, + 800000, 800000, 800000 }; // q18 +// Thresholds on luminance. +static const int y_low = 40; +static const int y_high = 220; + +// Evaluates the Mahalanobis distance measure for the input CbCr values. +static int vpx_evaluate_skin_color_difference(const int cb, const int cr, + const int idx) { + const int cb_q6 = cb << 6; + const int cr_q6 = cr << 6; + const int cb_diff_q12 = + (cb_q6 - skin_mean[idx][0]) * (cb_q6 - skin_mean[idx][0]); + const int cbcr_diff_q12 = + (cb_q6 - skin_mean[idx][0]) * (cr_q6 - skin_mean[idx][1]); + const int cr_diff_q12 = + (cr_q6 - skin_mean[idx][1]) * (cr_q6 - skin_mean[idx][1]); + const int cb_diff_q2 = (cb_diff_q12 + (1 << 9)) >> 10; + const int cbcr_diff_q2 = (cbcr_diff_q12 + (1 << 9)) >> 10; + const int cr_diff_q2 = (cr_diff_q12 + (1 << 9)) >> 10; + const int skin_diff = + skin_inv_cov[0] * cb_diff_q2 + skin_inv_cov[1] * cbcr_diff_q2 + + skin_inv_cov[2] * cbcr_diff_q2 + skin_inv_cov[3] * cr_diff_q2; + return skin_diff; +} + +// Checks if the input yCbCr values corresponds to skin color. +int vpx_skin_pixel(const int y, const int cb, const int cr, int motion) { + if (y < y_low || y > y_high) { + return 0; + } else if (MODEL_MODE == 0) { + return (vpx_evaluate_skin_color_difference(cb, cr, 0) < skin_threshold[0]); + } else { + int i = 0; + // Exit on grey. + if (cb == 128 && cr == 128) return 0; + // Exit on very strong cb. + if (cb > 150 && cr < 110) return 0; + for (; i < 5; ++i) { + int skin_color_diff = vpx_evaluate_skin_color_difference(cb, cr, i); + if (skin_color_diff < skin_threshold[i + 1]) { + if (y < 60 && skin_color_diff > 3 * (skin_threshold[i + 1] >> 2)) { + return 0; + } else if (motion == 0 && + skin_color_diff > (skin_threshold[i + 1] >> 1)) { + return 0; + } else { + return 1; + } + } + // Exit if difference is much large than the threshold. + if (skin_color_diff > (skin_threshold[i + 1] << 3)) { + return 0; + } + } + return 0; + } +} diff --git a/vpx_dsp/skin_detection.h b/vpx_dsp/skin_detection.h new file mode 100644 index 0000000..a2e99ba --- /dev/null +++ b/vpx_dsp/skin_detection.h @@ -0,0 +1,24 @@ +/* + * Copyright (c) 2017 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VPX_DSP_SKIN_DETECTION_H_ +#define VPX_DSP_SKIN_DETECTION_H_ + +#ifdef __cplusplus +extern "C" { +#endif + +int vpx_skin_pixel(const int y, const int cb, const int cr, int motion); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VPX_DSP_SKIN_DETECTION_H_ diff --git a/vpx_dsp/ssim.c b/vpx_dsp/ssim.c new file mode 100644 index 0000000..7a29bd2 --- /dev/null +++ b/vpx_dsp/ssim.c @@ -0,0 +1,461 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include +#include "./vpx_dsp_rtcd.h" +#include "vpx_dsp/ssim.h" +#include "vpx_ports/mem.h" +#include "vpx_ports/system_state.h" + +void vpx_ssim_parms_16x16_c(const uint8_t *s, int sp, const uint8_t *r, int rp, + uint32_t *sum_s, uint32_t *sum_r, + uint32_t *sum_sq_s, uint32_t *sum_sq_r, + uint32_t *sum_sxr) { + int i, j; + for (i = 0; i < 16; i++, s += sp, r += rp) { + for (j = 0; j < 16; j++) { + *sum_s += s[j]; + *sum_r += r[j]; + *sum_sq_s += s[j] * s[j]; + *sum_sq_r += r[j] * r[j]; + *sum_sxr += s[j] * r[j]; + } + } +} +void vpx_ssim_parms_8x8_c(const uint8_t *s, int sp, const uint8_t *r, int rp, + uint32_t *sum_s, uint32_t *sum_r, uint32_t *sum_sq_s, + uint32_t *sum_sq_r, uint32_t *sum_sxr) { + int i, j; + for (i = 0; i < 8; i++, s += sp, r += rp) { + for (j = 0; j < 8; j++) { + *sum_s += s[j]; + *sum_r += r[j]; + *sum_sq_s += s[j] * s[j]; + *sum_sq_r += r[j] * r[j]; + *sum_sxr += s[j] * r[j]; + } + } +} + +#if CONFIG_VP9_HIGHBITDEPTH +void vpx_highbd_ssim_parms_8x8_c(const uint16_t *s, int sp, const uint16_t *r, + int rp, uint32_t *sum_s, uint32_t *sum_r, + uint32_t *sum_sq_s, uint32_t *sum_sq_r, + uint32_t *sum_sxr) { + int i, j; + for (i = 0; i < 8; i++, s += sp, r += rp) { + for (j = 0; j < 8; j++) { + *sum_s += s[j]; + *sum_r += r[j]; + *sum_sq_s += s[j] * s[j]; + *sum_sq_r += r[j] * r[j]; + *sum_sxr += s[j] * r[j]; + } + } +} +#endif // CONFIG_VP9_HIGHBITDEPTH + +static const int64_t cc1 = 26634; // (64^2*(.01*255)^2 +static const int64_t cc2 = 239708; // (64^2*(.03*255)^2 +static const int64_t cc1_10 = 428658; // (64^2*(.01*1023)^2 +static const int64_t cc2_10 = 3857925; // (64^2*(.03*1023)^2 +static const int64_t cc1_12 = 6868593; // (64^2*(.01*4095)^2 +static const int64_t cc2_12 = 61817334; // (64^2*(.03*4095)^2 + +static double similarity(uint32_t sum_s, uint32_t sum_r, uint32_t sum_sq_s, + uint32_t sum_sq_r, uint32_t sum_sxr, int count, + uint32_t bd) { + int64_t ssim_n, ssim_d; + int64_t c1, c2; + if (bd == 8) { + // scale the constants by number of pixels + c1 = (cc1 * count * count) >> 12; + c2 = (cc2 * count * count) >> 12; + } else if (bd == 10) { + c1 = (cc1_10 * count * count) >> 12; + c2 = (cc2_10 * count * count) >> 12; + } else if (bd == 12) { + c1 = (cc1_12 * count * count) >> 12; + c2 = (cc2_12 * count * count) >> 12; + } else { + c1 = c2 = 0; + assert(0); + } + + ssim_n = (2 * sum_s * sum_r + c1) * + ((int64_t)2 * count * sum_sxr - (int64_t)2 * sum_s * sum_r + c2); + + ssim_d = (sum_s * sum_s + sum_r * sum_r + c1) * + ((int64_t)count * sum_sq_s - (int64_t)sum_s * sum_s + + (int64_t)count * sum_sq_r - (int64_t)sum_r * sum_r + c2); + + return ssim_n * 1.0 / ssim_d; +} + +static double ssim_8x8(const uint8_t *s, int sp, const uint8_t *r, int rp) { + uint32_t sum_s = 0, sum_r = 0, sum_sq_s = 0, sum_sq_r = 0, sum_sxr = 0; + vpx_ssim_parms_8x8(s, sp, r, rp, &sum_s, &sum_r, &sum_sq_s, &sum_sq_r, + &sum_sxr); + return similarity(sum_s, sum_r, sum_sq_s, sum_sq_r, sum_sxr, 64, 8); +} + +#if CONFIG_VP9_HIGHBITDEPTH +static double highbd_ssim_8x8(const uint16_t *s, int sp, const uint16_t *r, + int rp, uint32_t bd, uint32_t shift) { + uint32_t sum_s = 0, sum_r = 0, sum_sq_s = 0, sum_sq_r = 0, sum_sxr = 0; + vpx_highbd_ssim_parms_8x8(s, sp, r, rp, &sum_s, &sum_r, &sum_sq_s, &sum_sq_r, + &sum_sxr); + return similarity(sum_s >> shift, sum_r >> shift, sum_sq_s >> (2 * shift), + sum_sq_r >> (2 * shift), sum_sxr >> (2 * shift), 64, bd); +} +#endif // CONFIG_VP9_HIGHBITDEPTH + +// We are using a 8x8 moving window with starting location of each 8x8 window +// on the 4x4 pixel grid. Such arrangement allows the windows to overlap +// block boundaries to penalize blocking artifacts. +static double vpx_ssim2(const uint8_t *img1, const uint8_t *img2, + int stride_img1, int stride_img2, int width, + int height) { + int i, j; + int samples = 0; + double ssim_total = 0; + + // sample point start with each 4x4 location + for (i = 0; i <= height - 8; + i += 4, img1 += stride_img1 * 4, img2 += stride_img2 * 4) { + for (j = 0; j <= width - 8; j += 4) { + double v = ssim_8x8(img1 + j, stride_img1, img2 + j, stride_img2); + ssim_total += v; + samples++; + } + } + ssim_total /= samples; + return ssim_total; +} + +#if CONFIG_VP9_HIGHBITDEPTH +static double vpx_highbd_ssim2(const uint8_t *img1, const uint8_t *img2, + int stride_img1, int stride_img2, int width, + int height, uint32_t bd, uint32_t shift) { + int i, j; + int samples = 0; + double ssim_total = 0; + + // sample point start with each 4x4 location + for (i = 0; i <= height - 8; + i += 4, img1 += stride_img1 * 4, img2 += stride_img2 * 4) { + for (j = 0; j <= width - 8; j += 4) { + double v = highbd_ssim_8x8(CONVERT_TO_SHORTPTR(img1 + j), stride_img1, + CONVERT_TO_SHORTPTR(img2 + j), stride_img2, bd, + shift); + ssim_total += v; + samples++; + } + } + ssim_total /= samples; + return ssim_total; +} +#endif // CONFIG_VP9_HIGHBITDEPTH + +double vpx_calc_ssim(const YV12_BUFFER_CONFIG *source, + const YV12_BUFFER_CONFIG *dest, double *weight) { + double a, b, c; + double ssimv; + + a = vpx_ssim2(source->y_buffer, dest->y_buffer, source->y_stride, + dest->y_stride, source->y_crop_width, source->y_crop_height); + + b = vpx_ssim2(source->u_buffer, dest->u_buffer, source->uv_stride, + dest->uv_stride, source->uv_crop_width, source->uv_crop_height); + + c = vpx_ssim2(source->v_buffer, dest->v_buffer, source->uv_stride, + dest->uv_stride, source->uv_crop_width, source->uv_crop_height); + + ssimv = a * .8 + .1 * (b + c); + + *weight = 1; + + return ssimv; +} + +// traditional ssim as per: http://en.wikipedia.org/wiki/Structural_similarity +// +// Re working out the math -> +// +// ssim(x,y) = (2*mean(x)*mean(y) + c1)*(2*cov(x,y)+c2) / +// ((mean(x)^2+mean(y)^2+c1)*(var(x)+var(y)+c2)) +// +// mean(x) = sum(x) / n +// +// cov(x,y) = (n*sum(xi*yi)-sum(x)*sum(y))/(n*n) +// +// var(x) = (n*sum(xi*xi)-sum(xi)*sum(xi))/(n*n) +// +// ssim(x,y) = +// (2*sum(x)*sum(y)/(n*n) + c1)*(2*(n*sum(xi*yi)-sum(x)*sum(y))/(n*n)+c2) / +// (((sum(x)*sum(x)+sum(y)*sum(y))/(n*n) +c1) * +// ((n*sum(xi*xi) - sum(xi)*sum(xi))/(n*n)+ +// (n*sum(yi*yi) - sum(yi)*sum(yi))/(n*n)+c2))) +// +// factoring out n*n +// +// ssim(x,y) = +// (2*sum(x)*sum(y) + n*n*c1)*(2*(n*sum(xi*yi)-sum(x)*sum(y))+n*n*c2) / +// (((sum(x)*sum(x)+sum(y)*sum(y)) + n*n*c1) * +// (n*sum(xi*xi)-sum(xi)*sum(xi)+n*sum(yi*yi)-sum(yi)*sum(yi)+n*n*c2)) +// +// Replace c1 with n*n * c1 for the final step that leads to this code: +// The final step scales by 12 bits so we don't lose precision in the constants. + +static double ssimv_similarity(const Ssimv *sv, int64_t n) { + // Scale the constants by number of pixels. + const int64_t c1 = (cc1 * n * n) >> 12; + const int64_t c2 = (cc2 * n * n) >> 12; + + const double l = 1.0 * (2 * sv->sum_s * sv->sum_r + c1) / + (sv->sum_s * sv->sum_s + sv->sum_r * sv->sum_r + c1); + + // Since these variables are unsigned sums, convert to double so + // math is done in double arithmetic. + const double v = (2.0 * n * sv->sum_sxr - 2 * sv->sum_s * sv->sum_r + c2) / + (n * sv->sum_sq_s - sv->sum_s * sv->sum_s + + n * sv->sum_sq_r - sv->sum_r * sv->sum_r + c2); + + return l * v; +} + +// The first term of the ssim metric is a luminance factor. +// +// (2*mean(x)*mean(y) + c1)/ (mean(x)^2+mean(y)^2+c1) +// +// This luminance factor is super sensitive to the dark side of luminance +// values and completely insensitive on the white side. check out 2 sets +// (1,3) and (250,252) the term gives ( 2*1*3/(1+9) = .60 +// 2*250*252/ (250^2+252^2) => .99999997 +// +// As a result in this tweaked version of the calculation in which the +// luminance is taken as percentage off from peak possible. +// +// 255 * 255 - (sum_s - sum_r) / count * (sum_s - sum_r) / count +// +static double ssimv_similarity2(const Ssimv *sv, int64_t n) { + // Scale the constants by number of pixels. + const int64_t c1 = (cc1 * n * n) >> 12; + const int64_t c2 = (cc2 * n * n) >> 12; + + const double mean_diff = (1.0 * sv->sum_s - sv->sum_r) / n; + const double l = (255 * 255 - mean_diff * mean_diff + c1) / (255 * 255 + c1); + + // Since these variables are unsigned, sums convert to double so + // math is done in double arithmetic. + const double v = (2.0 * n * sv->sum_sxr - 2 * sv->sum_s * sv->sum_r + c2) / + (n * sv->sum_sq_s - sv->sum_s * sv->sum_s + + n * sv->sum_sq_r - sv->sum_r * sv->sum_r + c2); + + return l * v; +} +static void ssimv_parms(uint8_t *img1, int img1_pitch, uint8_t *img2, + int img2_pitch, Ssimv *sv) { + vpx_ssim_parms_8x8(img1, img1_pitch, img2, img2_pitch, &sv->sum_s, &sv->sum_r, + &sv->sum_sq_s, &sv->sum_sq_r, &sv->sum_sxr); +} + +double vpx_get_ssim_metrics(uint8_t *img1, int img1_pitch, uint8_t *img2, + int img2_pitch, int width, int height, Ssimv *sv2, + Metrics *m, int do_inconsistency) { + double dssim_total = 0; + double ssim_total = 0; + double ssim2_total = 0; + double inconsistency_total = 0; + int i, j; + int c = 0; + double norm; + double old_ssim_total = 0; + vpx_clear_system_state(); + // We can sample points as frequently as we like start with 1 per 4x4. + for (i = 0; i < height; + i += 4, img1 += img1_pitch * 4, img2 += img2_pitch * 4) { + for (j = 0; j < width; j += 4, ++c) { + Ssimv sv = { 0 }; + double ssim; + double ssim2; + double dssim; + uint32_t var_new; + uint32_t var_old; + uint32_t mean_new; + uint32_t mean_old; + double ssim_new; + double ssim_old; + + // Not sure there's a great way to handle the edge pixels + // in ssim when using a window. Seems biased against edge pixels + // however you handle this. This uses only samples that are + // fully in the frame. + if (j + 8 <= width && i + 8 <= height) { + ssimv_parms(img1 + j, img1_pitch, img2 + j, img2_pitch, &sv); + } + + ssim = ssimv_similarity(&sv, 64); + ssim2 = ssimv_similarity2(&sv, 64); + + sv.ssim = ssim2; + + // dssim is calculated to use as an actual error metric and + // is scaled up to the same range as sum square error. + // Since we are subsampling every 16th point maybe this should be + // *16 ? + dssim = 255 * 255 * (1 - ssim2) / 2; + + // Here I introduce a new error metric: consistency-weighted + // SSIM-inconsistency. This metric isolates frames where the + // SSIM 'suddenly' changes, e.g. if one frame in every 8 is much + // sharper or blurrier than the others. Higher values indicate a + // temporally inconsistent SSIM. There are two ideas at work: + // + // 1) 'SSIM-inconsistency': the total inconsistency value + // reflects how much SSIM values are changing between this + // source / reference frame pair and the previous pair. + // + // 2) 'consistency-weighted': weights de-emphasize areas in the + // frame where the scene content has changed. Changes in scene + // content are detected via changes in local variance and local + // mean. + // + // Thus the overall measure reflects how inconsistent the SSIM + // values are, over consistent regions of the frame. + // + // The metric has three terms: + // + // term 1 -> uses change in scene Variance to weight error score + // 2 * var(Fi)*var(Fi-1) / (var(Fi)^2+var(Fi-1)^2) + // larger changes from one frame to the next mean we care + // less about consistency. + // + // term 2 -> uses change in local scene luminance to weight error + // 2 * avg(Fi)*avg(Fi-1) / (avg(Fi)^2+avg(Fi-1)^2) + // larger changes from one frame to the next mean we care + // less about consistency. + // + // term3 -> measures inconsistency in ssim scores between frames + // 1 - ( 2 * ssim(Fi)*ssim(Fi-1)/(ssim(Fi)^2+sssim(Fi-1)^2). + // + // This term compares the ssim score for the same location in 2 + // subsequent frames. + var_new = sv.sum_sq_s - sv.sum_s * sv.sum_s / 64; + var_old = sv2[c].sum_sq_s - sv2[c].sum_s * sv2[c].sum_s / 64; + mean_new = sv.sum_s; + mean_old = sv2[c].sum_s; + ssim_new = sv.ssim; + ssim_old = sv2[c].ssim; + + if (do_inconsistency) { + // We do the metric once for every 4x4 block in the image. Since + // we are scaling the error to SSE for use in a psnr calculation + // 1.0 = 4x4x255x255 the worst error we can possibly have. + static const double kScaling = 4. * 4 * 255 * 255; + + // The constants have to be non 0 to avoid potential divide by 0 + // issues other than that they affect kind of a weighting between + // the terms. No testing of what the right terms should be has been + // done. + static const double c1 = 1, c2 = 1, c3 = 1; + + // This measures how much consistent variance is in two consecutive + // source frames. 1.0 means they have exactly the same variance. + const double variance_term = + (2.0 * var_old * var_new + c1) / + (1.0 * var_old * var_old + 1.0 * var_new * var_new + c1); + + // This measures how consistent the local mean are between two + // consecutive frames. 1.0 means they have exactly the same mean. + const double mean_term = + (2.0 * mean_old * mean_new + c2) / + (1.0 * mean_old * mean_old + 1.0 * mean_new * mean_new + c2); + + // This measures how consistent the ssims of two + // consecutive frames is. 1.0 means they are exactly the same. + double ssim_term = + pow((2.0 * ssim_old * ssim_new + c3) / + (ssim_old * ssim_old + ssim_new * ssim_new + c3), + 5); + + double this_inconsistency; + + // Floating point math sometimes makes this > 1 by a tiny bit. + // We want the metric to scale between 0 and 1.0 so we can convert + // it to an snr scaled value. + if (ssim_term > 1) ssim_term = 1; + + // This converts the consistency metric to an inconsistency metric + // ( so we can scale it like psnr to something like sum square error. + // The reason for the variance and mean terms is the assumption that + // if there are big changes in the source we shouldn't penalize + // inconsistency in ssim scores a bit less as it will be less visible + // to the user. + this_inconsistency = (1 - ssim_term) * variance_term * mean_term; + + this_inconsistency *= kScaling; + inconsistency_total += this_inconsistency; + } + sv2[c] = sv; + ssim_total += ssim; + ssim2_total += ssim2; + dssim_total += dssim; + + old_ssim_total += ssim_old; + } + old_ssim_total += 0; + } + + norm = 1. / (width / 4) / (height / 4); + ssim_total *= norm; + ssim2_total *= norm; + m->ssim2 = ssim2_total; + m->ssim = ssim_total; + if (old_ssim_total == 0) inconsistency_total = 0; + + m->ssimc = inconsistency_total; + + m->dssim = dssim_total; + return inconsistency_total; +} + +#if CONFIG_VP9_HIGHBITDEPTH +double vpx_highbd_calc_ssim(const YV12_BUFFER_CONFIG *source, + const YV12_BUFFER_CONFIG *dest, double *weight, + uint32_t bd, uint32_t in_bd) { + double a, b, c; + double ssimv; + uint32_t shift = 0; + + assert(bd >= in_bd); + shift = bd - in_bd; + + a = vpx_highbd_ssim2(source->y_buffer, dest->y_buffer, source->y_stride, + dest->y_stride, source->y_crop_width, + source->y_crop_height, in_bd, shift); + + b = vpx_highbd_ssim2(source->u_buffer, dest->u_buffer, source->uv_stride, + dest->uv_stride, source->uv_crop_width, + source->uv_crop_height, in_bd, shift); + + c = vpx_highbd_ssim2(source->v_buffer, dest->v_buffer, source->uv_stride, + dest->uv_stride, source->uv_crop_width, + source->uv_crop_height, in_bd, shift); + + ssimv = a * .8 + .1 * (b + c); + + *weight = 1; + + return ssimv; +} + +#endif // CONFIG_VP9_HIGHBITDEPTH diff --git a/vpx_dsp/ssim.h b/vpx_dsp/ssim.h new file mode 100644 index 0000000..4f2bb1d --- /dev/null +++ b/vpx_dsp/ssim.h @@ -0,0 +1,87 @@ +/* + * Copyright (c) 2014 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VPX_DSP_SSIM_H_ +#define VPX_DSP_SSIM_H_ + +#define MAX_SSIM_DB 100.0; + +#ifdef __cplusplus +extern "C" { +#endif + +#include "./vpx_config.h" +#include "vpx_scale/yv12config.h" + +// metrics used for calculating ssim, ssim2, dssim, and ssimc +typedef struct { + // source sum ( over 8x8 region ) + uint32_t sum_s; + + // reference sum (over 8x8 region ) + uint32_t sum_r; + + // source sum squared ( over 8x8 region ) + uint32_t sum_sq_s; + + // reference sum squared (over 8x8 region ) + uint32_t sum_sq_r; + + // sum of source times reference (over 8x8 region) + uint32_t sum_sxr; + + // calculated ssim score between source and reference + double ssim; +} Ssimv; + +// metrics collected on a frame basis +typedef struct { + // ssim consistency error metric ( see code for explanation ) + double ssimc; + + // standard ssim + double ssim; + + // revised ssim ( see code for explanation) + double ssim2; + + // ssim restated as an error metric like sse + double dssim; + + // dssim converted to decibels + double dssimd; + + // ssimc converted to decibels + double ssimcd; +} Metrics; + +double vpx_get_ssim_metrics(uint8_t *img1, int img1_pitch, uint8_t *img2, + int img2_pitch, int width, int height, Ssimv *sv2, + Metrics *m, int do_inconsistency); + +double vpx_calc_ssim(const YV12_BUFFER_CONFIG *source, + const YV12_BUFFER_CONFIG *dest, double *weight); + +double vpx_calc_fastssim(const YV12_BUFFER_CONFIG *source, + const YV12_BUFFER_CONFIG *dest, double *ssim_y, + double *ssim_u, double *ssim_v, uint32_t bd, + uint32_t in_bd); + +#if CONFIG_VP9_HIGHBITDEPTH +double vpx_highbd_calc_ssim(const YV12_BUFFER_CONFIG *source, + const YV12_BUFFER_CONFIG *dest, double *weight, + uint32_t bd, uint32_t in_bd); +#endif // CONFIG_VP9_HIGHBITDEPTH + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VPX_DSP_SSIM_H_ diff --git a/vpx_dsp/subtract.c b/vpx_dsp/subtract.c new file mode 100644 index 0000000..95e7071 --- /dev/null +++ b/vpx_dsp/subtract.c @@ -0,0 +1,54 @@ +/* + * Copyright (c) 2015 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include + +#include "./vpx_config.h" +#include "./vpx_dsp_rtcd.h" + +#include "vpx/vpx_integer.h" +#include "vpx_ports/mem.h" + +void vpx_subtract_block_c(int rows, int cols, int16_t *diff, + ptrdiff_t diff_stride, const uint8_t *src, + ptrdiff_t src_stride, const uint8_t *pred, + ptrdiff_t pred_stride) { + int r, c; + + for (r = 0; r < rows; r++) { + for (c = 0; c < cols; c++) diff[c] = src[c] - pred[c]; + + diff += diff_stride; + pred += pred_stride; + src += src_stride; + } +} + +#if CONFIG_VP9_HIGHBITDEPTH +void vpx_highbd_subtract_block_c(int rows, int cols, int16_t *diff, + ptrdiff_t diff_stride, const uint8_t *src8, + ptrdiff_t src_stride, const uint8_t *pred8, + ptrdiff_t pred_stride, int bd) { + int r, c; + uint16_t *src = CONVERT_TO_SHORTPTR(src8); + uint16_t *pred = CONVERT_TO_SHORTPTR(pred8); + (void)bd; + + for (r = 0; r < rows; r++) { + for (c = 0; c < cols; c++) { + diff[c] = src[c] - pred[c]; + } + + diff += diff_stride; + pred += pred_stride; + src += src_stride; + } +} +#endif // CONFIG_VP9_HIGHBITDEPTH diff --git a/vpx_dsp/sum_squares.c b/vpx_dsp/sum_squares.c new file mode 100644 index 0000000..7c535ac --- /dev/null +++ b/vpx_dsp/sum_squares.c @@ -0,0 +1,27 @@ +/* + * Copyright (c) 2016 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "./vpx_dsp_rtcd.h" + +uint64_t vpx_sum_squares_2d_i16_c(const int16_t *src, int src_stride, + int size) { + int r, c; + uint64_t ss = 0; + + for (r = 0; r < size; r++) { + for (c = 0; c < size; c++) { + const int16_t v = src[c]; + ss += v * v; + } + src += src_stride; + } + + return ss; +} diff --git a/vpx_dsp/txfm_common.h b/vpx_dsp/txfm_common.h new file mode 100644 index 0000000..d01d708 --- /dev/null +++ b/vpx_dsp/txfm_common.h @@ -0,0 +1,66 @@ +/* + * Copyright (c) 2015 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VPX_DSP_TXFM_COMMON_H_ +#define VPX_DSP_TXFM_COMMON_H_ + +#include "vpx_dsp/vpx_dsp_common.h" + +// Constants and Macros used by all idct/dct functions +#define DCT_CONST_BITS 14 +#define DCT_CONST_ROUNDING (1 << (DCT_CONST_BITS - 1)) + +#define UNIT_QUANT_SHIFT 2 +#define UNIT_QUANT_FACTOR (1 << UNIT_QUANT_SHIFT) + +// Constants: +// for (int i = 1; i< 32; ++i) +// printf("static const int cospi_%d_64 = %.0f;\n", i, +// round(16384 * cos(i*M_PI/64))); +// Note: sin(k*Pi/64) = cos((32-k)*Pi/64) +static const tran_coef_t cospi_1_64 = 16364; +static const tran_coef_t cospi_2_64 = 16305; +static const tran_coef_t cospi_3_64 = 16207; +static const tran_coef_t cospi_4_64 = 16069; +static const tran_coef_t cospi_5_64 = 15893; +static const tran_coef_t cospi_6_64 = 15679; +static const tran_coef_t cospi_7_64 = 15426; +static const tran_coef_t cospi_8_64 = 15137; +static const tran_coef_t cospi_9_64 = 14811; +static const tran_coef_t cospi_10_64 = 14449; +static const tran_coef_t cospi_11_64 = 14053; +static const tran_coef_t cospi_12_64 = 13623; +static const tran_coef_t cospi_13_64 = 13160; +static const tran_coef_t cospi_14_64 = 12665; +static const tran_coef_t cospi_15_64 = 12140; +static const tran_coef_t cospi_16_64 = 11585; +static const tran_coef_t cospi_17_64 = 11003; +static const tran_coef_t cospi_18_64 = 10394; +static const tran_coef_t cospi_19_64 = 9760; +static const tran_coef_t cospi_20_64 = 9102; +static const tran_coef_t cospi_21_64 = 8423; +static const tran_coef_t cospi_22_64 = 7723; +static const tran_coef_t cospi_23_64 = 7005; +static const tran_coef_t cospi_24_64 = 6270; +static const tran_coef_t cospi_25_64 = 5520; +static const tran_coef_t cospi_26_64 = 4756; +static const tran_coef_t cospi_27_64 = 3981; +static const tran_coef_t cospi_28_64 = 3196; +static const tran_coef_t cospi_29_64 = 2404; +static const tran_coef_t cospi_30_64 = 1606; +static const tran_coef_t cospi_31_64 = 804; + +// 16384 * sqrt(2) * sin(kPi/9) * 2 / 3 +static const tran_coef_t sinpi_1_9 = 5283; +static const tran_coef_t sinpi_2_9 = 9929; +static const tran_coef_t sinpi_3_9 = 13377; +static const tran_coef_t sinpi_4_9 = 15212; + +#endif // VPX_DSP_TXFM_COMMON_H_ diff --git a/vpx_dsp/variance.c b/vpx_dsp/variance.c new file mode 100644 index 0000000..93bd8f3 --- /dev/null +++ b/vpx_dsp/variance.c @@ -0,0 +1,557 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "./vpx_config.h" +#include "./vpx_dsp_rtcd.h" + +#include "vpx_ports/mem.h" +#include "vpx/vpx_integer.h" + +#include "vpx_dsp/variance.h" + +static const uint8_t bilinear_filters[8][2] = { + { 128, 0 }, { 112, 16 }, { 96, 32 }, { 80, 48 }, + { 64, 64 }, { 48, 80 }, { 32, 96 }, { 16, 112 }, +}; + +uint32_t vpx_get4x4sse_cs_c(const uint8_t *a, int a_stride, const uint8_t *b, + int b_stride) { + int distortion = 0; + int r, c; + + for (r = 0; r < 4; ++r) { + for (c = 0; c < 4; ++c) { + int diff = a[c] - b[c]; + distortion += diff * diff; + } + + a += a_stride; + b += b_stride; + } + + return distortion; +} + +uint32_t vpx_get_mb_ss_c(const int16_t *a) { + unsigned int i, sum = 0; + + for (i = 0; i < 256; ++i) { + sum += a[i] * a[i]; + } + + return sum; +} + +static void variance(const uint8_t *a, int a_stride, const uint8_t *b, + int b_stride, int w, int h, uint32_t *sse, int *sum) { + int i, j; + + *sum = 0; + *sse = 0; + + for (i = 0; i < h; ++i) { + for (j = 0; j < w; ++j) { + const int diff = a[j] - b[j]; + *sum += diff; + *sse += diff * diff; + } + + a += a_stride; + b += b_stride; + } +} + +// Applies a 1-D 2-tap bilinear filter to the source block in either horizontal +// or vertical direction to produce the filtered output block. Used to implement +// the first-pass of 2-D separable filter. +// +// Produces int16_t output to retain precision for the next pass. Two filter +// taps should sum to FILTER_WEIGHT. pixel_step defines whether the filter is +// applied horizontally (pixel_step = 1) or vertically (pixel_step = stride). +// It defines the offset required to move from one input to the next. +static void var_filter_block2d_bil_first_pass(const uint8_t *a, uint16_t *b, + unsigned int src_pixels_per_line, + int pixel_step, + unsigned int output_height, + unsigned int output_width, + const uint8_t *filter) { + unsigned int i, j; + + for (i = 0; i < output_height; ++i) { + for (j = 0; j < output_width; ++j) { + b[j] = ROUND_POWER_OF_TWO( + (int)a[0] * filter[0] + (int)a[pixel_step] * filter[1], FILTER_BITS); + + ++a; + } + + a += src_pixels_per_line - output_width; + b += output_width; + } +} + +// Applies a 1-D 2-tap bilinear filter to the source block in either horizontal +// or vertical direction to produce the filtered output block. Used to implement +// the second-pass of 2-D separable filter. +// +// Requires 16-bit input as produced by filter_block2d_bil_first_pass. Two +// filter taps should sum to FILTER_WEIGHT. pixel_step defines whether the +// filter is applied horizontally (pixel_step = 1) or vertically +// (pixel_step = stride). It defines the offset required to move from one input +// to the next. Output is 8-bit. +static void var_filter_block2d_bil_second_pass(const uint16_t *a, uint8_t *b, + unsigned int src_pixels_per_line, + unsigned int pixel_step, + unsigned int output_height, + unsigned int output_width, + const uint8_t *filter) { + unsigned int i, j; + + for (i = 0; i < output_height; ++i) { + for (j = 0; j < output_width; ++j) { + b[j] = ROUND_POWER_OF_TWO( + (int)a[0] * filter[0] + (int)a[pixel_step] * filter[1], FILTER_BITS); + ++a; + } + + a += src_pixels_per_line - output_width; + b += output_width; + } +} + +#define VAR(W, H) \ + uint32_t vpx_variance##W##x##H##_c(const uint8_t *a, int a_stride, \ + const uint8_t *b, int b_stride, \ + uint32_t *sse) { \ + int sum; \ + variance(a, a_stride, b, b_stride, W, H, sse, &sum); \ + return *sse - (uint32_t)(((int64_t)sum * sum) / (W * H)); \ + } + +#define SUBPIX_VAR(W, H) \ + uint32_t vpx_sub_pixel_variance##W##x##H##_c( \ + const uint8_t *a, int a_stride, int xoffset, int yoffset, \ + const uint8_t *b, int b_stride, uint32_t *sse) { \ + uint16_t fdata3[(H + 1) * W]; \ + uint8_t temp2[H * W]; \ + \ + var_filter_block2d_bil_first_pass(a, fdata3, a_stride, 1, H + 1, W, \ + bilinear_filters[xoffset]); \ + var_filter_block2d_bil_second_pass(fdata3, temp2, W, W, H, W, \ + bilinear_filters[yoffset]); \ + \ + return vpx_variance##W##x##H##_c(temp2, W, b, b_stride, sse); \ + } + +#define SUBPIX_AVG_VAR(W, H) \ + uint32_t vpx_sub_pixel_avg_variance##W##x##H##_c( \ + const uint8_t *a, int a_stride, int xoffset, int yoffset, \ + const uint8_t *b, int b_stride, uint32_t *sse, \ + const uint8_t *second_pred) { \ + uint16_t fdata3[(H + 1) * W]; \ + uint8_t temp2[H * W]; \ + DECLARE_ALIGNED(16, uint8_t, temp3[H * W]); \ + \ + var_filter_block2d_bil_first_pass(a, fdata3, a_stride, 1, H + 1, W, \ + bilinear_filters[xoffset]); \ + var_filter_block2d_bil_second_pass(fdata3, temp2, W, W, H, W, \ + bilinear_filters[yoffset]); \ + \ + vpx_comp_avg_pred_c(temp3, second_pred, W, H, temp2, W); \ + \ + return vpx_variance##W##x##H##_c(temp3, W, b, b_stride, sse); \ + } + +/* Identical to the variance call except it takes an additional parameter, sum, + * and returns that value using pass-by-reference instead of returning + * sse - sum^2 / w*h + */ +#define GET_VAR(W, H) \ + void vpx_get##W##x##H##var_c(const uint8_t *a, int a_stride, \ + const uint8_t *b, int b_stride, uint32_t *sse, \ + int *sum) { \ + variance(a, a_stride, b, b_stride, W, H, sse, sum); \ + } + +/* Identical to the variance call except it does not calculate the + * sse - sum^2 / w*h and returns sse in addtion to modifying the passed in + * variable. + */ +#define MSE(W, H) \ + uint32_t vpx_mse##W##x##H##_c(const uint8_t *a, int a_stride, \ + const uint8_t *b, int b_stride, \ + uint32_t *sse) { \ + int sum; \ + variance(a, a_stride, b, b_stride, W, H, sse, &sum); \ + return *sse; \ + } + +/* All three forms of the variance are available in the same sizes. */ +#define VARIANCES(W, H) \ + VAR(W, H) \ + SUBPIX_VAR(W, H) \ + SUBPIX_AVG_VAR(W, H) + +VARIANCES(64, 64) +VARIANCES(64, 32) +VARIANCES(32, 64) +VARIANCES(32, 32) +VARIANCES(32, 16) +VARIANCES(16, 32) +VARIANCES(16, 16) +VARIANCES(16, 8) +VARIANCES(8, 16) +VARIANCES(8, 8) +VARIANCES(8, 4) +VARIANCES(4, 8) +VARIANCES(4, 4) + +GET_VAR(16, 16) +GET_VAR(8, 8) + +MSE(16, 16) +MSE(16, 8) +MSE(8, 16) +MSE(8, 8) + +void vpx_comp_avg_pred_c(uint8_t *comp_pred, const uint8_t *pred, int width, + int height, const uint8_t *ref, int ref_stride) { + int i, j; + + for (i = 0; i < height; ++i) { + for (j = 0; j < width; ++j) { + const int tmp = pred[j] + ref[j]; + comp_pred[j] = ROUND_POWER_OF_TWO(tmp, 1); + } + comp_pred += width; + pred += width; + ref += ref_stride; + } +} + +#if CONFIG_VP9_HIGHBITDEPTH +static void highbd_variance64(const uint8_t *a8, int a_stride, + const uint8_t *b8, int b_stride, int w, int h, + uint64_t *sse, int64_t *sum) { + int i, j; + + uint16_t *a = CONVERT_TO_SHORTPTR(a8); + uint16_t *b = CONVERT_TO_SHORTPTR(b8); + *sum = 0; + *sse = 0; + + for (i = 0; i < h; ++i) { + for (j = 0; j < w; ++j) { + const int diff = a[j] - b[j]; + *sum += diff; + *sse += diff * diff; + } + a += a_stride; + b += b_stride; + } +} + +static void highbd_8_variance(const uint8_t *a8, int a_stride, + const uint8_t *b8, int b_stride, int w, int h, + uint32_t *sse, int *sum) { + uint64_t sse_long = 0; + int64_t sum_long = 0; + highbd_variance64(a8, a_stride, b8, b_stride, w, h, &sse_long, &sum_long); + *sse = (uint32_t)sse_long; + *sum = (int)sum_long; +} + +static void highbd_10_variance(const uint8_t *a8, int a_stride, + const uint8_t *b8, int b_stride, int w, int h, + uint32_t *sse, int *sum) { + uint64_t sse_long = 0; + int64_t sum_long = 0; + highbd_variance64(a8, a_stride, b8, b_stride, w, h, &sse_long, &sum_long); + *sse = (uint32_t)ROUND_POWER_OF_TWO(sse_long, 4); + *sum = (int)ROUND_POWER_OF_TWO(sum_long, 2); +} + +static void highbd_12_variance(const uint8_t *a8, int a_stride, + const uint8_t *b8, int b_stride, int w, int h, + uint32_t *sse, int *sum) { + uint64_t sse_long = 0; + int64_t sum_long = 0; + highbd_variance64(a8, a_stride, b8, b_stride, w, h, &sse_long, &sum_long); + *sse = (uint32_t)ROUND_POWER_OF_TWO(sse_long, 8); + *sum = (int)ROUND_POWER_OF_TWO(sum_long, 4); +} + +#define HIGHBD_VAR(W, H) \ + uint32_t vpx_highbd_8_variance##W##x##H##_c(const uint8_t *a, int a_stride, \ + const uint8_t *b, int b_stride, \ + uint32_t *sse) { \ + int sum; \ + highbd_8_variance(a, a_stride, b, b_stride, W, H, sse, &sum); \ + return *sse - (uint32_t)(((int64_t)sum * sum) / (W * H)); \ + } \ + \ + uint32_t vpx_highbd_10_variance##W##x##H##_c(const uint8_t *a, int a_stride, \ + const uint8_t *b, int b_stride, \ + uint32_t *sse) { \ + int sum; \ + int64_t var; \ + highbd_10_variance(a, a_stride, b, b_stride, W, H, sse, &sum); \ + var = (int64_t)(*sse) - (((int64_t)sum * sum) / (W * H)); \ + return (var >= 0) ? (uint32_t)var : 0; \ + } \ + \ + uint32_t vpx_highbd_12_variance##W##x##H##_c(const uint8_t *a, int a_stride, \ + const uint8_t *b, int b_stride, \ + uint32_t *sse) { \ + int sum; \ + int64_t var; \ + highbd_12_variance(a, a_stride, b, b_stride, W, H, sse, &sum); \ + var = (int64_t)(*sse) - (((int64_t)sum * sum) / (W * H)); \ + return (var >= 0) ? (uint32_t)var : 0; \ + } + +#define HIGHBD_GET_VAR(S) \ + void vpx_highbd_8_get##S##x##S##var_c(const uint8_t *src, int src_stride, \ + const uint8_t *ref, int ref_stride, \ + uint32_t *sse, int *sum) { \ + highbd_8_variance(src, src_stride, ref, ref_stride, S, S, sse, sum); \ + } \ + \ + void vpx_highbd_10_get##S##x##S##var_c(const uint8_t *src, int src_stride, \ + const uint8_t *ref, int ref_stride, \ + uint32_t *sse, int *sum) { \ + highbd_10_variance(src, src_stride, ref, ref_stride, S, S, sse, sum); \ + } \ + \ + void vpx_highbd_12_get##S##x##S##var_c(const uint8_t *src, int src_stride, \ + const uint8_t *ref, int ref_stride, \ + uint32_t *sse, int *sum) { \ + highbd_12_variance(src, src_stride, ref, ref_stride, S, S, sse, sum); \ + } + +#define HIGHBD_MSE(W, H) \ + uint32_t vpx_highbd_8_mse##W##x##H##_c(const uint8_t *src, int src_stride, \ + const uint8_t *ref, int ref_stride, \ + uint32_t *sse) { \ + int sum; \ + highbd_8_variance(src, src_stride, ref, ref_stride, W, H, sse, &sum); \ + return *sse; \ + } \ + \ + uint32_t vpx_highbd_10_mse##W##x##H##_c(const uint8_t *src, int src_stride, \ + const uint8_t *ref, int ref_stride, \ + uint32_t *sse) { \ + int sum; \ + highbd_10_variance(src, src_stride, ref, ref_stride, W, H, sse, &sum); \ + return *sse; \ + } \ + \ + uint32_t vpx_highbd_12_mse##W##x##H##_c(const uint8_t *src, int src_stride, \ + const uint8_t *ref, int ref_stride, \ + uint32_t *sse) { \ + int sum; \ + highbd_12_variance(src, src_stride, ref, ref_stride, W, H, sse, &sum); \ + return *sse; \ + } + +static void highbd_var_filter_block2d_bil_first_pass( + const uint8_t *src_ptr8, uint16_t *output_ptr, + unsigned int src_pixels_per_line, int pixel_step, + unsigned int output_height, unsigned int output_width, + const uint8_t *filter) { + unsigned int i, j; + uint16_t *src_ptr = CONVERT_TO_SHORTPTR(src_ptr8); + for (i = 0; i < output_height; ++i) { + for (j = 0; j < output_width; ++j) { + output_ptr[j] = ROUND_POWER_OF_TWO( + (int)src_ptr[0] * filter[0] + (int)src_ptr[pixel_step] * filter[1], + FILTER_BITS); + + ++src_ptr; + } + + // Next row... + src_ptr += src_pixels_per_line - output_width; + output_ptr += output_width; + } +} + +static void highbd_var_filter_block2d_bil_second_pass( + const uint16_t *src_ptr, uint16_t *output_ptr, + unsigned int src_pixels_per_line, unsigned int pixel_step, + unsigned int output_height, unsigned int output_width, + const uint8_t *filter) { + unsigned int i, j; + + for (i = 0; i < output_height; ++i) { + for (j = 0; j < output_width; ++j) { + output_ptr[j] = ROUND_POWER_OF_TWO( + (int)src_ptr[0] * filter[0] + (int)src_ptr[pixel_step] * filter[1], + FILTER_BITS); + ++src_ptr; + } + + src_ptr += src_pixels_per_line - output_width; + output_ptr += output_width; + } +} + +#define HIGHBD_SUBPIX_VAR(W, H) \ + uint32_t vpx_highbd_8_sub_pixel_variance##W##x##H##_c( \ + const uint8_t *src, int src_stride, int xoffset, int yoffset, \ + const uint8_t *dst, int dst_stride, uint32_t *sse) { \ + uint16_t fdata3[(H + 1) * W]; \ + uint16_t temp2[H * W]; \ + \ + highbd_var_filter_block2d_bil_first_pass( \ + src, fdata3, src_stride, 1, H + 1, W, bilinear_filters[xoffset]); \ + highbd_var_filter_block2d_bil_second_pass(fdata3, temp2, W, W, H, W, \ + bilinear_filters[yoffset]); \ + \ + return vpx_highbd_8_variance##W##x##H##_c(CONVERT_TO_BYTEPTR(temp2), W, \ + dst, dst_stride, sse); \ + } \ + \ + uint32_t vpx_highbd_10_sub_pixel_variance##W##x##H##_c( \ + const uint8_t *src, int src_stride, int xoffset, int yoffset, \ + const uint8_t *dst, int dst_stride, uint32_t *sse) { \ + uint16_t fdata3[(H + 1) * W]; \ + uint16_t temp2[H * W]; \ + \ + highbd_var_filter_block2d_bil_first_pass( \ + src, fdata3, src_stride, 1, H + 1, W, bilinear_filters[xoffset]); \ + highbd_var_filter_block2d_bil_second_pass(fdata3, temp2, W, W, H, W, \ + bilinear_filters[yoffset]); \ + \ + return vpx_highbd_10_variance##W##x##H##_c(CONVERT_TO_BYTEPTR(temp2), W, \ + dst, dst_stride, sse); \ + } \ + \ + uint32_t vpx_highbd_12_sub_pixel_variance##W##x##H##_c( \ + const uint8_t *src, int src_stride, int xoffset, int yoffset, \ + const uint8_t *dst, int dst_stride, uint32_t *sse) { \ + uint16_t fdata3[(H + 1) * W]; \ + uint16_t temp2[H * W]; \ + \ + highbd_var_filter_block2d_bil_first_pass( \ + src, fdata3, src_stride, 1, H + 1, W, bilinear_filters[xoffset]); \ + highbd_var_filter_block2d_bil_second_pass(fdata3, temp2, W, W, H, W, \ + bilinear_filters[yoffset]); \ + \ + return vpx_highbd_12_variance##W##x##H##_c(CONVERT_TO_BYTEPTR(temp2), W, \ + dst, dst_stride, sse); \ + } + +#define HIGHBD_SUBPIX_AVG_VAR(W, H) \ + uint32_t vpx_highbd_8_sub_pixel_avg_variance##W##x##H##_c( \ + const uint8_t *src, int src_stride, int xoffset, int yoffset, \ + const uint8_t *dst, int dst_stride, uint32_t *sse, \ + const uint8_t *second_pred) { \ + uint16_t fdata3[(H + 1) * W]; \ + uint16_t temp2[H * W]; \ + DECLARE_ALIGNED(16, uint16_t, temp3[H * W]); \ + \ + highbd_var_filter_block2d_bil_first_pass( \ + src, fdata3, src_stride, 1, H + 1, W, bilinear_filters[xoffset]); \ + highbd_var_filter_block2d_bil_second_pass(fdata3, temp2, W, W, H, W, \ + bilinear_filters[yoffset]); \ + \ + vpx_highbd_comp_avg_pred_c(temp3, second_pred, W, H, \ + CONVERT_TO_BYTEPTR(temp2), W); \ + \ + return vpx_highbd_8_variance##W##x##H##_c(CONVERT_TO_BYTEPTR(temp3), W, \ + dst, dst_stride, sse); \ + } \ + \ + uint32_t vpx_highbd_10_sub_pixel_avg_variance##W##x##H##_c( \ + const uint8_t *src, int src_stride, int xoffset, int yoffset, \ + const uint8_t *dst, int dst_stride, uint32_t *sse, \ + const uint8_t *second_pred) { \ + uint16_t fdata3[(H + 1) * W]; \ + uint16_t temp2[H * W]; \ + DECLARE_ALIGNED(16, uint16_t, temp3[H * W]); \ + \ + highbd_var_filter_block2d_bil_first_pass( \ + src, fdata3, src_stride, 1, H + 1, W, bilinear_filters[xoffset]); \ + highbd_var_filter_block2d_bil_second_pass(fdata3, temp2, W, W, H, W, \ + bilinear_filters[yoffset]); \ + \ + vpx_highbd_comp_avg_pred_c(temp3, second_pred, W, H, \ + CONVERT_TO_BYTEPTR(temp2), W); \ + \ + return vpx_highbd_10_variance##W##x##H##_c(CONVERT_TO_BYTEPTR(temp3), W, \ + dst, dst_stride, sse); \ + } \ + \ + uint32_t vpx_highbd_12_sub_pixel_avg_variance##W##x##H##_c( \ + const uint8_t *src, int src_stride, int xoffset, int yoffset, \ + const uint8_t *dst, int dst_stride, uint32_t *sse, \ + const uint8_t *second_pred) { \ + uint16_t fdata3[(H + 1) * W]; \ + uint16_t temp2[H * W]; \ + DECLARE_ALIGNED(16, uint16_t, temp3[H * W]); \ + \ + highbd_var_filter_block2d_bil_first_pass( \ + src, fdata3, src_stride, 1, H + 1, W, bilinear_filters[xoffset]); \ + highbd_var_filter_block2d_bil_second_pass(fdata3, temp2, W, W, H, W, \ + bilinear_filters[yoffset]); \ + \ + vpx_highbd_comp_avg_pred_c(temp3, second_pred, W, H, \ + CONVERT_TO_BYTEPTR(temp2), W); \ + \ + return vpx_highbd_12_variance##W##x##H##_c(CONVERT_TO_BYTEPTR(temp3), W, \ + dst, dst_stride, sse); \ + } + +/* All three forms of the variance are available in the same sizes. */ +#define HIGHBD_VARIANCES(W, H) \ + HIGHBD_VAR(W, H) \ + HIGHBD_SUBPIX_VAR(W, H) \ + HIGHBD_SUBPIX_AVG_VAR(W, H) + +HIGHBD_VARIANCES(64, 64) +HIGHBD_VARIANCES(64, 32) +HIGHBD_VARIANCES(32, 64) +HIGHBD_VARIANCES(32, 32) +HIGHBD_VARIANCES(32, 16) +HIGHBD_VARIANCES(16, 32) +HIGHBD_VARIANCES(16, 16) +HIGHBD_VARIANCES(16, 8) +HIGHBD_VARIANCES(8, 16) +HIGHBD_VARIANCES(8, 8) +HIGHBD_VARIANCES(8, 4) +HIGHBD_VARIANCES(4, 8) +HIGHBD_VARIANCES(4, 4) + +HIGHBD_GET_VAR(8) +HIGHBD_GET_VAR(16) + +HIGHBD_MSE(16, 16) +HIGHBD_MSE(16, 8) +HIGHBD_MSE(8, 16) +HIGHBD_MSE(8, 8) + +void vpx_highbd_comp_avg_pred(uint16_t *comp_pred, const uint8_t *pred8, + int width, int height, const uint8_t *ref8, + int ref_stride) { + int i, j; + uint16_t *pred = CONVERT_TO_SHORTPTR(pred8); + uint16_t *ref = CONVERT_TO_SHORTPTR(ref8); + for (i = 0; i < height; ++i) { + for (j = 0; j < width; ++j) { + const int tmp = pred[j] + ref[j]; + comp_pred[j] = ROUND_POWER_OF_TWO(tmp, 1); + } + comp_pred += width; + pred += width; + ref += ref_stride; + } +} +#endif // CONFIG_VP9_HIGHBITDEPTH diff --git a/vpx_dsp/variance.h b/vpx_dsp/variance.h new file mode 100644 index 0000000..1005732 --- /dev/null +++ b/vpx_dsp/variance.h @@ -0,0 +1,85 @@ +/* + * Copyright (c) 2015 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VPX_DSP_VARIANCE_H_ +#define VPX_DSP_VARIANCE_H_ + +#include "./vpx_config.h" + +#include "vpx/vpx_integer.h" + +#ifdef __cplusplus +extern "C" { +#endif + +#define FILTER_BITS 7 +#define FILTER_WEIGHT 128 + +typedef unsigned int (*vpx_sad_fn_t)(const uint8_t *a, int a_stride, + const uint8_t *b_ptr, int b_stride); + +typedef unsigned int (*vpx_sad_avg_fn_t)(const uint8_t *a_ptr, int a_stride, + const uint8_t *b_ptr, int b_stride, + const uint8_t *second_pred); + +typedef void (*vp8_copy32xn_fn_t)(const uint8_t *a, int a_stride, uint8_t *b, + int b_stride, int n); + +typedef void (*vpx_sad_multi_fn_t)(const uint8_t *a, int a_stride, + const uint8_t *b, int b_stride, + unsigned int *sad_array); + +typedef void (*vpx_sad_multi_d_fn_t)(const uint8_t *a, int a_stride, + const uint8_t *const b_array[], + int b_stride, unsigned int *sad_array); + +typedef unsigned int (*vpx_variance_fn_t)(const uint8_t *a, int a_stride, + const uint8_t *b, int b_stride, + unsigned int *sse); + +typedef unsigned int (*vpx_subpixvariance_fn_t)(const uint8_t *a, int a_stride, + int xoffset, int yoffset, + const uint8_t *b, int b_stride, + unsigned int *sse); + +typedef unsigned int (*vpx_subp_avg_variance_fn_t)( + const uint8_t *a_ptr, int a_stride, int xoffset, int yoffset, + const uint8_t *b_ptr, int b_stride, unsigned int *sse, + const uint8_t *second_pred); +#if CONFIG_VP8 +typedef struct variance_vtable { + vpx_sad_fn_t sdf; + vpx_variance_fn_t vf; + vpx_subpixvariance_fn_t svf; + vpx_sad_multi_fn_t sdx3f; + vpx_sad_multi_fn_t sdx8f; + vpx_sad_multi_d_fn_t sdx4df; +#if ARCH_X86 || ARCH_X86_64 + vp8_copy32xn_fn_t copymem; +#endif +} vp8_variance_fn_ptr_t; +#endif // CONFIG_VP8 + +#if CONFIG_VP9 +typedef struct vp9_variance_vtable { + vpx_sad_fn_t sdf; + vpx_sad_avg_fn_t sdaf; + vpx_variance_fn_t vf; + vpx_subpixvariance_fn_t svf; + vpx_subp_avg_variance_fn_t svaf; + vpx_sad_multi_d_fn_t sdx4df; +} vp9_variance_fn_ptr_t; +#endif // CONFIG_VP9 + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VPX_DSP_VARIANCE_H_ diff --git a/vpx_dsp/vpx_convolve.c b/vpx_dsp/vpx_convolve.c new file mode 100644 index 0000000..e55a963 --- /dev/null +++ b/vpx_dsp/vpx_convolve.c @@ -0,0 +1,537 @@ +/* + * Copyright (c) 2013 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include + +#include "./vpx_config.h" +#include "./vpx_dsp_rtcd.h" +#include "vpx/vpx_integer.h" +#include "vpx_dsp/vpx_convolve.h" +#include "vpx_dsp/vpx_dsp_common.h" +#include "vpx_dsp/vpx_filter.h" +#include "vpx_ports/mem.h" + +static void convolve_horiz(const uint8_t *src, ptrdiff_t src_stride, + uint8_t *dst, ptrdiff_t dst_stride, + const InterpKernel *x_filters, int x0_q4, + int x_step_q4, int w, int h) { + int x, y; + src -= SUBPEL_TAPS / 2 - 1; + + for (y = 0; y < h; ++y) { + int x_q4 = x0_q4; + for (x = 0; x < w; ++x) { + const uint8_t *const src_x = &src[x_q4 >> SUBPEL_BITS]; + const int16_t *const x_filter = x_filters[x_q4 & SUBPEL_MASK]; + int k, sum = 0; + for (k = 0; k < SUBPEL_TAPS; ++k) sum += src_x[k] * x_filter[k]; + dst[x] = clip_pixel(ROUND_POWER_OF_TWO(sum, FILTER_BITS)); + x_q4 += x_step_q4; + } + src += src_stride; + dst += dst_stride; + } +} + +static void convolve_avg_horiz(const uint8_t *src, ptrdiff_t src_stride, + uint8_t *dst, ptrdiff_t dst_stride, + const InterpKernel *x_filters, int x0_q4, + int x_step_q4, int w, int h) { + int x, y; + src -= SUBPEL_TAPS / 2 - 1; + + for (y = 0; y < h; ++y) { + int x_q4 = x0_q4; + for (x = 0; x < w; ++x) { + const uint8_t *const src_x = &src[x_q4 >> SUBPEL_BITS]; + const int16_t *const x_filter = x_filters[x_q4 & SUBPEL_MASK]; + int k, sum = 0; + for (k = 0; k < SUBPEL_TAPS; ++k) sum += src_x[k] * x_filter[k]; + dst[x] = ROUND_POWER_OF_TWO( + dst[x] + clip_pixel(ROUND_POWER_OF_TWO(sum, FILTER_BITS)), 1); + x_q4 += x_step_q4; + } + src += src_stride; + dst += dst_stride; + } +} + +static void convolve_vert(const uint8_t *src, ptrdiff_t src_stride, + uint8_t *dst, ptrdiff_t dst_stride, + const InterpKernel *y_filters, int y0_q4, + int y_step_q4, int w, int h) { + int x, y; + src -= src_stride * (SUBPEL_TAPS / 2 - 1); + + for (x = 0; x < w; ++x) { + int y_q4 = y0_q4; + for (y = 0; y < h; ++y) { + const uint8_t *src_y = &src[(y_q4 >> SUBPEL_BITS) * src_stride]; + const int16_t *const y_filter = y_filters[y_q4 & SUBPEL_MASK]; + int k, sum = 0; + for (k = 0; k < SUBPEL_TAPS; ++k) + sum += src_y[k * src_stride] * y_filter[k]; + dst[y * dst_stride] = clip_pixel(ROUND_POWER_OF_TWO(sum, FILTER_BITS)); + y_q4 += y_step_q4; + } + ++src; + ++dst; + } +} + +static void convolve_avg_vert(const uint8_t *src, ptrdiff_t src_stride, + uint8_t *dst, ptrdiff_t dst_stride, + const InterpKernel *y_filters, int y0_q4, + int y_step_q4, int w, int h) { + int x, y; + src -= src_stride * (SUBPEL_TAPS / 2 - 1); + + for (x = 0; x < w; ++x) { + int y_q4 = y0_q4; + for (y = 0; y < h; ++y) { + const uint8_t *src_y = &src[(y_q4 >> SUBPEL_BITS) * src_stride]; + const int16_t *const y_filter = y_filters[y_q4 & SUBPEL_MASK]; + int k, sum = 0; + for (k = 0; k < SUBPEL_TAPS; ++k) + sum += src_y[k * src_stride] * y_filter[k]; + dst[y * dst_stride] = ROUND_POWER_OF_TWO( + dst[y * dst_stride] + + clip_pixel(ROUND_POWER_OF_TWO(sum, FILTER_BITS)), + 1); + y_q4 += y_step_q4; + } + ++src; + ++dst; + } +} + +void vpx_convolve8_horiz_c(const uint8_t *src, ptrdiff_t src_stride, + uint8_t *dst, ptrdiff_t dst_stride, + const InterpKernel *filter, int x0_q4, int x_step_q4, + int y0_q4, int y_step_q4, int w, int h) { + (void)y0_q4; + (void)y_step_q4; + convolve_horiz(src, src_stride, dst, dst_stride, filter, x0_q4, x_step_q4, w, + h); +} + +void vpx_convolve8_avg_horiz_c(const uint8_t *src, ptrdiff_t src_stride, + uint8_t *dst, ptrdiff_t dst_stride, + const InterpKernel *filter, int x0_q4, + int x_step_q4, int y0_q4, int y_step_q4, int w, + int h) { + (void)y0_q4; + (void)y_step_q4; + convolve_avg_horiz(src, src_stride, dst, dst_stride, filter, x0_q4, x_step_q4, + w, h); +} + +void vpx_convolve8_vert_c(const uint8_t *src, ptrdiff_t src_stride, + uint8_t *dst, ptrdiff_t dst_stride, + const InterpKernel *filter, int x0_q4, int x_step_q4, + int y0_q4, int y_step_q4, int w, int h) { + (void)x0_q4; + (void)x_step_q4; + convolve_vert(src, src_stride, dst, dst_stride, filter, y0_q4, y_step_q4, w, + h); +} + +void vpx_convolve8_avg_vert_c(const uint8_t *src, ptrdiff_t src_stride, + uint8_t *dst, ptrdiff_t dst_stride, + const InterpKernel *filter, int x0_q4, + int x_step_q4, int y0_q4, int y_step_q4, int w, + int h) { + (void)x0_q4; + (void)x_step_q4; + convolve_avg_vert(src, src_stride, dst, dst_stride, filter, y0_q4, y_step_q4, + w, h); +} + +void vpx_convolve8_c(const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst, + ptrdiff_t dst_stride, const InterpKernel *filter, + int x0_q4, int x_step_q4, int y0_q4, int y_step_q4, int w, + int h) { + // Note: Fixed size intermediate buffer, temp, places limits on parameters. + // 2d filtering proceeds in 2 steps: + // (1) Interpolate horizontally into an intermediate buffer, temp. + // (2) Interpolate temp vertically to derive the sub-pixel result. + // Deriving the maximum number of rows in the temp buffer (135): + // --Smallest scaling factor is x1/2 ==> y_step_q4 = 32 (Normative). + // --Largest block size is 64x64 pixels. + // --64 rows in the downscaled frame span a distance of (64 - 1) * 32 in the + // original frame (in 1/16th pixel units). + // --Must round-up because block may be located at sub-pixel position. + // --Require an additional SUBPEL_TAPS rows for the 8-tap filter tails. + // --((64 - 1) * 32 + 15) >> 4 + 8 = 135. + // When calling in frame scaling function, the smallest scaling factor is x1/4 + // ==> y_step_q4 = 64. Since w and h are at most 16, the temp buffer is still + // big enough. + uint8_t temp[64 * 135]; + const int intermediate_height = + (((h - 1) * y_step_q4 + y0_q4) >> SUBPEL_BITS) + SUBPEL_TAPS; + + assert(w <= 64); + assert(h <= 64); + assert(y_step_q4 <= 32 || (y_step_q4 <= 64 && h <= 32)); + assert(x_step_q4 <= 64); + + convolve_horiz(src - src_stride * (SUBPEL_TAPS / 2 - 1), src_stride, temp, 64, + filter, x0_q4, x_step_q4, w, intermediate_height); + convolve_vert(temp + 64 * (SUBPEL_TAPS / 2 - 1), 64, dst, dst_stride, filter, + y0_q4, y_step_q4, w, h); +} + +void vpx_convolve8_avg_c(const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst, + ptrdiff_t dst_stride, const InterpKernel *filter, + int x0_q4, int x_step_q4, int y0_q4, int y_step_q4, + int w, int h) { + // Fixed size intermediate buffer places limits on parameters. + DECLARE_ALIGNED(16, uint8_t, temp[64 * 64]); + assert(w <= 64); + assert(h <= 64); + + vpx_convolve8_c(src, src_stride, temp, 64, filter, x0_q4, x_step_q4, y0_q4, + y_step_q4, w, h); + vpx_convolve_avg_c(temp, 64, dst, dst_stride, NULL, 0, 0, 0, 0, w, h); +} + +void vpx_convolve_copy_c(const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst, + ptrdiff_t dst_stride, const InterpKernel *filter, + int x0_q4, int x_step_q4, int y0_q4, int y_step_q4, + int w, int h) { + int r; + + (void)filter; + (void)x0_q4; + (void)x_step_q4; + (void)y0_q4; + (void)y_step_q4; + + for (r = h; r > 0; --r) { + memcpy(dst, src, w); + src += src_stride; + dst += dst_stride; + } +} + +void vpx_convolve_avg_c(const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst, + ptrdiff_t dst_stride, const InterpKernel *filter, + int x0_q4, int x_step_q4, int y0_q4, int y_step_q4, + int w, int h) { + int x, y; + + (void)filter; + (void)x0_q4; + (void)x_step_q4; + (void)y0_q4; + (void)y_step_q4; + + for (y = 0; y < h; ++y) { + for (x = 0; x < w; ++x) dst[x] = ROUND_POWER_OF_TWO(dst[x] + src[x], 1); + src += src_stride; + dst += dst_stride; + } +} + +void vpx_scaled_horiz_c(const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst, + ptrdiff_t dst_stride, const InterpKernel *filter, + int x0_q4, int x_step_q4, int y0_q4, int y_step_q4, + int w, int h) { + vpx_convolve8_horiz_c(src, src_stride, dst, dst_stride, filter, x0_q4, + x_step_q4, y0_q4, y_step_q4, w, h); +} + +void vpx_scaled_vert_c(const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst, + ptrdiff_t dst_stride, const InterpKernel *filter, + int x0_q4, int x_step_q4, int y0_q4, int y_step_q4, + int w, int h) { + vpx_convolve8_vert_c(src, src_stride, dst, dst_stride, filter, x0_q4, + x_step_q4, y0_q4, y_step_q4, w, h); +} + +void vpx_scaled_2d_c(const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst, + ptrdiff_t dst_stride, const InterpKernel *filter, + int x0_q4, int x_step_q4, int y0_q4, int y_step_q4, int w, + int h) { + vpx_convolve8_c(src, src_stride, dst, dst_stride, filter, x0_q4, x_step_q4, + y0_q4, y_step_q4, w, h); +} + +void vpx_scaled_avg_horiz_c(const uint8_t *src, ptrdiff_t src_stride, + uint8_t *dst, ptrdiff_t dst_stride, + const InterpKernel *filter, int x0_q4, + int x_step_q4, int y0_q4, int y_step_q4, int w, + int h) { + vpx_convolve8_avg_horiz_c(src, src_stride, dst, dst_stride, filter, x0_q4, + x_step_q4, y0_q4, y_step_q4, w, h); +} + +void vpx_scaled_avg_vert_c(const uint8_t *src, ptrdiff_t src_stride, + uint8_t *dst, ptrdiff_t dst_stride, + const InterpKernel *filter, int x0_q4, int x_step_q4, + int y0_q4, int y_step_q4, int w, int h) { + vpx_convolve8_avg_vert_c(src, src_stride, dst, dst_stride, filter, x0_q4, + x_step_q4, y0_q4, y_step_q4, w, h); +} + +void vpx_scaled_avg_2d_c(const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst, + ptrdiff_t dst_stride, const InterpKernel *filter, + int x0_q4, int x_step_q4, int y0_q4, int y_step_q4, + int w, int h) { + vpx_convolve8_avg_c(src, src_stride, dst, dst_stride, filter, x0_q4, + x_step_q4, y0_q4, y_step_q4, w, h); +} + +#if CONFIG_VP9_HIGHBITDEPTH +static void highbd_convolve_horiz(const uint16_t *src, ptrdiff_t src_stride, + uint16_t *dst, ptrdiff_t dst_stride, + const InterpKernel *x_filters, int x0_q4, + int x_step_q4, int w, int h, int bd) { + int x, y; + src -= SUBPEL_TAPS / 2 - 1; + + for (y = 0; y < h; ++y) { + int x_q4 = x0_q4; + for (x = 0; x < w; ++x) { + const uint16_t *const src_x = &src[x_q4 >> SUBPEL_BITS]; + const int16_t *const x_filter = x_filters[x_q4 & SUBPEL_MASK]; + int k, sum = 0; + for (k = 0; k < SUBPEL_TAPS; ++k) sum += src_x[k] * x_filter[k]; + dst[x] = clip_pixel_highbd(ROUND_POWER_OF_TWO(sum, FILTER_BITS), bd); + x_q4 += x_step_q4; + } + src += src_stride; + dst += dst_stride; + } +} + +static void highbd_convolve_avg_horiz(const uint16_t *src, ptrdiff_t src_stride, + uint16_t *dst, ptrdiff_t dst_stride, + const InterpKernel *x_filters, int x0_q4, + int x_step_q4, int w, int h, int bd) { + int x, y; + src -= SUBPEL_TAPS / 2 - 1; + + for (y = 0; y < h; ++y) { + int x_q4 = x0_q4; + for (x = 0; x < w; ++x) { + const uint16_t *const src_x = &src[x_q4 >> SUBPEL_BITS]; + const int16_t *const x_filter = x_filters[x_q4 & SUBPEL_MASK]; + int k, sum = 0; + for (k = 0; k < SUBPEL_TAPS; ++k) sum += src_x[k] * x_filter[k]; + dst[x] = ROUND_POWER_OF_TWO( + dst[x] + clip_pixel_highbd(ROUND_POWER_OF_TWO(sum, FILTER_BITS), bd), + 1); + x_q4 += x_step_q4; + } + src += src_stride; + dst += dst_stride; + } +} + +static void highbd_convolve_vert(const uint16_t *src, ptrdiff_t src_stride, + uint16_t *dst, ptrdiff_t dst_stride, + const InterpKernel *y_filters, int y0_q4, + int y_step_q4, int w, int h, int bd) { + int x, y; + src -= src_stride * (SUBPEL_TAPS / 2 - 1); + + for (x = 0; x < w; ++x) { + int y_q4 = y0_q4; + for (y = 0; y < h; ++y) { + const uint16_t *src_y = &src[(y_q4 >> SUBPEL_BITS) * src_stride]; + const int16_t *const y_filter = y_filters[y_q4 & SUBPEL_MASK]; + int k, sum = 0; + for (k = 0; k < SUBPEL_TAPS; ++k) + sum += src_y[k * src_stride] * y_filter[k]; + dst[y * dst_stride] = + clip_pixel_highbd(ROUND_POWER_OF_TWO(sum, FILTER_BITS), bd); + y_q4 += y_step_q4; + } + ++src; + ++dst; + } +} + +static void highbd_convolve_avg_vert(const uint16_t *src, ptrdiff_t src_stride, + uint16_t *dst, ptrdiff_t dst_stride, + const InterpKernel *y_filters, int y0_q4, + int y_step_q4, int w, int h, int bd) { + int x, y; + src -= src_stride * (SUBPEL_TAPS / 2 - 1); + + for (x = 0; x < w; ++x) { + int y_q4 = y0_q4; + for (y = 0; y < h; ++y) { + const uint16_t *src_y = &src[(y_q4 >> SUBPEL_BITS) * src_stride]; + const int16_t *const y_filter = y_filters[y_q4 & SUBPEL_MASK]; + int k, sum = 0; + for (k = 0; k < SUBPEL_TAPS; ++k) + sum += src_y[k * src_stride] * y_filter[k]; + dst[y * dst_stride] = ROUND_POWER_OF_TWO( + dst[y * dst_stride] + + clip_pixel_highbd(ROUND_POWER_OF_TWO(sum, FILTER_BITS), bd), + 1); + y_q4 += y_step_q4; + } + ++src; + ++dst; + } +} + +static void highbd_convolve(const uint16_t *src, ptrdiff_t src_stride, + uint16_t *dst, ptrdiff_t dst_stride, + const InterpKernel *filter, int x0_q4, + int x_step_q4, int y0_q4, int y_step_q4, int w, + int h, int bd) { + // Note: Fixed size intermediate buffer, temp, places limits on parameters. + // 2d filtering proceeds in 2 steps: + // (1) Interpolate horizontally into an intermediate buffer, temp. + // (2) Interpolate temp vertically to derive the sub-pixel result. + // Deriving the maximum number of rows in the temp buffer (135): + // --Smallest scaling factor is x1/2 ==> y_step_q4 = 32 (Normative). + // --Largest block size is 64x64 pixels. + // --64 rows in the downscaled frame span a distance of (64 - 1) * 32 in the + // original frame (in 1/16th pixel units). + // --Must round-up because block may be located at sub-pixel position. + // --Require an additional SUBPEL_TAPS rows for the 8-tap filter tails. + // --((64 - 1) * 32 + 15) >> 4 + 8 = 135. + uint16_t temp[64 * 135]; + const int intermediate_height = + (((h - 1) * y_step_q4 + y0_q4) >> SUBPEL_BITS) + SUBPEL_TAPS; + + assert(w <= 64); + assert(h <= 64); + assert(y_step_q4 <= 32); + assert(x_step_q4 <= 32); + + highbd_convolve_horiz(src - src_stride * (SUBPEL_TAPS / 2 - 1), src_stride, + temp, 64, filter, x0_q4, x_step_q4, w, + intermediate_height, bd); + highbd_convolve_vert(temp + 64 * (SUBPEL_TAPS / 2 - 1), 64, dst, dst_stride, + filter, y0_q4, y_step_q4, w, h, bd); +} + +void vpx_highbd_convolve8_horiz_c(const uint16_t *src, ptrdiff_t src_stride, + uint16_t *dst, ptrdiff_t dst_stride, + const InterpKernel *filter, int x0_q4, + int x_step_q4, int y0_q4, int y_step_q4, + int w, int h, int bd) { + (void)y0_q4; + (void)y_step_q4; + + highbd_convolve_horiz(src, src_stride, dst, dst_stride, filter, x0_q4, + x_step_q4, w, h, bd); +} + +void vpx_highbd_convolve8_avg_horiz_c(const uint16_t *src, ptrdiff_t src_stride, + uint16_t *dst, ptrdiff_t dst_stride, + const InterpKernel *filter, int x0_q4, + int x_step_q4, int y0_q4, int y_step_q4, + int w, int h, int bd) { + (void)y0_q4; + (void)y_step_q4; + + highbd_convolve_avg_horiz(src, src_stride, dst, dst_stride, filter, x0_q4, + x_step_q4, w, h, bd); +} + +void vpx_highbd_convolve8_vert_c(const uint16_t *src, ptrdiff_t src_stride, + uint16_t *dst, ptrdiff_t dst_stride, + const InterpKernel *filter, int x0_q4, + int x_step_q4, int y0_q4, int y_step_q4, int w, + int h, int bd) { + (void)x0_q4; + (void)x_step_q4; + + highbd_convolve_vert(src, src_stride, dst, dst_stride, filter, y0_q4, + y_step_q4, w, h, bd); +} + +void vpx_highbd_convolve8_avg_vert_c(const uint16_t *src, ptrdiff_t src_stride, + uint16_t *dst, ptrdiff_t dst_stride, + const InterpKernel *filter, int x0_q4, + int x_step_q4, int y0_q4, int y_step_q4, + int w, int h, int bd) { + (void)x0_q4; + (void)x_step_q4; + + highbd_convolve_avg_vert(src, src_stride, dst, dst_stride, filter, y0_q4, + y_step_q4, w, h, bd); +} + +void vpx_highbd_convolve8_c(const uint16_t *src, ptrdiff_t src_stride, + uint16_t *dst, ptrdiff_t dst_stride, + const InterpKernel *filter, int x0_q4, + int x_step_q4, int y0_q4, int y_step_q4, int w, + int h, int bd) { + highbd_convolve(src, src_stride, dst, dst_stride, filter, x0_q4, x_step_q4, + y0_q4, y_step_q4, w, h, bd); +} + +void vpx_highbd_convolve8_avg_c(const uint16_t *src, ptrdiff_t src_stride, + uint16_t *dst, ptrdiff_t dst_stride, + const InterpKernel *filter, int x0_q4, + int x_step_q4, int y0_q4, int y_step_q4, int w, + int h, int bd) { + // Fixed size intermediate buffer places limits on parameters. + DECLARE_ALIGNED(16, uint16_t, temp[64 * 64]); + assert(w <= 64); + assert(h <= 64); + + vpx_highbd_convolve8_c(src, src_stride, temp, 64, filter, x0_q4, x_step_q4, + y0_q4, y_step_q4, w, h, bd); + vpx_highbd_convolve_avg_c(temp, 64, dst, dst_stride, NULL, 0, 0, 0, 0, w, h, + bd); +} + +void vpx_highbd_convolve_copy_c(const uint16_t *src, ptrdiff_t src_stride, + uint16_t *dst, ptrdiff_t dst_stride, + const InterpKernel *filter, int x0_q4, + int x_step_q4, int y0_q4, int y_step_q4, int w, + int h, int bd) { + int r; + + (void)filter; + (void)x0_q4; + (void)x_step_q4; + (void)y0_q4; + (void)y_step_q4; + (void)bd; + + for (r = h; r > 0; --r) { + memcpy(dst, src, w * sizeof(uint16_t)); + src += src_stride; + dst += dst_stride; + } +} + +void vpx_highbd_convolve_avg_c(const uint16_t *src, ptrdiff_t src_stride, + uint16_t *dst, ptrdiff_t dst_stride, + const InterpKernel *filter, int x0_q4, + int x_step_q4, int y0_q4, int y_step_q4, int w, + int h, int bd) { + int x, y; + + (void)filter; + (void)x0_q4; + (void)x_step_q4; + (void)y0_q4; + (void)y_step_q4; + (void)bd; + + for (y = 0; y < h; ++y) { + for (x = 0; x < w; ++x) dst[x] = ROUND_POWER_OF_TWO(dst[x] + src[x], 1); + src += src_stride; + dst += dst_stride; + } +} +#endif diff --git a/vpx_dsp/vpx_convolve.h b/vpx_dsp/vpx_convolve.h new file mode 100644 index 0000000..7979268 --- /dev/null +++ b/vpx_dsp/vpx_convolve.h @@ -0,0 +1,38 @@ +/* + * Copyright (c) 2013 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ +#ifndef VPX_DSP_VPX_CONVOLVE_H_ +#define VPX_DSP_VPX_CONVOLVE_H_ + +#include "./vpx_config.h" +#include "vpx/vpx_integer.h" + +#ifdef __cplusplus +extern "C" { +#endif + +typedef void (*convolve_fn_t)(const uint8_t *src, ptrdiff_t src_stride, + uint8_t *dst, ptrdiff_t dst_stride, + const InterpKernel *filter, int x0_q4, + int x_step_q4, int y0_q4, int y_step_q4, int w, + int h); + +#if CONFIG_VP9_HIGHBITDEPTH +typedef void (*highbd_convolve_fn_t)(const uint16_t *src, ptrdiff_t src_stride, + uint16_t *dst, ptrdiff_t dst_stride, + const InterpKernel *filter, int x0_q4, + int x_step_q4, int y0_q4, int y_step_q4, + int w, int h, int bd); +#endif + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VPX_DSP_VPX_CONVOLVE_H_ diff --git a/vpx_dsp/vpx_dsp.mk b/vpx_dsp/vpx_dsp.mk new file mode 100644 index 0000000..3b1a873 --- /dev/null +++ b/vpx_dsp/vpx_dsp.mk @@ -0,0 +1,401 @@ +## +## Copyright (c) 2015 The WebM project authors. All Rights Reserved. +## +## Use of this source code is governed by a BSD-style license +## that can be found in the LICENSE file in the root of the source +## tree. An additional intellectual property rights grant can be found +## in the file PATENTS. All contributing project authors may +## be found in the AUTHORS file in the root of the source tree. +## + +DSP_SRCS-yes += vpx_dsp.mk +DSP_SRCS-yes += vpx_dsp_common.h + +DSP_SRCS-$(HAVE_MSA) += mips/macros_msa.h + +DSP_SRCS-$(HAVE_AVX2) += x86/bitdepth_conversion_avx2.h +DSP_SRCS-$(HAVE_SSE2) += x86/bitdepth_conversion_sse2.h +# This file is included in libs.mk. Including it here would cause it to be +# compiled into an object. Even as an empty file, this would create an +# executable section on the stack. +#DSP_SRCS-$(HAVE_SSE2) += x86/bitdepth_conversion_sse2$(ASM) + +# bit reader +DSP_SRCS-yes += prob.h +DSP_SRCS-yes += prob.c + +ifeq ($(CONFIG_ENCODERS),yes) +DSP_SRCS-yes += bitwriter.h +DSP_SRCS-yes += bitwriter.c +DSP_SRCS-yes += bitwriter_buffer.c +DSP_SRCS-yes += bitwriter_buffer.h +DSP_SRCS-yes += psnr.c +DSP_SRCS-yes += psnr.h +DSP_SRCS-$(CONFIG_INTERNAL_STATS) += ssim.c +DSP_SRCS-$(CONFIG_INTERNAL_STATS) += ssim.h +DSP_SRCS-$(CONFIG_INTERNAL_STATS) += psnrhvs.c +DSP_SRCS-$(CONFIG_INTERNAL_STATS) += fastssim.c +endif + +ifeq ($(CONFIG_DECODERS),yes) +DSP_SRCS-yes += bitreader.h +DSP_SRCS-yes += bitreader.c +DSP_SRCS-yes += bitreader_buffer.c +DSP_SRCS-yes += bitreader_buffer.h +endif + +# intra predictions +DSP_SRCS-yes += intrapred.c + +DSP_SRCS-$(HAVE_SSE) += x86/intrapred_sse2.asm +DSP_SRCS-$(HAVE_SSE2) += x86/intrapred_sse2.asm +DSP_SRCS-$(HAVE_SSSE3) += x86/intrapred_ssse3.asm +DSP_SRCS-$(HAVE_VSX) += ppc/intrapred_vsx.c + +ifeq ($(CONFIG_VP9_HIGHBITDEPTH),yes) +DSP_SRCS-$(HAVE_SSE) += x86/highbd_intrapred_sse2.asm +DSP_SRCS-$(HAVE_SSE2) += x86/highbd_intrapred_sse2.asm +DSP_SRCS-$(HAVE_SSE2) += x86/highbd_intrapred_intrin_sse2.c +DSP_SRCS-$(HAVE_SSSE3) += x86/highbd_intrapred_intrin_ssse3.c +DSP_SRCS-$(HAVE_NEON) += arm/highbd_intrapred_neon.c +endif # CONFIG_VP9_HIGHBITDEPTH + +ifneq ($(filter yes,$(CONFIG_POSTPROC) $(CONFIG_VP9_POSTPROC)),) +DSP_SRCS-yes += add_noise.c +DSP_SRCS-yes += deblock.c +DSP_SRCS-yes += postproc.h +DSP_SRCS-$(HAVE_MSA) += mips/add_noise_msa.c +DSP_SRCS-$(HAVE_MSA) += mips/deblock_msa.c +DSP_SRCS-$(HAVE_NEON) += arm/deblock_neon.c +DSP_SRCS-$(HAVE_SSE2) += x86/add_noise_sse2.asm +DSP_SRCS-$(HAVE_SSE2) += x86/deblock_sse2.asm +endif # CONFIG_POSTPROC + +DSP_SRCS-$(HAVE_NEON_ASM) += arm/intrapred_neon_asm$(ASM) +DSP_SRCS-$(HAVE_NEON) += arm/intrapred_neon.c +DSP_SRCS-$(HAVE_MSA) += mips/intrapred_msa.c +DSP_SRCS-$(HAVE_DSPR2) += mips/intrapred4_dspr2.c +DSP_SRCS-$(HAVE_DSPR2) += mips/intrapred8_dspr2.c +DSP_SRCS-$(HAVE_DSPR2) += mips/intrapred16_dspr2.c + +DSP_SRCS-$(HAVE_DSPR2) += mips/common_dspr2.h +DSP_SRCS-$(HAVE_DSPR2) += mips/common_dspr2.c + +# interpolation filters +DSP_SRCS-yes += vpx_convolve.c +DSP_SRCS-yes += vpx_convolve.h +DSP_SRCS-yes += vpx_filter.h + +DSP_SRCS-$(ARCH_X86)$(ARCH_X86_64) += x86/convolve.h +DSP_SRCS-$(ARCH_X86)$(ARCH_X86_64) += x86/vpx_asm_stubs.c +DSP_SRCS-$(HAVE_SSSE3) += x86/convolve_ssse3.h +DSP_SRCS-$(HAVE_AVX2) += x86/convolve_avx2.h +DSP_SRCS-$(HAVE_SSE2) += x86/vpx_subpixel_8t_sse2.asm +DSP_SRCS-$(HAVE_SSE2) += x86/vpx_subpixel_bilinear_sse2.asm +DSP_SRCS-$(HAVE_SSSE3) += x86/vpx_subpixel_8t_ssse3.asm +DSP_SRCS-$(HAVE_SSSE3) += x86/vpx_subpixel_bilinear_ssse3.asm +DSP_SRCS-$(HAVE_AVX2) += x86/vpx_subpixel_8t_intrin_avx2.c +DSP_SRCS-$(HAVE_SSSE3) += x86/vpx_subpixel_8t_intrin_ssse3.c +ifeq ($(CONFIG_VP9_HIGHBITDEPTH),yes) +DSP_SRCS-$(HAVE_SSE2) += x86/vpx_high_subpixel_8t_sse2.asm +DSP_SRCS-$(HAVE_SSE2) += x86/vpx_high_subpixel_bilinear_sse2.asm +DSP_SRCS-$(HAVE_AVX2) += x86/highbd_convolve_avx2.c +DSP_SRCS-$(HAVE_NEON) += arm/highbd_vpx_convolve_copy_neon.c +DSP_SRCS-$(HAVE_NEON) += arm/highbd_vpx_convolve_avg_neon.c +DSP_SRCS-$(HAVE_NEON) += arm/highbd_vpx_convolve8_neon.c +DSP_SRCS-$(HAVE_NEON) += arm/highbd_vpx_convolve_neon.c +endif + +DSP_SRCS-$(HAVE_SSE2) += x86/vpx_convolve_copy_sse2.asm +DSP_SRCS-$(HAVE_NEON) += arm/vpx_scaled_convolve8_neon.c + +ifeq ($(HAVE_NEON_ASM),yes) +DSP_SRCS-yes += arm/vpx_convolve_copy_neon_asm$(ASM) +DSP_SRCS-yes += arm/vpx_convolve8_avg_neon_asm$(ASM) +DSP_SRCS-yes += arm/vpx_convolve8_neon_asm$(ASM) +DSP_SRCS-yes += arm/vpx_convolve_avg_neon_asm$(ASM) +DSP_SRCS-yes += arm/vpx_convolve_neon.c +else +ifeq ($(HAVE_NEON),yes) +DSP_SRCS-yes += arm/vpx_convolve_copy_neon.c +DSP_SRCS-yes += arm/vpx_convolve8_neon.c +DSP_SRCS-yes += arm/vpx_convolve_avg_neon.c +DSP_SRCS-yes += arm/vpx_convolve_neon.c +endif # HAVE_NEON +endif # HAVE_NEON_ASM + +# common (msa) +DSP_SRCS-$(HAVE_MSA) += mips/vpx_convolve8_avg_horiz_msa.c +DSP_SRCS-$(HAVE_MSA) += mips/vpx_convolve8_avg_msa.c +DSP_SRCS-$(HAVE_MSA) += mips/vpx_convolve8_avg_vert_msa.c +DSP_SRCS-$(HAVE_MSA) += mips/vpx_convolve8_horiz_msa.c +DSP_SRCS-$(HAVE_MSA) += mips/vpx_convolve8_msa.c +DSP_SRCS-$(HAVE_MSA) += mips/vpx_convolve8_vert_msa.c +DSP_SRCS-$(HAVE_MSA) += mips/vpx_convolve_avg_msa.c +DSP_SRCS-$(HAVE_MSA) += mips/vpx_convolve_copy_msa.c +DSP_SRCS-$(HAVE_MSA) += mips/vpx_convolve_msa.h + +# common (dspr2) +DSP_SRCS-$(HAVE_DSPR2) += mips/convolve_common_dspr2.h +DSP_SRCS-$(HAVE_DSPR2) += mips/convolve2_avg_dspr2.c +DSP_SRCS-$(HAVE_DSPR2) += mips/convolve2_avg_horiz_dspr2.c +DSP_SRCS-$(HAVE_DSPR2) += mips/convolve2_dspr2.c +DSP_SRCS-$(HAVE_DSPR2) += mips/convolve2_horiz_dspr2.c +DSP_SRCS-$(HAVE_DSPR2) += mips/convolve2_vert_dspr2.c +DSP_SRCS-$(HAVE_DSPR2) += mips/convolve8_avg_dspr2.c +DSP_SRCS-$(HAVE_DSPR2) += mips/convolve8_avg_horiz_dspr2.c +DSP_SRCS-$(HAVE_DSPR2) += mips/convolve8_dspr2.c +DSP_SRCS-$(HAVE_DSPR2) += mips/convolve8_horiz_dspr2.c +DSP_SRCS-$(HAVE_DSPR2) += mips/convolve8_vert_dspr2.c + +DSP_SRCS-$(HAVE_VSX) += ppc/vpx_convolve_vsx.c + +# loop filters +DSP_SRCS-yes += loopfilter.c + +DSP_SRCS-$(ARCH_X86)$(ARCH_X86_64) += x86/loopfilter_sse2.c +DSP_SRCS-$(HAVE_AVX2) += x86/loopfilter_avx2.c + +ifeq ($(HAVE_NEON_ASM),yes) +DSP_SRCS-yes += arm/loopfilter_16_neon$(ASM) +DSP_SRCS-yes += arm/loopfilter_8_neon$(ASM) +DSP_SRCS-yes += arm/loopfilter_4_neon$(ASM) +else +DSP_SRCS-$(HAVE_NEON) += arm/loopfilter_neon.c +endif # HAVE_NEON_ASM + +DSP_SRCS-$(HAVE_MSA) += mips/loopfilter_msa.h +DSP_SRCS-$(HAVE_MSA) += mips/loopfilter_16_msa.c +DSP_SRCS-$(HAVE_MSA) += mips/loopfilter_8_msa.c +DSP_SRCS-$(HAVE_MSA) += mips/loopfilter_4_msa.c +DSP_SRCS-$(HAVE_DSPR2) += mips/loopfilter_filters_dspr2.h +DSP_SRCS-$(HAVE_DSPR2) += mips/loopfilter_filters_dspr2.c +DSP_SRCS-$(HAVE_DSPR2) += mips/loopfilter_macros_dspr2.h +DSP_SRCS-$(HAVE_DSPR2) += mips/loopfilter_masks_dspr2.h +DSP_SRCS-$(HAVE_DSPR2) += mips/loopfilter_mb_dspr2.c +DSP_SRCS-$(HAVE_DSPR2) += mips/loopfilter_mb_horiz_dspr2.c +DSP_SRCS-$(HAVE_DSPR2) += mips/loopfilter_mb_vert_dspr2.c + +ifeq ($(CONFIG_VP9_HIGHBITDEPTH),yes) +DSP_SRCS-$(HAVE_NEON) += arm/highbd_loopfilter_neon.c +DSP_SRCS-$(HAVE_SSE2) += x86/highbd_loopfilter_sse2.c +endif # CONFIG_VP9_HIGHBITDEPTH + +DSP_SRCS-yes += txfm_common.h +DSP_SRCS-$(HAVE_SSE2) += x86/txfm_common_sse2.h +DSP_SRCS-$(HAVE_MSA) += mips/txfm_macros_msa.h +# forward transform +ifeq ($(CONFIG_VP9_ENCODER),yes) +DSP_SRCS-yes += fwd_txfm.c +DSP_SRCS-yes += fwd_txfm.h +DSP_SRCS-$(HAVE_SSE2) += x86/fwd_txfm_sse2.h +DSP_SRCS-$(HAVE_SSE2) += x86/fwd_txfm_sse2.c +DSP_SRCS-$(HAVE_SSE2) += x86/fwd_txfm_impl_sse2.h +DSP_SRCS-$(HAVE_SSE2) += x86/fwd_dct32x32_impl_sse2.h +ifeq ($(ARCH_X86_64),yes) +DSP_SRCS-$(HAVE_SSSE3) += x86/fwd_txfm_ssse3_x86_64.asm +endif +DSP_SRCS-$(HAVE_AVX2) += x86/fwd_txfm_avx2.c +DSP_SRCS-$(HAVE_AVX2) += x86/fwd_dct32x32_impl_avx2.h +DSP_SRCS-$(HAVE_NEON) += arm/fdct_neon.c +DSP_SRCS-$(HAVE_NEON) += arm/fdct16x16_neon.c +DSP_SRCS-$(HAVE_NEON) += arm/fdct32x32_neon.c +DSP_SRCS-$(HAVE_NEON) += arm/fdct_partial_neon.c +DSP_SRCS-$(HAVE_NEON) += arm/fwd_txfm_neon.c +DSP_SRCS-$(HAVE_MSA) += mips/fwd_txfm_msa.h +DSP_SRCS-$(HAVE_MSA) += mips/fwd_txfm_msa.c +DSP_SRCS-$(HAVE_MSA) += mips/fwd_dct32x32_msa.c +endif # CONFIG_VP9_ENCODER + +# inverse transform +ifeq ($(CONFIG_VP9),yes) +DSP_SRCS-yes += inv_txfm.h +DSP_SRCS-yes += inv_txfm.c +DSP_SRCS-$(HAVE_SSE2) += x86/inv_txfm_sse2.h +DSP_SRCS-$(HAVE_SSE2) += x86/inv_txfm_sse2.c +DSP_SRCS-$(HAVE_SSE2) += x86/inv_wht_sse2.asm +DSP_SRCS-$(HAVE_SSSE3) += x86/inv_txfm_ssse3.h +DSP_SRCS-$(HAVE_SSSE3) += x86/inv_txfm_ssse3.c + +DSP_SRCS-$(HAVE_NEON_ASM) += arm/save_reg_neon$(ASM) + +DSP_SRCS-$(HAVE_VSX) += ppc/inv_txfm_vsx.c + +ifneq ($(CONFIG_VP9_HIGHBITDEPTH),yes) +DSP_SRCS-$(HAVE_MSA) += mips/inv_txfm_msa.h +DSP_SRCS-$(HAVE_MSA) += mips/idct4x4_msa.c +DSP_SRCS-$(HAVE_MSA) += mips/idct8x8_msa.c +DSP_SRCS-$(HAVE_MSA) += mips/idct16x16_msa.c +DSP_SRCS-$(HAVE_MSA) += mips/idct32x32_msa.c + +DSP_SRCS-$(HAVE_DSPR2) += mips/inv_txfm_dspr2.h +DSP_SRCS-$(HAVE_DSPR2) += mips/itrans4_dspr2.c +DSP_SRCS-$(HAVE_DSPR2) += mips/itrans8_dspr2.c +DSP_SRCS-$(HAVE_DSPR2) += mips/itrans16_dspr2.c +DSP_SRCS-$(HAVE_DSPR2) += mips/itrans32_dspr2.c +DSP_SRCS-$(HAVE_DSPR2) += mips/itrans32_cols_dspr2.c +else # CONFIG_VP9_HIGHBITDEPTH +DSP_SRCS-$(HAVE_NEON) += arm/highbd_idct4x4_add_neon.c +DSP_SRCS-$(HAVE_NEON) += arm/highbd_idct8x8_add_neon.c +DSP_SRCS-$(HAVE_NEON) += arm/highbd_idct16x16_add_neon.c +DSP_SRCS-$(HAVE_NEON) += arm/highbd_idct32x32_add_neon.c +DSP_SRCS-$(HAVE_NEON) += arm/highbd_idct32x32_34_add_neon.c +DSP_SRCS-$(HAVE_NEON) += arm/highbd_idct32x32_135_add_neon.c +DSP_SRCS-$(HAVE_NEON) += arm/highbd_idct32x32_1024_add_neon.c +DSP_SRCS-$(HAVE_SSE2) += x86/highbd_inv_txfm_sse2.h +DSP_SRCS-$(HAVE_SSE2) += x86/highbd_idct4x4_add_sse2.c +DSP_SRCS-$(HAVE_SSE2) += x86/highbd_idct8x8_add_sse2.c +DSP_SRCS-$(HAVE_SSE2) += x86/highbd_idct16x16_add_sse2.c +DSP_SRCS-$(HAVE_SSE2) += x86/highbd_idct32x32_add_sse2.c +DSP_SRCS-$(HAVE_SSE4_1) += x86/highbd_inv_txfm_sse4.h +DSP_SRCS-$(HAVE_SSE4_1) += x86/highbd_idct4x4_add_sse4.c +DSP_SRCS-$(HAVE_SSE4_1) += x86/highbd_idct8x8_add_sse4.c +DSP_SRCS-$(HAVE_SSE4_1) += x86/highbd_idct16x16_add_sse4.c +DSP_SRCS-$(HAVE_SSE4_1) += x86/highbd_idct32x32_add_sse4.c +endif # !CONFIG_VP9_HIGHBITDEPTH + +ifeq ($(HAVE_NEON_ASM),yes) +DSP_SRCS-yes += arm/idct_neon$(ASM) +DSP_SRCS-yes += arm/idct4x4_1_add_neon$(ASM) +DSP_SRCS-yes += arm/idct4x4_add_neon$(ASM) +else +DSP_SRCS-$(HAVE_NEON) += arm/idct4x4_1_add_neon.c +DSP_SRCS-$(HAVE_NEON) += arm/idct4x4_add_neon.c +endif # HAVE_NEON_ASM +DSP_SRCS-$(HAVE_NEON) += arm/idct_neon.h +DSP_SRCS-$(HAVE_NEON) += arm/idct8x8_1_add_neon.c +DSP_SRCS-$(HAVE_NEON) += arm/idct8x8_add_neon.c +DSP_SRCS-$(HAVE_NEON) += arm/idct16x16_1_add_neon.c +DSP_SRCS-$(HAVE_NEON) += arm/idct16x16_add_neon.c +DSP_SRCS-$(HAVE_NEON) += arm/idct32x32_1_add_neon.c +DSP_SRCS-$(HAVE_NEON) += arm/idct32x32_34_add_neon.c +DSP_SRCS-$(HAVE_NEON) += arm/idct32x32_135_add_neon.c +DSP_SRCS-$(HAVE_NEON) += arm/idct32x32_add_neon.c + +endif # CONFIG_VP9 + +# quantization +ifeq ($(CONFIG_VP9_ENCODER),yes) +DSP_SRCS-yes += quantize.c +DSP_SRCS-yes += quantize.h + +DSP_SRCS-$(HAVE_SSE2) += x86/quantize_x86.h +DSP_SRCS-$(HAVE_SSE2) += x86/quantize_sse2.c +DSP_SRCS-$(HAVE_SSSE3) += x86/quantize_ssse3.c +DSP_SRCS-$(HAVE_AVX) += x86/quantize_avx.c +DSP_SRCS-$(HAVE_NEON) += arm/quantize_neon.c +ifeq ($(CONFIG_VP9_HIGHBITDEPTH),yes) +DSP_SRCS-$(HAVE_SSE2) += x86/highbd_quantize_intrin_sse2.c +endif + +# avg +DSP_SRCS-yes += avg.c +DSP_SRCS-$(HAVE_SSE2) += x86/avg_intrin_sse2.c +DSP_SRCS-$(HAVE_AVX2) += x86/avg_intrin_avx2.c +DSP_SRCS-$(HAVE_NEON) += arm/avg_neon.c +DSP_SRCS-$(HAVE_NEON) += arm/hadamard_neon.c +DSP_SRCS-$(HAVE_MSA) += mips/avg_msa.c +ifeq ($(ARCH_X86_64),yes) +DSP_SRCS-$(HAVE_SSSE3) += x86/avg_ssse3_x86_64.asm +endif +DSP_SRCS-$(HAVE_VSX) += ppc/hadamard_vsx.c + +endif # CONFIG_VP9_ENCODER + +# skin detection +DSP_SRCS-yes += skin_detection.h +DSP_SRCS-yes += skin_detection.c + +ifeq ($(CONFIG_ENCODERS),yes) +DSP_SRCS-yes += sad.c +DSP_SRCS-yes += subtract.c +DSP_SRCS-yes += sum_squares.c +DSP_SRCS-$(HAVE_SSE2) += x86/sum_squares_sse2.c +DSP_SRCS-$(HAVE_MSA) += mips/sum_squares_msa.c + +DSP_SRCS-$(HAVE_NEON) += arm/sad4d_neon.c +DSP_SRCS-$(HAVE_NEON) += arm/sad_neon.c +DSP_SRCS-$(HAVE_NEON) += arm/subtract_neon.c + +DSP_SRCS-$(HAVE_MSA) += mips/sad_msa.c +DSP_SRCS-$(HAVE_MSA) += mips/subtract_msa.c + +DSP_SRCS-$(HAVE_MMI) += mips/sad_mmi.c +DSP_SRCS-$(HAVE_MMI) += mips/subtract_mmi.c + +DSP_SRCS-$(HAVE_SSE3) += x86/sad_sse3.asm +DSP_SRCS-$(HAVE_SSSE3) += x86/sad_ssse3.asm +DSP_SRCS-$(HAVE_SSE4_1) += x86/sad_sse4.asm +DSP_SRCS-$(HAVE_AVX2) += x86/sad4d_avx2.c +DSP_SRCS-$(HAVE_AVX2) += x86/sad_avx2.c +DSP_SRCS-$(HAVE_AVX512) += x86/sad4d_avx512.c + +DSP_SRCS-$(HAVE_SSE) += x86/sad4d_sse2.asm +DSP_SRCS-$(HAVE_SSE) += x86/sad_sse2.asm +DSP_SRCS-$(HAVE_SSE2) += x86/sad4d_sse2.asm +DSP_SRCS-$(HAVE_SSE2) += x86/sad_sse2.asm +DSP_SRCS-$(HAVE_SSE2) += x86/subtract_sse2.asm + +DSP_SRCS-$(HAVE_VSX) += ppc/sad_vsx.c + +ifeq ($(CONFIG_VP9_HIGHBITDEPTH),yes) +DSP_SRCS-$(HAVE_SSE2) += x86/highbd_sad4d_sse2.asm +DSP_SRCS-$(HAVE_SSE2) += x86/highbd_sad_sse2.asm +endif # CONFIG_VP9_HIGHBITDEPTH + +endif # CONFIG_ENCODERS + +ifneq ($(filter yes,$(CONFIG_ENCODERS) $(CONFIG_POSTPROC) $(CONFIG_VP9_POSTPROC)),) +DSP_SRCS-yes += variance.c +DSP_SRCS-yes += variance.h + +DSP_SRCS-$(HAVE_NEON) += arm/avg_pred_neon.c +DSP_SRCS-$(HAVE_NEON) += arm/subpel_variance_neon.c +DSP_SRCS-$(HAVE_NEON) += arm/variance_neon.c + +DSP_SRCS-$(HAVE_MSA) += mips/variance_msa.c +DSP_SRCS-$(HAVE_MSA) += mips/sub_pixel_variance_msa.c + +DSP_SRCS-$(HAVE_MMI) += mips/variance_mmi.c + +DSP_SRCS-$(HAVE_SSE) += x86/variance_sse2.c +DSP_SRCS-$(HAVE_SSE2) += x86/avg_pred_sse2.c +DSP_SRCS-$(HAVE_SSE2) += x86/variance_sse2.c # Contains SSE2 and SSSE3 +DSP_SRCS-$(HAVE_AVX2) += x86/variance_avx2.c +DSP_SRCS-$(HAVE_VSX) += ppc/variance_vsx.c + +ifeq ($(ARCH_X86_64),yes) +DSP_SRCS-$(HAVE_SSE2) += x86/ssim_opt_x86_64.asm +endif # ARCH_X86_64 + +DSP_SRCS-$(HAVE_SSE) += x86/subpel_variance_sse2.asm +DSP_SRCS-$(HAVE_SSE2) += x86/subpel_variance_sse2.asm # Contains SSE2 and SSSE3 + +ifeq ($(CONFIG_VP9_HIGHBITDEPTH),yes) +DSP_SRCS-$(HAVE_SSE2) += x86/highbd_variance_sse2.c +DSP_SRCS-$(HAVE_SSE2) += x86/highbd_variance_impl_sse2.asm +DSP_SRCS-$(HAVE_SSE2) += x86/highbd_subpel_variance_impl_sse2.asm +endif # CONFIG_VP9_HIGHBITDEPTH +endif # CONFIG_ENCODERS || CONFIG_POSTPROC || CONFIG_VP9_POSTPROC + +# Neon utilities +DSP_SRCS-$(HAVE_NEON) += arm/mem_neon.h +DSP_SRCS-$(HAVE_NEON) += arm/sum_neon.h +DSP_SRCS-$(HAVE_NEON) += arm/transpose_neon.h +DSP_SRCS-$(HAVE_NEON) += arm/vpx_convolve8_neon.h + +# PPC VSX utilities +DSP_SRCS-$(HAVE_VSX) += ppc/types_vsx.h +DSP_SRCS-$(HAVE_VSX) += ppc/transpose_vsx.h +DSP_SRCS-$(HAVE_VSX) += ppc/bitdepth_conversion_vsx.h + +# X86 utilities +DSP_SRCS-$(HAVE_SSE2) += x86/mem_sse2.h +DSP_SRCS-$(HAVE_SSE2) += x86/transpose_sse2.h + +DSP_SRCS-no += $(DSP_SRCS_REMOVE-yes) + +DSP_SRCS-yes += vpx_dsp_rtcd.c +DSP_SRCS-yes += vpx_dsp_rtcd_defs.pl + +$(eval $(call rtcd_h_template,vpx_dsp_rtcd,vpx_dsp/vpx_dsp_rtcd_defs.pl)) diff --git a/vpx_dsp/vpx_dsp_common.h b/vpx_dsp/vpx_dsp_common.h new file mode 100644 index 0000000..c8c8523 --- /dev/null +++ b/vpx_dsp/vpx_dsp_common.h @@ -0,0 +1,73 @@ +/* + * Copyright (c) 2015 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VPX_DSP_VPX_DSP_COMMON_H_ +#define VPX_DSP_VPX_DSP_COMMON_H_ + +#include "./vpx_config.h" +#include "vpx/vpx_integer.h" +#include "vpx_ports/mem.h" + +#ifdef __cplusplus +extern "C" { +#endif + +#define VPXMIN(x, y) (((x) < (y)) ? (x) : (y)) +#define VPXMAX(x, y) (((x) > (y)) ? (x) : (y)) + +#define VPX_SWAP(type, a, b) \ + do { \ + type c = (b); \ + b = a; \ + a = c; \ + } while (0) + +#if CONFIG_VP9_HIGHBITDEPTH +// Note: +// tran_low_t is the datatype used for final transform coefficients. +// tran_high_t is the datatype used for intermediate transform stages. +typedef int64_t tran_high_t; +typedef int32_t tran_low_t; +#else +// Note: +// tran_low_t is the datatype used for final transform coefficients. +// tran_high_t is the datatype used for intermediate transform stages. +typedef int32_t tran_high_t; +typedef int16_t tran_low_t; +#endif // CONFIG_VP9_HIGHBITDEPTH + +typedef int16_t tran_coef_t; + +static INLINE uint8_t clip_pixel(int val) { + return (val > 255) ? 255 : (val < 0) ? 0 : val; +} + +static INLINE int clamp(int value, int low, int high) { + return value < low ? low : (value > high ? high : value); +} + +static INLINE double fclamp(double value, double low, double high) { + return value < low ? low : (value > high ? high : value); +} + +static INLINE uint16_t clip_pixel_highbd(int val, int bd) { + switch (bd) { + case 8: + default: return (uint16_t)clamp(val, 0, 255); + case 10: return (uint16_t)clamp(val, 0, 1023); + case 12: return (uint16_t)clamp(val, 0, 4095); + } +} + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VPX_DSP_VPX_DSP_COMMON_H_ diff --git a/vpx_dsp/vpx_dsp_rtcd.c b/vpx_dsp/vpx_dsp_rtcd.c new file mode 100644 index 0000000..030c456 --- /dev/null +++ b/vpx_dsp/vpx_dsp_rtcd.c @@ -0,0 +1,15 @@ +/* + * Copyright (c) 2015 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ +#include "./vpx_config.h" +#define RTCD_C +#include "./vpx_dsp_rtcd.h" +#include "vpx_ports/vpx_once.h" + +void vpx_dsp_rtcd() { once(setup_rtcd_internal); } diff --git a/vpx_dsp/vpx_dsp_rtcd_defs.pl b/vpx_dsp/vpx_dsp_rtcd_defs.pl new file mode 100644 index 0000000..1a743d9 --- /dev/null +++ b/vpx_dsp/vpx_dsp_rtcd_defs.pl @@ -0,0 +1,1613 @@ +## +## Copyright (c) 2017 The WebM project authors. All Rights Reserved. +## +## Use of this source code is governed by a BSD-style license +## that can be found in the LICENSE file in the root of the source +## tree. An additional intellectual property rights grant can be found +## in the file PATENTS. All contributing project authors may +## be found in the AUTHORS file in the root of the source tree. +## + +sub vpx_dsp_forward_decls() { +print < + +#include "./vpx_dsp_rtcd.h" +#include "vpx/vpx_integer.h" +#include "vpx_dsp/x86/bitdepth_conversion_avx2.h" +#include "vpx_ports/mem.h" + +static void hadamard_col8x2_avx2(__m256i *in, int iter) { + __m256i a0 = in[0]; + __m256i a1 = in[1]; + __m256i a2 = in[2]; + __m256i a3 = in[3]; + __m256i a4 = in[4]; + __m256i a5 = in[5]; + __m256i a6 = in[6]; + __m256i a7 = in[7]; + + __m256i b0 = _mm256_add_epi16(a0, a1); + __m256i b1 = _mm256_sub_epi16(a0, a1); + __m256i b2 = _mm256_add_epi16(a2, a3); + __m256i b3 = _mm256_sub_epi16(a2, a3); + __m256i b4 = _mm256_add_epi16(a4, a5); + __m256i b5 = _mm256_sub_epi16(a4, a5); + __m256i b6 = _mm256_add_epi16(a6, a7); + __m256i b7 = _mm256_sub_epi16(a6, a7); + + a0 = _mm256_add_epi16(b0, b2); + a1 = _mm256_add_epi16(b1, b3); + a2 = _mm256_sub_epi16(b0, b2); + a3 = _mm256_sub_epi16(b1, b3); + a4 = _mm256_add_epi16(b4, b6); + a5 = _mm256_add_epi16(b5, b7); + a6 = _mm256_sub_epi16(b4, b6); + a7 = _mm256_sub_epi16(b5, b7); + + if (iter == 0) { + b0 = _mm256_add_epi16(a0, a4); + b7 = _mm256_add_epi16(a1, a5); + b3 = _mm256_add_epi16(a2, a6); + b4 = _mm256_add_epi16(a3, a7); + b2 = _mm256_sub_epi16(a0, a4); + b6 = _mm256_sub_epi16(a1, a5); + b1 = _mm256_sub_epi16(a2, a6); + b5 = _mm256_sub_epi16(a3, a7); + + a0 = _mm256_unpacklo_epi16(b0, b1); + a1 = _mm256_unpacklo_epi16(b2, b3); + a2 = _mm256_unpackhi_epi16(b0, b1); + a3 = _mm256_unpackhi_epi16(b2, b3); + a4 = _mm256_unpacklo_epi16(b4, b5); + a5 = _mm256_unpacklo_epi16(b6, b7); + a6 = _mm256_unpackhi_epi16(b4, b5); + a7 = _mm256_unpackhi_epi16(b6, b7); + + b0 = _mm256_unpacklo_epi32(a0, a1); + b1 = _mm256_unpacklo_epi32(a4, a5); + b2 = _mm256_unpackhi_epi32(a0, a1); + b3 = _mm256_unpackhi_epi32(a4, a5); + b4 = _mm256_unpacklo_epi32(a2, a3); + b5 = _mm256_unpacklo_epi32(a6, a7); + b6 = _mm256_unpackhi_epi32(a2, a3); + b7 = _mm256_unpackhi_epi32(a6, a7); + + in[0] = _mm256_unpacklo_epi64(b0, b1); + in[1] = _mm256_unpackhi_epi64(b0, b1); + in[2] = _mm256_unpacklo_epi64(b2, b3); + in[3] = _mm256_unpackhi_epi64(b2, b3); + in[4] = _mm256_unpacklo_epi64(b4, b5); + in[5] = _mm256_unpackhi_epi64(b4, b5); + in[6] = _mm256_unpacklo_epi64(b6, b7); + in[7] = _mm256_unpackhi_epi64(b6, b7); + } else { + in[0] = _mm256_add_epi16(a0, a4); + in[7] = _mm256_add_epi16(a1, a5); + in[3] = _mm256_add_epi16(a2, a6); + in[4] = _mm256_add_epi16(a3, a7); + in[2] = _mm256_sub_epi16(a0, a4); + in[6] = _mm256_sub_epi16(a1, a5); + in[1] = _mm256_sub_epi16(a2, a6); + in[5] = _mm256_sub_epi16(a3, a7); + } +} + +static void hadamard_8x8x2_avx2(int16_t const *src_diff, ptrdiff_t src_stride, + int16_t *coeff) { + __m256i src[8]; + src[0] = _mm256_loadu_si256((const __m256i *)src_diff); + src[1] = _mm256_loadu_si256((const __m256i *)(src_diff += src_stride)); + src[2] = _mm256_loadu_si256((const __m256i *)(src_diff += src_stride)); + src[3] = _mm256_loadu_si256((const __m256i *)(src_diff += src_stride)); + src[4] = _mm256_loadu_si256((const __m256i *)(src_diff += src_stride)); + src[5] = _mm256_loadu_si256((const __m256i *)(src_diff += src_stride)); + src[6] = _mm256_loadu_si256((const __m256i *)(src_diff += src_stride)); + src[7] = _mm256_loadu_si256((const __m256i *)(src_diff += src_stride)); + + hadamard_col8x2_avx2(src, 0); + hadamard_col8x2_avx2(src, 1); + + _mm256_storeu_si256((__m256i *)coeff, + _mm256_permute2x128_si256(src[0], src[1], 0x20)); + coeff += 16; + _mm256_storeu_si256((__m256i *)coeff, + _mm256_permute2x128_si256(src[2], src[3], 0x20)); + coeff += 16; + _mm256_storeu_si256((__m256i *)coeff, + _mm256_permute2x128_si256(src[4], src[5], 0x20)); + coeff += 16; + _mm256_storeu_si256((__m256i *)coeff, + _mm256_permute2x128_si256(src[6], src[7], 0x20)); + coeff += 16; + _mm256_storeu_si256((__m256i *)coeff, + _mm256_permute2x128_si256(src[0], src[1], 0x31)); + coeff += 16; + _mm256_storeu_si256((__m256i *)coeff, + _mm256_permute2x128_si256(src[2], src[3], 0x31)); + coeff += 16; + _mm256_storeu_si256((__m256i *)coeff, + _mm256_permute2x128_si256(src[4], src[5], 0x31)); + coeff += 16; + _mm256_storeu_si256((__m256i *)coeff, + _mm256_permute2x128_si256(src[6], src[7], 0x31)); +} + +void vpx_hadamard_16x16_avx2(int16_t const *src_diff, ptrdiff_t src_stride, + tran_low_t *coeff) { + int idx; +#if CONFIG_VP9_HIGHBITDEPTH + DECLARE_ALIGNED(32, int16_t, temp_coeff[16 * 16]); + int16_t *t_coeff = temp_coeff; +#else + int16_t *t_coeff = coeff; +#endif + + for (idx = 0; idx < 2; ++idx) { + int16_t const *src_ptr = src_diff + idx * 8 * src_stride; + hadamard_8x8x2_avx2(src_ptr, src_stride, t_coeff + (idx * 64 * 2)); + } + + for (idx = 0; idx < 64; idx += 16) { + const __m256i coeff0 = _mm256_loadu_si256((const __m256i *)t_coeff); + const __m256i coeff1 = _mm256_loadu_si256((const __m256i *)(t_coeff + 64)); + const __m256i coeff2 = _mm256_loadu_si256((const __m256i *)(t_coeff + 128)); + const __m256i coeff3 = _mm256_loadu_si256((const __m256i *)(t_coeff + 192)); + + __m256i b0 = _mm256_add_epi16(coeff0, coeff1); + __m256i b1 = _mm256_sub_epi16(coeff0, coeff1); + __m256i b2 = _mm256_add_epi16(coeff2, coeff3); + __m256i b3 = _mm256_sub_epi16(coeff2, coeff3); + + b0 = _mm256_srai_epi16(b0, 1); + b1 = _mm256_srai_epi16(b1, 1); + b2 = _mm256_srai_epi16(b2, 1); + b3 = _mm256_srai_epi16(b3, 1); + + store_tran_low(_mm256_add_epi16(b0, b2), coeff); + store_tran_low(_mm256_add_epi16(b1, b3), coeff + 64); + store_tran_low(_mm256_sub_epi16(b0, b2), coeff + 128); + store_tran_low(_mm256_sub_epi16(b1, b3), coeff + 192); + + coeff += 16; + t_coeff += 16; + } +} + +int vpx_satd_avx2(const tran_low_t *coeff, int length) { + const __m256i one = _mm256_set1_epi16(1); + __m256i accum = _mm256_setzero_si256(); + int i; + + for (i = 0; i < length; i += 16) { + const __m256i src_line = load_tran_low(coeff); + const __m256i abs = _mm256_abs_epi16(src_line); + const __m256i sum = _mm256_madd_epi16(abs, one); + accum = _mm256_add_epi32(accum, sum); + coeff += 16; + } + + { // 32 bit horizontal add + const __m256i a = _mm256_srli_si256(accum, 8); + const __m256i b = _mm256_add_epi32(accum, a); + const __m256i c = _mm256_srli_epi64(b, 32); + const __m256i d = _mm256_add_epi32(b, c); + const __m128i accum_128 = _mm_add_epi32(_mm256_castsi256_si128(d), + _mm256_extractf128_si256(d, 1)); + return _mm_cvtsi128_si32(accum_128); + } +} diff --git a/vpx_dsp/x86/avg_intrin_sse2.c b/vpx_dsp/x86/avg_intrin_sse2.c new file mode 100644 index 0000000..a235ba4 --- /dev/null +++ b/vpx_dsp/x86/avg_intrin_sse2.c @@ -0,0 +1,424 @@ +/* + * Copyright (c) 2014 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include + +#include "./vpx_dsp_rtcd.h" +#include "vpx/vpx_integer.h" +#include "vpx_dsp/x86/bitdepth_conversion_sse2.h" +#include "vpx_ports/mem.h" + +void vpx_minmax_8x8_sse2(const uint8_t *s, int p, const uint8_t *d, int dp, + int *min, int *max) { + __m128i u0, s0, d0, diff, maxabsdiff, minabsdiff, negdiff, absdiff0, absdiff; + u0 = _mm_setzero_si128(); + // Row 0 + s0 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i *)(s)), u0); + d0 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i *)(d)), u0); + diff = _mm_subs_epi16(s0, d0); + negdiff = _mm_subs_epi16(u0, diff); + absdiff0 = _mm_max_epi16(diff, negdiff); + // Row 1 + s0 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i *)(s + p)), u0); + d0 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i *)(d + dp)), u0); + diff = _mm_subs_epi16(s0, d0); + negdiff = _mm_subs_epi16(u0, diff); + absdiff = _mm_max_epi16(diff, negdiff); + maxabsdiff = _mm_max_epi16(absdiff0, absdiff); + minabsdiff = _mm_min_epi16(absdiff0, absdiff); + // Row 2 + s0 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i *)(s + 2 * p)), u0); + d0 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i *)(d + 2 * dp)), u0); + diff = _mm_subs_epi16(s0, d0); + negdiff = _mm_subs_epi16(u0, diff); + absdiff = _mm_max_epi16(diff, negdiff); + maxabsdiff = _mm_max_epi16(maxabsdiff, absdiff); + minabsdiff = _mm_min_epi16(minabsdiff, absdiff); + // Row 3 + s0 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i *)(s + 3 * p)), u0); + d0 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i *)(d + 3 * dp)), u0); + diff = _mm_subs_epi16(s0, d0); + negdiff = _mm_subs_epi16(u0, diff); + absdiff = _mm_max_epi16(diff, negdiff); + maxabsdiff = _mm_max_epi16(maxabsdiff, absdiff); + minabsdiff = _mm_min_epi16(minabsdiff, absdiff); + // Row 4 + s0 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i *)(s + 4 * p)), u0); + d0 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i *)(d + 4 * dp)), u0); + diff = _mm_subs_epi16(s0, d0); + negdiff = _mm_subs_epi16(u0, diff); + absdiff = _mm_max_epi16(diff, negdiff); + maxabsdiff = _mm_max_epi16(maxabsdiff, absdiff); + minabsdiff = _mm_min_epi16(minabsdiff, absdiff); + // Row 5 + s0 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i *)(s + 5 * p)), u0); + d0 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i *)(d + 5 * dp)), u0); + diff = _mm_subs_epi16(s0, d0); + negdiff = _mm_subs_epi16(u0, diff); + absdiff = _mm_max_epi16(diff, negdiff); + maxabsdiff = _mm_max_epi16(maxabsdiff, absdiff); + minabsdiff = _mm_min_epi16(minabsdiff, absdiff); + // Row 6 + s0 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i *)(s + 6 * p)), u0); + d0 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i *)(d + 6 * dp)), u0); + diff = _mm_subs_epi16(s0, d0); + negdiff = _mm_subs_epi16(u0, diff); + absdiff = _mm_max_epi16(diff, negdiff); + maxabsdiff = _mm_max_epi16(maxabsdiff, absdiff); + minabsdiff = _mm_min_epi16(minabsdiff, absdiff); + // Row 7 + s0 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i *)(s + 7 * p)), u0); + d0 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i *)(d + 7 * dp)), u0); + diff = _mm_subs_epi16(s0, d0); + negdiff = _mm_subs_epi16(u0, diff); + absdiff = _mm_max_epi16(diff, negdiff); + maxabsdiff = _mm_max_epi16(maxabsdiff, absdiff); + minabsdiff = _mm_min_epi16(minabsdiff, absdiff); + + maxabsdiff = _mm_max_epi16(maxabsdiff, _mm_srli_si128(maxabsdiff, 8)); + maxabsdiff = _mm_max_epi16(maxabsdiff, _mm_srli_epi64(maxabsdiff, 32)); + maxabsdiff = _mm_max_epi16(maxabsdiff, _mm_srli_epi64(maxabsdiff, 16)); + *max = _mm_extract_epi16(maxabsdiff, 0); + + minabsdiff = _mm_min_epi16(minabsdiff, _mm_srli_si128(minabsdiff, 8)); + minabsdiff = _mm_min_epi16(minabsdiff, _mm_srli_epi64(minabsdiff, 32)); + minabsdiff = _mm_min_epi16(minabsdiff, _mm_srli_epi64(minabsdiff, 16)); + *min = _mm_extract_epi16(minabsdiff, 0); +} + +unsigned int vpx_avg_8x8_sse2(const uint8_t *s, int p) { + __m128i s0, s1, u0; + unsigned int avg = 0; + u0 = _mm_setzero_si128(); + s0 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i *)(s)), u0); + s1 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i *)(s + p)), u0); + s0 = _mm_adds_epu16(s0, s1); + s1 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i *)(s + 2 * p)), u0); + s0 = _mm_adds_epu16(s0, s1); + s1 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i *)(s + 3 * p)), u0); + s0 = _mm_adds_epu16(s0, s1); + s1 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i *)(s + 4 * p)), u0); + s0 = _mm_adds_epu16(s0, s1); + s1 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i *)(s + 5 * p)), u0); + s0 = _mm_adds_epu16(s0, s1); + s1 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i *)(s + 6 * p)), u0); + s0 = _mm_adds_epu16(s0, s1); + s1 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i *)(s + 7 * p)), u0); + s0 = _mm_adds_epu16(s0, s1); + + s0 = _mm_adds_epu16(s0, _mm_srli_si128(s0, 8)); + s0 = _mm_adds_epu16(s0, _mm_srli_epi64(s0, 32)); + s0 = _mm_adds_epu16(s0, _mm_srli_epi64(s0, 16)); + avg = _mm_extract_epi16(s0, 0); + return (avg + 32) >> 6; +} + +unsigned int vpx_avg_4x4_sse2(const uint8_t *s, int p) { + __m128i s0, s1, u0; + unsigned int avg = 0; + u0 = _mm_setzero_si128(); + s0 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i *)(s)), u0); + s1 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i *)(s + p)), u0); + s0 = _mm_adds_epu16(s0, s1); + s1 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i *)(s + 2 * p)), u0); + s0 = _mm_adds_epu16(s0, s1); + s1 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i *)(s + 3 * p)), u0); + s0 = _mm_adds_epu16(s0, s1); + + s0 = _mm_adds_epu16(s0, _mm_srli_si128(s0, 4)); + s0 = _mm_adds_epu16(s0, _mm_srli_epi64(s0, 16)); + avg = _mm_extract_epi16(s0, 0); + return (avg + 8) >> 4; +} + +static void hadamard_col8_sse2(__m128i *in, int iter) { + __m128i a0 = in[0]; + __m128i a1 = in[1]; + __m128i a2 = in[2]; + __m128i a3 = in[3]; + __m128i a4 = in[4]; + __m128i a5 = in[5]; + __m128i a6 = in[6]; + __m128i a7 = in[7]; + + __m128i b0 = _mm_add_epi16(a0, a1); + __m128i b1 = _mm_sub_epi16(a0, a1); + __m128i b2 = _mm_add_epi16(a2, a3); + __m128i b3 = _mm_sub_epi16(a2, a3); + __m128i b4 = _mm_add_epi16(a4, a5); + __m128i b5 = _mm_sub_epi16(a4, a5); + __m128i b6 = _mm_add_epi16(a6, a7); + __m128i b7 = _mm_sub_epi16(a6, a7); + + a0 = _mm_add_epi16(b0, b2); + a1 = _mm_add_epi16(b1, b3); + a2 = _mm_sub_epi16(b0, b2); + a3 = _mm_sub_epi16(b1, b3); + a4 = _mm_add_epi16(b4, b6); + a5 = _mm_add_epi16(b5, b7); + a6 = _mm_sub_epi16(b4, b6); + a7 = _mm_sub_epi16(b5, b7); + + if (iter == 0) { + b0 = _mm_add_epi16(a0, a4); + b7 = _mm_add_epi16(a1, a5); + b3 = _mm_add_epi16(a2, a6); + b4 = _mm_add_epi16(a3, a7); + b2 = _mm_sub_epi16(a0, a4); + b6 = _mm_sub_epi16(a1, a5); + b1 = _mm_sub_epi16(a2, a6); + b5 = _mm_sub_epi16(a3, a7); + + a0 = _mm_unpacklo_epi16(b0, b1); + a1 = _mm_unpacklo_epi16(b2, b3); + a2 = _mm_unpackhi_epi16(b0, b1); + a3 = _mm_unpackhi_epi16(b2, b3); + a4 = _mm_unpacklo_epi16(b4, b5); + a5 = _mm_unpacklo_epi16(b6, b7); + a6 = _mm_unpackhi_epi16(b4, b5); + a7 = _mm_unpackhi_epi16(b6, b7); + + b0 = _mm_unpacklo_epi32(a0, a1); + b1 = _mm_unpacklo_epi32(a4, a5); + b2 = _mm_unpackhi_epi32(a0, a1); + b3 = _mm_unpackhi_epi32(a4, a5); + b4 = _mm_unpacklo_epi32(a2, a3); + b5 = _mm_unpacklo_epi32(a6, a7); + b6 = _mm_unpackhi_epi32(a2, a3); + b7 = _mm_unpackhi_epi32(a6, a7); + + in[0] = _mm_unpacklo_epi64(b0, b1); + in[1] = _mm_unpackhi_epi64(b0, b1); + in[2] = _mm_unpacklo_epi64(b2, b3); + in[3] = _mm_unpackhi_epi64(b2, b3); + in[4] = _mm_unpacklo_epi64(b4, b5); + in[5] = _mm_unpackhi_epi64(b4, b5); + in[6] = _mm_unpacklo_epi64(b6, b7); + in[7] = _mm_unpackhi_epi64(b6, b7); + } else { + in[0] = _mm_add_epi16(a0, a4); + in[7] = _mm_add_epi16(a1, a5); + in[3] = _mm_add_epi16(a2, a6); + in[4] = _mm_add_epi16(a3, a7); + in[2] = _mm_sub_epi16(a0, a4); + in[6] = _mm_sub_epi16(a1, a5); + in[1] = _mm_sub_epi16(a2, a6); + in[5] = _mm_sub_epi16(a3, a7); + } +} + +void vpx_hadamard_8x8_sse2(int16_t const *src_diff, ptrdiff_t src_stride, + tran_low_t *coeff) { + __m128i src[8]; + src[0] = _mm_load_si128((const __m128i *)src_diff); + src[1] = _mm_load_si128((const __m128i *)(src_diff += src_stride)); + src[2] = _mm_load_si128((const __m128i *)(src_diff += src_stride)); + src[3] = _mm_load_si128((const __m128i *)(src_diff += src_stride)); + src[4] = _mm_load_si128((const __m128i *)(src_diff += src_stride)); + src[5] = _mm_load_si128((const __m128i *)(src_diff += src_stride)); + src[6] = _mm_load_si128((const __m128i *)(src_diff += src_stride)); + src[7] = _mm_load_si128((const __m128i *)(src_diff += src_stride)); + + hadamard_col8_sse2(src, 0); + hadamard_col8_sse2(src, 1); + + store_tran_low(src[0], coeff); + coeff += 8; + store_tran_low(src[1], coeff); + coeff += 8; + store_tran_low(src[2], coeff); + coeff += 8; + store_tran_low(src[3], coeff); + coeff += 8; + store_tran_low(src[4], coeff); + coeff += 8; + store_tran_low(src[5], coeff); + coeff += 8; + store_tran_low(src[6], coeff); + coeff += 8; + store_tran_low(src[7], coeff); +} + +void vpx_hadamard_16x16_sse2(int16_t const *src_diff, ptrdiff_t src_stride, + tran_low_t *coeff) { + int idx; + for (idx = 0; idx < 4; ++idx) { + int16_t const *src_ptr = + src_diff + (idx >> 1) * 8 * src_stride + (idx & 0x01) * 8; + vpx_hadamard_8x8_sse2(src_ptr, src_stride, coeff + idx * 64); + } + + for (idx = 0; idx < 64; idx += 8) { + __m128i coeff0 = load_tran_low(coeff); + __m128i coeff1 = load_tran_low(coeff + 64); + __m128i coeff2 = load_tran_low(coeff + 128); + __m128i coeff3 = load_tran_low(coeff + 192); + + __m128i b0 = _mm_add_epi16(coeff0, coeff1); + __m128i b1 = _mm_sub_epi16(coeff0, coeff1); + __m128i b2 = _mm_add_epi16(coeff2, coeff3); + __m128i b3 = _mm_sub_epi16(coeff2, coeff3); + + b0 = _mm_srai_epi16(b0, 1); + b1 = _mm_srai_epi16(b1, 1); + b2 = _mm_srai_epi16(b2, 1); + b3 = _mm_srai_epi16(b3, 1); + + coeff0 = _mm_add_epi16(b0, b2); + coeff1 = _mm_add_epi16(b1, b3); + store_tran_low(coeff0, coeff); + store_tran_low(coeff1, coeff + 64); + + coeff2 = _mm_sub_epi16(b0, b2); + coeff3 = _mm_sub_epi16(b1, b3); + store_tran_low(coeff2, coeff + 128); + store_tran_low(coeff3, coeff + 192); + + coeff += 8; + } +} + +int vpx_satd_sse2(const tran_low_t *coeff, int length) { + int i; + const __m128i zero = _mm_setzero_si128(); + __m128i accum = zero; + + for (i = 0; i < length; i += 8) { + const __m128i src_line = load_tran_low(coeff); + const __m128i inv = _mm_sub_epi16(zero, src_line); + const __m128i abs = _mm_max_epi16(src_line, inv); // abs(src_line) + const __m128i abs_lo = _mm_unpacklo_epi16(abs, zero); + const __m128i abs_hi = _mm_unpackhi_epi16(abs, zero); + const __m128i sum = _mm_add_epi32(abs_lo, abs_hi); + accum = _mm_add_epi32(accum, sum); + coeff += 8; + } + + { // cascading summation of accum + __m128i hi = _mm_srli_si128(accum, 8); + accum = _mm_add_epi32(accum, hi); + hi = _mm_srli_epi64(accum, 32); + accum = _mm_add_epi32(accum, hi); + } + + return _mm_cvtsi128_si32(accum); +} + +void vpx_int_pro_row_sse2(int16_t *hbuf, uint8_t const *ref, + const int ref_stride, const int height) { + int idx; + __m128i zero = _mm_setzero_si128(); + __m128i src_line = _mm_loadu_si128((const __m128i *)ref); + __m128i s0 = _mm_unpacklo_epi8(src_line, zero); + __m128i s1 = _mm_unpackhi_epi8(src_line, zero); + __m128i t0, t1; + int height_1 = height - 1; + ref += ref_stride; + + for (idx = 1; idx < height_1; idx += 2) { + src_line = _mm_loadu_si128((const __m128i *)ref); + t0 = _mm_unpacklo_epi8(src_line, zero); + t1 = _mm_unpackhi_epi8(src_line, zero); + s0 = _mm_adds_epu16(s0, t0); + s1 = _mm_adds_epu16(s1, t1); + ref += ref_stride; + + src_line = _mm_loadu_si128((const __m128i *)ref); + t0 = _mm_unpacklo_epi8(src_line, zero); + t1 = _mm_unpackhi_epi8(src_line, zero); + s0 = _mm_adds_epu16(s0, t0); + s1 = _mm_adds_epu16(s1, t1); + ref += ref_stride; + } + + src_line = _mm_loadu_si128((const __m128i *)ref); + t0 = _mm_unpacklo_epi8(src_line, zero); + t1 = _mm_unpackhi_epi8(src_line, zero); + s0 = _mm_adds_epu16(s0, t0); + s1 = _mm_adds_epu16(s1, t1); + + if (height == 64) { + s0 = _mm_srai_epi16(s0, 5); + s1 = _mm_srai_epi16(s1, 5); + } else if (height == 32) { + s0 = _mm_srai_epi16(s0, 4); + s1 = _mm_srai_epi16(s1, 4); + } else { + s0 = _mm_srai_epi16(s0, 3); + s1 = _mm_srai_epi16(s1, 3); + } + + _mm_storeu_si128((__m128i *)hbuf, s0); + hbuf += 8; + _mm_storeu_si128((__m128i *)hbuf, s1); +} + +int16_t vpx_int_pro_col_sse2(uint8_t const *ref, const int width) { + __m128i zero = _mm_setzero_si128(); + __m128i src_line = _mm_load_si128((const __m128i *)ref); + __m128i s0 = _mm_sad_epu8(src_line, zero); + __m128i s1; + int i; + + for (i = 16; i < width; i += 16) { + ref += 16; + src_line = _mm_load_si128((const __m128i *)ref); + s1 = _mm_sad_epu8(src_line, zero); + s0 = _mm_adds_epu16(s0, s1); + } + + s1 = _mm_srli_si128(s0, 8); + s0 = _mm_adds_epu16(s0, s1); + + return _mm_extract_epi16(s0, 0); +} + +int vpx_vector_var_sse2(int16_t const *ref, int16_t const *src, const int bwl) { + int idx; + int width = 4 << bwl; + int16_t mean; + __m128i v0 = _mm_loadu_si128((const __m128i *)ref); + __m128i v1 = _mm_load_si128((const __m128i *)src); + __m128i diff = _mm_subs_epi16(v0, v1); + __m128i sum = diff; + __m128i sse = _mm_madd_epi16(diff, diff); + + ref += 8; + src += 8; + + for (idx = 8; idx < width; idx += 8) { + v0 = _mm_loadu_si128((const __m128i *)ref); + v1 = _mm_load_si128((const __m128i *)src); + diff = _mm_subs_epi16(v0, v1); + + sum = _mm_add_epi16(sum, diff); + v0 = _mm_madd_epi16(diff, diff); + sse = _mm_add_epi32(sse, v0); + + ref += 8; + src += 8; + } + + v0 = _mm_srli_si128(sum, 8); + sum = _mm_add_epi16(sum, v0); + v0 = _mm_srli_epi64(sum, 32); + sum = _mm_add_epi16(sum, v0); + v0 = _mm_srli_epi32(sum, 16); + sum = _mm_add_epi16(sum, v0); + + v1 = _mm_srli_si128(sse, 8); + sse = _mm_add_epi32(sse, v1); + v1 = _mm_srli_epi64(sse, 32); + sse = _mm_add_epi32(sse, v1); + + mean = _mm_extract_epi16(sum, 0); + + return _mm_cvtsi128_si32(sse) - ((mean * mean) >> (bwl + 2)); +} diff --git a/vpx_dsp/x86/avg_pred_sse2.c b/vpx_dsp/x86/avg_pred_sse2.c new file mode 100644 index 0000000..f83b264 --- /dev/null +++ b/vpx_dsp/x86/avg_pred_sse2.c @@ -0,0 +1,69 @@ +/* + * Copyright (c) 2017 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include + +#include "./vpx_dsp_rtcd.h" +#include "vpx/vpx_integer.h" + +void vpx_comp_avg_pred_sse2(uint8_t *comp, const uint8_t *pred, int width, + int height, const uint8_t *ref, int ref_stride) { + /* comp and pred must be 16 byte aligned. */ + assert(((intptr_t)comp & 0xf) == 0); + assert(((intptr_t)pred & 0xf) == 0); + if (width > 8) { + int x, y; + for (y = 0; y < height; ++y) { + for (x = 0; x < width; x += 16) { + const __m128i p = _mm_load_si128((const __m128i *)(pred + x)); + const __m128i r = _mm_loadu_si128((const __m128i *)(ref + x)); + const __m128i avg = _mm_avg_epu8(p, r); + _mm_store_si128((__m128i *)(comp + x), avg); + } + comp += width; + pred += width; + ref += ref_stride; + } + } else { // width must be 4 or 8. + int i; + // Process 16 elements at a time. comp and pred have width == stride and + // therefore live in contigious memory. 4*4, 4*8, 8*4, 8*8, and 8*16 are all + // divisible by 16 so just ref needs to be massaged when loading. + for (i = 0; i < width * height; i += 16) { + const __m128i p = _mm_load_si128((const __m128i *)pred); + __m128i r; + __m128i avg; + if (width == ref_stride) { + r = _mm_loadu_si128((const __m128i *)ref); + ref += 16; + } else if (width == 4) { + r = _mm_set_epi32(*(const uint32_t *)(ref + 3 * ref_stride), + *(const uint32_t *)(ref + 2 * ref_stride), + *(const uint32_t *)(ref + ref_stride), + *(const uint32_t *)(ref)); + + ref += 4 * ref_stride; + } else { + const __m128i r_0 = _mm_loadl_epi64((const __m128i *)ref); + assert(width == 8); + r = _mm_castps_si128(_mm_loadh_pi(_mm_castsi128_ps(r_0), + (const __m64 *)(ref + ref_stride))); + + ref += 2 * ref_stride; + } + avg = _mm_avg_epu8(p, r); + _mm_store_si128((__m128i *)comp, avg); + + pred += 16; + comp += 16; + } + } +} diff --git a/vpx_dsp/x86/avg_ssse3_x86_64.asm b/vpx_dsp/x86/avg_ssse3_x86_64.asm new file mode 100644 index 0000000..22e0a08 --- /dev/null +++ b/vpx_dsp/x86/avg_ssse3_x86_64.asm @@ -0,0 +1,130 @@ +; +; Copyright (c) 2014 The WebM project authors. All Rights Reserved. +; +; Use of this source code is governed by a BSD-style license +; that can be found in the LICENSE file in the root of the source +; tree. An additional intellectual property rights grant can be found +; in the file PATENTS. All contributing project authors may +; be found in the AUTHORS file in the root of the source tree. +; + +%include "third_party/x86inc/x86inc.asm" +%include "vpx_dsp/x86/bitdepth_conversion_sse2.asm" + +SECTION .text + +%if ARCH_X86_64 +; matrix transpose +%macro TRANSPOSE8X8 10 + ; stage 1 + punpcklwd m%9, m%1, m%2 + punpcklwd m%10, m%3, m%4 + punpckhwd m%1, m%2 + punpckhwd m%3, m%4 + + punpcklwd m%2, m%5, m%6 + punpcklwd m%4, m%7, m%8 + punpckhwd m%5, m%6 + punpckhwd m%7, m%8 + + ; stage 2 + punpckldq m%6, m%9, m%10 + punpckldq m%8, m%1, m%3 + punpckhdq m%9, m%10 + punpckhdq m%1, m%3 + + punpckldq m%10, m%2, m%4 + punpckldq m%3, m%5, m%7 + punpckhdq m%2, m%4 + punpckhdq m%5, m%7 + + ; stage 3 + punpckhqdq m%4, m%9, m%2 ; out3 + punpcklqdq m%9, m%2 ; out2 + punpcklqdq m%7, m%1, m%5 ; out6 + punpckhqdq m%1, m%5 ; out7 + + punpckhqdq m%2, m%6, m%10 ; out1 + punpcklqdq m%6, m%10 ; out0 + punpcklqdq m%5, m%8, m%3 ; out4 + punpckhqdq m%8, m%3 ; out5 + + SWAP %6, %1 + SWAP %3, %9 + SWAP %8, %6 +%endmacro + +%macro HMD8_1D 0 + psubw m8, m0, m1 + psubw m9, m2, m3 + paddw m0, m1 + paddw m2, m3 + SWAP 1, 8 + SWAP 3, 9 + psubw m8, m4, m5 + psubw m9, m6, m7 + paddw m4, m5 + paddw m6, m7 + SWAP 5, 8 + SWAP 7, 9 + + psubw m8, m0, m2 + psubw m9, m1, m3 + paddw m0, m2 + paddw m1, m3 + SWAP 2, 8 + SWAP 3, 9 + psubw m8, m4, m6 + psubw m9, m5, m7 + paddw m4, m6 + paddw m5, m7 + SWAP 6, 8 + SWAP 7, 9 + + psubw m8, m0, m4 + psubw m9, m1, m5 + paddw m0, m4 + paddw m1, m5 + SWAP 4, 8 + SWAP 5, 9 + psubw m8, m2, m6 + psubw m9, m3, m7 + paddw m2, m6 + paddw m3, m7 + SWAP 6, 8 + SWAP 7, 9 +%endmacro + + +INIT_XMM ssse3 +cglobal hadamard_8x8, 3, 5, 11, input, stride, output + lea r3, [2 * strideq] + lea r4, [4 * strideq] + + mova m0, [inputq] + mova m1, [inputq + r3] + lea inputq, [inputq + r4] + mova m2, [inputq] + mova m3, [inputq + r3] + lea inputq, [inputq + r4] + mova m4, [inputq] + mova m5, [inputq + r3] + lea inputq, [inputq + r4] + mova m6, [inputq] + mova m7, [inputq + r3] + + HMD8_1D + TRANSPOSE8X8 0, 1, 2, 3, 4, 5, 6, 7, 9, 10 + HMD8_1D + + STORE_TRAN_LOW 0, outputq, 0, 8, 9 + STORE_TRAN_LOW 1, outputq, 8, 8, 9 + STORE_TRAN_LOW 2, outputq, 16, 8, 9 + STORE_TRAN_LOW 3, outputq, 24, 8, 9 + STORE_TRAN_LOW 4, outputq, 32, 8, 9 + STORE_TRAN_LOW 5, outputq, 40, 8, 9 + STORE_TRAN_LOW 6, outputq, 48, 8, 9 + STORE_TRAN_LOW 7, outputq, 56, 8, 9 + + RET +%endif diff --git a/vpx_dsp/x86/bitdepth_conversion_avx2.h b/vpx_dsp/x86/bitdepth_conversion_avx2.h new file mode 100644 index 0000000..3552c07 --- /dev/null +++ b/vpx_dsp/x86/bitdepth_conversion_avx2.h @@ -0,0 +1,44 @@ +/* + * Copyright (c) 2017 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ +#ifndef VPX_DSP_X86_BITDEPTH_CONVERSION_AVX2_H_ +#define VPX_DSP_X86_BITDEPTH_CONVERSION_AVX2_H_ + +#include + +#include "./vpx_config.h" +#include "vpx/vpx_integer.h" +#include "vpx_dsp/vpx_dsp_common.h" + +// Load 16 16 bit values. If the source is 32 bits then pack down with +// saturation. +static INLINE __m256i load_tran_low(const tran_low_t *a) { +#if CONFIG_VP9_HIGHBITDEPTH + const __m256i a_low = _mm256_loadu_si256((const __m256i *)a); + const __m256i a_high = _mm256_loadu_si256((const __m256i *)(a + 8)); + return _mm256_packs_epi32(a_low, a_high); +#else + return _mm256_loadu_si256((const __m256i *)a); +#endif +} + +static INLINE void store_tran_low(__m256i a, tran_low_t *b) { +#if CONFIG_VP9_HIGHBITDEPTH + const __m256i one = _mm256_set1_epi16(1); + const __m256i a_hi = _mm256_mulhi_epi16(a, one); + const __m256i a_lo = _mm256_mullo_epi16(a, one); + const __m256i a_1 = _mm256_unpacklo_epi16(a_lo, a_hi); + const __m256i a_2 = _mm256_unpackhi_epi16(a_lo, a_hi); + _mm256_storeu_si256((__m256i *)b, a_1); + _mm256_storeu_si256((__m256i *)(b + 8), a_2); +#else + _mm256_storeu_si256((__m256i *)b, a); +#endif +} +#endif // VPX_DSP_X86_BITDEPTH_CONVERSION_AVX2_H_ diff --git a/vpx_dsp/x86/bitdepth_conversion_sse2.asm b/vpx_dsp/x86/bitdepth_conversion_sse2.asm new file mode 100644 index 0000000..aacf71f --- /dev/null +++ b/vpx_dsp/x86/bitdepth_conversion_sse2.asm @@ -0,0 +1,90 @@ +; +; Copyright (c) 2017 The WebM project authors. All Rights Reserved. +; +; Use of this source code is governed by a BSD-style license +; that can be found in the LICENSE file in the root of the source +; tree. An additional intellectual property rights grant can be found +; in the file PATENTS. All contributing project authors may +; be found in the AUTHORS file in the root of the source tree. +; + +; TODO(johannkoenig): Add the necessary include guards to vpx_config.asm. +; vpx_config.asm is not guarded so can not be included twice. Because this will +; be used in conjunction with x86_abi_support.asm or x86inc.asm, it must be +; included after those files. + +; Increment register by sizeof() tran_low_t * 8. +%macro INCREMENT_TRAN_LOW 1 +%if CONFIG_VP9_HIGHBITDEPTH + add %1, 32 +%else + add %1, 16 +%endif +%endmacro + +; Increment %1 by sizeof() tran_low_t * %2. +%macro INCREMENT_ELEMENTS_TRAN_LOW 2 +%if CONFIG_VP9_HIGHBITDEPTH + lea %1, [%1 + %2 * 4] +%else + lea %1, [%1 + %2 * 2] +%endif +%endmacro + +; Load %2 + %3 into m%1. +; %3 is the offset in elements, not bytes. +; If tran_low_t is 16 bits (low bit depth configuration) then load the value +; directly. If tran_low_t is 32 bits (high bit depth configuration) then pack +; the values down to 16 bits. +%macro LOAD_TRAN_LOW 3 +%if CONFIG_VP9_HIGHBITDEPTH + mova m%1, [%2 + (%3) * 4] + packssdw m%1, [%2 + (%3) * 4 + 16] +%else + mova m%1, [%2 + (%3) * 2] +%endif +%endmacro + +; Store m%1 to %2 + %3. +; %3 is the offset in elements, not bytes. +; If 5 arguments are provided then m%1 is corrupted. +; If 6 arguments are provided then m%1 is preserved. +; If tran_low_t is 16 bits (low bit depth configuration) then store the value +; directly. If tran_low_t is 32 bits (high bit depth configuration) then sign +; extend the values first. +; Uses m%4-m%6 as scratch registers for high bit depth. +%macro STORE_TRAN_LOW 5-6 +%if CONFIG_VP9_HIGHBITDEPTH + pxor m%4, m%4 + mova m%5, m%1 + %if %0 == 6 + mova m%6, m%1 + %endif + pcmpgtw m%4, m%1 + punpcklwd m%5, m%4 + %if %0 == 5 + punpckhwd m%1, m%4 + %else + punpckhwd m%6, m%4 + %endif + mova [%2 + (%3) * 4 + 0], m%5 + %if %0 == 5 + mova [%2 + (%3) * 4 + 16], m%1 + %else + mova [%2 + (%3) * 4 + 16], m%6 + %endif +%else + mova [%2 + (%3) * 2], m%1 +%endif +%endmacro + +; Store zeros (in m%1) to %2 + %3. +; %3 is the offset in elements, not bytes. +%macro STORE_ZERO_TRAN_LOW 3 +%if CONFIG_VP9_HIGHBITDEPTH + mova [%2 + (%3) * 4 + 0], m%1 + mova [%2 + (%3) * 4 + 16], m%1 +%else + mova [%2 + (%3) * 2], m%1 +%endif +%endmacro diff --git a/vpx_dsp/x86/bitdepth_conversion_sse2.h b/vpx_dsp/x86/bitdepth_conversion_sse2.h new file mode 100644 index 0000000..5d1d779 --- /dev/null +++ b/vpx_dsp/x86/bitdepth_conversion_sse2.h @@ -0,0 +1,56 @@ +/* + * Copyright (c) 2017 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ +#ifndef VPX_DSP_X86_BITDEPTH_CONVERSION_SSE2_H_ +#define VPX_DSP_X86_BITDEPTH_CONVERSION_SSE2_H_ + +#include + +#include "./vpx_config.h" +#include "vpx/vpx_integer.h" +#include "vpx_dsp/vpx_dsp_common.h" + +// Load 8 16 bit values. If the source is 32 bits then pack down with +// saturation. +static INLINE __m128i load_tran_low(const tran_low_t *a) { +#if CONFIG_VP9_HIGHBITDEPTH + const __m128i a_low = _mm_load_si128((const __m128i *)a); + return _mm_packs_epi32(a_low, *(const __m128i *)(a + 4)); +#else + return _mm_load_si128((const __m128i *)a); +#endif +} + +// Store 8 16 bit values. If the destination is 32 bits then sign extend the +// values by multiplying by 1. +static INLINE void store_tran_low(__m128i a, tran_low_t *b) { +#if CONFIG_VP9_HIGHBITDEPTH + const __m128i one = _mm_set1_epi16(1); + const __m128i a_hi = _mm_mulhi_epi16(a, one); + const __m128i a_lo = _mm_mullo_epi16(a, one); + const __m128i a_1 = _mm_unpacklo_epi16(a_lo, a_hi); + const __m128i a_2 = _mm_unpackhi_epi16(a_lo, a_hi); + _mm_store_si128((__m128i *)(b), a_1); + _mm_store_si128((__m128i *)(b + 4), a_2); +#else + _mm_store_si128((__m128i *)(b), a); +#endif +} + +// Zero fill 8 positions in the output buffer. +static INLINE void store_zero_tran_low(tran_low_t *a) { + const __m128i zero = _mm_setzero_si128(); +#if CONFIG_VP9_HIGHBITDEPTH + _mm_store_si128((__m128i *)(a), zero); + _mm_store_si128((__m128i *)(a + 4), zero); +#else + _mm_store_si128((__m128i *)(a), zero); +#endif +} +#endif // VPX_DSP_X86_BITDEPTH_CONVERSION_SSE2_H_ diff --git a/vpx_dsp/x86/convolve.h b/vpx_dsp/x86/convolve.h new file mode 100644 index 0000000..68d7589 --- /dev/null +++ b/vpx_dsp/x86/convolve.h @@ -0,0 +1,203 @@ +/* + * Copyright (c) 2015 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ +#ifndef VPX_DSP_X86_CONVOLVE_H_ +#define VPX_DSP_X86_CONVOLVE_H_ + +#include + +#include "./vpx_config.h" +#include "vpx/vpx_integer.h" +#include "vpx_ports/mem.h" + +typedef void filter8_1dfunction(const uint8_t *src_ptr, ptrdiff_t src_pitch, + uint8_t *output_ptr, ptrdiff_t out_pitch, + uint32_t output_height, const int16_t *filter); + +#define FUN_CONV_1D(name, offset, step_q4, dir, src_start, avg, opt) \ + void vpx_convolve8_##name##_##opt( \ + const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst, \ + ptrdiff_t dst_stride, const InterpKernel *filter_kernel, int x0_q4, \ + int x_step_q4, int y0_q4, int y_step_q4, int w, int h) { \ + const int16_t *filter = filter_kernel[offset]; \ + (void)x0_q4; \ + (void)x_step_q4; \ + (void)y0_q4; \ + (void)y_step_q4; \ + assert(filter[3] != 128); \ + assert(step_q4 == 16); \ + if (filter[0] | filter[1] | filter[2]) { \ + while (w >= 16) { \ + vpx_filter_block1d16_##dir##8_##avg##opt(src_start, src_stride, dst, \ + dst_stride, h, filter); \ + src += 16; \ + dst += 16; \ + w -= 16; \ + } \ + if (w == 8) { \ + vpx_filter_block1d8_##dir##8_##avg##opt(src_start, src_stride, dst, \ + dst_stride, h, filter); \ + } else if (w == 4) { \ + vpx_filter_block1d4_##dir##8_##avg##opt(src_start, src_stride, dst, \ + dst_stride, h, filter); \ + } \ + } else { \ + while (w >= 16) { \ + vpx_filter_block1d16_##dir##2_##avg##opt(src, src_stride, dst, \ + dst_stride, h, filter); \ + src += 16; \ + dst += 16; \ + w -= 16; \ + } \ + if (w == 8) { \ + vpx_filter_block1d8_##dir##2_##avg##opt(src, src_stride, dst, \ + dst_stride, h, filter); \ + } else if (w == 4) { \ + vpx_filter_block1d4_##dir##2_##avg##opt(src, src_stride, dst, \ + dst_stride, h, filter); \ + } \ + } \ + } + +#define FUN_CONV_2D(avg, opt) \ + void vpx_convolve8_##avg##opt( \ + const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst, \ + ptrdiff_t dst_stride, const InterpKernel *filter, int x0_q4, \ + int x_step_q4, int y0_q4, int y_step_q4, int w, int h) { \ + const int16_t *filter_x = filter[x0_q4]; \ + const int16_t *filter_y = filter[y0_q4]; \ + (void)filter_y; \ + assert(filter_x[3] != 128); \ + assert(filter_y[3] != 128); \ + assert(w <= 64); \ + assert(h <= 64); \ + assert(x_step_q4 == 16); \ + assert(y_step_q4 == 16); \ + if (filter_x[0] | filter_x[1] | filter_x[2]) { \ + DECLARE_ALIGNED(16, uint8_t, fdata2[64 * 71]); \ + vpx_convolve8_horiz_##opt(src - 3 * src_stride, src_stride, fdata2, 64, \ + filter, x0_q4, x_step_q4, y0_q4, y_step_q4, w, \ + h + 7); \ + vpx_convolve8_##avg##vert_##opt(fdata2 + 3 * 64, 64, dst, dst_stride, \ + filter, x0_q4, x_step_q4, y0_q4, \ + y_step_q4, w, h); \ + } else { \ + DECLARE_ALIGNED(16, uint8_t, fdata2[64 * 65]); \ + vpx_convolve8_horiz_##opt(src, src_stride, fdata2, 64, filter, x0_q4, \ + x_step_q4, y0_q4, y_step_q4, w, h + 1); \ + vpx_convolve8_##avg##vert_##opt(fdata2, 64, dst, dst_stride, filter, \ + x0_q4, x_step_q4, y0_q4, y_step_q4, w, \ + h); \ + } \ + } + +#if CONFIG_VP9_HIGHBITDEPTH + +typedef void highbd_filter8_1dfunction(const uint16_t *src_ptr, + const ptrdiff_t src_pitch, + uint16_t *output_ptr, + ptrdiff_t out_pitch, + unsigned int output_height, + const int16_t *filter, int bd); + +#define HIGH_FUN_CONV_1D(name, offset, step_q4, dir, src_start, avg, opt) \ + void vpx_highbd_convolve8_##name##_##opt( \ + const uint16_t *src, ptrdiff_t src_stride, uint16_t *dst, \ + ptrdiff_t dst_stride, const InterpKernel *filter_kernel, int x0_q4, \ + int x_step_q4, int y0_q4, int y_step_q4, int w, int h, int bd) { \ + const int16_t *filter = filter_kernel[offset]; \ + if (step_q4 == 16 && filter[3] != 128) { \ + if (filter[0] | filter[1] | filter[2]) { \ + while (w >= 16) { \ + vpx_highbd_filter_block1d16_##dir##8_##avg##opt( \ + src_start, src_stride, dst, dst_stride, h, filter, bd); \ + src += 16; \ + dst += 16; \ + w -= 16; \ + } \ + while (w >= 8) { \ + vpx_highbd_filter_block1d8_##dir##8_##avg##opt( \ + src_start, src_stride, dst, dst_stride, h, filter, bd); \ + src += 8; \ + dst += 8; \ + w -= 8; \ + } \ + while (w >= 4) { \ + vpx_highbd_filter_block1d4_##dir##8_##avg##opt( \ + src_start, src_stride, dst, dst_stride, h, filter, bd); \ + src += 4; \ + dst += 4; \ + w -= 4; \ + } \ + } else { \ + while (w >= 16) { \ + vpx_highbd_filter_block1d16_##dir##2_##avg##opt( \ + src, src_stride, dst, dst_stride, h, filter, bd); \ + src += 16; \ + dst += 16; \ + w -= 16; \ + } \ + while (w >= 8) { \ + vpx_highbd_filter_block1d8_##dir##2_##avg##opt( \ + src, src_stride, dst, dst_stride, h, filter, bd); \ + src += 8; \ + dst += 8; \ + w -= 8; \ + } \ + while (w >= 4) { \ + vpx_highbd_filter_block1d4_##dir##2_##avg##opt( \ + src, src_stride, dst, dst_stride, h, filter, bd); \ + src += 4; \ + dst += 4; \ + w -= 4; \ + } \ + } \ + } \ + if (w) { \ + vpx_highbd_convolve8_##name##_c(src, src_stride, dst, dst_stride, \ + filter_kernel, x0_q4, x_step_q4, y0_q4, \ + y_step_q4, w, h, bd); \ + } \ + } + +#define HIGH_FUN_CONV_2D(avg, opt) \ + void vpx_highbd_convolve8_##avg##opt( \ + const uint16_t *src, ptrdiff_t src_stride, uint16_t *dst, \ + ptrdiff_t dst_stride, const InterpKernel *filter, int x0_q4, \ + int x_step_q4, int y0_q4, int y_step_q4, int w, int h, int bd) { \ + const int16_t *filter_x = filter[x0_q4]; \ + assert(w <= 64); \ + assert(h <= 64); \ + if (x_step_q4 == 16 && y_step_q4 == 16) { \ + if ((filter_x[0] | filter_x[1] | filter_x[2]) || filter_x[3] == 128) { \ + DECLARE_ALIGNED(16, uint16_t, fdata2[64 * 71]); \ + vpx_highbd_convolve8_horiz_##opt(src - 3 * src_stride, src_stride, \ + fdata2, 64, filter, x0_q4, x_step_q4, \ + y0_q4, y_step_q4, w, h + 7, bd); \ + vpx_highbd_convolve8_##avg##vert_##opt( \ + fdata2 + 192, 64, dst, dst_stride, filter, x0_q4, x_step_q4, \ + y0_q4, y_step_q4, w, h, bd); \ + } else { \ + DECLARE_ALIGNED(16, uint16_t, fdata2[64 * 65]); \ + vpx_highbd_convolve8_horiz_##opt(src, src_stride, fdata2, 64, filter, \ + x0_q4, x_step_q4, y0_q4, y_step_q4, \ + w, h + 1, bd); \ + vpx_highbd_convolve8_##avg##vert_##opt(fdata2, 64, dst, dst_stride, \ + filter, x0_q4, x_step_q4, \ + y0_q4, y_step_q4, w, h, bd); \ + } \ + } else { \ + vpx_highbd_convolve8_##avg##c(src, src_stride, dst, dst_stride, filter, \ + x0_q4, x_step_q4, y0_q4, y_step_q4, w, h, \ + bd); \ + } \ + } +#endif // CONFIG_VP9_HIGHBITDEPTH + +#endif // VPX_DSP_X86_CONVOLVE_H_ diff --git a/vpx_dsp/x86/convolve_avx2.h b/vpx_dsp/x86/convolve_avx2.h new file mode 100644 index 0000000..bc96b73 --- /dev/null +++ b/vpx_dsp/x86/convolve_avx2.h @@ -0,0 +1,105 @@ +/* + * Copyright (c) 2017 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VPX_DSP_X86_CONVOLVE_AVX2_H_ +#define VPX_DSP_X86_CONVOLVE_AVX2_H_ + +#include // AVX2 + +#include "./vpx_config.h" + +#if defined(__clang__) +#if (__clang_major__ > 0 && __clang_major__ < 3) || \ + (__clang_major__ == 3 && __clang_minor__ <= 3) || \ + (defined(__APPLE__) && defined(__apple_build_version__) && \ + ((__clang_major__ == 4 && __clang_minor__ <= 2) || \ + (__clang_major__ == 5 && __clang_minor__ == 0))) +#define MM256_BROADCASTSI128_SI256(x) \ + _mm_broadcastsi128_si256((__m128i const *)&(x)) +#else // clang > 3.3, and not 5.0 on macosx. +#define MM256_BROADCASTSI128_SI256(x) _mm256_broadcastsi128_si256(x) +#endif // clang <= 3.3 +#elif defined(__GNUC__) +#if __GNUC__ < 4 || (__GNUC__ == 4 && __GNUC_MINOR__ <= 6) +#define MM256_BROADCASTSI128_SI256(x) \ + _mm_broadcastsi128_si256((__m128i const *)&(x)) +#elif __GNUC__ == 4 && __GNUC_MINOR__ == 7 +#define MM256_BROADCASTSI128_SI256(x) _mm_broadcastsi128_si256(x) +#else // gcc > 4.7 +#define MM256_BROADCASTSI128_SI256(x) _mm256_broadcastsi128_si256(x) +#endif // gcc <= 4.6 +#else // !(gcc || clang) +#define MM256_BROADCASTSI128_SI256(x) _mm256_broadcastsi128_si256(x) +#endif // __clang__ + +static INLINE void shuffle_filter_avx2(const int16_t *const filter, + __m256i *const f) { + const __m256i f_values = + MM256_BROADCASTSI128_SI256(_mm_load_si128((const __m128i *)filter)); + // pack and duplicate the filter values + f[0] = _mm256_shuffle_epi8(f_values, _mm256_set1_epi16(0x0200u)); + f[1] = _mm256_shuffle_epi8(f_values, _mm256_set1_epi16(0x0604u)); + f[2] = _mm256_shuffle_epi8(f_values, _mm256_set1_epi16(0x0a08u)); + f[3] = _mm256_shuffle_epi8(f_values, _mm256_set1_epi16(0x0e0cu)); +} + +static INLINE __m256i convolve8_16_avx2(const __m256i *const s, + const __m256i *const f) { + // multiply 2 adjacent elements with the filter and add the result + const __m256i k_64 = _mm256_set1_epi16(1 << 6); + const __m256i x0 = _mm256_maddubs_epi16(s[0], f[0]); + const __m256i x1 = _mm256_maddubs_epi16(s[1], f[1]); + const __m256i x2 = _mm256_maddubs_epi16(s[2], f[2]); + const __m256i x3 = _mm256_maddubs_epi16(s[3], f[3]); + __m256i sum1, sum2; + + // sum the results together, saturating only on the final step + // adding x0 with x2 and x1 with x3 is the only order that prevents + // outranges for all filters + sum1 = _mm256_add_epi16(x0, x2); + sum2 = _mm256_add_epi16(x1, x3); + // add the rounding offset early to avoid another saturated add + sum1 = _mm256_add_epi16(sum1, k_64); + sum1 = _mm256_adds_epi16(sum1, sum2); + // round and shift by 7 bit each 16 bit + sum1 = _mm256_srai_epi16(sum1, 7); + return sum1; +} + +static INLINE __m128i convolve8_8_avx2(const __m256i *const s, + const __m256i *const f) { + // multiply 2 adjacent elements with the filter and add the result + const __m128i k_64 = _mm_set1_epi16(1 << 6); + const __m128i x0 = _mm_maddubs_epi16(_mm256_castsi256_si128(s[0]), + _mm256_castsi256_si128(f[0])); + const __m128i x1 = _mm_maddubs_epi16(_mm256_castsi256_si128(s[1]), + _mm256_castsi256_si128(f[1])); + const __m128i x2 = _mm_maddubs_epi16(_mm256_castsi256_si128(s[2]), + _mm256_castsi256_si128(f[2])); + const __m128i x3 = _mm_maddubs_epi16(_mm256_castsi256_si128(s[3]), + _mm256_castsi256_si128(f[3])); + __m128i sum1, sum2; + + // sum the results together, saturating only on the final step + // adding x0 with x2 and x1 with x3 is the only order that prevents + // outranges for all filters + sum1 = _mm_add_epi16(x0, x2); + sum2 = _mm_add_epi16(x1, x3); + // add the rounding offset early to avoid another saturated add + sum1 = _mm_add_epi16(sum1, k_64); + sum1 = _mm_adds_epi16(sum1, sum2); + // shift by 7 bit each 16 bit + sum1 = _mm_srai_epi16(sum1, 7); + return sum1; +} + +#undef MM256_BROADCASTSI128_SI256 + +#endif // VPX_DSP_X86_CONVOLVE_AVX2_H_ diff --git a/vpx_dsp/x86/convolve_ssse3.h b/vpx_dsp/x86/convolve_ssse3.h new file mode 100644 index 0000000..e5d452f --- /dev/null +++ b/vpx_dsp/x86/convolve_ssse3.h @@ -0,0 +1,112 @@ +/* + * Copyright (c) 2017 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VPX_DSP_X86_CONVOLVE_SSSE3_H_ +#define VPX_DSP_X86_CONVOLVE_SSSE3_H_ + +#include +#include // SSSE3 + +#include "./vpx_config.h" + +static INLINE void shuffle_filter_ssse3(const int16_t *const filter, + __m128i *const f) { + const __m128i f_values = _mm_load_si128((const __m128i *)filter); + // pack and duplicate the filter values + f[0] = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x0200u)); + f[1] = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x0604u)); + f[2] = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x0a08u)); + f[3] = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x0e0cu)); +} + +static INLINE void shuffle_filter_odd_ssse3(const int16_t *const filter, + __m128i *const f) { + const __m128i f_values = _mm_load_si128((const __m128i *)filter); + // pack and duplicate the filter values + // It utilizes the fact that the high byte of filter[3] is always 0 to clean + // half of f[0] and f[4]. + assert(filter[3] >= 0 && filter[3] < 256); + f[0] = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x0007u)); + f[1] = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x0402u)); + f[2] = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x0806u)); + f[3] = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x0c0au)); + f[4] = _mm_shuffle_epi8(f_values, _mm_set1_epi16(0x070eu)); +} + +static INLINE __m128i convolve8_8_ssse3(const __m128i *const s, + const __m128i *const f) { + // multiply 2 adjacent elements with the filter and add the result + const __m128i k_64 = _mm_set1_epi16(1 << 6); + const __m128i x0 = _mm_maddubs_epi16(s[0], f[0]); + const __m128i x1 = _mm_maddubs_epi16(s[1], f[1]); + const __m128i x2 = _mm_maddubs_epi16(s[2], f[2]); + const __m128i x3 = _mm_maddubs_epi16(s[3], f[3]); + __m128i sum1, sum2; + + // sum the results together, saturating only on the final step + // adding x0 with x2 and x1 with x3 is the only order that prevents + // outranges for all filters + sum1 = _mm_add_epi16(x0, x2); + sum2 = _mm_add_epi16(x1, x3); + // add the rounding offset early to avoid another saturated add + sum1 = _mm_add_epi16(sum1, k_64); + sum1 = _mm_adds_epi16(sum1, sum2); + // shift by 7 bit each 16 bit + sum1 = _mm_srai_epi16(sum1, 7); + return sum1; +} + +static INLINE __m128i convolve8_8_even_offset_ssse3(const __m128i *const s, + const __m128i *const f) { + // multiply 2 adjacent elements with the filter and add the result + const __m128i k_64 = _mm_set1_epi16(1 << 6); + const __m128i x0 = _mm_maddubs_epi16(s[0], f[0]); + const __m128i x1 = _mm_maddubs_epi16(s[1], f[1]); + const __m128i x2 = _mm_maddubs_epi16(s[2], f[2]); + const __m128i x3 = _mm_maddubs_epi16(s[3], f[3]); + // compensate the subtracted 64 in f[1]. x4 is always non negative. + const __m128i x4 = _mm_maddubs_epi16(s[1], _mm_set1_epi8(64)); + // add and saturate the results together + __m128i temp = _mm_adds_epi16(x0, x3); + temp = _mm_adds_epi16(temp, x1); + temp = _mm_adds_epi16(temp, x2); + temp = _mm_adds_epi16(temp, x4); + // round and shift by 7 bit each 16 bit + temp = _mm_adds_epi16(temp, k_64); + temp = _mm_srai_epi16(temp, 7); + return temp; +} + +static INLINE __m128i convolve8_8_odd_offset_ssse3(const __m128i *const s, + const __m128i *const f) { + // multiply 2 adjacent elements with the filter and add the result + const __m128i k_64 = _mm_set1_epi16(1 << 6); + const __m128i x0 = _mm_maddubs_epi16(s[0], f[0]); + const __m128i x1 = _mm_maddubs_epi16(s[1], f[1]); + const __m128i x2 = _mm_maddubs_epi16(s[2], f[2]); + const __m128i x3 = _mm_maddubs_epi16(s[3], f[3]); + const __m128i x4 = _mm_maddubs_epi16(s[4], f[4]); + // compensate the subtracted 64 in f[2]. x5 is always non negative. + const __m128i x5 = _mm_maddubs_epi16(s[2], _mm_set1_epi8(64)); + __m128i temp; + + // add and saturate the results together + temp = _mm_adds_epi16(x0, x1); + temp = _mm_adds_epi16(temp, x2); + temp = _mm_adds_epi16(temp, x3); + temp = _mm_adds_epi16(temp, x4); + temp = _mm_adds_epi16(temp, x5); + // round and shift by 7 bit each 16 bit + temp = _mm_adds_epi16(temp, k_64); + temp = _mm_srai_epi16(temp, 7); + return temp; +} + +#endif // VPX_DSP_X86_CONVOLVE_SSSE3_H_ diff --git a/vpx_dsp/x86/deblock_sse2.asm b/vpx_dsp/x86/deblock_sse2.asm new file mode 100644 index 0000000..97cb43b --- /dev/null +++ b/vpx_dsp/x86/deblock_sse2.asm @@ -0,0 +1,663 @@ +; +; Copyright (c) 2010 The WebM project authors. All Rights Reserved. +; +; Use of this source code is governed by a BSD-style license +; that can be found in the LICENSE file in the root of the source +; tree. An additional intellectual property rights grant can be found +; in the file PATENTS. All contributing project authors may +; be found in the AUTHORS file in the root of the source tree. +; + + +%include "vpx_ports/x86_abi_support.asm" + +;macro in deblock functions +%macro FIRST_2_ROWS 0 + movdqa xmm4, xmm0 + movdqa xmm6, xmm0 + movdqa xmm5, xmm1 + pavgb xmm5, xmm3 + + ;calculate absolute value + psubusb xmm4, xmm1 + psubusb xmm1, xmm0 + psubusb xmm6, xmm3 + psubusb xmm3, xmm0 + paddusb xmm4, xmm1 + paddusb xmm6, xmm3 + + ;get threshold + movdqa xmm2, flimit + pxor xmm1, xmm1 + movdqa xmm7, xmm2 + + ;get mask + psubusb xmm2, xmm4 + psubusb xmm7, xmm6 + pcmpeqb xmm2, xmm1 + pcmpeqb xmm7, xmm1 + por xmm7, xmm2 +%endmacro + +%macro SECOND_2_ROWS 0 + movdqa xmm6, xmm0 + movdqa xmm4, xmm0 + movdqa xmm2, xmm1 + pavgb xmm1, xmm3 + + ;calculate absolute value + psubusb xmm6, xmm2 + psubusb xmm2, xmm0 + psubusb xmm4, xmm3 + psubusb xmm3, xmm0 + paddusb xmm6, xmm2 + paddusb xmm4, xmm3 + + pavgb xmm5, xmm1 + + ;get threshold + movdqa xmm2, flimit + pxor xmm1, xmm1 + movdqa xmm3, xmm2 + + ;get mask + psubusb xmm2, xmm6 + psubusb xmm3, xmm4 + pcmpeqb xmm2, xmm1 + pcmpeqb xmm3, xmm1 + + por xmm7, xmm2 + por xmm7, xmm3 + + pavgb xmm5, xmm0 + + ;decide if or not to use filtered value + pand xmm0, xmm7 + pandn xmm7, xmm5 + paddusb xmm0, xmm7 +%endmacro + +%macro UPDATE_FLIMIT 0 + movdqu xmm2, XMMWORD PTR [rbx] + movdqu [rsp], xmm2 + add rbx, 16 +%endmacro + +SECTION .text + +;void vpx_post_proc_down_and_across_mb_row_sse2 +;( +; unsigned char *src_ptr, +; unsigned char *dst_ptr, +; int src_pixels_per_line, +; int dst_pixels_per_line, +; int cols, +; int *flimits, +; int size +;) +global sym(vpx_post_proc_down_and_across_mb_row_sse2) PRIVATE +sym(vpx_post_proc_down_and_across_mb_row_sse2): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 7 + SAVE_XMM 7 + push rbx + push rsi + push rdi + ; end prolog + ALIGN_STACK 16, rax + sub rsp, 16 + + ; put flimit on stack + mov rbx, arg(5) ;flimits ptr + UPDATE_FLIMIT + +%define flimit [rsp] + + mov rsi, arg(0) ;src_ptr + mov rdi, arg(1) ;dst_ptr + + movsxd rax, DWORD PTR arg(2) ;src_pixels_per_line + movsxd rcx, DWORD PTR arg(6) ;rows in a macroblock +.nextrow: + xor rdx, rdx ;col +.nextcol: + ;load current and next 2 rows + movdqu xmm0, XMMWORD PTR [rsi] + movdqu xmm1, XMMWORD PTR [rsi + rax] + movdqu xmm3, XMMWORD PTR [rsi + 2*rax] + + FIRST_2_ROWS + + ;load above 2 rows + neg rax + movdqu xmm1, XMMWORD PTR [rsi + 2*rax] + movdqu xmm3, XMMWORD PTR [rsi + rax] + + SECOND_2_ROWS + + movdqu XMMWORD PTR [rdi], xmm0 + + neg rax ; positive stride + add rsi, 16 + add rdi, 16 + + add rdx, 16 + cmp edx, dword arg(4) ;cols + jge .downdone + UPDATE_FLIMIT + jmp .nextcol + +.downdone: + ; done with the all cols, start the across filtering in place + sub rsi, rdx + sub rdi, rdx + + mov rbx, arg(5) ; flimits + UPDATE_FLIMIT + + ; dup the first byte into the left border 8 times + movq mm1, [rdi] + punpcklbw mm1, mm1 + punpcklwd mm1, mm1 + punpckldq mm1, mm1 + mov rdx, -8 + movq [rdi+rdx], mm1 + + ; dup the last byte into the right border + movsxd rdx, dword arg(4) + movq mm1, [rdi + rdx + -1] + punpcklbw mm1, mm1 + punpcklwd mm1, mm1 + punpckldq mm1, mm1 + movq [rdi+rdx], mm1 + + xor rdx, rdx + movq mm0, QWORD PTR [rdi-16]; + movq mm1, QWORD PTR [rdi-8]; + +.acrossnextcol: + movdqu xmm0, XMMWORD PTR [rdi + rdx] + movdqu xmm1, XMMWORD PTR [rdi + rdx -2] + movdqu xmm3, XMMWORD PTR [rdi + rdx -1] + + FIRST_2_ROWS + + movdqu xmm1, XMMWORD PTR [rdi + rdx +1] + movdqu xmm3, XMMWORD PTR [rdi + rdx +2] + + SECOND_2_ROWS + + movq QWORD PTR [rdi+rdx-16], mm0 ; store previous 8 bytes + movq QWORD PTR [rdi+rdx-8], mm1 ; store previous 8 bytes + movdq2q mm0, xmm0 + psrldq xmm0, 8 + movdq2q mm1, xmm0 + + add rdx, 16 + cmp edx, dword arg(4) ;cols + jge .acrossdone + UPDATE_FLIMIT + jmp .acrossnextcol + +.acrossdone: + ; last 16 pixels + movq QWORD PTR [rdi+rdx-16], mm0 + + cmp edx, dword arg(4) + jne .throw_last_8 + movq QWORD PTR [rdi+rdx-8], mm1 +.throw_last_8: + ; done with this rwo + add rsi,rax ;next src line + mov eax, dword arg(3) ;dst_pixels_per_line + add rdi,rax ;next destination + mov eax, dword arg(2) ;src_pixels_per_line + + mov rbx, arg(5) ;flimits + UPDATE_FLIMIT + + dec rcx ;decrement count + jnz .nextrow ;next row + + add rsp, 16 + pop rsp + ; begin epilog + pop rdi + pop rsi + pop rbx + RESTORE_XMM + UNSHADOW_ARGS + pop rbp + ret +%undef flimit + +;void vpx_mbpost_proc_down_sse2(unsigned char *dst, +; int pitch, int rows, int cols,int flimit) +extern sym(vpx_rv) +global sym(vpx_mbpost_proc_down_sse2) PRIVATE +sym(vpx_mbpost_proc_down_sse2): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 5 + SAVE_XMM 7 + GET_GOT rbx + push rsi + push rdi + ; end prolog + + ALIGN_STACK 16, rax + sub rsp, 128+16 + + ; unsigned char d[16][8] at [rsp] + ; create flimit2 at [rsp+128] + mov eax, dword ptr arg(4) ;flimit + mov [rsp+128], eax + mov [rsp+128+4], eax + mov [rsp+128+8], eax + mov [rsp+128+12], eax +%define flimit4 [rsp+128] + +%if ABI_IS_32BIT=0 + lea r8, [GLOBAL(sym(vpx_rv))] +%endif + + ;rows +=8; + add dword arg(2), 8 + + ;for(c=0; c // AVX2 + +#include "./vpx_dsp_rtcd.h" +#include "vpx_dsp/txfm_common.h" + +#define pair256_set_epi16(a, b) \ + _mm256_set_epi16((int16_t)(b), (int16_t)(a), (int16_t)(b), (int16_t)(a), \ + (int16_t)(b), (int16_t)(a), (int16_t)(b), (int16_t)(a), \ + (int16_t)(b), (int16_t)(a), (int16_t)(b), (int16_t)(a), \ + (int16_t)(b), (int16_t)(a), (int16_t)(b), (int16_t)(a)) + +#define pair256_set_epi32(a, b) \ + _mm256_set_epi32((int)(b), (int)(a), (int)(b), (int)(a), (int)(b), (int)(a), \ + (int)(b), (int)(a)) + +#if FDCT32x32_HIGH_PRECISION +static INLINE __m256i k_madd_epi32_avx2(__m256i a, __m256i b) { + __m256i buf0, buf1; + buf0 = _mm256_mul_epu32(a, b); + a = _mm256_srli_epi64(a, 32); + b = _mm256_srli_epi64(b, 32); + buf1 = _mm256_mul_epu32(a, b); + return _mm256_add_epi64(buf0, buf1); +} + +static INLINE __m256i k_packs_epi64_avx2(__m256i a, __m256i b) { + __m256i buf0 = _mm256_shuffle_epi32(a, _MM_SHUFFLE(0, 0, 2, 0)); + __m256i buf1 = _mm256_shuffle_epi32(b, _MM_SHUFFLE(0, 0, 2, 0)); + return _mm256_unpacklo_epi64(buf0, buf1); +} +#endif + +void FDCT32x32_2D_AVX2(const int16_t *input, int16_t *output_org, int stride) { + // Calculate pre-multiplied strides + const int str1 = stride; + const int str2 = 2 * stride; + const int str3 = 2 * stride + str1; + // We need an intermediate buffer between passes. + DECLARE_ALIGNED(32, int16_t, intermediate[32 * 32]); + // Constants + // When we use them, in one case, they are all the same. In all others + // it's a pair of them that we need to repeat four times. This is done + // by constructing the 32 bit constant corresponding to that pair. + const __m256i k__cospi_p16_p16 = _mm256_set1_epi16(cospi_16_64); + const __m256i k__cospi_p16_m16 = + pair256_set_epi16(+cospi_16_64, -cospi_16_64); + const __m256i k__cospi_m08_p24 = pair256_set_epi16(-cospi_8_64, cospi_24_64); + const __m256i k__cospi_m24_m08 = pair256_set_epi16(-cospi_24_64, -cospi_8_64); + const __m256i k__cospi_p24_p08 = pair256_set_epi16(+cospi_24_64, cospi_8_64); + const __m256i k__cospi_p12_p20 = pair256_set_epi16(+cospi_12_64, cospi_20_64); + const __m256i k__cospi_m20_p12 = pair256_set_epi16(-cospi_20_64, cospi_12_64); + const __m256i k__cospi_m04_p28 = pair256_set_epi16(-cospi_4_64, cospi_28_64); + const __m256i k__cospi_p28_p04 = pair256_set_epi16(+cospi_28_64, cospi_4_64); + const __m256i k__cospi_m28_m04 = pair256_set_epi16(-cospi_28_64, -cospi_4_64); + const __m256i k__cospi_m12_m20 = + pair256_set_epi16(-cospi_12_64, -cospi_20_64); + const __m256i k__cospi_p30_p02 = pair256_set_epi16(+cospi_30_64, cospi_2_64); + const __m256i k__cospi_p14_p18 = pair256_set_epi16(+cospi_14_64, cospi_18_64); + const __m256i k__cospi_p22_p10 = pair256_set_epi16(+cospi_22_64, cospi_10_64); + const __m256i k__cospi_p06_p26 = pair256_set_epi16(+cospi_6_64, cospi_26_64); + const __m256i k__cospi_m26_p06 = pair256_set_epi16(-cospi_26_64, cospi_6_64); + const __m256i k__cospi_m10_p22 = pair256_set_epi16(-cospi_10_64, cospi_22_64); + const __m256i k__cospi_m18_p14 = pair256_set_epi16(-cospi_18_64, cospi_14_64); + const __m256i k__cospi_m02_p30 = pair256_set_epi16(-cospi_2_64, cospi_30_64); + const __m256i k__cospi_p31_p01 = pair256_set_epi16(+cospi_31_64, cospi_1_64); + const __m256i k__cospi_p15_p17 = pair256_set_epi16(+cospi_15_64, cospi_17_64); + const __m256i k__cospi_p23_p09 = pair256_set_epi16(+cospi_23_64, cospi_9_64); + const __m256i k__cospi_p07_p25 = pair256_set_epi16(+cospi_7_64, cospi_25_64); + const __m256i k__cospi_m25_p07 = pair256_set_epi16(-cospi_25_64, cospi_7_64); + const __m256i k__cospi_m09_p23 = pair256_set_epi16(-cospi_9_64, cospi_23_64); + const __m256i k__cospi_m17_p15 = pair256_set_epi16(-cospi_17_64, cospi_15_64); + const __m256i k__cospi_m01_p31 = pair256_set_epi16(-cospi_1_64, cospi_31_64); + const __m256i k__cospi_p27_p05 = pair256_set_epi16(+cospi_27_64, cospi_5_64); + const __m256i k__cospi_p11_p21 = pair256_set_epi16(+cospi_11_64, cospi_21_64); + const __m256i k__cospi_p19_p13 = pair256_set_epi16(+cospi_19_64, cospi_13_64); + const __m256i k__cospi_p03_p29 = pair256_set_epi16(+cospi_3_64, cospi_29_64); + const __m256i k__cospi_m29_p03 = pair256_set_epi16(-cospi_29_64, cospi_3_64); + const __m256i k__cospi_m13_p19 = pair256_set_epi16(-cospi_13_64, cospi_19_64); + const __m256i k__cospi_m21_p11 = pair256_set_epi16(-cospi_21_64, cospi_11_64); + const __m256i k__cospi_m05_p27 = pair256_set_epi16(-cospi_5_64, cospi_27_64); + const __m256i k__DCT_CONST_ROUNDING = _mm256_set1_epi32(DCT_CONST_ROUNDING); + const __m256i kZero = _mm256_set1_epi16(0); + const __m256i kOne = _mm256_set1_epi16(1); + // Do the two transform/transpose passes + int pass; + for (pass = 0; pass < 2; ++pass) { + // We process sixteen columns (transposed rows in second pass) at a time. + int column_start; + for (column_start = 0; column_start < 32; column_start += 16) { + __m256i step1[32]; + __m256i step2[32]; + __m256i step3[32]; + __m256i out[32]; + // Stage 1 + // Note: even though all the loads below are aligned, using the aligned + // intrinsic make the code slightly slower. + if (0 == pass) { + const int16_t *in = &input[column_start]; + // step1[i] = (in[ 0 * stride] + in[(32 - 1) * stride]) << 2; + // Note: the next four blocks could be in a loop. That would help the + // instruction cache but is actually slower. + { + const int16_t *ina = in + 0 * str1; + const int16_t *inb = in + 31 * str1; + __m256i *step1a = &step1[0]; + __m256i *step1b = &step1[31]; + const __m256i ina0 = _mm256_loadu_si256((const __m256i *)(ina)); + const __m256i ina1 = + _mm256_loadu_si256((const __m256i *)(ina + str1)); + const __m256i ina2 = + _mm256_loadu_si256((const __m256i *)(ina + str2)); + const __m256i ina3 = + _mm256_loadu_si256((const __m256i *)(ina + str3)); + const __m256i inb3 = + _mm256_loadu_si256((const __m256i *)(inb - str3)); + const __m256i inb2 = + _mm256_loadu_si256((const __m256i *)(inb - str2)); + const __m256i inb1 = + _mm256_loadu_si256((const __m256i *)(inb - str1)); + const __m256i inb0 = _mm256_loadu_si256((const __m256i *)(inb)); + step1a[0] = _mm256_add_epi16(ina0, inb0); + step1a[1] = _mm256_add_epi16(ina1, inb1); + step1a[2] = _mm256_add_epi16(ina2, inb2); + step1a[3] = _mm256_add_epi16(ina3, inb3); + step1b[-3] = _mm256_sub_epi16(ina3, inb3); + step1b[-2] = _mm256_sub_epi16(ina2, inb2); + step1b[-1] = _mm256_sub_epi16(ina1, inb1); + step1b[-0] = _mm256_sub_epi16(ina0, inb0); + step1a[0] = _mm256_slli_epi16(step1a[0], 2); + step1a[1] = _mm256_slli_epi16(step1a[1], 2); + step1a[2] = _mm256_slli_epi16(step1a[2], 2); + step1a[3] = _mm256_slli_epi16(step1a[3], 2); + step1b[-3] = _mm256_slli_epi16(step1b[-3], 2); + step1b[-2] = _mm256_slli_epi16(step1b[-2], 2); + step1b[-1] = _mm256_slli_epi16(step1b[-1], 2); + step1b[-0] = _mm256_slli_epi16(step1b[-0], 2); + } + { + const int16_t *ina = in + 4 * str1; + const int16_t *inb = in + 27 * str1; + __m256i *step1a = &step1[4]; + __m256i *step1b = &step1[27]; + const __m256i ina0 = _mm256_loadu_si256((const __m256i *)(ina)); + const __m256i ina1 = + _mm256_loadu_si256((const __m256i *)(ina + str1)); + const __m256i ina2 = + _mm256_loadu_si256((const __m256i *)(ina + str2)); + const __m256i ina3 = + _mm256_loadu_si256((const __m256i *)(ina + str3)); + const __m256i inb3 = + _mm256_loadu_si256((const __m256i *)(inb - str3)); + const __m256i inb2 = + _mm256_loadu_si256((const __m256i *)(inb - str2)); + const __m256i inb1 = + _mm256_loadu_si256((const __m256i *)(inb - str1)); + const __m256i inb0 = _mm256_loadu_si256((const __m256i *)(inb)); + step1a[0] = _mm256_add_epi16(ina0, inb0); + step1a[1] = _mm256_add_epi16(ina1, inb1); + step1a[2] = _mm256_add_epi16(ina2, inb2); + step1a[3] = _mm256_add_epi16(ina3, inb3); + step1b[-3] = _mm256_sub_epi16(ina3, inb3); + step1b[-2] = _mm256_sub_epi16(ina2, inb2); + step1b[-1] = _mm256_sub_epi16(ina1, inb1); + step1b[-0] = _mm256_sub_epi16(ina0, inb0); + step1a[0] = _mm256_slli_epi16(step1a[0], 2); + step1a[1] = _mm256_slli_epi16(step1a[1], 2); + step1a[2] = _mm256_slli_epi16(step1a[2], 2); + step1a[3] = _mm256_slli_epi16(step1a[3], 2); + step1b[-3] = _mm256_slli_epi16(step1b[-3], 2); + step1b[-2] = _mm256_slli_epi16(step1b[-2], 2); + step1b[-1] = _mm256_slli_epi16(step1b[-1], 2); + step1b[-0] = _mm256_slli_epi16(step1b[-0], 2); + } + { + const int16_t *ina = in + 8 * str1; + const int16_t *inb = in + 23 * str1; + __m256i *step1a = &step1[8]; + __m256i *step1b = &step1[23]; + const __m256i ina0 = _mm256_loadu_si256((const __m256i *)(ina)); + const __m256i ina1 = + _mm256_loadu_si256((const __m256i *)(ina + str1)); + const __m256i ina2 = + _mm256_loadu_si256((const __m256i *)(ina + str2)); + const __m256i ina3 = + _mm256_loadu_si256((const __m256i *)(ina + str3)); + const __m256i inb3 = + _mm256_loadu_si256((const __m256i *)(inb - str3)); + const __m256i inb2 = + _mm256_loadu_si256((const __m256i *)(inb - str2)); + const __m256i inb1 = + _mm256_loadu_si256((const __m256i *)(inb - str1)); + const __m256i inb0 = _mm256_loadu_si256((const __m256i *)(inb)); + step1a[0] = _mm256_add_epi16(ina0, inb0); + step1a[1] = _mm256_add_epi16(ina1, inb1); + step1a[2] = _mm256_add_epi16(ina2, inb2); + step1a[3] = _mm256_add_epi16(ina3, inb3); + step1b[-3] = _mm256_sub_epi16(ina3, inb3); + step1b[-2] = _mm256_sub_epi16(ina2, inb2); + step1b[-1] = _mm256_sub_epi16(ina1, inb1); + step1b[-0] = _mm256_sub_epi16(ina0, inb0); + step1a[0] = _mm256_slli_epi16(step1a[0], 2); + step1a[1] = _mm256_slli_epi16(step1a[1], 2); + step1a[2] = _mm256_slli_epi16(step1a[2], 2); + step1a[3] = _mm256_slli_epi16(step1a[3], 2); + step1b[-3] = _mm256_slli_epi16(step1b[-3], 2); + step1b[-2] = _mm256_slli_epi16(step1b[-2], 2); + step1b[-1] = _mm256_slli_epi16(step1b[-1], 2); + step1b[-0] = _mm256_slli_epi16(step1b[-0], 2); + } + { + const int16_t *ina = in + 12 * str1; + const int16_t *inb = in + 19 * str1; + __m256i *step1a = &step1[12]; + __m256i *step1b = &step1[19]; + const __m256i ina0 = _mm256_loadu_si256((const __m256i *)(ina)); + const __m256i ina1 = + _mm256_loadu_si256((const __m256i *)(ina + str1)); + const __m256i ina2 = + _mm256_loadu_si256((const __m256i *)(ina + str2)); + const __m256i ina3 = + _mm256_loadu_si256((const __m256i *)(ina + str3)); + const __m256i inb3 = + _mm256_loadu_si256((const __m256i *)(inb - str3)); + const __m256i inb2 = + _mm256_loadu_si256((const __m256i *)(inb - str2)); + const __m256i inb1 = + _mm256_loadu_si256((const __m256i *)(inb - str1)); + const __m256i inb0 = _mm256_loadu_si256((const __m256i *)(inb)); + step1a[0] = _mm256_add_epi16(ina0, inb0); + step1a[1] = _mm256_add_epi16(ina1, inb1); + step1a[2] = _mm256_add_epi16(ina2, inb2); + step1a[3] = _mm256_add_epi16(ina3, inb3); + step1b[-3] = _mm256_sub_epi16(ina3, inb3); + step1b[-2] = _mm256_sub_epi16(ina2, inb2); + step1b[-1] = _mm256_sub_epi16(ina1, inb1); + step1b[-0] = _mm256_sub_epi16(ina0, inb0); + step1a[0] = _mm256_slli_epi16(step1a[0], 2); + step1a[1] = _mm256_slli_epi16(step1a[1], 2); + step1a[2] = _mm256_slli_epi16(step1a[2], 2); + step1a[3] = _mm256_slli_epi16(step1a[3], 2); + step1b[-3] = _mm256_slli_epi16(step1b[-3], 2); + step1b[-2] = _mm256_slli_epi16(step1b[-2], 2); + step1b[-1] = _mm256_slli_epi16(step1b[-1], 2); + step1b[-0] = _mm256_slli_epi16(step1b[-0], 2); + } + } else { + int16_t *in = &intermediate[column_start]; + // step1[i] = in[ 0 * 32] + in[(32 - 1) * 32]; + // Note: using the same approach as above to have common offset is + // counter-productive as all offsets can be calculated at compile + // time. + // Note: the next four blocks could be in a loop. That would help the + // instruction cache but is actually slower. + { + __m256i in00 = _mm256_loadu_si256((const __m256i *)(in + 0 * 32)); + __m256i in01 = _mm256_loadu_si256((const __m256i *)(in + 1 * 32)); + __m256i in02 = _mm256_loadu_si256((const __m256i *)(in + 2 * 32)); + __m256i in03 = _mm256_loadu_si256((const __m256i *)(in + 3 * 32)); + __m256i in28 = _mm256_loadu_si256((const __m256i *)(in + 28 * 32)); + __m256i in29 = _mm256_loadu_si256((const __m256i *)(in + 29 * 32)); + __m256i in30 = _mm256_loadu_si256((const __m256i *)(in + 30 * 32)); + __m256i in31 = _mm256_loadu_si256((const __m256i *)(in + 31 * 32)); + step1[0] = _mm256_add_epi16(in00, in31); + step1[1] = _mm256_add_epi16(in01, in30); + step1[2] = _mm256_add_epi16(in02, in29); + step1[3] = _mm256_add_epi16(in03, in28); + step1[28] = _mm256_sub_epi16(in03, in28); + step1[29] = _mm256_sub_epi16(in02, in29); + step1[30] = _mm256_sub_epi16(in01, in30); + step1[31] = _mm256_sub_epi16(in00, in31); + } + { + __m256i in04 = _mm256_loadu_si256((const __m256i *)(in + 4 * 32)); + __m256i in05 = _mm256_loadu_si256((const __m256i *)(in + 5 * 32)); + __m256i in06 = _mm256_loadu_si256((const __m256i *)(in + 6 * 32)); + __m256i in07 = _mm256_loadu_si256((const __m256i *)(in + 7 * 32)); + __m256i in24 = _mm256_loadu_si256((const __m256i *)(in + 24 * 32)); + __m256i in25 = _mm256_loadu_si256((const __m256i *)(in + 25 * 32)); + __m256i in26 = _mm256_loadu_si256((const __m256i *)(in + 26 * 32)); + __m256i in27 = _mm256_loadu_si256((const __m256i *)(in + 27 * 32)); + step1[4] = _mm256_add_epi16(in04, in27); + step1[5] = _mm256_add_epi16(in05, in26); + step1[6] = _mm256_add_epi16(in06, in25); + step1[7] = _mm256_add_epi16(in07, in24); + step1[24] = _mm256_sub_epi16(in07, in24); + step1[25] = _mm256_sub_epi16(in06, in25); + step1[26] = _mm256_sub_epi16(in05, in26); + step1[27] = _mm256_sub_epi16(in04, in27); + } + { + __m256i in08 = _mm256_loadu_si256((const __m256i *)(in + 8 * 32)); + __m256i in09 = _mm256_loadu_si256((const __m256i *)(in + 9 * 32)); + __m256i in10 = _mm256_loadu_si256((const __m256i *)(in + 10 * 32)); + __m256i in11 = _mm256_loadu_si256((const __m256i *)(in + 11 * 32)); + __m256i in20 = _mm256_loadu_si256((const __m256i *)(in + 20 * 32)); + __m256i in21 = _mm256_loadu_si256((const __m256i *)(in + 21 * 32)); + __m256i in22 = _mm256_loadu_si256((const __m256i *)(in + 22 * 32)); + __m256i in23 = _mm256_loadu_si256((const __m256i *)(in + 23 * 32)); + step1[8] = _mm256_add_epi16(in08, in23); + step1[9] = _mm256_add_epi16(in09, in22); + step1[10] = _mm256_add_epi16(in10, in21); + step1[11] = _mm256_add_epi16(in11, in20); + step1[20] = _mm256_sub_epi16(in11, in20); + step1[21] = _mm256_sub_epi16(in10, in21); + step1[22] = _mm256_sub_epi16(in09, in22); + step1[23] = _mm256_sub_epi16(in08, in23); + } + { + __m256i in12 = _mm256_loadu_si256((const __m256i *)(in + 12 * 32)); + __m256i in13 = _mm256_loadu_si256((const __m256i *)(in + 13 * 32)); + __m256i in14 = _mm256_loadu_si256((const __m256i *)(in + 14 * 32)); + __m256i in15 = _mm256_loadu_si256((const __m256i *)(in + 15 * 32)); + __m256i in16 = _mm256_loadu_si256((const __m256i *)(in + 16 * 32)); + __m256i in17 = _mm256_loadu_si256((const __m256i *)(in + 17 * 32)); + __m256i in18 = _mm256_loadu_si256((const __m256i *)(in + 18 * 32)); + __m256i in19 = _mm256_loadu_si256((const __m256i *)(in + 19 * 32)); + step1[12] = _mm256_add_epi16(in12, in19); + step1[13] = _mm256_add_epi16(in13, in18); + step1[14] = _mm256_add_epi16(in14, in17); + step1[15] = _mm256_add_epi16(in15, in16); + step1[16] = _mm256_sub_epi16(in15, in16); + step1[17] = _mm256_sub_epi16(in14, in17); + step1[18] = _mm256_sub_epi16(in13, in18); + step1[19] = _mm256_sub_epi16(in12, in19); + } + } + // Stage 2 + { + step2[0] = _mm256_add_epi16(step1[0], step1[15]); + step2[1] = _mm256_add_epi16(step1[1], step1[14]); + step2[2] = _mm256_add_epi16(step1[2], step1[13]); + step2[3] = _mm256_add_epi16(step1[3], step1[12]); + step2[4] = _mm256_add_epi16(step1[4], step1[11]); + step2[5] = _mm256_add_epi16(step1[5], step1[10]); + step2[6] = _mm256_add_epi16(step1[6], step1[9]); + step2[7] = _mm256_add_epi16(step1[7], step1[8]); + step2[8] = _mm256_sub_epi16(step1[7], step1[8]); + step2[9] = _mm256_sub_epi16(step1[6], step1[9]); + step2[10] = _mm256_sub_epi16(step1[5], step1[10]); + step2[11] = _mm256_sub_epi16(step1[4], step1[11]); + step2[12] = _mm256_sub_epi16(step1[3], step1[12]); + step2[13] = _mm256_sub_epi16(step1[2], step1[13]); + step2[14] = _mm256_sub_epi16(step1[1], step1[14]); + step2[15] = _mm256_sub_epi16(step1[0], step1[15]); + } + { + const __m256i s2_20_0 = _mm256_unpacklo_epi16(step1[27], step1[20]); + const __m256i s2_20_1 = _mm256_unpackhi_epi16(step1[27], step1[20]); + const __m256i s2_21_0 = _mm256_unpacklo_epi16(step1[26], step1[21]); + const __m256i s2_21_1 = _mm256_unpackhi_epi16(step1[26], step1[21]); + const __m256i s2_22_0 = _mm256_unpacklo_epi16(step1[25], step1[22]); + const __m256i s2_22_1 = _mm256_unpackhi_epi16(step1[25], step1[22]); + const __m256i s2_23_0 = _mm256_unpacklo_epi16(step1[24], step1[23]); + const __m256i s2_23_1 = _mm256_unpackhi_epi16(step1[24], step1[23]); + const __m256i s2_20_2 = _mm256_madd_epi16(s2_20_0, k__cospi_p16_m16); + const __m256i s2_20_3 = _mm256_madd_epi16(s2_20_1, k__cospi_p16_m16); + const __m256i s2_21_2 = _mm256_madd_epi16(s2_21_0, k__cospi_p16_m16); + const __m256i s2_21_3 = _mm256_madd_epi16(s2_21_1, k__cospi_p16_m16); + const __m256i s2_22_2 = _mm256_madd_epi16(s2_22_0, k__cospi_p16_m16); + const __m256i s2_22_3 = _mm256_madd_epi16(s2_22_1, k__cospi_p16_m16); + const __m256i s2_23_2 = _mm256_madd_epi16(s2_23_0, k__cospi_p16_m16); + const __m256i s2_23_3 = _mm256_madd_epi16(s2_23_1, k__cospi_p16_m16); + const __m256i s2_24_2 = _mm256_madd_epi16(s2_23_0, k__cospi_p16_p16); + const __m256i s2_24_3 = _mm256_madd_epi16(s2_23_1, k__cospi_p16_p16); + const __m256i s2_25_2 = _mm256_madd_epi16(s2_22_0, k__cospi_p16_p16); + const __m256i s2_25_3 = _mm256_madd_epi16(s2_22_1, k__cospi_p16_p16); + const __m256i s2_26_2 = _mm256_madd_epi16(s2_21_0, k__cospi_p16_p16); + const __m256i s2_26_3 = _mm256_madd_epi16(s2_21_1, k__cospi_p16_p16); + const __m256i s2_27_2 = _mm256_madd_epi16(s2_20_0, k__cospi_p16_p16); + const __m256i s2_27_3 = _mm256_madd_epi16(s2_20_1, k__cospi_p16_p16); + // dct_const_round_shift + const __m256i s2_20_4 = + _mm256_add_epi32(s2_20_2, k__DCT_CONST_ROUNDING); + const __m256i s2_20_5 = + _mm256_add_epi32(s2_20_3, k__DCT_CONST_ROUNDING); + const __m256i s2_21_4 = + _mm256_add_epi32(s2_21_2, k__DCT_CONST_ROUNDING); + const __m256i s2_21_5 = + _mm256_add_epi32(s2_21_3, k__DCT_CONST_ROUNDING); + const __m256i s2_22_4 = + _mm256_add_epi32(s2_22_2, k__DCT_CONST_ROUNDING); + const __m256i s2_22_5 = + _mm256_add_epi32(s2_22_3, k__DCT_CONST_ROUNDING); + const __m256i s2_23_4 = + _mm256_add_epi32(s2_23_2, k__DCT_CONST_ROUNDING); + const __m256i s2_23_5 = + _mm256_add_epi32(s2_23_3, k__DCT_CONST_ROUNDING); + const __m256i s2_24_4 = + _mm256_add_epi32(s2_24_2, k__DCT_CONST_ROUNDING); + const __m256i s2_24_5 = + _mm256_add_epi32(s2_24_3, k__DCT_CONST_ROUNDING); + const __m256i s2_25_4 = + _mm256_add_epi32(s2_25_2, k__DCT_CONST_ROUNDING); + const __m256i s2_25_5 = + _mm256_add_epi32(s2_25_3, k__DCT_CONST_ROUNDING); + const __m256i s2_26_4 = + _mm256_add_epi32(s2_26_2, k__DCT_CONST_ROUNDING); + const __m256i s2_26_5 = + _mm256_add_epi32(s2_26_3, k__DCT_CONST_ROUNDING); + const __m256i s2_27_4 = + _mm256_add_epi32(s2_27_2, k__DCT_CONST_ROUNDING); + const __m256i s2_27_5 = + _mm256_add_epi32(s2_27_3, k__DCT_CONST_ROUNDING); + const __m256i s2_20_6 = _mm256_srai_epi32(s2_20_4, DCT_CONST_BITS); + const __m256i s2_20_7 = _mm256_srai_epi32(s2_20_5, DCT_CONST_BITS); + const __m256i s2_21_6 = _mm256_srai_epi32(s2_21_4, DCT_CONST_BITS); + const __m256i s2_21_7 = _mm256_srai_epi32(s2_21_5, DCT_CONST_BITS); + const __m256i s2_22_6 = _mm256_srai_epi32(s2_22_4, DCT_CONST_BITS); + const __m256i s2_22_7 = _mm256_srai_epi32(s2_22_5, DCT_CONST_BITS); + const __m256i s2_23_6 = _mm256_srai_epi32(s2_23_4, DCT_CONST_BITS); + const __m256i s2_23_7 = _mm256_srai_epi32(s2_23_5, DCT_CONST_BITS); + const __m256i s2_24_6 = _mm256_srai_epi32(s2_24_4, DCT_CONST_BITS); + const __m256i s2_24_7 = _mm256_srai_epi32(s2_24_5, DCT_CONST_BITS); + const __m256i s2_25_6 = _mm256_srai_epi32(s2_25_4, DCT_CONST_BITS); + const __m256i s2_25_7 = _mm256_srai_epi32(s2_25_5, DCT_CONST_BITS); + const __m256i s2_26_6 = _mm256_srai_epi32(s2_26_4, DCT_CONST_BITS); + const __m256i s2_26_7 = _mm256_srai_epi32(s2_26_5, DCT_CONST_BITS); + const __m256i s2_27_6 = _mm256_srai_epi32(s2_27_4, DCT_CONST_BITS); + const __m256i s2_27_7 = _mm256_srai_epi32(s2_27_5, DCT_CONST_BITS); + // Combine + step2[20] = _mm256_packs_epi32(s2_20_6, s2_20_7); + step2[21] = _mm256_packs_epi32(s2_21_6, s2_21_7); + step2[22] = _mm256_packs_epi32(s2_22_6, s2_22_7); + step2[23] = _mm256_packs_epi32(s2_23_6, s2_23_7); + step2[24] = _mm256_packs_epi32(s2_24_6, s2_24_7); + step2[25] = _mm256_packs_epi32(s2_25_6, s2_25_7); + step2[26] = _mm256_packs_epi32(s2_26_6, s2_26_7); + step2[27] = _mm256_packs_epi32(s2_27_6, s2_27_7); + } + +#if !FDCT32x32_HIGH_PRECISION + // dump the magnitude by half, hence the intermediate values are within + // the range of 16 bits. + if (1 == pass) { + __m256i s3_00_0 = _mm256_cmpgt_epi16(kZero, step2[0]); + __m256i s3_01_0 = _mm256_cmpgt_epi16(kZero, step2[1]); + __m256i s3_02_0 = _mm256_cmpgt_epi16(kZero, step2[2]); + __m256i s3_03_0 = _mm256_cmpgt_epi16(kZero, step2[3]); + __m256i s3_04_0 = _mm256_cmpgt_epi16(kZero, step2[4]); + __m256i s3_05_0 = _mm256_cmpgt_epi16(kZero, step2[5]); + __m256i s3_06_0 = _mm256_cmpgt_epi16(kZero, step2[6]); + __m256i s3_07_0 = _mm256_cmpgt_epi16(kZero, step2[7]); + __m256i s2_08_0 = _mm256_cmpgt_epi16(kZero, step2[8]); + __m256i s2_09_0 = _mm256_cmpgt_epi16(kZero, step2[9]); + __m256i s3_10_0 = _mm256_cmpgt_epi16(kZero, step2[10]); + __m256i s3_11_0 = _mm256_cmpgt_epi16(kZero, step2[11]); + __m256i s3_12_0 = _mm256_cmpgt_epi16(kZero, step2[12]); + __m256i s3_13_0 = _mm256_cmpgt_epi16(kZero, step2[13]); + __m256i s2_14_0 = _mm256_cmpgt_epi16(kZero, step2[14]); + __m256i s2_15_0 = _mm256_cmpgt_epi16(kZero, step2[15]); + __m256i s3_16_0 = _mm256_cmpgt_epi16(kZero, step1[16]); + __m256i s3_17_0 = _mm256_cmpgt_epi16(kZero, step1[17]); + __m256i s3_18_0 = _mm256_cmpgt_epi16(kZero, step1[18]); + __m256i s3_19_0 = _mm256_cmpgt_epi16(kZero, step1[19]); + __m256i s3_20_0 = _mm256_cmpgt_epi16(kZero, step2[20]); + __m256i s3_21_0 = _mm256_cmpgt_epi16(kZero, step2[21]); + __m256i s3_22_0 = _mm256_cmpgt_epi16(kZero, step2[22]); + __m256i s3_23_0 = _mm256_cmpgt_epi16(kZero, step2[23]); + __m256i s3_24_0 = _mm256_cmpgt_epi16(kZero, step2[24]); + __m256i s3_25_0 = _mm256_cmpgt_epi16(kZero, step2[25]); + __m256i s3_26_0 = _mm256_cmpgt_epi16(kZero, step2[26]); + __m256i s3_27_0 = _mm256_cmpgt_epi16(kZero, step2[27]); + __m256i s3_28_0 = _mm256_cmpgt_epi16(kZero, step1[28]); + __m256i s3_29_0 = _mm256_cmpgt_epi16(kZero, step1[29]); + __m256i s3_30_0 = _mm256_cmpgt_epi16(kZero, step1[30]); + __m256i s3_31_0 = _mm256_cmpgt_epi16(kZero, step1[31]); + + step2[0] = _mm256_sub_epi16(step2[0], s3_00_0); + step2[1] = _mm256_sub_epi16(step2[1], s3_01_0); + step2[2] = _mm256_sub_epi16(step2[2], s3_02_0); + step2[3] = _mm256_sub_epi16(step2[3], s3_03_0); + step2[4] = _mm256_sub_epi16(step2[4], s3_04_0); + step2[5] = _mm256_sub_epi16(step2[5], s3_05_0); + step2[6] = _mm256_sub_epi16(step2[6], s3_06_0); + step2[7] = _mm256_sub_epi16(step2[7], s3_07_0); + step2[8] = _mm256_sub_epi16(step2[8], s2_08_0); + step2[9] = _mm256_sub_epi16(step2[9], s2_09_0); + step2[10] = _mm256_sub_epi16(step2[10], s3_10_0); + step2[11] = _mm256_sub_epi16(step2[11], s3_11_0); + step2[12] = _mm256_sub_epi16(step2[12], s3_12_0); + step2[13] = _mm256_sub_epi16(step2[13], s3_13_0); + step2[14] = _mm256_sub_epi16(step2[14], s2_14_0); + step2[15] = _mm256_sub_epi16(step2[15], s2_15_0); + step1[16] = _mm256_sub_epi16(step1[16], s3_16_0); + step1[17] = _mm256_sub_epi16(step1[17], s3_17_0); + step1[18] = _mm256_sub_epi16(step1[18], s3_18_0); + step1[19] = _mm256_sub_epi16(step1[19], s3_19_0); + step2[20] = _mm256_sub_epi16(step2[20], s3_20_0); + step2[21] = _mm256_sub_epi16(step2[21], s3_21_0); + step2[22] = _mm256_sub_epi16(step2[22], s3_22_0); + step2[23] = _mm256_sub_epi16(step2[23], s3_23_0); + step2[24] = _mm256_sub_epi16(step2[24], s3_24_0); + step2[25] = _mm256_sub_epi16(step2[25], s3_25_0); + step2[26] = _mm256_sub_epi16(step2[26], s3_26_0); + step2[27] = _mm256_sub_epi16(step2[27], s3_27_0); + step1[28] = _mm256_sub_epi16(step1[28], s3_28_0); + step1[29] = _mm256_sub_epi16(step1[29], s3_29_0); + step1[30] = _mm256_sub_epi16(step1[30], s3_30_0); + step1[31] = _mm256_sub_epi16(step1[31], s3_31_0); + + step2[0] = _mm256_add_epi16(step2[0], kOne); + step2[1] = _mm256_add_epi16(step2[1], kOne); + step2[2] = _mm256_add_epi16(step2[2], kOne); + step2[3] = _mm256_add_epi16(step2[3], kOne); + step2[4] = _mm256_add_epi16(step2[4], kOne); + step2[5] = _mm256_add_epi16(step2[5], kOne); + step2[6] = _mm256_add_epi16(step2[6], kOne); + step2[7] = _mm256_add_epi16(step2[7], kOne); + step2[8] = _mm256_add_epi16(step2[8], kOne); + step2[9] = _mm256_add_epi16(step2[9], kOne); + step2[10] = _mm256_add_epi16(step2[10], kOne); + step2[11] = _mm256_add_epi16(step2[11], kOne); + step2[12] = _mm256_add_epi16(step2[12], kOne); + step2[13] = _mm256_add_epi16(step2[13], kOne); + step2[14] = _mm256_add_epi16(step2[14], kOne); + step2[15] = _mm256_add_epi16(step2[15], kOne); + step1[16] = _mm256_add_epi16(step1[16], kOne); + step1[17] = _mm256_add_epi16(step1[17], kOne); + step1[18] = _mm256_add_epi16(step1[18], kOne); + step1[19] = _mm256_add_epi16(step1[19], kOne); + step2[20] = _mm256_add_epi16(step2[20], kOne); + step2[21] = _mm256_add_epi16(step2[21], kOne); + step2[22] = _mm256_add_epi16(step2[22], kOne); + step2[23] = _mm256_add_epi16(step2[23], kOne); + step2[24] = _mm256_add_epi16(step2[24], kOne); + step2[25] = _mm256_add_epi16(step2[25], kOne); + step2[26] = _mm256_add_epi16(step2[26], kOne); + step2[27] = _mm256_add_epi16(step2[27], kOne); + step1[28] = _mm256_add_epi16(step1[28], kOne); + step1[29] = _mm256_add_epi16(step1[29], kOne); + step1[30] = _mm256_add_epi16(step1[30], kOne); + step1[31] = _mm256_add_epi16(step1[31], kOne); + + step2[0] = _mm256_srai_epi16(step2[0], 2); + step2[1] = _mm256_srai_epi16(step2[1], 2); + step2[2] = _mm256_srai_epi16(step2[2], 2); + step2[3] = _mm256_srai_epi16(step2[3], 2); + step2[4] = _mm256_srai_epi16(step2[4], 2); + step2[5] = _mm256_srai_epi16(step2[5], 2); + step2[6] = _mm256_srai_epi16(step2[6], 2); + step2[7] = _mm256_srai_epi16(step2[7], 2); + step2[8] = _mm256_srai_epi16(step2[8], 2); + step2[9] = _mm256_srai_epi16(step2[9], 2); + step2[10] = _mm256_srai_epi16(step2[10], 2); + step2[11] = _mm256_srai_epi16(step2[11], 2); + step2[12] = _mm256_srai_epi16(step2[12], 2); + step2[13] = _mm256_srai_epi16(step2[13], 2); + step2[14] = _mm256_srai_epi16(step2[14], 2); + step2[15] = _mm256_srai_epi16(step2[15], 2); + step1[16] = _mm256_srai_epi16(step1[16], 2); + step1[17] = _mm256_srai_epi16(step1[17], 2); + step1[18] = _mm256_srai_epi16(step1[18], 2); + step1[19] = _mm256_srai_epi16(step1[19], 2); + step2[20] = _mm256_srai_epi16(step2[20], 2); + step2[21] = _mm256_srai_epi16(step2[21], 2); + step2[22] = _mm256_srai_epi16(step2[22], 2); + step2[23] = _mm256_srai_epi16(step2[23], 2); + step2[24] = _mm256_srai_epi16(step2[24], 2); + step2[25] = _mm256_srai_epi16(step2[25], 2); + step2[26] = _mm256_srai_epi16(step2[26], 2); + step2[27] = _mm256_srai_epi16(step2[27], 2); + step1[28] = _mm256_srai_epi16(step1[28], 2); + step1[29] = _mm256_srai_epi16(step1[29], 2); + step1[30] = _mm256_srai_epi16(step1[30], 2); + step1[31] = _mm256_srai_epi16(step1[31], 2); + } +#endif + +#if FDCT32x32_HIGH_PRECISION + if (pass == 0) { +#endif + // Stage 3 + { + step3[0] = _mm256_add_epi16(step2[(8 - 1)], step2[0]); + step3[1] = _mm256_add_epi16(step2[(8 - 2)], step2[1]); + step3[2] = _mm256_add_epi16(step2[(8 - 3)], step2[2]); + step3[3] = _mm256_add_epi16(step2[(8 - 4)], step2[3]); + step3[4] = _mm256_sub_epi16(step2[(8 - 5)], step2[4]); + step3[5] = _mm256_sub_epi16(step2[(8 - 6)], step2[5]); + step3[6] = _mm256_sub_epi16(step2[(8 - 7)], step2[6]); + step3[7] = _mm256_sub_epi16(step2[(8 - 8)], step2[7]); + } + { + const __m256i s3_10_0 = _mm256_unpacklo_epi16(step2[13], step2[10]); + const __m256i s3_10_1 = _mm256_unpackhi_epi16(step2[13], step2[10]); + const __m256i s3_11_0 = _mm256_unpacklo_epi16(step2[12], step2[11]); + const __m256i s3_11_1 = _mm256_unpackhi_epi16(step2[12], step2[11]); + const __m256i s3_10_2 = _mm256_madd_epi16(s3_10_0, k__cospi_p16_m16); + const __m256i s3_10_3 = _mm256_madd_epi16(s3_10_1, k__cospi_p16_m16); + const __m256i s3_11_2 = _mm256_madd_epi16(s3_11_0, k__cospi_p16_m16); + const __m256i s3_11_3 = _mm256_madd_epi16(s3_11_1, k__cospi_p16_m16); + const __m256i s3_12_2 = _mm256_madd_epi16(s3_11_0, k__cospi_p16_p16); + const __m256i s3_12_3 = _mm256_madd_epi16(s3_11_1, k__cospi_p16_p16); + const __m256i s3_13_2 = _mm256_madd_epi16(s3_10_0, k__cospi_p16_p16); + const __m256i s3_13_3 = _mm256_madd_epi16(s3_10_1, k__cospi_p16_p16); + // dct_const_round_shift + const __m256i s3_10_4 = + _mm256_add_epi32(s3_10_2, k__DCT_CONST_ROUNDING); + const __m256i s3_10_5 = + _mm256_add_epi32(s3_10_3, k__DCT_CONST_ROUNDING); + const __m256i s3_11_4 = + _mm256_add_epi32(s3_11_2, k__DCT_CONST_ROUNDING); + const __m256i s3_11_5 = + _mm256_add_epi32(s3_11_3, k__DCT_CONST_ROUNDING); + const __m256i s3_12_4 = + _mm256_add_epi32(s3_12_2, k__DCT_CONST_ROUNDING); + const __m256i s3_12_5 = + _mm256_add_epi32(s3_12_3, k__DCT_CONST_ROUNDING); + const __m256i s3_13_4 = + _mm256_add_epi32(s3_13_2, k__DCT_CONST_ROUNDING); + const __m256i s3_13_5 = + _mm256_add_epi32(s3_13_3, k__DCT_CONST_ROUNDING); + const __m256i s3_10_6 = _mm256_srai_epi32(s3_10_4, DCT_CONST_BITS); + const __m256i s3_10_7 = _mm256_srai_epi32(s3_10_5, DCT_CONST_BITS); + const __m256i s3_11_6 = _mm256_srai_epi32(s3_11_4, DCT_CONST_BITS); + const __m256i s3_11_7 = _mm256_srai_epi32(s3_11_5, DCT_CONST_BITS); + const __m256i s3_12_6 = _mm256_srai_epi32(s3_12_4, DCT_CONST_BITS); + const __m256i s3_12_7 = _mm256_srai_epi32(s3_12_5, DCT_CONST_BITS); + const __m256i s3_13_6 = _mm256_srai_epi32(s3_13_4, DCT_CONST_BITS); + const __m256i s3_13_7 = _mm256_srai_epi32(s3_13_5, DCT_CONST_BITS); + // Combine + step3[10] = _mm256_packs_epi32(s3_10_6, s3_10_7); + step3[11] = _mm256_packs_epi32(s3_11_6, s3_11_7); + step3[12] = _mm256_packs_epi32(s3_12_6, s3_12_7); + step3[13] = _mm256_packs_epi32(s3_13_6, s3_13_7); + } + { + step3[16] = _mm256_add_epi16(step2[23], step1[16]); + step3[17] = _mm256_add_epi16(step2[22], step1[17]); + step3[18] = _mm256_add_epi16(step2[21], step1[18]); + step3[19] = _mm256_add_epi16(step2[20], step1[19]); + step3[20] = _mm256_sub_epi16(step1[19], step2[20]); + step3[21] = _mm256_sub_epi16(step1[18], step2[21]); + step3[22] = _mm256_sub_epi16(step1[17], step2[22]); + step3[23] = _mm256_sub_epi16(step1[16], step2[23]); + step3[24] = _mm256_sub_epi16(step1[31], step2[24]); + step3[25] = _mm256_sub_epi16(step1[30], step2[25]); + step3[26] = _mm256_sub_epi16(step1[29], step2[26]); + step3[27] = _mm256_sub_epi16(step1[28], step2[27]); + step3[28] = _mm256_add_epi16(step2[27], step1[28]); + step3[29] = _mm256_add_epi16(step2[26], step1[29]); + step3[30] = _mm256_add_epi16(step2[25], step1[30]); + step3[31] = _mm256_add_epi16(step2[24], step1[31]); + } + + // Stage 4 + { + step1[0] = _mm256_add_epi16(step3[3], step3[0]); + step1[1] = _mm256_add_epi16(step3[2], step3[1]); + step1[2] = _mm256_sub_epi16(step3[1], step3[2]); + step1[3] = _mm256_sub_epi16(step3[0], step3[3]); + step1[8] = _mm256_add_epi16(step3[11], step2[8]); + step1[9] = _mm256_add_epi16(step3[10], step2[9]); + step1[10] = _mm256_sub_epi16(step2[9], step3[10]); + step1[11] = _mm256_sub_epi16(step2[8], step3[11]); + step1[12] = _mm256_sub_epi16(step2[15], step3[12]); + step1[13] = _mm256_sub_epi16(step2[14], step3[13]); + step1[14] = _mm256_add_epi16(step3[13], step2[14]); + step1[15] = _mm256_add_epi16(step3[12], step2[15]); + } + { + const __m256i s1_05_0 = _mm256_unpacklo_epi16(step3[6], step3[5]); + const __m256i s1_05_1 = _mm256_unpackhi_epi16(step3[6], step3[5]); + const __m256i s1_05_2 = _mm256_madd_epi16(s1_05_0, k__cospi_p16_m16); + const __m256i s1_05_3 = _mm256_madd_epi16(s1_05_1, k__cospi_p16_m16); + const __m256i s1_06_2 = _mm256_madd_epi16(s1_05_0, k__cospi_p16_p16); + const __m256i s1_06_3 = _mm256_madd_epi16(s1_05_1, k__cospi_p16_p16); + // dct_const_round_shift + const __m256i s1_05_4 = + _mm256_add_epi32(s1_05_2, k__DCT_CONST_ROUNDING); + const __m256i s1_05_5 = + _mm256_add_epi32(s1_05_3, k__DCT_CONST_ROUNDING); + const __m256i s1_06_4 = + _mm256_add_epi32(s1_06_2, k__DCT_CONST_ROUNDING); + const __m256i s1_06_5 = + _mm256_add_epi32(s1_06_3, k__DCT_CONST_ROUNDING); + const __m256i s1_05_6 = _mm256_srai_epi32(s1_05_4, DCT_CONST_BITS); + const __m256i s1_05_7 = _mm256_srai_epi32(s1_05_5, DCT_CONST_BITS); + const __m256i s1_06_6 = _mm256_srai_epi32(s1_06_4, DCT_CONST_BITS); + const __m256i s1_06_7 = _mm256_srai_epi32(s1_06_5, DCT_CONST_BITS); + // Combine + step1[5] = _mm256_packs_epi32(s1_05_6, s1_05_7); + step1[6] = _mm256_packs_epi32(s1_06_6, s1_06_7); + } + { + const __m256i s1_18_0 = _mm256_unpacklo_epi16(step3[18], step3[29]); + const __m256i s1_18_1 = _mm256_unpackhi_epi16(step3[18], step3[29]); + const __m256i s1_19_0 = _mm256_unpacklo_epi16(step3[19], step3[28]); + const __m256i s1_19_1 = _mm256_unpackhi_epi16(step3[19], step3[28]); + const __m256i s1_20_0 = _mm256_unpacklo_epi16(step3[20], step3[27]); + const __m256i s1_20_1 = _mm256_unpackhi_epi16(step3[20], step3[27]); + const __m256i s1_21_0 = _mm256_unpacklo_epi16(step3[21], step3[26]); + const __m256i s1_21_1 = _mm256_unpackhi_epi16(step3[21], step3[26]); + const __m256i s1_18_2 = _mm256_madd_epi16(s1_18_0, k__cospi_m08_p24); + const __m256i s1_18_3 = _mm256_madd_epi16(s1_18_1, k__cospi_m08_p24); + const __m256i s1_19_2 = _mm256_madd_epi16(s1_19_0, k__cospi_m08_p24); + const __m256i s1_19_3 = _mm256_madd_epi16(s1_19_1, k__cospi_m08_p24); + const __m256i s1_20_2 = _mm256_madd_epi16(s1_20_0, k__cospi_m24_m08); + const __m256i s1_20_3 = _mm256_madd_epi16(s1_20_1, k__cospi_m24_m08); + const __m256i s1_21_2 = _mm256_madd_epi16(s1_21_0, k__cospi_m24_m08); + const __m256i s1_21_3 = _mm256_madd_epi16(s1_21_1, k__cospi_m24_m08); + const __m256i s1_26_2 = _mm256_madd_epi16(s1_21_0, k__cospi_m08_p24); + const __m256i s1_26_3 = _mm256_madd_epi16(s1_21_1, k__cospi_m08_p24); + const __m256i s1_27_2 = _mm256_madd_epi16(s1_20_0, k__cospi_m08_p24); + const __m256i s1_27_3 = _mm256_madd_epi16(s1_20_1, k__cospi_m08_p24); + const __m256i s1_28_2 = _mm256_madd_epi16(s1_19_0, k__cospi_p24_p08); + const __m256i s1_28_3 = _mm256_madd_epi16(s1_19_1, k__cospi_p24_p08); + const __m256i s1_29_2 = _mm256_madd_epi16(s1_18_0, k__cospi_p24_p08); + const __m256i s1_29_3 = _mm256_madd_epi16(s1_18_1, k__cospi_p24_p08); + // dct_const_round_shift + const __m256i s1_18_4 = + _mm256_add_epi32(s1_18_2, k__DCT_CONST_ROUNDING); + const __m256i s1_18_5 = + _mm256_add_epi32(s1_18_3, k__DCT_CONST_ROUNDING); + const __m256i s1_19_4 = + _mm256_add_epi32(s1_19_2, k__DCT_CONST_ROUNDING); + const __m256i s1_19_5 = + _mm256_add_epi32(s1_19_3, k__DCT_CONST_ROUNDING); + const __m256i s1_20_4 = + _mm256_add_epi32(s1_20_2, k__DCT_CONST_ROUNDING); + const __m256i s1_20_5 = + _mm256_add_epi32(s1_20_3, k__DCT_CONST_ROUNDING); + const __m256i s1_21_4 = + _mm256_add_epi32(s1_21_2, k__DCT_CONST_ROUNDING); + const __m256i s1_21_5 = + _mm256_add_epi32(s1_21_3, k__DCT_CONST_ROUNDING); + const __m256i s1_26_4 = + _mm256_add_epi32(s1_26_2, k__DCT_CONST_ROUNDING); + const __m256i s1_26_5 = + _mm256_add_epi32(s1_26_3, k__DCT_CONST_ROUNDING); + const __m256i s1_27_4 = + _mm256_add_epi32(s1_27_2, k__DCT_CONST_ROUNDING); + const __m256i s1_27_5 = + _mm256_add_epi32(s1_27_3, k__DCT_CONST_ROUNDING); + const __m256i s1_28_4 = + _mm256_add_epi32(s1_28_2, k__DCT_CONST_ROUNDING); + const __m256i s1_28_5 = + _mm256_add_epi32(s1_28_3, k__DCT_CONST_ROUNDING); + const __m256i s1_29_4 = + _mm256_add_epi32(s1_29_2, k__DCT_CONST_ROUNDING); + const __m256i s1_29_5 = + _mm256_add_epi32(s1_29_3, k__DCT_CONST_ROUNDING); + const __m256i s1_18_6 = _mm256_srai_epi32(s1_18_4, DCT_CONST_BITS); + const __m256i s1_18_7 = _mm256_srai_epi32(s1_18_5, DCT_CONST_BITS); + const __m256i s1_19_6 = _mm256_srai_epi32(s1_19_4, DCT_CONST_BITS); + const __m256i s1_19_7 = _mm256_srai_epi32(s1_19_5, DCT_CONST_BITS); + const __m256i s1_20_6 = _mm256_srai_epi32(s1_20_4, DCT_CONST_BITS); + const __m256i s1_20_7 = _mm256_srai_epi32(s1_20_5, DCT_CONST_BITS); + const __m256i s1_21_6 = _mm256_srai_epi32(s1_21_4, DCT_CONST_BITS); + const __m256i s1_21_7 = _mm256_srai_epi32(s1_21_5, DCT_CONST_BITS); + const __m256i s1_26_6 = _mm256_srai_epi32(s1_26_4, DCT_CONST_BITS); + const __m256i s1_26_7 = _mm256_srai_epi32(s1_26_5, DCT_CONST_BITS); + const __m256i s1_27_6 = _mm256_srai_epi32(s1_27_4, DCT_CONST_BITS); + const __m256i s1_27_7 = _mm256_srai_epi32(s1_27_5, DCT_CONST_BITS); + const __m256i s1_28_6 = _mm256_srai_epi32(s1_28_4, DCT_CONST_BITS); + const __m256i s1_28_7 = _mm256_srai_epi32(s1_28_5, DCT_CONST_BITS); + const __m256i s1_29_6 = _mm256_srai_epi32(s1_29_4, DCT_CONST_BITS); + const __m256i s1_29_7 = _mm256_srai_epi32(s1_29_5, DCT_CONST_BITS); + // Combine + step1[18] = _mm256_packs_epi32(s1_18_6, s1_18_7); + step1[19] = _mm256_packs_epi32(s1_19_6, s1_19_7); + step1[20] = _mm256_packs_epi32(s1_20_6, s1_20_7); + step1[21] = _mm256_packs_epi32(s1_21_6, s1_21_7); + step1[26] = _mm256_packs_epi32(s1_26_6, s1_26_7); + step1[27] = _mm256_packs_epi32(s1_27_6, s1_27_7); + step1[28] = _mm256_packs_epi32(s1_28_6, s1_28_7); + step1[29] = _mm256_packs_epi32(s1_29_6, s1_29_7); + } + // Stage 5 + { + step2[4] = _mm256_add_epi16(step1[5], step3[4]); + step2[5] = _mm256_sub_epi16(step3[4], step1[5]); + step2[6] = _mm256_sub_epi16(step3[7], step1[6]); + step2[7] = _mm256_add_epi16(step1[6], step3[7]); + } + { + const __m256i out_00_0 = _mm256_unpacklo_epi16(step1[0], step1[1]); + const __m256i out_00_1 = _mm256_unpackhi_epi16(step1[0], step1[1]); + const __m256i out_08_0 = _mm256_unpacklo_epi16(step1[2], step1[3]); + const __m256i out_08_1 = _mm256_unpackhi_epi16(step1[2], step1[3]); + const __m256i out_00_2 = + _mm256_madd_epi16(out_00_0, k__cospi_p16_p16); + const __m256i out_00_3 = + _mm256_madd_epi16(out_00_1, k__cospi_p16_p16); + const __m256i out_16_2 = + _mm256_madd_epi16(out_00_0, k__cospi_p16_m16); + const __m256i out_16_3 = + _mm256_madd_epi16(out_00_1, k__cospi_p16_m16); + const __m256i out_08_2 = + _mm256_madd_epi16(out_08_0, k__cospi_p24_p08); + const __m256i out_08_3 = + _mm256_madd_epi16(out_08_1, k__cospi_p24_p08); + const __m256i out_24_2 = + _mm256_madd_epi16(out_08_0, k__cospi_m08_p24); + const __m256i out_24_3 = + _mm256_madd_epi16(out_08_1, k__cospi_m08_p24); + // dct_const_round_shift + const __m256i out_00_4 = + _mm256_add_epi32(out_00_2, k__DCT_CONST_ROUNDING); + const __m256i out_00_5 = + _mm256_add_epi32(out_00_3, k__DCT_CONST_ROUNDING); + const __m256i out_16_4 = + _mm256_add_epi32(out_16_2, k__DCT_CONST_ROUNDING); + const __m256i out_16_5 = + _mm256_add_epi32(out_16_3, k__DCT_CONST_ROUNDING); + const __m256i out_08_4 = + _mm256_add_epi32(out_08_2, k__DCT_CONST_ROUNDING); + const __m256i out_08_5 = + _mm256_add_epi32(out_08_3, k__DCT_CONST_ROUNDING); + const __m256i out_24_4 = + _mm256_add_epi32(out_24_2, k__DCT_CONST_ROUNDING); + const __m256i out_24_5 = + _mm256_add_epi32(out_24_3, k__DCT_CONST_ROUNDING); + const __m256i out_00_6 = _mm256_srai_epi32(out_00_4, DCT_CONST_BITS); + const __m256i out_00_7 = _mm256_srai_epi32(out_00_5, DCT_CONST_BITS); + const __m256i out_16_6 = _mm256_srai_epi32(out_16_4, DCT_CONST_BITS); + const __m256i out_16_7 = _mm256_srai_epi32(out_16_5, DCT_CONST_BITS); + const __m256i out_08_6 = _mm256_srai_epi32(out_08_4, DCT_CONST_BITS); + const __m256i out_08_7 = _mm256_srai_epi32(out_08_5, DCT_CONST_BITS); + const __m256i out_24_6 = _mm256_srai_epi32(out_24_4, DCT_CONST_BITS); + const __m256i out_24_7 = _mm256_srai_epi32(out_24_5, DCT_CONST_BITS); + // Combine + out[0] = _mm256_packs_epi32(out_00_6, out_00_7); + out[16] = _mm256_packs_epi32(out_16_6, out_16_7); + out[8] = _mm256_packs_epi32(out_08_6, out_08_7); + out[24] = _mm256_packs_epi32(out_24_6, out_24_7); + } + { + const __m256i s2_09_0 = _mm256_unpacklo_epi16(step1[9], step1[14]); + const __m256i s2_09_1 = _mm256_unpackhi_epi16(step1[9], step1[14]); + const __m256i s2_10_0 = _mm256_unpacklo_epi16(step1[10], step1[13]); + const __m256i s2_10_1 = _mm256_unpackhi_epi16(step1[10], step1[13]); + const __m256i s2_09_2 = _mm256_madd_epi16(s2_09_0, k__cospi_m08_p24); + const __m256i s2_09_3 = _mm256_madd_epi16(s2_09_1, k__cospi_m08_p24); + const __m256i s2_10_2 = _mm256_madd_epi16(s2_10_0, k__cospi_m24_m08); + const __m256i s2_10_3 = _mm256_madd_epi16(s2_10_1, k__cospi_m24_m08); + const __m256i s2_13_2 = _mm256_madd_epi16(s2_10_0, k__cospi_m08_p24); + const __m256i s2_13_3 = _mm256_madd_epi16(s2_10_1, k__cospi_m08_p24); + const __m256i s2_14_2 = _mm256_madd_epi16(s2_09_0, k__cospi_p24_p08); + const __m256i s2_14_3 = _mm256_madd_epi16(s2_09_1, k__cospi_p24_p08); + // dct_const_round_shift + const __m256i s2_09_4 = + _mm256_add_epi32(s2_09_2, k__DCT_CONST_ROUNDING); + const __m256i s2_09_5 = + _mm256_add_epi32(s2_09_3, k__DCT_CONST_ROUNDING); + const __m256i s2_10_4 = + _mm256_add_epi32(s2_10_2, k__DCT_CONST_ROUNDING); + const __m256i s2_10_5 = + _mm256_add_epi32(s2_10_3, k__DCT_CONST_ROUNDING); + const __m256i s2_13_4 = + _mm256_add_epi32(s2_13_2, k__DCT_CONST_ROUNDING); + const __m256i s2_13_5 = + _mm256_add_epi32(s2_13_3, k__DCT_CONST_ROUNDING); + const __m256i s2_14_4 = + _mm256_add_epi32(s2_14_2, k__DCT_CONST_ROUNDING); + const __m256i s2_14_5 = + _mm256_add_epi32(s2_14_3, k__DCT_CONST_ROUNDING); + const __m256i s2_09_6 = _mm256_srai_epi32(s2_09_4, DCT_CONST_BITS); + const __m256i s2_09_7 = _mm256_srai_epi32(s2_09_5, DCT_CONST_BITS); + const __m256i s2_10_6 = _mm256_srai_epi32(s2_10_4, DCT_CONST_BITS); + const __m256i s2_10_7 = _mm256_srai_epi32(s2_10_5, DCT_CONST_BITS); + const __m256i s2_13_6 = _mm256_srai_epi32(s2_13_4, DCT_CONST_BITS); + const __m256i s2_13_7 = _mm256_srai_epi32(s2_13_5, DCT_CONST_BITS); + const __m256i s2_14_6 = _mm256_srai_epi32(s2_14_4, DCT_CONST_BITS); + const __m256i s2_14_7 = _mm256_srai_epi32(s2_14_5, DCT_CONST_BITS); + // Combine + step2[9] = _mm256_packs_epi32(s2_09_6, s2_09_7); + step2[10] = _mm256_packs_epi32(s2_10_6, s2_10_7); + step2[13] = _mm256_packs_epi32(s2_13_6, s2_13_7); + step2[14] = _mm256_packs_epi32(s2_14_6, s2_14_7); + } + { + step2[16] = _mm256_add_epi16(step1[19], step3[16]); + step2[17] = _mm256_add_epi16(step1[18], step3[17]); + step2[18] = _mm256_sub_epi16(step3[17], step1[18]); + step2[19] = _mm256_sub_epi16(step3[16], step1[19]); + step2[20] = _mm256_sub_epi16(step3[23], step1[20]); + step2[21] = _mm256_sub_epi16(step3[22], step1[21]); + step2[22] = _mm256_add_epi16(step1[21], step3[22]); + step2[23] = _mm256_add_epi16(step1[20], step3[23]); + step2[24] = _mm256_add_epi16(step1[27], step3[24]); + step2[25] = _mm256_add_epi16(step1[26], step3[25]); + step2[26] = _mm256_sub_epi16(step3[25], step1[26]); + step2[27] = _mm256_sub_epi16(step3[24], step1[27]); + step2[28] = _mm256_sub_epi16(step3[31], step1[28]); + step2[29] = _mm256_sub_epi16(step3[30], step1[29]); + step2[30] = _mm256_add_epi16(step1[29], step3[30]); + step2[31] = _mm256_add_epi16(step1[28], step3[31]); + } + // Stage 6 + { + const __m256i out_04_0 = _mm256_unpacklo_epi16(step2[4], step2[7]); + const __m256i out_04_1 = _mm256_unpackhi_epi16(step2[4], step2[7]); + const __m256i out_20_0 = _mm256_unpacklo_epi16(step2[5], step2[6]); + const __m256i out_20_1 = _mm256_unpackhi_epi16(step2[5], step2[6]); + const __m256i out_12_0 = _mm256_unpacklo_epi16(step2[5], step2[6]); + const __m256i out_12_1 = _mm256_unpackhi_epi16(step2[5], step2[6]); + const __m256i out_28_0 = _mm256_unpacklo_epi16(step2[4], step2[7]); + const __m256i out_28_1 = _mm256_unpackhi_epi16(step2[4], step2[7]); + const __m256i out_04_2 = + _mm256_madd_epi16(out_04_0, k__cospi_p28_p04); + const __m256i out_04_3 = + _mm256_madd_epi16(out_04_1, k__cospi_p28_p04); + const __m256i out_20_2 = + _mm256_madd_epi16(out_20_0, k__cospi_p12_p20); + const __m256i out_20_3 = + _mm256_madd_epi16(out_20_1, k__cospi_p12_p20); + const __m256i out_12_2 = + _mm256_madd_epi16(out_12_0, k__cospi_m20_p12); + const __m256i out_12_3 = + _mm256_madd_epi16(out_12_1, k__cospi_m20_p12); + const __m256i out_28_2 = + _mm256_madd_epi16(out_28_0, k__cospi_m04_p28); + const __m256i out_28_3 = + _mm256_madd_epi16(out_28_1, k__cospi_m04_p28); + // dct_const_round_shift + const __m256i out_04_4 = + _mm256_add_epi32(out_04_2, k__DCT_CONST_ROUNDING); + const __m256i out_04_5 = + _mm256_add_epi32(out_04_3, k__DCT_CONST_ROUNDING); + const __m256i out_20_4 = + _mm256_add_epi32(out_20_2, k__DCT_CONST_ROUNDING); + const __m256i out_20_5 = + _mm256_add_epi32(out_20_3, k__DCT_CONST_ROUNDING); + const __m256i out_12_4 = + _mm256_add_epi32(out_12_2, k__DCT_CONST_ROUNDING); + const __m256i out_12_5 = + _mm256_add_epi32(out_12_3, k__DCT_CONST_ROUNDING); + const __m256i out_28_4 = + _mm256_add_epi32(out_28_2, k__DCT_CONST_ROUNDING); + const __m256i out_28_5 = + _mm256_add_epi32(out_28_3, k__DCT_CONST_ROUNDING); + const __m256i out_04_6 = _mm256_srai_epi32(out_04_4, DCT_CONST_BITS); + const __m256i out_04_7 = _mm256_srai_epi32(out_04_5, DCT_CONST_BITS); + const __m256i out_20_6 = _mm256_srai_epi32(out_20_4, DCT_CONST_BITS); + const __m256i out_20_7 = _mm256_srai_epi32(out_20_5, DCT_CONST_BITS); + const __m256i out_12_6 = _mm256_srai_epi32(out_12_4, DCT_CONST_BITS); + const __m256i out_12_7 = _mm256_srai_epi32(out_12_5, DCT_CONST_BITS); + const __m256i out_28_6 = _mm256_srai_epi32(out_28_4, DCT_CONST_BITS); + const __m256i out_28_7 = _mm256_srai_epi32(out_28_5, DCT_CONST_BITS); + // Combine + out[4] = _mm256_packs_epi32(out_04_6, out_04_7); + out[20] = _mm256_packs_epi32(out_20_6, out_20_7); + out[12] = _mm256_packs_epi32(out_12_6, out_12_7); + out[28] = _mm256_packs_epi32(out_28_6, out_28_7); + } + { + step3[8] = _mm256_add_epi16(step2[9], step1[8]); + step3[9] = _mm256_sub_epi16(step1[8], step2[9]); + step3[10] = _mm256_sub_epi16(step1[11], step2[10]); + step3[11] = _mm256_add_epi16(step2[10], step1[11]); + step3[12] = _mm256_add_epi16(step2[13], step1[12]); + step3[13] = _mm256_sub_epi16(step1[12], step2[13]); + step3[14] = _mm256_sub_epi16(step1[15], step2[14]); + step3[15] = _mm256_add_epi16(step2[14], step1[15]); + } + { + const __m256i s3_17_0 = _mm256_unpacklo_epi16(step2[17], step2[30]); + const __m256i s3_17_1 = _mm256_unpackhi_epi16(step2[17], step2[30]); + const __m256i s3_18_0 = _mm256_unpacklo_epi16(step2[18], step2[29]); + const __m256i s3_18_1 = _mm256_unpackhi_epi16(step2[18], step2[29]); + const __m256i s3_21_0 = _mm256_unpacklo_epi16(step2[21], step2[26]); + const __m256i s3_21_1 = _mm256_unpackhi_epi16(step2[21], step2[26]); + const __m256i s3_22_0 = _mm256_unpacklo_epi16(step2[22], step2[25]); + const __m256i s3_22_1 = _mm256_unpackhi_epi16(step2[22], step2[25]); + const __m256i s3_17_2 = _mm256_madd_epi16(s3_17_0, k__cospi_m04_p28); + const __m256i s3_17_3 = _mm256_madd_epi16(s3_17_1, k__cospi_m04_p28); + const __m256i s3_18_2 = _mm256_madd_epi16(s3_18_0, k__cospi_m28_m04); + const __m256i s3_18_3 = _mm256_madd_epi16(s3_18_1, k__cospi_m28_m04); + const __m256i s3_21_2 = _mm256_madd_epi16(s3_21_0, k__cospi_m20_p12); + const __m256i s3_21_3 = _mm256_madd_epi16(s3_21_1, k__cospi_m20_p12); + const __m256i s3_22_2 = _mm256_madd_epi16(s3_22_0, k__cospi_m12_m20); + const __m256i s3_22_3 = _mm256_madd_epi16(s3_22_1, k__cospi_m12_m20); + const __m256i s3_25_2 = _mm256_madd_epi16(s3_22_0, k__cospi_m20_p12); + const __m256i s3_25_3 = _mm256_madd_epi16(s3_22_1, k__cospi_m20_p12); + const __m256i s3_26_2 = _mm256_madd_epi16(s3_21_0, k__cospi_p12_p20); + const __m256i s3_26_3 = _mm256_madd_epi16(s3_21_1, k__cospi_p12_p20); + const __m256i s3_29_2 = _mm256_madd_epi16(s3_18_0, k__cospi_m04_p28); + const __m256i s3_29_3 = _mm256_madd_epi16(s3_18_1, k__cospi_m04_p28); + const __m256i s3_30_2 = _mm256_madd_epi16(s3_17_0, k__cospi_p28_p04); + const __m256i s3_30_3 = _mm256_madd_epi16(s3_17_1, k__cospi_p28_p04); + // dct_const_round_shift + const __m256i s3_17_4 = + _mm256_add_epi32(s3_17_2, k__DCT_CONST_ROUNDING); + const __m256i s3_17_5 = + _mm256_add_epi32(s3_17_3, k__DCT_CONST_ROUNDING); + const __m256i s3_18_4 = + _mm256_add_epi32(s3_18_2, k__DCT_CONST_ROUNDING); + const __m256i s3_18_5 = + _mm256_add_epi32(s3_18_3, k__DCT_CONST_ROUNDING); + const __m256i s3_21_4 = + _mm256_add_epi32(s3_21_2, k__DCT_CONST_ROUNDING); + const __m256i s3_21_5 = + _mm256_add_epi32(s3_21_3, k__DCT_CONST_ROUNDING); + const __m256i s3_22_4 = + _mm256_add_epi32(s3_22_2, k__DCT_CONST_ROUNDING); + const __m256i s3_22_5 = + _mm256_add_epi32(s3_22_3, k__DCT_CONST_ROUNDING); + const __m256i s3_17_6 = _mm256_srai_epi32(s3_17_4, DCT_CONST_BITS); + const __m256i s3_17_7 = _mm256_srai_epi32(s3_17_5, DCT_CONST_BITS); + const __m256i s3_18_6 = _mm256_srai_epi32(s3_18_4, DCT_CONST_BITS); + const __m256i s3_18_7 = _mm256_srai_epi32(s3_18_5, DCT_CONST_BITS); + const __m256i s3_21_6 = _mm256_srai_epi32(s3_21_4, DCT_CONST_BITS); + const __m256i s3_21_7 = _mm256_srai_epi32(s3_21_5, DCT_CONST_BITS); + const __m256i s3_22_6 = _mm256_srai_epi32(s3_22_4, DCT_CONST_BITS); + const __m256i s3_22_7 = _mm256_srai_epi32(s3_22_5, DCT_CONST_BITS); + const __m256i s3_25_4 = + _mm256_add_epi32(s3_25_2, k__DCT_CONST_ROUNDING); + const __m256i s3_25_5 = + _mm256_add_epi32(s3_25_3, k__DCT_CONST_ROUNDING); + const __m256i s3_26_4 = + _mm256_add_epi32(s3_26_2, k__DCT_CONST_ROUNDING); + const __m256i s3_26_5 = + _mm256_add_epi32(s3_26_3, k__DCT_CONST_ROUNDING); + const __m256i s3_29_4 = + _mm256_add_epi32(s3_29_2, k__DCT_CONST_ROUNDING); + const __m256i s3_29_5 = + _mm256_add_epi32(s3_29_3, k__DCT_CONST_ROUNDING); + const __m256i s3_30_4 = + _mm256_add_epi32(s3_30_2, k__DCT_CONST_ROUNDING); + const __m256i s3_30_5 = + _mm256_add_epi32(s3_30_3, k__DCT_CONST_ROUNDING); + const __m256i s3_25_6 = _mm256_srai_epi32(s3_25_4, DCT_CONST_BITS); + const __m256i s3_25_7 = _mm256_srai_epi32(s3_25_5, DCT_CONST_BITS); + const __m256i s3_26_6 = _mm256_srai_epi32(s3_26_4, DCT_CONST_BITS); + const __m256i s3_26_7 = _mm256_srai_epi32(s3_26_5, DCT_CONST_BITS); + const __m256i s3_29_6 = _mm256_srai_epi32(s3_29_4, DCT_CONST_BITS); + const __m256i s3_29_7 = _mm256_srai_epi32(s3_29_5, DCT_CONST_BITS); + const __m256i s3_30_6 = _mm256_srai_epi32(s3_30_4, DCT_CONST_BITS); + const __m256i s3_30_7 = _mm256_srai_epi32(s3_30_5, DCT_CONST_BITS); + // Combine + step3[17] = _mm256_packs_epi32(s3_17_6, s3_17_7); + step3[18] = _mm256_packs_epi32(s3_18_6, s3_18_7); + step3[21] = _mm256_packs_epi32(s3_21_6, s3_21_7); + step3[22] = _mm256_packs_epi32(s3_22_6, s3_22_7); + // Combine + step3[25] = _mm256_packs_epi32(s3_25_6, s3_25_7); + step3[26] = _mm256_packs_epi32(s3_26_6, s3_26_7); + step3[29] = _mm256_packs_epi32(s3_29_6, s3_29_7); + step3[30] = _mm256_packs_epi32(s3_30_6, s3_30_7); + } + // Stage 7 + { + const __m256i out_02_0 = _mm256_unpacklo_epi16(step3[8], step3[15]); + const __m256i out_02_1 = _mm256_unpackhi_epi16(step3[8], step3[15]); + const __m256i out_18_0 = _mm256_unpacklo_epi16(step3[9], step3[14]); + const __m256i out_18_1 = _mm256_unpackhi_epi16(step3[9], step3[14]); + const __m256i out_10_0 = _mm256_unpacklo_epi16(step3[10], step3[13]); + const __m256i out_10_1 = _mm256_unpackhi_epi16(step3[10], step3[13]); + const __m256i out_26_0 = _mm256_unpacklo_epi16(step3[11], step3[12]); + const __m256i out_26_1 = _mm256_unpackhi_epi16(step3[11], step3[12]); + const __m256i out_02_2 = + _mm256_madd_epi16(out_02_0, k__cospi_p30_p02); + const __m256i out_02_3 = + _mm256_madd_epi16(out_02_1, k__cospi_p30_p02); + const __m256i out_18_2 = + _mm256_madd_epi16(out_18_0, k__cospi_p14_p18); + const __m256i out_18_3 = + _mm256_madd_epi16(out_18_1, k__cospi_p14_p18); + const __m256i out_10_2 = + _mm256_madd_epi16(out_10_0, k__cospi_p22_p10); + const __m256i out_10_3 = + _mm256_madd_epi16(out_10_1, k__cospi_p22_p10); + const __m256i out_26_2 = + _mm256_madd_epi16(out_26_0, k__cospi_p06_p26); + const __m256i out_26_3 = + _mm256_madd_epi16(out_26_1, k__cospi_p06_p26); + const __m256i out_06_2 = + _mm256_madd_epi16(out_26_0, k__cospi_m26_p06); + const __m256i out_06_3 = + _mm256_madd_epi16(out_26_1, k__cospi_m26_p06); + const __m256i out_22_2 = + _mm256_madd_epi16(out_10_0, k__cospi_m10_p22); + const __m256i out_22_3 = + _mm256_madd_epi16(out_10_1, k__cospi_m10_p22); + const __m256i out_14_2 = + _mm256_madd_epi16(out_18_0, k__cospi_m18_p14); + const __m256i out_14_3 = + _mm256_madd_epi16(out_18_1, k__cospi_m18_p14); + const __m256i out_30_2 = + _mm256_madd_epi16(out_02_0, k__cospi_m02_p30); + const __m256i out_30_3 = + _mm256_madd_epi16(out_02_1, k__cospi_m02_p30); + // dct_const_round_shift + const __m256i out_02_4 = + _mm256_add_epi32(out_02_2, k__DCT_CONST_ROUNDING); + const __m256i out_02_5 = + _mm256_add_epi32(out_02_3, k__DCT_CONST_ROUNDING); + const __m256i out_18_4 = + _mm256_add_epi32(out_18_2, k__DCT_CONST_ROUNDING); + const __m256i out_18_5 = + _mm256_add_epi32(out_18_3, k__DCT_CONST_ROUNDING); + const __m256i out_10_4 = + _mm256_add_epi32(out_10_2, k__DCT_CONST_ROUNDING); + const __m256i out_10_5 = + _mm256_add_epi32(out_10_3, k__DCT_CONST_ROUNDING); + const __m256i out_26_4 = + _mm256_add_epi32(out_26_2, k__DCT_CONST_ROUNDING); + const __m256i out_26_5 = + _mm256_add_epi32(out_26_3, k__DCT_CONST_ROUNDING); + const __m256i out_06_4 = + _mm256_add_epi32(out_06_2, k__DCT_CONST_ROUNDING); + const __m256i out_06_5 = + _mm256_add_epi32(out_06_3, k__DCT_CONST_ROUNDING); + const __m256i out_22_4 = + _mm256_add_epi32(out_22_2, k__DCT_CONST_ROUNDING); + const __m256i out_22_5 = + _mm256_add_epi32(out_22_3, k__DCT_CONST_ROUNDING); + const __m256i out_14_4 = + _mm256_add_epi32(out_14_2, k__DCT_CONST_ROUNDING); + const __m256i out_14_5 = + _mm256_add_epi32(out_14_3, k__DCT_CONST_ROUNDING); + const __m256i out_30_4 = + _mm256_add_epi32(out_30_2, k__DCT_CONST_ROUNDING); + const __m256i out_30_5 = + _mm256_add_epi32(out_30_3, k__DCT_CONST_ROUNDING); + const __m256i out_02_6 = _mm256_srai_epi32(out_02_4, DCT_CONST_BITS); + const __m256i out_02_7 = _mm256_srai_epi32(out_02_5, DCT_CONST_BITS); + const __m256i out_18_6 = _mm256_srai_epi32(out_18_4, DCT_CONST_BITS); + const __m256i out_18_7 = _mm256_srai_epi32(out_18_5, DCT_CONST_BITS); + const __m256i out_10_6 = _mm256_srai_epi32(out_10_4, DCT_CONST_BITS); + const __m256i out_10_7 = _mm256_srai_epi32(out_10_5, DCT_CONST_BITS); + const __m256i out_26_6 = _mm256_srai_epi32(out_26_4, DCT_CONST_BITS); + const __m256i out_26_7 = _mm256_srai_epi32(out_26_5, DCT_CONST_BITS); + const __m256i out_06_6 = _mm256_srai_epi32(out_06_4, DCT_CONST_BITS); + const __m256i out_06_7 = _mm256_srai_epi32(out_06_5, DCT_CONST_BITS); + const __m256i out_22_6 = _mm256_srai_epi32(out_22_4, DCT_CONST_BITS); + const __m256i out_22_7 = _mm256_srai_epi32(out_22_5, DCT_CONST_BITS); + const __m256i out_14_6 = _mm256_srai_epi32(out_14_4, DCT_CONST_BITS); + const __m256i out_14_7 = _mm256_srai_epi32(out_14_5, DCT_CONST_BITS); + const __m256i out_30_6 = _mm256_srai_epi32(out_30_4, DCT_CONST_BITS); + const __m256i out_30_7 = _mm256_srai_epi32(out_30_5, DCT_CONST_BITS); + // Combine + out[2] = _mm256_packs_epi32(out_02_6, out_02_7); + out[18] = _mm256_packs_epi32(out_18_6, out_18_7); + out[10] = _mm256_packs_epi32(out_10_6, out_10_7); + out[26] = _mm256_packs_epi32(out_26_6, out_26_7); + out[6] = _mm256_packs_epi32(out_06_6, out_06_7); + out[22] = _mm256_packs_epi32(out_22_6, out_22_7); + out[14] = _mm256_packs_epi32(out_14_6, out_14_7); + out[30] = _mm256_packs_epi32(out_30_6, out_30_7); + } + { + step1[16] = _mm256_add_epi16(step3[17], step2[16]); + step1[17] = _mm256_sub_epi16(step2[16], step3[17]); + step1[18] = _mm256_sub_epi16(step2[19], step3[18]); + step1[19] = _mm256_add_epi16(step3[18], step2[19]); + step1[20] = _mm256_add_epi16(step3[21], step2[20]); + step1[21] = _mm256_sub_epi16(step2[20], step3[21]); + step1[22] = _mm256_sub_epi16(step2[23], step3[22]); + step1[23] = _mm256_add_epi16(step3[22], step2[23]); + step1[24] = _mm256_add_epi16(step3[25], step2[24]); + step1[25] = _mm256_sub_epi16(step2[24], step3[25]); + step1[26] = _mm256_sub_epi16(step2[27], step3[26]); + step1[27] = _mm256_add_epi16(step3[26], step2[27]); + step1[28] = _mm256_add_epi16(step3[29], step2[28]); + step1[29] = _mm256_sub_epi16(step2[28], step3[29]); + step1[30] = _mm256_sub_epi16(step2[31], step3[30]); + step1[31] = _mm256_add_epi16(step3[30], step2[31]); + } + // Final stage --- outputs indices are bit-reversed. + { + const __m256i out_01_0 = _mm256_unpacklo_epi16(step1[16], step1[31]); + const __m256i out_01_1 = _mm256_unpackhi_epi16(step1[16], step1[31]); + const __m256i out_17_0 = _mm256_unpacklo_epi16(step1[17], step1[30]); + const __m256i out_17_1 = _mm256_unpackhi_epi16(step1[17], step1[30]); + const __m256i out_09_0 = _mm256_unpacklo_epi16(step1[18], step1[29]); + const __m256i out_09_1 = _mm256_unpackhi_epi16(step1[18], step1[29]); + const __m256i out_25_0 = _mm256_unpacklo_epi16(step1[19], step1[28]); + const __m256i out_25_1 = _mm256_unpackhi_epi16(step1[19], step1[28]); + const __m256i out_01_2 = + _mm256_madd_epi16(out_01_0, k__cospi_p31_p01); + const __m256i out_01_3 = + _mm256_madd_epi16(out_01_1, k__cospi_p31_p01); + const __m256i out_17_2 = + _mm256_madd_epi16(out_17_0, k__cospi_p15_p17); + const __m256i out_17_3 = + _mm256_madd_epi16(out_17_1, k__cospi_p15_p17); + const __m256i out_09_2 = + _mm256_madd_epi16(out_09_0, k__cospi_p23_p09); + const __m256i out_09_3 = + _mm256_madd_epi16(out_09_1, k__cospi_p23_p09); + const __m256i out_25_2 = + _mm256_madd_epi16(out_25_0, k__cospi_p07_p25); + const __m256i out_25_3 = + _mm256_madd_epi16(out_25_1, k__cospi_p07_p25); + const __m256i out_07_2 = + _mm256_madd_epi16(out_25_0, k__cospi_m25_p07); + const __m256i out_07_3 = + _mm256_madd_epi16(out_25_1, k__cospi_m25_p07); + const __m256i out_23_2 = + _mm256_madd_epi16(out_09_0, k__cospi_m09_p23); + const __m256i out_23_3 = + _mm256_madd_epi16(out_09_1, k__cospi_m09_p23); + const __m256i out_15_2 = + _mm256_madd_epi16(out_17_0, k__cospi_m17_p15); + const __m256i out_15_3 = + _mm256_madd_epi16(out_17_1, k__cospi_m17_p15); + const __m256i out_31_2 = + _mm256_madd_epi16(out_01_0, k__cospi_m01_p31); + const __m256i out_31_3 = + _mm256_madd_epi16(out_01_1, k__cospi_m01_p31); + // dct_const_round_shift + const __m256i out_01_4 = + _mm256_add_epi32(out_01_2, k__DCT_CONST_ROUNDING); + const __m256i out_01_5 = + _mm256_add_epi32(out_01_3, k__DCT_CONST_ROUNDING); + const __m256i out_17_4 = + _mm256_add_epi32(out_17_2, k__DCT_CONST_ROUNDING); + const __m256i out_17_5 = + _mm256_add_epi32(out_17_3, k__DCT_CONST_ROUNDING); + const __m256i out_09_4 = + _mm256_add_epi32(out_09_2, k__DCT_CONST_ROUNDING); + const __m256i out_09_5 = + _mm256_add_epi32(out_09_3, k__DCT_CONST_ROUNDING); + const __m256i out_25_4 = + _mm256_add_epi32(out_25_2, k__DCT_CONST_ROUNDING); + const __m256i out_25_5 = + _mm256_add_epi32(out_25_3, k__DCT_CONST_ROUNDING); + const __m256i out_07_4 = + _mm256_add_epi32(out_07_2, k__DCT_CONST_ROUNDING); + const __m256i out_07_5 = + _mm256_add_epi32(out_07_3, k__DCT_CONST_ROUNDING); + const __m256i out_23_4 = + _mm256_add_epi32(out_23_2, k__DCT_CONST_ROUNDING); + const __m256i out_23_5 = + _mm256_add_epi32(out_23_3, k__DCT_CONST_ROUNDING); + const __m256i out_15_4 = + _mm256_add_epi32(out_15_2, k__DCT_CONST_ROUNDING); + const __m256i out_15_5 = + _mm256_add_epi32(out_15_3, k__DCT_CONST_ROUNDING); + const __m256i out_31_4 = + _mm256_add_epi32(out_31_2, k__DCT_CONST_ROUNDING); + const __m256i out_31_5 = + _mm256_add_epi32(out_31_3, k__DCT_CONST_ROUNDING); + const __m256i out_01_6 = _mm256_srai_epi32(out_01_4, DCT_CONST_BITS); + const __m256i out_01_7 = _mm256_srai_epi32(out_01_5, DCT_CONST_BITS); + const __m256i out_17_6 = _mm256_srai_epi32(out_17_4, DCT_CONST_BITS); + const __m256i out_17_7 = _mm256_srai_epi32(out_17_5, DCT_CONST_BITS); + const __m256i out_09_6 = _mm256_srai_epi32(out_09_4, DCT_CONST_BITS); + const __m256i out_09_7 = _mm256_srai_epi32(out_09_5, DCT_CONST_BITS); + const __m256i out_25_6 = _mm256_srai_epi32(out_25_4, DCT_CONST_BITS); + const __m256i out_25_7 = _mm256_srai_epi32(out_25_5, DCT_CONST_BITS); + const __m256i out_07_6 = _mm256_srai_epi32(out_07_4, DCT_CONST_BITS); + const __m256i out_07_7 = _mm256_srai_epi32(out_07_5, DCT_CONST_BITS); + const __m256i out_23_6 = _mm256_srai_epi32(out_23_4, DCT_CONST_BITS); + const __m256i out_23_7 = _mm256_srai_epi32(out_23_5, DCT_CONST_BITS); + const __m256i out_15_6 = _mm256_srai_epi32(out_15_4, DCT_CONST_BITS); + const __m256i out_15_7 = _mm256_srai_epi32(out_15_5, DCT_CONST_BITS); + const __m256i out_31_6 = _mm256_srai_epi32(out_31_4, DCT_CONST_BITS); + const __m256i out_31_7 = _mm256_srai_epi32(out_31_5, DCT_CONST_BITS); + // Combine + out[1] = _mm256_packs_epi32(out_01_6, out_01_7); + out[17] = _mm256_packs_epi32(out_17_6, out_17_7); + out[9] = _mm256_packs_epi32(out_09_6, out_09_7); + out[25] = _mm256_packs_epi32(out_25_6, out_25_7); + out[7] = _mm256_packs_epi32(out_07_6, out_07_7); + out[23] = _mm256_packs_epi32(out_23_6, out_23_7); + out[15] = _mm256_packs_epi32(out_15_6, out_15_7); + out[31] = _mm256_packs_epi32(out_31_6, out_31_7); + } + { + const __m256i out_05_0 = _mm256_unpacklo_epi16(step1[20], step1[27]); + const __m256i out_05_1 = _mm256_unpackhi_epi16(step1[20], step1[27]); + const __m256i out_21_0 = _mm256_unpacklo_epi16(step1[21], step1[26]); + const __m256i out_21_1 = _mm256_unpackhi_epi16(step1[21], step1[26]); + const __m256i out_13_0 = _mm256_unpacklo_epi16(step1[22], step1[25]); + const __m256i out_13_1 = _mm256_unpackhi_epi16(step1[22], step1[25]); + const __m256i out_29_0 = _mm256_unpacklo_epi16(step1[23], step1[24]); + const __m256i out_29_1 = _mm256_unpackhi_epi16(step1[23], step1[24]); + const __m256i out_05_2 = + _mm256_madd_epi16(out_05_0, k__cospi_p27_p05); + const __m256i out_05_3 = + _mm256_madd_epi16(out_05_1, k__cospi_p27_p05); + const __m256i out_21_2 = + _mm256_madd_epi16(out_21_0, k__cospi_p11_p21); + const __m256i out_21_3 = + _mm256_madd_epi16(out_21_1, k__cospi_p11_p21); + const __m256i out_13_2 = + _mm256_madd_epi16(out_13_0, k__cospi_p19_p13); + const __m256i out_13_3 = + _mm256_madd_epi16(out_13_1, k__cospi_p19_p13); + const __m256i out_29_2 = + _mm256_madd_epi16(out_29_0, k__cospi_p03_p29); + const __m256i out_29_3 = + _mm256_madd_epi16(out_29_1, k__cospi_p03_p29); + const __m256i out_03_2 = + _mm256_madd_epi16(out_29_0, k__cospi_m29_p03); + const __m256i out_03_3 = + _mm256_madd_epi16(out_29_1, k__cospi_m29_p03); + const __m256i out_19_2 = + _mm256_madd_epi16(out_13_0, k__cospi_m13_p19); + const __m256i out_19_3 = + _mm256_madd_epi16(out_13_1, k__cospi_m13_p19); + const __m256i out_11_2 = + _mm256_madd_epi16(out_21_0, k__cospi_m21_p11); + const __m256i out_11_3 = + _mm256_madd_epi16(out_21_1, k__cospi_m21_p11); + const __m256i out_27_2 = + _mm256_madd_epi16(out_05_0, k__cospi_m05_p27); + const __m256i out_27_3 = + _mm256_madd_epi16(out_05_1, k__cospi_m05_p27); + // dct_const_round_shift + const __m256i out_05_4 = + _mm256_add_epi32(out_05_2, k__DCT_CONST_ROUNDING); + const __m256i out_05_5 = + _mm256_add_epi32(out_05_3, k__DCT_CONST_ROUNDING); + const __m256i out_21_4 = + _mm256_add_epi32(out_21_2, k__DCT_CONST_ROUNDING); + const __m256i out_21_5 = + _mm256_add_epi32(out_21_3, k__DCT_CONST_ROUNDING); + const __m256i out_13_4 = + _mm256_add_epi32(out_13_2, k__DCT_CONST_ROUNDING); + const __m256i out_13_5 = + _mm256_add_epi32(out_13_3, k__DCT_CONST_ROUNDING); + const __m256i out_29_4 = + _mm256_add_epi32(out_29_2, k__DCT_CONST_ROUNDING); + const __m256i out_29_5 = + _mm256_add_epi32(out_29_3, k__DCT_CONST_ROUNDING); + const __m256i out_03_4 = + _mm256_add_epi32(out_03_2, k__DCT_CONST_ROUNDING); + const __m256i out_03_5 = + _mm256_add_epi32(out_03_3, k__DCT_CONST_ROUNDING); + const __m256i out_19_4 = + _mm256_add_epi32(out_19_2, k__DCT_CONST_ROUNDING); + const __m256i out_19_5 = + _mm256_add_epi32(out_19_3, k__DCT_CONST_ROUNDING); + const __m256i out_11_4 = + _mm256_add_epi32(out_11_2, k__DCT_CONST_ROUNDING); + const __m256i out_11_5 = + _mm256_add_epi32(out_11_3, k__DCT_CONST_ROUNDING); + const __m256i out_27_4 = + _mm256_add_epi32(out_27_2, k__DCT_CONST_ROUNDING); + const __m256i out_27_5 = + _mm256_add_epi32(out_27_3, k__DCT_CONST_ROUNDING); + const __m256i out_05_6 = _mm256_srai_epi32(out_05_4, DCT_CONST_BITS); + const __m256i out_05_7 = _mm256_srai_epi32(out_05_5, DCT_CONST_BITS); + const __m256i out_21_6 = _mm256_srai_epi32(out_21_4, DCT_CONST_BITS); + const __m256i out_21_7 = _mm256_srai_epi32(out_21_5, DCT_CONST_BITS); + const __m256i out_13_6 = _mm256_srai_epi32(out_13_4, DCT_CONST_BITS); + const __m256i out_13_7 = _mm256_srai_epi32(out_13_5, DCT_CONST_BITS); + const __m256i out_29_6 = _mm256_srai_epi32(out_29_4, DCT_CONST_BITS); + const __m256i out_29_7 = _mm256_srai_epi32(out_29_5, DCT_CONST_BITS); + const __m256i out_03_6 = _mm256_srai_epi32(out_03_4, DCT_CONST_BITS); + const __m256i out_03_7 = _mm256_srai_epi32(out_03_5, DCT_CONST_BITS); + const __m256i out_19_6 = _mm256_srai_epi32(out_19_4, DCT_CONST_BITS); + const __m256i out_19_7 = _mm256_srai_epi32(out_19_5, DCT_CONST_BITS); + const __m256i out_11_6 = _mm256_srai_epi32(out_11_4, DCT_CONST_BITS); + const __m256i out_11_7 = _mm256_srai_epi32(out_11_5, DCT_CONST_BITS); + const __m256i out_27_6 = _mm256_srai_epi32(out_27_4, DCT_CONST_BITS); + const __m256i out_27_7 = _mm256_srai_epi32(out_27_5, DCT_CONST_BITS); + // Combine + out[5] = _mm256_packs_epi32(out_05_6, out_05_7); + out[21] = _mm256_packs_epi32(out_21_6, out_21_7); + out[13] = _mm256_packs_epi32(out_13_6, out_13_7); + out[29] = _mm256_packs_epi32(out_29_6, out_29_7); + out[3] = _mm256_packs_epi32(out_03_6, out_03_7); + out[19] = _mm256_packs_epi32(out_19_6, out_19_7); + out[11] = _mm256_packs_epi32(out_11_6, out_11_7); + out[27] = _mm256_packs_epi32(out_27_6, out_27_7); + } +#if FDCT32x32_HIGH_PRECISION + } else { + __m256i lstep1[64], lstep2[64], lstep3[64]; + __m256i u[32], v[32], sign[16]; + const __m256i K32One = _mm256_set_epi32(1, 1, 1, 1, 1, 1, 1, 1); + // start using 32-bit operations + // stage 3 + { + // expanding to 32-bit length priori to addition operations + lstep2[0] = _mm256_unpacklo_epi16(step2[0], kZero); + lstep2[1] = _mm256_unpackhi_epi16(step2[0], kZero); + lstep2[2] = _mm256_unpacklo_epi16(step2[1], kZero); + lstep2[3] = _mm256_unpackhi_epi16(step2[1], kZero); + lstep2[4] = _mm256_unpacklo_epi16(step2[2], kZero); + lstep2[5] = _mm256_unpackhi_epi16(step2[2], kZero); + lstep2[6] = _mm256_unpacklo_epi16(step2[3], kZero); + lstep2[7] = _mm256_unpackhi_epi16(step2[3], kZero); + lstep2[8] = _mm256_unpacklo_epi16(step2[4], kZero); + lstep2[9] = _mm256_unpackhi_epi16(step2[4], kZero); + lstep2[10] = _mm256_unpacklo_epi16(step2[5], kZero); + lstep2[11] = _mm256_unpackhi_epi16(step2[5], kZero); + lstep2[12] = _mm256_unpacklo_epi16(step2[6], kZero); + lstep2[13] = _mm256_unpackhi_epi16(step2[6], kZero); + lstep2[14] = _mm256_unpacklo_epi16(step2[7], kZero); + lstep2[15] = _mm256_unpackhi_epi16(step2[7], kZero); + lstep2[0] = _mm256_madd_epi16(lstep2[0], kOne); + lstep2[1] = _mm256_madd_epi16(lstep2[1], kOne); + lstep2[2] = _mm256_madd_epi16(lstep2[2], kOne); + lstep2[3] = _mm256_madd_epi16(lstep2[3], kOne); + lstep2[4] = _mm256_madd_epi16(lstep2[4], kOne); + lstep2[5] = _mm256_madd_epi16(lstep2[5], kOne); + lstep2[6] = _mm256_madd_epi16(lstep2[6], kOne); + lstep2[7] = _mm256_madd_epi16(lstep2[7], kOne); + lstep2[8] = _mm256_madd_epi16(lstep2[8], kOne); + lstep2[9] = _mm256_madd_epi16(lstep2[9], kOne); + lstep2[10] = _mm256_madd_epi16(lstep2[10], kOne); + lstep2[11] = _mm256_madd_epi16(lstep2[11], kOne); + lstep2[12] = _mm256_madd_epi16(lstep2[12], kOne); + lstep2[13] = _mm256_madd_epi16(lstep2[13], kOne); + lstep2[14] = _mm256_madd_epi16(lstep2[14], kOne); + lstep2[15] = _mm256_madd_epi16(lstep2[15], kOne); + + lstep3[0] = _mm256_add_epi32(lstep2[14], lstep2[0]); + lstep3[1] = _mm256_add_epi32(lstep2[15], lstep2[1]); + lstep3[2] = _mm256_add_epi32(lstep2[12], lstep2[2]); + lstep3[3] = _mm256_add_epi32(lstep2[13], lstep2[3]); + lstep3[4] = _mm256_add_epi32(lstep2[10], lstep2[4]); + lstep3[5] = _mm256_add_epi32(lstep2[11], lstep2[5]); + lstep3[6] = _mm256_add_epi32(lstep2[8], lstep2[6]); + lstep3[7] = _mm256_add_epi32(lstep2[9], lstep2[7]); + lstep3[8] = _mm256_sub_epi32(lstep2[6], lstep2[8]); + lstep3[9] = _mm256_sub_epi32(lstep2[7], lstep2[9]); + lstep3[10] = _mm256_sub_epi32(lstep2[4], lstep2[10]); + lstep3[11] = _mm256_sub_epi32(lstep2[5], lstep2[11]); + lstep3[12] = _mm256_sub_epi32(lstep2[2], lstep2[12]); + lstep3[13] = _mm256_sub_epi32(lstep2[3], lstep2[13]); + lstep3[14] = _mm256_sub_epi32(lstep2[0], lstep2[14]); + lstep3[15] = _mm256_sub_epi32(lstep2[1], lstep2[15]); + } + { + const __m256i s3_10_0 = _mm256_unpacklo_epi16(step2[13], step2[10]); + const __m256i s3_10_1 = _mm256_unpackhi_epi16(step2[13], step2[10]); + const __m256i s3_11_0 = _mm256_unpacklo_epi16(step2[12], step2[11]); + const __m256i s3_11_1 = _mm256_unpackhi_epi16(step2[12], step2[11]); + const __m256i s3_10_2 = _mm256_madd_epi16(s3_10_0, k__cospi_p16_m16); + const __m256i s3_10_3 = _mm256_madd_epi16(s3_10_1, k__cospi_p16_m16); + const __m256i s3_11_2 = _mm256_madd_epi16(s3_11_0, k__cospi_p16_m16); + const __m256i s3_11_3 = _mm256_madd_epi16(s3_11_1, k__cospi_p16_m16); + const __m256i s3_12_2 = _mm256_madd_epi16(s3_11_0, k__cospi_p16_p16); + const __m256i s3_12_3 = _mm256_madd_epi16(s3_11_1, k__cospi_p16_p16); + const __m256i s3_13_2 = _mm256_madd_epi16(s3_10_0, k__cospi_p16_p16); + const __m256i s3_13_3 = _mm256_madd_epi16(s3_10_1, k__cospi_p16_p16); + // dct_const_round_shift + const __m256i s3_10_4 = + _mm256_add_epi32(s3_10_2, k__DCT_CONST_ROUNDING); + const __m256i s3_10_5 = + _mm256_add_epi32(s3_10_3, k__DCT_CONST_ROUNDING); + const __m256i s3_11_4 = + _mm256_add_epi32(s3_11_2, k__DCT_CONST_ROUNDING); + const __m256i s3_11_5 = + _mm256_add_epi32(s3_11_3, k__DCT_CONST_ROUNDING); + const __m256i s3_12_4 = + _mm256_add_epi32(s3_12_2, k__DCT_CONST_ROUNDING); + const __m256i s3_12_5 = + _mm256_add_epi32(s3_12_3, k__DCT_CONST_ROUNDING); + const __m256i s3_13_4 = + _mm256_add_epi32(s3_13_2, k__DCT_CONST_ROUNDING); + const __m256i s3_13_5 = + _mm256_add_epi32(s3_13_3, k__DCT_CONST_ROUNDING); + lstep3[20] = _mm256_srai_epi32(s3_10_4, DCT_CONST_BITS); + lstep3[21] = _mm256_srai_epi32(s3_10_5, DCT_CONST_BITS); + lstep3[22] = _mm256_srai_epi32(s3_11_4, DCT_CONST_BITS); + lstep3[23] = _mm256_srai_epi32(s3_11_5, DCT_CONST_BITS); + lstep3[24] = _mm256_srai_epi32(s3_12_4, DCT_CONST_BITS); + lstep3[25] = _mm256_srai_epi32(s3_12_5, DCT_CONST_BITS); + lstep3[26] = _mm256_srai_epi32(s3_13_4, DCT_CONST_BITS); + lstep3[27] = _mm256_srai_epi32(s3_13_5, DCT_CONST_BITS); + } + { + lstep2[40] = _mm256_unpacklo_epi16(step2[20], kZero); + lstep2[41] = _mm256_unpackhi_epi16(step2[20], kZero); + lstep2[42] = _mm256_unpacklo_epi16(step2[21], kZero); + lstep2[43] = _mm256_unpackhi_epi16(step2[21], kZero); + lstep2[44] = _mm256_unpacklo_epi16(step2[22], kZero); + lstep2[45] = _mm256_unpackhi_epi16(step2[22], kZero); + lstep2[46] = _mm256_unpacklo_epi16(step2[23], kZero); + lstep2[47] = _mm256_unpackhi_epi16(step2[23], kZero); + lstep2[48] = _mm256_unpacklo_epi16(step2[24], kZero); + lstep2[49] = _mm256_unpackhi_epi16(step2[24], kZero); + lstep2[50] = _mm256_unpacklo_epi16(step2[25], kZero); + lstep2[51] = _mm256_unpackhi_epi16(step2[25], kZero); + lstep2[52] = _mm256_unpacklo_epi16(step2[26], kZero); + lstep2[53] = _mm256_unpackhi_epi16(step2[26], kZero); + lstep2[54] = _mm256_unpacklo_epi16(step2[27], kZero); + lstep2[55] = _mm256_unpackhi_epi16(step2[27], kZero); + lstep2[40] = _mm256_madd_epi16(lstep2[40], kOne); + lstep2[41] = _mm256_madd_epi16(lstep2[41], kOne); + lstep2[42] = _mm256_madd_epi16(lstep2[42], kOne); + lstep2[43] = _mm256_madd_epi16(lstep2[43], kOne); + lstep2[44] = _mm256_madd_epi16(lstep2[44], kOne); + lstep2[45] = _mm256_madd_epi16(lstep2[45], kOne); + lstep2[46] = _mm256_madd_epi16(lstep2[46], kOne); + lstep2[47] = _mm256_madd_epi16(lstep2[47], kOne); + lstep2[48] = _mm256_madd_epi16(lstep2[48], kOne); + lstep2[49] = _mm256_madd_epi16(lstep2[49], kOne); + lstep2[50] = _mm256_madd_epi16(lstep2[50], kOne); + lstep2[51] = _mm256_madd_epi16(lstep2[51], kOne); + lstep2[52] = _mm256_madd_epi16(lstep2[52], kOne); + lstep2[53] = _mm256_madd_epi16(lstep2[53], kOne); + lstep2[54] = _mm256_madd_epi16(lstep2[54], kOne); + lstep2[55] = _mm256_madd_epi16(lstep2[55], kOne); + + lstep1[32] = _mm256_unpacklo_epi16(step1[16], kZero); + lstep1[33] = _mm256_unpackhi_epi16(step1[16], kZero); + lstep1[34] = _mm256_unpacklo_epi16(step1[17], kZero); + lstep1[35] = _mm256_unpackhi_epi16(step1[17], kZero); + lstep1[36] = _mm256_unpacklo_epi16(step1[18], kZero); + lstep1[37] = _mm256_unpackhi_epi16(step1[18], kZero); + lstep1[38] = _mm256_unpacklo_epi16(step1[19], kZero); + lstep1[39] = _mm256_unpackhi_epi16(step1[19], kZero); + lstep1[56] = _mm256_unpacklo_epi16(step1[28], kZero); + lstep1[57] = _mm256_unpackhi_epi16(step1[28], kZero); + lstep1[58] = _mm256_unpacklo_epi16(step1[29], kZero); + lstep1[59] = _mm256_unpackhi_epi16(step1[29], kZero); + lstep1[60] = _mm256_unpacklo_epi16(step1[30], kZero); + lstep1[61] = _mm256_unpackhi_epi16(step1[30], kZero); + lstep1[62] = _mm256_unpacklo_epi16(step1[31], kZero); + lstep1[63] = _mm256_unpackhi_epi16(step1[31], kZero); + lstep1[32] = _mm256_madd_epi16(lstep1[32], kOne); + lstep1[33] = _mm256_madd_epi16(lstep1[33], kOne); + lstep1[34] = _mm256_madd_epi16(lstep1[34], kOne); + lstep1[35] = _mm256_madd_epi16(lstep1[35], kOne); + lstep1[36] = _mm256_madd_epi16(lstep1[36], kOne); + lstep1[37] = _mm256_madd_epi16(lstep1[37], kOne); + lstep1[38] = _mm256_madd_epi16(lstep1[38], kOne); + lstep1[39] = _mm256_madd_epi16(lstep1[39], kOne); + lstep1[56] = _mm256_madd_epi16(lstep1[56], kOne); + lstep1[57] = _mm256_madd_epi16(lstep1[57], kOne); + lstep1[58] = _mm256_madd_epi16(lstep1[58], kOne); + lstep1[59] = _mm256_madd_epi16(lstep1[59], kOne); + lstep1[60] = _mm256_madd_epi16(lstep1[60], kOne); + lstep1[61] = _mm256_madd_epi16(lstep1[61], kOne); + lstep1[62] = _mm256_madd_epi16(lstep1[62], kOne); + lstep1[63] = _mm256_madd_epi16(lstep1[63], kOne); + + lstep3[32] = _mm256_add_epi32(lstep2[46], lstep1[32]); + lstep3[33] = _mm256_add_epi32(lstep2[47], lstep1[33]); + + lstep3[34] = _mm256_add_epi32(lstep2[44], lstep1[34]); + lstep3[35] = _mm256_add_epi32(lstep2[45], lstep1[35]); + lstep3[36] = _mm256_add_epi32(lstep2[42], lstep1[36]); + lstep3[37] = _mm256_add_epi32(lstep2[43], lstep1[37]); + lstep3[38] = _mm256_add_epi32(lstep2[40], lstep1[38]); + lstep3[39] = _mm256_add_epi32(lstep2[41], lstep1[39]); + lstep3[40] = _mm256_sub_epi32(lstep1[38], lstep2[40]); + lstep3[41] = _mm256_sub_epi32(lstep1[39], lstep2[41]); + lstep3[42] = _mm256_sub_epi32(lstep1[36], lstep2[42]); + lstep3[43] = _mm256_sub_epi32(lstep1[37], lstep2[43]); + lstep3[44] = _mm256_sub_epi32(lstep1[34], lstep2[44]); + lstep3[45] = _mm256_sub_epi32(lstep1[35], lstep2[45]); + lstep3[46] = _mm256_sub_epi32(lstep1[32], lstep2[46]); + lstep3[47] = _mm256_sub_epi32(lstep1[33], lstep2[47]); + lstep3[48] = _mm256_sub_epi32(lstep1[62], lstep2[48]); + lstep3[49] = _mm256_sub_epi32(lstep1[63], lstep2[49]); + lstep3[50] = _mm256_sub_epi32(lstep1[60], lstep2[50]); + lstep3[51] = _mm256_sub_epi32(lstep1[61], lstep2[51]); + lstep3[52] = _mm256_sub_epi32(lstep1[58], lstep2[52]); + lstep3[53] = _mm256_sub_epi32(lstep1[59], lstep2[53]); + lstep3[54] = _mm256_sub_epi32(lstep1[56], lstep2[54]); + lstep3[55] = _mm256_sub_epi32(lstep1[57], lstep2[55]); + lstep3[56] = _mm256_add_epi32(lstep2[54], lstep1[56]); + lstep3[57] = _mm256_add_epi32(lstep2[55], lstep1[57]); + lstep3[58] = _mm256_add_epi32(lstep2[52], lstep1[58]); + lstep3[59] = _mm256_add_epi32(lstep2[53], lstep1[59]); + lstep3[60] = _mm256_add_epi32(lstep2[50], lstep1[60]); + lstep3[61] = _mm256_add_epi32(lstep2[51], lstep1[61]); + lstep3[62] = _mm256_add_epi32(lstep2[48], lstep1[62]); + lstep3[63] = _mm256_add_epi32(lstep2[49], lstep1[63]); + } + + // stage 4 + { + // expanding to 32-bit length priori to addition operations + lstep2[16] = _mm256_unpacklo_epi16(step2[8], kZero); + lstep2[17] = _mm256_unpackhi_epi16(step2[8], kZero); + lstep2[18] = _mm256_unpacklo_epi16(step2[9], kZero); + lstep2[19] = _mm256_unpackhi_epi16(step2[9], kZero); + lstep2[28] = _mm256_unpacklo_epi16(step2[14], kZero); + lstep2[29] = _mm256_unpackhi_epi16(step2[14], kZero); + lstep2[30] = _mm256_unpacklo_epi16(step2[15], kZero); + lstep2[31] = _mm256_unpackhi_epi16(step2[15], kZero); + lstep2[16] = _mm256_madd_epi16(lstep2[16], kOne); + lstep2[17] = _mm256_madd_epi16(lstep2[17], kOne); + lstep2[18] = _mm256_madd_epi16(lstep2[18], kOne); + lstep2[19] = _mm256_madd_epi16(lstep2[19], kOne); + lstep2[28] = _mm256_madd_epi16(lstep2[28], kOne); + lstep2[29] = _mm256_madd_epi16(lstep2[29], kOne); + lstep2[30] = _mm256_madd_epi16(lstep2[30], kOne); + lstep2[31] = _mm256_madd_epi16(lstep2[31], kOne); + + lstep1[0] = _mm256_add_epi32(lstep3[6], lstep3[0]); + lstep1[1] = _mm256_add_epi32(lstep3[7], lstep3[1]); + lstep1[2] = _mm256_add_epi32(lstep3[4], lstep3[2]); + lstep1[3] = _mm256_add_epi32(lstep3[5], lstep3[3]); + lstep1[4] = _mm256_sub_epi32(lstep3[2], lstep3[4]); + lstep1[5] = _mm256_sub_epi32(lstep3[3], lstep3[5]); + lstep1[6] = _mm256_sub_epi32(lstep3[0], lstep3[6]); + lstep1[7] = _mm256_sub_epi32(lstep3[1], lstep3[7]); + lstep1[16] = _mm256_add_epi32(lstep3[22], lstep2[16]); + lstep1[17] = _mm256_add_epi32(lstep3[23], lstep2[17]); + lstep1[18] = _mm256_add_epi32(lstep3[20], lstep2[18]); + lstep1[19] = _mm256_add_epi32(lstep3[21], lstep2[19]); + lstep1[20] = _mm256_sub_epi32(lstep2[18], lstep3[20]); + lstep1[21] = _mm256_sub_epi32(lstep2[19], lstep3[21]); + lstep1[22] = _mm256_sub_epi32(lstep2[16], lstep3[22]); + lstep1[23] = _mm256_sub_epi32(lstep2[17], lstep3[23]); + lstep1[24] = _mm256_sub_epi32(lstep2[30], lstep3[24]); + lstep1[25] = _mm256_sub_epi32(lstep2[31], lstep3[25]); + lstep1[26] = _mm256_sub_epi32(lstep2[28], lstep3[26]); + lstep1[27] = _mm256_sub_epi32(lstep2[29], lstep3[27]); + lstep1[28] = _mm256_add_epi32(lstep3[26], lstep2[28]); + lstep1[29] = _mm256_add_epi32(lstep3[27], lstep2[29]); + lstep1[30] = _mm256_add_epi32(lstep3[24], lstep2[30]); + lstep1[31] = _mm256_add_epi32(lstep3[25], lstep2[31]); + } + { + // to be continued... + // + const __m256i k32_p16_p16 = + pair256_set_epi32(cospi_16_64, cospi_16_64); + const __m256i k32_p16_m16 = + pair256_set_epi32(cospi_16_64, -cospi_16_64); + + u[0] = _mm256_unpacklo_epi32(lstep3[12], lstep3[10]); + u[1] = _mm256_unpackhi_epi32(lstep3[12], lstep3[10]); + u[2] = _mm256_unpacklo_epi32(lstep3[13], lstep3[11]); + u[3] = _mm256_unpackhi_epi32(lstep3[13], lstep3[11]); + + // TODO(jingning): manually inline k_madd_epi32_avx2_ to further hide + // instruction latency. + v[0] = k_madd_epi32_avx2(u[0], k32_p16_m16); + v[1] = k_madd_epi32_avx2(u[1], k32_p16_m16); + v[2] = k_madd_epi32_avx2(u[2], k32_p16_m16); + v[3] = k_madd_epi32_avx2(u[3], k32_p16_m16); + v[4] = k_madd_epi32_avx2(u[0], k32_p16_p16); + v[5] = k_madd_epi32_avx2(u[1], k32_p16_p16); + v[6] = k_madd_epi32_avx2(u[2], k32_p16_p16); + v[7] = k_madd_epi32_avx2(u[3], k32_p16_p16); + + u[0] = k_packs_epi64_avx2(v[0], v[1]); + u[1] = k_packs_epi64_avx2(v[2], v[3]); + u[2] = k_packs_epi64_avx2(v[4], v[5]); + u[3] = k_packs_epi64_avx2(v[6], v[7]); + + v[0] = _mm256_add_epi32(u[0], k__DCT_CONST_ROUNDING); + v[1] = _mm256_add_epi32(u[1], k__DCT_CONST_ROUNDING); + v[2] = _mm256_add_epi32(u[2], k__DCT_CONST_ROUNDING); + v[3] = _mm256_add_epi32(u[3], k__DCT_CONST_ROUNDING); + + lstep1[10] = _mm256_srai_epi32(v[0], DCT_CONST_BITS); + lstep1[11] = _mm256_srai_epi32(v[1], DCT_CONST_BITS); + lstep1[12] = _mm256_srai_epi32(v[2], DCT_CONST_BITS); + lstep1[13] = _mm256_srai_epi32(v[3], DCT_CONST_BITS); + } + { + const __m256i k32_m08_p24 = + pair256_set_epi32(-cospi_8_64, cospi_24_64); + const __m256i k32_m24_m08 = + pair256_set_epi32(-cospi_24_64, -cospi_8_64); + const __m256i k32_p24_p08 = + pair256_set_epi32(cospi_24_64, cospi_8_64); + + u[0] = _mm256_unpacklo_epi32(lstep3[36], lstep3[58]); + u[1] = _mm256_unpackhi_epi32(lstep3[36], lstep3[58]); + u[2] = _mm256_unpacklo_epi32(lstep3[37], lstep3[59]); + u[3] = _mm256_unpackhi_epi32(lstep3[37], lstep3[59]); + u[4] = _mm256_unpacklo_epi32(lstep3[38], lstep3[56]); + u[5] = _mm256_unpackhi_epi32(lstep3[38], lstep3[56]); + u[6] = _mm256_unpacklo_epi32(lstep3[39], lstep3[57]); + u[7] = _mm256_unpackhi_epi32(lstep3[39], lstep3[57]); + u[8] = _mm256_unpacklo_epi32(lstep3[40], lstep3[54]); + u[9] = _mm256_unpackhi_epi32(lstep3[40], lstep3[54]); + u[10] = _mm256_unpacklo_epi32(lstep3[41], lstep3[55]); + u[11] = _mm256_unpackhi_epi32(lstep3[41], lstep3[55]); + u[12] = _mm256_unpacklo_epi32(lstep3[42], lstep3[52]); + u[13] = _mm256_unpackhi_epi32(lstep3[42], lstep3[52]); + u[14] = _mm256_unpacklo_epi32(lstep3[43], lstep3[53]); + u[15] = _mm256_unpackhi_epi32(lstep3[43], lstep3[53]); + + v[0] = k_madd_epi32_avx2(u[0], k32_m08_p24); + v[1] = k_madd_epi32_avx2(u[1], k32_m08_p24); + v[2] = k_madd_epi32_avx2(u[2], k32_m08_p24); + v[3] = k_madd_epi32_avx2(u[3], k32_m08_p24); + v[4] = k_madd_epi32_avx2(u[4], k32_m08_p24); + v[5] = k_madd_epi32_avx2(u[5], k32_m08_p24); + v[6] = k_madd_epi32_avx2(u[6], k32_m08_p24); + v[7] = k_madd_epi32_avx2(u[7], k32_m08_p24); + v[8] = k_madd_epi32_avx2(u[8], k32_m24_m08); + v[9] = k_madd_epi32_avx2(u[9], k32_m24_m08); + v[10] = k_madd_epi32_avx2(u[10], k32_m24_m08); + v[11] = k_madd_epi32_avx2(u[11], k32_m24_m08); + v[12] = k_madd_epi32_avx2(u[12], k32_m24_m08); + v[13] = k_madd_epi32_avx2(u[13], k32_m24_m08); + v[14] = k_madd_epi32_avx2(u[14], k32_m24_m08); + v[15] = k_madd_epi32_avx2(u[15], k32_m24_m08); + v[16] = k_madd_epi32_avx2(u[12], k32_m08_p24); + v[17] = k_madd_epi32_avx2(u[13], k32_m08_p24); + v[18] = k_madd_epi32_avx2(u[14], k32_m08_p24); + v[19] = k_madd_epi32_avx2(u[15], k32_m08_p24); + v[20] = k_madd_epi32_avx2(u[8], k32_m08_p24); + v[21] = k_madd_epi32_avx2(u[9], k32_m08_p24); + v[22] = k_madd_epi32_avx2(u[10], k32_m08_p24); + v[23] = k_madd_epi32_avx2(u[11], k32_m08_p24); + v[24] = k_madd_epi32_avx2(u[4], k32_p24_p08); + v[25] = k_madd_epi32_avx2(u[5], k32_p24_p08); + v[26] = k_madd_epi32_avx2(u[6], k32_p24_p08); + v[27] = k_madd_epi32_avx2(u[7], k32_p24_p08); + v[28] = k_madd_epi32_avx2(u[0], k32_p24_p08); + v[29] = k_madd_epi32_avx2(u[1], k32_p24_p08); + v[30] = k_madd_epi32_avx2(u[2], k32_p24_p08); + v[31] = k_madd_epi32_avx2(u[3], k32_p24_p08); + + u[0] = k_packs_epi64_avx2(v[0], v[1]); + u[1] = k_packs_epi64_avx2(v[2], v[3]); + u[2] = k_packs_epi64_avx2(v[4], v[5]); + u[3] = k_packs_epi64_avx2(v[6], v[7]); + u[4] = k_packs_epi64_avx2(v[8], v[9]); + u[5] = k_packs_epi64_avx2(v[10], v[11]); + u[6] = k_packs_epi64_avx2(v[12], v[13]); + u[7] = k_packs_epi64_avx2(v[14], v[15]); + u[8] = k_packs_epi64_avx2(v[16], v[17]); + u[9] = k_packs_epi64_avx2(v[18], v[19]); + u[10] = k_packs_epi64_avx2(v[20], v[21]); + u[11] = k_packs_epi64_avx2(v[22], v[23]); + u[12] = k_packs_epi64_avx2(v[24], v[25]); + u[13] = k_packs_epi64_avx2(v[26], v[27]); + u[14] = k_packs_epi64_avx2(v[28], v[29]); + u[15] = k_packs_epi64_avx2(v[30], v[31]); + + v[0] = _mm256_add_epi32(u[0], k__DCT_CONST_ROUNDING); + v[1] = _mm256_add_epi32(u[1], k__DCT_CONST_ROUNDING); + v[2] = _mm256_add_epi32(u[2], k__DCT_CONST_ROUNDING); + v[3] = _mm256_add_epi32(u[3], k__DCT_CONST_ROUNDING); + v[4] = _mm256_add_epi32(u[4], k__DCT_CONST_ROUNDING); + v[5] = _mm256_add_epi32(u[5], k__DCT_CONST_ROUNDING); + v[6] = _mm256_add_epi32(u[6], k__DCT_CONST_ROUNDING); + v[7] = _mm256_add_epi32(u[7], k__DCT_CONST_ROUNDING); + v[8] = _mm256_add_epi32(u[8], k__DCT_CONST_ROUNDING); + v[9] = _mm256_add_epi32(u[9], k__DCT_CONST_ROUNDING); + v[10] = _mm256_add_epi32(u[10], k__DCT_CONST_ROUNDING); + v[11] = _mm256_add_epi32(u[11], k__DCT_CONST_ROUNDING); + v[12] = _mm256_add_epi32(u[12], k__DCT_CONST_ROUNDING); + v[13] = _mm256_add_epi32(u[13], k__DCT_CONST_ROUNDING); + v[14] = _mm256_add_epi32(u[14], k__DCT_CONST_ROUNDING); + v[15] = _mm256_add_epi32(u[15], k__DCT_CONST_ROUNDING); + + lstep1[36] = _mm256_srai_epi32(v[0], DCT_CONST_BITS); + lstep1[37] = _mm256_srai_epi32(v[1], DCT_CONST_BITS); + lstep1[38] = _mm256_srai_epi32(v[2], DCT_CONST_BITS); + lstep1[39] = _mm256_srai_epi32(v[3], DCT_CONST_BITS); + lstep1[40] = _mm256_srai_epi32(v[4], DCT_CONST_BITS); + lstep1[41] = _mm256_srai_epi32(v[5], DCT_CONST_BITS); + lstep1[42] = _mm256_srai_epi32(v[6], DCT_CONST_BITS); + lstep1[43] = _mm256_srai_epi32(v[7], DCT_CONST_BITS); + lstep1[52] = _mm256_srai_epi32(v[8], DCT_CONST_BITS); + lstep1[53] = _mm256_srai_epi32(v[9], DCT_CONST_BITS); + lstep1[54] = _mm256_srai_epi32(v[10], DCT_CONST_BITS); + lstep1[55] = _mm256_srai_epi32(v[11], DCT_CONST_BITS); + lstep1[56] = _mm256_srai_epi32(v[12], DCT_CONST_BITS); + lstep1[57] = _mm256_srai_epi32(v[13], DCT_CONST_BITS); + lstep1[58] = _mm256_srai_epi32(v[14], DCT_CONST_BITS); + lstep1[59] = _mm256_srai_epi32(v[15], DCT_CONST_BITS); + } + // stage 5 + { + lstep2[8] = _mm256_add_epi32(lstep1[10], lstep3[8]); + lstep2[9] = _mm256_add_epi32(lstep1[11], lstep3[9]); + lstep2[10] = _mm256_sub_epi32(lstep3[8], lstep1[10]); + lstep2[11] = _mm256_sub_epi32(lstep3[9], lstep1[11]); + lstep2[12] = _mm256_sub_epi32(lstep3[14], lstep1[12]); + lstep2[13] = _mm256_sub_epi32(lstep3[15], lstep1[13]); + lstep2[14] = _mm256_add_epi32(lstep1[12], lstep3[14]); + lstep2[15] = _mm256_add_epi32(lstep1[13], lstep3[15]); + } + { + const __m256i k32_p16_p16 = + pair256_set_epi32(cospi_16_64, cospi_16_64); + const __m256i k32_p16_m16 = + pair256_set_epi32(cospi_16_64, -cospi_16_64); + const __m256i k32_p24_p08 = + pair256_set_epi32(cospi_24_64, cospi_8_64); + const __m256i k32_m08_p24 = + pair256_set_epi32(-cospi_8_64, cospi_24_64); + + u[0] = _mm256_unpacklo_epi32(lstep1[0], lstep1[2]); + u[1] = _mm256_unpackhi_epi32(lstep1[0], lstep1[2]); + u[2] = _mm256_unpacklo_epi32(lstep1[1], lstep1[3]); + u[3] = _mm256_unpackhi_epi32(lstep1[1], lstep1[3]); + u[4] = _mm256_unpacklo_epi32(lstep1[4], lstep1[6]); + u[5] = _mm256_unpackhi_epi32(lstep1[4], lstep1[6]); + u[6] = _mm256_unpacklo_epi32(lstep1[5], lstep1[7]); + u[7] = _mm256_unpackhi_epi32(lstep1[5], lstep1[7]); + + // TODO(jingning): manually inline k_madd_epi32_avx2_ to further hide + // instruction latency. + v[0] = k_madd_epi32_avx2(u[0], k32_p16_p16); + v[1] = k_madd_epi32_avx2(u[1], k32_p16_p16); + v[2] = k_madd_epi32_avx2(u[2], k32_p16_p16); + v[3] = k_madd_epi32_avx2(u[3], k32_p16_p16); + v[4] = k_madd_epi32_avx2(u[0], k32_p16_m16); + v[5] = k_madd_epi32_avx2(u[1], k32_p16_m16); + v[6] = k_madd_epi32_avx2(u[2], k32_p16_m16); + v[7] = k_madd_epi32_avx2(u[3], k32_p16_m16); + v[8] = k_madd_epi32_avx2(u[4], k32_p24_p08); + v[9] = k_madd_epi32_avx2(u[5], k32_p24_p08); + v[10] = k_madd_epi32_avx2(u[6], k32_p24_p08); + v[11] = k_madd_epi32_avx2(u[7], k32_p24_p08); + v[12] = k_madd_epi32_avx2(u[4], k32_m08_p24); + v[13] = k_madd_epi32_avx2(u[5], k32_m08_p24); + v[14] = k_madd_epi32_avx2(u[6], k32_m08_p24); + v[15] = k_madd_epi32_avx2(u[7], k32_m08_p24); + + u[0] = k_packs_epi64_avx2(v[0], v[1]); + u[1] = k_packs_epi64_avx2(v[2], v[3]); + u[2] = k_packs_epi64_avx2(v[4], v[5]); + u[3] = k_packs_epi64_avx2(v[6], v[7]); + u[4] = k_packs_epi64_avx2(v[8], v[9]); + u[5] = k_packs_epi64_avx2(v[10], v[11]); + u[6] = k_packs_epi64_avx2(v[12], v[13]); + u[7] = k_packs_epi64_avx2(v[14], v[15]); + + v[0] = _mm256_add_epi32(u[0], k__DCT_CONST_ROUNDING); + v[1] = _mm256_add_epi32(u[1], k__DCT_CONST_ROUNDING); + v[2] = _mm256_add_epi32(u[2], k__DCT_CONST_ROUNDING); + v[3] = _mm256_add_epi32(u[3], k__DCT_CONST_ROUNDING); + v[4] = _mm256_add_epi32(u[4], k__DCT_CONST_ROUNDING); + v[5] = _mm256_add_epi32(u[5], k__DCT_CONST_ROUNDING); + v[6] = _mm256_add_epi32(u[6], k__DCT_CONST_ROUNDING); + v[7] = _mm256_add_epi32(u[7], k__DCT_CONST_ROUNDING); + + u[0] = _mm256_srai_epi32(v[0], DCT_CONST_BITS); + u[1] = _mm256_srai_epi32(v[1], DCT_CONST_BITS); + u[2] = _mm256_srai_epi32(v[2], DCT_CONST_BITS); + u[3] = _mm256_srai_epi32(v[3], DCT_CONST_BITS); + u[4] = _mm256_srai_epi32(v[4], DCT_CONST_BITS); + u[5] = _mm256_srai_epi32(v[5], DCT_CONST_BITS); + u[6] = _mm256_srai_epi32(v[6], DCT_CONST_BITS); + u[7] = _mm256_srai_epi32(v[7], DCT_CONST_BITS); + + sign[0] = _mm256_cmpgt_epi32(kZero, u[0]); + sign[1] = _mm256_cmpgt_epi32(kZero, u[1]); + sign[2] = _mm256_cmpgt_epi32(kZero, u[2]); + sign[3] = _mm256_cmpgt_epi32(kZero, u[3]); + sign[4] = _mm256_cmpgt_epi32(kZero, u[4]); + sign[5] = _mm256_cmpgt_epi32(kZero, u[5]); + sign[6] = _mm256_cmpgt_epi32(kZero, u[6]); + sign[7] = _mm256_cmpgt_epi32(kZero, u[7]); + + u[0] = _mm256_sub_epi32(u[0], sign[0]); + u[1] = _mm256_sub_epi32(u[1], sign[1]); + u[2] = _mm256_sub_epi32(u[2], sign[2]); + u[3] = _mm256_sub_epi32(u[3], sign[3]); + u[4] = _mm256_sub_epi32(u[4], sign[4]); + u[5] = _mm256_sub_epi32(u[5], sign[5]); + u[6] = _mm256_sub_epi32(u[6], sign[6]); + u[7] = _mm256_sub_epi32(u[7], sign[7]); + + u[0] = _mm256_add_epi32(u[0], K32One); + u[1] = _mm256_add_epi32(u[1], K32One); + u[2] = _mm256_add_epi32(u[2], K32One); + u[3] = _mm256_add_epi32(u[3], K32One); + u[4] = _mm256_add_epi32(u[4], K32One); + u[5] = _mm256_add_epi32(u[5], K32One); + u[6] = _mm256_add_epi32(u[6], K32One); + u[7] = _mm256_add_epi32(u[7], K32One); + + u[0] = _mm256_srai_epi32(u[0], 2); + u[1] = _mm256_srai_epi32(u[1], 2); + u[2] = _mm256_srai_epi32(u[2], 2); + u[3] = _mm256_srai_epi32(u[3], 2); + u[4] = _mm256_srai_epi32(u[4], 2); + u[5] = _mm256_srai_epi32(u[5], 2); + u[6] = _mm256_srai_epi32(u[6], 2); + u[7] = _mm256_srai_epi32(u[7], 2); + + // Combine + out[0] = _mm256_packs_epi32(u[0], u[1]); + out[16] = _mm256_packs_epi32(u[2], u[3]); + out[8] = _mm256_packs_epi32(u[4], u[5]); + out[24] = _mm256_packs_epi32(u[6], u[7]); + } + { + const __m256i k32_m08_p24 = + pair256_set_epi32(-cospi_8_64, cospi_24_64); + const __m256i k32_m24_m08 = + pair256_set_epi32(-cospi_24_64, -cospi_8_64); + const __m256i k32_p24_p08 = + pair256_set_epi32(cospi_24_64, cospi_8_64); + + u[0] = _mm256_unpacklo_epi32(lstep1[18], lstep1[28]); + u[1] = _mm256_unpackhi_epi32(lstep1[18], lstep1[28]); + u[2] = _mm256_unpacklo_epi32(lstep1[19], lstep1[29]); + u[3] = _mm256_unpackhi_epi32(lstep1[19], lstep1[29]); + u[4] = _mm256_unpacklo_epi32(lstep1[20], lstep1[26]); + u[5] = _mm256_unpackhi_epi32(lstep1[20], lstep1[26]); + u[6] = _mm256_unpacklo_epi32(lstep1[21], lstep1[27]); + u[7] = _mm256_unpackhi_epi32(lstep1[21], lstep1[27]); + + v[0] = k_madd_epi32_avx2(u[0], k32_m08_p24); + v[1] = k_madd_epi32_avx2(u[1], k32_m08_p24); + v[2] = k_madd_epi32_avx2(u[2], k32_m08_p24); + v[3] = k_madd_epi32_avx2(u[3], k32_m08_p24); + v[4] = k_madd_epi32_avx2(u[4], k32_m24_m08); + v[5] = k_madd_epi32_avx2(u[5], k32_m24_m08); + v[6] = k_madd_epi32_avx2(u[6], k32_m24_m08); + v[7] = k_madd_epi32_avx2(u[7], k32_m24_m08); + v[8] = k_madd_epi32_avx2(u[4], k32_m08_p24); + v[9] = k_madd_epi32_avx2(u[5], k32_m08_p24); + v[10] = k_madd_epi32_avx2(u[6], k32_m08_p24); + v[11] = k_madd_epi32_avx2(u[7], k32_m08_p24); + v[12] = k_madd_epi32_avx2(u[0], k32_p24_p08); + v[13] = k_madd_epi32_avx2(u[1], k32_p24_p08); + v[14] = k_madd_epi32_avx2(u[2], k32_p24_p08); + v[15] = k_madd_epi32_avx2(u[3], k32_p24_p08); + + u[0] = k_packs_epi64_avx2(v[0], v[1]); + u[1] = k_packs_epi64_avx2(v[2], v[3]); + u[2] = k_packs_epi64_avx2(v[4], v[5]); + u[3] = k_packs_epi64_avx2(v[6], v[7]); + u[4] = k_packs_epi64_avx2(v[8], v[9]); + u[5] = k_packs_epi64_avx2(v[10], v[11]); + u[6] = k_packs_epi64_avx2(v[12], v[13]); + u[7] = k_packs_epi64_avx2(v[14], v[15]); + + u[0] = _mm256_add_epi32(u[0], k__DCT_CONST_ROUNDING); + u[1] = _mm256_add_epi32(u[1], k__DCT_CONST_ROUNDING); + u[2] = _mm256_add_epi32(u[2], k__DCT_CONST_ROUNDING); + u[3] = _mm256_add_epi32(u[3], k__DCT_CONST_ROUNDING); + u[4] = _mm256_add_epi32(u[4], k__DCT_CONST_ROUNDING); + u[5] = _mm256_add_epi32(u[5], k__DCT_CONST_ROUNDING); + u[6] = _mm256_add_epi32(u[6], k__DCT_CONST_ROUNDING); + u[7] = _mm256_add_epi32(u[7], k__DCT_CONST_ROUNDING); + + lstep2[18] = _mm256_srai_epi32(u[0], DCT_CONST_BITS); + lstep2[19] = _mm256_srai_epi32(u[1], DCT_CONST_BITS); + lstep2[20] = _mm256_srai_epi32(u[2], DCT_CONST_BITS); + lstep2[21] = _mm256_srai_epi32(u[3], DCT_CONST_BITS); + lstep2[26] = _mm256_srai_epi32(u[4], DCT_CONST_BITS); + lstep2[27] = _mm256_srai_epi32(u[5], DCT_CONST_BITS); + lstep2[28] = _mm256_srai_epi32(u[6], DCT_CONST_BITS); + lstep2[29] = _mm256_srai_epi32(u[7], DCT_CONST_BITS); + } + { + lstep2[32] = _mm256_add_epi32(lstep1[38], lstep3[32]); + lstep2[33] = _mm256_add_epi32(lstep1[39], lstep3[33]); + lstep2[34] = _mm256_add_epi32(lstep1[36], lstep3[34]); + lstep2[35] = _mm256_add_epi32(lstep1[37], lstep3[35]); + lstep2[36] = _mm256_sub_epi32(lstep3[34], lstep1[36]); + lstep2[37] = _mm256_sub_epi32(lstep3[35], lstep1[37]); + lstep2[38] = _mm256_sub_epi32(lstep3[32], lstep1[38]); + lstep2[39] = _mm256_sub_epi32(lstep3[33], lstep1[39]); + lstep2[40] = _mm256_sub_epi32(lstep3[46], lstep1[40]); + lstep2[41] = _mm256_sub_epi32(lstep3[47], lstep1[41]); + lstep2[42] = _mm256_sub_epi32(lstep3[44], lstep1[42]); + lstep2[43] = _mm256_sub_epi32(lstep3[45], lstep1[43]); + lstep2[44] = _mm256_add_epi32(lstep1[42], lstep3[44]); + lstep2[45] = _mm256_add_epi32(lstep1[43], lstep3[45]); + lstep2[46] = _mm256_add_epi32(lstep1[40], lstep3[46]); + lstep2[47] = _mm256_add_epi32(lstep1[41], lstep3[47]); + lstep2[48] = _mm256_add_epi32(lstep1[54], lstep3[48]); + lstep2[49] = _mm256_add_epi32(lstep1[55], lstep3[49]); + lstep2[50] = _mm256_add_epi32(lstep1[52], lstep3[50]); + lstep2[51] = _mm256_add_epi32(lstep1[53], lstep3[51]); + lstep2[52] = _mm256_sub_epi32(lstep3[50], lstep1[52]); + lstep2[53] = _mm256_sub_epi32(lstep3[51], lstep1[53]); + lstep2[54] = _mm256_sub_epi32(lstep3[48], lstep1[54]); + lstep2[55] = _mm256_sub_epi32(lstep3[49], lstep1[55]); + lstep2[56] = _mm256_sub_epi32(lstep3[62], lstep1[56]); + lstep2[57] = _mm256_sub_epi32(lstep3[63], lstep1[57]); + lstep2[58] = _mm256_sub_epi32(lstep3[60], lstep1[58]); + lstep2[59] = _mm256_sub_epi32(lstep3[61], lstep1[59]); + lstep2[60] = _mm256_add_epi32(lstep1[58], lstep3[60]); + lstep2[61] = _mm256_add_epi32(lstep1[59], lstep3[61]); + lstep2[62] = _mm256_add_epi32(lstep1[56], lstep3[62]); + lstep2[63] = _mm256_add_epi32(lstep1[57], lstep3[63]); + } + // stage 6 + { + const __m256i k32_p28_p04 = + pair256_set_epi32(cospi_28_64, cospi_4_64); + const __m256i k32_p12_p20 = + pair256_set_epi32(cospi_12_64, cospi_20_64); + const __m256i k32_m20_p12 = + pair256_set_epi32(-cospi_20_64, cospi_12_64); + const __m256i k32_m04_p28 = + pair256_set_epi32(-cospi_4_64, cospi_28_64); + + u[0] = _mm256_unpacklo_epi32(lstep2[8], lstep2[14]); + u[1] = _mm256_unpackhi_epi32(lstep2[8], lstep2[14]); + u[2] = _mm256_unpacklo_epi32(lstep2[9], lstep2[15]); + u[3] = _mm256_unpackhi_epi32(lstep2[9], lstep2[15]); + u[4] = _mm256_unpacklo_epi32(lstep2[10], lstep2[12]); + u[5] = _mm256_unpackhi_epi32(lstep2[10], lstep2[12]); + u[6] = _mm256_unpacklo_epi32(lstep2[11], lstep2[13]); + u[7] = _mm256_unpackhi_epi32(lstep2[11], lstep2[13]); + u[8] = _mm256_unpacklo_epi32(lstep2[10], lstep2[12]); + u[9] = _mm256_unpackhi_epi32(lstep2[10], lstep2[12]); + u[10] = _mm256_unpacklo_epi32(lstep2[11], lstep2[13]); + u[11] = _mm256_unpackhi_epi32(lstep2[11], lstep2[13]); + u[12] = _mm256_unpacklo_epi32(lstep2[8], lstep2[14]); + u[13] = _mm256_unpackhi_epi32(lstep2[8], lstep2[14]); + u[14] = _mm256_unpacklo_epi32(lstep2[9], lstep2[15]); + u[15] = _mm256_unpackhi_epi32(lstep2[9], lstep2[15]); + + v[0] = k_madd_epi32_avx2(u[0], k32_p28_p04); + v[1] = k_madd_epi32_avx2(u[1], k32_p28_p04); + v[2] = k_madd_epi32_avx2(u[2], k32_p28_p04); + v[3] = k_madd_epi32_avx2(u[3], k32_p28_p04); + v[4] = k_madd_epi32_avx2(u[4], k32_p12_p20); + v[5] = k_madd_epi32_avx2(u[5], k32_p12_p20); + v[6] = k_madd_epi32_avx2(u[6], k32_p12_p20); + v[7] = k_madd_epi32_avx2(u[7], k32_p12_p20); + v[8] = k_madd_epi32_avx2(u[8], k32_m20_p12); + v[9] = k_madd_epi32_avx2(u[9], k32_m20_p12); + v[10] = k_madd_epi32_avx2(u[10], k32_m20_p12); + v[11] = k_madd_epi32_avx2(u[11], k32_m20_p12); + v[12] = k_madd_epi32_avx2(u[12], k32_m04_p28); + v[13] = k_madd_epi32_avx2(u[13], k32_m04_p28); + v[14] = k_madd_epi32_avx2(u[14], k32_m04_p28); + v[15] = k_madd_epi32_avx2(u[15], k32_m04_p28); + + u[0] = k_packs_epi64_avx2(v[0], v[1]); + u[1] = k_packs_epi64_avx2(v[2], v[3]); + u[2] = k_packs_epi64_avx2(v[4], v[5]); + u[3] = k_packs_epi64_avx2(v[6], v[7]); + u[4] = k_packs_epi64_avx2(v[8], v[9]); + u[5] = k_packs_epi64_avx2(v[10], v[11]); + u[6] = k_packs_epi64_avx2(v[12], v[13]); + u[7] = k_packs_epi64_avx2(v[14], v[15]); + + v[0] = _mm256_add_epi32(u[0], k__DCT_CONST_ROUNDING); + v[1] = _mm256_add_epi32(u[1], k__DCT_CONST_ROUNDING); + v[2] = _mm256_add_epi32(u[2], k__DCT_CONST_ROUNDING); + v[3] = _mm256_add_epi32(u[3], k__DCT_CONST_ROUNDING); + v[4] = _mm256_add_epi32(u[4], k__DCT_CONST_ROUNDING); + v[5] = _mm256_add_epi32(u[5], k__DCT_CONST_ROUNDING); + v[6] = _mm256_add_epi32(u[6], k__DCT_CONST_ROUNDING); + v[7] = _mm256_add_epi32(u[7], k__DCT_CONST_ROUNDING); + + u[0] = _mm256_srai_epi32(v[0], DCT_CONST_BITS); + u[1] = _mm256_srai_epi32(v[1], DCT_CONST_BITS); + u[2] = _mm256_srai_epi32(v[2], DCT_CONST_BITS); + u[3] = _mm256_srai_epi32(v[3], DCT_CONST_BITS); + u[4] = _mm256_srai_epi32(v[4], DCT_CONST_BITS); + u[5] = _mm256_srai_epi32(v[5], DCT_CONST_BITS); + u[6] = _mm256_srai_epi32(v[6], DCT_CONST_BITS); + u[7] = _mm256_srai_epi32(v[7], DCT_CONST_BITS); + + sign[0] = _mm256_cmpgt_epi32(kZero, u[0]); + sign[1] = _mm256_cmpgt_epi32(kZero, u[1]); + sign[2] = _mm256_cmpgt_epi32(kZero, u[2]); + sign[3] = _mm256_cmpgt_epi32(kZero, u[3]); + sign[4] = _mm256_cmpgt_epi32(kZero, u[4]); + sign[5] = _mm256_cmpgt_epi32(kZero, u[5]); + sign[6] = _mm256_cmpgt_epi32(kZero, u[6]); + sign[7] = _mm256_cmpgt_epi32(kZero, u[7]); + + u[0] = _mm256_sub_epi32(u[0], sign[0]); + u[1] = _mm256_sub_epi32(u[1], sign[1]); + u[2] = _mm256_sub_epi32(u[2], sign[2]); + u[3] = _mm256_sub_epi32(u[3], sign[3]); + u[4] = _mm256_sub_epi32(u[4], sign[4]); + u[5] = _mm256_sub_epi32(u[5], sign[5]); + u[6] = _mm256_sub_epi32(u[6], sign[6]); + u[7] = _mm256_sub_epi32(u[7], sign[7]); + + u[0] = _mm256_add_epi32(u[0], K32One); + u[1] = _mm256_add_epi32(u[1], K32One); + u[2] = _mm256_add_epi32(u[2], K32One); + u[3] = _mm256_add_epi32(u[3], K32One); + u[4] = _mm256_add_epi32(u[4], K32One); + u[5] = _mm256_add_epi32(u[5], K32One); + u[6] = _mm256_add_epi32(u[6], K32One); + u[7] = _mm256_add_epi32(u[7], K32One); + + u[0] = _mm256_srai_epi32(u[0], 2); + u[1] = _mm256_srai_epi32(u[1], 2); + u[2] = _mm256_srai_epi32(u[2], 2); + u[3] = _mm256_srai_epi32(u[3], 2); + u[4] = _mm256_srai_epi32(u[4], 2); + u[5] = _mm256_srai_epi32(u[5], 2); + u[6] = _mm256_srai_epi32(u[6], 2); + u[7] = _mm256_srai_epi32(u[7], 2); + + out[4] = _mm256_packs_epi32(u[0], u[1]); + out[20] = _mm256_packs_epi32(u[2], u[3]); + out[12] = _mm256_packs_epi32(u[4], u[5]); + out[28] = _mm256_packs_epi32(u[6], u[7]); + } + { + lstep3[16] = _mm256_add_epi32(lstep2[18], lstep1[16]); + lstep3[17] = _mm256_add_epi32(lstep2[19], lstep1[17]); + lstep3[18] = _mm256_sub_epi32(lstep1[16], lstep2[18]); + lstep3[19] = _mm256_sub_epi32(lstep1[17], lstep2[19]); + lstep3[20] = _mm256_sub_epi32(lstep1[22], lstep2[20]); + lstep3[21] = _mm256_sub_epi32(lstep1[23], lstep2[21]); + lstep3[22] = _mm256_add_epi32(lstep2[20], lstep1[22]); + lstep3[23] = _mm256_add_epi32(lstep2[21], lstep1[23]); + lstep3[24] = _mm256_add_epi32(lstep2[26], lstep1[24]); + lstep3[25] = _mm256_add_epi32(lstep2[27], lstep1[25]); + lstep3[26] = _mm256_sub_epi32(lstep1[24], lstep2[26]); + lstep3[27] = _mm256_sub_epi32(lstep1[25], lstep2[27]); + lstep3[28] = _mm256_sub_epi32(lstep1[30], lstep2[28]); + lstep3[29] = _mm256_sub_epi32(lstep1[31], lstep2[29]); + lstep3[30] = _mm256_add_epi32(lstep2[28], lstep1[30]); + lstep3[31] = _mm256_add_epi32(lstep2[29], lstep1[31]); + } + { + const __m256i k32_m04_p28 = + pair256_set_epi32(-cospi_4_64, cospi_28_64); + const __m256i k32_m28_m04 = + pair256_set_epi32(-cospi_28_64, -cospi_4_64); + const __m256i k32_m20_p12 = + pair256_set_epi32(-cospi_20_64, cospi_12_64); + const __m256i k32_m12_m20 = + pair256_set_epi32(-cospi_12_64, -cospi_20_64); + const __m256i k32_p12_p20 = + pair256_set_epi32(cospi_12_64, cospi_20_64); + const __m256i k32_p28_p04 = + pair256_set_epi32(cospi_28_64, cospi_4_64); + + u[0] = _mm256_unpacklo_epi32(lstep2[34], lstep2[60]); + u[1] = _mm256_unpackhi_epi32(lstep2[34], lstep2[60]); + u[2] = _mm256_unpacklo_epi32(lstep2[35], lstep2[61]); + u[3] = _mm256_unpackhi_epi32(lstep2[35], lstep2[61]); + u[4] = _mm256_unpacklo_epi32(lstep2[36], lstep2[58]); + u[5] = _mm256_unpackhi_epi32(lstep2[36], lstep2[58]); + u[6] = _mm256_unpacklo_epi32(lstep2[37], lstep2[59]); + u[7] = _mm256_unpackhi_epi32(lstep2[37], lstep2[59]); + u[8] = _mm256_unpacklo_epi32(lstep2[42], lstep2[52]); + u[9] = _mm256_unpackhi_epi32(lstep2[42], lstep2[52]); + u[10] = _mm256_unpacklo_epi32(lstep2[43], lstep2[53]); + u[11] = _mm256_unpackhi_epi32(lstep2[43], lstep2[53]); + u[12] = _mm256_unpacklo_epi32(lstep2[44], lstep2[50]); + u[13] = _mm256_unpackhi_epi32(lstep2[44], lstep2[50]); + u[14] = _mm256_unpacklo_epi32(lstep2[45], lstep2[51]); + u[15] = _mm256_unpackhi_epi32(lstep2[45], lstep2[51]); + + v[0] = k_madd_epi32_avx2(u[0], k32_m04_p28); + v[1] = k_madd_epi32_avx2(u[1], k32_m04_p28); + v[2] = k_madd_epi32_avx2(u[2], k32_m04_p28); + v[3] = k_madd_epi32_avx2(u[3], k32_m04_p28); + v[4] = k_madd_epi32_avx2(u[4], k32_m28_m04); + v[5] = k_madd_epi32_avx2(u[5], k32_m28_m04); + v[6] = k_madd_epi32_avx2(u[6], k32_m28_m04); + v[7] = k_madd_epi32_avx2(u[7], k32_m28_m04); + v[8] = k_madd_epi32_avx2(u[8], k32_m20_p12); + v[9] = k_madd_epi32_avx2(u[9], k32_m20_p12); + v[10] = k_madd_epi32_avx2(u[10], k32_m20_p12); + v[11] = k_madd_epi32_avx2(u[11], k32_m20_p12); + v[12] = k_madd_epi32_avx2(u[12], k32_m12_m20); + v[13] = k_madd_epi32_avx2(u[13], k32_m12_m20); + v[14] = k_madd_epi32_avx2(u[14], k32_m12_m20); + v[15] = k_madd_epi32_avx2(u[15], k32_m12_m20); + v[16] = k_madd_epi32_avx2(u[12], k32_m20_p12); + v[17] = k_madd_epi32_avx2(u[13], k32_m20_p12); + v[18] = k_madd_epi32_avx2(u[14], k32_m20_p12); + v[19] = k_madd_epi32_avx2(u[15], k32_m20_p12); + v[20] = k_madd_epi32_avx2(u[8], k32_p12_p20); + v[21] = k_madd_epi32_avx2(u[9], k32_p12_p20); + v[22] = k_madd_epi32_avx2(u[10], k32_p12_p20); + v[23] = k_madd_epi32_avx2(u[11], k32_p12_p20); + v[24] = k_madd_epi32_avx2(u[4], k32_m04_p28); + v[25] = k_madd_epi32_avx2(u[5], k32_m04_p28); + v[26] = k_madd_epi32_avx2(u[6], k32_m04_p28); + v[27] = k_madd_epi32_avx2(u[7], k32_m04_p28); + v[28] = k_madd_epi32_avx2(u[0], k32_p28_p04); + v[29] = k_madd_epi32_avx2(u[1], k32_p28_p04); + v[30] = k_madd_epi32_avx2(u[2], k32_p28_p04); + v[31] = k_madd_epi32_avx2(u[3], k32_p28_p04); + + u[0] = k_packs_epi64_avx2(v[0], v[1]); + u[1] = k_packs_epi64_avx2(v[2], v[3]); + u[2] = k_packs_epi64_avx2(v[4], v[5]); + u[3] = k_packs_epi64_avx2(v[6], v[7]); + u[4] = k_packs_epi64_avx2(v[8], v[9]); + u[5] = k_packs_epi64_avx2(v[10], v[11]); + u[6] = k_packs_epi64_avx2(v[12], v[13]); + u[7] = k_packs_epi64_avx2(v[14], v[15]); + u[8] = k_packs_epi64_avx2(v[16], v[17]); + u[9] = k_packs_epi64_avx2(v[18], v[19]); + u[10] = k_packs_epi64_avx2(v[20], v[21]); + u[11] = k_packs_epi64_avx2(v[22], v[23]); + u[12] = k_packs_epi64_avx2(v[24], v[25]); + u[13] = k_packs_epi64_avx2(v[26], v[27]); + u[14] = k_packs_epi64_avx2(v[28], v[29]); + u[15] = k_packs_epi64_avx2(v[30], v[31]); + + v[0] = _mm256_add_epi32(u[0], k__DCT_CONST_ROUNDING); + v[1] = _mm256_add_epi32(u[1], k__DCT_CONST_ROUNDING); + v[2] = _mm256_add_epi32(u[2], k__DCT_CONST_ROUNDING); + v[3] = _mm256_add_epi32(u[3], k__DCT_CONST_ROUNDING); + v[4] = _mm256_add_epi32(u[4], k__DCT_CONST_ROUNDING); + v[5] = _mm256_add_epi32(u[5], k__DCT_CONST_ROUNDING); + v[6] = _mm256_add_epi32(u[6], k__DCT_CONST_ROUNDING); + v[7] = _mm256_add_epi32(u[7], k__DCT_CONST_ROUNDING); + v[8] = _mm256_add_epi32(u[8], k__DCT_CONST_ROUNDING); + v[9] = _mm256_add_epi32(u[9], k__DCT_CONST_ROUNDING); + v[10] = _mm256_add_epi32(u[10], k__DCT_CONST_ROUNDING); + v[11] = _mm256_add_epi32(u[11], k__DCT_CONST_ROUNDING); + v[12] = _mm256_add_epi32(u[12], k__DCT_CONST_ROUNDING); + v[13] = _mm256_add_epi32(u[13], k__DCT_CONST_ROUNDING); + v[14] = _mm256_add_epi32(u[14], k__DCT_CONST_ROUNDING); + v[15] = _mm256_add_epi32(u[15], k__DCT_CONST_ROUNDING); + + lstep3[34] = _mm256_srai_epi32(v[0], DCT_CONST_BITS); + lstep3[35] = _mm256_srai_epi32(v[1], DCT_CONST_BITS); + lstep3[36] = _mm256_srai_epi32(v[2], DCT_CONST_BITS); + lstep3[37] = _mm256_srai_epi32(v[3], DCT_CONST_BITS); + lstep3[42] = _mm256_srai_epi32(v[4], DCT_CONST_BITS); + lstep3[43] = _mm256_srai_epi32(v[5], DCT_CONST_BITS); + lstep3[44] = _mm256_srai_epi32(v[6], DCT_CONST_BITS); + lstep3[45] = _mm256_srai_epi32(v[7], DCT_CONST_BITS); + lstep3[50] = _mm256_srai_epi32(v[8], DCT_CONST_BITS); + lstep3[51] = _mm256_srai_epi32(v[9], DCT_CONST_BITS); + lstep3[52] = _mm256_srai_epi32(v[10], DCT_CONST_BITS); + lstep3[53] = _mm256_srai_epi32(v[11], DCT_CONST_BITS); + lstep3[58] = _mm256_srai_epi32(v[12], DCT_CONST_BITS); + lstep3[59] = _mm256_srai_epi32(v[13], DCT_CONST_BITS); + lstep3[60] = _mm256_srai_epi32(v[14], DCT_CONST_BITS); + lstep3[61] = _mm256_srai_epi32(v[15], DCT_CONST_BITS); + } + // stage 7 + { + const __m256i k32_p30_p02 = + pair256_set_epi32(cospi_30_64, cospi_2_64); + const __m256i k32_p14_p18 = + pair256_set_epi32(cospi_14_64, cospi_18_64); + const __m256i k32_p22_p10 = + pair256_set_epi32(cospi_22_64, cospi_10_64); + const __m256i k32_p06_p26 = + pair256_set_epi32(cospi_6_64, cospi_26_64); + const __m256i k32_m26_p06 = + pair256_set_epi32(-cospi_26_64, cospi_6_64); + const __m256i k32_m10_p22 = + pair256_set_epi32(-cospi_10_64, cospi_22_64); + const __m256i k32_m18_p14 = + pair256_set_epi32(-cospi_18_64, cospi_14_64); + const __m256i k32_m02_p30 = + pair256_set_epi32(-cospi_2_64, cospi_30_64); + + u[0] = _mm256_unpacklo_epi32(lstep3[16], lstep3[30]); + u[1] = _mm256_unpackhi_epi32(lstep3[16], lstep3[30]); + u[2] = _mm256_unpacklo_epi32(lstep3[17], lstep3[31]); + u[3] = _mm256_unpackhi_epi32(lstep3[17], lstep3[31]); + u[4] = _mm256_unpacklo_epi32(lstep3[18], lstep3[28]); + u[5] = _mm256_unpackhi_epi32(lstep3[18], lstep3[28]); + u[6] = _mm256_unpacklo_epi32(lstep3[19], lstep3[29]); + u[7] = _mm256_unpackhi_epi32(lstep3[19], lstep3[29]); + u[8] = _mm256_unpacklo_epi32(lstep3[20], lstep3[26]); + u[9] = _mm256_unpackhi_epi32(lstep3[20], lstep3[26]); + u[10] = _mm256_unpacklo_epi32(lstep3[21], lstep3[27]); + u[11] = _mm256_unpackhi_epi32(lstep3[21], lstep3[27]); + u[12] = _mm256_unpacklo_epi32(lstep3[22], lstep3[24]); + u[13] = _mm256_unpackhi_epi32(lstep3[22], lstep3[24]); + u[14] = _mm256_unpacklo_epi32(lstep3[23], lstep3[25]); + u[15] = _mm256_unpackhi_epi32(lstep3[23], lstep3[25]); + + v[0] = k_madd_epi32_avx2(u[0], k32_p30_p02); + v[1] = k_madd_epi32_avx2(u[1], k32_p30_p02); + v[2] = k_madd_epi32_avx2(u[2], k32_p30_p02); + v[3] = k_madd_epi32_avx2(u[3], k32_p30_p02); + v[4] = k_madd_epi32_avx2(u[4], k32_p14_p18); + v[5] = k_madd_epi32_avx2(u[5], k32_p14_p18); + v[6] = k_madd_epi32_avx2(u[6], k32_p14_p18); + v[7] = k_madd_epi32_avx2(u[7], k32_p14_p18); + v[8] = k_madd_epi32_avx2(u[8], k32_p22_p10); + v[9] = k_madd_epi32_avx2(u[9], k32_p22_p10); + v[10] = k_madd_epi32_avx2(u[10], k32_p22_p10); + v[11] = k_madd_epi32_avx2(u[11], k32_p22_p10); + v[12] = k_madd_epi32_avx2(u[12], k32_p06_p26); + v[13] = k_madd_epi32_avx2(u[13], k32_p06_p26); + v[14] = k_madd_epi32_avx2(u[14], k32_p06_p26); + v[15] = k_madd_epi32_avx2(u[15], k32_p06_p26); + v[16] = k_madd_epi32_avx2(u[12], k32_m26_p06); + v[17] = k_madd_epi32_avx2(u[13], k32_m26_p06); + v[18] = k_madd_epi32_avx2(u[14], k32_m26_p06); + v[19] = k_madd_epi32_avx2(u[15], k32_m26_p06); + v[20] = k_madd_epi32_avx2(u[8], k32_m10_p22); + v[21] = k_madd_epi32_avx2(u[9], k32_m10_p22); + v[22] = k_madd_epi32_avx2(u[10], k32_m10_p22); + v[23] = k_madd_epi32_avx2(u[11], k32_m10_p22); + v[24] = k_madd_epi32_avx2(u[4], k32_m18_p14); + v[25] = k_madd_epi32_avx2(u[5], k32_m18_p14); + v[26] = k_madd_epi32_avx2(u[6], k32_m18_p14); + v[27] = k_madd_epi32_avx2(u[7], k32_m18_p14); + v[28] = k_madd_epi32_avx2(u[0], k32_m02_p30); + v[29] = k_madd_epi32_avx2(u[1], k32_m02_p30); + v[30] = k_madd_epi32_avx2(u[2], k32_m02_p30); + v[31] = k_madd_epi32_avx2(u[3], k32_m02_p30); + + u[0] = k_packs_epi64_avx2(v[0], v[1]); + u[1] = k_packs_epi64_avx2(v[2], v[3]); + u[2] = k_packs_epi64_avx2(v[4], v[5]); + u[3] = k_packs_epi64_avx2(v[6], v[7]); + u[4] = k_packs_epi64_avx2(v[8], v[9]); + u[5] = k_packs_epi64_avx2(v[10], v[11]); + u[6] = k_packs_epi64_avx2(v[12], v[13]); + u[7] = k_packs_epi64_avx2(v[14], v[15]); + u[8] = k_packs_epi64_avx2(v[16], v[17]); + u[9] = k_packs_epi64_avx2(v[18], v[19]); + u[10] = k_packs_epi64_avx2(v[20], v[21]); + u[11] = k_packs_epi64_avx2(v[22], v[23]); + u[12] = k_packs_epi64_avx2(v[24], v[25]); + u[13] = k_packs_epi64_avx2(v[26], v[27]); + u[14] = k_packs_epi64_avx2(v[28], v[29]); + u[15] = k_packs_epi64_avx2(v[30], v[31]); + + v[0] = _mm256_add_epi32(u[0], k__DCT_CONST_ROUNDING); + v[1] = _mm256_add_epi32(u[1], k__DCT_CONST_ROUNDING); + v[2] = _mm256_add_epi32(u[2], k__DCT_CONST_ROUNDING); + v[3] = _mm256_add_epi32(u[3], k__DCT_CONST_ROUNDING); + v[4] = _mm256_add_epi32(u[4], k__DCT_CONST_ROUNDING); + v[5] = _mm256_add_epi32(u[5], k__DCT_CONST_ROUNDING); + v[6] = _mm256_add_epi32(u[6], k__DCT_CONST_ROUNDING); + v[7] = _mm256_add_epi32(u[7], k__DCT_CONST_ROUNDING); + v[8] = _mm256_add_epi32(u[8], k__DCT_CONST_ROUNDING); + v[9] = _mm256_add_epi32(u[9], k__DCT_CONST_ROUNDING); + v[10] = _mm256_add_epi32(u[10], k__DCT_CONST_ROUNDING); + v[11] = _mm256_add_epi32(u[11], k__DCT_CONST_ROUNDING); + v[12] = _mm256_add_epi32(u[12], k__DCT_CONST_ROUNDING); + v[13] = _mm256_add_epi32(u[13], k__DCT_CONST_ROUNDING); + v[14] = _mm256_add_epi32(u[14], k__DCT_CONST_ROUNDING); + v[15] = _mm256_add_epi32(u[15], k__DCT_CONST_ROUNDING); + + u[0] = _mm256_srai_epi32(v[0], DCT_CONST_BITS); + u[1] = _mm256_srai_epi32(v[1], DCT_CONST_BITS); + u[2] = _mm256_srai_epi32(v[2], DCT_CONST_BITS); + u[3] = _mm256_srai_epi32(v[3], DCT_CONST_BITS); + u[4] = _mm256_srai_epi32(v[4], DCT_CONST_BITS); + u[5] = _mm256_srai_epi32(v[5], DCT_CONST_BITS); + u[6] = _mm256_srai_epi32(v[6], DCT_CONST_BITS); + u[7] = _mm256_srai_epi32(v[7], DCT_CONST_BITS); + u[8] = _mm256_srai_epi32(v[8], DCT_CONST_BITS); + u[9] = _mm256_srai_epi32(v[9], DCT_CONST_BITS); + u[10] = _mm256_srai_epi32(v[10], DCT_CONST_BITS); + u[11] = _mm256_srai_epi32(v[11], DCT_CONST_BITS); + u[12] = _mm256_srai_epi32(v[12], DCT_CONST_BITS); + u[13] = _mm256_srai_epi32(v[13], DCT_CONST_BITS); + u[14] = _mm256_srai_epi32(v[14], DCT_CONST_BITS); + u[15] = _mm256_srai_epi32(v[15], DCT_CONST_BITS); + + v[0] = _mm256_cmpgt_epi32(kZero, u[0]); + v[1] = _mm256_cmpgt_epi32(kZero, u[1]); + v[2] = _mm256_cmpgt_epi32(kZero, u[2]); + v[3] = _mm256_cmpgt_epi32(kZero, u[3]); + v[4] = _mm256_cmpgt_epi32(kZero, u[4]); + v[5] = _mm256_cmpgt_epi32(kZero, u[5]); + v[6] = _mm256_cmpgt_epi32(kZero, u[6]); + v[7] = _mm256_cmpgt_epi32(kZero, u[7]); + v[8] = _mm256_cmpgt_epi32(kZero, u[8]); + v[9] = _mm256_cmpgt_epi32(kZero, u[9]); + v[10] = _mm256_cmpgt_epi32(kZero, u[10]); + v[11] = _mm256_cmpgt_epi32(kZero, u[11]); + v[12] = _mm256_cmpgt_epi32(kZero, u[12]); + v[13] = _mm256_cmpgt_epi32(kZero, u[13]); + v[14] = _mm256_cmpgt_epi32(kZero, u[14]); + v[15] = _mm256_cmpgt_epi32(kZero, u[15]); + + u[0] = _mm256_sub_epi32(u[0], v[0]); + u[1] = _mm256_sub_epi32(u[1], v[1]); + u[2] = _mm256_sub_epi32(u[2], v[2]); + u[3] = _mm256_sub_epi32(u[3], v[3]); + u[4] = _mm256_sub_epi32(u[4], v[4]); + u[5] = _mm256_sub_epi32(u[5], v[5]); + u[6] = _mm256_sub_epi32(u[6], v[6]); + u[7] = _mm256_sub_epi32(u[7], v[7]); + u[8] = _mm256_sub_epi32(u[8], v[8]); + u[9] = _mm256_sub_epi32(u[9], v[9]); + u[10] = _mm256_sub_epi32(u[10], v[10]); + u[11] = _mm256_sub_epi32(u[11], v[11]); + u[12] = _mm256_sub_epi32(u[12], v[12]); + u[13] = _mm256_sub_epi32(u[13], v[13]); + u[14] = _mm256_sub_epi32(u[14], v[14]); + u[15] = _mm256_sub_epi32(u[15], v[15]); + + v[0] = _mm256_add_epi32(u[0], K32One); + v[1] = _mm256_add_epi32(u[1], K32One); + v[2] = _mm256_add_epi32(u[2], K32One); + v[3] = _mm256_add_epi32(u[3], K32One); + v[4] = _mm256_add_epi32(u[4], K32One); + v[5] = _mm256_add_epi32(u[5], K32One); + v[6] = _mm256_add_epi32(u[6], K32One); + v[7] = _mm256_add_epi32(u[7], K32One); + v[8] = _mm256_add_epi32(u[8], K32One); + v[9] = _mm256_add_epi32(u[9], K32One); + v[10] = _mm256_add_epi32(u[10], K32One); + v[11] = _mm256_add_epi32(u[11], K32One); + v[12] = _mm256_add_epi32(u[12], K32One); + v[13] = _mm256_add_epi32(u[13], K32One); + v[14] = _mm256_add_epi32(u[14], K32One); + v[15] = _mm256_add_epi32(u[15], K32One); + + u[0] = _mm256_srai_epi32(v[0], 2); + u[1] = _mm256_srai_epi32(v[1], 2); + u[2] = _mm256_srai_epi32(v[2], 2); + u[3] = _mm256_srai_epi32(v[3], 2); + u[4] = _mm256_srai_epi32(v[4], 2); + u[5] = _mm256_srai_epi32(v[5], 2); + u[6] = _mm256_srai_epi32(v[6], 2); + u[7] = _mm256_srai_epi32(v[7], 2); + u[8] = _mm256_srai_epi32(v[8], 2); + u[9] = _mm256_srai_epi32(v[9], 2); + u[10] = _mm256_srai_epi32(v[10], 2); + u[11] = _mm256_srai_epi32(v[11], 2); + u[12] = _mm256_srai_epi32(v[12], 2); + u[13] = _mm256_srai_epi32(v[13], 2); + u[14] = _mm256_srai_epi32(v[14], 2); + u[15] = _mm256_srai_epi32(v[15], 2); + + out[2] = _mm256_packs_epi32(u[0], u[1]); + out[18] = _mm256_packs_epi32(u[2], u[3]); + out[10] = _mm256_packs_epi32(u[4], u[5]); + out[26] = _mm256_packs_epi32(u[6], u[7]); + out[6] = _mm256_packs_epi32(u[8], u[9]); + out[22] = _mm256_packs_epi32(u[10], u[11]); + out[14] = _mm256_packs_epi32(u[12], u[13]); + out[30] = _mm256_packs_epi32(u[14], u[15]); + } + { + lstep1[32] = _mm256_add_epi32(lstep3[34], lstep2[32]); + lstep1[33] = _mm256_add_epi32(lstep3[35], lstep2[33]); + lstep1[34] = _mm256_sub_epi32(lstep2[32], lstep3[34]); + lstep1[35] = _mm256_sub_epi32(lstep2[33], lstep3[35]); + lstep1[36] = _mm256_sub_epi32(lstep2[38], lstep3[36]); + lstep1[37] = _mm256_sub_epi32(lstep2[39], lstep3[37]); + lstep1[38] = _mm256_add_epi32(lstep3[36], lstep2[38]); + lstep1[39] = _mm256_add_epi32(lstep3[37], lstep2[39]); + lstep1[40] = _mm256_add_epi32(lstep3[42], lstep2[40]); + lstep1[41] = _mm256_add_epi32(lstep3[43], lstep2[41]); + lstep1[42] = _mm256_sub_epi32(lstep2[40], lstep3[42]); + lstep1[43] = _mm256_sub_epi32(lstep2[41], lstep3[43]); + lstep1[44] = _mm256_sub_epi32(lstep2[46], lstep3[44]); + lstep1[45] = _mm256_sub_epi32(lstep2[47], lstep3[45]); + lstep1[46] = _mm256_add_epi32(lstep3[44], lstep2[46]); + lstep1[47] = _mm256_add_epi32(lstep3[45], lstep2[47]); + lstep1[48] = _mm256_add_epi32(lstep3[50], lstep2[48]); + lstep1[49] = _mm256_add_epi32(lstep3[51], lstep2[49]); + lstep1[50] = _mm256_sub_epi32(lstep2[48], lstep3[50]); + lstep1[51] = _mm256_sub_epi32(lstep2[49], lstep3[51]); + lstep1[52] = _mm256_sub_epi32(lstep2[54], lstep3[52]); + lstep1[53] = _mm256_sub_epi32(lstep2[55], lstep3[53]); + lstep1[54] = _mm256_add_epi32(lstep3[52], lstep2[54]); + lstep1[55] = _mm256_add_epi32(lstep3[53], lstep2[55]); + lstep1[56] = _mm256_add_epi32(lstep3[58], lstep2[56]); + lstep1[57] = _mm256_add_epi32(lstep3[59], lstep2[57]); + lstep1[58] = _mm256_sub_epi32(lstep2[56], lstep3[58]); + lstep1[59] = _mm256_sub_epi32(lstep2[57], lstep3[59]); + lstep1[60] = _mm256_sub_epi32(lstep2[62], lstep3[60]); + lstep1[61] = _mm256_sub_epi32(lstep2[63], lstep3[61]); + lstep1[62] = _mm256_add_epi32(lstep3[60], lstep2[62]); + lstep1[63] = _mm256_add_epi32(lstep3[61], lstep2[63]); + } + // stage 8 + { + const __m256i k32_p31_p01 = + pair256_set_epi32(cospi_31_64, cospi_1_64); + const __m256i k32_p15_p17 = + pair256_set_epi32(cospi_15_64, cospi_17_64); + const __m256i k32_p23_p09 = + pair256_set_epi32(cospi_23_64, cospi_9_64); + const __m256i k32_p07_p25 = + pair256_set_epi32(cospi_7_64, cospi_25_64); + const __m256i k32_m25_p07 = + pair256_set_epi32(-cospi_25_64, cospi_7_64); + const __m256i k32_m09_p23 = + pair256_set_epi32(-cospi_9_64, cospi_23_64); + const __m256i k32_m17_p15 = + pair256_set_epi32(-cospi_17_64, cospi_15_64); + const __m256i k32_m01_p31 = + pair256_set_epi32(-cospi_1_64, cospi_31_64); + + u[0] = _mm256_unpacklo_epi32(lstep1[32], lstep1[62]); + u[1] = _mm256_unpackhi_epi32(lstep1[32], lstep1[62]); + u[2] = _mm256_unpacklo_epi32(lstep1[33], lstep1[63]); + u[3] = _mm256_unpackhi_epi32(lstep1[33], lstep1[63]); + u[4] = _mm256_unpacklo_epi32(lstep1[34], lstep1[60]); + u[5] = _mm256_unpackhi_epi32(lstep1[34], lstep1[60]); + u[6] = _mm256_unpacklo_epi32(lstep1[35], lstep1[61]); + u[7] = _mm256_unpackhi_epi32(lstep1[35], lstep1[61]); + u[8] = _mm256_unpacklo_epi32(lstep1[36], lstep1[58]); + u[9] = _mm256_unpackhi_epi32(lstep1[36], lstep1[58]); + u[10] = _mm256_unpacklo_epi32(lstep1[37], lstep1[59]); + u[11] = _mm256_unpackhi_epi32(lstep1[37], lstep1[59]); + u[12] = _mm256_unpacklo_epi32(lstep1[38], lstep1[56]); + u[13] = _mm256_unpackhi_epi32(lstep1[38], lstep1[56]); + u[14] = _mm256_unpacklo_epi32(lstep1[39], lstep1[57]); + u[15] = _mm256_unpackhi_epi32(lstep1[39], lstep1[57]); + + v[0] = k_madd_epi32_avx2(u[0], k32_p31_p01); + v[1] = k_madd_epi32_avx2(u[1], k32_p31_p01); + v[2] = k_madd_epi32_avx2(u[2], k32_p31_p01); + v[3] = k_madd_epi32_avx2(u[3], k32_p31_p01); + v[4] = k_madd_epi32_avx2(u[4], k32_p15_p17); + v[5] = k_madd_epi32_avx2(u[5], k32_p15_p17); + v[6] = k_madd_epi32_avx2(u[6], k32_p15_p17); + v[7] = k_madd_epi32_avx2(u[7], k32_p15_p17); + v[8] = k_madd_epi32_avx2(u[8], k32_p23_p09); + v[9] = k_madd_epi32_avx2(u[9], k32_p23_p09); + v[10] = k_madd_epi32_avx2(u[10], k32_p23_p09); + v[11] = k_madd_epi32_avx2(u[11], k32_p23_p09); + v[12] = k_madd_epi32_avx2(u[12], k32_p07_p25); + v[13] = k_madd_epi32_avx2(u[13], k32_p07_p25); + v[14] = k_madd_epi32_avx2(u[14], k32_p07_p25); + v[15] = k_madd_epi32_avx2(u[15], k32_p07_p25); + v[16] = k_madd_epi32_avx2(u[12], k32_m25_p07); + v[17] = k_madd_epi32_avx2(u[13], k32_m25_p07); + v[18] = k_madd_epi32_avx2(u[14], k32_m25_p07); + v[19] = k_madd_epi32_avx2(u[15], k32_m25_p07); + v[20] = k_madd_epi32_avx2(u[8], k32_m09_p23); + v[21] = k_madd_epi32_avx2(u[9], k32_m09_p23); + v[22] = k_madd_epi32_avx2(u[10], k32_m09_p23); + v[23] = k_madd_epi32_avx2(u[11], k32_m09_p23); + v[24] = k_madd_epi32_avx2(u[4], k32_m17_p15); + v[25] = k_madd_epi32_avx2(u[5], k32_m17_p15); + v[26] = k_madd_epi32_avx2(u[6], k32_m17_p15); + v[27] = k_madd_epi32_avx2(u[7], k32_m17_p15); + v[28] = k_madd_epi32_avx2(u[0], k32_m01_p31); + v[29] = k_madd_epi32_avx2(u[1], k32_m01_p31); + v[30] = k_madd_epi32_avx2(u[2], k32_m01_p31); + v[31] = k_madd_epi32_avx2(u[3], k32_m01_p31); + + u[0] = k_packs_epi64_avx2(v[0], v[1]); + u[1] = k_packs_epi64_avx2(v[2], v[3]); + u[2] = k_packs_epi64_avx2(v[4], v[5]); + u[3] = k_packs_epi64_avx2(v[6], v[7]); + u[4] = k_packs_epi64_avx2(v[8], v[9]); + u[5] = k_packs_epi64_avx2(v[10], v[11]); + u[6] = k_packs_epi64_avx2(v[12], v[13]); + u[7] = k_packs_epi64_avx2(v[14], v[15]); + u[8] = k_packs_epi64_avx2(v[16], v[17]); + u[9] = k_packs_epi64_avx2(v[18], v[19]); + u[10] = k_packs_epi64_avx2(v[20], v[21]); + u[11] = k_packs_epi64_avx2(v[22], v[23]); + u[12] = k_packs_epi64_avx2(v[24], v[25]); + u[13] = k_packs_epi64_avx2(v[26], v[27]); + u[14] = k_packs_epi64_avx2(v[28], v[29]); + u[15] = k_packs_epi64_avx2(v[30], v[31]); + + v[0] = _mm256_add_epi32(u[0], k__DCT_CONST_ROUNDING); + v[1] = _mm256_add_epi32(u[1], k__DCT_CONST_ROUNDING); + v[2] = _mm256_add_epi32(u[2], k__DCT_CONST_ROUNDING); + v[3] = _mm256_add_epi32(u[3], k__DCT_CONST_ROUNDING); + v[4] = _mm256_add_epi32(u[4], k__DCT_CONST_ROUNDING); + v[5] = _mm256_add_epi32(u[5], k__DCT_CONST_ROUNDING); + v[6] = _mm256_add_epi32(u[6], k__DCT_CONST_ROUNDING); + v[7] = _mm256_add_epi32(u[7], k__DCT_CONST_ROUNDING); + v[8] = _mm256_add_epi32(u[8], k__DCT_CONST_ROUNDING); + v[9] = _mm256_add_epi32(u[9], k__DCT_CONST_ROUNDING); + v[10] = _mm256_add_epi32(u[10], k__DCT_CONST_ROUNDING); + v[11] = _mm256_add_epi32(u[11], k__DCT_CONST_ROUNDING); + v[12] = _mm256_add_epi32(u[12], k__DCT_CONST_ROUNDING); + v[13] = _mm256_add_epi32(u[13], k__DCT_CONST_ROUNDING); + v[14] = _mm256_add_epi32(u[14], k__DCT_CONST_ROUNDING); + v[15] = _mm256_add_epi32(u[15], k__DCT_CONST_ROUNDING); + + u[0] = _mm256_srai_epi32(v[0], DCT_CONST_BITS); + u[1] = _mm256_srai_epi32(v[1], DCT_CONST_BITS); + u[2] = _mm256_srai_epi32(v[2], DCT_CONST_BITS); + u[3] = _mm256_srai_epi32(v[3], DCT_CONST_BITS); + u[4] = _mm256_srai_epi32(v[4], DCT_CONST_BITS); + u[5] = _mm256_srai_epi32(v[5], DCT_CONST_BITS); + u[6] = _mm256_srai_epi32(v[6], DCT_CONST_BITS); + u[7] = _mm256_srai_epi32(v[7], DCT_CONST_BITS); + u[8] = _mm256_srai_epi32(v[8], DCT_CONST_BITS); + u[9] = _mm256_srai_epi32(v[9], DCT_CONST_BITS); + u[10] = _mm256_srai_epi32(v[10], DCT_CONST_BITS); + u[11] = _mm256_srai_epi32(v[11], DCT_CONST_BITS); + u[12] = _mm256_srai_epi32(v[12], DCT_CONST_BITS); + u[13] = _mm256_srai_epi32(v[13], DCT_CONST_BITS); + u[14] = _mm256_srai_epi32(v[14], DCT_CONST_BITS); + u[15] = _mm256_srai_epi32(v[15], DCT_CONST_BITS); + + v[0] = _mm256_cmpgt_epi32(kZero, u[0]); + v[1] = _mm256_cmpgt_epi32(kZero, u[1]); + v[2] = _mm256_cmpgt_epi32(kZero, u[2]); + v[3] = _mm256_cmpgt_epi32(kZero, u[3]); + v[4] = _mm256_cmpgt_epi32(kZero, u[4]); + v[5] = _mm256_cmpgt_epi32(kZero, u[5]); + v[6] = _mm256_cmpgt_epi32(kZero, u[6]); + v[7] = _mm256_cmpgt_epi32(kZero, u[7]); + v[8] = _mm256_cmpgt_epi32(kZero, u[8]); + v[9] = _mm256_cmpgt_epi32(kZero, u[9]); + v[10] = _mm256_cmpgt_epi32(kZero, u[10]); + v[11] = _mm256_cmpgt_epi32(kZero, u[11]); + v[12] = _mm256_cmpgt_epi32(kZero, u[12]); + v[13] = _mm256_cmpgt_epi32(kZero, u[13]); + v[14] = _mm256_cmpgt_epi32(kZero, u[14]); + v[15] = _mm256_cmpgt_epi32(kZero, u[15]); + + u[0] = _mm256_sub_epi32(u[0], v[0]); + u[1] = _mm256_sub_epi32(u[1], v[1]); + u[2] = _mm256_sub_epi32(u[2], v[2]); + u[3] = _mm256_sub_epi32(u[3], v[3]); + u[4] = _mm256_sub_epi32(u[4], v[4]); + u[5] = _mm256_sub_epi32(u[5], v[5]); + u[6] = _mm256_sub_epi32(u[6], v[6]); + u[7] = _mm256_sub_epi32(u[7], v[7]); + u[8] = _mm256_sub_epi32(u[8], v[8]); + u[9] = _mm256_sub_epi32(u[9], v[9]); + u[10] = _mm256_sub_epi32(u[10], v[10]); + u[11] = _mm256_sub_epi32(u[11], v[11]); + u[12] = _mm256_sub_epi32(u[12], v[12]); + u[13] = _mm256_sub_epi32(u[13], v[13]); + u[14] = _mm256_sub_epi32(u[14], v[14]); + u[15] = _mm256_sub_epi32(u[15], v[15]); + + v[0] = _mm256_add_epi32(u[0], K32One); + v[1] = _mm256_add_epi32(u[1], K32One); + v[2] = _mm256_add_epi32(u[2], K32One); + v[3] = _mm256_add_epi32(u[3], K32One); + v[4] = _mm256_add_epi32(u[4], K32One); + v[5] = _mm256_add_epi32(u[5], K32One); + v[6] = _mm256_add_epi32(u[6], K32One); + v[7] = _mm256_add_epi32(u[7], K32One); + v[8] = _mm256_add_epi32(u[8], K32One); + v[9] = _mm256_add_epi32(u[9], K32One); + v[10] = _mm256_add_epi32(u[10], K32One); + v[11] = _mm256_add_epi32(u[11], K32One); + v[12] = _mm256_add_epi32(u[12], K32One); + v[13] = _mm256_add_epi32(u[13], K32One); + v[14] = _mm256_add_epi32(u[14], K32One); + v[15] = _mm256_add_epi32(u[15], K32One); + + u[0] = _mm256_srai_epi32(v[0], 2); + u[1] = _mm256_srai_epi32(v[1], 2); + u[2] = _mm256_srai_epi32(v[2], 2); + u[3] = _mm256_srai_epi32(v[3], 2); + u[4] = _mm256_srai_epi32(v[4], 2); + u[5] = _mm256_srai_epi32(v[5], 2); + u[6] = _mm256_srai_epi32(v[6], 2); + u[7] = _mm256_srai_epi32(v[7], 2); + u[8] = _mm256_srai_epi32(v[8], 2); + u[9] = _mm256_srai_epi32(v[9], 2); + u[10] = _mm256_srai_epi32(v[10], 2); + u[11] = _mm256_srai_epi32(v[11], 2); + u[12] = _mm256_srai_epi32(v[12], 2); + u[13] = _mm256_srai_epi32(v[13], 2); + u[14] = _mm256_srai_epi32(v[14], 2); + u[15] = _mm256_srai_epi32(v[15], 2); + + out[1] = _mm256_packs_epi32(u[0], u[1]); + out[17] = _mm256_packs_epi32(u[2], u[3]); + out[9] = _mm256_packs_epi32(u[4], u[5]); + out[25] = _mm256_packs_epi32(u[6], u[7]); + out[7] = _mm256_packs_epi32(u[8], u[9]); + out[23] = _mm256_packs_epi32(u[10], u[11]); + out[15] = _mm256_packs_epi32(u[12], u[13]); + out[31] = _mm256_packs_epi32(u[14], u[15]); + } + { + const __m256i k32_p27_p05 = + pair256_set_epi32(cospi_27_64, cospi_5_64); + const __m256i k32_p11_p21 = + pair256_set_epi32(cospi_11_64, cospi_21_64); + const __m256i k32_p19_p13 = + pair256_set_epi32(cospi_19_64, cospi_13_64); + const __m256i k32_p03_p29 = + pair256_set_epi32(cospi_3_64, cospi_29_64); + const __m256i k32_m29_p03 = + pair256_set_epi32(-cospi_29_64, cospi_3_64); + const __m256i k32_m13_p19 = + pair256_set_epi32(-cospi_13_64, cospi_19_64); + const __m256i k32_m21_p11 = + pair256_set_epi32(-cospi_21_64, cospi_11_64); + const __m256i k32_m05_p27 = + pair256_set_epi32(-cospi_5_64, cospi_27_64); + + u[0] = _mm256_unpacklo_epi32(lstep1[40], lstep1[54]); + u[1] = _mm256_unpackhi_epi32(lstep1[40], lstep1[54]); + u[2] = _mm256_unpacklo_epi32(lstep1[41], lstep1[55]); + u[3] = _mm256_unpackhi_epi32(lstep1[41], lstep1[55]); + u[4] = _mm256_unpacklo_epi32(lstep1[42], lstep1[52]); + u[5] = _mm256_unpackhi_epi32(lstep1[42], lstep1[52]); + u[6] = _mm256_unpacklo_epi32(lstep1[43], lstep1[53]); + u[7] = _mm256_unpackhi_epi32(lstep1[43], lstep1[53]); + u[8] = _mm256_unpacklo_epi32(lstep1[44], lstep1[50]); + u[9] = _mm256_unpackhi_epi32(lstep1[44], lstep1[50]); + u[10] = _mm256_unpacklo_epi32(lstep1[45], lstep1[51]); + u[11] = _mm256_unpackhi_epi32(lstep1[45], lstep1[51]); + u[12] = _mm256_unpacklo_epi32(lstep1[46], lstep1[48]); + u[13] = _mm256_unpackhi_epi32(lstep1[46], lstep1[48]); + u[14] = _mm256_unpacklo_epi32(lstep1[47], lstep1[49]); + u[15] = _mm256_unpackhi_epi32(lstep1[47], lstep1[49]); + + v[0] = k_madd_epi32_avx2(u[0], k32_p27_p05); + v[1] = k_madd_epi32_avx2(u[1], k32_p27_p05); + v[2] = k_madd_epi32_avx2(u[2], k32_p27_p05); + v[3] = k_madd_epi32_avx2(u[3], k32_p27_p05); + v[4] = k_madd_epi32_avx2(u[4], k32_p11_p21); + v[5] = k_madd_epi32_avx2(u[5], k32_p11_p21); + v[6] = k_madd_epi32_avx2(u[6], k32_p11_p21); + v[7] = k_madd_epi32_avx2(u[7], k32_p11_p21); + v[8] = k_madd_epi32_avx2(u[8], k32_p19_p13); + v[9] = k_madd_epi32_avx2(u[9], k32_p19_p13); + v[10] = k_madd_epi32_avx2(u[10], k32_p19_p13); + v[11] = k_madd_epi32_avx2(u[11], k32_p19_p13); + v[12] = k_madd_epi32_avx2(u[12], k32_p03_p29); + v[13] = k_madd_epi32_avx2(u[13], k32_p03_p29); + v[14] = k_madd_epi32_avx2(u[14], k32_p03_p29); + v[15] = k_madd_epi32_avx2(u[15], k32_p03_p29); + v[16] = k_madd_epi32_avx2(u[12], k32_m29_p03); + v[17] = k_madd_epi32_avx2(u[13], k32_m29_p03); + v[18] = k_madd_epi32_avx2(u[14], k32_m29_p03); + v[19] = k_madd_epi32_avx2(u[15], k32_m29_p03); + v[20] = k_madd_epi32_avx2(u[8], k32_m13_p19); + v[21] = k_madd_epi32_avx2(u[9], k32_m13_p19); + v[22] = k_madd_epi32_avx2(u[10], k32_m13_p19); + v[23] = k_madd_epi32_avx2(u[11], k32_m13_p19); + v[24] = k_madd_epi32_avx2(u[4], k32_m21_p11); + v[25] = k_madd_epi32_avx2(u[5], k32_m21_p11); + v[26] = k_madd_epi32_avx2(u[6], k32_m21_p11); + v[27] = k_madd_epi32_avx2(u[7], k32_m21_p11); + v[28] = k_madd_epi32_avx2(u[0], k32_m05_p27); + v[29] = k_madd_epi32_avx2(u[1], k32_m05_p27); + v[30] = k_madd_epi32_avx2(u[2], k32_m05_p27); + v[31] = k_madd_epi32_avx2(u[3], k32_m05_p27); + + u[0] = k_packs_epi64_avx2(v[0], v[1]); + u[1] = k_packs_epi64_avx2(v[2], v[3]); + u[2] = k_packs_epi64_avx2(v[4], v[5]); + u[3] = k_packs_epi64_avx2(v[6], v[7]); + u[4] = k_packs_epi64_avx2(v[8], v[9]); + u[5] = k_packs_epi64_avx2(v[10], v[11]); + u[6] = k_packs_epi64_avx2(v[12], v[13]); + u[7] = k_packs_epi64_avx2(v[14], v[15]); + u[8] = k_packs_epi64_avx2(v[16], v[17]); + u[9] = k_packs_epi64_avx2(v[18], v[19]); + u[10] = k_packs_epi64_avx2(v[20], v[21]); + u[11] = k_packs_epi64_avx2(v[22], v[23]); + u[12] = k_packs_epi64_avx2(v[24], v[25]); + u[13] = k_packs_epi64_avx2(v[26], v[27]); + u[14] = k_packs_epi64_avx2(v[28], v[29]); + u[15] = k_packs_epi64_avx2(v[30], v[31]); + + v[0] = _mm256_add_epi32(u[0], k__DCT_CONST_ROUNDING); + v[1] = _mm256_add_epi32(u[1], k__DCT_CONST_ROUNDING); + v[2] = _mm256_add_epi32(u[2], k__DCT_CONST_ROUNDING); + v[3] = _mm256_add_epi32(u[3], k__DCT_CONST_ROUNDING); + v[4] = _mm256_add_epi32(u[4], k__DCT_CONST_ROUNDING); + v[5] = _mm256_add_epi32(u[5], k__DCT_CONST_ROUNDING); + v[6] = _mm256_add_epi32(u[6], k__DCT_CONST_ROUNDING); + v[7] = _mm256_add_epi32(u[7], k__DCT_CONST_ROUNDING); + v[8] = _mm256_add_epi32(u[8], k__DCT_CONST_ROUNDING); + v[9] = _mm256_add_epi32(u[9], k__DCT_CONST_ROUNDING); + v[10] = _mm256_add_epi32(u[10], k__DCT_CONST_ROUNDING); + v[11] = _mm256_add_epi32(u[11], k__DCT_CONST_ROUNDING); + v[12] = _mm256_add_epi32(u[12], k__DCT_CONST_ROUNDING); + v[13] = _mm256_add_epi32(u[13], k__DCT_CONST_ROUNDING); + v[14] = _mm256_add_epi32(u[14], k__DCT_CONST_ROUNDING); + v[15] = _mm256_add_epi32(u[15], k__DCT_CONST_ROUNDING); + + u[0] = _mm256_srai_epi32(v[0], DCT_CONST_BITS); + u[1] = _mm256_srai_epi32(v[1], DCT_CONST_BITS); + u[2] = _mm256_srai_epi32(v[2], DCT_CONST_BITS); + u[3] = _mm256_srai_epi32(v[3], DCT_CONST_BITS); + u[4] = _mm256_srai_epi32(v[4], DCT_CONST_BITS); + u[5] = _mm256_srai_epi32(v[5], DCT_CONST_BITS); + u[6] = _mm256_srai_epi32(v[6], DCT_CONST_BITS); + u[7] = _mm256_srai_epi32(v[7], DCT_CONST_BITS); + u[8] = _mm256_srai_epi32(v[8], DCT_CONST_BITS); + u[9] = _mm256_srai_epi32(v[9], DCT_CONST_BITS); + u[10] = _mm256_srai_epi32(v[10], DCT_CONST_BITS); + u[11] = _mm256_srai_epi32(v[11], DCT_CONST_BITS); + u[12] = _mm256_srai_epi32(v[12], DCT_CONST_BITS); + u[13] = _mm256_srai_epi32(v[13], DCT_CONST_BITS); + u[14] = _mm256_srai_epi32(v[14], DCT_CONST_BITS); + u[15] = _mm256_srai_epi32(v[15], DCT_CONST_BITS); + + v[0] = _mm256_cmpgt_epi32(kZero, u[0]); + v[1] = _mm256_cmpgt_epi32(kZero, u[1]); + v[2] = _mm256_cmpgt_epi32(kZero, u[2]); + v[3] = _mm256_cmpgt_epi32(kZero, u[3]); + v[4] = _mm256_cmpgt_epi32(kZero, u[4]); + v[5] = _mm256_cmpgt_epi32(kZero, u[5]); + v[6] = _mm256_cmpgt_epi32(kZero, u[6]); + v[7] = _mm256_cmpgt_epi32(kZero, u[7]); + v[8] = _mm256_cmpgt_epi32(kZero, u[8]); + v[9] = _mm256_cmpgt_epi32(kZero, u[9]); + v[10] = _mm256_cmpgt_epi32(kZero, u[10]); + v[11] = _mm256_cmpgt_epi32(kZero, u[11]); + v[12] = _mm256_cmpgt_epi32(kZero, u[12]); + v[13] = _mm256_cmpgt_epi32(kZero, u[13]); + v[14] = _mm256_cmpgt_epi32(kZero, u[14]); + v[15] = _mm256_cmpgt_epi32(kZero, u[15]); + + u[0] = _mm256_sub_epi32(u[0], v[0]); + u[1] = _mm256_sub_epi32(u[1], v[1]); + u[2] = _mm256_sub_epi32(u[2], v[2]); + u[3] = _mm256_sub_epi32(u[3], v[3]); + u[4] = _mm256_sub_epi32(u[4], v[4]); + u[5] = _mm256_sub_epi32(u[5], v[5]); + u[6] = _mm256_sub_epi32(u[6], v[6]); + u[7] = _mm256_sub_epi32(u[7], v[7]); + u[8] = _mm256_sub_epi32(u[8], v[8]); + u[9] = _mm256_sub_epi32(u[9], v[9]); + u[10] = _mm256_sub_epi32(u[10], v[10]); + u[11] = _mm256_sub_epi32(u[11], v[11]); + u[12] = _mm256_sub_epi32(u[12], v[12]); + u[13] = _mm256_sub_epi32(u[13], v[13]); + u[14] = _mm256_sub_epi32(u[14], v[14]); + u[15] = _mm256_sub_epi32(u[15], v[15]); + + v[0] = _mm256_add_epi32(u[0], K32One); + v[1] = _mm256_add_epi32(u[1], K32One); + v[2] = _mm256_add_epi32(u[2], K32One); + v[3] = _mm256_add_epi32(u[3], K32One); + v[4] = _mm256_add_epi32(u[4], K32One); + v[5] = _mm256_add_epi32(u[5], K32One); + v[6] = _mm256_add_epi32(u[6], K32One); + v[7] = _mm256_add_epi32(u[7], K32One); + v[8] = _mm256_add_epi32(u[8], K32One); + v[9] = _mm256_add_epi32(u[9], K32One); + v[10] = _mm256_add_epi32(u[10], K32One); + v[11] = _mm256_add_epi32(u[11], K32One); + v[12] = _mm256_add_epi32(u[12], K32One); + v[13] = _mm256_add_epi32(u[13], K32One); + v[14] = _mm256_add_epi32(u[14], K32One); + v[15] = _mm256_add_epi32(u[15], K32One); + + u[0] = _mm256_srai_epi32(v[0], 2); + u[1] = _mm256_srai_epi32(v[1], 2); + u[2] = _mm256_srai_epi32(v[2], 2); + u[3] = _mm256_srai_epi32(v[3], 2); + u[4] = _mm256_srai_epi32(v[4], 2); + u[5] = _mm256_srai_epi32(v[5], 2); + u[6] = _mm256_srai_epi32(v[6], 2); + u[7] = _mm256_srai_epi32(v[7], 2); + u[8] = _mm256_srai_epi32(v[8], 2); + u[9] = _mm256_srai_epi32(v[9], 2); + u[10] = _mm256_srai_epi32(v[10], 2); + u[11] = _mm256_srai_epi32(v[11], 2); + u[12] = _mm256_srai_epi32(v[12], 2); + u[13] = _mm256_srai_epi32(v[13], 2); + u[14] = _mm256_srai_epi32(v[14], 2); + u[15] = _mm256_srai_epi32(v[15], 2); + + out[5] = _mm256_packs_epi32(u[0], u[1]); + out[21] = _mm256_packs_epi32(u[2], u[3]); + out[13] = _mm256_packs_epi32(u[4], u[5]); + out[29] = _mm256_packs_epi32(u[6], u[7]); + out[3] = _mm256_packs_epi32(u[8], u[9]); + out[19] = _mm256_packs_epi32(u[10], u[11]); + out[11] = _mm256_packs_epi32(u[12], u[13]); + out[27] = _mm256_packs_epi32(u[14], u[15]); + } + } +#endif + // Transpose the results, do it as four 8x8 transposes. + { + int transpose_block; + int16_t *output_currStep, *output_nextStep; + if (0 == pass) { + output_currStep = &intermediate[column_start * 32]; + output_nextStep = &intermediate[(column_start + 8) * 32]; + } else { + output_currStep = &output_org[column_start * 32]; + output_nextStep = &output_org[(column_start + 8) * 32]; + } + for (transpose_block = 0; transpose_block < 4; ++transpose_block) { + __m256i *this_out = &out[8 * transpose_block]; + // 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 + // 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 + // 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 + // 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 + // 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 + // 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 + // 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 + // 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 + const __m256i tr0_0 = _mm256_unpacklo_epi16(this_out[0], this_out[1]); + const __m256i tr0_1 = _mm256_unpacklo_epi16(this_out[2], this_out[3]); + const __m256i tr0_2 = _mm256_unpackhi_epi16(this_out[0], this_out[1]); + const __m256i tr0_3 = _mm256_unpackhi_epi16(this_out[2], this_out[3]); + const __m256i tr0_4 = _mm256_unpacklo_epi16(this_out[4], this_out[5]); + const __m256i tr0_5 = _mm256_unpacklo_epi16(this_out[6], this_out[7]); + const __m256i tr0_6 = _mm256_unpackhi_epi16(this_out[4], this_out[5]); + const __m256i tr0_7 = _mm256_unpackhi_epi16(this_out[6], this_out[7]); + // 00 20 01 21 02 22 03 23 08 28 09 29 10 30 11 31 + // 40 60 41 61 42 62 43 63 48 68 49 69 50 70 51 71 + // 04 24 05 25 06 26 07 27 12 32 13 33 14 34 15 35 + // 44 64 45 65 46 66 47 67 52 72 53 73 54 74 55 75 + // 80 100 81 101 82 102 83 103 88 108 89 109 90 110 91 101 + // 120 140 121 141 122 142 123 143 128 148 129 149 130 150 131 151 + // 84 104 85 105 86 106 87 107 92 112 93 113 94 114 95 115 + // 124 144 125 145 126 146 127 147 132 152 133 153 134 154 135 155 + + const __m256i tr1_0 = _mm256_unpacklo_epi32(tr0_0, tr0_1); + const __m256i tr1_1 = _mm256_unpacklo_epi32(tr0_2, tr0_3); + const __m256i tr1_2 = _mm256_unpackhi_epi32(tr0_0, tr0_1); + const __m256i tr1_3 = _mm256_unpackhi_epi32(tr0_2, tr0_3); + const __m256i tr1_4 = _mm256_unpacklo_epi32(tr0_4, tr0_5); + const __m256i tr1_5 = _mm256_unpacklo_epi32(tr0_6, tr0_7); + const __m256i tr1_6 = _mm256_unpackhi_epi32(tr0_4, tr0_5); + const __m256i tr1_7 = _mm256_unpackhi_epi32(tr0_6, tr0_7); + // 00 20 40 60 01 21 41 61 08 28 48 68 09 29 49 69 + // 04 24 44 64 05 25 45 65 12 32 52 72 13 33 53 73 + // 02 22 42 62 03 23 43 63 10 30 50 70 11 31 51 71 + // 06 26 46 66 07 27 47 67 14 34 54 74 15 35 55 75 + // 80 100 120 140 81 101 121 141 88 108 128 148 89 109 129 149 + // 84 104 124 144 85 105 125 145 92 112 132 152 93 113 133 153 + // 82 102 122 142 83 103 123 143 90 110 130 150 91 101 131 151 + // 86 106 126 146 87 107 127 147 94 114 134 154 95 115 135 155 + __m256i tr2_0 = _mm256_unpacklo_epi64(tr1_0, tr1_4); + __m256i tr2_1 = _mm256_unpackhi_epi64(tr1_0, tr1_4); + __m256i tr2_2 = _mm256_unpacklo_epi64(tr1_2, tr1_6); + __m256i tr2_3 = _mm256_unpackhi_epi64(tr1_2, tr1_6); + __m256i tr2_4 = _mm256_unpacklo_epi64(tr1_1, tr1_5); + __m256i tr2_5 = _mm256_unpackhi_epi64(tr1_1, tr1_5); + __m256i tr2_6 = _mm256_unpacklo_epi64(tr1_3, tr1_7); + __m256i tr2_7 = _mm256_unpackhi_epi64(tr1_3, tr1_7); + // 00 20 40 60 80 100 120 140 08 28 48 68 88 108 128 148 + // 01 21 41 61 81 101 121 141 09 29 49 69 89 109 129 149 + // 02 22 42 62 82 102 122 142 10 30 50 70 90 110 130 150 + // 03 23 43 63 83 103 123 143 11 31 51 71 91 101 131 151 + // 04 24 44 64 84 104 124 144 12 32 52 72 92 112 132 152 + // 05 25 45 65 85 105 125 145 13 33 53 73 93 113 133 153 + // 06 26 46 66 86 106 126 146 14 34 54 74 94 114 134 154 + // 07 27 47 67 87 107 127 147 15 35 55 75 95 115 135 155 + if (0 == pass) { + // output[j] = (output[j] + 1 + (output[j] > 0)) >> 2; + // TODO(cd): see quality impact of only doing + // output[j] = (output[j] + 1) >> 2; + // which would remove the code between here ... + __m256i tr2_0_0 = _mm256_cmpgt_epi16(tr2_0, kZero); + __m256i tr2_1_0 = _mm256_cmpgt_epi16(tr2_1, kZero); + __m256i tr2_2_0 = _mm256_cmpgt_epi16(tr2_2, kZero); + __m256i tr2_3_0 = _mm256_cmpgt_epi16(tr2_3, kZero); + __m256i tr2_4_0 = _mm256_cmpgt_epi16(tr2_4, kZero); + __m256i tr2_5_0 = _mm256_cmpgt_epi16(tr2_5, kZero); + __m256i tr2_6_0 = _mm256_cmpgt_epi16(tr2_6, kZero); + __m256i tr2_7_0 = _mm256_cmpgt_epi16(tr2_7, kZero); + tr2_0 = _mm256_sub_epi16(tr2_0, tr2_0_0); + tr2_1 = _mm256_sub_epi16(tr2_1, tr2_1_0); + tr2_2 = _mm256_sub_epi16(tr2_2, tr2_2_0); + tr2_3 = _mm256_sub_epi16(tr2_3, tr2_3_0); + tr2_4 = _mm256_sub_epi16(tr2_4, tr2_4_0); + tr2_5 = _mm256_sub_epi16(tr2_5, tr2_5_0); + tr2_6 = _mm256_sub_epi16(tr2_6, tr2_6_0); + tr2_7 = _mm256_sub_epi16(tr2_7, tr2_7_0); + // ... and here. + // PS: also change code in vp9/encoder/vp9_dct.c + tr2_0 = _mm256_add_epi16(tr2_0, kOne); + tr2_1 = _mm256_add_epi16(tr2_1, kOne); + tr2_2 = _mm256_add_epi16(tr2_2, kOne); + tr2_3 = _mm256_add_epi16(tr2_3, kOne); + tr2_4 = _mm256_add_epi16(tr2_4, kOne); + tr2_5 = _mm256_add_epi16(tr2_5, kOne); + tr2_6 = _mm256_add_epi16(tr2_6, kOne); + tr2_7 = _mm256_add_epi16(tr2_7, kOne); + tr2_0 = _mm256_srai_epi16(tr2_0, 2); + tr2_1 = _mm256_srai_epi16(tr2_1, 2); + tr2_2 = _mm256_srai_epi16(tr2_2, 2); + tr2_3 = _mm256_srai_epi16(tr2_3, 2); + tr2_4 = _mm256_srai_epi16(tr2_4, 2); + tr2_5 = _mm256_srai_epi16(tr2_5, 2); + tr2_6 = _mm256_srai_epi16(tr2_6, 2); + tr2_7 = _mm256_srai_epi16(tr2_7, 2); + } + // Note: even though all these stores are aligned, using the aligned + // intrinsic make the code slightly slower. + _mm_storeu_si128((__m128i *)(output_currStep + 0 * 32), + _mm256_castsi256_si128(tr2_0)); + _mm_storeu_si128((__m128i *)(output_currStep + 1 * 32), + _mm256_castsi256_si128(tr2_1)); + _mm_storeu_si128((__m128i *)(output_currStep + 2 * 32), + _mm256_castsi256_si128(tr2_2)); + _mm_storeu_si128((__m128i *)(output_currStep + 3 * 32), + _mm256_castsi256_si128(tr2_3)); + _mm_storeu_si128((__m128i *)(output_currStep + 4 * 32), + _mm256_castsi256_si128(tr2_4)); + _mm_storeu_si128((__m128i *)(output_currStep + 5 * 32), + _mm256_castsi256_si128(tr2_5)); + _mm_storeu_si128((__m128i *)(output_currStep + 6 * 32), + _mm256_castsi256_si128(tr2_6)); + _mm_storeu_si128((__m128i *)(output_currStep + 7 * 32), + _mm256_castsi256_si128(tr2_7)); + + _mm_storeu_si128((__m128i *)(output_nextStep + 0 * 32), + _mm256_extractf128_si256(tr2_0, 1)); + _mm_storeu_si128((__m128i *)(output_nextStep + 1 * 32), + _mm256_extractf128_si256(tr2_1, 1)); + _mm_storeu_si128((__m128i *)(output_nextStep + 2 * 32), + _mm256_extractf128_si256(tr2_2, 1)); + _mm_storeu_si128((__m128i *)(output_nextStep + 3 * 32), + _mm256_extractf128_si256(tr2_3, 1)); + _mm_storeu_si128((__m128i *)(output_nextStep + 4 * 32), + _mm256_extractf128_si256(tr2_4, 1)); + _mm_storeu_si128((__m128i *)(output_nextStep + 5 * 32), + _mm256_extractf128_si256(tr2_5, 1)); + _mm_storeu_si128((__m128i *)(output_nextStep + 6 * 32), + _mm256_extractf128_si256(tr2_6, 1)); + _mm_storeu_si128((__m128i *)(output_nextStep + 7 * 32), + _mm256_extractf128_si256(tr2_7, 1)); + // Process next 8x8 + output_currStep += 8; + output_nextStep += 8; + } + } + } + } +} // NOLINT diff --git a/vpx_dsp/x86/fwd_dct32x32_impl_sse2.h b/vpx_dsp/x86/fwd_dct32x32_impl_sse2.h new file mode 100644 index 0000000..32b9bd2 --- /dev/null +++ b/vpx_dsp/x86/fwd_dct32x32_impl_sse2.h @@ -0,0 +1,3200 @@ +/* + * Copyright (c) 2012 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include // SSE2 + +#include "vpx_dsp/fwd_txfm.h" +#include "vpx_dsp/txfm_common.h" +#include "vpx_dsp/x86/txfm_common_sse2.h" + +// TODO(jingning) The high bit-depth version needs re-work for performance. +// The current SSE2 implementation also causes cross reference to the static +// functions in the C implementation file. +#if DCT_HIGH_BIT_DEPTH +#define ADD_EPI16 _mm_adds_epi16 +#define SUB_EPI16 _mm_subs_epi16 +#if FDCT32x32_HIGH_PRECISION +void vpx_fdct32x32_rows_c(const int16_t *intermediate, tran_low_t *out) { + int i, j; + for (i = 0; i < 32; ++i) { + tran_high_t temp_in[32], temp_out[32]; + for (j = 0; j < 32; ++j) temp_in[j] = intermediate[j * 32 + i]; + vpx_fdct32(temp_in, temp_out, 0); + for (j = 0; j < 32; ++j) + out[j + i * 32] = + (tran_low_t)((temp_out[j] + 1 + (temp_out[j] < 0)) >> 2); + } +} +#define HIGH_FDCT32x32_2D_C vpx_highbd_fdct32x32_c +#define HIGH_FDCT32x32_2D_ROWS_C vpx_fdct32x32_rows_c +#else +void vpx_fdct32x32_rd_rows_c(const int16_t *intermediate, tran_low_t *out) { + int i, j; + for (i = 0; i < 32; ++i) { + tran_high_t temp_in[32], temp_out[32]; + for (j = 0; j < 32; ++j) temp_in[j] = intermediate[j * 32 + i]; + vpx_fdct32(temp_in, temp_out, 1); + for (j = 0; j < 32; ++j) out[j + i * 32] = (tran_low_t)temp_out[j]; + } +} +#define HIGH_FDCT32x32_2D_C vpx_highbd_fdct32x32_rd_c +#define HIGH_FDCT32x32_2D_ROWS_C vpx_fdct32x32_rd_rows_c +#endif // FDCT32x32_HIGH_PRECISION +#else +#define ADD_EPI16 _mm_add_epi16 +#define SUB_EPI16 _mm_sub_epi16 +#endif // DCT_HIGH_BIT_DEPTH + +void FDCT32x32_2D(const int16_t *input, tran_low_t *output_org, int stride) { + // Calculate pre-multiplied strides + const int str1 = stride; + const int str2 = 2 * stride; + const int str3 = 2 * stride + str1; + // We need an intermediate buffer between passes. + DECLARE_ALIGNED(16, int16_t, intermediate[32 * 32]); + // Constants + // When we use them, in one case, they are all the same. In all others + // it's a pair of them that we need to repeat four times. This is done + // by constructing the 32 bit constant corresponding to that pair. + const __m128i k__cospi_p16_p16 = _mm_set1_epi16(cospi_16_64); + const __m128i k__cospi_p16_m16 = pair_set_epi16(+cospi_16_64, -cospi_16_64); + const __m128i k__cospi_m08_p24 = pair_set_epi16(-cospi_8_64, cospi_24_64); + const __m128i k__cospi_m24_m08 = pair_set_epi16(-cospi_24_64, -cospi_8_64); + const __m128i k__cospi_p24_p08 = pair_set_epi16(+cospi_24_64, cospi_8_64); + const __m128i k__cospi_p12_p20 = pair_set_epi16(+cospi_12_64, cospi_20_64); + const __m128i k__cospi_m20_p12 = pair_set_epi16(-cospi_20_64, cospi_12_64); + const __m128i k__cospi_m04_p28 = pair_set_epi16(-cospi_4_64, cospi_28_64); + const __m128i k__cospi_p28_p04 = pair_set_epi16(+cospi_28_64, cospi_4_64); + const __m128i k__cospi_m28_m04 = pair_set_epi16(-cospi_28_64, -cospi_4_64); + const __m128i k__cospi_m12_m20 = pair_set_epi16(-cospi_12_64, -cospi_20_64); + const __m128i k__cospi_p30_p02 = pair_set_epi16(+cospi_30_64, cospi_2_64); + const __m128i k__cospi_p14_p18 = pair_set_epi16(+cospi_14_64, cospi_18_64); + const __m128i k__cospi_p22_p10 = pair_set_epi16(+cospi_22_64, cospi_10_64); + const __m128i k__cospi_p06_p26 = pair_set_epi16(+cospi_6_64, cospi_26_64); + const __m128i k__cospi_m26_p06 = pair_set_epi16(-cospi_26_64, cospi_6_64); + const __m128i k__cospi_m10_p22 = pair_set_epi16(-cospi_10_64, cospi_22_64); + const __m128i k__cospi_m18_p14 = pair_set_epi16(-cospi_18_64, cospi_14_64); + const __m128i k__cospi_m02_p30 = pair_set_epi16(-cospi_2_64, cospi_30_64); + const __m128i k__cospi_p31_p01 = pair_set_epi16(+cospi_31_64, cospi_1_64); + const __m128i k__cospi_p15_p17 = pair_set_epi16(+cospi_15_64, cospi_17_64); + const __m128i k__cospi_p23_p09 = pair_set_epi16(+cospi_23_64, cospi_9_64); + const __m128i k__cospi_p07_p25 = pair_set_epi16(+cospi_7_64, cospi_25_64); + const __m128i k__cospi_m25_p07 = pair_set_epi16(-cospi_25_64, cospi_7_64); + const __m128i k__cospi_m09_p23 = pair_set_epi16(-cospi_9_64, cospi_23_64); + const __m128i k__cospi_m17_p15 = pair_set_epi16(-cospi_17_64, cospi_15_64); + const __m128i k__cospi_m01_p31 = pair_set_epi16(-cospi_1_64, cospi_31_64); + const __m128i k__cospi_p27_p05 = pair_set_epi16(+cospi_27_64, cospi_5_64); + const __m128i k__cospi_p11_p21 = pair_set_epi16(+cospi_11_64, cospi_21_64); + const __m128i k__cospi_p19_p13 = pair_set_epi16(+cospi_19_64, cospi_13_64); + const __m128i k__cospi_p03_p29 = pair_set_epi16(+cospi_3_64, cospi_29_64); + const __m128i k__cospi_m29_p03 = pair_set_epi16(-cospi_29_64, cospi_3_64); + const __m128i k__cospi_m13_p19 = pair_set_epi16(-cospi_13_64, cospi_19_64); + const __m128i k__cospi_m21_p11 = pair_set_epi16(-cospi_21_64, cospi_11_64); + const __m128i k__cospi_m05_p27 = pair_set_epi16(-cospi_5_64, cospi_27_64); + const __m128i k__DCT_CONST_ROUNDING = _mm_set1_epi32(DCT_CONST_ROUNDING); + const __m128i kZero = _mm_set1_epi16(0); + const __m128i kOne = _mm_set1_epi16(1); + // Do the two transform/transpose passes + int pass; +#if DCT_HIGH_BIT_DEPTH + int overflow; +#endif + for (pass = 0; pass < 2; ++pass) { + // We process eight columns (transposed rows in second pass) at a time. + int column_start; + for (column_start = 0; column_start < 32; column_start += 8) { + __m128i step1[32]; + __m128i step2[32]; + __m128i step3[32]; + __m128i out[32]; + // Stage 1 + // Note: even though all the loads below are aligned, using the aligned + // intrinsic make the code slightly slower. + if (0 == pass) { + const int16_t *in = &input[column_start]; + // step1[i] = (in[ 0 * stride] + in[(32 - 1) * stride]) << 2; + // Note: the next four blocks could be in a loop. That would help the + // instruction cache but is actually slower. + { + const int16_t *ina = in + 0 * str1; + const int16_t *inb = in + 31 * str1; + __m128i *step1a = &step1[0]; + __m128i *step1b = &step1[31]; + const __m128i ina0 = _mm_loadu_si128((const __m128i *)(ina)); + const __m128i ina1 = _mm_loadu_si128((const __m128i *)(ina + str1)); + const __m128i ina2 = _mm_loadu_si128((const __m128i *)(ina + str2)); + const __m128i ina3 = _mm_loadu_si128((const __m128i *)(ina + str3)); + const __m128i inb3 = _mm_loadu_si128((const __m128i *)(inb - str3)); + const __m128i inb2 = _mm_loadu_si128((const __m128i *)(inb - str2)); + const __m128i inb1 = _mm_loadu_si128((const __m128i *)(inb - str1)); + const __m128i inb0 = _mm_loadu_si128((const __m128i *)(inb)); + step1a[0] = _mm_add_epi16(ina0, inb0); + step1a[1] = _mm_add_epi16(ina1, inb1); + step1a[2] = _mm_add_epi16(ina2, inb2); + step1a[3] = _mm_add_epi16(ina3, inb3); + step1b[-3] = _mm_sub_epi16(ina3, inb3); + step1b[-2] = _mm_sub_epi16(ina2, inb2); + step1b[-1] = _mm_sub_epi16(ina1, inb1); + step1b[-0] = _mm_sub_epi16(ina0, inb0); + step1a[0] = _mm_slli_epi16(step1a[0], 2); + step1a[1] = _mm_slli_epi16(step1a[1], 2); + step1a[2] = _mm_slli_epi16(step1a[2], 2); + step1a[3] = _mm_slli_epi16(step1a[3], 2); + step1b[-3] = _mm_slli_epi16(step1b[-3], 2); + step1b[-2] = _mm_slli_epi16(step1b[-2], 2); + step1b[-1] = _mm_slli_epi16(step1b[-1], 2); + step1b[-0] = _mm_slli_epi16(step1b[-0], 2); + } + { + const int16_t *ina = in + 4 * str1; + const int16_t *inb = in + 27 * str1; + __m128i *step1a = &step1[4]; + __m128i *step1b = &step1[27]; + const __m128i ina0 = _mm_loadu_si128((const __m128i *)(ina)); + const __m128i ina1 = _mm_loadu_si128((const __m128i *)(ina + str1)); + const __m128i ina2 = _mm_loadu_si128((const __m128i *)(ina + str2)); + const __m128i ina3 = _mm_loadu_si128((const __m128i *)(ina + str3)); + const __m128i inb3 = _mm_loadu_si128((const __m128i *)(inb - str3)); + const __m128i inb2 = _mm_loadu_si128((const __m128i *)(inb - str2)); + const __m128i inb1 = _mm_loadu_si128((const __m128i *)(inb - str1)); + const __m128i inb0 = _mm_loadu_si128((const __m128i *)(inb)); + step1a[0] = _mm_add_epi16(ina0, inb0); + step1a[1] = _mm_add_epi16(ina1, inb1); + step1a[2] = _mm_add_epi16(ina2, inb2); + step1a[3] = _mm_add_epi16(ina3, inb3); + step1b[-3] = _mm_sub_epi16(ina3, inb3); + step1b[-2] = _mm_sub_epi16(ina2, inb2); + step1b[-1] = _mm_sub_epi16(ina1, inb1); + step1b[-0] = _mm_sub_epi16(ina0, inb0); + step1a[0] = _mm_slli_epi16(step1a[0], 2); + step1a[1] = _mm_slli_epi16(step1a[1], 2); + step1a[2] = _mm_slli_epi16(step1a[2], 2); + step1a[3] = _mm_slli_epi16(step1a[3], 2); + step1b[-3] = _mm_slli_epi16(step1b[-3], 2); + step1b[-2] = _mm_slli_epi16(step1b[-2], 2); + step1b[-1] = _mm_slli_epi16(step1b[-1], 2); + step1b[-0] = _mm_slli_epi16(step1b[-0], 2); + } + { + const int16_t *ina = in + 8 * str1; + const int16_t *inb = in + 23 * str1; + __m128i *step1a = &step1[8]; + __m128i *step1b = &step1[23]; + const __m128i ina0 = _mm_loadu_si128((const __m128i *)(ina)); + const __m128i ina1 = _mm_loadu_si128((const __m128i *)(ina + str1)); + const __m128i ina2 = _mm_loadu_si128((const __m128i *)(ina + str2)); + const __m128i ina3 = _mm_loadu_si128((const __m128i *)(ina + str3)); + const __m128i inb3 = _mm_loadu_si128((const __m128i *)(inb - str3)); + const __m128i inb2 = _mm_loadu_si128((const __m128i *)(inb - str2)); + const __m128i inb1 = _mm_loadu_si128((const __m128i *)(inb - str1)); + const __m128i inb0 = _mm_loadu_si128((const __m128i *)(inb)); + step1a[0] = _mm_add_epi16(ina0, inb0); + step1a[1] = _mm_add_epi16(ina1, inb1); + step1a[2] = _mm_add_epi16(ina2, inb2); + step1a[3] = _mm_add_epi16(ina3, inb3); + step1b[-3] = _mm_sub_epi16(ina3, inb3); + step1b[-2] = _mm_sub_epi16(ina2, inb2); + step1b[-1] = _mm_sub_epi16(ina1, inb1); + step1b[-0] = _mm_sub_epi16(ina0, inb0); + step1a[0] = _mm_slli_epi16(step1a[0], 2); + step1a[1] = _mm_slli_epi16(step1a[1], 2); + step1a[2] = _mm_slli_epi16(step1a[2], 2); + step1a[3] = _mm_slli_epi16(step1a[3], 2); + step1b[-3] = _mm_slli_epi16(step1b[-3], 2); + step1b[-2] = _mm_slli_epi16(step1b[-2], 2); + step1b[-1] = _mm_slli_epi16(step1b[-1], 2); + step1b[-0] = _mm_slli_epi16(step1b[-0], 2); + } + { + const int16_t *ina = in + 12 * str1; + const int16_t *inb = in + 19 * str1; + __m128i *step1a = &step1[12]; + __m128i *step1b = &step1[19]; + const __m128i ina0 = _mm_loadu_si128((const __m128i *)(ina)); + const __m128i ina1 = _mm_loadu_si128((const __m128i *)(ina + str1)); + const __m128i ina2 = _mm_loadu_si128((const __m128i *)(ina + str2)); + const __m128i ina3 = _mm_loadu_si128((const __m128i *)(ina + str3)); + const __m128i inb3 = _mm_loadu_si128((const __m128i *)(inb - str3)); + const __m128i inb2 = _mm_loadu_si128((const __m128i *)(inb - str2)); + const __m128i inb1 = _mm_loadu_si128((const __m128i *)(inb - str1)); + const __m128i inb0 = _mm_loadu_si128((const __m128i *)(inb)); + step1a[0] = _mm_add_epi16(ina0, inb0); + step1a[1] = _mm_add_epi16(ina1, inb1); + step1a[2] = _mm_add_epi16(ina2, inb2); + step1a[3] = _mm_add_epi16(ina3, inb3); + step1b[-3] = _mm_sub_epi16(ina3, inb3); + step1b[-2] = _mm_sub_epi16(ina2, inb2); + step1b[-1] = _mm_sub_epi16(ina1, inb1); + step1b[-0] = _mm_sub_epi16(ina0, inb0); + step1a[0] = _mm_slli_epi16(step1a[0], 2); + step1a[1] = _mm_slli_epi16(step1a[1], 2); + step1a[2] = _mm_slli_epi16(step1a[2], 2); + step1a[3] = _mm_slli_epi16(step1a[3], 2); + step1b[-3] = _mm_slli_epi16(step1b[-3], 2); + step1b[-2] = _mm_slli_epi16(step1b[-2], 2); + step1b[-1] = _mm_slli_epi16(step1b[-1], 2); + step1b[-0] = _mm_slli_epi16(step1b[-0], 2); + } + } else { + int16_t *in = &intermediate[column_start]; + // step1[i] = in[ 0 * 32] + in[(32 - 1) * 32]; + // Note: using the same approach as above to have common offset is + // counter-productive as all offsets can be calculated at compile + // time. + // Note: the next four blocks could be in a loop. That would help the + // instruction cache but is actually slower. + { + __m128i in00 = _mm_loadu_si128((const __m128i *)(in + 0 * 32)); + __m128i in01 = _mm_loadu_si128((const __m128i *)(in + 1 * 32)); + __m128i in02 = _mm_loadu_si128((const __m128i *)(in + 2 * 32)); + __m128i in03 = _mm_loadu_si128((const __m128i *)(in + 3 * 32)); + __m128i in28 = _mm_loadu_si128((const __m128i *)(in + 28 * 32)); + __m128i in29 = _mm_loadu_si128((const __m128i *)(in + 29 * 32)); + __m128i in30 = _mm_loadu_si128((const __m128i *)(in + 30 * 32)); + __m128i in31 = _mm_loadu_si128((const __m128i *)(in + 31 * 32)); + step1[0] = ADD_EPI16(in00, in31); + step1[1] = ADD_EPI16(in01, in30); + step1[2] = ADD_EPI16(in02, in29); + step1[3] = ADD_EPI16(in03, in28); + step1[28] = SUB_EPI16(in03, in28); + step1[29] = SUB_EPI16(in02, in29); + step1[30] = SUB_EPI16(in01, in30); + step1[31] = SUB_EPI16(in00, in31); +#if DCT_HIGH_BIT_DEPTH + overflow = check_epi16_overflow_x8(&step1[0], &step1[1], &step1[2], + &step1[3], &step1[28], &step1[29], + &step1[30], &step1[31]); + if (overflow) { + HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org); + return; + } +#endif // DCT_HIGH_BIT_DEPTH + } + { + __m128i in04 = _mm_loadu_si128((const __m128i *)(in + 4 * 32)); + __m128i in05 = _mm_loadu_si128((const __m128i *)(in + 5 * 32)); + __m128i in06 = _mm_loadu_si128((const __m128i *)(in + 6 * 32)); + __m128i in07 = _mm_loadu_si128((const __m128i *)(in + 7 * 32)); + __m128i in24 = _mm_loadu_si128((const __m128i *)(in + 24 * 32)); + __m128i in25 = _mm_loadu_si128((const __m128i *)(in + 25 * 32)); + __m128i in26 = _mm_loadu_si128((const __m128i *)(in + 26 * 32)); + __m128i in27 = _mm_loadu_si128((const __m128i *)(in + 27 * 32)); + step1[4] = ADD_EPI16(in04, in27); + step1[5] = ADD_EPI16(in05, in26); + step1[6] = ADD_EPI16(in06, in25); + step1[7] = ADD_EPI16(in07, in24); + step1[24] = SUB_EPI16(in07, in24); + step1[25] = SUB_EPI16(in06, in25); + step1[26] = SUB_EPI16(in05, in26); + step1[27] = SUB_EPI16(in04, in27); +#if DCT_HIGH_BIT_DEPTH + overflow = check_epi16_overflow_x8(&step1[4], &step1[5], &step1[6], + &step1[7], &step1[24], &step1[25], + &step1[26], &step1[27]); + if (overflow) { + HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org); + return; + } +#endif // DCT_HIGH_BIT_DEPTH + } + { + __m128i in08 = _mm_loadu_si128((const __m128i *)(in + 8 * 32)); + __m128i in09 = _mm_loadu_si128((const __m128i *)(in + 9 * 32)); + __m128i in10 = _mm_loadu_si128((const __m128i *)(in + 10 * 32)); + __m128i in11 = _mm_loadu_si128((const __m128i *)(in + 11 * 32)); + __m128i in20 = _mm_loadu_si128((const __m128i *)(in + 20 * 32)); + __m128i in21 = _mm_loadu_si128((const __m128i *)(in + 21 * 32)); + __m128i in22 = _mm_loadu_si128((const __m128i *)(in + 22 * 32)); + __m128i in23 = _mm_loadu_si128((const __m128i *)(in + 23 * 32)); + step1[8] = ADD_EPI16(in08, in23); + step1[9] = ADD_EPI16(in09, in22); + step1[10] = ADD_EPI16(in10, in21); + step1[11] = ADD_EPI16(in11, in20); + step1[20] = SUB_EPI16(in11, in20); + step1[21] = SUB_EPI16(in10, in21); + step1[22] = SUB_EPI16(in09, in22); + step1[23] = SUB_EPI16(in08, in23); +#if DCT_HIGH_BIT_DEPTH + overflow = check_epi16_overflow_x8(&step1[8], &step1[9], &step1[10], + &step1[11], &step1[20], &step1[21], + &step1[22], &step1[23]); + if (overflow) { + HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org); + return; + } +#endif // DCT_HIGH_BIT_DEPTH + } + { + __m128i in12 = _mm_loadu_si128((const __m128i *)(in + 12 * 32)); + __m128i in13 = _mm_loadu_si128((const __m128i *)(in + 13 * 32)); + __m128i in14 = _mm_loadu_si128((const __m128i *)(in + 14 * 32)); + __m128i in15 = _mm_loadu_si128((const __m128i *)(in + 15 * 32)); + __m128i in16 = _mm_loadu_si128((const __m128i *)(in + 16 * 32)); + __m128i in17 = _mm_loadu_si128((const __m128i *)(in + 17 * 32)); + __m128i in18 = _mm_loadu_si128((const __m128i *)(in + 18 * 32)); + __m128i in19 = _mm_loadu_si128((const __m128i *)(in + 19 * 32)); + step1[12] = ADD_EPI16(in12, in19); + step1[13] = ADD_EPI16(in13, in18); + step1[14] = ADD_EPI16(in14, in17); + step1[15] = ADD_EPI16(in15, in16); + step1[16] = SUB_EPI16(in15, in16); + step1[17] = SUB_EPI16(in14, in17); + step1[18] = SUB_EPI16(in13, in18); + step1[19] = SUB_EPI16(in12, in19); +#if DCT_HIGH_BIT_DEPTH + overflow = check_epi16_overflow_x8(&step1[12], &step1[13], &step1[14], + &step1[15], &step1[16], &step1[17], + &step1[18], &step1[19]); + if (overflow) { + HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org); + return; + } +#endif // DCT_HIGH_BIT_DEPTH + } + } + // Stage 2 + { + step2[0] = ADD_EPI16(step1[0], step1[15]); + step2[1] = ADD_EPI16(step1[1], step1[14]); + step2[2] = ADD_EPI16(step1[2], step1[13]); + step2[3] = ADD_EPI16(step1[3], step1[12]); + step2[4] = ADD_EPI16(step1[4], step1[11]); + step2[5] = ADD_EPI16(step1[5], step1[10]); + step2[6] = ADD_EPI16(step1[6], step1[9]); + step2[7] = ADD_EPI16(step1[7], step1[8]); + step2[8] = SUB_EPI16(step1[7], step1[8]); + step2[9] = SUB_EPI16(step1[6], step1[9]); + step2[10] = SUB_EPI16(step1[5], step1[10]); + step2[11] = SUB_EPI16(step1[4], step1[11]); + step2[12] = SUB_EPI16(step1[3], step1[12]); + step2[13] = SUB_EPI16(step1[2], step1[13]); + step2[14] = SUB_EPI16(step1[1], step1[14]); + step2[15] = SUB_EPI16(step1[0], step1[15]); +#if DCT_HIGH_BIT_DEPTH + overflow = check_epi16_overflow_x16( + &step2[0], &step2[1], &step2[2], &step2[3], &step2[4], &step2[5], + &step2[6], &step2[7], &step2[8], &step2[9], &step2[10], &step2[11], + &step2[12], &step2[13], &step2[14], &step2[15]); + if (overflow) { + if (pass == 0) + HIGH_FDCT32x32_2D_C(input, output_org, stride); + else + HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org); + return; + } +#endif // DCT_HIGH_BIT_DEPTH + } + { + const __m128i s2_20_0 = _mm_unpacklo_epi16(step1[27], step1[20]); + const __m128i s2_20_1 = _mm_unpackhi_epi16(step1[27], step1[20]); + const __m128i s2_21_0 = _mm_unpacklo_epi16(step1[26], step1[21]); + const __m128i s2_21_1 = _mm_unpackhi_epi16(step1[26], step1[21]); + const __m128i s2_22_0 = _mm_unpacklo_epi16(step1[25], step1[22]); + const __m128i s2_22_1 = _mm_unpackhi_epi16(step1[25], step1[22]); + const __m128i s2_23_0 = _mm_unpacklo_epi16(step1[24], step1[23]); + const __m128i s2_23_1 = _mm_unpackhi_epi16(step1[24], step1[23]); + const __m128i s2_20_2 = _mm_madd_epi16(s2_20_0, k__cospi_p16_m16); + const __m128i s2_20_3 = _mm_madd_epi16(s2_20_1, k__cospi_p16_m16); + const __m128i s2_21_2 = _mm_madd_epi16(s2_21_0, k__cospi_p16_m16); + const __m128i s2_21_3 = _mm_madd_epi16(s2_21_1, k__cospi_p16_m16); + const __m128i s2_22_2 = _mm_madd_epi16(s2_22_0, k__cospi_p16_m16); + const __m128i s2_22_3 = _mm_madd_epi16(s2_22_1, k__cospi_p16_m16); + const __m128i s2_23_2 = _mm_madd_epi16(s2_23_0, k__cospi_p16_m16); + const __m128i s2_23_3 = _mm_madd_epi16(s2_23_1, k__cospi_p16_m16); + const __m128i s2_24_2 = _mm_madd_epi16(s2_23_0, k__cospi_p16_p16); + const __m128i s2_24_3 = _mm_madd_epi16(s2_23_1, k__cospi_p16_p16); + const __m128i s2_25_2 = _mm_madd_epi16(s2_22_0, k__cospi_p16_p16); + const __m128i s2_25_3 = _mm_madd_epi16(s2_22_1, k__cospi_p16_p16); + const __m128i s2_26_2 = _mm_madd_epi16(s2_21_0, k__cospi_p16_p16); + const __m128i s2_26_3 = _mm_madd_epi16(s2_21_1, k__cospi_p16_p16); + const __m128i s2_27_2 = _mm_madd_epi16(s2_20_0, k__cospi_p16_p16); + const __m128i s2_27_3 = _mm_madd_epi16(s2_20_1, k__cospi_p16_p16); + // dct_const_round_shift + const __m128i s2_20_4 = _mm_add_epi32(s2_20_2, k__DCT_CONST_ROUNDING); + const __m128i s2_20_5 = _mm_add_epi32(s2_20_3, k__DCT_CONST_ROUNDING); + const __m128i s2_21_4 = _mm_add_epi32(s2_21_2, k__DCT_CONST_ROUNDING); + const __m128i s2_21_5 = _mm_add_epi32(s2_21_3, k__DCT_CONST_ROUNDING); + const __m128i s2_22_4 = _mm_add_epi32(s2_22_2, k__DCT_CONST_ROUNDING); + const __m128i s2_22_5 = _mm_add_epi32(s2_22_3, k__DCT_CONST_ROUNDING); + const __m128i s2_23_4 = _mm_add_epi32(s2_23_2, k__DCT_CONST_ROUNDING); + const __m128i s2_23_5 = _mm_add_epi32(s2_23_3, k__DCT_CONST_ROUNDING); + const __m128i s2_24_4 = _mm_add_epi32(s2_24_2, k__DCT_CONST_ROUNDING); + const __m128i s2_24_5 = _mm_add_epi32(s2_24_3, k__DCT_CONST_ROUNDING); + const __m128i s2_25_4 = _mm_add_epi32(s2_25_2, k__DCT_CONST_ROUNDING); + const __m128i s2_25_5 = _mm_add_epi32(s2_25_3, k__DCT_CONST_ROUNDING); + const __m128i s2_26_4 = _mm_add_epi32(s2_26_2, k__DCT_CONST_ROUNDING); + const __m128i s2_26_5 = _mm_add_epi32(s2_26_3, k__DCT_CONST_ROUNDING); + const __m128i s2_27_4 = _mm_add_epi32(s2_27_2, k__DCT_CONST_ROUNDING); + const __m128i s2_27_5 = _mm_add_epi32(s2_27_3, k__DCT_CONST_ROUNDING); + const __m128i s2_20_6 = _mm_srai_epi32(s2_20_4, DCT_CONST_BITS); + const __m128i s2_20_7 = _mm_srai_epi32(s2_20_5, DCT_CONST_BITS); + const __m128i s2_21_6 = _mm_srai_epi32(s2_21_4, DCT_CONST_BITS); + const __m128i s2_21_7 = _mm_srai_epi32(s2_21_5, DCT_CONST_BITS); + const __m128i s2_22_6 = _mm_srai_epi32(s2_22_4, DCT_CONST_BITS); + const __m128i s2_22_7 = _mm_srai_epi32(s2_22_5, DCT_CONST_BITS); + const __m128i s2_23_6 = _mm_srai_epi32(s2_23_4, DCT_CONST_BITS); + const __m128i s2_23_7 = _mm_srai_epi32(s2_23_5, DCT_CONST_BITS); + const __m128i s2_24_6 = _mm_srai_epi32(s2_24_4, DCT_CONST_BITS); + const __m128i s2_24_7 = _mm_srai_epi32(s2_24_5, DCT_CONST_BITS); + const __m128i s2_25_6 = _mm_srai_epi32(s2_25_4, DCT_CONST_BITS); + const __m128i s2_25_7 = _mm_srai_epi32(s2_25_5, DCT_CONST_BITS); + const __m128i s2_26_6 = _mm_srai_epi32(s2_26_4, DCT_CONST_BITS); + const __m128i s2_26_7 = _mm_srai_epi32(s2_26_5, DCT_CONST_BITS); + const __m128i s2_27_6 = _mm_srai_epi32(s2_27_4, DCT_CONST_BITS); + const __m128i s2_27_7 = _mm_srai_epi32(s2_27_5, DCT_CONST_BITS); + // Combine + step2[20] = _mm_packs_epi32(s2_20_6, s2_20_7); + step2[21] = _mm_packs_epi32(s2_21_6, s2_21_7); + step2[22] = _mm_packs_epi32(s2_22_6, s2_22_7); + step2[23] = _mm_packs_epi32(s2_23_6, s2_23_7); + step2[24] = _mm_packs_epi32(s2_24_6, s2_24_7); + step2[25] = _mm_packs_epi32(s2_25_6, s2_25_7); + step2[26] = _mm_packs_epi32(s2_26_6, s2_26_7); + step2[27] = _mm_packs_epi32(s2_27_6, s2_27_7); +#if DCT_HIGH_BIT_DEPTH + overflow = check_epi16_overflow_x8(&step2[20], &step2[21], &step2[22], + &step2[23], &step2[24], &step2[25], + &step2[26], &step2[27]); + if (overflow) { + if (pass == 0) + HIGH_FDCT32x32_2D_C(input, output_org, stride); + else + HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org); + return; + } +#endif // DCT_HIGH_BIT_DEPTH + } + +#if !FDCT32x32_HIGH_PRECISION + // dump the magnitude by half, hence the intermediate values are within + // the range of 16 bits. + if (1 == pass) { + __m128i s3_00_0 = _mm_cmplt_epi16(step2[0], kZero); + __m128i s3_01_0 = _mm_cmplt_epi16(step2[1], kZero); + __m128i s3_02_0 = _mm_cmplt_epi16(step2[2], kZero); + __m128i s3_03_0 = _mm_cmplt_epi16(step2[3], kZero); + __m128i s3_04_0 = _mm_cmplt_epi16(step2[4], kZero); + __m128i s3_05_0 = _mm_cmplt_epi16(step2[5], kZero); + __m128i s3_06_0 = _mm_cmplt_epi16(step2[6], kZero); + __m128i s3_07_0 = _mm_cmplt_epi16(step2[7], kZero); + __m128i s2_08_0 = _mm_cmplt_epi16(step2[8], kZero); + __m128i s2_09_0 = _mm_cmplt_epi16(step2[9], kZero); + __m128i s3_10_0 = _mm_cmplt_epi16(step2[10], kZero); + __m128i s3_11_0 = _mm_cmplt_epi16(step2[11], kZero); + __m128i s3_12_0 = _mm_cmplt_epi16(step2[12], kZero); + __m128i s3_13_0 = _mm_cmplt_epi16(step2[13], kZero); + __m128i s2_14_0 = _mm_cmplt_epi16(step2[14], kZero); + __m128i s2_15_0 = _mm_cmplt_epi16(step2[15], kZero); + __m128i s3_16_0 = _mm_cmplt_epi16(step1[16], kZero); + __m128i s3_17_0 = _mm_cmplt_epi16(step1[17], kZero); + __m128i s3_18_0 = _mm_cmplt_epi16(step1[18], kZero); + __m128i s3_19_0 = _mm_cmplt_epi16(step1[19], kZero); + __m128i s3_20_0 = _mm_cmplt_epi16(step2[20], kZero); + __m128i s3_21_0 = _mm_cmplt_epi16(step2[21], kZero); + __m128i s3_22_0 = _mm_cmplt_epi16(step2[22], kZero); + __m128i s3_23_0 = _mm_cmplt_epi16(step2[23], kZero); + __m128i s3_24_0 = _mm_cmplt_epi16(step2[24], kZero); + __m128i s3_25_0 = _mm_cmplt_epi16(step2[25], kZero); + __m128i s3_26_0 = _mm_cmplt_epi16(step2[26], kZero); + __m128i s3_27_0 = _mm_cmplt_epi16(step2[27], kZero); + __m128i s3_28_0 = _mm_cmplt_epi16(step1[28], kZero); + __m128i s3_29_0 = _mm_cmplt_epi16(step1[29], kZero); + __m128i s3_30_0 = _mm_cmplt_epi16(step1[30], kZero); + __m128i s3_31_0 = _mm_cmplt_epi16(step1[31], kZero); + + step2[0] = SUB_EPI16(step2[0], s3_00_0); + step2[1] = SUB_EPI16(step2[1], s3_01_0); + step2[2] = SUB_EPI16(step2[2], s3_02_0); + step2[3] = SUB_EPI16(step2[3], s3_03_0); + step2[4] = SUB_EPI16(step2[4], s3_04_0); + step2[5] = SUB_EPI16(step2[5], s3_05_0); + step2[6] = SUB_EPI16(step2[6], s3_06_0); + step2[7] = SUB_EPI16(step2[7], s3_07_0); + step2[8] = SUB_EPI16(step2[8], s2_08_0); + step2[9] = SUB_EPI16(step2[9], s2_09_0); + step2[10] = SUB_EPI16(step2[10], s3_10_0); + step2[11] = SUB_EPI16(step2[11], s3_11_0); + step2[12] = SUB_EPI16(step2[12], s3_12_0); + step2[13] = SUB_EPI16(step2[13], s3_13_0); + step2[14] = SUB_EPI16(step2[14], s2_14_0); + step2[15] = SUB_EPI16(step2[15], s2_15_0); + step1[16] = SUB_EPI16(step1[16], s3_16_0); + step1[17] = SUB_EPI16(step1[17], s3_17_0); + step1[18] = SUB_EPI16(step1[18], s3_18_0); + step1[19] = SUB_EPI16(step1[19], s3_19_0); + step2[20] = SUB_EPI16(step2[20], s3_20_0); + step2[21] = SUB_EPI16(step2[21], s3_21_0); + step2[22] = SUB_EPI16(step2[22], s3_22_0); + step2[23] = SUB_EPI16(step2[23], s3_23_0); + step2[24] = SUB_EPI16(step2[24], s3_24_0); + step2[25] = SUB_EPI16(step2[25], s3_25_0); + step2[26] = SUB_EPI16(step2[26], s3_26_0); + step2[27] = SUB_EPI16(step2[27], s3_27_0); + step1[28] = SUB_EPI16(step1[28], s3_28_0); + step1[29] = SUB_EPI16(step1[29], s3_29_0); + step1[30] = SUB_EPI16(step1[30], s3_30_0); + step1[31] = SUB_EPI16(step1[31], s3_31_0); +#if DCT_HIGH_BIT_DEPTH + overflow = check_epi16_overflow_x32( + &step2[0], &step2[1], &step2[2], &step2[3], &step2[4], &step2[5], + &step2[6], &step2[7], &step2[8], &step2[9], &step2[10], &step2[11], + &step2[12], &step2[13], &step2[14], &step2[15], &step1[16], + &step1[17], &step1[18], &step1[19], &step2[20], &step2[21], + &step2[22], &step2[23], &step2[24], &step2[25], &step2[26], + &step2[27], &step1[28], &step1[29], &step1[30], &step1[31]); + if (overflow) { + HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org); + return; + } +#endif // DCT_HIGH_BIT_DEPTH + step2[0] = _mm_add_epi16(step2[0], kOne); + step2[1] = _mm_add_epi16(step2[1], kOne); + step2[2] = _mm_add_epi16(step2[2], kOne); + step2[3] = _mm_add_epi16(step2[3], kOne); + step2[4] = _mm_add_epi16(step2[4], kOne); + step2[5] = _mm_add_epi16(step2[5], kOne); + step2[6] = _mm_add_epi16(step2[6], kOne); + step2[7] = _mm_add_epi16(step2[7], kOne); + step2[8] = _mm_add_epi16(step2[8], kOne); + step2[9] = _mm_add_epi16(step2[9], kOne); + step2[10] = _mm_add_epi16(step2[10], kOne); + step2[11] = _mm_add_epi16(step2[11], kOne); + step2[12] = _mm_add_epi16(step2[12], kOne); + step2[13] = _mm_add_epi16(step2[13], kOne); + step2[14] = _mm_add_epi16(step2[14], kOne); + step2[15] = _mm_add_epi16(step2[15], kOne); + step1[16] = _mm_add_epi16(step1[16], kOne); + step1[17] = _mm_add_epi16(step1[17], kOne); + step1[18] = _mm_add_epi16(step1[18], kOne); + step1[19] = _mm_add_epi16(step1[19], kOne); + step2[20] = _mm_add_epi16(step2[20], kOne); + step2[21] = _mm_add_epi16(step2[21], kOne); + step2[22] = _mm_add_epi16(step2[22], kOne); + step2[23] = _mm_add_epi16(step2[23], kOne); + step2[24] = _mm_add_epi16(step2[24], kOne); + step2[25] = _mm_add_epi16(step2[25], kOne); + step2[26] = _mm_add_epi16(step2[26], kOne); + step2[27] = _mm_add_epi16(step2[27], kOne); + step1[28] = _mm_add_epi16(step1[28], kOne); + step1[29] = _mm_add_epi16(step1[29], kOne); + step1[30] = _mm_add_epi16(step1[30], kOne); + step1[31] = _mm_add_epi16(step1[31], kOne); + + step2[0] = _mm_srai_epi16(step2[0], 2); + step2[1] = _mm_srai_epi16(step2[1], 2); + step2[2] = _mm_srai_epi16(step2[2], 2); + step2[3] = _mm_srai_epi16(step2[3], 2); + step2[4] = _mm_srai_epi16(step2[4], 2); + step2[5] = _mm_srai_epi16(step2[5], 2); + step2[6] = _mm_srai_epi16(step2[6], 2); + step2[7] = _mm_srai_epi16(step2[7], 2); + step2[8] = _mm_srai_epi16(step2[8], 2); + step2[9] = _mm_srai_epi16(step2[9], 2); + step2[10] = _mm_srai_epi16(step2[10], 2); + step2[11] = _mm_srai_epi16(step2[11], 2); + step2[12] = _mm_srai_epi16(step2[12], 2); + step2[13] = _mm_srai_epi16(step2[13], 2); + step2[14] = _mm_srai_epi16(step2[14], 2); + step2[15] = _mm_srai_epi16(step2[15], 2); + step1[16] = _mm_srai_epi16(step1[16], 2); + step1[17] = _mm_srai_epi16(step1[17], 2); + step1[18] = _mm_srai_epi16(step1[18], 2); + step1[19] = _mm_srai_epi16(step1[19], 2); + step2[20] = _mm_srai_epi16(step2[20], 2); + step2[21] = _mm_srai_epi16(step2[21], 2); + step2[22] = _mm_srai_epi16(step2[22], 2); + step2[23] = _mm_srai_epi16(step2[23], 2); + step2[24] = _mm_srai_epi16(step2[24], 2); + step2[25] = _mm_srai_epi16(step2[25], 2); + step2[26] = _mm_srai_epi16(step2[26], 2); + step2[27] = _mm_srai_epi16(step2[27], 2); + step1[28] = _mm_srai_epi16(step1[28], 2); + step1[29] = _mm_srai_epi16(step1[29], 2); + step1[30] = _mm_srai_epi16(step1[30], 2); + step1[31] = _mm_srai_epi16(step1[31], 2); + } +#endif // !FDCT32x32_HIGH_PRECISION + +#if FDCT32x32_HIGH_PRECISION + if (pass == 0) { +#endif + // Stage 3 + { + step3[0] = ADD_EPI16(step2[(8 - 1)], step2[0]); + step3[1] = ADD_EPI16(step2[(8 - 2)], step2[1]); + step3[2] = ADD_EPI16(step2[(8 - 3)], step2[2]); + step3[3] = ADD_EPI16(step2[(8 - 4)], step2[3]); + step3[4] = SUB_EPI16(step2[(8 - 5)], step2[4]); + step3[5] = SUB_EPI16(step2[(8 - 6)], step2[5]); + step3[6] = SUB_EPI16(step2[(8 - 7)], step2[6]); + step3[7] = SUB_EPI16(step2[(8 - 8)], step2[7]); +#if DCT_HIGH_BIT_DEPTH + overflow = check_epi16_overflow_x8(&step3[0], &step3[1], &step3[2], + &step3[3], &step3[4], &step3[5], + &step3[6], &step3[7]); + if (overflow) { + if (pass == 0) + HIGH_FDCT32x32_2D_C(input, output_org, stride); + else + HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org); + return; + } +#endif // DCT_HIGH_BIT_DEPTH + } + { + const __m128i s3_10_0 = _mm_unpacklo_epi16(step2[13], step2[10]); + const __m128i s3_10_1 = _mm_unpackhi_epi16(step2[13], step2[10]); + const __m128i s3_11_0 = _mm_unpacklo_epi16(step2[12], step2[11]); + const __m128i s3_11_1 = _mm_unpackhi_epi16(step2[12], step2[11]); + const __m128i s3_10_2 = _mm_madd_epi16(s3_10_0, k__cospi_p16_m16); + const __m128i s3_10_3 = _mm_madd_epi16(s3_10_1, k__cospi_p16_m16); + const __m128i s3_11_2 = _mm_madd_epi16(s3_11_0, k__cospi_p16_m16); + const __m128i s3_11_3 = _mm_madd_epi16(s3_11_1, k__cospi_p16_m16); + const __m128i s3_12_2 = _mm_madd_epi16(s3_11_0, k__cospi_p16_p16); + const __m128i s3_12_3 = _mm_madd_epi16(s3_11_1, k__cospi_p16_p16); + const __m128i s3_13_2 = _mm_madd_epi16(s3_10_0, k__cospi_p16_p16); + const __m128i s3_13_3 = _mm_madd_epi16(s3_10_1, k__cospi_p16_p16); + // dct_const_round_shift + const __m128i s3_10_4 = _mm_add_epi32(s3_10_2, k__DCT_CONST_ROUNDING); + const __m128i s3_10_5 = _mm_add_epi32(s3_10_3, k__DCT_CONST_ROUNDING); + const __m128i s3_11_4 = _mm_add_epi32(s3_11_2, k__DCT_CONST_ROUNDING); + const __m128i s3_11_5 = _mm_add_epi32(s3_11_3, k__DCT_CONST_ROUNDING); + const __m128i s3_12_4 = _mm_add_epi32(s3_12_2, k__DCT_CONST_ROUNDING); + const __m128i s3_12_5 = _mm_add_epi32(s3_12_3, k__DCT_CONST_ROUNDING); + const __m128i s3_13_4 = _mm_add_epi32(s3_13_2, k__DCT_CONST_ROUNDING); + const __m128i s3_13_5 = _mm_add_epi32(s3_13_3, k__DCT_CONST_ROUNDING); + const __m128i s3_10_6 = _mm_srai_epi32(s3_10_4, DCT_CONST_BITS); + const __m128i s3_10_7 = _mm_srai_epi32(s3_10_5, DCT_CONST_BITS); + const __m128i s3_11_6 = _mm_srai_epi32(s3_11_4, DCT_CONST_BITS); + const __m128i s3_11_7 = _mm_srai_epi32(s3_11_5, DCT_CONST_BITS); + const __m128i s3_12_6 = _mm_srai_epi32(s3_12_4, DCT_CONST_BITS); + const __m128i s3_12_7 = _mm_srai_epi32(s3_12_5, DCT_CONST_BITS); + const __m128i s3_13_6 = _mm_srai_epi32(s3_13_4, DCT_CONST_BITS); + const __m128i s3_13_7 = _mm_srai_epi32(s3_13_5, DCT_CONST_BITS); + // Combine + step3[10] = _mm_packs_epi32(s3_10_6, s3_10_7); + step3[11] = _mm_packs_epi32(s3_11_6, s3_11_7); + step3[12] = _mm_packs_epi32(s3_12_6, s3_12_7); + step3[13] = _mm_packs_epi32(s3_13_6, s3_13_7); +#if DCT_HIGH_BIT_DEPTH + overflow = check_epi16_overflow_x4(&step3[10], &step3[11], &step3[12], + &step3[13]); + if (overflow) { + if (pass == 0) + HIGH_FDCT32x32_2D_C(input, output_org, stride); + else + HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org); + return; + } +#endif // DCT_HIGH_BIT_DEPTH + } + { + step3[16] = ADD_EPI16(step2[23], step1[16]); + step3[17] = ADD_EPI16(step2[22], step1[17]); + step3[18] = ADD_EPI16(step2[21], step1[18]); + step3[19] = ADD_EPI16(step2[20], step1[19]); + step3[20] = SUB_EPI16(step1[19], step2[20]); + step3[21] = SUB_EPI16(step1[18], step2[21]); + step3[22] = SUB_EPI16(step1[17], step2[22]); + step3[23] = SUB_EPI16(step1[16], step2[23]); + step3[24] = SUB_EPI16(step1[31], step2[24]); + step3[25] = SUB_EPI16(step1[30], step2[25]); + step3[26] = SUB_EPI16(step1[29], step2[26]); + step3[27] = SUB_EPI16(step1[28], step2[27]); + step3[28] = ADD_EPI16(step2[27], step1[28]); + step3[29] = ADD_EPI16(step2[26], step1[29]); + step3[30] = ADD_EPI16(step2[25], step1[30]); + step3[31] = ADD_EPI16(step2[24], step1[31]); +#if DCT_HIGH_BIT_DEPTH + overflow = check_epi16_overflow_x16( + &step3[16], &step3[17], &step3[18], &step3[19], &step3[20], + &step3[21], &step3[22], &step3[23], &step3[24], &step3[25], + &step3[26], &step3[27], &step3[28], &step3[29], &step3[30], + &step3[31]); + if (overflow) { + if (pass == 0) + HIGH_FDCT32x32_2D_C(input, output_org, stride); + else + HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org); + return; + } +#endif // DCT_HIGH_BIT_DEPTH + } + + // Stage 4 + { + step1[0] = ADD_EPI16(step3[3], step3[0]); + step1[1] = ADD_EPI16(step3[2], step3[1]); + step1[2] = SUB_EPI16(step3[1], step3[2]); + step1[3] = SUB_EPI16(step3[0], step3[3]); + step1[8] = ADD_EPI16(step3[11], step2[8]); + step1[9] = ADD_EPI16(step3[10], step2[9]); + step1[10] = SUB_EPI16(step2[9], step3[10]); + step1[11] = SUB_EPI16(step2[8], step3[11]); + step1[12] = SUB_EPI16(step2[15], step3[12]); + step1[13] = SUB_EPI16(step2[14], step3[13]); + step1[14] = ADD_EPI16(step3[13], step2[14]); + step1[15] = ADD_EPI16(step3[12], step2[15]); +#if DCT_HIGH_BIT_DEPTH + overflow = check_epi16_overflow_x16( + &step1[0], &step1[1], &step1[2], &step1[3], &step1[4], &step1[5], + &step1[6], &step1[7], &step1[8], &step1[9], &step1[10], + &step1[11], &step1[12], &step1[13], &step1[14], &step1[15]); + if (overflow) { + if (pass == 0) + HIGH_FDCT32x32_2D_C(input, output_org, stride); + else + HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org); + return; + } +#endif // DCT_HIGH_BIT_DEPTH + } + { + const __m128i s1_05_0 = _mm_unpacklo_epi16(step3[6], step3[5]); + const __m128i s1_05_1 = _mm_unpackhi_epi16(step3[6], step3[5]); + const __m128i s1_05_2 = _mm_madd_epi16(s1_05_0, k__cospi_p16_m16); + const __m128i s1_05_3 = _mm_madd_epi16(s1_05_1, k__cospi_p16_m16); + const __m128i s1_06_2 = _mm_madd_epi16(s1_05_0, k__cospi_p16_p16); + const __m128i s1_06_3 = _mm_madd_epi16(s1_05_1, k__cospi_p16_p16); + // dct_const_round_shift + const __m128i s1_05_4 = _mm_add_epi32(s1_05_2, k__DCT_CONST_ROUNDING); + const __m128i s1_05_5 = _mm_add_epi32(s1_05_3, k__DCT_CONST_ROUNDING); + const __m128i s1_06_4 = _mm_add_epi32(s1_06_2, k__DCT_CONST_ROUNDING); + const __m128i s1_06_5 = _mm_add_epi32(s1_06_3, k__DCT_CONST_ROUNDING); + const __m128i s1_05_6 = _mm_srai_epi32(s1_05_4, DCT_CONST_BITS); + const __m128i s1_05_7 = _mm_srai_epi32(s1_05_5, DCT_CONST_BITS); + const __m128i s1_06_6 = _mm_srai_epi32(s1_06_4, DCT_CONST_BITS); + const __m128i s1_06_7 = _mm_srai_epi32(s1_06_5, DCT_CONST_BITS); + // Combine + step1[5] = _mm_packs_epi32(s1_05_6, s1_05_7); + step1[6] = _mm_packs_epi32(s1_06_6, s1_06_7); +#if DCT_HIGH_BIT_DEPTH + overflow = check_epi16_overflow_x2(&step1[5], &step1[6]); + if (overflow) { + if (pass == 0) + HIGH_FDCT32x32_2D_C(input, output_org, stride); + else + HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org); + return; + } +#endif // DCT_HIGH_BIT_DEPTH + } + { + const __m128i s1_18_0 = _mm_unpacklo_epi16(step3[18], step3[29]); + const __m128i s1_18_1 = _mm_unpackhi_epi16(step3[18], step3[29]); + const __m128i s1_19_0 = _mm_unpacklo_epi16(step3[19], step3[28]); + const __m128i s1_19_1 = _mm_unpackhi_epi16(step3[19], step3[28]); + const __m128i s1_20_0 = _mm_unpacklo_epi16(step3[20], step3[27]); + const __m128i s1_20_1 = _mm_unpackhi_epi16(step3[20], step3[27]); + const __m128i s1_21_0 = _mm_unpacklo_epi16(step3[21], step3[26]); + const __m128i s1_21_1 = _mm_unpackhi_epi16(step3[21], step3[26]); + const __m128i s1_18_2 = _mm_madd_epi16(s1_18_0, k__cospi_m08_p24); + const __m128i s1_18_3 = _mm_madd_epi16(s1_18_1, k__cospi_m08_p24); + const __m128i s1_19_2 = _mm_madd_epi16(s1_19_0, k__cospi_m08_p24); + const __m128i s1_19_3 = _mm_madd_epi16(s1_19_1, k__cospi_m08_p24); + const __m128i s1_20_2 = _mm_madd_epi16(s1_20_0, k__cospi_m24_m08); + const __m128i s1_20_3 = _mm_madd_epi16(s1_20_1, k__cospi_m24_m08); + const __m128i s1_21_2 = _mm_madd_epi16(s1_21_0, k__cospi_m24_m08); + const __m128i s1_21_3 = _mm_madd_epi16(s1_21_1, k__cospi_m24_m08); + const __m128i s1_26_2 = _mm_madd_epi16(s1_21_0, k__cospi_m08_p24); + const __m128i s1_26_3 = _mm_madd_epi16(s1_21_1, k__cospi_m08_p24); + const __m128i s1_27_2 = _mm_madd_epi16(s1_20_0, k__cospi_m08_p24); + const __m128i s1_27_3 = _mm_madd_epi16(s1_20_1, k__cospi_m08_p24); + const __m128i s1_28_2 = _mm_madd_epi16(s1_19_0, k__cospi_p24_p08); + const __m128i s1_28_3 = _mm_madd_epi16(s1_19_1, k__cospi_p24_p08); + const __m128i s1_29_2 = _mm_madd_epi16(s1_18_0, k__cospi_p24_p08); + const __m128i s1_29_3 = _mm_madd_epi16(s1_18_1, k__cospi_p24_p08); + // dct_const_round_shift + const __m128i s1_18_4 = _mm_add_epi32(s1_18_2, k__DCT_CONST_ROUNDING); + const __m128i s1_18_5 = _mm_add_epi32(s1_18_3, k__DCT_CONST_ROUNDING); + const __m128i s1_19_4 = _mm_add_epi32(s1_19_2, k__DCT_CONST_ROUNDING); + const __m128i s1_19_5 = _mm_add_epi32(s1_19_3, k__DCT_CONST_ROUNDING); + const __m128i s1_20_4 = _mm_add_epi32(s1_20_2, k__DCT_CONST_ROUNDING); + const __m128i s1_20_5 = _mm_add_epi32(s1_20_3, k__DCT_CONST_ROUNDING); + const __m128i s1_21_4 = _mm_add_epi32(s1_21_2, k__DCT_CONST_ROUNDING); + const __m128i s1_21_5 = _mm_add_epi32(s1_21_3, k__DCT_CONST_ROUNDING); + const __m128i s1_26_4 = _mm_add_epi32(s1_26_2, k__DCT_CONST_ROUNDING); + const __m128i s1_26_5 = _mm_add_epi32(s1_26_3, k__DCT_CONST_ROUNDING); + const __m128i s1_27_4 = _mm_add_epi32(s1_27_2, k__DCT_CONST_ROUNDING); + const __m128i s1_27_5 = _mm_add_epi32(s1_27_3, k__DCT_CONST_ROUNDING); + const __m128i s1_28_4 = _mm_add_epi32(s1_28_2, k__DCT_CONST_ROUNDING); + const __m128i s1_28_5 = _mm_add_epi32(s1_28_3, k__DCT_CONST_ROUNDING); + const __m128i s1_29_4 = _mm_add_epi32(s1_29_2, k__DCT_CONST_ROUNDING); + const __m128i s1_29_5 = _mm_add_epi32(s1_29_3, k__DCT_CONST_ROUNDING); + const __m128i s1_18_6 = _mm_srai_epi32(s1_18_4, DCT_CONST_BITS); + const __m128i s1_18_7 = _mm_srai_epi32(s1_18_5, DCT_CONST_BITS); + const __m128i s1_19_6 = _mm_srai_epi32(s1_19_4, DCT_CONST_BITS); + const __m128i s1_19_7 = _mm_srai_epi32(s1_19_5, DCT_CONST_BITS); + const __m128i s1_20_6 = _mm_srai_epi32(s1_20_4, DCT_CONST_BITS); + const __m128i s1_20_7 = _mm_srai_epi32(s1_20_5, DCT_CONST_BITS); + const __m128i s1_21_6 = _mm_srai_epi32(s1_21_4, DCT_CONST_BITS); + const __m128i s1_21_7 = _mm_srai_epi32(s1_21_5, DCT_CONST_BITS); + const __m128i s1_26_6 = _mm_srai_epi32(s1_26_4, DCT_CONST_BITS); + const __m128i s1_26_7 = _mm_srai_epi32(s1_26_5, DCT_CONST_BITS); + const __m128i s1_27_6 = _mm_srai_epi32(s1_27_4, DCT_CONST_BITS); + const __m128i s1_27_7 = _mm_srai_epi32(s1_27_5, DCT_CONST_BITS); + const __m128i s1_28_6 = _mm_srai_epi32(s1_28_4, DCT_CONST_BITS); + const __m128i s1_28_7 = _mm_srai_epi32(s1_28_5, DCT_CONST_BITS); + const __m128i s1_29_6 = _mm_srai_epi32(s1_29_4, DCT_CONST_BITS); + const __m128i s1_29_7 = _mm_srai_epi32(s1_29_5, DCT_CONST_BITS); + // Combine + step1[18] = _mm_packs_epi32(s1_18_6, s1_18_7); + step1[19] = _mm_packs_epi32(s1_19_6, s1_19_7); + step1[20] = _mm_packs_epi32(s1_20_6, s1_20_7); + step1[21] = _mm_packs_epi32(s1_21_6, s1_21_7); + step1[26] = _mm_packs_epi32(s1_26_6, s1_26_7); + step1[27] = _mm_packs_epi32(s1_27_6, s1_27_7); + step1[28] = _mm_packs_epi32(s1_28_6, s1_28_7); + step1[29] = _mm_packs_epi32(s1_29_6, s1_29_7); +#if DCT_HIGH_BIT_DEPTH + overflow = check_epi16_overflow_x8(&step1[18], &step1[19], &step1[20], + &step1[21], &step1[26], &step1[27], + &step1[28], &step1[29]); + if (overflow) { + if (pass == 0) + HIGH_FDCT32x32_2D_C(input, output_org, stride); + else + HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org); + return; + } +#endif // DCT_HIGH_BIT_DEPTH + } + // Stage 5 + { + step2[4] = ADD_EPI16(step1[5], step3[4]); + step2[5] = SUB_EPI16(step3[4], step1[5]); + step2[6] = SUB_EPI16(step3[7], step1[6]); + step2[7] = ADD_EPI16(step1[6], step3[7]); +#if DCT_HIGH_BIT_DEPTH + overflow = check_epi16_overflow_x4(&step2[4], &step2[5], &step2[6], + &step2[7]); + if (overflow) { + if (pass == 0) + HIGH_FDCT32x32_2D_C(input, output_org, stride); + else + HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org); + return; + } +#endif // DCT_HIGH_BIT_DEPTH + } + { + const __m128i out_00_0 = _mm_unpacklo_epi16(step1[0], step1[1]); + const __m128i out_00_1 = _mm_unpackhi_epi16(step1[0], step1[1]); + const __m128i out_08_0 = _mm_unpacklo_epi16(step1[2], step1[3]); + const __m128i out_08_1 = _mm_unpackhi_epi16(step1[2], step1[3]); + const __m128i out_00_2 = _mm_madd_epi16(out_00_0, k__cospi_p16_p16); + const __m128i out_00_3 = _mm_madd_epi16(out_00_1, k__cospi_p16_p16); + const __m128i out_16_2 = _mm_madd_epi16(out_00_0, k__cospi_p16_m16); + const __m128i out_16_3 = _mm_madd_epi16(out_00_1, k__cospi_p16_m16); + const __m128i out_08_2 = _mm_madd_epi16(out_08_0, k__cospi_p24_p08); + const __m128i out_08_3 = _mm_madd_epi16(out_08_1, k__cospi_p24_p08); + const __m128i out_24_2 = _mm_madd_epi16(out_08_0, k__cospi_m08_p24); + const __m128i out_24_3 = _mm_madd_epi16(out_08_1, k__cospi_m08_p24); + // dct_const_round_shift + const __m128i out_00_4 = + _mm_add_epi32(out_00_2, k__DCT_CONST_ROUNDING); + const __m128i out_00_5 = + _mm_add_epi32(out_00_3, k__DCT_CONST_ROUNDING); + const __m128i out_16_4 = + _mm_add_epi32(out_16_2, k__DCT_CONST_ROUNDING); + const __m128i out_16_5 = + _mm_add_epi32(out_16_3, k__DCT_CONST_ROUNDING); + const __m128i out_08_4 = + _mm_add_epi32(out_08_2, k__DCT_CONST_ROUNDING); + const __m128i out_08_5 = + _mm_add_epi32(out_08_3, k__DCT_CONST_ROUNDING); + const __m128i out_24_4 = + _mm_add_epi32(out_24_2, k__DCT_CONST_ROUNDING); + const __m128i out_24_5 = + _mm_add_epi32(out_24_3, k__DCT_CONST_ROUNDING); + const __m128i out_00_6 = _mm_srai_epi32(out_00_4, DCT_CONST_BITS); + const __m128i out_00_7 = _mm_srai_epi32(out_00_5, DCT_CONST_BITS); + const __m128i out_16_6 = _mm_srai_epi32(out_16_4, DCT_CONST_BITS); + const __m128i out_16_7 = _mm_srai_epi32(out_16_5, DCT_CONST_BITS); + const __m128i out_08_6 = _mm_srai_epi32(out_08_4, DCT_CONST_BITS); + const __m128i out_08_7 = _mm_srai_epi32(out_08_5, DCT_CONST_BITS); + const __m128i out_24_6 = _mm_srai_epi32(out_24_4, DCT_CONST_BITS); + const __m128i out_24_7 = _mm_srai_epi32(out_24_5, DCT_CONST_BITS); + // Combine + out[0] = _mm_packs_epi32(out_00_6, out_00_7); + out[16] = _mm_packs_epi32(out_16_6, out_16_7); + out[8] = _mm_packs_epi32(out_08_6, out_08_7); + out[24] = _mm_packs_epi32(out_24_6, out_24_7); +#if DCT_HIGH_BIT_DEPTH + overflow = + check_epi16_overflow_x4(&out[0], &out[16], &out[8], &out[24]); + if (overflow) { + if (pass == 0) + HIGH_FDCT32x32_2D_C(input, output_org, stride); + else + HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org); + return; + } +#endif // DCT_HIGH_BIT_DEPTH + } + { + const __m128i s2_09_0 = _mm_unpacklo_epi16(step1[9], step1[14]); + const __m128i s2_09_1 = _mm_unpackhi_epi16(step1[9], step1[14]); + const __m128i s2_10_0 = _mm_unpacklo_epi16(step1[10], step1[13]); + const __m128i s2_10_1 = _mm_unpackhi_epi16(step1[10], step1[13]); + const __m128i s2_09_2 = _mm_madd_epi16(s2_09_0, k__cospi_m08_p24); + const __m128i s2_09_3 = _mm_madd_epi16(s2_09_1, k__cospi_m08_p24); + const __m128i s2_10_2 = _mm_madd_epi16(s2_10_0, k__cospi_m24_m08); + const __m128i s2_10_3 = _mm_madd_epi16(s2_10_1, k__cospi_m24_m08); + const __m128i s2_13_2 = _mm_madd_epi16(s2_10_0, k__cospi_m08_p24); + const __m128i s2_13_3 = _mm_madd_epi16(s2_10_1, k__cospi_m08_p24); + const __m128i s2_14_2 = _mm_madd_epi16(s2_09_0, k__cospi_p24_p08); + const __m128i s2_14_3 = _mm_madd_epi16(s2_09_1, k__cospi_p24_p08); + // dct_const_round_shift + const __m128i s2_09_4 = _mm_add_epi32(s2_09_2, k__DCT_CONST_ROUNDING); + const __m128i s2_09_5 = _mm_add_epi32(s2_09_3, k__DCT_CONST_ROUNDING); + const __m128i s2_10_4 = _mm_add_epi32(s2_10_2, k__DCT_CONST_ROUNDING); + const __m128i s2_10_5 = _mm_add_epi32(s2_10_3, k__DCT_CONST_ROUNDING); + const __m128i s2_13_4 = _mm_add_epi32(s2_13_2, k__DCT_CONST_ROUNDING); + const __m128i s2_13_5 = _mm_add_epi32(s2_13_3, k__DCT_CONST_ROUNDING); + const __m128i s2_14_4 = _mm_add_epi32(s2_14_2, k__DCT_CONST_ROUNDING); + const __m128i s2_14_5 = _mm_add_epi32(s2_14_3, k__DCT_CONST_ROUNDING); + const __m128i s2_09_6 = _mm_srai_epi32(s2_09_4, DCT_CONST_BITS); + const __m128i s2_09_7 = _mm_srai_epi32(s2_09_5, DCT_CONST_BITS); + const __m128i s2_10_6 = _mm_srai_epi32(s2_10_4, DCT_CONST_BITS); + const __m128i s2_10_7 = _mm_srai_epi32(s2_10_5, DCT_CONST_BITS); + const __m128i s2_13_6 = _mm_srai_epi32(s2_13_4, DCT_CONST_BITS); + const __m128i s2_13_7 = _mm_srai_epi32(s2_13_5, DCT_CONST_BITS); + const __m128i s2_14_6 = _mm_srai_epi32(s2_14_4, DCT_CONST_BITS); + const __m128i s2_14_7 = _mm_srai_epi32(s2_14_5, DCT_CONST_BITS); + // Combine + step2[9] = _mm_packs_epi32(s2_09_6, s2_09_7); + step2[10] = _mm_packs_epi32(s2_10_6, s2_10_7); + step2[13] = _mm_packs_epi32(s2_13_6, s2_13_7); + step2[14] = _mm_packs_epi32(s2_14_6, s2_14_7); +#if DCT_HIGH_BIT_DEPTH + overflow = check_epi16_overflow_x4(&step2[9], &step2[10], &step2[13], + &step2[14]); + if (overflow) { + if (pass == 0) + HIGH_FDCT32x32_2D_C(input, output_org, stride); + else + HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org); + return; + } +#endif // DCT_HIGH_BIT_DEPTH + } + { + step2[16] = ADD_EPI16(step1[19], step3[16]); + step2[17] = ADD_EPI16(step1[18], step3[17]); + step2[18] = SUB_EPI16(step3[17], step1[18]); + step2[19] = SUB_EPI16(step3[16], step1[19]); + step2[20] = SUB_EPI16(step3[23], step1[20]); + step2[21] = SUB_EPI16(step3[22], step1[21]); + step2[22] = ADD_EPI16(step1[21], step3[22]); + step2[23] = ADD_EPI16(step1[20], step3[23]); + step2[24] = ADD_EPI16(step1[27], step3[24]); + step2[25] = ADD_EPI16(step1[26], step3[25]); + step2[26] = SUB_EPI16(step3[25], step1[26]); + step2[27] = SUB_EPI16(step3[24], step1[27]); + step2[28] = SUB_EPI16(step3[31], step1[28]); + step2[29] = SUB_EPI16(step3[30], step1[29]); + step2[30] = ADD_EPI16(step1[29], step3[30]); + step2[31] = ADD_EPI16(step1[28], step3[31]); +#if DCT_HIGH_BIT_DEPTH + overflow = check_epi16_overflow_x16( + &step2[16], &step2[17], &step2[18], &step2[19], &step2[20], + &step2[21], &step2[22], &step2[23], &step2[24], &step2[25], + &step2[26], &step2[27], &step2[28], &step2[29], &step2[30], + &step2[31]); + if (overflow) { + if (pass == 0) + HIGH_FDCT32x32_2D_C(input, output_org, stride); + else + HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org); + return; + } +#endif // DCT_HIGH_BIT_DEPTH + } + // Stage 6 + { + const __m128i out_04_0 = _mm_unpacklo_epi16(step2[4], step2[7]); + const __m128i out_04_1 = _mm_unpackhi_epi16(step2[4], step2[7]); + const __m128i out_20_0 = _mm_unpacklo_epi16(step2[5], step2[6]); + const __m128i out_20_1 = _mm_unpackhi_epi16(step2[5], step2[6]); + const __m128i out_12_0 = _mm_unpacklo_epi16(step2[5], step2[6]); + const __m128i out_12_1 = _mm_unpackhi_epi16(step2[5], step2[6]); + const __m128i out_28_0 = _mm_unpacklo_epi16(step2[4], step2[7]); + const __m128i out_28_1 = _mm_unpackhi_epi16(step2[4], step2[7]); + const __m128i out_04_2 = _mm_madd_epi16(out_04_0, k__cospi_p28_p04); + const __m128i out_04_3 = _mm_madd_epi16(out_04_1, k__cospi_p28_p04); + const __m128i out_20_2 = _mm_madd_epi16(out_20_0, k__cospi_p12_p20); + const __m128i out_20_3 = _mm_madd_epi16(out_20_1, k__cospi_p12_p20); + const __m128i out_12_2 = _mm_madd_epi16(out_12_0, k__cospi_m20_p12); + const __m128i out_12_3 = _mm_madd_epi16(out_12_1, k__cospi_m20_p12); + const __m128i out_28_2 = _mm_madd_epi16(out_28_0, k__cospi_m04_p28); + const __m128i out_28_3 = _mm_madd_epi16(out_28_1, k__cospi_m04_p28); + // dct_const_round_shift + const __m128i out_04_4 = + _mm_add_epi32(out_04_2, k__DCT_CONST_ROUNDING); + const __m128i out_04_5 = + _mm_add_epi32(out_04_3, k__DCT_CONST_ROUNDING); + const __m128i out_20_4 = + _mm_add_epi32(out_20_2, k__DCT_CONST_ROUNDING); + const __m128i out_20_5 = + _mm_add_epi32(out_20_3, k__DCT_CONST_ROUNDING); + const __m128i out_12_4 = + _mm_add_epi32(out_12_2, k__DCT_CONST_ROUNDING); + const __m128i out_12_5 = + _mm_add_epi32(out_12_3, k__DCT_CONST_ROUNDING); + const __m128i out_28_4 = + _mm_add_epi32(out_28_2, k__DCT_CONST_ROUNDING); + const __m128i out_28_5 = + _mm_add_epi32(out_28_3, k__DCT_CONST_ROUNDING); + const __m128i out_04_6 = _mm_srai_epi32(out_04_4, DCT_CONST_BITS); + const __m128i out_04_7 = _mm_srai_epi32(out_04_5, DCT_CONST_BITS); + const __m128i out_20_6 = _mm_srai_epi32(out_20_4, DCT_CONST_BITS); + const __m128i out_20_7 = _mm_srai_epi32(out_20_5, DCT_CONST_BITS); + const __m128i out_12_6 = _mm_srai_epi32(out_12_4, DCT_CONST_BITS); + const __m128i out_12_7 = _mm_srai_epi32(out_12_5, DCT_CONST_BITS); + const __m128i out_28_6 = _mm_srai_epi32(out_28_4, DCT_CONST_BITS); + const __m128i out_28_7 = _mm_srai_epi32(out_28_5, DCT_CONST_BITS); + // Combine + out[4] = _mm_packs_epi32(out_04_6, out_04_7); + out[20] = _mm_packs_epi32(out_20_6, out_20_7); + out[12] = _mm_packs_epi32(out_12_6, out_12_7); + out[28] = _mm_packs_epi32(out_28_6, out_28_7); +#if DCT_HIGH_BIT_DEPTH + overflow = + check_epi16_overflow_x4(&out[4], &out[20], &out[12], &out[28]); + if (overflow) { + if (pass == 0) + HIGH_FDCT32x32_2D_C(input, output_org, stride); + else + HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org); + return; + } +#endif // DCT_HIGH_BIT_DEPTH + } + { + step3[8] = ADD_EPI16(step2[9], step1[8]); + step3[9] = SUB_EPI16(step1[8], step2[9]); + step3[10] = SUB_EPI16(step1[11], step2[10]); + step3[11] = ADD_EPI16(step2[10], step1[11]); + step3[12] = ADD_EPI16(step2[13], step1[12]); + step3[13] = SUB_EPI16(step1[12], step2[13]); + step3[14] = SUB_EPI16(step1[15], step2[14]); + step3[15] = ADD_EPI16(step2[14], step1[15]); +#if DCT_HIGH_BIT_DEPTH + overflow = check_epi16_overflow_x8(&step3[8], &step3[9], &step3[10], + &step3[11], &step3[12], &step3[13], + &step3[14], &step3[15]); + if (overflow) { + if (pass == 0) + HIGH_FDCT32x32_2D_C(input, output_org, stride); + else + HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org); + return; + } +#endif // DCT_HIGH_BIT_DEPTH + } + { + const __m128i s3_17_0 = _mm_unpacklo_epi16(step2[17], step2[30]); + const __m128i s3_17_1 = _mm_unpackhi_epi16(step2[17], step2[30]); + const __m128i s3_18_0 = _mm_unpacklo_epi16(step2[18], step2[29]); + const __m128i s3_18_1 = _mm_unpackhi_epi16(step2[18], step2[29]); + const __m128i s3_21_0 = _mm_unpacklo_epi16(step2[21], step2[26]); + const __m128i s3_21_1 = _mm_unpackhi_epi16(step2[21], step2[26]); + const __m128i s3_22_0 = _mm_unpacklo_epi16(step2[22], step2[25]); + const __m128i s3_22_1 = _mm_unpackhi_epi16(step2[22], step2[25]); + const __m128i s3_17_2 = _mm_madd_epi16(s3_17_0, k__cospi_m04_p28); + const __m128i s3_17_3 = _mm_madd_epi16(s3_17_1, k__cospi_m04_p28); + const __m128i s3_18_2 = _mm_madd_epi16(s3_18_0, k__cospi_m28_m04); + const __m128i s3_18_3 = _mm_madd_epi16(s3_18_1, k__cospi_m28_m04); + const __m128i s3_21_2 = _mm_madd_epi16(s3_21_0, k__cospi_m20_p12); + const __m128i s3_21_3 = _mm_madd_epi16(s3_21_1, k__cospi_m20_p12); + const __m128i s3_22_2 = _mm_madd_epi16(s3_22_0, k__cospi_m12_m20); + const __m128i s3_22_3 = _mm_madd_epi16(s3_22_1, k__cospi_m12_m20); + const __m128i s3_25_2 = _mm_madd_epi16(s3_22_0, k__cospi_m20_p12); + const __m128i s3_25_3 = _mm_madd_epi16(s3_22_1, k__cospi_m20_p12); + const __m128i s3_26_2 = _mm_madd_epi16(s3_21_0, k__cospi_p12_p20); + const __m128i s3_26_3 = _mm_madd_epi16(s3_21_1, k__cospi_p12_p20); + const __m128i s3_29_2 = _mm_madd_epi16(s3_18_0, k__cospi_m04_p28); + const __m128i s3_29_3 = _mm_madd_epi16(s3_18_1, k__cospi_m04_p28); + const __m128i s3_30_2 = _mm_madd_epi16(s3_17_0, k__cospi_p28_p04); + const __m128i s3_30_3 = _mm_madd_epi16(s3_17_1, k__cospi_p28_p04); + // dct_const_round_shift + const __m128i s3_17_4 = _mm_add_epi32(s3_17_2, k__DCT_CONST_ROUNDING); + const __m128i s3_17_5 = _mm_add_epi32(s3_17_3, k__DCT_CONST_ROUNDING); + const __m128i s3_18_4 = _mm_add_epi32(s3_18_2, k__DCT_CONST_ROUNDING); + const __m128i s3_18_5 = _mm_add_epi32(s3_18_3, k__DCT_CONST_ROUNDING); + const __m128i s3_21_4 = _mm_add_epi32(s3_21_2, k__DCT_CONST_ROUNDING); + const __m128i s3_21_5 = _mm_add_epi32(s3_21_3, k__DCT_CONST_ROUNDING); + const __m128i s3_22_4 = _mm_add_epi32(s3_22_2, k__DCT_CONST_ROUNDING); + const __m128i s3_22_5 = _mm_add_epi32(s3_22_3, k__DCT_CONST_ROUNDING); + const __m128i s3_17_6 = _mm_srai_epi32(s3_17_4, DCT_CONST_BITS); + const __m128i s3_17_7 = _mm_srai_epi32(s3_17_5, DCT_CONST_BITS); + const __m128i s3_18_6 = _mm_srai_epi32(s3_18_4, DCT_CONST_BITS); + const __m128i s3_18_7 = _mm_srai_epi32(s3_18_5, DCT_CONST_BITS); + const __m128i s3_21_6 = _mm_srai_epi32(s3_21_4, DCT_CONST_BITS); + const __m128i s3_21_7 = _mm_srai_epi32(s3_21_5, DCT_CONST_BITS); + const __m128i s3_22_6 = _mm_srai_epi32(s3_22_4, DCT_CONST_BITS); + const __m128i s3_22_7 = _mm_srai_epi32(s3_22_5, DCT_CONST_BITS); + const __m128i s3_25_4 = _mm_add_epi32(s3_25_2, k__DCT_CONST_ROUNDING); + const __m128i s3_25_5 = _mm_add_epi32(s3_25_3, k__DCT_CONST_ROUNDING); + const __m128i s3_26_4 = _mm_add_epi32(s3_26_2, k__DCT_CONST_ROUNDING); + const __m128i s3_26_5 = _mm_add_epi32(s3_26_3, k__DCT_CONST_ROUNDING); + const __m128i s3_29_4 = _mm_add_epi32(s3_29_2, k__DCT_CONST_ROUNDING); + const __m128i s3_29_5 = _mm_add_epi32(s3_29_3, k__DCT_CONST_ROUNDING); + const __m128i s3_30_4 = _mm_add_epi32(s3_30_2, k__DCT_CONST_ROUNDING); + const __m128i s3_30_5 = _mm_add_epi32(s3_30_3, k__DCT_CONST_ROUNDING); + const __m128i s3_25_6 = _mm_srai_epi32(s3_25_4, DCT_CONST_BITS); + const __m128i s3_25_7 = _mm_srai_epi32(s3_25_5, DCT_CONST_BITS); + const __m128i s3_26_6 = _mm_srai_epi32(s3_26_4, DCT_CONST_BITS); + const __m128i s3_26_7 = _mm_srai_epi32(s3_26_5, DCT_CONST_BITS); + const __m128i s3_29_6 = _mm_srai_epi32(s3_29_4, DCT_CONST_BITS); + const __m128i s3_29_7 = _mm_srai_epi32(s3_29_5, DCT_CONST_BITS); + const __m128i s3_30_6 = _mm_srai_epi32(s3_30_4, DCT_CONST_BITS); + const __m128i s3_30_7 = _mm_srai_epi32(s3_30_5, DCT_CONST_BITS); + // Combine + step3[17] = _mm_packs_epi32(s3_17_6, s3_17_7); + step3[18] = _mm_packs_epi32(s3_18_6, s3_18_7); + step3[21] = _mm_packs_epi32(s3_21_6, s3_21_7); + step3[22] = _mm_packs_epi32(s3_22_6, s3_22_7); + // Combine + step3[25] = _mm_packs_epi32(s3_25_6, s3_25_7); + step3[26] = _mm_packs_epi32(s3_26_6, s3_26_7); + step3[29] = _mm_packs_epi32(s3_29_6, s3_29_7); + step3[30] = _mm_packs_epi32(s3_30_6, s3_30_7); +#if DCT_HIGH_BIT_DEPTH + overflow = check_epi16_overflow_x8(&step3[17], &step3[18], &step3[21], + &step3[22], &step3[25], &step3[26], + &step3[29], &step3[30]); + if (overflow) { + if (pass == 0) + HIGH_FDCT32x32_2D_C(input, output_org, stride); + else + HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org); + return; + } +#endif // DCT_HIGH_BIT_DEPTH + } + // Stage 7 + { + const __m128i out_02_0 = _mm_unpacklo_epi16(step3[8], step3[15]); + const __m128i out_02_1 = _mm_unpackhi_epi16(step3[8], step3[15]); + const __m128i out_18_0 = _mm_unpacklo_epi16(step3[9], step3[14]); + const __m128i out_18_1 = _mm_unpackhi_epi16(step3[9], step3[14]); + const __m128i out_10_0 = _mm_unpacklo_epi16(step3[10], step3[13]); + const __m128i out_10_1 = _mm_unpackhi_epi16(step3[10], step3[13]); + const __m128i out_26_0 = _mm_unpacklo_epi16(step3[11], step3[12]); + const __m128i out_26_1 = _mm_unpackhi_epi16(step3[11], step3[12]); + const __m128i out_02_2 = _mm_madd_epi16(out_02_0, k__cospi_p30_p02); + const __m128i out_02_3 = _mm_madd_epi16(out_02_1, k__cospi_p30_p02); + const __m128i out_18_2 = _mm_madd_epi16(out_18_0, k__cospi_p14_p18); + const __m128i out_18_3 = _mm_madd_epi16(out_18_1, k__cospi_p14_p18); + const __m128i out_10_2 = _mm_madd_epi16(out_10_0, k__cospi_p22_p10); + const __m128i out_10_3 = _mm_madd_epi16(out_10_1, k__cospi_p22_p10); + const __m128i out_26_2 = _mm_madd_epi16(out_26_0, k__cospi_p06_p26); + const __m128i out_26_3 = _mm_madd_epi16(out_26_1, k__cospi_p06_p26); + const __m128i out_06_2 = _mm_madd_epi16(out_26_0, k__cospi_m26_p06); + const __m128i out_06_3 = _mm_madd_epi16(out_26_1, k__cospi_m26_p06); + const __m128i out_22_2 = _mm_madd_epi16(out_10_0, k__cospi_m10_p22); + const __m128i out_22_3 = _mm_madd_epi16(out_10_1, k__cospi_m10_p22); + const __m128i out_14_2 = _mm_madd_epi16(out_18_0, k__cospi_m18_p14); + const __m128i out_14_3 = _mm_madd_epi16(out_18_1, k__cospi_m18_p14); + const __m128i out_30_2 = _mm_madd_epi16(out_02_0, k__cospi_m02_p30); + const __m128i out_30_3 = _mm_madd_epi16(out_02_1, k__cospi_m02_p30); + // dct_const_round_shift + const __m128i out_02_4 = + _mm_add_epi32(out_02_2, k__DCT_CONST_ROUNDING); + const __m128i out_02_5 = + _mm_add_epi32(out_02_3, k__DCT_CONST_ROUNDING); + const __m128i out_18_4 = + _mm_add_epi32(out_18_2, k__DCT_CONST_ROUNDING); + const __m128i out_18_5 = + _mm_add_epi32(out_18_3, k__DCT_CONST_ROUNDING); + const __m128i out_10_4 = + _mm_add_epi32(out_10_2, k__DCT_CONST_ROUNDING); + const __m128i out_10_5 = + _mm_add_epi32(out_10_3, k__DCT_CONST_ROUNDING); + const __m128i out_26_4 = + _mm_add_epi32(out_26_2, k__DCT_CONST_ROUNDING); + const __m128i out_26_5 = + _mm_add_epi32(out_26_3, k__DCT_CONST_ROUNDING); + const __m128i out_06_4 = + _mm_add_epi32(out_06_2, k__DCT_CONST_ROUNDING); + const __m128i out_06_5 = + _mm_add_epi32(out_06_3, k__DCT_CONST_ROUNDING); + const __m128i out_22_4 = + _mm_add_epi32(out_22_2, k__DCT_CONST_ROUNDING); + const __m128i out_22_5 = + _mm_add_epi32(out_22_3, k__DCT_CONST_ROUNDING); + const __m128i out_14_4 = + _mm_add_epi32(out_14_2, k__DCT_CONST_ROUNDING); + const __m128i out_14_5 = + _mm_add_epi32(out_14_3, k__DCT_CONST_ROUNDING); + const __m128i out_30_4 = + _mm_add_epi32(out_30_2, k__DCT_CONST_ROUNDING); + const __m128i out_30_5 = + _mm_add_epi32(out_30_3, k__DCT_CONST_ROUNDING); + const __m128i out_02_6 = _mm_srai_epi32(out_02_4, DCT_CONST_BITS); + const __m128i out_02_7 = _mm_srai_epi32(out_02_5, DCT_CONST_BITS); + const __m128i out_18_6 = _mm_srai_epi32(out_18_4, DCT_CONST_BITS); + const __m128i out_18_7 = _mm_srai_epi32(out_18_5, DCT_CONST_BITS); + const __m128i out_10_6 = _mm_srai_epi32(out_10_4, DCT_CONST_BITS); + const __m128i out_10_7 = _mm_srai_epi32(out_10_5, DCT_CONST_BITS); + const __m128i out_26_6 = _mm_srai_epi32(out_26_4, DCT_CONST_BITS); + const __m128i out_26_7 = _mm_srai_epi32(out_26_5, DCT_CONST_BITS); + const __m128i out_06_6 = _mm_srai_epi32(out_06_4, DCT_CONST_BITS); + const __m128i out_06_7 = _mm_srai_epi32(out_06_5, DCT_CONST_BITS); + const __m128i out_22_6 = _mm_srai_epi32(out_22_4, DCT_CONST_BITS); + const __m128i out_22_7 = _mm_srai_epi32(out_22_5, DCT_CONST_BITS); + const __m128i out_14_6 = _mm_srai_epi32(out_14_4, DCT_CONST_BITS); + const __m128i out_14_7 = _mm_srai_epi32(out_14_5, DCT_CONST_BITS); + const __m128i out_30_6 = _mm_srai_epi32(out_30_4, DCT_CONST_BITS); + const __m128i out_30_7 = _mm_srai_epi32(out_30_5, DCT_CONST_BITS); + // Combine + out[2] = _mm_packs_epi32(out_02_6, out_02_7); + out[18] = _mm_packs_epi32(out_18_6, out_18_7); + out[10] = _mm_packs_epi32(out_10_6, out_10_7); + out[26] = _mm_packs_epi32(out_26_6, out_26_7); + out[6] = _mm_packs_epi32(out_06_6, out_06_7); + out[22] = _mm_packs_epi32(out_22_6, out_22_7); + out[14] = _mm_packs_epi32(out_14_6, out_14_7); + out[30] = _mm_packs_epi32(out_30_6, out_30_7); +#if DCT_HIGH_BIT_DEPTH + overflow = + check_epi16_overflow_x8(&out[2], &out[18], &out[10], &out[26], + &out[6], &out[22], &out[14], &out[30]); + if (overflow) { + if (pass == 0) + HIGH_FDCT32x32_2D_C(input, output_org, stride); + else + HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org); + return; + } +#endif // DCT_HIGH_BIT_DEPTH + } + { + step1[16] = ADD_EPI16(step3[17], step2[16]); + step1[17] = SUB_EPI16(step2[16], step3[17]); + step1[18] = SUB_EPI16(step2[19], step3[18]); + step1[19] = ADD_EPI16(step3[18], step2[19]); + step1[20] = ADD_EPI16(step3[21], step2[20]); + step1[21] = SUB_EPI16(step2[20], step3[21]); + step1[22] = SUB_EPI16(step2[23], step3[22]); + step1[23] = ADD_EPI16(step3[22], step2[23]); + step1[24] = ADD_EPI16(step3[25], step2[24]); + step1[25] = SUB_EPI16(step2[24], step3[25]); + step1[26] = SUB_EPI16(step2[27], step3[26]); + step1[27] = ADD_EPI16(step3[26], step2[27]); + step1[28] = ADD_EPI16(step3[29], step2[28]); + step1[29] = SUB_EPI16(step2[28], step3[29]); + step1[30] = SUB_EPI16(step2[31], step3[30]); + step1[31] = ADD_EPI16(step3[30], step2[31]); +#if DCT_HIGH_BIT_DEPTH + overflow = check_epi16_overflow_x16( + &step1[16], &step1[17], &step1[18], &step1[19], &step1[20], + &step1[21], &step1[22], &step1[23], &step1[24], &step1[25], + &step1[26], &step1[27], &step1[28], &step1[29], &step1[30], + &step1[31]); + if (overflow) { + if (pass == 0) + HIGH_FDCT32x32_2D_C(input, output_org, stride); + else + HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org); + return; + } +#endif // DCT_HIGH_BIT_DEPTH + } + // Final stage --- outputs indices are bit-reversed. + { + const __m128i out_01_0 = _mm_unpacklo_epi16(step1[16], step1[31]); + const __m128i out_01_1 = _mm_unpackhi_epi16(step1[16], step1[31]); + const __m128i out_17_0 = _mm_unpacklo_epi16(step1[17], step1[30]); + const __m128i out_17_1 = _mm_unpackhi_epi16(step1[17], step1[30]); + const __m128i out_09_0 = _mm_unpacklo_epi16(step1[18], step1[29]); + const __m128i out_09_1 = _mm_unpackhi_epi16(step1[18], step1[29]); + const __m128i out_25_0 = _mm_unpacklo_epi16(step1[19], step1[28]); + const __m128i out_25_1 = _mm_unpackhi_epi16(step1[19], step1[28]); + const __m128i out_01_2 = _mm_madd_epi16(out_01_0, k__cospi_p31_p01); + const __m128i out_01_3 = _mm_madd_epi16(out_01_1, k__cospi_p31_p01); + const __m128i out_17_2 = _mm_madd_epi16(out_17_0, k__cospi_p15_p17); + const __m128i out_17_3 = _mm_madd_epi16(out_17_1, k__cospi_p15_p17); + const __m128i out_09_2 = _mm_madd_epi16(out_09_0, k__cospi_p23_p09); + const __m128i out_09_3 = _mm_madd_epi16(out_09_1, k__cospi_p23_p09); + const __m128i out_25_2 = _mm_madd_epi16(out_25_0, k__cospi_p07_p25); + const __m128i out_25_3 = _mm_madd_epi16(out_25_1, k__cospi_p07_p25); + const __m128i out_07_2 = _mm_madd_epi16(out_25_0, k__cospi_m25_p07); + const __m128i out_07_3 = _mm_madd_epi16(out_25_1, k__cospi_m25_p07); + const __m128i out_23_2 = _mm_madd_epi16(out_09_0, k__cospi_m09_p23); + const __m128i out_23_3 = _mm_madd_epi16(out_09_1, k__cospi_m09_p23); + const __m128i out_15_2 = _mm_madd_epi16(out_17_0, k__cospi_m17_p15); + const __m128i out_15_3 = _mm_madd_epi16(out_17_1, k__cospi_m17_p15); + const __m128i out_31_2 = _mm_madd_epi16(out_01_0, k__cospi_m01_p31); + const __m128i out_31_3 = _mm_madd_epi16(out_01_1, k__cospi_m01_p31); + // dct_const_round_shift + const __m128i out_01_4 = + _mm_add_epi32(out_01_2, k__DCT_CONST_ROUNDING); + const __m128i out_01_5 = + _mm_add_epi32(out_01_3, k__DCT_CONST_ROUNDING); + const __m128i out_17_4 = + _mm_add_epi32(out_17_2, k__DCT_CONST_ROUNDING); + const __m128i out_17_5 = + _mm_add_epi32(out_17_3, k__DCT_CONST_ROUNDING); + const __m128i out_09_4 = + _mm_add_epi32(out_09_2, k__DCT_CONST_ROUNDING); + const __m128i out_09_5 = + _mm_add_epi32(out_09_3, k__DCT_CONST_ROUNDING); + const __m128i out_25_4 = + _mm_add_epi32(out_25_2, k__DCT_CONST_ROUNDING); + const __m128i out_25_5 = + _mm_add_epi32(out_25_3, k__DCT_CONST_ROUNDING); + const __m128i out_07_4 = + _mm_add_epi32(out_07_2, k__DCT_CONST_ROUNDING); + const __m128i out_07_5 = + _mm_add_epi32(out_07_3, k__DCT_CONST_ROUNDING); + const __m128i out_23_4 = + _mm_add_epi32(out_23_2, k__DCT_CONST_ROUNDING); + const __m128i out_23_5 = + _mm_add_epi32(out_23_3, k__DCT_CONST_ROUNDING); + const __m128i out_15_4 = + _mm_add_epi32(out_15_2, k__DCT_CONST_ROUNDING); + const __m128i out_15_5 = + _mm_add_epi32(out_15_3, k__DCT_CONST_ROUNDING); + const __m128i out_31_4 = + _mm_add_epi32(out_31_2, k__DCT_CONST_ROUNDING); + const __m128i out_31_5 = + _mm_add_epi32(out_31_3, k__DCT_CONST_ROUNDING); + const __m128i out_01_6 = _mm_srai_epi32(out_01_4, DCT_CONST_BITS); + const __m128i out_01_7 = _mm_srai_epi32(out_01_5, DCT_CONST_BITS); + const __m128i out_17_6 = _mm_srai_epi32(out_17_4, DCT_CONST_BITS); + const __m128i out_17_7 = _mm_srai_epi32(out_17_5, DCT_CONST_BITS); + const __m128i out_09_6 = _mm_srai_epi32(out_09_4, DCT_CONST_BITS); + const __m128i out_09_7 = _mm_srai_epi32(out_09_5, DCT_CONST_BITS); + const __m128i out_25_6 = _mm_srai_epi32(out_25_4, DCT_CONST_BITS); + const __m128i out_25_7 = _mm_srai_epi32(out_25_5, DCT_CONST_BITS); + const __m128i out_07_6 = _mm_srai_epi32(out_07_4, DCT_CONST_BITS); + const __m128i out_07_7 = _mm_srai_epi32(out_07_5, DCT_CONST_BITS); + const __m128i out_23_6 = _mm_srai_epi32(out_23_4, DCT_CONST_BITS); + const __m128i out_23_7 = _mm_srai_epi32(out_23_5, DCT_CONST_BITS); + const __m128i out_15_6 = _mm_srai_epi32(out_15_4, DCT_CONST_BITS); + const __m128i out_15_7 = _mm_srai_epi32(out_15_5, DCT_CONST_BITS); + const __m128i out_31_6 = _mm_srai_epi32(out_31_4, DCT_CONST_BITS); + const __m128i out_31_7 = _mm_srai_epi32(out_31_5, DCT_CONST_BITS); + // Combine + out[1] = _mm_packs_epi32(out_01_6, out_01_7); + out[17] = _mm_packs_epi32(out_17_6, out_17_7); + out[9] = _mm_packs_epi32(out_09_6, out_09_7); + out[25] = _mm_packs_epi32(out_25_6, out_25_7); + out[7] = _mm_packs_epi32(out_07_6, out_07_7); + out[23] = _mm_packs_epi32(out_23_6, out_23_7); + out[15] = _mm_packs_epi32(out_15_6, out_15_7); + out[31] = _mm_packs_epi32(out_31_6, out_31_7); +#if DCT_HIGH_BIT_DEPTH + overflow = + check_epi16_overflow_x8(&out[1], &out[17], &out[9], &out[25], + &out[7], &out[23], &out[15], &out[31]); + if (overflow) { + if (pass == 0) + HIGH_FDCT32x32_2D_C(input, output_org, stride); + else + HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org); + return; + } +#endif // DCT_HIGH_BIT_DEPTH + } + { + const __m128i out_05_0 = _mm_unpacklo_epi16(step1[20], step1[27]); + const __m128i out_05_1 = _mm_unpackhi_epi16(step1[20], step1[27]); + const __m128i out_21_0 = _mm_unpacklo_epi16(step1[21], step1[26]); + const __m128i out_21_1 = _mm_unpackhi_epi16(step1[21], step1[26]); + const __m128i out_13_0 = _mm_unpacklo_epi16(step1[22], step1[25]); + const __m128i out_13_1 = _mm_unpackhi_epi16(step1[22], step1[25]); + const __m128i out_29_0 = _mm_unpacklo_epi16(step1[23], step1[24]); + const __m128i out_29_1 = _mm_unpackhi_epi16(step1[23], step1[24]); + const __m128i out_05_2 = _mm_madd_epi16(out_05_0, k__cospi_p27_p05); + const __m128i out_05_3 = _mm_madd_epi16(out_05_1, k__cospi_p27_p05); + const __m128i out_21_2 = _mm_madd_epi16(out_21_0, k__cospi_p11_p21); + const __m128i out_21_3 = _mm_madd_epi16(out_21_1, k__cospi_p11_p21); + const __m128i out_13_2 = _mm_madd_epi16(out_13_0, k__cospi_p19_p13); + const __m128i out_13_3 = _mm_madd_epi16(out_13_1, k__cospi_p19_p13); + const __m128i out_29_2 = _mm_madd_epi16(out_29_0, k__cospi_p03_p29); + const __m128i out_29_3 = _mm_madd_epi16(out_29_1, k__cospi_p03_p29); + const __m128i out_03_2 = _mm_madd_epi16(out_29_0, k__cospi_m29_p03); + const __m128i out_03_3 = _mm_madd_epi16(out_29_1, k__cospi_m29_p03); + const __m128i out_19_2 = _mm_madd_epi16(out_13_0, k__cospi_m13_p19); + const __m128i out_19_3 = _mm_madd_epi16(out_13_1, k__cospi_m13_p19); + const __m128i out_11_2 = _mm_madd_epi16(out_21_0, k__cospi_m21_p11); + const __m128i out_11_3 = _mm_madd_epi16(out_21_1, k__cospi_m21_p11); + const __m128i out_27_2 = _mm_madd_epi16(out_05_0, k__cospi_m05_p27); + const __m128i out_27_3 = _mm_madd_epi16(out_05_1, k__cospi_m05_p27); + // dct_const_round_shift + const __m128i out_05_4 = + _mm_add_epi32(out_05_2, k__DCT_CONST_ROUNDING); + const __m128i out_05_5 = + _mm_add_epi32(out_05_3, k__DCT_CONST_ROUNDING); + const __m128i out_21_4 = + _mm_add_epi32(out_21_2, k__DCT_CONST_ROUNDING); + const __m128i out_21_5 = + _mm_add_epi32(out_21_3, k__DCT_CONST_ROUNDING); + const __m128i out_13_4 = + _mm_add_epi32(out_13_2, k__DCT_CONST_ROUNDING); + const __m128i out_13_5 = + _mm_add_epi32(out_13_3, k__DCT_CONST_ROUNDING); + const __m128i out_29_4 = + _mm_add_epi32(out_29_2, k__DCT_CONST_ROUNDING); + const __m128i out_29_5 = + _mm_add_epi32(out_29_3, k__DCT_CONST_ROUNDING); + const __m128i out_03_4 = + _mm_add_epi32(out_03_2, k__DCT_CONST_ROUNDING); + const __m128i out_03_5 = + _mm_add_epi32(out_03_3, k__DCT_CONST_ROUNDING); + const __m128i out_19_4 = + _mm_add_epi32(out_19_2, k__DCT_CONST_ROUNDING); + const __m128i out_19_5 = + _mm_add_epi32(out_19_3, k__DCT_CONST_ROUNDING); + const __m128i out_11_4 = + _mm_add_epi32(out_11_2, k__DCT_CONST_ROUNDING); + const __m128i out_11_5 = + _mm_add_epi32(out_11_3, k__DCT_CONST_ROUNDING); + const __m128i out_27_4 = + _mm_add_epi32(out_27_2, k__DCT_CONST_ROUNDING); + const __m128i out_27_5 = + _mm_add_epi32(out_27_3, k__DCT_CONST_ROUNDING); + const __m128i out_05_6 = _mm_srai_epi32(out_05_4, DCT_CONST_BITS); + const __m128i out_05_7 = _mm_srai_epi32(out_05_5, DCT_CONST_BITS); + const __m128i out_21_6 = _mm_srai_epi32(out_21_4, DCT_CONST_BITS); + const __m128i out_21_7 = _mm_srai_epi32(out_21_5, DCT_CONST_BITS); + const __m128i out_13_6 = _mm_srai_epi32(out_13_4, DCT_CONST_BITS); + const __m128i out_13_7 = _mm_srai_epi32(out_13_5, DCT_CONST_BITS); + const __m128i out_29_6 = _mm_srai_epi32(out_29_4, DCT_CONST_BITS); + const __m128i out_29_7 = _mm_srai_epi32(out_29_5, DCT_CONST_BITS); + const __m128i out_03_6 = _mm_srai_epi32(out_03_4, DCT_CONST_BITS); + const __m128i out_03_7 = _mm_srai_epi32(out_03_5, DCT_CONST_BITS); + const __m128i out_19_6 = _mm_srai_epi32(out_19_4, DCT_CONST_BITS); + const __m128i out_19_7 = _mm_srai_epi32(out_19_5, DCT_CONST_BITS); + const __m128i out_11_6 = _mm_srai_epi32(out_11_4, DCT_CONST_BITS); + const __m128i out_11_7 = _mm_srai_epi32(out_11_5, DCT_CONST_BITS); + const __m128i out_27_6 = _mm_srai_epi32(out_27_4, DCT_CONST_BITS); + const __m128i out_27_7 = _mm_srai_epi32(out_27_5, DCT_CONST_BITS); + // Combine + out[5] = _mm_packs_epi32(out_05_6, out_05_7); + out[21] = _mm_packs_epi32(out_21_6, out_21_7); + out[13] = _mm_packs_epi32(out_13_6, out_13_7); + out[29] = _mm_packs_epi32(out_29_6, out_29_7); + out[3] = _mm_packs_epi32(out_03_6, out_03_7); + out[19] = _mm_packs_epi32(out_19_6, out_19_7); + out[11] = _mm_packs_epi32(out_11_6, out_11_7); + out[27] = _mm_packs_epi32(out_27_6, out_27_7); +#if DCT_HIGH_BIT_DEPTH + overflow = + check_epi16_overflow_x8(&out[5], &out[21], &out[13], &out[29], + &out[3], &out[19], &out[11], &out[27]); + if (overflow) { + if (pass == 0) + HIGH_FDCT32x32_2D_C(input, output_org, stride); + else + HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org); + return; + } +#endif // DCT_HIGH_BIT_DEPTH + } +#if FDCT32x32_HIGH_PRECISION + } else { + __m128i lstep1[64], lstep2[64], lstep3[64]; + __m128i u[32], v[32], sign[16]; + const __m128i K32One = _mm_set_epi32(1, 1, 1, 1); + // start using 32-bit operations + // stage 3 + { + // expanding to 32-bit length priori to addition operations + lstep2[0] = _mm_unpacklo_epi16(step2[0], kZero); + lstep2[1] = _mm_unpackhi_epi16(step2[0], kZero); + lstep2[2] = _mm_unpacklo_epi16(step2[1], kZero); + lstep2[3] = _mm_unpackhi_epi16(step2[1], kZero); + lstep2[4] = _mm_unpacklo_epi16(step2[2], kZero); + lstep2[5] = _mm_unpackhi_epi16(step2[2], kZero); + lstep2[6] = _mm_unpacklo_epi16(step2[3], kZero); + lstep2[7] = _mm_unpackhi_epi16(step2[3], kZero); + lstep2[8] = _mm_unpacklo_epi16(step2[4], kZero); + lstep2[9] = _mm_unpackhi_epi16(step2[4], kZero); + lstep2[10] = _mm_unpacklo_epi16(step2[5], kZero); + lstep2[11] = _mm_unpackhi_epi16(step2[5], kZero); + lstep2[12] = _mm_unpacklo_epi16(step2[6], kZero); + lstep2[13] = _mm_unpackhi_epi16(step2[6], kZero); + lstep2[14] = _mm_unpacklo_epi16(step2[7], kZero); + lstep2[15] = _mm_unpackhi_epi16(step2[7], kZero); + lstep2[0] = _mm_madd_epi16(lstep2[0], kOne); + lstep2[1] = _mm_madd_epi16(lstep2[1], kOne); + lstep2[2] = _mm_madd_epi16(lstep2[2], kOne); + lstep2[3] = _mm_madd_epi16(lstep2[3], kOne); + lstep2[4] = _mm_madd_epi16(lstep2[4], kOne); + lstep2[5] = _mm_madd_epi16(lstep2[5], kOne); + lstep2[6] = _mm_madd_epi16(lstep2[6], kOne); + lstep2[7] = _mm_madd_epi16(lstep2[7], kOne); + lstep2[8] = _mm_madd_epi16(lstep2[8], kOne); + lstep2[9] = _mm_madd_epi16(lstep2[9], kOne); + lstep2[10] = _mm_madd_epi16(lstep2[10], kOne); + lstep2[11] = _mm_madd_epi16(lstep2[11], kOne); + lstep2[12] = _mm_madd_epi16(lstep2[12], kOne); + lstep2[13] = _mm_madd_epi16(lstep2[13], kOne); + lstep2[14] = _mm_madd_epi16(lstep2[14], kOne); + lstep2[15] = _mm_madd_epi16(lstep2[15], kOne); + + lstep3[0] = _mm_add_epi32(lstep2[14], lstep2[0]); + lstep3[1] = _mm_add_epi32(lstep2[15], lstep2[1]); + lstep3[2] = _mm_add_epi32(lstep2[12], lstep2[2]); + lstep3[3] = _mm_add_epi32(lstep2[13], lstep2[3]); + lstep3[4] = _mm_add_epi32(lstep2[10], lstep2[4]); + lstep3[5] = _mm_add_epi32(lstep2[11], lstep2[5]); + lstep3[6] = _mm_add_epi32(lstep2[8], lstep2[6]); + lstep3[7] = _mm_add_epi32(lstep2[9], lstep2[7]); + lstep3[8] = _mm_sub_epi32(lstep2[6], lstep2[8]); + lstep3[9] = _mm_sub_epi32(lstep2[7], lstep2[9]); + lstep3[10] = _mm_sub_epi32(lstep2[4], lstep2[10]); + lstep3[11] = _mm_sub_epi32(lstep2[5], lstep2[11]); + lstep3[12] = _mm_sub_epi32(lstep2[2], lstep2[12]); + lstep3[13] = _mm_sub_epi32(lstep2[3], lstep2[13]); + lstep3[14] = _mm_sub_epi32(lstep2[0], lstep2[14]); + lstep3[15] = _mm_sub_epi32(lstep2[1], lstep2[15]); + } + { + const __m128i s3_10_0 = _mm_unpacklo_epi16(step2[13], step2[10]); + const __m128i s3_10_1 = _mm_unpackhi_epi16(step2[13], step2[10]); + const __m128i s3_11_0 = _mm_unpacklo_epi16(step2[12], step2[11]); + const __m128i s3_11_1 = _mm_unpackhi_epi16(step2[12], step2[11]); + const __m128i s3_10_2 = _mm_madd_epi16(s3_10_0, k__cospi_p16_m16); + const __m128i s3_10_3 = _mm_madd_epi16(s3_10_1, k__cospi_p16_m16); + const __m128i s3_11_2 = _mm_madd_epi16(s3_11_0, k__cospi_p16_m16); + const __m128i s3_11_3 = _mm_madd_epi16(s3_11_1, k__cospi_p16_m16); + const __m128i s3_12_2 = _mm_madd_epi16(s3_11_0, k__cospi_p16_p16); + const __m128i s3_12_3 = _mm_madd_epi16(s3_11_1, k__cospi_p16_p16); + const __m128i s3_13_2 = _mm_madd_epi16(s3_10_0, k__cospi_p16_p16); + const __m128i s3_13_3 = _mm_madd_epi16(s3_10_1, k__cospi_p16_p16); + // dct_const_round_shift + const __m128i s3_10_4 = _mm_add_epi32(s3_10_2, k__DCT_CONST_ROUNDING); + const __m128i s3_10_5 = _mm_add_epi32(s3_10_3, k__DCT_CONST_ROUNDING); + const __m128i s3_11_4 = _mm_add_epi32(s3_11_2, k__DCT_CONST_ROUNDING); + const __m128i s3_11_5 = _mm_add_epi32(s3_11_3, k__DCT_CONST_ROUNDING); + const __m128i s3_12_4 = _mm_add_epi32(s3_12_2, k__DCT_CONST_ROUNDING); + const __m128i s3_12_5 = _mm_add_epi32(s3_12_3, k__DCT_CONST_ROUNDING); + const __m128i s3_13_4 = _mm_add_epi32(s3_13_2, k__DCT_CONST_ROUNDING); + const __m128i s3_13_5 = _mm_add_epi32(s3_13_3, k__DCT_CONST_ROUNDING); + lstep3[20] = _mm_srai_epi32(s3_10_4, DCT_CONST_BITS); + lstep3[21] = _mm_srai_epi32(s3_10_5, DCT_CONST_BITS); + lstep3[22] = _mm_srai_epi32(s3_11_4, DCT_CONST_BITS); + lstep3[23] = _mm_srai_epi32(s3_11_5, DCT_CONST_BITS); + lstep3[24] = _mm_srai_epi32(s3_12_4, DCT_CONST_BITS); + lstep3[25] = _mm_srai_epi32(s3_12_5, DCT_CONST_BITS); + lstep3[26] = _mm_srai_epi32(s3_13_4, DCT_CONST_BITS); + lstep3[27] = _mm_srai_epi32(s3_13_5, DCT_CONST_BITS); + } + { + lstep2[40] = _mm_unpacklo_epi16(step2[20], kZero); + lstep2[41] = _mm_unpackhi_epi16(step2[20], kZero); + lstep2[42] = _mm_unpacklo_epi16(step2[21], kZero); + lstep2[43] = _mm_unpackhi_epi16(step2[21], kZero); + lstep2[44] = _mm_unpacklo_epi16(step2[22], kZero); + lstep2[45] = _mm_unpackhi_epi16(step2[22], kZero); + lstep2[46] = _mm_unpacklo_epi16(step2[23], kZero); + lstep2[47] = _mm_unpackhi_epi16(step2[23], kZero); + lstep2[48] = _mm_unpacklo_epi16(step2[24], kZero); + lstep2[49] = _mm_unpackhi_epi16(step2[24], kZero); + lstep2[50] = _mm_unpacklo_epi16(step2[25], kZero); + lstep2[51] = _mm_unpackhi_epi16(step2[25], kZero); + lstep2[52] = _mm_unpacklo_epi16(step2[26], kZero); + lstep2[53] = _mm_unpackhi_epi16(step2[26], kZero); + lstep2[54] = _mm_unpacklo_epi16(step2[27], kZero); + lstep2[55] = _mm_unpackhi_epi16(step2[27], kZero); + lstep2[40] = _mm_madd_epi16(lstep2[40], kOne); + lstep2[41] = _mm_madd_epi16(lstep2[41], kOne); + lstep2[42] = _mm_madd_epi16(lstep2[42], kOne); + lstep2[43] = _mm_madd_epi16(lstep2[43], kOne); + lstep2[44] = _mm_madd_epi16(lstep2[44], kOne); + lstep2[45] = _mm_madd_epi16(lstep2[45], kOne); + lstep2[46] = _mm_madd_epi16(lstep2[46], kOne); + lstep2[47] = _mm_madd_epi16(lstep2[47], kOne); + lstep2[48] = _mm_madd_epi16(lstep2[48], kOne); + lstep2[49] = _mm_madd_epi16(lstep2[49], kOne); + lstep2[50] = _mm_madd_epi16(lstep2[50], kOne); + lstep2[51] = _mm_madd_epi16(lstep2[51], kOne); + lstep2[52] = _mm_madd_epi16(lstep2[52], kOne); + lstep2[53] = _mm_madd_epi16(lstep2[53], kOne); + lstep2[54] = _mm_madd_epi16(lstep2[54], kOne); + lstep2[55] = _mm_madd_epi16(lstep2[55], kOne); + + lstep1[32] = _mm_unpacklo_epi16(step1[16], kZero); + lstep1[33] = _mm_unpackhi_epi16(step1[16], kZero); + lstep1[34] = _mm_unpacklo_epi16(step1[17], kZero); + lstep1[35] = _mm_unpackhi_epi16(step1[17], kZero); + lstep1[36] = _mm_unpacklo_epi16(step1[18], kZero); + lstep1[37] = _mm_unpackhi_epi16(step1[18], kZero); + lstep1[38] = _mm_unpacklo_epi16(step1[19], kZero); + lstep1[39] = _mm_unpackhi_epi16(step1[19], kZero); + lstep1[56] = _mm_unpacklo_epi16(step1[28], kZero); + lstep1[57] = _mm_unpackhi_epi16(step1[28], kZero); + lstep1[58] = _mm_unpacklo_epi16(step1[29], kZero); + lstep1[59] = _mm_unpackhi_epi16(step1[29], kZero); + lstep1[60] = _mm_unpacklo_epi16(step1[30], kZero); + lstep1[61] = _mm_unpackhi_epi16(step1[30], kZero); + lstep1[62] = _mm_unpacklo_epi16(step1[31], kZero); + lstep1[63] = _mm_unpackhi_epi16(step1[31], kZero); + lstep1[32] = _mm_madd_epi16(lstep1[32], kOne); + lstep1[33] = _mm_madd_epi16(lstep1[33], kOne); + lstep1[34] = _mm_madd_epi16(lstep1[34], kOne); + lstep1[35] = _mm_madd_epi16(lstep1[35], kOne); + lstep1[36] = _mm_madd_epi16(lstep1[36], kOne); + lstep1[37] = _mm_madd_epi16(lstep1[37], kOne); + lstep1[38] = _mm_madd_epi16(lstep1[38], kOne); + lstep1[39] = _mm_madd_epi16(lstep1[39], kOne); + lstep1[56] = _mm_madd_epi16(lstep1[56], kOne); + lstep1[57] = _mm_madd_epi16(lstep1[57], kOne); + lstep1[58] = _mm_madd_epi16(lstep1[58], kOne); + lstep1[59] = _mm_madd_epi16(lstep1[59], kOne); + lstep1[60] = _mm_madd_epi16(lstep1[60], kOne); + lstep1[61] = _mm_madd_epi16(lstep1[61], kOne); + lstep1[62] = _mm_madd_epi16(lstep1[62], kOne); + lstep1[63] = _mm_madd_epi16(lstep1[63], kOne); + + lstep3[32] = _mm_add_epi32(lstep2[46], lstep1[32]); + lstep3[33] = _mm_add_epi32(lstep2[47], lstep1[33]); + + lstep3[34] = _mm_add_epi32(lstep2[44], lstep1[34]); + lstep3[35] = _mm_add_epi32(lstep2[45], lstep1[35]); + lstep3[36] = _mm_add_epi32(lstep2[42], lstep1[36]); + lstep3[37] = _mm_add_epi32(lstep2[43], lstep1[37]); + lstep3[38] = _mm_add_epi32(lstep2[40], lstep1[38]); + lstep3[39] = _mm_add_epi32(lstep2[41], lstep1[39]); + lstep3[40] = _mm_sub_epi32(lstep1[38], lstep2[40]); + lstep3[41] = _mm_sub_epi32(lstep1[39], lstep2[41]); + lstep3[42] = _mm_sub_epi32(lstep1[36], lstep2[42]); + lstep3[43] = _mm_sub_epi32(lstep1[37], lstep2[43]); + lstep3[44] = _mm_sub_epi32(lstep1[34], lstep2[44]); + lstep3[45] = _mm_sub_epi32(lstep1[35], lstep2[45]); + lstep3[46] = _mm_sub_epi32(lstep1[32], lstep2[46]); + lstep3[47] = _mm_sub_epi32(lstep1[33], lstep2[47]); + lstep3[48] = _mm_sub_epi32(lstep1[62], lstep2[48]); + lstep3[49] = _mm_sub_epi32(lstep1[63], lstep2[49]); + lstep3[50] = _mm_sub_epi32(lstep1[60], lstep2[50]); + lstep3[51] = _mm_sub_epi32(lstep1[61], lstep2[51]); + lstep3[52] = _mm_sub_epi32(lstep1[58], lstep2[52]); + lstep3[53] = _mm_sub_epi32(lstep1[59], lstep2[53]); + lstep3[54] = _mm_sub_epi32(lstep1[56], lstep2[54]); + lstep3[55] = _mm_sub_epi32(lstep1[57], lstep2[55]); + lstep3[56] = _mm_add_epi32(lstep2[54], lstep1[56]); + lstep3[57] = _mm_add_epi32(lstep2[55], lstep1[57]); + lstep3[58] = _mm_add_epi32(lstep2[52], lstep1[58]); + lstep3[59] = _mm_add_epi32(lstep2[53], lstep1[59]); + lstep3[60] = _mm_add_epi32(lstep2[50], lstep1[60]); + lstep3[61] = _mm_add_epi32(lstep2[51], lstep1[61]); + lstep3[62] = _mm_add_epi32(lstep2[48], lstep1[62]); + lstep3[63] = _mm_add_epi32(lstep2[49], lstep1[63]); + } + + // stage 4 + { + // expanding to 32-bit length priori to addition operations + lstep2[16] = _mm_unpacklo_epi16(step2[8], kZero); + lstep2[17] = _mm_unpackhi_epi16(step2[8], kZero); + lstep2[18] = _mm_unpacklo_epi16(step2[9], kZero); + lstep2[19] = _mm_unpackhi_epi16(step2[9], kZero); + lstep2[28] = _mm_unpacklo_epi16(step2[14], kZero); + lstep2[29] = _mm_unpackhi_epi16(step2[14], kZero); + lstep2[30] = _mm_unpacklo_epi16(step2[15], kZero); + lstep2[31] = _mm_unpackhi_epi16(step2[15], kZero); + lstep2[16] = _mm_madd_epi16(lstep2[16], kOne); + lstep2[17] = _mm_madd_epi16(lstep2[17], kOne); + lstep2[18] = _mm_madd_epi16(lstep2[18], kOne); + lstep2[19] = _mm_madd_epi16(lstep2[19], kOne); + lstep2[28] = _mm_madd_epi16(lstep2[28], kOne); + lstep2[29] = _mm_madd_epi16(lstep2[29], kOne); + lstep2[30] = _mm_madd_epi16(lstep2[30], kOne); + lstep2[31] = _mm_madd_epi16(lstep2[31], kOne); + + lstep1[0] = _mm_add_epi32(lstep3[6], lstep3[0]); + lstep1[1] = _mm_add_epi32(lstep3[7], lstep3[1]); + lstep1[2] = _mm_add_epi32(lstep3[4], lstep3[2]); + lstep1[3] = _mm_add_epi32(lstep3[5], lstep3[3]); + lstep1[4] = _mm_sub_epi32(lstep3[2], lstep3[4]); + lstep1[5] = _mm_sub_epi32(lstep3[3], lstep3[5]); + lstep1[6] = _mm_sub_epi32(lstep3[0], lstep3[6]); + lstep1[7] = _mm_sub_epi32(lstep3[1], lstep3[7]); + lstep1[16] = _mm_add_epi32(lstep3[22], lstep2[16]); + lstep1[17] = _mm_add_epi32(lstep3[23], lstep2[17]); + lstep1[18] = _mm_add_epi32(lstep3[20], lstep2[18]); + lstep1[19] = _mm_add_epi32(lstep3[21], lstep2[19]); + lstep1[20] = _mm_sub_epi32(lstep2[18], lstep3[20]); + lstep1[21] = _mm_sub_epi32(lstep2[19], lstep3[21]); + lstep1[22] = _mm_sub_epi32(lstep2[16], lstep3[22]); + lstep1[23] = _mm_sub_epi32(lstep2[17], lstep3[23]); + lstep1[24] = _mm_sub_epi32(lstep2[30], lstep3[24]); + lstep1[25] = _mm_sub_epi32(lstep2[31], lstep3[25]); + lstep1[26] = _mm_sub_epi32(lstep2[28], lstep3[26]); + lstep1[27] = _mm_sub_epi32(lstep2[29], lstep3[27]); + lstep1[28] = _mm_add_epi32(lstep3[26], lstep2[28]); + lstep1[29] = _mm_add_epi32(lstep3[27], lstep2[29]); + lstep1[30] = _mm_add_epi32(lstep3[24], lstep2[30]); + lstep1[31] = _mm_add_epi32(lstep3[25], lstep2[31]); + } + { + // to be continued... + // + const __m128i k32_p16_p16 = pair_set_epi32(cospi_16_64, cospi_16_64); + const __m128i k32_p16_m16 = pair_set_epi32(cospi_16_64, -cospi_16_64); + + u[0] = _mm_unpacklo_epi32(lstep3[12], lstep3[10]); + u[1] = _mm_unpackhi_epi32(lstep3[12], lstep3[10]); + u[2] = _mm_unpacklo_epi32(lstep3[13], lstep3[11]); + u[3] = _mm_unpackhi_epi32(lstep3[13], lstep3[11]); + + // TODO(jingning): manually inline k_madd_epi32_ to further hide + // instruction latency. + v[0] = k_madd_epi32(u[0], k32_p16_m16); + v[1] = k_madd_epi32(u[1], k32_p16_m16); + v[2] = k_madd_epi32(u[2], k32_p16_m16); + v[3] = k_madd_epi32(u[3], k32_p16_m16); + v[4] = k_madd_epi32(u[0], k32_p16_p16); + v[5] = k_madd_epi32(u[1], k32_p16_p16); + v[6] = k_madd_epi32(u[2], k32_p16_p16); + v[7] = k_madd_epi32(u[3], k32_p16_p16); +#if DCT_HIGH_BIT_DEPTH + overflow = k_check_epi32_overflow_8(&v[0], &v[1], &v[2], &v[3], &v[4], + &v[5], &v[6], &v[7], &kZero); + if (overflow) { + HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org); + return; + } +#endif // DCT_HIGH_BIT_DEPTH + u[0] = k_packs_epi64(v[0], v[1]); + u[1] = k_packs_epi64(v[2], v[3]); + u[2] = k_packs_epi64(v[4], v[5]); + u[3] = k_packs_epi64(v[6], v[7]); + + v[0] = _mm_add_epi32(u[0], k__DCT_CONST_ROUNDING); + v[1] = _mm_add_epi32(u[1], k__DCT_CONST_ROUNDING); + v[2] = _mm_add_epi32(u[2], k__DCT_CONST_ROUNDING); + v[3] = _mm_add_epi32(u[3], k__DCT_CONST_ROUNDING); + + lstep1[10] = _mm_srai_epi32(v[0], DCT_CONST_BITS); + lstep1[11] = _mm_srai_epi32(v[1], DCT_CONST_BITS); + lstep1[12] = _mm_srai_epi32(v[2], DCT_CONST_BITS); + lstep1[13] = _mm_srai_epi32(v[3], DCT_CONST_BITS); + } + { + const __m128i k32_m08_p24 = pair_set_epi32(-cospi_8_64, cospi_24_64); + const __m128i k32_m24_m08 = pair_set_epi32(-cospi_24_64, -cospi_8_64); + const __m128i k32_p24_p08 = pair_set_epi32(cospi_24_64, cospi_8_64); + + u[0] = _mm_unpacklo_epi32(lstep3[36], lstep3[58]); + u[1] = _mm_unpackhi_epi32(lstep3[36], lstep3[58]); + u[2] = _mm_unpacklo_epi32(lstep3[37], lstep3[59]); + u[3] = _mm_unpackhi_epi32(lstep3[37], lstep3[59]); + u[4] = _mm_unpacklo_epi32(lstep3[38], lstep3[56]); + u[5] = _mm_unpackhi_epi32(lstep3[38], lstep3[56]); + u[6] = _mm_unpacklo_epi32(lstep3[39], lstep3[57]); + u[7] = _mm_unpackhi_epi32(lstep3[39], lstep3[57]); + u[8] = _mm_unpacklo_epi32(lstep3[40], lstep3[54]); + u[9] = _mm_unpackhi_epi32(lstep3[40], lstep3[54]); + u[10] = _mm_unpacklo_epi32(lstep3[41], lstep3[55]); + u[11] = _mm_unpackhi_epi32(lstep3[41], lstep3[55]); + u[12] = _mm_unpacklo_epi32(lstep3[42], lstep3[52]); + u[13] = _mm_unpackhi_epi32(lstep3[42], lstep3[52]); + u[14] = _mm_unpacklo_epi32(lstep3[43], lstep3[53]); + u[15] = _mm_unpackhi_epi32(lstep3[43], lstep3[53]); + + v[0] = k_madd_epi32(u[0], k32_m08_p24); + v[1] = k_madd_epi32(u[1], k32_m08_p24); + v[2] = k_madd_epi32(u[2], k32_m08_p24); + v[3] = k_madd_epi32(u[3], k32_m08_p24); + v[4] = k_madd_epi32(u[4], k32_m08_p24); + v[5] = k_madd_epi32(u[5], k32_m08_p24); + v[6] = k_madd_epi32(u[6], k32_m08_p24); + v[7] = k_madd_epi32(u[7], k32_m08_p24); + v[8] = k_madd_epi32(u[8], k32_m24_m08); + v[9] = k_madd_epi32(u[9], k32_m24_m08); + v[10] = k_madd_epi32(u[10], k32_m24_m08); + v[11] = k_madd_epi32(u[11], k32_m24_m08); + v[12] = k_madd_epi32(u[12], k32_m24_m08); + v[13] = k_madd_epi32(u[13], k32_m24_m08); + v[14] = k_madd_epi32(u[14], k32_m24_m08); + v[15] = k_madd_epi32(u[15], k32_m24_m08); + v[16] = k_madd_epi32(u[12], k32_m08_p24); + v[17] = k_madd_epi32(u[13], k32_m08_p24); + v[18] = k_madd_epi32(u[14], k32_m08_p24); + v[19] = k_madd_epi32(u[15], k32_m08_p24); + v[20] = k_madd_epi32(u[8], k32_m08_p24); + v[21] = k_madd_epi32(u[9], k32_m08_p24); + v[22] = k_madd_epi32(u[10], k32_m08_p24); + v[23] = k_madd_epi32(u[11], k32_m08_p24); + v[24] = k_madd_epi32(u[4], k32_p24_p08); + v[25] = k_madd_epi32(u[5], k32_p24_p08); + v[26] = k_madd_epi32(u[6], k32_p24_p08); + v[27] = k_madd_epi32(u[7], k32_p24_p08); + v[28] = k_madd_epi32(u[0], k32_p24_p08); + v[29] = k_madd_epi32(u[1], k32_p24_p08); + v[30] = k_madd_epi32(u[2], k32_p24_p08); + v[31] = k_madd_epi32(u[3], k32_p24_p08); + +#if DCT_HIGH_BIT_DEPTH + overflow = k_check_epi32_overflow_32( + &v[0], &v[1], &v[2], &v[3], &v[4], &v[5], &v[6], &v[7], &v[8], + &v[9], &v[10], &v[11], &v[12], &v[13], &v[14], &v[15], &v[16], + &v[17], &v[18], &v[19], &v[20], &v[21], &v[22], &v[23], &v[24], + &v[25], &v[26], &v[27], &v[28], &v[29], &v[30], &v[31], &kZero); + if (overflow) { + HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org); + return; + } +#endif // DCT_HIGH_BIT_DEPTH + u[0] = k_packs_epi64(v[0], v[1]); + u[1] = k_packs_epi64(v[2], v[3]); + u[2] = k_packs_epi64(v[4], v[5]); + u[3] = k_packs_epi64(v[6], v[7]); + u[4] = k_packs_epi64(v[8], v[9]); + u[5] = k_packs_epi64(v[10], v[11]); + u[6] = k_packs_epi64(v[12], v[13]); + u[7] = k_packs_epi64(v[14], v[15]); + u[8] = k_packs_epi64(v[16], v[17]); + u[9] = k_packs_epi64(v[18], v[19]); + u[10] = k_packs_epi64(v[20], v[21]); + u[11] = k_packs_epi64(v[22], v[23]); + u[12] = k_packs_epi64(v[24], v[25]); + u[13] = k_packs_epi64(v[26], v[27]); + u[14] = k_packs_epi64(v[28], v[29]); + u[15] = k_packs_epi64(v[30], v[31]); + + v[0] = _mm_add_epi32(u[0], k__DCT_CONST_ROUNDING); + v[1] = _mm_add_epi32(u[1], k__DCT_CONST_ROUNDING); + v[2] = _mm_add_epi32(u[2], k__DCT_CONST_ROUNDING); + v[3] = _mm_add_epi32(u[3], k__DCT_CONST_ROUNDING); + v[4] = _mm_add_epi32(u[4], k__DCT_CONST_ROUNDING); + v[5] = _mm_add_epi32(u[5], k__DCT_CONST_ROUNDING); + v[6] = _mm_add_epi32(u[6], k__DCT_CONST_ROUNDING); + v[7] = _mm_add_epi32(u[7], k__DCT_CONST_ROUNDING); + v[8] = _mm_add_epi32(u[8], k__DCT_CONST_ROUNDING); + v[9] = _mm_add_epi32(u[9], k__DCT_CONST_ROUNDING); + v[10] = _mm_add_epi32(u[10], k__DCT_CONST_ROUNDING); + v[11] = _mm_add_epi32(u[11], k__DCT_CONST_ROUNDING); + v[12] = _mm_add_epi32(u[12], k__DCT_CONST_ROUNDING); + v[13] = _mm_add_epi32(u[13], k__DCT_CONST_ROUNDING); + v[14] = _mm_add_epi32(u[14], k__DCT_CONST_ROUNDING); + v[15] = _mm_add_epi32(u[15], k__DCT_CONST_ROUNDING); + + lstep1[36] = _mm_srai_epi32(v[0], DCT_CONST_BITS); + lstep1[37] = _mm_srai_epi32(v[1], DCT_CONST_BITS); + lstep1[38] = _mm_srai_epi32(v[2], DCT_CONST_BITS); + lstep1[39] = _mm_srai_epi32(v[3], DCT_CONST_BITS); + lstep1[40] = _mm_srai_epi32(v[4], DCT_CONST_BITS); + lstep1[41] = _mm_srai_epi32(v[5], DCT_CONST_BITS); + lstep1[42] = _mm_srai_epi32(v[6], DCT_CONST_BITS); + lstep1[43] = _mm_srai_epi32(v[7], DCT_CONST_BITS); + lstep1[52] = _mm_srai_epi32(v[8], DCT_CONST_BITS); + lstep1[53] = _mm_srai_epi32(v[9], DCT_CONST_BITS); + lstep1[54] = _mm_srai_epi32(v[10], DCT_CONST_BITS); + lstep1[55] = _mm_srai_epi32(v[11], DCT_CONST_BITS); + lstep1[56] = _mm_srai_epi32(v[12], DCT_CONST_BITS); + lstep1[57] = _mm_srai_epi32(v[13], DCT_CONST_BITS); + lstep1[58] = _mm_srai_epi32(v[14], DCT_CONST_BITS); + lstep1[59] = _mm_srai_epi32(v[15], DCT_CONST_BITS); + } + // stage 5 + { + lstep2[8] = _mm_add_epi32(lstep1[10], lstep3[8]); + lstep2[9] = _mm_add_epi32(lstep1[11], lstep3[9]); + lstep2[10] = _mm_sub_epi32(lstep3[8], lstep1[10]); + lstep2[11] = _mm_sub_epi32(lstep3[9], lstep1[11]); + lstep2[12] = _mm_sub_epi32(lstep3[14], lstep1[12]); + lstep2[13] = _mm_sub_epi32(lstep3[15], lstep1[13]); + lstep2[14] = _mm_add_epi32(lstep1[12], lstep3[14]); + lstep2[15] = _mm_add_epi32(lstep1[13], lstep3[15]); + } + { + const __m128i k32_p16_p16 = pair_set_epi32(cospi_16_64, cospi_16_64); + const __m128i k32_p16_m16 = pair_set_epi32(cospi_16_64, -cospi_16_64); + const __m128i k32_p24_p08 = pair_set_epi32(cospi_24_64, cospi_8_64); + const __m128i k32_m08_p24 = pair_set_epi32(-cospi_8_64, cospi_24_64); + + u[0] = _mm_unpacklo_epi32(lstep1[0], lstep1[2]); + u[1] = _mm_unpackhi_epi32(lstep1[0], lstep1[2]); + u[2] = _mm_unpacklo_epi32(lstep1[1], lstep1[3]); + u[3] = _mm_unpackhi_epi32(lstep1[1], lstep1[3]); + u[4] = _mm_unpacklo_epi32(lstep1[4], lstep1[6]); + u[5] = _mm_unpackhi_epi32(lstep1[4], lstep1[6]); + u[6] = _mm_unpacklo_epi32(lstep1[5], lstep1[7]); + u[7] = _mm_unpackhi_epi32(lstep1[5], lstep1[7]); + + // TODO(jingning): manually inline k_madd_epi32_ to further hide + // instruction latency. + v[0] = k_madd_epi32(u[0], k32_p16_p16); + v[1] = k_madd_epi32(u[1], k32_p16_p16); + v[2] = k_madd_epi32(u[2], k32_p16_p16); + v[3] = k_madd_epi32(u[3], k32_p16_p16); + v[4] = k_madd_epi32(u[0], k32_p16_m16); + v[5] = k_madd_epi32(u[1], k32_p16_m16); + v[6] = k_madd_epi32(u[2], k32_p16_m16); + v[7] = k_madd_epi32(u[3], k32_p16_m16); + v[8] = k_madd_epi32(u[4], k32_p24_p08); + v[9] = k_madd_epi32(u[5], k32_p24_p08); + v[10] = k_madd_epi32(u[6], k32_p24_p08); + v[11] = k_madd_epi32(u[7], k32_p24_p08); + v[12] = k_madd_epi32(u[4], k32_m08_p24); + v[13] = k_madd_epi32(u[5], k32_m08_p24); + v[14] = k_madd_epi32(u[6], k32_m08_p24); + v[15] = k_madd_epi32(u[7], k32_m08_p24); + +#if DCT_HIGH_BIT_DEPTH + overflow = k_check_epi32_overflow_16( + &v[0], &v[1], &v[2], &v[3], &v[4], &v[5], &v[6], &v[7], &v[8], + &v[9], &v[10], &v[11], &v[12], &v[13], &v[14], &v[15], &kZero); + if (overflow) { + HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org); + return; + } +#endif // DCT_HIGH_BIT_DEPTH + u[0] = k_packs_epi64(v[0], v[1]); + u[1] = k_packs_epi64(v[2], v[3]); + u[2] = k_packs_epi64(v[4], v[5]); + u[3] = k_packs_epi64(v[6], v[7]); + u[4] = k_packs_epi64(v[8], v[9]); + u[5] = k_packs_epi64(v[10], v[11]); + u[6] = k_packs_epi64(v[12], v[13]); + u[7] = k_packs_epi64(v[14], v[15]); + + v[0] = _mm_add_epi32(u[0], k__DCT_CONST_ROUNDING); + v[1] = _mm_add_epi32(u[1], k__DCT_CONST_ROUNDING); + v[2] = _mm_add_epi32(u[2], k__DCT_CONST_ROUNDING); + v[3] = _mm_add_epi32(u[3], k__DCT_CONST_ROUNDING); + v[4] = _mm_add_epi32(u[4], k__DCT_CONST_ROUNDING); + v[5] = _mm_add_epi32(u[5], k__DCT_CONST_ROUNDING); + v[6] = _mm_add_epi32(u[6], k__DCT_CONST_ROUNDING); + v[7] = _mm_add_epi32(u[7], k__DCT_CONST_ROUNDING); + + u[0] = _mm_srai_epi32(v[0], DCT_CONST_BITS); + u[1] = _mm_srai_epi32(v[1], DCT_CONST_BITS); + u[2] = _mm_srai_epi32(v[2], DCT_CONST_BITS); + u[3] = _mm_srai_epi32(v[3], DCT_CONST_BITS); + u[4] = _mm_srai_epi32(v[4], DCT_CONST_BITS); + u[5] = _mm_srai_epi32(v[5], DCT_CONST_BITS); + u[6] = _mm_srai_epi32(v[6], DCT_CONST_BITS); + u[7] = _mm_srai_epi32(v[7], DCT_CONST_BITS); + + sign[0] = _mm_cmplt_epi32(u[0], kZero); + sign[1] = _mm_cmplt_epi32(u[1], kZero); + sign[2] = _mm_cmplt_epi32(u[2], kZero); + sign[3] = _mm_cmplt_epi32(u[3], kZero); + sign[4] = _mm_cmplt_epi32(u[4], kZero); + sign[5] = _mm_cmplt_epi32(u[5], kZero); + sign[6] = _mm_cmplt_epi32(u[6], kZero); + sign[7] = _mm_cmplt_epi32(u[7], kZero); + + u[0] = _mm_sub_epi32(u[0], sign[0]); + u[1] = _mm_sub_epi32(u[1], sign[1]); + u[2] = _mm_sub_epi32(u[2], sign[2]); + u[3] = _mm_sub_epi32(u[3], sign[3]); + u[4] = _mm_sub_epi32(u[4], sign[4]); + u[5] = _mm_sub_epi32(u[5], sign[5]); + u[6] = _mm_sub_epi32(u[6], sign[6]); + u[7] = _mm_sub_epi32(u[7], sign[7]); + + u[0] = _mm_add_epi32(u[0], K32One); + u[1] = _mm_add_epi32(u[1], K32One); + u[2] = _mm_add_epi32(u[2], K32One); + u[3] = _mm_add_epi32(u[3], K32One); + u[4] = _mm_add_epi32(u[4], K32One); + u[5] = _mm_add_epi32(u[5], K32One); + u[6] = _mm_add_epi32(u[6], K32One); + u[7] = _mm_add_epi32(u[7], K32One); + + u[0] = _mm_srai_epi32(u[0], 2); + u[1] = _mm_srai_epi32(u[1], 2); + u[2] = _mm_srai_epi32(u[2], 2); + u[3] = _mm_srai_epi32(u[3], 2); + u[4] = _mm_srai_epi32(u[4], 2); + u[5] = _mm_srai_epi32(u[5], 2); + u[6] = _mm_srai_epi32(u[6], 2); + u[7] = _mm_srai_epi32(u[7], 2); + + // Combine + out[0] = _mm_packs_epi32(u[0], u[1]); + out[16] = _mm_packs_epi32(u[2], u[3]); + out[8] = _mm_packs_epi32(u[4], u[5]); + out[24] = _mm_packs_epi32(u[6], u[7]); +#if DCT_HIGH_BIT_DEPTH + overflow = + check_epi16_overflow_x4(&out[0], &out[16], &out[8], &out[24]); + if (overflow) { + HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org); + return; + } +#endif // DCT_HIGH_BIT_DEPTH + } + { + const __m128i k32_m08_p24 = pair_set_epi32(-cospi_8_64, cospi_24_64); + const __m128i k32_m24_m08 = pair_set_epi32(-cospi_24_64, -cospi_8_64); + const __m128i k32_p24_p08 = pair_set_epi32(cospi_24_64, cospi_8_64); + + u[0] = _mm_unpacklo_epi32(lstep1[18], lstep1[28]); + u[1] = _mm_unpackhi_epi32(lstep1[18], lstep1[28]); + u[2] = _mm_unpacklo_epi32(lstep1[19], lstep1[29]); + u[3] = _mm_unpackhi_epi32(lstep1[19], lstep1[29]); + u[4] = _mm_unpacklo_epi32(lstep1[20], lstep1[26]); + u[5] = _mm_unpackhi_epi32(lstep1[20], lstep1[26]); + u[6] = _mm_unpacklo_epi32(lstep1[21], lstep1[27]); + u[7] = _mm_unpackhi_epi32(lstep1[21], lstep1[27]); + + v[0] = k_madd_epi32(u[0], k32_m08_p24); + v[1] = k_madd_epi32(u[1], k32_m08_p24); + v[2] = k_madd_epi32(u[2], k32_m08_p24); + v[3] = k_madd_epi32(u[3], k32_m08_p24); + v[4] = k_madd_epi32(u[4], k32_m24_m08); + v[5] = k_madd_epi32(u[5], k32_m24_m08); + v[6] = k_madd_epi32(u[6], k32_m24_m08); + v[7] = k_madd_epi32(u[7], k32_m24_m08); + v[8] = k_madd_epi32(u[4], k32_m08_p24); + v[9] = k_madd_epi32(u[5], k32_m08_p24); + v[10] = k_madd_epi32(u[6], k32_m08_p24); + v[11] = k_madd_epi32(u[7], k32_m08_p24); + v[12] = k_madd_epi32(u[0], k32_p24_p08); + v[13] = k_madd_epi32(u[1], k32_p24_p08); + v[14] = k_madd_epi32(u[2], k32_p24_p08); + v[15] = k_madd_epi32(u[3], k32_p24_p08); + +#if DCT_HIGH_BIT_DEPTH + overflow = k_check_epi32_overflow_16( + &v[0], &v[1], &v[2], &v[3], &v[4], &v[5], &v[6], &v[7], &v[8], + &v[9], &v[10], &v[11], &v[12], &v[13], &v[14], &v[15], &kZero); + if (overflow) { + HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org); + return; + } +#endif // DCT_HIGH_BIT_DEPTH + u[0] = k_packs_epi64(v[0], v[1]); + u[1] = k_packs_epi64(v[2], v[3]); + u[2] = k_packs_epi64(v[4], v[5]); + u[3] = k_packs_epi64(v[6], v[7]); + u[4] = k_packs_epi64(v[8], v[9]); + u[5] = k_packs_epi64(v[10], v[11]); + u[6] = k_packs_epi64(v[12], v[13]); + u[7] = k_packs_epi64(v[14], v[15]); + + u[0] = _mm_add_epi32(u[0], k__DCT_CONST_ROUNDING); + u[1] = _mm_add_epi32(u[1], k__DCT_CONST_ROUNDING); + u[2] = _mm_add_epi32(u[2], k__DCT_CONST_ROUNDING); + u[3] = _mm_add_epi32(u[3], k__DCT_CONST_ROUNDING); + u[4] = _mm_add_epi32(u[4], k__DCT_CONST_ROUNDING); + u[5] = _mm_add_epi32(u[5], k__DCT_CONST_ROUNDING); + u[6] = _mm_add_epi32(u[6], k__DCT_CONST_ROUNDING); + u[7] = _mm_add_epi32(u[7], k__DCT_CONST_ROUNDING); + + lstep2[18] = _mm_srai_epi32(u[0], DCT_CONST_BITS); + lstep2[19] = _mm_srai_epi32(u[1], DCT_CONST_BITS); + lstep2[20] = _mm_srai_epi32(u[2], DCT_CONST_BITS); + lstep2[21] = _mm_srai_epi32(u[3], DCT_CONST_BITS); + lstep2[26] = _mm_srai_epi32(u[4], DCT_CONST_BITS); + lstep2[27] = _mm_srai_epi32(u[5], DCT_CONST_BITS); + lstep2[28] = _mm_srai_epi32(u[6], DCT_CONST_BITS); + lstep2[29] = _mm_srai_epi32(u[7], DCT_CONST_BITS); + } + { + lstep2[32] = _mm_add_epi32(lstep1[38], lstep3[32]); + lstep2[33] = _mm_add_epi32(lstep1[39], lstep3[33]); + lstep2[34] = _mm_add_epi32(lstep1[36], lstep3[34]); + lstep2[35] = _mm_add_epi32(lstep1[37], lstep3[35]); + lstep2[36] = _mm_sub_epi32(lstep3[34], lstep1[36]); + lstep2[37] = _mm_sub_epi32(lstep3[35], lstep1[37]); + lstep2[38] = _mm_sub_epi32(lstep3[32], lstep1[38]); + lstep2[39] = _mm_sub_epi32(lstep3[33], lstep1[39]); + lstep2[40] = _mm_sub_epi32(lstep3[46], lstep1[40]); + lstep2[41] = _mm_sub_epi32(lstep3[47], lstep1[41]); + lstep2[42] = _mm_sub_epi32(lstep3[44], lstep1[42]); + lstep2[43] = _mm_sub_epi32(lstep3[45], lstep1[43]); + lstep2[44] = _mm_add_epi32(lstep1[42], lstep3[44]); + lstep2[45] = _mm_add_epi32(lstep1[43], lstep3[45]); + lstep2[46] = _mm_add_epi32(lstep1[40], lstep3[46]); + lstep2[47] = _mm_add_epi32(lstep1[41], lstep3[47]); + lstep2[48] = _mm_add_epi32(lstep1[54], lstep3[48]); + lstep2[49] = _mm_add_epi32(lstep1[55], lstep3[49]); + lstep2[50] = _mm_add_epi32(lstep1[52], lstep3[50]); + lstep2[51] = _mm_add_epi32(lstep1[53], lstep3[51]); + lstep2[52] = _mm_sub_epi32(lstep3[50], lstep1[52]); + lstep2[53] = _mm_sub_epi32(lstep3[51], lstep1[53]); + lstep2[54] = _mm_sub_epi32(lstep3[48], lstep1[54]); + lstep2[55] = _mm_sub_epi32(lstep3[49], lstep1[55]); + lstep2[56] = _mm_sub_epi32(lstep3[62], lstep1[56]); + lstep2[57] = _mm_sub_epi32(lstep3[63], lstep1[57]); + lstep2[58] = _mm_sub_epi32(lstep3[60], lstep1[58]); + lstep2[59] = _mm_sub_epi32(lstep3[61], lstep1[59]); + lstep2[60] = _mm_add_epi32(lstep1[58], lstep3[60]); + lstep2[61] = _mm_add_epi32(lstep1[59], lstep3[61]); + lstep2[62] = _mm_add_epi32(lstep1[56], lstep3[62]); + lstep2[63] = _mm_add_epi32(lstep1[57], lstep3[63]); + } + // stage 6 + { + const __m128i k32_p28_p04 = pair_set_epi32(cospi_28_64, cospi_4_64); + const __m128i k32_p12_p20 = pair_set_epi32(cospi_12_64, cospi_20_64); + const __m128i k32_m20_p12 = pair_set_epi32(-cospi_20_64, cospi_12_64); + const __m128i k32_m04_p28 = pair_set_epi32(-cospi_4_64, cospi_28_64); + + u[0] = _mm_unpacklo_epi32(lstep2[8], lstep2[14]); + u[1] = _mm_unpackhi_epi32(lstep2[8], lstep2[14]); + u[2] = _mm_unpacklo_epi32(lstep2[9], lstep2[15]); + u[3] = _mm_unpackhi_epi32(lstep2[9], lstep2[15]); + u[4] = _mm_unpacklo_epi32(lstep2[10], lstep2[12]); + u[5] = _mm_unpackhi_epi32(lstep2[10], lstep2[12]); + u[6] = _mm_unpacklo_epi32(lstep2[11], lstep2[13]); + u[7] = _mm_unpackhi_epi32(lstep2[11], lstep2[13]); + u[8] = _mm_unpacklo_epi32(lstep2[10], lstep2[12]); + u[9] = _mm_unpackhi_epi32(lstep2[10], lstep2[12]); + u[10] = _mm_unpacklo_epi32(lstep2[11], lstep2[13]); + u[11] = _mm_unpackhi_epi32(lstep2[11], lstep2[13]); + u[12] = _mm_unpacklo_epi32(lstep2[8], lstep2[14]); + u[13] = _mm_unpackhi_epi32(lstep2[8], lstep2[14]); + u[14] = _mm_unpacklo_epi32(lstep2[9], lstep2[15]); + u[15] = _mm_unpackhi_epi32(lstep2[9], lstep2[15]); + + v[0] = k_madd_epi32(u[0], k32_p28_p04); + v[1] = k_madd_epi32(u[1], k32_p28_p04); + v[2] = k_madd_epi32(u[2], k32_p28_p04); + v[3] = k_madd_epi32(u[3], k32_p28_p04); + v[4] = k_madd_epi32(u[4], k32_p12_p20); + v[5] = k_madd_epi32(u[5], k32_p12_p20); + v[6] = k_madd_epi32(u[6], k32_p12_p20); + v[7] = k_madd_epi32(u[7], k32_p12_p20); + v[8] = k_madd_epi32(u[8], k32_m20_p12); + v[9] = k_madd_epi32(u[9], k32_m20_p12); + v[10] = k_madd_epi32(u[10], k32_m20_p12); + v[11] = k_madd_epi32(u[11], k32_m20_p12); + v[12] = k_madd_epi32(u[12], k32_m04_p28); + v[13] = k_madd_epi32(u[13], k32_m04_p28); + v[14] = k_madd_epi32(u[14], k32_m04_p28); + v[15] = k_madd_epi32(u[15], k32_m04_p28); + +#if DCT_HIGH_BIT_DEPTH + overflow = k_check_epi32_overflow_16( + &v[0], &v[1], &v[2], &v[3], &v[4], &v[5], &v[6], &v[7], &v[8], + &v[9], &v[10], &v[11], &v[12], &v[13], &v[14], &v[15], &kZero); + if (overflow) { + HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org); + return; + } +#endif // DCT_HIGH_BIT_DEPTH + u[0] = k_packs_epi64(v[0], v[1]); + u[1] = k_packs_epi64(v[2], v[3]); + u[2] = k_packs_epi64(v[4], v[5]); + u[3] = k_packs_epi64(v[6], v[7]); + u[4] = k_packs_epi64(v[8], v[9]); + u[5] = k_packs_epi64(v[10], v[11]); + u[6] = k_packs_epi64(v[12], v[13]); + u[7] = k_packs_epi64(v[14], v[15]); + + v[0] = _mm_add_epi32(u[0], k__DCT_CONST_ROUNDING); + v[1] = _mm_add_epi32(u[1], k__DCT_CONST_ROUNDING); + v[2] = _mm_add_epi32(u[2], k__DCT_CONST_ROUNDING); + v[3] = _mm_add_epi32(u[3], k__DCT_CONST_ROUNDING); + v[4] = _mm_add_epi32(u[4], k__DCT_CONST_ROUNDING); + v[5] = _mm_add_epi32(u[5], k__DCT_CONST_ROUNDING); + v[6] = _mm_add_epi32(u[6], k__DCT_CONST_ROUNDING); + v[7] = _mm_add_epi32(u[7], k__DCT_CONST_ROUNDING); + + u[0] = _mm_srai_epi32(v[0], DCT_CONST_BITS); + u[1] = _mm_srai_epi32(v[1], DCT_CONST_BITS); + u[2] = _mm_srai_epi32(v[2], DCT_CONST_BITS); + u[3] = _mm_srai_epi32(v[3], DCT_CONST_BITS); + u[4] = _mm_srai_epi32(v[4], DCT_CONST_BITS); + u[5] = _mm_srai_epi32(v[5], DCT_CONST_BITS); + u[6] = _mm_srai_epi32(v[6], DCT_CONST_BITS); + u[7] = _mm_srai_epi32(v[7], DCT_CONST_BITS); + + sign[0] = _mm_cmplt_epi32(u[0], kZero); + sign[1] = _mm_cmplt_epi32(u[1], kZero); + sign[2] = _mm_cmplt_epi32(u[2], kZero); + sign[3] = _mm_cmplt_epi32(u[3], kZero); + sign[4] = _mm_cmplt_epi32(u[4], kZero); + sign[5] = _mm_cmplt_epi32(u[5], kZero); + sign[6] = _mm_cmplt_epi32(u[6], kZero); + sign[7] = _mm_cmplt_epi32(u[7], kZero); + + u[0] = _mm_sub_epi32(u[0], sign[0]); + u[1] = _mm_sub_epi32(u[1], sign[1]); + u[2] = _mm_sub_epi32(u[2], sign[2]); + u[3] = _mm_sub_epi32(u[3], sign[3]); + u[4] = _mm_sub_epi32(u[4], sign[4]); + u[5] = _mm_sub_epi32(u[5], sign[5]); + u[6] = _mm_sub_epi32(u[6], sign[6]); + u[7] = _mm_sub_epi32(u[7], sign[7]); + + u[0] = _mm_add_epi32(u[0], K32One); + u[1] = _mm_add_epi32(u[1], K32One); + u[2] = _mm_add_epi32(u[2], K32One); + u[3] = _mm_add_epi32(u[3], K32One); + u[4] = _mm_add_epi32(u[4], K32One); + u[5] = _mm_add_epi32(u[5], K32One); + u[6] = _mm_add_epi32(u[6], K32One); + u[7] = _mm_add_epi32(u[7], K32One); + + u[0] = _mm_srai_epi32(u[0], 2); + u[1] = _mm_srai_epi32(u[1], 2); + u[2] = _mm_srai_epi32(u[2], 2); + u[3] = _mm_srai_epi32(u[3], 2); + u[4] = _mm_srai_epi32(u[4], 2); + u[5] = _mm_srai_epi32(u[5], 2); + u[6] = _mm_srai_epi32(u[6], 2); + u[7] = _mm_srai_epi32(u[7], 2); + + out[4] = _mm_packs_epi32(u[0], u[1]); + out[20] = _mm_packs_epi32(u[2], u[3]); + out[12] = _mm_packs_epi32(u[4], u[5]); + out[28] = _mm_packs_epi32(u[6], u[7]); +#if DCT_HIGH_BIT_DEPTH + overflow = + check_epi16_overflow_x4(&out[4], &out[20], &out[12], &out[28]); + if (overflow) { + HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org); + return; + } +#endif // DCT_HIGH_BIT_DEPTH + } + { + lstep3[16] = _mm_add_epi32(lstep2[18], lstep1[16]); + lstep3[17] = _mm_add_epi32(lstep2[19], lstep1[17]); + lstep3[18] = _mm_sub_epi32(lstep1[16], lstep2[18]); + lstep3[19] = _mm_sub_epi32(lstep1[17], lstep2[19]); + lstep3[20] = _mm_sub_epi32(lstep1[22], lstep2[20]); + lstep3[21] = _mm_sub_epi32(lstep1[23], lstep2[21]); + lstep3[22] = _mm_add_epi32(lstep2[20], lstep1[22]); + lstep3[23] = _mm_add_epi32(lstep2[21], lstep1[23]); + lstep3[24] = _mm_add_epi32(lstep2[26], lstep1[24]); + lstep3[25] = _mm_add_epi32(lstep2[27], lstep1[25]); + lstep3[26] = _mm_sub_epi32(lstep1[24], lstep2[26]); + lstep3[27] = _mm_sub_epi32(lstep1[25], lstep2[27]); + lstep3[28] = _mm_sub_epi32(lstep1[30], lstep2[28]); + lstep3[29] = _mm_sub_epi32(lstep1[31], lstep2[29]); + lstep3[30] = _mm_add_epi32(lstep2[28], lstep1[30]); + lstep3[31] = _mm_add_epi32(lstep2[29], lstep1[31]); + } + { + const __m128i k32_m04_p28 = pair_set_epi32(-cospi_4_64, cospi_28_64); + const __m128i k32_m28_m04 = pair_set_epi32(-cospi_28_64, -cospi_4_64); + const __m128i k32_m20_p12 = pair_set_epi32(-cospi_20_64, cospi_12_64); + const __m128i k32_m12_m20 = + pair_set_epi32(-cospi_12_64, -cospi_20_64); + const __m128i k32_p12_p20 = pair_set_epi32(cospi_12_64, cospi_20_64); + const __m128i k32_p28_p04 = pair_set_epi32(cospi_28_64, cospi_4_64); + + u[0] = _mm_unpacklo_epi32(lstep2[34], lstep2[60]); + u[1] = _mm_unpackhi_epi32(lstep2[34], lstep2[60]); + u[2] = _mm_unpacklo_epi32(lstep2[35], lstep2[61]); + u[3] = _mm_unpackhi_epi32(lstep2[35], lstep2[61]); + u[4] = _mm_unpacklo_epi32(lstep2[36], lstep2[58]); + u[5] = _mm_unpackhi_epi32(lstep2[36], lstep2[58]); + u[6] = _mm_unpacklo_epi32(lstep2[37], lstep2[59]); + u[7] = _mm_unpackhi_epi32(lstep2[37], lstep2[59]); + u[8] = _mm_unpacklo_epi32(lstep2[42], lstep2[52]); + u[9] = _mm_unpackhi_epi32(lstep2[42], lstep2[52]); + u[10] = _mm_unpacklo_epi32(lstep2[43], lstep2[53]); + u[11] = _mm_unpackhi_epi32(lstep2[43], lstep2[53]); + u[12] = _mm_unpacklo_epi32(lstep2[44], lstep2[50]); + u[13] = _mm_unpackhi_epi32(lstep2[44], lstep2[50]); + u[14] = _mm_unpacklo_epi32(lstep2[45], lstep2[51]); + u[15] = _mm_unpackhi_epi32(lstep2[45], lstep2[51]); + + v[0] = k_madd_epi32(u[0], k32_m04_p28); + v[1] = k_madd_epi32(u[1], k32_m04_p28); + v[2] = k_madd_epi32(u[2], k32_m04_p28); + v[3] = k_madd_epi32(u[3], k32_m04_p28); + v[4] = k_madd_epi32(u[4], k32_m28_m04); + v[5] = k_madd_epi32(u[5], k32_m28_m04); + v[6] = k_madd_epi32(u[6], k32_m28_m04); + v[7] = k_madd_epi32(u[7], k32_m28_m04); + v[8] = k_madd_epi32(u[8], k32_m20_p12); + v[9] = k_madd_epi32(u[9], k32_m20_p12); + v[10] = k_madd_epi32(u[10], k32_m20_p12); + v[11] = k_madd_epi32(u[11], k32_m20_p12); + v[12] = k_madd_epi32(u[12], k32_m12_m20); + v[13] = k_madd_epi32(u[13], k32_m12_m20); + v[14] = k_madd_epi32(u[14], k32_m12_m20); + v[15] = k_madd_epi32(u[15], k32_m12_m20); + v[16] = k_madd_epi32(u[12], k32_m20_p12); + v[17] = k_madd_epi32(u[13], k32_m20_p12); + v[18] = k_madd_epi32(u[14], k32_m20_p12); + v[19] = k_madd_epi32(u[15], k32_m20_p12); + v[20] = k_madd_epi32(u[8], k32_p12_p20); + v[21] = k_madd_epi32(u[9], k32_p12_p20); + v[22] = k_madd_epi32(u[10], k32_p12_p20); + v[23] = k_madd_epi32(u[11], k32_p12_p20); + v[24] = k_madd_epi32(u[4], k32_m04_p28); + v[25] = k_madd_epi32(u[5], k32_m04_p28); + v[26] = k_madd_epi32(u[6], k32_m04_p28); + v[27] = k_madd_epi32(u[7], k32_m04_p28); + v[28] = k_madd_epi32(u[0], k32_p28_p04); + v[29] = k_madd_epi32(u[1], k32_p28_p04); + v[30] = k_madd_epi32(u[2], k32_p28_p04); + v[31] = k_madd_epi32(u[3], k32_p28_p04); + +#if DCT_HIGH_BIT_DEPTH + overflow = k_check_epi32_overflow_32( + &v[0], &v[1], &v[2], &v[3], &v[4], &v[5], &v[6], &v[7], &v[8], + &v[9], &v[10], &v[11], &v[12], &v[13], &v[14], &v[15], &v[16], + &v[17], &v[18], &v[19], &v[20], &v[21], &v[22], &v[23], &v[24], + &v[25], &v[26], &v[27], &v[28], &v[29], &v[30], &v[31], &kZero); + if (overflow) { + HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org); + return; + } +#endif // DCT_HIGH_BIT_DEPTH + u[0] = k_packs_epi64(v[0], v[1]); + u[1] = k_packs_epi64(v[2], v[3]); + u[2] = k_packs_epi64(v[4], v[5]); + u[3] = k_packs_epi64(v[6], v[7]); + u[4] = k_packs_epi64(v[8], v[9]); + u[5] = k_packs_epi64(v[10], v[11]); + u[6] = k_packs_epi64(v[12], v[13]); + u[7] = k_packs_epi64(v[14], v[15]); + u[8] = k_packs_epi64(v[16], v[17]); + u[9] = k_packs_epi64(v[18], v[19]); + u[10] = k_packs_epi64(v[20], v[21]); + u[11] = k_packs_epi64(v[22], v[23]); + u[12] = k_packs_epi64(v[24], v[25]); + u[13] = k_packs_epi64(v[26], v[27]); + u[14] = k_packs_epi64(v[28], v[29]); + u[15] = k_packs_epi64(v[30], v[31]); + + v[0] = _mm_add_epi32(u[0], k__DCT_CONST_ROUNDING); + v[1] = _mm_add_epi32(u[1], k__DCT_CONST_ROUNDING); + v[2] = _mm_add_epi32(u[2], k__DCT_CONST_ROUNDING); + v[3] = _mm_add_epi32(u[3], k__DCT_CONST_ROUNDING); + v[4] = _mm_add_epi32(u[4], k__DCT_CONST_ROUNDING); + v[5] = _mm_add_epi32(u[5], k__DCT_CONST_ROUNDING); + v[6] = _mm_add_epi32(u[6], k__DCT_CONST_ROUNDING); + v[7] = _mm_add_epi32(u[7], k__DCT_CONST_ROUNDING); + v[8] = _mm_add_epi32(u[8], k__DCT_CONST_ROUNDING); + v[9] = _mm_add_epi32(u[9], k__DCT_CONST_ROUNDING); + v[10] = _mm_add_epi32(u[10], k__DCT_CONST_ROUNDING); + v[11] = _mm_add_epi32(u[11], k__DCT_CONST_ROUNDING); + v[12] = _mm_add_epi32(u[12], k__DCT_CONST_ROUNDING); + v[13] = _mm_add_epi32(u[13], k__DCT_CONST_ROUNDING); + v[14] = _mm_add_epi32(u[14], k__DCT_CONST_ROUNDING); + v[15] = _mm_add_epi32(u[15], k__DCT_CONST_ROUNDING); + + lstep3[34] = _mm_srai_epi32(v[0], DCT_CONST_BITS); + lstep3[35] = _mm_srai_epi32(v[1], DCT_CONST_BITS); + lstep3[36] = _mm_srai_epi32(v[2], DCT_CONST_BITS); + lstep3[37] = _mm_srai_epi32(v[3], DCT_CONST_BITS); + lstep3[42] = _mm_srai_epi32(v[4], DCT_CONST_BITS); + lstep3[43] = _mm_srai_epi32(v[5], DCT_CONST_BITS); + lstep3[44] = _mm_srai_epi32(v[6], DCT_CONST_BITS); + lstep3[45] = _mm_srai_epi32(v[7], DCT_CONST_BITS); + lstep3[50] = _mm_srai_epi32(v[8], DCT_CONST_BITS); + lstep3[51] = _mm_srai_epi32(v[9], DCT_CONST_BITS); + lstep3[52] = _mm_srai_epi32(v[10], DCT_CONST_BITS); + lstep3[53] = _mm_srai_epi32(v[11], DCT_CONST_BITS); + lstep3[58] = _mm_srai_epi32(v[12], DCT_CONST_BITS); + lstep3[59] = _mm_srai_epi32(v[13], DCT_CONST_BITS); + lstep3[60] = _mm_srai_epi32(v[14], DCT_CONST_BITS); + lstep3[61] = _mm_srai_epi32(v[15], DCT_CONST_BITS); + } + // stage 7 + { + const __m128i k32_p30_p02 = pair_set_epi32(cospi_30_64, cospi_2_64); + const __m128i k32_p14_p18 = pair_set_epi32(cospi_14_64, cospi_18_64); + const __m128i k32_p22_p10 = pair_set_epi32(cospi_22_64, cospi_10_64); + const __m128i k32_p06_p26 = pair_set_epi32(cospi_6_64, cospi_26_64); + const __m128i k32_m26_p06 = pair_set_epi32(-cospi_26_64, cospi_6_64); + const __m128i k32_m10_p22 = pair_set_epi32(-cospi_10_64, cospi_22_64); + const __m128i k32_m18_p14 = pair_set_epi32(-cospi_18_64, cospi_14_64); + const __m128i k32_m02_p30 = pair_set_epi32(-cospi_2_64, cospi_30_64); + + u[0] = _mm_unpacklo_epi32(lstep3[16], lstep3[30]); + u[1] = _mm_unpackhi_epi32(lstep3[16], lstep3[30]); + u[2] = _mm_unpacklo_epi32(lstep3[17], lstep3[31]); + u[3] = _mm_unpackhi_epi32(lstep3[17], lstep3[31]); + u[4] = _mm_unpacklo_epi32(lstep3[18], lstep3[28]); + u[5] = _mm_unpackhi_epi32(lstep3[18], lstep3[28]); + u[6] = _mm_unpacklo_epi32(lstep3[19], lstep3[29]); + u[7] = _mm_unpackhi_epi32(lstep3[19], lstep3[29]); + u[8] = _mm_unpacklo_epi32(lstep3[20], lstep3[26]); + u[9] = _mm_unpackhi_epi32(lstep3[20], lstep3[26]); + u[10] = _mm_unpacklo_epi32(lstep3[21], lstep3[27]); + u[11] = _mm_unpackhi_epi32(lstep3[21], lstep3[27]); + u[12] = _mm_unpacklo_epi32(lstep3[22], lstep3[24]); + u[13] = _mm_unpackhi_epi32(lstep3[22], lstep3[24]); + u[14] = _mm_unpacklo_epi32(lstep3[23], lstep3[25]); + u[15] = _mm_unpackhi_epi32(lstep3[23], lstep3[25]); + + v[0] = k_madd_epi32(u[0], k32_p30_p02); + v[1] = k_madd_epi32(u[1], k32_p30_p02); + v[2] = k_madd_epi32(u[2], k32_p30_p02); + v[3] = k_madd_epi32(u[3], k32_p30_p02); + v[4] = k_madd_epi32(u[4], k32_p14_p18); + v[5] = k_madd_epi32(u[5], k32_p14_p18); + v[6] = k_madd_epi32(u[6], k32_p14_p18); + v[7] = k_madd_epi32(u[7], k32_p14_p18); + v[8] = k_madd_epi32(u[8], k32_p22_p10); + v[9] = k_madd_epi32(u[9], k32_p22_p10); + v[10] = k_madd_epi32(u[10], k32_p22_p10); + v[11] = k_madd_epi32(u[11], k32_p22_p10); + v[12] = k_madd_epi32(u[12], k32_p06_p26); + v[13] = k_madd_epi32(u[13], k32_p06_p26); + v[14] = k_madd_epi32(u[14], k32_p06_p26); + v[15] = k_madd_epi32(u[15], k32_p06_p26); + v[16] = k_madd_epi32(u[12], k32_m26_p06); + v[17] = k_madd_epi32(u[13], k32_m26_p06); + v[18] = k_madd_epi32(u[14], k32_m26_p06); + v[19] = k_madd_epi32(u[15], k32_m26_p06); + v[20] = k_madd_epi32(u[8], k32_m10_p22); + v[21] = k_madd_epi32(u[9], k32_m10_p22); + v[22] = k_madd_epi32(u[10], k32_m10_p22); + v[23] = k_madd_epi32(u[11], k32_m10_p22); + v[24] = k_madd_epi32(u[4], k32_m18_p14); + v[25] = k_madd_epi32(u[5], k32_m18_p14); + v[26] = k_madd_epi32(u[6], k32_m18_p14); + v[27] = k_madd_epi32(u[7], k32_m18_p14); + v[28] = k_madd_epi32(u[0], k32_m02_p30); + v[29] = k_madd_epi32(u[1], k32_m02_p30); + v[30] = k_madd_epi32(u[2], k32_m02_p30); + v[31] = k_madd_epi32(u[3], k32_m02_p30); + +#if DCT_HIGH_BIT_DEPTH + overflow = k_check_epi32_overflow_32( + &v[0], &v[1], &v[2], &v[3], &v[4], &v[5], &v[6], &v[7], &v[8], + &v[9], &v[10], &v[11], &v[12], &v[13], &v[14], &v[15], &v[16], + &v[17], &v[18], &v[19], &v[20], &v[21], &v[22], &v[23], &v[24], + &v[25], &v[26], &v[27], &v[28], &v[29], &v[30], &v[31], &kZero); + if (overflow) { + HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org); + return; + } +#endif // DCT_HIGH_BIT_DEPTH + u[0] = k_packs_epi64(v[0], v[1]); + u[1] = k_packs_epi64(v[2], v[3]); + u[2] = k_packs_epi64(v[4], v[5]); + u[3] = k_packs_epi64(v[6], v[7]); + u[4] = k_packs_epi64(v[8], v[9]); + u[5] = k_packs_epi64(v[10], v[11]); + u[6] = k_packs_epi64(v[12], v[13]); + u[7] = k_packs_epi64(v[14], v[15]); + u[8] = k_packs_epi64(v[16], v[17]); + u[9] = k_packs_epi64(v[18], v[19]); + u[10] = k_packs_epi64(v[20], v[21]); + u[11] = k_packs_epi64(v[22], v[23]); + u[12] = k_packs_epi64(v[24], v[25]); + u[13] = k_packs_epi64(v[26], v[27]); + u[14] = k_packs_epi64(v[28], v[29]); + u[15] = k_packs_epi64(v[30], v[31]); + + v[0] = _mm_add_epi32(u[0], k__DCT_CONST_ROUNDING); + v[1] = _mm_add_epi32(u[1], k__DCT_CONST_ROUNDING); + v[2] = _mm_add_epi32(u[2], k__DCT_CONST_ROUNDING); + v[3] = _mm_add_epi32(u[3], k__DCT_CONST_ROUNDING); + v[4] = _mm_add_epi32(u[4], k__DCT_CONST_ROUNDING); + v[5] = _mm_add_epi32(u[5], k__DCT_CONST_ROUNDING); + v[6] = _mm_add_epi32(u[6], k__DCT_CONST_ROUNDING); + v[7] = _mm_add_epi32(u[7], k__DCT_CONST_ROUNDING); + v[8] = _mm_add_epi32(u[8], k__DCT_CONST_ROUNDING); + v[9] = _mm_add_epi32(u[9], k__DCT_CONST_ROUNDING); + v[10] = _mm_add_epi32(u[10], k__DCT_CONST_ROUNDING); + v[11] = _mm_add_epi32(u[11], k__DCT_CONST_ROUNDING); + v[12] = _mm_add_epi32(u[12], k__DCT_CONST_ROUNDING); + v[13] = _mm_add_epi32(u[13], k__DCT_CONST_ROUNDING); + v[14] = _mm_add_epi32(u[14], k__DCT_CONST_ROUNDING); + v[15] = _mm_add_epi32(u[15], k__DCT_CONST_ROUNDING); + + u[0] = _mm_srai_epi32(v[0], DCT_CONST_BITS); + u[1] = _mm_srai_epi32(v[1], DCT_CONST_BITS); + u[2] = _mm_srai_epi32(v[2], DCT_CONST_BITS); + u[3] = _mm_srai_epi32(v[3], DCT_CONST_BITS); + u[4] = _mm_srai_epi32(v[4], DCT_CONST_BITS); + u[5] = _mm_srai_epi32(v[5], DCT_CONST_BITS); + u[6] = _mm_srai_epi32(v[6], DCT_CONST_BITS); + u[7] = _mm_srai_epi32(v[7], DCT_CONST_BITS); + u[8] = _mm_srai_epi32(v[8], DCT_CONST_BITS); + u[9] = _mm_srai_epi32(v[9], DCT_CONST_BITS); + u[10] = _mm_srai_epi32(v[10], DCT_CONST_BITS); + u[11] = _mm_srai_epi32(v[11], DCT_CONST_BITS); + u[12] = _mm_srai_epi32(v[12], DCT_CONST_BITS); + u[13] = _mm_srai_epi32(v[13], DCT_CONST_BITS); + u[14] = _mm_srai_epi32(v[14], DCT_CONST_BITS); + u[15] = _mm_srai_epi32(v[15], DCT_CONST_BITS); + + v[0] = _mm_cmplt_epi32(u[0], kZero); + v[1] = _mm_cmplt_epi32(u[1], kZero); + v[2] = _mm_cmplt_epi32(u[2], kZero); + v[3] = _mm_cmplt_epi32(u[3], kZero); + v[4] = _mm_cmplt_epi32(u[4], kZero); + v[5] = _mm_cmplt_epi32(u[5], kZero); + v[6] = _mm_cmplt_epi32(u[6], kZero); + v[7] = _mm_cmplt_epi32(u[7], kZero); + v[8] = _mm_cmplt_epi32(u[8], kZero); + v[9] = _mm_cmplt_epi32(u[9], kZero); + v[10] = _mm_cmplt_epi32(u[10], kZero); + v[11] = _mm_cmplt_epi32(u[11], kZero); + v[12] = _mm_cmplt_epi32(u[12], kZero); + v[13] = _mm_cmplt_epi32(u[13], kZero); + v[14] = _mm_cmplt_epi32(u[14], kZero); + v[15] = _mm_cmplt_epi32(u[15], kZero); + + u[0] = _mm_sub_epi32(u[0], v[0]); + u[1] = _mm_sub_epi32(u[1], v[1]); + u[2] = _mm_sub_epi32(u[2], v[2]); + u[3] = _mm_sub_epi32(u[3], v[3]); + u[4] = _mm_sub_epi32(u[4], v[4]); + u[5] = _mm_sub_epi32(u[5], v[5]); + u[6] = _mm_sub_epi32(u[6], v[6]); + u[7] = _mm_sub_epi32(u[7], v[7]); + u[8] = _mm_sub_epi32(u[8], v[8]); + u[9] = _mm_sub_epi32(u[9], v[9]); + u[10] = _mm_sub_epi32(u[10], v[10]); + u[11] = _mm_sub_epi32(u[11], v[11]); + u[12] = _mm_sub_epi32(u[12], v[12]); + u[13] = _mm_sub_epi32(u[13], v[13]); + u[14] = _mm_sub_epi32(u[14], v[14]); + u[15] = _mm_sub_epi32(u[15], v[15]); + + v[0] = _mm_add_epi32(u[0], K32One); + v[1] = _mm_add_epi32(u[1], K32One); + v[2] = _mm_add_epi32(u[2], K32One); + v[3] = _mm_add_epi32(u[3], K32One); + v[4] = _mm_add_epi32(u[4], K32One); + v[5] = _mm_add_epi32(u[5], K32One); + v[6] = _mm_add_epi32(u[6], K32One); + v[7] = _mm_add_epi32(u[7], K32One); + v[8] = _mm_add_epi32(u[8], K32One); + v[9] = _mm_add_epi32(u[9], K32One); + v[10] = _mm_add_epi32(u[10], K32One); + v[11] = _mm_add_epi32(u[11], K32One); + v[12] = _mm_add_epi32(u[12], K32One); + v[13] = _mm_add_epi32(u[13], K32One); + v[14] = _mm_add_epi32(u[14], K32One); + v[15] = _mm_add_epi32(u[15], K32One); + + u[0] = _mm_srai_epi32(v[0], 2); + u[1] = _mm_srai_epi32(v[1], 2); + u[2] = _mm_srai_epi32(v[2], 2); + u[3] = _mm_srai_epi32(v[3], 2); + u[4] = _mm_srai_epi32(v[4], 2); + u[5] = _mm_srai_epi32(v[5], 2); + u[6] = _mm_srai_epi32(v[6], 2); + u[7] = _mm_srai_epi32(v[7], 2); + u[8] = _mm_srai_epi32(v[8], 2); + u[9] = _mm_srai_epi32(v[9], 2); + u[10] = _mm_srai_epi32(v[10], 2); + u[11] = _mm_srai_epi32(v[11], 2); + u[12] = _mm_srai_epi32(v[12], 2); + u[13] = _mm_srai_epi32(v[13], 2); + u[14] = _mm_srai_epi32(v[14], 2); + u[15] = _mm_srai_epi32(v[15], 2); + + out[2] = _mm_packs_epi32(u[0], u[1]); + out[18] = _mm_packs_epi32(u[2], u[3]); + out[10] = _mm_packs_epi32(u[4], u[5]); + out[26] = _mm_packs_epi32(u[6], u[7]); + out[6] = _mm_packs_epi32(u[8], u[9]); + out[22] = _mm_packs_epi32(u[10], u[11]); + out[14] = _mm_packs_epi32(u[12], u[13]); + out[30] = _mm_packs_epi32(u[14], u[15]); +#if DCT_HIGH_BIT_DEPTH + overflow = + check_epi16_overflow_x8(&out[2], &out[18], &out[10], &out[26], + &out[6], &out[22], &out[14], &out[30]); + if (overflow) { + HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org); + return; + } +#endif // DCT_HIGH_BIT_DEPTH + } + { + lstep1[32] = _mm_add_epi32(lstep3[34], lstep2[32]); + lstep1[33] = _mm_add_epi32(lstep3[35], lstep2[33]); + lstep1[34] = _mm_sub_epi32(lstep2[32], lstep3[34]); + lstep1[35] = _mm_sub_epi32(lstep2[33], lstep3[35]); + lstep1[36] = _mm_sub_epi32(lstep2[38], lstep3[36]); + lstep1[37] = _mm_sub_epi32(lstep2[39], lstep3[37]); + lstep1[38] = _mm_add_epi32(lstep3[36], lstep2[38]); + lstep1[39] = _mm_add_epi32(lstep3[37], lstep2[39]); + lstep1[40] = _mm_add_epi32(lstep3[42], lstep2[40]); + lstep1[41] = _mm_add_epi32(lstep3[43], lstep2[41]); + lstep1[42] = _mm_sub_epi32(lstep2[40], lstep3[42]); + lstep1[43] = _mm_sub_epi32(lstep2[41], lstep3[43]); + lstep1[44] = _mm_sub_epi32(lstep2[46], lstep3[44]); + lstep1[45] = _mm_sub_epi32(lstep2[47], lstep3[45]); + lstep1[46] = _mm_add_epi32(lstep3[44], lstep2[46]); + lstep1[47] = _mm_add_epi32(lstep3[45], lstep2[47]); + lstep1[48] = _mm_add_epi32(lstep3[50], lstep2[48]); + lstep1[49] = _mm_add_epi32(lstep3[51], lstep2[49]); + lstep1[50] = _mm_sub_epi32(lstep2[48], lstep3[50]); + lstep1[51] = _mm_sub_epi32(lstep2[49], lstep3[51]); + lstep1[52] = _mm_sub_epi32(lstep2[54], lstep3[52]); + lstep1[53] = _mm_sub_epi32(lstep2[55], lstep3[53]); + lstep1[54] = _mm_add_epi32(lstep3[52], lstep2[54]); + lstep1[55] = _mm_add_epi32(lstep3[53], lstep2[55]); + lstep1[56] = _mm_add_epi32(lstep3[58], lstep2[56]); + lstep1[57] = _mm_add_epi32(lstep3[59], lstep2[57]); + lstep1[58] = _mm_sub_epi32(lstep2[56], lstep3[58]); + lstep1[59] = _mm_sub_epi32(lstep2[57], lstep3[59]); + lstep1[60] = _mm_sub_epi32(lstep2[62], lstep3[60]); + lstep1[61] = _mm_sub_epi32(lstep2[63], lstep3[61]); + lstep1[62] = _mm_add_epi32(lstep3[60], lstep2[62]); + lstep1[63] = _mm_add_epi32(lstep3[61], lstep2[63]); + } + // stage 8 + { + const __m128i k32_p31_p01 = pair_set_epi32(cospi_31_64, cospi_1_64); + const __m128i k32_p15_p17 = pair_set_epi32(cospi_15_64, cospi_17_64); + const __m128i k32_p23_p09 = pair_set_epi32(cospi_23_64, cospi_9_64); + const __m128i k32_p07_p25 = pair_set_epi32(cospi_7_64, cospi_25_64); + const __m128i k32_m25_p07 = pair_set_epi32(-cospi_25_64, cospi_7_64); + const __m128i k32_m09_p23 = pair_set_epi32(-cospi_9_64, cospi_23_64); + const __m128i k32_m17_p15 = pair_set_epi32(-cospi_17_64, cospi_15_64); + const __m128i k32_m01_p31 = pair_set_epi32(-cospi_1_64, cospi_31_64); + + u[0] = _mm_unpacklo_epi32(lstep1[32], lstep1[62]); + u[1] = _mm_unpackhi_epi32(lstep1[32], lstep1[62]); + u[2] = _mm_unpacklo_epi32(lstep1[33], lstep1[63]); + u[3] = _mm_unpackhi_epi32(lstep1[33], lstep1[63]); + u[4] = _mm_unpacklo_epi32(lstep1[34], lstep1[60]); + u[5] = _mm_unpackhi_epi32(lstep1[34], lstep1[60]); + u[6] = _mm_unpacklo_epi32(lstep1[35], lstep1[61]); + u[7] = _mm_unpackhi_epi32(lstep1[35], lstep1[61]); + u[8] = _mm_unpacklo_epi32(lstep1[36], lstep1[58]); + u[9] = _mm_unpackhi_epi32(lstep1[36], lstep1[58]); + u[10] = _mm_unpacklo_epi32(lstep1[37], lstep1[59]); + u[11] = _mm_unpackhi_epi32(lstep1[37], lstep1[59]); + u[12] = _mm_unpacklo_epi32(lstep1[38], lstep1[56]); + u[13] = _mm_unpackhi_epi32(lstep1[38], lstep1[56]); + u[14] = _mm_unpacklo_epi32(lstep1[39], lstep1[57]); + u[15] = _mm_unpackhi_epi32(lstep1[39], lstep1[57]); + + v[0] = k_madd_epi32(u[0], k32_p31_p01); + v[1] = k_madd_epi32(u[1], k32_p31_p01); + v[2] = k_madd_epi32(u[2], k32_p31_p01); + v[3] = k_madd_epi32(u[3], k32_p31_p01); + v[4] = k_madd_epi32(u[4], k32_p15_p17); + v[5] = k_madd_epi32(u[5], k32_p15_p17); + v[6] = k_madd_epi32(u[6], k32_p15_p17); + v[7] = k_madd_epi32(u[7], k32_p15_p17); + v[8] = k_madd_epi32(u[8], k32_p23_p09); + v[9] = k_madd_epi32(u[9], k32_p23_p09); + v[10] = k_madd_epi32(u[10], k32_p23_p09); + v[11] = k_madd_epi32(u[11], k32_p23_p09); + v[12] = k_madd_epi32(u[12], k32_p07_p25); + v[13] = k_madd_epi32(u[13], k32_p07_p25); + v[14] = k_madd_epi32(u[14], k32_p07_p25); + v[15] = k_madd_epi32(u[15], k32_p07_p25); + v[16] = k_madd_epi32(u[12], k32_m25_p07); + v[17] = k_madd_epi32(u[13], k32_m25_p07); + v[18] = k_madd_epi32(u[14], k32_m25_p07); + v[19] = k_madd_epi32(u[15], k32_m25_p07); + v[20] = k_madd_epi32(u[8], k32_m09_p23); + v[21] = k_madd_epi32(u[9], k32_m09_p23); + v[22] = k_madd_epi32(u[10], k32_m09_p23); + v[23] = k_madd_epi32(u[11], k32_m09_p23); + v[24] = k_madd_epi32(u[4], k32_m17_p15); + v[25] = k_madd_epi32(u[5], k32_m17_p15); + v[26] = k_madd_epi32(u[6], k32_m17_p15); + v[27] = k_madd_epi32(u[7], k32_m17_p15); + v[28] = k_madd_epi32(u[0], k32_m01_p31); + v[29] = k_madd_epi32(u[1], k32_m01_p31); + v[30] = k_madd_epi32(u[2], k32_m01_p31); + v[31] = k_madd_epi32(u[3], k32_m01_p31); + +#if DCT_HIGH_BIT_DEPTH + overflow = k_check_epi32_overflow_32( + &v[0], &v[1], &v[2], &v[3], &v[4], &v[5], &v[6], &v[7], &v[8], + &v[9], &v[10], &v[11], &v[12], &v[13], &v[14], &v[15], &v[16], + &v[17], &v[18], &v[19], &v[20], &v[21], &v[22], &v[23], &v[24], + &v[25], &v[26], &v[27], &v[28], &v[29], &v[30], &v[31], &kZero); + if (overflow) { + HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org); + return; + } +#endif // DCT_HIGH_BIT_DEPTH + u[0] = k_packs_epi64(v[0], v[1]); + u[1] = k_packs_epi64(v[2], v[3]); + u[2] = k_packs_epi64(v[4], v[5]); + u[3] = k_packs_epi64(v[6], v[7]); + u[4] = k_packs_epi64(v[8], v[9]); + u[5] = k_packs_epi64(v[10], v[11]); + u[6] = k_packs_epi64(v[12], v[13]); + u[7] = k_packs_epi64(v[14], v[15]); + u[8] = k_packs_epi64(v[16], v[17]); + u[9] = k_packs_epi64(v[18], v[19]); + u[10] = k_packs_epi64(v[20], v[21]); + u[11] = k_packs_epi64(v[22], v[23]); + u[12] = k_packs_epi64(v[24], v[25]); + u[13] = k_packs_epi64(v[26], v[27]); + u[14] = k_packs_epi64(v[28], v[29]); + u[15] = k_packs_epi64(v[30], v[31]); + + v[0] = _mm_add_epi32(u[0], k__DCT_CONST_ROUNDING); + v[1] = _mm_add_epi32(u[1], k__DCT_CONST_ROUNDING); + v[2] = _mm_add_epi32(u[2], k__DCT_CONST_ROUNDING); + v[3] = _mm_add_epi32(u[3], k__DCT_CONST_ROUNDING); + v[4] = _mm_add_epi32(u[4], k__DCT_CONST_ROUNDING); + v[5] = _mm_add_epi32(u[5], k__DCT_CONST_ROUNDING); + v[6] = _mm_add_epi32(u[6], k__DCT_CONST_ROUNDING); + v[7] = _mm_add_epi32(u[7], k__DCT_CONST_ROUNDING); + v[8] = _mm_add_epi32(u[8], k__DCT_CONST_ROUNDING); + v[9] = _mm_add_epi32(u[9], k__DCT_CONST_ROUNDING); + v[10] = _mm_add_epi32(u[10], k__DCT_CONST_ROUNDING); + v[11] = _mm_add_epi32(u[11], k__DCT_CONST_ROUNDING); + v[12] = _mm_add_epi32(u[12], k__DCT_CONST_ROUNDING); + v[13] = _mm_add_epi32(u[13], k__DCT_CONST_ROUNDING); + v[14] = _mm_add_epi32(u[14], k__DCT_CONST_ROUNDING); + v[15] = _mm_add_epi32(u[15], k__DCT_CONST_ROUNDING); + + u[0] = _mm_srai_epi32(v[0], DCT_CONST_BITS); + u[1] = _mm_srai_epi32(v[1], DCT_CONST_BITS); + u[2] = _mm_srai_epi32(v[2], DCT_CONST_BITS); + u[3] = _mm_srai_epi32(v[3], DCT_CONST_BITS); + u[4] = _mm_srai_epi32(v[4], DCT_CONST_BITS); + u[5] = _mm_srai_epi32(v[5], DCT_CONST_BITS); + u[6] = _mm_srai_epi32(v[6], DCT_CONST_BITS); + u[7] = _mm_srai_epi32(v[7], DCT_CONST_BITS); + u[8] = _mm_srai_epi32(v[8], DCT_CONST_BITS); + u[9] = _mm_srai_epi32(v[9], DCT_CONST_BITS); + u[10] = _mm_srai_epi32(v[10], DCT_CONST_BITS); + u[11] = _mm_srai_epi32(v[11], DCT_CONST_BITS); + u[12] = _mm_srai_epi32(v[12], DCT_CONST_BITS); + u[13] = _mm_srai_epi32(v[13], DCT_CONST_BITS); + u[14] = _mm_srai_epi32(v[14], DCT_CONST_BITS); + u[15] = _mm_srai_epi32(v[15], DCT_CONST_BITS); + + v[0] = _mm_cmplt_epi32(u[0], kZero); + v[1] = _mm_cmplt_epi32(u[1], kZero); + v[2] = _mm_cmplt_epi32(u[2], kZero); + v[3] = _mm_cmplt_epi32(u[3], kZero); + v[4] = _mm_cmplt_epi32(u[4], kZero); + v[5] = _mm_cmplt_epi32(u[5], kZero); + v[6] = _mm_cmplt_epi32(u[6], kZero); + v[7] = _mm_cmplt_epi32(u[7], kZero); + v[8] = _mm_cmplt_epi32(u[8], kZero); + v[9] = _mm_cmplt_epi32(u[9], kZero); + v[10] = _mm_cmplt_epi32(u[10], kZero); + v[11] = _mm_cmplt_epi32(u[11], kZero); + v[12] = _mm_cmplt_epi32(u[12], kZero); + v[13] = _mm_cmplt_epi32(u[13], kZero); + v[14] = _mm_cmplt_epi32(u[14], kZero); + v[15] = _mm_cmplt_epi32(u[15], kZero); + + u[0] = _mm_sub_epi32(u[0], v[0]); + u[1] = _mm_sub_epi32(u[1], v[1]); + u[2] = _mm_sub_epi32(u[2], v[2]); + u[3] = _mm_sub_epi32(u[3], v[3]); + u[4] = _mm_sub_epi32(u[4], v[4]); + u[5] = _mm_sub_epi32(u[5], v[5]); + u[6] = _mm_sub_epi32(u[6], v[6]); + u[7] = _mm_sub_epi32(u[7], v[7]); + u[8] = _mm_sub_epi32(u[8], v[8]); + u[9] = _mm_sub_epi32(u[9], v[9]); + u[10] = _mm_sub_epi32(u[10], v[10]); + u[11] = _mm_sub_epi32(u[11], v[11]); + u[12] = _mm_sub_epi32(u[12], v[12]); + u[13] = _mm_sub_epi32(u[13], v[13]); + u[14] = _mm_sub_epi32(u[14], v[14]); + u[15] = _mm_sub_epi32(u[15], v[15]); + + v[0] = _mm_add_epi32(u[0], K32One); + v[1] = _mm_add_epi32(u[1], K32One); + v[2] = _mm_add_epi32(u[2], K32One); + v[3] = _mm_add_epi32(u[3], K32One); + v[4] = _mm_add_epi32(u[4], K32One); + v[5] = _mm_add_epi32(u[5], K32One); + v[6] = _mm_add_epi32(u[6], K32One); + v[7] = _mm_add_epi32(u[7], K32One); + v[8] = _mm_add_epi32(u[8], K32One); + v[9] = _mm_add_epi32(u[9], K32One); + v[10] = _mm_add_epi32(u[10], K32One); + v[11] = _mm_add_epi32(u[11], K32One); + v[12] = _mm_add_epi32(u[12], K32One); + v[13] = _mm_add_epi32(u[13], K32One); + v[14] = _mm_add_epi32(u[14], K32One); + v[15] = _mm_add_epi32(u[15], K32One); + + u[0] = _mm_srai_epi32(v[0], 2); + u[1] = _mm_srai_epi32(v[1], 2); + u[2] = _mm_srai_epi32(v[2], 2); + u[3] = _mm_srai_epi32(v[3], 2); + u[4] = _mm_srai_epi32(v[4], 2); + u[5] = _mm_srai_epi32(v[5], 2); + u[6] = _mm_srai_epi32(v[6], 2); + u[7] = _mm_srai_epi32(v[7], 2); + u[8] = _mm_srai_epi32(v[8], 2); + u[9] = _mm_srai_epi32(v[9], 2); + u[10] = _mm_srai_epi32(v[10], 2); + u[11] = _mm_srai_epi32(v[11], 2); + u[12] = _mm_srai_epi32(v[12], 2); + u[13] = _mm_srai_epi32(v[13], 2); + u[14] = _mm_srai_epi32(v[14], 2); + u[15] = _mm_srai_epi32(v[15], 2); + + out[1] = _mm_packs_epi32(u[0], u[1]); + out[17] = _mm_packs_epi32(u[2], u[3]); + out[9] = _mm_packs_epi32(u[4], u[5]); + out[25] = _mm_packs_epi32(u[6], u[7]); + out[7] = _mm_packs_epi32(u[8], u[9]); + out[23] = _mm_packs_epi32(u[10], u[11]); + out[15] = _mm_packs_epi32(u[12], u[13]); + out[31] = _mm_packs_epi32(u[14], u[15]); +#if DCT_HIGH_BIT_DEPTH + overflow = + check_epi16_overflow_x8(&out[1], &out[17], &out[9], &out[25], + &out[7], &out[23], &out[15], &out[31]); + if (overflow) { + HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org); + return; + } +#endif // DCT_HIGH_BIT_DEPTH + } + { + const __m128i k32_p27_p05 = pair_set_epi32(cospi_27_64, cospi_5_64); + const __m128i k32_p11_p21 = pair_set_epi32(cospi_11_64, cospi_21_64); + const __m128i k32_p19_p13 = pair_set_epi32(cospi_19_64, cospi_13_64); + const __m128i k32_p03_p29 = pair_set_epi32(cospi_3_64, cospi_29_64); + const __m128i k32_m29_p03 = pair_set_epi32(-cospi_29_64, cospi_3_64); + const __m128i k32_m13_p19 = pair_set_epi32(-cospi_13_64, cospi_19_64); + const __m128i k32_m21_p11 = pair_set_epi32(-cospi_21_64, cospi_11_64); + const __m128i k32_m05_p27 = pair_set_epi32(-cospi_5_64, cospi_27_64); + + u[0] = _mm_unpacklo_epi32(lstep1[40], lstep1[54]); + u[1] = _mm_unpackhi_epi32(lstep1[40], lstep1[54]); + u[2] = _mm_unpacklo_epi32(lstep1[41], lstep1[55]); + u[3] = _mm_unpackhi_epi32(lstep1[41], lstep1[55]); + u[4] = _mm_unpacklo_epi32(lstep1[42], lstep1[52]); + u[5] = _mm_unpackhi_epi32(lstep1[42], lstep1[52]); + u[6] = _mm_unpacklo_epi32(lstep1[43], lstep1[53]); + u[7] = _mm_unpackhi_epi32(lstep1[43], lstep1[53]); + u[8] = _mm_unpacklo_epi32(lstep1[44], lstep1[50]); + u[9] = _mm_unpackhi_epi32(lstep1[44], lstep1[50]); + u[10] = _mm_unpacklo_epi32(lstep1[45], lstep1[51]); + u[11] = _mm_unpackhi_epi32(lstep1[45], lstep1[51]); + u[12] = _mm_unpacklo_epi32(lstep1[46], lstep1[48]); + u[13] = _mm_unpackhi_epi32(lstep1[46], lstep1[48]); + u[14] = _mm_unpacklo_epi32(lstep1[47], lstep1[49]); + u[15] = _mm_unpackhi_epi32(lstep1[47], lstep1[49]); + + v[0] = k_madd_epi32(u[0], k32_p27_p05); + v[1] = k_madd_epi32(u[1], k32_p27_p05); + v[2] = k_madd_epi32(u[2], k32_p27_p05); + v[3] = k_madd_epi32(u[3], k32_p27_p05); + v[4] = k_madd_epi32(u[4], k32_p11_p21); + v[5] = k_madd_epi32(u[5], k32_p11_p21); + v[6] = k_madd_epi32(u[6], k32_p11_p21); + v[7] = k_madd_epi32(u[7], k32_p11_p21); + v[8] = k_madd_epi32(u[8], k32_p19_p13); + v[9] = k_madd_epi32(u[9], k32_p19_p13); + v[10] = k_madd_epi32(u[10], k32_p19_p13); + v[11] = k_madd_epi32(u[11], k32_p19_p13); + v[12] = k_madd_epi32(u[12], k32_p03_p29); + v[13] = k_madd_epi32(u[13], k32_p03_p29); + v[14] = k_madd_epi32(u[14], k32_p03_p29); + v[15] = k_madd_epi32(u[15], k32_p03_p29); + v[16] = k_madd_epi32(u[12], k32_m29_p03); + v[17] = k_madd_epi32(u[13], k32_m29_p03); + v[18] = k_madd_epi32(u[14], k32_m29_p03); + v[19] = k_madd_epi32(u[15], k32_m29_p03); + v[20] = k_madd_epi32(u[8], k32_m13_p19); + v[21] = k_madd_epi32(u[9], k32_m13_p19); + v[22] = k_madd_epi32(u[10], k32_m13_p19); + v[23] = k_madd_epi32(u[11], k32_m13_p19); + v[24] = k_madd_epi32(u[4], k32_m21_p11); + v[25] = k_madd_epi32(u[5], k32_m21_p11); + v[26] = k_madd_epi32(u[6], k32_m21_p11); + v[27] = k_madd_epi32(u[7], k32_m21_p11); + v[28] = k_madd_epi32(u[0], k32_m05_p27); + v[29] = k_madd_epi32(u[1], k32_m05_p27); + v[30] = k_madd_epi32(u[2], k32_m05_p27); + v[31] = k_madd_epi32(u[3], k32_m05_p27); + +#if DCT_HIGH_BIT_DEPTH + overflow = k_check_epi32_overflow_32( + &v[0], &v[1], &v[2], &v[3], &v[4], &v[5], &v[6], &v[7], &v[8], + &v[9], &v[10], &v[11], &v[12], &v[13], &v[14], &v[15], &v[16], + &v[17], &v[18], &v[19], &v[20], &v[21], &v[22], &v[23], &v[24], + &v[25], &v[26], &v[27], &v[28], &v[29], &v[30], &v[31], &kZero); + if (overflow) { + HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org); + return; + } +#endif // DCT_HIGH_BIT_DEPTH + u[0] = k_packs_epi64(v[0], v[1]); + u[1] = k_packs_epi64(v[2], v[3]); + u[2] = k_packs_epi64(v[4], v[5]); + u[3] = k_packs_epi64(v[6], v[7]); + u[4] = k_packs_epi64(v[8], v[9]); + u[5] = k_packs_epi64(v[10], v[11]); + u[6] = k_packs_epi64(v[12], v[13]); + u[7] = k_packs_epi64(v[14], v[15]); + u[8] = k_packs_epi64(v[16], v[17]); + u[9] = k_packs_epi64(v[18], v[19]); + u[10] = k_packs_epi64(v[20], v[21]); + u[11] = k_packs_epi64(v[22], v[23]); + u[12] = k_packs_epi64(v[24], v[25]); + u[13] = k_packs_epi64(v[26], v[27]); + u[14] = k_packs_epi64(v[28], v[29]); + u[15] = k_packs_epi64(v[30], v[31]); + + v[0] = _mm_add_epi32(u[0], k__DCT_CONST_ROUNDING); + v[1] = _mm_add_epi32(u[1], k__DCT_CONST_ROUNDING); + v[2] = _mm_add_epi32(u[2], k__DCT_CONST_ROUNDING); + v[3] = _mm_add_epi32(u[3], k__DCT_CONST_ROUNDING); + v[4] = _mm_add_epi32(u[4], k__DCT_CONST_ROUNDING); + v[5] = _mm_add_epi32(u[5], k__DCT_CONST_ROUNDING); + v[6] = _mm_add_epi32(u[6], k__DCT_CONST_ROUNDING); + v[7] = _mm_add_epi32(u[7], k__DCT_CONST_ROUNDING); + v[8] = _mm_add_epi32(u[8], k__DCT_CONST_ROUNDING); + v[9] = _mm_add_epi32(u[9], k__DCT_CONST_ROUNDING); + v[10] = _mm_add_epi32(u[10], k__DCT_CONST_ROUNDING); + v[11] = _mm_add_epi32(u[11], k__DCT_CONST_ROUNDING); + v[12] = _mm_add_epi32(u[12], k__DCT_CONST_ROUNDING); + v[13] = _mm_add_epi32(u[13], k__DCT_CONST_ROUNDING); + v[14] = _mm_add_epi32(u[14], k__DCT_CONST_ROUNDING); + v[15] = _mm_add_epi32(u[15], k__DCT_CONST_ROUNDING); + + u[0] = _mm_srai_epi32(v[0], DCT_CONST_BITS); + u[1] = _mm_srai_epi32(v[1], DCT_CONST_BITS); + u[2] = _mm_srai_epi32(v[2], DCT_CONST_BITS); + u[3] = _mm_srai_epi32(v[3], DCT_CONST_BITS); + u[4] = _mm_srai_epi32(v[4], DCT_CONST_BITS); + u[5] = _mm_srai_epi32(v[5], DCT_CONST_BITS); + u[6] = _mm_srai_epi32(v[6], DCT_CONST_BITS); + u[7] = _mm_srai_epi32(v[7], DCT_CONST_BITS); + u[8] = _mm_srai_epi32(v[8], DCT_CONST_BITS); + u[9] = _mm_srai_epi32(v[9], DCT_CONST_BITS); + u[10] = _mm_srai_epi32(v[10], DCT_CONST_BITS); + u[11] = _mm_srai_epi32(v[11], DCT_CONST_BITS); + u[12] = _mm_srai_epi32(v[12], DCT_CONST_BITS); + u[13] = _mm_srai_epi32(v[13], DCT_CONST_BITS); + u[14] = _mm_srai_epi32(v[14], DCT_CONST_BITS); + u[15] = _mm_srai_epi32(v[15], DCT_CONST_BITS); + + v[0] = _mm_cmplt_epi32(u[0], kZero); + v[1] = _mm_cmplt_epi32(u[1], kZero); + v[2] = _mm_cmplt_epi32(u[2], kZero); + v[3] = _mm_cmplt_epi32(u[3], kZero); + v[4] = _mm_cmplt_epi32(u[4], kZero); + v[5] = _mm_cmplt_epi32(u[5], kZero); + v[6] = _mm_cmplt_epi32(u[6], kZero); + v[7] = _mm_cmplt_epi32(u[7], kZero); + v[8] = _mm_cmplt_epi32(u[8], kZero); + v[9] = _mm_cmplt_epi32(u[9], kZero); + v[10] = _mm_cmplt_epi32(u[10], kZero); + v[11] = _mm_cmplt_epi32(u[11], kZero); + v[12] = _mm_cmplt_epi32(u[12], kZero); + v[13] = _mm_cmplt_epi32(u[13], kZero); + v[14] = _mm_cmplt_epi32(u[14], kZero); + v[15] = _mm_cmplt_epi32(u[15], kZero); + + u[0] = _mm_sub_epi32(u[0], v[0]); + u[1] = _mm_sub_epi32(u[1], v[1]); + u[2] = _mm_sub_epi32(u[2], v[2]); + u[3] = _mm_sub_epi32(u[3], v[3]); + u[4] = _mm_sub_epi32(u[4], v[4]); + u[5] = _mm_sub_epi32(u[5], v[5]); + u[6] = _mm_sub_epi32(u[6], v[6]); + u[7] = _mm_sub_epi32(u[7], v[7]); + u[8] = _mm_sub_epi32(u[8], v[8]); + u[9] = _mm_sub_epi32(u[9], v[9]); + u[10] = _mm_sub_epi32(u[10], v[10]); + u[11] = _mm_sub_epi32(u[11], v[11]); + u[12] = _mm_sub_epi32(u[12], v[12]); + u[13] = _mm_sub_epi32(u[13], v[13]); + u[14] = _mm_sub_epi32(u[14], v[14]); + u[15] = _mm_sub_epi32(u[15], v[15]); + + v[0] = _mm_add_epi32(u[0], K32One); + v[1] = _mm_add_epi32(u[1], K32One); + v[2] = _mm_add_epi32(u[2], K32One); + v[3] = _mm_add_epi32(u[3], K32One); + v[4] = _mm_add_epi32(u[4], K32One); + v[5] = _mm_add_epi32(u[5], K32One); + v[6] = _mm_add_epi32(u[6], K32One); + v[7] = _mm_add_epi32(u[7], K32One); + v[8] = _mm_add_epi32(u[8], K32One); + v[9] = _mm_add_epi32(u[9], K32One); + v[10] = _mm_add_epi32(u[10], K32One); + v[11] = _mm_add_epi32(u[11], K32One); + v[12] = _mm_add_epi32(u[12], K32One); + v[13] = _mm_add_epi32(u[13], K32One); + v[14] = _mm_add_epi32(u[14], K32One); + v[15] = _mm_add_epi32(u[15], K32One); + + u[0] = _mm_srai_epi32(v[0], 2); + u[1] = _mm_srai_epi32(v[1], 2); + u[2] = _mm_srai_epi32(v[2], 2); + u[3] = _mm_srai_epi32(v[3], 2); + u[4] = _mm_srai_epi32(v[4], 2); + u[5] = _mm_srai_epi32(v[5], 2); + u[6] = _mm_srai_epi32(v[6], 2); + u[7] = _mm_srai_epi32(v[7], 2); + u[8] = _mm_srai_epi32(v[8], 2); + u[9] = _mm_srai_epi32(v[9], 2); + u[10] = _mm_srai_epi32(v[10], 2); + u[11] = _mm_srai_epi32(v[11], 2); + u[12] = _mm_srai_epi32(v[12], 2); + u[13] = _mm_srai_epi32(v[13], 2); + u[14] = _mm_srai_epi32(v[14], 2); + u[15] = _mm_srai_epi32(v[15], 2); + + out[5] = _mm_packs_epi32(u[0], u[1]); + out[21] = _mm_packs_epi32(u[2], u[3]); + out[13] = _mm_packs_epi32(u[4], u[5]); + out[29] = _mm_packs_epi32(u[6], u[7]); + out[3] = _mm_packs_epi32(u[8], u[9]); + out[19] = _mm_packs_epi32(u[10], u[11]); + out[11] = _mm_packs_epi32(u[12], u[13]); + out[27] = _mm_packs_epi32(u[14], u[15]); +#if DCT_HIGH_BIT_DEPTH + overflow = + check_epi16_overflow_x8(&out[5], &out[21], &out[13], &out[29], + &out[3], &out[19], &out[11], &out[27]); + if (overflow) { + HIGH_FDCT32x32_2D_ROWS_C(intermediate, output_org); + return; + } +#endif // DCT_HIGH_BIT_DEPTH + } + } +#endif // FDCT32x32_HIGH_PRECISION + // Transpose the results, do it as four 8x8 transposes. + { + int transpose_block; + int16_t *output0 = &intermediate[column_start * 32]; + tran_low_t *output1 = &output_org[column_start * 32]; + for (transpose_block = 0; transpose_block < 4; ++transpose_block) { + __m128i *this_out = &out[8 * transpose_block]; + // 00 01 02 03 04 05 06 07 + // 10 11 12 13 14 15 16 17 + // 20 21 22 23 24 25 26 27 + // 30 31 32 33 34 35 36 37 + // 40 41 42 43 44 45 46 47 + // 50 51 52 53 54 55 56 57 + // 60 61 62 63 64 65 66 67 + // 70 71 72 73 74 75 76 77 + const __m128i tr0_0 = _mm_unpacklo_epi16(this_out[0], this_out[1]); + const __m128i tr0_1 = _mm_unpacklo_epi16(this_out[2], this_out[3]); + const __m128i tr0_2 = _mm_unpackhi_epi16(this_out[0], this_out[1]); + const __m128i tr0_3 = _mm_unpackhi_epi16(this_out[2], this_out[3]); + const __m128i tr0_4 = _mm_unpacklo_epi16(this_out[4], this_out[5]); + const __m128i tr0_5 = _mm_unpacklo_epi16(this_out[6], this_out[7]); + const __m128i tr0_6 = _mm_unpackhi_epi16(this_out[4], this_out[5]); + const __m128i tr0_7 = _mm_unpackhi_epi16(this_out[6], this_out[7]); + // 00 10 01 11 02 12 03 13 + // 20 30 21 31 22 32 23 33 + // 04 14 05 15 06 16 07 17 + // 24 34 25 35 26 36 27 37 + // 40 50 41 51 42 52 43 53 + // 60 70 61 71 62 72 63 73 + // 54 54 55 55 56 56 57 57 + // 64 74 65 75 66 76 67 77 + const __m128i tr1_0 = _mm_unpacklo_epi32(tr0_0, tr0_1); + const __m128i tr1_1 = _mm_unpacklo_epi32(tr0_2, tr0_3); + const __m128i tr1_2 = _mm_unpackhi_epi32(tr0_0, tr0_1); + const __m128i tr1_3 = _mm_unpackhi_epi32(tr0_2, tr0_3); + const __m128i tr1_4 = _mm_unpacklo_epi32(tr0_4, tr0_5); + const __m128i tr1_5 = _mm_unpacklo_epi32(tr0_6, tr0_7); + const __m128i tr1_6 = _mm_unpackhi_epi32(tr0_4, tr0_5); + const __m128i tr1_7 = _mm_unpackhi_epi32(tr0_6, tr0_7); + // 00 10 20 30 01 11 21 31 + // 40 50 60 70 41 51 61 71 + // 02 12 22 32 03 13 23 33 + // 42 52 62 72 43 53 63 73 + // 04 14 24 34 05 15 21 36 + // 44 54 64 74 45 55 61 76 + // 06 16 26 36 07 17 27 37 + // 46 56 66 76 47 57 67 77 + __m128i tr2_0 = _mm_unpacklo_epi64(tr1_0, tr1_4); + __m128i tr2_1 = _mm_unpackhi_epi64(tr1_0, tr1_4); + __m128i tr2_2 = _mm_unpacklo_epi64(tr1_2, tr1_6); + __m128i tr2_3 = _mm_unpackhi_epi64(tr1_2, tr1_6); + __m128i tr2_4 = _mm_unpacklo_epi64(tr1_1, tr1_5); + __m128i tr2_5 = _mm_unpackhi_epi64(tr1_1, tr1_5); + __m128i tr2_6 = _mm_unpacklo_epi64(tr1_3, tr1_7); + __m128i tr2_7 = _mm_unpackhi_epi64(tr1_3, tr1_7); + // 00 10 20 30 40 50 60 70 + // 01 11 21 31 41 51 61 71 + // 02 12 22 32 42 52 62 72 + // 03 13 23 33 43 53 63 73 + // 04 14 24 34 44 54 64 74 + // 05 15 25 35 45 55 65 75 + // 06 16 26 36 46 56 66 76 + // 07 17 27 37 47 57 67 77 + if (0 == pass) { + // output[j] = (output[j] + 1 + (output[j] > 0)) >> 2; + // TODO(cd): see quality impact of only doing + // output[j] = (output[j] + 1) >> 2; + // which would remove the code between here ... + __m128i tr2_0_0 = _mm_cmpgt_epi16(tr2_0, kZero); + __m128i tr2_1_0 = _mm_cmpgt_epi16(tr2_1, kZero); + __m128i tr2_2_0 = _mm_cmpgt_epi16(tr2_2, kZero); + __m128i tr2_3_0 = _mm_cmpgt_epi16(tr2_3, kZero); + __m128i tr2_4_0 = _mm_cmpgt_epi16(tr2_4, kZero); + __m128i tr2_5_0 = _mm_cmpgt_epi16(tr2_5, kZero); + __m128i tr2_6_0 = _mm_cmpgt_epi16(tr2_6, kZero); + __m128i tr2_7_0 = _mm_cmpgt_epi16(tr2_7, kZero); + tr2_0 = _mm_sub_epi16(tr2_0, tr2_0_0); + tr2_1 = _mm_sub_epi16(tr2_1, tr2_1_0); + tr2_2 = _mm_sub_epi16(tr2_2, tr2_2_0); + tr2_3 = _mm_sub_epi16(tr2_3, tr2_3_0); + tr2_4 = _mm_sub_epi16(tr2_4, tr2_4_0); + tr2_5 = _mm_sub_epi16(tr2_5, tr2_5_0); + tr2_6 = _mm_sub_epi16(tr2_6, tr2_6_0); + tr2_7 = _mm_sub_epi16(tr2_7, tr2_7_0); + // ... and here. + // PS: also change code in vp9/encoder/vp9_dct.c + tr2_0 = _mm_add_epi16(tr2_0, kOne); + tr2_1 = _mm_add_epi16(tr2_1, kOne); + tr2_2 = _mm_add_epi16(tr2_2, kOne); + tr2_3 = _mm_add_epi16(tr2_3, kOne); + tr2_4 = _mm_add_epi16(tr2_4, kOne); + tr2_5 = _mm_add_epi16(tr2_5, kOne); + tr2_6 = _mm_add_epi16(tr2_6, kOne); + tr2_7 = _mm_add_epi16(tr2_7, kOne); + tr2_0 = _mm_srai_epi16(tr2_0, 2); + tr2_1 = _mm_srai_epi16(tr2_1, 2); + tr2_2 = _mm_srai_epi16(tr2_2, 2); + tr2_3 = _mm_srai_epi16(tr2_3, 2); + tr2_4 = _mm_srai_epi16(tr2_4, 2); + tr2_5 = _mm_srai_epi16(tr2_5, 2); + tr2_6 = _mm_srai_epi16(tr2_6, 2); + tr2_7 = _mm_srai_epi16(tr2_7, 2); + } + // Note: even though all these stores are aligned, using the aligned + // intrinsic make the code slightly slower. + if (pass == 0) { + _mm_storeu_si128((__m128i *)(output0 + 0 * 32), tr2_0); + _mm_storeu_si128((__m128i *)(output0 + 1 * 32), tr2_1); + _mm_storeu_si128((__m128i *)(output0 + 2 * 32), tr2_2); + _mm_storeu_si128((__m128i *)(output0 + 3 * 32), tr2_3); + _mm_storeu_si128((__m128i *)(output0 + 4 * 32), tr2_4); + _mm_storeu_si128((__m128i *)(output0 + 5 * 32), tr2_5); + _mm_storeu_si128((__m128i *)(output0 + 6 * 32), tr2_6); + _mm_storeu_si128((__m128i *)(output0 + 7 * 32), tr2_7); + // Process next 8x8 + output0 += 8; + } else { + storeu_output(&tr2_0, (output1 + 0 * 32)); + storeu_output(&tr2_1, (output1 + 1 * 32)); + storeu_output(&tr2_2, (output1 + 2 * 32)); + storeu_output(&tr2_3, (output1 + 3 * 32)); + storeu_output(&tr2_4, (output1 + 4 * 32)); + storeu_output(&tr2_5, (output1 + 5 * 32)); + storeu_output(&tr2_6, (output1 + 6 * 32)); + storeu_output(&tr2_7, (output1 + 7 * 32)); + // Process next 8x8 + output1 += 8; + } + } + } + } + } +} // NOLINT + +#undef ADD_EPI16 +#undef SUB_EPI16 +#undef HIGH_FDCT32x32_2D_C +#undef HIGH_FDCT32x32_2D_ROWS_C diff --git a/vpx_dsp/x86/fwd_txfm_avx2.c b/vpx_dsp/x86/fwd_txfm_avx2.c new file mode 100644 index 0000000..21f11f0 --- /dev/null +++ b/vpx_dsp/x86/fwd_txfm_avx2.c @@ -0,0 +1,23 @@ +/* + * Copyright (c) 2012 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "./vpx_config.h" + +#define FDCT32x32_2D_AVX2 vpx_fdct32x32_rd_avx2 +#define FDCT32x32_HIGH_PRECISION 0 +#include "vpx_dsp/x86/fwd_dct32x32_impl_avx2.h" +#undef FDCT32x32_2D_AVX2 +#undef FDCT32x32_HIGH_PRECISION + +#define FDCT32x32_2D_AVX2 vpx_fdct32x32_avx2 +#define FDCT32x32_HIGH_PRECISION 1 +#include "vpx_dsp/x86/fwd_dct32x32_impl_avx2.h" // NOLINT +#undef FDCT32x32_2D_AVX2 +#undef FDCT32x32_HIGH_PRECISION diff --git a/vpx_dsp/x86/fwd_txfm_impl_sse2.h b/vpx_dsp/x86/fwd_txfm_impl_sse2.h new file mode 100644 index 0000000..f9abaec --- /dev/null +++ b/vpx_dsp/x86/fwd_txfm_impl_sse2.h @@ -0,0 +1,1013 @@ +/* + * Copyright (c) 2014 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include // SSE2 + +#include "./vpx_dsp_rtcd.h" +#include "vpx_dsp/txfm_common.h" +#include "vpx_dsp/x86/fwd_txfm_sse2.h" +#include "vpx_dsp/x86/txfm_common_sse2.h" +#include "vpx_ports/mem.h" + +// TODO(jingning) The high bit-depth functions need rework for performance. +// After we properly fix the high bit-depth function implementations, this +// file's dependency should be substantially simplified. +#if DCT_HIGH_BIT_DEPTH +#define ADD_EPI16 _mm_adds_epi16 +#define SUB_EPI16 _mm_subs_epi16 + +#else +#define ADD_EPI16 _mm_add_epi16 +#define SUB_EPI16 _mm_sub_epi16 +#endif + +void FDCT4x4_2D(const int16_t *input, tran_low_t *output, int stride) { + // This 2D transform implements 4 vertical 1D transforms followed + // by 4 horizontal 1D transforms. The multiplies and adds are as given + // by Chen, Smith and Fralick ('77). The commands for moving the data + // around have been minimized by hand. + // For the purposes of the comments, the 16 inputs are referred to at i0 + // through iF (in raster order), intermediate variables are a0, b0, c0 + // through f, and correspond to the in-place computations mapped to input + // locations. The outputs, o0 through oF are labeled according to the + // output locations. + + // Constants + // These are the coefficients used for the multiplies. + // In the comments, pN means cos(N pi /64) and mN is -cos(N pi /64), + // where cospi_N_64 = cos(N pi /64) + const __m128i k__cospi_A = + octa_set_epi16(cospi_16_64, cospi_16_64, cospi_16_64, cospi_16_64, + cospi_16_64, -cospi_16_64, cospi_16_64, -cospi_16_64); + const __m128i k__cospi_B = + octa_set_epi16(cospi_16_64, -cospi_16_64, cospi_16_64, -cospi_16_64, + cospi_16_64, cospi_16_64, cospi_16_64, cospi_16_64); + const __m128i k__cospi_C = + octa_set_epi16(cospi_8_64, cospi_24_64, cospi_8_64, cospi_24_64, + cospi_24_64, -cospi_8_64, cospi_24_64, -cospi_8_64); + const __m128i k__cospi_D = + octa_set_epi16(cospi_24_64, -cospi_8_64, cospi_24_64, -cospi_8_64, + cospi_8_64, cospi_24_64, cospi_8_64, cospi_24_64); + const __m128i k__cospi_E = + octa_set_epi16(cospi_16_64, cospi_16_64, cospi_16_64, cospi_16_64, + cospi_16_64, cospi_16_64, cospi_16_64, cospi_16_64); + const __m128i k__cospi_F = + octa_set_epi16(cospi_16_64, -cospi_16_64, cospi_16_64, -cospi_16_64, + cospi_16_64, -cospi_16_64, cospi_16_64, -cospi_16_64); + const __m128i k__cospi_G = + octa_set_epi16(cospi_8_64, cospi_24_64, cospi_8_64, cospi_24_64, + -cospi_8_64, -cospi_24_64, -cospi_8_64, -cospi_24_64); + const __m128i k__cospi_H = + octa_set_epi16(cospi_24_64, -cospi_8_64, cospi_24_64, -cospi_8_64, + -cospi_24_64, cospi_8_64, -cospi_24_64, cospi_8_64); + + const __m128i k__DCT_CONST_ROUNDING = _mm_set1_epi32(DCT_CONST_ROUNDING); + // This second rounding constant saves doing some extra adds at the end + const __m128i k__DCT_CONST_ROUNDING2 = + _mm_set1_epi32(DCT_CONST_ROUNDING + (DCT_CONST_ROUNDING << 1)); + const int DCT_CONST_BITS2 = DCT_CONST_BITS + 2; + const __m128i k__nonzero_bias_a = _mm_setr_epi16(0, 1, 1, 1, 1, 1, 1, 1); + const __m128i k__nonzero_bias_b = _mm_setr_epi16(1, 0, 0, 0, 0, 0, 0, 0); + __m128i in0, in1; +#if DCT_HIGH_BIT_DEPTH + __m128i cmp0, cmp1; + int test, overflow; +#endif + + // Load inputs. + in0 = _mm_loadl_epi64((const __m128i *)(input + 0 * stride)); + in1 = _mm_loadl_epi64((const __m128i *)(input + 1 * stride)); + in1 = _mm_unpacklo_epi64( + in1, _mm_loadl_epi64((const __m128i *)(input + 2 * stride))); + in0 = _mm_unpacklo_epi64( + in0, _mm_loadl_epi64((const __m128i *)(input + 3 * stride))); +// in0 = [i0 i1 i2 i3 iC iD iE iF] +// in1 = [i4 i5 i6 i7 i8 i9 iA iB] +#if DCT_HIGH_BIT_DEPTH + // Check inputs small enough to use optimised code + cmp0 = _mm_xor_si128(_mm_cmpgt_epi16(in0, _mm_set1_epi16(0x3ff)), + _mm_cmplt_epi16(in0, _mm_set1_epi16(0xfc00))); + cmp1 = _mm_xor_si128(_mm_cmpgt_epi16(in1, _mm_set1_epi16(0x3ff)), + _mm_cmplt_epi16(in1, _mm_set1_epi16(0xfc00))); + test = _mm_movemask_epi8(_mm_or_si128(cmp0, cmp1)); + if (test) { + vpx_highbd_fdct4x4_c(input, output, stride); + return; + } +#endif // DCT_HIGH_BIT_DEPTH + + // multiply by 16 to give some extra precision + in0 = _mm_slli_epi16(in0, 4); + in1 = _mm_slli_epi16(in1, 4); + // if (i == 0 && input[0]) input[0] += 1; + // add 1 to the upper left pixel if it is non-zero, which helps reduce + // the round-trip error + { + // The mask will only contain whether the first value is zero, all + // other comparison will fail as something shifted by 4 (above << 4) + // can never be equal to one. To increment in the non-zero case, we + // add the mask and one for the first element: + // - if zero, mask = -1, v = v - 1 + 1 = v + // - if non-zero, mask = 0, v = v + 0 + 1 = v + 1 + __m128i mask = _mm_cmpeq_epi16(in0, k__nonzero_bias_a); + in0 = _mm_add_epi16(in0, mask); + in0 = _mm_add_epi16(in0, k__nonzero_bias_b); + } + // There are 4 total stages, alternating between an add/subtract stage + // followed by an multiply-and-add stage. + { + // Stage 1: Add/subtract + + // in0 = [i0 i1 i2 i3 iC iD iE iF] + // in1 = [i4 i5 i6 i7 i8 i9 iA iB] + const __m128i r0 = _mm_unpacklo_epi16(in0, in1); + const __m128i r1 = _mm_unpackhi_epi16(in0, in1); + // r0 = [i0 i4 i1 i5 i2 i6 i3 i7] + // r1 = [iC i8 iD i9 iE iA iF iB] + const __m128i r2 = _mm_shuffle_epi32(r0, 0xB4); + const __m128i r3 = _mm_shuffle_epi32(r1, 0xB4); + // r2 = [i0 i4 i1 i5 i3 i7 i2 i6] + // r3 = [iC i8 iD i9 iF iB iE iA] + + const __m128i t0 = _mm_add_epi16(r2, r3); + const __m128i t1 = _mm_sub_epi16(r2, r3); + // t0 = [a0 a4 a1 a5 a3 a7 a2 a6] + // t1 = [aC a8 aD a9 aF aB aE aA] + + // Stage 2: multiply by constants (which gets us into 32 bits). + // The constants needed here are: + // k__cospi_A = [p16 p16 p16 p16 p16 m16 p16 m16] + // k__cospi_B = [p16 m16 p16 m16 p16 p16 p16 p16] + // k__cospi_C = [p08 p24 p08 p24 p24 m08 p24 m08] + // k__cospi_D = [p24 m08 p24 m08 p08 p24 p08 p24] + const __m128i u0 = _mm_madd_epi16(t0, k__cospi_A); + const __m128i u2 = _mm_madd_epi16(t0, k__cospi_B); + const __m128i u1 = _mm_madd_epi16(t1, k__cospi_C); + const __m128i u3 = _mm_madd_epi16(t1, k__cospi_D); + // Then add and right-shift to get back to 16-bit range + const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING); + const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING); + const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING); + const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING); + const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS); + const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS); + const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS); + const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS); + // w0 = [b0 b1 b7 b6] + // w1 = [b8 b9 bF bE] + // w2 = [b4 b5 b3 b2] + // w3 = [bC bD bB bA] + const __m128i x0 = _mm_packs_epi32(w0, w1); + const __m128i x1 = _mm_packs_epi32(w2, w3); +#if DCT_HIGH_BIT_DEPTH + overflow = check_epi16_overflow_x2(&x0, &x1); + if (overflow) { + vpx_highbd_fdct4x4_c(input, output, stride); + return; + } +#endif // DCT_HIGH_BIT_DEPTH + // x0 = [b0 b1 b7 b6 b8 b9 bF bE] + // x1 = [b4 b5 b3 b2 bC bD bB bA] + in0 = _mm_shuffle_epi32(x0, 0xD8); + in1 = _mm_shuffle_epi32(x1, 0x8D); + // in0 = [b0 b1 b8 b9 b7 b6 bF bE] + // in1 = [b3 b2 bB bA b4 b5 bC bD] + } + { + // vertical DCTs finished. Now we do the horizontal DCTs. + // Stage 3: Add/subtract + + const __m128i t0 = ADD_EPI16(in0, in1); + const __m128i t1 = SUB_EPI16(in0, in1); +// t0 = [c0 c1 c8 c9 c4 c5 cC cD] +// t1 = [c3 c2 cB cA -c7 -c6 -cF -cE] +#if DCT_HIGH_BIT_DEPTH + overflow = check_epi16_overflow_x2(&t0, &t1); + if (overflow) { + vpx_highbd_fdct4x4_c(input, output, stride); + return; + } +#endif // DCT_HIGH_BIT_DEPTH + + // Stage 4: multiply by constants (which gets us into 32 bits). + { + // The constants needed here are: + // k__cospi_E = [p16 p16 p16 p16 p16 p16 p16 p16] + // k__cospi_F = [p16 m16 p16 m16 p16 m16 p16 m16] + // k__cospi_G = [p08 p24 p08 p24 m08 m24 m08 m24] + // k__cospi_H = [p24 m08 p24 m08 m24 p08 m24 p08] + const __m128i u0 = _mm_madd_epi16(t0, k__cospi_E); + const __m128i u1 = _mm_madd_epi16(t0, k__cospi_F); + const __m128i u2 = _mm_madd_epi16(t1, k__cospi_G); + const __m128i u3 = _mm_madd_epi16(t1, k__cospi_H); + // Then add and right-shift to get back to 16-bit range + // but this combines the final right-shift as well to save operations + // This unusual rounding operations is to maintain bit-accurate + // compatibility with the c version of this function which has two + // rounding steps in a row. + const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING2); + const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING2); + const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING2); + const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING2); + const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS2); + const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS2); + const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS2); + const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS2); + // w0 = [o0 o4 o8 oC] + // w1 = [o2 o6 oA oE] + // w2 = [o1 o5 o9 oD] + // w3 = [o3 o7 oB oF] + // remember the o's are numbered according to the correct output location + const __m128i x0 = _mm_packs_epi32(w0, w1); + const __m128i x1 = _mm_packs_epi32(w2, w3); +#if DCT_HIGH_BIT_DEPTH + overflow = check_epi16_overflow_x2(&x0, &x1); + if (overflow) { + vpx_highbd_fdct4x4_c(input, output, stride); + return; + } +#endif // DCT_HIGH_BIT_DEPTH + { + // x0 = [o0 o4 o8 oC o2 o6 oA oE] + // x1 = [o1 o5 o9 oD o3 o7 oB oF] + const __m128i y0 = _mm_unpacklo_epi16(x0, x1); + const __m128i y1 = _mm_unpackhi_epi16(x0, x1); + // y0 = [o0 o1 o4 o5 o8 o9 oC oD] + // y1 = [o2 o3 o6 o7 oA oB oE oF] + in0 = _mm_unpacklo_epi32(y0, y1); + // in0 = [o0 o1 o2 o3 o4 o5 o6 o7] + in1 = _mm_unpackhi_epi32(y0, y1); + // in1 = [o8 o9 oA oB oC oD oE oF] + } + } + } + // Post-condition (v + 1) >> 2 is now incorporated into previous + // add and right-shift commands. Only 2 store instructions needed + // because we are using the fact that 1/3 are stored just after 0/2. + storeu_output(&in0, output + 0 * 4); + storeu_output(&in1, output + 2 * 4); +} + +void FDCT8x8_2D(const int16_t *input, tran_low_t *output, int stride) { + int pass; + // Constants + // When we use them, in one case, they are all the same. In all others + // it's a pair of them that we need to repeat four times. This is done + // by constructing the 32 bit constant corresponding to that pair. + const __m128i k__cospi_p16_p16 = _mm_set1_epi16(cospi_16_64); + const __m128i k__cospi_p16_m16 = pair_set_epi16(cospi_16_64, -cospi_16_64); + const __m128i k__cospi_p24_p08 = pair_set_epi16(cospi_24_64, cospi_8_64); + const __m128i k__cospi_m08_p24 = pair_set_epi16(-cospi_8_64, cospi_24_64); + const __m128i k__cospi_p28_p04 = pair_set_epi16(cospi_28_64, cospi_4_64); + const __m128i k__cospi_m04_p28 = pair_set_epi16(-cospi_4_64, cospi_28_64); + const __m128i k__cospi_p12_p20 = pair_set_epi16(cospi_12_64, cospi_20_64); + const __m128i k__cospi_m20_p12 = pair_set_epi16(-cospi_20_64, cospi_12_64); + const __m128i k__DCT_CONST_ROUNDING = _mm_set1_epi32(DCT_CONST_ROUNDING); +#if DCT_HIGH_BIT_DEPTH + int overflow; +#endif + // Load input + __m128i in0 = _mm_load_si128((const __m128i *)(input + 0 * stride)); + __m128i in1 = _mm_load_si128((const __m128i *)(input + 1 * stride)); + __m128i in2 = _mm_load_si128((const __m128i *)(input + 2 * stride)); + __m128i in3 = _mm_load_si128((const __m128i *)(input + 3 * stride)); + __m128i in4 = _mm_load_si128((const __m128i *)(input + 4 * stride)); + __m128i in5 = _mm_load_si128((const __m128i *)(input + 5 * stride)); + __m128i in6 = _mm_load_si128((const __m128i *)(input + 6 * stride)); + __m128i in7 = _mm_load_si128((const __m128i *)(input + 7 * stride)); + // Pre-condition input (shift by two) + in0 = _mm_slli_epi16(in0, 2); + in1 = _mm_slli_epi16(in1, 2); + in2 = _mm_slli_epi16(in2, 2); + in3 = _mm_slli_epi16(in3, 2); + in4 = _mm_slli_epi16(in4, 2); + in5 = _mm_slli_epi16(in5, 2); + in6 = _mm_slli_epi16(in6, 2); + in7 = _mm_slli_epi16(in7, 2); + + // We do two passes, first the columns, then the rows. The results of the + // first pass are transposed so that the same column code can be reused. The + // results of the second pass are also transposed so that the rows (processed + // as columns) are put back in row positions. + for (pass = 0; pass < 2; pass++) { + // To store results of each pass before the transpose. + __m128i res0, res1, res2, res3, res4, res5, res6, res7; + // Add/subtract + const __m128i q0 = ADD_EPI16(in0, in7); + const __m128i q1 = ADD_EPI16(in1, in6); + const __m128i q2 = ADD_EPI16(in2, in5); + const __m128i q3 = ADD_EPI16(in3, in4); + const __m128i q4 = SUB_EPI16(in3, in4); + const __m128i q5 = SUB_EPI16(in2, in5); + const __m128i q6 = SUB_EPI16(in1, in6); + const __m128i q7 = SUB_EPI16(in0, in7); +#if DCT_HIGH_BIT_DEPTH + if (pass == 1) { + overflow = + check_epi16_overflow_x8(&q0, &q1, &q2, &q3, &q4, &q5, &q6, &q7); + if (overflow) { + vpx_highbd_fdct8x8_c(input, output, stride); + return; + } + } +#endif // DCT_HIGH_BIT_DEPTH + // Work on first four results + { + // Add/subtract + const __m128i r0 = ADD_EPI16(q0, q3); + const __m128i r1 = ADD_EPI16(q1, q2); + const __m128i r2 = SUB_EPI16(q1, q2); + const __m128i r3 = SUB_EPI16(q0, q3); +#if DCT_HIGH_BIT_DEPTH + overflow = check_epi16_overflow_x4(&r0, &r1, &r2, &r3); + if (overflow) { + vpx_highbd_fdct8x8_c(input, output, stride); + return; + } +#endif // DCT_HIGH_BIT_DEPTH + // Interleave to do the multiply by constants which gets us into 32bits + { + const __m128i t0 = _mm_unpacklo_epi16(r0, r1); + const __m128i t1 = _mm_unpackhi_epi16(r0, r1); + const __m128i t2 = _mm_unpacklo_epi16(r2, r3); + const __m128i t3 = _mm_unpackhi_epi16(r2, r3); + const __m128i u0 = _mm_madd_epi16(t0, k__cospi_p16_p16); + const __m128i u1 = _mm_madd_epi16(t1, k__cospi_p16_p16); + const __m128i u2 = _mm_madd_epi16(t0, k__cospi_p16_m16); + const __m128i u3 = _mm_madd_epi16(t1, k__cospi_p16_m16); + const __m128i u4 = _mm_madd_epi16(t2, k__cospi_p24_p08); + const __m128i u5 = _mm_madd_epi16(t3, k__cospi_p24_p08); + const __m128i u6 = _mm_madd_epi16(t2, k__cospi_m08_p24); + const __m128i u7 = _mm_madd_epi16(t3, k__cospi_m08_p24); + // dct_const_round_shift + const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING); + const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING); + const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING); + const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING); + const __m128i v4 = _mm_add_epi32(u4, k__DCT_CONST_ROUNDING); + const __m128i v5 = _mm_add_epi32(u5, k__DCT_CONST_ROUNDING); + const __m128i v6 = _mm_add_epi32(u6, k__DCT_CONST_ROUNDING); + const __m128i v7 = _mm_add_epi32(u7, k__DCT_CONST_ROUNDING); + const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS); + const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS); + const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS); + const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS); + const __m128i w4 = _mm_srai_epi32(v4, DCT_CONST_BITS); + const __m128i w5 = _mm_srai_epi32(v5, DCT_CONST_BITS); + const __m128i w6 = _mm_srai_epi32(v6, DCT_CONST_BITS); + const __m128i w7 = _mm_srai_epi32(v7, DCT_CONST_BITS); + // Combine + res0 = _mm_packs_epi32(w0, w1); + res4 = _mm_packs_epi32(w2, w3); + res2 = _mm_packs_epi32(w4, w5); + res6 = _mm_packs_epi32(w6, w7); +#if DCT_HIGH_BIT_DEPTH + overflow = check_epi16_overflow_x4(&res0, &res4, &res2, &res6); + if (overflow) { + vpx_highbd_fdct8x8_c(input, output, stride); + return; + } +#endif // DCT_HIGH_BIT_DEPTH + } + } + // Work on next four results + { + // Interleave to do the multiply by constants which gets us into 32bits + const __m128i d0 = _mm_unpacklo_epi16(q6, q5); + const __m128i d1 = _mm_unpackhi_epi16(q6, q5); + const __m128i e0 = _mm_madd_epi16(d0, k__cospi_p16_m16); + const __m128i e1 = _mm_madd_epi16(d1, k__cospi_p16_m16); + const __m128i e2 = _mm_madd_epi16(d0, k__cospi_p16_p16); + const __m128i e3 = _mm_madd_epi16(d1, k__cospi_p16_p16); + // dct_const_round_shift + const __m128i f0 = _mm_add_epi32(e0, k__DCT_CONST_ROUNDING); + const __m128i f1 = _mm_add_epi32(e1, k__DCT_CONST_ROUNDING); + const __m128i f2 = _mm_add_epi32(e2, k__DCT_CONST_ROUNDING); + const __m128i f3 = _mm_add_epi32(e3, k__DCT_CONST_ROUNDING); + const __m128i s0 = _mm_srai_epi32(f0, DCT_CONST_BITS); + const __m128i s1 = _mm_srai_epi32(f1, DCT_CONST_BITS); + const __m128i s2 = _mm_srai_epi32(f2, DCT_CONST_BITS); + const __m128i s3 = _mm_srai_epi32(f3, DCT_CONST_BITS); + // Combine + const __m128i r0 = _mm_packs_epi32(s0, s1); + const __m128i r1 = _mm_packs_epi32(s2, s3); +#if DCT_HIGH_BIT_DEPTH + overflow = check_epi16_overflow_x2(&r0, &r1); + if (overflow) { + vpx_highbd_fdct8x8_c(input, output, stride); + return; + } +#endif // DCT_HIGH_BIT_DEPTH + { + // Add/subtract + const __m128i x0 = ADD_EPI16(q4, r0); + const __m128i x1 = SUB_EPI16(q4, r0); + const __m128i x2 = SUB_EPI16(q7, r1); + const __m128i x3 = ADD_EPI16(q7, r1); +#if DCT_HIGH_BIT_DEPTH + overflow = check_epi16_overflow_x4(&x0, &x1, &x2, &x3); + if (overflow) { + vpx_highbd_fdct8x8_c(input, output, stride); + return; + } +#endif // DCT_HIGH_BIT_DEPTH + // Interleave to do the multiply by constants which gets us into 32bits + { + const __m128i t0 = _mm_unpacklo_epi16(x0, x3); + const __m128i t1 = _mm_unpackhi_epi16(x0, x3); + const __m128i t2 = _mm_unpacklo_epi16(x1, x2); + const __m128i t3 = _mm_unpackhi_epi16(x1, x2); + const __m128i u0 = _mm_madd_epi16(t0, k__cospi_p28_p04); + const __m128i u1 = _mm_madd_epi16(t1, k__cospi_p28_p04); + const __m128i u2 = _mm_madd_epi16(t0, k__cospi_m04_p28); + const __m128i u3 = _mm_madd_epi16(t1, k__cospi_m04_p28); + const __m128i u4 = _mm_madd_epi16(t2, k__cospi_p12_p20); + const __m128i u5 = _mm_madd_epi16(t3, k__cospi_p12_p20); + const __m128i u6 = _mm_madd_epi16(t2, k__cospi_m20_p12); + const __m128i u7 = _mm_madd_epi16(t3, k__cospi_m20_p12); + // dct_const_round_shift + const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING); + const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING); + const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING); + const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING); + const __m128i v4 = _mm_add_epi32(u4, k__DCT_CONST_ROUNDING); + const __m128i v5 = _mm_add_epi32(u5, k__DCT_CONST_ROUNDING); + const __m128i v6 = _mm_add_epi32(u6, k__DCT_CONST_ROUNDING); + const __m128i v7 = _mm_add_epi32(u7, k__DCT_CONST_ROUNDING); + const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS); + const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS); + const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS); + const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS); + const __m128i w4 = _mm_srai_epi32(v4, DCT_CONST_BITS); + const __m128i w5 = _mm_srai_epi32(v5, DCT_CONST_BITS); + const __m128i w6 = _mm_srai_epi32(v6, DCT_CONST_BITS); + const __m128i w7 = _mm_srai_epi32(v7, DCT_CONST_BITS); + // Combine + res1 = _mm_packs_epi32(w0, w1); + res7 = _mm_packs_epi32(w2, w3); + res5 = _mm_packs_epi32(w4, w5); + res3 = _mm_packs_epi32(w6, w7); +#if DCT_HIGH_BIT_DEPTH + overflow = check_epi16_overflow_x4(&res1, &res7, &res5, &res3); + if (overflow) { + vpx_highbd_fdct8x8_c(input, output, stride); + return; + } +#endif // DCT_HIGH_BIT_DEPTH + } + } + } + // Transpose the 8x8. + { + // 00 01 02 03 04 05 06 07 + // 10 11 12 13 14 15 16 17 + // 20 21 22 23 24 25 26 27 + // 30 31 32 33 34 35 36 37 + // 40 41 42 43 44 45 46 47 + // 50 51 52 53 54 55 56 57 + // 60 61 62 63 64 65 66 67 + // 70 71 72 73 74 75 76 77 + const __m128i tr0_0 = _mm_unpacklo_epi16(res0, res1); + const __m128i tr0_1 = _mm_unpacklo_epi16(res2, res3); + const __m128i tr0_2 = _mm_unpackhi_epi16(res0, res1); + const __m128i tr0_3 = _mm_unpackhi_epi16(res2, res3); + const __m128i tr0_4 = _mm_unpacklo_epi16(res4, res5); + const __m128i tr0_5 = _mm_unpacklo_epi16(res6, res7); + const __m128i tr0_6 = _mm_unpackhi_epi16(res4, res5); + const __m128i tr0_7 = _mm_unpackhi_epi16(res6, res7); + // 00 10 01 11 02 12 03 13 + // 20 30 21 31 22 32 23 33 + // 04 14 05 15 06 16 07 17 + // 24 34 25 35 26 36 27 37 + // 40 50 41 51 42 52 43 53 + // 60 70 61 71 62 72 63 73 + // 54 54 55 55 56 56 57 57 + // 64 74 65 75 66 76 67 77 + const __m128i tr1_0 = _mm_unpacklo_epi32(tr0_0, tr0_1); + const __m128i tr1_1 = _mm_unpacklo_epi32(tr0_2, tr0_3); + const __m128i tr1_2 = _mm_unpackhi_epi32(tr0_0, tr0_1); + const __m128i tr1_3 = _mm_unpackhi_epi32(tr0_2, tr0_3); + const __m128i tr1_4 = _mm_unpacklo_epi32(tr0_4, tr0_5); + const __m128i tr1_5 = _mm_unpacklo_epi32(tr0_6, tr0_7); + const __m128i tr1_6 = _mm_unpackhi_epi32(tr0_4, tr0_5); + const __m128i tr1_7 = _mm_unpackhi_epi32(tr0_6, tr0_7); + // 00 10 20 30 01 11 21 31 + // 40 50 60 70 41 51 61 71 + // 02 12 22 32 03 13 23 33 + // 42 52 62 72 43 53 63 73 + // 04 14 24 34 05 15 21 36 + // 44 54 64 74 45 55 61 76 + // 06 16 26 36 07 17 27 37 + // 46 56 66 76 47 57 67 77 + in0 = _mm_unpacklo_epi64(tr1_0, tr1_4); + in1 = _mm_unpackhi_epi64(tr1_0, tr1_4); + in2 = _mm_unpacklo_epi64(tr1_2, tr1_6); + in3 = _mm_unpackhi_epi64(tr1_2, tr1_6); + in4 = _mm_unpacklo_epi64(tr1_1, tr1_5); + in5 = _mm_unpackhi_epi64(tr1_1, tr1_5); + in6 = _mm_unpacklo_epi64(tr1_3, tr1_7); + in7 = _mm_unpackhi_epi64(tr1_3, tr1_7); + // 00 10 20 30 40 50 60 70 + // 01 11 21 31 41 51 61 71 + // 02 12 22 32 42 52 62 72 + // 03 13 23 33 43 53 63 73 + // 04 14 24 34 44 54 64 74 + // 05 15 25 35 45 55 65 75 + // 06 16 26 36 46 56 66 76 + // 07 17 27 37 47 57 67 77 + } + } + // Post-condition output and store it + { + // Post-condition (division by two) + // division of two 16 bits signed numbers using shifts + // n / 2 = (n - (n >> 15)) >> 1 + const __m128i sign_in0 = _mm_srai_epi16(in0, 15); + const __m128i sign_in1 = _mm_srai_epi16(in1, 15); + const __m128i sign_in2 = _mm_srai_epi16(in2, 15); + const __m128i sign_in3 = _mm_srai_epi16(in3, 15); + const __m128i sign_in4 = _mm_srai_epi16(in4, 15); + const __m128i sign_in5 = _mm_srai_epi16(in5, 15); + const __m128i sign_in6 = _mm_srai_epi16(in6, 15); + const __m128i sign_in7 = _mm_srai_epi16(in7, 15); + in0 = _mm_sub_epi16(in0, sign_in0); + in1 = _mm_sub_epi16(in1, sign_in1); + in2 = _mm_sub_epi16(in2, sign_in2); + in3 = _mm_sub_epi16(in3, sign_in3); + in4 = _mm_sub_epi16(in4, sign_in4); + in5 = _mm_sub_epi16(in5, sign_in5); + in6 = _mm_sub_epi16(in6, sign_in6); + in7 = _mm_sub_epi16(in7, sign_in7); + in0 = _mm_srai_epi16(in0, 1); + in1 = _mm_srai_epi16(in1, 1); + in2 = _mm_srai_epi16(in2, 1); + in3 = _mm_srai_epi16(in3, 1); + in4 = _mm_srai_epi16(in4, 1); + in5 = _mm_srai_epi16(in5, 1); + in6 = _mm_srai_epi16(in6, 1); + in7 = _mm_srai_epi16(in7, 1); + // store results + store_output(&in0, (output + 0 * 8)); + store_output(&in1, (output + 1 * 8)); + store_output(&in2, (output + 2 * 8)); + store_output(&in3, (output + 3 * 8)); + store_output(&in4, (output + 4 * 8)); + store_output(&in5, (output + 5 * 8)); + store_output(&in6, (output + 6 * 8)); + store_output(&in7, (output + 7 * 8)); + } +} + +void FDCT16x16_2D(const int16_t *input, tran_low_t *output, int stride) { + // The 2D transform is done with two passes which are actually pretty + // similar. In the first one, we transform the columns and transpose + // the results. In the second one, we transform the rows. To achieve that, + // as the first pass results are transposed, we transpose the columns (that + // is the transposed rows) and transpose the results (so that it goes back + // in normal/row positions). + int pass; + // We need an intermediate buffer between passes. + DECLARE_ALIGNED(16, int16_t, intermediate[256]); + const int16_t *in = input; + int16_t *out0 = intermediate; + tran_low_t *out1 = output; + // Constants + // When we use them, in one case, they are all the same. In all others + // it's a pair of them that we need to repeat four times. This is done + // by constructing the 32 bit constant corresponding to that pair. + const __m128i k__cospi_p16_p16 = _mm_set1_epi16(cospi_16_64); + const __m128i k__cospi_p16_m16 = pair_set_epi16(cospi_16_64, -cospi_16_64); + const __m128i k__cospi_p24_p08 = pair_set_epi16(cospi_24_64, cospi_8_64); + const __m128i k__cospi_p08_m24 = pair_set_epi16(cospi_8_64, -cospi_24_64); + const __m128i k__cospi_m08_p24 = pair_set_epi16(-cospi_8_64, cospi_24_64); + const __m128i k__cospi_p28_p04 = pair_set_epi16(cospi_28_64, cospi_4_64); + const __m128i k__cospi_m04_p28 = pair_set_epi16(-cospi_4_64, cospi_28_64); + const __m128i k__cospi_p12_p20 = pair_set_epi16(cospi_12_64, cospi_20_64); + const __m128i k__cospi_m20_p12 = pair_set_epi16(-cospi_20_64, cospi_12_64); + const __m128i k__cospi_p30_p02 = pair_set_epi16(cospi_30_64, cospi_2_64); + const __m128i k__cospi_p14_p18 = pair_set_epi16(cospi_14_64, cospi_18_64); + const __m128i k__cospi_m02_p30 = pair_set_epi16(-cospi_2_64, cospi_30_64); + const __m128i k__cospi_m18_p14 = pair_set_epi16(-cospi_18_64, cospi_14_64); + const __m128i k__cospi_p22_p10 = pair_set_epi16(cospi_22_64, cospi_10_64); + const __m128i k__cospi_p06_p26 = pair_set_epi16(cospi_6_64, cospi_26_64); + const __m128i k__cospi_m10_p22 = pair_set_epi16(-cospi_10_64, cospi_22_64); + const __m128i k__cospi_m26_p06 = pair_set_epi16(-cospi_26_64, cospi_6_64); + const __m128i k__DCT_CONST_ROUNDING = _mm_set1_epi32(DCT_CONST_ROUNDING); + const __m128i kOne = _mm_set1_epi16(1); + // Do the two transform/transpose passes + for (pass = 0; pass < 2; ++pass) { + // We process eight columns (transposed rows in second pass) at a time. + int column_start; +#if DCT_HIGH_BIT_DEPTH + int overflow; +#endif + for (column_start = 0; column_start < 16; column_start += 8) { + __m128i in00, in01, in02, in03, in04, in05, in06, in07; + __m128i in08, in09, in10, in11, in12, in13, in14, in15; + __m128i input0, input1, input2, input3, input4, input5, input6, input7; + __m128i step1_0, step1_1, step1_2, step1_3; + __m128i step1_4, step1_5, step1_6, step1_7; + __m128i step2_1, step2_2, step2_3, step2_4, step2_5, step2_6; + __m128i step3_0, step3_1, step3_2, step3_3; + __m128i step3_4, step3_5, step3_6, step3_7; + __m128i res00, res01, res02, res03, res04, res05, res06, res07; + __m128i res08, res09, res10, res11, res12, res13, res14, res15; + // Load and pre-condition input. + if (0 == pass) { + in00 = _mm_load_si128((const __m128i *)(in + 0 * stride)); + in01 = _mm_load_si128((const __m128i *)(in + 1 * stride)); + in02 = _mm_load_si128((const __m128i *)(in + 2 * stride)); + in03 = _mm_load_si128((const __m128i *)(in + 3 * stride)); + in04 = _mm_load_si128((const __m128i *)(in + 4 * stride)); + in05 = _mm_load_si128((const __m128i *)(in + 5 * stride)); + in06 = _mm_load_si128((const __m128i *)(in + 6 * stride)); + in07 = _mm_load_si128((const __m128i *)(in + 7 * stride)); + in08 = _mm_load_si128((const __m128i *)(in + 8 * stride)); + in09 = _mm_load_si128((const __m128i *)(in + 9 * stride)); + in10 = _mm_load_si128((const __m128i *)(in + 10 * stride)); + in11 = _mm_load_si128((const __m128i *)(in + 11 * stride)); + in12 = _mm_load_si128((const __m128i *)(in + 12 * stride)); + in13 = _mm_load_si128((const __m128i *)(in + 13 * stride)); + in14 = _mm_load_si128((const __m128i *)(in + 14 * stride)); + in15 = _mm_load_si128((const __m128i *)(in + 15 * stride)); + // x = x << 2 + in00 = _mm_slli_epi16(in00, 2); + in01 = _mm_slli_epi16(in01, 2); + in02 = _mm_slli_epi16(in02, 2); + in03 = _mm_slli_epi16(in03, 2); + in04 = _mm_slli_epi16(in04, 2); + in05 = _mm_slli_epi16(in05, 2); + in06 = _mm_slli_epi16(in06, 2); + in07 = _mm_slli_epi16(in07, 2); + in08 = _mm_slli_epi16(in08, 2); + in09 = _mm_slli_epi16(in09, 2); + in10 = _mm_slli_epi16(in10, 2); + in11 = _mm_slli_epi16(in11, 2); + in12 = _mm_slli_epi16(in12, 2); + in13 = _mm_slli_epi16(in13, 2); + in14 = _mm_slli_epi16(in14, 2); + in15 = _mm_slli_epi16(in15, 2); + } else { + in00 = _mm_load_si128((const __m128i *)(in + 0 * 16)); + in01 = _mm_load_si128((const __m128i *)(in + 1 * 16)); + in02 = _mm_load_si128((const __m128i *)(in + 2 * 16)); + in03 = _mm_load_si128((const __m128i *)(in + 3 * 16)); + in04 = _mm_load_si128((const __m128i *)(in + 4 * 16)); + in05 = _mm_load_si128((const __m128i *)(in + 5 * 16)); + in06 = _mm_load_si128((const __m128i *)(in + 6 * 16)); + in07 = _mm_load_si128((const __m128i *)(in + 7 * 16)); + in08 = _mm_load_si128((const __m128i *)(in + 8 * 16)); + in09 = _mm_load_si128((const __m128i *)(in + 9 * 16)); + in10 = _mm_load_si128((const __m128i *)(in + 10 * 16)); + in11 = _mm_load_si128((const __m128i *)(in + 11 * 16)); + in12 = _mm_load_si128((const __m128i *)(in + 12 * 16)); + in13 = _mm_load_si128((const __m128i *)(in + 13 * 16)); + in14 = _mm_load_si128((const __m128i *)(in + 14 * 16)); + in15 = _mm_load_si128((const __m128i *)(in + 15 * 16)); + // x = (x + 1) >> 2 + in00 = _mm_add_epi16(in00, kOne); + in01 = _mm_add_epi16(in01, kOne); + in02 = _mm_add_epi16(in02, kOne); + in03 = _mm_add_epi16(in03, kOne); + in04 = _mm_add_epi16(in04, kOne); + in05 = _mm_add_epi16(in05, kOne); + in06 = _mm_add_epi16(in06, kOne); + in07 = _mm_add_epi16(in07, kOne); + in08 = _mm_add_epi16(in08, kOne); + in09 = _mm_add_epi16(in09, kOne); + in10 = _mm_add_epi16(in10, kOne); + in11 = _mm_add_epi16(in11, kOne); + in12 = _mm_add_epi16(in12, kOne); + in13 = _mm_add_epi16(in13, kOne); + in14 = _mm_add_epi16(in14, kOne); + in15 = _mm_add_epi16(in15, kOne); + in00 = _mm_srai_epi16(in00, 2); + in01 = _mm_srai_epi16(in01, 2); + in02 = _mm_srai_epi16(in02, 2); + in03 = _mm_srai_epi16(in03, 2); + in04 = _mm_srai_epi16(in04, 2); + in05 = _mm_srai_epi16(in05, 2); + in06 = _mm_srai_epi16(in06, 2); + in07 = _mm_srai_epi16(in07, 2); + in08 = _mm_srai_epi16(in08, 2); + in09 = _mm_srai_epi16(in09, 2); + in10 = _mm_srai_epi16(in10, 2); + in11 = _mm_srai_epi16(in11, 2); + in12 = _mm_srai_epi16(in12, 2); + in13 = _mm_srai_epi16(in13, 2); + in14 = _mm_srai_epi16(in14, 2); + in15 = _mm_srai_epi16(in15, 2); + } + in += 8; + // Calculate input for the first 8 results. + { + input0 = ADD_EPI16(in00, in15); + input1 = ADD_EPI16(in01, in14); + input2 = ADD_EPI16(in02, in13); + input3 = ADD_EPI16(in03, in12); + input4 = ADD_EPI16(in04, in11); + input5 = ADD_EPI16(in05, in10); + input6 = ADD_EPI16(in06, in09); + input7 = ADD_EPI16(in07, in08); +#if DCT_HIGH_BIT_DEPTH + overflow = check_epi16_overflow_x8(&input0, &input1, &input2, &input3, + &input4, &input5, &input6, &input7); + if (overflow) { + vpx_highbd_fdct16x16_c(input, output, stride); + return; + } +#endif // DCT_HIGH_BIT_DEPTH + } + // Calculate input for the next 8 results. + { + step1_0 = SUB_EPI16(in07, in08); + step1_1 = SUB_EPI16(in06, in09); + step1_2 = SUB_EPI16(in05, in10); + step1_3 = SUB_EPI16(in04, in11); + step1_4 = SUB_EPI16(in03, in12); + step1_5 = SUB_EPI16(in02, in13); + step1_6 = SUB_EPI16(in01, in14); + step1_7 = SUB_EPI16(in00, in15); +#if DCT_HIGH_BIT_DEPTH + overflow = + check_epi16_overflow_x8(&step1_0, &step1_1, &step1_2, &step1_3, + &step1_4, &step1_5, &step1_6, &step1_7); + if (overflow) { + vpx_highbd_fdct16x16_c(input, output, stride); + return; + } +#endif // DCT_HIGH_BIT_DEPTH + } + // Work on the first eight values; fdct8(input, even_results); + { + // Add/subtract + const __m128i q0 = ADD_EPI16(input0, input7); + const __m128i q1 = ADD_EPI16(input1, input6); + const __m128i q2 = ADD_EPI16(input2, input5); + const __m128i q3 = ADD_EPI16(input3, input4); + const __m128i q4 = SUB_EPI16(input3, input4); + const __m128i q5 = SUB_EPI16(input2, input5); + const __m128i q6 = SUB_EPI16(input1, input6); + const __m128i q7 = SUB_EPI16(input0, input7); +#if DCT_HIGH_BIT_DEPTH + overflow = + check_epi16_overflow_x8(&q0, &q1, &q2, &q3, &q4, &q5, &q6, &q7); + if (overflow) { + vpx_highbd_fdct16x16_c(input, output, stride); + return; + } +#endif // DCT_HIGH_BIT_DEPTH + // Work on first four results + { + // Add/subtract + const __m128i r0 = ADD_EPI16(q0, q3); + const __m128i r1 = ADD_EPI16(q1, q2); + const __m128i r2 = SUB_EPI16(q1, q2); + const __m128i r3 = SUB_EPI16(q0, q3); +#if DCT_HIGH_BIT_DEPTH + overflow = check_epi16_overflow_x4(&r0, &r1, &r2, &r3); + if (overflow) { + vpx_highbd_fdct16x16_c(input, output, stride); + return; + } +#endif // DCT_HIGH_BIT_DEPTH + // Interleave to do the multiply by constants which gets us + // into 32 bits. + { + const __m128i t0 = _mm_unpacklo_epi16(r0, r1); + const __m128i t1 = _mm_unpackhi_epi16(r0, r1); + const __m128i t2 = _mm_unpacklo_epi16(r2, r3); + const __m128i t3 = _mm_unpackhi_epi16(r2, r3); + res00 = mult_round_shift(&t0, &t1, &k__cospi_p16_p16, + &k__DCT_CONST_ROUNDING, DCT_CONST_BITS); + res08 = mult_round_shift(&t0, &t1, &k__cospi_p16_m16, + &k__DCT_CONST_ROUNDING, DCT_CONST_BITS); + res04 = mult_round_shift(&t2, &t3, &k__cospi_p24_p08, + &k__DCT_CONST_ROUNDING, DCT_CONST_BITS); + res12 = mult_round_shift(&t2, &t3, &k__cospi_m08_p24, + &k__DCT_CONST_ROUNDING, DCT_CONST_BITS); +#if DCT_HIGH_BIT_DEPTH + overflow = check_epi16_overflow_x4(&res00, &res08, &res04, &res12); + if (overflow) { + vpx_highbd_fdct16x16_c(input, output, stride); + return; + } +#endif // DCT_HIGH_BIT_DEPTH + } + } + // Work on next four results + { + // Interleave to do the multiply by constants which gets us + // into 32 bits. + const __m128i d0 = _mm_unpacklo_epi16(q6, q5); + const __m128i d1 = _mm_unpackhi_epi16(q6, q5); + const __m128i r0 = + mult_round_shift(&d0, &d1, &k__cospi_p16_m16, + &k__DCT_CONST_ROUNDING, DCT_CONST_BITS); + const __m128i r1 = + mult_round_shift(&d0, &d1, &k__cospi_p16_p16, + &k__DCT_CONST_ROUNDING, DCT_CONST_BITS); +#if DCT_HIGH_BIT_DEPTH + overflow = check_epi16_overflow_x2(&r0, &r1); + if (overflow) { + vpx_highbd_fdct16x16_c(input, output, stride); + return; + } +#endif // DCT_HIGH_BIT_DEPTH + { + // Add/subtract + const __m128i x0 = ADD_EPI16(q4, r0); + const __m128i x1 = SUB_EPI16(q4, r0); + const __m128i x2 = SUB_EPI16(q7, r1); + const __m128i x3 = ADD_EPI16(q7, r1); +#if DCT_HIGH_BIT_DEPTH + overflow = check_epi16_overflow_x4(&x0, &x1, &x2, &x3); + if (overflow) { + vpx_highbd_fdct16x16_c(input, output, stride); + return; + } +#endif // DCT_HIGH_BIT_DEPTH + // Interleave to do the multiply by constants which gets us + // into 32 bits. + { + const __m128i t0 = _mm_unpacklo_epi16(x0, x3); + const __m128i t1 = _mm_unpackhi_epi16(x0, x3); + const __m128i t2 = _mm_unpacklo_epi16(x1, x2); + const __m128i t3 = _mm_unpackhi_epi16(x1, x2); + res02 = mult_round_shift(&t0, &t1, &k__cospi_p28_p04, + &k__DCT_CONST_ROUNDING, DCT_CONST_BITS); + res14 = mult_round_shift(&t0, &t1, &k__cospi_m04_p28, + &k__DCT_CONST_ROUNDING, DCT_CONST_BITS); + res10 = mult_round_shift(&t2, &t3, &k__cospi_p12_p20, + &k__DCT_CONST_ROUNDING, DCT_CONST_BITS); + res06 = mult_round_shift(&t2, &t3, &k__cospi_m20_p12, + &k__DCT_CONST_ROUNDING, DCT_CONST_BITS); +#if DCT_HIGH_BIT_DEPTH + overflow = + check_epi16_overflow_x4(&res02, &res14, &res10, &res06); + if (overflow) { + vpx_highbd_fdct16x16_c(input, output, stride); + return; + } +#endif // DCT_HIGH_BIT_DEPTH + } + } + } + } + // Work on the next eight values; step1 -> odd_results + { + // step 2 + { + const __m128i t0 = _mm_unpacklo_epi16(step1_5, step1_2); + const __m128i t1 = _mm_unpackhi_epi16(step1_5, step1_2); + const __m128i t2 = _mm_unpacklo_epi16(step1_4, step1_3); + const __m128i t3 = _mm_unpackhi_epi16(step1_4, step1_3); + step2_2 = mult_round_shift(&t0, &t1, &k__cospi_p16_m16, + &k__DCT_CONST_ROUNDING, DCT_CONST_BITS); + step2_3 = mult_round_shift(&t2, &t3, &k__cospi_p16_m16, + &k__DCT_CONST_ROUNDING, DCT_CONST_BITS); + step2_5 = mult_round_shift(&t0, &t1, &k__cospi_p16_p16, + &k__DCT_CONST_ROUNDING, DCT_CONST_BITS); + step2_4 = mult_round_shift(&t2, &t3, &k__cospi_p16_p16, + &k__DCT_CONST_ROUNDING, DCT_CONST_BITS); +#if DCT_HIGH_BIT_DEPTH + overflow = + check_epi16_overflow_x4(&step2_2, &step2_3, &step2_5, &step2_4); + if (overflow) { + vpx_highbd_fdct16x16_c(input, output, stride); + return; + } +#endif // DCT_HIGH_BIT_DEPTH + } + // step 3 + { + step3_0 = ADD_EPI16(step1_0, step2_3); + step3_1 = ADD_EPI16(step1_1, step2_2); + step3_2 = SUB_EPI16(step1_1, step2_2); + step3_3 = SUB_EPI16(step1_0, step2_3); + step3_4 = SUB_EPI16(step1_7, step2_4); + step3_5 = SUB_EPI16(step1_6, step2_5); + step3_6 = ADD_EPI16(step1_6, step2_5); + step3_7 = ADD_EPI16(step1_7, step2_4); +#if DCT_HIGH_BIT_DEPTH + overflow = + check_epi16_overflow_x8(&step3_0, &step3_1, &step3_2, &step3_3, + &step3_4, &step3_5, &step3_6, &step3_7); + if (overflow) { + vpx_highbd_fdct16x16_c(input, output, stride); + return; + } +#endif // DCT_HIGH_BIT_DEPTH + } + // step 4 + { + const __m128i t0 = _mm_unpacklo_epi16(step3_1, step3_6); + const __m128i t1 = _mm_unpackhi_epi16(step3_1, step3_6); + const __m128i t2 = _mm_unpacklo_epi16(step3_2, step3_5); + const __m128i t3 = _mm_unpackhi_epi16(step3_2, step3_5); + step2_1 = mult_round_shift(&t0, &t1, &k__cospi_m08_p24, + &k__DCT_CONST_ROUNDING, DCT_CONST_BITS); + step2_2 = mult_round_shift(&t2, &t3, &k__cospi_p24_p08, + &k__DCT_CONST_ROUNDING, DCT_CONST_BITS); + step2_6 = mult_round_shift(&t0, &t1, &k__cospi_p24_p08, + &k__DCT_CONST_ROUNDING, DCT_CONST_BITS); + step2_5 = mult_round_shift(&t2, &t3, &k__cospi_p08_m24, + &k__DCT_CONST_ROUNDING, DCT_CONST_BITS); +#if DCT_HIGH_BIT_DEPTH + overflow = + check_epi16_overflow_x4(&step2_1, &step2_2, &step2_6, &step2_5); + if (overflow) { + vpx_highbd_fdct16x16_c(input, output, stride); + return; + } +#endif // DCT_HIGH_BIT_DEPTH + } + // step 5 + { + step1_0 = ADD_EPI16(step3_0, step2_1); + step1_1 = SUB_EPI16(step3_0, step2_1); + step1_2 = ADD_EPI16(step3_3, step2_2); + step1_3 = SUB_EPI16(step3_3, step2_2); + step1_4 = SUB_EPI16(step3_4, step2_5); + step1_5 = ADD_EPI16(step3_4, step2_5); + step1_6 = SUB_EPI16(step3_7, step2_6); + step1_7 = ADD_EPI16(step3_7, step2_6); +#if DCT_HIGH_BIT_DEPTH + overflow = + check_epi16_overflow_x8(&step1_0, &step1_1, &step1_2, &step1_3, + &step1_4, &step1_5, &step1_6, &step1_7); + if (overflow) { + vpx_highbd_fdct16x16_c(input, output, stride); + return; + } +#endif // DCT_HIGH_BIT_DEPTH + } + // step 6 + { + const __m128i t0 = _mm_unpacklo_epi16(step1_0, step1_7); + const __m128i t1 = _mm_unpackhi_epi16(step1_0, step1_7); + const __m128i t2 = _mm_unpacklo_epi16(step1_1, step1_6); + const __m128i t3 = _mm_unpackhi_epi16(step1_1, step1_6); + res01 = mult_round_shift(&t0, &t1, &k__cospi_p30_p02, + &k__DCT_CONST_ROUNDING, DCT_CONST_BITS); + res09 = mult_round_shift(&t2, &t3, &k__cospi_p14_p18, + &k__DCT_CONST_ROUNDING, DCT_CONST_BITS); + res15 = mult_round_shift(&t0, &t1, &k__cospi_m02_p30, + &k__DCT_CONST_ROUNDING, DCT_CONST_BITS); + res07 = mult_round_shift(&t2, &t3, &k__cospi_m18_p14, + &k__DCT_CONST_ROUNDING, DCT_CONST_BITS); +#if DCT_HIGH_BIT_DEPTH + overflow = check_epi16_overflow_x4(&res01, &res09, &res15, &res07); + if (overflow) { + vpx_highbd_fdct16x16_c(input, output, stride); + return; + } +#endif // DCT_HIGH_BIT_DEPTH + } + { + const __m128i t0 = _mm_unpacklo_epi16(step1_2, step1_5); + const __m128i t1 = _mm_unpackhi_epi16(step1_2, step1_5); + const __m128i t2 = _mm_unpacklo_epi16(step1_3, step1_4); + const __m128i t3 = _mm_unpackhi_epi16(step1_3, step1_4); + res05 = mult_round_shift(&t0, &t1, &k__cospi_p22_p10, + &k__DCT_CONST_ROUNDING, DCT_CONST_BITS); + res13 = mult_round_shift(&t2, &t3, &k__cospi_p06_p26, + &k__DCT_CONST_ROUNDING, DCT_CONST_BITS); + res11 = mult_round_shift(&t0, &t1, &k__cospi_m10_p22, + &k__DCT_CONST_ROUNDING, DCT_CONST_BITS); + res03 = mult_round_shift(&t2, &t3, &k__cospi_m26_p06, + &k__DCT_CONST_ROUNDING, DCT_CONST_BITS); +#if DCT_HIGH_BIT_DEPTH + overflow = check_epi16_overflow_x4(&res05, &res13, &res11, &res03); + if (overflow) { + vpx_highbd_fdct16x16_c(input, output, stride); + return; + } +#endif // DCT_HIGH_BIT_DEPTH + } + } + // Transpose the results, do it as two 8x8 transposes. + transpose_and_output8x8(&res00, &res01, &res02, &res03, &res04, &res05, + &res06, &res07, pass, out0, out1); + transpose_and_output8x8(&res08, &res09, &res10, &res11, &res12, &res13, + &res14, &res15, pass, out0 + 8, out1 + 8); + if (pass == 0) { + out0 += 8 * 16; + } else { + out1 += 8 * 16; + } + } + // Setup in/out for next pass. + in = intermediate; + } +} + +#undef ADD_EPI16 +#undef SUB_EPI16 diff --git a/vpx_dsp/x86/fwd_txfm_sse2.c b/vpx_dsp/x86/fwd_txfm_sse2.c new file mode 100644 index 0000000..e14b991 --- /dev/null +++ b/vpx_dsp/x86/fwd_txfm_sse2.c @@ -0,0 +1,272 @@ +/* + * Copyright (c) 2015 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include // SSE2 + +#include "./vpx_config.h" +#include "./vpx_dsp_rtcd.h" +#include "vpx_dsp/vpx_dsp_common.h" +#include "vpx_dsp/x86/fwd_txfm_sse2.h" + +void vpx_fdct4x4_1_sse2(const int16_t *input, tran_low_t *output, int stride) { + __m128i in0, in1; + __m128i tmp; + const __m128i zero = _mm_setzero_si128(); + in0 = _mm_loadl_epi64((const __m128i *)(input + 0 * stride)); + in1 = _mm_loadl_epi64((const __m128i *)(input + 1 * stride)); + in1 = _mm_unpacklo_epi64( + in1, _mm_loadl_epi64((const __m128i *)(input + 2 * stride))); + in0 = _mm_unpacklo_epi64( + in0, _mm_loadl_epi64((const __m128i *)(input + 3 * stride))); + + tmp = _mm_add_epi16(in0, in1); + in0 = _mm_unpacklo_epi16(zero, tmp); + in1 = _mm_unpackhi_epi16(zero, tmp); + in0 = _mm_srai_epi32(in0, 16); + in1 = _mm_srai_epi32(in1, 16); + + tmp = _mm_add_epi32(in0, in1); + in0 = _mm_unpacklo_epi32(tmp, zero); + in1 = _mm_unpackhi_epi32(tmp, zero); + + tmp = _mm_add_epi32(in0, in1); + in0 = _mm_srli_si128(tmp, 8); + + in1 = _mm_add_epi32(tmp, in0); + in0 = _mm_slli_epi32(in1, 1); + output[0] = (tran_low_t)_mm_cvtsi128_si32(in0); +} + +void vpx_fdct8x8_1_sse2(const int16_t *input, tran_low_t *output, int stride) { + __m128i in0 = _mm_load_si128((const __m128i *)(input + 0 * stride)); + __m128i in1 = _mm_load_si128((const __m128i *)(input + 1 * stride)); + __m128i in2 = _mm_load_si128((const __m128i *)(input + 2 * stride)); + __m128i in3 = _mm_load_si128((const __m128i *)(input + 3 * stride)); + __m128i u0, u1, sum; + + u0 = _mm_add_epi16(in0, in1); + u1 = _mm_add_epi16(in2, in3); + + in0 = _mm_load_si128((const __m128i *)(input + 4 * stride)); + in1 = _mm_load_si128((const __m128i *)(input + 5 * stride)); + in2 = _mm_load_si128((const __m128i *)(input + 6 * stride)); + in3 = _mm_load_si128((const __m128i *)(input + 7 * stride)); + + sum = _mm_add_epi16(u0, u1); + + in0 = _mm_add_epi16(in0, in1); + in2 = _mm_add_epi16(in2, in3); + sum = _mm_add_epi16(sum, in0); + + u0 = _mm_setzero_si128(); + sum = _mm_add_epi16(sum, in2); + + in0 = _mm_unpacklo_epi16(u0, sum); + in1 = _mm_unpackhi_epi16(u0, sum); + in0 = _mm_srai_epi32(in0, 16); + in1 = _mm_srai_epi32(in1, 16); + + sum = _mm_add_epi32(in0, in1); + in0 = _mm_unpacklo_epi32(sum, u0); + in1 = _mm_unpackhi_epi32(sum, u0); + + sum = _mm_add_epi32(in0, in1); + in0 = _mm_srli_si128(sum, 8); + + in1 = _mm_add_epi32(sum, in0); + output[0] = (tran_low_t)_mm_cvtsi128_si32(in1); +} + +void vpx_fdct16x16_1_sse2(const int16_t *input, tran_low_t *output, + int stride) { + __m128i in0, in1, in2, in3; + __m128i u0, u1; + __m128i sum = _mm_setzero_si128(); + int i; + + for (i = 0; i < 2; ++i) { + in0 = _mm_load_si128((const __m128i *)(input + 0 * stride + 0)); + in1 = _mm_load_si128((const __m128i *)(input + 0 * stride + 8)); + in2 = _mm_load_si128((const __m128i *)(input + 1 * stride + 0)); + in3 = _mm_load_si128((const __m128i *)(input + 1 * stride + 8)); + + u0 = _mm_add_epi16(in0, in1); + u1 = _mm_add_epi16(in2, in3); + sum = _mm_add_epi16(sum, u0); + + in0 = _mm_load_si128((const __m128i *)(input + 2 * stride + 0)); + in1 = _mm_load_si128((const __m128i *)(input + 2 * stride + 8)); + in2 = _mm_load_si128((const __m128i *)(input + 3 * stride + 0)); + in3 = _mm_load_si128((const __m128i *)(input + 3 * stride + 8)); + + sum = _mm_add_epi16(sum, u1); + u0 = _mm_add_epi16(in0, in1); + u1 = _mm_add_epi16(in2, in3); + sum = _mm_add_epi16(sum, u0); + + in0 = _mm_load_si128((const __m128i *)(input + 4 * stride + 0)); + in1 = _mm_load_si128((const __m128i *)(input + 4 * stride + 8)); + in2 = _mm_load_si128((const __m128i *)(input + 5 * stride + 0)); + in3 = _mm_load_si128((const __m128i *)(input + 5 * stride + 8)); + + sum = _mm_add_epi16(sum, u1); + u0 = _mm_add_epi16(in0, in1); + u1 = _mm_add_epi16(in2, in3); + sum = _mm_add_epi16(sum, u0); + + in0 = _mm_load_si128((const __m128i *)(input + 6 * stride + 0)); + in1 = _mm_load_si128((const __m128i *)(input + 6 * stride + 8)); + in2 = _mm_load_si128((const __m128i *)(input + 7 * stride + 0)); + in3 = _mm_load_si128((const __m128i *)(input + 7 * stride + 8)); + + sum = _mm_add_epi16(sum, u1); + u0 = _mm_add_epi16(in0, in1); + u1 = _mm_add_epi16(in2, in3); + sum = _mm_add_epi16(sum, u0); + + sum = _mm_add_epi16(sum, u1); + input += 8 * stride; + } + + u0 = _mm_setzero_si128(); + in0 = _mm_unpacklo_epi16(u0, sum); + in1 = _mm_unpackhi_epi16(u0, sum); + in0 = _mm_srai_epi32(in0, 16); + in1 = _mm_srai_epi32(in1, 16); + + sum = _mm_add_epi32(in0, in1); + in0 = _mm_unpacklo_epi32(sum, u0); + in1 = _mm_unpackhi_epi32(sum, u0); + + sum = _mm_add_epi32(in0, in1); + in0 = _mm_srli_si128(sum, 8); + + in1 = _mm_add_epi32(sum, in0); + in1 = _mm_srai_epi32(in1, 1); + output[0] = (tran_low_t)_mm_cvtsi128_si32(in1); +} + +void vpx_fdct32x32_1_sse2(const int16_t *input, tran_low_t *output, + int stride) { + __m128i in0, in1, in2, in3; + __m128i u0, u1; + __m128i sum = _mm_setzero_si128(); + int i; + + for (i = 0; i < 8; ++i) { + in0 = _mm_load_si128((const __m128i *)(input + 0)); + in1 = _mm_load_si128((const __m128i *)(input + 8)); + in2 = _mm_load_si128((const __m128i *)(input + 16)); + in3 = _mm_load_si128((const __m128i *)(input + 24)); + + input += stride; + u0 = _mm_add_epi16(in0, in1); + u1 = _mm_add_epi16(in2, in3); + sum = _mm_add_epi16(sum, u0); + + in0 = _mm_load_si128((const __m128i *)(input + 0)); + in1 = _mm_load_si128((const __m128i *)(input + 8)); + in2 = _mm_load_si128((const __m128i *)(input + 16)); + in3 = _mm_load_si128((const __m128i *)(input + 24)); + + input += stride; + sum = _mm_add_epi16(sum, u1); + u0 = _mm_add_epi16(in0, in1); + u1 = _mm_add_epi16(in2, in3); + sum = _mm_add_epi16(sum, u0); + + in0 = _mm_load_si128((const __m128i *)(input + 0)); + in1 = _mm_load_si128((const __m128i *)(input + 8)); + in2 = _mm_load_si128((const __m128i *)(input + 16)); + in3 = _mm_load_si128((const __m128i *)(input + 24)); + + input += stride; + sum = _mm_add_epi16(sum, u1); + u0 = _mm_add_epi16(in0, in1); + u1 = _mm_add_epi16(in2, in3); + sum = _mm_add_epi16(sum, u0); + + in0 = _mm_load_si128((const __m128i *)(input + 0)); + in1 = _mm_load_si128((const __m128i *)(input + 8)); + in2 = _mm_load_si128((const __m128i *)(input + 16)); + in3 = _mm_load_si128((const __m128i *)(input + 24)); + + input += stride; + sum = _mm_add_epi16(sum, u1); + u0 = _mm_add_epi16(in0, in1); + u1 = _mm_add_epi16(in2, in3); + sum = _mm_add_epi16(sum, u0); + + sum = _mm_add_epi16(sum, u1); + } + + u0 = _mm_setzero_si128(); + in0 = _mm_unpacklo_epi16(u0, sum); + in1 = _mm_unpackhi_epi16(u0, sum); + in0 = _mm_srai_epi32(in0, 16); + in1 = _mm_srai_epi32(in1, 16); + + sum = _mm_add_epi32(in0, in1); + in0 = _mm_unpacklo_epi32(sum, u0); + in1 = _mm_unpackhi_epi32(sum, u0); + + sum = _mm_add_epi32(in0, in1); + in0 = _mm_srli_si128(sum, 8); + + in1 = _mm_add_epi32(sum, in0); + in1 = _mm_srai_epi32(in1, 3); + output[0] = (tran_low_t)_mm_cvtsi128_si32(in1); +} + +#define DCT_HIGH_BIT_DEPTH 0 +#define FDCT4x4_2D vpx_fdct4x4_sse2 +#define FDCT8x8_2D vpx_fdct8x8_sse2 +#define FDCT16x16_2D vpx_fdct16x16_sse2 +#include "vpx_dsp/x86/fwd_txfm_impl_sse2.h" +#undef FDCT4x4_2D +#undef FDCT8x8_2D +#undef FDCT16x16_2D + +#define FDCT32x32_2D vpx_fdct32x32_rd_sse2 +#define FDCT32x32_HIGH_PRECISION 0 +#include "vpx_dsp/x86/fwd_dct32x32_impl_sse2.h" +#undef FDCT32x32_2D +#undef FDCT32x32_HIGH_PRECISION + +#define FDCT32x32_2D vpx_fdct32x32_sse2 +#define FDCT32x32_HIGH_PRECISION 1 +#include "vpx_dsp/x86/fwd_dct32x32_impl_sse2.h" // NOLINT +#undef FDCT32x32_2D +#undef FDCT32x32_HIGH_PRECISION +#undef DCT_HIGH_BIT_DEPTH + +#if CONFIG_VP9_HIGHBITDEPTH +#define DCT_HIGH_BIT_DEPTH 1 +#define FDCT4x4_2D vpx_highbd_fdct4x4_sse2 +#define FDCT8x8_2D vpx_highbd_fdct8x8_sse2 +#define FDCT16x16_2D vpx_highbd_fdct16x16_sse2 +#include "vpx_dsp/x86/fwd_txfm_impl_sse2.h" // NOLINT +#undef FDCT4x4_2D +#undef FDCT8x8_2D +#undef FDCT16x16_2D + +#define FDCT32x32_2D vpx_highbd_fdct32x32_rd_sse2 +#define FDCT32x32_HIGH_PRECISION 0 +#include "vpx_dsp/x86/fwd_dct32x32_impl_sse2.h" // NOLINT +#undef FDCT32x32_2D +#undef FDCT32x32_HIGH_PRECISION + +#define FDCT32x32_2D vpx_highbd_fdct32x32_sse2 +#define FDCT32x32_HIGH_PRECISION 1 +#include "vpx_dsp/x86/fwd_dct32x32_impl_sse2.h" // NOLINT +#undef FDCT32x32_2D +#undef FDCT32x32_HIGH_PRECISION +#undef DCT_HIGH_BIT_DEPTH +#endif // CONFIG_VP9_HIGHBITDEPTH diff --git a/vpx_dsp/x86/fwd_txfm_sse2.h b/vpx_dsp/x86/fwd_txfm_sse2.h new file mode 100644 index 0000000..5201e76 --- /dev/null +++ b/vpx_dsp/x86/fwd_txfm_sse2.h @@ -0,0 +1,371 @@ +/* + * Copyright (c) 2014 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VPX_DSP_X86_FWD_TXFM_SSE2_H_ +#define VPX_DSP_X86_FWD_TXFM_SSE2_H_ + +#ifdef __cplusplus +extern "C" { +#endif + +#define pair_set_epi32(a, b) \ + _mm_set_epi32((int)(b), (int)(a), (int)(b), (int)(a)) + +static INLINE __m128i k_madd_epi32(__m128i a, __m128i b) { + __m128i buf0, buf1; + buf0 = _mm_mul_epu32(a, b); + a = _mm_srli_epi64(a, 32); + b = _mm_srli_epi64(b, 32); + buf1 = _mm_mul_epu32(a, b); + return _mm_add_epi64(buf0, buf1); +} + +static INLINE __m128i k_packs_epi64(__m128i a, __m128i b) { + __m128i buf0 = _mm_shuffle_epi32(a, _MM_SHUFFLE(0, 0, 2, 0)); + __m128i buf1 = _mm_shuffle_epi32(b, _MM_SHUFFLE(0, 0, 2, 0)); + return _mm_unpacklo_epi64(buf0, buf1); +} + +static INLINE int check_epi16_overflow_x2(const __m128i *preg0, + const __m128i *preg1) { + const __m128i max_overflow = _mm_set1_epi16(0x7fff); + const __m128i min_overflow = _mm_set1_epi16(0x8000); + __m128i cmp0 = _mm_or_si128(_mm_cmpeq_epi16(*preg0, max_overflow), + _mm_cmpeq_epi16(*preg0, min_overflow)); + __m128i cmp1 = _mm_or_si128(_mm_cmpeq_epi16(*preg1, max_overflow), + _mm_cmpeq_epi16(*preg1, min_overflow)); + cmp0 = _mm_or_si128(cmp0, cmp1); + return _mm_movemask_epi8(cmp0); +} + +static INLINE int check_epi16_overflow_x4(const __m128i *preg0, + const __m128i *preg1, + const __m128i *preg2, + const __m128i *preg3) { + const __m128i max_overflow = _mm_set1_epi16(0x7fff); + const __m128i min_overflow = _mm_set1_epi16(0x8000); + __m128i cmp0 = _mm_or_si128(_mm_cmpeq_epi16(*preg0, max_overflow), + _mm_cmpeq_epi16(*preg0, min_overflow)); + __m128i cmp1 = _mm_or_si128(_mm_cmpeq_epi16(*preg1, max_overflow), + _mm_cmpeq_epi16(*preg1, min_overflow)); + __m128i cmp2 = _mm_or_si128(_mm_cmpeq_epi16(*preg2, max_overflow), + _mm_cmpeq_epi16(*preg2, min_overflow)); + __m128i cmp3 = _mm_or_si128(_mm_cmpeq_epi16(*preg3, max_overflow), + _mm_cmpeq_epi16(*preg3, min_overflow)); + cmp0 = _mm_or_si128(_mm_or_si128(cmp0, cmp1), _mm_or_si128(cmp2, cmp3)); + return _mm_movemask_epi8(cmp0); +} + +static INLINE int check_epi16_overflow_x8( + const __m128i *preg0, const __m128i *preg1, const __m128i *preg2, + const __m128i *preg3, const __m128i *preg4, const __m128i *preg5, + const __m128i *preg6, const __m128i *preg7) { + int res0, res1; + res0 = check_epi16_overflow_x4(preg0, preg1, preg2, preg3); + res1 = check_epi16_overflow_x4(preg4, preg5, preg6, preg7); + return res0 + res1; +} + +static INLINE int check_epi16_overflow_x12( + const __m128i *preg0, const __m128i *preg1, const __m128i *preg2, + const __m128i *preg3, const __m128i *preg4, const __m128i *preg5, + const __m128i *preg6, const __m128i *preg7, const __m128i *preg8, + const __m128i *preg9, const __m128i *preg10, const __m128i *preg11) { + int res0, res1; + res0 = check_epi16_overflow_x4(preg0, preg1, preg2, preg3); + res1 = check_epi16_overflow_x4(preg4, preg5, preg6, preg7); + if (!res0) res0 = check_epi16_overflow_x4(preg8, preg9, preg10, preg11); + return res0 + res1; +} + +static INLINE int check_epi16_overflow_x16( + const __m128i *preg0, const __m128i *preg1, const __m128i *preg2, + const __m128i *preg3, const __m128i *preg4, const __m128i *preg5, + const __m128i *preg6, const __m128i *preg7, const __m128i *preg8, + const __m128i *preg9, const __m128i *preg10, const __m128i *preg11, + const __m128i *preg12, const __m128i *preg13, const __m128i *preg14, + const __m128i *preg15) { + int res0, res1; + res0 = check_epi16_overflow_x4(preg0, preg1, preg2, preg3); + res1 = check_epi16_overflow_x4(preg4, preg5, preg6, preg7); + if (!res0) { + res0 = check_epi16_overflow_x4(preg8, preg9, preg10, preg11); + if (!res1) res1 = check_epi16_overflow_x4(preg12, preg13, preg14, preg15); + } + return res0 + res1; +} + +static INLINE int check_epi16_overflow_x32( + const __m128i *preg0, const __m128i *preg1, const __m128i *preg2, + const __m128i *preg3, const __m128i *preg4, const __m128i *preg5, + const __m128i *preg6, const __m128i *preg7, const __m128i *preg8, + const __m128i *preg9, const __m128i *preg10, const __m128i *preg11, + const __m128i *preg12, const __m128i *preg13, const __m128i *preg14, + const __m128i *preg15, const __m128i *preg16, const __m128i *preg17, + const __m128i *preg18, const __m128i *preg19, const __m128i *preg20, + const __m128i *preg21, const __m128i *preg22, const __m128i *preg23, + const __m128i *preg24, const __m128i *preg25, const __m128i *preg26, + const __m128i *preg27, const __m128i *preg28, const __m128i *preg29, + const __m128i *preg30, const __m128i *preg31) { + int res0, res1; + res0 = check_epi16_overflow_x4(preg0, preg1, preg2, preg3); + res1 = check_epi16_overflow_x4(preg4, preg5, preg6, preg7); + if (!res0) { + res0 = check_epi16_overflow_x4(preg8, preg9, preg10, preg11); + if (!res1) { + res1 = check_epi16_overflow_x4(preg12, preg13, preg14, preg15); + if (!res0) { + res0 = check_epi16_overflow_x4(preg16, preg17, preg18, preg19); + if (!res1) { + res1 = check_epi16_overflow_x4(preg20, preg21, preg22, preg23); + if (!res0) { + res0 = check_epi16_overflow_x4(preg24, preg25, preg26, preg27); + if (!res1) + res1 = check_epi16_overflow_x4(preg28, preg29, preg30, preg31); + } + } + } + } + } + return res0 + res1; +} + +static INLINE int k_check_epi32_overflow_4(const __m128i *preg0, + const __m128i *preg1, + const __m128i *preg2, + const __m128i *preg3, + const __m128i *zero) { + __m128i minus_one = _mm_set1_epi32(-1); + // Check for overflows + __m128i reg0_shifted = _mm_slli_epi64(*preg0, 1); + __m128i reg1_shifted = _mm_slli_epi64(*preg1, 1); + __m128i reg2_shifted = _mm_slli_epi64(*preg2, 1); + __m128i reg3_shifted = _mm_slli_epi64(*preg3, 1); + __m128i reg0_top_dwords = + _mm_shuffle_epi32(reg0_shifted, _MM_SHUFFLE(0, 0, 3, 1)); + __m128i reg1_top_dwords = + _mm_shuffle_epi32(reg1_shifted, _MM_SHUFFLE(0, 0, 3, 1)); + __m128i reg2_top_dwords = + _mm_shuffle_epi32(reg2_shifted, _MM_SHUFFLE(0, 0, 3, 1)); + __m128i reg3_top_dwords = + _mm_shuffle_epi32(reg3_shifted, _MM_SHUFFLE(0, 0, 3, 1)); + __m128i top_dwords_01 = _mm_unpacklo_epi64(reg0_top_dwords, reg1_top_dwords); + __m128i top_dwords_23 = _mm_unpacklo_epi64(reg2_top_dwords, reg3_top_dwords); + __m128i valid_positve_01 = _mm_cmpeq_epi32(top_dwords_01, *zero); + __m128i valid_positve_23 = _mm_cmpeq_epi32(top_dwords_23, *zero); + __m128i valid_negative_01 = _mm_cmpeq_epi32(top_dwords_01, minus_one); + __m128i valid_negative_23 = _mm_cmpeq_epi32(top_dwords_23, minus_one); + int overflow_01 = + _mm_movemask_epi8(_mm_cmpeq_epi32(valid_positve_01, valid_negative_01)); + int overflow_23 = + _mm_movemask_epi8(_mm_cmpeq_epi32(valid_positve_23, valid_negative_23)); + return (overflow_01 + overflow_23); +} + +static INLINE int k_check_epi32_overflow_8( + const __m128i *preg0, const __m128i *preg1, const __m128i *preg2, + const __m128i *preg3, const __m128i *preg4, const __m128i *preg5, + const __m128i *preg6, const __m128i *preg7, const __m128i *zero) { + int overflow = k_check_epi32_overflow_4(preg0, preg1, preg2, preg3, zero); + if (!overflow) { + overflow = k_check_epi32_overflow_4(preg4, preg5, preg6, preg7, zero); + } + return overflow; +} + +static INLINE int k_check_epi32_overflow_16( + const __m128i *preg0, const __m128i *preg1, const __m128i *preg2, + const __m128i *preg3, const __m128i *preg4, const __m128i *preg5, + const __m128i *preg6, const __m128i *preg7, const __m128i *preg8, + const __m128i *preg9, const __m128i *preg10, const __m128i *preg11, + const __m128i *preg12, const __m128i *preg13, const __m128i *preg14, + const __m128i *preg15, const __m128i *zero) { + int overflow = k_check_epi32_overflow_4(preg0, preg1, preg2, preg3, zero); + if (!overflow) { + overflow = k_check_epi32_overflow_4(preg4, preg5, preg6, preg7, zero); + if (!overflow) { + overflow = k_check_epi32_overflow_4(preg8, preg9, preg10, preg11, zero); + if (!overflow) { + overflow = + k_check_epi32_overflow_4(preg12, preg13, preg14, preg15, zero); + } + } + } + return overflow; +} + +static INLINE int k_check_epi32_overflow_32( + const __m128i *preg0, const __m128i *preg1, const __m128i *preg2, + const __m128i *preg3, const __m128i *preg4, const __m128i *preg5, + const __m128i *preg6, const __m128i *preg7, const __m128i *preg8, + const __m128i *preg9, const __m128i *preg10, const __m128i *preg11, + const __m128i *preg12, const __m128i *preg13, const __m128i *preg14, + const __m128i *preg15, const __m128i *preg16, const __m128i *preg17, + const __m128i *preg18, const __m128i *preg19, const __m128i *preg20, + const __m128i *preg21, const __m128i *preg22, const __m128i *preg23, + const __m128i *preg24, const __m128i *preg25, const __m128i *preg26, + const __m128i *preg27, const __m128i *preg28, const __m128i *preg29, + const __m128i *preg30, const __m128i *preg31, const __m128i *zero) { + int overflow = k_check_epi32_overflow_4(preg0, preg1, preg2, preg3, zero); + if (!overflow) { + overflow = k_check_epi32_overflow_4(preg4, preg5, preg6, preg7, zero); + if (!overflow) { + overflow = k_check_epi32_overflow_4(preg8, preg9, preg10, preg11, zero); + if (!overflow) { + overflow = + k_check_epi32_overflow_4(preg12, preg13, preg14, preg15, zero); + if (!overflow) { + overflow = + k_check_epi32_overflow_4(preg16, preg17, preg18, preg19, zero); + if (!overflow) { + overflow = + k_check_epi32_overflow_4(preg20, preg21, preg22, preg23, zero); + if (!overflow) { + overflow = k_check_epi32_overflow_4(preg24, preg25, preg26, + preg27, zero); + if (!overflow) { + overflow = k_check_epi32_overflow_4(preg28, preg29, preg30, + preg31, zero); + } + } + } + } + } + } + } + return overflow; +} + +static INLINE void store_output(const __m128i *poutput, tran_low_t *dst_ptr) { +#if CONFIG_VP9_HIGHBITDEPTH + const __m128i zero = _mm_setzero_si128(); + const __m128i sign_bits = _mm_cmplt_epi16(*poutput, zero); + __m128i out0 = _mm_unpacklo_epi16(*poutput, sign_bits); + __m128i out1 = _mm_unpackhi_epi16(*poutput, sign_bits); + _mm_store_si128((__m128i *)(dst_ptr), out0); + _mm_store_si128((__m128i *)(dst_ptr + 4), out1); +#else + _mm_store_si128((__m128i *)(dst_ptr), *poutput); +#endif // CONFIG_VP9_HIGHBITDEPTH +} + +static INLINE void storeu_output(const __m128i *poutput, tran_low_t *dst_ptr) { +#if CONFIG_VP9_HIGHBITDEPTH + const __m128i zero = _mm_setzero_si128(); + const __m128i sign_bits = _mm_cmplt_epi16(*poutput, zero); + __m128i out0 = _mm_unpacklo_epi16(*poutput, sign_bits); + __m128i out1 = _mm_unpackhi_epi16(*poutput, sign_bits); + _mm_storeu_si128((__m128i *)(dst_ptr), out0); + _mm_storeu_si128((__m128i *)(dst_ptr + 4), out1); +#else + _mm_storeu_si128((__m128i *)(dst_ptr), *poutput); +#endif // CONFIG_VP9_HIGHBITDEPTH +} + +static INLINE __m128i mult_round_shift(const __m128i *pin0, const __m128i *pin1, + const __m128i *pmultiplier, + const __m128i *prounding, + const int shift) { + const __m128i u0 = _mm_madd_epi16(*pin0, *pmultiplier); + const __m128i u1 = _mm_madd_epi16(*pin1, *pmultiplier); + const __m128i v0 = _mm_add_epi32(u0, *prounding); + const __m128i v1 = _mm_add_epi32(u1, *prounding); + const __m128i w0 = _mm_srai_epi32(v0, shift); + const __m128i w1 = _mm_srai_epi32(v1, shift); + return _mm_packs_epi32(w0, w1); +} + +static INLINE void transpose_and_output8x8( + const __m128i *pin00, const __m128i *pin01, const __m128i *pin02, + const __m128i *pin03, const __m128i *pin04, const __m128i *pin05, + const __m128i *pin06, const __m128i *pin07, const int pass, + int16_t *out0_ptr, tran_low_t *out1_ptr) { + // 00 01 02 03 04 05 06 07 + // 10 11 12 13 14 15 16 17 + // 20 21 22 23 24 25 26 27 + // 30 31 32 33 34 35 36 37 + // 40 41 42 43 44 45 46 47 + // 50 51 52 53 54 55 56 57 + // 60 61 62 63 64 65 66 67 + // 70 71 72 73 74 75 76 77 + const __m128i tr0_0 = _mm_unpacklo_epi16(*pin00, *pin01); + const __m128i tr0_1 = _mm_unpacklo_epi16(*pin02, *pin03); + const __m128i tr0_2 = _mm_unpackhi_epi16(*pin00, *pin01); + const __m128i tr0_3 = _mm_unpackhi_epi16(*pin02, *pin03); + const __m128i tr0_4 = _mm_unpacklo_epi16(*pin04, *pin05); + const __m128i tr0_5 = _mm_unpacklo_epi16(*pin06, *pin07); + const __m128i tr0_6 = _mm_unpackhi_epi16(*pin04, *pin05); + const __m128i tr0_7 = _mm_unpackhi_epi16(*pin06, *pin07); + // 00 10 01 11 02 12 03 13 + // 20 30 21 31 22 32 23 33 + // 04 14 05 15 06 16 07 17 + // 24 34 25 35 26 36 27 37 + // 40 50 41 51 42 52 43 53 + // 60 70 61 71 62 72 63 73 + // 54 54 55 55 56 56 57 57 + // 64 74 65 75 66 76 67 77 + const __m128i tr1_0 = _mm_unpacklo_epi32(tr0_0, tr0_1); + const __m128i tr1_1 = _mm_unpacklo_epi32(tr0_2, tr0_3); + const __m128i tr1_2 = _mm_unpackhi_epi32(tr0_0, tr0_1); + const __m128i tr1_3 = _mm_unpackhi_epi32(tr0_2, tr0_3); + const __m128i tr1_4 = _mm_unpacklo_epi32(tr0_4, tr0_5); + const __m128i tr1_5 = _mm_unpacklo_epi32(tr0_6, tr0_7); + const __m128i tr1_6 = _mm_unpackhi_epi32(tr0_4, tr0_5); + const __m128i tr1_7 = _mm_unpackhi_epi32(tr0_6, tr0_7); + // 00 10 20 30 01 11 21 31 + // 40 50 60 70 41 51 61 71 + // 02 12 22 32 03 13 23 33 + // 42 52 62 72 43 53 63 73 + // 04 14 24 34 05 15 21 36 + // 44 54 64 74 45 55 61 76 + // 06 16 26 36 07 17 27 37 + // 46 56 66 76 47 57 67 77 + const __m128i tr2_0 = _mm_unpacklo_epi64(tr1_0, tr1_4); + const __m128i tr2_1 = _mm_unpackhi_epi64(tr1_0, tr1_4); + const __m128i tr2_2 = _mm_unpacklo_epi64(tr1_2, tr1_6); + const __m128i tr2_3 = _mm_unpackhi_epi64(tr1_2, tr1_6); + const __m128i tr2_4 = _mm_unpacklo_epi64(tr1_1, tr1_5); + const __m128i tr2_5 = _mm_unpackhi_epi64(tr1_1, tr1_5); + const __m128i tr2_6 = _mm_unpacklo_epi64(tr1_3, tr1_7); + const __m128i tr2_7 = _mm_unpackhi_epi64(tr1_3, tr1_7); + // 00 10 20 30 40 50 60 70 + // 01 11 21 31 41 51 61 71 + // 02 12 22 32 42 52 62 72 + // 03 13 23 33 43 53 63 73 + // 04 14 24 34 44 54 64 74 + // 05 15 25 35 45 55 65 75 + // 06 16 26 36 46 56 66 76 + // 07 17 27 37 47 57 67 77 + if (pass == 0) { + _mm_storeu_si128((__m128i *)(out0_ptr + 0 * 16), tr2_0); + _mm_storeu_si128((__m128i *)(out0_ptr + 1 * 16), tr2_1); + _mm_storeu_si128((__m128i *)(out0_ptr + 2 * 16), tr2_2); + _mm_storeu_si128((__m128i *)(out0_ptr + 3 * 16), tr2_3); + _mm_storeu_si128((__m128i *)(out0_ptr + 4 * 16), tr2_4); + _mm_storeu_si128((__m128i *)(out0_ptr + 5 * 16), tr2_5); + _mm_storeu_si128((__m128i *)(out0_ptr + 6 * 16), tr2_6); + _mm_storeu_si128((__m128i *)(out0_ptr + 7 * 16), tr2_7); + } else { + storeu_output(&tr2_0, (out1_ptr + 0 * 16)); + storeu_output(&tr2_1, (out1_ptr + 1 * 16)); + storeu_output(&tr2_2, (out1_ptr + 2 * 16)); + storeu_output(&tr2_3, (out1_ptr + 3 * 16)); + storeu_output(&tr2_4, (out1_ptr + 4 * 16)); + storeu_output(&tr2_5, (out1_ptr + 5 * 16)); + storeu_output(&tr2_6, (out1_ptr + 6 * 16)); + storeu_output(&tr2_7, (out1_ptr + 7 * 16)); + } +} + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VPX_DSP_X86_FWD_TXFM_SSE2_H_ diff --git a/vpx_dsp/x86/fwd_txfm_ssse3_x86_64.asm b/vpx_dsp/x86/fwd_txfm_ssse3_x86_64.asm new file mode 100644 index 0000000..32824a0 --- /dev/null +++ b/vpx_dsp/x86/fwd_txfm_ssse3_x86_64.asm @@ -0,0 +1,361 @@ +; +; Copyright (c) 2015 The WebM project authors. All Rights Reserved. +; +; Use of this source code is governed by a BSD-style license +; that can be found in the LICENSE file in the root of the source +; tree. An additional intellectual property rights grant can be found +; in the file PATENTS. All contributing project authors may +; be found in the AUTHORS file in the root of the source tree. +; + +%include "third_party/x86inc/x86inc.asm" + +SECTION_RODATA + +pw_11585x2: times 8 dw 23170 +pd_8192: times 4 dd 8192 + +%macro TRANSFORM_COEFFS 2 +pw_%1_%2: dw %1, %2, %1, %2, %1, %2, %1, %2 +pw_%2_m%1: dw %2, -%1, %2, -%1, %2, -%1, %2, -%1 +%endmacro + +TRANSFORM_COEFFS 11585, 11585 +TRANSFORM_COEFFS 15137, 6270 +TRANSFORM_COEFFS 16069, 3196 +TRANSFORM_COEFFS 9102, 13623 + +SECTION .text + +%if ARCH_X86_64 +INIT_XMM ssse3 +cglobal fdct8x8, 3, 5, 13, input, output, stride + + mova m8, [GLOBAL(pd_8192)] + mova m12, [GLOBAL(pw_11585x2)] + + lea r3, [2 * strideq] + lea r4, [4 * strideq] + mova m0, [inputq] + mova m1, [inputq + r3] + lea inputq, [inputq + r4] + mova m2, [inputq] + mova m3, [inputq + r3] + lea inputq, [inputq + r4] + mova m4, [inputq] + mova m5, [inputq + r3] + lea inputq, [inputq + r4] + mova m6, [inputq] + mova m7, [inputq + r3] + + ; left shift by 2 to increase forward transformation precision + psllw m0, 2 + psllw m1, 2 + psllw m2, 2 + psllw m3, 2 + psllw m4, 2 + psllw m5, 2 + psllw m6, 2 + psllw m7, 2 + + ; column transform + ; stage 1 + paddw m10, m0, m7 + psubw m0, m7 + + paddw m9, m1, m6 + psubw m1, m6 + + paddw m7, m2, m5 + psubw m2, m5 + + paddw m6, m3, m4 + psubw m3, m4 + + ; stage 2 + paddw m5, m9, m7 + psubw m9, m7 + + paddw m4, m10, m6 + psubw m10, m6 + + paddw m7, m1, m2 + psubw m1, m2 + + ; stage 3 + paddw m6, m4, m5 + psubw m4, m5 + + pmulhrsw m1, m12 + pmulhrsw m7, m12 + + ; sin(pi / 8), cos(pi / 8) + punpcklwd m2, m10, m9 + punpckhwd m10, m9 + pmaddwd m5, m2, [GLOBAL(pw_15137_6270)] + pmaddwd m2, [GLOBAL(pw_6270_m15137)] + pmaddwd m9, m10, [GLOBAL(pw_15137_6270)] + pmaddwd m10, [GLOBAL(pw_6270_m15137)] + paddd m5, m8 + paddd m2, m8 + paddd m9, m8 + paddd m10, m8 + psrad m5, 14 + psrad m2, 14 + psrad m9, 14 + psrad m10, 14 + packssdw m5, m9 + packssdw m2, m10 + + pmulhrsw m6, m12 + pmulhrsw m4, m12 + + paddw m9, m3, m1 + psubw m3, m1 + + paddw m10, m0, m7 + psubw m0, m7 + + ; stage 4 + ; sin(pi / 16), cos(pi / 16) + punpcklwd m1, m10, m9 + punpckhwd m10, m9 + pmaddwd m7, m1, [GLOBAL(pw_16069_3196)] + pmaddwd m1, [GLOBAL(pw_3196_m16069)] + pmaddwd m9, m10, [GLOBAL(pw_16069_3196)] + pmaddwd m10, [GLOBAL(pw_3196_m16069)] + paddd m7, m8 + paddd m1, m8 + paddd m9, m8 + paddd m10, m8 + psrad m7, 14 + psrad m1, 14 + psrad m9, 14 + psrad m10, 14 + packssdw m7, m9 + packssdw m1, m10 + + ; sin(3 * pi / 16), cos(3 * pi / 16) + punpcklwd m11, m0, m3 + punpckhwd m0, m3 + pmaddwd m9, m11, [GLOBAL(pw_9102_13623)] + pmaddwd m11, [GLOBAL(pw_13623_m9102)] + pmaddwd m3, m0, [GLOBAL(pw_9102_13623)] + pmaddwd m0, [GLOBAL(pw_13623_m9102)] + paddd m9, m8 + paddd m11, m8 + paddd m3, m8 + paddd m0, m8 + psrad m9, 14 + psrad m11, 14 + psrad m3, 14 + psrad m0, 14 + packssdw m9, m3 + packssdw m11, m0 + + ; transpose + ; stage 1 + punpcklwd m0, m6, m7 + punpcklwd m3, m5, m11 + punpckhwd m6, m7 + punpckhwd m5, m11 + punpcklwd m7, m4, m9 + punpcklwd m10, m2, m1 + punpckhwd m4, m9 + punpckhwd m2, m1 + + ; stage 2 + punpckldq m9, m0, m3 + punpckldq m1, m6, m5 + punpckhdq m0, m3 + punpckhdq m6, m5 + punpckldq m3, m7, m10 + punpckldq m5, m4, m2 + punpckhdq m7, m10 + punpckhdq m4, m2 + + ; stage 3 + punpcklqdq m10, m9, m3 + punpckhqdq m9, m3 + punpcklqdq m2, m0, m7 + punpckhqdq m0, m7 + punpcklqdq m3, m1, m5 + punpckhqdq m1, m5 + punpcklqdq m7, m6, m4 + punpckhqdq m6, m4 + + ; row transform + ; stage 1 + paddw m5, m10, m6 + psubw m10, m6 + + paddw m4, m9, m7 + psubw m9, m7 + + paddw m6, m2, m1 + psubw m2, m1 + + paddw m7, m0, m3 + psubw m0, m3 + + ;stage 2 + paddw m1, m5, m7 + psubw m5, m7 + + paddw m3, m4, m6 + psubw m4, m6 + + paddw m7, m9, m2 + psubw m9, m2 + + ; stage 3 + punpcklwd m6, m1, m3 + punpckhwd m1, m3 + pmaddwd m2, m6, [GLOBAL(pw_11585_11585)] + pmaddwd m6, [GLOBAL(pw_11585_m11585)] + pmaddwd m3, m1, [GLOBAL(pw_11585_11585)] + pmaddwd m1, [GLOBAL(pw_11585_m11585)] + paddd m2, m8 + paddd m6, m8 + paddd m3, m8 + paddd m1, m8 + psrad m2, 14 + psrad m6, 14 + psrad m3, 14 + psrad m1, 14 + packssdw m2, m3 + packssdw m6, m1 + + pmulhrsw m7, m12 + pmulhrsw m9, m12 + + punpcklwd m3, m5, m4 + punpckhwd m5, m4 + pmaddwd m1, m3, [GLOBAL(pw_15137_6270)] + pmaddwd m3, [GLOBAL(pw_6270_m15137)] + pmaddwd m4, m5, [GLOBAL(pw_15137_6270)] + pmaddwd m5, [GLOBAL(pw_6270_m15137)] + paddd m1, m8 + paddd m3, m8 + paddd m4, m8 + paddd m5, m8 + psrad m1, 14 + psrad m3, 14 + psrad m4, 14 + psrad m5, 14 + packssdw m1, m4 + packssdw m3, m5 + + paddw m4, m0, m9 + psubw m0, m9 + + paddw m5, m10, m7 + psubw m10, m7 + + ; stage 4 + punpcklwd m9, m5, m4 + punpckhwd m5, m4 + pmaddwd m7, m9, [GLOBAL(pw_16069_3196)] + pmaddwd m9, [GLOBAL(pw_3196_m16069)] + pmaddwd m4, m5, [GLOBAL(pw_16069_3196)] + pmaddwd m5, [GLOBAL(pw_3196_m16069)] + paddd m7, m8 + paddd m9, m8 + paddd m4, m8 + paddd m5, m8 + psrad m7, 14 + psrad m9, 14 + psrad m4, 14 + psrad m5, 14 + packssdw m7, m4 + packssdw m9, m5 + + punpcklwd m4, m10, m0 + punpckhwd m10, m0 + pmaddwd m5, m4, [GLOBAL(pw_9102_13623)] + pmaddwd m4, [GLOBAL(pw_13623_m9102)] + pmaddwd m0, m10, [GLOBAL(pw_9102_13623)] + pmaddwd m10, [GLOBAL(pw_13623_m9102)] + paddd m5, m8 + paddd m4, m8 + paddd m0, m8 + paddd m10, m8 + psrad m5, 14 + psrad m4, 14 + psrad m0, 14 + psrad m10, 14 + packssdw m5, m0 + packssdw m4, m10 + + ; transpose + ; stage 1 + punpcklwd m0, m2, m7 + punpcklwd m10, m1, m4 + punpckhwd m2, m7 + punpckhwd m1, m4 + punpcklwd m7, m6, m5 + punpcklwd m4, m3, m9 + punpckhwd m6, m5 + punpckhwd m3, m9 + + ; stage 2 + punpckldq m5, m0, m10 + punpckldq m9, m2, m1 + punpckhdq m0, m10 + punpckhdq m2, m1 + punpckldq m10, m7, m4 + punpckldq m1, m6, m3 + punpckhdq m7, m4 + punpckhdq m6, m3 + + ; stage 3 + punpcklqdq m4, m5, m10 + punpckhqdq m5, m10 + punpcklqdq m3, m0, m7 + punpckhqdq m0, m7 + punpcklqdq m10, m9, m1 + punpckhqdq m9, m1 + punpcklqdq m7, m2, m6 + punpckhqdq m2, m6 + + psraw m1, m4, 15 + psraw m6, m5, 15 + psraw m8, m3, 15 + psraw m11, m0, 15 + + psubw m4, m1 + psubw m5, m6 + psubw m3, m8 + psubw m0, m11 + + psraw m4, 1 + psraw m5, 1 + psraw m3, 1 + psraw m0, 1 + + psraw m1, m10, 15 + psraw m6, m9, 15 + psraw m8, m7, 15 + psraw m11, m2, 15 + + psubw m10, m1 + psubw m9, m6 + psubw m7, m8 + psubw m2, m11 + + psraw m10, 1 + psraw m9, 1 + psraw m7, 1 + psraw m2, 1 + + mova [outputq + 0], m4 + mova [outputq + 16], m5 + mova [outputq + 32], m3 + mova [outputq + 48], m0 + mova [outputq + 64], m10 + mova [outputq + 80], m9 + mova [outputq + 96], m7 + mova [outputq + 112], m2 + + RET +%endif diff --git a/vpx_dsp/x86/highbd_convolve_avx2.c b/vpx_dsp/x86/highbd_convolve_avx2.c new file mode 100644 index 0000000..7e75d5d --- /dev/null +++ b/vpx_dsp/x86/highbd_convolve_avx2.c @@ -0,0 +1,1108 @@ +/* + * Copyright (c) 2017 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include + +#include "./vpx_dsp_rtcd.h" +#include "vpx_dsp/x86/convolve.h" + +// ----------------------------------------------------------------------------- +// Copy and average + +void vpx_highbd_convolve_copy_avx2(const uint16_t *src, ptrdiff_t src_stride, + uint16_t *dst, ptrdiff_t dst_stride, + const InterpKernel *filter, int x0_q4, + int x_step_q4, int y0_q4, int y_step_q4, + int width, int h, int bd) { + (void)filter; + (void)x0_q4; + (void)x_step_q4; + (void)y0_q4; + (void)y_step_q4; + (void)bd; + + assert(width % 4 == 0); + if (width > 32) { // width = 64 + do { + const __m256i p0 = _mm256_loadu_si256((const __m256i *)src); + const __m256i p1 = _mm256_loadu_si256((const __m256i *)(src + 16)); + const __m256i p2 = _mm256_loadu_si256((const __m256i *)(src + 32)); + const __m256i p3 = _mm256_loadu_si256((const __m256i *)(src + 48)); + src += src_stride; + _mm256_storeu_si256((__m256i *)dst, p0); + _mm256_storeu_si256((__m256i *)(dst + 16), p1); + _mm256_storeu_si256((__m256i *)(dst + 32), p2); + _mm256_storeu_si256((__m256i *)(dst + 48), p3); + dst += dst_stride; + h--; + } while (h > 0); + } else if (width > 16) { // width = 32 + do { + const __m256i p0 = _mm256_loadu_si256((const __m256i *)src); + const __m256i p1 = _mm256_loadu_si256((const __m256i *)(src + 16)); + src += src_stride; + _mm256_storeu_si256((__m256i *)dst, p0); + _mm256_storeu_si256((__m256i *)(dst + 16), p1); + dst += dst_stride; + h--; + } while (h > 0); + } else if (width > 8) { // width = 16 + __m256i p0, p1; + do { + p0 = _mm256_loadu_si256((const __m256i *)src); + src += src_stride; + p1 = _mm256_loadu_si256((const __m256i *)src); + src += src_stride; + + _mm256_storeu_si256((__m256i *)dst, p0); + dst += dst_stride; + _mm256_storeu_si256((__m256i *)dst, p1); + dst += dst_stride; + h -= 2; + } while (h > 0); + } else if (width > 4) { // width = 8 + __m128i p0, p1; + do { + p0 = _mm_loadu_si128((const __m128i *)src); + src += src_stride; + p1 = _mm_loadu_si128((const __m128i *)src); + src += src_stride; + + _mm_storeu_si128((__m128i *)dst, p0); + dst += dst_stride; + _mm_storeu_si128((__m128i *)dst, p1); + dst += dst_stride; + h -= 2; + } while (h > 0); + } else { // width = 4 + __m128i p0, p1; + do { + p0 = _mm_loadl_epi64((const __m128i *)src); + src += src_stride; + p1 = _mm_loadl_epi64((const __m128i *)src); + src += src_stride; + + _mm_storel_epi64((__m128i *)dst, p0); + dst += dst_stride; + _mm_storel_epi64((__m128i *)dst, p1); + dst += dst_stride; + h -= 2; + } while (h > 0); + } +} + +void vpx_highbd_convolve_avg_avx2(const uint16_t *src, ptrdiff_t src_stride, + uint16_t *dst, ptrdiff_t dst_stride, + const InterpKernel *filter, int x0_q4, + int x_step_q4, int y0_q4, int y_step_q4, + int width, int h, int bd) { + (void)filter; + (void)x0_q4; + (void)x_step_q4; + (void)y0_q4; + (void)y_step_q4; + (void)bd; + + assert(width % 4 == 0); + if (width > 32) { // width = 64 + __m256i p0, p1, p2, p3, u0, u1, u2, u3; + do { + p0 = _mm256_loadu_si256((const __m256i *)src); + p1 = _mm256_loadu_si256((const __m256i *)(src + 16)); + p2 = _mm256_loadu_si256((const __m256i *)(src + 32)); + p3 = _mm256_loadu_si256((const __m256i *)(src + 48)); + src += src_stride; + u0 = _mm256_loadu_si256((const __m256i *)dst); + u1 = _mm256_loadu_si256((const __m256i *)(dst + 16)); + u2 = _mm256_loadu_si256((const __m256i *)(dst + 32)); + u3 = _mm256_loadu_si256((const __m256i *)(dst + 48)); + _mm256_storeu_si256((__m256i *)dst, _mm256_avg_epu16(p0, u0)); + _mm256_storeu_si256((__m256i *)(dst + 16), _mm256_avg_epu16(p1, u1)); + _mm256_storeu_si256((__m256i *)(dst + 32), _mm256_avg_epu16(p2, u2)); + _mm256_storeu_si256((__m256i *)(dst + 48), _mm256_avg_epu16(p3, u3)); + dst += dst_stride; + h--; + } while (h > 0); + } else if (width > 16) { // width = 32 + __m256i p0, p1, u0, u1; + do { + p0 = _mm256_loadu_si256((const __m256i *)src); + p1 = _mm256_loadu_si256((const __m256i *)(src + 16)); + src += src_stride; + u0 = _mm256_loadu_si256((const __m256i *)dst); + u1 = _mm256_loadu_si256((const __m256i *)(dst + 16)); + _mm256_storeu_si256((__m256i *)dst, _mm256_avg_epu16(p0, u0)); + _mm256_storeu_si256((__m256i *)(dst + 16), _mm256_avg_epu16(p1, u1)); + dst += dst_stride; + h--; + } while (h > 0); + } else if (width > 8) { // width = 16 + __m256i p0, p1, u0, u1; + do { + p0 = _mm256_loadu_si256((const __m256i *)src); + p1 = _mm256_loadu_si256((const __m256i *)(src + src_stride)); + src += src_stride << 1; + u0 = _mm256_loadu_si256((const __m256i *)dst); + u1 = _mm256_loadu_si256((const __m256i *)(dst + dst_stride)); + + _mm256_storeu_si256((__m256i *)dst, _mm256_avg_epu16(p0, u0)); + _mm256_storeu_si256((__m256i *)(dst + dst_stride), + _mm256_avg_epu16(p1, u1)); + dst += dst_stride << 1; + h -= 2; + } while (h > 0); + } else if (width > 4) { // width = 8 + __m128i p0, p1, u0, u1; + do { + p0 = _mm_loadu_si128((const __m128i *)src); + p1 = _mm_loadu_si128((const __m128i *)(src + src_stride)); + src += src_stride << 1; + u0 = _mm_loadu_si128((const __m128i *)dst); + u1 = _mm_loadu_si128((const __m128i *)(dst + dst_stride)); + + _mm_storeu_si128((__m128i *)dst, _mm_avg_epu16(p0, u0)); + _mm_storeu_si128((__m128i *)(dst + dst_stride), _mm_avg_epu16(p1, u1)); + dst += dst_stride << 1; + h -= 2; + } while (h > 0); + } else { // width = 4 + __m128i p0, p1, u0, u1; + do { + p0 = _mm_loadl_epi64((const __m128i *)src); + p1 = _mm_loadl_epi64((const __m128i *)(src + src_stride)); + src += src_stride << 1; + u0 = _mm_loadl_epi64((const __m128i *)dst); + u1 = _mm_loadl_epi64((const __m128i *)(dst + dst_stride)); + + _mm_storel_epi64((__m128i *)dst, _mm_avg_epu16(u0, p0)); + _mm_storel_epi64((__m128i *)(dst + dst_stride), _mm_avg_epu16(u1, p1)); + dst += dst_stride << 1; + h -= 2; + } while (h > 0); + } +} + +// ----------------------------------------------------------------------------- +// Horizontal and vertical filtering + +#define CONV8_ROUNDING_BITS (7) + +static const uint8_t signal_pattern_0[32] = { 0, 1, 2, 3, 2, 3, 4, 5, 4, 5, 6, + 7, 6, 7, 8, 9, 0, 1, 2, 3, 2, 3, + 4, 5, 4, 5, 6, 7, 6, 7, 8, 9 }; + +static const uint8_t signal_pattern_1[32] = { 4, 5, 6, 7, 6, 7, 8, 9, + 8, 9, 10, 11, 10, 11, 12, 13, + 4, 5, 6, 7, 6, 7, 8, 9, + 8, 9, 10, 11, 10, 11, 12, 13 }; + +static const uint8_t signal_pattern_2[32] = { 6, 7, 8, 9, 8, 9, 10, 11, + 10, 11, 12, 13, 12, 13, 14, 15, + 6, 7, 8, 9, 8, 9, 10, 11, + 10, 11, 12, 13, 12, 13, 14, 15 }; + +static const uint32_t signal_index[8] = { 2, 3, 4, 5, 2, 3, 4, 5 }; + +// ----------------------------------------------------------------------------- +// Horizontal Filtering + +static INLINE void pack_pixels(const __m256i *s, __m256i *p /*p[4]*/) { + const __m256i idx = _mm256_loadu_si256((const __m256i *)signal_index); + const __m256i sf0 = _mm256_loadu_si256((const __m256i *)signal_pattern_0); + const __m256i sf1 = _mm256_loadu_si256((const __m256i *)signal_pattern_1); + const __m256i c = _mm256_permutevar8x32_epi32(*s, idx); + + p[0] = _mm256_shuffle_epi8(*s, sf0); // x0x6 + p[1] = _mm256_shuffle_epi8(*s, sf1); // x1x7 + p[2] = _mm256_shuffle_epi8(c, sf0); // x2x4 + p[3] = _mm256_shuffle_epi8(c, sf1); // x3x5 +} + +// Note: +// Shared by 8x2 and 16x1 block +static INLINE void pack_16_pixels(const __m256i *s0, const __m256i *s1, + __m256i *x /*x[8]*/) { + __m256i pp[8]; + pack_pixels(s0, pp); + pack_pixels(s1, &pp[4]); + x[0] = _mm256_permute2x128_si256(pp[0], pp[4], 0x20); + x[1] = _mm256_permute2x128_si256(pp[1], pp[5], 0x20); + x[2] = _mm256_permute2x128_si256(pp[2], pp[6], 0x20); + x[3] = _mm256_permute2x128_si256(pp[3], pp[7], 0x20); + x[4] = x[2]; + x[5] = x[3]; + x[6] = _mm256_permute2x128_si256(pp[0], pp[4], 0x31); + x[7] = _mm256_permute2x128_si256(pp[1], pp[5], 0x31); +} + +static INLINE void pack_8x1_pixels(const uint16_t *src, __m256i *x) { + __m256i pp[8]; + __m256i s0; + s0 = _mm256_loadu_si256((const __m256i *)src); + pack_pixels(&s0, pp); + x[0] = _mm256_permute2x128_si256(pp[0], pp[2], 0x30); + x[1] = _mm256_permute2x128_si256(pp[1], pp[3], 0x30); + x[2] = _mm256_permute2x128_si256(pp[2], pp[0], 0x30); + x[3] = _mm256_permute2x128_si256(pp[3], pp[1], 0x30); +} + +static INLINE void pack_8x2_pixels(const uint16_t *src, ptrdiff_t stride, + __m256i *x) { + __m256i s0, s1; + s0 = _mm256_loadu_si256((const __m256i *)src); + s1 = _mm256_loadu_si256((const __m256i *)(src + stride)); + pack_16_pixels(&s0, &s1, x); +} + +static INLINE void pack_16x1_pixels(const uint16_t *src, __m256i *x) { + __m256i s0, s1; + s0 = _mm256_loadu_si256((const __m256i *)src); + s1 = _mm256_loadu_si256((const __m256i *)(src + 8)); + pack_16_pixels(&s0, &s1, x); +} + +// Note: +// Shared by horizontal and vertical filtering +static INLINE void pack_filters(const int16_t *filter, __m256i *f /*f[4]*/) { + const __m128i h = _mm_loadu_si128((const __m128i *)filter); + const __m256i hh = _mm256_insertf128_si256(_mm256_castsi128_si256(h), h, 1); + const __m256i p0 = _mm256_set1_epi32(0x03020100); + const __m256i p1 = _mm256_set1_epi32(0x07060504); + const __m256i p2 = _mm256_set1_epi32(0x0b0a0908); + const __m256i p3 = _mm256_set1_epi32(0x0f0e0d0c); + f[0] = _mm256_shuffle_epi8(hh, p0); + f[1] = _mm256_shuffle_epi8(hh, p1); + f[2] = _mm256_shuffle_epi8(hh, p2); + f[3] = _mm256_shuffle_epi8(hh, p3); +} + +static INLINE void filter_8x1_pixels(const __m256i *sig /*sig[4]*/, + const __m256i *fil /*fil[4]*/, + __m256i *y) { + __m256i a, a0, a1; + + a0 = _mm256_madd_epi16(fil[0], sig[0]); + a1 = _mm256_madd_epi16(fil[3], sig[3]); + a = _mm256_add_epi32(a0, a1); + + a0 = _mm256_madd_epi16(fil[1], sig[1]); + a1 = _mm256_madd_epi16(fil[2], sig[2]); + + { + const __m256i min = _mm256_min_epi32(a0, a1); + a = _mm256_add_epi32(a, min); + } + { + const __m256i max = _mm256_max_epi32(a0, a1); + a = _mm256_add_epi32(a, max); + } + { + const __m256i rounding = _mm256_set1_epi32(1 << (CONV8_ROUNDING_BITS - 1)); + a = _mm256_add_epi32(a, rounding); + *y = _mm256_srai_epi32(a, CONV8_ROUNDING_BITS); + } +} + +static INLINE void store_8x1_pixels(const __m256i *y, const __m256i *mask, + uint16_t *dst) { + const __m128i a0 = _mm256_castsi256_si128(*y); + const __m128i a1 = _mm256_extractf128_si256(*y, 1); + __m128i res = _mm_packus_epi32(a0, a1); + res = _mm_min_epi16(res, _mm256_castsi256_si128(*mask)); + _mm_storeu_si128((__m128i *)dst, res); +} + +static INLINE void store_8x2_pixels(const __m256i *y0, const __m256i *y1, + const __m256i *mask, uint16_t *dst, + ptrdiff_t pitch) { + __m256i a = _mm256_packus_epi32(*y0, *y1); + a = _mm256_min_epi16(a, *mask); + _mm_storeu_si128((__m128i *)dst, _mm256_castsi256_si128(a)); + _mm_storeu_si128((__m128i *)(dst + pitch), _mm256_extractf128_si256(a, 1)); +} + +static INLINE void store_16x1_pixels(const __m256i *y0, const __m256i *y1, + const __m256i *mask, uint16_t *dst) { + __m256i a = _mm256_packus_epi32(*y0, *y1); + a = _mm256_min_epi16(a, *mask); + _mm256_storeu_si256((__m256i *)dst, a); +} + +static void vpx_highbd_filter_block1d8_h8_avx2( + const uint16_t *src_ptr, ptrdiff_t src_pitch, uint16_t *dst_ptr, + ptrdiff_t dst_pitch, uint32_t height, const int16_t *filter, int bd) { + __m256i signal[8], res0, res1; + const __m256i max = _mm256_set1_epi16((1 << bd) - 1); + + __m256i ff[4]; + pack_filters(filter, ff); + + src_ptr -= 3; + do { + pack_8x2_pixels(src_ptr, src_pitch, signal); + filter_8x1_pixels(signal, ff, &res0); + filter_8x1_pixels(&signal[4], ff, &res1); + store_8x2_pixels(&res0, &res1, &max, dst_ptr, dst_pitch); + height -= 2; + src_ptr += src_pitch << 1; + dst_ptr += dst_pitch << 1; + } while (height > 1); + + if (height > 0) { + pack_8x1_pixels(src_ptr, signal); + filter_8x1_pixels(signal, ff, &res0); + store_8x1_pixels(&res0, &max, dst_ptr); + } +} + +static void vpx_highbd_filter_block1d16_h8_avx2( + const uint16_t *src_ptr, ptrdiff_t src_pitch, uint16_t *dst_ptr, + ptrdiff_t dst_pitch, uint32_t height, const int16_t *filter, int bd) { + __m256i signal[8], res0, res1; + const __m256i max = _mm256_set1_epi16((1 << bd) - 1); + + __m256i ff[4]; + pack_filters(filter, ff); + + src_ptr -= 3; + do { + pack_16x1_pixels(src_ptr, signal); + filter_8x1_pixels(signal, ff, &res0); + filter_8x1_pixels(&signal[4], ff, &res1); + store_16x1_pixels(&res0, &res1, &max, dst_ptr); + height -= 1; + src_ptr += src_pitch; + dst_ptr += dst_pitch; + } while (height > 0); +} + +// ----------------------------------------------------------------------------- +// 2-tap horizontal filtering + +static INLINE void pack_2t_filter(const int16_t *filter, __m256i *f) { + const __m128i h = _mm_loadu_si128((const __m128i *)filter); + const __m256i hh = _mm256_insertf128_si256(_mm256_castsi128_si256(h), h, 1); + const __m256i p = _mm256_set1_epi32(0x09080706); + f[0] = _mm256_shuffle_epi8(hh, p); +} + +// can be used by pack_8x2_2t_pixels() and pack_16x1_2t_pixels() +// the difference is s0/s1 specifies first and second rows or, +// first 16 samples and 8-sample shifted 16 samples +static INLINE void pack_16_2t_pixels(const __m256i *s0, const __m256i *s1, + __m256i *sig) { + const __m256i idx = _mm256_loadu_si256((const __m256i *)signal_index); + const __m256i sf2 = _mm256_loadu_si256((const __m256i *)signal_pattern_2); + __m256i x0 = _mm256_shuffle_epi8(*s0, sf2); + __m256i x1 = _mm256_shuffle_epi8(*s1, sf2); + __m256i r0 = _mm256_permutevar8x32_epi32(*s0, idx); + __m256i r1 = _mm256_permutevar8x32_epi32(*s1, idx); + r0 = _mm256_shuffle_epi8(r0, sf2); + r1 = _mm256_shuffle_epi8(r1, sf2); + sig[0] = _mm256_permute2x128_si256(x0, x1, 0x20); + sig[1] = _mm256_permute2x128_si256(r0, r1, 0x20); +} + +static INLINE void pack_8x2_2t_pixels(const uint16_t *src, + const ptrdiff_t pitch, __m256i *sig) { + const __m256i r0 = _mm256_loadu_si256((const __m256i *)src); + const __m256i r1 = _mm256_loadu_si256((const __m256i *)(src + pitch)); + pack_16_2t_pixels(&r0, &r1, sig); +} + +static INLINE void pack_16x1_2t_pixels(const uint16_t *src, + __m256i *sig /*sig[2]*/) { + const __m256i r0 = _mm256_loadu_si256((const __m256i *)src); + const __m256i r1 = _mm256_loadu_si256((const __m256i *)(src + 8)); + pack_16_2t_pixels(&r0, &r1, sig); +} + +static INLINE void pack_8x1_2t_pixels(const uint16_t *src, + __m256i *sig /*sig[2]*/) { + const __m256i idx = _mm256_loadu_si256((const __m256i *)signal_index); + const __m256i sf2 = _mm256_loadu_si256((const __m256i *)signal_pattern_2); + __m256i r0 = _mm256_loadu_si256((const __m256i *)src); + __m256i x0 = _mm256_shuffle_epi8(r0, sf2); + r0 = _mm256_permutevar8x32_epi32(r0, idx); + r0 = _mm256_shuffle_epi8(r0, sf2); + sig[0] = _mm256_permute2x128_si256(x0, r0, 0x20); +} + +// can be used by filter_8x2_2t_pixels() and filter_16x1_2t_pixels() +static INLINE void filter_16_2t_pixels(const __m256i *sig, const __m256i *f, + __m256i *y0, __m256i *y1) { + const __m256i rounding = _mm256_set1_epi32(1 << (CONV8_ROUNDING_BITS - 1)); + __m256i x0 = _mm256_madd_epi16(sig[0], *f); + __m256i x1 = _mm256_madd_epi16(sig[1], *f); + x0 = _mm256_add_epi32(x0, rounding); + x1 = _mm256_add_epi32(x1, rounding); + *y0 = _mm256_srai_epi32(x0, CONV8_ROUNDING_BITS); + *y1 = _mm256_srai_epi32(x1, CONV8_ROUNDING_BITS); +} + +static INLINE void filter_8x1_2t_pixels(const __m256i *sig, const __m256i *f, + __m256i *y0) { + const __m256i rounding = _mm256_set1_epi32(1 << (CONV8_ROUNDING_BITS - 1)); + __m256i x0 = _mm256_madd_epi16(sig[0], *f); + x0 = _mm256_add_epi32(x0, rounding); + *y0 = _mm256_srai_epi32(x0, CONV8_ROUNDING_BITS); +} + +static void vpx_highbd_filter_block1d8_h2_avx2( + const uint16_t *src_ptr, ptrdiff_t src_pitch, uint16_t *dst_ptr, + ptrdiff_t dst_pitch, uint32_t height, const int16_t *filter, int bd) { + __m256i signal[2], res0, res1; + const __m256i max = _mm256_set1_epi16((1 << bd) - 1); + + __m256i ff; + pack_2t_filter(filter, &ff); + + src_ptr -= 3; + do { + pack_8x2_2t_pixels(src_ptr, src_pitch, signal); + filter_16_2t_pixels(signal, &ff, &res0, &res1); + store_8x2_pixels(&res0, &res1, &max, dst_ptr, dst_pitch); + height -= 2; + src_ptr += src_pitch << 1; + dst_ptr += dst_pitch << 1; + } while (height > 1); + + if (height > 0) { + pack_8x1_2t_pixels(src_ptr, signal); + filter_8x1_2t_pixels(signal, &ff, &res0); + store_8x1_pixels(&res0, &max, dst_ptr); + } +} + +static void vpx_highbd_filter_block1d16_h2_avx2( + const uint16_t *src_ptr, ptrdiff_t src_pitch, uint16_t *dst_ptr, + ptrdiff_t dst_pitch, uint32_t height, const int16_t *filter, int bd) { + __m256i signal[2], res0, res1; + const __m256i max = _mm256_set1_epi16((1 << bd) - 1); + + __m256i ff; + pack_2t_filter(filter, &ff); + + src_ptr -= 3; + do { + pack_16x1_2t_pixels(src_ptr, signal); + filter_16_2t_pixels(signal, &ff, &res0, &res1); + store_16x1_pixels(&res0, &res1, &max, dst_ptr); + height -= 1; + src_ptr += src_pitch; + dst_ptr += dst_pitch; + } while (height > 0); +} + +// ----------------------------------------------------------------------------- +// Vertical Filtering + +static void pack_8x9_init(const uint16_t *src, ptrdiff_t pitch, __m256i *sig) { + __m256i s0 = _mm256_castsi128_si256(_mm_loadu_si128((const __m128i *)src)); + __m256i s1 = + _mm256_castsi128_si256(_mm_loadu_si128((const __m128i *)(src + pitch))); + __m256i s2 = _mm256_castsi128_si256( + _mm_loadu_si128((const __m128i *)(src + 2 * pitch))); + __m256i s3 = _mm256_castsi128_si256( + _mm_loadu_si128((const __m128i *)(src + 3 * pitch))); + __m256i s4 = _mm256_castsi128_si256( + _mm_loadu_si128((const __m128i *)(src + 4 * pitch))); + __m256i s5 = _mm256_castsi128_si256( + _mm_loadu_si128((const __m128i *)(src + 5 * pitch))); + __m256i s6 = _mm256_castsi128_si256( + _mm_loadu_si128((const __m128i *)(src + 6 * pitch))); + + s0 = _mm256_inserti128_si256(s0, _mm256_castsi256_si128(s1), 1); + s1 = _mm256_inserti128_si256(s1, _mm256_castsi256_si128(s2), 1); + s2 = _mm256_inserti128_si256(s2, _mm256_castsi256_si128(s3), 1); + s3 = _mm256_inserti128_si256(s3, _mm256_castsi256_si128(s4), 1); + s4 = _mm256_inserti128_si256(s4, _mm256_castsi256_si128(s5), 1); + s5 = _mm256_inserti128_si256(s5, _mm256_castsi256_si128(s6), 1); + + sig[0] = _mm256_unpacklo_epi16(s0, s1); + sig[4] = _mm256_unpackhi_epi16(s0, s1); + sig[1] = _mm256_unpacklo_epi16(s2, s3); + sig[5] = _mm256_unpackhi_epi16(s2, s3); + sig[2] = _mm256_unpacklo_epi16(s4, s5); + sig[6] = _mm256_unpackhi_epi16(s4, s5); + sig[8] = s6; +} + +static INLINE void pack_8x9_pixels(const uint16_t *src, ptrdiff_t pitch, + __m256i *sig) { + // base + 7th row + __m256i s0 = _mm256_castsi128_si256( + _mm_loadu_si128((const __m128i *)(src + 7 * pitch))); + // base + 8th row + __m256i s1 = _mm256_castsi128_si256( + _mm_loadu_si128((const __m128i *)(src + 8 * pitch))); + __m256i s2 = _mm256_inserti128_si256(sig[8], _mm256_castsi256_si128(s0), 1); + __m256i s3 = _mm256_inserti128_si256(s0, _mm256_castsi256_si128(s1), 1); + sig[3] = _mm256_unpacklo_epi16(s2, s3); + sig[7] = _mm256_unpackhi_epi16(s2, s3); + sig[8] = s1; +} + +static INLINE void filter_8x9_pixels(const __m256i *sig, const __m256i *f, + __m256i *y0, __m256i *y1) { + filter_8x1_pixels(sig, f, y0); + filter_8x1_pixels(&sig[4], f, y1); +} + +static INLINE void update_pixels(__m256i *sig) { + int i; + for (i = 0; i < 3; ++i) { + sig[i] = sig[i + 1]; + sig[i + 4] = sig[i + 5]; + } +} + +static void vpx_highbd_filter_block1d8_v8_avx2( + const uint16_t *src_ptr, ptrdiff_t src_pitch, uint16_t *dst_ptr, + ptrdiff_t dst_pitch, uint32_t height, const int16_t *filter, int bd) { + __m256i signal[9], res0, res1; + const __m256i max = _mm256_set1_epi16((1 << bd) - 1); + + __m256i ff[4]; + pack_filters(filter, ff); + + pack_8x9_init(src_ptr, src_pitch, signal); + + do { + pack_8x9_pixels(src_ptr, src_pitch, signal); + + filter_8x9_pixels(signal, ff, &res0, &res1); + store_8x2_pixels(&res0, &res1, &max, dst_ptr, dst_pitch); + update_pixels(signal); + + src_ptr += src_pitch << 1; + dst_ptr += dst_pitch << 1; + height -= 2; + } while (height > 0); +} + +static void pack_16x9_init(const uint16_t *src, ptrdiff_t pitch, __m256i *sig) { + __m256i u0, u1, u2, u3; + // load 0-6 rows + const __m256i s0 = _mm256_loadu_si256((const __m256i *)src); + const __m256i s1 = _mm256_loadu_si256((const __m256i *)(src + pitch)); + const __m256i s2 = _mm256_loadu_si256((const __m256i *)(src + 2 * pitch)); + const __m256i s3 = _mm256_loadu_si256((const __m256i *)(src + 3 * pitch)); + const __m256i s4 = _mm256_loadu_si256((const __m256i *)(src + 4 * pitch)); + const __m256i s5 = _mm256_loadu_si256((const __m256i *)(src + 5 * pitch)); + const __m256i s6 = _mm256_loadu_si256((const __m256i *)(src + 6 * pitch)); + + u0 = _mm256_permute2x128_si256(s0, s1, 0x20); // 0, 1 low + u1 = _mm256_permute2x128_si256(s0, s1, 0x31); // 0, 1 high + + u2 = _mm256_permute2x128_si256(s1, s2, 0x20); // 1, 2 low + u3 = _mm256_permute2x128_si256(s1, s2, 0x31); // 1, 2 high + + sig[0] = _mm256_unpacklo_epi16(u0, u2); + sig[4] = _mm256_unpackhi_epi16(u0, u2); + + sig[8] = _mm256_unpacklo_epi16(u1, u3); + sig[12] = _mm256_unpackhi_epi16(u1, u3); + + u0 = _mm256_permute2x128_si256(s2, s3, 0x20); + u1 = _mm256_permute2x128_si256(s2, s3, 0x31); + + u2 = _mm256_permute2x128_si256(s3, s4, 0x20); + u3 = _mm256_permute2x128_si256(s3, s4, 0x31); + + sig[1] = _mm256_unpacklo_epi16(u0, u2); + sig[5] = _mm256_unpackhi_epi16(u0, u2); + + sig[9] = _mm256_unpacklo_epi16(u1, u3); + sig[13] = _mm256_unpackhi_epi16(u1, u3); + + u0 = _mm256_permute2x128_si256(s4, s5, 0x20); + u1 = _mm256_permute2x128_si256(s4, s5, 0x31); + + u2 = _mm256_permute2x128_si256(s5, s6, 0x20); + u3 = _mm256_permute2x128_si256(s5, s6, 0x31); + + sig[2] = _mm256_unpacklo_epi16(u0, u2); + sig[6] = _mm256_unpackhi_epi16(u0, u2); + + sig[10] = _mm256_unpacklo_epi16(u1, u3); + sig[14] = _mm256_unpackhi_epi16(u1, u3); + + sig[16] = s6; +} + +static void pack_16x9_pixels(const uint16_t *src, ptrdiff_t pitch, + __m256i *sig) { + // base + 7th row + const __m256i s7 = _mm256_loadu_si256((const __m256i *)(src + 7 * pitch)); + // base + 8th row + const __m256i s8 = _mm256_loadu_si256((const __m256i *)(src + 8 * pitch)); + + __m256i u0, u1, u2, u3; + u0 = _mm256_permute2x128_si256(sig[16], s7, 0x20); + u1 = _mm256_permute2x128_si256(sig[16], s7, 0x31); + + u2 = _mm256_permute2x128_si256(s7, s8, 0x20); + u3 = _mm256_permute2x128_si256(s7, s8, 0x31); + + sig[3] = _mm256_unpacklo_epi16(u0, u2); + sig[7] = _mm256_unpackhi_epi16(u0, u2); + + sig[11] = _mm256_unpacklo_epi16(u1, u3); + sig[15] = _mm256_unpackhi_epi16(u1, u3); + + sig[16] = s8; +} + +static INLINE void filter_16x9_pixels(const __m256i *sig, const __m256i *f, + __m256i *y0, __m256i *y1) { + __m256i res[4]; + int i; + for (i = 0; i < 4; ++i) { + filter_8x1_pixels(&sig[i << 2], f, &res[i]); + } + + { + const __m256i l0l1 = _mm256_packus_epi32(res[0], res[1]); + const __m256i h0h1 = _mm256_packus_epi32(res[2], res[3]); + *y0 = _mm256_permute2x128_si256(l0l1, h0h1, 0x20); + *y1 = _mm256_permute2x128_si256(l0l1, h0h1, 0x31); + } +} + +static INLINE void store_16x2_pixels(const __m256i *y0, const __m256i *y1, + const __m256i *mask, uint16_t *dst, + ptrdiff_t pitch) { + __m256i p = _mm256_min_epi16(*y0, *mask); + _mm256_storeu_si256((__m256i *)dst, p); + p = _mm256_min_epi16(*y1, *mask); + _mm256_storeu_si256((__m256i *)(dst + pitch), p); +} + +static void update_16x9_pixels(__m256i *sig) { + update_pixels(&sig[0]); + update_pixels(&sig[8]); +} + +static void vpx_highbd_filter_block1d16_v8_avx2( + const uint16_t *src_ptr, ptrdiff_t src_pitch, uint16_t *dst_ptr, + ptrdiff_t dst_pitch, uint32_t height, const int16_t *filter, int bd) { + __m256i signal[17], res0, res1; + const __m256i max = _mm256_set1_epi16((1 << bd) - 1); + + __m256i ff[4]; + pack_filters(filter, ff); + + pack_16x9_init(src_ptr, src_pitch, signal); + + do { + pack_16x9_pixels(src_ptr, src_pitch, signal); + filter_16x9_pixels(signal, ff, &res0, &res1); + store_16x2_pixels(&res0, &res1, &max, dst_ptr, dst_pitch); + update_16x9_pixels(signal); + + src_ptr += src_pitch << 1; + dst_ptr += dst_pitch << 1; + height -= 2; + } while (height > 0); +} + +// ----------------------------------------------------------------------------- +// 2-tap vertical filtering + +static void pack_16x2_init(const uint16_t *src, __m256i *sig) { + sig[2] = _mm256_loadu_si256((const __m256i *)src); +} + +static INLINE void pack_16x2_2t_pixels(const uint16_t *src, ptrdiff_t pitch, + __m256i *sig) { + // load the next row + const __m256i u = _mm256_loadu_si256((const __m256i *)(src + pitch)); + sig[0] = _mm256_unpacklo_epi16(sig[2], u); + sig[1] = _mm256_unpackhi_epi16(sig[2], u); + sig[2] = u; +} + +static INLINE void filter_16x2_2t_pixels(const __m256i *sig, const __m256i *f, + __m256i *y0, __m256i *y1) { + filter_16_2t_pixels(sig, f, y0, y1); +} + +static void vpx_highbd_filter_block1d16_v2_avx2( + const uint16_t *src_ptr, ptrdiff_t src_pitch, uint16_t *dst_ptr, + ptrdiff_t dst_pitch, uint32_t height, const int16_t *filter, int bd) { + __m256i signal[3], res0, res1; + const __m256i max = _mm256_set1_epi16((1 << bd) - 1); + __m256i ff; + + pack_2t_filter(filter, &ff); + pack_16x2_init(src_ptr, signal); + + do { + pack_16x2_2t_pixels(src_ptr, src_pitch, signal); + filter_16x2_2t_pixels(signal, &ff, &res0, &res1); + store_16x1_pixels(&res0, &res1, &max, dst_ptr); + + src_ptr += src_pitch; + dst_ptr += dst_pitch; + height -= 1; + } while (height > 0); +} + +static INLINE void pack_8x1_2t_filter(const int16_t *filter, __m128i *f) { + const __m128i h = _mm_loadu_si128((const __m128i *)filter); + const __m128i p = _mm_set1_epi32(0x09080706); + f[0] = _mm_shuffle_epi8(h, p); +} + +static void pack_8x2_init(const uint16_t *src, __m128i *sig) { + sig[2] = _mm_loadu_si128((const __m128i *)src); +} + +static INLINE void pack_8x2_2t_pixels_ver(const uint16_t *src, ptrdiff_t pitch, + __m128i *sig) { + // load the next row + const __m128i u = _mm_loadu_si128((const __m128i *)(src + pitch)); + sig[0] = _mm_unpacklo_epi16(sig[2], u); + sig[1] = _mm_unpackhi_epi16(sig[2], u); + sig[2] = u; +} + +static INLINE void filter_8_2t_pixels(const __m128i *sig, const __m128i *f, + __m128i *y0, __m128i *y1) { + const __m128i rounding = _mm_set1_epi32(1 << (CONV8_ROUNDING_BITS - 1)); + __m128i x0 = _mm_madd_epi16(sig[0], *f); + __m128i x1 = _mm_madd_epi16(sig[1], *f); + x0 = _mm_add_epi32(x0, rounding); + x1 = _mm_add_epi32(x1, rounding); + *y0 = _mm_srai_epi32(x0, CONV8_ROUNDING_BITS); + *y1 = _mm_srai_epi32(x1, CONV8_ROUNDING_BITS); +} + +static INLINE void store_8x1_2t_pixels_ver(const __m128i *y0, const __m128i *y1, + const __m128i *mask, uint16_t *dst) { + __m128i res = _mm_packus_epi32(*y0, *y1); + res = _mm_min_epi16(res, *mask); + _mm_storeu_si128((__m128i *)dst, res); +} + +static void vpx_highbd_filter_block1d8_v2_avx2( + const uint16_t *src_ptr, ptrdiff_t src_pitch, uint16_t *dst_ptr, + ptrdiff_t dst_pitch, uint32_t height, const int16_t *filter, int bd) { + __m128i signal[3], res0, res1; + const __m128i max = _mm_set1_epi16((1 << bd) - 1); + __m128i ff; + + pack_8x1_2t_filter(filter, &ff); + pack_8x2_init(src_ptr, signal); + + do { + pack_8x2_2t_pixels_ver(src_ptr, src_pitch, signal); + filter_8_2t_pixels(signal, &ff, &res0, &res1); + store_8x1_2t_pixels_ver(&res0, &res1, &max, dst_ptr); + + src_ptr += src_pitch; + dst_ptr += dst_pitch; + height -= 1; + } while (height > 0); +} + +// Calculation with averaging the input pixels + +static INLINE void store_8x1_avg_pixels(const __m256i *y0, const __m256i *mask, + uint16_t *dst) { + const __m128i a0 = _mm256_castsi256_si128(*y0); + const __m128i a1 = _mm256_extractf128_si256(*y0, 1); + __m128i res = _mm_packus_epi32(a0, a1); + const __m128i pix = _mm_loadu_si128((const __m128i *)dst); + res = _mm_min_epi16(res, _mm256_castsi256_si128(*mask)); + res = _mm_avg_epu16(res, pix); + _mm_storeu_si128((__m128i *)dst, res); +} + +static INLINE void store_8x2_avg_pixels(const __m256i *y0, const __m256i *y1, + const __m256i *mask, uint16_t *dst, + ptrdiff_t pitch) { + __m256i a = _mm256_packus_epi32(*y0, *y1); + const __m128i pix0 = _mm_loadu_si128((const __m128i *)dst); + const __m128i pix1 = _mm_loadu_si128((const __m128i *)(dst + pitch)); + const __m256i pix = + _mm256_insertf128_si256(_mm256_castsi128_si256(pix0), pix1, 1); + a = _mm256_min_epi16(a, *mask); + a = _mm256_avg_epu16(a, pix); + _mm_storeu_si128((__m128i *)dst, _mm256_castsi256_si128(a)); + _mm_storeu_si128((__m128i *)(dst + pitch), _mm256_extractf128_si256(a, 1)); +} + +static INLINE void store_16x1_avg_pixels(const __m256i *y0, const __m256i *y1, + const __m256i *mask, uint16_t *dst) { + __m256i a = _mm256_packus_epi32(*y0, *y1); + const __m256i pix = _mm256_loadu_si256((const __m256i *)dst); + a = _mm256_min_epi16(a, *mask); + a = _mm256_avg_epu16(a, pix); + _mm256_storeu_si256((__m256i *)dst, a); +} + +static INLINE void store_16x2_avg_pixels(const __m256i *y0, const __m256i *y1, + const __m256i *mask, uint16_t *dst, + ptrdiff_t pitch) { + const __m256i pix0 = _mm256_loadu_si256((const __m256i *)dst); + const __m256i pix1 = _mm256_loadu_si256((const __m256i *)(dst + pitch)); + __m256i p = _mm256_min_epi16(*y0, *mask); + p = _mm256_avg_epu16(p, pix0); + _mm256_storeu_si256((__m256i *)dst, p); + + p = _mm256_min_epi16(*y1, *mask); + p = _mm256_avg_epu16(p, pix1); + _mm256_storeu_si256((__m256i *)(dst + pitch), p); +} + +static INLINE void store_8x1_2t_avg_pixels_ver(const __m128i *y0, + const __m128i *y1, + const __m128i *mask, + uint16_t *dst) { + __m128i res = _mm_packus_epi32(*y0, *y1); + const __m128i pix = _mm_loadu_si128((const __m128i *)dst); + res = _mm_min_epi16(res, *mask); + res = _mm_avg_epu16(res, pix); + _mm_storeu_si128((__m128i *)dst, res); +} + +static void vpx_highbd_filter_block1d8_h8_avg_avx2( + const uint16_t *src_ptr, ptrdiff_t src_pitch, uint16_t *dst_ptr, + ptrdiff_t dst_pitch, uint32_t height, const int16_t *filter, int bd) { + __m256i signal[8], res0, res1; + const __m256i max = _mm256_set1_epi16((1 << bd) - 1); + + __m256i ff[4]; + pack_filters(filter, ff); + + src_ptr -= 3; + do { + pack_8x2_pixels(src_ptr, src_pitch, signal); + filter_8x1_pixels(signal, ff, &res0); + filter_8x1_pixels(&signal[4], ff, &res1); + store_8x2_avg_pixels(&res0, &res1, &max, dst_ptr, dst_pitch); + height -= 2; + src_ptr += src_pitch << 1; + dst_ptr += dst_pitch << 1; + } while (height > 1); + + if (height > 0) { + pack_8x1_pixels(src_ptr, signal); + filter_8x1_pixels(signal, ff, &res0); + store_8x1_avg_pixels(&res0, &max, dst_ptr); + } +} + +static void vpx_highbd_filter_block1d16_h8_avg_avx2( + const uint16_t *src_ptr, ptrdiff_t src_pitch, uint16_t *dst_ptr, + ptrdiff_t dst_pitch, uint32_t height, const int16_t *filter, int bd) { + __m256i signal[8], res0, res1; + const __m256i max = _mm256_set1_epi16((1 << bd) - 1); + + __m256i ff[4]; + pack_filters(filter, ff); + + src_ptr -= 3; + do { + pack_16x1_pixels(src_ptr, signal); + filter_8x1_pixels(signal, ff, &res0); + filter_8x1_pixels(&signal[4], ff, &res1); + store_16x1_avg_pixels(&res0, &res1, &max, dst_ptr); + height -= 1; + src_ptr += src_pitch; + dst_ptr += dst_pitch; + } while (height > 0); +} + +static void vpx_highbd_filter_block1d8_v8_avg_avx2( + const uint16_t *src_ptr, ptrdiff_t src_pitch, uint16_t *dst_ptr, + ptrdiff_t dst_pitch, uint32_t height, const int16_t *filter, int bd) { + __m256i signal[9], res0, res1; + const __m256i max = _mm256_set1_epi16((1 << bd) - 1); + + __m256i ff[4]; + pack_filters(filter, ff); + + pack_8x9_init(src_ptr, src_pitch, signal); + + do { + pack_8x9_pixels(src_ptr, src_pitch, signal); + + filter_8x9_pixels(signal, ff, &res0, &res1); + store_8x2_avg_pixels(&res0, &res1, &max, dst_ptr, dst_pitch); + update_pixels(signal); + + src_ptr += src_pitch << 1; + dst_ptr += dst_pitch << 1; + height -= 2; + } while (height > 0); +} + +static void vpx_highbd_filter_block1d16_v8_avg_avx2( + const uint16_t *src_ptr, ptrdiff_t src_pitch, uint16_t *dst_ptr, + ptrdiff_t dst_pitch, uint32_t height, const int16_t *filter, int bd) { + __m256i signal[17], res0, res1; + const __m256i max = _mm256_set1_epi16((1 << bd) - 1); + + __m256i ff[4]; + pack_filters(filter, ff); + + pack_16x9_init(src_ptr, src_pitch, signal); + + do { + pack_16x9_pixels(src_ptr, src_pitch, signal); + filter_16x9_pixels(signal, ff, &res0, &res1); + store_16x2_avg_pixels(&res0, &res1, &max, dst_ptr, dst_pitch); + update_16x9_pixels(signal); + + src_ptr += src_pitch << 1; + dst_ptr += dst_pitch << 1; + height -= 2; + } while (height > 0); +} + +static void vpx_highbd_filter_block1d8_h2_avg_avx2( + const uint16_t *src_ptr, ptrdiff_t src_pitch, uint16_t *dst_ptr, + ptrdiff_t dst_pitch, uint32_t height, const int16_t *filter, int bd) { + __m256i signal[2], res0, res1; + const __m256i max = _mm256_set1_epi16((1 << bd) - 1); + + __m256i ff; + pack_2t_filter(filter, &ff); + + src_ptr -= 3; + do { + pack_8x2_2t_pixels(src_ptr, src_pitch, signal); + filter_16_2t_pixels(signal, &ff, &res0, &res1); + store_8x2_avg_pixels(&res0, &res1, &max, dst_ptr, dst_pitch); + height -= 2; + src_ptr += src_pitch << 1; + dst_ptr += dst_pitch << 1; + } while (height > 1); + + if (height > 0) { + pack_8x1_2t_pixels(src_ptr, signal); + filter_8x1_2t_pixels(signal, &ff, &res0); + store_8x1_avg_pixels(&res0, &max, dst_ptr); + } +} + +static void vpx_highbd_filter_block1d16_h2_avg_avx2( + const uint16_t *src_ptr, ptrdiff_t src_pitch, uint16_t *dst_ptr, + ptrdiff_t dst_pitch, uint32_t height, const int16_t *filter, int bd) { + __m256i signal[2], res0, res1; + const __m256i max = _mm256_set1_epi16((1 << bd) - 1); + + __m256i ff; + pack_2t_filter(filter, &ff); + + src_ptr -= 3; + do { + pack_16x1_2t_pixels(src_ptr, signal); + filter_16_2t_pixels(signal, &ff, &res0, &res1); + store_16x1_avg_pixels(&res0, &res1, &max, dst_ptr); + height -= 1; + src_ptr += src_pitch; + dst_ptr += dst_pitch; + } while (height > 0); +} + +static void vpx_highbd_filter_block1d16_v2_avg_avx2( + const uint16_t *src_ptr, ptrdiff_t src_pitch, uint16_t *dst_ptr, + ptrdiff_t dst_pitch, uint32_t height, const int16_t *filter, int bd) { + __m256i signal[3], res0, res1; + const __m256i max = _mm256_set1_epi16((1 << bd) - 1); + __m256i ff; + + pack_2t_filter(filter, &ff); + pack_16x2_init(src_ptr, signal); + + do { + pack_16x2_2t_pixels(src_ptr, src_pitch, signal); + filter_16x2_2t_pixels(signal, &ff, &res0, &res1); + store_16x1_avg_pixels(&res0, &res1, &max, dst_ptr); + + src_ptr += src_pitch; + dst_ptr += dst_pitch; + height -= 1; + } while (height > 0); +} + +static void vpx_highbd_filter_block1d8_v2_avg_avx2( + const uint16_t *src_ptr, ptrdiff_t src_pitch, uint16_t *dst_ptr, + ptrdiff_t dst_pitch, uint32_t height, const int16_t *filter, int bd) { + __m128i signal[3], res0, res1; + const __m128i max = _mm_set1_epi16((1 << bd) - 1); + __m128i ff; + + pack_8x1_2t_filter(filter, &ff); + pack_8x2_init(src_ptr, signal); + + do { + pack_8x2_2t_pixels_ver(src_ptr, src_pitch, signal); + filter_8_2t_pixels(signal, &ff, &res0, &res1); + store_8x1_2t_avg_pixels_ver(&res0, &res1, &max, dst_ptr); + + src_ptr += src_pitch; + dst_ptr += dst_pitch; + height -= 1; + } while (height > 0); +} + +void vpx_highbd_filter_block1d4_h8_sse2(const uint16_t *, ptrdiff_t, uint16_t *, + ptrdiff_t, uint32_t, const int16_t *, + int); +void vpx_highbd_filter_block1d4_h2_sse2(const uint16_t *, ptrdiff_t, uint16_t *, + ptrdiff_t, uint32_t, const int16_t *, + int); +void vpx_highbd_filter_block1d4_v8_sse2(const uint16_t *, ptrdiff_t, uint16_t *, + ptrdiff_t, uint32_t, const int16_t *, + int); +void vpx_highbd_filter_block1d4_v2_sse2(const uint16_t *, ptrdiff_t, uint16_t *, + ptrdiff_t, uint32_t, const int16_t *, + int); +#define vpx_highbd_filter_block1d4_h8_avx2 vpx_highbd_filter_block1d4_h8_sse2 +#define vpx_highbd_filter_block1d4_h2_avx2 vpx_highbd_filter_block1d4_h2_sse2 +#define vpx_highbd_filter_block1d4_v8_avx2 vpx_highbd_filter_block1d4_v8_sse2 +#define vpx_highbd_filter_block1d4_v2_avx2 vpx_highbd_filter_block1d4_v2_sse2 + +HIGH_FUN_CONV_1D(horiz, x0_q4, x_step_q4, h, src, , avx2); +HIGH_FUN_CONV_1D(vert, y0_q4, y_step_q4, v, src - src_stride * 3, , avx2); +HIGH_FUN_CONV_2D(, avx2); + +void vpx_highbd_filter_block1d4_h8_avg_sse2(const uint16_t *, ptrdiff_t, + uint16_t *, ptrdiff_t, uint32_t, + const int16_t *, int); +void vpx_highbd_filter_block1d4_h2_avg_sse2(const uint16_t *, ptrdiff_t, + uint16_t *, ptrdiff_t, uint32_t, + const int16_t *, int); +void vpx_highbd_filter_block1d4_v8_avg_sse2(const uint16_t *, ptrdiff_t, + uint16_t *, ptrdiff_t, uint32_t, + const int16_t *, int); +void vpx_highbd_filter_block1d4_v2_avg_sse2(const uint16_t *, ptrdiff_t, + uint16_t *, ptrdiff_t, uint32_t, + const int16_t *, int); +#define vpx_highbd_filter_block1d4_h8_avg_avx2 \ + vpx_highbd_filter_block1d4_h8_avg_sse2 +#define vpx_highbd_filter_block1d4_h2_avg_avx2 \ + vpx_highbd_filter_block1d4_h2_avg_sse2 +#define vpx_highbd_filter_block1d4_v8_avg_avx2 \ + vpx_highbd_filter_block1d4_v8_avg_sse2 +#define vpx_highbd_filter_block1d4_v2_avg_avx2 \ + vpx_highbd_filter_block1d4_v2_avg_sse2 + +HIGH_FUN_CONV_1D(avg_horiz, x0_q4, x_step_q4, h, src, avg_, avx2); +HIGH_FUN_CONV_1D(avg_vert, y0_q4, y_step_q4, v, src - src_stride * 3, avg_, + avx2); +HIGH_FUN_CONV_2D(avg_, avx2); + +#undef HIGHBD_FUNC diff --git a/vpx_dsp/x86/highbd_idct16x16_add_sse2.c b/vpx_dsp/x86/highbd_idct16x16_add_sse2.c new file mode 100644 index 0000000..f4f7235 --- /dev/null +++ b/vpx_dsp/x86/highbd_idct16x16_add_sse2.c @@ -0,0 +1,355 @@ +/* + * Copyright (c) 2015 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include // SSE2 + +#include "./vpx_dsp_rtcd.h" +#include "vpx_dsp/x86/highbd_inv_txfm_sse2.h" +#include "vpx_dsp/x86/inv_txfm_sse2.h" +#include "vpx_dsp/x86/transpose_sse2.h" +#include "vpx_dsp/x86/txfm_common_sse2.h" + +static INLINE void highbd_idct16_4col_stage5(const __m128i *const in, + __m128i *const out) { + // stage 5 + out[0] = _mm_add_epi32(in[0], in[3]); + out[1] = _mm_add_epi32(in[1], in[2]); + out[2] = _mm_sub_epi32(in[1], in[2]); + out[3] = _mm_sub_epi32(in[0], in[3]); + highbd_butterfly_cospi16_sse2(in[6], in[5], &out[6], &out[5]); + out[8] = _mm_add_epi32(in[8], in[11]); + out[9] = _mm_add_epi32(in[9], in[10]); + out[10] = _mm_sub_epi32(in[9], in[10]); + out[11] = _mm_sub_epi32(in[8], in[11]); + out[12] = _mm_sub_epi32(in[15], in[12]); + out[13] = _mm_sub_epi32(in[14], in[13]); + out[14] = _mm_add_epi32(in[14], in[13]); + out[15] = _mm_add_epi32(in[15], in[12]); +} + +static INLINE void highbd_idct16_4col_stage6(const __m128i *const in, + __m128i *const out) { + out[0] = _mm_add_epi32(in[0], in[7]); + out[1] = _mm_add_epi32(in[1], in[6]); + out[2] = _mm_add_epi32(in[2], in[5]); + out[3] = _mm_add_epi32(in[3], in[4]); + out[4] = _mm_sub_epi32(in[3], in[4]); + out[5] = _mm_sub_epi32(in[2], in[5]); + out[6] = _mm_sub_epi32(in[1], in[6]); + out[7] = _mm_sub_epi32(in[0], in[7]); + out[8] = in[8]; + out[9] = in[9]; + highbd_butterfly_cospi16_sse2(in[13], in[10], &out[13], &out[10]); + highbd_butterfly_cospi16_sse2(in[12], in[11], &out[12], &out[11]); + out[14] = in[14]; + out[15] = in[15]; +} + +static INLINE void highbd_idct16_4col(__m128i *const io /*io[16]*/) { + __m128i step1[16], step2[16]; + + // stage 2 + highbd_butterfly_sse2(io[1], io[15], cospi_30_64, cospi_2_64, &step2[8], + &step2[15]); + highbd_butterfly_sse2(io[9], io[7], cospi_14_64, cospi_18_64, &step2[9], + &step2[14]); + highbd_butterfly_sse2(io[5], io[11], cospi_22_64, cospi_10_64, &step2[10], + &step2[13]); + highbd_butterfly_sse2(io[13], io[3], cospi_6_64, cospi_26_64, &step2[11], + &step2[12]); + + // stage 3 + highbd_butterfly_sse2(io[2], io[14], cospi_28_64, cospi_4_64, &step1[4], + &step1[7]); + highbd_butterfly_sse2(io[10], io[6], cospi_12_64, cospi_20_64, &step1[5], + &step1[6]); + step1[8] = _mm_add_epi32(step2[8], step2[9]); + step1[9] = _mm_sub_epi32(step2[8], step2[9]); + step1[10] = _mm_sub_epi32(step2[10], step2[11]); // step1[10] = -step1[10] + step1[11] = _mm_add_epi32(step2[10], step2[11]); + step1[12] = _mm_add_epi32(step2[13], step2[12]); + step1[13] = _mm_sub_epi32(step2[13], step2[12]); // step1[13] = -step1[13] + step1[14] = _mm_sub_epi32(step2[15], step2[14]); + step1[15] = _mm_add_epi32(step2[15], step2[14]); + + // stage 4 + highbd_butterfly_cospi16_sse2(io[0], io[8], &step2[0], &step2[1]); + highbd_butterfly_sse2(io[4], io[12], cospi_24_64, cospi_8_64, &step2[2], + &step2[3]); + highbd_butterfly_sse2(step1[14], step1[9], cospi_24_64, cospi_8_64, &step2[9], + &step2[14]); + highbd_butterfly_sse2(step1[10], step1[13], cospi_8_64, cospi_24_64, + &step2[13], &step2[10]); + step2[5] = _mm_sub_epi32(step1[4], step1[5]); + step1[4] = _mm_add_epi32(step1[4], step1[5]); + step2[6] = _mm_sub_epi32(step1[7], step1[6]); + step1[7] = _mm_add_epi32(step1[7], step1[6]); + step2[8] = step1[8]; + step2[11] = step1[11]; + step2[12] = step1[12]; + step2[15] = step1[15]; + + highbd_idct16_4col_stage5(step2, step1); + highbd_idct16_4col_stage6(step1, step2); + highbd_idct16_4col_stage7(step2, io); +} + +static INLINE void highbd_idct16x16_38_4col(__m128i *const io /*io[16]*/) { + __m128i step1[16], step2[16]; + __m128i temp1[2], sign[2]; + + // stage 2 + highbd_partial_butterfly_sse2(io[1], cospi_30_64, cospi_2_64, &step2[8], + &step2[15]); + highbd_partial_butterfly_neg_sse2(io[7], cospi_14_64, cospi_18_64, &step2[9], + &step2[14]); + highbd_partial_butterfly_sse2(io[5], cospi_22_64, cospi_10_64, &step2[10], + &step2[13]); + highbd_partial_butterfly_neg_sse2(io[3], cospi_6_64, cospi_26_64, &step2[11], + &step2[12]); + + // stage 3 + highbd_partial_butterfly_sse2(io[2], cospi_28_64, cospi_4_64, &step1[4], + &step1[7]); + highbd_partial_butterfly_neg_sse2(io[6], cospi_12_64, cospi_20_64, &step1[5], + &step1[6]); + step1[8] = _mm_add_epi32(step2[8], step2[9]); + step1[9] = _mm_sub_epi32(step2[8], step2[9]); + step1[10] = _mm_sub_epi32(step2[10], step2[11]); // step1[10] = -step1[10] + step1[11] = _mm_add_epi32(step2[10], step2[11]); + step1[12] = _mm_add_epi32(step2[13], step2[12]); + step1[13] = _mm_sub_epi32(step2[13], step2[12]); // step1[13] = -step1[13] + step1[14] = _mm_sub_epi32(step2[15], step2[14]); + step1[15] = _mm_add_epi32(step2[15], step2[14]); + + // stage 4 + abs_extend_64bit_sse2(io[0], temp1, sign); + step2[0] = multiplication_round_shift_sse2(temp1, sign, cospi_16_64); + step2[1] = step2[0]; + highbd_partial_butterfly_sse2(io[4], cospi_24_64, cospi_8_64, &step2[2], + &step2[3]); + highbd_butterfly_sse2(step1[14], step1[9], cospi_24_64, cospi_8_64, &step2[9], + &step2[14]); + highbd_butterfly_sse2(step1[10], step1[13], cospi_8_64, cospi_24_64, + &step2[13], &step2[10]); + step2[5] = _mm_sub_epi32(step1[4], step1[5]); + step1[4] = _mm_add_epi32(step1[4], step1[5]); + step2[6] = _mm_sub_epi32(step1[7], step1[6]); + step1[7] = _mm_add_epi32(step1[7], step1[6]); + step2[8] = step1[8]; + step2[11] = step1[11]; + step2[12] = step1[12]; + step2[15] = step1[15]; + + highbd_idct16_4col_stage5(step2, step1); + highbd_idct16_4col_stage6(step1, step2); + highbd_idct16_4col_stage7(step2, io); +} + +static INLINE void highbd_idct16x16_10_4col(__m128i *const io /*io[16]*/) { + __m128i step1[16], step2[16]; + __m128i temp[2], sign[2]; + + // stage 2 + highbd_partial_butterfly_sse2(io[1], cospi_30_64, cospi_2_64, &step2[8], + &step2[15]); + highbd_partial_butterfly_neg_sse2(io[3], cospi_6_64, cospi_26_64, &step2[11], + &step2[12]); + + // stage 3 + highbd_partial_butterfly_sse2(io[2], cospi_28_64, cospi_4_64, &step1[4], + &step1[7]); + step1[8] = step2[8]; + step1[9] = step2[8]; + step1[10] = + _mm_sub_epi32(_mm_setzero_si128(), step2[11]); // step1[10] = -step1[10] + step1[11] = step2[11]; + step1[12] = step2[12]; + step1[13] = + _mm_sub_epi32(_mm_setzero_si128(), step2[12]); // step1[13] = -step1[13] + step1[14] = step2[15]; + step1[15] = step2[15]; + + // stage 4 + abs_extend_64bit_sse2(io[0], temp, sign); + step2[0] = multiplication_round_shift_sse2(temp, sign, cospi_16_64); + step2[1] = step2[0]; + step2[2] = _mm_setzero_si128(); + step2[3] = _mm_setzero_si128(); + highbd_butterfly_sse2(step1[14], step1[9], cospi_24_64, cospi_8_64, &step2[9], + &step2[14]); + highbd_butterfly_sse2(step1[10], step1[13], cospi_8_64, cospi_24_64, + &step2[13], &step2[10]); + step2[5] = step1[4]; + step2[6] = step1[7]; + step2[8] = step1[8]; + step2[11] = step1[11]; + step2[12] = step1[12]; + step2[15] = step1[15]; + + highbd_idct16_4col_stage5(step2, step1); + highbd_idct16_4col_stage6(step1, step2); + highbd_idct16_4col_stage7(step2, io); +} + +void vpx_highbd_idct16x16_256_add_sse2(const tran_low_t *input, uint16_t *dest, + int stride, int bd) { + int i; + __m128i out[16], *in; + + if (bd == 8) { + __m128i l[16], r[16]; + + in = l; + for (i = 0; i < 2; i++) { + highbd_load_pack_transpose_32bit_8x8(&input[0], 16, &in[0]); + highbd_load_pack_transpose_32bit_8x8(&input[8], 16, &in[8]); + idct16_8col(in, in); + in = r; + input += 128; + } + + for (i = 0; i < 16; i += 8) { + int j; + transpose_16bit_8x8(l + i, out); + transpose_16bit_8x8(r + i, out + 8); + idct16_8col(out, out); + + for (j = 0; j < 16; ++j) { + highbd_write_buffer_8(dest + j * stride, out[j], bd); + } + dest += 8; + } + } else { + __m128i all[4][16]; + + for (i = 0; i < 4; i++) { + in = all[i]; + highbd_load_transpose_32bit_8x4(&input[0], 16, &in[0]); + highbd_load_transpose_32bit_8x4(&input[8], 16, &in[8]); + highbd_idct16_4col(in); + input += 4 * 16; + } + + for (i = 0; i < 16; i += 4) { + int j; + transpose_32bit_4x4(all[0] + i, out + 0); + transpose_32bit_4x4(all[1] + i, out + 4); + transpose_32bit_4x4(all[2] + i, out + 8); + transpose_32bit_4x4(all[3] + i, out + 12); + highbd_idct16_4col(out); + + for (j = 0; j < 16; ++j) { + highbd_write_buffer_4(dest + j * stride, out[j], bd); + } + dest += 4; + } + } +} + +void vpx_highbd_idct16x16_38_add_sse2(const tran_low_t *input, uint16_t *dest, + int stride, int bd) { + int i; + __m128i out[16]; + + if (bd == 8) { + __m128i in[16], temp[16]; + + highbd_load_pack_transpose_32bit_8x8(input, 16, in); + for (i = 8; i < 16; i++) { + in[i] = _mm_setzero_si128(); + } + idct16_8col(in, temp); + + for (i = 0; i < 16; i += 8) { + int j; + transpose_16bit_8x8(temp + i, in); + idct16_8col(in, out); + + for (j = 0; j < 16; ++j) { + highbd_write_buffer_8(dest + j * stride, out[j], bd); + } + dest += 8; + } + } else { + __m128i all[2][16], *in; + + for (i = 0; i < 2; i++) { + in = all[i]; + highbd_load_transpose_32bit_8x4(input, 16, in); + highbd_idct16x16_38_4col(in); + input += 4 * 16; + } + + for (i = 0; i < 16; i += 4) { + int j; + transpose_32bit_4x4(all[0] + i, out + 0); + transpose_32bit_4x4(all[1] + i, out + 4); + highbd_idct16x16_38_4col(out); + + for (j = 0; j < 16; ++j) { + highbd_write_buffer_4(dest + j * stride, out[j], bd); + } + dest += 4; + } + } +} + +void vpx_highbd_idct16x16_10_add_sse2(const tran_low_t *input, uint16_t *dest, + int stride, int bd) { + int i; + __m128i out[16]; + + if (bd == 8) { + __m128i in[16], l[16]; + + in[0] = load_pack_8_32bit(input + 0 * 16); + in[1] = load_pack_8_32bit(input + 1 * 16); + in[2] = load_pack_8_32bit(input + 2 * 16); + in[3] = load_pack_8_32bit(input + 3 * 16); + + idct16x16_10_pass1(in, l); + + for (i = 0; i < 16; i += 8) { + int j; + idct16x16_10_pass2(l + i, in); + + for (j = 0; j < 16; ++j) { + highbd_write_buffer_8(dest + j * stride, in[j], bd); + } + dest += 8; + } + } else { + __m128i all[2][16], *in; + + for (i = 0; i < 2; i++) { + in = all[i]; + highbd_load_transpose_32bit_4x4(input, 16, in); + highbd_idct16x16_10_4col(in); + input += 4 * 16; + } + + for (i = 0; i < 16; i += 4) { + int j; + transpose_32bit_4x4(&all[0][i], out); + highbd_idct16x16_10_4col(out); + + for (j = 0; j < 16; ++j) { + highbd_write_buffer_4(dest + j * stride, out[j], bd); + } + dest += 4; + } + } +} + +void vpx_highbd_idct16x16_1_add_sse2(const tran_low_t *input, uint16_t *dest, + int stride, int bd) { + highbd_idct_1_add_kernel(input, dest, stride, bd, 16); +} diff --git a/vpx_dsp/x86/highbd_idct16x16_add_sse4.c b/vpx_dsp/x86/highbd_idct16x16_add_sse4.c new file mode 100644 index 0000000..de097c6 --- /dev/null +++ b/vpx_dsp/x86/highbd_idct16x16_add_sse4.c @@ -0,0 +1,349 @@ +/* + * Copyright (c) 2017 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include // SSE4.1 + +#include "./vpx_dsp_rtcd.h" +#include "vpx_dsp/x86/highbd_inv_txfm_sse2.h" +#include "vpx_dsp/x86/highbd_inv_txfm_sse4.h" +#include "vpx_dsp/x86/inv_txfm_sse2.h" +#include "vpx_dsp/x86/transpose_sse2.h" +#include "vpx_dsp/x86/txfm_common_sse2.h" + +static INLINE void highbd_idct16_4col_stage5(const __m128i *const in, + __m128i *const out) { + // stage 5 + out[0] = _mm_add_epi32(in[0], in[3]); + out[1] = _mm_add_epi32(in[1], in[2]); + out[2] = _mm_sub_epi32(in[1], in[2]); + out[3] = _mm_sub_epi32(in[0], in[3]); + highbd_butterfly_cospi16_sse4_1(in[6], in[5], &out[6], &out[5]); + out[8] = _mm_add_epi32(in[8], in[11]); + out[9] = _mm_add_epi32(in[9], in[10]); + out[10] = _mm_sub_epi32(in[9], in[10]); + out[11] = _mm_sub_epi32(in[8], in[11]); + out[12] = _mm_sub_epi32(in[15], in[12]); + out[13] = _mm_sub_epi32(in[14], in[13]); + out[14] = _mm_add_epi32(in[14], in[13]); + out[15] = _mm_add_epi32(in[15], in[12]); +} + +static INLINE void highbd_idct16_4col_stage6(const __m128i *const in, + __m128i *const out) { + out[0] = _mm_add_epi32(in[0], in[7]); + out[1] = _mm_add_epi32(in[1], in[6]); + out[2] = _mm_add_epi32(in[2], in[5]); + out[3] = _mm_add_epi32(in[3], in[4]); + out[4] = _mm_sub_epi32(in[3], in[4]); + out[5] = _mm_sub_epi32(in[2], in[5]); + out[6] = _mm_sub_epi32(in[1], in[6]); + out[7] = _mm_sub_epi32(in[0], in[7]); + out[8] = in[8]; + out[9] = in[9]; + highbd_butterfly_cospi16_sse4_1(in[13], in[10], &out[13], &out[10]); + highbd_butterfly_cospi16_sse4_1(in[12], in[11], &out[12], &out[11]); + out[14] = in[14]; + out[15] = in[15]; +} + +static INLINE void highbd_idct16_4col(__m128i *const io /*io[16]*/) { + __m128i step1[16], step2[16]; + + // stage 2 + highbd_butterfly_sse4_1(io[1], io[15], cospi_30_64, cospi_2_64, &step2[8], + &step2[15]); + highbd_butterfly_sse4_1(io[9], io[7], cospi_14_64, cospi_18_64, &step2[9], + &step2[14]); + highbd_butterfly_sse4_1(io[5], io[11], cospi_22_64, cospi_10_64, &step2[10], + &step2[13]); + highbd_butterfly_sse4_1(io[13], io[3], cospi_6_64, cospi_26_64, &step2[11], + &step2[12]); + + // stage 3 + highbd_butterfly_sse4_1(io[2], io[14], cospi_28_64, cospi_4_64, &step1[4], + &step1[7]); + highbd_butterfly_sse4_1(io[10], io[6], cospi_12_64, cospi_20_64, &step1[5], + &step1[6]); + step1[8] = _mm_add_epi32(step2[8], step2[9]); + step1[9] = _mm_sub_epi32(step2[8], step2[9]); + step1[10] = _mm_sub_epi32(step2[11], step2[10]); + step1[11] = _mm_add_epi32(step2[11], step2[10]); + step1[12] = _mm_add_epi32(step2[12], step2[13]); + step1[13] = _mm_sub_epi32(step2[12], step2[13]); + step1[14] = _mm_sub_epi32(step2[15], step2[14]); + step1[15] = _mm_add_epi32(step2[15], step2[14]); + + // stage 4 + highbd_butterfly_cospi16_sse4_1(io[0], io[8], &step2[0], &step2[1]); + highbd_butterfly_sse4_1(io[4], io[12], cospi_24_64, cospi_8_64, &step2[2], + &step2[3]); + highbd_butterfly_sse4_1(step1[14], step1[9], cospi_24_64, cospi_8_64, + &step2[9], &step2[14]); + highbd_butterfly_sse4_1(step1[10], step1[13], -cospi_8_64, -cospi_24_64, + &step2[13], &step2[10]); + step2[5] = _mm_sub_epi32(step1[4], step1[5]); + step1[4] = _mm_add_epi32(step1[4], step1[5]); + step2[6] = _mm_sub_epi32(step1[7], step1[6]); + step1[7] = _mm_add_epi32(step1[7], step1[6]); + step2[8] = step1[8]; + step2[11] = step1[11]; + step2[12] = step1[12]; + step2[15] = step1[15]; + + highbd_idct16_4col_stage5(step2, step1); + highbd_idct16_4col_stage6(step1, step2); + highbd_idct16_4col_stage7(step2, io); +} + +static INLINE void highbd_idct16x16_38_4col(__m128i *const io /*io[16]*/) { + __m128i step1[16], step2[16]; + __m128i temp1[2]; + + // stage 2 + highbd_partial_butterfly_sse4_1(io[1], cospi_30_64, cospi_2_64, &step2[8], + &step2[15]); + highbd_partial_butterfly_sse4_1(io[7], -cospi_18_64, cospi_14_64, &step2[9], + &step2[14]); + highbd_partial_butterfly_sse4_1(io[5], cospi_22_64, cospi_10_64, &step2[10], + &step2[13]); + highbd_partial_butterfly_sse4_1(io[3], -cospi_26_64, cospi_6_64, &step2[11], + &step2[12]); + + // stage 3 + highbd_partial_butterfly_sse4_1(io[2], cospi_28_64, cospi_4_64, &step1[4], + &step1[7]); + highbd_partial_butterfly_sse4_1(io[6], -cospi_20_64, cospi_12_64, &step1[5], + &step1[6]); + step1[8] = _mm_add_epi32(step2[8], step2[9]); + step1[9] = _mm_sub_epi32(step2[8], step2[9]); + step1[10] = _mm_sub_epi32(step2[11], step2[10]); + step1[11] = _mm_add_epi32(step2[11], step2[10]); + step1[12] = _mm_add_epi32(step2[12], step2[13]); + step1[13] = _mm_sub_epi32(step2[12], step2[13]); + step1[14] = _mm_sub_epi32(step2[15], step2[14]); + step1[15] = _mm_add_epi32(step2[15], step2[14]); + + // stage 4 + extend_64bit(io[0], temp1); + step2[0] = multiplication_round_shift_sse4_1(temp1, cospi_16_64); + step2[1] = step2[0]; + highbd_partial_butterfly_sse4_1(io[4], cospi_24_64, cospi_8_64, &step2[2], + &step2[3]); + highbd_butterfly_sse4_1(step1[14], step1[9], cospi_24_64, cospi_8_64, + &step2[9], &step2[14]); + highbd_butterfly_sse4_1(step1[10], step1[13], -cospi_8_64, -cospi_24_64, + &step2[13], &step2[10]); + step2[5] = _mm_sub_epi32(step1[4], step1[5]); + step1[4] = _mm_add_epi32(step1[4], step1[5]); + step2[6] = _mm_sub_epi32(step1[7], step1[6]); + step1[7] = _mm_add_epi32(step1[7], step1[6]); + step2[8] = step1[8]; + step2[11] = step1[11]; + step2[12] = step1[12]; + step2[15] = step1[15]; + + highbd_idct16_4col_stage5(step2, step1); + highbd_idct16_4col_stage6(step1, step2); + highbd_idct16_4col_stage7(step2, io); +} + +static INLINE void highbd_idct16x16_10_4col(__m128i *const io /*io[16]*/) { + __m128i step1[16], step2[16]; + __m128i temp[2]; + + // stage 2 + highbd_partial_butterfly_sse4_1(io[1], cospi_30_64, cospi_2_64, &step2[8], + &step2[15]); + highbd_partial_butterfly_sse4_1(io[3], -cospi_26_64, cospi_6_64, &step2[11], + &step2[12]); + + // stage 3 + highbd_partial_butterfly_sse4_1(io[2], cospi_28_64, cospi_4_64, &step1[4], + &step1[7]); + step1[8] = step2[8]; + step1[9] = step2[8]; + step1[10] = step2[11]; + step1[11] = step2[11]; + step1[12] = step2[12]; + step1[13] = step2[12]; + step1[14] = step2[15]; + step1[15] = step2[15]; + + // stage 4 + extend_64bit(io[0], temp); + step2[0] = multiplication_round_shift_sse4_1(temp, cospi_16_64); + step2[1] = step2[0]; + step2[2] = _mm_setzero_si128(); + step2[3] = _mm_setzero_si128(); + highbd_butterfly_sse4_1(step1[14], step1[9], cospi_24_64, cospi_8_64, + &step2[9], &step2[14]); + highbd_butterfly_sse4_1(step1[10], step1[13], -cospi_8_64, -cospi_24_64, + &step2[13], &step2[10]); + step2[5] = step1[4]; + step2[6] = step1[7]; + step2[8] = step1[8]; + step2[11] = step1[11]; + step2[12] = step1[12]; + step2[15] = step1[15]; + + highbd_idct16_4col_stage5(step2, step1); + highbd_idct16_4col_stage6(step1, step2); + highbd_idct16_4col_stage7(step2, io); +} + +void vpx_highbd_idct16x16_256_add_sse4_1(const tran_low_t *input, + uint16_t *dest, int stride, int bd) { + int i; + __m128i out[16], *in; + + if (bd == 8) { + __m128i l[16], r[16]; + + in = l; + for (i = 0; i < 2; i++) { + highbd_load_pack_transpose_32bit_8x8(&input[0], 16, &in[0]); + highbd_load_pack_transpose_32bit_8x8(&input[8], 16, &in[8]); + idct16_8col(in, in); + in = r; + input += 128; + } + + for (i = 0; i < 16; i += 8) { + int j; + transpose_16bit_8x8(l + i, out); + transpose_16bit_8x8(r + i, out + 8); + idct16_8col(out, out); + + for (j = 0; j < 16; ++j) { + highbd_write_buffer_8(dest + j * stride, out[j], bd); + } + dest += 8; + } + } else { + __m128i all[4][16]; + + for (i = 0; i < 4; i++) { + in = all[i]; + highbd_load_transpose_32bit_8x4(&input[0], 16, &in[0]); + highbd_load_transpose_32bit_8x4(&input[8], 16, &in[8]); + highbd_idct16_4col(in); + input += 4 * 16; + } + + for (i = 0; i < 16; i += 4) { + int j; + transpose_32bit_4x4(all[0] + i, out + 0); + transpose_32bit_4x4(all[1] + i, out + 4); + transpose_32bit_4x4(all[2] + i, out + 8); + transpose_32bit_4x4(all[3] + i, out + 12); + highbd_idct16_4col(out); + + for (j = 0; j < 16; ++j) { + highbd_write_buffer_4(dest + j * stride, out[j], bd); + } + dest += 4; + } + } +} + +void vpx_highbd_idct16x16_38_add_sse4_1(const tran_low_t *input, uint16_t *dest, + int stride, int bd) { + int i; + __m128i out[16]; + + if (bd == 8) { + __m128i in[16], temp[16]; + + highbd_load_pack_transpose_32bit_8x8(&input[0], 16, &in[0]); + for (i = 8; i < 16; i++) { + in[i] = _mm_setzero_si128(); + } + idct16_8col(in, temp); + + for (i = 0; i < 16; i += 8) { + int j; + transpose_16bit_8x8(temp + i, in); + idct16_8col(in, out); + + for (j = 0; j < 16; ++j) { + highbd_write_buffer_8(dest + j * stride, out[j], bd); + } + dest += 8; + } + } else { + __m128i all[2][16], *in; + + for (i = 0; i < 2; i++) { + in = all[i]; + highbd_load_transpose_32bit_8x4(input, 16, in); + highbd_idct16x16_38_4col(in); + input += 4 * 16; + } + + for (i = 0; i < 16; i += 4) { + int j; + transpose_32bit_4x4(all[0] + i, out + 0); + transpose_32bit_4x4(all[1] + i, out + 4); + highbd_idct16x16_38_4col(out); + + for (j = 0; j < 16; ++j) { + highbd_write_buffer_4(dest + j * stride, out[j], bd); + } + dest += 4; + } + } +} + +void vpx_highbd_idct16x16_10_add_sse4_1(const tran_low_t *input, uint16_t *dest, + int stride, int bd) { + int i; + __m128i out[16]; + + if (bd == 8) { + __m128i in[16], l[16]; + + in[0] = load_pack_8_32bit(input + 0 * 16); + in[1] = load_pack_8_32bit(input + 1 * 16); + in[2] = load_pack_8_32bit(input + 2 * 16); + in[3] = load_pack_8_32bit(input + 3 * 16); + + idct16x16_10_pass1(in, l); + + for (i = 0; i < 16; i += 8) { + int j; + idct16x16_10_pass2(l + i, in); + + for (j = 0; j < 16; ++j) { + highbd_write_buffer_8(dest + j * stride, in[j], bd); + } + dest += 8; + } + } else { + __m128i all[2][16], *in; + + for (i = 0; i < 2; i++) { + in = all[i]; + highbd_load_transpose_32bit_4x4(input, 16, in); + highbd_idct16x16_10_4col(in); + input += 4 * 16; + } + + for (i = 0; i < 16; i += 4) { + int j; + transpose_32bit_4x4(&all[0][i], out); + highbd_idct16x16_10_4col(out); + + for (j = 0; j < 16; ++j) { + highbd_write_buffer_4(dest + j * stride, out[j], bd); + } + dest += 4; + } + } +} diff --git a/vpx_dsp/x86/highbd_idct32x32_add_sse2.c b/vpx_dsp/x86/highbd_idct32x32_add_sse2.c new file mode 100644 index 0000000..c710e89 --- /dev/null +++ b/vpx_dsp/x86/highbd_idct32x32_add_sse2.c @@ -0,0 +1,782 @@ +/* + * Copyright (c) 2015 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "./vpx_dsp_rtcd.h" +#include "vpx_dsp/x86/highbd_inv_txfm_sse2.h" +#include "vpx_dsp/x86/inv_txfm_sse2.h" +#include "vpx_dsp/x86/transpose_sse2.h" +#include "vpx_dsp/x86/txfm_common_sse2.h" + +static INLINE void highbd_idct32_4x32_quarter_2_stage_4_to_6( + __m128i *const step1 /*step1[16]*/, __m128i *const out /*out[16]*/) { + __m128i step2[32]; + + // stage 4 + step2[8] = step1[8]; + step2[15] = step1[15]; + highbd_butterfly_sse2(step1[14], step1[9], cospi_24_64, cospi_8_64, &step2[9], + &step2[14]); + highbd_butterfly_sse2(step1[10], step1[13], cospi_8_64, cospi_24_64, + &step2[13], &step2[10]); + step2[11] = step1[11]; + step2[12] = step1[12]; + + // stage 5 + step1[8] = _mm_add_epi32(step2[8], step2[11]); + step1[9] = _mm_add_epi32(step2[9], step2[10]); + step1[10] = _mm_sub_epi32(step2[9], step2[10]); + step1[11] = _mm_sub_epi32(step2[8], step2[11]); + step1[12] = _mm_sub_epi32(step2[15], step2[12]); + step1[13] = _mm_sub_epi32(step2[14], step2[13]); + step1[14] = _mm_add_epi32(step2[14], step2[13]); + step1[15] = _mm_add_epi32(step2[15], step2[12]); + + // stage 6 + out[8] = step1[8]; + out[9] = step1[9]; + highbd_butterfly_sse2(step1[13], step1[10], cospi_16_64, cospi_16_64, + &out[10], &out[13]); + highbd_butterfly_sse2(step1[12], step1[11], cospi_16_64, cospi_16_64, + &out[11], &out[12]); + out[14] = step1[14]; + out[15] = step1[15]; +} + +static INLINE void highbd_idct32_4x32_quarter_3_4_stage_4_to_7( + __m128i *const step1 /*step1[32]*/, __m128i *const out /*out[32]*/) { + __m128i step2[32]; + + // stage 4 + step2[16] = _mm_add_epi32(step1[16], step1[19]); + step2[17] = _mm_add_epi32(step1[17], step1[18]); + step2[18] = _mm_sub_epi32(step1[17], step1[18]); + step2[19] = _mm_sub_epi32(step1[16], step1[19]); + step2[20] = _mm_sub_epi32(step1[20], step1[23]); // step2[20] = -step2[20] + step2[21] = _mm_sub_epi32(step1[21], step1[22]); // step2[21] = -step2[21] + step2[22] = _mm_add_epi32(step1[21], step1[22]); + step2[23] = _mm_add_epi32(step1[20], step1[23]); + + step2[24] = _mm_add_epi32(step1[27], step1[24]); + step2[25] = _mm_add_epi32(step1[26], step1[25]); + step2[26] = _mm_sub_epi32(step1[26], step1[25]); // step2[26] = -step2[26] + step2[27] = _mm_sub_epi32(step1[27], step1[24]); // step2[27] = -step2[27] + step2[28] = _mm_sub_epi32(step1[31], step1[28]); + step2[29] = _mm_sub_epi32(step1[30], step1[29]); + step2[30] = _mm_add_epi32(step1[29], step1[30]); + step2[31] = _mm_add_epi32(step1[28], step1[31]); + + // stage 5 + step1[16] = step2[16]; + step1[17] = step2[17]; + highbd_butterfly_sse2(step2[29], step2[18], cospi_24_64, cospi_8_64, + &step1[18], &step1[29]); + highbd_butterfly_sse2(step2[28], step2[19], cospi_24_64, cospi_8_64, + &step1[19], &step1[28]); + highbd_butterfly_sse2(step2[20], step2[27], cospi_8_64, cospi_24_64, + &step1[27], &step1[20]); + highbd_butterfly_sse2(step2[21], step2[26], cospi_8_64, cospi_24_64, + &step1[26], &step1[21]); + step1[22] = step2[22]; + step1[23] = step2[23]; + step1[24] = step2[24]; + step1[25] = step2[25]; + step1[30] = step2[30]; + step1[31] = step2[31]; + + // stage 6 + step2[16] = _mm_add_epi32(step1[16], step1[23]); + step2[17] = _mm_add_epi32(step1[17], step1[22]); + step2[18] = _mm_add_epi32(step1[18], step1[21]); + step2[19] = _mm_add_epi32(step1[19], step1[20]); + step2[20] = _mm_sub_epi32(step1[19], step1[20]); + step2[21] = _mm_sub_epi32(step1[18], step1[21]); + step2[22] = _mm_sub_epi32(step1[17], step1[22]); + step2[23] = _mm_sub_epi32(step1[16], step1[23]); + + step2[24] = _mm_sub_epi32(step1[31], step1[24]); + step2[25] = _mm_sub_epi32(step1[30], step1[25]); + step2[26] = _mm_sub_epi32(step1[29], step1[26]); + step2[27] = _mm_sub_epi32(step1[28], step1[27]); + step2[28] = _mm_add_epi32(step1[27], step1[28]); + step2[29] = _mm_add_epi32(step1[26], step1[29]); + step2[30] = _mm_add_epi32(step1[25], step1[30]); + step2[31] = _mm_add_epi32(step1[24], step1[31]); + + // stage 7 + out[16] = step2[16]; + out[17] = step2[17]; + out[18] = step2[18]; + out[19] = step2[19]; + highbd_butterfly_sse2(step2[27], step2[20], cospi_16_64, cospi_16_64, + &out[20], &out[27]); + highbd_butterfly_sse2(step2[26], step2[21], cospi_16_64, cospi_16_64, + &out[21], &out[26]); + highbd_butterfly_sse2(step2[25], step2[22], cospi_16_64, cospi_16_64, + &out[22], &out[25]); + highbd_butterfly_sse2(step2[24], step2[23], cospi_16_64, cospi_16_64, + &out[23], &out[24]); + out[28] = step2[28]; + out[29] = step2[29]; + out[30] = step2[30]; + out[31] = step2[31]; +} + +// Group the coefficient calculation into smaller functions to prevent stack +// spillover in 32x32 idct optimizations: +// quarter_1: 0-7 +// quarter_2: 8-15 +// quarter_3_4: 16-23, 24-31 + +// For each 4x32 block __m128i in[32], +// Input with index, 0, 4, 8, 12, 16, 20, 24, 28 +// output pixels: 0-7 in __m128i out[32] +static INLINE void highbd_idct32_1024_4x32_quarter_1( + const __m128i *const in /*in[32]*/, __m128i *const out /*out[8]*/) { + __m128i step1[8], step2[8]; + + // stage 3 + highbd_butterfly_sse2(in[4], in[28], cospi_28_64, cospi_4_64, &step1[4], + &step1[7]); + highbd_butterfly_sse2(in[20], in[12], cospi_12_64, cospi_20_64, &step1[5], + &step1[6]); + + // stage 4 + highbd_butterfly_sse2(in[0], in[16], cospi_16_64, cospi_16_64, &step2[1], + &step2[0]); + highbd_butterfly_sse2(in[8], in[24], cospi_24_64, cospi_8_64, &step2[2], + &step2[3]); + step2[4] = _mm_add_epi32(step1[4], step1[5]); + step2[5] = _mm_sub_epi32(step1[4], step1[5]); + step2[6] = _mm_sub_epi32(step1[7], step1[6]); + step2[7] = _mm_add_epi32(step1[7], step1[6]); + + // stage 5 + step1[0] = _mm_add_epi32(step2[0], step2[3]); + step1[1] = _mm_add_epi32(step2[1], step2[2]); + step1[2] = _mm_sub_epi32(step2[1], step2[2]); + step1[3] = _mm_sub_epi32(step2[0], step2[3]); + step1[4] = step2[4]; + highbd_butterfly_sse2(step2[6], step2[5], cospi_16_64, cospi_16_64, &step1[5], + &step1[6]); + step1[7] = step2[7]; + + // stage 6 + out[0] = _mm_add_epi32(step1[0], step1[7]); + out[1] = _mm_add_epi32(step1[1], step1[6]); + out[2] = _mm_add_epi32(step1[2], step1[5]); + out[3] = _mm_add_epi32(step1[3], step1[4]); + out[4] = _mm_sub_epi32(step1[3], step1[4]); + out[5] = _mm_sub_epi32(step1[2], step1[5]); + out[6] = _mm_sub_epi32(step1[1], step1[6]); + out[7] = _mm_sub_epi32(step1[0], step1[7]); +} + +// For each 4x32 block __m128i in[32], +// Input with index, 2, 6, 10, 14, 18, 22, 26, 30 +// output pixels: 8-15 in __m128i out[32] +static INLINE void highbd_idct32_1024_4x32_quarter_2( + const __m128i *in /*in[32]*/, __m128i *out /*out[16]*/) { + __m128i step1[32], step2[32]; + + // stage 2 + highbd_butterfly_sse2(in[2], in[30], cospi_30_64, cospi_2_64, &step2[8], + &step2[15]); + highbd_butterfly_sse2(in[18], in[14], cospi_14_64, cospi_18_64, &step2[9], + &step2[14]); + highbd_butterfly_sse2(in[10], in[22], cospi_22_64, cospi_10_64, &step2[10], + &step2[13]); + highbd_butterfly_sse2(in[26], in[6], cospi_6_64, cospi_26_64, &step2[11], + &step2[12]); + + // stage 3 + step1[8] = _mm_add_epi32(step2[8], step2[9]); + step1[9] = _mm_sub_epi32(step2[8], step2[9]); + step1[14] = _mm_sub_epi32(step2[15], step2[14]); + step1[15] = _mm_add_epi32(step2[15], step2[14]); + step1[10] = _mm_sub_epi32(step2[10], step2[11]); // step1[10] = -step1[10] + step1[11] = _mm_add_epi32(step2[10], step2[11]); + step1[12] = _mm_add_epi32(step2[13], step2[12]); + step1[13] = _mm_sub_epi32(step2[13], step2[12]); // step1[13] = -step1[13] + + highbd_idct32_4x32_quarter_2_stage_4_to_6(step1, out); +} + +static INLINE void highbd_idct32_1024_4x32_quarter_1_2( + const __m128i *const in /*in[32]*/, __m128i *const out /*out[32]*/) { + __m128i temp[16]; + highbd_idct32_1024_4x32_quarter_1(in, temp); + highbd_idct32_1024_4x32_quarter_2(in, temp); + // stage 7 + highbd_add_sub_butterfly(temp, out, 16); +} + +// For each 4x32 block __m128i in[32], +// Input with odd index, +// 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 +// output pixels: 16-23, 24-31 in __m128i out[32] +static INLINE void highbd_idct32_1024_4x32_quarter_3_4( + const __m128i *const in /*in[32]*/, __m128i *const out /*out[32]*/) { + __m128i step1[32], step2[32]; + + // stage 1 + highbd_butterfly_sse2(in[1], in[31], cospi_31_64, cospi_1_64, &step1[16], + &step1[31]); + highbd_butterfly_sse2(in[17], in[15], cospi_15_64, cospi_17_64, &step1[17], + &step1[30]); + highbd_butterfly_sse2(in[9], in[23], cospi_23_64, cospi_9_64, &step1[18], + &step1[29]); + highbd_butterfly_sse2(in[25], in[7], cospi_7_64, cospi_25_64, &step1[19], + &step1[28]); + + highbd_butterfly_sse2(in[5], in[27], cospi_27_64, cospi_5_64, &step1[20], + &step1[27]); + highbd_butterfly_sse2(in[21], in[11], cospi_11_64, cospi_21_64, &step1[21], + &step1[26]); + + highbd_butterfly_sse2(in[13], in[19], cospi_19_64, cospi_13_64, &step1[22], + &step1[25]); + highbd_butterfly_sse2(in[29], in[3], cospi_3_64, cospi_29_64, &step1[23], + &step1[24]); + + // stage 2 + step2[16] = _mm_add_epi32(step1[16], step1[17]); + step2[17] = _mm_sub_epi32(step1[16], step1[17]); + step2[18] = _mm_sub_epi32(step1[18], step1[19]); // step2[18] = -step2[18] + step2[19] = _mm_add_epi32(step1[18], step1[19]); + step2[20] = _mm_add_epi32(step1[20], step1[21]); + step2[21] = _mm_sub_epi32(step1[20], step1[21]); + step2[22] = _mm_sub_epi32(step1[22], step1[23]); // step2[22] = -step2[22] + step2[23] = _mm_add_epi32(step1[22], step1[23]); + + step2[24] = _mm_add_epi32(step1[25], step1[24]); + step2[25] = _mm_sub_epi32(step1[25], step1[24]); // step2[25] = -step2[25] + step2[26] = _mm_sub_epi32(step1[27], step1[26]); + step2[27] = _mm_add_epi32(step1[27], step1[26]); + step2[28] = _mm_add_epi32(step1[29], step1[28]); + step2[29] = _mm_sub_epi32(step1[29], step1[28]); // step2[29] = -step2[29] + step2[30] = _mm_sub_epi32(step1[31], step1[30]); + step2[31] = _mm_add_epi32(step1[31], step1[30]); + + // stage 3 + step1[16] = step2[16]; + step1[31] = step2[31]; + highbd_butterfly_sse2(step2[30], step2[17], cospi_28_64, cospi_4_64, + &step1[17], &step1[30]); + highbd_butterfly_sse2(step2[18], step2[29], cospi_4_64, cospi_28_64, + &step1[29], &step1[18]); + step1[19] = step2[19]; + step1[20] = step2[20]; + highbd_butterfly_sse2(step2[26], step2[21], cospi_12_64, cospi_20_64, + &step1[21], &step1[26]); + highbd_butterfly_sse2(step2[22], step2[25], cospi_20_64, cospi_12_64, + &step1[25], &step1[22]); + step1[23] = step2[23]; + step1[24] = step2[24]; + step1[27] = step2[27]; + step1[28] = step2[28]; + + highbd_idct32_4x32_quarter_3_4_stage_4_to_7(step1, out); +} + +static void highbd_idct32_1024_4x32(__m128i *const io /*io[32]*/) { + __m128i temp[32]; + + highbd_idct32_1024_4x32_quarter_1_2(io, temp); + highbd_idct32_1024_4x32_quarter_3_4(io, temp); + // final stage + highbd_add_sub_butterfly(temp, io, 32); +} + +void vpx_highbd_idct32x32_1024_add_sse2(const tran_low_t *input, uint16_t *dest, + int stride, int bd) { + int i, j; + + if (bd == 8) { + __m128i col[4][32], io[32]; + + // rows + for (i = 0; i < 4; i++) { + highbd_load_pack_transpose_32bit_8x8(&input[0], 32, &io[0]); + highbd_load_pack_transpose_32bit_8x8(&input[8], 32, &io[8]); + highbd_load_pack_transpose_32bit_8x8(&input[16], 32, &io[16]); + highbd_load_pack_transpose_32bit_8x8(&input[24], 32, &io[24]); + idct32_1024_8x32(io, col[i]); + input += 32 << 3; + } + + // columns + for (i = 0; i < 32; i += 8) { + // Transpose 32x8 block to 8x32 block + transpose_16bit_8x8(col[0] + i, io); + transpose_16bit_8x8(col[1] + i, io + 8); + transpose_16bit_8x8(col[2] + i, io + 16); + transpose_16bit_8x8(col[3] + i, io + 24); + idct32_1024_8x32(io, io); + for (j = 0; j < 32; ++j) { + highbd_write_buffer_8(dest + j * stride, io[j], bd); + } + dest += 8; + } + } else { + __m128i all[8][32], out[32], *in; + + for (i = 0; i < 8; i++) { + in = all[i]; + highbd_load_transpose_32bit_8x4(&input[0], 32, &in[0]); + highbd_load_transpose_32bit_8x4(&input[8], 32, &in[8]); + highbd_load_transpose_32bit_8x4(&input[16], 32, &in[16]); + highbd_load_transpose_32bit_8x4(&input[24], 32, &in[24]); + highbd_idct32_1024_4x32(in); + input += 4 * 32; + } + + for (i = 0; i < 32; i += 4) { + transpose_32bit_4x4(all[0] + i, out + 0); + transpose_32bit_4x4(all[1] + i, out + 4); + transpose_32bit_4x4(all[2] + i, out + 8); + transpose_32bit_4x4(all[3] + i, out + 12); + transpose_32bit_4x4(all[4] + i, out + 16); + transpose_32bit_4x4(all[5] + i, out + 20); + transpose_32bit_4x4(all[6] + i, out + 24); + transpose_32bit_4x4(all[7] + i, out + 28); + highbd_idct32_1024_4x32(out); + + for (j = 0; j < 32; ++j) { + highbd_write_buffer_4(dest + j * stride, out[j], bd); + } + dest += 4; + } + } +} + +// ----------------------------------------------------------------------------- + +// For each 4x32 block __m128i in[32], +// Input with index, 0, 4, 8, 12 +// output pixels: 0-7 in __m128i out[32] +static INLINE void highbd_idct32_135_4x32_quarter_1( + const __m128i *const in /*in[32]*/, __m128i *const out /*out[8]*/) { + __m128i step1[8], step2[8]; + + // stage 3 + highbd_partial_butterfly_sse2(in[4], cospi_28_64, cospi_4_64, &step1[4], + &step1[7]); + highbd_partial_butterfly_neg_sse2(in[12], cospi_12_64, cospi_20_64, &step1[5], + &step1[6]); + + // stage 4 + highbd_partial_butterfly_sse2(in[0], cospi_16_64, cospi_16_64, &step2[1], + &step2[0]); + highbd_partial_butterfly_sse2(in[8], cospi_24_64, cospi_8_64, &step2[2], + &step2[3]); + step2[4] = _mm_add_epi32(step1[4], step1[5]); + step2[5] = _mm_sub_epi32(step1[4], step1[5]); + step2[6] = _mm_sub_epi32(step1[7], step1[6]); + step2[7] = _mm_add_epi32(step1[7], step1[6]); + + // stage 5 + step1[0] = _mm_add_epi32(step2[0], step2[3]); + step1[1] = _mm_add_epi32(step2[1], step2[2]); + step1[2] = _mm_sub_epi32(step2[1], step2[2]); + step1[3] = _mm_sub_epi32(step2[0], step2[3]); + step1[4] = step2[4]; + highbd_butterfly_sse2(step2[6], step2[5], cospi_16_64, cospi_16_64, &step1[5], + &step1[6]); + step1[7] = step2[7]; + + // stage 6 + out[0] = _mm_add_epi32(step1[0], step1[7]); + out[1] = _mm_add_epi32(step1[1], step1[6]); + out[2] = _mm_add_epi32(step1[2], step1[5]); + out[3] = _mm_add_epi32(step1[3], step1[4]); + out[4] = _mm_sub_epi32(step1[3], step1[4]); + out[5] = _mm_sub_epi32(step1[2], step1[5]); + out[6] = _mm_sub_epi32(step1[1], step1[6]); + out[7] = _mm_sub_epi32(step1[0], step1[7]); +} + +// For each 4x32 block __m128i in[32], +// Input with index, 2, 6, 10, 14 +// output pixels: 8-15 in __m128i out[32] +static INLINE void highbd_idct32_135_4x32_quarter_2( + const __m128i *in /*in[32]*/, __m128i *out /*out[16]*/) { + __m128i step1[32], step2[32]; + + // stage 2 + highbd_partial_butterfly_sse2(in[2], cospi_30_64, cospi_2_64, &step2[8], + &step2[15]); + highbd_partial_butterfly_neg_sse2(in[14], cospi_14_64, cospi_18_64, &step2[9], + &step2[14]); + highbd_partial_butterfly_sse2(in[10], cospi_22_64, cospi_10_64, &step2[10], + &step2[13]); + highbd_partial_butterfly_neg_sse2(in[6], cospi_6_64, cospi_26_64, &step2[11], + &step2[12]); + + // stage 3 + step1[8] = _mm_add_epi32(step2[8], step2[9]); + step1[9] = _mm_sub_epi32(step2[8], step2[9]); + step1[14] = _mm_sub_epi32(step2[15], step2[14]); + step1[15] = _mm_add_epi32(step2[15], step2[14]); + step1[10] = _mm_sub_epi32(step2[10], step2[11]); // step1[10] = -step1[10] + step1[11] = _mm_add_epi32(step2[10], step2[11]); + step1[12] = _mm_add_epi32(step2[13], step2[12]); + step1[13] = _mm_sub_epi32(step2[13], step2[12]); // step1[13] = -step1[13] + + highbd_idct32_4x32_quarter_2_stage_4_to_6(step1, out); +} + +static INLINE void highbd_idct32_135_4x32_quarter_1_2( + const __m128i *const in /*in[32]*/, __m128i *const out /*out[32]*/) { + __m128i temp[16]; + highbd_idct32_135_4x32_quarter_1(in, temp); + highbd_idct32_135_4x32_quarter_2(in, temp); + // stage 7 + highbd_add_sub_butterfly(temp, out, 16); +} + +// For each 4x32 block __m128i in[32], +// Input with odd index, +// 1, 3, 5, 7, 9, 11, 13, 15 +// output pixels: 16-23, 24-31 in __m128i out[32] +static INLINE void highbd_idct32_135_4x32_quarter_3_4( + const __m128i *const in /*in[32]*/, __m128i *const out /*out[32]*/) { + __m128i step1[32], step2[32]; + + // stage 1 + highbd_partial_butterfly_sse2(in[1], cospi_31_64, cospi_1_64, &step1[16], + &step1[31]); + highbd_partial_butterfly_neg_sse2(in[15], cospi_15_64, cospi_17_64, + &step1[17], &step1[30]); + highbd_partial_butterfly_sse2(in[9], cospi_23_64, cospi_9_64, &step1[18], + &step1[29]); + highbd_partial_butterfly_neg_sse2(in[7], cospi_7_64, cospi_25_64, &step1[19], + &step1[28]); + + highbd_partial_butterfly_sse2(in[5], cospi_27_64, cospi_5_64, &step1[20], + &step1[27]); + highbd_partial_butterfly_neg_sse2(in[11], cospi_11_64, cospi_21_64, + &step1[21], &step1[26]); + + highbd_partial_butterfly_sse2(in[13], cospi_19_64, cospi_13_64, &step1[22], + &step1[25]); + highbd_partial_butterfly_neg_sse2(in[3], cospi_3_64, cospi_29_64, &step1[23], + &step1[24]); + + // stage 2 + step2[16] = _mm_add_epi32(step1[16], step1[17]); + step2[17] = _mm_sub_epi32(step1[16], step1[17]); + step2[18] = _mm_sub_epi32(step1[18], step1[19]); // step2[18] = -step2[18] + step2[19] = _mm_add_epi32(step1[18], step1[19]); + step2[20] = _mm_add_epi32(step1[20], step1[21]); + step2[21] = _mm_sub_epi32(step1[20], step1[21]); + step2[22] = _mm_sub_epi32(step1[22], step1[23]); // step2[22] = -step2[22] + step2[23] = _mm_add_epi32(step1[22], step1[23]); + + step2[24] = _mm_add_epi32(step1[25], step1[24]); + step2[25] = _mm_sub_epi32(step1[25], step1[24]); // step2[25] = -step2[25] + step2[26] = _mm_sub_epi32(step1[27], step1[26]); + step2[27] = _mm_add_epi32(step1[27], step1[26]); + step2[28] = _mm_add_epi32(step1[29], step1[28]); + step2[29] = _mm_sub_epi32(step1[29], step1[28]); // step2[29] = -step2[29] + step2[30] = _mm_sub_epi32(step1[31], step1[30]); + step2[31] = _mm_add_epi32(step1[31], step1[30]); + + // stage 3 + step1[16] = step2[16]; + step1[31] = step2[31]; + highbd_butterfly_sse2(step2[30], step2[17], cospi_28_64, cospi_4_64, + &step1[17], &step1[30]); + highbd_butterfly_sse2(step2[18], step2[29], cospi_4_64, cospi_28_64, + &step1[29], &step1[18]); + step1[19] = step2[19]; + step1[20] = step2[20]; + highbd_butterfly_sse2(step2[26], step2[21], cospi_12_64, cospi_20_64, + &step1[21], &step1[26]); + highbd_butterfly_sse2(step2[22], step2[25], cospi_20_64, cospi_12_64, + &step1[25], &step1[22]); + step1[23] = step2[23]; + step1[24] = step2[24]; + step1[27] = step2[27]; + step1[28] = step2[28]; + + highbd_idct32_4x32_quarter_3_4_stage_4_to_7(step1, out); +} + +static void highbd_idct32_135_4x32(__m128i *const io /*io[32]*/) { + __m128i temp[32]; + + highbd_idct32_135_4x32_quarter_1_2(io, temp); + highbd_idct32_135_4x32_quarter_3_4(io, temp); + // final stage + highbd_add_sub_butterfly(temp, io, 32); +} + +void vpx_highbd_idct32x32_135_add_sse2(const tran_low_t *input, uint16_t *dest, + int stride, int bd) { + int i, j; + + if (bd == 8) { + __m128i col[2][32], in[32], out[32]; + + for (i = 16; i < 32; i++) { + in[i] = _mm_setzero_si128(); + } + + // rows + for (i = 0; i < 2; i++) { + highbd_load_pack_transpose_32bit_8x8(&input[0], 32, &in[0]); + highbd_load_pack_transpose_32bit_8x8(&input[8], 32, &in[8]); + idct32_1024_8x32(in, col[i]); + input += 32 << 3; + } + + // columns + for (i = 0; i < 32; i += 8) { + transpose_16bit_8x8(col[0] + i, in); + transpose_16bit_8x8(col[1] + i, in + 8); + idct32_1024_8x32(in, out); + for (j = 0; j < 32; ++j) { + highbd_write_buffer_8(dest + j * stride, out[j], bd); + } + dest += 8; + } + } else { + __m128i all[8][32], out[32], *in; + + for (i = 0; i < 4; i++) { + in = all[i]; + highbd_load_transpose_32bit_8x4(&input[0], 32, &in[0]); + highbd_load_transpose_32bit_8x4(&input[8], 32, &in[8]); + highbd_idct32_135_4x32(in); + input += 4 * 32; + } + + for (i = 0; i < 32; i += 4) { + transpose_32bit_4x4(all[0] + i, out + 0); + transpose_32bit_4x4(all[1] + i, out + 4); + transpose_32bit_4x4(all[2] + i, out + 8); + transpose_32bit_4x4(all[3] + i, out + 12); + highbd_idct32_135_4x32(out); + + for (j = 0; j < 32; ++j) { + highbd_write_buffer_4(dest + j * stride, out[j], bd); + } + dest += 4; + } + } +} + +// ----------------------------------------------------------------------------- + +// For each 4x32 block __m128i in[32], +// Input with index, 0, 4 +// output pixels: 0-7 in __m128i out[32] +static INLINE void highbd_idct32_34_4x32_quarter_1( + const __m128i *const in /*in[32]*/, __m128i *const out /*out[8]*/) { + __m128i step1[8], step2[8]; + + // stage 3 + highbd_partial_butterfly_sse2(in[4], cospi_28_64, cospi_4_64, &step1[4], + &step1[7]); + + // stage 4 + highbd_partial_butterfly_sse2(in[0], cospi_16_64, cospi_16_64, &step2[1], + &step2[0]); + step2[4] = step1[4]; + step2[5] = step1[4]; + step2[6] = step1[7]; + step2[7] = step1[7]; + + // stage 5 + step1[0] = step2[0]; + step1[1] = step2[1]; + step1[2] = step2[1]; + step1[3] = step2[0]; + step1[4] = step2[4]; + highbd_butterfly_sse2(step2[6], step2[5], cospi_16_64, cospi_16_64, &step1[5], + &step1[6]); + step1[7] = step2[7]; + + // stage 6 + out[0] = _mm_add_epi32(step1[0], step1[7]); + out[1] = _mm_add_epi32(step1[1], step1[6]); + out[2] = _mm_add_epi32(step1[2], step1[5]); + out[3] = _mm_add_epi32(step1[3], step1[4]); + out[4] = _mm_sub_epi32(step1[3], step1[4]); + out[5] = _mm_sub_epi32(step1[2], step1[5]); + out[6] = _mm_sub_epi32(step1[1], step1[6]); + out[7] = _mm_sub_epi32(step1[0], step1[7]); +} + +// For each 4x32 block __m128i in[32], +// Input with index, 2, 6 +// output pixels: 8-15 in __m128i out[32] +static INLINE void highbd_idct32_34_4x32_quarter_2(const __m128i *in /*in[32]*/, + __m128i *out /*out[16]*/) { + __m128i step1[32], step2[32]; + + // stage 2 + highbd_partial_butterfly_sse2(in[2], cospi_30_64, cospi_2_64, &step2[8], + &step2[15]); + highbd_partial_butterfly_neg_sse2(in[6], cospi_6_64, cospi_26_64, &step2[11], + &step2[12]); + + // stage 3 + step1[8] = step2[8]; + step1[9] = step2[8]; + step1[14] = step2[15]; + step1[15] = step2[15]; + step1[10] = step2[11]; + step1[11] = step2[11]; + step1[12] = step2[12]; + step1[13] = step2[12]; + + step1[10] = + _mm_sub_epi32(_mm_setzero_si128(), step1[10]); // step1[10] = -step1[10] + step1[13] = + _mm_sub_epi32(_mm_setzero_si128(), step1[13]); // step1[13] = -step1[13] + highbd_idct32_4x32_quarter_2_stage_4_to_6(step1, out); +} + +static INLINE void highbd_idct32_34_4x32_quarter_1_2( + const __m128i *const in /*in[32]*/, __m128i *const out /*out[32]*/) { + __m128i temp[16]; + highbd_idct32_34_4x32_quarter_1(in, temp); + highbd_idct32_34_4x32_quarter_2(in, temp); + // stage 7 + highbd_add_sub_butterfly(temp, out, 16); +} + +// For each 4x32 block __m128i in[32], +// Input with odd index, +// 1, 3, 5, 7 +// output pixels: 16-23, 24-31 in __m128i out[32] +static INLINE void highbd_idct32_34_4x32_quarter_3_4( + const __m128i *const in /*in[32]*/, __m128i *const out /*out[32]*/) { + __m128i step1[32], step2[32]; + + // stage 1 + highbd_partial_butterfly_sse2(in[1], cospi_31_64, cospi_1_64, &step1[16], + &step1[31]); + highbd_partial_butterfly_neg_sse2(in[7], cospi_7_64, cospi_25_64, &step1[19], + &step1[28]); + + highbd_partial_butterfly_sse2(in[5], cospi_27_64, cospi_5_64, &step1[20], + &step1[27]); + highbd_partial_butterfly_neg_sse2(in[3], cospi_3_64, cospi_29_64, &step1[23], + &step1[24]); + + // stage 2 + step2[16] = step1[16]; + step2[17] = step1[16]; + step2[18] = step1[19]; + step2[19] = step1[19]; + step2[20] = step1[20]; + step2[21] = step1[20]; + step2[22] = step1[23]; + step2[23] = step1[23]; + + step2[24] = step1[24]; + step2[25] = step1[24]; + step2[26] = step1[27]; + step2[27] = step1[27]; + step2[28] = step1[28]; + step2[29] = step1[28]; + step2[30] = step1[31]; + step2[31] = step1[31]; + + // stage 3 + step2[18] = + _mm_sub_epi32(_mm_setzero_si128(), step2[18]); // step2[18] = -step2[18] + step2[22] = + _mm_sub_epi32(_mm_setzero_si128(), step2[22]); // step2[22] = -step2[22] + step2[25] = + _mm_sub_epi32(_mm_setzero_si128(), step2[25]); // step2[25] = -step2[25] + step2[29] = + _mm_sub_epi32(_mm_setzero_si128(), step2[29]); // step2[29] = -step2[29] + step1[16] = step2[16]; + step1[31] = step2[31]; + highbd_butterfly_sse2(step2[30], step2[17], cospi_28_64, cospi_4_64, + &step1[17], &step1[30]); + highbd_butterfly_sse2(step2[18], step2[29], cospi_4_64, cospi_28_64, + &step1[29], &step1[18]); + step1[19] = step2[19]; + step1[20] = step2[20]; + highbd_butterfly_sse2(step2[26], step2[21], cospi_12_64, cospi_20_64, + &step1[21], &step1[26]); + highbd_butterfly_sse2(step2[22], step2[25], cospi_20_64, cospi_12_64, + &step1[25], &step1[22]); + step1[23] = step2[23]; + step1[24] = step2[24]; + step1[27] = step2[27]; + step1[28] = step2[28]; + + highbd_idct32_4x32_quarter_3_4_stage_4_to_7(step1, out); +} + +static void highbd_idct32_34_4x32(__m128i *const io /*io[32]*/) { + __m128i temp[32]; + + highbd_idct32_34_4x32_quarter_1_2(io, temp); + highbd_idct32_34_4x32_quarter_3_4(io, temp); + // final stage + highbd_add_sub_butterfly(temp, io, 32); +} + +void vpx_highbd_idct32x32_34_add_sse2(const tran_low_t *input, uint16_t *dest, + int stride, int bd) { + int i, j; + + if (bd == 8) { + __m128i col[32], in[32], out[32]; + + // rows + highbd_load_pack_transpose_32bit_8x8(&input[0], 32, &in[0]); + idct32_34_8x32_sse2(in, col); + + // columns + for (i = 0; i < 32; i += 8) { + transpose_16bit_8x8(col + i, in); + idct32_34_8x32_sse2(in, out); + for (j = 0; j < 32; ++j) { + highbd_write_buffer_8(dest + j * stride, out[j], bd); + } + dest += 8; + } + } else { + __m128i all[8][32], out[32], *in; + + for (i = 0; i < 4; i++) { + in = all[i]; + highbd_load_transpose_32bit_8x4(&input[0], 32, &in[0]); + highbd_load_transpose_32bit_8x4(&input[8], 32, &in[8]); + highbd_idct32_34_4x32(in); + input += 4 * 32; + } + + for (i = 0; i < 32; i += 4) { + transpose_32bit_4x4(all[0] + i, out + 0); + transpose_32bit_4x4(all[1] + i, out + 4); + transpose_32bit_4x4(all[2] + i, out + 8); + transpose_32bit_4x4(all[3] + i, out + 12); + highbd_idct32_34_4x32(out); + + for (j = 0; j < 32; ++j) { + highbd_write_buffer_4(dest + j * stride, out[j], bd); + } + dest += 4; + } + } +} + +void vpx_highbd_idct32x32_1_add_sse2(const tran_low_t *input, uint16_t *dest, + int stride, int bd) { + highbd_idct_1_add_kernel(input, dest, stride, bd, 32); +} diff --git a/vpx_dsp/x86/highbd_idct32x32_add_sse4.c b/vpx_dsp/x86/highbd_idct32x32_add_sse4.c new file mode 100644 index 0000000..2d0a53a --- /dev/null +++ b/vpx_dsp/x86/highbd_idct32x32_add_sse4.c @@ -0,0 +1,765 @@ +/* + * Copyright (c) 2017 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include // SSE4.1 + +#include "./vpx_dsp_rtcd.h" +#include "vpx_dsp/x86/highbd_inv_txfm_sse2.h" +#include "vpx_dsp/x86/highbd_inv_txfm_sse4.h" +#include "vpx_dsp/x86/inv_txfm_sse2.h" +#include "vpx_dsp/x86/inv_txfm_ssse3.h" +#include "vpx_dsp/x86/transpose_sse2.h" +#include "vpx_dsp/x86/txfm_common_sse2.h" + +static INLINE void highbd_idct32_4x32_quarter_2_stage_4_to_6( + __m128i *const step1 /*step1[16]*/, __m128i *const out /*out[16]*/) { + __m128i step2[32]; + + // stage 4 + step2[8] = step1[8]; + step2[15] = step1[15]; + highbd_butterfly_sse4_1(step1[14], step1[9], cospi_24_64, cospi_8_64, + &step2[9], &step2[14]); + highbd_butterfly_sse4_1(step1[13], step1[10], -cospi_8_64, cospi_24_64, + &step2[10], &step2[13]); + step2[11] = step1[11]; + step2[12] = step1[12]; + + // stage 5 + step1[8] = _mm_add_epi32(step2[8], step2[11]); + step1[9] = _mm_add_epi32(step2[9], step2[10]); + step1[10] = _mm_sub_epi32(step2[9], step2[10]); + step1[11] = _mm_sub_epi32(step2[8], step2[11]); + step1[12] = _mm_sub_epi32(step2[15], step2[12]); + step1[13] = _mm_sub_epi32(step2[14], step2[13]); + step1[14] = _mm_add_epi32(step2[14], step2[13]); + step1[15] = _mm_add_epi32(step2[15], step2[12]); + + // stage 6 + out[8] = step1[8]; + out[9] = step1[9]; + highbd_butterfly_sse4_1(step1[13], step1[10], cospi_16_64, cospi_16_64, + &out[10], &out[13]); + highbd_butterfly_sse4_1(step1[12], step1[11], cospi_16_64, cospi_16_64, + &out[11], &out[12]); + out[14] = step1[14]; + out[15] = step1[15]; +} + +static INLINE void highbd_idct32_4x32_quarter_3_4_stage_4_to_7( + __m128i *const step1 /*step1[32]*/, __m128i *const out /*out[32]*/) { + __m128i step2[32]; + + // stage 4 + step2[16] = _mm_add_epi32(step1[16], step1[19]); + step2[17] = _mm_add_epi32(step1[17], step1[18]); + step2[18] = _mm_sub_epi32(step1[17], step1[18]); + step2[19] = _mm_sub_epi32(step1[16], step1[19]); + step2[20] = _mm_sub_epi32(step1[23], step1[20]); + step2[21] = _mm_sub_epi32(step1[22], step1[21]); + step2[22] = _mm_add_epi32(step1[22], step1[21]); + step2[23] = _mm_add_epi32(step1[23], step1[20]); + + step2[24] = _mm_add_epi32(step1[24], step1[27]); + step2[25] = _mm_add_epi32(step1[25], step1[26]); + step2[26] = _mm_sub_epi32(step1[25], step1[26]); + step2[27] = _mm_sub_epi32(step1[24], step1[27]); + step2[28] = _mm_sub_epi32(step1[31], step1[28]); + step2[29] = _mm_sub_epi32(step1[30], step1[29]); + step2[30] = _mm_add_epi32(step1[29], step1[30]); + step2[31] = _mm_add_epi32(step1[28], step1[31]); + + // stage 5 + step1[16] = step2[16]; + step1[17] = step2[17]; + highbd_butterfly_sse4_1(step2[29], step2[18], cospi_24_64, cospi_8_64, + &step1[18], &step1[29]); + highbd_butterfly_sse4_1(step2[28], step2[19], cospi_24_64, cospi_8_64, + &step1[19], &step1[28]); + highbd_butterfly_sse4_1(step2[27], step2[20], -cospi_8_64, cospi_24_64, + &step1[20], &step1[27]); + highbd_butterfly_sse4_1(step2[26], step2[21], -cospi_8_64, cospi_24_64, + &step1[21], &step1[26]); + step1[22] = step2[22]; + step1[23] = step2[23]; + step1[24] = step2[24]; + step1[25] = step2[25]; + step1[30] = step2[30]; + step1[31] = step2[31]; + + // stage 6 + step2[16] = _mm_add_epi32(step1[16], step1[23]); + step2[17] = _mm_add_epi32(step1[17], step1[22]); + step2[18] = _mm_add_epi32(step1[18], step1[21]); + step2[19] = _mm_add_epi32(step1[19], step1[20]); + step2[20] = _mm_sub_epi32(step1[19], step1[20]); + step2[21] = _mm_sub_epi32(step1[18], step1[21]); + step2[22] = _mm_sub_epi32(step1[17], step1[22]); + step2[23] = _mm_sub_epi32(step1[16], step1[23]); + + step2[24] = _mm_sub_epi32(step1[31], step1[24]); + step2[25] = _mm_sub_epi32(step1[30], step1[25]); + step2[26] = _mm_sub_epi32(step1[29], step1[26]); + step2[27] = _mm_sub_epi32(step1[28], step1[27]); + step2[28] = _mm_add_epi32(step1[27], step1[28]); + step2[29] = _mm_add_epi32(step1[26], step1[29]); + step2[30] = _mm_add_epi32(step1[25], step1[30]); + step2[31] = _mm_add_epi32(step1[24], step1[31]); + + // stage 7 + out[16] = step2[16]; + out[17] = step2[17]; + out[18] = step2[18]; + out[19] = step2[19]; + highbd_butterfly_sse4_1(step2[27], step2[20], cospi_16_64, cospi_16_64, + &out[20], &out[27]); + highbd_butterfly_sse4_1(step2[26], step2[21], cospi_16_64, cospi_16_64, + &out[21], &out[26]); + highbd_butterfly_sse4_1(step2[25], step2[22], cospi_16_64, cospi_16_64, + &out[22], &out[25]); + highbd_butterfly_sse4_1(step2[24], step2[23], cospi_16_64, cospi_16_64, + &out[23], &out[24]); + out[28] = step2[28]; + out[29] = step2[29]; + out[30] = step2[30]; + out[31] = step2[31]; +} + +// Group the coefficient calculation into smaller functions to prevent stack +// spillover in 32x32 idct optimizations: +// quarter_1: 0-7 +// quarter_2: 8-15 +// quarter_3_4: 16-23, 24-31 + +// For each 4x32 block __m128i in[32], +// Input with index, 0, 4, 8, 12, 16, 20, 24, 28 +// output pixels: 0-7 in __m128i out[32] +static INLINE void highbd_idct32_1024_4x32_quarter_1( + const __m128i *const in /*in[32]*/, __m128i *const out /*out[8]*/) { + __m128i step1[8], step2[8]; + + // stage 3 + highbd_butterfly_sse4_1(in[4], in[28], cospi_28_64, cospi_4_64, &step1[4], + &step1[7]); + highbd_butterfly_sse4_1(in[20], in[12], cospi_12_64, cospi_20_64, &step1[5], + &step1[6]); + + // stage 4 + highbd_butterfly_sse4_1(in[0], in[16], cospi_16_64, cospi_16_64, &step2[1], + &step2[0]); + highbd_butterfly_sse4_1(in[8], in[24], cospi_24_64, cospi_8_64, &step2[2], + &step2[3]); + step2[4] = _mm_add_epi32(step1[4], step1[5]); + step2[5] = _mm_sub_epi32(step1[4], step1[5]); + step2[6] = _mm_sub_epi32(step1[7], step1[6]); + step2[7] = _mm_add_epi32(step1[7], step1[6]); + + // stage 5 + step1[0] = _mm_add_epi32(step2[0], step2[3]); + step1[1] = _mm_add_epi32(step2[1], step2[2]); + step1[2] = _mm_sub_epi32(step2[1], step2[2]); + step1[3] = _mm_sub_epi32(step2[0], step2[3]); + step1[4] = step2[4]; + highbd_butterfly_sse4_1(step2[6], step2[5], cospi_16_64, cospi_16_64, + &step1[5], &step1[6]); + step1[7] = step2[7]; + + // stage 6 + out[0] = _mm_add_epi32(step1[0], step1[7]); + out[1] = _mm_add_epi32(step1[1], step1[6]); + out[2] = _mm_add_epi32(step1[2], step1[5]); + out[3] = _mm_add_epi32(step1[3], step1[4]); + out[4] = _mm_sub_epi32(step1[3], step1[4]); + out[5] = _mm_sub_epi32(step1[2], step1[5]); + out[6] = _mm_sub_epi32(step1[1], step1[6]); + out[7] = _mm_sub_epi32(step1[0], step1[7]); +} + +// For each 4x32 block __m128i in[32], +// Input with index, 2, 6, 10, 14, 18, 22, 26, 30 +// output pixels: 8-15 in __m128i out[32] +static INLINE void highbd_idct32_1024_4x32_quarter_2( + const __m128i *in /*in[32]*/, __m128i *out /*out[16]*/) { + __m128i step1[32], step2[32]; + + // stage 2 + highbd_butterfly_sse4_1(in[2], in[30], cospi_30_64, cospi_2_64, &step2[8], + &step2[15]); + highbd_butterfly_sse4_1(in[18], in[14], cospi_14_64, cospi_18_64, &step2[9], + &step2[14]); + highbd_butterfly_sse4_1(in[10], in[22], cospi_22_64, cospi_10_64, &step2[10], + &step2[13]); + highbd_butterfly_sse4_1(in[26], in[6], cospi_6_64, cospi_26_64, &step2[11], + &step2[12]); + + // stage 3 + step1[8] = _mm_add_epi32(step2[8], step2[9]); + step1[9] = _mm_sub_epi32(step2[8], step2[9]); + step1[14] = _mm_sub_epi32(step2[15], step2[14]); + step1[15] = _mm_add_epi32(step2[15], step2[14]); + step1[10] = _mm_sub_epi32(step2[11], step2[10]); + step1[11] = _mm_add_epi32(step2[11], step2[10]); + step1[12] = _mm_add_epi32(step2[12], step2[13]); + step1[13] = _mm_sub_epi32(step2[12], step2[13]); + + highbd_idct32_4x32_quarter_2_stage_4_to_6(step1, out); +} + +static INLINE void highbd_idct32_1024_4x32_quarter_1_2( + const __m128i *const in /*in[32]*/, __m128i *const out /*out[32]*/) { + __m128i temp[16]; + highbd_idct32_1024_4x32_quarter_1(in, temp); + highbd_idct32_1024_4x32_quarter_2(in, temp); + // stage 7 + highbd_add_sub_butterfly(temp, out, 16); +} + +// For each 4x32 block __m128i in[32], +// Input with odd index, +// 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 +// output pixels: 16-23, 24-31 in __m128i out[32] +static INLINE void highbd_idct32_1024_4x32_quarter_3_4( + const __m128i *const in /*in[32]*/, __m128i *const out /*out[32]*/) { + __m128i step1[32], step2[32]; + + // stage 1 + highbd_butterfly_sse4_1(in[1], in[31], cospi_31_64, cospi_1_64, &step1[16], + &step1[31]); + highbd_butterfly_sse4_1(in[17], in[15], cospi_15_64, cospi_17_64, &step1[17], + &step1[30]); + highbd_butterfly_sse4_1(in[9], in[23], cospi_23_64, cospi_9_64, &step1[18], + &step1[29]); + highbd_butterfly_sse4_1(in[25], in[7], cospi_7_64, cospi_25_64, &step1[19], + &step1[28]); + + highbd_butterfly_sse4_1(in[5], in[27], cospi_27_64, cospi_5_64, &step1[20], + &step1[27]); + highbd_butterfly_sse4_1(in[21], in[11], cospi_11_64, cospi_21_64, &step1[21], + &step1[26]); + + highbd_butterfly_sse4_1(in[13], in[19], cospi_19_64, cospi_13_64, &step1[22], + &step1[25]); + highbd_butterfly_sse4_1(in[29], in[3], cospi_3_64, cospi_29_64, &step1[23], + &step1[24]); + + // stage 2 + step2[16] = _mm_add_epi32(step1[16], step1[17]); + step2[17] = _mm_sub_epi32(step1[16], step1[17]); + step2[18] = _mm_sub_epi32(step1[19], step1[18]); + step2[19] = _mm_add_epi32(step1[19], step1[18]); + step2[20] = _mm_add_epi32(step1[20], step1[21]); + step2[21] = _mm_sub_epi32(step1[20], step1[21]); + step2[22] = _mm_sub_epi32(step1[23], step1[22]); + step2[23] = _mm_add_epi32(step1[23], step1[22]); + + step2[24] = _mm_add_epi32(step1[24], step1[25]); + step2[25] = _mm_sub_epi32(step1[24], step1[25]); + step2[26] = _mm_sub_epi32(step1[27], step1[26]); + step2[27] = _mm_add_epi32(step1[27], step1[26]); + step2[28] = _mm_add_epi32(step1[28], step1[29]); + step2[29] = _mm_sub_epi32(step1[28], step1[29]); + step2[30] = _mm_sub_epi32(step1[31], step1[30]); + step2[31] = _mm_add_epi32(step1[31], step1[30]); + + // stage 3 + step1[16] = step2[16]; + step1[31] = step2[31]; + highbd_butterfly_sse4_1(step2[30], step2[17], cospi_28_64, cospi_4_64, + &step1[17], &step1[30]); + highbd_butterfly_sse4_1(step2[29], step2[18], -cospi_4_64, cospi_28_64, + &step1[18], &step1[29]); + step1[19] = step2[19]; + step1[20] = step2[20]; + highbd_butterfly_sse4_1(step2[26], step2[21], cospi_12_64, cospi_20_64, + &step1[21], &step1[26]); + highbd_butterfly_sse4_1(step2[25], step2[22], -cospi_20_64, cospi_12_64, + &step1[22], &step1[25]); + step1[23] = step2[23]; + step1[24] = step2[24]; + step1[27] = step2[27]; + step1[28] = step2[28]; + + highbd_idct32_4x32_quarter_3_4_stage_4_to_7(step1, out); +} + +static void highbd_idct32_1024_4x32(__m128i *const io /*io[32]*/) { + __m128i temp[32]; + + highbd_idct32_1024_4x32_quarter_1_2(io, temp); + highbd_idct32_1024_4x32_quarter_3_4(io, temp); + // final stage + highbd_add_sub_butterfly(temp, io, 32); +} + +void vpx_highbd_idct32x32_1024_add_sse4_1(const tran_low_t *input, + uint16_t *dest, int stride, int bd) { + int i, j; + + if (bd == 8) { + __m128i col[4][32], io[32]; + + // rows + for (i = 0; i < 4; i++) { + highbd_load_pack_transpose_32bit_8x8(&input[0], 32, &io[0]); + highbd_load_pack_transpose_32bit_8x8(&input[8], 32, &io[8]); + highbd_load_pack_transpose_32bit_8x8(&input[16], 32, &io[16]); + highbd_load_pack_transpose_32bit_8x8(&input[24], 32, &io[24]); + idct32_1024_8x32(io, col[i]); + input += 32 << 3; + } + + // columns + for (i = 0; i < 32; i += 8) { + // Transpose 32x8 block to 8x32 block + transpose_16bit_8x8(col[0] + i, io); + transpose_16bit_8x8(col[1] + i, io + 8); + transpose_16bit_8x8(col[2] + i, io + 16); + transpose_16bit_8x8(col[3] + i, io + 24); + idct32_1024_8x32(io, io); + for (j = 0; j < 32; ++j) { + highbd_write_buffer_8(dest + j * stride, io[j], bd); + } + dest += 8; + } + } else { + __m128i all[8][32], out[32], *in; + + for (i = 0; i < 8; i++) { + in = all[i]; + highbd_load_transpose_32bit_8x4(&input[0], 32, &in[0]); + highbd_load_transpose_32bit_8x4(&input[8], 32, &in[8]); + highbd_load_transpose_32bit_8x4(&input[16], 32, &in[16]); + highbd_load_transpose_32bit_8x4(&input[24], 32, &in[24]); + highbd_idct32_1024_4x32(in); + input += 4 * 32; + } + + for (i = 0; i < 32; i += 4) { + transpose_32bit_4x4(all[0] + i, out + 0); + transpose_32bit_4x4(all[1] + i, out + 4); + transpose_32bit_4x4(all[2] + i, out + 8); + transpose_32bit_4x4(all[3] + i, out + 12); + transpose_32bit_4x4(all[4] + i, out + 16); + transpose_32bit_4x4(all[5] + i, out + 20); + transpose_32bit_4x4(all[6] + i, out + 24); + transpose_32bit_4x4(all[7] + i, out + 28); + highbd_idct32_1024_4x32(out); + + for (j = 0; j < 32; ++j) { + highbd_write_buffer_4(dest + j * stride, out[j], bd); + } + dest += 4; + } + } +} + +// ----------------------------------------------------------------------------- + +// For each 4x32 block __m128i in[32], +// Input with index, 0, 4, 8, 12 +// output pixels: 0-7 in __m128i out[32] +static INLINE void highbd_idct32_135_4x32_quarter_1( + const __m128i *const in /*in[32]*/, __m128i *const out /*out[8]*/) { + __m128i step1[8], step2[8]; + + // stage 3 + highbd_partial_butterfly_sse4_1(in[4], cospi_28_64, cospi_4_64, &step1[4], + &step1[7]); + highbd_partial_butterfly_sse4_1(in[12], -cospi_20_64, cospi_12_64, &step1[5], + &step1[6]); + + // stage 4 + highbd_partial_butterfly_sse4_1(in[0], cospi_16_64, cospi_16_64, &step2[1], + &step2[0]); + highbd_partial_butterfly_sse4_1(in[8], cospi_24_64, cospi_8_64, &step2[2], + &step2[3]); + step2[4] = _mm_add_epi32(step1[4], step1[5]); + step2[5] = _mm_sub_epi32(step1[4], step1[5]); + step2[6] = _mm_sub_epi32(step1[7], step1[6]); + step2[7] = _mm_add_epi32(step1[7], step1[6]); + + // stage 5 + step1[0] = _mm_add_epi32(step2[0], step2[3]); + step1[1] = _mm_add_epi32(step2[1], step2[2]); + step1[2] = _mm_sub_epi32(step2[1], step2[2]); + step1[3] = _mm_sub_epi32(step2[0], step2[3]); + step1[4] = step2[4]; + highbd_butterfly_sse4_1(step2[6], step2[5], cospi_16_64, cospi_16_64, + &step1[5], &step1[6]); + step1[7] = step2[7]; + + // stage 6 + out[0] = _mm_add_epi32(step1[0], step1[7]); + out[1] = _mm_add_epi32(step1[1], step1[6]); + out[2] = _mm_add_epi32(step1[2], step1[5]); + out[3] = _mm_add_epi32(step1[3], step1[4]); + out[4] = _mm_sub_epi32(step1[3], step1[4]); + out[5] = _mm_sub_epi32(step1[2], step1[5]); + out[6] = _mm_sub_epi32(step1[1], step1[6]); + out[7] = _mm_sub_epi32(step1[0], step1[7]); +} + +// For each 4x32 block __m128i in[32], +// Input with index, 2, 6, 10, 14 +// output pixels: 8-15 in __m128i out[32] +static INLINE void highbd_idct32_135_4x32_quarter_2( + const __m128i *in /*in[32]*/, __m128i *out /*out[16]*/) { + __m128i step1[32], step2[32]; + + // stage 2 + highbd_partial_butterfly_sse4_1(in[2], cospi_30_64, cospi_2_64, &step2[8], + &step2[15]); + highbd_partial_butterfly_sse4_1(in[14], -cospi_18_64, cospi_14_64, &step2[9], + &step2[14]); + highbd_partial_butterfly_sse4_1(in[10], cospi_22_64, cospi_10_64, &step2[10], + &step2[13]); + highbd_partial_butterfly_sse4_1(in[6], -cospi_26_64, cospi_6_64, &step2[11], + &step2[12]); + + // stage 3 + step1[8] = _mm_add_epi32(step2[8], step2[9]); + step1[9] = _mm_sub_epi32(step2[8], step2[9]); + step1[14] = _mm_sub_epi32(step2[15], step2[14]); + step1[15] = _mm_add_epi32(step2[15], step2[14]); + step1[10] = _mm_sub_epi32(step2[11], step2[10]); + step1[11] = _mm_add_epi32(step2[11], step2[10]); + step1[12] = _mm_add_epi32(step2[12], step2[13]); + step1[13] = _mm_sub_epi32(step2[12], step2[13]); + + highbd_idct32_4x32_quarter_2_stage_4_to_6(step1, out); +} + +static INLINE void highbd_idct32_135_4x32_quarter_1_2( + const __m128i *const in /*in[32]*/, __m128i *const out /*out[32]*/) { + __m128i temp[16]; + highbd_idct32_135_4x32_quarter_1(in, temp); + highbd_idct32_135_4x32_quarter_2(in, temp); + // stage 7 + highbd_add_sub_butterfly(temp, out, 16); +} + +// For each 4x32 block __m128i in[32], +// Input with odd index, +// 1, 3, 5, 7, 9, 11, 13, 15 +// output pixels: 16-23, 24-31 in __m128i out[32] +static INLINE void highbd_idct32_135_4x32_quarter_3_4( + const __m128i *const in /*in[32]*/, __m128i *const out /*out[32]*/) { + __m128i step1[32], step2[32]; + + // stage 1 + highbd_partial_butterfly_sse4_1(in[1], cospi_31_64, cospi_1_64, &step1[16], + &step1[31]); + highbd_partial_butterfly_sse4_1(in[15], -cospi_17_64, cospi_15_64, &step1[17], + &step1[30]); + highbd_partial_butterfly_sse4_1(in[9], cospi_23_64, cospi_9_64, &step1[18], + &step1[29]); + highbd_partial_butterfly_sse4_1(in[7], -cospi_25_64, cospi_7_64, &step1[19], + &step1[28]); + + highbd_partial_butterfly_sse4_1(in[5], cospi_27_64, cospi_5_64, &step1[20], + &step1[27]); + highbd_partial_butterfly_sse4_1(in[11], -cospi_21_64, cospi_11_64, &step1[21], + &step1[26]); + + highbd_partial_butterfly_sse4_1(in[13], cospi_19_64, cospi_13_64, &step1[22], + &step1[25]); + highbd_partial_butterfly_sse4_1(in[3], -cospi_29_64, cospi_3_64, &step1[23], + &step1[24]); + + // stage 2 + step2[16] = _mm_add_epi32(step1[16], step1[17]); + step2[17] = _mm_sub_epi32(step1[16], step1[17]); + step2[18] = _mm_sub_epi32(step1[19], step1[18]); + step2[19] = _mm_add_epi32(step1[19], step1[18]); + step2[20] = _mm_add_epi32(step1[20], step1[21]); + step2[21] = _mm_sub_epi32(step1[20], step1[21]); + step2[22] = _mm_sub_epi32(step1[23], step1[22]); + step2[23] = _mm_add_epi32(step1[23], step1[22]); + + step2[24] = _mm_add_epi32(step1[24], step1[25]); + step2[25] = _mm_sub_epi32(step1[24], step1[25]); + step2[26] = _mm_sub_epi32(step1[27], step1[26]); + step2[27] = _mm_add_epi32(step1[27], step1[26]); + step2[28] = _mm_add_epi32(step1[28], step1[29]); + step2[29] = _mm_sub_epi32(step1[28], step1[29]); + step2[30] = _mm_sub_epi32(step1[31], step1[30]); + step2[31] = _mm_add_epi32(step1[31], step1[30]); + + // stage 3 + step1[16] = step2[16]; + step1[31] = step2[31]; + highbd_butterfly_sse4_1(step2[30], step2[17], cospi_28_64, cospi_4_64, + &step1[17], &step1[30]); + highbd_butterfly_sse4_1(step2[29], step2[18], -cospi_4_64, cospi_28_64, + &step1[18], &step1[29]); + step1[19] = step2[19]; + step1[20] = step2[20]; + highbd_butterfly_sse4_1(step2[26], step2[21], cospi_12_64, cospi_20_64, + &step1[21], &step1[26]); + highbd_butterfly_sse4_1(step2[25], step2[22], -cospi_20_64, cospi_12_64, + &step1[22], &step1[25]); + step1[23] = step2[23]; + step1[24] = step2[24]; + step1[27] = step2[27]; + step1[28] = step2[28]; + + highbd_idct32_4x32_quarter_3_4_stage_4_to_7(step1, out); +} + +static void highbd_idct32_135_4x32(__m128i *const io /*io[32]*/) { + __m128i temp[32]; + + highbd_idct32_135_4x32_quarter_1_2(io, temp); + highbd_idct32_135_4x32_quarter_3_4(io, temp); + // final stage + highbd_add_sub_butterfly(temp, io, 32); +} + +void vpx_highbd_idct32x32_135_add_sse4_1(const tran_low_t *input, + uint16_t *dest, int stride, int bd) { + int i, j; + + if (bd == 8) { + __m128i col[2][32], in[32], out[32]; + + // rows + for (i = 0; i < 2; i++) { + highbd_load_pack_transpose_32bit_8x8(&input[0], 32, &in[0]); + highbd_load_pack_transpose_32bit_8x8(&input[8], 32, &in[8]); + idct32_135_8x32_ssse3(in, col[i]); + input += 32 << 3; + } + + // columns + for (i = 0; i < 32; i += 8) { + transpose_16bit_8x8(col[0] + i, in); + transpose_16bit_8x8(col[1] + i, in + 8); + idct32_135_8x32_ssse3(in, out); + for (j = 0; j < 32; ++j) { + highbd_write_buffer_8(dest + j * stride, out[j], bd); + } + dest += 8; + } + } else { + __m128i all[8][32], out[32], *in; + + for (i = 0; i < 4; i++) { + in = all[i]; + highbd_load_transpose_32bit_8x4(&input[0], 32, &in[0]); + highbd_load_transpose_32bit_8x4(&input[8], 32, &in[8]); + highbd_idct32_135_4x32(in); + input += 4 * 32; + } + + for (i = 0; i < 32; i += 4) { + transpose_32bit_4x4(all[0] + i, out + 0); + transpose_32bit_4x4(all[1] + i, out + 4); + transpose_32bit_4x4(all[2] + i, out + 8); + transpose_32bit_4x4(all[3] + i, out + 12); + highbd_idct32_135_4x32(out); + + for (j = 0; j < 32; ++j) { + highbd_write_buffer_4(dest + j * stride, out[j], bd); + } + dest += 4; + } + } +} + +// ----------------------------------------------------------------------------- + +// For each 4x32 block __m128i in[32], +// Input with index, 0, 4 +// output pixels: 0-7 in __m128i out[32] +static INLINE void highbd_idct32_34_4x32_quarter_1( + const __m128i *const in /*in[32]*/, __m128i *const out /*out[8]*/) { + __m128i step1[8], step2[8]; + + // stage 3 + highbd_partial_butterfly_sse4_1(in[4], cospi_28_64, cospi_4_64, &step1[4], + &step1[7]); + + // stage 4 + highbd_partial_butterfly_sse4_1(in[0], cospi_16_64, cospi_16_64, &step2[1], + &step2[0]); + step2[4] = step1[4]; + step2[5] = step1[4]; + step2[6] = step1[7]; + step2[7] = step1[7]; + + // stage 5 + step1[0] = step2[0]; + step1[1] = step2[1]; + step1[2] = step2[1]; + step1[3] = step2[0]; + step1[4] = step2[4]; + highbd_butterfly_sse4_1(step2[6], step2[5], cospi_16_64, cospi_16_64, + &step1[5], &step1[6]); + step1[7] = step2[7]; + + // stage 6 + out[0] = _mm_add_epi32(step1[0], step1[7]); + out[1] = _mm_add_epi32(step1[1], step1[6]); + out[2] = _mm_add_epi32(step1[2], step1[5]); + out[3] = _mm_add_epi32(step1[3], step1[4]); + out[4] = _mm_sub_epi32(step1[3], step1[4]); + out[5] = _mm_sub_epi32(step1[2], step1[5]); + out[6] = _mm_sub_epi32(step1[1], step1[6]); + out[7] = _mm_sub_epi32(step1[0], step1[7]); +} + +// For each 4x32 block __m128i in[32], +// Input with index, 2, 6 +// output pixels: 8-15 in __m128i out[32] +static INLINE void highbd_idct32_34_4x32_quarter_2(const __m128i *in /*in[32]*/, + __m128i *out /*out[16]*/) { + __m128i step1[32], step2[32]; + + // stage 2 + highbd_partial_butterfly_sse4_1(in[2], cospi_30_64, cospi_2_64, &step2[8], + &step2[15]); + highbd_partial_butterfly_sse4_1(in[6], -cospi_26_64, cospi_6_64, &step2[11], + &step2[12]); + + // stage 3 + step1[8] = step2[8]; + step1[9] = step2[8]; + step1[14] = step2[15]; + step1[15] = step2[15]; + step1[10] = step2[11]; + step1[11] = step2[11]; + step1[12] = step2[12]; + step1[13] = step2[12]; + + highbd_idct32_4x32_quarter_2_stage_4_to_6(step1, out); +} + +static INLINE void highbd_idct32_34_4x32_quarter_1_2( + const __m128i *const in /*in[32]*/, __m128i *const out /*out[32]*/) { + __m128i temp[16]; + highbd_idct32_34_4x32_quarter_1(in, temp); + highbd_idct32_34_4x32_quarter_2(in, temp); + // stage 7 + highbd_add_sub_butterfly(temp, out, 16); +} + +// For each 4x32 block __m128i in[32], +// Input with odd index, +// 1, 3, 5, 7 +// output pixels: 16-23, 24-31 in __m128i out[32] +static INLINE void highbd_idct32_34_4x32_quarter_3_4( + const __m128i *const in /*in[32]*/, __m128i *const out /*out[32]*/) { + __m128i step1[32], step2[32]; + + // stage 1 + highbd_partial_butterfly_sse4_1(in[1], cospi_31_64, cospi_1_64, &step1[16], + &step1[31]); + highbd_partial_butterfly_sse4_1(in[7], -cospi_25_64, cospi_7_64, &step1[19], + &step1[28]); + + highbd_partial_butterfly_sse4_1(in[5], cospi_27_64, cospi_5_64, &step1[20], + &step1[27]); + highbd_partial_butterfly_sse4_1(in[3], -cospi_29_64, cospi_3_64, &step1[23], + &step1[24]); + + // stage 2 + step2[16] = step1[16]; + step2[17] = step1[16]; + step2[18] = step1[19]; + step2[19] = step1[19]; + step2[20] = step1[20]; + step2[21] = step1[20]; + step2[22] = step1[23]; + step2[23] = step1[23]; + + step2[24] = step1[24]; + step2[25] = step1[24]; + step2[26] = step1[27]; + step2[27] = step1[27]; + step2[28] = step1[28]; + step2[29] = step1[28]; + step2[30] = step1[31]; + step2[31] = step1[31]; + + // stage 3 + step1[16] = step2[16]; + step1[31] = step2[31]; + highbd_butterfly_sse4_1(step2[30], step2[17], cospi_28_64, cospi_4_64, + &step1[17], &step1[30]); + highbd_butterfly_sse4_1(step2[29], step2[18], -cospi_4_64, cospi_28_64, + &step1[18], &step1[29]); + step1[19] = step2[19]; + step1[20] = step2[20]; + highbd_butterfly_sse4_1(step2[26], step2[21], cospi_12_64, cospi_20_64, + &step1[21], &step1[26]); + highbd_butterfly_sse4_1(step2[25], step2[22], -cospi_20_64, cospi_12_64, + &step1[22], &step1[25]); + step1[23] = step2[23]; + step1[24] = step2[24]; + step1[27] = step2[27]; + step1[28] = step2[28]; + + highbd_idct32_4x32_quarter_3_4_stage_4_to_7(step1, out); +} + +static void highbd_idct32_34_4x32(__m128i *const io /*io[32]*/) { + __m128i temp[32]; + + highbd_idct32_34_4x32_quarter_1_2(io, temp); + highbd_idct32_34_4x32_quarter_3_4(io, temp); + // final stage + highbd_add_sub_butterfly(temp, io, 32); +} + +void vpx_highbd_idct32x32_34_add_sse4_1(const tran_low_t *input, uint16_t *dest, + int stride, int bd) { + int i, j; + + if (bd == 8) { + __m128i col[32], in[32], out[32]; + + // rows + highbd_load_pack_transpose_32bit_8x8(&input[0], 32, &in[0]); + idct32_34_8x32_ssse3(in, col); + + // columns + for (i = 0; i < 32; i += 8) { + transpose_16bit_8x8(col + i, in); + idct32_34_8x32_ssse3(in, out); + for (j = 0; j < 32; ++j) { + highbd_write_buffer_8(dest + j * stride, out[j], bd); + } + dest += 8; + } + } else { + __m128i all[8][32], out[32], *in; + + for (i = 0; i < 4; i++) { + in = all[i]; + highbd_load_transpose_32bit_8x4(&input[0], 32, &in[0]); + highbd_load_transpose_32bit_8x4(&input[8], 32, &in[8]); + highbd_idct32_34_4x32(in); + input += 4 * 32; + } + + for (i = 0; i < 32; i += 4) { + transpose_32bit_4x4(all[0] + i, out + 0); + transpose_32bit_4x4(all[1] + i, out + 4); + transpose_32bit_4x4(all[2] + i, out + 8); + transpose_32bit_4x4(all[3] + i, out + 12); + highbd_idct32_34_4x32(out); + + for (j = 0; j < 32; ++j) { + highbd_write_buffer_4(dest + j * stride, out[j], bd); + } + dest += 4; + } + } +} diff --git a/vpx_dsp/x86/highbd_idct4x4_add_sse2.c b/vpx_dsp/x86/highbd_idct4x4_add_sse2.c new file mode 100644 index 0000000..2e54d24 --- /dev/null +++ b/vpx_dsp/x86/highbd_idct4x4_add_sse2.c @@ -0,0 +1,160 @@ +/* + * Copyright (c) 2015 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include // SSE2 + +#include "./vpx_dsp_rtcd.h" +#include "vpx_dsp/x86/highbd_inv_txfm_sse2.h" +#include "vpx_dsp/x86/inv_txfm_sse2.h" +#include "vpx_dsp/x86/transpose_sse2.h" + +static INLINE __m128i dct_const_round_shift_4_sse2(const __m128i in0, + const __m128i in1) { + const __m128i t0 = _mm_unpacklo_epi32(in0, in1); // 0, 1 + const __m128i t1 = _mm_unpackhi_epi32(in0, in1); // 2, 3 + const __m128i t2 = _mm_unpacklo_epi64(t0, t1); // 0, 1, 2, 3 + return dct_const_round_shift_sse2(t2); +} + +static INLINE void highbd_idct4_small_sse2(__m128i *const io) { + const __m128i cospi_p16_p16 = _mm_setr_epi32(cospi_16_64, 0, cospi_16_64, 0); + const __m128i cospi_p08_p08 = _mm_setr_epi32(cospi_8_64, 0, cospi_8_64, 0); + const __m128i cospi_p24_p24 = _mm_setr_epi32(cospi_24_64, 0, cospi_24_64, 0); + __m128i temp1[4], temp2[4], step[4]; + + transpose_32bit_4x4(io, io); + + // Note: There is no 32-bit signed multiply SIMD instruction in SSE2. + // _mm_mul_epu32() is used which can only guarantee the lower 32-bit + // (signed) result is meaningful, which is enough in this function. + + // stage 1 + temp1[0] = _mm_add_epi32(io[0], io[2]); // input[0] + input[2] + temp2[0] = _mm_sub_epi32(io[0], io[2]); // input[0] - input[2] + temp1[1] = _mm_srli_si128(temp1[0], 4); // 1, 3 + temp2[1] = _mm_srli_si128(temp2[0], 4); // 1, 3 + temp1[0] = _mm_mul_epu32(temp1[0], cospi_p16_p16); // ([0] + [2])*cospi_16_64 + temp1[1] = _mm_mul_epu32(temp1[1], cospi_p16_p16); // ([0] + [2])*cospi_16_64 + temp2[0] = _mm_mul_epu32(temp2[0], cospi_p16_p16); // ([0] - [2])*cospi_16_64 + temp2[1] = _mm_mul_epu32(temp2[1], cospi_p16_p16); // ([0] - [2])*cospi_16_64 + step[0] = dct_const_round_shift_4_sse2(temp1[0], temp1[1]); + step[1] = dct_const_round_shift_4_sse2(temp2[0], temp2[1]); + + temp1[3] = _mm_srli_si128(io[1], 4); + temp2[3] = _mm_srli_si128(io[3], 4); + temp1[0] = _mm_mul_epu32(io[1], cospi_p24_p24); // input[1] * cospi_24_64 + temp1[1] = _mm_mul_epu32(temp1[3], cospi_p24_p24); // input[1] * cospi_24_64 + temp2[0] = _mm_mul_epu32(io[1], cospi_p08_p08); // input[1] * cospi_8_64 + temp2[1] = _mm_mul_epu32(temp1[3], cospi_p08_p08); // input[1] * cospi_8_64 + temp1[2] = _mm_mul_epu32(io[3], cospi_p08_p08); // input[3] * cospi_8_64 + temp1[3] = _mm_mul_epu32(temp2[3], cospi_p08_p08); // input[3] * cospi_8_64 + temp2[2] = _mm_mul_epu32(io[3], cospi_p24_p24); // input[3] * cospi_24_64 + temp2[3] = _mm_mul_epu32(temp2[3], cospi_p24_p24); // input[3] * cospi_24_64 + temp1[0] = _mm_sub_epi64(temp1[0], temp1[2]); // [1]*cospi_24 - [3]*cospi_8 + temp1[1] = _mm_sub_epi64(temp1[1], temp1[3]); // [1]*cospi_24 - [3]*cospi_8 + temp2[0] = _mm_add_epi64(temp2[0], temp2[2]); // [1]*cospi_8 + [3]*cospi_24 + temp2[1] = _mm_add_epi64(temp2[1], temp2[3]); // [1]*cospi_8 + [3]*cospi_24 + step[2] = dct_const_round_shift_4_sse2(temp1[0], temp1[1]); + step[3] = dct_const_round_shift_4_sse2(temp2[0], temp2[1]); + + // stage 2 + io[0] = _mm_add_epi32(step[0], step[3]); // step[0] + step[3] + io[1] = _mm_add_epi32(step[1], step[2]); // step[1] + step[2] + io[2] = _mm_sub_epi32(step[1], step[2]); // step[1] - step[2] + io[3] = _mm_sub_epi32(step[0], step[3]); // step[0] - step[3] +} + +static INLINE void highbd_idct4_large_sse2(__m128i *const io) { + __m128i step[4]; + + transpose_32bit_4x4(io, io); + + // stage 1 + highbd_butterfly_cospi16_sse2(io[0], io[2], &step[0], &step[1]); + highbd_butterfly_sse2(io[1], io[3], cospi_24_64, cospi_8_64, &step[2], + &step[3]); + + // stage 2 + io[0] = _mm_add_epi32(step[0], step[3]); // step[0] + step[3] + io[1] = _mm_add_epi32(step[1], step[2]); // step[1] + step[2] + io[2] = _mm_sub_epi32(step[1], step[2]); // step[1] - step[2] + io[3] = _mm_sub_epi32(step[0], step[3]); // step[0] - step[3] +} + +void vpx_highbd_idct4x4_16_add_sse2(const tran_low_t *input, uint16_t *dest, + int stride, int bd) { + int16_t max = 0, min = 0; + __m128i io[4], io_short[2]; + + io[0] = _mm_load_si128((const __m128i *)(input + 0)); + io[1] = _mm_load_si128((const __m128i *)(input + 4)); + io[2] = _mm_load_si128((const __m128i *)(input + 8)); + io[3] = _mm_load_si128((const __m128i *)(input + 12)); + + io_short[0] = _mm_packs_epi32(io[0], io[1]); + io_short[1] = _mm_packs_epi32(io[2], io[3]); + + if (bd != 8) { + __m128i max_input, min_input; + + max_input = _mm_max_epi16(io_short[0], io_short[1]); + min_input = _mm_min_epi16(io_short[0], io_short[1]); + max_input = _mm_max_epi16(max_input, _mm_srli_si128(max_input, 8)); + min_input = _mm_min_epi16(min_input, _mm_srli_si128(min_input, 8)); + max_input = _mm_max_epi16(max_input, _mm_srli_si128(max_input, 4)); + min_input = _mm_min_epi16(min_input, _mm_srli_si128(min_input, 4)); + max_input = _mm_max_epi16(max_input, _mm_srli_si128(max_input, 2)); + min_input = _mm_min_epi16(min_input, _mm_srli_si128(min_input, 2)); + max = _mm_extract_epi16(max_input, 0); + min = _mm_extract_epi16(min_input, 0); + } + + if (bd == 8 || (max < 4096 && min >= -4096)) { + idct4_sse2(io_short); + idct4_sse2(io_short); + io_short[0] = _mm_add_epi16(io_short[0], _mm_set1_epi16(8)); + io_short[1] = _mm_add_epi16(io_short[1], _mm_set1_epi16(8)); + io[0] = _mm_srai_epi16(io_short[0], 4); + io[1] = _mm_srai_epi16(io_short[1], 4); + } else { + if (max < 32767 && min > -32768) { + highbd_idct4_small_sse2(io); + highbd_idct4_small_sse2(io); + } else { + highbd_idct4_large_sse2(io); + highbd_idct4_large_sse2(io); + } + io[0] = wraplow_16bit_shift4(io[0], io[1], _mm_set1_epi32(8)); + io[1] = wraplow_16bit_shift4(io[2], io[3], _mm_set1_epi32(8)); + } + + recon_and_store_4x4(io, dest, stride, bd); +} + +void vpx_highbd_idct4x4_1_add_sse2(const tran_low_t *input, uint16_t *dest, + int stride, int bd) { + int a1, i; + tran_low_t out; + __m128i dc, d; + + out = HIGHBD_WRAPLOW( + dct_const_round_shift(input[0] * (tran_high_t)cospi_16_64), bd); + out = + HIGHBD_WRAPLOW(dct_const_round_shift(out * (tran_high_t)cospi_16_64), bd); + a1 = ROUND_POWER_OF_TWO(out, 4); + dc = _mm_set1_epi16(a1); + + for (i = 0; i < 4; ++i) { + d = _mm_loadl_epi64((const __m128i *)dest); + d = add_clamp(d, dc, bd); + _mm_storel_epi64((__m128i *)dest, d); + dest += stride; + } +} diff --git a/vpx_dsp/x86/highbd_idct4x4_add_sse4.c b/vpx_dsp/x86/highbd_idct4x4_add_sse4.c new file mode 100644 index 0000000..38e64f3 --- /dev/null +++ b/vpx_dsp/x86/highbd_idct4x4_add_sse4.c @@ -0,0 +1,69 @@ +/* + * Copyright (c) 2017 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include // SSE4.1 + +#include "./vpx_dsp_rtcd.h" +#include "vpx_dsp/x86/highbd_inv_txfm_sse2.h" +#include "vpx_dsp/x86/highbd_inv_txfm_sse4.h" +#include "vpx_dsp/x86/inv_txfm_sse2.h" +#include "vpx_dsp/x86/transpose_sse2.h" + +static INLINE void highbd_idct4(__m128i *const io) { + __m128i temp[2], step[4]; + + transpose_32bit_4x4(io, io); + + // stage 1 + temp[0] = _mm_add_epi32(io[0], io[2]); // input[0] + input[2] + extend_64bit(temp[0], temp); + step[0] = multiplication_round_shift_sse4_1(temp, cospi_16_64); + temp[0] = _mm_sub_epi32(io[0], io[2]); // input[0] - input[2] + extend_64bit(temp[0], temp); + step[1] = multiplication_round_shift_sse4_1(temp, cospi_16_64); + highbd_butterfly_sse4_1(io[1], io[3], cospi_24_64, cospi_8_64, &step[2], + &step[3]); + + // stage 2 + io[0] = _mm_add_epi32(step[0], step[3]); // step[0] + step[3] + io[1] = _mm_add_epi32(step[1], step[2]); // step[1] + step[2] + io[2] = _mm_sub_epi32(step[1], step[2]); // step[1] - step[2] + io[3] = _mm_sub_epi32(step[0], step[3]); // step[0] - step[3] +} + +void vpx_highbd_idct4x4_16_add_sse4_1(const tran_low_t *input, uint16_t *dest, + int stride, int bd) { + __m128i io[4]; + + io[0] = _mm_load_si128((const __m128i *)(input + 0)); + io[1] = _mm_load_si128((const __m128i *)(input + 4)); + io[2] = _mm_load_si128((const __m128i *)(input + 8)); + io[3] = _mm_load_si128((const __m128i *)(input + 12)); + + if (bd == 8) { + __m128i io_short[2]; + + io_short[0] = _mm_packs_epi32(io[0], io[1]); + io_short[1] = _mm_packs_epi32(io[2], io[3]); + idct4_sse2(io_short); + idct4_sse2(io_short); + io_short[0] = _mm_add_epi16(io_short[0], _mm_set1_epi16(8)); + io_short[1] = _mm_add_epi16(io_short[1], _mm_set1_epi16(8)); + io[0] = _mm_srai_epi16(io_short[0], 4); + io[1] = _mm_srai_epi16(io_short[1], 4); + } else { + highbd_idct4(io); + highbd_idct4(io); + io[0] = wraplow_16bit_shift4(io[0], io[1], _mm_set1_epi32(8)); + io[1] = wraplow_16bit_shift4(io[2], io[3], _mm_set1_epi32(8)); + } + + recon_and_store_4x4(io, dest, stride, bd); +} diff --git a/vpx_dsp/x86/highbd_idct8x8_add_sse2.c b/vpx_dsp/x86/highbd_idct8x8_add_sse2.c new file mode 100644 index 0000000..909a6b7 --- /dev/null +++ b/vpx_dsp/x86/highbd_idct8x8_add_sse2.c @@ -0,0 +1,213 @@ +/* + * Copyright (c) 2015 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include // SSE2 + +#include "./vpx_dsp_rtcd.h" +#include "vpx_dsp/x86/highbd_inv_txfm_sse2.h" +#include "vpx_dsp/x86/inv_txfm_sse2.h" +#include "vpx_dsp/x86/transpose_sse2.h" + +static void highbd_idct8x8_half1d(__m128i *const io) { + __m128i step1[8], step2[8]; + + transpose_32bit_4x4x2(io, io); + + // stage 1 + step1[0] = io[0]; + step1[2] = io[4]; + step1[1] = io[2]; + step1[3] = io[6]; + highbd_butterfly_sse2(io[1], io[7], cospi_28_64, cospi_4_64, &step1[4], + &step1[7]); + highbd_butterfly_sse2(io[5], io[3], cospi_12_64, cospi_20_64, &step1[5], + &step1[6]); + + // stage 2 + highbd_butterfly_cospi16_sse2(step1[0], step1[2], &step2[0], &step2[1]); + highbd_butterfly_sse2(step1[1], step1[3], cospi_24_64, cospi_8_64, &step2[2], + &step2[3]); + step2[4] = _mm_add_epi32(step1[4], step1[5]); + step2[5] = _mm_sub_epi32(step1[4], step1[5]); + step2[6] = _mm_sub_epi32(step1[7], step1[6]); + step2[7] = _mm_add_epi32(step1[7], step1[6]); + + // stage 3 + step1[0] = _mm_add_epi32(step2[0], step2[3]); + step1[1] = _mm_add_epi32(step2[1], step2[2]); + step1[2] = _mm_sub_epi32(step2[1], step2[2]); + step1[3] = _mm_sub_epi32(step2[0], step2[3]); + step1[4] = step2[4]; + highbd_butterfly_cospi16_sse2(step2[6], step2[5], &step1[6], &step1[5]); + step1[7] = step2[7]; + + // stage 4 + highbd_idct8_stage4(step1, io); +} + +static void highbd_idct8x8_12_half1d(__m128i *const io) { + __m128i temp1[4], sign[2], step1[8], step2[8]; + + transpose_32bit_4x4(io, io); + + // stage 1 + step1[0] = io[0]; + step1[1] = io[2]; + abs_extend_64bit_sse2(io[1], temp1, sign); + step1[4] = multiplication_round_shift_sse2(temp1, sign, cospi_28_64); + step1[7] = multiplication_round_shift_sse2(temp1, sign, cospi_4_64); + abs_extend_64bit_sse2(io[3], temp1, sign); + step1[5] = multiplication_neg_round_shift_sse2(temp1, sign, cospi_20_64); + step1[6] = multiplication_round_shift_sse2(temp1, sign, cospi_12_64); + + // stage 2 + abs_extend_64bit_sse2(step1[0], temp1, sign); + step2[0] = multiplication_round_shift_sse2(temp1, sign, cospi_16_64); + abs_extend_64bit_sse2(step1[1], temp1, sign); + step2[2] = multiplication_round_shift_sse2(temp1, sign, cospi_24_64); + step2[3] = multiplication_round_shift_sse2(temp1, sign, cospi_8_64); + step2[4] = _mm_add_epi32(step1[4], step1[5]); + step2[5] = _mm_sub_epi32(step1[4], step1[5]); + step2[6] = _mm_sub_epi32(step1[7], step1[6]); + step2[7] = _mm_add_epi32(step1[7], step1[6]); + + // stage 3 + step1[0] = _mm_add_epi32(step2[0], step2[3]); + step1[1] = _mm_add_epi32(step2[0], step2[2]); + step1[2] = _mm_sub_epi32(step2[0], step2[2]); + step1[3] = _mm_sub_epi32(step2[0], step2[3]); + step1[4] = step2[4]; + highbd_butterfly_cospi16_sse2(step2[6], step2[5], &step1[6], &step1[5]); + step1[7] = step2[7]; + + // stage 4 + highbd_idct8_stage4(step1, io); +} + +void vpx_highbd_idct8x8_64_add_sse2(const tran_low_t *input, uint16_t *dest, + int stride, int bd) { + __m128i io[16]; + + io[0] = _mm_load_si128((const __m128i *)(input + 0 * 8 + 0)); + io[4] = _mm_load_si128((const __m128i *)(input + 0 * 8 + 4)); + io[1] = _mm_load_si128((const __m128i *)(input + 1 * 8 + 0)); + io[5] = _mm_load_si128((const __m128i *)(input + 1 * 8 + 4)); + io[2] = _mm_load_si128((const __m128i *)(input + 2 * 8 + 0)); + io[6] = _mm_load_si128((const __m128i *)(input + 2 * 8 + 4)); + io[3] = _mm_load_si128((const __m128i *)(input + 3 * 8 + 0)); + io[7] = _mm_load_si128((const __m128i *)(input + 3 * 8 + 4)); + + if (bd == 8) { + __m128i io_short[8]; + + io_short[0] = _mm_packs_epi32(io[0], io[4]); + io_short[1] = _mm_packs_epi32(io[1], io[5]); + io_short[2] = _mm_packs_epi32(io[2], io[6]); + io_short[3] = _mm_packs_epi32(io[3], io[7]); + io[8] = _mm_load_si128((const __m128i *)(input + 4 * 8 + 0)); + io[12] = _mm_load_si128((const __m128i *)(input + 4 * 8 + 4)); + io[9] = _mm_load_si128((const __m128i *)(input + 5 * 8 + 0)); + io[13] = _mm_load_si128((const __m128i *)(input + 5 * 8 + 4)); + io[10] = _mm_load_si128((const __m128i *)(input + 6 * 8 + 0)); + io[14] = _mm_load_si128((const __m128i *)(input + 6 * 8 + 4)); + io[11] = _mm_load_si128((const __m128i *)(input + 7 * 8 + 0)); + io[15] = _mm_load_si128((const __m128i *)(input + 7 * 8 + 4)); + io_short[4] = _mm_packs_epi32(io[8], io[12]); + io_short[5] = _mm_packs_epi32(io[9], io[13]); + io_short[6] = _mm_packs_epi32(io[10], io[14]); + io_short[7] = _mm_packs_epi32(io[11], io[15]); + + idct8_sse2(io_short); + idct8_sse2(io_short); + round_shift_8x8(io_short, io); + } else { + __m128i temp[4]; + + highbd_idct8x8_half1d(io); + + io[8] = _mm_load_si128((const __m128i *)(input + 4 * 8 + 0)); + io[12] = _mm_load_si128((const __m128i *)(input + 4 * 8 + 4)); + io[9] = _mm_load_si128((const __m128i *)(input + 5 * 8 + 0)); + io[13] = _mm_load_si128((const __m128i *)(input + 5 * 8 + 4)); + io[10] = _mm_load_si128((const __m128i *)(input + 6 * 8 + 0)); + io[14] = _mm_load_si128((const __m128i *)(input + 6 * 8 + 4)); + io[11] = _mm_load_si128((const __m128i *)(input + 7 * 8 + 0)); + io[15] = _mm_load_si128((const __m128i *)(input + 7 * 8 + 4)); + highbd_idct8x8_half1d(&io[8]); + + temp[0] = io[4]; + temp[1] = io[5]; + temp[2] = io[6]; + temp[3] = io[7]; + io[4] = io[8]; + io[5] = io[9]; + io[6] = io[10]; + io[7] = io[11]; + highbd_idct8x8_half1d(io); + + io[8] = temp[0]; + io[9] = temp[1]; + io[10] = temp[2]; + io[11] = temp[3]; + highbd_idct8x8_half1d(&io[8]); + + highbd_idct8x8_final_round(io); + } + + recon_and_store_8x8(io, dest, stride, bd); +} + +void vpx_highbd_idct8x8_12_add_sse2(const tran_low_t *input, uint16_t *dest, + int stride, int bd) { + const __m128i zero = _mm_setzero_si128(); + __m128i io[16]; + + io[0] = _mm_load_si128((const __m128i *)(input + 0 * 8 + 0)); + io[1] = _mm_load_si128((const __m128i *)(input + 1 * 8 + 0)); + io[2] = _mm_load_si128((const __m128i *)(input + 2 * 8 + 0)); + io[3] = _mm_load_si128((const __m128i *)(input + 3 * 8 + 0)); + + if (bd == 8) { + __m128i io_short[8]; + + io_short[0] = _mm_packs_epi32(io[0], zero); + io_short[1] = _mm_packs_epi32(io[1], zero); + io_short[2] = _mm_packs_epi32(io[2], zero); + io_short[3] = _mm_packs_epi32(io[3], zero); + + idct8x8_12_add_kernel_sse2(io_short); + round_shift_8x8(io_short, io); + } else { + __m128i temp[4]; + + highbd_idct8x8_12_half1d(io); + + temp[0] = io[4]; + temp[1] = io[5]; + temp[2] = io[6]; + temp[3] = io[7]; + highbd_idct8x8_12_half1d(io); + + io[8] = temp[0]; + io[9] = temp[1]; + io[10] = temp[2]; + io[11] = temp[3]; + highbd_idct8x8_12_half1d(&io[8]); + + highbd_idct8x8_final_round(io); + } + + recon_and_store_8x8(io, dest, stride, bd); +} + +void vpx_highbd_idct8x8_1_add_sse2(const tran_low_t *input, uint16_t *dest, + int stride, int bd) { + highbd_idct_1_add_kernel(input, dest, stride, bd, 8); +} diff --git a/vpx_dsp/x86/highbd_idct8x8_add_sse4.c b/vpx_dsp/x86/highbd_idct8x8_add_sse4.c new file mode 100644 index 0000000..ae391b2 --- /dev/null +++ b/vpx_dsp/x86/highbd_idct8x8_add_sse4.c @@ -0,0 +1,210 @@ +/* + * Copyright (c) 2017 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include // SSE4.1 + +#include "./vpx_dsp_rtcd.h" +#include "vpx_dsp/x86/highbd_inv_txfm_sse2.h" +#include "vpx_dsp/x86/highbd_inv_txfm_sse4.h" +#include "vpx_dsp/x86/inv_txfm_sse2.h" +#include "vpx_dsp/x86/inv_txfm_ssse3.h" +#include "vpx_dsp/x86/transpose_sse2.h" + +static void highbd_idct8x8_half1d(__m128i *const io) { + __m128i step1[8], step2[8]; + + transpose_32bit_4x4x2(io, io); + + // stage 1 + step1[0] = io[0]; + step1[2] = io[4]; + step1[1] = io[2]; + step1[3] = io[6]; + highbd_butterfly_sse4_1(io[1], io[7], cospi_28_64, cospi_4_64, &step1[4], + &step1[7]); + highbd_butterfly_sse4_1(io[5], io[3], cospi_12_64, cospi_20_64, &step1[5], + &step1[6]); + + // stage 2 + highbd_butterfly_cospi16_sse4_1(step1[0], step1[2], &step2[0], &step2[1]); + highbd_butterfly_sse4_1(step1[1], step1[3], cospi_24_64, cospi_8_64, + &step2[2], &step2[3]); + step2[4] = _mm_add_epi32(step1[4], step1[5]); + step2[5] = _mm_sub_epi32(step1[4], step1[5]); + step2[6] = _mm_sub_epi32(step1[7], step1[6]); + step2[7] = _mm_add_epi32(step1[7], step1[6]); + + // stage 3 + step1[0] = _mm_add_epi32(step2[0], step2[3]); + step1[1] = _mm_add_epi32(step2[1], step2[2]); + step1[2] = _mm_sub_epi32(step2[1], step2[2]); + step1[3] = _mm_sub_epi32(step2[0], step2[3]); + step1[4] = step2[4]; + highbd_butterfly_cospi16_sse4_1(step2[6], step2[5], &step1[6], &step1[5]); + step1[7] = step2[7]; + + // stage 4 + highbd_idct8_stage4(step1, io); +} + +static void highbd_idct8x8_12_half1d(__m128i *const io) { + __m128i temp1[2], step1[8], step2[8]; + + transpose_32bit_4x4(io, io); + + // stage 1 + step1[0] = io[0]; + step1[1] = io[2]; + extend_64bit(io[1], temp1); + step1[4] = multiplication_round_shift_sse4_1(temp1, cospi_28_64); + step1[7] = multiplication_round_shift_sse4_1(temp1, cospi_4_64); + extend_64bit(io[3], temp1); + step1[5] = multiplication_round_shift_sse4_1(temp1, -cospi_20_64); + step1[6] = multiplication_round_shift_sse4_1(temp1, cospi_12_64); + + // stage 2 + extend_64bit(step1[0], temp1); + step2[0] = multiplication_round_shift_sse4_1(temp1, cospi_16_64); + extend_64bit(step1[1], temp1); + step2[2] = multiplication_round_shift_sse4_1(temp1, cospi_24_64); + step2[3] = multiplication_round_shift_sse4_1(temp1, cospi_8_64); + step2[4] = _mm_add_epi32(step1[4], step1[5]); + step2[5] = _mm_sub_epi32(step1[4], step1[5]); + step2[6] = _mm_sub_epi32(step1[7], step1[6]); + step2[7] = _mm_add_epi32(step1[7], step1[6]); + + // stage 3 + step1[0] = _mm_add_epi32(step2[0], step2[3]); + step1[1] = _mm_add_epi32(step2[0], step2[2]); + step1[2] = _mm_sub_epi32(step2[0], step2[2]); + step1[3] = _mm_sub_epi32(step2[0], step2[3]); + step1[4] = step2[4]; + highbd_butterfly_cospi16_sse4_1(step2[6], step2[5], &step1[6], &step1[5]); + step1[7] = step2[7]; + + // stage 4 + highbd_idct8_stage4(step1, io); +} + +void vpx_highbd_idct8x8_64_add_sse4_1(const tran_low_t *input, uint16_t *dest, + int stride, int bd) { + __m128i io[16]; + + io[0] = _mm_load_si128((const __m128i *)(input + 0 * 8 + 0)); + io[4] = _mm_load_si128((const __m128i *)(input + 0 * 8 + 4)); + io[1] = _mm_load_si128((const __m128i *)(input + 1 * 8 + 0)); + io[5] = _mm_load_si128((const __m128i *)(input + 1 * 8 + 4)); + io[2] = _mm_load_si128((const __m128i *)(input + 2 * 8 + 0)); + io[6] = _mm_load_si128((const __m128i *)(input + 2 * 8 + 4)); + io[3] = _mm_load_si128((const __m128i *)(input + 3 * 8 + 0)); + io[7] = _mm_load_si128((const __m128i *)(input + 3 * 8 + 4)); + + if (bd == 8) { + __m128i io_short[8]; + + io_short[0] = _mm_packs_epi32(io[0], io[4]); + io_short[1] = _mm_packs_epi32(io[1], io[5]); + io_short[2] = _mm_packs_epi32(io[2], io[6]); + io_short[3] = _mm_packs_epi32(io[3], io[7]); + io[8] = _mm_load_si128((const __m128i *)(input + 4 * 8 + 0)); + io[12] = _mm_load_si128((const __m128i *)(input + 4 * 8 + 4)); + io[9] = _mm_load_si128((const __m128i *)(input + 5 * 8 + 0)); + io[13] = _mm_load_si128((const __m128i *)(input + 5 * 8 + 4)); + io[10] = _mm_load_si128((const __m128i *)(input + 6 * 8 + 0)); + io[14] = _mm_load_si128((const __m128i *)(input + 6 * 8 + 4)); + io[11] = _mm_load_si128((const __m128i *)(input + 7 * 8 + 0)); + io[15] = _mm_load_si128((const __m128i *)(input + 7 * 8 + 4)); + io_short[4] = _mm_packs_epi32(io[8], io[12]); + io_short[5] = _mm_packs_epi32(io[9], io[13]); + io_short[6] = _mm_packs_epi32(io[10], io[14]); + io_short[7] = _mm_packs_epi32(io[11], io[15]); + + idct8_sse2(io_short); + idct8_sse2(io_short); + round_shift_8x8(io_short, io); + } else { + __m128i temp[4]; + + highbd_idct8x8_half1d(io); + + io[8] = _mm_load_si128((const __m128i *)(input + 4 * 8 + 0)); + io[12] = _mm_load_si128((const __m128i *)(input + 4 * 8 + 4)); + io[9] = _mm_load_si128((const __m128i *)(input + 5 * 8 + 0)); + io[13] = _mm_load_si128((const __m128i *)(input + 5 * 8 + 4)); + io[10] = _mm_load_si128((const __m128i *)(input + 6 * 8 + 0)); + io[14] = _mm_load_si128((const __m128i *)(input + 6 * 8 + 4)); + io[11] = _mm_load_si128((const __m128i *)(input + 7 * 8 + 0)); + io[15] = _mm_load_si128((const __m128i *)(input + 7 * 8 + 4)); + highbd_idct8x8_half1d(&io[8]); + + temp[0] = io[4]; + temp[1] = io[5]; + temp[2] = io[6]; + temp[3] = io[7]; + io[4] = io[8]; + io[5] = io[9]; + io[6] = io[10]; + io[7] = io[11]; + highbd_idct8x8_half1d(io); + + io[8] = temp[0]; + io[9] = temp[1]; + io[10] = temp[2]; + io[11] = temp[3]; + highbd_idct8x8_half1d(&io[8]); + + highbd_idct8x8_final_round(io); + } + + recon_and_store_8x8(io, dest, stride, bd); +} + +void vpx_highbd_idct8x8_12_add_sse4_1(const tran_low_t *input, uint16_t *dest, + int stride, int bd) { + const __m128i zero = _mm_setzero_si128(); + __m128i io[16]; + + io[0] = _mm_load_si128((const __m128i *)(input + 0 * 8 + 0)); + io[1] = _mm_load_si128((const __m128i *)(input + 1 * 8 + 0)); + io[2] = _mm_load_si128((const __m128i *)(input + 2 * 8 + 0)); + io[3] = _mm_load_si128((const __m128i *)(input + 3 * 8 + 0)); + + if (bd == 8) { + __m128i io_short[8]; + + io_short[0] = _mm_packs_epi32(io[0], zero); + io_short[1] = _mm_packs_epi32(io[1], zero); + io_short[2] = _mm_packs_epi32(io[2], zero); + io_short[3] = _mm_packs_epi32(io[3], zero); + + idct8x8_12_add_kernel_ssse3(io_short); + round_shift_8x8(io_short, io); + } else { + __m128i temp[4]; + + highbd_idct8x8_12_half1d(io); + + temp[0] = io[4]; + temp[1] = io[5]; + temp[2] = io[6]; + temp[3] = io[7]; + highbd_idct8x8_12_half1d(io); + + io[8] = temp[0]; + io[9] = temp[1]; + io[10] = temp[2]; + io[11] = temp[3]; + highbd_idct8x8_12_half1d(&io[8]); + + highbd_idct8x8_final_round(io); + } + + recon_and_store_8x8(io, dest, stride, bd); +} diff --git a/vpx_dsp/x86/highbd_intrapred_intrin_sse2.c b/vpx_dsp/x86/highbd_intrapred_intrin_sse2.c new file mode 100644 index 0000000..2051381 --- /dev/null +++ b/vpx_dsp/x86/highbd_intrapred_intrin_sse2.c @@ -0,0 +1,533 @@ +/* + * Copyright (c) 2017 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include // SSE2 + +#include "./vpx_config.h" +#include "./vpx_dsp_rtcd.h" +#include "vpx/vpx_integer.h" + +// ----------------------------------------------------------------------------- + +void vpx_highbd_h_predictor_4x4_sse2(uint16_t *dst, ptrdiff_t stride, + const uint16_t *above, + const uint16_t *left, int bd) { + const __m128i left_u16 = _mm_loadl_epi64((const __m128i *)left); + const __m128i row0 = _mm_shufflelo_epi16(left_u16, 0x0); + const __m128i row1 = _mm_shufflelo_epi16(left_u16, 0x55); + const __m128i row2 = _mm_shufflelo_epi16(left_u16, 0xaa); + const __m128i row3 = _mm_shufflelo_epi16(left_u16, 0xff); + (void)above; + (void)bd; + _mm_storel_epi64((__m128i *)dst, row0); + dst += stride; + _mm_storel_epi64((__m128i *)dst, row1); + dst += stride; + _mm_storel_epi64((__m128i *)dst, row2); + dst += stride; + _mm_storel_epi64((__m128i *)dst, row3); +} + +void vpx_highbd_h_predictor_8x8_sse2(uint16_t *dst, ptrdiff_t stride, + const uint16_t *above, + const uint16_t *left, int bd) { + const __m128i left_u16 = _mm_load_si128((const __m128i *)left); + const __m128i row0 = _mm_shufflelo_epi16(left_u16, 0x0); + const __m128i row1 = _mm_shufflelo_epi16(left_u16, 0x55); + const __m128i row2 = _mm_shufflelo_epi16(left_u16, 0xaa); + const __m128i row3 = _mm_shufflelo_epi16(left_u16, 0xff); + const __m128i row4 = _mm_shufflehi_epi16(left_u16, 0x0); + const __m128i row5 = _mm_shufflehi_epi16(left_u16, 0x55); + const __m128i row6 = _mm_shufflehi_epi16(left_u16, 0xaa); + const __m128i row7 = _mm_shufflehi_epi16(left_u16, 0xff); + (void)above; + (void)bd; + _mm_store_si128((__m128i *)dst, _mm_unpacklo_epi64(row0, row0)); + dst += stride; + _mm_store_si128((__m128i *)dst, _mm_unpacklo_epi64(row1, row1)); + dst += stride; + _mm_store_si128((__m128i *)dst, _mm_unpacklo_epi64(row2, row2)); + dst += stride; + _mm_store_si128((__m128i *)dst, _mm_unpacklo_epi64(row3, row3)); + dst += stride; + _mm_store_si128((__m128i *)dst, _mm_unpackhi_epi64(row4, row4)); + dst += stride; + _mm_store_si128((__m128i *)dst, _mm_unpackhi_epi64(row5, row5)); + dst += stride; + _mm_store_si128((__m128i *)dst, _mm_unpackhi_epi64(row6, row6)); + dst += stride; + _mm_store_si128((__m128i *)dst, _mm_unpackhi_epi64(row7, row7)); +} + +static INLINE void h_store_16_unpacklo(uint16_t **dst, const ptrdiff_t stride, + const __m128i *row) { + const __m128i val = _mm_unpacklo_epi64(*row, *row); + _mm_store_si128((__m128i *)*dst, val); + _mm_store_si128((__m128i *)(*dst + 8), val); + *dst += stride; +} + +static INLINE void h_store_16_unpackhi(uint16_t **dst, const ptrdiff_t stride, + const __m128i *row) { + const __m128i val = _mm_unpackhi_epi64(*row, *row); + _mm_store_si128((__m128i *)(*dst), val); + _mm_store_si128((__m128i *)(*dst + 8), val); + *dst += stride; +} + +void vpx_highbd_h_predictor_16x16_sse2(uint16_t *dst, ptrdiff_t stride, + const uint16_t *above, + const uint16_t *left, int bd) { + int i; + (void)above; + (void)bd; + + for (i = 0; i < 2; i++, left += 8) { + const __m128i left_u16 = _mm_load_si128((const __m128i *)left); + const __m128i row0 = _mm_shufflelo_epi16(left_u16, 0x0); + const __m128i row1 = _mm_shufflelo_epi16(left_u16, 0x55); + const __m128i row2 = _mm_shufflelo_epi16(left_u16, 0xaa); + const __m128i row3 = _mm_shufflelo_epi16(left_u16, 0xff); + const __m128i row4 = _mm_shufflehi_epi16(left_u16, 0x0); + const __m128i row5 = _mm_shufflehi_epi16(left_u16, 0x55); + const __m128i row6 = _mm_shufflehi_epi16(left_u16, 0xaa); + const __m128i row7 = _mm_shufflehi_epi16(left_u16, 0xff); + h_store_16_unpacklo(&dst, stride, &row0); + h_store_16_unpacklo(&dst, stride, &row1); + h_store_16_unpacklo(&dst, stride, &row2); + h_store_16_unpacklo(&dst, stride, &row3); + h_store_16_unpackhi(&dst, stride, &row4); + h_store_16_unpackhi(&dst, stride, &row5); + h_store_16_unpackhi(&dst, stride, &row6); + h_store_16_unpackhi(&dst, stride, &row7); + } +} + +static INLINE void h_store_32_unpacklo(uint16_t **dst, const ptrdiff_t stride, + const __m128i *row) { + const __m128i val = _mm_unpacklo_epi64(*row, *row); + _mm_store_si128((__m128i *)(*dst), val); + _mm_store_si128((__m128i *)(*dst + 8), val); + _mm_store_si128((__m128i *)(*dst + 16), val); + _mm_store_si128((__m128i *)(*dst + 24), val); + *dst += stride; +} + +static INLINE void h_store_32_unpackhi(uint16_t **dst, const ptrdiff_t stride, + const __m128i *row) { + const __m128i val = _mm_unpackhi_epi64(*row, *row); + _mm_store_si128((__m128i *)(*dst), val); + _mm_store_si128((__m128i *)(*dst + 8), val); + _mm_store_si128((__m128i *)(*dst + 16), val); + _mm_store_si128((__m128i *)(*dst + 24), val); + *dst += stride; +} + +void vpx_highbd_h_predictor_32x32_sse2(uint16_t *dst, ptrdiff_t stride, + const uint16_t *above, + const uint16_t *left, int bd) { + int i; + (void)above; + (void)bd; + + for (i = 0; i < 4; i++, left += 8) { + const __m128i left_u16 = _mm_load_si128((const __m128i *)left); + const __m128i row0 = _mm_shufflelo_epi16(left_u16, 0x0); + const __m128i row1 = _mm_shufflelo_epi16(left_u16, 0x55); + const __m128i row2 = _mm_shufflelo_epi16(left_u16, 0xaa); + const __m128i row3 = _mm_shufflelo_epi16(left_u16, 0xff); + const __m128i row4 = _mm_shufflehi_epi16(left_u16, 0x0); + const __m128i row5 = _mm_shufflehi_epi16(left_u16, 0x55); + const __m128i row6 = _mm_shufflehi_epi16(left_u16, 0xaa); + const __m128i row7 = _mm_shufflehi_epi16(left_u16, 0xff); + h_store_32_unpacklo(&dst, stride, &row0); + h_store_32_unpacklo(&dst, stride, &row1); + h_store_32_unpacklo(&dst, stride, &row2); + h_store_32_unpacklo(&dst, stride, &row3); + h_store_32_unpackhi(&dst, stride, &row4); + h_store_32_unpackhi(&dst, stride, &row5); + h_store_32_unpackhi(&dst, stride, &row6); + h_store_32_unpackhi(&dst, stride, &row7); + } +} + +//------------------------------------------------------------------------------ +// DC 4x4 + +static INLINE __m128i dc_sum_4(const uint16_t *ref) { + const __m128i _dcba = _mm_loadl_epi64((const __m128i *)ref); + const __m128i _xxdc = _mm_shufflelo_epi16(_dcba, 0xe); + const __m128i a = _mm_add_epi16(_dcba, _xxdc); + return _mm_add_epi16(a, _mm_shufflelo_epi16(a, 0x1)); +} + +static INLINE void dc_store_4x4(uint16_t *dst, ptrdiff_t stride, + const __m128i *dc) { + const __m128i dc_dup = _mm_shufflelo_epi16(*dc, 0x0); + int i; + for (i = 0; i < 4; ++i, dst += stride) { + _mm_storel_epi64((__m128i *)dst, dc_dup); + } +} + +void vpx_highbd_dc_left_predictor_4x4_sse2(uint16_t *dst, ptrdiff_t stride, + const uint16_t *above, + const uint16_t *left, int bd) { + const __m128i two = _mm_cvtsi32_si128(2); + const __m128i sum = dc_sum_4(left); + const __m128i dc = _mm_srli_epi16(_mm_add_epi16(sum, two), 2); + (void)above; + (void)bd; + dc_store_4x4(dst, stride, &dc); +} + +void vpx_highbd_dc_top_predictor_4x4_sse2(uint16_t *dst, ptrdiff_t stride, + const uint16_t *above, + const uint16_t *left, int bd) { + const __m128i two = _mm_cvtsi32_si128(2); + const __m128i sum = dc_sum_4(above); + const __m128i dc = _mm_srli_epi16(_mm_add_epi16(sum, two), 2); + (void)left; + (void)bd; + dc_store_4x4(dst, stride, &dc); +} + +void vpx_highbd_dc_128_predictor_4x4_sse2(uint16_t *dst, ptrdiff_t stride, + const uint16_t *above, + const uint16_t *left, int bd) { + const __m128i dc = _mm_cvtsi32_si128(1 << (bd - 1)); + const __m128i dc_dup = _mm_shufflelo_epi16(dc, 0x0); + (void)above; + (void)left; + dc_store_4x4(dst, stride, &dc_dup); +} + +//------------------------------------------------------------------------------ +// DC 8x8 + +static INLINE __m128i dc_sum_8(const uint16_t *ref) { + const __m128i ref_u16 = _mm_load_si128((const __m128i *)ref); + const __m128i _dcba = _mm_add_epi16(ref_u16, _mm_srli_si128(ref_u16, 8)); + const __m128i _xxdc = _mm_shufflelo_epi16(_dcba, 0xe); + const __m128i a = _mm_add_epi16(_dcba, _xxdc); + + return _mm_add_epi16(a, _mm_shufflelo_epi16(a, 0x1)); +} + +static INLINE void dc_store_8x8(uint16_t *dst, ptrdiff_t stride, + const __m128i *dc) { + const __m128i dc_dup_lo = _mm_shufflelo_epi16(*dc, 0); + const __m128i dc_dup = _mm_unpacklo_epi64(dc_dup_lo, dc_dup_lo); + int i; + for (i = 0; i < 8; ++i, dst += stride) { + _mm_store_si128((__m128i *)dst, dc_dup); + } +} + +void vpx_highbd_dc_left_predictor_8x8_sse2(uint16_t *dst, ptrdiff_t stride, + const uint16_t *above, + const uint16_t *left, int bd) { + const __m128i four = _mm_cvtsi32_si128(4); + const __m128i sum = dc_sum_8(left); + const __m128i dc = _mm_srli_epi16(_mm_add_epi16(sum, four), 3); + (void)above; + (void)bd; + dc_store_8x8(dst, stride, &dc); +} + +void vpx_highbd_dc_top_predictor_8x8_sse2(uint16_t *dst, ptrdiff_t stride, + const uint16_t *above, + const uint16_t *left, int bd) { + const __m128i four = _mm_cvtsi32_si128(4); + const __m128i sum = dc_sum_8(above); + const __m128i dc = _mm_srli_epi16(_mm_add_epi16(sum, four), 3); + (void)left; + (void)bd; + dc_store_8x8(dst, stride, &dc); +} + +void vpx_highbd_dc_128_predictor_8x8_sse2(uint16_t *dst, ptrdiff_t stride, + const uint16_t *above, + const uint16_t *left, int bd) { + const __m128i dc = _mm_cvtsi32_si128(1 << (bd - 1)); + const __m128i dc_dup = _mm_shufflelo_epi16(dc, 0x0); + (void)above; + (void)left; + dc_store_8x8(dst, stride, &dc_dup); +} + +//------------------------------------------------------------------------------ +// DC 16x16 + +static INLINE __m128i dc_sum_16(const uint16_t *ref) { + const __m128i sum_lo = dc_sum_8(ref); + const __m128i sum_hi = dc_sum_8(ref + 8); + return _mm_add_epi16(sum_lo, sum_hi); +} + +static INLINE void dc_store_16x16(uint16_t *dst, ptrdiff_t stride, + const __m128i *dc) { + const __m128i dc_dup_lo = _mm_shufflelo_epi16(*dc, 0); + const __m128i dc_dup = _mm_unpacklo_epi64(dc_dup_lo, dc_dup_lo); + int i; + for (i = 0; i < 16; ++i, dst += stride) { + _mm_store_si128((__m128i *)dst, dc_dup); + _mm_store_si128((__m128i *)(dst + 8), dc_dup); + } +} + +void vpx_highbd_dc_left_predictor_16x16_sse2(uint16_t *dst, ptrdiff_t stride, + const uint16_t *above, + const uint16_t *left, int bd) { + const __m128i eight = _mm_cvtsi32_si128(8); + const __m128i sum = dc_sum_16(left); + const __m128i dc = _mm_srli_epi16(_mm_add_epi16(sum, eight), 4); + (void)above; + (void)bd; + dc_store_16x16(dst, stride, &dc); +} + +void vpx_highbd_dc_top_predictor_16x16_sse2(uint16_t *dst, ptrdiff_t stride, + const uint16_t *above, + const uint16_t *left, int bd) { + const __m128i eight = _mm_cvtsi32_si128(8); + const __m128i sum = dc_sum_16(above); + const __m128i dc = _mm_srli_epi16(_mm_add_epi16(sum, eight), 4); + (void)left; + (void)bd; + dc_store_16x16(dst, stride, &dc); +} + +void vpx_highbd_dc_128_predictor_16x16_sse2(uint16_t *dst, ptrdiff_t stride, + const uint16_t *above, + const uint16_t *left, int bd) { + const __m128i dc = _mm_cvtsi32_si128(1 << (bd - 1)); + const __m128i dc_dup = _mm_shufflelo_epi16(dc, 0x0); + (void)above; + (void)left; + dc_store_16x16(dst, stride, &dc_dup); +} + +//------------------------------------------------------------------------------ +// DC 32x32 + +static INLINE __m128i dc_sum_32(const uint16_t *ref) { + const __m128i zero = _mm_setzero_si128(); + const __m128i sum_a = dc_sum_16(ref); + const __m128i sum_b = dc_sum_16(ref + 16); + // 12 bit bd will outrange, so expand to 32 bit before adding final total + return _mm_add_epi32(_mm_unpacklo_epi16(sum_a, zero), + _mm_unpacklo_epi16(sum_b, zero)); +} + +static INLINE void dc_store_32x32(uint16_t *dst, ptrdiff_t stride, + const __m128i *dc) { + const __m128i dc_dup_lo = _mm_shufflelo_epi16(*dc, 0); + const __m128i dc_dup = _mm_unpacklo_epi64(dc_dup_lo, dc_dup_lo); + int i; + for (i = 0; i < 32; ++i, dst += stride) { + _mm_store_si128((__m128i *)dst, dc_dup); + _mm_store_si128((__m128i *)(dst + 8), dc_dup); + _mm_store_si128((__m128i *)(dst + 16), dc_dup); + _mm_store_si128((__m128i *)(dst + 24), dc_dup); + } +} + +void vpx_highbd_dc_left_predictor_32x32_sse2(uint16_t *dst, ptrdiff_t stride, + const uint16_t *above, + const uint16_t *left, int bd) { + const __m128i sixteen = _mm_cvtsi32_si128(16); + const __m128i sum = dc_sum_32(left); + const __m128i dc = _mm_srli_epi32(_mm_add_epi32(sum, sixteen), 5); + (void)above; + (void)bd; + dc_store_32x32(dst, stride, &dc); +} + +void vpx_highbd_dc_top_predictor_32x32_sse2(uint16_t *dst, ptrdiff_t stride, + const uint16_t *above, + const uint16_t *left, int bd) { + const __m128i sixteen = _mm_cvtsi32_si128(16); + const __m128i sum = dc_sum_32(above); + const __m128i dc = _mm_srli_epi32(_mm_add_epi32(sum, sixteen), 5); + (void)left; + (void)bd; + dc_store_32x32(dst, stride, &dc); +} + +void vpx_highbd_dc_128_predictor_32x32_sse2(uint16_t *dst, ptrdiff_t stride, + const uint16_t *above, + const uint16_t *left, int bd) { + const __m128i dc = _mm_cvtsi32_si128(1 << (bd - 1)); + const __m128i dc_dup = _mm_shufflelo_epi16(dc, 0x0); + (void)above; + (void)left; + dc_store_32x32(dst, stride, &dc_dup); +} + +// ----------------------------------------------------------------------------- +/* +; ------------------------------------------ +; input: x, y, z, result +; +; trick from pascal +; (x+2y+z+2)>>2 can be calculated as: +; result = avg(x,z) +; result -= xor(x,z) & 1 +; result = avg(result,y) +; ------------------------------------------ +*/ +static INLINE __m128i avg3_epu16(const __m128i *x, const __m128i *y, + const __m128i *z) { + const __m128i one = _mm_set1_epi16(1); + const __m128i a = _mm_avg_epu16(*x, *z); + const __m128i b = + _mm_subs_epu16(a, _mm_and_si128(_mm_xor_si128(*x, *z), one)); + return _mm_avg_epu16(b, *y); +} + +void vpx_highbd_d117_predictor_4x4_sse2(uint16_t *dst, ptrdiff_t stride, + const uint16_t *above, + const uint16_t *left, int bd) { + const int I = left[0]; + const int J = left[1]; + const int K = left[2]; + const __m128i XXXXABCD = _mm_loadu_si128((const __m128i *)(above - 4)); + const __m128i KXXXABCD = _mm_insert_epi16(XXXXABCD, K, 0); + const __m128i KJXXABCD = _mm_insert_epi16(KXXXABCD, J, 1); + const __m128i KJIXABCD = _mm_insert_epi16(KJXXABCD, I, 2); + const __m128i JIXABCD0 = _mm_srli_si128(KJIXABCD, 2); + const __m128i IXABCD00 = _mm_srli_si128(KJIXABCD, 4); + const __m128i avg2 = _mm_avg_epu16(KJIXABCD, JIXABCD0); + const __m128i avg3 = avg3_epu16(&KJIXABCD, &JIXABCD0, &IXABCD00); + const __m128i row0 = _mm_srli_si128(avg2, 6); + const __m128i row1 = _mm_srli_si128(avg3, 4); + const __m128i row2 = _mm_srli_si128(avg2, 4); + const __m128i row3 = _mm_srli_si128(avg3, 2); + (void)bd; + _mm_storel_epi64((__m128i *)dst, row0); + dst += stride; + _mm_storel_epi64((__m128i *)dst, row1); + dst += stride; + _mm_storel_epi64((__m128i *)dst, row2); + dst += stride; + _mm_storel_epi64((__m128i *)dst, row3); + + dst -= stride; + dst[0] = _mm_extract_epi16(avg3, 1); + dst[stride] = _mm_extract_epi16(avg3, 0); +} + +void vpx_highbd_d135_predictor_4x4_sse2(uint16_t *dst, ptrdiff_t stride, + const uint16_t *above, + const uint16_t *left, int bd) { + const int I = left[0]; + const int J = left[1]; + const int K = left[2]; + const int L = left[3]; + const __m128i XXXXABCD = _mm_loadu_si128((const __m128i *)(above - 4)); + const __m128i KXXXABCD = _mm_insert_epi16(XXXXABCD, K, 0); + const __m128i KJXXABCD = _mm_insert_epi16(KXXXABCD, J, 1); + const __m128i KJIXABCD = _mm_insert_epi16(KJXXABCD, I, 2); + const __m128i JIXABCD0 = _mm_srli_si128(KJIXABCD, 2); + const __m128i LKJIXABC = _mm_insert_epi16(_mm_slli_si128(KJIXABCD, 2), L, 0); + const __m128i avg3 = avg3_epu16(&JIXABCD0, &KJIXABCD, &LKJIXABC); + const __m128i row0 = _mm_srli_si128(avg3, 6); + const __m128i row1 = _mm_srli_si128(avg3, 4); + const __m128i row2 = _mm_srli_si128(avg3, 2); + const __m128i row3 = avg3; + (void)bd; + _mm_storel_epi64((__m128i *)dst, row0); + dst += stride; + _mm_storel_epi64((__m128i *)dst, row1); + dst += stride; + _mm_storel_epi64((__m128i *)dst, row2); + dst += stride; + _mm_storel_epi64((__m128i *)dst, row3); +} + +void vpx_highbd_d153_predictor_4x4_sse2(uint16_t *dst, ptrdiff_t stride, + const uint16_t *above, + const uint16_t *left, int bd) { + const int I = left[0]; + const int J = left[1]; + const int K = left[2]; + const int L = left[3]; + const __m128i XXXXXABC = _mm_loadu_si128((const __m128i *)(above - 5)); + const __m128i LXXXXABC = _mm_insert_epi16(XXXXXABC, L, 0); + const __m128i LKXXXABC = _mm_insert_epi16(LXXXXABC, K, 1); + const __m128i LKJXXABC = _mm_insert_epi16(LKXXXABC, J, 2); + const __m128i LKJIXABC = _mm_insert_epi16(LKJXXABC, I, 3); + const __m128i KJIXABC0 = _mm_srli_si128(LKJIXABC, 2); + const __m128i JIXABC00 = _mm_srli_si128(LKJIXABC, 4); + const __m128i avg3 = avg3_epu16(&LKJIXABC, &KJIXABC0, &JIXABC00); + const __m128i avg2 = _mm_avg_epu16(LKJIXABC, KJIXABC0); + const __m128i row3 = _mm_unpacklo_epi16(avg2, avg3); + const __m128i row2 = _mm_srli_si128(row3, 4); + const __m128i row1 = _mm_srli_si128(row3, 8); + const __m128i row0 = _mm_srli_si128(avg3, 4); + (void)bd; + _mm_storel_epi64((__m128i *)dst, row0); + dst[0] = _mm_extract_epi16(avg2, 3); + dst += stride; + _mm_storel_epi64((__m128i *)dst, row1); + dst += stride; + _mm_storel_epi64((__m128i *)dst, row2); + dst += stride; + _mm_storel_epi64((__m128i *)dst, row3); +} + +void vpx_highbd_d207_predictor_4x4_sse2(uint16_t *dst, ptrdiff_t stride, + const uint16_t *above, + const uint16_t *left, int bd) { + const __m128i IJKL0000 = _mm_load_si128((const __m128i *)left); + const __m128i LLLL0000 = _mm_shufflelo_epi16(IJKL0000, 0xff); + const __m128i IJKLLLLL = _mm_unpacklo_epi64(IJKL0000, LLLL0000); + const __m128i JKLLLLL0 = _mm_srli_si128(IJKLLLLL, 2); + const __m128i KLLLLL00 = _mm_srli_si128(IJKLLLLL, 4); + const __m128i avg3 = avg3_epu16(&IJKLLLLL, &JKLLLLL0, &KLLLLL00); + const __m128i avg2 = _mm_avg_epu16(IJKLLLLL, JKLLLLL0); + const __m128i row0 = _mm_unpacklo_epi16(avg2, avg3); + const __m128i row1 = _mm_srli_si128(row0, 4); + const __m128i row2 = _mm_srli_si128(row0, 8); + const __m128i row3 = LLLL0000; + (void)above; + (void)bd; + _mm_storel_epi64((__m128i *)dst, row0); + dst += stride; + _mm_storel_epi64((__m128i *)dst, row1); + dst += stride; + _mm_storel_epi64((__m128i *)dst, row2); + dst += stride; + _mm_storel_epi64((__m128i *)dst, row3); +} + +void vpx_highbd_d63_predictor_4x4_sse2(uint16_t *dst, ptrdiff_t stride, + const uint16_t *above, + const uint16_t *left, int bd) { + const __m128i ABCDEFGH = _mm_loadu_si128((const __m128i *)above); + const __m128i BCDEFGH0 = _mm_srli_si128(ABCDEFGH, 2); + const __m128i CDEFGH00 = _mm_srli_si128(ABCDEFGH, 4); + const __m128i avg3 = avg3_epu16(&ABCDEFGH, &BCDEFGH0, &CDEFGH00); + const __m128i avg2 = _mm_avg_epu16(ABCDEFGH, BCDEFGH0); + const __m128i row0 = avg2; + const __m128i row1 = avg3; + const __m128i row2 = _mm_srli_si128(avg2, 2); + const __m128i row3 = _mm_srli_si128(avg3, 2); + (void)left; + (void)bd; + _mm_storel_epi64((__m128i *)dst, row0); + dst += stride; + _mm_storel_epi64((__m128i *)dst, row1); + dst += stride; + _mm_storel_epi64((__m128i *)dst, row2); + dst += stride; + _mm_storel_epi64((__m128i *)dst, row3); +} diff --git a/vpx_dsp/x86/highbd_intrapred_intrin_ssse3.c b/vpx_dsp/x86/highbd_intrapred_intrin_ssse3.c new file mode 100644 index 0000000..b9dcef2 --- /dev/null +++ b/vpx_dsp/x86/highbd_intrapred_intrin_ssse3.c @@ -0,0 +1,930 @@ +/* + * Copyright (c) 2017 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include + +#include "./vpx_config.h" +#include "./vpx_dsp_rtcd.h" +#include "vpx/vpx_integer.h" + +// ----------------------------------------------------------------------------- +/* +; ------------------------------------------ +; input: x, y, z, result +; +; trick from pascal +; (x+2y+z+2)>>2 can be calculated as: +; result = avg(x,z) +; result -= xor(x,z) & 1 +; result = avg(result,y) +; ------------------------------------------ +*/ +static INLINE __m128i avg3_epu16(const __m128i *x, const __m128i *y, + const __m128i *z) { + const __m128i one = _mm_set1_epi16(1); + const __m128i a = _mm_avg_epu16(*x, *z); + const __m128i b = + _mm_subs_epu16(a, _mm_and_si128(_mm_xor_si128(*x, *z), one)); + return _mm_avg_epu16(b, *y); +} + +void vpx_highbd_d45_predictor_4x4_ssse3(uint16_t *dst, ptrdiff_t stride, + const uint16_t *above, + const uint16_t *left, int bd) { + const __m128i ABCDEFGH = _mm_loadu_si128((const __m128i *)above); + const __m128i BCDEFGH0 = _mm_srli_si128(ABCDEFGH, 2); + const __m128i CDEFGH00 = _mm_srli_si128(ABCDEFGH, 4); + const __m128i avg3 = avg3_epu16(&ABCDEFGH, &BCDEFGH0, &CDEFGH00); + (void)left; + (void)bd; + _mm_storel_epi64((__m128i *)dst, avg3); + dst += stride; + _mm_storel_epi64((__m128i *)dst, _mm_srli_si128(avg3, 2)); + dst += stride; + _mm_storel_epi64((__m128i *)dst, _mm_srli_si128(avg3, 4)); + dst += stride; + _mm_storel_epi64((__m128i *)dst, _mm_srli_si128(avg3, 6)); + dst[3] = above[7]; // aka H +} + +static INLINE void d45_store_8(uint16_t **dst, const ptrdiff_t stride, + __m128i *row, const __m128i *ar) { + *row = _mm_alignr_epi8(*ar, *row, 2); + _mm_store_si128((__m128i *)*dst, *row); + *dst += stride; +} + +void vpx_highbd_d45_predictor_8x8_ssse3(uint16_t *dst, ptrdiff_t stride, + const uint16_t *above, + const uint16_t *left, int bd) { + const __m128i ABCDEFGH = _mm_load_si128((const __m128i *)above); + const __m128i ABCDHHHH = _mm_shufflehi_epi16(ABCDEFGH, 0xff); + const __m128i HHHHHHHH = _mm_unpackhi_epi64(ABCDHHHH, ABCDHHHH); + const __m128i BCDEFGHH = _mm_alignr_epi8(HHHHHHHH, ABCDEFGH, 2); + const __m128i CDEFGHHH = _mm_alignr_epi8(HHHHHHHH, ABCDEFGH, 4); + __m128i avg3 = avg3_epu16(&ABCDEFGH, &BCDEFGHH, &CDEFGHHH); + (void)left; + (void)bd; + _mm_store_si128((__m128i *)dst, avg3); + dst += stride; + d45_store_8(&dst, stride, &avg3, &HHHHHHHH); + d45_store_8(&dst, stride, &avg3, &HHHHHHHH); + d45_store_8(&dst, stride, &avg3, &HHHHHHHH); + d45_store_8(&dst, stride, &avg3, &HHHHHHHH); + d45_store_8(&dst, stride, &avg3, &HHHHHHHH); + d45_store_8(&dst, stride, &avg3, &HHHHHHHH); + d45_store_8(&dst, stride, &avg3, &HHHHHHHH); +} + +static INLINE void d45_store_16(uint16_t **dst, const ptrdiff_t stride, + __m128i *row_0, __m128i *row_1, + const __m128i *ar) { + *row_0 = _mm_alignr_epi8(*row_1, *row_0, 2); + *row_1 = _mm_alignr_epi8(*ar, *row_1, 2); + _mm_store_si128((__m128i *)*dst, *row_0); + _mm_store_si128((__m128i *)(*dst + 8), *row_1); + *dst += stride; +} + +void vpx_highbd_d45_predictor_16x16_ssse3(uint16_t *dst, ptrdiff_t stride, + const uint16_t *above, + const uint16_t *left, int bd) { + const __m128i A0 = _mm_load_si128((const __m128i *)above); + const __m128i A1 = _mm_load_si128((const __m128i *)(above + 8)); + const __m128i AR0 = _mm_shufflehi_epi16(A1, 0xff); + const __m128i AR = _mm_unpackhi_epi64(AR0, AR0); + const __m128i B0 = _mm_alignr_epi8(A1, A0, 2); + const __m128i B1 = _mm_alignr_epi8(AR, A1, 2); + const __m128i C0 = _mm_alignr_epi8(A1, A0, 4); + const __m128i C1 = _mm_alignr_epi8(AR, A1, 4); + __m128i avg3_0 = avg3_epu16(&A0, &B0, &C0); + __m128i avg3_1 = avg3_epu16(&A1, &B1, &C1); + (void)left; + (void)bd; + _mm_store_si128((__m128i *)dst, avg3_0); + _mm_store_si128((__m128i *)(dst + 8), avg3_1); + dst += stride; + d45_store_16(&dst, stride, &avg3_0, &avg3_1, &AR); + d45_store_16(&dst, stride, &avg3_0, &avg3_1, &AR); + d45_store_16(&dst, stride, &avg3_0, &avg3_1, &AR); + d45_store_16(&dst, stride, &avg3_0, &avg3_1, &AR); + d45_store_16(&dst, stride, &avg3_0, &avg3_1, &AR); + d45_store_16(&dst, stride, &avg3_0, &avg3_1, &AR); + d45_store_16(&dst, stride, &avg3_0, &avg3_1, &AR); + d45_store_16(&dst, stride, &avg3_0, &avg3_1, &AR); + d45_store_16(&dst, stride, &avg3_0, &avg3_1, &AR); + d45_store_16(&dst, stride, &avg3_0, &avg3_1, &AR); + d45_store_16(&dst, stride, &avg3_0, &avg3_1, &AR); + d45_store_16(&dst, stride, &avg3_0, &avg3_1, &AR); + d45_store_16(&dst, stride, &avg3_0, &avg3_1, &AR); + d45_store_16(&dst, stride, &avg3_0, &avg3_1, &AR); + d45_store_16(&dst, stride, &avg3_0, &avg3_1, &AR); +} + +void vpx_highbd_d45_predictor_32x32_ssse3(uint16_t *dst, ptrdiff_t stride, + const uint16_t *above, + const uint16_t *left, int bd) { + const __m128i A0 = _mm_load_si128((const __m128i *)above); + const __m128i A1 = _mm_load_si128((const __m128i *)(above + 8)); + const __m128i A2 = _mm_load_si128((const __m128i *)(above + 16)); + const __m128i A3 = _mm_load_si128((const __m128i *)(above + 24)); + const __m128i AR0 = _mm_shufflehi_epi16(A3, 0xff); + const __m128i AR = _mm_unpackhi_epi64(AR0, AR0); + const __m128i B0 = _mm_alignr_epi8(A1, A0, 2); + const __m128i B1 = _mm_alignr_epi8(A2, A1, 2); + const __m128i B2 = _mm_alignr_epi8(A3, A2, 2); + const __m128i B3 = _mm_alignr_epi8(AR, A3, 2); + const __m128i C0 = _mm_alignr_epi8(A1, A0, 4); + const __m128i C1 = _mm_alignr_epi8(A2, A1, 4); + const __m128i C2 = _mm_alignr_epi8(A3, A2, 4); + const __m128i C3 = _mm_alignr_epi8(AR, A3, 4); + __m128i avg3_0 = avg3_epu16(&A0, &B0, &C0); + __m128i avg3_1 = avg3_epu16(&A1, &B1, &C1); + __m128i avg3_2 = avg3_epu16(&A2, &B2, &C2); + __m128i avg3_3 = avg3_epu16(&A3, &B3, &C3); + int i; + (void)left; + (void)bd; + _mm_store_si128((__m128i *)dst, avg3_0); + _mm_store_si128((__m128i *)(dst + 8), avg3_1); + _mm_store_si128((__m128i *)(dst + 16), avg3_2); + _mm_store_si128((__m128i *)(dst + 24), avg3_3); + dst += stride; + for (i = 1; i < 32; ++i) { + avg3_0 = _mm_alignr_epi8(avg3_1, avg3_0, 2); + avg3_1 = _mm_alignr_epi8(avg3_2, avg3_1, 2); + avg3_2 = _mm_alignr_epi8(avg3_3, avg3_2, 2); + avg3_3 = _mm_alignr_epi8(AR, avg3_3, 2); + _mm_store_si128((__m128i *)dst, avg3_0); + _mm_store_si128((__m128i *)(dst + 8), avg3_1); + _mm_store_si128((__m128i *)(dst + 16), avg3_2); + _mm_store_si128((__m128i *)(dst + 24), avg3_3); + dst += stride; + } +} + +DECLARE_ALIGNED(16, static const uint8_t, rotate_right_epu16[16]) = { + 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 0, 1 +}; + +static INLINE __m128i rotr_epu16(__m128i *a, const __m128i *rotrw) { + *a = _mm_shuffle_epi8(*a, *rotrw); + return *a; +} + +void vpx_highbd_d117_predictor_8x8_ssse3(uint16_t *dst, ptrdiff_t stride, + const uint16_t *above, + const uint16_t *left, int bd) { + const __m128i rotrw = _mm_load_si128((const __m128i *)rotate_right_epu16); + const __m128i XABCDEFG = _mm_loadu_si128((const __m128i *)(above - 1)); + const __m128i ABCDEFGH = _mm_load_si128((const __m128i *)above); + const __m128i IJKLMNOP = _mm_load_si128((const __m128i *)left); + const __m128i IXABCDEF = + _mm_alignr_epi8(XABCDEFG, _mm_slli_si128(IJKLMNOP, 14), 14); + const __m128i avg3 = avg3_epu16(&ABCDEFGH, &XABCDEFG, &IXABCDEF); + const __m128i avg2 = _mm_avg_epu16(ABCDEFGH, XABCDEFG); + const __m128i XIJKLMNO = + _mm_alignr_epi8(IJKLMNOP, _mm_slli_si128(XABCDEFG, 14), 14); + const __m128i JKLMNOP0 = _mm_srli_si128(IJKLMNOP, 2); + __m128i avg3_left = avg3_epu16(&XIJKLMNO, &IJKLMNOP, &JKLMNOP0); + __m128i rowa = avg2; + __m128i rowb = avg3; + int i; + (void)bd; + for (i = 0; i < 8; i += 2) { + _mm_store_si128((__m128i *)dst, rowa); + dst += stride; + _mm_store_si128((__m128i *)dst, rowb); + dst += stride; + rowa = _mm_alignr_epi8(rowa, rotr_epu16(&avg3_left, &rotrw), 14); + rowb = _mm_alignr_epi8(rowb, rotr_epu16(&avg3_left, &rotrw), 14); + } +} + +void vpx_highbd_d117_predictor_16x16_ssse3(uint16_t *dst, ptrdiff_t stride, + const uint16_t *above, + const uint16_t *left, int bd) { + const __m128i rotrw = _mm_load_si128((const __m128i *)rotate_right_epu16); + const __m128i B0 = _mm_loadu_si128((const __m128i *)(above - 1)); + const __m128i A0 = _mm_load_si128((const __m128i *)above); + const __m128i B1 = _mm_loadu_si128((const __m128i *)(above + 7)); + const __m128i A1 = _mm_load_si128((const __m128i *)(above + 8)); + const __m128i avg2_0 = _mm_avg_epu16(A0, B0); + const __m128i avg2_1 = _mm_avg_epu16(A1, B1); + const __m128i L0 = _mm_load_si128((const __m128i *)left); + const __m128i L1 = _mm_load_si128((const __m128i *)(left + 8)); + const __m128i C0 = _mm_alignr_epi8(B0, _mm_slli_si128(L0, 14), 14); + const __m128i C1 = _mm_alignr_epi8(B1, B0, 14); + const __m128i avg3_0 = avg3_epu16(&A0, &B0, &C0); + const __m128i avg3_1 = avg3_epu16(&A1, &B1, &C1); + const __m128i XL0 = _mm_alignr_epi8(L0, _mm_slli_si128(B0, 14), 14); + const __m128i XL1 = _mm_alignr_epi8(L1, L0, 14); + const __m128i L0_ = _mm_alignr_epi8(L1, L0, 2); + const __m128i L1_ = _mm_srli_si128(L1, 2); + __m128i rowa_0 = avg2_0; + __m128i rowa_1 = avg2_1; + __m128i rowb_0 = avg3_0; + __m128i rowb_1 = avg3_1; + __m128i avg3_left[2]; + int i, j; + (void)bd; + avg3_left[0] = avg3_epu16(&XL0, &L0, &L0_); + avg3_left[1] = avg3_epu16(&XL1, &L1, &L1_); + for (i = 0; i < 2; ++i) { + __m128i avg_left = avg3_left[i]; + for (j = 0; j < 8; j += 2) { + _mm_store_si128((__m128i *)dst, rowa_0); + _mm_store_si128((__m128i *)(dst + 8), rowa_1); + dst += stride; + _mm_store_si128((__m128i *)dst, rowb_0); + _mm_store_si128((__m128i *)(dst + 8), rowb_1); + dst += stride; + rowa_1 = _mm_alignr_epi8(rowa_1, rowa_0, 14); + rowa_0 = _mm_alignr_epi8(rowa_0, rotr_epu16(&avg_left, &rotrw), 14); + rowb_1 = _mm_alignr_epi8(rowb_1, rowb_0, 14); + rowb_0 = _mm_alignr_epi8(rowb_0, rotr_epu16(&avg_left, &rotrw), 14); + } + } +} + +void vpx_highbd_d117_predictor_32x32_ssse3(uint16_t *dst, ptrdiff_t stride, + const uint16_t *above, + const uint16_t *left, int bd) { + const __m128i rotrw = _mm_load_si128((const __m128i *)rotate_right_epu16); + const __m128i A0 = _mm_load_si128((const __m128i *)above); + const __m128i A1 = _mm_load_si128((const __m128i *)(above + 8)); + const __m128i A2 = _mm_load_si128((const __m128i *)(above + 16)); + const __m128i A3 = _mm_load_si128((const __m128i *)(above + 24)); + const __m128i B0 = _mm_loadu_si128((const __m128i *)(above - 1)); + const __m128i B1 = _mm_loadu_si128((const __m128i *)(above + 7)); + const __m128i B2 = _mm_loadu_si128((const __m128i *)(above + 15)); + const __m128i B3 = _mm_loadu_si128((const __m128i *)(above + 23)); + const __m128i avg2_0 = _mm_avg_epu16(A0, B0); + const __m128i avg2_1 = _mm_avg_epu16(A1, B1); + const __m128i avg2_2 = _mm_avg_epu16(A2, B2); + const __m128i avg2_3 = _mm_avg_epu16(A3, B3); + const __m128i L0 = _mm_load_si128((const __m128i *)left); + const __m128i L1 = _mm_load_si128((const __m128i *)(left + 8)); + const __m128i L2 = _mm_load_si128((const __m128i *)(left + 16)); + const __m128i L3 = _mm_load_si128((const __m128i *)(left + 24)); + const __m128i C0 = _mm_alignr_epi8(B0, _mm_slli_si128(L0, 14), 14); + const __m128i C1 = _mm_alignr_epi8(B1, B0, 14); + const __m128i C2 = _mm_alignr_epi8(B2, B1, 14); + const __m128i C3 = _mm_alignr_epi8(B3, B2, 14); + const __m128i avg3_0 = avg3_epu16(&A0, &B0, &C0); + const __m128i avg3_1 = avg3_epu16(&A1, &B1, &C1); + const __m128i avg3_2 = avg3_epu16(&A2, &B2, &C2); + const __m128i avg3_3 = avg3_epu16(&A3, &B3, &C3); + const __m128i XL0 = _mm_alignr_epi8(L0, _mm_slli_si128(B0, 14), 14); + const __m128i XL1 = _mm_alignr_epi8(L1, L0, 14); + const __m128i XL2 = _mm_alignr_epi8(L2, L1, 14); + const __m128i XL3 = _mm_alignr_epi8(L3, L2, 14); + const __m128i L0_ = _mm_alignr_epi8(L1, L0, 2); + const __m128i L1_ = _mm_alignr_epi8(L2, L1, 2); + const __m128i L2_ = _mm_alignr_epi8(L3, L2, 2); + const __m128i L3_ = _mm_srli_si128(L3, 2); + __m128i rowa_0 = avg2_0; + __m128i rowa_1 = avg2_1; + __m128i rowa_2 = avg2_2; + __m128i rowa_3 = avg2_3; + __m128i rowb_0 = avg3_0; + __m128i rowb_1 = avg3_1; + __m128i rowb_2 = avg3_2; + __m128i rowb_3 = avg3_3; + __m128i avg3_left[4]; + int i, j; + (void)bd; + avg3_left[0] = avg3_epu16(&XL0, &L0, &L0_); + avg3_left[1] = avg3_epu16(&XL1, &L1, &L1_); + avg3_left[2] = avg3_epu16(&XL2, &L2, &L2_); + avg3_left[3] = avg3_epu16(&XL3, &L3, &L3_); + for (i = 0; i < 4; ++i) { + __m128i avg_left = avg3_left[i]; + for (j = 0; j < 8; j += 2) { + _mm_store_si128((__m128i *)dst, rowa_0); + _mm_store_si128((__m128i *)(dst + 8), rowa_1); + _mm_store_si128((__m128i *)(dst + 16), rowa_2); + _mm_store_si128((__m128i *)(dst + 24), rowa_3); + dst += stride; + _mm_store_si128((__m128i *)dst, rowb_0); + _mm_store_si128((__m128i *)(dst + 8), rowb_1); + _mm_store_si128((__m128i *)(dst + 16), rowb_2); + _mm_store_si128((__m128i *)(dst + 24), rowb_3); + dst += stride; + rowa_3 = _mm_alignr_epi8(rowa_3, rowa_2, 14); + rowa_2 = _mm_alignr_epi8(rowa_2, rowa_1, 14); + rowa_1 = _mm_alignr_epi8(rowa_1, rowa_0, 14); + rowa_0 = _mm_alignr_epi8(rowa_0, rotr_epu16(&avg_left, &rotrw), 14); + rowb_3 = _mm_alignr_epi8(rowb_3, rowb_2, 14); + rowb_2 = _mm_alignr_epi8(rowb_2, rowb_1, 14); + rowb_1 = _mm_alignr_epi8(rowb_1, rowb_0, 14); + rowb_0 = _mm_alignr_epi8(rowb_0, rotr_epu16(&avg_left, &rotrw), 14); + } + } +} + +void vpx_highbd_d135_predictor_8x8_ssse3(uint16_t *dst, ptrdiff_t stride, + const uint16_t *above, + const uint16_t *left, int bd) { + const __m128i rotrw = _mm_load_si128((const __m128i *)rotate_right_epu16); + const __m128i XABCDEFG = _mm_loadu_si128((const __m128i *)(above - 1)); + const __m128i ABCDEFGH = _mm_load_si128((const __m128i *)above); + const __m128i BCDEFGH0 = _mm_srli_si128(ABCDEFGH, 2); + const __m128i IJKLMNOP = _mm_load_si128((const __m128i *)left); + const __m128i XIJKLMNO = + _mm_alignr_epi8(IJKLMNOP, _mm_slli_si128(XABCDEFG, 14), 14); + const __m128i AXIJKLMN = + _mm_alignr_epi8(XIJKLMNO, _mm_slli_si128(ABCDEFGH, 14), 14); + const __m128i avg3 = avg3_epu16(&XABCDEFG, &ABCDEFGH, &BCDEFGH0); + __m128i avg3_left = avg3_epu16(&IJKLMNOP, &XIJKLMNO, &AXIJKLMN); + __m128i rowa = avg3; + int i; + (void)bd; + for (i = 0; i < 8; ++i) { + rowa = _mm_alignr_epi8(rowa, rotr_epu16(&avg3_left, &rotrw), 14); + _mm_store_si128((__m128i *)dst, rowa); + dst += stride; + } +} + +void vpx_highbd_d135_predictor_16x16_ssse3(uint16_t *dst, ptrdiff_t stride, + const uint16_t *above, + const uint16_t *left, int bd) { + const __m128i rotrw = _mm_load_si128((const __m128i *)rotate_right_epu16); + const __m128i A0 = _mm_loadu_si128((const __m128i *)(above - 1)); + const __m128i B0 = _mm_load_si128((const __m128i *)above); + const __m128i A1 = _mm_loadu_si128((const __m128i *)(above + 7)); + const __m128i B1 = _mm_load_si128((const __m128i *)(above + 8)); + const __m128i L0 = _mm_load_si128((const __m128i *)left); + const __m128i L1 = _mm_load_si128((const __m128i *)(left + 8)); + const __m128i C0 = _mm_alignr_epi8(B1, B0, 2); + const __m128i C1 = _mm_srli_si128(B1, 2); + const __m128i avg3_0 = avg3_epu16(&A0, &B0, &C0); + const __m128i avg3_1 = avg3_epu16(&A1, &B1, &C1); + const __m128i XL0 = _mm_alignr_epi8(L0, _mm_slli_si128(A0, 14), 14); + const __m128i XL1 = _mm_alignr_epi8(L1, L0, 14); + const __m128i L0_ = _mm_alignr_epi8(XL0, _mm_slli_si128(B0, 14), 14); + const __m128i L1_ = _mm_alignr_epi8(XL1, XL0, 14); + __m128i rowa_0 = avg3_0; + __m128i rowa_1 = avg3_1; + __m128i avg3_left[2]; + int i, j; + (void)bd; + avg3_left[0] = avg3_epu16(&L0, &XL0, &L0_); + avg3_left[1] = avg3_epu16(&L1, &XL1, &L1_); + for (i = 0; i < 2; ++i) { + __m128i avg_left = avg3_left[i]; + for (j = 0; j < 8; ++j) { + rowa_1 = _mm_alignr_epi8(rowa_1, rowa_0, 14); + rowa_0 = _mm_alignr_epi8(rowa_0, rotr_epu16(&avg_left, &rotrw), 14); + _mm_store_si128((__m128i *)dst, rowa_0); + _mm_store_si128((__m128i *)(dst + 8), rowa_1); + dst += stride; + } + } +} + +void vpx_highbd_d135_predictor_32x32_ssse3(uint16_t *dst, ptrdiff_t stride, + const uint16_t *above, + const uint16_t *left, int bd) { + const __m128i rotrw = _mm_load_si128((const __m128i *)rotate_right_epu16); + const __m128i A0 = _mm_loadu_si128((const __m128i *)(above - 1)); + const __m128i A1 = _mm_loadu_si128((const __m128i *)(above + 7)); + const __m128i A2 = _mm_loadu_si128((const __m128i *)(above + 15)); + const __m128i A3 = _mm_loadu_si128((const __m128i *)(above + 23)); + const __m128i B0 = _mm_load_si128((const __m128i *)above); + const __m128i B1 = _mm_load_si128((const __m128i *)(above + 8)); + const __m128i B2 = _mm_load_si128((const __m128i *)(above + 16)); + const __m128i B3 = _mm_load_si128((const __m128i *)(above + 24)); + const __m128i L0 = _mm_load_si128((const __m128i *)left); + const __m128i L1 = _mm_load_si128((const __m128i *)(left + 8)); + const __m128i L2 = _mm_load_si128((const __m128i *)(left + 16)); + const __m128i L3 = _mm_load_si128((const __m128i *)(left + 24)); + const __m128i C0 = _mm_alignr_epi8(B1, B0, 2); + const __m128i C1 = _mm_alignr_epi8(B2, B1, 2); + const __m128i C2 = _mm_alignr_epi8(B3, B2, 2); + const __m128i C3 = _mm_srli_si128(B3, 2); + const __m128i avg3_0 = avg3_epu16(&A0, &B0, &C0); + const __m128i avg3_1 = avg3_epu16(&A1, &B1, &C1); + const __m128i avg3_2 = avg3_epu16(&A2, &B2, &C2); + const __m128i avg3_3 = avg3_epu16(&A3, &B3, &C3); + const __m128i XL0 = _mm_alignr_epi8(L0, _mm_slli_si128(A0, 14), 14); + const __m128i XL1 = _mm_alignr_epi8(L1, L0, 14); + const __m128i XL2 = _mm_alignr_epi8(L2, L1, 14); + const __m128i XL3 = _mm_alignr_epi8(L3, L2, 14); + const __m128i L0_ = _mm_alignr_epi8(XL0, _mm_slli_si128(B0, 14), 14); + const __m128i L1_ = _mm_alignr_epi8(XL1, XL0, 14); + const __m128i L2_ = _mm_alignr_epi8(XL2, XL1, 14); + const __m128i L3_ = _mm_alignr_epi8(XL3, XL2, 14); + __m128i rowa_0 = avg3_0; + __m128i rowa_1 = avg3_1; + __m128i rowa_2 = avg3_2; + __m128i rowa_3 = avg3_3; + __m128i avg3_left[4]; + int i, j; + (void)bd; + avg3_left[0] = avg3_epu16(&L0, &XL0, &L0_); + avg3_left[1] = avg3_epu16(&L1, &XL1, &L1_); + avg3_left[2] = avg3_epu16(&L2, &XL2, &L2_); + avg3_left[3] = avg3_epu16(&L3, &XL3, &L3_); + for (i = 0; i < 4; ++i) { + __m128i avg_left = avg3_left[i]; + for (j = 0; j < 8; ++j) { + rowa_3 = _mm_alignr_epi8(rowa_3, rowa_2, 14); + rowa_2 = _mm_alignr_epi8(rowa_2, rowa_1, 14); + rowa_1 = _mm_alignr_epi8(rowa_1, rowa_0, 14); + rowa_0 = _mm_alignr_epi8(rowa_0, rotr_epu16(&avg_left, &rotrw), 14); + _mm_store_si128((__m128i *)dst, rowa_0); + _mm_store_si128((__m128i *)(dst + 8), rowa_1); + _mm_store_si128((__m128i *)(dst + 16), rowa_2); + _mm_store_si128((__m128i *)(dst + 24), rowa_3); + dst += stride; + } + } +} + +void vpx_highbd_d153_predictor_8x8_ssse3(uint16_t *dst, ptrdiff_t stride, + const uint16_t *above, + const uint16_t *left, int bd) { + const __m128i XABCDEFG = _mm_loadu_si128((const __m128i *)(above - 1)); + const __m128i ABCDEFG0 = _mm_srli_si128(XABCDEFG, 2); + const __m128i BCDEFG00 = _mm_srli_si128(XABCDEFG, 4); + const __m128i avg3 = avg3_epu16(&BCDEFG00, &ABCDEFG0, &XABCDEFG); + const __m128i IJKLMNOP = _mm_load_si128((const __m128i *)left); + const __m128i XIJKLMNO = + _mm_alignr_epi8(IJKLMNOP, _mm_slli_si128(XABCDEFG, 14), 14); + const __m128i AXIJKLMN = + _mm_alignr_epi8(XIJKLMNO, _mm_slli_si128(XABCDEFG, 12), 14); + const __m128i avg3_left = avg3_epu16(&IJKLMNOP, &XIJKLMNO, &AXIJKLMN); + const __m128i avg2_left = _mm_avg_epu16(IJKLMNOP, XIJKLMNO); + const __m128i avg2_avg3_lo = _mm_unpacklo_epi16(avg2_left, avg3_left); + const __m128i avg2_avg3_hi = _mm_unpackhi_epi16(avg2_left, avg3_left); + const __m128i row0 = + _mm_alignr_epi8(avg3, _mm_slli_si128(avg2_avg3_lo, 12), 12); + const __m128i row1 = + _mm_alignr_epi8(row0, _mm_slli_si128(avg2_avg3_lo, 8), 12); + const __m128i row2 = + _mm_alignr_epi8(row1, _mm_slli_si128(avg2_avg3_lo, 4), 12); + const __m128i row3 = _mm_alignr_epi8(row2, avg2_avg3_lo, 12); + const __m128i row4 = + _mm_alignr_epi8(row3, _mm_slli_si128(avg2_avg3_hi, 12), 12); + const __m128i row5 = + _mm_alignr_epi8(row4, _mm_slli_si128(avg2_avg3_hi, 8), 12); + const __m128i row6 = + _mm_alignr_epi8(row5, _mm_slli_si128(avg2_avg3_hi, 4), 12); + const __m128i row7 = _mm_alignr_epi8(row6, avg2_avg3_hi, 12); + (void)bd; + _mm_store_si128((__m128i *)dst, row0); + dst += stride; + _mm_store_si128((__m128i *)dst, row1); + dst += stride; + _mm_store_si128((__m128i *)dst, row2); + dst += stride; + _mm_store_si128((__m128i *)dst, row3); + dst += stride; + _mm_store_si128((__m128i *)dst, row4); + dst += stride; + _mm_store_si128((__m128i *)dst, row5); + dst += stride; + _mm_store_si128((__m128i *)dst, row6); + dst += stride; + _mm_store_si128((__m128i *)dst, row7); +} + +void vpx_highbd_d153_predictor_16x16_ssse3(uint16_t *dst, ptrdiff_t stride, + const uint16_t *above, + const uint16_t *left, int bd) { + const __m128i A0 = _mm_loadu_si128((const __m128i *)(above - 1)); + const __m128i A1 = _mm_loadu_si128((const __m128i *)(above + 7)); + const __m128i B0 = _mm_alignr_epi8(A1, A0, 2); + const __m128i B1 = _mm_srli_si128(A1, 2); + const __m128i C0 = _mm_alignr_epi8(A1, A0, 4); + const __m128i C1 = _mm_srli_si128(A1, 4); + const __m128i avg3_0 = avg3_epu16(&A0, &B0, &C0); + const __m128i avg3_1 = avg3_epu16(&A1, &B1, &C1); + const __m128i L0 = _mm_load_si128((const __m128i *)left); + const __m128i L1 = _mm_load_si128((const __m128i *)(left + 8)); + const __m128i XL0 = _mm_alignr_epi8(L0, _mm_slli_si128(A0, 14), 14); + const __m128i AXL0 = _mm_alignr_epi8(XL0, _mm_slli_si128(A0, 12), 14); + const __m128i XL1 = _mm_alignr_epi8(L1, L0, 14); + const __m128i AXL1 = _mm_alignr_epi8(L1, L0, 12); + const __m128i avg3_left_0 = avg3_epu16(&L0, &XL0, &AXL0); + const __m128i avg2_left_0 = _mm_avg_epu16(L0, XL0); + const __m128i avg3_left_1 = avg3_epu16(&L1, &XL1, &AXL1); + const __m128i avg2_left_1 = _mm_avg_epu16(L1, XL1); + __m128i row_0 = avg3_0; + __m128i row_1 = avg3_1; + __m128i avg2_avg3_left[2][2]; + int i, j; + (void)bd; + + avg2_avg3_left[0][0] = _mm_unpacklo_epi16(avg2_left_0, avg3_left_0); + avg2_avg3_left[0][1] = _mm_unpackhi_epi16(avg2_left_0, avg3_left_0); + avg2_avg3_left[1][0] = _mm_unpacklo_epi16(avg2_left_1, avg3_left_1); + avg2_avg3_left[1][1] = _mm_unpackhi_epi16(avg2_left_1, avg3_left_1); + + for (j = 0; j < 2; ++j) { + for (i = 0; i < 2; ++i) { + const __m128i avg2_avg3 = avg2_avg3_left[j][i]; + row_1 = _mm_alignr_epi8(row_1, row_0, 12); + row_0 = _mm_alignr_epi8(row_0, _mm_slli_si128(avg2_avg3, 12), 12); + _mm_store_si128((__m128i *)dst, row_0); + _mm_store_si128((__m128i *)(dst + 8), row_1); + dst += stride; + row_1 = _mm_alignr_epi8(row_1, row_0, 12); + row_0 = _mm_alignr_epi8(row_0, _mm_slli_si128(avg2_avg3, 8), 12); + _mm_store_si128((__m128i *)dst, row_0); + _mm_store_si128((__m128i *)(dst + 8), row_1); + dst += stride; + row_1 = _mm_alignr_epi8(row_1, row_0, 12); + row_0 = _mm_alignr_epi8(row_0, _mm_slli_si128(avg2_avg3, 4), 12); + _mm_store_si128((__m128i *)dst, row_0); + _mm_store_si128((__m128i *)(dst + 8), row_1); + dst += stride; + row_1 = _mm_alignr_epi8(row_1, row_0, 12); + row_0 = _mm_alignr_epi8(row_0, avg2_avg3, 12); + _mm_store_si128((__m128i *)dst, row_0); + _mm_store_si128((__m128i *)(dst + 8), row_1); + dst += stride; + } + } +} + +void vpx_highbd_d153_predictor_32x32_ssse3(uint16_t *dst, ptrdiff_t stride, + const uint16_t *above, + const uint16_t *left, int bd) { + const __m128i A0 = _mm_loadu_si128((const __m128i *)(above - 1)); + const __m128i A1 = _mm_loadu_si128((const __m128i *)(above + 7)); + const __m128i A2 = _mm_loadu_si128((const __m128i *)(above + 15)); + const __m128i A3 = _mm_loadu_si128((const __m128i *)(above + 23)); + const __m128i B0 = _mm_alignr_epi8(A1, A0, 2); + const __m128i B1 = _mm_alignr_epi8(A2, A1, 2); + const __m128i B2 = _mm_alignr_epi8(A3, A2, 2); + const __m128i B3 = _mm_srli_si128(A3, 2); + const __m128i C0 = _mm_alignr_epi8(A1, A0, 4); + const __m128i C1 = _mm_alignr_epi8(A2, A1, 4); + const __m128i C2 = _mm_alignr_epi8(A3, A2, 4); + const __m128i C3 = _mm_srli_si128(A3, 4); + const __m128i avg3_0 = avg3_epu16(&A0, &B0, &C0); + const __m128i avg3_1 = avg3_epu16(&A1, &B1, &C1); + const __m128i avg3_2 = avg3_epu16(&A2, &B2, &C2); + const __m128i avg3_3 = avg3_epu16(&A3, &B3, &C3); + const __m128i L0 = _mm_load_si128((const __m128i *)left); + const __m128i L1 = _mm_load_si128((const __m128i *)(left + 8)); + const __m128i L2 = _mm_load_si128((const __m128i *)(left + 16)); + const __m128i L3 = _mm_load_si128((const __m128i *)(left + 24)); + const __m128i XL0 = _mm_alignr_epi8(L0, _mm_slli_si128(A0, 14), 14); + const __m128i XL1 = _mm_alignr_epi8(L1, L0, 14); + const __m128i XL2 = _mm_alignr_epi8(L2, L1, 14); + const __m128i XL3 = _mm_alignr_epi8(L3, L2, 14); + const __m128i AXL0 = _mm_alignr_epi8(XL0, _mm_slli_si128(A0, 12), 14); + const __m128i AXL1 = _mm_alignr_epi8(L1, L0, 12); + const __m128i AXL2 = _mm_alignr_epi8(L2, L1, 12); + const __m128i AXL3 = _mm_alignr_epi8(L3, L2, 12); + const __m128i avg3_left_0 = avg3_epu16(&L0, &XL0, &AXL0); + const __m128i avg3_left_1 = avg3_epu16(&L1, &XL1, &AXL1); + const __m128i avg3_left_2 = avg3_epu16(&L2, &XL2, &AXL2); + const __m128i avg3_left_3 = avg3_epu16(&L3, &XL3, &AXL3); + const __m128i avg2_left_0 = _mm_avg_epu16(L0, XL0); + const __m128i avg2_left_1 = _mm_avg_epu16(L1, XL1); + const __m128i avg2_left_2 = _mm_avg_epu16(L2, XL2); + const __m128i avg2_left_3 = _mm_avg_epu16(L3, XL3); + __m128i row_0 = avg3_0; + __m128i row_1 = avg3_1; + __m128i row_2 = avg3_2; + __m128i row_3 = avg3_3; + __m128i avg2_avg3_left[4][2]; + int i, j; + (void)bd; + + avg2_avg3_left[0][0] = _mm_unpacklo_epi16(avg2_left_0, avg3_left_0); + avg2_avg3_left[0][1] = _mm_unpackhi_epi16(avg2_left_0, avg3_left_0); + avg2_avg3_left[1][0] = _mm_unpacklo_epi16(avg2_left_1, avg3_left_1); + avg2_avg3_left[1][1] = _mm_unpackhi_epi16(avg2_left_1, avg3_left_1); + avg2_avg3_left[2][0] = _mm_unpacklo_epi16(avg2_left_2, avg3_left_2); + avg2_avg3_left[2][1] = _mm_unpackhi_epi16(avg2_left_2, avg3_left_2); + avg2_avg3_left[3][0] = _mm_unpacklo_epi16(avg2_left_3, avg3_left_3); + avg2_avg3_left[3][1] = _mm_unpackhi_epi16(avg2_left_3, avg3_left_3); + + for (j = 0; j < 4; ++j) { + for (i = 0; i < 2; ++i) { + const __m128i avg2_avg3 = avg2_avg3_left[j][i]; + row_3 = _mm_alignr_epi8(row_3, row_2, 12); + row_2 = _mm_alignr_epi8(row_2, row_1, 12); + row_1 = _mm_alignr_epi8(row_1, row_0, 12); + row_0 = _mm_alignr_epi8(row_0, _mm_slli_si128(avg2_avg3, 12), 12); + _mm_store_si128((__m128i *)dst, row_0); + _mm_store_si128((__m128i *)(dst + 8), row_1); + _mm_store_si128((__m128i *)(dst + 16), row_2); + _mm_store_si128((__m128i *)(dst + 24), row_3); + dst += stride; + row_3 = _mm_alignr_epi8(row_3, row_2, 12); + row_2 = _mm_alignr_epi8(row_2, row_1, 12); + row_1 = _mm_alignr_epi8(row_1, row_0, 12); + row_0 = _mm_alignr_epi8(row_0, _mm_slli_si128(avg2_avg3, 8), 12); + _mm_store_si128((__m128i *)dst, row_0); + _mm_store_si128((__m128i *)(dst + 8), row_1); + _mm_store_si128((__m128i *)(dst + 16), row_2); + _mm_store_si128((__m128i *)(dst + 24), row_3); + dst += stride; + row_3 = _mm_alignr_epi8(row_3, row_2, 12); + row_2 = _mm_alignr_epi8(row_2, row_1, 12); + row_1 = _mm_alignr_epi8(row_1, row_0, 12); + row_0 = _mm_alignr_epi8(row_0, _mm_slli_si128(avg2_avg3, 4), 12); + _mm_store_si128((__m128i *)dst, row_0); + _mm_store_si128((__m128i *)(dst + 8), row_1); + _mm_store_si128((__m128i *)(dst + 16), row_2); + _mm_store_si128((__m128i *)(dst + 24), row_3); + dst += stride; + row_3 = _mm_alignr_epi8(row_3, row_2, 12); + row_2 = _mm_alignr_epi8(row_2, row_1, 12); + row_1 = _mm_alignr_epi8(row_1, row_0, 12); + row_0 = _mm_alignr_epi8(row_0, avg2_avg3, 12); + _mm_store_si128((__m128i *)dst, row_0); + _mm_store_si128((__m128i *)(dst + 8), row_1); + _mm_store_si128((__m128i *)(dst + 16), row_2); + _mm_store_si128((__m128i *)(dst + 24), row_3); + dst += stride; + } + } +} + +static INLINE void d207_store_4x8(uint16_t **dst, const ptrdiff_t stride, + const __m128i *a, const __m128i *b) { + _mm_store_si128((__m128i *)*dst, *a); + *dst += stride; + _mm_store_si128((__m128i *)*dst, _mm_alignr_epi8(*b, *a, 4)); + *dst += stride; + _mm_store_si128((__m128i *)*dst, _mm_alignr_epi8(*b, *a, 8)); + *dst += stride; + _mm_store_si128((__m128i *)*dst, _mm_alignr_epi8(*b, *a, 12)); + *dst += stride; +} + +void vpx_highbd_d207_predictor_8x8_ssse3(uint16_t *dst, ptrdiff_t stride, + const uint16_t *above, + const uint16_t *left, int bd) { + const __m128i ABCDEFGH = _mm_load_si128((const __m128i *)left); + const __m128i ABCDHHHH = _mm_shufflehi_epi16(ABCDEFGH, 0xff); + const __m128i HHHHHHHH = _mm_unpackhi_epi64(ABCDHHHH, ABCDHHHH); + const __m128i BCDEFGHH = _mm_alignr_epi8(HHHHHHHH, ABCDEFGH, 2); + const __m128i CDEFGHHH = _mm_alignr_epi8(HHHHHHHH, ABCDEFGH, 4); + const __m128i avg3 = avg3_epu16(&ABCDEFGH, &BCDEFGHH, &CDEFGHHH); + const __m128i avg2 = _mm_avg_epu16(ABCDEFGH, BCDEFGHH); + const __m128i out_a = _mm_unpacklo_epi16(avg2, avg3); + const __m128i out_b = _mm_unpackhi_epi16(avg2, avg3); + (void)above; + (void)bd; + d207_store_4x8(&dst, stride, &out_a, &out_b); + d207_store_4x8(&dst, stride, &out_b, &HHHHHHHH); +} + +static INLINE void d207_store_4x16(uint16_t **dst, const ptrdiff_t stride, + const __m128i *a, const __m128i *b, + const __m128i *c) { + _mm_store_si128((__m128i *)*dst, *a); + _mm_store_si128((__m128i *)(*dst + 8), *b); + *dst += stride; + _mm_store_si128((__m128i *)*dst, _mm_alignr_epi8(*b, *a, 4)); + _mm_store_si128((__m128i *)(*dst + 8), _mm_alignr_epi8(*c, *b, 4)); + *dst += stride; + _mm_store_si128((__m128i *)*dst, _mm_alignr_epi8(*b, *a, 8)); + _mm_store_si128((__m128i *)(*dst + 8), _mm_alignr_epi8(*c, *b, 8)); + *dst += stride; + _mm_store_si128((__m128i *)*dst, _mm_alignr_epi8(*b, *a, 12)); + _mm_store_si128((__m128i *)(*dst + 8), _mm_alignr_epi8(*c, *b, 12)); + *dst += stride; +} + +void vpx_highbd_d207_predictor_16x16_ssse3(uint16_t *dst, ptrdiff_t stride, + const uint16_t *above, + const uint16_t *left, int bd) { + const __m128i A0 = _mm_load_si128((const __m128i *)left); + const __m128i A1 = _mm_load_si128((const __m128i *)(left + 8)); + const __m128i LR0 = _mm_shufflehi_epi16(A1, 0xff); + const __m128i LR = _mm_unpackhi_epi64(LR0, LR0); + const __m128i B0 = _mm_alignr_epi8(A1, A0, 2); + const __m128i B1 = _mm_alignr_epi8(LR, A1, 2); + const __m128i C0 = _mm_alignr_epi8(A1, A0, 4); + const __m128i C1 = _mm_alignr_epi8(LR, A1, 4); + const __m128i avg3_0 = avg3_epu16(&A0, &B0, &C0); + const __m128i avg3_1 = avg3_epu16(&A1, &B1, &C1); + const __m128i avg2_0 = _mm_avg_epu16(A0, B0); + const __m128i avg2_1 = _mm_avg_epu16(A1, B1); + const __m128i out_a = _mm_unpacklo_epi16(avg2_0, avg3_0); + const __m128i out_b = _mm_unpackhi_epi16(avg2_0, avg3_0); + const __m128i out_c = _mm_unpacklo_epi16(avg2_1, avg3_1); + const __m128i out_d = _mm_unpackhi_epi16(avg2_1, avg3_1); + (void)above; + (void)bd; + d207_store_4x16(&dst, stride, &out_a, &out_b, &out_c); + d207_store_4x16(&dst, stride, &out_b, &out_c, &out_d); + d207_store_4x16(&dst, stride, &out_c, &out_d, &LR); + d207_store_4x16(&dst, stride, &out_d, &LR, &LR); +} + +static INLINE void d207_store_4x32(uint16_t **dst, const ptrdiff_t stride, + const __m128i *a, const __m128i *b, + const __m128i *c, const __m128i *d, + const __m128i *e) { + _mm_store_si128((__m128i *)*dst, *a); + _mm_store_si128((__m128i *)(*dst + 8), *b); + _mm_store_si128((__m128i *)(*dst + 16), *c); + _mm_store_si128((__m128i *)(*dst + 24), *d); + *dst += stride; + _mm_store_si128((__m128i *)*dst, _mm_alignr_epi8(*b, *a, 4)); + _mm_store_si128((__m128i *)(*dst + 8), _mm_alignr_epi8(*c, *b, 4)); + _mm_store_si128((__m128i *)(*dst + 16), _mm_alignr_epi8(*d, *c, 4)); + _mm_store_si128((__m128i *)(*dst + 24), _mm_alignr_epi8(*e, *d, 4)); + *dst += stride; + _mm_store_si128((__m128i *)*dst, _mm_alignr_epi8(*b, *a, 8)); + _mm_store_si128((__m128i *)(*dst + 8), _mm_alignr_epi8(*c, *b, 8)); + _mm_store_si128((__m128i *)(*dst + 16), _mm_alignr_epi8(*d, *c, 8)); + _mm_store_si128((__m128i *)(*dst + 24), _mm_alignr_epi8(*e, *d, 8)); + *dst += stride; + _mm_store_si128((__m128i *)*dst, _mm_alignr_epi8(*b, *a, 12)); + _mm_store_si128((__m128i *)(*dst + 8), _mm_alignr_epi8(*c, *b, 12)); + _mm_store_si128((__m128i *)(*dst + 16), _mm_alignr_epi8(*d, *c, 12)); + _mm_store_si128((__m128i *)(*dst + 24), _mm_alignr_epi8(*e, *d, 12)); + *dst += stride; +} + +void vpx_highbd_d207_predictor_32x32_ssse3(uint16_t *dst, ptrdiff_t stride, + const uint16_t *above, + const uint16_t *left, int bd) { + const __m128i A0 = _mm_load_si128((const __m128i *)left); + const __m128i A1 = _mm_load_si128((const __m128i *)(left + 8)); + const __m128i A2 = _mm_load_si128((const __m128i *)(left + 16)); + const __m128i A3 = _mm_load_si128((const __m128i *)(left + 24)); + const __m128i LR0 = _mm_shufflehi_epi16(A3, 0xff); + const __m128i LR = _mm_unpackhi_epi64(LR0, LR0); + const __m128i B0 = _mm_alignr_epi8(A1, A0, 2); + const __m128i B1 = _mm_alignr_epi8(A2, A1, 2); + const __m128i B2 = _mm_alignr_epi8(A3, A2, 2); + const __m128i B3 = _mm_alignr_epi8(LR, A3, 2); + const __m128i C0 = _mm_alignr_epi8(A1, A0, 4); + const __m128i C1 = _mm_alignr_epi8(A2, A1, 4); + const __m128i C2 = _mm_alignr_epi8(A3, A2, 4); + const __m128i C3 = _mm_alignr_epi8(LR, A3, 4); + const __m128i avg3_0 = avg3_epu16(&A0, &B0, &C0); + const __m128i avg3_1 = avg3_epu16(&A1, &B1, &C1); + const __m128i avg3_2 = avg3_epu16(&A2, &B2, &C2); + const __m128i avg3_3 = avg3_epu16(&A3, &B3, &C3); + const __m128i avg2_0 = _mm_avg_epu16(A0, B0); + const __m128i avg2_1 = _mm_avg_epu16(A1, B1); + const __m128i avg2_2 = _mm_avg_epu16(A2, B2); + const __m128i avg2_3 = _mm_avg_epu16(A3, B3); + const __m128i out_a = _mm_unpacklo_epi16(avg2_0, avg3_0); + const __m128i out_b = _mm_unpackhi_epi16(avg2_0, avg3_0); + const __m128i out_c = _mm_unpacklo_epi16(avg2_1, avg3_1); + const __m128i out_d = _mm_unpackhi_epi16(avg2_1, avg3_1); + const __m128i out_e = _mm_unpacklo_epi16(avg2_2, avg3_2); + const __m128i out_f = _mm_unpackhi_epi16(avg2_2, avg3_2); + const __m128i out_g = _mm_unpacklo_epi16(avg2_3, avg3_3); + const __m128i out_h = _mm_unpackhi_epi16(avg2_3, avg3_3); + (void)above; + (void)bd; + d207_store_4x32(&dst, stride, &out_a, &out_b, &out_c, &out_d, &out_e); + d207_store_4x32(&dst, stride, &out_b, &out_c, &out_d, &out_e, &out_f); + d207_store_4x32(&dst, stride, &out_c, &out_d, &out_e, &out_f, &out_g); + d207_store_4x32(&dst, stride, &out_d, &out_e, &out_f, &out_g, &out_h); + d207_store_4x32(&dst, stride, &out_e, &out_f, &out_g, &out_h, &LR); + d207_store_4x32(&dst, stride, &out_f, &out_g, &out_h, &LR, &LR); + d207_store_4x32(&dst, stride, &out_g, &out_h, &LR, &LR, &LR); + d207_store_4x32(&dst, stride, &out_h, &LR, &LR, &LR, &LR); +} + +static INLINE void d63_store_4x8(uint16_t **dst, const ptrdiff_t stride, + __m128i *a, __m128i *b, const __m128i *ar) { + _mm_store_si128((__m128i *)*dst, *a); + *dst += stride; + _mm_store_si128((__m128i *)*dst, *b); + *dst += stride; + *a = _mm_alignr_epi8(*ar, *a, 2); + *b = _mm_alignr_epi8(*ar, *b, 2); + _mm_store_si128((__m128i *)*dst, *a); + *dst += stride; + _mm_store_si128((__m128i *)*dst, *b); + *dst += stride; + *a = _mm_alignr_epi8(*ar, *a, 2); + *b = _mm_alignr_epi8(*ar, *b, 2); +} + +void vpx_highbd_d63_predictor_8x8_ssse3(uint16_t *dst, ptrdiff_t stride, + const uint16_t *above, + const uint16_t *left, int bd) { + const __m128i ABCDEFGH = _mm_load_si128((const __m128i *)above); + const __m128i ABCDHHHH = _mm_shufflehi_epi16(ABCDEFGH, 0xff); + const __m128i HHHHHHHH = _mm_unpackhi_epi64(ABCDHHHH, ABCDHHHH); + const __m128i BCDEFGHH = _mm_alignr_epi8(HHHHHHHH, ABCDEFGH, 2); + const __m128i CDEFGHHH = _mm_alignr_epi8(HHHHHHHH, ABCDEFGH, 4); + __m128i avg3 = avg3_epu16(&ABCDEFGH, &BCDEFGHH, &CDEFGHHH); + __m128i avg2 = _mm_avg_epu16(ABCDEFGH, BCDEFGHH); + (void)left; + (void)bd; + d63_store_4x8(&dst, stride, &avg2, &avg3, &HHHHHHHH); + d63_store_4x8(&dst, stride, &avg2, &avg3, &HHHHHHHH); +} + +void vpx_highbd_d63_predictor_16x16_ssse3(uint16_t *dst, ptrdiff_t stride, + const uint16_t *above, + const uint16_t *left, int bd) { + const __m128i A0 = _mm_load_si128((const __m128i *)above); + const __m128i A1 = _mm_load_si128((const __m128i *)(above + 8)); + const __m128i AR0 = _mm_shufflehi_epi16(A1, 0xff); + const __m128i AR = _mm_unpackhi_epi64(AR0, AR0); + const __m128i B0 = _mm_alignr_epi8(A1, A0, 2); + const __m128i B1 = _mm_alignr_epi8(AR, A1, 2); + const __m128i C0 = _mm_alignr_epi8(A1, A0, 4); + const __m128i C1 = _mm_alignr_epi8(AR, A1, 4); + __m128i avg3_0 = avg3_epu16(&A0, &B0, &C0); + __m128i avg3_1 = avg3_epu16(&A1, &B1, &C1); + __m128i avg2_0 = _mm_avg_epu16(A0, B0); + __m128i avg2_1 = _mm_avg_epu16(A1, B1); + int i; + (void)left; + (void)bd; + for (i = 0; i < 14; i += 2) { + _mm_store_si128((__m128i *)dst, avg2_0); + _mm_store_si128((__m128i *)(dst + 8), avg2_1); + dst += stride; + _mm_store_si128((__m128i *)dst, avg3_0); + _mm_store_si128((__m128i *)(dst + 8), avg3_1); + dst += stride; + avg2_0 = _mm_alignr_epi8(avg2_1, avg2_0, 2); + avg2_1 = _mm_alignr_epi8(AR, avg2_1, 2); + avg3_0 = _mm_alignr_epi8(avg3_1, avg3_0, 2); + avg3_1 = _mm_alignr_epi8(AR, avg3_1, 2); + } + _mm_store_si128((__m128i *)dst, avg2_0); + _mm_store_si128((__m128i *)(dst + 8), avg2_1); + dst += stride; + _mm_store_si128((__m128i *)dst, avg3_0); + _mm_store_si128((__m128i *)(dst + 8), avg3_1); +} + +void vpx_highbd_d63_predictor_32x32_ssse3(uint16_t *dst, ptrdiff_t stride, + const uint16_t *above, + const uint16_t *left, int bd) { + const __m128i A0 = _mm_load_si128((const __m128i *)above); + const __m128i A1 = _mm_load_si128((const __m128i *)(above + 8)); + const __m128i A2 = _mm_load_si128((const __m128i *)(above + 16)); + const __m128i A3 = _mm_load_si128((const __m128i *)(above + 24)); + const __m128i AR0 = _mm_shufflehi_epi16(A3, 0xff); + const __m128i AR = _mm_unpackhi_epi64(AR0, AR0); + const __m128i B0 = _mm_alignr_epi8(A1, A0, 2); + const __m128i B1 = _mm_alignr_epi8(A2, A1, 2); + const __m128i B2 = _mm_alignr_epi8(A3, A2, 2); + const __m128i B3 = _mm_alignr_epi8(AR, A3, 2); + const __m128i C0 = _mm_alignr_epi8(A1, A0, 4); + const __m128i C1 = _mm_alignr_epi8(A2, A1, 4); + const __m128i C2 = _mm_alignr_epi8(A3, A2, 4); + const __m128i C3 = _mm_alignr_epi8(AR, A3, 4); + __m128i avg3_0 = avg3_epu16(&A0, &B0, &C0); + __m128i avg3_1 = avg3_epu16(&A1, &B1, &C1); + __m128i avg3_2 = avg3_epu16(&A2, &B2, &C2); + __m128i avg3_3 = avg3_epu16(&A3, &B3, &C3); + __m128i avg2_0 = _mm_avg_epu16(A0, B0); + __m128i avg2_1 = _mm_avg_epu16(A1, B1); + __m128i avg2_2 = _mm_avg_epu16(A2, B2); + __m128i avg2_3 = _mm_avg_epu16(A3, B3); + int i; + (void)left; + (void)bd; + for (i = 0; i < 30; i += 2) { + _mm_store_si128((__m128i *)dst, avg2_0); + _mm_store_si128((__m128i *)(dst + 8), avg2_1); + _mm_store_si128((__m128i *)(dst + 16), avg2_2); + _mm_store_si128((__m128i *)(dst + 24), avg2_3); + dst += stride; + _mm_store_si128((__m128i *)dst, avg3_0); + _mm_store_si128((__m128i *)(dst + 8), avg3_1); + _mm_store_si128((__m128i *)(dst + 16), avg3_2); + _mm_store_si128((__m128i *)(dst + 24), avg3_3); + dst += stride; + avg2_0 = _mm_alignr_epi8(avg2_1, avg2_0, 2); + avg2_1 = _mm_alignr_epi8(avg2_2, avg2_1, 2); + avg2_2 = _mm_alignr_epi8(avg2_3, avg2_2, 2); + avg2_3 = _mm_alignr_epi8(AR, avg2_3, 2); + avg3_0 = _mm_alignr_epi8(avg3_1, avg3_0, 2); + avg3_1 = _mm_alignr_epi8(avg3_2, avg3_1, 2); + avg3_2 = _mm_alignr_epi8(avg3_3, avg3_2, 2); + avg3_3 = _mm_alignr_epi8(AR, avg3_3, 2); + } + _mm_store_si128((__m128i *)dst, avg2_0); + _mm_store_si128((__m128i *)(dst + 8), avg2_1); + _mm_store_si128((__m128i *)(dst + 16), avg2_2); + _mm_store_si128((__m128i *)(dst + 24), avg2_3); + dst += stride; + _mm_store_si128((__m128i *)dst, avg3_0); + _mm_store_si128((__m128i *)(dst + 8), avg3_1); + _mm_store_si128((__m128i *)(dst + 16), avg3_2); + _mm_store_si128((__m128i *)(dst + 24), avg3_3); +} diff --git a/vpx_dsp/x86/highbd_intrapred_sse2.asm b/vpx_dsp/x86/highbd_intrapred_sse2.asm new file mode 100644 index 0000000..c61b621 --- /dev/null +++ b/vpx_dsp/x86/highbd_intrapred_sse2.asm @@ -0,0 +1,453 @@ +; +; Copyright (c) 2014 The WebM project authors. All Rights Reserved. +; +; Use of this source code is governed by a BSD-style license +; that can be found in the LICENSE file in the root of the source +; tree. An additional intellectual property rights grant can be found +; in the file PATENTS. All contributing project authors may +; be found in the AUTHORS file in the root of the source tree. +; + +%include "third_party/x86inc/x86inc.asm" + +SECTION_RODATA +pw_4: times 8 dw 4 +pw_8: times 8 dw 8 +pw_16: times 4 dd 16 +pw_32: times 4 dd 32 + +SECTION .text +INIT_XMM sse2 +cglobal highbd_dc_predictor_4x4, 4, 5, 4, dst, stride, above, left, goffset + GET_GOT goffsetq + + movq m0, [aboveq] + movq m2, [leftq] + paddw m0, m2 + pshuflw m1, m0, 0xe + paddw m0, m1 + pshuflw m1, m0, 0x1 + paddw m0, m1 + paddw m0, [GLOBAL(pw_4)] + psraw m0, 3 + pshuflw m0, m0, 0x0 + movq [dstq ], m0 + movq [dstq+strideq*2], m0 + lea dstq, [dstq+strideq*4] + movq [dstq ], m0 + movq [dstq+strideq*2], m0 + + RESTORE_GOT + RET + +INIT_XMM sse2 +cglobal highbd_dc_predictor_8x8, 4, 5, 4, dst, stride, above, left, goffset + GET_GOT goffsetq + + pxor m1, m1 + mova m0, [aboveq] + mova m2, [leftq] + DEFINE_ARGS dst, stride, stride3, one + mov oned, 0x00010001 + lea stride3q, [strideq*3] + movd m3, oned + pshufd m3, m3, 0x0 + paddw m0, m2 + pmaddwd m0, m3 + packssdw m0, m1 + pmaddwd m0, m3 + packssdw m0, m1 + pmaddwd m0, m3 + paddw m0, [GLOBAL(pw_8)] + psrlw m0, 4 + pshuflw m0, m0, 0x0 + punpcklqdq m0, m0 + mova [dstq ], m0 + mova [dstq+strideq*2 ], m0 + mova [dstq+strideq*4 ], m0 + mova [dstq+stride3q*2], m0 + lea dstq, [dstq+strideq*8] + mova [dstq ], m0 + mova [dstq+strideq*2 ], m0 + mova [dstq+strideq*4 ], m0 + mova [dstq+stride3q*2], m0 + + RESTORE_GOT + RET + +INIT_XMM sse2 +cglobal highbd_dc_predictor_16x16, 4, 5, 5, dst, stride, above, left, goffset + GET_GOT goffsetq + + pxor m1, m1 + mova m0, [aboveq] + mova m3, [aboveq+16] + mova m2, [leftq] + mova m4, [leftq+16] + DEFINE_ARGS dst, stride, stride3, lines4 + lea stride3q, [strideq*3] + mov lines4d, 4 + paddw m0, m2 + paddw m0, m3 + paddw m0, m4 + movhlps m2, m0 + paddw m0, m2 + punpcklwd m0, m1 + movhlps m2, m0 + paddd m0, m2 + punpckldq m0, m1 + movhlps m2, m0 + paddd m0, m2 + paddd m0, [GLOBAL(pw_16)] + psrad m0, 5 + pshuflw m0, m0, 0x0 + punpcklqdq m0, m0 +.loop: + mova [dstq ], m0 + mova [dstq +16], m0 + mova [dstq+strideq*2 ], m0 + mova [dstq+strideq*2 +16], m0 + mova [dstq+strideq*4 ], m0 + mova [dstq+strideq*4 +16], m0 + mova [dstq+stride3q*2 ], m0 + mova [dstq+stride3q*2+16], m0 + lea dstq, [dstq+strideq*8] + dec lines4d + jnz .loop + + RESTORE_GOT + REP_RET + +INIT_XMM sse2 +cglobal highbd_dc_predictor_32x32, 4, 5, 7, dst, stride, above, left, goffset + GET_GOT goffsetq + + mova m0, [aboveq] + mova m2, [aboveq+16] + mova m3, [aboveq+32] + mova m4, [aboveq+48] + paddw m0, m2 + paddw m3, m4 + mova m2, [leftq] + mova m4, [leftq+16] + mova m5, [leftq+32] + mova m6, [leftq+48] + paddw m2, m4 + paddw m5, m6 + paddw m0, m3 + paddw m2, m5 + pxor m1, m1 + paddw m0, m2 + DEFINE_ARGS dst, stride, stride3, lines4 + lea stride3q, [strideq*3] + mov lines4d, 8 + movhlps m2, m0 + paddw m0, m2 + punpcklwd m0, m1 + movhlps m2, m0 + paddd m0, m2 + punpckldq m0, m1 + movhlps m2, m0 + paddd m0, m2 + paddd m0, [GLOBAL(pw_32)] + psrad m0, 6 + pshuflw m0, m0, 0x0 + punpcklqdq m0, m0 +.loop: + mova [dstq ], m0 + mova [dstq +16 ], m0 + mova [dstq +32 ], m0 + mova [dstq +48 ], m0 + mova [dstq+strideq*2 ], m0 + mova [dstq+strideq*2+16 ], m0 + mova [dstq+strideq*2+32 ], m0 + mova [dstq+strideq*2+48 ], m0 + mova [dstq+strideq*4 ], m0 + mova [dstq+strideq*4+16 ], m0 + mova [dstq+strideq*4+32 ], m0 + mova [dstq+strideq*4+48 ], m0 + mova [dstq+stride3q*2 ], m0 + mova [dstq+stride3q*2 +16], m0 + mova [dstq+stride3q*2 +32], m0 + mova [dstq+stride3q*2 +48], m0 + lea dstq, [dstq+strideq*8] + dec lines4d + jnz .loop + + RESTORE_GOT + REP_RET + +INIT_XMM sse2 +cglobal highbd_v_predictor_4x4, 3, 3, 1, dst, stride, above + movq m0, [aboveq] + movq [dstq ], m0 + movq [dstq+strideq*2], m0 + lea dstq, [dstq+strideq*4] + movq [dstq ], m0 + movq [dstq+strideq*2], m0 + RET + +INIT_XMM sse2 +cglobal highbd_v_predictor_8x8, 3, 3, 1, dst, stride, above + mova m0, [aboveq] + DEFINE_ARGS dst, stride, stride3 + lea stride3q, [strideq*3] + mova [dstq ], m0 + mova [dstq+strideq*2 ], m0 + mova [dstq+strideq*4 ], m0 + mova [dstq+stride3q*2], m0 + lea dstq, [dstq+strideq*8] + mova [dstq ], m0 + mova [dstq+strideq*2 ], m0 + mova [dstq+strideq*4 ], m0 + mova [dstq+stride3q*2], m0 + RET + +INIT_XMM sse2 +cglobal highbd_v_predictor_16x16, 3, 4, 2, dst, stride, above + mova m0, [aboveq] + mova m1, [aboveq+16] + DEFINE_ARGS dst, stride, stride3, nlines4 + lea stride3q, [strideq*3] + mov nlines4d, 4 +.loop: + mova [dstq ], m0 + mova [dstq +16], m1 + mova [dstq+strideq*2 ], m0 + mova [dstq+strideq*2 +16], m1 + mova [dstq+strideq*4 ], m0 + mova [dstq+strideq*4 +16], m1 + mova [dstq+stride3q*2 ], m0 + mova [dstq+stride3q*2+16], m1 + lea dstq, [dstq+strideq*8] + dec nlines4d + jnz .loop + REP_RET + +INIT_XMM sse2 +cglobal highbd_v_predictor_32x32, 3, 4, 4, dst, stride, above + mova m0, [aboveq] + mova m1, [aboveq+16] + mova m2, [aboveq+32] + mova m3, [aboveq+48] + DEFINE_ARGS dst, stride, stride3, nlines4 + lea stride3q, [strideq*3] + mov nlines4d, 8 +.loop: + mova [dstq ], m0 + mova [dstq +16], m1 + mova [dstq +32], m2 + mova [dstq +48], m3 + mova [dstq+strideq*2 ], m0 + mova [dstq+strideq*2 +16], m1 + mova [dstq+strideq*2 +32], m2 + mova [dstq+strideq*2 +48], m3 + mova [dstq+strideq*4 ], m0 + mova [dstq+strideq*4 +16], m1 + mova [dstq+strideq*4 +32], m2 + mova [dstq+strideq*4 +48], m3 + mova [dstq+stride3q*2 ], m0 + mova [dstq+stride3q*2 +16], m1 + mova [dstq+stride3q*2 +32], m2 + mova [dstq+stride3q*2 +48], m3 + lea dstq, [dstq+strideq*8] + dec nlines4d + jnz .loop + REP_RET + +INIT_XMM sse2 +cglobal highbd_tm_predictor_4x4, 5, 5, 6, dst, stride, above, left, bps + movd m1, [aboveq-2] + movq m0, [aboveq] + pshuflw m1, m1, 0x0 + movlhps m0, m0 ; t1 t2 t3 t4 t1 t2 t3 t4 + movlhps m1, m1 ; tl tl tl tl tl tl tl tl + ; Get the values to compute the maximum value at this bit depth + pcmpeqw m3, m3 + movd m4, bpsd + psubw m0, m1 ; t1-tl t2-tl t3-tl t4-tl + psllw m3, m4 + pcmpeqw m2, m2 + pxor m4, m4 ; min possible value + pxor m3, m2 ; max possible value + mova m1, [leftq] + pshuflw m2, m1, 0x0 + pshuflw m5, m1, 0x55 + movlhps m2, m5 ; l1 l1 l1 l1 l2 l2 l2 l2 + paddw m2, m0 + ;Clamp to the bit-depth + pminsw m2, m3 + pmaxsw m2, m4 + ;Store the values + movq [dstq ], m2 + movhpd [dstq+strideq*2], m2 + lea dstq, [dstq+strideq*4] + pshuflw m2, m1, 0xaa + pshuflw m5, m1, 0xff + movlhps m2, m5 + paddw m2, m0 + ;Clamp to the bit-depth + pminsw m2, m3 + pmaxsw m2, m4 + ;Store the values + movq [dstq ], m2 + movhpd [dstq+strideq*2], m2 + RET + +INIT_XMM sse2 +cglobal highbd_tm_predictor_8x8, 5, 6, 5, dst, stride, above, left, bps, one + movd m1, [aboveq-2] + mova m0, [aboveq] + pshuflw m1, m1, 0x0 + ; Get the values to compute the maximum value at this bit depth + mov oned, 1 + pxor m3, m3 + pxor m4, m4 + pinsrw m3, oned, 0 + pinsrw m4, bpsd, 0 + pshuflw m3, m3, 0x0 + DEFINE_ARGS dst, stride, line, left + punpcklqdq m3, m3 + mov lineq, -4 + mova m2, m3 + punpcklqdq m1, m1 + psllw m3, m4 + add leftq, 16 + psubw m3, m2 ; max possible value + pxor m4, m4 ; min possible value + psubw m0, m1 +.loop: + movd m1, [leftq+lineq*4] + movd m2, [leftq+lineq*4+2] + pshuflw m1, m1, 0x0 + pshuflw m2, m2, 0x0 + punpcklqdq m1, m1 + punpcklqdq m2, m2 + paddw m1, m0 + paddw m2, m0 + ;Clamp to the bit-depth + pminsw m1, m3 + pminsw m2, m3 + pmaxsw m1, m4 + pmaxsw m2, m4 + ;Store the values + mova [dstq ], m1 + mova [dstq+strideq*2], m2 + lea dstq, [dstq+strideq*4] + inc lineq + jnz .loop + REP_RET + +INIT_XMM sse2 +cglobal highbd_tm_predictor_16x16, 5, 5, 8, dst, stride, above, left, bps + movd m2, [aboveq-2] + mova m0, [aboveq] + mova m1, [aboveq+16] + pshuflw m2, m2, 0x0 + ; Get the values to compute the maximum value at this bit depth + pcmpeqw m3, m3 + movd m4, bpsd + punpcklqdq m2, m2 + psllw m3, m4 + pcmpeqw m5, m5 + pxor m4, m4 ; min possible value + pxor m3, m5 ; max possible value + DEFINE_ARGS dst, stride, line, left + mov lineq, -8 + psubw m0, m2 + psubw m1, m2 +.loop: + movd m7, [leftq] + pshuflw m5, m7, 0x0 + pshuflw m2, m7, 0x55 + punpcklqdq m5, m5 ; l1 l1 l1 l1 l1 l1 l1 l1 + punpcklqdq m2, m2 ; l2 l2 l2 l2 l2 l2 l2 l2 + paddw m6, m5, m0 ; t1-tl+l1 to t4-tl+l1 + paddw m5, m1 ; t5-tl+l1 to t8-tl+l1 + pminsw m6, m3 + pminsw m5, m3 + pmaxsw m6, m4 ; Clamp to the bit-depth + pmaxsw m5, m4 + mova [dstq ], m6 + mova [dstq +16], m5 + paddw m6, m2, m0 + paddw m2, m1 + pminsw m6, m3 + pminsw m2, m3 + pmaxsw m6, m4 + pmaxsw m2, m4 + mova [dstq+strideq*2 ], m6 + mova [dstq+strideq*2+16], m2 + lea dstq, [dstq+strideq*4] + inc lineq + lea leftq, [leftq+4] + + jnz .loop + REP_RET + +INIT_XMM sse2 +cglobal highbd_tm_predictor_32x32, 5, 5, 8, dst, stride, above, left, bps + movd m0, [aboveq-2] + mova m1, [aboveq] + mova m2, [aboveq+16] + mova m3, [aboveq+32] + mova m4, [aboveq+48] + pshuflw m0, m0, 0x0 + ; Get the values to compute the maximum value at this bit depth + pcmpeqw m5, m5 + movd m6, bpsd + psllw m5, m6 + pcmpeqw m7, m7 + pxor m6, m6 ; min possible value + pxor m5, m7 ; max possible value + punpcklqdq m0, m0 + DEFINE_ARGS dst, stride, line, left + mov lineq, -16 + psubw m1, m0 + psubw m2, m0 + psubw m3, m0 + psubw m4, m0 +.loop: + movd m7, [leftq] + pshuflw m7, m7, 0x0 + punpcklqdq m7, m7 ; l1 l1 l1 l1 l1 l1 l1 l1 + paddw m0, m7, m1 + pminsw m0, m5 + pmaxsw m0, m6 + mova [dstq ], m0 + paddw m0, m7, m2 + pminsw m0, m5 + pmaxsw m0, m6 + mova [dstq +16], m0 + paddw m0, m7, m3 + pminsw m0, m5 + pmaxsw m0, m6 + mova [dstq +32], m0 + paddw m0, m7, m4 + pminsw m0, m5 + pmaxsw m0, m6 + mova [dstq +48], m0 + movd m7, [leftq+2] + pshuflw m7, m7, 0x0 + punpcklqdq m7, m7 ; l2 l2 l2 l2 l2 l2 l2 l2 + paddw m0, m7, m1 + pminsw m0, m5 + pmaxsw m0, m6 + mova [dstq+strideq*2 ], m0 + paddw m0, m7, m2 + pminsw m0, m5 + pmaxsw m0, m6 + mova [dstq+strideq*2+16], m0 + paddw m0, m7, m3 + pminsw m0, m5 + pmaxsw m0, m6 + mova [dstq+strideq*2+32], m0 + paddw m0, m7, m4 + pminsw m0, m5 + pmaxsw m0, m6 + mova [dstq+strideq*2+48], m0 + lea dstq, [dstq+strideq*4] + lea leftq, [leftq+4] + inc lineq + jnz .loop + REP_RET diff --git a/vpx_dsp/x86/highbd_inv_txfm_sse2.h b/vpx_dsp/x86/highbd_inv_txfm_sse2.h new file mode 100644 index 0000000..e0f7495 --- /dev/null +++ b/vpx_dsp/x86/highbd_inv_txfm_sse2.h @@ -0,0 +1,400 @@ +/* + * Copyright (c) 2015 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VPX_DSP_X86_HIGHBD_INV_TXFM_SSE2_H_ +#define VPX_DSP_X86_HIGHBD_INV_TXFM_SSE2_H_ + +#include // SSE2 + +#include "./vpx_config.h" +#include "vpx/vpx_integer.h" +#include "vpx_dsp/inv_txfm.h" +#include "vpx_dsp/x86/transpose_sse2.h" +#include "vpx_dsp/x86/txfm_common_sse2.h" + +static INLINE void extend_64bit(const __m128i in, + __m128i *const out /*out[2]*/) { + out[0] = _mm_unpacklo_epi32(in, in); // 0, 0, 1, 1 + out[1] = _mm_unpackhi_epi32(in, in); // 2, 2, 3, 3 +} + +static INLINE __m128i wraplow_16bit_shift4(const __m128i in0, const __m128i in1, + const __m128i rounding) { + __m128i temp[2]; + temp[0] = _mm_add_epi32(in0, rounding); + temp[1] = _mm_add_epi32(in1, rounding); + temp[0] = _mm_srai_epi32(temp[0], 4); + temp[1] = _mm_srai_epi32(temp[1], 4); + return _mm_packs_epi32(temp[0], temp[1]); +} + +static INLINE __m128i wraplow_16bit_shift5(const __m128i in0, const __m128i in1, + const __m128i rounding) { + __m128i temp[2]; + temp[0] = _mm_add_epi32(in0, rounding); + temp[1] = _mm_add_epi32(in1, rounding); + temp[0] = _mm_srai_epi32(temp[0], 5); + temp[1] = _mm_srai_epi32(temp[1], 5); + return _mm_packs_epi32(temp[0], temp[1]); +} + +static INLINE __m128i dct_const_round_shift_64bit(const __m128i in) { + const __m128i t = + _mm_add_epi64(in, pair_set_epi32(DCT_CONST_ROUNDING << 2, 0)); + return _mm_srli_si128(t, 2); +} + +static INLINE __m128i pack_4(const __m128i in0, const __m128i in1) { + const __m128i t0 = _mm_unpacklo_epi32(in0, in1); // 0, 2 + const __m128i t1 = _mm_unpackhi_epi32(in0, in1); // 1, 3 + return _mm_unpacklo_epi32(t0, t1); // 0, 1, 2, 3 +} + +static INLINE void abs_extend_64bit_sse2(const __m128i in, + __m128i *const out /*out[2]*/, + __m128i *const sign /*sign[2]*/) { + sign[0] = _mm_srai_epi32(in, 31); + out[0] = _mm_xor_si128(in, sign[0]); + out[0] = _mm_sub_epi32(out[0], sign[0]); + sign[1] = _mm_unpackhi_epi32(sign[0], sign[0]); // 64-bit sign of 2, 3 + sign[0] = _mm_unpacklo_epi32(sign[0], sign[0]); // 64-bit sign of 0, 1 + out[1] = _mm_unpackhi_epi32(out[0], out[0]); // 2, 3 + out[0] = _mm_unpacklo_epi32(out[0], out[0]); // 0, 1 +} + +// Note: cospi must be non negative. +static INLINE __m128i multiply_apply_sign_sse2(const __m128i in, + const __m128i sign, + const __m128i cospi) { + __m128i out = _mm_mul_epu32(in, cospi); + out = _mm_xor_si128(out, sign); + return _mm_sub_epi64(out, sign); +} + +// Note: c must be non negative. +static INLINE __m128i multiplication_round_shift_sse2( + const __m128i *const in /*in[2]*/, const __m128i *const sign /*sign[2]*/, + const int c) { + const __m128i pair_c = pair_set_epi32(c << 2, 0); + __m128i t0, t1; + + assert(c >= 0); + t0 = multiply_apply_sign_sse2(in[0], sign[0], pair_c); + t1 = multiply_apply_sign_sse2(in[1], sign[1], pair_c); + t0 = dct_const_round_shift_64bit(t0); + t1 = dct_const_round_shift_64bit(t1); + + return pack_4(t0, t1); +} + +// Note: c must be non negative. +static INLINE __m128i multiplication_neg_round_shift_sse2( + const __m128i *const in /*in[2]*/, const __m128i *const sign /*sign[2]*/, + const int c) { + const __m128i pair_c = pair_set_epi32(c << 2, 0); + __m128i t0, t1; + + assert(c >= 0); + t0 = multiply_apply_sign_sse2(in[0], sign[0], pair_c); + t1 = multiply_apply_sign_sse2(in[1], sign[1], pair_c); + t0 = _mm_sub_epi64(_mm_setzero_si128(), t0); + t1 = _mm_sub_epi64(_mm_setzero_si128(), t1); + t0 = dct_const_round_shift_64bit(t0); + t1 = dct_const_round_shift_64bit(t1); + + return pack_4(t0, t1); +} + +// Note: c0 and c1 must be non negative. +static INLINE void highbd_butterfly_sse2(const __m128i in0, const __m128i in1, + const int c0, const int c1, + __m128i *const out0, + __m128i *const out1) { + const __m128i pair_c0 = pair_set_epi32(c0 << 2, 0); + const __m128i pair_c1 = pair_set_epi32(c1 << 2, 0); + __m128i temp1[4], temp2[4], sign1[2], sign2[2]; + + assert(c0 >= 0); + assert(c1 >= 0); + abs_extend_64bit_sse2(in0, temp1, sign1); + abs_extend_64bit_sse2(in1, temp2, sign2); + temp1[2] = multiply_apply_sign_sse2(temp1[0], sign1[0], pair_c1); + temp1[3] = multiply_apply_sign_sse2(temp1[1], sign1[1], pair_c1); + temp1[0] = multiply_apply_sign_sse2(temp1[0], sign1[0], pair_c0); + temp1[1] = multiply_apply_sign_sse2(temp1[1], sign1[1], pair_c0); + temp2[2] = multiply_apply_sign_sse2(temp2[0], sign2[0], pair_c0); + temp2[3] = multiply_apply_sign_sse2(temp2[1], sign2[1], pair_c0); + temp2[0] = multiply_apply_sign_sse2(temp2[0], sign2[0], pair_c1); + temp2[1] = multiply_apply_sign_sse2(temp2[1], sign2[1], pair_c1); + temp1[0] = _mm_sub_epi64(temp1[0], temp2[0]); + temp1[1] = _mm_sub_epi64(temp1[1], temp2[1]); + temp2[0] = _mm_add_epi64(temp1[2], temp2[2]); + temp2[1] = _mm_add_epi64(temp1[3], temp2[3]); + temp1[0] = dct_const_round_shift_64bit(temp1[0]); + temp1[1] = dct_const_round_shift_64bit(temp1[1]); + temp2[0] = dct_const_round_shift_64bit(temp2[0]); + temp2[1] = dct_const_round_shift_64bit(temp2[1]); + *out0 = pack_4(temp1[0], temp1[1]); + *out1 = pack_4(temp2[0], temp2[1]); +} + +// Note: c0 and c1 must be non negative. +static INLINE void highbd_partial_butterfly_sse2(const __m128i in, const int c0, + const int c1, + __m128i *const out0, + __m128i *const out1) { + __m128i temp[2], sign[2]; + + assert(c0 >= 0); + assert(c1 >= 0); + abs_extend_64bit_sse2(in, temp, sign); + *out0 = multiplication_round_shift_sse2(temp, sign, c0); + *out1 = multiplication_round_shift_sse2(temp, sign, c1); +} + +// Note: c0 and c1 must be non negative. +static INLINE void highbd_partial_butterfly_neg_sse2(const __m128i in, + const int c0, const int c1, + __m128i *const out0, + __m128i *const out1) { + __m128i temp[2], sign[2]; + + assert(c0 >= 0); + assert(c1 >= 0); + abs_extend_64bit_sse2(in, temp, sign); + *out0 = multiplication_neg_round_shift_sse2(temp, sign, c1); + *out1 = multiplication_round_shift_sse2(temp, sign, c0); +} + +static INLINE void highbd_butterfly_cospi16_sse2(const __m128i in0, + const __m128i in1, + __m128i *const out0, + __m128i *const out1) { + __m128i temp1[2], temp2, sign[2]; + + temp2 = _mm_add_epi32(in0, in1); + abs_extend_64bit_sse2(temp2, temp1, sign); + *out0 = multiplication_round_shift_sse2(temp1, sign, cospi_16_64); + temp2 = _mm_sub_epi32(in0, in1); + abs_extend_64bit_sse2(temp2, temp1, sign); + *out1 = multiplication_round_shift_sse2(temp1, sign, cospi_16_64); +} + +// Only do addition and subtraction butterfly, size = 16, 32 +static INLINE void highbd_add_sub_butterfly(const __m128i *in, __m128i *out, + int size) { + int i = 0; + const int num = size >> 1; + const int bound = size - 1; + while (i < num) { + out[i] = _mm_add_epi32(in[i], in[bound - i]); + out[bound - i] = _mm_sub_epi32(in[i], in[bound - i]); + i++; + } +} + +static INLINE void highbd_idct8_stage4(const __m128i *const in, + __m128i *const out) { + out[0] = _mm_add_epi32(in[0], in[7]); + out[1] = _mm_add_epi32(in[1], in[6]); + out[2] = _mm_add_epi32(in[2], in[5]); + out[3] = _mm_add_epi32(in[3], in[4]); + out[4] = _mm_sub_epi32(in[3], in[4]); + out[5] = _mm_sub_epi32(in[2], in[5]); + out[6] = _mm_sub_epi32(in[1], in[6]); + out[7] = _mm_sub_epi32(in[0], in[7]); +} + +static INLINE void highbd_idct8x8_final_round(__m128i *const io) { + io[0] = wraplow_16bit_shift5(io[0], io[8], _mm_set1_epi32(16)); + io[1] = wraplow_16bit_shift5(io[1], io[9], _mm_set1_epi32(16)); + io[2] = wraplow_16bit_shift5(io[2], io[10], _mm_set1_epi32(16)); + io[3] = wraplow_16bit_shift5(io[3], io[11], _mm_set1_epi32(16)); + io[4] = wraplow_16bit_shift5(io[4], io[12], _mm_set1_epi32(16)); + io[5] = wraplow_16bit_shift5(io[5], io[13], _mm_set1_epi32(16)); + io[6] = wraplow_16bit_shift5(io[6], io[14], _mm_set1_epi32(16)); + io[7] = wraplow_16bit_shift5(io[7], io[15], _mm_set1_epi32(16)); +} + +static INLINE void highbd_idct16_4col_stage7(const __m128i *const in, + __m128i *const out) { + out[0] = _mm_add_epi32(in[0], in[15]); + out[1] = _mm_add_epi32(in[1], in[14]); + out[2] = _mm_add_epi32(in[2], in[13]); + out[3] = _mm_add_epi32(in[3], in[12]); + out[4] = _mm_add_epi32(in[4], in[11]); + out[5] = _mm_add_epi32(in[5], in[10]); + out[6] = _mm_add_epi32(in[6], in[9]); + out[7] = _mm_add_epi32(in[7], in[8]); + out[8] = _mm_sub_epi32(in[7], in[8]); + out[9] = _mm_sub_epi32(in[6], in[9]); + out[10] = _mm_sub_epi32(in[5], in[10]); + out[11] = _mm_sub_epi32(in[4], in[11]); + out[12] = _mm_sub_epi32(in[3], in[12]); + out[13] = _mm_sub_epi32(in[2], in[13]); + out[14] = _mm_sub_epi32(in[1], in[14]); + out[15] = _mm_sub_epi32(in[0], in[15]); +} + +static INLINE __m128i add_clamp(const __m128i in0, const __m128i in1, + const int bd) { + const __m128i zero = _mm_set1_epi16(0); + // Faster than _mm_set1_epi16((1 << bd) - 1). + const __m128i one = _mm_set1_epi16(1); + const __m128i max = _mm_sub_epi16(_mm_slli_epi16(one, bd), one); + __m128i d; + + d = _mm_adds_epi16(in0, in1); + d = _mm_max_epi16(d, zero); + d = _mm_min_epi16(d, max); + + return d; +} + +static INLINE void highbd_idct_1_add_kernel(const tran_low_t *input, + uint16_t *dest, int stride, int bd, + const int size) { + int a1, i, j; + tran_low_t out; + __m128i dc, d; + + out = HIGHBD_WRAPLOW( + dct_const_round_shift(input[0] * (tran_high_t)cospi_16_64), bd); + out = + HIGHBD_WRAPLOW(dct_const_round_shift(out * (tran_high_t)cospi_16_64), bd); + a1 = ROUND_POWER_OF_TWO(out, (size == 8) ? 5 : 6); + dc = _mm_set1_epi16(a1); + + for (i = 0; i < size; ++i) { + for (j = 0; j < size; j += 8) { + d = _mm_load_si128((const __m128i *)(&dest[j])); + d = add_clamp(d, dc, bd); + _mm_store_si128((__m128i *)(&dest[j]), d); + } + dest += stride; + } +} + +static INLINE void recon_and_store_4(const __m128i in, uint16_t *const dest, + const int bd) { + __m128i d; + + d = _mm_loadl_epi64((const __m128i *)dest); + d = add_clamp(d, in, bd); + _mm_storel_epi64((__m128i *)dest, d); +} + +static INLINE void recon_and_store_4x2(const __m128i in, uint16_t *const dest, + const int stride, const int bd) { + __m128i d; + + d = _mm_loadl_epi64((const __m128i *)(dest + 0 * stride)); + d = _mm_castps_si128( + _mm_loadh_pi(_mm_castsi128_ps(d), (const __m64 *)(dest + 1 * stride))); + d = add_clamp(d, in, bd); + _mm_storel_epi64((__m128i *)(dest + 0 * stride), d); + _mm_storeh_pi((__m64 *)(dest + 1 * stride), _mm_castsi128_ps(d)); +} + +static INLINE void recon_and_store_4x4(const __m128i *const in, uint16_t *dest, + const int stride, const int bd) { + recon_and_store_4x2(in[0], dest, stride, bd); + dest += 2 * stride; + recon_and_store_4x2(in[1], dest, stride, bd); +} + +static INLINE void recon_and_store_8(const __m128i in, uint16_t **const dest, + const int stride, const int bd) { + __m128i d; + + d = _mm_load_si128((const __m128i *)(*dest)); + d = add_clamp(d, in, bd); + _mm_store_si128((__m128i *)(*dest), d); + *dest += stride; +} + +static INLINE void recon_and_store_8x8(const __m128i *const in, uint16_t *dest, + const int stride, const int bd) { + recon_and_store_8(in[0], &dest, stride, bd); + recon_and_store_8(in[1], &dest, stride, bd); + recon_and_store_8(in[2], &dest, stride, bd); + recon_and_store_8(in[3], &dest, stride, bd); + recon_and_store_8(in[4], &dest, stride, bd); + recon_and_store_8(in[5], &dest, stride, bd); + recon_and_store_8(in[6], &dest, stride, bd); + recon_and_store_8(in[7], &dest, stride, bd); +} + +static INLINE __m128i load_pack_8_32bit(const tran_low_t *const input) { + const __m128i t0 = _mm_load_si128((const __m128i *)(input + 0)); + const __m128i t1 = _mm_load_si128((const __m128i *)(input + 4)); + return _mm_packs_epi32(t0, t1); +} + +static INLINE void highbd_load_pack_transpose_32bit_8x8(const tran_low_t *input, + const int stride, + __m128i *const in) { + in[0] = load_pack_8_32bit(input + 0 * stride); + in[1] = load_pack_8_32bit(input + 1 * stride); + in[2] = load_pack_8_32bit(input + 2 * stride); + in[3] = load_pack_8_32bit(input + 3 * stride); + in[4] = load_pack_8_32bit(input + 4 * stride); + in[5] = load_pack_8_32bit(input + 5 * stride); + in[6] = load_pack_8_32bit(input + 6 * stride); + in[7] = load_pack_8_32bit(input + 7 * stride); + transpose_16bit_8x8(in, in); +} + +static INLINE void highbd_load_transpose_32bit_8x4(const tran_low_t *input, + const int stride, + __m128i *in) { + in[0] = _mm_load_si128((const __m128i *)(input + 0 * stride + 0)); + in[1] = _mm_load_si128((const __m128i *)(input + 0 * stride + 4)); + in[2] = _mm_load_si128((const __m128i *)(input + 1 * stride + 0)); + in[3] = _mm_load_si128((const __m128i *)(input + 1 * stride + 4)); + in[4] = _mm_load_si128((const __m128i *)(input + 2 * stride + 0)); + in[5] = _mm_load_si128((const __m128i *)(input + 2 * stride + 4)); + in[6] = _mm_load_si128((const __m128i *)(input + 3 * stride + 0)); + in[7] = _mm_load_si128((const __m128i *)(input + 3 * stride + 4)); + transpose_32bit_8x4(in, in); +} + +static INLINE void highbd_load_transpose_32bit_4x4(const tran_low_t *input, + const int stride, + __m128i *in) { + in[0] = _mm_load_si128((const __m128i *)(input + 0 * stride)); + in[1] = _mm_load_si128((const __m128i *)(input + 1 * stride)); + in[2] = _mm_load_si128((const __m128i *)(input + 2 * stride)); + in[3] = _mm_load_si128((const __m128i *)(input + 3 * stride)); + transpose_32bit_4x4(in, in); +} + +static INLINE void highbd_write_buffer_8(uint16_t *dest, const __m128i in, + const int bd) { + const __m128i final_rounding = _mm_set1_epi16(1 << 5); + __m128i out; + + out = _mm_adds_epi16(in, final_rounding); + out = _mm_srai_epi16(out, 6); + recon_and_store_8(out, &dest, 0, bd); +} + +static INLINE void highbd_write_buffer_4(uint16_t *const dest, const __m128i in, + const int bd) { + const __m128i final_rounding = _mm_set1_epi32(1 << 5); + __m128i out; + + out = _mm_add_epi32(in, final_rounding); + out = _mm_srai_epi32(out, 6); + out = _mm_packs_epi32(out, out); + recon_and_store_4(out, dest, bd); +} + +#endif // VPX_DSP_X86_HIGHBD_INV_TXFM_SSE2_H_ diff --git a/vpx_dsp/x86/highbd_inv_txfm_sse4.h b/vpx_dsp/x86/highbd_inv_txfm_sse4.h new file mode 100644 index 0000000..9c8eef4 --- /dev/null +++ b/vpx_dsp/x86/highbd_inv_txfm_sse4.h @@ -0,0 +1,87 @@ +/* + * Copyright (c) 2017 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VPX_DSP_X86_HIGHBD_INV_TXFM_SSE4_H_ +#define VPX_DSP_X86_HIGHBD_INV_TXFM_SSE4_H_ + +#include // SSE4.1 + +#include "./vpx_config.h" +#include "vpx_dsp/x86/highbd_inv_txfm_sse2.h" + +static INLINE __m128i multiplication_round_shift_sse4_1( + const __m128i *const in /*in[2]*/, const int c) { + const __m128i pair_c = pair_set_epi32(c * 4, 0); + __m128i t0, t1; + + t0 = _mm_mul_epi32(in[0], pair_c); + t1 = _mm_mul_epi32(in[1], pair_c); + t0 = dct_const_round_shift_64bit(t0); + t1 = dct_const_round_shift_64bit(t1); + + return pack_4(t0, t1); +} + +static INLINE void highbd_butterfly_sse4_1(const __m128i in0, const __m128i in1, + const int c0, const int c1, + __m128i *const out0, + __m128i *const out1) { + const __m128i pair_c0 = pair_set_epi32(4 * c0, 0); + const __m128i pair_c1 = pair_set_epi32(4 * c1, 0); + __m128i temp1[4], temp2[4]; + + extend_64bit(in0, temp1); + extend_64bit(in1, temp2); + temp1[2] = _mm_mul_epi32(temp1[0], pair_c1); + temp1[3] = _mm_mul_epi32(temp1[1], pair_c1); + temp1[0] = _mm_mul_epi32(temp1[0], pair_c0); + temp1[1] = _mm_mul_epi32(temp1[1], pair_c0); + temp2[2] = _mm_mul_epi32(temp2[0], pair_c0); + temp2[3] = _mm_mul_epi32(temp2[1], pair_c0); + temp2[0] = _mm_mul_epi32(temp2[0], pair_c1); + temp2[1] = _mm_mul_epi32(temp2[1], pair_c1); + temp1[0] = _mm_sub_epi64(temp1[0], temp2[0]); + temp1[1] = _mm_sub_epi64(temp1[1], temp2[1]); + temp2[0] = _mm_add_epi64(temp1[2], temp2[2]); + temp2[1] = _mm_add_epi64(temp1[3], temp2[3]); + temp1[0] = dct_const_round_shift_64bit(temp1[0]); + temp1[1] = dct_const_round_shift_64bit(temp1[1]); + temp2[0] = dct_const_round_shift_64bit(temp2[0]); + temp2[1] = dct_const_round_shift_64bit(temp2[1]); + *out0 = pack_4(temp1[0], temp1[1]); + *out1 = pack_4(temp2[0], temp2[1]); +} + +static INLINE void highbd_butterfly_cospi16_sse4_1(const __m128i in0, + const __m128i in1, + __m128i *const out0, + __m128i *const out1) { + __m128i temp1[2], temp2; + + temp2 = _mm_add_epi32(in0, in1); + extend_64bit(temp2, temp1); + *out0 = multiplication_round_shift_sse4_1(temp1, cospi_16_64); + temp2 = _mm_sub_epi32(in0, in1); + extend_64bit(temp2, temp1); + *out1 = multiplication_round_shift_sse4_1(temp1, cospi_16_64); +} + +static INLINE void highbd_partial_butterfly_sse4_1(const __m128i in, + const int c0, const int c1, + __m128i *const out0, + __m128i *const out1) { + __m128i temp[2]; + + extend_64bit(in, temp); + *out0 = multiplication_round_shift_sse4_1(temp, c0); + *out1 = multiplication_round_shift_sse4_1(temp, c1); +} + +#endif // VPX_DSP_X86_HIGHBD_INV_TXFM_SSE4_H_ diff --git a/vpx_dsp/x86/highbd_loopfilter_sse2.c b/vpx_dsp/x86/highbd_loopfilter_sse2.c new file mode 100644 index 0000000..ec22db9 --- /dev/null +++ b/vpx_dsp/x86/highbd_loopfilter_sse2.c @@ -0,0 +1,1138 @@ +/* + * Copyright (c) 2014 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include // SSE2 + +#include "./vpx_dsp_rtcd.h" +#include "vpx_ports/mem.h" + +static INLINE __m128i signed_char_clamp_bd_sse2(__m128i value, int bd) { + __m128i ubounded; + __m128i lbounded; + __m128i retval; + + const __m128i zero = _mm_set1_epi16(0); + const __m128i one = _mm_set1_epi16(1); + __m128i t80, max, min; + + if (bd == 8) { + t80 = _mm_set1_epi16(0x80); + max = _mm_subs_epi16(_mm_subs_epi16(_mm_slli_epi16(one, 8), one), t80); + } else if (bd == 10) { + t80 = _mm_set1_epi16(0x200); + max = _mm_subs_epi16(_mm_subs_epi16(_mm_slli_epi16(one, 10), one), t80); + } else { // bd == 12 + t80 = _mm_set1_epi16(0x800); + max = _mm_subs_epi16(_mm_subs_epi16(_mm_slli_epi16(one, 12), one), t80); + } + + min = _mm_subs_epi16(zero, t80); + + ubounded = _mm_cmpgt_epi16(value, max); + lbounded = _mm_cmplt_epi16(value, min); + retval = _mm_andnot_si128(_mm_or_si128(ubounded, lbounded), value); + ubounded = _mm_and_si128(ubounded, max); + lbounded = _mm_and_si128(lbounded, min); + retval = _mm_or_si128(retval, ubounded); + retval = _mm_or_si128(retval, lbounded); + return retval; +} + +// TODO(debargha, peter): Break up large functions into smaller ones +// in this file. +void vpx_highbd_lpf_horizontal_16_sse2(uint16_t *s, int p, + const uint8_t *_blimit, + const uint8_t *_limit, + const uint8_t *_thresh, int bd) { + const __m128i zero = _mm_set1_epi16(0); + const __m128i one = _mm_set1_epi16(1); + __m128i blimit, limit, thresh; + __m128i q7, p7, q6, p6, q5, p5, q4, p4, q3, p3, q2, p2, q1, p1, q0, p0; + __m128i mask, hev, flat, flat2, abs_p1p0, abs_q1q0; + __m128i ps1, qs1, ps0, qs0; + __m128i abs_p0q0, abs_p1q1, ffff, work; + __m128i filt, work_a, filter1, filter2; + __m128i flat2_q6, flat2_p6, flat2_q5, flat2_p5, flat2_q4, flat2_p4; + __m128i flat2_q3, flat2_p3, flat2_q2, flat2_p2, flat2_q1, flat2_p1; + __m128i flat2_q0, flat2_p0; + __m128i flat_q2, flat_p2, flat_q1, flat_p1, flat_q0, flat_p0; + __m128i pixelFilter_p, pixelFilter_q; + __m128i pixetFilter_p2p1p0, pixetFilter_q2q1q0; + __m128i sum_p7, sum_q7, sum_p3, sum_q3; + __m128i t4, t3, t80, t1; + __m128i eight, four; + + if (bd == 8) { + blimit = _mm_unpacklo_epi8(_mm_load_si128((const __m128i *)_blimit), zero); + limit = _mm_unpacklo_epi8(_mm_load_si128((const __m128i *)_limit), zero); + thresh = _mm_unpacklo_epi8(_mm_load_si128((const __m128i *)_thresh), zero); + } else if (bd == 10) { + blimit = _mm_slli_epi16( + _mm_unpacklo_epi8(_mm_load_si128((const __m128i *)_blimit), zero), 2); + limit = _mm_slli_epi16( + _mm_unpacklo_epi8(_mm_load_si128((const __m128i *)_limit), zero), 2); + thresh = _mm_slli_epi16( + _mm_unpacklo_epi8(_mm_load_si128((const __m128i *)_thresh), zero), 2); + } else { // bd == 12 + blimit = _mm_slli_epi16( + _mm_unpacklo_epi8(_mm_load_si128((const __m128i *)_blimit), zero), 4); + limit = _mm_slli_epi16( + _mm_unpacklo_epi8(_mm_load_si128((const __m128i *)_limit), zero), 4); + thresh = _mm_slli_epi16( + _mm_unpacklo_epi8(_mm_load_si128((const __m128i *)_thresh), zero), 4); + } + + q4 = _mm_load_si128((__m128i *)(s + 4 * p)); + p4 = _mm_load_si128((__m128i *)(s - 5 * p)); + q3 = _mm_load_si128((__m128i *)(s + 3 * p)); + p3 = _mm_load_si128((__m128i *)(s - 4 * p)); + q2 = _mm_load_si128((__m128i *)(s + 2 * p)); + p2 = _mm_load_si128((__m128i *)(s - 3 * p)); + q1 = _mm_load_si128((__m128i *)(s + 1 * p)); + p1 = _mm_load_si128((__m128i *)(s - 2 * p)); + q0 = _mm_load_si128((__m128i *)(s + 0 * p)); + p0 = _mm_load_si128((__m128i *)(s - 1 * p)); + + // highbd_filter_mask + abs_p1p0 = _mm_or_si128(_mm_subs_epu16(p1, p0), _mm_subs_epu16(p0, p1)); + abs_q1q0 = _mm_or_si128(_mm_subs_epu16(q1, q0), _mm_subs_epu16(q0, q1)); + + ffff = _mm_cmpeq_epi16(abs_p1p0, abs_p1p0); + + abs_p0q0 = _mm_or_si128(_mm_subs_epu16(p0, q0), _mm_subs_epu16(q0, p0)); + abs_p1q1 = _mm_or_si128(_mm_subs_epu16(p1, q1), _mm_subs_epu16(q1, p1)); + + // highbd_hev_mask (in C code this is actually called from highbd_filter4) + flat = _mm_max_epi16(abs_p1p0, abs_q1q0); + hev = _mm_subs_epu16(flat, thresh); + hev = _mm_xor_si128(_mm_cmpeq_epi16(hev, zero), ffff); + + abs_p0q0 = _mm_adds_epu16(abs_p0q0, abs_p0q0); // abs(p0 - q0) * 2 + abs_p1q1 = _mm_srli_epi16(abs_p1q1, 1); // abs(p1 - q1) / 2 + mask = _mm_subs_epu16(_mm_adds_epu16(abs_p0q0, abs_p1q1), blimit); + mask = _mm_xor_si128(_mm_cmpeq_epi16(mask, zero), ffff); + mask = _mm_and_si128(mask, _mm_adds_epu16(limit, one)); + work = _mm_max_epi16( + _mm_or_si128(_mm_subs_epu16(p1, p0), _mm_subs_epu16(p0, p1)), + _mm_or_si128(_mm_subs_epu16(q1, q0), _mm_subs_epu16(q0, q1))); + mask = _mm_max_epi16(work, mask); + work = _mm_max_epi16( + _mm_or_si128(_mm_subs_epu16(p2, p1), _mm_subs_epu16(p1, p2)), + _mm_or_si128(_mm_subs_epu16(q2, q1), _mm_subs_epu16(q1, q2))); + mask = _mm_max_epi16(work, mask); + work = _mm_max_epi16( + _mm_or_si128(_mm_subs_epu16(p3, p2), _mm_subs_epu16(p2, p3)), + _mm_or_si128(_mm_subs_epu16(q3, q2), _mm_subs_epu16(q2, q3))); + mask = _mm_max_epi16(work, mask); + + mask = _mm_subs_epu16(mask, limit); + mask = _mm_cmpeq_epi16(mask, zero); // return ~mask + + // lp filter + // highbd_filter4 + t4 = _mm_set1_epi16(4); + t3 = _mm_set1_epi16(3); + if (bd == 8) + t80 = _mm_set1_epi16(0x80); + else if (bd == 10) + t80 = _mm_set1_epi16(0x200); + else // bd == 12 + t80 = _mm_set1_epi16(0x800); + + t1 = _mm_set1_epi16(0x1); + + ps1 = _mm_subs_epi16(p1, t80); + qs1 = _mm_subs_epi16(q1, t80); + ps0 = _mm_subs_epi16(p0, t80); + qs0 = _mm_subs_epi16(q0, t80); + + filt = _mm_and_si128(signed_char_clamp_bd_sse2(_mm_subs_epi16(ps1, qs1), bd), + hev); + work_a = _mm_subs_epi16(qs0, ps0); + filt = _mm_adds_epi16(filt, work_a); + filt = _mm_adds_epi16(filt, work_a); + filt = signed_char_clamp_bd_sse2(_mm_adds_epi16(filt, work_a), bd); + filt = _mm_and_si128(filt, mask); + filter1 = signed_char_clamp_bd_sse2(_mm_adds_epi16(filt, t4), bd); + filter2 = signed_char_clamp_bd_sse2(_mm_adds_epi16(filt, t3), bd); + + // Filter1 >> 3 + filter1 = _mm_srai_epi16(filter1, 0x3); + filter2 = _mm_srai_epi16(filter2, 0x3); + + qs0 = _mm_adds_epi16( + signed_char_clamp_bd_sse2(_mm_subs_epi16(qs0, filter1), bd), t80); + ps0 = _mm_adds_epi16( + signed_char_clamp_bd_sse2(_mm_adds_epi16(ps0, filter2), bd), t80); + filt = _mm_adds_epi16(filter1, t1); + filt = _mm_srai_epi16(filt, 1); + filt = _mm_andnot_si128(hev, filt); + qs1 = _mm_adds_epi16(signed_char_clamp_bd_sse2(_mm_subs_epi16(qs1, filt), bd), + t80); + ps1 = _mm_adds_epi16(signed_char_clamp_bd_sse2(_mm_adds_epi16(ps1, filt), bd), + t80); + + // end highbd_filter4 + // loopfilter done + + // highbd_flat_mask4 + flat = _mm_max_epi16( + _mm_or_si128(_mm_subs_epu16(p2, p0), _mm_subs_epu16(p0, p2)), + _mm_or_si128(_mm_subs_epu16(p3, p0), _mm_subs_epu16(p0, p3))); + work = _mm_max_epi16( + _mm_or_si128(_mm_subs_epu16(q2, q0), _mm_subs_epu16(q0, q2)), + _mm_or_si128(_mm_subs_epu16(q3, q0), _mm_subs_epu16(q0, q3))); + flat = _mm_max_epi16(work, flat); + work = _mm_max_epi16(abs_p1p0, abs_q1q0); + flat = _mm_max_epi16(work, flat); + + if (bd == 8) + flat = _mm_subs_epu16(flat, one); + else if (bd == 10) + flat = _mm_subs_epu16(flat, _mm_slli_epi16(one, 2)); + else // bd == 12 + flat = _mm_subs_epu16(flat, _mm_slli_epi16(one, 4)); + + flat = _mm_cmpeq_epi16(flat, zero); + // end flat_mask4 + + // flat & mask = flat && mask (as used in filter8) + // (because, in both vars, each block of 16 either all 1s or all 0s) + flat = _mm_and_si128(flat, mask); + + p5 = _mm_load_si128((__m128i *)(s - 6 * p)); + q5 = _mm_load_si128((__m128i *)(s + 5 * p)); + p6 = _mm_load_si128((__m128i *)(s - 7 * p)); + q6 = _mm_load_si128((__m128i *)(s + 6 * p)); + p7 = _mm_load_si128((__m128i *)(s - 8 * p)); + q7 = _mm_load_si128((__m128i *)(s + 7 * p)); + + // highbd_flat_mask5 (arguments passed in are p0, q0, p4-p7, q4-q7 + // but referred to as p0-p4 & q0-q4 in fn) + flat2 = _mm_max_epi16( + _mm_or_si128(_mm_subs_epu16(p4, p0), _mm_subs_epu16(p0, p4)), + _mm_or_si128(_mm_subs_epu16(q4, q0), _mm_subs_epu16(q0, q4))); + + work = _mm_max_epi16( + _mm_or_si128(_mm_subs_epu16(p5, p0), _mm_subs_epu16(p0, p5)), + _mm_or_si128(_mm_subs_epu16(q5, q0), _mm_subs_epu16(q0, q5))); + flat2 = _mm_max_epi16(work, flat2); + + work = _mm_max_epi16( + _mm_or_si128(_mm_subs_epu16(p6, p0), _mm_subs_epu16(p0, p6)), + _mm_or_si128(_mm_subs_epu16(q6, q0), _mm_subs_epu16(q0, q6))); + flat2 = _mm_max_epi16(work, flat2); + + work = _mm_max_epi16( + _mm_or_si128(_mm_subs_epu16(p7, p0), _mm_subs_epu16(p0, p7)), + _mm_or_si128(_mm_subs_epu16(q7, q0), _mm_subs_epu16(q0, q7))); + flat2 = _mm_max_epi16(work, flat2); + + if (bd == 8) + flat2 = _mm_subs_epu16(flat2, one); + else if (bd == 10) + flat2 = _mm_subs_epu16(flat2, _mm_slli_epi16(one, 2)); + else // bd == 12 + flat2 = _mm_subs_epu16(flat2, _mm_slli_epi16(one, 4)); + + flat2 = _mm_cmpeq_epi16(flat2, zero); + flat2 = _mm_and_si128(flat2, flat); // flat2 & flat & mask + // end highbd_flat_mask5 + + // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + // flat and wide flat calculations + eight = _mm_set1_epi16(8); + four = _mm_set1_epi16(4); + + pixelFilter_p = _mm_add_epi16(_mm_add_epi16(p6, p5), _mm_add_epi16(p4, p3)); + pixelFilter_q = _mm_add_epi16(_mm_add_epi16(q6, q5), _mm_add_epi16(q4, q3)); + + pixetFilter_p2p1p0 = _mm_add_epi16(p0, _mm_add_epi16(p2, p1)); + pixelFilter_p = _mm_add_epi16(pixelFilter_p, pixetFilter_p2p1p0); + + pixetFilter_q2q1q0 = _mm_add_epi16(q0, _mm_add_epi16(q2, q1)); + pixelFilter_q = _mm_add_epi16(pixelFilter_q, pixetFilter_q2q1q0); + pixelFilter_p = + _mm_add_epi16(eight, _mm_add_epi16(pixelFilter_p, pixelFilter_q)); + pixetFilter_p2p1p0 = _mm_add_epi16( + four, _mm_add_epi16(pixetFilter_p2p1p0, pixetFilter_q2q1q0)); + flat2_p0 = + _mm_srli_epi16(_mm_add_epi16(pixelFilter_p, _mm_add_epi16(p7, p0)), 4); + flat2_q0 = + _mm_srli_epi16(_mm_add_epi16(pixelFilter_p, _mm_add_epi16(q7, q0)), 4); + flat_p0 = _mm_srli_epi16( + _mm_add_epi16(pixetFilter_p2p1p0, _mm_add_epi16(p3, p0)), 3); + flat_q0 = _mm_srli_epi16( + _mm_add_epi16(pixetFilter_p2p1p0, _mm_add_epi16(q3, q0)), 3); + + sum_p7 = _mm_add_epi16(p7, p7); + sum_q7 = _mm_add_epi16(q7, q7); + sum_p3 = _mm_add_epi16(p3, p3); + sum_q3 = _mm_add_epi16(q3, q3); + + pixelFilter_q = _mm_sub_epi16(pixelFilter_p, p6); + pixelFilter_p = _mm_sub_epi16(pixelFilter_p, q6); + flat2_p1 = _mm_srli_epi16( + _mm_add_epi16(pixelFilter_p, _mm_add_epi16(sum_p7, p1)), 4); + flat2_q1 = _mm_srli_epi16( + _mm_add_epi16(pixelFilter_q, _mm_add_epi16(sum_q7, q1)), 4); + + pixetFilter_q2q1q0 = _mm_sub_epi16(pixetFilter_p2p1p0, p2); + pixetFilter_p2p1p0 = _mm_sub_epi16(pixetFilter_p2p1p0, q2); + flat_p1 = _mm_srli_epi16( + _mm_add_epi16(pixetFilter_p2p1p0, _mm_add_epi16(sum_p3, p1)), 3); + flat_q1 = _mm_srli_epi16( + _mm_add_epi16(pixetFilter_q2q1q0, _mm_add_epi16(sum_q3, q1)), 3); + + sum_p7 = _mm_add_epi16(sum_p7, p7); + sum_q7 = _mm_add_epi16(sum_q7, q7); + sum_p3 = _mm_add_epi16(sum_p3, p3); + sum_q3 = _mm_add_epi16(sum_q3, q3); + + pixelFilter_p = _mm_sub_epi16(pixelFilter_p, q5); + pixelFilter_q = _mm_sub_epi16(pixelFilter_q, p5); + flat2_p2 = _mm_srli_epi16( + _mm_add_epi16(pixelFilter_p, _mm_add_epi16(sum_p7, p2)), 4); + flat2_q2 = _mm_srli_epi16( + _mm_add_epi16(pixelFilter_q, _mm_add_epi16(sum_q7, q2)), 4); + + pixetFilter_p2p1p0 = _mm_sub_epi16(pixetFilter_p2p1p0, q1); + pixetFilter_q2q1q0 = _mm_sub_epi16(pixetFilter_q2q1q0, p1); + flat_p2 = _mm_srli_epi16( + _mm_add_epi16(pixetFilter_p2p1p0, _mm_add_epi16(sum_p3, p2)), 3); + flat_q2 = _mm_srli_epi16( + _mm_add_epi16(pixetFilter_q2q1q0, _mm_add_epi16(sum_q3, q2)), 3); + + sum_p7 = _mm_add_epi16(sum_p7, p7); + sum_q7 = _mm_add_epi16(sum_q7, q7); + pixelFilter_p = _mm_sub_epi16(pixelFilter_p, q4); + pixelFilter_q = _mm_sub_epi16(pixelFilter_q, p4); + flat2_p3 = _mm_srli_epi16( + _mm_add_epi16(pixelFilter_p, _mm_add_epi16(sum_p7, p3)), 4); + flat2_q3 = _mm_srli_epi16( + _mm_add_epi16(pixelFilter_q, _mm_add_epi16(sum_q7, q3)), 4); + + sum_p7 = _mm_add_epi16(sum_p7, p7); + sum_q7 = _mm_add_epi16(sum_q7, q7); + pixelFilter_p = _mm_sub_epi16(pixelFilter_p, q3); + pixelFilter_q = _mm_sub_epi16(pixelFilter_q, p3); + flat2_p4 = _mm_srli_epi16( + _mm_add_epi16(pixelFilter_p, _mm_add_epi16(sum_p7, p4)), 4); + flat2_q4 = _mm_srli_epi16( + _mm_add_epi16(pixelFilter_q, _mm_add_epi16(sum_q7, q4)), 4); + + sum_p7 = _mm_add_epi16(sum_p7, p7); + sum_q7 = _mm_add_epi16(sum_q7, q7); + pixelFilter_p = _mm_sub_epi16(pixelFilter_p, q2); + pixelFilter_q = _mm_sub_epi16(pixelFilter_q, p2); + flat2_p5 = _mm_srli_epi16( + _mm_add_epi16(pixelFilter_p, _mm_add_epi16(sum_p7, p5)), 4); + flat2_q5 = _mm_srli_epi16( + _mm_add_epi16(pixelFilter_q, _mm_add_epi16(sum_q7, q5)), 4); + + sum_p7 = _mm_add_epi16(sum_p7, p7); + sum_q7 = _mm_add_epi16(sum_q7, q7); + pixelFilter_p = _mm_sub_epi16(pixelFilter_p, q1); + pixelFilter_q = _mm_sub_epi16(pixelFilter_q, p1); + flat2_p6 = _mm_srli_epi16( + _mm_add_epi16(pixelFilter_p, _mm_add_epi16(sum_p7, p6)), 4); + flat2_q6 = _mm_srli_epi16( + _mm_add_epi16(pixelFilter_q, _mm_add_epi16(sum_q7, q6)), 4); + + // wide flat + // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + + // highbd_filter8 + p2 = _mm_andnot_si128(flat, p2); + // p2 remains unchanged if !(flat && mask) + flat_p2 = _mm_and_si128(flat, flat_p2); + // when (flat && mask) + p2 = _mm_or_si128(p2, flat_p2); // full list of p2 values + q2 = _mm_andnot_si128(flat, q2); + flat_q2 = _mm_and_si128(flat, flat_q2); + q2 = _mm_or_si128(q2, flat_q2); // full list of q2 values + + ps1 = _mm_andnot_si128(flat, ps1); + // p1 takes the value assigned to in in filter4 if !(flat && mask) + flat_p1 = _mm_and_si128(flat, flat_p1); + // when (flat && mask) + p1 = _mm_or_si128(ps1, flat_p1); // full list of p1 values + qs1 = _mm_andnot_si128(flat, qs1); + flat_q1 = _mm_and_si128(flat, flat_q1); + q1 = _mm_or_si128(qs1, flat_q1); // full list of q1 values + + ps0 = _mm_andnot_si128(flat, ps0); + // p0 takes the value assigned to in in filter4 if !(flat && mask) + flat_p0 = _mm_and_si128(flat, flat_p0); + // when (flat && mask) + p0 = _mm_or_si128(ps0, flat_p0); // full list of p0 values + qs0 = _mm_andnot_si128(flat, qs0); + flat_q0 = _mm_and_si128(flat, flat_q0); + q0 = _mm_or_si128(qs0, flat_q0); // full list of q0 values + // end highbd_filter8 + + // highbd_filter16 + p6 = _mm_andnot_si128(flat2, p6); + // p6 remains unchanged if !(flat2 && flat && mask) + flat2_p6 = _mm_and_si128(flat2, flat2_p6); + // get values for when (flat2 && flat && mask) + p6 = _mm_or_si128(p6, flat2_p6); // full list of p6 values + q6 = _mm_andnot_si128(flat2, q6); + // q6 remains unchanged if !(flat2 && flat && mask) + flat2_q6 = _mm_and_si128(flat2, flat2_q6); + // get values for when (flat2 && flat && mask) + q6 = _mm_or_si128(q6, flat2_q6); // full list of q6 values + _mm_store_si128((__m128i *)(s - 7 * p), p6); + _mm_store_si128((__m128i *)(s + 6 * p), q6); + + p5 = _mm_andnot_si128(flat2, p5); + // p5 remains unchanged if !(flat2 && flat && mask) + flat2_p5 = _mm_and_si128(flat2, flat2_p5); + // get values for when (flat2 && flat && mask) + p5 = _mm_or_si128(p5, flat2_p5); + // full list of p5 values + q5 = _mm_andnot_si128(flat2, q5); + // q5 remains unchanged if !(flat2 && flat && mask) + flat2_q5 = _mm_and_si128(flat2, flat2_q5); + // get values for when (flat2 && flat && mask) + q5 = _mm_or_si128(q5, flat2_q5); + // full list of q5 values + _mm_store_si128((__m128i *)(s - 6 * p), p5); + _mm_store_si128((__m128i *)(s + 5 * p), q5); + + p4 = _mm_andnot_si128(flat2, p4); + // p4 remains unchanged if !(flat2 && flat && mask) + flat2_p4 = _mm_and_si128(flat2, flat2_p4); + // get values for when (flat2 && flat && mask) + p4 = _mm_or_si128(p4, flat2_p4); // full list of p4 values + q4 = _mm_andnot_si128(flat2, q4); + // q4 remains unchanged if !(flat2 && flat && mask) + flat2_q4 = _mm_and_si128(flat2, flat2_q4); + // get values for when (flat2 && flat && mask) + q4 = _mm_or_si128(q4, flat2_q4); // full list of q4 values + _mm_store_si128((__m128i *)(s - 5 * p), p4); + _mm_store_si128((__m128i *)(s + 4 * p), q4); + + p3 = _mm_andnot_si128(flat2, p3); + // p3 takes value from highbd_filter8 if !(flat2 && flat && mask) + flat2_p3 = _mm_and_si128(flat2, flat2_p3); + // get values for when (flat2 && flat && mask) + p3 = _mm_or_si128(p3, flat2_p3); // full list of p3 values + q3 = _mm_andnot_si128(flat2, q3); + // q3 takes value from highbd_filter8 if !(flat2 && flat && mask) + flat2_q3 = _mm_and_si128(flat2, flat2_q3); + // get values for when (flat2 && flat && mask) + q3 = _mm_or_si128(q3, flat2_q3); // full list of q3 values + _mm_store_si128((__m128i *)(s - 4 * p), p3); + _mm_store_si128((__m128i *)(s + 3 * p), q3); + + p2 = _mm_andnot_si128(flat2, p2); + // p2 takes value from highbd_filter8 if !(flat2 && flat && mask) + flat2_p2 = _mm_and_si128(flat2, flat2_p2); + // get values for when (flat2 && flat && mask) + p2 = _mm_or_si128(p2, flat2_p2); + // full list of p2 values + q2 = _mm_andnot_si128(flat2, q2); + // q2 takes value from highbd_filter8 if !(flat2 && flat && mask) + flat2_q2 = _mm_and_si128(flat2, flat2_q2); + // get values for when (flat2 && flat && mask) + q2 = _mm_or_si128(q2, flat2_q2); // full list of q2 values + _mm_store_si128((__m128i *)(s - 3 * p), p2); + _mm_store_si128((__m128i *)(s + 2 * p), q2); + + p1 = _mm_andnot_si128(flat2, p1); + // p1 takes value from highbd_filter8 if !(flat2 && flat && mask) + flat2_p1 = _mm_and_si128(flat2, flat2_p1); + // get values for when (flat2 && flat && mask) + p1 = _mm_or_si128(p1, flat2_p1); // full list of p1 values + q1 = _mm_andnot_si128(flat2, q1); + // q1 takes value from highbd_filter8 if !(flat2 && flat && mask) + flat2_q1 = _mm_and_si128(flat2, flat2_q1); + // get values for when (flat2 && flat && mask) + q1 = _mm_or_si128(q1, flat2_q1); // full list of q1 values + _mm_store_si128((__m128i *)(s - 2 * p), p1); + _mm_store_si128((__m128i *)(s + 1 * p), q1); + + p0 = _mm_andnot_si128(flat2, p0); + // p0 takes value from highbd_filter8 if !(flat2 && flat && mask) + flat2_p0 = _mm_and_si128(flat2, flat2_p0); + // get values for when (flat2 && flat && mask) + p0 = _mm_or_si128(p0, flat2_p0); // full list of p0 values + q0 = _mm_andnot_si128(flat2, q0); + // q0 takes value from highbd_filter8 if !(flat2 && flat && mask) + flat2_q0 = _mm_and_si128(flat2, flat2_q0); + // get values for when (flat2 && flat && mask) + q0 = _mm_or_si128(q0, flat2_q0); // full list of q0 values + _mm_store_si128((__m128i *)(s - 1 * p), p0); + _mm_store_si128((__m128i *)(s - 0 * p), q0); +} + +void vpx_highbd_lpf_horizontal_16_dual_sse2(uint16_t *s, int p, + const uint8_t *_blimit, + const uint8_t *_limit, + const uint8_t *_thresh, int bd) { + vpx_highbd_lpf_horizontal_16_sse2(s, p, _blimit, _limit, _thresh, bd); + vpx_highbd_lpf_horizontal_16_sse2(s + 8, p, _blimit, _limit, _thresh, bd); +} + +void vpx_highbd_lpf_horizontal_8_sse2(uint16_t *s, int p, + const uint8_t *_blimit, + const uint8_t *_limit, + const uint8_t *_thresh, int bd) { + DECLARE_ALIGNED(16, uint16_t, flat_op2[16]); + DECLARE_ALIGNED(16, uint16_t, flat_op1[16]); + DECLARE_ALIGNED(16, uint16_t, flat_op0[16]); + DECLARE_ALIGNED(16, uint16_t, flat_oq2[16]); + DECLARE_ALIGNED(16, uint16_t, flat_oq1[16]); + DECLARE_ALIGNED(16, uint16_t, flat_oq0[16]); + const __m128i zero = _mm_set1_epi16(0); + __m128i blimit, limit, thresh; + __m128i mask, hev, flat; + __m128i p3 = _mm_load_si128((__m128i *)(s - 4 * p)); + __m128i q3 = _mm_load_si128((__m128i *)(s + 3 * p)); + __m128i p2 = _mm_load_si128((__m128i *)(s - 3 * p)); + __m128i q2 = _mm_load_si128((__m128i *)(s + 2 * p)); + __m128i p1 = _mm_load_si128((__m128i *)(s - 2 * p)); + __m128i q1 = _mm_load_si128((__m128i *)(s + 1 * p)); + __m128i p0 = _mm_load_si128((__m128i *)(s - 1 * p)); + __m128i q0 = _mm_load_si128((__m128i *)(s + 0 * p)); + const __m128i one = _mm_set1_epi16(1); + const __m128i ffff = _mm_cmpeq_epi16(one, one); + __m128i abs_p1q1, abs_p0q0, abs_q1q0, abs_p1p0, work; + const __m128i four = _mm_set1_epi16(4); + __m128i workp_a, workp_b, workp_shft; + + const __m128i t4 = _mm_set1_epi16(4); + const __m128i t3 = _mm_set1_epi16(3); + __m128i t80; + const __m128i t1 = _mm_set1_epi16(0x1); + __m128i ps1, ps0, qs0, qs1; + __m128i filt; + __m128i work_a; + __m128i filter1, filter2; + + if (bd == 8) { + blimit = _mm_unpacklo_epi8(_mm_load_si128((const __m128i *)_blimit), zero); + limit = _mm_unpacklo_epi8(_mm_load_si128((const __m128i *)_limit), zero); + thresh = _mm_unpacklo_epi8(_mm_load_si128((const __m128i *)_thresh), zero); + t80 = _mm_set1_epi16(0x80); + } else if (bd == 10) { + blimit = _mm_slli_epi16( + _mm_unpacklo_epi8(_mm_load_si128((const __m128i *)_blimit), zero), 2); + limit = _mm_slli_epi16( + _mm_unpacklo_epi8(_mm_load_si128((const __m128i *)_limit), zero), 2); + thresh = _mm_slli_epi16( + _mm_unpacklo_epi8(_mm_load_si128((const __m128i *)_thresh), zero), 2); + t80 = _mm_set1_epi16(0x200); + } else { // bd == 12 + blimit = _mm_slli_epi16( + _mm_unpacklo_epi8(_mm_load_si128((const __m128i *)_blimit), zero), 4); + limit = _mm_slli_epi16( + _mm_unpacklo_epi8(_mm_load_si128((const __m128i *)_limit), zero), 4); + thresh = _mm_slli_epi16( + _mm_unpacklo_epi8(_mm_load_si128((const __m128i *)_thresh), zero), 4); + t80 = _mm_set1_epi16(0x800); + } + + ps1 = _mm_subs_epi16(p1, t80); + ps0 = _mm_subs_epi16(p0, t80); + qs0 = _mm_subs_epi16(q0, t80); + qs1 = _mm_subs_epi16(q1, t80); + + // filter_mask and hev_mask + abs_p1p0 = _mm_or_si128(_mm_subs_epu16(p1, p0), _mm_subs_epu16(p0, p1)); + abs_q1q0 = _mm_or_si128(_mm_subs_epu16(q1, q0), _mm_subs_epu16(q0, q1)); + + abs_p0q0 = _mm_or_si128(_mm_subs_epu16(p0, q0), _mm_subs_epu16(q0, p0)); + abs_p1q1 = _mm_or_si128(_mm_subs_epu16(p1, q1), _mm_subs_epu16(q1, p1)); + flat = _mm_max_epi16(abs_p1p0, abs_q1q0); + hev = _mm_subs_epu16(flat, thresh); + hev = _mm_xor_si128(_mm_cmpeq_epi16(hev, zero), ffff); + + abs_p0q0 = _mm_adds_epu16(abs_p0q0, abs_p0q0); + abs_p1q1 = _mm_srli_epi16(abs_p1q1, 1); + mask = _mm_subs_epu16(_mm_adds_epu16(abs_p0q0, abs_p1q1), blimit); + mask = _mm_xor_si128(_mm_cmpeq_epi16(mask, zero), ffff); + // mask |= (abs(p0 - q0) * 2 + abs(p1 - q1) / 2 > blimit) * -1; + // So taking maximums continues to work: + mask = _mm_and_si128(mask, _mm_adds_epu16(limit, one)); + mask = _mm_max_epi16(abs_p1p0, mask); + // mask |= (abs(p1 - p0) > limit) * -1; + mask = _mm_max_epi16(abs_q1q0, mask); + // mask |= (abs(q1 - q0) > limit) * -1; + + work = _mm_max_epi16( + _mm_or_si128(_mm_subs_epu16(p2, p1), _mm_subs_epu16(p1, p2)), + _mm_or_si128(_mm_subs_epu16(q2, q1), _mm_subs_epu16(q1, q2))); + mask = _mm_max_epi16(work, mask); + work = _mm_max_epi16( + _mm_or_si128(_mm_subs_epu16(p3, p2), _mm_subs_epu16(p2, p3)), + _mm_or_si128(_mm_subs_epu16(q3, q2), _mm_subs_epu16(q2, q3))); + mask = _mm_max_epi16(work, mask); + mask = _mm_subs_epu16(mask, limit); + mask = _mm_cmpeq_epi16(mask, zero); + + // flat_mask4 + flat = _mm_max_epi16( + _mm_or_si128(_mm_subs_epu16(p2, p0), _mm_subs_epu16(p0, p2)), + _mm_or_si128(_mm_subs_epu16(q2, q0), _mm_subs_epu16(q0, q2))); + work = _mm_max_epi16( + _mm_or_si128(_mm_subs_epu16(p3, p0), _mm_subs_epu16(p0, p3)), + _mm_or_si128(_mm_subs_epu16(q3, q0), _mm_subs_epu16(q0, q3))); + flat = _mm_max_epi16(work, flat); + flat = _mm_max_epi16(abs_p1p0, flat); + flat = _mm_max_epi16(abs_q1q0, flat); + + if (bd == 8) + flat = _mm_subs_epu16(flat, one); + else if (bd == 10) + flat = _mm_subs_epu16(flat, _mm_slli_epi16(one, 2)); + else // bd == 12 + flat = _mm_subs_epu16(flat, _mm_slli_epi16(one, 4)); + + flat = _mm_cmpeq_epi16(flat, zero); + flat = _mm_and_si128(flat, mask); // flat & mask + + // Added before shift for rounding part of ROUND_POWER_OF_TWO + + workp_a = _mm_add_epi16(_mm_add_epi16(p3, p3), _mm_add_epi16(p2, p1)); + workp_a = _mm_add_epi16(_mm_add_epi16(workp_a, four), p0); + workp_b = _mm_add_epi16(_mm_add_epi16(q0, p2), p3); + workp_shft = _mm_srli_epi16(_mm_add_epi16(workp_a, workp_b), 3); + _mm_store_si128((__m128i *)&flat_op2[0], workp_shft); + + workp_b = _mm_add_epi16(_mm_add_epi16(q0, q1), p1); + workp_shft = _mm_srli_epi16(_mm_add_epi16(workp_a, workp_b), 3); + _mm_store_si128((__m128i *)&flat_op1[0], workp_shft); + + workp_a = _mm_add_epi16(_mm_sub_epi16(workp_a, p3), q2); + workp_b = _mm_add_epi16(_mm_sub_epi16(workp_b, p1), p0); + workp_shft = _mm_srli_epi16(_mm_add_epi16(workp_a, workp_b), 3); + _mm_store_si128((__m128i *)&flat_op0[0], workp_shft); + + workp_a = _mm_add_epi16(_mm_sub_epi16(workp_a, p3), q3); + workp_b = _mm_add_epi16(_mm_sub_epi16(workp_b, p0), q0); + workp_shft = _mm_srli_epi16(_mm_add_epi16(workp_a, workp_b), 3); + _mm_store_si128((__m128i *)&flat_oq0[0], workp_shft); + + workp_a = _mm_add_epi16(_mm_sub_epi16(workp_a, p2), q3); + workp_b = _mm_add_epi16(_mm_sub_epi16(workp_b, q0), q1); + workp_shft = _mm_srli_epi16(_mm_add_epi16(workp_a, workp_b), 3); + _mm_store_si128((__m128i *)&flat_oq1[0], workp_shft); + + workp_a = _mm_add_epi16(_mm_sub_epi16(workp_a, p1), q3); + workp_b = _mm_add_epi16(_mm_sub_epi16(workp_b, q1), q2); + workp_shft = _mm_srli_epi16(_mm_add_epi16(workp_a, workp_b), 3); + _mm_store_si128((__m128i *)&flat_oq2[0], workp_shft); + + // lp filter + filt = signed_char_clamp_bd_sse2(_mm_subs_epi16(ps1, qs1), bd); + filt = _mm_and_si128(filt, hev); + work_a = _mm_subs_epi16(qs0, ps0); + filt = _mm_adds_epi16(filt, work_a); + filt = _mm_adds_epi16(filt, work_a); + filt = _mm_adds_epi16(filt, work_a); + // (vpx_filter + 3 * (qs0 - ps0)) & mask + filt = signed_char_clamp_bd_sse2(filt, bd); + filt = _mm_and_si128(filt, mask); + + filter1 = _mm_adds_epi16(filt, t4); + filter2 = _mm_adds_epi16(filt, t3); + + // Filter1 >> 3 + filter1 = signed_char_clamp_bd_sse2(filter1, bd); + filter1 = _mm_srai_epi16(filter1, 3); + + // Filter2 >> 3 + filter2 = signed_char_clamp_bd_sse2(filter2, bd); + filter2 = _mm_srai_epi16(filter2, 3); + + // filt >> 1 + filt = _mm_adds_epi16(filter1, t1); + filt = _mm_srai_epi16(filt, 1); + // filter = ROUND_POWER_OF_TWO(filter1, 1) & ~hev; + filt = _mm_andnot_si128(hev, filt); + + work_a = signed_char_clamp_bd_sse2(_mm_subs_epi16(qs0, filter1), bd); + work_a = _mm_adds_epi16(work_a, t80); + q0 = _mm_load_si128((__m128i *)flat_oq0); + work_a = _mm_andnot_si128(flat, work_a); + q0 = _mm_and_si128(flat, q0); + q0 = _mm_or_si128(work_a, q0); + + work_a = signed_char_clamp_bd_sse2(_mm_subs_epi16(qs1, filt), bd); + work_a = _mm_adds_epi16(work_a, t80); + q1 = _mm_load_si128((__m128i *)flat_oq1); + work_a = _mm_andnot_si128(flat, work_a); + q1 = _mm_and_si128(flat, q1); + q1 = _mm_or_si128(work_a, q1); + + work_a = _mm_loadu_si128((__m128i *)(s + 2 * p)); + q2 = _mm_load_si128((__m128i *)flat_oq2); + work_a = _mm_andnot_si128(flat, work_a); + q2 = _mm_and_si128(flat, q2); + q2 = _mm_or_si128(work_a, q2); + + work_a = signed_char_clamp_bd_sse2(_mm_adds_epi16(ps0, filter2), bd); + work_a = _mm_adds_epi16(work_a, t80); + p0 = _mm_load_si128((__m128i *)flat_op0); + work_a = _mm_andnot_si128(flat, work_a); + p0 = _mm_and_si128(flat, p0); + p0 = _mm_or_si128(work_a, p0); + + work_a = signed_char_clamp_bd_sse2(_mm_adds_epi16(ps1, filt), bd); + work_a = _mm_adds_epi16(work_a, t80); + p1 = _mm_load_si128((__m128i *)flat_op1); + work_a = _mm_andnot_si128(flat, work_a); + p1 = _mm_and_si128(flat, p1); + p1 = _mm_or_si128(work_a, p1); + + work_a = _mm_loadu_si128((__m128i *)(s - 3 * p)); + p2 = _mm_load_si128((__m128i *)flat_op2); + work_a = _mm_andnot_si128(flat, work_a); + p2 = _mm_and_si128(flat, p2); + p2 = _mm_or_si128(work_a, p2); + + _mm_store_si128((__m128i *)(s - 3 * p), p2); + _mm_store_si128((__m128i *)(s - 2 * p), p1); + _mm_store_si128((__m128i *)(s - 1 * p), p0); + _mm_store_si128((__m128i *)(s + 0 * p), q0); + _mm_store_si128((__m128i *)(s + 1 * p), q1); + _mm_store_si128((__m128i *)(s + 2 * p), q2); +} + +void vpx_highbd_lpf_horizontal_8_dual_sse2( + uint16_t *s, int p, const uint8_t *_blimit0, const uint8_t *_limit0, + const uint8_t *_thresh0, const uint8_t *_blimit1, const uint8_t *_limit1, + const uint8_t *_thresh1, int bd) { + vpx_highbd_lpf_horizontal_8_sse2(s, p, _blimit0, _limit0, _thresh0, bd); + vpx_highbd_lpf_horizontal_8_sse2(s + 8, p, _blimit1, _limit1, _thresh1, bd); +} + +void vpx_highbd_lpf_horizontal_4_sse2(uint16_t *s, int p, + const uint8_t *_blimit, + const uint8_t *_limit, + const uint8_t *_thresh, int bd) { + const __m128i zero = _mm_set1_epi16(0); + __m128i blimit, limit, thresh; + __m128i mask, hev, flat; + __m128i p3 = _mm_loadu_si128((__m128i *)(s - 4 * p)); + __m128i p2 = _mm_loadu_si128((__m128i *)(s - 3 * p)); + __m128i p1 = _mm_loadu_si128((__m128i *)(s - 2 * p)); + __m128i p0 = _mm_loadu_si128((__m128i *)(s - 1 * p)); + __m128i q0 = _mm_loadu_si128((__m128i *)(s - 0 * p)); + __m128i q1 = _mm_loadu_si128((__m128i *)(s + 1 * p)); + __m128i q2 = _mm_loadu_si128((__m128i *)(s + 2 * p)); + __m128i q3 = _mm_loadu_si128((__m128i *)(s + 3 * p)); + const __m128i abs_p1p0 = + _mm_or_si128(_mm_subs_epu16(p1, p0), _mm_subs_epu16(p0, p1)); + const __m128i abs_q1q0 = + _mm_or_si128(_mm_subs_epu16(q1, q0), _mm_subs_epu16(q0, q1)); + const __m128i ffff = _mm_cmpeq_epi16(abs_p1p0, abs_p1p0); + const __m128i one = _mm_set1_epi16(1); + __m128i abs_p0q0 = + _mm_or_si128(_mm_subs_epu16(p0, q0), _mm_subs_epu16(q0, p0)); + __m128i abs_p1q1 = + _mm_or_si128(_mm_subs_epu16(p1, q1), _mm_subs_epu16(q1, p1)); + __m128i work; + const __m128i t4 = _mm_set1_epi16(4); + const __m128i t3 = _mm_set1_epi16(3); + __m128i t80; + __m128i tff80; + __m128i tffe0; + __m128i t1f; + // equivalent to shifting 0x1f left by bitdepth - 8 + // and setting new bits to 1 + const __m128i t1 = _mm_set1_epi16(0x1); + __m128i t7f; + // equivalent to shifting 0x7f left by bitdepth - 8 + // and setting new bits to 1 + __m128i ps1, ps0, qs0, qs1; + __m128i filt; + __m128i work_a; + __m128i filter1, filter2; + + if (bd == 8) { + blimit = _mm_unpacklo_epi8(_mm_load_si128((const __m128i *)_blimit), zero); + limit = _mm_unpacklo_epi8(_mm_load_si128((const __m128i *)_limit), zero); + thresh = _mm_unpacklo_epi8(_mm_load_si128((const __m128i *)_thresh), zero); + t80 = _mm_set1_epi16(0x80); + tff80 = _mm_set1_epi16(0xff80); + tffe0 = _mm_set1_epi16(0xffe0); + t1f = _mm_srli_epi16(_mm_set1_epi16(0x1fff), 8); + t7f = _mm_srli_epi16(_mm_set1_epi16(0x7fff), 8); + } else if (bd == 10) { + blimit = _mm_slli_epi16( + _mm_unpacklo_epi8(_mm_load_si128((const __m128i *)_blimit), zero), 2); + limit = _mm_slli_epi16( + _mm_unpacklo_epi8(_mm_load_si128((const __m128i *)_limit), zero), 2); + thresh = _mm_slli_epi16( + _mm_unpacklo_epi8(_mm_load_si128((const __m128i *)_thresh), zero), 2); + t80 = _mm_slli_epi16(_mm_set1_epi16(0x80), 2); + tff80 = _mm_slli_epi16(_mm_set1_epi16(0xff80), 2); + tffe0 = _mm_slli_epi16(_mm_set1_epi16(0xffe0), 2); + t1f = _mm_srli_epi16(_mm_set1_epi16(0x1fff), 6); + t7f = _mm_srli_epi16(_mm_set1_epi16(0x7fff), 6); + } else { // bd == 12 + blimit = _mm_slli_epi16( + _mm_unpacklo_epi8(_mm_load_si128((const __m128i *)_blimit), zero), 4); + limit = _mm_slli_epi16( + _mm_unpacklo_epi8(_mm_load_si128((const __m128i *)_limit), zero), 4); + thresh = _mm_slli_epi16( + _mm_unpacklo_epi8(_mm_load_si128((const __m128i *)_thresh), zero), 4); + t80 = _mm_slli_epi16(_mm_set1_epi16(0x80), 4); + tff80 = _mm_slli_epi16(_mm_set1_epi16(0xff80), 4); + tffe0 = _mm_slli_epi16(_mm_set1_epi16(0xffe0), 4); + t1f = _mm_srli_epi16(_mm_set1_epi16(0x1fff), 4); + t7f = _mm_srli_epi16(_mm_set1_epi16(0x7fff), 4); + } + + ps1 = _mm_subs_epi16(_mm_loadu_si128((__m128i *)(s - 2 * p)), t80); + ps0 = _mm_subs_epi16(_mm_loadu_si128((__m128i *)(s - 1 * p)), t80); + qs0 = _mm_subs_epi16(_mm_loadu_si128((__m128i *)(s + 0 * p)), t80); + qs1 = _mm_subs_epi16(_mm_loadu_si128((__m128i *)(s + 1 * p)), t80); + + // filter_mask and hev_mask + flat = _mm_max_epi16(abs_p1p0, abs_q1q0); + hev = _mm_subs_epu16(flat, thresh); + hev = _mm_xor_si128(_mm_cmpeq_epi16(hev, zero), ffff); + + abs_p0q0 = _mm_adds_epu16(abs_p0q0, abs_p0q0); + abs_p1q1 = _mm_srli_epi16(abs_p1q1, 1); + mask = _mm_subs_epu16(_mm_adds_epu16(abs_p0q0, abs_p1q1), blimit); + mask = _mm_xor_si128(_mm_cmpeq_epi16(mask, zero), ffff); + // mask |= (abs(p0 - q0) * 2 + abs(p1 - q1) / 2 > blimit) * -1; + // So taking maximums continues to work: + mask = _mm_and_si128(mask, _mm_adds_epu16(limit, one)); + mask = _mm_max_epi16(flat, mask); + // mask |= (abs(p1 - p0) > limit) * -1; + // mask |= (abs(q1 - q0) > limit) * -1; + work = _mm_max_epi16( + _mm_or_si128(_mm_subs_epu16(p2, p1), _mm_subs_epu16(p1, p2)), + _mm_or_si128(_mm_subs_epu16(p3, p2), _mm_subs_epu16(p2, p3))); + mask = _mm_max_epi16(work, mask); + work = _mm_max_epi16( + _mm_or_si128(_mm_subs_epu16(q2, q1), _mm_subs_epu16(q1, q2)), + _mm_or_si128(_mm_subs_epu16(q3, q2), _mm_subs_epu16(q2, q3))); + mask = _mm_max_epi16(work, mask); + mask = _mm_subs_epu16(mask, limit); + mask = _mm_cmpeq_epi16(mask, zero); + + // filter4 + filt = signed_char_clamp_bd_sse2(_mm_subs_epi16(ps1, qs1), bd); + filt = _mm_and_si128(filt, hev); + work_a = _mm_subs_epi16(qs0, ps0); + filt = _mm_adds_epi16(filt, work_a); + filt = _mm_adds_epi16(filt, work_a); + filt = signed_char_clamp_bd_sse2(_mm_adds_epi16(filt, work_a), bd); + + // (vpx_filter + 3 * (qs0 - ps0)) & mask + filt = _mm_and_si128(filt, mask); + + filter1 = signed_char_clamp_bd_sse2(_mm_adds_epi16(filt, t4), bd); + filter2 = signed_char_clamp_bd_sse2(_mm_adds_epi16(filt, t3), bd); + + // Filter1 >> 3 + work_a = _mm_cmpgt_epi16(zero, filter1); // get the values that are <0 + filter1 = _mm_srli_epi16(filter1, 3); + work_a = _mm_and_si128(work_a, tffe0); // sign bits for the values < 0 + filter1 = _mm_and_si128(filter1, t1f); // clamp the range + filter1 = _mm_or_si128(filter1, work_a); // reinsert the sign bits + + // Filter2 >> 3 + work_a = _mm_cmpgt_epi16(zero, filter2); + filter2 = _mm_srli_epi16(filter2, 3); + work_a = _mm_and_si128(work_a, tffe0); + filter2 = _mm_and_si128(filter2, t1f); + filter2 = _mm_or_si128(filter2, work_a); + + // filt >> 1 + filt = _mm_adds_epi16(filter1, t1); + work_a = _mm_cmpgt_epi16(zero, filt); + filt = _mm_srli_epi16(filt, 1); + work_a = _mm_and_si128(work_a, tff80); + filt = _mm_and_si128(filt, t7f); + filt = _mm_or_si128(filt, work_a); + + filt = _mm_andnot_si128(hev, filt); + + q0 = _mm_adds_epi16( + signed_char_clamp_bd_sse2(_mm_subs_epi16(qs0, filter1), bd), t80); + q1 = _mm_adds_epi16(signed_char_clamp_bd_sse2(_mm_subs_epi16(qs1, filt), bd), + t80); + p0 = _mm_adds_epi16( + signed_char_clamp_bd_sse2(_mm_adds_epi16(ps0, filter2), bd), t80); + p1 = _mm_adds_epi16(signed_char_clamp_bd_sse2(_mm_adds_epi16(ps1, filt), bd), + t80); + + _mm_storeu_si128((__m128i *)(s - 2 * p), p1); + _mm_storeu_si128((__m128i *)(s - 1 * p), p0); + _mm_storeu_si128((__m128i *)(s + 0 * p), q0); + _mm_storeu_si128((__m128i *)(s + 1 * p), q1); +} + +void vpx_highbd_lpf_horizontal_4_dual_sse2( + uint16_t *s, int p, const uint8_t *_blimit0, const uint8_t *_limit0, + const uint8_t *_thresh0, const uint8_t *_blimit1, const uint8_t *_limit1, + const uint8_t *_thresh1, int bd) { + vpx_highbd_lpf_horizontal_4_sse2(s, p, _blimit0, _limit0, _thresh0, bd); + vpx_highbd_lpf_horizontal_4_sse2(s + 8, p, _blimit1, _limit1, _thresh1, bd); +} + +static INLINE void highbd_transpose(uint16_t *src[], int in_p, uint16_t *dst[], + int out_p, int num_8x8_to_transpose) { + int idx8x8 = 0; + __m128i p0, p1, p2, p3, p4, p5, p6, p7, x0, x1, x2, x3, x4, x5, x6, x7; + do { + uint16_t *in = src[idx8x8]; + uint16_t *out = dst[idx8x8]; + + p0 = + _mm_loadu_si128((__m128i *)(in + 0 * in_p)); // 00 01 02 03 04 05 06 07 + p1 = + _mm_loadu_si128((__m128i *)(in + 1 * in_p)); // 10 11 12 13 14 15 16 17 + p2 = + _mm_loadu_si128((__m128i *)(in + 2 * in_p)); // 20 21 22 23 24 25 26 27 + p3 = + _mm_loadu_si128((__m128i *)(in + 3 * in_p)); // 30 31 32 33 34 35 36 37 + p4 = + _mm_loadu_si128((__m128i *)(in + 4 * in_p)); // 40 41 42 43 44 45 46 47 + p5 = + _mm_loadu_si128((__m128i *)(in + 5 * in_p)); // 50 51 52 53 54 55 56 57 + p6 = + _mm_loadu_si128((__m128i *)(in + 6 * in_p)); // 60 61 62 63 64 65 66 67 + p7 = + _mm_loadu_si128((__m128i *)(in + 7 * in_p)); // 70 71 72 73 74 75 76 77 + // 00 10 01 11 02 12 03 13 + x0 = _mm_unpacklo_epi16(p0, p1); + // 20 30 21 31 22 32 23 33 + x1 = _mm_unpacklo_epi16(p2, p3); + // 40 50 41 51 42 52 43 53 + x2 = _mm_unpacklo_epi16(p4, p5); + // 60 70 61 71 62 72 63 73 + x3 = _mm_unpacklo_epi16(p6, p7); + // 00 10 20 30 01 11 21 31 + x4 = _mm_unpacklo_epi32(x0, x1); + // 40 50 60 70 41 51 61 71 + x5 = _mm_unpacklo_epi32(x2, x3); + // 00 10 20 30 40 50 60 70 + x6 = _mm_unpacklo_epi64(x4, x5); + // 01 11 21 31 41 51 61 71 + x7 = _mm_unpackhi_epi64(x4, x5); + + _mm_storeu_si128((__m128i *)(out + 0 * out_p), x6); + // 00 10 20 30 40 50 60 70 + _mm_storeu_si128((__m128i *)(out + 1 * out_p), x7); + // 01 11 21 31 41 51 61 71 + + // 02 12 22 32 03 13 23 33 + x4 = _mm_unpackhi_epi32(x0, x1); + // 42 52 62 72 43 53 63 73 + x5 = _mm_unpackhi_epi32(x2, x3); + // 02 12 22 32 42 52 62 72 + x6 = _mm_unpacklo_epi64(x4, x5); + // 03 13 23 33 43 53 63 73 + x7 = _mm_unpackhi_epi64(x4, x5); + + _mm_storeu_si128((__m128i *)(out + 2 * out_p), x6); + // 02 12 22 32 42 52 62 72 + _mm_storeu_si128((__m128i *)(out + 3 * out_p), x7); + // 03 13 23 33 43 53 63 73 + + // 04 14 05 15 06 16 07 17 + x0 = _mm_unpackhi_epi16(p0, p1); + // 24 34 25 35 26 36 27 37 + x1 = _mm_unpackhi_epi16(p2, p3); + // 44 54 45 55 46 56 47 57 + x2 = _mm_unpackhi_epi16(p4, p5); + // 64 74 65 75 66 76 67 77 + x3 = _mm_unpackhi_epi16(p6, p7); + // 04 14 24 34 05 15 25 35 + x4 = _mm_unpacklo_epi32(x0, x1); + // 44 54 64 74 45 55 65 75 + x5 = _mm_unpacklo_epi32(x2, x3); + // 04 14 24 34 44 54 64 74 + x6 = _mm_unpacklo_epi64(x4, x5); + // 05 15 25 35 45 55 65 75 + x7 = _mm_unpackhi_epi64(x4, x5); + + _mm_storeu_si128((__m128i *)(out + 4 * out_p), x6); + // 04 14 24 34 44 54 64 74 + _mm_storeu_si128((__m128i *)(out + 5 * out_p), x7); + // 05 15 25 35 45 55 65 75 + + // 06 16 26 36 07 17 27 37 + x4 = _mm_unpackhi_epi32(x0, x1); + // 46 56 66 76 47 57 67 77 + x5 = _mm_unpackhi_epi32(x2, x3); + // 06 16 26 36 46 56 66 76 + x6 = _mm_unpacklo_epi64(x4, x5); + // 07 17 27 37 47 57 67 77 + x7 = _mm_unpackhi_epi64(x4, x5); + + _mm_storeu_si128((__m128i *)(out + 6 * out_p), x6); + // 06 16 26 36 46 56 66 76 + _mm_storeu_si128((__m128i *)(out + 7 * out_p), x7); + // 07 17 27 37 47 57 67 77 + } while (++idx8x8 < num_8x8_to_transpose); +} + +static INLINE void highbd_transpose8x16(uint16_t *in0, uint16_t *in1, int in_p, + uint16_t *out, int out_p) { + uint16_t *src0[1]; + uint16_t *src1[1]; + uint16_t *dest0[1]; + uint16_t *dest1[1]; + src0[0] = in0; + src1[0] = in1; + dest0[0] = out; + dest1[0] = out + 8; + highbd_transpose(src0, in_p, dest0, out_p, 1); + highbd_transpose(src1, in_p, dest1, out_p, 1); +} + +void vpx_highbd_lpf_vertical_4_sse2(uint16_t *s, int p, const uint8_t *blimit, + const uint8_t *limit, const uint8_t *thresh, + int bd) { + DECLARE_ALIGNED(16, uint16_t, t_dst[8 * 8]); + uint16_t *src[1]; + uint16_t *dst[1]; + + // Transpose 8x8 + src[0] = s - 4; + dst[0] = t_dst; + + highbd_transpose(src, p, dst, 8, 1); + + // Loop filtering + vpx_highbd_lpf_horizontal_4_sse2(t_dst + 4 * 8, 8, blimit, limit, thresh, bd); + + src[0] = t_dst; + dst[0] = s - 4; + + // Transpose back + highbd_transpose(src, 8, dst, p, 1); +} + +void vpx_highbd_lpf_vertical_4_dual_sse2( + uint16_t *s, int p, const uint8_t *blimit0, const uint8_t *limit0, + const uint8_t *thresh0, const uint8_t *blimit1, const uint8_t *limit1, + const uint8_t *thresh1, int bd) { + DECLARE_ALIGNED(16, uint16_t, t_dst[16 * 8]); + uint16_t *src[2]; + uint16_t *dst[2]; + + // Transpose 8x16 + highbd_transpose8x16(s - 4, s - 4 + p * 8, p, t_dst, 16); + + // Loop filtering + vpx_highbd_lpf_horizontal_4_dual_sse2(t_dst + 4 * 16, 16, blimit0, limit0, + thresh0, blimit1, limit1, thresh1, bd); + src[0] = t_dst; + src[1] = t_dst + 8; + dst[0] = s - 4; + dst[1] = s - 4 + p * 8; + + // Transpose back + highbd_transpose(src, 16, dst, p, 2); +} + +void vpx_highbd_lpf_vertical_8_sse2(uint16_t *s, int p, const uint8_t *blimit, + const uint8_t *limit, const uint8_t *thresh, + int bd) { + DECLARE_ALIGNED(16, uint16_t, t_dst[8 * 8]); + uint16_t *src[1]; + uint16_t *dst[1]; + + // Transpose 8x8 + src[0] = s - 4; + dst[0] = t_dst; + + highbd_transpose(src, p, dst, 8, 1); + + // Loop filtering + vpx_highbd_lpf_horizontal_8_sse2(t_dst + 4 * 8, 8, blimit, limit, thresh, bd); + + src[0] = t_dst; + dst[0] = s - 4; + + // Transpose back + highbd_transpose(src, 8, dst, p, 1); +} + +void vpx_highbd_lpf_vertical_8_dual_sse2( + uint16_t *s, int p, const uint8_t *blimit0, const uint8_t *limit0, + const uint8_t *thresh0, const uint8_t *blimit1, const uint8_t *limit1, + const uint8_t *thresh1, int bd) { + DECLARE_ALIGNED(16, uint16_t, t_dst[16 * 8]); + uint16_t *src[2]; + uint16_t *dst[2]; + + // Transpose 8x16 + highbd_transpose8x16(s - 4, s - 4 + p * 8, p, t_dst, 16); + + // Loop filtering + vpx_highbd_lpf_horizontal_8_dual_sse2(t_dst + 4 * 16, 16, blimit0, limit0, + thresh0, blimit1, limit1, thresh1, bd); + src[0] = t_dst; + src[1] = t_dst + 8; + + dst[0] = s - 4; + dst[1] = s - 4 + p * 8; + + // Transpose back + highbd_transpose(src, 16, dst, p, 2); +} + +void vpx_highbd_lpf_vertical_16_sse2(uint16_t *s, int p, const uint8_t *blimit, + const uint8_t *limit, + const uint8_t *thresh, int bd) { + DECLARE_ALIGNED(16, uint16_t, t_dst[8 * 16]); + uint16_t *src[2]; + uint16_t *dst[2]; + + src[0] = s - 8; + src[1] = s; + dst[0] = t_dst; + dst[1] = t_dst + 8 * 8; + + // Transpose 16x8 + highbd_transpose(src, p, dst, 8, 2); + + // Loop filtering + vpx_highbd_lpf_horizontal_16_sse2(t_dst + 8 * 8, 8, blimit, limit, thresh, + bd); + src[0] = t_dst; + src[1] = t_dst + 8 * 8; + dst[0] = s - 8; + dst[1] = s; + + // Transpose back + highbd_transpose(src, 8, dst, p, 2); +} + +void vpx_highbd_lpf_vertical_16_dual_sse2(uint16_t *s, int p, + const uint8_t *blimit, + const uint8_t *limit, + const uint8_t *thresh, int bd) { + DECLARE_ALIGNED(16, uint16_t, t_dst[256]); + + // Transpose 16x16 + highbd_transpose8x16(s - 8, s - 8 + 8 * p, p, t_dst, 16); + highbd_transpose8x16(s, s + 8 * p, p, t_dst + 8 * 16, 16); + + // Loop filtering + vpx_highbd_lpf_horizontal_16_dual_sse2(t_dst + 8 * 16, 16, blimit, limit, + thresh, bd); + + // Transpose back + highbd_transpose8x16(t_dst, t_dst + 8 * 16, 16, s - 8, p); + highbd_transpose8x16(t_dst + 8, t_dst + 8 + 8 * 16, 16, s - 8 + 8 * p, p); +} diff --git a/vpx_dsp/x86/highbd_quantize_intrin_sse2.c b/vpx_dsp/x86/highbd_quantize_intrin_sse2.c new file mode 100644 index 0000000..cedf98a --- /dev/null +++ b/vpx_dsp/x86/highbd_quantize_intrin_sse2.c @@ -0,0 +1,155 @@ +/* + * Copyright (c) 2015 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include + +#include "vpx_dsp/vpx_dsp_common.h" +#include "vpx_mem/vpx_mem.h" +#include "vpx_ports/mem.h" + +#if CONFIG_VP9_HIGHBITDEPTH +void vpx_highbd_quantize_b_sse2(const tran_low_t *coeff_ptr, intptr_t count, + int skip_block, const int16_t *zbin_ptr, + const int16_t *round_ptr, + const int16_t *quant_ptr, + const int16_t *quant_shift_ptr, + tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr, + const int16_t *dequant_ptr, uint16_t *eob_ptr, + const int16_t *scan, const int16_t *iscan) { + int i, j, non_zero_regs = (int)count / 4, eob_i = -1; + __m128i zbins[2]; + __m128i nzbins[2]; + + zbins[0] = _mm_set_epi32((int)zbin_ptr[1], (int)zbin_ptr[1], (int)zbin_ptr[1], + (int)zbin_ptr[0]); + zbins[1] = _mm_set1_epi32((int)zbin_ptr[1]); + + nzbins[0] = _mm_setzero_si128(); + nzbins[1] = _mm_setzero_si128(); + nzbins[0] = _mm_sub_epi32(nzbins[0], zbins[0]); + nzbins[1] = _mm_sub_epi32(nzbins[1], zbins[1]); + + (void)scan; + (void)skip_block; + assert(!skip_block); + + memset(qcoeff_ptr, 0, count * sizeof(*qcoeff_ptr)); + memset(dqcoeff_ptr, 0, count * sizeof(*dqcoeff_ptr)); + + // Pre-scan pass + for (i = ((int)count / 4) - 1; i >= 0; i--) { + __m128i coeffs, cmp1, cmp2; + int test; + coeffs = _mm_load_si128((const __m128i *)(coeff_ptr + i * 4)); + cmp1 = _mm_cmplt_epi32(coeffs, zbins[i != 0]); + cmp2 = _mm_cmpgt_epi32(coeffs, nzbins[i != 0]); + cmp1 = _mm_and_si128(cmp1, cmp2); + test = _mm_movemask_epi8(cmp1); + if (test == 0xffff) + non_zero_regs--; + else + break; + } + + // Quantization pass: + for (i = 0; i < non_zero_regs; i++) { + __m128i coeffs, coeffs_sign, tmp1, tmp2; + int test; + int abs_coeff[4]; + int coeff_sign[4]; + + coeffs = _mm_load_si128((const __m128i *)(coeff_ptr + i * 4)); + coeffs_sign = _mm_srai_epi32(coeffs, 31); + coeffs = _mm_sub_epi32(_mm_xor_si128(coeffs, coeffs_sign), coeffs_sign); + tmp1 = _mm_cmpgt_epi32(coeffs, zbins[i != 0]); + tmp2 = _mm_cmpeq_epi32(coeffs, zbins[i != 0]); + tmp1 = _mm_or_si128(tmp1, tmp2); + test = _mm_movemask_epi8(tmp1); + _mm_storeu_si128((__m128i *)abs_coeff, coeffs); + _mm_storeu_si128((__m128i *)coeff_sign, coeffs_sign); + + for (j = 0; j < 4; j++) { + if (test & (1 << (4 * j))) { + int k = 4 * i + j; + const int64_t tmp3 = abs_coeff[j] + round_ptr[k != 0]; + const int64_t tmp4 = ((tmp3 * quant_ptr[k != 0]) >> 16) + tmp3; + const uint32_t abs_qcoeff = + (uint32_t)((tmp4 * quant_shift_ptr[k != 0]) >> 16); + qcoeff_ptr[k] = (int)(abs_qcoeff ^ coeff_sign[j]) - coeff_sign[j]; + dqcoeff_ptr[k] = qcoeff_ptr[k] * dequant_ptr[k != 0]; + if (abs_qcoeff) eob_i = iscan[k] > eob_i ? iscan[k] : eob_i; + } + } + } + *eob_ptr = eob_i + 1; +} + +void vpx_highbd_quantize_b_32x32_sse2( + const tran_low_t *coeff_ptr, intptr_t n_coeffs, int skip_block, + const int16_t *zbin_ptr, const int16_t *round_ptr, const int16_t *quant_ptr, + const int16_t *quant_shift_ptr, tran_low_t *qcoeff_ptr, + tran_low_t *dqcoeff_ptr, const int16_t *dequant_ptr, uint16_t *eob_ptr, + const int16_t *scan, const int16_t *iscan) { + __m128i zbins[2]; + __m128i nzbins[2]; + int idx = 0; + int idx_arr[1024]; + int i, eob = -1; + const int zbin0_tmp = ROUND_POWER_OF_TWO(zbin_ptr[0], 1); + const int zbin1_tmp = ROUND_POWER_OF_TWO(zbin_ptr[1], 1); + (void)scan; + (void)skip_block; + assert(!skip_block); + + zbins[0] = _mm_set_epi32(zbin1_tmp, zbin1_tmp, zbin1_tmp, zbin0_tmp); + zbins[1] = _mm_set1_epi32(zbin1_tmp); + + nzbins[0] = _mm_setzero_si128(); + nzbins[1] = _mm_setzero_si128(); + nzbins[0] = _mm_sub_epi32(nzbins[0], zbins[0]); + nzbins[1] = _mm_sub_epi32(nzbins[1], zbins[1]); + + memset(qcoeff_ptr, 0, n_coeffs * sizeof(*qcoeff_ptr)); + memset(dqcoeff_ptr, 0, n_coeffs * sizeof(*dqcoeff_ptr)); + + // Pre-scan pass + for (i = 0; i < n_coeffs / 4; i++) { + __m128i coeffs, cmp1, cmp2; + int test; + coeffs = _mm_load_si128((const __m128i *)(coeff_ptr + i * 4)); + cmp1 = _mm_cmplt_epi32(coeffs, zbins[i != 0]); + cmp2 = _mm_cmpgt_epi32(coeffs, nzbins[i != 0]); + cmp1 = _mm_and_si128(cmp1, cmp2); + test = _mm_movemask_epi8(cmp1); + if (!(test & 0xf)) idx_arr[idx++] = i * 4; + if (!(test & 0xf0)) idx_arr[idx++] = i * 4 + 1; + if (!(test & 0xf00)) idx_arr[idx++] = i * 4 + 2; + if (!(test & 0xf000)) idx_arr[idx++] = i * 4 + 3; + } + + // Quantization pass: only process the coefficients selected in + // pre-scan pass. Note: idx can be zero. + for (i = 0; i < idx; i++) { + const int rc = idx_arr[i]; + const int coeff = coeff_ptr[rc]; + const int coeff_sign = (coeff >> 31); + const int abs_coeff = (coeff ^ coeff_sign) - coeff_sign; + const int64_t tmp1 = abs_coeff + ROUND_POWER_OF_TWO(round_ptr[rc != 0], 1); + const int64_t tmp2 = ((tmp1 * quant_ptr[rc != 0]) >> 16) + tmp1; + const uint32_t abs_qcoeff = + (uint32_t)((tmp2 * quant_shift_ptr[rc != 0]) >> 15); + qcoeff_ptr[rc] = (int)(abs_qcoeff ^ coeff_sign) - coeff_sign; + dqcoeff_ptr[rc] = qcoeff_ptr[rc] * dequant_ptr[rc != 0] / 2; + if (abs_qcoeff) eob = iscan[idx_arr[i]] > eob ? iscan[idx_arr[i]] : eob; + } + *eob_ptr = eob + 1; +} +#endif diff --git a/vpx_dsp/x86/highbd_sad4d_sse2.asm b/vpx_dsp/x86/highbd_sad4d_sse2.asm new file mode 100644 index 0000000..6c2a61e --- /dev/null +++ b/vpx_dsp/x86/highbd_sad4d_sse2.asm @@ -0,0 +1,287 @@ +; +; Copyright (c) 2014 The WebM project authors. All Rights Reserved. +; +; Use of this source code is governed by a BSD-style license +; that can be found in the LICENSE file in the root of the source +; tree. An additional intellectual property rights grant can be found +; in the file PATENTS. All contributing project authors may +; be found in the AUTHORS file in the root of the source tree. +; + +%include "third_party/x86inc/x86inc.asm" + +SECTION .text + +; HIGH_PROCESS_4x2x4 first, off_{first,second}_{src,ref}, advance_at_end +%macro HIGH_PROCESS_4x2x4 5-6 0 + movh m0, [srcq +%2*2] +%if %1 == 1 + movu m4, [ref1q+%3*2] + movu m5, [ref2q+%3*2] + movu m6, [ref3q+%3*2] + movu m7, [ref4q+%3*2] + movhps m0, [srcq +%4*2] + movhps m4, [ref1q+%5*2] + movhps m5, [ref2q+%5*2] + movhps m6, [ref3q+%5*2] + movhps m7, [ref4q+%5*2] + mova m3, m0 + mova m2, m0 + psubusw m3, m4 + psubusw m2, m5 + psubusw m4, m0 + psubusw m5, m0 + por m4, m3 + por m5, m2 + pmaddwd m4, m1 + pmaddwd m5, m1 + mova m3, m0 + mova m2, m0 + psubusw m3, m6 + psubusw m2, m7 + psubusw m6, m0 + psubusw m7, m0 + por m6, m3 + por m7, m2 + pmaddwd m6, m1 + pmaddwd m7, m1 +%else + movu m2, [ref1q+%3*2] + movhps m0, [srcq +%4*2] + movhps m2, [ref1q+%5*2] + mova m3, m0 + psubusw m3, m2 + psubusw m2, m0 + por m2, m3 + pmaddwd m2, m1 + paddd m4, m2 + + movu m2, [ref2q+%3*2] + mova m3, m0 + movhps m2, [ref2q+%5*2] + psubusw m3, m2 + psubusw m2, m0 + por m2, m3 + pmaddwd m2, m1 + paddd m5, m2 + + movu m2, [ref3q+%3*2] + mova m3, m0 + movhps m2, [ref3q+%5*2] + psubusw m3, m2 + psubusw m2, m0 + por m2, m3 + pmaddwd m2, m1 + paddd m6, m2 + + movu m2, [ref4q+%3*2] + mova m3, m0 + movhps m2, [ref4q+%5*2] + psubusw m3, m2 + psubusw m2, m0 + por m2, m3 + pmaddwd m2, m1 + paddd m7, m2 +%endif +%if %6 == 1 + lea srcq, [srcq +src_strideq*4] + lea ref1q, [ref1q+ref_strideq*4] + lea ref2q, [ref2q+ref_strideq*4] + lea ref3q, [ref3q+ref_strideq*4] + lea ref4q, [ref4q+ref_strideq*4] +%endif +%endmacro + +; PROCESS_8x2x4 first, off_{first,second}_{src,ref}, advance_at_end +%macro HIGH_PROCESS_8x2x4 5-6 0 + ; 1st 8 px + mova m0, [srcq +%2*2] +%if %1 == 1 + movu m4, [ref1q+%3*2] + movu m5, [ref2q+%3*2] + movu m6, [ref3q+%3*2] + movu m7, [ref4q+%3*2] + mova m3, m0 + mova m2, m0 + psubusw m3, m4 + psubusw m2, m5 + psubusw m4, m0 + psubusw m5, m0 + por m4, m3 + por m5, m2 + pmaddwd m4, m1 + pmaddwd m5, m1 + mova m3, m0 + mova m2, m0 + psubusw m3, m6 + psubusw m2, m7 + psubusw m6, m0 + psubusw m7, m0 + por m6, m3 + por m7, m2 + pmaddwd m6, m1 + pmaddwd m7, m1 +%else + mova m3, m0 + movu m2, [ref1q+%3*2] + psubusw m3, m2 + psubusw m2, m0 + por m2, m3 + mova m3, m0 + pmaddwd m2, m1 + paddd m4, m2 + movu m2, [ref2q+%3*2] + psubusw m3, m2 + psubusw m2, m0 + por m2, m3 + mova m3, m0 + pmaddwd m2, m1 + paddd m5, m2 + movu m2, [ref3q+%3*2] + psubusw m3, m2 + psubusw m2, m0 + por m2, m3 + mova m3, m0 + pmaddwd m2, m1 + paddd m6, m2 + movu m2, [ref4q+%3*2] + psubusw m3, m2 + psubusw m2, m0 + por m2, m3 + pmaddwd m2, m1 + paddd m7, m2 +%endif + + ; 2nd 8 px + mova m0, [srcq +(%4)*2] + mova m3, m0 + movu m2, [ref1q+(%5)*2] + psubusw m3, m2 + psubusw m2, m0 + por m2, m3 + mova m3, m0 + pmaddwd m2, m1 + paddd m4, m2 + movu m2, [ref2q+(%5)*2] + psubusw m3, m2 + psubusw m2, m0 + por m2, m3 + mova m3, m0 + pmaddwd m2, m1 + paddd m5, m2 + movu m2, [ref3q+(%5)*2] + psubusw m3, m2 + psubusw m2, m0 + por m2, m3 + mova m3, m0 + pmaddwd m2, m1 + paddd m6, m2 + movu m2, [ref4q+(%5)*2] + psubusw m3, m2 + psubusw m2, m0 +%if %6 == 1 + lea srcq, [srcq +src_strideq*4] + lea ref1q, [ref1q+ref_strideq*4] + lea ref2q, [ref2q+ref_strideq*4] + lea ref3q, [ref3q+ref_strideq*4] + lea ref4q, [ref4q+ref_strideq*4] +%endif + por m2, m3 + pmaddwd m2, m1 + paddd m7, m2 +%endmacro + +; HIGH_PROCESS_16x2x4 first, off_{first,second}_{src,ref}, advance_at_end +%macro HIGH_PROCESS_16x2x4 5-6 0 + HIGH_PROCESS_8x2x4 %1, %2, %3, (%2 + 8), (%3 + 8) + HIGH_PROCESS_8x2x4 0, %4, %5, (%4 + 8), (%5 + 8), %6 +%endmacro + +; HIGH_PROCESS_32x2x4 first, off_{first,second}_{src,ref}, advance_at_end +%macro HIGH_PROCESS_32x2x4 5-6 0 + HIGH_PROCESS_16x2x4 %1, %2, %3, (%2 + 16), (%3 + 16) + HIGH_PROCESS_16x2x4 0, %4, %5, (%4 + 16), (%5 + 16), %6 +%endmacro + +; HIGH_PROCESS_64x2x4 first, off_{first,second}_{src,ref}, advance_at_end +%macro HIGH_PROCESS_64x2x4 5-6 0 + HIGH_PROCESS_32x2x4 %1, %2, %3, (%2 + 32), (%3 + 32) + HIGH_PROCESS_32x2x4 0, %4, %5, (%4 + 32), (%5 + 32), %6 +%endmacro + +; void vpx_highbd_sadNxNx4d_sse2(uint8_t *src, int src_stride, +; uint8_t *ref[4], int ref_stride, +; uint32_t res[4]); +; where NxN = 64x64, 32x32, 16x16, 16x8, 8x16 or 8x8 +%macro HIGH_SADNXN4D 2 +%if UNIX64 +cglobal highbd_sad%1x%2x4d, 5, 8, 8, src, src_stride, ref1, ref_stride, \ + res, ref2, ref3, ref4 +%else +cglobal highbd_sad%1x%2x4d, 4, 7, 8, src, src_stride, ref1, ref_stride, \ + ref2, ref3, ref4 +%endif + +; set m1 + push srcq + mov srcd, 0x00010001 + movd m1, srcd + pshufd m1, m1, 0x0 + pop srcq + + movsxdifnidn src_strideq, src_strided + movsxdifnidn ref_strideq, ref_strided + mov ref2q, [ref1q+gprsize*1] + mov ref3q, [ref1q+gprsize*2] + mov ref4q, [ref1q+gprsize*3] + mov ref1q, [ref1q+gprsize*0] + +; convert byte pointers to short pointers + shl srcq, 1 + shl ref2q, 1 + shl ref3q, 1 + shl ref4q, 1 + shl ref1q, 1 + + HIGH_PROCESS_%1x2x4 1, 0, 0, src_strideq, ref_strideq, 1 +%rep (%2-4)/2 + HIGH_PROCESS_%1x2x4 0, 0, 0, src_strideq, ref_strideq, 1 +%endrep + HIGH_PROCESS_%1x2x4 0, 0, 0, src_strideq, ref_strideq, 0 + ; N.B. HIGH_PROCESS outputs dwords (32 bits) + ; so in high bit depth even the smallest width (4) needs 128bits i.e. XMM + movhlps m0, m4 + movhlps m1, m5 + movhlps m2, m6 + movhlps m3, m7 + paddd m4, m0 + paddd m5, m1 + paddd m6, m2 + paddd m7, m3 + punpckldq m4, m5 + punpckldq m6, m7 + movhlps m0, m4 + movhlps m1, m6 + paddd m4, m0 + paddd m6, m1 + punpcklqdq m4, m6 + movifnidn r4, r4mp + movu [r4], m4 + RET +%endmacro + + +INIT_XMM sse2 +HIGH_SADNXN4D 64, 64 +HIGH_SADNXN4D 64, 32 +HIGH_SADNXN4D 32, 64 +HIGH_SADNXN4D 32, 32 +HIGH_SADNXN4D 32, 16 +HIGH_SADNXN4D 16, 32 +HIGH_SADNXN4D 16, 16 +HIGH_SADNXN4D 16, 8 +HIGH_SADNXN4D 8, 16 +HIGH_SADNXN4D 8, 8 +HIGH_SADNXN4D 8, 4 +HIGH_SADNXN4D 4, 8 +HIGH_SADNXN4D 4, 4 diff --git a/vpx_dsp/x86/highbd_sad_sse2.asm b/vpx_dsp/x86/highbd_sad_sse2.asm new file mode 100644 index 0000000..bc4b28d --- /dev/null +++ b/vpx_dsp/x86/highbd_sad_sse2.asm @@ -0,0 +1,363 @@ +; +; Copyright (c) 2014 The WebM project authors. All Rights Reserved. +; +; Use of this source code is governed by a BSD-style license +; that can be found in the LICENSE file in the root of the source +; tree. An additional intellectual property rights grant can be found +; in the file PATENTS. All contributing project authors may +; be found in the AUTHORS file in the root of the source tree. +; + +%include "third_party/x86inc/x86inc.asm" + +SECTION .text + +%macro HIGH_SAD_FN 4 +%if %4 == 0 +%if %3 == 5 +cglobal highbd_sad%1x%2, 4, %3, 7, src, src_stride, ref, ref_stride, n_rows +%else ; %3 == 7 +cglobal highbd_sad%1x%2, 4, %3, 7, src, src_stride, ref, ref_stride, \ + src_stride3, ref_stride3, n_rows +%endif ; %3 == 5/7 +%else ; avg +%if %3 == 5 +cglobal highbd_sad%1x%2_avg, 5, 1 + %3, 7, src, src_stride, ref, ref_stride, \ + second_pred, n_rows +%else ; %3 == 7 +cglobal highbd_sad%1x%2_avg, 5, ARCH_X86_64 + %3, 7, src, src_stride, \ + ref, ref_stride, \ + second_pred, \ + src_stride3, ref_stride3 +%if ARCH_X86_64 +%define n_rowsd r7d +%else ; x86-32 +%define n_rowsd dword r0m +%endif ; x86-32/64 +%endif ; %3 == 5/7 +%endif ; avg/sad + movsxdifnidn src_strideq, src_strided + movsxdifnidn ref_strideq, ref_strided +%if %3 == 7 + lea src_stride3q, [src_strideq*3] + lea ref_stride3q, [ref_strideq*3] +%endif ; %3 == 7 +; convert src, ref & second_pred to short ptrs (from byte ptrs) + shl srcq, 1 + shl refq, 1 +%if %4 == 1 + shl second_predq, 1 +%endif +%endmacro + +; unsigned int vpx_highbd_sad64x{16,32,64}_sse2(uint8_t *src, int src_stride, +; uint8_t *ref, int ref_stride); +%macro HIGH_SAD64XN 1-2 0 + HIGH_SAD_FN 64, %1, 5, %2 + mov n_rowsd, %1 + pxor m0, m0 + pxor m6, m6 + +.loop: + ; first half of each row + movu m1, [refq] + movu m2, [refq+16] + movu m3, [refq+32] + movu m4, [refq+48] +%if %2 == 1 + pavgw m1, [second_predq+mmsize*0] + pavgw m2, [second_predq+mmsize*1] + pavgw m3, [second_predq+mmsize*2] + pavgw m4, [second_predq+mmsize*3] + lea second_predq, [second_predq+mmsize*4] +%endif + mova m5, [srcq] + psubusw m5, m1 + psubusw m1, [srcq] + por m1, m5 + mova m5, [srcq+16] + psubusw m5, m2 + psubusw m2, [srcq+16] + por m2, m5 + mova m5, [srcq+32] + psubusw m5, m3 + psubusw m3, [srcq+32] + por m3, m5 + mova m5, [srcq+48] + psubusw m5, m4 + psubusw m4, [srcq+48] + por m4, m5 + paddw m1, m2 + paddw m3, m4 + movhlps m2, m1 + movhlps m4, m3 + paddw m1, m2 + paddw m3, m4 + punpcklwd m1, m6 + punpcklwd m3, m6 + paddd m0, m1 + paddd m0, m3 + ; second half of each row + movu m1, [refq+64] + movu m2, [refq+80] + movu m3, [refq+96] + movu m4, [refq+112] +%if %2 == 1 + pavgw m1, [second_predq+mmsize*0] + pavgw m2, [second_predq+mmsize*1] + pavgw m3, [second_predq+mmsize*2] + pavgw m4, [second_predq+mmsize*3] + lea second_predq, [second_predq+mmsize*4] +%endif + mova m5, [srcq+64] + psubusw m5, m1 + psubusw m1, [srcq+64] + por m1, m5 + mova m5, [srcq+80] + psubusw m5, m2 + psubusw m2, [srcq+80] + por m2, m5 + mova m5, [srcq+96] + psubusw m5, m3 + psubusw m3, [srcq+96] + por m3, m5 + mova m5, [srcq+112] + psubusw m5, m4 + psubusw m4, [srcq+112] + por m4, m5 + paddw m1, m2 + paddw m3, m4 + movhlps m2, m1 + movhlps m4, m3 + paddw m1, m2 + paddw m3, m4 + punpcklwd m1, m6 + punpcklwd m3, m6 + lea refq, [refq+ref_strideq*2] + paddd m0, m1 + lea srcq, [srcq+src_strideq*2] + paddd m0, m3 + + dec n_rowsd + jg .loop + + movhlps m1, m0 + paddd m0, m1 + punpckldq m0, m6 + movhlps m1, m0 + paddd m0, m1 + movd eax, m0 + RET +%endmacro + +INIT_XMM sse2 +HIGH_SAD64XN 64 ; highbd_sad64x64_sse2 +HIGH_SAD64XN 32 ; highbd_sad64x32_sse2 +HIGH_SAD64XN 64, 1 ; highbd_sad64x64_avg_sse2 +HIGH_SAD64XN 32, 1 ; highbd_sad64x32_avg_sse2 + + +; unsigned int vpx_highbd_sad32x{16,32,64}_sse2(uint8_t *src, int src_stride, +; uint8_t *ref, int ref_stride); +%macro HIGH_SAD32XN 1-2 0 + HIGH_SAD_FN 32, %1, 5, %2 + mov n_rowsd, %1 + pxor m0, m0 + pxor m6, m6 + +.loop: + movu m1, [refq] + movu m2, [refq+16] + movu m3, [refq+32] + movu m4, [refq+48] +%if %2 == 1 + pavgw m1, [second_predq+mmsize*0] + pavgw m2, [second_predq+mmsize*1] + pavgw m3, [second_predq+mmsize*2] + pavgw m4, [second_predq+mmsize*3] + lea second_predq, [second_predq+mmsize*4] +%endif + mova m5, [srcq] + psubusw m5, m1 + psubusw m1, [srcq] + por m1, m5 + mova m5, [srcq+16] + psubusw m5, m2 + psubusw m2, [srcq+16] + por m2, m5 + mova m5, [srcq+32] + psubusw m5, m3 + psubusw m3, [srcq+32] + por m3, m5 + mova m5, [srcq+48] + psubusw m5, m4 + psubusw m4, [srcq+48] + por m4, m5 + paddw m1, m2 + paddw m3, m4 + movhlps m2, m1 + movhlps m4, m3 + paddw m1, m2 + paddw m3, m4 + punpcklwd m1, m6 + punpcklwd m3, m6 + lea refq, [refq+ref_strideq*2] + paddd m0, m1 + lea srcq, [srcq+src_strideq*2] + paddd m0, m3 + dec n_rowsd + jg .loop + + movhlps m1, m0 + paddd m0, m1 + punpckldq m0, m6 + movhlps m1, m0 + paddd m0, m1 + movd eax, m0 + RET +%endmacro + +INIT_XMM sse2 +HIGH_SAD32XN 64 ; highbd_sad32x64_sse2 +HIGH_SAD32XN 32 ; highbd_sad32x32_sse2 +HIGH_SAD32XN 16 ; highbd_sad32x16_sse2 +HIGH_SAD32XN 64, 1 ; highbd_sad32x64_avg_sse2 +HIGH_SAD32XN 32, 1 ; highbd_sad32x32_avg_sse2 +HIGH_SAD32XN 16, 1 ; highbd_sad32x16_avg_sse2 + +; unsigned int vpx_highbd_sad16x{8,16,32}_sse2(uint8_t *src, int src_stride, +; uint8_t *ref, int ref_stride); +%macro HIGH_SAD16XN 1-2 0 + HIGH_SAD_FN 16, %1, 5, %2 + mov n_rowsd, %1/2 + pxor m0, m0 + pxor m6, m6 + +.loop: + movu m1, [refq] + movu m2, [refq+16] + movu m3, [refq+ref_strideq*2] + movu m4, [refq+ref_strideq*2+16] +%if %2 == 1 + pavgw m1, [second_predq+mmsize*0] + pavgw m2, [second_predq+16] + pavgw m3, [second_predq+mmsize*2] + pavgw m4, [second_predq+mmsize*2+16] + lea second_predq, [second_predq+mmsize*4] +%endif + mova m5, [srcq] + psubusw m5, m1 + psubusw m1, [srcq] + por m1, m5 + mova m5, [srcq+16] + psubusw m5, m2 + psubusw m2, [srcq+16] + por m2, m5 + mova m5, [srcq+src_strideq*2] + psubusw m5, m3 + psubusw m3, [srcq+src_strideq*2] + por m3, m5 + mova m5, [srcq+src_strideq*2+16] + psubusw m5, m4 + psubusw m4, [srcq+src_strideq*2+16] + por m4, m5 + paddw m1, m2 + paddw m3, m4 + movhlps m2, m1 + movhlps m4, m3 + paddw m1, m2 + paddw m3, m4 + punpcklwd m1, m6 + punpcklwd m3, m6 + lea refq, [refq+ref_strideq*4] + paddd m0, m1 + lea srcq, [srcq+src_strideq*4] + paddd m0, m3 + dec n_rowsd + jg .loop + + movhlps m1, m0 + paddd m0, m1 + punpckldq m0, m6 + movhlps m1, m0 + paddd m0, m1 + movd eax, m0 + RET +%endmacro + +INIT_XMM sse2 +HIGH_SAD16XN 32 ; highbd_sad16x32_sse2 +HIGH_SAD16XN 16 ; highbd_sad16x16_sse2 +HIGH_SAD16XN 8 ; highbd_sad16x8_sse2 +HIGH_SAD16XN 32, 1 ; highbd_sad16x32_avg_sse2 +HIGH_SAD16XN 16, 1 ; highbd_sad16x16_avg_sse2 +HIGH_SAD16XN 8, 1 ; highbd_sad16x8_avg_sse2 + + +; unsigned int vpx_highbd_sad8x{4,8,16}_sse2(uint8_t *src, int src_stride, +; uint8_t *ref, int ref_stride); +%macro HIGH_SAD8XN 1-2 0 + HIGH_SAD_FN 8, %1, 7, %2 + mov n_rowsd, %1/4 + pxor m0, m0 + pxor m6, m6 + +.loop: + movu m1, [refq] + movu m2, [refq+ref_strideq*2] + movu m3, [refq+ref_strideq*4] + movu m4, [refq+ref_stride3q*2] +%if %2 == 1 + pavgw m1, [second_predq+mmsize*0] + pavgw m2, [second_predq+mmsize*1] + pavgw m3, [second_predq+mmsize*2] + pavgw m4, [second_predq+mmsize*3] + lea second_predq, [second_predq+mmsize*4] +%endif + mova m5, [srcq] + psubusw m5, m1 + psubusw m1, [srcq] + por m1, m5 + mova m5, [srcq+src_strideq*2] + psubusw m5, m2 + psubusw m2, [srcq+src_strideq*2] + por m2, m5 + mova m5, [srcq+src_strideq*4] + psubusw m5, m3 + psubusw m3, [srcq+src_strideq*4] + por m3, m5 + mova m5, [srcq+src_stride3q*2] + psubusw m5, m4 + psubusw m4, [srcq+src_stride3q*2] + por m4, m5 + paddw m1, m2 + paddw m3, m4 + movhlps m2, m1 + movhlps m4, m3 + paddw m1, m2 + paddw m3, m4 + punpcklwd m1, m6 + punpcklwd m3, m6 + lea refq, [refq+ref_strideq*8] + paddd m0, m1 + lea srcq, [srcq+src_strideq*8] + paddd m0, m3 + dec n_rowsd + jg .loop + + movhlps m1, m0 + paddd m0, m1 + punpckldq m0, m6 + movhlps m1, m0 + paddd m0, m1 + movd eax, m0 + RET +%endmacro + +INIT_XMM sse2 +HIGH_SAD8XN 16 ; highbd_sad8x16_sse2 +HIGH_SAD8XN 8 ; highbd_sad8x8_sse2 +HIGH_SAD8XN 4 ; highbd_sad8x4_sse2 +HIGH_SAD8XN 16, 1 ; highbd_sad8x16_avg_sse2 +HIGH_SAD8XN 8, 1 ; highbd_sad8x8_avg_sse2 +HIGH_SAD8XN 4, 1 ; highbd_sad8x4_avg_sse2 diff --git a/vpx_dsp/x86/highbd_subpel_variance_impl_sse2.asm b/vpx_dsp/x86/highbd_subpel_variance_impl_sse2.asm new file mode 100644 index 0000000..d9a6932 --- /dev/null +++ b/vpx_dsp/x86/highbd_subpel_variance_impl_sse2.asm @@ -0,0 +1,1037 @@ +; +; Copyright (c) 2014 The WebM project authors. All Rights Reserved. +; +; Use of this source code is governed by a BSD-style license +; that can be found in the LICENSE file in the root of the source +; tree. An additional intellectual property rights grant can be found +; in the file PATENTS. All contributing project authors may +; be found in the AUTHORS file in the root of the source tree. +; + +%include "third_party/x86inc/x86inc.asm" + +SECTION_RODATA +pw_8: times 8 dw 8 +bilin_filter_m_sse2: times 8 dw 16 + times 8 dw 0 + times 8 dw 14 + times 8 dw 2 + times 8 dw 12 + times 8 dw 4 + times 8 dw 10 + times 8 dw 6 + times 16 dw 8 + times 8 dw 6 + times 8 dw 10 + times 8 dw 4 + times 8 dw 12 + times 8 dw 2 + times 8 dw 14 + +SECTION .text + +; int vpx_sub_pixel_varianceNxh(const uint8_t *src, ptrdiff_t src_stride, +; int x_offset, int y_offset, +; const uint8_t *dst, ptrdiff_t dst_stride, +; int height, unsigned int *sse); +; +; This function returns the SE and stores SSE in the given pointer. + +%macro SUM_SSE 6 ; src1, dst1, src2, dst2, sum, sse + psubw %3, %4 + psubw %1, %2 + mova %4, %3 ; make copies to manipulate to calc sum + mova %2, %1 ; use originals for calc sse + pmaddwd %3, %3 + paddw %4, %2 + pmaddwd %1, %1 + movhlps %2, %4 + paddd %6, %3 + paddw %4, %2 + pxor %2, %2 + pcmpgtw %2, %4 ; mask for 0 > %4 (sum) + punpcklwd %4, %2 ; sign-extend word to dword + paddd %6, %1 + paddd %5, %4 + +%endmacro + +%macro STORE_AND_RET 0 +%if mmsize == 16 + ; if H=64 and W=16, we have 8 words of each 2(1bit)x64(6bit)x9bit=16bit + ; in m6, i.e. it _exactly_ fits in a signed word per word in the xmm reg. + ; We have to sign-extend it before adding the words within the register + ; and outputing to a dword. + movhlps m3, m7 + movhlps m4, m6 + paddd m7, m3 + paddd m6, m4 + pshufd m3, m7, 0x1 + pshufd m4, m6, 0x1 + paddd m7, m3 + paddd m6, m4 + mov r1, ssem ; r1 = unsigned int *sse + movd [r1], m7 ; store sse + movd eax, m6 ; store sum as return value +%endif + RET +%endmacro + +%macro INC_SRC_BY_SRC_STRIDE 0 +%if ARCH_X86=1 && CONFIG_PIC=1 + add srcq, src_stridemp + add srcq, src_stridemp +%else + lea srcq, [srcq + src_strideq*2] +%endif +%endmacro + +%macro SUBPEL_VARIANCE 1-2 0 ; W +%define bilin_filter_m bilin_filter_m_sse2 +%define filter_idx_shift 5 + + +%ifdef PIC ; 64bit PIC + %if %2 == 1 ; avg + cglobal highbd_sub_pixel_avg_variance%1xh, 9, 10, 13, src, src_stride, \ + x_offset, y_offset, \ + dst, dst_stride, \ + sec, sec_stride, height, sse + %define sec_str sec_strideq + %else + cglobal highbd_sub_pixel_variance%1xh, 7, 8, 13, src, src_stride, x_offset, \ + y_offset, dst, dst_stride, height, sse + %endif + %define block_height heightd + %define bilin_filter sseq +%else + %if ARCH_X86=1 && CONFIG_PIC=1 + %if %2 == 1 ; avg + cglobal highbd_sub_pixel_avg_variance%1xh, 7, 7, 13, src, src_stride, \ + x_offset, y_offset, \ + dst, dst_stride, \ + sec, sec_stride, \ + height, sse, g_bilin_filter, g_pw_8 + %define block_height dword heightm + %define sec_str sec_stridemp + + ; Store bilin_filter and pw_8 location in stack + %if GET_GOT_DEFINED == 1 + GET_GOT eax + add esp, 4 ; restore esp + %endif + + lea ecx, [GLOBAL(bilin_filter_m)] + mov g_bilin_filterm, ecx + + lea ecx, [GLOBAL(pw_8)] + mov g_pw_8m, ecx + + LOAD_IF_USED 0, 1 ; load eax, ecx back + %else + cglobal highbd_sub_pixel_variance%1xh, 7, 7, 13, src, src_stride, \ + x_offset, y_offset, dst, dst_stride, height, \ + sse, g_bilin_filter, g_pw_8 + %define block_height heightd + + ; Store bilin_filter and pw_8 location in stack + %if GET_GOT_DEFINED == 1 + GET_GOT eax + add esp, 4 ; restore esp + %endif + + lea ecx, [GLOBAL(bilin_filter_m)] + mov g_bilin_filterm, ecx + + lea ecx, [GLOBAL(pw_8)] + mov g_pw_8m, ecx + + LOAD_IF_USED 0, 1 ; load eax, ecx back + %endif + %else + %if %2 == 1 ; avg + cglobal highbd_sub_pixel_avg_variance%1xh, 7 + 2 * ARCH_X86_64, \ + 7 + 2 * ARCH_X86_64, 13, src, src_stride, \ + x_offset, y_offset, \ + dst, dst_stride, \ + sec, sec_stride, \ + height, sse + %if ARCH_X86_64 + %define block_height heightd + %define sec_str sec_strideq + %else + %define block_height dword heightm + %define sec_str sec_stridemp + %endif + %else + cglobal highbd_sub_pixel_variance%1xh, 7, 7, 13, src, src_stride, \ + x_offset, y_offset, dst, dst_stride, height, sse + %define block_height heightd + %endif + + %define bilin_filter bilin_filter_m + %endif +%endif + + ASSERT %1 <= 16 ; m6 overflows if w > 16 + pxor m6, m6 ; sum + pxor m7, m7 ; sse + +%if %1 < 16 + sar block_height, 1 +%endif +%if %2 == 1 ; avg + shl sec_str, 1 +%endif + + ; FIXME(rbultje) replace by jumptable? + test x_offsetd, x_offsetd + jnz .x_nonzero + ; x_offset == 0 + test y_offsetd, y_offsetd + jnz .x_zero_y_nonzero + + ; x_offset == 0 && y_offset == 0 +.x_zero_y_zero_loop: +%if %1 == 16 + movu m0, [srcq] + movu m2, [srcq + 16] + mova m1, [dstq] + mova m3, [dstq + 16] +%if %2 == 1 ; avg + pavgw m0, [secq] + pavgw m2, [secq+16] +%endif + SUM_SSE m0, m1, m2, m3, m6, m7 + + lea srcq, [srcq + src_strideq*2] + lea dstq, [dstq + dst_strideq*2] +%if %2 == 1 ; avg + add secq, sec_str +%endif +%else ; %1 < 16 + movu m0, [srcq] + movu m2, [srcq + src_strideq*2] + mova m1, [dstq] + mova m3, [dstq + dst_strideq*2] +%if %2 == 1 ; avg + pavgw m0, [secq] + add secq, sec_str + pavgw m2, [secq] +%endif + SUM_SSE m0, m1, m2, m3, m6, m7 + + lea srcq, [srcq + src_strideq*4] + lea dstq, [dstq + dst_strideq*4] +%if %2 == 1 ; avg + add secq, sec_str +%endif +%endif + dec block_height + jg .x_zero_y_zero_loop + STORE_AND_RET + +.x_zero_y_nonzero: + cmp y_offsetd, 8 + jne .x_zero_y_nonhalf + + ; x_offset == 0 && y_offset == 0.5 +.x_zero_y_half_loop: +%if %1 == 16 + movu m0, [srcq] + movu m1, [srcq+16] + movu m4, [srcq+src_strideq*2] + movu m5, [srcq+src_strideq*2+16] + mova m2, [dstq] + mova m3, [dstq+16] + pavgw m0, m4 + pavgw m1, m5 +%if %2 == 1 ; avg + pavgw m0, [secq] + pavgw m1, [secq+16] +%endif + SUM_SSE m0, m2, m1, m3, m6, m7 + + lea srcq, [srcq + src_strideq*2] + lea dstq, [dstq + dst_strideq*2] +%if %2 == 1 ; avg + add secq, sec_str +%endif +%else ; %1 < 16 + movu m0, [srcq] + movu m1, [srcq+src_strideq*2] + movu m5, [srcq+src_strideq*4] + mova m2, [dstq] + mova m3, [dstq+dst_strideq*2] + pavgw m0, m1 + pavgw m1, m5 +%if %2 == 1 ; avg + pavgw m0, [secq] + add secq, sec_str + pavgw m1, [secq] +%endif + SUM_SSE m0, m2, m1, m3, m6, m7 + + lea srcq, [srcq + src_strideq*4] + lea dstq, [dstq + dst_strideq*4] +%if %2 == 1 ; avg + add secq, sec_str +%endif +%endif + dec block_height + jg .x_zero_y_half_loop + STORE_AND_RET + +.x_zero_y_nonhalf: + ; x_offset == 0 && y_offset == bilin interpolation +%ifdef PIC + lea bilin_filter, [bilin_filter_m] +%endif + shl y_offsetd, filter_idx_shift +%if ARCH_X86_64 && mmsize == 16 + mova m8, [bilin_filter+y_offsetq] + mova m9, [bilin_filter+y_offsetq+16] + mova m10, [pw_8] +%define filter_y_a m8 +%define filter_y_b m9 +%define filter_rnd m10 +%else ; x86-32 or mmx +%if ARCH_X86=1 && CONFIG_PIC=1 +; x_offset == 0, reuse x_offset reg +%define tempq x_offsetq + add y_offsetq, g_bilin_filterm +%define filter_y_a [y_offsetq] +%define filter_y_b [y_offsetq+16] + mov tempq, g_pw_8m +%define filter_rnd [tempq] +%else + add y_offsetq, bilin_filter +%define filter_y_a [y_offsetq] +%define filter_y_b [y_offsetq+16] +%define filter_rnd [pw_8] +%endif +%endif + +.x_zero_y_other_loop: +%if %1 == 16 + movu m0, [srcq] + movu m1, [srcq + 16] + movu m4, [srcq+src_strideq*2] + movu m5, [srcq+src_strideq*2+16] + mova m2, [dstq] + mova m3, [dstq+16] + ; FIXME(rbultje) instead of out=((num-x)*in1+x*in2+rnd)>>log2(num), we can + ; also do out=in1+(((num-x)*(in2-in1)+rnd)>>log2(num)). Total number of + ; instructions is the same (5), but it is 1 mul instead of 2, so might be + ; slightly faster because of pmullw latency. It would also cut our rodata + ; tables in half for this function, and save 1-2 registers on x86-64. + pmullw m1, filter_y_a + pmullw m5, filter_y_b + paddw m1, filter_rnd + pmullw m0, filter_y_a + pmullw m4, filter_y_b + paddw m0, filter_rnd + paddw m1, m5 + paddw m0, m4 + psrlw m1, 4 + psrlw m0, 4 +%if %2 == 1 ; avg + pavgw m0, [secq] + pavgw m1, [secq+16] +%endif + SUM_SSE m0, m2, m1, m3, m6, m7 + + lea srcq, [srcq + src_strideq*2] + lea dstq, [dstq + dst_strideq*2] +%if %2 == 1 ; avg + add secq, sec_str +%endif +%else ; %1 < 16 + movu m0, [srcq] + movu m1, [srcq+src_strideq*2] + movu m5, [srcq+src_strideq*4] + mova m4, m1 + mova m2, [dstq] + mova m3, [dstq+dst_strideq*2] + pmullw m1, filter_y_a + pmullw m5, filter_y_b + paddw m1, filter_rnd + pmullw m0, filter_y_a + pmullw m4, filter_y_b + paddw m0, filter_rnd + paddw m1, m5 + paddw m0, m4 + psrlw m1, 4 + psrlw m0, 4 +%if %2 == 1 ; avg + pavgw m0, [secq] + add secq, sec_str + pavgw m1, [secq] +%endif + SUM_SSE m0, m2, m1, m3, m6, m7 + + lea srcq, [srcq + src_strideq*4] + lea dstq, [dstq + dst_strideq*4] +%if %2 == 1 ; avg + add secq, sec_str +%endif +%endif + dec block_height + jg .x_zero_y_other_loop +%undef filter_y_a +%undef filter_y_b +%undef filter_rnd + STORE_AND_RET + +.x_nonzero: + cmp x_offsetd, 8 + jne .x_nonhalf + ; x_offset == 0.5 + test y_offsetd, y_offsetd + jnz .x_half_y_nonzero + + ; x_offset == 0.5 && y_offset == 0 +.x_half_y_zero_loop: +%if %1 == 16 + movu m0, [srcq] + movu m1, [srcq + 16] + movu m4, [srcq + 2] + movu m5, [srcq + 18] + mova m2, [dstq] + mova m3, [dstq + 16] + pavgw m0, m4 + pavgw m1, m5 +%if %2 == 1 ; avg + pavgw m0, [secq] + pavgw m1, [secq+16] +%endif + SUM_SSE m0, m2, m1, m3, m6, m7 + + lea srcq, [srcq + src_strideq*2] + lea dstq, [dstq + dst_strideq*2] +%if %2 == 1 ; avg + add secq, sec_str +%endif +%else ; %1 < 16 + movu m0, [srcq] + movu m1, [srcq + src_strideq*2] + movu m4, [srcq + 2] + movu m5, [srcq + src_strideq*2 + 2] + mova m2, [dstq] + mova m3, [dstq + dst_strideq*2] + pavgw m0, m4 + pavgw m1, m5 +%if %2 == 1 ; avg + pavgw m0, [secq] + add secq, sec_str + pavgw m1, [secq] +%endif + SUM_SSE m0, m2, m1, m3, m6, m7 + + lea srcq, [srcq + src_strideq*4] + lea dstq, [dstq + dst_strideq*4] +%if %2 == 1 ; avg + add secq, sec_str +%endif +%endif + dec block_height + jg .x_half_y_zero_loop + STORE_AND_RET + +.x_half_y_nonzero: + cmp y_offsetd, 8 + jne .x_half_y_nonhalf + + ; x_offset == 0.5 && y_offset == 0.5 +%if %1 == 16 + movu m0, [srcq] + movu m1, [srcq+16] + movu m2, [srcq+2] + movu m3, [srcq+18] + lea srcq, [srcq + src_strideq*2] + pavgw m0, m2 + pavgw m1, m3 +.x_half_y_half_loop: + movu m2, [srcq] + movu m3, [srcq + 16] + movu m4, [srcq + 2] + movu m5, [srcq + 18] + pavgw m2, m4 + pavgw m3, m5 + pavgw m0, m2 + pavgw m1, m3 + mova m4, [dstq] + mova m5, [dstq + 16] +%if %2 == 1 ; avg + pavgw m0, [secq] + pavgw m1, [secq+16] +%endif + SUM_SSE m0, m4, m1, m5, m6, m7 + mova m0, m2 + mova m1, m3 + + lea srcq, [srcq + src_strideq*2] + lea dstq, [dstq + dst_strideq*2] +%if %2 == 1 ; avg + add secq, sec_str +%endif +%else ; %1 < 16 + movu m0, [srcq] + movu m2, [srcq+2] + lea srcq, [srcq + src_strideq*2] + pavgw m0, m2 +.x_half_y_half_loop: + movu m2, [srcq] + movu m3, [srcq + src_strideq*2] + movu m4, [srcq + 2] + movu m5, [srcq + src_strideq*2 + 2] + pavgw m2, m4 + pavgw m3, m5 + pavgw m0, m2 + pavgw m2, m3 + mova m4, [dstq] + mova m5, [dstq + dst_strideq*2] +%if %2 == 1 ; avg + pavgw m0, [secq] + add secq, sec_str + pavgw m2, [secq] +%endif + SUM_SSE m0, m4, m2, m5, m6, m7 + mova m0, m3 + + lea srcq, [srcq + src_strideq*4] + lea dstq, [dstq + dst_strideq*4] +%if %2 == 1 ; avg + add secq, sec_str +%endif +%endif + dec block_height + jg .x_half_y_half_loop + STORE_AND_RET + +.x_half_y_nonhalf: + ; x_offset == 0.5 && y_offset == bilin interpolation +%ifdef PIC + lea bilin_filter, [bilin_filter_m] +%endif + shl y_offsetd, filter_idx_shift +%if ARCH_X86_64 && mmsize == 16 + mova m8, [bilin_filter+y_offsetq] + mova m9, [bilin_filter+y_offsetq+16] + mova m10, [pw_8] +%define filter_y_a m8 +%define filter_y_b m9 +%define filter_rnd m10 +%else ; x86_32 +%if ARCH_X86=1 && CONFIG_PIC=1 +; x_offset == 0.5. We can reuse x_offset reg +%define tempq x_offsetq + add y_offsetq, g_bilin_filterm +%define filter_y_a [y_offsetq] +%define filter_y_b [y_offsetq+16] + mov tempq, g_pw_8m +%define filter_rnd [tempq] +%else + add y_offsetq, bilin_filter +%define filter_y_a [y_offsetq] +%define filter_y_b [y_offsetq+16] +%define filter_rnd [pw_8] +%endif +%endif + +%if %1 == 16 + movu m0, [srcq] + movu m1, [srcq+16] + movu m2, [srcq+2] + movu m3, [srcq+18] + lea srcq, [srcq + src_strideq*2] + pavgw m0, m2 + pavgw m1, m3 +.x_half_y_other_loop: + movu m2, [srcq] + movu m3, [srcq+16] + movu m4, [srcq+2] + movu m5, [srcq+18] + pavgw m2, m4 + pavgw m3, m5 + mova m4, m2 + mova m5, m3 + pmullw m1, filter_y_a + pmullw m3, filter_y_b + paddw m1, filter_rnd + paddw m1, m3 + pmullw m0, filter_y_a + pmullw m2, filter_y_b + paddw m0, filter_rnd + psrlw m1, 4 + paddw m0, m2 + mova m2, [dstq] + psrlw m0, 4 + mova m3, [dstq+16] +%if %2 == 1 ; avg + pavgw m0, [secq] + pavgw m1, [secq+16] +%endif + SUM_SSE m0, m2, m1, m3, m6, m7 + mova m0, m4 + mova m1, m5 + + lea srcq, [srcq + src_strideq*2] + lea dstq, [dstq + dst_strideq*2] +%if %2 == 1 ; avg + add secq, sec_str +%endif +%else ; %1 < 16 + movu m0, [srcq] + movu m2, [srcq+2] + lea srcq, [srcq + src_strideq*2] + pavgw m0, m2 +.x_half_y_other_loop: + movu m2, [srcq] + movu m3, [srcq+src_strideq*2] + movu m4, [srcq+2] + movu m5, [srcq+src_strideq*2+2] + pavgw m2, m4 + pavgw m3, m5 + mova m4, m2 + mova m5, m3 + pmullw m4, filter_y_a + pmullw m3, filter_y_b + paddw m4, filter_rnd + paddw m4, m3 + pmullw m0, filter_y_a + pmullw m2, filter_y_b + paddw m0, filter_rnd + psrlw m4, 4 + paddw m0, m2 + mova m2, [dstq] + psrlw m0, 4 + mova m3, [dstq+dst_strideq*2] +%if %2 == 1 ; avg + pavgw m0, [secq] + add secq, sec_str + pavgw m4, [secq] +%endif + SUM_SSE m0, m2, m4, m3, m6, m7 + mova m0, m5 + + lea srcq, [srcq + src_strideq*4] + lea dstq, [dstq + dst_strideq*4] +%if %2 == 1 ; avg + add secq, sec_str +%endif +%endif + dec block_height + jg .x_half_y_other_loop +%undef filter_y_a +%undef filter_y_b +%undef filter_rnd + STORE_AND_RET + +.x_nonhalf: + test y_offsetd, y_offsetd + jnz .x_nonhalf_y_nonzero + + ; x_offset == bilin interpolation && y_offset == 0 +%ifdef PIC + lea bilin_filter, [bilin_filter_m] +%endif + shl x_offsetd, filter_idx_shift +%if ARCH_X86_64 && mmsize == 16 + mova m8, [bilin_filter+x_offsetq] + mova m9, [bilin_filter+x_offsetq+16] + mova m10, [pw_8] +%define filter_x_a m8 +%define filter_x_b m9 +%define filter_rnd m10 +%else ; x86-32 +%if ARCH_X86=1 && CONFIG_PIC=1 +; y_offset == 0. We can reuse y_offset reg. +%define tempq y_offsetq + add x_offsetq, g_bilin_filterm +%define filter_x_a [x_offsetq] +%define filter_x_b [x_offsetq+16] + mov tempq, g_pw_8m +%define filter_rnd [tempq] +%else + add x_offsetq, bilin_filter +%define filter_x_a [x_offsetq] +%define filter_x_b [x_offsetq+16] +%define filter_rnd [pw_8] +%endif +%endif + +.x_other_y_zero_loop: +%if %1 == 16 + movu m0, [srcq] + movu m1, [srcq+16] + movu m2, [srcq+2] + movu m3, [srcq+18] + mova m4, [dstq] + mova m5, [dstq+16] + pmullw m1, filter_x_a + pmullw m3, filter_x_b + paddw m1, filter_rnd + pmullw m0, filter_x_a + pmullw m2, filter_x_b + paddw m0, filter_rnd + paddw m1, m3 + paddw m0, m2 + psrlw m1, 4 + psrlw m0, 4 +%if %2 == 1 ; avg + pavgw m0, [secq] + pavgw m1, [secq+16] +%endif + SUM_SSE m0, m4, m1, m5, m6, m7 + + lea srcq, [srcq+src_strideq*2] + lea dstq, [dstq+dst_strideq*2] +%if %2 == 1 ; avg + add secq, sec_str +%endif +%else ; %1 < 16 + movu m0, [srcq] + movu m1, [srcq+src_strideq*2] + movu m2, [srcq+2] + movu m3, [srcq+src_strideq*2+2] + mova m4, [dstq] + mova m5, [dstq+dst_strideq*2] + pmullw m1, filter_x_a + pmullw m3, filter_x_b + paddw m1, filter_rnd + pmullw m0, filter_x_a + pmullw m2, filter_x_b + paddw m0, filter_rnd + paddw m1, m3 + paddw m0, m2 + psrlw m1, 4 + psrlw m0, 4 +%if %2 == 1 ; avg + pavgw m0, [secq] + add secq, sec_str + pavgw m1, [secq] +%endif + SUM_SSE m0, m4, m1, m5, m6, m7 + + lea srcq, [srcq+src_strideq*4] + lea dstq, [dstq+dst_strideq*4] +%if %2 == 1 ; avg + add secq, sec_str +%endif +%endif + dec block_height + jg .x_other_y_zero_loop +%undef filter_x_a +%undef filter_x_b +%undef filter_rnd + STORE_AND_RET + +.x_nonhalf_y_nonzero: + cmp y_offsetd, 8 + jne .x_nonhalf_y_nonhalf + + ; x_offset == bilin interpolation && y_offset == 0.5 +%ifdef PIC + lea bilin_filter, [bilin_filter_m] +%endif + shl x_offsetd, filter_idx_shift +%if ARCH_X86_64 && mmsize == 16 + mova m8, [bilin_filter+x_offsetq] + mova m9, [bilin_filter+x_offsetq+16] + mova m10, [pw_8] +%define filter_x_a m8 +%define filter_x_b m9 +%define filter_rnd m10 +%else ; x86-32 +%if ARCH_X86=1 && CONFIG_PIC=1 +; y_offset == 0.5. We can reuse y_offset reg. +%define tempq y_offsetq + add x_offsetq, g_bilin_filterm +%define filter_x_a [x_offsetq] +%define filter_x_b [x_offsetq+16] + mov tempq, g_pw_8m +%define filter_rnd [tempq] +%else + add x_offsetq, bilin_filter +%define filter_x_a [x_offsetq] +%define filter_x_b [x_offsetq+16] +%define filter_rnd [pw_8] +%endif +%endif + +%if %1 == 16 + movu m0, [srcq] + movu m1, [srcq+16] + movu m2, [srcq+2] + movu m3, [srcq+18] + pmullw m0, filter_x_a + pmullw m2, filter_x_b + paddw m0, filter_rnd + pmullw m1, filter_x_a + pmullw m3, filter_x_b + paddw m1, filter_rnd + paddw m0, m2 + paddw m1, m3 + psrlw m0, 4 + psrlw m1, 4 + lea srcq, [srcq+src_strideq*2] +.x_other_y_half_loop: + movu m2, [srcq] + movu m3, [srcq+16] + movu m4, [srcq+2] + movu m5, [srcq+18] + pmullw m2, filter_x_a + pmullw m4, filter_x_b + paddw m2, filter_rnd + pmullw m3, filter_x_a + pmullw m5, filter_x_b + paddw m3, filter_rnd + paddw m2, m4 + paddw m3, m5 + mova m4, [dstq] + mova m5, [dstq+16] + psrlw m2, 4 + psrlw m3, 4 + pavgw m0, m2 + pavgw m1, m3 +%if %2 == 1 ; avg + pavgw m0, [secq] + pavgw m1, [secq+16] +%endif + SUM_SSE m0, m4, m1, m5, m6, m7 + mova m0, m2 + mova m1, m3 + + lea srcq, [srcq+src_strideq*2] + lea dstq, [dstq+dst_strideq*2] +%if %2 == 1 ; avg + add secq, sec_str +%endif +%else ; %1 < 16 + movu m0, [srcq] + movu m2, [srcq+2] + pmullw m0, filter_x_a + pmullw m2, filter_x_b + paddw m0, filter_rnd + paddw m0, m2 + psrlw m0, 4 + lea srcq, [srcq+src_strideq*2] +.x_other_y_half_loop: + movu m2, [srcq] + movu m3, [srcq+src_strideq*2] + movu m4, [srcq+2] + movu m5, [srcq+src_strideq*2+2] + pmullw m2, filter_x_a + pmullw m4, filter_x_b + paddw m2, filter_rnd + pmullw m3, filter_x_a + pmullw m5, filter_x_b + paddw m3, filter_rnd + paddw m2, m4 + paddw m3, m5 + mova m4, [dstq] + mova m5, [dstq+dst_strideq*2] + psrlw m2, 4 + psrlw m3, 4 + pavgw m0, m2 + pavgw m2, m3 +%if %2 == 1 ; avg + pavgw m0, [secq] + add secq, sec_str + pavgw m2, [secq] +%endif + SUM_SSE m0, m4, m2, m5, m6, m7 + mova m0, m3 + + lea srcq, [srcq+src_strideq*4] + lea dstq, [dstq+dst_strideq*4] +%if %2 == 1 ; avg + add secq, sec_str +%endif +%endif + dec block_height + jg .x_other_y_half_loop +%undef filter_x_a +%undef filter_x_b +%undef filter_rnd + STORE_AND_RET + +.x_nonhalf_y_nonhalf: +; loading filter - this is same as in 8-bit depth +%ifdef PIC + lea bilin_filter, [bilin_filter_m] +%endif + shl x_offsetd, filter_idx_shift ; filter_idx_shift = 5 + shl y_offsetd, filter_idx_shift +%if ARCH_X86_64 && mmsize == 16 + mova m8, [bilin_filter+x_offsetq] + mova m9, [bilin_filter+x_offsetq+16] + mova m10, [bilin_filter+y_offsetq] + mova m11, [bilin_filter+y_offsetq+16] + mova m12, [pw_8] +%define filter_x_a m8 +%define filter_x_b m9 +%define filter_y_a m10 +%define filter_y_b m11 +%define filter_rnd m12 +%else ; x86-32 +%if ARCH_X86=1 && CONFIG_PIC=1 +; In this case, there is NO unused register. Used src_stride register. Later, +; src_stride has to be loaded from stack when it is needed. +%define tempq src_strideq + mov tempq, g_bilin_filterm + add x_offsetq, tempq + add y_offsetq, tempq +%define filter_x_a [x_offsetq] +%define filter_x_b [x_offsetq+16] +%define filter_y_a [y_offsetq] +%define filter_y_b [y_offsetq+16] + + mov tempq, g_pw_8m +%define filter_rnd [tempq] +%else + add x_offsetq, bilin_filter + add y_offsetq, bilin_filter +%define filter_x_a [x_offsetq] +%define filter_x_b [x_offsetq+16] +%define filter_y_a [y_offsetq] +%define filter_y_b [y_offsetq+16] +%define filter_rnd [pw_8] +%endif +%endif +; end of load filter + + ; x_offset == bilin interpolation && y_offset == bilin interpolation +%if %1 == 16 + movu m0, [srcq] + movu m2, [srcq+2] + movu m1, [srcq+16] + movu m3, [srcq+18] + pmullw m0, filter_x_a + pmullw m2, filter_x_b + paddw m0, filter_rnd + pmullw m1, filter_x_a + pmullw m3, filter_x_b + paddw m1, filter_rnd + paddw m0, m2 + paddw m1, m3 + psrlw m0, 4 + psrlw m1, 4 + + INC_SRC_BY_SRC_STRIDE + +.x_other_y_other_loop: + movu m2, [srcq] + movu m4, [srcq+2] + movu m3, [srcq+16] + movu m5, [srcq+18] + pmullw m2, filter_x_a + pmullw m4, filter_x_b + paddw m2, filter_rnd + pmullw m3, filter_x_a + pmullw m5, filter_x_b + paddw m3, filter_rnd + paddw m2, m4 + paddw m3, m5 + psrlw m2, 4 + psrlw m3, 4 + mova m4, m2 + mova m5, m3 + pmullw m0, filter_y_a + pmullw m2, filter_y_b + paddw m0, filter_rnd + pmullw m1, filter_y_a + pmullw m3, filter_y_b + paddw m0, m2 + paddw m1, filter_rnd + mova m2, [dstq] + paddw m1, m3 + psrlw m0, 4 + psrlw m1, 4 + mova m3, [dstq+16] +%if %2 == 1 ; avg + pavgw m0, [secq] + pavgw m1, [secq+16] +%endif + SUM_SSE m0, m2, m1, m3, m6, m7 + mova m0, m4 + mova m1, m5 + + INC_SRC_BY_SRC_STRIDE + lea dstq, [dstq + dst_strideq * 2] +%if %2 == 1 ; avg + add secq, sec_str +%endif +%else ; %1 < 16 + movu m0, [srcq] + movu m2, [srcq+2] + pmullw m0, filter_x_a + pmullw m2, filter_x_b + paddw m0, filter_rnd + paddw m0, m2 + psrlw m0, 4 + + INC_SRC_BY_SRC_STRIDE + +.x_other_y_other_loop: + movu m2, [srcq] + movu m4, [srcq+2] + INC_SRC_BY_SRC_STRIDE + movu m3, [srcq] + movu m5, [srcq+2] + pmullw m2, filter_x_a + pmullw m4, filter_x_b + paddw m2, filter_rnd + pmullw m3, filter_x_a + pmullw m5, filter_x_b + paddw m3, filter_rnd + paddw m2, m4 + paddw m3, m5 + psrlw m2, 4 + psrlw m3, 4 + mova m4, m2 + mova m5, m3 + pmullw m0, filter_y_a + pmullw m2, filter_y_b + paddw m0, filter_rnd + pmullw m4, filter_y_a + pmullw m3, filter_y_b + paddw m0, m2 + paddw m4, filter_rnd + mova m2, [dstq] + paddw m4, m3 + psrlw m0, 4 + psrlw m4, 4 + mova m3, [dstq+dst_strideq*2] +%if %2 == 1 ; avg + pavgw m0, [secq] + add secq, sec_str + pavgw m4, [secq] +%endif + SUM_SSE m0, m2, m4, m3, m6, m7 + mova m0, m5 + + INC_SRC_BY_SRC_STRIDE + lea dstq, [dstq + dst_strideq * 4] +%if %2 == 1 ; avg + add secq, sec_str +%endif +%endif + dec block_height + jg .x_other_y_other_loop +%undef filter_x_a +%undef filter_x_b +%undef filter_y_a +%undef filter_y_b +%undef filter_rnd + STORE_AND_RET +%endmacro + +INIT_XMM sse2 +SUBPEL_VARIANCE 8 +SUBPEL_VARIANCE 16 + +INIT_XMM sse2 +SUBPEL_VARIANCE 8, 1 +SUBPEL_VARIANCE 16, 1 diff --git a/vpx_dsp/x86/highbd_variance_impl_sse2.asm b/vpx_dsp/x86/highbd_variance_impl_sse2.asm new file mode 100644 index 0000000..e646767 --- /dev/null +++ b/vpx_dsp/x86/highbd_variance_impl_sse2.asm @@ -0,0 +1,315 @@ +; +; Copyright (c) 2014 The WebM project authors. All Rights Reserved. +; +; Use of this source code is governed by a BSD-style license +; that can be found in the LICENSE file in the root of the source +; tree. An additional intellectual property rights grant can be found +; in the file PATENTS. All contributing project authors may +; be found in the AUTHORS file in the root of the source tree. +; + + +%include "vpx_ports/x86_abi_support.asm" + +SECTION .text + +;unsigned int vpx_highbd_calc16x16var_sse2 +;( +; unsigned char * src_ptr, +; int source_stride, +; unsigned char * ref_ptr, +; int recon_stride, +; unsigned int * SSE, +; int * Sum +;) +global sym(vpx_highbd_calc16x16var_sse2) PRIVATE +sym(vpx_highbd_calc16x16var_sse2): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 6 + SAVE_XMM 7 + push rbx + push rsi + push rdi + ; end prolog + + mov rsi, arg(0) ;[src_ptr] + mov rdi, arg(2) ;[ref_ptr] + + movsxd rax, DWORD PTR arg(1) ;[source_stride] + movsxd rdx, DWORD PTR arg(3) ;[recon_stride] + add rax, rax ; source stride in bytes + add rdx, rdx ; recon stride in bytes + + ; Prefetch data + prefetcht0 [rsi] + prefetcht0 [rsi+16] + prefetcht0 [rsi+rax] + prefetcht0 [rsi+rax+16] + lea rbx, [rsi+rax*2] + prefetcht0 [rbx] + prefetcht0 [rbx+16] + prefetcht0 [rbx+rax] + prefetcht0 [rbx+rax+16] + + prefetcht0 [rdi] + prefetcht0 [rdi+16] + prefetcht0 [rdi+rdx] + prefetcht0 [rdi+rdx+16] + lea rbx, [rdi+rdx*2] + prefetcht0 [rbx] + prefetcht0 [rbx+16] + prefetcht0 [rbx+rdx] + prefetcht0 [rbx+rdx+16] + + pxor xmm0, xmm0 ; clear xmm0 for unpack + pxor xmm7, xmm7 ; clear xmm7 for accumulating diffs + + pxor xmm6, xmm6 ; clear xmm6 for accumulating sse + mov rcx, 16 + +.var16loop: + movdqu xmm1, XMMWORD PTR [rsi] + movdqu xmm2, XMMWORD PTR [rdi] + + lea rbx, [rsi+rax*2] + prefetcht0 [rbx] + prefetcht0 [rbx+16] + prefetcht0 [rbx+rax] + prefetcht0 [rbx+rax+16] + lea rbx, [rdi+rdx*2] + prefetcht0 [rbx] + prefetcht0 [rbx+16] + prefetcht0 [rbx+rdx] + prefetcht0 [rbx+rdx+16] + + pxor xmm5, xmm5 + + psubw xmm1, xmm2 + movdqu xmm3, XMMWORD PTR [rsi+16] + paddw xmm5, xmm1 + pmaddwd xmm1, xmm1 + movdqu xmm2, XMMWORD PTR [rdi+16] + paddd xmm6, xmm1 + + psubw xmm3, xmm2 + movdqu xmm1, XMMWORD PTR [rsi+rax] + paddw xmm5, xmm3 + pmaddwd xmm3, xmm3 + movdqu xmm2, XMMWORD PTR [rdi+rdx] + paddd xmm6, xmm3 + + psubw xmm1, xmm2 + movdqu xmm3, XMMWORD PTR [rsi+rax+16] + paddw xmm5, xmm1 + pmaddwd xmm1, xmm1 + movdqu xmm2, XMMWORD PTR [rdi+rdx+16] + paddd xmm6, xmm1 + + psubw xmm3, xmm2 + paddw xmm5, xmm3 + pmaddwd xmm3, xmm3 + paddd xmm6, xmm3 + + movdqa xmm1, xmm5 + movdqa xmm2, xmm5 + pcmpgtw xmm1, xmm0 + pcmpeqw xmm2, xmm0 + por xmm1, xmm2 + pcmpeqw xmm1, xmm0 + movdqa xmm2, xmm5 + punpcklwd xmm5, xmm1 + punpckhwd xmm2, xmm1 + paddd xmm7, xmm5 + paddd xmm7, xmm2 + + lea rsi, [rsi + 2*rax] + lea rdi, [rdi + 2*rdx] + sub rcx, 2 + jnz .var16loop + + movdqa xmm4, xmm6 + punpckldq xmm6, xmm0 + + punpckhdq xmm4, xmm0 + movdqa xmm5, xmm7 + + paddd xmm6, xmm4 + punpckldq xmm7, xmm0 + + punpckhdq xmm5, xmm0 + paddd xmm7, xmm5 + + movdqa xmm4, xmm6 + movdqa xmm5, xmm7 + + psrldq xmm4, 8 + psrldq xmm5, 8 + + paddd xmm6, xmm4 + paddd xmm7, xmm5 + + mov rdi, arg(4) ; [SSE] + mov rax, arg(5) ; [Sum] + + movd DWORD PTR [rdi], xmm6 + movd DWORD PTR [rax], xmm7 + + + ; begin epilog + pop rdi + pop rsi + pop rbx + RESTORE_XMM + UNSHADOW_ARGS + pop rbp + ret + + +;unsigned int vpx_highbd_calc8x8var_sse2 +;( +; unsigned char * src_ptr, +; int source_stride, +; unsigned char * ref_ptr, +; int recon_stride, +; unsigned int * SSE, +; int * Sum +;) +global sym(vpx_highbd_calc8x8var_sse2) PRIVATE +sym(vpx_highbd_calc8x8var_sse2): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 6 + SAVE_XMM 7 + push rbx + push rsi + push rdi + ; end prolog + + mov rsi, arg(0) ;[src_ptr] + mov rdi, arg(2) ;[ref_ptr] + + movsxd rax, DWORD PTR arg(1) ;[source_stride] + movsxd rdx, DWORD PTR arg(3) ;[recon_stride] + add rax, rax ; source stride in bytes + add rdx, rdx ; recon stride in bytes + + ; Prefetch data + prefetcht0 [rsi] + prefetcht0 [rsi+rax] + lea rbx, [rsi+rax*2] + prefetcht0 [rbx] + prefetcht0 [rbx+rax] + + prefetcht0 [rdi] + prefetcht0 [rdi+rdx] + lea rbx, [rdi+rdx*2] + prefetcht0 [rbx] + prefetcht0 [rbx+rdx] + + pxor xmm0, xmm0 ; clear xmm0 for unpack + pxor xmm7, xmm7 ; clear xmm7 for accumulating diffs + + pxor xmm6, xmm6 ; clear xmm6 for accumulating sse + mov rcx, 8 + +.var8loop: + movdqu xmm1, XMMWORD PTR [rsi] + movdqu xmm2, XMMWORD PTR [rdi] + + lea rbx, [rsi+rax*4] + prefetcht0 [rbx] + prefetcht0 [rbx+rax] + lea rbx, [rbx+rax*2] + prefetcht0 [rbx] + prefetcht0 [rbx+rax] + lea rbx, [rdi+rdx*4] + prefetcht0 [rbx] + prefetcht0 [rbx+rdx] + lea rbx, [rbx+rdx*2] + prefetcht0 [rbx] + prefetcht0 [rbx+rdx] + + pxor xmm5, xmm5 + + psubw xmm1, xmm2 + movdqu xmm3, XMMWORD PTR [rsi+rax] + paddw xmm5, xmm1 + pmaddwd xmm1, xmm1 + movdqu xmm2, XMMWORD PTR [rdi+rdx] + paddd xmm6, xmm1 + + lea rsi, [rsi + 2*rax] + lea rdi, [rdi + 2*rdx] + + psubw xmm3, xmm2 + movdqu xmm1, XMMWORD PTR [rsi] + paddw xmm5, xmm3 + pmaddwd xmm3, xmm3 + movdqu xmm2, XMMWORD PTR [rdi] + paddd xmm6, xmm3 + + psubw xmm1, xmm2 + movdqu xmm3, XMMWORD PTR [rsi+rax] + paddw xmm5, xmm1 + pmaddwd xmm1, xmm1 + movdqu xmm2, XMMWORD PTR [rdi+rdx] + paddd xmm6, xmm1 + + psubw xmm3, xmm2 + paddw xmm5, xmm3 + pmaddwd xmm3, xmm3 + paddd xmm6, xmm3 + + movdqa xmm1, xmm5 + movdqa xmm2, xmm5 + pcmpgtw xmm1, xmm0 + pcmpeqw xmm2, xmm0 + por xmm1, xmm2 + pcmpeqw xmm1, xmm0 + movdqa xmm2, xmm5 + punpcklwd xmm5, xmm1 + punpckhwd xmm2, xmm1 + paddd xmm7, xmm5 + paddd xmm7, xmm2 + + lea rsi, [rsi + 2*rax] + lea rdi, [rdi + 2*rdx] + sub rcx, 4 + jnz .var8loop + + movdqa xmm4, xmm6 + punpckldq xmm6, xmm0 + + punpckhdq xmm4, xmm0 + movdqa xmm5, xmm7 + + paddd xmm6, xmm4 + punpckldq xmm7, xmm0 + + punpckhdq xmm5, xmm0 + paddd xmm7, xmm5 + + movdqa xmm4, xmm6 + movdqa xmm5, xmm7 + + psrldq xmm4, 8 + psrldq xmm5, 8 + + paddd xmm6, xmm4 + paddd xmm7, xmm5 + + mov rdi, arg(4) ; [SSE] + mov rax, arg(5) ; [Sum] + + movd DWORD PTR [rdi], xmm6 + movd DWORD PTR [rax], xmm7 + + ; begin epilog + pop rdi + pop rsi + pop rbx + RESTORE_XMM + UNSHADOW_ARGS + pop rbp + ret diff --git a/vpx_dsp/x86/highbd_variance_sse2.c b/vpx_dsp/x86/highbd_variance_sse2.c new file mode 100644 index 0000000..a6f7c3d --- /dev/null +++ b/vpx_dsp/x86/highbd_variance_sse2.c @@ -0,0 +1,560 @@ +/* + * Copyright (c) 2014 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ +#include "./vpx_config.h" + +#include "vpx_ports/mem.h" + +typedef uint32_t (*high_variance_fn_t)(const uint16_t *src, int src_stride, + const uint16_t *ref, int ref_stride, + uint32_t *sse, int *sum); + +uint32_t vpx_highbd_calc8x8var_sse2(const uint16_t *src, int src_stride, + const uint16_t *ref, int ref_stride, + uint32_t *sse, int *sum); + +uint32_t vpx_highbd_calc16x16var_sse2(const uint16_t *src, int src_stride, + const uint16_t *ref, int ref_stride, + uint32_t *sse, int *sum); + +static void highbd_8_variance_sse2(const uint16_t *src, int src_stride, + const uint16_t *ref, int ref_stride, int w, + int h, uint32_t *sse, int *sum, + high_variance_fn_t var_fn, int block_size) { + int i, j; + + *sse = 0; + *sum = 0; + + for (i = 0; i < h; i += block_size) { + for (j = 0; j < w; j += block_size) { + unsigned int sse0; + int sum0; + var_fn(src + src_stride * i + j, src_stride, ref + ref_stride * i + j, + ref_stride, &sse0, &sum0); + *sse += sse0; + *sum += sum0; + } + } +} + +static void highbd_10_variance_sse2(const uint16_t *src, int src_stride, + const uint16_t *ref, int ref_stride, int w, + int h, uint32_t *sse, int *sum, + high_variance_fn_t var_fn, int block_size) { + int i, j; + uint64_t sse_long = 0; + int32_t sum_long = 0; + + for (i = 0; i < h; i += block_size) { + for (j = 0; j < w; j += block_size) { + unsigned int sse0; + int sum0; + var_fn(src + src_stride * i + j, src_stride, ref + ref_stride * i + j, + ref_stride, &sse0, &sum0); + sse_long += sse0; + sum_long += sum0; + } + } + *sum = ROUND_POWER_OF_TWO(sum_long, 2); + *sse = (uint32_t)ROUND_POWER_OF_TWO(sse_long, 4); +} + +static void highbd_12_variance_sse2(const uint16_t *src, int src_stride, + const uint16_t *ref, int ref_stride, int w, + int h, uint32_t *sse, int *sum, + high_variance_fn_t var_fn, int block_size) { + int i, j; + uint64_t sse_long = 0; + int32_t sum_long = 0; + + for (i = 0; i < h; i += block_size) { + for (j = 0; j < w; j += block_size) { + unsigned int sse0; + int sum0; + var_fn(src + src_stride * i + j, src_stride, ref + ref_stride * i + j, + ref_stride, &sse0, &sum0); + sse_long += sse0; + sum_long += sum0; + } + } + *sum = ROUND_POWER_OF_TWO(sum_long, 4); + *sse = (uint32_t)ROUND_POWER_OF_TWO(sse_long, 8); +} + +#define HIGH_GET_VAR(S) \ + void vpx_highbd_get##S##x##S##var_sse2(const uint8_t *src8, int src_stride, \ + const uint8_t *ref8, int ref_stride, \ + uint32_t *sse, int *sum) { \ + uint16_t *src = CONVERT_TO_SHORTPTR(src8); \ + uint16_t *ref = CONVERT_TO_SHORTPTR(ref8); \ + vpx_highbd_calc##S##x##S##var_sse2(src, src_stride, ref, ref_stride, sse, \ + sum); \ + } \ + \ + void vpx_highbd_10_get##S##x##S##var_sse2( \ + const uint8_t *src8, int src_stride, const uint8_t *ref8, \ + int ref_stride, uint32_t *sse, int *sum) { \ + uint16_t *src = CONVERT_TO_SHORTPTR(src8); \ + uint16_t *ref = CONVERT_TO_SHORTPTR(ref8); \ + vpx_highbd_calc##S##x##S##var_sse2(src, src_stride, ref, ref_stride, sse, \ + sum); \ + *sum = ROUND_POWER_OF_TWO(*sum, 2); \ + *sse = ROUND_POWER_OF_TWO(*sse, 4); \ + } \ + \ + void vpx_highbd_12_get##S##x##S##var_sse2( \ + const uint8_t *src8, int src_stride, const uint8_t *ref8, \ + int ref_stride, uint32_t *sse, int *sum) { \ + uint16_t *src = CONVERT_TO_SHORTPTR(src8); \ + uint16_t *ref = CONVERT_TO_SHORTPTR(ref8); \ + vpx_highbd_calc##S##x##S##var_sse2(src, src_stride, ref, ref_stride, sse, \ + sum); \ + *sum = ROUND_POWER_OF_TWO(*sum, 4); \ + *sse = ROUND_POWER_OF_TWO(*sse, 8); \ + } + +HIGH_GET_VAR(16); +HIGH_GET_VAR(8); + +#undef HIGH_GET_VAR + +#define VAR_FN(w, h, block_size, shift) \ + uint32_t vpx_highbd_8_variance##w##x##h##_sse2( \ + const uint8_t *src8, int src_stride, const uint8_t *ref8, \ + int ref_stride, uint32_t *sse) { \ + int sum; \ + uint16_t *src = CONVERT_TO_SHORTPTR(src8); \ + uint16_t *ref = CONVERT_TO_SHORTPTR(ref8); \ + highbd_8_variance_sse2( \ + src, src_stride, ref, ref_stride, w, h, sse, &sum, \ + vpx_highbd_calc##block_size##x##block_size##var_sse2, block_size); \ + return *sse - (uint32_t)(((int64_t)sum * sum) >> shift); \ + } \ + \ + uint32_t vpx_highbd_10_variance##w##x##h##_sse2( \ + const uint8_t *src8, int src_stride, const uint8_t *ref8, \ + int ref_stride, uint32_t *sse) { \ + int sum; \ + int64_t var; \ + uint16_t *src = CONVERT_TO_SHORTPTR(src8); \ + uint16_t *ref = CONVERT_TO_SHORTPTR(ref8); \ + highbd_10_variance_sse2( \ + src, src_stride, ref, ref_stride, w, h, sse, &sum, \ + vpx_highbd_calc##block_size##x##block_size##var_sse2, block_size); \ + var = (int64_t)(*sse) - (((int64_t)sum * sum) >> shift); \ + return (var >= 0) ? (uint32_t)var : 0; \ + } \ + \ + uint32_t vpx_highbd_12_variance##w##x##h##_sse2( \ + const uint8_t *src8, int src_stride, const uint8_t *ref8, \ + int ref_stride, uint32_t *sse) { \ + int sum; \ + int64_t var; \ + uint16_t *src = CONVERT_TO_SHORTPTR(src8); \ + uint16_t *ref = CONVERT_TO_SHORTPTR(ref8); \ + highbd_12_variance_sse2( \ + src, src_stride, ref, ref_stride, w, h, sse, &sum, \ + vpx_highbd_calc##block_size##x##block_size##var_sse2, block_size); \ + var = (int64_t)(*sse) - (((int64_t)sum * sum) >> shift); \ + return (var >= 0) ? (uint32_t)var : 0; \ + } + +VAR_FN(64, 64, 16, 12); +VAR_FN(64, 32, 16, 11); +VAR_FN(32, 64, 16, 11); +VAR_FN(32, 32, 16, 10); +VAR_FN(32, 16, 16, 9); +VAR_FN(16, 32, 16, 9); +VAR_FN(16, 16, 16, 8); +VAR_FN(16, 8, 8, 7); +VAR_FN(8, 16, 8, 7); +VAR_FN(8, 8, 8, 6); + +#undef VAR_FN + +unsigned int vpx_highbd_8_mse16x16_sse2(const uint8_t *src8, int src_stride, + const uint8_t *ref8, int ref_stride, + unsigned int *sse) { + int sum; + uint16_t *src = CONVERT_TO_SHORTPTR(src8); + uint16_t *ref = CONVERT_TO_SHORTPTR(ref8); + highbd_8_variance_sse2(src, src_stride, ref, ref_stride, 16, 16, sse, &sum, + vpx_highbd_calc16x16var_sse2, 16); + return *sse; +} + +unsigned int vpx_highbd_10_mse16x16_sse2(const uint8_t *src8, int src_stride, + const uint8_t *ref8, int ref_stride, + unsigned int *sse) { + int sum; + uint16_t *src = CONVERT_TO_SHORTPTR(src8); + uint16_t *ref = CONVERT_TO_SHORTPTR(ref8); + highbd_10_variance_sse2(src, src_stride, ref, ref_stride, 16, 16, sse, &sum, + vpx_highbd_calc16x16var_sse2, 16); + return *sse; +} + +unsigned int vpx_highbd_12_mse16x16_sse2(const uint8_t *src8, int src_stride, + const uint8_t *ref8, int ref_stride, + unsigned int *sse) { + int sum; + uint16_t *src = CONVERT_TO_SHORTPTR(src8); + uint16_t *ref = CONVERT_TO_SHORTPTR(ref8); + highbd_12_variance_sse2(src, src_stride, ref, ref_stride, 16, 16, sse, &sum, + vpx_highbd_calc16x16var_sse2, 16); + return *sse; +} + +unsigned int vpx_highbd_8_mse8x8_sse2(const uint8_t *src8, int src_stride, + const uint8_t *ref8, int ref_stride, + unsigned int *sse) { + int sum; + uint16_t *src = CONVERT_TO_SHORTPTR(src8); + uint16_t *ref = CONVERT_TO_SHORTPTR(ref8); + highbd_8_variance_sse2(src, src_stride, ref, ref_stride, 8, 8, sse, &sum, + vpx_highbd_calc8x8var_sse2, 8); + return *sse; +} + +unsigned int vpx_highbd_10_mse8x8_sse2(const uint8_t *src8, int src_stride, + const uint8_t *ref8, int ref_stride, + unsigned int *sse) { + int sum; + uint16_t *src = CONVERT_TO_SHORTPTR(src8); + uint16_t *ref = CONVERT_TO_SHORTPTR(ref8); + highbd_10_variance_sse2(src, src_stride, ref, ref_stride, 8, 8, sse, &sum, + vpx_highbd_calc8x8var_sse2, 8); + return *sse; +} + +unsigned int vpx_highbd_12_mse8x8_sse2(const uint8_t *src8, int src_stride, + const uint8_t *ref8, int ref_stride, + unsigned int *sse) { + int sum; + uint16_t *src = CONVERT_TO_SHORTPTR(src8); + uint16_t *ref = CONVERT_TO_SHORTPTR(ref8); + highbd_12_variance_sse2(src, src_stride, ref, ref_stride, 8, 8, sse, &sum, + vpx_highbd_calc8x8var_sse2, 8); + return *sse; +} + +// The 2 unused parameters are place holders for PIC enabled build. +// These definitions are for functions defined in +// highbd_subpel_variance_impl_sse2.asm +#define DECL(w, opt) \ + int vpx_highbd_sub_pixel_variance##w##xh_##opt( \ + const uint16_t *src, ptrdiff_t src_stride, int x_offset, int y_offset, \ + const uint16_t *dst, ptrdiff_t dst_stride, int height, \ + unsigned int *sse, void *unused0, void *unused); +#define DECLS(opt) \ + DECL(8, opt); \ + DECL(16, opt) + +DECLS(sse2); + +#undef DECLS +#undef DECL + +#define FN(w, h, wf, wlog2, hlog2, opt, cast) \ + uint32_t vpx_highbd_8_sub_pixel_variance##w##x##h##_##opt( \ + const uint8_t *src8, int src_stride, int x_offset, int y_offset, \ + const uint8_t *dst8, int dst_stride, uint32_t *sse_ptr) { \ + uint32_t sse; \ + uint16_t *src = CONVERT_TO_SHORTPTR(src8); \ + uint16_t *dst = CONVERT_TO_SHORTPTR(dst8); \ + int se = vpx_highbd_sub_pixel_variance##wf##xh_##opt( \ + src, src_stride, x_offset, y_offset, dst, dst_stride, h, &sse, NULL, \ + NULL); \ + if (w > wf) { \ + unsigned int sse2; \ + int se2 = vpx_highbd_sub_pixel_variance##wf##xh_##opt( \ + src + 16, src_stride, x_offset, y_offset, dst + 16, dst_stride, h, \ + &sse2, NULL, NULL); \ + se += se2; \ + sse += sse2; \ + if (w > wf * 2) { \ + se2 = vpx_highbd_sub_pixel_variance##wf##xh_##opt( \ + src + 32, src_stride, x_offset, y_offset, dst + 32, dst_stride, h, \ + &sse2, NULL, NULL); \ + se += se2; \ + sse += sse2; \ + se2 = vpx_highbd_sub_pixel_variance##wf##xh_##opt( \ + src + 48, src_stride, x_offset, y_offset, dst + 48, dst_stride, h, \ + &sse2, NULL, NULL); \ + se += se2; \ + sse += sse2; \ + } \ + } \ + *sse_ptr = sse; \ + return sse - (uint32_t)((cast se * se) >> (wlog2 + hlog2)); \ + } \ + \ + uint32_t vpx_highbd_10_sub_pixel_variance##w##x##h##_##opt( \ + const uint8_t *src8, int src_stride, int x_offset, int y_offset, \ + const uint8_t *dst8, int dst_stride, uint32_t *sse_ptr) { \ + int64_t var; \ + uint32_t sse; \ + uint16_t *src = CONVERT_TO_SHORTPTR(src8); \ + uint16_t *dst = CONVERT_TO_SHORTPTR(dst8); \ + int se = vpx_highbd_sub_pixel_variance##wf##xh_##opt( \ + src, src_stride, x_offset, y_offset, dst, dst_stride, h, &sse, NULL, \ + NULL); \ + if (w > wf) { \ + uint32_t sse2; \ + int se2 = vpx_highbd_sub_pixel_variance##wf##xh_##opt( \ + src + 16, src_stride, x_offset, y_offset, dst + 16, dst_stride, h, \ + &sse2, NULL, NULL); \ + se += se2; \ + sse += sse2; \ + if (w > wf * 2) { \ + se2 = vpx_highbd_sub_pixel_variance##wf##xh_##opt( \ + src + 32, src_stride, x_offset, y_offset, dst + 32, dst_stride, h, \ + &sse2, NULL, NULL); \ + se += se2; \ + sse += sse2; \ + se2 = vpx_highbd_sub_pixel_variance##wf##xh_##opt( \ + src + 48, src_stride, x_offset, y_offset, dst + 48, dst_stride, h, \ + &sse2, NULL, NULL); \ + se += se2; \ + sse += sse2; \ + } \ + } \ + se = ROUND_POWER_OF_TWO(se, 2); \ + sse = ROUND_POWER_OF_TWO(sse, 4); \ + *sse_ptr = sse; \ + var = (int64_t)(sse) - ((cast se * se) >> (wlog2 + hlog2)); \ + return (var >= 0) ? (uint32_t)var : 0; \ + } \ + \ + uint32_t vpx_highbd_12_sub_pixel_variance##w##x##h##_##opt( \ + const uint8_t *src8, int src_stride, int x_offset, int y_offset, \ + const uint8_t *dst8, int dst_stride, uint32_t *sse_ptr) { \ + int start_row; \ + uint32_t sse; \ + int se = 0; \ + int64_t var; \ + uint64_t long_sse = 0; \ + uint16_t *src = CONVERT_TO_SHORTPTR(src8); \ + uint16_t *dst = CONVERT_TO_SHORTPTR(dst8); \ + for (start_row = 0; start_row < h; start_row += 16) { \ + uint32_t sse2; \ + int height = h - start_row < 16 ? h - start_row : 16; \ + int se2 = vpx_highbd_sub_pixel_variance##wf##xh_##opt( \ + src + (start_row * src_stride), src_stride, x_offset, y_offset, \ + dst + (start_row * dst_stride), dst_stride, height, &sse2, NULL, \ + NULL); \ + se += se2; \ + long_sse += sse2; \ + if (w > wf) { \ + se2 = vpx_highbd_sub_pixel_variance##wf##xh_##opt( \ + src + 16 + (start_row * src_stride), src_stride, x_offset, \ + y_offset, dst + 16 + (start_row * dst_stride), dst_stride, height, \ + &sse2, NULL, NULL); \ + se += se2; \ + long_sse += sse2; \ + if (w > wf * 2) { \ + se2 = vpx_highbd_sub_pixel_variance##wf##xh_##opt( \ + src + 32 + (start_row * src_stride), src_stride, x_offset, \ + y_offset, dst + 32 + (start_row * dst_stride), dst_stride, \ + height, &sse2, NULL, NULL); \ + se += se2; \ + long_sse += sse2; \ + se2 = vpx_highbd_sub_pixel_variance##wf##xh_##opt( \ + src + 48 + (start_row * src_stride), src_stride, x_offset, \ + y_offset, dst + 48 + (start_row * dst_stride), dst_stride, \ + height, &sse2, NULL, NULL); \ + se += se2; \ + long_sse += sse2; \ + } \ + } \ + } \ + se = ROUND_POWER_OF_TWO(se, 4); \ + sse = (uint32_t)ROUND_POWER_OF_TWO(long_sse, 8); \ + *sse_ptr = sse; \ + var = (int64_t)(sse) - ((cast se * se) >> (wlog2 + hlog2)); \ + return (var >= 0) ? (uint32_t)var : 0; \ + } + +#define FNS(opt) \ + FN(64, 64, 16, 6, 6, opt, (int64_t)); \ + FN(64, 32, 16, 6, 5, opt, (int64_t)); \ + FN(32, 64, 16, 5, 6, opt, (int64_t)); \ + FN(32, 32, 16, 5, 5, opt, (int64_t)); \ + FN(32, 16, 16, 5, 4, opt, (int64_t)); \ + FN(16, 32, 16, 4, 5, opt, (int64_t)); \ + FN(16, 16, 16, 4, 4, opt, (int64_t)); \ + FN(16, 8, 16, 4, 3, opt, (int64_t)); \ + FN(8, 16, 8, 3, 4, opt, (int64_t)); \ + FN(8, 8, 8, 3, 3, opt, (int64_t)); \ + FN(8, 4, 8, 3, 2, opt, (int64_t)); + +FNS(sse2); + +#undef FNS +#undef FN + +// The 2 unused parameters are place holders for PIC enabled build. +#define DECL(w, opt) \ + int vpx_highbd_sub_pixel_avg_variance##w##xh_##opt( \ + const uint16_t *src, ptrdiff_t src_stride, int x_offset, int y_offset, \ + const uint16_t *dst, ptrdiff_t dst_stride, const uint16_t *sec, \ + ptrdiff_t sec_stride, int height, unsigned int *sse, void *unused0, \ + void *unused); +#define DECLS(opt1) \ + DECL(16, opt1) \ + DECL(8, opt1) + +DECLS(sse2); +#undef DECL +#undef DECLS + +#define FN(w, h, wf, wlog2, hlog2, opt, cast) \ + uint32_t vpx_highbd_8_sub_pixel_avg_variance##w##x##h##_##opt( \ + const uint8_t *src8, int src_stride, int x_offset, int y_offset, \ + const uint8_t *dst8, int dst_stride, uint32_t *sse_ptr, \ + const uint8_t *sec8) { \ + uint32_t sse; \ + uint16_t *src = CONVERT_TO_SHORTPTR(src8); \ + uint16_t *dst = CONVERT_TO_SHORTPTR(dst8); \ + uint16_t *sec = CONVERT_TO_SHORTPTR(sec8); \ + int se = vpx_highbd_sub_pixel_avg_variance##wf##xh_##opt( \ + src, src_stride, x_offset, y_offset, dst, dst_stride, sec, w, h, &sse, \ + NULL, NULL); \ + if (w > wf) { \ + uint32_t sse2; \ + int se2 = vpx_highbd_sub_pixel_avg_variance##wf##xh_##opt( \ + src + 16, src_stride, x_offset, y_offset, dst + 16, dst_stride, \ + sec + 16, w, h, &sse2, NULL, NULL); \ + se += se2; \ + sse += sse2; \ + if (w > wf * 2) { \ + se2 = vpx_highbd_sub_pixel_avg_variance##wf##xh_##opt( \ + src + 32, src_stride, x_offset, y_offset, dst + 32, dst_stride, \ + sec + 32, w, h, &sse2, NULL, NULL); \ + se += se2; \ + sse += sse2; \ + se2 = vpx_highbd_sub_pixel_avg_variance##wf##xh_##opt( \ + src + 48, src_stride, x_offset, y_offset, dst + 48, dst_stride, \ + sec + 48, w, h, &sse2, NULL, NULL); \ + se += se2; \ + sse += sse2; \ + } \ + } \ + *sse_ptr = sse; \ + return sse - (uint32_t)((cast se * se) >> (wlog2 + hlog2)); \ + } \ + \ + uint32_t vpx_highbd_10_sub_pixel_avg_variance##w##x##h##_##opt( \ + const uint8_t *src8, int src_stride, int x_offset, int y_offset, \ + const uint8_t *dst8, int dst_stride, uint32_t *sse_ptr, \ + const uint8_t *sec8) { \ + int64_t var; \ + uint32_t sse; \ + uint16_t *src = CONVERT_TO_SHORTPTR(src8); \ + uint16_t *dst = CONVERT_TO_SHORTPTR(dst8); \ + uint16_t *sec = CONVERT_TO_SHORTPTR(sec8); \ + int se = vpx_highbd_sub_pixel_avg_variance##wf##xh_##opt( \ + src, src_stride, x_offset, y_offset, dst, dst_stride, sec, w, h, &sse, \ + NULL, NULL); \ + if (w > wf) { \ + uint32_t sse2; \ + int se2 = vpx_highbd_sub_pixel_avg_variance##wf##xh_##opt( \ + src + 16, src_stride, x_offset, y_offset, dst + 16, dst_stride, \ + sec + 16, w, h, &sse2, NULL, NULL); \ + se += se2; \ + sse += sse2; \ + if (w > wf * 2) { \ + se2 = vpx_highbd_sub_pixel_avg_variance##wf##xh_##opt( \ + src + 32, src_stride, x_offset, y_offset, dst + 32, dst_stride, \ + sec + 32, w, h, &sse2, NULL, NULL); \ + se += se2; \ + sse += sse2; \ + se2 = vpx_highbd_sub_pixel_avg_variance##wf##xh_##opt( \ + src + 48, src_stride, x_offset, y_offset, dst + 48, dst_stride, \ + sec + 48, w, h, &sse2, NULL, NULL); \ + se += se2; \ + sse += sse2; \ + } \ + } \ + se = ROUND_POWER_OF_TWO(se, 2); \ + sse = ROUND_POWER_OF_TWO(sse, 4); \ + *sse_ptr = sse; \ + var = (int64_t)(sse) - ((cast se * se) >> (wlog2 + hlog2)); \ + return (var >= 0) ? (uint32_t)var : 0; \ + } \ + \ + uint32_t vpx_highbd_12_sub_pixel_avg_variance##w##x##h##_##opt( \ + const uint8_t *src8, int src_stride, int x_offset, int y_offset, \ + const uint8_t *dst8, int dst_stride, uint32_t *sse_ptr, \ + const uint8_t *sec8) { \ + int start_row; \ + int64_t var; \ + uint32_t sse; \ + int se = 0; \ + uint64_t long_sse = 0; \ + uint16_t *src = CONVERT_TO_SHORTPTR(src8); \ + uint16_t *dst = CONVERT_TO_SHORTPTR(dst8); \ + uint16_t *sec = CONVERT_TO_SHORTPTR(sec8); \ + for (start_row = 0; start_row < h; start_row += 16) { \ + uint32_t sse2; \ + int height = h - start_row < 16 ? h - start_row : 16; \ + int se2 = vpx_highbd_sub_pixel_avg_variance##wf##xh_##opt( \ + src + (start_row * src_stride), src_stride, x_offset, y_offset, \ + dst + (start_row * dst_stride), dst_stride, sec + (start_row * w), \ + w, height, &sse2, NULL, NULL); \ + se += se2; \ + long_sse += sse2; \ + if (w > wf) { \ + se2 = vpx_highbd_sub_pixel_avg_variance##wf##xh_##opt( \ + src + 16 + (start_row * src_stride), src_stride, x_offset, \ + y_offset, dst + 16 + (start_row * dst_stride), dst_stride, \ + sec + 16 + (start_row * w), w, height, &sse2, NULL, NULL); \ + se += se2; \ + long_sse += sse2; \ + if (w > wf * 2) { \ + se2 = vpx_highbd_sub_pixel_avg_variance##wf##xh_##opt( \ + src + 32 + (start_row * src_stride), src_stride, x_offset, \ + y_offset, dst + 32 + (start_row * dst_stride), dst_stride, \ + sec + 32 + (start_row * w), w, height, &sse2, NULL, NULL); \ + se += se2; \ + long_sse += sse2; \ + se2 = vpx_highbd_sub_pixel_avg_variance##wf##xh_##opt( \ + src + 48 + (start_row * src_stride), src_stride, x_offset, \ + y_offset, dst + 48 + (start_row * dst_stride), dst_stride, \ + sec + 48 + (start_row * w), w, height, &sse2, NULL, NULL); \ + se += se2; \ + long_sse += sse2; \ + } \ + } \ + } \ + se = ROUND_POWER_OF_TWO(se, 4); \ + sse = (uint32_t)ROUND_POWER_OF_TWO(long_sse, 8); \ + *sse_ptr = sse; \ + var = (int64_t)(sse) - ((cast se * se) >> (wlog2 + hlog2)); \ + return (var >= 0) ? (uint32_t)var : 0; \ + } + +#define FNS(opt1) \ + FN(64, 64, 16, 6, 6, opt1, (int64_t)); \ + FN(64, 32, 16, 6, 5, opt1, (int64_t)); \ + FN(32, 64, 16, 5, 6, opt1, (int64_t)); \ + FN(32, 32, 16, 5, 5, opt1, (int64_t)); \ + FN(32, 16, 16, 5, 4, opt1, (int64_t)); \ + FN(16, 32, 16, 4, 5, opt1, (int64_t)); \ + FN(16, 16, 16, 4, 4, opt1, (int64_t)); \ + FN(16, 8, 16, 4, 3, opt1, (int64_t)); \ + FN(8, 16, 8, 4, 3, opt1, (int64_t)); \ + FN(8, 8, 8, 3, 3, opt1, (int64_t)); \ + FN(8, 4, 8, 3, 2, opt1, (int64_t)); + +FNS(sse2); + +#undef FNS +#undef FN diff --git a/vpx_dsp/x86/intrapred_sse2.asm b/vpx_dsp/x86/intrapred_sse2.asm new file mode 100644 index 0000000..61af623 --- /dev/null +++ b/vpx_dsp/x86/intrapred_sse2.asm @@ -0,0 +1,860 @@ +; +; Copyright (c) 2010 The WebM project authors. All Rights Reserved. +; +; Use of this source code is governed by a BSD-style license +; that can be found in the LICENSE file in the root of the source +; tree. An additional intellectual property rights grant can be found +; in the file PATENTS. All contributing project authors may +; be found in the AUTHORS file in the root of the source tree. +; + +%include "third_party/x86inc/x86inc.asm" + +SECTION_RODATA +pb_1: times 16 db 1 +pw_4: times 8 dw 4 +pw_8: times 8 dw 8 +pw_16: times 8 dw 16 +pw_32: times 8 dw 32 +dc_128: times 16 db 128 +pw2_4: times 8 dw 2 +pw2_8: times 8 dw 4 +pw2_16: times 8 dw 8 +pw2_32: times 8 dw 16 + +SECTION .text + +; ------------------------------------------ +; input: x, y, z, result +; +; trick from pascal +; (x+2y+z+2)>>2 can be calculated as: +; result = avg(x,z) +; result -= xor(x,z) & 1 +; result = avg(result,y) +; ------------------------------------------ +%macro X_PLUS_2Y_PLUS_Z_PLUS_2_RSH_2 4 + pavgb %4, %1, %3 + pxor %3, %1 + pand %3, [GLOBAL(pb_1)] + psubb %4, %3 + pavgb %4, %2 +%endmacro + +INIT_XMM sse2 +cglobal d45_predictor_4x4, 3, 4, 4, dst, stride, above, goffset + GET_GOT goffsetq + + movq m0, [aboveq] + DEFINE_ARGS dst, stride, temp + psrldq m1, m0, 1 + psrldq m2, m0, 2 + X_PLUS_2Y_PLUS_Z_PLUS_2_RSH_2 m0, m1, m2, m3 + + ; store 4 lines + movd [dstq ], m3 + psrlq m3, 8 + movd [dstq+strideq ], m3 + lea dstq, [dstq+strideq*2] + psrlq m3, 8 + movd [dstq ], m3 + psrlq m3, 8 + movd [dstq+strideq ], m3 + psrlq m0, 56 + movd tempd, m0 + mov [dstq+strideq+3], tempb + + RESTORE_GOT + RET + +INIT_XMM sse2 +cglobal d45_predictor_8x8, 3, 4, 4, dst, stride, above, goffset + GET_GOT goffsetq + + movu m1, [aboveq] + pslldq m0, m1, 1 + psrldq m2, m1, 1 + DEFINE_ARGS dst, stride, stride3 + lea stride3q, [strideq*3] + X_PLUS_2Y_PLUS_Z_PLUS_2_RSH_2 m0, m1, m2, m3 + punpckhbw m0, m0 ; 7 7 + punpcklwd m0, m0 ; 7 7 7 7 + punpckldq m0, m0 ; 7 7 7 7 7 7 7 7 + punpcklqdq m3, m0 ; -1 0 1 2 3 4 5 6 7 7 7 7 7 7 7 7 + + ; store 4 lines + psrldq m3, 1 + movq [dstq ], m3 + psrldq m3, 1 + movq [dstq+strideq ], m3 + psrldq m3, 1 + movq [dstq+strideq*2], m3 + psrldq m3, 1 + movq [dstq+stride3q ], m3 + lea dstq, [dstq+strideq*4] + + ; store next 4 lines + psrldq m3, 1 + movq [dstq ], m3 + psrldq m3, 1 + movq [dstq+strideq ], m3 + psrldq m3, 1 + movq [dstq+strideq*2], m3 + psrldq m3, 1 + movq [dstq+stride3q ], m3 + + RESTORE_GOT + RET + +INIT_XMM sse2 +cglobal d207_predictor_4x4, 4, 4, 5, dst, stride, unused, left, goffset + GET_GOT goffsetq + + movd m0, [leftq] ; abcd [byte] + punpcklbw m4, m0, m0 ; aabb ccdd + punpcklwd m4, m4 ; aaaa bbbb cccc dddd + psrldq m4, 12 ; dddd + punpckldq m0, m4 ; abcd dddd + psrldq m1, m0, 1 ; bcdd + psrldq m2, m0, 2 ; cddd + + X_PLUS_2Y_PLUS_Z_PLUS_2_RSH_2 m0, m1, m2, m3 ; a2bc b2cd c3d d + pavgb m1, m0 ; ab, bc, cd, d [byte] + + punpcklbw m1, m3 ; ab, a2bc, bc, b2cd, cd, c3d, d, d + movd [dstq ], m1 + psrlq m1, 16 ; bc, b2cd, cd, c3d, d, d + movd [dstq+strideq], m1 + + lea dstq, [dstq+strideq*2] + psrlq m1, 16 ; cd, c3d, d, d + movd [dstq ], m1 + movd [dstq+strideq], m4 ; d, d, d, d + RESTORE_GOT + RET + +INIT_XMM sse2 +cglobal dc_predictor_4x4, 4, 5, 3, dst, stride, above, left, goffset + GET_GOT goffsetq + + movd m2, [leftq] + movd m0, [aboveq] + pxor m1, m1 + punpckldq m0, m2 + psadbw m0, m1 + paddw m0, [GLOBAL(pw_4)] + psraw m0, 3 + pshuflw m0, m0, 0x0 + packuswb m0, m0 + movd [dstq ], m0 + movd [dstq+strideq], m0 + lea dstq, [dstq+strideq*2] + movd [dstq ], m0 + movd [dstq+strideq], m0 + + RESTORE_GOT + RET + +INIT_XMM sse2 +cglobal dc_left_predictor_4x4, 2, 5, 2, dst, stride, above, left, goffset + movifnidn leftq, leftmp + GET_GOT goffsetq + + pxor m1, m1 + movd m0, [leftq] + psadbw m0, m1 + paddw m0, [GLOBAL(pw2_4)] + psraw m0, 2 + pshuflw m0, m0, 0x0 + packuswb m0, m0 + movd [dstq ], m0 + movd [dstq+strideq], m0 + lea dstq, [dstq+strideq*2] + movd [dstq ], m0 + movd [dstq+strideq], m0 + + RESTORE_GOT + RET + +INIT_XMM sse2 +cglobal dc_top_predictor_4x4, 3, 5, 2, dst, stride, above, left, goffset + GET_GOT goffsetq + + pxor m1, m1 + movd m0, [aboveq] + psadbw m0, m1 + paddw m0, [GLOBAL(pw2_4)] + psraw m0, 2 + pshuflw m0, m0, 0x0 + packuswb m0, m0 + movd [dstq ], m0 + movd [dstq+strideq], m0 + lea dstq, [dstq+strideq*2] + movd [dstq ], m0 + movd [dstq+strideq], m0 + + RESTORE_GOT + RET + +INIT_XMM sse2 +cglobal dc_predictor_8x8, 4, 5, 3, dst, stride, above, left, goffset + GET_GOT goffsetq + + pxor m1, m1 + movq m0, [aboveq] + movq m2, [leftq] + DEFINE_ARGS dst, stride, stride3 + lea stride3q, [strideq*3] + psadbw m0, m1 + psadbw m2, m1 + paddw m0, m2 + paddw m0, [GLOBAL(pw_8)] + psraw m0, 4 + punpcklbw m0, m0 + pshuflw m0, m0, 0x0 + movq [dstq ], m0 + movq [dstq+strideq ], m0 + movq [dstq+strideq*2], m0 + movq [dstq+stride3q ], m0 + lea dstq, [dstq+strideq*4] + movq [dstq ], m0 + movq [dstq+strideq ], m0 + movq [dstq+strideq*2], m0 + movq [dstq+stride3q ], m0 + + RESTORE_GOT + RET + +INIT_XMM sse2 +cglobal dc_top_predictor_8x8, 3, 5, 2, dst, stride, above, left, goffset + GET_GOT goffsetq + + pxor m1, m1 + movq m0, [aboveq] + DEFINE_ARGS dst, stride, stride3 + lea stride3q, [strideq*3] + psadbw m0, m1 + paddw m0, [GLOBAL(pw2_8)] + psraw m0, 3 + punpcklbw m0, m0 + pshuflw m0, m0, 0x0 + movq [dstq ], m0 + movq [dstq+strideq ], m0 + movq [dstq+strideq*2], m0 + movq [dstq+stride3q ], m0 + lea dstq, [dstq+strideq*4] + movq [dstq ], m0 + movq [dstq+strideq ], m0 + movq [dstq+strideq*2], m0 + movq [dstq+stride3q ], m0 + + RESTORE_GOT + RET + +INIT_XMM sse2 +cglobal dc_left_predictor_8x8, 2, 5, 2, dst, stride, above, left, goffset + movifnidn leftq, leftmp + GET_GOT goffsetq + + pxor m1, m1 + movq m0, [leftq] + DEFINE_ARGS dst, stride, stride3 + lea stride3q, [strideq*3] + psadbw m0, m1 + paddw m0, [GLOBAL(pw2_8)] + psraw m0, 3 + punpcklbw m0, m0 + pshuflw m0, m0, 0x0 + movq [dstq ], m0 + movq [dstq+strideq ], m0 + movq [dstq+strideq*2], m0 + movq [dstq+stride3q ], m0 + lea dstq, [dstq+strideq*4] + movq [dstq ], m0 + movq [dstq+strideq ], m0 + movq [dstq+strideq*2], m0 + movq [dstq+stride3q ], m0 + + RESTORE_GOT + RET + +INIT_XMM sse2 +cglobal dc_128_predictor_4x4, 2, 5, 1, dst, stride, above, left, goffset + GET_GOT goffsetq + + DEFINE_ARGS dst, stride, stride3 + lea stride3q, [strideq*3] + movd m0, [GLOBAL(dc_128)] + movd [dstq ], m0 + movd [dstq+strideq ], m0 + movd [dstq+strideq*2], m0 + movd [dstq+stride3q ], m0 + RESTORE_GOT + RET + +INIT_XMM sse2 +cglobal dc_128_predictor_8x8, 2, 5, 1, dst, stride, above, left, goffset + GET_GOT goffsetq + + DEFINE_ARGS dst, stride, stride3 + lea stride3q, [strideq*3] + movq m0, [GLOBAL(dc_128)] + movq [dstq ], m0 + movq [dstq+strideq ], m0 + movq [dstq+strideq*2], m0 + movq [dstq+stride3q ], m0 + lea dstq, [dstq+strideq*4] + movq [dstq ], m0 + movq [dstq+strideq ], m0 + movq [dstq+strideq*2], m0 + movq [dstq+stride3q ], m0 + RESTORE_GOT + RET + +INIT_XMM sse2 +cglobal dc_predictor_16x16, 4, 5, 3, dst, stride, above, left, goffset + GET_GOT goffsetq + + pxor m1, m1 + mova m0, [aboveq] + mova m2, [leftq] + DEFINE_ARGS dst, stride, stride3, lines4 + lea stride3q, [strideq*3] + mov lines4d, 4 + psadbw m0, m1 + psadbw m2, m1 + paddw m0, m2 + movhlps m2, m0 + paddw m0, m2 + paddw m0, [GLOBAL(pw_16)] + psraw m0, 5 + pshuflw m0, m0, 0x0 + punpcklqdq m0, m0 + packuswb m0, m0 +.loop: + mova [dstq ], m0 + mova [dstq+strideq ], m0 + mova [dstq+strideq*2], m0 + mova [dstq+stride3q ], m0 + lea dstq, [dstq+strideq*4] + dec lines4d + jnz .loop + + RESTORE_GOT + REP_RET + + +INIT_XMM sse2 +cglobal dc_top_predictor_16x16, 4, 5, 3, dst, stride, above, left, goffset + GET_GOT goffsetq + + pxor m1, m1 + mova m0, [aboveq] + DEFINE_ARGS dst, stride, stride3, lines4 + lea stride3q, [strideq*3] + mov lines4d, 4 + psadbw m0, m1 + movhlps m2, m0 + paddw m0, m2 + paddw m0, [GLOBAL(pw2_16)] + psraw m0, 4 + pshuflw m0, m0, 0x0 + punpcklqdq m0, m0 + packuswb m0, m0 +.loop: + mova [dstq ], m0 + mova [dstq+strideq ], m0 + mova [dstq+strideq*2], m0 + mova [dstq+stride3q ], m0 + lea dstq, [dstq+strideq*4] + dec lines4d + jnz .loop + + RESTORE_GOT + REP_RET + +INIT_XMM sse2 +cglobal dc_left_predictor_16x16, 4, 5, 3, dst, stride, above, left, goffset + GET_GOT goffsetq + + pxor m1, m1 + mova m0, [leftq] + DEFINE_ARGS dst, stride, stride3, lines4 + lea stride3q, [strideq*3] + mov lines4d, 4 + psadbw m0, m1 + movhlps m2, m0 + paddw m0, m2 + paddw m0, [GLOBAL(pw2_16)] + psraw m0, 4 + pshuflw m0, m0, 0x0 + punpcklqdq m0, m0 + packuswb m0, m0 +.loop: + mova [dstq ], m0 + mova [dstq+strideq ], m0 + mova [dstq+strideq*2], m0 + mova [dstq+stride3q ], m0 + lea dstq, [dstq+strideq*4] + dec lines4d + jnz .loop + + RESTORE_GOT + REP_RET + +INIT_XMM sse2 +cglobal dc_128_predictor_16x16, 4, 5, 3, dst, stride, above, left, goffset + GET_GOT goffsetq + + DEFINE_ARGS dst, stride, stride3, lines4 + lea stride3q, [strideq*3] + mov lines4d, 4 + mova m0, [GLOBAL(dc_128)] +.loop: + mova [dstq ], m0 + mova [dstq+strideq ], m0 + mova [dstq+strideq*2], m0 + mova [dstq+stride3q ], m0 + lea dstq, [dstq+strideq*4] + dec lines4d + jnz .loop + RESTORE_GOT + RET + + +INIT_XMM sse2 +cglobal dc_predictor_32x32, 4, 5, 5, dst, stride, above, left, goffset + GET_GOT goffsetq + + pxor m1, m1 + mova m0, [aboveq] + mova m2, [aboveq+16] + mova m3, [leftq] + mova m4, [leftq+16] + DEFINE_ARGS dst, stride, stride3, lines4 + lea stride3q, [strideq*3] + mov lines4d, 8 + psadbw m0, m1 + psadbw m2, m1 + psadbw m3, m1 + psadbw m4, m1 + paddw m0, m2 + paddw m0, m3 + paddw m0, m4 + movhlps m2, m0 + paddw m0, m2 + paddw m0, [GLOBAL(pw_32)] + psraw m0, 6 + pshuflw m0, m0, 0x0 + punpcklqdq m0, m0 + packuswb m0, m0 +.loop: + mova [dstq ], m0 + mova [dstq +16], m0 + mova [dstq+strideq ], m0 + mova [dstq+strideq +16], m0 + mova [dstq+strideq*2 ], m0 + mova [dstq+strideq*2+16], m0 + mova [dstq+stride3q ], m0 + mova [dstq+stride3q +16], m0 + lea dstq, [dstq+strideq*4] + dec lines4d + jnz .loop + + RESTORE_GOT + REP_RET + +INIT_XMM sse2 +cglobal dc_top_predictor_32x32, 4, 5, 5, dst, stride, above, left, goffset + GET_GOT goffsetq + + pxor m1, m1 + mova m0, [aboveq] + mova m2, [aboveq+16] + DEFINE_ARGS dst, stride, stride3, lines4 + lea stride3q, [strideq*3] + mov lines4d, 8 + psadbw m0, m1 + psadbw m2, m1 + paddw m0, m2 + movhlps m2, m0 + paddw m0, m2 + paddw m0, [GLOBAL(pw2_32)] + psraw m0, 5 + pshuflw m0, m0, 0x0 + punpcklqdq m0, m0 + packuswb m0, m0 +.loop: + mova [dstq ], m0 + mova [dstq +16], m0 + mova [dstq+strideq ], m0 + mova [dstq+strideq +16], m0 + mova [dstq+strideq*2 ], m0 + mova [dstq+strideq*2+16], m0 + mova [dstq+stride3q ], m0 + mova [dstq+stride3q +16], m0 + lea dstq, [dstq+strideq*4] + dec lines4d + jnz .loop + + RESTORE_GOT + REP_RET + +INIT_XMM sse2 +cglobal dc_left_predictor_32x32, 4, 5, 5, dst, stride, above, left, goffset + GET_GOT goffsetq + + pxor m1, m1 + mova m0, [leftq] + mova m2, [leftq+16] + DEFINE_ARGS dst, stride, stride3, lines4 + lea stride3q, [strideq*3] + mov lines4d, 8 + psadbw m0, m1 + psadbw m2, m1 + paddw m0, m2 + movhlps m2, m0 + paddw m0, m2 + paddw m0, [GLOBAL(pw2_32)] + psraw m0, 5 + pshuflw m0, m0, 0x0 + punpcklqdq m0, m0 + packuswb m0, m0 +.loop: + mova [dstq ], m0 + mova [dstq +16], m0 + mova [dstq+strideq ], m0 + mova [dstq+strideq +16], m0 + mova [dstq+strideq*2 ], m0 + mova [dstq+strideq*2+16], m0 + mova [dstq+stride3q ], m0 + mova [dstq+stride3q +16], m0 + lea dstq, [dstq+strideq*4] + dec lines4d + jnz .loop + + RESTORE_GOT + REP_RET + +INIT_XMM sse2 +cglobal dc_128_predictor_32x32, 4, 5, 3, dst, stride, above, left, goffset + GET_GOT goffsetq + + DEFINE_ARGS dst, stride, stride3, lines4 + lea stride3q, [strideq*3] + mov lines4d, 8 + mova m0, [GLOBAL(dc_128)] +.loop: + mova [dstq ], m0 + mova [dstq +16], m0 + mova [dstq+strideq ], m0 + mova [dstq+strideq +16], m0 + mova [dstq+strideq*2 ], m0 + mova [dstq+strideq*2+16], m0 + mova [dstq+stride3q ], m0 + mova [dstq+stride3q +16], m0 + lea dstq, [dstq+strideq*4] + dec lines4d + jnz .loop + RESTORE_GOT + RET + +INIT_XMM sse2 +cglobal v_predictor_4x4, 3, 3, 1, dst, stride, above + movd m0, [aboveq] + movd [dstq ], m0 + movd [dstq+strideq], m0 + lea dstq, [dstq+strideq*2] + movd [dstq ], m0 + movd [dstq+strideq], m0 + RET + +INIT_XMM sse2 +cglobal v_predictor_8x8, 3, 3, 1, dst, stride, above + movq m0, [aboveq] + DEFINE_ARGS dst, stride, stride3 + lea stride3q, [strideq*3] + movq [dstq ], m0 + movq [dstq+strideq ], m0 + movq [dstq+strideq*2], m0 + movq [dstq+stride3q ], m0 + lea dstq, [dstq+strideq*4] + movq [dstq ], m0 + movq [dstq+strideq ], m0 + movq [dstq+strideq*2], m0 + movq [dstq+stride3q ], m0 + RET + +INIT_XMM sse2 +cglobal v_predictor_16x16, 3, 4, 1, dst, stride, above + mova m0, [aboveq] + DEFINE_ARGS dst, stride, stride3, nlines4 + lea stride3q, [strideq*3] + mov nlines4d, 4 +.loop: + mova [dstq ], m0 + mova [dstq+strideq ], m0 + mova [dstq+strideq*2], m0 + mova [dstq+stride3q ], m0 + lea dstq, [dstq+strideq*4] + dec nlines4d + jnz .loop + REP_RET + +INIT_XMM sse2 +cglobal v_predictor_32x32, 3, 4, 2, dst, stride, above + mova m0, [aboveq] + mova m1, [aboveq+16] + DEFINE_ARGS dst, stride, stride3, nlines4 + lea stride3q, [strideq*3] + mov nlines4d, 8 +.loop: + mova [dstq ], m0 + mova [dstq +16], m1 + mova [dstq+strideq ], m0 + mova [dstq+strideq +16], m1 + mova [dstq+strideq*2 ], m0 + mova [dstq+strideq*2+16], m1 + mova [dstq+stride3q ], m0 + mova [dstq+stride3q +16], m1 + lea dstq, [dstq+strideq*4] + dec nlines4d + jnz .loop + REP_RET + +INIT_XMM sse2 +cglobal h_predictor_4x4, 2, 4, 4, dst, stride, line, left + movifnidn leftq, leftmp + movd m0, [leftq] + punpcklbw m0, m0 + punpcklbw m0, m0 + pshufd m1, m0, 0x1 + movd [dstq ], m0 + movd [dstq+strideq], m1 + pshufd m2, m0, 0x2 + lea dstq, [dstq+strideq*2] + pshufd m3, m0, 0x3 + movd [dstq ], m2 + movd [dstq+strideq], m3 + RET + +INIT_XMM sse2 +cglobal h_predictor_8x8, 2, 5, 3, dst, stride, line, left + movifnidn leftq, leftmp + mov lineq, -2 + DEFINE_ARGS dst, stride, line, left, stride3 + lea stride3q, [strideq*3] + movq m0, [leftq ] + punpcklbw m0, m0 ; l1 l1 l2 l2 ... l8 l8 +.loop: + pshuflw m1, m0, 0x0 ; l1 l1 l1 l1 l1 l1 l1 l1 + pshuflw m2, m0, 0x55 ; l2 l2 l2 l2 l2 l2 l2 l2 + movq [dstq ], m1 + movq [dstq+strideq], m2 + pshuflw m1, m0, 0xaa + pshuflw m2, m0, 0xff + movq [dstq+strideq*2], m1 + movq [dstq+stride3q ], m2 + pshufd m0, m0, 0xe ; [63:0] l5 l5 l6 l6 l7 l7 l8 l8 + inc lineq + lea dstq, [dstq+strideq*4] + jnz .loop + REP_RET + +INIT_XMM sse2 +cglobal h_predictor_16x16, 2, 5, 3, dst, stride, line, left + movifnidn leftq, leftmp + mov lineq, -4 + DEFINE_ARGS dst, stride, line, left, stride3 + lea stride3q, [strideq*3] +.loop: + movd m0, [leftq] + punpcklbw m0, m0 + punpcklbw m0, m0 ; l1 to l4 each repeated 4 times + pshufd m1, m0, 0x0 ; l1 repeated 16 times + pshufd m2, m0, 0x55 ; l2 repeated 16 times + mova [dstq ], m1 + mova [dstq+strideq ], m2 + pshufd m1, m0, 0xaa + pshufd m2, m0, 0xff + mova [dstq+strideq*2], m1 + mova [dstq+stride3q ], m2 + inc lineq + lea leftq, [leftq+4 ] + lea dstq, [dstq+strideq*4] + jnz .loop + REP_RET + +INIT_XMM sse2 +cglobal h_predictor_32x32, 2, 5, 3, dst, stride, line, left + movifnidn leftq, leftmp + mov lineq, -8 + DEFINE_ARGS dst, stride, line, left, stride3 + lea stride3q, [strideq*3] +.loop: + movd m0, [leftq] + punpcklbw m0, m0 + punpcklbw m0, m0 ; l1 to l4 each repeated 4 times + pshufd m1, m0, 0x0 ; l1 repeated 16 times + pshufd m2, m0, 0x55 ; l2 repeated 16 times + mova [dstq ], m1 + mova [dstq+16 ], m1 + mova [dstq+strideq ], m2 + mova [dstq+strideq+16 ], m2 + pshufd m1, m0, 0xaa + pshufd m2, m0, 0xff + mova [dstq+strideq*2 ], m1 + mova [dstq+strideq*2+16], m1 + mova [dstq+stride3q ], m2 + mova [dstq+stride3q+16 ], m2 + inc lineq + lea leftq, [leftq+4 ] + lea dstq, [dstq+strideq*4] + jnz .loop + REP_RET + +INIT_XMM sse2 +cglobal tm_predictor_4x4, 4, 4, 5, dst, stride, above, left + pxor m1, m1 + movq m0, [aboveq-1]; [63:0] tl t1 t2 t3 t4 x x x + punpcklbw m0, m1 + pshuflw m2, m0, 0x0 ; [63:0] tl tl tl tl [word] + psrldq m0, 2 + psubw m0, m2 ; [63:0] t1-tl t2-tl t3-tl t4-tl [word] + movd m2, [leftq] + punpcklbw m2, m1 + pshuflw m4, m2, 0x0 ; [63:0] l1 l1 l1 l1 [word] + pshuflw m3, m2, 0x55 ; [63:0] l2 l2 l2 l2 [word] + paddw m4, m0 + paddw m3, m0 + packuswb m4, m4 + packuswb m3, m3 + movd [dstq ], m4 + movd [dstq+strideq], m3 + lea dstq, [dstq+strideq*2] + pshuflw m4, m2, 0xaa + pshuflw m3, m2, 0xff + paddw m4, m0 + paddw m3, m0 + packuswb m4, m4 + packuswb m3, m3 + movd [dstq ], m4 + movd [dstq+strideq], m3 + RET + +INIT_XMM sse2 +cglobal tm_predictor_8x8, 4, 4, 5, dst, stride, above, left + pxor m1, m1 + movd m2, [aboveq-1] + movq m0, [aboveq] + punpcklbw m2, m1 + punpcklbw m0, m1 ; t1 t2 t3 t4 t5 t6 t7 t8 [word] + pshuflw m2, m2, 0x0 ; [63:0] tl tl tl tl [word] + DEFINE_ARGS dst, stride, line, left + mov lineq, -4 + punpcklqdq m2, m2 ; tl tl tl tl tl tl tl tl [word] + psubw m0, m2 ; t1-tl t2-tl ... t8-tl [word] + movq m2, [leftq] + punpcklbw m2, m1 ; l1 l2 l3 l4 l5 l6 l7 l8 [word] +.loop: + pshuflw m4, m2, 0x0 ; [63:0] l1 l1 l1 l1 [word] + pshuflw m3, m2, 0x55 ; [63:0] l2 l2 l2 l2 [word] + punpcklqdq m4, m4 ; l1 l1 l1 l1 l1 l1 l1 l1 [word] + punpcklqdq m3, m3 ; l2 l2 l2 l2 l2 l2 l2 l2 [word] + paddw m4, m0 + paddw m3, m0 + packuswb m4, m3 + movq [dstq ], m4 + movhps [dstq+strideq], m4 + lea dstq, [dstq+strideq*2] + psrldq m2, 4 + inc lineq + jnz .loop + REP_RET + +INIT_XMM sse2 +cglobal tm_predictor_16x16, 4, 5, 8, dst, stride, above, left + pxor m1, m1 + mova m2, [aboveq-16]; + mova m0, [aboveq] ; t1 t2 ... t16 [byte] + punpckhbw m2, m1 ; [127:112] tl [word] + punpckhbw m4, m0, m1 + punpcklbw m0, m1 ; m0:m4 t1 t2 ... t16 [word] + DEFINE_ARGS dst, stride, line, left, stride8 + mov lineq, -8 + pshufhw m2, m2, 0xff + mova m3, [leftq] ; l1 l2 ... l16 [byte] + punpckhqdq m2, m2 ; tl repeated 8 times [word] + psubw m0, m2 + psubw m4, m2 ; m0:m4 t1-tl t2-tl ... t16-tl [word] + punpckhbw m5, m3, m1 + punpcklbw m3, m1 ; m3:m5 l1 l2 ... l16 [word] + lea stride8q, [strideq*8] +.loop: + pshuflw m6, m3, 0x0 + pshuflw m7, m5, 0x0 + punpcklqdq m6, m6 ; l1 repeated 8 times [word] + punpcklqdq m7, m7 ; l8 repeated 8 times [word] + paddw m1, m6, m0 + paddw m6, m4 ; m1:m6 ti-tl+l1 [i=1,15] [word] + psrldq m5, 2 + packuswb m1, m6 + mova [dstq ], m1 + paddw m1, m7, m0 + paddw m7, m4 ; m1:m7 ti-tl+l8 [i=1,15] [word] + psrldq m3, 2 + packuswb m1, m7 + mova [dstq+stride8q], m1 + inc lineq + lea dstq, [dstq+strideq] + jnz .loop + REP_RET + +INIT_XMM sse2 +cglobal tm_predictor_32x32, 4, 4, 8, dst, stride, above, left + pxor m1, m1 + movd m2, [aboveq-1] + mova m0, [aboveq] + mova m4, [aboveq+16] + punpcklbw m2, m1 + punpckhbw m3, m0, m1 + punpckhbw m5, m4, m1 + punpcklbw m0, m1 + punpcklbw m4, m1 + pshuflw m2, m2, 0x0 + DEFINE_ARGS dst, stride, line, left + mov lineq, -16 + punpcklqdq m2, m2 + add leftq, 32 + psubw m0, m2 + psubw m3, m2 + psubw m4, m2 + psubw m5, m2 +.loop: + movd m2, [leftq+lineq*2] + pxor m1, m1 + punpcklbw m2, m1 + pshuflw m7, m2, 0x55 + pshuflw m2, m2, 0x0 + punpcklqdq m2, m2 + punpcklqdq m7, m7 + paddw m6, m2, m3 + paddw m1, m2, m0 + packuswb m1, m6 + mova [dstq ], m1 + paddw m6, m2, m5 + paddw m1, m2, m4 + packuswb m1, m6 + mova [dstq+16 ], m1 + paddw m6, m7, m3 + paddw m1, m7, m0 + packuswb m1, m6 + mova [dstq+strideq ], m1 + paddw m6, m7, m5 + paddw m1, m7, m4 + packuswb m1, m6 + mova [dstq+strideq+16], m1 + lea dstq, [dstq+strideq*2] + inc lineq + jnz .loop + REP_RET diff --git a/vpx_dsp/x86/intrapred_ssse3.asm b/vpx_dsp/x86/intrapred_ssse3.asm new file mode 100644 index 0000000..5e0139f --- /dev/null +++ b/vpx_dsp/x86/intrapred_ssse3.asm @@ -0,0 +1,871 @@ +; +; Copyright (c) 2010 The WebM project authors. All Rights Reserved. +; +; Use of this source code is governed by a BSD-style license +; that can be found in the LICENSE file in the root of the source +; tree. An additional intellectual property rights grant can be found +; in the file PATENTS. All contributing project authors may +; be found in the AUTHORS file in the root of the source tree. +; + +%include "third_party/x86inc/x86inc.asm" + +SECTION_RODATA + +pb_1: times 16 db 1 +sh_b12345677: db 1, 2, 3, 4, 5, 6, 7, 7, 0, 0, 0, 0, 0, 0, 0, 0 +sh_b23456777: db 2, 3, 4, 5, 6, 7, 7, 7, 0, 0, 0, 0, 0, 0, 0, 0 +sh_b0123456777777777: db 0, 1, 2, 3, 4, 5, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7 +sh_b1234567777777777: db 1, 2, 3, 4, 5, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7 +sh_b2345677777777777: db 2, 3, 4, 5, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7 +sh_b123456789abcdeff: db 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 15 +sh_b23456789abcdefff: db 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 15, 15 +sh_b32104567: db 3, 2, 1, 0, 4, 5, 6, 7, 0, 0, 0, 0, 0, 0, 0, 0 +sh_b8091a2b345: db 8, 0, 9, 1, 10, 2, 11, 3, 4, 5, 0, 0, 0, 0, 0, 0 +sh_b76543210: db 7, 6, 5, 4, 3, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 +sh_b65432108: db 6, 5, 4, 3, 2, 1, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0 +sh_b54321089: db 5, 4, 3, 2, 1, 0, 8, 9, 0, 0, 0, 0, 0, 0, 0, 0 +sh_b89abcdef: db 8, 9, 10, 11, 12, 13, 14, 15, 0, 0, 0, 0, 0, 0, 0, 0 +sh_bfedcba9876543210: db 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0 + +SECTION .text + +INIT_XMM ssse3 +cglobal d45_predictor_16x16, 3, 6, 4, dst, stride, above, dst8, line, goffset + GET_GOT goffsetq + + mova m0, [aboveq] + DEFINE_ARGS dst, stride, stride3, dst8, line + lea stride3q, [strideq*3] + lea dst8q, [dstq+strideq*8] + mova m1, [GLOBAL(sh_b123456789abcdeff)] + pshufb m2, m0, [GLOBAL(sh_b23456789abcdefff)] + pavgb m3, m2, m0 + pxor m2, m0 + pshufb m0, m1 + pand m2, [GLOBAL(pb_1)] + psubb m3, m2 + pavgb m0, m3 + + ; first 4 lines and first half of 3rd 4 lines + mov lined, 2 +.loop: + mova [dstq ], m0 + movhps [dst8q ], m0 + pshufb m0, m1 + mova [dstq +strideq ], m0 + movhps [dst8q+strideq ], m0 + pshufb m0, m1 + mova [dstq +strideq*2 ], m0 + movhps [dst8q+strideq*2 ], m0 + pshufb m0, m1 + mova [dstq +stride3q ], m0 + movhps [dst8q+stride3q ], m0 + pshufb m0, m1 + lea dstq, [dstq +strideq*4] + lea dst8q, [dst8q+strideq*4] + dec lined + jnz .loop + + ; bottom-right 8x8 block + movhps [dstq +8], m0 + movhps [dstq+strideq +8], m0 + movhps [dstq+strideq*2+8], m0 + movhps [dstq+stride3q +8], m0 + lea dstq, [dstq+strideq*4] + movhps [dstq +8], m0 + movhps [dstq+strideq +8], m0 + movhps [dstq+strideq*2+8], m0 + movhps [dstq+stride3q +8], m0 + + RESTORE_GOT + RET + +INIT_XMM ssse3 +cglobal d45_predictor_32x32, 3, 6, 7, dst, stride, above, dst16, line, goffset + GET_GOT goffsetq + + mova m0, [aboveq] + mova m4, [aboveq+16] + DEFINE_ARGS dst, stride, stride3, dst16, line + lea stride3q, [strideq*3] + lea dst16q, [dstq +strideq*8] + lea dst16q, [dst16q+strideq*8] + mova m1, [GLOBAL(sh_b123456789abcdeff)] + pshufb m2, m4, [GLOBAL(sh_b23456789abcdefff)] + pavgb m3, m2, m4 + pxor m2, m4 + palignr m5, m4, m0, 1 + palignr m6, m4, m0, 2 + pshufb m4, m1 + pand m2, [GLOBAL(pb_1)] + psubb m3, m2 + pavgb m4, m3 + pavgb m3, m0, m6 + pxor m0, m6 + pand m0, [GLOBAL(pb_1)] + psubb m3, m0 + pavgb m5, m3 + + ; write 4x4 lines (and the first half of the second 4x4 lines) + mov lined, 4 +.loop: + mova [dstq ], m5 + mova [dstq +16], m4 + mova [dst16q ], m4 + palignr m3, m4, m5, 1 + pshufb m4, m1 + mova [dstq +strideq ], m3 + mova [dstq +strideq +16], m4 + mova [dst16q+strideq ], m4 + palignr m5, m4, m3, 1 + pshufb m4, m1 + mova [dstq +strideq*2 ], m5 + mova [dstq +strideq*2+16], m4 + mova [dst16q+strideq*2 ], m4 + palignr m3, m4, m5, 1 + pshufb m4, m1 + mova [dstq +stride3q ], m3 + mova [dstq +stride3q +16], m4 + mova [dst16q+stride3q ], m4 + palignr m5, m4, m3, 1 + pshufb m4, m1 + lea dstq, [dstq +strideq*4] + lea dst16q, [dst16q+strideq*4] + dec lined + jnz .loop + + ; write second half of second 4x4 lines + mova [dstq +16], m4 + mova [dstq +strideq +16], m4 + mova [dstq +strideq*2+16], m4 + mova [dstq +stride3q +16], m4 + lea dstq, [dstq +strideq*4] + mova [dstq +16], m4 + mova [dstq +strideq +16], m4 + mova [dstq +strideq*2+16], m4 + mova [dstq +stride3q +16], m4 + lea dstq, [dstq +strideq*4] + mova [dstq +16], m4 + mova [dstq +strideq +16], m4 + mova [dstq +strideq*2+16], m4 + mova [dstq +stride3q +16], m4 + lea dstq, [dstq +strideq*4] + mova [dstq +16], m4 + mova [dstq +strideq +16], m4 + mova [dstq +strideq*2+16], m4 + mova [dstq +stride3q +16], m4 + + RESTORE_GOT + RET + +; ------------------------------------------ +; input: x, y, z, result +; +; trick from pascal +; (x+2y+z+2)>>2 can be calculated as: +; result = avg(x,z) +; result -= xor(x,z) & 1 +; result = avg(result,y) +; ------------------------------------------ +%macro X_PLUS_2Y_PLUS_Z_PLUS_2_RSH_2 4 + pavgb %4, %1, %3 + pxor %3, %1 + pand %3, [GLOBAL(pb_1)] + psubb %4, %3 + pavgb %4, %2 +%endmacro + +INIT_XMM ssse3 +cglobal d63_predictor_4x4, 3, 4, 5, dst, stride, above, goffset + GET_GOT goffsetq + + movq m3, [aboveq] + pshufb m1, m3, [GLOBAL(sh_b23456777)] + pshufb m2, m3, [GLOBAL(sh_b12345677)] + + X_PLUS_2Y_PLUS_Z_PLUS_2_RSH_2 m3, m2, m1, m4 + pavgb m3, m2 + + ; store 4 lines + movd [dstq ], m3 + movd [dstq+strideq], m4 + lea dstq, [dstq+strideq*2] + psrldq m3, 1 + psrldq m4, 1 + movd [dstq ], m3 + movd [dstq+strideq], m4 + RESTORE_GOT + RET + +INIT_XMM ssse3 +cglobal d63_predictor_8x8, 3, 4, 5, dst, stride, above, goffset + GET_GOT goffsetq + + movq m3, [aboveq] + DEFINE_ARGS dst, stride, stride3 + lea stride3q, [strideq*3] + pshufb m1, m3, [GLOBAL(sh_b2345677777777777)] + pshufb m0, m3, [GLOBAL(sh_b0123456777777777)] + pshufb m2, m3, [GLOBAL(sh_b1234567777777777)] + pshufb m3, [GLOBAL(sh_b0123456777777777)] + + X_PLUS_2Y_PLUS_Z_PLUS_2_RSH_2 m0, m2, m1, m4 + pavgb m3, m2 + + ; store 4 lines + movq [dstq ], m3 + movq [dstq+strideq], m4 + psrldq m3, 1 + psrldq m4, 1 + movq [dstq+strideq*2], m3 + movq [dstq+stride3q ], m4 + lea dstq, [dstq+strideq*4] + psrldq m3, 1 + psrldq m4, 1 + + ; store 4 lines + movq [dstq ], m3 + movq [dstq+strideq], m4 + psrldq m3, 1 + psrldq m4, 1 + movq [dstq+strideq*2], m3 + movq [dstq+stride3q ], m4 + RESTORE_GOT + RET + +INIT_XMM ssse3 +cglobal d63_predictor_16x16, 3, 5, 5, dst, stride, above, line, goffset + GET_GOT goffsetq + + mova m0, [aboveq] + DEFINE_ARGS dst, stride, stride3, line + lea stride3q, [strideq*3] + mova m1, [GLOBAL(sh_b123456789abcdeff)] + pshufb m2, m0, [GLOBAL(sh_b23456789abcdefff)] + pshufb m3, m0, m1 + + X_PLUS_2Y_PLUS_Z_PLUS_2_RSH_2 m0, m3, m2, m4 + pavgb m0, m3 + + mov lined, 4 +.loop: + mova [dstq ], m0 + mova [dstq+strideq ], m4 + pshufb m0, m1 + pshufb m4, m1 + mova [dstq+strideq*2], m0 + mova [dstq+stride3q ], m4 + pshufb m0, m1 + pshufb m4, m1 + lea dstq, [dstq+strideq*4] + dec lined + jnz .loop + RESTORE_GOT + REP_RET + +INIT_XMM ssse3 +cglobal d63_predictor_32x32, 3, 5, 8, dst, stride, above, line, goffset + GET_GOT goffsetq + + mova m0, [aboveq] + mova m7, [aboveq+16] + DEFINE_ARGS dst, stride, stride3, line + mova m1, [GLOBAL(sh_b123456789abcdeff)] + lea stride3q, [strideq*3] + pshufb m2, m7, [GLOBAL(sh_b23456789abcdefff)] + pshufb m3, m7, m1 + + X_PLUS_2Y_PLUS_Z_PLUS_2_RSH_2 m7, m3, m2, m4 + palignr m6, m7, m0, 1 + palignr m5, m7, m0, 2 + pavgb m7, m3 + + X_PLUS_2Y_PLUS_Z_PLUS_2_RSH_2 m0, m6, m5, m2 + pavgb m0, m6 + + mov lined, 8 +.loop: + mova [dstq ], m0 + mova [dstq +16], m7 + mova [dstq+strideq ], m2 + mova [dstq+strideq +16], m4 + palignr m3, m7, m0, 1 + palignr m5, m4, m2, 1 + pshufb m7, m1 + pshufb m4, m1 + + mova [dstq+strideq*2 ], m3 + mova [dstq+strideq*2+16], m7 + mova [dstq+stride3q ], m5 + mova [dstq+stride3q +16], m4 + palignr m0, m7, m3, 1 + palignr m2, m4, m5, 1 + pshufb m7, m1 + pshufb m4, m1 + lea dstq, [dstq+strideq*4] + dec lined + jnz .loop + RESTORE_GOT + REP_RET + +INIT_XMM ssse3 +cglobal d153_predictor_4x4, 4, 5, 4, dst, stride, above, left, goffset + GET_GOT goffsetq + movd m0, [leftq] ; l1, l2, l3, l4 + movd m1, [aboveq-1] ; tl, t1, t2, t3 + punpckldq m0, m1 ; l1, l2, l3, l4, tl, t1, t2, t3 + pshufb m0, [GLOBAL(sh_b32104567)]; l4, l3, l2, l1, tl, t1, t2, t3 + psrldq m1, m0, 1 ; l3, l2, l1, tl, t1, t2, t3 + psrldq m2, m0, 2 ; l2, l1, tl, t1, t2, t3 + ; comments below are for a predictor like this + ; A1 B1 C1 D1 + ; A2 B2 A1 B1 + ; A3 B3 A2 B2 + ; A4 B4 A3 B3 + X_PLUS_2Y_PLUS_Z_PLUS_2_RSH_2 m0, m1, m2, m3 ; 3-tap avg B4 B3 B2 B1 C1 D1 + pavgb m1, m0 ; 2-tap avg A4 A3 A2 A1 + + punpcklqdq m3, m1 ; B4 B3 B2 B1 C1 D1 x x A4 A3 A2 A1 .. + + DEFINE_ARGS dst, stride, stride3 + lea stride3q, [strideq*3] + pshufb m3, [GLOBAL(sh_b8091a2b345)] ; A4 B4 A3 B3 A2 B2 A1 B1 C1 D1 .. + movd [dstq+stride3q ], m3 + psrldq m3, 2 ; A3 B3 A2 B2 A1 B1 C1 D1 .. + movd [dstq+strideq*2], m3 + psrldq m3, 2 ; A2 B2 A1 B1 C1 D1 .. + movd [dstq+strideq ], m3 + psrldq m3, 2 ; A1 B1 C1 D1 .. + movd [dstq ], m3 + RESTORE_GOT + RET + +INIT_XMM ssse3 +cglobal d153_predictor_8x8, 4, 5, 8, dst, stride, above, left, goffset + GET_GOT goffsetq + movq m0, [leftq] ; [0- 7] l1-8 [byte] + movhps m0, [aboveq-1] ; [8-15] tl, t1-7 [byte] + pshufb m1, m0, [GLOBAL(sh_b76543210)] ; l8-1 [word] + pshufb m2, m0, [GLOBAL(sh_b65432108)] ; l7-1,tl [word] + pshufb m3, m0, [GLOBAL(sh_b54321089)] ; l6-1,tl,t1 [word] + pshufb m0, [GLOBAL(sh_b89abcdef)] ; tl,t1-7 [word] + psrldq m4, m0, 1 ; t1-7 [word] + psrldq m5, m0, 2 ; t2-7 [word] + ; comments below are for a predictor like this + ; A1 B1 C1 D1 E1 F1 G1 H1 + ; A2 B2 A1 B1 C1 D1 E1 F1 + ; A3 B3 A2 B2 A1 B1 C1 D1 + ; A4 B4 A3 B3 A2 B2 A1 B1 + ; A5 B5 A4 B4 A3 B3 A2 B2 + ; A6 B6 A5 B5 A4 B4 A3 B3 + ; A7 B7 A6 B6 A5 B5 A4 B4 + ; A8 B8 A7 B7 A6 B6 A5 B5 + pavgb m6, m1, m2 ; 2-tap avg A8-A1 + + X_PLUS_2Y_PLUS_Z_PLUS_2_RSH_2 m0, m4, m5, m7 ; 3-tap avg C-H1 + + X_PLUS_2Y_PLUS_Z_PLUS_2_RSH_2 m1, m2, m3, m0 ; 3-tap avg B8-1 + + punpcklbw m6, m0 ; A-B8, A-B7 ... A-B2, A-B1 + + DEFINE_ARGS dst, stride, stride3 + lea stride3q, [strideq*3] + + movhps [dstq+stride3q], m6 ; A-B4, A-B3, A-B2, A-B1 + palignr m0, m7, m6, 10 ; A-B3, A-B2, A-B1, C-H1 + movq [dstq+strideq*2], m0 + psrldq m0, 2 ; A-B2, A-B1, C-H1 + movq [dstq+strideq ], m0 + psrldq m0, 2 ; A-H1 + movq [dstq ], m0 + lea dstq, [dstq+strideq*4] + movq [dstq+stride3q ], m6 ; A-B8, A-B7, A-B6, A-B5 + psrldq m6, 2 ; A-B7, A-B6, A-B5, A-B4 + movq [dstq+strideq*2], m6 + psrldq m6, 2 ; A-B6, A-B5, A-B4, A-B3 + movq [dstq+strideq ], m6 + psrldq m6, 2 ; A-B5, A-B4, A-B3, A-B2 + movq [dstq ], m6 + RESTORE_GOT + RET + +INIT_XMM ssse3 +cglobal d153_predictor_16x16, 4, 5, 8, dst, stride, above, left, goffset + GET_GOT goffsetq + mova m0, [leftq] + movu m7, [aboveq-1] + ; comments below are for a predictor like this + ; A1 B1 C1 D1 E1 F1 G1 H1 I1 J1 K1 L1 M1 N1 O1 P1 + ; A2 B2 A1 B1 C1 D1 E1 F1 G1 H1 I1 J1 K1 L1 M1 N1 + ; A3 B3 A2 B2 A1 B1 C1 D1 E1 F1 G1 H1 I1 J1 K1 L1 + ; A4 B4 A3 B3 A2 B2 A1 B1 C1 D1 E1 F1 G1 H1 I1 J1 + ; A5 B5 A4 B4 A3 B3 A2 B2 A1 B1 C1 D1 E1 F1 G1 H1 + ; A6 B6 A5 B5 A4 B4 A3 B3 A2 B2 A1 B1 C1 D1 E1 F1 + ; A7 B7 A6 B6 A5 B5 A4 B4 A3 B3 A2 B2 A1 B1 C1 D1 + ; A8 B8 A7 B7 A6 B6 A5 B5 A4 B4 A3 B3 A2 B2 A1 B1 + ; A9 B9 A8 B8 A7 B7 A6 B6 A5 B5 A4 B4 A3 B3 A2 B2 + ; Aa Ba A9 B9 A8 B8 A7 B7 A6 B6 A5 B5 A4 B4 A3 B3 + ; Ab Bb Aa Ba A9 B9 A8 B8 A7 B7 A6 B6 A5 B5 A4 B4 + ; Ac Bc Ab Bb Aa Ba A9 B9 A8 B8 A7 B7 A6 B6 A5 B5 + ; Ad Bd Ac Bc Ab Bb Aa Ba A9 B9 A8 B8 A7 B7 A6 B6 + ; Ae Be Ad Bd Ac Bc Ab Bb Aa Ba A9 B9 A8 B8 A7 B7 + ; Af Bf Ae Be Ad Bd Ac Bc Ab Bb Aa Ba A9 B9 A8 B8 + ; Ag Bg Af Bf Ae Be Ad Bd Ac Bc Ab Bb Aa Ba A9 B9 + pshufb m6, m7, [GLOBAL(sh_bfedcba9876543210)] + palignr m5, m0, m6, 15 + palignr m3, m0, m6, 14 + + X_PLUS_2Y_PLUS_Z_PLUS_2_RSH_2 m0, m5, m3, m4 ; 3-tap avg B3-Bg + pshufb m1, m0, [GLOBAL(sh_b123456789abcdeff)] + pavgb m5, m0 ; A1 - Ag + + punpcklbw m0, m4, m5 ; A-B8 ... A-B1 + punpckhbw m4, m5 ; A-B9 ... A-Bg + + pshufb m3, m7, [GLOBAL(sh_b123456789abcdeff)] + pshufb m5, m7, [GLOBAL(sh_b23456789abcdefff)] + + X_PLUS_2Y_PLUS_Z_PLUS_2_RSH_2 m7, m3, m5, m1 ; 3-tap avg C1-P1 + + pshufb m6, m0, [GLOBAL(sh_bfedcba9876543210)] + DEFINE_ARGS dst, stride, stride3 + lea stride3q, [strideq*3] + palignr m2, m1, m6, 14 + mova [dstq ], m2 + palignr m2, m1, m6, 12 + mova [dstq+strideq ], m2 + palignr m2, m1, m6, 10 + mova [dstq+strideq*2], m2 + palignr m2, m1, m6, 8 + mova [dstq+stride3q ], m2 + lea dstq, [dstq+strideq*4] + palignr m2, m1, m6, 6 + mova [dstq ], m2 + palignr m2, m1, m6, 4 + mova [dstq+strideq ], m2 + palignr m2, m1, m6, 2 + mova [dstq+strideq*2], m2 + pshufb m4, [GLOBAL(sh_bfedcba9876543210)] + mova [dstq+stride3q ], m6 + lea dstq, [dstq+strideq*4] + + palignr m2, m6, m4, 14 + mova [dstq ], m2 + palignr m2, m6, m4, 12 + mova [dstq+strideq ], m2 + palignr m2, m6, m4, 10 + mova [dstq+strideq*2], m2 + palignr m2, m6, m4, 8 + mova [dstq+stride3q ], m2 + lea dstq, [dstq+strideq*4] + palignr m2, m6, m4, 6 + mova [dstq ], m2 + palignr m2, m6, m4, 4 + mova [dstq+strideq ], m2 + palignr m2, m6, m4, 2 + mova [dstq+strideq*2], m2 + mova [dstq+stride3q ], m4 + RESTORE_GOT + RET + +INIT_XMM ssse3 +cglobal d153_predictor_32x32, 4, 5, 8, dst, stride, above, left, goffset + GET_GOT goffsetq + mova m0, [leftq] + movu m7, [aboveq-1] + movu m1, [aboveq+15] + + pshufb m4, m1, [GLOBAL(sh_b123456789abcdeff)] + pshufb m6, m1, [GLOBAL(sh_b23456789abcdefff)] + + X_PLUS_2Y_PLUS_Z_PLUS_2_RSH_2 m1, m4, m6, m2 ; 3-tap avg above [high] + + palignr m3, m1, m7, 1 + palignr m5, m1, m7, 2 + + X_PLUS_2Y_PLUS_Z_PLUS_2_RSH_2 m7, m3, m5, m1 ; 3-tap avg above [low] + + pshufb m7, [GLOBAL(sh_bfedcba9876543210)] + palignr m5, m0, m7, 15 + palignr m3, m0, m7, 14 + + X_PLUS_2Y_PLUS_Z_PLUS_2_RSH_2 m0, m5, m3, m4 ; 3-tap avg B3-Bg + pavgb m5, m0 ; A1 - Ag + punpcklbw m6, m4, m5 ; A-B8 ... A-B1 + punpckhbw m4, m5 ; A-B9 ... A-Bg + pshufb m6, [GLOBAL(sh_bfedcba9876543210)] + pshufb m4, [GLOBAL(sh_bfedcba9876543210)] + + DEFINE_ARGS dst, stride, stride3, left, line + lea stride3q, [strideq*3] + + palignr m5, m2, m1, 14 + palignr m7, m1, m6, 14 + mova [dstq ], m7 + mova [dstq+16 ], m5 + palignr m5, m2, m1, 12 + palignr m7, m1, m6, 12 + mova [dstq+strideq ], m7 + mova [dstq+strideq+16 ], m5 + palignr m5, m2, m1, 10 + palignr m7, m1, m6, 10 + mova [dstq+strideq*2 ], m7 + mova [dstq+strideq*2+16], m5 + palignr m5, m2, m1, 8 + palignr m7, m1, m6, 8 + mova [dstq+stride3q ], m7 + mova [dstq+stride3q+16 ], m5 + lea dstq, [dstq+strideq*4] + palignr m5, m2, m1, 6 + palignr m7, m1, m6, 6 + mova [dstq ], m7 + mova [dstq+16 ], m5 + palignr m5, m2, m1, 4 + palignr m7, m1, m6, 4 + mova [dstq+strideq ], m7 + mova [dstq+strideq+16 ], m5 + palignr m5, m2, m1, 2 + palignr m7, m1, m6, 2 + mova [dstq+strideq*2 ], m7 + mova [dstq+strideq*2+16], m5 + mova [dstq+stride3q ], m6 + mova [dstq+stride3q+16 ], m1 + lea dstq, [dstq+strideq*4] + + palignr m5, m1, m6, 14 + palignr m3, m6, m4, 14 + mova [dstq ], m3 + mova [dstq+16 ], m5 + palignr m5, m1, m6, 12 + palignr m3, m6, m4, 12 + mova [dstq+strideq ], m3 + mova [dstq+strideq+16 ], m5 + palignr m5, m1, m6, 10 + palignr m3, m6, m4, 10 + mova [dstq+strideq*2 ], m3 + mova [dstq+strideq*2+16], m5 + palignr m5, m1, m6, 8 + palignr m3, m6, m4, 8 + mova [dstq+stride3q ], m3 + mova [dstq+stride3q+16 ], m5 + lea dstq, [dstq+strideq*4] + palignr m5, m1, m6, 6 + palignr m3, m6, m4, 6 + mova [dstq ], m3 + mova [dstq+16 ], m5 + palignr m5, m1, m6, 4 + palignr m3, m6, m4, 4 + mova [dstq+strideq ], m3 + mova [dstq+strideq+16 ], m5 + palignr m5, m1, m6, 2 + palignr m3, m6, m4, 2 + mova [dstq+strideq*2 ], m3 + mova [dstq+strideq*2+16], m5 + mova [dstq+stride3q ], m4 + mova [dstq+stride3q+16 ], m6 + lea dstq, [dstq+strideq*4] + + mova m7, [leftq] + mova m3, [leftq+16] + palignr m5, m3, m7, 15 + palignr m0, m3, m7, 14 + + X_PLUS_2Y_PLUS_Z_PLUS_2_RSH_2 m3, m5, m0, m2 ; 3-tap avg Bh - + pavgb m5, m3 ; Ah - + punpcklbw m3, m2, m5 ; A-B8 ... A-B1 + punpckhbw m2, m5 ; A-B9 ... A-Bg + pshufb m3, [GLOBAL(sh_bfedcba9876543210)] + pshufb m2, [GLOBAL(sh_bfedcba9876543210)] + + palignr m7, m6, m4, 14 + palignr m0, m4, m3, 14 + mova [dstq ], m0 + mova [dstq+16 ], m7 + palignr m7, m6, m4, 12 + palignr m0, m4, m3, 12 + mova [dstq+strideq ], m0 + mova [dstq+strideq+16 ], m7 + palignr m7, m6, m4, 10 + palignr m0, m4, m3, 10 + mova [dstq+strideq*2 ], m0 + mova [dstq+strideq*2+16], m7 + palignr m7, m6, m4, 8 + palignr m0, m4, m3, 8 + mova [dstq+stride3q ], m0 + mova [dstq+stride3q+16 ], m7 + lea dstq, [dstq+strideq*4] + palignr m7, m6, m4, 6 + palignr m0, m4, m3, 6 + mova [dstq ], m0 + mova [dstq+16 ], m7 + palignr m7, m6, m4, 4 + palignr m0, m4, m3, 4 + mova [dstq+strideq ], m0 + mova [dstq+strideq+16 ], m7 + palignr m7, m6, m4, 2 + palignr m0, m4, m3, 2 + mova [dstq+strideq*2 ], m0 + mova [dstq+strideq*2+16], m7 + mova [dstq+stride3q ], m3 + mova [dstq+stride3q+16 ], m4 + lea dstq, [dstq+strideq*4] + + palignr m7, m4, m3, 14 + palignr m0, m3, m2, 14 + mova [dstq ], m0 + mova [dstq+16 ], m7 + palignr m7, m4, m3, 12 + palignr m0, m3, m2, 12 + mova [dstq+strideq ], m0 + mova [dstq+strideq+16 ], m7 + palignr m7, m4, m3, 10 + palignr m0, m3, m2, 10 + mova [dstq+strideq*2 ], m0 + mova [dstq+strideq*2+16], m7 + palignr m7, m4, m3, 8 + palignr m0, m3, m2, 8 + mova [dstq+stride3q ], m0 + mova [dstq+stride3q+16 ], m7 + lea dstq, [dstq+strideq*4] + palignr m7, m4, m3, 6 + palignr m0, m3, m2, 6 + mova [dstq ], m0 + mova [dstq+16 ], m7 + palignr m7, m4, m3, 4 + palignr m0, m3, m2, 4 + mova [dstq+strideq ], m0 + mova [dstq+strideq+16 ], m7 + palignr m7, m4, m3, 2 + palignr m0, m3, m2, 2 + mova [dstq+strideq*2 ], m0 + mova [dstq+strideq*2+16], m7 + mova [dstq+stride3q ], m2 + mova [dstq+stride3q+16 ], m3 + + RESTORE_GOT + RET + +INIT_XMM ssse3 +cglobal d207_predictor_8x8, 4, 5, 4, dst, stride, stride3, left, goffset + GET_GOT goffsetq + movq m3, [leftq] ; abcdefgh [byte] + lea stride3q, [strideq*3] + + pshufb m1, m3, [GLOBAL(sh_b2345677777777777)] + pshufb m0, m3, [GLOBAL(sh_b0123456777777777)] + pshufb m2, m3, [GLOBAL(sh_b1234567777777777)] + + X_PLUS_2Y_PLUS_Z_PLUS_2_RSH_2 m0, m2, m1, m3 + pavgb m0, m2 + punpcklbw m0, m3 ; interleaved output + + movq [dstq ], m0 + psrldq m0, 2 + movq [dstq+strideq ], m0 + psrldq m0, 2 + movq [dstq+strideq*2], m0 + psrldq m0, 2 + movq [dstq+stride3q ], m0 + lea dstq, [dstq+strideq*4] + pshufhw m0, m0, q0000 ; de, d2ef, ef, e2fg, fg, f2gh, gh, g3h, 8xh + psrldq m0, 2 + movq [dstq ], m0 + psrldq m0, 2 + movq [dstq+strideq ], m0 + psrldq m0, 2 + movq [dstq+strideq*2], m0 + psrldq m0, 2 + movq [dstq+stride3q ], m0 + RESTORE_GOT + RET + +INIT_XMM ssse3 +cglobal d207_predictor_16x16, 4, 5, 5, dst, stride, stride3, left, goffset + GET_GOT goffsetq + lea stride3q, [strideq*3] + mova m0, [leftq] ; abcdefghijklmnop [byte] + pshufb m1, m0, [GLOBAL(sh_b123456789abcdeff)] ; bcdefghijklmnopp + pshufb m2, m0, [GLOBAL(sh_b23456789abcdefff)] + + X_PLUS_2Y_PLUS_Z_PLUS_2_RSH_2 m0, m1, m2, m3 + pavgb m1, m0 ; ab, bc, cd .. no, op, pp [byte] + + punpckhbw m4, m1, m3 ; interleaved input + punpcklbw m1, m3 ; interleaved output + mova [dstq ], m1 + palignr m3, m4, m1, 2 + mova [dstq+strideq ], m3 + palignr m3, m4, m1, 4 + mova [dstq+strideq*2], m3 + palignr m3, m4, m1, 6 + mova [dstq+stride3q ], m3 + lea dstq, [dstq+strideq*4] + palignr m3, m4, m1, 8 + mova [dstq ], m3 + palignr m3, m4, m1, 10 + mova [dstq+strideq ], m3 + palignr m3, m4, m1, 12 + mova [dstq+strideq*2], m3 + palignr m3, m4, m1, 14 + mova [dstq+stride3q ], m3 + DEFINE_ARGS dst, stride, stride3, line + mov lined, 2 + mova m0, [GLOBAL(sh_b23456789abcdefff)] +.loop: + lea dstq, [dstq+strideq*4] + mova [dstq ], m4 + pshufb m4, m0 + mova [dstq+strideq ], m4 + pshufb m4, m0 + mova [dstq+strideq*2], m4 + pshufb m4, m0 + mova [dstq+stride3q ], m4 + pshufb m4, m0 + dec lined + jnz .loop + RESTORE_GOT + REP_RET + +INIT_XMM ssse3 +cglobal d207_predictor_32x32, 4, 5, 8, dst, stride, stride3, left, goffset + GET_GOT goffsetq + lea stride3q, [strideq*3] + mova m1, [leftq] ; 0-15 [byte] + mova m2, [leftq+16] ; 16-31 [byte] + pshufb m0, m2, [GLOBAL(sh_b23456789abcdefff)] + pshufb m4, m2, [GLOBAL(sh_b123456789abcdeff)] + + X_PLUS_2Y_PLUS_Z_PLUS_2_RSH_2 m2, m4, m0, m3 + palignr m6, m2, m1, 1 + palignr m5, m2, m1, 2 + pavgb m2, m4 ; high 16px even lines + + X_PLUS_2Y_PLUS_Z_PLUS_2_RSH_2 m1, m6, m5, m0 + pavgb m1, m6 ; low 16px even lines + + punpckhbw m6, m1, m0 ; interleaved output 2 + punpcklbw m1, m0 ; interleaved output 1 + + punpckhbw m7, m2, m3 ; interleaved output 4 + punpcklbw m2, m3 ; interleaved output 3 + + ; output 1st 8 lines (and half of 2nd 8 lines) + DEFINE_ARGS dst, stride, stride3, dst8 + lea dst8q, [dstq+strideq*8] + mova [dstq ], m1 + mova [dstq +16], m6 + mova [dst8q ], m6 + palignr m0, m6, m1, 2 + palignr m4, m2, m6, 2 + mova [dstq +strideq ], m0 + mova [dstq +strideq +16], m4 + mova [dst8q+strideq ], m4 + palignr m0, m6, m1, 4 + palignr m4, m2, m6, 4 + mova [dstq +strideq*2 ], m0 + mova [dstq +strideq*2+16], m4 + mova [dst8q+strideq*2 ], m4 + palignr m0, m6, m1, 6 + palignr m4, m2, m6, 6 + mova [dstq +stride3q ], m0 + mova [dstq +stride3q +16], m4 + mova [dst8q+stride3q ], m4 + lea dstq, [dstq +strideq*4] + lea dst8q, [dst8q+strideq*4] + palignr m0, m6, m1, 8 + palignr m4, m2, m6, 8 + mova [dstq ], m0 + mova [dstq +16], m4 + mova [dst8q ], m4 + palignr m0, m6, m1, 10 + palignr m4, m2, m6, 10 + mova [dstq +strideq ], m0 + mova [dstq +strideq +16], m4 + mova [dst8q+strideq ], m4 + palignr m0, m6, m1, 12 + palignr m4, m2, m6, 12 + mova [dstq +strideq*2 ], m0 + mova [dstq +strideq*2+16], m4 + mova [dst8q+strideq*2 ], m4 + palignr m0, m6, m1, 14 + palignr m4, m2, m6, 14 + mova [dstq +stride3q ], m0 + mova [dstq +stride3q +16], m4 + mova [dst8q+stride3q ], m4 + lea dstq, [dstq+strideq*4] + lea dst8q, [dst8q+strideq*4] + + ; output 2nd half of 2nd 8 lines and half of 3rd 8 lines + mova [dstq +16], m2 + mova [dst8q ], m2 + palignr m4, m7, m2, 2 + mova [dstq +strideq +16], m4 + mova [dst8q+strideq ], m4 + palignr m4, m7, m2, 4 + mova [dstq +strideq*2+16], m4 + mova [dst8q+strideq*2 ], m4 + palignr m4, m7, m2, 6 + mova [dstq +stride3q +16], m4 + mova [dst8q+stride3q ], m4 + lea dstq, [dstq+strideq*4] + lea dst8q, [dst8q+strideq*4] + palignr m4, m7, m2, 8 + mova [dstq +16], m4 + mova [dst8q ], m4 + palignr m4, m7, m2, 10 + mova [dstq +strideq +16], m4 + mova [dst8q+strideq ], m4 + palignr m4, m7, m2, 12 + mova [dstq +strideq*2+16], m4 + mova [dst8q+strideq*2 ], m4 + palignr m4, m7, m2, 14 + mova [dstq +stride3q +16], m4 + mova [dst8q+stride3q ], m4 + lea dstq, [dstq+strideq*4] + lea dst8q, [dst8q+strideq*4] + + ; output 2nd half of 3rd 8 lines and half of 4th 8 lines + mova m0, [GLOBAL(sh_b23456789abcdefff)] + mova [dstq +16], m7 + mova [dst8q ], m7 + pshufb m7, m0 + mova [dstq +strideq +16], m7 + mova [dst8q+strideq ], m7 + pshufb m7, m0 + mova [dstq +strideq*2+16], m7 + mova [dst8q+strideq*2 ], m7 + pshufb m7, m0 + mova [dstq +stride3q +16], m7 + mova [dst8q+stride3q ], m7 + pshufb m7, m0 + lea dstq, [dstq+strideq*4] + lea dst8q, [dst8q+strideq*4] + mova [dstq +16], m7 + mova [dst8q ], m7 + pshufb m7, m0 + mova [dstq +strideq +16], m7 + mova [dst8q+strideq ], m7 + pshufb m7, m0 + mova [dstq +strideq*2+16], m7 + mova [dst8q+strideq*2 ], m7 + pshufb m7, m0 + mova [dstq +stride3q +16], m7 + mova [dst8q+stride3q ], m7 + pshufb m7, m0 + lea dstq, [dstq+strideq*4] + + ; output last half of 4th 8 lines + mova [dstq +16], m7 + mova [dstq +strideq +16], m7 + mova [dstq +strideq*2+16], m7 + mova [dstq +stride3q +16], m7 + lea dstq, [dstq+strideq*4] + mova [dstq +16], m7 + mova [dstq +strideq +16], m7 + mova [dstq +strideq*2+16], m7 + mova [dstq +stride3q +16], m7 + + ; done! + RESTORE_GOT + RET diff --git a/vpx_dsp/x86/inv_txfm_sse2.c b/vpx_dsp/x86/inv_txfm_sse2.c new file mode 100644 index 0000000..f6e56b6 --- /dev/null +++ b/vpx_dsp/x86/inv_txfm_sse2.c @@ -0,0 +1,1350 @@ +/* + * Copyright (c) 2015 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include // SSE2 + +#include "./vpx_dsp_rtcd.h" +#include "vpx_dsp/x86/inv_txfm_sse2.h" +#include "vpx_dsp/x86/transpose_sse2.h" +#include "vpx_dsp/x86/txfm_common_sse2.h" + +static INLINE void transpose_16bit_4(__m128i *res) { + const __m128i tr0_0 = _mm_unpacklo_epi16(res[0], res[1]); + const __m128i tr0_1 = _mm_unpackhi_epi16(res[0], res[1]); + + res[0] = _mm_unpacklo_epi16(tr0_0, tr0_1); + res[1] = _mm_unpackhi_epi16(tr0_0, tr0_1); +} + +void vpx_idct4x4_16_add_sse2(const tran_low_t *input, uint8_t *dest, + int stride) { + const __m128i eight = _mm_set1_epi16(8); + __m128i in[2]; + + // Rows + in[0] = load_input_data8(input); + in[1] = load_input_data8(input + 8); + idct4_sse2(in); + + // Columns + idct4_sse2(in); + + // Final round and shift + in[0] = _mm_add_epi16(in[0], eight); + in[1] = _mm_add_epi16(in[1], eight); + in[0] = _mm_srai_epi16(in[0], 4); + in[1] = _mm_srai_epi16(in[1], 4); + + recon_and_store4x4_sse2(in, dest, stride); +} + +void vpx_idct4x4_1_add_sse2(const tran_low_t *input, uint8_t *dest, + int stride) { + const __m128i zero = _mm_setzero_si128(); + int a; + __m128i dc_value, d[2]; + + a = (int)dct_const_round_shift((int16_t)input[0] * cospi_16_64); + a = (int)dct_const_round_shift(a * cospi_16_64); + a = ROUND_POWER_OF_TWO(a, 4); + + dc_value = _mm_set1_epi16(a); + + // Reconstruction and Store + d[0] = _mm_cvtsi32_si128(*(const int *)(dest)); + d[1] = _mm_cvtsi32_si128(*(const int *)(dest + stride * 3)); + d[0] = _mm_unpacklo_epi32(d[0], + _mm_cvtsi32_si128(*(const int *)(dest + stride))); + d[1] = _mm_unpacklo_epi32( + _mm_cvtsi32_si128(*(const int *)(dest + stride * 2)), d[1]); + d[0] = _mm_unpacklo_epi8(d[0], zero); + d[1] = _mm_unpacklo_epi8(d[1], zero); + d[0] = _mm_add_epi16(d[0], dc_value); + d[1] = _mm_add_epi16(d[1], dc_value); + d[0] = _mm_packus_epi16(d[0], d[1]); + + *(int *)dest = _mm_cvtsi128_si32(d[0]); + d[0] = _mm_srli_si128(d[0], 4); + *(int *)(dest + stride) = _mm_cvtsi128_si32(d[0]); + d[0] = _mm_srli_si128(d[0], 4); + *(int *)(dest + stride * 2) = _mm_cvtsi128_si32(d[0]); + d[0] = _mm_srli_si128(d[0], 4); + *(int *)(dest + stride * 3) = _mm_cvtsi128_si32(d[0]); +} + +void idct4_sse2(__m128i *const in) { + const __m128i k__cospi_p16_p16 = pair_set_epi16(cospi_16_64, cospi_16_64); + const __m128i k__cospi_p16_m16 = pair_set_epi16(cospi_16_64, -cospi_16_64); + const __m128i k__cospi_p24_m08 = pair_set_epi16(cospi_24_64, -cospi_8_64); + const __m128i k__cospi_p08_p24 = pair_set_epi16(cospi_8_64, cospi_24_64); + __m128i u[2]; + + transpose_16bit_4(in); + // stage 1 + u[0] = _mm_unpacklo_epi16(in[0], in[1]); + u[1] = _mm_unpackhi_epi16(in[0], in[1]); + u[0] = idct_calc_wraplow_sse2(k__cospi_p16_p16, k__cospi_p16_m16, u[0]); + u[1] = idct_calc_wraplow_sse2(k__cospi_p08_p24, k__cospi_p24_m08, u[1]); + + // stage 2 + in[0] = _mm_add_epi16(u[0], u[1]); + in[1] = _mm_sub_epi16(u[0], u[1]); + in[1] = _mm_shuffle_epi32(in[1], 0x4E); +} + +void iadst4_sse2(__m128i *const in) { + const __m128i k__sinpi_p01_p04 = pair_set_epi16(sinpi_1_9, sinpi_4_9); + const __m128i k__sinpi_p03_p02 = pair_set_epi16(sinpi_3_9, sinpi_2_9); + const __m128i k__sinpi_p02_m01 = pair_set_epi16(sinpi_2_9, -sinpi_1_9); + const __m128i k__sinpi_p03_m04 = pair_set_epi16(sinpi_3_9, -sinpi_4_9); + const __m128i k__sinpi_p03_p03 = _mm_set1_epi16((int16_t)sinpi_3_9); + const __m128i kZero = _mm_set1_epi16(0); + const __m128i k__DCT_CONST_ROUNDING = _mm_set1_epi32(DCT_CONST_ROUNDING); + __m128i u[8], v[8], in7; + + transpose_16bit_4(in); + in7 = _mm_srli_si128(in[1], 8); + in7 = _mm_add_epi16(in7, in[0]); + in7 = _mm_sub_epi16(in7, in[1]); + + u[0] = _mm_unpacklo_epi16(in[0], in[1]); + u[1] = _mm_unpackhi_epi16(in[0], in[1]); + u[2] = _mm_unpacklo_epi16(in7, kZero); + u[3] = _mm_unpackhi_epi16(in[0], kZero); + + v[0] = _mm_madd_epi16(u[0], k__sinpi_p01_p04); // s0 + s3 + v[1] = _mm_madd_epi16(u[1], k__sinpi_p03_p02); // s2 + s5 + v[2] = _mm_madd_epi16(u[2], k__sinpi_p03_p03); // x2 + v[3] = _mm_madd_epi16(u[0], k__sinpi_p02_m01); // s1 - s4 + v[4] = _mm_madd_epi16(u[1], k__sinpi_p03_m04); // s2 - s6 + v[5] = _mm_madd_epi16(u[3], k__sinpi_p03_p03); // s2 + + u[0] = _mm_add_epi32(v[0], v[1]); + u[1] = _mm_add_epi32(v[3], v[4]); + u[2] = v[2]; + u[3] = _mm_add_epi32(u[0], u[1]); + u[4] = _mm_slli_epi32(v[5], 2); + u[5] = _mm_add_epi32(u[3], v[5]); + u[6] = _mm_sub_epi32(u[5], u[4]); + + v[0] = _mm_add_epi32(u[0], k__DCT_CONST_ROUNDING); + v[1] = _mm_add_epi32(u[1], k__DCT_CONST_ROUNDING); + v[2] = _mm_add_epi32(u[2], k__DCT_CONST_ROUNDING); + v[3] = _mm_add_epi32(u[6], k__DCT_CONST_ROUNDING); + + u[0] = _mm_srai_epi32(v[0], DCT_CONST_BITS); + u[1] = _mm_srai_epi32(v[1], DCT_CONST_BITS); + u[2] = _mm_srai_epi32(v[2], DCT_CONST_BITS); + u[3] = _mm_srai_epi32(v[3], DCT_CONST_BITS); + + in[0] = _mm_packs_epi32(u[0], u[1]); + in[1] = _mm_packs_epi32(u[2], u[3]); +} + +static INLINE void load_buffer_8x8(const tran_low_t *const input, + __m128i *const in) { + in[0] = load_input_data8(input + 0 * 8); + in[1] = load_input_data8(input + 1 * 8); + in[2] = load_input_data8(input + 2 * 8); + in[3] = load_input_data8(input + 3 * 8); + in[4] = load_input_data8(input + 4 * 8); + in[5] = load_input_data8(input + 5 * 8); + in[6] = load_input_data8(input + 6 * 8); + in[7] = load_input_data8(input + 7 * 8); +} + +void vpx_idct8x8_64_add_sse2(const tran_low_t *input, uint8_t *dest, + int stride) { + __m128i in[8]; + int i; + + // Load input data. + load_buffer_8x8(input, in); + + // 2-D + for (i = 0; i < 2; i++) { + idct8_sse2(in); + } + + write_buffer_8x8(in, dest, stride); +} + +void vpx_idct8x8_12_add_sse2(const tran_low_t *input, uint8_t *dest, + int stride) { + __m128i io[8]; + + io[0] = load_input_data4(input + 0 * 8); + io[1] = load_input_data4(input + 1 * 8); + io[2] = load_input_data4(input + 2 * 8); + io[3] = load_input_data4(input + 3 * 8); + + idct8x8_12_add_kernel_sse2(io); + write_buffer_8x8(io, dest, stride); +} + +static INLINE void recon_and_store_8_dual(uint8_t *const dest, + const __m128i in_x, + const int stride) { + const __m128i zero = _mm_setzero_si128(); + __m128i d0, d1; + + d0 = _mm_loadl_epi64((__m128i *)(dest + 0 * stride)); + d1 = _mm_loadl_epi64((__m128i *)(dest + 1 * stride)); + d0 = _mm_unpacklo_epi8(d0, zero); + d1 = _mm_unpacklo_epi8(d1, zero); + d0 = _mm_add_epi16(in_x, d0); + d1 = _mm_add_epi16(in_x, d1); + d0 = _mm_packus_epi16(d0, d1); + _mm_storel_epi64((__m128i *)(dest + 0 * stride), d0); + _mm_storeh_pi((__m64 *)(dest + 1 * stride), _mm_castsi128_ps(d0)); +} + +void vpx_idct8x8_1_add_sse2(const tran_low_t *input, uint8_t *dest, + int stride) { + __m128i dc_value; + tran_high_t a1; + tran_low_t out = + WRAPLOW(dct_const_round_shift((int16_t)input[0] * cospi_16_64)); + + out = WRAPLOW(dct_const_round_shift(out * cospi_16_64)); + a1 = ROUND_POWER_OF_TWO(out, 5); + dc_value = _mm_set1_epi16((int16_t)a1); + + recon_and_store_8_dual(dest, dc_value, stride); + dest += 2 * stride; + recon_and_store_8_dual(dest, dc_value, stride); + dest += 2 * stride; + recon_and_store_8_dual(dest, dc_value, stride); + dest += 2 * stride; + recon_and_store_8_dual(dest, dc_value, stride); +} + +void idct8_sse2(__m128i *const in) { + // 8x8 Transpose is copied from vpx_fdct8x8_sse2() + transpose_16bit_8x8(in, in); + + // 4-stage 1D idct8x8 + idct8(in, in); +} + +void iadst8_sse2(__m128i *const in) { + const __m128i k__cospi_p02_p30 = pair_set_epi16(cospi_2_64, cospi_30_64); + const __m128i k__cospi_p30_m02 = pair_set_epi16(cospi_30_64, -cospi_2_64); + const __m128i k__cospi_p10_p22 = pair_set_epi16(cospi_10_64, cospi_22_64); + const __m128i k__cospi_p22_m10 = pair_set_epi16(cospi_22_64, -cospi_10_64); + const __m128i k__cospi_p18_p14 = pair_set_epi16(cospi_18_64, cospi_14_64); + const __m128i k__cospi_p14_m18 = pair_set_epi16(cospi_14_64, -cospi_18_64); + const __m128i k__cospi_p26_p06 = pair_set_epi16(cospi_26_64, cospi_6_64); + const __m128i k__cospi_p06_m26 = pair_set_epi16(cospi_6_64, -cospi_26_64); + const __m128i k__cospi_p08_p24 = pair_set_epi16(cospi_8_64, cospi_24_64); + const __m128i k__cospi_p24_m08 = pair_set_epi16(cospi_24_64, -cospi_8_64); + const __m128i k__cospi_m24_p08 = pair_set_epi16(-cospi_24_64, cospi_8_64); + const __m128i k__cospi_p16_m16 = pair_set_epi16(cospi_16_64, -cospi_16_64); + const __m128i k__cospi_p16_p16 = _mm_set1_epi16(cospi_16_64); + const __m128i k__const_0 = _mm_set1_epi16(0); + const __m128i k__DCT_CONST_ROUNDING = _mm_set1_epi32(DCT_CONST_ROUNDING); + + __m128i u0, u1, u2, u3, u4, u5, u6, u7, u8, u9, u10, u11, u12, u13, u14, u15; + __m128i v0, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15; + __m128i w0, w1, w2, w3, w4, w5, w6, w7, w8, w9, w10, w11, w12, w13, w14, w15; + __m128i s0, s1, s2, s3, s4, s5, s6, s7; + __m128i in0, in1, in2, in3, in4, in5, in6, in7; + + // transpose + transpose_16bit_8x8(in, in); + + // properly aligned for butterfly input + in0 = in[7]; + in1 = in[0]; + in2 = in[5]; + in3 = in[2]; + in4 = in[3]; + in5 = in[4]; + in6 = in[1]; + in7 = in[6]; + + // column transformation + // stage 1 + // interleave and multiply/add into 32-bit integer + s0 = _mm_unpacklo_epi16(in0, in1); + s1 = _mm_unpackhi_epi16(in0, in1); + s2 = _mm_unpacklo_epi16(in2, in3); + s3 = _mm_unpackhi_epi16(in2, in3); + s4 = _mm_unpacklo_epi16(in4, in5); + s5 = _mm_unpackhi_epi16(in4, in5); + s6 = _mm_unpacklo_epi16(in6, in7); + s7 = _mm_unpackhi_epi16(in6, in7); + + u0 = _mm_madd_epi16(s0, k__cospi_p02_p30); + u1 = _mm_madd_epi16(s1, k__cospi_p02_p30); + u2 = _mm_madd_epi16(s0, k__cospi_p30_m02); + u3 = _mm_madd_epi16(s1, k__cospi_p30_m02); + u4 = _mm_madd_epi16(s2, k__cospi_p10_p22); + u5 = _mm_madd_epi16(s3, k__cospi_p10_p22); + u6 = _mm_madd_epi16(s2, k__cospi_p22_m10); + u7 = _mm_madd_epi16(s3, k__cospi_p22_m10); + u8 = _mm_madd_epi16(s4, k__cospi_p18_p14); + u9 = _mm_madd_epi16(s5, k__cospi_p18_p14); + u10 = _mm_madd_epi16(s4, k__cospi_p14_m18); + u11 = _mm_madd_epi16(s5, k__cospi_p14_m18); + u12 = _mm_madd_epi16(s6, k__cospi_p26_p06); + u13 = _mm_madd_epi16(s7, k__cospi_p26_p06); + u14 = _mm_madd_epi16(s6, k__cospi_p06_m26); + u15 = _mm_madd_epi16(s7, k__cospi_p06_m26); + + // addition + w0 = _mm_add_epi32(u0, u8); + w1 = _mm_add_epi32(u1, u9); + w2 = _mm_add_epi32(u2, u10); + w3 = _mm_add_epi32(u3, u11); + w4 = _mm_add_epi32(u4, u12); + w5 = _mm_add_epi32(u5, u13); + w6 = _mm_add_epi32(u6, u14); + w7 = _mm_add_epi32(u7, u15); + w8 = _mm_sub_epi32(u0, u8); + w9 = _mm_sub_epi32(u1, u9); + w10 = _mm_sub_epi32(u2, u10); + w11 = _mm_sub_epi32(u3, u11); + w12 = _mm_sub_epi32(u4, u12); + w13 = _mm_sub_epi32(u5, u13); + w14 = _mm_sub_epi32(u6, u14); + w15 = _mm_sub_epi32(u7, u15); + + // shift and rounding + v0 = _mm_add_epi32(w0, k__DCT_CONST_ROUNDING); + v1 = _mm_add_epi32(w1, k__DCT_CONST_ROUNDING); + v2 = _mm_add_epi32(w2, k__DCT_CONST_ROUNDING); + v3 = _mm_add_epi32(w3, k__DCT_CONST_ROUNDING); + v4 = _mm_add_epi32(w4, k__DCT_CONST_ROUNDING); + v5 = _mm_add_epi32(w5, k__DCT_CONST_ROUNDING); + v6 = _mm_add_epi32(w6, k__DCT_CONST_ROUNDING); + v7 = _mm_add_epi32(w7, k__DCT_CONST_ROUNDING); + v8 = _mm_add_epi32(w8, k__DCT_CONST_ROUNDING); + v9 = _mm_add_epi32(w9, k__DCT_CONST_ROUNDING); + v10 = _mm_add_epi32(w10, k__DCT_CONST_ROUNDING); + v11 = _mm_add_epi32(w11, k__DCT_CONST_ROUNDING); + v12 = _mm_add_epi32(w12, k__DCT_CONST_ROUNDING); + v13 = _mm_add_epi32(w13, k__DCT_CONST_ROUNDING); + v14 = _mm_add_epi32(w14, k__DCT_CONST_ROUNDING); + v15 = _mm_add_epi32(w15, k__DCT_CONST_ROUNDING); + + u0 = _mm_srai_epi32(v0, DCT_CONST_BITS); + u1 = _mm_srai_epi32(v1, DCT_CONST_BITS); + u2 = _mm_srai_epi32(v2, DCT_CONST_BITS); + u3 = _mm_srai_epi32(v3, DCT_CONST_BITS); + u4 = _mm_srai_epi32(v4, DCT_CONST_BITS); + u5 = _mm_srai_epi32(v5, DCT_CONST_BITS); + u6 = _mm_srai_epi32(v6, DCT_CONST_BITS); + u7 = _mm_srai_epi32(v7, DCT_CONST_BITS); + u8 = _mm_srai_epi32(v8, DCT_CONST_BITS); + u9 = _mm_srai_epi32(v9, DCT_CONST_BITS); + u10 = _mm_srai_epi32(v10, DCT_CONST_BITS); + u11 = _mm_srai_epi32(v11, DCT_CONST_BITS); + u12 = _mm_srai_epi32(v12, DCT_CONST_BITS); + u13 = _mm_srai_epi32(v13, DCT_CONST_BITS); + u14 = _mm_srai_epi32(v14, DCT_CONST_BITS); + u15 = _mm_srai_epi32(v15, DCT_CONST_BITS); + + // back to 16-bit and pack 8 integers into __m128i + in[0] = _mm_packs_epi32(u0, u1); + in[1] = _mm_packs_epi32(u2, u3); + in[2] = _mm_packs_epi32(u4, u5); + in[3] = _mm_packs_epi32(u6, u7); + in[4] = _mm_packs_epi32(u8, u9); + in[5] = _mm_packs_epi32(u10, u11); + in[6] = _mm_packs_epi32(u12, u13); + in[7] = _mm_packs_epi32(u14, u15); + + // stage 2 + s0 = _mm_add_epi16(in[0], in[2]); + s1 = _mm_add_epi16(in[1], in[3]); + s2 = _mm_sub_epi16(in[0], in[2]); + s3 = _mm_sub_epi16(in[1], in[3]); + u0 = _mm_unpacklo_epi16(in[4], in[5]); + u1 = _mm_unpackhi_epi16(in[4], in[5]); + u2 = _mm_unpacklo_epi16(in[6], in[7]); + u3 = _mm_unpackhi_epi16(in[6], in[7]); + + v0 = _mm_madd_epi16(u0, k__cospi_p08_p24); + v1 = _mm_madd_epi16(u1, k__cospi_p08_p24); + v2 = _mm_madd_epi16(u0, k__cospi_p24_m08); + v3 = _mm_madd_epi16(u1, k__cospi_p24_m08); + v4 = _mm_madd_epi16(u2, k__cospi_m24_p08); + v5 = _mm_madd_epi16(u3, k__cospi_m24_p08); + v6 = _mm_madd_epi16(u2, k__cospi_p08_p24); + v7 = _mm_madd_epi16(u3, k__cospi_p08_p24); + + w0 = _mm_add_epi32(v0, v4); + w1 = _mm_add_epi32(v1, v5); + w2 = _mm_add_epi32(v2, v6); + w3 = _mm_add_epi32(v3, v7); + w4 = _mm_sub_epi32(v0, v4); + w5 = _mm_sub_epi32(v1, v5); + w6 = _mm_sub_epi32(v2, v6); + w7 = _mm_sub_epi32(v3, v7); + + v0 = _mm_add_epi32(w0, k__DCT_CONST_ROUNDING); + v1 = _mm_add_epi32(w1, k__DCT_CONST_ROUNDING); + v2 = _mm_add_epi32(w2, k__DCT_CONST_ROUNDING); + v3 = _mm_add_epi32(w3, k__DCT_CONST_ROUNDING); + v4 = _mm_add_epi32(w4, k__DCT_CONST_ROUNDING); + v5 = _mm_add_epi32(w5, k__DCT_CONST_ROUNDING); + v6 = _mm_add_epi32(w6, k__DCT_CONST_ROUNDING); + v7 = _mm_add_epi32(w7, k__DCT_CONST_ROUNDING); + + u0 = _mm_srai_epi32(v0, DCT_CONST_BITS); + u1 = _mm_srai_epi32(v1, DCT_CONST_BITS); + u2 = _mm_srai_epi32(v2, DCT_CONST_BITS); + u3 = _mm_srai_epi32(v3, DCT_CONST_BITS); + u4 = _mm_srai_epi32(v4, DCT_CONST_BITS); + u5 = _mm_srai_epi32(v5, DCT_CONST_BITS); + u6 = _mm_srai_epi32(v6, DCT_CONST_BITS); + u7 = _mm_srai_epi32(v7, DCT_CONST_BITS); + + // back to 16-bit intergers + s4 = _mm_packs_epi32(u0, u1); + s5 = _mm_packs_epi32(u2, u3); + s6 = _mm_packs_epi32(u4, u5); + s7 = _mm_packs_epi32(u6, u7); + + // stage 3 + u0 = _mm_unpacklo_epi16(s2, s3); + u1 = _mm_unpackhi_epi16(s2, s3); + u2 = _mm_unpacklo_epi16(s6, s7); + u3 = _mm_unpackhi_epi16(s6, s7); + + s2 = idct_calc_wraplow_sse2(u0, u1, k__cospi_p16_p16); + s3 = idct_calc_wraplow_sse2(u0, u1, k__cospi_p16_m16); + s6 = idct_calc_wraplow_sse2(u2, u3, k__cospi_p16_p16); + s7 = idct_calc_wraplow_sse2(u2, u3, k__cospi_p16_m16); + + in[0] = s0; + in[1] = _mm_sub_epi16(k__const_0, s4); + in[2] = s6; + in[3] = _mm_sub_epi16(k__const_0, s2); + in[4] = s3; + in[5] = _mm_sub_epi16(k__const_0, s7); + in[6] = s5; + in[7] = _mm_sub_epi16(k__const_0, s1); +} + +static INLINE void idct16_load8x8(const tran_low_t *const input, + __m128i *const in) { + in[0] = load_input_data8(input + 0 * 16); + in[1] = load_input_data8(input + 1 * 16); + in[2] = load_input_data8(input + 2 * 16); + in[3] = load_input_data8(input + 3 * 16); + in[4] = load_input_data8(input + 4 * 16); + in[5] = load_input_data8(input + 5 * 16); + in[6] = load_input_data8(input + 6 * 16); + in[7] = load_input_data8(input + 7 * 16); +} + +void vpx_idct16x16_256_add_sse2(const tran_low_t *input, uint8_t *dest, + int stride) { + __m128i l[16], r[16], out[16], *in; + int i; + + in = l; + for (i = 0; i < 2; i++) { + idct16_load8x8(input, in); + transpose_16bit_8x8(in, in); + idct16_load8x8(input + 8, in + 8); + transpose_16bit_8x8(in + 8, in + 8); + idct16_8col(in, in); + in = r; + input += 128; + } + + for (i = 0; i < 16; i += 8) { + int j; + transpose_16bit_8x8(l + i, out); + transpose_16bit_8x8(r + i, out + 8); + idct16_8col(out, out); + + for (j = 0; j < 16; ++j) { + write_buffer_8x1(dest + j * stride, out[j]); + } + + dest += 8; + } +} + +void vpx_idct16x16_38_add_sse2(const tran_low_t *input, uint8_t *dest, + int stride) { + __m128i in[16], temp[16], out[16]; + int i; + + idct16_load8x8(input, in); + transpose_16bit_8x8(in, in); + + for (i = 8; i < 16; i++) { + in[i] = _mm_setzero_si128(); + } + idct16_8col(in, temp); + + for (i = 0; i < 16; i += 8) { + int j; + transpose_16bit_8x8(temp + i, in); + idct16_8col(in, out); + + for (j = 0; j < 16; ++j) { + write_buffer_8x1(dest + j * stride, out[j]); + } + + dest += 8; + } +} + +void vpx_idct16x16_10_add_sse2(const tran_low_t *input, uint8_t *dest, + int stride) { + __m128i in[16], l[16]; + int i; + + // First 1-D inverse DCT + // Load input data. + in[0] = load_input_data4(input + 0 * 16); + in[1] = load_input_data4(input + 1 * 16); + in[2] = load_input_data4(input + 2 * 16); + in[3] = load_input_data4(input + 3 * 16); + + idct16x16_10_pass1(in, l); + + // Second 1-D inverse transform, performed per 8x16 block + for (i = 0; i < 16; i += 8) { + int j; + idct16x16_10_pass2(l + i, in); + + for (j = 0; j < 16; ++j) { + write_buffer_8x1(dest + j * stride, in[j]); + } + + dest += 8; + } +} + +static INLINE void recon_and_store_16(uint8_t *const dest, const __m128i in_x) { + const __m128i zero = _mm_setzero_si128(); + __m128i d0, d1; + + d0 = _mm_load_si128((__m128i *)(dest)); + d1 = _mm_unpackhi_epi8(d0, zero); + d0 = _mm_unpacklo_epi8(d0, zero); + d0 = _mm_add_epi16(in_x, d0); + d1 = _mm_add_epi16(in_x, d1); + d0 = _mm_packus_epi16(d0, d1); + _mm_store_si128((__m128i *)(dest), d0); +} + +void vpx_idct16x16_1_add_sse2(const tran_low_t *input, uint8_t *dest, + int stride) { + __m128i dc_value; + int i; + tran_high_t a1; + tran_low_t out = + WRAPLOW(dct_const_round_shift((int16_t)input[0] * cospi_16_64)); + + out = WRAPLOW(dct_const_round_shift(out * cospi_16_64)); + a1 = ROUND_POWER_OF_TWO(out, 6); + dc_value = _mm_set1_epi16((int16_t)a1); + + for (i = 0; i < 16; ++i) { + recon_and_store_16(dest, dc_value); + dest += stride; + } +} + +static void iadst16_8col(__m128i *const in) { + // perform 16x16 1-D ADST for 8 columns + __m128i s[16], x[16], u[32], v[32]; + const __m128i k__cospi_p01_p31 = pair_set_epi16(cospi_1_64, cospi_31_64); + const __m128i k__cospi_p31_m01 = pair_set_epi16(cospi_31_64, -cospi_1_64); + const __m128i k__cospi_p05_p27 = pair_set_epi16(cospi_5_64, cospi_27_64); + const __m128i k__cospi_p27_m05 = pair_set_epi16(cospi_27_64, -cospi_5_64); + const __m128i k__cospi_p09_p23 = pair_set_epi16(cospi_9_64, cospi_23_64); + const __m128i k__cospi_p23_m09 = pair_set_epi16(cospi_23_64, -cospi_9_64); + const __m128i k__cospi_p13_p19 = pair_set_epi16(cospi_13_64, cospi_19_64); + const __m128i k__cospi_p19_m13 = pair_set_epi16(cospi_19_64, -cospi_13_64); + const __m128i k__cospi_p17_p15 = pair_set_epi16(cospi_17_64, cospi_15_64); + const __m128i k__cospi_p15_m17 = pair_set_epi16(cospi_15_64, -cospi_17_64); + const __m128i k__cospi_p21_p11 = pair_set_epi16(cospi_21_64, cospi_11_64); + const __m128i k__cospi_p11_m21 = pair_set_epi16(cospi_11_64, -cospi_21_64); + const __m128i k__cospi_p25_p07 = pair_set_epi16(cospi_25_64, cospi_7_64); + const __m128i k__cospi_p07_m25 = pair_set_epi16(cospi_7_64, -cospi_25_64); + const __m128i k__cospi_p29_p03 = pair_set_epi16(cospi_29_64, cospi_3_64); + const __m128i k__cospi_p03_m29 = pair_set_epi16(cospi_3_64, -cospi_29_64); + const __m128i k__cospi_p04_p28 = pair_set_epi16(cospi_4_64, cospi_28_64); + const __m128i k__cospi_p28_m04 = pair_set_epi16(cospi_28_64, -cospi_4_64); + const __m128i k__cospi_p20_p12 = pair_set_epi16(cospi_20_64, cospi_12_64); + const __m128i k__cospi_p12_m20 = pair_set_epi16(cospi_12_64, -cospi_20_64); + const __m128i k__cospi_m28_p04 = pair_set_epi16(-cospi_28_64, cospi_4_64); + const __m128i k__cospi_m12_p20 = pair_set_epi16(-cospi_12_64, cospi_20_64); + const __m128i k__cospi_p08_p24 = pair_set_epi16(cospi_8_64, cospi_24_64); + const __m128i k__cospi_p24_m08 = pair_set_epi16(cospi_24_64, -cospi_8_64); + const __m128i k__cospi_m24_p08 = pair_set_epi16(-cospi_24_64, cospi_8_64); + const __m128i k__cospi_m16_m16 = _mm_set1_epi16(-cospi_16_64); + const __m128i k__cospi_p16_p16 = _mm_set1_epi16(cospi_16_64); + const __m128i k__cospi_p16_m16 = pair_set_epi16(cospi_16_64, -cospi_16_64); + const __m128i k__cospi_m16_p16 = pair_set_epi16(-cospi_16_64, cospi_16_64); + const __m128i k__DCT_CONST_ROUNDING = _mm_set1_epi32(DCT_CONST_ROUNDING); + const __m128i kZero = _mm_set1_epi16(0); + + u[0] = _mm_unpacklo_epi16(in[15], in[0]); + u[1] = _mm_unpackhi_epi16(in[15], in[0]); + u[2] = _mm_unpacklo_epi16(in[13], in[2]); + u[3] = _mm_unpackhi_epi16(in[13], in[2]); + u[4] = _mm_unpacklo_epi16(in[11], in[4]); + u[5] = _mm_unpackhi_epi16(in[11], in[4]); + u[6] = _mm_unpacklo_epi16(in[9], in[6]); + u[7] = _mm_unpackhi_epi16(in[9], in[6]); + u[8] = _mm_unpacklo_epi16(in[7], in[8]); + u[9] = _mm_unpackhi_epi16(in[7], in[8]); + u[10] = _mm_unpacklo_epi16(in[5], in[10]); + u[11] = _mm_unpackhi_epi16(in[5], in[10]); + u[12] = _mm_unpacklo_epi16(in[3], in[12]); + u[13] = _mm_unpackhi_epi16(in[3], in[12]); + u[14] = _mm_unpacklo_epi16(in[1], in[14]); + u[15] = _mm_unpackhi_epi16(in[1], in[14]); + + v[0] = _mm_madd_epi16(u[0], k__cospi_p01_p31); + v[1] = _mm_madd_epi16(u[1], k__cospi_p01_p31); + v[2] = _mm_madd_epi16(u[0], k__cospi_p31_m01); + v[3] = _mm_madd_epi16(u[1], k__cospi_p31_m01); + v[4] = _mm_madd_epi16(u[2], k__cospi_p05_p27); + v[5] = _mm_madd_epi16(u[3], k__cospi_p05_p27); + v[6] = _mm_madd_epi16(u[2], k__cospi_p27_m05); + v[7] = _mm_madd_epi16(u[3], k__cospi_p27_m05); + v[8] = _mm_madd_epi16(u[4], k__cospi_p09_p23); + v[9] = _mm_madd_epi16(u[5], k__cospi_p09_p23); + v[10] = _mm_madd_epi16(u[4], k__cospi_p23_m09); + v[11] = _mm_madd_epi16(u[5], k__cospi_p23_m09); + v[12] = _mm_madd_epi16(u[6], k__cospi_p13_p19); + v[13] = _mm_madd_epi16(u[7], k__cospi_p13_p19); + v[14] = _mm_madd_epi16(u[6], k__cospi_p19_m13); + v[15] = _mm_madd_epi16(u[7], k__cospi_p19_m13); + v[16] = _mm_madd_epi16(u[8], k__cospi_p17_p15); + v[17] = _mm_madd_epi16(u[9], k__cospi_p17_p15); + v[18] = _mm_madd_epi16(u[8], k__cospi_p15_m17); + v[19] = _mm_madd_epi16(u[9], k__cospi_p15_m17); + v[20] = _mm_madd_epi16(u[10], k__cospi_p21_p11); + v[21] = _mm_madd_epi16(u[11], k__cospi_p21_p11); + v[22] = _mm_madd_epi16(u[10], k__cospi_p11_m21); + v[23] = _mm_madd_epi16(u[11], k__cospi_p11_m21); + v[24] = _mm_madd_epi16(u[12], k__cospi_p25_p07); + v[25] = _mm_madd_epi16(u[13], k__cospi_p25_p07); + v[26] = _mm_madd_epi16(u[12], k__cospi_p07_m25); + v[27] = _mm_madd_epi16(u[13], k__cospi_p07_m25); + v[28] = _mm_madd_epi16(u[14], k__cospi_p29_p03); + v[29] = _mm_madd_epi16(u[15], k__cospi_p29_p03); + v[30] = _mm_madd_epi16(u[14], k__cospi_p03_m29); + v[31] = _mm_madd_epi16(u[15], k__cospi_p03_m29); + + u[0] = _mm_add_epi32(v[0], v[16]); + u[1] = _mm_add_epi32(v[1], v[17]); + u[2] = _mm_add_epi32(v[2], v[18]); + u[3] = _mm_add_epi32(v[3], v[19]); + u[4] = _mm_add_epi32(v[4], v[20]); + u[5] = _mm_add_epi32(v[5], v[21]); + u[6] = _mm_add_epi32(v[6], v[22]); + u[7] = _mm_add_epi32(v[7], v[23]); + u[8] = _mm_add_epi32(v[8], v[24]); + u[9] = _mm_add_epi32(v[9], v[25]); + u[10] = _mm_add_epi32(v[10], v[26]); + u[11] = _mm_add_epi32(v[11], v[27]); + u[12] = _mm_add_epi32(v[12], v[28]); + u[13] = _mm_add_epi32(v[13], v[29]); + u[14] = _mm_add_epi32(v[14], v[30]); + u[15] = _mm_add_epi32(v[15], v[31]); + u[16] = _mm_sub_epi32(v[0], v[16]); + u[17] = _mm_sub_epi32(v[1], v[17]); + u[18] = _mm_sub_epi32(v[2], v[18]); + u[19] = _mm_sub_epi32(v[3], v[19]); + u[20] = _mm_sub_epi32(v[4], v[20]); + u[21] = _mm_sub_epi32(v[5], v[21]); + u[22] = _mm_sub_epi32(v[6], v[22]); + u[23] = _mm_sub_epi32(v[7], v[23]); + u[24] = _mm_sub_epi32(v[8], v[24]); + u[25] = _mm_sub_epi32(v[9], v[25]); + u[26] = _mm_sub_epi32(v[10], v[26]); + u[27] = _mm_sub_epi32(v[11], v[27]); + u[28] = _mm_sub_epi32(v[12], v[28]); + u[29] = _mm_sub_epi32(v[13], v[29]); + u[30] = _mm_sub_epi32(v[14], v[30]); + u[31] = _mm_sub_epi32(v[15], v[31]); + + v[0] = _mm_add_epi32(u[0], k__DCT_CONST_ROUNDING); + v[1] = _mm_add_epi32(u[1], k__DCT_CONST_ROUNDING); + v[2] = _mm_add_epi32(u[2], k__DCT_CONST_ROUNDING); + v[3] = _mm_add_epi32(u[3], k__DCT_CONST_ROUNDING); + v[4] = _mm_add_epi32(u[4], k__DCT_CONST_ROUNDING); + v[5] = _mm_add_epi32(u[5], k__DCT_CONST_ROUNDING); + v[6] = _mm_add_epi32(u[6], k__DCT_CONST_ROUNDING); + v[7] = _mm_add_epi32(u[7], k__DCT_CONST_ROUNDING); + v[8] = _mm_add_epi32(u[8], k__DCT_CONST_ROUNDING); + v[9] = _mm_add_epi32(u[9], k__DCT_CONST_ROUNDING); + v[10] = _mm_add_epi32(u[10], k__DCT_CONST_ROUNDING); + v[11] = _mm_add_epi32(u[11], k__DCT_CONST_ROUNDING); + v[12] = _mm_add_epi32(u[12], k__DCT_CONST_ROUNDING); + v[13] = _mm_add_epi32(u[13], k__DCT_CONST_ROUNDING); + v[14] = _mm_add_epi32(u[14], k__DCT_CONST_ROUNDING); + v[15] = _mm_add_epi32(u[15], k__DCT_CONST_ROUNDING); + v[16] = _mm_add_epi32(u[16], k__DCT_CONST_ROUNDING); + v[17] = _mm_add_epi32(u[17], k__DCT_CONST_ROUNDING); + v[18] = _mm_add_epi32(u[18], k__DCT_CONST_ROUNDING); + v[19] = _mm_add_epi32(u[19], k__DCT_CONST_ROUNDING); + v[20] = _mm_add_epi32(u[20], k__DCT_CONST_ROUNDING); + v[21] = _mm_add_epi32(u[21], k__DCT_CONST_ROUNDING); + v[22] = _mm_add_epi32(u[22], k__DCT_CONST_ROUNDING); + v[23] = _mm_add_epi32(u[23], k__DCT_CONST_ROUNDING); + v[24] = _mm_add_epi32(u[24], k__DCT_CONST_ROUNDING); + v[25] = _mm_add_epi32(u[25], k__DCT_CONST_ROUNDING); + v[26] = _mm_add_epi32(u[26], k__DCT_CONST_ROUNDING); + v[27] = _mm_add_epi32(u[27], k__DCT_CONST_ROUNDING); + v[28] = _mm_add_epi32(u[28], k__DCT_CONST_ROUNDING); + v[29] = _mm_add_epi32(u[29], k__DCT_CONST_ROUNDING); + v[30] = _mm_add_epi32(u[30], k__DCT_CONST_ROUNDING); + v[31] = _mm_add_epi32(u[31], k__DCT_CONST_ROUNDING); + + u[0] = _mm_srai_epi32(v[0], DCT_CONST_BITS); + u[1] = _mm_srai_epi32(v[1], DCT_CONST_BITS); + u[2] = _mm_srai_epi32(v[2], DCT_CONST_BITS); + u[3] = _mm_srai_epi32(v[3], DCT_CONST_BITS); + u[4] = _mm_srai_epi32(v[4], DCT_CONST_BITS); + u[5] = _mm_srai_epi32(v[5], DCT_CONST_BITS); + u[6] = _mm_srai_epi32(v[6], DCT_CONST_BITS); + u[7] = _mm_srai_epi32(v[7], DCT_CONST_BITS); + u[8] = _mm_srai_epi32(v[8], DCT_CONST_BITS); + u[9] = _mm_srai_epi32(v[9], DCT_CONST_BITS); + u[10] = _mm_srai_epi32(v[10], DCT_CONST_BITS); + u[11] = _mm_srai_epi32(v[11], DCT_CONST_BITS); + u[12] = _mm_srai_epi32(v[12], DCT_CONST_BITS); + u[13] = _mm_srai_epi32(v[13], DCT_CONST_BITS); + u[14] = _mm_srai_epi32(v[14], DCT_CONST_BITS); + u[15] = _mm_srai_epi32(v[15], DCT_CONST_BITS); + u[16] = _mm_srai_epi32(v[16], DCT_CONST_BITS); + u[17] = _mm_srai_epi32(v[17], DCT_CONST_BITS); + u[18] = _mm_srai_epi32(v[18], DCT_CONST_BITS); + u[19] = _mm_srai_epi32(v[19], DCT_CONST_BITS); + u[20] = _mm_srai_epi32(v[20], DCT_CONST_BITS); + u[21] = _mm_srai_epi32(v[21], DCT_CONST_BITS); + u[22] = _mm_srai_epi32(v[22], DCT_CONST_BITS); + u[23] = _mm_srai_epi32(v[23], DCT_CONST_BITS); + u[24] = _mm_srai_epi32(v[24], DCT_CONST_BITS); + u[25] = _mm_srai_epi32(v[25], DCT_CONST_BITS); + u[26] = _mm_srai_epi32(v[26], DCT_CONST_BITS); + u[27] = _mm_srai_epi32(v[27], DCT_CONST_BITS); + u[28] = _mm_srai_epi32(v[28], DCT_CONST_BITS); + u[29] = _mm_srai_epi32(v[29], DCT_CONST_BITS); + u[30] = _mm_srai_epi32(v[30], DCT_CONST_BITS); + u[31] = _mm_srai_epi32(v[31], DCT_CONST_BITS); + + s[0] = _mm_packs_epi32(u[0], u[1]); + s[1] = _mm_packs_epi32(u[2], u[3]); + s[2] = _mm_packs_epi32(u[4], u[5]); + s[3] = _mm_packs_epi32(u[6], u[7]); + s[4] = _mm_packs_epi32(u[8], u[9]); + s[5] = _mm_packs_epi32(u[10], u[11]); + s[6] = _mm_packs_epi32(u[12], u[13]); + s[7] = _mm_packs_epi32(u[14], u[15]); + s[8] = _mm_packs_epi32(u[16], u[17]); + s[9] = _mm_packs_epi32(u[18], u[19]); + s[10] = _mm_packs_epi32(u[20], u[21]); + s[11] = _mm_packs_epi32(u[22], u[23]); + s[12] = _mm_packs_epi32(u[24], u[25]); + s[13] = _mm_packs_epi32(u[26], u[27]); + s[14] = _mm_packs_epi32(u[28], u[29]); + s[15] = _mm_packs_epi32(u[30], u[31]); + + // stage 2 + u[0] = _mm_unpacklo_epi16(s[8], s[9]); + u[1] = _mm_unpackhi_epi16(s[8], s[9]); + u[2] = _mm_unpacklo_epi16(s[10], s[11]); + u[3] = _mm_unpackhi_epi16(s[10], s[11]); + u[4] = _mm_unpacklo_epi16(s[12], s[13]); + u[5] = _mm_unpackhi_epi16(s[12], s[13]); + u[6] = _mm_unpacklo_epi16(s[14], s[15]); + u[7] = _mm_unpackhi_epi16(s[14], s[15]); + + v[0] = _mm_madd_epi16(u[0], k__cospi_p04_p28); + v[1] = _mm_madd_epi16(u[1], k__cospi_p04_p28); + v[2] = _mm_madd_epi16(u[0], k__cospi_p28_m04); + v[3] = _mm_madd_epi16(u[1], k__cospi_p28_m04); + v[4] = _mm_madd_epi16(u[2], k__cospi_p20_p12); + v[5] = _mm_madd_epi16(u[3], k__cospi_p20_p12); + v[6] = _mm_madd_epi16(u[2], k__cospi_p12_m20); + v[7] = _mm_madd_epi16(u[3], k__cospi_p12_m20); + v[8] = _mm_madd_epi16(u[4], k__cospi_m28_p04); + v[9] = _mm_madd_epi16(u[5], k__cospi_m28_p04); + v[10] = _mm_madd_epi16(u[4], k__cospi_p04_p28); + v[11] = _mm_madd_epi16(u[5], k__cospi_p04_p28); + v[12] = _mm_madd_epi16(u[6], k__cospi_m12_p20); + v[13] = _mm_madd_epi16(u[7], k__cospi_m12_p20); + v[14] = _mm_madd_epi16(u[6], k__cospi_p20_p12); + v[15] = _mm_madd_epi16(u[7], k__cospi_p20_p12); + + u[0] = _mm_add_epi32(v[0], v[8]); + u[1] = _mm_add_epi32(v[1], v[9]); + u[2] = _mm_add_epi32(v[2], v[10]); + u[3] = _mm_add_epi32(v[3], v[11]); + u[4] = _mm_add_epi32(v[4], v[12]); + u[5] = _mm_add_epi32(v[5], v[13]); + u[6] = _mm_add_epi32(v[6], v[14]); + u[7] = _mm_add_epi32(v[7], v[15]); + u[8] = _mm_sub_epi32(v[0], v[8]); + u[9] = _mm_sub_epi32(v[1], v[9]); + u[10] = _mm_sub_epi32(v[2], v[10]); + u[11] = _mm_sub_epi32(v[3], v[11]); + u[12] = _mm_sub_epi32(v[4], v[12]); + u[13] = _mm_sub_epi32(v[5], v[13]); + u[14] = _mm_sub_epi32(v[6], v[14]); + u[15] = _mm_sub_epi32(v[7], v[15]); + + v[0] = _mm_add_epi32(u[0], k__DCT_CONST_ROUNDING); + v[1] = _mm_add_epi32(u[1], k__DCT_CONST_ROUNDING); + v[2] = _mm_add_epi32(u[2], k__DCT_CONST_ROUNDING); + v[3] = _mm_add_epi32(u[3], k__DCT_CONST_ROUNDING); + v[4] = _mm_add_epi32(u[4], k__DCT_CONST_ROUNDING); + v[5] = _mm_add_epi32(u[5], k__DCT_CONST_ROUNDING); + v[6] = _mm_add_epi32(u[6], k__DCT_CONST_ROUNDING); + v[7] = _mm_add_epi32(u[7], k__DCT_CONST_ROUNDING); + v[8] = _mm_add_epi32(u[8], k__DCT_CONST_ROUNDING); + v[9] = _mm_add_epi32(u[9], k__DCT_CONST_ROUNDING); + v[10] = _mm_add_epi32(u[10], k__DCT_CONST_ROUNDING); + v[11] = _mm_add_epi32(u[11], k__DCT_CONST_ROUNDING); + v[12] = _mm_add_epi32(u[12], k__DCT_CONST_ROUNDING); + v[13] = _mm_add_epi32(u[13], k__DCT_CONST_ROUNDING); + v[14] = _mm_add_epi32(u[14], k__DCT_CONST_ROUNDING); + v[15] = _mm_add_epi32(u[15], k__DCT_CONST_ROUNDING); + + u[0] = _mm_srai_epi32(v[0], DCT_CONST_BITS); + u[1] = _mm_srai_epi32(v[1], DCT_CONST_BITS); + u[2] = _mm_srai_epi32(v[2], DCT_CONST_BITS); + u[3] = _mm_srai_epi32(v[3], DCT_CONST_BITS); + u[4] = _mm_srai_epi32(v[4], DCT_CONST_BITS); + u[5] = _mm_srai_epi32(v[5], DCT_CONST_BITS); + u[6] = _mm_srai_epi32(v[6], DCT_CONST_BITS); + u[7] = _mm_srai_epi32(v[7], DCT_CONST_BITS); + u[8] = _mm_srai_epi32(v[8], DCT_CONST_BITS); + u[9] = _mm_srai_epi32(v[9], DCT_CONST_BITS); + u[10] = _mm_srai_epi32(v[10], DCT_CONST_BITS); + u[11] = _mm_srai_epi32(v[11], DCT_CONST_BITS); + u[12] = _mm_srai_epi32(v[12], DCT_CONST_BITS); + u[13] = _mm_srai_epi32(v[13], DCT_CONST_BITS); + u[14] = _mm_srai_epi32(v[14], DCT_CONST_BITS); + u[15] = _mm_srai_epi32(v[15], DCT_CONST_BITS); + + x[0] = _mm_add_epi16(s[0], s[4]); + x[1] = _mm_add_epi16(s[1], s[5]); + x[2] = _mm_add_epi16(s[2], s[6]); + x[3] = _mm_add_epi16(s[3], s[7]); + x[4] = _mm_sub_epi16(s[0], s[4]); + x[5] = _mm_sub_epi16(s[1], s[5]); + x[6] = _mm_sub_epi16(s[2], s[6]); + x[7] = _mm_sub_epi16(s[3], s[7]); + x[8] = _mm_packs_epi32(u[0], u[1]); + x[9] = _mm_packs_epi32(u[2], u[3]); + x[10] = _mm_packs_epi32(u[4], u[5]); + x[11] = _mm_packs_epi32(u[6], u[7]); + x[12] = _mm_packs_epi32(u[8], u[9]); + x[13] = _mm_packs_epi32(u[10], u[11]); + x[14] = _mm_packs_epi32(u[12], u[13]); + x[15] = _mm_packs_epi32(u[14], u[15]); + + // stage 3 + u[0] = _mm_unpacklo_epi16(x[4], x[5]); + u[1] = _mm_unpackhi_epi16(x[4], x[5]); + u[2] = _mm_unpacklo_epi16(x[6], x[7]); + u[3] = _mm_unpackhi_epi16(x[6], x[7]); + u[4] = _mm_unpacklo_epi16(x[12], x[13]); + u[5] = _mm_unpackhi_epi16(x[12], x[13]); + u[6] = _mm_unpacklo_epi16(x[14], x[15]); + u[7] = _mm_unpackhi_epi16(x[14], x[15]); + + v[0] = _mm_madd_epi16(u[0], k__cospi_p08_p24); + v[1] = _mm_madd_epi16(u[1], k__cospi_p08_p24); + v[2] = _mm_madd_epi16(u[0], k__cospi_p24_m08); + v[3] = _mm_madd_epi16(u[1], k__cospi_p24_m08); + v[4] = _mm_madd_epi16(u[2], k__cospi_m24_p08); + v[5] = _mm_madd_epi16(u[3], k__cospi_m24_p08); + v[6] = _mm_madd_epi16(u[2], k__cospi_p08_p24); + v[7] = _mm_madd_epi16(u[3], k__cospi_p08_p24); + v[8] = _mm_madd_epi16(u[4], k__cospi_p08_p24); + v[9] = _mm_madd_epi16(u[5], k__cospi_p08_p24); + v[10] = _mm_madd_epi16(u[4], k__cospi_p24_m08); + v[11] = _mm_madd_epi16(u[5], k__cospi_p24_m08); + v[12] = _mm_madd_epi16(u[6], k__cospi_m24_p08); + v[13] = _mm_madd_epi16(u[7], k__cospi_m24_p08); + v[14] = _mm_madd_epi16(u[6], k__cospi_p08_p24); + v[15] = _mm_madd_epi16(u[7], k__cospi_p08_p24); + + u[0] = _mm_add_epi32(v[0], v[4]); + u[1] = _mm_add_epi32(v[1], v[5]); + u[2] = _mm_add_epi32(v[2], v[6]); + u[3] = _mm_add_epi32(v[3], v[7]); + u[4] = _mm_sub_epi32(v[0], v[4]); + u[5] = _mm_sub_epi32(v[1], v[5]); + u[6] = _mm_sub_epi32(v[2], v[6]); + u[7] = _mm_sub_epi32(v[3], v[7]); + u[8] = _mm_add_epi32(v[8], v[12]); + u[9] = _mm_add_epi32(v[9], v[13]); + u[10] = _mm_add_epi32(v[10], v[14]); + u[11] = _mm_add_epi32(v[11], v[15]); + u[12] = _mm_sub_epi32(v[8], v[12]); + u[13] = _mm_sub_epi32(v[9], v[13]); + u[14] = _mm_sub_epi32(v[10], v[14]); + u[15] = _mm_sub_epi32(v[11], v[15]); + + u[0] = _mm_add_epi32(u[0], k__DCT_CONST_ROUNDING); + u[1] = _mm_add_epi32(u[1], k__DCT_CONST_ROUNDING); + u[2] = _mm_add_epi32(u[2], k__DCT_CONST_ROUNDING); + u[3] = _mm_add_epi32(u[3], k__DCT_CONST_ROUNDING); + u[4] = _mm_add_epi32(u[4], k__DCT_CONST_ROUNDING); + u[5] = _mm_add_epi32(u[5], k__DCT_CONST_ROUNDING); + u[6] = _mm_add_epi32(u[6], k__DCT_CONST_ROUNDING); + u[7] = _mm_add_epi32(u[7], k__DCT_CONST_ROUNDING); + u[8] = _mm_add_epi32(u[8], k__DCT_CONST_ROUNDING); + u[9] = _mm_add_epi32(u[9], k__DCT_CONST_ROUNDING); + u[10] = _mm_add_epi32(u[10], k__DCT_CONST_ROUNDING); + u[11] = _mm_add_epi32(u[11], k__DCT_CONST_ROUNDING); + u[12] = _mm_add_epi32(u[12], k__DCT_CONST_ROUNDING); + u[13] = _mm_add_epi32(u[13], k__DCT_CONST_ROUNDING); + u[14] = _mm_add_epi32(u[14], k__DCT_CONST_ROUNDING); + u[15] = _mm_add_epi32(u[15], k__DCT_CONST_ROUNDING); + + v[0] = _mm_srai_epi32(u[0], DCT_CONST_BITS); + v[1] = _mm_srai_epi32(u[1], DCT_CONST_BITS); + v[2] = _mm_srai_epi32(u[2], DCT_CONST_BITS); + v[3] = _mm_srai_epi32(u[3], DCT_CONST_BITS); + v[4] = _mm_srai_epi32(u[4], DCT_CONST_BITS); + v[5] = _mm_srai_epi32(u[5], DCT_CONST_BITS); + v[6] = _mm_srai_epi32(u[6], DCT_CONST_BITS); + v[7] = _mm_srai_epi32(u[7], DCT_CONST_BITS); + v[8] = _mm_srai_epi32(u[8], DCT_CONST_BITS); + v[9] = _mm_srai_epi32(u[9], DCT_CONST_BITS); + v[10] = _mm_srai_epi32(u[10], DCT_CONST_BITS); + v[11] = _mm_srai_epi32(u[11], DCT_CONST_BITS); + v[12] = _mm_srai_epi32(u[12], DCT_CONST_BITS); + v[13] = _mm_srai_epi32(u[13], DCT_CONST_BITS); + v[14] = _mm_srai_epi32(u[14], DCT_CONST_BITS); + v[15] = _mm_srai_epi32(u[15], DCT_CONST_BITS); + + s[0] = _mm_add_epi16(x[0], x[2]); + s[1] = _mm_add_epi16(x[1], x[3]); + s[2] = _mm_sub_epi16(x[0], x[2]); + s[3] = _mm_sub_epi16(x[1], x[3]); + s[4] = _mm_packs_epi32(v[0], v[1]); + s[5] = _mm_packs_epi32(v[2], v[3]); + s[6] = _mm_packs_epi32(v[4], v[5]); + s[7] = _mm_packs_epi32(v[6], v[7]); + s[8] = _mm_add_epi16(x[8], x[10]); + s[9] = _mm_add_epi16(x[9], x[11]); + s[10] = _mm_sub_epi16(x[8], x[10]); + s[11] = _mm_sub_epi16(x[9], x[11]); + s[12] = _mm_packs_epi32(v[8], v[9]); + s[13] = _mm_packs_epi32(v[10], v[11]); + s[14] = _mm_packs_epi32(v[12], v[13]); + s[15] = _mm_packs_epi32(v[14], v[15]); + + // stage 4 + u[0] = _mm_unpacklo_epi16(s[2], s[3]); + u[1] = _mm_unpackhi_epi16(s[2], s[3]); + u[2] = _mm_unpacklo_epi16(s[6], s[7]); + u[3] = _mm_unpackhi_epi16(s[6], s[7]); + u[4] = _mm_unpacklo_epi16(s[10], s[11]); + u[5] = _mm_unpackhi_epi16(s[10], s[11]); + u[6] = _mm_unpacklo_epi16(s[14], s[15]); + u[7] = _mm_unpackhi_epi16(s[14], s[15]); + + in[7] = idct_calc_wraplow_sse2(u[0], u[1], k__cospi_m16_m16); + in[8] = idct_calc_wraplow_sse2(u[0], u[1], k__cospi_p16_m16); + in[4] = idct_calc_wraplow_sse2(u[2], u[3], k__cospi_p16_p16); + in[11] = idct_calc_wraplow_sse2(u[2], u[3], k__cospi_m16_p16); + in[6] = idct_calc_wraplow_sse2(u[4], u[5], k__cospi_p16_p16); + in[9] = idct_calc_wraplow_sse2(u[4], u[5], k__cospi_m16_p16); + in[5] = idct_calc_wraplow_sse2(u[6], u[7], k__cospi_m16_m16); + in[10] = idct_calc_wraplow_sse2(u[6], u[7], k__cospi_p16_m16); + + in[0] = s[0]; + in[1] = _mm_sub_epi16(kZero, s[8]); + in[2] = s[12]; + in[3] = _mm_sub_epi16(kZero, s[4]); + in[12] = s[5]; + in[13] = _mm_sub_epi16(kZero, s[13]); + in[14] = s[9]; + in[15] = _mm_sub_epi16(kZero, s[1]); +} + +void idct16_sse2(__m128i *const in0, __m128i *const in1) { + transpose_16bit_16x16(in0, in1); + idct16_8col(in0, in0); + idct16_8col(in1, in1); +} + +void iadst16_sse2(__m128i *const in0, __m128i *const in1) { + transpose_16bit_16x16(in0, in1); + iadst16_8col(in0); + iadst16_8col(in1); +} + +// Group the coefficient calculation into smaller functions to prevent stack +// spillover in 32x32 idct optimizations: +// quarter_1: 0-7 +// quarter_2: 8-15 +// quarter_3_4: 16-23, 24-31 + +// For each 8x32 block __m128i in[32], +// Input with index, 0, 4 +// output pixels: 0-7 in __m128i out[32] +static INLINE void idct32_34_8x32_quarter_1(const __m128i *const in /*in[32]*/, + __m128i *const out /*out[8]*/) { + const __m128i zero = _mm_setzero_si128(); + __m128i step1[8], step2[8]; + + // stage 3 + butterfly(in[4], zero, cospi_28_64, cospi_4_64, &step1[4], &step1[7]); + + // stage 4 + step2[0] = butterfly_cospi16(in[0]); + step2[4] = step1[4]; + step2[5] = step1[4]; + step2[6] = step1[7]; + step2[7] = step1[7]; + + // stage 5 + step1[0] = step2[0]; + step1[1] = step2[0]; + step1[2] = step2[0]; + step1[3] = step2[0]; + step1[4] = step2[4]; + butterfly(step2[6], step2[5], cospi_16_64, cospi_16_64, &step1[5], &step1[6]); + step1[7] = step2[7]; + + // stage 6 + out[0] = _mm_add_epi16(step1[0], step1[7]); + out[1] = _mm_add_epi16(step1[1], step1[6]); + out[2] = _mm_add_epi16(step1[2], step1[5]); + out[3] = _mm_add_epi16(step1[3], step1[4]); + out[4] = _mm_sub_epi16(step1[3], step1[4]); + out[5] = _mm_sub_epi16(step1[2], step1[5]); + out[6] = _mm_sub_epi16(step1[1], step1[6]); + out[7] = _mm_sub_epi16(step1[0], step1[7]); +} + +// For each 8x32 block __m128i in[32], +// Input with index, 2, 6 +// output pixels: 8-15 in __m128i out[32] +static INLINE void idct32_34_8x32_quarter_2(const __m128i *const in /*in[32]*/, + __m128i *const out /*out[16]*/) { + const __m128i zero = _mm_setzero_si128(); + __m128i step1[16], step2[16]; + + // stage 2 + butterfly(in[2], zero, cospi_30_64, cospi_2_64, &step2[8], &step2[15]); + butterfly(zero, in[6], cospi_6_64, cospi_26_64, &step2[11], &step2[12]); + + // stage 3 + step1[8] = step2[8]; + step1[9] = step2[8]; + step1[14] = step2[15]; + step1[15] = step2[15]; + step1[10] = step2[11]; + step1[11] = step2[11]; + step1[12] = step2[12]; + step1[13] = step2[12]; + + idct32_8x32_quarter_2_stage_4_to_6(step1, out); +} + +static INLINE void idct32_34_8x32_quarter_1_2( + const __m128i *const in /*in[32]*/, __m128i *const out /*out[32]*/) { + __m128i temp[16]; + idct32_34_8x32_quarter_1(in, temp); + idct32_34_8x32_quarter_2(in, temp); + // stage 7 + add_sub_butterfly(temp, out, 16); +} + +// For each 8x32 block __m128i in[32], +// Input with odd index, 1, 3, 5, 7 +// output pixels: 16-23, 24-31 in __m128i out[32] +static INLINE void idct32_34_8x32_quarter_3_4( + const __m128i *const in /*in[32]*/, __m128i *const out /*out[32]*/) { + const __m128i zero = _mm_setzero_si128(); + __m128i step1[32]; + + // stage 1 + butterfly(in[1], zero, cospi_31_64, cospi_1_64, &step1[16], &step1[31]); + butterfly(zero, in[7], cospi_7_64, cospi_25_64, &step1[19], &step1[28]); + butterfly(in[5], zero, cospi_27_64, cospi_5_64, &step1[20], &step1[27]); + butterfly(zero, in[3], cospi_3_64, cospi_29_64, &step1[23], &step1[24]); + + // stage 3 + butterfly(step1[31], step1[16], cospi_28_64, cospi_4_64, &step1[17], + &step1[30]); + butterfly(step1[28], step1[19], -cospi_4_64, cospi_28_64, &step1[18], + &step1[29]); + butterfly(step1[27], step1[20], cospi_12_64, cospi_20_64, &step1[21], + &step1[26]); + butterfly(step1[24], step1[23], -cospi_20_64, cospi_12_64, &step1[22], + &step1[25]); + + idct32_8x32_quarter_3_4_stage_4_to_7(step1, out); +} + +void idct32_34_8x32_sse2(const __m128i *const in /*in[32]*/, + __m128i *const out /*out[32]*/) { + __m128i temp[32]; + + idct32_34_8x32_quarter_1_2(in, temp); + idct32_34_8x32_quarter_3_4(in, temp); + // final stage + add_sub_butterfly(temp, out, 32); +} + +// Only upper-left 8x8 has non-zero coeff +void vpx_idct32x32_34_add_sse2(const tran_low_t *input, uint8_t *dest, + int stride) { + __m128i io[32], col[32]; + int i; + + // Load input data. Only need to load the top left 8x8 block. + load_transpose_16bit_8x8(input, 32, io); + idct32_34_8x32_sse2(io, col); + + for (i = 0; i < 32; i += 8) { + int j; + transpose_16bit_8x8(col + i, io); + idct32_34_8x32_sse2(io, io); + + for (j = 0; j < 32; ++j) { + write_buffer_8x1(dest + j * stride, io[j]); + } + + dest += 8; + } +} + +// For each 8x32 block __m128i in[32], +// Input with index, 0, 4, 8, 12, 16, 20, 24, 28 +// output pixels: 0-7 in __m128i out[32] +static INLINE void idct32_1024_8x32_quarter_1( + const __m128i *const in /*in[32]*/, __m128i *const out /*out[8]*/) { + __m128i step1[8], step2[8]; + + // stage 3 + butterfly(in[4], in[28], cospi_28_64, cospi_4_64, &step1[4], &step1[7]); + butterfly(in[20], in[12], cospi_12_64, cospi_20_64, &step1[5], &step1[6]); + + // stage 4 + butterfly(in[0], in[16], cospi_16_64, cospi_16_64, &step2[1], &step2[0]); + butterfly(in[8], in[24], cospi_24_64, cospi_8_64, &step2[2], &step2[3]); + step2[4] = _mm_add_epi16(step1[4], step1[5]); + step2[5] = _mm_sub_epi16(step1[4], step1[5]); + step2[6] = _mm_sub_epi16(step1[7], step1[6]); + step2[7] = _mm_add_epi16(step1[7], step1[6]); + + // stage 5 + step1[0] = _mm_add_epi16(step2[0], step2[3]); + step1[1] = _mm_add_epi16(step2[1], step2[2]); + step1[2] = _mm_sub_epi16(step2[1], step2[2]); + step1[3] = _mm_sub_epi16(step2[0], step2[3]); + step1[4] = step2[4]; + butterfly(step2[6], step2[5], cospi_16_64, cospi_16_64, &step1[5], &step1[6]); + step1[7] = step2[7]; + + // stage 6 + out[0] = _mm_add_epi16(step1[0], step1[7]); + out[1] = _mm_add_epi16(step1[1], step1[6]); + out[2] = _mm_add_epi16(step1[2], step1[5]); + out[3] = _mm_add_epi16(step1[3], step1[4]); + out[4] = _mm_sub_epi16(step1[3], step1[4]); + out[5] = _mm_sub_epi16(step1[2], step1[5]); + out[6] = _mm_sub_epi16(step1[1], step1[6]); + out[7] = _mm_sub_epi16(step1[0], step1[7]); +} + +// For each 8x32 block __m128i in[32], +// Input with index, 2, 6, 10, 14, 18, 22, 26, 30 +// output pixels: 8-15 in __m128i out[32] +static INLINE void idct32_1024_8x32_quarter_2( + const __m128i *const in /*in[32]*/, __m128i *const out /*out[16]*/) { + __m128i step1[16], step2[16]; + + // stage 2 + butterfly(in[2], in[30], cospi_30_64, cospi_2_64, &step2[8], &step2[15]); + butterfly(in[18], in[14], cospi_14_64, cospi_18_64, &step2[9], &step2[14]); + butterfly(in[10], in[22], cospi_22_64, cospi_10_64, &step2[10], &step2[13]); + butterfly(in[26], in[6], cospi_6_64, cospi_26_64, &step2[11], &step2[12]); + + // stage 3 + step1[8] = _mm_add_epi16(step2[8], step2[9]); + step1[9] = _mm_sub_epi16(step2[8], step2[9]); + step1[10] = _mm_sub_epi16(step2[11], step2[10]); + step1[11] = _mm_add_epi16(step2[11], step2[10]); + step1[12] = _mm_add_epi16(step2[12], step2[13]); + step1[13] = _mm_sub_epi16(step2[12], step2[13]); + step1[14] = _mm_sub_epi16(step2[15], step2[14]); + step1[15] = _mm_add_epi16(step2[15], step2[14]); + + idct32_8x32_quarter_2_stage_4_to_6(step1, out); +} + +static INLINE void idct32_1024_8x32_quarter_1_2( + const __m128i *const in /*in[32]*/, __m128i *const out /*out[32]*/) { + __m128i temp[16]; + idct32_1024_8x32_quarter_1(in, temp); + idct32_1024_8x32_quarter_2(in, temp); + // stage 7 + add_sub_butterfly(temp, out, 16); +} + +// For each 8x32 block __m128i in[32], +// Input with odd index, +// 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 +// output pixels: 16-23, 24-31 in __m128i out[32] +static INLINE void idct32_1024_8x32_quarter_3_4( + const __m128i *const in /*in[32]*/, __m128i *const out /*out[32]*/) { + __m128i step1[32], step2[32]; + + // stage 1 + butterfly(in[1], in[31], cospi_31_64, cospi_1_64, &step1[16], &step1[31]); + butterfly(in[17], in[15], cospi_15_64, cospi_17_64, &step1[17], &step1[30]); + butterfly(in[9], in[23], cospi_23_64, cospi_9_64, &step1[18], &step1[29]); + butterfly(in[25], in[7], cospi_7_64, cospi_25_64, &step1[19], &step1[28]); + + butterfly(in[5], in[27], cospi_27_64, cospi_5_64, &step1[20], &step1[27]); + butterfly(in[21], in[11], cospi_11_64, cospi_21_64, &step1[21], &step1[26]); + + butterfly(in[13], in[19], cospi_19_64, cospi_13_64, &step1[22], &step1[25]); + butterfly(in[29], in[3], cospi_3_64, cospi_29_64, &step1[23], &step1[24]); + + // stage 2 + step2[16] = _mm_add_epi16(step1[16], step1[17]); + step2[17] = _mm_sub_epi16(step1[16], step1[17]); + step2[18] = _mm_sub_epi16(step1[19], step1[18]); + step2[19] = _mm_add_epi16(step1[19], step1[18]); + step2[20] = _mm_add_epi16(step1[20], step1[21]); + step2[21] = _mm_sub_epi16(step1[20], step1[21]); + step2[22] = _mm_sub_epi16(step1[23], step1[22]); + step2[23] = _mm_add_epi16(step1[23], step1[22]); + + step2[24] = _mm_add_epi16(step1[24], step1[25]); + step2[25] = _mm_sub_epi16(step1[24], step1[25]); + step2[26] = _mm_sub_epi16(step1[27], step1[26]); + step2[27] = _mm_add_epi16(step1[27], step1[26]); + step2[28] = _mm_add_epi16(step1[28], step1[29]); + step2[29] = _mm_sub_epi16(step1[28], step1[29]); + step2[30] = _mm_sub_epi16(step1[31], step1[30]); + step2[31] = _mm_add_epi16(step1[31], step1[30]); + + // stage 3 + step1[16] = step2[16]; + step1[31] = step2[31]; + butterfly(step2[30], step2[17], cospi_28_64, cospi_4_64, &step1[17], + &step1[30]); + butterfly(step2[29], step2[18], -cospi_4_64, cospi_28_64, &step1[18], + &step1[29]); + step1[19] = step2[19]; + step1[20] = step2[20]; + butterfly(step2[26], step2[21], cospi_12_64, cospi_20_64, &step1[21], + &step1[26]); + butterfly(step2[25], step2[22], -cospi_20_64, cospi_12_64, &step1[22], + &step1[25]); + step1[23] = step2[23]; + step1[24] = step2[24]; + step1[27] = step2[27]; + step1[28] = step2[28]; + + idct32_8x32_quarter_3_4_stage_4_to_7(step1, out); +} + +void idct32_1024_8x32(const __m128i *const in /*in[32]*/, + __m128i *const out /*out[32]*/) { + __m128i temp[32]; + + idct32_1024_8x32_quarter_1_2(in, temp); + idct32_1024_8x32_quarter_3_4(in, temp); + // final stage + add_sub_butterfly(temp, out, 32); +} + +void vpx_idct32x32_1024_add_sse2(const tran_low_t *input, uint8_t *dest, + int stride) { + __m128i col[4][32], io[32]; + int i; + + // rows + for (i = 0; i < 4; i++) { + load_transpose_16bit_8x8(&input[0], 32, &io[0]); + load_transpose_16bit_8x8(&input[8], 32, &io[8]); + load_transpose_16bit_8x8(&input[16], 32, &io[16]); + load_transpose_16bit_8x8(&input[24], 32, &io[24]); + idct32_1024_8x32(io, col[i]); + input += 32 << 3; + } + + // columns + for (i = 0; i < 32; i += 8) { + // Transpose 32x8 block to 8x32 block + transpose_16bit_8x8(col[0] + i, io); + transpose_16bit_8x8(col[1] + i, io + 8); + transpose_16bit_8x8(col[2] + i, io + 16); + transpose_16bit_8x8(col[3] + i, io + 24); + + idct32_1024_8x32(io, io); + store_buffer_8x32(io, dest, stride); + dest += 8; + } +} + +void vpx_idct32x32_135_add_sse2(const tran_low_t *input, uint8_t *dest, + int stride) { + __m128i col[2][32], in[32], out[32]; + int i; + + for (i = 16; i < 32; i++) { + in[i] = _mm_setzero_si128(); + } + + // rows + for (i = 0; i < 2; i++) { + load_transpose_16bit_8x8(&input[0], 32, &in[0]); + load_transpose_16bit_8x8(&input[8], 32, &in[8]); + idct32_1024_8x32(in, col[i]); + input += 32 << 3; + } + + // columns + for (i = 0; i < 32; i += 8) { + transpose_16bit_8x8(col[0] + i, in); + transpose_16bit_8x8(col[1] + i, in + 8); + idct32_1024_8x32(in, out); + store_buffer_8x32(out, dest, stride); + dest += 8; + } +} + +void vpx_idct32x32_1_add_sse2(const tran_low_t *input, uint8_t *dest, + int stride) { + __m128i dc_value; + int j; + tran_high_t a1; + tran_low_t out = + WRAPLOW(dct_const_round_shift((int16_t)input[0] * cospi_16_64)); + + out = WRAPLOW(dct_const_round_shift(out * cospi_16_64)); + a1 = ROUND_POWER_OF_TWO(out, 6); + dc_value = _mm_set1_epi16((int16_t)a1); + + for (j = 0; j < 32; ++j) { + recon_and_store_16(dest + j * stride + 0, dc_value); + recon_and_store_16(dest + j * stride + 16, dc_value); + } +} diff --git a/vpx_dsp/x86/inv_txfm_sse2.h b/vpx_dsp/x86/inv_txfm_sse2.h new file mode 100644 index 0000000..5cd5098 --- /dev/null +++ b/vpx_dsp/x86/inv_txfm_sse2.h @@ -0,0 +1,709 @@ +/* + * Copyright (c) 2015 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VPX_DSP_X86_INV_TXFM_SSE2_H_ +#define VPX_DSP_X86_INV_TXFM_SSE2_H_ + +#include // SSE2 + +#include "./vpx_config.h" +#include "vpx/vpx_integer.h" +#include "vpx_dsp/inv_txfm.h" +#include "vpx_dsp/x86/transpose_sse2.h" +#include "vpx_dsp/x86/txfm_common_sse2.h" + +static INLINE void idct8x8_12_transpose_16bit_4x8(const __m128i *const in, + __m128i *const out) { + // Unpack 16 bit elements. Goes from: + // in[0]: 30 31 32 33 00 01 02 03 + // in[1]: 20 21 22 23 10 11 12 13 + // in[2]: 40 41 42 43 70 71 72 73 + // in[3]: 50 51 52 53 60 61 62 63 + // to: + // tr0_0: 00 10 01 11 02 12 03 13 + // tr0_1: 20 30 21 31 22 32 23 33 + // tr0_2: 40 50 41 51 42 52 43 53 + // tr0_3: 60 70 61 71 62 72 63 73 + const __m128i tr0_0 = _mm_unpackhi_epi16(in[0], in[1]); + const __m128i tr0_1 = _mm_unpacklo_epi16(in[1], in[0]); + const __m128i tr0_2 = _mm_unpacklo_epi16(in[2], in[3]); + const __m128i tr0_3 = _mm_unpackhi_epi16(in[3], in[2]); + + // Unpack 32 bit elements resulting in: + // tr1_0: 00 10 20 30 01 11 21 31 + // tr1_1: 02 12 22 32 03 13 23 33 + // tr1_2: 40 50 60 70 41 51 61 71 + // tr1_3: 42 52 62 72 43 53 63 73 + const __m128i tr1_0 = _mm_unpacklo_epi32(tr0_0, tr0_1); + const __m128i tr1_1 = _mm_unpacklo_epi32(tr0_2, tr0_3); + const __m128i tr1_2 = _mm_unpackhi_epi32(tr0_0, tr0_1); + const __m128i tr1_3 = _mm_unpackhi_epi32(tr0_2, tr0_3); + + // Unpack 64 bit elements resulting in: + // out[0]: 00 10 20 30 40 50 60 70 + // out[1]: 01 11 21 31 41 51 61 71 + // out[2]: 02 12 22 32 42 52 62 72 + // out[3]: 03 13 23 33 43 53 63 73 + out[0] = _mm_unpacklo_epi64(tr1_0, tr1_1); + out[1] = _mm_unpackhi_epi64(tr1_0, tr1_1); + out[2] = _mm_unpacklo_epi64(tr1_2, tr1_3); + out[3] = _mm_unpackhi_epi64(tr1_2, tr1_3); +} + +static INLINE __m128i dct_const_round_shift_sse2(const __m128i in) { + const __m128i t = _mm_add_epi32(in, _mm_set1_epi32(DCT_CONST_ROUNDING)); + return _mm_srai_epi32(t, DCT_CONST_BITS); +} + +static INLINE __m128i idct_madd_round_shift_sse2(const __m128i in, + const __m128i cospi) { + const __m128i t = _mm_madd_epi16(in, cospi); + return dct_const_round_shift_sse2(t); +} + +// Calculate the dot product between in0/1 and x and wrap to short. +static INLINE __m128i idct_calc_wraplow_sse2(const __m128i in0, + const __m128i in1, + const __m128i x) { + const __m128i t0 = idct_madd_round_shift_sse2(in0, x); + const __m128i t1 = idct_madd_round_shift_sse2(in1, x); + return _mm_packs_epi32(t0, t1); +} + +// Multiply elements by constants and add them together. +static INLINE void butterfly(const __m128i in0, const __m128i in1, const int c0, + const int c1, __m128i *const out0, + __m128i *const out1) { + const __m128i cst0 = pair_set_epi16(c0, -c1); + const __m128i cst1 = pair_set_epi16(c1, c0); + const __m128i lo = _mm_unpacklo_epi16(in0, in1); + const __m128i hi = _mm_unpackhi_epi16(in0, in1); + *out0 = idct_calc_wraplow_sse2(lo, hi, cst0); + *out1 = idct_calc_wraplow_sse2(lo, hi, cst1); +} + +static INLINE __m128i butterfly_cospi16(const __m128i in) { + const __m128i cst = pair_set_epi16(cospi_16_64, cospi_16_64); + const __m128i lo = _mm_unpacklo_epi16(in, _mm_setzero_si128()); + const __m128i hi = _mm_unpackhi_epi16(in, _mm_setzero_si128()); + return idct_calc_wraplow_sse2(lo, hi, cst); +} + +// Functions to allow 8 bit optimisations to be used when profile 0 is used with +// highbitdepth enabled +static INLINE __m128i load_input_data4(const tran_low_t *data) { +#if CONFIG_VP9_HIGHBITDEPTH + const __m128i zero = _mm_setzero_si128(); + const __m128i in = _mm_load_si128((const __m128i *)data); + return _mm_packs_epi32(in, zero); +#else + return _mm_loadl_epi64((const __m128i *)data); +#endif +} + +static INLINE __m128i load_input_data8(const tran_low_t *data) { +#if CONFIG_VP9_HIGHBITDEPTH + const __m128i in0 = _mm_load_si128((const __m128i *)data); + const __m128i in1 = _mm_load_si128((const __m128i *)(data + 4)); + return _mm_packs_epi32(in0, in1); +#else + return _mm_load_si128((const __m128i *)data); +#endif +} + +static INLINE void load_transpose_16bit_8x8(const tran_low_t *input, + const int stride, + __m128i *const in) { + in[0] = load_input_data8(input + 0 * stride); + in[1] = load_input_data8(input + 1 * stride); + in[2] = load_input_data8(input + 2 * stride); + in[3] = load_input_data8(input + 3 * stride); + in[4] = load_input_data8(input + 4 * stride); + in[5] = load_input_data8(input + 5 * stride); + in[6] = load_input_data8(input + 6 * stride); + in[7] = load_input_data8(input + 7 * stride); + transpose_16bit_8x8(in, in); +} + +static INLINE void recon_and_store(uint8_t *const dest, const __m128i in_x) { + const __m128i zero = _mm_setzero_si128(); + __m128i d0 = _mm_loadl_epi64((__m128i *)(dest)); + d0 = _mm_unpacklo_epi8(d0, zero); + d0 = _mm_add_epi16(in_x, d0); + d0 = _mm_packus_epi16(d0, d0); + _mm_storel_epi64((__m128i *)(dest), d0); +} + +static INLINE void round_shift_8x8(const __m128i *const in, + __m128i *const out) { + const __m128i final_rounding = _mm_set1_epi16(1 << 4); + + out[0] = _mm_add_epi16(in[0], final_rounding); + out[1] = _mm_add_epi16(in[1], final_rounding); + out[2] = _mm_add_epi16(in[2], final_rounding); + out[3] = _mm_add_epi16(in[3], final_rounding); + out[4] = _mm_add_epi16(in[4], final_rounding); + out[5] = _mm_add_epi16(in[5], final_rounding); + out[6] = _mm_add_epi16(in[6], final_rounding); + out[7] = _mm_add_epi16(in[7], final_rounding); + + out[0] = _mm_srai_epi16(out[0], 5); + out[1] = _mm_srai_epi16(out[1], 5); + out[2] = _mm_srai_epi16(out[2], 5); + out[3] = _mm_srai_epi16(out[3], 5); + out[4] = _mm_srai_epi16(out[4], 5); + out[5] = _mm_srai_epi16(out[5], 5); + out[6] = _mm_srai_epi16(out[6], 5); + out[7] = _mm_srai_epi16(out[7], 5); +} + +static INLINE void write_buffer_8x8(const __m128i *const in, + uint8_t *const dest, const int stride) { + __m128i t[8]; + + round_shift_8x8(in, t); + + recon_and_store(dest + 0 * stride, t[0]); + recon_and_store(dest + 1 * stride, t[1]); + recon_and_store(dest + 2 * stride, t[2]); + recon_and_store(dest + 3 * stride, t[3]); + recon_and_store(dest + 4 * stride, t[4]); + recon_and_store(dest + 5 * stride, t[5]); + recon_and_store(dest + 6 * stride, t[6]); + recon_and_store(dest + 7 * stride, t[7]); +} + +static INLINE void recon_and_store4x4_sse2(const __m128i *const in, + uint8_t *const dest, + const int stride) { + const __m128i zero = _mm_setzero_si128(); + __m128i d[2]; + + // Reconstruction and Store + d[0] = _mm_cvtsi32_si128(*(const int *)(dest)); + d[1] = _mm_cvtsi32_si128(*(const int *)(dest + stride * 3)); + d[0] = _mm_unpacklo_epi32(d[0], + _mm_cvtsi32_si128(*(const int *)(dest + stride))); + d[1] = _mm_unpacklo_epi32( + _mm_cvtsi32_si128(*(const int *)(dest + stride * 2)), d[1]); + d[0] = _mm_unpacklo_epi8(d[0], zero); + d[1] = _mm_unpacklo_epi8(d[1], zero); + d[0] = _mm_add_epi16(d[0], in[0]); + d[1] = _mm_add_epi16(d[1], in[1]); + d[0] = _mm_packus_epi16(d[0], d[1]); + + *(int *)dest = _mm_cvtsi128_si32(d[0]); + d[0] = _mm_srli_si128(d[0], 4); + *(int *)(dest + stride) = _mm_cvtsi128_si32(d[0]); + d[0] = _mm_srli_si128(d[0], 4); + *(int *)(dest + stride * 2) = _mm_cvtsi128_si32(d[0]); + d[0] = _mm_srli_si128(d[0], 4); + *(int *)(dest + stride * 3) = _mm_cvtsi128_si32(d[0]); +} + +static INLINE void store_buffer_8x32(__m128i *in, uint8_t *dst, int stride) { + const __m128i final_rounding = _mm_set1_epi16(1 << 5); + int j = 0; + while (j < 32) { + in[j] = _mm_adds_epi16(in[j], final_rounding); + in[j + 1] = _mm_adds_epi16(in[j + 1], final_rounding); + + in[j] = _mm_srai_epi16(in[j], 6); + in[j + 1] = _mm_srai_epi16(in[j + 1], 6); + + recon_and_store(dst, in[j]); + dst += stride; + recon_and_store(dst, in[j + 1]); + dst += stride; + j += 2; + } +} + +static INLINE void write_buffer_8x1(uint8_t *const dest, const __m128i in) { + const __m128i final_rounding = _mm_set1_epi16(1 << 5); + __m128i out; + out = _mm_adds_epi16(in, final_rounding); + out = _mm_srai_epi16(out, 6); + recon_and_store(dest, out); +} + +// Only do addition and subtraction butterfly, size = 16, 32 +static INLINE void add_sub_butterfly(const __m128i *in, __m128i *out, + int size) { + int i = 0; + const int num = size >> 1; + const int bound = size - 1; + while (i < num) { + out[i] = _mm_add_epi16(in[i], in[bound - i]); + out[bound - i] = _mm_sub_epi16(in[i], in[bound - i]); + i++; + } +} + +static INLINE void idct8(const __m128i *const in /*in[8]*/, + __m128i *const out /*out[8]*/) { + __m128i step1[8], step2[8]; + + // stage 1 + butterfly(in[1], in[7], cospi_28_64, cospi_4_64, &step1[4], &step1[7]); + butterfly(in[5], in[3], cospi_12_64, cospi_20_64, &step1[5], &step1[6]); + + // stage 2 + butterfly(in[0], in[4], cospi_16_64, cospi_16_64, &step2[1], &step2[0]); + butterfly(in[2], in[6], cospi_24_64, cospi_8_64, &step2[2], &step2[3]); + + step2[4] = _mm_add_epi16(step1[4], step1[5]); + step2[5] = _mm_sub_epi16(step1[4], step1[5]); + step2[6] = _mm_sub_epi16(step1[7], step1[6]); + step2[7] = _mm_add_epi16(step1[7], step1[6]); + + // stage 3 + step1[0] = _mm_add_epi16(step2[0], step2[3]); + step1[1] = _mm_add_epi16(step2[1], step2[2]); + step1[2] = _mm_sub_epi16(step2[1], step2[2]); + step1[3] = _mm_sub_epi16(step2[0], step2[3]); + butterfly(step2[6], step2[5], cospi_16_64, cospi_16_64, &step1[5], &step1[6]); + + // stage 4 + out[0] = _mm_add_epi16(step1[0], step2[7]); + out[1] = _mm_add_epi16(step1[1], step1[6]); + out[2] = _mm_add_epi16(step1[2], step1[5]); + out[3] = _mm_add_epi16(step1[3], step2[4]); + out[4] = _mm_sub_epi16(step1[3], step2[4]); + out[5] = _mm_sub_epi16(step1[2], step1[5]); + out[6] = _mm_sub_epi16(step1[1], step1[6]); + out[7] = _mm_sub_epi16(step1[0], step2[7]); +} + +static INLINE void idct8x8_12_add_kernel_sse2(__m128i *const io /*io[8]*/) { + const __m128i zero = _mm_setzero_si128(); + const __m128i cp_16_16 = pair_set_epi16(cospi_16_64, cospi_16_64); + const __m128i cp_16_n16 = pair_set_epi16(cospi_16_64, -cospi_16_64); + __m128i step1[8], step2[8], tmp[4]; + + transpose_16bit_4x4(io, io); + // io[0]: 00 10 20 30 01 11 21 31 + // io[1]: 02 12 22 32 03 13 23 33 + + // stage 1 + { + const __m128i cp_28_n4 = pair_set_epi16(cospi_28_64, -cospi_4_64); + const __m128i cp_4_28 = pair_set_epi16(cospi_4_64, cospi_28_64); + const __m128i cp_n20_12 = pair_set_epi16(-cospi_20_64, cospi_12_64); + const __m128i cp_12_20 = pair_set_epi16(cospi_12_64, cospi_20_64); + const __m128i lo_1 = _mm_unpackhi_epi16(io[0], zero); + const __m128i lo_3 = _mm_unpackhi_epi16(io[1], zero); + step1[4] = idct_calc_wraplow_sse2(cp_28_n4, cp_4_28, lo_1); // step1 4&7 + step1[5] = idct_calc_wraplow_sse2(cp_n20_12, cp_12_20, lo_3); // step1 5&6 + } + + // stage 2 + { + const __m128i cp_24_n8 = pair_set_epi16(cospi_24_64, -cospi_8_64); + const __m128i cp_8_24 = pair_set_epi16(cospi_8_64, cospi_24_64); + const __m128i lo_0 = _mm_unpacklo_epi16(io[0], zero); + const __m128i lo_2 = _mm_unpacklo_epi16(io[1], zero); + const __m128i t = idct_madd_round_shift_sse2(cp_16_16, lo_0); + step2[0] = _mm_packs_epi32(t, t); // step2 0&1 + step2[2] = idct_calc_wraplow_sse2(cp_8_24, cp_24_n8, lo_2); // step2 3&2 + step2[4] = _mm_add_epi16(step1[4], step1[5]); // step2 4&7 + step2[5] = _mm_sub_epi16(step1[4], step1[5]); // step2 5&6 + step2[6] = _mm_unpackhi_epi64(step2[5], zero); // step2 6 + } + + // stage 3 + { + const __m128i lo_65 = _mm_unpacklo_epi16(step2[6], step2[5]); + tmp[0] = _mm_add_epi16(step2[0], step2[2]); // step1 0&1 + tmp[1] = _mm_sub_epi16(step2[0], step2[2]); // step1 3&2 + step1[2] = _mm_unpackhi_epi64(tmp[1], tmp[0]); // step1 2&1 + step1[3] = _mm_unpacklo_epi64(tmp[1], tmp[0]); // step1 3&0 + step1[5] = idct_calc_wraplow_sse2(cp_16_n16, cp_16_16, lo_65); // step1 5&6 + } + + // stage 4 + tmp[0] = _mm_add_epi16(step1[3], step2[4]); // output 3&0 + tmp[1] = _mm_add_epi16(step1[2], step1[5]); // output 2&1 + tmp[2] = _mm_sub_epi16(step1[3], step2[4]); // output 4&7 + tmp[3] = _mm_sub_epi16(step1[2], step1[5]); // output 5&6 + + idct8x8_12_transpose_16bit_4x8(tmp, io); + io[4] = io[5] = io[6] = io[7] = zero; + + idct8(io, io); +} + +static INLINE void idct16_8col(const __m128i *const in /*in[16]*/, + __m128i *const out /*out[16]*/) { + __m128i step1[16], step2[16]; + + // stage 2 + butterfly(in[1], in[15], cospi_30_64, cospi_2_64, &step2[8], &step2[15]); + butterfly(in[9], in[7], cospi_14_64, cospi_18_64, &step2[9], &step2[14]); + butterfly(in[5], in[11], cospi_22_64, cospi_10_64, &step2[10], &step2[13]); + butterfly(in[13], in[3], cospi_6_64, cospi_26_64, &step2[11], &step2[12]); + + // stage 3 + butterfly(in[2], in[14], cospi_28_64, cospi_4_64, &step1[4], &step1[7]); + butterfly(in[10], in[6], cospi_12_64, cospi_20_64, &step1[5], &step1[6]); + step1[8] = _mm_add_epi16(step2[8], step2[9]); + step1[9] = _mm_sub_epi16(step2[8], step2[9]); + step1[10] = _mm_sub_epi16(step2[11], step2[10]); + step1[11] = _mm_add_epi16(step2[10], step2[11]); + step1[12] = _mm_add_epi16(step2[12], step2[13]); + step1[13] = _mm_sub_epi16(step2[12], step2[13]); + step1[14] = _mm_sub_epi16(step2[15], step2[14]); + step1[15] = _mm_add_epi16(step2[14], step2[15]); + + // stage 4 + butterfly(in[0], in[8], cospi_16_64, cospi_16_64, &step2[1], &step2[0]); + butterfly(in[4], in[12], cospi_24_64, cospi_8_64, &step2[2], &step2[3]); + butterfly(step1[14], step1[9], cospi_24_64, cospi_8_64, &step2[9], + &step2[14]); + butterfly(step1[10], step1[13], -cospi_8_64, -cospi_24_64, &step2[13], + &step2[10]); + step2[5] = _mm_sub_epi16(step1[4], step1[5]); + step1[4] = _mm_add_epi16(step1[4], step1[5]); + step2[6] = _mm_sub_epi16(step1[7], step1[6]); + step1[7] = _mm_add_epi16(step1[6], step1[7]); + step2[8] = step1[8]; + step2[11] = step1[11]; + step2[12] = step1[12]; + step2[15] = step1[15]; + + // stage 5 + step1[0] = _mm_add_epi16(step2[0], step2[3]); + step1[1] = _mm_add_epi16(step2[1], step2[2]); + step1[2] = _mm_sub_epi16(step2[1], step2[2]); + step1[3] = _mm_sub_epi16(step2[0], step2[3]); + butterfly(step2[6], step2[5], cospi_16_64, cospi_16_64, &step1[5], &step1[6]); + step1[8] = _mm_add_epi16(step2[8], step2[11]); + step1[9] = _mm_add_epi16(step2[9], step2[10]); + step1[10] = _mm_sub_epi16(step2[9], step2[10]); + step1[11] = _mm_sub_epi16(step2[8], step2[11]); + step1[12] = _mm_sub_epi16(step2[15], step2[12]); + step1[13] = _mm_sub_epi16(step2[14], step2[13]); + step1[14] = _mm_add_epi16(step2[14], step2[13]); + step1[15] = _mm_add_epi16(step2[15], step2[12]); + + // stage 6 + step2[0] = _mm_add_epi16(step1[0], step1[7]); + step2[1] = _mm_add_epi16(step1[1], step1[6]); + step2[2] = _mm_add_epi16(step1[2], step1[5]); + step2[3] = _mm_add_epi16(step1[3], step1[4]); + step2[4] = _mm_sub_epi16(step1[3], step1[4]); + step2[5] = _mm_sub_epi16(step1[2], step1[5]); + step2[6] = _mm_sub_epi16(step1[1], step1[6]); + step2[7] = _mm_sub_epi16(step1[0], step1[7]); + butterfly(step1[13], step1[10], cospi_16_64, cospi_16_64, &step2[10], + &step2[13]); + butterfly(step1[12], step1[11], cospi_16_64, cospi_16_64, &step2[11], + &step2[12]); + + // stage 7 + out[0] = _mm_add_epi16(step2[0], step1[15]); + out[1] = _mm_add_epi16(step2[1], step1[14]); + out[2] = _mm_add_epi16(step2[2], step2[13]); + out[3] = _mm_add_epi16(step2[3], step2[12]); + out[4] = _mm_add_epi16(step2[4], step2[11]); + out[5] = _mm_add_epi16(step2[5], step2[10]); + out[6] = _mm_add_epi16(step2[6], step1[9]); + out[7] = _mm_add_epi16(step2[7], step1[8]); + out[8] = _mm_sub_epi16(step2[7], step1[8]); + out[9] = _mm_sub_epi16(step2[6], step1[9]); + out[10] = _mm_sub_epi16(step2[5], step2[10]); + out[11] = _mm_sub_epi16(step2[4], step2[11]); + out[12] = _mm_sub_epi16(step2[3], step2[12]); + out[13] = _mm_sub_epi16(step2[2], step2[13]); + out[14] = _mm_sub_epi16(step2[1], step1[14]); + out[15] = _mm_sub_epi16(step2[0], step1[15]); +} + +static INLINE void idct16x16_10_pass1(const __m128i *const input /*input[4]*/, + __m128i *const output /*output[16]*/) { + const __m128i zero = _mm_setzero_si128(); + const __m128i k__cospi_p16_p16 = pair_set_epi16(cospi_16_64, cospi_16_64); + const __m128i k__cospi_m16_p16 = pair_set_epi16(-cospi_16_64, cospi_16_64); + __m128i step1[16], step2[16]; + + transpose_16bit_4x4(input, output); + + // stage 2 + { + const __m128i k__cospi_p30_m02 = pair_set_epi16(cospi_30_64, -cospi_2_64); + const __m128i k__cospi_p02_p30 = pair_set_epi16(cospi_2_64, cospi_30_64); + const __m128i k__cospi_p06_m26 = pair_set_epi16(cospi_6_64, -cospi_26_64); + const __m128i k__cospi_p26_p06 = pair_set_epi16(cospi_26_64, cospi_6_64); + const __m128i lo_1_15 = _mm_unpackhi_epi16(output[0], zero); + const __m128i lo_13_3 = _mm_unpackhi_epi16(zero, output[1]); + step2[8] = idct_calc_wraplow_sse2(k__cospi_p30_m02, k__cospi_p02_p30, + lo_1_15); // step2 8&15 + step2[11] = idct_calc_wraplow_sse2(k__cospi_p06_m26, k__cospi_p26_p06, + lo_13_3); // step2 11&12 + } + + // stage 3 + { + const __m128i k__cospi_p28_m04 = pair_set_epi16(cospi_28_64, -cospi_4_64); + const __m128i k__cospi_p04_p28 = pair_set_epi16(cospi_4_64, cospi_28_64); + const __m128i lo_2_14 = _mm_unpacklo_epi16(output[1], zero); + step1[4] = idct_calc_wraplow_sse2(k__cospi_p28_m04, k__cospi_p04_p28, + lo_2_14); // step1 4&7 + step1[13] = _mm_unpackhi_epi64(step2[11], zero); + step1[14] = _mm_unpackhi_epi64(step2[8], zero); + } + + // stage 4 + { + const __m128i k__cospi_m08_p24 = pair_set_epi16(-cospi_8_64, cospi_24_64); + const __m128i k__cospi_p24_p08 = pair_set_epi16(cospi_24_64, cospi_8_64); + const __m128i k__cospi_m24_m08 = pair_set_epi16(-cospi_24_64, -cospi_8_64); + const __m128i lo_0_8 = _mm_unpacklo_epi16(output[0], zero); + const __m128i lo_9_14 = _mm_unpacklo_epi16(step2[8], step1[14]); + const __m128i lo_10_13 = _mm_unpacklo_epi16(step2[11], step1[13]); + const __m128i t = idct_madd_round_shift_sse2(lo_0_8, k__cospi_p16_p16); + step1[0] = _mm_packs_epi32(t, t); // step2 0&1 + step2[9] = idct_calc_wraplow_sse2(k__cospi_m08_p24, k__cospi_p24_p08, + lo_9_14); // step2 9&14 + step2[10] = idct_calc_wraplow_sse2(k__cospi_m24_m08, k__cospi_m08_p24, + lo_10_13); // step2 10&13 + step2[6] = _mm_unpackhi_epi64(step1[4], zero); + } + + // stage 5 + { + const __m128i lo_5_6 = _mm_unpacklo_epi16(step1[4], step2[6]); + step1[6] = idct_calc_wraplow_sse2(k__cospi_p16_p16, k__cospi_m16_p16, + lo_5_6); // step1 6&5 + step1[8] = _mm_add_epi16(step2[8], step2[11]); + step1[9] = _mm_add_epi16(step2[9], step2[10]); + step1[10] = _mm_sub_epi16(step2[9], step2[10]); + step1[11] = _mm_sub_epi16(step2[8], step2[11]); + step1[12] = _mm_unpackhi_epi64(step1[11], zero); + step1[13] = _mm_unpackhi_epi64(step1[10], zero); + step1[14] = _mm_unpackhi_epi64(step1[9], zero); + step1[15] = _mm_unpackhi_epi64(step1[8], zero); + } + + // stage 6 + { + const __m128i lo_10_13 = _mm_unpacklo_epi16(step1[10], step1[13]); + const __m128i lo_11_12 = _mm_unpacklo_epi16(step1[11], step1[12]); + step2[10] = idct_calc_wraplow_sse2(k__cospi_m16_p16, k__cospi_p16_p16, + lo_10_13); // step2 10&13 + step2[11] = idct_calc_wraplow_sse2(k__cospi_m16_p16, k__cospi_p16_p16, + lo_11_12); // step2 11&12 + step2[13] = _mm_unpackhi_epi64(step2[10], zero); + step2[12] = _mm_unpackhi_epi64(step2[11], zero); + step2[3] = _mm_add_epi16(step1[0], step1[4]); + step2[1] = _mm_add_epi16(step1[0], step1[6]); + step2[6] = _mm_sub_epi16(step1[0], step1[6]); + step2[4] = _mm_sub_epi16(step1[0], step1[4]); + step2[0] = _mm_unpackhi_epi64(step2[3], zero); + step2[2] = _mm_unpackhi_epi64(step2[1], zero); + step2[5] = _mm_unpackhi_epi64(step2[6], zero); + step2[7] = _mm_unpackhi_epi64(step2[4], zero); + } + + // stage 7. Left 8x16 only. + output[0] = _mm_add_epi16(step2[0], step1[15]); + output[1] = _mm_add_epi16(step2[1], step1[14]); + output[2] = _mm_add_epi16(step2[2], step2[13]); + output[3] = _mm_add_epi16(step2[3], step2[12]); + output[4] = _mm_add_epi16(step2[4], step2[11]); + output[5] = _mm_add_epi16(step2[5], step2[10]); + output[6] = _mm_add_epi16(step2[6], step1[9]); + output[7] = _mm_add_epi16(step2[7], step1[8]); + output[8] = _mm_sub_epi16(step2[7], step1[8]); + output[9] = _mm_sub_epi16(step2[6], step1[9]); + output[10] = _mm_sub_epi16(step2[5], step2[10]); + output[11] = _mm_sub_epi16(step2[4], step2[11]); + output[12] = _mm_sub_epi16(step2[3], step2[12]); + output[13] = _mm_sub_epi16(step2[2], step2[13]); + output[14] = _mm_sub_epi16(step2[1], step1[14]); + output[15] = _mm_sub_epi16(step2[0], step1[15]); +} + +static INLINE void idct16x16_10_pass2(__m128i *const l /*l[8]*/, + __m128i *const io /*io[16]*/) { + const __m128i zero = _mm_setzero_si128(); + __m128i step1[16], step2[16]; + + transpose_16bit_4x8(l, io); + + // stage 2 + butterfly(io[1], zero, cospi_30_64, cospi_2_64, &step2[8], &step2[15]); + butterfly(zero, io[3], cospi_6_64, cospi_26_64, &step2[11], &step2[12]); + + // stage 3 + butterfly(io[2], zero, cospi_28_64, cospi_4_64, &step1[4], &step1[7]); + + // stage 4 + step1[0] = butterfly_cospi16(io[0]); + butterfly(step2[15], step2[8], cospi_24_64, cospi_8_64, &step2[9], + &step2[14]); + butterfly(step2[11], step2[12], -cospi_8_64, -cospi_24_64, &step2[13], + &step2[10]); + + // stage 5 + butterfly(step1[7], step1[4], cospi_16_64, cospi_16_64, &step1[5], &step1[6]); + step1[8] = _mm_add_epi16(step2[8], step2[11]); + step1[9] = _mm_add_epi16(step2[9], step2[10]); + step1[10] = _mm_sub_epi16(step2[9], step2[10]); + step1[11] = _mm_sub_epi16(step2[8], step2[11]); + step1[12] = _mm_sub_epi16(step2[15], step2[12]); + step1[13] = _mm_sub_epi16(step2[14], step2[13]); + step1[14] = _mm_add_epi16(step2[14], step2[13]); + step1[15] = _mm_add_epi16(step2[15], step2[12]); + + // stage 6 + step2[0] = _mm_add_epi16(step1[0], step1[7]); + step2[1] = _mm_add_epi16(step1[0], step1[6]); + step2[2] = _mm_add_epi16(step1[0], step1[5]); + step2[3] = _mm_add_epi16(step1[0], step1[4]); + step2[4] = _mm_sub_epi16(step1[0], step1[4]); + step2[5] = _mm_sub_epi16(step1[0], step1[5]); + step2[6] = _mm_sub_epi16(step1[0], step1[6]); + step2[7] = _mm_sub_epi16(step1[0], step1[7]); + butterfly(step1[13], step1[10], cospi_16_64, cospi_16_64, &step2[10], + &step2[13]); + butterfly(step1[12], step1[11], cospi_16_64, cospi_16_64, &step2[11], + &step2[12]); + + // stage 7 + io[0] = _mm_add_epi16(step2[0], step1[15]); + io[1] = _mm_add_epi16(step2[1], step1[14]); + io[2] = _mm_add_epi16(step2[2], step2[13]); + io[3] = _mm_add_epi16(step2[3], step2[12]); + io[4] = _mm_add_epi16(step2[4], step2[11]); + io[5] = _mm_add_epi16(step2[5], step2[10]); + io[6] = _mm_add_epi16(step2[6], step1[9]); + io[7] = _mm_add_epi16(step2[7], step1[8]); + io[8] = _mm_sub_epi16(step2[7], step1[8]); + io[9] = _mm_sub_epi16(step2[6], step1[9]); + io[10] = _mm_sub_epi16(step2[5], step2[10]); + io[11] = _mm_sub_epi16(step2[4], step2[11]); + io[12] = _mm_sub_epi16(step2[3], step2[12]); + io[13] = _mm_sub_epi16(step2[2], step2[13]); + io[14] = _mm_sub_epi16(step2[1], step1[14]); + io[15] = _mm_sub_epi16(step2[0], step1[15]); +} + +static INLINE void idct32_8x32_quarter_2_stage_4_to_6( + __m128i *const step1 /*step1[16]*/, __m128i *const out /*out[16]*/) { + __m128i step2[32]; + + // stage 4 + step2[8] = step1[8]; + step2[15] = step1[15]; + butterfly(step1[14], step1[9], cospi_24_64, cospi_8_64, &step2[9], + &step2[14]); + butterfly(step1[13], step1[10], -cospi_8_64, cospi_24_64, &step2[10], + &step2[13]); + step2[11] = step1[11]; + step2[12] = step1[12]; + + // stage 5 + step1[8] = _mm_add_epi16(step2[8], step2[11]); + step1[9] = _mm_add_epi16(step2[9], step2[10]); + step1[10] = _mm_sub_epi16(step2[9], step2[10]); + step1[11] = _mm_sub_epi16(step2[8], step2[11]); + step1[12] = _mm_sub_epi16(step2[15], step2[12]); + step1[13] = _mm_sub_epi16(step2[14], step2[13]); + step1[14] = _mm_add_epi16(step2[14], step2[13]); + step1[15] = _mm_add_epi16(step2[15], step2[12]); + + // stage 6 + out[8] = step1[8]; + out[9] = step1[9]; + butterfly(step1[13], step1[10], cospi_16_64, cospi_16_64, &out[10], &out[13]); + butterfly(step1[12], step1[11], cospi_16_64, cospi_16_64, &out[11], &out[12]); + out[14] = step1[14]; + out[15] = step1[15]; +} + +static INLINE void idct32_8x32_quarter_3_4_stage_4_to_7( + __m128i *const step1 /*step1[32]*/, __m128i *const out /*out[32]*/) { + __m128i step2[32]; + + // stage 4 + step2[16] = _mm_add_epi16(step1[16], step1[19]); + step2[17] = _mm_add_epi16(step1[17], step1[18]); + step2[18] = _mm_sub_epi16(step1[17], step1[18]); + step2[19] = _mm_sub_epi16(step1[16], step1[19]); + step2[20] = _mm_sub_epi16(step1[23], step1[20]); + step2[21] = _mm_sub_epi16(step1[22], step1[21]); + step2[22] = _mm_add_epi16(step1[22], step1[21]); + step2[23] = _mm_add_epi16(step1[23], step1[20]); + + step2[24] = _mm_add_epi16(step1[24], step1[27]); + step2[25] = _mm_add_epi16(step1[25], step1[26]); + step2[26] = _mm_sub_epi16(step1[25], step1[26]); + step2[27] = _mm_sub_epi16(step1[24], step1[27]); + step2[28] = _mm_sub_epi16(step1[31], step1[28]); + step2[29] = _mm_sub_epi16(step1[30], step1[29]); + step2[30] = _mm_add_epi16(step1[29], step1[30]); + step2[31] = _mm_add_epi16(step1[28], step1[31]); + + // stage 5 + step1[16] = step2[16]; + step1[17] = step2[17]; + butterfly(step2[29], step2[18], cospi_24_64, cospi_8_64, &step1[18], + &step1[29]); + butterfly(step2[28], step2[19], cospi_24_64, cospi_8_64, &step1[19], + &step1[28]); + butterfly(step2[27], step2[20], -cospi_8_64, cospi_24_64, &step1[20], + &step1[27]); + butterfly(step2[26], step2[21], -cospi_8_64, cospi_24_64, &step1[21], + &step1[26]); + step1[22] = step2[22]; + step1[23] = step2[23]; + step1[24] = step2[24]; + step1[25] = step2[25]; + step1[30] = step2[30]; + step1[31] = step2[31]; + + // stage 6 + out[16] = _mm_add_epi16(step1[16], step1[23]); + out[17] = _mm_add_epi16(step1[17], step1[22]); + out[18] = _mm_add_epi16(step1[18], step1[21]); + out[19] = _mm_add_epi16(step1[19], step1[20]); + step2[20] = _mm_sub_epi16(step1[19], step1[20]); + step2[21] = _mm_sub_epi16(step1[18], step1[21]); + step2[22] = _mm_sub_epi16(step1[17], step1[22]); + step2[23] = _mm_sub_epi16(step1[16], step1[23]); + + step2[24] = _mm_sub_epi16(step1[31], step1[24]); + step2[25] = _mm_sub_epi16(step1[30], step1[25]); + step2[26] = _mm_sub_epi16(step1[29], step1[26]); + step2[27] = _mm_sub_epi16(step1[28], step1[27]); + out[28] = _mm_add_epi16(step1[27], step1[28]); + out[29] = _mm_add_epi16(step1[26], step1[29]); + out[30] = _mm_add_epi16(step1[25], step1[30]); + out[31] = _mm_add_epi16(step1[24], step1[31]); + + // stage 7 + butterfly(step2[27], step2[20], cospi_16_64, cospi_16_64, &out[20], &out[27]); + butterfly(step2[26], step2[21], cospi_16_64, cospi_16_64, &out[21], &out[26]); + butterfly(step2[25], step2[22], cospi_16_64, cospi_16_64, &out[22], &out[25]); + butterfly(step2[24], step2[23], cospi_16_64, cospi_16_64, &out[23], &out[24]); +} + +void idct4_sse2(__m128i *const in); +void idct8_sse2(__m128i *const in); +void idct16_sse2(__m128i *const in0, __m128i *const in1); +void iadst4_sse2(__m128i *const in); +void iadst8_sse2(__m128i *const in); +void iadst16_sse2(__m128i *const in0, __m128i *const in1); +void idct32_1024_8x32(const __m128i *const in, __m128i *const out); +void idct32_34_8x32_sse2(const __m128i *const in, __m128i *const out); +void idct32_34_8x32_ssse3(const __m128i *const in, __m128i *const out); + +#endif // VPX_DSP_X86_INV_TXFM_SSE2_H_ diff --git a/vpx_dsp/x86/inv_txfm_ssse3.c b/vpx_dsp/x86/inv_txfm_ssse3.c new file mode 100644 index 0000000..6e99469 --- /dev/null +++ b/vpx_dsp/x86/inv_txfm_ssse3.c @@ -0,0 +1,364 @@ +/* + * Copyright (c) 2017 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include + +#include "./vpx_dsp_rtcd.h" +#include "vpx_dsp/x86/inv_txfm_sse2.h" +#include "vpx_dsp/x86/inv_txfm_ssse3.h" +#include "vpx_dsp/x86/transpose_sse2.h" +#include "vpx_dsp/x86/txfm_common_sse2.h" + +static INLINE void partial_butterfly_ssse3(const __m128i in, const int c0, + const int c1, __m128i *const out0, + __m128i *const out1) { + const __m128i cst0 = _mm_set1_epi16(2 * c0); + const __m128i cst1 = _mm_set1_epi16(2 * c1); + *out0 = _mm_mulhrs_epi16(in, cst0); + *out1 = _mm_mulhrs_epi16(in, cst1); +} + +static INLINE __m128i partial_butterfly_cospi16_ssse3(const __m128i in) { + const __m128i coef_pair = _mm_set1_epi16(2 * cospi_16_64); + return _mm_mulhrs_epi16(in, coef_pair); +} + +void vpx_idct8x8_12_add_ssse3(const tran_low_t *input, uint8_t *dest, + int stride) { + __m128i io[8]; + + io[0] = load_input_data4(input + 0 * 8); + io[1] = load_input_data4(input + 1 * 8); + io[2] = load_input_data4(input + 2 * 8); + io[3] = load_input_data4(input + 3 * 8); + + idct8x8_12_add_kernel_ssse3(io); + write_buffer_8x8(io, dest, stride); +} + +// Group the coefficient calculation into smaller functions to prevent stack +// spillover in 32x32 idct optimizations: +// quarter_1: 0-7 +// quarter_2: 8-15 +// quarter_3_4: 16-23, 24-31 + +// For each 8x32 block __m128i in[32], +// Input with index, 0, 4 +// output pixels: 0-7 in __m128i out[32] +static INLINE void idct32_34_8x32_quarter_1(const __m128i *const in /*in[32]*/, + __m128i *const out /*out[8]*/) { + __m128i step1[8], step2[8]; + + // stage 3 + partial_butterfly_ssse3(in[4], cospi_28_64, cospi_4_64, &step1[4], &step1[7]); + + // stage 4 + step2[0] = partial_butterfly_cospi16_ssse3(in[0]); + step2[4] = step1[4]; + step2[5] = step1[4]; + step2[6] = step1[7]; + step2[7] = step1[7]; + + // stage 5 + step1[0] = step2[0]; + step1[1] = step2[0]; + step1[2] = step2[0]; + step1[3] = step2[0]; + step1[4] = step2[4]; + butterfly(step2[6], step2[5], cospi_16_64, cospi_16_64, &step1[5], &step1[6]); + step1[7] = step2[7]; + + // stage 6 + out[0] = _mm_add_epi16(step1[0], step1[7]); + out[1] = _mm_add_epi16(step1[1], step1[6]); + out[2] = _mm_add_epi16(step1[2], step1[5]); + out[3] = _mm_add_epi16(step1[3], step1[4]); + out[4] = _mm_sub_epi16(step1[3], step1[4]); + out[5] = _mm_sub_epi16(step1[2], step1[5]); + out[6] = _mm_sub_epi16(step1[1], step1[6]); + out[7] = _mm_sub_epi16(step1[0], step1[7]); +} + +// For each 8x32 block __m128i in[32], +// Input with index, 2, 6 +// output pixels: 8-15 in __m128i out[32] +static INLINE void idct32_34_8x32_quarter_2(const __m128i *const in /*in[32]*/, + __m128i *const out /*out[16]*/) { + __m128i step1[16], step2[16]; + + // stage 2 + partial_butterfly_ssse3(in[2], cospi_30_64, cospi_2_64, &step2[8], + &step2[15]); + partial_butterfly_ssse3(in[6], -cospi_26_64, cospi_6_64, &step2[11], + &step2[12]); + + // stage 3 + step1[8] = step2[8]; + step1[9] = step2[8]; + step1[14] = step2[15]; + step1[15] = step2[15]; + step1[10] = step2[11]; + step1[11] = step2[11]; + step1[12] = step2[12]; + step1[13] = step2[12]; + + idct32_8x32_quarter_2_stage_4_to_6(step1, out); +} + +static INLINE void idct32_34_8x32_quarter_1_2( + const __m128i *const in /*in[32]*/, __m128i *const out /*out[32]*/) { + __m128i temp[16]; + idct32_34_8x32_quarter_1(in, temp); + idct32_34_8x32_quarter_2(in, temp); + // stage 7 + add_sub_butterfly(temp, out, 16); +} + +// For each 8x32 block __m128i in[32], +// Input with odd index, 1, 3, 5, 7 +// output pixels: 16-23, 24-31 in __m128i out[32] +static INLINE void idct32_34_8x32_quarter_3_4( + const __m128i *const in /*in[32]*/, __m128i *const out /*out[32]*/) { + __m128i step1[32]; + + // stage 1 + partial_butterfly_ssse3(in[1], cospi_31_64, cospi_1_64, &step1[16], + &step1[31]); + partial_butterfly_ssse3(in[7], -cospi_25_64, cospi_7_64, &step1[19], + &step1[28]); + partial_butterfly_ssse3(in[5], cospi_27_64, cospi_5_64, &step1[20], + &step1[27]); + partial_butterfly_ssse3(in[3], -cospi_29_64, cospi_3_64, &step1[23], + &step1[24]); + + // stage 3 + butterfly(step1[31], step1[16], cospi_28_64, cospi_4_64, &step1[17], + &step1[30]); + butterfly(step1[28], step1[19], -cospi_4_64, cospi_28_64, &step1[18], + &step1[29]); + butterfly(step1[27], step1[20], cospi_12_64, cospi_20_64, &step1[21], + &step1[26]); + butterfly(step1[24], step1[23], -cospi_20_64, cospi_12_64, &step1[22], + &step1[25]); + + idct32_8x32_quarter_3_4_stage_4_to_7(step1, out); +} + +void idct32_34_8x32_ssse3(const __m128i *const in /*in[32]*/, + __m128i *const out /*out[32]*/) { + __m128i temp[32]; + + idct32_34_8x32_quarter_1_2(in, temp); + idct32_34_8x32_quarter_3_4(in, temp); + // final stage + add_sub_butterfly(temp, out, 32); +} + +// Only upper-left 8x8 has non-zero coeff +void vpx_idct32x32_34_add_ssse3(const tran_low_t *input, uint8_t *dest, + int stride) { + __m128i io[32], col[32]; + int i; + + // Load input data. Only need to load the top left 8x8 block. + load_transpose_16bit_8x8(input, 32, io); + idct32_34_8x32_ssse3(io, col); + + for (i = 0; i < 32; i += 8) { + int j; + transpose_16bit_8x8(col + i, io); + idct32_34_8x32_ssse3(io, io); + + for (j = 0; j < 32; ++j) { + write_buffer_8x1(dest + j * stride, io[j]); + } + + dest += 8; + } +} + +// For each 8x32 block __m128i in[32], +// Input with index, 0, 4, 8, 12 +// output pixels: 0-7 in __m128i out[32] +static INLINE void idct32_135_8x32_quarter_1(const __m128i *const in /*in[32]*/, + __m128i *const out /*out[8]*/) { + __m128i step1[8], step2[8]; + + // stage 3 + partial_butterfly_ssse3(in[4], cospi_28_64, cospi_4_64, &step1[4], &step1[7]); + partial_butterfly_ssse3(in[12], -cospi_20_64, cospi_12_64, &step1[5], + &step1[6]); + + // stage 4 + step2[0] = partial_butterfly_cospi16_ssse3(in[0]); + partial_butterfly_ssse3(in[8], cospi_24_64, cospi_8_64, &step2[2], &step2[3]); + step2[4] = _mm_add_epi16(step1[4], step1[5]); + step2[5] = _mm_sub_epi16(step1[4], step1[5]); + step2[6] = _mm_sub_epi16(step1[7], step1[6]); + step2[7] = _mm_add_epi16(step1[7], step1[6]); + + // stage 5 + step1[0] = _mm_add_epi16(step2[0], step2[3]); + step1[1] = _mm_add_epi16(step2[0], step2[2]); + step1[2] = _mm_sub_epi16(step2[0], step2[2]); + step1[3] = _mm_sub_epi16(step2[0], step2[3]); + step1[4] = step2[4]; + butterfly(step2[6], step2[5], cospi_16_64, cospi_16_64, &step1[5], &step1[6]); + step1[7] = step2[7]; + + // stage 6 + out[0] = _mm_add_epi16(step1[0], step1[7]); + out[1] = _mm_add_epi16(step1[1], step1[6]); + out[2] = _mm_add_epi16(step1[2], step1[5]); + out[3] = _mm_add_epi16(step1[3], step1[4]); + out[4] = _mm_sub_epi16(step1[3], step1[4]); + out[5] = _mm_sub_epi16(step1[2], step1[5]); + out[6] = _mm_sub_epi16(step1[1], step1[6]); + out[7] = _mm_sub_epi16(step1[0], step1[7]); +} + +// For each 8x32 block __m128i in[32], +// Input with index, 2, 6, 10, 14 +// output pixels: 8-15 in __m128i out[32] +static INLINE void idct32_135_8x32_quarter_2(const __m128i *const in /*in[32]*/, + __m128i *const out /*out[16]*/) { + __m128i step1[16], step2[16]; + + // stage 2 + partial_butterfly_ssse3(in[2], cospi_30_64, cospi_2_64, &step2[8], + &step2[15]); + partial_butterfly_ssse3(in[14], -cospi_18_64, cospi_14_64, &step2[9], + &step2[14]); + partial_butterfly_ssse3(in[10], cospi_22_64, cospi_10_64, &step2[10], + &step2[13]); + partial_butterfly_ssse3(in[6], -cospi_26_64, cospi_6_64, &step2[11], + &step2[12]); + + // stage 3 + step1[8] = _mm_add_epi16(step2[8], step2[9]); + step1[9] = _mm_sub_epi16(step2[8], step2[9]); + step1[10] = _mm_sub_epi16(step2[11], step2[10]); + step1[11] = _mm_add_epi16(step2[11], step2[10]); + step1[12] = _mm_add_epi16(step2[12], step2[13]); + step1[13] = _mm_sub_epi16(step2[12], step2[13]); + step1[14] = _mm_sub_epi16(step2[15], step2[14]); + step1[15] = _mm_add_epi16(step2[15], step2[14]); + + idct32_8x32_quarter_2_stage_4_to_6(step1, out); +} + +static INLINE void idct32_135_8x32_quarter_1_2( + const __m128i *const in /*in[32]*/, __m128i *const out /*out[32]*/) { + __m128i temp[16]; + idct32_135_8x32_quarter_1(in, temp); + idct32_135_8x32_quarter_2(in, temp); + // stage 7 + add_sub_butterfly(temp, out, 16); +} + +// For each 8x32 block __m128i in[32], +// Input with odd index, +// 1, 3, 5, 7, 9, 11, 13, 15 +// output pixels: 16-23, 24-31 in __m128i out[32] +static INLINE void idct32_135_8x32_quarter_3_4( + const __m128i *const in /*in[32]*/, __m128i *const out /*out[32]*/) { + __m128i step1[32], step2[32]; + + // stage 1 + partial_butterfly_ssse3(in[1], cospi_31_64, cospi_1_64, &step1[16], + &step1[31]); + partial_butterfly_ssse3(in[15], -cospi_17_64, cospi_15_64, &step1[17], + &step1[30]); + partial_butterfly_ssse3(in[9], cospi_23_64, cospi_9_64, &step1[18], + &step1[29]); + partial_butterfly_ssse3(in[7], -cospi_25_64, cospi_7_64, &step1[19], + &step1[28]); + + partial_butterfly_ssse3(in[5], cospi_27_64, cospi_5_64, &step1[20], + &step1[27]); + partial_butterfly_ssse3(in[11], -cospi_21_64, cospi_11_64, &step1[21], + &step1[26]); + + partial_butterfly_ssse3(in[13], cospi_19_64, cospi_13_64, &step1[22], + &step1[25]); + partial_butterfly_ssse3(in[3], -cospi_29_64, cospi_3_64, &step1[23], + &step1[24]); + + // stage 2 + step2[16] = _mm_add_epi16(step1[16], step1[17]); + step2[17] = _mm_sub_epi16(step1[16], step1[17]); + step2[18] = _mm_sub_epi16(step1[19], step1[18]); + step2[19] = _mm_add_epi16(step1[19], step1[18]); + step2[20] = _mm_add_epi16(step1[20], step1[21]); + step2[21] = _mm_sub_epi16(step1[20], step1[21]); + step2[22] = _mm_sub_epi16(step1[23], step1[22]); + step2[23] = _mm_add_epi16(step1[23], step1[22]); + + step2[24] = _mm_add_epi16(step1[24], step1[25]); + step2[25] = _mm_sub_epi16(step1[24], step1[25]); + step2[26] = _mm_sub_epi16(step1[27], step1[26]); + step2[27] = _mm_add_epi16(step1[27], step1[26]); + step2[28] = _mm_add_epi16(step1[28], step1[29]); + step2[29] = _mm_sub_epi16(step1[28], step1[29]); + step2[30] = _mm_sub_epi16(step1[31], step1[30]); + step2[31] = _mm_add_epi16(step1[31], step1[30]); + + // stage 3 + step1[16] = step2[16]; + step1[31] = step2[31]; + butterfly(step2[30], step2[17], cospi_28_64, cospi_4_64, &step1[17], + &step1[30]); + butterfly(step2[29], step2[18], -cospi_4_64, cospi_28_64, &step1[18], + &step1[29]); + step1[19] = step2[19]; + step1[20] = step2[20]; + butterfly(step2[26], step2[21], cospi_12_64, cospi_20_64, &step1[21], + &step1[26]); + butterfly(step2[25], step2[22], -cospi_20_64, cospi_12_64, &step1[22], + &step1[25]); + step1[23] = step2[23]; + step1[24] = step2[24]; + step1[27] = step2[27]; + step1[28] = step2[28]; + + idct32_8x32_quarter_3_4_stage_4_to_7(step1, out); +} + +void idct32_135_8x32_ssse3(const __m128i *const in /*in[32]*/, + __m128i *const out /*out[32]*/) { + __m128i temp[32]; + idct32_135_8x32_quarter_1_2(in, temp); + idct32_135_8x32_quarter_3_4(in, temp); + // final stage + add_sub_butterfly(temp, out, 32); +} + +void vpx_idct32x32_135_add_ssse3(const tran_low_t *input, uint8_t *dest, + int stride) { + __m128i col[2][32], io[32]; + int i; + + // rows + for (i = 0; i < 2; i++) { + load_transpose_16bit_8x8(&input[0], 32, &io[0]); + load_transpose_16bit_8x8(&input[8], 32, &io[8]); + idct32_135_8x32_ssse3(io, col[i]); + input += 32 << 3; + } + + // columns + for (i = 0; i < 32; i += 8) { + transpose_16bit_8x8(col[0] + i, io); + transpose_16bit_8x8(col[1] + i, io + 8); + idct32_135_8x32_ssse3(io, io); + store_buffer_8x32(io, dest, stride); + dest += 8; + } +} diff --git a/vpx_dsp/x86/inv_txfm_ssse3.h b/vpx_dsp/x86/inv_txfm_ssse3.h new file mode 100644 index 0000000..e785c8e --- /dev/null +++ b/vpx_dsp/x86/inv_txfm_ssse3.h @@ -0,0 +1,110 @@ +/* + * Copyright (c) 2017 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VPX_DSP_X86_INV_TXFM_SSSE3_H_ +#define VPX_DSP_X86_INV_TXFM_SSSE3_H_ + +#include + +#include "./vpx_dsp_rtcd.h" +#include "vpx_dsp/x86/inv_txfm_sse2.h" +#include "vpx_dsp/x86/transpose_sse2.h" +#include "vpx_dsp/x86/txfm_common_sse2.h" + +static INLINE void idct8x8_12_add_kernel_ssse3(__m128i *const io /* io[8] */) { + const __m128i cp_28d_4d = dual_set_epi16(2 * cospi_28_64, 2 * cospi_4_64); + const __m128i cp_n20d_12d = dual_set_epi16(-2 * cospi_20_64, 2 * cospi_12_64); + const __m128i cp_8d_24d = dual_set_epi16(2 * cospi_8_64, 2 * cospi_24_64); + const __m128i cp_16_16 = _mm_set1_epi16(cospi_16_64); + const __m128i cp_16_n16 = pair_set_epi16(cospi_16_64, -cospi_16_64); + const __m128i cospi_16_64d = _mm_set1_epi16((int16_t)(2 * cospi_16_64)); + const __m128i cospi_28_64d = _mm_set1_epi16((int16_t)(2 * cospi_28_64)); + const __m128i cospi_4_64d = _mm_set1_epi16((int16_t)(2 * cospi_4_64)); + const __m128i cospi_n20_64d = _mm_set1_epi16((int16_t)(-2 * cospi_20_64)); + const __m128i cospi_12_64d = _mm_set1_epi16((int16_t)(2 * cospi_12_64)); + const __m128i cospi_24_64d = _mm_set1_epi16((int16_t)(2 * cospi_24_64)); + const __m128i cospi_8_64d = _mm_set1_epi16((int16_t)(2 * cospi_8_64)); + __m128i step1[8], step2[8], tmp[4]; + + // pass 1 + + transpose_16bit_4x4(io, io); + // io[0]: 00 10 20 30 01 11 21 31 + // io[1]: 02 12 22 32 03 13 23 33 + + // stage 1 + tmp[0] = _mm_unpacklo_epi64(io[0], io[0]); + tmp[1] = _mm_unpackhi_epi64(io[0], io[0]); + tmp[2] = _mm_unpacklo_epi64(io[1], io[1]); + tmp[3] = _mm_unpackhi_epi64(io[1], io[1]); + step1[4] = _mm_mulhrs_epi16(tmp[1], cp_28d_4d); // step1 4&7 + step1[5] = _mm_mulhrs_epi16(tmp[3], cp_n20d_12d); // step1 5&6 + + // stage 2 + step2[0] = _mm_mulhrs_epi16(tmp[0], cospi_16_64d); // step2 0&1 + step2[2] = _mm_mulhrs_epi16(tmp[2], cp_8d_24d); // step2 3&2 + step2[4] = _mm_add_epi16(step1[4], step1[5]); // step2 4&7 + step2[5] = _mm_sub_epi16(step1[4], step1[5]); // step2 5&6 + step2[6] = _mm_unpackhi_epi64(step2[5], step2[5]); // step2 6 + + // stage 3 + tmp[0] = _mm_unpacklo_epi16(step2[6], step2[5]); + step1[5] = idct_calc_wraplow_sse2(cp_16_n16, cp_16_16, tmp[0]); // step1 5&6 + tmp[0] = _mm_add_epi16(step2[0], step2[2]); // step1 0&1 + tmp[1] = _mm_sub_epi16(step2[0], step2[2]); // step1 3&2 + step1[2] = _mm_unpackhi_epi64(tmp[1], tmp[0]); // step1 2&1 + step1[3] = _mm_unpacklo_epi64(tmp[1], tmp[0]); // step1 3&0 + + // stage 4 + tmp[0] = _mm_add_epi16(step1[3], step2[4]); // output 3&0 + tmp[1] = _mm_add_epi16(step1[2], step1[5]); // output 2&1 + tmp[2] = _mm_sub_epi16(step1[3], step2[4]); // output 4&7 + tmp[3] = _mm_sub_epi16(step1[2], step1[5]); // output 5&6 + + // pass 2 + + idct8x8_12_transpose_16bit_4x8(tmp, io); + + // stage 1 + step1[4] = _mm_mulhrs_epi16(io[1], cospi_28_64d); + step1[7] = _mm_mulhrs_epi16(io[1], cospi_4_64d); + step1[5] = _mm_mulhrs_epi16(io[3], cospi_n20_64d); + step1[6] = _mm_mulhrs_epi16(io[3], cospi_12_64d); + + // stage 2 + step2[0] = _mm_mulhrs_epi16(io[0], cospi_16_64d); // step2[1] = step2[0] + step2[2] = _mm_mulhrs_epi16(io[2], cospi_24_64d); + step2[3] = _mm_mulhrs_epi16(io[2], cospi_8_64d); + step2[4] = _mm_add_epi16(step1[4], step1[5]); + step2[5] = _mm_sub_epi16(step1[4], step1[5]); + step2[6] = _mm_sub_epi16(step1[7], step1[6]); + step2[7] = _mm_add_epi16(step1[7], step1[6]); + + // stage 3 + step1[0] = _mm_add_epi16(step2[0], step2[3]); + step1[1] = _mm_add_epi16(step2[0], step2[2]); + step1[2] = _mm_sub_epi16(step2[0], step2[2]); + step1[3] = _mm_sub_epi16(step2[0], step2[3]); + butterfly(step2[6], step2[5], cospi_16_64, cospi_16_64, &step1[5], &step1[6]); + + // stage 4 + io[0] = _mm_add_epi16(step1[0], step2[7]); + io[1] = _mm_add_epi16(step1[1], step1[6]); + io[2] = _mm_add_epi16(step1[2], step1[5]); + io[3] = _mm_add_epi16(step1[3], step2[4]); + io[4] = _mm_sub_epi16(step1[3], step2[4]); + io[5] = _mm_sub_epi16(step1[2], step1[5]); + io[6] = _mm_sub_epi16(step1[1], step1[6]); + io[7] = _mm_sub_epi16(step1[0], step2[7]); +} + +void idct32_135_8x32_ssse3(const __m128i *const in, __m128i *const out); + +#endif // VPX_DSP_X86_INV_TXFM_SSSE3_H_ diff --git a/vpx_dsp/x86/inv_wht_sse2.asm b/vpx_dsp/x86/inv_wht_sse2.asm new file mode 100644 index 0000000..bcf1a6e --- /dev/null +++ b/vpx_dsp/x86/inv_wht_sse2.asm @@ -0,0 +1,103 @@ +; +; Copyright (c) 2015 The WebM project authors. All Rights Reserved. +; +; Use of this source code is governed by a BSD-style license +; that can be found in the LICENSE file in the root of the source +; tree. An additional intellectual property rights grant can be found +; in the file PATENTS. All contributing project authors may +; be found in the AUTHORS file in the root of the source tree. +; + +%include "third_party/x86inc/x86inc.asm" +%include "vpx_dsp/x86/bitdepth_conversion_sse2.asm" + +SECTION .text + +%macro REORDER_INPUTS 0 + ; a c d b to a b c d + SWAP 1, 3, 2 +%endmacro + +%macro TRANSFORM_COLS 0 + ; input: + ; m0 a + ; m1 b + ; m2 c + ; m3 d + paddw m0, m2 + psubw m3, m1 + + ; wide subtract + punpcklwd m4, m0 + punpcklwd m5, m3 + psrad m4, 16 + psrad m5, 16 + psubd m4, m5 + psrad m4, 1 + packssdw m4, m4 ; e + + psubw m5, m4, m1 ; b + psubw m4, m2 ; c + psubw m0, m5 + paddw m3, m4 + ; m0 a + SWAP 1, 5 ; m1 b + SWAP 2, 4 ; m2 c + ; m3 d +%endmacro + +%macro TRANSPOSE_4X4 0 + punpcklwd m0, m2 + punpcklwd m1, m3 + mova m2, m0 + punpcklwd m0, m1 + punpckhwd m2, m1 + pshufd m1, m0, 0x0e + pshufd m3, m2, 0x0e +%endmacro + +; transpose a 4x4 int16 matrix in xmm0 and xmm1 to the bottom half of xmm0-xmm3 +%macro TRANSPOSE_4X4_WIDE 0 + mova m3, m0 + punpcklwd m0, m1 + punpckhwd m3, m1 + mova m2, m0 + punpcklwd m0, m3 + punpckhwd m2, m3 + pshufd m1, m0, 0x0e + pshufd m3, m2, 0x0e +%endmacro + +%macro ADD_STORE_4P_2X 5 ; src1, src2, tmp1, tmp2, zero + movd m%3, [outputq] + movd m%4, [outputq + strideq] + punpcklbw m%3, m%5 + punpcklbw m%4, m%5 + paddw m%1, m%3 + paddw m%2, m%4 + packuswb m%1, m%5 + packuswb m%2, m%5 + movd [outputq], m%1 + movd [outputq + strideq], m%2 +%endmacro + +INIT_XMM sse2 +cglobal iwht4x4_16_add, 3, 3, 7, input, output, stride + LOAD_TRAN_LOW 0, inputq, 0 + LOAD_TRAN_LOW 1, inputq, 8 + psraw m0, 2 + psraw m1, 2 + + TRANSPOSE_4X4_WIDE + REORDER_INPUTS + TRANSFORM_COLS + TRANSPOSE_4X4 + REORDER_INPUTS + TRANSFORM_COLS + + pxor m4, m4 + ADD_STORE_4P_2X 0, 1, 5, 6, 4 + lea outputq, [outputq + 2 * strideq] + ADD_STORE_4P_2X 2, 3, 5, 6, 4 + + RET diff --git a/vpx_dsp/x86/loopfilter_avx2.c b/vpx_dsp/x86/loopfilter_avx2.c new file mode 100644 index 0000000..6652a62 --- /dev/null +++ b/vpx_dsp/x86/loopfilter_avx2.c @@ -0,0 +1,913 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include /* AVX2 */ + +#include "./vpx_dsp_rtcd.h" +#include "vpx_ports/mem.h" + +void vpx_lpf_horizontal_16_avx2(unsigned char *s, int p, + const unsigned char *_blimit, + const unsigned char *_limit, + const unsigned char *_thresh) { + __m128i mask, hev, flat, flat2; + const __m128i zero = _mm_set1_epi16(0); + const __m128i one = _mm_set1_epi8(1); + __m128i q7p7, q6p6, q5p5, q4p4, q3p3, q2p2, q1p1, q0p0, p0q0, p1q1; + __m128i abs_p1p0; + + const __m128i thresh = + _mm_broadcastb_epi8(_mm_cvtsi32_si128((int)_thresh[0])); + const __m128i limit = _mm_broadcastb_epi8(_mm_cvtsi32_si128((int)_limit[0])); + const __m128i blimit = + _mm_broadcastb_epi8(_mm_cvtsi32_si128((int)_blimit[0])); + + q4p4 = _mm_loadl_epi64((__m128i *)(s - 5 * p)); + q4p4 = _mm_castps_si128( + _mm_loadh_pi(_mm_castsi128_ps(q4p4), (__m64 *)(s + 4 * p))); + q3p3 = _mm_loadl_epi64((__m128i *)(s - 4 * p)); + q3p3 = _mm_castps_si128( + _mm_loadh_pi(_mm_castsi128_ps(q3p3), (__m64 *)(s + 3 * p))); + q2p2 = _mm_loadl_epi64((__m128i *)(s - 3 * p)); + q2p2 = _mm_castps_si128( + _mm_loadh_pi(_mm_castsi128_ps(q2p2), (__m64 *)(s + 2 * p))); + q1p1 = _mm_loadl_epi64((__m128i *)(s - 2 * p)); + q1p1 = _mm_castps_si128( + _mm_loadh_pi(_mm_castsi128_ps(q1p1), (__m64 *)(s + 1 * p))); + p1q1 = _mm_shuffle_epi32(q1p1, 78); + q0p0 = _mm_loadl_epi64((__m128i *)(s - 1 * p)); + q0p0 = _mm_castps_si128( + _mm_loadh_pi(_mm_castsi128_ps(q0p0), (__m64 *)(s - 0 * p))); + p0q0 = _mm_shuffle_epi32(q0p0, 78); + + { + __m128i abs_p1q1, abs_p0q0, abs_q1q0, fe, ff, work; + abs_p1p0 = + _mm_or_si128(_mm_subs_epu8(q1p1, q0p0), _mm_subs_epu8(q0p0, q1p1)); + abs_q1q0 = _mm_srli_si128(abs_p1p0, 8); + fe = _mm_set1_epi8(0xfe); + ff = _mm_cmpeq_epi8(abs_p1p0, abs_p1p0); + abs_p0q0 = + _mm_or_si128(_mm_subs_epu8(q0p0, p0q0), _mm_subs_epu8(p0q0, q0p0)); + abs_p1q1 = + _mm_or_si128(_mm_subs_epu8(q1p1, p1q1), _mm_subs_epu8(p1q1, q1p1)); + flat = _mm_max_epu8(abs_p1p0, abs_q1q0); + hev = _mm_subs_epu8(flat, thresh); + hev = _mm_xor_si128(_mm_cmpeq_epi8(hev, zero), ff); + + abs_p0q0 = _mm_adds_epu8(abs_p0q0, abs_p0q0); + abs_p1q1 = _mm_srli_epi16(_mm_and_si128(abs_p1q1, fe), 1); + mask = _mm_subs_epu8(_mm_adds_epu8(abs_p0q0, abs_p1q1), blimit); + mask = _mm_xor_si128(_mm_cmpeq_epi8(mask, zero), ff); + // mask |= (abs(p0 - q0) * 2 + abs(p1 - q1) / 2 > blimit) * -1; + mask = _mm_max_epu8(abs_p1p0, mask); + // mask |= (abs(p1 - p0) > limit) * -1; + // mask |= (abs(q1 - q0) > limit) * -1; + + work = _mm_max_epu8( + _mm_or_si128(_mm_subs_epu8(q2p2, q1p1), _mm_subs_epu8(q1p1, q2p2)), + _mm_or_si128(_mm_subs_epu8(q3p3, q2p2), _mm_subs_epu8(q2p2, q3p3))); + mask = _mm_max_epu8(work, mask); + mask = _mm_max_epu8(mask, _mm_srli_si128(mask, 8)); + mask = _mm_subs_epu8(mask, limit); + mask = _mm_cmpeq_epi8(mask, zero); + } + + // lp filter + { + const __m128i t4 = _mm_set1_epi8(4); + const __m128i t3 = _mm_set1_epi8(3); + const __m128i t80 = _mm_set1_epi8(0x80); + const __m128i t1 = _mm_set1_epi16(0x1); + __m128i qs1ps1 = _mm_xor_si128(q1p1, t80); + __m128i qs0ps0 = _mm_xor_si128(q0p0, t80); + __m128i qs0 = _mm_xor_si128(p0q0, t80); + __m128i qs1 = _mm_xor_si128(p1q1, t80); + __m128i filt; + __m128i work_a; + __m128i filter1, filter2; + __m128i flat2_q6p6, flat2_q5p5, flat2_q4p4, flat2_q3p3, flat2_q2p2; + __m128i flat2_q1p1, flat2_q0p0, flat_q2p2, flat_q1p1, flat_q0p0; + + filt = _mm_and_si128(_mm_subs_epi8(qs1ps1, qs1), hev); + work_a = _mm_subs_epi8(qs0, qs0ps0); + filt = _mm_adds_epi8(filt, work_a); + filt = _mm_adds_epi8(filt, work_a); + filt = _mm_adds_epi8(filt, work_a); + /* (vpx_filter + 3 * (qs0 - ps0)) & mask */ + filt = _mm_and_si128(filt, mask); + + filter1 = _mm_adds_epi8(filt, t4); + filter2 = _mm_adds_epi8(filt, t3); + + filter1 = _mm_unpacklo_epi8(zero, filter1); + filter1 = _mm_srai_epi16(filter1, 0xB); + filter2 = _mm_unpacklo_epi8(zero, filter2); + filter2 = _mm_srai_epi16(filter2, 0xB); + + /* Filter1 >> 3 */ + filt = _mm_packs_epi16(filter2, _mm_subs_epi16(zero, filter1)); + qs0ps0 = _mm_xor_si128(_mm_adds_epi8(qs0ps0, filt), t80); + + /* filt >> 1 */ + filt = _mm_adds_epi16(filter1, t1); + filt = _mm_srai_epi16(filt, 1); + filt = _mm_andnot_si128(_mm_srai_epi16(_mm_unpacklo_epi8(zero, hev), 0x8), + filt); + filt = _mm_packs_epi16(filt, _mm_subs_epi16(zero, filt)); + qs1ps1 = _mm_xor_si128(_mm_adds_epi8(qs1ps1, filt), t80); + // loopfilter done + + { + __m128i work; + flat = _mm_max_epu8( + _mm_or_si128(_mm_subs_epu8(q2p2, q0p0), _mm_subs_epu8(q0p0, q2p2)), + _mm_or_si128(_mm_subs_epu8(q3p3, q0p0), _mm_subs_epu8(q0p0, q3p3))); + flat = _mm_max_epu8(abs_p1p0, flat); + flat = _mm_max_epu8(flat, _mm_srli_si128(flat, 8)); + flat = _mm_subs_epu8(flat, one); + flat = _mm_cmpeq_epi8(flat, zero); + flat = _mm_and_si128(flat, mask); + + q5p5 = _mm_loadl_epi64((__m128i *)(s - 6 * p)); + q5p5 = _mm_castps_si128( + _mm_loadh_pi(_mm_castsi128_ps(q5p5), (__m64 *)(s + 5 * p))); + + q6p6 = _mm_loadl_epi64((__m128i *)(s - 7 * p)); + q6p6 = _mm_castps_si128( + _mm_loadh_pi(_mm_castsi128_ps(q6p6), (__m64 *)(s + 6 * p))); + + flat2 = _mm_max_epu8( + _mm_or_si128(_mm_subs_epu8(q4p4, q0p0), _mm_subs_epu8(q0p0, q4p4)), + _mm_or_si128(_mm_subs_epu8(q5p5, q0p0), _mm_subs_epu8(q0p0, q5p5))); + + q7p7 = _mm_loadl_epi64((__m128i *)(s - 8 * p)); + q7p7 = _mm_castps_si128( + _mm_loadh_pi(_mm_castsi128_ps(q7p7), (__m64 *)(s + 7 * p))); + + work = _mm_max_epu8( + _mm_or_si128(_mm_subs_epu8(q6p6, q0p0), _mm_subs_epu8(q0p0, q6p6)), + _mm_or_si128(_mm_subs_epu8(q7p7, q0p0), _mm_subs_epu8(q0p0, q7p7))); + + flat2 = _mm_max_epu8(work, flat2); + flat2 = _mm_max_epu8(flat2, _mm_srli_si128(flat2, 8)); + flat2 = _mm_subs_epu8(flat2, one); + flat2 = _mm_cmpeq_epi8(flat2, zero); + flat2 = _mm_and_si128(flat2, flat); // flat2 & flat & mask + } + + // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + // flat and wide flat calculations + { + const __m128i eight = _mm_set1_epi16(8); + const __m128i four = _mm_set1_epi16(4); + __m128i p7_16, p6_16, p5_16, p4_16, p3_16, p2_16, p1_16, p0_16; + __m128i q7_16, q6_16, q5_16, q4_16, q3_16, q2_16, q1_16, q0_16; + __m128i pixelFilter_p, pixelFilter_q; + __m128i pixetFilter_p2p1p0, pixetFilter_q2q1q0; + __m128i sum_p7, sum_q7, sum_p3, sum_q3, res_p, res_q; + + p7_16 = _mm_unpacklo_epi8(q7p7, zero); + p6_16 = _mm_unpacklo_epi8(q6p6, zero); + p5_16 = _mm_unpacklo_epi8(q5p5, zero); + p4_16 = _mm_unpacklo_epi8(q4p4, zero); + p3_16 = _mm_unpacklo_epi8(q3p3, zero); + p2_16 = _mm_unpacklo_epi8(q2p2, zero); + p1_16 = _mm_unpacklo_epi8(q1p1, zero); + p0_16 = _mm_unpacklo_epi8(q0p0, zero); + q0_16 = _mm_unpackhi_epi8(q0p0, zero); + q1_16 = _mm_unpackhi_epi8(q1p1, zero); + q2_16 = _mm_unpackhi_epi8(q2p2, zero); + q3_16 = _mm_unpackhi_epi8(q3p3, zero); + q4_16 = _mm_unpackhi_epi8(q4p4, zero); + q5_16 = _mm_unpackhi_epi8(q5p5, zero); + q6_16 = _mm_unpackhi_epi8(q6p6, zero); + q7_16 = _mm_unpackhi_epi8(q7p7, zero); + + pixelFilter_p = _mm_add_epi16(_mm_add_epi16(p6_16, p5_16), + _mm_add_epi16(p4_16, p3_16)); + pixelFilter_q = _mm_add_epi16(_mm_add_epi16(q6_16, q5_16), + _mm_add_epi16(q4_16, q3_16)); + + pixetFilter_p2p1p0 = _mm_add_epi16(p0_16, _mm_add_epi16(p2_16, p1_16)); + pixelFilter_p = _mm_add_epi16(pixelFilter_p, pixetFilter_p2p1p0); + + pixetFilter_q2q1q0 = _mm_add_epi16(q0_16, _mm_add_epi16(q2_16, q1_16)); + pixelFilter_q = _mm_add_epi16(pixelFilter_q, pixetFilter_q2q1q0); + pixelFilter_p = + _mm_add_epi16(eight, _mm_add_epi16(pixelFilter_p, pixelFilter_q)); + pixetFilter_p2p1p0 = _mm_add_epi16( + four, _mm_add_epi16(pixetFilter_p2p1p0, pixetFilter_q2q1q0)); + res_p = _mm_srli_epi16( + _mm_add_epi16(pixelFilter_p, _mm_add_epi16(p7_16, p0_16)), 4); + res_q = _mm_srli_epi16( + _mm_add_epi16(pixelFilter_p, _mm_add_epi16(q7_16, q0_16)), 4); + flat2_q0p0 = _mm_packus_epi16(res_p, res_q); + res_p = _mm_srli_epi16( + _mm_add_epi16(pixetFilter_p2p1p0, _mm_add_epi16(p3_16, p0_16)), 3); + res_q = _mm_srli_epi16( + _mm_add_epi16(pixetFilter_p2p1p0, _mm_add_epi16(q3_16, q0_16)), 3); + + flat_q0p0 = _mm_packus_epi16(res_p, res_q); + + sum_p7 = _mm_add_epi16(p7_16, p7_16); + sum_q7 = _mm_add_epi16(q7_16, q7_16); + sum_p3 = _mm_add_epi16(p3_16, p3_16); + sum_q3 = _mm_add_epi16(q3_16, q3_16); + + pixelFilter_q = _mm_sub_epi16(pixelFilter_p, p6_16); + pixelFilter_p = _mm_sub_epi16(pixelFilter_p, q6_16); + res_p = _mm_srli_epi16( + _mm_add_epi16(pixelFilter_p, _mm_add_epi16(sum_p7, p1_16)), 4); + res_q = _mm_srli_epi16( + _mm_add_epi16(pixelFilter_q, _mm_add_epi16(sum_q7, q1_16)), 4); + flat2_q1p1 = _mm_packus_epi16(res_p, res_q); + + pixetFilter_q2q1q0 = _mm_sub_epi16(pixetFilter_p2p1p0, p2_16); + pixetFilter_p2p1p0 = _mm_sub_epi16(pixetFilter_p2p1p0, q2_16); + res_p = _mm_srli_epi16( + _mm_add_epi16(pixetFilter_p2p1p0, _mm_add_epi16(sum_p3, p1_16)), 3); + res_q = _mm_srli_epi16( + _mm_add_epi16(pixetFilter_q2q1q0, _mm_add_epi16(sum_q3, q1_16)), 3); + flat_q1p1 = _mm_packus_epi16(res_p, res_q); + + sum_p7 = _mm_add_epi16(sum_p7, p7_16); + sum_q7 = _mm_add_epi16(sum_q7, q7_16); + sum_p3 = _mm_add_epi16(sum_p3, p3_16); + sum_q3 = _mm_add_epi16(sum_q3, q3_16); + + pixelFilter_p = _mm_sub_epi16(pixelFilter_p, q5_16); + pixelFilter_q = _mm_sub_epi16(pixelFilter_q, p5_16); + res_p = _mm_srli_epi16( + _mm_add_epi16(pixelFilter_p, _mm_add_epi16(sum_p7, p2_16)), 4); + res_q = _mm_srli_epi16( + _mm_add_epi16(pixelFilter_q, _mm_add_epi16(sum_q7, q2_16)), 4); + flat2_q2p2 = _mm_packus_epi16(res_p, res_q); + + pixetFilter_p2p1p0 = _mm_sub_epi16(pixetFilter_p2p1p0, q1_16); + pixetFilter_q2q1q0 = _mm_sub_epi16(pixetFilter_q2q1q0, p1_16); + + res_p = _mm_srli_epi16( + _mm_add_epi16(pixetFilter_p2p1p0, _mm_add_epi16(sum_p3, p2_16)), 3); + res_q = _mm_srli_epi16( + _mm_add_epi16(pixetFilter_q2q1q0, _mm_add_epi16(sum_q3, q2_16)), 3); + flat_q2p2 = _mm_packus_epi16(res_p, res_q); + + sum_p7 = _mm_add_epi16(sum_p7, p7_16); + sum_q7 = _mm_add_epi16(sum_q7, q7_16); + pixelFilter_p = _mm_sub_epi16(pixelFilter_p, q4_16); + pixelFilter_q = _mm_sub_epi16(pixelFilter_q, p4_16); + res_p = _mm_srli_epi16( + _mm_add_epi16(pixelFilter_p, _mm_add_epi16(sum_p7, p3_16)), 4); + res_q = _mm_srli_epi16( + _mm_add_epi16(pixelFilter_q, _mm_add_epi16(sum_q7, q3_16)), 4); + flat2_q3p3 = _mm_packus_epi16(res_p, res_q); + + sum_p7 = _mm_add_epi16(sum_p7, p7_16); + sum_q7 = _mm_add_epi16(sum_q7, q7_16); + pixelFilter_p = _mm_sub_epi16(pixelFilter_p, q3_16); + pixelFilter_q = _mm_sub_epi16(pixelFilter_q, p3_16); + res_p = _mm_srli_epi16( + _mm_add_epi16(pixelFilter_p, _mm_add_epi16(sum_p7, p4_16)), 4); + res_q = _mm_srli_epi16( + _mm_add_epi16(pixelFilter_q, _mm_add_epi16(sum_q7, q4_16)), 4); + flat2_q4p4 = _mm_packus_epi16(res_p, res_q); + + sum_p7 = _mm_add_epi16(sum_p7, p7_16); + sum_q7 = _mm_add_epi16(sum_q7, q7_16); + pixelFilter_p = _mm_sub_epi16(pixelFilter_p, q2_16); + pixelFilter_q = _mm_sub_epi16(pixelFilter_q, p2_16); + res_p = _mm_srli_epi16( + _mm_add_epi16(pixelFilter_p, _mm_add_epi16(sum_p7, p5_16)), 4); + res_q = _mm_srli_epi16( + _mm_add_epi16(pixelFilter_q, _mm_add_epi16(sum_q7, q5_16)), 4); + flat2_q5p5 = _mm_packus_epi16(res_p, res_q); + + sum_p7 = _mm_add_epi16(sum_p7, p7_16); + sum_q7 = _mm_add_epi16(sum_q7, q7_16); + pixelFilter_p = _mm_sub_epi16(pixelFilter_p, q1_16); + pixelFilter_q = _mm_sub_epi16(pixelFilter_q, p1_16); + res_p = _mm_srli_epi16( + _mm_add_epi16(pixelFilter_p, _mm_add_epi16(sum_p7, p6_16)), 4); + res_q = _mm_srli_epi16( + _mm_add_epi16(pixelFilter_q, _mm_add_epi16(sum_q7, q6_16)), 4); + flat2_q6p6 = _mm_packus_epi16(res_p, res_q); + } + // wide flat + // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + + flat = _mm_shuffle_epi32(flat, 68); + flat2 = _mm_shuffle_epi32(flat2, 68); + + q2p2 = _mm_andnot_si128(flat, q2p2); + flat_q2p2 = _mm_and_si128(flat, flat_q2p2); + q2p2 = _mm_or_si128(q2p2, flat_q2p2); + + qs1ps1 = _mm_andnot_si128(flat, qs1ps1); + flat_q1p1 = _mm_and_si128(flat, flat_q1p1); + q1p1 = _mm_or_si128(qs1ps1, flat_q1p1); + + qs0ps0 = _mm_andnot_si128(flat, qs0ps0); + flat_q0p0 = _mm_and_si128(flat, flat_q0p0); + q0p0 = _mm_or_si128(qs0ps0, flat_q0p0); + + q6p6 = _mm_andnot_si128(flat2, q6p6); + flat2_q6p6 = _mm_and_si128(flat2, flat2_q6p6); + q6p6 = _mm_or_si128(q6p6, flat2_q6p6); + _mm_storel_epi64((__m128i *)(s - 7 * p), q6p6); + _mm_storeh_pi((__m64 *)(s + 6 * p), _mm_castsi128_ps(q6p6)); + + q5p5 = _mm_andnot_si128(flat2, q5p5); + flat2_q5p5 = _mm_and_si128(flat2, flat2_q5p5); + q5p5 = _mm_or_si128(q5p5, flat2_q5p5); + _mm_storel_epi64((__m128i *)(s - 6 * p), q5p5); + _mm_storeh_pi((__m64 *)(s + 5 * p), _mm_castsi128_ps(q5p5)); + + q4p4 = _mm_andnot_si128(flat2, q4p4); + flat2_q4p4 = _mm_and_si128(flat2, flat2_q4p4); + q4p4 = _mm_or_si128(q4p4, flat2_q4p4); + _mm_storel_epi64((__m128i *)(s - 5 * p), q4p4); + _mm_storeh_pi((__m64 *)(s + 4 * p), _mm_castsi128_ps(q4p4)); + + q3p3 = _mm_andnot_si128(flat2, q3p3); + flat2_q3p3 = _mm_and_si128(flat2, flat2_q3p3); + q3p3 = _mm_or_si128(q3p3, flat2_q3p3); + _mm_storel_epi64((__m128i *)(s - 4 * p), q3p3); + _mm_storeh_pi((__m64 *)(s + 3 * p), _mm_castsi128_ps(q3p3)); + + q2p2 = _mm_andnot_si128(flat2, q2p2); + flat2_q2p2 = _mm_and_si128(flat2, flat2_q2p2); + q2p2 = _mm_or_si128(q2p2, flat2_q2p2); + _mm_storel_epi64((__m128i *)(s - 3 * p), q2p2); + _mm_storeh_pi((__m64 *)(s + 2 * p), _mm_castsi128_ps(q2p2)); + + q1p1 = _mm_andnot_si128(flat2, q1p1); + flat2_q1p1 = _mm_and_si128(flat2, flat2_q1p1); + q1p1 = _mm_or_si128(q1p1, flat2_q1p1); + _mm_storel_epi64((__m128i *)(s - 2 * p), q1p1); + _mm_storeh_pi((__m64 *)(s + 1 * p), _mm_castsi128_ps(q1p1)); + + q0p0 = _mm_andnot_si128(flat2, q0p0); + flat2_q0p0 = _mm_and_si128(flat2, flat2_q0p0); + q0p0 = _mm_or_si128(q0p0, flat2_q0p0); + _mm_storel_epi64((__m128i *)(s - 1 * p), q0p0); + _mm_storeh_pi((__m64 *)(s - 0 * p), _mm_castsi128_ps(q0p0)); + } +} + +DECLARE_ALIGNED(32, static const uint8_t, filt_loopfilter_avx2[32]) = { + 0, 128, 1, 128, 2, 128, 3, 128, 4, 128, 5, 128, 6, 128, 7, 128, + 8, 128, 9, 128, 10, 128, 11, 128, 12, 128, 13, 128, 14, 128, 15, 128 +}; + +void vpx_lpf_horizontal_16_dual_avx2(unsigned char *s, int p, + const unsigned char *_blimit, + const unsigned char *_limit, + const unsigned char *_thresh) { + __m128i mask, hev, flat, flat2; + const __m128i zero = _mm_set1_epi16(0); + const __m128i one = _mm_set1_epi8(1); + __m128i p7, p6, p5; + __m128i p4, p3, p2, p1, p0, q0, q1, q2, q3, q4; + __m128i q5, q6, q7; + __m256i p256_7, q256_7, p256_6, q256_6, p256_5, q256_5, p256_4, q256_4, + p256_3, q256_3, p256_2, q256_2, p256_1, q256_1, p256_0, q256_0; + + const __m128i thresh = + _mm_broadcastb_epi8(_mm_cvtsi32_si128((int)_thresh[0])); + const __m128i limit = _mm_broadcastb_epi8(_mm_cvtsi32_si128((int)_limit[0])); + const __m128i blimit = + _mm_broadcastb_epi8(_mm_cvtsi32_si128((int)_blimit[0])); + + p256_4 = + _mm256_castpd_si256(_mm256_broadcast_pd((__m128d const *)(s - 5 * p))); + p256_3 = + _mm256_castpd_si256(_mm256_broadcast_pd((__m128d const *)(s - 4 * p))); + p256_2 = + _mm256_castpd_si256(_mm256_broadcast_pd((__m128d const *)(s - 3 * p))); + p256_1 = + _mm256_castpd_si256(_mm256_broadcast_pd((__m128d const *)(s - 2 * p))); + p256_0 = + _mm256_castpd_si256(_mm256_broadcast_pd((__m128d const *)(s - 1 * p))); + q256_0 = + _mm256_castpd_si256(_mm256_broadcast_pd((__m128d const *)(s - 0 * p))); + q256_1 = + _mm256_castpd_si256(_mm256_broadcast_pd((__m128d const *)(s + 1 * p))); + q256_2 = + _mm256_castpd_si256(_mm256_broadcast_pd((__m128d const *)(s + 2 * p))); + q256_3 = + _mm256_castpd_si256(_mm256_broadcast_pd((__m128d const *)(s + 3 * p))); + q256_4 = + _mm256_castpd_si256(_mm256_broadcast_pd((__m128d const *)(s + 4 * p))); + + p4 = _mm256_castsi256_si128(p256_4); + p3 = _mm256_castsi256_si128(p256_3); + p2 = _mm256_castsi256_si128(p256_2); + p1 = _mm256_castsi256_si128(p256_1); + p0 = _mm256_castsi256_si128(p256_0); + q0 = _mm256_castsi256_si128(q256_0); + q1 = _mm256_castsi256_si128(q256_1); + q2 = _mm256_castsi256_si128(q256_2); + q3 = _mm256_castsi256_si128(q256_3); + q4 = _mm256_castsi256_si128(q256_4); + + { + const __m128i abs_p1p0 = + _mm_or_si128(_mm_subs_epu8(p1, p0), _mm_subs_epu8(p0, p1)); + const __m128i abs_q1q0 = + _mm_or_si128(_mm_subs_epu8(q1, q0), _mm_subs_epu8(q0, q1)); + const __m128i fe = _mm_set1_epi8(0xfe); + const __m128i ff = _mm_cmpeq_epi8(abs_p1p0, abs_p1p0); + __m128i abs_p0q0 = + _mm_or_si128(_mm_subs_epu8(p0, q0), _mm_subs_epu8(q0, p0)); + __m128i abs_p1q1 = + _mm_or_si128(_mm_subs_epu8(p1, q1), _mm_subs_epu8(q1, p1)); + __m128i work; + flat = _mm_max_epu8(abs_p1p0, abs_q1q0); + hev = _mm_subs_epu8(flat, thresh); + hev = _mm_xor_si128(_mm_cmpeq_epi8(hev, zero), ff); + + abs_p0q0 = _mm_adds_epu8(abs_p0q0, abs_p0q0); + abs_p1q1 = _mm_srli_epi16(_mm_and_si128(abs_p1q1, fe), 1); + mask = _mm_subs_epu8(_mm_adds_epu8(abs_p0q0, abs_p1q1), blimit); + mask = _mm_xor_si128(_mm_cmpeq_epi8(mask, zero), ff); + // mask |= (abs(p0 - q0) * 2 + abs(p1 - q1) / 2 > blimit) * -1; + mask = _mm_max_epu8(flat, mask); + // mask |= (abs(p1 - p0) > limit) * -1; + // mask |= (abs(q1 - q0) > limit) * -1; + work = _mm_max_epu8( + _mm_or_si128(_mm_subs_epu8(p2, p1), _mm_subs_epu8(p1, p2)), + _mm_or_si128(_mm_subs_epu8(p3, p2), _mm_subs_epu8(p2, p3))); + mask = _mm_max_epu8(work, mask); + work = _mm_max_epu8( + _mm_or_si128(_mm_subs_epu8(q2, q1), _mm_subs_epu8(q1, q2)), + _mm_or_si128(_mm_subs_epu8(q3, q2), _mm_subs_epu8(q2, q3))); + mask = _mm_max_epu8(work, mask); + mask = _mm_subs_epu8(mask, limit); + mask = _mm_cmpeq_epi8(mask, zero); + } + + // lp filter + { + const __m128i t4 = _mm_set1_epi8(4); + const __m128i t3 = _mm_set1_epi8(3); + const __m128i t80 = _mm_set1_epi8(0x80); + const __m128i te0 = _mm_set1_epi8(0xe0); + const __m128i t1f = _mm_set1_epi8(0x1f); + const __m128i t1 = _mm_set1_epi8(0x1); + const __m128i t7f = _mm_set1_epi8(0x7f); + + __m128i ps1 = _mm_xor_si128(p1, t80); + __m128i ps0 = _mm_xor_si128(p0, t80); + __m128i qs0 = _mm_xor_si128(q0, t80); + __m128i qs1 = _mm_xor_si128(q1, t80); + __m128i filt; + __m128i work_a; + __m128i filter1, filter2; + __m128i flat2_p6, flat2_p5, flat2_p4, flat2_p3, flat2_p2, flat2_p1, + flat2_p0, flat2_q0, flat2_q1, flat2_q2, flat2_q3, flat2_q4, flat2_q5, + flat2_q6, flat_p2, flat_p1, flat_p0, flat_q0, flat_q1, flat_q2; + + filt = _mm_and_si128(_mm_subs_epi8(ps1, qs1), hev); + work_a = _mm_subs_epi8(qs0, ps0); + filt = _mm_adds_epi8(filt, work_a); + filt = _mm_adds_epi8(filt, work_a); + filt = _mm_adds_epi8(filt, work_a); + /* (vpx_filter + 3 * (qs0 - ps0)) & mask */ + filt = _mm_and_si128(filt, mask); + + filter1 = _mm_adds_epi8(filt, t4); + filter2 = _mm_adds_epi8(filt, t3); + + /* Filter1 >> 3 */ + work_a = _mm_cmpgt_epi8(zero, filter1); + filter1 = _mm_srli_epi16(filter1, 3); + work_a = _mm_and_si128(work_a, te0); + filter1 = _mm_and_si128(filter1, t1f); + filter1 = _mm_or_si128(filter1, work_a); + qs0 = _mm_xor_si128(_mm_subs_epi8(qs0, filter1), t80); + + /* Filter2 >> 3 */ + work_a = _mm_cmpgt_epi8(zero, filter2); + filter2 = _mm_srli_epi16(filter2, 3); + work_a = _mm_and_si128(work_a, te0); + filter2 = _mm_and_si128(filter2, t1f); + filter2 = _mm_or_si128(filter2, work_a); + ps0 = _mm_xor_si128(_mm_adds_epi8(ps0, filter2), t80); + + /* filt >> 1 */ + filt = _mm_adds_epi8(filter1, t1); + work_a = _mm_cmpgt_epi8(zero, filt); + filt = _mm_srli_epi16(filt, 1); + work_a = _mm_and_si128(work_a, t80); + filt = _mm_and_si128(filt, t7f); + filt = _mm_or_si128(filt, work_a); + filt = _mm_andnot_si128(hev, filt); + ps1 = _mm_xor_si128(_mm_adds_epi8(ps1, filt), t80); + qs1 = _mm_xor_si128(_mm_subs_epi8(qs1, filt), t80); + // loopfilter done + + { + __m128i work; + work = _mm_max_epu8( + _mm_or_si128(_mm_subs_epu8(p2, p0), _mm_subs_epu8(p0, p2)), + _mm_or_si128(_mm_subs_epu8(q2, q0), _mm_subs_epu8(q0, q2))); + flat = _mm_max_epu8(work, flat); + work = _mm_max_epu8( + _mm_or_si128(_mm_subs_epu8(p3, p0), _mm_subs_epu8(p0, p3)), + _mm_or_si128(_mm_subs_epu8(q3, q0), _mm_subs_epu8(q0, q3))); + flat = _mm_max_epu8(work, flat); + work = _mm_max_epu8( + _mm_or_si128(_mm_subs_epu8(p4, p0), _mm_subs_epu8(p0, p4)), + _mm_or_si128(_mm_subs_epu8(q4, q0), _mm_subs_epu8(q0, q4))); + flat = _mm_subs_epu8(flat, one); + flat = _mm_cmpeq_epi8(flat, zero); + flat = _mm_and_si128(flat, mask); + + p256_5 = _mm256_castpd_si256( + _mm256_broadcast_pd((__m128d const *)(s - 6 * p))); + q256_5 = _mm256_castpd_si256( + _mm256_broadcast_pd((__m128d const *)(s + 5 * p))); + p5 = _mm256_castsi256_si128(p256_5); + q5 = _mm256_castsi256_si128(q256_5); + flat2 = _mm_max_epu8( + _mm_or_si128(_mm_subs_epu8(p5, p0), _mm_subs_epu8(p0, p5)), + _mm_or_si128(_mm_subs_epu8(q5, q0), _mm_subs_epu8(q0, q5))); + + flat2 = _mm_max_epu8(work, flat2); + p256_6 = _mm256_castpd_si256( + _mm256_broadcast_pd((__m128d const *)(s - 7 * p))); + q256_6 = _mm256_castpd_si256( + _mm256_broadcast_pd((__m128d const *)(s + 6 * p))); + p6 = _mm256_castsi256_si128(p256_6); + q6 = _mm256_castsi256_si128(q256_6); + work = _mm_max_epu8( + _mm_or_si128(_mm_subs_epu8(p6, p0), _mm_subs_epu8(p0, p6)), + _mm_or_si128(_mm_subs_epu8(q6, q0), _mm_subs_epu8(q0, q6))); + + flat2 = _mm_max_epu8(work, flat2); + + p256_7 = _mm256_castpd_si256( + _mm256_broadcast_pd((__m128d const *)(s - 8 * p))); + q256_7 = _mm256_castpd_si256( + _mm256_broadcast_pd((__m128d const *)(s + 7 * p))); + p7 = _mm256_castsi256_si128(p256_7); + q7 = _mm256_castsi256_si128(q256_7); + work = _mm_max_epu8( + _mm_or_si128(_mm_subs_epu8(p7, p0), _mm_subs_epu8(p0, p7)), + _mm_or_si128(_mm_subs_epu8(q7, q0), _mm_subs_epu8(q0, q7))); + + flat2 = _mm_max_epu8(work, flat2); + flat2 = _mm_subs_epu8(flat2, one); + flat2 = _mm_cmpeq_epi8(flat2, zero); + flat2 = _mm_and_si128(flat2, flat); // flat2 & flat & mask + } + + // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + // flat and wide flat calculations + { + const __m256i eight = _mm256_set1_epi16(8); + const __m256i four = _mm256_set1_epi16(4); + __m256i pixelFilter_p, pixelFilter_q, pixetFilter_p2p1p0, + pixetFilter_q2q1q0, sum_p7, sum_q7, sum_p3, sum_q3, res_p, res_q; + + const __m256i filter = + _mm256_load_si256((__m256i const *)filt_loopfilter_avx2); + p256_7 = _mm256_shuffle_epi8(p256_7, filter); + p256_6 = _mm256_shuffle_epi8(p256_6, filter); + p256_5 = _mm256_shuffle_epi8(p256_5, filter); + p256_4 = _mm256_shuffle_epi8(p256_4, filter); + p256_3 = _mm256_shuffle_epi8(p256_3, filter); + p256_2 = _mm256_shuffle_epi8(p256_2, filter); + p256_1 = _mm256_shuffle_epi8(p256_1, filter); + p256_0 = _mm256_shuffle_epi8(p256_0, filter); + q256_0 = _mm256_shuffle_epi8(q256_0, filter); + q256_1 = _mm256_shuffle_epi8(q256_1, filter); + q256_2 = _mm256_shuffle_epi8(q256_2, filter); + q256_3 = _mm256_shuffle_epi8(q256_3, filter); + q256_4 = _mm256_shuffle_epi8(q256_4, filter); + q256_5 = _mm256_shuffle_epi8(q256_5, filter); + q256_6 = _mm256_shuffle_epi8(q256_6, filter); + q256_7 = _mm256_shuffle_epi8(q256_7, filter); + + pixelFilter_p = _mm256_add_epi16(_mm256_add_epi16(p256_6, p256_5), + _mm256_add_epi16(p256_4, p256_3)); + pixelFilter_q = _mm256_add_epi16(_mm256_add_epi16(q256_6, q256_5), + _mm256_add_epi16(q256_4, q256_3)); + + pixetFilter_p2p1p0 = + _mm256_add_epi16(p256_0, _mm256_add_epi16(p256_2, p256_1)); + pixelFilter_p = _mm256_add_epi16(pixelFilter_p, pixetFilter_p2p1p0); + + pixetFilter_q2q1q0 = + _mm256_add_epi16(q256_0, _mm256_add_epi16(q256_2, q256_1)); + pixelFilter_q = _mm256_add_epi16(pixelFilter_q, pixetFilter_q2q1q0); + + pixelFilter_p = _mm256_add_epi16( + eight, _mm256_add_epi16(pixelFilter_p, pixelFilter_q)); + + pixetFilter_p2p1p0 = _mm256_add_epi16( + four, _mm256_add_epi16(pixetFilter_p2p1p0, pixetFilter_q2q1q0)); + + res_p = _mm256_srli_epi16( + _mm256_add_epi16(pixelFilter_p, _mm256_add_epi16(p256_7, p256_0)), 4); + + flat2_p0 = _mm256_castsi256_si128( + _mm256_permute4x64_epi64(_mm256_packus_epi16(res_p, res_p), 168)); + + res_q = _mm256_srli_epi16( + _mm256_add_epi16(pixelFilter_p, _mm256_add_epi16(q256_7, q256_0)), 4); + + flat2_q0 = _mm256_castsi256_si128( + _mm256_permute4x64_epi64(_mm256_packus_epi16(res_q, res_q), 168)); + + res_p = + _mm256_srli_epi16(_mm256_add_epi16(pixetFilter_p2p1p0, + _mm256_add_epi16(p256_3, p256_0)), + 3); + + flat_p0 = _mm256_castsi256_si128( + _mm256_permute4x64_epi64(_mm256_packus_epi16(res_p, res_p), 168)); + + res_q = + _mm256_srli_epi16(_mm256_add_epi16(pixetFilter_p2p1p0, + _mm256_add_epi16(q256_3, q256_0)), + 3); + + flat_q0 = _mm256_castsi256_si128( + _mm256_permute4x64_epi64(_mm256_packus_epi16(res_q, res_q), 168)); + + sum_p7 = _mm256_add_epi16(p256_7, p256_7); + + sum_q7 = _mm256_add_epi16(q256_7, q256_7); + + sum_p3 = _mm256_add_epi16(p256_3, p256_3); + + sum_q3 = _mm256_add_epi16(q256_3, q256_3); + + pixelFilter_q = _mm256_sub_epi16(pixelFilter_p, p256_6); + + pixelFilter_p = _mm256_sub_epi16(pixelFilter_p, q256_6); + + res_p = _mm256_srli_epi16( + _mm256_add_epi16(pixelFilter_p, _mm256_add_epi16(sum_p7, p256_1)), 4); + + flat2_p1 = _mm256_castsi256_si128( + _mm256_permute4x64_epi64(_mm256_packus_epi16(res_p, res_p), 168)); + + res_q = _mm256_srli_epi16( + _mm256_add_epi16(pixelFilter_q, _mm256_add_epi16(sum_q7, q256_1)), 4); + + flat2_q1 = _mm256_castsi256_si128( + _mm256_permute4x64_epi64(_mm256_packus_epi16(res_q, res_q), 168)); + + pixetFilter_q2q1q0 = _mm256_sub_epi16(pixetFilter_p2p1p0, p256_2); + + pixetFilter_p2p1p0 = _mm256_sub_epi16(pixetFilter_p2p1p0, q256_2); + + res_p = + _mm256_srli_epi16(_mm256_add_epi16(pixetFilter_p2p1p0, + _mm256_add_epi16(sum_p3, p256_1)), + 3); + + flat_p1 = _mm256_castsi256_si128( + _mm256_permute4x64_epi64(_mm256_packus_epi16(res_p, res_p), 168)); + + res_q = + _mm256_srli_epi16(_mm256_add_epi16(pixetFilter_q2q1q0, + _mm256_add_epi16(sum_q3, q256_1)), + 3); + + flat_q1 = _mm256_castsi256_si128( + _mm256_permute4x64_epi64(_mm256_packus_epi16(res_q, res_q), 168)); + + sum_p7 = _mm256_add_epi16(sum_p7, p256_7); + + sum_q7 = _mm256_add_epi16(sum_q7, q256_7); + + sum_p3 = _mm256_add_epi16(sum_p3, p256_3); + + sum_q3 = _mm256_add_epi16(sum_q3, q256_3); + + pixelFilter_p = _mm256_sub_epi16(pixelFilter_p, q256_5); + + pixelFilter_q = _mm256_sub_epi16(pixelFilter_q, p256_5); + + res_p = _mm256_srli_epi16( + _mm256_add_epi16(pixelFilter_p, _mm256_add_epi16(sum_p7, p256_2)), 4); + + flat2_p2 = _mm256_castsi256_si128( + _mm256_permute4x64_epi64(_mm256_packus_epi16(res_p, res_p), 168)); + + res_q = _mm256_srli_epi16( + _mm256_add_epi16(pixelFilter_q, _mm256_add_epi16(sum_q7, q256_2)), 4); + + flat2_q2 = _mm256_castsi256_si128( + _mm256_permute4x64_epi64(_mm256_packus_epi16(res_q, res_q), 168)); + + pixetFilter_p2p1p0 = _mm256_sub_epi16(pixetFilter_p2p1p0, q256_1); + + pixetFilter_q2q1q0 = _mm256_sub_epi16(pixetFilter_q2q1q0, p256_1); + + res_p = + _mm256_srli_epi16(_mm256_add_epi16(pixetFilter_p2p1p0, + _mm256_add_epi16(sum_p3, p256_2)), + 3); + + flat_p2 = _mm256_castsi256_si128( + _mm256_permute4x64_epi64(_mm256_packus_epi16(res_p, res_p), 168)); + + res_q = + _mm256_srli_epi16(_mm256_add_epi16(pixetFilter_q2q1q0, + _mm256_add_epi16(sum_q3, q256_2)), + 3); + + flat_q2 = _mm256_castsi256_si128( + _mm256_permute4x64_epi64(_mm256_packus_epi16(res_q, res_q), 168)); + + sum_p7 = _mm256_add_epi16(sum_p7, p256_7); + + sum_q7 = _mm256_add_epi16(sum_q7, q256_7); + + pixelFilter_p = _mm256_sub_epi16(pixelFilter_p, q256_4); + + pixelFilter_q = _mm256_sub_epi16(pixelFilter_q, p256_4); + + res_p = _mm256_srli_epi16( + _mm256_add_epi16(pixelFilter_p, _mm256_add_epi16(sum_p7, p256_3)), 4); + + flat2_p3 = _mm256_castsi256_si128( + _mm256_permute4x64_epi64(_mm256_packus_epi16(res_p, res_p), 168)); + + res_q = _mm256_srli_epi16( + _mm256_add_epi16(pixelFilter_q, _mm256_add_epi16(sum_q7, q256_3)), 4); + + flat2_q3 = _mm256_castsi256_si128( + _mm256_permute4x64_epi64(_mm256_packus_epi16(res_q, res_q), 168)); + + sum_p7 = _mm256_add_epi16(sum_p7, p256_7); + + sum_q7 = _mm256_add_epi16(sum_q7, q256_7); + + pixelFilter_p = _mm256_sub_epi16(pixelFilter_p, q256_3); + + pixelFilter_q = _mm256_sub_epi16(pixelFilter_q, p256_3); + + res_p = _mm256_srli_epi16( + _mm256_add_epi16(pixelFilter_p, _mm256_add_epi16(sum_p7, p256_4)), 4); + + flat2_p4 = _mm256_castsi256_si128( + _mm256_permute4x64_epi64(_mm256_packus_epi16(res_p, res_p), 168)); + + res_q = _mm256_srli_epi16( + _mm256_add_epi16(pixelFilter_q, _mm256_add_epi16(sum_q7, q256_4)), 4); + + flat2_q4 = _mm256_castsi256_si128( + _mm256_permute4x64_epi64(_mm256_packus_epi16(res_q, res_q), 168)); + + sum_p7 = _mm256_add_epi16(sum_p7, p256_7); + + sum_q7 = _mm256_add_epi16(sum_q7, q256_7); + + pixelFilter_p = _mm256_sub_epi16(pixelFilter_p, q256_2); + + pixelFilter_q = _mm256_sub_epi16(pixelFilter_q, p256_2); + + res_p = _mm256_srli_epi16( + _mm256_add_epi16(pixelFilter_p, _mm256_add_epi16(sum_p7, p256_5)), 4); + + flat2_p5 = _mm256_castsi256_si128( + _mm256_permute4x64_epi64(_mm256_packus_epi16(res_p, res_p), 168)); + + res_q = _mm256_srli_epi16( + _mm256_add_epi16(pixelFilter_q, _mm256_add_epi16(sum_q7, q256_5)), 4); + + flat2_q5 = _mm256_castsi256_si128( + _mm256_permute4x64_epi64(_mm256_packus_epi16(res_q, res_q), 168)); + + sum_p7 = _mm256_add_epi16(sum_p7, p256_7); + + sum_q7 = _mm256_add_epi16(sum_q7, q256_7); + + pixelFilter_p = _mm256_sub_epi16(pixelFilter_p, q256_1); + + pixelFilter_q = _mm256_sub_epi16(pixelFilter_q, p256_1); + + res_p = _mm256_srli_epi16( + _mm256_add_epi16(pixelFilter_p, _mm256_add_epi16(sum_p7, p256_6)), 4); + + flat2_p6 = _mm256_castsi256_si128( + _mm256_permute4x64_epi64(_mm256_packus_epi16(res_p, res_p), 168)); + + res_q = _mm256_srli_epi16( + _mm256_add_epi16(pixelFilter_q, _mm256_add_epi16(sum_q7, q256_6)), 4); + + flat2_q6 = _mm256_castsi256_si128( + _mm256_permute4x64_epi64(_mm256_packus_epi16(res_q, res_q), 168)); + } + + // wide flat + // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + + p2 = _mm_andnot_si128(flat, p2); + flat_p2 = _mm_and_si128(flat, flat_p2); + p2 = _mm_or_si128(flat_p2, p2); + + p1 = _mm_andnot_si128(flat, ps1); + flat_p1 = _mm_and_si128(flat, flat_p1); + p1 = _mm_or_si128(flat_p1, p1); + + p0 = _mm_andnot_si128(flat, ps0); + flat_p0 = _mm_and_si128(flat, flat_p0); + p0 = _mm_or_si128(flat_p0, p0); + + q0 = _mm_andnot_si128(flat, qs0); + flat_q0 = _mm_and_si128(flat, flat_q0); + q0 = _mm_or_si128(flat_q0, q0); + + q1 = _mm_andnot_si128(flat, qs1); + flat_q1 = _mm_and_si128(flat, flat_q1); + q1 = _mm_or_si128(flat_q1, q1); + + q2 = _mm_andnot_si128(flat, q2); + flat_q2 = _mm_and_si128(flat, flat_q2); + q2 = _mm_or_si128(flat_q2, q2); + + p6 = _mm_andnot_si128(flat2, p6); + flat2_p6 = _mm_and_si128(flat2, flat2_p6); + p6 = _mm_or_si128(flat2_p6, p6); + _mm_storeu_si128((__m128i *)(s - 7 * p), p6); + + p5 = _mm_andnot_si128(flat2, p5); + flat2_p5 = _mm_and_si128(flat2, flat2_p5); + p5 = _mm_or_si128(flat2_p5, p5); + _mm_storeu_si128((__m128i *)(s - 6 * p), p5); + + p4 = _mm_andnot_si128(flat2, p4); + flat2_p4 = _mm_and_si128(flat2, flat2_p4); + p4 = _mm_or_si128(flat2_p4, p4); + _mm_storeu_si128((__m128i *)(s - 5 * p), p4); + + p3 = _mm_andnot_si128(flat2, p3); + flat2_p3 = _mm_and_si128(flat2, flat2_p3); + p3 = _mm_or_si128(flat2_p3, p3); + _mm_storeu_si128((__m128i *)(s - 4 * p), p3); + + p2 = _mm_andnot_si128(flat2, p2); + flat2_p2 = _mm_and_si128(flat2, flat2_p2); + p2 = _mm_or_si128(flat2_p2, p2); + _mm_storeu_si128((__m128i *)(s - 3 * p), p2); + + p1 = _mm_andnot_si128(flat2, p1); + flat2_p1 = _mm_and_si128(flat2, flat2_p1); + p1 = _mm_or_si128(flat2_p1, p1); + _mm_storeu_si128((__m128i *)(s - 2 * p), p1); + + p0 = _mm_andnot_si128(flat2, p0); + flat2_p0 = _mm_and_si128(flat2, flat2_p0); + p0 = _mm_or_si128(flat2_p0, p0); + _mm_storeu_si128((__m128i *)(s - 1 * p), p0); + + q0 = _mm_andnot_si128(flat2, q0); + flat2_q0 = _mm_and_si128(flat2, flat2_q0); + q0 = _mm_or_si128(flat2_q0, q0); + _mm_storeu_si128((__m128i *)(s - 0 * p), q0); + + q1 = _mm_andnot_si128(flat2, q1); + flat2_q1 = _mm_and_si128(flat2, flat2_q1); + q1 = _mm_or_si128(flat2_q1, q1); + _mm_storeu_si128((__m128i *)(s + 1 * p), q1); + + q2 = _mm_andnot_si128(flat2, q2); + flat2_q2 = _mm_and_si128(flat2, flat2_q2); + q2 = _mm_or_si128(flat2_q2, q2); + _mm_storeu_si128((__m128i *)(s + 2 * p), q2); + + q3 = _mm_andnot_si128(flat2, q3); + flat2_q3 = _mm_and_si128(flat2, flat2_q3); + q3 = _mm_or_si128(flat2_q3, q3); + _mm_storeu_si128((__m128i *)(s + 3 * p), q3); + + q4 = _mm_andnot_si128(flat2, q4); + flat2_q4 = _mm_and_si128(flat2, flat2_q4); + q4 = _mm_or_si128(flat2_q4, q4); + _mm_storeu_si128((__m128i *)(s + 4 * p), q4); + + q5 = _mm_andnot_si128(flat2, q5); + flat2_q5 = _mm_and_si128(flat2, flat2_q5); + q5 = _mm_or_si128(flat2_q5, q5); + _mm_storeu_si128((__m128i *)(s + 5 * p), q5); + + q6 = _mm_andnot_si128(flat2, q6); + flat2_q6 = _mm_and_si128(flat2, flat2_q6); + q6 = _mm_or_si128(flat2_q6, q6); + _mm_storeu_si128((__m128i *)(s + 6 * p), q6); + } +} diff --git a/vpx_dsp/x86/loopfilter_sse2.c b/vpx_dsp/x86/loopfilter_sse2.c new file mode 100644 index 0000000..28e6fd6 --- /dev/null +++ b/vpx_dsp/x86/loopfilter_sse2.c @@ -0,0 +1,1774 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include // SSE2 + +#include "./vpx_dsp_rtcd.h" +#include "vpx_ports/mem.h" +#include "vpx_ports/emmintrin_compat.h" + +static INLINE __m128i abs_diff(__m128i a, __m128i b) { + return _mm_or_si128(_mm_subs_epu8(a, b), _mm_subs_epu8(b, a)); +} + +// filter_mask and hev_mask +#define FILTER_HEV_MASK \ + do { \ + /* (abs(q1 - q0), abs(p1 - p0) */ \ + __m128i flat = abs_diff(q1p1, q0p0); \ + /* abs(p1 - q1), abs(p0 - q0) */ \ + const __m128i abs_p1q1p0q0 = abs_diff(p1p0, q1q0); \ + __m128i abs_p0q0, abs_p1q1, work; \ + \ + /* const uint8_t hev = hev_mask(thresh, *op1, *op0, *oq0, *oq1); */ \ + hev = \ + _mm_unpacklo_epi8(_mm_max_epu8(flat, _mm_srli_si128(flat, 8)), zero); \ + hev = _mm_cmpgt_epi16(hev, thresh); \ + hev = _mm_packs_epi16(hev, hev); \ + \ + /* const int8_t mask = filter_mask(*limit, *blimit, */ \ + /* p3, p2, p1, p0, q0, q1, q2, q3); */ \ + abs_p0q0 = \ + _mm_adds_epu8(abs_p1q1p0q0, abs_p1q1p0q0); /* abs(p0 - q0) * 2 */ \ + abs_p1q1 = \ + _mm_unpackhi_epi8(abs_p1q1p0q0, abs_p1q1p0q0); /* abs(p1 - q1) */ \ + abs_p1q1 = _mm_srli_epi16(abs_p1q1, 9); \ + abs_p1q1 = _mm_packs_epi16(abs_p1q1, abs_p1q1); /* abs(p1 - q1) / 2 */ \ + /* abs(p0 - q0) * 2 + abs(p1 - q1) / 2 */ \ + mask = _mm_adds_epu8(abs_p0q0, abs_p1q1); \ + /* abs(p3 - p2), abs(p2 - p1) */ \ + work = abs_diff(p3p2, p2p1); \ + flat = _mm_max_epu8(work, flat); \ + /* abs(q3 - q2), abs(q2 - q1) */ \ + work = abs_diff(q3q2, q2q1); \ + flat = _mm_max_epu8(work, flat); \ + flat = _mm_max_epu8(flat, _mm_srli_si128(flat, 8)); \ + mask = _mm_unpacklo_epi64(mask, flat); \ + mask = _mm_subs_epu8(mask, limit); \ + mask = _mm_cmpeq_epi8(mask, zero); \ + mask = _mm_and_si128(mask, _mm_srli_si128(mask, 8)); \ + } while (0) + +#define FILTER4 \ + do { \ + const __m128i t3t4 = \ + _mm_set_epi8(3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4); \ + const __m128i t80 = _mm_set1_epi8(0x80); \ + __m128i filter, filter2filter1, work; \ + \ + ps1ps0 = _mm_xor_si128(p1p0, t80); /* ^ 0x80 */ \ + qs1qs0 = _mm_xor_si128(q1q0, t80); \ + \ + /* int8_t filter = signed_char_clamp(ps1 - qs1) & hev; */ \ + work = _mm_subs_epi8(ps1ps0, qs1qs0); \ + filter = _mm_and_si128(_mm_srli_si128(work, 8), hev); \ + /* filter = signed_char_clamp(filter + 3 * (qs0 - ps0)) & mask; */ \ + filter = _mm_subs_epi8(filter, work); \ + filter = _mm_subs_epi8(filter, work); \ + filter = _mm_subs_epi8(filter, work); /* + 3 * (qs0 - ps0) */ \ + filter = _mm_and_si128(filter, mask); /* & mask */ \ + filter = _mm_unpacklo_epi64(filter, filter); \ + \ + /* filter1 = signed_char_clamp(filter + 4) >> 3; */ \ + /* filter2 = signed_char_clamp(filter + 3) >> 3; */ \ + filter2filter1 = _mm_adds_epi8(filter, t3t4); /* signed_char_clamp */ \ + filter = _mm_unpackhi_epi8(filter2filter1, filter2filter1); \ + filter2filter1 = _mm_unpacklo_epi8(filter2filter1, filter2filter1); \ + filter2filter1 = _mm_srai_epi16(filter2filter1, 11); /* >> 3 */ \ + filter = _mm_srai_epi16(filter, 11); /* >> 3 */ \ + filter2filter1 = _mm_packs_epi16(filter2filter1, filter); \ + \ + /* filter = ROUND_POWER_OF_TWO(filter1, 1) & ~hev; */ \ + filter = _mm_subs_epi8(filter2filter1, ff); /* + 1 */ \ + filter = _mm_unpacklo_epi8(filter, filter); \ + filter = _mm_srai_epi16(filter, 9); /* round */ \ + filter = _mm_packs_epi16(filter, filter); \ + filter = _mm_andnot_si128(hev, filter); \ + \ + hev = _mm_unpackhi_epi64(filter2filter1, filter); \ + filter2filter1 = _mm_unpacklo_epi64(filter2filter1, filter); \ + \ + /* signed_char_clamp(qs1 - filter), signed_char_clamp(qs0 - filter1) */ \ + qs1qs0 = _mm_subs_epi8(qs1qs0, filter2filter1); \ + /* signed_char_clamp(ps1 + filter), signed_char_clamp(ps0 + filter2) */ \ + ps1ps0 = _mm_adds_epi8(ps1ps0, hev); \ + qs1qs0 = _mm_xor_si128(qs1qs0, t80); /* ^ 0x80 */ \ + ps1ps0 = _mm_xor_si128(ps1ps0, t80); /* ^ 0x80 */ \ + } while (0) + +void vpx_lpf_horizontal_4_sse2(uint8_t *s, int p /* pitch */, + const uint8_t *_blimit, const uint8_t *_limit, + const uint8_t *_thresh) { + const __m128i zero = _mm_set1_epi16(0); + const __m128i limit = + _mm_unpacklo_epi64(_mm_loadl_epi64((const __m128i *)_blimit), + _mm_loadl_epi64((const __m128i *)_limit)); + const __m128i thresh = + _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i *)_thresh), zero); + const __m128i ff = _mm_cmpeq_epi8(zero, zero); + __m128i q1p1, q0p0, p3p2, p2p1, p1p0, q3q2, q2q1, q1q0, ps1ps0, qs1qs0; + __m128i mask, hev; + + p3p2 = _mm_unpacklo_epi64(_mm_loadl_epi64((__m128i *)(s - 3 * p)), + _mm_loadl_epi64((__m128i *)(s - 4 * p))); + q1p1 = _mm_unpacklo_epi64(_mm_loadl_epi64((__m128i *)(s - 2 * p)), + _mm_loadl_epi64((__m128i *)(s + 1 * p))); + q0p0 = _mm_unpacklo_epi64(_mm_loadl_epi64((__m128i *)(s - 1 * p)), + _mm_loadl_epi64((__m128i *)(s + 0 * p))); + q3q2 = _mm_unpacklo_epi64(_mm_loadl_epi64((__m128i *)(s + 2 * p)), + _mm_loadl_epi64((__m128i *)(s + 3 * p))); + p1p0 = _mm_unpacklo_epi64(q0p0, q1p1); + p2p1 = _mm_unpacklo_epi64(q1p1, p3p2); + q1q0 = _mm_unpackhi_epi64(q0p0, q1p1); + q2q1 = _mm_unpacklo_epi64(_mm_srli_si128(q1p1, 8), q3q2); + + FILTER_HEV_MASK; + FILTER4; + + _mm_storeh_pi((__m64 *)(s - 2 * p), _mm_castsi128_ps(ps1ps0)); // *op1 + _mm_storel_epi64((__m128i *)(s - 1 * p), ps1ps0); // *op0 + _mm_storel_epi64((__m128i *)(s + 0 * p), qs1qs0); // *oq0 + _mm_storeh_pi((__m64 *)(s + 1 * p), _mm_castsi128_ps(qs1qs0)); // *oq1 +} + +void vpx_lpf_vertical_4_sse2(uint8_t *s, int p /* pitch */, + const uint8_t *_blimit, const uint8_t *_limit, + const uint8_t *_thresh) { + const __m128i zero = _mm_set1_epi16(0); + const __m128i limit = + _mm_unpacklo_epi64(_mm_loadl_epi64((const __m128i *)_blimit), + _mm_loadl_epi64((const __m128i *)_limit)); + const __m128i thresh = + _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i *)_thresh), zero); + const __m128i ff = _mm_cmpeq_epi8(zero, zero); + __m128i x0, x1, x2, x3; + __m128i q1p1, q0p0, p3p2, p2p1, p1p0, q3q2, q2q1, q1q0, ps1ps0, qs1qs0; + __m128i mask, hev; + + // 00 10 01 11 02 12 03 13 04 14 05 15 06 16 07 17 + q1q0 = _mm_unpacklo_epi8(_mm_loadl_epi64((__m128i *)(s + 0 * p - 4)), + _mm_loadl_epi64((__m128i *)(s + 1 * p - 4))); + + // 20 30 21 31 22 32 23 33 24 34 25 35 26 36 27 37 + x1 = _mm_unpacklo_epi8(_mm_loadl_epi64((__m128i *)(s + 2 * p - 4)), + _mm_loadl_epi64((__m128i *)(s + 3 * p - 4))); + + // 40 50 41 51 42 52 43 53 44 54 45 55 46 56 47 57 + x2 = _mm_unpacklo_epi8(_mm_loadl_epi64((__m128i *)(s + 4 * p - 4)), + _mm_loadl_epi64((__m128i *)(s + 5 * p - 4))); + + // 60 70 61 71 62 72 63 73 64 74 65 75 66 76 67 77 + x3 = _mm_unpacklo_epi8(_mm_loadl_epi64((__m128i *)(s + 6 * p - 4)), + _mm_loadl_epi64((__m128i *)(s + 7 * p - 4))); + + // Transpose 8x8 + // 00 10 20 30 01 11 21 31 02 12 22 32 03 13 23 33 + p1p0 = _mm_unpacklo_epi16(q1q0, x1); + // 40 50 60 70 41 51 61 71 42 52 62 72 43 53 63 73 + x0 = _mm_unpacklo_epi16(x2, x3); + // 00 10 20 30 40 50 60 70 01 11 21 31 41 51 61 71 + p3p2 = _mm_unpacklo_epi32(p1p0, x0); + // 02 12 22 32 42 52 62 72 03 13 23 33 43 53 63 73 + p1p0 = _mm_unpackhi_epi32(p1p0, x0); + p3p2 = _mm_unpackhi_epi64(p3p2, _mm_slli_si128(p3p2, 8)); // swap lo and high + p1p0 = _mm_unpackhi_epi64(p1p0, _mm_slli_si128(p1p0, 8)); // swap lo and high + + // 04 14 24 34 05 15 25 35 06 16 26 36 07 17 27 37 + q1q0 = _mm_unpackhi_epi16(q1q0, x1); + // 44 54 64 74 45 55 65 75 46 56 66 76 47 57 67 77 + x2 = _mm_unpackhi_epi16(x2, x3); + // 06 16 26 36 46 56 66 76 07 17 27 37 47 57 67 77 + q3q2 = _mm_unpackhi_epi32(q1q0, x2); + // 04 14 24 34 44 54 64 74 05 15 25 35 45 55 65 75 + q1q0 = _mm_unpacklo_epi32(q1q0, x2); + + q0p0 = _mm_unpacklo_epi64(p1p0, q1q0); + q1p1 = _mm_unpackhi_epi64(p1p0, q1q0); + p1p0 = _mm_unpacklo_epi64(q0p0, q1p1); + p2p1 = _mm_unpacklo_epi64(q1p1, p3p2); + q2q1 = _mm_unpacklo_epi64(_mm_srli_si128(q1p1, 8), q3q2); + + FILTER_HEV_MASK; + FILTER4; + + // Transpose 8x4 to 4x8 + // qs1qs0: 20 21 22 23 24 25 26 27 30 31 32 33 34 34 36 37 + // ps1ps0: 10 11 12 13 14 15 16 17 00 01 02 03 04 05 06 07 + // 00 01 02 03 04 05 06 07 10 11 12 13 14 15 16 17 + ps1ps0 = _mm_unpackhi_epi64(ps1ps0, _mm_slli_si128(ps1ps0, 8)); + // 10 30 11 31 12 32 13 33 14 34 15 35 16 36 17 37 + x0 = _mm_unpackhi_epi8(ps1ps0, qs1qs0); + // 00 20 01 21 02 22 03 23 04 24 05 25 06 26 07 27 + ps1ps0 = _mm_unpacklo_epi8(ps1ps0, qs1qs0); + // 04 14 24 34 05 15 25 35 06 16 26 36 07 17 27 37 + qs1qs0 = _mm_unpackhi_epi8(ps1ps0, x0); + // 00 10 20 30 01 11 21 31 02 12 22 32 03 13 23 33 + ps1ps0 = _mm_unpacklo_epi8(ps1ps0, x0); + + *(int *)(s + 0 * p - 2) = _mm_cvtsi128_si32(ps1ps0); + ps1ps0 = _mm_srli_si128(ps1ps0, 4); + *(int *)(s + 1 * p - 2) = _mm_cvtsi128_si32(ps1ps0); + ps1ps0 = _mm_srli_si128(ps1ps0, 4); + *(int *)(s + 2 * p - 2) = _mm_cvtsi128_si32(ps1ps0); + ps1ps0 = _mm_srli_si128(ps1ps0, 4); + *(int *)(s + 3 * p - 2) = _mm_cvtsi128_si32(ps1ps0); + + *(int *)(s + 4 * p - 2) = _mm_cvtsi128_si32(qs1qs0); + qs1qs0 = _mm_srli_si128(qs1qs0, 4); + *(int *)(s + 5 * p - 2) = _mm_cvtsi128_si32(qs1qs0); + qs1qs0 = _mm_srli_si128(qs1qs0, 4); + *(int *)(s + 6 * p - 2) = _mm_cvtsi128_si32(qs1qs0); + qs1qs0 = _mm_srli_si128(qs1qs0, 4); + *(int *)(s + 7 * p - 2) = _mm_cvtsi128_si32(qs1qs0); +} + +void vpx_lpf_horizontal_16_sse2(unsigned char *s, int p, + const unsigned char *_blimit, + const unsigned char *_limit, + const unsigned char *_thresh) { + const __m128i zero = _mm_set1_epi16(0); + const __m128i one = _mm_set1_epi8(1); + const __m128i blimit = _mm_load_si128((const __m128i *)_blimit); + const __m128i limit = _mm_load_si128((const __m128i *)_limit); + const __m128i thresh = _mm_load_si128((const __m128i *)_thresh); + __m128i mask, hev, flat, flat2; + __m128i q7p7, q6p6, q5p5, q4p4, q3p3, q2p2, q1p1, q0p0, p0q0, p1q1; + __m128i abs_p1p0; + + q4p4 = _mm_loadl_epi64((__m128i *)(s - 5 * p)); + q4p4 = _mm_castps_si128( + _mm_loadh_pi(_mm_castsi128_ps(q4p4), (__m64 *)(s + 4 * p))); + q3p3 = _mm_loadl_epi64((__m128i *)(s - 4 * p)); + q3p3 = _mm_castps_si128( + _mm_loadh_pi(_mm_castsi128_ps(q3p3), (__m64 *)(s + 3 * p))); + q2p2 = _mm_loadl_epi64((__m128i *)(s - 3 * p)); + q2p2 = _mm_castps_si128( + _mm_loadh_pi(_mm_castsi128_ps(q2p2), (__m64 *)(s + 2 * p))); + q1p1 = _mm_loadl_epi64((__m128i *)(s - 2 * p)); + q1p1 = _mm_castps_si128( + _mm_loadh_pi(_mm_castsi128_ps(q1p1), (__m64 *)(s + 1 * p))); + p1q1 = _mm_shuffle_epi32(q1p1, 78); + q0p0 = _mm_loadl_epi64((__m128i *)(s - 1 * p)); + q0p0 = _mm_castps_si128( + _mm_loadh_pi(_mm_castsi128_ps(q0p0), (__m64 *)(s - 0 * p))); + p0q0 = _mm_shuffle_epi32(q0p0, 78); + + { + __m128i abs_p1q1, abs_p0q0, abs_q1q0, fe, ff, work; + abs_p1p0 = abs_diff(q1p1, q0p0); + abs_q1q0 = _mm_srli_si128(abs_p1p0, 8); + fe = _mm_set1_epi8(0xfe); + ff = _mm_cmpeq_epi8(abs_p1p0, abs_p1p0); + abs_p0q0 = abs_diff(q0p0, p0q0); + abs_p1q1 = abs_diff(q1p1, p1q1); + flat = _mm_max_epu8(abs_p1p0, abs_q1q0); + hev = _mm_subs_epu8(flat, thresh); + hev = _mm_xor_si128(_mm_cmpeq_epi8(hev, zero), ff); + + abs_p0q0 = _mm_adds_epu8(abs_p0q0, abs_p0q0); + abs_p1q1 = _mm_srli_epi16(_mm_and_si128(abs_p1q1, fe), 1); + mask = _mm_subs_epu8(_mm_adds_epu8(abs_p0q0, abs_p1q1), blimit); + mask = _mm_xor_si128(_mm_cmpeq_epi8(mask, zero), ff); + // mask |= (abs(p0 - q0) * 2 + abs(p1 - q1) / 2 > blimit) * -1; + mask = _mm_max_epu8(abs_p1p0, mask); + // mask |= (abs(p1 - p0) > limit) * -1; + // mask |= (abs(q1 - q0) > limit) * -1; + + work = _mm_max_epu8(abs_diff(q2p2, q1p1), abs_diff(q3p3, q2p2)); + mask = _mm_max_epu8(work, mask); + mask = _mm_max_epu8(mask, _mm_srli_si128(mask, 8)); + mask = _mm_subs_epu8(mask, limit); + mask = _mm_cmpeq_epi8(mask, zero); + } + + // lp filter + { + const __m128i t4 = _mm_set1_epi8(4); + const __m128i t3 = _mm_set1_epi8(3); + const __m128i t80 = _mm_set1_epi8(0x80); + const __m128i t1 = _mm_set1_epi16(0x1); + __m128i qs1ps1 = _mm_xor_si128(q1p1, t80); + __m128i qs0ps0 = _mm_xor_si128(q0p0, t80); + __m128i qs0 = _mm_xor_si128(p0q0, t80); + __m128i qs1 = _mm_xor_si128(p1q1, t80); + __m128i filt; + __m128i work_a; + __m128i filter1, filter2; + __m128i flat2_q6p6, flat2_q5p5, flat2_q4p4, flat2_q3p3, flat2_q2p2; + __m128i flat2_q1p1, flat2_q0p0, flat_q2p2, flat_q1p1, flat_q0p0; + + filt = _mm_and_si128(_mm_subs_epi8(qs1ps1, qs1), hev); + work_a = _mm_subs_epi8(qs0, qs0ps0); + filt = _mm_adds_epi8(filt, work_a); + filt = _mm_adds_epi8(filt, work_a); + filt = _mm_adds_epi8(filt, work_a); + // (vpx_filter + 3 * (qs0 - ps0)) & mask + filt = _mm_and_si128(filt, mask); + + filter1 = _mm_adds_epi8(filt, t4); + filter2 = _mm_adds_epi8(filt, t3); + + filter1 = _mm_unpacklo_epi8(zero, filter1); + filter1 = _mm_srai_epi16(filter1, 0xB); + filter2 = _mm_unpacklo_epi8(zero, filter2); + filter2 = _mm_srai_epi16(filter2, 0xB); + + // Filter1 >> 3 + filt = _mm_packs_epi16(filter2, _mm_subs_epi16(zero, filter1)); + qs0ps0 = _mm_xor_si128(_mm_adds_epi8(qs0ps0, filt), t80); + + // filt >> 1 + filt = _mm_adds_epi16(filter1, t1); + filt = _mm_srai_epi16(filt, 1); + filt = _mm_andnot_si128(_mm_srai_epi16(_mm_unpacklo_epi8(zero, hev), 0x8), + filt); + filt = _mm_packs_epi16(filt, _mm_subs_epi16(zero, filt)); + qs1ps1 = _mm_xor_si128(_mm_adds_epi8(qs1ps1, filt), t80); + // loopfilter done + + { + __m128i work; + flat = _mm_max_epu8(abs_diff(q2p2, q0p0), abs_diff(q3p3, q0p0)); + flat = _mm_max_epu8(abs_p1p0, flat); + flat = _mm_max_epu8(flat, _mm_srli_si128(flat, 8)); + flat = _mm_subs_epu8(flat, one); + flat = _mm_cmpeq_epi8(flat, zero); + flat = _mm_and_si128(flat, mask); + + q5p5 = _mm_loadl_epi64((__m128i *)(s - 6 * p)); + q5p5 = _mm_castps_si128( + _mm_loadh_pi(_mm_castsi128_ps(q5p5), (__m64 *)(s + 5 * p))); + + q6p6 = _mm_loadl_epi64((__m128i *)(s - 7 * p)); + q6p6 = _mm_castps_si128( + _mm_loadh_pi(_mm_castsi128_ps(q6p6), (__m64 *)(s + 6 * p))); + flat2 = _mm_max_epu8(abs_diff(q4p4, q0p0), abs_diff(q5p5, q0p0)); + + q7p7 = _mm_loadl_epi64((__m128i *)(s - 8 * p)); + q7p7 = _mm_castps_si128( + _mm_loadh_pi(_mm_castsi128_ps(q7p7), (__m64 *)(s + 7 * p))); + work = _mm_max_epu8(abs_diff(q6p6, q0p0), abs_diff(q7p7, q0p0)); + flat2 = _mm_max_epu8(work, flat2); + flat2 = _mm_max_epu8(flat2, _mm_srli_si128(flat2, 8)); + flat2 = _mm_subs_epu8(flat2, one); + flat2 = _mm_cmpeq_epi8(flat2, zero); + flat2 = _mm_and_si128(flat2, flat); // flat2 & flat & mask + } + + // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + // flat and wide flat calculations + { + const __m128i eight = _mm_set1_epi16(8); + const __m128i four = _mm_set1_epi16(4); + __m128i p7_16, p6_16, p5_16, p4_16, p3_16, p2_16, p1_16, p0_16; + __m128i q7_16, q6_16, q5_16, q4_16, q3_16, q2_16, q1_16, q0_16; + __m128i pixelFilter_p, pixelFilter_q; + __m128i pixetFilter_p2p1p0, pixetFilter_q2q1q0; + __m128i sum_p7, sum_q7, sum_p3, sum_q3, res_p, res_q; + + p7_16 = _mm_unpacklo_epi8(q7p7, zero); + p6_16 = _mm_unpacklo_epi8(q6p6, zero); + p5_16 = _mm_unpacklo_epi8(q5p5, zero); + p4_16 = _mm_unpacklo_epi8(q4p4, zero); + p3_16 = _mm_unpacklo_epi8(q3p3, zero); + p2_16 = _mm_unpacklo_epi8(q2p2, zero); + p1_16 = _mm_unpacklo_epi8(q1p1, zero); + p0_16 = _mm_unpacklo_epi8(q0p0, zero); + q0_16 = _mm_unpackhi_epi8(q0p0, zero); + q1_16 = _mm_unpackhi_epi8(q1p1, zero); + q2_16 = _mm_unpackhi_epi8(q2p2, zero); + q3_16 = _mm_unpackhi_epi8(q3p3, zero); + q4_16 = _mm_unpackhi_epi8(q4p4, zero); + q5_16 = _mm_unpackhi_epi8(q5p5, zero); + q6_16 = _mm_unpackhi_epi8(q6p6, zero); + q7_16 = _mm_unpackhi_epi8(q7p7, zero); + + pixelFilter_p = _mm_add_epi16(_mm_add_epi16(p6_16, p5_16), + _mm_add_epi16(p4_16, p3_16)); + pixelFilter_q = _mm_add_epi16(_mm_add_epi16(q6_16, q5_16), + _mm_add_epi16(q4_16, q3_16)); + + pixetFilter_p2p1p0 = _mm_add_epi16(p0_16, _mm_add_epi16(p2_16, p1_16)); + pixelFilter_p = _mm_add_epi16(pixelFilter_p, pixetFilter_p2p1p0); + + pixetFilter_q2q1q0 = _mm_add_epi16(q0_16, _mm_add_epi16(q2_16, q1_16)); + pixelFilter_q = _mm_add_epi16(pixelFilter_q, pixetFilter_q2q1q0); + pixelFilter_p = + _mm_add_epi16(eight, _mm_add_epi16(pixelFilter_p, pixelFilter_q)); + pixetFilter_p2p1p0 = _mm_add_epi16( + four, _mm_add_epi16(pixetFilter_p2p1p0, pixetFilter_q2q1q0)); + res_p = _mm_srli_epi16( + _mm_add_epi16(pixelFilter_p, _mm_add_epi16(p7_16, p0_16)), 4); + res_q = _mm_srli_epi16( + _mm_add_epi16(pixelFilter_p, _mm_add_epi16(q7_16, q0_16)), 4); + flat2_q0p0 = _mm_packus_epi16(res_p, res_q); + res_p = _mm_srli_epi16( + _mm_add_epi16(pixetFilter_p2p1p0, _mm_add_epi16(p3_16, p0_16)), 3); + res_q = _mm_srli_epi16( + _mm_add_epi16(pixetFilter_p2p1p0, _mm_add_epi16(q3_16, q0_16)), 3); + + flat_q0p0 = _mm_packus_epi16(res_p, res_q); + + sum_p7 = _mm_add_epi16(p7_16, p7_16); + sum_q7 = _mm_add_epi16(q7_16, q7_16); + sum_p3 = _mm_add_epi16(p3_16, p3_16); + sum_q3 = _mm_add_epi16(q3_16, q3_16); + + pixelFilter_q = _mm_sub_epi16(pixelFilter_p, p6_16); + pixelFilter_p = _mm_sub_epi16(pixelFilter_p, q6_16); + res_p = _mm_srli_epi16( + _mm_add_epi16(pixelFilter_p, _mm_add_epi16(sum_p7, p1_16)), 4); + res_q = _mm_srli_epi16( + _mm_add_epi16(pixelFilter_q, _mm_add_epi16(sum_q7, q1_16)), 4); + flat2_q1p1 = _mm_packus_epi16(res_p, res_q); + + pixetFilter_q2q1q0 = _mm_sub_epi16(pixetFilter_p2p1p0, p2_16); + pixetFilter_p2p1p0 = _mm_sub_epi16(pixetFilter_p2p1p0, q2_16); + res_p = _mm_srli_epi16( + _mm_add_epi16(pixetFilter_p2p1p0, _mm_add_epi16(sum_p3, p1_16)), 3); + res_q = _mm_srli_epi16( + _mm_add_epi16(pixetFilter_q2q1q0, _mm_add_epi16(sum_q3, q1_16)), 3); + flat_q1p1 = _mm_packus_epi16(res_p, res_q); + + sum_p7 = _mm_add_epi16(sum_p7, p7_16); + sum_q7 = _mm_add_epi16(sum_q7, q7_16); + sum_p3 = _mm_add_epi16(sum_p3, p3_16); + sum_q3 = _mm_add_epi16(sum_q3, q3_16); + + pixelFilter_p = _mm_sub_epi16(pixelFilter_p, q5_16); + pixelFilter_q = _mm_sub_epi16(pixelFilter_q, p5_16); + res_p = _mm_srli_epi16( + _mm_add_epi16(pixelFilter_p, _mm_add_epi16(sum_p7, p2_16)), 4); + res_q = _mm_srli_epi16( + _mm_add_epi16(pixelFilter_q, _mm_add_epi16(sum_q7, q2_16)), 4); + flat2_q2p2 = _mm_packus_epi16(res_p, res_q); + + pixetFilter_p2p1p0 = _mm_sub_epi16(pixetFilter_p2p1p0, q1_16); + pixetFilter_q2q1q0 = _mm_sub_epi16(pixetFilter_q2q1q0, p1_16); + + res_p = _mm_srli_epi16( + _mm_add_epi16(pixetFilter_p2p1p0, _mm_add_epi16(sum_p3, p2_16)), 3); + res_q = _mm_srli_epi16( + _mm_add_epi16(pixetFilter_q2q1q0, _mm_add_epi16(sum_q3, q2_16)), 3); + flat_q2p2 = _mm_packus_epi16(res_p, res_q); + + sum_p7 = _mm_add_epi16(sum_p7, p7_16); + sum_q7 = _mm_add_epi16(sum_q7, q7_16); + pixelFilter_p = _mm_sub_epi16(pixelFilter_p, q4_16); + pixelFilter_q = _mm_sub_epi16(pixelFilter_q, p4_16); + res_p = _mm_srli_epi16( + _mm_add_epi16(pixelFilter_p, _mm_add_epi16(sum_p7, p3_16)), 4); + res_q = _mm_srli_epi16( + _mm_add_epi16(pixelFilter_q, _mm_add_epi16(sum_q7, q3_16)), 4); + flat2_q3p3 = _mm_packus_epi16(res_p, res_q); + + sum_p7 = _mm_add_epi16(sum_p7, p7_16); + sum_q7 = _mm_add_epi16(sum_q7, q7_16); + pixelFilter_p = _mm_sub_epi16(pixelFilter_p, q3_16); + pixelFilter_q = _mm_sub_epi16(pixelFilter_q, p3_16); + res_p = _mm_srli_epi16( + _mm_add_epi16(pixelFilter_p, _mm_add_epi16(sum_p7, p4_16)), 4); + res_q = _mm_srli_epi16( + _mm_add_epi16(pixelFilter_q, _mm_add_epi16(sum_q7, q4_16)), 4); + flat2_q4p4 = _mm_packus_epi16(res_p, res_q); + + sum_p7 = _mm_add_epi16(sum_p7, p7_16); + sum_q7 = _mm_add_epi16(sum_q7, q7_16); + pixelFilter_p = _mm_sub_epi16(pixelFilter_p, q2_16); + pixelFilter_q = _mm_sub_epi16(pixelFilter_q, p2_16); + res_p = _mm_srli_epi16( + _mm_add_epi16(pixelFilter_p, _mm_add_epi16(sum_p7, p5_16)), 4); + res_q = _mm_srli_epi16( + _mm_add_epi16(pixelFilter_q, _mm_add_epi16(sum_q7, q5_16)), 4); + flat2_q5p5 = _mm_packus_epi16(res_p, res_q); + + sum_p7 = _mm_add_epi16(sum_p7, p7_16); + sum_q7 = _mm_add_epi16(sum_q7, q7_16); + pixelFilter_p = _mm_sub_epi16(pixelFilter_p, q1_16); + pixelFilter_q = _mm_sub_epi16(pixelFilter_q, p1_16); + res_p = _mm_srli_epi16( + _mm_add_epi16(pixelFilter_p, _mm_add_epi16(sum_p7, p6_16)), 4); + res_q = _mm_srli_epi16( + _mm_add_epi16(pixelFilter_q, _mm_add_epi16(sum_q7, q6_16)), 4); + flat2_q6p6 = _mm_packus_epi16(res_p, res_q); + } + // wide flat + // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + + flat = _mm_shuffle_epi32(flat, 68); + flat2 = _mm_shuffle_epi32(flat2, 68); + + q2p2 = _mm_andnot_si128(flat, q2p2); + flat_q2p2 = _mm_and_si128(flat, flat_q2p2); + q2p2 = _mm_or_si128(q2p2, flat_q2p2); + + qs1ps1 = _mm_andnot_si128(flat, qs1ps1); + flat_q1p1 = _mm_and_si128(flat, flat_q1p1); + q1p1 = _mm_or_si128(qs1ps1, flat_q1p1); + + qs0ps0 = _mm_andnot_si128(flat, qs0ps0); + flat_q0p0 = _mm_and_si128(flat, flat_q0p0); + q0p0 = _mm_or_si128(qs0ps0, flat_q0p0); + + q6p6 = _mm_andnot_si128(flat2, q6p6); + flat2_q6p6 = _mm_and_si128(flat2, flat2_q6p6); + q6p6 = _mm_or_si128(q6p6, flat2_q6p6); + _mm_storel_epi64((__m128i *)(s - 7 * p), q6p6); + _mm_storeh_pi((__m64 *)(s + 6 * p), _mm_castsi128_ps(q6p6)); + + q5p5 = _mm_andnot_si128(flat2, q5p5); + flat2_q5p5 = _mm_and_si128(flat2, flat2_q5p5); + q5p5 = _mm_or_si128(q5p5, flat2_q5p5); + _mm_storel_epi64((__m128i *)(s - 6 * p), q5p5); + _mm_storeh_pi((__m64 *)(s + 5 * p), _mm_castsi128_ps(q5p5)); + + q4p4 = _mm_andnot_si128(flat2, q4p4); + flat2_q4p4 = _mm_and_si128(flat2, flat2_q4p4); + q4p4 = _mm_or_si128(q4p4, flat2_q4p4); + _mm_storel_epi64((__m128i *)(s - 5 * p), q4p4); + _mm_storeh_pi((__m64 *)(s + 4 * p), _mm_castsi128_ps(q4p4)); + + q3p3 = _mm_andnot_si128(flat2, q3p3); + flat2_q3p3 = _mm_and_si128(flat2, flat2_q3p3); + q3p3 = _mm_or_si128(q3p3, flat2_q3p3); + _mm_storel_epi64((__m128i *)(s - 4 * p), q3p3); + _mm_storeh_pi((__m64 *)(s + 3 * p), _mm_castsi128_ps(q3p3)); + + q2p2 = _mm_andnot_si128(flat2, q2p2); + flat2_q2p2 = _mm_and_si128(flat2, flat2_q2p2); + q2p2 = _mm_or_si128(q2p2, flat2_q2p2); + _mm_storel_epi64((__m128i *)(s - 3 * p), q2p2); + _mm_storeh_pi((__m64 *)(s + 2 * p), _mm_castsi128_ps(q2p2)); + + q1p1 = _mm_andnot_si128(flat2, q1p1); + flat2_q1p1 = _mm_and_si128(flat2, flat2_q1p1); + q1p1 = _mm_or_si128(q1p1, flat2_q1p1); + _mm_storel_epi64((__m128i *)(s - 2 * p), q1p1); + _mm_storeh_pi((__m64 *)(s + 1 * p), _mm_castsi128_ps(q1p1)); + + q0p0 = _mm_andnot_si128(flat2, q0p0); + flat2_q0p0 = _mm_and_si128(flat2, flat2_q0p0); + q0p0 = _mm_or_si128(q0p0, flat2_q0p0); + _mm_storel_epi64((__m128i *)(s - 1 * p), q0p0); + _mm_storeh_pi((__m64 *)(s - 0 * p), _mm_castsi128_ps(q0p0)); + } +} + +static INLINE __m128i filter_add2_sub2(const __m128i *const total, + const __m128i *const a1, + const __m128i *const a2, + const __m128i *const s1, + const __m128i *const s2) { + __m128i x = _mm_add_epi16(*a1, *total); + x = _mm_add_epi16(_mm_sub_epi16(x, _mm_add_epi16(*s1, *s2)), *a2); + return x; +} + +static INLINE __m128i filter8_mask(const __m128i *const flat, + const __m128i *const other_filt, + const __m128i *const f8_lo, + const __m128i *const f8_hi) { + const __m128i f8 = + _mm_packus_epi16(_mm_srli_epi16(*f8_lo, 3), _mm_srli_epi16(*f8_hi, 3)); + const __m128i result = _mm_and_si128(*flat, f8); + return _mm_or_si128(_mm_andnot_si128(*flat, *other_filt), result); +} + +static INLINE __m128i filter16_mask(const __m128i *const flat, + const __m128i *const other_filt, + const __m128i *const f_lo, + const __m128i *const f_hi) { + const __m128i f = + _mm_packus_epi16(_mm_srli_epi16(*f_lo, 4), _mm_srli_epi16(*f_hi, 4)); + const __m128i result = _mm_and_si128(*flat, f); + return _mm_or_si128(_mm_andnot_si128(*flat, *other_filt), result); +} + +void vpx_lpf_horizontal_16_dual_sse2(unsigned char *s, int p, + const unsigned char *_blimit, + const unsigned char *_limit, + const unsigned char *_thresh) { + const __m128i zero = _mm_set1_epi16(0); + const __m128i one = _mm_set1_epi8(1); + const __m128i blimit = _mm_load_si128((const __m128i *)_blimit); + const __m128i limit = _mm_load_si128((const __m128i *)_limit); + const __m128i thresh = _mm_load_si128((const __m128i *)_thresh); + __m128i mask, hev, flat, flat2; + __m128i p7, p6, p5; + __m128i p4, p3, p2, p1, p0, q0, q1, q2, q3, q4; + __m128i q5, q6, q7; + + __m128i op2, op1, op0, oq0, oq1, oq2; + + __m128i max_abs_p1p0q1q0; + + p7 = _mm_loadu_si128((__m128i *)(s - 8 * p)); + p6 = _mm_loadu_si128((__m128i *)(s - 7 * p)); + p5 = _mm_loadu_si128((__m128i *)(s - 6 * p)); + p4 = _mm_loadu_si128((__m128i *)(s - 5 * p)); + p3 = _mm_loadu_si128((__m128i *)(s - 4 * p)); + p2 = _mm_loadu_si128((__m128i *)(s - 3 * p)); + p1 = _mm_loadu_si128((__m128i *)(s - 2 * p)); + p0 = _mm_loadu_si128((__m128i *)(s - 1 * p)); + q0 = _mm_loadu_si128((__m128i *)(s - 0 * p)); + q1 = _mm_loadu_si128((__m128i *)(s + 1 * p)); + q2 = _mm_loadu_si128((__m128i *)(s + 2 * p)); + q3 = _mm_loadu_si128((__m128i *)(s + 3 * p)); + q4 = _mm_loadu_si128((__m128i *)(s + 4 * p)); + q5 = _mm_loadu_si128((__m128i *)(s + 5 * p)); + q6 = _mm_loadu_si128((__m128i *)(s + 6 * p)); + q7 = _mm_loadu_si128((__m128i *)(s + 7 * p)); + + { + const __m128i abs_p1p0 = abs_diff(p1, p0); + const __m128i abs_q1q0 = abs_diff(q1, q0); + const __m128i fe = _mm_set1_epi8(0xfe); + const __m128i ff = _mm_cmpeq_epi8(zero, zero); + __m128i abs_p0q0 = abs_diff(p0, q0); + __m128i abs_p1q1 = abs_diff(p1, q1); + __m128i work; + max_abs_p1p0q1q0 = _mm_max_epu8(abs_p1p0, abs_q1q0); + + abs_p0q0 = _mm_adds_epu8(abs_p0q0, abs_p0q0); + abs_p1q1 = _mm_srli_epi16(_mm_and_si128(abs_p1q1, fe), 1); + mask = _mm_subs_epu8(_mm_adds_epu8(abs_p0q0, abs_p1q1), blimit); + mask = _mm_xor_si128(_mm_cmpeq_epi8(mask, zero), ff); + // mask |= (abs(p0 - q0) * 2 + abs(p1 - q1) / 2 > blimit) * -1; + mask = _mm_max_epu8(max_abs_p1p0q1q0, mask); + // mask |= (abs(p1 - p0) > limit) * -1; + // mask |= (abs(q1 - q0) > limit) * -1; + work = _mm_max_epu8(abs_diff(p2, p1), abs_diff(p3, p2)); + mask = _mm_max_epu8(work, mask); + work = _mm_max_epu8(abs_diff(q2, q1), abs_diff(q3, q2)); + mask = _mm_max_epu8(work, mask); + mask = _mm_subs_epu8(mask, limit); + mask = _mm_cmpeq_epi8(mask, zero); + } + + { + __m128i work; + work = _mm_max_epu8(abs_diff(p2, p0), abs_diff(q2, q0)); + flat = _mm_max_epu8(work, max_abs_p1p0q1q0); + work = _mm_max_epu8(abs_diff(p3, p0), abs_diff(q3, q0)); + flat = _mm_max_epu8(work, flat); + work = _mm_max_epu8(abs_diff(p4, p0), abs_diff(q4, q0)); + flat = _mm_subs_epu8(flat, one); + flat = _mm_cmpeq_epi8(flat, zero); + flat = _mm_and_si128(flat, mask); + flat2 = _mm_max_epu8(abs_diff(p5, p0), abs_diff(q5, q0)); + flat2 = _mm_max_epu8(work, flat2); + work = _mm_max_epu8(abs_diff(p6, p0), abs_diff(q6, q0)); + flat2 = _mm_max_epu8(work, flat2); + work = _mm_max_epu8(abs_diff(p7, p0), abs_diff(q7, q0)); + flat2 = _mm_max_epu8(work, flat2); + flat2 = _mm_subs_epu8(flat2, one); + flat2 = _mm_cmpeq_epi8(flat2, zero); + flat2 = _mm_and_si128(flat2, flat); // flat2 & flat & mask + } + + // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + // filter4 + { + const __m128i t4 = _mm_set1_epi8(4); + const __m128i t3 = _mm_set1_epi8(3); + const __m128i t80 = _mm_set1_epi8(0x80); + const __m128i te0 = _mm_set1_epi8(0xe0); + const __m128i t1f = _mm_set1_epi8(0x1f); + const __m128i t1 = _mm_set1_epi8(0x1); + const __m128i t7f = _mm_set1_epi8(0x7f); + const __m128i ff = _mm_cmpeq_epi8(t4, t4); + + __m128i filt; + __m128i work_a; + __m128i filter1, filter2; + + op1 = _mm_xor_si128(p1, t80); + op0 = _mm_xor_si128(p0, t80); + oq0 = _mm_xor_si128(q0, t80); + oq1 = _mm_xor_si128(q1, t80); + + hev = _mm_subs_epu8(max_abs_p1p0q1q0, thresh); + hev = _mm_xor_si128(_mm_cmpeq_epi8(hev, zero), ff); + filt = _mm_and_si128(_mm_subs_epi8(op1, oq1), hev); + + work_a = _mm_subs_epi8(oq0, op0); + filt = _mm_adds_epi8(filt, work_a); + filt = _mm_adds_epi8(filt, work_a); + filt = _mm_adds_epi8(filt, work_a); + // (vpx_filter + 3 * (qs0 - ps0)) & mask + filt = _mm_and_si128(filt, mask); + filter1 = _mm_adds_epi8(filt, t4); + filter2 = _mm_adds_epi8(filt, t3); + + // Filter1 >> 3 + work_a = _mm_cmpgt_epi8(zero, filter1); + filter1 = _mm_srli_epi16(filter1, 3); + work_a = _mm_and_si128(work_a, te0); + filter1 = _mm_and_si128(filter1, t1f); + filter1 = _mm_or_si128(filter1, work_a); + oq0 = _mm_xor_si128(_mm_subs_epi8(oq0, filter1), t80); + + // Filter2 >> 3 + work_a = _mm_cmpgt_epi8(zero, filter2); + filter2 = _mm_srli_epi16(filter2, 3); + work_a = _mm_and_si128(work_a, te0); + filter2 = _mm_and_si128(filter2, t1f); + filter2 = _mm_or_si128(filter2, work_a); + op0 = _mm_xor_si128(_mm_adds_epi8(op0, filter2), t80); + + // filt >> 1 + filt = _mm_adds_epi8(filter1, t1); + work_a = _mm_cmpgt_epi8(zero, filt); + filt = _mm_srli_epi16(filt, 1); + work_a = _mm_and_si128(work_a, t80); + filt = _mm_and_si128(filt, t7f); + filt = _mm_or_si128(filt, work_a); + filt = _mm_andnot_si128(hev, filt); + op1 = _mm_xor_si128(_mm_adds_epi8(op1, filt), t80); + oq1 = _mm_xor_si128(_mm_subs_epi8(oq1, filt), t80); + // loopfilter done + + // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + // filter8 + { + const __m128i four = _mm_set1_epi16(4); + const __m128i p3_lo = _mm_unpacklo_epi8(p3, zero); + const __m128i p2_lo = _mm_unpacklo_epi8(p2, zero); + const __m128i p1_lo = _mm_unpacklo_epi8(p1, zero); + const __m128i p0_lo = _mm_unpacklo_epi8(p0, zero); + const __m128i q0_lo = _mm_unpacklo_epi8(q0, zero); + const __m128i q1_lo = _mm_unpacklo_epi8(q1, zero); + const __m128i q2_lo = _mm_unpacklo_epi8(q2, zero); + const __m128i q3_lo = _mm_unpacklo_epi8(q3, zero); + + const __m128i p3_hi = _mm_unpackhi_epi8(p3, zero); + const __m128i p2_hi = _mm_unpackhi_epi8(p2, zero); + const __m128i p1_hi = _mm_unpackhi_epi8(p1, zero); + const __m128i p0_hi = _mm_unpackhi_epi8(p0, zero); + const __m128i q0_hi = _mm_unpackhi_epi8(q0, zero); + const __m128i q1_hi = _mm_unpackhi_epi8(q1, zero); + const __m128i q2_hi = _mm_unpackhi_epi8(q2, zero); + const __m128i q3_hi = _mm_unpackhi_epi8(q3, zero); + __m128i f8_lo, f8_hi; + + f8_lo = _mm_add_epi16(_mm_add_epi16(p3_lo, four), + _mm_add_epi16(p3_lo, p2_lo)); + f8_lo = _mm_add_epi16(_mm_add_epi16(p3_lo, f8_lo), + _mm_add_epi16(p2_lo, p1_lo)); + f8_lo = _mm_add_epi16(_mm_add_epi16(p0_lo, q0_lo), f8_lo); + + f8_hi = _mm_add_epi16(_mm_add_epi16(p3_hi, four), + _mm_add_epi16(p3_hi, p2_hi)); + f8_hi = _mm_add_epi16(_mm_add_epi16(p3_hi, f8_hi), + _mm_add_epi16(p2_hi, p1_hi)); + f8_hi = _mm_add_epi16(_mm_add_epi16(p0_hi, q0_hi), f8_hi); + + op2 = filter8_mask(&flat, &p2, &f8_lo, &f8_hi); + + f8_lo = filter_add2_sub2(&f8_lo, &q1_lo, &p1_lo, &p2_lo, &p3_lo); + f8_hi = filter_add2_sub2(&f8_hi, &q1_hi, &p1_hi, &p2_hi, &p3_hi); + op1 = filter8_mask(&flat, &op1, &f8_lo, &f8_hi); + + f8_lo = filter_add2_sub2(&f8_lo, &q2_lo, &p0_lo, &p1_lo, &p3_lo); + f8_hi = filter_add2_sub2(&f8_hi, &q2_hi, &p0_hi, &p1_hi, &p3_hi); + op0 = filter8_mask(&flat, &op0, &f8_lo, &f8_hi); + + f8_lo = filter_add2_sub2(&f8_lo, &q3_lo, &q0_lo, &p0_lo, &p3_lo); + f8_hi = filter_add2_sub2(&f8_hi, &q3_hi, &q0_hi, &p0_hi, &p3_hi); + oq0 = filter8_mask(&flat, &oq0, &f8_lo, &f8_hi); + + f8_lo = filter_add2_sub2(&f8_lo, &q3_lo, &q1_lo, &q0_lo, &p2_lo); + f8_hi = filter_add2_sub2(&f8_hi, &q3_hi, &q1_hi, &q0_hi, &p2_hi); + oq1 = filter8_mask(&flat, &oq1, &f8_lo, &f8_hi); + + f8_lo = filter_add2_sub2(&f8_lo, &q3_lo, &q2_lo, &q1_lo, &p1_lo); + f8_hi = filter_add2_sub2(&f8_hi, &q3_hi, &q2_hi, &q1_hi, &p1_hi); + oq2 = filter8_mask(&flat, &q2, &f8_lo, &f8_hi); + } + + // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + // wide flat calculations + { + const __m128i eight = _mm_set1_epi16(8); + const __m128i p7_lo = _mm_unpacklo_epi8(p7, zero); + const __m128i p6_lo = _mm_unpacklo_epi8(p6, zero); + const __m128i p5_lo = _mm_unpacklo_epi8(p5, zero); + const __m128i p4_lo = _mm_unpacklo_epi8(p4, zero); + const __m128i p3_lo = _mm_unpacklo_epi8(p3, zero); + const __m128i p2_lo = _mm_unpacklo_epi8(p2, zero); + const __m128i p1_lo = _mm_unpacklo_epi8(p1, zero); + const __m128i p0_lo = _mm_unpacklo_epi8(p0, zero); + const __m128i q0_lo = _mm_unpacklo_epi8(q0, zero); + const __m128i q1_lo = _mm_unpacklo_epi8(q1, zero); + const __m128i q2_lo = _mm_unpacklo_epi8(q2, zero); + const __m128i q3_lo = _mm_unpacklo_epi8(q3, zero); + const __m128i q4_lo = _mm_unpacklo_epi8(q4, zero); + const __m128i q5_lo = _mm_unpacklo_epi8(q5, zero); + const __m128i q6_lo = _mm_unpacklo_epi8(q6, zero); + const __m128i q7_lo = _mm_unpacklo_epi8(q7, zero); + + const __m128i p7_hi = _mm_unpackhi_epi8(p7, zero); + const __m128i p6_hi = _mm_unpackhi_epi8(p6, zero); + const __m128i p5_hi = _mm_unpackhi_epi8(p5, zero); + const __m128i p4_hi = _mm_unpackhi_epi8(p4, zero); + const __m128i p3_hi = _mm_unpackhi_epi8(p3, zero); + const __m128i p2_hi = _mm_unpackhi_epi8(p2, zero); + const __m128i p1_hi = _mm_unpackhi_epi8(p1, zero); + const __m128i p0_hi = _mm_unpackhi_epi8(p0, zero); + const __m128i q0_hi = _mm_unpackhi_epi8(q0, zero); + const __m128i q1_hi = _mm_unpackhi_epi8(q1, zero); + const __m128i q2_hi = _mm_unpackhi_epi8(q2, zero); + const __m128i q3_hi = _mm_unpackhi_epi8(q3, zero); + const __m128i q4_hi = _mm_unpackhi_epi8(q4, zero); + const __m128i q5_hi = _mm_unpackhi_epi8(q5, zero); + const __m128i q6_hi = _mm_unpackhi_epi8(q6, zero); + const __m128i q7_hi = _mm_unpackhi_epi8(q7, zero); + + __m128i f_lo; + __m128i f_hi; + + f_lo = _mm_sub_epi16(_mm_slli_epi16(p7_lo, 3), p7_lo); // p7 * 7 + f_lo = + _mm_add_epi16(_mm_slli_epi16(p6_lo, 1), _mm_add_epi16(p4_lo, f_lo)); + f_lo = _mm_add_epi16(_mm_add_epi16(p3_lo, f_lo), + _mm_add_epi16(p2_lo, p1_lo)); + f_lo = _mm_add_epi16(_mm_add_epi16(p0_lo, q0_lo), f_lo); + f_lo = _mm_add_epi16(_mm_add_epi16(p5_lo, eight), f_lo); + + f_hi = _mm_sub_epi16(_mm_slli_epi16(p7_hi, 3), p7_hi); // p7 * 7 + f_hi = + _mm_add_epi16(_mm_slli_epi16(p6_hi, 1), _mm_add_epi16(p4_hi, f_hi)); + f_hi = _mm_add_epi16(_mm_add_epi16(p3_hi, f_hi), + _mm_add_epi16(p2_hi, p1_hi)); + f_hi = _mm_add_epi16(_mm_add_epi16(p0_hi, q0_hi), f_hi); + f_hi = _mm_add_epi16(_mm_add_epi16(p5_hi, eight), f_hi); + + p6 = filter16_mask(&flat2, &p6, &f_lo, &f_hi); + _mm_storeu_si128((__m128i *)(s - 7 * p), p6); + + f_lo = filter_add2_sub2(&f_lo, &q1_lo, &p5_lo, &p6_lo, &p7_lo); + f_hi = filter_add2_sub2(&f_hi, &q1_hi, &p5_hi, &p6_hi, &p7_hi); + p5 = filter16_mask(&flat2, &p5, &f_lo, &f_hi); + _mm_storeu_si128((__m128i *)(s - 6 * p), p5); + + f_lo = filter_add2_sub2(&f_lo, &q2_lo, &p4_lo, &p5_lo, &p7_lo); + f_hi = filter_add2_sub2(&f_hi, &q2_hi, &p4_hi, &p5_hi, &p7_hi); + p4 = filter16_mask(&flat2, &p4, &f_lo, &f_hi); + _mm_storeu_si128((__m128i *)(s - 5 * p), p4); + + f_lo = filter_add2_sub2(&f_lo, &q3_lo, &p3_lo, &p4_lo, &p7_lo); + f_hi = filter_add2_sub2(&f_hi, &q3_hi, &p3_hi, &p4_hi, &p7_hi); + p3 = filter16_mask(&flat2, &p3, &f_lo, &f_hi); + _mm_storeu_si128((__m128i *)(s - 4 * p), p3); + + f_lo = filter_add2_sub2(&f_lo, &q4_lo, &p2_lo, &p3_lo, &p7_lo); + f_hi = filter_add2_sub2(&f_hi, &q4_hi, &p2_hi, &p3_hi, &p7_hi); + op2 = filter16_mask(&flat2, &op2, &f_lo, &f_hi); + _mm_storeu_si128((__m128i *)(s - 3 * p), op2); + + f_lo = filter_add2_sub2(&f_lo, &q5_lo, &p1_lo, &p2_lo, &p7_lo); + f_hi = filter_add2_sub2(&f_hi, &q5_hi, &p1_hi, &p2_hi, &p7_hi); + op1 = filter16_mask(&flat2, &op1, &f_lo, &f_hi); + _mm_storeu_si128((__m128i *)(s - 2 * p), op1); + + f_lo = filter_add2_sub2(&f_lo, &q6_lo, &p0_lo, &p1_lo, &p7_lo); + f_hi = filter_add2_sub2(&f_hi, &q6_hi, &p0_hi, &p1_hi, &p7_hi); + op0 = filter16_mask(&flat2, &op0, &f_lo, &f_hi); + _mm_storeu_si128((__m128i *)(s - 1 * p), op0); + + f_lo = filter_add2_sub2(&f_lo, &q7_lo, &q0_lo, &p0_lo, &p7_lo); + f_hi = filter_add2_sub2(&f_hi, &q7_hi, &q0_hi, &p0_hi, &p7_hi); + oq0 = filter16_mask(&flat2, &oq0, &f_lo, &f_hi); + _mm_storeu_si128((__m128i *)(s - 0 * p), oq0); + + f_lo = filter_add2_sub2(&f_lo, &q7_lo, &q1_lo, &p6_lo, &q0_lo); + f_hi = filter_add2_sub2(&f_hi, &q7_hi, &q1_hi, &p6_hi, &q0_hi); + oq1 = filter16_mask(&flat2, &oq1, &f_lo, &f_hi); + _mm_storeu_si128((__m128i *)(s + 1 * p), oq1); + + f_lo = filter_add2_sub2(&f_lo, &q7_lo, &q2_lo, &p5_lo, &q1_lo); + f_hi = filter_add2_sub2(&f_hi, &q7_hi, &q2_hi, &p5_hi, &q1_hi); + oq2 = filter16_mask(&flat2, &oq2, &f_lo, &f_hi); + _mm_storeu_si128((__m128i *)(s + 2 * p), oq2); + + f_lo = filter_add2_sub2(&f_lo, &q7_lo, &q3_lo, &p4_lo, &q2_lo); + f_hi = filter_add2_sub2(&f_hi, &q7_hi, &q3_hi, &p4_hi, &q2_hi); + q3 = filter16_mask(&flat2, &q3, &f_lo, &f_hi); + _mm_storeu_si128((__m128i *)(s + 3 * p), q3); + + f_lo = filter_add2_sub2(&f_lo, &q7_lo, &q4_lo, &p3_lo, &q3_lo); + f_hi = filter_add2_sub2(&f_hi, &q7_hi, &q4_hi, &p3_hi, &q3_hi); + q4 = filter16_mask(&flat2, &q4, &f_lo, &f_hi); + _mm_storeu_si128((__m128i *)(s + 4 * p), q4); + + f_lo = filter_add2_sub2(&f_lo, &q7_lo, &q5_lo, &p2_lo, &q4_lo); + f_hi = filter_add2_sub2(&f_hi, &q7_hi, &q5_hi, &p2_hi, &q4_hi); + q5 = filter16_mask(&flat2, &q5, &f_lo, &f_hi); + _mm_storeu_si128((__m128i *)(s + 5 * p), q5); + + f_lo = filter_add2_sub2(&f_lo, &q7_lo, &q6_lo, &p1_lo, &q5_lo); + f_hi = filter_add2_sub2(&f_hi, &q7_hi, &q6_hi, &p1_hi, &q5_hi); + q6 = filter16_mask(&flat2, &q6, &f_lo, &f_hi); + _mm_storeu_si128((__m128i *)(s + 6 * p), q6); + } + // wide flat + // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + } +} + +void vpx_lpf_horizontal_8_sse2(unsigned char *s, int p, + const unsigned char *_blimit, + const unsigned char *_limit, + const unsigned char *_thresh) { + DECLARE_ALIGNED(16, unsigned char, flat_op2[16]); + DECLARE_ALIGNED(16, unsigned char, flat_op1[16]); + DECLARE_ALIGNED(16, unsigned char, flat_op0[16]); + DECLARE_ALIGNED(16, unsigned char, flat_oq2[16]); + DECLARE_ALIGNED(16, unsigned char, flat_oq1[16]); + DECLARE_ALIGNED(16, unsigned char, flat_oq0[16]); + const __m128i zero = _mm_set1_epi16(0); + const __m128i blimit = _mm_load_si128((const __m128i *)_blimit); + const __m128i limit = _mm_load_si128((const __m128i *)_limit); + const __m128i thresh = _mm_load_si128((const __m128i *)_thresh); + __m128i mask, hev, flat; + __m128i p3, p2, p1, p0, q0, q1, q2, q3; + __m128i q3p3, q2p2, q1p1, q0p0, p1q1, p0q0; + + q3p3 = _mm_unpacklo_epi64(_mm_loadl_epi64((__m128i *)(s - 4 * p)), + _mm_loadl_epi64((__m128i *)(s + 3 * p))); + q2p2 = _mm_unpacklo_epi64(_mm_loadl_epi64((__m128i *)(s - 3 * p)), + _mm_loadl_epi64((__m128i *)(s + 2 * p))); + q1p1 = _mm_unpacklo_epi64(_mm_loadl_epi64((__m128i *)(s - 2 * p)), + _mm_loadl_epi64((__m128i *)(s + 1 * p))); + q0p0 = _mm_unpacklo_epi64(_mm_loadl_epi64((__m128i *)(s - 1 * p)), + _mm_loadl_epi64((__m128i *)(s - 0 * p))); + p1q1 = _mm_shuffle_epi32(q1p1, 78); + p0q0 = _mm_shuffle_epi32(q0p0, 78); + + { + // filter_mask and hev_mask + const __m128i one = _mm_set1_epi8(1); + const __m128i fe = _mm_set1_epi8(0xfe); + const __m128i ff = _mm_cmpeq_epi8(fe, fe); + __m128i abs_p1q1, abs_p0q0, abs_q1q0, abs_p1p0, work; + abs_p1p0 = abs_diff(q1p1, q0p0); + abs_q1q0 = _mm_srli_si128(abs_p1p0, 8); + + abs_p0q0 = abs_diff(q0p0, p0q0); + abs_p1q1 = abs_diff(q1p1, p1q1); + flat = _mm_max_epu8(abs_p1p0, abs_q1q0); + hev = _mm_subs_epu8(flat, thresh); + hev = _mm_xor_si128(_mm_cmpeq_epi8(hev, zero), ff); + + abs_p0q0 = _mm_adds_epu8(abs_p0q0, abs_p0q0); + abs_p1q1 = _mm_srli_epi16(_mm_and_si128(abs_p1q1, fe), 1); + mask = _mm_subs_epu8(_mm_adds_epu8(abs_p0q0, abs_p1q1), blimit); + mask = _mm_xor_si128(_mm_cmpeq_epi8(mask, zero), ff); + // mask |= (abs(p0 - q0) * 2 + abs(p1 - q1) / 2 > blimit) * -1; + mask = _mm_max_epu8(abs_p1p0, mask); + // mask |= (abs(p1 - p0) > limit) * -1; + // mask |= (abs(q1 - q0) > limit) * -1; + + work = _mm_max_epu8(abs_diff(q2p2, q1p1), abs_diff(q3p3, q2p2)); + mask = _mm_max_epu8(work, mask); + mask = _mm_max_epu8(mask, _mm_srli_si128(mask, 8)); + mask = _mm_subs_epu8(mask, limit); + mask = _mm_cmpeq_epi8(mask, zero); + + // flat_mask4 + + flat = _mm_max_epu8(abs_diff(q2p2, q0p0), abs_diff(q3p3, q0p0)); + flat = _mm_max_epu8(abs_p1p0, flat); + flat = _mm_max_epu8(flat, _mm_srli_si128(flat, 8)); + flat = _mm_subs_epu8(flat, one); + flat = _mm_cmpeq_epi8(flat, zero); + flat = _mm_and_si128(flat, mask); + } + + { + const __m128i four = _mm_set1_epi16(4); + unsigned char *src = s; + { + __m128i workp_a, workp_b, workp_shft; + p3 = _mm_unpacklo_epi8(_mm_loadl_epi64((__m128i *)(src - 4 * p)), zero); + p2 = _mm_unpacklo_epi8(_mm_loadl_epi64((__m128i *)(src - 3 * p)), zero); + p1 = _mm_unpacklo_epi8(_mm_loadl_epi64((__m128i *)(src - 2 * p)), zero); + p0 = _mm_unpacklo_epi8(_mm_loadl_epi64((__m128i *)(src - 1 * p)), zero); + q0 = _mm_unpacklo_epi8(_mm_loadl_epi64((__m128i *)(src - 0 * p)), zero); + q1 = _mm_unpacklo_epi8(_mm_loadl_epi64((__m128i *)(src + 1 * p)), zero); + q2 = _mm_unpacklo_epi8(_mm_loadl_epi64((__m128i *)(src + 2 * p)), zero); + q3 = _mm_unpacklo_epi8(_mm_loadl_epi64((__m128i *)(src + 3 * p)), zero); + + workp_a = _mm_add_epi16(_mm_add_epi16(p3, p3), _mm_add_epi16(p2, p1)); + workp_a = _mm_add_epi16(_mm_add_epi16(workp_a, four), p0); + workp_b = _mm_add_epi16(_mm_add_epi16(q0, p2), p3); + workp_shft = _mm_srli_epi16(_mm_add_epi16(workp_a, workp_b), 3); + _mm_storel_epi64((__m128i *)&flat_op2[0], + _mm_packus_epi16(workp_shft, workp_shft)); + + workp_b = _mm_add_epi16(_mm_add_epi16(q0, q1), p1); + workp_shft = _mm_srli_epi16(_mm_add_epi16(workp_a, workp_b), 3); + _mm_storel_epi64((__m128i *)&flat_op1[0], + _mm_packus_epi16(workp_shft, workp_shft)); + + workp_a = _mm_add_epi16(_mm_sub_epi16(workp_a, p3), q2); + workp_b = _mm_add_epi16(_mm_sub_epi16(workp_b, p1), p0); + workp_shft = _mm_srli_epi16(_mm_add_epi16(workp_a, workp_b), 3); + _mm_storel_epi64((__m128i *)&flat_op0[0], + _mm_packus_epi16(workp_shft, workp_shft)); + + workp_a = _mm_add_epi16(_mm_sub_epi16(workp_a, p3), q3); + workp_b = _mm_add_epi16(_mm_sub_epi16(workp_b, p0), q0); + workp_shft = _mm_srli_epi16(_mm_add_epi16(workp_a, workp_b), 3); + _mm_storel_epi64((__m128i *)&flat_oq0[0], + _mm_packus_epi16(workp_shft, workp_shft)); + + workp_a = _mm_add_epi16(_mm_sub_epi16(workp_a, p2), q3); + workp_b = _mm_add_epi16(_mm_sub_epi16(workp_b, q0), q1); + workp_shft = _mm_srli_epi16(_mm_add_epi16(workp_a, workp_b), 3); + _mm_storel_epi64((__m128i *)&flat_oq1[0], + _mm_packus_epi16(workp_shft, workp_shft)); + + workp_a = _mm_add_epi16(_mm_sub_epi16(workp_a, p1), q3); + workp_b = _mm_add_epi16(_mm_sub_epi16(workp_b, q1), q2); + workp_shft = _mm_srli_epi16(_mm_add_epi16(workp_a, workp_b), 3); + _mm_storel_epi64((__m128i *)&flat_oq2[0], + _mm_packus_epi16(workp_shft, workp_shft)); + } + } + // lp filter + { + const __m128i t4 = _mm_set1_epi8(4); + const __m128i t3 = _mm_set1_epi8(3); + const __m128i t80 = _mm_set1_epi8(0x80); + const __m128i t1 = _mm_set1_epi8(0x1); + const __m128i ps1 = + _mm_xor_si128(_mm_loadl_epi64((__m128i *)(s - 2 * p)), t80); + const __m128i ps0 = + _mm_xor_si128(_mm_loadl_epi64((__m128i *)(s - 1 * p)), t80); + const __m128i qs0 = + _mm_xor_si128(_mm_loadl_epi64((__m128i *)(s + 0 * p)), t80); + const __m128i qs1 = + _mm_xor_si128(_mm_loadl_epi64((__m128i *)(s + 1 * p)), t80); + __m128i filt; + __m128i work_a; + __m128i filter1, filter2; + + filt = _mm_and_si128(_mm_subs_epi8(ps1, qs1), hev); + work_a = _mm_subs_epi8(qs0, ps0); + filt = _mm_adds_epi8(filt, work_a); + filt = _mm_adds_epi8(filt, work_a); + filt = _mm_adds_epi8(filt, work_a); + // (vpx_filter + 3 * (qs0 - ps0)) & mask + filt = _mm_and_si128(filt, mask); + + filter1 = _mm_adds_epi8(filt, t4); + filter2 = _mm_adds_epi8(filt, t3); + + // Filter1 >> 3 + filter1 = _mm_unpacklo_epi8(zero, filter1); + filter1 = _mm_srai_epi16(filter1, 11); + filter1 = _mm_packs_epi16(filter1, filter1); + + // Filter2 >> 3 + filter2 = _mm_unpacklo_epi8(zero, filter2); + filter2 = _mm_srai_epi16(filter2, 11); + filter2 = _mm_packs_epi16(filter2, zero); + + // filt >> 1 + filt = _mm_adds_epi8(filter1, t1); + filt = _mm_unpacklo_epi8(zero, filt); + filt = _mm_srai_epi16(filt, 9); + filt = _mm_packs_epi16(filt, zero); + + filt = _mm_andnot_si128(hev, filt); + + work_a = _mm_xor_si128(_mm_subs_epi8(qs0, filter1), t80); + q0 = _mm_loadl_epi64((__m128i *)flat_oq0); + work_a = _mm_andnot_si128(flat, work_a); + q0 = _mm_and_si128(flat, q0); + q0 = _mm_or_si128(work_a, q0); + + work_a = _mm_xor_si128(_mm_subs_epi8(qs1, filt), t80); + q1 = _mm_loadl_epi64((__m128i *)flat_oq1); + work_a = _mm_andnot_si128(flat, work_a); + q1 = _mm_and_si128(flat, q1); + q1 = _mm_or_si128(work_a, q1); + + work_a = _mm_loadu_si128((__m128i *)(s + 2 * p)); + q2 = _mm_loadl_epi64((__m128i *)flat_oq2); + work_a = _mm_andnot_si128(flat, work_a); + q2 = _mm_and_si128(flat, q2); + q2 = _mm_or_si128(work_a, q2); + + work_a = _mm_xor_si128(_mm_adds_epi8(ps0, filter2), t80); + p0 = _mm_loadl_epi64((__m128i *)flat_op0); + work_a = _mm_andnot_si128(flat, work_a); + p0 = _mm_and_si128(flat, p0); + p0 = _mm_or_si128(work_a, p0); + + work_a = _mm_xor_si128(_mm_adds_epi8(ps1, filt), t80); + p1 = _mm_loadl_epi64((__m128i *)flat_op1); + work_a = _mm_andnot_si128(flat, work_a); + p1 = _mm_and_si128(flat, p1); + p1 = _mm_or_si128(work_a, p1); + + work_a = _mm_loadu_si128((__m128i *)(s - 3 * p)); + p2 = _mm_loadl_epi64((__m128i *)flat_op2); + work_a = _mm_andnot_si128(flat, work_a); + p2 = _mm_and_si128(flat, p2); + p2 = _mm_or_si128(work_a, p2); + + _mm_storel_epi64((__m128i *)(s - 3 * p), p2); + _mm_storel_epi64((__m128i *)(s - 2 * p), p1); + _mm_storel_epi64((__m128i *)(s - 1 * p), p0); + _mm_storel_epi64((__m128i *)(s + 0 * p), q0); + _mm_storel_epi64((__m128i *)(s + 1 * p), q1); + _mm_storel_epi64((__m128i *)(s + 2 * p), q2); + } +} + +void vpx_lpf_horizontal_8_dual_sse2(uint8_t *s, int p, const uint8_t *_blimit0, + const uint8_t *_limit0, + const uint8_t *_thresh0, + const uint8_t *_blimit1, + const uint8_t *_limit1, + const uint8_t *_thresh1) { + DECLARE_ALIGNED(16, unsigned char, flat_op2[16]); + DECLARE_ALIGNED(16, unsigned char, flat_op1[16]); + DECLARE_ALIGNED(16, unsigned char, flat_op0[16]); + DECLARE_ALIGNED(16, unsigned char, flat_oq2[16]); + DECLARE_ALIGNED(16, unsigned char, flat_oq1[16]); + DECLARE_ALIGNED(16, unsigned char, flat_oq0[16]); + const __m128i zero = _mm_set1_epi16(0); + const __m128i blimit = + _mm_unpacklo_epi64(_mm_load_si128((const __m128i *)_blimit0), + _mm_load_si128((const __m128i *)_blimit1)); + const __m128i limit = + _mm_unpacklo_epi64(_mm_load_si128((const __m128i *)_limit0), + _mm_load_si128((const __m128i *)_limit1)); + const __m128i thresh = + _mm_unpacklo_epi64(_mm_load_si128((const __m128i *)_thresh0), + _mm_load_si128((const __m128i *)_thresh1)); + + __m128i mask, hev, flat; + __m128i p3, p2, p1, p0, q0, q1, q2, q3; + + p3 = _mm_loadu_si128((__m128i *)(s - 4 * p)); + p2 = _mm_loadu_si128((__m128i *)(s - 3 * p)); + p1 = _mm_loadu_si128((__m128i *)(s - 2 * p)); + p0 = _mm_loadu_si128((__m128i *)(s - 1 * p)); + q0 = _mm_loadu_si128((__m128i *)(s - 0 * p)); + q1 = _mm_loadu_si128((__m128i *)(s + 1 * p)); + q2 = _mm_loadu_si128((__m128i *)(s + 2 * p)); + q3 = _mm_loadu_si128((__m128i *)(s + 3 * p)); + { + const __m128i abs_p1p0 = + _mm_or_si128(_mm_subs_epu8(p1, p0), _mm_subs_epu8(p0, p1)); + const __m128i abs_q1q0 = + _mm_or_si128(_mm_subs_epu8(q1, q0), _mm_subs_epu8(q0, q1)); + const __m128i one = _mm_set1_epi8(1); + const __m128i fe = _mm_set1_epi8(0xfe); + const __m128i ff = _mm_cmpeq_epi8(abs_p1p0, abs_p1p0); + __m128i abs_p0q0 = + _mm_or_si128(_mm_subs_epu8(p0, q0), _mm_subs_epu8(q0, p0)); + __m128i abs_p1q1 = + _mm_or_si128(_mm_subs_epu8(p1, q1), _mm_subs_epu8(q1, p1)); + __m128i work; + + // filter_mask and hev_mask + flat = _mm_max_epu8(abs_p1p0, abs_q1q0); + hev = _mm_subs_epu8(flat, thresh); + hev = _mm_xor_si128(_mm_cmpeq_epi8(hev, zero), ff); + + abs_p0q0 = _mm_adds_epu8(abs_p0q0, abs_p0q0); + abs_p1q1 = _mm_srli_epi16(_mm_and_si128(abs_p1q1, fe), 1); + mask = _mm_subs_epu8(_mm_adds_epu8(abs_p0q0, abs_p1q1), blimit); + mask = _mm_xor_si128(_mm_cmpeq_epi8(mask, zero), ff); + // mask |= (abs(p0 - q0) * 2 + abs(p1 - q1) / 2 > blimit) * -1; + mask = _mm_max_epu8(flat, mask); + // mask |= (abs(p1 - p0) > limit) * -1; + // mask |= (abs(q1 - q0) > limit) * -1; + work = _mm_max_epu8( + _mm_or_si128(_mm_subs_epu8(p2, p1), _mm_subs_epu8(p1, p2)), + _mm_or_si128(_mm_subs_epu8(p3, p2), _mm_subs_epu8(p2, p3))); + mask = _mm_max_epu8(work, mask); + work = _mm_max_epu8( + _mm_or_si128(_mm_subs_epu8(q2, q1), _mm_subs_epu8(q1, q2)), + _mm_or_si128(_mm_subs_epu8(q3, q2), _mm_subs_epu8(q2, q3))); + mask = _mm_max_epu8(work, mask); + mask = _mm_subs_epu8(mask, limit); + mask = _mm_cmpeq_epi8(mask, zero); + + // flat_mask4 + work = _mm_max_epu8( + _mm_or_si128(_mm_subs_epu8(p2, p0), _mm_subs_epu8(p0, p2)), + _mm_or_si128(_mm_subs_epu8(q2, q0), _mm_subs_epu8(q0, q2))); + flat = _mm_max_epu8(work, flat); + work = _mm_max_epu8( + _mm_or_si128(_mm_subs_epu8(p3, p0), _mm_subs_epu8(p0, p3)), + _mm_or_si128(_mm_subs_epu8(q3, q0), _mm_subs_epu8(q0, q3))); + flat = _mm_max_epu8(work, flat); + flat = _mm_subs_epu8(flat, one); + flat = _mm_cmpeq_epi8(flat, zero); + flat = _mm_and_si128(flat, mask); + } + { + const __m128i four = _mm_set1_epi16(4); + unsigned char *src = s; + int i = 0; + + do { + __m128i workp_a, workp_b, workp_shft; + p3 = _mm_unpacklo_epi8(_mm_loadl_epi64((__m128i *)(src - 4 * p)), zero); + p2 = _mm_unpacklo_epi8(_mm_loadl_epi64((__m128i *)(src - 3 * p)), zero); + p1 = _mm_unpacklo_epi8(_mm_loadl_epi64((__m128i *)(src - 2 * p)), zero); + p0 = _mm_unpacklo_epi8(_mm_loadl_epi64((__m128i *)(src - 1 * p)), zero); + q0 = _mm_unpacklo_epi8(_mm_loadl_epi64((__m128i *)(src - 0 * p)), zero); + q1 = _mm_unpacklo_epi8(_mm_loadl_epi64((__m128i *)(src + 1 * p)), zero); + q2 = _mm_unpacklo_epi8(_mm_loadl_epi64((__m128i *)(src + 2 * p)), zero); + q3 = _mm_unpacklo_epi8(_mm_loadl_epi64((__m128i *)(src + 3 * p)), zero); + + workp_a = _mm_add_epi16(_mm_add_epi16(p3, p3), _mm_add_epi16(p2, p1)); + workp_a = _mm_add_epi16(_mm_add_epi16(workp_a, four), p0); + workp_b = _mm_add_epi16(_mm_add_epi16(q0, p2), p3); + workp_shft = _mm_srli_epi16(_mm_add_epi16(workp_a, workp_b), 3); + _mm_storel_epi64((__m128i *)&flat_op2[i * 8], + _mm_packus_epi16(workp_shft, workp_shft)); + + workp_b = _mm_add_epi16(_mm_add_epi16(q0, q1), p1); + workp_shft = _mm_srli_epi16(_mm_add_epi16(workp_a, workp_b), 3); + _mm_storel_epi64((__m128i *)&flat_op1[i * 8], + _mm_packus_epi16(workp_shft, workp_shft)); + + workp_a = _mm_add_epi16(_mm_sub_epi16(workp_a, p3), q2); + workp_b = _mm_add_epi16(_mm_sub_epi16(workp_b, p1), p0); + workp_shft = _mm_srli_epi16(_mm_add_epi16(workp_a, workp_b), 3); + _mm_storel_epi64((__m128i *)&flat_op0[i * 8], + _mm_packus_epi16(workp_shft, workp_shft)); + + workp_a = _mm_add_epi16(_mm_sub_epi16(workp_a, p3), q3); + workp_b = _mm_add_epi16(_mm_sub_epi16(workp_b, p0), q0); + workp_shft = _mm_srli_epi16(_mm_add_epi16(workp_a, workp_b), 3); + _mm_storel_epi64((__m128i *)&flat_oq0[i * 8], + _mm_packus_epi16(workp_shft, workp_shft)); + + workp_a = _mm_add_epi16(_mm_sub_epi16(workp_a, p2), q3); + workp_b = _mm_add_epi16(_mm_sub_epi16(workp_b, q0), q1); + workp_shft = _mm_srli_epi16(_mm_add_epi16(workp_a, workp_b), 3); + _mm_storel_epi64((__m128i *)&flat_oq1[i * 8], + _mm_packus_epi16(workp_shft, workp_shft)); + + workp_a = _mm_add_epi16(_mm_sub_epi16(workp_a, p1), q3); + workp_b = _mm_add_epi16(_mm_sub_epi16(workp_b, q1), q2); + workp_shft = _mm_srli_epi16(_mm_add_epi16(workp_a, workp_b), 3); + _mm_storel_epi64((__m128i *)&flat_oq2[i * 8], + _mm_packus_epi16(workp_shft, workp_shft)); + + src += 8; + } while (++i < 2); + } + // lp filter + { + const __m128i t4 = _mm_set1_epi8(4); + const __m128i t3 = _mm_set1_epi8(3); + const __m128i t80 = _mm_set1_epi8(0x80); + const __m128i te0 = _mm_set1_epi8(0xe0); + const __m128i t1f = _mm_set1_epi8(0x1f); + const __m128i t1 = _mm_set1_epi8(0x1); + const __m128i t7f = _mm_set1_epi8(0x7f); + + const __m128i ps1 = + _mm_xor_si128(_mm_loadu_si128((__m128i *)(s - 2 * p)), t80); + const __m128i ps0 = + _mm_xor_si128(_mm_loadu_si128((__m128i *)(s - 1 * p)), t80); + const __m128i qs0 = + _mm_xor_si128(_mm_loadu_si128((__m128i *)(s + 0 * p)), t80); + const __m128i qs1 = + _mm_xor_si128(_mm_loadu_si128((__m128i *)(s + 1 * p)), t80); + __m128i filt; + __m128i work_a; + __m128i filter1, filter2; + + filt = _mm_and_si128(_mm_subs_epi8(ps1, qs1), hev); + work_a = _mm_subs_epi8(qs0, ps0); + filt = _mm_adds_epi8(filt, work_a); + filt = _mm_adds_epi8(filt, work_a); + filt = _mm_adds_epi8(filt, work_a); + // (vpx_filter + 3 * (qs0 - ps0)) & mask + filt = _mm_and_si128(filt, mask); + + filter1 = _mm_adds_epi8(filt, t4); + filter2 = _mm_adds_epi8(filt, t3); + + // Filter1 >> 3 + work_a = _mm_cmpgt_epi8(zero, filter1); + filter1 = _mm_srli_epi16(filter1, 3); + work_a = _mm_and_si128(work_a, te0); + filter1 = _mm_and_si128(filter1, t1f); + filter1 = _mm_or_si128(filter1, work_a); + + // Filter2 >> 3 + work_a = _mm_cmpgt_epi8(zero, filter2); + filter2 = _mm_srli_epi16(filter2, 3); + work_a = _mm_and_si128(work_a, te0); + filter2 = _mm_and_si128(filter2, t1f); + filter2 = _mm_or_si128(filter2, work_a); + + // filt >> 1 + filt = _mm_adds_epi8(filter1, t1); + work_a = _mm_cmpgt_epi8(zero, filt); + filt = _mm_srli_epi16(filt, 1); + work_a = _mm_and_si128(work_a, t80); + filt = _mm_and_si128(filt, t7f); + filt = _mm_or_si128(filt, work_a); + + filt = _mm_andnot_si128(hev, filt); + + work_a = _mm_xor_si128(_mm_subs_epi8(qs0, filter1), t80); + q0 = _mm_load_si128((__m128i *)flat_oq0); + work_a = _mm_andnot_si128(flat, work_a); + q0 = _mm_and_si128(flat, q0); + q0 = _mm_or_si128(work_a, q0); + + work_a = _mm_xor_si128(_mm_subs_epi8(qs1, filt), t80); + q1 = _mm_load_si128((__m128i *)flat_oq1); + work_a = _mm_andnot_si128(flat, work_a); + q1 = _mm_and_si128(flat, q1); + q1 = _mm_or_si128(work_a, q1); + + work_a = _mm_loadu_si128((__m128i *)(s + 2 * p)); + q2 = _mm_load_si128((__m128i *)flat_oq2); + work_a = _mm_andnot_si128(flat, work_a); + q2 = _mm_and_si128(flat, q2); + q2 = _mm_or_si128(work_a, q2); + + work_a = _mm_xor_si128(_mm_adds_epi8(ps0, filter2), t80); + p0 = _mm_load_si128((__m128i *)flat_op0); + work_a = _mm_andnot_si128(flat, work_a); + p0 = _mm_and_si128(flat, p0); + p0 = _mm_or_si128(work_a, p0); + + work_a = _mm_xor_si128(_mm_adds_epi8(ps1, filt), t80); + p1 = _mm_load_si128((__m128i *)flat_op1); + work_a = _mm_andnot_si128(flat, work_a); + p1 = _mm_and_si128(flat, p1); + p1 = _mm_or_si128(work_a, p1); + + work_a = _mm_loadu_si128((__m128i *)(s - 3 * p)); + p2 = _mm_load_si128((__m128i *)flat_op2); + work_a = _mm_andnot_si128(flat, work_a); + p2 = _mm_and_si128(flat, p2); + p2 = _mm_or_si128(work_a, p2); + + _mm_storeu_si128((__m128i *)(s - 3 * p), p2); + _mm_storeu_si128((__m128i *)(s - 2 * p), p1); + _mm_storeu_si128((__m128i *)(s - 1 * p), p0); + _mm_storeu_si128((__m128i *)(s + 0 * p), q0); + _mm_storeu_si128((__m128i *)(s + 1 * p), q1); + _mm_storeu_si128((__m128i *)(s + 2 * p), q2); + } +} + +void vpx_lpf_horizontal_4_dual_sse2(unsigned char *s, int p, + const unsigned char *_blimit0, + const unsigned char *_limit0, + const unsigned char *_thresh0, + const unsigned char *_blimit1, + const unsigned char *_limit1, + const unsigned char *_thresh1) { + const __m128i blimit = + _mm_unpacklo_epi64(_mm_load_si128((const __m128i *)_blimit0), + _mm_load_si128((const __m128i *)_blimit1)); + const __m128i limit = + _mm_unpacklo_epi64(_mm_load_si128((const __m128i *)_limit0), + _mm_load_si128((const __m128i *)_limit1)); + const __m128i thresh = + _mm_unpacklo_epi64(_mm_load_si128((const __m128i *)_thresh0), + _mm_load_si128((const __m128i *)_thresh1)); + const __m128i zero = _mm_set1_epi16(0); + __m128i p3, p2, p1, p0, q0, q1, q2, q3; + __m128i mask, hev, flat; + + p3 = _mm_loadu_si128((__m128i *)(s - 4 * p)); + p2 = _mm_loadu_si128((__m128i *)(s - 3 * p)); + p1 = _mm_loadu_si128((__m128i *)(s - 2 * p)); + p0 = _mm_loadu_si128((__m128i *)(s - 1 * p)); + q0 = _mm_loadu_si128((__m128i *)(s - 0 * p)); + q1 = _mm_loadu_si128((__m128i *)(s + 1 * p)); + q2 = _mm_loadu_si128((__m128i *)(s + 2 * p)); + q3 = _mm_loadu_si128((__m128i *)(s + 3 * p)); + + // filter_mask and hev_mask + { + const __m128i abs_p1p0 = + _mm_or_si128(_mm_subs_epu8(p1, p0), _mm_subs_epu8(p0, p1)); + const __m128i abs_q1q0 = + _mm_or_si128(_mm_subs_epu8(q1, q0), _mm_subs_epu8(q0, q1)); + const __m128i fe = _mm_set1_epi8(0xfe); + const __m128i ff = _mm_cmpeq_epi8(abs_p1p0, abs_p1p0); + __m128i abs_p0q0 = + _mm_or_si128(_mm_subs_epu8(p0, q0), _mm_subs_epu8(q0, p0)); + __m128i abs_p1q1 = + _mm_or_si128(_mm_subs_epu8(p1, q1), _mm_subs_epu8(q1, p1)); + __m128i work; + + flat = _mm_max_epu8(abs_p1p0, abs_q1q0); + hev = _mm_subs_epu8(flat, thresh); + hev = _mm_xor_si128(_mm_cmpeq_epi8(hev, zero), ff); + + abs_p0q0 = _mm_adds_epu8(abs_p0q0, abs_p0q0); + abs_p1q1 = _mm_srli_epi16(_mm_and_si128(abs_p1q1, fe), 1); + mask = _mm_subs_epu8(_mm_adds_epu8(abs_p0q0, abs_p1q1), blimit); + mask = _mm_xor_si128(_mm_cmpeq_epi8(mask, zero), ff); + // mask |= (abs(p0 - q0) * 2 + abs(p1 - q1) / 2 > blimit) * -1; + mask = _mm_max_epu8(flat, mask); + // mask |= (abs(p1 - p0) > limit) * -1; + // mask |= (abs(q1 - q0) > limit) * -1; + work = _mm_max_epu8( + _mm_or_si128(_mm_subs_epu8(p2, p1), _mm_subs_epu8(p1, p2)), + _mm_or_si128(_mm_subs_epu8(p3, p2), _mm_subs_epu8(p2, p3))); + mask = _mm_max_epu8(work, mask); + work = _mm_max_epu8( + _mm_or_si128(_mm_subs_epu8(q2, q1), _mm_subs_epu8(q1, q2)), + _mm_or_si128(_mm_subs_epu8(q3, q2), _mm_subs_epu8(q2, q3))); + mask = _mm_max_epu8(work, mask); + mask = _mm_subs_epu8(mask, limit); + mask = _mm_cmpeq_epi8(mask, zero); + } + + // filter4 + { + const __m128i t4 = _mm_set1_epi8(4); + const __m128i t3 = _mm_set1_epi8(3); + const __m128i t80 = _mm_set1_epi8(0x80); + const __m128i te0 = _mm_set1_epi8(0xe0); + const __m128i t1f = _mm_set1_epi8(0x1f); + const __m128i t1 = _mm_set1_epi8(0x1); + const __m128i t7f = _mm_set1_epi8(0x7f); + + const __m128i ps1 = + _mm_xor_si128(_mm_loadu_si128((__m128i *)(s - 2 * p)), t80); + const __m128i ps0 = + _mm_xor_si128(_mm_loadu_si128((__m128i *)(s - 1 * p)), t80); + const __m128i qs0 = + _mm_xor_si128(_mm_loadu_si128((__m128i *)(s + 0 * p)), t80); + const __m128i qs1 = + _mm_xor_si128(_mm_loadu_si128((__m128i *)(s + 1 * p)), t80); + __m128i filt; + __m128i work_a; + __m128i filter1, filter2; + + filt = _mm_and_si128(_mm_subs_epi8(ps1, qs1), hev); + work_a = _mm_subs_epi8(qs0, ps0); + filt = _mm_adds_epi8(filt, work_a); + filt = _mm_adds_epi8(filt, work_a); + filt = _mm_adds_epi8(filt, work_a); + // (vpx_filter + 3 * (qs0 - ps0)) & mask + filt = _mm_and_si128(filt, mask); + + filter1 = _mm_adds_epi8(filt, t4); + filter2 = _mm_adds_epi8(filt, t3); + + // Filter1 >> 3 + work_a = _mm_cmpgt_epi8(zero, filter1); + filter1 = _mm_srli_epi16(filter1, 3); + work_a = _mm_and_si128(work_a, te0); + filter1 = _mm_and_si128(filter1, t1f); + filter1 = _mm_or_si128(filter1, work_a); + + // Filter2 >> 3 + work_a = _mm_cmpgt_epi8(zero, filter2); + filter2 = _mm_srli_epi16(filter2, 3); + work_a = _mm_and_si128(work_a, te0); + filter2 = _mm_and_si128(filter2, t1f); + filter2 = _mm_or_si128(filter2, work_a); + + // filt >> 1 + filt = _mm_adds_epi8(filter1, t1); + work_a = _mm_cmpgt_epi8(zero, filt); + filt = _mm_srli_epi16(filt, 1); + work_a = _mm_and_si128(work_a, t80); + filt = _mm_and_si128(filt, t7f); + filt = _mm_or_si128(filt, work_a); + + filt = _mm_andnot_si128(hev, filt); + + q0 = _mm_xor_si128(_mm_subs_epi8(qs0, filter1), t80); + q1 = _mm_xor_si128(_mm_subs_epi8(qs1, filt), t80); + p0 = _mm_xor_si128(_mm_adds_epi8(ps0, filter2), t80); + p1 = _mm_xor_si128(_mm_adds_epi8(ps1, filt), t80); + + _mm_storeu_si128((__m128i *)(s - 2 * p), p1); + _mm_storeu_si128((__m128i *)(s - 1 * p), p0); + _mm_storeu_si128((__m128i *)(s + 0 * p), q0); + _mm_storeu_si128((__m128i *)(s + 1 * p), q1); + } +} + +static INLINE void transpose8x16(unsigned char *in0, unsigned char *in1, + int in_p, unsigned char *out, int out_p) { + __m128i x0, x1, x2, x3, x4, x5, x6, x7; + __m128i x8, x9, x10, x11, x12, x13, x14, x15; + + // 2-way interleave w/hoisting of unpacks + x0 = _mm_loadl_epi64((__m128i *)in0); // 1 + x1 = _mm_loadl_epi64((__m128i *)(in0 + in_p)); // 3 + x0 = _mm_unpacklo_epi8(x0, x1); // 1 + + x2 = _mm_loadl_epi64((__m128i *)(in0 + 2 * in_p)); // 5 + x3 = _mm_loadl_epi64((__m128i *)(in0 + 3 * in_p)); // 7 + x1 = _mm_unpacklo_epi8(x2, x3); // 2 + + x4 = _mm_loadl_epi64((__m128i *)(in0 + 4 * in_p)); // 9 + x5 = _mm_loadl_epi64((__m128i *)(in0 + 5 * in_p)); // 11 + x2 = _mm_unpacklo_epi8(x4, x5); // 3 + + x6 = _mm_loadl_epi64((__m128i *)(in0 + 6 * in_p)); // 13 + x7 = _mm_loadl_epi64((__m128i *)(in0 + 7 * in_p)); // 15 + x3 = _mm_unpacklo_epi8(x6, x7); // 4 + x4 = _mm_unpacklo_epi16(x0, x1); // 9 + + x8 = _mm_loadl_epi64((__m128i *)in1); // 2 + x9 = _mm_loadl_epi64((__m128i *)(in1 + in_p)); // 4 + x8 = _mm_unpacklo_epi8(x8, x9); // 5 + x5 = _mm_unpacklo_epi16(x2, x3); // 10 + + x10 = _mm_loadl_epi64((__m128i *)(in1 + 2 * in_p)); // 6 + x11 = _mm_loadl_epi64((__m128i *)(in1 + 3 * in_p)); // 8 + x9 = _mm_unpacklo_epi8(x10, x11); // 6 + + x12 = _mm_loadl_epi64((__m128i *)(in1 + 4 * in_p)); // 10 + x13 = _mm_loadl_epi64((__m128i *)(in1 + 5 * in_p)); // 12 + x10 = _mm_unpacklo_epi8(x12, x13); // 7 + x12 = _mm_unpacklo_epi16(x8, x9); // 11 + + x14 = _mm_loadl_epi64((__m128i *)(in1 + 6 * in_p)); // 14 + x15 = _mm_loadl_epi64((__m128i *)(in1 + 7 * in_p)); // 16 + x11 = _mm_unpacklo_epi8(x14, x15); // 8 + x13 = _mm_unpacklo_epi16(x10, x11); // 12 + + x6 = _mm_unpacklo_epi32(x4, x5); // 13 + x7 = _mm_unpackhi_epi32(x4, x5); // 14 + x14 = _mm_unpacklo_epi32(x12, x13); // 15 + x15 = _mm_unpackhi_epi32(x12, x13); // 16 + + // Store first 4-line result + _mm_storeu_si128((__m128i *)out, _mm_unpacklo_epi64(x6, x14)); + _mm_storeu_si128((__m128i *)(out + out_p), _mm_unpackhi_epi64(x6, x14)); + _mm_storeu_si128((__m128i *)(out + 2 * out_p), _mm_unpacklo_epi64(x7, x15)); + _mm_storeu_si128((__m128i *)(out + 3 * out_p), _mm_unpackhi_epi64(x7, x15)); + + x4 = _mm_unpackhi_epi16(x0, x1); + x5 = _mm_unpackhi_epi16(x2, x3); + x12 = _mm_unpackhi_epi16(x8, x9); + x13 = _mm_unpackhi_epi16(x10, x11); + + x6 = _mm_unpacklo_epi32(x4, x5); + x7 = _mm_unpackhi_epi32(x4, x5); + x14 = _mm_unpacklo_epi32(x12, x13); + x15 = _mm_unpackhi_epi32(x12, x13); + + // Store second 4-line result + _mm_storeu_si128((__m128i *)(out + 4 * out_p), _mm_unpacklo_epi64(x6, x14)); + _mm_storeu_si128((__m128i *)(out + 5 * out_p), _mm_unpackhi_epi64(x6, x14)); + _mm_storeu_si128((__m128i *)(out + 6 * out_p), _mm_unpacklo_epi64(x7, x15)); + _mm_storeu_si128((__m128i *)(out + 7 * out_p), _mm_unpackhi_epi64(x7, x15)); +} + +static INLINE void transpose(unsigned char *src[], int in_p, + unsigned char *dst[], int out_p, + int num_8x8_to_transpose) { + int idx8x8 = 0; + __m128i x0, x1, x2, x3, x4, x5, x6, x7; + do { + unsigned char *in = src[idx8x8]; + unsigned char *out = dst[idx8x8]; + + x0 = + _mm_loadl_epi64((__m128i *)(in + 0 * in_p)); // 00 01 02 03 04 05 06 07 + x1 = + _mm_loadl_epi64((__m128i *)(in + 1 * in_p)); // 10 11 12 13 14 15 16 17 + // 00 10 01 11 02 12 03 13 04 14 05 15 06 16 07 17 + x0 = _mm_unpacklo_epi8(x0, x1); + + x2 = + _mm_loadl_epi64((__m128i *)(in + 2 * in_p)); // 20 21 22 23 24 25 26 27 + x3 = + _mm_loadl_epi64((__m128i *)(in + 3 * in_p)); // 30 31 32 33 34 35 36 37 + // 20 30 21 31 22 32 23 33 24 34 25 35 26 36 27 37 + x1 = _mm_unpacklo_epi8(x2, x3); + + x4 = + _mm_loadl_epi64((__m128i *)(in + 4 * in_p)); // 40 41 42 43 44 45 46 47 + x5 = + _mm_loadl_epi64((__m128i *)(in + 5 * in_p)); // 50 51 52 53 54 55 56 57 + // 40 50 41 51 42 52 43 53 44 54 45 55 46 56 47 57 + x2 = _mm_unpacklo_epi8(x4, x5); + + x6 = + _mm_loadl_epi64((__m128i *)(in + 6 * in_p)); // 60 61 62 63 64 65 66 67 + x7 = + _mm_loadl_epi64((__m128i *)(in + 7 * in_p)); // 70 71 72 73 74 75 76 77 + // 60 70 61 71 62 72 63 73 64 74 65 75 66 76 67 77 + x3 = _mm_unpacklo_epi8(x6, x7); + + // 00 10 20 30 01 11 21 31 02 12 22 32 03 13 23 33 + x4 = _mm_unpacklo_epi16(x0, x1); + // 40 50 60 70 41 51 61 71 42 52 62 72 43 53 63 73 + x5 = _mm_unpacklo_epi16(x2, x3); + // 00 10 20 30 40 50 60 70 01 11 21 31 41 51 61 71 + x6 = _mm_unpacklo_epi32(x4, x5); + _mm_storel_pd((double *)(out + 0 * out_p), + _mm_castsi128_pd(x6)); // 00 10 20 30 40 50 60 70 + _mm_storeh_pd((double *)(out + 1 * out_p), + _mm_castsi128_pd(x6)); // 01 11 21 31 41 51 61 71 + // 02 12 22 32 42 52 62 72 03 13 23 33 43 53 63 73 + x7 = _mm_unpackhi_epi32(x4, x5); + _mm_storel_pd((double *)(out + 2 * out_p), + _mm_castsi128_pd(x7)); // 02 12 22 32 42 52 62 72 + _mm_storeh_pd((double *)(out + 3 * out_p), + _mm_castsi128_pd(x7)); // 03 13 23 33 43 53 63 73 + + // 04 14 24 34 05 15 25 35 06 16 26 36 07 17 27 37 + x4 = _mm_unpackhi_epi16(x0, x1); + // 44 54 64 74 45 55 65 75 46 56 66 76 47 57 67 77 + x5 = _mm_unpackhi_epi16(x2, x3); + // 04 14 24 34 44 54 64 74 05 15 25 35 45 55 65 75 + x6 = _mm_unpacklo_epi32(x4, x5); + _mm_storel_pd((double *)(out + 4 * out_p), + _mm_castsi128_pd(x6)); // 04 14 24 34 44 54 64 74 + _mm_storeh_pd((double *)(out + 5 * out_p), + _mm_castsi128_pd(x6)); // 05 15 25 35 45 55 65 75 + // 06 16 26 36 46 56 66 76 07 17 27 37 47 57 67 77 + x7 = _mm_unpackhi_epi32(x4, x5); + + _mm_storel_pd((double *)(out + 6 * out_p), + _mm_castsi128_pd(x7)); // 06 16 26 36 46 56 66 76 + _mm_storeh_pd((double *)(out + 7 * out_p), + _mm_castsi128_pd(x7)); // 07 17 27 37 47 57 67 77 + } while (++idx8x8 < num_8x8_to_transpose); +} + +void vpx_lpf_vertical_4_dual_sse2(uint8_t *s, int p, const uint8_t *blimit0, + const uint8_t *limit0, const uint8_t *thresh0, + const uint8_t *blimit1, const uint8_t *limit1, + const uint8_t *thresh1) { + DECLARE_ALIGNED(16, unsigned char, t_dst[16 * 8]); + unsigned char *src[2]; + unsigned char *dst[2]; + + // Transpose 8x16 + transpose8x16(s - 4, s - 4 + p * 8, p, t_dst, 16); + + // Loop filtering + vpx_lpf_horizontal_4_dual_sse2(t_dst + 4 * 16, 16, blimit0, limit0, thresh0, + blimit1, limit1, thresh1); + src[0] = t_dst; + src[1] = t_dst + 8; + dst[0] = s - 4; + dst[1] = s - 4 + p * 8; + + // Transpose back + transpose(src, 16, dst, p, 2); +} + +void vpx_lpf_vertical_8_sse2(unsigned char *s, int p, + const unsigned char *blimit, + const unsigned char *limit, + const unsigned char *thresh) { + DECLARE_ALIGNED(8, unsigned char, t_dst[8 * 8]); + unsigned char *src[1]; + unsigned char *dst[1]; + + // Transpose 8x8 + src[0] = s - 4; + dst[0] = t_dst; + + transpose(src, p, dst, 8, 1); + + // Loop filtering + vpx_lpf_horizontal_8_sse2(t_dst + 4 * 8, 8, blimit, limit, thresh); + + src[0] = t_dst; + dst[0] = s - 4; + + // Transpose back + transpose(src, 8, dst, p, 1); +} + +void vpx_lpf_vertical_8_dual_sse2(uint8_t *s, int p, const uint8_t *blimit0, + const uint8_t *limit0, const uint8_t *thresh0, + const uint8_t *blimit1, const uint8_t *limit1, + const uint8_t *thresh1) { + DECLARE_ALIGNED(16, unsigned char, t_dst[16 * 8]); + unsigned char *src[2]; + unsigned char *dst[2]; + + // Transpose 8x16 + transpose8x16(s - 4, s - 4 + p * 8, p, t_dst, 16); + + // Loop filtering + vpx_lpf_horizontal_8_dual_sse2(t_dst + 4 * 16, 16, blimit0, limit0, thresh0, + blimit1, limit1, thresh1); + src[0] = t_dst; + src[1] = t_dst + 8; + + dst[0] = s - 4; + dst[1] = s - 4 + p * 8; + + // Transpose back + transpose(src, 16, dst, p, 2); +} + +void vpx_lpf_vertical_16_sse2(unsigned char *s, int p, + const unsigned char *blimit, + const unsigned char *limit, + const unsigned char *thresh) { + DECLARE_ALIGNED(8, unsigned char, t_dst[8 * 16]); + unsigned char *src[2]; + unsigned char *dst[2]; + + src[0] = s - 8; + src[1] = s; + dst[0] = t_dst; + dst[1] = t_dst + 8 * 8; + + // Transpose 16x8 + transpose(src, p, dst, 8, 2); + + // Loop filtering + vpx_lpf_horizontal_16_sse2(t_dst + 8 * 8, 8, blimit, limit, thresh); + + src[0] = t_dst; + src[1] = t_dst + 8 * 8; + dst[0] = s - 8; + dst[1] = s; + + // Transpose back + transpose(src, 8, dst, p, 2); +} + +void vpx_lpf_vertical_16_dual_sse2(unsigned char *s, int p, + const uint8_t *blimit, const uint8_t *limit, + const uint8_t *thresh) { + DECLARE_ALIGNED(16, unsigned char, t_dst[256]); + + // Transpose 16x16 + transpose8x16(s - 8, s - 8 + 8 * p, p, t_dst, 16); + transpose8x16(s, s + 8 * p, p, t_dst + 8 * 16, 16); + + // Loop filtering + vpx_lpf_horizontal_16_dual_sse2(t_dst + 8 * 16, 16, blimit, limit, thresh); + + // Transpose back + transpose8x16(t_dst, t_dst + 8 * 16, 16, s - 8, p); + transpose8x16(t_dst + 8, t_dst + 8 + 8 * 16, 16, s - 8 + 8 * p, p); +} diff --git a/vpx_dsp/x86/mem_sse2.h b/vpx_dsp/x86/mem_sse2.h new file mode 100644 index 0000000..2ce738f --- /dev/null +++ b/vpx_dsp/x86/mem_sse2.h @@ -0,0 +1,124 @@ +/* + * Copyright (c) 2017 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VPX_DSP_X86_MEM_SSE2_H_ +#define VPX_DSP_X86_MEM_SSE2_H_ + +#include // SSE2 + +#include "./vpx_config.h" + +static INLINE void load_8bit_4x4(const uint8_t *const s, const ptrdiff_t stride, + __m128i *const d) { + d[0] = _mm_cvtsi32_si128(*(const int *)(s + 0 * stride)); + d[1] = _mm_cvtsi32_si128(*(const int *)(s + 1 * stride)); + d[2] = _mm_cvtsi32_si128(*(const int *)(s + 2 * stride)); + d[3] = _mm_cvtsi32_si128(*(const int *)(s + 3 * stride)); +} + +static INLINE void load_8bit_4x8(const uint8_t *const s, const ptrdiff_t stride, + __m128i *const d) { + load_8bit_4x4(s + 0 * stride, stride, &d[0]); + load_8bit_4x4(s + 4 * stride, stride, &d[4]); +} + +static INLINE void load_8bit_8x4(const uint8_t *const s, const ptrdiff_t stride, + __m128i *const d) { + d[0] = _mm_loadl_epi64((const __m128i *)(s + 0 * stride)); + d[1] = _mm_loadl_epi64((const __m128i *)(s + 1 * stride)); + d[2] = _mm_loadl_epi64((const __m128i *)(s + 2 * stride)); + d[3] = _mm_loadl_epi64((const __m128i *)(s + 3 * stride)); +} + +static INLINE void load_8bit_8x8(const uint8_t *const s, const ptrdiff_t stride, + __m128i *const d) { + load_8bit_8x4(s + 0 * stride, stride, &d[0]); + load_8bit_8x4(s + 4 * stride, stride, &d[4]); +} + +static INLINE void load_8bit_16x8(const uint8_t *const s, + const ptrdiff_t stride, __m128i *const d) { + d[0] = _mm_load_si128((const __m128i *)(s + 0 * stride)); + d[1] = _mm_load_si128((const __m128i *)(s + 1 * stride)); + d[2] = _mm_load_si128((const __m128i *)(s + 2 * stride)); + d[3] = _mm_load_si128((const __m128i *)(s + 3 * stride)); + d[4] = _mm_load_si128((const __m128i *)(s + 4 * stride)); + d[5] = _mm_load_si128((const __m128i *)(s + 5 * stride)); + d[6] = _mm_load_si128((const __m128i *)(s + 6 * stride)); + d[7] = _mm_load_si128((const __m128i *)(s + 7 * stride)); +} + +static INLINE void loadu_8bit_16x4(const uint8_t *const s, + const ptrdiff_t stride, __m128i *const d) { + d[0] = _mm_loadu_si128((const __m128i *)(s + 0 * stride)); + d[1] = _mm_loadu_si128((const __m128i *)(s + 1 * stride)); + d[2] = _mm_loadu_si128((const __m128i *)(s + 2 * stride)); + d[3] = _mm_loadu_si128((const __m128i *)(s + 3 * stride)); +} + +static INLINE void loadu_8bit_16x8(const uint8_t *const s, + const ptrdiff_t stride, __m128i *const d) { + loadu_8bit_16x4(s + 0 * stride, stride, &d[0]); + loadu_8bit_16x4(s + 4 * stride, stride, &d[4]); +} + +static INLINE void _mm_storeh_epi64(__m128i *const d, const __m128i s) { + _mm_storeh_pi((__m64 *)d, _mm_castsi128_ps(s)); +} + +static INLINE void store_8bit_4x4(const __m128i *const s, uint8_t *const d, + const ptrdiff_t stride) { + *(int *)(d + 0 * stride) = _mm_cvtsi128_si32(s[0]); + *(int *)(d + 1 * stride) = _mm_cvtsi128_si32(s[1]); + *(int *)(d + 2 * stride) = _mm_cvtsi128_si32(s[2]); + *(int *)(d + 3 * stride) = _mm_cvtsi128_si32(s[3]); +} + +static INLINE void store_8bit_4x4_sse2(const __m128i s, uint8_t *const d, + const ptrdiff_t stride) { + __m128i ss[4]; + + ss[0] = s; + ss[1] = _mm_srli_si128(s, 4); + ss[2] = _mm_srli_si128(s, 8); + ss[3] = _mm_srli_si128(s, 12); + store_8bit_4x4(ss, d, stride); +} + +static INLINE void store_8bit_8x4_from_16x2(const __m128i *const s, + uint8_t *const d, + const ptrdiff_t stride) { + _mm_storel_epi64((__m128i *)(d + 0 * stride), s[0]); + _mm_storeh_epi64((__m128i *)(d + 1 * stride), s[0]); + _mm_storel_epi64((__m128i *)(d + 2 * stride), s[1]); + _mm_storeh_epi64((__m128i *)(d + 3 * stride), s[1]); +} + +static INLINE void store_8bit_8x8(const __m128i *const s, uint8_t *const d, + const ptrdiff_t stride) { + _mm_storel_epi64((__m128i *)(d + 0 * stride), s[0]); + _mm_storel_epi64((__m128i *)(d + 1 * stride), s[1]); + _mm_storel_epi64((__m128i *)(d + 2 * stride), s[2]); + _mm_storel_epi64((__m128i *)(d + 3 * stride), s[3]); + _mm_storel_epi64((__m128i *)(d + 4 * stride), s[4]); + _mm_storel_epi64((__m128i *)(d + 5 * stride), s[5]); + _mm_storel_epi64((__m128i *)(d + 6 * stride), s[6]); + _mm_storel_epi64((__m128i *)(d + 7 * stride), s[7]); +} + +static INLINE void storeu_8bit_16x4(const __m128i *const s, uint8_t *const d, + const ptrdiff_t stride) { + _mm_storeu_si128((__m128i *)(d + 0 * stride), s[0]); + _mm_storeu_si128((__m128i *)(d + 1 * stride), s[1]); + _mm_storeu_si128((__m128i *)(d + 2 * stride), s[2]); + _mm_storeu_si128((__m128i *)(d + 3 * stride), s[3]); +} + +#endif // VPX_DSP_X86_MEM_SSE2_H_ diff --git a/vpx_dsp/x86/quantize_avx.c b/vpx_dsp/x86/quantize_avx.c new file mode 100644 index 0000000..6f44890 --- /dev/null +++ b/vpx_dsp/x86/quantize_avx.c @@ -0,0 +1,315 @@ +/* + * Copyright (c) 2017 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#if defined(_MSC_VER) +#include +#endif +#include + +#include "./vpx_dsp_rtcd.h" +#include "vpx/vpx_integer.h" +#include "vpx_dsp/x86/bitdepth_conversion_sse2.h" +#include "vpx_dsp/x86/quantize_x86.h" + +void vpx_quantize_b_avx(const tran_low_t *coeff_ptr, intptr_t n_coeffs, + int skip_block, const int16_t *zbin_ptr, + const int16_t *round_ptr, const int16_t *quant_ptr, + const int16_t *quant_shift_ptr, tran_low_t *qcoeff_ptr, + tran_low_t *dqcoeff_ptr, const int16_t *dequant_ptr, + uint16_t *eob_ptr, const int16_t *scan_ptr, + const int16_t *iscan_ptr) { + const __m128i zero = _mm_setzero_si128(); + const __m256i big_zero = _mm256_setzero_si256(); + int index; + + __m128i zbin, round, quant, dequant, shift; + __m128i coeff0, coeff1; + __m128i qcoeff0, qcoeff1; + __m128i cmp_mask0, cmp_mask1; + __m128i all_zero; + __m128i eob = zero, eob0; + + (void)scan_ptr; + (void)skip_block; + assert(!skip_block); + + *eob_ptr = 0; + + load_b_values(zbin_ptr, &zbin, round_ptr, &round, quant_ptr, &quant, + dequant_ptr, &dequant, quant_shift_ptr, &shift); + + // Do DC and first 15 AC. + coeff0 = load_tran_low(coeff_ptr); + coeff1 = load_tran_low(coeff_ptr + 8); + + qcoeff0 = _mm_abs_epi16(coeff0); + qcoeff1 = _mm_abs_epi16(coeff1); + + cmp_mask0 = _mm_cmpgt_epi16(qcoeff0, zbin); + zbin = _mm_unpackhi_epi64(zbin, zbin); // Switch DC to AC + cmp_mask1 = _mm_cmpgt_epi16(qcoeff1, zbin); + + all_zero = _mm_or_si128(cmp_mask0, cmp_mask1); + if (_mm_test_all_zeros(all_zero, all_zero)) { + _mm256_store_si256((__m256i *)(qcoeff_ptr), big_zero); + _mm256_store_si256((__m256i *)(dqcoeff_ptr), big_zero); +#if CONFIG_VP9_HIGHBITDEPTH + _mm256_store_si256((__m256i *)(qcoeff_ptr + 8), big_zero); + _mm256_store_si256((__m256i *)(dqcoeff_ptr + 8), big_zero); +#endif // CONFIG_VP9_HIGHBITDEPTH + + if (n_coeffs == 16) return; + + round = _mm_unpackhi_epi64(round, round); + quant = _mm_unpackhi_epi64(quant, quant); + shift = _mm_unpackhi_epi64(shift, shift); + dequant = _mm_unpackhi_epi64(dequant, dequant); + } else { + calculate_qcoeff(&qcoeff0, round, quant, shift); + round = _mm_unpackhi_epi64(round, round); + quant = _mm_unpackhi_epi64(quant, quant); + shift = _mm_unpackhi_epi64(shift, shift); + calculate_qcoeff(&qcoeff1, round, quant, shift); + + // Reinsert signs + qcoeff0 = _mm_sign_epi16(qcoeff0, coeff0); + qcoeff1 = _mm_sign_epi16(qcoeff1, coeff1); + + // Mask out zbin threshold coeffs + qcoeff0 = _mm_and_si128(qcoeff0, cmp_mask0); + qcoeff1 = _mm_and_si128(qcoeff1, cmp_mask1); + + store_tran_low(qcoeff0, qcoeff_ptr); + store_tran_low(qcoeff1, qcoeff_ptr + 8); + + coeff0 = calculate_dqcoeff(qcoeff0, dequant); + dequant = _mm_unpackhi_epi64(dequant, dequant); + coeff1 = calculate_dqcoeff(qcoeff1, dequant); + + store_tran_low(coeff0, dqcoeff_ptr); + store_tran_low(coeff1, dqcoeff_ptr + 8); + + eob = scan_for_eob(&coeff0, &coeff1, cmp_mask0, cmp_mask1, iscan_ptr, 0, + zero); + } + + // AC only loop. + for (index = 16; index < n_coeffs; index += 16) { + coeff0 = load_tran_low(coeff_ptr + index); + coeff1 = load_tran_low(coeff_ptr + index + 8); + + qcoeff0 = _mm_abs_epi16(coeff0); + qcoeff1 = _mm_abs_epi16(coeff1); + + cmp_mask0 = _mm_cmpgt_epi16(qcoeff0, zbin); + cmp_mask1 = _mm_cmpgt_epi16(qcoeff1, zbin); + + all_zero = _mm_or_si128(cmp_mask0, cmp_mask1); + if (_mm_test_all_zeros(all_zero, all_zero)) { + _mm256_store_si256((__m256i *)(qcoeff_ptr + index), big_zero); + _mm256_store_si256((__m256i *)(dqcoeff_ptr + index), big_zero); +#if CONFIG_VP9_HIGHBITDEPTH + _mm256_store_si256((__m256i *)(qcoeff_ptr + index + 8), big_zero); + _mm256_store_si256((__m256i *)(dqcoeff_ptr + index + 8), big_zero); +#endif // CONFIG_VP9_HIGHBITDEPTH + continue; + } + + calculate_qcoeff(&qcoeff0, round, quant, shift); + calculate_qcoeff(&qcoeff1, round, quant, shift); + + qcoeff0 = _mm_sign_epi16(qcoeff0, coeff0); + qcoeff1 = _mm_sign_epi16(qcoeff1, coeff1); + + qcoeff0 = _mm_and_si128(qcoeff0, cmp_mask0); + qcoeff1 = _mm_and_si128(qcoeff1, cmp_mask1); + + store_tran_low(qcoeff0, qcoeff_ptr + index); + store_tran_low(qcoeff1, qcoeff_ptr + index + 8); + + coeff0 = calculate_dqcoeff(qcoeff0, dequant); + coeff1 = calculate_dqcoeff(qcoeff1, dequant); + + store_tran_low(coeff0, dqcoeff_ptr + index); + store_tran_low(coeff1, dqcoeff_ptr + index + 8); + + eob0 = scan_for_eob(&coeff0, &coeff1, cmp_mask0, cmp_mask1, iscan_ptr, + index, zero); + eob = _mm_max_epi16(eob, eob0); + } + + *eob_ptr = accumulate_eob(eob); +} + +void vpx_quantize_b_32x32_avx( + const tran_low_t *coeff_ptr, intptr_t n_coeffs, int skip_block, + const int16_t *zbin_ptr, const int16_t *round_ptr, const int16_t *quant_ptr, + const int16_t *quant_shift_ptr, tran_low_t *qcoeff_ptr, + tran_low_t *dqcoeff_ptr, const int16_t *dequant_ptr, uint16_t *eob_ptr, + const int16_t *scan_ptr, const int16_t *iscan_ptr) { + const __m128i zero = _mm_setzero_si128(); + const __m128i one = _mm_set1_epi16(1); + const __m256i big_zero = _mm256_setzero_si256(); + int index; + + __m128i zbin, round, quant, dequant, shift; + __m128i coeff0, coeff1; + __m128i qcoeff0, qcoeff1; + __m128i cmp_mask0, cmp_mask1; + __m128i all_zero; + __m128i eob = zero, eob0; + + (void)scan_ptr; + (void)n_coeffs; + (void)skip_block; + assert(!skip_block); + + // Setup global values. + // The 32x32 halves zbin and round. + zbin = _mm_load_si128((const __m128i *)zbin_ptr); + // Shift with rounding. + zbin = _mm_add_epi16(zbin, one); + zbin = _mm_srli_epi16(zbin, 1); + // x86 has no "greater *or equal*" comparison. Subtract 1 from zbin so + // it is a strict "greater" comparison. + zbin = _mm_sub_epi16(zbin, one); + + round = _mm_load_si128((const __m128i *)round_ptr); + round = _mm_add_epi16(round, one); + round = _mm_srli_epi16(round, 1); + + quant = _mm_load_si128((const __m128i *)quant_ptr); + dequant = _mm_load_si128((const __m128i *)dequant_ptr); + shift = _mm_load_si128((const __m128i *)quant_shift_ptr); + shift = _mm_slli_epi16(shift, 1); + + // Do DC and first 15 AC. + coeff0 = load_tran_low(coeff_ptr); + coeff1 = load_tran_low(coeff_ptr + 8); + + qcoeff0 = _mm_abs_epi16(coeff0); + qcoeff1 = _mm_abs_epi16(coeff1); + + cmp_mask0 = _mm_cmpgt_epi16(qcoeff0, zbin); + zbin = _mm_unpackhi_epi64(zbin, zbin); // Switch DC to AC. + cmp_mask1 = _mm_cmpgt_epi16(qcoeff1, zbin); + + all_zero = _mm_or_si128(cmp_mask0, cmp_mask1); + if (_mm_test_all_zeros(all_zero, all_zero)) { + _mm256_store_si256((__m256i *)(qcoeff_ptr), big_zero); + _mm256_store_si256((__m256i *)(dqcoeff_ptr), big_zero); +#if CONFIG_VP9_HIGHBITDEPTH + _mm256_store_si256((__m256i *)(qcoeff_ptr + 8), big_zero); + _mm256_store_si256((__m256i *)(dqcoeff_ptr + 8), big_zero); +#endif // CONFIG_VP9_HIGHBITDEPTH + + round = _mm_unpackhi_epi64(round, round); + quant = _mm_unpackhi_epi64(quant, quant); + shift = _mm_unpackhi_epi64(shift, shift); + dequant = _mm_unpackhi_epi64(dequant, dequant); + } else { + calculate_qcoeff(&qcoeff0, round, quant, shift); + round = _mm_unpackhi_epi64(round, round); + quant = _mm_unpackhi_epi64(quant, quant); + shift = _mm_unpackhi_epi64(shift, shift); + calculate_qcoeff(&qcoeff1, round, quant, shift); + + // Reinsert signs. + qcoeff0 = _mm_sign_epi16(qcoeff0, coeff0); + qcoeff1 = _mm_sign_epi16(qcoeff1, coeff1); + + // Mask out zbin threshold coeffs. + qcoeff0 = _mm_and_si128(qcoeff0, cmp_mask0); + qcoeff1 = _mm_and_si128(qcoeff1, cmp_mask1); + + store_tran_low(qcoeff0, qcoeff_ptr); + store_tran_low(qcoeff1, qcoeff_ptr + 8); + + // Un-sign to bias rounding like C. + // dequant is almost always negative, so this is probably the backwards way + // to handle the sign. However, it matches the previous assembly. + coeff0 = _mm_abs_epi16(qcoeff0); + coeff1 = _mm_abs_epi16(qcoeff1); + + coeff0 = calculate_dqcoeff(coeff0, dequant); + dequant = _mm_unpackhi_epi64(dequant, dequant); + coeff1 = calculate_dqcoeff(coeff1, dequant); + + // "Divide" by 2. + coeff0 = _mm_srli_epi16(coeff0, 1); + coeff1 = _mm_srli_epi16(coeff1, 1); + + coeff0 = _mm_sign_epi16(coeff0, qcoeff0); + coeff1 = _mm_sign_epi16(coeff1, qcoeff1); + + store_tran_low(coeff0, dqcoeff_ptr); + store_tran_low(coeff1, dqcoeff_ptr + 8); + + eob = scan_for_eob(&coeff0, &coeff1, cmp_mask0, cmp_mask1, iscan_ptr, 0, + zero); + } + + // AC only loop. + for (index = 16; index < 32 * 32; index += 16) { + coeff0 = load_tran_low(coeff_ptr + index); + coeff1 = load_tran_low(coeff_ptr + index + 8); + + qcoeff0 = _mm_abs_epi16(coeff0); + qcoeff1 = _mm_abs_epi16(coeff1); + + cmp_mask0 = _mm_cmpgt_epi16(qcoeff0, zbin); + cmp_mask1 = _mm_cmpgt_epi16(qcoeff1, zbin); + + all_zero = _mm_or_si128(cmp_mask0, cmp_mask1); + if (_mm_test_all_zeros(all_zero, all_zero)) { + _mm256_store_si256((__m256i *)(qcoeff_ptr + index), big_zero); + _mm256_store_si256((__m256i *)(dqcoeff_ptr + index), big_zero); +#if CONFIG_VP9_HIGHBITDEPTH + _mm256_store_si256((__m256i *)(qcoeff_ptr + index + 8), big_zero); + _mm256_store_si256((__m256i *)(dqcoeff_ptr + index + 8), big_zero); +#endif // CONFIG_VP9_HIGHBITDEPTH + continue; + } + + calculate_qcoeff(&qcoeff0, round, quant, shift); + calculate_qcoeff(&qcoeff1, round, quant, shift); + + qcoeff0 = _mm_sign_epi16(qcoeff0, coeff0); + qcoeff1 = _mm_sign_epi16(qcoeff1, coeff1); + + qcoeff0 = _mm_and_si128(qcoeff0, cmp_mask0); + qcoeff1 = _mm_and_si128(qcoeff1, cmp_mask1); + + store_tran_low(qcoeff0, qcoeff_ptr + index); + store_tran_low(qcoeff1, qcoeff_ptr + index + 8); + + coeff0 = _mm_abs_epi16(qcoeff0); + coeff1 = _mm_abs_epi16(qcoeff1); + + coeff0 = calculate_dqcoeff(coeff0, dequant); + coeff1 = calculate_dqcoeff(coeff1, dequant); + + coeff0 = _mm_srli_epi16(coeff0, 1); + coeff1 = _mm_srli_epi16(coeff1, 1); + + coeff0 = _mm_sign_epi16(coeff0, qcoeff0); + coeff1 = _mm_sign_epi16(coeff1, qcoeff1); + + store_tran_low(coeff0, dqcoeff_ptr + index); + store_tran_low(coeff1, dqcoeff_ptr + index + 8); + + eob0 = scan_for_eob(&coeff0, &coeff1, cmp_mask0, cmp_mask1, iscan_ptr, + index, zero); + eob = _mm_max_epi16(eob, eob0); + } + + *eob_ptr = accumulate_eob(eob); +} diff --git a/vpx_dsp/x86/quantize_sse2.c b/vpx_dsp/x86/quantize_sse2.c new file mode 100644 index 0000000..c020b39 --- /dev/null +++ b/vpx_dsp/x86/quantize_sse2.c @@ -0,0 +1,126 @@ +/* + * Copyright (c) 2015 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include +#include + +#include "./vpx_dsp_rtcd.h" +#include "vpx/vpx_integer.h" +#include "vpx_dsp/x86/bitdepth_conversion_sse2.h" +#include "vpx_dsp/x86/quantize_x86.h" + +void vpx_quantize_b_sse2(const tran_low_t *coeff_ptr, intptr_t n_coeffs, + int skip_block, const int16_t *zbin_ptr, + const int16_t *round_ptr, const int16_t *quant_ptr, + const int16_t *quant_shift_ptr, tran_low_t *qcoeff_ptr, + tran_low_t *dqcoeff_ptr, const int16_t *dequant_ptr, + uint16_t *eob_ptr, const int16_t *scan_ptr, + const int16_t *iscan_ptr) { + const __m128i zero = _mm_setzero_si128(); + int index = 16; + + __m128i zbin, round, quant, dequant, shift; + __m128i coeff0, coeff1, coeff0_sign, coeff1_sign; + __m128i qcoeff0, qcoeff1; + __m128i cmp_mask0, cmp_mask1; + __m128i eob, eob0; + + (void)scan_ptr; + (void)skip_block; + assert(!skip_block); + + // Setup global values. + load_b_values(zbin_ptr, &zbin, round_ptr, &round, quant_ptr, &quant, + dequant_ptr, &dequant, quant_shift_ptr, &shift); + + // Do DC and first 15 AC. + coeff0 = load_tran_low(coeff_ptr); + coeff1 = load_tran_low(coeff_ptr + 8); + + // Poor man's abs(). + coeff0_sign = _mm_srai_epi16(coeff0, 15); + coeff1_sign = _mm_srai_epi16(coeff1, 15); + qcoeff0 = invert_sign_sse2(coeff0, coeff0_sign); + qcoeff1 = invert_sign_sse2(coeff1, coeff1_sign); + + cmp_mask0 = _mm_cmpgt_epi16(qcoeff0, zbin); + zbin = _mm_unpackhi_epi64(zbin, zbin); // Switch DC to AC + cmp_mask1 = _mm_cmpgt_epi16(qcoeff1, zbin); + + calculate_qcoeff(&qcoeff0, round, quant, shift); + + round = _mm_unpackhi_epi64(round, round); + quant = _mm_unpackhi_epi64(quant, quant); + shift = _mm_unpackhi_epi64(shift, shift); + + calculate_qcoeff(&qcoeff1, round, quant, shift); + + // Reinsert signs + qcoeff0 = invert_sign_sse2(qcoeff0, coeff0_sign); + qcoeff1 = invert_sign_sse2(qcoeff1, coeff1_sign); + + // Mask out zbin threshold coeffs + qcoeff0 = _mm_and_si128(qcoeff0, cmp_mask0); + qcoeff1 = _mm_and_si128(qcoeff1, cmp_mask1); + + store_tran_low(qcoeff0, qcoeff_ptr); + store_tran_low(qcoeff1, qcoeff_ptr + 8); + + coeff0 = calculate_dqcoeff(qcoeff0, dequant); + dequant = _mm_unpackhi_epi64(dequant, dequant); + coeff1 = calculate_dqcoeff(qcoeff1, dequant); + + store_tran_low(coeff0, dqcoeff_ptr); + store_tran_low(coeff1, dqcoeff_ptr + 8); + + eob = + scan_for_eob(&coeff0, &coeff1, cmp_mask0, cmp_mask1, iscan_ptr, 0, zero); + + // AC only loop. + while (index < n_coeffs) { + coeff0 = load_tran_low(coeff_ptr + index); + coeff1 = load_tran_low(coeff_ptr + index + 8); + + coeff0_sign = _mm_srai_epi16(coeff0, 15); + coeff1_sign = _mm_srai_epi16(coeff1, 15); + qcoeff0 = invert_sign_sse2(coeff0, coeff0_sign); + qcoeff1 = invert_sign_sse2(coeff1, coeff1_sign); + + cmp_mask0 = _mm_cmpgt_epi16(qcoeff0, zbin); + cmp_mask1 = _mm_cmpgt_epi16(qcoeff1, zbin); + + calculate_qcoeff(&qcoeff0, round, quant, shift); + calculate_qcoeff(&qcoeff1, round, quant, shift); + + qcoeff0 = invert_sign_sse2(qcoeff0, coeff0_sign); + qcoeff1 = invert_sign_sse2(qcoeff1, coeff1_sign); + + qcoeff0 = _mm_and_si128(qcoeff0, cmp_mask0); + qcoeff1 = _mm_and_si128(qcoeff1, cmp_mask1); + + store_tran_low(qcoeff0, qcoeff_ptr + index); + store_tran_low(qcoeff1, qcoeff_ptr + index + 8); + + coeff0 = calculate_dqcoeff(qcoeff0, dequant); + coeff1 = calculate_dqcoeff(qcoeff1, dequant); + + store_tran_low(coeff0, dqcoeff_ptr + index); + store_tran_low(coeff1, dqcoeff_ptr + index + 8); + + eob0 = scan_for_eob(&coeff0, &coeff1, cmp_mask0, cmp_mask1, iscan_ptr, + index, zero); + eob = _mm_max_epi16(eob, eob0); + + index += 16; + } + + *eob_ptr = accumulate_eob(eob); +} diff --git a/vpx_dsp/x86/quantize_ssse3.c b/vpx_dsp/x86/quantize_ssse3.c new file mode 100644 index 0000000..3f528e1 --- /dev/null +++ b/vpx_dsp/x86/quantize_ssse3.c @@ -0,0 +1,292 @@ +/* + * Copyright (c) 2017 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include + +#include "./vpx_dsp_rtcd.h" +#include "vpx/vpx_integer.h" +#include "vpx_dsp/x86/bitdepth_conversion_sse2.h" +#include "vpx_dsp/x86/quantize_x86.h" + +void vpx_quantize_b_ssse3(const tran_low_t *coeff_ptr, intptr_t n_coeffs, + int skip_block, const int16_t *zbin_ptr, + const int16_t *round_ptr, const int16_t *quant_ptr, + const int16_t *quant_shift_ptr, + tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr, + const int16_t *dequant_ptr, uint16_t *eob_ptr, + const int16_t *scan_ptr, const int16_t *iscan_ptr) { + const __m128i zero = _mm_setzero_si128(); + int index = 16; + + __m128i zbin, round, quant, dequant, shift; + __m128i coeff0, coeff1; + __m128i qcoeff0, qcoeff1; + __m128i cmp_mask0, cmp_mask1; + __m128i eob, eob0; + + (void)scan_ptr; + (void)skip_block; + assert(!skip_block); + + load_b_values(zbin_ptr, &zbin, round_ptr, &round, quant_ptr, &quant, + dequant_ptr, &dequant, quant_shift_ptr, &shift); + + // Do DC and first 15 AC. + coeff0 = load_tran_low(coeff_ptr); + coeff1 = load_tran_low(coeff_ptr + 8); + + qcoeff0 = _mm_abs_epi16(coeff0); + qcoeff1 = _mm_abs_epi16(coeff1); + + cmp_mask0 = _mm_cmpgt_epi16(qcoeff0, zbin); + zbin = _mm_unpackhi_epi64(zbin, zbin); // Switch DC to AC + cmp_mask1 = _mm_cmpgt_epi16(qcoeff1, zbin); + + calculate_qcoeff(&qcoeff0, round, quant, shift); + round = _mm_unpackhi_epi64(round, round); + quant = _mm_unpackhi_epi64(quant, quant); + shift = _mm_unpackhi_epi64(shift, shift); + calculate_qcoeff(&qcoeff1, round, quant, shift); + + // Reinsert signs + qcoeff0 = _mm_sign_epi16(qcoeff0, coeff0); + qcoeff1 = _mm_sign_epi16(qcoeff1, coeff1); + + // Mask out zbin threshold coeffs + qcoeff0 = _mm_and_si128(qcoeff0, cmp_mask0); + qcoeff1 = _mm_and_si128(qcoeff1, cmp_mask1); + + store_tran_low(qcoeff0, qcoeff_ptr); + store_tran_low(qcoeff1, qcoeff_ptr + 8); + + coeff0 = calculate_dqcoeff(qcoeff0, dequant); + dequant = _mm_unpackhi_epi64(dequant, dequant); + coeff1 = calculate_dqcoeff(qcoeff1, dequant); + + store_tran_low(coeff0, dqcoeff_ptr); + store_tran_low(coeff1, dqcoeff_ptr + 8); + + eob = + scan_for_eob(&coeff0, &coeff1, cmp_mask0, cmp_mask1, iscan_ptr, 0, zero); + + // AC only loop. + while (index < n_coeffs) { + coeff0 = load_tran_low(coeff_ptr + index); + coeff1 = load_tran_low(coeff_ptr + index + 8); + + qcoeff0 = _mm_abs_epi16(coeff0); + qcoeff1 = _mm_abs_epi16(coeff1); + + cmp_mask0 = _mm_cmpgt_epi16(qcoeff0, zbin); + cmp_mask1 = _mm_cmpgt_epi16(qcoeff1, zbin); + + calculate_qcoeff(&qcoeff0, round, quant, shift); + calculate_qcoeff(&qcoeff1, round, quant, shift); + + qcoeff0 = _mm_sign_epi16(qcoeff0, coeff0); + qcoeff1 = _mm_sign_epi16(qcoeff1, coeff1); + + qcoeff0 = _mm_and_si128(qcoeff0, cmp_mask0); + qcoeff1 = _mm_and_si128(qcoeff1, cmp_mask1); + + store_tran_low(qcoeff0, qcoeff_ptr + index); + store_tran_low(qcoeff1, qcoeff_ptr + index + 8); + + coeff0 = calculate_dqcoeff(qcoeff0, dequant); + coeff1 = calculate_dqcoeff(qcoeff1, dequant); + + store_tran_low(coeff0, dqcoeff_ptr + index); + store_tran_low(coeff1, dqcoeff_ptr + index + 8); + + eob0 = scan_for_eob(&coeff0, &coeff1, cmp_mask0, cmp_mask1, iscan_ptr, + index, zero); + eob = _mm_max_epi16(eob, eob0); + + index += 16; + } + + *eob_ptr = accumulate_eob(eob); +} + +void vpx_quantize_b_32x32_ssse3( + const tran_low_t *coeff_ptr, intptr_t n_coeffs, int skip_block, + const int16_t *zbin_ptr, const int16_t *round_ptr, const int16_t *quant_ptr, + const int16_t *quant_shift_ptr, tran_low_t *qcoeff_ptr, + tran_low_t *dqcoeff_ptr, const int16_t *dequant_ptr, uint16_t *eob_ptr, + const int16_t *scan_ptr, const int16_t *iscan_ptr) { + const __m128i zero = _mm_setzero_si128(); + const __m128i one = _mm_set1_epi16(1); + int index; + + __m128i zbin, round, quant, dequant, shift; + __m128i coeff0, coeff1; + __m128i qcoeff0, qcoeff1; + __m128i cmp_mask0, cmp_mask1; + __m128i all_zero; + __m128i eob = zero, eob0; + + (void)scan_ptr; + (void)n_coeffs; + (void)skip_block; + assert(!skip_block); + + // Setup global values. + // The 32x32 halves zbin and round. + zbin = _mm_load_si128((const __m128i *)zbin_ptr); + // Shift with rounding. + zbin = _mm_add_epi16(zbin, one); + zbin = _mm_srli_epi16(zbin, 1); + // x86 has no "greater *or equal*" comparison. Subtract 1 from zbin so + // it is a strict "greater" comparison. + zbin = _mm_sub_epi16(zbin, one); + + round = _mm_load_si128((const __m128i *)round_ptr); + round = _mm_add_epi16(round, one); + round = _mm_srli_epi16(round, 1); + + quant = _mm_load_si128((const __m128i *)quant_ptr); + dequant = _mm_load_si128((const __m128i *)dequant_ptr); + shift = _mm_load_si128((const __m128i *)quant_shift_ptr); + // I suspect this is not technically OK because quant_shift can be up + // to 1 << 16 and shifting up again will outrange that, but the test is not + // comprehensive enough to catch that and "it's been that way forever" + shift = _mm_slli_epi16(shift, 1); + + // Do DC and first 15 AC. + coeff0 = load_tran_low(coeff_ptr); + coeff1 = load_tran_low(coeff_ptr + 8); + + qcoeff0 = _mm_abs_epi16(coeff0); + qcoeff1 = _mm_abs_epi16(coeff1); + + cmp_mask0 = _mm_cmpgt_epi16(qcoeff0, zbin); + zbin = _mm_unpackhi_epi64(zbin, zbin); // Switch DC to AC. + cmp_mask1 = _mm_cmpgt_epi16(qcoeff1, zbin); + + all_zero = _mm_or_si128(cmp_mask0, cmp_mask1); + if (_mm_movemask_epi8(all_zero) == 0) { + _mm_store_si128((__m128i *)(qcoeff_ptr), zero); + _mm_store_si128((__m128i *)(qcoeff_ptr + 8), zero); + _mm_store_si128((__m128i *)(dqcoeff_ptr), zero); + _mm_store_si128((__m128i *)(dqcoeff_ptr + 8), zero); +#if CONFIG_VP9_HIGHBITDEPTH + _mm_store_si128((__m128i *)(qcoeff_ptr + 4), zero); + _mm_store_si128((__m128i *)(qcoeff_ptr + 12), zero); + _mm_store_si128((__m128i *)(dqcoeff_ptr + 4), zero); + _mm_store_si128((__m128i *)(dqcoeff_ptr + 12), zero); +#endif // CONFIG_HIGHBITDEPTH + + round = _mm_unpackhi_epi64(round, round); + quant = _mm_unpackhi_epi64(quant, quant); + shift = _mm_unpackhi_epi64(shift, shift); + dequant = _mm_unpackhi_epi64(dequant, dequant); + } else { + calculate_qcoeff(&qcoeff0, round, quant, shift); + round = _mm_unpackhi_epi64(round, round); + quant = _mm_unpackhi_epi64(quant, quant); + shift = _mm_unpackhi_epi64(shift, shift); + calculate_qcoeff(&qcoeff1, round, quant, shift); + + // Reinsert signs. + qcoeff0 = _mm_sign_epi16(qcoeff0, coeff0); + qcoeff1 = _mm_sign_epi16(qcoeff1, coeff1); + + // Mask out zbin threshold coeffs. + qcoeff0 = _mm_and_si128(qcoeff0, cmp_mask0); + qcoeff1 = _mm_and_si128(qcoeff1, cmp_mask1); + + store_tran_low(qcoeff0, qcoeff_ptr); + store_tran_low(qcoeff1, qcoeff_ptr + 8); + + // Un-sign to bias rounding like C. + // dequant is almost always negative, so this is probably the backwards way + // to handle the sign. However, it matches the previous assembly. + coeff0 = _mm_abs_epi16(qcoeff0); + coeff1 = _mm_abs_epi16(qcoeff1); + + coeff0 = calculate_dqcoeff(coeff0, dequant); + dequant = _mm_unpackhi_epi64(dequant, dequant); + coeff1 = calculate_dqcoeff(coeff1, dequant); + + // "Divide" by 2. + coeff0 = _mm_srli_epi16(coeff0, 1); + coeff1 = _mm_srli_epi16(coeff1, 1); + + coeff0 = _mm_sign_epi16(coeff0, qcoeff0); + coeff1 = _mm_sign_epi16(coeff1, qcoeff1); + + store_tran_low(coeff0, dqcoeff_ptr); + store_tran_low(coeff1, dqcoeff_ptr + 8); + + eob = scan_for_eob(&coeff0, &coeff1, cmp_mask0, cmp_mask1, iscan_ptr, 0, + zero); + } + + // AC only loop. + for (index = 16; index < 32 * 32; index += 16) { + coeff0 = load_tran_low(coeff_ptr + index); + coeff1 = load_tran_low(coeff_ptr + index + 8); + + qcoeff0 = _mm_abs_epi16(coeff0); + qcoeff1 = _mm_abs_epi16(coeff1); + + cmp_mask0 = _mm_cmpgt_epi16(qcoeff0, zbin); + cmp_mask1 = _mm_cmpgt_epi16(qcoeff1, zbin); + + all_zero = _mm_or_si128(cmp_mask0, cmp_mask1); + if (_mm_movemask_epi8(all_zero) == 0) { + _mm_store_si128((__m128i *)(qcoeff_ptr + index), zero); + _mm_store_si128((__m128i *)(qcoeff_ptr + index + 8), zero); + _mm_store_si128((__m128i *)(dqcoeff_ptr + index), zero); + _mm_store_si128((__m128i *)(dqcoeff_ptr + index + 8), zero); +#if CONFIG_VP9_HIGHBITDEPTH + _mm_store_si128((__m128i *)(qcoeff_ptr + index + 4), zero); + _mm_store_si128((__m128i *)(qcoeff_ptr + index + 12), zero); + _mm_store_si128((__m128i *)(dqcoeff_ptr + index + 4), zero); + _mm_store_si128((__m128i *)(dqcoeff_ptr + index + 12), zero); +#endif // CONFIG_VP9_HIGHBITDEPTH + continue; + } + + calculate_qcoeff(&qcoeff0, round, quant, shift); + calculate_qcoeff(&qcoeff1, round, quant, shift); + + qcoeff0 = _mm_sign_epi16(qcoeff0, coeff0); + qcoeff1 = _mm_sign_epi16(qcoeff1, coeff1); + + qcoeff0 = _mm_and_si128(qcoeff0, cmp_mask0); + qcoeff1 = _mm_and_si128(qcoeff1, cmp_mask1); + + store_tran_low(qcoeff0, qcoeff_ptr + index); + store_tran_low(qcoeff1, qcoeff_ptr + index + 8); + + coeff0 = _mm_abs_epi16(qcoeff0); + coeff1 = _mm_abs_epi16(qcoeff1); + + coeff0 = calculate_dqcoeff(coeff0, dequant); + coeff1 = calculate_dqcoeff(coeff1, dequant); + + coeff0 = _mm_srli_epi16(coeff0, 1); + coeff1 = _mm_srli_epi16(coeff1, 1); + + coeff0 = _mm_sign_epi16(coeff0, qcoeff0); + coeff1 = _mm_sign_epi16(coeff1, qcoeff1); + + store_tran_low(coeff0, dqcoeff_ptr + index); + store_tran_low(coeff1, dqcoeff_ptr + index + 8); + + eob0 = scan_for_eob(&coeff0, &coeff1, cmp_mask0, cmp_mask1, iscan_ptr, + index, zero); + eob = _mm_max_epi16(eob, eob0); + } + + *eob_ptr = accumulate_eob(eob); +} diff --git a/vpx_dsp/x86/quantize_x86.h b/vpx_dsp/x86/quantize_x86.h new file mode 100644 index 0000000..34928fb --- /dev/null +++ b/vpx_dsp/x86/quantize_x86.h @@ -0,0 +1,78 @@ +/* + * Copyright (c) 2017 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include + +#include "./vpx_config.h" +#include "vpx/vpx_integer.h" +#include "vpx_dsp/x86/bitdepth_conversion_sse2.h" + +static INLINE void load_b_values(const int16_t *zbin_ptr, __m128i *zbin, + const int16_t *round_ptr, __m128i *round, + const int16_t *quant_ptr, __m128i *quant, + const int16_t *dequant_ptr, __m128i *dequant, + const int16_t *shift_ptr, __m128i *shift) { + *zbin = _mm_load_si128((const __m128i *)zbin_ptr); + *round = _mm_load_si128((const __m128i *)round_ptr); + *quant = _mm_load_si128((const __m128i *)quant_ptr); + *zbin = _mm_sub_epi16(*zbin, _mm_set1_epi16(1)); + *dequant = _mm_load_si128((const __m128i *)dequant_ptr); + *shift = _mm_load_si128((const __m128i *)shift_ptr); +} + +// With ssse3 and later abs() and sign() are preferred. +static INLINE __m128i invert_sign_sse2(__m128i a, __m128i sign) { + a = _mm_xor_si128(a, sign); + return _mm_sub_epi16(a, sign); +} + +static INLINE void calculate_qcoeff(__m128i *coeff, const __m128i round, + const __m128i quant, const __m128i shift) { + __m128i tmp, qcoeff; + qcoeff = _mm_adds_epi16(*coeff, round); + tmp = _mm_mulhi_epi16(qcoeff, quant); + qcoeff = _mm_add_epi16(tmp, qcoeff); + *coeff = _mm_mulhi_epi16(qcoeff, shift); +} + +static INLINE __m128i calculate_dqcoeff(__m128i qcoeff, __m128i dequant) { + return _mm_mullo_epi16(qcoeff, dequant); +} + +// Scan 16 values for eob reference in scan_ptr. Use masks (-1) from comparing +// to zbin to add 1 to the index in 'scan'. +static INLINE __m128i scan_for_eob(__m128i *coeff0, __m128i *coeff1, + const __m128i zbin_mask0, + const __m128i zbin_mask1, + const int16_t *scan_ptr, const int index, + const __m128i zero) { + const __m128i zero_coeff0 = _mm_cmpeq_epi16(*coeff0, zero); + const __m128i zero_coeff1 = _mm_cmpeq_epi16(*coeff1, zero); + __m128i scan0 = _mm_load_si128((const __m128i *)(scan_ptr + index)); + __m128i scan1 = _mm_load_si128((const __m128i *)(scan_ptr + index + 8)); + __m128i eob0, eob1; + // Add one to convert from indices to counts + scan0 = _mm_sub_epi16(scan0, zbin_mask0); + scan1 = _mm_sub_epi16(scan1, zbin_mask1); + eob0 = _mm_andnot_si128(zero_coeff0, scan0); + eob1 = _mm_andnot_si128(zero_coeff1, scan1); + return _mm_max_epi16(eob0, eob1); +} + +static INLINE int16_t accumulate_eob(__m128i eob) { + __m128i eob_shuffled; + eob_shuffled = _mm_shuffle_epi32(eob, 0xe); + eob = _mm_max_epi16(eob, eob_shuffled); + eob_shuffled = _mm_shufflelo_epi16(eob, 0xe); + eob = _mm_max_epi16(eob, eob_shuffled); + eob_shuffled = _mm_shufflelo_epi16(eob, 0x1); + eob = _mm_max_epi16(eob, eob_shuffled); + return _mm_extract_epi16(eob, 1); +} diff --git a/vpx_dsp/x86/sad4d_avx2.c b/vpx_dsp/x86/sad4d_avx2.c new file mode 100644 index 0000000..962b8fb --- /dev/null +++ b/vpx_dsp/x86/sad4d_avx2.c @@ -0,0 +1,164 @@ +/* + * Copyright (c) 2014 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ +#include // AVX2 +#include "./vpx_dsp_rtcd.h" +#include "vpx/vpx_integer.h" + +void vpx_sad32x32x4d_avx2(const uint8_t *src, int src_stride, + const uint8_t *const ref[4], int ref_stride, + uint32_t res[4]) { + __m256i src_reg, ref0_reg, ref1_reg, ref2_reg, ref3_reg; + __m256i sum_ref0, sum_ref1, sum_ref2, sum_ref3; + __m256i sum_mlow, sum_mhigh; + int i; + const uint8_t *ref0, *ref1, *ref2, *ref3; + + ref0 = ref[0]; + ref1 = ref[1]; + ref2 = ref[2]; + ref3 = ref[3]; + sum_ref0 = _mm256_set1_epi16(0); + sum_ref1 = _mm256_set1_epi16(0); + sum_ref2 = _mm256_set1_epi16(0); + sum_ref3 = _mm256_set1_epi16(0); + for (i = 0; i < 32; i++) { + // load src and all refs + src_reg = _mm256_loadu_si256((const __m256i *)src); + ref0_reg = _mm256_loadu_si256((const __m256i *)ref0); + ref1_reg = _mm256_loadu_si256((const __m256i *)ref1); + ref2_reg = _mm256_loadu_si256((const __m256i *)ref2); + ref3_reg = _mm256_loadu_si256((const __m256i *)ref3); + // sum of the absolute differences between every ref-i to src + ref0_reg = _mm256_sad_epu8(ref0_reg, src_reg); + ref1_reg = _mm256_sad_epu8(ref1_reg, src_reg); + ref2_reg = _mm256_sad_epu8(ref2_reg, src_reg); + ref3_reg = _mm256_sad_epu8(ref3_reg, src_reg); + // sum every ref-i + sum_ref0 = _mm256_add_epi32(sum_ref0, ref0_reg); + sum_ref1 = _mm256_add_epi32(sum_ref1, ref1_reg); + sum_ref2 = _mm256_add_epi32(sum_ref2, ref2_reg); + sum_ref3 = _mm256_add_epi32(sum_ref3, ref3_reg); + + src += src_stride; + ref0 += ref_stride; + ref1 += ref_stride; + ref2 += ref_stride; + ref3 += ref_stride; + } + { + __m128i sum; + // in sum_ref-i the result is saved in the first 4 bytes + // the other 4 bytes are zeroed. + // sum_ref1 and sum_ref3 are shifted left by 4 bytes + sum_ref1 = _mm256_slli_si256(sum_ref1, 4); + sum_ref3 = _mm256_slli_si256(sum_ref3, 4); + + // merge sum_ref0 and sum_ref1 also sum_ref2 and sum_ref3 + sum_ref0 = _mm256_or_si256(sum_ref0, sum_ref1); + sum_ref2 = _mm256_or_si256(sum_ref2, sum_ref3); + + // merge every 64 bit from each sum_ref-i + sum_mlow = _mm256_unpacklo_epi64(sum_ref0, sum_ref2); + sum_mhigh = _mm256_unpackhi_epi64(sum_ref0, sum_ref2); + + // add the low 64 bit to the high 64 bit + sum_mlow = _mm256_add_epi32(sum_mlow, sum_mhigh); + + // add the low 128 bit to the high 128 bit + sum = _mm_add_epi32(_mm256_castsi256_si128(sum_mlow), + _mm256_extractf128_si256(sum_mlow, 1)); + + _mm_storeu_si128((__m128i *)(res), sum); + } +} + +void vpx_sad64x64x4d_avx2(const uint8_t *src, int src_stride, + const uint8_t *const ref[4], int ref_stride, + uint32_t res[4]) { + __m256i src_reg, srcnext_reg, ref0_reg, ref0next_reg; + __m256i ref1_reg, ref1next_reg, ref2_reg, ref2next_reg; + __m256i ref3_reg, ref3next_reg; + __m256i sum_ref0, sum_ref1, sum_ref2, sum_ref3; + __m256i sum_mlow, sum_mhigh; + int i; + const uint8_t *ref0, *ref1, *ref2, *ref3; + + ref0 = ref[0]; + ref1 = ref[1]; + ref2 = ref[2]; + ref3 = ref[3]; + sum_ref0 = _mm256_set1_epi16(0); + sum_ref1 = _mm256_set1_epi16(0); + sum_ref2 = _mm256_set1_epi16(0); + sum_ref3 = _mm256_set1_epi16(0); + for (i = 0; i < 64; i++) { + // load 64 bytes from src and all refs + src_reg = _mm256_loadu_si256((const __m256i *)src); + srcnext_reg = _mm256_loadu_si256((const __m256i *)(src + 32)); + ref0_reg = _mm256_loadu_si256((const __m256i *)ref0); + ref0next_reg = _mm256_loadu_si256((const __m256i *)(ref0 + 32)); + ref1_reg = _mm256_loadu_si256((const __m256i *)ref1); + ref1next_reg = _mm256_loadu_si256((const __m256i *)(ref1 + 32)); + ref2_reg = _mm256_loadu_si256((const __m256i *)ref2); + ref2next_reg = _mm256_loadu_si256((const __m256i *)(ref2 + 32)); + ref3_reg = _mm256_loadu_si256((const __m256i *)ref3); + ref3next_reg = _mm256_loadu_si256((const __m256i *)(ref3 + 32)); + // sum of the absolute differences between every ref-i to src + ref0_reg = _mm256_sad_epu8(ref0_reg, src_reg); + ref1_reg = _mm256_sad_epu8(ref1_reg, src_reg); + ref2_reg = _mm256_sad_epu8(ref2_reg, src_reg); + ref3_reg = _mm256_sad_epu8(ref3_reg, src_reg); + ref0next_reg = _mm256_sad_epu8(ref0next_reg, srcnext_reg); + ref1next_reg = _mm256_sad_epu8(ref1next_reg, srcnext_reg); + ref2next_reg = _mm256_sad_epu8(ref2next_reg, srcnext_reg); + ref3next_reg = _mm256_sad_epu8(ref3next_reg, srcnext_reg); + + // sum every ref-i + sum_ref0 = _mm256_add_epi32(sum_ref0, ref0_reg); + sum_ref1 = _mm256_add_epi32(sum_ref1, ref1_reg); + sum_ref2 = _mm256_add_epi32(sum_ref2, ref2_reg); + sum_ref3 = _mm256_add_epi32(sum_ref3, ref3_reg); + sum_ref0 = _mm256_add_epi32(sum_ref0, ref0next_reg); + sum_ref1 = _mm256_add_epi32(sum_ref1, ref1next_reg); + sum_ref2 = _mm256_add_epi32(sum_ref2, ref2next_reg); + sum_ref3 = _mm256_add_epi32(sum_ref3, ref3next_reg); + src += src_stride; + ref0 += ref_stride; + ref1 += ref_stride; + ref2 += ref_stride; + ref3 += ref_stride; + } + { + __m128i sum; + + // in sum_ref-i the result is saved in the first 4 bytes + // the other 4 bytes are zeroed. + // sum_ref1 and sum_ref3 are shifted left by 4 bytes + sum_ref1 = _mm256_slli_si256(sum_ref1, 4); + sum_ref3 = _mm256_slli_si256(sum_ref3, 4); + + // merge sum_ref0 and sum_ref1 also sum_ref2 and sum_ref3 + sum_ref0 = _mm256_or_si256(sum_ref0, sum_ref1); + sum_ref2 = _mm256_or_si256(sum_ref2, sum_ref3); + + // merge every 64 bit from each sum_ref-i + sum_mlow = _mm256_unpacklo_epi64(sum_ref0, sum_ref2); + sum_mhigh = _mm256_unpackhi_epi64(sum_ref0, sum_ref2); + + // add the low 64 bit to the high 64 bit + sum_mlow = _mm256_add_epi32(sum_mlow, sum_mhigh); + + // add the low 128 bit to the high 128 bit + sum = _mm_add_epi32(_mm256_castsi256_si128(sum_mlow), + _mm256_extractf128_si256(sum_mlow, 1)); + + _mm_storeu_si128((__m128i *)(res), sum); + } +} diff --git a/vpx_dsp/x86/sad4d_avx512.c b/vpx_dsp/x86/sad4d_avx512.c new file mode 100644 index 0000000..5f2ab6e --- /dev/null +++ b/vpx_dsp/x86/sad4d_avx512.c @@ -0,0 +1,83 @@ +/* + * Copyright (c) 2017 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ +#include // AVX512 +#include "./vpx_dsp_rtcd.h" +#include "vpx/vpx_integer.h" + +void vpx_sad64x64x4d_avx512(const uint8_t *src, int src_stride, + const uint8_t *const ref[4], int ref_stride, + uint32_t res[4]) { + __m512i src_reg, ref0_reg, ref1_reg, ref2_reg, ref3_reg; + __m512i sum_ref0, sum_ref1, sum_ref2, sum_ref3; + __m512i sum_mlow, sum_mhigh; + int i; + const uint8_t *ref0, *ref1, *ref2, *ref3; + + ref0 = ref[0]; + ref1 = ref[1]; + ref2 = ref[2]; + ref3 = ref[3]; + sum_ref0 = _mm512_set1_epi16(0); + sum_ref1 = _mm512_set1_epi16(0); + sum_ref2 = _mm512_set1_epi16(0); + sum_ref3 = _mm512_set1_epi16(0); + for (i = 0; i < 64; i++) { + // load src and all refs + src_reg = _mm512_loadu_si512((const __m512i *)src); + ref0_reg = _mm512_loadu_si512((const __m512i *)ref0); + ref1_reg = _mm512_loadu_si512((const __m512i *)ref1); + ref2_reg = _mm512_loadu_si512((const __m512i *)ref2); + ref3_reg = _mm512_loadu_si512((const __m512i *)ref3); + // sum of the absolute differences between every ref-i to src + ref0_reg = _mm512_sad_epu8(ref0_reg, src_reg); + ref1_reg = _mm512_sad_epu8(ref1_reg, src_reg); + ref2_reg = _mm512_sad_epu8(ref2_reg, src_reg); + ref3_reg = _mm512_sad_epu8(ref3_reg, src_reg); + // sum every ref-i + sum_ref0 = _mm512_add_epi32(sum_ref0, ref0_reg); + sum_ref1 = _mm512_add_epi32(sum_ref1, ref1_reg); + sum_ref2 = _mm512_add_epi32(sum_ref2, ref2_reg); + sum_ref3 = _mm512_add_epi32(sum_ref3, ref3_reg); + + src += src_stride; + ref0 += ref_stride; + ref1 += ref_stride; + ref2 += ref_stride; + ref3 += ref_stride; + } + { + __m256i sum256; + __m128i sum128; + // in sum_ref-i the result is saved in the first 4 bytes + // the other 4 bytes are zeroed. + // sum_ref1 and sum_ref3 are shifted left by 4 bytes + sum_ref1 = _mm512_bslli_epi128(sum_ref1, 4); + sum_ref3 = _mm512_bslli_epi128(sum_ref3, 4); + + // merge sum_ref0 and sum_ref1 also sum_ref2 and sum_ref3 + sum_ref0 = _mm512_or_si512(sum_ref0, sum_ref1); + sum_ref2 = _mm512_or_si512(sum_ref2, sum_ref3); + + // merge every 64 bit from each sum_ref-i + sum_mlow = _mm512_unpacklo_epi64(sum_ref0, sum_ref2); + sum_mhigh = _mm512_unpackhi_epi64(sum_ref0, sum_ref2); + + // add the low 64 bit to the high 64 bit + sum_mlow = _mm512_add_epi32(sum_mlow, sum_mhigh); + + // add the low 128 bit to the high 128 bit + sum256 = _mm256_add_epi32(_mm512_castsi512_si256(sum_mlow), + _mm512_extracti32x8_epi32(sum_mlow, 1)); + sum128 = _mm_add_epi32(_mm256_castsi256_si128(sum256), + _mm256_extractf128_si256(sum256, 1)); + + _mm_storeu_si128((__m128i *)(res), sum128); + } +} diff --git a/vpx_dsp/x86/sad4d_sse2.asm b/vpx_dsp/x86/sad4d_sse2.asm new file mode 100644 index 0000000..3f6e55c --- /dev/null +++ b/vpx_dsp/x86/sad4d_sse2.asm @@ -0,0 +1,239 @@ +; +; Copyright (c) 2010 The WebM project authors. All Rights Reserved. +; +; Use of this source code is governed by a BSD-style license +; that can be found in the LICENSE file in the root of the source +; tree. An additional intellectual property rights grant can be found +; in the file PATENTS. All contributing project authors may +; be found in the AUTHORS file in the root of the source tree. +; + +%include "third_party/x86inc/x86inc.asm" + +SECTION .text + +; PROCESS_4x2x4 first, off_{first,second}_{src,ref}, advance_at_end +%macro PROCESS_4x2x4 5-6 0 + movd m0, [srcq +%2] +%if %1 == 1 + movd m6, [ref1q+%3] + movd m4, [ref2q+%3] + movd m7, [ref3q+%3] + movd m5, [ref4q+%3] + movd m1, [srcq +%4] + movd m2, [ref1q+%5] + punpckldq m0, m1 + punpckldq m6, m2 + movd m1, [ref2q+%5] + movd m2, [ref3q+%5] + movd m3, [ref4q+%5] + punpckldq m4, m1 + punpckldq m7, m2 + punpckldq m5, m3 + movlhps m0, m0 + movlhps m6, m4 + movlhps m7, m5 + psadbw m6, m0 + psadbw m7, m0 +%else + movd m1, [ref1q+%3] + movd m5, [ref1q+%5] + movd m2, [ref2q+%3] + movd m4, [ref2q+%5] + punpckldq m1, m5 + punpckldq m2, m4 + movd m3, [ref3q+%3] + movd m5, [ref3q+%5] + punpckldq m3, m5 + movd m4, [ref4q+%3] + movd m5, [ref4q+%5] + punpckldq m4, m5 + movd m5, [srcq +%4] + punpckldq m0, m5 + movlhps m0, m0 + movlhps m1, m2 + movlhps m3, m4 + psadbw m1, m0 + psadbw m3, m0 + paddd m6, m1 + paddd m7, m3 +%endif +%if %6 == 1 + lea srcq, [srcq +src_strideq*2] + lea ref1q, [ref1q+ref_strideq*2] + lea ref2q, [ref2q+ref_strideq*2] + lea ref3q, [ref3q+ref_strideq*2] + lea ref4q, [ref4q+ref_strideq*2] +%endif +%endmacro + +; PROCESS_8x2x4 first, off_{first,second}_{src,ref}, advance_at_end +%macro PROCESS_8x2x4 5-6 0 + movh m0, [srcq +%2] +%if %1 == 1 + movh m4, [ref1q+%3] + movh m5, [ref2q+%3] + movh m6, [ref3q+%3] + movh m7, [ref4q+%3] + movhps m0, [srcq +%4] + movhps m4, [ref1q+%5] + movhps m5, [ref2q+%5] + movhps m6, [ref3q+%5] + movhps m7, [ref4q+%5] + psadbw m4, m0 + psadbw m5, m0 + psadbw m6, m0 + psadbw m7, m0 +%else + movh m1, [ref1q+%3] + movh m2, [ref2q+%3] + movh m3, [ref3q+%3] + movhps m0, [srcq +%4] + movhps m1, [ref1q+%5] + movhps m2, [ref2q+%5] + movhps m3, [ref3q+%5] + psadbw m1, m0 + psadbw m2, m0 + psadbw m3, m0 + paddd m4, m1 + movh m1, [ref4q+%3] + movhps m1, [ref4q+%5] + paddd m5, m2 + paddd m6, m3 + psadbw m1, m0 + paddd m7, m1 +%endif +%if %6 == 1 + lea srcq, [srcq +src_strideq*2] + lea ref1q, [ref1q+ref_strideq*2] + lea ref2q, [ref2q+ref_strideq*2] + lea ref3q, [ref3q+ref_strideq*2] + lea ref4q, [ref4q+ref_strideq*2] +%endif +%endmacro + +; PROCESS_16x2x4 first, off_{first,second}_{src,ref}, advance_at_end +%macro PROCESS_16x2x4 5-6 0 + ; 1st 16 px + mova m0, [srcq +%2] +%if %1 == 1 + movu m4, [ref1q+%3] + movu m5, [ref2q+%3] + movu m6, [ref3q+%3] + movu m7, [ref4q+%3] + psadbw m4, m0 + psadbw m5, m0 + psadbw m6, m0 + psadbw m7, m0 +%else + movu m1, [ref1q+%3] + movu m2, [ref2q+%3] + movu m3, [ref3q+%3] + psadbw m1, m0 + psadbw m2, m0 + psadbw m3, m0 + paddd m4, m1 + movu m1, [ref4q+%3] + paddd m5, m2 + paddd m6, m3 + psadbw m1, m0 + paddd m7, m1 +%endif + + ; 2nd 16 px + mova m0, [srcq +%4] + movu m1, [ref1q+%5] + movu m2, [ref2q+%5] + movu m3, [ref3q+%5] + psadbw m1, m0 + psadbw m2, m0 + psadbw m3, m0 + paddd m4, m1 + movu m1, [ref4q+%5] + paddd m5, m2 + paddd m6, m3 +%if %6 == 1 + lea srcq, [srcq +src_strideq*2] + lea ref1q, [ref1q+ref_strideq*2] + lea ref2q, [ref2q+ref_strideq*2] + lea ref3q, [ref3q+ref_strideq*2] + lea ref4q, [ref4q+ref_strideq*2] +%endif + psadbw m1, m0 + paddd m7, m1 +%endmacro + +; PROCESS_32x2x4 first, off_{first,second}_{src,ref}, advance_at_end +%macro PROCESS_32x2x4 5-6 0 + PROCESS_16x2x4 %1, %2, %3, %2 + 16, %3 + 16 + PROCESS_16x2x4 0, %4, %5, %4 + 16, %5 + 16, %6 +%endmacro + +; PROCESS_64x2x4 first, off_{first,second}_{src,ref}, advance_at_end +%macro PROCESS_64x2x4 5-6 0 + PROCESS_32x2x4 %1, %2, %3, %2 + 32, %3 + 32 + PROCESS_32x2x4 0, %4, %5, %4 + 32, %5 + 32, %6 +%endmacro + +; void vpx_sadNxNx4d_sse2(uint8_t *src, int src_stride, +; uint8_t *ref[4], int ref_stride, +; uint32_t res[4]); +; where NxN = 64x64, 32x32, 16x16, 16x8, 8x16, 8x8, 8x4, 4x8 and 4x4 +%macro SADNXN4D 2 +%if UNIX64 +cglobal sad%1x%2x4d, 5, 8, 8, src, src_stride, ref1, ref_stride, \ + res, ref2, ref3, ref4 +%else +cglobal sad%1x%2x4d, 4, 7, 8, src, src_stride, ref1, ref_stride, \ + ref2, ref3, ref4 +%endif + movsxdifnidn src_strideq, src_strided + movsxdifnidn ref_strideq, ref_strided + mov ref2q, [ref1q+gprsize*1] + mov ref3q, [ref1q+gprsize*2] + mov ref4q, [ref1q+gprsize*3] + mov ref1q, [ref1q+gprsize*0] + + PROCESS_%1x2x4 1, 0, 0, src_strideq, ref_strideq, 1 +%rep (%2-4)/2 + PROCESS_%1x2x4 0, 0, 0, src_strideq, ref_strideq, 1 +%endrep + PROCESS_%1x2x4 0, 0, 0, src_strideq, ref_strideq, 0 + +%if %1 > 4 + pslldq m5, 4 + pslldq m7, 4 + por m4, m5 + por m6, m7 + mova m5, m4 + mova m7, m6 + punpcklqdq m4, m6 + punpckhqdq m5, m7 + movifnidn r4, r4mp + paddd m4, m5 + movu [r4], m4 + RET +%else + movifnidn r4, r4mp + pshufd m6, m6, 0x08 + pshufd m7, m7, 0x08 + movq [r4+0], m6 + movq [r4+8], m7 + RET +%endif +%endmacro + +INIT_XMM sse2 +SADNXN4D 64, 64 +SADNXN4D 64, 32 +SADNXN4D 32, 64 +SADNXN4D 32, 32 +SADNXN4D 32, 16 +SADNXN4D 16, 32 +SADNXN4D 16, 16 +SADNXN4D 16, 8 +SADNXN4D 8, 16 +SADNXN4D 8, 8 +SADNXN4D 8, 4 +SADNXN4D 4, 8 +SADNXN4D 4, 4 diff --git a/vpx_dsp/x86/sad_avx2.c b/vpx_dsp/x86/sad_avx2.c new file mode 100644 index 0000000..d944134 --- /dev/null +++ b/vpx_dsp/x86/sad_avx2.c @@ -0,0 +1,178 @@ +/* + * Copyright (c) 2012 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ +#include +#include "./vpx_dsp_rtcd.h" +#include "vpx_ports/mem.h" + +#define FSAD64_H(h) \ + unsigned int vpx_sad64x##h##_avx2(const uint8_t *src_ptr, int src_stride, \ + const uint8_t *ref_ptr, int ref_stride) { \ + int i, res; \ + __m256i sad1_reg, sad2_reg, ref1_reg, ref2_reg; \ + __m256i sum_sad = _mm256_setzero_si256(); \ + __m256i sum_sad_h; \ + __m128i sum_sad128; \ + for (i = 0; i < h; i++) { \ + ref1_reg = _mm256_loadu_si256((__m256i const *)ref_ptr); \ + ref2_reg = _mm256_loadu_si256((__m256i const *)(ref_ptr + 32)); \ + sad1_reg = _mm256_sad_epu8( \ + ref1_reg, _mm256_loadu_si256((__m256i const *)src_ptr)); \ + sad2_reg = _mm256_sad_epu8( \ + ref2_reg, _mm256_loadu_si256((__m256i const *)(src_ptr + 32))); \ + sum_sad = \ + _mm256_add_epi32(sum_sad, _mm256_add_epi32(sad1_reg, sad2_reg)); \ + ref_ptr += ref_stride; \ + src_ptr += src_stride; \ + } \ + sum_sad_h = _mm256_srli_si256(sum_sad, 8); \ + sum_sad = _mm256_add_epi32(sum_sad, sum_sad_h); \ + sum_sad128 = _mm256_extracti128_si256(sum_sad, 1); \ + sum_sad128 = _mm_add_epi32(_mm256_castsi256_si128(sum_sad), sum_sad128); \ + res = _mm_cvtsi128_si32(sum_sad128); \ + return res; \ + } + +#define FSAD32_H(h) \ + unsigned int vpx_sad32x##h##_avx2(const uint8_t *src_ptr, int src_stride, \ + const uint8_t *ref_ptr, int ref_stride) { \ + int i, res; \ + __m256i sad1_reg, sad2_reg, ref1_reg, ref2_reg; \ + __m256i sum_sad = _mm256_setzero_si256(); \ + __m256i sum_sad_h; \ + __m128i sum_sad128; \ + int ref2_stride = ref_stride << 1; \ + int src2_stride = src_stride << 1; \ + int max = h >> 1; \ + for (i = 0; i < max; i++) { \ + ref1_reg = _mm256_loadu_si256((__m256i const *)ref_ptr); \ + ref2_reg = _mm256_loadu_si256((__m256i const *)(ref_ptr + ref_stride)); \ + sad1_reg = _mm256_sad_epu8( \ + ref1_reg, _mm256_loadu_si256((__m256i const *)src_ptr)); \ + sad2_reg = _mm256_sad_epu8( \ + ref2_reg, \ + _mm256_loadu_si256((__m256i const *)(src_ptr + src_stride))); \ + sum_sad = \ + _mm256_add_epi32(sum_sad, _mm256_add_epi32(sad1_reg, sad2_reg)); \ + ref_ptr += ref2_stride; \ + src_ptr += src2_stride; \ + } \ + sum_sad_h = _mm256_srli_si256(sum_sad, 8); \ + sum_sad = _mm256_add_epi32(sum_sad, sum_sad_h); \ + sum_sad128 = _mm256_extracti128_si256(sum_sad, 1); \ + sum_sad128 = _mm_add_epi32(_mm256_castsi256_si128(sum_sad), sum_sad128); \ + res = _mm_cvtsi128_si32(sum_sad128); \ + return res; \ + } + +#define FSAD64 \ + FSAD64_H(64); \ + FSAD64_H(32); + +#define FSAD32 \ + FSAD32_H(64); \ + FSAD32_H(32); \ + FSAD32_H(16); + +FSAD64; +FSAD32; + +#undef FSAD64 +#undef FSAD32 +#undef FSAD64_H +#undef FSAD32_H + +#define FSADAVG64_H(h) \ + unsigned int vpx_sad64x##h##_avg_avx2( \ + const uint8_t *src_ptr, int src_stride, const uint8_t *ref_ptr, \ + int ref_stride, const uint8_t *second_pred) { \ + int i, res; \ + __m256i sad1_reg, sad2_reg, ref1_reg, ref2_reg; \ + __m256i sum_sad = _mm256_setzero_si256(); \ + __m256i sum_sad_h; \ + __m128i sum_sad128; \ + for (i = 0; i < h; i++) { \ + ref1_reg = _mm256_loadu_si256((__m256i const *)ref_ptr); \ + ref2_reg = _mm256_loadu_si256((__m256i const *)(ref_ptr + 32)); \ + ref1_reg = _mm256_avg_epu8( \ + ref1_reg, _mm256_loadu_si256((__m256i const *)second_pred)); \ + ref2_reg = _mm256_avg_epu8( \ + ref2_reg, _mm256_loadu_si256((__m256i const *)(second_pred + 32))); \ + sad1_reg = _mm256_sad_epu8( \ + ref1_reg, _mm256_loadu_si256((__m256i const *)src_ptr)); \ + sad2_reg = _mm256_sad_epu8( \ + ref2_reg, _mm256_loadu_si256((__m256i const *)(src_ptr + 32))); \ + sum_sad = \ + _mm256_add_epi32(sum_sad, _mm256_add_epi32(sad1_reg, sad2_reg)); \ + ref_ptr += ref_stride; \ + src_ptr += src_stride; \ + second_pred += 64; \ + } \ + sum_sad_h = _mm256_srli_si256(sum_sad, 8); \ + sum_sad = _mm256_add_epi32(sum_sad, sum_sad_h); \ + sum_sad128 = _mm256_extracti128_si256(sum_sad, 1); \ + sum_sad128 = _mm_add_epi32(_mm256_castsi256_si128(sum_sad), sum_sad128); \ + res = _mm_cvtsi128_si32(sum_sad128); \ + return res; \ + } + +#define FSADAVG32_H(h) \ + unsigned int vpx_sad32x##h##_avg_avx2( \ + const uint8_t *src_ptr, int src_stride, const uint8_t *ref_ptr, \ + int ref_stride, const uint8_t *second_pred) { \ + int i, res; \ + __m256i sad1_reg, sad2_reg, ref1_reg, ref2_reg; \ + __m256i sum_sad = _mm256_setzero_si256(); \ + __m256i sum_sad_h; \ + __m128i sum_sad128; \ + int ref2_stride = ref_stride << 1; \ + int src2_stride = src_stride << 1; \ + int max = h >> 1; \ + for (i = 0; i < max; i++) { \ + ref1_reg = _mm256_loadu_si256((__m256i const *)ref_ptr); \ + ref2_reg = _mm256_loadu_si256((__m256i const *)(ref_ptr + ref_stride)); \ + ref1_reg = _mm256_avg_epu8( \ + ref1_reg, _mm256_loadu_si256((__m256i const *)second_pred)); \ + ref2_reg = _mm256_avg_epu8( \ + ref2_reg, _mm256_loadu_si256((__m256i const *)(second_pred + 32))); \ + sad1_reg = _mm256_sad_epu8( \ + ref1_reg, _mm256_loadu_si256((__m256i const *)src_ptr)); \ + sad2_reg = _mm256_sad_epu8( \ + ref2_reg, \ + _mm256_loadu_si256((__m256i const *)(src_ptr + src_stride))); \ + sum_sad = \ + _mm256_add_epi32(sum_sad, _mm256_add_epi32(sad1_reg, sad2_reg)); \ + ref_ptr += ref2_stride; \ + src_ptr += src2_stride; \ + second_pred += 64; \ + } \ + sum_sad_h = _mm256_srli_si256(sum_sad, 8); \ + sum_sad = _mm256_add_epi32(sum_sad, sum_sad_h); \ + sum_sad128 = _mm256_extracti128_si256(sum_sad, 1); \ + sum_sad128 = _mm_add_epi32(_mm256_castsi256_si128(sum_sad), sum_sad128); \ + res = _mm_cvtsi128_si32(sum_sad128); \ + return res; \ + } + +#define FSADAVG64 \ + FSADAVG64_H(64); \ + FSADAVG64_H(32); + +#define FSADAVG32 \ + FSADAVG32_H(64); \ + FSADAVG32_H(32); \ + FSADAVG32_H(16); + +FSADAVG64; +FSADAVG32; + +#undef FSADAVG64 +#undef FSADAVG32 +#undef FSADAVG64_H +#undef FSADAVG32_H diff --git a/vpx_dsp/x86/sad_sse2.asm b/vpx_dsp/x86/sad_sse2.asm new file mode 100644 index 0000000..1ec906c --- /dev/null +++ b/vpx_dsp/x86/sad_sse2.asm @@ -0,0 +1,268 @@ +; +; Copyright (c) 2010 The WebM project authors. All Rights Reserved. +; +; Use of this source code is governed by a BSD-style license +; that can be found in the LICENSE file in the root of the source +; tree. An additional intellectual property rights grant can be found +; in the file PATENTS. All contributing project authors may +; be found in the AUTHORS file in the root of the source tree. +; + +%include "third_party/x86inc/x86inc.asm" + +SECTION .text + +%macro SAD_FN 4 +%if %4 == 0 +%if %3 == 5 +cglobal sad%1x%2, 4, %3, 5, src, src_stride, ref, ref_stride, n_rows +%else ; %3 == 7 +cglobal sad%1x%2, 4, %3, 6, src, src_stride, ref, ref_stride, \ + src_stride3, ref_stride3, n_rows +%endif ; %3 == 5/7 +%else ; avg +%if %3 == 5 +cglobal sad%1x%2_avg, 5, 1 + %3, 5, src, src_stride, ref, ref_stride, \ + second_pred, n_rows +%else ; %3 == 7 +cglobal sad%1x%2_avg, 5, ARCH_X86_64 + %3, 6, src, src_stride, \ + ref, ref_stride, \ + second_pred, \ + src_stride3, ref_stride3 +%if ARCH_X86_64 +%define n_rowsd r7d +%else ; x86-32 +%define n_rowsd dword r0m +%endif ; x86-32/64 +%endif ; %3 == 5/7 +%endif ; avg/sad + movsxdifnidn src_strideq, src_strided + movsxdifnidn ref_strideq, ref_strided +%if %3 == 7 + lea src_stride3q, [src_strideq*3] + lea ref_stride3q, [ref_strideq*3] +%endif ; %3 == 7 +%endmacro + +; unsigned int vpx_sad64x64_sse2(uint8_t *src, int src_stride, +; uint8_t *ref, int ref_stride); +%macro SAD64XN 1-2 0 + SAD_FN 64, %1, 5, %2 + mov n_rowsd, %1 + pxor m0, m0 +.loop: + movu m1, [refq] + movu m2, [refq+16] + movu m3, [refq+32] + movu m4, [refq+48] +%if %2 == 1 + pavgb m1, [second_predq+mmsize*0] + pavgb m2, [second_predq+mmsize*1] + pavgb m3, [second_predq+mmsize*2] + pavgb m4, [second_predq+mmsize*3] + lea second_predq, [second_predq+mmsize*4] +%endif + psadbw m1, [srcq] + psadbw m2, [srcq+16] + psadbw m3, [srcq+32] + psadbw m4, [srcq+48] + paddd m1, m2 + paddd m3, m4 + add refq, ref_strideq + paddd m0, m1 + add srcq, src_strideq + paddd m0, m3 + dec n_rowsd + jg .loop + + movhlps m1, m0 + paddd m0, m1 + movd eax, m0 + RET +%endmacro + +INIT_XMM sse2 +SAD64XN 64 ; sad64x64_sse2 +SAD64XN 32 ; sad64x32_sse2 +SAD64XN 64, 1 ; sad64x64_avg_sse2 +SAD64XN 32, 1 ; sad64x32_avg_sse2 + +; unsigned int vpx_sad32x32_sse2(uint8_t *src, int src_stride, +; uint8_t *ref, int ref_stride); +%macro SAD32XN 1-2 0 + SAD_FN 32, %1, 5, %2 + mov n_rowsd, %1/2 + pxor m0, m0 +.loop: + movu m1, [refq] + movu m2, [refq+16] + movu m3, [refq+ref_strideq] + movu m4, [refq+ref_strideq+16] +%if %2 == 1 + pavgb m1, [second_predq+mmsize*0] + pavgb m2, [second_predq+mmsize*1] + pavgb m3, [second_predq+mmsize*2] + pavgb m4, [second_predq+mmsize*3] + lea second_predq, [second_predq+mmsize*4] +%endif + psadbw m1, [srcq] + psadbw m2, [srcq+16] + psadbw m3, [srcq+src_strideq] + psadbw m4, [srcq+src_strideq+16] + paddd m1, m2 + paddd m3, m4 + lea refq, [refq+ref_strideq*2] + paddd m0, m1 + lea srcq, [srcq+src_strideq*2] + paddd m0, m3 + dec n_rowsd + jg .loop + + movhlps m1, m0 + paddd m0, m1 + movd eax, m0 + RET +%endmacro + +INIT_XMM sse2 +SAD32XN 64 ; sad32x64_sse2 +SAD32XN 32 ; sad32x32_sse2 +SAD32XN 16 ; sad32x16_sse2 +SAD32XN 64, 1 ; sad32x64_avg_sse2 +SAD32XN 32, 1 ; sad32x32_avg_sse2 +SAD32XN 16, 1 ; sad32x16_avg_sse2 + +; unsigned int vpx_sad16x{8,16}_sse2(uint8_t *src, int src_stride, +; uint8_t *ref, int ref_stride); +%macro SAD16XN 1-2 0 + SAD_FN 16, %1, 7, %2 + mov n_rowsd, %1/4 + pxor m0, m0 + +.loop: + movu m1, [refq] + movu m2, [refq+ref_strideq] + movu m3, [refq+ref_strideq*2] + movu m4, [refq+ref_stride3q] +%if %2 == 1 + pavgb m1, [second_predq+mmsize*0] + pavgb m2, [second_predq+mmsize*1] + pavgb m3, [second_predq+mmsize*2] + pavgb m4, [second_predq+mmsize*3] + lea second_predq, [second_predq+mmsize*4] +%endif + psadbw m1, [srcq] + psadbw m2, [srcq+src_strideq] + psadbw m3, [srcq+src_strideq*2] + psadbw m4, [srcq+src_stride3q] + paddd m1, m2 + paddd m3, m4 + lea refq, [refq+ref_strideq*4] + paddd m0, m1 + lea srcq, [srcq+src_strideq*4] + paddd m0, m3 + dec n_rowsd + jg .loop + + movhlps m1, m0 + paddd m0, m1 + movd eax, m0 + RET +%endmacro + +INIT_XMM sse2 +SAD16XN 32 ; sad16x32_sse2 +SAD16XN 16 ; sad16x16_sse2 +SAD16XN 8 ; sad16x8_sse2 +SAD16XN 32, 1 ; sad16x32_avg_sse2 +SAD16XN 16, 1 ; sad16x16_avg_sse2 +SAD16XN 8, 1 ; sad16x8_avg_sse2 + +; unsigned int vpx_sad8x{8,16}_sse2(uint8_t *src, int src_stride, +; uint8_t *ref, int ref_stride); +%macro SAD8XN 1-2 0 + SAD_FN 8, %1, 7, %2 + mov n_rowsd, %1/4 + pxor m0, m0 + +.loop: + movh m1, [refq] + movhps m1, [refq+ref_strideq] + movh m2, [refq+ref_strideq*2] + movhps m2, [refq+ref_stride3q] +%if %2 == 1 + pavgb m1, [second_predq+mmsize*0] + pavgb m2, [second_predq+mmsize*1] + lea second_predq, [second_predq+mmsize*2] +%endif + movh m3, [srcq] + movhps m3, [srcq+src_strideq] + movh m4, [srcq+src_strideq*2] + movhps m4, [srcq+src_stride3q] + psadbw m1, m3 + psadbw m2, m4 + lea refq, [refq+ref_strideq*4] + paddd m0, m1 + lea srcq, [srcq+src_strideq*4] + paddd m0, m2 + dec n_rowsd + jg .loop + + movhlps m1, m0 + paddd m0, m1 + movd eax, m0 + RET +%endmacro + +INIT_XMM sse2 +SAD8XN 16 ; sad8x16_sse2 +SAD8XN 8 ; sad8x8_sse2 +SAD8XN 4 ; sad8x4_sse2 +SAD8XN 16, 1 ; sad8x16_avg_sse2 +SAD8XN 8, 1 ; sad8x8_avg_sse2 +SAD8XN 4, 1 ; sad8x4_avg_sse2 + +; unsigned int vpx_sad4x{4, 8}_sse2(uint8_t *src, int src_stride, +; uint8_t *ref, int ref_stride); +%macro SAD4XN 1-2 0 + SAD_FN 4, %1, 7, %2 + mov n_rowsd, %1/4 + pxor m0, m0 + +.loop: + movd m1, [refq] + movd m2, [refq+ref_strideq] + movd m3, [refq+ref_strideq*2] + movd m4, [refq+ref_stride3q] + punpckldq m1, m2 + punpckldq m3, m4 + movlhps m1, m3 +%if %2 == 1 + pavgb m1, [second_predq+mmsize*0] + lea second_predq, [second_predq+mmsize*1] +%endif + movd m2, [srcq] + movd m5, [srcq+src_strideq] + movd m4, [srcq+src_strideq*2] + movd m3, [srcq+src_stride3q] + punpckldq m2, m5 + punpckldq m4, m3 + movlhps m2, m4 + psadbw m1, m2 + lea refq, [refq+ref_strideq*4] + paddd m0, m1 + lea srcq, [srcq+src_strideq*4] + dec n_rowsd + jg .loop + + movhlps m1, m0 + paddd m0, m1 + movd eax, m0 + RET +%endmacro + +INIT_XMM sse2 +SAD4XN 8 ; sad4x8_sse +SAD4XN 4 ; sad4x4_sse +SAD4XN 8, 1 ; sad4x8_avg_sse +SAD4XN 4, 1 ; sad4x4_avg_sse diff --git a/vpx_dsp/x86/sad_sse3.asm b/vpx_dsp/x86/sad_sse3.asm new file mode 100644 index 0000000..175dcc0 --- /dev/null +++ b/vpx_dsp/x86/sad_sse3.asm @@ -0,0 +1,376 @@ +; +; Copyright (c) 2010 The WebM project authors. All Rights Reserved. +; +; Use of this source code is governed by a BSD-style license +; that can be found in the LICENSE file in the root of the source +; tree. An additional intellectual property rights grant can be found +; in the file PATENTS. All contributing project authors may +; be found in the AUTHORS file in the root of the source tree. +; + +%include "vpx_ports/x86_abi_support.asm" + +%macro STACK_FRAME_CREATE_X3 0 +%if ABI_IS_32BIT + %define src_ptr rsi + %define src_stride rax + %define ref_ptr rdi + %define ref_stride rdx + %define end_ptr rcx + %define ret_var rbx + %define result_ptr arg(4) + %define height dword ptr arg(4) + push rbp + mov rbp, rsp + push rsi + push rdi + push rbx + + mov rsi, arg(0) ; src_ptr + mov rdi, arg(2) ; ref_ptr + + movsxd rax, dword ptr arg(1) ; src_stride + movsxd rdx, dword ptr arg(3) ; ref_stride +%else + %if LIBVPX_YASM_WIN64 + SAVE_XMM 7, u + %define src_ptr rcx + %define src_stride rdx + %define ref_ptr r8 + %define ref_stride r9 + %define end_ptr r10 + %define ret_var r11 + %define result_ptr [rsp+xmm_stack_space+8+4*8] + %define height dword ptr [rsp+xmm_stack_space+8+4*8] + %else + %define src_ptr rdi + %define src_stride rsi + %define ref_ptr rdx + %define ref_stride rcx + %define end_ptr r9 + %define ret_var r10 + %define result_ptr r8 + %define height r8 + %endif +%endif + +%endmacro + +%macro STACK_FRAME_DESTROY_X3 0 + %define src_ptr + %define src_stride + %define ref_ptr + %define ref_stride + %define end_ptr + %define ret_var + %define result_ptr + %define height + +%if ABI_IS_32BIT + pop rbx + pop rdi + pop rsi + pop rbp +%else + %if LIBVPX_YASM_WIN64 + RESTORE_XMM + %endif +%endif + ret +%endmacro + +%macro PROCESS_16X2X3 5 +%if %1==0 + movdqa xmm0, XMMWORD PTR [%2] + lddqu xmm5, XMMWORD PTR [%3] + lddqu xmm6, XMMWORD PTR [%3+1] + lddqu xmm7, XMMWORD PTR [%3+2] + + psadbw xmm5, xmm0 + psadbw xmm6, xmm0 + psadbw xmm7, xmm0 +%else + movdqa xmm0, XMMWORD PTR [%2] + lddqu xmm1, XMMWORD PTR [%3] + lddqu xmm2, XMMWORD PTR [%3+1] + lddqu xmm3, XMMWORD PTR [%3+2] + + psadbw xmm1, xmm0 + psadbw xmm2, xmm0 + psadbw xmm3, xmm0 + + paddw xmm5, xmm1 + paddw xmm6, xmm2 + paddw xmm7, xmm3 +%endif + movdqa xmm0, XMMWORD PTR [%2+%4] + lddqu xmm1, XMMWORD PTR [%3+%5] + lddqu xmm2, XMMWORD PTR [%3+%5+1] + lddqu xmm3, XMMWORD PTR [%3+%5+2] + +%if %1==0 || %1==1 + lea %2, [%2+%4*2] + lea %3, [%3+%5*2] +%endif + + psadbw xmm1, xmm0 + psadbw xmm2, xmm0 + psadbw xmm3, xmm0 + + paddw xmm5, xmm1 + paddw xmm6, xmm2 + paddw xmm7, xmm3 +%endmacro + +%macro PROCESS_8X2X3 5 +%if %1==0 + movq mm0, QWORD PTR [%2] + movq mm5, QWORD PTR [%3] + movq mm6, QWORD PTR [%3+1] + movq mm7, QWORD PTR [%3+2] + + psadbw mm5, mm0 + psadbw mm6, mm0 + psadbw mm7, mm0 +%else + movq mm0, QWORD PTR [%2] + movq mm1, QWORD PTR [%3] + movq mm2, QWORD PTR [%3+1] + movq mm3, QWORD PTR [%3+2] + + psadbw mm1, mm0 + psadbw mm2, mm0 + psadbw mm3, mm0 + + paddw mm5, mm1 + paddw mm6, mm2 + paddw mm7, mm3 +%endif + movq mm0, QWORD PTR [%2+%4] + movq mm1, QWORD PTR [%3+%5] + movq mm2, QWORD PTR [%3+%5+1] + movq mm3, QWORD PTR [%3+%5+2] + +%if %1==0 || %1==1 + lea %2, [%2+%4*2] + lea %3, [%3+%5*2] +%endif + + psadbw mm1, mm0 + psadbw mm2, mm0 + psadbw mm3, mm0 + + paddw mm5, mm1 + paddw mm6, mm2 + paddw mm7, mm3 +%endmacro + +SECTION .text + +;void int vpx_sad16x16x3_sse3( +; unsigned char *src_ptr, +; int src_stride, +; unsigned char *ref_ptr, +; int ref_stride, +; int *results) +global sym(vpx_sad16x16x3_sse3) PRIVATE +sym(vpx_sad16x16x3_sse3): + + STACK_FRAME_CREATE_X3 + + PROCESS_16X2X3 0, src_ptr, ref_ptr, src_stride, ref_stride + PROCESS_16X2X3 1, src_ptr, ref_ptr, src_stride, ref_stride + PROCESS_16X2X3 1, src_ptr, ref_ptr, src_stride, ref_stride + PROCESS_16X2X3 1, src_ptr, ref_ptr, src_stride, ref_stride + PROCESS_16X2X3 1, src_ptr, ref_ptr, src_stride, ref_stride + PROCESS_16X2X3 1, src_ptr, ref_ptr, src_stride, ref_stride + PROCESS_16X2X3 1, src_ptr, ref_ptr, src_stride, ref_stride + PROCESS_16X2X3 2, src_ptr, ref_ptr, src_stride, ref_stride + + mov rcx, result_ptr + + movq xmm0, xmm5 + psrldq xmm5, 8 + + paddw xmm0, xmm5 + movd [rcx], xmm0 +;- + movq xmm0, xmm6 + psrldq xmm6, 8 + + paddw xmm0, xmm6 + movd [rcx+4], xmm0 +;- + movq xmm0, xmm7 + psrldq xmm7, 8 + + paddw xmm0, xmm7 + movd [rcx+8], xmm0 + + STACK_FRAME_DESTROY_X3 + +;void int vpx_sad16x8x3_sse3( +; unsigned char *src_ptr, +; int src_stride, +; unsigned char *ref_ptr, +; int ref_stride, +; int *results) +global sym(vpx_sad16x8x3_sse3) PRIVATE +sym(vpx_sad16x8x3_sse3): + + STACK_FRAME_CREATE_X3 + + PROCESS_16X2X3 0, src_ptr, ref_ptr, src_stride, ref_stride + PROCESS_16X2X3 1, src_ptr, ref_ptr, src_stride, ref_stride + PROCESS_16X2X3 1, src_ptr, ref_ptr, src_stride, ref_stride + PROCESS_16X2X3 2, src_ptr, ref_ptr, src_stride, ref_stride + + mov rcx, result_ptr + + movq xmm0, xmm5 + psrldq xmm5, 8 + + paddw xmm0, xmm5 + movd [rcx], xmm0 +;- + movq xmm0, xmm6 + psrldq xmm6, 8 + + paddw xmm0, xmm6 + movd [rcx+4], xmm0 +;- + movq xmm0, xmm7 + psrldq xmm7, 8 + + paddw xmm0, xmm7 + movd [rcx+8], xmm0 + + STACK_FRAME_DESTROY_X3 + +;void int vpx_sad8x16x3_sse3( +; unsigned char *src_ptr, +; int src_stride, +; unsigned char *ref_ptr, +; int ref_stride, +; int *results) +global sym(vpx_sad8x16x3_sse3) PRIVATE +sym(vpx_sad8x16x3_sse3): + + STACK_FRAME_CREATE_X3 + + PROCESS_8X2X3 0, src_ptr, ref_ptr, src_stride, ref_stride + PROCESS_8X2X3 1, src_ptr, ref_ptr, src_stride, ref_stride + PROCESS_8X2X3 1, src_ptr, ref_ptr, src_stride, ref_stride + PROCESS_8X2X3 1, src_ptr, ref_ptr, src_stride, ref_stride + PROCESS_8X2X3 1, src_ptr, ref_ptr, src_stride, ref_stride + PROCESS_8X2X3 1, src_ptr, ref_ptr, src_stride, ref_stride + PROCESS_8X2X3 1, src_ptr, ref_ptr, src_stride, ref_stride + PROCESS_8X2X3 2, src_ptr, ref_ptr, src_stride, ref_stride + + mov rcx, result_ptr + + punpckldq mm5, mm6 + + movq [rcx], mm5 + movd [rcx+8], mm7 + + STACK_FRAME_DESTROY_X3 + +;void int vpx_sad8x8x3_sse3( +; unsigned char *src_ptr, +; int src_stride, +; unsigned char *ref_ptr, +; int ref_stride, +; int *results) +global sym(vpx_sad8x8x3_sse3) PRIVATE +sym(vpx_sad8x8x3_sse3): + + STACK_FRAME_CREATE_X3 + + PROCESS_8X2X3 0, src_ptr, ref_ptr, src_stride, ref_stride + PROCESS_8X2X3 1, src_ptr, ref_ptr, src_stride, ref_stride + PROCESS_8X2X3 1, src_ptr, ref_ptr, src_stride, ref_stride + PROCESS_8X2X3 2, src_ptr, ref_ptr, src_stride, ref_stride + + mov rcx, result_ptr + + punpckldq mm5, mm6 + + movq [rcx], mm5 + movd [rcx+8], mm7 + + STACK_FRAME_DESTROY_X3 + +;void int vpx_sad4x4x3_sse3( +; unsigned char *src_ptr, +; int src_stride, +; unsigned char *ref_ptr, +; int ref_stride, +; int *results) +global sym(vpx_sad4x4x3_sse3) PRIVATE +sym(vpx_sad4x4x3_sse3): + + STACK_FRAME_CREATE_X3 + + movd mm0, DWORD PTR [src_ptr] + movd mm1, DWORD PTR [ref_ptr] + + movd mm2, DWORD PTR [src_ptr+src_stride] + movd mm3, DWORD PTR [ref_ptr+ref_stride] + + punpcklbw mm0, mm2 + punpcklbw mm1, mm3 + + movd mm4, DWORD PTR [ref_ptr+1] + movd mm5, DWORD PTR [ref_ptr+2] + + movd mm2, DWORD PTR [ref_ptr+ref_stride+1] + movd mm3, DWORD PTR [ref_ptr+ref_stride+2] + + psadbw mm1, mm0 + + punpcklbw mm4, mm2 + punpcklbw mm5, mm3 + + psadbw mm4, mm0 + psadbw mm5, mm0 + + lea src_ptr, [src_ptr+src_stride*2] + lea ref_ptr, [ref_ptr+ref_stride*2] + + movd mm0, DWORD PTR [src_ptr] + movd mm2, DWORD PTR [ref_ptr] + + movd mm3, DWORD PTR [src_ptr+src_stride] + movd mm6, DWORD PTR [ref_ptr+ref_stride] + + punpcklbw mm0, mm3 + punpcklbw mm2, mm6 + + movd mm3, DWORD PTR [ref_ptr+1] + movd mm7, DWORD PTR [ref_ptr+2] + + psadbw mm2, mm0 + + paddw mm1, mm2 + + movd mm2, DWORD PTR [ref_ptr+ref_stride+1] + movd mm6, DWORD PTR [ref_ptr+ref_stride+2] + + punpcklbw mm3, mm2 + punpcklbw mm7, mm6 + + psadbw mm3, mm0 + psadbw mm7, mm0 + + paddw mm3, mm4 + paddw mm7, mm5 + + mov rcx, result_ptr + + punpckldq mm1, mm3 + + movq [rcx], mm1 + movd [rcx+8], mm7 + + STACK_FRAME_DESTROY_X3 diff --git a/vpx_dsp/x86/sad_sse4.asm b/vpx_dsp/x86/sad_sse4.asm new file mode 100644 index 0000000..03999df --- /dev/null +++ b/vpx_dsp/x86/sad_sse4.asm @@ -0,0 +1,361 @@ +; +; Copyright (c) 2010 The WebM project authors. All Rights Reserved. +; +; Use of this source code is governed by a BSD-style license +; that can be found in the LICENSE file in the root of the source +; tree. An additional intellectual property rights grant can be found +; in the file PATENTS. All contributing project authors may +; be found in the AUTHORS file in the root of the source tree. +; + + +%include "vpx_ports/x86_abi_support.asm" + +%macro PROCESS_16X2X8 1 +%if %1 + movdqa xmm0, XMMWORD PTR [rsi] + movq xmm1, MMWORD PTR [rdi] + movq xmm3, MMWORD PTR [rdi+8] + movq xmm2, MMWORD PTR [rdi+16] + punpcklqdq xmm1, xmm3 + punpcklqdq xmm3, xmm2 + + movdqa xmm2, xmm1 + mpsadbw xmm1, xmm0, 0x0 + mpsadbw xmm2, xmm0, 0x5 + + psrldq xmm0, 8 + + movdqa xmm4, xmm3 + mpsadbw xmm3, xmm0, 0x0 + mpsadbw xmm4, xmm0, 0x5 + + paddw xmm1, xmm2 + paddw xmm1, xmm3 + paddw xmm1, xmm4 +%else + movdqa xmm0, XMMWORD PTR [rsi] + movq xmm5, MMWORD PTR [rdi] + movq xmm3, MMWORD PTR [rdi+8] + movq xmm2, MMWORD PTR [rdi+16] + punpcklqdq xmm5, xmm3 + punpcklqdq xmm3, xmm2 + + movdqa xmm2, xmm5 + mpsadbw xmm5, xmm0, 0x0 + mpsadbw xmm2, xmm0, 0x5 + + psrldq xmm0, 8 + + movdqa xmm4, xmm3 + mpsadbw xmm3, xmm0, 0x0 + mpsadbw xmm4, xmm0, 0x5 + + paddw xmm5, xmm2 + paddw xmm5, xmm3 + paddw xmm5, xmm4 + + paddw xmm1, xmm5 +%endif + movdqa xmm0, XMMWORD PTR [rsi + rax] + movq xmm5, MMWORD PTR [rdi+ rdx] + movq xmm3, MMWORD PTR [rdi+ rdx+8] + movq xmm2, MMWORD PTR [rdi+ rdx+16] + punpcklqdq xmm5, xmm3 + punpcklqdq xmm3, xmm2 + + lea rsi, [rsi+rax*2] + lea rdi, [rdi+rdx*2] + + movdqa xmm2, xmm5 + mpsadbw xmm5, xmm0, 0x0 + mpsadbw xmm2, xmm0, 0x5 + + psrldq xmm0, 8 + movdqa xmm4, xmm3 + mpsadbw xmm3, xmm0, 0x0 + mpsadbw xmm4, xmm0, 0x5 + + paddw xmm5, xmm2 + paddw xmm5, xmm3 + paddw xmm5, xmm4 + + paddw xmm1, xmm5 +%endmacro + +%macro PROCESS_8X2X8 1 +%if %1 + movq xmm0, MMWORD PTR [rsi] + movq xmm1, MMWORD PTR [rdi] + movq xmm3, MMWORD PTR [rdi+8] + punpcklqdq xmm1, xmm3 + + movdqa xmm2, xmm1 + mpsadbw xmm1, xmm0, 0x0 + mpsadbw xmm2, xmm0, 0x5 + paddw xmm1, xmm2 +%else + movq xmm0, MMWORD PTR [rsi] + movq xmm5, MMWORD PTR [rdi] + movq xmm3, MMWORD PTR [rdi+8] + punpcklqdq xmm5, xmm3 + + movdqa xmm2, xmm5 + mpsadbw xmm5, xmm0, 0x0 + mpsadbw xmm2, xmm0, 0x5 + paddw xmm5, xmm2 + + paddw xmm1, xmm5 +%endif + movq xmm0, MMWORD PTR [rsi + rax] + movq xmm5, MMWORD PTR [rdi+ rdx] + movq xmm3, MMWORD PTR [rdi+ rdx+8] + punpcklqdq xmm5, xmm3 + + lea rsi, [rsi+rax*2] + lea rdi, [rdi+rdx*2] + + movdqa xmm2, xmm5 + mpsadbw xmm5, xmm0, 0x0 + mpsadbw xmm2, xmm0, 0x5 + paddw xmm5, xmm2 + + paddw xmm1, xmm5 +%endmacro + +%macro PROCESS_4X2X8 1 +%if %1 + movd xmm0, [rsi] + movq xmm1, MMWORD PTR [rdi] + movq xmm3, MMWORD PTR [rdi+8] + punpcklqdq xmm1, xmm3 + + mpsadbw xmm1, xmm0, 0x0 +%else + movd xmm0, [rsi] + movq xmm5, MMWORD PTR [rdi] + movq xmm3, MMWORD PTR [rdi+8] + punpcklqdq xmm5, xmm3 + + mpsadbw xmm5, xmm0, 0x0 + + paddw xmm1, xmm5 +%endif + movd xmm0, [rsi + rax] + movq xmm5, MMWORD PTR [rdi+ rdx] + movq xmm3, MMWORD PTR [rdi+ rdx+8] + punpcklqdq xmm5, xmm3 + + lea rsi, [rsi+rax*2] + lea rdi, [rdi+rdx*2] + + mpsadbw xmm5, xmm0, 0x0 + + paddw xmm1, xmm5 +%endmacro + +%macro WRITE_AS_INTS 0 + mov rdi, arg(4) ;Results + pxor xmm0, xmm0 + movdqa xmm2, xmm1 + punpcklwd xmm1, xmm0 + punpckhwd xmm2, xmm0 + + movdqa [rdi], xmm1 + movdqa [rdi + 16], xmm2 +%endmacro + +SECTION .text + +;void vpx_sad16x16x8_sse4_1( +; const unsigned char *src_ptr, +; int src_stride, +; const unsigned char *ref_ptr, +; int ref_stride, +; unsigned short *sad_array); +global sym(vpx_sad16x16x8_sse4_1) PRIVATE +sym(vpx_sad16x16x8_sse4_1): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 5 + push rsi + push rdi + ; end prolog + + mov rsi, arg(0) ;src_ptr + mov rdi, arg(2) ;ref_ptr + + movsxd rax, dword ptr arg(1) ;src_stride + movsxd rdx, dword ptr arg(3) ;ref_stride + + PROCESS_16X2X8 1 + PROCESS_16X2X8 0 + PROCESS_16X2X8 0 + PROCESS_16X2X8 0 + PROCESS_16X2X8 0 + PROCESS_16X2X8 0 + PROCESS_16X2X8 0 + PROCESS_16X2X8 0 + + WRITE_AS_INTS + + ; begin epilog + pop rdi + pop rsi + UNSHADOW_ARGS + pop rbp + ret + + +;void vpx_sad16x8x8_sse4_1( +; const unsigned char *src_ptr, +; int src_stride, +; const unsigned char *ref_ptr, +; int ref_stride, +; unsigned short *sad_array +;); +global sym(vpx_sad16x8x8_sse4_1) PRIVATE +sym(vpx_sad16x8x8_sse4_1): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 5 + push rsi + push rdi + ; end prolog + + mov rsi, arg(0) ;src_ptr + mov rdi, arg(2) ;ref_ptr + + movsxd rax, dword ptr arg(1) ;src_stride + movsxd rdx, dword ptr arg(3) ;ref_stride + + PROCESS_16X2X8 1 + PROCESS_16X2X8 0 + PROCESS_16X2X8 0 + PROCESS_16X2X8 0 + + WRITE_AS_INTS + + ; begin epilog + pop rdi + pop rsi + UNSHADOW_ARGS + pop rbp + ret + + +;void vpx_sad8x8x8_sse4_1( +; const unsigned char *src_ptr, +; int src_stride, +; const unsigned char *ref_ptr, +; int ref_stride, +; unsigned short *sad_array +;); +global sym(vpx_sad8x8x8_sse4_1) PRIVATE +sym(vpx_sad8x8x8_sse4_1): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 5 + push rsi + push rdi + ; end prolog + + mov rsi, arg(0) ;src_ptr + mov rdi, arg(2) ;ref_ptr + + movsxd rax, dword ptr arg(1) ;src_stride + movsxd rdx, dword ptr arg(3) ;ref_stride + + PROCESS_8X2X8 1 + PROCESS_8X2X8 0 + PROCESS_8X2X8 0 + PROCESS_8X2X8 0 + + WRITE_AS_INTS + + ; begin epilog + pop rdi + pop rsi + UNSHADOW_ARGS + pop rbp + ret + + +;void vpx_sad8x16x8_sse4_1( +; const unsigned char *src_ptr, +; int src_stride, +; const unsigned char *ref_ptr, +; int ref_stride, +; unsigned short *sad_array +;); +global sym(vpx_sad8x16x8_sse4_1) PRIVATE +sym(vpx_sad8x16x8_sse4_1): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 5 + push rsi + push rdi + ; end prolog + + mov rsi, arg(0) ;src_ptr + mov rdi, arg(2) ;ref_ptr + + movsxd rax, dword ptr arg(1) ;src_stride + movsxd rdx, dword ptr arg(3) ;ref_stride + + PROCESS_8X2X8 1 + PROCESS_8X2X8 0 + PROCESS_8X2X8 0 + PROCESS_8X2X8 0 + PROCESS_8X2X8 0 + PROCESS_8X2X8 0 + PROCESS_8X2X8 0 + PROCESS_8X2X8 0 + + WRITE_AS_INTS + + ; begin epilog + pop rdi + pop rsi + UNSHADOW_ARGS + pop rbp + ret + + +;void vpx_sad4x4x8_sse4_1( +; const unsigned char *src_ptr, +; int src_stride, +; const unsigned char *ref_ptr, +; int ref_stride, +; unsigned short *sad_array +;); +global sym(vpx_sad4x4x8_sse4_1) PRIVATE +sym(vpx_sad4x4x8_sse4_1): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 5 + push rsi + push rdi + ; end prolog + + mov rsi, arg(0) ;src_ptr + mov rdi, arg(2) ;ref_ptr + + movsxd rax, dword ptr arg(1) ;src_stride + movsxd rdx, dword ptr arg(3) ;ref_stride + + PROCESS_4X2X8 1 + PROCESS_4X2X8 0 + + WRITE_AS_INTS + + ; begin epilog + pop rdi + pop rsi + UNSHADOW_ARGS + pop rbp + ret + + + + diff --git a/vpx_dsp/x86/sad_ssse3.asm b/vpx_dsp/x86/sad_ssse3.asm new file mode 100644 index 0000000..7cf93cf --- /dev/null +++ b/vpx_dsp/x86/sad_ssse3.asm @@ -0,0 +1,372 @@ +; +; Copyright (c) 2010 The WebM project authors. All Rights Reserved. +; +; Use of this source code is governed by a BSD-style license +; that can be found in the LICENSE file in the root of the source +; tree. An additional intellectual property rights grant can be found +; in the file PATENTS. All contributing project authors may +; be found in the AUTHORS file in the root of the source tree. +; + + +%include "vpx_ports/x86_abi_support.asm" + +%macro PROCESS_16X2X3 1 +%if %1 + movdqa xmm0, XMMWORD PTR [rsi] + lddqu xmm5, XMMWORD PTR [rdi] + lddqu xmm6, XMMWORD PTR [rdi+1] + lddqu xmm7, XMMWORD PTR [rdi+2] + + psadbw xmm5, xmm0 + psadbw xmm6, xmm0 + psadbw xmm7, xmm0 +%else + movdqa xmm0, XMMWORD PTR [rsi] + lddqu xmm1, XMMWORD PTR [rdi] + lddqu xmm2, XMMWORD PTR [rdi+1] + lddqu xmm3, XMMWORD PTR [rdi+2] + + psadbw xmm1, xmm0 + psadbw xmm2, xmm0 + psadbw xmm3, xmm0 + + paddw xmm5, xmm1 + paddw xmm6, xmm2 + paddw xmm7, xmm3 +%endif + movdqa xmm0, XMMWORD PTR [rsi+rax] + lddqu xmm1, XMMWORD PTR [rdi+rdx] + lddqu xmm2, XMMWORD PTR [rdi+rdx+1] + lddqu xmm3, XMMWORD PTR [rdi+rdx+2] + + lea rsi, [rsi+rax*2] + lea rdi, [rdi+rdx*2] + + psadbw xmm1, xmm0 + psadbw xmm2, xmm0 + psadbw xmm3, xmm0 + + paddw xmm5, xmm1 + paddw xmm6, xmm2 + paddw xmm7, xmm3 +%endmacro + +%macro PROCESS_16X2X3_OFFSET 2 +%if %1 + movdqa xmm0, XMMWORD PTR [rsi] + movdqa xmm4, XMMWORD PTR [rdi] + movdqa xmm7, XMMWORD PTR [rdi+16] + + movdqa xmm5, xmm7 + palignr xmm5, xmm4, %2 + + movdqa xmm6, xmm7 + palignr xmm6, xmm4, (%2+1) + + palignr xmm7, xmm4, (%2+2) + + psadbw xmm5, xmm0 + psadbw xmm6, xmm0 + psadbw xmm7, xmm0 +%else + movdqa xmm0, XMMWORD PTR [rsi] + movdqa xmm4, XMMWORD PTR [rdi] + movdqa xmm3, XMMWORD PTR [rdi+16] + + movdqa xmm1, xmm3 + palignr xmm1, xmm4, %2 + + movdqa xmm2, xmm3 + palignr xmm2, xmm4, (%2+1) + + palignr xmm3, xmm4, (%2+2) + + psadbw xmm1, xmm0 + psadbw xmm2, xmm0 + psadbw xmm3, xmm0 + + paddw xmm5, xmm1 + paddw xmm6, xmm2 + paddw xmm7, xmm3 +%endif + movdqa xmm0, XMMWORD PTR [rsi+rax] + movdqa xmm4, XMMWORD PTR [rdi+rdx] + movdqa xmm3, XMMWORD PTR [rdi+rdx+16] + + movdqa xmm1, xmm3 + palignr xmm1, xmm4, %2 + + movdqa xmm2, xmm3 + palignr xmm2, xmm4, (%2+1) + + palignr xmm3, xmm4, (%2+2) + + lea rsi, [rsi+rax*2] + lea rdi, [rdi+rdx*2] + + psadbw xmm1, xmm0 + psadbw xmm2, xmm0 + psadbw xmm3, xmm0 + + paddw xmm5, xmm1 + paddw xmm6, xmm2 + paddw xmm7, xmm3 +%endmacro + +%macro PROCESS_16X16X3_OFFSET 2 +%2_aligned_by_%1: + + sub rdi, %1 + + PROCESS_16X2X3_OFFSET 1, %1 + PROCESS_16X2X3_OFFSET 0, %1 + PROCESS_16X2X3_OFFSET 0, %1 + PROCESS_16X2X3_OFFSET 0, %1 + PROCESS_16X2X3_OFFSET 0, %1 + PROCESS_16X2X3_OFFSET 0, %1 + PROCESS_16X2X3_OFFSET 0, %1 + PROCESS_16X2X3_OFFSET 0, %1 + + jmp %2_store_off + +%endmacro + +%macro PROCESS_16X8X3_OFFSET 2 +%2_aligned_by_%1: + + sub rdi, %1 + + PROCESS_16X2X3_OFFSET 1, %1 + PROCESS_16X2X3_OFFSET 0, %1 + PROCESS_16X2X3_OFFSET 0, %1 + PROCESS_16X2X3_OFFSET 0, %1 + + jmp %2_store_off + +%endmacro + +SECTION .text + +;void int vpx_sad16x16x3_ssse3( +; unsigned char *src_ptr, +; int src_stride, +; unsigned char *ref_ptr, +; int ref_stride, +; int *results) +global sym(vpx_sad16x16x3_ssse3) PRIVATE +sym(vpx_sad16x16x3_ssse3): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 5 + SAVE_XMM 7 + push rsi + push rdi + push rcx + ; end prolog + + mov rsi, arg(0) ;src_ptr + mov rdi, arg(2) ;ref_ptr + + mov rdx, 0xf + and rdx, rdi + + jmp .vpx_sad16x16x3_ssse3_skiptable +.vpx_sad16x16x3_ssse3_jumptable: + dd .vpx_sad16x16x3_ssse3_aligned_by_0 - .vpx_sad16x16x3_ssse3_do_jump + dd .vpx_sad16x16x3_ssse3_aligned_by_1 - .vpx_sad16x16x3_ssse3_do_jump + dd .vpx_sad16x16x3_ssse3_aligned_by_2 - .vpx_sad16x16x3_ssse3_do_jump + dd .vpx_sad16x16x3_ssse3_aligned_by_3 - .vpx_sad16x16x3_ssse3_do_jump + dd .vpx_sad16x16x3_ssse3_aligned_by_4 - .vpx_sad16x16x3_ssse3_do_jump + dd .vpx_sad16x16x3_ssse3_aligned_by_5 - .vpx_sad16x16x3_ssse3_do_jump + dd .vpx_sad16x16x3_ssse3_aligned_by_6 - .vpx_sad16x16x3_ssse3_do_jump + dd .vpx_sad16x16x3_ssse3_aligned_by_7 - .vpx_sad16x16x3_ssse3_do_jump + dd .vpx_sad16x16x3_ssse3_aligned_by_8 - .vpx_sad16x16x3_ssse3_do_jump + dd .vpx_sad16x16x3_ssse3_aligned_by_9 - .vpx_sad16x16x3_ssse3_do_jump + dd .vpx_sad16x16x3_ssse3_aligned_by_10 - .vpx_sad16x16x3_ssse3_do_jump + dd .vpx_sad16x16x3_ssse3_aligned_by_11 - .vpx_sad16x16x3_ssse3_do_jump + dd .vpx_sad16x16x3_ssse3_aligned_by_12 - .vpx_sad16x16x3_ssse3_do_jump + dd .vpx_sad16x16x3_ssse3_aligned_by_13 - .vpx_sad16x16x3_ssse3_do_jump + dd .vpx_sad16x16x3_ssse3_aligned_by_14 - .vpx_sad16x16x3_ssse3_do_jump + dd .vpx_sad16x16x3_ssse3_aligned_by_15 - .vpx_sad16x16x3_ssse3_do_jump +.vpx_sad16x16x3_ssse3_skiptable: + + call .vpx_sad16x16x3_ssse3_do_jump +.vpx_sad16x16x3_ssse3_do_jump: + pop rcx ; get the address of do_jump + mov rax, .vpx_sad16x16x3_ssse3_jumptable - .vpx_sad16x16x3_ssse3_do_jump + add rax, rcx ; get the absolute address of vpx_sad16x16x3_ssse3_jumptable + + movsxd rax, dword [rax + 4*rdx] ; get the 32 bit offset from the jumptable + add rcx, rax + + movsxd rax, dword ptr arg(1) ;src_stride + movsxd rdx, dword ptr arg(3) ;ref_stride + + jmp rcx + + PROCESS_16X16X3_OFFSET 0, .vpx_sad16x16x3_ssse3 + PROCESS_16X16X3_OFFSET 1, .vpx_sad16x16x3_ssse3 + PROCESS_16X16X3_OFFSET 2, .vpx_sad16x16x3_ssse3 + PROCESS_16X16X3_OFFSET 3, .vpx_sad16x16x3_ssse3 + PROCESS_16X16X3_OFFSET 4, .vpx_sad16x16x3_ssse3 + PROCESS_16X16X3_OFFSET 5, .vpx_sad16x16x3_ssse3 + PROCESS_16X16X3_OFFSET 6, .vpx_sad16x16x3_ssse3 + PROCESS_16X16X3_OFFSET 7, .vpx_sad16x16x3_ssse3 + PROCESS_16X16X3_OFFSET 8, .vpx_sad16x16x3_ssse3 + PROCESS_16X16X3_OFFSET 9, .vpx_sad16x16x3_ssse3 + PROCESS_16X16X3_OFFSET 10, .vpx_sad16x16x3_ssse3 + PROCESS_16X16X3_OFFSET 11, .vpx_sad16x16x3_ssse3 + PROCESS_16X16X3_OFFSET 12, .vpx_sad16x16x3_ssse3 + PROCESS_16X16X3_OFFSET 13, .vpx_sad16x16x3_ssse3 + PROCESS_16X16X3_OFFSET 14, .vpx_sad16x16x3_ssse3 + +.vpx_sad16x16x3_ssse3_aligned_by_15: + PROCESS_16X2X3 1 + PROCESS_16X2X3 0 + PROCESS_16X2X3 0 + PROCESS_16X2X3 0 + PROCESS_16X2X3 0 + PROCESS_16X2X3 0 + PROCESS_16X2X3 0 + PROCESS_16X2X3 0 + +.vpx_sad16x16x3_ssse3_store_off: + mov rdi, arg(4) ;Results + + movq xmm0, xmm5 + psrldq xmm5, 8 + + paddw xmm0, xmm5 + movd [rdi], xmm0 +;- + movq xmm0, xmm6 + psrldq xmm6, 8 + + paddw xmm0, xmm6 + movd [rdi+4], xmm0 +;- + movq xmm0, xmm7 + psrldq xmm7, 8 + + paddw xmm0, xmm7 + movd [rdi+8], xmm0 + + ; begin epilog + pop rcx + pop rdi + pop rsi + RESTORE_XMM + UNSHADOW_ARGS + pop rbp + ret + +;void int vpx_sad16x8x3_ssse3( +; unsigned char *src_ptr, +; int src_stride, +; unsigned char *ref_ptr, +; int ref_stride, +; int *results) +global sym(vpx_sad16x8x3_ssse3) PRIVATE +sym(vpx_sad16x8x3_ssse3): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 5 + SAVE_XMM 7 + push rsi + push rdi + push rcx + ; end prolog + + mov rsi, arg(0) ;src_ptr + mov rdi, arg(2) ;ref_ptr + + mov rdx, 0xf + and rdx, rdi + + jmp .vpx_sad16x8x3_ssse3_skiptable +.vpx_sad16x8x3_ssse3_jumptable: + dd .vpx_sad16x8x3_ssse3_aligned_by_0 - .vpx_sad16x8x3_ssse3_do_jump + dd .vpx_sad16x8x3_ssse3_aligned_by_1 - .vpx_sad16x8x3_ssse3_do_jump + dd .vpx_sad16x8x3_ssse3_aligned_by_2 - .vpx_sad16x8x3_ssse3_do_jump + dd .vpx_sad16x8x3_ssse3_aligned_by_3 - .vpx_sad16x8x3_ssse3_do_jump + dd .vpx_sad16x8x3_ssse3_aligned_by_4 - .vpx_sad16x8x3_ssse3_do_jump + dd .vpx_sad16x8x3_ssse3_aligned_by_5 - .vpx_sad16x8x3_ssse3_do_jump + dd .vpx_sad16x8x3_ssse3_aligned_by_6 - .vpx_sad16x8x3_ssse3_do_jump + dd .vpx_sad16x8x3_ssse3_aligned_by_7 - .vpx_sad16x8x3_ssse3_do_jump + dd .vpx_sad16x8x3_ssse3_aligned_by_8 - .vpx_sad16x8x3_ssse3_do_jump + dd .vpx_sad16x8x3_ssse3_aligned_by_9 - .vpx_sad16x8x3_ssse3_do_jump + dd .vpx_sad16x8x3_ssse3_aligned_by_10 - .vpx_sad16x8x3_ssse3_do_jump + dd .vpx_sad16x8x3_ssse3_aligned_by_11 - .vpx_sad16x8x3_ssse3_do_jump + dd .vpx_sad16x8x3_ssse3_aligned_by_12 - .vpx_sad16x8x3_ssse3_do_jump + dd .vpx_sad16x8x3_ssse3_aligned_by_13 - .vpx_sad16x8x3_ssse3_do_jump + dd .vpx_sad16x8x3_ssse3_aligned_by_14 - .vpx_sad16x8x3_ssse3_do_jump + dd .vpx_sad16x8x3_ssse3_aligned_by_15 - .vpx_sad16x8x3_ssse3_do_jump +.vpx_sad16x8x3_ssse3_skiptable: + + call .vpx_sad16x8x3_ssse3_do_jump +.vpx_sad16x8x3_ssse3_do_jump: + pop rcx ; get the address of do_jump + mov rax, .vpx_sad16x8x3_ssse3_jumptable - .vpx_sad16x8x3_ssse3_do_jump + add rax, rcx ; get the absolute address of vpx_sad16x8x3_ssse3_jumptable + + movsxd rax, dword [rax + 4*rdx] ; get the 32 bit offset from the jumptable + add rcx, rax + + movsxd rax, dword ptr arg(1) ;src_stride + movsxd rdx, dword ptr arg(3) ;ref_stride + + jmp rcx + + PROCESS_16X8X3_OFFSET 0, .vpx_sad16x8x3_ssse3 + PROCESS_16X8X3_OFFSET 1, .vpx_sad16x8x3_ssse3 + PROCESS_16X8X3_OFFSET 2, .vpx_sad16x8x3_ssse3 + PROCESS_16X8X3_OFFSET 3, .vpx_sad16x8x3_ssse3 + PROCESS_16X8X3_OFFSET 4, .vpx_sad16x8x3_ssse3 + PROCESS_16X8X3_OFFSET 5, .vpx_sad16x8x3_ssse3 + PROCESS_16X8X3_OFFSET 6, .vpx_sad16x8x3_ssse3 + PROCESS_16X8X3_OFFSET 7, .vpx_sad16x8x3_ssse3 + PROCESS_16X8X3_OFFSET 8, .vpx_sad16x8x3_ssse3 + PROCESS_16X8X3_OFFSET 9, .vpx_sad16x8x3_ssse3 + PROCESS_16X8X3_OFFSET 10, .vpx_sad16x8x3_ssse3 + PROCESS_16X8X3_OFFSET 11, .vpx_sad16x8x3_ssse3 + PROCESS_16X8X3_OFFSET 12, .vpx_sad16x8x3_ssse3 + PROCESS_16X8X3_OFFSET 13, .vpx_sad16x8x3_ssse3 + PROCESS_16X8X3_OFFSET 14, .vpx_sad16x8x3_ssse3 + +.vpx_sad16x8x3_ssse3_aligned_by_15: + + PROCESS_16X2X3 1 + PROCESS_16X2X3 0 + PROCESS_16X2X3 0 + PROCESS_16X2X3 0 + +.vpx_sad16x8x3_ssse3_store_off: + mov rdi, arg(4) ;Results + + movq xmm0, xmm5 + psrldq xmm5, 8 + + paddw xmm0, xmm5 + movd [rdi], xmm0 +;- + movq xmm0, xmm6 + psrldq xmm6, 8 + + paddw xmm0, xmm6 + movd [rdi+4], xmm0 +;- + movq xmm0, xmm7 + psrldq xmm7, 8 + + paddw xmm0, xmm7 + movd [rdi+8], xmm0 + + ; begin epilog + pop rcx + pop rdi + pop rsi + RESTORE_XMM + UNSHADOW_ARGS + pop rbp + ret diff --git a/vpx_dsp/x86/ssim_opt_x86_64.asm b/vpx_dsp/x86/ssim_opt_x86_64.asm new file mode 100644 index 0000000..300fa8a --- /dev/null +++ b/vpx_dsp/x86/ssim_opt_x86_64.asm @@ -0,0 +1,219 @@ +; +; Copyright (c) 2010 The WebM project authors. All Rights Reserved. +; +; Use of this source code is governed by a BSD-style license +; that can be found in the LICENSE file in the root of the source +; tree. An additional intellectual property rights grant can be found +; in the file PATENTS. All contributing project authors may +; be found in the AUTHORS file in the root of the source tree. +; + +%include "vpx_ports/x86_abi_support.asm" + +; tabulate_ssim - sums sum_s,sum_r,sum_sq_s,sum_sq_r, sum_sxr +%macro TABULATE_SSIM 0 + paddusw xmm15, xmm3 ; sum_s + paddusw xmm14, xmm4 ; sum_r + movdqa xmm1, xmm3 + pmaddwd xmm1, xmm1 + paddd xmm13, xmm1 ; sum_sq_s + movdqa xmm2, xmm4 + pmaddwd xmm2, xmm2 + paddd xmm12, xmm2 ; sum_sq_r + pmaddwd xmm3, xmm4 + paddd xmm11, xmm3 ; sum_sxr +%endmacro + +; Sum across the register %1 starting with q words +%macro SUM_ACROSS_Q 1 + movdqa xmm2,%1 + punpckldq %1,xmm0 + punpckhdq xmm2,xmm0 + paddq %1,xmm2 + movdqa xmm2,%1 + punpcklqdq %1,xmm0 + punpckhqdq xmm2,xmm0 + paddq %1,xmm2 +%endmacro + +; Sum across the register %1 starting with q words +%macro SUM_ACROSS_W 1 + movdqa xmm1, %1 + punpcklwd %1,xmm0 + punpckhwd xmm1,xmm0 + paddd %1, xmm1 + SUM_ACROSS_Q %1 +%endmacro + +SECTION .text + +;void ssim_parms_sse2( +; unsigned char *s, +; int sp, +; unsigned char *r, +; int rp +; uint32_t *sum_s, +; uint32_t *sum_r, +; uint32_t *sum_sq_s, +; uint32_t *sum_sq_r, +; uint32_t *sum_sxr); +; +; TODO: Use parm passing through structure, probably don't need the pxors +; ( calling app will initialize to 0 ) could easily fit everything in sse2 +; without too much hastle, and can probably do better estimates with psadw +; or pavgb At this point this is just meant to be first pass for calculating +; all the parms needed for 16x16 ssim so we can play with dssim as distortion +; in mode selection code. +global sym(vpx_ssim_parms_16x16_sse2) PRIVATE +sym(vpx_ssim_parms_16x16_sse2): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 9 + SAVE_XMM 15 + push rsi + push rdi + ; end prolog + + mov rsi, arg(0) ;s + mov rcx, arg(1) ;sp + mov rdi, arg(2) ;r + mov rax, arg(3) ;rp + + pxor xmm0, xmm0 + pxor xmm15,xmm15 ;sum_s + pxor xmm14,xmm14 ;sum_r + pxor xmm13,xmm13 ;sum_sq_s + pxor xmm12,xmm12 ;sum_sq_r + pxor xmm11,xmm11 ;sum_sxr + + mov rdx, 16 ;row counter +.NextRow: + + ;grab source and reference pixels + movdqu xmm5, [rsi] + movdqu xmm6, [rdi] + movdqa xmm3, xmm5 + movdqa xmm4, xmm6 + punpckhbw xmm3, xmm0 ; high_s + punpckhbw xmm4, xmm0 ; high_r + + TABULATE_SSIM + + movdqa xmm3, xmm5 + movdqa xmm4, xmm6 + punpcklbw xmm3, xmm0 ; low_s + punpcklbw xmm4, xmm0 ; low_r + + TABULATE_SSIM + + add rsi, rcx ; next s row + add rdi, rax ; next r row + + dec rdx ; counter + jnz .NextRow + + SUM_ACROSS_W xmm15 + SUM_ACROSS_W xmm14 + SUM_ACROSS_Q xmm13 + SUM_ACROSS_Q xmm12 + SUM_ACROSS_Q xmm11 + + mov rdi,arg(4) + movd [rdi], xmm15; + mov rdi,arg(5) + movd [rdi], xmm14; + mov rdi,arg(6) + movd [rdi], xmm13; + mov rdi,arg(7) + movd [rdi], xmm12; + mov rdi,arg(8) + movd [rdi], xmm11; + + ; begin epilog + pop rdi + pop rsi + RESTORE_XMM + UNSHADOW_ARGS + pop rbp + ret + +;void ssim_parms_sse2( +; unsigned char *s, +; int sp, +; unsigned char *r, +; int rp +; uint32_t *sum_s, +; uint32_t *sum_r, +; uint32_t *sum_sq_s, +; uint32_t *sum_sq_r, +; uint32_t *sum_sxr); +; +; TODO: Use parm passing through structure, probably don't need the pxors +; ( calling app will initialize to 0 ) could easily fit everything in sse2 +; without too much hastle, and can probably do better estimates with psadw +; or pavgb At this point this is just meant to be first pass for calculating +; all the parms needed for 16x16 ssim so we can play with dssim as distortion +; in mode selection code. +global sym(vpx_ssim_parms_8x8_sse2) PRIVATE +sym(vpx_ssim_parms_8x8_sse2): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 9 + SAVE_XMM 15 + push rsi + push rdi + ; end prolog + + mov rsi, arg(0) ;s + mov rcx, arg(1) ;sp + mov rdi, arg(2) ;r + mov rax, arg(3) ;rp + + pxor xmm0, xmm0 + pxor xmm15,xmm15 ;sum_s + pxor xmm14,xmm14 ;sum_r + pxor xmm13,xmm13 ;sum_sq_s + pxor xmm12,xmm12 ;sum_sq_r + pxor xmm11,xmm11 ;sum_sxr + + mov rdx, 8 ;row counter +.NextRow: + + ;grab source and reference pixels + movq xmm3, [rsi] + movq xmm4, [rdi] + punpcklbw xmm3, xmm0 ; low_s + punpcklbw xmm4, xmm0 ; low_r + + TABULATE_SSIM + + add rsi, rcx ; next s row + add rdi, rax ; next r row + + dec rdx ; counter + jnz .NextRow + + SUM_ACROSS_W xmm15 + SUM_ACROSS_W xmm14 + SUM_ACROSS_Q xmm13 + SUM_ACROSS_Q xmm12 + SUM_ACROSS_Q xmm11 + + mov rdi,arg(4) + movd [rdi], xmm15; + mov rdi,arg(5) + movd [rdi], xmm14; + mov rdi,arg(6) + movd [rdi], xmm13; + mov rdi,arg(7) + movd [rdi], xmm12; + mov rdi,arg(8) + movd [rdi], xmm11; + + ; begin epilog + pop rdi + pop rsi + RESTORE_XMM + UNSHADOW_ARGS + pop rbp + ret diff --git a/vpx_dsp/x86/subpel_variance_sse2.asm b/vpx_dsp/x86/subpel_variance_sse2.asm new file mode 100644 index 0000000..cee4468 --- /dev/null +++ b/vpx_dsp/x86/subpel_variance_sse2.asm @@ -0,0 +1,1486 @@ +; +; Copyright (c) 2010 The WebM project authors. All Rights Reserved. +; +; Use of this source code is governed by a BSD-style license +; that can be found in the LICENSE file in the root of the source +; tree. An additional intellectual property rights grant can be found +; in the file PATENTS. All contributing project authors may +; be found in the AUTHORS file in the root of the source tree. +; + +%include "third_party/x86inc/x86inc.asm" + +SECTION_RODATA +pw_8: times 8 dw 8 +bilin_filter_m_sse2: times 8 dw 16 + times 8 dw 0 + times 8 dw 14 + times 8 dw 2 + times 8 dw 12 + times 8 dw 4 + times 8 dw 10 + times 8 dw 6 + times 16 dw 8 + times 8 dw 6 + times 8 dw 10 + times 8 dw 4 + times 8 dw 12 + times 8 dw 2 + times 8 dw 14 + +bilin_filter_m_ssse3: times 8 db 16, 0 + times 8 db 14, 2 + times 8 db 12, 4 + times 8 db 10, 6 + times 16 db 8 + times 8 db 6, 10 + times 8 db 4, 12 + times 8 db 2, 14 + +SECTION .text + +; int vpx_sub_pixel_varianceNxh(const uint8_t *src, ptrdiff_t src_stride, +; int x_offset, int y_offset, +; const uint8_t *dst, ptrdiff_t dst_stride, +; int height, unsigned int *sse); +; +; This function returns the SE and stores SSE in the given pointer. + +%macro SUM_SSE 6 ; src1, dst1, src2, dst2, sum, sse + psubw %3, %4 + psubw %1, %2 + paddw %5, %3 + pmaddwd %3, %3 + paddw %5, %1 + pmaddwd %1, %1 + paddd %6, %3 + paddd %6, %1 +%endmacro + +%macro STORE_AND_RET 1 +%if %1 > 4 + ; if H=64 and W=16, we have 8 words of each 2(1bit)x64(6bit)x9bit=16bit + ; in m6, i.e. it _exactly_ fits in a signed word per word in the xmm reg. + ; We have to sign-extend it before adding the words within the register + ; and outputing to a dword. + pcmpgtw m5, m6 ; mask for 0 > x + movhlps m3, m7 + punpcklwd m4, m6, m5 + punpckhwd m6, m5 ; sign-extend m6 word->dword + paddd m7, m3 + paddd m6, m4 + pshufd m3, m7, 0x1 + movhlps m4, m6 + paddd m7, m3 + paddd m6, m4 + mov r1, ssem ; r1 = unsigned int *sse + pshufd m4, m6, 0x1 + movd [r1], m7 ; store sse + paddd m6, m4 + movd raxd, m6 ; store sum as return value +%else ; 4xh + pshuflw m4, m6, 0xe + pshuflw m3, m7, 0xe + paddw m6, m4 + paddd m7, m3 + pcmpgtw m5, m6 ; mask for 0 > x + mov r1, ssem ; r1 = unsigned int *sse + punpcklwd m6, m5 ; sign-extend m6 word->dword + movd [r1], m7 ; store sse + pshuflw m4, m6, 0xe + paddd m6, m4 + movd raxd, m6 ; store sum as return value +%endif + RET +%endmacro + +%macro INC_SRC_BY_SRC_STRIDE 0 +%if ARCH_X86=1 && CONFIG_PIC=1 + add srcq, src_stridemp +%else + add srcq, src_strideq +%endif +%endmacro + +%macro SUBPEL_VARIANCE 1-2 0 ; W +%if cpuflag(ssse3) +%define bilin_filter_m bilin_filter_m_ssse3 +%define filter_idx_shift 4 +%else +%define bilin_filter_m bilin_filter_m_sse2 +%define filter_idx_shift 5 +%endif +; FIXME(rbultje) only bilinear filters use >8 registers, and ssse3 only uses +; 11, not 13, if the registers are ordered correctly. May make a minor speed +; difference on Win64 + +%ifdef PIC ; 64bit PIC + %if %2 == 1 ; avg + cglobal sub_pixel_avg_variance%1xh, 9, 10, 13, src, src_stride, \ + x_offset, y_offset, \ + dst, dst_stride, \ + sec, sec_stride, height, sse + %define sec_str sec_strideq + %else + cglobal sub_pixel_variance%1xh, 7, 8, 13, src, src_stride, x_offset, \ + y_offset, dst, dst_stride, height, sse + %endif + %define block_height heightd + %define bilin_filter sseq +%else + %if ARCH_X86=1 && CONFIG_PIC=1 + %if %2 == 1 ; avg + cglobal sub_pixel_avg_variance%1xh, 7, 7, 13, src, src_stride, \ + x_offset, y_offset, \ + dst, dst_stride, \ + sec, sec_stride, \ + height, sse, g_bilin_filter, g_pw_8 + %define block_height dword heightm + %define sec_str sec_stridemp + + ;Store bilin_filter and pw_8 location in stack + %if GET_GOT_DEFINED == 1 + GET_GOT eax + add esp, 4 ; restore esp + %endif + + lea ecx, [GLOBAL(bilin_filter_m)] + mov g_bilin_filterm, ecx + + lea ecx, [GLOBAL(pw_8)] + mov g_pw_8m, ecx + + LOAD_IF_USED 0, 1 ; load eax, ecx back + %else + cglobal sub_pixel_variance%1xh, 7, 7, 13, src, src_stride, x_offset, \ + y_offset, dst, dst_stride, height, sse, \ + g_bilin_filter, g_pw_8 + %define block_height heightd + + ;Store bilin_filter and pw_8 location in stack + %if GET_GOT_DEFINED == 1 + GET_GOT eax + add esp, 4 ; restore esp + %endif + + lea ecx, [GLOBAL(bilin_filter_m)] + mov g_bilin_filterm, ecx + + lea ecx, [GLOBAL(pw_8)] + mov g_pw_8m, ecx + + LOAD_IF_USED 0, 1 ; load eax, ecx back + %endif + %else + %if %2 == 1 ; avg + cglobal sub_pixel_avg_variance%1xh, 7 + 2 * ARCH_X86_64, \ + 7 + 2 * ARCH_X86_64, 13, src, src_stride, \ + x_offset, y_offset, \ + dst, dst_stride, \ + sec, sec_stride, \ + height, sse + %if ARCH_X86_64 + %define block_height heightd + %define sec_str sec_strideq + %else + %define block_height dword heightm + %define sec_str sec_stridemp + %endif + %else + cglobal sub_pixel_variance%1xh, 7, 7, 13, src, src_stride, x_offset, \ + y_offset, dst, dst_stride, height, sse + %define block_height heightd + %endif + + %define bilin_filter bilin_filter_m + %endif +%endif + +%if %1 == 4 + %define movx movd +%else + %define movx movh +%endif + + ASSERT %1 <= 16 ; m6 overflows if w > 16 + pxor m6, m6 ; sum + pxor m7, m7 ; sse + ; FIXME(rbultje) if both filters are bilinear, we don't actually use m5; we + ; could perhaps use it for something more productive then + pxor m5, m5 ; dedicated zero register +%if %1 < 16 + sar block_height, 1 +%if %2 == 1 ; avg + shl sec_str, 1 +%endif +%endif + + ; FIXME(rbultje) replace by jumptable? + test x_offsetd, x_offsetd + jnz .x_nonzero + ; x_offset == 0 + test y_offsetd, y_offsetd + jnz .x_zero_y_nonzero + + ; x_offset == 0 && y_offset == 0 +.x_zero_y_zero_loop: +%if %1 == 16 + movu m0, [srcq] + mova m1, [dstq] +%if %2 == 1 ; avg + pavgb m0, [secq] + punpckhbw m3, m1, m5 + punpcklbw m1, m5 +%endif + punpckhbw m2, m0, m5 + punpcklbw m0, m5 + +%if %2 == 0 ; !avg + punpckhbw m3, m1, m5 + punpcklbw m1, m5 +%endif + SUM_SSE m0, m1, m2, m3, m6, m7 + + add srcq, src_strideq + add dstq, dst_strideq +%else ; %1 < 16 + movx m0, [srcq] +%if %2 == 1 ; avg +%if %1 > 4 + movhps m0, [srcq+src_strideq] +%else ; 4xh + movx m1, [srcq+src_strideq] + punpckldq m0, m1 +%endif +%else ; !avg + movx m2, [srcq+src_strideq] +%endif + + movx m1, [dstq] + movx m3, [dstq+dst_strideq] + +%if %2 == 1 ; avg +%if %1 > 4 + pavgb m0, [secq] +%else + movh m2, [secq] + pavgb m0, m2 +%endif + punpcklbw m3, m5 + punpcklbw m1, m5 +%if %1 > 4 + punpckhbw m2, m0, m5 + punpcklbw m0, m5 +%else ; 4xh + punpcklbw m0, m5 + movhlps m2, m0 +%endif +%else ; !avg + punpcklbw m0, m5 + punpcklbw m2, m5 + punpcklbw m3, m5 + punpcklbw m1, m5 +%endif + SUM_SSE m0, m1, m2, m3, m6, m7 + + lea srcq, [srcq+src_strideq*2] + lea dstq, [dstq+dst_strideq*2] +%endif +%if %2 == 1 ; avg + add secq, sec_str +%endif + dec block_height + jg .x_zero_y_zero_loop + STORE_AND_RET %1 + +.x_zero_y_nonzero: + cmp y_offsetd, 4 + jne .x_zero_y_nonhalf + + ; x_offset == 0 && y_offset == 0.5 +.x_zero_y_half_loop: +%if %1 == 16 + movu m0, [srcq] + movu m4, [srcq+src_strideq] + mova m1, [dstq] + pavgb m0, m4 + punpckhbw m3, m1, m5 +%if %2 == 1 ; avg + pavgb m0, [secq] +%endif + punpcklbw m1, m5 + punpckhbw m2, m0, m5 + punpcklbw m0, m5 + SUM_SSE m0, m1, m2, m3, m6, m7 + + add srcq, src_strideq + add dstq, dst_strideq +%else ; %1 < 16 + movx m0, [srcq] + movx m2, [srcq+src_strideq] +%if %2 == 1 ; avg +%if %1 > 4 + movhps m2, [srcq+src_strideq*2] +%else ; 4xh + movx m1, [srcq+src_strideq*2] + punpckldq m2, m1 +%endif + movx m1, [dstq] +%if %1 > 4 + movlhps m0, m2 +%else ; 4xh + punpckldq m0, m2 +%endif + movx m3, [dstq+dst_strideq] + pavgb m0, m2 + punpcklbw m1, m5 +%if %1 > 4 + pavgb m0, [secq] + punpcklbw m3, m5 + punpckhbw m2, m0, m5 + punpcklbw m0, m5 +%else ; 4xh + movh m4, [secq] + pavgb m0, m4 + punpcklbw m3, m5 + punpcklbw m0, m5 + movhlps m2, m0 +%endif +%else ; !avg + movx m4, [srcq+src_strideq*2] + movx m1, [dstq] + pavgb m0, m2 + movx m3, [dstq+dst_strideq] + pavgb m2, m4 + punpcklbw m0, m5 + punpcklbw m2, m5 + punpcklbw m3, m5 + punpcklbw m1, m5 +%endif + SUM_SSE m0, m1, m2, m3, m6, m7 + + lea srcq, [srcq+src_strideq*2] + lea dstq, [dstq+dst_strideq*2] +%endif +%if %2 == 1 ; avg + add secq, sec_str +%endif + dec block_height + jg .x_zero_y_half_loop + STORE_AND_RET %1 + +.x_zero_y_nonhalf: + ; x_offset == 0 && y_offset == bilin interpolation +%ifdef PIC + lea bilin_filter, [bilin_filter_m] +%endif + shl y_offsetd, filter_idx_shift +%if ARCH_X86_64 && %1 > 4 + mova m8, [bilin_filter+y_offsetq] +%if notcpuflag(ssse3) ; FIXME(rbultje) don't scatter registers on x86-64 + mova m9, [bilin_filter+y_offsetq+16] +%endif + mova m10, [pw_8] +%define filter_y_a m8 +%define filter_y_b m9 +%define filter_rnd m10 +%else ; x86-32 or mmx +%if ARCH_X86=1 && CONFIG_PIC=1 +; x_offset == 0, reuse x_offset reg +%define tempq x_offsetq + add y_offsetq, g_bilin_filterm +%define filter_y_a [y_offsetq] +%define filter_y_b [y_offsetq+16] + mov tempq, g_pw_8m +%define filter_rnd [tempq] +%else + add y_offsetq, bilin_filter +%define filter_y_a [y_offsetq] +%define filter_y_b [y_offsetq+16] +%define filter_rnd [pw_8] +%endif +%endif + +.x_zero_y_other_loop: +%if %1 == 16 + movu m0, [srcq] + movu m4, [srcq+src_strideq] + mova m1, [dstq] +%if cpuflag(ssse3) + punpckhbw m2, m0, m4 + punpcklbw m0, m4 + pmaddubsw m2, filter_y_a + pmaddubsw m0, filter_y_a + paddw m2, filter_rnd + paddw m0, filter_rnd +%else + punpckhbw m2, m0, m5 + punpckhbw m3, m4, m5 + punpcklbw m0, m5 + punpcklbw m4, m5 + ; FIXME(rbultje) instead of out=((num-x)*in1+x*in2+rnd)>>log2(num), we can + ; also do out=in1+(((num-x)*(in2-in1)+rnd)>>log2(num)). Total number of + ; instructions is the same (5), but it is 1 mul instead of 2, so might be + ; slightly faster because of pmullw latency. It would also cut our rodata + ; tables in half for this function, and save 1-2 registers on x86-64. + pmullw m2, filter_y_a + pmullw m3, filter_y_b + paddw m2, filter_rnd + pmullw m0, filter_y_a + pmullw m4, filter_y_b + paddw m0, filter_rnd + paddw m2, m3 + paddw m0, m4 +%endif + psraw m2, 4 + psraw m0, 4 +%if %2 == 1 ; avg + ; FIXME(rbultje) pipeline + packuswb m0, m2 + pavgb m0, [secq] + punpckhbw m2, m0, m5 + punpcklbw m0, m5 +%endif + punpckhbw m3, m1, m5 + punpcklbw m1, m5 + SUM_SSE m0, m1, m2, m3, m6, m7 + + add srcq, src_strideq + add dstq, dst_strideq +%else ; %1 < 16 + movx m0, [srcq] + movx m2, [srcq+src_strideq] + movx m4, [srcq+src_strideq*2] + movx m3, [dstq+dst_strideq] +%if cpuflag(ssse3) + movx m1, [dstq] + punpcklbw m0, m2 + punpcklbw m2, m4 + pmaddubsw m0, filter_y_a + pmaddubsw m2, filter_y_a + punpcklbw m3, m5 + paddw m2, filter_rnd + paddw m0, filter_rnd +%else + punpcklbw m0, m5 + punpcklbw m2, m5 + punpcklbw m4, m5 + pmullw m0, filter_y_a + pmullw m1, m2, filter_y_b + punpcklbw m3, m5 + paddw m0, filter_rnd + pmullw m2, filter_y_a + pmullw m4, filter_y_b + paddw m0, m1 + paddw m2, filter_rnd + movx m1, [dstq] + paddw m2, m4 +%endif + psraw m0, 4 + psraw m2, 4 +%if %2 == 1 ; avg + ; FIXME(rbultje) pipeline +%if %1 == 4 + movlhps m0, m2 +%endif + packuswb m0, m2 +%if %1 > 4 + pavgb m0, [secq] + punpckhbw m2, m0, m5 + punpcklbw m0, m5 +%else ; 4xh + movh m2, [secq] + pavgb m0, m2 + punpcklbw m0, m5 + movhlps m2, m0 +%endif +%endif + punpcklbw m1, m5 + SUM_SSE m0, m1, m2, m3, m6, m7 + + lea srcq, [srcq+src_strideq*2] + lea dstq, [dstq+dst_strideq*2] +%endif +%if %2 == 1 ; avg + add secq, sec_str +%endif + dec block_height + jg .x_zero_y_other_loop +%undef filter_y_a +%undef filter_y_b +%undef filter_rnd + STORE_AND_RET %1 + +.x_nonzero: + cmp x_offsetd, 4 + jne .x_nonhalf + ; x_offset == 0.5 + test y_offsetd, y_offsetd + jnz .x_half_y_nonzero + + ; x_offset == 0.5 && y_offset == 0 +.x_half_y_zero_loop: +%if %1 == 16 + movu m0, [srcq] + movu m4, [srcq+1] + mova m1, [dstq] + pavgb m0, m4 + punpckhbw m3, m1, m5 +%if %2 == 1 ; avg + pavgb m0, [secq] +%endif + punpcklbw m1, m5 + punpckhbw m2, m0, m5 + punpcklbw m0, m5 + SUM_SSE m0, m1, m2, m3, m6, m7 + + add srcq, src_strideq + add dstq, dst_strideq +%else ; %1 < 16 + movx m0, [srcq] + movx m4, [srcq+1] +%if %2 == 1 ; avg +%if %1 > 4 + movhps m0, [srcq+src_strideq] + movhps m4, [srcq+src_strideq+1] +%else ; 4xh + movx m1, [srcq+src_strideq] + punpckldq m0, m1 + movx m2, [srcq+src_strideq+1] + punpckldq m4, m2 +%endif + movx m1, [dstq] + movx m3, [dstq+dst_strideq] + pavgb m0, m4 + punpcklbw m3, m5 +%if %1 > 4 + pavgb m0, [secq] + punpcklbw m1, m5 + punpckhbw m2, m0, m5 + punpcklbw m0, m5 +%else ; 4xh + movh m2, [secq] + pavgb m0, m2 + punpcklbw m1, m5 + punpcklbw m0, m5 + movhlps m2, m0 +%endif +%else ; !avg + movx m2, [srcq+src_strideq] + movx m1, [dstq] + pavgb m0, m4 + movx m4, [srcq+src_strideq+1] + movx m3, [dstq+dst_strideq] + pavgb m2, m4 + punpcklbw m0, m5 + punpcklbw m2, m5 + punpcklbw m3, m5 + punpcklbw m1, m5 +%endif + SUM_SSE m0, m1, m2, m3, m6, m7 + + lea srcq, [srcq+src_strideq*2] + lea dstq, [dstq+dst_strideq*2] +%endif +%if %2 == 1 ; avg + add secq, sec_str +%endif + dec block_height + jg .x_half_y_zero_loop + STORE_AND_RET %1 + +.x_half_y_nonzero: + cmp y_offsetd, 4 + jne .x_half_y_nonhalf + + ; x_offset == 0.5 && y_offset == 0.5 +%if %1 == 16 + movu m0, [srcq] + movu m3, [srcq+1] + add srcq, src_strideq + pavgb m0, m3 +.x_half_y_half_loop: + movu m4, [srcq] + movu m3, [srcq+1] + mova m1, [dstq] + pavgb m4, m3 + punpckhbw m3, m1, m5 + pavgb m0, m4 +%if %2 == 1 ; avg + punpcklbw m1, m5 + pavgb m0, [secq] + punpckhbw m2, m0, m5 + punpcklbw m0, m5 +%else + punpckhbw m2, m0, m5 + punpcklbw m0, m5 + punpcklbw m1, m5 +%endif + SUM_SSE m0, m1, m2, m3, m6, m7 + mova m0, m4 + + add srcq, src_strideq + add dstq, dst_strideq +%else ; %1 < 16 + movx m0, [srcq] + movx m3, [srcq+1] + add srcq, src_strideq + pavgb m0, m3 +.x_half_y_half_loop: + movx m2, [srcq] + movx m3, [srcq+1] +%if %2 == 1 ; avg +%if %1 > 4 + movhps m2, [srcq+src_strideq] + movhps m3, [srcq+src_strideq+1] +%else + movx m1, [srcq+src_strideq] + punpckldq m2, m1 + movx m1, [srcq+src_strideq+1] + punpckldq m3, m1 +%endif + pavgb m2, m3 +%if %1 > 4 + movlhps m0, m2 + movhlps m4, m2 +%else ; 4xh + punpckldq m0, m2 + pshuflw m4, m2, 0xe +%endif + movx m1, [dstq] + pavgb m0, m2 + movx m3, [dstq+dst_strideq] +%if %1 > 4 + pavgb m0, [secq] +%else + movh m2, [secq] + pavgb m0, m2 +%endif + punpcklbw m3, m5 + punpcklbw m1, m5 +%if %1 > 4 + punpckhbw m2, m0, m5 + punpcklbw m0, m5 +%else + punpcklbw m0, m5 + movhlps m2, m0 +%endif +%else ; !avg + movx m4, [srcq+src_strideq] + movx m1, [srcq+src_strideq+1] + pavgb m2, m3 + pavgb m4, m1 + pavgb m0, m2 + pavgb m2, m4 + movx m1, [dstq] + movx m3, [dstq+dst_strideq] + punpcklbw m0, m5 + punpcklbw m2, m5 + punpcklbw m3, m5 + punpcklbw m1, m5 +%endif + SUM_SSE m0, m1, m2, m3, m6, m7 + mova m0, m4 + + lea srcq, [srcq+src_strideq*2] + lea dstq, [dstq+dst_strideq*2] +%endif +%if %2 == 1 ; avg + add secq, sec_str +%endif + dec block_height + jg .x_half_y_half_loop + STORE_AND_RET %1 + +.x_half_y_nonhalf: + ; x_offset == 0.5 && y_offset == bilin interpolation +%ifdef PIC + lea bilin_filter, [bilin_filter_m] +%endif + shl y_offsetd, filter_idx_shift +%if ARCH_X86_64 && %1 > 4 + mova m8, [bilin_filter+y_offsetq] +%if notcpuflag(ssse3) ; FIXME(rbultje) don't scatter registers on x86-64 + mova m9, [bilin_filter+y_offsetq+16] +%endif + mova m10, [pw_8] +%define filter_y_a m8 +%define filter_y_b m9 +%define filter_rnd m10 +%else ;x86_32 +%if ARCH_X86=1 && CONFIG_PIC=1 +; x_offset == 0.5. We can reuse x_offset reg +%define tempq x_offsetq + add y_offsetq, g_bilin_filterm +%define filter_y_a [y_offsetq] +%define filter_y_b [y_offsetq+16] + mov tempq, g_pw_8m +%define filter_rnd [tempq] +%else + add y_offsetq, bilin_filter +%define filter_y_a [y_offsetq] +%define filter_y_b [y_offsetq+16] +%define filter_rnd [pw_8] +%endif +%endif + +%if %1 == 16 + movu m0, [srcq] + movu m3, [srcq+1] + add srcq, src_strideq + pavgb m0, m3 +.x_half_y_other_loop: + movu m4, [srcq] + movu m2, [srcq+1] + mova m1, [dstq] + pavgb m4, m2 +%if cpuflag(ssse3) + punpckhbw m2, m0, m4 + punpcklbw m0, m4 + pmaddubsw m2, filter_y_a + pmaddubsw m0, filter_y_a + paddw m2, filter_rnd + paddw m0, filter_rnd + psraw m2, 4 +%else + punpckhbw m2, m0, m5 + punpckhbw m3, m4, m5 + pmullw m2, filter_y_a + pmullw m3, filter_y_b + paddw m2, filter_rnd + punpcklbw m0, m5 + paddw m2, m3 + punpcklbw m3, m4, m5 + pmullw m0, filter_y_a + pmullw m3, filter_y_b + paddw m0, filter_rnd + psraw m2, 4 + paddw m0, m3 +%endif + punpckhbw m3, m1, m5 + psraw m0, 4 +%if %2 == 1 ; avg + ; FIXME(rbultje) pipeline + packuswb m0, m2 + pavgb m0, [secq] + punpckhbw m2, m0, m5 + punpcklbw m0, m5 +%endif + punpcklbw m1, m5 + SUM_SSE m0, m1, m2, m3, m6, m7 + mova m0, m4 + + add srcq, src_strideq + add dstq, dst_strideq +%else ; %1 < 16 + movx m0, [srcq] + movx m3, [srcq+1] + add srcq, src_strideq + pavgb m0, m3 +%if notcpuflag(ssse3) + punpcklbw m0, m5 +%endif +.x_half_y_other_loop: + movx m2, [srcq] + movx m1, [srcq+1] + movx m4, [srcq+src_strideq] + movx m3, [srcq+src_strideq+1] + pavgb m2, m1 + pavgb m4, m3 + movx m3, [dstq+dst_strideq] +%if cpuflag(ssse3) + movx m1, [dstq] + punpcklbw m0, m2 + punpcklbw m2, m4 + pmaddubsw m0, filter_y_a + pmaddubsw m2, filter_y_a + punpcklbw m3, m5 + paddw m0, filter_rnd + paddw m2, filter_rnd +%else + punpcklbw m2, m5 + punpcklbw m4, m5 + pmullw m0, filter_y_a + pmullw m1, m2, filter_y_b + punpcklbw m3, m5 + paddw m0, filter_rnd + pmullw m2, filter_y_a + paddw m0, m1 + pmullw m1, m4, filter_y_b + paddw m2, filter_rnd + paddw m2, m1 + movx m1, [dstq] +%endif + psraw m0, 4 + psraw m2, 4 +%if %2 == 1 ; avg + ; FIXME(rbultje) pipeline +%if %1 == 4 + movlhps m0, m2 +%endif + packuswb m0, m2 +%if %1 > 4 + pavgb m0, [secq] + punpckhbw m2, m0, m5 + punpcklbw m0, m5 +%else + movh m2, [secq] + pavgb m0, m2 + punpcklbw m0, m5 + movhlps m2, m0 +%endif +%endif + punpcklbw m1, m5 + SUM_SSE m0, m1, m2, m3, m6, m7 + mova m0, m4 + + lea srcq, [srcq+src_strideq*2] + lea dstq, [dstq+dst_strideq*2] +%endif +%if %2 == 1 ; avg + add secq, sec_str +%endif + dec block_height + jg .x_half_y_other_loop +%undef filter_y_a +%undef filter_y_b +%undef filter_rnd + STORE_AND_RET %1 + +.x_nonhalf: + test y_offsetd, y_offsetd + jnz .x_nonhalf_y_nonzero + + ; x_offset == bilin interpolation && y_offset == 0 +%ifdef PIC + lea bilin_filter, [bilin_filter_m] +%endif + shl x_offsetd, filter_idx_shift +%if ARCH_X86_64 && %1 > 4 + mova m8, [bilin_filter+x_offsetq] +%if notcpuflag(ssse3) ; FIXME(rbultje) don't scatter registers on x86-64 + mova m9, [bilin_filter+x_offsetq+16] +%endif + mova m10, [pw_8] +%define filter_x_a m8 +%define filter_x_b m9 +%define filter_rnd m10 +%else ; x86-32 +%if ARCH_X86=1 && CONFIG_PIC=1 +;y_offset == 0. We can reuse y_offset reg. +%define tempq y_offsetq + add x_offsetq, g_bilin_filterm +%define filter_x_a [x_offsetq] +%define filter_x_b [x_offsetq+16] + mov tempq, g_pw_8m +%define filter_rnd [tempq] +%else + add x_offsetq, bilin_filter +%define filter_x_a [x_offsetq] +%define filter_x_b [x_offsetq+16] +%define filter_rnd [pw_8] +%endif +%endif + +.x_other_y_zero_loop: +%if %1 == 16 + movu m0, [srcq] + movu m4, [srcq+1] + mova m1, [dstq] +%if cpuflag(ssse3) + punpckhbw m2, m0, m4 + punpcklbw m0, m4 + pmaddubsw m2, filter_x_a + pmaddubsw m0, filter_x_a + paddw m2, filter_rnd + paddw m0, filter_rnd +%else + punpckhbw m2, m0, m5 + punpckhbw m3, m4, m5 + punpcklbw m0, m5 + punpcklbw m4, m5 + pmullw m2, filter_x_a + pmullw m3, filter_x_b + paddw m2, filter_rnd + pmullw m0, filter_x_a + pmullw m4, filter_x_b + paddw m0, filter_rnd + paddw m2, m3 + paddw m0, m4 +%endif + psraw m2, 4 + psraw m0, 4 +%if %2 == 1 ; avg + ; FIXME(rbultje) pipeline + packuswb m0, m2 + pavgb m0, [secq] + punpckhbw m2, m0, m5 + punpcklbw m0, m5 +%endif + punpckhbw m3, m1, m5 + punpcklbw m1, m5 + SUM_SSE m0, m1, m2, m3, m6, m7 + + add srcq, src_strideq + add dstq, dst_strideq +%else ; %1 < 16 + movx m0, [srcq] + movx m1, [srcq+1] + movx m2, [srcq+src_strideq] + movx m4, [srcq+src_strideq+1] + movx m3, [dstq+dst_strideq] +%if cpuflag(ssse3) + punpcklbw m0, m1 + movx m1, [dstq] + punpcklbw m2, m4 + pmaddubsw m0, filter_x_a + pmaddubsw m2, filter_x_a + punpcklbw m3, m5 + paddw m0, filter_rnd + paddw m2, filter_rnd +%else + punpcklbw m0, m5 + punpcklbw m1, m5 + punpcklbw m2, m5 + punpcklbw m4, m5 + pmullw m0, filter_x_a + pmullw m1, filter_x_b + punpcklbw m3, m5 + paddw m0, filter_rnd + pmullw m2, filter_x_a + pmullw m4, filter_x_b + paddw m0, m1 + paddw m2, filter_rnd + movx m1, [dstq] + paddw m2, m4 +%endif + psraw m0, 4 + psraw m2, 4 +%if %2 == 1 ; avg + ; FIXME(rbultje) pipeline +%if %1 == 4 + movlhps m0, m2 +%endif + packuswb m0, m2 +%if %1 > 4 + pavgb m0, [secq] + punpckhbw m2, m0, m5 + punpcklbw m0, m5 +%else + movh m2, [secq] + pavgb m0, m2 + punpcklbw m0, m5 + movhlps m2, m0 +%endif +%endif + punpcklbw m1, m5 + SUM_SSE m0, m1, m2, m3, m6, m7 + + lea srcq, [srcq+src_strideq*2] + lea dstq, [dstq+dst_strideq*2] +%endif +%if %2 == 1 ; avg + add secq, sec_str +%endif + dec block_height + jg .x_other_y_zero_loop +%undef filter_x_a +%undef filter_x_b +%undef filter_rnd + STORE_AND_RET %1 + +.x_nonhalf_y_nonzero: + cmp y_offsetd, 4 + jne .x_nonhalf_y_nonhalf + + ; x_offset == bilin interpolation && y_offset == 0.5 +%ifdef PIC + lea bilin_filter, [bilin_filter_m] +%endif + shl x_offsetd, filter_idx_shift +%if ARCH_X86_64 && %1 > 4 + mova m8, [bilin_filter+x_offsetq] +%if notcpuflag(ssse3) ; FIXME(rbultje) don't scatter registers on x86-64 + mova m9, [bilin_filter+x_offsetq+16] +%endif + mova m10, [pw_8] +%define filter_x_a m8 +%define filter_x_b m9 +%define filter_rnd m10 +%else ; x86-32 +%if ARCH_X86=1 && CONFIG_PIC=1 +; y_offset == 0.5. We can reuse y_offset reg. +%define tempq y_offsetq + add x_offsetq, g_bilin_filterm +%define filter_x_a [x_offsetq] +%define filter_x_b [x_offsetq+16] + mov tempq, g_pw_8m +%define filter_rnd [tempq] +%else + add x_offsetq, bilin_filter +%define filter_x_a [x_offsetq] +%define filter_x_b [x_offsetq+16] +%define filter_rnd [pw_8] +%endif +%endif + +%if %1 == 16 + movu m0, [srcq] + movu m1, [srcq+1] +%if cpuflag(ssse3) + punpckhbw m2, m0, m1 + punpcklbw m0, m1 + pmaddubsw m2, filter_x_a + pmaddubsw m0, filter_x_a + paddw m2, filter_rnd + paddw m0, filter_rnd +%else + punpckhbw m2, m0, m5 + punpckhbw m3, m1, m5 + punpcklbw m0, m5 + punpcklbw m1, m5 + pmullw m0, filter_x_a + pmullw m1, filter_x_b + paddw m0, filter_rnd + pmullw m2, filter_x_a + pmullw m3, filter_x_b + paddw m2, filter_rnd + paddw m0, m1 + paddw m2, m3 +%endif + psraw m0, 4 + psraw m2, 4 + add srcq, src_strideq + packuswb m0, m2 +.x_other_y_half_loop: + movu m4, [srcq] + movu m3, [srcq+1] +%if cpuflag(ssse3) + mova m1, [dstq] + punpckhbw m2, m4, m3 + punpcklbw m4, m3 + pmaddubsw m2, filter_x_a + pmaddubsw m4, filter_x_a + paddw m2, filter_rnd + paddw m4, filter_rnd + psraw m2, 4 + psraw m4, 4 + packuswb m4, m2 + pavgb m0, m4 + punpckhbw m3, m1, m5 + punpcklbw m1, m5 +%else + punpckhbw m2, m4, m5 + punpckhbw m1, m3, m5 + punpcklbw m4, m5 + punpcklbw m3, m5 + pmullw m4, filter_x_a + pmullw m3, filter_x_b + paddw m4, filter_rnd + pmullw m2, filter_x_a + pmullw m1, filter_x_b + paddw m2, filter_rnd + paddw m4, m3 + paddw m2, m1 + mova m1, [dstq] + psraw m4, 4 + psraw m2, 4 + punpckhbw m3, m1, m5 + ; FIXME(rbultje) the repeated pack/unpack here around m0/m2 is because we + ; have a 1-register shortage to be able to store the backup of the bilin + ; filtered second line as words as cache for the next line. Packing into + ; a byte costs 1 pack and 2 unpacks, but saves a register. + packuswb m4, m2 + punpcklbw m1, m5 + pavgb m0, m4 +%endif +%if %2 == 1 ; avg + ; FIXME(rbultje) pipeline + pavgb m0, [secq] +%endif + punpckhbw m2, m0, m5 + punpcklbw m0, m5 + SUM_SSE m0, m1, m2, m3, m6, m7 + mova m0, m4 + + add srcq, src_strideq + add dstq, dst_strideq +%else ; %1 < 16 + movx m0, [srcq] + movx m1, [srcq+1] +%if cpuflag(ssse3) + punpcklbw m0, m1 + pmaddubsw m0, filter_x_a + paddw m0, filter_rnd +%else + punpcklbw m0, m5 + punpcklbw m1, m5 + pmullw m0, filter_x_a + pmullw m1, filter_x_b + paddw m0, filter_rnd + paddw m0, m1 +%endif + add srcq, src_strideq + psraw m0, 4 +.x_other_y_half_loop: + movx m2, [srcq] + movx m1, [srcq+1] + movx m4, [srcq+src_strideq] + movx m3, [srcq+src_strideq+1] +%if cpuflag(ssse3) + punpcklbw m2, m1 + punpcklbw m4, m3 + pmaddubsw m2, filter_x_a + pmaddubsw m4, filter_x_a + movx m1, [dstq] + movx m3, [dstq+dst_strideq] + paddw m2, filter_rnd + paddw m4, filter_rnd +%else + punpcklbw m2, m5 + punpcklbw m1, m5 + punpcklbw m4, m5 + punpcklbw m3, m5 + pmullw m2, filter_x_a + pmullw m1, filter_x_b + paddw m2, filter_rnd + pmullw m4, filter_x_a + pmullw m3, filter_x_b + paddw m4, filter_rnd + paddw m2, m1 + movx m1, [dstq] + paddw m4, m3 + movx m3, [dstq+dst_strideq] +%endif + psraw m2, 4 + psraw m4, 4 + pavgw m0, m2 + pavgw m2, m4 +%if %2 == 1 ; avg + ; FIXME(rbultje) pipeline - also consider going to bytes here +%if %1 == 4 + movlhps m0, m2 +%endif + packuswb m0, m2 +%if %1 > 4 + pavgb m0, [secq] + punpckhbw m2, m0, m5 + punpcklbw m0, m5 +%else + movh m2, [secq] + pavgb m0, m2 + punpcklbw m0, m5 + movhlps m2, m0 +%endif +%endif + punpcklbw m3, m5 + punpcklbw m1, m5 + SUM_SSE m0, m1, m2, m3, m6, m7 + mova m0, m4 + + lea srcq, [srcq+src_strideq*2] + lea dstq, [dstq+dst_strideq*2] +%endif +%if %2 == 1 ; avg + add secq, sec_str +%endif + dec block_height + jg .x_other_y_half_loop +%undef filter_x_a +%undef filter_x_b +%undef filter_rnd + STORE_AND_RET %1 + +.x_nonhalf_y_nonhalf: +%ifdef PIC + lea bilin_filter, [bilin_filter_m] +%endif + shl x_offsetd, filter_idx_shift + shl y_offsetd, filter_idx_shift +%if ARCH_X86_64 && %1 > 4 + mova m8, [bilin_filter+x_offsetq] +%if notcpuflag(ssse3) ; FIXME(rbultje) don't scatter registers on x86-64 + mova m9, [bilin_filter+x_offsetq+16] +%endif + mova m10, [bilin_filter+y_offsetq] +%if notcpuflag(ssse3) ; FIXME(rbultje) don't scatter registers on x86-64 + mova m11, [bilin_filter+y_offsetq+16] +%endif + mova m12, [pw_8] +%define filter_x_a m8 +%define filter_x_b m9 +%define filter_y_a m10 +%define filter_y_b m11 +%define filter_rnd m12 +%else ; x86-32 +%if ARCH_X86=1 && CONFIG_PIC=1 +; In this case, there is NO unused register. Used src_stride register. Later, +; src_stride has to be loaded from stack when it is needed. +%define tempq src_strideq + mov tempq, g_bilin_filterm + add x_offsetq, tempq + add y_offsetq, tempq +%define filter_x_a [x_offsetq] +%define filter_x_b [x_offsetq+16] +%define filter_y_a [y_offsetq] +%define filter_y_b [y_offsetq+16] + + mov tempq, g_pw_8m +%define filter_rnd [tempq] +%else + add x_offsetq, bilin_filter + add y_offsetq, bilin_filter +%define filter_x_a [x_offsetq] +%define filter_x_b [x_offsetq+16] +%define filter_y_a [y_offsetq] +%define filter_y_b [y_offsetq+16] +%define filter_rnd [pw_8] +%endif +%endif + + ; x_offset == bilin interpolation && y_offset == bilin interpolation +%if %1 == 16 + movu m0, [srcq] + movu m1, [srcq+1] +%if cpuflag(ssse3) + punpckhbw m2, m0, m1 + punpcklbw m0, m1 + pmaddubsw m2, filter_x_a + pmaddubsw m0, filter_x_a + paddw m2, filter_rnd + paddw m0, filter_rnd +%else + punpckhbw m2, m0, m5 + punpckhbw m3, m1, m5 + punpcklbw m0, m5 + punpcklbw m1, m5 + pmullw m0, filter_x_a + pmullw m1, filter_x_b + paddw m0, filter_rnd + pmullw m2, filter_x_a + pmullw m3, filter_x_b + paddw m2, filter_rnd + paddw m0, m1 + paddw m2, m3 +%endif + psraw m0, 4 + psraw m2, 4 + + INC_SRC_BY_SRC_STRIDE + + packuswb m0, m2 +.x_other_y_other_loop: +%if cpuflag(ssse3) + movu m4, [srcq] + movu m3, [srcq+1] + mova m1, [dstq] + punpckhbw m2, m4, m3 + punpcklbw m4, m3 + pmaddubsw m2, filter_x_a + pmaddubsw m4, filter_x_a + punpckhbw m3, m1, m5 + paddw m2, filter_rnd + paddw m4, filter_rnd + psraw m2, 4 + psraw m4, 4 + packuswb m4, m2 + punpckhbw m2, m0, m4 + punpcklbw m0, m4 + pmaddubsw m2, filter_y_a + pmaddubsw m0, filter_y_a + punpcklbw m1, m5 + paddw m2, filter_rnd + paddw m0, filter_rnd + psraw m2, 4 + psraw m0, 4 +%else + movu m3, [srcq] + movu m4, [srcq+1] + punpckhbw m1, m3, m5 + punpckhbw m2, m4, m5 + punpcklbw m3, m5 + punpcklbw m4, m5 + pmullw m3, filter_x_a + pmullw m4, filter_x_b + paddw m3, filter_rnd + pmullw m1, filter_x_a + pmullw m2, filter_x_b + paddw m1, filter_rnd + paddw m3, m4 + paddw m1, m2 + psraw m3, 4 + psraw m1, 4 + packuswb m4, m3, m1 + punpckhbw m2, m0, m5 + punpcklbw m0, m5 + pmullw m2, filter_y_a + pmullw m1, filter_y_b + paddw m2, filter_rnd + pmullw m0, filter_y_a + pmullw m3, filter_y_b + paddw m2, m1 + mova m1, [dstq] + paddw m0, filter_rnd + psraw m2, 4 + paddw m0, m3 + punpckhbw m3, m1, m5 + psraw m0, 4 + punpcklbw m1, m5 +%endif +%if %2 == 1 ; avg + ; FIXME(rbultje) pipeline + packuswb m0, m2 + pavgb m0, [secq] + punpckhbw m2, m0, m5 + punpcklbw m0, m5 +%endif + SUM_SSE m0, m1, m2, m3, m6, m7 + mova m0, m4 + + INC_SRC_BY_SRC_STRIDE + add dstq, dst_strideq +%else ; %1 < 16 + movx m0, [srcq] + movx m1, [srcq+1] +%if cpuflag(ssse3) + punpcklbw m0, m1 + pmaddubsw m0, filter_x_a + paddw m0, filter_rnd +%else + punpcklbw m0, m5 + punpcklbw m1, m5 + pmullw m0, filter_x_a + pmullw m1, filter_x_b + paddw m0, filter_rnd + paddw m0, m1 +%endif + psraw m0, 4 +%if cpuflag(ssse3) + packuswb m0, m0 +%endif + + INC_SRC_BY_SRC_STRIDE + +.x_other_y_other_loop: + movx m2, [srcq] + movx m1, [srcq+1] + + INC_SRC_BY_SRC_STRIDE + movx m4, [srcq] + movx m3, [srcq+1] + +%if cpuflag(ssse3) + punpcklbw m2, m1 + punpcklbw m4, m3 + pmaddubsw m2, filter_x_a + pmaddubsw m4, filter_x_a + movx m3, [dstq+dst_strideq] + movx m1, [dstq] + paddw m2, filter_rnd + paddw m4, filter_rnd + psraw m2, 4 + psraw m4, 4 + packuswb m2, m2 + packuswb m4, m4 + punpcklbw m0, m2 + punpcklbw m2, m4 + pmaddubsw m0, filter_y_a + pmaddubsw m2, filter_y_a + punpcklbw m3, m5 + paddw m0, filter_rnd + paddw m2, filter_rnd + psraw m0, 4 + psraw m2, 4 + punpcklbw m1, m5 +%else + punpcklbw m2, m5 + punpcklbw m1, m5 + punpcklbw m4, m5 + punpcklbw m3, m5 + pmullw m2, filter_x_a + pmullw m1, filter_x_b + paddw m2, filter_rnd + pmullw m4, filter_x_a + pmullw m3, filter_x_b + paddw m4, filter_rnd + paddw m2, m1 + paddw m4, m3 + psraw m2, 4 + psraw m4, 4 + pmullw m0, filter_y_a + pmullw m3, m2, filter_y_b + paddw m0, filter_rnd + pmullw m2, filter_y_a + pmullw m1, m4, filter_y_b + paddw m2, filter_rnd + paddw m0, m3 + movx m3, [dstq+dst_strideq] + paddw m2, m1 + movx m1, [dstq] + psraw m0, 4 + psraw m2, 4 + punpcklbw m3, m5 + punpcklbw m1, m5 +%endif +%if %2 == 1 ; avg + ; FIXME(rbultje) pipeline +%if %1 == 4 + movlhps m0, m2 +%endif + packuswb m0, m2 +%if %1 > 4 + pavgb m0, [secq] + punpckhbw m2, m0, m5 + punpcklbw m0, m5 +%else + movh m2, [secq] + pavgb m0, m2 + punpcklbw m0, m5 + movhlps m2, m0 +%endif +%endif + SUM_SSE m0, m1, m2, m3, m6, m7 + mova m0, m4 + + INC_SRC_BY_SRC_STRIDE + lea dstq, [dstq+dst_strideq*2] +%endif +%if %2 == 1 ; avg + add secq, sec_str +%endif + dec block_height + jg .x_other_y_other_loop +%undef filter_x_a +%undef filter_x_b +%undef filter_y_a +%undef filter_y_b +%undef filter_rnd +%undef movx + STORE_AND_RET %1 +%endmacro + +; FIXME(rbultje) the non-bilinear versions (i.e. x=0,8&&y=0,8) are identical +; between the ssse3 and non-ssse3 version. It may make sense to merge their +; code in the sense that the ssse3 version would jump to the appropriate +; location in the sse/2 version, rather than duplicating that code in the +; binary. + +INIT_XMM sse2 +SUBPEL_VARIANCE 4 +SUBPEL_VARIANCE 8 +SUBPEL_VARIANCE 16 + +INIT_XMM ssse3 +SUBPEL_VARIANCE 4 +SUBPEL_VARIANCE 8 +SUBPEL_VARIANCE 16 + +INIT_XMM sse2 +SUBPEL_VARIANCE 4, 1 +SUBPEL_VARIANCE 8, 1 +SUBPEL_VARIANCE 16, 1 + +INIT_XMM ssse3 +SUBPEL_VARIANCE 4, 1 +SUBPEL_VARIANCE 8, 1 +SUBPEL_VARIANCE 16, 1 diff --git a/vpx_dsp/x86/subtract_sse2.asm b/vpx_dsp/x86/subtract_sse2.asm new file mode 100644 index 0000000..4273efb --- /dev/null +++ b/vpx_dsp/x86/subtract_sse2.asm @@ -0,0 +1,127 @@ +; +; Copyright (c) 2010 The WebM project authors. All Rights Reserved. +; +; Use of this source code is governed by a BSD-style license +; that can be found in the LICENSE file in the root of the source +; tree. An additional intellectual property rights grant can be found +; in the file PATENTS. All contributing project authors may +; be found in the AUTHORS file in the root of the source tree. +; + +%include "third_party/x86inc/x86inc.asm" + +SECTION .text + +; void vpx_subtract_block(int rows, int cols, +; int16_t *diff, ptrdiff_t diff_stride, +; const uint8_t *src, ptrdiff_t src_stride, +; const uint8_t *pred, ptrdiff_t pred_stride) + +INIT_XMM sse2 +cglobal subtract_block, 7, 7, 8, \ + rows, cols, diff, diff_stride, src, src_stride, \ + pred, pred_stride +%define pred_str colsq + pxor m7, m7 ; dedicated zero register + cmp colsd, 4 + je .case_4 + cmp colsd, 8 + je .case_8 + cmp colsd, 16 + je .case_16 + cmp colsd, 32 + je .case_32 + +%macro loop16 6 + mova m0, [srcq+%1] + mova m4, [srcq+%2] + mova m1, [predq+%3] + mova m5, [predq+%4] + punpckhbw m2, m0, m7 + punpckhbw m3, m1, m7 + punpcklbw m0, m7 + punpcklbw m1, m7 + psubw m2, m3 + psubw m0, m1 + punpckhbw m1, m4, m7 + punpckhbw m3, m5, m7 + punpcklbw m4, m7 + punpcklbw m5, m7 + psubw m1, m3 + psubw m4, m5 + mova [diffq+mmsize*0+%5], m0 + mova [diffq+mmsize*1+%5], m2 + mova [diffq+mmsize*0+%6], m4 + mova [diffq+mmsize*1+%6], m1 +%endmacro + + mov pred_str, pred_stridemp +.loop_64: + loop16 0*mmsize, 1*mmsize, 0*mmsize, 1*mmsize, 0*mmsize, 2*mmsize + loop16 2*mmsize, 3*mmsize, 2*mmsize, 3*mmsize, 4*mmsize, 6*mmsize + lea diffq, [diffq+diff_strideq*2] + add predq, pred_str + add srcq, src_strideq + dec rowsd + jg .loop_64 + RET + +.case_32: + mov pred_str, pred_stridemp +.loop_32: + loop16 0, mmsize, 0, mmsize, 0, 2*mmsize + lea diffq, [diffq+diff_strideq*2] + add predq, pred_str + add srcq, src_strideq + dec rowsd + jg .loop_32 + RET + +.case_16: + mov pred_str, pred_stridemp +.loop_16: + loop16 0, src_strideq, 0, pred_str, 0, diff_strideq*2 + lea diffq, [diffq+diff_strideq*4] + lea predq, [predq+pred_str*2] + lea srcq, [srcq+src_strideq*2] + sub rowsd, 2 + jg .loop_16 + RET + +%macro loop_h 0 + movh m0, [srcq] + movh m2, [srcq+src_strideq] + movh m1, [predq] + movh m3, [predq+pred_str] + punpcklbw m0, m7 + punpcklbw m1, m7 + punpcklbw m2, m7 + punpcklbw m3, m7 + psubw m0, m1 + psubw m2, m3 + mova [diffq], m0 + mova [diffq+diff_strideq*2], m2 +%endmacro + +.case_8: + mov pred_str, pred_stridemp +.loop_8: + loop_h + lea diffq, [diffq+diff_strideq*4] + lea srcq, [srcq+src_strideq*2] + lea predq, [predq+pred_str*2] + sub rowsd, 2 + jg .loop_8 + RET + +INIT_MMX +.case_4: + mov pred_str, pred_stridemp +.loop_4: + loop_h + lea diffq, [diffq+diff_strideq*4] + lea srcq, [srcq+src_strideq*2] + lea predq, [predq+pred_str*2] + sub rowsd, 2 + jg .loop_4 + RET diff --git a/vpx_dsp/x86/sum_squares_sse2.c b/vpx_dsp/x86/sum_squares_sse2.c new file mode 100644 index 0000000..026d0ca --- /dev/null +++ b/vpx_dsp/x86/sum_squares_sse2.c @@ -0,0 +1,129 @@ +/* + * Copyright (c) 2016 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include +#include + +#include "./vpx_dsp_rtcd.h" + +static uint64_t vpx_sum_squares_2d_i16_4x4_sse2(const int16_t *src, + int stride) { + const __m128i v_val_0_w = + _mm_loadl_epi64((const __m128i *)(src + 0 * stride)); + const __m128i v_val_1_w = + _mm_loadl_epi64((const __m128i *)(src + 1 * stride)); + const __m128i v_val_2_w = + _mm_loadl_epi64((const __m128i *)(src + 2 * stride)); + const __m128i v_val_3_w = + _mm_loadl_epi64((const __m128i *)(src + 3 * stride)); + + const __m128i v_sq_0_d = _mm_madd_epi16(v_val_0_w, v_val_0_w); + const __m128i v_sq_1_d = _mm_madd_epi16(v_val_1_w, v_val_1_w); + const __m128i v_sq_2_d = _mm_madd_epi16(v_val_2_w, v_val_2_w); + const __m128i v_sq_3_d = _mm_madd_epi16(v_val_3_w, v_val_3_w); + + const __m128i v_sum_01_d = _mm_add_epi32(v_sq_0_d, v_sq_1_d); + const __m128i v_sum_23_d = _mm_add_epi32(v_sq_2_d, v_sq_3_d); + const __m128i v_sum_0123_d = _mm_add_epi32(v_sum_01_d, v_sum_23_d); + + const __m128i v_sum_d = + _mm_add_epi32(v_sum_0123_d, _mm_srli_epi64(v_sum_0123_d, 32)); + + return (uint64_t)_mm_cvtsi128_si32(v_sum_d); +} + +// TODO(jingning): Evaluate the performance impact here. +#ifdef __GNUC__ +// This prevents GCC/Clang from inlining this function into +// vpx_sum_squares_2d_i16_sse2, which in turn saves some stack +// maintenance instructions in the common case of 4x4. +__attribute__((noinline)) +#endif +static uint64_t +vpx_sum_squares_2d_i16_nxn_sse2(const int16_t *src, int stride, int size) { + int r, c; + const __m128i v_zext_mask_q = _mm_set_epi32(0, 0xffffffff, 0, 0xffffffff); + __m128i v_acc_q = _mm_setzero_si128(); + + for (r = 0; r < size; r += 8) { + __m128i v_acc_d = _mm_setzero_si128(); + + for (c = 0; c < size; c += 8) { + const int16_t *b = src + c; + const __m128i v_val_0_w = + _mm_load_si128((const __m128i *)(b + 0 * stride)); + const __m128i v_val_1_w = + _mm_load_si128((const __m128i *)(b + 1 * stride)); + const __m128i v_val_2_w = + _mm_load_si128((const __m128i *)(b + 2 * stride)); + const __m128i v_val_3_w = + _mm_load_si128((const __m128i *)(b + 3 * stride)); + const __m128i v_val_4_w = + _mm_load_si128((const __m128i *)(b + 4 * stride)); + const __m128i v_val_5_w = + _mm_load_si128((const __m128i *)(b + 5 * stride)); + const __m128i v_val_6_w = + _mm_load_si128((const __m128i *)(b + 6 * stride)); + const __m128i v_val_7_w = + _mm_load_si128((const __m128i *)(b + 7 * stride)); + + const __m128i v_sq_0_d = _mm_madd_epi16(v_val_0_w, v_val_0_w); + const __m128i v_sq_1_d = _mm_madd_epi16(v_val_1_w, v_val_1_w); + const __m128i v_sq_2_d = _mm_madd_epi16(v_val_2_w, v_val_2_w); + const __m128i v_sq_3_d = _mm_madd_epi16(v_val_3_w, v_val_3_w); + const __m128i v_sq_4_d = _mm_madd_epi16(v_val_4_w, v_val_4_w); + const __m128i v_sq_5_d = _mm_madd_epi16(v_val_5_w, v_val_5_w); + const __m128i v_sq_6_d = _mm_madd_epi16(v_val_6_w, v_val_6_w); + const __m128i v_sq_7_d = _mm_madd_epi16(v_val_7_w, v_val_7_w); + + const __m128i v_sum_01_d = _mm_add_epi32(v_sq_0_d, v_sq_1_d); + const __m128i v_sum_23_d = _mm_add_epi32(v_sq_2_d, v_sq_3_d); + const __m128i v_sum_45_d = _mm_add_epi32(v_sq_4_d, v_sq_5_d); + const __m128i v_sum_67_d = _mm_add_epi32(v_sq_6_d, v_sq_7_d); + + const __m128i v_sum_0123_d = _mm_add_epi32(v_sum_01_d, v_sum_23_d); + const __m128i v_sum_4567_d = _mm_add_epi32(v_sum_45_d, v_sum_67_d); + + v_acc_d = _mm_add_epi32(v_acc_d, v_sum_0123_d); + v_acc_d = _mm_add_epi32(v_acc_d, v_sum_4567_d); + } + + v_acc_q = _mm_add_epi64(v_acc_q, _mm_and_si128(v_acc_d, v_zext_mask_q)); + v_acc_q = _mm_add_epi64(v_acc_q, _mm_srli_epi64(v_acc_d, 32)); + + src += 8 * stride; + } + + v_acc_q = _mm_add_epi64(v_acc_q, _mm_srli_si128(v_acc_q, 8)); + +#if ARCH_X86_64 + return (uint64_t)_mm_cvtsi128_si64(v_acc_q); +#else + { + uint64_t tmp; + _mm_storel_epi64((__m128i *)&tmp, v_acc_q); + return tmp; + } +#endif +} + +uint64_t vpx_sum_squares_2d_i16_sse2(const int16_t *src, int stride, int size) { + // 4 elements per row only requires half an XMM register, so this + // must be a special case, but also note that over 75% of all calls + // are with size == 4, so it is also the common case. + if (size == 4) { + return vpx_sum_squares_2d_i16_4x4_sse2(src, stride); + } else { + // Generic case + assert(size % 8 == 0); + return vpx_sum_squares_2d_i16_nxn_sse2(src, stride, size); + } +} diff --git a/vpx_dsp/x86/transpose_sse2.h b/vpx_dsp/x86/transpose_sse2.h new file mode 100644 index 0000000..8a0119c --- /dev/null +++ b/vpx_dsp/x86/transpose_sse2.h @@ -0,0 +1,367 @@ +/* + * Copyright (c) 2015 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VPX_DSP_X86_TRANSPOSE_SSE2_H_ +#define VPX_DSP_X86_TRANSPOSE_SSE2_H_ + +#include // SSE2 + +#include "./vpx_config.h" + +static INLINE __m128i transpose_8bit_4x4(const __m128i *const in) { + // Unpack 16 bit elements. Goes from: + // in[0]: 00 01 02 03 + // in[1]: 10 11 12 13 + // in[2]: 20 21 22 23 + // in[3]: 30 31 32 33 + // to: + // a0: 00 10 01 11 02 12 03 13 + // a1: 20 30 21 31 22 32 23 33 + const __m128i a0 = _mm_unpacklo_epi8(in[0], in[1]); + const __m128i a1 = _mm_unpacklo_epi8(in[2], in[3]); + + // Unpack 32 bit elements resulting in: + // 00 10 20 30 01 11 21 31 02 12 22 32 03 13 23 33 + return _mm_unpacklo_epi16(a0, a1); +} + +static INLINE void transpose_8bit_8x8(const __m128i *const in, + __m128i *const out) { + // Unpack 8 bit elements. Goes from: + // in[0]: 00 01 02 03 04 05 06 07 + // in[1]: 10 11 12 13 14 15 16 17 + // in[2]: 20 21 22 23 24 25 26 27 + // in[3]: 30 31 32 33 34 35 36 37 + // in[4]: 40 41 42 43 44 45 46 47 + // in[5]: 50 51 52 53 54 55 56 57 + // in[6]: 60 61 62 63 64 65 66 67 + // in[7]: 70 71 72 73 74 75 76 77 + // to: + // a0: 00 10 01 11 02 12 03 13 04 14 05 15 06 16 07 17 + // a1: 20 30 21 31 22 32 23 33 24 34 25 35 26 36 27 37 + // a2: 40 50 41 51 42 52 43 53 44 54 45 55 46 56 47 57 + // a3: 60 70 61 71 62 72 63 73 64 74 65 75 66 76 67 77 + const __m128i a0 = _mm_unpacklo_epi8(in[0], in[1]); + const __m128i a1 = _mm_unpacklo_epi8(in[2], in[3]); + const __m128i a2 = _mm_unpacklo_epi8(in[4], in[5]); + const __m128i a3 = _mm_unpacklo_epi8(in[6], in[7]); + + // Unpack 16 bit elements resulting in: + // b0: 00 10 20 30 01 11 21 31 02 12 22 32 03 13 23 33 + // b1: 40 50 60 70 41 51 61 71 42 52 62 72 43 53 63 73 + // b2: 04 14 24 34 05 15 25 35 06 16 26 36 07 17 27 37 + // b3: 44 54 64 74 45 55 65 75 46 56 66 76 47 57 67 77 + const __m128i b0 = _mm_unpacklo_epi16(a0, a1); + const __m128i b1 = _mm_unpackhi_epi16(a0, a1); + const __m128i b2 = _mm_unpacklo_epi16(a2, a3); + const __m128i b3 = _mm_unpackhi_epi16(a2, a3); + + // Unpack 32 bit elements resulting in: + // c0: 00 10 20 30 40 50 60 70 01 11 21 31 41 51 61 71 + // c1: 02 12 22 32 42 52 62 72 03 13 23 33 43 53 63 73 + // c2: 04 14 24 34 44 54 64 74 05 15 25 35 45 55 65 75 + // c3: 06 16 26 36 46 56 66 76 07 17 27 37 47 57 67 77 + const __m128i c0 = _mm_unpacklo_epi32(b0, b2); + const __m128i c1 = _mm_unpackhi_epi32(b0, b2); + const __m128i c2 = _mm_unpacklo_epi32(b1, b3); + const __m128i c3 = _mm_unpackhi_epi32(b1, b3); + + // Unpack 64 bit elements resulting in: + // out[0]: 00 10 20 30 40 50 60 70 + // out[1]: 01 11 21 31 41 51 61 71 + // out[2]: 02 12 22 32 42 52 62 72 + // out[3]: 03 13 23 33 43 53 63 73 + // out[4]: 04 14 24 34 44 54 64 74 + // out[5]: 05 15 25 35 45 55 65 75 + // out[6]: 06 16 26 36 46 56 66 76 + // out[7]: 07 17 27 37 47 57 67 77 + out[0] = _mm_unpacklo_epi64(c0, c0); + out[1] = _mm_unpackhi_epi64(c0, c0); + out[2] = _mm_unpacklo_epi64(c1, c1); + out[3] = _mm_unpackhi_epi64(c1, c1); + out[4] = _mm_unpacklo_epi64(c2, c2); + out[5] = _mm_unpackhi_epi64(c2, c2); + out[6] = _mm_unpacklo_epi64(c3, c3); + out[7] = _mm_unpackhi_epi64(c3, c3); +} + +static INLINE void transpose_16bit_4x4(const __m128i *const in, + __m128i *const out) { + // Unpack 16 bit elements. Goes from: + // in[0]: 00 01 02 03 XX XX XX XX + // in[1]: 10 11 12 13 XX XX XX XX + // in[2]: 20 21 22 23 XX XX XX XX + // in[3]: 30 31 32 33 XX XX XX XX + // to: + // a0: 00 10 01 11 02 12 03 13 + // a1: 20 30 21 31 22 32 23 33 + const __m128i a0 = _mm_unpacklo_epi16(in[0], in[1]); + const __m128i a1 = _mm_unpacklo_epi16(in[2], in[3]); + + // Unpack 32 bit elements resulting in: + // out[0]: 00 10 20 30 01 11 21 31 + // out[1]: 02 12 22 32 03 13 23 33 + out[0] = _mm_unpacklo_epi32(a0, a1); + out[1] = _mm_unpackhi_epi32(a0, a1); +} + +static INLINE void transpose_16bit_4x8(const __m128i *const in, + __m128i *const out) { + // Unpack 16 bit elements. Goes from: + // in[0]: 00 01 02 03 XX XX XX XX + // in[1]: 10 11 12 13 XX XX XX XX + // in[2]: 20 21 22 23 XX XX XX XX + // in[3]: 30 31 32 33 XX XX XX XX + // in[4]: 40 41 42 43 XX XX XX XX + // in[5]: 50 51 52 53 XX XX XX XX + // in[6]: 60 61 62 63 XX XX XX XX + // in[7]: 70 71 72 73 XX XX XX XX + // to: + // a0: 00 10 01 11 02 12 03 13 + // a1: 20 30 21 31 22 32 23 33 + // a2: 40 50 41 51 42 52 43 53 + // a3: 60 70 61 71 62 72 63 73 + const __m128i a0 = _mm_unpacklo_epi16(in[0], in[1]); + const __m128i a1 = _mm_unpacklo_epi16(in[2], in[3]); + const __m128i a2 = _mm_unpacklo_epi16(in[4], in[5]); + const __m128i a3 = _mm_unpacklo_epi16(in[6], in[7]); + + // Unpack 32 bit elements resulting in: + // b0: 00 10 20 30 01 11 21 31 + // b1: 40 50 60 70 41 51 61 71 + // b2: 02 12 22 32 03 13 23 33 + // b3: 42 52 62 72 43 53 63 73 + const __m128i b0 = _mm_unpacklo_epi32(a0, a1); + const __m128i b1 = _mm_unpacklo_epi32(a2, a3); + const __m128i b2 = _mm_unpackhi_epi32(a0, a1); + const __m128i b3 = _mm_unpackhi_epi32(a2, a3); + + // Unpack 64 bit elements resulting in: + // out[0]: 00 10 20 30 40 50 60 70 + // out[1]: 01 11 21 31 41 51 61 71 + // out[2]: 02 12 22 32 42 52 62 72 + // out[3]: 03 13 23 33 43 53 63 73 + out[0] = _mm_unpacklo_epi64(b0, b1); + out[1] = _mm_unpackhi_epi64(b0, b1); + out[2] = _mm_unpacklo_epi64(b2, b3); + out[3] = _mm_unpackhi_epi64(b2, b3); +} + +static INLINE void transpose_16bit_8x8(const __m128i *const in, + __m128i *const out) { + // Unpack 16 bit elements. Goes from: + // in[0]: 00 01 02 03 04 05 06 07 + // in[1]: 10 11 12 13 14 15 16 17 + // in[2]: 20 21 22 23 24 25 26 27 + // in[3]: 30 31 32 33 34 35 36 37 + // in[4]: 40 41 42 43 44 45 46 47 + // in[5]: 50 51 52 53 54 55 56 57 + // in[6]: 60 61 62 63 64 65 66 67 + // in[7]: 70 71 72 73 74 75 76 77 + // to: + // a0: 00 10 01 11 02 12 03 13 + // a1: 20 30 21 31 22 32 23 33 + // a2: 40 50 41 51 42 52 43 53 + // a3: 60 70 61 71 62 72 63 73 + // a4: 04 14 05 15 06 16 07 17 + // a5: 24 34 25 35 26 36 27 37 + // a6: 44 54 45 55 46 56 47 57 + // a7: 64 74 65 75 66 76 67 77 + const __m128i a0 = _mm_unpacklo_epi16(in[0], in[1]); + const __m128i a1 = _mm_unpacklo_epi16(in[2], in[3]); + const __m128i a2 = _mm_unpacklo_epi16(in[4], in[5]); + const __m128i a3 = _mm_unpacklo_epi16(in[6], in[7]); + const __m128i a4 = _mm_unpackhi_epi16(in[0], in[1]); + const __m128i a5 = _mm_unpackhi_epi16(in[2], in[3]); + const __m128i a6 = _mm_unpackhi_epi16(in[4], in[5]); + const __m128i a7 = _mm_unpackhi_epi16(in[6], in[7]); + + // Unpack 32 bit elements resulting in: + // b0: 00 10 20 30 01 11 21 31 + // b1: 40 50 60 70 41 51 61 71 + // b2: 04 14 24 34 05 15 25 35 + // b3: 44 54 64 74 45 55 65 75 + // b4: 02 12 22 32 03 13 23 33 + // b5: 42 52 62 72 43 53 63 73 + // b6: 06 16 26 36 07 17 27 37 + // b7: 46 56 66 76 47 57 67 77 + const __m128i b0 = _mm_unpacklo_epi32(a0, a1); + const __m128i b1 = _mm_unpacklo_epi32(a2, a3); + const __m128i b2 = _mm_unpacklo_epi32(a4, a5); + const __m128i b3 = _mm_unpacklo_epi32(a6, a7); + const __m128i b4 = _mm_unpackhi_epi32(a0, a1); + const __m128i b5 = _mm_unpackhi_epi32(a2, a3); + const __m128i b6 = _mm_unpackhi_epi32(a4, a5); + const __m128i b7 = _mm_unpackhi_epi32(a6, a7); + + // Unpack 64 bit elements resulting in: + // out[0]: 00 10 20 30 40 50 60 70 + // out[1]: 01 11 21 31 41 51 61 71 + // out[2]: 02 12 22 32 42 52 62 72 + // out[3]: 03 13 23 33 43 53 63 73 + // out[4]: 04 14 24 34 44 54 64 74 + // out[5]: 05 15 25 35 45 55 65 75 + // out[6]: 06 16 26 36 46 56 66 76 + // out[7]: 07 17 27 37 47 57 67 77 + out[0] = _mm_unpacklo_epi64(b0, b1); + out[1] = _mm_unpackhi_epi64(b0, b1); + out[2] = _mm_unpacklo_epi64(b4, b5); + out[3] = _mm_unpackhi_epi64(b4, b5); + out[4] = _mm_unpacklo_epi64(b2, b3); + out[5] = _mm_unpackhi_epi64(b2, b3); + out[6] = _mm_unpacklo_epi64(b6, b7); + out[7] = _mm_unpackhi_epi64(b6, b7); +} + +// Transpose in-place +static INLINE void transpose_16bit_16x16(__m128i *const left, + __m128i *const right) { + __m128i tbuf[8]; + transpose_16bit_8x8(left, left); + transpose_16bit_8x8(right, tbuf); + transpose_16bit_8x8(left + 8, right); + transpose_16bit_8x8(right + 8, right + 8); + + left[8] = tbuf[0]; + left[9] = tbuf[1]; + left[10] = tbuf[2]; + left[11] = tbuf[3]; + left[12] = tbuf[4]; + left[13] = tbuf[5]; + left[14] = tbuf[6]; + left[15] = tbuf[7]; +} + +static INLINE void transpose_32bit_4x4(const __m128i *const in, + __m128i *const out) { + // Unpack 32 bit elements. Goes from: + // in[0]: 00 01 02 03 + // in[1]: 10 11 12 13 + // in[2]: 20 21 22 23 + // in[3]: 30 31 32 33 + // to: + // a0: 00 10 01 11 + // a1: 20 30 21 31 + // a2: 02 12 03 13 + // a3: 22 32 23 33 + + const __m128i a0 = _mm_unpacklo_epi32(in[0], in[1]); + const __m128i a1 = _mm_unpacklo_epi32(in[2], in[3]); + const __m128i a2 = _mm_unpackhi_epi32(in[0], in[1]); + const __m128i a3 = _mm_unpackhi_epi32(in[2], in[3]); + + // Unpack 64 bit elements resulting in: + // out[0]: 00 10 20 30 + // out[1]: 01 11 21 31 + // out[2]: 02 12 22 32 + // out[3]: 03 13 23 33 + out[0] = _mm_unpacklo_epi64(a0, a1); + out[1] = _mm_unpackhi_epi64(a0, a1); + out[2] = _mm_unpacklo_epi64(a2, a3); + out[3] = _mm_unpackhi_epi64(a2, a3); +} + +static INLINE void transpose_32bit_4x4x2(const __m128i *const in, + __m128i *const out) { + // Unpack 32 bit elements. Goes from: + // in[0]: 00 01 02 03 + // in[1]: 10 11 12 13 + // in[2]: 20 21 22 23 + // in[3]: 30 31 32 33 + // in[4]: 04 05 06 07 + // in[5]: 14 15 16 17 + // in[6]: 24 25 26 27 + // in[7]: 34 35 36 37 + // to: + // a0: 00 10 01 11 + // a1: 20 30 21 31 + // a2: 02 12 03 13 + // a3: 22 32 23 33 + // a4: 04 14 05 15 + // a5: 24 34 25 35 + // a6: 06 16 07 17 + // a7: 26 36 27 37 + const __m128i a0 = _mm_unpacklo_epi32(in[0], in[1]); + const __m128i a1 = _mm_unpacklo_epi32(in[2], in[3]); + const __m128i a2 = _mm_unpackhi_epi32(in[0], in[1]); + const __m128i a3 = _mm_unpackhi_epi32(in[2], in[3]); + const __m128i a4 = _mm_unpacklo_epi32(in[4], in[5]); + const __m128i a5 = _mm_unpacklo_epi32(in[6], in[7]); + const __m128i a6 = _mm_unpackhi_epi32(in[4], in[5]); + const __m128i a7 = _mm_unpackhi_epi32(in[6], in[7]); + + // Unpack 64 bit elements resulting in: + // out[0]: 00 10 20 30 + // out[1]: 01 11 21 31 + // out[2]: 02 12 22 32 + // out[3]: 03 13 23 33 + // out[4]: 04 14 24 34 + // out[5]: 05 15 25 35 + // out[6]: 06 16 26 36 + // out[7]: 07 17 27 37 + out[0] = _mm_unpacklo_epi64(a0, a1); + out[1] = _mm_unpackhi_epi64(a0, a1); + out[2] = _mm_unpacklo_epi64(a2, a3); + out[3] = _mm_unpackhi_epi64(a2, a3); + out[4] = _mm_unpacklo_epi64(a4, a5); + out[5] = _mm_unpackhi_epi64(a4, a5); + out[6] = _mm_unpacklo_epi64(a6, a7); + out[7] = _mm_unpackhi_epi64(a6, a7); +} + +static INLINE void transpose_32bit_8x4(const __m128i *const in, + __m128i *const out) { + // Unpack 32 bit elements. Goes from: + // in[0]: 00 01 02 03 + // in[1]: 04 05 06 07 + // in[2]: 10 11 12 13 + // in[3]: 14 15 16 17 + // in[4]: 20 21 22 23 + // in[5]: 24 25 26 27 + // in[6]: 30 31 32 33 + // in[7]: 34 35 36 37 + // to: + // a0: 00 10 01 11 + // a1: 20 30 21 31 + // a2: 02 12 03 13 + // a3: 22 32 23 33 + // a4: 04 14 05 15 + // a5: 24 34 25 35 + // a6: 06 16 07 17 + // a7: 26 36 27 37 + const __m128i a0 = _mm_unpacklo_epi32(in[0], in[2]); + const __m128i a1 = _mm_unpacklo_epi32(in[4], in[6]); + const __m128i a2 = _mm_unpackhi_epi32(in[0], in[2]); + const __m128i a3 = _mm_unpackhi_epi32(in[4], in[6]); + const __m128i a4 = _mm_unpacklo_epi32(in[1], in[3]); + const __m128i a5 = _mm_unpacklo_epi32(in[5], in[7]); + const __m128i a6 = _mm_unpackhi_epi32(in[1], in[3]); + const __m128i a7 = _mm_unpackhi_epi32(in[5], in[7]); + + // Unpack 64 bit elements resulting in: + // out[0]: 00 10 20 30 + // out[1]: 01 11 21 31 + // out[2]: 02 12 22 32 + // out[3]: 03 13 23 33 + // out[4]: 04 14 24 34 + // out[5]: 05 15 25 35 + // out[6]: 06 16 26 36 + // out[7]: 07 17 27 37 + out[0] = _mm_unpacklo_epi64(a0, a1); + out[1] = _mm_unpackhi_epi64(a0, a1); + out[2] = _mm_unpacklo_epi64(a2, a3); + out[3] = _mm_unpackhi_epi64(a2, a3); + out[4] = _mm_unpacklo_epi64(a4, a5); + out[5] = _mm_unpackhi_epi64(a4, a5); + out[6] = _mm_unpacklo_epi64(a6, a7); + out[7] = _mm_unpackhi_epi64(a6, a7); +} + +#endif // VPX_DSP_X86_TRANSPOSE_SSE2_H_ diff --git a/vpx_dsp/x86/txfm_common_sse2.h b/vpx_dsp/x86/txfm_common_sse2.h new file mode 100644 index 0000000..0a9542c --- /dev/null +++ b/vpx_dsp/x86/txfm_common_sse2.h @@ -0,0 +1,32 @@ +/* + * Copyright (c) 2015 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VPX_DSP_X86_TXFM_COMMON_SSE2_H_ +#define VPX_DSP_X86_TXFM_COMMON_SSE2_H_ + +#include +#include "vpx/vpx_integer.h" + +#define pair_set_epi16(a, b) \ + _mm_set_epi16((int16_t)(b), (int16_t)(a), (int16_t)(b), (int16_t)(a), \ + (int16_t)(b), (int16_t)(a), (int16_t)(b), (int16_t)(a)) + +#define pair_set_epi32(a, b) \ + _mm_set_epi32((int)(b), (int)(a), (int)(b), (int)(a)) + +#define dual_set_epi16(a, b) \ + _mm_set_epi16((int16_t)(b), (int16_t)(b), (int16_t)(b), (int16_t)(b), \ + (int16_t)(a), (int16_t)(a), (int16_t)(a), (int16_t)(a)) + +#define octa_set_epi16(a, b, c, d, e, f, g, h) \ + _mm_setr_epi16((int16_t)(a), (int16_t)(b), (int16_t)(c), (int16_t)(d), \ + (int16_t)(e), (int16_t)(f), (int16_t)(g), (int16_t)(h)) + +#endif // VPX_DSP_X86_TXFM_COMMON_SSE2_H_ diff --git a/vpx_dsp/x86/variance_avx2.c b/vpx_dsp/x86/variance_avx2.c new file mode 100644 index 0000000..d15a89c --- /dev/null +++ b/vpx_dsp/x86/variance_avx2.c @@ -0,0 +1,721 @@ +/* + * Copyright (c) 2012 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include // AVX2 + +#include "./vpx_dsp_rtcd.h" + +/* clang-format off */ +DECLARE_ALIGNED(32, static const uint8_t, bilinear_filters_avx2[512]) = { + 16, 0, 16, 0, 16, 0, 16, 0, 16, 0, 16, 0, 16, 0, 16, 0, + 16, 0, 16, 0, 16, 0, 16, 0, 16, 0, 16, 0, 16, 0, 16, 0, + 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, + 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, + 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, + 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, + 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, + 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, + 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, + 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, + 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, + 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, + 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, + 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, + 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, + 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, +}; + +DECLARE_ALIGNED(32, static const int8_t, adjacent_sub_avx2[32]) = { + 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, + 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1 +}; +/* clang-format on */ + +void vpx_get16x16var_avx2(const unsigned char *src_ptr, int source_stride, + const unsigned char *ref_ptr, int recon_stride, + unsigned int *sse, int *sum) { + unsigned int i, src_2strides, ref_2strides; + __m256i sum_reg = _mm256_setzero_si256(); + __m256i sse_reg = _mm256_setzero_si256(); + // process two 16 byte locations in a 256 bit register + src_2strides = source_stride << 1; + ref_2strides = recon_stride << 1; + for (i = 0; i < 8; ++i) { + // convert up values in 128 bit registers across lanes + const __m256i src0 = + _mm256_cvtepu8_epi16(_mm_loadu_si128((__m128i const *)(src_ptr))); + const __m256i src1 = _mm256_cvtepu8_epi16( + _mm_loadu_si128((__m128i const *)(src_ptr + source_stride))); + const __m256i ref0 = + _mm256_cvtepu8_epi16(_mm_loadu_si128((__m128i const *)(ref_ptr))); + const __m256i ref1 = _mm256_cvtepu8_epi16( + _mm_loadu_si128((__m128i const *)(ref_ptr + recon_stride))); + const __m256i diff0 = _mm256_sub_epi16(src0, ref0); + const __m256i diff1 = _mm256_sub_epi16(src1, ref1); + const __m256i madd0 = _mm256_madd_epi16(diff0, diff0); + const __m256i madd1 = _mm256_madd_epi16(diff1, diff1); + + // add to the running totals + sum_reg = _mm256_add_epi16(sum_reg, _mm256_add_epi16(diff0, diff1)); + sse_reg = _mm256_add_epi32(sse_reg, _mm256_add_epi32(madd0, madd1)); + + src_ptr += src_2strides; + ref_ptr += ref_2strides; + } + { + // extract the low lane and add it to the high lane + const __m128i sum_reg_128 = _mm_add_epi16( + _mm256_castsi256_si128(sum_reg), _mm256_extractf128_si256(sum_reg, 1)); + const __m128i sse_reg_128 = _mm_add_epi32( + _mm256_castsi256_si128(sse_reg), _mm256_extractf128_si256(sse_reg, 1)); + + // sum upper and lower 64 bits together and convert up to 32 bit values + const __m128i sum_reg_64 = + _mm_add_epi16(sum_reg_128, _mm_srli_si128(sum_reg_128, 8)); + const __m128i sum_int32 = _mm_cvtepi16_epi32(sum_reg_64); + + // unpack sse and sum registers and add + const __m128i sse_sum_lo = _mm_unpacklo_epi32(sse_reg_128, sum_int32); + const __m128i sse_sum_hi = _mm_unpackhi_epi32(sse_reg_128, sum_int32); + const __m128i sse_sum = _mm_add_epi32(sse_sum_lo, sse_sum_hi); + + // perform the final summation and extract the results + const __m128i res = _mm_add_epi32(sse_sum, _mm_srli_si128(sse_sum, 8)); + *((int *)sse) = _mm_cvtsi128_si32(res); + *((int *)sum) = _mm_extract_epi32(res, 1); + } +} + +static void get32x16var_avx2(const unsigned char *src_ptr, int source_stride, + const unsigned char *ref_ptr, int recon_stride, + unsigned int *sse, int *sum) { + unsigned int i, src_2strides, ref_2strides; + const __m256i adj_sub = _mm256_load_si256((__m256i const *)adjacent_sub_avx2); + __m256i sum_reg = _mm256_setzero_si256(); + __m256i sse_reg = _mm256_setzero_si256(); + + // process 64 elements in an iteration + src_2strides = source_stride << 1; + ref_2strides = recon_stride << 1; + for (i = 0; i < 8; i++) { + const __m256i src0 = _mm256_loadu_si256((__m256i const *)(src_ptr)); + const __m256i src1 = + _mm256_loadu_si256((__m256i const *)(src_ptr + source_stride)); + const __m256i ref0 = _mm256_loadu_si256((__m256i const *)(ref_ptr)); + const __m256i ref1 = + _mm256_loadu_si256((__m256i const *)(ref_ptr + recon_stride)); + + // unpack into pairs of source and reference values + const __m256i src_ref0 = _mm256_unpacklo_epi8(src0, ref0); + const __m256i src_ref1 = _mm256_unpackhi_epi8(src0, ref0); + const __m256i src_ref2 = _mm256_unpacklo_epi8(src1, ref1); + const __m256i src_ref3 = _mm256_unpackhi_epi8(src1, ref1); + + // subtract adjacent elements using src*1 + ref*-1 + const __m256i diff0 = _mm256_maddubs_epi16(src_ref0, adj_sub); + const __m256i diff1 = _mm256_maddubs_epi16(src_ref1, adj_sub); + const __m256i diff2 = _mm256_maddubs_epi16(src_ref2, adj_sub); + const __m256i diff3 = _mm256_maddubs_epi16(src_ref3, adj_sub); + const __m256i madd0 = _mm256_madd_epi16(diff0, diff0); + const __m256i madd1 = _mm256_madd_epi16(diff1, diff1); + const __m256i madd2 = _mm256_madd_epi16(diff2, diff2); + const __m256i madd3 = _mm256_madd_epi16(diff3, diff3); + + // add to the running totals + sum_reg = _mm256_add_epi16(sum_reg, _mm256_add_epi16(diff0, diff1)); + sum_reg = _mm256_add_epi16(sum_reg, _mm256_add_epi16(diff2, diff3)); + sse_reg = _mm256_add_epi32(sse_reg, _mm256_add_epi32(madd0, madd1)); + sse_reg = _mm256_add_epi32(sse_reg, _mm256_add_epi32(madd2, madd3)); + + src_ptr += src_2strides; + ref_ptr += ref_2strides; + } + + { + // extract the low lane and add it to the high lane + const __m128i sum_reg_128 = _mm_add_epi16( + _mm256_castsi256_si128(sum_reg), _mm256_extractf128_si256(sum_reg, 1)); + const __m128i sse_reg_128 = _mm_add_epi32( + _mm256_castsi256_si128(sse_reg), _mm256_extractf128_si256(sse_reg, 1)); + + // sum upper and lower 64 bits together and convert up to 32 bit values + const __m128i sum_reg_64 = + _mm_add_epi16(sum_reg_128, _mm_srli_si128(sum_reg_128, 8)); + const __m128i sum_int32 = _mm_cvtepi16_epi32(sum_reg_64); + + // unpack sse and sum registers and add + const __m128i sse_sum_lo = _mm_unpacklo_epi32(sse_reg_128, sum_int32); + const __m128i sse_sum_hi = _mm_unpackhi_epi32(sse_reg_128, sum_int32); + const __m128i sse_sum = _mm_add_epi32(sse_sum_lo, sse_sum_hi); + + // perform the final summation and extract the results + const __m128i res = _mm_add_epi32(sse_sum, _mm_srli_si128(sse_sum, 8)); + *((int *)sse) = _mm_cvtsi128_si32(res); + *((int *)sum) = _mm_extract_epi32(res, 1); + } +} + +#define FILTER_SRC(filter) \ + /* filter the source */ \ + exp_src_lo = _mm256_maddubs_epi16(exp_src_lo, filter); \ + exp_src_hi = _mm256_maddubs_epi16(exp_src_hi, filter); \ + \ + /* add 8 to source */ \ + exp_src_lo = _mm256_add_epi16(exp_src_lo, pw8); \ + exp_src_hi = _mm256_add_epi16(exp_src_hi, pw8); \ + \ + /* divide source by 16 */ \ + exp_src_lo = _mm256_srai_epi16(exp_src_lo, 4); \ + exp_src_hi = _mm256_srai_epi16(exp_src_hi, 4); + +#define CALC_SUM_SSE_INSIDE_LOOP \ + /* expand each byte to 2 bytes */ \ + exp_dst_lo = _mm256_unpacklo_epi8(dst_reg, zero_reg); \ + exp_dst_hi = _mm256_unpackhi_epi8(dst_reg, zero_reg); \ + /* source - dest */ \ + exp_src_lo = _mm256_sub_epi16(exp_src_lo, exp_dst_lo); \ + exp_src_hi = _mm256_sub_epi16(exp_src_hi, exp_dst_hi); \ + /* caculate sum */ \ + *sum_reg = _mm256_add_epi16(*sum_reg, exp_src_lo); \ + exp_src_lo = _mm256_madd_epi16(exp_src_lo, exp_src_lo); \ + *sum_reg = _mm256_add_epi16(*sum_reg, exp_src_hi); \ + exp_src_hi = _mm256_madd_epi16(exp_src_hi, exp_src_hi); \ + /* calculate sse */ \ + *sse_reg = _mm256_add_epi32(*sse_reg, exp_src_lo); \ + *sse_reg = _mm256_add_epi32(*sse_reg, exp_src_hi); + +// final calculation to sum and sse +#define CALC_SUM_AND_SSE \ + res_cmp = _mm256_cmpgt_epi16(zero_reg, sum_reg); \ + sse_reg_hi = _mm256_srli_si256(sse_reg, 8); \ + sum_reg_lo = _mm256_unpacklo_epi16(sum_reg, res_cmp); \ + sum_reg_hi = _mm256_unpackhi_epi16(sum_reg, res_cmp); \ + sse_reg = _mm256_add_epi32(sse_reg, sse_reg_hi); \ + sum_reg = _mm256_add_epi32(sum_reg_lo, sum_reg_hi); \ + \ + sse_reg_hi = _mm256_srli_si256(sse_reg, 4); \ + sum_reg_hi = _mm256_srli_si256(sum_reg, 8); \ + \ + sse_reg = _mm256_add_epi32(sse_reg, sse_reg_hi); \ + sum_reg = _mm256_add_epi32(sum_reg, sum_reg_hi); \ + *((int *)sse) = _mm_cvtsi128_si32(_mm256_castsi256_si128(sse_reg)) + \ + _mm_cvtsi128_si32(_mm256_extractf128_si256(sse_reg, 1)); \ + sum_reg_hi = _mm256_srli_si256(sum_reg, 4); \ + sum_reg = _mm256_add_epi32(sum_reg, sum_reg_hi); \ + sum = _mm_cvtsi128_si32(_mm256_castsi256_si128(sum_reg)) + \ + _mm_cvtsi128_si32(_mm256_extractf128_si256(sum_reg, 1)); + +static INLINE void spv32_x0_y0(const uint8_t *src, int src_stride, + const uint8_t *dst, int dst_stride, + const uint8_t *sec, int sec_stride, int do_sec, + int height, __m256i *sum_reg, __m256i *sse_reg) { + const __m256i zero_reg = _mm256_setzero_si256(); + __m256i exp_src_lo, exp_src_hi, exp_dst_lo, exp_dst_hi; + int i; + for (i = 0; i < height; i++) { + const __m256i dst_reg = _mm256_loadu_si256((__m256i const *)dst); + const __m256i src_reg = _mm256_loadu_si256((__m256i const *)src); + if (do_sec) { + const __m256i sec_reg = _mm256_loadu_si256((__m256i const *)sec); + const __m256i avg_reg = _mm256_avg_epu8(src_reg, sec_reg); + exp_src_lo = _mm256_unpacklo_epi8(avg_reg, zero_reg); + exp_src_hi = _mm256_unpackhi_epi8(avg_reg, zero_reg); + sec += sec_stride; + } else { + exp_src_lo = _mm256_unpacklo_epi8(src_reg, zero_reg); + exp_src_hi = _mm256_unpackhi_epi8(src_reg, zero_reg); + } + CALC_SUM_SSE_INSIDE_LOOP + src += src_stride; + dst += dst_stride; + } +} + +// (x == 0, y == 4) or (x == 4, y == 0). sstep determines the direction. +static INLINE void spv32_half_zero(const uint8_t *src, int src_stride, + const uint8_t *dst, int dst_stride, + const uint8_t *sec, int sec_stride, + int do_sec, int height, __m256i *sum_reg, + __m256i *sse_reg, int sstep) { + const __m256i zero_reg = _mm256_setzero_si256(); + __m256i exp_src_lo, exp_src_hi, exp_dst_lo, exp_dst_hi; + int i; + for (i = 0; i < height; i++) { + const __m256i dst_reg = _mm256_loadu_si256((__m256i const *)dst); + const __m256i src_0 = _mm256_loadu_si256((__m256i const *)src); + const __m256i src_1 = _mm256_loadu_si256((__m256i const *)(src + sstep)); + const __m256i src_avg = _mm256_avg_epu8(src_0, src_1); + if (do_sec) { + const __m256i sec_reg = _mm256_loadu_si256((__m256i const *)sec); + const __m256i avg_reg = _mm256_avg_epu8(src_avg, sec_reg); + exp_src_lo = _mm256_unpacklo_epi8(avg_reg, zero_reg); + exp_src_hi = _mm256_unpackhi_epi8(avg_reg, zero_reg); + sec += sec_stride; + } else { + exp_src_lo = _mm256_unpacklo_epi8(src_avg, zero_reg); + exp_src_hi = _mm256_unpackhi_epi8(src_avg, zero_reg); + } + CALC_SUM_SSE_INSIDE_LOOP + src += src_stride; + dst += dst_stride; + } +} + +static INLINE void spv32_x0_y4(const uint8_t *src, int src_stride, + const uint8_t *dst, int dst_stride, + const uint8_t *sec, int sec_stride, int do_sec, + int height, __m256i *sum_reg, __m256i *sse_reg) { + spv32_half_zero(src, src_stride, dst, dst_stride, sec, sec_stride, do_sec, + height, sum_reg, sse_reg, src_stride); +} + +static INLINE void spv32_x4_y0(const uint8_t *src, int src_stride, + const uint8_t *dst, int dst_stride, + const uint8_t *sec, int sec_stride, int do_sec, + int height, __m256i *sum_reg, __m256i *sse_reg) { + spv32_half_zero(src, src_stride, dst, dst_stride, sec, sec_stride, do_sec, + height, sum_reg, sse_reg, 1); +} + +static INLINE void spv32_x4_y4(const uint8_t *src, int src_stride, + const uint8_t *dst, int dst_stride, + const uint8_t *sec, int sec_stride, int do_sec, + int height, __m256i *sum_reg, __m256i *sse_reg) { + const __m256i zero_reg = _mm256_setzero_si256(); + const __m256i src_a = _mm256_loadu_si256((__m256i const *)src); + const __m256i src_b = _mm256_loadu_si256((__m256i const *)(src + 1)); + __m256i prev_src_avg = _mm256_avg_epu8(src_a, src_b); + __m256i exp_src_lo, exp_src_hi, exp_dst_lo, exp_dst_hi; + int i; + src += src_stride; + for (i = 0; i < height; i++) { + const __m256i dst_reg = _mm256_loadu_si256((__m256i const *)dst); + const __m256i src_0 = _mm256_loadu_si256((__m256i const *)(src)); + const __m256i src_1 = _mm256_loadu_si256((__m256i const *)(src + 1)); + const __m256i src_avg = _mm256_avg_epu8(src_0, src_1); + const __m256i current_avg = _mm256_avg_epu8(prev_src_avg, src_avg); + prev_src_avg = src_avg; + + if (do_sec) { + const __m256i sec_reg = _mm256_loadu_si256((__m256i const *)sec); + const __m256i avg_reg = _mm256_avg_epu8(current_avg, sec_reg); + exp_src_lo = _mm256_unpacklo_epi8(avg_reg, zero_reg); + exp_src_hi = _mm256_unpackhi_epi8(avg_reg, zero_reg); + sec += sec_stride; + } else { + exp_src_lo = _mm256_unpacklo_epi8(current_avg, zero_reg); + exp_src_hi = _mm256_unpackhi_epi8(current_avg, zero_reg); + } + // save current source average + CALC_SUM_SSE_INSIDE_LOOP + dst += dst_stride; + src += src_stride; + } +} + +// (x == 0, y == bil) or (x == 4, y == bil). sstep determines the direction. +static INLINE void spv32_bilin_zero(const uint8_t *src, int src_stride, + const uint8_t *dst, int dst_stride, + const uint8_t *sec, int sec_stride, + int do_sec, int height, __m256i *sum_reg, + __m256i *sse_reg, int offset, int sstep) { + const __m256i zero_reg = _mm256_setzero_si256(); + const __m256i pw8 = _mm256_set1_epi16(8); + const __m256i filter = _mm256_load_si256( + (__m256i const *)(bilinear_filters_avx2 + (offset << 5))); + __m256i exp_src_lo, exp_src_hi, exp_dst_lo, exp_dst_hi; + int i; + for (i = 0; i < height; i++) { + const __m256i dst_reg = _mm256_loadu_si256((__m256i const *)dst); + const __m256i src_0 = _mm256_loadu_si256((__m256i const *)src); + const __m256i src_1 = _mm256_loadu_si256((__m256i const *)(src + sstep)); + exp_src_lo = _mm256_unpacklo_epi8(src_0, src_1); + exp_src_hi = _mm256_unpackhi_epi8(src_0, src_1); + + FILTER_SRC(filter) + if (do_sec) { + const __m256i sec_reg = _mm256_loadu_si256((__m256i const *)sec); + const __m256i exp_src = _mm256_packus_epi16(exp_src_lo, exp_src_hi); + const __m256i avg_reg = _mm256_avg_epu8(exp_src, sec_reg); + sec += sec_stride; + exp_src_lo = _mm256_unpacklo_epi8(avg_reg, zero_reg); + exp_src_hi = _mm256_unpackhi_epi8(avg_reg, zero_reg); + } + CALC_SUM_SSE_INSIDE_LOOP + src += src_stride; + dst += dst_stride; + } +} + +static INLINE void spv32_x0_yb(const uint8_t *src, int src_stride, + const uint8_t *dst, int dst_stride, + const uint8_t *sec, int sec_stride, int do_sec, + int height, __m256i *sum_reg, __m256i *sse_reg, + int y_offset) { + spv32_bilin_zero(src, src_stride, dst, dst_stride, sec, sec_stride, do_sec, + height, sum_reg, sse_reg, y_offset, src_stride); +} + +static INLINE void spv32_xb_y0(const uint8_t *src, int src_stride, + const uint8_t *dst, int dst_stride, + const uint8_t *sec, int sec_stride, int do_sec, + int height, __m256i *sum_reg, __m256i *sse_reg, + int x_offset) { + spv32_bilin_zero(src, src_stride, dst, dst_stride, sec, sec_stride, do_sec, + height, sum_reg, sse_reg, x_offset, 1); +} + +static INLINE void spv32_x4_yb(const uint8_t *src, int src_stride, + const uint8_t *dst, int dst_stride, + const uint8_t *sec, int sec_stride, int do_sec, + int height, __m256i *sum_reg, __m256i *sse_reg, + int y_offset) { + const __m256i zero_reg = _mm256_setzero_si256(); + const __m256i pw8 = _mm256_set1_epi16(8); + const __m256i filter = _mm256_load_si256( + (__m256i const *)(bilinear_filters_avx2 + (y_offset << 5))); + const __m256i src_a = _mm256_loadu_si256((__m256i const *)src); + const __m256i src_b = _mm256_loadu_si256((__m256i const *)(src + 1)); + __m256i prev_src_avg = _mm256_avg_epu8(src_a, src_b); + __m256i exp_src_lo, exp_src_hi, exp_dst_lo, exp_dst_hi; + int i; + src += src_stride; + for (i = 0; i < height; i++) { + const __m256i dst_reg = _mm256_loadu_si256((__m256i const *)dst); + const __m256i src_0 = _mm256_loadu_si256((__m256i const *)src); + const __m256i src_1 = _mm256_loadu_si256((__m256i const *)(src + 1)); + const __m256i src_avg = _mm256_avg_epu8(src_0, src_1); + exp_src_lo = _mm256_unpacklo_epi8(prev_src_avg, src_avg); + exp_src_hi = _mm256_unpackhi_epi8(prev_src_avg, src_avg); + prev_src_avg = src_avg; + + FILTER_SRC(filter) + if (do_sec) { + const __m256i sec_reg = _mm256_loadu_si256((__m256i const *)sec); + const __m256i exp_src_avg = _mm256_packus_epi16(exp_src_lo, exp_src_hi); + const __m256i avg_reg = _mm256_avg_epu8(exp_src_avg, sec_reg); + exp_src_lo = _mm256_unpacklo_epi8(avg_reg, zero_reg); + exp_src_hi = _mm256_unpackhi_epi8(avg_reg, zero_reg); + sec += sec_stride; + } + CALC_SUM_SSE_INSIDE_LOOP + dst += dst_stride; + src += src_stride; + } +} + +static INLINE void spv32_xb_y4(const uint8_t *src, int src_stride, + const uint8_t *dst, int dst_stride, + const uint8_t *sec, int sec_stride, int do_sec, + int height, __m256i *sum_reg, __m256i *sse_reg, + int x_offset) { + const __m256i zero_reg = _mm256_setzero_si256(); + const __m256i pw8 = _mm256_set1_epi16(8); + const __m256i filter = _mm256_load_si256( + (__m256i const *)(bilinear_filters_avx2 + (x_offset << 5))); + const __m256i src_a = _mm256_loadu_si256((__m256i const *)src); + const __m256i src_b = _mm256_loadu_si256((__m256i const *)(src + 1)); + __m256i exp_src_lo, exp_src_hi, exp_dst_lo, exp_dst_hi; + __m256i src_reg, src_pack; + int i; + exp_src_lo = _mm256_unpacklo_epi8(src_a, src_b); + exp_src_hi = _mm256_unpackhi_epi8(src_a, src_b); + FILTER_SRC(filter) + // convert each 16 bit to 8 bit to each low and high lane source + src_pack = _mm256_packus_epi16(exp_src_lo, exp_src_hi); + + src += src_stride; + for (i = 0; i < height; i++) { + const __m256i dst_reg = _mm256_loadu_si256((__m256i const *)dst); + const __m256i src_0 = _mm256_loadu_si256((__m256i const *)src); + const __m256i src_1 = _mm256_loadu_si256((__m256i const *)(src + 1)); + exp_src_lo = _mm256_unpacklo_epi8(src_0, src_1); + exp_src_hi = _mm256_unpackhi_epi8(src_0, src_1); + + FILTER_SRC(filter) + + src_reg = _mm256_packus_epi16(exp_src_lo, exp_src_hi); + // average between previous pack to the current + src_pack = _mm256_avg_epu8(src_pack, src_reg); + + if (do_sec) { + const __m256i sec_reg = _mm256_loadu_si256((__m256i const *)sec); + const __m256i avg_pack = _mm256_avg_epu8(src_pack, sec_reg); + exp_src_lo = _mm256_unpacklo_epi8(avg_pack, zero_reg); + exp_src_hi = _mm256_unpackhi_epi8(avg_pack, zero_reg); + sec += sec_stride; + } else { + exp_src_lo = _mm256_unpacklo_epi8(src_pack, zero_reg); + exp_src_hi = _mm256_unpackhi_epi8(src_pack, zero_reg); + } + CALC_SUM_SSE_INSIDE_LOOP + src_pack = src_reg; + dst += dst_stride; + src += src_stride; + } +} + +static INLINE void spv32_xb_yb(const uint8_t *src, int src_stride, + const uint8_t *dst, int dst_stride, + const uint8_t *sec, int sec_stride, int do_sec, + int height, __m256i *sum_reg, __m256i *sse_reg, + int x_offset, int y_offset) { + const __m256i zero_reg = _mm256_setzero_si256(); + const __m256i pw8 = _mm256_set1_epi16(8); + const __m256i xfilter = _mm256_load_si256( + (__m256i const *)(bilinear_filters_avx2 + (x_offset << 5))); + const __m256i yfilter = _mm256_load_si256( + (__m256i const *)(bilinear_filters_avx2 + (y_offset << 5))); + const __m256i src_a = _mm256_loadu_si256((__m256i const *)src); + const __m256i src_b = _mm256_loadu_si256((__m256i const *)(src + 1)); + __m256i exp_src_lo, exp_src_hi, exp_dst_lo, exp_dst_hi; + __m256i prev_src_pack, src_pack; + int i; + exp_src_lo = _mm256_unpacklo_epi8(src_a, src_b); + exp_src_hi = _mm256_unpackhi_epi8(src_a, src_b); + FILTER_SRC(xfilter) + // convert each 16 bit to 8 bit to each low and high lane source + prev_src_pack = _mm256_packus_epi16(exp_src_lo, exp_src_hi); + src += src_stride; + + for (i = 0; i < height; i++) { + const __m256i dst_reg = _mm256_loadu_si256((__m256i const *)dst); + const __m256i src_0 = _mm256_loadu_si256((__m256i const *)src); + const __m256i src_1 = _mm256_loadu_si256((__m256i const *)(src + 1)); + exp_src_lo = _mm256_unpacklo_epi8(src_0, src_1); + exp_src_hi = _mm256_unpackhi_epi8(src_0, src_1); + + FILTER_SRC(xfilter) + src_pack = _mm256_packus_epi16(exp_src_lo, exp_src_hi); + + // merge previous pack to current pack source + exp_src_lo = _mm256_unpacklo_epi8(prev_src_pack, src_pack); + exp_src_hi = _mm256_unpackhi_epi8(prev_src_pack, src_pack); + + FILTER_SRC(yfilter) + if (do_sec) { + const __m256i sec_reg = _mm256_loadu_si256((__m256i const *)sec); + const __m256i exp_src = _mm256_packus_epi16(exp_src_lo, exp_src_hi); + const __m256i avg_reg = _mm256_avg_epu8(exp_src, sec_reg); + exp_src_lo = _mm256_unpacklo_epi8(avg_reg, zero_reg); + exp_src_hi = _mm256_unpackhi_epi8(avg_reg, zero_reg); + sec += sec_stride; + } + + prev_src_pack = src_pack; + + CALC_SUM_SSE_INSIDE_LOOP + dst += dst_stride; + src += src_stride; + } +} + +static INLINE int sub_pix_var32xh(const uint8_t *src, int src_stride, + int x_offset, int y_offset, + const uint8_t *dst, int dst_stride, + const uint8_t *sec, int sec_stride, + int do_sec, int height, unsigned int *sse) { + const __m256i zero_reg = _mm256_setzero_si256(); + __m256i sum_reg = _mm256_setzero_si256(); + __m256i sse_reg = _mm256_setzero_si256(); + __m256i sse_reg_hi, res_cmp, sum_reg_lo, sum_reg_hi; + int sum; + // x_offset = 0 and y_offset = 0 + if (x_offset == 0) { + if (y_offset == 0) { + spv32_x0_y0(src, src_stride, dst, dst_stride, sec, sec_stride, do_sec, + height, &sum_reg, &sse_reg); + // x_offset = 0 and y_offset = 4 + } else if (y_offset == 4) { + spv32_x0_y4(src, src_stride, dst, dst_stride, sec, sec_stride, do_sec, + height, &sum_reg, &sse_reg); + // x_offset = 0 and y_offset = bilin interpolation + } else { + spv32_x0_yb(src, src_stride, dst, dst_stride, sec, sec_stride, do_sec, + height, &sum_reg, &sse_reg, y_offset); + } + // x_offset = 4 and y_offset = 0 + } else if (x_offset == 4) { + if (y_offset == 0) { + spv32_x4_y0(src, src_stride, dst, dst_stride, sec, sec_stride, do_sec, + height, &sum_reg, &sse_reg); + // x_offset = 4 and y_offset = 4 + } else if (y_offset == 4) { + spv32_x4_y4(src, src_stride, dst, dst_stride, sec, sec_stride, do_sec, + height, &sum_reg, &sse_reg); + // x_offset = 4 and y_offset = bilin interpolation + } else { + spv32_x4_yb(src, src_stride, dst, dst_stride, sec, sec_stride, do_sec, + height, &sum_reg, &sse_reg, y_offset); + } + // x_offset = bilin interpolation and y_offset = 0 + } else { + if (y_offset == 0) { + spv32_xb_y0(src, src_stride, dst, dst_stride, sec, sec_stride, do_sec, + height, &sum_reg, &sse_reg, x_offset); + // x_offset = bilin interpolation and y_offset = 4 + } else if (y_offset == 4) { + spv32_xb_y4(src, src_stride, dst, dst_stride, sec, sec_stride, do_sec, + height, &sum_reg, &sse_reg, x_offset); + // x_offset = bilin interpolation and y_offset = bilin interpolation + } else { + spv32_xb_yb(src, src_stride, dst, dst_stride, sec, sec_stride, do_sec, + height, &sum_reg, &sse_reg, x_offset, y_offset); + } + } + CALC_SUM_AND_SSE + return sum; +} + +static unsigned int sub_pixel_variance32xh_avx2( + const uint8_t *src, int src_stride, int x_offset, int y_offset, + const uint8_t *dst, int dst_stride, int height, unsigned int *sse) { + return sub_pix_var32xh(src, src_stride, x_offset, y_offset, dst, dst_stride, + NULL, 0, 0, height, sse); +} + +static unsigned int sub_pixel_avg_variance32xh_avx2( + const uint8_t *src, int src_stride, int x_offset, int y_offset, + const uint8_t *dst, int dst_stride, const uint8_t *sec, int sec_stride, + int height, unsigned int *sse) { + return sub_pix_var32xh(src, src_stride, x_offset, y_offset, dst, dst_stride, + sec, sec_stride, 1, height, sse); +} + +typedef void (*get_var_avx2)(const uint8_t *src, int src_stride, + const uint8_t *ref, int ref_stride, + unsigned int *sse, int *sum); + +static void variance_avx2(const uint8_t *src, int src_stride, + const uint8_t *ref, int ref_stride, int w, int h, + unsigned int *sse, int *sum, get_var_avx2 var_fn, + int block_size) { + int i, j; + + *sse = 0; + *sum = 0; + + for (i = 0; i < h; i += 16) { + for (j = 0; j < w; j += block_size) { + unsigned int sse0; + int sum0; + var_fn(&src[src_stride * i + j], src_stride, &ref[ref_stride * i + j], + ref_stride, &sse0, &sum0); + *sse += sse0; + *sum += sum0; + } + } +} + +unsigned int vpx_variance16x16_avx2(const uint8_t *src, int src_stride, + const uint8_t *ref, int ref_stride, + unsigned int *sse) { + int sum; + variance_avx2(src, src_stride, ref, ref_stride, 16, 16, sse, &sum, + vpx_get16x16var_avx2, 16); + return *sse - (uint32_t)(((int64_t)sum * sum) >> 8); +} + +unsigned int vpx_mse16x16_avx2(const uint8_t *src, int src_stride, + const uint8_t *ref, int ref_stride, + unsigned int *sse) { + int sum; + vpx_get16x16var_avx2(src, src_stride, ref, ref_stride, sse, &sum); + return *sse; +} + +unsigned int vpx_variance32x16_avx2(const uint8_t *src, int src_stride, + const uint8_t *ref, int ref_stride, + unsigned int *sse) { + int sum; + variance_avx2(src, src_stride, ref, ref_stride, 32, 16, sse, &sum, + get32x16var_avx2, 32); + return *sse - (uint32_t)(((int64_t)sum * sum) >> 9); +} + +unsigned int vpx_variance32x32_avx2(const uint8_t *src, int src_stride, + const uint8_t *ref, int ref_stride, + unsigned int *sse) { + int sum; + variance_avx2(src, src_stride, ref, ref_stride, 32, 32, sse, &sum, + get32x16var_avx2, 32); + return *sse - (uint32_t)(((int64_t)sum * sum) >> 10); +} + +unsigned int vpx_variance64x64_avx2(const uint8_t *src, int src_stride, + const uint8_t *ref, int ref_stride, + unsigned int *sse) { + int sum; + variance_avx2(src, src_stride, ref, ref_stride, 64, 64, sse, &sum, + get32x16var_avx2, 32); + return *sse - (uint32_t)(((int64_t)sum * sum) >> 12); +} + +unsigned int vpx_variance64x32_avx2(const uint8_t *src, int src_stride, + const uint8_t *ref, int ref_stride, + unsigned int *sse) { + int sum; + variance_avx2(src, src_stride, ref, ref_stride, 64, 32, sse, &sum, + get32x16var_avx2, 32); + return *sse - (uint32_t)(((int64_t)sum * sum) >> 11); +} + +unsigned int vpx_sub_pixel_variance64x64_avx2(const uint8_t *src, + int src_stride, int x_offset, + int y_offset, const uint8_t *dst, + int dst_stride, + unsigned int *sse) { + unsigned int sse1; + const int se1 = sub_pixel_variance32xh_avx2( + src, src_stride, x_offset, y_offset, dst, dst_stride, 64, &sse1); + unsigned int sse2; + const int se2 = + sub_pixel_variance32xh_avx2(src + 32, src_stride, x_offset, y_offset, + dst + 32, dst_stride, 64, &sse2); + const int se = se1 + se2; + *sse = sse1 + sse2; + return *sse - (uint32_t)(((int64_t)se * se) >> 12); +} + +unsigned int vpx_sub_pixel_variance32x32_avx2(const uint8_t *src, + int src_stride, int x_offset, + int y_offset, const uint8_t *dst, + int dst_stride, + unsigned int *sse) { + const int se = sub_pixel_variance32xh_avx2( + src, src_stride, x_offset, y_offset, dst, dst_stride, 32, sse); + return *sse - (uint32_t)(((int64_t)se * se) >> 10); +} + +unsigned int vpx_sub_pixel_avg_variance64x64_avx2( + const uint8_t *src, int src_stride, int x_offset, int y_offset, + const uint8_t *dst, int dst_stride, unsigned int *sse, const uint8_t *sec) { + unsigned int sse1; + const int se1 = sub_pixel_avg_variance32xh_avx2( + src, src_stride, x_offset, y_offset, dst, dst_stride, sec, 64, 64, &sse1); + unsigned int sse2; + const int se2 = sub_pixel_avg_variance32xh_avx2( + src + 32, src_stride, x_offset, y_offset, dst + 32, dst_stride, sec + 32, + 64, 64, &sse2); + const int se = se1 + se2; + + *sse = sse1 + sse2; + + return *sse - (uint32_t)(((int64_t)se * se) >> 12); +} + +unsigned int vpx_sub_pixel_avg_variance32x32_avx2( + const uint8_t *src, int src_stride, int x_offset, int y_offset, + const uint8_t *dst, int dst_stride, unsigned int *sse, const uint8_t *sec) { + // Process 32 elements in parallel. + const int se = sub_pixel_avg_variance32xh_avx2( + src, src_stride, x_offset, y_offset, dst, dst_stride, sec, 32, 32, sse); + return *sse - (uint32_t)(((int64_t)se * se) >> 10); +} diff --git a/vpx_dsp/x86/variance_sse2.c b/vpx_dsp/x86/variance_sse2.c new file mode 100644 index 0000000..8d8bf18 --- /dev/null +++ b/vpx_dsp/x86/variance_sse2.c @@ -0,0 +1,449 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include // SSE2 + +#include "./vpx_config.h" +#include "./vpx_dsp_rtcd.h" + +#include "vpx_ports/mem.h" + +typedef void (*getNxMvar_fn_t)(const unsigned char *src, int src_stride, + const unsigned char *ref, int ref_stride, + unsigned int *sse, int *sum); + +unsigned int vpx_get_mb_ss_sse2(const int16_t *src) { + __m128i vsum = _mm_setzero_si128(); + int i; + + for (i = 0; i < 32; ++i) { + const __m128i v = _mm_loadu_si128((const __m128i *)src); + vsum = _mm_add_epi32(vsum, _mm_madd_epi16(v, v)); + src += 8; + } + + vsum = _mm_add_epi32(vsum, _mm_srli_si128(vsum, 8)); + vsum = _mm_add_epi32(vsum, _mm_srli_si128(vsum, 4)); + return _mm_cvtsi128_si32(vsum); +} + +#define READ64(p, stride, i) \ + _mm_unpacklo_epi8( \ + _mm_cvtsi32_si128(*(const uint32_t *)(p + i * stride)), \ + _mm_cvtsi32_si128(*(const uint32_t *)(p + (i + 1) * stride))) + +static void get4x4var_sse2(const uint8_t *src, int src_stride, + const uint8_t *ref, int ref_stride, + unsigned int *sse, int *sum) { + const __m128i zero = _mm_setzero_si128(); + const __m128i src0 = _mm_unpacklo_epi8(READ64(src, src_stride, 0), zero); + const __m128i src1 = _mm_unpacklo_epi8(READ64(src, src_stride, 2), zero); + const __m128i ref0 = _mm_unpacklo_epi8(READ64(ref, ref_stride, 0), zero); + const __m128i ref1 = _mm_unpacklo_epi8(READ64(ref, ref_stride, 2), zero); + const __m128i diff0 = _mm_sub_epi16(src0, ref0); + const __m128i diff1 = _mm_sub_epi16(src1, ref1); + + // sum + __m128i vsum = _mm_add_epi16(diff0, diff1); + vsum = _mm_add_epi16(vsum, _mm_srli_si128(vsum, 8)); + vsum = _mm_add_epi16(vsum, _mm_srli_si128(vsum, 4)); + vsum = _mm_add_epi16(vsum, _mm_srli_si128(vsum, 2)); + *sum = (int16_t)_mm_extract_epi16(vsum, 0); + + // sse + vsum = + _mm_add_epi32(_mm_madd_epi16(diff0, diff0), _mm_madd_epi16(diff1, diff1)); + vsum = _mm_add_epi32(vsum, _mm_srli_si128(vsum, 8)); + vsum = _mm_add_epi32(vsum, _mm_srli_si128(vsum, 4)); + *sse = _mm_cvtsi128_si32(vsum); +} + +void vpx_get8x8var_sse2(const uint8_t *src, int src_stride, const uint8_t *ref, + int ref_stride, unsigned int *sse, int *sum) { + const __m128i zero = _mm_setzero_si128(); + __m128i vsum = _mm_setzero_si128(); + __m128i vsse = _mm_setzero_si128(); + int i; + + for (i = 0; i < 8; i += 2) { + const __m128i src0 = _mm_unpacklo_epi8( + _mm_loadl_epi64((const __m128i *)(src + i * src_stride)), zero); + const __m128i ref0 = _mm_unpacklo_epi8( + _mm_loadl_epi64((const __m128i *)(ref + i * ref_stride)), zero); + const __m128i diff0 = _mm_sub_epi16(src0, ref0); + + const __m128i src1 = _mm_unpacklo_epi8( + _mm_loadl_epi64((const __m128i *)(src + (i + 1) * src_stride)), zero); + const __m128i ref1 = _mm_unpacklo_epi8( + _mm_loadl_epi64((const __m128i *)(ref + (i + 1) * ref_stride)), zero); + const __m128i diff1 = _mm_sub_epi16(src1, ref1); + + vsum = _mm_add_epi16(vsum, diff0); + vsum = _mm_add_epi16(vsum, diff1); + vsse = _mm_add_epi32(vsse, _mm_madd_epi16(diff0, diff0)); + vsse = _mm_add_epi32(vsse, _mm_madd_epi16(diff1, diff1)); + } + + // sum + vsum = _mm_add_epi16(vsum, _mm_srli_si128(vsum, 8)); + vsum = _mm_add_epi16(vsum, _mm_srli_si128(vsum, 4)); + vsum = _mm_add_epi16(vsum, _mm_srli_si128(vsum, 2)); + *sum = (int16_t)_mm_extract_epi16(vsum, 0); + + // sse + vsse = _mm_add_epi32(vsse, _mm_srli_si128(vsse, 8)); + vsse = _mm_add_epi32(vsse, _mm_srli_si128(vsse, 4)); + *sse = _mm_cvtsi128_si32(vsse); +} + +void vpx_get16x16var_sse2(const uint8_t *src, int src_stride, + const uint8_t *ref, int ref_stride, unsigned int *sse, + int *sum) { + const __m128i zero = _mm_setzero_si128(); + __m128i vsum = _mm_setzero_si128(); + __m128i vsse = _mm_setzero_si128(); + int i; + + for (i = 0; i < 16; ++i) { + const __m128i s = _mm_loadu_si128((const __m128i *)src); + const __m128i r = _mm_loadu_si128((const __m128i *)ref); + + const __m128i src0 = _mm_unpacklo_epi8(s, zero); + const __m128i ref0 = _mm_unpacklo_epi8(r, zero); + const __m128i diff0 = _mm_sub_epi16(src0, ref0); + + const __m128i src1 = _mm_unpackhi_epi8(s, zero); + const __m128i ref1 = _mm_unpackhi_epi8(r, zero); + const __m128i diff1 = _mm_sub_epi16(src1, ref1); + + vsum = _mm_add_epi16(vsum, diff0); + vsum = _mm_add_epi16(vsum, diff1); + vsse = _mm_add_epi32(vsse, _mm_madd_epi16(diff0, diff0)); + vsse = _mm_add_epi32(vsse, _mm_madd_epi16(diff1, diff1)); + + src += src_stride; + ref += ref_stride; + } + + // sum + vsum = _mm_add_epi16(vsum, _mm_srli_si128(vsum, 8)); + vsum = _mm_add_epi16(vsum, _mm_srli_si128(vsum, 4)); + *sum = + (int16_t)_mm_extract_epi16(vsum, 0) + (int16_t)_mm_extract_epi16(vsum, 1); + + // sse + vsse = _mm_add_epi32(vsse, _mm_srli_si128(vsse, 8)); + vsse = _mm_add_epi32(vsse, _mm_srli_si128(vsse, 4)); + *sse = _mm_cvtsi128_si32(vsse); +} + +static void variance_sse2(const unsigned char *src, int src_stride, + const unsigned char *ref, int ref_stride, int w, + int h, unsigned int *sse, int *sum, + getNxMvar_fn_t var_fn, int block_size) { + int i, j; + + *sse = 0; + *sum = 0; + + for (i = 0; i < h; i += block_size) { + for (j = 0; j < w; j += block_size) { + unsigned int sse0; + int sum0; + var_fn(src + src_stride * i + j, src_stride, ref + ref_stride * i + j, + ref_stride, &sse0, &sum0); + *sse += sse0; + *sum += sum0; + } + } +} + +unsigned int vpx_variance4x4_sse2(const unsigned char *src, int src_stride, + const unsigned char *ref, int ref_stride, + unsigned int *sse) { + int sum; + get4x4var_sse2(src, src_stride, ref, ref_stride, sse, &sum); + return *sse - ((sum * sum) >> 4); +} + +unsigned int vpx_variance8x4_sse2(const uint8_t *src, int src_stride, + const uint8_t *ref, int ref_stride, + unsigned int *sse) { + int sum; + variance_sse2(src, src_stride, ref, ref_stride, 8, 4, sse, &sum, + get4x4var_sse2, 4); + return *sse - ((sum * sum) >> 5); +} + +unsigned int vpx_variance4x8_sse2(const uint8_t *src, int src_stride, + const uint8_t *ref, int ref_stride, + unsigned int *sse) { + int sum; + variance_sse2(src, src_stride, ref, ref_stride, 4, 8, sse, &sum, + get4x4var_sse2, 4); + return *sse - ((sum * sum) >> 5); +} + +unsigned int vpx_variance8x8_sse2(const unsigned char *src, int src_stride, + const unsigned char *ref, int ref_stride, + unsigned int *sse) { + int sum; + vpx_get8x8var_sse2(src, src_stride, ref, ref_stride, sse, &sum); + return *sse - ((sum * sum) >> 6); +} + +unsigned int vpx_variance16x8_sse2(const unsigned char *src, int src_stride, + const unsigned char *ref, int ref_stride, + unsigned int *sse) { + int sum; + variance_sse2(src, src_stride, ref, ref_stride, 16, 8, sse, &sum, + vpx_get8x8var_sse2, 8); + return *sse - ((sum * sum) >> 7); +} + +unsigned int vpx_variance8x16_sse2(const unsigned char *src, int src_stride, + const unsigned char *ref, int ref_stride, + unsigned int *sse) { + int sum; + variance_sse2(src, src_stride, ref, ref_stride, 8, 16, sse, &sum, + vpx_get8x8var_sse2, 8); + return *sse - ((sum * sum) >> 7); +} + +unsigned int vpx_variance16x16_sse2(const unsigned char *src, int src_stride, + const unsigned char *ref, int ref_stride, + unsigned int *sse) { + int sum; + vpx_get16x16var_sse2(src, src_stride, ref, ref_stride, sse, &sum); + return *sse - (uint32_t)(((int64_t)sum * sum) >> 8); +} + +unsigned int vpx_variance32x32_sse2(const uint8_t *src, int src_stride, + const uint8_t *ref, int ref_stride, + unsigned int *sse) { + int sum; + variance_sse2(src, src_stride, ref, ref_stride, 32, 32, sse, &sum, + vpx_get16x16var_sse2, 16); + return *sse - (unsigned int)(((int64_t)sum * sum) >> 10); +} + +unsigned int vpx_variance32x16_sse2(const uint8_t *src, int src_stride, + const uint8_t *ref, int ref_stride, + unsigned int *sse) { + int sum; + variance_sse2(src, src_stride, ref, ref_stride, 32, 16, sse, &sum, + vpx_get16x16var_sse2, 16); + return *sse - (unsigned int)(((int64_t)sum * sum) >> 9); +} + +unsigned int vpx_variance16x32_sse2(const uint8_t *src, int src_stride, + const uint8_t *ref, int ref_stride, + unsigned int *sse) { + int sum; + variance_sse2(src, src_stride, ref, ref_stride, 16, 32, sse, &sum, + vpx_get16x16var_sse2, 16); + return *sse - (unsigned int)(((int64_t)sum * sum) >> 9); +} + +unsigned int vpx_variance64x64_sse2(const uint8_t *src, int src_stride, + const uint8_t *ref, int ref_stride, + unsigned int *sse) { + int sum; + variance_sse2(src, src_stride, ref, ref_stride, 64, 64, sse, &sum, + vpx_get16x16var_sse2, 16); + return *sse - (unsigned int)(((int64_t)sum * sum) >> 12); +} + +unsigned int vpx_variance64x32_sse2(const uint8_t *src, int src_stride, + const uint8_t *ref, int ref_stride, + unsigned int *sse) { + int sum; + variance_sse2(src, src_stride, ref, ref_stride, 64, 32, sse, &sum, + vpx_get16x16var_sse2, 16); + return *sse - (unsigned int)(((int64_t)sum * sum) >> 11); +} + +unsigned int vpx_variance32x64_sse2(const uint8_t *src, int src_stride, + const uint8_t *ref, int ref_stride, + unsigned int *sse) { + int sum; + variance_sse2(src, src_stride, ref, ref_stride, 32, 64, sse, &sum, + vpx_get16x16var_sse2, 16); + return *sse - (unsigned int)(((int64_t)sum * sum) >> 11); +} + +unsigned int vpx_mse8x8_sse2(const uint8_t *src, int src_stride, + const uint8_t *ref, int ref_stride, + unsigned int *sse) { + vpx_variance8x8_sse2(src, src_stride, ref, ref_stride, sse); + return *sse; +} + +unsigned int vpx_mse8x16_sse2(const uint8_t *src, int src_stride, + const uint8_t *ref, int ref_stride, + unsigned int *sse) { + vpx_variance8x16_sse2(src, src_stride, ref, ref_stride, sse); + return *sse; +} + +unsigned int vpx_mse16x8_sse2(const uint8_t *src, int src_stride, + const uint8_t *ref, int ref_stride, + unsigned int *sse) { + vpx_variance16x8_sse2(src, src_stride, ref, ref_stride, sse); + return *sse; +} + +unsigned int vpx_mse16x16_sse2(const uint8_t *src, int src_stride, + const uint8_t *ref, int ref_stride, + unsigned int *sse) { + vpx_variance16x16_sse2(src, src_stride, ref, ref_stride, sse); + return *sse; +} + +// The 2 unused parameters are place holders for PIC enabled build. +// These definitions are for functions defined in subpel_variance.asm +#define DECL(w, opt) \ + int vpx_sub_pixel_variance##w##xh_##opt( \ + const uint8_t *src, ptrdiff_t src_stride, int x_offset, int y_offset, \ + const uint8_t *dst, ptrdiff_t dst_stride, int height, unsigned int *sse, \ + void *unused0, void *unused) +#define DECLS(opt1, opt2) \ + DECL(4, opt1); \ + DECL(8, opt1); \ + DECL(16, opt1) + +DECLS(sse2, sse2); +DECLS(ssse3, ssse3); +#undef DECLS +#undef DECL + +#define FN(w, h, wf, wlog2, hlog2, opt, cast_prod, cast) \ + unsigned int vpx_sub_pixel_variance##w##x##h##_##opt( \ + const uint8_t *src, int src_stride, int x_offset, int y_offset, \ + const uint8_t *dst, int dst_stride, unsigned int *sse_ptr) { \ + unsigned int sse; \ + int se = vpx_sub_pixel_variance##wf##xh_##opt(src, src_stride, x_offset, \ + y_offset, dst, dst_stride, \ + h, &sse, NULL, NULL); \ + if (w > wf) { \ + unsigned int sse2; \ + int se2 = vpx_sub_pixel_variance##wf##xh_##opt( \ + src + 16, src_stride, x_offset, y_offset, dst + 16, dst_stride, h, \ + &sse2, NULL, NULL); \ + se += se2; \ + sse += sse2; \ + if (w > wf * 2) { \ + se2 = vpx_sub_pixel_variance##wf##xh_##opt( \ + src + 32, src_stride, x_offset, y_offset, dst + 32, dst_stride, h, \ + &sse2, NULL, NULL); \ + se += se2; \ + sse += sse2; \ + se2 = vpx_sub_pixel_variance##wf##xh_##opt( \ + src + 48, src_stride, x_offset, y_offset, dst + 48, dst_stride, h, \ + &sse2, NULL, NULL); \ + se += se2; \ + sse += sse2; \ + } \ + } \ + *sse_ptr = sse; \ + return sse - (unsigned int)(cast_prod(cast se * se) >> (wlog2 + hlog2)); \ + } + +#define FNS(opt1, opt2) \ + FN(64, 64, 16, 6, 6, opt1, (int64_t), (int64_t)); \ + FN(64, 32, 16, 6, 5, opt1, (int64_t), (int64_t)); \ + FN(32, 64, 16, 5, 6, opt1, (int64_t), (int64_t)); \ + FN(32, 32, 16, 5, 5, opt1, (int64_t), (int64_t)); \ + FN(32, 16, 16, 5, 4, opt1, (int64_t), (int64_t)); \ + FN(16, 32, 16, 4, 5, opt1, (int64_t), (int64_t)); \ + FN(16, 16, 16, 4, 4, opt1, (uint32_t), (int64_t)); \ + FN(16, 8, 16, 4, 3, opt1, (int32_t), (int32_t)); \ + FN(8, 16, 8, 3, 4, opt1, (int32_t), (int32_t)); \ + FN(8, 8, 8, 3, 3, opt1, (int32_t), (int32_t)); \ + FN(8, 4, 8, 3, 2, opt1, (int32_t), (int32_t)); \ + FN(4, 8, 4, 2, 3, opt1, (int32_t), (int32_t)); \ + FN(4, 4, 4, 2, 2, opt1, (int32_t), (int32_t)) + +FNS(sse2, sse2); +FNS(ssse3, ssse3); + +#undef FNS +#undef FN + +// The 2 unused parameters are place holders for PIC enabled build. +#define DECL(w, opt) \ + int vpx_sub_pixel_avg_variance##w##xh_##opt( \ + const uint8_t *src, ptrdiff_t src_stride, int x_offset, int y_offset, \ + const uint8_t *dst, ptrdiff_t dst_stride, const uint8_t *sec, \ + ptrdiff_t sec_stride, int height, unsigned int *sse, void *unused0, \ + void *unused) +#define DECLS(opt1, opt2) \ + DECL(4, opt1); \ + DECL(8, opt1); \ + DECL(16, opt1) + +DECLS(sse2, sse2); +DECLS(ssse3, ssse3); +#undef DECL +#undef DECLS + +#define FN(w, h, wf, wlog2, hlog2, opt, cast_prod, cast) \ + unsigned int vpx_sub_pixel_avg_variance##w##x##h##_##opt( \ + const uint8_t *src, int src_stride, int x_offset, int y_offset, \ + const uint8_t *dst, int dst_stride, unsigned int *sseptr, \ + const uint8_t *sec) { \ + unsigned int sse; \ + int se = vpx_sub_pixel_avg_variance##wf##xh_##opt( \ + src, src_stride, x_offset, y_offset, dst, dst_stride, sec, w, h, &sse, \ + NULL, NULL); \ + if (w > wf) { \ + unsigned int sse2; \ + int se2 = vpx_sub_pixel_avg_variance##wf##xh_##opt( \ + src + 16, src_stride, x_offset, y_offset, dst + 16, dst_stride, \ + sec + 16, w, h, &sse2, NULL, NULL); \ + se += se2; \ + sse += sse2; \ + if (w > wf * 2) { \ + se2 = vpx_sub_pixel_avg_variance##wf##xh_##opt( \ + src + 32, src_stride, x_offset, y_offset, dst + 32, dst_stride, \ + sec + 32, w, h, &sse2, NULL, NULL); \ + se += se2; \ + sse += sse2; \ + se2 = vpx_sub_pixel_avg_variance##wf##xh_##opt( \ + src + 48, src_stride, x_offset, y_offset, dst + 48, dst_stride, \ + sec + 48, w, h, &sse2, NULL, NULL); \ + se += se2; \ + sse += sse2; \ + } \ + } \ + *sseptr = sse; \ + return sse - (unsigned int)(cast_prod(cast se * se) >> (wlog2 + hlog2)); \ + } + +#define FNS(opt1, opt2) \ + FN(64, 64, 16, 6, 6, opt1, (int64_t), (int64_t)); \ + FN(64, 32, 16, 6, 5, opt1, (int64_t), (int64_t)); \ + FN(32, 64, 16, 5, 6, opt1, (int64_t), (int64_t)); \ + FN(32, 32, 16, 5, 5, opt1, (int64_t), (int64_t)); \ + FN(32, 16, 16, 5, 4, opt1, (int64_t), (int64_t)); \ + FN(16, 32, 16, 4, 5, opt1, (int64_t), (int64_t)); \ + FN(16, 16, 16, 4, 4, opt1, (uint32_t), (int64_t)); \ + FN(16, 8, 16, 4, 3, opt1, (uint32_t), (int32_t)); \ + FN(8, 16, 8, 3, 4, opt1, (uint32_t), (int32_t)); \ + FN(8, 8, 8, 3, 3, opt1, (uint32_t), (int32_t)); \ + FN(8, 4, 8, 3, 2, opt1, (uint32_t), (int32_t)); \ + FN(4, 8, 4, 2, 3, opt1, (uint32_t), (int32_t)); \ + FN(4, 4, 4, 2, 2, opt1, (uint32_t), (int32_t)) + +FNS(sse2, sse); +FNS(ssse3, ssse3); + +#undef FNS +#undef FN diff --git a/vpx_dsp/x86/vpx_asm_stubs.c b/vpx_dsp/x86/vpx_asm_stubs.c new file mode 100644 index 0000000..4f164af --- /dev/null +++ b/vpx_dsp/x86/vpx_asm_stubs.c @@ -0,0 +1,162 @@ +/* + * Copyright (c) 2014 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "./vpx_config.h" +#include "./vpx_dsp_rtcd.h" +#include "vpx_dsp/x86/convolve.h" + +#if HAVE_SSE2 +filter8_1dfunction vpx_filter_block1d16_v8_sse2; +filter8_1dfunction vpx_filter_block1d16_h8_sse2; +filter8_1dfunction vpx_filter_block1d8_v8_sse2; +filter8_1dfunction vpx_filter_block1d8_h8_sse2; +filter8_1dfunction vpx_filter_block1d4_v8_sse2; +filter8_1dfunction vpx_filter_block1d4_h8_sse2; +filter8_1dfunction vpx_filter_block1d16_v8_avg_sse2; +filter8_1dfunction vpx_filter_block1d16_h8_avg_sse2; +filter8_1dfunction vpx_filter_block1d8_v8_avg_sse2; +filter8_1dfunction vpx_filter_block1d8_h8_avg_sse2; +filter8_1dfunction vpx_filter_block1d4_v8_avg_sse2; +filter8_1dfunction vpx_filter_block1d4_h8_avg_sse2; + +filter8_1dfunction vpx_filter_block1d16_v2_sse2; +filter8_1dfunction vpx_filter_block1d16_h2_sse2; +filter8_1dfunction vpx_filter_block1d8_v2_sse2; +filter8_1dfunction vpx_filter_block1d8_h2_sse2; +filter8_1dfunction vpx_filter_block1d4_v2_sse2; +filter8_1dfunction vpx_filter_block1d4_h2_sse2; +filter8_1dfunction vpx_filter_block1d16_v2_avg_sse2; +filter8_1dfunction vpx_filter_block1d16_h2_avg_sse2; +filter8_1dfunction vpx_filter_block1d8_v2_avg_sse2; +filter8_1dfunction vpx_filter_block1d8_h2_avg_sse2; +filter8_1dfunction vpx_filter_block1d4_v2_avg_sse2; +filter8_1dfunction vpx_filter_block1d4_h2_avg_sse2; + +// void vpx_convolve8_horiz_sse2(const uint8_t *src, ptrdiff_t src_stride, +// uint8_t *dst, ptrdiff_t dst_stride, +// const InterpKernel *filter, int x0_q4, +// int32_t x_step_q4, int y0_q4, int y_step_q4, +// int w, int h); +// void vpx_convolve8_vert_sse2(const uint8_t *src, ptrdiff_t src_stride, +// uint8_t *dst, ptrdiff_t dst_stride, +// const InterpKernel *filter, int x0_q4, +// int32_t x_step_q4, int y0_q4, int y_step_q4, +// int w, int h); +// void vpx_convolve8_avg_horiz_sse2(const uint8_t *src, ptrdiff_t src_stride, +// uint8_t *dst, ptrdiff_t dst_stride, +// const InterpKernel *filter, int x0_q4, +// int32_t x_step_q4, int y0_q4, +// int y_step_q4, int w, int h); +// void vpx_convolve8_avg_vert_sse2(const uint8_t *src, ptrdiff_t src_stride, +// uint8_t *dst, ptrdiff_t dst_stride, +// const InterpKernel *filter, int x0_q4, +// int32_t x_step_q4, int y0_q4, int y_step_q4, +// int w, int h); +FUN_CONV_1D(horiz, x0_q4, x_step_q4, h, src, , sse2); +FUN_CONV_1D(vert, y0_q4, y_step_q4, v, src - src_stride * 3, , sse2); +FUN_CONV_1D(avg_horiz, x0_q4, x_step_q4, h, src, avg_, sse2); +FUN_CONV_1D(avg_vert, y0_q4, y_step_q4, v, src - src_stride * 3, avg_, sse2); + +// void vpx_convolve8_sse2(const uint8_t *src, ptrdiff_t src_stride, +// uint8_t *dst, ptrdiff_t dst_stride, +// const InterpKernel *filter, int x0_q4, +// int32_t x_step_q4, int y0_q4, int y_step_q4, +// int w, int h); +// void vpx_convolve8_avg_sse2(const uint8_t *src, ptrdiff_t src_stride, +// uint8_t *dst, ptrdiff_t dst_stride, +// const InterpKernel *filter, int x0_q4, +// int32_t x_step_q4, int y0_q4, int y_step_q4, +// int w, int h); +FUN_CONV_2D(, sse2); +FUN_CONV_2D(avg_, sse2); + +#if CONFIG_VP9_HIGHBITDEPTH && ARCH_X86_64 +highbd_filter8_1dfunction vpx_highbd_filter_block1d16_v8_sse2; +highbd_filter8_1dfunction vpx_highbd_filter_block1d16_h8_sse2; +highbd_filter8_1dfunction vpx_highbd_filter_block1d8_v8_sse2; +highbd_filter8_1dfunction vpx_highbd_filter_block1d8_h8_sse2; +highbd_filter8_1dfunction vpx_highbd_filter_block1d4_v8_sse2; +highbd_filter8_1dfunction vpx_highbd_filter_block1d4_h8_sse2; +highbd_filter8_1dfunction vpx_highbd_filter_block1d16_v8_avg_sse2; +highbd_filter8_1dfunction vpx_highbd_filter_block1d16_h8_avg_sse2; +highbd_filter8_1dfunction vpx_highbd_filter_block1d8_v8_avg_sse2; +highbd_filter8_1dfunction vpx_highbd_filter_block1d8_h8_avg_sse2; +highbd_filter8_1dfunction vpx_highbd_filter_block1d4_v8_avg_sse2; +highbd_filter8_1dfunction vpx_highbd_filter_block1d4_h8_avg_sse2; + +highbd_filter8_1dfunction vpx_highbd_filter_block1d16_v2_sse2; +highbd_filter8_1dfunction vpx_highbd_filter_block1d16_h2_sse2; +highbd_filter8_1dfunction vpx_highbd_filter_block1d8_v2_sse2; +highbd_filter8_1dfunction vpx_highbd_filter_block1d8_h2_sse2; +highbd_filter8_1dfunction vpx_highbd_filter_block1d4_v2_sse2; +highbd_filter8_1dfunction vpx_highbd_filter_block1d4_h2_sse2; +highbd_filter8_1dfunction vpx_highbd_filter_block1d16_v2_avg_sse2; +highbd_filter8_1dfunction vpx_highbd_filter_block1d16_h2_avg_sse2; +highbd_filter8_1dfunction vpx_highbd_filter_block1d8_v2_avg_sse2; +highbd_filter8_1dfunction vpx_highbd_filter_block1d8_h2_avg_sse2; +highbd_filter8_1dfunction vpx_highbd_filter_block1d4_v2_avg_sse2; +highbd_filter8_1dfunction vpx_highbd_filter_block1d4_h2_avg_sse2; + +// void vpx_highbd_convolve8_horiz_sse2(const uint8_t *src, +// ptrdiff_t src_stride, +// uint8_t *dst, +// ptrdiff_t dst_stride, +// const int16_t *filter_x, +// int x_step_q4, +// const int16_t *filter_y, +// int y_step_q4, +// int w, int h, int bd); +// void vpx_highbd_convolve8_vert_sse2(const uint8_t *src, +// ptrdiff_t src_stride, +// uint8_t *dst, +// ptrdiff_t dst_stride, +// const int16_t *filter_x, +// int x_step_q4, +// const int16_t *filter_y, +// int y_step_q4, +// int w, int h, int bd); +// void vpx_highbd_convolve8_avg_horiz_sse2(const uint8_t *src, +// ptrdiff_t src_stride, +// uint8_t *dst, +// ptrdiff_t dst_stride, +// const int16_t *filter_x, +// int x_step_q4, +// const int16_t *filter_y, +// int y_step_q4, +// int w, int h, int bd); +// void vpx_highbd_convolve8_avg_vert_sse2(const uint8_t *src, +// ptrdiff_t src_stride, +// uint8_t *dst, +// ptrdiff_t dst_stride, +// const int16_t *filter_x, +// int x_step_q4, +// const int16_t *filter_y, +// int y_step_q4, +// int w, int h, int bd); +HIGH_FUN_CONV_1D(horiz, x0_q4, x_step_q4, h, src, , sse2); +HIGH_FUN_CONV_1D(vert, y0_q4, y_step_q4, v, src - src_stride * 3, , sse2); +HIGH_FUN_CONV_1D(avg_horiz, x0_q4, x_step_q4, h, src, avg_, sse2); +HIGH_FUN_CONV_1D(avg_vert, y0_q4, y_step_q4, v, src - src_stride * 3, avg_, + sse2); + +// void vpx_highbd_convolve8_sse2(const uint8_t *src, ptrdiff_t src_stride, +// uint8_t *dst, ptrdiff_t dst_stride, +// const InterpKernel *filter, int x0_q4, +// int32_t x_step_q4, int y0_q4, int y_step_q4, +// int w, int h, int bd); +// void vpx_highbd_convolve8_avg_sse2(const uint8_t *src, ptrdiff_t src_stride, +// uint8_t *dst, ptrdiff_t dst_stride, +// const InterpKernel *filter, int x0_q4, +// int32_t x_step_q4, int y0_q4, +// int y_step_q4, int w, int h, int bd); +HIGH_FUN_CONV_2D(, sse2); +HIGH_FUN_CONV_2D(avg_, sse2); +#endif // CONFIG_VP9_HIGHBITDEPTH && ARCH_X86_64 +#endif // HAVE_SSE2 diff --git a/vpx_dsp/x86/vpx_convolve_copy_sse2.asm b/vpx_dsp/x86/vpx_convolve_copy_sse2.asm new file mode 100644 index 0000000..3f444e2 --- /dev/null +++ b/vpx_dsp/x86/vpx_convolve_copy_sse2.asm @@ -0,0 +1,226 @@ +; +; Copyright (c) 2010 The WebM project authors. All Rights Reserved. +; +; Use of this source code is governed by a BSD-style license +; that can be found in the LICENSE file in the root of the source +; tree. An additional intellectual property rights grant can be found +; in the file PATENTS. All contributing project authors may +; be found in the AUTHORS file in the root of the source tree. +; + +%include "third_party/x86inc/x86inc.asm" + +SECTION .text + +%macro convolve_fn 1-2 +%ifidn %1, avg +%define AUX_XMM_REGS 4 +%else +%define AUX_XMM_REGS 0 +%endif +%ifidn %2, highbd +%define pavg pavgw +cglobal %2_convolve_%1, 4, 8, 4+AUX_XMM_REGS, src, src_stride, \ + dst, dst_stride, \ + f, fxo, fxs, fyo, fys, w, h, bd +%else +%define pavg pavgb +cglobal convolve_%1, 4, 8, 4+AUX_XMM_REGS, src, src_stride, \ + dst, dst_stride, \ + f, fxo, fxs, fyo, fys, w, h +%endif + mov r4d, dword wm +%ifidn %2, highbd + shl r4d, 1 + shl src_strideq, 1 + shl dst_strideq, 1 +%else + cmp r4d, 4 + je .w4 +%endif + cmp r4d, 8 + je .w8 + cmp r4d, 16 + je .w16 + cmp r4d, 32 + je .w32 +%ifidn %2, highbd + cmp r4d, 64 + je .w64 + + mov r4d, dword hm +.loop128: + movu m0, [srcq] + movu m1, [srcq+16] + movu m2, [srcq+32] + movu m3, [srcq+48] +%ifidn %1, avg + pavg m0, [dstq] + pavg m1, [dstq+16] + pavg m2, [dstq+32] + pavg m3, [dstq+48] +%endif + mova [dstq ], m0 + mova [dstq+16], m1 + mova [dstq+32], m2 + mova [dstq+48], m3 + movu m0, [srcq+64] + movu m1, [srcq+80] + movu m2, [srcq+96] + movu m3, [srcq+112] + add srcq, src_strideq +%ifidn %1, avg + pavg m0, [dstq+64] + pavg m1, [dstq+80] + pavg m2, [dstq+96] + pavg m3, [dstq+112] +%endif + mova [dstq+64], m0 + mova [dstq+80], m1 + mova [dstq+96], m2 + mova [dstq+112], m3 + add dstq, dst_strideq + dec r4d + jnz .loop128 + RET +%endif + +.w64: + mov r4d, dword hm +.loop64: + movu m0, [srcq] + movu m1, [srcq+16] + movu m2, [srcq+32] + movu m3, [srcq+48] + add srcq, src_strideq +%ifidn %1, avg + pavg m0, [dstq] + pavg m1, [dstq+16] + pavg m2, [dstq+32] + pavg m3, [dstq+48] +%endif + mova [dstq ], m0 + mova [dstq+16], m1 + mova [dstq+32], m2 + mova [dstq+48], m3 + add dstq, dst_strideq + dec r4d + jnz .loop64 + RET + +.w32: + mov r4d, dword hm +.loop32: + movu m0, [srcq] + movu m1, [srcq+16] + movu m2, [srcq+src_strideq] + movu m3, [srcq+src_strideq+16] + lea srcq, [srcq+src_strideq*2] +%ifidn %1, avg + pavg m0, [dstq] + pavg m1, [dstq +16] + pavg m2, [dstq+dst_strideq] + pavg m3, [dstq+dst_strideq+16] +%endif + mova [dstq ], m0 + mova [dstq +16], m1 + mova [dstq+dst_strideq ], m2 + mova [dstq+dst_strideq+16], m3 + lea dstq, [dstq+dst_strideq*2] + sub r4d, 2 + jnz .loop32 + RET + +.w16: + mov r4d, dword hm + lea r5q, [src_strideq*3] + lea r6q, [dst_strideq*3] +.loop16: + movu m0, [srcq] + movu m1, [srcq+src_strideq] + movu m2, [srcq+src_strideq*2] + movu m3, [srcq+r5q] + lea srcq, [srcq+src_strideq*4] +%ifidn %1, avg + pavg m0, [dstq] + pavg m1, [dstq+dst_strideq] + pavg m2, [dstq+dst_strideq*2] + pavg m3, [dstq+r6q] +%endif + mova [dstq ], m0 + mova [dstq+dst_strideq ], m1 + mova [dstq+dst_strideq*2], m2 + mova [dstq+r6q ], m3 + lea dstq, [dstq+dst_strideq*4] + sub r4d, 4 + jnz .loop16 + RET + +.w8: + mov r4d, dword hm + lea r5q, [src_strideq*3] + lea r6q, [dst_strideq*3] +.loop8: + movh m0, [srcq] + movh m1, [srcq+src_strideq] + movh m2, [srcq+src_strideq*2] + movh m3, [srcq+r5q] + lea srcq, [srcq+src_strideq*4] +%ifidn %1, avg + movh m4, [dstq] + movh m5, [dstq+dst_strideq] + movh m6, [dstq+dst_strideq*2] + movh m7, [dstq+r6q] + pavg m0, m4 + pavg m1, m5 + pavg m2, m6 + pavg m3, m7 +%endif + movh [dstq ], m0 + movh [dstq+dst_strideq ], m1 + movh [dstq+dst_strideq*2], m2 + movh [dstq+r6q ], m3 + lea dstq, [dstq+dst_strideq*4] + sub r4d, 4 + jnz .loop8 + RET + +%ifnidn %2, highbd +.w4: + mov r4d, dword hm + lea r5q, [src_strideq*3] + lea r6q, [dst_strideq*3] +.loop4: + movd m0, [srcq] + movd m1, [srcq+src_strideq] + movd m2, [srcq+src_strideq*2] + movd m3, [srcq+r5q] + lea srcq, [srcq+src_strideq*4] +%ifidn %1, avg + movd m4, [dstq] + movd m5, [dstq+dst_strideq] + movd m6, [dstq+dst_strideq*2] + movd m7, [dstq+r6q] + pavg m0, m4 + pavg m1, m5 + pavg m2, m6 + pavg m3, m7 +%endif + movd [dstq ], m0 + movd [dstq+dst_strideq ], m1 + movd [dstq+dst_strideq*2], m2 + movd [dstq+r6q ], m3 + lea dstq, [dstq+dst_strideq*4] + sub r4d, 4 + jnz .loop4 + RET +%endif +%endmacro + +INIT_XMM sse2 +convolve_fn copy +convolve_fn avg +%if CONFIG_VP9_HIGHBITDEPTH +convolve_fn copy, highbd +convolve_fn avg, highbd +%endif diff --git a/vpx_dsp/x86/vpx_high_subpixel_8t_sse2.asm b/vpx_dsp/x86/vpx_high_subpixel_8t_sse2.asm new file mode 100644 index 0000000..d83507d --- /dev/null +++ b/vpx_dsp/x86/vpx_high_subpixel_8t_sse2.asm @@ -0,0 +1,964 @@ +; +; Copyright (c) 2014 The WebM project authors. All Rights Reserved. +; +; Use of this source code is governed by a BSD-style license +; that can be found in the LICENSE file in the root of the source +; tree. An additional intellectual property rights grant can be found +; in the file PATENTS. All contributing project authors may +; be found in the AUTHORS file in the root of the source tree. +; + + +%include "vpx_ports/x86_abi_support.asm" + +;Note: tap3 and tap4 have to be applied and added after other taps to avoid +;overflow. + +%macro HIGH_GET_FILTERS_4 0 + mov rdx, arg(5) ;filter ptr + mov rcx, 0x00000040 + + movdqa xmm7, [rdx] ;load filters + pshuflw xmm0, xmm7, 0b ;k0 + pshuflw xmm1, xmm7, 01010101b ;k1 + pshuflw xmm2, xmm7, 10101010b ;k2 + pshuflw xmm3, xmm7, 11111111b ;k3 + psrldq xmm7, 8 + pshuflw xmm4, xmm7, 0b ;k4 + pshuflw xmm5, xmm7, 01010101b ;k5 + pshuflw xmm6, xmm7, 10101010b ;k6 + pshuflw xmm7, xmm7, 11111111b ;k7 + + punpcklwd xmm0, xmm6 + punpcklwd xmm2, xmm5 + punpcklwd xmm3, xmm4 + punpcklwd xmm1, xmm7 + + movdqa k0k6, xmm0 + movdqa k2k5, xmm2 + movdqa k3k4, xmm3 + movdqa k1k7, xmm1 + + movq xmm6, rcx + pshufd xmm6, xmm6, 0 + movdqa krd, xmm6 + + ;Compute max and min values of a pixel + mov rdx, 0x00010001 + movsxd rcx, DWORD PTR arg(6) ;bps + movq xmm0, rdx + movq xmm1, rcx + pshufd xmm0, xmm0, 0b + movdqa xmm2, xmm0 + psllw xmm0, xmm1 + psubw xmm0, xmm2 + pxor xmm1, xmm1 + movdqa max, xmm0 ;max value (for clamping) + movdqa min, xmm1 ;min value (for clamping) + +%endm + +%macro HIGH_APPLY_FILTER_4 1 + punpcklwd xmm0, xmm6 ;two row in one register + punpcklwd xmm1, xmm7 + punpcklwd xmm2, xmm5 + punpcklwd xmm3, xmm4 + + pmaddwd xmm0, k0k6 ;multiply the filter factors + pmaddwd xmm1, k1k7 + pmaddwd xmm2, k2k5 + pmaddwd xmm3, k3k4 + + paddd xmm0, xmm1 ;sum + paddd xmm0, xmm2 + paddd xmm0, xmm3 + + paddd xmm0, krd ;rounding + psrad xmm0, 7 ;shift + packssdw xmm0, xmm0 ;pack to word + + ;clamp the values + pminsw xmm0, max + pmaxsw xmm0, min + +%if %1 + movq xmm1, [rdi] + pavgw xmm0, xmm1 +%endif + movq [rdi], xmm0 +%endm + +%macro HIGH_GET_FILTERS 0 + mov rdx, arg(5) ;filter ptr + mov rsi, arg(0) ;src_ptr + mov rdi, arg(2) ;output_ptr + mov rcx, 0x00000040 + + movdqa xmm7, [rdx] ;load filters + pshuflw xmm0, xmm7, 0b ;k0 + pshuflw xmm1, xmm7, 01010101b ;k1 + pshuflw xmm2, xmm7, 10101010b ;k2 + pshuflw xmm3, xmm7, 11111111b ;k3 + pshufhw xmm4, xmm7, 0b ;k4 + pshufhw xmm5, xmm7, 01010101b ;k5 + pshufhw xmm6, xmm7, 10101010b ;k6 + pshufhw xmm7, xmm7, 11111111b ;k7 + punpcklqdq xmm2, xmm2 + punpcklqdq xmm3, xmm3 + punpcklwd xmm0, xmm1 + punpckhwd xmm6, xmm7 + punpckhwd xmm2, xmm5 + punpckhwd xmm3, xmm4 + + movdqa k0k1, xmm0 ;store filter factors on stack + movdqa k6k7, xmm6 + movdqa k2k5, xmm2 + movdqa k3k4, xmm3 + + movq xmm6, rcx + pshufd xmm6, xmm6, 0 + movdqa krd, xmm6 ;rounding + + ;Compute max and min values of a pixel + mov rdx, 0x00010001 + movsxd rcx, DWORD PTR arg(6) ;bps + movq xmm0, rdx + movq xmm1, rcx + pshufd xmm0, xmm0, 0b + movdqa xmm2, xmm0 + psllw xmm0, xmm1 + psubw xmm0, xmm2 + pxor xmm1, xmm1 + movdqa max, xmm0 ;max value (for clamping) + movdqa min, xmm1 ;min value (for clamping) +%endm + +%macro LOAD_VERT_8 1 + movdqu xmm0, [rsi + %1] ;0 + movdqu xmm1, [rsi + rax + %1] ;1 + movdqu xmm6, [rsi + rdx * 2 + %1] ;6 + lea rsi, [rsi + rax] + movdqu xmm7, [rsi + rdx * 2 + %1] ;7 + movdqu xmm2, [rsi + rax + %1] ;2 + movdqu xmm3, [rsi + rax * 2 + %1] ;3 + movdqu xmm4, [rsi + rdx + %1] ;4 + movdqu xmm5, [rsi + rax * 4 + %1] ;5 +%endm + +%macro HIGH_APPLY_FILTER_8 2 + movdqu temp, xmm4 + movdqa xmm4, xmm0 + punpcklwd xmm0, xmm1 + punpckhwd xmm4, xmm1 + movdqa xmm1, xmm6 + punpcklwd xmm6, xmm7 + punpckhwd xmm1, xmm7 + movdqa xmm7, xmm2 + punpcklwd xmm2, xmm5 + punpckhwd xmm7, xmm5 + + movdqu xmm5, temp + movdqu temp, xmm4 + movdqa xmm4, xmm3 + punpcklwd xmm3, xmm5 + punpckhwd xmm4, xmm5 + movdqu xmm5, temp + + pmaddwd xmm0, k0k1 + pmaddwd xmm5, k0k1 + pmaddwd xmm6, k6k7 + pmaddwd xmm1, k6k7 + pmaddwd xmm2, k2k5 + pmaddwd xmm7, k2k5 + pmaddwd xmm3, k3k4 + pmaddwd xmm4, k3k4 + + paddd xmm0, xmm6 + paddd xmm0, xmm2 + paddd xmm0, xmm3 + paddd xmm5, xmm1 + paddd xmm5, xmm7 + paddd xmm5, xmm4 + + paddd xmm0, krd ;rounding + paddd xmm5, krd + psrad xmm0, 7 ;shift + psrad xmm5, 7 + packssdw xmm0, xmm5 ;pack back to word + + ;clamp the values + pminsw xmm0, max + pmaxsw xmm0, min + +%if %1 + movdqu xmm1, [rdi + %2] + pavgw xmm0, xmm1 +%endif + movdqu [rdi + %2], xmm0 +%endm + +SECTION .text + +;void vpx_filter_block1d4_v8_sse2 +;( +; unsigned char *src_ptr, +; unsigned int src_pitch, +; unsigned char *output_ptr, +; unsigned int out_pitch, +; unsigned int output_height, +; short *filter +;) +global sym(vpx_highbd_filter_block1d4_v8_sse2) PRIVATE +sym(vpx_highbd_filter_block1d4_v8_sse2): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 7 + SAVE_XMM 7 + push rsi + push rdi + push rbx + ; end prolog + + ALIGN_STACK 16, rax + sub rsp, 16 * 7 + %define k0k6 [rsp + 16 * 0] + %define k2k5 [rsp + 16 * 1] + %define k3k4 [rsp + 16 * 2] + %define k1k7 [rsp + 16 * 3] + %define krd [rsp + 16 * 4] + %define max [rsp + 16 * 5] + %define min [rsp + 16 * 6] + + HIGH_GET_FILTERS_4 + + mov rsi, arg(0) ;src_ptr + mov rdi, arg(2) ;output_ptr + + movsxd rax, DWORD PTR arg(1) ;pixels_per_line + movsxd rbx, DWORD PTR arg(3) ;out_pitch + lea rax, [rax + rax] ;bytes per line + lea rbx, [rbx + rbx] + lea rdx, [rax + rax * 2] + movsxd rcx, DWORD PTR arg(4) ;output_height + +.loop: + movq xmm0, [rsi] ;load src: row 0 + movq xmm1, [rsi + rax] ;1 + movq xmm6, [rsi + rdx * 2] ;6 + lea rsi, [rsi + rax] + movq xmm7, [rsi + rdx * 2] ;7 + movq xmm2, [rsi + rax] ;2 + movq xmm3, [rsi + rax * 2] ;3 + movq xmm4, [rsi + rdx] ;4 + movq xmm5, [rsi + rax * 4] ;5 + + HIGH_APPLY_FILTER_4 0 + + lea rdi, [rdi + rbx] + dec rcx + jnz .loop + + add rsp, 16 * 7 + pop rsp + pop rbx + ; begin epilog + pop rdi + pop rsi + RESTORE_XMM + UNSHADOW_ARGS + pop rbp + ret + +;void vpx_filter_block1d8_v8_sse2 +;( +; unsigned char *src_ptr, +; unsigned int src_pitch, +; unsigned char *output_ptr, +; unsigned int out_pitch, +; unsigned int output_height, +; short *filter +;) +global sym(vpx_highbd_filter_block1d8_v8_sse2) PRIVATE +sym(vpx_highbd_filter_block1d8_v8_sse2): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 7 + SAVE_XMM 7 + push rsi + push rdi + push rbx + ; end prolog + + ALIGN_STACK 16, rax + sub rsp, 16 * 8 + %define k0k1 [rsp + 16 * 0] + %define k6k7 [rsp + 16 * 1] + %define k2k5 [rsp + 16 * 2] + %define k3k4 [rsp + 16 * 3] + %define krd [rsp + 16 * 4] + %define temp [rsp + 16 * 5] + %define max [rsp + 16 * 6] + %define min [rsp + 16 * 7] + + HIGH_GET_FILTERS + + movsxd rax, DWORD PTR arg(1) ;pixels_per_line + movsxd rbx, DWORD PTR arg(3) ;out_pitch + lea rax, [rax + rax] ;bytes per line + lea rbx, [rbx + rbx] + lea rdx, [rax + rax * 2] + movsxd rcx, DWORD PTR arg(4) ;output_height + +.loop: + LOAD_VERT_8 0 + HIGH_APPLY_FILTER_8 0, 0 + + lea rdi, [rdi + rbx] + dec rcx + jnz .loop + + add rsp, 16 * 8 + pop rsp + pop rbx + ; begin epilog + pop rdi + pop rsi + RESTORE_XMM + UNSHADOW_ARGS + pop rbp + ret + +;void vpx_filter_block1d16_v8_sse2 +;( +; unsigned char *src_ptr, +; unsigned int src_pitch, +; unsigned char *output_ptr, +; unsigned int out_pitch, +; unsigned int output_height, +; short *filter +;) +global sym(vpx_highbd_filter_block1d16_v8_sse2) PRIVATE +sym(vpx_highbd_filter_block1d16_v8_sse2): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 7 + SAVE_XMM 7 + push rsi + push rdi + push rbx + ; end prolog + + ALIGN_STACK 16, rax + sub rsp, 16 * 8 + %define k0k1 [rsp + 16 * 0] + %define k6k7 [rsp + 16 * 1] + %define k2k5 [rsp + 16 * 2] + %define k3k4 [rsp + 16 * 3] + %define krd [rsp + 16 * 4] + %define temp [rsp + 16 * 5] + %define max [rsp + 16 * 6] + %define min [rsp + 16 * 7] + + HIGH_GET_FILTERS + + movsxd rax, DWORD PTR arg(1) ;pixels_per_line + movsxd rbx, DWORD PTR arg(3) ;out_pitch + lea rax, [rax + rax] ;bytes per line + lea rbx, [rbx + rbx] + lea rdx, [rax + rax * 2] + movsxd rcx, DWORD PTR arg(4) ;output_height + +.loop: + LOAD_VERT_8 0 + HIGH_APPLY_FILTER_8 0, 0 + sub rsi, rax + + LOAD_VERT_8 16 + HIGH_APPLY_FILTER_8 0, 16 + add rdi, rbx + + dec rcx + jnz .loop + + add rsp, 16 * 8 + pop rsp + pop rbx + ; begin epilog + pop rdi + pop rsi + RESTORE_XMM + UNSHADOW_ARGS + pop rbp + ret + +global sym(vpx_highbd_filter_block1d4_v8_avg_sse2) PRIVATE +sym(vpx_highbd_filter_block1d4_v8_avg_sse2): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 7 + SAVE_XMM 7 + push rsi + push rdi + push rbx + ; end prolog + + ALIGN_STACK 16, rax + sub rsp, 16 * 7 + %define k0k6 [rsp + 16 * 0] + %define k2k5 [rsp + 16 * 1] + %define k3k4 [rsp + 16 * 2] + %define k1k7 [rsp + 16 * 3] + %define krd [rsp + 16 * 4] + %define max [rsp + 16 * 5] + %define min [rsp + 16 * 6] + + HIGH_GET_FILTERS_4 + + mov rsi, arg(0) ;src_ptr + mov rdi, arg(2) ;output_ptr + + movsxd rax, DWORD PTR arg(1) ;pixels_per_line + movsxd rbx, DWORD PTR arg(3) ;out_pitch + lea rax, [rax + rax] ;bytes per line + lea rbx, [rbx + rbx] + lea rdx, [rax + rax * 2] + movsxd rcx, DWORD PTR arg(4) ;output_height + +.loop: + movq xmm0, [rsi] ;load src: row 0 + movq xmm1, [rsi + rax] ;1 + movq xmm6, [rsi + rdx * 2] ;6 + lea rsi, [rsi + rax] + movq xmm7, [rsi + rdx * 2] ;7 + movq xmm2, [rsi + rax] ;2 + movq xmm3, [rsi + rax * 2] ;3 + movq xmm4, [rsi + rdx] ;4 + movq xmm5, [rsi + rax * 4] ;5 + + HIGH_APPLY_FILTER_4 1 + + lea rdi, [rdi + rbx] + dec rcx + jnz .loop + + add rsp, 16 * 7 + pop rsp + pop rbx + ; begin epilog + pop rdi + pop rsi + RESTORE_XMM + UNSHADOW_ARGS + pop rbp + ret + +global sym(vpx_highbd_filter_block1d8_v8_avg_sse2) PRIVATE +sym(vpx_highbd_filter_block1d8_v8_avg_sse2): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 7 + SAVE_XMM 7 + push rsi + push rdi + push rbx + ; end prolog + + ALIGN_STACK 16, rax + sub rsp, 16 * 8 + %define k0k1 [rsp + 16 * 0] + %define k6k7 [rsp + 16 * 1] + %define k2k5 [rsp + 16 * 2] + %define k3k4 [rsp + 16 * 3] + %define krd [rsp + 16 * 4] + %define temp [rsp + 16 * 5] + %define max [rsp + 16 * 6] + %define min [rsp + 16 * 7] + + HIGH_GET_FILTERS + + movsxd rax, DWORD PTR arg(1) ;pixels_per_line + movsxd rbx, DWORD PTR arg(3) ;out_pitch + lea rax, [rax + rax] ;bytes per line + lea rbx, [rbx + rbx] + lea rdx, [rax + rax * 2] + movsxd rcx, DWORD PTR arg(4) ;output_height +.loop: + LOAD_VERT_8 0 + HIGH_APPLY_FILTER_8 1, 0 + + lea rdi, [rdi + rbx] + dec rcx + jnz .loop + + add rsp, 16 * 8 + pop rsp + pop rbx + ; begin epilog + pop rdi + pop rsi + RESTORE_XMM + UNSHADOW_ARGS + pop rbp + ret + +global sym(vpx_highbd_filter_block1d16_v8_avg_sse2) PRIVATE +sym(vpx_highbd_filter_block1d16_v8_avg_sse2): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 7 + SAVE_XMM 7 + push rsi + push rdi + push rbx + ; end prolog + + ALIGN_STACK 16, rax + sub rsp, 16 * 8 + %define k0k1 [rsp + 16 * 0] + %define k6k7 [rsp + 16 * 1] + %define k2k5 [rsp + 16 * 2] + %define k3k4 [rsp + 16 * 3] + %define krd [rsp + 16 * 4] + %define temp [rsp + 16 * 5] + %define max [rsp + 16 * 6] + %define min [rsp + 16 * 7] + + HIGH_GET_FILTERS + + movsxd rax, DWORD PTR arg(1) ;pixels_per_line + movsxd rbx, DWORD PTR arg(3) ;out_pitch + lea rax, [rax + rax] ;bytes per line + lea rbx, [rbx + rbx] + lea rdx, [rax + rax * 2] + movsxd rcx, DWORD PTR arg(4) ;output_height +.loop: + LOAD_VERT_8 0 + HIGH_APPLY_FILTER_8 1, 0 + sub rsi, rax + + LOAD_VERT_8 16 + HIGH_APPLY_FILTER_8 1, 16 + add rdi, rbx + + dec rcx + jnz .loop + + add rsp, 16 * 8 + pop rsp + pop rbx + ; begin epilog + pop rdi + pop rsi + RESTORE_XMM + UNSHADOW_ARGS + pop rbp + ret + +;void vpx_filter_block1d4_h8_sse2 +;( +; unsigned char *src_ptr, +; unsigned int src_pixels_per_line, +; unsigned char *output_ptr, +; unsigned int output_pitch, +; unsigned int output_height, +; short *filter +;) +global sym(vpx_highbd_filter_block1d4_h8_sse2) PRIVATE +sym(vpx_highbd_filter_block1d4_h8_sse2): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 7 + SAVE_XMM 7 + push rsi + push rdi + ; end prolog + + ALIGN_STACK 16, rax + sub rsp, 16 * 7 + %define k0k6 [rsp + 16 * 0] + %define k2k5 [rsp + 16 * 1] + %define k3k4 [rsp + 16 * 2] + %define k1k7 [rsp + 16 * 3] + %define krd [rsp + 16 * 4] + %define max [rsp + 16 * 5] + %define min [rsp + 16 * 6] + + HIGH_GET_FILTERS_4 + + mov rsi, arg(0) ;src_ptr + mov rdi, arg(2) ;output_ptr + + movsxd rax, DWORD PTR arg(1) ;pixels_per_line + movsxd rdx, DWORD PTR arg(3) ;out_pitch + lea rax, [rax + rax] ;bytes per line + lea rdx, [rdx + rdx] + movsxd rcx, DWORD PTR arg(4) ;output_height + +.loop: + movdqu xmm0, [rsi - 6] ;load src + movdqu xmm4, [rsi + 2] + movdqa xmm1, xmm0 + movdqa xmm6, xmm4 + movdqa xmm7, xmm4 + movdqa xmm2, xmm0 + movdqa xmm3, xmm0 + movdqa xmm5, xmm4 + + psrldq xmm1, 2 + psrldq xmm6, 4 + psrldq xmm7, 6 + psrldq xmm2, 4 + psrldq xmm3, 6 + psrldq xmm5, 2 + + HIGH_APPLY_FILTER_4 0 + + lea rsi, [rsi + rax] + lea rdi, [rdi + rdx] + dec rcx + jnz .loop + + add rsp, 16 * 7 + pop rsp + + ; begin epilog + pop rdi + pop rsi + RESTORE_XMM + UNSHADOW_ARGS + pop rbp + ret + +;void vpx_filter_block1d8_h8_sse2 +;( +; unsigned char *src_ptr, +; unsigned int src_pixels_per_line, +; unsigned char *output_ptr, +; unsigned int output_pitch, +; unsigned int output_height, +; short *filter +;) +global sym(vpx_highbd_filter_block1d8_h8_sse2) PRIVATE +sym(vpx_highbd_filter_block1d8_h8_sse2): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 7 + SAVE_XMM 7 + push rsi + push rdi + ; end prolog + + ALIGN_STACK 16, rax + sub rsp, 16 * 8 + %define k0k1 [rsp + 16 * 0] + %define k6k7 [rsp + 16 * 1] + %define k2k5 [rsp + 16 * 2] + %define k3k4 [rsp + 16 * 3] + %define krd [rsp + 16 * 4] + %define temp [rsp + 16 * 5] + %define max [rsp + 16 * 6] + %define min [rsp + 16 * 7] + + HIGH_GET_FILTERS + + movsxd rax, DWORD PTR arg(1) ;pixels_per_line + movsxd rdx, DWORD PTR arg(3) ;out_pitch + lea rax, [rax + rax] ;bytes per line + lea rdx, [rdx + rdx] + movsxd rcx, DWORD PTR arg(4) ;output_height + +.loop: + movdqu xmm0, [rsi - 6] ;load src + movdqu xmm1, [rsi - 4] + movdqu xmm2, [rsi - 2] + movdqu xmm3, [rsi] + movdqu xmm4, [rsi + 2] + movdqu xmm5, [rsi + 4] + movdqu xmm6, [rsi + 6] + movdqu xmm7, [rsi + 8] + + HIGH_APPLY_FILTER_8 0, 0 + + lea rsi, [rsi + rax] + lea rdi, [rdi + rdx] + dec rcx + jnz .loop + + add rsp, 16 * 8 + pop rsp + + ; begin epilog + pop rdi + pop rsi + RESTORE_XMM + UNSHADOW_ARGS + pop rbp + ret + +;void vpx_filter_block1d16_h8_sse2 +;( +; unsigned char *src_ptr, +; unsigned int src_pixels_per_line, +; unsigned char *output_ptr, +; unsigned int output_pitch, +; unsigned int output_height, +; short *filter +;) +global sym(vpx_highbd_filter_block1d16_h8_sse2) PRIVATE +sym(vpx_highbd_filter_block1d16_h8_sse2): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 7 + SAVE_XMM 7 + push rsi + push rdi + ; end prolog + + ALIGN_STACK 16, rax + sub rsp, 16 * 8 + %define k0k1 [rsp + 16 * 0] + %define k6k7 [rsp + 16 * 1] + %define k2k5 [rsp + 16 * 2] + %define k3k4 [rsp + 16 * 3] + %define krd [rsp + 16 * 4] + %define temp [rsp + 16 * 5] + %define max [rsp + 16 * 6] + %define min [rsp + 16 * 7] + + HIGH_GET_FILTERS + + movsxd rax, DWORD PTR arg(1) ;pixels_per_line + movsxd rdx, DWORD PTR arg(3) ;out_pitch + lea rax, [rax + rax] ;bytes per line + lea rdx, [rdx + rdx] + movsxd rcx, DWORD PTR arg(4) ;output_height + +.loop: + movdqu xmm0, [rsi - 6] ;load src + movdqu xmm1, [rsi - 4] + movdqu xmm2, [rsi - 2] + movdqu xmm3, [rsi] + movdqu xmm4, [rsi + 2] + movdqu xmm5, [rsi + 4] + movdqu xmm6, [rsi + 6] + movdqu xmm7, [rsi + 8] + + HIGH_APPLY_FILTER_8 0, 0 + + movdqu xmm0, [rsi + 10] ;load src + movdqu xmm1, [rsi + 12] + movdqu xmm2, [rsi + 14] + movdqu xmm3, [rsi + 16] + movdqu xmm4, [rsi + 18] + movdqu xmm5, [rsi + 20] + movdqu xmm6, [rsi + 22] + movdqu xmm7, [rsi + 24] + + HIGH_APPLY_FILTER_8 0, 16 + + lea rsi, [rsi + rax] + lea rdi, [rdi + rdx] + dec rcx + jnz .loop + + add rsp, 16 * 8 + pop rsp + + ; begin epilog + pop rdi + pop rsi + RESTORE_XMM + UNSHADOW_ARGS + pop rbp + ret + +global sym(vpx_highbd_filter_block1d4_h8_avg_sse2) PRIVATE +sym(vpx_highbd_filter_block1d4_h8_avg_sse2): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 7 + SAVE_XMM 7 + push rsi + push rdi + ; end prolog + + ALIGN_STACK 16, rax + sub rsp, 16 * 7 + %define k0k6 [rsp + 16 * 0] + %define k2k5 [rsp + 16 * 1] + %define k3k4 [rsp + 16 * 2] + %define k1k7 [rsp + 16 * 3] + %define krd [rsp + 16 * 4] + %define max [rsp + 16 * 5] + %define min [rsp + 16 * 6] + + HIGH_GET_FILTERS_4 + + mov rsi, arg(0) ;src_ptr + mov rdi, arg(2) ;output_ptr + + movsxd rax, DWORD PTR arg(1) ;pixels_per_line + movsxd rdx, DWORD PTR arg(3) ;out_pitch + lea rax, [rax + rax] ;bytes per line + lea rdx, [rdx + rdx] + movsxd rcx, DWORD PTR arg(4) ;output_height + +.loop: + movdqu xmm0, [rsi - 6] ;load src + movdqu xmm4, [rsi + 2] + movdqa xmm1, xmm0 + movdqa xmm6, xmm4 + movdqa xmm7, xmm4 + movdqa xmm2, xmm0 + movdqa xmm3, xmm0 + movdqa xmm5, xmm4 + + psrldq xmm1, 2 + psrldq xmm6, 4 + psrldq xmm7, 6 + psrldq xmm2, 4 + psrldq xmm3, 6 + psrldq xmm5, 2 + + HIGH_APPLY_FILTER_4 1 + + lea rsi, [rsi + rax] + lea rdi, [rdi + rdx] + dec rcx + jnz .loop + + add rsp, 16 * 7 + pop rsp + + ; begin epilog + pop rdi + pop rsi + RESTORE_XMM + UNSHADOW_ARGS + pop rbp + ret + +global sym(vpx_highbd_filter_block1d8_h8_avg_sse2) PRIVATE +sym(vpx_highbd_filter_block1d8_h8_avg_sse2): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 7 + SAVE_XMM 7 + push rsi + push rdi + ; end prolog + + ALIGN_STACK 16, rax + sub rsp, 16 * 8 + %define k0k1 [rsp + 16 * 0] + %define k6k7 [rsp + 16 * 1] + %define k2k5 [rsp + 16 * 2] + %define k3k4 [rsp + 16 * 3] + %define krd [rsp + 16 * 4] + %define temp [rsp + 16 * 5] + %define max [rsp + 16 * 6] + %define min [rsp + 16 * 7] + + HIGH_GET_FILTERS + + movsxd rax, DWORD PTR arg(1) ;pixels_per_line + movsxd rdx, DWORD PTR arg(3) ;out_pitch + lea rax, [rax + rax] ;bytes per line + lea rdx, [rdx + rdx] + movsxd rcx, DWORD PTR arg(4) ;output_height + +.loop: + movdqu xmm0, [rsi - 6] ;load src + movdqu xmm1, [rsi - 4] + movdqu xmm2, [rsi - 2] + movdqu xmm3, [rsi] + movdqu xmm4, [rsi + 2] + movdqu xmm5, [rsi + 4] + movdqu xmm6, [rsi + 6] + movdqu xmm7, [rsi + 8] + + HIGH_APPLY_FILTER_8 1, 0 + + lea rsi, [rsi + rax] + lea rdi, [rdi + rdx] + dec rcx + jnz .loop + + add rsp, 16 * 8 + pop rsp + + ; begin epilog + pop rdi + pop rsi + RESTORE_XMM + UNSHADOW_ARGS + pop rbp + ret + +global sym(vpx_highbd_filter_block1d16_h8_avg_sse2) PRIVATE +sym(vpx_highbd_filter_block1d16_h8_avg_sse2): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 7 + SAVE_XMM 7 + push rsi + push rdi + ; end prolog + + ALIGN_STACK 16, rax + sub rsp, 16 * 8 + %define k0k1 [rsp + 16 * 0] + %define k6k7 [rsp + 16 * 1] + %define k2k5 [rsp + 16 * 2] + %define k3k4 [rsp + 16 * 3] + %define krd [rsp + 16 * 4] + %define temp [rsp + 16 * 5] + %define max [rsp + 16 * 6] + %define min [rsp + 16 * 7] + + HIGH_GET_FILTERS + + movsxd rax, DWORD PTR arg(1) ;pixels_per_line + movsxd rdx, DWORD PTR arg(3) ;out_pitch + lea rax, [rax + rax] ;bytes per line + lea rdx, [rdx + rdx] + movsxd rcx, DWORD PTR arg(4) ;output_height + +.loop: + movdqu xmm0, [rsi - 6] ;load src + movdqu xmm1, [rsi - 4] + movdqu xmm2, [rsi - 2] + movdqu xmm3, [rsi] + movdqu xmm4, [rsi + 2] + movdqu xmm5, [rsi + 4] + movdqu xmm6, [rsi + 6] + movdqu xmm7, [rsi + 8] + + HIGH_APPLY_FILTER_8 1, 0 + + movdqu xmm0, [rsi + 10] ;load src + movdqu xmm1, [rsi + 12] + movdqu xmm2, [rsi + 14] + movdqu xmm3, [rsi + 16] + movdqu xmm4, [rsi + 18] + movdqu xmm5, [rsi + 20] + movdqu xmm6, [rsi + 22] + movdqu xmm7, [rsi + 24] + + HIGH_APPLY_FILTER_8 1, 16 + + lea rsi, [rsi + rax] + lea rdi, [rdi + rdx] + dec rcx + jnz .loop + + add rsp, 16 * 8 + pop rsp + + ; begin epilog + pop rdi + pop rsi + RESTORE_XMM + UNSHADOW_ARGS + pop rbp + ret diff --git a/vpx_dsp/x86/vpx_high_subpixel_bilinear_sse2.asm b/vpx_dsp/x86/vpx_high_subpixel_bilinear_sse2.asm new file mode 100644 index 0000000..9bffe50 --- /dev/null +++ b/vpx_dsp/x86/vpx_high_subpixel_bilinear_sse2.asm @@ -0,0 +1,496 @@ +; +; Copyright (c) 2014 The WebM project authors. All Rights Reserved. +; +; Use of this source code is governed by a BSD-style license +; that can be found in the LICENSE file in the root of the source +; tree. An additional intellectual property rights grant can be found +; in the file PATENTS. All contributing project authors may +; be found in the AUTHORS file in the root of the source tree. +; + +%include "vpx_ports/x86_abi_support.asm" + +%macro HIGH_GET_PARAM_4 0 + mov rdx, arg(5) ;filter ptr + mov rsi, arg(0) ;src_ptr + mov rdi, arg(2) ;output_ptr + mov rcx, 0x00000040 + + movdqa xmm3, [rdx] ;load filters + pshuflw xmm4, xmm3, 11111111b ;k3 + psrldq xmm3, 8 + pshuflw xmm3, xmm3, 0b ;k4 + punpcklwd xmm4, xmm3 ;k3k4 + + movq xmm3, rcx ;rounding + pshufd xmm3, xmm3, 0 + + mov rdx, 0x00010001 + movsxd rcx, DWORD PTR arg(6) ;bps + movq xmm5, rdx + movq xmm2, rcx + pshufd xmm5, xmm5, 0b + movdqa xmm1, xmm5 + psllw xmm5, xmm2 + psubw xmm5, xmm1 ;max value (for clamping) + pxor xmm2, xmm2 ;min value (for clamping) + + movsxd rax, DWORD PTR arg(1) ;pixels_per_line + movsxd rdx, DWORD PTR arg(3) ;out_pitch + movsxd rcx, DWORD PTR arg(4) ;output_height +%endm + +%macro HIGH_APPLY_FILTER_4 1 + + punpcklwd xmm0, xmm1 ;two row in one register + pmaddwd xmm0, xmm4 ;multiply the filter factors + + paddd xmm0, xmm3 ;rounding + psrad xmm0, 7 ;shift + packssdw xmm0, xmm0 ;pack to word + + ;clamp the values + pminsw xmm0, xmm5 + pmaxsw xmm0, xmm2 + +%if %1 + movq xmm1, [rdi] + pavgw xmm0, xmm1 +%endif + + movq [rdi], xmm0 + lea rsi, [rsi + 2*rax] + lea rdi, [rdi + 2*rdx] + dec rcx +%endm + +%if ARCH_X86_64 +%macro HIGH_GET_PARAM 0 + mov rdx, arg(5) ;filter ptr + mov rsi, arg(0) ;src_ptr + mov rdi, arg(2) ;output_ptr + mov rcx, 0x00000040 + + movdqa xmm6, [rdx] ;load filters + + pshuflw xmm7, xmm6, 11111111b ;k3 + pshufhw xmm6, xmm6, 0b ;k4 + psrldq xmm6, 8 + punpcklwd xmm7, xmm6 ;k3k4k3k4k3k4k3k4 + + movq xmm4, rcx ;rounding + pshufd xmm4, xmm4, 0 + + mov rdx, 0x00010001 + movsxd rcx, DWORD PTR arg(6) ;bps + movq xmm8, rdx + movq xmm5, rcx + pshufd xmm8, xmm8, 0b + movdqa xmm1, xmm8 + psllw xmm8, xmm5 + psubw xmm8, xmm1 ;max value (for clamping) + pxor xmm5, xmm5 ;min value (for clamping) + + movsxd rax, DWORD PTR arg(1) ;pixels_per_line + movsxd rdx, DWORD PTR arg(3) ;out_pitch + movsxd rcx, DWORD PTR arg(4) ;output_height +%endm + +%macro HIGH_APPLY_FILTER_8 1 + movdqa xmm6, xmm0 + punpckhwd xmm6, xmm1 + punpcklwd xmm0, xmm1 + pmaddwd xmm6, xmm7 + pmaddwd xmm0, xmm7 + + paddd xmm6, xmm4 ;rounding + paddd xmm0, xmm4 ;rounding + psrad xmm6, 7 ;shift + psrad xmm0, 7 ;shift + packssdw xmm0, xmm6 ;pack back to word + + ;clamp the values + pminsw xmm0, xmm8 + pmaxsw xmm0, xmm5 + +%if %1 + movdqu xmm1, [rdi] + pavgw xmm0, xmm1 +%endif + movdqu [rdi], xmm0 ;store the result + + lea rsi, [rsi + 2*rax] + lea rdi, [rdi + 2*rdx] + dec rcx +%endm + +%macro HIGH_APPLY_FILTER_16 1 + movdqa xmm9, xmm0 + movdqa xmm6, xmm2 + punpckhwd xmm9, xmm1 + punpckhwd xmm6, xmm3 + punpcklwd xmm0, xmm1 + punpcklwd xmm2, xmm3 + + pmaddwd xmm9, xmm7 + pmaddwd xmm6, xmm7 + pmaddwd xmm0, xmm7 + pmaddwd xmm2, xmm7 + + paddd xmm9, xmm4 ;rounding + paddd xmm6, xmm4 + paddd xmm0, xmm4 + paddd xmm2, xmm4 + + psrad xmm9, 7 ;shift + psrad xmm6, 7 + psrad xmm0, 7 + psrad xmm2, 7 + + packssdw xmm0, xmm9 ;pack back to word + packssdw xmm2, xmm6 ;pack back to word + + ;clamp the values + pminsw xmm0, xmm8 + pmaxsw xmm0, xmm5 + pminsw xmm2, xmm8 + pmaxsw xmm2, xmm5 + +%if %1 + movdqu xmm1, [rdi] + movdqu xmm3, [rdi + 16] + pavgw xmm0, xmm1 + pavgw xmm2, xmm3 +%endif + movdqu [rdi], xmm0 ;store the result + movdqu [rdi + 16], xmm2 ;store the result + + lea rsi, [rsi + 2*rax] + lea rdi, [rdi + 2*rdx] + dec rcx +%endm +%endif + +SECTION .text + +global sym(vpx_highbd_filter_block1d4_v2_sse2) PRIVATE +sym(vpx_highbd_filter_block1d4_v2_sse2): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 7 + push rsi + push rdi + ; end prolog + + HIGH_GET_PARAM_4 +.loop: + movq xmm0, [rsi] ;load src + movq xmm1, [rsi + 2*rax] + + HIGH_APPLY_FILTER_4 0 + jnz .loop + + ; begin epilog + pop rdi + pop rsi + UNSHADOW_ARGS + pop rbp + ret + +%if ARCH_X86_64 +global sym(vpx_highbd_filter_block1d8_v2_sse2) PRIVATE +sym(vpx_highbd_filter_block1d8_v2_sse2): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 7 + SAVE_XMM 8 + push rsi + push rdi + ; end prolog + + HIGH_GET_PARAM +.loop: + movdqu xmm0, [rsi] ;0 + movdqu xmm1, [rsi + 2*rax] ;1 + + HIGH_APPLY_FILTER_8 0 + jnz .loop + + ; begin epilog + pop rdi + pop rsi + RESTORE_XMM + UNSHADOW_ARGS + pop rbp + ret + +global sym(vpx_highbd_filter_block1d16_v2_sse2) PRIVATE +sym(vpx_highbd_filter_block1d16_v2_sse2): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 7 + SAVE_XMM 9 + push rsi + push rdi + ; end prolog + + HIGH_GET_PARAM +.loop: + movdqu xmm0, [rsi] ;0 + movdqu xmm2, [rsi + 16] + movdqu xmm1, [rsi + 2*rax] ;1 + movdqu xmm3, [rsi + 2*rax + 16] + + HIGH_APPLY_FILTER_16 0 + jnz .loop + + ; begin epilog + pop rdi + pop rsi + RESTORE_XMM + UNSHADOW_ARGS + pop rbp + ret +%endif + +global sym(vpx_highbd_filter_block1d4_v2_avg_sse2) PRIVATE +sym(vpx_highbd_filter_block1d4_v2_avg_sse2): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 7 + push rsi + push rdi + ; end prolog + + HIGH_GET_PARAM_4 +.loop: + movq xmm0, [rsi] ;load src + movq xmm1, [rsi + 2*rax] + + HIGH_APPLY_FILTER_4 1 + jnz .loop + + ; begin epilog + pop rdi + pop rsi + UNSHADOW_ARGS + pop rbp + ret + +%if ARCH_X86_64 +global sym(vpx_highbd_filter_block1d8_v2_avg_sse2) PRIVATE +sym(vpx_highbd_filter_block1d8_v2_avg_sse2): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 7 + SAVE_XMM 8 + push rsi + push rdi + ; end prolog + + HIGH_GET_PARAM +.loop: + movdqu xmm0, [rsi] ;0 + movdqu xmm1, [rsi + 2*rax] ;1 + + HIGH_APPLY_FILTER_8 1 + jnz .loop + + ; begin epilog + pop rdi + pop rsi + RESTORE_XMM + UNSHADOW_ARGS + pop rbp + ret + +global sym(vpx_highbd_filter_block1d16_v2_avg_sse2) PRIVATE +sym(vpx_highbd_filter_block1d16_v2_avg_sse2): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 7 + SAVE_XMM 9 + push rsi + push rdi + ; end prolog + + HIGH_GET_PARAM +.loop: + movdqu xmm0, [rsi] ;0 + movdqu xmm1, [rsi + 2*rax] ;1 + movdqu xmm2, [rsi + 16] + movdqu xmm3, [rsi + 2*rax + 16] + + HIGH_APPLY_FILTER_16 1 + jnz .loop + + ; begin epilog + pop rdi + pop rsi + RESTORE_XMM + UNSHADOW_ARGS + pop rbp + ret +%endif + +global sym(vpx_highbd_filter_block1d4_h2_sse2) PRIVATE +sym(vpx_highbd_filter_block1d4_h2_sse2): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 7 + push rsi + push rdi + ; end prolog + + HIGH_GET_PARAM_4 +.loop: + movdqu xmm0, [rsi] ;load src + movdqa xmm1, xmm0 + psrldq xmm1, 2 + + HIGH_APPLY_FILTER_4 0 + jnz .loop + + ; begin epilog + pop rdi + pop rsi + UNSHADOW_ARGS + pop rbp + ret + +%if ARCH_X86_64 +global sym(vpx_highbd_filter_block1d8_h2_sse2) PRIVATE +sym(vpx_highbd_filter_block1d8_h2_sse2): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 7 + SAVE_XMM 8 + push rsi + push rdi + ; end prolog + + HIGH_GET_PARAM +.loop: + movdqu xmm0, [rsi] ;load src + movdqu xmm1, [rsi + 2] + + HIGH_APPLY_FILTER_8 0 + jnz .loop + + ; begin epilog + pop rdi + pop rsi + RESTORE_XMM + UNSHADOW_ARGS + pop rbp + ret + +global sym(vpx_highbd_filter_block1d16_h2_sse2) PRIVATE +sym(vpx_highbd_filter_block1d16_h2_sse2): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 7 + SAVE_XMM 9 + push rsi + push rdi + ; end prolog + + HIGH_GET_PARAM +.loop: + movdqu xmm0, [rsi] ;load src + movdqu xmm1, [rsi + 2] + movdqu xmm2, [rsi + 16] + movdqu xmm3, [rsi + 18] + + HIGH_APPLY_FILTER_16 0 + jnz .loop + + ; begin epilog + pop rdi + pop rsi + RESTORE_XMM + UNSHADOW_ARGS + pop rbp + ret +%endif + +global sym(vpx_highbd_filter_block1d4_h2_avg_sse2) PRIVATE +sym(vpx_highbd_filter_block1d4_h2_avg_sse2): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 7 + push rsi + push rdi + ; end prolog + + HIGH_GET_PARAM_4 +.loop: + movdqu xmm0, [rsi] ;load src + movdqa xmm1, xmm0 + psrldq xmm1, 2 + + HIGH_APPLY_FILTER_4 1 + jnz .loop + + ; begin epilog + pop rdi + pop rsi + UNSHADOW_ARGS + pop rbp + ret + +%if ARCH_X86_64 +global sym(vpx_highbd_filter_block1d8_h2_avg_sse2) PRIVATE +sym(vpx_highbd_filter_block1d8_h2_avg_sse2): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 7 + SAVE_XMM 8 + push rsi + push rdi + ; end prolog + + HIGH_GET_PARAM +.loop: + movdqu xmm0, [rsi] ;load src + movdqu xmm1, [rsi + 2] + + HIGH_APPLY_FILTER_8 1 + jnz .loop + + ; begin epilog + pop rdi + pop rsi + RESTORE_XMM + UNSHADOW_ARGS + pop rbp + ret + +global sym(vpx_highbd_filter_block1d16_h2_avg_sse2) PRIVATE +sym(vpx_highbd_filter_block1d16_h2_avg_sse2): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 7 + SAVE_XMM 9 + push rsi + push rdi + ; end prolog + + HIGH_GET_PARAM +.loop: + movdqu xmm0, [rsi] ;load src + movdqu xmm1, [rsi + 2] + movdqu xmm2, [rsi + 16] + movdqu xmm3, [rsi + 18] + + HIGH_APPLY_FILTER_16 1 + jnz .loop + + ; begin epilog + pop rdi + pop rsi + RESTORE_XMM + UNSHADOW_ARGS + pop rbp + ret +%endif diff --git a/vpx_dsp/x86/vpx_subpixel_8t_intrin_avx2.c b/vpx_dsp/x86/vpx_subpixel_8t_intrin_avx2.c new file mode 100644 index 0000000..d091969 --- /dev/null +++ b/vpx_dsp/x86/vpx_subpixel_8t_intrin_avx2.c @@ -0,0 +1,416 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include + +#include "./vpx_dsp_rtcd.h" +#include "vpx_dsp/x86/convolve.h" +#include "vpx_dsp/x86/convolve_avx2.h" +#include "vpx_ports/mem.h" + +// filters for 16_h8 +DECLARE_ALIGNED(32, static const uint8_t, filt1_global_avx2[32]) = { + 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, + 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8 +}; + +DECLARE_ALIGNED(32, static const uint8_t, filt2_global_avx2[32]) = { + 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, + 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10 +}; + +DECLARE_ALIGNED(32, static const uint8_t, filt3_global_avx2[32]) = { + 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, + 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12 +}; + +DECLARE_ALIGNED(32, static const uint8_t, filt4_global_avx2[32]) = { + 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14, + 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14 +}; + +static INLINE void vpx_filter_block1d16_h8_x_avx2( + const uint8_t *src_ptr, ptrdiff_t src_pixels_per_line, uint8_t *output_ptr, + ptrdiff_t output_pitch, uint32_t output_height, const int16_t *filter, + const int avg) { + __m128i outReg1, outReg2; + __m256i outReg32b1, outReg32b2; + unsigned int i; + ptrdiff_t src_stride, dst_stride; + __m256i f[4], filt[4], s[4]; + + shuffle_filter_avx2(filter, f); + filt[0] = _mm256_load_si256((__m256i const *)filt1_global_avx2); + filt[1] = _mm256_load_si256((__m256i const *)filt2_global_avx2); + filt[2] = _mm256_load_si256((__m256i const *)filt3_global_avx2); + filt[3] = _mm256_load_si256((__m256i const *)filt4_global_avx2); + + // multiple the size of the source and destination stride by two + src_stride = src_pixels_per_line << 1; + dst_stride = output_pitch << 1; + for (i = output_height; i > 1; i -= 2) { + __m256i srcReg; + + // load the 2 strides of source + srcReg = + _mm256_castsi128_si256(_mm_loadu_si128((const __m128i *)(src_ptr - 3))); + srcReg = _mm256_inserti128_si256( + srcReg, + _mm_loadu_si128((const __m128i *)(src_ptr + src_pixels_per_line - 3)), + 1); + + // filter the source buffer + s[0] = _mm256_shuffle_epi8(srcReg, filt[0]); + s[1] = _mm256_shuffle_epi8(srcReg, filt[1]); + s[2] = _mm256_shuffle_epi8(srcReg, filt[2]); + s[3] = _mm256_shuffle_epi8(srcReg, filt[3]); + outReg32b1 = convolve8_16_avx2(s, f); + + // reading 2 strides of the next 16 bytes + // (part of it was being read by earlier read) + srcReg = + _mm256_castsi128_si256(_mm_loadu_si128((const __m128i *)(src_ptr + 5))); + srcReg = _mm256_inserti128_si256( + srcReg, + _mm_loadu_si128((const __m128i *)(src_ptr + src_pixels_per_line + 5)), + 1); + + // filter the source buffer + s[0] = _mm256_shuffle_epi8(srcReg, filt[0]); + s[1] = _mm256_shuffle_epi8(srcReg, filt[1]); + s[2] = _mm256_shuffle_epi8(srcReg, filt[2]); + s[3] = _mm256_shuffle_epi8(srcReg, filt[3]); + outReg32b2 = convolve8_16_avx2(s, f); + + // shrink to 8 bit each 16 bits, the low and high 64-bits of each lane + // contain the first and second convolve result respectively + outReg32b1 = _mm256_packus_epi16(outReg32b1, outReg32b2); + + src_ptr += src_stride; + + // average if necessary + outReg1 = _mm256_castsi256_si128(outReg32b1); + outReg2 = _mm256_extractf128_si256(outReg32b1, 1); + if (avg) { + outReg1 = _mm_avg_epu8(outReg1, _mm_load_si128((__m128i *)output_ptr)); + outReg2 = _mm_avg_epu8( + outReg2, _mm_load_si128((__m128i *)(output_ptr + output_pitch))); + } + + // save 16 bytes + _mm_store_si128((__m128i *)output_ptr, outReg1); + + // save the next 16 bits + _mm_store_si128((__m128i *)(output_ptr + output_pitch), outReg2); + + output_ptr += dst_stride; + } + + // if the number of strides is odd. + // process only 16 bytes + if (i > 0) { + __m128i srcReg; + + // load the first 16 bytes of the last row + srcReg = _mm_loadu_si128((const __m128i *)(src_ptr - 3)); + + // filter the source buffer + s[0] = _mm256_castsi128_si256( + _mm_shuffle_epi8(srcReg, _mm256_castsi256_si128(filt[0]))); + s[1] = _mm256_castsi128_si256( + _mm_shuffle_epi8(srcReg, _mm256_castsi256_si128(filt[1]))); + s[2] = _mm256_castsi128_si256( + _mm_shuffle_epi8(srcReg, _mm256_castsi256_si128(filt[2]))); + s[3] = _mm256_castsi128_si256( + _mm_shuffle_epi8(srcReg, _mm256_castsi256_si128(filt[3]))); + outReg1 = convolve8_8_avx2(s, f); + + // reading the next 16 bytes + // (part of it was being read by earlier read) + srcReg = _mm_loadu_si128((const __m128i *)(src_ptr + 5)); + + // filter the source buffer + s[0] = _mm256_castsi128_si256( + _mm_shuffle_epi8(srcReg, _mm256_castsi256_si128(filt[0]))); + s[1] = _mm256_castsi128_si256( + _mm_shuffle_epi8(srcReg, _mm256_castsi256_si128(filt[1]))); + s[2] = _mm256_castsi128_si256( + _mm_shuffle_epi8(srcReg, _mm256_castsi256_si128(filt[2]))); + s[3] = _mm256_castsi128_si256( + _mm_shuffle_epi8(srcReg, _mm256_castsi256_si128(filt[3]))); + outReg2 = convolve8_8_avx2(s, f); + + // shrink to 8 bit each 16 bits, the low and high 64-bits of each lane + // contain the first and second convolve result respectively + outReg1 = _mm_packus_epi16(outReg1, outReg2); + + // average if necessary + if (avg) { + outReg1 = _mm_avg_epu8(outReg1, _mm_load_si128((__m128i *)output_ptr)); + } + + // save 16 bytes + _mm_store_si128((__m128i *)output_ptr, outReg1); + } +} + +static void vpx_filter_block1d16_h8_avx2( + const uint8_t *src_ptr, ptrdiff_t src_stride, uint8_t *output_ptr, + ptrdiff_t dst_stride, uint32_t output_height, const int16_t *filter) { + vpx_filter_block1d16_h8_x_avx2(src_ptr, src_stride, output_ptr, dst_stride, + output_height, filter, 0); +} + +static void vpx_filter_block1d16_h8_avg_avx2( + const uint8_t *src_ptr, ptrdiff_t src_stride, uint8_t *output_ptr, + ptrdiff_t dst_stride, uint32_t output_height, const int16_t *filter) { + vpx_filter_block1d16_h8_x_avx2(src_ptr, src_stride, output_ptr, dst_stride, + output_height, filter, 1); +} + +static INLINE void vpx_filter_block1d16_v8_x_avx2( + const uint8_t *src_ptr, ptrdiff_t src_pitch, uint8_t *output_ptr, + ptrdiff_t out_pitch, uint32_t output_height, const int16_t *filter, + const int avg) { + __m128i outReg1, outReg2; + __m256i srcRegHead1; + unsigned int i; + ptrdiff_t src_stride, dst_stride; + __m256i f[4], s1[4], s2[4]; + + shuffle_filter_avx2(filter, f); + + // multiple the size of the source and destination stride by two + src_stride = src_pitch << 1; + dst_stride = out_pitch << 1; + + { + __m128i s[6]; + __m256i s32b[6]; + + // load 16 bytes 7 times in stride of src_pitch + s[0] = _mm_loadu_si128((const __m128i *)(src_ptr + 0 * src_pitch)); + s[1] = _mm_loadu_si128((const __m128i *)(src_ptr + 1 * src_pitch)); + s[2] = _mm_loadu_si128((const __m128i *)(src_ptr + 2 * src_pitch)); + s[3] = _mm_loadu_si128((const __m128i *)(src_ptr + 3 * src_pitch)); + s[4] = _mm_loadu_si128((const __m128i *)(src_ptr + 4 * src_pitch)); + s[5] = _mm_loadu_si128((const __m128i *)(src_ptr + 5 * src_pitch)); + srcRegHead1 = _mm256_castsi128_si256( + _mm_loadu_si128((const __m128i *)(src_ptr + 6 * src_pitch))); + + // have each consecutive loads on the same 256 register + s32b[0] = _mm256_inserti128_si256(_mm256_castsi128_si256(s[0]), s[1], 1); + s32b[1] = _mm256_inserti128_si256(_mm256_castsi128_si256(s[1]), s[2], 1); + s32b[2] = _mm256_inserti128_si256(_mm256_castsi128_si256(s[2]), s[3], 1); + s32b[3] = _mm256_inserti128_si256(_mm256_castsi128_si256(s[3]), s[4], 1); + s32b[4] = _mm256_inserti128_si256(_mm256_castsi128_si256(s[4]), s[5], 1); + s32b[5] = _mm256_inserti128_si256(_mm256_castsi128_si256(s[5]), + _mm256_castsi256_si128(srcRegHead1), 1); + + // merge every two consecutive registers except the last one + // the first lanes contain values for filtering odd rows (1,3,5...) and + // the second lanes contain values for filtering even rows (2,4,6...) + s1[0] = _mm256_unpacklo_epi8(s32b[0], s32b[1]); + s2[0] = _mm256_unpackhi_epi8(s32b[0], s32b[1]); + s1[1] = _mm256_unpacklo_epi8(s32b[2], s32b[3]); + s2[1] = _mm256_unpackhi_epi8(s32b[2], s32b[3]); + s1[2] = _mm256_unpacklo_epi8(s32b[4], s32b[5]); + s2[2] = _mm256_unpackhi_epi8(s32b[4], s32b[5]); + } + + for (i = output_height; i > 1; i -= 2) { + __m256i srcRegHead2, srcRegHead3; + + // load the next 2 loads of 16 bytes and have every two + // consecutive loads in the same 256 bit register + srcRegHead2 = _mm256_castsi128_si256( + _mm_loadu_si128((const __m128i *)(src_ptr + 7 * src_pitch))); + srcRegHead1 = _mm256_inserti128_si256( + srcRegHead1, _mm256_castsi256_si128(srcRegHead2), 1); + srcRegHead3 = _mm256_castsi128_si256( + _mm_loadu_si128((const __m128i *)(src_ptr + 8 * src_pitch))); + srcRegHead2 = _mm256_inserti128_si256( + srcRegHead2, _mm256_castsi256_si128(srcRegHead3), 1); + + // merge the two new consecutive registers + // the first lane contain values for filtering odd rows (1,3,5...) and + // the second lane contain values for filtering even rows (2,4,6...) + s1[3] = _mm256_unpacklo_epi8(srcRegHead1, srcRegHead2); + s2[3] = _mm256_unpackhi_epi8(srcRegHead1, srcRegHead2); + + s1[0] = convolve8_16_avx2(s1, f); + s2[0] = convolve8_16_avx2(s2, f); + + // shrink to 8 bit each 16 bits, the low and high 64-bits of each lane + // contain the first and second convolve result respectively + s1[0] = _mm256_packus_epi16(s1[0], s2[0]); + + src_ptr += src_stride; + + // average if necessary + outReg1 = _mm256_castsi256_si128(s1[0]); + outReg2 = _mm256_extractf128_si256(s1[0], 1); + if (avg) { + outReg1 = _mm_avg_epu8(outReg1, _mm_load_si128((__m128i *)output_ptr)); + outReg2 = _mm_avg_epu8( + outReg2, _mm_load_si128((__m128i *)(output_ptr + out_pitch))); + } + + // save 16 bytes + _mm_store_si128((__m128i *)output_ptr, outReg1); + + // save the next 16 bits + _mm_store_si128((__m128i *)(output_ptr + out_pitch), outReg2); + + output_ptr += dst_stride; + + // shift down by two rows + s1[0] = s1[1]; + s2[0] = s2[1]; + s1[1] = s1[2]; + s2[1] = s2[2]; + s1[2] = s1[3]; + s2[2] = s2[3]; + srcRegHead1 = srcRegHead3; + } + + // if the number of strides is odd. + // process only 16 bytes + if (i > 0) { + // load the last 16 bytes + const __m128i srcRegHead2 = + _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 7)); + + // merge the last 2 results together + s1[0] = _mm256_castsi128_si256( + _mm_unpacklo_epi8(_mm256_castsi256_si128(srcRegHead1), srcRegHead2)); + s2[0] = _mm256_castsi128_si256( + _mm_unpackhi_epi8(_mm256_castsi256_si128(srcRegHead1), srcRegHead2)); + + outReg1 = convolve8_8_avx2(s1, f); + outReg2 = convolve8_8_avx2(s2, f); + + // shrink to 8 bit each 16 bits, the low and high 64-bits of each lane + // contain the first and second convolve result respectively + outReg1 = _mm_packus_epi16(outReg1, outReg2); + + // average if necessary + if (avg) { + outReg1 = _mm_avg_epu8(outReg1, _mm_load_si128((__m128i *)output_ptr)); + } + + // save 16 bytes + _mm_store_si128((__m128i *)output_ptr, outReg1); + } +} + +static void vpx_filter_block1d16_v8_avx2(const uint8_t *src_ptr, + ptrdiff_t src_stride, uint8_t *dst_ptr, + ptrdiff_t dst_stride, uint32_t height, + const int16_t *filter) { + vpx_filter_block1d16_v8_x_avx2(src_ptr, src_stride, dst_ptr, dst_stride, + height, filter, 0); +} + +static void vpx_filter_block1d16_v8_avg_avx2( + const uint8_t *src_ptr, ptrdiff_t src_stride, uint8_t *dst_ptr, + ptrdiff_t dst_stride, uint32_t height, const int16_t *filter) { + vpx_filter_block1d16_v8_x_avx2(src_ptr, src_stride, dst_ptr, dst_stride, + height, filter, 1); +} + +#if HAVE_AVX2 && HAVE_SSSE3 +filter8_1dfunction vpx_filter_block1d4_v8_ssse3; +#if ARCH_X86_64 +filter8_1dfunction vpx_filter_block1d8_v8_intrin_ssse3; +filter8_1dfunction vpx_filter_block1d8_h8_intrin_ssse3; +filter8_1dfunction vpx_filter_block1d4_h8_intrin_ssse3; +#define vpx_filter_block1d8_v8_avx2 vpx_filter_block1d8_v8_intrin_ssse3 +#define vpx_filter_block1d8_h8_avx2 vpx_filter_block1d8_h8_intrin_ssse3 +#define vpx_filter_block1d4_h8_avx2 vpx_filter_block1d4_h8_intrin_ssse3 +#else // ARCH_X86 +filter8_1dfunction vpx_filter_block1d8_v8_ssse3; +filter8_1dfunction vpx_filter_block1d8_h8_ssse3; +filter8_1dfunction vpx_filter_block1d4_h8_ssse3; +#define vpx_filter_block1d8_v8_avx2 vpx_filter_block1d8_v8_ssse3 +#define vpx_filter_block1d8_h8_avx2 vpx_filter_block1d8_h8_ssse3 +#define vpx_filter_block1d4_h8_avx2 vpx_filter_block1d4_h8_ssse3 +#endif // ARCH_X86_64 +filter8_1dfunction vpx_filter_block1d8_v8_avg_ssse3; +filter8_1dfunction vpx_filter_block1d8_h8_avg_ssse3; +filter8_1dfunction vpx_filter_block1d4_v8_avg_ssse3; +filter8_1dfunction vpx_filter_block1d4_h8_avg_ssse3; +#define vpx_filter_block1d8_v8_avg_avx2 vpx_filter_block1d8_v8_avg_ssse3 +#define vpx_filter_block1d8_h8_avg_avx2 vpx_filter_block1d8_h8_avg_ssse3 +#define vpx_filter_block1d4_v8_avg_avx2 vpx_filter_block1d4_v8_avg_ssse3 +#define vpx_filter_block1d4_h8_avg_avx2 vpx_filter_block1d4_h8_avg_ssse3 +filter8_1dfunction vpx_filter_block1d16_v2_ssse3; +filter8_1dfunction vpx_filter_block1d16_h2_ssse3; +filter8_1dfunction vpx_filter_block1d8_v2_ssse3; +filter8_1dfunction vpx_filter_block1d8_h2_ssse3; +filter8_1dfunction vpx_filter_block1d4_v2_ssse3; +filter8_1dfunction vpx_filter_block1d4_h2_ssse3; +#define vpx_filter_block1d4_v8_avx2 vpx_filter_block1d4_v8_ssse3 +#define vpx_filter_block1d16_v2_avx2 vpx_filter_block1d16_v2_ssse3 +#define vpx_filter_block1d16_h2_avx2 vpx_filter_block1d16_h2_ssse3 +#define vpx_filter_block1d8_v2_avx2 vpx_filter_block1d8_v2_ssse3 +#define vpx_filter_block1d8_h2_avx2 vpx_filter_block1d8_h2_ssse3 +#define vpx_filter_block1d4_v2_avx2 vpx_filter_block1d4_v2_ssse3 +#define vpx_filter_block1d4_h2_avx2 vpx_filter_block1d4_h2_ssse3 +filter8_1dfunction vpx_filter_block1d16_v2_avg_ssse3; +filter8_1dfunction vpx_filter_block1d16_h2_avg_ssse3; +filter8_1dfunction vpx_filter_block1d8_v2_avg_ssse3; +filter8_1dfunction vpx_filter_block1d8_h2_avg_ssse3; +filter8_1dfunction vpx_filter_block1d4_v2_avg_ssse3; +filter8_1dfunction vpx_filter_block1d4_h2_avg_ssse3; +#define vpx_filter_block1d16_v2_avg_avx2 vpx_filter_block1d16_v2_avg_ssse3 +#define vpx_filter_block1d16_h2_avg_avx2 vpx_filter_block1d16_h2_avg_ssse3 +#define vpx_filter_block1d8_v2_avg_avx2 vpx_filter_block1d8_v2_avg_ssse3 +#define vpx_filter_block1d8_h2_avg_avx2 vpx_filter_block1d8_h2_avg_ssse3 +#define vpx_filter_block1d4_v2_avg_avx2 vpx_filter_block1d4_v2_avg_ssse3 +#define vpx_filter_block1d4_h2_avg_avx2 vpx_filter_block1d4_h2_avg_ssse3 +// void vpx_convolve8_horiz_avx2(const uint8_t *src, ptrdiff_t src_stride, +// uint8_t *dst, ptrdiff_t dst_stride, +// const InterpKernel *filter, int x0_q4, +// int32_t x_step_q4, int y0_q4, int y_step_q4, +// int w, int h); +// void vpx_convolve8_vert_avx2(const uint8_t *src, ptrdiff_t src_stride, +// uint8_t *dst, ptrdiff_t dst_stride, +// const InterpKernel *filter, int x0_q4, +// int32_t x_step_q4, int y0_q4, int y_step_q4, +// int w, int h); +// void vpx_convolve8_avg_horiz_avx2(const uint8_t *src, ptrdiff_t src_stride, +// uint8_t *dst, ptrdiff_t dst_stride, +// const InterpKernel *filter, int x0_q4, +// int32_t x_step_q4, int y0_q4, +// int y_step_q4, int w, int h); +// void vpx_convolve8_avg_vert_avx2(const uint8_t *src, ptrdiff_t src_stride, +// uint8_t *dst, ptrdiff_t dst_stride, +// const InterpKernel *filter, int x0_q4, +// int32_t x_step_q4, int y0_q4, +// int y_step_q4, int w, int h); +FUN_CONV_1D(horiz, x0_q4, x_step_q4, h, src, , avx2); +FUN_CONV_1D(vert, y0_q4, y_step_q4, v, src - src_stride * 3, , avx2); +FUN_CONV_1D(avg_horiz, x0_q4, x_step_q4, h, src, avg_, avx2); +FUN_CONV_1D(avg_vert, y0_q4, y_step_q4, v, src - src_stride * 3, avg_, avx2); + +// void vpx_convolve8_avx2(const uint8_t *src, ptrdiff_t src_stride, +// uint8_t *dst, ptrdiff_t dst_stride, +// const InterpKernel *filter, int x0_q4, +// int32_t x_step_q4, int y0_q4, int y_step_q4, +// int w, int h); +// void vpx_convolve8_avg_avx2(const uint8_t *src, ptrdiff_t src_stride, +// uint8_t *dst, ptrdiff_t dst_stride, +// const InterpKernel *filter, int x0_q4, +// int32_t x_step_q4, int y0_q4, int y_step_q4, +// int w, int h); +FUN_CONV_2D(, avx2); +FUN_CONV_2D(avg_, avx2); +#endif // HAVE_AX2 && HAVE_SSSE3 diff --git a/vpx_dsp/x86/vpx_subpixel_8t_intrin_ssse3.c b/vpx_dsp/x86/vpx_subpixel_8t_intrin_ssse3.c new file mode 100644 index 0000000..e4f9927 --- /dev/null +++ b/vpx_dsp/x86/vpx_subpixel_8t_intrin_ssse3.c @@ -0,0 +1,585 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include // SSSE3 + +#include + +#include "./vpx_dsp_rtcd.h" +#include "vpx_dsp/vpx_filter.h" +#include "vpx_dsp/x86/convolve.h" +#include "vpx_dsp/x86/convolve_ssse3.h" +#include "vpx_dsp/x86/mem_sse2.h" +#include "vpx_dsp/x86/transpose_sse2.h" +#include "vpx_mem/vpx_mem.h" +#include "vpx_ports/mem.h" + +// These are reused by the avx2 intrinsics. +// vpx_filter_block1d8_v8_intrin_ssse3() +// vpx_filter_block1d8_h8_intrin_ssse3() +// vpx_filter_block1d4_h8_intrin_ssse3() + +static INLINE __m128i shuffle_filter_convolve8_8_ssse3( + const __m128i *const s, const int16_t *const filter) { + __m128i f[4]; + shuffle_filter_ssse3(filter, f); + return convolve8_8_ssse3(s, f); +} + +void vpx_filter_block1d4_h8_intrin_ssse3( + const uint8_t *src_ptr, ptrdiff_t src_pitch, uint8_t *output_ptr, + ptrdiff_t output_pitch, uint32_t output_height, const int16_t *filter) { + __m128i firstFilters, secondFilters, shuffle1, shuffle2; + __m128i srcRegFilt1, srcRegFilt2; + __m128i addFilterReg64, filtersReg, srcReg; + unsigned int i; + + // create a register with 0,64,0,64,0,64,0,64,0,64,0,64,0,64,0,64 + addFilterReg64 = _mm_set1_epi32((int)0x0400040u); + filtersReg = _mm_loadu_si128((const __m128i *)filter); + // converting the 16 bit (short) to 8 bit (byte) and have the same data + // in both lanes of 128 bit register. + filtersReg = _mm_packs_epi16(filtersReg, filtersReg); + + // duplicate only the first 16 bits in the filter into the first lane + firstFilters = _mm_shufflelo_epi16(filtersReg, 0); + // duplicate only the third 16 bit in the filter into the first lane + secondFilters = _mm_shufflelo_epi16(filtersReg, 0xAAu); + // duplicate only the seconds 16 bits in the filter into the second lane + // firstFilters: k0 k1 k0 k1 k0 k1 k0 k1 k2 k3 k2 k3 k2 k3 k2 k3 + firstFilters = _mm_shufflehi_epi16(firstFilters, 0x55u); + // duplicate only the forth 16 bits in the filter into the second lane + // secondFilters: k4 k5 k4 k5 k4 k5 k4 k5 k6 k7 k6 k7 k6 k7 k6 k7 + secondFilters = _mm_shufflehi_epi16(secondFilters, 0xFFu); + + // loading the local filters + shuffle1 = _mm_setr_epi8(0, 1, 1, 2, 2, 3, 3, 4, 2, 3, 3, 4, 4, 5, 5, 6); + shuffle2 = _mm_setr_epi8(4, 5, 5, 6, 6, 7, 7, 8, 6, 7, 7, 8, 8, 9, 9, 10); + + for (i = 0; i < output_height; i++) { + srcReg = _mm_loadu_si128((const __m128i *)(src_ptr - 3)); + + // filter the source buffer + srcRegFilt1 = _mm_shuffle_epi8(srcReg, shuffle1); + srcRegFilt2 = _mm_shuffle_epi8(srcReg, shuffle2); + + // multiply 2 adjacent elements with the filter and add the result + srcRegFilt1 = _mm_maddubs_epi16(srcRegFilt1, firstFilters); + srcRegFilt2 = _mm_maddubs_epi16(srcRegFilt2, secondFilters); + + // sum the results together, saturating only on the final step + // the specific order of the additions prevents outranges + srcRegFilt1 = _mm_add_epi16(srcRegFilt1, srcRegFilt2); + + // extract the higher half of the register + srcRegFilt2 = _mm_srli_si128(srcRegFilt1, 8); + + // add the rounding offset early to avoid another saturated add + srcRegFilt1 = _mm_add_epi16(srcRegFilt1, addFilterReg64); + srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, srcRegFilt2); + + // shift by 7 bit each 16 bits + srcRegFilt1 = _mm_srai_epi16(srcRegFilt1, 7); + + // shrink to 8 bit each 16 bits + srcRegFilt1 = _mm_packus_epi16(srcRegFilt1, srcRegFilt1); + src_ptr += src_pitch; + + // save only 4 bytes + *((int *)&output_ptr[0]) = _mm_cvtsi128_si32(srcRegFilt1); + + output_ptr += output_pitch; + } +} + +void vpx_filter_block1d8_h8_intrin_ssse3( + const uint8_t *src_ptr, ptrdiff_t src_pitch, uint8_t *output_ptr, + ptrdiff_t output_pitch, uint32_t output_height, const int16_t *filter) { + unsigned int i; + __m128i f[4], filt[4], s[4]; + + shuffle_filter_ssse3(filter, f); + filt[0] = _mm_setr_epi8(0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8); + filt[1] = _mm_setr_epi8(2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10); + filt[2] = _mm_setr_epi8(4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12); + filt[3] = + _mm_setr_epi8(6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14); + + for (i = 0; i < output_height; i++) { + const __m128i srcReg = _mm_loadu_si128((const __m128i *)(src_ptr - 3)); + + // filter the source buffer + s[0] = _mm_shuffle_epi8(srcReg, filt[0]); + s[1] = _mm_shuffle_epi8(srcReg, filt[1]); + s[2] = _mm_shuffle_epi8(srcReg, filt[2]); + s[3] = _mm_shuffle_epi8(srcReg, filt[3]); + s[0] = convolve8_8_ssse3(s, f); + + // shrink to 8 bit each 16 bits + s[0] = _mm_packus_epi16(s[0], s[0]); + + src_ptr += src_pitch; + + // save only 8 bytes + _mm_storel_epi64((__m128i *)&output_ptr[0], s[0]); + + output_ptr += output_pitch; + } +} + +void vpx_filter_block1d8_v8_intrin_ssse3( + const uint8_t *src_ptr, ptrdiff_t src_pitch, uint8_t *output_ptr, + ptrdiff_t out_pitch, uint32_t output_height, const int16_t *filter) { + unsigned int i; + __m128i f[4], s[8], ss[4]; + + shuffle_filter_ssse3(filter, f); + + // load the first 7 rows of 8 bytes + s[0] = _mm_loadl_epi64((const __m128i *)(src_ptr + 0 * src_pitch)); + s[1] = _mm_loadl_epi64((const __m128i *)(src_ptr + 1 * src_pitch)); + s[2] = _mm_loadl_epi64((const __m128i *)(src_ptr + 2 * src_pitch)); + s[3] = _mm_loadl_epi64((const __m128i *)(src_ptr + 3 * src_pitch)); + s[4] = _mm_loadl_epi64((const __m128i *)(src_ptr + 4 * src_pitch)); + s[5] = _mm_loadl_epi64((const __m128i *)(src_ptr + 5 * src_pitch)); + s[6] = _mm_loadl_epi64((const __m128i *)(src_ptr + 6 * src_pitch)); + + for (i = 0; i < output_height; i++) { + // load the last 8 bytes + s[7] = _mm_loadl_epi64((const __m128i *)(src_ptr + 7 * src_pitch)); + + // merge the result together + ss[0] = _mm_unpacklo_epi8(s[0], s[1]); + ss[1] = _mm_unpacklo_epi8(s[2], s[3]); + + // merge the result together + ss[2] = _mm_unpacklo_epi8(s[4], s[5]); + ss[3] = _mm_unpacklo_epi8(s[6], s[7]); + + ss[0] = convolve8_8_ssse3(ss, f); + // shrink to 8 bit each 16 bits + ss[0] = _mm_packus_epi16(ss[0], ss[0]); + + src_ptr += src_pitch; + + // shift down a row + s[0] = s[1]; + s[1] = s[2]; + s[2] = s[3]; + s[3] = s[4]; + s[4] = s[5]; + s[5] = s[6]; + s[6] = s[7]; + + // save only 8 bytes convolve result + _mm_storel_epi64((__m128i *)&output_ptr[0], ss[0]); + + output_ptr += out_pitch; + } +} + +filter8_1dfunction vpx_filter_block1d16_v8_ssse3; +filter8_1dfunction vpx_filter_block1d16_h8_ssse3; +filter8_1dfunction vpx_filter_block1d8_v8_ssse3; +filter8_1dfunction vpx_filter_block1d8_h8_ssse3; +filter8_1dfunction vpx_filter_block1d4_v8_ssse3; +filter8_1dfunction vpx_filter_block1d4_h8_ssse3; +filter8_1dfunction vpx_filter_block1d16_v8_avg_ssse3; +filter8_1dfunction vpx_filter_block1d16_h8_avg_ssse3; +filter8_1dfunction vpx_filter_block1d8_v8_avg_ssse3; +filter8_1dfunction vpx_filter_block1d8_h8_avg_ssse3; +filter8_1dfunction vpx_filter_block1d4_v8_avg_ssse3; +filter8_1dfunction vpx_filter_block1d4_h8_avg_ssse3; + +filter8_1dfunction vpx_filter_block1d16_v2_ssse3; +filter8_1dfunction vpx_filter_block1d16_h2_ssse3; +filter8_1dfunction vpx_filter_block1d8_v2_ssse3; +filter8_1dfunction vpx_filter_block1d8_h2_ssse3; +filter8_1dfunction vpx_filter_block1d4_v2_ssse3; +filter8_1dfunction vpx_filter_block1d4_h2_ssse3; +filter8_1dfunction vpx_filter_block1d16_v2_avg_ssse3; +filter8_1dfunction vpx_filter_block1d16_h2_avg_ssse3; +filter8_1dfunction vpx_filter_block1d8_v2_avg_ssse3; +filter8_1dfunction vpx_filter_block1d8_h2_avg_ssse3; +filter8_1dfunction vpx_filter_block1d4_v2_avg_ssse3; +filter8_1dfunction vpx_filter_block1d4_h2_avg_ssse3; + +// void vpx_convolve8_horiz_ssse3(const uint8_t *src, ptrdiff_t src_stride, +// uint8_t *dst, ptrdiff_t dst_stride, +// const InterpKernel *filter, int x0_q4, +// int32_t x_step_q4, int y0_q4, int y_step_q4, +// int w, int h); +// void vpx_convolve8_vert_ssse3(const uint8_t *src, ptrdiff_t src_stride, +// uint8_t *dst, ptrdiff_t dst_stride, +// const InterpKernel *filter, int x0_q4, +// int32_t x_step_q4, int y0_q4, int y_step_q4, +// int w, int h); +// void vpx_convolve8_avg_horiz_ssse3(const uint8_t *src, ptrdiff_t src_stride, +// uint8_t *dst, ptrdiff_t dst_stride, +// const InterpKernel *filter, int x0_q4, +// int32_t x_step_q4, int y0_q4, +// int y_step_q4, int w, int h); +// void vpx_convolve8_avg_vert_ssse3(const uint8_t *src, ptrdiff_t src_stride, +// uint8_t *dst, ptrdiff_t dst_stride, +// const InterpKernel *filter, int x0_q4, +// int32_t x_step_q4, int y0_q4, +// int y_step_q4, int w, int h); +FUN_CONV_1D(horiz, x0_q4, x_step_q4, h, src, , ssse3); +FUN_CONV_1D(vert, y0_q4, y_step_q4, v, src - src_stride * 3, , ssse3); +FUN_CONV_1D(avg_horiz, x0_q4, x_step_q4, h, src, avg_, ssse3); +FUN_CONV_1D(avg_vert, y0_q4, y_step_q4, v, src - src_stride * 3, avg_, ssse3); + +static void filter_horiz_w8_ssse3(const uint8_t *const src, + const ptrdiff_t src_stride, + uint8_t *const dst, + const int16_t *const x_filter) { + __m128i s[8], ss[4], temp; + + load_8bit_8x8(src, src_stride, s); + // 00 01 10 11 20 21 30 31 40 41 50 51 60 61 70 71 + // 02 03 12 13 22 23 32 33 42 43 52 53 62 63 72 73 + // 04 05 14 15 24 25 34 35 44 45 54 55 64 65 74 75 + // 06 07 16 17 26 27 36 37 46 47 56 57 66 67 76 77 + transpose_16bit_4x8(s, ss); + temp = shuffle_filter_convolve8_8_ssse3(ss, x_filter); + // shrink to 8 bit each 16 bits + temp = _mm_packus_epi16(temp, temp); + // save only 8 bytes convolve result + _mm_storel_epi64((__m128i *)dst, temp); +} + +static void transpose8x8_to_dst(const uint8_t *const src, + const ptrdiff_t src_stride, uint8_t *const dst, + const ptrdiff_t dst_stride) { + __m128i s[8]; + + load_8bit_8x8(src, src_stride, s); + transpose_8bit_8x8(s, s); + store_8bit_8x8(s, dst, dst_stride); +} + +static void scaledconvolve_horiz_w8(const uint8_t *src, + const ptrdiff_t src_stride, uint8_t *dst, + const ptrdiff_t dst_stride, + const InterpKernel *const x_filters, + const int x0_q4, const int x_step_q4, + const int w, const int h) { + DECLARE_ALIGNED(16, uint8_t, temp[8 * 8]); + int x, y, z; + src -= SUBPEL_TAPS / 2 - 1; + + // This function processes 8x8 areas. The intermediate height is not always + // a multiple of 8, so force it to be a multiple of 8 here. + y = h + (8 - (h & 0x7)); + + do { + int x_q4 = x0_q4; + for (x = 0; x < w; x += 8) { + // process 8 src_x steps + for (z = 0; z < 8; ++z) { + const uint8_t *const src_x = &src[x_q4 >> SUBPEL_BITS]; + const int16_t *const x_filter = x_filters[x_q4 & SUBPEL_MASK]; + if (x_q4 & SUBPEL_MASK) { + filter_horiz_w8_ssse3(src_x, src_stride, temp + (z * 8), x_filter); + } else { + int i; + for (i = 0; i < 8; ++i) { + temp[z * 8 + i] = src_x[i * src_stride + 3]; + } + } + x_q4 += x_step_q4; + } + + // transpose the 8x8 filters values back to dst + transpose8x8_to_dst(temp, 8, dst + x, dst_stride); + } + + src += src_stride * 8; + dst += dst_stride * 8; + } while (y -= 8); +} + +static void filter_horiz_w4_ssse3(const uint8_t *const src, + const ptrdiff_t src_stride, + uint8_t *const dst, + const int16_t *const filter) { + __m128i s[4], ss[2]; + __m128i temp; + + load_8bit_8x4(src, src_stride, s); + transpose_16bit_4x4(s, ss); + // 00 01 10 11 20 21 30 31 + s[0] = ss[0]; + // 02 03 12 13 22 23 32 33 + s[1] = _mm_srli_si128(ss[0], 8); + // 04 05 14 15 24 25 34 35 + s[2] = ss[1]; + // 06 07 16 17 26 27 36 37 + s[3] = _mm_srli_si128(ss[1], 8); + + temp = shuffle_filter_convolve8_8_ssse3(s, filter); + // shrink to 8 bit each 16 bits + temp = _mm_packus_epi16(temp, temp); + // save only 4 bytes + *(int *)dst = _mm_cvtsi128_si32(temp); +} + +static void transpose4x4_to_dst(const uint8_t *const src, + const ptrdiff_t src_stride, uint8_t *const dst, + const ptrdiff_t dst_stride) { + __m128i s[4]; + + load_8bit_4x4(src, src_stride, s); + s[0] = transpose_8bit_4x4(s); + s[1] = _mm_srli_si128(s[0], 4); + s[2] = _mm_srli_si128(s[0], 8); + s[3] = _mm_srli_si128(s[0], 12); + store_8bit_4x4(s, dst, dst_stride); +} + +static void scaledconvolve_horiz_w4(const uint8_t *src, + const ptrdiff_t src_stride, uint8_t *dst, + const ptrdiff_t dst_stride, + const InterpKernel *const x_filters, + const int x0_q4, const int x_step_q4, + const int w, const int h) { + DECLARE_ALIGNED(16, uint8_t, temp[4 * 4]); + int x, y, z; + src -= SUBPEL_TAPS / 2 - 1; + + for (y = 0; y < h; y += 4) { + int x_q4 = x0_q4; + for (x = 0; x < w; x += 4) { + // process 4 src_x steps + for (z = 0; z < 4; ++z) { + const uint8_t *const src_x = &src[x_q4 >> SUBPEL_BITS]; + const int16_t *const x_filter = x_filters[x_q4 & SUBPEL_MASK]; + if (x_q4 & SUBPEL_MASK) { + filter_horiz_w4_ssse3(src_x, src_stride, temp + (z * 4), x_filter); + } else { + int i; + for (i = 0; i < 4; ++i) { + temp[z * 4 + i] = src_x[i * src_stride + 3]; + } + } + x_q4 += x_step_q4; + } + + // transpose the 4x4 filters values back to dst + transpose4x4_to_dst(temp, 4, dst + x, dst_stride); + } + + src += src_stride * 4; + dst += dst_stride * 4; + } +} + +static __m128i filter_vert_kernel(const __m128i *const s, + const int16_t *const filter) { + __m128i ss[4]; + __m128i temp; + + // 00 10 01 11 02 12 03 13 + ss[0] = _mm_unpacklo_epi8(s[0], s[1]); + // 20 30 21 31 22 32 23 33 + ss[1] = _mm_unpacklo_epi8(s[2], s[3]); + // 40 50 41 51 42 52 43 53 + ss[2] = _mm_unpacklo_epi8(s[4], s[5]); + // 60 70 61 71 62 72 63 73 + ss[3] = _mm_unpacklo_epi8(s[6], s[7]); + + temp = shuffle_filter_convolve8_8_ssse3(ss, filter); + // shrink to 8 bit each 16 bits + return _mm_packus_epi16(temp, temp); +} + +static void filter_vert_w4_ssse3(const uint8_t *const src, + const ptrdiff_t src_stride, uint8_t *const dst, + const int16_t *const filter) { + __m128i s[8]; + __m128i temp; + + load_8bit_4x8(src, src_stride, s); + temp = filter_vert_kernel(s, filter); + // save only 4 bytes + *(int *)dst = _mm_cvtsi128_si32(temp); +} + +static void scaledconvolve_vert_w4( + const uint8_t *src, const ptrdiff_t src_stride, uint8_t *const dst, + const ptrdiff_t dst_stride, const InterpKernel *const y_filters, + const int y0_q4, const int y_step_q4, const int w, const int h) { + int y; + int y_q4 = y0_q4; + + src -= src_stride * (SUBPEL_TAPS / 2 - 1); + for (y = 0; y < h; ++y) { + const unsigned char *src_y = &src[(y_q4 >> SUBPEL_BITS) * src_stride]; + const int16_t *const y_filter = y_filters[y_q4 & SUBPEL_MASK]; + + if (y_q4 & SUBPEL_MASK) { + filter_vert_w4_ssse3(src_y, src_stride, &dst[y * dst_stride], y_filter); + } else { + memcpy(&dst[y * dst_stride], &src_y[3 * src_stride], w); + } + + y_q4 += y_step_q4; + } +} + +static void filter_vert_w8_ssse3(const uint8_t *const src, + const ptrdiff_t src_stride, uint8_t *const dst, + const int16_t *const filter) { + __m128i s[8], temp; + + load_8bit_8x8(src, src_stride, s); + temp = filter_vert_kernel(s, filter); + // save only 8 bytes convolve result + _mm_storel_epi64((__m128i *)dst, temp); +} + +static void scaledconvolve_vert_w8( + const uint8_t *src, const ptrdiff_t src_stride, uint8_t *const dst, + const ptrdiff_t dst_stride, const InterpKernel *const y_filters, + const int y0_q4, const int y_step_q4, const int w, const int h) { + int y; + int y_q4 = y0_q4; + + src -= src_stride * (SUBPEL_TAPS / 2 - 1); + for (y = 0; y < h; ++y) { + const unsigned char *src_y = &src[(y_q4 >> SUBPEL_BITS) * src_stride]; + const int16_t *const y_filter = y_filters[y_q4 & SUBPEL_MASK]; + if (y_q4 & SUBPEL_MASK) { + filter_vert_w8_ssse3(src_y, src_stride, &dst[y * dst_stride], y_filter); + } else { + memcpy(&dst[y * dst_stride], &src_y[3 * src_stride], w); + } + y_q4 += y_step_q4; + } +} + +static void filter_vert_w16_ssse3(const uint8_t *src, + const ptrdiff_t src_stride, + uint8_t *const dst, + const int16_t *const filter, const int w) { + int i; + __m128i f[4]; + shuffle_filter_ssse3(filter, f); + + for (i = 0; i < w; i += 16) { + __m128i s[8], s_lo[4], s_hi[4], temp_lo, temp_hi; + + loadu_8bit_16x8(src, src_stride, s); + + // merge the result together + s_lo[0] = _mm_unpacklo_epi8(s[0], s[1]); + s_hi[0] = _mm_unpackhi_epi8(s[0], s[1]); + s_lo[1] = _mm_unpacklo_epi8(s[2], s[3]); + s_hi[1] = _mm_unpackhi_epi8(s[2], s[3]); + s_lo[2] = _mm_unpacklo_epi8(s[4], s[5]); + s_hi[2] = _mm_unpackhi_epi8(s[4], s[5]); + s_lo[3] = _mm_unpacklo_epi8(s[6], s[7]); + s_hi[3] = _mm_unpackhi_epi8(s[6], s[7]); + temp_lo = convolve8_8_ssse3(s_lo, f); + temp_hi = convolve8_8_ssse3(s_hi, f); + + // shrink to 8 bit each 16 bits, the first lane contain the first convolve + // result and the second lane contain the second convolve result + temp_hi = _mm_packus_epi16(temp_lo, temp_hi); + src += 16; + // save 16 bytes convolve result + _mm_store_si128((__m128i *)&dst[i], temp_hi); + } +} + +static void scaledconvolve_vert_w16( + const uint8_t *src, const ptrdiff_t src_stride, uint8_t *const dst, + const ptrdiff_t dst_stride, const InterpKernel *const y_filters, + const int y0_q4, const int y_step_q4, const int w, const int h) { + int y; + int y_q4 = y0_q4; + + src -= src_stride * (SUBPEL_TAPS / 2 - 1); + for (y = 0; y < h; ++y) { + const unsigned char *src_y = &src[(y_q4 >> SUBPEL_BITS) * src_stride]; + const int16_t *const y_filter = y_filters[y_q4 & SUBPEL_MASK]; + if (y_q4 & SUBPEL_MASK) { + filter_vert_w16_ssse3(src_y, src_stride, &dst[y * dst_stride], y_filter, + w); + } else { + memcpy(&dst[y * dst_stride], &src_y[3 * src_stride], w); + } + y_q4 += y_step_q4; + } +} + +void vpx_scaled_2d_ssse3(const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst, + ptrdiff_t dst_stride, const InterpKernel *filter, + int x0_q4, int x_step_q4, int y0_q4, int y_step_q4, + int w, int h) { + // Note: Fixed size intermediate buffer, temp, places limits on parameters. + // 2d filtering proceeds in 2 steps: + // (1) Interpolate horizontally into an intermediate buffer, temp. + // (2) Interpolate temp vertically to derive the sub-pixel result. + // Deriving the maximum number of rows in the temp buffer (135): + // --Smallest scaling factor is x1/2 ==> y_step_q4 = 32 (Normative). + // --Largest block size is 64x64 pixels. + // --64 rows in the downscaled frame span a distance of (64 - 1) * 32 in the + // original frame (in 1/16th pixel units). + // --Must round-up because block may be located at sub-pixel position. + // --Require an additional SUBPEL_TAPS rows for the 8-tap filter tails. + // --((64 - 1) * 32 + 15) >> 4 + 8 = 135. + // --Require an additional 8 rows for the horiz_w8 transpose tail. + // When calling in frame scaling function, the smallest scaling factor is x1/4 + // ==> y_step_q4 = 64. Since w and h are at most 16, the temp buffer is still + // big enough. + DECLARE_ALIGNED(16, uint8_t, temp[(135 + 8) * 64]); + const int intermediate_height = + (((h - 1) * y_step_q4 + y0_q4) >> SUBPEL_BITS) + SUBPEL_TAPS; + + assert(w <= 64); + assert(h <= 64); + assert(y_step_q4 <= 32 || (y_step_q4 <= 64 && h <= 32)); + assert(x_step_q4 <= 64); + + if (w >= 8) { + scaledconvolve_horiz_w8(src - src_stride * (SUBPEL_TAPS / 2 - 1), + src_stride, temp, 64, filter, x0_q4, x_step_q4, w, + intermediate_height); + } else { + scaledconvolve_horiz_w4(src - src_stride * (SUBPEL_TAPS / 2 - 1), + src_stride, temp, 64, filter, x0_q4, x_step_q4, w, + intermediate_height); + } + + if (w >= 16) { + scaledconvolve_vert_w16(temp + 64 * (SUBPEL_TAPS / 2 - 1), 64, dst, + dst_stride, filter, y0_q4, y_step_q4, w, h); + } else if (w == 8) { + scaledconvolve_vert_w8(temp + 64 * (SUBPEL_TAPS / 2 - 1), 64, dst, + dst_stride, filter, y0_q4, y_step_q4, w, h); + } else { + scaledconvolve_vert_w4(temp + 64 * (SUBPEL_TAPS / 2 - 1), 64, dst, + dst_stride, filter, y0_q4, y_step_q4, w, h); + } +} + +// void vp9_convolve8_ssse3(const uint8_t *src, ptrdiff_t src_stride, +// uint8_t *dst, ptrdiff_t dst_stride, +// const InterpKernel *filter, int x0_q4, +// int32_t x_step_q4, int y0_q4, int y_step_q4, +// int w, int h); +// void vpx_convolve8_avg_ssse3(const uint8_t *src, ptrdiff_t src_stride, +// uint8_t *dst, ptrdiff_t dst_stride, +// const InterpKernel *filter, int x0_q4, +// int32_t x_step_q4, int y0_q4, int y_step_q4, +// int w, int h); +FUN_CONV_2D(, ssse3); +FUN_CONV_2D(avg_, ssse3); diff --git a/vpx_dsp/x86/vpx_subpixel_8t_sse2.asm b/vpx_dsp/x86/vpx_subpixel_8t_sse2.asm new file mode 100644 index 0000000..8497e17 --- /dev/null +++ b/vpx_dsp/x86/vpx_subpixel_8t_sse2.asm @@ -0,0 +1,989 @@ +; +; Copyright (c) 2010 The WebM project authors. All Rights Reserved. +; +; Use of this source code is governed by a BSD-style license +; that can be found in the LICENSE file in the root of the source +; tree. An additional intellectual property rights grant can be found +; in the file PATENTS. All contributing project authors may +; be found in the AUTHORS file in the root of the source tree. +; + + +%include "vpx_ports/x86_abi_support.asm" + +;Note: tap3 and tap4 have to be applied and added after other taps to avoid +;overflow. + +%macro GET_FILTERS_4 0 + mov rdx, arg(5) ;filter ptr + mov rcx, 0x0400040 + + movdqa xmm7, [rdx] ;load filters + pshuflw xmm0, xmm7, 0b ;k0 + pshuflw xmm1, xmm7, 01010101b ;k1 + pshuflw xmm2, xmm7, 10101010b ;k2 + pshuflw xmm3, xmm7, 11111111b ;k3 + psrldq xmm7, 8 + pshuflw xmm4, xmm7, 0b ;k4 + pshuflw xmm5, xmm7, 01010101b ;k5 + pshuflw xmm6, xmm7, 10101010b ;k6 + pshuflw xmm7, xmm7, 11111111b ;k7 + + punpcklqdq xmm0, xmm1 + punpcklqdq xmm2, xmm3 + punpcklqdq xmm5, xmm4 + punpcklqdq xmm6, xmm7 + + movdqa k0k1, xmm0 + movdqa k2k3, xmm2 + movdqa k5k4, xmm5 + movdqa k6k7, xmm6 + + movq xmm6, rcx + pshufd xmm6, xmm6, 0 + movdqa krd, xmm6 + + pxor xmm7, xmm7 + movdqa zero, xmm7 +%endm + +%macro APPLY_FILTER_4 1 + punpckldq xmm0, xmm1 ;two row in one register + punpckldq xmm6, xmm7 + punpckldq xmm2, xmm3 + punpckldq xmm5, xmm4 + + punpcklbw xmm0, zero ;unpack to word + punpcklbw xmm6, zero + punpcklbw xmm2, zero + punpcklbw xmm5, zero + + pmullw xmm0, k0k1 ;multiply the filter factors + pmullw xmm6, k6k7 + pmullw xmm2, k2k3 + pmullw xmm5, k5k4 + + paddsw xmm0, xmm6 ;sum + movdqa xmm1, xmm0 + psrldq xmm1, 8 + paddsw xmm0, xmm1 + paddsw xmm0, xmm2 + psrldq xmm2, 8 + paddsw xmm0, xmm5 + psrldq xmm5, 8 + paddsw xmm0, xmm2 + paddsw xmm0, xmm5 + + paddsw xmm0, krd ;rounding + psraw xmm0, 7 ;shift + packuswb xmm0, xmm0 ;pack to byte + +%if %1 + movd xmm1, [rdi] + pavgb xmm0, xmm1 +%endif + movd [rdi], xmm0 +%endm + +%macro GET_FILTERS 0 + mov rdx, arg(5) ;filter ptr + mov rsi, arg(0) ;src_ptr + mov rdi, arg(2) ;output_ptr + mov rcx, 0x0400040 + + movdqa xmm7, [rdx] ;load filters + pshuflw xmm0, xmm7, 0b ;k0 + pshuflw xmm1, xmm7, 01010101b ;k1 + pshuflw xmm2, xmm7, 10101010b ;k2 + pshuflw xmm3, xmm7, 11111111b ;k3 + pshufhw xmm4, xmm7, 0b ;k4 + pshufhw xmm5, xmm7, 01010101b ;k5 + pshufhw xmm6, xmm7, 10101010b ;k6 + pshufhw xmm7, xmm7, 11111111b ;k7 + + punpcklwd xmm0, xmm0 + punpcklwd xmm1, xmm1 + punpcklwd xmm2, xmm2 + punpcklwd xmm3, xmm3 + punpckhwd xmm4, xmm4 + punpckhwd xmm5, xmm5 + punpckhwd xmm6, xmm6 + punpckhwd xmm7, xmm7 + + movdqa k0, xmm0 ;store filter factors on stack + movdqa k1, xmm1 + movdqa k2, xmm2 + movdqa k3, xmm3 + movdqa k4, xmm4 + movdqa k5, xmm5 + movdqa k6, xmm6 + movdqa k7, xmm7 + + movq xmm6, rcx + pshufd xmm6, xmm6, 0 + movdqa krd, xmm6 ;rounding + + pxor xmm7, xmm7 + movdqa zero, xmm7 +%endm + +%macro LOAD_VERT_8 1 + movq xmm0, [rsi + %1] ;0 + movq xmm1, [rsi + rax + %1] ;1 + movq xmm6, [rsi + rdx * 2 + %1] ;6 + lea rsi, [rsi + rax] + movq xmm7, [rsi + rdx * 2 + %1] ;7 + movq xmm2, [rsi + rax + %1] ;2 + movq xmm3, [rsi + rax * 2 + %1] ;3 + movq xmm4, [rsi + rdx + %1] ;4 + movq xmm5, [rsi + rax * 4 + %1] ;5 +%endm + +%macro APPLY_FILTER_8 2 + punpcklbw xmm0, zero + punpcklbw xmm1, zero + punpcklbw xmm6, zero + punpcklbw xmm7, zero + punpcklbw xmm2, zero + punpcklbw xmm5, zero + punpcklbw xmm3, zero + punpcklbw xmm4, zero + + pmullw xmm0, k0 + pmullw xmm1, k1 + pmullw xmm6, k6 + pmullw xmm7, k7 + pmullw xmm2, k2 + pmullw xmm5, k5 + pmullw xmm3, k3 + pmullw xmm4, k4 + + paddsw xmm0, xmm1 + paddsw xmm0, xmm6 + paddsw xmm0, xmm7 + paddsw xmm0, xmm2 + paddsw xmm0, xmm5 + paddsw xmm0, xmm3 + paddsw xmm0, xmm4 + + paddsw xmm0, krd ;rounding + psraw xmm0, 7 ;shift + packuswb xmm0, xmm0 ;pack back to byte +%if %1 + movq xmm1, [rdi + %2] + pavgb xmm0, xmm1 +%endif + movq [rdi + %2], xmm0 +%endm + +SECTION .text + +;void vpx_filter_block1d4_v8_sse2 +;( +; unsigned char *src_ptr, +; unsigned int src_pitch, +; unsigned char *output_ptr, +; unsigned int out_pitch, +; unsigned int output_height, +; short *filter +;) +global sym(vpx_filter_block1d4_v8_sse2) PRIVATE +sym(vpx_filter_block1d4_v8_sse2): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 6 + SAVE_XMM 7 + push rsi + push rdi + push rbx + ; end prolog + + ALIGN_STACK 16, rax + sub rsp, 16 * 6 + %define k0k1 [rsp + 16 * 0] + %define k2k3 [rsp + 16 * 1] + %define k5k4 [rsp + 16 * 2] + %define k6k7 [rsp + 16 * 3] + %define krd [rsp + 16 * 4] + %define zero [rsp + 16 * 5] + + GET_FILTERS_4 + + mov rsi, arg(0) ;src_ptr + mov rdi, arg(2) ;output_ptr + + movsxd rax, DWORD PTR arg(1) ;pixels_per_line + movsxd rbx, DWORD PTR arg(3) ;out_pitch + lea rdx, [rax + rax * 2] + movsxd rcx, DWORD PTR arg(4) ;output_height + +.loop: + movd xmm0, [rsi] ;load src: row 0 + movd xmm1, [rsi + rax] ;1 + movd xmm6, [rsi + rdx * 2] ;6 + lea rsi, [rsi + rax] + movd xmm7, [rsi + rdx * 2] ;7 + movd xmm2, [rsi + rax] ;2 + movd xmm3, [rsi + rax * 2] ;3 + movd xmm4, [rsi + rdx] ;4 + movd xmm5, [rsi + rax * 4] ;5 + + APPLY_FILTER_4 0 + + lea rdi, [rdi + rbx] + dec rcx + jnz .loop + + add rsp, 16 * 6 + pop rsp + pop rbx + ; begin epilog + pop rdi + pop rsi + RESTORE_XMM + UNSHADOW_ARGS + pop rbp + ret + +;void vpx_filter_block1d8_v8_sse2 +;( +; unsigned char *src_ptr, +; unsigned int src_pitch, +; unsigned char *output_ptr, +; unsigned int out_pitch, +; unsigned int output_height, +; short *filter +;) +global sym(vpx_filter_block1d8_v8_sse2) PRIVATE +sym(vpx_filter_block1d8_v8_sse2): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 6 + SAVE_XMM 7 + push rsi + push rdi + push rbx + ; end prolog + + ALIGN_STACK 16, rax + sub rsp, 16 * 10 + %define k0 [rsp + 16 * 0] + %define k1 [rsp + 16 * 1] + %define k2 [rsp + 16 * 2] + %define k3 [rsp + 16 * 3] + %define k4 [rsp + 16 * 4] + %define k5 [rsp + 16 * 5] + %define k6 [rsp + 16 * 6] + %define k7 [rsp + 16 * 7] + %define krd [rsp + 16 * 8] + %define zero [rsp + 16 * 9] + + GET_FILTERS + + movsxd rax, DWORD PTR arg(1) ;pixels_per_line + movsxd rbx, DWORD PTR arg(3) ;out_pitch + lea rdx, [rax + rax * 2] + movsxd rcx, DWORD PTR arg(4) ;output_height + +.loop: + LOAD_VERT_8 0 + APPLY_FILTER_8 0, 0 + + lea rdi, [rdi + rbx] + dec rcx + jnz .loop + + add rsp, 16 * 10 + pop rsp + pop rbx + ; begin epilog + pop rdi + pop rsi + RESTORE_XMM + UNSHADOW_ARGS + pop rbp + ret + +;void vpx_filter_block1d16_v8_sse2 +;( +; unsigned char *src_ptr, +; unsigned int src_pitch, +; unsigned char *output_ptr, +; unsigned int out_pitch, +; unsigned int output_height, +; short *filter +;) +global sym(vpx_filter_block1d16_v8_sse2) PRIVATE +sym(vpx_filter_block1d16_v8_sse2): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 6 + SAVE_XMM 7 + push rsi + push rdi + push rbx + ; end prolog + + ALIGN_STACK 16, rax + sub rsp, 16 * 10 + %define k0 [rsp + 16 * 0] + %define k1 [rsp + 16 * 1] + %define k2 [rsp + 16 * 2] + %define k3 [rsp + 16 * 3] + %define k4 [rsp + 16 * 4] + %define k5 [rsp + 16 * 5] + %define k6 [rsp + 16 * 6] + %define k7 [rsp + 16 * 7] + %define krd [rsp + 16 * 8] + %define zero [rsp + 16 * 9] + + GET_FILTERS + + movsxd rax, DWORD PTR arg(1) ;pixels_per_line + movsxd rbx, DWORD PTR arg(3) ;out_pitch + lea rdx, [rax + rax * 2] + movsxd rcx, DWORD PTR arg(4) ;output_height + +.loop: + LOAD_VERT_8 0 + APPLY_FILTER_8 0, 0 + sub rsi, rax + + LOAD_VERT_8 8 + APPLY_FILTER_8 0, 8 + add rdi, rbx + + dec rcx + jnz .loop + + add rsp, 16 * 10 + pop rsp + pop rbx + ; begin epilog + pop rdi + pop rsi + RESTORE_XMM + UNSHADOW_ARGS + pop rbp + ret + +global sym(vpx_filter_block1d4_v8_avg_sse2) PRIVATE +sym(vpx_filter_block1d4_v8_avg_sse2): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 6 + SAVE_XMM 7 + push rsi + push rdi + push rbx + ; end prolog + + ALIGN_STACK 16, rax + sub rsp, 16 * 6 + %define k0k1 [rsp + 16 * 0] + %define k2k3 [rsp + 16 * 1] + %define k5k4 [rsp + 16 * 2] + %define k6k7 [rsp + 16 * 3] + %define krd [rsp + 16 * 4] + %define zero [rsp + 16 * 5] + + GET_FILTERS_4 + + mov rsi, arg(0) ;src_ptr + mov rdi, arg(2) ;output_ptr + + movsxd rax, DWORD PTR arg(1) ;pixels_per_line + movsxd rbx, DWORD PTR arg(3) ;out_pitch + lea rdx, [rax + rax * 2] + movsxd rcx, DWORD PTR arg(4) ;output_height + +.loop: + movd xmm0, [rsi] ;load src: row 0 + movd xmm1, [rsi + rax] ;1 + movd xmm6, [rsi + rdx * 2] ;6 + lea rsi, [rsi + rax] + movd xmm7, [rsi + rdx * 2] ;7 + movd xmm2, [rsi + rax] ;2 + movd xmm3, [rsi + rax * 2] ;3 + movd xmm4, [rsi + rdx] ;4 + movd xmm5, [rsi + rax * 4] ;5 + + APPLY_FILTER_4 1 + + lea rdi, [rdi + rbx] + dec rcx + jnz .loop + + add rsp, 16 * 6 + pop rsp + pop rbx + ; begin epilog + pop rdi + pop rsi + RESTORE_XMM + UNSHADOW_ARGS + pop rbp + ret + +global sym(vpx_filter_block1d8_v8_avg_sse2) PRIVATE +sym(vpx_filter_block1d8_v8_avg_sse2): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 6 + SAVE_XMM 7 + push rsi + push rdi + push rbx + ; end prolog + + ALIGN_STACK 16, rax + sub rsp, 16 * 10 + %define k0 [rsp + 16 * 0] + %define k1 [rsp + 16 * 1] + %define k2 [rsp + 16 * 2] + %define k3 [rsp + 16 * 3] + %define k4 [rsp + 16 * 4] + %define k5 [rsp + 16 * 5] + %define k6 [rsp + 16 * 6] + %define k7 [rsp + 16 * 7] + %define krd [rsp + 16 * 8] + %define zero [rsp + 16 * 9] + + GET_FILTERS + + movsxd rax, DWORD PTR arg(1) ;pixels_per_line + movsxd rbx, DWORD PTR arg(3) ;out_pitch + lea rdx, [rax + rax * 2] + movsxd rcx, DWORD PTR arg(4) ;output_height +.loop: + LOAD_VERT_8 0 + APPLY_FILTER_8 1, 0 + + lea rdi, [rdi + rbx] + dec rcx + jnz .loop + + add rsp, 16 * 10 + pop rsp + pop rbx + ; begin epilog + pop rdi + pop rsi + RESTORE_XMM + UNSHADOW_ARGS + pop rbp + ret + +global sym(vpx_filter_block1d16_v8_avg_sse2) PRIVATE +sym(vpx_filter_block1d16_v8_avg_sse2): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 6 + SAVE_XMM 7 + push rsi + push rdi + push rbx + ; end prolog + + ALIGN_STACK 16, rax + sub rsp, 16 * 10 + %define k0 [rsp + 16 * 0] + %define k1 [rsp + 16 * 1] + %define k2 [rsp + 16 * 2] + %define k3 [rsp + 16 * 3] + %define k4 [rsp + 16 * 4] + %define k5 [rsp + 16 * 5] + %define k6 [rsp + 16 * 6] + %define k7 [rsp + 16 * 7] + %define krd [rsp + 16 * 8] + %define zero [rsp + 16 * 9] + + GET_FILTERS + + movsxd rax, DWORD PTR arg(1) ;pixels_per_line + movsxd rbx, DWORD PTR arg(3) ;out_pitch + lea rdx, [rax + rax * 2] + movsxd rcx, DWORD PTR arg(4) ;output_height +.loop: + LOAD_VERT_8 0 + APPLY_FILTER_8 1, 0 + sub rsi, rax + + LOAD_VERT_8 8 + APPLY_FILTER_8 1, 8 + add rdi, rbx + + dec rcx + jnz .loop + + add rsp, 16 * 10 + pop rsp + pop rbx + ; begin epilog + pop rdi + pop rsi + RESTORE_XMM + UNSHADOW_ARGS + pop rbp + ret + +;void vpx_filter_block1d4_h8_sse2 +;( +; unsigned char *src_ptr, +; unsigned int src_pixels_per_line, +; unsigned char *output_ptr, +; unsigned int output_pitch, +; unsigned int output_height, +; short *filter +;) +global sym(vpx_filter_block1d4_h8_sse2) PRIVATE +sym(vpx_filter_block1d4_h8_sse2): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 6 + SAVE_XMM 7 + push rsi + push rdi + ; end prolog + + ALIGN_STACK 16, rax + sub rsp, 16 * 6 + %define k0k1 [rsp + 16 * 0] + %define k2k3 [rsp + 16 * 1] + %define k5k4 [rsp + 16 * 2] + %define k6k7 [rsp + 16 * 3] + %define krd [rsp + 16 * 4] + %define zero [rsp + 16 * 5] + + GET_FILTERS_4 + + mov rsi, arg(0) ;src_ptr + mov rdi, arg(2) ;output_ptr + + movsxd rax, DWORD PTR arg(1) ;pixels_per_line + movsxd rdx, DWORD PTR arg(3) ;out_pitch + movsxd rcx, DWORD PTR arg(4) ;output_height + +.loop: + movdqu xmm0, [rsi - 3] ;load src + + movdqa xmm1, xmm0 + movdqa xmm6, xmm0 + movdqa xmm7, xmm0 + movdqa xmm2, xmm0 + movdqa xmm3, xmm0 + movdqa xmm5, xmm0 + movdqa xmm4, xmm0 + + psrldq xmm1, 1 + psrldq xmm6, 6 + psrldq xmm7, 7 + psrldq xmm2, 2 + psrldq xmm3, 3 + psrldq xmm5, 5 + psrldq xmm4, 4 + + APPLY_FILTER_4 0 + + lea rsi, [rsi + rax] + lea rdi, [rdi + rdx] + dec rcx + jnz .loop + + add rsp, 16 * 6 + pop rsp + + ; begin epilog + pop rdi + pop rsi + RESTORE_XMM + UNSHADOW_ARGS + pop rbp + ret + +;void vpx_filter_block1d8_h8_sse2 +;( +; unsigned char *src_ptr, +; unsigned int src_pixels_per_line, +; unsigned char *output_ptr, +; unsigned int output_pitch, +; unsigned int output_height, +; short *filter +;) +global sym(vpx_filter_block1d8_h8_sse2) PRIVATE +sym(vpx_filter_block1d8_h8_sse2): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 6 + SAVE_XMM 7 + push rsi + push rdi + ; end prolog + + ALIGN_STACK 16, rax + sub rsp, 16 * 10 + %define k0 [rsp + 16 * 0] + %define k1 [rsp + 16 * 1] + %define k2 [rsp + 16 * 2] + %define k3 [rsp + 16 * 3] + %define k4 [rsp + 16 * 4] + %define k5 [rsp + 16 * 5] + %define k6 [rsp + 16 * 6] + %define k7 [rsp + 16 * 7] + %define krd [rsp + 16 * 8] + %define zero [rsp + 16 * 9] + + GET_FILTERS + + movsxd rax, DWORD PTR arg(1) ;pixels_per_line + movsxd rdx, DWORD PTR arg(3) ;out_pitch + movsxd rcx, DWORD PTR arg(4) ;output_height + +.loop: + movdqu xmm0, [rsi - 3] ;load src + + movdqa xmm1, xmm0 + movdqa xmm6, xmm0 + movdqa xmm7, xmm0 + movdqa xmm2, xmm0 + movdqa xmm5, xmm0 + movdqa xmm3, xmm0 + movdqa xmm4, xmm0 + + psrldq xmm1, 1 + psrldq xmm6, 6 + psrldq xmm7, 7 + psrldq xmm2, 2 + psrldq xmm5, 5 + psrldq xmm3, 3 + psrldq xmm4, 4 + + APPLY_FILTER_8 0, 0 + + lea rsi, [rsi + rax] + lea rdi, [rdi + rdx] + dec rcx + jnz .loop + + add rsp, 16 * 10 + pop rsp + + ; begin epilog + pop rdi + pop rsi + RESTORE_XMM + UNSHADOW_ARGS + pop rbp + ret + +;void vpx_filter_block1d16_h8_sse2 +;( +; unsigned char *src_ptr, +; unsigned int src_pixels_per_line, +; unsigned char *output_ptr, +; unsigned int output_pitch, +; unsigned int output_height, +; short *filter +;) +global sym(vpx_filter_block1d16_h8_sse2) PRIVATE +sym(vpx_filter_block1d16_h8_sse2): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 6 + SAVE_XMM 7 + push rsi + push rdi + ; end prolog + + ALIGN_STACK 16, rax + sub rsp, 16 * 10 + %define k0 [rsp + 16 * 0] + %define k1 [rsp + 16 * 1] + %define k2 [rsp + 16 * 2] + %define k3 [rsp + 16 * 3] + %define k4 [rsp + 16 * 4] + %define k5 [rsp + 16 * 5] + %define k6 [rsp + 16 * 6] + %define k7 [rsp + 16 * 7] + %define krd [rsp + 16 * 8] + %define zero [rsp + 16 * 9] + + GET_FILTERS + + movsxd rax, DWORD PTR arg(1) ;pixels_per_line + movsxd rdx, DWORD PTR arg(3) ;out_pitch + movsxd rcx, DWORD PTR arg(4) ;output_height + +.loop: + movdqu xmm0, [rsi - 3] ;load src + + movdqa xmm1, xmm0 + movdqa xmm6, xmm0 + movdqa xmm7, xmm0 + movdqa xmm2, xmm0 + movdqa xmm5, xmm0 + movdqa xmm3, xmm0 + movdqa xmm4, xmm0 + + psrldq xmm1, 1 + psrldq xmm6, 6 + psrldq xmm7, 7 + psrldq xmm2, 2 + psrldq xmm5, 5 + psrldq xmm3, 3 + psrldq xmm4, 4 + + APPLY_FILTER_8 0, 0 + + movdqu xmm0, [rsi + 5] ;load src + + movdqa xmm1, xmm0 + movdqa xmm6, xmm0 + movdqa xmm7, xmm0 + movdqa xmm2, xmm0 + movdqa xmm5, xmm0 + movdqa xmm3, xmm0 + movdqa xmm4, xmm0 + + psrldq xmm1, 1 + psrldq xmm6, 6 + psrldq xmm7, 7 + psrldq xmm2, 2 + psrldq xmm5, 5 + psrldq xmm3, 3 + psrldq xmm4, 4 + + APPLY_FILTER_8 0, 8 + + lea rsi, [rsi + rax] + lea rdi, [rdi + rdx] + dec rcx + jnz .loop + + add rsp, 16 * 10 + pop rsp + + ; begin epilog + pop rdi + pop rsi + RESTORE_XMM + UNSHADOW_ARGS + pop rbp + ret + +global sym(vpx_filter_block1d4_h8_avg_sse2) PRIVATE +sym(vpx_filter_block1d4_h8_avg_sse2): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 6 + SAVE_XMM 7 + push rsi + push rdi + ; end prolog + + ALIGN_STACK 16, rax + sub rsp, 16 * 6 + %define k0k1 [rsp + 16 * 0] + %define k2k3 [rsp + 16 * 1] + %define k5k4 [rsp + 16 * 2] + %define k6k7 [rsp + 16 * 3] + %define krd [rsp + 16 * 4] + %define zero [rsp + 16 * 5] + + GET_FILTERS_4 + + mov rsi, arg(0) ;src_ptr + mov rdi, arg(2) ;output_ptr + + movsxd rax, DWORD PTR arg(1) ;pixels_per_line + movsxd rdx, DWORD PTR arg(3) ;out_pitch + movsxd rcx, DWORD PTR arg(4) ;output_height + +.loop: + movdqu xmm0, [rsi - 3] ;load src + + movdqa xmm1, xmm0 + movdqa xmm6, xmm0 + movdqa xmm7, xmm0 + movdqa xmm2, xmm0 + movdqa xmm3, xmm0 + movdqa xmm5, xmm0 + movdqa xmm4, xmm0 + + psrldq xmm1, 1 + psrldq xmm6, 6 + psrldq xmm7, 7 + psrldq xmm2, 2 + psrldq xmm3, 3 + psrldq xmm5, 5 + psrldq xmm4, 4 + + APPLY_FILTER_4 1 + + lea rsi, [rsi + rax] + lea rdi, [rdi + rdx] + dec rcx + jnz .loop + + add rsp, 16 * 6 + pop rsp + + ; begin epilog + pop rdi + pop rsi + RESTORE_XMM + UNSHADOW_ARGS + pop rbp + ret + +global sym(vpx_filter_block1d8_h8_avg_sse2) PRIVATE +sym(vpx_filter_block1d8_h8_avg_sse2): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 6 + SAVE_XMM 7 + push rsi + push rdi + ; end prolog + + ALIGN_STACK 16, rax + sub rsp, 16 * 10 + %define k0 [rsp + 16 * 0] + %define k1 [rsp + 16 * 1] + %define k2 [rsp + 16 * 2] + %define k3 [rsp + 16 * 3] + %define k4 [rsp + 16 * 4] + %define k5 [rsp + 16 * 5] + %define k6 [rsp + 16 * 6] + %define k7 [rsp + 16 * 7] + %define krd [rsp + 16 * 8] + %define zero [rsp + 16 * 9] + + GET_FILTERS + + movsxd rax, DWORD PTR arg(1) ;pixels_per_line + movsxd rdx, DWORD PTR arg(3) ;out_pitch + movsxd rcx, DWORD PTR arg(4) ;output_height + +.loop: + movdqu xmm0, [rsi - 3] ;load src + + movdqa xmm1, xmm0 + movdqa xmm6, xmm0 + movdqa xmm7, xmm0 + movdqa xmm2, xmm0 + movdqa xmm5, xmm0 + movdqa xmm3, xmm0 + movdqa xmm4, xmm0 + + psrldq xmm1, 1 + psrldq xmm6, 6 + psrldq xmm7, 7 + psrldq xmm2, 2 + psrldq xmm5, 5 + psrldq xmm3, 3 + psrldq xmm4, 4 + + APPLY_FILTER_8 1, 0 + + lea rsi, [rsi + rax] + lea rdi, [rdi + rdx] + dec rcx + jnz .loop + + add rsp, 16 * 10 + pop rsp + + ; begin epilog + pop rdi + pop rsi + RESTORE_XMM + UNSHADOW_ARGS + pop rbp + ret + +global sym(vpx_filter_block1d16_h8_avg_sse2) PRIVATE +sym(vpx_filter_block1d16_h8_avg_sse2): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 6 + SAVE_XMM 7 + push rsi + push rdi + ; end prolog + + ALIGN_STACK 16, rax + sub rsp, 16 * 10 + %define k0 [rsp + 16 * 0] + %define k1 [rsp + 16 * 1] + %define k2 [rsp + 16 * 2] + %define k3 [rsp + 16 * 3] + %define k4 [rsp + 16 * 4] + %define k5 [rsp + 16 * 5] + %define k6 [rsp + 16 * 6] + %define k7 [rsp + 16 * 7] + %define krd [rsp + 16 * 8] + %define zero [rsp + 16 * 9] + + GET_FILTERS + + movsxd rax, DWORD PTR arg(1) ;pixels_per_line + movsxd rdx, DWORD PTR arg(3) ;out_pitch + movsxd rcx, DWORD PTR arg(4) ;output_height + +.loop: + movdqu xmm0, [rsi - 3] ;load src + + movdqa xmm1, xmm0 + movdqa xmm6, xmm0 + movdqa xmm7, xmm0 + movdqa xmm2, xmm0 + movdqa xmm5, xmm0 + movdqa xmm3, xmm0 + movdqa xmm4, xmm0 + + psrldq xmm1, 1 + psrldq xmm6, 6 + psrldq xmm7, 7 + psrldq xmm2, 2 + psrldq xmm5, 5 + psrldq xmm3, 3 + psrldq xmm4, 4 + + APPLY_FILTER_8 1, 0 + + movdqu xmm0, [rsi + 5] ;load src + + movdqa xmm1, xmm0 + movdqa xmm6, xmm0 + movdqa xmm7, xmm0 + movdqa xmm2, xmm0 + movdqa xmm5, xmm0 + movdqa xmm3, xmm0 + movdqa xmm4, xmm0 + + psrldq xmm1, 1 + psrldq xmm6, 6 + psrldq xmm7, 7 + psrldq xmm2, 2 + psrldq xmm5, 5 + psrldq xmm3, 3 + psrldq xmm4, 4 + + APPLY_FILTER_8 1, 8 + + lea rsi, [rsi + rax] + lea rdi, [rdi + rdx] + dec rcx + jnz .loop + + add rsp, 16 * 10 + pop rsp + + ; begin epilog + pop rdi + pop rsi + RESTORE_XMM + UNSHADOW_ARGS + pop rbp + ret diff --git a/vpx_dsp/x86/vpx_subpixel_8t_ssse3.asm b/vpx_dsp/x86/vpx_subpixel_8t_ssse3.asm new file mode 100644 index 0000000..952d930 --- /dev/null +++ b/vpx_dsp/x86/vpx_subpixel_8t_ssse3.asm @@ -0,0 +1,803 @@ +; +; Copyright (c) 2015 The WebM project authors. All Rights Reserved. +; +; Use of this source code is governed by a BSD-style license +; that can be found in the LICENSE file in the root of the source +; tree. An additional intellectual property rights grant can be found +; in the file PATENTS. All contributing project authors may +; be found in the AUTHORS file in the root of the source tree. +; + +%include "third_party/x86inc/x86inc.asm" + +SECTION_RODATA +pw_64: times 8 dw 64 + +; %define USE_PMULHRSW +; NOTE: pmulhrsw has a latency of 5 cycles. Tests showed a performance loss +; when using this instruction. +; +; The add order below (based on ffvp9) must be followed to prevent outranges. +; x = k0k1 + k4k5 +; y = k2k3 + k6k7 +; z = signed SAT(x + y) + +SECTION .text +%define LOCAL_VARS_SIZE 16*6 + +%macro SETUP_LOCAL_VARS 0 + ; TODO(slavarnway): using xmm registers for these on ARCH_X86_64 + + ; pmaddubsw has a higher latency on some platforms, this might be eased by + ; interleaving the instructions. + %define k0k1 [rsp + 16*0] + %define k2k3 [rsp + 16*1] + %define k4k5 [rsp + 16*2] + %define k6k7 [rsp + 16*3] + packsswb m4, m4 + ; TODO(slavarnway): multiple pshufb instructions had a higher latency on + ; some platforms. + pshuflw m0, m4, 0b ;k0_k1 + pshuflw m1, m4, 01010101b ;k2_k3 + pshuflw m2, m4, 10101010b ;k4_k5 + pshuflw m3, m4, 11111111b ;k6_k7 + punpcklqdq m0, m0 + punpcklqdq m1, m1 + punpcklqdq m2, m2 + punpcklqdq m3, m3 + mova k0k1, m0 + mova k2k3, m1 + mova k4k5, m2 + mova k6k7, m3 +%if ARCH_X86_64 + %define krd m12 + %define tmp0 [rsp + 16*4] + %define tmp1 [rsp + 16*5] + mova krd, [GLOBAL(pw_64)] +%else + %define krd [rsp + 16*4] +%if CONFIG_PIC=0 + mova m6, [GLOBAL(pw_64)] +%else + ; build constants without accessing global memory + pcmpeqb m6, m6 ;all ones + psrlw m6, 15 + psllw m6, 6 ;aka pw_64 +%endif + mova krd, m6 +%endif +%endm + +;------------------------------------------------------------------------------- +%if ARCH_X86_64 + %define LOCAL_VARS_SIZE_H4 0 +%else + %define LOCAL_VARS_SIZE_H4 16*4 +%endif + +%macro SUBPIX_HFILTER4 1 +cglobal filter_block1d4_%1, 6, 6, 11, LOCAL_VARS_SIZE_H4, \ + src, sstride, dst, dstride, height, filter + mova m4, [filterq] + packsswb m4, m4 +%if ARCH_X86_64 + %define k0k1k4k5 m8 + %define k2k3k6k7 m9 + %define krd m10 + mova krd, [GLOBAL(pw_64)] + pshuflw k0k1k4k5, m4, 0b ;k0_k1 + pshufhw k0k1k4k5, k0k1k4k5, 10101010b ;k0_k1_k4_k5 + pshuflw k2k3k6k7, m4, 01010101b ;k2_k3 + pshufhw k2k3k6k7, k2k3k6k7, 11111111b ;k2_k3_k6_k7 +%else + %define k0k1k4k5 [rsp + 16*0] + %define k2k3k6k7 [rsp + 16*1] + %define krd [rsp + 16*2] + pshuflw m6, m4, 0b ;k0_k1 + pshufhw m6, m6, 10101010b ;k0_k1_k4_k5 + pshuflw m7, m4, 01010101b ;k2_k3 + pshufhw m7, m7, 11111111b ;k2_k3_k6_k7 +%if CONFIG_PIC=0 + mova m1, [GLOBAL(pw_64)] +%else + ; build constants without accessing global memory + pcmpeqb m1, m1 ;all ones + psrlw m1, 15 + psllw m1, 6 ;aka pw_64 +%endif + mova k0k1k4k5, m6 + mova k2k3k6k7, m7 + mova krd, m1 +%endif + dec heightd + +.loop: + ;Do two rows at once + movu m4, [srcq - 3] + movu m5, [srcq + sstrideq - 3] + punpckhbw m1, m4, m4 + punpcklbw m4, m4 + punpckhbw m3, m5, m5 + punpcklbw m5, m5 + palignr m0, m1, m4, 1 + pmaddubsw m0, k0k1k4k5 + palignr m1, m4, 5 + pmaddubsw m1, k2k3k6k7 + palignr m2, m3, m5, 1 + pmaddubsw m2, k0k1k4k5 + palignr m3, m5, 5 + pmaddubsw m3, k2k3k6k7 + punpckhqdq m4, m0, m2 + punpcklqdq m0, m2 + punpckhqdq m5, m1, m3 + punpcklqdq m1, m3 + paddsw m0, m4 + paddsw m1, m5 +%ifidn %1, h8_avg + movd m4, [dstq] + movd m5, [dstq + dstrideq] +%endif + paddsw m0, m1 + paddsw m0, krd + psraw m0, 7 + packuswb m0, m0 + psrldq m1, m0, 4 + +%ifidn %1, h8_avg + pavgb m0, m4 + pavgb m1, m5 +%endif + movd [dstq], m0 + movd [dstq + dstrideq], m1 + + lea srcq, [srcq + sstrideq ] + prefetcht0 [srcq + 4 * sstrideq - 3] + lea srcq, [srcq + sstrideq ] + lea dstq, [dstq + 2 * dstrideq ] + prefetcht0 [srcq + 2 * sstrideq - 3] + + sub heightd, 2 + jg .loop + + ; Do last row if output_height is odd + jne .done + + movu m4, [srcq - 3] + punpckhbw m1, m4, m4 + punpcklbw m4, m4 + palignr m0, m1, m4, 1 + palignr m1, m4, 5 + pmaddubsw m0, k0k1k4k5 + pmaddubsw m1, k2k3k6k7 + psrldq m2, m0, 8 + psrldq m3, m1, 8 + paddsw m0, m2 + paddsw m1, m3 + paddsw m0, m1 + paddsw m0, krd + psraw m0, 7 + packuswb m0, m0 +%ifidn %1, h8_avg + movd m4, [dstq] + pavgb m0, m4 +%endif + movd [dstq], m0 +.done: + REP_RET +%endm + +;------------------------------------------------------------------------------- +%macro SUBPIX_HFILTER8 1 +cglobal filter_block1d8_%1, 6, 6, 14, LOCAL_VARS_SIZE, \ + src, sstride, dst, dstride, height, filter + mova m4, [filterq] + SETUP_LOCAL_VARS + dec heightd + +.loop: + ;Do two rows at once + movu m0, [srcq - 3] + movu m4, [srcq + sstrideq - 3] + punpckhbw m1, m0, m0 + punpcklbw m0, m0 + palignr m5, m1, m0, 13 + pmaddubsw m5, k6k7 + palignr m2, m1, m0, 5 + palignr m3, m1, m0, 9 + palignr m1, m0, 1 + pmaddubsw m1, k0k1 + punpckhbw m6, m4, m4 + punpcklbw m4, m4 + pmaddubsw m2, k2k3 + pmaddubsw m3, k4k5 + + palignr m7, m6, m4, 13 + palignr m0, m6, m4, 5 + pmaddubsw m7, k6k7 + paddsw m1, m3 + paddsw m2, m5 + paddsw m1, m2 +%ifidn %1, h8_avg + movh m2, [dstq] + movhps m2, [dstq + dstrideq] +%endif + palignr m5, m6, m4, 9 + palignr m6, m4, 1 + pmaddubsw m0, k2k3 + pmaddubsw m6, k0k1 + paddsw m1, krd + pmaddubsw m5, k4k5 + psraw m1, 7 + paddsw m0, m7 + paddsw m6, m5 + paddsw m6, m0 + paddsw m6, krd + psraw m6, 7 + packuswb m1, m6 +%ifidn %1, h8_avg + pavgb m1, m2 +%endif + movh [dstq], m1 + movhps [dstq + dstrideq], m1 + + lea srcq, [srcq + sstrideq ] + prefetcht0 [srcq + 4 * sstrideq - 3] + lea srcq, [srcq + sstrideq ] + lea dstq, [dstq + 2 * dstrideq ] + prefetcht0 [srcq + 2 * sstrideq - 3] + sub heightd, 2 + jg .loop + + ; Do last row if output_height is odd + jne .done + + movu m0, [srcq - 3] + punpckhbw m3, m0, m0 + punpcklbw m0, m0 + palignr m1, m3, m0, 1 + palignr m2, m3, m0, 5 + palignr m4, m3, m0, 13 + palignr m3, m0, 9 + pmaddubsw m1, k0k1 + pmaddubsw m2, k2k3 + pmaddubsw m3, k4k5 + pmaddubsw m4, k6k7 + paddsw m1, m3 + paddsw m4, m2 + paddsw m1, m4 + paddsw m1, krd + psraw m1, 7 + packuswb m1, m1 +%ifidn %1, h8_avg + movh m0, [dstq] + pavgb m1, m0 +%endif + movh [dstq], m1 +.done: + REP_RET +%endm + +;------------------------------------------------------------------------------- +%macro SUBPIX_HFILTER16 1 +cglobal filter_block1d16_%1, 6, 6, 14, LOCAL_VARS_SIZE, \ + src, sstride, dst, dstride, height, filter + mova m4, [filterq] + SETUP_LOCAL_VARS + +.loop: + prefetcht0 [srcq + 2 * sstrideq -3] + + movu m0, [srcq - 3] + movu m4, [srcq - 2] + pmaddubsw m0, k0k1 + pmaddubsw m4, k0k1 + movu m1, [srcq - 1] + movu m5, [srcq + 0] + pmaddubsw m1, k2k3 + pmaddubsw m5, k2k3 + movu m2, [srcq + 1] + movu m6, [srcq + 2] + pmaddubsw m2, k4k5 + pmaddubsw m6, k4k5 + movu m3, [srcq + 3] + movu m7, [srcq + 4] + pmaddubsw m3, k6k7 + pmaddubsw m7, k6k7 + paddsw m0, m2 + paddsw m1, m3 + paddsw m0, m1 + paddsw m4, m6 + paddsw m5, m7 + paddsw m4, m5 + paddsw m0, krd + paddsw m4, krd + psraw m0, 7 + psraw m4, 7 + packuswb m0, m0 + packuswb m4, m4 + punpcklbw m0, m4 +%ifidn %1, h8_avg + pavgb m0, [dstq] +%endif + lea srcq, [srcq + sstrideq] + mova [dstq], m0 + lea dstq, [dstq + dstrideq] + dec heightd + jnz .loop + REP_RET +%endm + +INIT_XMM ssse3 +SUBPIX_HFILTER16 h8 ; vpx_filter_block1d16_h8_ssse3 +SUBPIX_HFILTER16 h8_avg ; vpx_filter_block1d16_h8_avg_ssse3 +SUBPIX_HFILTER8 h8 ; vpx_filter_block1d8_h8_ssse3 +SUBPIX_HFILTER8 h8_avg ; vpx_filter_block1d8_h8_avg_ssse3 +SUBPIX_HFILTER4 h8 ; vpx_filter_block1d4_h8_ssse3 +SUBPIX_HFILTER4 h8_avg ; vpx_filter_block1d4_h8_avg_ssse3 + +;------------------------------------------------------------------------------- + +; TODO(Linfeng): Detect cpu type and choose the code with better performance. +%define X86_SUBPIX_VFILTER_PREFER_SLOW_CELERON 1 + +%if ARCH_X86_64 && X86_SUBPIX_VFILTER_PREFER_SLOW_CELERON + %define NUM_GENERAL_REG_USED 9 +%else + %define NUM_GENERAL_REG_USED 6 +%endif + +%macro SUBPIX_VFILTER 2 +cglobal filter_block1d%2_%1, 6, NUM_GENERAL_REG_USED, 15, LOCAL_VARS_SIZE, \ + src, sstride, dst, dstride, height, filter + mova m4, [filterq] + SETUP_LOCAL_VARS + +%ifidn %2, 8 + %define movx movh +%else + %define movx movd +%endif + + dec heightd + +%if ARCH_X86 || X86_SUBPIX_VFILTER_PREFER_SLOW_CELERON + +%if ARCH_X86_64 + %define src1q r7 + %define sstride6q r8 + %define dst_stride dstrideq +%else + %define src1q filterq + %define sstride6q dstrideq + %define dst_stride dstridemp +%endif + mov src1q, srcq + add src1q, sstrideq + lea sstride6q, [sstrideq + sstrideq * 4] + add sstride6q, sstrideq ;pitch * 6 + +.loop: + ;Do two rows at once + movx m0, [srcq ] ;A + movx m1, [src1q ] ;B + punpcklbw m0, m1 ;A B + movx m2, [srcq + sstrideq * 2 ] ;C + pmaddubsw m0, k0k1 + mova m6, m2 + movx m3, [src1q + sstrideq * 2] ;D + punpcklbw m2, m3 ;C D + pmaddubsw m2, k2k3 + movx m4, [srcq + sstrideq * 4 ] ;E + mova m7, m4 + movx m5, [src1q + sstrideq * 4] ;F + punpcklbw m4, m5 ;E F + pmaddubsw m4, k4k5 + punpcklbw m1, m6 ;A B next iter + movx m6, [srcq + sstride6q ] ;G + punpcklbw m5, m6 ;E F next iter + punpcklbw m3, m7 ;C D next iter + pmaddubsw m5, k4k5 + movx m7, [src1q + sstride6q ] ;H + punpcklbw m6, m7 ;G H + pmaddubsw m6, k6k7 + pmaddubsw m3, k2k3 + pmaddubsw m1, k0k1 + paddsw m0, m4 + paddsw m2, m6 + movx m6, [srcq + sstrideq * 8 ] ;H next iter + punpcklbw m7, m6 + pmaddubsw m7, k6k7 + paddsw m0, m2 + paddsw m0, krd + psraw m0, 7 + paddsw m1, m5 + packuswb m0, m0 + + paddsw m3, m7 + paddsw m1, m3 + paddsw m1, krd + psraw m1, 7 + lea srcq, [srcq + sstrideq * 2 ] + lea src1q, [src1q + sstrideq * 2] + packuswb m1, m1 + +%ifidn %1, v8_avg + movx m2, [dstq] + pavgb m0, m2 +%endif + movx [dstq], m0 + add dstq, dst_stride +%ifidn %1, v8_avg + movx m3, [dstq] + pavgb m1, m3 +%endif + movx [dstq], m1 + add dstq, dst_stride + sub heightd, 2 + jg .loop + + ; Do last row if output_height is odd + jne .done + + movx m0, [srcq ] ;A + movx m1, [srcq + sstrideq ] ;B + movx m6, [srcq + sstride6q ] ;G + punpcklbw m0, m1 ;A B + movx m7, [src1q + sstride6q ] ;H + pmaddubsw m0, k0k1 + movx m2, [srcq + sstrideq * 2 ] ;C + punpcklbw m6, m7 ;G H + movx m3, [src1q + sstrideq * 2] ;D + pmaddubsw m6, k6k7 + movx m4, [srcq + sstrideq * 4 ] ;E + punpcklbw m2, m3 ;C D + movx m5, [src1q + sstrideq * 4] ;F + punpcklbw m4, m5 ;E F + pmaddubsw m2, k2k3 + pmaddubsw m4, k4k5 + paddsw m2, m6 + paddsw m0, m4 + paddsw m0, m2 + paddsw m0, krd + psraw m0, 7 + packuswb m0, m0 +%ifidn %1, v8_avg + movx m1, [dstq] + pavgb m0, m1 +%endif + movx [dstq], m0 + +%else + ; ARCH_X86_64 + + movx m0, [srcq ] ;A + movx m1, [srcq + sstrideq ] ;B + lea srcq, [srcq + sstrideq * 2 ] + movx m2, [srcq] ;C + movx m3, [srcq + sstrideq] ;D + lea srcq, [srcq + sstrideq * 2 ] + movx m4, [srcq] ;E + movx m5, [srcq + sstrideq] ;F + lea srcq, [srcq + sstrideq * 2 ] + movx m6, [srcq] ;G + punpcklbw m0, m1 ;A B + punpcklbw m1, m2 ;A B next iter + punpcklbw m2, m3 ;C D + punpcklbw m3, m4 ;C D next iter + punpcklbw m4, m5 ;E F + punpcklbw m5, m6 ;E F next iter + +.loop: + ;Do two rows at once + movx m7, [srcq + sstrideq] ;H + lea srcq, [srcq + sstrideq * 2 ] + movx m14, [srcq] ;H next iter + punpcklbw m6, m7 ;G H + punpcklbw m7, m14 ;G H next iter + pmaddubsw m8, m0, k0k1 + pmaddubsw m9, m1, k0k1 + mova m0, m2 + mova m1, m3 + pmaddubsw m10, m2, k2k3 + pmaddubsw m11, m3, k2k3 + mova m2, m4 + mova m3, m5 + pmaddubsw m4, k4k5 + pmaddubsw m5, k4k5 + paddsw m8, m4 + paddsw m9, m5 + mova m4, m6 + mova m5, m7 + pmaddubsw m6, k6k7 + pmaddubsw m7, k6k7 + paddsw m10, m6 + paddsw m11, m7 + paddsw m8, m10 + paddsw m9, m11 + mova m6, m14 + paddsw m8, krd + paddsw m9, krd + psraw m8, 7 + psraw m9, 7 +%ifidn %2, 4 + packuswb m8, m8 + packuswb m9, m9 +%else + packuswb m8, m9 +%endif + +%ifidn %1, v8_avg + movx m7, [dstq] +%ifidn %2, 4 + movx m10, [dstq + dstrideq] + pavgb m9, m10 +%else + movhpd m7, [dstq + dstrideq] +%endif + pavgb m8, m7 +%endif + movx [dstq], m8 +%ifidn %2, 4 + movx [dstq + dstrideq], m9 +%else + movhpd [dstq + dstrideq], m8 +%endif + + lea dstq, [dstq + dstrideq * 2 ] + sub heightd, 2 + jg .loop + + ; Do last row if output_height is odd + jne .done + + movx m7, [srcq + sstrideq] ;H + punpcklbw m6, m7 ;G H + pmaddubsw m0, k0k1 + pmaddubsw m2, k2k3 + pmaddubsw m4, k4k5 + pmaddubsw m6, k6k7 + paddsw m0, m4 + paddsw m2, m6 + paddsw m0, m2 + paddsw m0, krd + psraw m0, 7 + packuswb m0, m0 +%ifidn %1, v8_avg + movx m1, [dstq] + pavgb m0, m1 +%endif + movx [dstq], m0 + +%endif ; ARCH_X86_64 + +.done: + REP_RET + +%endm + +;------------------------------------------------------------------------------- +%macro SUBPIX_VFILTER16 1 +cglobal filter_block1d16_%1, 6, NUM_GENERAL_REG_USED, 16, LOCAL_VARS_SIZE, \ + src, sstride, dst, dstride, height, filter + mova m4, [filterq] + SETUP_LOCAL_VARS + +%if ARCH_X86 || X86_SUBPIX_VFILTER_PREFER_SLOW_CELERON + +%if ARCH_X86_64 + %define src1q r7 + %define sstride6q r8 + %define dst_stride dstrideq +%else + %define src1q filterq + %define sstride6q dstrideq + %define dst_stride dstridemp +%endif + lea src1q, [srcq + sstrideq] + lea sstride6q, [sstrideq + sstrideq * 4] + add sstride6q, sstrideq ;pitch * 6 + +.loop: + movh m0, [srcq ] ;A + movh m1, [src1q ] ;B + movh m2, [srcq + sstrideq * 2 ] ;C + movh m3, [src1q + sstrideq * 2] ;D + movh m4, [srcq + sstrideq * 4 ] ;E + movh m5, [src1q + sstrideq * 4] ;F + + punpcklbw m0, m1 ;A B + movh m6, [srcq + sstride6q] ;G + punpcklbw m2, m3 ;C D + movh m7, [src1q + sstride6q] ;H + punpcklbw m4, m5 ;E F + pmaddubsw m0, k0k1 + movh m3, [srcq + 8] ;A + pmaddubsw m2, k2k3 + punpcklbw m6, m7 ;G H + movh m5, [srcq + sstrideq + 8] ;B + pmaddubsw m4, k4k5 + punpcklbw m3, m5 ;A B + movh m7, [srcq + sstrideq * 2 + 8] ;C + pmaddubsw m6, k6k7 + movh m5, [src1q + sstrideq * 2 + 8] ;D + punpcklbw m7, m5 ;C D + paddsw m2, m6 + pmaddubsw m3, k0k1 + movh m1, [srcq + sstrideq * 4 + 8] ;E + paddsw m0, m4 + pmaddubsw m7, k2k3 + movh m6, [src1q + sstrideq * 4 + 8] ;F + punpcklbw m1, m6 ;E F + paddsw m0, m2 + paddsw m0, krd + movh m2, [srcq + sstride6q + 8] ;G + pmaddubsw m1, k4k5 + movh m5, [src1q + sstride6q + 8] ;H + psraw m0, 7 + punpcklbw m2, m5 ;G H + pmaddubsw m2, k6k7 + paddsw m7, m2 + paddsw m3, m1 + paddsw m3, m7 + paddsw m3, krd + psraw m3, 7 + packuswb m0, m3 + + add srcq, sstrideq + add src1q, sstrideq +%ifidn %1, v8_avg + pavgb m0, [dstq] +%endif + mova [dstq], m0 + add dstq, dst_stride + dec heightd + jnz .loop + REP_RET + +%else + ; ARCH_X86_64 + dec heightd + + movu m1, [srcq ] ;A + movu m3, [srcq + sstrideq ] ;B + lea srcq, [srcq + sstrideq * 2] + punpcklbw m0, m1, m3 ;A B + punpckhbw m1, m3 ;A B + movu m5, [srcq] ;C + punpcklbw m2, m3, m5 ;A B next iter + punpckhbw m3, m5 ;A B next iter + mova tmp0, m2 ;store to stack + mova tmp1, m3 ;store to stack + movu m7, [srcq + sstrideq] ;D + lea srcq, [srcq + sstrideq * 2] + punpcklbw m4, m5, m7 ;C D + punpckhbw m5, m7 ;C D + movu m9, [srcq] ;E + punpcklbw m6, m7, m9 ;C D next iter + punpckhbw m7, m9 ;C D next iter + movu m11, [srcq + sstrideq] ;F + lea srcq, [srcq + sstrideq * 2] + punpcklbw m8, m9, m11 ;E F + punpckhbw m9, m11 ;E F + movu m2, [srcq] ;G + punpcklbw m10, m11, m2 ;E F next iter + punpckhbw m11, m2 ;E F next iter + +.loop: + ;Do two rows at once + pmaddubsw m13, m0, k0k1 + mova m0, m4 + pmaddubsw m14, m8, k4k5 + pmaddubsw m15, m4, k2k3 + mova m4, m8 + paddsw m13, m14 + movu m3, [srcq + sstrideq] ;H + lea srcq, [srcq + sstrideq * 2] + punpcklbw m14, m2, m3 ;G H + mova m8, m14 + pmaddubsw m14, k6k7 + paddsw m15, m14 + paddsw m13, m15 + paddsw m13, krd + psraw m13, 7 + + pmaddubsw m14, m1, k0k1 + pmaddubsw m1, m9, k4k5 + pmaddubsw m15, m5, k2k3 + paddsw m14, m1 + mova m1, m5 + mova m5, m9 + punpckhbw m2, m3 ;G H + mova m9, m2 + pmaddubsw m2, k6k7 + paddsw m15, m2 + paddsw m14, m15 + paddsw m14, krd + psraw m14, 7 + packuswb m13, m14 +%ifidn %1, v8_avg + pavgb m13, [dstq] +%endif + mova [dstq], m13 + + ; next iter + pmaddubsw m15, tmp0, k0k1 + pmaddubsw m14, m10, k4k5 + pmaddubsw m13, m6, k2k3 + paddsw m15, m14 + mova tmp0, m6 + mova m6, m10 + movu m2, [srcq] ;G next iter + punpcklbw m14, m3, m2 ;G H next iter + mova m10, m14 + pmaddubsw m14, k6k7 + paddsw m13, m14 + paddsw m15, m13 + paddsw m15, krd + psraw m15, 7 + + pmaddubsw m14, tmp1, k0k1 + mova tmp1, m7 + pmaddubsw m13, m7, k2k3 + mova m7, m11 + pmaddubsw m11, k4k5 + paddsw m14, m11 + punpckhbw m3, m2 ;G H next iter + mova m11, m3 + pmaddubsw m3, k6k7 + paddsw m13, m3 + paddsw m14, m13 + paddsw m14, krd + psraw m14, 7 + packuswb m15, m14 +%ifidn %1, v8_avg + pavgb m15, [dstq + dstrideq] +%endif + mova [dstq + dstrideq], m15 + lea dstq, [dstq + dstrideq * 2] + sub heightd, 2 + jg .loop + + ; Do last row if output_height is odd + jne .done + + movu m3, [srcq + sstrideq] ;H + punpcklbw m6, m2, m3 ;G H + punpckhbw m2, m3 ;G H + pmaddubsw m0, k0k1 + pmaddubsw m1, k0k1 + pmaddubsw m4, k2k3 + pmaddubsw m5, k2k3 + pmaddubsw m8, k4k5 + pmaddubsw m9, k4k5 + pmaddubsw m6, k6k7 + pmaddubsw m2, k6k7 + paddsw m0, m8 + paddsw m1, m9 + paddsw m4, m6 + paddsw m5, m2 + paddsw m0, m4 + paddsw m1, m5 + paddsw m0, krd + paddsw m1, krd + psraw m0, 7 + psraw m1, 7 + packuswb m0, m1 +%ifidn %1, v8_avg + pavgb m0, [dstq] +%endif + mova [dstq], m0 + +.done: + REP_RET + +%endif ; ARCH_X86_64 + +%endm + +INIT_XMM ssse3 +SUBPIX_VFILTER16 v8 ; vpx_filter_block1d16_v8_ssse3 +SUBPIX_VFILTER16 v8_avg ; vpx_filter_block1d16_v8_avg_ssse3 +SUBPIX_VFILTER v8, 8 ; vpx_filter_block1d8_v8_ssse3 +SUBPIX_VFILTER v8_avg, 8 ; vpx_filter_block1d8_v8_avg_ssse3 +SUBPIX_VFILTER v8, 4 ; vpx_filter_block1d4_v8_ssse3 +SUBPIX_VFILTER v8_avg, 4 ; vpx_filter_block1d4_v8_avg_ssse3 diff --git a/vpx_dsp/x86/vpx_subpixel_bilinear_sse2.asm b/vpx_dsp/x86/vpx_subpixel_bilinear_sse2.asm new file mode 100644 index 0000000..6d79492 --- /dev/null +++ b/vpx_dsp/x86/vpx_subpixel_bilinear_sse2.asm @@ -0,0 +1,450 @@ +; +; Copyright (c) 2014 The WebM project authors. All Rights Reserved. +; +; Use of this source code is governed by a BSD-style license +; that can be found in the LICENSE file in the root of the source +; tree. An additional intellectual property rights grant can be found +; in the file PATENTS. All contributing project authors may +; be found in the AUTHORS file in the root of the source tree. +; + +%include "vpx_ports/x86_abi_support.asm" + +%macro GET_PARAM_4 0 + mov rdx, arg(5) ;filter ptr + mov rsi, arg(0) ;src_ptr + mov rdi, arg(2) ;output_ptr + mov rcx, 0x0400040 + + movdqa xmm3, [rdx] ;load filters + pshuflw xmm4, xmm3, 11111111b ;k3 + psrldq xmm3, 8 + pshuflw xmm3, xmm3, 0b ;k4 + punpcklqdq xmm4, xmm3 ;k3k4 + + movq xmm3, rcx ;rounding + pshufd xmm3, xmm3, 0 + + pxor xmm2, xmm2 + + movsxd rax, DWORD PTR arg(1) ;pixels_per_line + movsxd rdx, DWORD PTR arg(3) ;out_pitch + movsxd rcx, DWORD PTR arg(4) ;output_height +%endm + +%macro APPLY_FILTER_4 1 + + punpckldq xmm0, xmm1 ;two row in one register + punpcklbw xmm0, xmm2 ;unpack to word + pmullw xmm0, xmm4 ;multiply the filter factors + + movdqa xmm1, xmm0 + psrldq xmm1, 8 + paddsw xmm0, xmm1 + + paddsw xmm0, xmm3 ;rounding + psraw xmm0, 7 ;shift + packuswb xmm0, xmm0 ;pack to byte + +%if %1 + movd xmm1, [rdi] + pavgb xmm0, xmm1 +%endif + + movd [rdi], xmm0 + lea rsi, [rsi + rax] + lea rdi, [rdi + rdx] + dec rcx +%endm + +%macro GET_PARAM 0 + mov rdx, arg(5) ;filter ptr + mov rsi, arg(0) ;src_ptr + mov rdi, arg(2) ;output_ptr + mov rcx, 0x0400040 + + movdqa xmm7, [rdx] ;load filters + + pshuflw xmm6, xmm7, 11111111b ;k3 + pshufhw xmm7, xmm7, 0b ;k4 + punpcklwd xmm6, xmm6 + punpckhwd xmm7, xmm7 + + movq xmm4, rcx ;rounding + pshufd xmm4, xmm4, 0 + + pxor xmm5, xmm5 + + movsxd rax, DWORD PTR arg(1) ;pixels_per_line + movsxd rdx, DWORD PTR arg(3) ;out_pitch + movsxd rcx, DWORD PTR arg(4) ;output_height +%endm + +%macro APPLY_FILTER_8 1 + punpcklbw xmm0, xmm5 + punpcklbw xmm1, xmm5 + + pmullw xmm0, xmm6 + pmullw xmm1, xmm7 + paddsw xmm0, xmm1 + paddsw xmm0, xmm4 ;rounding + psraw xmm0, 7 ;shift + packuswb xmm0, xmm0 ;pack back to byte +%if %1 + movq xmm1, [rdi] + pavgb xmm0, xmm1 +%endif + movq [rdi], xmm0 ;store the result + + lea rsi, [rsi + rax] + lea rdi, [rdi + rdx] + dec rcx +%endm + +%macro APPLY_FILTER_16 1 + punpcklbw xmm0, xmm5 + punpcklbw xmm1, xmm5 + punpckhbw xmm2, xmm5 + punpckhbw xmm3, xmm5 + + pmullw xmm0, xmm6 + pmullw xmm1, xmm7 + pmullw xmm2, xmm6 + pmullw xmm3, xmm7 + + paddsw xmm0, xmm1 + paddsw xmm2, xmm3 + + paddsw xmm0, xmm4 ;rounding + paddsw xmm2, xmm4 + psraw xmm0, 7 ;shift + psraw xmm2, 7 + packuswb xmm0, xmm2 ;pack back to byte +%if %1 + movdqu xmm1, [rdi] + pavgb xmm0, xmm1 +%endif + movdqu [rdi], xmm0 ;store the result + + lea rsi, [rsi + rax] + lea rdi, [rdi + rdx] + dec rcx +%endm + +SECTION .text + +global sym(vpx_filter_block1d4_v2_sse2) PRIVATE +sym(vpx_filter_block1d4_v2_sse2): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 6 + push rsi + push rdi + ; end prolog + + GET_PARAM_4 +.loop: + movd xmm0, [rsi] ;load src + movd xmm1, [rsi + rax] + + APPLY_FILTER_4 0 + jnz .loop + + ; begin epilog + pop rdi + pop rsi + UNSHADOW_ARGS + pop rbp + ret + +global sym(vpx_filter_block1d8_v2_sse2) PRIVATE +sym(vpx_filter_block1d8_v2_sse2): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 6 + SAVE_XMM 7 + push rsi + push rdi + ; end prolog + + GET_PARAM +.loop: + movq xmm0, [rsi] ;0 + movq xmm1, [rsi + rax] ;1 + + APPLY_FILTER_8 0 + jnz .loop + + ; begin epilog + pop rdi + pop rsi + RESTORE_XMM + UNSHADOW_ARGS + pop rbp + ret + +global sym(vpx_filter_block1d16_v2_sse2) PRIVATE +sym(vpx_filter_block1d16_v2_sse2): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 6 + SAVE_XMM 7 + push rsi + push rdi + ; end prolog + + GET_PARAM +.loop: + movdqu xmm0, [rsi] ;0 + movdqu xmm1, [rsi + rax] ;1 + movdqa xmm2, xmm0 + movdqa xmm3, xmm1 + + APPLY_FILTER_16 0 + jnz .loop + + ; begin epilog + pop rdi + pop rsi + RESTORE_XMM + UNSHADOW_ARGS + pop rbp + ret + +global sym(vpx_filter_block1d4_v2_avg_sse2) PRIVATE +sym(vpx_filter_block1d4_v2_avg_sse2): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 6 + push rsi + push rdi + ; end prolog + + GET_PARAM_4 +.loop: + movd xmm0, [rsi] ;load src + movd xmm1, [rsi + rax] + + APPLY_FILTER_4 1 + jnz .loop + + ; begin epilog + pop rdi + pop rsi + UNSHADOW_ARGS + pop rbp + ret + +global sym(vpx_filter_block1d8_v2_avg_sse2) PRIVATE +sym(vpx_filter_block1d8_v2_avg_sse2): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 6 + SAVE_XMM 7 + push rsi + push rdi + ; end prolog + + GET_PARAM +.loop: + movq xmm0, [rsi] ;0 + movq xmm1, [rsi + rax] ;1 + + APPLY_FILTER_8 1 + jnz .loop + + ; begin epilog + pop rdi + pop rsi + RESTORE_XMM + UNSHADOW_ARGS + pop rbp + ret + +global sym(vpx_filter_block1d16_v2_avg_sse2) PRIVATE +sym(vpx_filter_block1d16_v2_avg_sse2): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 6 + SAVE_XMM 7 + push rsi + push rdi + ; end prolog + + GET_PARAM +.loop: + movdqu xmm0, [rsi] ;0 + movdqu xmm1, [rsi + rax] ;1 + movdqa xmm2, xmm0 + movdqa xmm3, xmm1 + + APPLY_FILTER_16 1 + jnz .loop + + ; begin epilog + pop rdi + pop rsi + RESTORE_XMM + UNSHADOW_ARGS + pop rbp + ret + +global sym(vpx_filter_block1d4_h2_sse2) PRIVATE +sym(vpx_filter_block1d4_h2_sse2): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 6 + push rsi + push rdi + ; end prolog + + GET_PARAM_4 +.loop: + movdqu xmm0, [rsi] ;load src + movdqa xmm1, xmm0 + psrldq xmm1, 1 + + APPLY_FILTER_4 0 + jnz .loop + + ; begin epilog + pop rdi + pop rsi + UNSHADOW_ARGS + pop rbp + ret + +global sym(vpx_filter_block1d8_h2_sse2) PRIVATE +sym(vpx_filter_block1d8_h2_sse2): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 6 + SAVE_XMM 7 + push rsi + push rdi + ; end prolog + + GET_PARAM +.loop: + movdqu xmm0, [rsi] ;load src + movdqa xmm1, xmm0 + psrldq xmm1, 1 + + APPLY_FILTER_8 0 + jnz .loop + + ; begin epilog + pop rdi + pop rsi + RESTORE_XMM + UNSHADOW_ARGS + pop rbp + ret + +global sym(vpx_filter_block1d16_h2_sse2) PRIVATE +sym(vpx_filter_block1d16_h2_sse2): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 6 + SAVE_XMM 7 + push rsi + push rdi + ; end prolog + + GET_PARAM +.loop: + movdqu xmm0, [rsi] ;load src + movdqu xmm1, [rsi + 1] + movdqa xmm2, xmm0 + movdqa xmm3, xmm1 + + APPLY_FILTER_16 0 + jnz .loop + + ; begin epilog + pop rdi + pop rsi + RESTORE_XMM + UNSHADOW_ARGS + pop rbp + ret + +global sym(vpx_filter_block1d4_h2_avg_sse2) PRIVATE +sym(vpx_filter_block1d4_h2_avg_sse2): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 6 + push rsi + push rdi + ; end prolog + + GET_PARAM_4 +.loop: + movdqu xmm0, [rsi] ;load src + movdqa xmm1, xmm0 + psrldq xmm1, 1 + + APPLY_FILTER_4 1 + jnz .loop + + ; begin epilog + pop rdi + pop rsi + UNSHADOW_ARGS + pop rbp + ret + +global sym(vpx_filter_block1d8_h2_avg_sse2) PRIVATE +sym(vpx_filter_block1d8_h2_avg_sse2): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 6 + SAVE_XMM 7 + push rsi + push rdi + ; end prolog + + GET_PARAM +.loop: + movdqu xmm0, [rsi] ;load src + movdqa xmm1, xmm0 + psrldq xmm1, 1 + + APPLY_FILTER_8 1 + jnz .loop + + ; begin epilog + pop rdi + pop rsi + RESTORE_XMM + UNSHADOW_ARGS + pop rbp + ret + +global sym(vpx_filter_block1d16_h2_avg_sse2) PRIVATE +sym(vpx_filter_block1d16_h2_avg_sse2): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 6 + SAVE_XMM 7 + push rsi + push rdi + ; end prolog + + GET_PARAM +.loop: + movdqu xmm0, [rsi] ;load src + movdqu xmm1, [rsi + 1] + movdqa xmm2, xmm0 + movdqa xmm3, xmm1 + + APPLY_FILTER_16 1 + jnz .loop + + ; begin epilog + pop rdi + pop rsi + RESTORE_XMM + UNSHADOW_ARGS + pop rbp + ret diff --git a/vpx_dsp/x86/vpx_subpixel_bilinear_ssse3.asm b/vpx_dsp/x86/vpx_subpixel_bilinear_ssse3.asm new file mode 100644 index 0000000..8c9c817 --- /dev/null +++ b/vpx_dsp/x86/vpx_subpixel_bilinear_ssse3.asm @@ -0,0 +1,420 @@ +; +; Copyright (c) 2014 The WebM project authors. All Rights Reserved. +; +; Use of this source code is governed by a BSD-style license +; that can be found in the LICENSE file in the root of the source +; tree. An additional intellectual property rights grant can be found +; in the file PATENTS. All contributing project authors may +; be found in the AUTHORS file in the root of the source tree. +; + +%include "vpx_ports/x86_abi_support.asm" + +%macro GET_PARAM_4 0 + mov rdx, arg(5) ;filter ptr + mov rsi, arg(0) ;src_ptr + mov rdi, arg(2) ;output_ptr + mov ecx, 0x01000100 + + movdqa xmm3, [rdx] ;load filters + psrldq xmm3, 6 + packsswb xmm3, xmm3 + pshuflw xmm3, xmm3, 0b ;k3_k4 + + movd xmm2, ecx ;rounding_shift + pshufd xmm2, xmm2, 0 + + movsxd rax, DWORD PTR arg(1) ;pixels_per_line + movsxd rdx, DWORD PTR arg(3) ;out_pitch + movsxd rcx, DWORD PTR arg(4) ;output_height +%endm + +%macro APPLY_FILTER_4 1 + punpcklbw xmm0, xmm1 + pmaddubsw xmm0, xmm3 + + pmulhrsw xmm0, xmm2 ;rounding(+64)+shift(>>7) + packuswb xmm0, xmm0 ;pack to byte + +%if %1 + movd xmm1, [rdi] + pavgb xmm0, xmm1 +%endif + movd [rdi], xmm0 + lea rsi, [rsi + rax] + lea rdi, [rdi + rdx] + dec rcx +%endm + +%macro GET_PARAM 0 + mov rdx, arg(5) ;filter ptr + mov rsi, arg(0) ;src_ptr + mov rdi, arg(2) ;output_ptr + mov ecx, 0x01000100 + + movdqa xmm7, [rdx] ;load filters + psrldq xmm7, 6 + packsswb xmm7, xmm7 + pshuflw xmm7, xmm7, 0b ;k3_k4 + punpcklwd xmm7, xmm7 + + movd xmm6, ecx ;rounding_shift + pshufd xmm6, xmm6, 0 + + movsxd rax, DWORD PTR arg(1) ;pixels_per_line + movsxd rdx, DWORD PTR arg(3) ;out_pitch + movsxd rcx, DWORD PTR arg(4) ;output_height +%endm + +%macro APPLY_FILTER_8 1 + punpcklbw xmm0, xmm1 + pmaddubsw xmm0, xmm7 + + pmulhrsw xmm0, xmm6 ;rounding(+64)+shift(>>7) + packuswb xmm0, xmm0 ;pack back to byte + +%if %1 + movq xmm1, [rdi] + pavgb xmm0, xmm1 +%endif + movq [rdi], xmm0 ;store the result + + lea rsi, [rsi + rax] + lea rdi, [rdi + rdx] + dec rcx +%endm + +%macro APPLY_FILTER_16 1 + punpcklbw xmm0, xmm1 + punpckhbw xmm2, xmm1 + pmaddubsw xmm0, xmm7 + pmaddubsw xmm2, xmm7 + + pmulhrsw xmm0, xmm6 ;rounding(+64)+shift(>>7) + pmulhrsw xmm2, xmm6 + packuswb xmm0, xmm2 ;pack back to byte + +%if %1 + movdqu xmm1, [rdi] + pavgb xmm0, xmm1 +%endif + movdqu [rdi], xmm0 ;store the result + + lea rsi, [rsi + rax] + lea rdi, [rdi + rdx] + dec rcx +%endm + +SECTION .text + +global sym(vpx_filter_block1d4_v2_ssse3) PRIVATE +sym(vpx_filter_block1d4_v2_ssse3): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 6 + push rsi + push rdi + ; end prolog + + GET_PARAM_4 +.loop: + movd xmm0, [rsi] ;load src + movd xmm1, [rsi + rax] + + APPLY_FILTER_4 0 + jnz .loop + + ; begin epilog + pop rdi + pop rsi + UNSHADOW_ARGS + pop rbp + ret + +global sym(vpx_filter_block1d8_v2_ssse3) PRIVATE +sym(vpx_filter_block1d8_v2_ssse3): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 6 + SAVE_XMM 7 + push rsi + push rdi + ; end prolog + + GET_PARAM +.loop: + movq xmm0, [rsi] ;0 + movq xmm1, [rsi + rax] ;1 + + APPLY_FILTER_8 0 + jnz .loop + + ; begin epilog + pop rdi + pop rsi + RESTORE_XMM + UNSHADOW_ARGS + pop rbp + ret + +global sym(vpx_filter_block1d16_v2_ssse3) PRIVATE +sym(vpx_filter_block1d16_v2_ssse3): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 6 + SAVE_XMM 7 + push rsi + push rdi + ; end prolog + + GET_PARAM +.loop: + movdqu xmm0, [rsi] ;0 + movdqu xmm1, [rsi + rax] ;1 + movdqa xmm2, xmm0 + + APPLY_FILTER_16 0 + jnz .loop + + ; begin epilog + pop rdi + pop rsi + RESTORE_XMM + UNSHADOW_ARGS + pop rbp + ret + +global sym(vpx_filter_block1d4_v2_avg_ssse3) PRIVATE +sym(vpx_filter_block1d4_v2_avg_ssse3): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 6 + push rsi + push rdi + ; end prolog + + GET_PARAM_4 +.loop: + movd xmm0, [rsi] ;load src + movd xmm1, [rsi + rax] + + APPLY_FILTER_4 1 + jnz .loop + + ; begin epilog + pop rdi + pop rsi + UNSHADOW_ARGS + pop rbp + ret + +global sym(vpx_filter_block1d8_v2_avg_ssse3) PRIVATE +sym(vpx_filter_block1d8_v2_avg_ssse3): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 6 + SAVE_XMM 7 + push rsi + push rdi + ; end prolog + + GET_PARAM +.loop: + movq xmm0, [rsi] ;0 + movq xmm1, [rsi + rax] ;1 + + APPLY_FILTER_8 1 + jnz .loop + + ; begin epilog + pop rdi + pop rsi + RESTORE_XMM + UNSHADOW_ARGS + pop rbp + ret + +global sym(vpx_filter_block1d16_v2_avg_ssse3) PRIVATE +sym(vpx_filter_block1d16_v2_avg_ssse3): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 6 + SAVE_XMM 7 + push rsi + push rdi + ; end prolog + + GET_PARAM +.loop: + movdqu xmm0, [rsi] ;0 + movdqu xmm1, [rsi + rax] ;1 + movdqa xmm2, xmm0 + + APPLY_FILTER_16 1 + jnz .loop + + ; begin epilog + pop rdi + pop rsi + RESTORE_XMM + UNSHADOW_ARGS + pop rbp + ret + +global sym(vpx_filter_block1d4_h2_ssse3) PRIVATE +sym(vpx_filter_block1d4_h2_ssse3): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 6 + push rsi + push rdi + ; end prolog + + GET_PARAM_4 +.loop: + movdqu xmm0, [rsi] ;load src + movdqa xmm1, xmm0 + psrldq xmm1, 1 + + APPLY_FILTER_4 0 + jnz .loop + + ; begin epilog + pop rdi + pop rsi + UNSHADOW_ARGS + pop rbp + ret + +global sym(vpx_filter_block1d8_h2_ssse3) PRIVATE +sym(vpx_filter_block1d8_h2_ssse3): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 6 + SAVE_XMM 7 + push rsi + push rdi + ; end prolog + + GET_PARAM +.loop: + movdqu xmm0, [rsi] ;load src + movdqa xmm1, xmm0 + psrldq xmm1, 1 + + APPLY_FILTER_8 0 + jnz .loop + + ; begin epilog + pop rdi + pop rsi + RESTORE_XMM + UNSHADOW_ARGS + pop rbp + ret + +global sym(vpx_filter_block1d16_h2_ssse3) PRIVATE +sym(vpx_filter_block1d16_h2_ssse3): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 6 + SAVE_XMM 7 + push rsi + push rdi + ; end prolog + + GET_PARAM +.loop: + movdqu xmm0, [rsi] ;load src + movdqu xmm1, [rsi + 1] + movdqa xmm2, xmm0 + + APPLY_FILTER_16 0 + jnz .loop + + ; begin epilog + pop rdi + pop rsi + RESTORE_XMM + UNSHADOW_ARGS + pop rbp + ret + +global sym(vpx_filter_block1d4_h2_avg_ssse3) PRIVATE +sym(vpx_filter_block1d4_h2_avg_ssse3): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 6 + push rsi + push rdi + ; end prolog + + GET_PARAM_4 +.loop: + movdqu xmm0, [rsi] ;load src + movdqa xmm1, xmm0 + psrldq xmm1, 1 + + APPLY_FILTER_4 1 + jnz .loop + + ; begin epilog + pop rdi + pop rsi + UNSHADOW_ARGS + pop rbp + ret + +global sym(vpx_filter_block1d8_h2_avg_ssse3) PRIVATE +sym(vpx_filter_block1d8_h2_avg_ssse3): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 6 + SAVE_XMM 7 + push rsi + push rdi + ; end prolog + + GET_PARAM +.loop: + movdqu xmm0, [rsi] ;load src + movdqa xmm1, xmm0 + psrldq xmm1, 1 + + APPLY_FILTER_8 1 + jnz .loop + + ; begin epilog + pop rdi + pop rsi + RESTORE_XMM + UNSHADOW_ARGS + pop rbp + ret + +global sym(vpx_filter_block1d16_h2_avg_ssse3) PRIVATE +sym(vpx_filter_block1d16_h2_avg_ssse3): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 6 + SAVE_XMM 7 + push rsi + push rdi + ; end prolog + + GET_PARAM +.loop: + movdqu xmm0, [rsi] ;load src + movdqu xmm1, [rsi + 1] + movdqa xmm2, xmm0 + + APPLY_FILTER_16 1 + jnz .loop + + ; begin epilog + pop rdi + pop rsi + RESTORE_XMM + UNSHADOW_ARGS + pop rbp + ret diff --git a/vpx_mem/include/vpx_mem_intrnl.h b/vpx_mem/include/vpx_mem_intrnl.h new file mode 100644 index 0000000..2c259d3 --- /dev/null +++ b/vpx_mem/include/vpx_mem_intrnl.h @@ -0,0 +1,31 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VPX_MEM_INCLUDE_VPX_MEM_INTRNL_H_ +#define VPX_MEM_INCLUDE_VPX_MEM_INTRNL_H_ +#include "./vpx_config.h" + +#define ADDRESS_STORAGE_SIZE sizeof(size_t) + +#ifndef DEFAULT_ALIGNMENT +#if defined(VXWORKS) +/*default addr alignment to use in calls to vpx_* functions other than + * vpx_memalign*/ +#define DEFAULT_ALIGNMENT 32 +#else +#define DEFAULT_ALIGNMENT (2 * sizeof(void *)) /* NOLINT */ +#endif +#endif + +/*returns an addr aligned to the byte boundary specified by align*/ +#define align_addr(addr, align) \ + (void *)(((size_t)(addr) + ((align)-1)) & ~(size_t)((align)-1)) + +#endif // VPX_MEM_INCLUDE_VPX_MEM_INTRNL_H_ diff --git a/vpx_mem/vpx_mem.c b/vpx_mem/vpx_mem.c new file mode 100644 index 0000000..eeba34c --- /dev/null +++ b/vpx_mem/vpx_mem.c @@ -0,0 +1,84 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "vpx_mem.h" +#include +#include +#include +#include +#include "include/vpx_mem_intrnl.h" +#include "vpx/vpx_integer.h" + +#if SIZE_MAX > (1ULL << 40) +#define VPX_MAX_ALLOCABLE_MEMORY (1ULL << 40) +#else +// For 32-bit targets keep this below INT_MAX to avoid valgrind warnings. +#define VPX_MAX_ALLOCABLE_MEMORY ((1ULL << 31) - (1 << 16)) +#endif + +// Returns 0 in case of overflow of nmemb * size. +static int check_size_argument_overflow(uint64_t nmemb, uint64_t size) { + const uint64_t total_size = nmemb * size; + if (nmemb == 0) return 1; + if (size > VPX_MAX_ALLOCABLE_MEMORY / nmemb) return 0; + if (total_size != (size_t)total_size) return 0; + + return 1; +} + +static size_t *get_malloc_address_location(void *const mem) { + return ((size_t *)mem) - 1; +} + +static uint64_t get_aligned_malloc_size(size_t size, size_t align) { + return (uint64_t)size + align - 1 + ADDRESS_STORAGE_SIZE; +} + +static void set_actual_malloc_address(void *const mem, + const void *const malloc_addr) { + size_t *const malloc_addr_location = get_malloc_address_location(mem); + *malloc_addr_location = (size_t)malloc_addr; +} + +static void *get_actual_malloc_address(void *const mem) { + size_t *const malloc_addr_location = get_malloc_address_location(mem); + return (void *)(*malloc_addr_location); +} + +void *vpx_memalign(size_t align, size_t size) { + void *x = NULL, *addr; + const uint64_t aligned_size = get_aligned_malloc_size(size, align); + if (!check_size_argument_overflow(1, aligned_size)) return NULL; + + addr = malloc((size_t)aligned_size); + if (addr) { + x = align_addr((unsigned char *)addr + ADDRESS_STORAGE_SIZE, align); + set_actual_malloc_address(x, addr); + } + return x; +} + +void *vpx_malloc(size_t size) { return vpx_memalign(DEFAULT_ALIGNMENT, size); } + +void *vpx_calloc(size_t num, size_t size) { + void *x; + if (!check_size_argument_overflow(num, size)) return NULL; + + x = vpx_malloc(num * size); + if (x) memset(x, 0, num * size); + return x; +} + +void vpx_free(void *memblk) { + if (memblk) { + void *addr = get_actual_malloc_address(memblk); + free(addr); + } +} diff --git a/vpx_mem/vpx_mem.h b/vpx_mem/vpx_mem.h new file mode 100644 index 0000000..a4274b8 --- /dev/null +++ b/vpx_mem/vpx_mem.h @@ -0,0 +1,52 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VPX_MEM_VPX_MEM_H_ +#define VPX_MEM_VPX_MEM_H_ + +#include "vpx_config.h" +#if defined(__uClinux__) +#include +#endif + +#include +#include + +#include "vpx/vpx_integer.h" + +#if defined(__cplusplus) +extern "C" { +#endif + +void *vpx_memalign(size_t align, size_t size); +void *vpx_malloc(size_t size); +void *vpx_calloc(size_t num, size_t size); +void vpx_free(void *memblk); + +#if CONFIG_VP9_HIGHBITDEPTH +static INLINE void *vpx_memset16(void *dest, int val, size_t length) { + size_t i; + uint16_t *dest16 = (uint16_t *)dest; + for (i = 0; i < length; i++) *dest16++ = val; + return dest; +} +#endif + +#include + +#ifdef VPX_MEM_PLTFRM +#include VPX_MEM_PLTFRM +#endif + +#if defined(__cplusplus) +} +#endif + +#endif // VPX_MEM_VPX_MEM_H_ diff --git a/vpx_mem/vpx_mem.mk b/vpx_mem/vpx_mem.mk new file mode 100644 index 0000000..7f275ea --- /dev/null +++ b/vpx_mem/vpx_mem.mk @@ -0,0 +1,4 @@ +MEM_SRCS-yes += vpx_mem.mk +MEM_SRCS-yes += vpx_mem.c +MEM_SRCS-yes += vpx_mem.h +MEM_SRCS-yes += include/vpx_mem_intrnl.h diff --git a/vpx_ports/arm.h b/vpx_ports/arm.h new file mode 100644 index 0000000..7be6104 --- /dev/null +++ b/vpx_ports/arm.h @@ -0,0 +1,39 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VPX_PORTS_ARM_H_ +#define VPX_PORTS_ARM_H_ +#include +#include "vpx_config.h" + +#ifdef __cplusplus +extern "C" { +#endif + +/*ARMv5TE "Enhanced DSP" instructions.*/ +#define HAS_EDSP 0x01 +/*ARMv6 "Parallel" or "Media" instructions.*/ +#define HAS_MEDIA 0x02 +/*ARMv7 optional NEON instructions.*/ +#define HAS_NEON 0x04 + +int arm_cpu_caps(void); + +// Earlier gcc compilers have issues with some neon intrinsics +#if !defined(__clang__) && defined(__GNUC__) && __GNUC__ == 4 && \ + __GNUC_MINOR__ <= 6 +#define VPX_INCOMPATIBLE_GCC +#endif + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VPX_PORTS_ARM_H_ diff --git a/vpx_ports/arm_cpudetect.c b/vpx_ports/arm_cpudetect.c new file mode 100644 index 0000000..4f9d480 --- /dev/null +++ b/vpx_ports/arm_cpudetect.c @@ -0,0 +1,154 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include + +#include "./vpx_config.h" +#include "vpx_ports/arm.h" + +#ifdef WINAPI_FAMILY +#include +#if !WINAPI_FAMILY_PARTITION(WINAPI_PARTITION_DESKTOP) +#define getenv(x) NULL +#endif +#endif + +static int arm_cpu_env_flags(int *flags) { + char *env; + env = getenv("VPX_SIMD_CAPS"); + if (env && *env) { + *flags = (int)strtol(env, NULL, 0); + return 0; + } + *flags = 0; + return -1; +} + +static int arm_cpu_env_mask(void) { + char *env; + env = getenv("VPX_SIMD_CAPS_MASK"); + return env && *env ? (int)strtol(env, NULL, 0) : ~0; +} + +#if !CONFIG_RUNTIME_CPU_DETECT + +int arm_cpu_caps(void) { + /* This function should actually be a no-op. There is no way to adjust any of + * these because the RTCD tables do not exist: the functions are called + * statically */ + int flags; + int mask; + if (!arm_cpu_env_flags(&flags)) { + return flags; + } + mask = arm_cpu_env_mask(); +#if HAVE_NEON || HAVE_NEON_ASM + flags |= HAS_NEON; +#endif /* HAVE_NEON || HAVE_NEON_ASM */ + return flags & mask; +} + +#elif defined(_MSC_VER) /* end !CONFIG_RUNTIME_CPU_DETECT */ +/*For GetExceptionCode() and EXCEPTION_ILLEGAL_INSTRUCTION.*/ +#ifndef WIN32_LEAN_AND_MEAN +#define WIN32_LEAN_AND_MEAN +#endif +#ifndef WIN32_EXTRA_LEAN +#define WIN32_EXTRA_LEAN +#endif +#include + +int arm_cpu_caps(void) { + int flags; + int mask; + if (!arm_cpu_env_flags(&flags)) { + return flags; + } + mask = arm_cpu_env_mask(); +/* MSVC has no inline __asm support for ARM, but it does let you __emit + * instructions via their assembled hex code. + * All of these instructions should be essentially nops. + */ +#if HAVE_NEON || HAVE_NEON_ASM + if (mask & HAS_NEON) { + __try { + /*VORR q0,q0,q0*/ + __emit(0xF2200150); + flags |= HAS_NEON; + } __except (GetExceptionCode() == EXCEPTION_ILLEGAL_INSTRUCTION) { + /*Ignore exception.*/ + } + } +#endif /* HAVE_NEON || HAVE_NEON_ASM */ + return flags & mask; +} + +#elif defined(__ANDROID__) /* end _MSC_VER */ +#include + +int arm_cpu_caps(void) { + int flags; + int mask; + uint64_t features; + if (!arm_cpu_env_flags(&flags)) { + return flags; + } + mask = arm_cpu_env_mask(); + features = android_getCpuFeatures(); + +#if HAVE_NEON || HAVE_NEON_ASM + if (features & ANDROID_CPU_ARM_FEATURE_NEON) flags |= HAS_NEON; +#endif /* HAVE_NEON || HAVE_NEON_ASM */ + return flags & mask; +} + +#elif defined(__linux__) /* end __ANDROID__ */ + +#include + +int arm_cpu_caps(void) { + FILE *fin; + int flags; + int mask; + if (!arm_cpu_env_flags(&flags)) { + return flags; + } + mask = arm_cpu_env_mask(); + /* Reading /proc/self/auxv would be easier, but that doesn't work reliably + * on Android. + * This also means that detection will fail in Scratchbox. + */ + fin = fopen("/proc/cpuinfo", "r"); + if (fin != NULL) { + /* 512 should be enough for anybody (it's even enough for all the flags + * that x86 has accumulated... so far). + */ + char buf[512]; + while (fgets(buf, 511, fin) != NULL) { +#if HAVE_NEON || HAVE_NEON_ASM + if (memcmp(buf, "Features", 8) == 0) { + char *p; + p = strstr(buf, " neon"); + if (p != NULL && (p[5] == ' ' || p[5] == '\n')) { + flags |= HAS_NEON; + } + } +#endif /* HAVE_NEON || HAVE_NEON_ASM */ + } + fclose(fin); + } + return flags & mask; +} +#else /* end __linux__ */ +#error \ + "--enable-runtime-cpu-detect selected, but no CPU detection method " \ +"available for your platform. Reconfigure with --disable-runtime-cpu-detect." +#endif diff --git a/vpx_ports/asmdefs_mmi.h b/vpx_ports/asmdefs_mmi.h new file mode 100644 index 0000000..a9a4974 --- /dev/null +++ b/vpx_ports/asmdefs_mmi.h @@ -0,0 +1,81 @@ +/* + * Copyright (c) 2017 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VPX_PORTS_ASMDEFS_MMI_H_ +#define VPX_PORTS_ASMDEFS_MMI_H_ + +#include "./vpx_config.h" +#include "vpx/vpx_integer.h" + +#if HAVE_MMI + +#if HAVE_MIPS64 +#define mips_reg int64_t +#define MMI_ADDU(reg1, reg2, reg3) \ + "daddu " #reg1 ", " #reg2 ", " #reg3 " \n\t" + +#define MMI_ADDIU(reg1, reg2, immediate) \ + "daddiu " #reg1 ", " #reg2 ", " #immediate " \n\t" + +#define MMI_ADDI(reg1, reg2, immediate) \ + "daddi " #reg1 ", " #reg2 ", " #immediate " \n\t" + +#define MMI_SUBU(reg1, reg2, reg3) \ + "dsubu " #reg1 ", " #reg2 ", " #reg3 " \n\t" + +#define MMI_L(reg, addr, bias) \ + "ld " #reg ", " #bias "(" #addr ") \n\t" + +#define MMI_SRL(reg1, reg2, shift) \ + "dsrl " #reg1 ", " #reg2 ", " #shift " \n\t" + +#define MMI_SLL(reg1, reg2, shift) \ + "dsll " #reg1 ", " #reg2 ", " #shift " \n\t" + +#define MMI_MTC1(reg, fp) \ + "dmtc1 " #reg ", " #fp " \n\t" + +#define MMI_LI(reg, immediate) \ + "dli " #reg ", " #immediate " \n\t" + +#else +#define mips_reg int32_t +#define MMI_ADDU(reg1, reg2, reg3) \ + "addu " #reg1 ", " #reg2 ", " #reg3 " \n\t" + +#define MMI_ADDIU(reg1, reg2, immediate) \ + "addiu " #reg1 ", " #reg2 ", " #immediate " \n\t" + +#define MMI_ADDI(reg1, reg2, immediate) \ + "addi " #reg1 ", " #reg2 ", " #immediate " \n\t" + +#define MMI_SUBU(reg1, reg2, reg3) \ + "subu " #reg1 ", " #reg2 ", " #reg3 " \n\t" + +#define MMI_L(reg, addr, bias) \ + "lw " #reg ", " #bias "(" #addr ") \n\t" + +#define MMI_SRL(reg1, reg2, shift) \ + "srl " #reg1 ", " #reg2 ", " #shift " \n\t" + +#define MMI_SLL(reg1, reg2, shift) \ + "sll " #reg1 ", " #reg2 ", " #shift " \n\t" + +#define MMI_MTC1(reg, fp) \ + "mtc1 " #reg ", " #fp " \n\t" + +#define MMI_LI(reg, immediate) \ + "li " #reg ", " #immediate " \n\t" + +#endif /* HAVE_MIPS64 */ + +#endif /* HAVE_MMI */ + +#endif /* VPX_PORTS_ASMDEFS_MMI_H_ */ diff --git a/vpx_ports/bitops.h b/vpx_ports/bitops.h new file mode 100644 index 0000000..0ed7189 --- /dev/null +++ b/vpx_ports/bitops.h @@ -0,0 +1,75 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VPX_PORTS_BITOPS_H_ +#define VPX_PORTS_BITOPS_H_ + +#include + +#include "vpx_ports/msvc.h" + +#ifdef _MSC_VER +#if defined(_M_X64) || defined(_M_IX86) +#include +#define USE_MSC_INTRINSICS +#endif +#endif + +#ifdef __cplusplus +extern "C" { +#endif + +// These versions of get_msb() are only valid when n != 0 because all +// of the optimized versions are undefined when n == 0: +// https://gcc.gnu.org/onlinedocs/gcc/Other-Builtins.html + +// use GNU builtins where available. +#if defined(__GNUC__) && \ + ((__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || __GNUC__ >= 4) +static INLINE int get_msb(unsigned int n) { + assert(n != 0); + return 31 ^ __builtin_clz(n); +} +#elif defined(USE_MSC_INTRINSICS) +#pragma intrinsic(_BitScanReverse) + +static INLINE int get_msb(unsigned int n) { + unsigned long first_set_bit; + assert(n != 0); + _BitScanReverse(&first_set_bit, n); + return first_set_bit; +} +#undef USE_MSC_INTRINSICS +#else +// Returns (int)floor(log2(n)). n must be > 0. +static INLINE int get_msb(unsigned int n) { + int log = 0; + unsigned int value = n; + int i; + + assert(n != 0); + + for (i = 4; i >= 0; --i) { + const int shift = (1 << i); + const unsigned int x = value >> shift; + if (x != 0) { + value = x; + log += shift; + } + } + return log; +} +#endif + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VPX_PORTS_BITOPS_H_ diff --git a/vpx_ports/config.h b/vpx_ports/config.h new file mode 100644 index 0000000..3c1ab99 --- /dev/null +++ b/vpx_ports/config.h @@ -0,0 +1,16 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VPX_PORTS_CONFIG_H_ +#define VPX_PORTS_CONFIG_H_ + +#include "vpx_config.h" + +#endif // VPX_PORTS_CONFIG_H_ diff --git a/vpx_ports/emmintrin_compat.h b/vpx_ports/emmintrin_compat.h new file mode 100644 index 0000000..903534e --- /dev/null +++ b/vpx_ports/emmintrin_compat.h @@ -0,0 +1,55 @@ +/* + * Copyright (c) 2012 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VPX_PORTS_EMMINTRIN_COMPAT_H_ +#define VPX_PORTS_EMMINTRIN_COMPAT_H_ + +#if defined(__GNUC__) && __GNUC__ < 4 +/* From emmintrin.h (gcc 4.5.3) */ +/* Casts between various SP, DP, INT vector types. Note that these do no + conversion of values, they just change the type. */ +extern __inline __m128 + __attribute__((__gnu_inline__, __always_inline__, __artificial__)) + _mm_castpd_ps(__m128d __A) { + return (__m128)__A; +} + +extern __inline __m128i + __attribute__((__gnu_inline__, __always_inline__, __artificial__)) + _mm_castpd_si128(__m128d __A) { + return (__m128i)__A; +} + +extern __inline __m128d + __attribute__((__gnu_inline__, __always_inline__, __artificial__)) + _mm_castps_pd(__m128 __A) { + return (__m128d)__A; +} + +extern __inline __m128i + __attribute__((__gnu_inline__, __always_inline__, __artificial__)) + _mm_castps_si128(__m128 __A) { + return (__m128i)__A; +} + +extern __inline __m128 + __attribute__((__gnu_inline__, __always_inline__, __artificial__)) + _mm_castsi128_ps(__m128i __A) { + return (__m128)__A; +} + +extern __inline __m128d + __attribute__((__gnu_inline__, __always_inline__, __artificial__)) + _mm_castsi128_pd(__m128i __A) { + return (__m128d)__A; +} +#endif + +#endif // VPX_PORTS_EMMINTRIN_COMPAT_H_ diff --git a/vpx_ports/emms.asm b/vpx_ports/emms.asm new file mode 100644 index 0000000..db8da28 --- /dev/null +++ b/vpx_ports/emms.asm @@ -0,0 +1,38 @@ +; +; Copyright (c) 2010 The WebM project authors. All Rights Reserved. +; +; Use of this source code is governed by a BSD-style license +; that can be found in the LICENSE file in the root of the source +; tree. An additional intellectual property rights grant can be found +; in the file PATENTS. All contributing project authors may +; be found in the AUTHORS file in the root of the source tree. +; + + +%include "vpx_ports/x86_abi_support.asm" + +section .text +global sym(vpx_reset_mmx_state) PRIVATE +sym(vpx_reset_mmx_state): + emms + ret + + +%if LIBVPX_YASM_WIN64 +global sym(vpx_winx64_fldcw) PRIVATE +sym(vpx_winx64_fldcw): + sub rsp, 8 + mov [rsp], rcx ; win x64 specific + fldcw [rsp] + add rsp, 8 + ret + + +global sym(vpx_winx64_fstcw) PRIVATE +sym(vpx_winx64_fstcw): + sub rsp, 8 + fstcw [rsp] + mov rax, [rsp] + add rsp, 8 + ret +%endif diff --git a/vpx_ports/mem.h b/vpx_ports/mem.h new file mode 100644 index 0000000..bfef783 --- /dev/null +++ b/vpx_ports/mem.h @@ -0,0 +1,54 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VPX_PORTS_MEM_H_ +#define VPX_PORTS_MEM_H_ + +#include "vpx_config.h" +#include "vpx/vpx_integer.h" + +#if (defined(__GNUC__) && __GNUC__) || defined(__SUNPRO_C) +#define DECLARE_ALIGNED(n, typ, val) typ val __attribute__((aligned(n))) +#elif defined(_MSC_VER) +#define DECLARE_ALIGNED(n, typ, val) __declspec(align(n)) typ val +#else +#warning No alignment directives known for this compiler. +#define DECLARE_ALIGNED(n, typ, val) typ val +#endif + +#if HAVE_NEON && defined(_MSC_VER) +#define __builtin_prefetch(x) +#endif + +/* Shift down with rounding */ +#define ROUND_POWER_OF_TWO(value, n) (((value) + (1 << ((n)-1))) >> (n)) +#define ROUND64_POWER_OF_TWO(value, n) (((value) + (1ULL << ((n)-1))) >> (n)) + +#define ALIGN_POWER_OF_TWO(value, n) \ + (((value) + ((1 << (n)) - 1)) & ~((1 << (n)) - 1)) + +#define CONVERT_TO_SHORTPTR(x) ((uint16_t *)(((uintptr_t)(x)) << 1)) +#define CAST_TO_SHORTPTR(x) ((uint16_t *)((uintptr_t)(x))) +#if CONFIG_VP9_HIGHBITDEPTH +#define CONVERT_TO_BYTEPTR(x) ((uint8_t *)(((uintptr_t)(x)) >> 1)) +#define CAST_TO_BYTEPTR(x) ((uint8_t *)((uintptr_t)(x))) +#endif // CONFIG_VP9_HIGHBITDEPTH + +#if !defined(__has_feature) +#define __has_feature(x) 0 +#endif // !defined(__has_feature) + +#if __has_feature(address_sanitizer) || defined(__SANITIZE_ADDRESS__) +#define VPX_WITH_ASAN 1 +#else +#define VPX_WITH_ASAN 0 +#endif // __has_feature(address_sanitizer) || defined(__SANITIZE_ADDRESS__) + +#endif // VPX_PORTS_MEM_H_ diff --git a/vpx_ports/mem_ops.h b/vpx_ports/mem_ops.h new file mode 100644 index 0000000..343f275 --- /dev/null +++ b/vpx_ports/mem_ops.h @@ -0,0 +1,228 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VPX_PORTS_MEM_OPS_H_ +#define VPX_PORTS_MEM_OPS_H_ + +/* \file + * \brief Provides portable memory access primitives + * + * This function provides portable primitives for getting and setting of + * signed and unsigned integers in 16, 24, and 32 bit sizes. The operations + * can be performed on unaligned data regardless of hardware support for + * unaligned accesses. + * + * The type used to pass the integral values may be changed by defining + * MEM_VALUE_T with the appropriate type. The type given must be an integral + * numeric type. + * + * The actual functions instantiated have the MEM_VALUE_T type name pasted + * on to the symbol name. This allows the developer to instantiate these + * operations for multiple types within the same translation unit. This is + * of somewhat questionable utility, but the capability exists nonetheless. + * Users not making use of this functionality should call the functions + * without the type name appended, and the preprocessor will take care of + * it. + * + * NOTE: This code is not supported on platforms where char > 1 octet ATM. + */ + +#ifndef MAU_T +/* Minimum Access Unit for this target */ +#define MAU_T unsigned char +#endif + +#ifndef MEM_VALUE_T +#define MEM_VALUE_T int +#endif + +#undef MEM_VALUE_T_SZ_BITS +#define MEM_VALUE_T_SZ_BITS (sizeof(MEM_VALUE_T) << 3) + +#undef mem_ops_wrap_symbol +#define mem_ops_wrap_symbol(fn) mem_ops_wrap_symbol2(fn, MEM_VALUE_T) +#undef mem_ops_wrap_symbol2 +#define mem_ops_wrap_symbol2(fn, typ) mem_ops_wrap_symbol3(fn, typ) +#undef mem_ops_wrap_symbol3 +#define mem_ops_wrap_symbol3(fn, typ) fn##_as_##typ + +/* + * Include aligned access routines + */ +#define INCLUDED_BY_MEM_OPS_H +#include "mem_ops_aligned.h" +#undef INCLUDED_BY_MEM_OPS_H + +#undef mem_get_be16 +#define mem_get_be16 mem_ops_wrap_symbol(mem_get_be16) +static unsigned MEM_VALUE_T mem_get_be16(const void *vmem) { + unsigned MEM_VALUE_T val; + const MAU_T *mem = (const MAU_T *)vmem; + + val = mem[0] << 8; + val |= mem[1]; + return val; +} + +#undef mem_get_be24 +#define mem_get_be24 mem_ops_wrap_symbol(mem_get_be24) +static unsigned MEM_VALUE_T mem_get_be24(const void *vmem) { + unsigned MEM_VALUE_T val; + const MAU_T *mem = (const MAU_T *)vmem; + + val = mem[0] << 16; + val |= mem[1] << 8; + val |= mem[2]; + return val; +} + +#undef mem_get_be32 +#define mem_get_be32 mem_ops_wrap_symbol(mem_get_be32) +static unsigned MEM_VALUE_T mem_get_be32(const void *vmem) { + unsigned MEM_VALUE_T val; + const MAU_T *mem = (const MAU_T *)vmem; + + val = ((unsigned MEM_VALUE_T)mem[0]) << 24; + val |= mem[1] << 16; + val |= mem[2] << 8; + val |= mem[3]; + return val; +} + +#undef mem_get_le16 +#define mem_get_le16 mem_ops_wrap_symbol(mem_get_le16) +static unsigned MEM_VALUE_T mem_get_le16(const void *vmem) { + unsigned MEM_VALUE_T val; + const MAU_T *mem = (const MAU_T *)vmem; + + val = mem[1] << 8; + val |= mem[0]; + return val; +} + +#undef mem_get_le24 +#define mem_get_le24 mem_ops_wrap_symbol(mem_get_le24) +static unsigned MEM_VALUE_T mem_get_le24(const void *vmem) { + unsigned MEM_VALUE_T val; + const MAU_T *mem = (const MAU_T *)vmem; + + val = mem[2] << 16; + val |= mem[1] << 8; + val |= mem[0]; + return val; +} + +#undef mem_get_le32 +#define mem_get_le32 mem_ops_wrap_symbol(mem_get_le32) +static unsigned MEM_VALUE_T mem_get_le32(const void *vmem) { + unsigned MEM_VALUE_T val; + const MAU_T *mem = (const MAU_T *)vmem; + + val = ((unsigned MEM_VALUE_T)mem[3]) << 24; + val |= mem[2] << 16; + val |= mem[1] << 8; + val |= mem[0]; + return val; +} + +#define mem_get_s_generic(end, sz) \ + static VPX_INLINE signed MEM_VALUE_T mem_get_s##end##sz(const void *vmem) { \ + const MAU_T *mem = (const MAU_T *)vmem; \ + signed MEM_VALUE_T val = mem_get_##end##sz(mem); \ + return (val << (MEM_VALUE_T_SZ_BITS - sz)) >> (MEM_VALUE_T_SZ_BITS - sz); \ + } + +/* clang-format off */ +#undef mem_get_sbe16 +#define mem_get_sbe16 mem_ops_wrap_symbol(mem_get_sbe16) +mem_get_s_generic(be, 16) + +#undef mem_get_sbe24 +#define mem_get_sbe24 mem_ops_wrap_symbol(mem_get_sbe24) +mem_get_s_generic(be, 24) + +#undef mem_get_sbe32 +#define mem_get_sbe32 mem_ops_wrap_symbol(mem_get_sbe32) +mem_get_s_generic(be, 32) + +#undef mem_get_sle16 +#define mem_get_sle16 mem_ops_wrap_symbol(mem_get_sle16) +mem_get_s_generic(le, 16) + +#undef mem_get_sle24 +#define mem_get_sle24 mem_ops_wrap_symbol(mem_get_sle24) +mem_get_s_generic(le, 24) + +#undef mem_get_sle32 +#define mem_get_sle32 mem_ops_wrap_symbol(mem_get_sle32) +mem_get_s_generic(le, 32) + +#undef mem_put_be16 +#define mem_put_be16 mem_ops_wrap_symbol(mem_put_be16) +static VPX_INLINE void mem_put_be16(void *vmem, MEM_VALUE_T val) { + MAU_T *mem = (MAU_T *)vmem; + + mem[0] = (MAU_T)((val >> 8) & 0xff); + mem[1] = (MAU_T)((val >> 0) & 0xff); +} + +#undef mem_put_be24 +#define mem_put_be24 mem_ops_wrap_symbol(mem_put_be24) +static VPX_INLINE void mem_put_be24(void *vmem, MEM_VALUE_T val) { + MAU_T *mem = (MAU_T *)vmem; + + mem[0] = (MAU_T)((val >> 16) & 0xff); + mem[1] = (MAU_T)((val >> 8) & 0xff); + mem[2] = (MAU_T)((val >> 0) & 0xff); +} + +#undef mem_put_be32 +#define mem_put_be32 mem_ops_wrap_symbol(mem_put_be32) +static VPX_INLINE void mem_put_be32(void *vmem, MEM_VALUE_T val) { + MAU_T *mem = (MAU_T *)vmem; + + mem[0] = (MAU_T)((val >> 24) & 0xff); + mem[1] = (MAU_T)((val >> 16) & 0xff); + mem[2] = (MAU_T)((val >> 8) & 0xff); + mem[3] = (MAU_T)((val >> 0) & 0xff); +} + +#undef mem_put_le16 +#define mem_put_le16 mem_ops_wrap_symbol(mem_put_le16) +static VPX_INLINE void mem_put_le16(void *vmem, MEM_VALUE_T val) { + MAU_T *mem = (MAU_T *)vmem; + + mem[0] = (MAU_T)((val >> 0) & 0xff); + mem[1] = (MAU_T)((val >> 8) & 0xff); +} + +#undef mem_put_le24 +#define mem_put_le24 mem_ops_wrap_symbol(mem_put_le24) +static VPX_INLINE void mem_put_le24(void *vmem, MEM_VALUE_T val) { + MAU_T *mem = (MAU_T *)vmem; + + mem[0] = (MAU_T)((val >> 0) & 0xff); + mem[1] = (MAU_T)((val >> 8) & 0xff); + mem[2] = (MAU_T)((val >> 16) & 0xff); +} + +#undef mem_put_le32 +#define mem_put_le32 mem_ops_wrap_symbol(mem_put_le32) +static VPX_INLINE void mem_put_le32(void *vmem, MEM_VALUE_T val) { + MAU_T *mem = (MAU_T *)vmem; + + mem[0] = (MAU_T)((val >> 0) & 0xff); + mem[1] = (MAU_T)((val >> 8) & 0xff); + mem[2] = (MAU_T)((val >> 16) & 0xff); + mem[3] = (MAU_T)((val >> 24) & 0xff); +} +/* clang-format on */ + +#endif // VPX_PORTS_MEM_OPS_H_ diff --git a/vpx_ports/mem_ops_aligned.h b/vpx_ports/mem_ops_aligned.h new file mode 100644 index 0000000..ccac391 --- /dev/null +++ b/vpx_ports/mem_ops_aligned.h @@ -0,0 +1,171 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VPX_PORTS_MEM_OPS_ALIGNED_H_ +#define VPX_PORTS_MEM_OPS_ALIGNED_H_ + +#include "vpx/vpx_integer.h" + +/* \file + * \brief Provides portable memory access primitives for operating on aligned + * data + * + * This file is split from mem_ops.h for easier maintenance. See mem_ops.h + * for a more detailed description of these primitives. + */ +#ifndef INCLUDED_BY_MEM_OPS_H +#error Include mem_ops.h, not mem_ops_aligned.h directly. +#endif + +/* Architectures that provide instructions for doing this byte swapping + * could redefine these macros. + */ +#define swap_endian_16(val, raw) \ + do { \ + val = (uint16_t)(((raw >> 8) & 0x00ff) | ((raw << 8) & 0xff00)); \ + } while (0) +#define swap_endian_32(val, raw) \ + do { \ + val = ((raw >> 24) & 0x000000ff) | ((raw >> 8) & 0x0000ff00) | \ + ((raw << 8) & 0x00ff0000) | ((raw << 24) & 0xff000000); \ + } while (0) +#define swap_endian_16_se(val, raw) \ + do { \ + swap_endian_16(val, raw); \ + val = ((val << 16) >> 16); \ + } while (0) +#define swap_endian_32_se(val, raw) swap_endian_32(val, raw) + +#define mem_get_ne_aligned_generic(end, sz) \ + static VPX_INLINE unsigned MEM_VALUE_T mem_get_##end##sz##_aligned( \ + const void *vmem) { \ + const uint##sz##_t *mem = (const uint##sz##_t *)vmem; \ + return *mem; \ + } + +#define mem_get_sne_aligned_generic(end, sz) \ + static VPX_INLINE signed MEM_VALUE_T mem_get_s##end##sz##_aligned( \ + const void *vmem) { \ + const int##sz##_t *mem = (const int##sz##_t *)vmem; \ + return *mem; \ + } + +#define mem_get_se_aligned_generic(end, sz) \ + static VPX_INLINE unsigned MEM_VALUE_T mem_get_##end##sz##_aligned( \ + const void *vmem) { \ + const uint##sz##_t *mem = (const uint##sz##_t *)vmem; \ + unsigned MEM_VALUE_T val, raw = *mem; \ + swap_endian_##sz(val, raw); \ + return val; \ + } + +#define mem_get_sse_aligned_generic(end, sz) \ + static VPX_INLINE signed MEM_VALUE_T mem_get_s##end##sz##_aligned( \ + const void *vmem) { \ + const int##sz##_t *mem = (const int##sz##_t *)vmem; \ + unsigned MEM_VALUE_T val, raw = *mem; \ + swap_endian_##sz##_se(val, raw); \ + return val; \ + } + +#define mem_put_ne_aligned_generic(end, sz) \ + static VPX_INLINE void mem_put_##end##sz##_aligned(void *vmem, \ + MEM_VALUE_T val) { \ + uint##sz##_t *mem = (uint##sz##_t *)vmem; \ + *mem = (uint##sz##_t)val; \ + } + +#define mem_put_se_aligned_generic(end, sz) \ + static VPX_INLINE void mem_put_##end##sz##_aligned(void *vmem, \ + MEM_VALUE_T val) { \ + uint##sz##_t *mem = (uint##sz##_t *)vmem, raw; \ + swap_endian_##sz(raw, val); \ + *mem = (uint##sz##_t)raw; \ + } + +#include "vpx_config.h" +#if CONFIG_BIG_ENDIAN +#define mem_get_be_aligned_generic(sz) mem_get_ne_aligned_generic(be, sz) +#define mem_get_sbe_aligned_generic(sz) mem_get_sne_aligned_generic(be, sz) +#define mem_get_le_aligned_generic(sz) mem_get_se_aligned_generic(le, sz) +#define mem_get_sle_aligned_generic(sz) mem_get_sse_aligned_generic(le, sz) +#define mem_put_be_aligned_generic(sz) mem_put_ne_aligned_generic(be, sz) +#define mem_put_le_aligned_generic(sz) mem_put_se_aligned_generic(le, sz) +#else +#define mem_get_be_aligned_generic(sz) mem_get_se_aligned_generic(be, sz) +#define mem_get_sbe_aligned_generic(sz) mem_get_sse_aligned_generic(be, sz) +#define mem_get_le_aligned_generic(sz) mem_get_ne_aligned_generic(le, sz) +#define mem_get_sle_aligned_generic(sz) mem_get_sne_aligned_generic(le, sz) +#define mem_put_be_aligned_generic(sz) mem_put_se_aligned_generic(be, sz) +#define mem_put_le_aligned_generic(sz) mem_put_ne_aligned_generic(le, sz) +#endif + +/* clang-format off */ +#undef mem_get_be16_aligned +#define mem_get_be16_aligned mem_ops_wrap_symbol(mem_get_be16_aligned) +mem_get_be_aligned_generic(16) + +#undef mem_get_be32_aligned +#define mem_get_be32_aligned mem_ops_wrap_symbol(mem_get_be32_aligned) +mem_get_be_aligned_generic(32) + +#undef mem_get_le16_aligned +#define mem_get_le16_aligned mem_ops_wrap_symbol(mem_get_le16_aligned) +mem_get_le_aligned_generic(16) + +#undef mem_get_le32_aligned +#define mem_get_le32_aligned mem_ops_wrap_symbol(mem_get_le32_aligned) +mem_get_le_aligned_generic(32) + +#undef mem_get_sbe16_aligned +#define mem_get_sbe16_aligned mem_ops_wrap_symbol(mem_get_sbe16_aligned) +mem_get_sbe_aligned_generic(16) + +#undef mem_get_sbe32_aligned +#define mem_get_sbe32_aligned mem_ops_wrap_symbol(mem_get_sbe32_aligned) +mem_get_sbe_aligned_generic(32) + +#undef mem_get_sle16_aligned +#define mem_get_sle16_aligned mem_ops_wrap_symbol(mem_get_sle16_aligned) +mem_get_sle_aligned_generic(16) + +#undef mem_get_sle32_aligned +#define mem_get_sle32_aligned mem_ops_wrap_symbol(mem_get_sle32_aligned) +mem_get_sle_aligned_generic(32) + +#undef mem_put_be16_aligned +#define mem_put_be16_aligned mem_ops_wrap_symbol(mem_put_be16_aligned) +mem_put_be_aligned_generic(16) + +#undef mem_put_be32_aligned +#define mem_put_be32_aligned mem_ops_wrap_symbol(mem_put_be32_aligned) +mem_put_be_aligned_generic(32) + +#undef mem_put_le16_aligned +#define mem_put_le16_aligned mem_ops_wrap_symbol(mem_put_le16_aligned) +mem_put_le_aligned_generic(16) + +#undef mem_put_le32_aligned +#define mem_put_le32_aligned mem_ops_wrap_symbol(mem_put_le32_aligned) +mem_put_le_aligned_generic(32) + +#undef mem_get_ne_aligned_generic +#undef mem_get_se_aligned_generic +#undef mem_get_sne_aligned_generic +#undef mem_get_sse_aligned_generic +#undef mem_put_ne_aligned_generic +#undef mem_put_se_aligned_generic +#undef swap_endian_16 +#undef swap_endian_32 +#undef swap_endian_16_se +#undef swap_endian_32_se +/* clang-format on */ + +#endif // VPX_PORTS_MEM_OPS_ALIGNED_H_ diff --git a/vpx_ports/msvc.h b/vpx_ports/msvc.h new file mode 100644 index 0000000..3ff7147 --- /dev/null +++ b/vpx_ports/msvc.h @@ -0,0 +1,32 @@ +/* + * Copyright (c) 2015 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VPX_PORTS_MSVC_H_ +#define VPX_PORTS_MSVC_H_ +#ifdef _MSC_VER + +#include "./vpx_config.h" + +#if _MSC_VER < 1900 // VS2015 provides snprintf +#define snprintf _snprintf +#endif // _MSC_VER < 1900 + +#if _MSC_VER < 1800 // VS2013 provides round +#include +static INLINE double round(double x) { + if (x < 0) + return ceil(x - 0.5); + else + return floor(x + 0.5); +} +#endif // _MSC_VER < 1800 + +#endif // _MSC_VER +#endif // VPX_PORTS_MSVC_H_ diff --git a/vpx_ports/ppc.h b/vpx_ports/ppc.h new file mode 100644 index 0000000..ed29ef2 --- /dev/null +++ b/vpx_ports/ppc.h @@ -0,0 +1,29 @@ +/* + * Copyright (c) 2017 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VPX_PORTS_PPC_H_ +#define VPX_PORTS_PPC_H_ +#include + +#include "./vpx_config.h" + +#ifdef __cplusplus +extern "C" { +#endif + +#define HAS_VSX 0x01 + +int ppc_simd_caps(void); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VPX_PORTS_PPC_H_ diff --git a/vpx_ports/ppc_cpudetect.c b/vpx_ports/ppc_cpudetect.c new file mode 100644 index 0000000..374a027 --- /dev/null +++ b/vpx_ports/ppc_cpudetect.c @@ -0,0 +1,80 @@ +/* + * Copyright (c) 2017 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include +#include +#include +#include + +#include "./vpx_config.h" +#include "vpx_ports/ppc.h" + +#if CONFIG_RUNTIME_CPU_DETECT +static int cpu_env_flags(int *flags) { + char *env; + env = getenv("VPX_SIMD_CAPS"); + if (env && *env) { + *flags = (int)strtol(env, NULL, 0); + return 0; + } + *flags = 0; + return -1; +} + +static int cpu_env_mask(void) { + char *env; + env = getenv("VPX_SIMD_CAPS_MASK"); + return env && *env ? (int)strtol(env, NULL, 0) : ~0; +} + +int ppc_simd_caps(void) { + int flags; + int mask; + int fd; + ssize_t count; + unsigned int i; + uint64_t buf[64]; + + // If VPX_SIMD_CAPS is set then allow only those capabilities. + if (!cpu_env_flags(&flags)) { + return flags; + } + + mask = cpu_env_mask(); + + fd = open("/proc/self/auxv", O_RDONLY); + if (fd < 0) { + return 0; + } + + while ((count = read(fd, buf, sizeof(buf))) > 0) { + for (i = 0; i < (count / sizeof(*buf)); i += 2) { + if (buf[i] == AT_HWCAP) { +#if HAVE_VSX + if (buf[i + 1] & PPC_FEATURE_HAS_VSX) { + flags |= HAS_VSX; + } +#endif // HAVE_VSX + goto out_close; + } else if (buf[i] == AT_NULL) { + goto out_close; + } + } + } +out_close: + close(fd); + return flags & mask; +} +#else +// If there is no RTCD the function pointers are not used and can not be +// changed. +int ppc_simd_caps(void) { return 0; } +#endif // CONFIG_RUNTIME_CPU_DETECT diff --git a/vpx_ports/system_state.h b/vpx_ports/system_state.h new file mode 100644 index 0000000..086c646 --- /dev/null +++ b/vpx_ports/system_state.h @@ -0,0 +1,22 @@ +/* + * Copyright (c) 2015 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VPX_PORTS_SYSTEM_STATE_H_ +#define VPX_PORTS_SYSTEM_STATE_H_ + +#include "./vpx_config.h" + +#if ARCH_X86 || ARCH_X86_64 +void vpx_reset_mmx_state(void); +#define vpx_clear_system_state() vpx_reset_mmx_state() +#else +#define vpx_clear_system_state() +#endif // ARCH_X86 || ARCH_X86_64 +#endif // VPX_PORTS_SYSTEM_STATE_H_ diff --git a/vpx_ports/vpx_once.h b/vpx_ports/vpx_once.h new file mode 100644 index 0000000..7d9fc3b --- /dev/null +++ b/vpx_ports/vpx_once.h @@ -0,0 +1,140 @@ +/* + * Copyright (c) 2015 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VPX_PORTS_VPX_ONCE_H_ +#define VPX_PORTS_VPX_ONCE_H_ + +#include "vpx_config.h" + +/* Implement a function wrapper to guarantee initialization + * thread-safety for library singletons. + * + * NOTE: These functions use static locks, and can only be + * used with one common argument per compilation unit. So + * + * file1.c: + * vpx_once(foo); + * ... + * vpx_once(foo); + * + * file2.c: + * vpx_once(bar); + * + * will ensure foo() and bar() are each called only once, but in + * + * file1.c: + * vpx_once(foo); + * vpx_once(bar): + * + * bar() will never be called because the lock is used up + * by the call to foo(). + */ + +#if CONFIG_MULTITHREAD && defined(_WIN32) +#include +#include +/* Declare a per-compilation-unit state variable to track the progress + * of calling func() only once. This must be at global scope because + * local initializers are not thread-safe in MSVC prior to Visual + * Studio 2015. + * + * As a static, once_state will be zero-initialized as program start. + */ +static LONG once_state; +static void once(void (*func)(void)) { + /* Try to advance once_state from its initial value of 0 to 1. + * Only one thread can succeed in doing so. + */ + if (InterlockedCompareExchange(&once_state, 1, 0) == 0) { + /* We're the winning thread, having set once_state to 1. + * Call our function. */ + func(); + /* Now advance once_state to 2, unblocking any other threads. */ + InterlockedIncrement(&once_state); + return; + } + + /* We weren't the winning thread, but we want to block on + * the state variable so we don't return before func() + * has finished executing elsewhere. + * + * Try to advance once_state from 2 to 2, which is only possible + * after the winning thead advances it from 1 to 2. + */ + while (InterlockedCompareExchange(&once_state, 2, 2) != 2) { + /* State isn't yet 2. Try again. + * + * We are used for singleton initialization functions, + * which should complete quickly. Contention will likewise + * be rare, so it's worthwhile to use a simple but cpu- + * intensive busy-wait instead of successive backoff, + * waiting on a kernel object, or another heavier-weight scheme. + * + * We can at least yield our timeslice. + */ + Sleep(0); + } + + /* We've seen once_state advance to 2, so we know func() + * has been called. And we've left once_state as we found it, + * so other threads will have the same experience. + * + * It's safe to return now. + */ + return; +} + +#elif CONFIG_MULTITHREAD && defined(__OS2__) +#define INCL_DOS +#include +static void once(void (*func)(void)) { + static int done; + + /* If the initialization is complete, return early. */ + if (done) return; + + /* Causes all other threads in the process to block themselves + * and give up their time slice. + */ + DosEnterCritSec(); + + if (!done) { + func(); + done = 1; + } + + /* Restores normal thread dispatching for the current process. */ + DosExitCritSec(); +} + +#elif CONFIG_MULTITHREAD && HAVE_PTHREAD_H +#include +static void once(void (*func)(void)) { + static pthread_once_t lock = PTHREAD_ONCE_INIT; + pthread_once(&lock, func); +} + +#else +/* No-op version that performs no synchronization. *_rtcd() is idempotent, + * so as long as your platform provides atomic loads/stores of pointers + * no synchronization is strictly necessary. + */ + +static void once(void (*func)(void)) { + static int done; + + if (!done) { + func(); + done = 1; + } +} +#endif + +#endif // VPX_PORTS_VPX_ONCE_H_ diff --git a/vpx_ports/vpx_ports.mk b/vpx_ports/vpx_ports.mk new file mode 100644 index 0000000..e17145e --- /dev/null +++ b/vpx_ports/vpx_ports.mk @@ -0,0 +1,34 @@ +## +## Copyright (c) 2012 The WebM project authors. All Rights Reserved. +## +## Use of this source code is governed by a BSD-style license +## that can be found in the LICENSE file in the root of the source +## tree. An additional intellectual property rights grant can be found +## in the file PATENTS. All contributing project authors may +## be found in the AUTHORS file in the root of the source tree. +## + + +PORTS_SRCS-yes += vpx_ports.mk + +PORTS_SRCS-yes += bitops.h +PORTS_SRCS-yes += mem.h +PORTS_SRCS-yes += msvc.h +PORTS_SRCS-yes += system_state.h +PORTS_SRCS-yes += vpx_timer.h + +ifeq ($(ARCH_X86)$(ARCH_X86_64),yes) +PORTS_SRCS-yes += emms.asm +PORTS_SRCS-yes += x86.h +PORTS_SRCS-yes += x86_abi_support.asm +endif + +PORTS_SRCS-$(ARCH_ARM) += arm_cpudetect.c +PORTS_SRCS-$(ARCH_ARM) += arm.h + +PORTS_SRCS-$(ARCH_PPC) += ppc_cpudetect.c +PORTS_SRCS-$(ARCH_PPC) += ppc.h + +ifeq ($(ARCH_MIPS), yes) +PORTS_SRCS-yes += asmdefs_mmi.h +endif diff --git a/vpx_ports/vpx_timer.h b/vpx_ports/vpx_timer.h new file mode 100644 index 0000000..2083b4e --- /dev/null +++ b/vpx_ports/vpx_timer.h @@ -0,0 +1,109 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VPX_PORTS_VPX_TIMER_H_ +#define VPX_PORTS_VPX_TIMER_H_ + +#include "./vpx_config.h" + +#include "vpx/vpx_integer.h" + +#if CONFIG_OS_SUPPORT + +#if defined(_WIN32) +/* + * Win32 specific includes + */ +#undef NOMINMAX +#define NOMINMAX +#ifndef WIN32_LEAN_AND_MEAN +#define WIN32_LEAN_AND_MEAN +#endif +#include +#else +/* + * POSIX specific includes + */ +#include + +/* timersub is not provided by msys at this time. */ +#ifndef timersub +#define timersub(a, b, result) \ + do { \ + (result)->tv_sec = (a)->tv_sec - (b)->tv_sec; \ + (result)->tv_usec = (a)->tv_usec - (b)->tv_usec; \ + if ((result)->tv_usec < 0) { \ + --(result)->tv_sec; \ + (result)->tv_usec += 1000000; \ + } \ + } while (0) +#endif +#endif + +struct vpx_usec_timer { +#if defined(_WIN32) + LARGE_INTEGER begin, end; +#else + struct timeval begin, end; +#endif +}; + +static INLINE void vpx_usec_timer_start(struct vpx_usec_timer *t) { +#if defined(_WIN32) + QueryPerformanceCounter(&t->begin); +#else + gettimeofday(&t->begin, NULL); +#endif +} + +static INLINE void vpx_usec_timer_mark(struct vpx_usec_timer *t) { +#if defined(_WIN32) + QueryPerformanceCounter(&t->end); +#else + gettimeofday(&t->end, NULL); +#endif +} + +static INLINE int64_t vpx_usec_timer_elapsed(struct vpx_usec_timer *t) { +#if defined(_WIN32) + LARGE_INTEGER freq, diff; + + diff.QuadPart = t->end.QuadPart - t->begin.QuadPart; + + QueryPerformanceFrequency(&freq); + return diff.QuadPart * 1000000 / freq.QuadPart; +#else + struct timeval diff; + + timersub(&t->end, &t->begin, &diff); + return (int64_t)diff.tv_sec * 1000000 + diff.tv_usec; +#endif +} + +#else /* CONFIG_OS_SUPPORT = 0*/ + +/* Empty timer functions if CONFIG_OS_SUPPORT = 0 */ +#ifndef timersub +#define timersub(a, b, result) +#endif + +struct vpx_usec_timer { + void *dummy; +}; + +static INLINE void vpx_usec_timer_start(struct vpx_usec_timer *t) {} + +static INLINE void vpx_usec_timer_mark(struct vpx_usec_timer *t) {} + +static INLINE int vpx_usec_timer_elapsed(struct vpx_usec_timer *t) { return 0; } + +#endif /* CONFIG_OS_SUPPORT */ + +#endif // VPX_PORTS_VPX_TIMER_H_ diff --git a/vpx_ports/x86.h b/vpx_ports/x86.h new file mode 100644 index 0000000..ced65ac --- /dev/null +++ b/vpx_ports/x86.h @@ -0,0 +1,326 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VPX_PORTS_X86_H_ +#define VPX_PORTS_X86_H_ +#include + +#if defined(_MSC_VER) +#include /* For __cpuidex, __rdtsc */ +#endif + +#include "vpx_config.h" +#include "vpx/vpx_integer.h" + +#ifdef __cplusplus +extern "C" { +#endif + +typedef enum { + VPX_CPU_UNKNOWN = -1, + VPX_CPU_AMD, + VPX_CPU_AMD_OLD, + VPX_CPU_CENTAUR, + VPX_CPU_CYRIX, + VPX_CPU_INTEL, + VPX_CPU_NEXGEN, + VPX_CPU_NSC, + VPX_CPU_RISE, + VPX_CPU_SIS, + VPX_CPU_TRANSMETA, + VPX_CPU_TRANSMETA_OLD, + VPX_CPU_UMC, + VPX_CPU_VIA, + + VPX_CPU_LAST +} vpx_cpu_t; + +#if defined(__GNUC__) && __GNUC__ || defined(__ANDROID__) +#if ARCH_X86_64 +#define cpuid(func, func2, ax, bx, cx, dx) \ + __asm__ __volatile__("cpuid \n\t" \ + : "=a"(ax), "=b"(bx), "=c"(cx), "=d"(dx) \ + : "a"(func), "c"(func2)); +#else +#define cpuid(func, func2, ax, bx, cx, dx) \ + __asm__ __volatile__( \ + "mov %%ebx, %%edi \n\t" \ + "cpuid \n\t" \ + "xchg %%edi, %%ebx \n\t" \ + : "=a"(ax), "=D"(bx), "=c"(cx), "=d"(dx) \ + : "a"(func), "c"(func2)); +#endif +#elif defined(__SUNPRO_C) || \ + defined(__SUNPRO_CC) /* end __GNUC__ or __ANDROID__*/ +#if ARCH_X86_64 +#define cpuid(func, func2, ax, bx, cx, dx) \ + asm volatile( \ + "xchg %rsi, %rbx \n\t" \ + "cpuid \n\t" \ + "movl %ebx, %edi \n\t" \ + "xchg %rsi, %rbx \n\t" \ + : "=a"(ax), "=D"(bx), "=c"(cx), "=d"(dx) \ + : "a"(func), "c"(func2)); +#else +#define cpuid(func, func2, ax, bx, cx, dx) \ + asm volatile( \ + "pushl %ebx \n\t" \ + "cpuid \n\t" \ + "movl %ebx, %edi \n\t" \ + "popl %ebx \n\t" \ + : "=a"(ax), "=D"(bx), "=c"(cx), "=d"(dx) \ + : "a"(func), "c"(func2)); +#endif +#else /* end __SUNPRO__ */ +#if ARCH_X86_64 +#if defined(_MSC_VER) && _MSC_VER > 1500 +#define cpuid(func, func2, a, b, c, d) \ + do { \ + int regs[4]; \ + __cpuidex(regs, func, func2); \ + a = regs[0]; \ + b = regs[1]; \ + c = regs[2]; \ + d = regs[3]; \ + } while (0) +#else +#define cpuid(func, func2, a, b, c, d) \ + do { \ + int regs[4]; \ + __cpuid(regs, func); \ + a = regs[0]; \ + b = regs[1]; \ + c = regs[2]; \ + d = regs[3]; \ + } while (0) +#endif +#else +#define cpuid(func, func2, a, b, c, d) \ + __asm mov eax, func __asm mov ecx, func2 __asm cpuid __asm mov a, \ + eax __asm mov b, ebx __asm mov c, ecx __asm mov d, edx +#endif +#endif /* end others */ + +// NaCl has no support for xgetbv or the raw opcode. +#if !defined(__native_client__) && (defined(__i386__) || defined(__x86_64__)) +static INLINE uint64_t xgetbv(void) { + const uint32_t ecx = 0; + uint32_t eax, edx; + // Use the raw opcode for xgetbv for compatibility with older toolchains. + __asm__ volatile(".byte 0x0f, 0x01, 0xd0\n" + : "=a"(eax), "=d"(edx) + : "c"(ecx)); + return ((uint64_t)edx << 32) | eax; +} +#elif (defined(_M_X64) || defined(_M_IX86)) && defined(_MSC_FULL_VER) && \ + _MSC_FULL_VER >= 160040219 // >= VS2010 SP1 +#include +#define xgetbv() _xgetbv(0) +#elif defined(_MSC_VER) && defined(_M_IX86) +static INLINE uint64_t xgetbv(void) { + uint32_t eax_, edx_; + __asm { + xor ecx, ecx // ecx = 0 + // Use the raw opcode for xgetbv for compatibility with older toolchains. + __asm _emit 0x0f __asm _emit 0x01 __asm _emit 0xd0 + mov eax_, eax + mov edx_, edx + } + return ((uint64_t)edx_ << 32) | eax_; +} +#else +#define xgetbv() 0U // no AVX for older x64 or unrecognized toolchains. +#endif + +#if defined(_MSC_VER) && _MSC_VER >= 1700 +#undef NOMINMAX +#define NOMINMAX +#ifndef WIN32_LEAN_AND_MEAN +#define WIN32_LEAN_AND_MEAN +#endif +#include +#if WINAPI_FAMILY_PARTITION(WINAPI_FAMILY_APP) +#define getenv(x) NULL +#endif +#endif + +#define HAS_MMX 0x001 +#define HAS_SSE 0x002 +#define HAS_SSE2 0x004 +#define HAS_SSE3 0x008 +#define HAS_SSSE3 0x010 +#define HAS_SSE4_1 0x020 +#define HAS_AVX 0x040 +#define HAS_AVX2 0x080 +#define HAS_AVX512 0x100 +#ifndef BIT +#define BIT(n) (1u << n) +#endif + +static INLINE int x86_simd_caps(void) { + unsigned int flags = 0; + unsigned int mask = ~0; + unsigned int max_cpuid_val, reg_eax, reg_ebx, reg_ecx, reg_edx; + char *env; + (void)reg_ebx; + + /* See if the CPU capabilities are being overridden by the environment */ + env = getenv("VPX_SIMD_CAPS"); + + if (env && *env) return (int)strtol(env, NULL, 0); + + env = getenv("VPX_SIMD_CAPS_MASK"); + + if (env && *env) mask = (unsigned int)strtoul(env, NULL, 0); + + /* Ensure that the CPUID instruction supports extended features */ + cpuid(0, 0, max_cpuid_val, reg_ebx, reg_ecx, reg_edx); + + if (max_cpuid_val < 1) return 0; + + /* Get the standard feature flags */ + cpuid(1, 0, reg_eax, reg_ebx, reg_ecx, reg_edx); + + if (reg_edx & BIT(23)) flags |= HAS_MMX; + + if (reg_edx & BIT(25)) flags |= HAS_SSE; /* aka xmm */ + + if (reg_edx & BIT(26)) flags |= HAS_SSE2; /* aka wmt */ + + if (reg_ecx & BIT(0)) flags |= HAS_SSE3; + + if (reg_ecx & BIT(9)) flags |= HAS_SSSE3; + + if (reg_ecx & BIT(19)) flags |= HAS_SSE4_1; + + // bits 27 (OSXSAVE) & 28 (256-bit AVX) + if ((reg_ecx & (BIT(27) | BIT(28))) == (BIT(27) | BIT(28))) { + if ((xgetbv() & 0x6) == 0x6) { + flags |= HAS_AVX; + + if (max_cpuid_val >= 7) { + /* Get the leaf 7 feature flags. Needed to check for AVX2 support */ + cpuid(7, 0, reg_eax, reg_ebx, reg_ecx, reg_edx); + + if (reg_ebx & BIT(5)) flags |= HAS_AVX2; + + // bits 16 (AVX-512F) & 17 (AVX-512DQ) & 28 (AVX-512CD) & + // 30 (AVX-512BW) & 32 (AVX-512VL) + if ((reg_ebx & (BIT(16) | BIT(17) | BIT(28) | BIT(30) | BIT(31))) == + (BIT(16) | BIT(17) | BIT(28) | BIT(30) | BIT(31))) + flags |= HAS_AVX512; + } + } + } + + return flags & mask; +} + +// Note: +// 32-bit CPU cycle counter is light-weighted for most function performance +// measurement. For large function (CPU time > a couple of seconds), 64-bit +// counter should be used. +// 32-bit CPU cycle counter +static INLINE unsigned int x86_readtsc(void) { +#if defined(__GNUC__) && __GNUC__ + unsigned int tsc; + __asm__ __volatile__("rdtsc\n\t" : "=a"(tsc) :); + return tsc; +#elif defined(__SUNPRO_C) || defined(__SUNPRO_CC) + unsigned int tsc; + asm volatile("rdtsc\n\t" : "=a"(tsc) :); + return tsc; +#else +#if ARCH_X86_64 + return (unsigned int)__rdtsc(); +#else + __asm rdtsc; +#endif +#endif +} +// 64-bit CPU cycle counter +static INLINE uint64_t x86_readtsc64(void) { +#if defined(__GNUC__) && __GNUC__ + uint32_t hi, lo; + __asm__ __volatile__("rdtsc" : "=a"(lo), "=d"(hi)); + return ((uint64_t)hi << 32) | lo; +#elif defined(__SUNPRO_C) || defined(__SUNPRO_CC) + uint_t hi, lo; + asm volatile("rdtsc\n\t" : "=a"(lo), "=d"(hi)); + return ((uint64_t)hi << 32) | lo; +#else +#if ARCH_X86_64 + return (uint64_t)__rdtsc(); +#else + __asm rdtsc; +#endif +#endif +} + +#if defined(__GNUC__) && __GNUC__ +#define x86_pause_hint() __asm__ __volatile__("pause \n\t") +#elif defined(__SUNPRO_C) || defined(__SUNPRO_CC) +#define x86_pause_hint() asm volatile("pause \n\t") +#else +#if ARCH_X86_64 +#define x86_pause_hint() _mm_pause(); +#else +#define x86_pause_hint() __asm pause +#endif +#endif + +#if defined(__GNUC__) && __GNUC__ +static void x87_set_control_word(unsigned short mode) { + __asm__ __volatile__("fldcw %0" : : "m"(*&mode)); +} +static unsigned short x87_get_control_word(void) { + unsigned short mode; + __asm__ __volatile__("fstcw %0\n\t" : "=m"(*&mode) :); + return mode; +} +#elif defined(__SUNPRO_C) || defined(__SUNPRO_CC) +static void x87_set_control_word(unsigned short mode) { + asm volatile("fldcw %0" : : "m"(*&mode)); +} +static unsigned short x87_get_control_word(void) { + unsigned short mode; + asm volatile("fstcw %0\n\t" : "=m"(*&mode) :); + return mode; +} +#elif ARCH_X86_64 +/* No fldcw intrinsics on Windows x64, punt to external asm */ +extern void vpx_winx64_fldcw(unsigned short mode); +extern unsigned short vpx_winx64_fstcw(void); +#define x87_set_control_word vpx_winx64_fldcw +#define x87_get_control_word vpx_winx64_fstcw +#else +static void x87_set_control_word(unsigned short mode) { + __asm { fldcw mode } +} +static unsigned short x87_get_control_word(void) { + unsigned short mode; + __asm { fstcw mode } + return mode; +} +#endif + +static INLINE unsigned int x87_set_double_precision(void) { + unsigned int mode = x87_get_control_word(); + x87_set_control_word((mode & ~0x300) | 0x200); + return mode; +} + +extern void vpx_reset_mmx_state(void); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VPX_PORTS_X86_H_ diff --git a/vpx_ports/x86_abi_support.asm b/vpx_ports/x86_abi_support.asm new file mode 100644 index 0000000..708fa10 --- /dev/null +++ b/vpx_ports/x86_abi_support.asm @@ -0,0 +1,404 @@ +; +; Copyright (c) 2010 The WebM project authors. All Rights Reserved. +; +; Use of this source code is governed by a BSD-style license +; that can be found in the LICENSE file in the root of the source +; tree. An additional intellectual property rights grant can be found +; in the file PATENTS. All contributing project authors may +; be found in the AUTHORS file in the root of the source tree. +; + + +%include "vpx_config.asm" + +; 32/64 bit compatibility macros +; +; In general, we make the source use 64 bit syntax, then twiddle with it using +; the preprocessor to get the 32 bit syntax on 32 bit platforms. +; +%ifidn __OUTPUT_FORMAT__,elf32 +%define ABI_IS_32BIT 1 +%elifidn __OUTPUT_FORMAT__,macho32 +%define ABI_IS_32BIT 1 +%elifidn __OUTPUT_FORMAT__,win32 +%define ABI_IS_32BIT 1 +%elifidn __OUTPUT_FORMAT__,aout +%define ABI_IS_32BIT 1 +%else +%define ABI_IS_32BIT 0 +%endif + +%if ABI_IS_32BIT +%define rax eax +%define rbx ebx +%define rcx ecx +%define rdx edx +%define rsi esi +%define rdi edi +%define rsp esp +%define rbp ebp +%define movsxd mov +%macro movq 2 + %ifidn %1,eax + movd %1,%2 + %elifidn %2,eax + movd %1,%2 + %elifidn %1,ebx + movd %1,%2 + %elifidn %2,ebx + movd %1,%2 + %elifidn %1,ecx + movd %1,%2 + %elifidn %2,ecx + movd %1,%2 + %elifidn %1,edx + movd %1,%2 + %elifidn %2,edx + movd %1,%2 + %elifidn %1,esi + movd %1,%2 + %elifidn %2,esi + movd %1,%2 + %elifidn %1,edi + movd %1,%2 + %elifidn %2,edi + movd %1,%2 + %elifidn %1,esp + movd %1,%2 + %elifidn %2,esp + movd %1,%2 + %elifidn %1,ebp + movd %1,%2 + %elifidn %2,ebp + movd %1,%2 + %else + movq %1,%2 + %endif +%endmacro +%endif + + +; LIBVPX_YASM_WIN64 +; Set LIBVPX_YASM_WIN64 if output is Windows 64bit so the code will work if x64 +; or win64 is defined on the Yasm command line. +%ifidn __OUTPUT_FORMAT__,win64 +%define LIBVPX_YASM_WIN64 1 +%elifidn __OUTPUT_FORMAT__,x64 +%define LIBVPX_YASM_WIN64 1 +%else +%define LIBVPX_YASM_WIN64 0 +%endif + +; sym() +; Return the proper symbol name for the target ABI. +; +; Certain ABIs, notably MS COFF and Darwin MACH-O, require that symbols +; with C linkage be prefixed with an underscore. +; +%ifidn __OUTPUT_FORMAT__,elf32 +%define sym(x) x +%elifidn __OUTPUT_FORMAT__,elf64 +%define sym(x) x +%elifidn __OUTPUT_FORMAT__,elfx32 +%define sym(x) x +%elif LIBVPX_YASM_WIN64 +%define sym(x) x +%else +%define sym(x) _ %+ x +%endif + +; PRIVATE +; Macro for the attribute to hide a global symbol for the target ABI. +; This is only active if CHROMIUM is defined. +; +; Chromium doesn't like exported global symbols due to symbol clashing with +; plugins among other things. +; +; Requires Chromium's patched copy of yasm: +; http://src.chromium.org/viewvc/chrome?view=rev&revision=73761 +; http://www.tortall.net/projects/yasm/ticket/236 +; +%ifdef CHROMIUM + %ifidn __OUTPUT_FORMAT__,elf32 + %define PRIVATE :hidden + %elifidn __OUTPUT_FORMAT__,elf64 + %define PRIVATE :hidden + %elifidn __OUTPUT_FORMAT__,elfx32 + %define PRIVATE :hidden + %elif LIBVPX_YASM_WIN64 + %define PRIVATE + %else + %define PRIVATE :private_extern + %endif +%else + %define PRIVATE +%endif + +; arg() +; Return the address specification of the given argument +; +%if ABI_IS_32BIT + %define arg(x) [ebp+8+4*x] +%else + ; 64 bit ABI passes arguments in registers. This is a workaround to get up + ; and running quickly. Relies on SHADOW_ARGS_TO_STACK + %if LIBVPX_YASM_WIN64 + %define arg(x) [rbp+16+8*x] + %else + %define arg(x) [rbp-8-8*x] + %endif +%endif + +; REG_SZ_BYTES, REG_SZ_BITS +; Size of a register +%if ABI_IS_32BIT +%define REG_SZ_BYTES 4 +%define REG_SZ_BITS 32 +%else +%define REG_SZ_BYTES 8 +%define REG_SZ_BITS 64 +%endif + + +; ALIGN_STACK +; This macro aligns the stack to the given alignment (in bytes). The stack +; is left such that the previous value of the stack pointer is the first +; argument on the stack (ie, the inverse of this macro is 'pop rsp.') +; This macro uses one temporary register, which is not preserved, and thus +; must be specified as an argument. +%macro ALIGN_STACK 2 + mov %2, rsp + and rsp, -%1 + lea rsp, [rsp - (%1 - REG_SZ_BYTES)] + push %2 +%endmacro + + +; +; The Microsoft assembler tries to impose a certain amount of type safety in +; its register usage. YASM doesn't recognize these directives, so we just +; %define them away to maintain as much compatibility as possible with the +; original inline assembler we're porting from. +; +%idefine PTR +%idefine XMMWORD +%idefine MMWORD + +; PIC macros +; +%if ABI_IS_32BIT + %if CONFIG_PIC=1 + %ifidn __OUTPUT_FORMAT__,elf32 + %define WRT_PLT wrt ..plt + %macro GET_GOT 1 + extern _GLOBAL_OFFSET_TABLE_ + push %1 + call %%get_got + %%sub_offset: + jmp %%exitGG + %%get_got: + mov %1, [esp] + add %1, _GLOBAL_OFFSET_TABLE_ + $$ - %%sub_offset wrt ..gotpc + ret + %%exitGG: + %undef GLOBAL + %define GLOBAL(x) x + %1 wrt ..gotoff + %undef RESTORE_GOT + %define RESTORE_GOT pop %1 + %endmacro + %elifidn __OUTPUT_FORMAT__,macho32 + %macro GET_GOT 1 + push %1 + call %%get_got + %%get_got: + pop %1 + %undef GLOBAL + %define GLOBAL(x) x + %1 - %%get_got + %undef RESTORE_GOT + %define RESTORE_GOT pop %1 + %endmacro + %endif + %endif + + %ifdef CHROMIUM + %ifidn __OUTPUT_FORMAT__,macho32 + %define HIDDEN_DATA(x) x:private_extern + %else + %define HIDDEN_DATA(x) x + %endif + %else + %define HIDDEN_DATA(x) x + %endif +%else + %macro GET_GOT 1 + %endmacro + %define GLOBAL(x) rel x + %ifidn __OUTPUT_FORMAT__,elf64 + %define WRT_PLT wrt ..plt + %define HIDDEN_DATA(x) x:data hidden + %elifidn __OUTPUT_FORMAT__,elfx32 + %define WRT_PLT wrt ..plt + %define HIDDEN_DATA(x) x:data hidden + %elifidn __OUTPUT_FORMAT__,macho64 + %ifdef CHROMIUM + %define HIDDEN_DATA(x) x:private_extern + %else + %define HIDDEN_DATA(x) x + %endif + %else + %define HIDDEN_DATA(x) x + %endif +%endif +%ifnmacro GET_GOT + %macro GET_GOT 1 + %endmacro + %define GLOBAL(x) x +%endif +%ifndef RESTORE_GOT +%define RESTORE_GOT +%endif +%ifndef WRT_PLT +%define WRT_PLT +%endif + +%if ABI_IS_32BIT + %macro SHADOW_ARGS_TO_STACK 1 + %endm + %define UNSHADOW_ARGS +%else +%if LIBVPX_YASM_WIN64 + %macro SHADOW_ARGS_TO_STACK 1 ; argc + %if %1 > 0 + mov arg(0),rcx + %endif + %if %1 > 1 + mov arg(1),rdx + %endif + %if %1 > 2 + mov arg(2),r8 + %endif + %if %1 > 3 + mov arg(3),r9 + %endif + %endm +%else + %macro SHADOW_ARGS_TO_STACK 1 ; argc + %if %1 > 0 + push rdi + %endif + %if %1 > 1 + push rsi + %endif + %if %1 > 2 + push rdx + %endif + %if %1 > 3 + push rcx + %endif + %if %1 > 4 + push r8 + %endif + %if %1 > 5 + push r9 + %endif + %if %1 > 6 + %assign i %1-6 + %assign off 16 + %rep i + mov rax,[rbp+off] + push rax + %assign off off+8 + %endrep + %endif + %endm +%endif + %define UNSHADOW_ARGS mov rsp, rbp +%endif + +; Win64 ABI requires that XMM6:XMM15 are callee saved +; SAVE_XMM n, [u] +; store registers 6-n on the stack +; if u is specified, use unaligned movs. +; Win64 ABI requires 16 byte stack alignment, but then pushes an 8 byte return +; value. Typically we follow this up with 'push rbp' - re-aligning the stack - +; but in some cases this is not done and unaligned movs must be used. +%if LIBVPX_YASM_WIN64 +%macro SAVE_XMM 1-2 a + %if %1 < 6 + %error Only xmm registers 6-15 must be preserved + %else + %assign last_xmm %1 + %define movxmm movdq %+ %2 + %assign xmm_stack_space ((last_xmm - 5) * 16) + sub rsp, xmm_stack_space + %assign i 6 + %rep (last_xmm - 5) + movxmm [rsp + ((i - 6) * 16)], xmm %+ i + %assign i i+1 + %endrep + %endif +%endmacro +%macro RESTORE_XMM 0 + %ifndef last_xmm + %error RESTORE_XMM must be paired with SAVE_XMM n + %else + %assign i last_xmm + %rep (last_xmm - 5) + movxmm xmm %+ i, [rsp +((i - 6) * 16)] + %assign i i-1 + %endrep + add rsp, xmm_stack_space + ; there are a couple functions which return from multiple places. + ; otherwise, we could uncomment these: + ; %undef last_xmm + ; %undef xmm_stack_space + ; %undef movxmm + %endif +%endmacro +%else +%macro SAVE_XMM 1-2 +%endmacro +%macro RESTORE_XMM 0 +%endmacro +%endif + +; Name of the rodata section +; +; .rodata seems to be an elf-ism, as it doesn't work on OSX. +; +%ifidn __OUTPUT_FORMAT__,macho64 +%define SECTION_RODATA section .text +%elifidn __OUTPUT_FORMAT__,macho32 +%macro SECTION_RODATA 0 +section .text +%endmacro +%elifidn __OUTPUT_FORMAT__,aout +%define SECTION_RODATA section .data +%else +%define SECTION_RODATA section .rodata +%endif + + +; Tell GNU ld that we don't require an executable stack. +%ifidn __OUTPUT_FORMAT__,elf32 +section .note.GNU-stack noalloc noexec nowrite progbits +section .text +%elifidn __OUTPUT_FORMAT__,elf64 +section .note.GNU-stack noalloc noexec nowrite progbits +section .text +%elifidn __OUTPUT_FORMAT__,elfx32 +section .note.GNU-stack noalloc noexec nowrite progbits +section .text +%endif + +; On Android platforms use lrand48 when building postproc routines. Prior to L +; rand() was not available. +%if CONFIG_POSTPROC=1 || CONFIG_VP9_POSTPROC=1 +%ifdef __ANDROID__ +extern sym(lrand48) +%define LIBVPX_RAND lrand48 +%else +extern sym(rand) +%define LIBVPX_RAND rand +%endif +%endif ; CONFIG_POSTPROC || CONFIG_VP9_POSTPROC diff --git a/vpx_scale/generic/gen_scalers.c b/vpx_scale/generic/gen_scalers.c new file mode 100644 index 0000000..b554a56 --- /dev/null +++ b/vpx_scale/generic/gen_scalers.c @@ -0,0 +1,228 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "./vpx_scale_rtcd.h" +#include "vpx_scale/vpx_scale.h" +#include "vpx_mem/vpx_mem.h" +/**************************************************************************** +* Imports +****************************************************************************/ + +/**************************************************************************** + * + * + * INPUTS : const unsigned char *source : Pointer to source data. + * unsigned int source_width : Stride of source. + * unsigned char *dest : Pointer to destination data. + * unsigned int dest_width : Stride of dest (UNUSED). + * + * OUTPUTS : None. + * + * RETURNS : void + * + * FUNCTION : Copies horizontal line of pixels from source to + * destination scaling up by 4 to 5. + * + * SPECIAL NOTES : None. + * + ****************************************************************************/ +void vp8_horizontal_line_5_4_scale_c(const unsigned char *source, + unsigned int source_width, + unsigned char *dest, + unsigned int dest_width) { + unsigned i; + unsigned int a, b, c, d, e; + unsigned char *des = dest; + const unsigned char *src = source; + + (void)dest_width; + + for (i = 0; i < source_width; i += 5) { + a = src[0]; + b = src[1]; + c = src[2]; + d = src[3]; + e = src[4]; + + des[0] = (unsigned char)a; + des[1] = (unsigned char)((b * 192 + c * 64 + 128) >> 8); + des[2] = (unsigned char)((c * 128 + d * 128 + 128) >> 8); + des[3] = (unsigned char)((d * 64 + e * 192 + 128) >> 8); + + src += 5; + des += 4; + } +} + +void vp8_vertical_band_5_4_scale_c(unsigned char *source, + unsigned int src_pitch, unsigned char *dest, + unsigned int dest_pitch, + unsigned int dest_width) { + unsigned int i; + unsigned int a, b, c, d, e; + unsigned char *des = dest; + unsigned char *src = source; + + for (i = 0; i < dest_width; i++) { + a = src[0 * src_pitch]; + b = src[1 * src_pitch]; + c = src[2 * src_pitch]; + d = src[3 * src_pitch]; + e = src[4 * src_pitch]; + + des[0 * dest_pitch] = (unsigned char)a; + des[1 * dest_pitch] = (unsigned char)((b * 192 + c * 64 + 128) >> 8); + des[2 * dest_pitch] = (unsigned char)((c * 128 + d * 128 + 128) >> 8); + des[3 * dest_pitch] = (unsigned char)((d * 64 + e * 192 + 128) >> 8); + + src++; + des++; + } +} + +/*7*************************************************************************** + * + * ROUTINE : vp8_horizontal_line_3_5_scale_c + * + * INPUTS : const unsigned char *source : Pointer to source data. + * unsigned int source_width : Stride of source. + * unsigned char *dest : Pointer to destination data. + * unsigned int dest_width : Stride of dest (UNUSED). + * + * OUTPUTS : None. + * + * RETURNS : void + * + * FUNCTION : Copies horizontal line of pixels from source to + * destination scaling up by 3 to 5. + * + * SPECIAL NOTES : None. + * + * + ****************************************************************************/ +void vp8_horizontal_line_5_3_scale_c(const unsigned char *source, + unsigned int source_width, + unsigned char *dest, + unsigned int dest_width) { + unsigned int i; + unsigned int a, b, c, d, e; + unsigned char *des = dest; + const unsigned char *src = source; + + (void)dest_width; + + for (i = 0; i < source_width; i += 5) { + a = src[0]; + b = src[1]; + c = src[2]; + d = src[3]; + e = src[4]; + + des[0] = (unsigned char)a; + des[1] = (unsigned char)((b * 85 + c * 171 + 128) >> 8); + des[2] = (unsigned char)((d * 171 + e * 85 + 128) >> 8); + + src += 5; + des += 3; + } +} + +void vp8_vertical_band_5_3_scale_c(unsigned char *source, + unsigned int src_pitch, unsigned char *dest, + unsigned int dest_pitch, + unsigned int dest_width) { + unsigned int i; + unsigned int a, b, c, d, e; + unsigned char *des = dest; + unsigned char *src = source; + + for (i = 0; i < dest_width; i++) { + a = src[0 * src_pitch]; + b = src[1 * src_pitch]; + c = src[2 * src_pitch]; + d = src[3 * src_pitch]; + e = src[4 * src_pitch]; + + des[0 * dest_pitch] = (unsigned char)a; + des[1 * dest_pitch] = (unsigned char)((b * 85 + c * 171 + 128) >> 8); + des[2 * dest_pitch] = (unsigned char)((d * 171 + e * 85 + 128) >> 8); + + src++; + des++; + } +} + +/**************************************************************************** + * + * ROUTINE : vp8_horizontal_line_1_2_scale_c + * + * INPUTS : const unsigned char *source : Pointer to source data. + * unsigned int source_width : Stride of source. + * unsigned char *dest : Pointer to destination data. + * unsigned int dest_width : Stride of dest (UNUSED). + * + * OUTPUTS : None. + * + * RETURNS : void + * + * FUNCTION : Copies horizontal line of pixels from source to + * destination scaling up by 1 to 2. + * + * SPECIAL NOTES : None. + * + ****************************************************************************/ +void vp8_horizontal_line_2_1_scale_c(const unsigned char *source, + unsigned int source_width, + unsigned char *dest, + unsigned int dest_width) { + unsigned int i; + unsigned int a; + unsigned char *des = dest; + const unsigned char *src = source; + + (void)dest_width; + + for (i = 0; i < source_width; i += 2) { + a = src[0]; + des[0] = (unsigned char)(a); + src += 2; + des += 1; + } +} + +void vp8_vertical_band_2_1_scale_c(unsigned char *source, + unsigned int src_pitch, unsigned char *dest, + unsigned int dest_pitch, + unsigned int dest_width) { + (void)dest_pitch; + (void)src_pitch; + memcpy(dest, source, dest_width); +} + +void vp8_vertical_band_2_1_scale_i_c(unsigned char *source, + unsigned int src_pitch, + unsigned char *dest, + unsigned int dest_pitch, + unsigned int dest_width) { + int i; + int temp; + int width = dest_width; + + (void)dest_pitch; + + for (i = 0; i < width; i++) { + temp = 8; + temp += source[i - (int)src_pitch] * 3; + temp += source[i] * 10; + temp += source[i + src_pitch] * 3; + temp >>= 4; + dest[i] = (unsigned char)(temp); + } +} diff --git a/vpx_scale/generic/vpx_scale.c b/vpx_scale/generic/vpx_scale.c new file mode 100644 index 0000000..20e1ff9 --- /dev/null +++ b/vpx_scale/generic/vpx_scale.c @@ -0,0 +1,529 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +/**************************************************************************** + * + * Module Title : scale.c + * + * Description : Image scaling functions. + * + ***************************************************************************/ + +/**************************************************************************** +* Header Files +****************************************************************************/ +#include "./vpx_scale_rtcd.h" +#include "vpx_mem/vpx_mem.h" +#include "vpx_scale/vpx_scale.h" +#include "vpx_scale/yv12config.h" + +typedef struct { + int expanded_frame_width; + int expanded_frame_height; + + int HScale; + int HRatio; + int VScale; + int VRatio; + + YV12_BUFFER_CONFIG *src_yuv_config; + YV12_BUFFER_CONFIG *dst_yuv_config; + +} SCALE_VARS; + +/**************************************************************************** + * + * ROUTINE : scale1d_2t1_i + * + * INPUTS : const unsigned char *source : Pointer to data to be scaled. + * int source_step : Number of pixels to step on in + * source. + * unsigned int source_scale : Scale for source (UNUSED). + * unsigned int source_length : Length of source (UNUSED). + * unsigned char *dest : Pointer to output data array. + * int dest_step : Number of pixels to step on in + * destination. + * unsigned int dest_scale : Scale for destination + * (UNUSED). + * unsigned int dest_length : Length of destination. + * + * OUTPUTS : None. + * + * RETURNS : void + * + * FUNCTION : Performs 2-to-1 interpolated scaling. + * + * SPECIAL NOTES : None. + * + ****************************************************************************/ +static void scale1d_2t1_i(const unsigned char *source, int source_step, + unsigned int source_scale, unsigned int source_length, + unsigned char *dest, int dest_step, + unsigned int dest_scale, unsigned int dest_length) { + unsigned int i, j; + unsigned int temp; + int source_pitch = source_step; + (void)source_length; + (void)source_scale; + (void)dest_scale; + + source_step *= 2; + dest[0] = source[0]; + + for (i = dest_step, j = source_step; i < dest_length * dest_step; + i += dest_step, j += source_step) { + temp = 8; + temp += 3 * source[j - source_pitch]; + temp += 10 * source[j]; + temp += 3 * source[j + source_pitch]; + temp >>= 4; + dest[i] = (char)(temp); + } +} + +/**************************************************************************** + * + * ROUTINE : scale1d_2t1_ps + * + * INPUTS : const unsigned char *source : Pointer to data to be scaled. + * int source_step : Number of pixels to step on in + * source. + * unsigned int source_scale : Scale for source (UNUSED). + * unsigned int source_length : Length of source (UNUSED). + * unsigned char *dest : Pointer to output data array. + * int dest_step : Number of pixels to step on in + * destination. + * unsigned int dest_scale : Scale for destination + * (UNUSED). + * unsigned int dest_length : Length of destination. + * + * OUTPUTS : None. + * + * RETURNS : void + * + * FUNCTION : Performs 2-to-1 point subsampled scaling. + * + * SPECIAL NOTES : None. + * + ****************************************************************************/ +static void scale1d_2t1_ps(const unsigned char *source, int source_step, + unsigned int source_scale, + unsigned int source_length, unsigned char *dest, + int dest_step, unsigned int dest_scale, + unsigned int dest_length) { + unsigned int i, j; + + (void)source_length; + (void)source_scale; + (void)dest_scale; + + source_step *= 2; + j = 0; + + for (i = 0; i < dest_length * dest_step; i += dest_step, j += source_step) + dest[i] = source[j]; +} +/**************************************************************************** + * + * ROUTINE : scale1d_c + * + * INPUTS : const unsigned char *source : Pointer to data to be scaled. + * int source_step : Number of pixels to step on in + * source. + * unsigned int source_scale : Scale for source. + * unsigned int source_length : Length of source (UNUSED). + * unsigned char *dest : Pointer to output data array. + * int dest_step : Number of pixels to step on in + * destination. + * unsigned int dest_scale : Scale for destination. + * unsigned int dest_length : Length of destination. + * + * OUTPUTS : None. + * + * RETURNS : void + * + * FUNCTION : Performs linear interpolation in one dimension. + * + * SPECIAL NOTES : None. + * + ****************************************************************************/ +static void scale1d_c(const unsigned char *source, int source_step, + unsigned int source_scale, unsigned int source_length, + unsigned char *dest, int dest_step, + unsigned int dest_scale, unsigned int dest_length) { + unsigned int i; + unsigned int round_value = dest_scale / 2; + unsigned int left_modifier = dest_scale; + unsigned int right_modifier = 0; + unsigned char left_pixel = *source; + unsigned char right_pixel = *(source + source_step); + + (void)source_length; + + /* These asserts are needed if there are boundary issues... */ + /*assert ( dest_scale > source_scale );*/ + /*assert ( (source_length-1) * dest_scale >= (dest_length-1) * source_scale + * );*/ + + for (i = 0; i < dest_length * dest_step; i += dest_step) { + dest[i] = (char)((left_modifier * left_pixel + + right_modifier * right_pixel + round_value) / + dest_scale); + + right_modifier += source_scale; + + while (right_modifier > dest_scale) { + right_modifier -= dest_scale; + source += source_step; + left_pixel = *source; + right_pixel = *(source + source_step); + } + + left_modifier = dest_scale - right_modifier; + } +} + +/**************************************************************************** + * + * ROUTINE : Scale2D + * + * INPUTS : const unsigned char *source : Pointer to data to be + * scaled. + * int source_pitch : Stride of source image. + * unsigned int source_width : Width of input image. + * unsigned int source_height : Height of input image. + * unsigned char *dest : Pointer to output data + * array. + * int dest_pitch : Stride of destination + * image. + * unsigned int dest_width : Width of destination image. + * unsigned int dest_height : Height of destination + * image. + * unsigned char *temp_area : Pointer to temp work area. + * unsigned char temp_area_height : Height of temp work area. + * unsigned int hscale : Horizontal scale factor + * numerator. + * unsigned int hratio : Horizontal scale factor + * denominator. + * unsigned int vscale : Vertical scale factor + * numerator. + * unsigned int vratio : Vertical scale factor + * denominator. + * unsigned int interlaced : Interlace flag. + * + * OUTPUTS : None. + * + * RETURNS : void + * + * FUNCTION : Performs 2-tap linear interpolation in two dimensions. + * + * SPECIAL NOTES : Expansion is performed one band at a time to help with + * caching. + * + ****************************************************************************/ +static void Scale2D( + /*const*/ + unsigned char *source, int source_pitch, unsigned int source_width, + unsigned int source_height, unsigned char *dest, int dest_pitch, + unsigned int dest_width, unsigned int dest_height, unsigned char *temp_area, + unsigned char temp_area_height, unsigned int hscale, unsigned int hratio, + unsigned int vscale, unsigned int vratio, unsigned int interlaced) { + /*unsigned*/ + int i, j, k; + int bands; + int dest_band_height; + int source_band_height; + + typedef void (*Scale1D)(const unsigned char *source, int source_step, + unsigned int source_scale, unsigned int source_length, + unsigned char *dest, int dest_step, + unsigned int dest_scale, unsigned int dest_length); + + Scale1D Scale1Dv = scale1d_c; + Scale1D Scale1Dh = scale1d_c; + + void (*horiz_line_scale)(const unsigned char *, unsigned int, unsigned char *, + unsigned int) = NULL; + void (*vert_band_scale)(unsigned char *, unsigned int, unsigned char *, + unsigned int, unsigned int) = NULL; + + int ratio_scalable = 1; + int interpolation = 0; + + unsigned char *source_base; + unsigned char *line_src; + + source_base = (unsigned char *)source; + + if (source_pitch < 0) { + int offset; + + offset = (source_height - 1); + offset *= source_pitch; + + source_base += offset; + } + + /* find out the ratio for each direction */ + switch (hratio * 10 / hscale) { + case 8: + /* 4-5 Scale in Width direction */ + horiz_line_scale = vp8_horizontal_line_5_4_scale; + break; + case 6: + /* 3-5 Scale in Width direction */ + horiz_line_scale = vp8_horizontal_line_5_3_scale; + break; + case 5: + /* 1-2 Scale in Width direction */ + horiz_line_scale = vp8_horizontal_line_2_1_scale; + break; + default: + /* The ratio is not acceptable now */ + /* throw("The ratio is not acceptable for now!"); */ + ratio_scalable = 0; + break; + } + + switch (vratio * 10 / vscale) { + case 8: + /* 4-5 Scale in vertical direction */ + vert_band_scale = vp8_vertical_band_5_4_scale; + source_band_height = 5; + dest_band_height = 4; + break; + case 6: + /* 3-5 Scale in vertical direction */ + vert_band_scale = vp8_vertical_band_5_3_scale; + source_band_height = 5; + dest_band_height = 3; + break; + case 5: + /* 1-2 Scale in vertical direction */ + + if (interlaced) { + /* if the content is interlaced, point sampling is used */ + vert_band_scale = vp8_vertical_band_2_1_scale; + } else { + interpolation = 1; + /* if the content is progressive, interplo */ + vert_band_scale = vp8_vertical_band_2_1_scale_i; + } + + source_band_height = 2; + dest_band_height = 1; + break; + default: + /* The ratio is not acceptable now */ + /* throw("The ratio is not acceptable for now!"); */ + ratio_scalable = 0; + break; + } + + if (ratio_scalable) { + if (source_height == dest_height) { + /* for each band of the image */ + for (k = 0; k < (int)dest_height; k++) { + horiz_line_scale(source, source_width, dest, dest_width); + source += source_pitch; + dest += dest_pitch; + } + + return; + } + + if (interpolation) { + if (source < source_base) source = source_base; + + horiz_line_scale(source, source_width, temp_area, dest_width); + } + + for (k = 0; + k < (int)(dest_height + dest_band_height - 1) / dest_band_height; + k++) { + /* scale one band horizontally */ + for (i = 0; i < source_band_height; i++) { + /* Trap case where we could read off the base of the source buffer */ + + line_src = (unsigned char *)source + i * source_pitch; + + if (line_src < source_base) line_src = source_base; + + horiz_line_scale(line_src, source_width, + temp_area + (i + 1) * dest_pitch, dest_width); + } + + /* Vertical scaling is in place */ + vert_band_scale(temp_area + dest_pitch, dest_pitch, dest, dest_pitch, + dest_width); + + if (interpolation) + memcpy(temp_area, temp_area + source_band_height * dest_pitch, + dest_width); + + /* Next band... */ + source += (unsigned long)source_band_height * source_pitch; + dest += (unsigned long)dest_band_height * dest_pitch; + } + + return; + } + + if (hscale == 2 && hratio == 1) Scale1Dh = scale1d_2t1_ps; + + if (vscale == 2 && vratio == 1) { + if (interlaced) + Scale1Dv = scale1d_2t1_ps; + else + Scale1Dv = scale1d_2t1_i; + } + + if (source_height == dest_height) { + /* for each band of the image */ + for (k = 0; k < (int)dest_height; k++) { + Scale1Dh(source, 1, hscale, source_width + 1, dest, 1, hratio, + dest_width); + source += source_pitch; + dest += dest_pitch; + } + + return; + } + + if (dest_height > source_height) { + dest_band_height = temp_area_height - 1; + source_band_height = dest_band_height * source_height / dest_height; + } else { + source_band_height = temp_area_height - 1; + dest_band_height = source_band_height * vratio / vscale; + } + + /* first row needs to be done so that we can stay one row ahead for vertical + * zoom */ + Scale1Dh(source, 1, hscale, source_width + 1, temp_area, 1, hratio, + dest_width); + + /* for each band of the image */ + bands = (dest_height + dest_band_height - 1) / dest_band_height; + + for (k = 0; k < bands; k++) { + /* scale one band horizontally */ + for (i = 1; i < source_band_height + 1; i++) { + if (k * source_band_height + i < (int)source_height) { + Scale1Dh(source + i * source_pitch, 1, hscale, source_width + 1, + temp_area + i * dest_pitch, 1, hratio, dest_width); + } else { /* Duplicate the last row */ + /* copy temp_area row 0 over from last row in the past */ + memcpy(temp_area + i * dest_pitch, temp_area + (i - 1) * dest_pitch, + dest_pitch); + } + } + + /* scale one band vertically */ + for (j = 0; j < (int)dest_width; j++) { + Scale1Dv(&temp_area[j], dest_pitch, vscale, source_band_height + 1, + &dest[j], dest_pitch, vratio, dest_band_height); + } + + /* copy temp_area row 0 over from last row in the past */ + memcpy(temp_area, temp_area + source_band_height * dest_pitch, dest_pitch); + + /* move to the next band */ + source += source_band_height * source_pitch; + dest += dest_band_height * dest_pitch; + } +} + +/**************************************************************************** + * + * ROUTINE : vpx_scale_frame + * + * INPUTS : YV12_BUFFER_CONFIG *src : Pointer to frame to be + * scaled. + * YV12_BUFFER_CONFIG *dst : Pointer to buffer to hold + * scaled frame. + * unsigned char *temp_area : Pointer to temp work area. + * unsigned char temp_area_height : Height of temp work area. + * unsigned int hscale : Horizontal scale factor + * numerator. + * unsigned int hratio : Horizontal scale factor + * denominator. + * unsigned int vscale : Vertical scale factor + * numerator. + * unsigned int vratio : Vertical scale factor + * denominator. + * unsigned int interlaced : Interlace flag. + * + * OUTPUTS : None. + * + * RETURNS : void + * + * FUNCTION : Performs 2-tap linear interpolation in two dimensions. + * + * SPECIAL NOTES : Expansion is performed one band at a time to help with + * caching. + * + ****************************************************************************/ +void vpx_scale_frame(YV12_BUFFER_CONFIG *src, YV12_BUFFER_CONFIG *dst, + unsigned char *temp_area, unsigned char temp_height, + unsigned int hscale, unsigned int hratio, + unsigned int vscale, unsigned int vratio, + unsigned int interlaced) { + int i; + int dw = (hscale - 1 + src->y_width * hratio) / hscale; + int dh = (vscale - 1 + src->y_height * vratio) / vscale; + + /* call our internal scaling routines!! */ + Scale2D((unsigned char *)src->y_buffer, src->y_stride, src->y_width, + src->y_height, (unsigned char *)dst->y_buffer, dst->y_stride, dw, dh, + temp_area, temp_height, hscale, hratio, vscale, vratio, interlaced); + + if (dw < (int)dst->y_width) + for (i = 0; i < dh; i++) + memset(dst->y_buffer + i * dst->y_stride + dw - 1, + dst->y_buffer[i * dst->y_stride + dw - 2], dst->y_width - dw + 1); + + if (dh < (int)dst->y_height) + for (i = dh - 1; i < (int)dst->y_height; i++) + memcpy(dst->y_buffer + i * dst->y_stride, + dst->y_buffer + (dh - 2) * dst->y_stride, dst->y_width + 1); + + Scale2D((unsigned char *)src->u_buffer, src->uv_stride, src->uv_width, + src->uv_height, (unsigned char *)dst->u_buffer, dst->uv_stride, + dw / 2, dh / 2, temp_area, temp_height, hscale, hratio, vscale, + vratio, interlaced); + + if (dw / 2 < (int)dst->uv_width) + for (i = 0; i < dst->uv_height; i++) + memset(dst->u_buffer + i * dst->uv_stride + dw / 2 - 1, + dst->u_buffer[i * dst->uv_stride + dw / 2 - 2], + dst->uv_width - dw / 2 + 1); + + if (dh / 2 < (int)dst->uv_height) + for (i = dh / 2 - 1; i < (int)dst->y_height / 2; i++) + memcpy(dst->u_buffer + i * dst->uv_stride, + dst->u_buffer + (dh / 2 - 2) * dst->uv_stride, dst->uv_width); + + Scale2D((unsigned char *)src->v_buffer, src->uv_stride, src->uv_width, + src->uv_height, (unsigned char *)dst->v_buffer, dst->uv_stride, + dw / 2, dh / 2, temp_area, temp_height, hscale, hratio, vscale, + vratio, interlaced); + + if (dw / 2 < (int)dst->uv_width) + for (i = 0; i < dst->uv_height; i++) + memset(dst->v_buffer + i * dst->uv_stride + dw / 2 - 1, + dst->v_buffer[i * dst->uv_stride + dw / 2 - 2], + dst->uv_width - dw / 2 + 1); + + if (dh / 2 < (int)dst->uv_height) + for (i = dh / 2 - 1; i < (int)dst->y_height / 2; i++) + memcpy(dst->v_buffer + i * dst->uv_stride, + dst->v_buffer + (dh / 2 - 2) * dst->uv_stride, dst->uv_width); +} diff --git a/vpx_scale/generic/yv12config.c b/vpx_scale/generic/yv12config.c new file mode 100644 index 0000000..9c7ca42 --- /dev/null +++ b/vpx_scale/generic/yv12config.c @@ -0,0 +1,281 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include + +#include "vpx_scale/yv12config.h" +#include "vpx_mem/vpx_mem.h" +#include "vpx_ports/mem.h" + +/**************************************************************************** +* Exports +****************************************************************************/ + +/**************************************************************************** + * + ****************************************************************************/ +#define yv12_align_addr(addr, align) \ + (void *)(((size_t)(addr) + ((align)-1)) & (size_t) - (align)) + +int vp8_yv12_de_alloc_frame_buffer(YV12_BUFFER_CONFIG *ybf) { + if (ybf) { + // If libvpx is using frame buffer callbacks then buffer_alloc_sz must + // not be set. + if (ybf->buffer_alloc_sz > 0) { + vpx_free(ybf->buffer_alloc); + } + + /* buffer_alloc isn't accessed by most functions. Rather y_buffer, + u_buffer and v_buffer point to buffer_alloc and are used. Clear out + all of this so that a freed pointer isn't inadvertently used */ + memset(ybf, 0, sizeof(YV12_BUFFER_CONFIG)); + } else { + return -1; + } + + return 0; +} + +int vp8_yv12_realloc_frame_buffer(YV12_BUFFER_CONFIG *ybf, int width, + int height, int border) { + if (ybf) { + int aligned_width = (width + 15) & ~15; + int aligned_height = (height + 15) & ~15; + int y_stride = ((aligned_width + 2 * border) + 31) & ~31; + int yplane_size = (aligned_height + 2 * border) * y_stride; + int uv_width = aligned_width >> 1; + int uv_height = aligned_height >> 1; + /** There is currently a bunch of code which assumes + * uv_stride == y_stride/2, so enforce this here. */ + int uv_stride = y_stride >> 1; + int uvplane_size = (uv_height + border) * uv_stride; + const int frame_size = yplane_size + 2 * uvplane_size; + + if (!ybf->buffer_alloc) { + ybf->buffer_alloc = (uint8_t *)vpx_memalign(32, frame_size); + ybf->buffer_alloc_sz = frame_size; + } + + if (!ybf->buffer_alloc || ybf->buffer_alloc_sz < frame_size) return -1; + + /* Only support allocating buffers that have a border that's a multiple + * of 32. The border restriction is required to get 16-byte alignment of + * the start of the chroma rows without introducing an arbitrary gap + * between planes, which would break the semantics of things like + * vpx_img_set_rect(). */ + if (border & 0x1f) return -3; + + ybf->y_crop_width = width; + ybf->y_crop_height = height; + ybf->y_width = aligned_width; + ybf->y_height = aligned_height; + ybf->y_stride = y_stride; + + ybf->uv_crop_width = (width + 1) / 2; + ybf->uv_crop_height = (height + 1) / 2; + ybf->uv_width = uv_width; + ybf->uv_height = uv_height; + ybf->uv_stride = uv_stride; + + ybf->alpha_width = 0; + ybf->alpha_height = 0; + ybf->alpha_stride = 0; + + ybf->border = border; + ybf->frame_size = frame_size; + + ybf->y_buffer = ybf->buffer_alloc + (border * y_stride) + border; + ybf->u_buffer = + ybf->buffer_alloc + yplane_size + (border / 2 * uv_stride) + border / 2; + ybf->v_buffer = ybf->buffer_alloc + yplane_size + uvplane_size + + (border / 2 * uv_stride) + border / 2; + ybf->alpha_buffer = NULL; + + ybf->corrupted = 0; /* assume not currupted by errors */ + return 0; + } + return -2; +} + +int vp8_yv12_alloc_frame_buffer(YV12_BUFFER_CONFIG *ybf, int width, int height, + int border) { + if (ybf) { + vp8_yv12_de_alloc_frame_buffer(ybf); + return vp8_yv12_realloc_frame_buffer(ybf, width, height, border); + } + return -2; +} + +#if CONFIG_VP9 +// TODO(jkoleszar): Maybe replace this with struct vpx_image + +int vpx_free_frame_buffer(YV12_BUFFER_CONFIG *ybf) { + if (ybf) { + if (ybf->buffer_alloc_sz > 0) { + vpx_free(ybf->buffer_alloc); + } + + /* buffer_alloc isn't accessed by most functions. Rather y_buffer, + u_buffer and v_buffer point to buffer_alloc and are used. Clear out + all of this so that a freed pointer isn't inadvertently used */ + memset(ybf, 0, sizeof(YV12_BUFFER_CONFIG)); + } else { + return -1; + } + + return 0; +} + +int vpx_realloc_frame_buffer(YV12_BUFFER_CONFIG *ybf, int width, int height, + int ss_x, int ss_y, +#if CONFIG_VP9_HIGHBITDEPTH + int use_highbitdepth, +#endif + int border, int byte_alignment, + vpx_codec_frame_buffer_t *fb, + vpx_get_frame_buffer_cb_fn_t cb, void *cb_priv) { + if (ybf) { + const int vp9_byte_align = (byte_alignment == 0) ? 1 : byte_alignment; + const int aligned_width = (width + 7) & ~7; + const int aligned_height = (height + 7) & ~7; + const int y_stride = ((aligned_width + 2 * border) + 31) & ~31; + const uint64_t yplane_size = + (aligned_height + 2 * border) * (uint64_t)y_stride + byte_alignment; + const int uv_width = aligned_width >> ss_x; + const int uv_height = aligned_height >> ss_y; + const int uv_stride = y_stride >> ss_x; + const int uv_border_w = border >> ss_x; + const int uv_border_h = border >> ss_y; + const uint64_t uvplane_size = + (uv_height + 2 * uv_border_h) * (uint64_t)uv_stride + byte_alignment; + +#if CONFIG_VP9_HIGHBITDEPTH + const uint64_t frame_size = + (1 + use_highbitdepth) * (yplane_size + 2 * uvplane_size); +#else + const uint64_t frame_size = yplane_size + 2 * uvplane_size; +#endif // CONFIG_VP9_HIGHBITDEPTH + + uint8_t *buf = NULL; + + // frame_size is stored in buffer_alloc_sz, which is an int. If it won't + // fit, fail early. + if (frame_size > INT_MAX) { + return -1; + } + + if (cb != NULL) { + const int align_addr_extra_size = 31; + const uint64_t external_frame_size = frame_size + align_addr_extra_size; + + assert(fb != NULL); + + if (external_frame_size != (size_t)external_frame_size) return -1; + + // Allocation to hold larger frame, or first allocation. + if (cb(cb_priv, (size_t)external_frame_size, fb) < 0) return -1; + + if (fb->data == NULL || fb->size < external_frame_size) return -1; + + ybf->buffer_alloc = (uint8_t *)yv12_align_addr(fb->data, 32); + +#if defined(__has_feature) +#if __has_feature(memory_sanitizer) + // This memset is needed for fixing the issue of using uninitialized + // value in msan test. It will cause a perf loss, so only do this for + // msan test. + memset(ybf->buffer_alloc, 0, (int)frame_size); +#endif +#endif + } else if (frame_size > (size_t)ybf->buffer_alloc_sz) { + // Allocation to hold larger frame, or first allocation. + vpx_free(ybf->buffer_alloc); + ybf->buffer_alloc = NULL; + + ybf->buffer_alloc = (uint8_t *)vpx_memalign(32, (size_t)frame_size); + if (!ybf->buffer_alloc) return -1; + + ybf->buffer_alloc_sz = (int)frame_size; + + // This memset is needed for fixing valgrind error from C loop filter + // due to access uninitialized memory in frame border. It could be + // removed if border is totally removed. + memset(ybf->buffer_alloc, 0, ybf->buffer_alloc_sz); + } + + /* Only support allocating buffers that have a border that's a multiple + * of 32. The border restriction is required to get 16-byte alignment of + * the start of the chroma rows without introducing an arbitrary gap + * between planes, which would break the semantics of things like + * vpx_img_set_rect(). */ + if (border & 0x1f) return -3; + + ybf->y_crop_width = width; + ybf->y_crop_height = height; + ybf->y_width = aligned_width; + ybf->y_height = aligned_height; + ybf->y_stride = y_stride; + + ybf->uv_crop_width = (width + ss_x) >> ss_x; + ybf->uv_crop_height = (height + ss_y) >> ss_y; + ybf->uv_width = uv_width; + ybf->uv_height = uv_height; + ybf->uv_stride = uv_stride; + + ybf->border = border; + ybf->frame_size = (int)frame_size; + ybf->subsampling_x = ss_x; + ybf->subsampling_y = ss_y; + + buf = ybf->buffer_alloc; +#if CONFIG_VP9_HIGHBITDEPTH + if (use_highbitdepth) { + // Store uint16 addresses when using 16bit framebuffers + buf = CONVERT_TO_BYTEPTR(ybf->buffer_alloc); + ybf->flags = YV12_FLAG_HIGHBITDEPTH; + } else { + ybf->flags = 0; + } +#endif // CONFIG_VP9_HIGHBITDEPTH + + ybf->y_buffer = (uint8_t *)yv12_align_addr( + buf + (border * y_stride) + border, vp9_byte_align); + ybf->u_buffer = (uint8_t *)yv12_align_addr( + buf + yplane_size + (uv_border_h * uv_stride) + uv_border_w, + vp9_byte_align); + ybf->v_buffer = + (uint8_t *)yv12_align_addr(buf + yplane_size + uvplane_size + + (uv_border_h * uv_stride) + uv_border_w, + vp9_byte_align); + + ybf->corrupted = 0; /* assume not corrupted by errors */ + return 0; + } + return -2; +} + +int vpx_alloc_frame_buffer(YV12_BUFFER_CONFIG *ybf, int width, int height, + int ss_x, int ss_y, +#if CONFIG_VP9_HIGHBITDEPTH + int use_highbitdepth, +#endif + int border, int byte_alignment) { + if (ybf) { + vpx_free_frame_buffer(ybf); + return vpx_realloc_frame_buffer(ybf, width, height, ss_x, ss_y, +#if CONFIG_VP9_HIGHBITDEPTH + use_highbitdepth, +#endif + border, byte_alignment, NULL, NULL, NULL); + } + return -2; +} +#endif diff --git a/vpx_scale/generic/yv12extend.c b/vpx_scale/generic/yv12extend.c new file mode 100644 index 0000000..e231806 --- /dev/null +++ b/vpx_scale/generic/yv12extend.c @@ -0,0 +1,335 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include "./vpx_config.h" +#include "./vpx_scale_rtcd.h" +#include "vpx/vpx_integer.h" +#include "vpx_mem/vpx_mem.h" +#include "vpx_ports/mem.h" +#include "vpx_scale/yv12config.h" +#if CONFIG_VP9_HIGHBITDEPTH +#include "vp9/common/vp9_common.h" +#endif + +static void extend_plane(uint8_t *const src, int src_stride, int width, + int height, int extend_top, int extend_left, + int extend_bottom, int extend_right) { + int i; + const int linesize = extend_left + extend_right + width; + + /* copy the left and right most columns out */ + uint8_t *src_ptr1 = src; + uint8_t *src_ptr2 = src + width - 1; + uint8_t *dst_ptr1 = src - extend_left; + uint8_t *dst_ptr2 = src + width; + + for (i = 0; i < height; ++i) { + memset(dst_ptr1, src_ptr1[0], extend_left); + memset(dst_ptr2, src_ptr2[0], extend_right); + src_ptr1 += src_stride; + src_ptr2 += src_stride; + dst_ptr1 += src_stride; + dst_ptr2 += src_stride; + } + + /* Now copy the top and bottom lines into each line of the respective + * borders + */ + src_ptr1 = src - extend_left; + src_ptr2 = src + src_stride * (height - 1) - extend_left; + dst_ptr1 = src + src_stride * -extend_top - extend_left; + dst_ptr2 = src + src_stride * height - extend_left; + + for (i = 0; i < extend_top; ++i) { + memcpy(dst_ptr1, src_ptr1, linesize); + dst_ptr1 += src_stride; + } + + for (i = 0; i < extend_bottom; ++i) { + memcpy(dst_ptr2, src_ptr2, linesize); + dst_ptr2 += src_stride; + } +} + +#if CONFIG_VP9_HIGHBITDEPTH +static void extend_plane_high(uint8_t *const src8, int src_stride, int width, + int height, int extend_top, int extend_left, + int extend_bottom, int extend_right) { + int i; + const int linesize = extend_left + extend_right + width; + uint16_t *src = CONVERT_TO_SHORTPTR(src8); + + /* copy the left and right most columns out */ + uint16_t *src_ptr1 = src; + uint16_t *src_ptr2 = src + width - 1; + uint16_t *dst_ptr1 = src - extend_left; + uint16_t *dst_ptr2 = src + width; + + for (i = 0; i < height; ++i) { + vpx_memset16(dst_ptr1, src_ptr1[0], extend_left); + vpx_memset16(dst_ptr2, src_ptr2[0], extend_right); + src_ptr1 += src_stride; + src_ptr2 += src_stride; + dst_ptr1 += src_stride; + dst_ptr2 += src_stride; + } + + /* Now copy the top and bottom lines into each line of the respective + * borders + */ + src_ptr1 = src - extend_left; + src_ptr2 = src + src_stride * (height - 1) - extend_left; + dst_ptr1 = src + src_stride * -extend_top - extend_left; + dst_ptr2 = src + src_stride * height - extend_left; + + for (i = 0; i < extend_top; ++i) { + memcpy(dst_ptr1, src_ptr1, linesize * sizeof(uint16_t)); + dst_ptr1 += src_stride; + } + + for (i = 0; i < extend_bottom; ++i) { + memcpy(dst_ptr2, src_ptr2, linesize * sizeof(uint16_t)); + dst_ptr2 += src_stride; + } +} +#endif + +void vp8_yv12_extend_frame_borders_c(YV12_BUFFER_CONFIG *ybf) { + const int uv_border = ybf->border / 2; + + assert(ybf->border % 2 == 0); + assert(ybf->y_height - ybf->y_crop_height < 16); + assert(ybf->y_width - ybf->y_crop_width < 16); + assert(ybf->y_height - ybf->y_crop_height >= 0); + assert(ybf->y_width - ybf->y_crop_width >= 0); + + extend_plane(ybf->y_buffer, ybf->y_stride, ybf->y_crop_width, + ybf->y_crop_height, ybf->border, ybf->border, + ybf->border + ybf->y_height - ybf->y_crop_height, + ybf->border + ybf->y_width - ybf->y_crop_width); + + extend_plane(ybf->u_buffer, ybf->uv_stride, ybf->uv_crop_width, + ybf->uv_crop_height, uv_border, uv_border, + uv_border + ybf->uv_height - ybf->uv_crop_height, + uv_border + ybf->uv_width - ybf->uv_crop_width); + + extend_plane(ybf->v_buffer, ybf->uv_stride, ybf->uv_crop_width, + ybf->uv_crop_height, uv_border, uv_border, + uv_border + ybf->uv_height - ybf->uv_crop_height, + uv_border + ybf->uv_width - ybf->uv_crop_width); +} + +#if CONFIG_VP9 +static void extend_frame(YV12_BUFFER_CONFIG *const ybf, int ext_size) { + const int c_w = ybf->uv_crop_width; + const int c_h = ybf->uv_crop_height; + const int ss_x = ybf->uv_width < ybf->y_width; + const int ss_y = ybf->uv_height < ybf->y_height; + const int c_et = ext_size >> ss_y; + const int c_el = ext_size >> ss_x; + const int c_eb = c_et + ybf->uv_height - ybf->uv_crop_height; + const int c_er = c_el + ybf->uv_width - ybf->uv_crop_width; + + assert(ybf->y_height - ybf->y_crop_height < 16); + assert(ybf->y_width - ybf->y_crop_width < 16); + assert(ybf->y_height - ybf->y_crop_height >= 0); + assert(ybf->y_width - ybf->y_crop_width >= 0); + +#if CONFIG_VP9_HIGHBITDEPTH + if (ybf->flags & YV12_FLAG_HIGHBITDEPTH) { + extend_plane_high(ybf->y_buffer, ybf->y_stride, ybf->y_crop_width, + ybf->y_crop_height, ext_size, ext_size, + ext_size + ybf->y_height - ybf->y_crop_height, + ext_size + ybf->y_width - ybf->y_crop_width); + extend_plane_high(ybf->u_buffer, ybf->uv_stride, c_w, c_h, c_et, c_el, c_eb, + c_er); + extend_plane_high(ybf->v_buffer, ybf->uv_stride, c_w, c_h, c_et, c_el, c_eb, + c_er); + return; + } +#endif + extend_plane(ybf->y_buffer, ybf->y_stride, ybf->y_crop_width, + ybf->y_crop_height, ext_size, ext_size, + ext_size + ybf->y_height - ybf->y_crop_height, + ext_size + ybf->y_width - ybf->y_crop_width); + + extend_plane(ybf->u_buffer, ybf->uv_stride, c_w, c_h, c_et, c_el, c_eb, c_er); + + extend_plane(ybf->v_buffer, ybf->uv_stride, c_w, c_h, c_et, c_el, c_eb, c_er); +} + +void vpx_extend_frame_borders_c(YV12_BUFFER_CONFIG *ybf) { + extend_frame(ybf, ybf->border); +} + +void vpx_extend_frame_inner_borders_c(YV12_BUFFER_CONFIG *ybf) { + const int inner_bw = (ybf->border > VP9INNERBORDERINPIXELS) + ? VP9INNERBORDERINPIXELS + : ybf->border; + extend_frame(ybf, inner_bw); +} + +#if CONFIG_VP9_HIGHBITDEPTH +static void memcpy_short_addr(uint8_t *dst8, const uint8_t *src8, int num) { + uint16_t *dst = CONVERT_TO_SHORTPTR(dst8); + uint16_t *src = CONVERT_TO_SHORTPTR(src8); + memcpy(dst, src, num * sizeof(uint16_t)); +} +#endif // CONFIG_VP9_HIGHBITDEPTH +#endif // CONFIG_VP9 + +// Copies the source image into the destination image and updates the +// destination's UMV borders. +// Note: The frames are assumed to be identical in size. + +void vp8_yv12_copy_frame_c(const YV12_BUFFER_CONFIG *src_ybc, + YV12_BUFFER_CONFIG *dst_ybc) { + int row; + const uint8_t *src = src_ybc->y_buffer; + uint8_t *dst = dst_ybc->y_buffer; + +#if 0 + /* These assertions are valid in the codec, but the libvpx-tester uses + * this code slightly differently. + */ + assert(src_ybc->y_width == dst_ybc->y_width); + assert(src_ybc->y_height == dst_ybc->y_height); +#endif + + for (row = 0; row < src_ybc->y_height; ++row) { + memcpy(dst, src, src_ybc->y_width); + src += src_ybc->y_stride; + dst += dst_ybc->y_stride; + } + + src = src_ybc->u_buffer; + dst = dst_ybc->u_buffer; + + for (row = 0; row < src_ybc->uv_height; ++row) { + memcpy(dst, src, src_ybc->uv_width); + src += src_ybc->uv_stride; + dst += dst_ybc->uv_stride; + } + + src = src_ybc->v_buffer; + dst = dst_ybc->v_buffer; + + for (row = 0; row < src_ybc->uv_height; ++row) { + memcpy(dst, src, src_ybc->uv_width); + src += src_ybc->uv_stride; + dst += dst_ybc->uv_stride; + } + + vp8_yv12_extend_frame_borders_c(dst_ybc); +} + +#if CONFIG_VP9 +void vpx_yv12_copy_frame_c(const YV12_BUFFER_CONFIG *src_ybc, + YV12_BUFFER_CONFIG *dst_ybc) { + int row; + const uint8_t *src = src_ybc->y_buffer; + uint8_t *dst = dst_ybc->y_buffer; + +#if 0 + /* These assertions are valid in the codec, but the libvpx-tester uses + * this code slightly differently. + */ + assert(src_ybc->y_width == dst_ybc->y_width); + assert(src_ybc->y_height == dst_ybc->y_height); +#endif + +#if CONFIG_VP9_HIGHBITDEPTH + if (src_ybc->flags & YV12_FLAG_HIGHBITDEPTH) { + assert(dst_ybc->flags & YV12_FLAG_HIGHBITDEPTH); + for (row = 0; row < src_ybc->y_height; ++row) { + memcpy_short_addr(dst, src, src_ybc->y_width); + src += src_ybc->y_stride; + dst += dst_ybc->y_stride; + } + + src = src_ybc->u_buffer; + dst = dst_ybc->u_buffer; + + for (row = 0; row < src_ybc->uv_height; ++row) { + memcpy_short_addr(dst, src, src_ybc->uv_width); + src += src_ybc->uv_stride; + dst += dst_ybc->uv_stride; + } + + src = src_ybc->v_buffer; + dst = dst_ybc->v_buffer; + + for (row = 0; row < src_ybc->uv_height; ++row) { + memcpy_short_addr(dst, src, src_ybc->uv_width); + src += src_ybc->uv_stride; + dst += dst_ybc->uv_stride; + } + + vpx_extend_frame_borders_c(dst_ybc); + return; + } else { + assert(!(dst_ybc->flags & YV12_FLAG_HIGHBITDEPTH)); + } +#endif + + for (row = 0; row < src_ybc->y_height; ++row) { + memcpy(dst, src, src_ybc->y_width); + src += src_ybc->y_stride; + dst += dst_ybc->y_stride; + } + + src = src_ybc->u_buffer; + dst = dst_ybc->u_buffer; + + for (row = 0; row < src_ybc->uv_height; ++row) { + memcpy(dst, src, src_ybc->uv_width); + src += src_ybc->uv_stride; + dst += dst_ybc->uv_stride; + } + + src = src_ybc->v_buffer; + dst = dst_ybc->v_buffer; + + for (row = 0; row < src_ybc->uv_height; ++row) { + memcpy(dst, src, src_ybc->uv_width); + src += src_ybc->uv_stride; + dst += dst_ybc->uv_stride; + } + + vpx_extend_frame_borders_c(dst_ybc); +} +#endif // CONFIG_VP9 + +void vpx_yv12_copy_y_c(const YV12_BUFFER_CONFIG *src_ybc, + YV12_BUFFER_CONFIG *dst_ybc) { + int row; + const uint8_t *src = src_ybc->y_buffer; + uint8_t *dst = dst_ybc->y_buffer; + +#if CONFIG_VP9_HIGHBITDEPTH + if (src_ybc->flags & YV12_FLAG_HIGHBITDEPTH) { + const uint16_t *src16 = CONVERT_TO_SHORTPTR(src); + uint16_t *dst16 = CONVERT_TO_SHORTPTR(dst); + for (row = 0; row < src_ybc->y_height; ++row) { + memcpy(dst16, src16, src_ybc->y_width * sizeof(uint16_t)); + src16 += src_ybc->y_stride; + dst16 += dst_ybc->y_stride; + } + return; + } +#endif + + for (row = 0; row < src_ybc->y_height; ++row) { + memcpy(dst, src, src_ybc->y_width); + src += src_ybc->y_stride; + dst += dst_ybc->y_stride; + } +} diff --git a/vpx_scale/mips/dspr2/yv12extend_dspr2.c b/vpx_scale/mips/dspr2/yv12extend_dspr2.c new file mode 100644 index 0000000..d3d1b07 --- /dev/null +++ b/vpx_scale/mips/dspr2/yv12extend_dspr2.c @@ -0,0 +1,138 @@ +/* + * Copyright (c) 2013 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include + +#include "./vpx_config.h" +#include "vpx_scale/yv12config.h" +#include "vpx_mem/vpx_mem.h" +#include "vpx_scale/vpx_scale.h" + +#if HAVE_DSPR2 +static void extend_plane(uint8_t *const src, int src_stride, int width, + int height, int extend_top, int extend_left, + int extend_bottom, int extend_right) { + int i, j; + uint8_t *left_src, *right_src; + uint8_t *left_dst_start, *right_dst_start; + uint8_t *left_dst, *right_dst; + uint8_t *top_src, *bot_src; + uint8_t *top_dst, *bot_dst; + uint32_t left_pix; + uint32_t right_pix; + uint32_t linesize; + + /* copy the left and right most columns out */ + left_src = src; + right_src = src + width - 1; + left_dst_start = src - extend_left; + right_dst_start = src + width; + + for (i = height; i--;) { + left_dst = left_dst_start; + right_dst = right_dst_start; + + __asm__ __volatile__( + "lb %[left_pix], 0(%[left_src]) \n\t" + "lb %[right_pix], 0(%[right_src]) \n\t" + "replv.qb %[left_pix], %[left_pix] \n\t" + "replv.qb %[right_pix], %[right_pix] \n\t" + + : [left_pix] "=&r"(left_pix), [right_pix] "=&r"(right_pix) + : [left_src] "r"(left_src), [right_src] "r"(right_src)); + + for (j = extend_left / 4; j--;) { + __asm__ __volatile__( + "sw %[left_pix], 0(%[left_dst]) \n\t" + "sw %[right_pix], 0(%[right_dst]) \n\t" + + : + : [left_dst] "r"(left_dst), [left_pix] "r"(left_pix), + [right_dst] "r"(right_dst), [right_pix] "r"(right_pix)); + + left_dst += 4; + right_dst += 4; + } + + for (j = extend_left % 4; j--;) { + __asm__ __volatile__( + "sb %[left_pix], 0(%[left_dst]) \n\t" + "sb %[right_pix], 0(%[right_dst]) \n\t" + + : + : [left_dst] "r"(left_dst), [left_pix] "r"(left_pix), + [right_dst] "r"(right_dst), [right_pix] "r"(right_pix)); + + left_dst += 1; + right_dst += 1; + } + + left_src += src_stride; + right_src += src_stride; + left_dst_start += src_stride; + right_dst_start += src_stride; + } + + /* Now copy the top and bottom lines into each line of the respective + * borders + */ + top_src = src - extend_left; + bot_src = src + src_stride * (height - 1) - extend_left; + top_dst = src + src_stride * (-extend_top) - extend_left; + bot_dst = src + src_stride * (height)-extend_left; + linesize = extend_left + extend_right + width; + + for (i = 0; i < extend_top; i++) { + memcpy(top_dst, top_src, linesize); + top_dst += src_stride; + } + + for (i = 0; i < extend_bottom; i++) { + memcpy(bot_dst, bot_src, linesize); + bot_dst += src_stride; + } +} + +static void extend_frame(YV12_BUFFER_CONFIG *const ybf, int ext_size) { + const int c_w = ybf->uv_crop_width; + const int c_h = ybf->uv_crop_height; + const int ss_x = ybf->uv_width < ybf->y_width; + const int ss_y = ybf->uv_height < ybf->y_height; + const int c_et = ext_size >> ss_y; + const int c_el = ext_size >> ss_x; + const int c_eb = c_et + ybf->uv_height - ybf->uv_crop_height; + const int c_er = c_el + ybf->uv_width - ybf->uv_crop_width; + + assert(ybf->y_height - ybf->y_crop_height < 16); + assert(ybf->y_width - ybf->y_crop_width < 16); + assert(ybf->y_height - ybf->y_crop_height >= 0); + assert(ybf->y_width - ybf->y_crop_width >= 0); + + extend_plane(ybf->y_buffer, ybf->y_stride, ybf->y_crop_width, + ybf->y_crop_height, ext_size, ext_size, + ext_size + ybf->y_height - ybf->y_crop_height, + ext_size + ybf->y_width - ybf->y_crop_width); + + extend_plane(ybf->u_buffer, ybf->uv_stride, c_w, c_h, c_et, c_el, c_eb, c_er); + + extend_plane(ybf->v_buffer, ybf->uv_stride, c_w, c_h, c_et, c_el, c_eb, c_er); +} + +void vpx_extend_frame_borders_dspr2(YV12_BUFFER_CONFIG *ybf) { + extend_frame(ybf, ybf->border); +} + +void vpx_extend_frame_inner_borders_dspr2(YV12_BUFFER_CONFIG *ybf) { + const int inner_bw = (ybf->border > VP9INNERBORDERINPIXELS) + ? VP9INNERBORDERINPIXELS + : ybf->border; + extend_frame(ybf, inner_bw); +} +#endif diff --git a/vpx_scale/vpx_scale.h b/vpx_scale/vpx_scale.h new file mode 100644 index 0000000..478a483 --- /dev/null +++ b/vpx_scale/vpx_scale.h @@ -0,0 +1,22 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VPX_SCALE_VPX_SCALE_H_ +#define VPX_SCALE_VPX_SCALE_H_ + +#include "vpx_scale/yv12config.h" + +extern void vpx_scale_frame(YV12_BUFFER_CONFIG *src, YV12_BUFFER_CONFIG *dst, + unsigned char *temp_area, unsigned char temp_height, + unsigned int hscale, unsigned int hratio, + unsigned int vscale, unsigned int vratio, + unsigned int interlaced); + +#endif // VPX_SCALE_VPX_SCALE_H_ diff --git a/vpx_scale/vpx_scale.mk b/vpx_scale/vpx_scale.mk new file mode 100644 index 0000000..a49abf3 --- /dev/null +++ b/vpx_scale/vpx_scale.mk @@ -0,0 +1,16 @@ +SCALE_SRCS-yes += vpx_scale.mk +SCALE_SRCS-yes += yv12config.h +SCALE_SRCS-$(CONFIG_SPATIAL_RESAMPLING) += vpx_scale.h +SCALE_SRCS-$(CONFIG_SPATIAL_RESAMPLING) += generic/vpx_scale.c +SCALE_SRCS-yes += generic/yv12config.c +SCALE_SRCS-yes += generic/yv12extend.c +SCALE_SRCS-$(CONFIG_SPATIAL_RESAMPLING) += generic/gen_scalers.c +SCALE_SRCS-yes += vpx_scale_rtcd.c +SCALE_SRCS-yes += vpx_scale_rtcd.pl + +#mips(dspr2) +SCALE_SRCS-$(HAVE_DSPR2) += mips/dspr2/yv12extend_dspr2.c + +SCALE_SRCS-no += $(SCALE_SRCS_REMOVE-yes) + +$(eval $(call rtcd_h_template,vpx_scale_rtcd,vpx_scale/vpx_scale_rtcd.pl)) diff --git a/vpx_scale/vpx_scale_rtcd.c b/vpx_scale/vpx_scale_rtcd.c new file mode 100644 index 0000000..dc4d959 --- /dev/null +++ b/vpx_scale/vpx_scale_rtcd.c @@ -0,0 +1,15 @@ +/* + * Copyright (c) 2011 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ +#include "./vpx_config.h" +#define RTCD_C +#include "./vpx_scale_rtcd.h" +#include "vpx_ports/vpx_once.h" + +void vpx_scale_rtcd() { once(setup_rtcd_internal); } diff --git a/vpx_scale/vpx_scale_rtcd.pl b/vpx_scale/vpx_scale_rtcd.pl new file mode 100644 index 0000000..1281071 --- /dev/null +++ b/vpx_scale/vpx_scale_rtcd.pl @@ -0,0 +1,44 @@ +## +## Copyright (c) 2017 The WebM project authors. All Rights Reserved. +## +## Use of this source code is governed by a BSD-style license +## that can be found in the LICENSE file in the root of the source +## tree. An additional intellectual property rights grant can be found +## in the file PATENTS. All contributing project authors may +## be found in the AUTHORS file in the root of the source tree. +## + +sub vpx_scale_forward_decls() { +print < +#include "./vpx_config.h" +#include "vpx/vpx_integer.h" + +#if defined(__GNUC__) +#define LOCAL_GCC_VERSION ((__GNUC__ << 8) | __GNUC_MINOR__) +#define LOCAL_GCC_PREREQ(maj, min) (LOCAL_GCC_VERSION >= (((maj) << 8) | (min))) +#else +#define LOCAL_GCC_VERSION 0 +#define LOCAL_GCC_PREREQ(maj, min) 0 +#endif + +// handle clang compatibility +#ifndef __has_builtin +#define __has_builtin(x) 0 +#endif + +// some endian fix (e.g.: mips-gcc doesn't define __BIG_ENDIAN__) +#if !defined(WORDS_BIGENDIAN) && \ + (defined(__BIG_ENDIAN__) || defined(_M_PPC) || \ + (defined(__BYTE_ORDER__) && (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__))) +#define WORDS_BIGENDIAN +#endif + +#if defined(WORDS_BIGENDIAN) +#define HToLE32 BSwap32 +#define HToLE16 BSwap16 +#define HToBE64(x) (x) +#define HToBE32(x) (x) +#else +#define HToLE32(x) (x) +#define HToLE16(x) (x) +#define HToBE64(X) BSwap64(X) +#define HToBE32(X) BSwap32(X) +#endif + +#if LOCAL_GCC_PREREQ(4, 8) || __has_builtin(__builtin_bswap16) +#define HAVE_BUILTIN_BSWAP16 +#endif + +#if LOCAL_GCC_PREREQ(4, 3) || __has_builtin(__builtin_bswap32) +#define HAVE_BUILTIN_BSWAP32 +#endif + +#if LOCAL_GCC_PREREQ(4, 3) || __has_builtin(__builtin_bswap64) +#define HAVE_BUILTIN_BSWAP64 +#endif + +#if HAVE_MIPS32 && defined(__mips__) && !defined(__mips64) && \ + defined(__mips_isa_rev) && (__mips_isa_rev >= 2) && (__mips_isa_rev < 6) +#define VPX_USE_MIPS32_R2 +#endif + +static INLINE uint16_t BSwap16(uint16_t x) { +#if defined(HAVE_BUILTIN_BSWAP16) + return __builtin_bswap16(x); +#elif defined(_MSC_VER) + return _byteswap_ushort(x); +#else + // gcc will recognize a 'rorw $8, ...' here: + return (x >> 8) | ((x & 0xff) << 8); +#endif // HAVE_BUILTIN_BSWAP16 +} + +static INLINE uint32_t BSwap32(uint32_t x) { +#if defined(VPX_USE_MIPS32_R2) + uint32_t ret; + __asm__ volatile( + "wsbh %[ret], %[x] \n\t" + "rotr %[ret], %[ret], 16 \n\t" + : [ret] "=r"(ret) + : [x] "r"(x)); + return ret; +#elif defined(HAVE_BUILTIN_BSWAP32) + return __builtin_bswap32(x); +#elif defined(__i386__) || defined(__x86_64__) + uint32_t swapped_bytes; + __asm__ volatile("bswap %0" : "=r"(swapped_bytes) : "0"(x)); + return swapped_bytes; +#elif defined(_MSC_VER) + return (uint32_t)_byteswap_ulong(x); +#else + return (x >> 24) | ((x >> 8) & 0xff00) | ((x << 8) & 0xff0000) | (x << 24); +#endif // HAVE_BUILTIN_BSWAP32 +} + +static INLINE uint64_t BSwap64(uint64_t x) { +#if defined(HAVE_BUILTIN_BSWAP64) + return __builtin_bswap64(x); +#elif defined(__x86_64__) + uint64_t swapped_bytes; + __asm__ volatile("bswapq %0" : "=r"(swapped_bytes) : "0"(x)); + return swapped_bytes; +#elif defined(_MSC_VER) + return (uint64_t)_byteswap_uint64(x); +#else // generic code for swapping 64-bit values (suggested by bdb@) + x = ((x & 0xffffffff00000000ull) >> 32) | ((x & 0x00000000ffffffffull) << 32); + x = ((x & 0xffff0000ffff0000ull) >> 16) | ((x & 0x0000ffff0000ffffull) << 16); + x = ((x & 0xff00ff00ff00ff00ull) >> 8) | ((x & 0x00ff00ff00ff00ffull) << 8); + return x; +#endif // HAVE_BUILTIN_BSWAP64 +} + +#endif // VPX_UTIL_ENDIAN_INL_H_ diff --git a/vpx_util/vpx_atomics.h b/vpx_util/vpx_atomics.h new file mode 100644 index 0000000..b8cf80d --- /dev/null +++ b/vpx_util/vpx_atomics.h @@ -0,0 +1,109 @@ +/* + * Copyright (c) 2017 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VPX_UTIL_VPX_ATOMICS_H_ +#define VPX_UTIL_VPX_ATOMICS_H_ + +#include "./vpx_config.h" + +#ifdef __cplusplus +extern "C" { +#endif // __cplusplus + +#if CONFIG_OS_SUPPORT && CONFIG_MULTITHREAD + +// Look for built-in atomic support. We cannot use or +// since neither is guaranteed to exist on both C and C++ platforms, and we need +// to back the atomic type with the same type (g++ needs to be able to use +// gcc-built code). g++ 6 doesn't support _Atomic as a keyword and can't use the +// stdatomic.h header. Even if both and existed it's not +// guaranteed that atomic_int is the same type as std::atomic_int. +// See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=60932#c13. +#if !defined(__has_builtin) +#define __has_builtin(x) 0 // Compatibility with non-clang compilers. +#endif // !defined(__has_builtin) + +#if (__has_builtin(__atomic_load_n)) || \ + (defined(__GNUC__) && \ + (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 7))) +// For GCC >= 4.7 and Clang versions that support __atomic builtins, use those. +#define VPX_USE_ATOMIC_BUILTINS +#else +// Use platform-specific asm barriers. +#if defined(_MSC_VER) +// TODO(pbos): This assumes that newer versions of MSVC are building with the +// default /volatile:ms (or older, where this is always true. Consider adding +// support for using instead of stdatomic.h when building C++11 under +// MSVC. It's unclear what to do for plain C under /volatile:iso (inline asm?), +// there're no explicit Interlocked* functions for only storing or loading +// (presumably because volatile has historically implied that on MSVC). +// +// For earlier versions of MSVC or the default /volatile:ms volatile int are +// acquire/release and require no barrier. +#define vpx_atomic_memory_barrier() \ + do { \ + } while (0) +#else +#if ARCH_X86 || ARCH_X86_64 +// Use a compiler barrier on x86, no runtime penalty. +#define vpx_atomic_memory_barrier() __asm__ __volatile__("" ::: "memory") +#elif ARCH_ARM +#define vpx_atomic_memory_barrier() __asm__ __volatile__("dmb ish" ::: "memory") +#elif ARCH_MIPS +#define vpx_atomic_memory_barrier() __asm__ __volatile__("sync" ::: "memory") +#else +#error Unsupported architecture! +#endif // ARCH_X86 || ARCH_X86_64 +#endif // defined(_MSC_VER) +#endif // atomic builtin availability check + +// These are wrapped in a struct so that they are not easily accessed directly +// on any platform (to discourage programmer errors by setting values directly). +// This primitive MUST be initialized using vpx_atomic_init or VPX_ATOMIC_INIT +// (NOT memset) and accessed through vpx_atomic_ functions. +typedef struct vpx_atomic_int { volatile int value; } vpx_atomic_int; + +#define VPX_ATOMIC_INIT(num) \ + { num } + +// Initialization of an atomic int, not thread safe. +static INLINE void vpx_atomic_init(vpx_atomic_int *atomic, int value) { + atomic->value = value; +} + +static INLINE void vpx_atomic_store_release(vpx_atomic_int *atomic, int value) { +#if defined(VPX_USE_ATOMIC_BUILTINS) + __atomic_store_n(&atomic->value, value, __ATOMIC_RELEASE); +#else + vpx_atomic_memory_barrier(); + atomic->value = value; +#endif // defined(VPX_USE_ATOMIC_BUILTINS) +} + +static INLINE int vpx_atomic_load_acquire(const vpx_atomic_int *atomic) { +#if defined(VPX_USE_ATOMIC_BUILTINS) + return __atomic_load_n(&atomic->value, __ATOMIC_ACQUIRE); +#else + int v = atomic->value; + vpx_atomic_memory_barrier(); + return v; +#endif // defined(VPX_USE_ATOMIC_BUILTINS) +} + +#undef VPX_USE_ATOMIC_BUILTINS +#undef vpx_atomic_memory_barrier + +#endif /* CONFIG_OS_SUPPORT && CONFIG_MULTITHREAD */ + +#ifdef __cplusplus +} // extern "C" +#endif // __cplusplus + +#endif // VPX_UTIL_VPX_ATOMICS_H_ diff --git a/vpx_util/vpx_thread.c b/vpx_util/vpx_thread.c new file mode 100644 index 0000000..04c5fb6 --- /dev/null +++ b/vpx_util/vpx_thread.c @@ -0,0 +1,181 @@ +// Copyright 2013 Google Inc. All Rights Reserved. +// +// Use of this source code is governed by a BSD-style license +// that can be found in the COPYING file in the root of the source +// tree. An additional intellectual property rights grant can be found +// in the file PATENTS. All contributing project authors may +// be found in the AUTHORS file in the root of the source tree. +// ----------------------------------------------------------------------------- +// +// Multi-threaded worker +// +// Original source: +// https://chromium.googlesource.com/webm/libwebp + +#include +#include // for memset() +#include "./vpx_thread.h" +#include "vpx_mem/vpx_mem.h" + +#if CONFIG_MULTITHREAD + +struct VPxWorkerImpl { + pthread_mutex_t mutex_; + pthread_cond_t condition_; + pthread_t thread_; +}; + +//------------------------------------------------------------------------------ + +static void execute(VPxWorker *const worker); // Forward declaration. + +static THREADFN thread_loop(void *ptr) { + VPxWorker *const worker = (VPxWorker *)ptr; + int done = 0; + while (!done) { + pthread_mutex_lock(&worker->impl_->mutex_); + while (worker->status_ == OK) { // wait in idling mode + pthread_cond_wait(&worker->impl_->condition_, &worker->impl_->mutex_); + } + if (worker->status_ == WORK) { + execute(worker); + worker->status_ = OK; + } else if (worker->status_ == NOT_OK) { // finish the worker + done = 1; + } + // signal to the main thread that we're done (for sync()) + pthread_cond_signal(&worker->impl_->condition_); + pthread_mutex_unlock(&worker->impl_->mutex_); + } + return THREAD_RETURN(NULL); // Thread is finished +} + +// main thread state control +static void change_state(VPxWorker *const worker, VPxWorkerStatus new_status) { + // No-op when attempting to change state on a thread that didn't come up. + // Checking status_ without acquiring the lock first would result in a data + // race. + if (worker->impl_ == NULL) return; + + pthread_mutex_lock(&worker->impl_->mutex_); + if (worker->status_ >= OK) { + // wait for the worker to finish + while (worker->status_ != OK) { + pthread_cond_wait(&worker->impl_->condition_, &worker->impl_->mutex_); + } + // assign new status and release the working thread if needed + if (new_status != OK) { + worker->status_ = new_status; + pthread_cond_signal(&worker->impl_->condition_); + } + } + pthread_mutex_unlock(&worker->impl_->mutex_); +} + +#endif // CONFIG_MULTITHREAD + +//------------------------------------------------------------------------------ + +static void init(VPxWorker *const worker) { + memset(worker, 0, sizeof(*worker)); + worker->status_ = NOT_OK; +} + +static int sync(VPxWorker *const worker) { +#if CONFIG_MULTITHREAD + change_state(worker, OK); +#endif + assert(worker->status_ <= OK); + return !worker->had_error; +} + +static int reset(VPxWorker *const worker) { + int ok = 1; + worker->had_error = 0; + if (worker->status_ < OK) { +#if CONFIG_MULTITHREAD + worker->impl_ = (VPxWorkerImpl *)vpx_calloc(1, sizeof(*worker->impl_)); + if (worker->impl_ == NULL) { + return 0; + } + if (pthread_mutex_init(&worker->impl_->mutex_, NULL)) { + goto Error; + } + if (pthread_cond_init(&worker->impl_->condition_, NULL)) { + pthread_mutex_destroy(&worker->impl_->mutex_); + goto Error; + } + pthread_mutex_lock(&worker->impl_->mutex_); + ok = !pthread_create(&worker->impl_->thread_, NULL, thread_loop, worker); + if (ok) worker->status_ = OK; + pthread_mutex_unlock(&worker->impl_->mutex_); + if (!ok) { + pthread_mutex_destroy(&worker->impl_->mutex_); + pthread_cond_destroy(&worker->impl_->condition_); + Error: + vpx_free(worker->impl_); + worker->impl_ = NULL; + return 0; + } +#else + worker->status_ = OK; +#endif + } else if (worker->status_ > OK) { + ok = sync(worker); + } + assert(!ok || (worker->status_ == OK)); + return ok; +} + +static void execute(VPxWorker *const worker) { + if (worker->hook != NULL) { + worker->had_error |= !worker->hook(worker->data1, worker->data2); + } +} + +static void launch(VPxWorker *const worker) { +#if CONFIG_MULTITHREAD + change_state(worker, WORK); +#else + execute(worker); +#endif +} + +static void end(VPxWorker *const worker) { +#if CONFIG_MULTITHREAD + if (worker->impl_ != NULL) { + change_state(worker, NOT_OK); + pthread_join(worker->impl_->thread_, NULL); + pthread_mutex_destroy(&worker->impl_->mutex_); + pthread_cond_destroy(&worker->impl_->condition_); + vpx_free(worker->impl_); + worker->impl_ = NULL; + } +#else + worker->status_ = NOT_OK; + assert(worker->impl_ == NULL); +#endif + assert(worker->status_ == NOT_OK); +} + +//------------------------------------------------------------------------------ + +static VPxWorkerInterface g_worker_interface = { init, reset, sync, + launch, execute, end }; + +int vpx_set_worker_interface(const VPxWorkerInterface *const winterface) { + if (winterface == NULL || winterface->init == NULL || + winterface->reset == NULL || winterface->sync == NULL || + winterface->launch == NULL || winterface->execute == NULL || + winterface->end == NULL) { + return 0; + } + g_worker_interface = *winterface; + return 1; +} + +const VPxWorkerInterface *vpx_get_worker_interface(void) { + return &g_worker_interface; +} + +//------------------------------------------------------------------------------ diff --git a/vpx_util/vpx_thread.h b/vpx_util/vpx_thread.h new file mode 100644 index 0000000..53a5f49 --- /dev/null +++ b/vpx_util/vpx_thread.h @@ -0,0 +1,415 @@ +// Copyright 2013 Google Inc. All Rights Reserved. +// +// Use of this source code is governed by a BSD-style license +// that can be found in the COPYING file in the root of the source +// tree. An additional intellectual property rights grant can be found +// in the file PATENTS. All contributing project authors may +// be found in the AUTHORS file in the root of the source tree. +// ----------------------------------------------------------------------------- +// +// Multi-threaded worker +// +// Original source: +// https://chromium.googlesource.com/webm/libwebp + +#ifndef VPX_THREAD_H_ +#define VPX_THREAD_H_ + +#include "./vpx_config.h" + +#ifdef __cplusplus +extern "C" { +#endif + +// Set maximum decode threads to be 8 due to the limit of frame buffers +// and not enough semaphores in the emulation layer on windows. +#define MAX_DECODE_THREADS 8 + +#if CONFIG_MULTITHREAD + +#if defined(_WIN32) && !HAVE_PTHREAD_H +#include // NOLINT +#include // NOLINT +#include // NOLINT +typedef HANDLE pthread_t; +typedef CRITICAL_SECTION pthread_mutex_t; + +#if _WIN32_WINNT >= 0x0600 // Windows Vista / Server 2008 or greater +#define USE_WINDOWS_CONDITION_VARIABLE +typedef CONDITION_VARIABLE pthread_cond_t; +#else +typedef struct { + HANDLE waiting_sem_; + HANDLE received_sem_; + HANDLE signal_event_; +} pthread_cond_t; +#endif // _WIN32_WINNT >= 0x600 + +#ifndef WINAPI_FAMILY_PARTITION +#define WINAPI_PARTITION_DESKTOP 1 +#define WINAPI_FAMILY_PARTITION(x) x +#endif + +#if !WINAPI_FAMILY_PARTITION(WINAPI_PARTITION_DESKTOP) +#define USE_CREATE_THREAD +#endif + +//------------------------------------------------------------------------------ +// simplistic pthread emulation layer + +// _beginthreadex requires __stdcall +#if defined(__GNUC__) && \ + (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 2)) +#define THREADFN __attribute__((force_align_arg_pointer)) unsigned int __stdcall +#else +#define THREADFN unsigned int __stdcall +#endif +#define THREAD_RETURN(val) (unsigned int)((DWORD_PTR)val) + +#if _WIN32_WINNT >= 0x0501 // Windows XP or greater +#define WaitForSingleObject(obj, timeout) \ + WaitForSingleObjectEx(obj, timeout, FALSE /*bAlertable*/) +#endif + +static INLINE int pthread_create(pthread_t *const thread, const void *attr, + unsigned int(__stdcall *start)(void *), + void *arg) { + (void)attr; +#ifdef USE_CREATE_THREAD + *thread = CreateThread(NULL, /* lpThreadAttributes */ + 0, /* dwStackSize */ + start, arg, 0, /* dwStackSize */ + NULL); /* lpThreadId */ +#else + *thread = (pthread_t)_beginthreadex(NULL, /* void *security */ + 0, /* unsigned stack_size */ + start, arg, 0, /* unsigned initflag */ + NULL); /* unsigned *thrdaddr */ +#endif + if (*thread == NULL) return 1; + SetThreadPriority(*thread, THREAD_PRIORITY_ABOVE_NORMAL); + return 0; +} + +static INLINE int pthread_join(pthread_t thread, void **value_ptr) { + (void)value_ptr; + return (WaitForSingleObject(thread, INFINITE) != WAIT_OBJECT_0 || + CloseHandle(thread) == 0); +} + +// Mutex +static INLINE int pthread_mutex_init(pthread_mutex_t *const mutex, + void *mutexattr) { + (void)mutexattr; +#if _WIN32_WINNT >= 0x0600 // Windows Vista / Server 2008 or greater + InitializeCriticalSectionEx(mutex, 0 /*dwSpinCount*/, 0 /*Flags*/); +#else + InitializeCriticalSection(mutex); +#endif + return 0; +} + +static INLINE int pthread_mutex_trylock(pthread_mutex_t *const mutex) { + return TryEnterCriticalSection(mutex) ? 0 : EBUSY; +} + +static INLINE int pthread_mutex_lock(pthread_mutex_t *const mutex) { + EnterCriticalSection(mutex); + return 0; +} + +static INLINE int pthread_mutex_unlock(pthread_mutex_t *const mutex) { + LeaveCriticalSection(mutex); + return 0; +} + +static INLINE int pthread_mutex_destroy(pthread_mutex_t *const mutex) { + DeleteCriticalSection(mutex); + return 0; +} + +// Condition +static INLINE int pthread_cond_destroy(pthread_cond_t *const condition) { + int ok = 1; +#ifdef USE_WINDOWS_CONDITION_VARIABLE + (void)condition; +#else + ok &= (CloseHandle(condition->waiting_sem_) != 0); + ok &= (CloseHandle(condition->received_sem_) != 0); + ok &= (CloseHandle(condition->signal_event_) != 0); +#endif + return !ok; +} + +static INLINE int pthread_cond_init(pthread_cond_t *const condition, + void *cond_attr) { + (void)cond_attr; +#ifdef USE_WINDOWS_CONDITION_VARIABLE + InitializeConditionVariable(condition); +#else + condition->waiting_sem_ = CreateSemaphore(NULL, 0, MAX_DECODE_THREADS, NULL); + condition->received_sem_ = CreateSemaphore(NULL, 0, MAX_DECODE_THREADS, NULL); + condition->signal_event_ = CreateEvent(NULL, FALSE, FALSE, NULL); + if (condition->waiting_sem_ == NULL || condition->received_sem_ == NULL || + condition->signal_event_ == NULL) { + pthread_cond_destroy(condition); + return 1; + } +#endif + return 0; +} + +static INLINE int pthread_cond_signal(pthread_cond_t *const condition) { + int ok = 1; +#ifdef USE_WINDOWS_CONDITION_VARIABLE + WakeConditionVariable(condition); +#else + if (WaitForSingleObject(condition->waiting_sem_, 0) == WAIT_OBJECT_0) { + // a thread is waiting in pthread_cond_wait: allow it to be notified + ok = SetEvent(condition->signal_event_); + // wait until the event is consumed so the signaler cannot consume + // the event via its own pthread_cond_wait. + ok &= (WaitForSingleObject(condition->received_sem_, INFINITE) != + WAIT_OBJECT_0); + } +#endif + return !ok; +} + +static INLINE int pthread_cond_wait(pthread_cond_t *const condition, + pthread_mutex_t *const mutex) { + int ok; +#ifdef USE_WINDOWS_CONDITION_VARIABLE + ok = SleepConditionVariableCS(condition, mutex, INFINITE); +#else + // note that there is a consumer available so the signal isn't dropped in + // pthread_cond_signal + if (!ReleaseSemaphore(condition->waiting_sem_, 1, NULL)) return 1; + // now unlock the mutex so pthread_cond_signal may be issued + pthread_mutex_unlock(mutex); + ok = (WaitForSingleObject(condition->signal_event_, INFINITE) == + WAIT_OBJECT_0); + ok &= ReleaseSemaphore(condition->received_sem_, 1, NULL); + pthread_mutex_lock(mutex); +#endif + return !ok; +} +#elif defined(__OS2__) +#define INCL_DOS +#include // NOLINT + +#include // NOLINT +#include // NOLINT +#include // NOLINT + +#define pthread_t TID +#define pthread_mutex_t HMTX + +typedef struct { + HEV event_sem_; + HEV ack_sem_; + volatile unsigned wait_count_; +} pthread_cond_t; + +//------------------------------------------------------------------------------ +// simplistic pthread emulation layer + +#define THREADFN void * +#define THREAD_RETURN(val) (val) + +typedef struct { + void *(*start_)(void *); + void *arg_; +} thread_arg; + +static void thread_start(void *arg) { + thread_arg targ = *(thread_arg *)arg; + free(arg); + + targ.start_(targ.arg_); +} + +static INLINE int pthread_create(pthread_t *const thread, const void *attr, + void *(*start)(void *), void *arg) { + int tid; + thread_arg *targ = (thread_arg *)malloc(sizeof(*targ)); + if (targ == NULL) return 1; + + (void)attr; + + targ->start_ = start; + targ->arg_ = arg; + tid = (pthread_t)_beginthread(thread_start, NULL, 1024 * 1024, targ); + if (tid == -1) { + free(targ); + return 1; + } + + *thread = tid; + return 0; +} + +static INLINE int pthread_join(pthread_t thread, void **value_ptr) { + (void)value_ptr; + return DosWaitThread(&thread, DCWW_WAIT) != 0; +} + +// Mutex +static INLINE int pthread_mutex_init(pthread_mutex_t *const mutex, + void *mutexattr) { + (void)mutexattr; + return DosCreateMutexSem(NULL, mutex, 0, FALSE) != 0; +} + +static INLINE int pthread_mutex_trylock(pthread_mutex_t *const mutex) { + return DosRequestMutexSem(*mutex, SEM_IMMEDIATE_RETURN) == 0 ? 0 : EBUSY; +} + +static INLINE int pthread_mutex_lock(pthread_mutex_t *const mutex) { + return DosRequestMutexSem(*mutex, SEM_INDEFINITE_WAIT) != 0; +} + +static INLINE int pthread_mutex_unlock(pthread_mutex_t *const mutex) { + return DosReleaseMutexSem(*mutex) != 0; +} + +static INLINE int pthread_mutex_destroy(pthread_mutex_t *const mutex) { + return DosCloseMutexSem(*mutex) != 0; +} + +// Condition +static INLINE int pthread_cond_destroy(pthread_cond_t *const condition) { + int ok = 1; + ok &= DosCloseEventSem(condition->event_sem_) == 0; + ok &= DosCloseEventSem(condition->ack_sem_) == 0; + return !ok; +} + +static INLINE int pthread_cond_init(pthread_cond_t *const condition, + void *cond_attr) { + int ok = 1; + (void)cond_attr; + + ok &= + DosCreateEventSem(NULL, &condition->event_sem_, DCE_POSTONE, FALSE) == 0; + ok &= DosCreateEventSem(NULL, &condition->ack_sem_, DCE_POSTONE, FALSE) == 0; + if (!ok) { + pthread_cond_destroy(condition); + return 1; + } + condition->wait_count_ = 0; + return 0; +} + +static INLINE int pthread_cond_signal(pthread_cond_t *const condition) { + int ok = 1; + + if (!__atomic_cmpxchg32(&condition->wait_count_, 0, 0)) { + ok &= DosPostEventSem(condition->event_sem_) == 0; + ok &= DosWaitEventSem(condition->ack_sem_, SEM_INDEFINITE_WAIT) == 0; + } + + return !ok; +} + +static INLINE int pthread_cond_broadcast(pthread_cond_t *const condition) { + int ok = 1; + + while (!__atomic_cmpxchg32(&condition->wait_count_, 0, 0)) + ok &= pthread_cond_signal(condition) == 0; + + return !ok; +} + +static INLINE int pthread_cond_wait(pthread_cond_t *const condition, + pthread_mutex_t *const mutex) { + int ok = 1; + + __atomic_increment(&condition->wait_count_); + + ok &= pthread_mutex_unlock(mutex) == 0; + + ok &= DosWaitEventSem(condition->event_sem_, SEM_INDEFINITE_WAIT) == 0; + + __atomic_decrement(&condition->wait_count_); + + ok &= DosPostEventSem(condition->ack_sem_) == 0; + + pthread_mutex_lock(mutex); + + return !ok; +} +#else // _WIN32 +#include // NOLINT +#define THREADFN void * +#define THREAD_RETURN(val) val +#endif + +#endif // CONFIG_MULTITHREAD + +// State of the worker thread object +typedef enum { + NOT_OK = 0, // object is unusable + OK, // ready to work + WORK // busy finishing the current task +} VPxWorkerStatus; + +// Function to be called by the worker thread. Takes two opaque pointers as +// arguments (data1 and data2), and should return false in case of error. +typedef int (*VPxWorkerHook)(void *, void *); + +// Platform-dependent implementation details for the worker. +typedef struct VPxWorkerImpl VPxWorkerImpl; + +// Synchronization object used to launch job in the worker thread +typedef struct { + VPxWorkerImpl *impl_; + VPxWorkerStatus status_; + VPxWorkerHook hook; // hook to call + void *data1; // first argument passed to 'hook' + void *data2; // second argument passed to 'hook' + int had_error; // return value of the last call to 'hook' +} VPxWorker; + +// The interface for all thread-worker related functions. All these functions +// must be implemented. +typedef struct { + // Must be called first, before any other method. + void (*init)(VPxWorker *const worker); + // Must be called to initialize the object and spawn the thread. Re-entrant. + // Will potentially launch the thread. Returns false in case of error. + int (*reset)(VPxWorker *const worker); + // Makes sure the previous work is finished. Returns true if worker->had_error + // was not set and no error condition was triggered by the working thread. + int (*sync)(VPxWorker *const worker); + // Triggers the thread to call hook() with data1 and data2 arguments. These + // hook/data1/data2 values can be changed at any time before calling this + // function, but not be changed afterward until the next call to Sync(). + void (*launch)(VPxWorker *const worker); + // This function is similar to launch() except that it calls the + // hook directly instead of using a thread. Convenient to bypass the thread + // mechanism while still using the VPxWorker structs. sync() must + // still be called afterward (for error reporting). + void (*execute)(VPxWorker *const worker); + // Kill the thread and terminate the object. To use the object again, one + // must call reset() again. + void (*end)(VPxWorker *const worker); +} VPxWorkerInterface; + +// Install a new set of threading functions, overriding the defaults. This +// should be done before any workers are started, i.e., before any encoding or +// decoding takes place. The contents of the interface struct are copied, it +// is safe to free the corresponding memory after this call. This function is +// not thread-safe. Return false in case of invalid pointer or methods. +int vpx_set_worker_interface(const VPxWorkerInterface *const winterface); + +// Retrieve the currently set thread worker interface. +const VPxWorkerInterface *vpx_get_worker_interface(void); + +//------------------------------------------------------------------------------ + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VPX_THREAD_H_ diff --git a/vpx_util/vpx_util.mk b/vpx_util/vpx_util.mk new file mode 100644 index 0000000..86d3ece --- /dev/null +++ b/vpx_util/vpx_util.mk @@ -0,0 +1,17 @@ +## +## Copyright (c) 2015 The WebM project authors. All Rights Reserved. +## +## Use of this source code is governed by a BSD-style license +## that can be found in the LICENSE file in the root of the source +## tree. An additional intellectual property rights grant can be found +## in the file PATENTS. All contributing project authors may +## be found in the AUTHORS file in the root of the source tree. +## + +UTIL_SRCS-yes += vpx_atomics.h +UTIL_SRCS-yes += vpx_util.mk +UTIL_SRCS-yes += vpx_thread.c +UTIL_SRCS-yes += vpx_thread.h +UTIL_SRCS-yes += endian_inl.h +UTIL_SRCS-yes += vpx_write_yuv_frame.h +UTIL_SRCS-yes += vpx_write_yuv_frame.c diff --git a/vpx_util/vpx_write_yuv_frame.c b/vpx_util/vpx_write_yuv_frame.c new file mode 100644 index 0000000..ab68558 --- /dev/null +++ b/vpx_util/vpx_write_yuv_frame.c @@ -0,0 +1,46 @@ +/* + * Copyright (c) 2015 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "vpx_dsp/skin_detection.h" +#include "vpx_util/vpx_write_yuv_frame.h" + +void vpx_write_yuv_frame(FILE *yuv_file, YV12_BUFFER_CONFIG *s) { +#if defined(OUTPUT_YUV_SRC) || defined(OUTPUT_YUV_DENOISED) || \ + defined(OUTPUT_YUV_SKINMAP) + + unsigned char *src = s->y_buffer; + int h = s->y_crop_height; + + do { + fwrite(src, s->y_width, 1, yuv_file); + src += s->y_stride; + } while (--h); + + src = s->u_buffer; + h = s->uv_crop_height; + + do { + fwrite(src, s->uv_width, 1, yuv_file); + src += s->uv_stride; + } while (--h); + + src = s->v_buffer; + h = s->uv_crop_height; + + do { + fwrite(src, s->uv_width, 1, yuv_file); + src += s->uv_stride; + } while (--h); + +#else + (void)yuv_file; + (void)s; +#endif +} diff --git a/vpx_util/vpx_write_yuv_frame.h b/vpx_util/vpx_write_yuv_frame.h new file mode 100644 index 0000000..1cb7029 --- /dev/null +++ b/vpx_util/vpx_write_yuv_frame.h @@ -0,0 +1,27 @@ +/* + * Copyright (c) 2015 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VPX_UTIL_VPX_WRITE_YUV_FRAME_H_ +#define VPX_UTIL_VPX_WRITE_YUV_FRAME_H_ + +#include +#include "vpx_scale/yv12config.h" + +#ifdef __cplusplus +extern "C" { +#endif + +void vpx_write_yuv_frame(FILE *yuv_file, YV12_BUFFER_CONFIG *s); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VPX_UTIL_VPX_WRITE_YUV_FRAME_H_ diff --git a/vpxdec.c b/vpxdec.c new file mode 100644 index 0000000..ff20e6a --- /dev/null +++ b/vpxdec.c @@ -0,0 +1,1084 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include +#include +#include +#include +#include + +#include "./vpx_config.h" + +#if CONFIG_LIBYUV +#include "third_party/libyuv/include/libyuv/scale.h" +#endif + +#include "./args.h" +#include "./ivfdec.h" + +#include "vpx/vpx_decoder.h" +#include "vpx_ports/mem_ops.h" +#include "vpx_ports/vpx_timer.h" + +#if CONFIG_VP8_DECODER || CONFIG_VP9_DECODER +#include "vpx/vp8dx.h" +#endif + +#include "./md5_utils.h" + +#include "./tools_common.h" +#if CONFIG_WEBM_IO +#include "./webmdec.h" +#endif +#include "./y4menc.h" + +static const char *exec_name; + +struct VpxDecInputContext { + struct VpxInputContext *vpx_input_ctx; + struct WebmInputContext *webm_ctx; +}; + +static const arg_def_t help = + ARG_DEF(NULL, "help", 0, "Show usage options and exit"); +static const arg_def_t looparg = + ARG_DEF(NULL, "loops", 1, "Number of times to decode the file"); +static const arg_def_t codecarg = ARG_DEF(NULL, "codec", 1, "Codec to use"); +static const arg_def_t use_yv12 = + ARG_DEF(NULL, "yv12", 0, "Output raw YV12 frames"); +static const arg_def_t use_i420 = + ARG_DEF(NULL, "i420", 0, "Output raw I420 frames"); +static const arg_def_t flipuvarg = + ARG_DEF(NULL, "flipuv", 0, "Flip the chroma planes in the output"); +static const arg_def_t rawvideo = + ARG_DEF(NULL, "rawvideo", 0, "Output raw YUV frames"); +static const arg_def_t noblitarg = + ARG_DEF(NULL, "noblit", 0, "Don't process the decoded frames"); +static const arg_def_t progressarg = + ARG_DEF(NULL, "progress", 0, "Show progress after each frame decodes"); +static const arg_def_t limitarg = + ARG_DEF(NULL, "limit", 1, "Stop decoding after n frames"); +static const arg_def_t skiparg = + ARG_DEF(NULL, "skip", 1, "Skip the first n input frames"); +static const arg_def_t postprocarg = + ARG_DEF(NULL, "postproc", 0, "Postprocess decoded frames"); +static const arg_def_t summaryarg = + ARG_DEF(NULL, "summary", 0, "Show timing summary"); +static const arg_def_t outputfile = + ARG_DEF("o", "output", 1, "Output file name pattern (see below)"); +static const arg_def_t threadsarg = + ARG_DEF("t", "threads", 1, "Max threads to use"); +static const arg_def_t frameparallelarg = + ARG_DEF(NULL, "frame-parallel", 0, "Frame parallel decode (ignored)"); +static const arg_def_t verbosearg = + ARG_DEF("v", "verbose", 0, "Show version string"); +static const arg_def_t error_concealment = + ARG_DEF(NULL, "error-concealment", 0, "Enable decoder error-concealment"); +static const arg_def_t scalearg = + ARG_DEF("S", "scale", 0, "Scale output frames uniformly"); +static const arg_def_t continuearg = + ARG_DEF("k", "keep-going", 0, "(debug) Continue decoding after error"); +static const arg_def_t fb_arg = + ARG_DEF(NULL, "frame-buffers", 1, "Number of frame buffers to use"); +static const arg_def_t md5arg = + ARG_DEF(NULL, "md5", 0, "Compute the MD5 sum of the decoded frame"); +#if CONFIG_VP9_HIGHBITDEPTH +static const arg_def_t outbitdeptharg = + ARG_DEF(NULL, "output-bit-depth", 1, "Output bit-depth for decoded frames"); +#endif +static const arg_def_t svcdecodingarg = ARG_DEF( + NULL, "svc-decode-layer", 1, "Decode SVC stream up to given spatial layer"); +static const arg_def_t framestatsarg = + ARG_DEF(NULL, "framestats", 1, "Output per-frame stats (.csv format)"); + +static const arg_def_t *all_args[] = { + &help, &codecarg, &use_yv12, + &use_i420, &flipuvarg, &rawvideo, + &noblitarg, &progressarg, &limitarg, + &skiparg, &postprocarg, &summaryarg, + &outputfile, &threadsarg, &frameparallelarg, + &verbosearg, &scalearg, &fb_arg, + &md5arg, &error_concealment, &continuearg, +#if CONFIG_VP9_HIGHBITDEPTH + &outbitdeptharg, +#endif + &svcdecodingarg, &framestatsarg, NULL +}; + +#if CONFIG_VP8_DECODER +static const arg_def_t addnoise_level = + ARG_DEF(NULL, "noise-level", 1, "Enable VP8 postproc add noise"); +static const arg_def_t deblock = + ARG_DEF(NULL, "deblock", 0, "Enable VP8 deblocking"); +static const arg_def_t demacroblock_level = ARG_DEF( + NULL, "demacroblock-level", 1, "Enable VP8 demacroblocking, w/ level"); +static const arg_def_t mfqe = + ARG_DEF(NULL, "mfqe", 0, "Enable multiframe quality enhancement"); + +static const arg_def_t *vp8_pp_args[] = { &addnoise_level, &deblock, + &demacroblock_level, &mfqe, NULL }; +#endif + +#if CONFIG_LIBYUV +static INLINE int libyuv_scale(vpx_image_t *src, vpx_image_t *dst, + FilterModeEnum mode) { +#if CONFIG_VP9_HIGHBITDEPTH + if (src->fmt == VPX_IMG_FMT_I42016) { + assert(dst->fmt == VPX_IMG_FMT_I42016); + return I420Scale_16( + (uint16_t *)src->planes[VPX_PLANE_Y], src->stride[VPX_PLANE_Y] / 2, + (uint16_t *)src->planes[VPX_PLANE_U], src->stride[VPX_PLANE_U] / 2, + (uint16_t *)src->planes[VPX_PLANE_V], src->stride[VPX_PLANE_V] / 2, + src->d_w, src->d_h, (uint16_t *)dst->planes[VPX_PLANE_Y], + dst->stride[VPX_PLANE_Y] / 2, (uint16_t *)dst->planes[VPX_PLANE_U], + dst->stride[VPX_PLANE_U] / 2, (uint16_t *)dst->planes[VPX_PLANE_V], + dst->stride[VPX_PLANE_V] / 2, dst->d_w, dst->d_h, mode); + } +#endif + assert(src->fmt == VPX_IMG_FMT_I420); + assert(dst->fmt == VPX_IMG_FMT_I420); + return I420Scale(src->planes[VPX_PLANE_Y], src->stride[VPX_PLANE_Y], + src->planes[VPX_PLANE_U], src->stride[VPX_PLANE_U], + src->planes[VPX_PLANE_V], src->stride[VPX_PLANE_V], src->d_w, + src->d_h, dst->planes[VPX_PLANE_Y], dst->stride[VPX_PLANE_Y], + dst->planes[VPX_PLANE_U], dst->stride[VPX_PLANE_U], + dst->planes[VPX_PLANE_V], dst->stride[VPX_PLANE_V], dst->d_w, + dst->d_h, mode); +} +#endif +void show_help(FILE *fout, int shorthelp) { + int i; + + fprintf(fout, "Usage: %s filename\n\n", exec_name); + + if (shorthelp) { + fprintf(fout, "Use --help to see the full list of options.\n"); + return; + } + + fprintf(fout, "Options:\n"); + arg_show_usage(fout, all_args); +#if CONFIG_VP8_DECODER + fprintf(fout, "\nVP8 Postprocessing Options:\n"); + arg_show_usage(fout, vp8_pp_args); +#endif + fprintf(fout, + "\nOutput File Patterns:\n\n" + " The -o argument specifies the name of the file(s) to " + "write to. If the\n argument does not include any escape " + "characters, the output will be\n written to a single file. " + "Otherwise, the filename will be calculated by\n expanding " + "the following escape characters:\n"); + fprintf(fout, + "\n\t%%w - Frame width" + "\n\t%%h - Frame height" + "\n\t%% - Frame number, zero padded to places (1..9)" + "\n\n Pattern arguments are only supported in conjunction " + "with the --yv12 and\n --i420 options. If the -o option is " + "not specified, the output will be\n directed to stdout.\n"); + fprintf(fout, "\nIncluded decoders:\n\n"); + + for (i = 0; i < get_vpx_decoder_count(); ++i) { + const VpxInterface *const decoder = get_vpx_decoder_by_index(i); + fprintf(fout, " %-6s - %s\n", decoder->name, + vpx_codec_iface_name(decoder->codec_interface())); + } +} + +void usage_exit(void) { + show_help(stderr, 1); + exit(EXIT_FAILURE); +} + +static int raw_read_frame(FILE *infile, uint8_t **buffer, size_t *bytes_read, + size_t *buffer_size) { + char raw_hdr[RAW_FRAME_HDR_SZ]; + size_t frame_size = 0; + + if (fread(raw_hdr, RAW_FRAME_HDR_SZ, 1, infile) != 1) { + if (!feof(infile)) warn("Failed to read RAW frame size\n"); + } else { + const size_t kCorruptFrameThreshold = 256 * 1024 * 1024; + const size_t kFrameTooSmallThreshold = 256 * 1024; + frame_size = mem_get_le32(raw_hdr); + + if (frame_size > kCorruptFrameThreshold) { + warn("Read invalid frame size (%u)\n", (unsigned int)frame_size); + frame_size = 0; + } + + if (frame_size < kFrameTooSmallThreshold) { + warn("Warning: Read invalid frame size (%u) - not a raw file?\n", + (unsigned int)frame_size); + } + + if (frame_size > *buffer_size) { + uint8_t *new_buf = realloc(*buffer, 2 * frame_size); + if (new_buf) { + *buffer = new_buf; + *buffer_size = 2 * frame_size; + } else { + warn("Failed to allocate compressed data buffer\n"); + frame_size = 0; + } + } + } + + if (!feof(infile)) { + if (fread(*buffer, 1, frame_size, infile) != frame_size) { + warn("Failed to read full frame\n"); + return 1; + } + *bytes_read = frame_size; + } + + return 0; +} + +static int read_frame(struct VpxDecInputContext *input, uint8_t **buf, + size_t *bytes_in_buffer, size_t *buffer_size) { + switch (input->vpx_input_ctx->file_type) { +#if CONFIG_WEBM_IO + case FILE_TYPE_WEBM: + return webm_read_frame(input->webm_ctx, buf, bytes_in_buffer); +#endif + case FILE_TYPE_RAW: + return raw_read_frame(input->vpx_input_ctx->file, buf, bytes_in_buffer, + buffer_size); + case FILE_TYPE_IVF: + return ivf_read_frame(input->vpx_input_ctx->file, buf, bytes_in_buffer, + buffer_size); + default: return 1; + } +} + +static void update_image_md5(const vpx_image_t *img, const int planes[3], + MD5Context *md5) { + int i, y; + + for (i = 0; i < 3; ++i) { + const int plane = planes[i]; + const unsigned char *buf = img->planes[plane]; + const int stride = img->stride[plane]; + const int w = vpx_img_plane_width(img, plane) * + ((img->fmt & VPX_IMG_FMT_HIGHBITDEPTH) ? 2 : 1); + const int h = vpx_img_plane_height(img, plane); + + for (y = 0; y < h; ++y) { + MD5Update(md5, buf, w); + buf += stride; + } + } +} + +static void write_image_file(const vpx_image_t *img, const int planes[3], + FILE *file) { + int i, y; +#if CONFIG_VP9_HIGHBITDEPTH + const int bytes_per_sample = ((img->fmt & VPX_IMG_FMT_HIGHBITDEPTH) ? 2 : 1); +#else + const int bytes_per_sample = 1; +#endif + + for (i = 0; i < 3; ++i) { + const int plane = planes[i]; + const unsigned char *buf = img->planes[plane]; + const int stride = img->stride[plane]; + const int w = vpx_img_plane_width(img, plane); + const int h = vpx_img_plane_height(img, plane); + + for (y = 0; y < h; ++y) { + fwrite(buf, bytes_per_sample, w, file); + buf += stride; + } + } +} + +static int file_is_raw(struct VpxInputContext *input) { + uint8_t buf[32]; + int is_raw = 0; + vpx_codec_stream_info_t si; + + si.sz = sizeof(si); + + if (fread(buf, 1, 32, input->file) == 32) { + int i; + + if (mem_get_le32(buf) < 256 * 1024 * 1024) { + for (i = 0; i < get_vpx_decoder_count(); ++i) { + const VpxInterface *const decoder = get_vpx_decoder_by_index(i); + if (!vpx_codec_peek_stream_info(decoder->codec_interface(), buf + 4, + 32 - 4, &si)) { + is_raw = 1; + input->fourcc = decoder->fourcc; + input->width = si.w; + input->height = si.h; + input->framerate.numerator = 30; + input->framerate.denominator = 1; + break; + } + } + } + } + + rewind(input->file); + return is_raw; +} + +static void show_progress(int frame_in, int frame_out, uint64_t dx_time) { + fprintf(stderr, + "%d decoded frames/%d showed frames in %" PRId64 " us (%.2f fps)\r", + frame_in, frame_out, dx_time, + (double)frame_out * 1000000.0 / (double)dx_time); +} + +struct ExternalFrameBuffer { + uint8_t *data; + size_t size; + int in_use; +}; + +struct ExternalFrameBufferList { + int num_external_frame_buffers; + struct ExternalFrameBuffer *ext_fb; +}; + +// Callback used by libvpx to request an external frame buffer. |cb_priv| +// Application private data passed into the set function. |min_size| is the +// minimum size in bytes needed to decode the next frame. |fb| pointer to the +// frame buffer. +static int get_vp9_frame_buffer(void *cb_priv, size_t min_size, + vpx_codec_frame_buffer_t *fb) { + int i; + struct ExternalFrameBufferList *const ext_fb_list = + (struct ExternalFrameBufferList *)cb_priv; + if (ext_fb_list == NULL) return -1; + + // Find a free frame buffer. + for (i = 0; i < ext_fb_list->num_external_frame_buffers; ++i) { + if (!ext_fb_list->ext_fb[i].in_use) break; + } + + if (i == ext_fb_list->num_external_frame_buffers) return -1; + + if (ext_fb_list->ext_fb[i].size < min_size) { + free(ext_fb_list->ext_fb[i].data); + ext_fb_list->ext_fb[i].data = (uint8_t *)calloc(min_size, sizeof(uint8_t)); + if (!ext_fb_list->ext_fb[i].data) return -1; + + ext_fb_list->ext_fb[i].size = min_size; + } + + fb->data = ext_fb_list->ext_fb[i].data; + fb->size = ext_fb_list->ext_fb[i].size; + ext_fb_list->ext_fb[i].in_use = 1; + + // Set the frame buffer's private data to point at the external frame buffer. + fb->priv = &ext_fb_list->ext_fb[i]; + return 0; +} + +// Callback used by libvpx when there are no references to the frame buffer. +// |cb_priv| user private data passed into the set function. |fb| pointer +// to the frame buffer. +static int release_vp9_frame_buffer(void *cb_priv, + vpx_codec_frame_buffer_t *fb) { + struct ExternalFrameBuffer *const ext_fb = + (struct ExternalFrameBuffer *)fb->priv; + (void)cb_priv; + ext_fb->in_use = 0; + return 0; +} + +static void generate_filename(const char *pattern, char *out, size_t q_len, + unsigned int d_w, unsigned int d_h, + unsigned int frame_in) { + const char *p = pattern; + char *q = out; + + do { + char *next_pat = strchr(p, '%'); + + if (p == next_pat) { + size_t pat_len; + + /* parse the pattern */ + q[q_len - 1] = '\0'; + switch (p[1]) { + case 'w': snprintf(q, q_len - 1, "%d", d_w); break; + case 'h': snprintf(q, q_len - 1, "%d", d_h); break; + case '1': snprintf(q, q_len - 1, "%d", frame_in); break; + case '2': snprintf(q, q_len - 1, "%02d", frame_in); break; + case '3': snprintf(q, q_len - 1, "%03d", frame_in); break; + case '4': snprintf(q, q_len - 1, "%04d", frame_in); break; + case '5': snprintf(q, q_len - 1, "%05d", frame_in); break; + case '6': snprintf(q, q_len - 1, "%06d", frame_in); break; + case '7': snprintf(q, q_len - 1, "%07d", frame_in); break; + case '8': snprintf(q, q_len - 1, "%08d", frame_in); break; + case '9': snprintf(q, q_len - 1, "%09d", frame_in); break; + default: die("Unrecognized pattern %%%c\n", p[1]); break; + } + + pat_len = strlen(q); + if (pat_len >= q_len - 1) die("Output filename too long.\n"); + q += pat_len; + p += 2; + q_len -= pat_len; + } else { + size_t copy_len; + + /* copy the next segment */ + if (!next_pat) + copy_len = strlen(p); + else + copy_len = next_pat - p; + + if (copy_len >= q_len - 1) die("Output filename too long.\n"); + + memcpy(q, p, copy_len); + q[copy_len] = '\0'; + q += copy_len; + p += copy_len; + q_len -= copy_len; + } + } while (*p); +} + +static int is_single_file(const char *outfile_pattern) { + const char *p = outfile_pattern; + + do { + p = strchr(p, '%'); + if (p && p[1] >= '1' && p[1] <= '9') + return 0; // pattern contains sequence number, so it's not unique + if (p) p++; + } while (p); + + return 1; +} + +static void print_md5(unsigned char digest[16], const char *filename) { + int i; + + for (i = 0; i < 16; ++i) printf("%02x", digest[i]); + printf(" %s\n", filename); +} + +static FILE *open_outfile(const char *name) { + if (strcmp("-", name) == 0) { + set_binary_mode(stdout); + return stdout; + } else { + FILE *file = fopen(name, "wb"); + if (!file) fatal("Failed to open output file '%s'", name); + return file; + } +} + +#if CONFIG_VP9_HIGHBITDEPTH +static int img_shifted_realloc_required(const vpx_image_t *img, + const vpx_image_t *shifted, + vpx_img_fmt_t required_fmt) { + return img->d_w != shifted->d_w || img->d_h != shifted->d_h || + required_fmt != shifted->fmt; +} +#endif + +static int main_loop(int argc, const char **argv_) { + vpx_codec_ctx_t decoder; + char *fn = NULL; + int i; + int ret = EXIT_FAILURE; + uint8_t *buf = NULL; + size_t bytes_in_buffer = 0, buffer_size = 0; + FILE *infile; + int frame_in = 0, frame_out = 0, flipuv = 0, noblit = 0; + int do_md5 = 0, progress = 0; + int stop_after = 0, postproc = 0, summary = 0, quiet = 1; + int arg_skip = 0; + int ec_enabled = 0; + int keep_going = 0; + const VpxInterface *interface = NULL; + const VpxInterface *fourcc_interface = NULL; + uint64_t dx_time = 0; + struct arg arg; + char **argv, **argi, **argj; + + int single_file; + int use_y4m = 1; + int opt_yv12 = 0; + int opt_i420 = 0; + vpx_codec_dec_cfg_t cfg = { 0, 0, 0 }; +#if CONFIG_VP9_HIGHBITDEPTH + unsigned int output_bit_depth = 0; +#endif + int svc_decoding = 0; + int svc_spatial_layer = 0; +#if CONFIG_VP8_DECODER + vp8_postproc_cfg_t vp8_pp_cfg = { 0, 0, 0 }; +#endif + int frames_corrupted = 0; + int dec_flags = 0; + int do_scale = 0; + vpx_image_t *scaled_img = NULL; +#if CONFIG_VP9_HIGHBITDEPTH + vpx_image_t *img_shifted = NULL; +#endif + int frame_avail, got_data, flush_decoder = 0; + int num_external_frame_buffers = 0; + struct ExternalFrameBufferList ext_fb_list = { 0, NULL }; + + const char *outfile_pattern = NULL; + char outfile_name[PATH_MAX] = { 0 }; + FILE *outfile = NULL; + + FILE *framestats_file = NULL; + + MD5Context md5_ctx; + unsigned char md5_digest[16]; + + struct VpxDecInputContext input = { NULL, NULL }; + struct VpxInputContext vpx_input_ctx; +#if CONFIG_WEBM_IO + struct WebmInputContext webm_ctx; + memset(&(webm_ctx), 0, sizeof(webm_ctx)); + input.webm_ctx = &webm_ctx; +#endif + input.vpx_input_ctx = &vpx_input_ctx; + + /* Parse command line */ + exec_name = argv_[0]; + argv = argv_dup(argc - 1, argv_ + 1); + + for (argi = argj = argv; (*argj = *argi); argi += arg.argv_step) { + memset(&arg, 0, sizeof(arg)); + arg.argv_step = 1; + + if (arg_match(&arg, &help, argi)) { + show_help(stdout, 0); + exit(EXIT_SUCCESS); + } else if (arg_match(&arg, &codecarg, argi)) { + interface = get_vpx_decoder_by_name(arg.val); + if (!interface) + die("Error: Unrecognized argument (%s) to --codec\n", arg.val); + } else if (arg_match(&arg, &looparg, argi)) { + // no-op + } else if (arg_match(&arg, &outputfile, argi)) + outfile_pattern = arg.val; + else if (arg_match(&arg, &use_yv12, argi)) { + use_y4m = 0; + flipuv = 1; + opt_yv12 = 1; + } else if (arg_match(&arg, &use_i420, argi)) { + use_y4m = 0; + flipuv = 0; + opt_i420 = 1; + } else if (arg_match(&arg, &rawvideo, argi)) { + use_y4m = 0; + } else if (arg_match(&arg, &flipuvarg, argi)) + flipuv = 1; + else if (arg_match(&arg, &noblitarg, argi)) + noblit = 1; + else if (arg_match(&arg, &progressarg, argi)) + progress = 1; + else if (arg_match(&arg, &limitarg, argi)) + stop_after = arg_parse_uint(&arg); + else if (arg_match(&arg, &skiparg, argi)) + arg_skip = arg_parse_uint(&arg); + else if (arg_match(&arg, &postprocarg, argi)) + postproc = 1; + else if (arg_match(&arg, &md5arg, argi)) + do_md5 = 1; + else if (arg_match(&arg, &summaryarg, argi)) + summary = 1; + else if (arg_match(&arg, &threadsarg, argi)) + cfg.threads = arg_parse_uint(&arg); +#if CONFIG_VP9_DECODER + else if (arg_match(&arg, &frameparallelarg, argi)) { + /* ignored for compatibility */ + } +#endif + else if (arg_match(&arg, &verbosearg, argi)) + quiet = 0; + else if (arg_match(&arg, &scalearg, argi)) + do_scale = 1; + else if (arg_match(&arg, &fb_arg, argi)) + num_external_frame_buffers = arg_parse_uint(&arg); + else if (arg_match(&arg, &continuearg, argi)) + keep_going = 1; +#if CONFIG_VP9_HIGHBITDEPTH + else if (arg_match(&arg, &outbitdeptharg, argi)) { + output_bit_depth = arg_parse_uint(&arg); + } +#endif + else if (arg_match(&arg, &svcdecodingarg, argi)) { + svc_decoding = 1; + svc_spatial_layer = arg_parse_uint(&arg); + } else if (arg_match(&arg, &framestatsarg, argi)) { + framestats_file = fopen(arg.val, "w"); + if (!framestats_file) { + die("Error: Could not open --framestats file (%s) for writing.\n", + arg.val); + } + } +#if CONFIG_VP8_DECODER + else if (arg_match(&arg, &addnoise_level, argi)) { + postproc = 1; + vp8_pp_cfg.post_proc_flag |= VP8_ADDNOISE; + vp8_pp_cfg.noise_level = arg_parse_uint(&arg); + } else if (arg_match(&arg, &demacroblock_level, argi)) { + postproc = 1; + vp8_pp_cfg.post_proc_flag |= VP8_DEMACROBLOCK; + vp8_pp_cfg.deblocking_level = arg_parse_uint(&arg); + } else if (arg_match(&arg, &deblock, argi)) { + postproc = 1; + vp8_pp_cfg.post_proc_flag |= VP8_DEBLOCK; + } else if (arg_match(&arg, &mfqe, argi)) { + postproc = 1; + vp8_pp_cfg.post_proc_flag |= VP8_MFQE; + } else if (arg_match(&arg, &error_concealment, argi)) { + ec_enabled = 1; + } +#endif // CONFIG_VP8_DECODER + else + argj++; + } + + /* Check for unrecognized options */ + for (argi = argv; *argi; argi++) + if (argi[0][0] == '-' && strlen(argi[0]) > 1) + die("Error: Unrecognized option %s\n", *argi); + + /* Handle non-option arguments */ + fn = argv[0]; + + if (!fn) { + free(argv); + fprintf(stderr, "No input file specified!\n"); + usage_exit(); + } + /* Open file */ + infile = strcmp(fn, "-") ? fopen(fn, "rb") : set_binary_mode(stdin); + + if (!infile) { + fatal("Failed to open input file '%s'", strcmp(fn, "-") ? fn : "stdin"); + } +#if CONFIG_OS_SUPPORT + /* Make sure we don't dump to the terminal, unless forced to with -o - */ + if (!outfile_pattern && isatty(fileno(stdout)) && !do_md5 && !noblit) { + fprintf(stderr, + "Not dumping raw video to your terminal. Use '-o -' to " + "override.\n"); + return EXIT_FAILURE; + } +#endif + input.vpx_input_ctx->file = infile; + if (file_is_ivf(input.vpx_input_ctx)) + input.vpx_input_ctx->file_type = FILE_TYPE_IVF; +#if CONFIG_WEBM_IO + else if (file_is_webm(input.webm_ctx, input.vpx_input_ctx)) + input.vpx_input_ctx->file_type = FILE_TYPE_WEBM; +#endif + else if (file_is_raw(input.vpx_input_ctx)) + input.vpx_input_ctx->file_type = FILE_TYPE_RAW; + else { + fprintf(stderr, "Unrecognized input file type.\n"); +#if !CONFIG_WEBM_IO + fprintf(stderr, "vpxdec was built without WebM container support.\n"); +#endif + return EXIT_FAILURE; + } + + outfile_pattern = outfile_pattern ? outfile_pattern : "-"; + single_file = is_single_file(outfile_pattern); + + if (!noblit && single_file) { + generate_filename(outfile_pattern, outfile_name, PATH_MAX, + vpx_input_ctx.width, vpx_input_ctx.height, 0); + if (do_md5) + MD5Init(&md5_ctx); + else + outfile = open_outfile(outfile_name); + } + + if (use_y4m && !noblit) { + if (!single_file) { + fprintf(stderr, + "YUV4MPEG2 not supported with output patterns," + " try --i420 or --yv12 or --rawvideo.\n"); + return EXIT_FAILURE; + } + +#if CONFIG_WEBM_IO + if (vpx_input_ctx.file_type == FILE_TYPE_WEBM) { + if (webm_guess_framerate(input.webm_ctx, input.vpx_input_ctx)) { + fprintf(stderr, + "Failed to guess framerate -- error parsing " + "webm file?\n"); + return EXIT_FAILURE; + } + } +#endif + } + + fourcc_interface = get_vpx_decoder_by_fourcc(vpx_input_ctx.fourcc); + if (interface && fourcc_interface && interface != fourcc_interface) + warn("Header indicates codec: %s\n", fourcc_interface->name); + else + interface = fourcc_interface; + + if (!interface) interface = get_vpx_decoder_by_index(0); + + dec_flags = (postproc ? VPX_CODEC_USE_POSTPROC : 0) | + (ec_enabled ? VPX_CODEC_USE_ERROR_CONCEALMENT : 0); + if (vpx_codec_dec_init(&decoder, interface->codec_interface(), &cfg, + dec_flags)) { + fprintf(stderr, "Failed to initialize decoder: %s\n", + vpx_codec_error(&decoder)); + goto fail2; + } + if (svc_decoding) { + if (vpx_codec_control(&decoder, VP9_DECODE_SVC_SPATIAL_LAYER, + svc_spatial_layer)) { + fprintf(stderr, "Failed to set spatial layer for svc decode: %s\n", + vpx_codec_error(&decoder)); + goto fail; + } + } + if (!quiet) fprintf(stderr, "%s\n", decoder.name); + +#if CONFIG_VP8_DECODER + if (vp8_pp_cfg.post_proc_flag && + vpx_codec_control(&decoder, VP8_SET_POSTPROC, &vp8_pp_cfg)) { + fprintf(stderr, "Failed to configure postproc: %s\n", + vpx_codec_error(&decoder)); + goto fail; + } +#endif + + if (arg_skip) fprintf(stderr, "Skipping first %d frames.\n", arg_skip); + while (arg_skip) { + if (read_frame(&input, &buf, &bytes_in_buffer, &buffer_size)) break; + arg_skip--; + } + + if (num_external_frame_buffers > 0) { + ext_fb_list.num_external_frame_buffers = num_external_frame_buffers; + ext_fb_list.ext_fb = (struct ExternalFrameBuffer *)calloc( + num_external_frame_buffers, sizeof(*ext_fb_list.ext_fb)); + if (vpx_codec_set_frame_buffer_functions(&decoder, get_vp9_frame_buffer, + release_vp9_frame_buffer, + &ext_fb_list)) { + fprintf(stderr, "Failed to configure external frame buffers: %s\n", + vpx_codec_error(&decoder)); + goto fail; + } + } + + frame_avail = 1; + got_data = 0; + + if (framestats_file) fprintf(framestats_file, "bytes,qp\n"); + + /* Decode file */ + while (frame_avail || got_data) { + vpx_codec_iter_t iter = NULL; + vpx_image_t *img; + struct vpx_usec_timer timer; + int corrupted = 0; + + frame_avail = 0; + if (!stop_after || frame_in < stop_after) { + if (!read_frame(&input, &buf, &bytes_in_buffer, &buffer_size)) { + frame_avail = 1; + frame_in++; + + vpx_usec_timer_start(&timer); + + if (vpx_codec_decode(&decoder, buf, (unsigned int)bytes_in_buffer, NULL, + 0)) { + const char *detail = vpx_codec_error_detail(&decoder); + warn("Failed to decode frame %d: %s", frame_in, + vpx_codec_error(&decoder)); + if (detail) warn("Additional information: %s", detail); + corrupted = 1; + if (!keep_going) goto fail; + } + + if (framestats_file) { + int qp; + if (vpx_codec_control(&decoder, VPXD_GET_LAST_QUANTIZER, &qp)) { + warn("Failed VPXD_GET_LAST_QUANTIZER: %s", + vpx_codec_error(&decoder)); + if (!keep_going) goto fail; + } + fprintf(framestats_file, "%d,%d\n", (int)bytes_in_buffer, qp); + } + + vpx_usec_timer_mark(&timer); + dx_time += vpx_usec_timer_elapsed(&timer); + } else { + flush_decoder = 1; + } + } else { + flush_decoder = 1; + } + + vpx_usec_timer_start(&timer); + + if (flush_decoder) { + // Flush the decoder in frame parallel decode. + if (vpx_codec_decode(&decoder, NULL, 0, NULL, 0)) { + warn("Failed to flush decoder: %s", vpx_codec_error(&decoder)); + corrupted = 1; + if (!keep_going) goto fail; + } + } + + got_data = 0; + if ((img = vpx_codec_get_frame(&decoder, &iter))) { + ++frame_out; + got_data = 1; + } + + vpx_usec_timer_mark(&timer); + dx_time += (unsigned int)vpx_usec_timer_elapsed(&timer); + + if (!corrupted && + vpx_codec_control(&decoder, VP8D_GET_FRAME_CORRUPTED, &corrupted)) { + warn("Failed VP8_GET_FRAME_CORRUPTED: %s", vpx_codec_error(&decoder)); + if (!keep_going) goto fail; + } + frames_corrupted += corrupted; + + if (progress) show_progress(frame_in, frame_out, dx_time); + + if (!noblit && img) { + const int PLANES_YUV[] = { VPX_PLANE_Y, VPX_PLANE_U, VPX_PLANE_V }; + const int PLANES_YVU[] = { VPX_PLANE_Y, VPX_PLANE_V, VPX_PLANE_U }; + const int *planes = flipuv ? PLANES_YVU : PLANES_YUV; + + if (do_scale) { + if (frame_out == 1) { + // If the output frames are to be scaled to a fixed display size then + // use the width and height specified in the container. If either of + // these is set to 0, use the display size set in the first frame + // header. If that is unavailable, use the raw decoded size of the + // first decoded frame. + int render_width = vpx_input_ctx.width; + int render_height = vpx_input_ctx.height; + if (!render_width || !render_height) { + int render_size[2]; + if (vpx_codec_control(&decoder, VP9D_GET_DISPLAY_SIZE, + render_size)) { + // As last resort use size of first frame as display size. + render_width = img->d_w; + render_height = img->d_h; + } else { + render_width = render_size[0]; + render_height = render_size[1]; + } + } + scaled_img = + vpx_img_alloc(NULL, img->fmt, render_width, render_height, 16); + scaled_img->bit_depth = img->bit_depth; + } + + if (img->d_w != scaled_img->d_w || img->d_h != scaled_img->d_h) { +#if CONFIG_LIBYUV + libyuv_scale(img, scaled_img, kFilterBox); + img = scaled_img; +#else + fprintf(stderr, + "Failed to scale output frame: %s.\n" + "Scaling is disabled in this configuration. " + "To enable scaling, configure with --enable-libyuv\n", + vpx_codec_error(&decoder)); + goto fail; +#endif + } + } +#if CONFIG_VP9_HIGHBITDEPTH + // Default to codec bit depth if output bit depth not set + if (!output_bit_depth && single_file && !do_md5) { + output_bit_depth = img->bit_depth; + } + // Shift up or down if necessary + if (output_bit_depth != 0 && output_bit_depth != img->bit_depth) { + const vpx_img_fmt_t shifted_fmt = + output_bit_depth == 8 + ? img->fmt ^ (img->fmt & VPX_IMG_FMT_HIGHBITDEPTH) + : img->fmt | VPX_IMG_FMT_HIGHBITDEPTH; + if (img_shifted && + img_shifted_realloc_required(img, img_shifted, shifted_fmt)) { + vpx_img_free(img_shifted); + img_shifted = NULL; + } + if (!img_shifted) { + img_shifted = + vpx_img_alloc(NULL, shifted_fmt, img->d_w, img->d_h, 16); + img_shifted->bit_depth = output_bit_depth; + } + if (output_bit_depth > img->bit_depth) { + vpx_img_upshift(img_shifted, img, output_bit_depth - img->bit_depth); + } else { + vpx_img_downshift(img_shifted, img, + img->bit_depth - output_bit_depth); + } + img = img_shifted; + } +#endif + + if (single_file) { + if (use_y4m) { + char buf[Y4M_BUFFER_SIZE] = { 0 }; + size_t len = 0; + if (img->fmt == VPX_IMG_FMT_I440 || img->fmt == VPX_IMG_FMT_I44016) { + fprintf(stderr, "Cannot produce y4m output for 440 sampling.\n"); + goto fail; + } + if (frame_out == 1) { + // Y4M file header + len = y4m_write_file_header( + buf, sizeof(buf), vpx_input_ctx.width, vpx_input_ctx.height, + &vpx_input_ctx.framerate, img->fmt, img->bit_depth); + if (do_md5) { + MD5Update(&md5_ctx, (md5byte *)buf, (unsigned int)len); + } else { + fputs(buf, outfile); + } + } + + // Y4M frame header + len = y4m_write_frame_header(buf, sizeof(buf)); + if (do_md5) { + MD5Update(&md5_ctx, (md5byte *)buf, (unsigned int)len); + } else { + fputs(buf, outfile); + } + } else { + if (frame_out == 1) { + // Check if --yv12 or --i420 options are consistent with the + // bit-stream decoded + if (opt_i420) { + if (img->fmt != VPX_IMG_FMT_I420 && + img->fmt != VPX_IMG_FMT_I42016) { + fprintf(stderr, "Cannot produce i420 output for bit-stream.\n"); + goto fail; + } + } + if (opt_yv12) { + if ((img->fmt != VPX_IMG_FMT_I420 && + img->fmt != VPX_IMG_FMT_YV12) || + img->bit_depth != 8) { + fprintf(stderr, "Cannot produce yv12 output for bit-stream.\n"); + goto fail; + } + } + } + } + + if (do_md5) { + update_image_md5(img, planes, &md5_ctx); + } else { + if (!corrupted) write_image_file(img, planes, outfile); + } + } else { + generate_filename(outfile_pattern, outfile_name, PATH_MAX, img->d_w, + img->d_h, frame_in); + if (do_md5) { + MD5Init(&md5_ctx); + update_image_md5(img, planes, &md5_ctx); + MD5Final(md5_digest, &md5_ctx); + print_md5(md5_digest, outfile_name); + } else { + outfile = open_outfile(outfile_name); + write_image_file(img, planes, outfile); + fclose(outfile); + } + } + } + } + + if (summary || progress) { + show_progress(frame_in, frame_out, dx_time); + fprintf(stderr, "\n"); + } + + if (frames_corrupted) { + fprintf(stderr, "WARNING: %d frames corrupted.\n", frames_corrupted); + } else { + ret = EXIT_SUCCESS; + } + +fail: + + if (vpx_codec_destroy(&decoder)) { + fprintf(stderr, "Failed to destroy decoder: %s\n", + vpx_codec_error(&decoder)); + } + +fail2: + + if (!noblit && single_file) { + if (do_md5) { + MD5Final(md5_digest, &md5_ctx); + print_md5(md5_digest, outfile_name); + } else { + fclose(outfile); + } + } + +#if CONFIG_WEBM_IO + if (input.vpx_input_ctx->file_type == FILE_TYPE_WEBM) + webm_free(input.webm_ctx); +#endif + + if (input.vpx_input_ctx->file_type != FILE_TYPE_WEBM) free(buf); + + if (scaled_img) vpx_img_free(scaled_img); +#if CONFIG_VP9_HIGHBITDEPTH + if (img_shifted) vpx_img_free(img_shifted); +#endif + + for (i = 0; i < ext_fb_list.num_external_frame_buffers; ++i) { + free(ext_fb_list.ext_fb[i].data); + } + free(ext_fb_list.ext_fb); + + fclose(infile); + if (framestats_file) fclose(framestats_file); + + free(argv); + + return ret; +} + +int main(int argc, const char **argv_) { + unsigned int loops = 1, i; + char **argv, **argi, **argj; + struct arg arg; + int error = 0; + + argv = argv_dup(argc - 1, argv_ + 1); + for (argi = argj = argv; (*argj = *argi); argi += arg.argv_step) { + memset(&arg, 0, sizeof(arg)); + arg.argv_step = 1; + + if (arg_match(&arg, &looparg, argi)) { + loops = arg_parse_uint(&arg); + break; + } + } + free(argv); + for (i = 0; !error && i < loops; i++) error = main_loop(argc, argv_); + return error; +} diff --git a/vpxenc.c b/vpxenc.c new file mode 100644 index 0000000..4db7ecc --- /dev/null +++ b/vpxenc.c @@ -0,0 +1,2297 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "./vpxenc.h" +#include "./vpx_config.h" + +#include +#include +#include +#include +#include +#include +#include + +#if CONFIG_LIBYUV +#include "third_party/libyuv/include/libyuv/scale.h" +#endif + +#include "vpx/vpx_encoder.h" +#if CONFIG_DECODERS +#include "vpx/vpx_decoder.h" +#endif + +#include "./args.h" +#include "./ivfenc.h" +#include "./tools_common.h" + +#if CONFIG_VP8_ENCODER || CONFIG_VP9_ENCODER +#include "vpx/vp8cx.h" +#endif +#if CONFIG_VP8_DECODER || CONFIG_VP9_DECODER +#include "vpx/vp8dx.h" +#endif + +#include "vpx/vpx_integer.h" +#include "vpx_ports/mem_ops.h" +#include "vpx_ports/vpx_timer.h" +#include "./rate_hist.h" +#include "./vpxstats.h" +#include "./warnings.h" +#if CONFIG_WEBM_IO +#include "./webmenc.h" +#endif +#include "./y4minput.h" + +/* Swallow warnings about unused results of fread/fwrite */ +static size_t wrap_fread(void *ptr, size_t size, size_t nmemb, FILE *stream) { + return fread(ptr, size, nmemb, stream); +} +#define fread wrap_fread + +static size_t wrap_fwrite(const void *ptr, size_t size, size_t nmemb, + FILE *stream) { + return fwrite(ptr, size, nmemb, stream); +} +#define fwrite wrap_fwrite + +static const char *exec_name; + +static void warn_or_exit_on_errorv(vpx_codec_ctx_t *ctx, int fatal, + const char *s, va_list ap) { + if (ctx->err) { + const char *detail = vpx_codec_error_detail(ctx); + + vfprintf(stderr, s, ap); + fprintf(stderr, ": %s\n", vpx_codec_error(ctx)); + + if (detail) fprintf(stderr, " %s\n", detail); + + if (fatal) exit(EXIT_FAILURE); + } +} + +static void ctx_exit_on_error(vpx_codec_ctx_t *ctx, const char *s, ...) { + va_list ap; + + va_start(ap, s); + warn_or_exit_on_errorv(ctx, 1, s, ap); + va_end(ap); +} + +static void warn_or_exit_on_error(vpx_codec_ctx_t *ctx, int fatal, + const char *s, ...) { + va_list ap; + + va_start(ap, s); + warn_or_exit_on_errorv(ctx, fatal, s, ap); + va_end(ap); +} + +static int read_frame(struct VpxInputContext *input_ctx, vpx_image_t *img) { + FILE *f = input_ctx->file; + y4m_input *y4m = &input_ctx->y4m; + int shortread = 0; + + if (input_ctx->file_type == FILE_TYPE_Y4M) { + if (y4m_input_fetch_frame(y4m, f, img) < 1) return 0; + } else { + shortread = read_yuv_frame(input_ctx, img); + } + + return !shortread; +} + +static int file_is_y4m(const char detect[4]) { + if (memcmp(detect, "YUV4", 4) == 0) { + return 1; + } + return 0; +} + +static int fourcc_is_ivf(const char detect[4]) { + if (memcmp(detect, "DKIF", 4) == 0) { + return 1; + } + return 0; +} + +static const arg_def_t help = + ARG_DEF(NULL, "help", 0, "Show usage options and exit"); +static const arg_def_t debugmode = + ARG_DEF("D", "debug", 0, "Debug mode (makes output deterministic)"); +static const arg_def_t outputfile = + ARG_DEF("o", "output", 1, "Output filename"); +static const arg_def_t use_yv12 = + ARG_DEF(NULL, "yv12", 0, "Input file is YV12 "); +static const arg_def_t use_i420 = + ARG_DEF(NULL, "i420", 0, "Input file is I420 (default)"); +static const arg_def_t use_i422 = + ARG_DEF(NULL, "i422", 0, "Input file is I422"); +static const arg_def_t use_i444 = + ARG_DEF(NULL, "i444", 0, "Input file is I444"); +static const arg_def_t use_i440 = + ARG_DEF(NULL, "i440", 0, "Input file is I440"); +static const arg_def_t codecarg = ARG_DEF(NULL, "codec", 1, "Codec to use"); +static const arg_def_t passes = + ARG_DEF("p", "passes", 1, "Number of passes (1/2)"); +static const arg_def_t pass_arg = + ARG_DEF(NULL, "pass", 1, "Pass to execute (1/2)"); +static const arg_def_t fpf_name = + ARG_DEF(NULL, "fpf", 1, "First pass statistics file name"); +#if CONFIG_FP_MB_STATS +static const arg_def_t fpmbf_name = + ARG_DEF(NULL, "fpmbf", 1, "First pass block statistics file name"); +#endif +static const arg_def_t limit = + ARG_DEF(NULL, "limit", 1, "Stop encoding after n input frames"); +static const arg_def_t skip = + ARG_DEF(NULL, "skip", 1, "Skip the first n input frames"); +static const arg_def_t deadline = + ARG_DEF("d", "deadline", 1, "Deadline per frame (usec)"); +static const arg_def_t best_dl = + ARG_DEF(NULL, "best", 0, "Use Best Quality Deadline"); +static const arg_def_t good_dl = + ARG_DEF(NULL, "good", 0, "Use Good Quality Deadline"); +static const arg_def_t rt_dl = + ARG_DEF(NULL, "rt", 0, "Use Realtime Quality Deadline"); +static const arg_def_t quietarg = + ARG_DEF("q", "quiet", 0, "Do not print encode progress"); +static const arg_def_t verbosearg = + ARG_DEF("v", "verbose", 0, "Show encoder parameters"); +static const arg_def_t psnrarg = + ARG_DEF(NULL, "psnr", 0, "Show PSNR in status line"); + +static const struct arg_enum_list test_decode_enum[] = { + { "off", TEST_DECODE_OFF }, + { "fatal", TEST_DECODE_FATAL }, + { "warn", TEST_DECODE_WARN }, + { NULL, 0 } +}; +static const arg_def_t recontest = ARG_DEF_ENUM( + NULL, "test-decode", 1, "Test encode/decode mismatch", test_decode_enum); +static const arg_def_t framerate = + ARG_DEF(NULL, "fps", 1, "Stream frame rate (rate/scale)"); +static const arg_def_t use_webm = + ARG_DEF(NULL, "webm", 0, "Output WebM (default when WebM IO is enabled)"); +static const arg_def_t use_ivf = ARG_DEF(NULL, "ivf", 0, "Output IVF"); +static const arg_def_t out_part = + ARG_DEF("P", "output-partitions", 0, + "Makes encoder output partitions. Requires IVF output!"); +static const arg_def_t q_hist_n = + ARG_DEF(NULL, "q-hist", 1, "Show quantizer histogram (n-buckets)"); +static const arg_def_t rate_hist_n = + ARG_DEF(NULL, "rate-hist", 1, "Show rate histogram (n-buckets)"); +static const arg_def_t disable_warnings = + ARG_DEF(NULL, "disable-warnings", 0, + "Disable warnings about potentially incorrect encode settings."); +static const arg_def_t disable_warning_prompt = + ARG_DEF("y", "disable-warning-prompt", 0, + "Display warnings, but do not prompt user to continue."); + +#if CONFIG_VP9_HIGHBITDEPTH +static const arg_def_t test16bitinternalarg = ARG_DEF( + NULL, "test-16bit-internal", 0, "Force use of 16 bit internal buffer"); +#endif + +static const arg_def_t *main_args[] = { &help, + &debugmode, + &outputfile, + &codecarg, + &passes, + &pass_arg, + &fpf_name, + &limit, + &skip, + &deadline, + &best_dl, + &good_dl, + &rt_dl, + &quietarg, + &verbosearg, + &psnrarg, + &use_webm, + &use_ivf, + &out_part, + &q_hist_n, + &rate_hist_n, + &disable_warnings, + &disable_warning_prompt, + &recontest, + NULL }; + +static const arg_def_t usage = + ARG_DEF("u", "usage", 1, "Usage profile number to use"); +static const arg_def_t threads = + ARG_DEF("t", "threads", 1, "Max number of threads to use"); +static const arg_def_t profile = + ARG_DEF(NULL, "profile", 1, "Bitstream profile number to use"); +static const arg_def_t width = ARG_DEF("w", "width", 1, "Frame width"); +static const arg_def_t height = ARG_DEF("h", "height", 1, "Frame height"); +#if CONFIG_WEBM_IO +static const struct arg_enum_list stereo_mode_enum[] = { + { "mono", STEREO_FORMAT_MONO }, + { "left-right", STEREO_FORMAT_LEFT_RIGHT }, + { "bottom-top", STEREO_FORMAT_BOTTOM_TOP }, + { "top-bottom", STEREO_FORMAT_TOP_BOTTOM }, + { "right-left", STEREO_FORMAT_RIGHT_LEFT }, + { NULL, 0 } +}; +static const arg_def_t stereo_mode = ARG_DEF_ENUM( + NULL, "stereo-mode", 1, "Stereo 3D video format", stereo_mode_enum); +#endif +static const arg_def_t timebase = ARG_DEF( + NULL, "timebase", 1, "Output timestamp precision (fractional seconds)"); +static const arg_def_t error_resilient = + ARG_DEF(NULL, "error-resilient", 1, "Enable error resiliency features"); +static const arg_def_t lag_in_frames = + ARG_DEF(NULL, "lag-in-frames", 1, "Max number of frames to lag"); + +static const arg_def_t *global_args[] = { &use_yv12, + &use_i420, + &use_i422, + &use_i444, + &use_i440, + &usage, + &threads, + &profile, + &width, + &height, +#if CONFIG_WEBM_IO + &stereo_mode, +#endif + &timebase, + &framerate, + &error_resilient, +#if CONFIG_VP9_HIGHBITDEPTH + &test16bitinternalarg, +#endif + &lag_in_frames, + NULL }; + +static const arg_def_t dropframe_thresh = + ARG_DEF(NULL, "drop-frame", 1, "Temporal resampling threshold (buf %)"); +static const arg_def_t resize_allowed = + ARG_DEF(NULL, "resize-allowed", 1, "Spatial resampling enabled (bool)"); +static const arg_def_t resize_width = + ARG_DEF(NULL, "resize-width", 1, "Width of encoded frame"); +static const arg_def_t resize_height = + ARG_DEF(NULL, "resize-height", 1, "Height of encoded frame"); +static const arg_def_t resize_up_thresh = + ARG_DEF(NULL, "resize-up", 1, "Upscale threshold (buf %)"); +static const arg_def_t resize_down_thresh = + ARG_DEF(NULL, "resize-down", 1, "Downscale threshold (buf %)"); +static const struct arg_enum_list end_usage_enum[] = { { "vbr", VPX_VBR }, + { "cbr", VPX_CBR }, + { "cq", VPX_CQ }, + { "q", VPX_Q }, + { NULL, 0 } }; +static const arg_def_t end_usage = + ARG_DEF_ENUM(NULL, "end-usage", 1, "Rate control mode", end_usage_enum); +static const arg_def_t target_bitrate = + ARG_DEF(NULL, "target-bitrate", 1, "Bitrate (kbps)"); +static const arg_def_t min_quantizer = + ARG_DEF(NULL, "min-q", 1, "Minimum (best) quantizer"); +static const arg_def_t max_quantizer = + ARG_DEF(NULL, "max-q", 1, "Maximum (worst) quantizer"); +static const arg_def_t undershoot_pct = + ARG_DEF(NULL, "undershoot-pct", 1, "Datarate undershoot (min) target (%)"); +static const arg_def_t overshoot_pct = + ARG_DEF(NULL, "overshoot-pct", 1, "Datarate overshoot (max) target (%)"); +static const arg_def_t buf_sz = + ARG_DEF(NULL, "buf-sz", 1, "Client buffer size (ms)"); +static const arg_def_t buf_initial_sz = + ARG_DEF(NULL, "buf-initial-sz", 1, "Client initial buffer size (ms)"); +static const arg_def_t buf_optimal_sz = + ARG_DEF(NULL, "buf-optimal-sz", 1, "Client optimal buffer size (ms)"); +static const arg_def_t *rc_args[] = { + &dropframe_thresh, &resize_allowed, &resize_width, &resize_height, + &resize_up_thresh, &resize_down_thresh, &end_usage, &target_bitrate, + &min_quantizer, &max_quantizer, &undershoot_pct, &overshoot_pct, + &buf_sz, &buf_initial_sz, &buf_optimal_sz, NULL +}; + +static const arg_def_t bias_pct = + ARG_DEF(NULL, "bias-pct", 1, "CBR/VBR bias (0=CBR, 100=VBR)"); +static const arg_def_t minsection_pct = + ARG_DEF(NULL, "minsection-pct", 1, "GOP min bitrate (% of target)"); +static const arg_def_t maxsection_pct = + ARG_DEF(NULL, "maxsection-pct", 1, "GOP max bitrate (% of target)"); +static const arg_def_t corpus_complexity = + ARG_DEF(NULL, "corpus-complexity", 1, "corpus vbr complexity midpoint"); +static const arg_def_t *rc_twopass_args[] = { + &bias_pct, &minsection_pct, &maxsection_pct, &corpus_complexity, NULL +}; + +static const arg_def_t kf_min_dist = + ARG_DEF(NULL, "kf-min-dist", 1, "Minimum keyframe interval (frames)"); +static const arg_def_t kf_max_dist = + ARG_DEF(NULL, "kf-max-dist", 1, "Maximum keyframe interval (frames)"); +static const arg_def_t kf_disabled = + ARG_DEF(NULL, "disable-kf", 0, "Disable keyframe placement"); +static const arg_def_t *kf_args[] = { &kf_min_dist, &kf_max_dist, &kf_disabled, + NULL }; + +static const arg_def_t noise_sens = + ARG_DEF(NULL, "noise-sensitivity", 1, "Noise sensitivity (frames to blur)"); +static const arg_def_t sharpness = + ARG_DEF(NULL, "sharpness", 1, "Loop filter sharpness (0..7)"); +static const arg_def_t static_thresh = + ARG_DEF(NULL, "static-thresh", 1, "Motion detection threshold"); +static const arg_def_t auto_altref = + ARG_DEF(NULL, "auto-alt-ref", 1, "Enable automatic alt reference frames"); +static const arg_def_t arnr_maxframes = + ARG_DEF(NULL, "arnr-maxframes", 1, "AltRef max frames (0..15)"); +static const arg_def_t arnr_strength = + ARG_DEF(NULL, "arnr-strength", 1, "AltRef filter strength (0..6)"); +static const arg_def_t arnr_type = ARG_DEF(NULL, "arnr-type", 1, "AltRef type"); +static const struct arg_enum_list tuning_enum[] = { + { "psnr", VP8_TUNE_PSNR }, { "ssim", VP8_TUNE_SSIM }, { NULL, 0 } +}; +static const arg_def_t tune_ssim = + ARG_DEF_ENUM(NULL, "tune", 1, "Material to favor", tuning_enum); +static const arg_def_t cq_level = + ARG_DEF(NULL, "cq-level", 1, "Constant/Constrained Quality level"); +static const arg_def_t max_intra_rate_pct = + ARG_DEF(NULL, "max-intra-rate", 1, "Max I-frame bitrate (pct)"); +static const arg_def_t gf_cbr_boost_pct = ARG_DEF( + NULL, "gf-cbr-boost", 1, "Boost for Golden Frame in CBR mode (pct)"); + +#if CONFIG_VP8_ENCODER +static const arg_def_t cpu_used_vp8 = + ARG_DEF(NULL, "cpu-used", 1, "CPU Used (-16..16)"); +static const arg_def_t token_parts = + ARG_DEF(NULL, "token-parts", 1, "Number of token partitions to use, log2"); +static const arg_def_t screen_content_mode = + ARG_DEF(NULL, "screen-content-mode", 1, "Screen content mode"); +static const arg_def_t *vp8_args[] = { &cpu_used_vp8, + &auto_altref, + &noise_sens, + &sharpness, + &static_thresh, + &token_parts, + &arnr_maxframes, + &arnr_strength, + &arnr_type, + &tune_ssim, + &cq_level, + &max_intra_rate_pct, + &gf_cbr_boost_pct, + &screen_content_mode, + NULL }; +static const int vp8_arg_ctrl_map[] = { VP8E_SET_CPUUSED, + VP8E_SET_ENABLEAUTOALTREF, + VP8E_SET_NOISE_SENSITIVITY, + VP8E_SET_SHARPNESS, + VP8E_SET_STATIC_THRESHOLD, + VP8E_SET_TOKEN_PARTITIONS, + VP8E_SET_ARNR_MAXFRAMES, + VP8E_SET_ARNR_STRENGTH, + VP8E_SET_ARNR_TYPE, + VP8E_SET_TUNING, + VP8E_SET_CQ_LEVEL, + VP8E_SET_MAX_INTRA_BITRATE_PCT, + VP8E_SET_GF_CBR_BOOST_PCT, + VP8E_SET_SCREEN_CONTENT_MODE, + 0 }; +#endif + +#if CONFIG_VP9_ENCODER +static const arg_def_t cpu_used_vp9 = + ARG_DEF(NULL, "cpu-used", 1, "CPU Used (-8..8)"); +static const arg_def_t tile_cols = + ARG_DEF(NULL, "tile-columns", 1, "Number of tile columns to use, log2"); +static const arg_def_t tile_rows = + ARG_DEF(NULL, "tile-rows", 1, + "Number of tile rows to use, log2 (set to 0 while threads > 1)"); +static const arg_def_t lossless = + ARG_DEF(NULL, "lossless", 1, "Lossless mode (0: false (default), 1: true)"); +static const arg_def_t frame_parallel_decoding = ARG_DEF( + NULL, "frame-parallel", 1, "Enable frame parallel decodability features"); +static const arg_def_t aq_mode = ARG_DEF( + NULL, "aq-mode", 1, + "Adaptive quantization mode (0: off (default), 1: variance 2: complexity, " + "3: cyclic refresh, 4: equator360)"); +static const arg_def_t alt_ref_aq = ARG_DEF(NULL, "alt-ref-aq", 1, + "Special adaptive quantization for " + "the alternate reference frames."); +static const arg_def_t frame_periodic_boost = + ARG_DEF(NULL, "frame-boost", 1, + "Enable frame periodic boost (0: off (default), 1: on)"); +static const arg_def_t max_inter_rate_pct = + ARG_DEF(NULL, "max-inter-rate", 1, "Max P-frame bitrate (pct)"); +static const arg_def_t min_gf_interval = ARG_DEF( + NULL, "min-gf-interval", 1, + "min gf/arf frame interval (default 0, indicating in-built behavior)"); +static const arg_def_t max_gf_interval = ARG_DEF( + NULL, "max-gf-interval", 1, + "max gf/arf frame interval (default 0, indicating in-built behavior)"); + +static const struct arg_enum_list color_space_enum[] = { + { "unknown", VPX_CS_UNKNOWN }, + { "bt601", VPX_CS_BT_601 }, + { "bt709", VPX_CS_BT_709 }, + { "smpte170", VPX_CS_SMPTE_170 }, + { "smpte240", VPX_CS_SMPTE_240 }, + { "bt2020", VPX_CS_BT_2020 }, + { "reserved", VPX_CS_RESERVED }, + { "sRGB", VPX_CS_SRGB }, + { NULL, 0 } +}; + +static const arg_def_t input_color_space = + ARG_DEF_ENUM(NULL, "color-space", 1, + "The color space of input content:", color_space_enum); + +#if CONFIG_VP9_HIGHBITDEPTH +static const struct arg_enum_list bitdepth_enum[] = { + { "8", VPX_BITS_8 }, { "10", VPX_BITS_10 }, { "12", VPX_BITS_12 }, { NULL, 0 } +}; + +static const arg_def_t bitdeptharg = ARG_DEF_ENUM( + "b", "bit-depth", 1, + "Bit depth for codec (8 for version <=1, 10 or 12 for version 2)", + bitdepth_enum); +static const arg_def_t inbitdeptharg = + ARG_DEF(NULL, "input-bit-depth", 1, "Bit depth of input"); +#endif + +static const struct arg_enum_list tune_content_enum[] = { + { "default", VP9E_CONTENT_DEFAULT }, + { "screen", VP9E_CONTENT_SCREEN }, + { "film", VP9E_CONTENT_FILM }, + { NULL, 0 } +}; + +static const arg_def_t tune_content = ARG_DEF_ENUM( + NULL, "tune-content", 1, "Tune content type", tune_content_enum); + +static const arg_def_t target_level = ARG_DEF( + NULL, "target-level", 1, + "Target level\n" + " 255: off (default)\n" + " 0: only keep level stats\n" + " 1: adaptively set alt-ref " + "distance and column tile limit based on picture size, and keep" + " level stats\n" + " 10: level 1.0 11: level 1.1 " + "... 62: level 6.2"); + +static const arg_def_t row_mt = + ARG_DEF(NULL, "row-mt", 1, + "Enable row based non-deterministic multi-threading in VP9"); +#endif + +#if CONFIG_VP9_ENCODER +static const arg_def_t *vp9_args[] = { &cpu_used_vp9, + &auto_altref, + &sharpness, + &static_thresh, + &tile_cols, + &tile_rows, + &arnr_maxframes, + &arnr_strength, + &arnr_type, + &tune_ssim, + &cq_level, + &max_intra_rate_pct, + &max_inter_rate_pct, + &gf_cbr_boost_pct, + &lossless, + &frame_parallel_decoding, + &aq_mode, + &alt_ref_aq, + &frame_periodic_boost, + &noise_sens, + &tune_content, + &input_color_space, + &min_gf_interval, + &max_gf_interval, + &target_level, + &row_mt, +#if CONFIG_VP9_HIGHBITDEPTH + &bitdeptharg, + &inbitdeptharg, +#endif // CONFIG_VP9_HIGHBITDEPTH + NULL }; +static const int vp9_arg_ctrl_map[] = { VP8E_SET_CPUUSED, + VP8E_SET_ENABLEAUTOALTREF, + VP8E_SET_SHARPNESS, + VP8E_SET_STATIC_THRESHOLD, + VP9E_SET_TILE_COLUMNS, + VP9E_SET_TILE_ROWS, + VP8E_SET_ARNR_MAXFRAMES, + VP8E_SET_ARNR_STRENGTH, + VP8E_SET_ARNR_TYPE, + VP8E_SET_TUNING, + VP8E_SET_CQ_LEVEL, + VP8E_SET_MAX_INTRA_BITRATE_PCT, + VP9E_SET_MAX_INTER_BITRATE_PCT, + VP9E_SET_GF_CBR_BOOST_PCT, + VP9E_SET_LOSSLESS, + VP9E_SET_FRAME_PARALLEL_DECODING, + VP9E_SET_AQ_MODE, + VP9E_SET_ALT_REF_AQ, + VP9E_SET_FRAME_PERIODIC_BOOST, + VP9E_SET_NOISE_SENSITIVITY, + VP9E_SET_TUNE_CONTENT, + VP9E_SET_COLOR_SPACE, + VP9E_SET_MIN_GF_INTERVAL, + VP9E_SET_MAX_GF_INTERVAL, + VP9E_SET_TARGET_LEVEL, + VP9E_SET_ROW_MT, + 0 }; +#endif + +static const arg_def_t *no_args[] = { NULL }; + +void show_help(FILE *fout, int shorthelp) { + int i; + const int num_encoder = get_vpx_encoder_count(); + + fprintf(fout, "Usage: %s -o dst_filename src_filename \n", + exec_name); + + if (shorthelp) { + fprintf(fout, "Use --help to see the full list of options.\n"); + return; + } + + fprintf(fout, "\nOptions:\n"); + arg_show_usage(fout, main_args); + fprintf(fout, "\nEncoder Global Options:\n"); + arg_show_usage(fout, global_args); + fprintf(fout, "\nRate Control Options:\n"); + arg_show_usage(fout, rc_args); + fprintf(fout, "\nTwopass Rate Control Options:\n"); + arg_show_usage(fout, rc_twopass_args); + fprintf(fout, "\nKeyframe Placement Options:\n"); + arg_show_usage(fout, kf_args); +#if CONFIG_VP8_ENCODER + fprintf(fout, "\nVP8 Specific Options:\n"); + arg_show_usage(fout, vp8_args); +#endif +#if CONFIG_VP9_ENCODER + fprintf(fout, "\nVP9 Specific Options:\n"); + arg_show_usage(fout, vp9_args); +#endif + fprintf(fout, + "\nStream timebase (--timebase):\n" + " The desired precision of timestamps in the output, expressed\n" + " in fractional seconds. Default is 1/1000.\n"); + fprintf(fout, "\nIncluded encoders:\n\n"); + + for (i = 0; i < num_encoder; ++i) { + const VpxInterface *const encoder = get_vpx_encoder_by_index(i); + const char *defstr = (i == (num_encoder - 1)) ? "(default)" : ""; + fprintf(fout, " %-6s - %s %s\n", encoder->name, + vpx_codec_iface_name(encoder->codec_interface()), defstr); + } + fprintf(fout, "\n "); + fprintf(fout, "Use --codec to switch to a non-default encoder.\n\n"); +} + +void usage_exit(void) { + show_help(stderr, 1); + exit(EXIT_FAILURE); +} + +#define mmin(a, b) ((a) < (b) ? (a) : (b)) + +#if CONFIG_VP9_HIGHBITDEPTH +static void find_mismatch_high(const vpx_image_t *const img1, + const vpx_image_t *const img2, int yloc[4], + int uloc[4], int vloc[4]) { + uint16_t *plane1, *plane2; + uint32_t stride1, stride2; + const uint32_t bsize = 64; + const uint32_t bsizey = bsize >> img1->y_chroma_shift; + const uint32_t bsizex = bsize >> img1->x_chroma_shift; + const uint32_t c_w = + (img1->d_w + img1->x_chroma_shift) >> img1->x_chroma_shift; + const uint32_t c_h = + (img1->d_h + img1->y_chroma_shift) >> img1->y_chroma_shift; + int match = 1; + uint32_t i, j; + yloc[0] = yloc[1] = yloc[2] = yloc[3] = -1; + plane1 = (uint16_t *)img1->planes[VPX_PLANE_Y]; + plane2 = (uint16_t *)img2->planes[VPX_PLANE_Y]; + stride1 = img1->stride[VPX_PLANE_Y] / 2; + stride2 = img2->stride[VPX_PLANE_Y] / 2; + for (i = 0, match = 1; match && i < img1->d_h; i += bsize) { + for (j = 0; match && j < img1->d_w; j += bsize) { + int k, l; + const int si = mmin(i + bsize, img1->d_h) - i; + const int sj = mmin(j + bsize, img1->d_w) - j; + for (k = 0; match && k < si; ++k) { + for (l = 0; match && l < sj; ++l) { + if (*(plane1 + (i + k) * stride1 + j + l) != + *(plane2 + (i + k) * stride2 + j + l)) { + yloc[0] = i + k; + yloc[1] = j + l; + yloc[2] = *(plane1 + (i + k) * stride1 + j + l); + yloc[3] = *(plane2 + (i + k) * stride2 + j + l); + match = 0; + break; + } + } + } + } + } + + uloc[0] = uloc[1] = uloc[2] = uloc[3] = -1; + plane1 = (uint16_t *)img1->planes[VPX_PLANE_U]; + plane2 = (uint16_t *)img2->planes[VPX_PLANE_U]; + stride1 = img1->stride[VPX_PLANE_U] / 2; + stride2 = img2->stride[VPX_PLANE_U] / 2; + for (i = 0, match = 1; match && i < c_h; i += bsizey) { + for (j = 0; match && j < c_w; j += bsizex) { + int k, l; + const int si = mmin(i + bsizey, c_h - i); + const int sj = mmin(j + bsizex, c_w - j); + for (k = 0; match && k < si; ++k) { + for (l = 0; match && l < sj; ++l) { + if (*(plane1 + (i + k) * stride1 + j + l) != + *(plane2 + (i + k) * stride2 + j + l)) { + uloc[0] = i + k; + uloc[1] = j + l; + uloc[2] = *(plane1 + (i + k) * stride1 + j + l); + uloc[3] = *(plane2 + (i + k) * stride2 + j + l); + match = 0; + break; + } + } + } + } + } + + vloc[0] = vloc[1] = vloc[2] = vloc[3] = -1; + plane1 = (uint16_t *)img1->planes[VPX_PLANE_V]; + plane2 = (uint16_t *)img2->planes[VPX_PLANE_V]; + stride1 = img1->stride[VPX_PLANE_V] / 2; + stride2 = img2->stride[VPX_PLANE_V] / 2; + for (i = 0, match = 1; match && i < c_h; i += bsizey) { + for (j = 0; match && j < c_w; j += bsizex) { + int k, l; + const int si = mmin(i + bsizey, c_h - i); + const int sj = mmin(j + bsizex, c_w - j); + for (k = 0; match && k < si; ++k) { + for (l = 0; match && l < sj; ++l) { + if (*(plane1 + (i + k) * stride1 + j + l) != + *(plane2 + (i + k) * stride2 + j + l)) { + vloc[0] = i + k; + vloc[1] = j + l; + vloc[2] = *(plane1 + (i + k) * stride1 + j + l); + vloc[3] = *(plane2 + (i + k) * stride2 + j + l); + match = 0; + break; + } + } + } + } + } +} +#endif + +static void find_mismatch(const vpx_image_t *const img1, + const vpx_image_t *const img2, int yloc[4], + int uloc[4], int vloc[4]) { + const uint32_t bsize = 64; + const uint32_t bsizey = bsize >> img1->y_chroma_shift; + const uint32_t bsizex = bsize >> img1->x_chroma_shift; + const uint32_t c_w = + (img1->d_w + img1->x_chroma_shift) >> img1->x_chroma_shift; + const uint32_t c_h = + (img1->d_h + img1->y_chroma_shift) >> img1->y_chroma_shift; + int match = 1; + uint32_t i, j; + yloc[0] = yloc[1] = yloc[2] = yloc[3] = -1; + for (i = 0, match = 1; match && i < img1->d_h; i += bsize) { + for (j = 0; match && j < img1->d_w; j += bsize) { + int k, l; + const int si = mmin(i + bsize, img1->d_h) - i; + const int sj = mmin(j + bsize, img1->d_w) - j; + for (k = 0; match && k < si; ++k) { + for (l = 0; match && l < sj; ++l) { + if (*(img1->planes[VPX_PLANE_Y] + + (i + k) * img1->stride[VPX_PLANE_Y] + j + l) != + *(img2->planes[VPX_PLANE_Y] + + (i + k) * img2->stride[VPX_PLANE_Y] + j + l)) { + yloc[0] = i + k; + yloc[1] = j + l; + yloc[2] = *(img1->planes[VPX_PLANE_Y] + + (i + k) * img1->stride[VPX_PLANE_Y] + j + l); + yloc[3] = *(img2->planes[VPX_PLANE_Y] + + (i + k) * img2->stride[VPX_PLANE_Y] + j + l); + match = 0; + break; + } + } + } + } + } + + uloc[0] = uloc[1] = uloc[2] = uloc[3] = -1; + for (i = 0, match = 1; match && i < c_h; i += bsizey) { + for (j = 0; match && j < c_w; j += bsizex) { + int k, l; + const int si = mmin(i + bsizey, c_h - i); + const int sj = mmin(j + bsizex, c_w - j); + for (k = 0; match && k < si; ++k) { + for (l = 0; match && l < sj; ++l) { + if (*(img1->planes[VPX_PLANE_U] + + (i + k) * img1->stride[VPX_PLANE_U] + j + l) != + *(img2->planes[VPX_PLANE_U] + + (i + k) * img2->stride[VPX_PLANE_U] + j + l)) { + uloc[0] = i + k; + uloc[1] = j + l; + uloc[2] = *(img1->planes[VPX_PLANE_U] + + (i + k) * img1->stride[VPX_PLANE_U] + j + l); + uloc[3] = *(img2->planes[VPX_PLANE_U] + + (i + k) * img2->stride[VPX_PLANE_U] + j + l); + match = 0; + break; + } + } + } + } + } + vloc[0] = vloc[1] = vloc[2] = vloc[3] = -1; + for (i = 0, match = 1; match && i < c_h; i += bsizey) { + for (j = 0; match && j < c_w; j += bsizex) { + int k, l; + const int si = mmin(i + bsizey, c_h - i); + const int sj = mmin(j + bsizex, c_w - j); + for (k = 0; match && k < si; ++k) { + for (l = 0; match && l < sj; ++l) { + if (*(img1->planes[VPX_PLANE_V] + + (i + k) * img1->stride[VPX_PLANE_V] + j + l) != + *(img2->planes[VPX_PLANE_V] + + (i + k) * img2->stride[VPX_PLANE_V] + j + l)) { + vloc[0] = i + k; + vloc[1] = j + l; + vloc[2] = *(img1->planes[VPX_PLANE_V] + + (i + k) * img1->stride[VPX_PLANE_V] + j + l); + vloc[3] = *(img2->planes[VPX_PLANE_V] + + (i + k) * img2->stride[VPX_PLANE_V] + j + l); + match = 0; + break; + } + } + } + } + } +} + +static int compare_img(const vpx_image_t *const img1, + const vpx_image_t *const img2) { + uint32_t l_w = img1->d_w; + uint32_t c_w = (img1->d_w + img1->x_chroma_shift) >> img1->x_chroma_shift; + const uint32_t c_h = + (img1->d_h + img1->y_chroma_shift) >> img1->y_chroma_shift; + uint32_t i; + int match = 1; + + match &= (img1->fmt == img2->fmt); + match &= (img1->d_w == img2->d_w); + match &= (img1->d_h == img2->d_h); +#if CONFIG_VP9_HIGHBITDEPTH + if (img1->fmt & VPX_IMG_FMT_HIGHBITDEPTH) { + l_w *= 2; + c_w *= 2; + } +#endif + + for (i = 0; i < img1->d_h; ++i) + match &= (memcmp(img1->planes[VPX_PLANE_Y] + i * img1->stride[VPX_PLANE_Y], + img2->planes[VPX_PLANE_Y] + i * img2->stride[VPX_PLANE_Y], + l_w) == 0); + + for (i = 0; i < c_h; ++i) + match &= (memcmp(img1->planes[VPX_PLANE_U] + i * img1->stride[VPX_PLANE_U], + img2->planes[VPX_PLANE_U] + i * img2->stride[VPX_PLANE_U], + c_w) == 0); + + for (i = 0; i < c_h; ++i) + match &= (memcmp(img1->planes[VPX_PLANE_V] + i * img1->stride[VPX_PLANE_V], + img2->planes[VPX_PLANE_V] + i * img2->stride[VPX_PLANE_V], + c_w) == 0); + + return match; +} + +#define NELEMENTS(x) (sizeof(x) / sizeof(x[0])) +#if CONFIG_VP9_ENCODER +#define ARG_CTRL_CNT_MAX NELEMENTS(vp9_arg_ctrl_map) +#else +#define ARG_CTRL_CNT_MAX NELEMENTS(vp8_arg_ctrl_map) +#endif + +#if !CONFIG_WEBM_IO +typedef int stereo_format_t; +struct WebmOutputContext { + int debug; +}; +#endif + +/* Per-stream configuration */ +struct stream_config { + struct vpx_codec_enc_cfg cfg; + const char *out_fn; + const char *stats_fn; +#if CONFIG_FP_MB_STATS + const char *fpmb_stats_fn; +#endif + stereo_format_t stereo_fmt; + int arg_ctrls[ARG_CTRL_CNT_MAX][2]; + int arg_ctrl_cnt; + int write_webm; +#if CONFIG_VP9_HIGHBITDEPTH + // whether to use 16bit internal buffers + int use_16bit_internal; +#endif +}; + +struct stream_state { + int index; + struct stream_state *next; + struct stream_config config; + FILE *file; + struct rate_hist *rate_hist; + struct WebmOutputContext webm_ctx; + uint64_t psnr_sse_total; + uint64_t psnr_samples_total; + double psnr_totals[4]; + int psnr_count; + int counts[64]; + vpx_codec_ctx_t encoder; + unsigned int frames_out; + uint64_t cx_time; + size_t nbytes; + stats_io_t stats; +#if CONFIG_FP_MB_STATS + stats_io_t fpmb_stats; +#endif + struct vpx_image *img; + vpx_codec_ctx_t decoder; + int mismatch_seen; +}; + +static void validate_positive_rational(const char *msg, + struct vpx_rational *rat) { + if (rat->den < 0) { + rat->num *= -1; + rat->den *= -1; + } + + if (rat->num < 0) die("Error: %s must be positive\n", msg); + + if (!rat->den) die("Error: %s has zero denominator\n", msg); +} + +static void parse_global_config(struct VpxEncoderConfig *global, char **argv) { + char **argi, **argj; + struct arg arg; + const int num_encoder = get_vpx_encoder_count(); + + if (num_encoder < 1) die("Error: no valid encoder available\n"); + + /* Initialize default parameters */ + memset(global, 0, sizeof(*global)); + global->codec = get_vpx_encoder_by_index(num_encoder - 1); + global->passes = 0; + global->color_type = I420; + /* Assign default deadline to good quality */ + global->deadline = VPX_DL_GOOD_QUALITY; + + for (argi = argj = argv; (*argj = *argi); argi += arg.argv_step) { + arg.argv_step = 1; + + if (arg_match(&arg, &help, argi)) { + show_help(stdout, 0); + exit(EXIT_SUCCESS); + } else if (arg_match(&arg, &codecarg, argi)) { + global->codec = get_vpx_encoder_by_name(arg.val); + if (!global->codec) + die("Error: Unrecognized argument (%s) to --codec\n", arg.val); + } else if (arg_match(&arg, &passes, argi)) { + global->passes = arg_parse_uint(&arg); + + if (global->passes < 1 || global->passes > 2) + die("Error: Invalid number of passes (%d)\n", global->passes); + } else if (arg_match(&arg, &pass_arg, argi)) { + global->pass = arg_parse_uint(&arg); + + if (global->pass < 1 || global->pass > 2) + die("Error: Invalid pass selected (%d)\n", global->pass); + } else if (arg_match(&arg, &usage, argi)) + global->usage = arg_parse_uint(&arg); + else if (arg_match(&arg, &deadline, argi)) + global->deadline = arg_parse_uint(&arg); + else if (arg_match(&arg, &best_dl, argi)) + global->deadline = VPX_DL_BEST_QUALITY; + else if (arg_match(&arg, &good_dl, argi)) + global->deadline = VPX_DL_GOOD_QUALITY; + else if (arg_match(&arg, &rt_dl, argi)) + global->deadline = VPX_DL_REALTIME; + else if (arg_match(&arg, &use_yv12, argi)) + global->color_type = YV12; + else if (arg_match(&arg, &use_i420, argi)) + global->color_type = I420; + else if (arg_match(&arg, &use_i422, argi)) + global->color_type = I422; + else if (arg_match(&arg, &use_i444, argi)) + global->color_type = I444; + else if (arg_match(&arg, &use_i440, argi)) + global->color_type = I440; + else if (arg_match(&arg, &quietarg, argi)) + global->quiet = 1; + else if (arg_match(&arg, &verbosearg, argi)) + global->verbose = 1; + else if (arg_match(&arg, &limit, argi)) + global->limit = arg_parse_uint(&arg); + else if (arg_match(&arg, &skip, argi)) + global->skip_frames = arg_parse_uint(&arg); + else if (arg_match(&arg, &psnrarg, argi)) + global->show_psnr = 1; + else if (arg_match(&arg, &recontest, argi)) + global->test_decode = arg_parse_enum_or_int(&arg); + else if (arg_match(&arg, &framerate, argi)) { + global->framerate = arg_parse_rational(&arg); + validate_positive_rational(arg.name, &global->framerate); + global->have_framerate = 1; + } else if (arg_match(&arg, &out_part, argi)) + global->out_part = 1; + else if (arg_match(&arg, &debugmode, argi)) + global->debug = 1; + else if (arg_match(&arg, &q_hist_n, argi)) + global->show_q_hist_buckets = arg_parse_uint(&arg); + else if (arg_match(&arg, &rate_hist_n, argi)) + global->show_rate_hist_buckets = arg_parse_uint(&arg); + else if (arg_match(&arg, &disable_warnings, argi)) + global->disable_warnings = 1; + else if (arg_match(&arg, &disable_warning_prompt, argi)) + global->disable_warning_prompt = 1; + else + argj++; + } + + if (global->pass) { + /* DWIM: Assume the user meant passes=2 if pass=2 is specified */ + if (global->pass > global->passes) { + warn("Assuming --pass=%d implies --passes=%d\n", global->pass, + global->pass); + global->passes = global->pass; + } + } + /* Validate global config */ + if (global->passes == 0) { +#if CONFIG_VP9_ENCODER + // Make default VP9 passes = 2 until there is a better quality 1-pass + // encoder + if (global->codec != NULL && global->codec->name != NULL) + global->passes = (strcmp(global->codec->name, "vp9") == 0 && + global->deadline != VPX_DL_REALTIME) + ? 2 + : 1; +#else + global->passes = 1; +#endif + } + + if (global->deadline == VPX_DL_REALTIME && global->passes > 1) { + warn("Enforcing one-pass encoding in realtime mode\n"); + global->passes = 1; + } +} + +static void open_input_file(struct VpxInputContext *input) { + /* Parse certain options from the input file, if possible */ + input->file = strcmp(input->filename, "-") ? fopen(input->filename, "rb") + : set_binary_mode(stdin); + + if (!input->file) fatal("Failed to open input file"); + + if (!fseeko(input->file, 0, SEEK_END)) { + /* Input file is seekable. Figure out how long it is, so we can get + * progress info. + */ + input->length = ftello(input->file); + rewind(input->file); + } + + /* Default to 1:1 pixel aspect ratio. */ + input->pixel_aspect_ratio.numerator = 1; + input->pixel_aspect_ratio.denominator = 1; + + /* For RAW input sources, these bytes will applied on the first frame + * in read_frame(). + */ + input->detect.buf_read = fread(input->detect.buf, 1, 4, input->file); + input->detect.position = 0; + + if (input->detect.buf_read == 4 && file_is_y4m(input->detect.buf)) { + if (y4m_input_open(&input->y4m, input->file, input->detect.buf, 4, + input->only_i420) >= 0) { + input->file_type = FILE_TYPE_Y4M; + input->width = input->y4m.pic_w; + input->height = input->y4m.pic_h; + input->pixel_aspect_ratio.numerator = input->y4m.par_n; + input->pixel_aspect_ratio.denominator = input->y4m.par_d; + input->framerate.numerator = input->y4m.fps_n; + input->framerate.denominator = input->y4m.fps_d; + input->fmt = input->y4m.vpx_fmt; + input->bit_depth = input->y4m.bit_depth; + } else + fatal("Unsupported Y4M stream."); + } else if (input->detect.buf_read == 4 && fourcc_is_ivf(input->detect.buf)) { + fatal("IVF is not supported as input."); + } else { + input->file_type = FILE_TYPE_RAW; + } +} + +static void close_input_file(struct VpxInputContext *input) { + fclose(input->file); + if (input->file_type == FILE_TYPE_Y4M) y4m_input_close(&input->y4m); +} + +static struct stream_state *new_stream(struct VpxEncoderConfig *global, + struct stream_state *prev) { + struct stream_state *stream; + + stream = calloc(1, sizeof(*stream)); + if (stream == NULL) { + fatal("Failed to allocate new stream."); + } + + if (prev) { + memcpy(stream, prev, sizeof(*stream)); + stream->index++; + prev->next = stream; + } else { + vpx_codec_err_t res; + + /* Populate encoder configuration */ + res = vpx_codec_enc_config_default(global->codec->codec_interface(), + &stream->config.cfg, global->usage); + if (res) fatal("Failed to get config: %s\n", vpx_codec_err_to_string(res)); + + /* Change the default timebase to a high enough value so that the + * encoder will always create strictly increasing timestamps. + */ + stream->config.cfg.g_timebase.den = 1000; + + /* Never use the library's default resolution, require it be parsed + * from the file or set on the command line. + */ + stream->config.cfg.g_w = 0; + stream->config.cfg.g_h = 0; + + /* Initialize remaining stream parameters */ + stream->config.write_webm = 1; +#if CONFIG_WEBM_IO + stream->config.stereo_fmt = STEREO_FORMAT_MONO; + stream->webm_ctx.last_pts_ns = -1; + stream->webm_ctx.writer = NULL; + stream->webm_ctx.segment = NULL; +#endif + + /* Allows removal of the application version from the EBML tags */ + stream->webm_ctx.debug = global->debug; + + /* Default lag_in_frames is 0 in realtime mode CBR mode*/ + if (global->deadline == VPX_DL_REALTIME && + stream->config.cfg.rc_end_usage == 1) + stream->config.cfg.g_lag_in_frames = 0; + } + + /* Output files must be specified for each stream */ + stream->config.out_fn = NULL; + + stream->next = NULL; + return stream; +} + +static int parse_stream_params(struct VpxEncoderConfig *global, + struct stream_state *stream, char **argv) { + char **argi, **argj; + struct arg arg; + static const arg_def_t **ctrl_args = no_args; + static const int *ctrl_args_map = NULL; + struct stream_config *config = &stream->config; + int eos_mark_found = 0; +#if CONFIG_VP9_HIGHBITDEPTH + int test_16bit_internal = 0; +#endif + + // Handle codec specific options + if (0) { +#if CONFIG_VP8_ENCODER + } else if (strcmp(global->codec->name, "vp8") == 0) { + ctrl_args = vp8_args; + ctrl_args_map = vp8_arg_ctrl_map; +#endif +#if CONFIG_VP9_ENCODER + } else if (strcmp(global->codec->name, "vp9") == 0) { + ctrl_args = vp9_args; + ctrl_args_map = vp9_arg_ctrl_map; +#endif + } + + for (argi = argj = argv; (*argj = *argi); argi += arg.argv_step) { + arg.argv_step = 1; + + /* Once we've found an end-of-stream marker (--) we want to continue + * shifting arguments but not consuming them. + */ + if (eos_mark_found) { + argj++; + continue; + } else if (!strcmp(*argj, "--")) { + eos_mark_found = 1; + continue; + } + + if (arg_match(&arg, &outputfile, argi)) { + config->out_fn = arg.val; + } else if (arg_match(&arg, &fpf_name, argi)) { + config->stats_fn = arg.val; +#if CONFIG_FP_MB_STATS + } else if (arg_match(&arg, &fpmbf_name, argi)) { + config->fpmb_stats_fn = arg.val; +#endif + } else if (arg_match(&arg, &use_webm, argi)) { +#if CONFIG_WEBM_IO + config->write_webm = 1; +#else + die("Error: --webm specified but webm is disabled."); +#endif + } else if (arg_match(&arg, &use_ivf, argi)) { + config->write_webm = 0; + } else if (arg_match(&arg, &threads, argi)) { + config->cfg.g_threads = arg_parse_uint(&arg); + } else if (arg_match(&arg, &profile, argi)) { + config->cfg.g_profile = arg_parse_uint(&arg); + } else if (arg_match(&arg, &width, argi)) { + config->cfg.g_w = arg_parse_uint(&arg); + } else if (arg_match(&arg, &height, argi)) { + config->cfg.g_h = arg_parse_uint(&arg); +#if CONFIG_VP9_HIGHBITDEPTH + } else if (arg_match(&arg, &bitdeptharg, argi)) { + config->cfg.g_bit_depth = arg_parse_enum_or_int(&arg); + } else if (arg_match(&arg, &inbitdeptharg, argi)) { + config->cfg.g_input_bit_depth = arg_parse_uint(&arg); +#endif +#if CONFIG_WEBM_IO + } else if (arg_match(&arg, &stereo_mode, argi)) { + config->stereo_fmt = arg_parse_enum_or_int(&arg); +#endif + } else if (arg_match(&arg, &timebase, argi)) { + config->cfg.g_timebase = arg_parse_rational(&arg); + validate_positive_rational(arg.name, &config->cfg.g_timebase); + } else if (arg_match(&arg, &error_resilient, argi)) { + config->cfg.g_error_resilient = arg_parse_uint(&arg); + } else if (arg_match(&arg, &end_usage, argi)) { + config->cfg.rc_end_usage = arg_parse_enum_or_int(&arg); + } else if (arg_match(&arg, &lag_in_frames, argi)) { + config->cfg.g_lag_in_frames = arg_parse_uint(&arg); + if (global->deadline == VPX_DL_REALTIME && + config->cfg.rc_end_usage == VPX_CBR && + config->cfg.g_lag_in_frames != 0) { + warn("non-zero %s option ignored in realtime CBR mode.\n", arg.name); + config->cfg.g_lag_in_frames = 0; + } + } else if (arg_match(&arg, &dropframe_thresh, argi)) { + config->cfg.rc_dropframe_thresh = arg_parse_uint(&arg); + } else if (arg_match(&arg, &resize_allowed, argi)) { + config->cfg.rc_resize_allowed = arg_parse_uint(&arg); + } else if (arg_match(&arg, &resize_width, argi)) { + config->cfg.rc_scaled_width = arg_parse_uint(&arg); + } else if (arg_match(&arg, &resize_height, argi)) { + config->cfg.rc_scaled_height = arg_parse_uint(&arg); + } else if (arg_match(&arg, &resize_up_thresh, argi)) { + config->cfg.rc_resize_up_thresh = arg_parse_uint(&arg); + } else if (arg_match(&arg, &resize_down_thresh, argi)) { + config->cfg.rc_resize_down_thresh = arg_parse_uint(&arg); + } else if (arg_match(&arg, &end_usage, argi)) { + config->cfg.rc_end_usage = arg_parse_enum_or_int(&arg); + } else if (arg_match(&arg, &target_bitrate, argi)) { + config->cfg.rc_target_bitrate = arg_parse_uint(&arg); + } else if (arg_match(&arg, &min_quantizer, argi)) { + config->cfg.rc_min_quantizer = arg_parse_uint(&arg); + } else if (arg_match(&arg, &max_quantizer, argi)) { + config->cfg.rc_max_quantizer = arg_parse_uint(&arg); + } else if (arg_match(&arg, &undershoot_pct, argi)) { + config->cfg.rc_undershoot_pct = arg_parse_uint(&arg); + } else if (arg_match(&arg, &overshoot_pct, argi)) { + config->cfg.rc_overshoot_pct = arg_parse_uint(&arg); + } else if (arg_match(&arg, &buf_sz, argi)) { + config->cfg.rc_buf_sz = arg_parse_uint(&arg); + } else if (arg_match(&arg, &buf_initial_sz, argi)) { + config->cfg.rc_buf_initial_sz = arg_parse_uint(&arg); + } else if (arg_match(&arg, &buf_optimal_sz, argi)) { + config->cfg.rc_buf_optimal_sz = arg_parse_uint(&arg); + } else if (arg_match(&arg, &bias_pct, argi)) { + config->cfg.rc_2pass_vbr_bias_pct = arg_parse_uint(&arg); + if (global->passes < 2) + warn("option %s ignored in one-pass mode.\n", arg.name); + } else if (arg_match(&arg, &minsection_pct, argi)) { + config->cfg.rc_2pass_vbr_minsection_pct = arg_parse_uint(&arg); + + if (global->passes < 2) + warn("option %s ignored in one-pass mode.\n", arg.name); + } else if (arg_match(&arg, &maxsection_pct, argi)) { + config->cfg.rc_2pass_vbr_maxsection_pct = arg_parse_uint(&arg); + + if (global->passes < 2) + warn("option %s ignored in one-pass mode.\n", arg.name); + } else if (arg_match(&arg, &corpus_complexity, argi)) { + config->cfg.rc_2pass_vbr_corpus_complexity = arg_parse_uint(&arg); + + if (global->passes < 2) + warn("option %s ignored in one-pass mode.\n", arg.name); + } else if (arg_match(&arg, &kf_min_dist, argi)) { + config->cfg.kf_min_dist = arg_parse_uint(&arg); + } else if (arg_match(&arg, &kf_max_dist, argi)) { + config->cfg.kf_max_dist = arg_parse_uint(&arg); + } else if (arg_match(&arg, &kf_disabled, argi)) { + config->cfg.kf_mode = VPX_KF_DISABLED; +#if CONFIG_VP9_HIGHBITDEPTH + } else if (arg_match(&arg, &test16bitinternalarg, argi)) { + if (strcmp(global->codec->name, "vp9") == 0) { + test_16bit_internal = 1; + } +#endif + } else { + int i, match = 0; + for (i = 0; ctrl_args[i]; i++) { + if (arg_match(&arg, ctrl_args[i], argi)) { + int j; + match = 1; + + /* Point either to the next free element or the first + * instance of this control. + */ + for (j = 0; j < config->arg_ctrl_cnt; j++) + if (ctrl_args_map != NULL && + config->arg_ctrls[j][0] == ctrl_args_map[i]) + break; + + /* Update/insert */ + assert(j < (int)ARG_CTRL_CNT_MAX); + if (ctrl_args_map != NULL && j < (int)ARG_CTRL_CNT_MAX) { + config->arg_ctrls[j][0] = ctrl_args_map[i]; + config->arg_ctrls[j][1] = arg_parse_enum_or_int(&arg); + if (j == config->arg_ctrl_cnt) config->arg_ctrl_cnt++; + } + } + } + if (!match) argj++; + } + } +#if CONFIG_VP9_HIGHBITDEPTH + if (strcmp(global->codec->name, "vp9") == 0) { + config->use_16bit_internal = + test_16bit_internal | (config->cfg.g_profile > 1); + } +#endif + return eos_mark_found; +} + +#define FOREACH_STREAM(func) \ + do { \ + struct stream_state *stream; \ + for (stream = streams; stream; stream = stream->next) { \ + func; \ + } \ + } while (0) + +static void validate_stream_config(const struct stream_state *stream, + const struct VpxEncoderConfig *global) { + const struct stream_state *streami; + (void)global; + + if (!stream->config.cfg.g_w || !stream->config.cfg.g_h) + fatal( + "Stream %d: Specify stream dimensions with --width (-w) " + " and --height (-h)", + stream->index); + + // Check that the codec bit depth is greater than the input bit depth. + if (stream->config.cfg.g_input_bit_depth > + (unsigned int)stream->config.cfg.g_bit_depth) { + fatal("Stream %d: codec bit depth (%d) less than input bit depth (%d)", + stream->index, (int)stream->config.cfg.g_bit_depth, + stream->config.cfg.g_input_bit_depth); + } + + for (streami = stream; streami; streami = streami->next) { + /* All streams require output files */ + if (!streami->config.out_fn) + fatal("Stream %d: Output file is required (specify with -o)", + streami->index); + + /* Check for two streams outputting to the same file */ + if (streami != stream) { + const char *a = stream->config.out_fn; + const char *b = streami->config.out_fn; + if (!strcmp(a, b) && strcmp(a, "/dev/null") && strcmp(a, ":nul")) + fatal("Stream %d: duplicate output file (from stream %d)", + streami->index, stream->index); + } + + /* Check for two streams sharing a stats file. */ + if (streami != stream) { + const char *a = stream->config.stats_fn; + const char *b = streami->config.stats_fn; + if (a && b && !strcmp(a, b)) + fatal("Stream %d: duplicate stats file (from stream %d)", + streami->index, stream->index); + } + +#if CONFIG_FP_MB_STATS + /* Check for two streams sharing a mb stats file. */ + if (streami != stream) { + const char *a = stream->config.fpmb_stats_fn; + const char *b = streami->config.fpmb_stats_fn; + if (a && b && !strcmp(a, b)) + fatal("Stream %d: duplicate mb stats file (from stream %d)", + streami->index, stream->index); + } +#endif + } +} + +static void set_stream_dimensions(struct stream_state *stream, unsigned int w, + unsigned int h) { + if (!stream->config.cfg.g_w) { + if (!stream->config.cfg.g_h) + stream->config.cfg.g_w = w; + else + stream->config.cfg.g_w = w * stream->config.cfg.g_h / h; + } + if (!stream->config.cfg.g_h) { + stream->config.cfg.g_h = h * stream->config.cfg.g_w / w; + } +} + +static const char *file_type_to_string(enum VideoFileType t) { + switch (t) { + case FILE_TYPE_RAW: return "RAW"; + case FILE_TYPE_Y4M: return "Y4M"; + default: return "Other"; + } +} + +static const char *image_format_to_string(vpx_img_fmt_t f) { + switch (f) { + case VPX_IMG_FMT_I420: return "I420"; + case VPX_IMG_FMT_I422: return "I422"; + case VPX_IMG_FMT_I444: return "I444"; + case VPX_IMG_FMT_I440: return "I440"; + case VPX_IMG_FMT_YV12: return "YV12"; + case VPX_IMG_FMT_I42016: return "I42016"; + case VPX_IMG_FMT_I42216: return "I42216"; + case VPX_IMG_FMT_I44416: return "I44416"; + case VPX_IMG_FMT_I44016: return "I44016"; + default: return "Other"; + } +} + +static void show_stream_config(struct stream_state *stream, + struct VpxEncoderConfig *global, + struct VpxInputContext *input) { +#define SHOW(field) \ + fprintf(stderr, " %-28s = %d\n", #field, stream->config.cfg.field) + + if (stream->index == 0) { + fprintf(stderr, "Codec: %s\n", + vpx_codec_iface_name(global->codec->codec_interface())); + fprintf(stderr, "Source file: %s File Type: %s Format: %s\n", + input->filename, file_type_to_string(input->file_type), + image_format_to_string(input->fmt)); + } + if (stream->next || stream->index) + fprintf(stderr, "\nStream Index: %d\n", stream->index); + fprintf(stderr, "Destination file: %s\n", stream->config.out_fn); + fprintf(stderr, "Encoder parameters:\n"); + + SHOW(g_usage); + SHOW(g_threads); + SHOW(g_profile); + SHOW(g_w); + SHOW(g_h); + SHOW(g_bit_depth); + SHOW(g_input_bit_depth); + SHOW(g_timebase.num); + SHOW(g_timebase.den); + SHOW(g_error_resilient); + SHOW(g_pass); + SHOW(g_lag_in_frames); + SHOW(rc_dropframe_thresh); + SHOW(rc_resize_allowed); + SHOW(rc_scaled_width); + SHOW(rc_scaled_height); + SHOW(rc_resize_up_thresh); + SHOW(rc_resize_down_thresh); + SHOW(rc_end_usage); + SHOW(rc_target_bitrate); + SHOW(rc_min_quantizer); + SHOW(rc_max_quantizer); + SHOW(rc_undershoot_pct); + SHOW(rc_overshoot_pct); + SHOW(rc_buf_sz); + SHOW(rc_buf_initial_sz); + SHOW(rc_buf_optimal_sz); + SHOW(rc_2pass_vbr_bias_pct); + SHOW(rc_2pass_vbr_minsection_pct); + SHOW(rc_2pass_vbr_maxsection_pct); + SHOW(rc_2pass_vbr_corpus_complexity); + SHOW(kf_mode); + SHOW(kf_min_dist); + SHOW(kf_max_dist); +} + +static void open_output_file(struct stream_state *stream, + struct VpxEncoderConfig *global, + const struct VpxRational *pixel_aspect_ratio) { + const char *fn = stream->config.out_fn; + const struct vpx_codec_enc_cfg *const cfg = &stream->config.cfg; + + if (cfg->g_pass == VPX_RC_FIRST_PASS) return; + + stream->file = strcmp(fn, "-") ? fopen(fn, "wb") : set_binary_mode(stdout); + + if (!stream->file) fatal("Failed to open output file"); + + if (stream->config.write_webm && fseek(stream->file, 0, SEEK_CUR)) + fatal("WebM output to pipes not supported."); + +#if CONFIG_WEBM_IO + if (stream->config.write_webm) { + stream->webm_ctx.stream = stream->file; + write_webm_file_header(&stream->webm_ctx, cfg, stream->config.stereo_fmt, + global->codec->fourcc, pixel_aspect_ratio); + } +#else + (void)pixel_aspect_ratio; +#endif + + if (!stream->config.write_webm) { + ivf_write_file_header(stream->file, cfg, global->codec->fourcc, 0); + } +} + +static void close_output_file(struct stream_state *stream, + unsigned int fourcc) { + const struct vpx_codec_enc_cfg *const cfg = &stream->config.cfg; + + if (cfg->g_pass == VPX_RC_FIRST_PASS) return; + +#if CONFIG_WEBM_IO + if (stream->config.write_webm) { + write_webm_file_footer(&stream->webm_ctx); + } +#endif + + if (!stream->config.write_webm) { + if (!fseek(stream->file, 0, SEEK_SET)) + ivf_write_file_header(stream->file, &stream->config.cfg, fourcc, + stream->frames_out); + } + + fclose(stream->file); +} + +static void setup_pass(struct stream_state *stream, + struct VpxEncoderConfig *global, int pass) { + if (stream->config.stats_fn) { + if (!stats_open_file(&stream->stats, stream->config.stats_fn, pass)) + fatal("Failed to open statistics store"); + } else { + if (!stats_open_mem(&stream->stats, pass)) + fatal("Failed to open statistics store"); + } + +#if CONFIG_FP_MB_STATS + if (stream->config.fpmb_stats_fn) { + if (!stats_open_file(&stream->fpmb_stats, stream->config.fpmb_stats_fn, + pass)) + fatal("Failed to open mb statistics store"); + } else { + if (!stats_open_mem(&stream->fpmb_stats, pass)) + fatal("Failed to open mb statistics store"); + } +#endif + + stream->config.cfg.g_pass = global->passes == 2 + ? pass ? VPX_RC_LAST_PASS : VPX_RC_FIRST_PASS + : VPX_RC_ONE_PASS; + if (pass) { + stream->config.cfg.rc_twopass_stats_in = stats_get(&stream->stats); +#if CONFIG_FP_MB_STATS + stream->config.cfg.rc_firstpass_mb_stats_in = + stats_get(&stream->fpmb_stats); +#endif + } + + stream->cx_time = 0; + stream->nbytes = 0; + stream->frames_out = 0; +} + +static void initialize_encoder(struct stream_state *stream, + struct VpxEncoderConfig *global) { + int i; + int flags = 0; + + flags |= global->show_psnr ? VPX_CODEC_USE_PSNR : 0; + flags |= global->out_part ? VPX_CODEC_USE_OUTPUT_PARTITION : 0; +#if CONFIG_VP9_HIGHBITDEPTH + flags |= stream->config.use_16bit_internal ? VPX_CODEC_USE_HIGHBITDEPTH : 0; +#endif + + /* Construct Encoder Context */ + vpx_codec_enc_init(&stream->encoder, global->codec->codec_interface(), + &stream->config.cfg, flags); + ctx_exit_on_error(&stream->encoder, "Failed to initialize encoder"); + + /* Note that we bypass the vpx_codec_control wrapper macro because + * we're being clever to store the control IDs in an array. Real + * applications will want to make use of the enumerations directly + */ + for (i = 0; i < stream->config.arg_ctrl_cnt; i++) { + int ctrl = stream->config.arg_ctrls[i][0]; + int value = stream->config.arg_ctrls[i][1]; + if (vpx_codec_control_(&stream->encoder, ctrl, value)) + fprintf(stderr, "Error: Tried to set control %d = %d\n", ctrl, value); + + ctx_exit_on_error(&stream->encoder, "Failed to control codec"); + } + +#if CONFIG_DECODERS + if (global->test_decode != TEST_DECODE_OFF) { + const VpxInterface *decoder = get_vpx_decoder_by_name(global->codec->name); + vpx_codec_dec_init(&stream->decoder, decoder->codec_interface(), NULL, 0); + } +#endif +} + +static void encode_frame(struct stream_state *stream, + struct VpxEncoderConfig *global, struct vpx_image *img, + unsigned int frames_in) { + vpx_codec_pts_t frame_start, next_frame_start; + struct vpx_codec_enc_cfg *cfg = &stream->config.cfg; + struct vpx_usec_timer timer; + + frame_start = + (cfg->g_timebase.den * (int64_t)(frames_in - 1) * global->framerate.den) / + cfg->g_timebase.num / global->framerate.num; + next_frame_start = + (cfg->g_timebase.den * (int64_t)(frames_in)*global->framerate.den) / + cfg->g_timebase.num / global->framerate.num; + +/* Scale if necessary */ +#if CONFIG_VP9_HIGHBITDEPTH + if (img) { + if ((img->fmt & VPX_IMG_FMT_HIGHBITDEPTH) && + (img->d_w != cfg->g_w || img->d_h != cfg->g_h)) { + if (img->fmt != VPX_IMG_FMT_I42016) { + fprintf(stderr, "%s can only scale 4:2:0 inputs\n", exec_name); + exit(EXIT_FAILURE); + } +#if CONFIG_LIBYUV + if (!stream->img) { + stream->img = + vpx_img_alloc(NULL, VPX_IMG_FMT_I42016, cfg->g_w, cfg->g_h, 16); + } + I420Scale_16( + (uint16 *)img->planes[VPX_PLANE_Y], img->stride[VPX_PLANE_Y] / 2, + (uint16 *)img->planes[VPX_PLANE_U], img->stride[VPX_PLANE_U] / 2, + (uint16 *)img->planes[VPX_PLANE_V], img->stride[VPX_PLANE_V] / 2, + img->d_w, img->d_h, (uint16 *)stream->img->planes[VPX_PLANE_Y], + stream->img->stride[VPX_PLANE_Y] / 2, + (uint16 *)stream->img->planes[VPX_PLANE_U], + stream->img->stride[VPX_PLANE_U] / 2, + (uint16 *)stream->img->planes[VPX_PLANE_V], + stream->img->stride[VPX_PLANE_V] / 2, stream->img->d_w, + stream->img->d_h, kFilterBox); + img = stream->img; +#else + stream->encoder.err = 1; + ctx_exit_on_error(&stream->encoder, + "Stream %d: Failed to encode frame.\n" + "Scaling disabled in this configuration. \n" + "To enable, configure with --enable-libyuv\n", + stream->index); +#endif + } + } +#endif + if (img && (img->d_w != cfg->g_w || img->d_h != cfg->g_h)) { + if (img->fmt != VPX_IMG_FMT_I420 && img->fmt != VPX_IMG_FMT_YV12) { + fprintf(stderr, "%s can only scale 4:2:0 8bpp inputs\n", exec_name); + exit(EXIT_FAILURE); + } +#if CONFIG_LIBYUV + if (!stream->img) + stream->img = + vpx_img_alloc(NULL, VPX_IMG_FMT_I420, cfg->g_w, cfg->g_h, 16); + I420Scale( + img->planes[VPX_PLANE_Y], img->stride[VPX_PLANE_Y], + img->planes[VPX_PLANE_U], img->stride[VPX_PLANE_U], + img->planes[VPX_PLANE_V], img->stride[VPX_PLANE_V], img->d_w, img->d_h, + stream->img->planes[VPX_PLANE_Y], stream->img->stride[VPX_PLANE_Y], + stream->img->planes[VPX_PLANE_U], stream->img->stride[VPX_PLANE_U], + stream->img->planes[VPX_PLANE_V], stream->img->stride[VPX_PLANE_V], + stream->img->d_w, stream->img->d_h, kFilterBox); + img = stream->img; +#else + stream->encoder.err = 1; + ctx_exit_on_error(&stream->encoder, + "Stream %d: Failed to encode frame.\n" + "Scaling disabled in this configuration. \n" + "To enable, configure with --enable-libyuv\n", + stream->index); +#endif + } + + vpx_usec_timer_start(&timer); + vpx_codec_encode(&stream->encoder, img, frame_start, + (unsigned long)(next_frame_start - frame_start), 0, + global->deadline); + vpx_usec_timer_mark(&timer); + stream->cx_time += vpx_usec_timer_elapsed(&timer); + ctx_exit_on_error(&stream->encoder, "Stream %d: Failed to encode frame", + stream->index); +} + +static void update_quantizer_histogram(struct stream_state *stream) { + if (stream->config.cfg.g_pass != VPX_RC_FIRST_PASS) { + int q; + + vpx_codec_control(&stream->encoder, VP8E_GET_LAST_QUANTIZER_64, &q); + ctx_exit_on_error(&stream->encoder, "Failed to read quantizer"); + stream->counts[q]++; + } +} + +static void get_cx_data(struct stream_state *stream, + struct VpxEncoderConfig *global, int *got_data) { + const vpx_codec_cx_pkt_t *pkt; + const struct vpx_codec_enc_cfg *cfg = &stream->config.cfg; + vpx_codec_iter_t iter = NULL; + + *got_data = 0; + while ((pkt = vpx_codec_get_cx_data(&stream->encoder, &iter))) { + static size_t fsize = 0; + static FileOffset ivf_header_pos = 0; + + switch (pkt->kind) { + case VPX_CODEC_CX_FRAME_PKT: + if (!(pkt->data.frame.flags & VPX_FRAME_IS_FRAGMENT)) { + stream->frames_out++; + } + if (!global->quiet) + fprintf(stderr, " %6luF", (unsigned long)pkt->data.frame.sz); + + update_rate_histogram(stream->rate_hist, cfg, pkt); +#if CONFIG_WEBM_IO + if (stream->config.write_webm) { + write_webm_block(&stream->webm_ctx, cfg, pkt); + } +#endif + if (!stream->config.write_webm) { + if (pkt->data.frame.partition_id <= 0) { + ivf_header_pos = ftello(stream->file); + fsize = pkt->data.frame.sz; + + ivf_write_frame_header(stream->file, pkt->data.frame.pts, fsize); + } else { + fsize += pkt->data.frame.sz; + + if (!(pkt->data.frame.flags & VPX_FRAME_IS_FRAGMENT)) { + const FileOffset currpos = ftello(stream->file); + fseeko(stream->file, ivf_header_pos, SEEK_SET); + ivf_write_frame_size(stream->file, fsize); + fseeko(stream->file, currpos, SEEK_SET); + } + } + + (void)fwrite(pkt->data.frame.buf, 1, pkt->data.frame.sz, + stream->file); + } + stream->nbytes += pkt->data.raw.sz; + + *got_data = 1; +#if CONFIG_DECODERS + if (global->test_decode != TEST_DECODE_OFF && !stream->mismatch_seen) { + vpx_codec_decode(&stream->decoder, pkt->data.frame.buf, + (unsigned int)pkt->data.frame.sz, NULL, 0); + if (stream->decoder.err) { + warn_or_exit_on_error(&stream->decoder, + global->test_decode == TEST_DECODE_FATAL, + "Failed to decode frame %d in stream %d", + stream->frames_out + 1, stream->index); + stream->mismatch_seen = stream->frames_out + 1; + } + } +#endif + break; + case VPX_CODEC_STATS_PKT: + stream->frames_out++; + stats_write(&stream->stats, pkt->data.twopass_stats.buf, + pkt->data.twopass_stats.sz); + stream->nbytes += pkt->data.raw.sz; + break; +#if CONFIG_FP_MB_STATS + case VPX_CODEC_FPMB_STATS_PKT: + stats_write(&stream->fpmb_stats, pkt->data.firstpass_mb_stats.buf, + pkt->data.firstpass_mb_stats.sz); + stream->nbytes += pkt->data.raw.sz; + break; +#endif + case VPX_CODEC_PSNR_PKT: + + if (global->show_psnr) { + int i; + + stream->psnr_sse_total += pkt->data.psnr.sse[0]; + stream->psnr_samples_total += pkt->data.psnr.samples[0]; + for (i = 0; i < 4; i++) { + if (!global->quiet) + fprintf(stderr, "%.3f ", pkt->data.psnr.psnr[i]); + stream->psnr_totals[i] += pkt->data.psnr.psnr[i]; + } + stream->psnr_count++; + } + + break; + default: break; + } + } +} + +static void show_psnr(struct stream_state *stream, double peak) { + int i; + double ovpsnr; + + if (!stream->psnr_count) return; + + fprintf(stderr, "Stream %d PSNR (Overall/Avg/Y/U/V)", stream->index); + ovpsnr = sse_to_psnr((double)stream->psnr_samples_total, peak, + (double)stream->psnr_sse_total); + fprintf(stderr, " %.3f", ovpsnr); + + for (i = 0; i < 4; i++) { + fprintf(stderr, " %.3f", stream->psnr_totals[i] / stream->psnr_count); + } + fprintf(stderr, "\n"); +} + +static float usec_to_fps(uint64_t usec, unsigned int frames) { + return (float)(usec > 0 ? frames * 1000000.0 / (float)usec : 0); +} + +static void test_decode(struct stream_state *stream, + enum TestDecodeFatality fatal, + const VpxInterface *codec) { + vpx_image_t enc_img, dec_img; + + if (stream->mismatch_seen) return; + + /* Get the internal reference frame */ + if (strcmp(codec->name, "vp8") == 0) { + struct vpx_ref_frame ref_enc, ref_dec; + int width, height; + + width = (stream->config.cfg.g_w + 15) & ~15; + height = (stream->config.cfg.g_h + 15) & ~15; + vpx_img_alloc(&ref_enc.img, VPX_IMG_FMT_I420, width, height, 1); + enc_img = ref_enc.img; + vpx_img_alloc(&ref_dec.img, VPX_IMG_FMT_I420, width, height, 1); + dec_img = ref_dec.img; + + ref_enc.frame_type = VP8_LAST_FRAME; + ref_dec.frame_type = VP8_LAST_FRAME; + vpx_codec_control(&stream->encoder, VP8_COPY_REFERENCE, &ref_enc); + vpx_codec_control(&stream->decoder, VP8_COPY_REFERENCE, &ref_dec); + } else { + struct vp9_ref_frame ref_enc, ref_dec; + + ref_enc.idx = 0; + ref_dec.idx = 0; + vpx_codec_control(&stream->encoder, VP9_GET_REFERENCE, &ref_enc); + enc_img = ref_enc.img; + vpx_codec_control(&stream->decoder, VP9_GET_REFERENCE, &ref_dec); + dec_img = ref_dec.img; +#if CONFIG_VP9_HIGHBITDEPTH + if ((enc_img.fmt & VPX_IMG_FMT_HIGHBITDEPTH) != + (dec_img.fmt & VPX_IMG_FMT_HIGHBITDEPTH)) { + if (enc_img.fmt & VPX_IMG_FMT_HIGHBITDEPTH) { + vpx_img_alloc(&enc_img, enc_img.fmt - VPX_IMG_FMT_HIGHBITDEPTH, + enc_img.d_w, enc_img.d_h, 16); + vpx_img_truncate_16_to_8(&enc_img, &ref_enc.img); + } + if (dec_img.fmt & VPX_IMG_FMT_HIGHBITDEPTH) { + vpx_img_alloc(&dec_img, dec_img.fmt - VPX_IMG_FMT_HIGHBITDEPTH, + dec_img.d_w, dec_img.d_h, 16); + vpx_img_truncate_16_to_8(&dec_img, &ref_dec.img); + } + } +#endif + } + ctx_exit_on_error(&stream->encoder, "Failed to get encoder reference frame"); + ctx_exit_on_error(&stream->decoder, "Failed to get decoder reference frame"); + + if (!compare_img(&enc_img, &dec_img)) { + int y[4], u[4], v[4]; +#if CONFIG_VP9_HIGHBITDEPTH + if (enc_img.fmt & VPX_IMG_FMT_HIGHBITDEPTH) { + find_mismatch_high(&enc_img, &dec_img, y, u, v); + } else { + find_mismatch(&enc_img, &dec_img, y, u, v); + } +#else + find_mismatch(&enc_img, &dec_img, y, u, v); +#endif + stream->decoder.err = 1; + warn_or_exit_on_error(&stream->decoder, fatal == TEST_DECODE_FATAL, + "Stream %d: Encode/decode mismatch on frame %d at" + " Y[%d, %d] {%d/%d}," + " U[%d, %d] {%d/%d}," + " V[%d, %d] {%d/%d}", + stream->index, stream->frames_out, y[0], y[1], y[2], + y[3], u[0], u[1], u[2], u[3], v[0], v[1], v[2], v[3]); + stream->mismatch_seen = stream->frames_out; + } + + vpx_img_free(&enc_img); + vpx_img_free(&dec_img); +} + +static void print_time(const char *label, int64_t etl) { + int64_t hours; + int64_t mins; + int64_t secs; + + if (etl >= 0) { + hours = etl / 3600; + etl -= hours * 3600; + mins = etl / 60; + etl -= mins * 60; + secs = etl; + + fprintf(stderr, "[%3s %2" PRId64 ":%02" PRId64 ":%02" PRId64 "] ", label, + hours, mins, secs); + } else { + fprintf(stderr, "[%3s unknown] ", label); + } +} + +int main(int argc, const char **argv_) { + int pass; + vpx_image_t raw; +#if CONFIG_VP9_HIGHBITDEPTH + vpx_image_t raw_shift; + int allocated_raw_shift = 0; + int use_16bit_internal = 0; + int input_shift = 0; +#endif + int frame_avail, got_data; + + struct VpxInputContext input; + struct VpxEncoderConfig global; + struct stream_state *streams = NULL; + char **argv, **argi; + uint64_t cx_time = 0; + int stream_cnt = 0; + int res = 0; + + memset(&input, 0, sizeof(input)); + exec_name = argv_[0]; + + /* Setup default input stream settings */ + input.framerate.numerator = 30; + input.framerate.denominator = 1; + input.only_i420 = 1; + input.bit_depth = 0; + + /* First parse the global configuration values, because we want to apply + * other parameters on top of the default configuration provided by the + * codec. + */ + argv = argv_dup(argc - 1, argv_ + 1); + parse_global_config(&global, argv); + + if (argc < 3) usage_exit(); + + switch (global.color_type) { + case I420: input.fmt = VPX_IMG_FMT_I420; break; + case I422: input.fmt = VPX_IMG_FMT_I422; break; + case I444: input.fmt = VPX_IMG_FMT_I444; break; + case I440: input.fmt = VPX_IMG_FMT_I440; break; + case YV12: input.fmt = VPX_IMG_FMT_YV12; break; + } + + { + /* Now parse each stream's parameters. Using a local scope here + * due to the use of 'stream' as loop variable in FOREACH_STREAM + * loops + */ + struct stream_state *stream = NULL; + + do { + stream = new_stream(&global, stream); + stream_cnt++; + if (!streams) streams = stream; + } while (parse_stream_params(&global, stream, argv)); + } + + /* Check for unrecognized options */ + for (argi = argv; *argi; argi++) + if (argi[0][0] == '-' && argi[0][1]) + die("Error: Unrecognized option %s\n", *argi); + + FOREACH_STREAM(check_encoder_config(global.disable_warning_prompt, &global, + &stream->config.cfg);); + + /* Handle non-option arguments */ + input.filename = argv[0]; + + if (!input.filename) { + fprintf(stderr, "No input file specified!\n"); + usage_exit(); + } + + /* Decide if other chroma subsamplings than 4:2:0 are supported */ + if (global.codec->fourcc == VP9_FOURCC) input.only_i420 = 0; + + for (pass = global.pass ? global.pass - 1 : 0; pass < global.passes; pass++) { + int frames_in = 0, seen_frames = 0; + int64_t estimated_time_left = -1; + int64_t average_rate = -1; + int64_t lagged_count = 0; + + open_input_file(&input); + + /* If the input file doesn't specify its w/h (raw files), try to get + * the data from the first stream's configuration. + */ + if (!input.width || !input.height) { + FOREACH_STREAM({ + if (stream->config.cfg.g_w && stream->config.cfg.g_h) { + input.width = stream->config.cfg.g_w; + input.height = stream->config.cfg.g_h; + break; + } + }); + } + + /* Update stream configurations from the input file's parameters */ + if (!input.width || !input.height) + fatal( + "Specify stream dimensions with --width (-w) " + " and --height (-h)"); + + /* If input file does not specify bit-depth but input-bit-depth parameter + * exists, assume that to be the input bit-depth. However, if the + * input-bit-depth paramter does not exist, assume the input bit-depth + * to be the same as the codec bit-depth. + */ + if (!input.bit_depth) { + FOREACH_STREAM({ + if (stream->config.cfg.g_input_bit_depth) + input.bit_depth = stream->config.cfg.g_input_bit_depth; + else + input.bit_depth = stream->config.cfg.g_input_bit_depth = + (int)stream->config.cfg.g_bit_depth; + }); + if (input.bit_depth > 8) input.fmt |= VPX_IMG_FMT_HIGHBITDEPTH; + } else { + FOREACH_STREAM( + { stream->config.cfg.g_input_bit_depth = input.bit_depth; }); + } + + FOREACH_STREAM(set_stream_dimensions(stream, input.width, input.height)); + FOREACH_STREAM(validate_stream_config(stream, &global)); + + /* Ensure that --passes and --pass are consistent. If --pass is set and + * --passes=2, ensure --fpf was set. + */ + if (global.pass && global.passes == 2) + FOREACH_STREAM({ + if (!stream->config.stats_fn) + die("Stream %d: Must specify --fpf when --pass=%d" + " and --passes=2\n", + stream->index, global.pass); + }); + +#if !CONFIG_WEBM_IO + FOREACH_STREAM({ + if (stream->config.write_webm) { + stream->config.write_webm = 0; + warn( + "vpxenc was compiled without WebM container support." + "Producing IVF output"); + } + }); +#endif + + /* Use the frame rate from the file only if none was specified + * on the command-line. + */ + if (!global.have_framerate) { + global.framerate.num = input.framerate.numerator; + global.framerate.den = input.framerate.denominator; + FOREACH_STREAM(stream->config.cfg.g_timebase.den = global.framerate.num; + stream->config.cfg.g_timebase.num = global.framerate.den); + } + + /* Show configuration */ + if (global.verbose && pass == 0) + FOREACH_STREAM(show_stream_config(stream, &global, &input)); + + if (pass == (global.pass ? global.pass - 1 : 0)) { + if (input.file_type == FILE_TYPE_Y4M) + /*The Y4M reader does its own allocation. + Just initialize this here to avoid problems if we never read any + frames.*/ + memset(&raw, 0, sizeof(raw)); + else + vpx_img_alloc(&raw, input.fmt, input.width, input.height, 32); + + FOREACH_STREAM(stream->rate_hist = init_rate_histogram( + &stream->config.cfg, &global.framerate)); + } + + FOREACH_STREAM(setup_pass(stream, &global, pass)); + FOREACH_STREAM( + open_output_file(stream, &global, &input.pixel_aspect_ratio)); + FOREACH_STREAM(initialize_encoder(stream, &global)); + +#if CONFIG_VP9_HIGHBITDEPTH + if (strcmp(global.codec->name, "vp9") == 0) { + // Check to see if at least one stream uses 16 bit internal. + // Currently assume that the bit_depths for all streams using + // highbitdepth are the same. + FOREACH_STREAM({ + if (stream->config.use_16bit_internal) { + use_16bit_internal = 1; + } + if (stream->config.cfg.g_profile == 0) { + input_shift = 0; + } else { + input_shift = (int)stream->config.cfg.g_bit_depth - + stream->config.cfg.g_input_bit_depth; + } + }); + } +#endif + + frame_avail = 1; + got_data = 0; + + while (frame_avail || got_data) { + struct vpx_usec_timer timer; + + if (!global.limit || frames_in < global.limit) { + frame_avail = read_frame(&input, &raw); + + if (frame_avail) frames_in++; + seen_frames = + frames_in > global.skip_frames ? frames_in - global.skip_frames : 0; + + if (!global.quiet) { + float fps = usec_to_fps(cx_time, seen_frames); + fprintf(stderr, "\rPass %d/%d ", pass + 1, global.passes); + + if (stream_cnt == 1) + fprintf(stderr, "frame %4d/%-4d %7" PRId64 "B ", frames_in, + streams->frames_out, (int64_t)streams->nbytes); + else + fprintf(stderr, "frame %4d ", frames_in); + + fprintf(stderr, "%7" PRId64 " %s %.2f %s ", + cx_time > 9999999 ? cx_time / 1000 : cx_time, + cx_time > 9999999 ? "ms" : "us", fps >= 1.0 ? fps : fps * 60, + fps >= 1.0 ? "fps" : "fpm"); + print_time("ETA", estimated_time_left); + } + + } else + frame_avail = 0; + + if (frames_in > global.skip_frames) { +#if CONFIG_VP9_HIGHBITDEPTH + vpx_image_t *frame_to_encode; + if (input_shift || (use_16bit_internal && input.bit_depth == 8)) { + assert(use_16bit_internal); + // Input bit depth and stream bit depth do not match, so up + // shift frame to stream bit depth + if (!allocated_raw_shift) { + vpx_img_alloc(&raw_shift, raw.fmt | VPX_IMG_FMT_HIGHBITDEPTH, + input.width, input.height, 32); + allocated_raw_shift = 1; + } + vpx_img_upshift(&raw_shift, &raw, input_shift); + frame_to_encode = &raw_shift; + } else { + frame_to_encode = &raw; + } + vpx_usec_timer_start(&timer); + if (use_16bit_internal) { + assert(frame_to_encode->fmt & VPX_IMG_FMT_HIGHBITDEPTH); + FOREACH_STREAM({ + if (stream->config.use_16bit_internal) + encode_frame(stream, &global, + frame_avail ? frame_to_encode : NULL, frames_in); + else + assert(0); + }); + } else { + assert((frame_to_encode->fmt & VPX_IMG_FMT_HIGHBITDEPTH) == 0); + FOREACH_STREAM(encode_frame(stream, &global, + frame_avail ? frame_to_encode : NULL, + frames_in)); + } +#else + vpx_usec_timer_start(&timer); + FOREACH_STREAM(encode_frame(stream, &global, frame_avail ? &raw : NULL, + frames_in)); +#endif + vpx_usec_timer_mark(&timer); + cx_time += vpx_usec_timer_elapsed(&timer); + + FOREACH_STREAM(update_quantizer_histogram(stream)); + + got_data = 0; + FOREACH_STREAM(get_cx_data(stream, &global, &got_data)); + + if (!got_data && input.length && streams != NULL && + !streams->frames_out) { + lagged_count = global.limit ? seen_frames : ftello(input.file); + } else if (input.length) { + int64_t remaining; + int64_t rate; + + if (global.limit) { + const int64_t frame_in_lagged = (seen_frames - lagged_count) * 1000; + + rate = cx_time ? frame_in_lagged * (int64_t)1000000 / cx_time : 0; + remaining = 1000 * (global.limit - global.skip_frames - + seen_frames + lagged_count); + } else { + const int64_t input_pos = ftello(input.file); + const int64_t input_pos_lagged = input_pos - lagged_count; + const int64_t limit = input.length; + + rate = cx_time ? input_pos_lagged * (int64_t)1000000 / cx_time : 0; + remaining = limit - input_pos + lagged_count; + } + + average_rate = + (average_rate <= 0) ? rate : (average_rate * 7 + rate) / 8; + estimated_time_left = average_rate ? remaining / average_rate : -1; + } + + if (got_data && global.test_decode != TEST_DECODE_OFF) + FOREACH_STREAM(test_decode(stream, global.test_decode, global.codec)); + } + + fflush(stdout); + if (!global.quiet) fprintf(stderr, "\033[K"); + } + + if (stream_cnt > 1) fprintf(stderr, "\n"); + + if (!global.quiet) { + FOREACH_STREAM(fprintf( + stderr, "\rPass %d/%d frame %4d/%-4d %7" PRId64 "B %7" PRId64 + "b/f %7" PRId64 "b/s" + " %7" PRId64 " %s (%.2f fps)\033[K\n", + pass + 1, global.passes, frames_in, stream->frames_out, + (int64_t)stream->nbytes, + seen_frames ? (int64_t)(stream->nbytes * 8 / seen_frames) : 0, + seen_frames + ? (int64_t)stream->nbytes * 8 * (int64_t)global.framerate.num / + global.framerate.den / seen_frames + : 0, + stream->cx_time > 9999999 ? stream->cx_time / 1000 : stream->cx_time, + stream->cx_time > 9999999 ? "ms" : "us", + usec_to_fps(stream->cx_time, seen_frames))); + } + + if (global.show_psnr) { + if (global.codec->fourcc == VP9_FOURCC) { + FOREACH_STREAM( + show_psnr(stream, (1 << stream->config.cfg.g_input_bit_depth) - 1)); + } else { + FOREACH_STREAM(show_psnr(stream, 255.0)); + } + } + + FOREACH_STREAM(vpx_codec_destroy(&stream->encoder)); + + if (global.test_decode != TEST_DECODE_OFF) { + FOREACH_STREAM(vpx_codec_destroy(&stream->decoder)); + } + + close_input_file(&input); + + if (global.test_decode == TEST_DECODE_FATAL) { + FOREACH_STREAM(res |= stream->mismatch_seen); + } + FOREACH_STREAM(close_output_file(stream, global.codec->fourcc)); + + FOREACH_STREAM(stats_close(&stream->stats, global.passes - 1)); + +#if CONFIG_FP_MB_STATS + FOREACH_STREAM(stats_close(&stream->fpmb_stats, global.passes - 1)); +#endif + + if (global.pass) break; + } + + if (global.show_q_hist_buckets) + FOREACH_STREAM( + show_q_histogram(stream->counts, global.show_q_hist_buckets)); + + if (global.show_rate_hist_buckets) + FOREACH_STREAM(show_rate_histogram(stream->rate_hist, &stream->config.cfg, + global.show_rate_hist_buckets)); + FOREACH_STREAM(destroy_rate_histogram(stream->rate_hist)); + +#if CONFIG_INTERNAL_STATS + /* TODO(jkoleszar): This doesn't belong in this executable. Do it for now, + * to match some existing utilities. + */ + if (!(global.pass == 1 && global.passes == 2)) + FOREACH_STREAM({ + FILE *f = fopen("opsnr.stt", "a"); + if (stream->mismatch_seen) { + fprintf(f, "First mismatch occurred in frame %d\n", + stream->mismatch_seen); + } else { + fprintf(f, "No mismatch detected in recon buffers\n"); + } + fclose(f); + }); +#endif + +#if CONFIG_VP9_HIGHBITDEPTH + if (allocated_raw_shift) vpx_img_free(&raw_shift); +#endif + vpx_img_free(&raw); + free(argv); + free(streams); + return res ? EXIT_FAILURE : EXIT_SUCCESS; +} diff --git a/vpxenc.h b/vpxenc.h new file mode 100644 index 0000000..d867e9d --- /dev/null +++ b/vpxenc.h @@ -0,0 +1,64 @@ +/* + * Copyright (c) 2013 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ +#ifndef VPXENC_H_ +#define VPXENC_H_ + +#include "vpx/vpx_encoder.h" + +#ifdef __cplusplus +extern "C" { +#endif + +enum TestDecodeFatality { + TEST_DECODE_OFF, + TEST_DECODE_FATAL, + TEST_DECODE_WARN, +}; + +typedef enum { + I420, // 4:2:0 8+ bit-depth + I422, // 4:2:2 8+ bit-depth + I444, // 4:4:4 8+ bit-depth + I440, // 4:4:0 8+ bit-depth + YV12, // 4:2:0 with uv flipped, only 8-bit depth +} ColorInputType; + +struct VpxInterface; + +/* Configuration elements common to all streams. */ +struct VpxEncoderConfig { + const struct VpxInterface *codec; + int passes; + int pass; + int usage; + int deadline; + ColorInputType color_type; + int quiet; + int verbose; + int limit; + int skip_frames; + int show_psnr; + enum TestDecodeFatality test_decode; + int have_framerate; + struct vpx_rational framerate; + int out_part; + int debug; + int show_q_hist_buckets; + int show_rate_hist_buckets; + int disable_warnings; + int disable_warning_prompt; + int experimental_bitstream; +}; + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VPXENC_H_ diff --git a/vpxstats.c b/vpxstats.c new file mode 100644 index 0000000..142e367 --- /dev/null +++ b/vpxstats.c @@ -0,0 +1,105 @@ +/* + * Copyright (c) 2013 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "./vpxstats.h" + +#include +#include +#include + +#include "./tools_common.h" + +int stats_open_file(stats_io_t *stats, const char *fpf, int pass) { + int res; + stats->pass = pass; + + if (pass == 0) { + stats->file = fopen(fpf, "wb"); + stats->buf.sz = 0; + stats->buf.buf = NULL; + res = (stats->file != NULL); + } else { + size_t nbytes; + + stats->file = fopen(fpf, "rb"); + + if (stats->file == NULL) fatal("First-pass stats file does not exist!"); + + if (fseek(stats->file, 0, SEEK_END)) + fatal("First-pass stats file must be seekable!"); + + stats->buf.sz = stats->buf_alloc_sz = ftell(stats->file); + rewind(stats->file); + + stats->buf.buf = malloc(stats->buf_alloc_sz); + + if (!stats->buf.buf) + fatal("Failed to allocate first-pass stats buffer (%lu bytes)", + (unsigned int)stats->buf_alloc_sz); + + nbytes = fread(stats->buf.buf, 1, stats->buf.sz, stats->file); + res = (nbytes == stats->buf.sz); + } + + return res; +} + +int stats_open_mem(stats_io_t *stats, int pass) { + int res; + stats->pass = pass; + + if (!pass) { + stats->buf.sz = 0; + stats->buf_alloc_sz = 64 * 1024; + stats->buf.buf = malloc(stats->buf_alloc_sz); + } + + stats->buf_ptr = stats->buf.buf; + res = (stats->buf.buf != NULL); + return res; +} + +void stats_close(stats_io_t *stats, int last_pass) { + if (stats->file) { + if (stats->pass == last_pass) { + free(stats->buf.buf); + } + + fclose(stats->file); + stats->file = NULL; + } else { + if (stats->pass == last_pass) free(stats->buf.buf); + } +} + +void stats_write(stats_io_t *stats, const void *pkt, size_t len) { + if (stats->file) { + (void)fwrite(pkt, 1, len, stats->file); + } else { + if (stats->buf.sz + len > stats->buf_alloc_sz) { + size_t new_sz = stats->buf_alloc_sz + 64 * 1024; + char *new_ptr = realloc(stats->buf.buf, new_sz); + + if (new_ptr) { + stats->buf_ptr = new_ptr + (stats->buf_ptr - (char *)stats->buf.buf); + stats->buf.buf = new_ptr; + stats->buf_alloc_sz = new_sz; + } else { + fatal("Failed to realloc firstpass stats buffer."); + } + } + + memcpy(stats->buf_ptr, pkt, len); + stats->buf.sz += len; + stats->buf_ptr += len; + } +} + +vpx_fixed_buf_t stats_get(stats_io_t *stats) { return stats->buf; } diff --git a/vpxstats.h b/vpxstats.h new file mode 100644 index 0000000..5c9ea34 --- /dev/null +++ b/vpxstats.h @@ -0,0 +1,43 @@ +/* + * Copyright (c) 2013 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef VPXSTATS_H_ +#define VPXSTATS_H_ + +#include + +#include "vpx/vpx_encoder.h" + +#ifdef __cplusplus +extern "C" { +#endif + +/* This structure is used to abstract the different ways of handling + * first pass statistics + */ +typedef struct { + vpx_fixed_buf_t buf; + int pass; + FILE *file; + char *buf_ptr; + size_t buf_alloc_sz; +} stats_io_t; + +int stats_open_file(stats_io_t *stats, const char *fpf, int pass); +int stats_open_mem(stats_io_t *stats, int pass); +void stats_close(stats_io_t *stats, int last_pass); +void stats_write(stats_io_t *stats, const void *pkt, size_t len); +vpx_fixed_buf_t stats_get(stats_io_t *stats); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // VPXSTATS_H_ diff --git a/warnings.c b/warnings.c new file mode 100644 index 0000000..a80da52 --- /dev/null +++ b/warnings.c @@ -0,0 +1,109 @@ +/* + * Copyright (c) 2013 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "./warnings.h" + +#include +#include +#include +#include + +#include "vpx/vpx_encoder.h" + +#include "./tools_common.h" +#include "./vpxenc.h" + +static const char quantizer_warning_string[] = + "Bad quantizer values. Quantizer values should not be equal, and should " + "differ by at least 8."; +static const char lag_in_frames_with_realtime[] = + "Lag in frames is ignored when deadline is set to realtime for cbr mode."; + +struct WarningListNode { + const char *warning_string; + struct WarningListNode *next_warning; +}; + +struct WarningList { + struct WarningListNode *warning_node; +}; + +static void add_warning(const char *warning_string, + struct WarningList *warning_list) { + struct WarningListNode **node = &warning_list->warning_node; + + struct WarningListNode *new_node = malloc(sizeof(*new_node)); + if (new_node == NULL) { + fatal("Unable to allocate warning node."); + } + + new_node->warning_string = warning_string; + new_node->next_warning = NULL; + + while (*node != NULL) node = &(*node)->next_warning; + + *node = new_node; +} + +static void free_warning_list(struct WarningList *warning_list) { + while (warning_list->warning_node != NULL) { + struct WarningListNode *const node = warning_list->warning_node; + warning_list->warning_node = node->next_warning; + free(node); + } +} + +static int continue_prompt(int num_warnings) { + int c; + fprintf(stderr, + "%d encoder configuration warning(s). Continue? (y to continue) ", + num_warnings); + c = getchar(); + return c == 'y'; +} + +static void check_quantizer(int min_q, int max_q, + struct WarningList *warning_list) { + const int lossless = min_q == 0 && max_q == 0; + if (!lossless && (min_q == max_q || abs(max_q - min_q) < 8)) + add_warning(quantizer_warning_string, warning_list); +} + +static void check_lag_in_frames_realtime_deadline( + int lag_in_frames, int deadline, int rc_end_usage, + struct WarningList *warning_list) { + if (deadline == VPX_DL_REALTIME && lag_in_frames != 0 && rc_end_usage == 1) + add_warning(lag_in_frames_with_realtime, warning_list); +} + +void check_encoder_config(int disable_prompt, + const struct VpxEncoderConfig *global_config, + const struct vpx_codec_enc_cfg *stream_config) { + int num_warnings = 0; + struct WarningListNode *warning = NULL; + struct WarningList warning_list = { 0 }; + + check_quantizer(stream_config->rc_min_quantizer, + stream_config->rc_max_quantizer, &warning_list); + check_lag_in_frames_realtime_deadline( + stream_config->g_lag_in_frames, global_config->deadline, + stream_config->rc_end_usage, &warning_list); + /* Count and print warnings. */ + for (warning = warning_list.warning_node; warning != NULL; + warning = warning->next_warning, ++num_warnings) { + warn(warning->warning_string); + } + + free_warning_list(&warning_list); + + if (num_warnings) { + if (!disable_prompt && !continue_prompt(num_warnings)) exit(EXIT_FAILURE); + } +} diff --git a/warnings.h b/warnings.h new file mode 100644 index 0000000..6b8ae67 --- /dev/null +++ b/warnings.h @@ -0,0 +1,33 @@ +/* + * Copyright (c) 2013 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ +#ifndef WARNINGS_H_ +#define WARNINGS_H_ + +#ifdef __cplusplus +extern "C" { +#endif + +struct vpx_codec_enc_cfg; +struct VpxEncoderConfig; + +/* + * Checks config for improperly used settings. Warns user upon encountering + * settings that will lead to poor output quality. Prompts user to continue + * when warnings are issued. + */ +void check_encoder_config(int disable_prompt, + const struct VpxEncoderConfig *global_config, + const struct vpx_codec_enc_cfg *stream_config); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // WARNINGS_H_ diff --git a/webmdec.cc b/webmdec.cc new file mode 100644 index 0000000..d609075 --- /dev/null +++ b/webmdec.cc @@ -0,0 +1,224 @@ +/* + * Copyright (c) 2013 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "./webmdec.h" + +#include +#include + +#include "third_party/libwebm/mkvparser/mkvparser.h" +#include "third_party/libwebm/mkvparser/mkvreader.h" + +namespace { + +void reset(struct WebmInputContext *const webm_ctx) { + if (webm_ctx->reader != NULL) { + mkvparser::MkvReader *const reader = + reinterpret_cast(webm_ctx->reader); + delete reader; + } + if (webm_ctx->segment != NULL) { + mkvparser::Segment *const segment = + reinterpret_cast(webm_ctx->segment); + delete segment; + } + if (webm_ctx->buffer != NULL) { + delete[] webm_ctx->buffer; + } + webm_ctx->reader = NULL; + webm_ctx->segment = NULL; + webm_ctx->buffer = NULL; + webm_ctx->cluster = NULL; + webm_ctx->block_entry = NULL; + webm_ctx->block = NULL; + webm_ctx->block_frame_index = 0; + webm_ctx->video_track_index = 0; + webm_ctx->timestamp_ns = 0; + webm_ctx->is_key_frame = false; +} + +void get_first_cluster(struct WebmInputContext *const webm_ctx) { + mkvparser::Segment *const segment = + reinterpret_cast(webm_ctx->segment); + const mkvparser::Cluster *const cluster = segment->GetFirst(); + webm_ctx->cluster = cluster; +} + +void rewind_and_reset(struct WebmInputContext *const webm_ctx, + struct VpxInputContext *const vpx_ctx) { + rewind(vpx_ctx->file); + reset(webm_ctx); +} + +} // namespace + +int file_is_webm(struct WebmInputContext *webm_ctx, + struct VpxInputContext *vpx_ctx) { + mkvparser::MkvReader *const reader = new mkvparser::MkvReader(vpx_ctx->file); + webm_ctx->reader = reader; + webm_ctx->reached_eos = 0; + + mkvparser::EBMLHeader header; + long long pos = 0; + if (header.Parse(reader, pos) < 0) { + rewind_and_reset(webm_ctx, vpx_ctx); + return 0; + } + + mkvparser::Segment *segment; + if (mkvparser::Segment::CreateInstance(reader, pos, segment)) { + rewind_and_reset(webm_ctx, vpx_ctx); + return 0; + } + webm_ctx->segment = segment; + if (segment->Load() < 0) { + rewind_and_reset(webm_ctx, vpx_ctx); + return 0; + } + + const mkvparser::Tracks *const tracks = segment->GetTracks(); + const mkvparser::VideoTrack *video_track = NULL; + for (unsigned long i = 0; i < tracks->GetTracksCount(); ++i) { + const mkvparser::Track *const track = tracks->GetTrackByIndex(i); + if (track->GetType() == mkvparser::Track::kVideo) { + video_track = static_cast(track); + webm_ctx->video_track_index = static_cast(track->GetNumber()); + break; + } + } + + if (video_track == NULL || video_track->GetCodecId() == NULL) { + rewind_and_reset(webm_ctx, vpx_ctx); + return 0; + } + + if (!strncmp(video_track->GetCodecId(), "V_VP8", 5)) { + vpx_ctx->fourcc = VP8_FOURCC; + } else if (!strncmp(video_track->GetCodecId(), "V_VP9", 5)) { + vpx_ctx->fourcc = VP9_FOURCC; + } else { + rewind_and_reset(webm_ctx, vpx_ctx); + return 0; + } + + vpx_ctx->framerate.denominator = 0; + vpx_ctx->framerate.numerator = 0; + vpx_ctx->width = static_cast(video_track->GetWidth()); + vpx_ctx->height = static_cast(video_track->GetHeight()); + + get_first_cluster(webm_ctx); + + return 1; +} + +int webm_read_frame(struct WebmInputContext *webm_ctx, uint8_t **buffer, + size_t *buffer_size) { + // This check is needed for frame parallel decoding, in which case this + // function could be called even after it has reached end of input stream. + if (webm_ctx->reached_eos) { + return 1; + } + mkvparser::Segment *const segment = + reinterpret_cast(webm_ctx->segment); + const mkvparser::Cluster *cluster = + reinterpret_cast(webm_ctx->cluster); + const mkvparser::Block *block = + reinterpret_cast(webm_ctx->block); + const mkvparser::BlockEntry *block_entry = + reinterpret_cast(webm_ctx->block_entry); + bool block_entry_eos = false; + do { + long status = 0; + bool get_new_block = false; + if (block_entry == NULL && !block_entry_eos) { + status = cluster->GetFirst(block_entry); + get_new_block = true; + } else if (block_entry_eos || block_entry->EOS()) { + cluster = segment->GetNext(cluster); + if (cluster == NULL || cluster->EOS()) { + *buffer_size = 0; + webm_ctx->reached_eos = 1; + return 1; + } + status = cluster->GetFirst(block_entry); + block_entry_eos = false; + get_new_block = true; + } else if (block == NULL || + webm_ctx->block_frame_index == block->GetFrameCount() || + block->GetTrackNumber() != webm_ctx->video_track_index) { + status = cluster->GetNext(block_entry, block_entry); + if (block_entry == NULL || block_entry->EOS()) { + block_entry_eos = true; + continue; + } + get_new_block = true; + } + if (status || block_entry == NULL) { + return -1; + } + if (get_new_block) { + block = block_entry->GetBlock(); + if (block == NULL) return -1; + webm_ctx->block_frame_index = 0; + } + } while (block_entry_eos || + block->GetTrackNumber() != webm_ctx->video_track_index); + + webm_ctx->cluster = cluster; + webm_ctx->block_entry = block_entry; + webm_ctx->block = block; + + const mkvparser::Block::Frame &frame = + block->GetFrame(webm_ctx->block_frame_index); + ++webm_ctx->block_frame_index; + if (frame.len > static_cast(*buffer_size)) { + delete[] * buffer; + *buffer = new uint8_t[frame.len]; + if (*buffer == NULL) { + return -1; + } + webm_ctx->buffer = *buffer; + } + *buffer_size = frame.len; + webm_ctx->timestamp_ns = block->GetTime(cluster); + webm_ctx->is_key_frame = block->IsKey(); + + mkvparser::MkvReader *const reader = + reinterpret_cast(webm_ctx->reader); + return frame.Read(reader, *buffer) ? -1 : 0; +} + +int webm_guess_framerate(struct WebmInputContext *webm_ctx, + struct VpxInputContext *vpx_ctx) { + uint32_t i = 0; + uint8_t *buffer = NULL; + size_t buffer_size = 0; + while (webm_ctx->timestamp_ns < 1000000000 && i < 50) { + if (webm_read_frame(webm_ctx, &buffer, &buffer_size)) { + break; + } + ++i; + } + vpx_ctx->framerate.numerator = (i - 1) * 1000000; + vpx_ctx->framerate.denominator = + static_cast(webm_ctx->timestamp_ns / 1000); + delete[] buffer; + + get_first_cluster(webm_ctx); + webm_ctx->block = NULL; + webm_ctx->block_entry = NULL; + webm_ctx->block_frame_index = 0; + webm_ctx->timestamp_ns = 0; + webm_ctx->reached_eos = 0; + + return 0; +} + +void webm_free(struct WebmInputContext *webm_ctx) { reset(webm_ctx); } diff --git a/webmdec.h b/webmdec.h new file mode 100644 index 0000000..7dcb170 --- /dev/null +++ b/webmdec.h @@ -0,0 +1,69 @@ +/* + * Copyright (c) 2013 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ +#ifndef WEBMDEC_H_ +#define WEBMDEC_H_ + +#include "./tools_common.h" + +#ifdef __cplusplus +extern "C" { +#endif + +struct VpxInputContext; + +struct WebmInputContext { + void *reader; + void *segment; + uint8_t *buffer; + const void *cluster; + const void *block_entry; + const void *block; + int block_frame_index; + int video_track_index; + uint64_t timestamp_ns; + int is_key_frame; + int reached_eos; +}; + +// Checks if the input is a WebM file. If so, initializes WebMInputContext so +// that webm_read_frame can be called to retrieve a video frame. +// Returns 1 on success and 0 on failure or input is not WebM file. +// TODO(vigneshv): Refactor this function into two smaller functions specific +// to their task. +int file_is_webm(struct WebmInputContext *webm_ctx, + struct VpxInputContext *vpx_ctx); + +// Reads a WebM Video Frame. Memory for the buffer is created, owned and managed +// by this function. For the first call, |buffer| should be NULL and +// |*buffer_size| should be 0. Once all the frames are read and used, +// webm_free() should be called, otherwise there will be a leak. +// Parameters: +// webm_ctx - WebmInputContext object +// buffer - pointer where the frame data will be filled. +// buffer_size - pointer to buffer size. +// Return values: +// 0 - Success +// 1 - End of Stream +// -1 - Error +int webm_read_frame(struct WebmInputContext *webm_ctx, uint8_t **buffer, + size_t *buffer_size); + +// Guesses the frame rate of the input file based on the container timestamps. +int webm_guess_framerate(struct WebmInputContext *webm_ctx, + struct VpxInputContext *vpx_ctx); + +// Resets the WebMInputContext. +void webm_free(struct WebmInputContext *webm_ctx); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // WEBMDEC_H_ diff --git a/webmenc.cc b/webmenc.cc new file mode 100644 index 0000000..6660667 --- /dev/null +++ b/webmenc.cc @@ -0,0 +1,95 @@ +/* + * Copyright (c) 2014 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ +#include "./webmenc.h" + +#include + +#include "third_party/libwebm/mkvmuxer/mkvmuxer.h" +#include "third_party/libwebm/mkvmuxer/mkvmuxerutil.h" +#include "third_party/libwebm/mkvmuxer/mkvwriter.h" + +namespace { +const uint64_t kDebugTrackUid = 0xDEADBEEF; +const int kVideoTrackNumber = 1; +} // namespace + +void write_webm_file_header(struct WebmOutputContext *webm_ctx, + const vpx_codec_enc_cfg_t *cfg, + stereo_format_t stereo_fmt, unsigned int fourcc, + const struct VpxRational *par) { + mkvmuxer::MkvWriter *const writer = new mkvmuxer::MkvWriter(webm_ctx->stream); + mkvmuxer::Segment *const segment = new mkvmuxer::Segment(); + segment->Init(writer); + segment->set_mode(mkvmuxer::Segment::kFile); + segment->OutputCues(true); + + mkvmuxer::SegmentInfo *const info = segment->GetSegmentInfo(); + const uint64_t kTimecodeScale = 1000000; + info->set_timecode_scale(kTimecodeScale); + std::string version = "vpxenc"; + if (!webm_ctx->debug) { + version.append(std::string(" ") + vpx_codec_version_str()); + } + info->set_writing_app(version.c_str()); + + const uint64_t video_track_id = + segment->AddVideoTrack(static_cast(cfg->g_w), + static_cast(cfg->g_h), kVideoTrackNumber); + mkvmuxer::VideoTrack *const video_track = static_cast( + segment->GetTrackByNumber(video_track_id)); + video_track->SetStereoMode(stereo_fmt); + const char *codec_id; + switch (fourcc) { + case VP8_FOURCC: codec_id = "V_VP8"; break; + case VP9_FOURCC: + default: codec_id = "V_VP9"; break; + } + video_track->set_codec_id(codec_id); + if (par->numerator > 1 || par->denominator > 1) { + // TODO(fgalligan): Add support of DisplayUnit, Display Aspect Ratio type + // to WebM format. + const uint64_t display_width = static_cast( + ((cfg->g_w * par->numerator * 1.0) / par->denominator) + .5); + video_track->set_display_width(display_width); + video_track->set_display_height(cfg->g_h); + } + if (webm_ctx->debug) { + video_track->set_uid(kDebugTrackUid); + } + webm_ctx->writer = writer; + webm_ctx->segment = segment; +} + +void write_webm_block(struct WebmOutputContext *webm_ctx, + const vpx_codec_enc_cfg_t *cfg, + const vpx_codec_cx_pkt_t *pkt) { + mkvmuxer::Segment *const segment = + reinterpret_cast(webm_ctx->segment); + int64_t pts_ns = pkt->data.frame.pts * 1000000000ll * cfg->g_timebase.num / + cfg->g_timebase.den; + if (pts_ns <= webm_ctx->last_pts_ns) pts_ns = webm_ctx->last_pts_ns + 1000000; + webm_ctx->last_pts_ns = pts_ns; + + segment->AddFrame(static_cast(pkt->data.frame.buf), + pkt->data.frame.sz, kVideoTrackNumber, pts_ns, + pkt->data.frame.flags & VPX_FRAME_IS_KEY); +} + +void write_webm_file_footer(struct WebmOutputContext *webm_ctx) { + mkvmuxer::MkvWriter *const writer = + reinterpret_cast(webm_ctx->writer); + mkvmuxer::Segment *const segment = + reinterpret_cast(webm_ctx->segment); + segment->Finalize(); + delete segment; + delete writer; + webm_ctx->writer = NULL; + webm_ctx->segment = NULL; +} diff --git a/webmenc.h b/webmenc.h new file mode 100644 index 0000000..b4a9e35 --- /dev/null +++ b/webmenc.h @@ -0,0 +1,55 @@ +/* + * Copyright (c) 2013 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ +#ifndef WEBMENC_H_ +#define WEBMENC_H_ + +#include +#include + +#include "tools_common.h" +#include "vpx/vpx_encoder.h" + +#ifdef __cplusplus +extern "C" { +#endif + +struct WebmOutputContext { + int debug; + FILE *stream; + int64_t last_pts_ns; + void *writer; + void *segment; +}; + +/* Stereo 3D packed frame format */ +typedef enum stereo_format { + STEREO_FORMAT_MONO = 0, + STEREO_FORMAT_LEFT_RIGHT = 1, + STEREO_FORMAT_BOTTOM_TOP = 2, + STEREO_FORMAT_TOP_BOTTOM = 3, + STEREO_FORMAT_RIGHT_LEFT = 11 +} stereo_format_t; + +void write_webm_file_header(struct WebmOutputContext *webm_ctx, + const vpx_codec_enc_cfg_t *cfg, + stereo_format_t stereo_fmt, unsigned int fourcc, + const struct VpxRational *par); + +void write_webm_block(struct WebmOutputContext *webm_ctx, + const vpx_codec_enc_cfg_t *cfg, + const vpx_codec_cx_pkt_t *pkt); + +void write_webm_file_footer(struct WebmOutputContext *webm_ctx); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // WEBMENC_H_ diff --git a/y4menc.c b/y4menc.c new file mode 100644 index 0000000..05018db --- /dev/null +++ b/y4menc.c @@ -0,0 +1,64 @@ +/* + * Copyright (c) 2014 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include +#include "./y4menc.h" + +int y4m_write_file_header(char *buf, size_t len, int width, int height, + const struct VpxRational *framerate, + vpx_img_fmt_t fmt, unsigned int bit_depth) { + const char *color; + switch (bit_depth) { + case 8: + color = fmt == VPX_IMG_FMT_444A + ? "C444alpha\n" + : fmt == VPX_IMG_FMT_I444 + ? "C444\n" + : fmt == VPX_IMG_FMT_I422 ? "C422\n" : "C420jpeg\n"; + break; + case 9: + color = fmt == VPX_IMG_FMT_I44416 + ? "C444p9 XYSCSS=444P9\n" + : fmt == VPX_IMG_FMT_I42216 ? "C422p9 XYSCSS=422P9\n" + : "C420p9 XYSCSS=420P9\n"; + break; + case 10: + color = fmt == VPX_IMG_FMT_I44416 + ? "C444p10 XYSCSS=444P10\n" + : fmt == VPX_IMG_FMT_I42216 ? "C422p10 XYSCSS=422P10\n" + : "C420p10 XYSCSS=420P10\n"; + break; + case 12: + color = fmt == VPX_IMG_FMT_I44416 + ? "C444p12 XYSCSS=444P12\n" + : fmt == VPX_IMG_FMT_I42216 ? "C422p12 XYSCSS=422P12\n" + : "C420p12 XYSCSS=420P12\n"; + break; + case 14: + color = fmt == VPX_IMG_FMT_I44416 + ? "C444p14 XYSCSS=444P14\n" + : fmt == VPX_IMG_FMT_I42216 ? "C422p14 XYSCSS=422P14\n" + : "C420p14 XYSCSS=420P14\n"; + break; + case 16: + color = fmt == VPX_IMG_FMT_I44416 + ? "C444p16 XYSCSS=444P16\n" + : fmt == VPX_IMG_FMT_I42216 ? "C422p16 XYSCSS=422P16\n" + : "C420p16 XYSCSS=420P16\n"; + break; + default: color = NULL; assert(0); + } + return snprintf(buf, len, "YUV4MPEG2 W%u H%u F%u:%u I%c %s", width, height, + framerate->numerator, framerate->denominator, 'p', color); +} + +int y4m_write_frame_header(char *buf, size_t len) { + return snprintf(buf, len, "FRAME\n"); +} diff --git a/y4menc.h b/y4menc.h new file mode 100644 index 0000000..69d5904 --- /dev/null +++ b/y4menc.h @@ -0,0 +1,33 @@ +/* + * Copyright (c) 2014 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#ifndef Y4MENC_H_ +#define Y4MENC_H_ + +#include "./tools_common.h" + +#include "vpx/vpx_decoder.h" + +#ifdef __cplusplus +extern "C" { +#endif + +#define Y4M_BUFFER_SIZE 128 + +int y4m_write_file_header(char *buf, size_t len, int width, int height, + const struct VpxRational *framerate, + vpx_img_fmt_t fmt, unsigned int bit_depth); +int y4m_write_frame_header(char *buf, size_t len); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // Y4MENC_H_ diff --git a/y4minput.c b/y4minput.c new file mode 100644 index 0000000..1de636c --- /dev/null +++ b/y4minput.c @@ -0,0 +1,1150 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + * + * Based on code from the OggTheora software codec source code, + * Copyright (C) 2002-2010 The Xiph.Org Foundation and contributors. + */ +#include +#include +#include + +#include "vpx/vpx_integer.h" +#include "y4minput.h" + +// Reads 'size' bytes from 'file' into 'buf' with some fault tolerance. +// Returns true on success. +static int file_read(void *buf, size_t size, FILE *file) { + const int kMaxRetries = 5; + int retry_count = 0; + int file_error; + size_t len = 0; + do { + const size_t n = fread((uint8_t *)buf + len, 1, size - len, file); + len += n; + file_error = ferror(file); + if (file_error) { + if (errno == EINTR || errno == EAGAIN) { + clearerr(file); + continue; + } else { + fprintf(stderr, "Error reading file: %u of %u bytes read, %d: %s\n", + (uint32_t)len, (uint32_t)size, errno, strerror(errno)); + return 0; + } + } + } while (!feof(file) && len < size && ++retry_count < kMaxRetries); + + if (!feof(file) && len != size) { + fprintf(stderr, + "Error reading file: %u of %u bytes read," + " error: %d, retries: %d, %d: %s\n", + (uint32_t)len, (uint32_t)size, file_error, retry_count, errno, + strerror(errno)); + } + return len == size; +} + +static int y4m_parse_tags(y4m_input *_y4m, char *_tags) { + int got_w; + int got_h; + int got_fps; + int got_interlace; + int got_par; + int got_chroma; + char *p; + char *q; + got_w = got_h = got_fps = got_interlace = got_par = got_chroma = 0; + for (p = _tags;; p = q) { + /*Skip any leading spaces.*/ + while (*p == ' ') p++; + /*If that's all we have, stop.*/ + if (p[0] == '\0') break; + /*Find the end of this tag.*/ + for (q = p + 1; *q != '\0' && *q != ' '; q++) { + } + /*Process the tag.*/ + switch (p[0]) { + case 'W': { + if (sscanf(p + 1, "%d", &_y4m->pic_w) != 1) return -1; + got_w = 1; + break; + } + case 'H': { + if (sscanf(p + 1, "%d", &_y4m->pic_h) != 1) return -1; + got_h = 1; + break; + } + case 'F': { + if (sscanf(p + 1, "%d:%d", &_y4m->fps_n, &_y4m->fps_d) != 2) { + return -1; + } + got_fps = 1; + break; + } + case 'I': { + _y4m->interlace = p[1]; + got_interlace = 1; + break; + } + case 'A': { + if (sscanf(p + 1, "%d:%d", &_y4m->par_n, &_y4m->par_d) != 2) { + return -1; + } + got_par = 1; + break; + } + case 'C': { + if (q - p > 16) return -1; + memcpy(_y4m->chroma_type, p + 1, q - p - 1); + _y4m->chroma_type[q - p - 1] = '\0'; + got_chroma = 1; + break; + } + /*Ignore unknown tags.*/ + } + } + if (!got_w || !got_h || !got_fps) return -1; + if (!got_interlace) _y4m->interlace = '?'; + if (!got_par) _y4m->par_n = _y4m->par_d = 0; + /*Chroma-type is not specified in older files, e.g., those generated by + mplayer.*/ + if (!got_chroma) strcpy(_y4m->chroma_type, "420"); + return 0; +} + +/*All anti-aliasing filters in the following conversion functions are based on + one of two window functions: + The 6-tap Lanczos window (for down-sampling and shifts): + sinc(\pi*t)*sinc(\pi*t/3), |t|<3 (sinc(t)==sin(t)/t) + 0, |t|>=3 + The 4-tap Mitchell window (for up-sampling): + 7|t|^3-12|t|^2+16/3, |t|<1 + -(7/3)|x|^3+12|x|^2-20|x|+32/3, |t|<2 + 0, |t|>=2 + The number of taps is intentionally kept small to reduce computational + overhead and limit ringing. + + The taps from these filters are scaled so that their sum is 1, and the result + is scaled by 128 and rounded to integers to create a filter whose + intermediate values fit inside 16 bits. + Coefficients are rounded in such a way as to ensure their sum is still 128, + which is usually equivalent to normal rounding. + + Conversions which require both horizontal and vertical filtering could + have these steps pipelined, for less memory consumption and better cache + performance, but we do them separately for simplicity.*/ + +#define OC_MINI(_a, _b) ((_a) > (_b) ? (_b) : (_a)) +#define OC_MAXI(_a, _b) ((_a) < (_b) ? (_b) : (_a)) +#define OC_CLAMPI(_a, _b, _c) (OC_MAXI(_a, OC_MINI(_b, _c))) + +/*420jpeg chroma samples are sited like: + Y-------Y-------Y-------Y------- + | | | | + | BR | | BR | + | | | | + Y-------Y-------Y-------Y------- + | | | | + | | | | + | | | | + Y-------Y-------Y-------Y------- + | | | | + | BR | | BR | + | | | | + Y-------Y-------Y-------Y------- + | | | | + | | | | + | | | | + + 420mpeg2 chroma samples are sited like: + Y-------Y-------Y-------Y------- + | | | | + BR | BR | + | | | | + Y-------Y-------Y-------Y------- + | | | | + | | | | + | | | | + Y-------Y-------Y-------Y------- + | | | | + BR | BR | + | | | | + Y-------Y-------Y-------Y------- + | | | | + | | | | + | | | | + + We use a resampling filter to shift the site locations one quarter pixel (at + the chroma plane's resolution) to the right. + The 4:2:2 modes look exactly the same, except there are twice as many chroma + lines, and they are vertically co-sited with the luma samples in both the + mpeg2 and jpeg cases (thus requiring no vertical resampling).*/ +static void y4m_42xmpeg2_42xjpeg_helper(unsigned char *_dst, + const unsigned char *_src, int _c_w, + int _c_h) { + int y; + int x; + for (y = 0; y < _c_h; y++) { + /*Filter: [4 -17 114 35 -9 1]/128, derived from a 6-tap Lanczos + window.*/ + for (x = 0; x < OC_MINI(_c_w, 2); x++) { + _dst[x] = (unsigned char)OC_CLAMPI( + 0, + (4 * _src[0] - 17 * _src[OC_MAXI(x - 1, 0)] + 114 * _src[x] + + 35 * _src[OC_MINI(x + 1, _c_w - 1)] - + 9 * _src[OC_MINI(x + 2, _c_w - 1)] + _src[OC_MINI(x + 3, _c_w - 1)] + + 64) >> + 7, + 255); + } + for (; x < _c_w - 3; x++) { + _dst[x] = (unsigned char)OC_CLAMPI( + 0, + (4 * _src[x - 2] - 17 * _src[x - 1] + 114 * _src[x] + + 35 * _src[x + 1] - 9 * _src[x + 2] + _src[x + 3] + 64) >> + 7, + 255); + } + for (; x < _c_w; x++) { + _dst[x] = (unsigned char)OC_CLAMPI( + 0, + (4 * _src[x - 2] - 17 * _src[x - 1] + 114 * _src[x] + + 35 * _src[OC_MINI(x + 1, _c_w - 1)] - + 9 * _src[OC_MINI(x + 2, _c_w - 1)] + _src[_c_w - 1] + 64) >> + 7, + 255); + } + _dst += _c_w; + _src += _c_w; + } +} + +/*Handles both 422 and 420mpeg2 to 422jpeg and 420jpeg, respectively.*/ +static void y4m_convert_42xmpeg2_42xjpeg(y4m_input *_y4m, unsigned char *_dst, + unsigned char *_aux) { + int c_w; + int c_h; + int c_sz; + int pli; + /*Skip past the luma data.*/ + _dst += _y4m->pic_w * _y4m->pic_h; + /*Compute the size of each chroma plane.*/ + c_w = (_y4m->pic_w + _y4m->dst_c_dec_h - 1) / _y4m->dst_c_dec_h; + c_h = (_y4m->pic_h + _y4m->dst_c_dec_v - 1) / _y4m->dst_c_dec_v; + c_sz = c_w * c_h; + for (pli = 1; pli < 3; pli++) { + y4m_42xmpeg2_42xjpeg_helper(_dst, _aux, c_w, c_h); + _dst += c_sz; + _aux += c_sz; + } +} + +/*This format is only used for interlaced content, but is included for + completeness. + + 420jpeg chroma samples are sited like: + Y-------Y-------Y-------Y------- + | | | | + | BR | | BR | + | | | | + Y-------Y-------Y-------Y------- + | | | | + | | | | + | | | | + Y-------Y-------Y-------Y------- + | | | | + | BR | | BR | + | | | | + Y-------Y-------Y-------Y------- + | | | | + | | | | + | | | | + + 420paldv chroma samples are sited like: + YR------Y-------YR------Y------- + | | | | + | | | | + | | | | + YB------Y-------YB------Y------- + | | | | + | | | | + | | | | + YR------Y-------YR------Y------- + | | | | + | | | | + | | | | + YB------Y-------YB------Y------- + | | | | + | | | | + | | | | + + We use a resampling filter to shift the site locations one quarter pixel (at + the chroma plane's resolution) to the right. + Then we use another filter to move the C_r location down one quarter pixel, + and the C_b location up one quarter pixel.*/ +static void y4m_convert_42xpaldv_42xjpeg(y4m_input *_y4m, unsigned char *_dst, + unsigned char *_aux) { + unsigned char *tmp; + int c_w; + int c_h; + int c_sz; + int pli; + int y; + int x; + /*Skip past the luma data.*/ + _dst += _y4m->pic_w * _y4m->pic_h; + /*Compute the size of each chroma plane.*/ + c_w = (_y4m->pic_w + 1) / 2; + c_h = (_y4m->pic_h + _y4m->dst_c_dec_h - 1) / _y4m->dst_c_dec_h; + c_sz = c_w * c_h; + tmp = _aux + 2 * c_sz; + for (pli = 1; pli < 3; pli++) { + /*First do the horizontal re-sampling. + This is the same as the mpeg2 case, except that after the horizontal + case, we need to apply a second vertical filter.*/ + y4m_42xmpeg2_42xjpeg_helper(tmp, _aux, c_w, c_h); + _aux += c_sz; + switch (pli) { + case 1: { + /*Slide C_b up a quarter-pel. + This is the same filter used above, but in the other order.*/ + for (x = 0; x < c_w; x++) { + for (y = 0; y < OC_MINI(c_h, 3); y++) { + _dst[y * c_w] = (unsigned char)OC_CLAMPI( + 0, + (tmp[0] - 9 * tmp[OC_MAXI(y - 2, 0) * c_w] + + 35 * tmp[OC_MAXI(y - 1, 0) * c_w] + 114 * tmp[y * c_w] - + 17 * tmp[OC_MINI(y + 1, c_h - 1) * c_w] + + 4 * tmp[OC_MINI(y + 2, c_h - 1) * c_w] + 64) >> + 7, + 255); + } + for (; y < c_h - 2; y++) { + _dst[y * c_w] = (unsigned char)OC_CLAMPI( + 0, + (tmp[(y - 3) * c_w] - 9 * tmp[(y - 2) * c_w] + + 35 * tmp[(y - 1) * c_w] + 114 * tmp[y * c_w] - + 17 * tmp[(y + 1) * c_w] + 4 * tmp[(y + 2) * c_w] + 64) >> + 7, + 255); + } + for (; y < c_h; y++) { + _dst[y * c_w] = (unsigned char)OC_CLAMPI( + 0, + (tmp[(y - 3) * c_w] - 9 * tmp[(y - 2) * c_w] + + 35 * tmp[(y - 1) * c_w] + 114 * tmp[y * c_w] - + 17 * tmp[OC_MINI(y + 1, c_h - 1) * c_w] + + 4 * tmp[(c_h - 1) * c_w] + 64) >> + 7, + 255); + } + _dst++; + tmp++; + } + _dst += c_sz - c_w; + tmp -= c_w; + break; + } + case 2: { + /*Slide C_r down a quarter-pel. + This is the same as the horizontal filter.*/ + for (x = 0; x < c_w; x++) { + for (y = 0; y < OC_MINI(c_h, 2); y++) { + _dst[y * c_w] = (unsigned char)OC_CLAMPI( + 0, + (4 * tmp[0] - 17 * tmp[OC_MAXI(y - 1, 0) * c_w] + + 114 * tmp[y * c_w] + 35 * tmp[OC_MINI(y + 1, c_h - 1) * c_w] - + 9 * tmp[OC_MINI(y + 2, c_h - 1) * c_w] + + tmp[OC_MINI(y + 3, c_h - 1) * c_w] + 64) >> + 7, + 255); + } + for (; y < c_h - 3; y++) { + _dst[y * c_w] = (unsigned char)OC_CLAMPI( + 0, + (4 * tmp[(y - 2) * c_w] - 17 * tmp[(y - 1) * c_w] + + 114 * tmp[y * c_w] + 35 * tmp[(y + 1) * c_w] - + 9 * tmp[(y + 2) * c_w] + tmp[(y + 3) * c_w] + 64) >> + 7, + 255); + } + for (; y < c_h; y++) { + _dst[y * c_w] = (unsigned char)OC_CLAMPI( + 0, + (4 * tmp[(y - 2) * c_w] - 17 * tmp[(y - 1) * c_w] + + 114 * tmp[y * c_w] + 35 * tmp[OC_MINI(y + 1, c_h - 1) * c_w] - + 9 * tmp[OC_MINI(y + 2, c_h - 1) * c_w] + tmp[(c_h - 1) * c_w] + + 64) >> + 7, + 255); + } + _dst++; + tmp++; + } + break; + } + } + /*For actual interlaced material, this would have to be done separately on + each field, and the shift amounts would be different. + C_r moves down 1/8, C_b up 3/8 in the top field, and C_r moves down 3/8, + C_b up 1/8 in the bottom field. + The corresponding filters would be: + Down 1/8 (reverse order for up): [3 -11 125 15 -4 0]/128 + Down 3/8 (reverse order for up): [4 -19 98 56 -13 2]/128*/ + } +} + +/*Perform vertical filtering to reduce a single plane from 4:2:2 to 4:2:0. + This is used as a helper by several converation routines.*/ +static void y4m_422jpeg_420jpeg_helper(unsigned char *_dst, + const unsigned char *_src, int _c_w, + int _c_h) { + int y; + int x; + /*Filter: [3 -17 78 78 -17 3]/128, derived from a 6-tap Lanczos window.*/ + for (x = 0; x < _c_w; x++) { + for (y = 0; y < OC_MINI(_c_h, 2); y += 2) { + _dst[(y >> 1) * _c_w] = + OC_CLAMPI(0, + (64 * _src[0] + 78 * _src[OC_MINI(1, _c_h - 1) * _c_w] - + 17 * _src[OC_MINI(2, _c_h - 1) * _c_w] + + 3 * _src[OC_MINI(3, _c_h - 1) * _c_w] + 64) >> + 7, + 255); + } + for (; y < _c_h - 3; y += 2) { + _dst[(y >> 1) * _c_w] = + OC_CLAMPI(0, + (3 * (_src[(y - 2) * _c_w] + _src[(y + 3) * _c_w]) - + 17 * (_src[(y - 1) * _c_w] + _src[(y + 2) * _c_w]) + + 78 * (_src[y * _c_w] + _src[(y + 1) * _c_w]) + 64) >> + 7, + 255); + } + for (; y < _c_h; y += 2) { + _dst[(y >> 1) * _c_w] = OC_CLAMPI( + 0, + (3 * (_src[(y - 2) * _c_w] + _src[(_c_h - 1) * _c_w]) - + 17 * (_src[(y - 1) * _c_w] + _src[OC_MINI(y + 2, _c_h - 1) * _c_w]) + + 78 * (_src[y * _c_w] + _src[OC_MINI(y + 1, _c_h - 1) * _c_w]) + + 64) >> + 7, + 255); + } + _src++; + _dst++; + } +} + +/*420jpeg chroma samples are sited like: + Y-------Y-------Y-------Y------- + | | | | + | BR | | BR | + | | | | + Y-------Y-------Y-------Y------- + | | | | + | | | | + | | | | + Y-------Y-------Y-------Y------- + | | | | + | BR | | BR | + | | | | + Y-------Y-------Y-------Y------- + | | | | + | | | | + | | | | + + 422jpeg chroma samples are sited like: + Y---BR--Y-------Y---BR--Y------- + | | | | + | | | | + | | | | + Y---BR--Y-------Y---BR--Y------- + | | | | + | | | | + | | | | + Y---BR--Y-------Y---BR--Y------- + | | | | + | | | | + | | | | + Y---BR--Y-------Y---BR--Y------- + | | | | + | | | | + | | | | + + We use a resampling filter to decimate the chroma planes by two in the + vertical direction.*/ +static void y4m_convert_422jpeg_420jpeg(y4m_input *_y4m, unsigned char *_dst, + unsigned char *_aux) { + int c_w; + int c_h; + int c_sz; + int dst_c_w; + int dst_c_h; + int dst_c_sz; + int pli; + /*Skip past the luma data.*/ + _dst += _y4m->pic_w * _y4m->pic_h; + /*Compute the size of each chroma plane.*/ + c_w = (_y4m->pic_w + _y4m->src_c_dec_h - 1) / _y4m->src_c_dec_h; + c_h = _y4m->pic_h; + dst_c_w = (_y4m->pic_w + _y4m->dst_c_dec_h - 1) / _y4m->dst_c_dec_h; + dst_c_h = (_y4m->pic_h + _y4m->dst_c_dec_v - 1) / _y4m->dst_c_dec_v; + c_sz = c_w * c_h; + dst_c_sz = dst_c_w * dst_c_h; + for (pli = 1; pli < 3; pli++) { + y4m_422jpeg_420jpeg_helper(_dst, _aux, c_w, c_h); + _aux += c_sz; + _dst += dst_c_sz; + } +} + +/*420jpeg chroma samples are sited like: + Y-------Y-------Y-------Y------- + | | | | + | BR | | BR | + | | | | + Y-------Y-------Y-------Y------- + | | | | + | | | | + | | | | + Y-------Y-------Y-------Y------- + | | | | + | BR | | BR | + | | | | + Y-------Y-------Y-------Y------- + | | | | + | | | | + | | | | + + 422 chroma samples are sited like: + YBR-----Y-------YBR-----Y------- + | | | | + | | | | + | | | | + YBR-----Y-------YBR-----Y------- + | | | | + | | | | + | | | | + YBR-----Y-------YBR-----Y------- + | | | | + | | | | + | | | | + YBR-----Y-------YBR-----Y------- + | | | | + | | | | + | | | | + + We use a resampling filter to shift the original site locations one quarter + pixel (at the original chroma resolution) to the right. + Then we use a second resampling filter to decimate the chroma planes by two + in the vertical direction.*/ +static void y4m_convert_422_420jpeg(y4m_input *_y4m, unsigned char *_dst, + unsigned char *_aux) { + unsigned char *tmp; + int c_w; + int c_h; + int c_sz; + int dst_c_h; + int dst_c_sz; + int pli; + /*Skip past the luma data.*/ + _dst += _y4m->pic_w * _y4m->pic_h; + /*Compute the size of each chroma plane.*/ + c_w = (_y4m->pic_w + _y4m->src_c_dec_h - 1) / _y4m->src_c_dec_h; + c_h = _y4m->pic_h; + dst_c_h = (_y4m->pic_h + _y4m->dst_c_dec_v - 1) / _y4m->dst_c_dec_v; + c_sz = c_w * c_h; + dst_c_sz = c_w * dst_c_h; + tmp = _aux + 2 * c_sz; + for (pli = 1; pli < 3; pli++) { + /*In reality, the horizontal and vertical steps could be pipelined, for + less memory consumption and better cache performance, but we do them + separately for simplicity.*/ + /*First do horizontal filtering (convert to 422jpeg)*/ + y4m_42xmpeg2_42xjpeg_helper(tmp, _aux, c_w, c_h); + /*Now do the vertical filtering.*/ + y4m_422jpeg_420jpeg_helper(_dst, tmp, c_w, c_h); + _aux += c_sz; + _dst += dst_c_sz; + } +} + +/*420jpeg chroma samples are sited like: + Y-------Y-------Y-------Y------- + | | | | + | BR | | BR | + | | | | + Y-------Y-------Y-------Y------- + | | | | + | | | | + | | | | + Y-------Y-------Y-------Y------- + | | | | + | BR | | BR | + | | | | + Y-------Y-------Y-------Y------- + | | | | + | | | | + | | | | + + 411 chroma samples are sited like: + YBR-----Y-------Y-------Y------- + | | | | + | | | | + | | | | + YBR-----Y-------Y-------Y------- + | | | | + | | | | + | | | | + YBR-----Y-------Y-------Y------- + | | | | + | | | | + | | | | + YBR-----Y-------Y-------Y------- + | | | | + | | | | + | | | | + + We use a filter to resample at site locations one eighth pixel (at the source + chroma plane's horizontal resolution) and five eighths of a pixel to the + right. + Then we use another filter to decimate the planes by 2 in the vertical + direction.*/ +static void y4m_convert_411_420jpeg(y4m_input *_y4m, unsigned char *_dst, + unsigned char *_aux) { + unsigned char *tmp; + int c_w; + int c_h; + int c_sz; + int dst_c_w; + int dst_c_h; + int dst_c_sz; + int tmp_sz; + int pli; + int y; + int x; + /*Skip past the luma data.*/ + _dst += _y4m->pic_w * _y4m->pic_h; + /*Compute the size of each chroma plane.*/ + c_w = (_y4m->pic_w + _y4m->src_c_dec_h - 1) / _y4m->src_c_dec_h; + c_h = _y4m->pic_h; + dst_c_w = (_y4m->pic_w + _y4m->dst_c_dec_h - 1) / _y4m->dst_c_dec_h; + dst_c_h = (_y4m->pic_h + _y4m->dst_c_dec_v - 1) / _y4m->dst_c_dec_v; + c_sz = c_w * c_h; + dst_c_sz = dst_c_w * dst_c_h; + tmp_sz = dst_c_w * c_h; + tmp = _aux + 2 * c_sz; + for (pli = 1; pli < 3; pli++) { + /*In reality, the horizontal and vertical steps could be pipelined, for + less memory consumption and better cache performance, but we do them + separately for simplicity.*/ + /*First do horizontal filtering (convert to 422jpeg)*/ + for (y = 0; y < c_h; y++) { + /*Filters: [1 110 18 -1]/128 and [-3 50 86 -5]/128, both derived from a + 4-tap Mitchell window.*/ + for (x = 0; x < OC_MINI(c_w, 1); x++) { + tmp[x << 1] = (unsigned char)OC_CLAMPI( + 0, + (111 * _aux[0] + 18 * _aux[OC_MINI(1, c_w - 1)] - + _aux[OC_MINI(2, c_w - 1)] + 64) >> + 7, + 255); + tmp[x << 1 | 1] = (unsigned char)OC_CLAMPI( + 0, + (47 * _aux[0] + 86 * _aux[OC_MINI(1, c_w - 1)] - + 5 * _aux[OC_MINI(2, c_w - 1)] + 64) >> + 7, + 255); + } + for (; x < c_w - 2; x++) { + tmp[x << 1] = + (unsigned char)OC_CLAMPI(0, + (_aux[x - 1] + 110 * _aux[x] + + 18 * _aux[x + 1] - _aux[x + 2] + 64) >> + 7, + 255); + tmp[x << 1 | 1] = (unsigned char)OC_CLAMPI( + 0, + (-3 * _aux[x - 1] + 50 * _aux[x] + 86 * _aux[x + 1] - + 5 * _aux[x + 2] + 64) >> + 7, + 255); + } + for (; x < c_w; x++) { + tmp[x << 1] = (unsigned char)OC_CLAMPI( + 0, + (_aux[x - 1] + 110 * _aux[x] + 18 * _aux[OC_MINI(x + 1, c_w - 1)] - + _aux[c_w - 1] + 64) >> + 7, + 255); + if ((x << 1 | 1) < dst_c_w) { + tmp[x << 1 | 1] = (unsigned char)OC_CLAMPI( + 0, + (-3 * _aux[x - 1] + 50 * _aux[x] + + 86 * _aux[OC_MINI(x + 1, c_w - 1)] - 5 * _aux[c_w - 1] + 64) >> + 7, + 255); + } + } + tmp += dst_c_w; + _aux += c_w; + } + tmp -= tmp_sz; + /*Now do the vertical filtering.*/ + y4m_422jpeg_420jpeg_helper(_dst, tmp, dst_c_w, c_h); + _dst += dst_c_sz; + } +} + +/*Convert 444 to 420jpeg.*/ +static void y4m_convert_444_420jpeg(y4m_input *_y4m, unsigned char *_dst, + unsigned char *_aux) { + unsigned char *tmp; + int c_w; + int c_h; + int c_sz; + int dst_c_w; + int dst_c_h; + int dst_c_sz; + int tmp_sz; + int pli; + int y; + int x; + /*Skip past the luma data.*/ + _dst += _y4m->pic_w * _y4m->pic_h; + /*Compute the size of each chroma plane.*/ + c_w = (_y4m->pic_w + _y4m->src_c_dec_h - 1) / _y4m->src_c_dec_h; + c_h = _y4m->pic_h; + dst_c_w = (_y4m->pic_w + _y4m->dst_c_dec_h - 1) / _y4m->dst_c_dec_h; + dst_c_h = (_y4m->pic_h + _y4m->dst_c_dec_v - 1) / _y4m->dst_c_dec_v; + c_sz = c_w * c_h; + dst_c_sz = dst_c_w * dst_c_h; + tmp_sz = dst_c_w * c_h; + tmp = _aux + 2 * c_sz; + for (pli = 1; pli < 3; pli++) { + /*Filter: [3 -17 78 78 -17 3]/128, derived from a 6-tap Lanczos window.*/ + for (y = 0; y < c_h; y++) { + for (x = 0; x < OC_MINI(c_w, 2); x += 2) { + tmp[x >> 1] = OC_CLAMPI(0, + (64 * _aux[0] + 78 * _aux[OC_MINI(1, c_w - 1)] - + 17 * _aux[OC_MINI(2, c_w - 1)] + + 3 * _aux[OC_MINI(3, c_w - 1)] + 64) >> + 7, + 255); + } + for (; x < c_w - 3; x += 2) { + tmp[x >> 1] = OC_CLAMPI(0, + (3 * (_aux[x - 2] + _aux[x + 3]) - + 17 * (_aux[x - 1] + _aux[x + 2]) + + 78 * (_aux[x] + _aux[x + 1]) + 64) >> + 7, + 255); + } + for (; x < c_w; x += 2) { + tmp[x >> 1] = + OC_CLAMPI(0, + (3 * (_aux[x - 2] + _aux[c_w - 1]) - + 17 * (_aux[x - 1] + _aux[OC_MINI(x + 2, c_w - 1)]) + + 78 * (_aux[x] + _aux[OC_MINI(x + 1, c_w - 1)]) + 64) >> + 7, + 255); + } + tmp += dst_c_w; + _aux += c_w; + } + tmp -= tmp_sz; + /*Now do the vertical filtering.*/ + y4m_422jpeg_420jpeg_helper(_dst, tmp, dst_c_w, c_h); + _dst += dst_c_sz; + } +} + +/*The image is padded with empty chroma components at 4:2:0.*/ +static void y4m_convert_mono_420jpeg(y4m_input *_y4m, unsigned char *_dst, + unsigned char *_aux) { + int c_sz; + (void)_aux; + _dst += _y4m->pic_w * _y4m->pic_h; + c_sz = ((_y4m->pic_w + _y4m->dst_c_dec_h - 1) / _y4m->dst_c_dec_h) * + ((_y4m->pic_h + _y4m->dst_c_dec_v - 1) / _y4m->dst_c_dec_v); + memset(_dst, 128, c_sz * 2); +} + +/*No conversion function needed.*/ +static void y4m_convert_null(y4m_input *_y4m, unsigned char *_dst, + unsigned char *_aux) { + (void)_y4m; + (void)_dst; + (void)_aux; +} + +int y4m_input_open(y4m_input *_y4m, FILE *_fin, char *_skip, int _nskip, + int only_420) { + char buffer[80] = { 0 }; + int ret; + int i; + /*Read until newline, or 80 cols, whichever happens first.*/ + for (i = 0; i < 79; i++) { + if (_nskip > 0) { + buffer[i] = *_skip++; + _nskip--; + } else { + if (!file_read(buffer + i, 1, _fin)) return -1; + } + if (buffer[i] == '\n') break; + } + /*We skipped too much header data.*/ + if (_nskip > 0) return -1; + if (i == 79) { + fprintf(stderr, "Error parsing header; not a YUV2MPEG2 file?\n"); + return -1; + } + buffer[i] = '\0'; + if (memcmp(buffer, "YUV4MPEG", 8)) { + fprintf(stderr, "Incomplete magic for YUV4MPEG file.\n"); + return -1; + } + if (buffer[8] != '2') { + fprintf(stderr, "Incorrect YUV input file version; YUV4MPEG2 required.\n"); + } + ret = y4m_parse_tags(_y4m, buffer + 5); + if (ret < 0) { + fprintf(stderr, "Error parsing YUV4MPEG2 header.\n"); + return ret; + } + if (_y4m->interlace == '?') { + fprintf(stderr, + "Warning: Input video interlacing format unknown; " + "assuming progressive scan.\n"); + } else if (_y4m->interlace != 'p') { + fprintf(stderr, + "Input video is interlaced; " + "Only progressive scan handled.\n"); + return -1; + } + _y4m->vpx_fmt = VPX_IMG_FMT_I420; + _y4m->bps = 12; + _y4m->bit_depth = 8; + if (strcmp(_y4m->chroma_type, "420") == 0 || + strcmp(_y4m->chroma_type, "420jpeg") == 0) { + _y4m->src_c_dec_h = _y4m->dst_c_dec_h = _y4m->src_c_dec_v = + _y4m->dst_c_dec_v = 2; + _y4m->dst_buf_read_sz = + _y4m->pic_w * _y4m->pic_h + + 2 * ((_y4m->pic_w + 1) / 2) * ((_y4m->pic_h + 1) / 2); + /* Natively supported: no conversion required. */ + _y4m->aux_buf_sz = _y4m->aux_buf_read_sz = 0; + _y4m->convert = y4m_convert_null; + } else if (strcmp(_y4m->chroma_type, "420p10") == 0) { + _y4m->src_c_dec_h = 2; + _y4m->dst_c_dec_h = 2; + _y4m->src_c_dec_v = 2; + _y4m->dst_c_dec_v = 2; + _y4m->dst_buf_read_sz = + 2 * (_y4m->pic_w * _y4m->pic_h + + 2 * ((_y4m->pic_w + 1) / 2) * ((_y4m->pic_h + 1) / 2)); + /* Natively supported: no conversion required. */ + _y4m->aux_buf_sz = _y4m->aux_buf_read_sz = 0; + _y4m->convert = y4m_convert_null; + _y4m->bit_depth = 10; + _y4m->bps = 15; + _y4m->vpx_fmt = VPX_IMG_FMT_I42016; + if (only_420) { + fprintf(stderr, "Unsupported conversion from 420p10 to 420jpeg\n"); + return -1; + } + } else if (strcmp(_y4m->chroma_type, "420p12") == 0) { + _y4m->src_c_dec_h = 2; + _y4m->dst_c_dec_h = 2; + _y4m->src_c_dec_v = 2; + _y4m->dst_c_dec_v = 2; + _y4m->dst_buf_read_sz = + 2 * (_y4m->pic_w * _y4m->pic_h + + 2 * ((_y4m->pic_w + 1) / 2) * ((_y4m->pic_h + 1) / 2)); + /* Natively supported: no conversion required. */ + _y4m->aux_buf_sz = _y4m->aux_buf_read_sz = 0; + _y4m->convert = y4m_convert_null; + _y4m->bit_depth = 12; + _y4m->bps = 18; + _y4m->vpx_fmt = VPX_IMG_FMT_I42016; + if (only_420) { + fprintf(stderr, "Unsupported conversion from 420p12 to 420jpeg\n"); + return -1; + } + } else if (strcmp(_y4m->chroma_type, "420mpeg2") == 0) { + _y4m->src_c_dec_h = _y4m->dst_c_dec_h = _y4m->src_c_dec_v = + _y4m->dst_c_dec_v = 2; + _y4m->dst_buf_read_sz = _y4m->pic_w * _y4m->pic_h; + /*Chroma filter required: read into the aux buf first.*/ + _y4m->aux_buf_sz = _y4m->aux_buf_read_sz = + 2 * ((_y4m->pic_w + 1) / 2) * ((_y4m->pic_h + 1) / 2); + _y4m->convert = y4m_convert_42xmpeg2_42xjpeg; + } else if (strcmp(_y4m->chroma_type, "420paldv") == 0) { + _y4m->src_c_dec_h = _y4m->dst_c_dec_h = _y4m->src_c_dec_v = + _y4m->dst_c_dec_v = 2; + _y4m->dst_buf_read_sz = _y4m->pic_w * _y4m->pic_h; + /*Chroma filter required: read into the aux buf first. + We need to make two filter passes, so we need some extra space in the + aux buffer.*/ + _y4m->aux_buf_sz = 3 * ((_y4m->pic_w + 1) / 2) * ((_y4m->pic_h + 1) / 2); + _y4m->aux_buf_read_sz = + 2 * ((_y4m->pic_w + 1) / 2) * ((_y4m->pic_h + 1) / 2); + _y4m->convert = y4m_convert_42xpaldv_42xjpeg; + } else if (strcmp(_y4m->chroma_type, "422jpeg") == 0) { + _y4m->src_c_dec_h = _y4m->dst_c_dec_h = 2; + _y4m->src_c_dec_v = 1; + _y4m->dst_c_dec_v = 2; + _y4m->dst_buf_read_sz = _y4m->pic_w * _y4m->pic_h; + /*Chroma filter required: read into the aux buf first.*/ + _y4m->aux_buf_sz = _y4m->aux_buf_read_sz = + 2 * ((_y4m->pic_w + 1) / 2) * _y4m->pic_h; + _y4m->convert = y4m_convert_422jpeg_420jpeg; + } else if (strcmp(_y4m->chroma_type, "422") == 0) { + _y4m->src_c_dec_h = 2; + _y4m->src_c_dec_v = 1; + if (only_420) { + _y4m->dst_c_dec_h = 2; + _y4m->dst_c_dec_v = 2; + _y4m->dst_buf_read_sz = _y4m->pic_w * _y4m->pic_h; + /*Chroma filter required: read into the aux buf first. + We need to make two filter passes, so we need some extra space in the + aux buffer.*/ + _y4m->aux_buf_read_sz = 2 * ((_y4m->pic_w + 1) / 2) * _y4m->pic_h; + _y4m->aux_buf_sz = + _y4m->aux_buf_read_sz + ((_y4m->pic_w + 1) / 2) * _y4m->pic_h; + _y4m->convert = y4m_convert_422_420jpeg; + } else { + _y4m->vpx_fmt = VPX_IMG_FMT_I422; + _y4m->bps = 16; + _y4m->dst_c_dec_h = _y4m->src_c_dec_h; + _y4m->dst_c_dec_v = _y4m->src_c_dec_v; + _y4m->dst_buf_read_sz = + _y4m->pic_w * _y4m->pic_h + 2 * ((_y4m->pic_w + 1) / 2) * _y4m->pic_h; + /*Natively supported: no conversion required.*/ + _y4m->aux_buf_sz = _y4m->aux_buf_read_sz = 0; + _y4m->convert = y4m_convert_null; + } + } else if (strcmp(_y4m->chroma_type, "422p10") == 0) { + _y4m->src_c_dec_h = 2; + _y4m->src_c_dec_v = 1; + _y4m->vpx_fmt = VPX_IMG_FMT_I42216; + _y4m->bps = 20; + _y4m->bit_depth = 10; + _y4m->dst_c_dec_h = _y4m->src_c_dec_h; + _y4m->dst_c_dec_v = _y4m->src_c_dec_v; + _y4m->dst_buf_read_sz = 2 * (_y4m->pic_w * _y4m->pic_h + + 2 * ((_y4m->pic_w + 1) / 2) * _y4m->pic_h); + _y4m->aux_buf_sz = _y4m->aux_buf_read_sz = 0; + _y4m->convert = y4m_convert_null; + if (only_420) { + fprintf(stderr, "Unsupported conversion from 422p10 to 420jpeg\n"); + return -1; + } + } else if (strcmp(_y4m->chroma_type, "422p12") == 0) { + _y4m->src_c_dec_h = 2; + _y4m->src_c_dec_v = 1; + _y4m->vpx_fmt = VPX_IMG_FMT_I42216; + _y4m->bps = 24; + _y4m->bit_depth = 12; + _y4m->dst_c_dec_h = _y4m->src_c_dec_h; + _y4m->dst_c_dec_v = _y4m->src_c_dec_v; + _y4m->dst_buf_read_sz = 2 * (_y4m->pic_w * _y4m->pic_h + + 2 * ((_y4m->pic_w + 1) / 2) * _y4m->pic_h); + _y4m->aux_buf_sz = _y4m->aux_buf_read_sz = 0; + _y4m->convert = y4m_convert_null; + if (only_420) { + fprintf(stderr, "Unsupported conversion from 422p12 to 420jpeg\n"); + return -1; + } + } else if (strcmp(_y4m->chroma_type, "411") == 0) { + _y4m->src_c_dec_h = 4; + _y4m->dst_c_dec_h = 2; + _y4m->src_c_dec_v = 1; + _y4m->dst_c_dec_v = 2; + _y4m->dst_buf_read_sz = _y4m->pic_w * _y4m->pic_h; + /*Chroma filter required: read into the aux buf first. + We need to make two filter passes, so we need some extra space in the + aux buffer.*/ + _y4m->aux_buf_read_sz = 2 * ((_y4m->pic_w + 3) / 4) * _y4m->pic_h; + _y4m->aux_buf_sz = + _y4m->aux_buf_read_sz + ((_y4m->pic_w + 1) / 2) * _y4m->pic_h; + _y4m->convert = y4m_convert_411_420jpeg; + } else if (strcmp(_y4m->chroma_type, "444") == 0) { + _y4m->src_c_dec_h = 1; + _y4m->src_c_dec_v = 1; + if (only_420) { + _y4m->dst_c_dec_h = 2; + _y4m->dst_c_dec_v = 2; + _y4m->dst_buf_read_sz = _y4m->pic_w * _y4m->pic_h; + /*Chroma filter required: read into the aux buf first. + We need to make two filter passes, so we need some extra space in the + aux buffer.*/ + _y4m->aux_buf_read_sz = 2 * _y4m->pic_w * _y4m->pic_h; + _y4m->aux_buf_sz = + _y4m->aux_buf_read_sz + ((_y4m->pic_w + 1) / 2) * _y4m->pic_h; + _y4m->convert = y4m_convert_444_420jpeg; + } else { + _y4m->vpx_fmt = VPX_IMG_FMT_I444; + _y4m->bps = 24; + _y4m->dst_c_dec_h = _y4m->src_c_dec_h; + _y4m->dst_c_dec_v = _y4m->src_c_dec_v; + _y4m->dst_buf_read_sz = 3 * _y4m->pic_w * _y4m->pic_h; + /*Natively supported: no conversion required.*/ + _y4m->aux_buf_sz = _y4m->aux_buf_read_sz = 0; + _y4m->convert = y4m_convert_null; + } + } else if (strcmp(_y4m->chroma_type, "444p10") == 0) { + _y4m->src_c_dec_h = 1; + _y4m->src_c_dec_v = 1; + _y4m->vpx_fmt = VPX_IMG_FMT_I44416; + _y4m->bps = 30; + _y4m->bit_depth = 10; + _y4m->dst_c_dec_h = _y4m->src_c_dec_h; + _y4m->dst_c_dec_v = _y4m->src_c_dec_v; + _y4m->dst_buf_read_sz = 2 * 3 * _y4m->pic_w * _y4m->pic_h; + _y4m->aux_buf_sz = _y4m->aux_buf_read_sz = 0; + _y4m->convert = y4m_convert_null; + if (only_420) { + fprintf(stderr, "Unsupported conversion from 444p10 to 420jpeg\n"); + return -1; + } + } else if (strcmp(_y4m->chroma_type, "444p12") == 0) { + _y4m->src_c_dec_h = 1; + _y4m->src_c_dec_v = 1; + _y4m->vpx_fmt = VPX_IMG_FMT_I44416; + _y4m->bps = 36; + _y4m->bit_depth = 12; + _y4m->dst_c_dec_h = _y4m->src_c_dec_h; + _y4m->dst_c_dec_v = _y4m->src_c_dec_v; + _y4m->dst_buf_read_sz = 2 * 3 * _y4m->pic_w * _y4m->pic_h; + _y4m->aux_buf_sz = _y4m->aux_buf_read_sz = 0; + _y4m->convert = y4m_convert_null; + if (only_420) { + fprintf(stderr, "Unsupported conversion from 444p12 to 420jpeg\n"); + return -1; + } + } else if (strcmp(_y4m->chroma_type, "444alpha") == 0) { + _y4m->src_c_dec_h = 1; + _y4m->src_c_dec_v = 1; + if (only_420) { + _y4m->dst_c_dec_h = 2; + _y4m->dst_c_dec_v = 2; + _y4m->dst_buf_read_sz = _y4m->pic_w * _y4m->pic_h; + /*Chroma filter required: read into the aux buf first. + We need to make two filter passes, so we need some extra space in the + aux buffer. + The extra plane also gets read into the aux buf. + It will be discarded.*/ + _y4m->aux_buf_sz = _y4m->aux_buf_read_sz = 3 * _y4m->pic_w * _y4m->pic_h; + _y4m->convert = y4m_convert_444_420jpeg; + } else { + _y4m->vpx_fmt = VPX_IMG_FMT_444A; + _y4m->bps = 32; + _y4m->dst_c_dec_h = _y4m->src_c_dec_h; + _y4m->dst_c_dec_v = _y4m->src_c_dec_v; + _y4m->dst_buf_read_sz = 4 * _y4m->pic_w * _y4m->pic_h; + /*Natively supported: no conversion required.*/ + _y4m->aux_buf_sz = _y4m->aux_buf_read_sz = 0; + _y4m->convert = y4m_convert_null; + } + } else if (strcmp(_y4m->chroma_type, "mono") == 0) { + _y4m->src_c_dec_h = _y4m->src_c_dec_v = 0; + _y4m->dst_c_dec_h = _y4m->dst_c_dec_v = 2; + _y4m->dst_buf_read_sz = _y4m->pic_w * _y4m->pic_h; + /*No extra space required, but we need to clear the chroma planes.*/ + _y4m->aux_buf_sz = _y4m->aux_buf_read_sz = 0; + _y4m->convert = y4m_convert_mono_420jpeg; + } else { + fprintf(stderr, "Unknown chroma sampling type: %s\n", _y4m->chroma_type); + return -1; + } + /*The size of the final frame buffers is always computed from the + destination chroma decimation type.*/ + _y4m->dst_buf_sz = + _y4m->pic_w * _y4m->pic_h + + 2 * ((_y4m->pic_w + _y4m->dst_c_dec_h - 1) / _y4m->dst_c_dec_h) * + ((_y4m->pic_h + _y4m->dst_c_dec_v - 1) / _y4m->dst_c_dec_v); + if (_y4m->bit_depth == 8) + _y4m->dst_buf = (unsigned char *)malloc(_y4m->dst_buf_sz); + else + _y4m->dst_buf = (unsigned char *)malloc(2 * _y4m->dst_buf_sz); + + if (_y4m->aux_buf_sz > 0) + _y4m->aux_buf = (unsigned char *)malloc(_y4m->aux_buf_sz); + return 0; +} + +void y4m_input_close(y4m_input *_y4m) { + free(_y4m->dst_buf); + free(_y4m->aux_buf); +} + +int y4m_input_fetch_frame(y4m_input *_y4m, FILE *_fin, vpx_image_t *_img) { + char frame[6]; + int pic_sz; + int c_w; + int c_h; + int c_sz; + int bytes_per_sample = _y4m->bit_depth > 8 ? 2 : 1; + /*Read and skip the frame header.*/ + if (!file_read(frame, 6, _fin)) return 0; + if (memcmp(frame, "FRAME", 5)) { + fprintf(stderr, "Loss of framing in Y4M input data\n"); + return -1; + } + if (frame[5] != '\n') { + char c; + int j; + for (j = 0; j < 79 && file_read(&c, 1, _fin) && c != '\n'; j++) { + } + if (j == 79) { + fprintf(stderr, "Error parsing Y4M frame header\n"); + return -1; + } + } + /*Read the frame data that needs no conversion.*/ + if (!file_read(_y4m->dst_buf, _y4m->dst_buf_read_sz, _fin)) { + fprintf(stderr, "Error reading Y4M frame data.\n"); + return -1; + } + /*Read the frame data that does need conversion.*/ + if (!file_read(_y4m->aux_buf, _y4m->aux_buf_read_sz, _fin)) { + fprintf(stderr, "Error reading Y4M frame data.\n"); + return -1; + } + /*Now convert the just read frame.*/ + (*_y4m->convert)(_y4m, _y4m->dst_buf, _y4m->aux_buf); + /*Fill in the frame buffer pointers. + We don't use vpx_img_wrap() because it forces padding for odd picture + sizes, which would require a separate fread call for every row.*/ + memset(_img, 0, sizeof(*_img)); + /*Y4M has the planes in Y'CbCr order, which libvpx calls Y, U, and V.*/ + _img->fmt = _y4m->vpx_fmt; + _img->w = _img->d_w = _y4m->pic_w; + _img->h = _img->d_h = _y4m->pic_h; + _img->x_chroma_shift = _y4m->dst_c_dec_h >> 1; + _img->y_chroma_shift = _y4m->dst_c_dec_v >> 1; + _img->bps = _y4m->bps; + + /*Set up the buffer pointers.*/ + pic_sz = _y4m->pic_w * _y4m->pic_h * bytes_per_sample; + c_w = (_y4m->pic_w + _y4m->dst_c_dec_h - 1) / _y4m->dst_c_dec_h; + c_w *= bytes_per_sample; + c_h = (_y4m->pic_h + _y4m->dst_c_dec_v - 1) / _y4m->dst_c_dec_v; + c_sz = c_w * c_h; + _img->stride[VPX_PLANE_Y] = _img->stride[VPX_PLANE_ALPHA] = + _y4m->pic_w * bytes_per_sample; + _img->stride[VPX_PLANE_U] = _img->stride[VPX_PLANE_V] = c_w; + _img->planes[VPX_PLANE_Y] = _y4m->dst_buf; + _img->planes[VPX_PLANE_U] = _y4m->dst_buf + pic_sz; + _img->planes[VPX_PLANE_V] = _y4m->dst_buf + pic_sz + c_sz; + _img->planes[VPX_PLANE_ALPHA] = _y4m->dst_buf + pic_sz + 2 * c_sz; + return 1; +} diff --git a/y4minput.h b/y4minput.h new file mode 100644 index 0000000..9e69ceb --- /dev/null +++ b/y4minput.h @@ -0,0 +1,68 @@ +/* + * Copyright (c) 2010 The WebM project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + * + * Based on code from the OggTheora software codec source code, + * Copyright (C) 2002-2010 The Xiph.Org Foundation and contributors. + */ + +#ifndef Y4MINPUT_H_ +#define Y4MINPUT_H_ + +#include +#include "vpx/vpx_image.h" + +#ifdef __cplusplus +extern "C" { +#endif + +typedef struct y4m_input y4m_input; + +/*The function used to perform chroma conversion.*/ +typedef void (*y4m_convert_func)(y4m_input *_y4m, unsigned char *_dst, + unsigned char *_src); + +struct y4m_input { + int pic_w; + int pic_h; + int fps_n; + int fps_d; + int par_n; + int par_d; + char interlace; + int src_c_dec_h; + int src_c_dec_v; + int dst_c_dec_h; + int dst_c_dec_v; + char chroma_type[16]; + /*The size of each converted frame buffer.*/ + size_t dst_buf_sz; + /*The amount to read directly into the converted frame buffer.*/ + size_t dst_buf_read_sz; + /*The size of the auxilliary buffer.*/ + size_t aux_buf_sz; + /*The amount to read into the auxilliary buffer.*/ + size_t aux_buf_read_sz; + y4m_convert_func convert; + unsigned char *dst_buf; + unsigned char *aux_buf; + enum vpx_img_fmt vpx_fmt; + int bps; + unsigned int bit_depth; +}; + +int y4m_input_open(y4m_input *_y4m, FILE *_fin, char *_skip, int _nskip, + int only_420); +void y4m_input_close(y4m_input *_y4m); +int y4m_input_fetch_frame(y4m_input *_y4m, FILE *_fin, vpx_image_t *img); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // Y4MINPUT_H_